

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Εдνικόν και Καποδιστριακόν Πανεπιστήμιον Αдηνών

<u>Διπλωματική Εργασία</u>

Μελέτη Σεισμικής Ανισοτροπίας Βόρειου Ευβοϊκού Κόλπου, κατά την περίοδο, 2014-2015

<u>Υπεύθυνος Καθηγητής</u>

Καβύρης Γεώργιος Αναπληρωτής Καθηγητής Σεισμολογίας - Σεισμικής Ανισοτροπίας Τμήμα Γεωλογίας και Γεωπεριβάλλοντος Σχολή Θετικών Επιστημών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Καρύδη Μαγδαληνή 1114201300048

Αθήνα, 2021

<u>ПЕРІЕХОМЕNA:</u>

Περίληψη	3
Abstract	3
Πρόλογος	5
1. Χαρακτηριστικά του Ευβοϊκού Κόλπου	6
1.1 Γεωλογική Σύνθεση Ευβοϊκού Κόλπου	6
1.1.1 Ενότητα Υποπελαγονικής	6
1.1.2 Ενότητα Πίνδου	6
1.1.3 Ενότητα Παρνασσού	7
1.1.4 Ενοτητα Μαλιακης	9
1.2 Γεκτονικά Χαρακτηριοτικά Ευροικου Κολπου	9
1.3 Γεωμορφολογικά Χαρακτηριοτικά Ευροικου Κολτιου	10
1.4 1 Ιστορικό Σεισμικότρτα	12
1.4. Γιοτορική Ζειομικότητα	12
1.4.2 Ενοργανή Ζεισμικοπητα	10
Κόλπο	22
	~~
2. Σεισμική Ανισοτροπία	25
2.1 Συστήματα Συμμετρίας της Ανισοτροπίας	26
2.2 Τα Αίτια της Ανισοτροπίας	26
3. Σχάση Εγκαρσίων Κυμάτων	. 28
3.1 Παράμετροι Σχάσης Εγκαρσίων Κυμάτων	. 28
3.2 Μέθοδοι Μέτρησης της Σχάσης Εγκαρσίων Κυμάτων	. 29
3.2.1 Μέθοδος Ετεροσυσχέτισης	29
3.2.2 Πολωσίγραμμα	. 29
3.2.3 Μέθοδος Λόγου Διαστάσεων (aspect ratio method)	. 29
3.2.4 Μέθοδος Τανυστή Διακύμανσης (variance tensor method)	. 30
3.2.5 Οδόγραμμα	. 30
3.3 Επιλογή Δεδομένων	31
3.4 Μέθοδος Μέτρησης στην Παρούσα Μελέτη	. 31
3.5 Μεθοδολογία Ανάλυσης Δεδομένων	. 31
4. Αποτελέσματα Μέτρησης Ανισοτροπίας ανά Σταθμό	. 33
4.1 Δάφνη-DAF1	34
4.2 DAFN	37
4.3 Μαλεσίνα-MALE	41
4.4 Λίμνη-LIMN	. 43
5. Συμπεράσματα	. 46

6. Βιβλιογραφία	50
7. Παράρτημα 1	54

<u>ΠΕΡΙΛΗΨΗ</u>

Ο βόρειος Ευβοϊκός Κόλπος είναι μία τάφρος η οποία βρίσκεται στο ανατολικό τμήμα της κεντρικής Ελλάδας και επηρεάζεται τεκτονικά από δύο πεδία τάσεων, ένα διευθύνσεως ΒΑ-ΝΔ και ένα ΔΒΔ-ΑΝΑ. Χαρακτηρίζεται, επομένως, από ένα αρκετά περίπλοκο τεκτονικό καθεστώς. Η περιοχή από την αρχαιότητα ακόμα είχε πληγεί από αρκετούς καταστροφικούς σεισμούς, με πιο πρόσφατους δύο σεισμούς που έλαβαν χώρα τον Απρίλιο 1894. Ύστερα από τα γεγονότα αυτά, ο Ευβοϊκός Κόλπος δεν συνδέθηκε ξανά με σεισμικές δονήσεις μεγάλου μεγέθους.

Τον Νοέμβριο 2014, η περιοχή του βόρειου Ευβοϊκού Κόλπου επλήγη από δύο επιφανειακούς σεισμούς, οι οποίοι συνοδεύτηκαν από πλούσια μετασεισμική ακολουθία μέχρι και τον Ιανουάριο 2015. Επιπλέον στις 9 Ιουνίου 2015 μία ακόμη ισχυρή σεισμική δόνηση έλαβε χώρα στην ίδια περιοχή.

Για την παραπάνω σεισμική ακολουθία πραγματοποιήθηκε μελέτη σεισμικής ανισοτροπίας ανώτερου φλοιού μέσω της σχάσης των εγκαρσίων κυμάτων τοπικών σεισμών. Πιο συγκεκριμένα, υπολογίστηκαν η διεύθυνση πόλωσης του ταχέος εγκαρσίου κύματος, η χρονική καθυστέρηση μεταξύ των δύο εγκαρσίων κυμάτων που έχουν υποστεί σχάση και η διεύθυνση πόλωσης της πηγής. Στην παρούσα εργασία αναλύθηκαν συνολικά 157 σεισμικά γεγονότα, τα οποία καταγράφηκαν από 4 σταθμούς που εγκαταστάθηκαν στην περιοχή για τη μελέτη της σεισμικής ακολουθίας. Όλα τα αποτελέσματα παρουσιάζονται με τη βοήθεια ροδογραμμάτων και ισεμβαδικών προβολών. Παρατηρήθηκε η ύπαρξη ανισοτροπικού στρώματος στον βόρειο Ευβοϊκό Κόλπο, το οποίο βρίσκεται σε συμφωνία με τα συστήματα ρηγμάτων της ευρύτερης περιοχής και το πεδίο τάσεων.

Λέξεις κλειδιά: Ευβοϊκός Κόλπος, σεισμική ανισοτροπία, σχάση εγκαρσίων κυμάτων, σεισμικότητα

<u>ABSTRACT</u>

The northern Gulf of Evia is a graben located in the eastern part of central Greece and is tectonically affected by two stress fields, one in a NE-SW and the other in a WNW-ESE direction. It is, therefore, characterized by a rather complex tectonic system. The area has been affected by several catastrophic earthquakes since the antiquity. The most recent destructive events were two earthquakes that occurred in April 1894. After these events, the Gulf of Evia was not related with large earthquakes.

In November 2014, the area of the northern Gulf of Evia was struck by two shallow earthquakes, followed by a rich aftershock sequence until January 2015. In addition, on June 9, 2015, another large earthquake occurred in the same area. An upper crust seismic anisotropy study was performed via shear-wave splitting for the above seismic sequence. More specifically, the following parameters were calculated: the polarization direction of the fast shear-wave, the time-delay between the two split shear-waves and the polarization direction of the source. In the present study, a total of 157 earthquakes which were recorded by 4 local stations installed to study the seismic sequence, were analyzed. All results are presented using rose diagrams and equal-area projections. The existence of an anisotropic layer was observed in the northern Evian Gulf, which is in agreement with the strike of the local faults of the wider area and the stress field.

Keywords: Gulf of Evia, seismic anisotropy, shear-wave splitting, seismicity

ΠΡΟΛΟΓΟΣ

Η παρούσα μελέτη εντάσσεται στο πλαίσιο του προπτυχιακού προγράμματος σπουδών του τμήματος Γεωλογίας και Γεωπεριβάλλοντος του Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών. Η ανάθεση του θέματος έγινε από τον κ. Γεώργιο Καβύρη, Αναπληρωτή Καθηγητή Σεισμολογίας – Σεισμικής Ανισοτροπίας του τομέα Γεωφυσικής - Γεωθερμίας του τμήματος.

Στόχος της συγκεκριμένης εργασίας είναι η μελέτη της σεισμικής ανισοτροπίας στο τμήμα του βόρειου Ευβοϊκού Κόλπου, μέσω του φαινομένου σχάσης των εγκαρσίων κυμάτων και η σύνδεσή της με την τεκτονική και το πεδίο τάσεων της ευρύτερης περιοχής. Το συγγραφικό κομμάτι της εργασίας αποτελείται από 5 κύρια κεφάλαια. Στο πρώτο κεφάλαιο παρουσιάζονται τα γεωτεκτονικά και γεωμορφολογικά χαρακτηριστικά του βόρειου Ευβοϊκού Κόλπου. Εν συνεχεία παρουσιάζονται η ιστορική και ενόργανη σεισμικότητα της ευρύτερης περιοχής μελέτης. Στο δεύτερο και τρίτο κεφάλαιο γίνεται εκτενής αναφορά στην σεισμική ανισοτροπία και τη σχάση των εγκαρσίων κυμάτων, αντίστοιχα. Στο τέταρτο κεφάλαιο ακολουθεί η παρουσίαση όλων των αποτελεσμάτων ανισοτροπίας ανά σταθμό μελέτης. Τέλος, στο κεφάλαιο 5 αναφέρονται τα συμπεράσματα που προέκυψαν από την παρούσα διπλωματική εργασία.

Στο σημείο αυτό θα ήθελα να ευχαριστήσω θερμά τον Αναπληρωτή Καθηγητή Σεισμολογίας – Σεισμικής Ανισοτροπίας κ. Γεώργιο Καβύρη. Χωρίς την αδιάκοπη καθοδήγησή του, την εμπιστοσύνη που μου έδειξε αλλά και την υποστήριξή του καθ'όλη τη διάρκεια εκπόνησης της μελέτης, παρά τις όσες δυσκολίες προέκυψαν, η εργασία αυτή δεν θα μπορούσε να είχε ολοκληρωθεί.

Θα ήθελα επίσης να ευχαριστήσω τον Γεωλόγο και υποψήφιο διδάκτορα Σεισμολογίας MSc Ιωάννη Σπίγγο για την πολύτιμη συμβολή του στην εξαγωγή και παρουσίαση των αποτελεσμάτων και τον Γεωλόγο MSc Χρήστο Μήλλα, για τη βοήθεια του σε οποιοδήποτε πρόβλημα προέκυψε στην πορεία.

Τέλος, θα ήθελα να ευχαριστήσω την οικογένεια μου για τη στήριξη της σε όλη τη διάρκεια των σπουδών μου.

1. ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΕΥΒΟΪΚΟΥ ΚΟΛΠΟΥ

1.1 ΓΕΩΛΟΓΙΚΗ ΣΥΝΘΕΣΗ ΤΟΥ ΕΥΒΟΪΚΟΥ ΚΟΛΠΟΥ

Στην περιοχή του βόρειου Ευβοϊκού Κόλπου εμφανίζονται διαφορετικές γεωτεκτονικές ενότητες με διαφορετικές λιθολογίες, εμφανίζονται κυρίως αλπικοί σχηματισμοί ηλικίας Κατώτερου Τριαδικού - Ανώτερου Κρητιδικού. Συγκεκριμένα, σύμφωνα με τον Παπανικολάου (2015), πρόκειται για τις γεωτεκτονικές ενότητες της Υποπελαγονικής, της Πίνδου, του Παρνασσού και της Μαλιακής.

1.1.1 <u>ΕΝΟΤΗΤΑ ΥΠΟΠΕΛΑΓΟΝΙΚΗΣ:</u>

Η Υπο-Πελαγονική ενότητα αποτελείται κυρίως από πετρώματα νηριτικού τύπου μιας ασβεστολιθικής πλατφόρμας. Διακρίνεται σε δύο τύπου ακολουθίες: την Υπο-Πελαγονική Α και την Υπο-Πελαγονική Β. Στην πρώτη η ανθρακική ιζηματογένεση ξεκινά από το Τριαδικό και η δημιουργία βωξιτών φτάνει μέχρι και το Κιμμερίδιο, με υπερκείμενη σχιστο-ψαμμιτο-κερατολιθική διάπλαση (φλύσχη) στο Τιθώνιο-Κάτω Κρητιδικό. Η δεύτερη ακολουθία είναι και πάλι μια ανθρακική ακολουθία, ηλικίας Τριαδικού-Λιάσιου με μια μετάβαση σε πελαγική ιζηματογένεση κατά το Δογγέριο, με επικράτηση πυριτικής ιζηματογένεσης ως το Κιμμερίδιο-Τιθώνιο, όπου και τελικά αποτίθεται ο φλύσχης. Και στους δύο τύπους της Υπο-Πελαγονικής ενότητας η σχιστοψαμμιτο-κερατολιθική διάπλαση έχει τη μορφή ενός τεκτονικού mélange που υπερκαλύπτεται από το οφιολιθικό κάλυμμα. Σε αρκετές εμφανίσεις, ιδιαίτερα κατά το Κιμμερίδιο, στην Υπο-Πελαγονική Α έχουν βρεθεί ένας ή δύο βωξιτοφόροι ορίζοντες να υπόκεινται ασβεστολίθων με Cladocoropsis mirabilis. Στο Ανώτερο Παλαιοζωικό-Κάτω Τριαδικό εμφανίζονται κλαστικοί σχηματισμοί που αποτελούνται από ηφαιστειακά και ολισθόλιθους ασβεστολίθων ανω-παλαιοζωικής ηλικίας ενώ στο Κάτω-Μέσο Τριαδικό παρατηρούνται ερυθρο-ιώδεις ή πρασινωποί κονδυλώδεις μαργαϊκοί ασβεστόλιθοι, φάσης ammonitico rosso που συνδέονται με υποθαλάσσια ηφαιστειότητα με χαρακτηριστική την εμφάνιση χαλαζιακού κερατοφύρη. Κατά το Ανώτερο Τριαδικό με Κατώτερο Ιουρασικό παρατηρείται νηριτική ιζηματογένεση μεγάλου πάχους με απολιθώματα όπως Megalodon Gyroporella και Diplopora Paleodasycladus (Παπανικολάου, 2015).

1.1.2 <u>ΕΝΟΤΗΤΑ ΠΙΝΔΟΥ:</u>

Η ενότητα της Πίνδου αποτελεί το πιο τυπικό και το πρώτο τεκτονικό κάλυμμα του ελλαδικού χώρου. Χαρακτηρίζεται από πυριτική ή ανθρακική πελαγική ιζηματογένεση με εμφανίσεις ραδιολαριτών ή πυριτόλιθων και πελαγικούς ασβεστολίθους αντίστοιχα, στο Ανώτερο Τριαδικό-Ανώτατο Κρητιδικό.

Η κολόνα της Πίνδου (Σχ. 1), σύμφωνα με τον Fleury (1980), αποτελείται από έναν φλύσχη, ηλικίας Παλαιοκαίνου-Μέσου Ηωκαίνου και μεταβατικά στρώματα προς τον φλύσχη από τους υποκείμενους πελαγικούς ασβεστόλιθους πάχους 20-50 m και ηλικίας από Μαιστρίχτιο μέχρι Δάνιο. Πιο συγκεκριμένα, οι πελαγικοί ασβεστόλιθοι περιέχουν Silex ή κερατόλιθους με Globotruncanes ηλικίας Κενομάνιου - Μαιστρίχτιου με υποκείμενο έναν κλαστικό σχηματισμό. Έπειτα παρατηρούνται ραδιολαρίτες ηλικίας Δογγέριου-Μάλμιου που όμως βρίσκονται και στη βάση του Κρητιδικού σε εναλλαγές με ασβεστόλιθους με Calpionelles. Από κάτω βρίσκονται ασβεστόλιθοι ηλικίας Ανώτερου Τριαδικού και συγκεκριμένα Λιάσιου, και κάτω βρίσκεται ένας ανωτριαδικός κλαστικός σχηματισμός.

Η ενότητα αυτή χαρακτηρίζεται από την εμφάνιση πτυχών και εφιππεύσεων, καθώς και από δομή κατά λέπη με μονοκλινικές ακολουθίες και επαναλήψεις περιοδικές κατά την ίδια σειρά (Παπανικολάου, 2015).

Σχήμα 1: Στρωματογραφική στήλη της Πίνδου (Παπανικολάου, 2015).

1.1.3 ΕΝΟΤΗΤΑ ΠΑΡΝΑΣΣΟΥ:

Πρόκειται για μία νηριτική ανθρακική πλατφόρμα. Πιο συγκεκριμένα είναι ένα παλαιογραφικό ήβωμα με την ανθρακική ιζηματογένεση να σταματά στο Μαιστρίχτιο. Ανήκει στην εσωτερική πλατφόρμα των Ελληνίδων με τη θέση της να είναι πίσω από την Πίνδο. Η ενότητα του Παρνασσού συναντάται μεταξύ δύο νεοτεκτονικών ζωνών: αυτή του Κορινθιακού και αυτή του Σπερχειού (Παπανικολάου, 2015).

Η στρωματογραφική κολώνα της ενότητας (Σχ. 2) του Παρνασσού από κάτω προς τα πάνω είναι η εξής:

- Δολομίτες, ασβεστόλιθοι και δολομιτικοί ασβεστόλιθοι πάχους μεγαλύτερου των 600 m, ηλικίας Ανώτερου Τριαδικού
- Δολομιτικούς ασβεστόλιθους με γαστερόποδα και ελασματοβράγχια και ωολιθικούς ασβεστόλιθους ηλικίας Κατώτερου ως Μέσου Ιουρασικού
- Βωξιτικός ορίζοντας (b1) ηλικίας Ανώτερου Ιουρασικού
- Ασβεστόλιθοι ηλικίας Κιμμεριδίου
- Βωξιτικός ορίζοντας (b2) κατά το Κατώτερο Κρητιδικό
- Ασβεστόλιθοι γνωστοί ως ενδιάμεσοι ασβεστόλιθοι με πάχος 300-400 m, ηλικίας Τιθωνίου-Κενομανίου
- Βωξιτικός ορίζοντας (b3) που τοποθετείται χρονικά κάτω από το Ανώτερο Κρητιδικό
- Ρουδιστοφόροι ασβεστόλιθοι ηλικίας Σενώνιου
- Πλακώδεις ασβεστόλιθοι του Μαιστρίχτιου όπου παρατηρούνται Globotruncanes
- Πράσινος ψαμμιτικός φλύσχης ηλικίας Ηωκαίνου

Σχήμα 2: Στρωματογραφική στήλη ζώνης Παρνασσού (Προγκάκη, 2007)

1.1.4 <u>ΕΝΟΤΗΤΑ ΜΑΛΙΑΚΗΣ:</u>

Πρόκειται για μια ενότητα με αβυσικό χαρακτήρα καθώς η θέση της είναι εγγύτερα σε κέντρα υποθαλάσσιας ηφαιστειακής δραστηριότητας βασικού χαρακτήρα. Η ονομασία της προέρχεται από τον Μαλιακό Κόλπο, λόγω του ότι οι βασικές της εμφανίσεις είναι σε κομμάτια του συγκροτήματος της Όρθρυος. Η στρωματογραφική κολώνα της Μαλιακής ξεκινάει από το Πέρμιο με αβαθείς φάσεις νηριτικών ασβεστολίθων, ενώ κατά τη διάρκεια Τριαδικού-Δογγέριου εμφανίζονται λατυποπαγείς και δολομιτιωμένοι ασβεστόλιθοι. Η Μαλιακή ενότητα παρουσιάζει σημαντικές ομοιότητες με εκείνη της Πίνδου στο Άνω Τριαδικό-Ιουρασικό. Συγκεκριμένα, στη βάση της έχει πελαγικούς ασβεστόλιθους, αλλά κυριαρχούν οι ραδιολαρίτες με ενδιαστρώσεις λατυποπαγών ασβεστολίθων, καθώς και με ηφαιστειακούς τόφφους και λάβες κατά τη διάρκεια του Νόριου-Ραίτιου (Παπανικολάου, 2015).

1.2 ΤΕΚΤΟΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΕΥΒΟΪΚΟΥ ΚΟΛΠΟΥ

Ο βόρειος Ευβοϊκός Κόλπος χαρακτηρίζεται ως μια τεκτονική τάφρος, μήκους 100 km. (Papanastassiou et al., 2001). Ο βόρειος Ευβοϊκός Κόλπος βρίσκεται στο ανατολικό τμήμα της κεντρικής Ελλάδας και επηρεάζεται τεκτονικά από δύο πεδία τάσεων. Το ένα έχει διέυθυνση ΒΑ-ΝΔ και πρόκειται για την επέκταση του ρήγματος της Βόρειας Ανατολίας στο βόρειο Αιγαίο Πέλαγος, ενώ το δεύτερο έχει διεύθυνση ΔΒΔ-ΑΝΑ και βρίσκεται παράλληλα στον Κορινθιακό Κόλπο που επεκτείνεται ταχέος, διαχωρίζοντας την Πελοπόννησο από την ηπειρωτική Ελλάδα. Κατά συνέπεια, ο Ευβοϊκός Κόλπος και η γύρω του περιοχή εμφανίζουν ένα περίπλοκο τεκτονικό μοντέλο (Papoulia et al., 2006). Πιο συγκεκριμένα οι ζώνες ρηγμάτων που απαντώνται στην περιοχή είναι: η ζώνη Σπερχειού - Θερμοπυλών στα βορειοδυτικά, η ζώνη Καμμένα Βούρλα - Άγιος Κωνσταντίνος - Αρκίτσα στο κεντρικό τμήμα και η ζώνη της Αταλάντης στα νοτιοανατολικά (Σχ. 3). Δύο ισχυροί και καταστρεπτικοί σεισμοί που έλαβαν χώρα στις 20/04/1894 και 27/04/1894 με μεγέθη Μ=6.4 και Μ=6.6 αντίστοιχα, έχουν συσχετιστεί με αυτό το ρήγμα (Ganas et al., 2016). Παρόλα αυτά, κανένα άλλο γεγονός μεγέθους 6 ή μεγαλύτερου που να συνδέεται με αυτό το ρήγμα δεν έχει καταγραφεί από το 1894. Στο ανατολικότερο τμήμα αυτού του συστήματος ρηγμάτων υπάρχει το ρήγμα της Μαλεσίνας, με διεύθυνση ΒΑ-ΝΔ και κλίση προς τα ΒΔ. Στην ενδοχώρα, προς τα δυτικά υπάρχουν και άλλες ζώνες κανονικών ρηγμάτων, με πιο σημαντικές αυτές του Παρνασσού και του Καλλίδρομου. Στη βόρεια πλευρά παρατηρείται μια απλούστερη τεκτονική δραστηριότητα. Υπάρχει μια μεγάλη ζώνη κανονικών ρηγμάτων που εκτείνεται σχεδόν παράκτια, παράλληλα με την ακτή της Εύβοιας και βυθίζονται νότια. Τα ρήγματα αυτά τέμνουν και μετατοπίζουν όχι μόνο πετρώματα Μεσοζωϊκής και Τριτογενούς Πλειο-πλειστοκαινικής ηλικίας, αλλά και νεότερα ιζήματα ηλικίας (Papanastassiou et al., 2001). Ο βόρειος Ευβοϊκός Κόλπος έχει μοντελοποιηθεί ως όριο ηπειρωτικού τμήματος φλοιού, το οποίο επεκτείνεται κατά 3.6 mm/yr και χαρακτηρίζεται από αριστερόστροφη πλευρική διατμητική τάση της τάξεως των 2.5 mm/yr (Ganas et al., 2016; Vernant et al., 2014).

Σχήμα 3: Περιοχή μελέτης και οι κύριες τεκτονικές ζώνες ρηγμάτων της Β. Εύβοϊας, NAT: Τάφρος Βορείου Αιγαίου, AKFZ: ζώνη ρηγμάτων Αρκίτσας-Καμμένων Βούρλων, AFZ: ζώνη ρηγμάτων Αταλάντης, DFZ: ζώνη ρηγμάτων Δίρφυς, HFZ: ζώνη ρηγμάτων Ύάμπολις, KAFZ: ζώνη ρηγμάτων Καλλίδρομου, KFZ: ζώνη ρηγμάτων Καντηλίου, Αστέρια: νεογενή και τεταρτογενή ηφαιστειακά κέντρα, 1: κανονικά ρήγματα, 2:πιθανά ίχνη ρηγμάτων, 3: ανάστροφα ρήγματα (Palyvos et al., 2006)

1.3 ΓΕΩΜΟΡΦΟΛΟΓΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΕΥΒΟΪΚΟΥ ΚΟΛΠΟΥ

Λίγα είναι γνωστά για την ανύψωση που έχει υποστεί η Βόρεια Εύβοια. Είναι γνωστό ότι ο Ευβοϊκός Κόλπος είναι μία ζώνη που βρίσκεται μεταξύ δύο πεδίων τάσεων, του βόρειου Αιγαίου (προέκταση του ρήγματος της Βόρειας Ανατολίας) και του Κορινθιακού Κόλπου (Σχ. 4).

Σχήμα 4: Γεωλογικός σχηματισμός και τεκτονική δομή της παραλιακής ζώνης Άγιος Κωνσταντίνος - Λιβανάτες, βόρειος Ευβοϊκός, κεντρική Ελλάδα. Οι γεωλογικοί σχηματισμοί έχουν σχεδιαστεί σύμφωνα με τους γεωλογικούς χάρτες του ΙΓΜΕ. Τα ανοιχτά τρίγωνα και οι κύκλοι στον ένθετο χάρτη παρουσιάζουν ιστορικούς (έως το 1900 μ.Χ.) και ενόργανους (μετά το 1900 μ.Χ.) σεισμούς, μεγέθους μεγαλύτερου ή ίσου από 4,5 (Cundy et al., 2010).

Παρόλο που η αλληλεπίδραση μεταξύ των δύο αυτών πεδίων τάσεων δεν είναι περιορισμένη, με βάση πρόσφατες μετρήσεις GPS, επιβεβαιώνεται η παρουσία ενός σχετικά μικρού εκτατικού πεδίου τάσεων στον βόρειο Ευβοϊκό (Hollenstein et al., 2008), ενώ δεν υπάρχει ανάπτυξη μεγάλων ρηγμάτων, με συνέπεια τα μεγέθη των σεισμών στον βόρειο Ευβοϊκό Κόλπο να παρουσιάζονται μικρά εώς ενδιάμεσα (Cundy et al., 2010).

Σύμφωνα με μελέτες που πραγματοποιήθηκαν από τους Makris and Vees (1977) και τους Makris et al. (2001), ανακαλύφθηκε ότι οι αλλαγές στο πάχος του φλοιού είναι πολύ μεγάλες για σχετικά μικρές αποστάσεις. Συγκεκριμένα, ο φλοιός της βόρειας Εύβοιας έχει πάχος 30 km, ενώ ο φλοιός στο κεντρικό τμήμα του βόρειου Ευβοϊκού Κόλπου έχει πάχος μόνο 19 km. Ο μηχανισμός που προκάλεσε αυτή την έντονη πλευρική μεταβολή του πάχους του φλοιού είναι απαραίτητη η μετατόπιση λόγω κίνησης οριζόντιας ολίσθησης, γεγονός που δεν έχει επιβεβαιωθεί γεωλογικά (Papoulia et al., 2006). Επιπλέον, δεν είναι ακόμα σαφές πώς η μετατόπιση κατά μήκος του βόρειου Αιγαίου, μεταφέρεται στη λεκάνη του βόρειου Ευβοϊκού και την κεντρική Ελλάδα.

