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ABSTRACT

In recent years, blockchain technologies have seen continuous expansion. One such
case is Ethereum, with its smart contracts finding widespread use. However, there is a
lack of development toolsets for the inspection and interpretation of smart contracts. Our
prototype aims to provide something new in this field, offering multi-level examination -
allowing the user to take in the greater picture of a transaction whilst still being able to
focus on the actual source code that was executed. Our tool makes extended use of
the solidity compiler, using its Abstract Syntax Tree representation of a contract’s source
code to facilitate a translation between the bytecode executed and the source code related
to said bytecode. Finally, as part of out case study we have included in our report the
a comparison between our tool and similar ones already developed, an analysis of its
accuracy, and our findings after running our tool in the wild, on a part of the Ethereum
blockchain.

SUBJECT AREA: Ethereum Smart Contracts

KEYWORDS: Smart Contracts, Ethereum, Solidity, Blockchain, Visualization



ΠΕΡΙΛΗΨΗ

Τα τελευταία χρόνια, οι τεχνολογίες αλυσίδων μπλόκ έχουν δει συνεχή ανάπτυξη. Μια
τέτοια περίπτωση είναι το Ethereum, του οποίου τα έξυπνα συμβόλαια έχουν γίνει αρ-
κετά διαδεδομένα. Βέβαια, υπάρχει μια έλλειψη απο εργαλεία που θα έκαναν την ανάλυση
και ερμήνευση αυτών των συμβολαίων πιο εύκολη για τους χρήστες. Το πρόγραμμά μας
έχει ως στόχο να βοηθήσει με αυτό το πρόβλημα, προσφέροντας πολυ-επίπεδη εξέταση
των έξυπνων συμβολαίων αφήνοντας στον χρήστη να κατανοήσει την ευρύτερη εικόνα
μιας συναλλαγής ενώ ταυτόχρονα επιτρέπει την δυνατότητα να εστιάσει στον κώδικα του
συμβολαίου που εκτελέστηκε. Κάναμε εκτεταμένη χρήση του μεταγλωττιστή της γλώσσας
solidity στην προσπάθειά μας, χρησιμοποιώντας την ενδιάμεση αναπαράσταση του κώ-
δικα σε μορφή Abstract Syntax Tree για να επιτύχουμε μια έγκυρη μετάφραση μεταξύ του
bytecode που εκτελέστηκε και του κώδικα που συσχετίζεται με αυτό το bytecode. Τέλος,
ως μέρος της έρευνάς μας προσθέσαμε στην πτυχιακή αυτή μια σύγκριση μεταξύ του
εργαλείου μας και άλλων που ήδη υπάρχουν, μια ανάλυση της ευστοχίας του και τα πορί-
σματά μας αφότου εκτελέσαμε το εργαλείο μας πάνω σε μέρος της αλυσίδας μπλόκ του
Ethereum.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Έξυπνα συμβόλαια στο Ethereum

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Έξυπνα Συμβόλαια, Ethereum, Solidity, Αλυσίδα Μπλόκ,
Οπτικοποίηση
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PREFACE

This report is my bachelor thesis for the conclusion of my undergraduate studies at the
Department of Informatics & Telecommunications of the National and Kapodistrian Uni-
versity of Athens. It was developed using python3.9 and the solidity compiler, and serves
as an extensible infrastructure for future work on inspecting, interpreting and visualizing
the Ethereum blockchain.
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1. INTRODUCTION

During the last decade, the number of digital monetary exchanges has risen dramatically.
This in turn was facilitated by the founding of the world’s first cryptocurrency; Bitcoin [20].
In subsequent years, numerous other cryptocurrencies - estimated to be more than 1600
- have been deployed and enjoy a share of the market, with the primary contender being
Bitcoin, and the secondary challenger being Ethereum [19].

Specifically, Ethereum is a cryptocurrency founded on blockchain technology; a decentral-
izedmechanismwith the sole purpose of consensus-based transaction validation. Ethereum
though, is a much larger beast. Instead of only providing a network for transactions to oc-
cur in, it also boasts an impressive tool; smart contracts. A smart contract is a piece of
computer code that resides on the blockchain and performs a specific function or func-
tions. Currently, the main contract-oriented language used for writing smart contracts is
Solidity.

