
Ergotheoretical proof of Szemeredi’s theorem

Iakovidis Isidoros

Department of Mathematics
National and Kapodistrian University of Athens



To my professor Dimitris Gatzouras

i



ii



Contents

Abstract vi

1 Introduction 2

2 Introduction to ergodic theory 6
2.1 Basic definitions and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Basic theorems of recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Ergodic theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Invariant measures for continuous transformations . . . . . . . . . . . . . . . . . . 14
2.7 Ergodic decomposition and unique ergodicity . . . . . . . . . . . . . . . . . . . . 21

3 Conditional expectation 24
3.1 Conditional expectation and basic properties . . . . . . . . . . . . . . . . . . . . . 24
3.2 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Measure Disintegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Algebras and Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Factors and Joinings 52
4.1 The Ergodic Theorem and Decomposition Revisited . . . . . . . . . . . . . . . . . 52
4.2 Equivalence between a factor map and a sub-σ-algebra in a measure preserving

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Joinings of a set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Relatively Independent Joining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Ergotheoretical proof of Szemeredi’s theorem. 62
5.1 Connection between Szemeredi’s theorem and Multiple recurrence. . . . . . . . . 62
5.2 Simplifications for any measure preserving system. . . . . . . . . . . . . . . . . . 63

5.2.1 1) Invertible systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.2 2) Borel Probability Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.3 3) Ergodic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Furstenberg’s correspondence principle-Sárközy theorem. . . . . . . . . . . . . . . 65
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Abstract

In this study we give a proof of Szemeredi’s theorem via ergodic theory.
In chapter 1, a brief introduction of the master thesis is given.
In chapter 2, the basic study of ergodic theory is presented where we introduce theorems of re-
currence and ergodic theorems. The notion of mixing measure preserving systems is defined, we
study their properties and finally the ergodic decomposition theorem is proved.
In chapter 3, we provide the necessary probability-measure theory background. In particular the
conditional expectation map is defined, the notion of martigales and the conditional measures on a
measure preserving system.
In chapter 4, we define the notion of a factor map and we prove the equivalence of a sub σ− algebra
in a measure preserving system and a factor map. In addition we define the joinings of a set and in
particular the relatively independent joining.
Finally in order to prove Szemeredi’s theorem, a theorem about arithmetic progressions we need to
translate the problem into a problem of ergodic theory. This is accomplished by Furstenberg’s cor-
respondence principle. Next we prove Szemeredi’s theorem for some specific measure preserving
systems and finally we obtain Szemeredi’s theorem for any measure preserving system.

vi



Περίληψη
Σκοπός μας σε αυτήν την εργασία είναι η εργοθεωρητική απόδειξη του θεωρήματος του

Szemeredi.
Στο κεφάλαιο 1, γίνεται μια σύντομη παρουσίαση της διπλωματικής εργασίας

Στο κεφάλαιο 2, παρουσιάζεται η βασική εργοδική θεωρία όπου μελετούνται τα κλασικά θεω-

ρήματα επαναφοράς και τα εργοδικά θεωρήματα. Ορίζονται τα mixing συστήματα που διατηρούν
το μέτρο και τέλος αποδεικνύεται το θεώρημα της εργοδικής διάσπασης του μέτρου.

Στο κεφάλαιο 3, παρουσιάζεται το απαραίτητο πιθανοθεωρητικό υπόβαθρο. Συγκεριμένα ορίζε-

ται η δεσμευμένη μέση τιμή, η θεωρία των martingales και τα δεσμευμένα μέτρα ορισμένα σε ένα
σύστημα που διατηρεί το μέτρο.

Στο κεφάλαιο 4, ορίζεται η απεικόνιση παράγοντας και αποδεικνύεται η ισοδυναμία μιας υπό

σ− άλγεβρας σε ένα σύστημα που διατηρεί το μέτρο με μια απεικόνιση παράγοντα. Επιπλέον
ορίζεται το joining ενός συνόλου και συγκεκριμένα το relatively independent joining.
Στο κεφάλαιο 5, παρουσιάζεται η απόδειξη του θεωρήματος του Szemeredi. Αρχικά μετατρέπου-
με το πρόβλημα που αφορά αριθμητικές προόδους σε ένα πρόβλημα εργοδικής θεωρίας. Αυτό

επιτυγχάνεται μέσω του θεωρήματος αντιστοίχησης του Furstenberg. Στην συνέχεια αποδει-
κνύεται το θεώρημα του Szemeredi για συγκεκριμένες κατηγορίες συστημάτων που διατηρούν
το μέτρο και τελικά παρουσιάζεται η απόδειξη του θεωρήματος του Szemeredi.
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Chapter 1

Introduction

In 1927 van der Waerden proved the conjecture of Baudet about arithmetic progressions with the
following theorem.

Theorem. If we colour the set of integers with a finite number of colours then there exists a k-term
monochromatic arithmetic progression, for any k ∈ N.

Definition 1. For a subset of the integers E we define its upper Banach density as

dB(E) = lim sup
N−M→∞

∣∣E ∩ [M,N)
∣∣

N −M
,

where
∣∣E ∩ [M,N)

∣∣ is the cardinality of {a ∈ E : M ≤ a < N} when N,M are integers with
N > M .

In 1936 Paul Erdős and Pál Turán conjectured the stronger result that any subset of the natural
numbers with positive upper Banach density contains arbitrary long arithmetic progressions. In
1953 Klaus Friedrich Roth proved that a subset of the natural numbers with positive upper Ba-
nach density contains 3-term arithmetic progression. In 1969 Endre Szemerédi proved that any
set of positive upper Banach density contains 4-term arithmetic progressions and finally in 1975
Szemerédi proved that all such sets contain arbitrarily long arithmetic progressions.

In 1977 Hillel Furstenberg proved Szemerédi’s theorem using ergotheoretical tools, and his
work gave rise to ergodic Ramsey theory, where one uses tools from ergodic theory to investigate
problems in additive combinatorics. A basic theorem in this direction is the Sárközy–Furstenberg
theorem.

Theorem 1.0.1. Let E be a subset of the integers with positive upper Banach density and let
p ∈ Z[t] with p(0) = 0. Then there are x, y ∈ E and n ∈ N with x− y = p(n). In other words the
set E − E ∩ {p(n) | n ∈ N} is non empty, where E − E := {x− y | x, y ∈ E}.

For the proof of Szemerédi’s theorem first we need to translate the problem of arithmetic pro-
gressions to a problem of dynamical systems. This is achieved by using Furstenberg’s correspon-
dence principle, an important technique that connects the combinatorial problem with a measure
preserving system. Second, Furstenberg realised that the proof of Szemerédi’s theorem in terms of
dynamical systems is a consequence of a multiple recurrence theorem.
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Theorem. For any measure preserving system (X,BX , µ, T ) and set E ∈ BX with µ(E) > 0, and
for any positive integer k, there is some n ≥ 1 such that

µ(E ∩ T−nE ∩ T−2nE ∩ ... ∩ T−knE) > 0.

The above result is adequate for Szemerédi’s theorem but Furstenberg proved the following
stronger result for measure preserving systems.

Theorem 1.0.2. For any measure preserving system (X,BX , µ, T ) and setE ∈ BX with µ(E) > 0,
and for any k ∈ N, it holds that

lim inf
N−M→∞

1

N −M

N−1∑
n=M

µ(E ∩ T−nE ∩ T−2nE ∩ · · · ∩ T−knE) > 0.

In this thesis an exposition of Furstenberg’s proof of Szemeredi’s theorem is given.
Our goal is to prove the above Furstenberg’s multiple recurrence theorem for any measure

preserving system.

Definition 2. Let (X,BX , µ, T ) be a measure preserving system. The system is said to be SZ if, for
any set E ∈ BX with µ(E) > 0 and for any k ∈ N, it holds that

lim inf
N−M→∞

1

N −M

N−1∑
n=M

µ(E ∩ T−nE ∩ T−2nE ∩ · · · ∩ T−knE) > 0. (1.1)

First the SZ property is proved for specific measure preserving systems, namely Kronecker
systems and weak-mixing systems. In particular the recurrence property holds for such systems
for two completely opposite reasons. Kronecker systems, on the one hand, behave as ”periodic”
rotations and so T−nE ≈ T (E) and (1.1) holds. On the other hand, in the weak-mixing case there
is a sense of pseudorandomness and, asymptotically, independence of the form

µ(E ∩ T−nE ∩ T−2nE ∩ · · · ∩ T−knE)→ µ(E)k+1

holds, and so again (1.1) is valid.
Of course it is too much to expect from a system to be either Kronecker or weak-mixing. The

strategy of the proof is to start with a factor of the system known to possess the SZ property and
create a tower of ”extensions” of this factor leading to the initial system and where the SZ property
is inherited from one step to the next, in the sense described below.

Definition 3. Let (X,BX , µ, T ), (Y,BY , ν, S) be measure preserving systems on Borel probability
spaces. A factor map is a map π : X → Y that is measure preserving, i.e.,

i) if A ∈ BY , then π−1(A) ∈ BX ,

ii) µ(π−1(A)) = ν(A) for all A ∈ BY
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and secondly π ◦ T = S ◦ π µ-a.e. When a factor map between measure preserving systems exist
as above, then (Y,BY , ν, S) is called a factor of (X,BX , µ, T ) and (X,BX , µ, T ) an extension of
(Y,BY , ν, S).

Or equivalently, it can be shown that, if (X,BX , µ, T ), (Y,BY , ν, S) are invertible measure
preserving systems on Borel probability spaces and π : X → Y a factor map, then A = π−1BY ⊆
BX is an invariant sub-σ-algebra of BX , in the sense that T−1A = A (modulo µ); and vice-versa,
given an invariant sub-σ-algebra of BX , in the sense that T−1A = A (modulo µ), there exists a
factor (Y,BY , ν, S) with, say, factor map π : X → Y , such that A = π−1BY (modulo µ), i.e.,
there is a one-to-one correspondence between factors and invariant sub-σ-algebras for invertible
systems.

The proof of Szemerédi’s theorem comes from the dichotomy between two extreme scenar-
ios of extensions, the compact and the relatively weak-mixing extensions, the generalizations of
Kronecker systems and weak-mixing systems, respectively.

Definition 4. Suppose that (X,BX , µ, T ) is an extension of (Y,BY , ν, S). A function f in L2
µ(X)

is almost periodic with respect to the system (Y,BY , ν, S) if, for every ε > 0, there exists r ≥ 1
and functions g1, g2, . . . , gr ∈ L2

µ(X) such that

min
s∈{1,2,...,r}

∥∥Un
T f − gs

∥∥
L2
µy

< ε,

for all n ∈ N and ν-a.e y ∈ Y , where µy, y ∈ Y , is the unique family of measures for which
E(f | π−1BY )(x) =

∫
X
f dµy for µ-a.e. x ∈ π−1(y) and all f ∈ L1

µ(X), and π : X → Y is the
factor map. The extension is called compact extension if the set of almost periodic functions is
dense in L2

µ(X).

Definition 5. Let the system (X,BX , µ, T ) be an extension of the system (Y,BY , ν, S). The exten-
sion is called relatively weak-mixing if the system (X ×X,BX ⊗BX , µ×Y µ, T × T ) is ergodic,
where µ×Y µ is the relatively independent joining over the factor (Y,BY , ν, S).

Such extensions inherit the SZ property.

Theorem 1.0.3. Assume that (X,BX , µ, T ) is a compact extension of (Y,BY , ν, S). If (Y,BY , ν, S)
satisfies the SZ property then (X,BX , µ, T ) also does.

Theorem 1.0.4. Suppose that (X,BX , µ, T ) is a relatively weak-mixing extension of (Y,BY , ν, S).
If (Y,BY , ν, S) satisfies the SZ property then (X,BX , µ, T ) also does.

Thus this kind of extensions preserve the SZ property. We also need to show, however, that our
property is also preserved through limits.

Theorem 1.0.5. Let (X,BX , µ, T ) be a measure preserving system on a Borel probability space
and A1 ⊆ A2 ⊆ · · · an increasing sequence of invariant sub-σ-algebras (factors). If An is SZ for
every n ∈ N, then the factor σ

(⋃
n≥1An

)
is also SZ.

The most important part of the proof is the following dichotomy theorem between relatively
weak-mixing and compact extensions.
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Theorem 1.0.6. Let (X,BX , µ, T ) be a measure preserving system on a Borel probability space
and (Y,BY , ν, S) a factor. Then one of the following holds.

a) (X,BX , µ, T ) is a relatively weak mixing extension of (Y,BY , ν, S).

b) There is an intermediate extension (X∗,BX∗ , µ∗, T ∗), so (X∗,BX∗ , µ∗, T ∗) is a factor of
(X,BX , µ, T ) and an extension of (Y,BY , ν, S), with the property that (X∗,BX∗ , µ∗, T ∗) is
a non-trivial compact extension of (Y,BY , ν, S).

When the system is not already weak-mixing to begin with, for which the SZ property has been
shown to hold separately, one then starts with the Kronecker factor of the system, for which the
SZ property has been shown to hold separately, and then, using transfinite induction, successively
builds a tower of extensions possessing the SZ property until one reaches the initial system as an
extension of a system known to possess the SZ property.
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Chapter 2

Introduction to ergodic theory

2.1 Basic definitions and examples
Ergodic theory is the study of the long time behavior of dynamical systems. In this
chapter we see a brief introduction by mentioning several examples of measure pre-
serving systems, the basic recurrent theorems, the notions of ergodicity and mixing of
a system.

Definition 2.1.1. Let (X,B, µ), (Y,A, ν) be probability spaces. A map π : X → Y is called
measurable if π−1(A) ∈ B for every A ∈ A. It is measure preserving if µ(π−1(A)) = ν(A), again
for every A ∈ A.

If T : (X,B, µ) → (X,B, µ) is measure preserving, then the measure µ is said to be T -
invariant, the system (X,B, µ, T ) is said to be a measure preserving system and T a measure
preserving transformation.

If in addition T−1 exists and is measurable we say that (X,B, µ, T ) is an invertible measure
preserving system.

Some basic examples of measure preserving systems follow.

example 2.1.2. Let X = [0, 1), let B = B([0, 1)) be the corresponding Borel σ-algebra, let

Tα(x) = x+ a (mod 1) := x+ a− bx+ ac

and let λ be the Lebesgue measure in the interval [0, 1). Then the system ([0, 1),B([0, 1)), λ, T ) is
a measure preserving system.

example 2.1.3 (Generalization of previous example). If G is a locally compact group with a Haus-
dorff topology, then there exists a unique regular Borel measuremG, up to a positive multiplicative
constant, invariant under translations and it is called the Haar measure of the group. If B = B(G)
is the Borel σ-algebra and Tα : G → G is the map Tα(g) = ag, then (G,B(G),mG, Tα), with
Haar measure normalized so that mG(G) = 1, is a measure preserving system.
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example 2.1.4 (Bernoulli shift). Let S = {1, 2, . . . , s} be a finite set and p = (pj)j∈S be a proba-
bility vector, i.e., pi ≥ 0 ∀i ∈ S and

∑
i∈S pi = 1. We consider

X = SN = {x = (x1, x2, . . . ) : xi ∈ S ∀i ∈ N}

and the smallest σ-algebra B containing all finite cylinders

B = σ
(
{x = (x1, x2, . . . ) ∈ X : x1 = s1, x2 = s2, . . . , xn = sn} : n ∈ N, s1, s2, . . . , sn ∈ S

)
and the unique probability measure µ defined on B such that

µ
(
{x = (x1, x2, . . . ) ∈ X : x1 = s1, x2 = s2, . . . , xn = sn}

)
= ps1ps2 · · · psn .

We define also the shift map T : X → X , T (x1, x2, . . . ) = (x2, x3, . . . ). Then (X,B, µ, T ) is a
measure preserving system.

2.2 Basic theorems of recurrence
Theorem 2.2.1 (Poincaré recurrence (weak version)). Let (X,B, µ, T ) be a measure preserving
system and A ∈ B with µ(A) > 0. Then there exists n ∈ N such that µ(A ∩ T−nA) > 0.

Proof. We consider A, T−1A, T−2A, . . . . If µ(T−nA ∩ T−mA) = 0 for each pair n,m ∈ N with
n 6= m were the case, then one would have that

µ

(⋃
n∈N

T−nA

)
=
∞∑
n=1

µ(T−nA) =
∞∑
n=1

µ(A) =∞,

since T preserves measure and µ(A) > 0. This contradicts the fact that (X,B, µ) is a probability
space, so there exist at least one pair n,m ∈ N with n 6= m, such that

µ(T−nA ∩ T−mA) > 0.

Without loss of generality we assume m > n. Then

µ(T−nA ∩ T−mA) = µ
(
T−n(A ∩ T−(m−n)

)
= µ

(
A ∩ T−(m−n)

)
,

since T preserves measure, and m− n ∈ N and this concludes the proof.

Furthermore note that Poincaré’s theorem does not hold in an infinite measure space. Let
X = Z, B = 2Z and µ(A) = |A| be the cardinality of A. Then it is obvious that the transformation
T = x + 1 preserves measure, but if A = {0}, then µ(A) > 0 but µ(A ∩ T−nA) = 0 since
A ∩ T−nA = ∅ ∀n ∈ N.

Theorem 2.2.2 (Poincaré recurrence (strong version)). Let (X,B, µ, T ) be a measure preserving
system and A ∈ B with µ(A) > 0. Then, for almost every point x ∈ A, there are integers
n1 < n2 < n3 < · · · such that T nk ∈ A ∀k ∈ N.
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Proof. Let A ∈ B with µ(A) > 0. We consider the set

B = A ∩ T−1(X \ A) ∩ T−2(X \ A) ∩ · · · ;

so B is the set of the points which belong to A but never return back to A. If j 6= k, we have that

T−jB ∩ T−kB = ∅.

Indeed, let j < k. If x ∈ T−jB, then T j(x) ∈ B, hence T j(x) ∈ A, and T j+n(x) /∈ A ∀n ∈ N.
If for the same point x it holds that x ∈ T−kB, then T k(x) ∈ A and this is a contradiction since
k > j. So now

1 ≥ µ

(⋃
j∈N

T−jB

)
=
∞∑
j=1

µ(T−jB);

in other words µ(B) = 0, because otherwise the last sum would be infinite. By the equation
µ(A) = µ(A ∩Bc) + µ(A ∩B) we have that

µ(A) = µ

(
A ∩

⋃
n≥1

T−nA

)
.

The right hand side of the last equation is the measure of the set of points in A that return to A
at least one time. We name this set A1 and so

µ(A) = µ(A1),

i.e., almost every point of A returns to A at least once. Now we repeat the argument with T k in the
place of T . We define

Ak = A ∩
⋃
n≥1

T−knA;

then Ak ⊆ A and µ(Ak) = µ(A). We define also

A∞ =
⋂
n≥1

Ak.

Then A∞ ⊆ A and for all x ∈ A∞ we know that

∀k ∈ N ∃nk ∈ N such that T knk(x) ∈ A,

or equivalently, for all x ∈ A∞ we know that

∀k ∈ N ∃mk ≥ k such that Tmk(x) ∈ A.

Hence for x ∈ A∞ we have that x ∈ A and also that for infinitely many n, T n(x) ∈ A. So one
only needs to show that µ(A∞) = µ(A) now. But

µ(A \ A∞) = µ

(⋃
k≥1

(A \ Ak

)
≤
∑
k≥1

µ(A \ Ak) = 0.

8



2.3 Ergodicity
Let (X,B, µ, T ) be a measure preserving system. The natural way of thinking of such a system is
of X as the space of states of a physical system, with T representing the evolution of the system
in time. The condition that T be measure preserving corresponds to the notion that the system is
statistically in equilibrium, i.e., that the probability for the system to be in a state x ∈ A is inde-
pendent of time and thus the same at times n = 0 and n = 1, 2, . . . . The notion of ergodicity for a
measure preserving system means that there is no way to decompose the state-space of the system
X into two subsets of positive measure and invariant under the action of transformation T , i.e., that
it is not possible to decompose the system into two non-trivial and independent subsystems.

Definition 2.3.1. Let (X,B, µ, T ) be a measure preserving system. A set B ∈ B is called invariant
under the transformation T if

T−1B = B.

Definition 2.3.2. A measurable function f : X → R or C is called an invariant function if f =
f ◦ T . It is invariant a.e. if f = f ◦ T holds almost everywhere.

Definition 2.3.3. Let (X,B, µ, T ) be a measure preserving system. We call the transformation T
ergodic if for any invariant set B ∈ B

µ(B) = 0 or µ(B) = 1.

We will also say that the measure µ is ergodic for the transformation T , or that the whole system
(X,B, µ, T ) is ergodic.

Proposition 2.3.4. Let (X,B, µ, T ) be a measure preserving system. Then the following properties
are equivalent.

(1) T is ergodic.

(2) For any B ∈ B, µ(T−1B 4B) = 0 implies that µ(B) = 0 or µ(B) = 1.

(3) For any A ∈ B, µ(A) > 0 implies that µ (
⋃∞
n=1 T

−nA) = 1.

(4) For A,B ∈ B, µ(A)µ(B) > 0 implies that there exists n ≥ 1 with µ(T−nA ∩B) > 0.

(5) For any measurable function f on X (real or complex) which is invariant µ-almost every-
where one has that f is constant µ-almost everywhere.

Proposition 2.3.5. Let (X,B, µ, T ) be a measure preserving system. Then the system is ergodic
if and only if any µ-almost everywhere invariant function f ∈ L∞(X,B, µ) is constant µ-almost
everywhere.

The next theorem will be useful to approximate σ algebras by elements of an algebra of sets.

Theorem 2.3.6. Let (X,B, µ) be a probability space and A ⊆ B be an algebra of sets. Then the
collection

{E
∣∣ ∀ε > 0 there is A ∈ A, µ(A4E) < ε}

is a-σ algebra.
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2.4 Ergodic theorems
If one thinks of a measure preserving system (X,B, µ, T ) as describing the evolution of a physical
system in time, then one may not be able to observe the whole system itself at once but only
through measurements or observables. These are modeled as functions on the state space X of
the system, with f(x) representing a measurement or observation of the system, e.g., temperature,
when the system is in state x, f(T (x)) = f ◦T (x) then representing a measurement or observation
at time n = 1 when the system is in state T (x) if it was in state x initially, e.tc.

Definition 2.4.1 (Koopman operator). Let (X,B, µ, T ) be a measure preserving system. If f is a
function on X , real or complex-valued, we define Koopman operator UT by

UT (f) := f ◦ T.

Thus the Koopman operator correspond to the evolution of a measurement or observable f on
the system.

Proposition 2.4.2. The Koopman operator UT (f) = f◦T is an isometry on Lp for all p ∈ [1,+∞].

Proof. Let f ∈ Lp, 1 ≤ p < +∞. Then

‖UT (f)‖pp = ‖f ◦ T‖pp =

∫
|f ◦ T |pdµ =

∫
|f |p ◦ Tdµ =

∫
|f |pdµ,

since T preserves measure. In particular UT is an isometry in L2(µ), so

〈UT (f), UT (g)〉L2 = 〈f, g〉L2

where 〈f, g〉L2 =
∫
fḡdµ.

If f ∈ L∞, then

µ
(
{x ∈ X : |f ◦ T (x)| > t}

)
= µ

(
T−1{x ∈ X : |f(x)| > t}

)
= µ

(
{x ∈ X : |f(x)| > t}

)
for all t, so ‖UT (f)‖∞ = ‖f‖∞.

Remark 2.4.3. When the system (X,B, µ, T ) is invertible then the Koopman operator is a unitary
operator on L2.

Proposition 2.4.4. The system (X,B, µ, T ) is ergodic if and only if the eigenvalue 1 is simple for
the Koopman operator

UT : L2(µ)→ L2(µ).

Definition 2.4.5. A linear operator U : H → H of a Hilbert space H is a contraction if ‖U‖ ≤ 1.

Theorem 2.4.6 (Mean Ergodic Theorem (Von Neumann)). LetH be a Hilbert space and U : H →
H a contraction. Let F = {h ∈ H : U(h) = h} and let PF be orthogonal projection on F . Then

1

n

n−1∑
k=0

Uk(h)→ PF (h) ∀h ∈ H.
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Lemma 2.4.7. If H is a Hilbert space and U : H → H is a contraction, then

U(h) = h ⇐⇒ U∗(h) = h.

Proof. Since U is a contraction we have that U∗ is a contraction and let h ∈ H be such that
U(h) = h. Then

‖U∗(h)− h‖2 = ‖U∗(h)‖2 + ‖h‖2 − 〈U∗(h), h〉 − 〈h, U∗(h)〉
≤ ‖h‖2 + ‖h‖2 − 〈h, U(h)〉 − 〈U(h), h〉
= 2‖h‖2 − 〈h, h〉 − 〈h, h〉
= 0.

Lemma 2.4.8. IfH is a Hilbert space and U : H → H is a contraction, F = {f ∈ H : U(f) = f}
and N = {U(f)− f : f ∈ H}, then N⊥ = F and F⊥ = N ; in other words

H = F ⊕N.

Proof. If f ∈ H ,

〈U(h)− h, f〉 = 0 ∀h ∈ H
⇐⇒ 〈(U − I)(h), f〉 = 0 ∀h ∈ H
⇐⇒ 〈h, (U − I)∗(f)〉 = 0 ∀h ∈ H
⇐⇒ (U − I)∗(f) = 0

⇐⇒ U∗(f) = f

⇐⇒ U(f) = f

⇐⇒ f ∈ F.

Proof of Theorem 2.4.6. Let h ∈ H . By the previous lemma h can be written uniquely as h = f+g
with f ∈ F and g ∈ N . Then

1

n

n−1∑
k=0

Uk(h) =
1

n

n−1∑
k=0

Uk(f) +
1

n

n−1∑
k=0

Uk(g)

and since f ∈ F ,
1

n

n−1∑
k=0

Uk(f) = f ∀n ∈ N.

So it is sufficient to show that ∥∥∥∥∥ 1

n

n−1∑
k=0

Uk(g)

∥∥∥∥∥→ 0 as n→∞.
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If g ∈ N , then there is ϕ ∈ H such that g = U(ϕ)− ϕ. Then

1

n

n−1∑
k=0

Uk(g) =
1

n

n∑
k=1

Uk(ϕ)− 1

n

n−1∑
k=0

Uk(ϕ)

=
1

n
Unϕ− 1

n
ϕ,

hence ∥∥∥∥∥ 1

n

n−1∑
k=0

Uk(g)

∥∥∥∥∥ ≤ 1

n
(‖Unϕ‖+ ‖ϕ‖) ≤ 1

n
(2‖ϕ‖)→ 0 n→∞,

since U is unitary. Let ε > 0. If g ∈ N , there is g̃ ∈ N such that ‖g− g̃‖ < 1
2
ε and there is n0 ∈ N

such that ∥∥∥∥∥ 1

n

n−1∑
k=0

Uk(g̃)

∥∥∥∥∥ < ε

2
∀n ≥ n0,

and then ∥∥∥∥∥ 1

n

n−1∑
k=0

Uk(g)

∥∥∥∥∥ ≤
∥∥∥∥∥ 1

n

n−1∑
k=0

Uk(g̃)

∥∥∥∥∥+

∥∥∥∥∥ 1

n

n−1∑
k=0

Uk(g − g̃)

∥∥∥∥∥
<
ε

2
+

1

n

n−1∑
k=0

‖Uk(g − g̃)‖ since U is unitary

=
ε

2
+

1

n

n−1∑
k=0

‖(g − g̃)‖

<
ε

2
+
ε

2
= ε,

for all n ≥ n0.