1.4 <u>ΣΕΙΣΜΙΚΟΤΗΤΑ ΣΤΟΝ ΕΛΛΗΝΙΚΟ ΧΩΡΟ ΚΑΙ ΣΤΟΝ ΕΥΡΥΤΕΡΟ</u> <u>ΕΥΒΟΪΚΟ ΚΟΛΠΟ</u>

1.4.1 ΙΣΤΟΡΙΚΗ ΣΕΙΣΜΙΚΟΤΗΤΑ

Λίγα ήταν γνωστά για τους σεισμούς και τα αίτια γένεσής τους τα αρχαία χρόνια. Μέχρι και τον 6° αίωνα π.Χ. επικρατούσε η άποψη πως η αιτία που προκαλούσε τους σεισμούς ήταν ένα μυθολογικό πλάσμα, ονόματι Εγκέλαδος. Ο Εγκέλαδος, ο αρχηγός των γιγάντων, ήταν γιος του Τάρταρου και της Γης. Υπάρχουν διάφοροι μύθοι ως προς το γιατί ο Εγκέλαδος προκαλούσε τους σεισμούς, εκ των οποίων οι πιο γνωστοί είναι δύο: είτε γιατί νευρίαζε και λόγω του μεγάλου του μεγέθους τράνταζε όλη τη γη είτε γιατί η θεά Αθηνά τον κυνήγησε, έριξε πάνω του την Σικελία ή το όρος Αίτνα και τον κάλυψε. Έτσι κάθε φορά που αυτός κινείται μέσα στον τάφο του προκαλεί σεισμούς και εκρήξεις. Ακόμα και μετά τον 19° αιώνα οποιαδήποτε πληροφορία αφορά τους σεισμούς προέρχεται από μη ειδικούς όπως περιηγητές, φιλοσόφους και ιστορικούς. Αυτός είναι ο λόγος που όλες οι πληροφορίες αντλούνται από τις μακροσεισμικές συνέπειες των μεγάλων δονήσεων όπως οι καταστροφές των κτιρίων, τα τσουνάμι κ.λπ (Παπαζάχος και Παπαζάχου, 1997).

Η σεισμολογία είναι μια επιστήμη που γεννήθηκε στις ελληνικές πόλεις της Ιωνίας και της νότιας Ιταλίας. Εκεί ζούσαν οι πρώτοι φιλόσοφοι που θέλησαν να μελετήσουν τη φύση και σε αυτές τις περιοχές, οι σεισμοί ήταν συχνά φυσικά φαινόμενα. Μερικοί από τους πιο γνωστούς φιλοσόφους έδωσαν την δική τους εκδοχή για τα αίτια γένεσης των σεισμών. Ο Θαλής ο Μιλήσιος (624-546 π.Χ.) πίστευε ότι το νερό ευθύνεται για τη γένεση των σεισμών, ενώ ο Αναξιμένης ο Μιλήσιος (585-525 π.Χ.) ότι η ίδια η γη παράγει τις σεισμικές δονήσεις, οι οποίες προκύπτουν σε εποχές μεγάλης ξηρασίας και βροχών (Παπαζάχος και Παπαζάχου, 1997).

Κατά τη βυζαντινή περίοδο, δεν υπήρξε κάποια σημαντική πρόοδος όσον αφορά την κατανόηση των αιτίων και του τρόπου γένεσης των σεισμών. Οι σεισμικές δονήσεις αποδίδονταν στις ίδιες αιτίες που υποστήριζαν οι αρχαίοι Έλληνες. Υπήρχαν βέβαια και κάποιοι που θεωρούσαν πως οι σεισμοί οφείλονται σε δράκους, οι οποίοι ζουν βαθιά μέσα στη γη και ανά περιόδους την κινούν. Σε γενικές γραμμές, κυριαρχούν οι θεοκρατικές απόψεις εκείνη την εποχή. Θεωρούσαν πως οι σεισμοί αποτελούν την τιμωρία του Θεού προς τους ανθρώπους για τις διεφθαρμένες πράξεις τους (Παπαζάχος και Παπαζάχου, 1997).

Με την πάροδο των χρόνων, την περίοδο 1550-1845, οι επιστήμονες αρχίζουν να αποκτούν μεγαλύτερο ενδιαφέρον για την πειραματική έρευνα. Αυτός είναι και ο λόγος που υπάρχει κατακόρυφη αύξηση της καταγραφής και μελέτης περισσότερων ισχυρών σεισμών, εκείνο το δάστημα. Οι φιλόσοφοι αναθεωρούν τις απόψεις τους ως προς την γένεση των σεισμών, ενώ οι επιστήμονες υποστηρίζουν αρχικά πως οι σεισμοί οφείλονται σε εκρήξεις λόγω αντίδρασης του θείου με το άζωτο, ενώ λίγο αργότερα χρονικά η θεωρία αυτή εξελίχθηκε σε αντίδραση του θείου με το σίδηρο. Κατά τον 18° αιώνα εισήχθη η θεωρία των σεισμικών κυμάτων από τον Άγγλο, Michel. Η θεωρία αυτή επιβεβαιώθηκε κατά το πρώτο μισό του 19^{ου} αιώνα από τον Άγγλο Stokes. Τα μακροσεισμικά αποτελέσματα των σεισμών εκείνης της περιόδου είναι διαθέσιμα χάρη σε γράμματα, επίσημες αναφορές, ημερολόγια, εφημερίδες και ταξιδιωτικές περιγραφές της εποχής εκείνης (Παπαζάχος και Παπαζάχου, 1997).

Όσον αφορά την περιοχή μελέτης του ευρύτερου Ευβοϊκού Κόλπου, λίγοι είναι οι ιστορικοί σεισμοί που έχουν καταγραφεί. Παρακάτω παρατίθενται οι σεισμοί αυτοί μαζί με τα μακροσεισμικά τους αποτελέσματα:

427 π.Χ., χειμώνας, 38.5° B, 23.1° A, h=n, M=(6.0), Ορχομενός

Σύμφωνα με τον Θουκιδίδη, πολλοί σεισμοί έλαβαν χώρα εκείνη την περίοδο, οι οποίοι επηρέασαν κυρίως τον Ορχομενό καθώς και τη Βοιωτία, την Εύβοια και την Αθήνα (Παπαζάχος και Παπαζάχου, 1997).

<u>198 π.Χ., 38.4° B, 23.7° A, h=n, M=(6.6), Εύβοια</u>

Σύμφωνα με τον Ποσειδώνιο, ο σεισμός έπληξε κάποια νησία από τις Κυκλάδες και την Εύβοια. Οι πηγές της Αρετούσας στην Χαλκίδα έφραξαν και κάποιες μέρες αργότερα το νερό εμφανίστηκε από ένα διαφορετικό άνοιγμα. Έπειτα ένα φράγμα δημιουργήθηκε στο Ληλάντιο πεδίο (μεταξύ Χαλκίδας και Ερέτριας) (Παπαζάχος και Παπαζάχου, 1997).

<u>1417, Αύγουστος, 38.4° B, 23.8° A, h=n, M=(6.4), Εύβοια</u>

Όπως αναφέρεται σε μια ιταλική πηγή ένας μεγάλος σεισμός έπληξε την Εύβοια. Ένας πύργος καταστράφηκε και ένα μεγάλο κάστρο γκρεμίστηκε. Πολλές ρωγμές σχηματίστηκαν στο έδαφος (Παπαζάχος και Παπαζάχου, 1997).

<u>1874, 18 Μαρτίου, 05:00, 38.5° B, 23.75° A, h=n, M=(6.0), Ερέτρια</u>

Στην Ερέτρια ένα σπίτι κατέρρευσε και άλλα παραμορφώθηκαν τόσο άσχημα που οι κάτοικοι αναγκάστηκαν να μείνουν στην ύπαιθρο. Καταστροφές παρατηρήθηκαν επίσης στο χωριό Γυμνό και στην Χαλκίδα. Ο σεισμός έγινε αισθητός στην περιοχή της Λαμίας καθώς και στην Κύμη, το Αλιβέρι, τη Θήβα και την Αθήνα (Παπαζάχος και Παπαζάχου, 1997).

1894, 27 Απριλίου, 38.66° Β, 23.04° Α, Μ=(7.2), Άγιος Κωνσταντίνος

Έπληξε την περιοχή της Φθιώτιδας, ειδικά τα χωριά Άγιος Κωνσταντίνος, Αταλάντη, Αρκίτσα και Λιβανάτες. Ο σεισμός έγινε αισθητός στην Λιβαδειά, τη Θήβα, την Χαλκίδα και το Ξεροχώρι, με πολύ μικρότερες ζημιές όμως. Στην Αθήνα παρατηρήθηκαν ρωγμές σε σπίτια. Έγινε επίσης αντιληπτός στην Θεσσαλονίκη και τα νησιά της Κρήτης και της Μυτιλήνης. Ο σεισμός αυτός προκάλεσαι μεταβολές στην στάθμη του νερού και ένα θαλάσσιο κύμα βαρύτητας. Ενώ στις 20 Απριλίου ένας επίσης καταστροφικός σεισμός έλαβε χώρα, προκαλώντας καταστροφές στα χωριά Μαλεσίνα, Μαρτίνο, Προσκυνά και Άγιος Κωνσταντίνος. Οι δύο αυτοί σεισμοί είχαν σαν αποτέλεσμα τον θάνατο 255 ανθρώπων και την καταστροφή 3785 κτιρίων (Παπαζάχος και Παπαζάχου, 1997).

Στον πίνακα 1 παρουσιάζεται η ιστορική σεισμικότητα της ευρύτερης περιοχής του βόρειου Ευβοϊκού Κόλπου από την αρχαιότητα μέχρι το 1899, με στοιχεία για τα επίκεντρα και τα μεγέθη των σεισμών που προέρχονται από τους Παπαζάχος και Παπαζάχου (1997) και Stucchi et al. (2013). Η περιοχή μελέτης οριοθετείται σε γεωγραφικό πλάτος μεταξύ 38.2°B - 39.2°B και σε γεωγραφικό μήκος μεταξύ 22.3°A - 24.3°A.

Έτος	Μήνας	Ημέρα	Ώρα	Λεπτά	Г. П. (B°)	Г.М. (°А)	Mw
-427	0	0	0	0	38.400	23.100	6
-426	0	0	0	0	38.850	22.780	7
-347	0	0	0	0	38.400	22.500	6
-279	0	0	0	0	38.400	22.400	6,4
-226	0	0	0	0	38.600	22.700	6,4
-198	0	0	0	0	38.400	23.700	6,4
105	0	0	0	0	38.800	23.000	6,4
361	0	0	0	0	38.400	22.600	6,8
551	0	0	0	0	38.400	22.700	6,8
551	0	0	0	0	38.800	22.800	6,8
996	0	0	0	0	38.300	22.400	6,8
1147	0	0	0	0	38.300	22.500	6,5
1250	1	1	0	0	38.377	22.384	6,6
1321	0	0	0	0	38.300	23.300	6,3
1417	8	0	0	0	38.400	23.800	6,4
1545	3	24	0	0	38.900	22.300	6,8
1580	0	0	0	0	38.450	22.310	6,8
1660	3	0	0	0	38.300	22.500	6,4
1694	6	0	0	0	38.400	23.700	6,2
1705	9	3	0	0	38.225	23.667	6
1726	0	0	0	0	38.500	23.600	6
1740	10	4	0	0	38.900	22.600	6,6
1758	5	0	0	0	38.900	22.900	6,6
1769	1	1	0	0	38.417	22.517	6,4
1773	3	15	8	0	39.182	22.756	6,1
1785	6	24	0	0	38.400	23.600	6
1794	6	11	0	0	38.300	22.400	6,7
1852	7	14	4	20	38.700	22.300	6
1853	8	18	8	30	38.400	23.400	6,5
1853	9	2	0	0	38.400	23.400	6,3
1868	10	3	0	0	39.064	23.406	6,3
1870	8	1	0	41	38.480	22.550	6,8
1874	3	18	5	0	38.500	23.750	6
1893	5	23	22	2	38.310	23.250	6,2
1894	4	20	16	52	38.400	23.300	6,6
1894	4	27	19	21	38.560	23.240	7

Πίνακας 1: Οι σεισμοί από την αρχαιότητα μέχρι το 1899, στην περιοχή του βόρειου Ευβοϊκού Κόλπου.

1.4.2 ΕΝΟΡΓΑΝΗ ΣΕΙΣΜΙΚΟΤΗΤΑ

Στις αρχές του 20^{ου} αιώνα εγκαταστάθηκε στην Αθήνα ο πρώτος σεισμογράφος τύπου Αγαμέμνωνα, ενώ το 1911 εγκαταστάθηκε το πρώτο αξιόπιστο σεισμόμετρο, τύπου Mainka με δυο οριζόντιες συνιστώσες. Κατά την περίοδο 1928-1964 σημαντικά σεισμολογικά γεγονότα έλαβαν χώρα τόσο στον ελλαδικό χώρο όσο και παγκόσμια, όπως για παράδειγμα η ανακάλυψη της κλίμακας Richter και η λεπτομερής μελέτη του εσωτερικού της γης. Πολύ σημαντικό γεγονός υπήρξε, επίσης, η εγκατάσταση του πρώτου ηλεκτρομαγνητικού σεισμομέτρου, κατακόρυφου τύπου Benioff, στο Εθνικό Αστεροσκοπείο Αθηνών το 1959. Με το πέρασμα του χρόνου, η σεισμολογία στην Ελλάδα είχε μόνο ανοδική πορεία. Οι σεισμολογικές δημοσιεύσεις ήταν όλο και περισσότερες, εγκαταστάθηκε το πρώτο μόνιμο δίκτυο σεισμολογικών σταθμών στην Ελλάδα (1965), ενώ δημιουργήθηκαν και τρία νέα σεισμολογικά κέντρα, στα Πανεπιστήμια Αθηνών, Θεσσαλονίκης και Πατρών.

Παρακάτω παρατίθενται τα μακροσεισμικά αποτελέσματα των σεισμών εκείνης της περιόδου που επηρέασαν την ευρύτερη περιοχή του Ευβοϊκού Κόλπου (Παπαζάχος και Παπαζάχου, 2003):

1914, 17 Οκτωβρίου, 06:22:32, 38.31° Β, 23.34° Α, h=n, Μ=(6.0), Θήβα

Ο σεισμός προκάλεσε καταστροφές στην Θήβα και σε χωριά της Βοιωτίας, με 20 κατοικίες να καταστρέφονται ολοσχερώς και άλλες να καθίστανται ακατοίκητες. Σημαντικές ζημιές εμφάνισαν τα χωριά Πυρί, Άγιοι Θεόδωροι, Δήλεσι, Δρίτσα, Βάγια, Καπαρέλλι ενώ πιο ελαφρά επλήγησαν η Αταλάντη, η Χαλκίδα, η Μαλεσίνα. Ο σεισμός έγινε αισθητός σε όλη την Ελλάδα ενώ ακολούθησαν αρκετοί μετασεισμοί μέχρι και ένα χρόνο αργότερα, με τον μεγαλύτερο να έχει μέγεθος 5.6.

<u>1930, 23 Φεβρουαρίου, 18:19:12, 39.6° B, 23.1° A, h=n, M=(6.0), Μαγνησία</u> (<u>Κεραμίδι</u>)

Η σεισμική δόνηση έγινε αισθητή σε αρκετά μέρη της χώρας,όπως τη Θεσσαλία, την Ήπειρο, τη Σκόπελο, τη Θεσσαλονίκη, την Εύβοια, την Ιστιαία, τη Χαλκίδα, τη Λαμία και την Κατερίνη. Στο Κεραμίδι κάποιες καμινάδες και σπίτια κατάρρευσαν. Ο σεισμός συνοδεύτηκε από θόρυβο, ενώ οι μετασεισμικές δονήσεις συνεχίστηκαν για αρκετό καιρό. Ο πιο ισχυρός μετασεισμός έλαβε χώρα στις 24 Φεβρουαρίου με μέγεθος 4.6.

<u>1930, 31 Μάρτιος, 12:33:48, 39.47° B, 23.13° A, h=n, M=(6.1), Μαγνησία</u> (Πουρί)

Ο σεισμός προκάλεσε καταστροφές σε σπίτια στο Πουρί, τη Ζαγορά, το Χορευτό, το Σκλήθρο, τη Μακρυράχη ενώ μικρότερες ζημιές προκλήθηκαν σε οικίες στο Νεοχώρι και τον Βόλο. Η σεισμική δόνηση έγινε αισθητή από τη Θεσσαλία μέχρι το Μέτσοβο, την Κατερίνη, τη Λαμία, την Άμφισσα, την Αθήνα, την Ιστιαία της Εύβοιας και τη Σκιάθο.

Στον πίνακα 2 αναφέρονται όλοι οι σεισμοί που έλαβαν χώρα στην περιοχή μελέτης, από την αρχή της ενόργανης σεισμολογίας, όπως αυτά αναφέρονται από τους Makropoulos et al (2012) καθώς και στην ιστοσελίδα του Γεωδυναμικού Ινστιτούτου Αθηνών (<u>www.gein.noa.gr</u>).

Έτος	Μήνας	Ημέρα	Ώρα	Λεπτά	Δευ/πτα	Г.П. (°В)	Г.М. (°А)	Βάθος(Km)	Mw
1002	1	11	10	25	0	29 500	22 500	24.0	57
1902	4	11	10	30	0	38.500	23.500	24,0	5,7
1914	10	17	6	22	32	38.200	23.500	8,0	5,9
1914	10	17	10	42	0	38.200	23.500	24,0	5,2
1916	2	6	14	39	40	39.000	23.500	14,0	5,4
1916	5	20	22	14	0	38.200	23.200	28,0	5,4
1916	9	27	15	2	13	38.800	23.000	6,0	5,7
1919	10	13	13	4	10	38.400	23.900	7,0	4,8
1919	10	25	17	54	1	38.280	23.720	44,0	5,0
1923	8	14	17	51	13	39.200	23.700	15,0	4,8
1925	4	12	19	27	1	38.640	23.520	24,0	5,0
1928	1	22	0	18	26	38.830	22.600	12,0	5,1
1928	4	22	19	59	29	38.400	23.340	28,0	5,3
1931	1	4	0	0	53	38.220	23.270	8,0	5,6
1931	9	11	16	23	23	38.870	23.290	77,0	5,0
1938	7	20	0	23	43	38.300	23.660	42,0	5,9
1938	7	27	1	29	19	38.320	23.790	44,0	5,0
1938	9	18	3	50	41	38.270	22.470	53,0	5,8
1942	6	1	9	17	45	38.980	22.560	68,0	5,5
1952	10	13	16	42	33	39.180	23.400	15,0	5,2
1953	4	13	12	51	11	39.000	22.600	6,0	5,1
1953	7	3	2	37	50	39.200	23.400	16,0	4,6
1953	11	8	14	45	54	38.980	23.990	22,0	5,0
1956	1956 5 18		22	8	37	39.030	22.630	52,0	5,1

1057	e	24	4	21	1	20,200	24.000	20.0	4.4
1957	0	24	4	31	10	39.200	24.000	20,0	4,4
1957	9	20	2	19	59	29 570	23.000	20,0	4,0
1957		9	23	55	42	30.570	22.340	23,0	4,0
1958	3	29	3	0	-72 50	38.200	22.500	7,0	4,3
1961	9	5	1	16	20	38.500	23.600	12,0	4,6
1962	5	15	8	31	39	39.200	24.100	7,0	4,8
1963	7	5	14	21	21	38.900	22.900	20,0	4,9
1964	2	24	23	6	55	39.180	23.700	0,0	4,1
1964	2	24	23	30	28	39.090	23.710	41,0	4,7
1964	4	15	20	54	27	39.040	23.710	44,0	4,4
1964	4	29	17	0	1	39.140	23.550	15,0	5,0
1964	4	29	17	29	19	39.020	23.970	10,0	4,1
1964	4	30	18	11	31	39.170	23.800	26,0	4,3
1964	9	29	17	0	4	38.900	23.700	89,0	4,1
1964	12	1	10	21	3	38.530	22.450	48,0	4,7
1965	3	9	18	19	38	38.940	24.100	24,0	4,4
1965	3	9	18	52	1	38.900	24.300	75,0	4,1
1965	3	9	19	46	59	39.120	23.860	19,0	5,0
1965	3	9	21	20	5	39.190	23.870	7,0	4,8
1965	3	9	22	19	6	39.170	23.960	13,0	4,6
1965	3	10	0	4	33	39.190	23.760	1,0	4,5
1965	3	10	1	36	6	39.080	23.770	18.0	5.1
1965	3	13	4	8	41	39.110	23.970	11.0	4.9
1965	3	13	4	9	38	39.030	23.680	33.0	5.2
1965	3	13	11	33	0	39 130	23,970	33.0	4.6
1965	3	13	15	42	17	39 140	23 900	18.0	4.6
1965	3	15	23	8	31	39 160	24.000	33.0	4,0
1065	3	22	20	22	22	30 130	23.840	1.0	4.6
1965	3	22	20	8	26	30.200	24 100	33.0	4,0
1065	1	17	10	16		38 200	24.100	0.0	4,7
1905	4	6	19	10	42	38 370	22.300	18.0	4, I 6 2
1905	10	28	3	27	13	38.410	22.400	20.0	0,2
1067	2	20	10	5	11	25 500	22.010	23,0	4,4
1907	6	2 0	12		41	39,200	22.300	0,0	4,3
1907	0	0	0	3	6	30.300	22.900	0,0	4,7
1967	8	28	3	39	4	38.330	24.140	46,0	4,4
1967	9	14	23	4	4	38.500	24.100	7,0	4,3
1967	10	1	17	30	45	39.090	23.340	6,0	4,6
1968	3	10	7	10		39.130	24.230	9,0	5,3
1968	3	30	5	13	15 22	38.800	22.900	0,0	4,1
1968	4	1	6	27	44	38.640	23.830	5,0	4,3
1968	5	28	21	31	41	38.780	23.570	10,0	4,3
1968	11	6	5	12	18	39.000	23.440	23,0	4,3
1969	1	13	5	46	40	38.310	22.520	46,0	4,9
1969	3	25	4	18	8	38.600	22.500	0,0	4,4
1969	4	8	5	31	33	38.300	22.600	22,0	4,4
1969	7	17	23	1	16	38.910	23.560	1,0	4,1
1969	11	22	20	34	40	38.290	23.200	8,0	4,4
1969	12	28	17	39	37	39.130	23.400	0,0	4,4
1970	2	22	12	20	46	39.180	23.390	34,0	5,0
1970	2	24	18	8	22	39.110	23.400	0,0	4,3
1970	4	8	13	50	28	38.340	22.560	23,0	6,0
1970	4	11	4	7	43	38.220	22.730	62,0	4,4
1970	4	20	5	27	6	38.350	22.700	0,0	4,1

1970	4	20	15	39	32	38.270	22.660	38,0	5,2
1970	5	8	0	16	46	38.260	22.620	0,0	4,3
1970	5	8	18	30	43	38.670	22.300	58,0	4,4
1970	5	12	22	49	3	38.210	22.550	39,0	4,9
1970	12	10	8	26	18	38.380	22.590	9,0	4,3
1971	9	11	2	3	12	38.870	22.310	5,0	4,4
1972	4	26	21	14	11	38.240	22.430	81,0	4,5
1972	6	15	9	25	26	38.330	22.520	76,0	4,3
1972	11	24	1	35	28	38.830	22.320	37,0	4,5
1972	11	25	15	20	50	38.490	22.420	48,0	4,2
1972	12	5	12	0	15	39.140	23.640	39,0	4,4
1973	3	6	12	21	35	38.770	23.560	35,0	4,2
1974	11	14	13	22	35	38.500	23.080	27,0	5,0
1974	11	14	14	26	47	38.480	23.010	6,0	5,1
1974	11	14	15	29	47	38.500	23.150	35,0	5,0
1974	12	1	6	21	19	38.590	23.100	31,0	4,1
1974	12	2	23	2	19	38.420	22.310	34,0	4,9
1974	12	2	23	9	32	38.410	22.330	38,0	4,2
1975	1	1	10	45	45	38.220	22.760	51,0	4,5
1975	1	8	19	32	34	38.240	22.650	26,0	5,6
1975	4	1	8	20	2	38.530	23.250	8,0	4,4
1975	4	18	20	59	10	39.010	23.420	3,0	4,3
1975	5	19	3	26	20	38.340	22.340	26,0	4,7
1976	1	27	23	21	33	38.220	22.320	10,0	4,1
1976	4	26	22	42	19	39.180	23.800	10,0	4,1
1976	10	17	0	22	24	38.560	23.100	10,0	4,1
1976	10	17	0	27	27	38.610	23.060	2,0	4,1
1976	10	27	0	38	45	38.200	22.420	32,0	4,3
1977	5	13	16	14	34	39.060	23.690	23,0	4,2
1977	5	13	18	17	45	39.130	23.520	1,0	4,9
1978	9	9	16	32	1	38.450	23.220	23,0	4,6
1978	10	29	1	13	7	38.732	22.508	46,0	4,1
1979	1	25	13	20	19	38.570	23.670	9,0	4,1
1979	1	26	20	11	33	38.620	23.570	5,0	4,1
1979	3	13	13	48	59	38.540	24.290	19,0	4,7
1979	4	12	23	9	12	39.140	24.240	10,0	4,8
1979	6	8	20	47	41	38.440	23.140	10,0	4,5
1979	6	23	20	7	39	38.760	23.340	7,0	4,1
1979	6	26	15	34	31	38.810	23.270	4,0	4,6
1980	1	2	18	4	18	39.190	22.980	10,0	4,4
1980	4	24	19	33	43	38.280	23.280	39,0	4,4
1980	7	5	6	18	13	39.180	23.000	10,0	4,9
1980	7	9	2	30	46	38.740	22.800	1,0	4,5
1980	7	14	19	38	10	39.150	22.990	8,0	4,6
1980	7	29	13	13	36	38.310	22.360	23,0	4,1
1980	8	5	10	3	5	39.190	22.790	10,0	4,6
1980	11	12	16	4	47	39.100	24.297	0,0	4,6

