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1. Introduction 

 

Epidemiology as a branch of the Mathematical science was developed in the 

20th century, with the parallel development of technology and mathematical concepts 

in general. The hypothetical modeling in a strict mathematical framework led to a 

plethora of substantial results in the epidemiology science.  

The mathematical tools that are used are many, some of them include the 

study of dynamic systems, the resolving of differential equations, the study of 

continuous functions, the theoretical computation e.t.c (Kermak et al., 1927). 

In many different parts of biology, mathematical models have been 

developed. These models are tools that are applied to many scientific field studies to 

calculate a variety of circumstances. Modeling of diseases and epidemics were present 

many years ago, but nowadays they are applied to internet viruses, marketing and data 

mining. This is due to the nature of the continuous development of Internet and 

because the mechanics of the virus spreading and the nature of the media are 

different. Therefore, the modeling of epidemics in computer networks can affect the 

modeling of epidemics in human biology (Dushoff et al., 2004).  

Epidemic models have two main targets. The first is concerned with the 

representation of the spreading mechanism and estimation of the relevant parameters. 

The second target is to use such estimates for prediction spreading and control. (Stone 

et al., 2007).  

The mechanics of spreading define how exactly a virus spreads in the general 

population. For example, in some diseases the infections can be spread through the air 

while in other it can be spread through saliva or blood. In this basis, the most studied 

models of epidemics are SI (Sensitive – Infected), SIS (Sensitive – Infected – 

Sensitive) and SIR (Sensitive – Infected – Recovered). In the SI model, the part of the 

population that is sensitive in infections, when infected they remain in this situation 

for ever. In the SIS model, the persons that fall in this category come through three 

situations, form sensitive they become infected and then again sensitive. The 

spreading of the common influenza virus can be modeled with the SIS model. In the 

case of the SIR model, a person spends some time in the infected state and then the 
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person either dies or recovers his immune system in such a degree that he cannot 

spread the disease further. In other words three situations exist for a person in these 

models: Sensitive – Infected – Recovered with immunity (Chowell et al., 2006). 

When a disease is modeled, first we must have a strict description of the sum 

of the characteristics of it spreading in the population and secondly, we must choose a 

certain mathematical approach to describe the spreading. Even though the spreading 

of a disease is a statistical process by nature, there are deterministic models that are 

often used to predict its outcome.   

We want to estimate the number of cases of seasonal influenza in Greece 

based on the package fluevidenceSynthesis. It is important to have an idea of how 

many people get sick each year in our country. With the advent of the corona virus we 

need at all times free beds of intensive care units, so it would be very useful to reduce 

the inflows to them from other diseases. Therefore, knowing the estimated number of 

patients, we can adjust the vaccination scenario accordingly, in order to reduce the 

inflows from influenza to the intensive care units and to the hospitals in general. By 

using this package we also try to predict the efficacy of the different vaccination 

scenarios and to infer epidemiological parameters. 

 

1.1 Main Concepts  

Epidemic modeling of diseases in a population is based on the mass action 

law. This law declares that in a mixed population, the number of contacts is 

proportional to the product of the infected and the sensitive. In other words, the rate of 

the contacts that affects the infection is directly related to the sum of sensitive persons 

and the sum of the infected persons. In our analysis the contacts we used are from the 

United Kingdom. The mass action law is a superposition of all possible situation and 

the partial characteristics to calculate the contacts (infected with healthy persons). In 

case there are more than one process that are linked to the calculation of the contacts, 

then these processes are added to the variables of the system. It is therefore important 

to understand some basic epidemiological concepts (Mills et al., 2004). 

Initially, a model can be deterministic or stochastic. Stochastic is the model 

that calculates all the possible outcomes based on the possibilities. This kind of model 
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is applied to small populations where there are fewer factors that affect the 

environment and there is a smaller possibility for changes from external factors. In a 

deterministic model, advanced mathematics used to split the population in smaller 

parts for more specific results and calculates different stages of a disease. The model 

we use is deterministic since we divide the population into different age groups. In 

table 1 we describe the most important symbolisms that are described in the epidemic 

models and their meaning. 

Table 1: Description of symbolisms used in an epidemic model 

R0 Basic reproduction number 

S Sensitive 

E Exposed in the incubation period 

I Infected 

R Recovered and with immunity 

β Possibility of contact 

κ Average of mortality 

1/ε Average period of incubation 

1/γ Average period with risk of contagion 

N Total sum of the studied population 

f Mean of immunity elimination for 

persons that were infected 

 

In terms of demographic data, the Wi number of people in the population 

aged i is obtained from the Hellenic Statistical Authority (https://www.statistics.gr/). 5 

age groups (1-5, 5-15, 15-45, 45-65, 65+) were examined divided into high and low 

risk. People at risk of chronic respiratory, heart or kidney disease, diabetes or 

immunosuppression due to illness or treatment are considered at high risk. 

