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ABSTRACT

In this thesis the main problem that we study is the knapsack problem and in particular
a generalization of it which is the precedence constrained minimum knapsack problem.
Initially we present the minimum knapsack problem with the intention to introduce
some useful techniques that help us to develop a primal-dual algorithm for it. After-
wards, our attention is focused on the precedence constrained minimum knapsack prob-
lem, which is the knapsack problem with an extra constraint that the choice of elements
must respect an ordering given through a partial order. We are studying some formu-
lations of the problem together with their properties. Moreover we develop a rounding
approximation algorithm for 0-1 PCKP and we present some new results for the PCKP
with general multiplicity constraints. In the end of the PCKP chapter, an already known
inapproximability result is presented a little differently. Finally, we study the capac-
itated covering integer programs and motivated by known techniques, we give some
results for the special case of 0-1 CIP.






XYNOYH

Yy SmAOPTIKY To KVUplo TpOPANua pelétng eivar to mpdPAnua tov knapsack ko
€101KOTEP Pia YEVIKEVGT TOV GTNV 0Tol0 VITAPYEL Pio EVVOL0L TPOTEPUIOTNTOS MG TPOG
TNV EMAOYN TOV OVTIKEWEVOV. Apyikd mapovoldlovpe to TpdPfAne Tov minimum
knapsack pe 6K0omd vo, €160 YOVE KATOIEG YPNOLES TEXVIKES LLE TIG OTOIES LITOPOVLLE VO,
katackevacovpe primal-dual odyopiBuovg yio to mpoPAnpa. “Yotepa, eotiafovpe v
TPOGOYN LLOG OTO YEVIKELUEVO TPOPANLa precedence constrained minimum knapsack,
10 omoio efvar mapdporo pe To knapsack e Tov emmAéov meploptopd 4tL 1 eTAoYN TOV
avTIKEIPEVOV TTpEmeL va, oéfetarl pia Evvola TpotepotdTNTOS oV opileTon pécm piog
pepkng owataéng. o to TpoPANpa avtd, PEAETANE KOTOLO YPOLLUKE TPOYPALUOTO
poli pe Tig 1010 Tég Toug. AKOLO, KOTAOKEVALOVIE £VOV TPOGEYYIOTIKO ahyOp1diLo
otpoyyvromoinong ywe to 0-1 PCKP kot mapovsiaovpe kdmota vEa omoTEAEGLATA VLol
10 PCKP y10 v mepintmon mov prnopodpe va dStadéEovpe KATO0 OVTIKEILEVO KL TOV®D
amd pla eopd. Xto 1éhog Tov PCKP kepoiaiov, Eva 1dN YvOoTO 0moTéAECHO KATW®
Qpaypatog mopovstdletal pe Ayo dtapopetikd tpoémo. Téhog, peletdpe ta capaci-
tated covering ax€pailo TPOYPALATOS KoL EUTVEVCIEVOL OO YVMGTES TEYVIKEG, SIVOLLLE
Kamolo anoteAécpata yio v ewikn nepintwon 0-1 CIP.
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CHAPTER 1

INTRODUCTION AND OUTLINE

1.1 Approximation Algorithms for Optimization Prob-
lems

In computer science, usually we have to deal with some discrete optimization problems
for which we should find a feasible solution with the best possible cost. For these kind
of problems, the ideal situation would be to develop exact and efficient algorithms.
With the terms exact and efficient algorithm, what we actually mean is an algorithm
that produces the best possible outcome and runs in polynomial time on the input size
respectively. Unfortunately, for many interesting optimization problems we cannot ex-
pect to achieve both, accuracy and efficiency, unless P = NP. Therefore a common
approach for this kind of problems is to relax the requirement of finding an optimal
solution and instead, we just try to find a solution which is close to the optimal one.
Hence rather than developing an exact algorithm, now our attention is focused on try-
ing to develop an approximation algorithm for the same problem.

In general an optimization problem has an objective value that we want to maximize
or minimize, while at the same time a set of constraints must be satisfied.

Definition 1.1. An optimization problem is a quadruple (I, sol, cost, goal) such that:
+ I is the set of instances.
« For an instance = € I, sol(x) is the set of feasible solutions of x.

« For an instance x € I and a feasible solution y € sol(x), the value cost,(y) is a
positive real number denoting the cost of the solution.

* goal is an operator which is either min or max.

The goal of an optimization problem for an instance z, is to find an optimal solution.
That is, we want to find a y € sol(x) such that:

costy(y) = goal{cost,(y') | v € sol(z)}

For an optimal solution y, we denote as OPT'(x) = cost,(y) the cost of the optimal
solution for the instance x.



1.1. APPROXIMATION ALGORITHMS FOR OPTIMIZATION PROBLEMS

As the quality of the solution is measured in terms of the cost, our desire for an op-
timization problem is to build a fast approximation algorithm which for every instance
of the problem, produces a solution with cost close enough to the optimal cost of the
instance. Moreover, if there is a proof that every time the produced solution is p times
far away from the optimal one, then we say that this algorithm is a p-approximation
algorithm.

Definition 1.2. A p-approximation algorithm for an optimization problem is a poly-
nomial time algorithm that for all instances of the problem produces a feasible solution
whose value is within a factor of p of the value of an optimal solution.

For example, let A be a polynomial time algorithm for a minimization problem. For
an instance x we define as cost(A(x)) the cost of the produced solution by A. Then
if for every instance x it holds that cost(A(z)) < p - OPT(z), the algorithm A is a
p-approximation algorithm.

In this thesis we are going to focus on minimization problems and we will try to
explore approximation algorithms for these. A very common approach that is followed
in order to develop an approximation algorithm, is to use the theory behind linear pro-
gramming. The strategy here is to formulate the initial optimization problem as an
integer program and make use of its linear programming relaxation which usually can
be solved in polynomial time. However, we are interested only in integer solutions
and thus, two common ways to end up with an integer solution are either to convert
the linear solution to an integer one, or to construct an integer solution using primal-
dual algorithms based on the dual of the linear program. In any case, with the standard
techniques of the linear programming theory, our intention is to bound the cost of the
produced integer solution by p times of the optimal linear cost. The underlying reason
is that this value is a lower bound of the optimal integer cost and usually the only one
that we can efficiently compute in order to estimate the accuracy of the algorithm.

As we are focusing on minimization problems, the related integer programs that we
focus on, are the so-called covering integer programs of the following form:

minimize ¢’ z
subjectto Ax > D
n
T €L T

where A € ZTX" is a non-negative integral matrix with the value u;; in its ¢, row and
Jtn column, D € Z'" is a demand vector with entries D;, ¢ € Z'} is a cost vector with
entries ¢; and d € Z7} is a multiplicities vector with entries d;. The values of m and n
denote the number of the constraints and the number of the variables respectively and
in the case that we have more than one constraints, we use the index ¢ for the constraints
and the index 5 for the variables. If we also allow constraints of the type x < d, we get
the capacitated covering integer programs (CIP). Also in many cases we are going to
work with a 0-1 CIP, which is a regular CIP with the difference that the variables x; are
only allowed to get the value zero or one, which is equivalent to say that the multiplicity
constraint vector d is a vector of all ones.

Given an optimization problem and an integer program that formulates it, some-
times it is not possible to use any of the known techniques of the linear programming
theory in order to construct a bounded integer solution. For every instance of the prob-
lem we would like to bound the cost of the produced integer solution in terms of the
optimal linear cost. However, if for every arbitrarily large value there is an instance

2



CHAPTER 1. INTRODUCTION AND OUTLINE

such that the gap between its optimal integer solution with its optimal linear solution is
that big, the standard analysis of the cost fails and we cannot develop a p-approximation
algorithm. Therefore for an integer program that formulates an optimization problem,
a very important property is its integrality gap.

Definition 1.3. Consider an integer program P for an optimization problem with a set
of instances I. For an instance x € I, let us denote by OPTp(x) and OPTy,p(z) the
cost of the optimal integer solution of P and the cost of the optimal linear solution of the

linear programming relaxation of P, for that instance respectively. The integrality gap

OPTrp(z) OPTLp(x) ))
OPTLP(I)’ OPTOPT(ZE) N

ofthe integer program P is equal to the value max ¢ ( max (

Consequently, a formulation with an unbounded integrality gap is not very helpful
in our attempt to develop a p-approximation algorithm. To handle this issue though, a
solution would be to extend the integer program by adding some extra valid inequalities
which intuitively approach the underlying problem in a better way, and eventually to
end up with a new integer program with a fixed integrality gap.

Definition 1.4. For an integer program P a new inequality is valid, if every feasible
integer solution of P still remains feasible even after the addition of the new inequality
to P.

The purpose of adding valid inequalities, assuming we work with a minimization
problem, is because we would like to make infeasible very cheap linear solutions in
terms of the cost, but at the same time to maintain all the previous feasible integer
solutions. The new resulting integer program B is then a valid relaxation and its linear
relaxation C'is also a valid linear relaxation of the initial integer program A. The reason
that we need to maintain all the feasible integer solutions, is because we actually want
to maintain the original optimal integer solution, as this would imply that the optimal
linear solution of C is still a lower bound of the original optimal integer solution of A.
Therefore, assuming that we could develop a polynomial time algorithm that constructs
a feasible integer solution for the original minimization problem, with cost p times the
cost of the optimal linear solution of C', we could apply the standard analysis of the cost
and prove that the algorithm is indeed a p-approximation algorithm. Furthermore, such
an algorithm would prove that the integrality gap of B is at most p, because the cost of
the optimal integer solution of B is a lower bound of the optimal integer cost of A.

Further background on approximation algorithms can be found in [18], [19]. All the
problems that we are studying are NP-hard, and this is the reason that we are interested
in developing approximation algorithms for them. Background in the theory of NP-
hardness and computational intractability can be found in [7].

