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Abstract

In this thesis we present results and techniques from random matrix the-
ory, the theory which studies matrices whose entries are random variables,
and their connection to quantum information theory.

More precisely, first we define the concept of the empirical spectral distri-
bution of a matrix, which is the uniform discrete measure which is induced
by the eigenvalues of the matrix. Next we study the limiting behaviour, in
the sense of weak convergence of random variables, of the empirical spec-
tral distribution of random matrices as their size grows. The cases we
study, under certain conditions such as i.i.d. entries, finite moments and
more, are the following:

1. The case of square symmetric random matrices.

2. The case of the product of a random matrix (not necessary square)
with its conjugate transpose matrix, when the dimensions of the ma-
trix are proportional.

3. The case of the product of a random matrix (not necessary square)
with its conjugate transpose matrix, when one dimension grows faster
than the other.

In each of these cases we show that the limit is a probability measure
which is absolutely continuous to the Lebesgue measure and has compact
support. Moreover, in each of these cases, we prove that the extreme eigen-
values of the matrices converge to the extreme points of the support of the
corresponding limit of the empirical spectral distribution of the matrices,
when the entries follow the standard Gaussian distribution.
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Next we present tools from random matrix theory that are useful in
quantum information theory. We define several concepts such as the
∞−Wasserstein distance and the random (quantum) induced states, and
prove some of their properties. It is proven that the concept of random
quantum state is strongly related with matrices with standard Gaussian
entries. Taking advantage of this connection we apply the results of the
previous chapter to the study of random quantum states.

In the last chapter, using the results that we obtain for the random quan-
tum states, we prove the existence of a threshold function which depends
only on the dimension of the space and separates with high probability
the states which are entangled from those that are not entangled, having
as a criterion the dimension of the space from which the states have been
induced.



Περίληψη

Στην παρούσα διπλωµατική εργασία παρουσιάζονται αποτελέσµατα και τεχνι-
κές της ϑεωρίας τυχαίων πινάκων, δηλαδή της ϑεωρίας που µελετά πίνακες
µε στοιχεία τυχαίες µεταβλητές, και τη σχέση αυτών µε αποτελέσµατα της
κβαντικής ϑεωρίας πληροφορίας.

Πιο συγκεκριµένα, αρχικά ορίζεται η έννοια της εµπειρικής ϕασµατικής
κατανοµής ενός πίνακα, που είναι το οµοιόµορφο διακριτό µέτρο που επάγε-
ται από τις ιδιοτιµές του. Στη συνέχεια µελετάται το όριο, µε την έννοια της
ασθενούς σύγκλισης τυχαίων µεταβλητών, της εµπειρικής ϕασµατικής κατα-
νοµής τυχαίων πινάκων καθώς η διάστασή τους µεγαλώνει. Οι περιπτώσεις
που εξετάζουµε, πάντα υπό κάποιες προϋποθέσεις, π.χ. ανεξαρτησία και ι-
σονοµία των στοιχείων του πίνακα, πεπερασµένες ϱοπές και άλλα, είναι οι
ακόλουθες.

1. Η περίπτωση των τυχαίων τετραγωνικών συµµετρικών πινάκων.

2. Η περίπτωση του γινοµένου ενός τυχαίου πίνακα (όχι κατ’ ανάγκην
τετραγωνικού) µε τον ανάστροφό του, ή τον συζυγή ανάστροφό του α-
ντίστοιχα, υποθέτοντας ότι οι διαστάσεις του είναι ανάλογες.

3. Η περίπτωση του γινοµένου ενός τυχαίου πίνακα (όχι κατ’ ανάγκην
τετραγωνικού) µε τον ανάστροφό του, όταν η µία διάσταση µεγαλώνει
πολύ γρηγορότερα από την άλλη.

Σε κάθε µία περίπτωση αποδεικνύεται ότι το όριο είναι ένα µέτρο πιθα-
νότητας, απόλυτα συνεχές ως προς το µέτρο Lebesgue, µε ϕραγµένο ϕορέα.
Παράλληλα, σε κάθε µία από αυτές τις περιπτώσεις αποδεικνύουµε και την
σύγκλιση της µεγαλύτερης και της µικρότερης ιδιοτιµής των τυχαίων πινάκων
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στα αντίστοιχα άκρα του ϕορέα του ορίου, µε την υπόθεση ότι τα στοιχεία του
πίνακα ακολουθούν την τυπική κανονική κατανοµή.

Στη συνέχεια παρουσιάζονται εργαλεία της ϑεωρίας τυχαίων πινάκων που
είναι χρήσιµα στην περιοχή της κβαντικής ϑεωρίας πληροφορίας. Ορίζο-
νται οι έννοιες της ∞-απόστασης Wasserstein και της τυχαίας επαγόµενης
(κβαντικής) κατάστασης, και αποδεικνύονται ιδιότητές τους. Αποδεικνύεται
συγκεκριµένα πως η έννοια της τυχαίας κβαντικής κατάστασης συνδέεται
ισχυρά µε τυχαίους πίνακες µε στοιχεία που ακολουθούν την κανονική κα-
τανοµή. Εκµεταλλευόµενοι αυτή τη σύνδεση εφαρµόζουµε τα αποτελέσµατα
των προηγούµενων κεφαλαίων στις τυχαίες κβαντικές καταστάσεις.

Στο τελευταίο κεφάλαιο χρησιµοποιώντας τα αποτελέσµατα για τις τυχαίες
κβαντικές καταστάσεις αποδεικνύουµε την ύπαρξη συνάρτησης (threshold)
που εξαρτάται από την διάσταση του χώρου και χωρίζει µε µεγάλη πιθανότητα
τις καταστάσεις που είναι entangled από αυτές που δεν είναι, µε ϐάση την
διάσταση του περιβάλλοντος από το οποίο έχουν επαχθεί.
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Introduction

In this thesis we are going to study the interface between random matrix
theory and quantum information theory.

Historical background and general description

Classical information theory studies the transmission, processing, ex-
traction, and utilization of information. Abstractly, information can be
thought of as the resolution of uncertainty. As quantum mechanics pro-
gressed, several information theoretic concepts were introduced such as
quantum information, which is the information of the state of a quantum
system, and played important role in the area. This is hardly surprising,
since quantum mechanics, as usually presented, is a probabilistic theory.