This thesis presentsMacaron, a tool designed tomake exploring the execution of ethereum
transactions on solidity contracts easier. Since the transaction execution trace data are in
low-level bytecode form, this prototype creates an improved visual output by mapping said
bytecode instructions to the Solidity source code they were generated from and showcas-
ing changes in peristent variables.

I. Cheilaris 14
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2. RELATED WORK

Similar tools already exist, each with their own feature set. Bitquery offers a high-level
view transaction trace display, giving emphasis on the function calls that occured, without
showing what transpired between solidity instructions[2]. Other such high-level naviga-
tors are the Oko contract explorer, which instead shows calls between contracts[8], and
Bloxy, the most verbose of the three, since it not only exhibits calls between contracts and
function calls, but also the calldata of the calls[3].

A different approach is followed by the Truffle Suite, which boasts an impressive arsenal,
being able to debug transactions, though it is designed for use while developing a contract
and cannot examine all the transactions on the ethereum blockchain[18].

Great strides have been made with instruments that delve into the source code of a con-
tract and focus on showing which high-level instructions were executed, what results they
had, and what changes they made to the peristent layer of a contract. A stellar example
is Remix, which gives both low-level information (stack and memory alterations) but also
presents the user with the respective source code that made said alterations occur[9]. Per-
haps the most ambitious undertaking is Auditless, which offers all of the above in addition
to indicating value assignments on a per variable basis[1].

I. Cheilaris 15
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3. BACKGROUND

3.1 Cryptocurrencies and the blockchain technology

A cryptocurrency is an instrument that allows its users to provide payment for goods
and services; a virtual monetary system free from a central trusted authority. Instead,
a peer-to-peer networking system is implemented to assure and safeguard the validity of
all transactions by using a consensus-based protocol. The first such currency was Bitcoin,
deployed in 2009 by an unknown developer with the pseudonym ”Satoshi Nakamoto” and
soon after that, many more cryptocurrencies emerged[20].

Since the point of such systems is decentralized control, validation, and security, an ap-
propriate foundation is necessary. Thus, the idea of the blockchain was conceived[20] - a
distributed ledger that is curated and certified by its userbase[22].

3.2 Introduction to smart contracts

There is more potential to be found with regard to the blockchain. So far, we have de-
scribed a sophisticated accounting system, but the versatility of the blockchain’s archi-
tecture allows for so much more complex behaviour. Any data or asset can be digitized
and embedded in a blockchain, being offered for trade. This idea can be realized with the
use of computer code, otherwise referred to as a ’smart contract’[19]. A very important
first iteration of this notion was the extension of the bitcoin protocol, which utilized Script
- a simple stack-based non-Turing complete language[10]. Perhaps the most advanced
and famous blockchain for its smart contract integration is Ethereum;[19] offering a robust
bytecode instruction execution unit, the Ethereum Virtual Machine (EVM)[23].

3.3 The Ethereum Virtual Machine

The EVM has a simple stack-based architecture with a word size of 256-bits, to underpin
the Keccak-256 hash scheme and elliptic-curve calculations. It offers a word-addressed
byte array volatile memory model and an independent persistent storage. Its stack has a
maximum size of 1024 entries. Rather than having program code stored in an accessible
area, it is placed in a virtual ROM interactable only through a specialized instruction [23].

3.4 Solidity

One of themost notable languages used to write smart contracts on the ethereum blockchain
is Solidity; an object-oriented, high-level language. It is statically-typed and supports inher-
itance, libraries and complex user-defined types[16]. Solidity code is compiled, optimized
and deployed on the Ethereum network in EVM bytecode form.

I. Cheilaris 16
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3.4.1 Solidity internals

Of great interest to this thesis are the inner workings of the Solidity language concerning
how the storage is modelled and how function calls are implemented.

Storage is persistent, meaning that its values are retained on the blockchain. Its structure
is a mapping of 32-byte addresses to 32-byte values. Statically-sized variables are laid
out contiguously in storage, beginning from address 0. In the case of multiple contiguous
items that need less than 32 bytes, these are placed into a single storage slot if possible,
to conserve size, according to the following:

• The first item in a storage slot is stored lower-order aligned.

• Basic types such as boolean, int, etc, use as many bytes as are necessary to store
them.

• If a basic type cannot fit in the remaining part of a storage slot, it is moved to the
next slot.

