ol 7

.
i
2 |

\‘,'/

(e
(tﬁ‘i'
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS
SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

POSTGRADUATE STUDIES PROGRAM

MASTER THESIS

Hate Speech Detection on Twitter: A Social-Aware Approach
Georgios C. Apostolopoulos

Supervisor: Alexios Delis, Professor NKUA

ATHENS

MARCH 2021

ol 7

.
i
2 |

\‘,'/

(e
(tﬁ‘i‘
EONIKO KAI KAMOAIZTPIAKO MANEMIETHMIO AGHNQN
2XOAH OETIKQN ENMIZTHMQN
TMHMA NMAHPO®OPIKHZ KAI THAEMIKOINQNIQN

NMPOrPAMMA METANTYXIAKQN ZNMOYAQN

AINAQMATIKH EPTAZIA

Eupeon YBpioTikoU Adyou oto Twitter: Mia Npoocéyyion pe
AvaAuon Koivwvikwyv AIKTOWV

Mewpylog X. ATTooTOAGTTOUAOG

EmiBAéTwyv: AAE&§iog AgAng, Kabnyntrig EKMA

AOHNA

MAPTIOZ 2021

MASTER THESIS

Hate Speech Detection on Twitter: A Social-Aware Approach

Georgios C. Apostolopoulos
RN: CS2180003

SUPERVISOR:

Alexios Delis, Professor NKUA

THESIS COMMITTEE:
Alexios Delis, Professor NKUA

Alexandros Ntoulas, Assistant Professor NKUA
Panagiotis Liakos, Postdoctoral Researcher NKUA

MARCH 2021

AINAQMATIKH EPTAZIA

Eupeon YBpioTikou Adyou oto Twitter: Mia MNpooéyyion pe Avaluon Kolvwvikwv
AIKTOWV

Mewpyilog X. ATTooTOAGTTOUAOG
AM: CS2180003

EMIBAEMQN:

AAEGIog AgAng, KaBnyntig EKMA

E=ETAZTIKH ENITPOIH:
AAESlog AgAng, KaBnyntrig EKMA

AAEEavdpog NToUuAag, ETtikoupog KaBnyntrig EKIMA
Mavayiwrtng Aidkog, Metadidaktopikdg Epeuvnric EKIMA

MAPTIOZXZ 2021

NEPIAHYH

H avdAuon ocuvaioBnudtwy avagépetal otn diadikaoia Aqyng TTANPoQopiag OXETIKA e
TNV avTiAnyn Tou XPAOoTN yia éva TTpoldv, Pia UTTPEaia, uia dlaonuoTtnTa, évav TTONITIKO
N OKOPA KAl 1A YEVIKOTEPN 10€Q 1) CUUTTEPIPOPA. 2TNV TTapoUca JITTAWUATIKA €pyaacia,
Ba yivel TpooTrdBeia evioTTiIopoU uBpioTikoU Adyou oTo Twitter. To picog, €ival Eéva TTOAU
loxupd cuvaiocdnua, Kabwg, OTav ekPPAZeTal XWPIG TTEPIOPIOHO, dUvATAl VO KATACTPEWE!
TNV ToIOTNTA PIag culATnonG. EmmmTAéov, To Piocog ocuviBwg ouvodeueTal attd UBPEIS KI
QTTEINEG. ZUVETTWG, N TTPOCTTIABEIA EVTOTTIONOU TOU PiCOUG OTA KOIVWVIKA SiKTua OTTWG TO
Twitter, cival yia diadikacia TTou TTPETTEI va UAOTTOINGEI TTPOOEKTIKA. QOTOCO0, dev givai
EQIKTO VO TTPAYUATOTTOINGEI XEIPOKIVNTA, KABWG, OTIG HEPES PAG, N KivNOn OTA KOIVWVIKA
OikTua au&dveTal Ki OAO Kal TTEPICOOTEPOI AVOPWTTOI XPNOIUOTTOIOUV DIABIKTUAKES EQAPUOYES
KI epyaleia. Kartd ouvétrela, néow auTodaToTToINPEVWY PEBGBWY, N TTPOCTTABEIO QUTH
duvartal va atrAoTroinBei. ETITTpooBETw g, EpeUVES £XOUV UNOTTOINBEI OXETIKA PE TO KATAAANAQ
EPYOAEia yIa TNV ATTAOUCTEUC TOU OUYKEKPIPEVOU £PYOU, E TNV TTAEIOYPNQIA VA XPNOIKOTTOIET
MNXAVIKR JABnon. ZTnv TTapouca epyacia, TTPOCTTaB0UUE va EVTOTTIOOUUE TO PICOG OTO
Twitter yéow uv@IoTAPEVWY PEBODBWYV Kal TEXVIKWYV. [MapdAAnAa, 6a akoAoubricoupe uia
TEXVIKI BaAcIOUEVN OTNV avAAUON KOIVWVIKWY BIKTUWY, AZIOTTOILVTAG TA XAPOKTNPIOTIKA
Tou XpNoTn (apIBPOG akoAouBbwyv, apiBuog tweets KATT.) kal AapBdvovtag uttown OAeg
TIG TNOAVEG PETPIKEG TTOU BewpouvTal onuavTiKEG. KAgivovTag, €TIXEIpOUPE ouvOUao o
TWV QVWTEPW TEXVIKWY, UE OKOTTO VA dIATTIOTWOEI KATA TTOCO €ival EQIKTA WIa ONUAVTIKA
BeATiwon otn dladikagia eUpeong UBPIOTIKOU KEIPEVOU.

OEMATIKH MEPIOXH: Autdéuartog evioTTiouog UBPIOTIKOU AGyou
AEZEIZ KAEIAIA: uBpioTikdg AGyog, twitter, KaTnyopIoTroinon e XapakTnPIoTIKA XprRoTn

ABSTRACT

Sentiment analysis refers to the process of retrieving information about a user’s perception
of a product, service, celebrity, politician or even a general idea or behavior. In the current
thesis, we will examine Twitter’s tweets and attempt to identify hate speech in them. This
specific sentiment is very powerful, as when used without measure, it can severely de-
stroy the quality of a conversation. Furthermore, hate is most often combined with insults,
abuse and threats. Thus, the effort to identify hate in social media, like Twitter, is a task
that needs to be done carefully. However, it is not feasible for humans to do this process
manually, as nowadays, the traffic in social media augments and more people use online
applications and tools. With an automated approach, this effort can become significantly
easier. Additionally, research has been conducted on what tools can be used to accom-
plish this task and the majority uses machine learning. In this research, we investigate
hate-speech detection on Twitter using methods that already exist. In addition, we follow
an approach, based on social networks analysis, making use of user’s profile (number of
followers, number of tweets etc.) and any useful metrics we can think of. Finally, we com-
bine those approaches to determine whether we can achieve a significant improvement
in the task of hate speech detection.

SUBJECT AREA: Automated hate speech detection

KEYWORDS: hate speech, twitter, user features classification

ACKNOWLEDGEMENTS

| would like to thank my supervisor, Prof. Alexios Delis and my tutor, Dr. Panagiotis Liakos,
for their undivided attention and their invaluable guidance in formulating the research,
providing me with the tools | needed to successfully complete my dissertation. Lastly, |
am deeply indebted to my family for their endless support.

CONTENTS

1. INTRODUCTION e e e e e e e e e e e e e e
11 Thesisstructure Lo
2. DATASET e e e e e e e e e e e e e e e e e e e
21 Problems with existingdatasetso,

2.1.1 Multiple tweets from the same author

21.2 Hateful tweets fromafewauthorsonly
2.2 Datasetinformationo

221 Step1:firstscraping L Lo oL

222 Step 2: informationextractiono Lo 0oL
3. TEXT CLASSIFICATION i e e e e e e e e e e e
31 WhyGloVe? e e e e e e e e e e e e
3.2 Textpreprocessing L. e e e e e e e
33 CNNmodel e e e
34 LSTMmodel e e e e e e
3.5 Classificationprocess Lo e e e e
36 Results L e e e
4. SOCIAL ANALYSIS APPROACH ittt i e
5. COMBINED CLASSIFICATION it et e e e e e
51 CNNplususerfeatures o
5.2 LSTMoplususerfeatures e
5.3 Classificationprocesso L e e
5.4 Resultsandevaluationo oL L L Lo
5.5 Results with balancedclasses o0,
6. CONCLUSIONt e e e e e e e e e e e e e e e
ACRONYMS e e e e e e e e e e e e e e e e

REFERENCES e e e e e e e

11
12

13
13
13
14
14
15
15

32
33
34
37
38
39

3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1
5.2

FIGURES

MaxPooling1D layer.
MaxPooling1D layer.
LSTM model for tweet classification.
Text classification accuracy plots.

