

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

Geospatial Question Answering Web Application

Ioannis N. Maliaras

Supervisor:
Co-supervisor:

Manolis Koubarakis, Professor
Dharmen Punjani, Research Assistant

ATHENS

SEPTEMBER 2020

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Διαδικτυακή Εφαρμογή Γεωχωρικών Ερωτοαπαντήσεων

Ιωάννης Ν. Μαλιάρας

Επιβλέπων:
Συνεπιβλέπων:

Μανώλης Κουμπαράκης, Καθηγητής
Dharmen Punjani, Ερευνητικός Βοηθός

ΑΘΗΝΑ

ΣΕΠΤΕΜΒΡΙΟΣ 2020

BSc THESIS

Geospatial Question Answering Web Application

Ioannis N. Maliaras

S.N.: 1115201500084

SUPERVISOR:
CO-SUPERVISOR:

Manolis Koubarakis, Professor
Dharmen Punjani, Research Assistant

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Διαδικτυακή Εφαρμογή Γεωχωρικών Ερωτοαπαντήσεων

Ιωάννης Ν. Μαλιάρας

Α.Μ.: 1115201500084

ΕΠΙΒΛΕΠΩΝ:
ΣΥΝΕΠΙΒΛΕΠΩΝ:

Μανώλης Κουμπαράκης, Καθηγητής
Dharmen Punjani, Ερευνητικός Βοηθός

ABSTRACT

Question Answering over knowledge graphs has been studied a lot in recent years. The
main aspect of such systems is to provide an interface, through which natural language
questions can be posed and answered. Said systems generate queries and retrieve data
from knowledge bases, usually in URI form. Thus, it is important to present this
information appropriately, so that any user can make sense of the answers. We have
developed an interface to the GeoQA system, which is a question answering engine over
linked geospatial data. The interface of GeoQA is developed, having taken all different
types of users in mind. By using this interface, a common user can pose a question in
natural language and get the answer without knowing any of the underlying infrastructure.
On the other hand, an expert user can analyze the QA engine and see the output of all
the different modules. In addition, users can select different sets of data, over which they
want to run the QA engine, as well as different components to complete different tasks.
Therefore, we have developed an interface to realize the geospatial question answering
engine GeoQA for all users, from the inquisitive scientist to the common layman.

SUBJECT AREA: Full-stack Web Development, User Interface Design, Natural
Language Question Answering Systems

KEYWORDS: Knowledge Bases, SPARQL, Reactjs, Node.js, Docker

ΠΕΡΙΛΗΨΗ

Το πεδίο της απάντησης ερωτήσεων μέσω γράφων γνώσης έχει μελετηθεί πολύ τα
τελευταία χρόνια. Η κύρια διάσταση τέτοιων συστημάτων, είναι η παροχή δεπαφής
χρήστη, μέσω της οποίας καθίσταται δυνατή η θέση και η απάντηση ερωτήσεων σε
φυσική γλώσσα. Τέτοια συστήματα παράγουν ερωτήματα και ανακτούν δεδομένα από
βάσεις γνώσης, συνήθως σε μορφή URI. Έτσι λοιπόν, είναι σημαντικό να
παρουσιάσουμε την πληροφορία αυτή κατάλληλα, έτσι ώστε να δύναται οποιοσδήποτε
χρήστης να την κατανοήσει. Χτίσαμε λοιπόν, μια διεπαφή χρήστη για το σύστημα
GeoQA, το οποίο είναι μια μηχανή ερωταπαντήσεων πάνω σε συνδεδεμένα γεωχωρικά
δεδομένα. Η διεπαφή αυτή είναι σχεδιασμένη, λαμβάνοντας υπ’ όψιν όλους τους
τύπους χρηστών. Χρησιμοποιώντας τη διεπαφή, ένας απλός χρήστης μπορεί να θέσει
μία ερώτηση σε φυσική γλώσσα και να λάβουν απάντηση χωρίς να γνωρίζουν τους
εσωτερικούς μηχανισμούς. Από την άλλη μεριά, ένας ειδικευμένος χρήστης μπορεί να
αναλύσει την μηχανή ερωταπαντήσεων και να ανακτήσει την έξοδο όλως των επιμέρους
μονάδων. Επιπρόσθετα, οι χρήστες μπορούν να επιλέξουν διαφορετικά σύνολα
δεδομένων, πάνω στα οποία επιθυμούν να εκτελέσουν, καθώς και διαφορετικές
μονάδες του συστήματος για να επιτύχουν διαφορετικούς σκοπούς. Εν κατακλείδι,
δημιουργήσαμε μια διεπαφή χρήστη που πραγματοποιεί την μηχανή GeoQA για όλων
των ειδών χρήστες, από τον φιλέρευνο επιστήμονα, μέχρι τον μέσο, κοινό χρήστη.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Προγραμματισμός Ιστού Πλήρους Στοίβας, Σχεδιασμός
Διεπαφής Χρήστη, Συστήματα Ερωταπαντήσεων σε Φυσική
Γλώσσα

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Γνωσιακές Βάσεις, SPARQL, Reactjs, Node.js, Docker

ACKNOWLEDGMENTS

I would like to wholeheartedly thank my supervisor Prof. Manolis Koubarakis, for allowing
me to work with him, and use my expertise to help the research team achieve their goals.

Most of all, I would like to give my thanks to my advisor, and co-worker research assistant
Dharmen Punjani, for his support, and dedication, despite any language barriers and
hurdles we faced along the way.

CONTENTS

ABSTRACT ... 5

ΠΕΡΙΛΗΨΗ .. 6

ACKNOWLEDGMENTS.. 7

CONTENTS ... 8

LIST OF FIGURES .. 10

LIST OF TABLES ... 11

PREFACE ... 12

1. INTRODUCTION .. 13

2. BASIC CONCEPTS ... 14

2.1 Web Application ... 14

3. GEOSPATIAL QUESTION ANSWERING ENGINE: GEOQA 15

3.1 The Components.. 16
3.1.1 Instance Identifier .. 16
3.1.2 Concept Identifier .. 17
3.1.3 Geospatial Relation Detector .. 17
3.1.4 Property Identifier .. 18
3.1.5 Query Generator ... 18

3.2 Communication .. 18

3.3 Limitations .. 19

4. THE APPLICATION ... 20

4.1 Asking a Question – Home Page.. 20

4.2 Displaying the Answer – Answer Page.. 21
4.2.1 Answer List .. 21
4.2.2 Map ... 22
4.2.3 Output Analysis ... 23
4.2.4 Other Answers .. 23

4.3 Customizing the Pipeline – Options .. 24

5. FRAMEWORKS AND DESIGN CHOICES .. 25

5.1 Why a web application? .. 25

5.2 Design Philosophy and Modularization .. 26
5.2.1 Back-end ... 26

5.2.2 Front-end ... 28
5.2.3 The Administration Platform .. 32
5.2.4 Overview ... 33
5.2.5 Deployment ... 34

6. IMPLEMENTATION ... 36

6.1 The Administration Platform Implementation ... 36
6.1.1 Information Structure ... 36
6.1.2 Running and Stopping the Components ... 38

6.2 The Back-end Implementation .. 39
6.2.1 Connection with the GeoQA system ... 39
6.2.2 Connection with the Front-end - API ... 39
6.2.3 Caching and Polling .. 40