1.2  QOutline of the thesis and our contributions

Problems Studied. Initially in the second chapter, we study the minimum knapsack
problem. In this problem we are given a set of elements with a value and a cost for
each one, and we are asked to select the minimum, in terms of the cost, subset of ele-
ments such that, the sum of their values cover a specified demand. In the third chapter,
we study a generalization of the minimum knapsack problem which is the precedence
constrained minimum knapsack problem (PCKP). The input and the goal in the PCKP
problem is the same as in the minimum knapsack problem with an extra restriction. In
the input we are also given a partial order on elements, and every feasible solution must
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respect the partial order, namely, in order to pick an element we must first pick all its
predecessors with respect to the partial order. In the fourth chapter we study the CIP
problem in which we must satisfy not only one constraint but a set of them, given by a
matrix.

Previous Work. The minimum knapsack problem was studied by Carr et al. [3]
and they developed a 2-approximation rounding algorithm for the problem, using the
knapsack cover inequalities. Later on, Carnes and Shmoys [2] developed a faster 2-
approximation primal-dual algorithm for the minimum knapsack problem. This primal-
dual algorithm is the base for the primal-dual algorithms that were developed by Mc-
Cormick et al. in [12], where they studied the PCKP problem. The integrality gap
of the formulations for the PCKP problem, even with the knapsack cover inequalities
can be unbounded. For this reason, they introduced the precedence knapsack cover
inequalities with the help of which they developed a w(P)-approximation primal-dual
algorithm for the 0-1 case, that is, when each element can be picked at most one time.
Here P is a partial order that defines the ordering of the selection and w(P) is the size
of the maximum antichain in P. For the PCKP problem with general multiplicity con-
straints, in which each element can be picked more than one time, McCormick et al.
[12] present a pseudo-polynomial algorithm with approximation ratio equal to w(P)- A,
where A = max; d; is an upper bound on the multiplicity variables and they state that
it remains open to find an algorithm with strongly polynomial bounds. Moreover they
give an inapproximability result, which says that the PCKP problem does not admit
PTAS under standard complexity assumptions. For the 0-1 CIP problem, Fujito [6] and
Carr et al. [3] provide f-approximation algorithms, where f is the maximum number
of non-zero coefficients in a row of the matrix of the constraints. In [16] though, they
present an (f — i ;ll )-approximation primal-dual algorithm, which has slightly better
ratio but they pay an extra O(n?) factor in the time complexity. Here n and m are the
number of the variables and constraints respectively.

Outline and our Contributions. In the second chapter we present results from the
literature for the minimum knapsack problem. In the third chapter we focus on the
PCKP problem, and in the beginning we study the formulation of McCormick et al.
[12] with the intention to understand its properties. Afterwards, we study a slightly
different formulation for the PCKP problem and we develop a w(P)-approximation
rounding algorithm for the 0-1 case. In Section 3.5 we present a polynomial algorithm
with strongly polynomial approximation ratio. Finally in the end of the third chapter
we provide a more detailed proof for the inapproximability result of the PCKP prob-
lem [12]. The last chapter is devoted to the capacitated covering integer programs and
specifically to the 0-1 case. There, we give some results and observations which are
related to the Fujito and Carr et al. linear programming relaxations and algorithms.
Let us explain in detail our contributions in this thesis, in order to help the reader
to distinguish them from the previous work. The first results come from Theorem 3.1,
Lemma 3.2 and Corollary 3.3. There we prove that the formulation of McCormick
et al. [12] for the PCKP problem has integrality gap equal to Q(w(P)). This result
shows that every algorithm based on this formulation cannot have much better ratio
than their w(P)-approximation primal-dual algorithm. Next, in Theorem 3.4 we study
a slightly simpler formulation than the one which was suggested by McCormick et al.
[12] and in Theorem 3.5 we prove that in the worst case the two formulations have the
same ratio. Also in Lemma 3.6 we show that the combination of the two formulations is
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unnecessary, as the simpler one that we suggest, is implied by the one suggested at [12].
In the next section, Lemma 3.7 shows a useful property of the formulations which is that
the feasible minimal solutions in terms of their cost, have a specific structure. Using
that lemma, through Lemma 3.8 and Theorem 3.9, a new w(’P)-approximation rounding
algorithm for the 0-1 PCKP problem is presented. In the Section 3.5, a set of results is
presented until we reach in the main result of Theorem 3.14 which says that there exists
an O(min{|U|,w?(P)})-approximation primal-dual algorithm for the general PCKP
problem with multiplicity constraints. This solves the open problem stated by [12],
about whether there exists an algorithm for the general PCKP problem with strongly
polynomial bounds. As regards the inaproximability of the PCKP problem, we flesh
out the details of the proof of Theorem 6 [12] (cf. the proof of Theorem 3.17). Finally
in the last chapter, in Theorem 4.1 we prove that the already known algorithm of Fujito
for the 0-1 CIP problem, has a better approximation ratio which is equal to f — %
The same result is also proved in Theorem 4.3 with the primal-dual algorithm that we
develop for the 0-1 CIP problem and it is based on the Carr et.al relaxation. This ratio
is slightly worse than the (f — %) of [16], but can be achieved without the extra
O(n?) factor in the time complexity. However because of Lemma 4.2 the bound of the
algorithms is almost tight.
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CHAPTER 2

THE MINIMUM KNAPSACK PROBLEM

The knapsack problem is one of the most studied problems in combinatorial optimiza-
tion and usually in the literature it is presented as a maximization problem in the packing
variant. In this section though, we are going to focus on the minimization version of it,
in the covering variant, with the intention of presenting some techniques that have been
developed and used for this problem, but could be applied for other problems as well.

In the minimum knapsack problem we are given some elements with a cost and a
value for each one and also a specified demand. The goal of the problem is to select the
minimum cost set of elements such that their total value is at least the demand. Formally
let U be a set of elements, ¢ : U — Z and u : U — Z be the cost and the value
functions respectively and D be the specified demand. Then the goal is to find a subset
of elements S C U, such that ) 5 __g u(e) > D, while minimizing the sum ) __¢ c(e).
Since the problem is NP-hard [9] we should not expect to build a polynomial algorithm
on its input size, but we should rather approach it in a different way. In the rest of this
chapter we are going to present the steps, in order to build an 2-approximation algorithm
for the problem.

Instead of functions, we could visualize c and u as vectors, where their ¢4, compo-
nent ¢; and u,; corresponds to the cost and the value of the element ¢ € U respectively.
Hence it becomes obvious that the minimum knapsack is a special case of CIP, because
we can formulate an instance of the minimum knapsack as a CIP instance:

minimize Z Ci* T;
ieU
subject to Zui ~x; > D
=
z e {0,1}Y (Prp)

and x; = 1 if and only if the element ¢ € U has been selected.

The formulation ( Pk p) is what we call the natural integer program for the minimum
knapsack. However with this formulation there is an important obstacle to applying the
standard techniques of the linear programming theory. This issue has to do with the
integrality gap, which it happens to be unbounded. Actually the integrality gap of this
formulation can be as large as the demand D, as stated in Lemma 2.1, and as a result
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one cannot develop an approximation algorithm with constant guarantee based on this
formulation.

Lemma 2.1. [3] The integrality gap of (Px p) can be as large as the demand D.

Proof. Let two elements e;, e5 and a specified demand D. The costs and the values of
the elements are equal to:

cle1) =0, uler) =D -1
clea) =1, u(es) =D

The corresponding integer program for this instance would be the following:

minimize o
subjectto (D — 1) @1+ D -z > D
T1,T2 S {07 1}

We can observe that including the first element in our solution does not increase the
cost of the solution but increases the total value, and thus it is always beneficial to pick
this element. However, there is a residual demand that we must cover and this is equal
to one. In the integer version we must necessarily pick the second element as well,
getting an integer solution with total cost equal to one. On the other hand, as the value
of the second element is equal to D, in the linear version we are allowed to select only
a fraction of % of the second element in order to cover the residual demand, and end up
with a linear solution with total cost equal to %. Consequently the cost of the optimal
integer solution is D times larger than the cost of the optimal linear solution and thus
the integrality gap of the above formulation can be as large as the demand D. O

In order to handle this issue and make use of the techniques from the linear pro-
gramming theory, Carr et al. [3] introduced the so-called knapsack cover inequalities.
These inequalities are extremely useful, because not only they strengthen the linear
programming relaxation, reducing the integrality gap to the constant two, but also they
help us to develop 2-approximation algorithms for the minimum knapsack problem.
Furthermore, knapsack cover inequalities are not restricted only to this problem, but
they can also be applied to many other optimization problems, including the general
CIP problem.

Let us now define the knapsack cover inequalities and try to give an intuition for the
reasons that they are powerful and they reduce the integrality gap. Consider a minimum
knapsack instance with elements from U, demand D and « be the vector of values. For
a subset of elements A C U, we denote by:

D(A) = max{D — Z u;, 0}
i€EA

the residual demand that we must cover if we have already picked all the elements from
A. We know that every feasible solution x satisfies the constraint Zie u Uiz > D.
For a subset of elements A C U, let us split the previous constraint into two sums as
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follows:

Z Ui'l‘i+zui'$iZD &

i€U\A i€A
Zui-xiZD—Zui~xi:
i€U\A i€A
icU\A

The first two constraints are equivalent, and the last one is weaker than the other two
because D(A) assumes that each element which is part of A has been fully selected. If
we would add the last inequality, all the previous feasible linear solutions would still
remain feasible and so the integrality gap would not be reduced. The key observation
here, is that as we are only interested in integer solutions, if the value of an element is
larger than the residual demand, that is, it holds that u; > D(A), we could set u; equal
to D(A) for this constraint without cutting off any integer solution, while at the same
time maybe we would lose some linear solutions. It is important at this point to remind
us that D(A) is a non-negative number. Intuitively, by setting the coefficients of the
left hand side to as small as possible, we are forcing the vector = to get higher values,
closer to one, and thus very small linear solutions become infeasible, reducing that way
the integrality gap. The transformation of the values for a subset of element A C U,
will be denoted as:
u;(A) = min{u,;, D(A)}

and it can be thought as the effective value of an element given that the elements in
A are part of the solution. The new strengthened integer program for the minimum
knapsack is:

minimize E Ci T4

icU

subject to Z u;(A)-x; > D(A), VACU
i€U\A
z e {0,1}Y (Pkp1)

The claim is that the integer program (Pg p;) formulates the minimum knapsack
problem. The first thing that we should do is to prove formally that indeed the knapsack
cover inequalities are valid inequalities and as a result (Pk p1) is a valid relaxation of
(Pk p). In order to prove this, from the definition of a valid inequality, we should prove
that every feasible integer solution of (P p) remains feasible after the addition of the
new extra inequalities and thus, it is also feasible to (Pg p1).