However, in the 1990s quantum information theory emerged as a distinct
discipline. Moreover, as quantum information theory has been progressing
it has been characterized as the mathematical framework necessary for the
building of a quantum computer.

On the other hand, in 1955 the nuclear physicist E. Wigner [1] intro-
duced the concept of random matrices (i.e. matrices whose entries are
random variables) making the assumption that the spacings between the
lines in the spectrum of a heavy atom nucleus should resemble the spac-
ings between the eigenvalues of a random matrix, and should depend only
on the symmetry class of the underlying evolution. By that, the mathe-
matical field of random matrix theory was born and since then it has been
connected with several research areas such as asymptotic geometric anal-
ysis (and more precisely high-dimensional probability), physics, numerical
analysis, mathematical statistics, theoretical neuroscience, optimal con-
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trol and more.
Over the last dozen or so years, it has become clear that quantum in-

formation theory is closely linked to geometric functional analysis (Banach
space theory, operator spaces, high-dimensional probability) and random
matrix theory. In this thesis we study the interface between quantum
information theory and random matrix theory.

We have separated the thesis in three parts.

Part 1

Both quantum information theory and random matrix theory use tools
from several research areas of mathematics such as geometric functional
analysis, combinatorics, probability theory, operator theory and linear al-
gebra. In the first part of this thesis we present all these tools and give a
few proofs. We have avoided to give extended proofs in this part because if
we did we would lose focus on the main goal of the thesis. More precisely
this part contains the following:
· In both random matrix theory and in quantum information theory ma-

trices play a crucial role. So it is only natural that we introduce the ap-
propriate norms (the analogues of the `p norms in Rn or Cn) on the matrix
spaces.
· Next we present Dirac’s Bra-Ket notation which is a well known way to

denote elements in quantum mechanics.
· Probability theory is in the core of this thesis so several ‘‘classical’’

results such as the Borel-Cantelli lemma and Fubini-Tonelli theorem are
presented since they are necessary.
· In the same section we introduce the concept of a probability metric

space, i.e a metric space equipped with the Borel σ-algebra (the small-
est σ-algebra that contains the open sets produced by the metric) and a
probability measure defined on that σ-algebra.

So one may define the space P(X, d) of the (Borel) probability measures
of a metric space (X,d). It has been proven (see [2]) that this space is a
subspace of the dual of the space of continuous and bounded functions
with the sup−norm. On this space one can construct a metric which can
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metricize weak convergence, i.e the convergence with respect to the weak
topology. Note that, when we are in R, weak convergence is the convergence
in distribution that we have seen in probability theory.

We also present Skorohod’s theorem, a beautiful theorem which converts
the convergence in distribution to almost sure convergence and Haar’s the-
orem which states that every locally-compact group has a unique measure
which is invariant under multiplication.
· As mentioned above, geometric functional analysis and high-dimensional

probability are strongly related to both random matrix theory and quan-
tum information theory. So it is natural to use several results from that
area such as the isoperimetric inequality on the sphere: The n-dimensional
sphere has a unique probability measure invariant under orthogonal trans-
formations. There are various ways to define this probability measure but
from a probabilistic point of view it can be defined as follows: Let {Xi}i∈[n]

be i.i.d. random variables all following N(0,1). Then

sn−1(A) = P

(
1

(
∑n
i=1 X

2
i )1/2

(X1, X2, . . . , Xn) ∈ A
)
.

The isoperimetric inequality on the sphere states that if C is a ball with
respect to the geodesic metric on the sphere then

sn−1(Cϸ) ≤ sn−1(Aϸ) ,∀A ⊆ Sn−1 : sn−1(A) = sn−1(C),

where Aϸ = {x : dist(x, A) < ϸ} is the ϸ-extension of A.
After the isoperimetric inequality we also present the well-known Krein-

Milman theorem which states that for a convex and compact set K we have
that

K = conv(ext(K)).

Next we define several ways to ‘‘measure the size’’ of convex sets and men-
tion some notions and inequalities about the volume radius, the mean
width and the Gaussian mean width of sets.

The last result that we need from geometric functional analysis concerns
the `-norm, the `−position and and the MM∗ estimate for convex bodies.
The `-norm is defined for all matrices of Rn (or Cn) as follows: if G is an
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n-dimensional vector whose coordinates are i.i.d. random variables all
following N(0,1) and K is a convex body containing 0 in its interior then

`K(M) = E||T (G)||K .

The `-position is a special position of a convex body: we say that a convex
body in Rn is in `-position iff the (unique) positive semi-definite matrix M of
largest determinant among all matrices in the unit ball with respect to the
`K-norm is a multiple of the identity matrix. A useful property of convex
bodies which are in the `−position is that

1 ≤ w(K)w(K◦) ≤ C logn

where w(K) denotes the mean width of K.
· Next we present the tensor product of two Hilbert spaces. The tensor

product of Hilbert spaces is the appropriate way to define the states used
in quantum mechanics.

The physical phenomena that characterize quantum states such as en-
tanglement and separability are all defined in this section as well.

Despite the way they are defined, in the rest of the thesis we will try
to avoid tensor products, as much as we can, taking advantage of the
following important property. If H1, H2 are two Hilbert spaces then

H1 ⊗ H2 = B(H1, H2)

where B(H1, H2) denotes the space of linear operators from H1 to H2.
So, since we will work on multi-dimensional complex spaces, we will

translate states into complex matrices.
· In the last section of the first part we present tools from graph the-

ory and combinatorics such as simple graphs, trees, bipartite graphs and
Hall’s theorem.

Part 2

In the second part of the thesis we present and prove several important
results from random matrix theory. First we introduce the concept of the
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empirical spectral distribution (E.S.D.) of an n × n matrix A which will be
denoted by µA. More precisely, if {λi(A)}i∈[n] are the eigenvalues of A then

µA =
1
n

n∑
i=1

δλi (A)

where δ denotes the Dirac measure. In other words, the empirical spectral
distribution of a matrix A is exactly the discrete uniform measure on the
set of the eigenvalues of A.

So one may note that if A is a random matrix then µA is also a random
measure in P(R), the set of all Borel probability measures on R.

The three results from random matrix theory that we are going to discuss
are Wigner’s semicircular law [1], the Marchenko-Pastur law [3] and Bai-
Yin’s theorem on convergence to the semicircular law [4]. The first two
are ‘‘classical’’ results in random matrix theory. The third one is not so
well-known but it is very useful in our case.