Remark 2.4.9. In the proof we did not use the fact that the µ is a probability measure, so Von
Neumann’s theorem holds for any measure space.
Remark 2.4.10. From the previous theorem, by setting H = L2(X,B, µ) and U the Koopman
operator, we have that, for each f ∈ L2(X,B, µ), there is a f̃ ∈ L2(X,B, µ) such that

1

n

n−1∑
k=0

Uk
T (f)→ f̃

and f̃ is invariant a.e. and the convergence is convergence in the L2-norm.

Theorem 2.4.11 (Pointwise Ergodic Theorem (Birkhoff) ). Let (X,B, µ, T ) be a measure preserv-
ing system and f ∈ L1(X,B, µ). There is f̃ ∈ L1(X,B, µ) such that

1

n

n−1∑
k=0

Uk
T (f)→ f̃ µ− a.e.

and f̃ = f̃ ◦ T µ-a.e. and
∫
A
f̃dµ =

∫
A
fdµ for every invariant set A ∈ B.
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Proposition 2.4.12 (Lp mean ergodic theorem). Let (X,B, µ, T ) be a measure preserving system
and f ∈ Lp(X,B, µ), 1 ≤ p < +∞. There is f̃ ∈ Lp(X,B, µ) such that∥∥∥∥∥ 1

n

n−1∑
k=0

Uk
T (f)− f̃

∥∥∥∥∥
p

→ 0

and f̃ = f̃ ◦ T in the Lp-sense.

2.5 Mixing
Definition 2.5.1 (Strong mixing). A measure preserving system (X,B, µ, T ) is strong mixing if

µ(A ∩ T−kB)→ µ(A)µ(B) as n→∞ ∀A,B ∈ B.

Definition 2.5.2 (Weak mixing). A measure preserving system (X,B, µ, T ) is weakly mixing if

1

n

n−1∑
k=0

|µ(A ∩ T−kB)− µ(A)µ(B)| → 0 as n→∞ ∀A,B ∈ B.

Definition 2.5.3. A subset J of the natural numbers N has density zero if

1

n

∣∣J ∩ [1, n]
∣∣→ 0 as n→∞,

where |A| is the cardinality of a set A.

Proposition 2.5.4. Let (X,B, µ, T ) be a measure preserving system. The following are equivalent.

(1) The system is weakly mixing.

(2) The system (X ×X,B ⊗ B, µ× µ, T × T ) is ergodic.

(3) The system (X ×X,B ⊗ B, µ× µ, T × T ) is weakly mixing.

(4) For any ergodic system (Y,BY , ν, S), the system (X × Y,B ⊗ BY , µ × ν, T × S) is also
ergodic.

(5) The measurable eigenfunctions of the Koopman operator are constant (UT has continuous
spectrum).

(6) ∀A,B ∈ B, there is a subset JA,B of N of zero density, such that

lim
n→∞
n/∈JA,B

µ(A ∩ T−kB) = µ(A)µ(B).

13



(7) For any two A,B ∈ B,

1

n

n−1∑
k=0

|µA ∩ T−kB)− µ(A)µ(B)|2 → 0 as n→∞.

Theorem 2.5.5 (Eigenvalues and eigenfunctions of ergodic systems). Let (X,B, µ, T ) be an er-
godic measure preserving system and UT the Koopman operator on L2(X,B, µ). The following
are equivalent.

(1) If UT (f) = λf for some λ ∈ C and f ∈ L2(X,B, µ) not equal to zero a.e., then |λ| = 1 and
|f | is constant µ-a.e.

(2) The eigenfunctions that correspond in different eigenvalues are perpendicular.

(3) Every eigenvalue is simple and, if f and g are eigenfunctions that correspond to the same
eigenvalue λ, then there is a constant c such that f = cg in the L2 sense.

(4) The eigenvalues of UT are subgroup of S1.

2.6 Invariant measures for continuous transformations
Let (X, d) be a metric space. The Borel σ-algebra B(X) of X is the σ-algebra generated by the
open sets. A Borel measure is a measure defined on the measurable space (X,B(X)).

Proposition 2.6.1. Every Borel probability measure on a metric space is regular in the following
sense:

µ(B) = inf{µ(U) : B ⊆ U , U open}
= sup{µ(C) : C ⊆ B, C closed}.

Proof. We define the class of sets

A = {B ∈ B(X) : ∀ε > 0 ∃ U open and C closed such that C ⊆ B ⊆ U and µ(U \ C) < ε}.

Then A is the σ-algebra generated by the closed sets. Indeed, it is obvious that ∅, X ∈ A.
Let B ∈ A. Then there are U,C, open and closed sets, respectively, such C ⊆ B ⊆ U and
µ(U \ C) < ε. The set X \ U is closed, X \ C is open, X \ U ⊆ X \B ⊂ X \ C and

µ((X \ C) \ (X \ U)) = µ(X \ C)− µ(X \ U) = [1− µ(C)]− [1− µ(U)] = µ(U \ C) < ε.

So X \B ∈ A.
If Bn ∈ A, n ∈ N, then given ε > 0 there are open sets Un and closed sets Cn such that

Cn ⊆ Bn ⊆ Un and
µ(Un \ Cn) <

ε

2n
,

14



for every n ∈ N. One as that
⋃n
m=1 Um ↗

⋃∞
m=1 Um and so µ (

⋃n
m=1 Um) ↗ µ (

⋃∞
m=1 Um), so

there exists n such that

µ

(
∞⋃
m=1

Um \
n⋃

m=1

Um

)
= µ

(
∞⋃
m=1

Um

)
− µ

(
n⋃

m=1

Um

)
<
ε

2
.

C :=
⋃n
m=1Cm is closed, U =

⋃∞
m=1 Um is open and

C ⊆
∞⋃
m=1

Bm ⊆ U ;

furthermore,

U \ C ⊆
n⋃

m=1

(Um \ Cm) ∪ U \
n⋃

m=1

Um

so we have

µ(U \ C) ≤
n∑

m=1

µ(Um \ Cm) + µ

(
U \

n⋃
m=1

Um

)
< ε,

and this shows that A is a σ-algebra.
Let C be a closed set and set Un = {x ∈ X : dist(x,C) < n−1}, n ∈ N. Then the Un are open

sets and C ⊂ Un, for all n ∈ N. Since C is closed, Un ↘ C, and since µ is a probability measure,
µ(Un) ↘ µ(C). So given ε > 0, we can choose n ∈ N such that µ(Un \ C) < ε and this shows
that every closed set is a member ofA. But B(X) is the smallest σ-algebra that contains the closed
sets and that means A = B(X) and this concludes the proof.

Definition 2.6.2. If X is a compact space, we write C(X) := {f : X → C | f is continuous}
and CR(X) := {f : X → R | f is continuous}. The norm in both spaces is the supremum norm:
‖f‖ = sup{|f(x)| | x ∈ X}.

Proposition 2.6.3. Let X be a compact metric space and µ and ν Borel probability measures on
X . Then µ = ν if and only if

∫
X
fdµ =

∫
X
fdν for all f ∈ C(X).

Proof. One direction is obvious. Suppose now
∫
X
fdµ =

∫
X
fdν for all f ∈ C(X). By Propo-

sition 2.6.1 it is enough to show that µ(C) = ν(C) for every closed subset C of X . Let C be a
closed subset of X and ε > 0. There is U ⊆ X open, such that µ(U \ C) < ε and C ⊂ U . Let

f(x) :=
dist(x, U c)

dist(x,C) + dist(X,U c)
, x ∈ X.

Then f is continuous, 0 ≤ f ≤ 1 and f(x) = 0 when x ∈ U c and f(x) = 1 when x ∈ C. Thus
χC ≤ f ≤ χU and so we have

ν(C) ≤
∫
X

fdν =

∫
X

fdµ < µ(U) ≤ µ(C) + ε,

and since ε was arbitrary, the inequality ν(C) ≤ µ(C) holds and finally by symmetry we have
ν(C) = µ(C).
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Every Borel probability measure on a compact metric space defines a bounded linear functional
Lµ : C(X)→ C by

Lµ(f) =

∫
X

fdµ,

since

‖Lµ‖ =

∣∣∣∣∫
X

fdµ

∣∣∣∣ ≤ ‖f‖ ∀f ∈ C(X).

So we identify every Borel probability measure with an element of the dual space C(X)∗ of C(X).

Theorem 2.6.4 (Riesz representation theorem). IfX is a compact metric space, then every bounded
linear positive functional Λ ∈ C(X)∗ can be written as

Λ(f) =

∫
X

fdµ ∀f ∈ C(X),

for some Borel probability measure µ on X . We define

M(X) = {µ | µ Borel probability measure on X}.

Then we can identifyM(X) with a subset of C(X)∗ in the w∗-topology .

Proposition 2.6.5. If X is a compact metric space thenM(X) in the w∗-topology is a compact
metric space.

Proof. If µ ∈M(X) and f ∈ C(X), then∣∣∣∣∫
X

fdµ

∣∣∣∣ ≤ ‖f‖
and this means for the norm of µ as a linear functional of C(X) that ‖µ‖ ≤ 1. We further notice,
for f = χX , that ‖µ‖ = 1 and soM(X) is a subset of the unit ball of C(X)∗. It is sufficient to
show thatM(X) is closed and by the Banach–Alaoglou theorem our set will be compact in the
w∗-topology. So let Lµn → L ∈ C(X)∗ in the w∗-topology, where µn ∈ M(X) for all n ∈ N and
Lµn(f) =

∫
fdµn for all f ∈ C(X). Then, from Riesz representation theorem L defines a positive

Borel measure µ on X with µ(X) = 1, i.e., a µ ∈M(X).
Indeed for f ∈ C(X), f ≥ 0,

L(f) = lim
n→∞

Lµn(f) = lim
n→∞

∫
fdµn ≥ 0

and also
L(χX) = lim

n→∞
Lµn(χX) = lim

n→∞
µn(X) = 1.

This means that µ is a probability measure andM(X) is a closed subset of C(X)∗ and by Banach–
Alaoglou theorem this concludes the proof.
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Let X be a compact metric space. A continuous map T : X → X induces a map

T∗ : M(X)→M(X)

defined by T∗(µ)(A) = µ(T−1A) for any Borel set A ∈ B(X).

Proposition 2.6.6. The map T∗ : M(X)→M(X) is continuous.

Proof. Let (µn)n∈N be a sequence inM(X) such that µn → µ in the w∗-topology. Then since for
every f ∈ C(X) f ◦ T is continuous,∫

fdT∗µn =

∫
f ◦ Tdµn →

∫
f ◦ Tdµ =

∫
fdT∗µ as n→∞ ∀f ∈ C(X),

And that shows that
T∗(µn)→ T∗(µ)

in the w∗-topology.

Definition 2.6.7. We define the sets

MT (X) = {µ ∈M(X) : T∗(µ) = µ}

and
ET (X) =

{
µ ∈MT (X) : µ is ergodic

}
.

Theorem 2.6.8. Let X be a compact metric space and T : X → X a continuous transformation.
Then the following hold.

(1) MT (X) is a non-empty compact and convex subset ofM(X).

(2) Ext
(
MT (X)

)
= ET (X), where Ext

(
MT (X)

)
is the set of extreme points ofMT (X).

(3) If µ, ν ∈ ET (X), then µ = ν or µ ⊥ ν.

Lemma 2.6.9. If ν ∈MT (X) and µ ∈ ET (X) and ν � µ then µ = ν.

Proof. Assume µ� ν, let

f =
dν

dµ

and consider the set A = {x ∈ X : f(x) < 1}. Then∫
A∩T−1A

fdµ+

∫
A\T−1A

fdµ = ν(A ∩ T−1A) + ν(A \ T−1A)

= ν(T−1A ∩ A) + ν(T−1A \ A) (since ν preserves measure)

=

∫
T−1A∩A

fdµ+

∫
T−1A\A

fdµ
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and hence ∫
T−1A\A

fdµ =

∫
A\T−1A

fdµ. (2.1)

We also have that µ(A \ T−1A) = µ(T−1A \A), since µ preserves measure. Notice that f(x) < 1
when x ∈ A \ T−1A and f(x) ≥ 1 when x ∈ T−1A \ A and the equality (2.1) can only hold if

µ(A \ T−1A) = µ(T−1A \ A) = 0.

Then
µ(A4 T−1A) = 0

and by the ergodicity of µ we then have that

µ(A) = 0 or µ(A) = 1.

Now if µ(A) = 1, then ν(A) =
∫
A
fdµ < 1, but this is a contradiction since

µ(A) = 1 ⇒ µ(Ac) = 0 ⇒ ν(Ac) = 0.

This shows that µ(A) = 0 and f ≥ 1 µ-almost everywhere. By the same argument we can show
that

µ({x ∈ X : f(x) > 1}) = 0

and hence f = 1 µ-almost everywhere.

Proof of Theorem 2.6.8. (1) Let µ1, µ2 ∈ MT (X) and λ ∈ [0, 1]. If µ = λµ1 + (1 − λ)µ2, then
obviously µ ∈M(X) and∫

fdµ = λ

∫
fdµ1 + (1− λ)

∫
fdµ2 = λ

∫
f ◦ Tdµ1 + (1− λ)

∫
f ◦ Tdµ2 =

∫
f ◦ Tdµ

for any f ∈ C(X), and hence
µ ∈MT (X)

and this shows the convexity.
For the compactness it is sufficient to show that MT (X) is closed since M(X) is compact.

Let (µn)n∈N be a sequence in MT (X) and suppose that µn → µ w∗. Since f ∈ C(X) implies
f ◦ T ∈ C(X) we obtain∫

f ◦ Tdµ = lim
n→∞

∫
f ◦ Tdµn = lim

n→∞

∫
fdµn =

∫
fdµ ∀f ∈ C(X)

and this shows that µ ∈MT (X).
The fact that the setMT (X) is non-empty is the Kryloff–Bogoliouboff theorem. Let x ∈ X

and we define the measures

µn =
1

n

n−1∑
k=0

δTk(x), n ∈ N,
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where for y ∈ X and A ⊆ X ,

δy(A) =

{
1, y ∈ A
0 y /∈ A.

It is true that µn ∈ M(X) for all n ∈ N, and since M(X) is a compact metric space, there
is a subsequence (µnk)k∈N of (µn)n∈N such that µnk → µ in the sense of w∗ convergence, for a
µ ∈M(X). Then∫

f ◦ Tdµ = lim
k→∞

∫
f ◦ Tdµnk

= lim
k→∞

1

nk

nk−1∑
j=0

∫
f ◦ TdδT j(x)

= lim
k→∞

1

nk

nk−1∑
j=0

f ◦ T (T j(x))

= lim
k→∞

1

nk

nk∑
j=1

f(T j(x))

= lim
k→∞

1

nk

[
nk−1∑
j=0

f(T j(x)) + f(T nk(x))− f(x)

]

= lim
k→∞

1

nk

nk−1∑
j=0

∫
fdδT j(x) since f is bounded

=

∫
fdµ

and this shows thatMT (X) is non empty.
(2) Let µ ∈ MT (X) \ ET (X). Then there is an invariant set A such that 0 < µ(A) < 1. We
consider the measures

µ1(B) =
µ(A ∩B)

µ(A)

and

µ2(B) =
µ(Ac ∩B)

µ(Ac)

and then
µ = µ(A)µ1 + [1− µ(A)]µ2.

Now

µ1(T
−1(B)) =

µ(A ∩ (T−1(B))

µ(A)
=
µ(T−1(A) ∩ (T−1(B))

µ(A)
=
µ(T−1(A ∩B))

µ(A)
= µ1(B)
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and that means that µ1 is T -invariant and by symmetry the same holds for µ2 and we have that µ is
a non-trivial convex combination of elements ofMT (X) and so µ /∈ Ext

(
MT (X)

)
and finally

Ext
(
MT (X)

)
⊆ ET (X).

For the converse let µ ∈ ET (X) and assume µ = λµ1 + (1 − λ)µ2 with µ1, µ2 ∈ MT (X).
Then µ1 � µ and µ2 � µ and by the previous Lemma we get µ = µ1 = µ2 and we have that
ET (X) ⊆ Ext

(
MT (X)

)
.

(3) Let µ, ν ∈ ET (X) and µ 6= ν. Then there is f ∈ C(X)∫
fdµ 6=

∫
fdν

and by the pointwise ergodic theorem

1

n

n−1∑
k=0

f ◦ T k(x)→
∫
fdµ µ− a.e.

and
1

n

n−1∑
k=0

f ◦ T k(x)→
∫
fdν ν − a.e.

and so µ ⊥ ν.
Alternatively, if one wants to avoid using the Birkhoff pointwise ergodic theorem, which has

not been proved in this thesis, one can argue as follows. Assume that ν 6⊥ µ. By the Lebesgue
decomposition theorem, there exist Borel measures ν1, ν2 on X such that ν = ν1 + ν2 and ν1 � µ
and ν2 ⊥ µ and, since we are assuming that ν 6⊥ µ, one has that ν1 6= 0. Then ν1(X)−1ν1 ∈M(X)
and ν1(X)−1ν1 � µ. Furthermore, by the uniqueness of the Lebesgue decomposition and the
invariance of µ and ν, ν1 and ν2 are T -invariant. Indeed,

ν = T∗(ν) = T∗(ν1) + T∗(ν2)

and, for A ∈ B(X),

µ(A) = 0 ⇒ µ
(
T−1(A)

)
= 0 ⇒ ν1

(
T−1(A)

)
= 0,

which shows that T∗(ν1) � µ, and if B ∈ B(X) is such that ν2(B) = 1 and µ(B) = 0, then
ν1
(
T−1(B)

)
= T∗(ν1)(B) = 0, hence ν2

(
T−1(B)

)
= ν

(
T−1(B)

)
= ν(B) = 1 while µ(B) = 0,

which shows that T∗(ν2) ⊥ µ. It follows now from the uniqueness of the Lebesgue decomposition
that T∗(ν1) = ν1 and T∗(ν2) = ν2, i.e., ν1(X)−1ν1, ν2(X)−1ν2 ∈ MT (X). But ν1(X)−1ν1 � µ
implies that ν1(X)−1ν1 = µ, by the preceding Lemma. Furthermore since

ν = ν1(X)ν(X)−1ν1 + [1− ν1(X)]ν2(X)−1ν2

is a convex combination of measures inMT (X) when ν2(X) 6= 0, and since ν is ergodic, we have
a contradiction by (2) when ν2(X) 6= 0. Thus ν2(X) = 0, and hence µ = ν1 = ν.
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2.7 Ergodic decomposition and unique ergodicity
Theorem 2.7.1. Let X be a compact metric space, T : X → X a continuous map and µ ∈
MT (X). Then there is a unique probability measure λµ defined on the Borel subsets of the compact
metric spaceMT (X) with the properties

(1) λµ
(
ET (X)

)
= 1,

(2)
∫
X
fdµ =

∫
ET (X)

(∫
X
fdν

)
dλµ(ν) for every f ∈ C(X).

Proof. This follows from Choquet’s theorem.

Definition 2.7.2. Let X be a compact metric space, T : X → X a continuous map. We say that T
is uniquely ergodic ifMT (X) contains one single measure. In this case ET (X) = MT (X) and
so the unique measure is ergodic.

Proposition 2.7.3. Let X be a compact metric space and T : X → X a continuous map. The
following are equivalent.

(1) For every f ∈ C(X), there exists a constant Cf such that

1

n

n−1∑
k=0

f ◦ T k → Cf

uniformly in X .

(2) For every f ∈ C(X), there exists a constant Cf such that

1

n

n−1∑
k=0

f ◦ T k → Cf

pointwise in X .

(3) There is a measure µ ∈MT (X) such that

1

n

n−1∑
k=0

f ◦ T k →
∫
fdµ ∀f ∈ C(X),

equivalently
1

n

n−1∑
k=0

δTk(x) → µ

in the w∗-topology, for every x ∈ X .

(4) The system is uniquely ergodic.
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Proof. (1)⇒ (2) obvious.
(2)⇒ (3). For any f ∈ C(X), we define

L(f) := lim
n→∞

1

n

n−1∑
k=0

f ◦ T k,

which is independent of x. L is linear, bounded, L(f) ≥ 0 for all f ∈ C(X) with f ≥ 0 and
L(χX) = 1. By Riesz’s theorem, we can represent the bounded positive linear functional L with a
probability measure µ, in the sense

L(f) =

∫
fdµ ∀f ∈ C(X).

Furthermore,

µ ∈MT (X) ⇐⇒
∫
f ◦ Tdµ =

∫
fdµ ∀f ∈ C(X) ⇐⇒ L(f ◦ T ) = L(f) ∀f ∈ C(X);

but

L(f ◦ T ) = lim
n→∞

1

n

n−1∑
k=0

(f ◦ T ) ◦ T k) = lim
n→∞

1

n

[
n−1∑
k=0

f ◦ T k − f + f ◦ T n
]

= L(f),

since f is bounded, and hence µ ∈MT (X).
(3)⇒ (4). Let ν ∈MT (X) with µ 6= ν. We know that

1

n

n−1∑
k=0

f ◦ T k →
∫
fdµ ∀f ∈ C(X),

and since the left hand side is bounded by the sup-norm ‖f‖ of f , by the dominated convergence
theorem one has that ∫

1

n

n−1∑
k=0

f ◦ T k(x)dν(x)→
∫
fdµ,

or equivalently,
1

n

n−1∑
k=0

∫
f ◦ T kdν →

∫
fdµ.

But ν ∈MT (X) and so

1

n

n−1∑
k=0

∫
f ◦ T kdν =

1

n

n−1∑
k=0

∫
fdν =

∫
fdν ∀f ∈ C(X)

and that means that µ = ν andMT (X) = {µ}.
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(4)⇒ (1). LetMT (X) = {µ}. If (1) does not hold then there is f ∈ C(X) such that

sup
x∈X

∣∣∣∣∣ 1n
n−1∑
k=0

f ◦ T k(x)−
∫
fdµ

∣∣∣∣∣9 0,

and so there are ε > 0 and n1 < n2 < · · · such that

sup
x∈X

∣∣∣∣∣ 1

nj

nj−1∑
k=0

f ◦ T k(x)−
∫
fdµ

∣∣∣∣∣ ≥ ε,

for all j ∈ N, and that means that, for each j ∈ N, there is an xj ∈ X such that∣∣∣∣∣ 1

nj

nj−1∑
k=0

f ◦ T k(xj)−
∫
fdµ

∣∣∣∣∣ ≥ 1
2
ε, (2.2)

and we define

µj :=
1

nj

nj−1∑
k=0

δTk(xj) ∈M(X),

and then ∫
fdµj =

1

nj

nj−1∑
k=0

f(T k(xj)).

Since M(X) is a compact metric space, there is a subsequence µjm → ν, where again the
convergence is with respect to the w∗-topology, for a measure ν ∈ M(X). We will show that
ν ∈MT (X) and then µ = ν. Indeed, if g ∈ C(X), then∫

g ◦ Tdν = lim
m→∞

1

njm

njm−1∑
k=0

g ◦ T (T k(xjm))

= lim
m→∞

1

njm

[
njm−1∑
k=0

g ◦ T k(xjm)− g(xjm) + g(T njm (xjm))

]

=

∫
gdν,

since g is bounded. Hence ν ∈MT (X) and so ν = µ. Then∫
fdµ =

∫
fdν = lim

m→∞

1

njm

njm−1∑
k=0

(f ◦ T k)(xjm)

and this is in contradiction with equation (2.2) and that means that we have uniform convergence
and

1

n

n−1∑
k=0

f ◦ T k →
∫
fdµ

uniformly in X , for all f ∈ C(X).
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Chapter 3

Conditional expectation

3.1 Conditional expectation and basic properties
In this chapter the basic properties of the conditional expectation are introduced. Fur-
thermore we describe the increasing martingale theorem and the concept of measure
disintegration as also some properties of maps between Borel subsets of compact met-
ric spaces that will be related with the factors in the next chapter.

Theorem 3.1.1. Let (X,B, µ) be a probability space and letA ⊆ B be a sub-σ-algebra of B. Then
there is a map

E(· | A) : L1(X,B, µ)→ L1(X,A, µ),

called the conditional expectation, that satisfies the following properties.

(1) For f ∈ L1(X,B, µ), the image E(f | A) is characterized almost everywhere by the follow-
ing two properties

(a) E(f | A) is A-measurable and

(b) for any A ∈ A ∫
A

E(f | A) dµ =

∫
A

fdµ.

(2) E(· | A) is a linear operator of norm 1. Moreover E(· | A) is positive.

(3) For f ∈ L1(X,B, µ) and g ∈ L∞(X,A, µ),

E(gf | A) = gE(f | A) a.e.

(4) If A′ ⊆ A is a sub-σ-algebra then

E(E(f | A) | A′) = E(f | A′) a.e.

(5) If f ∈ L1(X,A, µ) then f = E(f | A) a.e.
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(6) For any f ∈ L1(X,A, µ), |E(f | A)| ≤ E(|f | | A) a.e.

Proof. (1) Proof of the existence of conditional expectation through functional analysis. Let

V = L2(X,A, µ) and H = L2(X,B, µ).

Then V is a closed subspace of the Hilbert spaceH, so there is an orthogonal projection

P : H → V

with the property that∫
A

fdµ =

∫
χAfdµ = 〈f, χA〉 = 〈Pf, χA〉 =

∫
χAPfdµ =

∫
A

Pfdµ (3.1)

for A ∈ A, because f − Pf ⊥ L2(X,A, µ) and so 〈f − Pf, χA〉 = 0 for A ∈ A. We claim that
the projection has a continuous extension to a map

L1(X,B, µ)→ L1(X,A, µ)

and this extension is conditional expectation. To see this first assume that f is real valued. Notice
that L2 ⊆ L1 is dense in L1 and that for f ∈ L2, and hence in L1, the sets

{x ∈ X : Pf(x) > 0}

and
{x ∈ X : Pf(x) < 0}

lie in A, so by equation (3.1)

‖Pf‖1 =

∫
{x∈X : Pf(x)>0}

Pfdµ−
∫
{x∈X : Pf(x)<0}

Pfdµ

=

∫
{x∈X : Pf(x)>0}

fdµ−
∫
{x∈X : Pf(x)<0}

fdµ

≤
∫
{x∈X : Pf(x)>0}

|f |dµ+

∫
{x∈X : Pf(x)<0}

|f |dµ

≤ ‖f‖1.