• Struct and array data always occupy a new whole slot.

Contracts that use inheritance have the ordering of state variables be determined by the
C3-linearized order of contracts starting with the most base-ward contract. If allowed by
the rules above, state variables from different contracts can share the same storage slot.
In addition, the elements of structs and arrays are stored one after the other.

Dynamically-sized objects are a different case however. Mappings and dynamic arrays
use a Keccak-256 hash calculation to locate the starting position of the value or the array
data, due to their unpredictable size. The mapping or the dynamic array itself occupies
a slot in storage at some position p in accordance to the rules above. In the case of
dynamic arrays, that slot stores the number of elements of said array. For mappings, the
slot is unused. Array data are located at keccak256(p), in successive slots and the value
of a key k is located at keccak256(k . p), where . denotes concatenation.

Bytes and string are encoded identically. If possible, byte arrays store their data in the
same slot where their length is stored. Specifically, if the data is less than 32 bytes, it
is then stored in the higher-order bytes (left aligned) and the lowest-order byte contains
length * 2. In the case of the data being 32 or more bytes long, the main slot stores
length * 2 + 1 and the data is stored in keccak256(slot)[11].

On the subject of function calls, they can be split in two types: internal ones that do not
create an actual EVM call and external ones that do[14]. When solidity code is compiled
into EVM bytecode, internal calls are achieved by simple JUMPs between JUMPDESTs, while
external calls use the CALL opcode to refer to other contracts.

3.4.2 Compiler code transformations

Since code executed on the blockchain incurs costs to the transactor and space is of
limited quantity, one often encounters optimized contracts. The optimizer itself operates
on assembly. It starts by splitting the sequence of instructions into basic blocks at JUMPs
and JUMPDESTs. Afterwards, these blocks are analyzed, their behaviour (stack, memory or
storage changes) is recorded, and common expressions found are recursively eliminated,
thus shortening the code length. After this process, a control flow graph is built by using the

I. Cheilaris 17
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extracted knowledge and the code in each block is re-generated. Moreover, a dependency
graph is generated which is used to drop dangling operations[15].

3.4.3 Compiler output used

Of great importance and interest to this thesis are three output options of the solidity com-
piler, namely the code’s abstract syntax tree (AST) representation, the source map, and
the contract metadata. The AST of a given contract is a tree where each node is a lan-
guage construct abstraction and each node’s children are part of said abstraction. Each
node also contains a src field that shows to which part of the source code the node refers
to - also known as a source mapping[12].

These source mappings comes in the form of s:l:f, where s is the byte-offset to the start
of the mapping area in the source file f, and l is the mapping’s length. The source map is
a list of contiguous source mappings that adhere to the more complex notation s:l:f:j:m
and are seperated by ;. Each of thosemappings corresponds to a specific EVM instruction
with the s, l ,f fields being the same, the j takes one of the values i, o, -, signifying
whether a jump instruction goes into a function, returns from a function or is a regular
jump as part of a loop, branch, etc. The last field, m, is an integer that indicates the
”modifier depth”. This depth is increased whenever a placeholder statement _ is entered
in a modifier and decreased when it is left again. However, the solidity optimizer can prune
and merge identical basic blocks, making the source mapping information inaccurate at
times.

To avoid unnecessary waste of space, the source map is compressed using the following
rules:

• If a field is empty, the last element’s value is used.

• If a : is missing, then the following fields are considered to be empty.

For example, the following two source maps represent the same information:

1:2:1;1:9:1;2:1:2;2:1:2;2:1:2

1:2:1;:9;2:1:2;;

[17]

Finally, the contract metadata is a JSON file that contains information about a compiled
contract. This file can be used to extract the compiler version, the used source files, the
contract’s ABI, and the compilation settings amongst other properties. The hash of this file
- the type of which depends on the compiler version used - is also encoded and appended
at the end of the deployed contract’s bytecode[13]. Our focus shall remain on the ABI
however, which is used to extricate a contract’s function signature and arguments, to be
used in the calldata visualization process.

3.5 The Ethereum JSON-RPC Protocol API

JSON-RPC is a stateless, light-weight remote procedure call protocol which uses JSON as
its data format and defines certain data structures and the rules about their processing[7].