6.3 The Front-end Implementation ... 41
6.3.1 Component Structure .. 42
6.3.2 Routing .. 45

CONCLUSIONS .. 46

ABBREVIATIONS - ACRONYMS ... 47

REFERENCES .. 48

LIST OF FIGURES

Figure 1: GeoQA System Basic Structure ... 15

Figure 2: GeoQA System Components Structure .. 16

Figure 3: The Home Page ... 20

Figure 4: Example Questions .. 20

Figure 5: Answer Page - List ... 21

Figure 6: Answer Page - List Collapsed .. 21

Figure 7: Answer Page – Map ... 22

Figure 8: Answer Page - Map – Instance .. 22

Figure 9: Answer Page - Output Analysis .. 23

Figure 10: Answer Page - Other Answers ... 23

Figure 11: Options Interface .. 24

Figure 12: Example Questions .. 27

Figure 13: Boolean Results ... 29

Figure 14: DBpedia Results List .. 30

Figure 15: DBpedia Results Map ... 30

Figure 16: The Administration Platform Front-end ... 32

Figure 17: Structure Diagram .. 33

Figure 18: Deployment Structure ... 35

Figure 19: Component Information Example ... 37

Figure 20: Component Category Query Example .. 38

Figure 21: Front-end Component Structure ... 42

Figure 22: The Options Dialog ... 44

https://maliaras-my.sharepoint.com/personal/jmaliaras_maliaras_gr/Documents/Thesis.docx#_Toc64827286
https://maliaras-my.sharepoint.com/personal/jmaliaras_maliaras_gr/Documents/Thesis.docx#_Toc64827287
https://maliaras-my.sharepoint.com/personal/jmaliaras_maliaras_gr/Documents/Thesis.docx#_Toc64827288
https://maliaras-my.sharepoint.com/personal/jmaliaras_maliaras_gr/Documents/Thesis.docx#_Toc64827289
https://maliaras-my.sharepoint.com/personal/jmaliaras_maliaras_gr/Documents/Thesis.docx#_Toc64827290
https://maliaras-my.sharepoint.com/personal/jmaliaras_maliaras_gr/Documents/Thesis.docx#_Toc64827291
https://maliaras-my.sharepoint.com/personal/jmaliaras_maliaras_gr/Documents/Thesis.docx#_Toc64827297
https://maliaras-my.sharepoint.com/personal/jmaliaras_maliaras_gr/Documents/Thesis.docx#_Toc64827301
https://maliaras-my.sharepoint.com/personal/jmaliaras_maliaras_gr/Documents/Thesis.docx#_Toc64827302
https://maliaras-my.sharepoint.com/personal/jmaliaras_maliaras_gr/Documents/Thesis.docx#_Toc64827303
https://maliaras-my.sharepoint.com/personal/jmaliaras_maliaras_gr/Documents/Thesis.docx#_Toc64827306
https://maliaras-my.sharepoint.com/personal/jmaliaras_maliaras_gr/Documents/Thesis.docx#_Toc64827307

LIST OF TABLES

Table 1: Geospatial Relation Categories – Relation Examples 17

Table 2: Frameworks Used .. 26

Table 3: English Translation .. 31

Table 4: Greek Translation .. 31

Table 5: Subsystem Environment Dependencies .. 34

PREFACE

It’s not always easy for a computer science student to find a thesis subject. The field is
vast and almost boundless. I struggled, at the start of this endeavor to find something that
I could be passionate about. Fortune struck when I and my dear friend and classmate
talked about possible subjects we wanted to work on. They said that there was this team,
that worked under Professor Koubarakis, was looking to create a good user interface for
their question answering system. A chance I seized in an instant. In my experience, not
many people in the closed system of our department are interested in user-driven
software or interface design, a field I’m very interested in since it can also be a creative
outlet. I find it fascinating, being a middle man between the rectangular and deterministic
software world, and the subconscious and impulsive human behavior, when dealing with
said world. Thus, I sent the message to Dharmen to see what this was about.

Geospatial Question Answering Web Application

I. Maliaras 13

1. INTRODUCTION

Recent times have seen the need for computer-aided natural language processing
coming to the spotlight. Specifically, more and more systems that process, interpret, and
answer questions in natural language e.g. “Which pubs are near the Guinness Brewery
in Dublin?” are being implemented. Said systems are implemented on top of specialized
databases called knowledge bases. Knowledge bases include DBpedia, Wikidata, Yago,
and others.

The NKUA has built a system that answers more specific, geospatial questions, using a
set of knowledge bases. That system is called GeoQA and it combines data from
DBpedia, OpenStreetMaps, GADM, YAGO2, and YAGO2geo to answer questions such
as:

• Where is Loch Ness located?

• Which bridges cross river Thames?

The purpose of this project is to create a user interface for the GeoQA system. This
interface is designed in light of demonstrating and analyzing the system’s output in a user-
friendly way, but also to potentially maintain and extend the system. The thesis takes the
form of a full-stack web application, which collects all potential answers and displays them
in a list and on a map, while also presenting the question’s technical and linguistic
characteristics as they were interpreted by the system. This makes the system’s output
easier to understand and analyze.

As it was implied, this application will be designed to be used by anyone, from the involved
scientist/researcher and the system’s programmer, supervisor, or maintainer to the user
with no background on knowledge bases and the such. It will provide a versatile
demonstration tool while also acting as a helping hand to our research.

Geospatial Question Answering Web Application

I. Maliaras 14

2. BASIC CONCEPTS

Before going into the specifics of our external development process, design choices, and
external systems, we will provide some concise information about basic ideas regarding
said specifics, without providing reasoning as of yet.

2.1 Web Application

By definition, a web application is a computer program that utilizes web browsers and
web technology to perform tasks over the internet. A web application is a modular and
abstracted computer program by nature. It is usually comprised of a web server, that
manages requests by the user (client), an application server to perform whatever tasks
the client asks it to perform, and sometimes, a database to store useful data.

There can be many ways to develop a web application. Some web applications are only
static websites, that require no server-side processing. Other applications are much more
dynamic, such as the one we have created for the purposes of this thesis, that require a
multitude of modules, services both server and client-side.

Nowadays, web application development is divided into two stages. Back-end
development and Front-end development. The term Back-end is referring to the
application server. It is the things that the application does, without the user seeing it. For
example, the Back-end queries the database, does resource-intensive computations,
sends or shares files, and more. The Front-end on the other hand is what the user sees.
It is the development of the user interface. Put very simply, it includes styling, design,
formatting, and processing incoming data among others. Of course, both crafts have their
theory, patterns, and gimmicks, and one could make a career out of each one specifically.
There is, however, the field of full-stack web development where the developer creates
the whole application, that is the back-end, the front-end, and whatever that implies.
We’re dealing with the development of a web application in full-stack.

The two parts of the web application communicate with each other and with other
applications using an Application Programming Interface (API). An API acts as an
intermediary software that makes communication between computer programs simple
and friendly to developers. It adheres to standards and protocols, such as HTTP and
REST, and it abstracts the underlying and dirty implementation of cross internet
communication. In our case, any inter-software communication is achieved via APIs over
the HTTP and/or REST protocols.

Geospatial Question Answering Web Application

I. Maliaras 15

3. GEOSPATIAL QUESTION ANSWERING ENGINE: GEOQA

The GeoQA is a geospatial question answering system developed by D. Punjani et.al.
[1]. It is implemented using reusable components as part of the Qanary [2] question
answering methodology. The goal of this section is to introduce the reader to the system
and make him familiar with the components that matter to us for this project. The basic
structure of the system is shown below.

We are mostly interested in the way that system retrieves and outputs information. We
need to understand how to pose questions to the system and retrieve the answer and any
other relevant information about the question analysis.