For a complex valued function, by decomposing it into its real and imaginary parts and using the
same arguments for each we get

‖Pf‖1 ≤ 2‖f‖1. (3.2)

Indeed, P is linear on L2, hence P (f) = P (Re(f)) + iP (Im(f)) for f ∈ L2(X,B, µ), and so

‖Pf‖1 ≤ ‖P (Re(f))‖1 + ‖P (Im(f))‖1 ≤ ‖Re(f)‖1 + ‖Im(f)‖1 ≤ 2‖f‖1.

Equation (3.1) only involves functionals that are continuous in L1, so there is a continuous ex-
tension to all of L1 that satisfies (3.1). More succinctly, if (fn)n∈N is a sequence in L2(X,B, µ)
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converging in the L1-norm to some f ∈ L1(X,B, µ), for example if fn := fχ[−n,n] ◦ f , n ∈ N,
then (fn)n∈N is fundamental (Cauchy) in L1(X,B, µ) and by (3.2) (Pfn)n∈N is then fundamental
in L1(X,B, µ) and therefore converges to some Pf ∈ L1(X,B, µ), and since each Pfn is A-
measurable and L1(X,A, µ) is a closed subspace of L1(X,B, µ), the limit Pf , must belong to
L1(X,A, µ). Furthermore, the limit Pf is independent of the choice of the sequence (fn)n∈N used
to approximate an f ∈ L1(X,B, µ), by the estimate (3.2) again. Finally, if (fn)n∈N is a sequence
in L2(X,B, µ) converging in the L1-norm to f ∈ L1(X,B, µ), then Pfn → Pf in the L1-norm,
by the preceding argument, hence PfnχA → PfχA in the L1-norm for any A ∈ A, and hence∫

A

Pfdµ = lim
n→∞

∫
Pfndµ = lim

n→∞

∫
A

fndµ =

∫
A

fdµ

for any such A, the second equality being (3.1) for fn ∈ L2(X,B, µ).
Uniqueness. We claim that the two properties characterize the conditional expectation almost
everywhere. Indeed let g1, g2 satisfy both properties (a) and (b) of (1). Then the set

A = {x ∈ X : g1(x) < g2(x)} ∈ A

has ∫
A

g1dµ =

∫
A

fdµ =

∫
A

g2dµ

and this means that µ(A) = 0. By using the same argument

µ
(
{x ∈ X : g1(x) > g2(x)}

)
= 0

and so g1 = g2 almost everywhere.
(2) The uniqueness of conditional expectation implies the linearity easily. Indeed, the function
aE(f | A) + bE(g | A) is in L1(X,A, µ) when f, g ∈ L1(X,B, µ) and a, b ∈ C, and also∫

A

[aE(f | A) + bE(g | A)] dµ = a

∫
A

E(f | A) dµ+ b

∫
A

E(g | A) dµ

= a

∫
A

fdµ+ b

∫
A

gdµ

=

∫
A

(af + bg)dµ.

Thus the function aE(f | A)+bE(g | A) satisfies the requirements (a) and (b) of (1) for the function
af + bg and by uniqueness of conditional expectation it must equal the conditional expectation
E(af + bg | A) a.e.

Let f ≥ 0 be a function in L1(X,B, µ) and set

A := {x ∈ X : E(f | A) < 0}.

Then
0 ≤

∫
A

fdµ =

∫
A

E(f | A) dµ
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implies that µ(A) = 0. The fact that conditional expectation is a norm 1 operator will be proved
after property (6). Notice however, for future reference, that by inequality (3.2) and by considering
a sequence (fn)n∈N in L2(X,B, µ) converging to f ∈ L1(X,B, µ) in the L1-norm, one gets that
the norm of the conditional expectation operator is not more than 2:

‖E(f | A)‖1 = ‖Pf‖1 = lim
n→∞
‖Pfn‖1 ≤ 2 lim

n→∞
‖fn‖ = 2‖f‖1. (3.3)

(3) It is easy to check that property (3) holds for any indicator function χA with A ∈ A. Indeed, if
A ∈ A and f ∈ L1(X,B, µ), then the function χAE(f | A) is in L1(X,A, µ) and∫

B

χAE(f | A) dµ =

∫
A∩B

E(f | A) dµ =

∫
A∩B

fdµ =

∫
B

χAfdµ

for every B ∈ A, the second equality because A ∩B ∈ A, so one must have that

E(χAf | A) = χAE(f | A) a.e.,

by uniqueness of conditional expectation, again. Any g ∈ L∞(X,A, µ) can be approximated by
simple A-measurable functions, i.e., by linear combinations of characteristic functions of sets in
A, so the general case follows from the linearity and continuity of the conditional expectation
operator, which in turn follows from the inequality (3.2). Specifically, given g ∈ L∞(X,A, µ),
there exist simple functions sn : X → C, n ∈ N, with s−1n

(
{c}
)
∈ A for each c ∈ C, i.e., with sn

A-measurable, for each n ∈ N, and such that |sn| ≤ |g| for each n ∈ N, and sn → g pointwise. By
linearity of conditional expectation and the fact that property (3) holds for characteristic functions
of sets in A, E(snf | A) = snE(f | A) a.e. for each n ∈ N then. Also snE(f | A) → gE(f | A)
a.e., and because the left side is dominated by ‖g‖∞|E(f | A)|, which is integrable, it follows that
this convergence is also in the L1-norm. However, the left hand side E(snf | A) converges to
E(gf | A) in L1, because by the inequality (3.2), or (3.3) rather,

‖E(snf | A)− E(gf | A)‖1 ≤ 2‖(sn − g)f‖1

and the right hand side converges to zero because (sn − g)f converges to zero pointwise and is
dominated by the integrable 2‖g‖∞|f |. It follows that

E(gf | A) = lim
n→∞

E(snf | A) = lim
n→∞

snE(f | A) = gE(f | A),

both limits being in the L1-sense.
(4) Let g := E(f | A). For any A ∈ A′,∫

A

gdµ =

∫
A

E(f | A) dµ =

∫
A

fdµ,

because A′ ⊆ A. On the other hand∫
A

E(f | A′) dµ =

∫
A

fdµ

27



for any A ∈ A′ also, hence ∫
A

gdµ =

∫
A

E(f | A′) dµ

for all A ∈ A′. Since also E(f | A′) is A′-measurable, (4) follows from uniqueness of conditional
expectation.
(5) If f ∈ L1(X,A, µ), then f satisfies the properties (a) and (b) of (1), i.e., it is A-measurable
and obviously

∫
A
fdµ =

∫
A
fdµ for any A ∈ A. f = E(f | A) a.e. follows then from uniqueness

of conditional expectation again.
(6) Given f ∈ L1(X,B, µ) we may find g ∈ L∞(X,A, µ) with |g(x)| = 1 for all x ∈ X satisfying

|E(f | A)| = gE(f | A).

Indeed, take

g(x) =


|E(f | A)(x)|
E(f | A)(x)

if E(f | A)(x) 6= 0

1 otherwise.

Then by property (3)
|E(f | A)| = E(gf | A).

So for any A ∈ A∫
A

|E(f | A)| dµ =

∫
A

E(gf | A) dµ =

∫
A

fgdµ ≤
∫
A

|fg|dµ =

∫
A

|f |dµ =

∫
A

E(|f | | A)dµ

and this proves property (6).
Finally by integrating (6) we see that the operator norm of E(· | A) is ≤ 1 and considering any

A-measurable function shows that this operator norm is also≥ 1, and this concludes the proof.

3.2 Martingales
We will provide the basic convergence results for conditional expectation with respect increasing
sequences of σ-algebras

Notice that for f ∈ L1(X,B, µ) and A ⊆ B,

µ
({
x
∣∣ |E(f |A)(x)| ≥ ε

})
≤ ‖f‖1

ε
.

To see this let
E = {x

∣∣ |E(f |A)(x)| ≥ ε
}
.

Then E ∈ A and εχE(x) ≤ |E(f |A)(x)|, so∫
E

εχEdµ ≤
∫
E

|E(f |A)(x)|dµ
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εµ(E) ≤
∫
E

|E(f |A)|dµ =

∫
E

|f |dµ ≤ ‖f‖1

as required. The next lemma known as Doob’s inequality is as generalization of this observation.

Lemma 3.2.1. Doob’s inequality. Let f ∈ L1(X,B, µ) and

A1 ⊂ A2 ⊂ A3 ⊂ ...AN ⊂ B

be a finite increasing sequence of σ-algebras, and fix a λ > 0. Let

E =

{
x| max

1≤i≤N
E(f |Ai) > λ

}
then

µ(E) ≤ 1

λ
‖f‖1.

If (An)n∈N is an increasing sequence of σ algebras then the same conclusion holds for the set

E =

{
x| sup

i≥1
E(f |Ai) > λ

}
.

Proof. Since λ > 0 and{
x| max

1≤i≤N
E(f |Ai) > λ

}
⊆
{
x| max

1≤i≤N
E(|f ||Ai) > λ

}
one has that

µ

({
x| max

1≤i≤N
E(f |Ai) > λ

})
≤ µ

({
x| max

1≤i≤N
E(|f ||Ai) > λ

})
.

and therefore we may assume without loss of generality that f ≥ 0.
Let

En =

{
x
∣∣E(f |An) > λ but E(f |Ai) ≤ λ for 1 ≤ i ≤ n− 1

}
then

Ek1 ∩ Ek2 = ∅

for k1 < k2 ∈ {1, . . . , n}.

Indeed , if k1 < k2 and x ∈ Ek1

E(f |Ak1) > λ and so x /∈ Ek2

and if x ∈ Ek2
E(f |Ak2) > λ and E(f |Ak1) ≤ λ =⇒ x /∈k1
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and therefore there is a disjoint union of E,

E = E1 t E2 t E3 · · · t EN .

Now the set {
x
∣∣ E(f |An) > λ

}
∈ An

and the sets {
x
∣∣ E(f |Ai) ≤ λ

}
∈ Ai for 1 ≤ i ≤ n− 1

and since A1,A2, ...An−1 ⊂ An one has that En ∈ An.

Now for the proof of Doob’s inequality

‖f‖1 ≥
∫
E

fdµ =
N∑
n=1

∫
En

fdµ

=
N∑
n=1

∫
En

E(f |An)dµ

≥
N∑
n=1

λµ(En) = λµ(E)

by taking N →∞ we conclude the lemma.

Theorem 3.2.2. Increasing martingale theorem
Let (X,B, µ) be a probability space. Suppose that An ↗ σ(

⋃
n≥1An) is an increasing se-

quence of sub σ-algebras of B . Then for every f ∈ L1(X,B, µ),

E(f |An)→ E(f |A)

both in L1
µ and µ-almost everywhere.

Proof. Let A := σ(
⋃
n≥1An), and by using the tower extension property of conditional expecta-

tion

E(E(f |A)|An) = E(f |An) µ-a.e

and for any A ∈ An∫
A

E(E(f |A)|An)dµ =

∫
A

E(f |An)dµ =

∫
A

fdµ =

∫
A

E(f |A)dµ

and therefore it will be shown
E(f |An)→ f
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µ−almost everywhere and in L1
µ.

The theorem holds trivially by hypothesis for all f ∈ L1(X,An, µ) since E(f |Ak) = f for
k ≥ n and also the set of functions

⋃
n≥1 L

1(X,An, µ) is dense in L1(X,A, µ) in the L1-norm. To
see this {

B ∈ A
∣∣∣∀ε > 0 ∃m ≥ 1 , A ∈ Am with µ(A4B)

}
is a σ-algebra by 2.3.6.
Now by density for f ∈ L1(X,A, µ) and ε > 0 , there is a m ∈ N and g ∈ L1(X,Am, µ) with
‖f − g‖1 < ε. For the L1

µ convergence ,

‖E(f |An)− f‖1 = ‖E(f |An)− E(g|An) + E(g|An)− g + g − f‖1
≤ ‖E(f |An)− E(g|An)‖1 + ‖E(g|An)− g‖1 + ‖g − f‖1 and for m ≤ n

≤ ‖f − g‖1 + 0 + ‖f − g‖1 since the conditional expectation is a contraction
≤ 2ε

For the almost everywhere convergence,

∣∣E(f |An)− f
∣∣ =

∣∣E(f |An)− E(g|An) + E(g|An)− g + g − f
∣∣

≤
∣∣E(f |An)− E(g|An)

∣∣+
∣∣E(g|An)− g

∣∣+
∣∣f − g∣∣

≤
∣∣E(f |An)− E(g|An)

∣∣+
∣∣f − g∣∣ for n ≥ m

and therefore

µ
({
x
∣∣ lim sup

n→∞

∣∣E(f |An)− f
∣∣ > √ε})

≤ µ
({
x
∣∣ lim sup

n→∞

(∣∣E(f − g|An)− (f − g)
∣∣+
∣∣E(g|An)− g

∣∣) > √ε})
≤ µ

({
x
∣∣ lim sup

n→∞

∣∣E(f − g|An)
∣∣+
∣∣(f − g)

∣∣ > √ε})
≤ µ

({
x
∣∣ sup
n≥1

∣∣E(f − g|An) >
1

2

√
ε
})

+ µ
({
x
∣∣ ∣∣f − g∣∣ > 1

2

√
ε
})

≤ 1
1
2

√
ε
‖f − g‖1 + µ

({
x
∣∣ ∣∣f − g∣∣ > 1

2

√
ε
})

by Doob’s inequality

≤ 2√
ε
‖f − g‖1 +

2√
ε
‖f − g‖1 < 4

√
ε (by Chebysev inequality)

and finally the set
{x
∣∣ lim sup

n→∞
E(f |An) 6= f}

is a null set and therefore the almost everywhere convergence holds.
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Definition 3.2.3. A collection of setsM is called a monotone class if for

An ∈M where A1 ⊆ A2 ⊆ ... for n ∈ N =⇒
∞⋃
i=1

Ai ∈M

and
Bn ∈M where B1 ⊇ B2 ⊇ B3 ⊇ for n ∈ N =⇒

⋂
n≥1

Bn ∈M

In the next chapter the monotone class theorem is needed,

Theorem 3.2.4. LetR an algebra of sets. Then the smallest monotone class containingR is σ(R)

3.3 Measure Disintegration
Definition 3.3.1. Let X be a Borel subset of a compact metric space with the restriction of the
Borel σ-algebra B on X . Then the pair (X,B) is a Borel space .

Definition 3.3.2. Let X be a dense Borel subset of a compact metric space X̄ ,with a probability
measure µ defined on the restriction of the Borel σ-algebra B to X . The resulting space (X,B, µ)
is a Borel probability space.

For a compact metric space X the spaceM(X) of Borel probability measures on X carries the
structure of compact metric space with respect to the w∗-topology. In particular we can define the
Borel σ-algebra BM(X) on the spaceM(X). If X is a Borel subset of a compact metric space X̄
then we define

M(X) =
{
µ ∈M(X̄)

∣∣µ(X̄ \X) = 0
}

and we will see thatM(X) is a Borel subset ofM(X̄). We will call a set conull if it is a comple-
ment of a null set. For σ-algebras A1 ,A2 the relation

A1 ⊆
µ
A2

means that for any A1 ∈ A1 there is a set A2 ∈ A2 with µ(A14 A2) = 0. We also say that

A1 =
µ
A2

if A1 ⊆
µ
A2 and A2 ⊆

µ
A1.

Definition 3.3.3. We call the σ-algebra A on X countably-generated if there exists a countable

set
{
A1, A2, A3, ...

}
of subsets of X with the property that A = σ

({
A1, A1, A3, ...

})
is the

intersection of all σ-algebras containing the sets A1, A2, A3, ...
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Theorem 3.3.4. Let (X,B, µ) be a Borel probability space and A ⊂ B a σ-algebra. Then there
exists an A-measurable conull set X

′ ⊆ X and a system
{
µAx

∣∣x ∈ X
′}

of measures on X ,
referred as conditional measures with the following properties.

(1) µAx is a probability measure on X with

E(f |A)(x) =

∫
f(y)dµAx (y)

almost everywhere for all f ∈ L1(X,B, µ). In other words
∫
f(y)dµAx (y) exists for all x

belonging to a conull set in A that on this set

x→
∫
f(y)dµAx (y)

depends A-measurably on x and that∫
A

∫
f(y)dµAx (y)dµ(x) =

∫
A

fdµ

for all A ∈ A.

(2) If A is countably generated then µAx
([
x
]
A

)
= 1 for all x ∈ X ′ , where[

x
]
A =

⋂
A

x∈A∈A

is the atom of A containing x, moreover µAx = µAy for x , y ∈ X ′ , whenever
[
x
]
A =

[
y
]
A.

(3) Property (1) uniquely determines µAx for almost every x ∈ X. In fact property (1) for a dense
countable set of functions in C(X̄) uniquely determines µAx for almost every x ∈ X.

(4) If A′ is any σ-algebra with A =
µ
A′ , then µAx = µA

′

x almost everywhere.

Before of the proof of the theorem it will be useful the following characterization of the atoms
of a countably generated σ-algebra.

Lemma 3.3.5. For a countably generated σ algebra A = σ

({
A1, A1, A3, ...

})
the atom is given

by [
x
]
A =

⋂
x∈A,A∈A

A =
⋂
x∈Ai

Ai ∩
⋂

X
x/∈Ai

\ Ai

and hence is A-measurable.
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Proof. Let x ∈ X and y ∈
⋂

x∈A,A∈A
A, Now since Ai is measurable X \ Ai is also measurable and

so
if x ∈ Ai ⇒ y ∈ Ai and if x /∈ Ai ⇒ y ∈ X \ Ai

and therefore y ∈
⋂
x∈Ai

Ai ∩
⋂
X

x/∈Ai
\ Ai and so

⋂
x∈A,A∈A

A ⊆
⋂
x∈Ai

Ai ∩
⋂

X
x/∈Ai

\ Ai

For the converse direction let f : X → {−1,+1}n by f(x) = (i1(x), i2(x), ...) where

ij(x) =

{
1 x ∈ Aj
−1 x /∈ Aj

.

In {−1,+1}n consider the σ-algebra Bcycl generated by the cyclinder sets. If T : X → Y is a map
is easy to verify that if BY is a σ-algebra in Y then T−1BY = {T−1BY | BY ∈ BY } is σ-algebra in
X. Let C = f−1(Bcycl). The function f is A-measurable in X and Bcycl-measurable in {−1,+1}n.
Indeed for any cyclinder

{(i1, i2, ...) ∈ {−1,+1}n| i1 = a1, ...in = an}, n ∈ N, ai ∈ {−1,+1}

one has that

f−1({(i1, i2, ...) ∈ {−1,+1}n| i1 = a1, ...in = an}) =
⋂

j:aj=1

Ai ∩
⋂

X
j:aj=−1

\ Ai

belongs intoA and since the cyclinder sets with the empty set is a π-system that generates Bcycl we
have that f is A-measurable in X and Bcycl-measurable in Y. Moreover C = f−1(Bcycl) ⊆ A but
also

Aj = f−1({(i1, i2, ...) ∈ {−1,+1}n|ij = 1}) ∀j ∈ N

and since
{(i1, i2, ...) ∈ {−1,+1}n|ij = 1} ∈ Bcycl

it holds that Aj ∈ C for any j ∈ N. Since C is a σ-algebra one has that σ({A1, A2, ...}) ⊆ C
and finally A = C. Let the atom

[
x
]
A =

⋂
x∈A,A∈A

A for x ∈ X. The set
⋂
x∈Aj

Aj ∩
⋂
X

x/∈Aj
\ Aj is

exactly the set f−1({f(x)}) = f−1({(i1(x), i2(x), ...)}). Furthermore if A ∈ A and x ∈ A then
A = f−1(B) for some B ∈ Bcycl with f(x) ∈ B and so f(x) ∈ f(A) ⊆ Bcycl. It follows that
f−1({f(x)}) ∈ f−1(B) = A. This shows that every A ∈ A with x ∈ A⋂

x∈Aj

Aj ∩
⋂

X
x/∈Aj

\ Aj = f−1{f(x)} ⊆ A
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so ⋂
x∈Aj

Aj ∩
⋂

X
x/∈Aj

\ Aj ⊆
[
x
]
A

and finally ⋂
x∈Aj

Aj ∩
⋂

X
x/∈Aj

\ Aj =
[
x
]
A

.

Remark 3.3.6. For a µ-null subset N of X one has that if f = χN , then f ∈ L1
µ and by the first

property of theorem 3.3.4

E(f |A)(x) =

∫
X

f(y)dµAx (y)

and therefore
E(χN |A)(x) =

∫
X

χN(y)dµAx (y) = µAx (N)

and also ∫
X

E(f |A)(x)dµ =

∫
X

∫
X

χN(y)dµAx (y)dµ⇒∫
X

χN(x)dµ =

∫
X

µAx (N)dµ⇒∫
X

µAx (N)dµ = µ(N) = 0

and so µAx (N) = 0 µ− a.e.

Proof. ( Theorem 3.3.4)
By assumption X is contained in a compact metric space X̃ which is automatically separable.

We note that the statement of the theorem for the ambient compact metric space X̃ implies the
theorem for X since µ(X̃ \X) = 0 and by remark 3.3.6 µAx (X̃ \X) = 0 µ− a.e. Hence we may
assume that X = X̃ is itself a compact metric space.
First we prove the property (3)

Suppose that there exist two families of probability measures {µx}, {ρx} such that

E(fn|A)(x) =

∫
X

fn(y)dρx(y) and E(fn|A)(x) =

∫
X

fn(y)dνx(y)

hold almost everywhere for a countable dense subset {fj}j∈N with respect to uniform convergence
in C(X). Let f ∈ C(X) and fkn → f uniformly. Then by dominated convergence theorem

lim
n→∞

∫
X

fkn(y)dνx(y) =

∫
X

fdνx µ− a.e.
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and
lim
n→∞

∫
X

fkn(y)dρx(y) =

∫
X

fdρx µ− a.e.

and therefore ∫
X

fdνx =

∫
X

fdρx µ− a.e.

But since for every continuous function the above equation holds one has that νx = ρx for almost
every x ∈ X.
For the property (4) let

A =
µ
Ã

and write A′ for the smallest σ-algebra containing both A and Ã. Let f ∈ C(X), g1 = E(f |A)
and g2 = E(f |Ã). Then since A ⊆ A′ ⇒ g1 = E(f |A) is A′ measurable and∫

A

g1dµ =

∫
A

E(f |A)dµ =

∫
A

fdµ

for all A ∈ A′ . By using same arguments we have that g2 satisfies the same properties, the charac-
teristic properties of conditional expectation. In particular we have that

E(f |A) = E(f |Ã) = E(f |A′) µ− a.e.

Now we can again choose a countable dense subset with respect to uniform convergence {fj}j∈N
of C(X) and choose fn → f uniformly. In this dense subset∫

X

E(fn|A)dµ =

∫
X

∫
X

fndµ
A
x dµ =

∫
X

∫
X

fndµ
Ã
x dµ

and so ∫
X

fndµ
Ã
x =

∫
X

fndµ
A
x µ− a.e.

By the dominate convergence theorem we have that for any f ∈ C(X)∫
X

fdµAx =

∫
X

fdµÃx µ− a.e.

and so µAx = µÃx µ− a.e.

For the existence, let
F =

{
f0 = 1, f1, f2, ...

}
⊆ C(X)

be a vector space over Q that is dence in C(X) in the uniform convergence sense. For every
i ≥ 1 choose an A- measurable function gi ∈ L1

µ with gi = E(fi|A). Define g0 = 1 the constant
function. Then since gi(x) represents the conditional expectation and fi = gi µ-almost everywhere
we have the following properties.
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(i) gi(x) ≥ 0 µ-almost everywhere if fi ≥ 0

(ii)
∣∣gi(x)

∣∣ ≤ ‖fi‖∞ µ-almost everywhere

(iii) if fi = afj + bfk with a, b ∈ Q then gi(x) = agj + bgk for µ-almost all x.

Let N ∈ A be the union of all null sets on the coplement of which the properties above hold; since
this is a countable union, N is a null set.
For x /∈ N define the operator

Λx : F → R
fi 7→ Λx(fi) = gi.

Then Λx is a uniformly continuous positive linear functional with ‖Λx‖ ≤ 1. We can extend this
functional by taking advantage the uniform continuity to a unique functional

Λx : F = C(X)→ R
f 7→ Λx(f)

This happens by setting Λx(f) = limn Λx(fn) where fn → f with uniform convergence. The limit
exist because for ε > 0 by uniform continuity there is δ for any fi, fj ∈ C(X)

‖fi − fj‖∞ < δ ⇒ |Λx(fi)− Λx(fj)| < ε

Now the sequence fn is Cauchy and so there is a n0 such that for n,m ≥ n0 ‖fn − fm‖∞ < δ and
therefore for n,m ≥ n0 |Λx(fn)− Λx(fm)| < ε but Λx(fn) is also Cauchy and so the limit exists.
Now for the uniqueness if there was another functional Kx a continuous extension of Λx in C(X)
let fn → f uniformly and Kx(fn) → Kx(f) then Kx(fn) = Λx(fn) and by the uniqueness of the
limit Kx(f) = Λx(f).

By the Riesz representation theorem, there is a measure µAx on X characterized by the property
that

Λx(f) =

∫
fdµAx

for all f ∈ C(X); moreover Λx(1) = 1 so µAx is a probability measure.
By our choise of the set F , for any f ∈ C(X) there is a sequence (fni) with fni → f uniformly.
We have already established that

x→
∫
fnidµ

A
x

is A-measurable and that ∫
A

∫
fnidµ

A
x dµ(x) =

∫
A

fnidµ
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for all A ∈ A. So by the dominated convergence theorem∫
fnidµ

A
x →

∫
fdµAx (3.4)

is A-measurable as a function of x and∫
A

∫
fdµAx dµ(x) =

∫
A

fdµ (3.5)

for all A ∈ A. For any open set U let Un = {x ∈ X| d(x, U c) ≥ 1
n
}. Then Un ⊆ Un+1 and⋃∞

n=1 Un = U and let also the continuous functions

fn(x) =
d(x, U c)

d(x, U c) + d(x, Un)
.