Wigner’s semicircular law

In this section we prove the weak convergence of the empirical spectral
distribution of a sequence of random symmetric matrices with i.i.d. entries
which have finite moments (the theorem has been generalised for entries
with are assumed to have only finite second moment, see [5]).

Let An be a sequence of matrices as above. Then µ An√
n

converges weakly
in probability to the semicircular law, i.e the measure σ with density (with
respect to the Lebesgue measure)

σ(x)dx =
1[−2,2](x)

2π

√
4 − x2.

There are mainly two known ways to prove such theorems: the Stieltjes
method and the moment method. In this thesis we discuss the moment
method.

As the name suggests, the moment method is based on establishing that
the k-th moment of the sequence of the E.S.D. µAn/√n converges weakly
in probability to the k-th moment of the semicircular law. Taking into
account:
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(i) that since σ(x) has bounded support it is uniquely determined by its
moments,

(ii) the Weierstrass approximation theorem which states that there exist
polynomials as close as we want to a continuous bounded function,

we prove that the deterministic measure E(µAn/√n) is close (as the dimen-
sion grows) to the measure µAn/√n and we reduce the proof of the weak
convergence to the semicircular law to the following:

E

(∫
xkdµAn/

√
n

)
→

∫
xkdσ(x) ∀k ∈ N in probability.

But it easy to compute that the moments of the semicircular law are

∫
xkdσ =

0 if k is odd

C k
2

if k is even,

where
Cn =

1
n + 1

(2n)!
(n!)2 .

So, using combinatorial analysis we prove that the limit of the k-th moment
(when k is even) of the E.S.D.’s is in fact the cardinality of the set of all the
sequences {aj}j∈[k] with k elements which are all either +1’s or −1’s such
that ∀j ∈ [k − 1]

∑j
m=1 aj ≥ 0,

∑k
j=1 aj = 0.

Lastly we prove that the cardinality of the set of the sequences mentioned
above is given exactly by the sequence of Catalan numbers, which ends the
proof of the semicircular law.

Convergence of the extreme eigenvalues

The next main result that we prove in the thesis is the convergence of
the extreme eigenvalues of matrices seen in the Wigner’s semicircular law
(in the case where the entries are standard Gaussian random variables)
to 2 and −2 respectively. In order to do that, we prove two well-known
inequalities for the Gaussian measure:

(i) The Gaussian isoperimetric inequality, a result analogous to the
spherical isoperimetric inequality, and a consequence of it, which
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states that if
γn(A) = γ1((−∞, a])

then for any ϸ > 0
γn(Aϸ) ≥ γ1(−∞, a + ϸ),

where ∀m ∈ N, γm(A) = P((X1, . . . , Xm ∈ A), where X1, . . . , Xm are
standard Gaussian random variables.

(ii) Erhard’s inequality which states that for any pair of Borel sets A, B
in Rn

Φ−1(γn(λA + (1 − λ)B)) ≥ λΦ−1(γn(A)) + (1 − λ)Φ−1(γn(B)),

where Φ(x) is the distribution function of a standard Gaussian ran-
dom variable.

Using the results above we prove that for any 1-Lipschitz function f , if Mf

is its median then
Mf ≤ Eγn (f ),

and a concentration inequality for a 1-Lipschitz function and its median.
Applying these results for f = || · ||∞ we prove the convergence of the

extreme eigenvalues.

Marchenko-Pastur law

In this case we prove the weak convergence of the E.S.D. of a sequence
of random matrices Xp×nX ∗n×p/n, where p/n → y ∈ (0,1] and the entries
of Xp×n are i.i.d. random variables with finite moments, to a deterministic
measure µ that has density (with respect to the Lebesgue measure)

dµ =
1

2πxy

√
(b − x)(x − a)1a≤x≤b,

where
a(y) = (1 −

√
y)2, b(y) = (1 +

√
y)2.

Note that a similar result is true when y ∈ (1,∞) under the weaker as-
sumption that just the second moment of the entries of Xp×n is finite.
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The methods that are used in order to prove the M-P law are very similar
to those used for Wigner’s semicircular law. Again we use the moment
method and prove that every moment of the E.S.D. tends to the respective
moment of µ.

Convergence of the extreme eigenvalues in M-P

As in the Wigner’s law case we prove the convergence of the extreme
eigenvalues of matrices in the M-P law, when the entries are Gaussian, to
a(y) and b(y) respectively. The proof can be found in [6]. It is done by
working with a more convenient matrix Y which has the same eigenvalues
as X .

The tools that are used in the proof include results about the χ−squared
distribution and the Gershgorin circle theorem which states that, for any
complex matrix A, every eigenvalue of it lies into a circle whose radius is
the sum of the 2-norms of the elements of some of the rows of the matrix.

Bai-Yin’s convergence to the semicircular law

In this section we prove another theorem concerning the weak conver-
gence of the E.S.D. of a sequence of random matrices Ap = 1

2
√
np (XpX ∗p −

n(p)Ip) to the semicircular distribution.
Here Xp is a p × n(p) random matrix with i.i.d. entries with variance 1

and finite fourth moment. Also n(p), p → ∞ and p/n(p)→ 0.
In order to prove the convergence we prove several lemmas. The most

crucial one simplifies the random matrices we work with. The precise
statement is as follows:

Let Yp be a sequence p × n random matrices with i.i.d. entries such that

(i) EY1,1 = 0 and EY 2
1,1 = 1 + ap, where ap → 0 as p → ∞, and

(ii) |Y1,1| ≤ ϸpn1/4, where ϸp → 0 and ϸpn1/4 → ∞.

Then the matrix Zp with
Zi,i = 0

and
Zi,j =

1
2
√
np

∑
lp

Yi,lpYj,lp when i , j
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has E.S.D. that converges to the semicircular distribution. For the proof
we use similar methods (the combinatorial approach, the moment method)
as the ones we used for Wigner’s semicircular law.

Next we prove several tools which we use in order to prove that the con-
vergence of the simplified matrices Yp to the semicircular law is sufficient
for the convergence of the E.S.D. of Xp.