To be concise, the communication between the GeoQA system and the outside world is
achieved via HTTP APIs that exist on every Qanary Pipeline Component as well as the
Strabon Query Executor. We won’t go into detail over how exactly those APIs expect
input and return output, as it is not essential to the understanding of the project.

As for the second part of our exchange with the system, it would be helpful to understand
what purpose each of the Qanary pipeline components has in the question analysis.

Figure 1: GeoQA System Basic Structure

Geospatial Question Answering Web Application

I. Maliaras 16

3.1 The Components

The Qanary pipeline components or Components as we will call them from now on are
divided into 5 basic categories, each solving a different task for the question answering
system.

1. Instance Identifier

2. Concept Identifier

3. Geospatial Relation Detector

4. Property Identifier

5. Query Generator

The components-part structure of the GeoQA system is shown below:

Let’s briefly go over what each of the categories does.

3.1.1 Instance Identifier

The Instance Identifier’s job consists of 2 phases:

• Named Entity Recognition (NER)

• Named Entity Disambiguation (NED)

During the NER phase, the component identifies named entities and classifies them.
Entities can be anything from names of cities, rivers, people, to historical events,
monetary values, and more. This is best understood using an example:

The NER subprocess takes this sentence as input:

➢ Is Trafalgar Square located in London?

And outputs:

➢ Is (Trafalgar Square)Location located in (London)Location?

Figure 2: GeoQA System Components Structure

Geospatial Question Answering Web Application

I. Maliaras 17

In the NED phase, the component links the named entities extracted to unique identities.
In our specific example, the NED extension would link the 2 extracted locations to
knowledge graphs. Specifically:

• Trafalgar Square à http://dbpedia.org/resource/Trafalgar_Square

• London à http://yago-knowledge.org/resource/London

It doesn’t have to be DBpedia or Yago URIs specifically of course. Depending, on what
dataset the system uses, the identities of the named entities change. We will be able to
choose what dataset or dataset combinations we are using for each question, as we will
discuss in later sections. From now on we will be talking about those entities as Instances

3.1.2 Concept Identifier

The purpose of the Concept Identifier component is to identify specified feature type from
the input question and link it to corresponding classes, depending on dataset ontologies.
Again, this is easier understood using a simple example:

The component takes this sentence as input:

➢ Which hospitals are there in Oxford?

and outputs:

➢ Which (hospitals)dbpedia.org/resource/Hospital are there in Oxford?

From now on we will be talking about those features as Concepts.

3.1.3 Geospatial Relation Detector

The Geospatial Relation Detector component is responsible for identifying the geospatial
relations of the concepts and instances within the input question. It achieves that by
categorizing specific words and their synonyms into specific categories and then
“translating” each of the words into specific spatial functions.

Specifically, there are 3 geospatial relation categories:

Table 1: Geospatial Relation Categories – Relation Examples

Category Geospatial Relation

Topological Relations Within, crosses, borders

Distance Relations Near, at most, at least

Cardinal Direction Relations North, East, South, West

Of course, there is no intuitive deterministic way to translate some relations. To alleviate
this issue, the component takes the liberty to map them to more specific quantitative
relations, using a dictionary-based approach. For example, the near relation could be
mapped to a within 1 km spatial function depending on the context. Technical details,
about the implementation of those features, are of no use to us in this project. We will
refer to the output of this component as Relation from now on.

http://dbpedia.org/resource/Trafalgar_Square

Geospatial Question Answering Web Application

I. Maliaras 18

3.1.4 Property Identifier

In a few words, the Property Identifier component identifies attributes of entities within the
input question. In order to answer questions like “Which mountains in England have
height more than 1000 meters”, we would need to be able to identify the height property
of the concept mountain and filter out everything else that does not satisfy the condition
specified. A property could be anything from the height of a mountain and the length of
rivers to the population of villages and cities. The component achieves that, using lookup
tables, containing attributes that a certain feature might have. For example, a “Mountain”
feature contains the “height”, “elevation”, or “parent peak” feature, and so on. These
attributes are then linked to the entity’s fields in the dataset and returned.

3.1.5 Query Generator

As the name implies, this component generates queries using the output of every other
component before it. These queries will later be executed by the Strabon Query Executor
to get the actual answer to our question by the GeoQA system. Without going into much
detail, the component uses predefined query templates, given researched patterns that
appear in most questions. such as CRI, IRI, CRIRI, or PCRI where I stands for Instance,
C for Concept, R for relation, and P for property.

The component produces multiple queries, using all combinations of outputs from the
previous components, and ranks them by relevance score. Notably, the queries are in
SPARQL/GeoSPARQL. This language is the standard query language for linked data.

3.2 Communication

As explained earlier, we communicate with the GeoQA system, meaning with each of the
Qanary components, and the Query Executor, via HTTP APIs. Each of the components
is a program that is hosted on a server and provides APIs on specific endpoints and ports
on that server. Each component category can contain a multitude of components
implementing different ways to achieve the same or similar results, as long as the input
and the output abide by a predetermined protocol.

In order to pose a question and extract the results from the GeoQA system we will need
to follow the procedure below without going into technical detail:

1. Inform the Qanary Pipeline process of our question and the components we
choose to use to answer that question. This outputs an entity, that contains
information that the components need to communicate with each other when
answering our specific question.

2. Using the graph we pose the question to each of the components

3. We extract the output of each of the components

4. Using the Query Generator’s output, we choose a generated query and ask the
Strabon Query Executor to execute it for us.

5. We retrieve the results.

How we actually and technically communicate with the GeoQA system, how we extract,
process, and reuse information is beyond the scope of this section and is part of many
design and implementation decisions in this project as we will be discussing in the two
main sections (5, 6) of this thesis.

Geospatial Question Answering Web Application

I. Maliaras 19

3.3 Limitations

As with every system, GeoQA has its limitations. More specifically, while experimenting
with the tools that were initially created to test and demonstrate the system, we noticed
that it was taking a long time to answer questions, especially more complex ones, with
multiple properties, concepts relating to one another, and so on. It is in our interest,
therefore, to do everything in our power, to decrease the response time of our application.
We will go over the methods we used in the design section.

Moreover, it should be noted, that at the time of writing, the system does not understand
every possible way of posing a given question. As its official title suggests, it is a template-
based question answering system, implying that the questions it’s able to answer abide
by some templates. Those templates are being expanded upon every day, but we should
be aware of the way we pose questions to the system so that it can understand and
answer them in the way we expect it to.

Now that we’ve gotten a glimpse of the system we’re dealing with, let’s do an overview of
the application we created.

Geospatial Question Answering Web Application

I. Maliaras 20

4. THE APPLICATION

In this section, we will show an overview of how to use the application created for the
purposes of this thesis, before we go into any design or implementation details.

4.1 Asking a Question – Home Page

A very simple interface. The user can pose their question using the input field in the
center. They can also click on one of the example questions below the input field to ask
it.

In the top-right corner of the window, the user can choose which display language they
prefer, and also change the theme. There are 2 themes: Light and Dark (default).

We will go over what the “Cache” checkbox and “Advanced Options” button do later.

Figure 3: The Home Page

Figure 4: Example Questions

Geospatial Question Answering Web Application

I. Maliaras 21

4.2 Displaying the Answer – Answer Page

Let’s test the application by asking it a question. “Which medieval castles are in
Scotland?”

The info panel shows information about the results displayed, as well as a score, implying
how confident the GeoQA system is on the results it's returning.

4.2.1 Answer List

This tab shows all named results in a list. Pressing an item will expand it, and reveal more
information on that specific result, as well as give a link to an external wiki page if that
exists

Figure 5: Answer Page - List

Figure 6: Answer Page - List Collapsed

Geospatial Question Answering Web Application

I. Maliaras 22

4.2.2 Map

This tab shows a map with every result plotted onto it. Hovering over any marker will
reveal the name of the result as well as other relevant information that may exist.