For this sequence of continuous functions one has that (fn) ↗ χU so by the monotone con-
vergence theorem equations 3.4 ,3.5 hold for characteristic functions of open sets. Now for every
closed set V, X = U ∪ V where U is an open set and therefore χX = χU + χV and a closed set
can also be approximated by 1− fn ↘ χV and again by the monotone convergence theorem both
equations 3.4 ,3.5 hold. Now a Gδ set E =

⋂∞
n=1 Uk can by approximated by

hk =
n∏
i=1

χUi = χ∩ni=1Ui

and for a Fσ set F = ∪∞i=1Fi

F
′

1 = F1

F
′

2 = F2 \ F1

...

F
′

k = Fk \ ∪k−1i=1Fk

it holds ∪∞n=1F
′
n = F = ∪∞n=1Fn and we can approximate χF by gk =

∑k
i=1 χF ′i

= χ∪ki=1F
′
k
.

Thus we have 3.4 , 3.5 hold for any characteristic functions of open, closed, Gδ-set E and any
Fσ-set F .
Let

M =
{
B ∈ B

∣∣f = χB satisfies equations 3.4, 3.5
}
.

By the monotone convergence theorem , if B1, B2, ... ∈M with

B1 ⊆ B2 ⊆ B3 ⊆ ...

then
⋃
n≥1

Bn ∈M and if C1, C2, ... ∈M with

C1 ⊇ C2 ⊇ C3 ⊇ ...
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then
⋂
n≥1

Cn ∈M. ThusM is a monotone class. Define

R =

{ n⊔
k=1

Uk ∩ Ak
∣∣ the disjoint union of Uk ⊆ X open set and Ak ⊆ X closed .

}
for n ∈ N. We claim thatR is an algebra.
To see this let R1 =

⊔n1

i=1 U
1
i ∩ A1

i and R2 =
⊔n2

i=1 U
2
i ∩ A2

i for n1, n2 ∈ N and U1
l , U

2
l open and

A1
l , A

2
l closed sets. Then it follows by lemma 3.3.5 that σ({U1

j , U
2
i , A

1
j , A

2
i }) = σ({Bl}), where

j ∈ {1, 2, ..., n1} , i ∈ {1, 2, ..., n2} , l ∈ N and Bi are the disjoint atoms of the form Bi = Ei ∩Fi
where Ei, Fi are open and closed sets respectively. Therefore the element R1 ∪ R2 ∈ σ({Bi})
and it can be written as a finite union of disjoint elements, all of them of form E ∩ F. With same
arguments we can construct for an element R =

⊔n
i=1 Ui ∩ Ai the σ({Ui, Ai}) and by using the

lemma 3.3.5 we can write Rc as a finite union of disjoint elements all of them of the form E
′ ∩ F ′

where E ′ is an open and F ′ closed sets and soR is indeed an algebra.

In a regular space any closed set A is a Gδ set and so U ∩A is a Gδ-set as well. Equations 3.4,
3.5 are linear conditions, it follows that they hold for functions of the form

χR =
n∑
k=1

χUk∩Ak

for all

R =
n⊔
k=1

Uk ∩ Ak ∈ R.

For any element R ∈ R ⇒ R ∈ M and also the smallest monotone class containing R is subset
ofM. Thus by the monotone class theorem for sets the smallest monotone class containing R is
B = σ(R) and finally B ⊆ M. In other words , for any measurable set B ∈ B, the characteristic
function χB satisfies the conditions 3.4, 3.5. By considering simple functions and aplying the
monotone convergence theorem , it follows that equations 3.4 and 3.5 hold for any B-measurable
function f ≥ 0. Finally given any B-measurable integrable function f we may write f = f+− f−
with f+ and f− non negative measurable and integrable. Then∫

A

f+dµ <∞⇒
∫
A

∫
f+dµAx dµ(x) <∞

and ∫
A

f−dµ <∞⇒
∫
A

∫
f−dµAx dµ(x) <∞

and therefore by equation 3.5 ∫
f−dµAx <∞
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and ∫
f+dµAx <∞

µ-almost everywhere. In particular , f is µAx integrable for almost every x and where it is µAx
integrable ,

∫
fdµAx is an A-measurable function of x. Finally, equation 3.5 holds for any f ∈ L1

µ

proving the first property.

Suppose now that A = σ({A1, A2, ...}) is countably generated. Then

E(χAi |A)(x) = χAi(x) µ− a.e

and
E(χAi |A)(x) =

∫
X

χA(y)dµAx (y) = µAx (Ai)

except a null set Ni for i ≥ 1. Let N = ∪∞n=1Ni the union of all null sets, then

µAx (Ai) =

{
1, if x ∈ Ai \N
0 if x ∈ X \ (Ai ∪N)

.

Since µAx is a measure it follows by lemma 3.3.5 that

µAx

([
x
]
A

)
= µAx

( ⋂
x∈Ai

Ai ∩
⋂

X
x/∈Ai

\ Ai
)

= 1

if x /∈ N. Writing X ′ for X \N , recall that the map

X
′ 3 x→

∫
fdµAx

is A-measurable for any f ∈ C(X). Thus
∫
fdµAx =

∫
fdµAy if x, y ∈ X ′ and

[
x
]
A =

[
y
]
A and

so [
x
]
A =

[
y
]
A =⇒ µAx = µAy .

We only ever talk about atoms for countably generated σ-algebras. That is because the atoms
of an uncountable generated σ-algebra will be an uncountable intersection and it might not be
even measurable. The following lemma shows that even if a sub-σ algebra of countably generated
σ-algebra is not necessarily countable generated we can find a σ-algebra as described below.

Lemma 3.3.7. If (X,B, µ) is a Borel probability space and A ⊆ B is a σ-algebra then there is a
countably generated σ-algebra Ã with A =

µ
Ã
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Proof. Any C(X̄) is separable for a compact metric space X̄ by the Stone-Weierstrass theorem.
Since the metric space X is compact it is also separable. Let {x1, x2, ...} a dense subset of X
and the functions fn(x) = d(xn, x) for n ∈ N and d the metric on X. All of these functions are
continuous and by the density of the set {x1, x2, ...} they seperate points. By the Stone-Weistrass
theorem the algebra of functions F1 that is generated by {f1, f2, ...} is dense in C(X̄) and by
choosing F2 be the algebra generated by {f1, f2, ...} over Q it is true that is countable and dense
in F1 and therefore countable and dense in C(X̄) .

Since C(X̄) is mapped continuously to a dense subset of L1(X,B, µ), then L1(X,B, µ) is also
separable. Since subsets of separable space are also separable it follows that the space{

χA
∣∣A ∈ A} ⊆ L1(X,A, µ) ⊆ L1(X,B, µ)

is separable. By definition of separability there is a countable
{
A1, A2, ...

}
∈ A such that for any

ε > 0 and A ∈ A there is some n∫
X

|χA − χAn|dµ < ε⇒ ‖χA − χAn‖1 = µ(A4 An) < ε

Let Ã = σ
({
A1, A2, ...

})
and since Ã is the smallest σ-algebra containing the sets A1, A2, ... then

Ã ⊆ A and
{
χA
∣∣A ∈ Ã} is dense in

{
χA
∣∣A ∈ A} with respect to L1

µ norm. Therefore for any
A ∈ A we can find a sequence (nk) for which

‖χA − χAnk‖1 <
1

k

for k ≥ 1. Now for ε > 0 and nk1 , nk2 there is an M ∈ N such that for nk1 , nk2 ≥M

‖χAnk1 − χAnk2 ‖1 = ‖χAnk1 − χA + χA − χAnk2 ‖1
≤ ‖χAnk1 − χA‖1‖+χA − χAnk2 ‖1

≤ 1

k1
+

1

k2

and for big enough ki it holds
‖χAnk1 − χAnk2 ‖1 < ε

So the sequence χAnk is a Cauchy sequence in the complete space L1(X, Ã, µ) so there is a unique
function f ∈ L1(X, Ã, µ) such that χnk → f, and by the uniqueness of the limit f = χA µ-almost
everywhere. In other words there is an Ã ∈ Ã with µ(A4 Ã) = 0 and this concludes the lemma.

Lemma 3.3.8. Let (X,B, µ) is a Borel probability space and A ⊆ B is a countably generated
σ-algebra. If f ∈ L∞(X,B) is constant on atoms of A, then f |X′ is A-measurable, where X

′
is a

conull subset of X

Proof. By theorem 3.3.4 (2) there is a conull set X ′ such that µAx
([
x
]
A

)
= 1 for x ∈ X

′ and
whenever [

x
]
A =

[
y
]
A ⇒ µAx = µAy for x, y ∈ X ′
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Therefore since f(x) is constant on the atoms it holds∫
fdµAx = f(x)

Finally by theorem 3.3.4 (1) we know that f |X′ is A-measurable.

Proposition 3.3.9. Let (X,B, µ) is a Borel probability space and A be a countably generated
sub-σ-algebra of B Suppose that there is a conull set X

′ ∈ B and a collection
{
νx|x ∈ X

′}
of

probability measures with the property that

(1) x→ νx is measurable, that is fo any f ∈ L∞ we have that x→
∫
fdνx is measurable

(2) νx = νy for
[
x
]
A =

[
y
]
A and x, y ∈ X ′

(3) νx

([
x
]
A

)
= 1 and

(4) µ =
∫
νxdµ(x) in the sense that∫

fdµ =

∫ ∫
fdνxdµ(x)

for all f ∈ L∞.

Then νx = µAx for almost every x.
The same is true if the properties hold for a dense countable set of functions in C(X̄)

Proof. First we may assume that both measure families νx, µAx are defined in the same set X ′′ with
full mass because both families are defined in conull sets of X. In addition we can also replace A
by A|X′′ =

{
A ∩X ′′|A ∈ A

}
. After this replacement the previous lemma says that any function

f which is constant on
[
x
]
A is also A-measurable. If the equation∫

fdνx = E(f |A)(x) (3.6)

holds µ almost everywhere for all f in a countable dense subset of C(X̄) we can apply theorem
3.3.4 (3) and ∫

fdνx = E(f |A)(x) =

∫
fdµAx

will also hold µ-almost everywhere .
That x → νx is measurable is the first assumption on the family of measures in the proposition.
Now the lemma 3.3.8 together with the second property of the assumptions of the theorem shows
that x→ νx is actuallyA-measurable. This is the first requirement in the direction of showing that
equation 3.6 holds.
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In order to show equation 3.6 we need to show the second property that uniquely determines
the measure µAx as reffered in theorem 3.3.4 (1) we need to calculate∫

A

∫
fdνxdµ(x)

for all A ∈ A. Let A ∈ A and χA(x) the characteristic function. Since νx
([
x
]
A

)
= 1 the function

χA(x) is νx-almost constant and in particular χA(x) = 1 νx-almost everywhere if x ∈ A and
χA(x) = 0 otherwise. The function fχA ∈ L∞ and by the fourth assumption∫

fχAdµ =

∫ ∫
fχAdνxdµ(x)

and so ∫
A

∫
f(z)dνx(z)dµ(x) =

∫
χA(x)

∫[
x
]
A

f(z)dνx(z)dµ(x)

=

∫ ∫
χA(z)f(z)dνx(z)dµ(x)

=

∫
χA(z)f(z)dµ(z) =

∫
A

fdµ

By theorem 3.3.4(3) it follows that νx = µAx µ-almost everywhere.

It remains to prove that is enough to have the properties of the theorem for just a dense count-
able subset of C(X̄). Let this dense countable set of functions

F =
{
f0 = 1, f1, f2, ...

}
⊆ C(X̄)

with the same properties as in the proof of theorem 3.3.4 . Then let f ∈ C(X̄) and a sequence
(fni) with fni → f uniformly where fni ∈ F . Then by the dominated convergence theorem∫

fnidµ
A
x →

∫
fdµAx

and ∫
fnidνx →

∫
fdνx

for all A ∈ A. By using same arguments as in proof of theorem 3.3.4 we can approximate the
function χU for any U open set by functions of F and by the monotone convergence theorem we
have the first and the fourth properties of the theorem for any open set. By taking complements
we have the same properties for any closed set and therefore for any Gδ, Fσ set. By the monotone
class theorem we can approximate finally any Borel set and therefore any f ∈ L∞(X̄).
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Proposition 3.3.10. Let (X,B, µ) is a Borel probability space , and let

A′ ⊆ A ⊆ B

be countably generated sub-σ-algebras. Then
[
z
]
A ⊆

[
z
]
A′ for z ∈ X, and for almost every

z ∈ X the conditional measures for the measure µA
′

z with respect to A are given for µA
′

z -almost
every x ∈

[
z
]
A′ by

(
µA
′

z

)A
x

= µAx .

Proof. The proof of the result will reveal that is a reformulation of theorem 3.1.1 (4).
We will apply proposition 3.3.9 . For the first property of the proposition let z ∈ X and[

z
]
A =

⋂
z∈D,D∈A

D ,
[
z
]
A′ =

⋂
z∈C,C∈A′

C.

Now,
y ∈

⋂
z∈C,C∈A′

C ⇐⇒
(
∀C ∈ A′ , z ∈ C ⇒ y ∈ C

)
and let y ∈

[
z
]
A then

y ∈
[
z
]
A ⇐⇒ y ∈

⋂
z∈D,D∈A

D ⇐⇒
(
∀D ∈ A, z ∈ D ⇒ y ∈ D

)
Fix some C ∈ A′ with z ∈ C, sinceA′ ⊆ A it holds C ∈ A and therefore for any C ∈ A′ with

z ∈ C one has that y ∈ C and finally
[
z
]
A ⊆

[
z
]
A′ .

For the second statment of the theorem by applying theorem 3.3.4 since A ⊆ B there is a
µ-conull set X ′A and a family of measures {µAx | x ∈ X

′
A} with the property

E(f |A)(x) =

∫
f(y)dµAx (y)

almost everywhere for all f ∈ L1(X,B, µ). Again by applying theorem 3.3.4 for the sub-σ-algebra
A′ ⊆ B there is a µ- conull set X ′A′ ∈ A

′ and a family of measures {µA
′

z | x ∈ X
′

A′} such that

E(f |A′)(z) =

∫
f(y)dµA

′

z (y)

almost everywhere for all f ∈ L1(X,B, µ). The set X \X ′A is a µ-null set and by remark 3.3.6

µA
′

z (X \X ′A) = 0⇒ µA
′

z (X
′

A) = 1

for µ-almost every z since µA
′

z is a probability measure and X ′A ⊆ X.
The family of measures {µAx | x ∈ X

′
A} satisfies all properties of proposition 3.3.9 with respect

to the meausure µA
′

z . Indeed by proposition 3.3.4 x →
∫
fdµAx is measurable for f ∈ L∞ , for
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x, y ∈ X
′
A if

[
x
]
A =

[
y
]
A then µAx = µAy and µAx (

[
x
]
A) = 1. The last property of 3.3.9 comes

from definition of conditional expectation. For f ∈ C(X̄)∫ ∫
fdµAx dµ

A′
z (x) =

∫
E
(
f |A′

)
(x)dµA

′

z (x) = E
(
E
(
f |A

)
|A′
)
(z)

for µ-almost every z and by the tower extension property

E
(
E
(
f |A

)
|A′
)
(z) = E

(
f |A′

)
(z)

for µ-almost every z but by the definition of conditional measure

E
(
f |A′

)
(z) =

∫
fdµA

′

z

and finally ∫
fdµA

′

z =

∫ ∫
fdµAx dµ

A′
z (x) (3.7)

for µ-almost every z.
Now by choosing a countable dense subset {f0, f1, ...} of C(X̄) for each fi there is a µ-null set

Ni such that the equation 3.7 holds for z /∈ Ni. Therefore finally one has that∫
fdµA

′

z =

∫ ∫
fdµAx dµ

A′
z (x)

for f in a countable dense subset of C(X̄) for z /∈ N = ∪∞i=1Ni and this proves the property (4) of
proposition 3.3.9 for the family of measures µAx and so µAx =

(
µA
′

z

)A
x
.

3.4 Algebras and Maps
Let X and Y be Borel probability subsets of compact metric spaces X̄ and Ȳ . For a measurable
map

φ : X → Y,

we call φ∗ : M(X)→M(Y ) for the map induced on the space of probability measures by(
φ∗(µ)

)(
A
)

= µ
(
φ−1(A)

)
for any A ⊆ Y measurable. In this notation, for any integrable function f : Y → R and B ∈ BY ,∫

φ−1(B)

f ◦ φdµ =

∫
B

fdφ∗µ.

In particular a map φ : (X,BX , µ)→ (Y,BY , ν) between two Borel probabulity spaces is measure
preserving if and only if φ∗µ = ν.

45



Any measurable function φ : X → Y as above defines a σ algebra

A = φ−1
(
BY
)

on X. The next results show that essentially all σ-algebras on X arises this way.

Corollary 3.4.1. Let (X,B, µ) is a Borel probability space , and let A ⊆ B be a countably gener-
ated σ-algebra. Then there exists a conull set X

′
= X inA, a compact metric space together with

its Borel σ-algebra
(
Y,BY

)
, and a measurable map φ : X

′ → Y such that

A|X′
µ
= φ−1

(
BY
)
.

Moreover [
x
]
A = φ−1

(
φ(x)

)
for x ∈ X ′ and µAx = νφ(x) for some measurable map y → νy defined on a φ∗µ-conull subset of
Y . In fact we can take Y =M(X̄), φ(x) = µAx and νy = y.

Lemma 3.4.2. If X̄ is a compact metric space, and f ∈ L∞(X̄) then the map

ν 7→
∫
fdν,

ν ∈M(X) is Borel measurable. In particular, for a Borel subset X of X̄ we have thatM(X) is a
Borel subset ofM(X̄). Moreover, if φ : X → Y is a Borel measurable map between Borel subsets
of compact metric spaces, then the induced map φ∗ : M(X)→M(Y ) is Borel measurable.

Proof. (of lemma 3.4.2.)
The map ν 7→

∫
fdν is Borel measurable for any f ∈ C(X̄) by the definion of the w∗-

topology onM(X). As we argue in the proof of proposition 3.3.4 for any open set U let Un =
{x ∈ X| d(x, U c) ≥ 1

n
}. Then Un ⊆ Un+1 and

⋃∞
n=1 Un = U and the continuous functions

fn(x) =
d(x, U c)

d(x, U c) + d(x, Un)
.

For this sequence of continuous functions one has that (fn)↗ χU so by the monotone conver-
gence theorem

ν 7→
∫
χUdν

is measurable for characteristic functions of open sets. Now for every closed set V, X = U ∪ V
where U is an open set and therefore χX = χU +χV and a closed set can also be approximated by
1− fn ↘ χV and again by the monotone convergence theorem the map

ν 7→
∫
χUdν
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is measurable for closed sets also. Now a Gδ set E =
⋂∞
n=1 Uk can by approximated by

hk =
n∏
i=1

χUi = χ∩ni=1Ui

and for a Fσ set F = ∪∞i=1Fi

F
′

1 = F1

F
′

2 = F2 \ F1

...

F
′

k = Fk \ ∪k−1i=1Fk

it holds ∪∞n=1F
′
n = F = ∪∞n=1Fn and we can approximate χF by gk =

∑k
i=1 χF ′i

= χ∪ki=1F
;
k
.

Thus we have the measurability for characteristic function of open, closed, Gδ-set E ,Fσ-set F
, Borel sets and finally for any f ∈ L∞(X̄). Therefore the set

M(X) =
{
µ ∈M(X̄)

∣∣µ(X̄ \X) = 0
}

is Borel subset of M(X̄).

Now let φ : X → Y a Borel measurable map defined on subsets X ⊆ X̄ , Y ⊆ Ȳ of the
compact metric spaces X̄, Ȳ and φ∗ : M(X) → M(Y ) the induced map defined

(
φ∗(µ)(A)

)
=

µ(φ−1A) for anyA ⊆ Y measurable. Also again by the definition of w∗-topology a setO ⊆M(Ȳ )
is open if for ν ∈ O there are functions h1, h2, ..., hk ∈ C(Ȳ ) and ε1, ε2, ...εk positive numbers such
that {

λ ∈M(Y )|
∣∣∣ ∫ hidλ−

∫
hidν

∣∣∣ < εi

}
⊆ O

for i = 1, 2, ...k. Let ε > 0 then by the separability of the space C(X) there is a dence countable
set of functions {g1, g2, ...} such that for any g ∈ C(Y ) there is n0 ∈ N such that ‖g − gn0‖∞ < ε

and for ν1, ν2 ∈M(Y ) with
∣∣∣ ∫ gdν1 − ∫ gdν2∣∣∣ < ε and so one has that

∣∣∣ ∫ gn0dν1 −
∫
gn0dν2

∣∣∣ =
∣∣∣ ∫ gn0dν1 −

∫
gdν1 +

∫
gdν1 −

∫
gdν2 +

∫
gdν2 −

∫
gn0dν2

∣∣∣
≤
∣∣∣ ∫ gn0dν1 −

∫
gdν1

∣∣∣+
∣∣∣ ∫ gdν1 −

∫
gdν2

∣∣∣+
∣∣∣ ∫ gdν2 −

∫
gn0dν2

∣∣∣
≤ 3ε

And so the collection of any finite intersections of elements{
λ ∈M(Y )|

∣∣∣ ∫ gndλ−
∫
gndν

∣∣∣ < ε
}
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is a basis for the topology ofM(Ȳ ) and therefore any open set can be written as a union of elements
of the base. In addition by the density of rationals the collection of finite intersections of sets

Ogn,r,ε =
{
λ ∈M(Y )|

∣∣∣ ∫ gndλ− r
∣∣∣ < ε

}
is a countable basis for the topology of M(Ȳ ) for r, ε ∈ Q.
The set

φ−1∗ Ogn,r,ε =
{
µ ∈M(X)|

∣∣∣ ∫ gn ◦ φdµ− r
∣∣∣ < ε

}
is measurable and so any arbitrary open set Of,r,ε ∈ M(Ȳ ) is a countable union of finite intersec-
tions of measurable elements of the base and so φ−1∗ Of,r,ε is a countable union of measurable sets
and therefore measurable. Finally since the open sets form an algebra that generates the Borel sets,
φ−1∗ O is measurable for any Borel measurable set O and so the map φ−1∗ is measurable.

Proof. 3.4.1 Let Y =M(X̄) with the weak∗-topology and so Y is a compact metric space, φ(x) =
µAx and νy = y. Let also A = σ

({
A1, A2, A3, ...

})
a countably generated σ-algebra. By defitinion

of conditional measure the map x 7→ µAx is measurable and defined on a conull set X ′ ⊆ X and
therefore νφ(x) = µAx follows. For the µ-equality of the σ-algebras, by lemma3.3.5 it holds[

x
]
A =

⋂
x∈A,A∈A

A =
⋂
x∈Ai

Ai ∩
⋂

X
x/∈Ai

\ Ai

hence , for some Ai ∈ σ
({
A1, A2, A3, ...

})
If x ∈ Ai =⇒ µAx (Ai) = 1 µ− a.e.

and x /∈ Ai =⇒ µAx (Ai) = 0 µ− a.e.

For the direction A|X′
µ

⊆ φ−1
(
BY
)

let the set

C =
{
ν ∈M(X̄) | ν(Ai) = 1

}
∈ BY

for i ∈ N then

φ−1C =
{
x ∈ X | φ(x) ∈ C

}
=
{
x ∈ X | µAx ∈ C

}{
x ∈ X | µAx = 1

}
= X

′ ∩ Ai

But since X ′ , Ai ∈ A one has that X ′ ∩ Ai ∈ A and so for every element that generates the

σ-algebra A it follows that X ′ ∩ Ai ∈ φ−1
(
BY
)

and so A|X′
µ

⊆ φ−1
(
BY
)
.

For the opposite direction it is sufficient to check for the elements that form a basis for the topology
of M(X̄). For any f ∈ C(X), r, ε > 0

φ−1
({
ν ∈M(X̄) |

∣∣∣ ∫ fdν − r
∣∣∣ < ε

}
=
{
x ∈ X |

∣∣∣ ∫ fdµAx − r
∣∣∣ < ε

}
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but the right hand equation is A-measurable by the definition of conditional measure and finally

A|X′ = BY .

Now since the Borel σ-algebra BY is countably generated we can work as in the proof of lemma
3.3.5. The atom

[
x
]
A is the smallest measurable set containg x. Therefore[

x
]
A ⊆ φ−1(φ(x))

and since A|X′ = BY for any A ∈ A|X′ with x ∈ A there is a set B ∈ BY such that A = φ−1B,
φ(x) ∈ B and so φ(x) ∈ φ(A) ⊆ φ(B). It follows that φ−1(φ(x)) ∈ φ−1(B) thus

φ−1(φ(x)) ∈ A

for any A ∈ A|X′ with x ∈ A and finally

φ−1(φ(x)) =
[
x
]
A.

Corollary 3.4.3. Let φ : (X,BX , µ) → (Y,BY , ν) be a measure preserving map between Borel
probability spaces, and let A ⊆ BY be a sub-σ-algebra then

φ∗µ
φ−1A
x = νAφ(x)

for µ-almost every x ∈ X .

Proof. Let f ∈ L1(Y,BY , ν), then Eν(f |A) ◦ φ is φ−1A-measurable
(

where Eν(f |A) is the
conditional expectation with respect to (Y,BY , ν)

)
and∫

φ−1A

Eν(f |A) ◦ φdµ =

∫
A

Eν(f |A)dν (since the map φ is measure preserving)

=

∫
A

fdν (by definition of conditional expectation)

=

∫
φ−1A

f ◦ φdµ (since the map φ is measure preserving )

=

∫
φ−1A

Eµ(f ◦ φ|φ−1A)dµ (by definition of conditional expectation).

Where Eµ(f ◦ φ|φ−1A) is again the conditional expectation with respect to (X,BX , µ). Therefore∫
φ−1A

Eν(f |A) ◦ φdµ =

∫
φ−1A

Eµ(f ◦ φ|φ−1A)dµ⇒

Eν(f |A) ◦ φ = Eµ(f ◦ φ|φ−1A) µ− almost everywhere
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Thus for f ∈ L∞(Y,BY ),∫
fdνAφ(x) = Eν(f |A)(φ(x)) µ− a.e

= Eµ(f ◦ φ|φ−1A)(x) µ− a.e

=

∫
f ◦ φdµφ−1A

x µ− a.e

=

∫
fd
(
φ∗µ

φ−1A
x

)

Finally since the above equation holds for any f ∈ C(Ȳ ) one has that µφ−1A
x = νAφ(x).

Lemma 3.4.4. Let X , Y and Z be Borel subsets of the compact metric spaces X̄ , Ȳ and Z̄
respectively and also let the measurable maps φY : X → Y and φZ : X → Z. Consider that φZ is
φ−1Y
(
BY
)
- measurable. Then there is a measurable map ψ : Y → Z such that

φZ(x) = ψ ◦ φY (x)

on X.