More specifically we prove that the E.S.D.’s of the truncated and centered
matrices X ′p, i.e. the matrices with entries Xi,j1|Xi,j |<ϸpnp−E(Xi,j1|Xi,j |<ϸpnp) where
Xi,j is an entry of Xp, have the same limiting behaviour as the E.S.D. of Xp.
The proof is completed by combining the simplified lemma and the previous
fact. The complete proof can be found in [4].

Convergence of the extreme eigenvalues in Bai-Yin’s case

Like in the Marchenko-Pastur case and Wigner’s case we prove the con-
vergence of the extreme eigenvalues of matrices in Bai-Yin’s case, when
the entries are standard Gaussian, to −2 and 2 respectively.

In order to do that, we use the same method we used in the Marchenko-
Pastur case and work with more convenient matrices. This way we show
that it is sufficient to prove the convergence of the extreme eigenvalues
when the matrices have entries that are real standard Gaussian.

The proof is completed by the following very important lemmas from
high-dimensional probability:

(i) (Slepian’s inequality) Let (Xt)t∈T and (Yt)t∈T be two Gaussian processes
such that for any t, s ∈ T

E(Yt − Ys)2 ≤ E(Xt − Xs)2

and
EX2

t = EY 2
t .

Then ∀x ∈ R
P(sup

t∈T
Xt ≥ x) ≤ P(sup

t∈T
Yt ≥ x),

which implies that
E sup

t∈T
Xt ≤ E sup

t∈T
Yt.
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(ii) (Gaussian interpolation) Consider two independent n-dimensional
real random vectors X ∼ N(0,ΣX ) and Y ∼ N(0,ΣY ). Then define
the Gaussian vector

Z (u) =
√
uX +

√
1 − uY u ∈ [0,1]

For any f : Rn → R which is twice diffentiable, it is true that

d

du
E(f (Z (u)) =

1
2

n∑
i,j

(ΣXi,j − ΣYi,j)E
d2

dxidxj
(Z (u)).

(iii) (Chevet-Gordon inequalities) Let B ∈ Mp,n be a random matrix with
independent N(0,1) entries. Let K ⊆ Rn and L ⊆ Sp−1 be compact
sets and rk > 0 such that K ⊆ rkBn2 . Then

Emax
u∈L

max
t∈K
〈Bt, u〉 ≤ wG(K) + rkwG(L),

where wG denotes the Gaussian-mean width of a set.

Combining the previous facts we complete the proof.

Part 3

In this part we introduce and prove several important tools used in quan-
tum information theory and then use the theorems from Part 2 in order to
prove a threshold theorem.

Random matrices in quantum information theory

The first tool we introduce is the ∞−Wasserstein distance. It is defined
as follows: for two probability measures µ1, µ2,

d∞(µ1, µ2) := inf ||µ1 − µ||L∞ ,

where the infimum is over all couples (X1, X2) of random variables with
(marginal) laws µ1, µ2 defined on a common probability space. It is shown
that convergence with respect to d∞ of a sequence of random variables to
a random variable with compact support (say [a, b]) is equivalent to the
weak convergence of these random variables and the convergence of the
inf and sup of the random variables to a and b respectively.
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Next we introduce two models of random states. The most important is
the random induced state. Although this model is defined as the partial
trace of a random variable uniformly distributed on the sphere of Cn ⊗ Cs,
we prove and use that the random induced state has distribution Wn,s

tr(Wn,s)

where Wn,s = BB∗ and B is an n × s random matrix with i.i.d. entries all
following NC(0,1).

We prove an important concentration result for χ−squared distribution,
which shows that the element tr(Wn,s) can be virtually treated as a con-
stant. So we conclude to the following result:

Let µ(A) denote the E.S.D. of a matrix A and let ρn,s be the distribution of
a random n×s induced state. If s/n → λ ∈ (0,∞) then µn,s(sρn,s) converges
with respect to the ∞−Wasserstein distance to the Marchenko-Pastur dis-
tribution (a consequence of the M-P theorem and the convergence of the
extreme eigenvalues).

Likewise, if s/n, s→ ∞ then µ(
√
ns(ρn,s− I

n )) converges with respect to the
∞−Wasserstein distance to the semicircular distribution (a consequence of
Bai-Yin’s theorem and the convergence of the extreme eigenvalues).

Random quantum state

In this section we prove a threshold theorem. For the proof we need the
following tools:

1. For any x, y ∈ Rn,0, i.e
∑
i xi =

∑
i yi = 0 with y , 0, and for every

permutation invariant real convex function φ on Rn it is true that

φ(x) ≤ φ
(
2n||x ||∞
||y||1

y

)
.

2. Let A, B be two unitary invariant random self-adjoint matrices with
zero trace that satisfy

P((d∞(µ(A), µsc) ≤ ϸ) ≥ 1 − p

and

E(d∞(µsp(A), µsc) ≤ ϸ,
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and likewise for B. Here µsc denotes the distribution of the semicir-
cular law. Then

1 − p
Cϸ + 1

E‖A‖K ≤ E‖B‖K

for any convex subset ofMsa,0
n (the set of all n-dimensional self-adjoint

matrices with zero trace).

Combining the previous tools with the main theorem from the section of
random matrices in quantum information theory, we prove that if n/s, n →
∞ and if ρn,s is the distribution of a random quantum state and An is an
n × n random matrix with Gaussian entries and

Gn = An − tr(An)I,

then
C−1
n,sE

∥∥∥∥ Gn
n
√
s

∥∥∥∥ ≤ E∥∥∥∥ρn,s − I
n

∥∥∥∥
K
≤ Cn,sE

∥∥∥∥ Gn
n
√
s

∥∥∥∥
K

for Cn,s → 1.
Next we prove an appropriate form of the well-known concentration in-

equality, Lévy’s inequality. More precisely, let K be a convex body which
is a subset of the states of Cn, with inradius r, and let K0 = K − I

n and ρn,s
be a random induced state. Then, if M is the median of ‖ρn,s − I

n ‖K (and
likewise for any central value) we have that for any ϸ > 0

P
(∣∣∣∣∣ ∥∥∥∥ρn,s − In ∥∥∥∥

K0
−M

∣∣∣∣∣ ≥ ϸ) ≤ exp(−s) + 2 exp(−ϸ2sr2n/72).