Features scatterplots. L.
Class distributiongraph.,
Outliersplots.

CNN plus user features network plot.
LSTM plus user features network plot.

2.1
2.2

3.1

4.1
4.2
4.3

5.1
5.2
5.3
54

TABLES

Hateful tweets from the same author.
Sample row fromthedataset.

Text classificationresults.

Collection of important statistics.
Zerovalues perfeature. Lo
Percentage of outliers perfeature.

TOP 5: CNN plus user features classificationresults.
TOP 5: LSTM plus user features classificationresults.
Text classification vs. Combined classification.
All models classification with a 50-50 dataset.

Hate Speech Detection on Twitter: A Social-Aware Approach

1. INTRODUCTION

The massive use of social media has led to a significant increase in hateful activities, as
technology offers anyone the ability to express their opinion publicly, using online tools
and applications. This infrastructure is often exploited by users who benefit from posting
unfiltered feed of messages on social media. Therefore, it would be beneficial to analyze
general hateful behaviors of large groups or individuals, in order to be able to discourage
them or eliminate them before they occur. However, this phenomenon can’t be manually
pursued, as it is not a scalable task and it would require a lot of resources. In this effort,
to avoid vast manual undertaking, a lot of investigation has been launched in the field of
automatic hate speech detection.

On Twitter, specifically, hatred is more common when controversial events take place
in real life and is expressed with insults, abuse or even death wishes. In our work, we
create a dataset containing tweets that refer to the Presidential Elections in the United
States of America in November 2020 and that specifically contain the word “Trump”. The
two candidates were Donald Trump for the Republicans and Joe Biden for the Democrats.
During the election campaign, both parties signified the importance of them being elected.
Due to the fact that the polls were unable to predict the final winner, the situation in the
U.S.A remained highly uneasy and the public was divided. It was a very turbulent period
for the U.S.A and the election outcome was so unpredictable that it caused a massive use
of hateful language in the social media. We focus on the problem of classifying the tweets
as either hateful or not hateful. We define hateful tweets as those that contain abusive
language targeting individuals or groups of people. Similar inspections [2], have already
been conducted, using deep learning and neural networks to classify tweets based on
their textual context.

This thesis makes the following contributions: a) We manually distinguish the hateful
tweets and obtain an analogy of 21% hate and 79% non-hate, in a total of 1312 tweets. We
experiment with both text classification of the tweets and a combination of text and user
features classification. The latter constitutes the innovation of the thesis and it refers to a
complex model specifically designed for the task of automatic hate speech identification.
This model is a neural network with two inputs. On the first input, we feed the network with
the tweets in form of word vectors. On the second input, we feed the network with user-
specific data. b) We investigate whether the baseline methods of pure text classification
can be enhanced adding user features. We supplement the model with various attributes,
in an effort to evaluate their influence on hate detection. Among the attributes, we ex-
amine users’ total tweets, the number of followers they have, the number of users they
follow and the volume of tweets they have posted. In addition, we examine the number of
tweet’s retweets and likes and, finally, if the tweet is a response to another tweet or user.

G. Apostolopoulos 11

Hate Speech Detection on Twitter: A Social-Aware Approach

At the same time, we present appropriate statistics to evaluate the quality of our data. c)
Consequently, we combine all those features, in an effort to determine which of those can
improve the classification outcome. We repeat the process with equally weighted classes,
maintaining 50% of hateful tweets. For more details, the github repository’ provides the
code that supports our approach.

1.1 Thesis structure

In Chapter 2, we elaborate the dataset’s production process from Twitter, using tweepy
library, collecting tweets for one month before the U.S elections. In Chapter 3, we use
textual classification on our dataset, using both a Convolutional Neural Network (CNN) [7]
and a Recurrent Neural Network (RNN) [6]. We achieve an accuracy of approximately 84%
for the CNN and 81% for the RNN. We experiment with Global Vectors (GloVe) [11] and
we notice better results when using GloVe instead of random embeddings for our models.
In Chapter 4, we investigate user features and present statistics from our dataset. We
inspect which attributes can have significant impact on the classification outcome. Finally,
in Chapter 5, we combine textual classification and user features classification in order to
determine whether we can achieve better results. We achieve an increase in classification
accuracy of approximately 3% for both CNN and RNN models. We observe that the best
metric for both the CNN and RNN is a combination of the number of user’s followers and
a flag that indicates if the tweet is a reply. Using those features we achieve an accuracy of
approximately 87% for the CNN and 85% for the RNN. Therefore, we implement a complex
network that uses as input both the tweet’s text and the attributes we desire. Lastly, we
conclude in Chapter 6.

'https://github.com/giorgos-apo/hate-speech-detection-using-user-attributes

G. Apostolopoulos 12

Hate Speech Detection on Twitter: A Social-Aware Approach

2. DATASET

In machine learning, a crucial task in order to achieve high classification accuracy, is data
preprocessing. Before deciding to create a custom dataset, we experimented with existing
datasets from previous works [16], [12]. Prior work is basically conducted in an effort to
distinguish hateful comments using the tweet’s text. In our case though, we are interested
in the user’s attributes that may be valuable for the classification process. Thus, we explain
in Section 2.1, why the existing datasets were not helpful and why it was necessary to
develop a new one.

To begin with, we clarify that our purpose after the classification, is to be able to answer
questions like “is the number of followers a possible indicator of someone’s abusive lan-
guage?”. Thus, our dataset consists of 1312 tweets, extracted a month before the elec-
tions in the United States in November 2020. Each tweet includes the term “Trump” and
the purpose of our research is to automatically classify it as either hate or non-hate.

2.1 Problems with existing datasets

While experimenting with existing datasets, we face two major issues, that create two
corresponding necessities. Before analyzing the difficulties, we must point out that the
percentage of hateful tweets in the datasets was 20%.

211 Multiple tweets from the same author

The first issue, is that the dataset we have examined [16] consists of more than one tweet
per user. This is, in general, a source of major shortcomings. Experimenting with text
classification, a researcher shall obtain tweets from multiple users, to make sure their im-
plementation is adjustable to different speaking habits, as every person expresses his
sentiments differently in their speech. Simultaneously, the same drawback applies in
our research, in which we establish a social-aware approach and, therefore, we examine
user’s characteristics. More specifically, while evaluating the original dataset, we found
approximately 12K tweets. However, there were only 1.5K distinct tweet authors. There
was a specific author that had written 3.8K tweets (approx. 30% of the dataset). It is ob-
vious that this author introduces significant bias to the dataset, since his attributes appear
in 30% of the tweets. To comprehend the issue consider Table 2.1, in which we only keep
the tweet’s id, the number of author’s followers and the tweet’s label, which is 1 (hate).
Next, notice that all the tweets are labeled as hateful. Furthermore, the number of author’s
followers is 289 and is the same for all the tweets in the table, since they share the same
author. The ML model reads an input with 5 tweets. In every input there are 289 user
followers and the output label is 1 (hate). Therefore, the model will be trained to respond

G. Apostolopoulos 13

Hate Speech Detection on Twitter: A Social-Aware Approach

that if a user has 289 followers he is more likely to use abusive language. However, this is
not true since it has been decided using only one single user for the training process. Itis
obvious that a user who has authored 30% of the tweets, has high impact on the dataset.
The reason behind that, is that if a user constantly uses abusive language, it can lead to a
biased result. Therefore, we can safely state that when a dataset includes multiple tweets
from one user with the same label, the classification outcome is most likely biased.

Table 2.1: Hateful tweets from the same author.

tweet_id user_followers | is_hate

120291112 | 289
231192998 | 289
231192998 | 289
298787102 | 289
293700112 | 289
176251992 | 289

S N N N " N [N [N R N

2.1.2 Hateful tweets from a few authors only

After removing duplicate users from the dataset, the second problem that occured was
the amount of people that use hateful language in their tweets. As mentioned earlier, if we
keep one tweet per author from the dataset, we shall retain approximately 1.5K tweets.
From those, we expect to retain an analogy similar to the one we had before removing the
duplicate users, thus, approximately 20% hate. However, from the 1.5K tweets, only 15
were labeled as hateful (1% of the tweets). This clearly states that we don’t have sufficient
data, in order to identify hateful tweets. People express themselves with a unique way
when writing tweets. Therefore, it is not safe to collect hateful tweets by only a few users.
Neural networks are trained by the inputs that we feed them. Thus, we must provide input
data that cover different styles of writing. Otherwise, the models will be trained to detect
hate speech in very few occasions.