Proof. First let us assume that Z is a compact space and later we will remove the additional as-
sumption. By the compactness of Z it can be covered by a finite number of balls

{Bn
1 , B

n
2 , ..., B

n
k(n)}

with diameter less than 1
n
. We may define the members of the cover to be disjoint by

An1 = Bn
1

An2 = Bn
2 \Bn

1

.

.

Ank(n) = Bn
k(n) \ ∪

k(n)−1
j=1 Bn

j

and therefore there is a finite partition of the space Z with diameter less than 1
n
. In addition we may

ensure that σ(ξn) ⊆ σ(ξn+1). For the inductive step let ξn = {P n
1 , P

n
2 , ...P

n
k } with diameter less

than 1
n

and the closed compact sets P̄ n
j , j = 1, 2, ..., n. Next, P̄ n

j can be partitioned into finite
disjoint sets

P̄ n
j = Aj1 ∪ A

j
2 ∪ ... ∪ A

j
Nj

for Nj ∈ N with diameter les than 1
n+1

as before. In case that P̄ n
j1
∩ P̄ n

j2
6= ∅ for some j1, j2 we

can set Ãjl = Ajl ∩ P n
j and thus the atom P n

j of the partition ξn has a partition Ãj1, Ã
j
2, ..., Ã

j
Nj

with
diameter of the elements less than 1

n+1
. then new partition with the property σ(ξn) ⊆ σ(ξn+1) is

ξn+1 = {Ã1
1, Ã

j
2, ..., Ã

j
N1
, ..., ÃNkk }.
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The map φZ is φ−1Y
(
BY
)
- measurable for any P ∈ ξn hence there is a set φ−1Z (P ) = PX ∈ A

and eventually a partition of the space X

ξXn = {φ−1Z (P ) = PX |P ∈ ξn}

Let the partition

ξn = {P1,n, P2,n, ...Pk,n} , ξXn = {PX
1,n, P

X
2,n, ...P

X
k,n} , k ∈ N

and the partition of the space Y will be constructed. For every PX
j,n ∈ ξXn there is a set P Y

j,n ∈ BY
such that PX

j,n = φ−1Y (P Y
j,n). If again P Y

j1,n
∩ P Y

j2,n
6= ∅ we may replace

P̃ Y
1,n = P Y

1,n

P̃ Y
2,n = P Y

2,n \ P Y
1,n

.

.

P̃ Y
k,n = P Y

k,n \ ∪k−1j=1P
Y
j,n

and the partition
ξYn = {P̃ Y

1,n, P̃
Y
2,n, ..., P̃

Y
k,n}

follows. Using same arguments we can ensure that

PX
j,n+1 ⊆ PX

j,n ⇒ P Y
j,n+1 ⊆ PX

j,n

for some PX
j,n+1 ∈ ξXn+1, P

X
j,n ∈ ξXn . Define ψn : Y 7→ Z as follows. For y ∈ P̃ Y

j,n ∈ ξYn let
zPi,n ∈ Pi,n ∈ ξn and ψn(y) = zPi,n . Obviously ψn is measurable and in addition since the limit
of the diameter of the partition goes to zero limn→∞ ψ

n(y) = ψ(y) exists for all y ∈ Y and it is
measurable as limit of measurable functions. If y = φY (x), x ∈ X then φZ(x), ψn(y) belong to
the same element of the partition ξn for all n ∈ N and therefore φZ(x) = ψ(φY (x)) as needed. If
we remove the hypothesis that Z is a compact space let ψ̄ : Y 7→ Z̄ the map to the compact space
Z̄ as above. However φ−1Z (Z̄ \ Z) = ∅ and

φ−1Z (Z̄ \ Z) = (ψ̄ ◦ φY )−1(Z̄ \ Z) = φ−1Y ◦ ψ̄
−1(Z̄ \ Z)

so

ψ(y) =

{
ψ̄(y) ψ̄(y) ∈ Z
z0 otherwise

for some z0 ∈ Z.

51



Chapter 4

Factors and Joinings

4.1 The Ergodic Theorem and Decomposition Revisited
In order to prove the existence of the ergodic decomposition we use the basic results from the pre-
vious chapter. Let (X,BX , µ, T ) be a measure preserving system on a Borel probability space. We
write E =

{
B ∈ BX

∣∣T−1B = B(modµ)
}

for the σ-algebra of almost T -invariant sets. Ergodicity
of T is equivalent that E consists only null and conull sets. We obtain the following reformula-
tion comparing the pointwise ergodic theorem and the conditional expectation with respect the σ
algebra E .

Definition 4.1.1. Let (X,BX , µ, T ), (Y,BY , µ, S) be measure preserving systems on Borel prob-
ability spaces and there are X

′ ⊆ X , Y
′ ⊆ Y such that X

′ ∈ BX , Y
′ ∈ BY , µ(X

′
) = 1 and

µ(Y
′
) = 1. An extension (or a factor map) is map π : X

′ → Y
′

that is measure preserving i.e.

(a) A ∈ BY then π−1(A) ∈ BX

(b) µ(π−1(A)) = ν(A) with the property,

(c) π ◦ T (x) = S ◦ π(x) ∀x ∈ X ′

Theorem 4.1.2. Let (X,BX , µ, T ) be a measure preserving system and f ∈ L1
µ. Then

1

M

M−1∑
n=0

f ◦ T n → E(f |E)

µ-almost everywhere and in L1.

Proof. Let E =
{
B ∈ BX

∣∣T−1B = B(modµ)
}

and f ∈ L1
µ. By the mean ergodic theorem

1

M

M−1∑
n=0

Un
T f → f̃
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µ-almost everywhere and in L1
µ for some f̃ T -invariant. It remains to prove that f̃ satisfies the

two characteristic properties of the conditional expectation for the σ-algebra E . The first property
its already proven becauce f̃ is E-measurable since it is T -invariant. For the second property let
E ∈ E , µ(E) > 0 and the measure preserving system (E,BX |E, 1

µ(E)
µ|E, T |E). By applying again

the mean ergodic theorem for this measure preserving system one has that

1

M

M−1∑
n=0

Un
T f → f̃

in L1
1

µ(E)
µ|E

and ∫
E

fdµ =

∫
E

f̃dµ.

Therefore the function f̃ satisfies the properties and f̃ = E(f |E) µ− almost everywhere.

The ergodic decomposition theorem for a continuous map T was seen as a consequence of
Choquet’s theorem. We now deduce this result from properties of conditional measures for any
measurable map T .

Theorem 4.1.3. Let T : (X,BX , µ)→ (X,BX , µ) be a measure preserving map of a Borel proba-
bility space. Then there is a Borel probability space (Y,BY , ν) and a measurable map y → µy for
which

(1) µy is T -invariant ergodic probability measure on X for almost every y

(2) µ =
∫
Y
µydν(y).

Moreover, we can require that the map y → µy is injective , or alternatively set

(Y,BY , ν) = (X,BX , µ)

and µx = µEx

Proof. Let E =
{
B ∈ BX

∣∣T−1B = B(modµ)
}

the σ-algebra of µ-almost T -invariant sets. By
lemma 3.3.7 there is a countably generated σ-algebra

Ẽ = σ
({
E1, E2, E3, ...

})
with Ẽ =

µ
E . Thus for any Ej ∈ Ẽ there is a set E ′j ∈ E such that µ(Ej) = µ(E

′
j) and so the sets

that generate E are also µ-almost T -invariant. Let N ′ =
⋃∞
i=1 T

−1Ei4Ei which is a null set since

µ(N
′
) = µ

( ∞⋃
i=1

T−1Ei4 Ei
)

=
∞∑
i=1

µ(T−1Ei4 Ei) = 0.
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By applying theorem 3.3.4(4) for the σ-algebra Ẽ we have

µEx = µẼx

except a null set N ′′ . By corollary 3.4.1 there is a compact metric space with a Borel σ-algebra
(Y,BY ) a map T : X

′ → Y and E|X′ = T−1BY . By corollary 3.4.3

T∗µ
T−1E
x = µETx

but the σ-algebra E is T -invariant and finally

T∗µ
E
x = µETx.

Let the set

N =
∞⋃
i=0

T−n
(
N
′ ∪N ′′

)
which is null since

µ(N) = µ
( ∞⋃
i=0

T−n
(
N
′ ∪N ′′

))
=
∞∑
n=0

µ
(
T−n

(
N
′ ∪N ′′

))
=
∞∑
n=0

µ(N
′ ∪N ′′) = 0.

It also contains N ′ , N ′′ and T−1N ⊆ N. The atoms are

[x]Ẽ =
⋂
x∈Ei

Ei ∩
⋂
x/∈Ei

X \ Ei and [Tx]Ẽ =
⋂

Tx∈Ei

Ei ∩
⋂

Tx/∈Ei

X \ Ei

and if x /∈ N then
x ∈ Ei ⇐⇒ T (x) ∈ Ei

and thus
[Tx]Ẽ = [x]Ẽ .

By theorem 3.3.4(2) for the countably generated σ-algebra Ẽ it holds µẼx = µẼTx but also µẼx = µEx
µẼTx = µETx and thus µETx = µEx which proves that µEx is T -invariant. For the ergodictiy of the
measure there is the following lemma

Lemma 4.1.4. Let X,BX , ν, T ) be a measure preserving system on a Borel probability space, and
let
{
f1, f2, ...

}
be a dense in C(X̄). Then ν is ergodic if and only if

1

M

M−1∑
n=0

fi
(
T ny

)
→
∫
fidν (4.1)

for ν-almost every y and i ≥ 1.
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Proof. If our system is ergodic then for any f ∈ C(X̄) 3.4 holds. For the converse, recall that

1

M

M−1∑
n=0

f ◦ T n → PTf,

in theL2
ν sence, where PTf denotes the projection operator onto the space ofUT -invariant functions

in L2
ν . It follows that if equation 3.4 holds we have that PT (f) =

∫
fdν for a dense subset of

functions f ∈ L2
ν . So the projection of the UT -invariant functions are the constant functions, which

is equivalent to ergodicity.

For the proof of the convergence 4.1 , let
{
f1, f2, ...

}
be a dense in C(X̄). Then for x /∈ N

1

M

M−1∑
n=0

fi
(
T ny

)
→ E(fi|E)(x) =

∫
fidµ

E
x,

Let also the set
N1 = N ∪

{
x|µEx(N) > 0

}
.

N is µ-null set and therefore µEx(N) = 0 for µ-almost every x and so µ({x|µEx(N) > 0}) = 0 and
finally µ(N1) = 0. If

[
x
]
Ẽ =

[
y
]
Ẽ for x /∈ N1 , y /∈ N then µẼx = µẼy and since Ẽ =

µ
E as we

have already seen µEx = µEy . By applying the previous lemma for the measure µEx we can ensure
that µEx is ergodic and the first part of the theorem is proved. Now by corollary 3.4.1 there is a map
φ : X → Y and a measurable function νy ∈ M(X) for y ∈ Y with µEx = νφ(x). Define ν = φ∗µ.
Then the theorem follows since

µ =

∫
X

µExdµ(x) =

∫
X

νφ(x)dµ(x) =

∫
Y

νydν(y)

4.2 Equivalence between a factor map and a sub-σ-algebra in
a measure preserving system.

Theorem 4.2.1. Let (X,BX , µ, T ), (Y,BY , ν, S) be invertible measure preserving systems on Borel
probability spaces and let π : X → Y a factor map. Then A = π−1BY ⊆ BX is an invariant sub-
σ-algebra in the sence that T−1A = A (modulo µ)

Proof. First we verify that indeed A = π−1BY is a sub-σ-algebra.

(1) ∅ ∈ BY and so ∅ ∈ A.
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(2) Let A ∈ A and π−1(B) = A for a B ∈ BY . Since BY is a σ-algebra Y \B ∈ BY and

π−1(Y \B) = π−1(Y ∩Bc) = π−1(Y ) ∩ π−1(Bc)

but π−1(Y ) = X and π−1(Bc) = Ac and so finally X \ A ∈ A.

(3) Let {Ai} ∈ A for i ∈ N. There are {Bi} ∈ BY such that Ai = π−1(Bi). Again since BY is
σ-algebra ∪∞n=1Bi ∈ BY . It follows that

π−1(∪∞n=1Bi) = ∪∞n=1π
−1(Bi) = ∪∞n=1Ai ∈ A.

To show that is T -invariant let A ∈ A and some B ∈ BY such that

A = π−1B

then

T−1A = {x ∈ X|T (x) ∈ A} = {x ∈ X|π ◦ T (x) ∈ B} = {x ∈ X|S ◦ π(x) ∈ B} = π−1(S−1B)

but B is measurable and therefore S−1B ∈ BY and hence π−1(S−1B) = T−1A ∈ A and finally
µ(A) = µ(T−1A).

Theorem 4.2.2. Let (X,BX , µ, T ) be a Borel measure preserving system. If furthermore there is a
T -invariant sub-σ-algebra A ⊆ BX then there is a measure preserving system (Y,BY , ν, S) on a
Borel probability space and a factor map π : X → Y withA = π−1BY modulo µ. If T is invertible
then S may choosen to be invertible as well.

Proof. Let Y =M(X) and

S : Y → Y

λ 7→ T∗λ

as in corollary 3.4.1. By lemma 3.4.2 the map S is measurable and let the map

φ : X → Y

x 7→ µAx

we finally choose the measure ν to be ν = φ∗µ to construct the following space (Y,BY , ν, S). By
corollary 3.4.3 we know

T∗µ
T−1A
x = µATx

T−1A=A
=====⇒ T∗µ

A
x = µATx

but φ(T (x)) = µATx µ-almost everywhere and T∗µ
A
x = S(φ(x)) µ-almost everywhere and so

φ(T (x)) = S(φ(x)) µ-almost everywhere. The last equation also implies that φ is a factor map
and ν(A) = µ(φ−1A) = µ(φ−1S−1A = ν(S−1A) and so (Y,BY , ν, S) is a measure preserving
system. Furthermore if T is invertible S−1 = (T−1)∗ and so S is also invertible .
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4.3 Joinings of a set
Starting with the definition of a joining between two measure preserving systems.

Definition 4.3.1. Let (X,BX , µ, T ), (Y,BY , ν, S) be measure preserving systems on Borel proba-
bility spaces. A measure ρ on the product space (X × Y , BX ⊗ BY ), µ× ν is said to be a joining
if

(1) ρ is invariant under T × S and

(2) the projections of ρ onto the two spaces X, Y are µ and ν respectively i.e. ρ(A×Y ) = µ(A)
and ρ(X ×B) = ν(B) for all A ∈ BX and B ∈ BY .

We will also use sometimes different notation for the second property as (πX)∗(ρ) = µ and
(πY )∗(ρ) = ν.

We will call the set of joinings of two measure preserving systems (X,BX , µ, T ), (Y,BY , ν, S)
as J(X, Y ).

Remark 4.3.2. The set of joinings is never empty since the trivial product measure µ× ν is always
a joining for the two systems.

4.4 Relatively Independent Joining
In this section we will present a special case of the set of joinings and also the definition of the
relatively independent joining that plays a key role for the proof of Szemeredi’s theorem.

Definition 4.4.1. Two measure preserving systems (X,BX , µ, T ), (Y,BY , ν, S) are disjoint if the
set of joinings contains only the product measure i.e.

J(X, Y ) =
{
µ× ν

}
.

In this case we write X ⊥ Y .

Remark 4.4.2. If X ⊥ Y then L2
0(X) is orthogonal to L2

0(Y ) as subsets of the Hilbert space
L2
0(X ×Y, ρ) for the joining µ× ν where L2

0(X) is the set of the squared integrable functions with
zero integral.

Remark 4.4.3. Furthermore the sets of the eigenvalues of X and Y are disjoint except the eigen-
value 1 that corresponds to the constant functions.

If there exists a measurable isomorphism φ : X → Y then the graph supports a joining ρφ that
is characterized by the property that

ρφ(A) = µ
({
x ∈ X| (x, φ(x)) ∈ A

})
= ν

({
y ∈ Y | (φ−1(y), y) ∈ A

})
for A ∈ BX ⊗ BY .
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Definition 4.4.4. Relatively Independent Joining
Let (X,BX , µ, T ), (Y,BY , ν, S) be invertible measure preserving systems on Borel probability

spaces. Assume that both spaces have a non trivial common measurable factor (Z,BZ , λ, R). We
call relatively independent joining as µ ×Z ν or X ×Z Y the joining that can be constructed as
follows. Denote the respective factor maps φX : X → Z and φY : Y → Z and AX := φ−1X BZ ,
AY := φ−1Y BZ . ThenAX ,AY are invariant sub-σ algebras of BX and BY respectively by theorem
4.2.1. Denote µAXx = µφX(x) and νAYx = νφY (x). Let the measure ρ on the product space
X × Y

ρ :=

∫
Z

µz × νzdλ(z).

To see that indeed ρ is joining let A ∈ BX then

ρ(B × Y ) =

∫
Z

µZ(B)dλ(z) =

∫
X

µAx dµ(X) = µ(B).

Now if A ∈ BX and B ∈ BY then

ρ
(
(T × S)−1(A×B)

)
=

∫
Z

µz × νz(T−1A× S−1B)dλ(z)

=

∫
Z

µz(T
−1A)νz(S

−1B)dλ(z) and with our notation

=

∫
Z

µRz(A)νRz(B)dλ(z)

= ρ(A×B).

We now see the basic properties of the relatively independent joining

Proposition 4.4.5. Let (X,BX , µ, T ), (Y,BY , ν, S) be invertible measure preserving systems on
Borel probability spaces and ρ the relatively independent joining over their common factor (Z,BZ , λ, R)
as the previous definition. Then the following properties hold.

(a) The relatively independent joining has full mass on the set

F =
{

(x, y)|φX(x) = φY (y)
}

(b) If (Z,BZ , λ, R) is not trivial factor then the joining ρ is not the trivial joining µ× ν.

(c) For all functions f ∈ L∞(X,µ) and g ∈ L∞(Y, ν) the conditional expectationsE(f |φ−1X BZ)
and E(g|φ−1Y BZ) can be viewed as functions over the factor Z as follows∫

X×Y
f(x)g(y)ρ(x, y) =

∫
Z

E(f |φ−1X BZ)E(g|φ−1Y BZ)dλ.
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(d) It holds
L = (φXπX)−1(BZ) = (φY πY )−1(BZ) modulo ρ

and the conditional measures are given by

ρL(x,y) = µ
φ−1
X BZ
x × νφ

−1
Y BZ

y for almost every (x, y) ∈ F
= µz × νz for almost every z ∈ Z.

The atoms of L are φ−1X (z)× φ−1Y (z).

Proof. a) We follow the notation of the previous definition of relatively independent joining i.e.
AX := φ−1X BZ , AY := φ−1Y BZ for the invariant sub-σ-algebras.

Let F =
{

(x, y)|φX(x) = φY (y)
}
∈ X × Y and the relatively independent joining ρ =∫

Z
µz×νzdλ(z), then for µ− almost every x ∈ X µAXx ([x]AX ) = 1 and for ν− almost every y ∈ Y

νAYy ([y]AY ) = 1. But by corollary 3.4.1 µAXx ([x]AX ) = µAXx (φ−1X (φX(x))) and νAYy ([y]AY ) =

νAYy (φ−1Y (φY (y))) and therefore for λ-almost every z ∈ Z

µz(φ
−1
X (z)) = νz(φ

−1
Y (z)) = 1

and finally

ρ(F ) =

∫
Z

µz × νz(F )dλ(z) = 1.

b) Let a set A ∈ BZ with measure λ(A) ∈ (0, 1) then obviously λ(Ac) ∈ (0, 1). Define

B = φ−1X (A)× φ−1Y (Z \ A) ∈ X × Y

then

µ× ν(B) = µ× ν(φ−1X (A)× φ−1Y (Z \ A)) = µ(φ−1X (A))ν(φ−1Y (Z \ A)) = λ(A)λ(Ac) > 0

but

B = {(x, y) ∈ X×Y | x ∈ φ−1X (A) and y ∈ φ−1Y (Z\A)} = {(x, y) ∈ X×Y | φX(x) ∈ A and φY (y) ∈ Z\A}

and B ∩ F = ∅ and so ρ(B) = 0.
c) Let f ∈ L∞(X,µ) and g ∈ L∞(Y, ν). By lemma 3.4.4 there are maps ψ1 : Z → R and

ψ2 : Z → R such that
Eµ(f |AX)(x) = ψ1(φX(x)) = ψ1(z)

and
Eν(f |AY )(y) = ψ1(φY (y)) = ψ1(z)

where Eµ(f |AX)(x), Eν(f |AY )(y) is the conditional expectation with respect to AX ,AY . But

Eµ(f |AX)(x) =

∫
fdµAXx =

∫
fdµz =

∫
fdµφX(x)
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and
Eν(f |AY )(y) =

∫
gdνAYy =

∫
gdνz =

∫
gdνφY (y).

Finally ∫
f(x)g(y)dρ(x, y) =

∫ ∫
f(x)g(y)dµz × νzdλ(z)

=

∫ ( ∫
f(x)dµz

∫
g(y)dνz

)
dλ(z)

=

∫
ψ1(z)ψ2(z)dλ(z).

d) Let the set AX ∈ (φXπX)−1BZ , then there is a set AZ ∈ BZ such that AX = (φXπX)−1AZ
and

AX = {(x, y)|φX(πX(x, y)) ∈ AZ}
= {(x, y)|φX(x) ∈ AZ}

But for the set AY = {(x, y)|φY (y) ∈ AZ} ∈ (φY πY )−1BZ it holds AX ∩ F = AY ∩ F and
so ρ(AX) = ρ(AY ) and finally (φXπX)−1BZ ⊆

ρ
(φY πY )−1BZ . By symmetry (φXπX)−1BZ =

ρ

(φY πY )−1BZ . The atoms are given by

[(x, y)]L = (φXπX)−1(φXπX(x, y)) = (φXπX)−1(φX(x)) =

= π−1X (φ−1X (φX(x))

= φ−1X (φX(x))× Y

but

[(x, y)]L ∩ F = {(x, y)|(x, y) ∈ F and (x, y) ∈ [(x, y)]L}
= {(x, y)|x ∈ φ−1X (φX(x)) and φX(x) = φY (y)}
= {(x, y)|x ∈ φ−1X (φX(x)) and y ∈ φ−1Y (φX(x))}
= φ−1X (z)× φ−1Y (z) for z = φX(x) = φY (y)

In order to prove the last claim of the proposition we will use the proposition 3.3.9 for the measure
ρ(x, y) = µφX(x) × νφY (y) restricted in F.

(i) It is obvious that the map (x, y)→ µφX(x) × νφY (y) is measurable.

(ii) let the atoms [(x1, y1)]L, [(x2, y2)L in F. Then by the characterization of the atoms for this
σ-algebra one has that

φ−1X (z1)× φ−1Y (z1) = φ−1X (z2)× φ−1Y (z2)

where z1 = φX(x1) = φY (y1) and z2 = φX(x2) = φY (y2). Therefore φ−1X (z1) = φ−1X (z2)
and φ−1Y (z1) = φ−1Y (z2) and finally

µφX(x1) × νφY (y1) = µφX(x2) × νφY (y2).
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(iii) Let the atom [(x, y)]L and the measure µφX(x) × νφY (y). Then

µφX(x) × νφY (y)([(x, y)]L) = µφX(x) × νφY (y)(φ
−1
X (z)× φ−1Y (z))

= µφX(x)(φ
−1
X (φX(x))× νφY (y)(φ

−1
Y (φY (y)))

= 1

where z = φX(x) = φY (y).

(iv) In addition, for the last property of the proposition 3.3.9∫
X×Y

µφX(x)×φY (y)dρ(x, y) =

∫
X×Y

∫
Z

µφX(x)×φY (y)d(µz×νz)(x, y)dλ(z) =

∫
(µz×νz)dλ(z) = ρ.
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Chapter 5

Ergotheoretical proof of Szemeredi’s
theorem.

5.1 Connection between Szemeredi’s theorem and Multiple re-
currence.

In 1927 van der Waerden proved the conjecture of Baudet about arithmetic progressions with the
following theorem.

Theorem 5.1.1. Given two positive integers n,m there is an integer Nn,m such that for N ≥ Nn,m

and a partition of {1, 2, , , , N} = C1 tC2 t ... tCn then for some i the set Ci contains arithmetic
progression of length m.

In 1936 Paul Erdős and Pál Turán conjectured a stronger result that any subset of the natural
numbers with positive upper Banach density contains arbitrary long arithmetic progressions. In
1953 Klaus Friedrich Roth proved that for subsets of the natural numbers with positive upper
Banach density contains 3-term arithmetic progression. In 1969 Endre Szemerédi proved that any
set of positive upper Banach density containis 4-term arithmetic progressions and finally in 1975
Szemerédi proved that all these sets contain arbitrary long arithmetic progressions.

In 1977 Hillel Furstenberg proved Szemerédi’s theorem using ergotheoretical tools and his
work gave rise to the ergodic Ramsey theory where one uses tools from ergodic theory to investi-
gate problems in additive compinatorics.

Our goal In the following chapter is to give the ergodic-proof of Szemerédi’s theorem as well
as the proof of Roth’s and Sarkozy’s theorems . We set up again the basic definitions and theorems.

Definition 5.1.2. Let (X,BX , µ, T ) be a measure preserving system. The system is said to be SZ if
for any set E ∈ BX with µ(E) > 0 and for any k ∈ N it holds

lim inf
N−M→∞

1

N −M

N−1∑
n=M

µ(E ∩ T−nE ∩ T−2nE ∩ ... ∩ T−knE) > 0. (∗)
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A Lebesgue probability space (X,BX , µ) is a standard Borel space (X,BX , ) equipped with a
probability measure µ . In order to proof Szemerédi’s theorem we will prove that any Lebesque
measure preserving system has the SZ property.

The key that Furstenberg realized is the fact that Szemerédi’s theorem could be a consequence
of a multiple recurrence theorem and by this he gave rise to ergodic Ramsey theory where prob-
lems from additive compinatorics can be solved through ergotheoretical tools.

In the next section we will see for Szemerédi’s theorem it is sufficient the following multiple
recurrence theorem.

Theorem 5.1.3 (Furstenberg). Let (X,BX , µ, T ) be a measure preserving system and E ∈ BX
such that µ(E) > 0. Then for any k ∈ N there is some n ≥ 1 with

µ(E ∩ T−nE ∩ T−2nE ∩ ... ∩ T−knE) > 0.

Actually Furstenberg proved a stronger generalization of Poincaré recurrence theorem

Theorem 5.1.4. Let (X,BX , µ, T ) be a measure preserving system and E ∈ BX such that µ(E) >
0. Then for any k ∈ N it holds

lim inf
N−M→∞

1

N −M

N−1∑
n=M

µ(E ∩ T−nE ∩ T−2nE ∩ ... ∩ T−knE) > 0.

i.e. our system has the SZ property.