Figure 7: Answer Page – Map

The map also plots the instance as interpreted by the GeoQA system if the application
finds coordinate information on it with a red color to differentiate it from all other results.

Figure 8: Answer Page - Map – Instance

If the question is a “near” or “within” question, a.k.a. the relation is “distance” or “within”,
the map will also plot a radius around the instance.

Geospatial Question Answering Web Application

I. Maliaras 23

4.2.3 Output Analysis

This tab displays every picked component’s output, as well as which of them is selected
in the current Query Generator query.

Figure 9: Answer Page - Output Analysis

Pressing any of the links will direct the user to that specific resource, or explanation.

4.2.4 Other Answers

This tab displays all queries returned from the Query Generator component except the
one in use currently. Next to each query is how confident the GeoQA system is for that
query. Pressing any of the “other answers” will attempt to answer the question using that
specific query.

Figure 10: Answer Page - Other Answers

Geospatial Question Answering Web Application

I. Maliaras 24

4.3 Customizing the Pipeline – Options

By pressing “Advanced Options” in the Home or Answer pages, a smaller window will
appear. This interface is what allows the user to customize the way the GeoQA system
will answer their question.

Figure 11: Options Interface

The user can pick which dataset combination they want to use, in what language they
want to ask their question, and most importantly, which components they want to use to
answer that question sorted by component category. Changing the dataset combination
or the query language will result in a change to available components. The “Use Cache”
checkbox toggles the cache mechanism which is being talked about in more technical
sections. The “DELETE CACHE” button allows the administrator to delete the cache.
Credentials are necessary to use that functionality. Pressing “CANCEL” discards all
changes.

This concludes the application’s tutorial.

Geospatial Question Answering Web Application

I. Maliaras 25

5. FRAMEWORKS AND DESIGN CHOICES

The goal of the GeoQA Interface project is to create a user-friendly way to use the
GeoQA system. What does user-friendly mean in this case? Who is the user we need to
be friendly towards and what does this mean for our design and implementation
decisions? The answer to those questions is what this section discusses.

Let’s discuss the former question. Who is going to use this tool and its interface? The
application is mostly a demonstration and output analysis tool for the GeoQA system.
This means, that the user we should be primarily designing for is the researcher,
developer, and/or system maintainer. This doesn’t mean that the user interface should be
crowded and difficult to understand. It should be simple and allow any user to try it,
regardless of his familiarity with the matter.

Moreover, the GeoQA system consists of a multitude of components and sub-
components, databases, query executors, dictionaries, the combinations of which we
want to be able to customize and interchange. Therefore, we need a fully customizable
and abstracted system, that handles all possible combinations of component choices. We
need an interface, that not only displays the system’s output but also provides the user
with a simple way to change its configuration. It should be able to easily switch from
dataset a to dataset b, or component pipeline c to component pipeline d.

5.1 Why a web application?

A web application is by definition an abstracted modular application. As explained in the
first section, it is comprised of the front-end and the back-end. In a few words, the front-
end handles the actual user interface – what the user sees – while the back-end does the
dirty work and provides the front-end with clean data and information.

More specifically, our back-end will implement an API (Application Programming
Interface), that our front-end will “connect” to. That means, that the back-end is free to
act independently, as long as the communication between the two parts remains
consistent. For example, we could say that our back-end will act as an abstraction to the
GeoQA system. It will handle all communication with the system, and only return clean
and useful information to the front-end. This will be discussed further in later sections.
This solves our abstraction problem pretty well.

Another very useful feature that a web application provides, is that it can be accessed
from anywhere, as long as there is an internet connection. There is no need for any
installation process, disk space, or local computer resources. The internet connection
restriction is not a restriction in our case. The GeoQA system and all of its components
also implement an API that resides on the web. We wouldn’t be able to connect to that
system without an internet connection. Therefore, the restriction is part of the initial
hypothesis.

Lastly, at the time of writing, the web development community is the most active
developer community out there. That means, that there is a plethora of development
frameworks, libraries, quality of life tools, and sources, that make the development of this
application faster and of higher quality. The choice and use of said frameworks and tools
are being discussed in the following sections.

Geospatial Question Answering Web Application

I. Maliaras 26

5.2 Design Philosophy and Modularization

Generally, we modularize the application as follows:

1. The Administration Platform

2. Back-end & API

3. Front-end

Other than the above modules, there exists another important development field.
Deployment.

Below are listed the frameworks used per development field:

Table 2: Frameworks Used

Development Field Framework Used

Back-end Node.js

Front-end React.js + Material UI

Administration Platform Node.js + React.js + Material UI

Deployment Docker

One of the reasons we picked Node.js and React.js for this web application, is that they
use the same programming language. Javascript. While there may exist better or more
efficient tools to create back-end systems, we found it easier to have to work with one
single language, so there is no conflict between data-types in inter-application
communication. The GeoQA system and the way it extracts information is complicated
enough, to have to “translate” it multiple times between the different stages of
communication. The use of a single programming language solves that problem.

Other than the above note, each framework will be discussed in its development field’s
corresponding section.

5.2.1 Back-end

The GeoQA system is a complicated one. It consists of many services and sub-services
that may or may not be connected. We need a way to centralize communication with
those services. We want to ask our geospatial question and get one single output,
containing all relevant answer information.

The Back-end acts as the middle man between the Front-end and the GeoQA system. Its
primary job is to handle all communication with each of the components and knowledge
bases. It implements a REST API, that responds to requests coming from the Front-end.

Firstly, it passes on component information from the administration platform to the front-
end. Details on the nature of that information and the administration platform are
discussed in sections 5.2.3 and 6.1.

Secondly, and most importantly, it handles the question requests. It first gets the actual
question string, and the components the user wants to use to answer the question from
the Front-end. Afterwards, it initializes a pipeline using that information (more details on
the pipeline in section 6.2.1). It then starts a procedure, where all components are being
asked the question in sequence while logging their output. Any errors will cause the
procedure to stop and inform the Front-end with a detailed error message. If everything
goes as expected, it will return each component’s output to the Front-end.

Geospatial Question Answering Web Application

I. Maliaras 27

As explained in section 2, the above procedure is not enough to actually answer the
question. In order to get the actual relevant output from the components, we need to look
at the Query Generator component’s output. It will usually be a SPARQL query. We
decided that the query extraction from the Query Generator’s output is not something the
Back-end should do. The Back-end’s job is to be given a query and execute that query
alone. The reasoning behind this decision is simple. Executing such queries might take
really, or even unacceptably long to finish, as they may or may not contain
computationally expensive calculations. Therefore, we decide, that the Front-end, having
full knowledge of every single component’s output, should be given the task to decide
which query it wants to run, or if it wants to run all or even none of them.

Continuing with the question procedure, the Back-end receives an output query, executes
it, and returns the output to the Front-end. This output, as explained in section 2 could be
of a multitude of types. At this point, we let the Front-end discern the type and decide how
to handle (display) the output based on that. In the case that the output is a URI or a list
of URIs, the Back-end provides functions that query the knowledge bases those URIs
come from. For example, if a URI comes from DBpedia we provide a function that queries
the DBpedia SPARQL endpoint, and so on. We can ask for specific information such as
Name, Abstract, Map Coordinates, and such.