Lemma 2.2. [3] The formulation (Px p1) is a valid relaxation of (Pk p).

Proof. Let x be an integer feasible solution for an instance of the minimum knapsack
with support vector S = {i | x; = 1}. Itis true that ), cu; > D. Let us assume
that there is a subset A C U such as the corresponding inequality is not satisfied by x.
For this subset A, it must be true that D(A) = D — >, 4 u; > 0 and the unsatisfied
inequality will look like:

> wi(A)-x < D(A) = > ui(A) < D(A)

i€U\A ieS\A



For each i € S\ A, the value u; cannot be greater or equal to D(A), because u;(A)
would be equal to D(A) and the inequality would be satisfied. Consequently, it holds
that u; < D(A) and so u;(A) = u;. Hence the sum is equal to:

S u(Ad)= > ui<DA) = > uwit+» ui<D

ieS\A ies\A ieS\A icA
But then:
Sus Y weYuen
ies ieS\A i€A

which contradicts the fact that « is an integer feasible solution of (Px p). Therefore x
must satisfy all the extra knapsack cover inequalities and so, (Px p1) is a valid relax-
ation of (Pk p). O

As a next step, we should show that( Pk p1) is indeed more powerful formulation
than the natural formulation (Pxp). A way to show something like that, is by devel-
oping an approximation algorithm with a constant guarantee. Carr et al. [3] developed
the bucketing algorithm which is a rounding 2-approximation algorithm, and proved
that the integrality gap of (Pk p1) at at most 2. Moreover they gave an infinite family
of instances with gap at least 2 — \TQJP and proved that the integrality gap of (Pk p1) is
very close to 2. Therefore using this formulation, we should not expect to develop an
approximation algorithm with better constant guarantee than 2, and so their bound is
almost tight.

However in this section, our attention will be focused on the 2-approximation primal-
dual algorithm that was developed by Carnes and Shmoys [2] which is also based on
the formulation (Pg p1), thus it can also be used in order to prove similar results for
the integrality gap of the formulation. Consider the linear relaxation of (Pg p1):

minimize Z Ci - T;
iU

subject to Z u;(A)-z; > D(A), VACU
i€U\A
z>0

and the dual of this linear program:

maximize Z D(A) -y(A)
ACU

subject to Z w;i(A) - y(A) <¢, VieU
ACU: i¢gA
y(A) >0, VACU

The algorithm follows the primal-dual schema. The algorithm initially starts with a
feasible dual solution and an infeasible primal integer solution and tries to construct a
feasible primal integer solution without violating the feasibility of the produced linear
dual solution. This is due to the fact that we would like to bound the cost of the primal
integer solution in terms of a constant factor of the cost of the linear dual solution, as this
is enough in order to prove that the approximation algorithm has a constant guarantee.

The algorithm initially sets S = () and y = 0, where S is the set of the chosen
elements and y is the dual vector. As long as the set S is an infeasible primal integer
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solution, we increase the dual variable y(.S) as much as possible until a constraint in the
dual linear program becomes tight. Let ¢ be the element for which the corresponding
inequality in the dual linear program becomes tight. Then we add 7 to the set S and the
same process is repeated. The pseudocode of the algorithm Algorithm 1 is presented
below:

while (D(S) > 0 && IS| < n) {
Increase y(S) until a dual constraint becomes tight for item i
S =5 U {i}

}

return (S, y)

The proof that the algorithm is indeed a 2-approximation algorithm follows from
the two next lemmas. In the first lemma we prove that the algorithm always finds a
feasible pair (S, y), assuming that there is one, and in the second lemma we prove that
the cost of the set S is at most two times larger than the cost of y, proving in that way
that the algorithm has an approximation factor of 2.

Lemma 2.3. [3] For a feasible minimum knapsack instance, the primal-dual pair (.5, y)
which is produced by the algorithm is feasible.

Proof. Let S be the current set in a step of the algorithm. The algorithm increases the
dual variable y(S) as much as possible until a constraint ¢ becomes tight. The variable
y(.S) does not participate in any inequality ¢ € S and so, for every previous element that
already belongs to .5, the corresponding inequality that has become tight is not affected.
Therefore in the case that the current set .S is not yet a feasible solution, we can proceed
with y(S) because it participates only in inequalities where the corresponding element
is not yet included in S. O

Lemma 2.4. [3] The primal-dual algorithm has an approximation factor of 2.

Proof. Let (S,y) be a feasible pair, where S is the set of elements that the algorithm
has picked and y is the dual vector that the algorithm has produced. The total cost of S

is equal to:
cost(S) = Z ¢ = Z Z u;(A) - y(A)
i€s i€S ACU: i¢A
where the last equality holds because the algorithm has picked elements for which the
corresponding inequality is tight. We would like to bound the cost of our solution, by
some factor times the cost of the dual solution y. Hence we can rearrange the sums in
order to get something similar to the cost function of the dual linear program.

cost(S) =D > wi(A) - y(A) =D y(A)- D> w(A) (1)
ACU €S\ A ACU i€S\A

Now we will try to bound the second sum. Let [ be the last element selected by the
algorithm. Because of the way the algorithm selects elements, y(A) > 0 implies that
A C S\ {l}, and so we can focus our attention only in these special subsets of elements.
Moreover it must be true that:

Z u; < D

i€S\{l}

11



because otherwise the algorithm would have stopped earlier. Therefore as u;(A) =
min{u;, D(A)}, we can conclude that for a fixed A C U, such that y(A) > 0, it holds
that:

S w) = Y w4) +uw(A) <
i€eS\A ie(S\{IH\4
Z u; + u(A) =
i€(S\{IH\A
Z ui—Zui—l—ul(A) <
ieS\{1} i€A
D =Y ui+w(A) = D(A) + u(A) <
I€EA
2-D(4)

As a consequence, from (1) we get that for the cost of .S it holds that:

cost(S) < 2- Z y(A) - D(A)
ACU

and as the cost of a feasible dual solution is a lower bound of the optimal primal integer
solution, the algorithm has an approximation factor of 2. O

To sum up, combining the two previous lemmas, for a feasible instance of the min-
imum knapsack the primal-dual algorithm produces a feasible pair (.5, y) such that the
cost of S' exceeds at most two times the cost of . As a corollary, because the cost of
a dual solution is a lower bound of the cost of the optimal primal linear solution, we
obtain that for the (P p1), its optimal integer solution is at most two times larger than
its optimal linear solution. Thus the integrality gap of (Px p1) is at most two.
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CHAPTER 3

I_THE PRECEDENCE CONSTRAINED MINIMUM
KNAPSACK PROBLEM

3.1 Definitions and Notations

In this section we are going to give some useful definitions and notations that will be
used later. Consider a partially ordered set P = (U, =), where U is a set of elements
and = is an order relation for pair of elements. Two elements ¢, j € U are comparable
if ¢ < j or j =< ¢ holds and incomparable otherwise. A subset A C U of elements is
called a chain if for every pair of elements ¢, j € A it holds that ¢, j are comparable.
Likewise, a subset A C U of elements is called an antichain if for every pair of elements
i,j € Aitholds that i, j are incomparable. The size of the maximum antichain will be
used as a guarantee in our approximation algorithms and will be denoted as w(P).

A subset A C U is called an ideal if for every element ¢ € A it is true that all the
elements j with the property j =< i are also part of A. In other words, for an ideal A,
i € Aand j < i implies j € A. An ideal A is also said to be closed under P. For a
partial order P the set of all the ideals of P will be denoted as L(P).

We define P(A) = (U \ A, =) for an ideal A € L(P) to be the partial order P
restricted to the elements that do not belong to A and min P(A) = {i c U\ A | #j €
U \ A such that j < i} to be the set of minimal items of the partial order P(A). These
notations will be useful later, as for a set .S which will not be yet a feasible solution, we
will need to pick an extra element in order to update the set S. To keep the set S closed
under P, a minimal element should be chosen with respect to P(.S) or in other words
an element from the set min P(5).

Finally, for an ideal A € £(P) and an element j € U \ A, we define X;(A) =
{ieU\A|i=<j A i€ minP(A)} as the set of elements that are simultaneously
minimals of P(A) and comparable with the element j. This set of elements will be
used later, when we will project the value of the element j uniformly onto the minimal
and comparable with it, items with respect to P(A), with the aim to add new valid
inequalities.

13
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3.2 The PCKP problem and some valid formulations

In the minimum knapsack we can choose the elements in an arbitrary order. A possible
extension of this problem would be to add the restriction that the chosen elements should
respect a specific order. This is the precedence constrained minimum knapsack problem
(PCKP) and is defined as follows. Let U be a set of elements, ¢ : U — Z, and
w : U — Z4 be the cost and the value functions respectively, D be the specified
demand and P be a partial order. Then the goal is to find a subset of elements .S C U that
minimizes the sum ) ¢ c(e) and the two following constraints are satisfied. The first
constraint is to satisfy the demand, namely, ) __ s u(e) > D and the second constraint
is to respect the partial order, that is, whenever we choose an element e, all the elements
below of e with respect to P must also be part of the solution.

This problem which is a generalization of the minimum knapsack can also be written
as an integer program. The additional constraint related to the partially order can be
described in the following way. For every elements i, j such that ¢ < j with respect to
P, it must be true that x; > x;. Thus the natural way to write the 0-1 PCKP problem
as an integer program is the following one:

minimize Z Ci T4
icU
subject to Zuz -x; > D
ieU
ri—2x; 20, Vi=j
z € {0,1}YI

In the case that P is an antichain, the integer program represents the classical minimum
knapsack problem, and from Lemma 2.1 the integrality gap will be unbounded. How-
ever we are allowed to add the valid knapsack cover inequalities and end up with this
strengthened integer program:

minimize Z Ci Xy
ieU

subject to Z ui(A)-z; > D(A), VACU
icU\A
r;—x; >0, Vi X j

z e {0,1}Y (Ppckp)

Nevertheless as stated in Proposition 1, even this strengthened formulation has an un-
bounded integrality gap which is specifically Q(|U]).