5.2 Simplifications for any measure preserving system.

5.2.1 1) Invertible systems
Let (X,BX , µ, T ) be any measure preserving system then the following construction is called the
invertible extension of (X,BX , µ, T )

X̃ =
{
x ∈ XZ∣∣xk+1 = Txk for all k ∈ Z

}
T̃ xk = xk+1 for all k ∈ Z and for all x ∈ X̃

µ̃
(
{x ∈ X

∣∣x0 ∈ E}) = µ(E) for any E ∈ BX and µ̃ is-T̃ invariant.

B̃X is the smallest -T̃ invariant σ-algebra for which the map x→ xnfromX → X̃is measurable for all n ∈ Z.
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X̃ has the SZ property if and only if X has.

In the following chapters the theorems will be proven for general measure preserving systems
but when the condition of invertibility is necessary it will be clear.

5.2.2 2) Borel Probability Spaces
The SZ property holds for any measure preserving system if it holds just for any measure preserv-
ing Borel probability space. Let (X,BX , µ, T ) be any invertible measure preserving system and
let E ∈ BX with µ(E) > 0. Now we consider the factor map

φ : X → {0, 1}Z, φ(x) = (χE(T nx))

which gives rise to a Borel probability system and the if SZ property holds it holds also for X .

5.2.3 3) Ergodic systems
In this section we will prove that is sufficient to proof the SZ property just for ergodic measure
preserving systems. By the previous section we can assume that (X,BX , µ is a probability space
and so the results from chapter 3,4 hold. We will use theorem 4.1.3 as follows. If any ergodic
system has the SZ property and let (X,BX , µ, T ) be any measure preserving system on a Borel
probability space, by theorem 4.1.3 there is a decomposition of measure µ to µEx. Let a set A such
that A ∈ BX , with µ(A) > 0 it holds:

µ
(
x ∈ X

∣∣{µEx(A) > 0}
)
> 0, (∗)

and so

lim inf
N→∞

1

N

N∑
n=1

µ(A ∩ T−nA ∩ T−2nA ∩ ... ∩ T−knA) =

lim inf
N→∞

∫
1

N

N∑
n=1

µEx(A ∩ T−nA ∩ T−2nA ∩ ... ∩ T−knA)dµ(x) ≥ ( by Fatou’s lemma)

∫
lim inf
N→∞

1

N

N∑
n=1

µEx(A ∩ T−nA ∩ T−2nA ∩ ... ∩ T−knA)dµ(x) > 0

since the integrated quantity is positive (*) and the SZ property holds for ergodic systems.

64



5.3 Furstenberg’s correspondence principle-Sárközy theorem.
In this section we show Furstenberg’s correspondence principle for Sárközy’s theorem. In the next
chapter we will prove the analogous for Furstenberg’s theorem.

Definition 5.3.1. For a subset of integers E we define the upper Banach density as

dB(E) = lim sup
N−M→∞

1

N −M

∣∣∣∣E ∩ (M,N)

∣∣∣∣
where

∣∣∣∣E ∩ (M,N)

∣∣∣∣ is the cardinality of
{
a ∈ E such that M ≤ a ≤ N.

}
and N,M integers

with N > M .

Theorem 5.3.2. (Sárközy) Let E ⊆ N be a set with positive upper Banach density. Let p ∈ Z(t) a
polynomial with integer coefficients with p(0) = 0. Then there exist x, y ∈ E and n ∈ N such that
x− y = p(n)

Now we state the corresponding recurrent theorem.

Theorem 5.3.3. Let (X,BX , µ, T ) be a measure preserving system and letE ∈ BX with µ(E) > 0.
Let p ∈ Z(t) a polynomial with integer coefficients with p(0) = 0. Then there is an n ∈ N such
that µ(E ∩ T−p(n)E) > 0.

Proof of theorem 5.3.2 asuuming theorem 5.3.3
Let E ⊆ N be a set with positive upper Banach density. Consider the space {0, 1}Z with

the product topology ΠZ2{0,1}. Let σ be the shift in {0, 1}Z. We define xE ∈ {0, 1}Z, xEn = 1
if and only if n ∈ E. Let {σm(xE) |m ∈ Z} be the orbit of xE and we set our space X to
be the closure of the orbit {σm(xE) |m ∈ Z}. Let σx := σ|X the restriction of the shift and
A = [i] ∩X = {x ∈ X : x0 = 1}. which is open and closed in X since [i] is closed and open in
{0, 1}Z. Also

σmX (xE) ∈ A ⇐⇒ xEm = 1 ⇐⇒ m ∈ E.

SinceE has positive upper Banach density there is a sequence intervals [M1, N1], ..., [Mj, Nj], ...
such that Nj −Mj →∞ and

lim
j→∞

∣∣∣∣E ∩ [Mj, Nj]

∣∣∣∣
Nj −Mj

= dB(E) > 0.

Let

µj =
1

Nj −Mj

Nj∑
k=Mj

δσkX(xE) j ∈ N.
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Now sinceM(X) is compact metric space from the Kryloff-Bogoliouboff theorem there are j1, j2, ...
and µ ∈M(X) such that µjk(A)

w∗−→ µ(A). Then µ ∈MX(σx) and since A is closed and open

µ(A) = lim
j→∞

1

Njk −Mjk

n−1∑
m=0

δσmX (xE)(A) = dB(E) > 0.

applying theorem 5.3.3 for the measure preserving system (X,BX , µ, σX) there is an n ∈ N such
that

µ(A ∩ σp(n)X A) > 0.

But for anyB measurable with µ(B) > 0 which is closed and open and µjk(B)→ µ(B) then there
is k ∈ N such that µjk(B) > 0 so δσmX (xE)(B) > 0 for an m ∈ [Mjk , Njk ] ⇐⇒ σmX (xE) ∈ B. In

particular in our case for an m ∈ [Mjk , Njk ], σ
m
X (xE) ∈ A ∩ σ−p(n)X A and so

xEm = 1 and xEm+p(n) = 1 ⇐⇒ m ∈ E and m+ p(n) ∈ E.

(Proof of theorem 5.3.3)
Let p ∈ Z(t) a polynomial with integer coefficients with p(0) = 0 and (X,BX , µ, T ) be a

measure preserving system , E ∈ BX such that µ(E) > 0. For each m ∈ N define

Hm = {h ∈ L2(X,BX , µ)| UTh = h} Vm = {UTf − f | f ∈ L2(X,BX , µ}

As we have seen in lemma 2.4.8

L2(X,BX , µ) = H1 ⊕ V1

and with same arguments

L2(X,BX , µ) = Hm ⊕ Vm ∀n ∈ N

In particular let
h ∈ Hm ⇒ UTh = h ⇒

〈 Um
T f − f, h〉 = 〈Um

T f, h〉 − 〈f, h〉 = 〈Um
T f, U

m
T h〉 − 〈f, h〉 = 0 ∀f ∈ L2(X,BX , µ)

and so h ⊥ {UTf − f | f ∈ L2(X,BX , µ}.
If

〈 h, Um
T f − f〉 = 0 ∀f ∈ L2(X,BX , µ)

then
〈(Um

T )∗h− h, f〉 = 0 ∀f ∈ L2(X,BX , µ)⇒
(Um

T )∗h = h ⇒ Um
T h = h

therefore
‖Um

T h− h‖22 = ‖Um
T h‖22 + ‖h‖22 − 〈Um

T h, h〉 − 〈h, Um
T h〉 =

‖(Um
T )∗h‖22 + ‖h‖22 − 〈h, (Um

T )∗h〉 − 〈(Um
T )∗)h, h〉 = ‖(Um

T )∗)h− h‖22 = 0
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So Hm = V ⊥m and finally

L2(X,BX , µ) = Hm ⊕ Vm ∀m ∈ N

Now we consider the closed subspaces

H =
∞⋃
m=1

Hm and V =
∞⋂
m=1

Vm

It holds H⊥ = V
Indeed let g ∈ V. Then g ∈ Vm ∀m ∈ N and so

〈g, h〉 = 0 ∀h ∈ Hm ∀m ∈ N ⇒

〈g, h〉 = 0 ∀h ∈
∞⋃
m=1

Hm

and so V ⊆ H⊥

Conversely if g ⊥ Hm then g ∈ Vm and g ⊥ h ∀h ∈ Hm,∀m ∈ N and g ∈ V
And so H⊥ = V . and L2(X,BX , µ) = H ⊕ V .
Let E ∈ BX such that µ(E) > 0. Then χE = f + g for unique f ∈ H and g ∈ V and also
χE = fm + gm for f ∈ Hm and g ∈ Vm unique ∀m ∈ N
Since the χX belongs in every Hm and so in H we have∫

X

fdµ = 〈χX , f〉

= 〈χX , χE〉 − 〈χX , g〉
= 〈χX , χE〉 = µ(E) > 0

With same arguments
∫
X
fmdµ > 0 ∀m ∈ N

Now we notice fm = E(χE|Fm) where Fm = {A ∈ BX |UTχA = χA} , m ∈ N
Indeed ∫

A

fmdµ =

∫
A

χEdµ−
∫
X

gχAdµ A ∈ Fm

because g ∈ Vm and g ⊥ χA ∈ Hm we have fm ≥ 0
Since Fm is an increasing sequence of sub σ algebras from the increasing martingale theorem
fm → E(χE|F)µ-a.s where F = σ

(⋃
m∈NFm

)
But E(χE|F) = f a.s and it is clear that f ≥ 0. We also notice that

h ∈ Hm ⇒ Um
T UTh = UTU

m
T h = UTh

and so UTh ∈ Hm

That means UT
⋃
m∈NHm ⊆

⋃
m∈NHm and it follows that UT (H) ⊆ UT

⋃
m∈NHm ⊆ H .

Now if φ = Um
T ψ − ψ then UTφ = UTU

m
T ψ − UTψ and it follows UTVm ⊆ Vm ∀m ∈ N and of
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course UTV ⊆ V .
Hence

µ(E ∩ T−p(n)E) =

∫
(f + g)U

p(n)
T (f + g)dµ =

∫
fU

p(n)
T fdµ+

∫
gU

p(n)
T gdµ ∀n ∈ N

and
1

N

∞∑
n=1

µ(E ∩ T−p(n)E) =
1

N

∞∑
n=1

∫
fU

p(n)
T fdµ+

1

N

∞∑
n=1

∫
gU

p(n)
T gdµ

We will show that both terms in the right hand exist.
Let fm ∈ Hm. Since m

∣∣p(n+m)− p(m) ∀m ∈ N it holds

U
p(km+u)
T fm = U

p(u)
T f k ∈ N, u ∈ {0, 1, 2, 3...,m− 1}

and so
1

N

N∑
n=1

fU
p(n)
T fm →

m−1∑
u=0

U
p(u)
T fm (N →∞)

If ‖f − fm‖2 < ε for f ∈ H and fm ∈
⋃
l∈NHl∣∣∣∣ 1

N

N∑
n=1

∫
fU

p(n)
T fdµ− 1

M

M∑
n=1

∫
fU

p(n)
T fdµ

∣∣∣∣ ≤
1

N

N∑
n=1

‖f‖2‖Up(n)
T (f−fm)‖2+

1

M

M∑
n=1

‖f‖2‖Up(n)
T (f−fm)‖2+

∣∣∣∣ 1

N

N∑
n=1

∫
fmU

p(n)
T fm−

1

M

M∑
n=1

∫
fmU

p(n)
T fm

∣∣∣∣ <
2ε+ ε = 3ε

If N,M are big enough and so the first term exists.
Now that we know that exists we can prove that is also positive.
Let m ∈ N such that ‖f − fm‖2 < ε = 1

4
µ(E). Since Up(mn)

T fm = fm it follows∫
fmU

p(mn)
T fmdµ =

∫
f 2
mdµ ≥ (

∫
fmdµ)2 = µ(E)2

Hence∫
fU

p(mn)
T fdµ =

∫
fmU

p(mn)
T fm + fU

p(mn)
T f − fUp(mn)

T fm + fU
p(mn)
T fm − fmUp(mn)

T fmdµ ≤

=

∫
fmU

p(mn)
T fmdµ− ‖f‖2‖f − fm‖2 − ‖f − fm‖2‖f‖2 ≥

µ(E)2 − 1

2
µ(E)2 > 0
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and we have

1

N

N∑
n=1

∫
fU

p(n)
T fdµ ≥ 1

N

bN
m
c∑

n=1

∫
fU

p(mn)
T fdµ ≥ (

1

m
− 1

N
)
1

2
µ(E)2 → 1

2m
µ(E)2 > 0.

Now for the second term: There is a measure µg in S1 such that

µ̂g(n) =

∫
gUm

T gdµ = 〈Um
T g, g〉 ( since g is real-valued function)

Then
1

N

N∑
n=1

∫
gU

p(n)
T gdµ =

1

N

N∑
n=1

µ̂g(p(n)) =
1

N

N∑
n=1

∫
z−p(n)dµ(g)(z.)

For z = e2πit with t ∈ R \Q it holds

1

N

N∑
n=1

z−p(n) →
∫
[0,1)

e2πitdt = 0

from Weyl’s equidistribution theorem. So it is enough µg({t}) = 0 ∀t ∈ Q ∩ [0, 1.) In the proof
of generalized mean ergodic theorems in [10] we have seen that µg({t}) = ‖PFT (g)‖2 but g ∈ V
and so µg({t}) = 0.

Theorem 5.3.4. The Van der Corput Lemma. Let (un) be a bounded sequence in a Hilbert space
H. Define a sequence of (sh) of real numbers as follows

sh = lim sup
N→∞

∣∣ 1

N

N∑
n=1

〈un+h, un〉
∣∣.

If

lim
H→∞

1

H

H−1∑
h=0

sh = 0

then it holds

lim
N→∞

‖ 1

N

N∑
n=1

un‖ = 0

Proof. Let ε > 0, there is an H0 such that for H > H0

1

H

H−1∑
h=0

sh < ε. (∗)

Then it can be choosen an N big enough such that the sums

1

N

N∑
n=1

un and
1

N

1

H

N∑
n=1

H−1∑
h=0

un+h
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are different in a few first and last terms. That means

‖ 1

N

N∑
n=1

un −
1

N

1

H

N∑
n=1

H−1∑
h=0

un+h‖ < ε.

This gives us the opportunity to focus on the second sum. By the triangle inequality

‖ 1

N

1

H

N∑
n=1

H−1∑
h=0

un+h‖ ≤
1

N

N∑
n=1

‖ 1

H

H−1∑
h=0

un+h‖. ⇒

(
‖ 1

N

1

H

N∑
n=1

H−1∑
h=0

un+h‖
)2

≤
(

1

N

N∑
n=1

‖ 1

H

H−1∑
h=0

un+h‖
)2

Now since the map f(x) = x2 is convex(
1

N

N∑
n=1

‖ 1

H

H−1∑
h=0

un+h‖
)2

≤ 1

N

N∑
n=1

(
‖ 1

H

H−1∑
h=0

un+h‖
)2

now by taking limits in the above inequalities

lim sup
N→∞

‖ 1

N

1

H

N∑
n=1

H−1∑
h=0

un+h‖2 ≤ lim sup
N→∞

1

N

N∑
n=1

‖ 1

H

H−1∑
h=0

un+h‖2 =

lim sup
N→∞

1

N

N∑
n=1

〈 1

H

H−1∑
h=0

un+h,
1

H

H−1∑
h=0

un+h〉 =

lim sup
N→∞

1

N

N∑
n=1

1

H2

H−1∑
h,h′=0

〈un+h, un+h′〉 =

lim sup
N→∞

1

N

1

H2

N∑
n=1

H−1∑
h,h′=0

〈un+h, un+h′〉 =

lim sup
N→∞

1

N

1

H2

H−1∑
h,h′=0

N∑
n=1

〈un+h, un+h′〉 ≤ by the triangle inequality

lim sup
N→∞

1

H2

H−1∑
h,h′=0

∣∣∣∣ 1

N

N∑
n=1

〈un+h, un+h′〉
∣∣∣∣. (∗∗)

We notice that

s|h−h′| = lim sup
N→∞

∣∣∣∣ 1

N

N∑
n=1

〈un+h, un+h′〉
∣∣∣∣
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and so the (∗∗) is bounded above

lim sup
N→∞

1

H2

H−1∑
h,h′=0

∣∣∣∣ 1

N

N∑
n=1

〈un+h, un+h′〉
∣∣∣∣ ≤ 1

H2

H−1∑
h,h′=0

s|h−h′|

The proof finally comes by decomposing this double sum.
Hence

1

H2

H−1∑
h,h′=0

s|h−h′| =
1

H

H−H0∑
h=0

1

H

H−1∑
h′=h

sh′−h +

1

H

H−H0∑
h′=0

1

H

H−1∑
h=h′+1

sh−h′ +
1

H2

H−1∑
h,h′=H−H0

s|h−h′|

But since the inequality (∗) holds, the first two terms in the right hand equation are less than ε
Taking H big enough and by the boundness of un we finally have that

‖ 1

N

N∑
n=1

un‖ < 4ε

5.4 SZ Property for Kronecker systems and weak mixing sys-
tems

Kronecker system is a compact metrizable abelian groupGwith a Borel σ- algebra. Now let a ∈ G
and Ra(g) = ag a group rotation. Let also mG the Haar measure.

Theorem 5.4.1. Let (G,B(G),mG, Ra) be a Kronecker system. Then the SZ property holds i.e.
for all k ∈ N and for A ∈ B(G) with mG(A) > 0

lim inf
N→∞

1

N

N∑
n=1

mG

(
A ∩R−na A ∩ ... ∩R−kna A

)
> 0.

Proof. For any function f on G set
f g(h) = f(gh)

We claim that for any f ∈ L∞mG the map

L : G→ L1(mG)

g 7→ f g

71



is continuous with respect the metric d on G.

Let ε > 0 and since C(G) is dense in L1(mG) pick an f̃ ∈ C(G) such that ‖f − f̃‖ < ε.
From the continuity of f̃ there is a δ > 0 such that

d(g1, g2) < δ ⇒
∣∣f̃(g1h)− f̃(g2h)

∣∣ < ε ∀h ∈ G.

Now for d(g1, g2) < δ

‖f g1 − f g2‖1 = ‖f (g1) − f̃ (g1) + f̃ (g1) − f̃ (g2) + f̃ (g2) − f (g2)‖1 ≤

‖f (g1) − f̃ (g1)‖1 + ‖f̃ (g1) − f̃ (g2)‖1 + ‖+f̃ (g2) − f (g2)‖1 < 3ε

and so the map L is continuous.

Now for a fixed f ∈ L∞mG it is clear that the map g 7→ f (gi) is continuous from G → L1(mG)
for all o ≤ i ≤ k.
We claim that the map

φ(g) =

∫
G

f(h)f(gh)...f(gkh)dmG(h)

is continuous.

For any ε > 0 there is a δ such that

d(g1, g2) < δ ⇒ ‖f (gi1) − f (gi2)‖1 <
ε

‖f‖k∞k

and∣∣∣∣φ(g1)− φ(g2)

∣∣∣∣ =

∣∣∣∣ ∫
G

f(h)f(g1h)...f(gk1h)dmG(h)−
∫
G

f(h)f(g2h)...f(gk2h)dmG(h)

∣∣∣∣ =

∣∣∣∣ ∫
G

f(h)(f(g1h)−f(g2h))...f(gk1h)dmG(h)+

∫
G

f(h)f(g2h)(f(g21h)−f(g22h))...f(gk1h)dmG(h)+

∫
G

f(h)f(g2h)f(g22h)(f(g31h)− f(g32h))....f(gk1h)dmG(h) + ...∫
G

f(h)f(g2h)f(g22h)...(f(gk1h)− f(gk2h))dmG(h)

∣∣∣∣ ≤∣∣∣∣ ∫
G

f(h)(f(g1h)−f(g2h))...f(gk1h)dmG(h)

∣∣∣∣+∣∣∣∣ ∫
G

f(h)f(g2h)(f(g21h)−f(g22h))...f(gk1h)dmG(h)

∣∣∣∣
+...+

∣∣∣∣ ∫
G

f(h)f(g2h)f(g22h)...(f(gk1h)− f(gk2h))dmG(h)

∣∣∣∣ ≤
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k
ε

‖f‖k∞k
= ε.

Finally we claim that the limit

lim inf
N→∞

1

N

N∑
n=1

mG

(
A ∩R−na A ∩ ... ∩R−kna A

)
exists and it is positive.
Indeed the map φ is continuous and our space (G,B(G),mG, Ra) is uniquely ergodic and so

lim
n→∞

1

n

n∑
j=1

φ(aj) =

∫
G

φ(h)dmG(h)

and since φ(1G) > 0 and φ ≥ 0 we conclude the proof.

The following proof of SZ property for weak mixing systems is not necessary for the proof of
Furstenberg’s multiple recurrence theorem but we will use similar techniques for a relatively weak
mixing extension in the next chapter.

Theorem 5.4.2. (X,BX , µ, T ) be a weak mixing measure preserving system. Then the SZ property
holds.

Proof. In particular we will prove that for any k ∈ N and any functions f1, ..fk ∈ L∞µ , It holds

1

N

N−1∑
n=0

Un
T f1U

2n
T f2U

3n
T f3...U

kn
T fk

L2
µ−→
∫
f1dµ

∫
f2dµ....

∫
fkdµ (∗)

and if we do , since strong convergence implies weak convergence

〈 1

N

N−1∑
n=0

Un
T f1U

2n
T f2U

3n
T f3...U

kn
T fk −

∫
f1dµ

∫
f2dµ....

∫
fkdµ, f0〉

N→∞−−−→ 0

⇒ 1

N

N−1∑
n=0

f0U
n
T f1U

2n
T f2U

3n
T f3...U

kn
T fk

N→∞−−−→
∫
f0dµ

∫
f1dµ

∫
f2dµ....

∫
fkdµ.

And finally if we select each fi to be χA we have the SZ property for any A ∈ BX with µ(A) > 0.
The proof will come by induction on k.
For k = 1 since our measure preserving system is weak mixing it is also ergodic. By Von Neumann
mean ergodic theorem the convergence (∗) holds.
For k = 2 if f1 or f2 is constant the convergence (∗) is true from the kase k = 1 and so we can
assume that

∫
f1 = 0. We will aply Van der Corput lemma.
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Let un = Un
T f1U

2n
T f2 and

sh = lim
N→∞

1

N

N∑
n=1

〈un+h, un〉 = lim
N→∞

1

N

N∑
n=1

〈Un+h
T f1U

2(n+h)
T f2, U

n
T f1U

2n
T f2〉

= lim
N→∞

1

N

N∑
n=1

∫
X

Un+h
T f1U

2(n+h)
T f2U

n
T f1U

2n
T f2dµ ( since T preserves measure µ)

= lim
N→∞

1

N

N∑
n=1

∫
X

Uh
Tf1U

n+2h
T f2f1U

n
T f2dµ

= lim
→∞

1

N

N∑
n=1

∫
X

(f1U
h
Tf1)U

n
T (f2U

2h
T f2)dµ =

∫
X

f1U
h
Tf1dµ

∫
X

f2U
2h
T f2dµ

(where the last equality holds by the mean ergodic theorem). T is weak mixing so T 2 is weak
mixing and therefore T × T 2 is weak mixing with respect to the measure µ× µ. We write f1 ⊗ f2
for the function (x, y) 7→ f1(x)f2(y).

lim
H→∞

1

H

H−1∑
h=0

sh = lim
H→∞

1

H

H−1∑
h=0

∫
X

f1U
h
Tf1dµ

∫
X

f2U
2h
T f2dµ =

lim
H→∞

1

H

H−1∑
h=0

∫
X×X

(f1 ⊗ f2)Uh
T×T 2(f1 ⊗ f2)d(µ× µ) = (by ergodicity of T × T 2)

(∫
X×X

(f1 ⊗ f2)d(µ× µ)

)2

=(∫
X

f1dµ

)2(∫
X

f2dµ

)2

= 0

and therefore by the Van der Corput lemma we have the result for case k = 2.
Now for the general case we assume that

lim
N→∞

‖ 1

N

N∑
n=1

M∏
i=1

U in
T fi −

M∏
i=1

∫
X

fidµ‖L2 = 0 for all M = 1, 2...k − 1 and fi ∈ L∞µ .

Let un =
∏M

i=1 U
in
T fi and again we can assume that

∫
X
fjdµ = 0 for some j.
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un is bounded since fi ∈ L∞µ . Hence ,

〈un+h, un〉 =

∫
X

k∏
i=1

(
U in
T fi

)(
U
i(n+h)
T fi

)
dµ

=

∫
X

Un
T f1U

2n
T f2...U

kn
T fkU

n+h
T f1...U

k(n+h)
T fk

( since T preserves measure µ) =

∫
X

f1UTf2...U
(k−1)n
T fkU

h
Tf1...U

(k−1)n+kh
T fkdµ

=

∫
X

f1U
h
Tf1

k∏
i=2

U
(i−1)n
T

(
fiU

ih
T fi
)
dµ.

Now

sh = lim
N→∞

1

N

N∑
n=1

〈un+h, un〉 = lim
N→∞

1

N

N∑
n=1

∫
X

f1U
h
Tf1

k∏
i=2

U
(i−1)n
T

(
fiU

ih
T fi
)
dµ =

lim
N→∞

∫
X

f1U
h
Tf1

1

N

N∑
n=1

k∏
i=2

U
(i−1)n
T

(
fiU

ih
T fi
)
dµ =

by the inductive hypothesis and the fact that strong convergence implies weak convergence

k∏
i=1

∫
X

fiU
ih
T fi.

Using same arguments as in the case k = 2 , T is weak mixing so T l is weak mixing for all l ∈ N
and finally T×T 2×...×T k is weak mixing transformation with respect to the measure µ×µ×...×µ
k-times. We write again f1 ⊗ f2 ⊗ ...⊗ fk for the function (x1, ..., xk) 7→ f1(x1), ...fk(xk).

lim
H→∞

1

H

H−1∑
h=0

sh = lim
H→∞

1

H

H−1∑
h=0

∫
X

f1 ⊗ f2 ⊗ ...⊗ fkUh
T×T 2×...×Tkf1 ⊗ f2 ⊗ ...⊗ fkdµ

And by the ergodicity of T × T 2 × ...× T k

=

(∫
X×X×...×X

f1 ⊗ f2 ⊗ ...⊗ fkdµ...dµ
)2

=

∫
X

f1dµ....

∫
X

fkdµ = 0.

And this concludes the proof by Van der Corput lemma.
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5.5 Chains of SZ factors.
The following proposition shows that SZ property survives by taking limits.

Proposition 5.5.1. Let (X,BX , µ, T ) be an invertible measure preserving system on a Borel prob-
ability space (X,BX , µ). Let A1 ⊆ A2 ⊆ ... ⊆ be an increasing chain of factors ( in other words
T -invariant sub-σ-algebras of BX). If An is SZ for every n ∈ N then the factor A = σ

(⋃
n≥1An

)
is also SZ.