2.2 Dataset information

In the following subsections, we explain in detail the information extraction process, in
order to obtain more representative samples for our dataset in its final form.

G. Apostolopoulos 14

Hate Speech Detection on Twitter: A Social-Aware Approach

2.21 Step 1: first scraping

Using tweepy [14] python library and utilizing the Twitter API, we follow the following pro-
cess:

1. we use the term “Trump” to collect a number of tweets, keeping the tweet’s id and
text from Twitter.

2. we make sure we keep only one tweet per author, dumping tweets if they share the
same user_id with a previous one.

3. we clear out possible duplicate tweets.
4. we read the tweets and label them as hateful or not (binary 1/0).
5. we repeat the previous steps, running the scrapper day and night, because there is
an important time difference between Europe and the USA.
2.2.2 Step 2: information extraction

After keeping the id and the text for each tweet, we use the Twitter API again, to collect
information for all our tweets. This process doesn’t occur simultaneously with the first
scraping, because we want to offer a proper amount of time, so as our tweets get likes
and retweets. Otherwise, those values would be very low. Thus, our dataset consists of
one row for each tweet and it includes, in each row, the following information:

* the tweet’s id (tweet_id).

* the tweet’s text (tweet_text).

* the tweet’s label (is_hate).

 tweet’s total retweets (tweet_retweets).

* whether the tweet is a reply to another user. (tweet_is_reply).

» the user’s id (user_id).

 user’s total tweets (user_total_tweets).

* user’s number of followers (user_followers).

+ the number of users followed by the tweet’s author (user_following).

» the number of likes (tweet_likes).

Lastly, we provide an example of one row from our dataset in the Table 2.2.

G. Apostolopoulos 15

Hate Speech Detection on Twitter: A Social-Aware Approach

Table 2.2: Sample row from the dataset.

Feature Value

tweet_id 1312328990565175296

tweet_text President Tsai @iingwen wishes U.S.
President Donald #Trump a speedy
recovery

is_hate 0

tweet _retweets 15

tweet_is_reply 0

user_id 1080742203633262592

user_total tweets | 3352

user_followers 3411

user_following 1542

tweet likes 1

G. Apostolopoulos

16

Hate Speech Detection on Twitter: A Social-Aware Approach

3. TEXT CLASSIFICATION

The initial benchmark for our dataset, is to check how our text classification results com-
pare to those in [2]. We inspect our dataset’s behavior using a Convolutional Neural Net-
work (CNN) and a Recurrent Neural Network (RNN). For the RNN, we specifically use
a Long Short-Term Memory neural network (LSTM). At the same time, we make use of
both random embeddings and GloVe embeddings [11]. In this chapter, we explain how
we preprocess the text. We present Global Vectors (GloVe) and describe how we use it to
convert tweets into vectors. Finally, we analyze each model and the results it produces.

3.1 Why GloVe?

GloVe stands for Global Vectors and refers to a model that converts sentences into vec-
tors, in order to feed them to a neural network. Despite the fact that anyone can create
custom embeddings, GloVe offers the ability to use pretrained data, where words are rep-
resented in vectors of 25, 50, 100 or 200 dimensions. For our research, however, the
machine we use is not capable of supporting more than 50-dimensional vectors because
of RAM limitation. Therefore, we experiment with the 50 dimensions file. GloVe, in gen-
eral appears to behave better [8] than random embeddings because they are trained on
billions of monolingual examples. Finally, GloVe is used to calculate the weights of the
vectors from pretrained words, using the following code (not strict format):

embedding_dim = 50
wvocab_size = number of words in our vocab
token = our wvocab
def produce_glove vector matrix(embedding dim, vocab_size, token):
glove _file = <path_to_50d_glove_file>
glove_vectors = dict()
we create a dict from glove file
word —-> wector
for line in glove_file:
values = line.split()
word = values[0]
vectors = np.asarray(values[1:])
glove_vectors[word] = vectors
we compare the glove dictionary with our dictionary
word_vector_matrix = np.zeros((vocab_size, embedding dim))
for word, index in token.word_index.items():

vector = glove_vectors.get (word)

G. Apostolopoulos 17

Hate Speech Detection on Twitter: A Social-Aware Approach

if

vector is not None:

word_vector matrix[index]

we return the wetights

return

word_vector_matrix

vector

Thus, we provide an execution sample of the above code. We assume we are given a

list of vectors, which is represented by the “token” parameter of the function. Then, we
also pass the embedding dimension (equal to 50). The embedding dimension refers to the
vector size of the GloVe pretrained data (i.e each word is represented by a 50 dimensional

vector). Lastly, we pass the vocabulary size to the function. The function repeats the
same process for every word of every sentence, in order to calculate the weight of each
word. Assume the phrase “trump was the president”. The previous method returns a list

of weights. In our example, it returns a list of 4 arrays, one for each word. We point out
that each array is 50-dimensional. Therefore, we retrieve the following information.

[[-1.1660e-01

[-3.

6.0989e-01 4.6737e-01
-3.1798e-01 2.8476e-01 -2.5497e-03
-1.8843e+00 -1.7281e-01 4.6168e-01
1.1337e+00 4.1996e-01 2.3564e-01 -
1.3494e-02 6.5034e-01 9.5719e-01
3.4446e-01 -1.9114e-02 -5.4315e-01 -
4.8992e-02 7.9524e-02 6.5599e-01 -
-3.0074e-01 -6.4048e-01 5.2968e-01
-5.1880e-01 2.5806e-01]

5947e-02 9.1527e-01 8.4885e-01 -7.
-4.6347e-02 -8.8508e-02 -1.1041e-01
-5.9729e+00 -1.9737e-01 4.5525e-02
-1.0232e+00 -1.1479e-01 5.2377e-01
8.8063e-01 6.5330e-01 -4.8531e-01 -
-4.6986e-01 9.1771e-01 -3.9752e-01
-8.8314e-01 1.1334e-02 -2.4900e-02
-4.2489e-03 6.7815e-01 2.6334e-02
-6.0420e-01 -3.5384e-03]

3

.6106e-02 9.8803e-02 -1.8909e-01
-5.9989e-01 3.2075e-01 7.0234e-02
-3.3900e-01 -2.3952e-01 3.9531e-01
1.0695e+00 -1.2222e-01 4.6364e-02
1.7752e-01 -1.5586e-01 -7.3075e-01
1.0741e+00 -6.9212e-02 1.0205e+00
3.3597e-01 4.3663e-01 5.4676e-02
9.3046e-02 4.4165e-01 -4.1807e-01

5355e-01 -5.0724e-01 3.1926e-01
-3.7209e-01 2.3058e-01 6.0452e-01
-2.7410e-01 6.6767e-01 4.0142e-01
6.5502e-01 -1.2134e-03 1.6294e-01
9.1314e-01 -3.7358e-01 -5.4828e-01
-1.0546e+00 3.1071e-01 2.4028e-01
-4.6060e-01 -7.2345e-01 -9.2369e-02
-4.7434e-01 9.5158e-01 -2.8755e-01

[2.5320e-01 -1
8.9421e-01
-6.4555e+00
3.1950e-02
7.7940e-03

G. Apostolopoulos

.4884e-02 5.9371e-01 1.5902e-01
3.6396e-01 -3.1339e-01 -5.1857e-01
3.2260e-01 3.7280e-01 -6.1690e-01
1.0155e-01 -1.9615e-01
1.3573e-01 -7.2992e-02 2.5208e-01

1.2754e-01
2.9637e-01 -
4.6744e-01

5.1148e-01

2.2428e-01

4.1098e-02
5.0600e-01

1.3364e-01 -2.7140e-01 -4.1728e-01

1.5120e-01

18

Hate Speech Detection on Twitter: A Social-Aware Approach

8.4398e-02 -2.4791e-01 -1.5913e-01 1.5005e-01 7.7243e-01 3.6632e-01

-9.8310e-02 -6.4317e-02 -7.1983e-04 -1.5231e-01 -1.4604e+00 -3.1696e-01
-4.1762e-01 7.3363e-02 3.2043e-01 3.4324e-01 1.0895e-02 -2.8932e-01
4.5493e-01 1.8659e-01]

