NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

Master Thesis

Applications of Neural Networks in
production management problems

Author: Supervisor:
Georgios VOUNTOURAKIS Prof. Apostolos BURNETAS

A thesis submitted in partial fulfillment of the requirements for the degree of
M.Sc in Statistics and Operational research
in the

Faculty of Science,
Department of Mathematics

Athens, February 2021

H napovoa Authwpatikr Epyacia
ekmovnOnke ota mMAaiola Twv oroudwv
yloL TNV aroOKTNoN ToU

Metantuytakol AutAwpatog Eldikeuong
«Ztatiotiki kot Emyetpnoiakn Epsuvan
TIOU QTTOVEUEL TO
TuRpa Madnpatikwv
ToU

EOvikoU kat Kanodiotplakou Naveniotnpiov AGnvwv

EVKPIONKE TNV oo, amnod E€etaotikn Emtponn

AnotehoUpevn amnod Toug:

OVOMQTENMWVU O BaBuida Yrioypadn

1. Antéotoho¢ Mmoupveétag (EmBAénwy KaBnyntig) Kabnyntig

2. ABavaocia Mdavou Emikoupn KaBnyntpta

3. Avtwviog Owkovopou Kabnyntne

MNepiAnyn

Ta mpoBARHaTA 0pYyAVWONG TTapoywyng Kal Slaxeiplong anoBepudtwy yla oAAQ
TpoiovTa Kot oTabpouc moapaywyng avayovtot o€ tpoPfAnuata BeAtiotonoinong
HEYAANG MOAUTIAOKOTNTOG. ETtioNng, 0 MOAANEG TTEPUTTWOELG TO TIPOPBANUA TIPETEL VA
AuBel katw amd cuvenkeg eAAUTOUG TTANPOPOPNONG WG TIPOG TLG KOTOVOUEG
muBavotntag tng {ATNong, TIg MAPAUETPOUCG KOOTOUG KATT.

Ta TeXVNTA VEUPWVLKA SiKTUA ElVOL APKETA LOXUPA UTIOAOYLOTIKA LOVTEAQ. TNV
epyoaoia Ba yivel avaokomnon Twv BAcLKwV POVIEAWV TEXVNTWVY VEUPWVLKWV
SIKTUWV Kol TwV epappoywv Toug o poPAnuata BeAtiotonoinong, ue Eudaon oto
npOoPAnua tou edpnueptdonwAn. EmutAéov, Ba mpotabouv veupwvika Siktua yla
outa ta poPAnuata kat Ba peAetnBei n anodoon Toug HECW UTIOAOYLOTIKWVY
TELPOULATWV

Ta veupwvika Siktua amoteAouvtat amod MoAAOUE VEUPWVEG, TIOU €ival
ouvdedepévol PeTafl TOUC KOL OTEAVOUV CrUATA O €VOG OTOV GAAOV yLa va
UAOTIOL)COUV €va 0TOXO0. Ta TEXVNTA VEUPWVLKA SikTtua Snuioupynbnkav yla va
HLLNBoUV Tov TPOTO e ToV OTtolo AsLToupyel 0 avBpwrivog eykédalo Kat va
EKUETAAAEUTOUV TN SOUN TOU KAl CUVETIWE £lval TOAUTIAOKA LOVTEAQ E TIOAAEG
LKAVOTNTEC. OL OUVOEDELG HETOEL TWV VEUPWVWV YivovTal €ite Lo SuVATEG elTe TILO
aduvapeg Baoel piag Stadikaoia pabnong, £T0L WOTe va UAOTIOLOUV KAAUTEPQ TOV
emBUUNTO otod)0. H Stadikaoia pabnong rmou Ba emikevipwBoU e ovopdletal
eTBAenOPEVN LAONGON OMOU TO VEUPWVLKO SikTUuOo £XEL £€va oUVoAo edopévwv
€10060U-e€060U A0 TO OTOLO EKTIALSEVETAL £TOL WOTE VO UIMOPEL VOl YEVIKEUOEL KOl
va Sivel amotéAeopa pikpol opaApatog otav tou o0&l ayvwotn elcodocg.

Oa £0TLAC0UE OTLG EPOPUOYEC TWV VEUPWVIKWV SIKTUWV 0TO TPOLANUA TOU
epnueptdonwAn Kat otig mapaAAayEC Tou. 2to MPoPANUa tou epnueptdbonwAn, o
SlaxelploTnC IPEMEL va anodaaoiosl Tn BEATIOTN TOoOTNTA TTapayyeAiag evog
gumtaBoU¢ TPOIOVTOG ETOL WOTE VA EAXXLOTOTIOL)OEL TO KOOTOC. OL EPLOPLOLOL TOU
TPOPANUATOC Elval OTL N TTPAYUATIKY KaTavopn mbavotntag tng {Atnong eivat
Ayvwotn Kal kKaBe mpoiov rou dev mwAROnke dev pumopet va anobnkeutel yla
pHeAAovTikn xprion. Mia mapaAiayni autol tou mpoBARuatog ival otav o
SLOXELPLOTAG TIPETEL VA AMOPOCIOEL TNV TOCOTNTA TTAPAYYEALAC VL0 TIEPLOCOTEPQ
arno éva poiovra. EmutAéov, pa akopa mapaAlayr ival otav o SLaxeLpLoTnC
TPEMEL VA arodaoiosl TNV BEATLOTN TLUA YL VA TTOUANCEL TO TTPOIoV KaBwG KoL T
BEATLIOTN TOOOTNTA TNE TAPOYYEALQC LLE OTOXO TNV HUEYLOTOMOLNON TWV KEPSWV TOU.

Oa ylveL pia avaoKOmnNon TwV VEUPWVLIKWY SIKTUWV TTou €XoUV MpoTabel ot
BBAloypadia KoL otn cUVEXELX Ba TIPOTEIVOUUE TO SIKO oG VEUPWVLKO SIKTUO yLa
autad ta poPAnuata. EWdikétepa, Ba mapouvoidcou e Sladopa veupwvika Siktua
HE SLoPOPETLKO apLlOUO VEUPWVWY, KAVOVWY HABNoNG KoL cUVOPTHOEWY

gvepyomnoinong.
TéAog Ba UAOTIOLICOUHE TNV ATTOS00T) TOUG MECW UTIOAOYLOTIKWY TIELPAUATWY HE
OPKETEC SLADOPETLKEG MAPAUETPOUCG.

Mo ouykekplpéva n dopr g epyaciag eival wg eENG:

Y10 deltepo KedAAaLo, Ba MaPoOUCLAOTOUV TA BACIKA OTOLXELA EVOC VEUPWVLIKOU
SIKTUOU, TIG SLaPOPETIKEG APXLTEKTOVIKEG KABWG Kol StadopeTIkEG uEBodoL
eKTaidevong £T0L WOTe va avaAUBEL O TPOTIOC E TOV OTIOLO €va VEUPWVLIKO SIKTUO
EKTIALOEVETAL YLO VO ETUAVEL Eva TIPOPBAN L.

210 Tpito KepaAalo, Oa oplotel To MPOPANUA Tou ednuepLdOMWAN KABwWS Kat
KAmoleg mapaAAayEg Tou ou Ba avaAuBouv ota emopeva kepalata.

210 TETapTo KEDAAALO, Oa YIVEL AVOOKOTINGN TWV VEUPWVIKWV SIKTUWV TIOU
npoteivovtal otn BiBAoypadia yia tnv emiluon twv npoPAnuUdtwy ou opiodnkav
oto Seltepo KepAAalLo

210 TEUMTO KePAAaLo, Ba KATOOKEUAGOUHE VEUPWVLIKA SiKTUa TTOU ETUAUOUV
Sladopetikég mapaAAayEG Tou MPoPANRUaAToC Tou epnuepldonwAn Kot Oa peAetnOel
n anodoor] Toug.

Acknowledgements

First of all, I would like to thank my thesis supervisor, Professor Apostolos Burnetas,
for his guidance through each stage of the process, for all his help and advice, and
for inspiring my interest in the field of artificial neural networks and optimization.

In addition, | would like to express my deepest appreciation to my examination
committee, Professor Antonis Economou and Assistant Professor Athanasia Manou,
for their insightful comments and suggestions.

Finally, | would like to express my gratitude to my family and friends for all their
encouragement and support during my studies.