We used English contact data collected from a survey conducted in 2006 and 

participants recorded their contacts in one day. The age of the contact, the nature of 

the contact (conversation or physical contact) and the nature of the day (daily, 

weekend or holidays) were also recorded. 
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Through the system of observational diseases in primary health care, diseases 

are observed for diseases that are similar to the flu but are not (ILI). Volunteer private 

physicians specializing in pathology, pediatrics or general practitioners from all over 

the country participate in the system, where they report supervised diseases on a 

weekly basis. Here we have the results from the 1st to the 52nd week of the year 

2013. 

 

1.2 Basic rate of reproduction  

The basic rate of reproduction is used to describe if a disease is able to cause 

an outbreak. It is a mathematical symbol that helps us understand how contagious a 

disease is. There are three possible values for the basic rate of reproduction. 

1. R0 < 1. In this case the virus is not a danger for epidemic 

2. R0 = 1. Theoretically, in this case only 1 person is infected by an 

infected person. 

3. R0 > 1. There is a danger for an epidemic because each infected 

person can infect one or more healthy persons. 

In the last case the danger is obvious, because the possibilities of the disease 

spreading are increased exponentially.  

Generally, the most important factors that we must take into account when 

we calculate this number is: 

The infection period. This factor is defined by the dynamics of the virus 

spreading. Some diseases are more contagious than others and for different time 

frames. Furthermore, an important factor is the population that the virus is incubated. 

For example, the influenza virus can be maintained for 8 days in adults and for 2 

weeks in children. For this reason, when a virus infects a child, it is more possible to 

infect more persons (Vynnycky et al., 2008).  

Possibility of contact. This is basically the possibility of an infected person 

to contact a healthy person. For this reason, in order to avoid pandemics the patients 

must be confined in closed spaces.  
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Transmission media. The media is the means that the virus uses to be 

transferred from one person to another. The diseases that are transmitted faster are the 

ones that are transmitted through the air, as the influenza virus. Physical contact is not 

necessary and for this reason the possibilities of transmission are increased 

exponentially. The disease that require physical contact for their transmission, for 

example the HIV virus, are mostly unlikely to lead to a pandemic (Ferguson et al., 

2006).  

 

2. Greek Influenza data  

Influenza is one of the biggest problems because it is one of the main causes of 

death in developed countries, with more than 1,000 deaths in 1,000,000 of the 

population. The population percentage that is 65 years old or older has greater chance 

to die from influenza infection. Furthermore, an influential pandemic increases the 

rate of hospitalization and the days that people are absent from their jobs (EODY, 

2019). 

Influenza is an acute disease of the respiratory system and is usually consists of 

the types A, B and C. It is a contagious disease in birds, mammals and humans. The 

most common symptoms of the disease include fever, sore throat, muscle pains, 

severe headache, cough, weakness and general unwellness. It cannot be differentially 

diagnosed with other acute infections of the respiratory system according to clinical 

symptoms. For this reason, laboratory examinations are important for the disease’s 

confirmation (Urban et al., 2009). 

Every winter in Greece, like every other country, has an increase in the activity of 

influenza virus. The increase in morbidity and mortality rates varies each year, 

depending on the characteristics of the virus and the degree of immunity that certain 

groups have towards this specific virus type or types.  

The influenza virus is constantly mutating. If the changes in the gene profile of the 

virus are substantial, there is no immunity in the population, and this particular stem 

of the virus can create an outbreak. A pandemic is a situation where a large number of 

people are infected at the same time, and it creates problems in the National Health 

System while it also obstructs the economic and social activity. In order to have a 
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picture about the activity of the influenza in Greece, EODY has systems of epidemic 

observation of influenza. These systems are supplementary with each other because 

influenza affects the population in various degrees. The levels of these systems are 

depicted in Table 2. 

Table 2: Levels of the supervisory systems of the influenza virus in Greece 

Level Description 

Asymptomatic patients Supervision of vaccination coverage 

Symptomatic patients that did not ask for 

medical attention 

Laboratory supervision 

Patients that asked for medical attention  Laboratory supervision 

Patients inside a hospital Sentinels of morbidity system, laboratory 

supervision 

Patients in Emergency Treatment  Laboratory supervision, supervision of 

serious cases  

Deaths Supervision of general morbidity rates 

 

Some of the above systems are in function the whole year (like the sentinel 

system) but the majority of them function, as in most European countries from the 

40
th

 week of the current year until the 20
th

 week of the next year. This time period is 

also known as influenza supervision period. In Greece the influenza virus supervision 

has shown that the time of year with increased activity is during the months February 

– March. We must, however note that influenza is unpredictable and the start and the 

duration of the seasonal outbreak differs from time to time. Furthermore, we must 

mention that influenza activity is never zero, because there are cases of the disease 

throughout the year (Pogka et al., 2011).  

In Figure 1 we can see the number of influenza cases per 1.000 hospital 

visitations every week in the years 2017-2018. The influenza activity was increased in 

the time period from week 52/2017 until week 8/2018. In comparison to the previous 

year the epidemical raise was milder and it peaked 7 weeks later (EODY, 2019).  
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Figure 1: Estimation of influenza cases per 1.000 hospital visits per week. In the 

vertical axis the number of cases are depicted and in the horizontal axis the weeks.  