Proposition 1. [12] Formulation (Ppck p) has an unbounded integrality gap.

Proof. Consider an instance of PCKP with n items and demand D = 1. All the values
u; of the elements are equal to 1. The cost of the first element c; is equal to n and the
costs of the other elements are equal to 1. The partial order is a chain of length n with
1X2=<---=2Xn.

Then the optimal integer solution has to buy the first element at cost n due to
the partial order constraints. However, the linear solution selects the solution vector
(%,...,1) with solution cost 2 + 21 < 2, O

n?’ ‘n
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McCormick et al. [12] in order to handle this issue introduced the so-called prece-
dence constrained knapsack cover inequalities which behave almost in the same way as
the knapsack cover inequalities but they are now focused only on minimal items. That is
because the solutions that we are interested in, should be closed under the partial order.
The problem with the knapsack cover inequalities is that they reduce the gap between
the linear and the integer solutions which are not necessarily closed under the partial
order, and so the distance between the closed linear and integer solutions can still be
arbitrary large. To eliminate the very cheap linear solutions, we should somehow force
the solution vector x to set as high values as possible to the elements that should be se-
lected in order to get a closed solution under the partial order and this is exactly the idea
behind the precedence constrained knapsack cover inequalities. Assuming that an ideal
A € L(P) is not yet a feasible solution, these constraints force us to pick a minimal
element because only in this case the produced solution will remain closed. As regards
the approximation factor, intuitively as the inequalities are built upon the partial order,
the integrality gap now will be bounded in terms of P and specifically as we will see
later, from the value w(P).

Let us explain now more formally how these inequalities look like. Consider an
ideal A € L(P) and let D(A) = max{D — >, 4 u;, 0} be the residual demand that
we must cover. If D(A) > 0, then to update A towards a feasible solution, we must
necessarily pick an element from the set min P(A) and this idea could be described by
the valid inequality:

>oom>1 (3.1)

i€min P(A)

However as they write in [12], these inequalities do not distinguish between minimal el-
ements which enable us to select a large amount of value and minimal elements which
do not have any successors, and this is why they introduce a slightly different set of
inequalities. Nevertheless, even if the inequalities that they suggest in [12] appear as
more powerful, we will show later that in the worst case they actually have the same
guarantee with the inequalities (3.1). The suggested precedence knapsack cover in-
equalities work alike, but in the right hand side instead of 1, we have the real residual
demand D(A). However a problem that arises here is that in order to keep these in-
equalities valid, we should also make use of the values of the elements, but as we sum
only over the minimals items min P (A), we should somehow include the values of the
other elements in our sum as well. Therefore, for an ideal A € £(P) and an element
i € min P(A) they define in [12]:

u;(A) = min {ui(A) + Z I;?J((i)), D(A)}

Jii=<yg

to be the value of an element plus all the uniformly shared values of the elements above
it assuming that we project the values of each element j € (U\ A)\min P (A) uniformly
in the set of elements X;(A). Again, as we are interested only in integer solutions, the
coefficients that exceed the right hand side can be cropped and become equal to D(A).
The resulting strengthened integer program that occurs by adding these inequalities is

15



3.2. THE PCKP PROBLEM AND SOME VALID FORMULATIONS

the following one:

minimize E Ci - IT;

ceU

subjectto > Wi(A)-z; > D(A), VA € L(P)
i€min P(A)
xE{O,l}M (PPCKPI)

and the dual of the linear relaxation is:

maximize Z y(A) - D(A)

AeL(P)

subject to Z u;(A) - y(A) < ¢, YVieU
A€L(P): i€min P(A)
y(A) >0, A€ L(P) (Dpckp1)

Based on this (Ppck p1) formulation, in [12] they develop a w(P)-approximation
algorithm for the 0-1 PCKP. Moreover in Lemma 5 of [12], they give a family of in-
stances with the property that the cost of the produced dual linear solution is w(P) times
smaller than the cost of the produced primal integer solution, and so the bound of the
algorithm is tight. However someone could argue that maybe it is possible to develop
another algorithm with better approximation factor based on this formulation. In the
two next results though we prove something stronger for the formulation itself, and we
show that this is not possible.

Theorem 3.1. There is an infinite family of instances of PCKP, such that the gap be-
tween the optimal integer solution of (Ppcx p) with the optimal linear solution of the
linear relaxation of (Ppc i p1) is Q(w(P)).

Proof. Consider a partial order with 2n elements consisting of n parallel chains each
of length two. The values and the costs of the bottom layer are defined as (Vi)(1 <

i < n):ul = c! = 1. The values and the costs of the top layer are defined as
(Vi)(1 <i < n):uf =c? =2. Letus consider a PCKP instance with D = 2.

For the integer solution of (Ppcxp) we can either choose an element e% from the
top layer or not. In the first case though, we must also choose the element e} which is
located below of e, because the solutions must be closed under the partial order. The
cost of the solution in this case will be at least 5 + 1. However, in the second case we
can choose 3 elements only from the bottom layer, giving us a feasible integer solution
with cost OPT' = %, which is also the optimal integer solution for (Ppcxp).

Let us now consider a solution for the linear relaxation of (Ppcx p1). Set (Vi) (1 <
i<n):zl= %, x? = 0. Initially we will show that x is a feasible solution for the
linear relaxation of (Ppckp1).

In the matter of constraints, each subset A cannot contain any element from the top
layer. This is because we are interested only in ideals, and if A contains an element e?
from the top layer, it must also contain the corresponding element e} which is located
below of e?. But then D(A) < 0 and the corresponding constraint will be trivially
satisfied, because D(A) will be set equal to zero based on its definition. For the same
reason, subset A cannot contain 5 or more elements from the bottom layer, because
once again D(A) will be equal to zero. Therefore the only constraints that we should
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check for satisfiability, are the ones whose the corresponding subset A contains less
than 7 elements from the bottom layer.

Consider an arbitrary subset A that contains the indices of elements only from the
bottom layer, with size less than %, that is, | A| < 5. The corresponding constraint will
be the following:

Yoo wi(A)-af+ Y ui(A)-af > D(4)

1<i<n: i¢ A 1<i<n: i€A

However from the definition of @;(A), it holds that (Vi)(1 < i < n) : uj(4) =

u?(A) = D(A) and the corresponding constraint is equivalent to:

\Y
3

1<i<n: igA 1<i<n: icA

S O240Y o0zt o

n
1<i<n: i¢A 1<i<n: i€A

(14D 2 >

Al <

NS

And since |A] < %, the corresponding constraint will be satisfied. As a result, all the
constraints are satisfied and the solution z is a feasible one. The cost of the fractional
solution x is equal to:

n n

n
t = 1 1 2.z =
cost(x) ;11 + ;xz 5
2 n
cost(x) =n - +n 5
cost(x) =2
Therefore for the gap it holds that:
OPT 5 n
cost(z) 2 4

And equivalently we can say that the gap is 2(n). As the width of the partial order
is equal to n, that is, w(P) = n, we can conclude that the gap between the optimal
integer solution of (Ppcx p) with the optimal linear solution of the linear relaxation of

(PPCKPI) is Q(IU(P)) O
Lemma 3.2. The integrality gap of (Ppc i p1) is Q(w(P)).

Proof. Consider the same instance of PCKP as before. Based on the previous theorem,
it suffices to show that the optimal integral solution of (Ppcxp1) for that instance
cannot have cost less than 7.

Let assume the opposite, that there is a feasible integer solution = with cost less than
5. By S = {i | #; = 1} we denote the support vector of . Because of the cost of
S, we can conlude that S’ cannot contain any element from the top layer and also must
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contain less than 5 elements from the bottom layer. Otherwise the cost of the solution
would be equal to 5 or more, contradicting our assumption.

From the construction, S is an ideal and so the corresponding constraint for A = .S
must be satisfied. Since each element of A has value equal to one and also |A| < 3,
it is true that D(A) > 0. However in the corresponding constraint, the left side of the
inequality sums up to zero as we have picked elements only from the set S. Therefore
the inequality is not satisfied and so x cannot be a feasible integer solution.

Consequently the optimal integer solution of (Ppcx p1) for that instance has cost

at least % and the integrality gap of (Ppcx p1) is Q(w(P)). O

Therefore the two results above, tells us that we cannot use this formulation, in
order to develop an algorithm with guarantee better than Q(w(P)). Furthermore from
the family of the instances that we have used, we can also conclude that the bound is
Q(|U]) as well. This bound is stronger as it is always true that w(P) < |U|. Hence we
can arrive at the following corollary.

Corollary 3.3. The integrality gap of (Ppcx p1) is Q(|U]).

3.3 Pitch-1 inequalities

In this section we are going to investigate the simpler inequalities for the PCKP prob-
lem. These inequalities are also called pitch-1 inequalities [1]. Formally an inequality
of the form Zie v Ui - x; > Dis of pitch 1 if and only if, every u; is at least D. In our
case, the variable D and all the u; will be equal to one.

These simpler inequalities were also mentioned in the previous section (3.1). To
recap, consider an ideal A whose residual demand D(A) has not yet covered. These
inequalities do not take into consideration the values of the elements, but pick any ele-
ment from the set min P(A). This idea can be written as a linear inequality by saying
that the sum of the elements ¢ € min P(A) should be at least one. To simplify the
notations below, let us define the set L' (P) = {A € L(P) | D(A) > 0} of all ideals
whose residual demand with respect to A is not yet covered.