1980	11	14	18	4	28	39.100	24.290	1,0	4,4
1981	1	29	11	7	40	38.250	22.300	25,0	4,1
1981	2	24	20	53	37	38.230	22.970	18,0	6,4
1981	2	24	23	17	19	38.250	23.030	46,0	4,6
1981	2	25	4	30	19	38.200	23.130	47,0	4,7
1981	2	25	5	9	59	38.280	23.150	33,0	5,0
1981	2	25	6	59	42	38.220	23.130	41,0	4,6
1981	2	25	10	7	44	38.260	23.100	35,0	4,5
1981	2	25	11	34	27	38.200	23.230	1,0	4,2
1981	2	25	13	48	7	38.200	22.990	36,0	4,8
1981	2	25	18	10	11	38.207	23.105	0,0	4,4
1981	2	26	2	43	33	38.200	23.000	22,0	4,1
1981	2	26	11	23	29	38.254	22.942	0,0	4,3
1981	2	26	16	9	21	38.240	23.230	44,0	4,1
1981	2	26	19	30	47	38.210	23.170	11,0	4,7
1981	2	27	1	11	15	38.250	23.190	21,0	4,3
1981	2	27	3	24	48	38.270	23.147	0,0	4,6
1981	2	27	9	0	40	38.280	23.254	10,0	4,6
1981	3	2	13	13	47	38.230	23.350	13,0	4,4
1981	3	3	17	0	53	38.210	23.320	16,0	4,1
1981	3	3	17	1	43	38.300	23.300	1,0	4,4
1981	3	4	13	48	35	38.300	23.160	39,0	4,5
1981	3	4	21	58	7	38.240	23.260	21,0	6,2
1981	3	4	22	14	30	38.240	23.330	41,0	4,4
1981	3	4	22	31	8	38.210	23.240	22,0	4,6
1981	3	4	22	47	29	38.320	23.380	3,0	4,4
1981	3	4	22	56	46	38.210	23.250	25,0	4,3
1981	3	4	23	17	52	38.210	23.250	25,0	4,1
1981	3	4	23	22	12	38.230	23.240	21,0	4,1
1981	3	4	23	42	58	38.301	23.180	0,0	4,4
1981	3	4	23	59	22	38.250	23.420	28,0	4,3
1981	3	5	2	53	49	38.320	23.450	19,0	4,1
1981	3	5	6	59	8	38.200	23.130	20,0	5,4
1981	3	5	12	53	37	38.220	23.280	10,0	4,1
1981	3	5	15	44	7	38.200	23.190	20,0	4,1
1981	3	5	16	14	46	38.216	23.278	0,0	4,1
1981	3	5	19	5	8	38.210	23.120	3,0	4,1
1981	3	5	21	26	22	38.270	23.380	35,0	4,1
1981	3	5	21	54	40	38.200	23.340	40,0	4,4
1981	3	6	23	34	20	38.335	23.160	0,0	4,4
1981	3	7	16	54	34	38.240	23.350	16,0	4,4
1981	3	7	20	12	59	38.210	23.260	9,0	4,1
1981	3	12	1	49	41	38.220	23.280	27,0	4,8
1981	3	19	15	18	47	38.200	23.290	2,0	4,3
1981	3	24	11	35	54	38.240	23.280	1,0	4,1
1981	3	31	23	20	3	38.330	23.040	8,0	4,1

1981	4	18	8	7	9	38.280	23.180	38,0	4,4
1981	4	25	21	59	25	38.290	23.300	1,0	4,1
1981	4	28	7	19	60	38.370	22.450	15,0	4,2
1981	6	29	22	2	10	38.320	23.390	40,0	4,1
1981	7	19	22	13	43	38.230	23.120	25,0	4,1
1981	7	26	4	16	27	38.220	23.180	14,0	4,1
1981	9	20	19	54	16	38.590	23.610	11,0	4,1
1981	9	23	23	10	2	38.300	23.300	30,0	4,1
1981	12	23	17	35	32	38.650	23.500	28,0	4,1
1982	1	17	19	59	8	38.310	23.300	1,0	4,1
1982	1	18	20	32	2	39.170	24.240	17,0	4,3
1982	1	28	11	16	57	39.190	22.810	10,0	4,1
1982	3	4	3	3	1	38.630	23.630	8,0	4,1
1982	4	5	13	29	13	38.330	23.350	10,0	4,1
1982	5	18	16	59	38	38.300	23.470	11,0	4,1
1982	5	18	17	20	15	38.280	23.430	16,0	4,1
1982	7	26	8	28	6	38.270	23.170	14,0	4,4
1982	8	1	18	21	51	38.260	23.166	10,0	4,4
1982	8	5	8	55	48	39.120	23.390	7,0	4,3
1983	1	19	3	7	58	38.800	23.200	10,0	4,1
1983	9	11	10	49	59	38.730	22.390	18,0	4,1
1983	9	19	1	18	13	38.730	22.470	11,0	4,7
1983	9	19	1	29	57	38.750	22.400	20,0	4,4
1983	11	9	9	57	43	38.970	23.400	10,0	4,1
1984	8	17	21	22	58	38.210	22.680	24,0	4,6
1984	8	24	9	2	22	38.640	23.760	11,0	4,1
1985	10	19	22	36	25	38.750	23.980	10,0	4,1
1986	8	24	1	8	55	38.890	24.290	10,0	4,1
1987	8	27	16	46	47	38.900	23.770	23,0	5,0
1987	12	7	2	26	25	38.330	22.300	3,0	4,3
1988	2	18	11	11	34	39.090	23.470	12,0	4,6
1988	7	12	2	26	54	38.750	23.450	18,0	4,7
1989	2	17	2	24	6	38.700	22.630	41,0	4,1
1989	5	7	10	36	20	38.330	22.720	10,0	4,3
1989	5	1	10	46	49	38.290	22.720	19,0	4,3
1990	1	2	20	35	41	38.600	24.210	2,0	4,3
1990	2	8	1	47	28	39.150	23.710	2,0	4,8
1990	3	2	18	8	34	39.030	23.680	11,0	4,4
1990	1	27	17	55	57	38.630	23.740	19,0	4,4
1991	1	15	14	5	36	38.610	23.780	24,0	4,4
1991	0	15	1	11	44	39.150	23.470	10,0	4,3
1992	11	18	21	10	41	38.300	22.450	12,0	6,U
1993	<u> </u>	4	<u>ک</u>	10	00	38.210	22.000	∠0,0 47.0	5,1 4 4
1993		<u> </u>	14	12	40	38.210	22.850	47,U	4,4 5.4
1995	0 7	15	10	30	00	30.300	22.400	5,U 21.0	5,4 4 4
1995	10	10	10	21		30.220	22.020	∠1,U	4,4
1995	10	14	14	39	Э	30.87U	∠ა.530	12,0	4,4

1996	1	30	5	49	22	38.290	22.670	38,0	4,4
1997	2	4	2	41	12	38.610	24.140	19,0	4,6
1997	4	30	18	36	8	38.370	22.390	44,0	4,1
1997	11	5	10	27	52	38.310	23.430	23,0	4,4
1997	12	14	9	26	54	38.360	22.300	24,0	4,4
1999	2	7	22	28	37	39.010	23.190	23,0	4,7
1999	6	5	6	19	20	38.350	22.370	24,0	4,4
1999	6	25	7	42	14	38.280	22.830	24,0	4,3
1999	9	3	5	29	32	38.390	23.250	11,0	4,4
1999	10	9	10	31	11	38.240	22.370	4,0	4,1
2001	5	19	3	11	15	39.160	22.540	14,0	4,4
2001	7	25	15	43	13	39.080	24.270	28,0	4,3
2001	7	26	0	21	39	39.100	24.270	19,0	6,0
2001	7	26	0	59	4	39.130	24.260	21,0	4,4
2001	7	26	1	58	53	39.140	24.290	13,0	4,3
2001	7	26	2	1	52	39.110	24.210	20,0	4,4
2001	7	26	4	53	36	39.070	24.240	20,0	4,4
2001	7	26	7	44	33	38.960	24.300	23,0	4,3
2001	7	26	14	24	33	39.120	24.300	6,0	4,6
2001	7	30	15	24	58	39.120	24.100	21,0	4,7
2001	7	30	16	38	22	39.070	24.260	4,0	4,4
2001	10	29	20	21	47	38.900	24.280	17,0	4,8
2003	1	10	3	0	56	38.750	22.860	10,0	4,1
2003	4	24	23	43	60	38.640	22.660	28,0	4,3
2003	6	13	16	6	34	38.620	23.590	16,0	4,1
2003	6	18	5	25	1	38.620	23.540	8,0	4,7
2003	6	19	1	0	4	38.610	23.630	9,0	4,1
2003	6	19	3	38	20	38.560	23.580	4,0	4,4
2003	6	26	13	45	58	38.590	23.590	20,0	4,4
2003	7	1	6	22	51	38.640	23.630	20,0	4,3
2003	7	25	3	28	48	38.280	22.570	17,0	4,1
2003	9	26	18	54	4	38.590	23.540	10,0	4,4
2004	8	24	12	38	51	38.570	23.510	20,0	4,6
2004	9	26	3	6	2	38.300	24.030	20,0	4,4
2005	5	29	8	55	36	38.340	22.580	98,0	4,7
2005	8	4	5	47	39	38.990	23.380	4,0	4,4
2006	2	21	7	30	35	39.119	24.245	4,0	4,5
2006	5	5	6	16	10	38.296	22.690	10,0	4,2
2006	6	8	14	38	36	38.608	23.785	3,0	4,1
2006	8	16	18	56	40	38.493	23.938	11,0	4,2
2007	3	20	16	54	43	38.717	22.830	7,0	4,3
2007	7	6	19	1	48	38.201	22.649	14,0	4,1
2008	6	25	20	59	43	38.710	22.860	8,0	4,1
2008	10	14	2	6	36	38.810	23.600	10,0	5,0
2008	10	14	2	16	59	38.830	23.590	9,0	4,4
2008	10	26	17	20	32	38.410	23.650	8,0	4,4
2008	12	13	8	27	20	38.710	22.580	15,0	5,1

2010	1	30	13	47	38	38.330	22.340	24,0	4,3
2010	3	9	2	55	0	38.870	23.650	22,0	4,7
2010	3	9	2	1	0	38.870	23.640	25,0	4
2010	4	4	22	5	56	38.420	22.320	17,0	4,1
2010	4	29	10	31	51	38.730	23.180	16,0	4,4
2010	8	29	0	51	57	38.660	23.380	22,0	4,1
2011	4	15	3	18	5	38.649	23.402	31,8	4
2011	4	22	1	20	24	38.367	23.622	22,5	4,1
2011	5	4	12	39	43	38.285	22.406	13,7	4
2012	6	28	13	11	29	39.011	23.171	25,1	4,3
2012	9	24	19	18	37	39.029	23.157	23,1	4
2012	10	26	23	16	44	38.958	22.910	26,0	4,4
2013	8	7	13	44	32	38.691	22.659	15,0	4,7
2013	8	7	9	56	35	38.701	22.689	13,6	4,1
2013	8	7	9	6	51	38.701	22.680	8,1	5,4
2013	8	7	9	2	45	38.703	22.667	14,1	4,3
2013	8	9	13	10	10	38.691	22.655	16,6	4,7
2013	8	9	11	49	23	38.701	22.707	18,6	4,8
2013	9	16	15	1	14	38.719	22.735	17,4	5,2
2013	9	16	14	42	39	38.700	22.727	19,6	4,5
2013	9	17	7	39	44	38.701	22.728	12,6	4
2013	11	12	18	9	28	38.916	23.103	16,7	4,9
2013	11	22	15	12	3	39.050	22.411	21,2	4,1
2014	2	1	8	14	3	38.698	22.747	18,2	4,7
2014	2	6	7	58	26	38.706	22.767	21,7	4,4
2014	5	10	3	4	50	38.424	22.456	19,6	4
2014	6	6	12	21	3	39.165	23.714	23,3	4,1
2014	11	17	23	9	3	38.643	23.407	23,3	5,1
2014	11	17	23	5	55	38.640	23.395	23,8	5,2
2015	6	9	1	9	3	38.622	23.389	13,1	5,2

<u>Πίνακας 2</u>: Οι σεισμοί που έλαβαν χώρα στον Βόρειο Ευβοϊκό Κόλπο από το 1900 μέχρι το 2015 (Makropoulos et al., 2012; www.gein.noa.gr).

1.4.3 <u>Η ΣΕΙΣΜΙΚΗ ΑΚΟΛΟΥΘΙΑ ΤΟΥ 2014-2015 ΣΤΟΝ ΒΟΡΕΙΟ ΕΥΒΟΪΚΟ</u> <u>ΚΟΛΠΟ</u>

Στις 17 Νοεμβρίου 2014 (23:05 και 23:09 UTC), έλαβαν χώρα δύο επιφανειακοί σεισμοί μεγέθους σεισμικής ροπής Mw=5.2 και Mw=5.1 (www.geophysics.geol.uoa.gr) στον βόρειο Ευβοϊκό Κόλπο, μεταξύ της χερσονήσου της Μαλεσίνας και του όρους Καντηλίου. Μέχρι και τον Ιανουάριου του 2015, παρατηρήθηκαν πολλοί μετασεισμοί. Στις 9 Ιουνίου του 2015 συνέβη ακόμη ένας σεισμός στην περιοχή, μεγέθους Mw=5.2 (Σχ. 5) (www.geophysics.geol.uoa.gr).

2014/11/17 23:09:03.9, M: 5.1 2015/06/09 01:09:02.9, M: 5.2

Σχήμα 5: Οι μηχανισμοί γένεσης των τριών σεισμών της ακολουθίας του Βόρειου Ευβοϊκού Κόλπου κατά την περίοδο 2014-2015, όπως προσδιορίστηκαν από το Εργαστήριο Σεισμολογίας του Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών (<u>www.geophysics.geol.uoa.gr</u>).

Σημαντικός, λοιπόν, είναι ο προσδιορισμός του μηχανισμού γένεσης και των παραμέτρων της πηγής, δηλαδή της διεύθυνσης, της κλίσης, της γωνίας ολίσθησης, του βάθους και του μεγέθους σεισμικής ροπής. Σε αυτό σημαντική βοήθεια παρέχουν τα σεισμολογικά δεδομένα από το HUSN (Ε.Ε.Δ.Σ.), τα οποία εξετάστηκαν με την μέθοδο αντιστροφής του τανυστή σεισμικής ροπής και προέκυψαν τα εξής αποτελέσματα. Οι δύο επιφανειακοί σεισμοί της 17^{ης} Νοεμβρίου 2014, συνδέονται σύμφωνα με τους Ganas et al (2016) με ένα πλαγιοκανονικό ρήγμα διεύθυνσης περίπου Α-Δ. Για τον πρώτο σεισμό ο μηχανισμός γένεσης που βρέθηκε τους Ganas et al (2016) έχει τα εξής χαρακτηριστικά: διεύθυνση=280°, κλίση=60°, γωνία ολίσθησης=-40°, σεισμική ροπή ίση με Μ₀=8.66·10²³ dyn·cm και εστιακό βάθος 14 km. Ο δεύτερος έχει διεύθυνση=290°, κλίση=75°, γωνία ολίσθησης=-20°, σεισμική ροπή ίση με $M_0=6.58\cdot 10^{23}$ dyn·cm και εστιακό βάθος 13 km. Όσον αφορά τον μηχανισμό γένεσης του σεισμού του 2015, χαρακτηρίζεται από διεύθυνση=139°, κλίση=85° και γωνία ολίσθησης=-10°. Στο τέλος της εργασίας, στο παράρτημα 1, παρατίθενται δύο κατάλογοι με όλα τα γεγονότα που έλαβαν χώρα το 2014 και το 2015 αντίστοιχα από την ιστοσελίδα του Τομέα Γεωφυσικής-Γεωθερμίας του τμήματος Γεωλογίας του Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών (www.geophysics.geol.uoa.gr/catalog/source_par_2014.epi,

www.geophysics.geol.uoa.gr/catalog/source_par_2015.epi). Συγκεκριμένα παρατίθενται οι εστιακές παράμετροι των σεισμών που πραγματοποιήθηκαν

την περίοδο 2 Ιανουαρίου 2014 – 14 Δεκεμβρίου 2015 και τα μεγέθη τους. Επομένως οι μηχανισμοί γένεσης των σεισμών αυτών υποδεικνύουν είτε ένα BA-NΔ δεξιόστροφο ρήγμα, είτε ένα BΔ-NA πλαγιοκανονικό αριστερόστροφο ρήγμα. Επειδή όμως τα υπόκεντρα των μετασεισμών είναι ευθυγραμμισμένα κατά μήκος της διεύθυνσης BΔ-NA, τα γεγονότα αυτά θεωρούνται οτί συνδέονται με τη δεύτερη περίπτωση (Ganas et al., 2016). Πιο συγκεκριμένα η μετασεισμική δραστηριότητα των γεγονότων του 2014, φανερώνει ξεκάθαρα ένα ρήγμα διεύθυνσης ΔBΔ - ANA, περίπου 5 km από τη χερσόνησο της Μαλεσίνας, που εκτείνεται σε βάθη μεταξύ 10 km και 16 km (Σχ. 6). Από την άλλη, τα υπόκεντρα των μετασεισμών του 2015 υποδεικνύουν την ενεργοποίηση ενός αριστερόστροφου, σχεδόν κατακόρυφου ρήγματος διευθύνσεως BΔ-NA και εντοπίζονται 2 km νότια της ακολουθίας του 2014.

Σχήμα 6: Κατανομή της σεισμικότητας σε συνδυασμό με το βάθος a) πριν και b) μετά τον επαναπροσδιορισμό υποκέντρων για την ακολουθία της Μαλεσίνας-Καντηλίου (2014-2015). Οι κόκκινες γραμμές είναι τα ενεργά ρήγματα. Τα λευκά αστέρια είναι τα επίκεντρα των κύριων σεισμών (Ganas et al, 2016)

Όσον αφορά το πεδίο τάσεων, βρέθηκε ότι χαρακτηρίζεται από έναν οριζόντιο άξονα σ₃, ενώ οι άξονες σ₂ και σ₁ αποκλίνουν σημαντικά από την οριζόντια και από την κατακόρυφη διεύθυνση αντίστοιχα. Τα στοιχεία των αξόνων τάσης είναι: σ₁ (64°/267° βύθιση/αζιμούθιο), σ₂ (25°/76°) και σ₃ (4°/168°), με σφάλμα της τάξης 6°-7°.

Συνοψίζοντας, η ανάλυση των μετασεισμών σε συνδυασμό με την ανάλυση των τανυστών τάσης για τη σεισμική ακολουθία του 2014-2015 στον Βόρειο Ευβοϊκό κόλπο, έδειξε την ενεργοποίηση 2 «τυφλών» αριστερόστροφων ρηγμάτων με σημαντική συνιστώσα οριζόντιας ολίσθησης (Σχ. 7). Τα ρήγματα βρίσκονται στον υποθαλάσσιο χώρο μεταξύ των χωριών Μαλεσίνας - Καντηλίου. Σημαντική παρατήρηση είναι πως κατά την διάρκεια της ενεργοποίησης των μετασεισμικών ακολουθιών, πολλοί μετασεισμοί έλαβαν χώρα εκτός των ρηγμάτων. Τα υπόκεντρα των μετασεισμών είναι ευθυγραμμισμένα κατά μήκος του προσανατολισμού ΒΔ-ΝΑ, για αυτό τον

λόγο ερμηνεύονται ως γεγονότα που οφείλονται σε αριστερόστροφα ρήγματα οριζόντιας ολίσθησης. Αυτή είναι η πρώτη φορά που αδιαμφισβήτητα καταγράφεται από τα σεισμικά δεδομένα αριστερόστροφη διάτμηση εντός του Ευβοϊκού Κόλπου, καθώς για καιρό το όριο για αριστερόστοφες τεκτονικές δομές θεωρούνταν η ανατολική ακτή της ηπειρωτικής Ελλάδας, βάσει των γεωδαιτικών δεδομένων. Η οριζόντια συμπίεση οφείλεται στην κίνηση της πλάκας της Ανατολίας προς τα δυτικά και είναι ο κύριος λόγος παραμόρφωσης του κεντρικού Αιγαίου Πελάγους. Για αυτόν τον λόγο η γένεση σεισμών ενδιάμεσου μεγέθους, με κινηματική οριζόντιας ολίσθησης, στον Ευβοϊκό Κόλπο θεωρείται η «αντίδραση» του ελαστικού φλοιού στην συμπίεση αυτή. Έτσι, τα σχετικά μικρά αυτά ρήγματα χρησιμεύουν στο να απελευθερώνουν την τάση που έχει συσσωρευτεί στις επιφάνειες τους, γιατί είναι δομές προσανατολισμένες κατά τρόπο, ώστε να είναι συμβατές με τη συνιστώσα οριζόντιας ολίσθησης της ενεργής τεκτονικής.

Σχήμα 7: Χάρτης επαναπροσδιορισμένων μετασεισμών της ακολουθίας του 2014-2015. Οι κόκκινοι κύκλοι απεικονίζουν γεγονότα πριν τις 27 Ιανουαρίου 2015 ενώ οι μπλε κύκλοι απεικονίζουν γεγονότα μετά τις 19 Απριλίου 2015. Οι σφαίρες δείχνουν τους μηχανισμούς γένεσης για τους τρεις σεισμούς. Οι κίτρινες γραμμές απεικονίζουν τα σεισμικά ρήγματα και τα βέλη δείχνουν την κίνηση του ρήγματος (Ganas et al., 2016).

2. ΣΕΙΣΜΙΚΗ ΑΝΙΣΟΤΡΟΠΙΑ

Η δομή των πετρωμάτων, η οποία εκφράζεται ως η χωρική διάταξη των ορυκτών, καθώς και το σχήμα και ο προσανατολισμός των πόρων και των ρηγμάτων, αντικατοπτρίζει τη λειτουργία μιας ποικιλίας γεωλογικών διαδικασιών, όπως η τεκτονική τάση και η διαστολή του φλοιού. Μια σημαντική

συνέπεια της δομής των πετρωμάτων είναι ότι προκαλεί τη μεταβολή της σεισμικής ταχύτητας ανάλογα με την κατεύθυνση της διάδοσης των κυμάτων, δηλαδή τη σεισμική ανισοτροπία. Με τις κατάλληλες προϋποθέσεις σε μια περιοχή μελέτης είναι εφικτό να μετρηθούν οι παράμετροι σχάσης, να εκτιμηθεί η σεισμική ανισοτροπία και κατά συνέπεια να προσδιοριστούν η σύσταση του πετρώματος και η γεωλογική διαδικασία που οδήγησε σε αυτή (Rabbel and Mooney, 1996). Η σεισμική ανισοτροπία λαμβάνει χώρα όταν ελαστικά κύματα που διαδίδονται προς μια διεύθυνση ταξιδεύουν γρηγορότερα από εκείνα που διαδίδονται σε μια άλλη (Savage, 1999). Η μελέτη της σεισμικής ανισοτροπίας παρέχει πληροφορίες σχετικά με την ορυκτολογία και την εσωτερική δομή των ανισοτροπικών πετρωμάτων, καθώς και για τον προσανατολισμό του εντατικού πεδίου που κυριαρχούσε, όταν η ανισοτροπία σταθεροποιήθηκε τελευταία φορά. Αυτό ανοίγει ένα νέο εύρος τεχνικών για τη διερεύνηση του εσωτερικού της Γης και ένα νέο εύρος παραμέτρων για την περιγραφή in situ υλικού, που μπορεί να μελετηθεί από σεισμικές παρατηρήσεις (Crampin et al.,1984a).

2.1 ΣΥΣΤΗΜΑΤΑ ΣΥΜΜΕΤΡΙΑΣ ΤΗΣ ΑΝΙΣΟΤΡΟΠΙΑΣ

Τα συστήματα ανισοτροπικής συμμετρίας ταξινομούνται ανάλογα με τη διάταξη των επιπέδων συμμετρίας σε οκτώ διαφορετικά συστήματα συμμετρίας. Κάθε σύστημα έχει τα δικά του μοναδικά χαρακτηριστικά. Τα πιο συνήθη είδη συμμετρίας είναι: η μονοκλινική, η εξαγωνική και η ορθορομβική (Crampin, 1984; Savage, 1999).

- i. Η μονοκλινική συμμετρία αποτελέιται από 13 ελαστικές σταθερές.
- ii. Η εξαγωνική συμμετρία έχει 5 ελαστικές σταθερές και έναν κάθετο άξονα συμμετρίας. Ονομάζεται και εγκάρσια ισοτροπία.
- iii. Η ορθορομβική συμμετρία αποτελείται από 3 κάθετους άξονες συμμετρίας, με 9 ελαστικές σταθερές.

2.2 ΤΑ ΑΙΤΙΑ ΤΗΣ ΑΝΙΣΟΤΡΟΠΙΑΣ

Πολλά φαινόμενα μπορούν να προκαλέσουν την εμφάνιση ανισοτροπίας στα πετρώματα. Τα βασικά αίτια σύμφωνα με τους Crampin et al. (1984a) είναι:

 <u>Κρυσταλλική ανισοτροπία</u>: συμβαίνει όταν οι μεμονωμένοι κρύσταλλοι σε ένα κρυσταλλικό σώμα έχουν προτιμώμενους προσανατολισμούς έναντι ενός όγκου αρκετά μεγάλου για να επηρεάσει τη μετάδοση των σεισμικών κυμάτων. Η ανισοτροπία που παρατηρείται στον ανώτερο μανδύα προκαλείται από τον προσανατολισμό των κρυστάλλων του ολιβίνη (και πιθανώς ορθοπυρόξενου) που εμφανίζουν έντονη ανισοτροπία. Η παρατηρούμενη ανισοτροπία στα πετρώματα με ευθυγραμμισμένους κρυστάλλους μπορεί να προκληθεί από συνδυασμό της εμφυούς ανισοτροπίας των μεμονωμένων κρυστάλλων και της ανισοτροπίας που προκαλείται από τις ρωγμές κατά μήκος των ορίων των κόκκων (Simmons and Richter, 1976, Peacock 1986).