 

In Figure 2 there is the same estimation as in Figure 1 but according to the 

different age groups. From the figure we can see that the activity of the influenza 

virus was similar in almost all cases (EODY, 2019).  
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Figure 2: Estimation of influenza cases per 1.000 hospital visits per week in different 

age groups. In the vertical axis the number of cases are depicted and in the horizontal 

axis the weeks 

 

During this period 2956 clinical samples were checked in the laboratories 

and more specifically 2694 from public hospital laboratories and 262 form the 

Sentinel network. 504 (17,1 %) from them were positive in influenza viruses and 145 

(28,8%) were positive in the type A of the virus while 359 (71,2%) were positive in 
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the type B of the virus. The 125 stems of the A virus were further identified and 17 

(13,6%) were of the A (H3N2) subtype and 108 (86,4%) of the A (H1N1) subtype.  

In Figure 3 we can see that until the 10
th

 week of 2018, the type of the virus 

that was the most prevalent was B. In the following weeks, the influenza virus activity 

was decreased, but there were also cases of type B virus, subtype A (H1N1) and 

subtype A(H3N2) (EODY, 2019).  

 

Figure 3: Total number of pharyngeal samples in the laboratories used to monitor the 

influenza virus activity. The negative samples are depicted in grey color, the A type 

with red, the A (H1N1) with the pink color and the B type with the blue color.  

 

 For the Influenza like Illness (ILI), which is a flu that looks like seasonal 

influenza but it isn’t, we used data from 2013 that were available in EODY. The total 

number of visits to doctors in the whole country that year was 145.432 and the ILI 

was 3.120. In Figure 4 we have the percentage of the ILI cases. 
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Figure 4: Percentage of ILI cases, in the total number of visits per week of declaration 

in Greece in 2012-2013 (EODY, 2019) 

 In Figure 5 we see the number of the ILI cases for the different age groups in 

2013. 

 

Figure 5: Νumber of ILI cases per age group and week of declaration in Greece 

(EODY, 2019). 
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3. Modeling framework 

 

The overall epidemiological model is seen in Figure 6 and consists of the 

transmission matrix, the rate of the immunization, the profile of those susceptible to 

the infection, and the initial number of infections. A Bayesian approach to statistical 

conclusions was adopted. We still used adaptive techniques of the Markov Chain 

Monte Carlo (MCMC). The combination of the Bayesian approach with the MCMC 

methodology is suitable for the natural propagation of uncertainty. 

 

Figure 6: Flowchart that shows the connection between the different modeling 

components.  
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3.1 Transmission Model  

 

The transmission of infectious diseases is linked to the form of the contacts 

within the community. The mathematical modeling assumes that when a healthy 

individual comes in contact with an infected one, there is a probability (q) of being 

infected. This probability is affected by a number of factors such as the type of 

contact (physical contact is more contagious than a conversational contact in the case 

of a virus that spreads through the respiratory system) and the type of the pathogen.  

The equation that describes the re-normalized average number of contacts 

per day from a certain group is standardized for age and weekdays (1). 

 

    = 
∑   

         

∑         
  (1) 

 

The contact is a process defined by symmetrical characterization and 

therefore, the number of contacts, of group i coming in contact with group j is the 

same as the number of contacts of group j with group i. Furthermore, if we define the 

possibility that two random persons from the two groups come into contact as cij then 

we must also take note that cij = cji. To further correct the probability of contact 

between an infectious person and a healthy person (the symmetry is usually not 

achieved due to participation biases) we provide the equation (2) where Ti and Tj are 

the number of participants into two groups and dij and dji are the number of contacts 

per day of in the corresponding participant group (Wallinga et al., 2006). 

     
 

 
(
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3.2 Vaccination Model 

The model of the influenza epidemiology is further divided into two groups 

based on the vaccination (we define as N the non – vaccinated group and V the 

vaccinated group). However, since the vaccine is never 100% successful there is a 

factor ai in the vaccinated group that is not immune. The rest of the population in the 

vaccinated group is protected (1-ai). The effectiveness of the vaccination process is 

affected by a number of factors such as the mean age in the group, the virus strain and 

the match between the vaccine and the virus strain (Baguelin et al., 2010).  

There is a period of two weeks between someone being infected and 

developing antibodies for this particular virus strain. Develop of the antibodies are not 

included in the mathematical modeling because it mainly focus on the vaccination and 

not the infected individuals (Miller et al., 2009).  

The resulting rate is the immunization rate vik that is produced by 

combination of the vaccination intake and the vaccination success in the groups i and 

k (risk group). This rate is over a monthly period.  

 

3.3 Epidemiological Model 

The epidemic model that is used is characterized as SEIR (susceptible – 

exposed-infected-recovered) model. It is also assumed that the inherent population 

immunity does not fully protect the virus spread but rather reduces the possibilities of 

infection. The model assumes that during an influenza outbreak that is characterized 

as epidemic a portion of each of the studied groups is affected and the remaining 

population is subject to an infection. The original portion of the group that is infected 

is obtained by modifying the initial population by a factor I. A profile due to age 

susceptibility is also assumed {ζi}. The profile characteristics are taken from the 

influenza outbreaks that took place in the previous years. The groups are split 

according to age categories of the sample population. More specifically to avoid 

overflowing the model with many groups, only 3 age groups are defined: children (0-

14), young adults (15-64) and elderly population (over 65) (Johnson et al., 2009). 
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The equations of the epidemiological model are given below: 

 

      ∑ ∑ ∑    (   
      

  )  *   +
 
   

 
     (3) 

 

Where q is the parameter that describes transmission, cij is the rate of the 

contacts between those in age group i and age group j and ζi is how susceptible is the i 

group. 