[1.0231e+00 6.2470e-01 8.6370e-01 3.6068e-01 -4.7532e-01 -2.1307e-01
-9.7116e-01 9.1805e-01 1.6307e-01 -7.9805e-01 -4.1119e-01 -1.1976e+00
-3.6883e+00 -1.3654e-01 9.574b5e-01 3.2482e-01 -1.0018e+00 5.6574e-01

5.9419e-01 -1.3655e-01 -2.9172e-01 1.1794e-02 -5.8037e-01 -5.6299e-01
1.0961e+00 5.6508e-01 8.2377e-01 -1.6840e-01 -1.8427e-02 3.6756e-03
5.2218e-01 -2.9420e-02 -3.5490e-01 -3.8193e-01 1.3838e+00 1.3739e+00
2.3569e-02 7.7102e-01 3.8753e-01 -9.7413e-01 -2.0959e-01 -4.6311e-01
3.8450e-01 3.7239e-01 2.8644e-01 -7.9481e-02 1.8964e-01 -2.8996e-01
-4.0469e-01 -4.9608e-011]

Having the above information, allows us to use weights in our models’ embedding layers.
This constitutes a feature provided by Keras embedding layer. In our work, we experiment
with using weights in the training process and compare the results with those we get
without using weights.

3.2 Text preprocessing

For text preprocessing, we mainly use the same concepts with the prior work [2] and
we add some new features. Specifically for each sentence we maintain the following
approach. The first step is to use a script from GloVe', in order to clean the text and
avoid emojis, hashtags and capital letters. Afterwards, we divide the sentence into a list
of words, avoiding punctuation and stopwords?. Furthermore, a vocabulary is produced
using the keras.Tokenizer () method. This function stores every distinct word in our
tweets using a key-value pattern. Thus, each word is represented by an integer. Next,
we use keras.Tokenizer.fit_on_texts() method to convert lists of words into lists of
integers, or equivalently, to vectors. Finally, we find the maximum length between the lists
and we pad zeros to those that contain less integers, in order to have fixed length for all
vectors. This step is mandatory for neural networks, in order to operate on the data. At
this point, to better explain our process, we obtain a tweet from the dataset and we will use
it to elaborate the previous steps. After that, imagine that we repeat the following process
for every tweet. Therefore, assume a tweet with the following text message:

Thttps://nip.stanford.edu/projects/glove/preprocess-twitter.rb
2List of stopwords from gensim.parsing.preprocessing library

G. Apostolopoulos 19

Hate Speech Detection on Twitter: A Social-Aware Approach

“@TheLeoTerrell: Good News! Leo 2.0 just received message from Team Trump. Going
to be used in Campaign. Cannot wait to help”

After applying the script from GloVe website, it becomes as follows:

<user>: good news! leo <number> just received message from team trump. going to be
used in campaign. cannot not wait to help

Then, we split it into a list of words without punctuation:

J

news’, 'leo’, ‘'number’, ‘received’,

J

[user’, ‘good’, message’, team’, ‘trump’, ‘going’,

‘campaign’, ‘wait’, ’help’]

Now, we can use the vocabulary created by keras.Tokenizer. This vocabulary is a key-
value store where the key is a unique integer and the value is the corresponding word.
Thus we shall produce a vector that looks like this:

[2, 19, 205, 22, 53, 36, 34, 44, 9, 7, 107, 23, 66]

The final step is to pad zeros to all the lists that have a length which is minor to the max
list length. We retrieve the vector that has the maximum length and keep its length as the
max_length. Then, we pad zeros to all vectors, in order to make all of them have equal
length of max_length. Therefore, if we assume that the longest list includes 18 integers,
then, we need to append 5 zeros. Thus, the vector becomes:

[2, 19, 205, 22, 53, 36, 34, 44, 9, 7, 107, 23, 66, 0, 0, 0, 0, 0]

Once done with preprocessing and before we feed our neural networks with data, we need
to create the train and test datasets using:

X_train, X_test, y_train, y_test = train test_split(X, vy,
random_state=42, test_size=clf config.TEST_SIZE, stratify=y)

We point out that the train_test_split?® function is used to split arrays or matrices into
random train and test subsets. We note that X is the list of the padded sequences we
created before and y is the list of labels, which refers to a list of 1s and 0s. Furthermore,
we define the split ratio by declaring the test_size variable.

3https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

G. Apostolopoulos 20

Hate Speech Detection on Twitter: A Social-Aware Approach

3.3 CNN model

The first model we use to train our data is the CNN in Figure ??, which is specifically
designed for text classification [7]. CNNs are the preferred method for image classification
[13], because convolutional layers serve as feature extractors, and thus they “learn” the
feature representations of their input images. However, CNNs behave equally well in
cases of sentence classification, because they can learn an internal representation of the
time series data and achieve a good performance. The model has an Input layer, to which
we feed the vectors list. The number 87 indicates the size of each vector and in fact, it
is the max vector length. We remind, that all the other vectors have appending zeros, in
order to match the max length. In the next step, we have added the Embedding layer. As
we have already mentioned, we use 50-dimensional vectors for our work, so as to be able
to benefit from GloVe’s pretrained vectors.

At this point, the model remains the same even if we don’t use GloVe. The only difference
is that with GloVe, we use weights in the embedding layer, as explained in Section 3.1.
The next layer is a 1D Convolution layer with 64 output filters of size 10. During our
experiments, we tried various combinations, but those numbers appear to behave the best.
We decide to use the previous values, according to related reasearch [1]. Next, we add the
Pooling layer that downsamples the incoming vectors. Pooling layers provide an approach
to down sample feature maps by summarizing the presence of features in patches of the
feature map. The main pooling categories are average pooling and maximum pooling.
Here, we use maximum pooling, which is an operation that calculates the maximum, or
largest, value in each patch of each feature map. The Pooling layer, is presented in Figure
3.2, according to [9]. Additionally, we add a Flatten layer that converts the output to a 1D
array, in order to input it to the next Dense layer that consists of 32 units. The flattening
process is mandatory, since classification models need to get inputs in the form of 1-
dimensional linear vectors. Finally, we use a Dense layer with 1 neuron only, because we
want it to determine a binary class of either hate or not.

Pooling size = 2

13 25 31 14 43 35 | Length=6

<> <&+ <5

28 31 43 Length=3

Figure 3.1: MaxPooling1D layer.

G. Apostolopoulos 21

Hate Speech Detection on Twitter: A Social-Aware Approach

mput: [(7. 87)]
output: | [(?, 87)]

embeddmg _input: InputLayer

'

embedding: Embedding

:

input: (7, 87, 50)
output: | (7, 78, 64)

|

max_poolngl d: MaxPoolingl I

I

input: (7, 39, 64)
output: (7, 2496)

I

mput: (7, 2496)

output: (7, 32)

|

input: (7, 87)

output: | (7, 87, 50)

convld: ConvlD

input: (7. 78, 64)
output: | (7, 39, 64)

flatten: Flatten

dense: Dense

input: (7, 32)
output: (7, 1)

dense 1: Dense

Figure 3.2: MaxPooling1D layer.

We notice that the input consists of vectors that have length equal to 87 integers. The em-
bedding layer transforms the input into 2-dimensional vectors with shape (87, 50). Next,
we use a 1-dimensional convolution layer that transforms vector’s shape into (78, 64) be-
cause we use 64 filters. The pooling layer is used with the default pool size. Thus, it keeps
half of the data and the output shape is (39, 64), where 39 is half of the 78 which is given
as input. Lastly, we observe that the Flatten layer gets an 2-dimensional input vector with
size (39, 64). Then, it produces an output of 1-dimensional vector of size 2496.