The resulting integer program is the following:

minimize E Ci Ty

€U

subject to Z z; > 1, VA€ L'(P)
i€min P(A)
z e {0,1}YI (Ppcrp2)

And the dual of the linear relaxation of (Ppcx p2) is defined as:

maximize Z y(A)

AeL!(P)

subject to Z y(A) <g¢, YieU
A€L/(P): i€min P(A)
y(A) > 0, VA e E/(P) (DPCKPQ)

Even though we have already given the intuition that the new integer program is a
valid relaxation for PCKP, the next theorem is a formal proof.
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Theorem 3.4. (Ppcip2) is a valid relaxation for PCKP, that is, any integer feasible
solution in (Ppc p) is feasible in (Ppcok p2)-

Proof. Let us consider an integer feasible solution z of (Ppck p). Let us also consider
an arbitrary ideal A € L(P), such that D(A) > 0. We will show that the corresponding
constraint of A in (Ppcx p2) will be satisfied.

Since z is feasible in (Ppckp), we know that >,y 4 ui(A) - @, = D(A). As
2 is an integer solution there must exist an ¢ € U \ A such that z; = 1, otherwise
the sum will be zero. Moreover, since x must be closed under P, there must exist an
¢ € U\ A which is minimal in P(A), or in other words ¢ € min P(A), such that
x; = 1. As aresult x satisfies the corresponding constraint in (Ppc i p2) which is the
2 icmin P(4) Li = 1 and thus x is a feasible integer solution in (Ppck p2). O

As (Ppc i p2) is a valid relaxation for the PCKP, every feasible dual linear solution
of Dpcki ps gives a lower bound on the optimal integer solution of PCKP. Therefore,
we could run the greedy Algorithm 1, using this new formulation and end up with a
feasible (S, y) pair. The proof of feasibility follows the same logic as in Lemma 4 of
[12]. In the next theorem, we prove that in the worst case the gap for this feasible pair
is at most w(P).

Theorem 3.5. The cost of a solution that is found by the greedy Algorithm 1 using the
(Ppck p2) formulation, is at most w(P) - OPT.

Proof. Let (S,y) be a feasible pair, where S is the set of elements that the algorithm
has picked and y is the dual vector that the algorithm has produced. The total cost of .S
can be evaluated as follows:

cost(S) = Zci = Z Z y(A)

= i€S AeL!(P): i€min P(A)

= > oy Y 1

AeLl'(P) 1€S N min P(A)

= > y(A)-[SnminP(A)]
AeL!(P)

< maxec(m (IS Nmin PA)} - 3 y(A)
AeL!(P)

<w(P)- Y y(A)
AeLl'(P)
<w(P)-OPT

O

As a result, the previous theorem shows that it is not necessary to use the more
complex inequalities in order to develop a w(P)-approximation primal-dual algorithm.
Unfortunately, the simpler pitch-1 inequalities of the form » ;. (a)Ti = 1, VA €
L'(P) would be redundant in the Ppcpi1 as they are implied from the inequalities of
the form 3, i pay Wi(A) - ©; > D(A), VA € L(P), and so by adding them to the
(Ppck p1) will not strengthen it.

Lemma 3.6. Inequalities of the form 3, . p(4) i = 1, VA € L'(P) are redundant
in the Ppcpki.
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Proof. Consider a feasible linear solution x and an ideal A such that D(A) > 0. Let
us assume that z satisfies the corresponding inequality:

i€min P(A)
but it does not satisfy the corresponding simpler inequality:
> az
i€min P(A)
Because D(A) is positive, this would imply that = does not satisfy the inequality:
> D(A)-x; > D(A)
i€min P(A)

From the definition of w;(A), we know that w;(A) < D(A) and thus, we can conclude

that:
Y wm(A) -z < Y D(A)-x; < D(A)
i€min P(A) i€min P(A)
which contradicts our initial assumption. O

From the previous lemma, we can understand that by adding the simpler pitch-1
inequalities to the (Ppc i p1), the integrality gap is not reduced, but in the worst case
both types of inequalities seem equivalent.

However as [12] explains in Theorem 3, in the case that for each element and each
ideal the total value which is projected to an element with respect to the ideal A is
bounded by the real value of the element with respect to A multiplied by a constant «,
that is, assuming that:

holds for every A € L(P) and ¢ € min P(A), then the primal-dual algorithm con-
structs a solution of cost at most 2« - OPT. The reason is that in the analysis of the
cost, the value u;(A) can be replaced by the value « - u;(A) and as u;(A4) < u;, we
can analyze the cost similarly with the case of the minimum knapsack problem without
the precedence constraints. Without taking into account the values of the elements and
using only the simpler pitch-1 inequalities, it is unlikely to get a similar result. That
is because in the case that P is an antichain, PCKP reduces to the minimum knapsack
problem, and choosing elements in an arbitrary way without taking into consideration
the values, is not effective in terms of the approximation factor. Therefore in this con-
text the precedence knapsack cover inequalities seem stronger than the simpler pitch-1
inequalities.

3.4 Rounding algorithm for 0-1 PCKP

We have already said that for the 0-1 PCKP, McCormick et al. [12] developed a primal-
dual w(P)-approximation algorithm. In this section though, we are going to apply a
simple rounding technique that was also used by Carr et al. [3] for the 0-1 CIP problem,
in order to develop a rounding algorithm with the same approximation factor w(P).
Even though there is no progress in terms of the approximation guarantee, maybe in the
future through rounding techniques we could get better results for the PCKP problem.
Initially let us present a very useful lemma for the development of the algorithm.
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Lemma 3.7. Let x be an integer feasible solution of (Ppck p1) which is not closed
under P. Then there is an integer feasible solution y in (Ppcxp1) which is closed
under P and the cost of y is less than the cost of z.

Proof. Let us consider an integer feasible solution = of (Ppc i p1) with support S =
{i | #; = 1} and also an initially empty set A = ().

We will augment the set A as follows. At each step, we pick an element from the
set min P(A) which is also part of the solution set S. That is, we pick an element
i € min P(A) NS and update A = AU {i}. As z is not closed under P, there must
be a step k for which the previous intersection is empty and let A, be the current set
for this step. Ay is an ideal because at any previous step until £ we have augmented
the set only by minimal items and so, there exist a corresponding constraint for the set
Ay, in the (Ppok p1). However, the left side of the corresponding constraint sums to
zero because none of the minimal elements of P(Ay) belong to S. Therefore, as x is
an integer feasible solution of (Ppck p1), it must be true that D(Ay) < 0.

We can now build our new integer feasible solution y by setting y; = 1 if and only
if i € Aj. The cost of y is indeed less than the cost of x because the support Ay of y is
a proper subset of the support S of z. Finally, as y satisfies the demand and is closed
under the partial order, it is a feasible integer solution of (Pp¢ i p) and hence, a feasible
integer solution of (Ppck p1) as well. O

With the help of this lemma, we can now proceed with the algorithm. The main idea
of the algorithm is to solve the linear relaxation of (Ppck p1) and set each variable z;
of the linear solution vector to 1 if and only if z; > ﬁ However we must ensure
that the linear solution will be closed under P, as we want to be sure that the produced
integer solution will be closed as well. To handle this problem, we can either add the
polynomially many natural constraints of (Ppcx p) that allow only closed solutions or
use ideas from the previous lemma, and this is what we will eventually do.

Another big obstacle is that the linear relaxation of (Ppcx p1) has exponentially
many constraints. A very useful idea that was introduced by [3] and later also used by
[13, 11], is to use the ellipsoid method and at each iteration to satisfy a subset of the
constraints. Eventually we end up with a relaxed linear solution, which is of course
a lower bound on the optimal integer solution. In our case we will separate over one
inequality which can be found in polynomial time.

Consider a candidate linear solution & and let us now describe the inequality that we
will use in the separation oracle. The procedure in order to find out the proper constraint
is similar with the previous lemma. In particular, we start from an empty set A = () and
as long as there is an element ¢ € min P(A) with &; > ﬁ, we augment the set A by
inserting in it the element i, that is, the set A is updated to A = A U {i}. In the case
that no such element exists with the previous properties, we stop the procedure. The
constructed A is an ideal, and so the corresponding inequality:

S w(A) 4> D(4)

i€min P(A)

is part of the ( Ppc i p1) formulation. This is the inequality that we give to the separation
oracle for the candidate solution Z. Clearly this procedure of finding such a constraint
runs in polynomial time. This is an iteration of the algorithm and as long as & does not
satisfy the inequality, the ellipsoid method continues by suggesting a new linear solution
and repeating the whole procedure of constructing the corresponding constraint. In the
case though that 2 satisfies the constructed inequality, the algorithm stops. Let us denote
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by Z the final candidate solution & which was used by the algorithm in the last iteration.
Also let A be the final constructed set which was constructed for the final candidate
solution . The next lemma shows a property for & and A respectively.

Lemma 3.8. The solution Z is a lower bound on the optimal integer solution of the

PCKP instance. Also it holds that D(A) < 0.

Proof. The solution  is a lower bound on the optimal integer solution of the PCKP
instance because it is minimized over a subset of constraints of a linear programming
relaxation of the PCKP.

Let us suppose on the contrary that D(A) > 0. Because the algorithm stopped,
the corresponding constraint for the ideal A must be satisfied from the final solution z.

Thus it must hold that: ~
> w(A)-z; > D(A)
i€min P(A)
Under the condition that the instance is feasible, the left hand side must have at least

one variable, because otherwise all the elements of the instance will have been included
in the solution and still the demand will not be covered. Hence it should hold that:

- . 1 - 1 -
. L3 s < <
Y ada< Y w@omss Y DA <D
i€min P(A) i€min P(A) i€min P(A)

which is a contradiction, because we have assumed that Z satisfies this constraint. As

a result, the residual demand D(A) cannot be positive. O

With the previous lemma we can now proceed in the next theorem, where we will
show that we can construct a feasible integer solution y with cost at most w(P) times
the cost of Z.

Theorem 3.9. There exists a w(P)-approximation rounding algorithm for the 0-1 PCKP.