The new infection relative incidence in age group i and risk group k in week 

n is given by the equation: 
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There is a version of the SEIR model, the SEEIIR resulting in a more realistic 

gamma distributed waiting time between exposed and infected, and between infected 

and recovered.  Its form is:  
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Where Sik is the number of sensitive in the age groups i and risk group k,    
 

 

and    
  are two groups that correspond to two groups of exposed but not infected 

individuals. Furthermore,    
  and    

  are infected individuals and      are the immune 

individuals. The force of infection is ιi is depended of age and is given by the 

following equation: 

     ∑ ∑    
 
   (   

     
 ) 

     (6) 

Where βij is the effective rate between individuals in age group i and age 

group j and    is the susceptibility of age group i. 

Finally the interference is given by a likelihood function that is incorporated 

into the package: 

 (  
               )  ∑  (  

          
    ) (  

            )  
 

           (7) 

 

3.4 Observation Model 

The final model had to connect the investigation data with the number of 

infections that occur due to the spreading of the influenza in the studied groups. We 

must also note that although data obtained for General Practitioners are used to 

monitor an epidemic of influenza, these data are not always correct. There are many 

cases that patients are recorded as influenza patients because of their symptoms but 

they are not actually affected by influenza. If all of the patients recorded by the 

doctors as having influenza are examined by PCR for actual virus DNA a certain 

number will not be positive. For this reason, statistical model is necessary to connect 

the data between surveillance and infections in an influenza epidemic (Carrat et al., 

2008). 
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The sets of the surveillance system, are depicted in Figure 7. 

 

Figure 7: A schematic illustration of the various parts of the surveillance system. 

 

In the countries that have temperate climate, the reoccurrence of influenza 

every year is determined by the traveling population. This fraction of the population is 

infected with new variants of virus strains that are globally transmitted. The global 

influenza outbreaks seem to be consistent with the reoccurrence of outbreaks in 

certain regions. It is proven that the epidemics of the influenza virus in each country 

are directly correlated with the re-infection of the population by people that travel in 

other countries (Flasche et al., 2011).  

For this reason the probability of each group being infected is directly 

associated with a fraction of the population that travels in other countries or with an 

outbreak of the virus inside the country that is not linked to an international outbreak. 

This risk is defined as ς and is not age or time dependent.  

 



~ 20 ~ 
 

   
  ‖

   
   

   
   ∑    ( )

 
   ‖  (8) 

 

Where ζ are the parameters of the model and the incidence of the population 

of group i at week j of new cases, is defined by the equation (8). The parameters that 

describe the infection are the q, ζi, Ι and A, and    
    

 and    
    

are the monitored and 

total population sizes in age group i and the week j. 

There is also the probability of infection from the traveling population that is 

given by the equation (9). 

 

   
                (   

     )  (9) 

 

In order to certify that a patient is infected by the influenza virus two steps 

must be considered. The first step is to be characterized as an influenza case by the 

GP and the second step is to be confirmed by laboratory examinations. We can see 

that these steps have as a result that the actual cases of influenza are a much smaller 

number that the cases recorded. These number of cases, that are infected outside of 

the influenza are described by the equation (10). 

 

   
                (   

       )  (10) 

 

Where,     is a small number and    
    

 is big. The probability can be 

defined by a Poisson distribution with rate the product of    
       

 

   
               (      

   )  (11) 
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In a certain group we are interested in the    
  persons that are categorized as 

influenza cases in week j and group i. These persons    
  are detected and found 

positive for an influenza strain. The positive number of cases that are expected are 

described by a hypergeometric equation and the model is described by (12) system of 

equations (Baguelin et al., 2013). 

 

{
   
          (   

    )         (      
   )

   
                (       

     )
  

          (12) 

 

Finally, the ε can be described as a product of epidemiological quantities. 

 

   (       ) (     ) (   ) (     )  (13) 

We can see an example of the results of the computational model when 

applied to the influenza outbreak in Figure 14 in the Appendix. 

 

4. Computation 

4.1 MCMC  

 

The Markov Chain Monte Carlo algorithm (MCMC) methods were invented in 

the 1990s when computers increased the computing power. There are numeral ways 

to implement an MCMC algorithm but the most important algorithms estimate 

posterior distributions of Parameters in a Bayesian model and are the following: 

1. Metropolis 

2. Gibbs  

3. Hamiltonian.  
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The algorithm is used as a way to correct the shortcomings of the grid 

approximation error techniques. More specifically, grid approximation does not 

scale well with the number of parameters in a vector of parameters to compute the 

posterior distributions. Moreover, quadratic approximation even though it can be 

scaled better than the grid approximation it also has shortcomings with complex, 

hierarchical models.  