Contents

1 INrOAUCTION ..ot 1
2 Artificial Neural NETWOIKSoooiiiiiiiieie e 3
2.0 HIS O Y s 3
2.2 ArChITECIU ...t 4
2.3 Multilayer neural NEIWOIKcoeviii i 7
2.4 Learning TEChNIQUES ...coocueiiie ittt s e e e saaee e 11
2.5 Improving the performance of Neural Networksccccccuveeeeiiieeecccneennn. 18
3 Newsvendor Problem ... 21
4 Neural Networks for the newsvendor problemccccccovciieiiiiiiiee e, 25
ST Y o] o] [ToF: | o o 3SR 28
5.1 Order Quantity Optimizationcccciiiiieeii e 28
5.2 Price and Order Quantity Optimizationcccceccveeieriiiee i 35
B CONCIUSION .ottt ettt et e s bt e e e bt e e s bt e e s b e e e saneeesans 44

2 U=y (=Y €] A Lol = TP 45

1 Introduction

The production management problems for many products are reduced to
optimization problems of high complexity. Moreover, in many cases the problem has
to be solved under partial information of the distribution of probability of demand,
the parameters of the cost etc.

Artificial neural networks are a very powerful computational model. In this thesis we
will present the basic models of Artificial Neural Networks and their applications to
optimization problems with main focus on the newsvendor problem. Furthermore,
we will propose our own neural network for these problems and evaluate their
performance upon numerical experiments.

Neural Networks consist of many neurons that are connected with each other and
transmit signals to one another in order to perform some task. Artificial Neural
Networks were created in order to try to mimic the way the human brain functions
and take advantage of the structure and so they are very complex models with many
capabilities. The connections between the neurons become stronger or weaker
according to some learning procedure in order to better perform a task. The learning
technique we will focus on this thesis is called supervised learning, where the Neural
Network is given some training data in order to adjust the parameters and be able to
generalize so it can perform the task with a minimum error when faced with unseen
data.

We will mainly focus on the applications of neural networks to the newsvendor
problem along with its variations. In the newsvendor problem, the inventory
manager wants to find the optimal order quantity of a perishable product in order to
minimize his cost. The constrains of this problem is that the true distribution of the
demand is unknown to the inventory manager and every unsold product can not be
stored for later use. One variation of this problem is when the inventory manager
has to make a decision for the order quantity more than one product. Moreover,
another variation is when the inventory manager has to decide the optimal price to
sell the product as well as the optimal order quantity in order to maximize the
profits.

We will review some neural networks that have been proposed in the literature and
then we will propose our own neural networks for these problems. We will present a
variety of neural networks with different number of neurons, learning rules and cost
functions.

Finally, we will evaluate their performance by numerical experiments with different
parameters

More precisely, the structure of this thesis is as follows:

In the second chapter, we will present the basic components of a neural network, its
different architectures, as well as the different training techniques in order to fully
understand how a neural network is trained to perform a task. Finally, we will
discuss some methods to overcome some common pitfalls of the neural networks.
In the third chapter, we will define the newsvendor problem along with some
variations that we will focus on later chapters.

In the fourth chapter, we will review some proposed neural networks that focus on
the problems we defined in the second chapter.

In the fifth chapter, we will create our own neural networks to solve the different
variations of the newsvendor problem and we will test their performance.

2 Artificial Neural Networks

2.1 History

Artificial neural networks are inspired by the field of biology and more precisely by

the way the characteristics of the brain function are performing a task. The neurons
are the structural constituents of the brain and the human brain has approximately
10 billion neurons that are highly connected, with approximately 101 connections

per neuron.

In a high-level description, neurons are composed mainly by: the dendrites, the cell
body and the axon. Electrical signals are carried by the dendrites into the cell body,
that receives and processes the incoming signals. Afterwards, the signals are carried
by the axon from the cell body to other neurons. The connection between two
neurons, and specifically from the axon of a neuron to a dendrite of another neuron,
is called synapse and it is responsible for allowing the interaction between two
neurons.

The function of the neural network is determined by the neurons and the synapses
between neurons. A part of the neural structure is defined at birth, but other parts
are developed through learning where in this case synapses are strengthened while
other synapses are weakened.

Therefore, the inspiration for artificial neural networks arises from the fact that the
computations in the human brain are done in an entirely different way than in
conventional computers. Despite this fact, artificial neural networks do not approach
the complexity of the brain.

The first artificial neural network was constructed in 1943 in the work of Warren
McCulloch and Walter Pitts. They proved that artificial neurons could compute any
arithmetic or logical function. A few years later, in 1949, Hebb presented the first
rule for self-organized learning. Furthermore, in 1958, the first practical application
of neural networks was presented by Rosenblatt, who proposed perceptron network
together with the first model for supervised learning. The above are considered as
the most pioneering contributions in the field of artificial neural networks.

Artificial neural networks are very powerful computational models and have
numerous applications. Some of them are function approximation, prediction,
sequential decision making, classification, pattern recognition and clustering.

2.2 Architecture

Artificial neural networks are a computational model which is composed by a set of
connected nodes called artificial neurons, that we will simply call neurons. Each
neuron is a computational entity and each connection between two neurons has a
weight w. A neuron can have multiple input and output connections. The input of
each neuron is the output of its input connection scaled by the weight w of the
corresponding connection. A neuron has also an activation function, which
determines the output of the neuron. The value of the output is the value of the
activation function on the sum of a constant term with the linear combination of the
neuron’s inputs with the corresponding weights of each input connection.

An example of a simple artificial neural network is shown in Figure 1.

W,

Figure 1

A computation of the neural network is as follows: each input node x4, x, is
multiplied with its weight w;, w, respectively and then they are summed together
with an extra term b, which is called bias. The result forms the net input z. Finally,
the net input goes into an activation function f, which produces the neuron output
a.

More precisely the mathematical form of the activation function is:
a=fwlx+b)

Where x is the vector [x;, x,]7 of the input, w is the vector [wy, w,]T of the weights
of the connections and b, a are scalars.

Some questions that arise are what are the weights, the bias and the activation
function.

The bias b can be viewed as another weight of a neuron with constant input x, = 1.
The weights and the biases are the parameters of the neural network that will be
adjusted by some learning rule to meet a desired goal. The activation function is
chosen by the designer of the network and can be any function of his choice. The
activation function and the learning rules are chosen so that the output reaches the
desired goal.

The choice of the activation function depends on the problem the network is trying
to solve.

For example, if the output is required to be 0 or 1, one common activation function
that is used is shown in Figure 2:

(1, ifz=0
f(Z)‘{o, ifz<0"’

Figure 2

where a = f(z) = f(wTx + b). It represents the operation that if the net input is
z = 0 then the output neuron is 1, otherwise it is O.

We can rewrite thisasw’x +b > 0=>w'x > —b .

This implies that if the linear combination of the input vector with the weight vector
is greater than some threshold b, then the output of the neural network is 1,
otherwise it is 0.

In this example where we have 2 inputs x4, x, , it is easy to make a visualization in a
2-dimentional plane to understand it better as shown in Figure 3, the w”x
represents the decision boundary and everything that is in one side is 1 and
everything on the other side is 0.

-x1+W2~x2+b=0

Figure 3

Some other activation functions that are commonly use are shown in Figure 4:

—

_

Linear: f(z2) =z Sigmoid: f(z) = 1:3_2
Tanh: f(2) = efe” ReLU: f(z) = max{0,z}

eZ+e~?

Figure 4

2.3 Multilayer neural network

An artificial neural network can have multiple neurons divided into layers. In each
layer all neurons have the same inputs scaled with different weights. Each neuron of
a layer has input connections, a bias, an activation function and an output. The
outputs of a layer of neurons form the output vector of the layer.

In a multilayer neural network, each layer of neurons is fully connected with its
adjacent layer. More precisely, every node of one layer of the network is connected
to every node in the adjacent forward layer and the inputs of a layer are the outputs
of the previous layer. The first layer of the neural network is called input layer and
the last layer is called the output layer. All the intermediate layers are called hidden
layers.

We denote by S? the number of neurons in layer £ and by S° the number of inputs in
the input layer. We will use superscript to denote the layer we are referring to. For
the layer € of the neural network we will denote the weight matrix by W?, the bias
vector by b?, the net input by z?, the activation function by f* and the output of the
layer by a?.