- 2. <u>Ανισοτροπία άμεσα επαγόμενη από το εντατικό πεδίο:</u> η ελαστική συμπεριφορά ενός αρχικώς ισοτροπικού σώματος γίνεται ανισοτροπική όταν αρχίσει να δρα πάνω του ένα ισχυρό πεδίο τάσεων. Παρόλα αυτά προκειμένου να παρατηρηθεί σημαντικό ποσοστό ανισοτροπίας στη Γη, οι τάσεις αυτές, πρέπει να είναι πολύ ισχυρές. Αυτό είναι πιθανό να συμβεί κοντά στην εστία ενός μεγάλου μεγέθους σεισμού, όπου άλλωτε ισοτροπικές πηγές μπορεί να επικρατήσουν ως πηγές ανισοτροπίας (Evans, 1984). Σύμφωνα με τους Crampin et al. (1984), αυτή η περίπτωση πιθανά να είναι η κύρια πηγή ανισοτροπίας.
- 3. <u>Λιθολογική ανισοτροπία:</u> ένα ιζηματογενές πέτρωμα εμφανίζει λιθολογική ανισοτροπία όταν οι επιμέρους κόκκοι του, ανισοτροπικοί ή μη, οι οποίοι είναι επιμήκεις ή πεπλατυσμένοι, ευθυγραμμίζονται από τη βαρύτητα ή τη ροή ενός υγρού όταν αποτίθεται για πρώτη φορά το υλικό ή όταν υφίσταται πλαστική παραμόρφωση σε επόμενο στάδιο.
- 4. <u>Παλιομαγνητική σεισμική ανισοτροπία:</u> λεπτά μαγνητικά σωματίδια, τα οποία είναι εναποθετημένα κάτω από το ρευστό, ευθυγραμμίζονται με το μαγνητικό πεδίο της Γης. Αν οι μαγνητικές κατευθύνσεις των σωματιδίων συμπίπτουν με άξονες της ανισοτροπίας ταχύτητας της ελαστικής δομής των σωματιδίων, τότε οι μαγνητικές ευθυγραμμίσεις θα προκαλέσουν επίσης σεισμική ανισοτροπία.
- 5. <u>Περιοδική λεπτής στρωμάτωσης ανισοτροπία (PTL)</u>: όπως αναφέρουν οι Crampin et al. (1984a), πολλοί συγγραφείς έχουν δείξει πως η διάδοση των σεισμικών κυμάτων μέσω PTL στερεών μοιάζει με τη διάδοση διαμέσω ελαστικών σωμάτων με εξαγωνική ανισοτροπική συμμετρία με πέντε ελαστικές σταθερές.
- 6. <u>Εκτεταμένη ανισοτροπία εκ διαστολής (EDA)</u>: η κυριότερη αιτία αυτού του είδους ανισοτροπίας είναι η ανελαστική ανάπτυξη υπάρχοντων ρωγμών και μικρορωγμών από τη διάβρωση που προκαλεί η τάση στα όρια τους, σε περιοχές κοντά σε σεισμικές ζώνες. Η διαδικασία αυτή απαιτεί την παρουσία ρευστών. Η δεύτερη αιτία είναι η ελαστική κάμψη των υπαρχόντων ρωγμών και πόρων που είναι γεμάτα με υγρό. Και οι δύο διαδικασίες έχουν ως αποτέλεσμα το άνοιγμα των ρωγμών παράλληλα με τη μέγιστη συμπιεστική τάση, και τέτοιου είδους ρωγμές δημιουργούν σεισμική ανισοτροπία (Crampin et al.,1984b).
- 7. <u>Μοντέλο ανισοτροπικής ποροελαστικότητας (APE):</u> το μοντέλο αυτό για πετρώματα ευαίσθητα στην τάση και κορεσμένα από υγρά, δείχνει ότι η

μικροσκοπική δομή των πετρωμάτων ελέγχεται από την οριζόντια συνιστώσα του πεδίου τάσης που επικρατεί στην περιοχή και από την πίεση του υγρού των πόρων. Το μοντέλο APE υποδεικνύει ότι όταν οι πιέσεις των ρευστών των πόρων είναι υψηλές σε ορισμένες περιπτώσεις οι πολώσεις του ταχέος εγκαρσίου κύματος μπορεί να αλλάξουν από παράλληλες σε κάθετες στον κύριο προσανατολισμό των ρωγμών. Ένα σημαντικό χαρακτηριστικό του μοντέλου APE είναι ότι προβλέπει πραγματικές τιμές για τη σχάση των εγκαρσίων κυμάτων, συμπεριλαμβανομένων των παρατηρούμενων μέγιστων και ελαχίστων τιμών (Zatsepin and Crampin, 1997; Crampin and Zatsepin, 1997). Το μοντέλο APE αποτελεί εξέλιξη του μοντέλου EDA.

3. ΣΧΑΣΗ ΕΓΚΑΡΣΙΩΝ ΚΥΜΑΤΩΝ

Τα τελευταία χρόνια έχει σημειωθεί μεγάλη πρόοδος όσον αφορά την κατανόηση της διάδοσης σεισμικών κυμάτων σε ομοιόμορφα ανισοτροπικά σώματα, κυρίως λόγω του εκτεταμένου πειραματισμού με προγράμματα υπολογιστών. Ειδικότερα τα συνθετικά σεισμογράμματα δίνουν πολύτιμες πληροφορίες για τη συμπεριφορά των σεισμικών κυμάτων (Crampin, 1984). Όταν τα εγκάρσια κύματα διαδίδονται σε ένα ανισοτροπικό μέσο, η συνιστώσα που είναι πολωμένη παράλληλα με την ταχεία διεύθυνση ξεκινά να προηγείται της κάθετης συνιστώσας. Το φαινόμενο αυτό ονομάζεται σχάση εγκαρσίων κυμάτων (Savage, 1999). Η σχάση των εγκαρσίων κυμάτων, είναι ένα εργαλείο που χρησιμοποιείται συχνά για τη μέτρηση και την περιγραφή της ανισοτροπίας της Γης, υποθέτοντας ότι ο μανδύας είναι δομημένος απλά, με μια πλευρικά ομοιόμορφη ανισοτροπία. Οι μετρήσεις της σχάσης χαρακτηρίζουν τον προσανατολισμό των πεδίων τάσης, βοηθώντας έτσι στην μελέτη της δομής του μανδύα (Vecsey et al., 2008). Οι αναλύσεις της σχάσης των εγκάρσιων κυμάτων έχουν γίνει ευρέως γνωστές μετά την αύξηση της χρήσης ψηφιακών σεισμομέτρων ευρέος φάσματος και με την αποδοχή της ανισοτροπίας σεισμικής ταχύτητας ως ένα κοινό χαρακτηριστικό του εσωτερικού της Γης από τη γεωφυσική κοινότητα. Παρόλα αυτά, οι μετρήσεις της σχάσης δεν είναι πάντα εύκολες και η αξιολόγηση τους μπορεί να παρέχει ποικίλα αποτελέσματα. Αυτό μπορεί να οφείλεται στην πολυπλοκότητα της γήινης δομής, εξαιτίας της οποίας οι εκτιμώμενες παράμετροι σχάσης εξαρτώνται από το οπισθοαζιμούθιο και τη γωνία πρόσπτωσης, αλλά και σε τεχνικές δυσκολίες όπως ο θόρυβος, το μήκος του σήματος που αναλύεται κ.α.

3.1 ΠΑΡΑΜΕΤΡΟΙ ΣΧΑΣΗΣ ΕΓΚΑΡΣΙΩΝ ΚΥΜΑΤΩΝ

Τα εγκάρσια κύματα που διαδίδονται διαμέσω ανισοτροπικών ομογενών μέσων χωρίζονται σε δύο σχεδόν-εγκάρσια κύματα με κάθετες μεταξύ τους

πολώσεις τα οποία διαδίδονται με διαφορετικές ταχύτητες. Οι παράμετροι σχάσης είναι η χρονική καθυστέρηση, δηλαδή η διαφορά στον χρόνο διάδοσης (ή άφιξης) δt μεταξύ του ταχέος και του βραδέος κύματος και η διεύθυνση της πόλωσης του ταχέος εγκαρσίου κύματος φ. Οι παράμετροι σχάσης μετρούν τα αποτελέσματα της ανισοτροπίας στο κύμα και επιτρέπουν τη μοντελοποίηση του προσανατολισμού και της αντοχής της (Vecsey et al., 2008). Για μια σταθερή γωνία πρόσπτωσης, τα φ και δt είναι ανεξάρτητα της διεύθυνσης πόλωσης των εισερχόμενων κυμάτων (Rümpker and Silver, 1998).

3.2 ΜΕΘΟΔΟΙ ΜΕΤΡΗΣΗΣ ΤΗΣ ΣΧΑΣΗΣ ΕΓΚΑΡΣΙΩΝ ΚΥΜΑΤΩΝ

3.2.1 ΜΕΘΟΔΟΣ ΕΤΕΡΟΣΥΣΧΕΤΙΣΗΣ

Η μέθοδος αυτή χρησιμοποιεί μια προσέγγιση αναζήτησης πλέγματος για τον εντοπισμό των βέλτιστων παραμέτρων σχάσης, περιστρέφοντας και μεταφέροντας χρονικά τις οριζόντιες συνιστώσες. Η μέθοδος ετεροσυσχέτισης λειτουργεί βάσει της αρχής ότι, μετά τη διάδοση μέσω ενός ανισοτροπικού μέσου, ένα εγκάρσιο κύμα διασπάται σε ορθογώνια πολωμένες ταχεία και βραδεία συνιστώσα, με πανομοιότυπα παλμικά σχήματα. Επομένως η μέθοδος επιδιώκει να μεγιστοποιήσει τη συσχέτιση μεταξύ των διορθωμένων οριζόντιων συνιστώσεων (Long and Silver, 2009; Silver and Chan, 1991; Levin et al. 1999).

3.2.2 ΠΟΛΩΣΙΓΡΑΜΜΑ

Τα πολωσιγράμματα είναι τμήματα της κίνησης σωματιδίων, που εμφανίζονται συνήθως για διαδοχικά χρονικά διαστήματα σε σεισμογράμματα τριών συνιστώσεων. Το κύριο διαγνωστικό χαρακτηριστικό της σχάσης εγκάρσιων κυμάτων που προκαλείται την ανισοτροπία στα πολωσιγράμματα είναι οι απότομες, σχεδόν ορθογώνιες διαφορές στις διευθύνσεις της οριζόντιας κίνησης των σωματιδίων. Αυτές είναι πάντα ορατές αρκεί οι κυματομορφές να μην έχουν φιλτραριστεί έντονα. Επομένως είναι συνήθως εύκολο να εντοπιστεί η σχάση των εγκαρσίων κυμάτων και να υπολογιστούν οι διευθύνσεις πόλωσης και οι χρονικές καθυστερήσεις απευθείας από ένα πολωσίγραμμα. Αυτός είναι ο λόγος που το πολωσίγραμμα θεωρείται ένα από τα πιο εύχρηστα εργαλεία μελέτης (Crampin and Gao, 2006).

3.2.3 ΜΕΘΟΔΟΣ ΛΟΓΟΥ ΔΙΑΣΤΑΣΕΩΝ (ASPECT RATIO METHOD)

Πρόκειται για μια αυτοματοποιημένη μέθοδο, που αναπτύχθηκε από τους Shih et al. (1989) και περιστρέφοντας διαδοχικά σεισμογράμματα για μέγιστη γραμμικότητα (Crampin and Gao, 2006). Η μέθοδος αυτή προσδιορίζει τη μέση διεύθυνση πόλωσης του ταχέος εγκαρσίου κύματος,

αναζητώντας τη βέλτιστη κίνηση γραμμικών σωματιδίων ως συνάρτηση του αζιμουθίου. Ως λόγος διαστάσεων ορίζεται ο λόγος των προβολών της σωματιδιακής κίνησης σε ένα ζεύγος ορθογώνιων αξόνων. Σε ένα χρονικό παράθυρο, μικρότερο από την εκτιμώμενη διαφορά των ταχέων και αργών εγκαρσίων κυμάτων, ο λόγος διαστάσεων μεγιστοποιείται ως συνάρτηση του αζιμούθιου σε ένα επίπεδο κάθετο προς τη διέυθυνση της διάδοσης των κυμάτων. Το αζιμούθιο της πιο γραμμικής κίνησης σωματιδίων υποδεικνύεται από τον μέγιστο λόγο διαστάσεων, ο οποίος εμφανίζεται όταν η συνολική μετατόπιση του προβλεπόμενου αζιμούθιου που εξετάζεται είναι σχεδόν παράλληλη με τον κύριο άξονα της ελλειπτικής κίνησης σωματιδίων. Με αυτόν τον τρόπο, η πόλωση του ταχέος εγκαρσίου κύματος βρίσκεται αντικειμενικά (Savage et al., 1989). Η τεχνική αυτή δεν λειτουργεί σωστά εάν η χρονική καθυστέρηση μεταξύ των δύο κυμάτων είναι πολύ μικρή ή εάν οι πολώσεις δεν είναι ορθογώνιες (Crampin and Gao, 2006).

3.2.4 MEOODOS TANYSTH DIAKYMANSHS (VARIANCE TENSOR METHOD)

Η μέθοδος αυτή χρησιμοποιήθηκε πρώτη φορά από τους Aster et al. (1990) και ως τανυστής διακύμανσης για ένα συγκεκριμένο χρονικό διάστημα ορίζεται:

$$\mathsf{V}=<\vec{X}\vec{X}^{\mathsf{T}}>\;,$$

όπου η χρονοσειρά τριών διαστάσεων \vec{X} αντιπροσωπεύει την απόκριση τριών ορθογώνιων σεισμομέτρων στην κίνηση της Γης. Με τη μέθοδο αυτή οι Aster et al. (1990) υπολόγισαν τη διάρκεια και τον προσανατολισμό της γραμμικότητας. Παρόλα αυτά σύμφωνα με τους Crampin et al. (1991), η μέθοδος αυτή δεν παρέχει αξιόπιστη εκτίμηση των χρονικών καθυστερήσεων μεταξύ των κυμάτων που υπόκεινται σχάση. Ταυτόχρονα τα διαστήματα της γραμμικότητας που έχουν υπολογιστεί είναι περίπου τα διπλάσια, σε σχέση με τη χρονική καθυστέρηση των εγκαρσίων κυμάτων.

3.2.5 ΟΔΟΓΡΑΜΜΑ

Το οδόγραμμα είναι ένα είδος διαγράμματος πόλωσης. Πρόκειται για ένα διάγραμμα της τροχιάς της σωματιδιακής κίνησης για ένα συγκεκριμένο χρονικό παράθυρο. Η εκκεντρικότητα και η ελλειπτικότητα ενός οδογράμματος, επηρεάζεται σε μεγάλο βαθμό από τα χαρακτηριστικά ανάπτυξης της διάρρηξης (Yang et al., 2018). Ένα από τα κύρια μειονεκτήματα του οδογράμματος είναι ότι η γραμμικότητα ερμηνευέται πολλές φορές ως χρονική καθυστέρηση καθώς και ότι μπορεί τα αποτελέσματά του να μην είναι αντικειμενικά. Παρόλα αυτά η μέθοδος αυτή

βοηθάει στον υπολογισμό των παραμέτρων σχάσης με γραφική αναπαράσταση (Καβύρης, 2003).

3.3 ΕΠΙΛΟΓΗ ΔΕΔΟΜΕΝΩΝ

Όταν μελετάται η σεισμική ανισοτροπία, χρειάζεται ιδιαίτερη προσοχή στην αναγνώριση του ταχέος και του βραδέος εγκάρσιου κύματος, επομένως και στον υπολογισμό των παραμέτρων σχάσης. Λάθη μπορούν να προκύψουν εξαιτίας του φαινομένου της σκέδασης αλλά και των μετατραπεισών φάσεων εξαιτίας της ανάκλασης και της διάθλασης των εγκαρσίων κυμάτων στην επιφάνεια. Ο όρος σκέδαση χρησιμοποιείται για να αναφερθεί στην αλληλεπίδραση των σεισμικών κυμάτων με τις διακυμάνσεις στις υλικές ιδιότητες του μέσου (Frankel et al., 1986), με αποτέλεσμα να υπάρχει απόκλιση στην ενέργεια του κύματος. Προκειμένου να αποφεχθεί αυτό και να εξασφαλιστεί ότι αναλύονται τα απευθείας S κύματα, επιλέγονται δεδομένα που εμφανίζουν καθαρές και ωθητικές φάσεις εγκαρσίων κυμάτων στην οριζόντια συνιστώσα και ταυτόχρονα το πλάτος του εγκαρσίου κύματος στην κατακόρυφη συνιστώσα είναι μικρότερο σε σχέση με τις οριζόντιες (Καβύρης, 2003). Πρέπει να σημειωθεί ότι επιλέγονται σεισμοί με μέγιστη ανάδυσης (παράθυρο εγκαρσίων) τις 45° έτσι γωνία ώστε να ελαχιστοποιηθούν οι αλλοιώσεις εξαιτίας της αλληλεπίδρασης των σεισμικών κυμάτων με τις οριζόντιες επιφάνειες και μέγιστη αποδεκτή χρονική καθυστέρηση τα 0.3 sec.

3.4 ΜΕΘΟΔΟΣ ΜΕΤΡΗΣΗΣ ΣΤΗΝ ΠΑΡΟΥΣΑ ΜΕΛΕΤΗ

Στη συγκεκριμένη πτυχιακή εργασία οι μέθοδοι που χρησιμοποιήθηκαν για τη μέτρηση της διεύθυνσης πόλωσης του ταχέος εγκαρσίου κύματος και της χρονικής καθυστέρησης μεταξύ των δύο εγκάρσιων κυμάτων που έχουν υποστεί σχάση είναι το πολωσίγραμμα και το οδόγραμμα.

3.5 ΜΕΘΟΔΟΛΟΓΙΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

Το πρώτο βήμα της επεξεργασίας των δεδομένων είναι η ανάλυση των κυματομορφών. Προκειμένου να μειωθεί οποιοσδήποτε πιθανός θόρυβος και να επιτευχθεί η καλύτερη δυνατή αναπαράσταση των κυματομορφών εφαρμόστηκε, όπου ήταν απαραίτητο, ζωνοπερατό φίλτρο τύπου Butterworth σε εύρος συχνοτήτων 1 Hz - 20 Hz.

Παρακάτω θα περιγραφεί αναλυτικά η μέθοδος που χρησιμοποιήθηκε για την ανάλυση του σεισμικού γεγονότος που έλαβε χώρα στις 11 Δεκεμβρίου 2014 ώρα 16:47:41 και καταγράφηκε από τον σταθμό MALE. Ο σταθμός αυτός, ο οποίος ανήκει στο σεισμολογικό δίκτυο του Εργαστηρίου Σεισμολογίας του Εθνικού Καποδιστριακού Πανεπιστημίου Αθηνών, βρίσκεται στη Μαλεσίνα και

κατά την περίοδο καταγραφής του σεισμού ήταν εγκατεστημένος σε υψόμετρο 218 m, σε γεωγραφικό πλάτος 38.6328°B και γεωγραφικό μήκος, 23.2431°A.

Πρώτο βήμα είναι ο προσδιορισμός της άφιξης του ταχέος εγκαρσίου κύματος S_{fast} και ο εντοπισμός του ανύσματος πόλωσης που αντιστοιχεί σε αυτήν. Ως διεύθυνση πόλωσης ορίζεται η γωνία μεταξύ Βορρά και της διεύθυνσης του S_{fast}, μετρώντας πάντα δεξιόστροφα. Στο παράδειγμα μας είναι ίση με B87.6° (σχήμα 8). Στο σχήμα 8.1 παρουσιάζονται οι αρχικές κυματομορφές χωρίς την εφαρμογή φίλτρου (raw), στο σχήμα 8.2 είναι οι κυματομορφές μετά την εφαρμοφη ζωνοπερατού φίλρου (filtered), στα σχήματα 8.3 και 8.4 είναι το πολωσίγραμμα και το οδόγραμμα αντίστοιχα.

Σχήμα 8: Με βέλη απεικονίζεται στο πολωσίγραμμα και το οδόγραμμα η διεύθυνση της πόλωσης του S_{fast}. Η σειρά Α απεικονίζει τις αρχικές κυματομορφές, η σειρά Β τις περιστραμένες κυματομορφές στη διεύθυνση πόλωσης του ταχέος εγκαρσίου κύματος και η σειρά C τα σεισμογράμματα που έχουν επαναπεριστραφεί στις αρχικές τους διευθύνσεις. Ως Δt ορίζεται η χρονική καθυστέρηση που ισούται με 0.070 sec.

Δεύτερο βήμα είναι ο υπολογισμός της χρονικής καθυστέρησης των δύο εγκαρσίων κυμάτων. Για τον σκοπό αυτόν, τα σεισμογράμματα των οριζοντίων συνιστωσών περιστρέφονται στην ταχεία και τη βραδεία διεύθυνση. Το άνυσμα της πόλωσης του ταχέος εγκαρσίου κύματος έχει προσανατολισμό σχεδόν παράλληλο με αυτόν της ταχείας συνιστώσας. Επομένως το χρονικό διάστημα κατά το οποίο το άνυσμα της πόλωσης είναι σχεδόν παράλληλο με την ταχεία συνιστώσα αποτελεί τη χρονική καθυστέρηση. Στο παράδειγμα στο σχήμα 8.2B, τα σεισμογράμματα έχουν περιστραφεί κατά 87.6°, όσο δηλαδή και η διεύθυνση πόλωσης του S_{fast}, και η χρονική καθυστέρηση είναι ίση με 0.070 sec.

Τελευταίο βήμα είναι ο υπολογισμός της πόλωσης της πηγής. Για να επιτευχθεί αυτό, η ταχεία συνιστώσα μετατοπίζεται χρονικά προς τη βραδεία κατά 0.070 sec, δηλαδή όσο είναι και η χρονική καθυστέρηση. Αυτό είναι απαραίτητο ώστε να αφαιρεθεί η ανισοτροπία (σχήμα 8C). Η πόλωση της πηγής είναι ίση με το άθροισμα της γωνίας πόλωσης της πηγής ως προς την ταχεία διεύθυνση και της γωνίας πόλωσης του ταχέος εγκαρσίου κύματος B52.2°. δηλαδή είναι íσn зц Τέλος OI οριζόντιες συνιστώσες επαναπεριστρέφονται στην αρχική τους διεύθυνση. Οι κυματομορφές που προκύπτουν είναι εκείνες που θεωρητικά θα καταγράφονταν στον σταθμό MALE εάν το μέσο ήταν ισοτροπικό.

Για το αποτέλεσμα κάθε παραδείγματος έχει καθοριστεί ένα ποιοτικό βάρος έτσι ώστε να αξιολογούνται τα αποτελέσματα όπου Α=τέλειο, Β=καλό, C=μέτριο, D=κακό. Η αξιολόγηση αυτή αφορά τον επιτυχημένο προσδιορισμό της άφιξης του ταχέος εγκαρσίου κύματος, καθώς και τον ακριβή προσδιορισμό της διεύθυνσης πόλωσης. Το βάρος Α αντιστοιχεί σε παραδειγμάτα όπου υπάρχουν καθαρές φάσεις των εγκαρσίων κυμάτων στις οριζόντιες συνιστώσες και μεγάλο λόγο σήματος/θορύβου, ενώ το βάρος D αντιστοιχεί σε παραδείγματα που η άφιξη του ταχέος εγκαρσίου κύματος δεν είναι καθαρή και ακριβής και ο λόγος σήματος/θορύβου είναι μικρός.

4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΜΕΤΡΗΣΗΣ ΑΝΙΣΟΤΡΟΠΙΑΣ ΑΝΑ ΣΤΑΘΜΟ

Στο κεφάλαιο αυτό θα περιγραφούν τα αποτελέσματα της ανάλυσης των παραμέτρων ανισοτροπίας για τους σταθμούς DAFN, DAF1, LIMN, MALE (σχήμα 9). Συγκεκριμένα δίνονται πληροφορίες για τη θέση κάθε σταθμού, οι διευθύνσεις πόλωσης σε συνδυασμό με τα αντίστοιχα ροδογράμματα, οι χρονικές καθυστερήσεις καθώς και οι ισεμβαδικές προβολές. Το ροδόγραμμα ίσων εμβαδών παρουσιάζει το πλήθος των μετρήσεων που υπολογίστηκαν για κάθε γωνία πόλωσης που μετρήθηκε. Το μήκος των γραμμών είναι ανάλογο του αριθμού των μετρήσεων. Από την ισεμβαδική προβολή εξάγωνται πληροφορίες για το αζιμούθιο, τη γωνία πρόσπτωσης, τη διεύθυνση πόλωσης του ταχέος εγκαρσίου κύματος καθώς και τη χρονική καθυστέρηση των δύο εγκαρσίων κυμάτων που έχουν υποστεί σχάση. Ο εξωτερικός κύκλος ορίζει το παράθυρο του εγκαρσίου κύματος και αντιπροσωπεύει τη γωνία πρόσπτωσης, η οποία ισούται με 45°. Τέλος, το μήκος κάθε γραμμής είναι ανάλογο της χρονικής καθυστέρησης (Καβύρης, 2003).

Σχήμα 9: Χάρτης σεισμικότητας για την χρονική περίοδο 30 Νοεμβρίου 2014 εώς 28 Φεβρουαρίου 2015. Οι κόκκινοι κύκλοι αντιστοιχούν στους σεισμούς που χρησιμοποιήθηκαν για τη μελέτη της ανισοτροπίας στους σταθμούς. Με αστέρι συμβολίζονται οι σεισμοί με Mw>5. Με τρίγωνο συμβολίζονται οι σταθμοί από τους οποίους προέκυψαν οι μετρήσεις.

4.1 <u>ΔΑΦΝΗ-DAF1</u>

Ο σταθμός DAF1 είχε εγκατασταθεί στην Εύβοια σε γεωγραφικές συντεταγμένες 38.6267°B, 23.5067°A. Τα σεισμικά γεγονότα που έχουν καταγραφεί από το σταθμό DAF1 και πληρούν τα κριτήρια που αναφέρθηκαν στην παράγραφο 3.3 είναι 55, εκ των οποίων αυτά με βαθμό A,B,C είναι 52. Στον πίνακα 4.1 παρακάτω παρουσιάζονται οι παράμετροι σχάσης αυτών των γεγονότων. Οι τιμές των διευθύνσεων πόλωσης του ταχέος εγκαρσίου κύματος κυμαίνονται μεταξύ B19° και B170° ενώ η μέση διεύθυνση είναι B66.8° ± 6.8°. Αυτές παρίστανται και στο ροδόγραμμα του σχήματος 4.1.1. Παρατηρείται μία κύρια διεύθυνση περίπου B65°.