The main concept behind the MCMC algorithm is that if we design and 

implement a strategy of careful planning, we can be sure that the sample 

distribution is representative of the target posterior distribution. This strategy is 

similar to the sampling methods that are applied to the design of a survey or a poll 

in political and social sciences (Fork et al., 2018).  

In other words, the MCMC methods are used to determine the posterior 

distribution of a parameter that we are interested in by sampling with a certain 

strategy in a probabilistic scale. This is done by number of simulations that 

repeatedly generate random numbers. The simulations approximate a parameter in 

cases where the calculation of this parameter is very difficult. The second 

parameter that is important to MCMC algorithms are Markov chains. Markov 

Chains are sequences of events that are related to each other through probabilities. 

Each event results from a collection of effects and each effect defines the next 

result, in regards to a certain set of probabilities.  

The MCMC method can also be used to estimate the posterior distribution of 

more than one parameters. For a set of k parameters, in a space with k – 

dimensions there are areas with high probabilities. These sets of parameter values 

explain a number of observed data. The MCMC methods are a way collect 

samples from a probabilistic space to approximate the posterior distribution 

(Figure 8) (Hill et al., 2019, Cowles et al., 1996).  
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Figure 8: MCMC example where the parameters values (x-axis) exhibit areas of low 

and high probability. After convergence, MCMC gives a set of values (points) that 

represent samples from a posterior distribution. In this example the distribution 

depicts the average human height in inches. 

 

 

4.2 R package   

 

The package that we will be using is an R based package. The 

fluEvidenceSynthesis package is a method to analyze epidemiological outbreaks. In 

Figure 9 there is a flowchart that depicts the general data. 
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Figure 9: The package initially takes the influenza data that relate to the outbreak as 

an algorithm input. These data are contacts, the vaccination calendar, the population 

structure (demographic data), the virological data (the type of viruses) and the ILI 

cases (Influenza Like Illness). The next step is the calculation of likelihood to observe 

these data. Then, when a certain set of data is finally selected the algorithm uses an 

MCMC model to find a set of parameters that correspond to the epidemiological 

model. These parameters are the output of the package and can be used to plan 

treatment strategies. These treatment strategies are selected as a cost effective 

interventions that provide the highest benefits (Leewuen et al., 2017).  

The input data of the algorithm are the demography, which is a vector with 

the number of individuals of the United Kingdom, the coverage, that is data about the 

vaccination cover in the period 2007-2008, the polymod_UK, that are contact data for 

the United Kingdom, the ILI, which is the number of ILI cases per week, the 

confirmed samples, which is the number of confirmed positive samples per week and 
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finally the vaccine calendar, which is the vaccination rate in the United Kingdom in 

1999. The input data are organized in a weekly basis. The data are represented as a 

table where each row corresponds to a week and each column separated by age group 

or by risk factors, if there are any to take into account. A typical set of data that can be 

used as an input can be  

 Weekly ILI counts organized by age groups 

 Virological data organized by age groups  

 Vaccination data organized by risk group 

 Population size organized by age  

 Contact data. 

The first step of the algorithm is to organize the data in different groups. This 

separation is made in regards to age and risk groups. Then, the algorithm defines 

vaccination methods by taking into account the effectiveness of the vaccine against 

the most prominent virus strain. The effectiveness also depends on the age (less 

effective in older age groups). The coverage of the population is different in every 

country because each country has a different vaccination program and policy. There is 

an appropriate function in the algorithm that calculates the effectiveness of the 

vaccination (Balguerin et al., 2015). 

The package also provides a number of functions that estimates the cost 

effectiveness of the therapy. These functions are based on the existed data of mortality 

rates and cases that have to be hospitalized. The number of vaccines that need to be 

administered is also calculated. However, many of these costs differ according to the 

country and the vaccination program of each healthcare system (Sherlock et al., 

2010). 

5. Application to the Greek influenza data  

 

In the current thesis we apply a dataset of cases in Greece in the period of the 

first 32 weeks of 2017 – 2018 to the fluEvidenceSynthesis package, to estimate the 

number of patients with influenza. We have used the Greek demographic data, the 

confirmed positive cases and the ILI from the year 2013. For the rest of the input data 

we used what the package provided. Our data is organized in 5 age groups (0-5, 5-15, 
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15-45, 45-65 and 65+). We also provide statistical evidence for the number of deaths 

of the patients that were vaccinated. Also there is demographic evidence about the 

sex, the type of virus that the patients were infected with (A, A-H1N1, A-H3N2, B) 

and how much of the patients needed to be hospitalize in emergency care. In Table 4 

in the Appendix we provide a sample of our data. 

To predict the effectiveness of different vaccination scenarios the SEEIIR model 

is used, with exposed and infected divided into two different groups. We also look at 

how many have been vaccinated or not and the effectiveness of the vaccine. We sort 

the population by age and risk group, and depending on the group they belong they 

are being vaccinated in different rates. So we apply the epidemiological model with 

parameters: population, initial infected, vaccine calendar, contacts, susceptibility, 

transmissibility, infection delays and an interval of days. 