The weight matrix of the £-th layer is:

¢ ’ P
f Wl,l W1,2 en Wl,S[_l
W — E . .
w? ¢ ¢
st1 Wgts Wgt ge-1

Where the weight ij corresponds to the connection of the j-th neuron of the £ —
1 layer to the i-th neuron in the ¢-th layer.

A representation of a fully connected neural network with 3 hidden layers is shown
in Figure 5.

a

N
Wlﬁ k‘%“"'« A
é‘&i’.f’bg,‘\y‘\,m

\
%

\/
e
X

ST
PN

/
A

BN
K

The neural network of Figure 5 has 4 neurons in the input layer, 6 neurons in the first

hidden layer, 6 in the second hidden layer, 4 in the third hidden layer and 1 neuron
in the output layer.

Here, in the first layer we have the vector a® = f(Wx + b1), where
x = [x1,%2,x3,%4]7, bt = [b}, b}, ..., bL]" and

in the second layer we have a? = f(W?2a! + b?), where b? = [b%,b3,...,bZ]" and

in the third layer we have a® = f(W3a? + b3®), where b® = [b3,b3, ..., b3]T and

3 3 3
W1,1 Wl’z e W1,6
w3 =1 : : i
3 3 3
W4_,1 W4’2 e W4-,6

and in the output layer we have a* = f(W*a3 + b*), where b* = b} and

W* = [wi,wiy, .., wiy].

We can see that the network is much more complicated and the number of our
parameters, weights and biases are now 24+6+36+6+24+4+4+1 = 105

It is common to use the same activation function for all the hidden layers but it is not
necessary. The purpose of the activation function in the hidden layers is to make our
network more complex and the advantage is that it has higher flexibility and can
approximate a wider class of functions. That’s why it is common for the activation
function of the hidden layers to be non-linear.

In the case where the activation function is linear, we can rewrite the output of the
neural network as:

at = f(W*a® + b*)
= f(W* f(W3a? + b3) +b*)
= f(W* fF(W3f(W2a® + b?) + b3) + b*)
= f(W* FW3f(W2f(W?'x + b)) + b%) + b3) + b*)
=f(W'x +b")

for some W' and b’, since f is a linear function.

This means that if the activation function of the hidden layers is linear, then the
additional complexity of the multilayer neural network does not offer any advantage
because all the hidden layers can be omitted and the neural network becomes
shallow with only the input layer and the output layer with a matrix W’ and bias b’.

Example

Assume that we have some fruits and vegetables and we want to classify them into
apples, oranges bananas and carrots. Each fruit is been represented by 3 features:
shape, texture, weight. These features are binary numbers, the shape is 1 if it is
round and O if it is not, the texture is 1 if the surface is more smooth and 0 if it is not
and the weight is 1 if the weight is more than 0.2 kilograms and 0 if it is not. A
prototype apple will be represented by p,, a prototype orange will be represented
by p,, a prototype banana will be represented by p5, a prototype carrot will be
represented by p,, where p4,p,, 3, p4 are:

S

We will use the following neural network to decide which kind of fruit is represented
by these features. The three features are going to be the input of the neural
network. The neural network will have 2 output neurons representing the 4 fruits.

The activation function will be:

1, ifz=0
0, otherwise

F) =|

In order to determine the weight matrix and the biases of our network we need to
determine the decision boundaries of each neuron such that they separate apples,
oranges bananas and carrots into 4 categories. The goal is to have the decision

boundary of the first neuron to separate the vectors p; and p, from p; and p, and
the decision boundary of the second neuron to separate p; and p; from p, and py,.

If the weight matrix is

¢+ _1 0 O
w _[o 1 ol
and the biases are
1 _[-05
bt =["pe)

then for every input p;, i = 1, ...,4 the output of the neural network will be:

1.0 0 +[:8zg>:[ﬂ (apple)

f(Wl'P1+b1):f<O 1 ol

1
1
1

10

1
fw?t.p, +bt) = f([é (1) 8] : (1) + [:8? = [é] (orange)
fWh-ps+b)=f [é (1) 8] : (1) + [:8?) = [(1)] (banana)

o

0
0

fw?t.p, +bt) = f([(l) 2 8 “lo| + [:gg > = [8] (carrot)

We can see that it categorizes the inputs as follows: if the output is [ﬂ then it is categorized

as apple, if the output is [1] then it is categorized as orange, if the output is [2] thenitis

0
categorized as banana, if the output is [8] then it is categorized as carrot.

Therefore, the neural network classifies perfectly the prototype apples, oranges, bananas
and carrots.

In the case that the input of the neural network is not one of the prototype descriptions
given in pq, P2, P3, P4 then the input will be classified in the category of the prototype that is
closer to it in Euclidean distance.

2.4 Learning Techniques

Leaning is a very important procedure of a neural network since it is responsible for
adjusting the parameters of the network (the weights and the biases) so that for
every input we get the desired output. There are many learning techniques. The
main categories of learning techniques are: supervised learning, unsupervised
learning and reinforcement learning.

In Supervised learning, we are given a set of training examples

(Xl; Yl); (XZt YZ)' LR (Xn' Yn)

where X; is the input of the network and Y; is the desired output of the particular
input.

The procedure is to adjust the parameters of the network through some learning
rule in order to get a network output as close as possible to the correct output.
The goal of this procedure is to create a neural network that will be trained by a set

11

of given examples and will give us the correct output when the input of the network
is an unseen data set.

This can be achieved by defining a cost function, which measures how close is the
network’s output to the correct output, and try to minimize it.

A commonly used cost function is:
COw,b) =5 > 1Y~ it
’ 2n L ’
l

where a’is the output of the neural network on input X; and Y; is the desired output
of the network given the input is X;.

Another commonly used cost function is the quadratic cost function:

1 .
Cw,b) =5 Z”Yi —ait|.
i

The cost function can be viewed as another parameter that the designer of the
network can choose.

In Unsupervised learning, we are given a set of data whose output is unknown. The
goal of the network is to search for input patterns and classify them correctly.

In Reinforcement learning, an agent takes actions in an environment and depending
on the current state (the network’s input) and action (the network’s output), he
receives a reward. The goal for the agent is to learn an optimal policy that maximizes
the expected long-term rewards.

Gradient Descent

The learning technique that we will focus on in this thesis is supervised learning. As
we mentioned, the closer the network output is to the correct output the smaller the
cost function gets. So, it is normal to have a learning rule that tries to minimize the
cost function with respect to the weights and biases parameters. A common
optimization method used for the minimization is gradient descent

Gradient descent is an iterative algorithm based on the gradient of the function we
want to minimize.

The derivative of a function f(x): R - R at a point x;, gives the slope of the
function at the point x and consequently it gives us a direction of how the function
is going to change if we make small change to x;. The gradient of a function

12

f(x): R™ > R at a point x; is a vector and contains all the partial derivatives of this
function at the point x;.

The idea of gradient descent is that if we take a small step towards the opposite
direction of the function’s gradient to the point x;,, then the value of the function
should be decreased: f(x;41) < f(x).

In our neural network the parameters that we want to adjust are the weights and
biases and the function we want to minimize is the cost function.

Therefore, if we can compute the gradient of the cost function with respect to the
weights and biases then starting with some initial values, we could have a guidance
on whether we should increase or decrease them to minimize the cost function.

Thus, the learning rule that will minimize the cost function is:

, ac

RCARC AT
, ac

b gy

J

Where a is called the learning rule and we can think of it as the step size that we are
going to move in the opposite direction of the gradient.

There are some challenges when applying the gradient descent rule. One of them is
the value that we have to choose for the step size a, which in the neural network
terminology is referred to as the learning rule. The gradient only gives the slope of
the function near the value x;. If the learning rule « is large, then the new point x;, 1
will be far away from the point x; and the calculation of the gradient does not
guarantee that the final move will still be towards the direction of the true
minimum. On the other hand, if the learning rule is small then the procedure can
take a very time until we reach a desired point. That is why we have to be careful
when deciding the learning rule. It is common practice to train the model many
times with different values of the learning rule a until we find a suitable learning
rate. Also, it is common to change the learning rate as the training evolves.

Another challenge is the complexity of computing the gradient of the cost function
with respect to all the weights and biases for every different training example.