I. Cheilaris 18
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Since this thesis was developed using the Go Ethereum (GETH) client in mind, we had
a few rather usefull rpc calls at our disposal: namely eth_getTransactionByHash and
debug_TraceTransaction. The former returns information about a transaction, such as its
gas, the address of the receiver, etc, by supplying the call with said transaction’s hash[5].
The latter is a call that returns the bytecode that was executed during a transaction and
the state of the EVM (storage, stack, memory) throughout the whole process[6].

3.6 Contract-Library

Contract-Library (https://contract-library.com) is a free service aimed towards of-
fering decompiled versions of all contracts on the Ethereum blockchain. Praised by the
Ethereum community, it remains an invaluable tool for security analysts and receives sev-
eral unique visitors per day[21]. We have used this instrument to get fast and reliable
access to the source code of the transactions that our prototype aims to inspect.

I. Cheilaris 19

https://contract-library.com


Macaron - A tool for examining solidity smart contract transactions on the ethereum blockchain

4. TECHNICAL ASPECTS

Our prototype concentrates on transactions that have occurred on the Ethereumblockchain.
It is not a tool made for debugging contracts, but one for exploring flows of execution and
the history of the blockchain. Currently, it supports the inspection of contracts compiled
with versions of the solidity compiler greater than v0.4.10 for the minimum features. Con-
tract storage access visualization is supported for compiler versions v0.5.13 and above.

4.1 Features

The features are the following:

• Basic navigation through a transaction’s flow of execution, split in basic blocks.

• Display of solidity source code that was executed in each block.

• Visualization of any accesses made to the contract’s storage.

• Print the contents of an expression related to contract storage.

• Presentation of the calldata of any external call that was made.

• High-level view that briefly shows which calls were made, in what order, and how
they were terminated.

• Low-level display of EVM instructions executed in each basic block.

I. Cheilaris 20
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4.2 Phases of processing

In this section, we will explain how the prototype produces its results by examining each
phase of the assembly line, from the initial acquisition of the input data, to the end of
processing.

Figure 4.1: Macaron’s phases of processing

4.2.1 Retrieval of input data

Firstly, it is necessary to obtain the transaction trace-dump, which lists what opcodes were
executed and in which order, along with other data such as gas costs, EVM data, call
depth, etc. This is done by performing the debug_traceTransaction JSON-RPC call on a
Geth node of our choice. It is necessary to request both the stack, memory, and storage
data, in order to properly extract and display the calldata and storage accesses. After be-
ing served with a response, to actually examine a transaction, we require the source code
of all the contracts that said transaction pertains to, the compiler version that was used to
produce the deployed bytecode, and the optimization options used (if any). The relevant
compilation data will be querried by establishing a connection to Contract-Library’s mysql
database after the following section.

I. Cheilaris 21
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Figure 4.2: Sample input data

4.2.2 Trace-dump parsing

The initial processing of the trace-dump begins by populating a stack machine with entries.
This machine contains three lists; one simulating the actual call-stack, one modelling the
memory of each call during execution, and one storing the whole trace history. The latter
is what we will use for our visualization calculations.

I. Cheilaris 22
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Figure 4.3: Stack machine in the midst of parsing

More precisely, the program creates a starting call-stack entry and begins iterating through
the trace-dump, appending the encountered EVM bytecode and system snapshots to the
entry’s history. Upon encountering instructions that relate to memory access, contract
code copying, or to the calldata, (such as MSTORE, MSTORE8, CALLDATACOPY, CODECOPY),
their side effects are recorded and kept track of. Since we have not yet extraced which
contracts were called, the calldata remain in their raw hexadecimal form, awaiting further
processing. In addition, upon discovering an opcode associated with calling, (for instace
CALL, CALLCODE, STATICCALL, DELEGATECALL, CREATE or CREATE2), if the call is to a contract
and not to an external - user - address, which is how the solidity <address>.transfer
function is implemented; facilitating the movement of eth between addresses, then a new
stack entry is created and all new history changes will be appended there; this is recorded
in the trace history too. Finally, when the recorded contract call depth of the current trace-
dump entry is reduced, the call-stack’s last entry is popped and the trace-history stack
makes a record of why. In the end, we have the full call history ready to be further used.