3.4 LSTM model

The second model we use to train our data is the LSTM network in the Figure 3.3. The
LSTM network is an RNN and its main idea is to utilize sequential information processing.
By this, we mean that each layer is capable to recognize patterns on the data given as
input and predict the result on the output. Firstly, we add an Input layer of size 87 (max
vector size in our dataset) and an Embedding layer, like in the case of the CNN. In contrast,
an RNN is repetitive because it performs the same task for each successive element, with

G. Apostolopoulos 22

Hate Speech Detection on Twitter: A Social-Aware Approach

output depending on the previous calculation. Therefore, we use an LSTM layer, to which
we add a dropout to avoid overfitting [15]. Dropout’s task is to randomly ignore some layer
outputs from the network. By dropping a unit out, we mean temporarily removing it from the
network, along with all its incoming and outgoing connections. For our purpose, we use a
dropout rate of 0.5. Specifically, in each repetition, the LSTM network removes half of the
inputs in order to avoid overfitting. Using dropout, the model Additionally, the LSTM layer
consists of 100 units, inside the keras.Bidirectional layer. We use the Bidirectional
layer, because it allows us to run the inputs both ways between the past and the future.
Therefore, it causes better accuracy since the network is aware of both the past and future
context of the phrases. Specifically in the case of text classification, the Bidirectional LSTM
is one of the best apporaches [17]. The number 100 for the units and 0.5 for the dropout
rate has been decided after various experiments and prior research [15]. For our work, we
use 0.5 dropout rate, since it provides the best classification results, ensuring reliability and
avoiding model overfitting. Lastly, we add a Dense layer with 1 neuron, that determines
the final classification outcome.

mput: | (7, 87)]
output: | [(7, §7)]

embedding_mput: InputLayer

|

embedding Embedding

|

bidirectional(Istm): Bidirectional(LSTM)

|

mput: | (2, 200)
output: | (7, 1)

mput: | (7, 87)
output: | (7, 87, 30)

mput: | (7,87, 50)
output: { (7, 200)

dense: Denge

Figure 3.3: LSTM model for tweet classification.
The input layer and the embedding layer are similar to those used for the CNN model. The

Bidirectional LSTM transforms the input into a 1-dimensional vector of size 200. Lastly, it
provides the output to the final Dense layer which has only one neuron and determines

G. Apostolopoulos 23

Hate Speech Detection on Twitter: A Social-Aware Approach

whether the tweet is hateful or not.

3.5 Classification process

The classification process is the same for the two neural networks. In both cases, the
model is compiled using keras .Model compile function*. Specifically, we use the following
line of code:

model.compile(optimizer=Adam(learning rate=0.001),
loss="binary_crossentropy",

metrics=["accuracy"])

The loss function that best suits our problem is the binary_crossentropy, because we
undertake a binary classification project. The optimizer we choose is Adam. We have
tried various optimizers®, but, even though we have not observed significant difference
in neither accuracy nor loss with any of them, Adam consistently works well across the a
range of cases [5]. In addition, we fit the model and train it with the following code:

model.fit(X_train, y_train,
epochs=<number of epochs>,

validation_split=<validation size>)

In this line of code, we observe the parameters EPOCHS and VALIDATION_ SIZE. The valida-
tion size is the portion of the training dataset that our network is going to keep to validate its
results. Apart from those, we specify one more attribute, the TEST_SIZE, which indicates
the percentage of the whole dataset that will be used for testing the model. The number
of epochs indicates how many times the weights of the network will change. Increasing
the epochs, we reach a point where validation accuracy remains the same, or, at least,
it doesn’t increase significantly. At the same time, validation loss starts increasing again
and when we reach this point, we shall stop training the data. Simultaneously, there is not
a general rule for the splitting ratio of the dataset in training, testing and validation subsets.
However, it is a common approach to use some of the training data for validation purposes.
This amount of data varies between datasets, but it ensures minimum overfitting, making
sure that the validation data is not the same as the test data. The strategy we follow, is
that we check the validation loss. When the validation error starts increasing, it may be an
indication of overfitting. Therefore, we investigate a lot of possible combinations for those
parameters. For the CNN, we get best results with the follwing configuration:

“https://github.com/tensorflow/tensorflow/blob/v2.4.1/tensorflow/python/keras/engine/training.py#L449-
L549
Shttps://keras.io/api/optimizers/

G. Apostolopoulos 24

Hate Speech Detection on Twitter: A Social-Aware Approach

VALIDATION_SIZE = 0.25
EPOCHS = 5
TEST_SIZE = 0.15

However, for the LSTM model, we observe that more epochs are needed. We inspect
model’s behavior with multiple experiments concerning the epochs value. The best results
are achieved with the following configuration:

VALIDATION_SIZE = 0.25
EPOCHS = 15
TEST_SIZE = 0.15

3.6 Results

In this section, we present the classification results on Table 3.1 for both CNN and LSTM
models, with or without GloVe. Using the CNN model, we achieve an accuracy of 81.71%,
which, in case of GloVe embeddings, reaches 83.79%. With the LSTM model, the results
we get are slightly worse. Thus, we reach 78.19% accuracy and, using GloVe, we improve
it by 3 percentage points and, therefore, we achieve a final accuracy of 81.24%. Further-
more, an interesting observation we make, is that using CNN, we need less epochs to
reach higher training accuracy. Specifically, in Figure 3.4, we indicate that for the CNN,
we approach 100% training accuracy in 5 epochs, whereas for the LSTM we need ap-
proximately 15 epochs to reach the same value.

Table 3.1: Text classification results.

Model Accuracy
CNN 81.71%
CNN + GloVe | 83.79%
LSTM 78.19%
LSTM + GloVe | 81.24%

G. Apostolopoulos 25

Hate Speech Detection on Twitter: A Social-Aware Approach

Training Accuracy

0.8 q

accuracy
o
o

L

o
kS
L

0.2 9

0.0 -

2 3 4 5
epochs

(a) CNN accuracy plot

accuracy

Training Accuracy

0.8

o
@
L

o
IS
L

0.21

0.0 -

epochs

(b) LSTM accuracy plot

Figure 3.4: Text classification accuracy plots.

G. Apostolopoulos

26

Hate Speech Detection on Twitter: A Social-Aware Approach

4. SOCIAL ANALYSIS APPROACH

In this chapter, we focus on the social analysis approach of our work. We present the user
attributes that we use to classify our data, along with some useful statistics. The attributes
we examine can be found in Subsection 2.2.2. Doing data investigation, we observe some
values for each attribute, which we demonstrate in Table 4.1.

Table 4.1: Collection of important statistics.

Attribute Mean Min | Max | Std
tweet_retweets 230.88 0 19912 | 1275.72
tweet_likes 3.14 0 232 9.74
user_following 2700.5 0 104K | 6269.08
user_followers 3633.1 0 179K | 11884.76
user_total tweets | 56259.89 | 3 3.6M | 144067.8

Thinking over the statistics that we have mentioned above, the first thing to consider is the
vast existence of zero values in tweet likes and retweets. Specifically, we mention that
we have a relatively small amount of likes for our tweets. Despite we waited some days
before we extracted the final information, tweet likes didn’t augment as we wanted. More
precisely, we have 1017 tweets (approx. 78% of the total dataset) that have O likes. At the
same time, we have 621 (approx. 47%) tweets with zero retweets. Those characteristics
seem rational, considering that we have avoided collecting too many tweets from popu-
lar accounts, such as news channels etc., in order to produce a result that is not biased
and that appears to be more realistic. However, those values can have an impact on the
classification process and we determine that in the next Chapter. Apart from those char-
acteristics, we have collected 217 tweets (approximately 17%) that are replies. From the
scatter plots, we can see that the tweets are well dispersed. In each feature, we observe
that both the orange dots (hate) and the blue dots (non hate) are placed everywhere on
the two axes which is the tweet’s id. Thus, there is for example, a tweet that is hateful
and its author has very few followers, but there is also another tweet that is not hateful
and its author also has very few followers. This is a sign that the amount of user followers
doesn’t appear to be an important factor that can determine whether a post is hateful or
not. The same applies also for the amount of people the user follows. However, examin-
ing the tweet likes, it seems that hateful tweets have a small number of likes. Observing
the equivalent scatter plot, the tweets with a higher amount of likes, appear to be non
hateful.