It is important to note here, that any of the above procedures might take a long time to
finish, and there’s not something we can do directly. What we can do, though, is to
implement a caching mechanism for every single one of them. Specifically, it would be
wise to cache:

1. Question, Components List à Components Output, for the component
questioning procedure

2. Query à Result, for the Query Generator’s output query execution procedure

We decided not to cache the knowledge base’s output, for the simple reason that any of
a specific resource’s information could change at any given moment.

Lastly, the Back-end provides the Front-end with some example questions for
demonstrative purposes. These questions are part of the GeoQuestion201 benchmark
and are questions that the system should potentially be able to answer. As a side note,
these were the questions that we used to test and debug our application.

5.2.1.1 Frameworks and Technologies

As shown earlier we decided to use Node.js to develop the Back-end. Other than the
same programming language argument that has been already discussed, other reasons
are versatility, easiness of use, and the fact that Node.js has a very active and resourceful
developer community, that provides solutions and tools for every problem a developer
might face. It’s very easy to build back-end servers and APIs with Node.js and it can
handle all kinds of applications, from the simplest of web-apps to high-demand enterprise
and commercial applications. The fact that Node.js is single-threaded poses no problem

Figure 12: Example Questions

Geospatial Question Answering Web Application

I. Maliaras 28

to our application since it is not doing any serious and resource-intensive computations,
but rather it processes information and handles communication between 2 separate
systems.

For more information on Node.js, visit the Node.js website [3]

5.2.2 Front-end

The Front-end is the user interface. Its job is to provide the user with a way to pose
questions, customize the pipeline, dataset, and input language that will be used to answer
that question, and display the results. The idea behind the Front-end’s design is simple.
As noted earlier, our users can be both the common, inexperienced user, as well as the
researcher, the programmer, or what we would call an advanced user. Our task is to make
this procedure as simple as possible but also versatile, in terms of customizability and
content.

The questions that the GeoQA system answers are geospatial questions. For example:

• Which medieval castles are in Scotland?

• Where is Loch Ness located?

As logic would suggest, we need to provide the user with not only the answer to their
question in a verbose way (by text), e.g.,

• Which hotels are near Syntagma Square?

o Grande Bretagne

o Hilton Athens

o …

Something like this would not be useful to our template user as we have defined it.

Therefore, we also need to:

• Provide descriptions of the results (places) or any other relevant information

• Plot the results on a map with markers

• Show each component’s output and analyze it, depending on which component
was chosen

• Plot any relational information on the map, e.g., a radius that defines “near”, or a
marker on the coordinates of Syntagma square in the above example question

• Show which Query Generator query was used, its score, and any other queries
generated, while allowing the user to select which query they want to use.

• The source (knowledge base) from which our results are coming (DBpedia, Yago,
OSM)

Before doing all of the above, the Front-end must first receive all of the information from
the Back-end. Let’s go over the generic use-case scenario.

5.2.2.1 Use Case Scenario

At first, the user asks a question. At this point, he can go into the options and select the
dataset, language, and component pipeline. There is a default combination, of course, to
cover the common user’s needs for out-of-the-box functionality. The Front-end then poses
the question to the Back-end and it returns the components’ output as explained in section
5.2.1.

Geospatial Question Answering Web Application

I. Maliaras 29

Afterwards, the Front-end parses the Query Generator’s output (note that this component
is picked by default and can’t be unpicked), sorts all the results by score, and passes the
best one to the Back-end for execution. We do not want to execute all queries since it is
a very time-consuming process. The Back-end responds with the results.

Now, as explained earlier, the results can be of multiple types, so the Front-end must
discern the type and potentially the source (if the type is a URI) of the results, and choose
what to do with them. At this time, it also processes and combines all information from
the query that was used, each components’ output, the result type, and length into an
entity we will from now on call Reasoning. Concurrently, it separates the results into Main
and Other results, in order to show all other queries generated by the Query Generator,
if any.

The Front-end now displays the results differently, depending on the type of the result,
and its source. The main results info, component output analysis info, and other results
info will be displayed regardless of what type the results are. For example, if a result is of
type Boolean, e.g., for the question: “Is there a restaurant near Big Ben?”, the user would
see below Figure:

Figure 13: Boolean Results

If, on the other hand, the question was: “Which medieval castles are in Scotland” and
therefore, the result type was URI and the source was DBpedia, the user would see these
figures:

Geospatial Question Answering Web Application

I. Maliaras 30

Figure 14: DBpedia Results List

Figure 15: DBpedia Results Map

More information on every different result type and how it’s handled is provided in section
6.3.1.

The user is now able to process the results as he pleases, use any external links, ask
another question, use a different query to ask the same question, or change dataset and
component pipeline combination to do either of the above.

Geospatial Question Answering Web Application

I. Maliaras 31

5.2.2.2 Translation System

There is one more feature the application was tasked to provide. The GeoQA system
plans to provide more and more languages as it gets expanded upon. Consequently, we
want to provide the user with the respective display language. Since we don’t and can’t
know every single language that the GeoQA system will potentially provide, it would be
wise if we created a generalized dictionary system.

The solution we came up with, is a set of files, where each file corresponds to each
language. Each file consists of a set of lemmata, which are [lemma name, translation in
this language] pairs. For example:

Table 3: English Translation

Lemma Name Translation in this language

AdvancedOptions Advanced Options

ByUniversity By the National and Kapodistrian University
of Athens

Department Department of Informatics and
Telecommunications

DevelopedBy Developed by

Table 4: Greek Translation

Lemma Name Translation in this language

AdvancedOptions Σύνθετες Ρυθμίσεις

ByUniversity Από το Εθνικό και Καποδιστριακό
Πανεπιστήμιο Αθηνών

Department Τμήμα Πληροφορικής και Τηλεπικοινωνιών

DevelopedBy Αναπτύχθηκε από

We then create a helper wrapper function that takes lemma- name, and language as its
arguments and returns the translation in the given language. Using this solution,
whenever we want to support another language, we just create a new dictionary file, that
implements all given lemmata and translates them to our wanted language.

5.2.2.3 Frameworks and Technologies

We choose to use React.js to implement the Front-end. [4]. At the time of writing, React.js
is one of the most if not the most popular Front-end library, and along with it comes a very
active and passionate developer community.

In combination with React.js, we use the styling solution of Material UI. Material UI
provides us with tested and well-designed UI components, like buttons, icons, panels,
e.t.c., while also allowing for centralized theming. This makes development much less
time-consuming and frustrating, allowing us to focus more on designing for our users, and
thinking on a higher level, rather than reinventing the wheel.

Geospatial Question Answering Web Application

I. Maliaras 32

5.2.3 The Administration Platform

The GeoQA components and the pipeline are separate java programs, that connect with
each other and the rest of the GeoQA system as explained in section 3. These programs
will need to be running somewhere to ask them questions. It would also be necessary to
have a space where information about the components is stored. Information such as:

• Component name

• Component endpoint URL

• Component type (NER, NED, Relation Identifier, …)

• Component template question query for each component

• Component current status

• Dataset Combinations

• Available Languages

• Which components are used in which dataset combination and in what language

For those reasons, we create the administration platform. It has 3 primary jobs:

1. Run the pipeline program and every component

2. Store information about the components and datasets

3. Provide an API that passes the above information to the Back-end

It is a simple and separate web application, that also consists of a back-end and front-
end. The back-end provides an API that responds to requests regarding:

• Component execution

• Information Retrieval

The front-end on the other hand at the time of writing is a simple interface that lists all
available components and provides buttons that allow the administrator to execute or stop
each component.

Figure 16: The Administration Platform Front-end

Geospatial Question Answering Web Application

I. Maliaras 33

Information about the components is being stored in specific JSON files. These files act
as the database for our application’s back-end. More specific and technical information
about the administration platform will be discussed in section 6.1.