The cost function is

1 .
conby =50 > I -
i

which can be rewritten as:

13

1
C(w,b) = ;Z c,

is the cost for one individual training example.

yi—at|?
where C; = Irima® Za ”

In practice to compute the gradient VC we compute VC; for every training example
and then take the average to find VC = }}; VC,.

In many cases the number of training examples is very large and it is inefficient to
compute the gradient for every training example in each iteration of the gradient
algorithm. The method of stochastic gradient descent can be used to speed up the
process without giving up the accuracy of the algorithm. The stochastic gradient
descent converges almost surely to a local minimum, when the step size decreases
with an appropriate rate, and is subject to relatively mild assumptions [1].

In stochastic gradient descend, we estimate the gradient VC by choosing a small
random sample of our training examples, called mini-batch, compute the VC; only
for this sample and then average them. In this way, we have a good estimate of the
true gradient VC, which helps significantly to speed up the learning process.

In mathematical terms this is expressed as:

m
, a aCl
Wk' = Wk' -
J J
m owy, ;
=1k
m
a a¢;
b! —) =
] J mdés ab}
i=1

One other challenge when applying the gradient descent or the stochastic gradient
descent is the computation of the gradient itself for every training example. Because
the number of weights and biases is often quite large, a naive approach to calculate
the gradient with respect to all these weights is impractical.

For this reason, we use a very efficient algorithm called backpropagation that can
efficiently compute the gradient of the cost function.

Despite that the computation of the gradient of function is theoretically easy to
compute, its computational evaluation is usually inefficient. The backpropagation
algorithm solves this problem, by introducing an efficient procedure to achieve it.

Before we dive into the backpropagation algorithm, we define the quantity 5%, which
we will call the error in the j-th neuron of the ¢-th layer:

14

oo OC
J 9zt
j
where C is the cost function, z is the netinput z = wa?"1 4+ b, and a’ 1 is the
output of the neurons of the £ — 1 layer.

Recall that af = f(z%) = f(wTa®"t + b).

Backpropagation gives us a way to compute the error 6f and then use it to compute

ac
the values —5- and 25 — © that we are interested in.
6wk1 6b
The most common method used in backpropagation is the chain rule method from
multivariable calculus.

ac

L
azj

The output error is: §/ =

Applying the chain rule we get:

sL = ac aak
J aak az
However, we have that:
ag = f(z),

therefore,
ac
6J'L aaL f(L)

Y_ L
—” 1 then F_ |Y — af|, and

=V =ai|- 7' (#).

If we use the cost function C =

For an arbitrary £:

5 = ac z ac az,f“_zaz,ﬁ“ 5241
T - dz, Tt 0zf B - ozt F

However, we have that

y ¢t ¢ ¢ ¢
ZW ool + bt = Zwk]“f(z)+ bitt.

Hence,

£+1
0z,

0z

{’+1 f (Zf)

\..%

15

We thus obtain:

6 = > wi st ().

Now that we have computed the error 6]-‘) for every layer and neuron, we can use it
ac

to compute the desired quantities Wﬁj’a—bf .

We know that:

f _ £ f-1 '
Zj = z ij ak + b]

k
Hence,
¢
ac _ ac . aZj — 5ttt
owt a9zt ow?] Tk
jk j jk
and
¢
ac ac aZj P)

7= 3.7 anf Y
ob! 9z’ ob;

Summing up, the four fundamental equations for backpropagation are:
st = Vo € @f,(ZL)
5t = ((W€+1)T . 5f+1) o) f,(zf)

ac
anf =
J
ac B
owt = @ 161?)'
Wik

where the © is the Hadamard matrix product, i.e, the product is taken elementwise.

Now that we have written the equations in the above form, we can easily see how
the backpropagation algorithm will work.

Given a training example (X;, Y;),
Step 1: We perform a feedforward pass, meaning that the input X; will pass through
the neural network to give an output a*.

16

Step 2: We compute the output error: 5/

Step 3: We backpropagate the error and compute the quantities 6f forall £ and .

ac ocC

Step 4: The gradient of the cost function is given simply by computing: 3w’ h

This algorithm is very efficient because it only has to pass through the network
twice, one for its feedforward computations and once to backpropagate the errors.

Summing up, to train our neural network we will use stochastic descent with the
help of the backpropagation algorithm to compute the gradients.

Stochastic gradient descent and backpropagation are very commonly used
algorithms in practice, despite that they are known for many years. Of course, there
are also some other algorithms used for training the parameters of the neural
network. Some of them are variations of the stochastic gradient descent and some
of them have different computation complexity. One variation of the stochastic
gradient descent that we will also use in our analysis is called Adam.

Adam Algorithm

Adaptive Moment Estimate (Adam) algorithm [6] is a little more complicated than
the one-line stochastic gradient descent but empirically we find that it converges
more quickly than stochastic gradient descent.

In each iteration in order to adjust the parameters it uses both the average of the
first moment estimation (mean) and the average of the second moment estimation
of the gradient.

In each iteration t, it computes the quantities m;, and v; respectively:

my =P -meqy +(1— 1) g¢
Ve =Py V1t (1= 2) 9:O Gge

where g, is the gradient of the cost function C with respect to the weights and
biases, (1,5, € [0,1) are hyper-parameters.
Initially, my and v, are vectors of zeros.

The quantities my, v, calculated above are biased towards zero, since their initial
values is a vector of zeros. Therefore, we will use the biased-corrected estimates
m; and 7;:

17

_ my
T
Ve
1-5;

U, =

The last step is to update the parameters w, b :

my
Wt = Wt—l —Qa
Uy +€
my
by =bt 1 —a - —=)
U+ €

where a is the learning rate, € is a hyperparameter.

2.5 Improving the performance of Neural Networks

Up until now, we have discussed the main components of a neural network as well
as some learning techniques to train the network.

In this chapter we consider again the main components of the neural network in
order to understand better why we use each one of them and mention some ways to
increase performance.

First of all, the most important element in the process of training a neural network is
the training data. When training a neural network, we must “feed” the neural
network with the training data that we have available until is fully trained and can
perform optimally with new data points. The first problem that arises is the fact that
we don’t know exactly when the neural network is fully trained and how well it can
perform to unseen data. Also, there is the problem of overfitting. If we train the
network too much, then it starts to learn the training data exclusively and becomes
incapable of generalizing to new input data.

One way to tackle this problem is to estimate how well our network is being trained
to unseen data. To do this, before we start the training process, we can divide the

18

training data to two different data sets. We use the first one to train the neural
network and the second one to test its performance.

Although this is a good method, it has a significant drawback. If we change the
hyperparameters many times based on the performance of the test data, then there
is a chance that we will overfit the neural network to the test data as well. To
overcome this problem, we can divide the data into three categories: the training
data, the validation data and the test data.

We use the training data to train the model and the validation data to tune the
parameters for better performance.

Lastly, only when we estimate that the neural network is sufficiently trained, we test
it with the test data to measure its actual performance.

Some other methods that are widely used and have been seen in practice to help
with the overfitting problem, are called regularization techniques. One of the most
used technique is known as weight decay or L2 regularization [9].

The idea is to add an extra term to the cost function that will penalize the weights by
some factor A. A is also a hyperparameter, that we must decide its value before the
training begins. The idea of penalizing the weights is that we don’t want to have
large values of weights unless they make a significant reduction to the cost function.

This comes from the idea that when some connections have large values of weights,
then these connections have more influence to the neural network than others.
Hence, the behavior of the neural network may change significantly if we make some
small changes to the input data.

We note that by changing the cost function to the new form:
A 2
Cw,b) =C; +—- E w
2n
w

we also make a small modification to the gradient descent method.

The only change is in the partial derivative with respect to the weight:

ac _ac; w

ow ow n

Therefore, the gradient descent rule becomes:

, aCl a/l
w=w—aq ——w-—,
ow n

ac; . .
where a_wl is the same as the one we found from backpropagation.

19

We next focus on the hyper-parameters of the neural network.

First of all, we must specify the parameters of the network. The network has two
kind of parameters that we want to find their optimal value. In the first category,
there are the weights and biases which, as we have mentioned, will be changing
through some learning rule until they reach their optimal values. In the second
category, there are all the other parameters that of the neural network. These are
for example the number of layers, the size of each layer, the learning rate a of the
stochastic gradient descent algorithm, the activation functions of every neuron, etc.
These parameters are called hyper-parameters.