To better understand the quality of our data, we depict scatter plots for each feature in
Figure 4.1. For all the graphs, the x-axis represents each single tweet and the y-axis

G. Apostolopoulos 27

Hate Speech Detection on Twitter: A Social-Aware Approach

represents the examined feature. Using those plots, it becomes easier to observe the
average value and the standard deviation for each attribute, as well as the min and max

values.
L] is_hate
e 0
200 4 o 1
150 |
n
&
=
W
£ 1001
® L
50 . e e .
L]
. s .
. . .
. . g .
. PO A TS, s 3 AP) -
0 200 400 600 800 1000 1200
1e6
L is_hate
3.5 4 e 0
o 1
3.0 4
n 2.5
Fi|
[T}
L
£ 2.0
®
k<) .
TiLs
L
E]
1.0 4
. s e - .e®
0.5
0.0 Wﬁwﬁ;\m%qﬁsf‘ﬁ »ﬁi{-ﬁ%ﬁf(‘éﬁ»@ug o %J %}ﬁsﬁr“
0 200 400 600 800 1000 1200
® is_hate
100000
e 0
o 1
-
80000
2
£ 60000 . ¢
2 .
e
o
[]
4 40000 . .
L
g .
] e e o®
200004 ., ® P
' L] . 'i s o
* telewes S o
& l.. 9 [' 3 o B -
0 e "g.ﬁi}’ Z : ”%ﬁ‘ ’é%@f&
0 200 400 600 800 1000 1200
Figure 4.1:

G. Apostolopoulos

user_tollowers

tweet_retweets

20000

17500 4

15000 4

~
a
=}
=]

1000 A

tweet_is_reply

200 1

175000 +

150000 4

125000 +

100000

75000

50000

25000 4

0

12500 1

10000 A

e.

e @0

L]
@;ﬁ&%a&% L T W!ﬁﬁisﬂ PR30 ,‘?}‘Qﬂh

* is_hate
e O
e 1

e e

U

T
200

T
400

T
600

T
800

lUUU

1200

l"‘l]

i a&;ﬁ;};ﬁ%‘& %&%&ﬁ%ﬂ%wﬁ

is_hate

Features scatter plots.

600

BDD

1000

1200

28

Hate Speech Detection on Twitter: A Social-Aware Approach

Lastly, we indicate the amount of zero values per feature on Table 4.2. In order to avoid
zero likes or retweets, we waited some days before extracting the final form of the data
from Twitter. However, on the following table, we observe that we don’t have enough likes
nor retweets for the tweets on the dataset.

Table 4.2: Zero values per feature.

Attribute Zero values | Percentage
tweet_retweets | 621 47%
tweet_likes 1017 77%
user_following | 11 0.8%
user_followers | 3 0.2%

In Figure 4.2 we show the class distribution of our data. Despite this distribution is imbal-
anced, we have followed the examples from previous research where hateful tweets hold
approximately 20% of the whole dataset. Because of this fact, however, we repeated the
same experiments with equally balanced classes and the results are introduced in Section
5.5.

1000 A

800

200 4

Figure 4.2: Class distribution graph.

Additionally, we present graphs in Figure 4.3 that help us identify outliers in each feature.
The impact of outliers can be severe in datasets [10] and, if there is a large number of
outliers, it can be detrimental. According to prior work [4], however, it is not always nec-
essary to trim outliers off of the dataset. When outliers don’t occupy a large portion of the
dataset, they tend to introduce more realistic data.

G. Apostolopoulos 29

Hate Speech Detection on Twitter: A Social-Aware Approach

1 (N W ¢ 4 L * L]

T T T T T T T T T
0 2500 5000 7500 10000 12500 15000 17500 20000
tweet_likes

1 [N W ¢

T T T
0 2500 5000

T T T T T T
7500 10000 12500 15000 17500 20000
tweet_retweets

LI I ¢ » + L] L1] + L]
0 20000 40000 60000 80000 100000 0.0 0.5 10 15 2.0 2.5 3.0 3.5
user_following user_total_tweets leb
A2 1 KENNEZY I N] *

T T T T T T T T
0 25000 50000 75000 100000 125000 150000 175000

user_followers

Figure 4.3: Outliers plots.

We introduce Table 4.3, in which we present the percentage of outliers in each feature.
We use 95% as max_threshold and 5% as min_threshold. We identify outliers as the
values that are above the max_threshold orbelowthemin_threshold of each feature. The
thresholds refer to percentiles. Therefore, the 95% defined as max_threshold represents

G. Apostolopoulos

30

Hate Speech Detection on Twitter: A Social-Aware Approach

one feature that has higher value than 95% of values. Respectively, the 5% defined as

min_threshold represents one feature that has higher value than 5% of values.

Table 4.3: Percentage of outliers per feature.

Feature Outliers (%)
tweet_retweets 2.7%
tweet likes 2.8%
user_following 5.6%
user_followers 6.8%
user_total tweets | 3.8%

Finally, in our dataset, outliers haven’t been removed, since they don’t provoke issues.
Simultaneously, based on the plots and the table, the outliers are not so many. The only
exception, in which there seems to be a number of outliers that is higher, is in the case of
users’ followers. However, we have mentioned earlier that we don’t expect those features
to have a clear impact on the classification process. Therefore, for those two reasons, we

didn’t proceed with outliers’ elimination.

G. Apostolopoulos

31

Hate Speech Detection on Twitter: A Social-Aware Approach

5. COMBINED CLASSIFICATION

In this chapter, we present the major contribution of our work, which is to combine text
classification along with user data [3]. In this effort, we are primarily interested in finding out
whether social network features, such as the amount of likes or the number of followers,
can improve the classification results. We use again both CNN and RNN for the textual
input, but, we also experiment with multiple mixtures of user attributes, that we feed to a
secondary neural network, that is structured with Dense layers. After that, we concatenate
the outcomes using keras.Concatenate' layer and we feed the combined result to some
additional Dense layers, before the final neural network produces the final classification
outcome.

We collect data concerning tweets’ authors using Tweepy library, which extracts tweets
from the Twitter API. A sample output calling the API looks like the json below. To improve
readability we remove some data from the json response and keep only the necessary
features.

{

"id": 136601234342,

"full text": "Not about the policy ... #Trump \n@ThisWeekABC",

"in reply_to_user_id": null,

"user": {
"id": 1181322,
"followers count": 720,
"friends_count": 205,
"statuses _count'": 8387

s

"retweet count": 34,

"favorite count": 331

}

We notice, thus, that the user follows 205 users and is followed by 720 users. In addition,
the user has authored 8387 tweets in total. Concerning the specific tweet, we notice that
it is not a reply using the "in_reply to_user_id" variable. Furthermore, we can see that
the tweet has 34 likes and 9 retweets.

'https://keras.io/api/layers/merging_layers/concatenate/

G. Apostolopoulos 32

Hate Speech Detection on Twitter: A Social-Aware Approach

5.1 CNN plus user features

The neural network we use is a concatenation of two smaller networks. The first one is
a CNN, that is identical to the one we explain in Section 3.3. Specifically, we use an
Embedding layer that takes an input of vectors of length 87. Then there is a Convi1D
layer with 64 output filters of size 10. Once more, we use a MaxPoolinglD layer that
downsamples the data. Because we use the default pool size, which is 2, the layer splits
the data in half. Thus, it transforms the input from 78 vectors into an output of 39 vectors.
Finally, the data is transformed into a one dimensional vector using a Flatten layer. Next,
we use a Dense layer of 32 units with which we pass the output into the Concatenation
layer.

The second network, consists of an Input layer and four Dense layers with 200 units each.
The input shape, in this case, is equal to the amount of user features that we use for the
classification. Therefore, it varies between one and six. Thus, in Figure 5.1, where we
bring up an example of our network, we observe that six features (all of them) are given
as input to the neural network. The size of the 4 Dense layers is 128. Both the number of
Dense layers and their sizes is decided after trial and error, as there is not a general rule
to decide neither of them.

The Concatenation layer takes two inputs. The first has a length of 32 and is the output
of the CNN that we use for text classification. The second consists of 128 units and is the
output of the neural network that we use for the user features. Next, the layer transforms
the dual input into a single output that consists of 160 units. After the Concatenation layer,
there are 2 Dense layers that consist of 128 units. The number 128 is decided after trials.
Finally, we use a Dense layer with 1 neuron only, because we want it to determine a binary
class of either hate or not.

The model receives a mixed input. We present a sample input, but we clarify that we only
hand over one repetition and not the whole input stream. Therefore, we show one vector
for the CNN model and one combination of features for the second model. The first input
is given to the CNN model and is a 87 length vector as follows.