Proof. Run the previous algorithm and set y; = 1 if and only if i € A. The solution y
is closed under P and from Lemma 3.8 the solution y satisfies the demand. Therefore
y is an integer feasible solution. Moreover the cost of y is at most w(P) times the cost
of = because we have set y; = 1 only if z; > ﬁ. Therefore as T is a lower bound
on the optimal integer solution of the PCKP instance, we can conclude that the cost of

the solution y is at most w(P) times the cost of the optimal integer solution. O

Consequently from the above theorem we can conclude that there exists a rounding
algorithm for the 0-1 PCKP problem with the same approximation factor with the previ-
ous primal-dual algorithm, which is equal to w(P), the size of the maximum antichain.

3.5 PCKP with general multiplicity constraints

The previous algorithms that we have discussed, solve the PCKP problem only for the
0-1 case. For the knapsack problem without precedence constraints we can extend the
results for general multiplicity constraints as well [3], [12]. However for general multi-
plicity constraints with a partial order, based on the Proposition 2 of McCormick et al.
[12] a modified algorithm would fail to give us a bounded approximation ratio. In their
Proposition 3 for the general multiplicity constraints, they suggest a pseudo-polynomial
algorithm with approximation ratio equal to w(P) - A, where A = max; d; is an upper
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bound on the multiplicity variables. As they write, it is an open problem to provide
strongly polynomial bounds for this problem. Even though a polynomial algorithm
with the same approximation ratio seems to exist by using the modified algorithm, in
this section we present a polynomial algorithm with strongly polynomial bounds and
specifically with approximation ratio equal to O(min{|U|, w?(P)}).

Formally the PCKP problem with general bounds can be described as an integer
program as follows:

minimize E Ci Xy

icU

subject to Zui ~x; > D
icU
x;—x; >0, Vi <Xj
x; <d;, VieU
S Z‘fl

The next lemma is an auxiliary lemma that will be used later on, in order to bound
some sums.

Lemma 3.10. Consider a finite partially ordered set PP such that each element has a
value v;. Denote by « the upper bound of every possible sum of elements of a chain.
Then, the sum of the values of all the elements of P is at most a - w(P).

Proof. From Dilworth's theorem [4], there is a chain decomposition {S1, ..., Sy p)}
of size equal to w(P). The total sum of elements can be bounded in the following way:

v > D> w< Y ac<a-wP)

i€P Sj:chain of P i€S; S :chain of P

O

Now we are going to present an O(w?(P))-approximation primal-dual algorithm
for the PCKP problem with d > 1. In the previous formulations, we were focusing
on the minimal items and each non minimal item would push its value to the minimal
elements which were comparable with it. The idea now is to be able to pick at each
iteration any item and not only the minimals. In order to keep the solution closed under
the partial order, when an element is chosen, we force the program to pick all the other
elements that are below it with respect to the partial order. With this idea in mind, let
us give the following definitions:

¢ = E :Cj

i€A
w(4) =min{ Y u;(4),D(A)]

JRiNGEA
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The new valid relaxation that we suggest is the following one:

minimize g [

eU

subjectto Y u,(A) - x; > D(A), VA € L(P)
i€U\A
z; >0, VieU (Ppcrps)

and the dual of the linear relaxation is:

maximize Z y(A) - D(A)
AeL(P)

subject to > w(A)y(A) <c, VieU
AeL(P): icU\A
y(A) >0, Ae L(P) (Dpckp3)

An interesting observation here is that there are no multiplicity constraints in the for-
mulation. However the algorithm that we develop respects the multiplicity constraints
and as the formulation is a valid relaxation for the problem, we can apply the standard
analysis of the cost. Moreover the cost function of the new formulation could be prob-
lematic because in the cost of each element ¢, the cost of every element which is below
of i in the partial order, is also included. Nevertheless, the following lemma shows
that for each feasible solution of the PCKP, we can find a feasible solution of the new
formulation with a cost that is larger only by a factor of w(P).

Lemma 3.11. Let 22 be a feasible solution for PCKP. Then there exists a feasible so-
lution 2! of (Ppc i p3) such that cost(z!) < w(P) - cost(x?).

Proof. Setx} = a7 —max;; x5. The solution z" is feasible in the (Ppc k p3) because
for each element 7, the corresponding value u; has been counted at least 27 times. The
reason is the following. Inductively with base case the maximal elements, consider for
an element ¢, the element & = argmax, _; x? From the inductive hypothesis, u; has
been counted at least z7 times, and from the transitive relation of the partial order and
the definition of u, the u; has been counted at least z7 times as well. Hence by setting
z; as the difference 27 — 27, the u; is counted in total at least 27 times, and this proves

the feasibility of ! in the (Ppc i p3). For the cost of 2! it holds that:

cost(z') = lel e =

€U

§ 1 § —
./EZ' N Cj —

= jii=i

ch~2z} <

jeu Q=i

Zq-x?w(?) =

jeu
w(P) - cost(z?)

To explain the reason that the inequality holds, consider for a fixed element j the re-
stricted partial order that contains only the elements ¢ such that j < i. Assuming that
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the value of each element i in this partial order is equal to z}, then from the construction
the sum of each chain is at most :Jc? To prove this, let us follow the same inductive argu-
ment as we did before with the feasibility of z'. Consider for an element j, the element
k = argmax,_; x? and assume that until the element k, the maximum sum from & until
a maximal element, is at most 7. By setting x} as the difference 2% — 7, the maximum
sum of a chain starting from j to a maximal element, is at most x2, and this concludes

our argument. Therefore from Lemma 3.10 it holds that =, ., z} <% -w(P). O

Therefore we can conclude that for an instance, the cost of the optimal solution of
the (Ppcox p3) is at most w(P) times larger than the cost of the optimal solution of the
PCKP.

Consider the following primal-dual algorithm which is running over the (D pcx p3)
dual linear program. The idea is to keep track of two sets of elements, the set S contains
all the elements that we will pick and the set S’ contains all the elements that their
corresponding inequality has become tight. From the solution z that is produced, we
retrieve another feasible solution ! with the same logic that we applied in Lemma 3.11.
This is because the cost of the final solution z2 that we are interested in, can be bounded
from the cost of 2! which can be bounded by the produced dual linear solution y.

S=0,y=0

while (D(S) > 0 && |S| < n) {
Increase y(S) until a dual constraint becomes tight for item i
S=5uU{jlj=i}
S = S"u{i}
xTr; = dl‘

}

Let A be equal to S without the elements which were inserted in
S in the last iteration. Update z; to be equal to the minimum
value such that w,(A) covers the residual demand,

where | is the index of the last inserted element in the set S’.
r; = max{x; — max;<; z;,0}

mf = max;<; Ty

Theorem 3.12. There exists a w?(7P)-approximation primal-dual algorithm for the
PCKP with d > 1.

Proof. After the execution of the algorithm we end up with an integer feasible solution
22, as it is related to S. The cost of 2% can be bounded by the cost of 2! in terms of the
(Ppckps3), because we can use the proof of Lemma 3.11, to show that the correspond-
ing costs have been counted at least the same times. However note that with the same
argument we can show that z! is feasible in the (Ppck p3), even if it is not necessary
in the analysis of the cost. Let S; = {i | ; > 0} be the support vector of z'. The cost

of 22 can be evaluated as follows:

cost(z?) < cost(z') = Z T ¢ =
1€S1
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Dowic Y w(A)-y(A) =

1€S1 AeL(P):i¢gA

> oy Y @l u(a) =

AeL(P) i€S1\A4

Sou- (Y ahw@) +atw4) =

AeL(P) 1€S1\A A i#l

Sov@- (X wh Y w) el wd) =

AeL(P) i€S1\A A i#l JRiAJEA

> - (( > w4 > al)+at @) < (1)
AeL(P) JEA A FieS1\A\{l1}:=i ieS\A\{l}:j<i

S (Y w@edee®) et ow@) < @
AeL(P) JEA A FieSI\A\{I}:j=i
7 y(A) - (w(P) - D(A) +2- D(A)) =
AeL(P)
(w(P)+2)- > y(A)-D(A) <
AeL(P)
(w(P)+2)-OPT < (3)
O(w?*(P))-OPT

In inequality (1), consider the restricted P for a fixed element j. Then the sum of
the values of elements of a chain is at most d;, and so we apply Lemma 3.10. From
the last step for the z; variable, we can conclude that (z] — 1) - u,(A) < D(A), and so
inequality (2) follows. Also inequality (3) holds, because of Lemma 3.11. O

Let us now present the O(|U|)-approximation primal-dual algorithm for the PCKP
problem with general multiplicity constraints. Consider the following valid formulation
of the problem, which is the same with (Ppck p3), but now instead we are making use
of the real values of the elements:

minimize g [

ceU

subjectto Y ui(A) - x; > D(A), VA € L(P)
ieU\A
z; >0, VieU (Ppcipa)

and the dual of the linear relaxation is:
maximize Z y(4) - D(A)
AeL(P)
subject to Z u(A)-y(A) <g¢, VieU
ACL(P): icU\A
y(A) >0, Ac L(P) (Dpckpa)

Theorem 3.13. There exists an O(|U|)-approximation primal-dual algorithm for the
PCKP with d > 1.
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Proof. We can run the previous algorithm with or without the last pruning step. The
produced solution 2 is feasible to the PCKP with d > 1 and its cost is bounded by
the cost of z! in terms of the (Ppck pa). However the cost of 2! is at most two times
larger than the cost of the produced dual linear solution because the analysis is similar
to the one in Lemma 2.4, for the knapsack without precedence constraints. Therefore
it holds that:

cost(z?) < cost(z') < 2-OPT

Unfortunately Lemma 3.11 is not applicable here because the new formulation uses the
real values of the elements. In this situation, a feasible solution of PCKP is feasible
in the (Ppcx pa) with cost at most |U| times larger than before. The reason is that
the cost of each element ¢ will be included in at most |U| elements above it, and also
every element above ¢ can be selected at most d; times. Thus we can conclude that
OPT < |U|- OPT. Consequently for the cost of z? it is true that:

cost(z?) < O(|U|) - OPT
O

An interesting observation is that the produced x! solution is not necessarily a fea-
sible solution of the (Ppc i p4), but this does not cause us any problem. This is because
we are interested in the 22 solution and as the produced dual linear solution remains fea-
sible in the D pc i p4, we are able to apply the usual analysis of the linear programming
theory.