• The population, is the Greek demographic data stratified by age (<65, 65+) 

and by risk (where in the high risk we have 1% for the under 65, and 40% for the 

65+) 

• The initial infected, is the number of individuals being infected at the 

beginning of the season stratified by age (<65, 65+) and by risk (again for the high 

risk we have 1% for the non-elderly and 40% for the elderly). We assumed that the 

infected at the beginning of the season are 1.000 for each of the two age groups.  

• We create the vaccine calendar, which is a list with the calendar and the 

efficacy of the vaccine for that year (0.7 for the non-elderly and 0.3 for the elderly in 

each risk group), by assuming that a constant percentage is vaccinated for four 

months, where the elderly and the high risk groups are being vaccinated at the highest 

rate and the low risk of non-elderly are not being vaccinated.  

• The contacts, is a matrix of the rates of contacts of the different age groups, 

created by the Greek demographic data with the contacts of England.  

• The epidemiological parameters are the susceptibility, where we assume that it 

is different for the different age groups (0.7 and 0.3 for the non-elderly and the elderly 

respectively). The transmissibility, where we assume that is 0.17 for both age groups. 

Finally, the infection delays is the average time from exposed to infected (0.8 days) 

and from infected to recovered (1.8 days). 
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• The interval is the time we want to integrate so we put it 7 days because we 

have a data point each week and we want to model all infections during that week. 

For the analysis and the comparison of the efficacy of the different vaccination 

programs about influenza we have two steps. First, is the inferences of the parameters 

by using the existing model and second, the simulation of the different possible 

vaccination strategies using these inferred parameters. 

For the first step, we use combined data to calculate the likelihood of the predicted 

number of cases from influenza in a given week. We use MCMC to take the posterior 

distribution of the parameters of the epidemiological model. Two functions are 

defined from the package to execute inference parameters, one that returns the log 

likelihood for given parameter values depend on the data and one that returns the log 

prior probability of the parameters. After that, these functions are transported to the 

adaptive MCMC, which returns a posterior sample for the parameter values. We run 

the model for 7 age groups and 3 risk groups, given the parameters. Then, we convert 

the age groups from 7 to 5 so that the structure matches with the ILI and the 

confirmed samples data. Last, we calculate the probability of the results given the ILI 

and the confirmed data. 

For the second step, we create a vaccination scenario for the first 4 months which 

determines the percentage of the vaccine per day at each age and risk group, and the 

efficacy of the vaccine during a specific period. This vaccination calendar is made for 

7 age groups and 2 risk groups by assuming that high risk young children and over 65 

are being vaccinated. So we set the efficacy at 0.7 for the under 65 and 0.3 for the 65+ 

in all risk groups. We also define the percentage of the coverage of the vaccine for the 

high risk young children (0-5, 5-15) which are 0.62 for the first 3 months, and the 

elderly (65+) which is 0.62 the first month, 0.77 the second and 0.925 the third 

month. For this vaccination scenario we get the full posterior of the cases and then we 

set new vaccination coverage, up to 80% for all age and risk groups.  
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5.1 Data sources 

 Our analysis is based on the fluEvidenceSynthesis package, so we tried to 

replace as much input data it was possible, from those used in that package. In the 

table below you can see what replacements have been made and where we found our 

Greek data. Some of our data made approximately from graphs.  

Table 3: Used data for our analysis 

Input data English  Greek  

Demography   1
 

Polymod_UK    

ILI   2
 

Confirmed Samples   3
 

Coverage    

Vaccine Calendar    

1 https://www.statistics.gr/el/statistics/-/publication/SAM03/- 

2
 https://eody.gov.gr/wp-content/uploads/2019/01/ekthesi_SENTINEL_2013.pdf 

3
https://eody.gov.gr/epidimiologika-statistika-dedomena/evdomadiaies-

ektheseis/evdomadiaies-ektheseis-epochiki-gripi/ 

 

 5.2 Results 

 

 By implementing the SEEIIR model for the given parameters we mentioned 

earlier, we take the number of the new cases after each period during the year. We 

create the fraction of the infected for each age group (<65, 65+) and risk group (low 

and high risk) and the plot is shown in Figure 10 below. 

https://www.statistics.gr/el/statistics/-/publication/SAM03/-
https://eody.gov.gr/wp-content/uploads/2019/01/ekthesi_SENTINEL_2013.pdf
https://eody.gov.gr/epidimiologika-statistika-dedomena/evdomadiaies-ektheseis/evdomadiaies-ektheseis-epochiki-gripi/
https://eody.gov.gr/epidimiologika-statistika-dedomena/evdomadiaies-ektheseis/evdomadiaies-ektheseis-epochiki-gripi/
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Figure 10: Fraction infected for each group with the ages 65+ covering each other 

because they have the same results. 

 Note the differences in the y axis scale. The low risk age group below 65 

(Age1Risk1) has the largest population and also the largest incidence level. 