Combining the above with results from convex geometric analysis and
asymptotic geometric analysis (mentioned in Part 1) we conclude the fol-
lowing very important threshold theorem:

Let s0(d) := w(Sep(Cd ⊗ Cd)◦)2, where w(K) denotes the mean width of
a convex set K and Sep(H) denotes the set of separable states of a Hilbert
space. If ρ is a random induced state ofCd⊗Cd, induced by the environment
Cs, then for any ϸ > 0 we have that

(i) If s ≤ (1 − ϸ)s0(d) then

P(ρ is entangled) ≥ 1 − 2 exp(−c(ϸ)d3).
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(ii) If s ≥ (1 + ϸ)s0(d) then

P(ρ is separable) ≥ 1 − 2 exp(−c(ϸ)s).

The above threshold theorem can be translated as follows:
‘‘Given N identical particles in a generic pure state, if we assign k of

them to Alice and k of them to Bob, their shared state suddenly jumps
from typically entangled to typically separable when k crosses a certain
threshold value kN ∼ N

5 .’’
Lastly we give a result of almost sure entanglement of low-dimensional

environments which is a consequence of asymptotic geometric analysis. It
states that if s, d ∈ N are such that s ≤ (d − 1)2 and if ρ is a random d2 × s

induced state then
P(ρ is separable) = 0.
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Preliminaries
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Background

1.1 Matrix norms

In this section we present the concept of matrix norms; we give some
examples and prove some of their properties. Note that an n-dimensional
space of real (or complex) matrices is in fact a real (or complex) vector
space of dimension n2. But since the space of matrices is equipped with
an additional operation, multiplication of matrices, one may use a slightly
different method to estimate matrices.

Definition 1.1.1. Throughout this thesis we will use the following nota-
tions.

• Mn,m for the class of n × m, either real or complex, matrices and Mn

for the class of n × n matrices.

• Msa
n (C) for the class of self-adjoint complex matrices. Note thatMsa

n (C)

is in fact an n2−dimensional real vector space.

• AT for the transpose of a matrix A and A∗ for the conjugate transpose
of A. Note that A∗ = AT when A has real entries.

• Given a finite dimensional complex or real Hilbert space H, we will
denote by B(H1, H2) the space of linear maps (operators) from H1 to
H2 and by B(H1) the space of linear operators from H1 to H1. When
H1 = Cn and H2 = Cm then B(H1, H2) can be identified with Mm,n(C).

Next we present the `p−norms in Rn (equivalently Cn) and then we will
present the analogous norms for matrices.

19
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Definition 1.1.2. We define the `p-norm, p ∈ [1,∞), on Rn by

‖x‖p :=

 n∑
i=1

|xi |
p

1/p

for any x ∈ Rn, while for p = ∞ we set

‖x‖∞ := max
i∈[n]
|xi |,

where [n] = {1,2, . . . , n}.

Next we give the definition and/or some properties of matrix norms.
Since Mn is itself a vector space of dimension n2, one can measure the

‘‘size’’ of a matrix by using any norm on Cn2. However, Mn is not just a
high-dimensional vector space; it has a natural multiplication operation,
and, when we want to obtain estimates, it is common to relate the ‘‘size’’ of
a product AB to the ‘‘sizes’’ of A and B.

Definition 1.1.3. A function ‖ · ‖ : Mn → R is a matrix norm if, for all
A, B ∈ Mn, the following hold:

1. ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A = 0,

2. ‖c · A‖ = |c| · ‖A‖, for all c ∈ C,

3. ‖A + B‖ ≤ ‖A‖ + ‖B‖,

4. ‖A · B‖ 6 ‖A‖ · ‖B‖.

A matrix norm is sometimes called a ring norm. The first three proper-
ties of a matrix norm are identical to the axioms for a norm. A norm on
matrices that does not satisfy property (4) for all A and B is a vector norm

on matrices.
We are now ready to present the analogues of the `p norms for matrices.

Definition 1.1.4. Let M ∈ Mn,m be a real or complex Euclidean space. We
will denote |M | := (M∗M)1/2. Then we define its Schatten p-norm, p ∈ [1,∞),
as

‖M‖p := (tr|M |p)1/p.
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Remark 1.1.5. The most commonly used norms in quantum information
theory are the following.

• The Schatten 1-norm (the trace norm).

• The Hilbert–Schmidt norm (Frobenius norm) or Schatten 2-norm,
which is the analogue of the `2-norm. In the rest of the thesis we will
use this norm if not otherwise specified.

• The Schatten ∞-norm, which can be considered to be the limit of
‖M‖p as p tends to infinity. This implies that Schatten ∞-norm is the
operator norm, meaning

‖M‖∞ = ‖M‖op = sup
{x : ‖x‖2≤1}

‖Mx‖2.

An equivalent way to define the Schatten p-norms is via the singular
values of a matrix M, meaning the eigenvalues of |M |. Denote s(M) the
singular values of M arranged in non-increasing order. Then

‖M‖p = ‖s(M)‖p p ≥ 1,

where on the right-hand side of the equality the norm is the `p-norm of the
vector s(M). By this equivalent definition it easy to show that the Schatten
p-norms are in fact matrix norms and that the matrices M and M∗ have
the same Schatten p-norm (obviously considered as elements of different
matrix spaces) since MM∗ and M∗M have the same non-zero eigenvalues.

We end this section with a useful tool from linear algebra.

Theorem 1.1.6 (Singular value decomposition). Let M ∈ Mn,m be a real or

complex Euclidean space. Assume n ≤ m. Then

M = UΣV

where U is an n × n unitary matrix, V is an m × m unitary matrix and Σ is

an n ×m ‘‘diagonal’’ matrix, i.e. Σi,j = 0 when i , j, whose diagonal entries

are the singular values of M.

Everything from this section and more about matrices and matrix norms
can be found in the first chapters of [7].
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1.2 Bra-ket notation

When working with objects related to Hilbert spaces, particularly the com-
plex ones, we use throughout the thesis Dirac’s bra-ket notation. This
notation generalises the column-row vector convention for elements of real
(or complex) spaces.

More precisely, if H is a Hilbert space, then a standard element x ∈ H
is written |x〉 (a ket-vector). The same element x can be considered as a
linear mapping from H to C which acts on an element y ∈ H via the scalar
product 〈y, x〉 and then it is being denoted by 〈x |.

Moreover, let H1, H2 be two finite dimensional Hilbert spaces (real or
complex) and let y1, y2 be elements of H1, H2, respectively. Then we use
the notation |y1〉〈y2| for the operator H2 → H1 which acts on a ket-vector
x ∈ H2 as

|x〉 → 〈y2|x〉|y1〉

or in the standard notation x → 〈y2, x〉y1.