Proof. For any ε > 0 there is an n ∈ N and an A1 ∈ An such that

µ(A14A) < ε

In particular let k ∈ N and η = 1
2k+1

, ε = ηµ(A)
4
η. Then there is A1 ∈ An such that

µ(A14A) <
ηµ(A)

4
η.

We define
A0 =

{
x ∈ A1|µAnx (A) ≤ 1− n

}
.

We claim that
µ(A0) >

1

2
µ(A).

For the proof of the claim

ε =
ηµ(A)

4
> µ(A14A) ≥ µ(A1 \ A)

=

∫
A1

χA1\Adµ =

∫
A1

∫
χA1\Adµ

An
x dµ(x) =

∫
A1

µAnx (A1 \ A)dµ(x)

≥
∫
A1\A0

(1− µAnx (A))dµ(x) by definition of A0

≥
∫
A1\A0

ηdµ(x) = ηµ(A1 \ A0)

Hence
1

4
ηµ(A) > ηµ(A1 \ A0)

and finally

µ(A1 \ A0) <
1

4
µ(A).

Therefore one has that

µ(A0) = µ(A1)− µ(A1 \ A0) >
3

4
µ(A)− 1

4
µ(A) =

1

2
µ(A).
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Next we show that k-multiple recurrence for the set A0 ∈ An implies k-multiple recurrence for a
given set A. In particular it holds

µ(A ∩ T−nA ∩ ... ∩ T−knA) ≥ 1

2
µ(A0 ∩ T−nA0 ∩ ... ∩ T−knA0).

For the proof let
x ∈ A0 ∩ T−nA0 ∩ ... ∩ T−knA0

⇒ x ∈ A0 ⇒ µAnx (A) ≥ 1− η.

With same arguments

x ∈ T−jnA0 ⇒ µAnx
(
T−jn(A)

)
≥ 1− η j = 0, 1, 2..., k

and so
µAnx

(
A ∩ T−nA ∩ ... ∩ T−knA

)
≥ 1

2
⇒∫

A0∩T−nA0∩...∩T−knA0

µAnx
(
A ∩ T−nA ∩ ... ∩ T−knA

)
dµ(x) ≥ 1

2
µ(A0 ∩ T−nA0 ∩ ... ∩ T−knA0).

Now since the sub-σ algebra An has the SZ property

lim inf
N→∞

1

N

N∑
n=1

µ(A∩T−nA∩ ...∩T−knA) ≥ 1

2
lim inf
N→∞

1

N

N∑
n=1

µ(A0∩T−nA0∩ ...∩T−knA0) > 0.

5.6 Definitions of relatively weak mixing extension and com-
pact extension.

We begin this section by reminding that a Kronecker system (G,B(G),mG, Ra) has the property
that for any f ∈ L2

mG
(G) the orbit {Un

Rf}n∈Z is a totally bounded subset of L2
mG

(G). This property
does not hold for any measure preserving system.

Definition 5.6.1. Let (X,BX , µ, T ) be a measure preserving system on a Borel probability space
(X,BX , µ) and (Y,BY , ν, S) a factor of (X,BX , µ, T ). A function f ∈ L2

µ(X) is almost periodic
(AP) with respect to the factor (Y,BY , ν, S) if for every ε > 0 there exist r ≥ 1 and functions
g1, g2, ...gr ∈∈ L2

µ(X) such that

min
s=1,2,...r

‖Un
T f − gs‖L2

µy
< ε

for all n ≥ 1 and for almost every y ∈ Y .

Definition 5.6.2. An extension is a compact extension if the set of functions that are almost periodic
with respect to the factor are dense in L2

µ(X).
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As we have seen the case of a weak mixing system and a Kronecker system are opposite
extreme to each other but they both have the SZ property. With define the analogous extreme
opposite case of a compact extension.

Definition 5.6.3. Let (X,BX , µ, T ) be an ergodic measure preserving system on a Borel proba-
bility space (X,BX , µ) and (Y,BY , ν, S) a factor of (X,BX , µ, T ). The factor is called relatively
weak mixing if the system (X × X,µ ×Y µ, T × T ) is ergodic where µ ×Y µ is the relatively
independent joinig over Y . If Y is trivial then the extension is relatively weak mixing if and only if
X is a weak mixing system.

In order to understand the definition of relatively weak mixing system notice that if Y is trivial
the relatively independent joining µ×Y µ is exactly the product measure µ× µ.

5.7 SZ Property for compact extensions.
Theorem 5.7.1. (X,BX , µ, T ) be an invertible measure preserving system on a Borel probability
space (X,BX , µ) and (Y,BY , ν, S) a compact extension of (X,BX , µ, T ). If Y is SZ then so is X .

Proof. Clearly in order to prove the SZ property

lim inf
N→∞

1

N

N∑
n=1

µ(B ∩ T−nB ∩ T−2nB ∩ ... ∩ T−knB) > 0

for a B ∈ BX with µ(B) > 0 it is enough to prove it for a subset of B. This achieved by removing
a part of B that is element of π−1BY where π is the factor map.
We begin the proof with this lemma

Lemma 5.7.2. In the same notation as our theorem let B ∈ BX with µ(B) > 0. Then there exist
a set B̃ ⊆ B with µ(B̃) > 0 such that
1) χB̃ is AP relative to Y and
2) µy(B̃) > 1

2
µ(B̃) or µy(B̃) = 0 for all y ∈ Y .

Proof. We will begin by defining B′ ⊆ B which satisfies the second property and then we will
define a set B̃ ⊆ B

′ that satisfies also the first property. Let π : X → Y be the factor map and we
define

C =
{
y ∈ Y |µy(B) ≤ 1

2
µ(B)

}
Then the set C is measurable and so B′ = B \ π−1(C) is also measurable. Now for almost every
y ∈ Y \ C the set π−1(C) is µy-null set. Hence

µy(B
′
) = µy(B) >

1

2
µ(B) ≥ 1

2
µ(B

′
)

78



For almost every y ∈ C the support of µy is contained on π−1(C) and so µy(B
′
) = 0.

If y ∈ C then

µy(B \B
′
) = µy(B) ≤ 1

2
µ(B)

and if y /∈ C then
µy(B \B

′
) = 0

and by integrating over all y ∈ Y

µ(B \B′) =

∫
µy(B \B

′
)dν(y) ≤ 1

2
µ(B)

and therefore
µ(B

′
) ≥ 1

2
µ(B) > 0

so the set that we defined has positive measure. Now for the first property let a sequence (εl)l≥1

εl =
1

2l+2
µ(B

′
)

with
∞∑
n=1

εl =
1

4
µ(B

′
) <

1

2
µ(B

′
) (∗).

Now by the compact extension property the set of AP functions is dense and so for every l ∈ N
there is fl such that

‖χB′ − fl‖2L2
µ

=

∫ ∣∣χB′ − fl∣∣2dµ < ε2l .

Let
Bl =

{
y ∈ Y |‖χB′ − fl‖L2

µy
≥ ε
}

measurable and

ν(Bl) =

∫
Bl

dν(y) ≤ 1

εl

∫
Bl

‖χB′ − fl‖2L2
µy
dν(y) (Markov-Chebysev)

≤ 1

εl

∫
‖χB′ − fl‖2L2

µy
dν(y) =

1

εl
‖χB′ − fl‖2L2

µ
< εl (∗∗)

Let
B̃ = B

′ \ π−1
(⋃
l≥1

Bl

)
and from (∗), (∗∗)

µ(B̃) = µ

(
B
′ \ π−1

(⋃
l≥1

Bl

))
>

1

2
µ(B)
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Now for the AP property of χB̃ let ε > 0 and l0 such that εl0 <
1
2
ε and g1, g2, ...gm ∈ L2 in order

min
s=1,2,...m

‖Un
T fl − gs‖L2

µy
<

1

2
ε.

If Sny /∈
⋃
l≥1Bl then

‖Un
T fl0 − Un

TχB̃‖L2
µy

= ‖fl0 − χB̃‖L2
µSny

<
ε

2
.

If Sny ∈
⋃
l≥1Bl then

‖Un
TχB̃‖L2

µy
= ‖χB̃‖L2

µSny
= 0

We set g0 = 0 and by the triangle inequality

min
0≤j≤m

‖Un
TχB̃ − gj‖L2

µy
≤ min

0≤j≤m

(
‖Un

T fl0 − Un
TχB̃‖L2

µy
+ ‖Un

T fl0 − gj‖L2
µy

)
< ε

as we needed.

For the proof of the SZ property for compact extensions we will use Van der Waerden’s theo-
rem. By the previous lemma it is sufficient to prove the recurrence

lim inf
N→∞

1

N

N∑
n=1

µ(B ∩ T−nB ∩ T−2nB ∩ ... ∩ T−knB) > 0

for a set B ∈ BX that
1) f = χB is AP relative to Y and
2) µy(B) > 1

2
µ(B)∀y ∈ A for A ∈ BY with positive measure.

For ε = µ(B)
6(k+1)

> 0 we can find from the AP property, functions

g1, g2, ...gr ∈ L2
µ such that min

s=1,...r

(
‖Un

T f − gs‖L2
µy

)
< ε

∀n ∈ Z and almost every y ∈ Y . Without loss of generality we may assume that ‖gs‖∞ ≤ 1. By
Van den Waerden theorem we can choose a big enoughK for which for any coloring of {1, 2, ...K}
with r colours there is an arithmetic progression of length k + 1. By the SZ property of the set A
it follows

lim inf
N→∞

1

N

N∑
n=i

ν(A ∩ T−nA ∩ T−2nA ∩ ... ∩ T−KnA) ≥ c0 > 0.

Let
RK =

{
n ∈ N|ν(A ∩ S−nA ∩ ... ∩ S−KnA)

}
then there is a N0 > 0 big enough and a constant c1 depending only on c0 such that

1

N0

|RK ∩ {1, 2, ...N0}| > c1
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and hence it follows that the set

RK =
{
n ∈ N|ν(A ∩ S−nA ∩ ... ∩ S−KnA > c1

}
has positive lower density. Let n ∈ RK then for every y ∈ A ∩ S−nA ∩ ... ∩ S−KnA it holds

min
s=1,...r

(
‖U in

T f − gs‖L2
µy

)
< ε

for 1 ≤ i ≤ K. Therefore we choose a coloring c(i) in {1, 2, ..K} with r colours such that

‖U in
T f − gs‖L2

µy
< ε.

By Van de Waerden theorem there is a monochromatic arithmetic progression

{i, i+ d, ...i+ kd} ⊆ {1, 2, ...K}

and so the is some g∗ ∈ {g1, g2, ...gr} for which

‖U (i+jd)n
T f − g∗‖L2

µy
< ε

for j = 0, 1, ...K. Since UT preserves measure

‖U jdn
T f − U−inT g∗‖L2

µ
Siny

< ε

f or j = 0, 1, ...K. Since j = 0 is allowed here

‖U jdn
T f − f‖L2

µ
Siny

≤ ‖U jdn
T f − U−inT g∗‖L2

µ
Siny

+ ‖U−inT g∗ + f‖L2
µ
Siny

< 2ε. (∗)

If we set M the number of arithmetic progressions of length k + 1 in {1, 2...K} it follows that for
a specific n the set

A ∩ S−nA ∩ ... ∩ S−KnA
is partitioned into finitely many sets

Dn,1, ...Dn,M

with the property i, U−inT g, d do not change in such given set. In particular if n ∈ Rk

ν(A ∩ S−nA ∩ ... ∩ S−KnA) > c1.

Now for at least on of this sets D = Dn,l for some l (and for the corresponding arithmetic progres-
sion {i, i+ d, ..., i+ kd}) it holds ν(Dn,l) >

c1
M

because otherwise

ν
( M⋃
l=1

Dn,l

)
=

M∑
l=1

ν
(
Dn,l

)
< M

c1
M

= c1.

Now since
D ⊆ A ∩ S−nA ∩ ... ∩ S−KnA
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it holds
µSiny(B) >

1

2
µ(B) y ∈ D(∗∗)

and therefore

µSiny(B ∩ T−dnB ∩ ... ∩ T−kdnB) =

∫
fUdn

T f...Ukdn
T fdµSiny and by(∗)

>

∫
fkdµSiny − (k + 1) >

1

2
µ(B)− (k + 1)ε by (∗∗).

The last inequallity holds for y ∈ D and so i is constant in this set and by integrating both parts in
D with respect to Siny ∈ SinD we have

µ(B ∩ T−dnB ∩ ... ∩ T−kdnB) >
1

3
µ(B)ν(D) ≥ 1

3
c1µ(B)

for all n ∈ RK , but d may depend on n. Now let

R
′
=
{
n ∈ N|µ(B ∩ T−nB ∩ ... ∩ T−KnB) ≥ c1

3M
µ(B)

}
and therefore for every n ∈ RK there is d ∈ {1, ..., K} such that dn ∈ R

′ . We claim that this
implies that R′ has positive lower density and in fact

lim inf
N→∞

|R′ ∩ {1, 2, ...N}|
N

≥ c1
2K2

.

and this will conclude the proof. For the proof of the claim let N big enough in order to have more
than c1

2K
elements in Rk∩{1, 2, ...NK} and for all these n there exist some d ∈ {1, 2, ...K} such that

dn ∈ R′ . Since there are at most K many n′ that give the same dn we have the proof of the claim.

5.8 SZ Property for relatively weak-mixing extensions.
In this section we will prove that relatively weak mixing extension preserves the SZ property.

Theorem 5.8.1. (X,BX , µ, T ) be a measure preserving system on a Borel probability space (X,BX , µ)
and (Y,BY , ν, S) a relatively weak mixing extension of (X,BX , µ, T ). Let A = π−1BY the sub-σ
algebra of BX . Then for any k ∈ N and sets B0, B1, ..., Bk ∈ BX it holds

lim
N→∞

1

N

N∑
n=1

∫ [
µAx
(
B0∩T−nB1...∩T−knBk

)
−µAx (B0)µ

A
x (T−nB1)µ

A
x (T−knBk)

]2
dµ = 0 (∗)

With respect to the product of normalized counting measure on [1, N ] and µ we have that

lim
N→∞

1

N

N∑
n=1

∫ [
µAx
(
B0 ∩ T−nB1... ∩ T−knBk

)
− µAx (B0)µ

A
x (T−nB1)µ

A
x (T−knBk)

]2
dµ = 0
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is equivalent to ∫ ∫
|F (n, x)|2dm = 0

where m is the product measure and

F (n, x) = µAx
(
B0 ∩ T−nB1... ∩ T−knBk

)
− µAx (B0)µ

A
x (T−nB1)µ

A
x (T−knBk)

and so

m
(
(n, x)|F (n, x) > ε

)
≤ ‖F‖1

ε
→ 0

finally it follows that for every ε > 0 there is N0 ∈ N such that for every N ≥ N0∣∣µAx (B0 ∩ T−nB1... ∩ T−knBk

)
− µxA(B0)µ

A
x (T−nB1)µxA(T−knBk)

∣∣ < ε

for m-almost every (n, x) ∈ [1, N ]×X for large enough N .

We notice that for k = 1 and (Y,BY , ν, S) the trivial factor, equation (∗) gives the definition of
weak-mixing. The previous theorem gives immediately the following interesting proposition that
if a measure preserving system is weak mixing then it is weak mixing of all orders.

Corollary 5.8.2. Let (X,BX , µ, T ) be a weak mixing measure preserving system then for every
B0, B1, ..., Bk ∈ BX it holds

lim
N→∞

1

N

N∑
n=1

[
µ
(
B0 ∩ T−nB1... ∩ T−knBk

)
− µ(B0)µ(T−nB1)µ(T−knBk)

]2
= 0

What we need for Furstenberg’s proof follows from the next proposition a concequence of
Theorem5.8.1 .

Theorem 5.8.3. (X,BX , µ, T ) be a measure preserving system on a Borel probability space (X,BX , µ)
and (Y,BY , ν, S) a relatively weak mixing extension of (X,BX , µ, T ).If Y satisfies the SZ property
then so does X .

Proof. Let a set B ∈ BX with µ(B) > 0 and for each a > 0

A =
{
x ∈ X|µAx (B) > a

}
Then there is an a > 0 for which µ(A) > 0 from Theorem 4.1.3 (1) such that µ(A) > 0 otherwise
µAx (B) = 0 almost everywhere and that contradicts the fact that µ(B) > 0. Then for a given ε > 0

1

N

N∑
n=1

µ(B ∩ T−nB... ∩ T−knB) =
1

N

N∑
n=1

∫
µAx (B ∩ T−nB... ∩ T−knB)dµ(x).

And we claim that

1

N

N∑
n=1

∫
µAx (B∩T−nB...∩T−knB)dµ(x) =

1

N

N∑
n=1

∫ (
µAx (B)µAx (T−nB)...µAx (T−knB)−ε

)
dµ(x)−ε
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Indeed by the previous theorem we have that

µAx (B ∩ T−nB... ∩ T−knB) ≥ µAx (B)µAx (T−nB)...µAx (T−knB)− ε

for m-almost every (n, x) ∈ [1, N ]×X and for the rest possible pairs that∣∣µAx (B0 ∩ T−nB1... ∩ T−knBk

)
− µAx (B0)µ

A
x (T−nB1)µ

A
x (T−knBk)

∣∣ < ε

does not hold we have

µAx (B ∩ T−nB... ∩ T−knB) ≥ 0 ≥ µAx (B)µAx (T−nB)...µAx (T−knB)− ε− 1

so by integrating both parts over all pairs (n, x) ∈ [1, N ] × X with respect to the measure m we
have

1

N

N∑
n=1

∫
µAx (B∩T−nB...∩T−knB)dµ(x) =

1

N

N∑
n=1

∫ (
µAx (B)µAx (T−nB)...µAx (T−knB)−ε

)
dµ(x)−ε (∗∗)

Now if x ∈ A ∩ T−nA... ∩ T−knA then

µAx (T−lnB) = µATlnx (B) > a

for 0 ≤ l ≤ k. So for every n individually we get

1

N

N∑
n=1

∫
µAx (B ∩ T−nB... ∩ T−knB)dµ(x) =

1

N

N∑
n=1

∫ (
µAx (B)µAx (T−nB)...µAx (T−knB)− ε

)
dµ(x)− ε

≥ 1

N

N∑
n=1

∫
A∩T−nA...∩T−knA

(
µAx (B)µAx (T−nB)...µAx (T−knB)− ε

)
dµ(x)− ε

≥ (ak − ε) 1

N

N∑
n=1

µ(A ∩ T−nA... ∩ T−knA)− ε

and by taking limits in both sides we have

lim inf
N→∞

1

N

N∑
n=1

µ(B ∩ T−nA... ∩ T−knB) ≥ ak lim inf
N→∞

1

N

N∑
n=1

µ(A ∩ T−nA... ∩ T−knA)

and so we have the SZ property for the system (X,BX , µ, T ) as requiered.

It remains the proof of theorem 5.8.1 . We will prove the theorem by induction on k.
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Theorem 5.8.4. Let (X,BX , µ, T ) be a measure preserving system on a Borel probability space
(X,BX , µ) and (Y,BY , ν, S) a relatively weak mixing extension of (X,BX , µ, T ). LetA = π−1BY
the sub-σ algebra of BX . Then for any f, g ∈ L∞µ it holds

lim
N→∞

1

N

N∑
n=1

‖E(fUn
T g|A)− E(f |A)SnTE(g|A)‖2 = 0

and by following same arguments as in the formulation of theorem 5.8.1 we have equivalently that
for every ε > 0 positive and for big enough n

|E(fUn
T g|A)− E(f |A)SnTE(g|A)| < ε

for almost every points (n, y) with respect to the product of normalized counting measure on [1, N ]
and ν. Where again we used the maximal inequallity

m
(
z|F (z) > ε

)
<
‖F‖1
ε

to the function
F (n, y) = |E(fUn

T g|A)− E(f |A)SnTE(g|A)|2.
and m is the product measure. This implies that that if the result holds seperatly for f1, g and f2, g
then it holds for f = f1 + f2, g.

Proof. Let f1 ∈ L∞(A) then

E(f1U
n
T g|A) = f1E(Un

T g|A) = E(f1|A)E(Un
T g|A)

and so our statement holds. Now we may assume without loss of generality that E(f1|A) = 0
since

f = E(f|A) + (f − E(f |A))

By assumption T̂ = T × T is ergodic for the system

(X ×X,BX × BX)

with respect to the measure µ̂. From the mean ergodic theorem and proposition 4.4.5 (c) we have

lim
N→∞

1

N

N∑
n=1

∫ (
E(fUn

T g|A)
)
dν = lim

N→∞

∫
f ⊗ f 1

N

N∑
n=1

Un
T̂
g ⊗ gdµ̂ (∗)

and since 1
N

∑N
n=1 U

n
T̂
g ⊗ g → C in L2 the equation (∗) beomes

=

∫
f ⊗ fCdµ̂

= C

∫
E(f |A)2dν = 0

and our theorem hold for the case of k = 1.
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For the proof of the theorem we will need the following proposition.

Proposition 5.8.5. Let (X,BX , µ, T ) be an invertible measure preserving system on a Borel proba-
bility space (X,BX , µ) and (Y,BY , ν, S) an invertible relatively weak mixing extension of (X,BX , µ, T ).
Let A = π−1BY the sub-σ algebra of BX . Then for any f1, f2, ..., fk ∈ L∞(X) ,

‖ 1

N

N∑
n=1

Un
T f1U

2n
T f2...U

kn
T fk −

1

N

N∑
n=1

Un
TE(f1|A)U2n

T E(f2|A)...Ukn
T E(fk|A)‖2

N→∞−−−→ 0

Proof. We will prove again this proposition by induction on k.
For the case k = 1 by mean ergodic theorem we have

1

N

N∑
n=1

Un
T f

L2

−→
∫
fdµ

and
1

N

N∑
n=1

Un
TE(f |A)

L2

−→
∫
fdµ.

for the general case

1

N

N∑
n=1

Un
T f1U

2n
T f2...U

kn
T fk −

1

N

N∑
n=1

Un
TE(f1|A)U2n

T E(f2|A)...Ukn
T E(fk|A)

=
1

N

N∑
n=1

Un
T (f1 − E(f1|A)U2n

T f2...U
kn
T fk

+...+
1

N

N∑
n=1

Un
TE(f1|A)U2n

T E(f2|A)...Ukn
T (fk − E(fk|A)).

Again with out loss of generality we may assume that there is an l ,1 ≤ l ≤ k such that E(fl|A) =
0. We will aply the Van Der Corput lemma so let

un = Un
T f1U

2n
T f2...U

kn
T fk
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un is bounded since fi ∈ L∞µ . Hence ,

〈un+h, un〉 =

∫ k∏
i=1

(
U in
T fi

)(
U
i(n+h)
T fi

)
dµ

=

∫
Un
T f1U

2n
T f2...U

kn
T fkU

n+h
T f1...U

k(n+h)
T fk

( since T preserves measure µ)

=

∫
f1UTf2...U

(k−1)n
T fkU

h
Tf1...U

(k−1)n+kh
T fkdµ

=

∫
f1U

h
Tf1

k∏
i=2

U
(i−1)n
T

(
fiU

ih
T fi
)
dµ.

Now

sh = lim
N→∞

1

N

N∑
n=1

〈un+h, un〉 = lim
N→∞

1

N

N∑
n=1

∫
f1U

h
Tf1

k∏
i=2

U
(i−1)n
T

(
fiU

ih
T fi
)
dµ

=

∫
f1U

h
Tf1

1

N

N∑
n=1

Un
T (f2U

2h
T f2)...U

(k−1)h
T (fkU

kh
T fk)dµ

but from the inductive hypothesis

1

N

N∑
n=1

Un
T (f2U

2h
T f2)...U

kh
T (fkU

(k−1)h
T fk)−

1

N

N∑
n=1

Un
TE(f2U

2h
T f2|A)...U

(k−1)h
T E(fkU

kh
T fk|A)

L2

−→ 0

and so for big enough N and since strong convergence implies weak convergence with an error at
most ε‖f1‖∞ we have

lim
N→∞

1

N

N∑
n=1

〈un+h, un〉 '
∫
f1U

h
Tf1

1

N

N∑
n=1

Un
TE(f2U

2h
T f2|A)...U

(k−1)h
T E(fkU

kh
T fk|A)dµ

=
1

N

N∑
n=1

∫
f1U

h
Tf1U

n
TE(f2U

2h
T f2|A)...U

(k−1)h
T E(fkU

kh
T fk|A)dµ

=
1

N

N∑
n=1

∫
E(f1U

h
Tf1|A)Un

TE(f2U
2h
T f2|A)...U

(k−1)h
T E(fkU

kh
T fk|A)dµ

sh = lim sup
N→∞

∣∣ 1

N

N∑
n=1

〈un+h, un〉
∣∣
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and f1, ..., fk ∈ L∞ and each integral inside the average by the Cauchy Schwarz inequality is
bounded in absolute value by C‖E(flU

lh
T fl|A)‖2 for some constant depending only on f1, ..., fk

hence
1

H

H−1∑
h=0

sh ≤
C

H

H−1∑
h=0

‖E(flU
lh
T fl|A)‖2.

By theorem 5.8.4 under the assumption that E(fl|A) = 0 we have that

1

H

H−1∑
h=0

sh
H→∞−−−→ 0

and finally by the Van der Corput lemma

‖ 1

N

N∑
n=1

un‖2 = ‖ 1

N

N∑
n=1

Un
T f1U

2n
T f2...U

kn
T fk‖2 → 0.

In section Relatively Independent Joining we saw that X ×A X is also en extension of Y . In
order to prove theorem 5.8.1 we will use the following lemma.

Lemma 5.8.6. If (X,BX , µ, T )→ (Y,BY , ν, S) is a relatively weak-mixing extension then
X ×A X → Y also is.

Proof. Let X̂ = X ×X ,T̂ = T × T and

µ̂ = µ×BY µ =

∫
µ(y)× µ(y)dν(y)

by the hypothesis the system (X̂, µ̂, T̂ ) is ergodic.

Let X̃ = X̂ × X̂ and T̃ = T̂ × T̂ and the measure

µ̃ = µ̂×BY µ̂ =

∫
µ̂A(x1,x2) × µ̂

A
(x1,x2)

dµ̂(x1, x2).