We use the same technology for our back-end and front-end as the main application for
consistency and simplicity reasons. Node.js provides plenty of process management
tools (fork, exec, and the such), which makes for a perfect solution for the back-end, given
that it also needs to implement the communication API. Moreover, as explained earlier,
the fact that our systems are written in the same programming language is also very
helpful and saves valuable development time.

Looking towards the future, we are planning on expanding this administration platform. It
would be very helpful if it could do more than just running and stopping the components.
It could, for example, allow uploading components, edit component information, change
servers, start/stop/restart the main application, provide better component filtering and
sorting, upload template questions, and more.

5.2.4 Overview

Now that we explained the core mechanics of our system, and before we go into the
deployment section, we figured it would be helpful to provide a high-level overview of the
system using a structure diagram. The diagram shows how information moves inside our
system, the GeoQA system, and any knowledge bases we might be using for a given
question.

Figure 17: Structure Diagram

Geospatial Question Answering Web Application

I. Maliaras 34

5.2.5 Deployment

The last development field is the deployment of the application. While there are no
specific theoretical restrictions as to what technology we could use, it would be
appreciated if the system was flexible and more importantly portable. We would also like
for our system to run in a consistent environment to avoid any system configuration-
specific problems that could arise.

We were given a specific set of servers to host our whole application. Those servers were
specifically running Ubuntu 14.04. Unfortunately, this version of the operating system is
old enough to not support the frameworks and libraries we wanted to develop our
application with. This restriction along with the above discussion led us straight to Docker.

Docker provides the ability to package and run applications in isolated environments
called containers. You can run multiple containers on a single host. You could compare
containers to virtual machines, only that containers are much more light-weight than a
virtual machine. For more information on how Docker works, visit the platform’s
documentation [5]. Ubuntu 14.04, with some configuration, was able to run Docker. That
meant, that from this point on, we could run any environment we wanted on that server.
Specifically, we needed to have 4 different environments for our 4 separate subsystems.

Table 5: Subsystem Environment Dependencies

Subsystem Environment Dependencies

Administration Platform Back-end Java (components), Python (Greek
components), Node.js (back-end server)

Administration Platform Front-end Node.js (Front-end React server)

Main Application Back-end Node.js (Back-end server)

Main Application Front-end Node.js (Front-end production building),
Nginx (Front-end server)

Our whole application is now portable, and running in the same consistent environment
anywhere we choose to host it, as long as the host has Docker installed. This is also
much easier to do than having to install every single library and dependency every time
we want to move servers or reinstall the application. Lastly, we have also created simple
deployment scripts, that make moving and running the application, one line of terminal
usage.

Geospatial Question Answering Web Application

I. Maliaras 35

Below is the structure of our system in terms of deployment:

In the following section, we will discuss the technical and detailed implementation of the
choices and procedures we explained in this section.

Figure 18: Deployment Structure

Geospatial Question Answering Web Application

I. Maliaras 36

6. IMPLEMENTATION

In this section, we will discuss the technical details of the solutions introduced and
discussed in the previous section. We will discuss how the Administration Platform runs
each component and any of its dependencies, our caching scheme, how to use the REST
API, and analyze our Front-end’s component structure. Again, we will divide this section
into 3 parts, each discussing a specific Development Field: Administration Platform,
Back-end, Front-end.

6.1 The Administration Platform Implementation

Firstly, let’s remember that the administration platform is an application that stores and
passes information on all the available components, and also runs or stops them. We will
go over the structure of the information stored, as well as how the platform runs, stops,
and manages the components and any other programs it needs to run.

The Administration Platform’s front-end is pretty straightforward and does not need further
explanation, other than what was discussed in section 5.2.3.

6.1.1 Information Structure

There are 3 information entities that we need to discuss.

1. Dataset Combination

2. Query Language

3. Component Category (or Type)

4. Component

The stored information is structured and used in this exact order. Specifically:

1. A Dataset Combination supports some Query Languages

2. A Query Language contains some Component Categories

3. Each Component Category contains specific Components

We have 2 Dataset Combinations at the time of writing:

• DBpedia + OSM + GADM (from now on called DBpedia)

• Yago2Geo + Yago2 + OSM (from now on called Yago)

We have 7 distinct Component Categories as discussed in section 3.1:

• NER + NED

• NER

• NED

• Concept Identifier

• Spatial Relation Identifier

• Property Identifier

• Query Generator

For each category in that language, in that dataset combination, we keep a set of
components. The categories are the same for each dataset combination and language,
but the specific components are different in each case. We structure our data this way, in
order to help the user decide which components they want to use, given their dataset

Geospatial Question Answering Web Application

I. Maliaras 37

combination and query language preference. More information on that implementation in
section 6.3.

As explained, each component is a java program that provides an API to query it. Let’s
go over the information stored for each component.

• Name

• Category

• Filename (.jar)

• Port

• Endpoint suffix

 "TagMeDisambiguate": {

 "port": 5555,

 "suffix": "/annotatequestion",

 "name": "TagMeDisambiguate",

 "jar": "qanary_component-TagMeDisambiguate-0.0.1.jar",

 "type": "NER + NED"

 },

 "AGDISTIS_Yago": {

 "port": 7004,

 "suffix": "/annotatequestion",

 "name": "AGDISTIS_Yago",

 "jar": "qanary_component-AGDISTIS-0.0.1_yago.jar",

 "type": "NED"

 }

Figure 19: Component Information Example

In order to query the components, we need to store the actual SPARQL query strings.
Thankfully, we don’t need to store distinct queries for each component. The queries are
only distinct between different component categories. Therefore, we store template
queries based on each component category, that can change for each different question
that we ask. As explained in section 3, each question is represented inside the GeoQA
system by a graph. There is a specific place inside each query that this graph should be.
For that reason, we use a specific substring identifier <!graph!> inside each template
query at its correct position. The Back-end then should replace it with the question’s
corresponding graph. More information on that procedure in section 6.2.1

Geospatial Question Answering Web Application

I. Maliaras 38

 "Concept Identifier": {

 "outputQuery": [

 "PREFIX qa: <http://www.wdaqua.eu/qa#>",

 "PREFIX oa: <http://www.w3.org/ns/openannotation/core/>",

 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>",

 "SELECT ?start ?end ?uri",

 "FROM <!graph!>",

 "WHERE {",

 " ?a a qa:AnnotationOfConcepts .",

 " ?a oa:hasTarget [",

 " a oa:SpecificResource; ",

 " oa:hasSource ?q; ",

 " oa:hasSelector [",

 " a oa:TextPositionSelector ;",

 " oa:start ?start ;",

 " oa:end ?end",

 "]",

 "] .",

 " ?a oa:hasBody ?uri ;",

 " oa:annotatedBy ?annotator ",

 "}",

 "ORDER BY ?start"

]

 },

Figure 20: Component Category Query Example

All of the above information can be passed on in many different forms to whomsoever
might need it (e.g. the Back-end) using analogous REST API requests.

6.1.2 Running and Stopping the Components

Node.js provides us with a library that allows spawning and managing subprocesses. The
child_process library [6]. We have 3 things that we need to run. The pipeline program,
the components, and any other programs the components might depend on. At the time
of writing, the only components that have any dependencies are the Greek language
components. They depended on 2 python3 services, which should be running on the
machine the components were running on.

We decided that we did not want the components to run all the time since they would
potentially demand precious server resources. However, the pipeline program needs to
run at all times, so that it can register new components and execute the initial queries for
each question, regardless of what components are running at any given moment. The
same goes for the dependencies. Therefore, we should run the pipeline and the
dependencies on startup, while letting the components be run on demand using REST
API requests.