4.2.3 Contract processing

Succeeding the trace parsing, recorded in the trace-history stack are all the contracts that
will be reached by the current transaction, directly or otherwise. Thus, we start by retriev-
ing the source code and compilation data of all the contracts and then compiling them. If
an error is encountered, that will be reflected on the program’s output. The contract compi-
lation output is also cached locally, to avoid unnecessary and time-costly network activity.
An invaluable addition to the compiler output is the storage layout, a storage variable in-
dex that records information like their type, slot number, and other useful data. We use

I. Cheilaris 23
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this to both evaluate any expressions given by the user and translate storage addresses
of statically-sized variables. It is available for solidity compiler versions v.0.5.13 and on.
Furthermore, the metadata of each contract are used to find the signatures and parameter
data of all its functions, to be utilized in the calldata decoding process. A function’s sig-
nature is the canonical expression of the basic prototype without a data location specifier,
meaning the function name with the parenthesised list of parameter types, split by a single
comma. We will save this data for easy access later and refer to each function by its se-
lector, i.e. the first (left, high-order in big-endian) four bytes of the keccak256 hash of the
function signature. The data used for this process are found in the ABI of the contract[4].

4.2.4 Calldata decoding

Every entry in the trace-history stack refers to a contract call (or a return from a call), the
calldata of which have already been extracted by our stack machine. Since we have in our
possession the called function’s argument data, we can start combing through the calldata
and generate a string of the form function_name(arg1=val1, arg2=val2, ...).

4.2.5 Bytecode mapping to the AST

The whole foundation of this project is the actual procedure of mapping EVM bytecode
instructions to the source code they were generated by. To begin with, we start iterat-
ing through the trace-history and decompressing each source map using the rules we
mentioned in the background section. Afterwards, we proceed by examining the whole
bytecode and the decompressed source map in parallel, recording each instruction’s map-
ping. Following that, we run through the instructions encountered during the transaction
and after making sure that they have a valid mapping,i.e. related to code generated by the
compiler, we apply a DFS search on the contract’s AST, trying to find nodes whose source
field matches to the instruction’s mapping. Special attention is given to inline assembly
instructions, which are not minutely modelled on the AST. Instead of invalidating them,
we create our own custom AST nodes which offers a degree of flexibility. Eventually, if no
match is found, the user will be notified later. This can happen if newer solidity versions
alter the AST’s structure or if the AST isn’t that detailed, like in the case of inline assembly.
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Figure 4.4: Sample AST

4.2.6 Group instructions by basic block

After the bytecode to AST mapping has been completed, we continue by splitting each
call’s instructions into groups of basic blocks. A set is kept, which gradually increases
with the addition of new AST nodes of the instructions we encounter. Upon encountering
a JUMPDEST instruction, we append our set, along with which instructions were executed
and in which order, plus the latest EVM snapshot (stack, memory, and storage contents
at a given point), to our output and empty the set. In addition, in each entry appended we
also include the node of the function to which all these instructions belong to.

4.2.7 Postprocessing

What remains now, is to choose what to display to the user.

So far, we have kept the EVM snapshot information, which is quite bloated and unneces-
sary. A much more thoughtful approach is to indicate which storage changes have been
made between basic block executions. Therefore, we make an annotation whenever two
successive storage snapshots are different and highlight the previous and changed value
of the storage address that was accessed.

Moving on, we examine the node set that each basic block has beenmapped to and decide
which nodes’ source code is valuable. For example, there exist nodes like FunctionDefinition,
whose source code is a whole function. Such nodes provide useless information and
are not used in the highlighting process. Mappings to these nodes are usually made by
JUMPDEST and JUMPs that are generated from solidity loops or branches. We opted not to
automatically remove these kind of mappings in the instruction grouping process; instead,
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the user can alter which nodes should be highlighted and which should be discarded by
changing the macaron_utils.py python file used by the program. We utilize the remaining
nodes’ source index to highlight the executed source code.

In the end, we try to translate any storage addresses to their related variable name. Since
keccak256 is not a reversible process, we can only lookup statically-sized variables whose
position in storage can be inferred by the storage-layout module. Dynamically-sized vari-
ables like mappings, strings and dynamic arrays cannot be translated.