We claim that the system (X̃, µ̃, T̃ ) is ergodic.
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Let F = f1 ⊗ f2 ⊗ f3 ⊗ f4 and G = g1 ⊗ g2 ⊗ g3 ⊗ g4 for fi, gi ∈ L∞. For big enough N

1

N

N∑
n=1

∫
FUT̃Gdµ̃ =

1

N

N∑
n=1

∫
(

∫
f1U

n
T g1f2U

n
T g2f3U

n
T g3f4U

n
T g4dµy)dν

=
1

N

N∑
n=1

∫
E(f1U

n
T g1|A)(f2U

n
T g2|A)(f3U

n
T g3|A)(f4U

n
T g4|A)dν

and by theorem 5.8.4

=
1

N

N∑
n=1

∫
E(f1|A)...E(f4|A)Un

S

(
E(g1|A)...E(g4|A)

)
dν

=

∫
E(f1|A)...E(f4|A)

1

N

N∑
n=1

Un
S

(
E(g1|A)...E(g4|A)

)
dν

now since the system (Y,BY , νS) is ergodic

lim
N→∞

1

N

N∑
n=1

Un
S

(
E(g1|A)...E(g4|A)

)
=

∫
(

∫
g1dµy)...

∫
g4dµy)dν =

∫
Gdµ̂

finally we have that

lim
N→∞

∫
E(f1|A)...E(f4|A)

1

N

N∑
n=1

Un
S

(
E(g1|A)...E(g4|A)

)
dν

=

∫
Fdµ̂

∫
Gdµ̂.

Finally it remains the proof of theorem 5.8.1 for this section.

Proof. (theorem5.8.1) We need to show that for every f0, f1, ..., fk ∈ L∞(X,BX) it holds

lim
N→∞

N∑
n=1

∫ (
E(f0U

n
T f1...U

kn
T fk|A)− E(f0|A)Un

TE(f1|A)...Ukn
T E(fk|A)

)2
dµ = 0.

Let the claim is true for the first k − 1 functions. Let fk ∈ L∞(X,A) then by the properties of
conditional expectation and since fk is bounded we have

E(f0U
n
T f1...U

(k−1)n
T fk−1|A)Ukn

T E(fk|A) = E(f0U
n
T f1...U

kn
T fk|A)
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almost everywhere. By the inductive hypothesis and by using same arguments as before we deduce
the claim for f0, ...fk−1 ∈ L∞(X,BX) and fk ∈ L∞(X,A)
Now for the general case let fk ∈ L∞(X,BX), so it can be expressed as

fk = E(fk|A) + (fk − E(fk|A))

and without loss of generality we can again assume that E(fk|A) = 0. By the previous lemma we
may assume that the system (X × X,T × T, µ ×Y µ) is relatively weak mixing extension of Y .
Applying proposition 5.8.5 to the functions f1 ⊗ f1, ...fk ⊗ fk and by using the fact that

E(fk ⊗ fk|A) = E(fk|A)⊗ E(fk|A) = 0

we have

‖ 1

N

N∑
n=1

Un
T×Tf1 ⊗ f1U2n

T×Tf2 ⊗ f2...Ukn
T fk ⊗ fk‖2

N→∞−−−→ 0

with respect to the measure µ×Y µ. Now since strong convergence implies weak convergence we
have that

〈 1

N

N∑
n=1

Un
T×Tf1 ⊗ f1U2n

T×Tf2 ⊗ f2...Ukn
T fk ⊗ fk, f0 ⊗ f0〉

N→∞−−−→ 0

but

〈 1

N

N∑
n=1

Un
T×Tf1 ⊗ f1U2n

T×Tf2 ⊗ f2...Ukn
T fk ⊗ fk, f0 ⊗ f0〉

=

∫ (
1

N

N∑
n=1

(f0⊗f0)Un
T×T (f1⊗f1)...Ukn

T (fk⊗fk)
)
dµ×Y µ =

1

N

N−1∑
n=0

∫
E(f0U

n
T f1...U

kn
T fk|A)2dµ

and this shows that our property hold for any k ∈ N and this concludes the proof.

5.9 Dichotomy between relatively weak mixing extensions and
compact extensions.

In the next section we will prove the dichotomy between the two extreme scenarios of relatively
weak mixing and compact extension. Of course it doesnot hold that every extension or equivalently
every factor of a measure preserving system is either compact or relatively weak mixing but the
following less strong theorem holds.

Theorem 5.9.1. (X,BX , µ, T ) be an invertible measure preserving system on a Borel probability
space (X,BX , µ) and (Y,BY , ν, S) an invertible extension . Then one of the following holds.

1) X is a relatively weak mixing extension of Y or

2) there exists an indermediate extension X∗ with the property that X∗ is a non trivial compact
factor of Y .
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Proof. Let the measure preserving system

(X̃ = X ×X,BX ⊗ BX , µ̃ = µ×Y µ, T̃ = T × T ).

First we assume that the extension is not relatively weak mixing and we will construct the interme-
diate compact extension. In order to achive that we will use the equivalence between the extensions
and factors and so our goal is to construct a non trivial sub-σ algebra B∗. Let π : (X,BX , µ, T )→
(Y,BY , ν, S) the factor map. Now since our extension is not relatively weak mixing the system

(X̃ = X ×X,BX ⊗ BX , µ̃ = µ×Y µ, T̃ = T × T )

is not ergodic and so there is an non constant function H ∈ L∞(X ×X,BX ⊗BX) invariant under
the transformation T̃ .
Next we define the following convolution operator for any φ ∈ L2(X,BX , µ)

H : L2(X,BX , µ)→ L2(X,BX , µ)

by

H ∗ φ(x) =

∫
H(x, x′)φ(x′)dµy(x

′)

In order to prove that our operator is bounded in nL2(X,BX , µ) we give a different description of
the operator. We set NX = {∅, X} the trivial σ algebra on X and we claim that

H ∗ φ(x) = E(H(x, x′)φ(x′)|BX ⊗NX)(x, ·).

To see that this equation holds it is sufficient to show that

µ̃BX⊗NX(x,x′) = δx × µAx (∗)

because by the definition of the conditional measure

E(H(x, x′)φ(x′)|BX ⊗NX)(x, ·) =

∫
H(x, x′)φ(x′)dµ̃BX⊗NX(x,x′)

and if (∗) holds

=

∫
H(x, x′)φ(x′)dµy(x

′).

We will use the proposition 3.3.9 as follows. The measure δx × µAx is independent of x′ and hence
it it BX ⊗NX-measurable. The atom of BX ⊗NX is {x} ×X where δx × µAx has full mass. For
the last property of the proposition 3.3.9∫

δx × µAx dµ̃(x, x′) =

∫
δx × µAx dµ(x)

and since by definition

µ =

∫
µAz dµ(z)
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we have that ∫
δx × µAx dµ(x) =

∫ ∫
δx × µAx dµAz (x)dµ(z)

and finally since
µAx = µAz for µAz - almost everywhere x ∈ X∫ ∫
δx × µAx dµAz (x)dµ(z) =

∫ (∫
δxdµ

A
z (x)

)
× µAz dµ(z)

=

∫
µAz µ

A
z dµ(z) = µ̃

and by proposition 3.3.9
µ̃BX⊗NX(x,x′) = δx × µAx .

Next we prove the following identity

UT (H ∗ φ)(x) = H ∗ UT (φ)(x) ∀φ ∈ L2(X,BX , µ) (∗∗)

Indeed
UT (H ∗ φ)(x) = H ∗ φ(T (x)) =∫

H(Tx, x′)φ(x′)dµπ(Tx)(x
′) =

∫
H(Tx, x′)φ(x′)dµS(π(x))(x

′)

=

∫
H(Tx, Tx′)φ(Tx′)dµy(x

′)

and since H is T-invariant
= H ∗ UT (φ)(x)

By using same arguments we can easily show that (∗∗) holds for n-th iterate of UT . If φ ∈
L∞(X,BX , µ) then {Un

T (φ)|n ∈ Z} ⊆ L∞µy , the operator φ : H ∗ φ L2
µy → L2

µy is a compact
operator and therefore from (∗∗) for any fixed y the set {Un

T (H ∗ φ)|n ∈ Z} ⊆ L2
µy is totally

bounded for φ ∈ L∞(X,BX , µ). Note that we cannot state that H ∗ (φ) is AP relative to Y because
the ε-cover of Un

T (H ∗ φ) depends on y ∈ Y . We will see that the variation of y doesnot cause a
problem and hence we have the AP property.
Let y ∈ Y and ε > 0. By the totally bounded property of {Un

T (H ∗φ)|n ∈ Z} there is a M(y) with
the property

{U j
T (H ∗ φ)| |j| ≤M(y)}

is ε-dense to {Un
T (H ∗ φ)|n ∈ Z} with respect to µy. This procedure defines a map M : Y → N

by selecting the smallest integer M(y) such that the set {U j
T (H ∗ φ)| |j| ≤ M(y)} is ε-dense to

{Un
T (H ∗ φ)|n ∈ Z}.

This function M : Y → N is measurable since

M−1({0, 1, ...,M} = {y ∈ Y |M(y) ≤M}
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is in particular the set all y ∈ Y with the property that there is some j with |j| ≤M for which

‖Um
T (H ∗ φ)− U j

T (H ∗ φ)‖L2
µy

∀m ∈ Z

By proposition (3.3.9, (1) ) we have that the function α : Y → (0,+∞)

y → ‖Um
T (H ∗ φ)− U j

T (H ∗ φ)‖L2
µy

is measurable and so is M . It is clear that for any l ∈ N the set

Bl = {y|M(y) > l}

is measurable and (Bl)l∈N is a decreasing sequence of sets with the property ν(Bl)
l→+∞−−−−→ 0 and

so there is a big enough M ∈ N such that the set

A = {y ∈ Y |M(y) ≤M}

has positive measure. Now we define the function gj for any j with |j| ≤M

gj =

{
U j
T (H ∗ φ)(x) = H ∗ (U j

Tφ)(x) y ∈ A
gj(T

mx) if y, Sy, ...Sm−1y /∈ A and Smy ∈ A

By ergodicity the function gj is well defined almost everywhere and for y ∈ A

min
−j≤M≤j

‖Un
T (H ∗ φ)− gj‖L2

µy
< ε ∀n ∈ Z

and if y, Sy, ...Sm−1y /∈ A and Smy ∈ A

‖Un
T (H ∗ φ)− Um

T gj‖L2
µy

= ‖Un−m
T (H ∗ φ)− gj‖L2

µSmy

and so
min

−j≤M≤j
‖Un

T (H ∗ φ)− gj‖L2
µy
< ε

for almost every y ∈ Y and all n ∈ Z. In other words H ∗ φ is AP relative Y .
We need to ensure that the σ algebra for the X∗ is not trivial and and actually that there is some φ
such that H ∗ φ is not A measurable where π−1BY = A

Lemma 5.9.2. There is a function φ ∈ L∞(X) such that H ∗ φ /∈ L2(Y ).

Proof. Suppose that there is not such function and let a sequence (Pn) of finite partition of X with
the property

σ

( ⋃
n≥1

σ
(
Pn
))

= BX .

Then for a x2 ∈ P ∈ Pn it holds

E

(
H|BX ⊗ σ

(
Pn
))

(x1, x2) =
E(HχX×P |BX ⊗NX)(x1, x2)

E(χX×P |BX ⊗NX)(x1, x2)
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In fact we have that Pn is a finite partition of X , for each n ∈ N so σ
(
Pn
)

is a finite σ-algebra.
The atoms of σ

(
Pn
)

are the elements of Pn .The atoms of BX ⊗ σ
(
Pn
)

are then the sets {x} × P
, x ∈ X and P ∈ Pn.

To show that

E

(
H|BX ⊗ σ

(
Pn
))

(x1, x2) =
∑
P∈Pn

E(HχX×P |BX ⊗NX)(x1, x2)

E(χX×P |BX ⊗NX)(x1, x2)
χP (x2)

First we notice
χX × χP is BX ⊗ σ

(
Pn
)

measurable

Indeed χX × χP (x1, x2) = 1 if and only if x2 ∈ P if and only if (x1, x2) ∈ X × P and so
χX × χP = χX×P
Now let B ∈ BX and P ∈ Pn

∫
B×P

E(HχX×P |BX ⊗NX)(x1, x2)

E(χX×P |BX ⊗NX)
dµ̃

=

∫
B×P

E(HχX×P |BX ⊗NX)(x1, x2)

E(χX×P |BX ⊗NX)
dµ×Y µ

=

∫
Y

∫
X×X

E(HχX×P |BX ⊗NX)(x1, x2)

E(χX×P |BX ⊗NX)(x1, x2)
χB(x1)χP (x2)dµy(x1)dµy(x2)dν(y)

=

∫
Y

∫
X×X

E(HχX×P |BX ⊗NX)(x1, x2)

E(χX×P |BX ⊗NX)(x1, x2)
χB(x1)χP (x2)dµy(x1)dµy(x2)dπ∗µ(y)

=

∫
X

∫
X×X

E(HχX×P |BX ⊗NX)(x1, x2)

E(χX×P |BX ⊗NX)(x1, x2)
χB(x1)χP (x2)dµπ(x)(x1)dµπ(x)(x2)dµ(x)

=

∫
X

∫
X

E(HχX×P |BX ⊗NX)(x1, ·)
E(χX×P |BX ⊗NX)(x1, ·)

χB(x1)dµπ(x)(x1)µπ(x)(P )dµ(x)

but

E(χX×P |BX ⊗NX)(x1, x2) =

∫
χX×Pdµ̃

BX⊗NX
(x1,x2)

=

∫
χX×Pdδx1 × µAx1 = µAx1(P )

and therefore the double integral becomes

=

∫
X

∫
X

E(HχX×P |BX ⊗NX)(x1, ·)
µAx1(P )

χB(x1)dµ
A
x (x1)µ

A
x (P )dµ(x)

We also have that µAx ([x]A) = 1. But for every x1 ∈ [x]A it holds that [x]A = [x1]A and hence
µAx = µAx1 , therefore µAx (P ) = µAx1(P ) for µAx almost any x1 ∈ X and so
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∫
X

∫
X

E(HχX×P |BX ⊗NX)(x1, ·)
µAx1(P )

χB(x1)dµ
A
x (x1)µ

A
x (P )dµ(x)

=

∫
X

∫
B

E(HχX×P |BX ⊗NX)(x1, ·)
µAx1(P )

dµAx (x1)µ
A
x (P )dµ(x)

=

∫
X

∫
B

E(HχX×P |BX ⊗NX)(x1, ·)dµAx (x1)µ
A
x (P )

1

µAx (P )
dµ(x)

=

∫
X

∫
B

E(HχX×P |BX ⊗NX)(x1, ·)dµAx (x1)dµ(x)

=

∫
X

∫
B

E(HχX×P |BX ⊗NX)(x1, ·)dµAx (x1)

∫
X

dµAx (x2)dµ(x)

=

∫
X

∫
B

∫
X

E(HχX×P |BX ⊗NX)(x1, ·)dµAx (x1)dµ
A
x (x2)dµ(x)

=

∫
X

∫
B

∫
X

E(HχX×P |BX ⊗NX)(x1, x2)dµ
A
x (x1)dµ

A
x (x2)dµ(x)

=

∫
X

∫
B×X

E(HχX×P |BX ⊗NX)(x1, x2)dµ
A
x × µAx (x1, x2)dµ(x)

=

∫
X

∫
X×X

χB×X(x1, x2)E(HχX×P |BX ⊗NX)(x1, x2)dµ
A
x × µAx (x1, x2)dµ(x)

=

∫
X×X

χB×XE(HχX×P |BX ⊗NX)dµ̃

and since B ×X ∈ BX ⊗NX

=

∫
X×X

E(χB×XHχX×P |BX ⊗NX)dµ̃

=

∫
X×X

χB×XHχX×Pdµ̃

∫
X×X

HχB×Pdµ̃.

Therefore the equality∫
C

E

(
H|BX ⊗ σ

(
Pn
))
dµ̃ =

∫
C

∑
P ′∈Pn

E(HχX×P ′ |BX ⊗NX)

E(χX×P ′ |BX ⊗NX)
χP ′dµ̃

holds for all C , C = B × P with B ∈ BX and P ∈ Pn. Now easily we can check that the
set of all C ∈ BX ⊗ Pn is a λ-system and C = B × P1 with the ∅ is a π-system that generates
BX ⊗ Pn and finally the equality holds for any set in BX ⊗ Pn.
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By the reformulation of the operator

H ∗ φ(x) = E(H(x, x′)φ(x′)|BX ⊗NX)(x, ·)

and our assumption the numerator E(χX×P |BX ⊗ NX) is A ⊗ NX measurable and same the
denominator. This implies that E(H|BX ⊗ σ(Pn)) is A ⊗ σ(Pn) measurable and hence by the
increasing martingale theorem applied to the increasing sequence of σ-algebras

BX ⊗ σ(Pn)↗ BX ⊗ BX

we deduce that H is A ⊗ BX measurable. By propostition (4.4.5 (d)) we have that A ⊗ NX =
NX ⊗ A modulo µ̃ so H is also NX ⊗ BX measurable . Hence H is depends only on x2 and this
contradicts the ergodicity of H and the fact that is non-constant invariant function.

Let the set
F = {f ∈ L∞(X)|f AP relative Y }.

This set contains also functions by the previous lemma that are not A measurable. Denote by

B∗ = σ(F)

the smallest σ-algebra where the members of set F are measurable. First we claim thatF is an
algebra of functions. Indeed the only difficult part is to show the closure under multiplication of
members of F Let f1, f2 AP relative to Y , gj ∈ L2(X) for j = 1, 2...J and hk ∈ L2(X) for
k = 1, 2...K that are functions with the properties

min
j
‖Un

T f1 − gj‖L2
µy
<

ε

‖f2‖∞
and

min
k
‖Un

T f2 − hk‖L2
µy
<

ε

‖f1‖∞
for almost every y ∈ Y and by choosing without loss of generality ‖gj‖∞ ≤ ‖f1‖∞ for every

j = 1, 2...J we have

‖Un
T (f1f2)− gjhk‖L2

µy
= ‖Un

T (f1f2) + Un
T f2gj − Un

T f2gj − gjhk‖L2
µy

< ‖Un
T (f1f2)− Un

T f2gj‖L2
µy

+ ‖Un
T f2gj − gjhk‖L2

µy

= ‖Un
T f2(U

n
T f1 − gj)‖L2

µy
+ ‖gj(Un

T f2−)hk‖L2
µy

by choosing the correct j and k in order to minimize the above quantities we finally have

‖Un
T (f1f2)− gjhk‖L2

µy
< 2ε
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and so F is an algebra.

Let χX×X ∈ L∞(µ ×Y µ), T × T invariant function and let a set C ∈ BY . Then χπ−1C ∈
L∞(X,BX). We note that the convolution of χX×X and χπ−1C is B∗ measurable since when we
proved the fact that H ∗φ is AP relative to Y we used that H is invariant under T ×T and bounded
just as χX×X but

χX×X ∗ χπ−1C(x) =

∫
χX×X(x, x′)χπ−1C(x′)dµAx (x′)

=

∫
χπ−1C(x′)dµAx (x′) = χπ−1C .

where the last equality holds by definition of conditional measure.
By using the above result combined with the lemma we have

A $ B∗.

Finally we need to prove that B∗ corresponds to a sub-σ algebra of BX and thus is defined an
intermediate factor X∗ that is a non trivial compact extension of Y . It is easy to verify that B∗ is
invariant under T since F is invariant under T . The last think to prove is that F ⊆ L2(X,B∗) is
dense to L2(X,B∗).

Let f ∈ F and ε > 0 and an interval [a, b]. We need to approximate all generators of B∗

by elements of F . By the Stone–Weierstrass Theorem the function χ[a,b] can be approximated
arbitrarily close by a polynomial p ∈ R[t] on [−‖f‖∞, ‖f‖∞]. Hence there is a polynomial p such
that

‖χ[a,b]−p‖L2
f∗µ

< ε

or
‖χf−1[a,b]−p(f)‖L2

µ
< ε.

Denote the set
C = {B ∈ B∗|χB belongs to the L2-closure of F}

It remains that C is a σ-algebra.
X ∈ C clearly.

If f ∈ F then 1 − f ∈ F and D ∈ C implies X \D ∈ C Now let D1, D2 ∈ C and ε > 0 then
there are f1, f2 such that

‖χD1 − f1‖L2
µ
<

ε

‖f2‖∞
and

‖χD2 − f2‖L2
µ
<

ε

‖f1‖∞
.

And so
‖χD1χD2 − f1f2‖L2

µ
= ‖χD1χD2 + χD2f1 − χD2f1 − f1f2‖L2

µ
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≤ ‖χD2‖∞‖χD1 − f1‖L2
µ

+ ‖f1‖∞‖χD2 − f2‖L2
µ
< 2ε.

and henceD1∩D2 ∈ C. It holds χD1∪D2 = χD1 +χD2−χD1∩D2 and since all functions in the right
hand of equation can be approximated so does χD1∪D2 . Now any finite union can approximate a
countable union and therefore C is indeed a σ-algebra and soF is dense in to L2(X,B∗) as needed.

5.10 Proof of Szemeredi’s theorem.
Theorem 5.10.1. (Szemeredi)

Let E subset of natular numbers with positive upper Banach density. Then E contains arith-
metic progressions of length k for k ∈ N.

Proof. First by using again Fustenberg’s correspondence principle as in Sárközy theorem we will
translate the problem of arithmetic progressions to a problem of dynamical systems. In particular
we prove that if for every measure preserving system (X,BX , µ, T ) and E ∈ BX such that µ(E) >
0, k ∈ N there is some n ≥ 1 with

µ(E ∩ T−nE ∩ T−2nE ∩ ... ∩ T−knE) > 0.

Then E contains arithmetic progression of lenght k. Let E ⊆ N be a set with positive upper
Banach density. Consider the space {0, 1}Z with the product topology ΠZ2{0,1}. Let σ be the shift
in {0, 1}Z. We define xE ∈ {0, 1}Z, xEn = 1 if and only if n ∈ E. Let {σm(xE) |m ∈ Z} be
the orbit of xE and we set our space X to be the closure of the orbit {σm(xE) |m ∈ Z}. Let
σx := σ|X the restriction of the shift and A = [i] ∩ X = {x ∈ X : x0 = 1} which is open and
closed in X since [i] is closed and open in {0, 1}Z. Also

σmX (xE) ∈ A ⇐⇒ xEm = 1 ⇐⇒ m ∈ E.

SinceE has positive upper Banach density there is a sequence intervals [M1, N1], ..., [Mj, Nj], ...
such that Nj −Mj →∞ and

lim
j→∞

∣∣∣∣E ∩ [Mj, Nj]

∣∣∣∣
Nj −Mj

= dB(E) > 0.

Let

µj =
1

Nj −Mj

Nj∑
k=Mj

δσkX(xE) j ∈ N.

Now since M(X) is compact metric space from the Kryloff–Bogoliouboff theorem there are
j1, j2, ... and µ ∈M(X) such that µjk(A)

w∗−→ µ(A). Then µ ∈MX(σx) and since A is closed and
open

µ(A) = lim
j→∞

1

Njk −Mjk

n−1∑
m=0

δσmX (xE)(A) = dB(E) > 0.
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applying theorem 5.1.3 for the measure preserving system (X,BX , µ, σX) there is an n ∈ N such
that

µ(A ∩ σ−nX (A) ∩ σ−2nX (A)...σ−knX (A)) > 0.

But for any B measurable with µ(B) > 0 which is closed and open and µjk(B) → µ(B) then
there is k ∈ N such that µjk(B) > 0 so δσmX (xE)(B) > 0 for anm ∈ [Mjk , Njk ] ⇐⇒ σmX (xE) ∈ B.
In particular in our case for an m ∈ [Mjk , Njk ] ,

σmX (xE) ∈ A ∩ σ−nX (A) ∩ σ−2nX (A)...σ−knX (A)

and so

{m,m+ n, ...m+ kn} ∈ E
Finally we prove that any measure preserving system has the SZ property.

By the previous sections we know that any Kronecker system Y0 is SZ and furthermore every
compact extension Y1 → Y0 is SZ as well. Same arguments are enough to show that a system
obtained from a finite number of compact extensions

Yn → Yn−1 → ...→ Y1 → Y0

is also SZ. By the basic theorem of the section of chains of SZ factors if the σ-algebra of X∞
is generated by σ-algebras of factors

X∞ → ....→ Yn → Yn−1 → ...→ Y1 → Y0

and Yn → Yn−1 is SZ for all n ∈ N then X∞ is SZ. We will use the fact that L2(X) is separable if
X is a Borel probability space.

Let (X,BX , µ, T ) be a measure preserving system on a Borel probability space (X,BX , µ).
We claim that there exists a relatively weak mixing extension X → Y that Y is SZ and this will
conclude the proof. If X is weak mixing system then by taking the trivial factor Y we have that X
is SZ. If X is not weak mixing then it has a Kronecker factor Y0 which is SZ as we have proved.
The claim is proved by a transfinite unduction argument.

Suppose that we have already found an ordinal number α with the property for every β < α there
is a factor Yβ of X that is SZ and if β + 1 < α then the extension Yβ+1 → Yβ is a proper compact
extension and if γ < α is a limit ordinal the σ-algebra corresponding to Yγ is generated by the σ
-algebras of Yβ for β < γ.

For the inductive step, if α = β + 1 is a successor then are two possible cases. Either the
extension

X → Yβ

is a relatively weak mixing extension and so the claim holds, either there is an intermediate non
trivial extension

X → Yα → Yβ
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such that Yα → Yβ is compact extension. In that case we know that Yα is SZ and then the inductive
step is concluded. Now if α is a limit ordinal by our assumption the extension Yβ+1 → Yβ is a
proper extension for every β < α so

L2(Yβ) $ L2(Yβ+1) $ L2(X)

Using the fact that (X,BX , µ) is a Borel probability space we have that L2(X) is separable and
so the chain of closed subspaces has to be countable. Hence α is a countable ordinal and we
can set limn→∞ βn = α for some sequence of countable ordinals βn with βn < α. Let Yα the
corresponding σ-algebra generated of all Yβn . Then Yβn has the SZ property and the inductive
step is concluded. In particular the inductive step has shown that if inductive hypothesis holds for
some ordinal it has to be countable. If ω is the first uncountable ordinal then the construction of
extensions has to stop at some β , β < ω because otherwise ω would fulfil the hypothesis and this
contradicts the fact that L2(X) is separable. In fact the only way that our construction ends is with
the proof that X → Yβ is relatively weak mixing and this concludes the proof of Furstenberg’s
theorem.
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[5] Erdős, P. and Turán, P. ”On Some Sequences of Integers.”. J. London Math. Soc. 11, 261-264,
1936.

[6] Folland, G. B Real Analysis, Modern Techniques and Their Applications, 2nd ed. John Wiley
and Sons, New York, 1999, xiv + 386pp.

[7] Furstenberg, H. Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton
University Press, Princeton, 1981, vii + 202pp.

[8] Fürstenberg, H. ”Ergodic Behavior of Diagonal Measures and a Theorem of Szemerédi on
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