We also store runtime information on what processes are being run at all times, while
logging their output to specific log files for each one, and storing references to them.

Lastly, another important thing that needs to be mentioned, is the cleanup process. We
decided, that it would be better if we peacefully exited any processes still running when

Geospatial Question Answering Web Application

I. Maliaras 39

the administration platform stops for any reason. That way, we avoided any serious errors
and log file corruption. Thus, we created a method that kills all running processes when
the application exits, receives a SIGINT, SIGUSR1, SIGUSR2, or when an unhandled
exception occurs.

6.2 The Back-end Implementation

As we have said plenty of times now, the Back-end acts as the middleman between the
GeoQA system and our Front-end. Therefore, we need to implement the bridges to both
those components. We have already gone over the use-case scenario and question
procedure in sections 5.2.2 and 5.2.1 respectively, so we will not go over it in more detail.
This section focuses mostly on technical details and implementation at a lower level.

6.2.1 Connection with the GeoQA system

Connecting and using the GeoQA system happens mainly using the REST APIs provided
by it. We need to connect with:

1. The pipeline process for the initial query

2. Each component used in a given question’s chosen component pipeline

3. The database containing the output of the components

4. The database containing the answer to the question, e.g. the results of the Query
Generator component’s generated query

5. Any knowledge bases that contain more specific information about the question’s
output.

All of the above implement REST APIs that we can use to achieve communication. As
explained, a question is answered in the same order as the connections we’re describing
above, but not without extra steps or system interaction between them.

We bundle the first 3 connections in 1 procedure while handling the 4th and 5th connection
as independent procedures, for the Front-end to invoke.

We created the Pipeline entity (class), an instance of which is initialized every time a
question is asked. After initialization, - using the query method – the Pipeline instance
queries the pipeline process. Using that query’s output it asks every chosen component
in sequence. Lastly, it queries the database for every chosen component’s output. In
order to achieve the last part, we will need to replace the output graph of our question –
that is contained in the initial query’s output - in the Component Category’s Output
Queries, which are explained in section 6.1.1.

Anything beyond that specific procedure, for example, sending the output back to the
Front-end, is not handled by the Pipeline instance. We will talk about that, as well as
caching that output, in the next section.

6.2.2 Connection with the Front-end - API

It’s time to talk about receiving and sending information from and to the Front-end. We
will list all available REST endpoints that the Front-end uses, what data they need, what
they’re used for, and what information they return, in order of use case scenario
sequence:

1. /api/question

This endpoint is used by the Front-end when the user first asks a question. It
receives the question and the components chosen by the user and initializes a
pipeline using that information as explained in the previous section. It then queries

Geospatial Question Answering Web Application

I. Maliaras 40

the pipeline and awaits the output of every component, which is what it also
returns to the Front-end once everything’s completed successfully.

2. /api/result

This component’s purpose is to receive a query, generally an output query from
the Query Generator component, and query the GeoQA database using that
query. If the query has been executed successfully, its output will be returned to
the Front-end. That output could be a list of URIs, a Boolean answer, e.t.c.

From now on, the endpoints are not used in sequence, but rather conditionally based on
the output type (URI, Boolean, e.t.c.) and its source (OSM, DBpedia, e.t.c.). We have
created template queries for each data source, similar to the queries created for the
component categories, only that in these queries the URI is the variable.

3. /api/map

If the output type is URI and its source is a map-based knowledge-base like GADM
or OSM or YAGO2geo, then the Front-end uses this endpoint to derive more useful
data from that knowledge-base entry than just the plain URI. For example, it could
return coordinates, a name, and more. It takes a URI as its input and returns the
output of the query executed in the knowledge-base.

4. /api/dbpedia

If the output type is URI and its source is DBpedia, this endpoint is used to derive
more information about the entry. Input and output types are the same as the
/api/map endpoint.

5. /api/yago

Similar to /api/map and /api/dbpedia, this endpoint is used when the output type
is URI and the source is Yago. Input and output types are the same as the
/api/map endpoint.

The questioning procedure ends here. The endpoints described below are general-
purpose endpoints.

6. /api/components

This endpoint returns all available components, structured in the way that was
described in section 6.1.1. It’s used by the Front-end for simple information
retrieval.

7. /api/questions

This endpoint returns a list of sample questions, that the Front-end displays on its
front page.

The procedures implemented in endpoints 1 – 4, might take a long time to complete.
Therefore we decided to implement a caching mechanism, to decrease the amount of
time a user waits for his question to be answered.

6.2.3 Caching and Polling

We will first need to figure out what exactly is it that’s taking too long to complete. Only
then will we be able to think of a good system that solves or at least partly solves the
delay.

Generally, the knowledge base querying is a fast procedure, since usually, the queries
are simple SELECT queries. Moreover, big knowledge bases such as OSM and DBpedia
offer optimized and scaled APIs. That also greatly decreases the time of service.

Geospatial Question Answering Web Application

I. Maliaras 41

Therefore, we only need to optimize the parts of our procedure that specifically interact
with the GeoQA components. The components themselves, the pipeline storing their
output, and the database storing the question output.

We don’t have any control over the above parts. We will need to come up with an external
system, that decreases wait time. Obviously, we are going to implement caching
mechanisms. Caching is all about reusing information that has been used recently or is
being used very often. Let’s think about what could be reused in our specific case.

We can assume that our application, in tandem with the GeoQA system is a deterministic
system in a specific moderately big time period. When you ask the application a question
in that time period, the answer will always be the same. The only reason, where it wouldn’t
be the same, is when a component stops running or is updated. That would indicate a
cache reset.

More specifically, when you ask the application a specific question with a specific set
of components, the output of said components will always be the same. Therefore, this
output can be cached.

As we have explained before, after the output of the components is retrieved, we query
the GeoQA database using the Query Generator’s output query. But that query is also
the same, for a specific question with a specific set of components. We can also assume
that the GeoQA database is a deterministic system in that same time period. Therefore,
the results of that query will also be the same and can thus be cached.

As for the knowledge base querying, we explained how they are fast enough that caching
is not necessary. Additionally, we have no way of knowing whether a knowledge base
has changed their data. So we figure it’s safer to not implement caching for these
procedures.

6.2.3.1 Caching procedure

When a user asks a question, the Back-end receives that request and starts querying the
components. At that moment, it creates a cache entry that stores a “Pending” status and
sends that “Pending” back to the Front-end. When the querying is completed, and the
components send their output, the output is stored in that cache entry.

In case an error happens, the Back-end sets that cache entry to “Rejected” with a
timestamp attached next to the status. The Back-end sends that “Rejected” status for 10
seconds until it tries to query the components again.

The Front-end then asks the Back-end every some amount of seconds until it gets a non-
“Pending” or “Rejected” response. The amount of seconds, the Front-end waits to retry
depends on the number of concurrent users. At the time of writing, since our users are
not many, the Front-end waits 1 second before it retries the question.

The same procedure is followed for the answer results (/api/result) as well.

6.3 The Front-end Implementation

The Front-end is built using React.js. React.js apps are built with a component-based
structure. One could argue that React.js programming is declarative programming rather
than imperative. This is because React components are entities that have a state. Based
on that state, the component’s output changes. A React component declares logic that is
executed on specific events (like loading, mounting, updating, unmounting, e.t.c.), or state
changes, and then outputs text, input fields, and other React components. The
components we have created for this application are what we’re primarily discussing in
this section.