Eventually combining the two theorems above, we can get the main following result
which gives us strongly polynomial bounds for the general PCKP problem.

Theorem 3.14. There exists an O(min{|U |, w?(P)})-approximation algorithm for the
PCKP problem with general multiplicity constraints.

3.6 Inapproximability of PCKP

McCormick et al. [12] also proved an inapproximability result for the 0-1 PCKP which
can be seen as a lower bound for the problem. Apparently as 0-1 PCKP is a special case
of the PCKP, this lower bound is inherited to the general case as well. In their proof,
they present a reduction from the densest k-subgraph to the /-EIS and from [-EIS to the
PCKP, and because Khot [10] showed that there is no PTAS for the densest k-subgraph
unless NP C NoBPTIME(2""), they come to the conclusion that PCPK does not
admit a PTAS unless NP C N.~oBPTIME(2""). However in their proof of Theorem
6, some details are missing. In general the proof can help us to build an intuition about
the differences of the PCKP with the simple knapsack problem that makes the first one
harder than the second one. For these two reasons, we decided to present the proof once
again, with minor changes that will be pointed out. First of all, let us define the two
new problems that will be used in the proof.

Definition 3.15. Densest k-subgraph is a maximization problem, in which we are given
a graph G = (V| F) and a parameter k and we are asked to select a subset of vertices
S C V, such that |S| < k and the number of edges in the induced subgraph G[S] is
maximized.

Definition 3.16. [-EIS is a minimization problem, in which we are given a graph G =
(V, E) and a parameter [ and we are asked to select a subset of edges S C F, such that
|S] > 1 and the number of vertices in the induced subgraph G[S] is minimized.
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The aim of the proofis to reduce an instance of the densest k-subgraph problem to a
PCKP instance. An issue here though, is that the densest k-subgraph is a maximization
problem, while the PCKP is a minimization problem. However, instead of trying to
select vertices in order to maximize the number of induced edges, we could try to select
edges in order to minimize the number of induced vertices and the new problem that
arises is exactly the [-EIS. In Theorem 5 of [12] they give a simple reduction from
an [-EIS instance to a PCKP instance with the same cost, which means that these two
problems can be seen as equivalent. Therefore, it is sufficient to prove that if we had a
PTAS for [-EIS, then we would also have a PTAS for the densest k-subgraph.

Theorem 3.17. (Theorem 6 [12]) For any € > 0, an (1+¢)-approximation algorithm for
[-EIS can be used as an (1 — 2 - €)-approximation algorithm for the densest k-subgraph.

Proof. Let a constant € > 0 and a (1 + €)-approximation algorithm Mg for the I-EIS
problem. For an instance of densest k-subgraph, which is a graph G = (V, F) and a
parameter k, we execute the algorithm M 4 as appears in the pseudocode, and we call
as a subroutine the algorithm Mp.

// result stores the selected edges
result =

for (1 =01<=|E|] 1+=1) {
run Mp with graph G and parameter [
let S be the induced vertices and
G[S] be the induced subgraph

while (IS| > k) {
pick vertex u with the minimum degree
with respect to G[S]

update S =S5\ u
}

let E’' be the edges of the final GIS]
if (lresult| < |E'|) {
result = £’
}
}

return result

Let [* be the optimal solution cost for the input instance (G, k) of the densest k-
subgraph. Then for [ = [*, the for-loop of the pseudocode will call Mp and it will
return a subset of vertices S. If k* is the optimal solution cost of the instance (G, *)
for the [-EIS, then as Mp is an (1 4 €)-approximation algorithm, the size of S will be
bounded as:

[S|<(1+¢)-k*"<(1+4e€) -k
Consequently, the while-loop of the pseudocode will erase at most € k vertices, in order
to produce in the end a subset of k vertices. Therefore, we should prove that the final
number of edges after the deletion of few vertices, is very close to the optimal [*.

To proceed with this idea, let us initially mention some important observations that
are useful for the analysis. Firstly, after the execution of Mp with parameter [, the
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produced solution can contain exactly [ edges, as it is not helpful to select more than
I. Secondly, for a vertex u with the minimum degree in a graph G = (V, E), it is true
that: ) 2. 1B

deg(u) < deg(v) - — = ———

g()_v; 9(v) V] V]

Hence the degree of all the erased vertices will be smaller than the average degree of
the current induced subgraph, and each induced subgraph will contain at most [* edges
and at least k vertices. Thus the degree of each deleted vertex will be bounded by the
value % Therefore when M 4 will run with [ = [*, the number of the erased edges
will be bounded as:

2.0

I"—|E'| < ek =201"€=

|E'| > 1" (1-2-¢)

The size |result| of the final edges will be the maximum over all the iterations, and
so the cost of the produced solution of the algorithm will be at least (1 — 2 - ¢) times
the cost of the optimal solution. Finally as M 4 runs in polynomial time in the input
size, itis an (1 — 2 - €)-approximation algorithm for the maximization problem densest
k-subgraph. O

From the previous theorem and the discussion above we can conclude that PCPK
does not admit a PTAS unless NP C N.~oBPTIME(2"") and so by extending the min-
imum knapsack problem to the precedence constrained knapsack problem, under the
previous assumption we end up with a harder problem.

The intuition that PCKP is harder than the minimum knapsack, comes from Theo-
rem 5 of [12] with the reduction that they give from an instance of [-EIS to an instance of
PCKP. In particular, PCKP has the advantage that through the partial order we can ma-
nipulate elements that represent two different entities, in our case vertices and edges.
Thus we can force our program to pick the induced vertices for every selected edge,
using a constraint of typeu < e & u €e.

29



3.6. INAPPROXIMABILITY OF PCKP

30



CHAPTER 4

L CAPACITATED COVERING INTEGER PROGRAMS

4.1 Introduction

This chapter is devoted to the capacitated covering integer programs (CIP) and espe-
cially to the case that we are allowed to pick each element at most once. Let us recall
that a CIP has the following form:

minimize ¢’
subjectto Az > D
z<d
n
T EL T

By f we will denote the maximum number of non-zero coefficients in a row of A and
by a the dilation, which is the maximum number of constraints that any variable occurs
in. By 0-1 CIP we will denote the special case of the CIP, where the upper bounds d;
are equal to one. Let N be the set of elements, M be the set of constraints and n, m
their sizes respectively. Then a 0-1 CIP instance can be written as follows:

minimize Z cj - x
JEN

subject to Z Ujj * Tj = D;, Yie M
JEN
T € {0,1}, VjeN

Many interesting optimization problems can be formulated as a CIP. Therefore the
results and the techniques that have been developed for the CIP, can also be used for
these special cases. It is worth mentioning though, that this is not trivial for the PCKP
problem as the natural integer program that formulates it, contains constraints of the
form z; — x; > 0 with negative coefficients, and this not allowed to the CIP.

Furthermore CIP inherits all the lower bounds of these special cases and as a result
CIP is not only NP-complete, but also there is no (f — 1 — €)-approximation algorithm
for any fixed € > 0 [5] and no o(In m)-approximation algorithm [17], unless P = NP.
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These lower bounds arise from the hardness of the Set Cover problem which is a special
case of 0-1 CIP, where also the values u;; are either zero or one.

In the matter of approximation factors based on rows of A, for the 0-1 CIP case, Carr
et al. [3] by adding the knapsack cover inequalities for each constraint, developed an f-
approximation rounding algorithm and Fujito [6] an f-approximation primal-dual algo-
rithm, using also the knaspack cover inequalities. Also for the 0-1 CIP case, Takazawa
et al. at [16] and [15], slightly improve the approximation factor by presenting an
(f— %)—approximation primal-dual algorithm and an f5-approximation primal-dual
algorithm respectively, where f5 is the second largest number of non-zero coefficients
inarow of A. In the case of the general multiplicity constraints (d > 1), we can achieve
an (f + 1)-approximation rounding algorithm, using the bucketing algorithm from [3].
According to [13], both papers [3, 6] claim an f-approximation algorithm for the gen-
eral CIP with d > 1 without a proof, and there is not any straightforward method of
extending their techniques to the general case. Hence at [13], they introduce the so-
called p-roundable constraints, with the help of which they present an f-approximation
rounding algorithm for the general CIP. For approximation factors based on columns of
A, Kolliopoulos and Young [11] also using the knapsack cover inequalities, developed
an O(In «)-approximation algorithm for the general CIP case, which is best possible
unless P = NP.

4.2 Results for the 0-1 CIP

In the rest of this chapter, motivated by the ideas from Takazawa et al. at [16], we
will present related results. The improved primal-dual (f — i ;Ll )-approximation algo-
rithm at [16] for the 0-1 CIP, solves O(n?) subproblems of 0-1 CIP instances with the
primal-dual algorithm of Fujito [6] (PD). Following a very similar logic with them in
the analysis of the cost, we prove in the next theorem that the primal-dual algorithm
by Fujito is actually an (f — %)-approximation algorithm. Hence the approximation
factor of the algorithm is slightly better than f, without the need of the extra O(n?)
factor in the time complexity.

To be able to present this result, let us first introduce some useful notations and the
relaxation that Fujito used for his primal-dual algorithm. Following the notations that
we used before for a 0-1 CIP formulation, let A C N be a subset of elements. Then
by M(A) = {i € M | D;(A) > 0}, we denote the set of constraints that are not yet
satisfied after selecting all the elements of A. Also for every j € N \ A, we denote by
Ui(A) = Xiema) %, the sum of the effective values of the element j from all
the active constraints, divided by the residual demand of each constraint. The division
is for simplification reasons, as we would prefer to have the value 1 at the right hand
side of the inequality constraints.

The linear relaxation of Fujito which is a valid relaxation for the 0-1 CIP can be

written as follows:

minimize Z cj - x;
JEN

subjectto > Uj(A)-z; > |M(A)|, VAC N
JEN\A
€T > 0, Vj eN
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and the dual linear program of it, is the following one:

maximize »  [M(A)|-y(A)

ACN

subject to Z Uij(A) - y(A) <¢j, YjEN
ACN: j¢A
y(A) >0, VACN

Therefore now, we can proceed with the next theorem for the approximation factor
of PD.