 The functions needed to perform the inference of the parameters have been 

defined. Using MCMC we get a posterior sample for the parameter values and we see 

the results in figure 11, which are not realistic because there are for a short MCMC 

run. There are five main parameters in our model: 

 Ascertainment probability for 5 age groups (0-5, 5-15, 15-45, 45-65 and 65+)  

(   ) 

 Outside infection (ς) 

 Transmissibility (q) 

 Susceptibility for 5 age groups (  ) 

 Initial number of infections (log transformed) (I) 
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The ascertainment probability and susceptibility are age group specific, so we 

need two new parameters to define them. The exact values are not that relevant, but 

the closer they are to the correct values the faster the interference will converge. We 

also have two risk groups (low and high). This means that our epidemiological data is 

mapped to 5 different groups (the age groups). We also reduce the complexity of the 

model by assuming that the first two age groups have the same ascertainment rate and 

susceptibility.  

 

Figure 11: Plotting the resulting posterior parameter values 

 

After that we create the credibility intervals of our models and we plot it, 

given a set of parameters (εi, ς, q, ζi, I), for each time point. Each plot is the result for 
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one of the 7 age groups and shows the estimated number of cases in each week 

(Figure 12). We sum the low and high risk group for simplicity and so each age group 

classified as high risk (RG1). 

 

Figure 12: Credibility intervals for each one of the seven age groups with the 

estimated number of cases in each week. 

 

 We can see that in every age group of the high risk population, the peak of the 

estimated individuals is around February and March. The most cases estimated to be 

in age group (25-45) and the less in infants (0-1). 
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Finally we quote an example (figure 13) of how the number of cases with 

influenza changes depending on the different vaccination scenarios. 

 

Figure 11: Different vaccination scenarios. Original is the current scenario and new is 

the change to the uptake rate to 80% in all age and risk groups. 

 

 For the original scenario we assume that the high risk young children and all 

65 years and older get a vaccine. The rate of the vaccine uptake is different for each 

month in the first 3 months for the elderly, and same rate for the first 3 months for the 

high risk young children. The new scenario is with new vaccination coverage up to 

80% for all age groups. There is a huge different between the two scenarios which 

might have been different if we could replace more input data from the beginning. 
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6. Discussion 

 

In the current thesis we used a SEEIIR epidemic model to analyze the spread 

of the influenza virus and to estimate the number of cases through the year in Greece. 

The data we used is from the period of the first 51 weeks of 2017-2018. By taking the 

resulting values of the posterior of the parameters we calculate the incredibility 

intervals for each time point (0, 50%, 98%) to see the new infections over time for the 

high risk of all of the 7 age groups. We see a big reduction in the number of flu cases 

for different vaccination scenarios. First we set a coverage rate, different for non-

elderly and elderly and in the second phase these rates increase to 80% for all age and 

risk groups. It is estimated that we have more cases in ages between 25 and 45 and 

less in infants.  

The interaction between individuals is not following a random pattern but 

depend on the physical presence of the individual and his contacts that vary according 

to his/her location. We can compare out data to the data of another European country 

that is modeled by similar calculation by Kiesha et al. To the study by Kiesha et al, 

they try to predict the contact matrices between 152 countries. We observe that 

percentage of reduction of infection is similar to that of Germany. This is probably 

due to school closure and the resulting social distances of the individuals in the 

corresponding age groups. ([5-15],[15-45]). The contact patterns are varied according 

to age (different age groups) and locations (schools, working places etc). The contacts 

are associated with age and these variations led to the differences in the contacts of 

the different age groups in our model. These contacts play a significant role in the 

modeling of the virus transmissions because they use contact rates to predict the 

spread of the contact transmissible diseases. In our estimation the contact data we 

used is from the United Kingdom so our results may not be very representatively. 
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ΠΕΡΙΛΗΨΗ 