The hyper-parameters have to be assigned before the neural network begins its
training and they are usually being decided by the designer of the neural network
through trial and error.

Luckily there are some guidelines to tune these hyper-parameters but they are only
guidelines and we will always have to test different kind of combinations of these
hyper-parameters until we find their optimal value.

Unfortunately, there can’t be a universal neural network that can solve every
problem and so we have to tune our neural network every time we face a different
problem. This is known as the “No free lunch theorem” [13].

On the other hand, in [5] it has been proven that given enough neurons, a neural
network can approximate any function.

Lastly, as we have seen, in order for the Stochastic Gradient Descent or Adam
algorithm to work, we have to assign the weights and biases to some initial values
before the neural network starts.

The initial values of the weights and biases is very important because for different
initial values, given that everything else stays the same, we might end up to different
local minimums.

Unfortunately, there is no general method that we can use to find the global
minimum with ease. One thing that we can do is to train our neural network with
random initialization to the weights and biases multiple times and keep the one
where it performs best. Of course, as we mentioned before, we want the weights
and biases to have relatively small values, so it is better if we initialize them as such.
A common method is to initialize them with a Normal distribution with mean 0 and
variance 1.

Several alternative techniques have been proposed to improve the performance of
the neural network. Many of these are only empirically proven to improve
performance.

20

3 Newsvendor Problem

A classical optimization problem in operational research is inventory optimization. In
every period the newsvendor manager has to make a decision of how much quantity
of a product he will order. His objective is to maximize his profits in a finite or infinite
horizon.

However, there are some cases that the corresponding products are perishable. This
means that they lose their value at the end of each period, so it is impractical to
store them. One example of this kind of products is newspapers. Each day’s
newspapers are worthless for the next day, so the newsvendor has to make a new
decision every day knowing the unsold newspapers of each day will become
worthless. Influenced by the newsvendor decision this class of problems are called
newsvendor problems. This is the type of problems we will try to analyze with some
extensions.

The problem was first introduced by Francis Edgeworth in 1888, where he used the
central limit theorem to determine the optimal decision.

Problem Definition

In the newsvendor problem the retailer makes an order at the beginning of the
period and sells them during that period. The actual demand of the product is
unknown to the retailer. It is considered to be stochastic and it is represented by a
random variable X with density function f(x) and cumulative distribution

F(x) = P(X < x). To model the objective function of the retailer we will assume
that we have two kinds of costs at the end of each period depending on the order
guantity and the actual demand. If at the end of a period we have unsold products
then each unsold product has a holding cost. On the other hand, if the retailer runs
out of products in the middle of the period then he is charged a shortage cost per
unit for the potential profit of the unsatisfied demand.

The objective of the newsvendor is to find the optimal quantity Q that minimizes
the cost function C(Q) where:

C(Q) = Ep[c,(D — Q)* + cn(Q — D)*] =

21

=cp f max(0,x — Q) f(x)dx + ¢, f max(0,Q — x) f(x)dx

0 Q
=cp f(x—Q)f(x) dx + cp, f(Q—x)f(x)dx,
Q 0

where c,: is the shortage cost,
cy: is the holding cost,
D is the actual demand and
(D-Q)* =max (0,D — Q).

If the distribution of the demand is known, then the optimal solution of C(Q) is:
Q* — F—1 Cp
Cp + Ch

However, in real world problems the actual distribution of the demand is rarely
known and this is our main interest.

It is worth noting that the distribution of the demand may be independent from any
parameters or as it is usually the case, it can depend on some external parameters
such as weather conditions, the day of the week, the store location etc. In every
period the newsvendor knows these external parameters and must decide his order
guantity based on them.

A variation of the above problem is if we take into account the price that the retailer
sells the products as well as the cost of the ordered quantity. Then the problem
becomes a maximization problem where the objective of the retailer is to find the
optimal order quantity such that his profits are maximized.

The expected profit is:
Q) = Ep[p - min(Q,D) —w - Q],

where p is the selling price and
w is the cost the retailer is buying the products.

From here we can derive a more realistic approach of the problem where the actual
distribution of the demand depends on the selling price of the product. One example
of this dependence is if D ~ N(f(p), ¢2), i.e, the actual distribution of the demand

22

is normal with constant variance a2 , but with mean equal to some function of the
price, e.g. u(p) = max(A — dp,0), where A and d are some constant unknown
parameters

This extends to the problem, where the objective of the newsvendor is not only to
find the optimal order quantity but also to decide the optimal price of which he will
sell his products along with an order quantity.

Thus, the expected profit becomes:

n(p,Q) = Ep[p - min(Q,D) —w - Q].

To find the optimal solution to this problem we will consider the approach followed
in [11] and [12], with D ~ N(y(p), 02). We rewrite D = y(p) + £ where €

~N(0, 0?)and Q as Q = y(p) + z.

They find the solution in 2 stages. They first maximize the order quantity as a
function of the price and then maximize the price based on the optimal order
guantity function.

The order quantity is given as
-w
s =pi (229,
p

To find the optimal price we must solve the equation:

on®) _,
dp
where

a1l (p)
dp

— @) +p-y () + j w- fdu + j 2 F@)du — w-y' ()
—y@) +p-y () + j - fWdu+ 2 (1—FZ)) - w-y' (@)

— 00

Where

z* z*

1 u? 20 Z*Z
o o g)2l 5

— 0 — 00

Hence,

23

an 2 *2
az(op) =y@)+p-y'® - \/_; exp <_2272> +z"(1-F(z)— w-y'(p)

We find the optimal values by solving these equations.

In the next chapter, we present some representative papers that use neural network
models for the newsvendor problem, and in Chapter 5, we will also develop a neural
network algorithm for the above joint price-quantity optimization problem.

The analysis is inspired by [10], which has already analyzed the first problem of
optimal order quantity.

24

4 Neural Networks for the newsvendor problem

In this chapter we will analyze some approaches to the newsvendor problem and
inventory optimization in general. Our main focus will be the two main neural
networks that have been proposed by [10] and [14].

In the paper [10] the authors propose a neural network to solve variation of the first
problem that we discussed in the previous chapter.

Instead of trying to find the optimal order quantity for one single product, they
assume that the retailer has m products and he needs to find the optimal order
quantity for each one of them. Also, for each day, they use p different features that
affect the demand distribution.

In mathematical terms, given n training data
{ GhdD) s, (A Yy,

wherexij € RP and d{ eER,fori=1,..,n,j=1,..,m and
xl] represents the features from the i-th data point and the j-th product,

d{ is the actual demand from the i-th data point and the j-th product given the xl]
features.
Hence the cost function that they minimize is:

n m
Cwb) = Y () ealal = al)" +cp(d] —al)"),
i=1 j=1

where a{’L is the output of the neural network on input xij

and d{ is the desired output of the network given the input is xl]

In the paper they also use a quadratic loss function:

n m

i P . . 2
cont) =Y | 3 (ealal ~a))" + ol =al")')

i=1 j=1

They develop a neural network with the stochastic gradient descent learning rule
and the backpropagation to compute the gradient of the cost functions.

It is worth noting that in their analysis they use neural networks with both 2 and 3
hidden layers with a number of neurons in each layer being selected at random
based on the number of neurons in the previous layer. More precisely, denoting nn;
the number of neurons in the layer k, for the network with two layers they choose:

nn, € [0.5-nn,, 3-nn,]

25

nng € [0.5 - nn,, nn,|

nn,=1.

They also use a regularization parameter that is drawn uniformly from [1072, 1073].
Lastly, they use the sigmoid function for the hidden layers.

The authors show that the neural network with the quadratic cost function performs
better than the neural network with the simple cost function, but both networks
perform better than some other state-of-the-art approaches that solve the same
problem.

In [14] the authors consider the same problem using a slight variation of the neural
network in [10]

They suggest the same neural network as [10] but they also add another layer at the
end of the neural network with the ReLU activation function.

They also use a single input neuron in the last hidden layer that represents the actual
demand of the products.

The weights are fixed from the last hidden layer to the output as:

Py
Ch —Cp

A visual representation of the network is given in Figure 6.

This variation has the property that the output layer is the cost function itself that is
minimized, since:

(af —d)*, ifa; =z
C(f(xi' q)) = { z;l(zl — af‘)"' ll'];(;;i = al-L

The authors argue that the proposed quadratic cost function of [10] brings worse
results than the simple cost function.