4.2.8 The Navigator

The navigation module has been engineered with simplicity in mind. The user can move
back and forth on the trace’s history, easilly detect storage changes, and move between
the source code view and the contract call view. The user can save certain transactions
with names of their choosing to make the inspection easier. It is also possible to write
expressions and have their evaluation printed. A state machine consumes the input ex-
pression and formulates a set of calculations that should be applied in order to determine
the storage address it points to. Those calculations are produced using the rules about
how variables are stored in storage[11] and the storage-layout module.
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5. EVALUATION

5.1 Evaluation method

The evaluation was performed with both quantitative and qualitative measures in mind. In
order to test the accuracy and usefulness of Macaron, we asked the following questions:

• How well does Macaron facilitate the translation of a transaction trace?

• How do these translated transaction traces facilitate the understanding of the exe-
cution of a transaction?

• How robust is Macaron on real-world transactions

5.2 Accuracy of the translation

Our case study starts with being able to validate the accuracy of our tool. In this example,
we will take a look at the following test contract:

pragma solidity ^0.5.13;
contract Fib
{

modifier is_valid_request(uint n)
{

require(n >= 0);
require(msg.value == n);
_;

}

function call_fib(uint n, bool call_rec) is_valid_request(n) public payable returns(uint)
{

if (call_rec)
return fib_rec(n);

else
return fib_iter(n);

}

function fib_rec(uint n) private returns(uint)
{

if (n == 1)
return 1;

else if (n == 0)
return 0;

else
return fib_rec(n - 1) + fib_rec(n - 2);

}

function fib_iter(uint n) private returns(uint)
{

if (n == 1)
return 1;

else if (n == 0)
return 0;

uint prevfib = 0;
uint prevprevfib = 1;
uint fib;

for(uint i = 2; i <= n; i++)
{

fib = prevfib + prevprevfib;
prevprevfib = prevfib;
prevfib = fib;

}

return fib;
}

}
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We will examine how unerringly the call Fib.call_fib(4, true) with a value of 4 wei is
translated through the following step-by-step figures.

The first part of the transaction relating to choosing which function will be called is not
shown, since it is not generated from the source code itself. We can see that the modifier
is_valid_request gets called first.

Figure 5.1: Step 0

Afterwards, call_fib is entered, and after a condition check fib_rec is called.

Figure 5.2: Step 1

First call of fib_rec:

Figure 5.3: Steps 2 - 4

Second call of fib_rec:

Figure 5.4: Step 5

I. Cheilaris 28



Macaron - A tool for examining solidity smart contract transactions on the ethereum blockchain

Return from recursive call and calling fib_rec:

Figure 5.5: Step 6

Second call of fib_rec:

Figure 5.6: Steps 7 - 9

Third call of fib_rec:

Figure 5.7: Steps 10 - 11
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The trace continues similarly, as seen in the following condensed diagram.

Figure 5.8: Trace Diagram

From simple test cases such as this, we can perceive that our tool is positively accurate.

5.3 Intuitiveness of the translation

Accuracy by itself means nothing if the user is not able to understand and interpret the pro-
gram output. For that, we present the following two transaction visualization comparisons,
between our tool and other known tools like Bloxy and the Oko contract explorer.
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Below, we will examine the transaction with the hash:

0x4af8741a3db3e9dc2f657f701247a291c2cbd720e04b83f442dbe37be016cefa

At first glance, Macaron performs quite similarly to Bloxy. The high-level view is approx-
imately the same, barring the exception of event logs accompanying the execution trace
in Bloxy.

Figure 5.9: Macaron high level view

Figure 5.10: Bloxy View

Nevertheless, we offer something that Bloxy does not; finer granularity in our execution
trace. Specifically, as witnessed in the previous section, we can jump back and forth in the
transaction trace, observing which parts of the code were executed and which were not.
Fluidity and ease of use were our primary concerns, so we tried to make easy transitioning
from one view to the next. In the next example, we can see the user moving From the
targeted payoutOf function in the high-level view, to the function’s solidity code.

Figure 5.11: Moving between views in Macaron
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In the next example, we will focus on our instrument’s storage display capabilities versus
the Oko contract explorer’s. We’ll take a look at the transaction with the hash:

0xf6ad2c27c7c71dc93b5f2c333e2e878d4f42c35160b9e7a8617e8cf9e0baa1fc

Figure 5.12: Oko Contract Explorer Output

As is evident by the figure above, the information displayed that concerns the inner state
of the contract is rather convoluted and illegible. For instance, the Oko contract explorer
is refering to numbered storage slots as storN, where N the number of the slot in question,
instead of translating the storage address to a variable name. Macaron comes to rectify
that.