Σχήμα 4.1.1: Ροδόγραμμα της διεύθυνσης πόλωσης του ταχέος εγκαρσίου κύματος του σταθμού DAF1, N: ο αριθμός των μετρήσεων, F: αριθμός μετρήσεων που περιέχονται σε κάθε κύκλο

Έτος	Μήνας	Ημέρα	Ώρα	Λεπτά	Δευ/πτα	Г.П. (°)	Г.М. (°)	Βάθος (km)	Mw	Επικ. Απόσταση (km)	Αζιμούθιο (°)	Οπισθαζιμούθιο (°)	Γ. Ανάδυσης (°)	Sfast (°)	Δt (ms)	Πόλωση Πηγής (°)	Βαθμός
2014	11	29	2	32	05.10	38.6435	23.393	10.6	1.6	10.07	100.0	280.0	49.0	65.0	110.0	117.0	Α
2014	11	29	3	27	18.80	38.7167	23.6308	10.6	1.2	14.72	228.0	408.0	61.0	145.0	90.0	135.0	в
2014	11	29	3	33	35.76	38.7174	23.6229	13.1	1.3	14.28	226.0	406.0	52.0	125.0	90.0	185.0	с
2014	11	29	5	33	56.02	38.641	23.4301	12.4	1.7	6.85	103.0	283.0	32.0	75.0	120.0	135.0	в
2014	11	29	8	41	54.94	38.6475	23.3624	12.3	2.0	12.77	100.0	280.0	51.0	120.0	140.0	190.0	с
2014	11	29	19	42	07.96	38.6407	23.373	10.5	1.5	11.74	97.0	277.0	54.0	50.0	90.0	100.0	с
2014	11	29	21	18	02.77	38.646	23.4064	12.2	1.4	8.99	103.0	283.0	40.0	33.0	10.0	203.0	в
2014	11	29	22	26	56.57	38.6499	23.3573	11.5	1.7	13.26	101.0	281.0	54.0	72.0	80.0	302.0	в
2014	12	3	4	6	26.32	38.6507	23.3983	8.9	1.3	9.81	105.0	285.0	55.0	0.0	0.0	0.0	в
2014	12	3	13	45	46.12	38.6486	23.3931	11.7	1.8	10.18	103.0	283.0	45.0	85.0	30.0	92.0	A
2014	12	11	16	47	42.04	38.6674	23.4009	11.9	1.8	10.25	116.0	296.0	45.0	160.0	40.0	352.0	Α
2014	12	11	19	33	48.04	38.6584	23.4125	13.7	1.8	8.92	113.0	293.0	36.0	70.0	20.0	80.0	в
2014	12	11	20	31	24.31	38.6313	23.4049	12.6	1.7	8.87	93.0	273.0	39.0	19.0	90.0	57.0	с
2014	12	11	21	23	44.91	38.6482	23.3643	12.3	1.6	12.63	100.0	280.0	50.0	56.0	70.0	286.0	в
2014	12	11	21	44	44.95	38,6446	23.3529	12.4	1.9	13.54	98.0	278.0	52.0	70.0	50.0	92.0	с
2014	12	11	22	32	24.84	38,6502	23,4016	12.6	2.1	9.52	105.0	285.0	41.0	67.0	110.0	292.0	A
2014	12	13	1	8	42.36	38,6462	23,3924	11.4	1.8	10.18	102.0	282.0	46.0	90.0	90.0	324.0	с
2014	12	13	1	20	39.96	38.6627	23,4143	12.8	1.7	8.98	116.0	296.0	38.0	68.0	100.0	288.0	Δ
2014	12	13	5	14	23.15	38 6477	23 4033	13.0	1.9	93	104.0	284.0	39.0	75.0	150.0	133.0	B
2014	12	13	14	29	58.43	38 6414	23 3567	9.6	2.0	13.16	97.0	277.0	61.0	50.0	180.0	100.0	c
2014	12	15	11	41	13.00	38 649	23.4086	13.5	1.8	8.89	105.0	285.0	36.0	154.0	110.0	317.0	B
2014	12	15	15	30	08.27	38 6511	23 4134	12.7	1.6	8 57	108.0	288.0	37.0	67.0	150.0	114.0	c
2014	12	15	16	55	17.44	38.63	23 4031	12.7	1.8	9.03	92.0	272.0	39.0	30.0	90.0	65.0	Δ
2014	17	15	22	46	16.02	38 6471	23 3601	10.9	13	12.10	100.0	280.0	54.0	60.0	130.0	207.0	<u>^</u>
2014	12	17		40	10.02	28 6287	23.3031	13.4	2.2	6 55	101.0	281.0	29.0	65.0	70.0	10.0	8
2014	12	17	14	52	12.00	20 4500	23.4329	5.0	1 5	10.33	110.0	201.0	59.0	70.0	20.0	75.0	•
2014	12	21		17	16.70	38 6/51	23, 4371	11.6	1.5	6 30	108.0	298.0	32.0	60.0	60.0	2.0	۵ ۸
2014	12	21		17	10.25	38 6537	23,4371	7.5	1.5	8.12	111.0	200.0	55.0	73.0	70.0	13.0	8
2014	12	21		1/	49.00	38.6470	22,4222	11.5	1.9	6.13	110.0	290.0	34.0	60.0	70.0	2.0	۵ ۸
2014	12	20	4	50	30.05	20.04/9	23.4332	11.5 E 0	1.0	2.07	105.0	290.0	54.0	170.0	70.0	302.0	A .
2014	12	23	16	12	10.24	20 6452	22.425	0.2	2.5	7.07	100.0	280.0	47.0	178.0	50.0	140.0	•
2014	12	10	10	12	14.54	20,0422	25.4149	12.0	2.1	6.20 8.20	104.0	264.0	47.0	128.0	80.0	140.0	D
2015	1	-	15	- 4	47.52	20.0000	23.4117	13.9	2.4	0.32	171.0	270.0	34.0	122.0	20.0	312.0	•
2015	1	-	10	20	42.55	28 6240	23.4929	15.0	3.1	0.00	1/1.0	351.0	10.0	132.0	30.0	330.0	•
2015	1	0	10	40	24.09	38.0249	23,4830	11.4	1.9	1.00	401.0	205.0	10.0	130.0	30.0	320.0	•
2015	1	a c	1	2	30.00	38.048/	23.3001	9.9	1.9	12.40	101.0	281.0	58.0	144.0	210.0	10.0	•
2015	1	9		40	39.28	38.0485	25.4122	9.5	1.0	6.57	108.0	286.0	47.0	57.0	30.0	19.0	0
2015	1	45		- 10	33.38	20.0400	23.3/1	9.9	2.0	12.00	101.0	281.0	37.0	150.0	50.0	305.0	•
2015	1	15	- 22	2	21.8/	38.0280	25.4009	12.0	2.0	9.22	91.0	2/1.0	40.0	75.0	80.0	298.0	D
2015	1	1/	1	48	49.58	38.0325	25.4104	11.4	4.7	0.41	94.0	274.0	40.0	35.0	90.0	201.0	
2015	1	1/	- 2	13	29.07	38.6226	23.4085	14.2	1.7	8.50	86.0	266.0	36.0	63.0	90.0	291.0	5
2015	1	1/	8	29	45.40	38.6442	23.3/23	10.2	1.5	11.80	99.0	2/9.0	55.0	58.0	90.0	65.0	A
2015	1	1/	15	33	46.02	38.609	23.3861	2.5	1.6	10.68	79.0	259.0	77.0	162.0	50.0	192.0	A
2015	1	19	23	9	38.82	38.642	23.4047	15.3	1.7	9.04	100.0	280.0	35.0	38.0	90.0	86.0	C
2015	1	21	22	44	04.11	38.6056	23.4093	19.0	1.8	8.79	74.0	254.0	28.0	115.0	30.0	308.0	в
2015	1	25	20	5	00.00	38.6047	23.4853	24.5	1.0	5.07	57.0	217.0	8.0	0.0	0.0	0.0	C
2015	1	29	10	2	52.02	58.6248	23.4016	5.1	2.2	9.15	88.0	268.0	65.0	57.0	100.0	87.0	Б
2015	1	31	21	40	51.69	58.6664	23.4683	11.8	2.8	5.55	142.0	322.0	28.0	158.0	110.0	357.0	c
2015	2	1	1	44	53.53	38.6047	23.4716	23.0	1.7	3.91	51.0	231.0	11.0	139.0	30.0	324.0	c
2015	2	3	5	39	50.85	38.584	23.4729	21.6	2.0	5.57	31.0	211.0	17.0	161.0	130.0	181.0	В
2015	2	3	9	10	51.70	38.6231	23.4264	17.6	1.8	7.0	86.0	266.0	24.0	111.0	50.0	349.0	С
2015	2	3	23	48	58.94	38.6401	23.3689	10.6	1.6	12.08	97.0	277.0	54.0	60.0	90.0	68.0	В
2015	2	13	6	34	15.39	38.6408	23.3969	9.3	2.0	9.69	99.0	279.0	52.0	170.0	60.0	12.0	В

Πίνακας 4.1: Παράμετροι σχάσης με βαθμό Α, Β, C των σεισμών που αναλύθηκαν στον σταθμό DAF1 για τη χρονική περίοδο Δεκέμβριος 2014 εώς Φεβρουάριος 2015.

Η χρονική καθυστέρηση κυμαίνεται από 0.01 sec εώς 0.21 sec, με μέση τιμή τα 0.073 sec ± 0.006 sec. Τέλος η ισεμβαδική προβολή δείχνει ότι δεν έχει επιτευχθεί αζιμουθιακή κάλυψη με τις περισσότερες μετρήσεις όμως να προβάλλονται στα ΔΒΔ του σταθμού. Το γεγονός αυτό οφείλεται στη θέση του σταθμού σε σχέση με τον Ευβοϊκό Κόλπο.

Σχήμα 4.1.2: Ισεμβαδική προβολή για τους σεισμούς που έχουν καταγραφεί από τον σταθμό DAF1. Το μήκος των γραμμών είναι ανάλογο της χρονικής καθυστέρησης των δύο εγκαρσίων κυμάτων που έχουν υποστεί σχάση. Ο εξωτερικός κύκλος αναπαριστά τη γωνία πρόσπτωσης που ισούται με 45°.

4.2 <u>DAFN</u>

Ο σταθμός DAFN ήταν και αυτός εγκατεστημένος στην Εύβοια, σε γεωγραφικές συντεταγμένες 38.7209°B, 23.4554°A. Για το σταθμό αυτό χρησιμοποιήθηκαν 80 γεγονότα, τα οποία πληρούν τα κριτήρια που έχουν τεθεί, εκ των οποίων αυτά με βαθμό A, B ή C είναι 78 και οι παράμετροι σχάσης τους εμφανίζονται στον πίνακα 4.2 παρακάτω. Η διεύθυνση πόλωσης του ταχέος εγκαρσίου κύματος κυμαίνεται από B8° εώς B170° με μέση τιμή B54.4° ± 2.2°. Το ροδόγραμμα, που αναπαριστά τις διευθύνσεις αυτές δίνεται παρακάτω (σχήμα 4.2.1). Οι τιμές παρουσιάζουν μία κύρια διεύθυνση περίπου B70°.

Σχήμα 4.2.1: Ροδόγραμμα της διεύθυνσης πόλωσης του ταχέος εγκαρσίου κύματος του σταθμού DAFN, N: ο αριθμός των μετρήσεων, F: αριθμός μετρήσεων που περιέχονται σε κάθε κύκλο.