Geospatial Question Answering Web Application

I. Maliaras 42

But before we go into the component structure, let’s talk about global values that we store
in the browser’s “localStorage” and use throughout the application and in different
sessions.

1. Theme

The application provides a dark and light theme. Based on this variable, the colors
and general style of the application change.

2. Language

As explained, we provide multiple languages for the application. We consider the
functionality of this variable obvious.

3. Component Pipeline

This is the most important of locally stored variables. This defines what
components will be used when asking a question. It is modified using the Options
component, which we will talk about later.

4. Dataset Combination and Query Language

These variables define what dataset combination and query language as they
were defined in section 6.1.1, that the user has selected. The set of available
components to choose from depends on the value of these variables.

6.3.1 Component Structure

Below are shown the core components of the Front-end application, as well as how they
are structured in relation to one another.

Let’s go over what each of the components does:

The App component is the root of our application. Firstly, it retrieves locally stored values
or initializes them if they do not yet exist. It renders the app’s header and background
image, while also providing routing. One of its routes is the Ask component. This
component is the one that’s actually rendering the Answer and Options components.

Figure 21: Front-end Component Structure

Geospatial Question Answering Web Application

I. Maliaras 43

The Ask component also renders the input field for asking the question and the grid of
template questions.

6.3.1.1 Result Displaying Components

The Answer component is the one responsible for asking the question to our Back-end.
It retrieves the question for the URL and the component list from the locally stored variable
and handles both questioning procedures:

1. Asking the components

2. Querying the GeoQA database with the Query Generator’s query if any.

As explained in section 6.2.3, the component continuously asks the Back-end until it gets
a non-“Pending” or “Rejected” response for each of the 2 procedures. Let’s remember
here that the Query Generator might return more than 1 query. Each of the queries is
accompanied by a score when retrieved from the Query Generator’s output. We sort
those queries and choose to answer the one with the highest score. We do not use all
queries, since that would take way too long. We do provide the user with the ability to
choose any query they want though. This is achieved technically by using a URL
parameter called “index”, which defines the index of the query used in the sorted array.
The way the user is able to select which query they would like to use is explained later.

When everything’s completed it passes the results (even if there are no results) to the
Result component. This component’s responsibility is to first format the results into a
more readable form. It then figures out the result’s type. Those types are:

1. URI

2. Geometry

3. Number

4. Boolean

Simultaneously, the component extracts the Reasoning (see section 5.2.2) from the
results. Now, depending on the type discerned, it renders different components as shown
in the Component Structure Figure.

1. The GeometryResult component plots the geometry returned on a map.

2. The NumberResult and BooleanResult components simply display the Number
or Boolean (“yes” or “no”) answers.

3. In the case of URI, we need to further separate based on the type of source. We
need to discern whether the URI refers to a “Map” knowledge-base like OSM or
GADM, or from a full knowledge-base like DBpedia or Yago.

When dealing with “Map” sources, we use the GeoQA database endpoint (the
same we used in the /api/result endpoint) to gather more information on the
results. Specifically, coordinates and names, if they exist. This is the job of the
MapResult component.

In the latter case, though we don’t use a universal endpoint for every knowledge
base available, the way we return information from those knowledge bases is
structured, is the same every time. That’s why we use a single component that
queries different bases (using /api/dbpedia or /api/yago/ for example) and
displays the information.

Additionally, there was a need to display information that clearly shows how the system
interpreted the question, and what difference that had in the answer. For example, let’s
say the question is: “Which restaurants are near Big Ben?”. The GeoQA answers this

Geospatial Question Answering Web Application

I. Maliaras 44

question in a very specific way. It sets a radius around the instance “Big Ben” (the
instance) to satisfy the “near” relation. It then “returns” restaurants (the concepts) within
that radius. It would be interesting if we could detect questions like this, and plot the
coordinates of the instance, and display the radius around it as the GeoQA system
decided. This is what the InstanceMapper component does. Firstly, it plots the instance
on the map, if it exists. Secondly, it figures out the type of relation in the question. If that
relation is a “distance” or “within” relation, it also creates a radius on the map around the
instance.

6.3.1.2 The Options Component

The Options component’s job is to provide the user with a way to customize the way they
want the GeoQA system to answer their question. It renders a dialog that lets the user
pick:

1. The Dataset Combination

2. The Query Language

3. The Component Pipeline

4. Whether they want to use the cache (true by default)

The information on options 1-3 is retrieved from the administration platform as explained
in section 6.1.1.

Whenever the dataset combination or query language changes, the pipeline of
components changes as well to display the components available for that specific
combination and query language as stored and retrieved from the administration platform.

When the user presses “SAVE”, all changes are locally stored in the user’s browser. That
way, every time they use the system, it will remember their previous choices. If they press
“CANCEL” all changes are discarded.

Lastly, the component allows the administrator to delete the cache if they find it
necessary, using the “DELETE CACHE” button. Credentials are needed to access this
functionality.

Figure 22: The Options Dialog

Geospatial Question Answering Web Application

I. Maliaras 45

6.3.2 Routing

The Front-end implements client-side routing. Client-side routing is much faster than
server-side routing for the simple reason, that it does not have to make requests to the
server to render each page. It all happens via Javascript.

We decided to use routing to pass the question information to the Answer component.
For example, if the question was “Which restaurants are near Big Ben?” the URL to that
question would be “/answer/?question=Which restaurants are near Big Ben?”. That way,
a user can share the answer to his specific question with another user. Additionally, it
makes handling page reloads a lot easier since we don’t have to use local or session
browser storage to store the question asked.

Geospatial Question Answering Web Application

I. Maliaras 46

CONCLUSIONS

In this thesis, we have created a tool, that allows a user to ask a question in natural
language and receive a visual answer and explanation. We focused, on making our
interface friendly to different types of users we will get, and making the front-end of the
GeoQA system versatile and extendible as the research progresses.

In the future, we plan to upgrade the Administration Platform, to an interface that makes
it worthy of its name, and expand the main user interface to support more languages and
temporal questions.

Geospatial Question Answering Web Application

I. Maliaras 47

ABBREVIATIONS - ACRONYMS

API Application Programming Interface

ΕΚΠΑ Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

HTTP(S) HyperText Transfer Protocol (Secure)

REST Representational State Transfer

SPARQL SPARQL Protocol and RDF Query Language

Geospatial Question Answering Web Application

I. Maliaras 48

REFERENCES

[1] D. Punjani, S. Karan, A. Both, M. Koubarakis, I. Angelidis, K. Bereta, T. Beris, D. Bilidas, T. Ioannidis,
N. Karalis, C. Lange, D.-A. Pantazi, C. Papaloukas, and G. Stamoulis, "Template-Based Question
Answering over Linked Geospatial Data," in 12th Workshop on Geographic Information Retrieval,
Seattle WA USA, 2018.

[2] K. Singh, A. Sethupat Radhakrishna, A. Both, S. Shekapour, I. Lytra, R. Usbeck, A. Vyas, A.
Khkimatullaev, D. Punjani, C. Lange, M. E. Vidal, J. Lehmann, and S. Auer, "Why Reinvent the Wheel:
Let’s Build Question Answering Systems Together," in International Conference on World Wide Web,
WWW, Lyon France, 2018.

[3] "About | Node.js," [Online]. Available: https://nodejs.org/en/about/.

[4] "ReactJS Overview," [Online]. Available: https://www.tutorialspoint.com/reactjs/reactjs_overview.htm.

[5] "Docker Overview | Docker Documentation," [Online]. Available: https://docs.docker.com/get-
started/overview/.

[6] "Child process | Node.js Documentation," [Online]. Available: https://nodejs.org/api/child_process.html.