The following figure was taken during the middle of navigation.

Figure 5.13: Macaron storage display

We can see from the code being executed that not only are storage accesses and changes
registered, but that the relevant variable names are attached to the storage addresses as
well. Where theOko contract explorer outputs the value of storage address 12 (stor12) to
be 1, 395070559 ∗ 1018, Macaron can infer that storage address 12 is where the contents of
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the variable HODL_USD (with type t_uint256) reside. In the case of dynamically allocated
variables, that is not possible, but we have a feature that can help in this instance: printing.

In the next two figures we see the user navigating through a basic block that accesses and
then alters the contract’s storage, but the storage address has no variable name attached.
We can surmise by reading the code that the storage access happened by reading the
conctents of userStruct[msg.sender]. We can verify that by typing

print userStruct[0xA2ED0Fd7A7A1781770D3aF711484f22B3F33b94C].balanceEth

which outputs the same value as the storage access notification. This way, a user can
read the contents of any storage variable referenced in the transaction trace, at any point
in time.

Figure 5.14: Printing in Macaron

5.4 En-masse application of Macaron on the Ethereum Blockchain

In this final section, we will take a look at the results we gathered after runningMacaron in
the wild, on a small random portion of the Ethereum blockchain. We applied our tool on 20
sequential blocks, making sure to filter out contract creation transactions and transactions
towards wallets. The total amount of transactions that remained were 2332; of those, ap-
proximately .02% encountered a contract with a solidity version lower than v0.5.0 during
their execution, making them unable to be processed. Around 13% encountered compi-
lation errors due to unknown solidity import directives. Thus, overall we achieved an 87%
success rate.

Table 5.1: En-masse application statistics

Number of Transactions Incompatible AST Compilation Errors Success Rate
2332 .02% 13% 87%
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6. CONCLUSIONS AND FUTURE WORK

6.1 Limitations

As seen so far, our design has some deficiencies. To start with, it does not support the ex-
amination of contracts compiled with a solidity version lower than v0.5.0, making it unnable
to work on a large part of the blockchain. Secondly, the inspection of contracts that use
the solidity import directive, often fail. Thirdly, certain features like stepping over or out
of a function, or skipping the execution of loops can’t be implemented when the solidity
optimizer is activated, since it merges basic blocks and contributes to information loss.
Finally, we haven’t taken advantage nor added support for solidity’s new Yul optimizer.

However, there also are conceptual limitations. For instance, our toolset can only be
utilized on the blockchain’s history, and cannot be used to help during smart contract
development. In addition, Macaron relies on external data of great size - namely the
trace-dump - which could be otherwise avoided if it simulated the transaction instead of
parsing it. Last but not least, our prototype is using a command-line interface, making the
selective visualization and expansion of data highly difficult.

6.2 Conclusion

The smart contract world is still in its infancy, lacking the tools that would greatly help with
both its development and interpretation by a more general audience. We have sought to
create an instrument that will make the examination of smart contracts easier and more
accessible to the user. We emphasized on versatility, providing both a microscopic and a
macroscopic way to examine smart contracts, and our case study outlines the accuracy
of our project. Furthermore, we illustrated how our tool can contend with the others cur-
rently available, and presented a promising image of its execution on a small part of the
Ethereum blockchain.

Whilst there are certain limitations with our design, we believe that it can serve as a sound
foundation for further expansion. Added support for the inspection of non-storage vari-
ables would be a great first start, adding finer granularity to the display process. In addi-
tion, there is potential for integration of security auditors, to flag and visualize transaction
loophole breaches, such as reentrancy, flash-loan attacks, etc.

I. Cheilaris 34



Macaron - A tool for examining solidity smart contract transactions on the ethereum blockchain

ABBREVIATIONS - ACRONYMS

ABI Application Binary Interface

API Application Programming Interface

AST Abstract Syntax Tree

CBOR Concise Binary Object Representation

DFS Depth First Search

EVM Ethereum Virtual Machine

GETH Go Ethereum

JSON JavaScript Object Notation

RPC Remote Procedure Call
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