Dial Dia Dial Dial <th< th=""><th>Έτος</th><th>Μήνας</th><th>Ημέρα</th><th>Ώρα</th><th>Λεπτά</th><th>Δευ/πτα</th><th>г.п. (°)</th><th>Г.М. (°)</th><th>Βάθος (km)</th><th>Mw</th><th>Επικ. Απόσταση (km)</th><th>Αζιμούθιο (°)</th><th>Οπισθαζιμούθιο (°)</th><th>Γ. Ανάδυσης (°)</th><th>Sfast (°)</th><th>∆t (ms)</th><th>Πόλωση Πηγής (°)</th><th>Grade</th></th<>	Έτος	Μήνας	Ημέρα	Ώρα	Λεπτά	Δευ/πτα	г.п. (°)	Г.М. (°)	Βάθος (km)	Mw	Επικ. Απόσταση (km)	Αζιμούθιο (°)	Οπισθαζιμούθιο (°)	Γ. Ανάδυσης (°)	Sfast (°)	∆t (ms)	Πόλωση Πηγής (°)	Grade
bit bit< bit< <td>2014</td> <td>11</td> <td>29</td> <td>3</td> <td>33</td> <td>35.76</td> <td>38.7174</td> <td>23.6229</td> <td>13.1</td> <td>1.3</td> <td>14.58</td> <td>272.0</td> <td>452.0</td> <td>53.0</td> <td>30.0</td> <td>30.0</td> <td>200.0</td> <td>в</td>	2014	11	29	3	33	35.76	38.7174	23.6229	13.1	1.3	14.58	272.0	452.0	53.0	30.0	30.0	200.0	в
1214 11 23 1 14. 24.0 14.0 24.0 4.0 8.0 7.0 7.00 7.0 7.00	2014	11	29	5	33	56.02	38.641	23.4301	12.4	1.7	9.13	13.0	193.0	40.0	35.0	130.0	150.0	в
214 11 22 21 18 27.9 27.0 27.0 57.0 54.0 89.0 84.00 <	2014	11	29	8	41	54.94	38.6475	23.3624	12.3	2.0	11.47	44.0	224.0	47.0	65.0	70.0	260.0	с
214 1 2 2 2 2 2 2 2 2 3 5 3	2014	11	29	21	18	02.77	38.646	23.4064	12.2	1.4	9.33	27.0	207.0	41.0	49.0	80.0	264.0	Α
121 1 1 1 1 1 1 9 92 20.0 25.0 40.0 55.0 15.0 28.00 A 214 1 3 5 52.44 84.00 12.10 5 52.40 12.0 3 10 45.0 12.0 3 10 45.0 10.0 60.	2014	11	29	22	26	56.57	38.6499	23.3573	11.5	1.7	11.61	47.0	227.0	50.0	68.0	160.0	113.0	Α
blak lak lak <td>2014</td> <td>12</td> <td>1</td> <td>1</td> <td>3</td> <td>18.86</td> <td>38.64</td> <td>23,4066</td> <td>14.3</td> <td>1.9</td> <td>9.93</td> <td>25.0</td> <td>205.0</td> <td>40.0</td> <td>55.0</td> <td>180.0</td> <td>288.0</td> <td>A</td>	2014	12	1	1	3	18.86	38.64	23,4066	14.3	1.9	9.93	25.0	205.0	40.0	55.0	180.0	288.0	A
bit bit <td>2014</td> <td>12</td> <td>1</td> <td>3</td> <td>50</td> <td>26.48</td> <td>38.6508</td> <td>23.3416</td> <td>12.6</td> <td>1.7</td> <td>12.58</td> <td>51.0</td> <td>231.0</td> <td>49.0</td> <td>70.0</td> <td>170.0</td> <td>100.0</td> <td>A</td>	2014	12	1	3	50	26.48	38.6508	23.3416	12.6	1.7	12.58	51.0	231.0	49.0	70.0	170.0	100.0	A
bit iz	2014	12	3	4	6	26.32	38,6507	23,3983	8.9	1.3	9.23	32.0	212.0	53.0	0.0	0.0	0.0	с
bit bit< bit< bit<	2014	12	3	13	45	46.12	38,6486	23 3931	11.7	1.8	9.67	34.0	214.0	44.0	65.0	110.0	45.0	в
1214 13 13 12 13 15 14 14 14 14 15 200 200 400 360 400 200 A 2141 11 16 474/204 38.692 14.21 11 16 34.404 38.692 14.21 17 17 18 17 18 17 10 16 17 10 16 17 10 16 17 10 16 17 10 18 17 18 17 18 17 18 18 17 18 12 11 11 14 14 18 17 18 18 18 10 110 48 0 28 0 08 38 10 130 48 0 28 0 08 10 130 14 130 14 130 14 130 14 130 14 130 14 130 14 130 <td>2014</td> <td>12</td> <td>3</td> <td>14</td> <td>13</td> <td>39.97</td> <td>38.6225</td> <td>23, 3909</td> <td>14.9</td> <td>1.9</td> <td>12.27</td> <td>27.0</td> <td>207.0</td> <td>45.0</td> <td>63.0</td> <td>30.0</td> <td>88.0</td> <td>c</td>	2014	12	3	14	13	39.97	38.6225	23, 3909	14.9	1.9	12.27	27.0	207.0	45.0	63.0	30.0	88.0	c
bill iz i	2014	12	3	22	3	05.27	38.6372	23.415	13.4	1.6	9.92	20.0	200.0	40.0	58.0	60.0	260.0	Δ
1014 12 11 15 34 40.4 88.48 24.415 13 7 18 28.77 80.0 20.0 12.0 14.0 80.0 27.0 C 2014 12 11 21 23 84.81 38.488 23.448 13.13 44.0 22.6 45.0	2014	12	11	16	47	42.04	38.6674	23,4009	11.9	1.8	7.59	38.0	218.0	36.0	43.0	30.0	250.0	в
12 12 11 20 32 38 433 24448 12 12 16 30.0 20.0 45.0 47.0 50.0 25.0 c 2044 12 11 21 44 48.9 384443 3335 14.4 15 12.39 46.0 22.0 45.0 49.0 60.0 280.0 c 2014 12 13 1 20 85.4 38.00 38.0 13.0 12.0 13.0 40.0 28.0 45.0 45.0 45.0 45.0 28.0 18.0 10.0 8 2014 12 13 5 13.0 13.0 15 23 33.0 28.0 28.0 18.0 10.0 16.0 11.0 8 2014 12 13 14 23.0 38.0 13.0 15 8 85 28.0 28.0 13.0 16.0 18.0 18.0 18.0 18.0 18.0 18.0 <td>2014</td> <td>12</td> <td>11</td> <td>19</td> <td>33</td> <td>48.04</td> <td>38,6584</td> <td>23,4125</td> <td>13.7</td> <td>1.8</td> <td>7.87</td> <td>28.0</td> <td>208.0</td> <td>32.0</td> <td>54.0</td> <td>80.0</td> <td>277.0</td> <td>c</td>	2014	12	11	19	33	48.04	38,6584	23,4125	13.7	1.8	7.87	28.0	208.0	32.0	54.0	80.0	277.0	c
103 12 11 12 13 14 12 12 12 13 12 13 12 13 14 13 12 13 12 13 12 13 12 13 14 13 14 13 14 13 14 14 14 15 13 14 14 14 15 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 14 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11	2014	12	11	20	31	24.31	38 6313	23 4049	12.6	1.7	10.86	23.0	203.0	45.0	57.0	50.0	255.0	c
2014 12 14 14 15 15 12 15 12 15 12 15 15 10 15 10 15 10 15 10 15 10 15 10 15 10 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 14 15 14 15 14 15 14 15 14 15 14 14 15 14 14 15 14 14 15 15 14 14 15 16 15 1	2014	12	11	21	23	44.91	38 6482	23 3643	12.3	1.6	11 31	44.0	224.0	47.0	65.0	60.0	262.0	B
12 12 12 13 14 12 15<	2014	12	11	21	44	44.95	38 6446	23,3570	12.4	1.0	17.79	45.0	226.0	49.0	69.0	60.0	269.0	6
12 12 13 14 15 16 15 15 16 15 15 16 15 15 16 15 16 16 16<	2014	12	11	22	32	74.84	38 6502	23.4016	12.6	2.1	0.13	30.0	210.0	39.0	53.0	60.0	83.0	B
121 12 12 13 13 15 12 12 12 12 12 12 13 13 12 12 13 13 12 13 13 12 13 13 12 13 14 12 13 14 12 13 14 12 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 14 13 14	2014	12	13	1	32	47.36	38 6467	23.4010	11.4	1.8	0.03	33.0	213.0	45.0	45.0	30.0	243.0	
12.1 12 12 12 12 12 12 12 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 13 14 13 14 13 13 35 36 44.0 14 14 13 14 13 35 14 14 14 15 16 14 <th< td=""><td>2014</td><td>12</td><td>13</td><td>1</td><td>20</td><td>30.06</td><td>38 6677</td><td>23.3324</td><td>12.8</td><td>1.0</td><td>7 38</td><td>28.0</td><td>208.0</td><td>33.0</td><td>54.0</td><td>70.0</td><td>257.0</td><td>-</td></th<>	2014	12	13	1	20	30.06	38 6677	23.3324	12.8	1.0	7 38	28.0	208.0	33.0	54.0	70.0	257.0	-
12 12 12 14 15 16 16 16<	2014	12	12	-	20	39.90	20 6477	23.4143	12.0	1.7	7.30	20.0	208.0	30.0	59.0	70.0	237.0	
11 12 13 14 15 14.5	2014	12	12	14	- 14	23.13	20 6414	23.4033	15.0	2.0	12.2	29.0	209.0	59.0	50.0	160.0	112.0	
214 12 12 14 14 14 14 14 14 14 14 14 14 14 14 15 15 16 15 16 15 16 15 16 15 16 17.4 18 15.2 16 15.2 16 15.2 15 15.6 15.6 17.4 18 15.6 17.4 16 15.6 17.4 18 16.6 25.0 204.0 45.0 58.0 90.0 11.0 18.0 2014 12 17 16 51.2 58.8 13.3 11.0 14.0 18.0 15.0 17.0 60.0 18.0 </td <td>2014</td> <td>12</td> <td>15</td> <td>- 14</td> <td>29</td> <td>12.00</td> <td>38.0414</td> <td>23.3307</td> <td>42.5</td> <td>4.0</td> <td>22.5</td> <td>37.0</td> <td>224.0</td> <td>33.0</td> <td>66.0</td> <td>100.0</td> <td>21.0</td> <td></td>	2014	12	15	- 14	29	12.00	38.0414	23.3307	42.5	4.0	22.5	37.0	224.0	33.0	66.0	100.0	21.0	
1214 14 15 11 14 12 10 1	2014	12	15	45	41	15.00	30.049	23.4000	13.3	1.0	0.50	27.0	207.0	37.0	50.0	30.0	102.0	-
1214 13 15 15 12 14 15 15 12 14 15 15 12 14 15 12 14 15 12 14 15 12 15 12 14 15 12 14 15 12 14 15 14 15 14 15 14 15 16 15 16 15 16 15 16 15 16 15 16 15 11 14 10 11 14 15 16 16 16 16 16 16 16 1	2014	12	15	15	50	17.44	20.0311	23.4134	12.7	1.0	0.00 11.05	23.0	205.0	37.0	50.0	70.0	205.0	-
241 24 24 24 24 24 24 24 25 13 11.1 42.0 22.0 31.0 82.0 10.0 11.0 10.0	2014	12	15	10	20	17.44	20.02	25.4051	12.7	1.0	11.00	24.0	204.0	45.0	38.0	450.0	211.0	
14 1 0 54 10.3 36.85 12.9 13.4 14.0 191.0 18.0 18.0 18.0 0.00 38.0 18.0 2014 12 17 14 55 43.0 40.0 12.0 12.0 12.0 12.0 42.0 80.0 18.0 80.0 12.0 22.4.0 0 22.0 20.0 45.0 40.0 12.0 22.4.0 0 22.0 20.0 40.0 9.0 10.0 23.0 23.0 20.0 20.0 12.0 12.0 22.0 20.0 35.0 8.0 80.0 81.0 8 2014 12 21 4 40.6 73.0 8.6491 23.411 8.7 8.7 13.0 43.0 12.0	2014	12	15	- 22	40	10.02	38.471	25.5091	10.9	1.5	0.20	42.0	222.0	31.0	62.0	150.0	107.0	-
Alla 12 1 14 25 43.999 36.898 0.0 1.5 8.58 36.0 (A10.0) (5.0) 42.0 80.0 60.0 C 2014 12 11 19 4 10.7 13.8482 23.44 10.3 2.1 9.36 202.0 45.0 40.0 10.0 230.0 8 2014 12 21 3 17 48.88 38.6452 23.4371 11.6 1.6 8.56 20.0 202.0 55.0 58.0 80.0 81.0 8 2014 12 21 4 50.03 38.6472 23.4332 11.5 1.8 8.32 13.0 193.0 40.0 40.0 10.0 50.0 80.0	2014	12	1/	0	52	10.85	38.0382	25.4529	15.4	2.2	9.58	11.0	191.0	58.0	158.0	60.0	558.0	•
10 12 13 14 10.7 38.848/ 23.847 10.3 21 9.30 20.0 20.0 40.0 40.0 10.00 220.0 5 2014 12 21 3 17 45.86 38.657 13.871 16.6 8.56 10.0 190.0 20.0 55.0 58.0 80.0 81.0 8 2014 12 21 12 47 6.73 38.6498 23.403 12.8 2.0 9.1 29.0 29.0 38.0 80.0 81.0 8 2014 12 23 3 15.36 38.6519 23.83 1.1 1.498 314.0 494.0 54.0 10.00 22.0 20.0 55.0 80.0<	2014	12	1/	14		45.99	38.0388	25.5900	5.0	1.5	0.00	30.0	216.0	65.0	42.0	80.0	80.0	6
12 12 13 17 12.42 3 17 12.42 3 17 42.63 33.6498 12.43.71 11.6 1.8 8.56 10.0 190.0 40.0 9.0 10.00 290.0 55.0 58.0 80.0 81.0 8 2014 12 21 1 12 12 14 12 12 14 5 80.03 38.6498 23.432 11.5 1.8 8.32 13.0 193.0 40.0 40.0 40.0 80.0 81.0 81.0 2014 12 23 23 15.50 38.6412 23.3843 11.8 1.7 9.87 38.0 218.0 44.0 70.0 100.0 250.0 60.0 100.0 250.0 60.0 100.0 250.0 60.0 150.0 18.0 60.0 150.0 18.0 60.0 150.0 18.0 60.0 10.0 250.0 86.0 250.0 16.0 16.0 16.0 <	2014	12	1/	19	4	10.71	38.6429	23.414	10.3	2.1	9.36	22.0	202.0	48.0	40.0	120.0	224.0	C
12 13 14 15 18 15 18 12 13 13 14 10 13 12 10<	2014	12	21	3	1/	16.29	38.6451	23.43/1	11.6	1.6	8.50	10.0	190.0	40.0	9.0	100.0	230.0	5
121 12 13 13 13 13 13 14 14 15 14 10	2014	12	21	3	17	49.86	38.6537	23.4199	7.5	1.5	8.06	22.0	202.0	55.0	58.0	80.0	112.0	8
2014 12 23 23 4 5 30.03 38.8479 23.4322 11.5 1.8 8.32 13.0 193.0 40.0 42.0 50.0 90.0 8 2014 12 23 23 15.36 38.6512 33.843 11.8 17 9.87 38.0 218.0 44.0 70.0 150.0 222.0 C 2014 12 25 14 43 18.41 38.6573 23.575 14.3 1.1 14.898 314.0 44.0 54.0 170.0 100.0 225.0 C 2014 12 29 17 0.68 38.6507 23.977 11.0 1.5 9.08 33.0 213.0 44.0 30.0 50.0 65.0 A 2015 1 5 16 24.253 38.7042 34.452 1.0 3.1 9.2 30.0 48.0 19.0 40.0 80.0 60.0 62.0 A	2014	12	21	12	47	06.73	38.6498	23.4033	12.8	2.0	9.1	29.0	209.0	39.0	58.0	80.0	81.0	8
2014 12 22 23 3 15.36 38.6515 23.843 11.8 1.7 9.87 38.0 218.0 44.0 70.0 150.0 282.0 C 2014 12 25 9 50 65.53 38.641 23.429 5.8 19 8.72 15.0 195.0 50.0 100.0 50.0 50.0 100.0 225.0 C 2014 12 29 17 7 0.9.68 38.6507 23.855 11.5 1.8 11.03 45.0 225.0 45.0 60.0 150.0 110.0 8 2015 1 5 16 28 42.53 38.704 23.4929 13.0 3.1 3.92 347.0 527.0 49.0 35.0 60.0 62.0 A 2015 1 5 17 45 8.74 38.792 23.992 11.4 19 10.97 347.0 527.0 49.0 36.0 60.0	2014	12	23	4	5	30.03	38.6479	23.4332	11.5	1.8	8.32	13.0	193.0	40.0	42.0	50.0	90.0	В
2014 12 25 9 50 66.5 38.4541 23.429 5.8 1.9 8.72 15.0 195.0 60.0 100.0 50.0 55.0 8 2014 12 25 14 38.6327 23.3555 11.1 14.98 314.0 494.0 54.0 100.0 100.0 100.0 80.0 100.0 80.0 100.0 80.0 100.0 80.0 100.0 80.0 100.0 80.0 100.0 80.0 100.0 80.0 100.0 80.0 100.0 80.0 100.0 80.0 100.0 80.0	2014	12	23	23	3	15.36	38.6515	23.3843	11.8	1.7	9.87	38.0	218.0	44.0	70.0	150.0	282.0	C
2014 12 25 14 45 14 45 34.0 44.0 54.0 170.0 100.0 225.0 C 2014 12 29 17 7 09.68 38.6507 23.3655 11.5 1.6 11.03 45.0 225.0 48.0 60.0 150.0 110.0 8 2015 1 5 16 28 42.53 38.7014 23.4955 11.0 1.5 9.08 33.0 213.0 44.0 30.0 50.0 62.0 A 2015 1 5 16 28 42.53 38.7014 23.4856 11.4 19.097 347.0 527.0 49.0 38.0 60.0 62.0 A 2015 1 5 17 14 28 03.41 38.629 23.4916 11.8 2.7 36.0 224.0 54.0 65.0 35.00 277.0 C 2015 1 7 14 28	2014	12	25	9	50	06.65	38.6451	23.429	5.8	1.9	8.72	15.0	195.0	60.0	100.0	50.0	55.0	В
2014 12 29 17 7 09.88 38.6507 23.3651 1.5 1.8 11.03 45.0 225.0 48.0 60.0 150.0 110.0 B 2015 1 3 12 59 40.36 38.6507 23.3977 11.0 1.5 9.08 33.0 213.0 44.0 30.0 50.0 60.0 267.0 8 2015 1 5 16 46 24.69 38.6249 23.4856 11.4 1.9 10.97 347.0 527.0 49.0 38.0 60.0 62.0 A 2015 1 5 17 149 58.70 23.4988 13.9 10.25 39.0 519.0 40.0 38.0 60.0 65.0 35.0 27.7 C 2015 1 7 14 28 38.648 23.3929 11.49 28.0 28.0 50.0 65.0 35.0 67.0 70.0 63.0 67.0	2014	12	25	14	43	18.41	38.6273	23.5795	14.3	1.1	14.98	314.0	494.0	54.0	170.0	100.0	225.0	C
2015 1 3 12 59 40.36 38.6527 23.3977 11.0 1.5 9.06 33.0 213.0 44.0 30.0 50.0 65.0 65.0 A 2015 1 5 16 28 42.53 38.704 23.4929 13.0 3.1 3.92 304.0 484.0 19.0 55.0 60.0 64.0 A 2015 1 5 16 46 24.69 38.6249 23.4856 11.4 1.9 10.97 347.0 527.0 48.0 19.0 40.0 60.0 64.0 A 2015 1 5 17 14 28.672 33.92 1.6 1.9 11.49 28.0 208.0 50.0 65.0 35.0 27.70 C 2015 1 9 1 2 35.6487 23.3929 1.6 1.9 11.15 44.0 224.0 54.0 70.0 18.0 265.0 A	2014	12	29	17	7	09.68	38.6507	23.3655	11.5	1.8	11.03	45.0	225.0	48.0	60.0	150.0	110.0	В
2015 1 5 16 28 42.53 38.7014 23.4929 13.0 3.1 3.92 304.0 484.0 19.0 55.0 60.0 267.0 B 2015 1 5 16 46 24.69 38.624 23.4856 11.4 1.9 10.97 347.0 527.0 49.0 38.0 60.0 62.0 A 2015 1 5 17 45 88.77 38.704 23.4988 13.8 2.7 3.66 301.0 481.0 19.0 40.0 60.0 62.0 A 2015 1 7 14 28 03.41 38.6296 23.3929 11.6 1.9 11.15 44.0 224.0 54.0 74.0 180.0 285.0 A 2015 1 9 2 2 39.28 38.6487 23.3661 9.9 1.9 11.15 44.0 222.0 54.0 65.0 90.0 21.0 0.285.0	2015	1	3	12	59	40.36	38.6527	23.3977	11.0	1.5	9.08	33.0	213.0	44.0	30.0	50.0	65.0	A
2015 1 5 16 46 24.69 38.6249 23.4856 11.4 1.9 10.97 347.0 527.0 49.0 38.0 60.0 64.0 A 2015 1 5 17 19 58.47 38.7042 23.4916 11.8 2.7 3.666 301.0 481.0 19.0 40.0 60.0 62.0 A 2015 1 7 14 28 03.41 38.629 23.4988 1.9 10.25 339.0 519.0 40.0 38.0 60.0 63.0 A 2015 1 7 14 28 03.41 38.6487 23.3661 9.9 1.9 1.149 28.0 208.0 54.0 74.0 180.0 285.0 A 2015 1 9 5 10 35.8 38.488 23.71 9.9 2.0 10.87 42.0 222.0 54.0 65.0 90.0 215.0 C 2015 1 11 15 29 54.60 38.6488 23.71 1.7	2015	1	5	16	28	42.53	38.7014	23.4929	13.0	3.1	3.92	304.0	484.0	19.0	55.0	60.0	267.0	В
2015 1 5 17 19 58.47 38.7042 23.496 1.8 2.7 3.66 30.0 481.0 19.0 40.0 60.0 62.0 A 2015 1 5 17 54 58.74 38.635 23.498 13.9 1.9 10.25 339.0 519.0 40.0 68.0 60.0 63.0 A 2015 1 9 1.2 38.00 53.00 55.0 26.0 70.0 70.0 28.0 20.80 50.0 67.0 70.0 28.0 20.80 50.0 67.0 70.0 28.0 20.0 54.0 73.60 28.0 20.40 49.0 67.0 70.0 91.0 C 20.0 20.1 1 15 9 5 10 35.648 23.371 9.9 2.0 10.87 24.00 204.0 49.0 67.0 70.0 91.0 C 20.0 20.1 11 15 0 4	2015	1	5	16	46	24.69	38.6249	23.4856	11.4	1.9	10.97	347.0	527.0	49.0	38.0	60.0	64.0	A
2015 1 5 17 54 58.74 38.635 23.4988 13.9 1.9 10.25 339.0 519.0 40.0 38.0 60.0 63.0 A 2015 1 7 14 28 03.41 38.6497 23.929 11.6 1.9 1.49 28.0 208.0 50.0 50.0 65.0 35.0. 277.0 C 2015 1 9 1 2 35.00 38.6487 23.661 9.9 1.9 11.15 44.0 224.0 54.0 74.0 180.0 285.0 A 2015 1 9 5 10 35.58 38.6487 23.371 9.9 2.0 10.87 42.0 222.0 54.0 65.0 90.0 215.0 C 2015 1 15 0 4 06.37 38.620 2.3 16.2 28.0 208.0 81.0 60.0 90.0 218.0 8 2015	2015	1	5	17	19	58.47	38.7042	23.4916	11.8	2.7	3.66	301.0	481.0	19.0	40.0	60.0	62.0	A
2015 1 7 14 28 03.41 38.6296 23.3929 11.6 1.9 1.49 28.0 208.0 50.0 55.0 350.0 277.0 C 2015 1 9 1 2 30.00 38.6487 23.3661 9.9 1.9 11.15 44.0 224.0 54.00 74.0 180.0 285.0 A 2015 1 9 2 2 39.28 38.6487 23.361 9.9 1.9 1.15 44.0 204.0 49.0 67.0 70.0 91.0 C 2015 1 9 5 10 35.58 38.6486 23.371 9.9 2.0 10.87 42.0 221.0 54.00 65.0 90.0 215.0 C 2015 1 15 2 54.60 38.6501 23.4126 13.7 1.7 7.05 31.0 211.0 30.0 45.0 30.0 263.0 2 2 218.0 80.0 81.0 60.0 90.0 218.0 8 2 2 <	2015	1	5	17	54	58.74	38.635	23.4988	13.9	1.9	10.25	339.0	519.0	40.0	38.0	60.0	63.0	A
2015 1 9 1 2 35.00 38.6487 23.561 9.9 1.9 11.15 44.0 224.0 54.0 74.0 180.0 285.0 A 2015 1 9 2 2 39.28 38.6483 23.4122 9.5 1.6 8.88 24.0 204.0 49.0 67.0 70.0 91.0 C 2015 1 9 5 10 35.58 38.648 23.371 9.9 2.0 10.87 42.0 222.0 54.0 65.0 90.0 215.0 C 2015 1 11 15 29 54.60 38.668 23.412 1.7 1.7 7.05 31.0 211.0 30.0 45.0 30.0 263.0 2 2015 1 15 4 36 14.03 38.6501 23.402 1.8 8.92 28.0 208.0 28.0 268.0 46.0 55.0 40.0 80.0 A 2015 1 15 22 21.3 33.23 38.6286	2015	1	7	14	28	03.41	38.6296	23.3929	11.6	1.9	11.49	28.0	208.0	50.0	65.0	350.0	277.0	с
2015 1 9 2 2 39.28 38.6483 23.4122 9.5 1.6 8.88 24.0 204.0 49.0 67.0 70.0 91.0 C 2015 1 9 5 10 35.88 38.648 23.371 9.9 2.0 10.87 42.0 222.0 54.0 65.0 90.0 215.0 C 2015 1 11 15 29 54.60 38.668 23.412 13.7 1.7 7.05 31.0 211.0 30.0 45.0 30.0 263.0 C 2015 1 15 0 4 06.37 38.620 23.402 1.8 8.92 28.0 208.0 208.0 46.0 65.0 10.0 221.0 A 2015 1 15 22 2 1.87 38.628 23.400 20.0 11.28 24.00 204.0 46.0 65.0 130.0 90.0 A 2015 1 17 1 48 49.58 38.632 23.402 1.2 1	2015	1	9	1	2	35.00	38.6487	23.3661	9.9	1.9	11.15	44.0	224.0	54.0	74.0	180.0	285.0	Α
2015 1 9 5 10 35.58 38.6486 23.371 9.9 2.0 10.87 42.0 222.0 54.0 65.0 90.0 215.0 C 2015 1 11 15 29 54.60 38.668 23.4126 13.7 1.7 7.05 31.0 211.0 30.0 45.0 30.0 263.0 C 2015 1 15 0 4 06.37 38.620 23.862 2.2 1.5 12.67 28.0 208.0 208.0 45.0 53.0 40.0 80.00 8 2015 1 15 2 2 1.87 38.626 23.400 12.6 2.0 11.28 24.00 204.0 46.0 65.0 10.0 222.0 A 2015 1 15 22 13 33.23 38.628 23.402 12.3 11.2 23.00 203.0 46.0 65.0 10.0 22.0 A 2015 1 17 1 48 49.58 38.625 23.402	2015	1	9	2	2	39.28	38.6483	23.4122	9.5	1.6	8.88	24.0	204.0	49.0	67.0	70.0	91.0	С
2015 1 11 15 29 54.60 38.6668 23.4126 1.7 1.7 7.05 31.0 211.0 30.0 45.0 30.0 263.0 C 2015 1 15 0 4 06.37 38.6204 23.882 2.2 1.5 12.67 28.0 208.0 81.0 60.0 90.0 218.0 8 2015 1 15 2 2 1.87 38.620 23.407 10.2 1.8 8.92 28.0 208.0 46.0 53.0 40.0 80.0 8 2015 1 15 22 2 1.87 38.626 23.403 12.6 2.0 11.28 24.0 204.0 46.0 65.0 10.0 222.0 A 2015 1 17 1 48 49.58 38.632 23.403 12.2 1 10.56 21.0 201.0 47.0 70.0 50.0 269.0 C 2015 1 17 2 13 29.07 38.626 23.403 14	2015	1	9	5	10	35.58	38.6486	23.371	9.9	2.0	10.87	42.0	222.0	54.0	65.0	90.0	215.0	С
2015 1 15 0 4 06.37 38.6204 23.3862 2.2 1.5 12.67 28.0 208.0 81.0 60.0 90.0 218.0 8 2015 1 15 4 36 14.03 38.6501 23.407 10.2 1.8 8.92 28.0 208.0 46.0 53.0 40.0 80.0 8 2015 1 15 22 2 1.87 38.626 23.409 12.6 2.0 11.28 24.0 204.0 46.0 65.0 100.0 222.0 A 2015 1 15 22 13 33.23 38.628 23.409 12.4 2.3 11.2 23.0 203.0 45.0 65.0 100.0 220.0 A 2015 1 17 1 48 49.58 38.6325 23.4104 1.4 2.1 10.56 21.00 201.0 45.0 65.0 40.0 265.0 8 2015 1 17 2 13 29.07 38.642 23.3723	2015	1	11	15	29	54.60	38.6668	23.4126	13.7	1.7	7.05	31.0	211.0	30.0	45.0	30.0	263.0	С
2015 1 15 4 36 14.03 38.6501 23.4067 10.2 1.8 8.92 28.0 208.0 46.0 53.0 40.0 80.0 B 2015 1 15 22 2 21.87 38.626 23.4009 12.6 2.0 11.28 24.00 204.0 46.0 65.0 100.0 222.0 A 2015 1 15 22 13 33.32 38.626 23.4032 12.3 2.3 11.2 23.0 20.0 46.0 65.0 100.0 222.0 A 2015 1 17 1 48 49.58 38.6325 23.403 14.2 1.7 10.56 21.0 201.0 47.0 70.0 50.0 269.0 C 2015 1 17 2 13 29.07 38.626 23.403 14.2 1.7 11.64 20.0 20.0 45.0 65.0 40.0 265.0 B 2015 1 17 8 39 45.40 38.642 23.723	2015	1	15	0	4	06.37	38.6204	23.3862	2.2	1.5	12.67	28.0	208.0	81.0	60.0	90.0	218.0	в
2015 1 15 22 2 21.87 38.626 23.4009 12.6 2.0 11.28 24.0 204.0 46.0 65.0 100.0 222.0 A 2015 1 15 22 13 33.32 38.626 23.4032 12.3 2.3 11.2 23.0 20.0 46.0 65.0 130.0 90.0 A 2015 1 17 1 48 49.58 38.6325 23.404 11.4 2.1 10.56 21.0 201.0 47.0 70.0 50.0 269.0 C 2015 1 17 2 13 29.07 38.626 23.408 14.2 1.7 11.64 20.0 20.0 45.0 65.0 40.0 25.0 8 2015 1 17 8 39 45.40 38.642 23.3723 10.2 1.5 11.16 40.0 220.0 53.0 68.0 12.0 58.0 8 8 20.10 12.0 10.0 218.0 8 10.0 218.0 8	2015	1	15	4	36	14.03	38.6501	23.4067	10.2	1.8	8.92	28.0	208.0	46.0	53.0	40.0	80.0	В
2015 1 15 22 13 33.32 38.626 23.4032 12.3 2.3 11.2 23.0 20.0 46.0 65.0 130.0 90.0 A 2015 1 17 1 48 49.58 38.6325 23.404 11.4 2.1 10.56 21.0 201.0 47.0 70.0 50.0 269.0 C 2015 1 17 2 13 29.07 38.625 23.404 14.4 2.1 10.56 20.0 20.0 45.0 65.0 40.0 265.0 B 2015 1 17 8 39 45.40 38.642 23.3723 10.2 1.5 11.16 40.0 220.0 53.0 68.0 120.0 58.0 B 2015 1 17 15 33 46.02 38.642 23.3723 10.2 1.5 11.16 40.0 220.0 53.0 68.0 120.0 58.0 B 2015 1 17 15 33 46.02 38.648 23.4106	2015	1	15	22	2	21.87	38.6286	23.4009	12.6	2.0	11.28	24.0	204.0	46.0	65.0	100.0	222.0	Α
2015 1 1 48 49.58 38.6325 23.4104 1.4 2.1 10.56 21.0 201.0 47.0 70.0 50.0 269.0 C 2015 1 17 2 13 29.07 38.626 23.408 14.2 1.7 11.64 20.0 20.00 45.0 65.0 40.0 265.0 8 2015 1 17 8 39 45.40 38.642 23.3723 10.2 1.5 11.16 40.0 220.0 53.0 68.0 120.0 58.00 8 2015 1 17 15 33 46.02 23.3723 10.2 1.5 11.16 40.0 220.0 53.0 68.0 120.0 58.00 8 2015 1 17 15 33 46.02 23.861 2.5 1.6 13.8 25.0 205.0 80.0 22.0 10.0 218.0 8 2015 1	2015	1	15	22	13	33.32	38.6286	23.4032	12.3	2.3	11.2	23.0	203.0	46.0	65.0	130.0	90.0	Α
2015 1 17 2 13 29.07 38.6226 23.4085 14.2 1.7 11.64 20.0 200.0 45.0 65.0 40.0 265.0 8 2015 1 17 8 39 45.40 38.642 23.3723 10.2 1.5 11.16 40.0 220.0 53.0 68.0 120.0 58.00 8 2015 1 17 15 33 46.02 23.3723 1.2 1.5 11.16 40.0 220.0 53.0 68.0 120.0 58.00 8 2015 1 17 15 33 46.02 23.861 2.5 1.6 13.8 25.0 205.0 80.0 22.0 100.0 218.0 8 2015 1 17 18 43 46.75 38.6818 23.406 11.7 1.6 5.82 41.0 21.0 29.0 43.0 40.0 248.0 8 20.0 11.0	2015	1	17	1	48	49.58	38.6325	23.4104	11.4	2.1	10.56	21.0	201.0	47.0	70.0	50.0	269.0	С
2015 1 17 8 39 45.40 38.6442 23.3723 10.2 1.5 11.16 40.0 220.0 53.0 68.0 120.0 58.0 8 2015 1 17 15 33 46.02 38.609 23.3861 2.5 1.6 13.8 25.0 205.0 80.0 22.0 100.0 218.0 8 2015 1 17 18 43.3 46.75 38.6818 23.406 11.7 1.6 5.82 41.0 221.0 29.0 43.0 120.0 11.0 8 2015 1 17 19 3 34.98 38.647 23.961 11.9 1.5 9.52 32.0 21.0 43.0 40.0 248.0 8	2015	1	17	2	13	29.07	38.6226	23.4085	14.2	1.7	11.64	20.0	200.0	45.0	65.0	40.0	265.0	В
2015 1 17 15 33 46.02 38.609 23.3861 2.5 1.6 13.8 25.0 205.0 80.0 22.0 100.0 218.0 8 2015 1 17 18 43.4 46.75 38.6818 23.406 11.7 1.6 5.82 41.0 221.0 29.0 43.0 120.0 11.0 8 2015 1 17 19 3 34.98 38.6487 23.961 1.9 1.5 9.52 32.0 21.0 43.0 46.0 40.0 248.0 8	2015	1	17	8	39	45.40	38.6442	23.3723	10.2	1.5	11.16	40.0	220.0	53.0	68.0	120.0	58.0	В
2015 1 17 18 43 46.75 38.6818 23.4106 11.7 1.6 5.82 41.0 221.0 29.0 43.0 120.0 11.0 8 2015 1 17 19 3 34.98 38.6487 23.3961 11.9 1.5 9.52 32.0 21.0 43.0 40.0 248.0 8	2015	1	17	15	33	46.02	38.609	23.3861	2.5	1.6	13.8	25.0	205.0	80.0	22.0	100.0	218.0	В
2015 1 17 19 3 34.98 38.6487 23.3961 11.9 1.5 9.52 32.0 212.0 43.0 46.0 40.0 248.0 8	2015	1	17	18	43	46.75	38.6818	23.4106	11.7	1.6	5.82	41.0	221.0	29.0	43.0	120.0	11.0	В
	2015	1	17	19	3	34.98	38.6487	23.3961	11.9	1.5	9.52	32.0	212.0	43.0	46.0	40.0	248.0	В

2015	1	17	23	23	58.17	38.6762	23.4006	10.2	1.5	6.87	43.0	223.0	38.0	65.0	130.0	44.0	В
2015	1	19	9	33	55.00	38.6915	23.4166	13.5	1.5	4.69	45.0	225.0	21.0	65.0	130.0	83.0	С
2015	1	19	23	9	38.82	38.642	23.4047	15.3	1.7	9.8	26.0	206.0	37.0	60.0	140.0	78.0	С
2015	1	21	13	34	20.90	38.6493	23.3336	12.6	2.1	13.24	53.0	233.0	51.0	58.0	100.0	53.0	В
2015	1	21	13	39	05.81	38.6427	23.33	12.8	1.6	13.93	51.0	231.0	52.0	58.0	100.0	50.0	Α
2015	1	25	5	47	50.04	38.7945	23.4579	5.9	1.8	8.18	182.0	362.0	57.0	33.0	110.0	71.0	Α
2015	1	25	20	5	00.00	38.6047	23.4853	24.5	1.0	13.15	349.0	529.0	31.0	33.0	100.0	72.0	С
2015	1	27	2	38	15.97	38.733	23.6064	7.7	1.4	13.21	265.0	445.0	71.0	56.0	90.0	79.0	Α
2015	1	29	10	2	52.02	38.6248	23.4016	5.1	2.2	11.64	23.0	203.0	72.0	62.0	140.0	252.0	С
2015	1	29	12	6	57.04	38.628	23.4096	13.0	1.8	11.05	21.0	201.0	44.0	66.0	40.0	269.0	в
2015	1	31	21	40	31.69	38.6664	23.4683	11.8	2.8	6.15	350.0	530.0	30.0	70.0	30.0	111.0	В
2015	2	1	1	44	53.53	38.6047	23.4716	23.0	1.7	12.97	354.0	534.0	33.0	25.0	110.0	55.0	в
2015	2	1	15	44	46.11	38.6354	23.3707	6.0	1.8	12.01	37.0	217.0	89.0	63.0	180.0	118.0	Α
2015	2	3	9	10	51.70	38.6231	23.4264	17.6	1.8	11.14	13.0	193.0	36.0	50.0	110.0	281.0	С
2015	2	3	23	48	58.94	38.6401	23.3689	10.6	1.6	11.7	39.0	219.0	53.0	60.0	40.0	258.0	Α
2015	2	11	1	6	43.90	38.6382	23.4009	11.9	1.7	10.32	27.0	207.0	45.0	0.0	0.0	0.0	в
2015	2	13	6	34	15.39	38.6408	23.3969	9.3	2.0	10.23	29.0	209.0	54.0	61.0	80.0	285.0	В
2015	2	15	2	2	20.39	38.794	23.3104	17.9	1.4	14.99	122.0	302.0	45.0	60.0	110.0	277.0	Α
2015	2	17	10	6	21.33	38.632	23.3843	5.9	2.6	11.63	32.0	212.0	67.0	60.0	70.0	258.0	Α
2015	2	19	0	54	15.21	38.6313	23.3939	8.2	2.6	11.29	28.0	208.0	63.0	65.0	150.0	113.0	В
2015	2	21	15	2	41.25	38.6402	23.373	9.0	2.0	11.47	38.0	218.0	60.0	70.0	150.0	100.0	В
2015	2	25	14	25	38.95	38.6317	23.4111	6.0	2.1	10.61	21.0	201.0	89.0	58.0	50.0	83.0	Α
2015	2	27	17	58	16.99	38.597	23.5205	0.0	1.7	14.87	338.0	518.0	90.0	8.0	130.0	22.0	В

<u>Πίνακας 4.2</u>: Παράμετροι σχάσης με βαθμό Α,Β ή C των σεισμών που αναλύθηκαν στον σταθμό DAFN για τη χρονική περίοδο Νοέμβριος 2014 εώς Φεβρουάριος 2015.

Η χρονική καθυστέρηση παίρνει τιμές από 0.03 sec εώς 0.35 sec με μέση τιμή τα 0.076 sec ± 0.005 sec. Τέλος από την ισεμβαδική προβολή παρατηρείται ότι έχει επιτευχθεί αζιμουθιακή κάλυψη. Όμως οι περισσότερες μετρήσεις συναντώνται στα ΝΝΔ του σταθμού.

Σχήμα 4.2.2: Ισεμβαδική προβολή για τους σεισμούς που έχουν καταγραφεί από τον σταθμό DAFN. Το μήκος των γραμμών είναι ανάλογο της χρονικής

καθυστέρησης των δύο εγκαρσίων κυμάτων που έχουν υποστεί σχάση. Ο εξωτερικός κύκλος αναπαριστά την γωνία πρόσπτωσης που ισούται με 45°.

4.3 <u>ΜΑΛΕΣΙΝΑ-ΜΑLE</u>

Ο σταθμός MALE ανήκει στο σεισμολογικό δίκτυο του Εργαστηρίου Σεισμολογίας του Πανεπιστημίου Αθηνών. Βρίσκεται στην περιοχή της Μαλεσίνας, στη Στερεά Ελλάδα και συγκεκριμένα στη θέση 38.6328°B, 23.2431°A. Ο αριθμός των σεισμικών γεγονότων που αναλύθηκαν και πληρούν τα κριτήρια που έχουν αναφερθεί παραπάνω είναι 16 εκ των οποίων αυτά με βαθμό A,B ή C είναι 9. Οι παράμετροι σχάσης τους εμφανίζονται στον πίνακα 4.3. Η μέση διεύθυνση ανισοτροπίας είναι B93.3° ± 3.1° και οι τιμές των επιμέρους διευθύνσεων πόλωσης του ταχέος εγκαρσίου κύματος κυμαίνονται μεταξύ B5° έως B164°.

Έτος	Μήνας	Ημέρα	Ώρα	Λεπτά	Δευ/πτα	Г.П. (°)	Г.М. (°)	Βάθος (km)	Mw	Επικ. Απόσταση (km)	Αζιμούθιο (°)	Οπισθαζιμούθιο (°)	Γ. Ανάδυσης (°)	Sfast (°)	∆t (ms)	Πόλωση Πηγής (°)	Grade
2014	11	29	2	32	05.10	38.6435	23.393	10.6	1.6	13.61	274.0	454.0	59.0	99.0	40.0	112.0	В
2014	12	1	3	50	26.55	38.6478	23.3431	10.9	1.7	8.86	259.1	79.1	23.1	87.9	30.0	113.0	C
2014	12	11	16	47	42.28	38.6162	23.3915	7.0	1.8	13.05	278.1	98.1	33.5	87.6	70.0	52.2	Α
2014	12	11	20	31	24.51	38.6184	23.3923	8.4	1.7	13.09	277.0	97.0	57.4	80.7	160.0	29.4	Α
2014	12	11	21	44	44.99	38.6375	23.3519	10.2	1.9	9.49	266.8	86.8	25.2	99.0	60.0	112.3	С
2014	12	13	5	14	23.24	38.6358	23.3996	11.6	1.9	13.63	268.6	88.6	28.0	93.2	180.0	83.5	C
2014	12	13	5	28	19.16	38.4860	23.5177	14.1	2.3	28.96	304.2	124.2	32.6	110.7	100.0	140.1	Α
2014	12	13	7	20	41.24	38.4776	23.5133	12.1	2.1	29.18	306.1	126.1	34.0	97.1	200.0	69.7	C
2014	12	13	7	24	05.15	38.4899	23.5193	14.3	2.1	28.83	303.3	123.3	32.5	85.0	70.0	68.2	В
2014	12	13	7	56	04.63	38.4809	23.5108	14.2	2.1	28.79	305.8	125.8	32.5	99.0	120.0	125.8	В

Πίνακας 4.3: Παράμετροι σχάσης των σεισμών με βαθμό Α, Β ή C που αναλύθηκαν στον σταθμό MALE για τη χρονική περίοδο Νοέμβριος και Δεκέμβριος 2014.