Other papers in the literature that tackle these problems or other more general
problems for supply chain management, try to estimate the demand using neural
networks. One drawback in this approach is that they don’t take into account the
costs ¢, and ¢y, for the minimization problem. Such papers are [2] and [7].

26

Cost

Figure 6

27

5 Applications

In this chapter we develop a neural network model for the problem of order quantity
optimization as well as for the problem of price-order quantity optimization in a
newsvendor inventory environment.

5.1 Order Quantity Optimization

We will first analyze our approach to finding the optimal order quantity under
unknown demand distribution. Recall that in the problem the objective in the neural
network is to find the optimal order quantity y in order to minimize the empirical
cost function:

1 . + 1 n
Cw,b) == en(af =)+, (d—ab)*) =2 Ci(w,b) (1)
i=1 i=1
| cular —dy), if af = d;
Ci(W, b) - { Cp(di _ af’) lf di > a% (1b)

where ¢, is the shortage cost,
cp, is the holding cost,
d; is the actual demand,
aiL is the output of the neural network on input x;,
(a’iL - di)+ = max (0, a’iL —d;) and
w, b are the matrices of weight and bias vectors in the neural network.

We will also consider a variation with the quadratic cost function:

1v 1v
COnby =2) (enlaf =)t +epdi—ab))? = 2 Gw.b), @
(Ch(aiL - di))z» if af = d;
where C;(w,b) =) (2.b)
(cp(di — aiL)) if di = ar

28

Our approach is based on the model in [10] with some variations.

First of all, we consider a simpler version of the problem where there are no feature
values. This is done mainly for practical reasons and secondly because we will
analyze an application with the price as a feature in our next application.

For simplicity we are going to find the optimal order quantity for only one product
and we will not consider the problem with multiple products. The analysis can easily
be generalized to the multi-product and the multi-featured problem.

In this problem we are given n training examples:

{(X1; Dl)’ ey (Xn' Dn)},

where D; is the actual demand generated by some distribution and
X, =X, =+ =X, =r whererisan arbitrary number between [0,1]

We use this convention because in this problem we don’t include any features. This
is equivalent as having the same feature in every training example.

In our analysis, we will use simulated data from known distributions and test
different kinds of neural networks to measure their performance. We will first
generate some data that come from the normal distribution with mean ¢ and
variance o2 and test our neural network for different values of U, o2, Cps Ch-

We will use the same tuning of neural network for all the different values of
U, o2, Cp, Cp to test its performance. We will also be testing it for the two different
kinds of cost functions.

It is worth noting that because these data are being generated by a known
distribution, we can compare the performance of our neural networks with the

theoreticaloptimalquantityF‘l(P)
CptCh

We will then generate some data using the exponential distribution and use a
. . 1
different neural network to test these data for different values of the mean 1 Cpr Ch-

We will also be testing it for the two cost functions.

Training data generated by the normal distribution

In this framework, after a lot of training and tuning of the hyperparameters of our
network we propose a neural network with 2 hidden layers. The first (input) layer of
the network will have only 1 neuron, the first hidden layer will have 32 neurons, the
second hidden layer will have 16 neurons and the output layer will have 1 neuron.

29

We found that a suitable activation function is the LeakyReLU [8] and we will use it
for all of the neurons. LeakyReLU is a variation of the ReLU function that we stated in
the beginning of this thesis.

Z , ifz=0

The function for LeakyReLU is f(x) = { 0.0012 ifz<0

In order to train the weights and the biases, we will apply the Adam algorithm for all
the neural networks in the first application. In the next application we will use the
Stochastic Gradient Descent algorithm.

The parameters of the Adam used except for the learning rate, are the same for all
the neural networks:

b, = 0.9, b, =0.999, e = 1078,

The only value that will vary from one neural network to an other is the learning
rate.

As we have stated, choosing the learning rate is a very important decision and it can
influence the time that the neural network will converge. We found that starting
with a relatively large value of learning rate and decreasing it as the number of
iterations of the algorithm is increasing, helps the neural network converge faster
and not oscillate around a solution.

When using the cost function (1), we will use the learning rates: 0.01, 0.001, 0.0001
that will be changing when the number of iterations reaches 0, 100 and 250
respectively.

As for the second neural network we will use the learning rates: 0,1, 0.01, 0.001,
0.0001 that will be changing when the number of iterations reaches 0, 6, 100 and
250 respectively.

We must also discuss the number of epochs that the neural network will be trained,
i.e, the number of iterations the Adam algorithm will perform until it stops training
the weights and biases. We found that a number of 500 iterations is enough to train
this model.

We will use a mini-batch of length 10. The mini-batch is the size of the training data
to estimate the full gradient.

Lastly, we should note that because in all our neural networks we start by initializing
the weights and biases to some random numbers, we will only show the results of
the neural network that had the best performance in a best-of-three runs.

30

Training data generated by the exponential distribution

In this framework, we propose a neural network with 3 hidden layers. The first
(input) layer of the network will have only 1 neuron, the first hidden layer will have
16 neurons, the second hidden layer will have also 16 neurons, the third hidden layer
will have 8 neurons and the output layer will have 1 neuron.

We will also use the LeakyRelLU function for all of the neurons

As mentioned above, we will use the Adam algorithm to train the neural network for
this application with parameters:

b, = 0.9, b, = 0.999, e = 107,

As for the learning rate, when using the cost function (1), we will use the learning
rates: 0.01, 0.001, 0.0001 that will be changing when the number of iterations
reaches 0, 100 and 250 respectively.

As for the second neural network we will use the learning rates: 0,1, 0.01, 0.001,
0.0001 that will be changing when the number of iterations reaches 0, 6, 100 and
250 respectively.

Lastly, the number of epochs will again be 500 and the mini-batch size 10.

Numerical Experiments

We next generate simulated data to test our neural network and observe its
performance under different distributions of the demand and different values of the
parameters c,, c,

The first data set is very small. We only consider 5 data points for the first data set.
The reason is so that we can see the performance of our neural network when faced
with small data.

The results are shown in Table 1.

- NN1 represents the neural network that was trained with respect to the cost
function (1),

- NN2 represents the neural network that was trained with respect to the
Quadratic cost function (2), and

- Optimal represents the Optimal Theoretical value that we found by solving

* — -1 ‘p
Q - F (Cp+Ch)

31

We only use different kind of (c,, c,) values that it holds ¢, = ¢, because this is
almost always true for real applications.

Table 1
Data=5
Method of Proposed
Distribution (cpscn) Estimation Ordered Cost
Demand

N(50,1) (3,3) NN1 49.63 2.18

NN2 49.74 2.11

Optimal 50.0 1.96

(6,3) NN1 50.06 3.24

NN2 49.94 3.10

Optimal 50.43 3.68

(11,3) NN1 49.71 2.85

NN2 50.03 2.91

Optimal 50.79 2.00

(20,3) NN1 51.01 5.39

NN2 50.76 6.92

Optimal 51.12 4.69

N(50,6) (3,3) NN1 49.75 18.30
NN2 49.64 18.36

Optimal 50.0 1814

(6,3) NN1 45.64 62.61

NN2 45.75 61.92

Optimal 52.58 24.05

(11,3) NN1 52.24 29.56

NN2 53.26 26.90

Optimal 54.75 24.44

(20,3) NN1 59.47 39.79

NN2 58.57 37.09

Optimal 56.75 31.61

N(50,20) (3,3) NN1 33.91 62.09
NN2 40.98 61.68
Optimal 50.0 67,096
(6,3) NN1 90.60 137.24
NN2 88.47 134.68

Optimal 58.61 98.85

(11,3) NN1 77.37 62.61

NN2 78.03 62.74

Optimal 65.83 60.30

(20,3) NN1 75.61 85.96

NN2 73.20 78.74

Optimal 72.49 79.61
Exp(1/40) (3,3) NN1 41.07 146.99

32

NN2 64.78 189.66

Optimal 27.73 130.87

(6,3) NN1 75.38 150.88
NN2 72.56 142.41

Optimal 43.94 85.71

(11,3) NN1 40.89 122.36
NN2 39.37 126.32

Optimal 61.62 117.49

(20,3) NN1 91.80 209.24
NN2 86.87 194.45

Optimal 81.48 178.27

As we can see from Table 8, even though the data sets are very small, both neural
networks seem to have very good performance, especially when the variance is
small. We can see that in many cases, the order quantity that the neural networks
suggest is very close to the theoretical optimal.