1.3 Tools from probability theory

In this section we are going to present some tools from probability theory
needed in the rest of the thesis.

1.3.1 Weak convergence

Firstly we are going to present some properties of weak convergence of
probability measures on metric spaces.

Definition 1.3.1. Let (X, d) be a metric space. We will use the notation
B(X ) for the Borel σ-algebra (the smallest σ-algebra that contains all open
sets of X with respect to the metric d). When (X, d) is separable, then
equivalently B(X ) is the smallest σ-algebra that contains every open (or
closed) ball of X (with respect to the metric d). The definition of Borel sets
can be extended to arbitrary topological spaces in a similar way.
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Definition 1.3.2. Let (X, d) be a metric space. A function µ : B(X ) → R+

will be called a Borel probability measure if

µ(∅) = 0, µ(X ) = 1

and

µ

 ∞⋃
n=1

An

 =

∞∑
n=1

µ(An)

whenever {An}n∈N ⊆ B(X ) is a sequence of pairwise disjoint Borel subsets
of X . We will use the notation P(X, d) for the set of all Borel probability
measures of (X, d). We will also use the notation P(X ) when the underlying
metric is clear from the context.

Lemma 1.3.3. Any µ ∈ P(X ) has the following properties.

1. If {An}n∈N is an increasing sequence of Borel sets then

lim
n
µ(An) = µ

⋃
n

An

 .
2. If {An}n∈N is a decreasing sequence of Borel sets then

lim
n
µ(An) = µ

⋂
n

An

 .
3. µ is inner regular, meaning that for any B ∈ B(X ),

µ(B) = sup{µ(C) : C ⊆ B, C closed}.

4. µ is outer regular, meaning that for any B ∈ B(X ),

µ(B) = inf{µ(C) : U ⊇ B, U open}.

5. If (X, d) is a compact metric space, then

µ(A) = sup{µ(K) : K ⊆ A, K compact}.

We are now ready to give the definition of weak convergence in any metric
space.
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Definition 1.3.4. Let (X, d) be a metric space. We will use the notation

Cb(X ) = {f : X → R | f continuous and bounded}.

Let {µn}n∈N ⊆ P(X ) and µ ∈ P(X ). We will say that µn converges weakly to µ
iff ∫

fdµn →

∫
fdµ ∀ f ∈ Cb(X ).

Lemma 1.3.5. Let (X, d) be a metric space and {µn}n∈N ⊆ P(X ) and µ ∈ P(X ).

Then the following statements are equivalent.

(i) µn converges weakly to µ.

(ii)
∫
gdµn →

∫
gdµ for all real uniformly continuous and bounded func-

tions g on X .

(iii) lim supn µn(C) ≤ µ(C) for every closed C ⊆ X .

(iv) lim infn µn(U ) ≥ µ(U ) for every open U ⊆ X .

(v) limn µn(A) = µ(A) for every Borel set A such that µ(∂A) = 0, where ∂A

denotes the boundary of A.

Note that weak convergence is in fact the convergence in distribution of
real random variables as seen in probability theory.

Definition 1.3.6. Let P(X ) be the set of Borel probability measures of the
metric space (X, d). Then the function dP : P(X ) × P(X ) → [0,+∞) defined
by

dP(µ, ν) = inf{a > 0 : µ(A) ≤ ν(Aa) + a, ν(A) ≤ µ(Aa) + a,∀A ∈ B(X )}

is called the Prokhorov metric on P(X, d). Here

Aa = {x ∈ X : d(x, A) < a}.

Obviously if A ∈ B(X ), then Aa ∈ B(X ).
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Proposition 1.3.7. The Prokhorov metric dP is a metric on the space P(X, d).

Also, if dP(µn, µ)→ 0 then µn converges weakly to µ. Moreover, when (X, d)

is separable, then the other direction is also true, i.e.,

µn converges weakly to µ ⇐⇒ dP(µn, µ)→ 0.

Note that when X = R then there exists an equivalent way to metrize
weak convergence of real random variables (or equivalently probability
measures on R), called Lévy’s distance, defined as follows

dL(µ, ν) = inf{ϸ > 0 : µ(−∞, t − ϸ] − ϸ ≤ ν(−∞, t] ≤ µ(−∞, t + ϸ] + ϸ ∀ t ∈ R}.

One may find the proofs of all the results of this subsection, and more
about probability measures on metric spaces, in [2].

1.3.2 Haar measure

Now we proceed with the definition of Haar measure. The following theorem
proves that in locally compact topological groups there exists a measure
(essentially unique) which is invariant under the group operation.

Definition 1.3.8. A topological group (G, ·) is a group with a topology such
that the functions

G × G → G : (x, y) 7→ x · y

and

G → G : x 7→ x−1

are continuous.

Definition 1.3.9. Let (X, T ) be a topological space. Then (X, T ) will be
called locally compact if for every x ∈ X there exist U ∈ T and a compact
subset K of X such that x ∈ U ⊆ K.

Definition 1.3.10. Let (X, T ) be a topological space. Then (X, T ) will be
called a Hausdorff space if for all x, y ∈ X with x , y, there exist U, V ∈ T
such that x ∈ U , y ∈ V and U ∩ V = ∅.
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Theorem 1.3.11 (Haar). Let (G, ·) be a locally compact, Hausdorff topologi-

cal group. Then there exists a Borel measure µ which is invariant under left

(right) multiplication, meaning that, for all A ∈ B(G) and all g ∈ G,

µ(gA) = µ(A).

Moreover µ is unique in the following sense: if µ, ν are both invariant under

left (respectively right) multiplication, then

µ = cν

for some constant c ∈ R+. Finally, the Haar measure is finite if and only if

the group G is compact.

A measure which is invariant with respect to left (respectively right) mul-
tiplication will be called a left (respectively right) Haar measure.

Note that in the case G = Rn (or equivalently Cn), with addition · = + as
the group operation and the usual topology, any Haar measure will be a
multiple of the Lebesgue measure.

Proposition 1.3.12. One may extend Haar’s theorem to the space of left

(respectively right) cosets of a locally compact Hausdorff topological group,
on which the group acts on the left (respectively right) by multiplication.

One may find a proof of Haar’s theorem and more in [8].