[129, 128, 65, 4, 59, 2301, 22, 4581, 2, 4, ..., 0, 0]

We notice that the vector terminates with zeros, because of the padded zeros at the end,
in order to achieve a fixed length for all vectors. The second input refers to user features.
Thus, assuming we decide to train the model using the attributes: user_total tweets
and tweet_retweets, it receives an input that looks as follows.

[1291, 72]

G. Apostolopoulos 33

Hate Speech Detection on Twitter: A Social-Aware Approach

The first input is a vector and each integer represents the position of the respective word
in the vocabulary. The second input implies that the user has posted 1291 tweets and that
the specific tweet has 72 retweets.

5.2 LSTM plus user features

In this case, again, the neural network we use is a concatenation of two networks. The
first one is an LSTM, that is exactly the same with the one we explain in Section 3.4. The
Embedding layer takes as input the vectors from the vocabulary. The LSTM layer that we
use is bidirectional. Using a bidirectional layer, we are able to ascertain that each input is
aware of the previous output. This is very important for text classification, as the model
is aware of both the past and future of the process. For text classification, this approach
significantly improves accuracy [17]. Lastly, we pass the output to a Dense layer that
consists of 40 units, in order to feed it to the Concatenation layer.

The other network, is similar to the one we used for the CNN, and it consists of an Input
layer and four Dense layers. The input shape is equal to the amount of user features that
we use for the classification and we present the model in Figure 5.2. There are 4 Dense
layers that consist of 200 units each. The number of units is decided after trial and error.
The Concatenation layer takes two inputs. The first input comes from the LSTM neural
network and has a size of 40 units. The other input has a size of 200 units and it derives
from the neural network used for the user features. The Concatenation layer produces
an output that consists of 240 units. After the Concatenation layer, there are also two
Dense layers that consist of 200 units each. The number of units is decided after trial and
error. Lastly, we use one more Dense layer that produces the final outcome, in which the
network determines if the tweet is hateful or not.

In this case, the model works like the one used for the CNN. Therefore, we present a
sample input for the model, and we clarify again that we only hand over one repetition and
not the whole input stream. The first input is given to the CNN model and is a 87 length
vector as follows.

(321, 556, 2, 910, 77, 5, 3, 3111, ..., 0, 0]

Once again, we notice that the vector terminates with zeros. The second input refers to
user features and for the example we use 4 of them. Thus, assuming we decide to train
the model using the attributes: user_total tweets, user_followers, tweet_likes and
tweet_retweets, it receives an input that looks as follows.

[999, 1231, 5, 9]

G. Apostolopoulos 34

Hate Speech Detection on Twitter: A Social-Aware Approach

The first input is a vector and each integer represents the position of the respective word
in the vocabulary. The second input implies that the user has posted 999 tweets. It also
implies that the user has 1231 followers and that the specific tweet has 5 likes and 9

retweets.

G. Apostolopoulos

mput: | (?, 128)

denge 6: Denge

output: | (?, 128)

mput:

(7. 128)

dense 7: Dense

output:

“.1)

mput: | [(?, §7)]
mput_1: nputLayer
output: | [(?, §7}]
y
)) mput: (2. 87) . mput: | [(?, 6)]
embedding: Embedding mput_2: TnputLayer
output: | (2, §7, 50) output: | [(?, 6)]
y
mput: | (2, 87, 50) mput: (2. 6)
convld: ConvlD dense 1: Dense
output: | (2, 78, 64) - output: | (7, 128)
y
)) mput: | (2,78, 64) mput: | (?, 128)
max_poolingl d: MaxPoolingl D denze 2: Denge
)) output: | (2, 39, 64) - output: | (7, 128)
mput: | (7, 39, 64) mput: | (7, 128)
flatten: Flatten dense 3: Dense
output: | (7, 2496) output: | (?, 128)
L l
mput: | (7, 2496) mput: | (?, 128)
dense: Dense dense 4: Dense
output: | (2, 32) output: | (7, 128)
mput: | [(?, 32). (7, 128)]
concatenate: Concatenate -
output: (7. 160}
A
mput: | (?, 160}
dense 5: Dense
output: | (?, 128)

Figure 5.1: CNN plus user features network plot.

35

Hate Speech Detection on Twitter: A Social-Aware Approach

G. Apostolopoulos

™~

-

nput: | [(2, 40), (7, 200}]
concatenate: Concatenate
output: (7, 240)
mput: | (2, 240)
dense_5: Dense
- output: | (7, 200)
/
mput: | (2, 200)
denze 6: Denge
output: | (2, 200}
nput: | (7, 200}
dense 7: Dense
- output: | (7, 1)

Figure 5.2: LSTM plus user features network plot.

nput: | [(7. 6)]
mput_2: InputLayer
- output: | [(7, 6)]
y
input: 2,6 nput: 2, 87
denge 1: Dense L .9 mput_1: InputLayer ! L)l
output: | (?, 200) output: | [(?, 87)]
nput: | (2, 200) . _ input: (2, 87)
dense_2: Dense embedding Embedding
output: | (7, 200) output: | (7, 87, 50)
mput: | (?, 200) L o mput: | (?, 87, 50)
dense 3: Dense bidirectional(lstm): Bidirectional(LSTM)
- output: | (7, 200) output: | (7, 200)
mput: | (2, 200} mput: | (2, 200)
dense 4: Dense denge: Denge
output: | (2, 200) output: | (?, 40)

36

Hate Speech Detection on Twitter: A Social-Aware Approach

5.3 Classification process

For both neural networks, the classification process is similar. In both cases, the model is
compiled using keras.Model compile function?.

model.compile(optimizer=Adam(learning rate=0.001),
loss="binary_crossentropy",

metrics=["accuracy"])

The main difference with simple text classification is that, in this case, we need more
epochs until we reach an accuracy close to 100%. Therefore, for the newly created CNN
we use 15 epochs instead of 5 that we use for the pure CNN and for the new LSTM we
need 25 instead of 15. However, to avoid overfitting, we don'’t increase the amount of
epochs any more, as the validation accuracy would start dropping. More specifically, the
classification configuration is as follows:

VALIDATION SIZE = 0.25
EPOCHS = 15

EPOCHS = 25 for LSTM
TEST_SIZE = 0.15

A big difference that is introduced in the case of combined classification is that we use
user attributes. In order to facilitate our work, we put the attributes we desire to use in a
configuration file that looks exactly like below.

choose classification atiributes below
and add them to the 'chosen_attributes_list'
fl = "tweet retweets"

f2 = "tweet likes"

£f3 = "user_following"
f4 = "user_followers"
f5 = "user total tweets"

f6 = "tweet_is_reply"
chosen_attributes list = [f1, f2, £3, f5, f5, f6]

Thus, if we want to change the features, we can go to the chosen_attributes_list and
select the ones we need. After that, we feed the model and fit it with the following line of
code, where x is an array of 2 inputs:

2https://github.com/tensorflow/tensorflow/blob/v2.4.1/tensorflow/python/keras/engine/training.py#L449-
L549

G. Apostolopoulos 37

Hate Speech Detection on Twitter: A Social-Aware Approach

model.fit(x=[data.X_train_text, data.X train user],
y=data.y_train,
epochs=<EPQOCHS>,
validation_split=<VALIDATION_SIZE>)

We can pass input parameters to the variables EPOCHS and VALIDATION SIZE, which refer
to the number of epochs and the validation split ratio respectively.

5.4 Results and evaluation

In this section, we discuss the results from the classification process. The amount of pos-
sible inputs is large. We have 6 features in total, that create 63 combinations. Specifically,
we have 6 single features, 15 possible doubles, 20 triples, 15 quadruples, 6 quintuples
and 1 sextet. We have tried all of the possible combinations. We hand over the Tables
5.1 for the CNN and 5.2 for the LSTM. In these tables, we present the five better mixtures
considering their accuracy. The total list size is 63 and is equal to the number of possible
features combinations.

Table 5.1: TOP 5: CNN plus user features classification results.

User Features Accuracy
1 | user_followers, tweet_is_reply 86.96%
2 | user_followers, user_total_tweets 86.54%
3 | tweet_retweets, tweet_likes, tweet_is_reply | 85.42%
4 | tweet_likes, user_followers 85.42%
5 | user_total_tweets 84.78%

If we don’t provide any social features at all, the model produces an accuracy of 83.76%.
Therefore, we realize that the two user features that produce the best accuracy for our
dataset are user_followers and tweet_is_reply. In this case, we must mention that
there have been two times when the model has reached almost 88% and in an average
of five efforts, 86.96% was achieved.