Οι διευθύνσεις αυτές παρουσιάζονται και στο ροδόγραμα (σχήμα 4.3.1), όπου παρατηρούνται δύο κύριες διευθύνσεις πολύ κοντινές μεταξύ τους, περίπου Α-Δ.

Σχήμα 4.3.1: Ροδόγραμμα της διεύθυνσης πόλωσης του ταχέος εγκαρσίου κύματος του σταθμού MALE, N: ο αριθμός των μετρήσεων, F: αριθμός μετρήσεων που περιέχονται σε κάθε κύκλο.

Η χρονική καθυστέρηση στον σταθμό MALE κυμαίνεται μεταξύ 0.01 sec εώς 0.2 sec με μέση τιμή τα 0.043 sec ± 0.014 sec. Όσον αφορά την ισεμβαδική προβολή, όπως φαίνεται από το σχήμα 4.3.2, δεν έχει επιτευχθεί αζιμουθιακή κάλυψη καθώς όλες οι μετρήσεις προβάλλονται στα ανατολικά. Αυτό μπορεί να οφείλεται στη θέση του σταθμού σε σχέση με τον Ευβοϊκό Κόλπο.

Σχήμα 4.3.2: Ισεμβαδική προβολή για τους σεισμούς που έχουν καταγραφεί από τον σταθμό MALE. Το μήκος των γραμμών είναι ανάλογο της χρονικής καθυστέρησης των δύο εγκαρσίων κυμάτων που έχουν υποστεί σχάση. Ο εξωτερικός κύκλος αναπαριστά την γωνία πρόσπτωσης που ισούται με 45°.

4.4 <u>ΛΙΜΝΗ-LIMN:</u>

Ο σταθμός LIMN είχε εγκατασταθεί στην Λίμνη Ευβοίας στη θέση 38.7372°B, 23.3403°A. Ο αριθμός των σεισμικών γεγονότων που πληρούν τα κριτήρια είναι 19 εκ των οποίων αυτά με βαθμό A, B ή C είναι 18. Οι παράμετροι σχάσης βρίσκονται στον πίνακα 4.4 παρακάτω. Η μέση διεύθυνση ανισοτροπίας είναι B120.6° ± 9.6° και οι τιμές των επιμέρους διευθύνσεων πόλωσης κυμαίνονται μεταξύ B5° εώς B164°. Το ροδόγραμμα στο σχήμα 4.4.1 αναπαριστά τις παραπάνω διευθύνσεις. Η κύρια διεύθυνση που παρατηρείται είναι περίπου B120°.

Έτος	Μήνας	Ημέρα	Ώρα	Λεπτά	Δευ/πτα	Г.П. (°)	Г.М. (°)	Βάθος (km)	Mw	Επικ. Απόσταση (km)	Αζιμούθιο (°)	Οπισθαζιμούθιο (°)	Γ. Ανάδυσης (°)	Sfast (°)	Δt (ms)	Πόλωση Πηγής (°)	Grade
2014	11	29	5	33	56.02	38.641	23.4301	12.4	1.7	13.23	241.0	421.0	51.0	100.0	70.0	300.0	С
2014	11	29	8	41	54.94	38.6475	23.3624	12.3	2.0	9.15	219.0	399.0	40.0	115.0	50.0	125.0	Α
2014	11	29	19	42	07.96	38.6407	23.373	10.5	1.5	9.2	226.0	406.0	46.0	120.0	70.0	195.0	С
2014	12	3	13	45	46.12	38.6486	23.3931	11.7	1.8	11.08	229.0	409.0	48.0	155.0	140.0	30.0	Α
2014	12	3	14	13	39.97	38.6225	23.3909	14.9	1.9	9.25	242.0	422.0	36.0	65.0	120.0	95.0	С
2014	12	11	16	47	42.04	38.6674	23.4009	11.9	1.8	13.01	224.0	404.0	52.0	125.0	90.0	145.0	С
2014	12	11	21	44	44.95	38.6446	23.3529	12.4	1.9	8.39	215.0	395.0	37.0	110.0	70.0	313.0	В
2014	12	11	22	32	24.84	38.6502	23.4016	12.6	2.1	11.75	231.0	411.0	47.0	155.0	120.0	0.0	В
2014	12	13	1	8	42.36	38.6462	23.3924	11.4	1.8	10.86	230.0	410.0	48.0	99.0	90.0	291.0	В
2014	12	17	14	55	43.99	38.6588	23.3966	5.0	1.5	12.07	226.0	406.0	73.0	0.0	0.0	0.0	С
2014	12	19	8	38	11.34	38.6485	23.3762	10.1	1.6	10.01	224.0	404.0	50.0	100.0	90.0	123.0	С
2014	12	21	12	47	06.73	38.6498	23.4033	12.8	2.0	11.84	232.0	412.0	47.0	118.0	60.0	90.0	В
2014	12	23	23	3	15.36	38.6515	23.3843	11.8	1.7	10.74	225.0	405.0	47.0	113.0	90.0	331.0	В
2015	1	5	15	4	14.15	38.6353	23.4117	13.9	3.2	11.53	240.0	420.0	43.0	118.0	80.0	155.0	В
2015	1	7	14	28	03.41	38.6296	23.3929	11.6	1.9	9.79	238.0	418.0	44.0	61.0	90.0	93.0	С
2015	1	9	5	10	35.58	38.6486	23.371	9.9	2.0	9.71	222.0	402.0	50.0	26.0	80.0	76.0	В
2015	1	15	4	36	14.03	38.6501	23.4067	10.2	1.8	12.09	232.0	412.0	56.0	164.0	110.0	202.0	В
2015	1	17	8	39	45.40	38.6442	23.3723	10.2	1.5	9.43	224.0	404.0	48.0	5.0	50.0	40.0	В

Πίνακας 4.4: Παράμετροι σχάσης των σεισμών με βαθμό Α, Β ή C που αναλύθηκαν στον σταθμό LIMN για τη χρονική περίοδο Νοέμβριος 2014 εώς Ιανουάριος 2015.

Σχήμα 4.4.1: Ροδόγραμμα της διεύθυνσης πόλωσης του ταχέος εγκαρσίου κύματος του σταθμού LIMN, Ν: ο αριθμός των μετρήσεων, F: αριθμός μετρήσεων που περιέχονται σε κάθε κύκλο.

Η χρονική καθυστέρηση στον σταθμό LIMN κυμαίνεται μεταξύ 0.05 sec εώς 0.14 sec με μέση τιμή τα 0.084 ± 0.007 sec. Όσον αφορά την ισεμβαδική προβολή, όπως φαίνεται από το σχήμα 4.4.2, δεν έχει επιτευχθεί αζιμουθιακή κάλυψη καθώς όλες οι μετρήσεις προβάλλονται στα BBA. Αυτό μπορεί να οφείλεται στη θέση του σταθμού σε σχέση με τον Ευβοϊκό Κόλπο.

Σχήμα 4.4.2: Ισεμβαδική προβολή για τους σεισμούς που έχουν καταγραφεί από τον σταθμό LIMN. Το μήκος των γραμμών είναι ανάλογο της χρονικής καθυστέρησης των δύο εγκαρσίων κυμάτων που έχουν υποστεί σχάση. Ο εξωτερικός κύκλος αναπαριστά την γωνία πρόσπτωσης που ισούται με 45°.

Στον πίνακα 4.5 παρουσιάζονται η μέση διεύθυνση ανισοτροπίας και η μέση χρονική καθυστέρηση για κάθε σταθμό που μελετήθηκε παραπάνω, καθώς και τα αντίστοιχα σφάλματα τους.

ΣΤΑΘΜΟΙ	ΜΕΣΗ ΔΙΕΥΘΥΝΣΗ ΑΝΙΣΟΤΡΟΠΙΑΣ (°)	ΣΦΑΛΜΑ ΜΕΣΗΣ ΔΙΕΥΘΥΝΣΗΣ ΑΝΙΣΟΤΡΟΠΙΑΣ (°)	MEΣΗ XPONIKH KAΘYΣΤΕΡΗΣΗ (ms)	ΣΦΑΛΜΑ ΜΕΣΗΣ ΧΡΟΝΙΚΗΣ ΚΑΘΥΣΤΕΡΗΣΗΣ (ms)
DAF1	66.8	6.8	73.1	5.7
DAFN	54.4	2.2	76.2	5.3
LIMN	120.6	9.6	84.4	7.0
MALE	93.3	3.1	43.2	13.6
ALL	61.8	2.8	74.9	3.4

Πίνακας 4.5: Συνοπτικά αποτελέσματα παραμέτρων σεισμικής ανισοτροπίας για όλους τους σταθμούς μελέτης.

5. <u>ΣΥΜΠΕΡΑΣΜΑΤΑ</u>

Το βόρειο τμήμα της Εύβοιας εντοπίζεται μεταξύ δύο μεγάλων τεκτονικών τάφρων ηλικίας Τεταρτογενούς, του βόρειου Ευβοϊκού Κόλπου και της τεκτονικής λεκάνης που βρίσκεται στο Αιγαίο (Palyvos et al., 2006). Η περιοχή αποτελείται από ένα σημαντικό αριθμό ενεργών ρηγμάτων. Η πιο σημαντική και καλά μελετημένη δομή ρήγματος είναι το ρήγμα της Αταλάντης, με διεύθυνση ΒΔ-ΝΑ. Δύο επίσης αξιοσημείωτες δομές είναι οι ζώνες ρηγμάτων των Καμμένων Βούρλων και του Καλλίδρομου. Επιπλέον, εμφανίζονται και κάποιες μικρότερες ζώνες ρηγμάτων στην χερσόνησο της Μαλεσίνας με διέυθυνση ΒΑ-ΝΔ (Palyvos, 2001, Mouzakiotis et al., 2013)

Στο ανατολικό τμήμα της Εύβοιας επικρατούν μηχανισμοί γένεσης που υποδεικνύουν ρήγματα οριζόντιας ολίσθησης λόγω των κλάδων του δεξιόστροφου ρήγματος της Ανατολίας το οποίο εκτείνεται μέχρι το βόρειο Αιγαίο. Στα δυτικά οι μηχανισμοί γένεσης αλλάζουν σταδιακά σε κανονικά ρήγματα εξαιτίας της επέκτασης της κεντρικής Ελλάδας σε διεύθυνση Β-Ν. Με άλλα λόγια η Εύβοια βρίσκεται στο σταυροδρόμι μεταξύ των δύο αυτών τύπων ρηγμάτων. Οι μόνοι διαθέσιμοι προς μελέτη μηχανιμοί γένεσης στην Εύβοια συγκεντρώνονται στο βόρειο τμήμα της, όπου επικρατεί μια διάχυτη εικόνα ρηγμάτων οριζόντιας ολίσθησης και κανονικών ρηγμάτων (Benetatos et al., 2004).

Ο βόρειος Ευβοϊκός Κόλπος χαρακτηρίζεται από δύο πεδία τάσεων ένα διευθύνσεως ΒΑ-ΝΔ και ένα διευθύνσεως ΔΒΔ-ΑΝΑ. Η μετάβαση από το ένα πεδίο στο άλλο είναι προοδευτική και ο ρυθμός παραμόρφωσης εντείνεται από το βορρά προς το νότο. Οι κύριες τεκτονικές διαδικασίες είναι η οριζόντια ολίσθηση και ο εφελκυσμός. Λόγω αυτών των επεκτατικών διαδικασιών παρατηρούνται κανονικά ρήγματα σε πολλές από τις τοπικές λεκάνες. Συχνά παρατηρείται και συμπίεση, μικρής όμως σημασίας, στις ενδιάμεσες περιοχές (Papoulia et al., 2006).

Η περιοχή έχει πληγεί από μια σειρά καταστροφικών σεισμών από τα αρχαία χρόνια, με τους πιο σημαντικούς εκείνους του 426 π.Χ., 105, 551, 20 και 27 Απριλίου 1894. Οι δύο τελευταίοι σεισμοί έπληξαν την περιοχή από τον Άγιο Κωνσταντίνο στα βορειοδυτικά μέχρι τη Λάρυμνα στα νοτιονατολικά (Papanastassiou et al., 2001). Ο πιο πρόσφατος σεισμός μεγάλου μεγέθους πραγματοποιήθηκε στις 27 Απριλίου του 1894, όταν κατά τη διάρκεια της σεισμικής ακολουθίας της Αταλάντης, το ομώνυμο ρήγμα διαρρήχθηκε για παραπάνω από 30 km. Ακολούθησε ένα τσουνάμι που πλημμύρησε τις χαμηλές παράκτιες πεδιάδες της Αταλάντης (Sakellariou et al., 2007). Από εκείνη τη χρονική περίοδο και έπειτα παρατηρείται απουσία γεγονότων μεγάλου μεγέθους, συγκεκριμένα μεγαλύτερα του 6 (Ganas et al., 2016). Στις 17 Νοεμβρίου 2014 δύο επιφανειακοί σεισμοί έπληξαν την περιοχή του βόρειου Ευβοϊκού Κόλπου, μεταξύ της χερσονήσου της Μαλεσίνας και του όρους Καντηλίου ενώ μέχρι και τον Ιανουάριο 2015 παρατηρήθηκαν ισχυροί μετασεισμοί. Τέλος στις 9 Ιουνίου 2015 πραγματοποιήθηκε άλλος ένας σεισμός μεγέθους Mw=5.2.

Έτσι επιλέχθηκε μία χρονική περίοδος από τον Νοέμβριο 2014 εώς τον Φεβρουάριο 2015 για την ανάλυση της συμπεριφοράς της σχάσης των εγκαρσίων κυμάτων στην περιοχή του βόρειου Ευβοϊκού Κόλπου. Μελετήθηκαν 157 σεισμοί για τους οποίους προσδιορίστηκαν οι παράμετροι ανισοτροπίας, μετά από την εφαρμογή των κριτήριων επιλογής, από 4 σεισμολογικούς σταθμούς. Οι διευθύνσεις πόλωσης του ταχέος εγκαρσίου κύματος για κάθε σταθμό που μελετήθηκε για την χρονική περίοδο 2014-2015 παρουσιάζονται στο συγκεντρωτικό ροδόγραμμα ίσων εμβαδών (σχήμα 10). Παρατηρείται μια γενική διεύθυνση ΑΒΑ-ΔΝΔ. Πιο συγκεκριμένα στον σταθμό DAF1 η μέση διεύθυνση πόλωσης είναι B66.8° ± 6.8°. Στον σταθμό DAFN η μέση διεύθυνση πόλωσης είναι B54.4° ± 2.2° ενώ στον σταθμό MALE ισούται με B93.3° ± 3.1°. Τέλος η μέση διεύθυνση πόλωσης για τον σταθμό LIMN έχει υπολογιστεί ίση με B120.6° ± 9.6° (πίνακας 4.5).

Σχήμα 10: Συγκεντρωτικό ροδόγραμμα ίσων εμβαδών των πολώσεων του ταχέος εγκαρσίου κύματος που έχουν μετρηθεί σε όλους τους σταθμούς (ALL), Ν: ο αριθμός των μετρήσεων, F: αριθμός μετρήσεων που περιέχονται σε κάθε κύκλο.

Σχήμα 11: Χάρτης μέσων διευθύνσεων πόλωσης του ταχέος εγκαρσίου κύματος για όλους τους σταθμούς μελέτης. Τα μαύρα ευθύγραμμα τμήματα στο κέντρο κάθε σταθμού συμβολίζουν τις μέσες διευθύνσεις πόλωσης που έχουν υπολογιστεί παραπάνω και το μήκος τους είναι ανάλογο της μέσης χρονικής καθυστέρησης. Με κύκλους συμβολίζονται τα επίκεντρα των σεισμών που μελετήθηκαν. Η διάμετρος κάθε κύκλου είναι ανάλογη του μεγέθους του σεισμού. Παρουσιάζονται και οι μηχανισμοί γένεσης των 3 κύριων γεισμικών γεγονότων.

Από τα παραπάνω αποτελέσματα διακρίνεται η ύπαρξη ανισοτροπικού ανώτερου φλοιού γύρω από τον Ευβοϊκό Κόλπο. Στην περιοχή του βόρειου Ευβοϊκού Κόλπου κυριαχούν δύο κύρια πεδία τάσεων: ένα με διεύθυνση ΒΑ-NΔ (Kapetanidis and Kassaras, 2019) και ένα με διεύθυνση ΔΒΔ-ANA. Όπως φαίνεται στο σχήμα 11, η διεύθυνση πόλωσης στους σταθμούς DAFN και DAF1 συμφωνεί με το δεύτερο πεδίο τάσεων ενώ στους σταθμούς MALE και LIMN η διεύθυνση πόλωσης ταυτίζεται με αυτή του πρώτου πεδίου. Σημειώνεται ότι η διεύθυνση ανισοτοπίας στον σταθμό LIMN είναι περίπου παράλληλη με τη μεγαλύτερη τεκτονική δομή στην περιοχή μελέτης, το ρήγμα της Αταλάντης. Επιπλέον οι μηχανισμοί γένεσης των κύριων σεισμών που εκδηλώθηκαν στην περιοχή του βόρειου Ευβοϊκού Κόλπου συνδέονται με ένα ΒΔ-ΝΑ πλαγιοκανονικό αριστερόστροφο ρήγμα, γεγονός που συμφωνεί με τις ρηξιγενείς ζώνες της περιοχής. Ταυτόχρονα, κοντά στους σταθμούς DAFN και DAF1 εμφανίζονται τα ρήγματα Προκοπίου-Πηλίου που έχουν παρόμοια διεύθυνση με αυτή της μέσης πόλωσης του σταθμού. Σύμφωνα με τους Palyvos et al. (2006), πρόκειται για τη νεοτεκτονική ζώνη ρηγμάτων

Προκοπίου-Πηλίου, η οποία εκτείνεται νοτιοδυτικά μέχρι τη ζώνη ρηγμάτων που τέμνει το όρος Καντηλίου. Η ζώνη αυτή τέμνει εγκάρσια τα ΒΔ-ΝΑ διευθύνσεως ενεργά ρήγματα που οριοθετούν την βόρεια Εύβοϊα στη συγκεκριμένη περιοχή και είναι ευθυγραμμισμένα ή τείνουν να ευθυγραμμιστούν με εγκάρσιες δομές στην ηπειρωτική χώρα. Η ζώνη ρηγμάτων Προκοπίου-Πηλίου ενεργοποιήθηκε μετά από την εναπόθεση των Νεογενών αποθέσεων της λεκάνης Λίμνης-Ιστιαίας κατά το Τεταρτογενές.

Όσον αφορά τις χρονικές καθυστερήσεις μεταξύ των δύο εγκαρσίων κυμάτων που έχουν υποστεί σχάση, κυμαίνονται από 0.043 sec εώς 0.084 sec με μέση τιμή τα 0.075 sec ± 0.003 sec (πίνακας 4.5). Η μεγαλύτερη χρονική καθυστέρηση παρατηρείται στον σταθμό LIMN. Για τους σταθμούς DAF1 και DAFN οι τιμές είναι πολύ κοντινές και είναι επίσης αρκετά υψηλές. Ενώ για τον σταθμό MALE η τιμή είναι σχεδόν η μισή. Η διαφορά αυτή μπορεί να οφείλεται στον μεγαλύτερο λόγο πλάτυνσης των μικρορωγμών αλλά και την μεγαλύτερη πυκνότητα τους στο βόρειο Ευβοϊκό Κόλπο.

<u>ΒΙΒΛΙΟΓΡΑΦΙΑ:</u>

Aster, R. C., Shearer, P. M., Berger, J., 1990. Quantitative Measurements of Shear Wave Polarizations at the Anza Seismic Network, Southern California: Implications for Shear Wave Splitting and Earthquake Prediction, Journal of Geophysical Research, 95, 12.449-12.473.

Benetatos, C., Kiratzi, A., Kementzetzidou, K., Roumelioti, Z., Karakaisis, G., Scordilis, E., Latoussakis, I., Drakatos, G., 2004. The Psachna (Evia Island) earthquake swarm of June 2003, Bulletin of the Geological Society of Greece, vol 36 (3), 1379-1388, doi:http://dx.doi.org/10.12681/bgsg.16504.

Crampin, S., 1984. An introduction to wave propagation in anisotropic media, Geophys. J. R. astr. Soc., 76, 17-28.

Crampin, S., Chesnokov, E. M., Hipkin, R.G., 1984a. Seismic anisotropy-the state of the art II, Geophys. J. R. astr. Soc., 76, 1-16.

Crampin, S., Evans, R., Atkinson, B. K., 1984b. Earthquake prediction: a new physical basis, Geophys. J. R. astr. Soc., 76, 147-156.

Crampin, S., Booth, D. C., Evans, R., Peacock, S., Fletcer, J. B., 1991. Comment on "Quantitative Measurements of Shear Wave Polarizations at the Anza Seismic Network, Southern California: Implications for Shear Wave Splitting and Earthquake Prediction" by Richard C. Aster, Peter M. Shearer, and Jon Berger, Journal of Geophysical Research, 96, NO. B4, 6403-6414.

Crampin, S., Zatsepin, S. V., 1997. Modelling the compliance of crustal rock-II. Response to temporal changes before earthquakes, Geophys. J. Int., 129, 495-506.

Crampin, S., Gao, Y., 2006. A review of techniques for measuring shear-wave splitting above small earthquakes, Physics of the Earth and Planetary Interiors, 159, 1-14.

Cundy, A. B., Gaki-Papanastassiou, K., Papanastassiou, D., Maroukian, H., Frogley, M.R., Cane, T., 2010. Geological and geomorphological evidence of recent coastal uplift along a major Hellenic normal fault system (the Kamena Vourla fault zone, NW Evoikos Gulf, Greece), Marine Geology 271, 156-164.

Evans, R., 1984. Anisotropy: a pervasive feature of fault zones?, Geophys. J. R. astr. Soc., *76*, 157-163.

Fleury, J., J., 1980. Les zones de Gavrovo - Tripolitsa et du Pindos – Olonos (Grèce continentale et Péloponnèse du Nord). Evolution d' une plateforme et d' un bassin dans le cadre alpin, Publ. Soc. Geol. Nord., 4, 651.

Frankel, A., Clayton, R., W., 1986. Finite Difference Simulations of Seismic Scattering: Implications for the Propagation of Short-Period Seismic Waves in the Crust and Models of Crustal Heterogeneity, Journal of Geophysical Research, 91, NO. B6, 6465-6489.

Ganas, A., Mouzakiotis, E., Moshou, A., Karastathis, V., 2016. Left-lateral shear inside the North Gulf of Evia Rift, Central Greece, evidenced by relocated earthquake sequences and moment tensor inversion, Tectonophysics 682, 237-248.

Hollenstein, Ch., Muller, M.D., Geiger, A., Kahle, H.-G., 2008. Crustal motion and deformation of Greece from a decade of GPS measurements, 1993–2003, Tectonophysics 449, 17–40.

Καβύρης, Ι., Γ., 2003. Μελέτη ιδιοτήτων σεισμικών πηγών ανατολικού Κορινθιακού Κόλπου.

Kapetanidis, V., Kassaras, I., 2019. Contemporary crustal stress of the Greek region deduced from earthquake focal mechanisms, Journal of Geodynamics, 123, 55-82., https://doi.org/10.1016/j.jog.2018.11.004.

Levin, V., Menke, W., Park, J., 1999. Shear wave splitting in the Appalachians and the Urals: a case for multilayered anisotropy, J. Geophys. Res., 104, 17975–17993.

Long, M., D., Silver, P., G., 2009. Shear Wave Splitting and Mantle Anisotropy: Measurements, Interpretations, and New Directions, Surv. Geophys. 30, 407-461.

Makris, J., Vees, R., 1977. Crustal structure of the Aegean Sea and the islands of Evia and Crete, Greece, obtained by refraction seismic measurements, J. Geophys. 42, 329–341.

Makris, J., Papoulia, J., Papanikolaou, D., Stavrakakis, G., 2001. Thinned continental crust below northern Evoikos Gulf, central Greece, detected from deep seismic soundings, Tectonophysics 341, 225–236.

Makropoulos, K., Kaviris, G., Kouskouna, V., 2012. An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Nat. Hazards Earth Syst. Sci. 12, 1425–1430.

Mouzakiotis, E., & Karastathis, K., 2013. Improved earthquake location in the area of North Euboean Gulf after the implementation of a 3D non-linear location method in combination with a 3D velocity model, Bulletin of the Geological Society of Greece, 47(3)., 1185-1193. doi:https://doi.org/10.12681/bgsg.10974

Palyvos, N., 2001. Geomorphological study of the broader area of Atalanti, Fthiotis, Ph.D. Thesis, University of Athens, Greece.

Palyvos, N., Bantekas, I., Kranis, H., 2006. Transverse fault zones of subtle geomorphic signature in northern Evia island (central Greece extensional province): An introduction to the Quaternary Nileas graben, Geomorphology 76, 363-374.

Papanastassiou, D., Stavrakakis, G., Makaris, D., 2001. Recent microearthquake activity at northern Evoikos Gulf, Central Greece, Bulletin of the Geological Society of Greece, Vol. XXXIV/4, 1567-1572.

Παπανικολάου, Δ., 2015, Γεωλογία της Ελλάδας, Εκδόσεις Πατάκη, Αθήνα.

Παπαζάχος, Β., Παπαζάχου, Κ., 1997. The earthquakes of Greece, Εκδόσεις Ζήτη, Θεσσαλονίκη.

Παπαζάχος, Β., Παπαζάχου, Κ., 2003. Οι σεισμοί της Ελλάδας, Εκδόσεις Ζήτη, Θεσσαλονίκη.

Papoulia, J., Makris, J., Drakopoulou, V., 2006. Local seismic array observations at north Evoikos, central Greece, delineate crustal deformation between the North Aegean Trough and Corinthiakos Rift, Tectonophysics 423, 97-106.

Peacock, S., 1986. Shear-wave Splitting in the Earth's Crust, University of Edinburgh.