In some cases we can even see that the costs of some neural networks is smaller
than the one from the theoretical optimal. This is because the data sets are very
small and in some cases the variance is very large.

Another observation is that in most cases, the neural network with the quadratic
cost function performs better that the first one.

Next, we consider a data set with 1000 points and test their performance
The result can be seen in Table 2

Table 2
Data = 1000

Method of Proposed

Distribution (cpsch) Estimation Ordered Cost
Demand

N(50,1) (3,3) NN1 50.02 1.16

NN2 50.02 1.16

Optimal 50.00 1.16

(6,3) NN1 50.44 1.62

NN2 50.56 1.65

Optimal 50.43 1.62

(11,3) NN1 50.76 2.15

NN2 50.98 2.16

Optimal 50.79 2.14

(20,3) NN1 51.21 2.33

NN2 53.02 4.53

Optimal 51.12 2.32

33

N(50,6) (3,3) NN1 49.99 7.27
NN2 50.22 7.28
Optimal 50.0 7.27
(6,3) NN1 52.37 10.14
NN2 53.31 10.15
Optimal 52.58 10.12
(11,3) NN1 54.29 12.67
NN2 55.86 12.92
Optimal 54.75 12.66
(20,3) NN1 57.50 14.27
NN2 59.15 15.34
Optimal 56.75 14.18
N(50,20) (3,3) NN1 49.75 24.51
NN2 49.66 24.51
Optimal 50.0 24.52
(6,3) NN1 58.63 35.16
NN2 60.79 35.24
Optimal 58.61 35.16
(11,3) NN1 64.27 40.01
NN2 69.18 40.98
Optimal 65.83 40.08
(20,3) NN1 81.82 247.33
NN2 117.75 287.56
Optimal 72.49 249.76
Exp(1/40) (3,3) NN1 29.16 88.07
NN2 39.89 92.59
Optimal 27.73 88.06
(6,3) NN1 41.01 130.93
NN2 63.38 145.99
Optimal 43.94 131.06
(11,3) NN1 63.35 172.13
NN2 88.98 198.07
Optimal 61.62 171.55
(20,3) NN1 81.58 249.33
NN2 118.59 287.75
Optimal 81.48 249.30

As we can see, the performance of our neural networks is even better than the
previous examples. This is expected since they are now trained with more data
points and their accuracy is improved.

One interesting thing that we observe is that in most cases, the neural network with
the quadratic cost function now performs worse that the first one. This is consistent
with the discussion in [14]

34

5.2 Price and Order Quantity Optimization

In this chapter we analyze our approach to the second proposed problem of the
newsvendor.

To recall the problem, the objective is to find both optimal price value and the order
guantity to maximize the expected profits:

(p,Q) = Ep[p - min(Q,D) —w - Q]

Where: p is the selling price,
Q is the order quantity,
D is the actual demand, and
w is the cost per unit that the retailer procures the products from the
supplier

In this problem we are given n training examples ((Xy, D;), ..., (X,,, Dy,))

Where X; is the feature price and
D; is the actual demand and its distribution is now depending on the
corresponding price.

We are going to tackle this problem in two stages, where in every stage we will build
a different neural network.

In the first stage we will create a neural network that will perform a function
approximation between the price and actual demand. In other words, our neural
network will receive the price as input and its output would be the estimated
demand of the product for that price.

In the next stage, we will create a neural network to solve the optimization problem.
More precisely, with the help of the neural network from the first stage, this neural
network’s output will be the optimal price in order to maximize the profit function.
Based on that proposed price, we will again use our first neural network to
determine the optimal order quantity.

We will first analyze the first neural network and then we will analyze the second.

35

First Stage

In this stage, we want to approximate the relationship between the price and the
actual demand of the product.
The actual demand can depend on the price in many different ways.

In our application, the actual demand will be a random variable following a Normal
distribution with mean u(p) and a constant variance o2

That is, the mean of the distribution of the actual demand will depend on the given
price.

We will examine three different functions of u(p):
1) u(p) = (A, —Bip)*

Ap
p+B;

2) u(p) =

3) u(p) = Az e PP
where A, A,, A5 and B4, B,, B3 are some constants.

We can see that the first function of u(p) is linear whereas the other two are non-
linear.

This means that the neural network for the first function will be simpler than the
other two.

More specifically, for the first function, we propose a neural network with only one
hidden layer. The first (input) layer of the network will have only 1 neuron, the
hidden layer will have 8 neurons and the output layer will have 1 neuron.

We found that a suitable activation function is the LeakyReLU for the neurons in the
hidden layer and the output neuron.

As for the cost function, we will use the quadratic cost function:
1 R
C(w,b =—Z D; — at
() =5 ¥ o= a|
l

In order to train the weights and the biases, we will apply the Stochastic Gradient
Descent algorithm for all the neural networks in this application.

As for the learning rate, we will use the learning rates: 0.8, 0.3, 0.09, 0.06 that will
be changing when the number of iterations reaches 0, 300, 500 and 800 respectively.
The number of epochs will be 1000 and the mini-batch size 10.

36

Lastly, we should note that we are applying the same best-of-three rule as in the first
application.

For the second function, we propose a neural network with three hidden layers. The
first (input) layer of the network will have only 1 neuron, the first hidden layer will
have 64 neurons, the second hidden layer will have 32 neurons, the third hidden
layer will have 16 neurons and the output layer will have 1 neuron.

We will also use the LeakyReLU function for all of the neurons in the hidden layers
and the Sigmoid function for the output neuron.

The learning rates that we will use for the Stochastic Gradient Descent algorithm are:
0.15, 0.1, 0.09 that will be changing when the number of iterations reaches 0, 4 and
600

The number of epochs will be 1500 and the mini-batch size 10.

For the third function, we propose a neural network with two hidden layers. The first
(input) layer of the network will have only 1 neuron, the first hidden layer will have
64 neurons, the second hidden layer will have 32 neurons and the output layer will
have 1 neuron.

We will also use the LeakyReLU function for all of the neurons in the hidden layers
and the Sigmoid function for the output neuron.

In order to use the Sigmoid function in the output neuron, we first rescaled all of our
data points to lie in the interval [0,1]

The learning rates that we will use for the Stochastic Gradient Descent algorithm are:
0.65, 0.6, 0.28, 0.09 that will be changing when the number of iterations reaches 0,
4, 300 and 600

The number of epochs will again be 1000 and the mini-batch size 10.

Numerical Experiments

We next generate simulated data to test our three neural network and observe their
performance.

The functions of u(p) that we use are:

1) u(p) = (1000 — 10p)*

37

2) u(p) =

3) u(p) = 100e75

10000
p+100

The results are shown in Figures 7, 8 and 9.

In each Figure the first plot is the function generated by our neural networks,
the second plot is the actual function of u(p)

and the third plot is the training data points D; that our neural network was trained.

In all three cases we generated the actual demand D; from a Normal Distribution
with mean u(p) and 02 = 2.

1000 4 1000 1000 A
800 800 800
o
> 600 1 600 600
=
C
S 4001 400 A 400 -
o
200 - 200 - 200
01 01 0-
0 25 50 75 100 0 25 50 75 100 0 50 75 100
Price p Price p Price p
Figure 7
90 4 100 100 A g
80 4
80 A 80 A
o 704
g 60
£ J 4
§ 60 60
5 >0
e -
40 A 40 1 40 W
e
30 1 ISR
T T T T T T T T 20 L T T T : T
0 100 200 300 0 100 200 300 0 100 200 300
Price p Price p Price p
Figure 8

38

100 A 1004 '}.
80 - 3
80 804 %
3
o 3
60 4 i R
z 60 60 e{,
= &
S 407 40 1 40+ %
o D
20 1 20 20 4 ™
%’
ol o 0 g
0 100 200 300 0 100 200 300 0 50 100 150 200
Price p Price p Price p
Figure 9

To test the performance of our neural networks, we generated a new data set for
each case and we evaluated the difference between our neural networks and the
data points. The mean of this cost for each case is:

1) costl =198
2) cost2 =2.14

3) cost3 =1.78

Second Stage

Our goal is to find both optimal price value and the order quantity Q in order to
maximize our expected profits.