Table 5.2: TOP 5: LSTM plus user features classification results.

User Features Accuracy
1 | user_followers, tweet_is_reply 84.12%
2 | user_followers, user_following 83.64%
3 | tweet_retweets, user_following 83.62%

G. Apostolopoulos 38

Hate Speech Detection on Twitter: A Social-Aware Approach

4 | user_total tweets 83.12%

5 | tweet_likes, user_followers, user_total tweets | 82.42%

If we don’t provide any social features at all, the model produces an accuracy of 81.22%.
Those results indicate that in the case of LSTM neural network the user features that
produce the best accuracy are the same as in the case of the CNN (user_followers and
tweet_is_reply). This is an interesting outcome and it we establish 84.12% accuracy as
a five runs average.

Concluding our effort, we compare our results with the text-only classification method that
we introduced in Chapter 3. Specifically, if we look in the Table 5.3, we run the processes
five times and we collect the average of those runs. We observe that the combined clas-
sification offers a better classification outcome than the text-only method on average.

Table 5.3: Text classification vs. Combined classification.

Model | Text Accuracy | Combined Accuracy

CNN 84.52% 86.31%
LSTM 81.47% 83.58%

This improvement in the classification outcome is established combining the classic textual
classification with the user’s features. Our model is able to utilize the sentences and
the numbers from the user features to determine whether a tweet is hateful or not. The
attributes we supply to our model appear to be beneficial and the accuracy increases
slightly. However, the increase is not huge because of the factors we have discussed
in the previous chapter. We elaborate that the user features have acted beneficially and
have not added complexity to our model. The amount of time needed for fitting the model
didn’t increase when we added the secondary neural network.

5.5 Results with balanced classes

There is a question that we need to answer, to make sure that our work is sound. Specif-
ically, we have taken into account that a proper dataset is normally consisted of approx.
20% hateful tweets, based on previous research that we have introduced earlier in this
thesis. However, what would have happened if we had equally distributed classes? To
answer to this question, we present the Table 5.4, in which we indicate the accuracy re-
sults for all the methods we have already mentioned. For this purpose, we have eliminated
some non-hate tweets from the dataset.

G. Apostolopoulos 39

Hate Speech Detection on Twitter: A Social-Aware Approach

Table 5.4: All models classification with a 50-50 dataset.

Model Accuracy
LSTM 73.32%
CNN 77.19%

LSTM plus User Features | 76.41%
CNN plus User Features | 81.28%

Therefore, we observe that indeed, the classification accuracy is not as good as when
the classes are not equally distributed. However, our new model defeats again the simple
text classification model. For the CNN, we achieve almost 3% higher accuracy, whereas
for the LSTM model, we achieve 4 percentage points increase in accuracy results. The
increase is not massive, but it is still significant and can be beneficial for the classification
process.

G. Apostolopoulos 40

Hate Speech Detection on Twitter: A Social-Aware Approach

6. CONCLUSION

In this thesis, we propose to empower text classification models with user features as
derived from social networks. The models we investigate outperform the existing models
and we conclude that user features can lead to more accurate detection of hatred in social
networks. Despite the fact that the increase is not massive, it is still significant and benefi-
cial for the classification outcome. Additionally, the whole process of fitting the data to the
model doesn’t provoke efficiency issues, neither in time needed to train the model, nor in
system requirements. Simultaneously, we experiment with equally balanced classes. In
this approach, the general accuracy decreases 5% points on average, but the proposed
models still outperform the existing ones.

In the future, it would be interesting to try and experiment with more complex networks,
including more CNN, LSTM and hidden layers, to indicate if accuracy can increase further.
Furthermore, we could inspect our models’ accuracy experimenting with new models that
don’t necesserily include CNN or LSTM neural networks. We could implement a neural
network specifically for this task. Additionally, we could inspect more user attributes apart
from those we examined in this thesis. It would also be appealing to repeat the same
experiments with larger datasets and observe how our models behave when we feed
them with more training data. Lastly, we believe our models could operate well on data
from social networks, other than Twitter. We believe that it would be interesting to try and
detect hatespeech in other social media like Facebook or Instagram. The difficulty in this,
would be to acquire the datasets, since Twitter provides researchers with all the necessary
tools in order to exploit their APl and obtain data. Concluding, having a dataset similar
to the one we used in the current work, we believe our models will behave equally well
regardless the social media.

G. Apostolopoulos 41

Hate Speech Detection on Twitter: A Social-Aware Approach

G. Apostolopoulos

ACRONYMS

Abbreviation

Full Name

CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GloVe Global Vectors

42

Hate Speech Detection on Twitter: A Social-Aware Approach

(1]

(2]

(3]

(4]

(3]

6]

[7]

(8]

9]

[10]

(1]

[12]

[13]

[14]
[15]

REFERENCES

W. S. Ahmed and A. a. A. Karim. The impact of filter size and number of filters on classification accuracy
in cnn. In 2020 International Conference on Computer Science and Software Engineering (CSASE),
pages 88-93, 2020.

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta, and Vasudeva Varma. Deep learning for hate
speech detection in tweets. CoRR, abs/1706.00188, 2017.

L. S. P. Busagala, W. Ohyama, T. Wakabayashi, and F. Kimura. Multiple feature-classifier combination
in automated text classification. In 2012 10th IAPR International Workshop on Document Analysis
Systems, pages 43-47, 2012.

Shuxiao Chen and Jacob Bien. Valid inference corrected for outlier removal. Journal of Computational
and Graphical Statistics, 29(2):323-334, 2020.

Dami Choi, Christopher J. Shallue, Zachary Nado, Jaehoon Lee, Chris J. Maddison, and George E.
Dahl. On empirical comparisons of optimizers for deep learning. 2019. cite arxiv:1910.05446.

Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural computation, 9:1735-80,
12 1997.

Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), pages 1746—-1751, Doha,
Qatar, October 2014. Association for Computational Linguistics.

Tom Kocmi and Ondrej Bojar. An exploration of word embedding initialization in deep-learning tasks.
In Proceedings of the 14th International Conference on Natural Language Processing (ICON-2017),
pages 56—64, Kolkata, India, December 2017. NLP Association of India.

Ping-Huan Kuo and Chiou-Jye Huang. A green energy application in energy management systems by
an artificial intelligence-based solar radiation forecasting model. Energies, 11:819, 04 2018.

Jason W. Osborne and Amy Overbay. The power of outliers (and why researchers should always check
for them). Practical Assessment, Research & Evaluation, 9(6):1-12, 2004.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532-1543, Doha, Qatar, October 2014. Association for Computational Lin-
guistics.

Georgios Pitsilis, Heri Ramampiaro, and Helge Langseth. Effective hate-speech detection in twitter
data using recurrent neural networks. Applied Intelligence, 48:in press., 12 2018.

Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for image classification: A
comprehensive review. Neural Computation, 29:1-98, 06 2017.

Joshua Roesslein. Tweepy: Twitter for python! URL: https://github.com/tweepy/tweepy, 2020.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, llya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Re-
search, 15(56):1929-1958, 2014.

G. Apostolopoulos 43

Hate Speech Detection on Twitter: A Social-Aware Approach

[16] Zeerak Waseem and Dirk Hovy. Hateful symbols or hateful people? predictive features for hate speech
detection on twitter. In Proceedings of the NAACL Student Research Workshop, pages 88-93, San
Diego, California, June 2016. Association for Computational Linguistics.

[17] Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu, Hongyun Bao, and Bo Xu. Text classification
improved by integrating bidirectional LSTM with two-dimensional max pooling. In Proceedings of COL-
ING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages
3485-3495, Osaka, Japan, December 2016. The COLING 2016 Organizing Committee.

G. Apostolopoulos 44

	INTRODUCTION
	Thesis structure

	DATASET
	Problems with existing datasets
	Multiple tweets from the same author
	Hateful tweets from a few authors only

	Dataset information
	Step 1: first scraping
	Step 2: information extraction

	TEXT CLASSIFICATION
	Why GloVe?
	Text preprocessing
	CNN model
	LSTM model
	Classification process
	Results

	SOCIAL ANALYSIS APPROACH
	COMBINED CLASSIFICATION
	CNN plus user features
	LSTM plus user features
	Classification process
	Results and evaluation
	Results with balanced classes

	CONCLUSION
	ACRONYMS
	REFERENCES