Προγκάκη, Β., 2007. Κινηματική της παραμόρφωσης της ζώνης Βοιωτίας στο όρος Ελικών, (Στερεά Ελλάδα), Διατριβή Ειδίκευσης, Θεσσαλονίκη.

Rabbel, W. and Mooney, W. D., 1996. Seismic anisotropy of the crystalline crust: what does it tell us?, Terra Nova, 8, 16-21.

Rümpker, G., Silver, P. G., 1998. Apparent shear-wave splitting parameters in the presence of vertically varying anisotropy, Geophys. J. Int., 135, 790-800. Savage, M. K., Shih, X. R., Meyer, R. P., Aster, R. C., 1989. Shear-wave anisotropy of active tectonic regions via automated S-wave polarization analysis, Tectonopysics, 165, 279-292.

Sakellariou, D., Rousakis, G., Kaberi, H., Kapsimalis, V., Georgiou, P., Kanellopoulos, T., & Lykousis, V., 2007. TECTONO-SEDIMENTARY STRUCTURE AND LATE QUATERNARY EVOLUTION OF THE NORTH EVIA GULF BASIN, CENTRAL GREECE: PRELIMINARY RESULTS. Bulletin of the Geological Society of Greece, 40(1), 451-462. doi:http://dx.doi.org/10.12681/bgsg.16644

Savage, M. K., 1999. Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting?, Reviews of Geophysics, 37, 1, 65-106.

Shih, X. R., Meyer, R. P., Schneider, J. F., 1989. An automated, analytical method to determine shear-wave splitting, Tectonophysics 165, 271–278. Silver, P. G., Chan, W. W., 1991. Shear wave splitting and subcontinental mantle deformation. J. Geophys. Res., 96, 16429–16454.

Simmons, G., and Richter, D., 1976. Microcracks in rocks, in Physics and chemistry of minerals and rocks, 105-137, ed. Strens, R. G. J., J. Wiley and Sons, New York.

Stucchi, M., Rovida, A., Capera Gomez, A. A., Alexandre, P., Camelbeeck, T., Demircioglu, M. B., Gasperini, P., Kouskouna, V., Musson, R. M. W., Radulian, M., Sesetyan, K., Vilanova, S., Baumont, D., Bungum, H., Fäh, D., Lenhardt, W., Makropoulos, K., Solares Martinez, J. M., Scotti, O., Živčić, M., Albini, P., Batllo, J., Papaioannou, C., Tatevossian, R., Locati, M., Meletti, C., Viganò, D., Giardini, D., 2013. The SHARE European Earthquake Catalogue (SHEEC) 1000-1899, J. Seismol., 17, 523-544.

Vecsey, L., Plomerová, J., Babuška, V., 2008. Shear-wave splitting measurements-Problems and solutions, Tectonophysics, 462, 178-196.

Yang, Y., Lu, J., Wang, Y., 2018. Separation of split shear waves based on a hodogram analysis of HTI media, Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences.

Vernant, P., Reilinger, R., McClusky, S., 2014. Geodetic evidence for low coupling on the Hellenic subduction plate interface, Earth Planet. Sci. Lett. 385 (C), 122–129. http://dx.doi.org/10.1016/j.epsl.2013.10.018.

Zatsepin, S. V., Crampin, S., 1997. Modelling the compliance of crustal rock-I. Response of shear-wave splitting to differential stress, Geophys. J. Int., 129, 477-494.

ΠΑΡΑΡΤΗΜΑ 1

Κατάλογος σεισμών περιόδου 2014-2015

Έτος 2014	Μήνας 1	Ημέρα 2	Ώρα 5	Λεπτά 29	Δευ/πτα 22.410	г.п. (°) 35.0514	г.м. (°) 24.3808	Βάθος (km) 29.2	Mw 4.2	Διεύ/νση (°) 164.0	Κλίση (°) 75.0	Γωνία ολίσθησης(°) 161.0	M₀ (Dyncm) 2.31E+22
2014	1	11	4	12	56.910	37.8705	21.0272	6.0	4.8	129.0	65.0	15.0	2.04E+23
2014	1	13	10	51	27.670	39.7749	26.0774	12.0	3.9	293.0	33.0	-60.0	9.71E+21
2014	1	15	11	0	45.990	36.9943	22.0867	13.0	3.7	350.0	51.0	-41.0	4.50E+21
2014	1	15	18	46	53.590	36.9795	22.0659	8.0	3.9	359.0	48.0	-55.0	7.94E+21
2014	1	18	7	56	11.660	37.8385	21.0299	8.0	3.6	126.0	64.0	7.0	3.30E+21
2014	1	18	17	21	31.650	38.6305	21.7781	6.0	3.7	262.0	76.0	178.0	4.07E+21
2014	1	24	22	8	48.490	38.3359	21.9992	5.0	3.8	319.0	59.0	-49.0	5.82E+21
2014	1	26	13	55	42.550	38.2133	20.4672	16.0	6.1	30.0	70.0	169.0	2.03E+25
2014	1	26	14	59	25.490	38.3130	20.4876	13.0	4.2	18.0	78.0	168.0	2.76E+22
2014	1	26	15	36	39.830	38.2635	20.4612	13.0	4.1	18.0	70.0	168.0	2.06E+22
2014	1	26	16	8	56.120	38.2144	20.3786	14.0	4.1	18.0	63.0	170.0	1.70E+22
2014	1	26	18	45	7.900	38.2349	20.4194	15.0	5.2	18.0	65.0	162.0	8.34E+23
2014	1	26	19	3	7.730	38.2035	20.4279	11.5	4.3	18.0	67.0	164.0	2.98E+22
2014	1	26	19	12	5.080	38.2541	20.4132	11.0	4.2	17.0	71.0	168.0	2.71E+22
2014	1	26	21	15	35.640	38.1614	20.4165	13.0	4.6	21.0	71.0	162.0	9.55E+22
2014	1	26	21	42	12.950	38.1891	20.4773	14.0	4.1	18.0	67.0	164.0	1.68E+22
2014	1	26	23	6	56.080	38.2371	20.4908	11.1	4.2	18.0	67.0	164.0	2.12E+22
2014	1	27	13	5	50.840	38.2575	20.4654	4.0	4.6	25.0	74.0	179.0	9.19E+22
2014	1	27	15	39	34.540	38.3806	20.4336	4.0	4.2	18.0	85.0	-177.0	2.84E+22
2014	1	28	5	12	55.020	38.2358	20.4603	15.0	4.3	30.0	69.0	172.0	3.21E+22
2014	1	28	22	22	37.490	38.4042	20.4711	5.0	4.3	24.0	61.0	169.0	3.63E+22
2014	1	30	11	6	18.130	38.4075	20.4935	5.0	4.5	11.0	76.0	163.0	6.72E+22
2014	1	31	12	45	40.700	38.4136	20.4651	5.0	4.5	33.0	65.0	174.0	6.70E+22
2014	2	1	8	14	3.460	38.7013	22.7329	5.0	4.7	254.0	18.0	-120.0	1.59E+23
2014	2	3	3	8	44.570	38.2689	20.4081	5.0	5.9	35.0	62.0	175.0	9.60E+24
2014	2	6	7	58	26.540	38.6947	22.7566	11.0	4.4	298.0	49.0	-66.0	4.28E+22
2014	2	6	12	27	12.360	37.8251	21.1766	16.0	4.2	9.0	66.0	-154.0	2.53E+22
2014	2	6	19	20	59.860	38.1721	20.3677	7.0	4.4	26.0	73.0	177.0	5.10E+22
2014	2	9	8	22	58.820	38.1947	20.3921	4.0	4.6	17.0	65.0	179.0	8.95E+22
2014	2	14	3	38	34.060	38.2005	20.3954	8.0	4.7	20.0	65.0	163.0	1.61E+23
2014	2	15	7	31	17.120	38.2285	20.3672	10.8	4.8	22.0	65.0	168.0	2.19E+23
2014	2	26	1	42	51.340	40.2181	21.6037	16.0	4.1	256.0	33.0	-74.0	1.90E+22
2014	3	5	12	49	19.810	38.0642	20.3084	5.0	4.8	29.0	73.0	171.0	2.10E+23
2014	3	5	15	8	43.450	38.0863	20.3227	5.0	3.9	28.0	71.0	172.0	9.61E+21
2014	3	15	5	29	34.880	37.5575	25.6326	11.0	4.2	117.0	66.0	-93.0	2.27E+22
2014	3	18	10	43	2.680	37.7008	21.4038	17.0	4.2	124.0	81.0	77.0	2.17E+22
2014	3	21	18	35	50.250	38.4262	22.4457	6.0	3.9	285.0	77.0	-50.0	8.56E+21
2014	4	4	20	8	8.990	37.1909	23.7263	100.0	5.5	256.0	59.0	142.0	2.65E+24
2014	4	10	17	40	45.070	37.9297	22.5981	9.0	3.5	98.0	49.0	-89.0	2.48E+21
2014	4	17	7	4	4.850	38.4186	22.4587	7.0	3.7	302.0	64.0	-63.0	4.36E+21
2014	4	18	5	7	36.670	38.4217	21.8373	12.0	3.9	105.0	87.0	-75.0	8.05E+21
2014	4	23	21	41	54.230	39.6515	21.5773	12.0	3.7	123.0	43.0	-77.0	5.28E+21
2014	4	28	3	49	50.930	38.6837	22.7882	13.0	3.7	286.0	32.0	-76.0	4.60E+21
2014	4	30	4	3	33.310	38.2186	25.1216	14.0	4.8	243.0	82.0	176.0	2.17E+23

2014	5	6	2	0	1.490	39.3302	23.8637	14.0	4.3	324.0	82.0	-1.0	3.17E+22
2014	5	7	6	20	5.650	37.6904	19.7346	14.0	4.3	5.0	89.0	11.0	3.10E+22
2014	5	24	11	33	8.140	40.3097	25.6220	13.0	4.3	74.0	75.0	-156.0	3.48E+22
2014	5	24	14	40	24.120	40.0207	24.2939	11.0	4.1	71.0	89.0	-166.0	1.79E+22
2014	5	24	14	49	15.730	40.4086	25.9530	9.0	4.3	89.0	67.0	-178.0	3.53E+22
2014	5	24	16	50	2.100	40.0313	24.3126	8.0	4.3	86.0	85.0	-174.0	3.55E+22
2014	5	25	0	8	0.300	40.0226	24.3069	14.0	4.4	85.0	87.0	-176.0	4.22E+22
2014	5	25	11	38	40.420	40.4229	26.0059	15.0	4.9	73.0	77.0	-144.0	2.87E+23
2014	5	25	11	47	56.930	40.4150	26.0507	7.0	4.2	90.0	67.0	-176.0	2.46E+22
2014	5	28	3	59	52.690	40.4364	26.0346	7.0	4.1	90.0	66.0	-178.0	2.02E+22
2014	5	30	4	6	21.690	40.1894	25.5564	7.0	4.0	74.0	72.0	-160.0	1.24E+22
2014	5	31	22	8	30.110	34.9778	25.7875	16.0	4.2	88.0	74.0	11.0	2.68E+22
2014	6	1	12	5	52.270	34.7154	24.6176	25.0	4.8	292.0	41.0	116.0	2.03E+23
2014	6	6	12	21	4.740	39.1488	23.7066	8.0	4.2	58.0	78.0	-176.0	2.18E+22
2014	6	6	17	10	24.130	39.7574	24.0960	12.0	4.1	59.0	78.0	-171.0	1.87E+22
2014	6	8	15	10	51.320	38.3250	22.0397	5.0	4.2	105.0	43.0	-80.0	2.87E+22
2014	6	13	0	34	54.420	35.5216	26.9455	62.0	4.6	14.0	45.0	177.0	9.09E+22
2014	6	13	9	11	16.710	38.7052	20.6075	4.0	4.2	217.0	72.0	-159.0	2.98E+22
2014	6	25	9	21	42.120	38.3583	21.7418	8.0	3.9	106.0	79.0	-31.0	9.17E+21
2014	6	26	15	13	41.740	40.6640	21.4245	8.0	3.6	250.0	66.0	-55.0	2.84E+21
2014	6	27	16	14	28.660	38.2386	25.1200	4.0	4.6	233.0	82.0	-179.0	9.87E+22
2014	6	28	19	9	47.670	37.4780	22.8617	10.0	3.7	349.0	50.0	-13.0	4.47E+21
2014	6	30	12	25	1.680	38.7063	20.5977	4.0	3.6	205.0	72.0	-172.0	3.57E+21
2014	7	2	1	49	25.510	35.2190	26.4409	20.0	3.9	123.0	76.0	159.0	7.65E+21
2014	7	6	17	1	31.110	34.1479	26.0743	14.0	4.2	234.0	61.0	158.0	2.93E+22
2014	7	11	9	46	5.780	38.4408	23.6766	10.0	3.7	280.0	47.0	-119.0	4.24E+21
2014	7	13	11	18	9.070	40.8372	21.2603	19.0	4.3	207.0	67.0	-109.0	3.37E+22
2014	8	22	4	27	53.810	39.9226	23.4578	9.0	5.1	243.0	77.0	-160.0	6.17E+23
2014	8	29	3	45	7.000	36.6870	23.6916	83.0	5.8	263.0	57.0	162.0	5.66E+24
2014	9	4	17	43	39.840	40.1293	24.8880	6.0	4.8	60.0	74.0	-172.0	2.32E+23
2014	9	7	9	56	23.360	37.5336	19.8349	13.0	4.5	145.0	29.0	81.0	8.07E+22
2014	9	16	9	41	41.020	37.1852	23.0137	16.0	3.9	284.0	78.0	-132.0	9.41E+21
2014	9	17	12	33	23.800	40.7561	21.2925	11.0	3.9	213.0	57.0	-131.0	9.89E+21
2014	9	18	7	24	25.900	37.6956	23.0738	16.0	3.8	335.0	37.0	-68.0	5.61E+21
2014	9	21	0	43	39.710	38.3463	21.8416	7.0	4.9	76.0	51.0	-89.0	3.08E+23
2014	10	3	15	12	11.400	37.9454	21.7722	9.0	4.5	135.0	81.0	-19.0	6.87E+22
2014	10	6	18	8	2.380	35.1165	26.5256	9.0	4.3	31.0	84.0	-66.0	3.11E+22
2014	10	24	23	43	15.300	38.9021	21.1365	13.0	5.1	317.0	68.0	14.0	5.06E+23
2014	11	5	14	22	25.110	38.1162	20.4539	15.0	4.2	269.0	86.0	-28.0	2.86E+22
2014	11	7	7	41	39.080	38.1244	20.4442	13.0	4.9	163.0	81.0	156.0	3.03E+23
2014	11	7	17	12	59.820	38.2945	22.1266	6.0	5.0	247.0	30.0	-115.0	4.32E+23
2014	11	8	23	15	42.160	38.1296	20.4585	11.0	5.0	352.0	72.0	-174.0	3.76E+23
2014	11	13	9	37	53.200	38.3895	20.4858	6.0	4.3	15.0	78.0	170.0	3.26E+22
2014	11	17	23	5	55.430	38.6433	23.4145	10.0	5.2	275.0	58.0	-66.0	9.17E+23
2014	11	17	23	9	3.850	38.6437	23.3963	12.0	5.1	294.0	67.0	-64.0	5.49E+23
2014	11	17	23	40	36.890	38.6457	23.3658	16.0	3.9	37.0	85.0	174.0	9.54E+21

2014	11	19	0	37	27.170	38.6397	23.4132	16.0	3.8	289.0	72.0	-67.0	7.19E+21
2014	11	24	7	20	32.370	38.3028	20.3797	12.0	4.1	152.0	81.0	68.0	2.10E+22
2014	12	2	20	15	16.030	40.2265	25.1976	9.0	4.1	75.0	74.0	169.0	1.80E+22
2014	12	11	22	24	22.560	38.3714	20.4108	18.0	4.6	41.0	52.0	-4.0	9.23E+22
2014	12	19	22	40	32.710	39.3316	22.6011	5.0	4.1	266.0	76.0	-103.0	1.72E+22

Έτος	Μήνας	Ημέρα	Ώρα	Λεπτά	Δευ/πτα	г.п. (°)	Г.М. (°)	Βάθος (km)	Mw	Διεύ/νση (°)	Κλίση (°)	Γωνία ολίσθησης(°)	M₀ (Dyncm)
2015	1	2	6	16	29.420	37.4501	20.3905	19.0	4.7	356.0	72.0	108.0	1.59E+23
2015	1	10	14	0	1.770	35.2818	26.2034	11.0	3.9	334.0	64.0	-163.0	8.41E+21
2015	1	13	11	19	11.510	36.3875	22.6234	46.0	4.5	86.0	70.0	166.0	7.21E+22
2015	1	28	15	54	38.200	34.4074	25.0848	17.0	4.9	114.0	72.0	90.0	2.83E+23
2015	2	2	4	41	5.270	40.3574	25.9586	15.0	3.8	305.0	62.0	-42.0	5.95E+21
2015	2	5	16	17	46.530	34.9101	25.4244	8.0	4.2	160.0	82.0	-174.0	2.23E+22
2015	3	12	0	39	20.860	35.5144	27.7931	9.0	4.4	56.0	46.0	32.0	4.27E+22
2015	3	13	13	33	8.890	36.4228	23.1823	19.0	4.4	340.0	89.0	140.0	5.79E+22
2015	3	16	11	18	34.290	37.3906	20.1222	12.0	4.3	154.0	75.0	84.0	3.52E+22
2015	3	16	20	9	32.960	36.4626	27.8646	5.0	3.8	52.0	79.0	-64.0	5.83E+21
2015	3	17	10	11	20.760	36.3430	26.5437	165.0	4.5	72.0	90.0	24.0	6.20E+22
2015	3	26	12	0	41.130	39.2908	24.7464	15.0	4.1	60.0	90.0	-160.0	2.10E+22
2015	3	27	23	34	55.970	35.6984	26.5890	55.0	5.0	34.0	83.0	134.0	4.49E+23
2015	4	4	4	38	19.800	38.3060	20.5714	9.0	4.4	180.0	60.0	104.0	5.02E+22
2015	4	16	18	7	45.620	35.2302	26.8037	20.0	5.9	71.0	51.0	66.0	8.06E+24
2015	4	16	18	52	38.240	35.2211	26.8516	25.0	4.8	320.0	80.0	179.0	2.11E+23
2015	4	16	19	2	14.870	35.0970	26.8670	23.0	4.9	52.0	87.0	20.0	2.97E+23
2015	4	16	20	15	49.980	35.1245	26.8105	24.0	4.3	52.0	88.0	23.0	3.61E+22
2015	4	16	21	52	24.650	35.2673	26.8314	18.0	4.1	60.0	80.0	20.0	1.92E+22
2015	4	17	1	50	45.260	35.1817	26.7628	22.0	4.1	56.0	83.0	16.0	2.09E+22
2015	4	17	2	5	43.000	35.2088	26.7205	22.0	5.5	56.0	83.0	20.0	2.18E+24
2015	5	2	8	23	46.970	34.5194	25.7429	15.0	4.7	308.0	58.0	-155.0	1.60E+23
2015	5	4	0	42	1.780	38.2543	21.5832	29.0	3.9	287.0	66.0	-68.0	9.19E+21
2015	5	6	3	49	54.880	34.7124	25.0126	29.0	4.3	234.0	84.0	-171.0	3.89E+22
2015	5	9	16	38	13.140	38.7654	20.9426	5.0	3.7	107.0	54.0	4.0	4.54E+21
2015	5	10	21	32	50.030	34.9182	25.2647	42.0	4.5	288.0	20.0	95.0	6.48E+22
2015	5	17	4	8	48.240	34.6580	26.2658	7.0	4.6	70.0	67.0	99.0	1.14E+23
2015	5	18	20	41	3.120	34.7082	25.0046	44.0	4.4	140.0	83.0	-36.0	4.35E+22
2015	5	21	15	31	17.780	37.5932	19.9681	27.0	4.5	192.0	90.0	-160.0	6.03E+22
2015	5	22	6	31	14.900	37.5695	19.8826	26.0	4.4	194.0	90.0	-156.0	4.62E+22
2015	5	23	8	45	22.220	38.6720	22.6902	10.0	3.9	226.0	32.0	-144.0	9.29E+21

2015	5	25	17	5	11.570	36.9218	27.5415	15.0	3.9	282.0	54.0	-48.0	1.04E+22
2015	5	26	17	53	2.100	40.1333	21.6201	5.0	3.9	266.0	43.0	-72.0	7.82E+21
2015	5	28	12	59	22.190	34.9222	26.7602	18.0	4.2	118.0	78.0	176.0	2.68E+22
2015	5	29	0	3	47.940	34.9999	26.7478	24.0	4.2	122.0	86.0	177.0	2.30E+22
2015	5	30	1	56	16.940	40.1790	21.6587	11.0	3.9	57.0	40.0	-90.0	8.60E+21
2015	6	9	1	9	2.880	38.6140	23.3749	11.0	5.2	117.0	74.0	-50.0	7.88E+23
2015	6	9	21	49	45.710	35.0448	26.7954	23.0	5.4	230.0	77.0	28.0	1.82E+24
2015	6	24	8	37	20.680	36.5817	26.9404	135.0	4.4	66.0	61.0	22.0	5.90E+22
2015	6	30	6	7	23.090	36.6800	21.3992	36.0	4.3	142.0	63.0	80.0	3.38E+22
2015	7	6	18	49	5.100	37.3675	20.9168	20.0	3.9	18.0	28.0	164.0	7.50E+21
2015	7	9	10	41	35.560	36.8601	27.0807	22.4	3.9	204.0	49.0	-74.0	8.57E+21
2015	7	12	16	10	10.160	37.7913	21.7911	20.9	4.2	130.0	60.0	5.0	2.42E+22
2015	7	24	2	39	41.770	40.2681	26.2073	0.1	4.7	219.0	45.0	-151.0	1.58E+23
2015	7	24	9	58	38.060	36.7661	26.6198	140.0	4.9	33.0	69.0	179.0	2.81E+23
2015	8	8	17	22	19.460	39.1937	21.3589	8.0	4.4	318.0	44.0	-98.0	4.77E+22
2015	8	9	21	39	22.890	38.1432	22.0520	52.0	4.4	168.0	88.0	42.0	4.55E+22
2015	8	24	4	25	19.400	40.7776	21.2374	12.0	3.9	254.0	52.0	-76.0	8.06E+21
2015	8	26	20	41	55.550	40.7584	21.2582	9.0	4.0	256.0	65.0	-74.0	1.36E+22
2015	8	27	0	25	8.930	34.4485	25.5812	10.0	4.5	290.0	25.0	102.0	6.09E+22
2015	8	30	13	28	1.380	37.8556	21.3369	25.0	4.4	30.0	73.0	-174.0	5.81E+22
2015	9	10	8	12	46.320	38.8329	26.3158	13.0	4.7	300.0	55.0	-76.0	1.30E+23
2015	9	15	5	4	45.830	34.8098	24.9639	12.0	4.2	258.0	66.0	8.0	2.56E+22
2015	9	29	9	12	39.650	34.7196	24.6082	28.0	4.5	276.0	86.0	18.0	5.97E+22
2015	9	29	9	12	39.650	34.7196	24.6082	28.0	4.5	276.0	86.0	18.0	5.97E+22
2015	10	12	2	16	12.120	34.6603	26.3229	21.0	4.8	314.0	77.0	174.0	2.24E+23
2015	10	25	15	46	2.460	37.5665	22.0550	7.0	4.0	332.0	72.0	-86.0	1.24E+22
2015	10	27	1	25	51.810	38.9169	24.3570	15.0	4.4	242.0	80.0	-170.0	5.03E+22
2015	10	27	13	14	41.380	35.8916	23.9859	15.0	4.1	322.0	84.0	152.0	1.71E+22
2015	11	17	7	10	7.240	38.6785	20.5889	14.0	6.4	22.0	72.0	161.0	4.33E+25
2015	11	17	8	33	40.780	38.6690	20.5490	11.0	5.0	20.0	78.0	176.0	3.61E+23
2015	11	17	11	49	45.080	38.4715	20.4362	13.0	4.0	34.0	48.0	176.0	1.11E+22
2015	11	17	11	57	24.670	38.6977	20.6550	11.0	4.5	20.0	73.0	160.0	7.06E+22
2015	11	17	12	10	32.030	38.7186	20.5945	10.0	3.9	20.0	65.0	165.0	1.01E+22
2015	11	17	12	37	55.460	38.6790	20.5858	12.0	4.7	20.0	67.0	168.0	1.41E+23
2015	11	17	19	39	34.530	38.7055	20.5997	5.0	4.2	22.0	77.0	168.0	2.92E+22
2015	11	18	5	18	13.830	38.4944	20.5241	13.0	4.4	24.0	66.0	152.0	5.58E+22
2015	11	18	12	15	38.080	38.8488	20.6004	13.0	5.0	20.0	64.0	178.0	4.08E+23
2015	11	18	13	3	14.680	38.7322	20.6245	10.0	4.4	20.0	65.0	172.0	4.50E+22
2015	11	18	18	30	6.940	38.7268	20.6090	11.0	4.2	16.0	68.0	170.0	2.80E+22
2015	11	18	19	3	22.030	38.7258	20.6106	12.0	3.8	20.0	79.0	162.0	7.47E+21
2015	11	18	20	4	54.410	38.7384	20.6488	9.0	4.7	18.0	64.0	174.0	1.23E+23
2015	11	20	9	33	14.350	38.6278	20.5747	12.0	4.5	18.0	65.0	176.0	6.28E+22
2015	11	20	23	37	3.390	38.7251	20.6184	11.0	4.6	14.0	79.0	174.0	9.75E+22
2015	11	21	0	41	56.140	38.7108	20.6227	10.0	4.5	20.0	77.0	173.0	6.30E+22
2015	11	21	1	58	25.300	38.6034	20.5675	13.0	4.1	40.0	68.0	176.0	1.82E+22
2015	11	24	9	39	5.090	38.7315	20.6114	12.0	4.1	28.0	62.0	170.0	1.75E+22

2015	11	25	3	14	47.740	38.5273	20.5343	12.0	4.1	36.0	68.0	164.0	1.94E+22
2015	12	12	8	34	46.210	37.8339	21.1515	20.0	4.5	228.0	81.0	-180.0	6.26E+22
2015	12	13	1	50	14.500	37.8278	21.1499	14.0	3.9	32.0	78.0	176.0	8.48E+21
2015	12	14	21	13	24.410	39.0164	20.6728	13.0	4.2	174.0	90.0	-172.0	2.42E+22

<u>Π. 1</u>: Σεισμοί που έλαβαν χώρα τα έτη 2014-2015 στην περιοχή μελέτης του Βόρειου Ευβοϊκού Κόλπου www.geophysics.geol.uoa.gr/catalog/source_par_2014.epi, www.geophysics.geol.uoa.gr/catalog/source_par_2015.epi)