In the first stage we created a neural network that approximates the function
between the price and actual demand. That means that given a price p, we have an
estimation about the optimal quantity that we want to order.

Hence, our problem now becomes finding only the optimal price value that
maximizes the expected profits, because given that price, we can use our neural
network from the first stage and find the optimal order quantity.

This neural network is similar to the neural network from the first application with

39

some necessary variations.

One variation in this neural network is in the training data set. We need a set of the
actual demands in order to calculate the profit function and be able to maximize it.
The problem in this application is that the actual demand depends on the price that
we set every time. This means that the actual demand depends on our neural
network’s output and we can’t know it in advance. To solve this problem, we must
start with a random initial input and at the end of each iteration that our neural
network proposes a price, we should generate the actual demand based on that
particular price. With the help of the first neural network we can also produce the
proposed demand for that particular price and then we proceed to calculate the
profit cost and its derivative in order to use the Stochastic Gradient Descent
algorithm and train the weights and biases to maximize the profit function.

The profit function that we want our neural network to maximize is :

II(w,b) = a* - min(NN3(a"), D(a’)) —w- NN3(al) =

1(w, b) _{ at - D(a*) —w- NN3(ah), if NN3(a"*) = D(a")
WEIZ1 b NN3(at) —w- NN3(@b) if D(ab) > NN3(ab)

a’is the output of our neural network, which is the proposed selling price
NN3(ab) is the output of the neural network from the first stage given the
price aX, which is the proposed order quantity

D(al) is the actual demand given the price a*

We must also compute the partial derivative of the profit function with respect to
the output a® because we will use it in the process of training our neural network:

For NN3(al) > D(al) we have that

oIl (a* 6NN3 at
@) _ ey (")
dat dar
L
The quant|ty (onn3(at) is the partial derivative of the neural network from the first
stage with respect to its input price a*.

(L)

backpropagation algorlthm:

To find the quantlty , we must recall the four fundamental equations of the

st=v,C Of'(zhH)

40

5t = ((We+1)T . 5f+1) o f,(zé)
ac

— = &7
? J
ab].
ac
7 = a£_1 6f
ow;
jk
. ac
We will use the same equations but instead of computing the quantities Sf =
j
. " ONN3(al
we will compute the quantities : 6]?? = %
j
¢ _0C _ -1 ¢f
And instead of computing the quantities — ab" =9, wl, ai 6
. oNN3(al) .p ONN3(al) 1 of
we will compute T I W =)

Continuing with the same way as the backpropagation algorithm, in the last step, we

ac ac
compute the quantities = 6}

1
6b1 17 owh, _ak6
Jjk

Where a,‘g is actually the input feature, price, that we give to our neural network.

The algorithm of backpropagation stops here.

But if we continue for one more step, we compute the desired quantity:

L
M%Ea) =6%=(wH)T-61) O f'(z%), where f'(z°) is the derivative of the

“activation” function of our input. In neural networks, we don’t have an activation
function in the input layer so we can just assume that the “activation” function is the
linear function: f(x) = x

aN1v3(a

= (whH"- Y

Hence,

This means that we can compute the partial derivative of the profit function
for NN3(at) = D(ab):

61‘1(a
dal

aNN3(al)
dal

= D(a*) —

41

Similarly, for D(at) = NN3(al):

or(al) 5 . ONN3(a") ONN3(ab)
FPT NN3(a*) + a Tk -w- ~al

We are now ready to introduce the neural network and examine its performance.

We will use the same neural network for all the three cases in the first stage.

We will use a simple neural network with 1 hidden layer. The first (input) layer of our
network will have only 1 neuron, the hidden layer will have 4 neurons and the
output layer will have 1 neuron.

We will also use the LeakyReLU function for all of the neurons in the hidden layers
and the Sigmoid for the output neuron.

In this problem we want to maximize the profit function, so we will use a variation of
the Stochastic Gradient Descent algorithm called Stochastic Gradient Ascent. It is
almost the same as the Stochastic Gradient Descent and its equations for training
the weights and biases become:

, ac
ij

b; = b; + oc

A T

The learning rates that we will use are: 0.5, 0.1, 0.05, 0.001 that they will be
changing when the number of iterations reach 0, 75, 200 and 500

The number of epochs will be 1000 and the mini-batch size 1.

The results can be seen in the table 3.

Table 3
ulp) Price Demand Total Profits
u(p) = (1000 — 10p)* | NN 64 356.91 15702.07
Optimal 62 380.92 15913.05
() = 10000 NN p>> Q<<
HP) =100 Optimal | p>> 0<<
u(p) = 10055 NN 89 16.03 743.79
Optimal 95 15.36 750.00

42

We observe that in the first and third case, the neural networks give a very good
estimation of the optimal order quantity and the optimal price.

In the second case, we can see that we don’t have an exact value in the values of the
price and the quantity.

This is so because in the search of the optimal values, we found that the theoretical
profit function keeps increasing as the price increases.

And although our neural network was trained by training data that had a maximum
price of 300, we found out that even for prices larger than 109, the theoretical
profit function was still increasing.

43

6 Conclusion

In this thesis we presented the basic models of artificial neural networks, their
architecture, the learning techniques and their applications in optimization
problems. We then emphasized on the applications of neural networks in the
newsvendor problem and variations.

We then created and trained neural networks to solve different variations of the
newsvendor problem. In the first one the goal was to find the optimal order quantity
in order to minimize the cost function and in the second one the goal is to find the
optimal price value and the order quantity to maximize the expected profits. The
numerical results for the two applications were very close to the theoretical optimal
solutions and in the first application, when the training data set was larger, then the
output of the neural network showed even better accuracy.

One possible extension to be considered is to modify the problem as an online
optimization problem where we are given the training data one at a time. In our
analysis, we were given n training data points to train our neural network. This
approach is helpful when someone opens a new business and has no information
about the actual demand of the products.

Another possible extension to be considered is when the actual demand is not
known unless the order quantity is more than the true demand, i.e., if our proposed
order quantity is less than the actual demand, then the only information that we get
is that all the products were sold, and we get no information about how many
products we could have potentially sold.

44

7 References

[1] L. Bottou, "Online Algorithms and Stochastic Approximations," in Online
Learning and Neural Networks, D. Saad, Ed., Cambridge, UK, Cambridge
University Press, 1998.

[2] R. Carbonneau, K. Laframboise and R. Vahidov, "Application of machine
learning techniques for supply chain demand forecasting," European
Journal of Operational Research, vol. 184, no. 3, pp. 1140-1154, 2008.

[3] H.B.Demuth, M. H. Beale, O. De Jess and M. T. Hagan, Neural Network Design,
2 ed., Stillwater, OK, USA: Martin Hagan, 2014.

[4] 1. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016.

[5] K. Hornik, M. Stinchcombe and H. White, "Multilayer feedforward networks are
universal approximators," Neural Networks, vol. 2, no. 5, pp. 459-366, 1989.

[6] D.P.Kingma and J. Ba, Adam: A Method for Stochastic Optimization,
arXiv:1412.6980.

[7]1 A.Kochak and S. Sharma, "Demand Forecasting Using Neural Network for
supply chain management," International Journal of Mechanical
Engineering and Robotics Research, vol. 4, no. 1, pp. 96-104, 2015.

[8] A.L. Maas, A.Y.Hannun and A. Y. Ng, "Rectifier Nonlinearities Improve Neural
NetworkAcoustic Models," in ICML, 2013.

[9] M. A. Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

[10] A. Oroojlooy jadid, S. Lawrence and M. Takac, "Applying Deep Learning to the
Newsvendor Problem," /ISE Transactions, vol. 52, 2017.

[11] N. C. Petruzzi and M. Dada, "Pricing and the Newsvendor Problem: A Review
with Extensions," Operations Research, vol. 47, no. 2, pp. 183-194, 1999.

[12] T. M. Whitin, "Inventory Control and Price Theory," Management Science, vol.
2, no. 1, pp. 61-68, 1955.

[13] D. H. Wolpert and W. G. Macreeady, "No free lunch theorems for
optimization," IEEE Transactions on Evolutionary Computation, vol. 1, no. 2,
pp. 67-82, 1997.

[14] Y. Zhang and G. Junbin, Assesing the performance of Deep Learning Algorithms
for Newsvendor Problem, arXiv:1706.02899, 2017.

45