1.3.3 Skorohod’s theorem

In this subsection we are going to present a beautiful theorem which con-
verts the convergence in distribution of a sequence of real random variables
to almost sure convergence.

Theorem 1.3.13 (Skorohod). Let Xn be a sequence of real random vari-

ables that converges weakly to a random variable X , meaning that the Borel

probability measures defined as distributions of the random variables Xn

converge weakly to the distribution of X . Then there exists a probability

space (Ω,A,P) and random variables Yn, n ∈ N, such that
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(i) the random variables Yn, Y are all defined on the probability space

(Ω,A,P);

(ii) Yn → Y almost surely;

(iii) Yn ∼ Xn, n ∈ N, and Y ∼ X , ∼ meaning that the corresponding random

variables have the same distributions.

An important tool used in the proof of Skorohod’s theorem is the gener-
alised inverse function of a random variable, which can be found in [9].

1.3.4 Several results from Probability theory

We end this section with several results from Probability theory. A random
variable is a measurable function defined on a probability space.

First we introduce the χ−squared distribution.

Definition 1.3.14. Let {Xi}i∈[n] be independent random variables all fol-
lowing the standard Gaussian distribution N(0,1). Then we will say that
X :=

∑n
i=1 X

2
i follows the χ−squared distribution with n degrees of freedom.

One can check that X ∼ Γ(n2 ,
1
2 ), where Γ denotes the gamma distribution.

Lemma 1.3.15 (Borel–Canteli Lemma). Let {An} be a sequence of events in

a probability space {Ω,A,P}. Then∑
n∈N

P(An) < ∞ =⇒ P(lim supAn) = 0.

Definition 1.3.16. Let (Ω1,A,P1) and (Ω2,B,P2) be two probability spaces.
The probability space (Ω,A × B,P) will be called their product probability

space if

1. Ω = Ω1 ×Ω2

2. A×B = σ(A×B : A ∈ A , B ∈ B}, where for a class of sets D we denote
by σ(D) the smallest σ-algebra containing D.

3. ∀A ∈ A and ∀B ∈ B it is true that

P(A × B) = P1(A)P2(B).
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It is a standard fact that, given two probability spaces (Ω1,A,P1) and
(Ω2,B,P2), such a product probability space always exists.

Theorem 1.3.17 (Fubini–Tonelli theorem). Let (Ω1,A,P1) and (Ω2,B,P2)

be two probability spaces. Let (Ω,A × B,P) be their product probability

space. Let X be a real random variable defined on that space. Then if X is

either integrable with respect to P or non-negative, we have that∫
XdP =

∫
Ω1

∫
Ω2

XdP2dP1 =

∫
Ω2

∫
Ω1

XdP1dP2.

Now we present a useful corollary of the Fubini–Tonelli theorem.

Lemma 1.3.18. If X is a real random variable defined on a probability

space (Ω,A,P), with E|X | < +∞, then

EX =

∫ ∞

0
P(X > t)dt −

∫ 0

−∞

P(X ≤ t)dt.

Definition 1.3.19. Let X, Y be two real random variables, not necessarily
defined on a common probability space, with distribution functions FX , FY
respectively, that is FX (x) := P(X ≤ x) and similarly for FY . We will use the
notation X ≤st Y and say that Y stochastically dominates X if FX (t) ≥ FY (t)

∀ t ∈ R.

From the previous lemma one has the following.

Corollary 1.3.20. If X ≤st Y and E|X | < +∞ and E|Y | < +∞, then

EX ≤ EY.

Next we present some ‘‘classical’’ results from probability and measure
theory.

Theorem 1.3.21. Let {Xn}n∈N be a sequence of real random variables.

(i) (Fatou) If Xn ≥ 0 for all n ∈ N, then it is true that

E lim inf
n

Xn ≤ lim inf
n
EXn.



29

(ii) (Beppo–Levi) If Xn ≥ 0 for all n ∈ N, then it is true that

E
∞∑
n=1

Xn =

∞∑
n=1

EXn.

(iii) (Monotone Convergence Theorem) If Xn+1 ≥ Xn ≥ 0 for all n ∈ N, then it

is true that

lim
n
EXn = E lim

n
Xn

(iv) (Dominated Convergence Theorem) If Xn → X a.e. and there exists a

random variable Y such that |Xn | ≤ Y for all n ∈ N and E|Y | < +∞,
then

EX = lim
n
EXn.

We end this subsection with the definition of a median of a random
variable.

Definition 1.3.22. Let (Ω,A,P) be a probability space and let X be a real
random variable defined on that probability space. Then a real number
M ∈ R will be called median of X if

min{P(X ≥ M),P(X ≤ M)} ≥ 1
2 .

Remark 1.3.23. One may prove that every random variable has a median.
Moreover, there are many concentration inequalities for the deviation of a
random variable from its median.

All the results of this subsection, including Skorohod’s theorem, can be
found in any textbook on probability theory, for example in [9].

1.4 Tools from Convex Analysis

In this part we will gather some important results from convex analysis.
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1.4.1 Isoperimetric inequality on the sphere

We denote by Sn−1 the unit sphere of Rn, n ≥ 2.

Definition 1.4.1. We will say that a set K ⊆ Rn is a convex body if it is a
convex compact set with non-empty interior.

Definition 1.4.2. Consider the function g : Sn−1 × Sn−1 → [0,∞) which
assigns to a pair of points x, y ∈ Sn−1 the angle xOy in the plane defined by
x, y and the origin. Note that g(x, y) = 2 arcsin

(
1
2‖x − y‖2

)
.

The function g is a metric and is equivalent with the restriction to the
sphere of the metric induced by the 2-norm on Rn.

Definition 1.4.3. Let n ∈ N. Then we define a probability measure on
the sphere Sn−1, called the spherical measure (the unique Haar probability
measure on the sphere), as follows: For every Borel subset A of Sn−1,

sn−1(A) =
1

λn(Bn2)
λn([0,1]A)

where λn is the Lebesgue measure in Rn, Bn2 = {x ∈ Rn : ‖x‖2 ≤ 1} and
[0,1]A = {at : t ∈ [0,1], a ∈ A}. Equivalently sn−1 can be expressed as

sn−1(A) = γn((0,+∞)A),

where γn denotes the standard Gaussian measure on Rn, i.e., the measure
on Rn with density (2π)−n/2 exp

(
−1

2‖x‖
2
2

)
, x ∈ Rn, with respect to λn.