Theorem 4.1. Let an instance of 0-1 CIP with f > 2. The cost of the produced solution
by PDisatmosta = f — % times the cost of the optimal integer solution.

Proof. LetS = {j € N | z; = 1} be the support vector of z, and y be the dual solution
which is produced by PD. For the cost of z it holds that:

cost(x ch T = ch :Z Z Uj(A)y(A) = Z y(4) Z U;(A)

jEN jes JES ACN: j¢A ACN JES\A

To prove that cost(z) < a - OPT, it suffices to show that for any A C N such that
y(A) > 0, it holds that:

> Uj(A) < a-|M(A)|

JES\A
Because then we would conclude that:

cost(x) = Y y(A) > U;(A)< Y y(A)-|M(A)-a<a-OPT

ACN jes\A ACN

By the definition of U;(A) it follows that:

Suw=% ¥ PGS ¥

jes\A JES\AieM(A) Di( iEM(A) jeS\A Di(

Let [ be the last element that the algorithm picks. Then because of the way PD builds
the dual solution, y(A) > 0 implies that A C S\ {{} and from the definition of M (A),
for these A we know that:

M(S\{l}) € M(4)

Therefore for such a fixed A, we can split M (A) in two parts M (S \ {I}) and M (A) \
M(S\ {l}), and as a consequence:

uijA ’U,ijA
Yow= S S SE Y Y B

jES\A ieM(S\{l}) jeS\A i€EM(AN\M(S\{l}) jeS\A

For the second part of the sum, because u;;(A) < D;(A), it is true that for any ¢ €
M(A)\ M(S\A{1}):
> ui(A) < f-Dyi(A)

JES\A
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and as D;(A) > 0, it holds that:

u;j(A) 41
jEES;ADi(A)<f 4.1)

For the first part of the sum, we can notice that taking all the elements except the last
one is not enough to satisfy the constraints which is part of M (.S'\ {{}). Hence, it must
be true that for any ¢ € M (S \ {/}):

dYoow(A) = D u(A) +ua(A)
JES\A JES\{IP\A
< Z u;j + i (A)
JES\{IP\A
= Z Ui — Z U + ’LLZl(A)
jeS\{l} JEA
JEA

= Di(A) + Di(A) =2- D;i(A)

and as D;(A) > 0, it holds that:

uig(4)
< 4.2)
jeg\A Di(4)

From (4.1) and (4.2) we obtain that:

U< > 2+ > f

JES\A ieM(S\{1}) i€M(A)\M(S\{i})
=2 [M(S\{IN[+ - (IM(A)| = [M(S\{i})])
= [M(S\{P]- (2= 1)+ f-[M(A)
Since the set S\ {I} is an infeasible solution, it is true that |M (S \ {I})] > 1. Also for

any A such that y(A) > 0, it is true that 1 < |M(A)| < m. Therefore for f > 2, we
finally obtain that:

S U A) <2 f+f-[M(A)

jeES\A
_o S22
< -122) )
= |M(4)]

And as a result we can conclude that PD is an (f — ! ;2 )-approximation algorithm. [

Someone could argue that we can apply a more complicated analysis in the PD
algorithm and get a better approximation guarantee. In the next lemma though, we show
that it is possible for the PD to return an integer solution with cost of exactly f — %
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times the cost of the dual solution y that is produced by the algorithm. Thus with
the standard analysis, that we compare the integer solution cost with the dual solution
cost, we should not expect to get better approximation factor than f — %, with this
formulation and the PD algorithm.

Lemma 4.2. An integer solution found by PD can have cost of exactly f — % times
the cost of the dual solution y which is produced by the algorithm.

Proof. Let the following infinite family of instances, for which all the constraints are
similar except one.

minimize Z x;
JEN
subject to Z n-x; >n, Vie (M\{m})
JEN
> zizn
JEN
z; €{0,1}, VjeN

The corresponding dual of the linear relaxation of Fujito is the following one:

maximize Z IM(A)|-y(A)
ACN

subjectto Y Uj(A)-y(A) <1, VjeN
ACN: j¢gA
y(A) >0, VACN

The algorithm starts by increasing y (). For every j € N it holds that U;(0) = m —
1+ % and hence the value of y(() will be set equal to ﬁ All the dual constraints
will become tight. Even though the algorithm will not terminate until it gathers all
the elements, y() will be the only dual variable which will have a non-zero value.

Therefore the cost of the dual solution y which will be produced, will be equal to:

D M) y(A) =m-y(®) =

1
ACN m 1—|—n

The cost of the integer solution which is also the optimal one will be equal to n and
thus the ratio will be equal to:

n n-(m—-14+2%) n.om-n+1 n+1
= = = n-—-— — J—
m—mT m m m m

Observing that f = n, we can conclude that the difference between the cost of the
integer solution and the dual solution which are produced by the PD algorithm is exactly
equal to:
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The integer program of Fujito [6] is a relaxation of the integer program of Carr et al.
not only in the sense that it does not cut off the integer feasible solutions, but also it does
not eliminate any feasible solution at all. That is, the convex polytope of the feasible
set of the linear program of Carr et al. is a subset of the convex polytope of the feasible
set of the linear program of Fujito. Therefore, from Theorem 4.1 we can conclude that
the integrality gap of the formulation of Carr et al. is at most f — +—=. Moreover,
as we have already mentioned, Carr et al. [3] developed an f-approximation rounding
algorithm for the 0-1 CIP. In the next theorem though, we apply the same ideas we
used for the algorithm of Fujito, but this time we develop an (f — %)-approximation
primal-dual algorithm using the formulation of Carr et al.

Theorem 4.3. Leta = f — % and an instance of 0-1 CIP. Then there exists an
a-approximation primal-dual algorithm using the formulation of Carr et al.

Proof. For an instance of 0-1 CIP, the formulation of Carr et al. is the following one:

minimize E cj - x;
JEN

ij (A ‘
subjectto Y 'j)?( )¢zjz1, VA C N Vie M(A)

€{0,1}, VjeN

The dual of the linear relaxation of the above integer program is:

maximize E E yi(A

ACN ieM(A)

subject to Z Z u” ‘yi(A) <c¢j, VjEN
ACN: j¢Aie M(A) Di(

yi(A) >0, YAC NVie M(A)

The algorithm will produce a (x, y) pair solution, where x is a primal integer solu-
tion and y is a dual linear solution such that the cost of x is at most a times the cost of y.
The algorithm will follow the usual procedure of primal-dual algorithms, starting with
S = () and repeatedly increasing the solution set S. While the algorithm is still running
and the set S is not yet a solution, we increase uniformly all the y;(S) foralli € M(S),
until a dual constraint becomes tight. Therefore for a specific A C N, it will hold that
for all i € M(S), all the y;(A) will be equal, and this value will be denoted as y(A).
Let S = {j € N | z; = 1} be the support vector. For the cost of z it holds that:

uij(A)
cost(x ZCJ ;= ZCJ Z Z Z @) yi(A)

’L

JEN JES JGSACN JjEAIEM(A)
_ Uw ui;i(A)
=Y w -Y Y Y
ACN ieM(A) yeS\A ACN ieM(A) JES\A
S XY
D;(A)
ACN zEM(A) jeS\A
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From Theorem 4.1, we know that:

(2% A Ui A
Suw-Y ¥ pE- Y Y W

jes\A JES\AieM(A) ieM(A)jeS\A ~°

and this value is bounded by:
> Ui(A) <a- |M(A)]
JES\A
Therefore we can bound the cost of = by:
cost(x) < Z y(A) - |[M(A)| - a < a-cost(y)
ACN

The last inequality holds because for each i € M (A), we increase uniformly the corre-
sponding y;(A), and so:

cost) = 3 3w =3 3 y(A) = y(A)- 1M(4)
ACN i€ M(A) ACN ie M(A)

O

Consequently this result implies that the formulation of Fujito is not necessary in
order to achieve the previous results for the 0-1 CIP.
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CHAPTER 5

CONCLUSION AND OPEN PROBLEMS

In this thesis, our main goal was to investigate the PCKP problem together with the
formulation that McCormick et al. [12] suggested. In the third chapter, initially we
investigated the integrality gap of the formulation and we proved with Lemma 3.2,
that it is Q(w(P)). Hence, in order to improve the guarantee for the PCKP problem,
we should use some new ideas. A different formulation was also studied using the
simpler pitch-1 inequalities and in Theorem 3.5 we proved that in the worst case the
two formulations are equivalently strong. Also a new rounding w(P)-approximation
algorithm for the 0-1 PCKP problem was developed. In Section 3.5, we studied the
PCKP problem with general multiplicity constraints and with Theorem 3.14 we prove
that there exists an algorithm with strongly polynomial bounds, something which was
an open question at [12]. In the end of the third chapter, a more detailed proof of the
already known inaproximability result for the PCKP, is also given. Finally in the fourth
chapter, we studied the CIP problem and specifically the 0-1 case and we presented
some results related to the Fujito and Carr et al. linear programming relaxations.

In the second chapter we described the minimum knapsack problem for the case that
the elements can be selected at most once and we presented results from the literature
[3], [2]. Interestingly, the minimum knapsack problem can be easily extended to the
general case with multiplicity constraints [3], [12], and the approximation algorithms
maintain the same approximation factor, which is in our case equal to 2. However this
generalization from the 0-1 case to the general multiplicity constraints is not a trivial
procedure for the PCKP problem. This problem was studied by McCormick et al. [12]
and they state that it is an open problem to provide an algorithm with strongly polyno-
mial bounds. In the third chapter, we described a way to achieve strongly polynomial
bounds, but the question remains whether we can achieve something better, for exam-
ple to replace w?(P) with w(P) in Theorem 3.14. Furthermore the gap between the
lower and upper bounds for the PCKP problem is large, even for the 0-1 case, and so
it would be interesting either to provide a stronger lower bound than the one that says
that there is no PTAS or to develop an algorithm with approximation factor better than
w(P).
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