Τν εκβόιην γξίπεο κπνξεί λα ρξεζηκνπνηεζεί γηα λα κεγηζηνπνηήζεη ηα νθέιε 

γηα ηελ πγεία κέζσ ζηνρεπκέλσλ πνιηηηθώλ εκβνιηαζκνύ. Γεληθά, νη εκβνιηαζκνί 

ζηνρεύνπλ ζπγθεθξηκέλεο νκάδεο πνπ είλαη πην επαίζζεηεο ζηνλ ηό ηεο γξίπεο. Απηή 

ε δηαδηθαζία ζπλδπάδεηαη κε ηελ αλάγθε γηα νηθνλνκηθή απνδνηηθόηεηα θαη απηό 

κπνξεί λα επηηεπρζεί κε ηελ πξνζνκνίσζε επηδεκίαο. Τα επηδεκηθά κνληέια έρνπλ 

δύν βαζηθνύο ζθνπνύο. Τν πξώην αθνξά ηελ αλαπαξάζηαζε ηνπ κεραληζκνύ 

δηάδνζεο θαη ηελ αμηνιόγεζε ησλ ζρεηηθώλ παξακέηξσλ. Ο δεύηεξνο ζηόρνο είλαη ε 

ρξήζε ηέηνησλ εθηηκήζεσλ γηα ηελ πξόβιεςε ηεο εμάπισζεο θαη ηνπ ειέγρνπ ησλ 

αζζελεηώλ. Σε απηό ην έξγν πξνζπαζνύκε λα αλνηθνδνκήζνπκε ηελ ειιεληθή 

επηδεκία γξίπεο κηαο ζπγθεθξηκέλεο πεξηόδνπ. Χξεζηκνπνηώληαο κηα ζύγρξνλε 

πξνζέγγηζε ηεθκεξίσζεο-ζύλζεζεο, ρξεζηκνπνηνύκε βηνινγηθά, θιηληθά, 

επηδεκηνινγηθά θαη ζπκπεξηθνξηθά δεδνκέλα γηα λα αλαπηύμνπκε έλα 

ζηξσκαηνπνηεκέλν κνληέιν κεηάδνζεο ειηθίαο θαη θηλδύλνπ πνπ αλαπαξάγεη ηε 

ζπκπεξηθνξά ηεο γξίπεο ζε ζπγθεθξηκέλα ζηειέρε γηα ηελ πεξίνδν 2017-2018 ζηελ 

Ειιάδα, έρνληαο ππόςε ηνλ εκβνιηαζκό θαηά ηε δηάξθεηα απηήο ηεο πεξηόδνπ . 

Εθηηκνύκε ηνλ αξηζκό ησλ κνιύλζεσλ όπσο πξνέθπςαλ από ην πξόγξακκα ειέγρνπ 

ηζηνξηθνύ, ζπγθξηηηθά κε ηνλ κε-εκβνιηαζκό θαη ηε κείσζε, εθαξκόδνληαο 

δηαθνξεηηθέο πνιηηηθέο θαηά ηελ δηάξθεηα ηεο πεξηόδνπ. Γηα ην ζθνπό απηό, 

ρξεζηκνπνηνύκε ην παθέην fluEvidenseSynthesis θαη αληηθαζηζηνύκε αξθεηέο πεγέο 

δεδνκέλσλ κε δεδνκέλα ηεο ειιεληθήο γξίπεο από ηελ πεξίνδν 2017-2018 γηα λα 

ππνινγίζνπκε ηνλ αξηζκό ησλ αηόκσλ πνπ έρνπλ κνιπλζεί κε ηε γξίπε εθείλν ην 

έηνο. Τέηνηεο εθηηκήζεηο κπνξνύλ λα ρξεζηκνπνηεζνύλ γηα λα θαζνδεγήζνπλ ηηο 

πξνζπάζεηεο ειέγρνπ γηα ηε κείσζε ηνπ βάξνπο ηεο γξίπεο ελόςεη ηεο επόκελεο 

ζεδόλ. 
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Abstract 

Influenza vaccine can be used to maximize health benefits through targeted 

vaccination policies. In general, vaccinations target specific target groups that are 

more susceptible to influenza virus. This process is combined with the need for 

financial efficiency and this can be achieved by epidemic simulation forward. 

Epidemic models have two main purposes. The first concerns the representation of the 

propagation mechanism and the assessment of the relevant parameters. The second 

goal is to use such estimates to predict the spread and control of diseases. In this work 

we try to reconstruct the Greek flu epidemic of a specific period. Using a modern 

documentation-synthesis approach, we use biological, clinical, epidemiological and 

behavioral data to develop a stratified age and risk transmission model that reproduces 

influenza behavior in specific strains for the 2017-2018 season in Greece, having 

consider getting vaccinated during this period. We estimate the number of infections 

as resulted from the historical check program compared to non-vaccination and the 

reduction, implementing different policies during the period. For this purpose, we use 

the fluEvidenseSynthesis package and replace several data sources with Greek flu 

data from the period 2017-2018 to calculate the number of people infected with the 

flu in that year. Such estimates can be used to guide control efforts to reduce the 

weight of influenza in view of the coming season. 
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Appendix  

 

Figure 14: 

 

 

Figure 14: The results of the computational model when applied to the influenza 

outbreak (H3N2 stem) during the 1995/1996 season. A: We can see the five age 

groups and the number of positive Influenza – Like Illness cases in each group. The 

red line represents the mean. B: On the left we can see the contact matrix of the 

POLYMOD and the resembled likelihood matrix. C: The probability of someone 

being recorded as ILI case in all age groups. D: The sensitivity of each group at the 

beginning of the influenza season. E: Transmission coefficient (q - left), basic (R0 - 

middle) and effective (Re(t=0) - right) reproduction numbers.  
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Table 4: Sample data table 

 

Week  0-5 5-15 15-

45 

45-

65 

65+ Positive 

for 

influenza 

Hospital 

samples 

A 

positive 

A-H1N1 

positive 

A-H3N3 

positive 

B 

positive 

Deaths Deaths of 

vaccinated 

people 

Female 

ICU 

Male 

ICU 

High 

risk 

ICU 

42-17 1 0 1 0 0 1 32 0 0 0 1 0 0 0 0 0 

43-17 0 0 1 4 3 1 39 1 0 0 0 0 0 0 0 0 

6-18 0 1 1 2 4 8 57 2 1 5 0 0 0 0 0 0 

7-18 1 2 5 0 6 4 80 2 2 0 0 0 0 0 0 0 

8-18 0 0 1 2 3 48 174 10 7 3 38 4 0 2 2 4 
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