By the rotational invariance of the Lebesgue measure λn, or equivalently
by the rotational invariance of the Gaussian measure γn, sn−1 is rotationally
invariant. Hence it is the unique Haar probability measure on Sn−1. In-
deed, Sn−1 can be identified with the set of cosets of the group of orthogonal
transformations on Rn and hence its Haar measure is a measure invari-
ant under orthogonal transformations; furthermore, this Haar measure is
unique up to multiplication by a constant.

Remark 1.4.4. By the representation via the standard Gaussian measure
on Rn above, sn−1 can also be expressed as follows. Let X1, X2, . . . , Xn be
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i.i.d. random variables defined on a common probability space (Ω,A,P),
such that X1 ∼ N(0,1), i.e., X1 has a standard Gaussian distribution γ1 in
R. Then for every Borel subset A of Sn−1 it is true that

sn−1(A) = P


 n∑
i=1

X2
i

−1/2

(X1, X2, . . . , Xn) ∈ A

 .
In fact, integrating in polar coordinates yields

P


 n∑
i=1

X2
i

1/2

∈ (a, b),

 n∑
i=1

X2
i

−1/2

(X1, X2, . . . , Xn) ∈ A


= (2π)−n/2

∫ ∞

0

∫
Sn−1

1(a,b)×A(r, θ)rn−1e−r
2/2dθdr

= (2π)−n/2
∫ b

a
rn−1e−r

2/2dr ·

∫
A
dθ

= P


 n∑
i=1

X2
i

1/2

∈ (a, b)

 · P

 n∑
i=1

X2
i

−1/2

(X1, X2, . . . , Xn) ∈ A


for all Borel A ⊆ Sn−1 and a, b ∈ [0,+∞] with a < b, and this shows
that, furthermore, the random variable

(∑n
i=1 X

2
i

)1/2 and the random vector(∑n
i=1 X

2
i

)−1/2 (X1, X2, . . . , Xn) are also independent.

Theorem 1.4.5 (Isoperimetric inequality on the sphere). Let n ∈ N with

n ≥ 2. Consider the probability metric space (Sn−1, B(Sn−1), sn−1). Let C be

an open ball of the sphere and A ⊆ Sn−1 measurable such that

sn−1(C) = sn−1(A).

Then for every ϸ > 0, it is true that

sn−1(Cϸ) ≤ sn−1(Aϸ).

Corollary 1.4.6. If n > 2 and if sn−1(A) ≥ 1
2 for some A ∈ B(Sn−1), then

sn−1(Aϸ) ≥ sn−1
(
C

(
x, 1

2π + ϸ
))
≥ 1 − e−nϸ

2/2

for any ϸ > 0.

One may find the isoperimetric inequality on the sphere in [7].
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1.4.2 Krein–Milman theorem

Next we present an important result from functional analysis which implies
that in Banach spaces (or more generally locally convex topological vector
spaces) a convex and compact set is the convex hull of some of its elements
(most of the times significantly fewer). In the thesis we use the Krein–
Milman theorem to simplify several proofs.

Definition 1.4.7. Let X be a Banach space and let K ⊆ X be a convex
subset. Then a subset F ⊆ K will be called extreme subset of K if

x, y ∈ K, λ ∈ (0,1), λx + (1 − λ)y ∈ F =⇒ x, y ∈ F.

If F = {f }, we will call f an extreme point of K. We will use the notation
ext(K) for the set of the extreme points of K.

Theorem 1.4.8 (Krein–Milman theorem). Let K be a compact and convex

subset of a Banach space X . Then ext(K) , ∅ and

conv(ext(K)) = K.

One may find the Krein–Milman theorem in [10].

1.4.3 Some facts about convex sets

At this point we are going to introduce some geometric parameters of con-
vex sets (the most important one is volume, i.e., Lebesgue measure). First
we give a useful inequality.

Definition 1.4.9. Let K be a convex body of Rn. Then we define its centroid,
g(K), to be

g(K) :=

∫
K
xdx

λn(K)
where λn denotes Lebesgue measure on Rn.

Lemma 1.4.10. If K is a convex body in Rn (or Cn) with its centroid at the

origin, then

λn(K ∩ (−K)) ≥ 2−nλn(K).
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Proof. We will prove the lemma in several steps. First we mention the
Brunn–Minkowski inequality, which is an important tool from convex ge-
ometry and will be used in the proof of this lemma.

Theorem 1.4.11 (Brunn–Minkowski inequality). Let K, L be two Borel sub-

sets of Rn. Then

λn(K + L)1/n ≥ λn(K)1/n + λn(L)1/n.

An equivalent statement is as follows. For any two Borel sets K, L ⊆ Rn and

any λ ∈ [0,1],
λn(λK + (1 − λ)L) ≥ λn(K)λλn(L)1−λ.

Note. The first inequality implies the second in the theorem above; this is
an immediate consequence of the inequality λx + (1 − λ)y ≥ xλy1−λ, valid
for x, y ≥ 0 and λ ∈ [0,1]:

λn(λK + (1 − λ)L) ≥ [λλn(K)1/n + (1 − λ)λn(L)1/n]n ≥ λn(K)λ λn(L)1−λ.

If H ⊆ Rn is a linear or affine subspace of Rn, we will use the notation λH
for the dim(H)-dimensional Lebesgue measure on H.

Lemma 1.4.12. Let K ⊆ Rn be a convex body with its centroid at the origin.

If E is a subspace of Rn and F is the orthogonal complement of E, then

λn(K) ≤ λE(K ∩ E)λF (PFK),

where PF denotes projection onto the subspace F .

Proof. Define the function D : PFK → R+ as follows

D(x) = λE+x(K ∩ E + x)1/k.

Here k = dim(E). By convexity and by Theorem 1.4.11 we see that the
function D is concave. Applying the Fubini–Tonelli theorem and Hölder’s
inequality we get that

λn(K) =

∫
PFK

D(x)kdx ≤ λF (PFK)1/(k+1)
(∫

PFK
D(x)k+1dx

)k/(k+1)

.
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Since D is concave, there exists y ∈ F such that for any x ∈ PFK

D(x) ≤ D(0) + 〈x, y〉.

It follows that∫
PFK

D(x)k+1dx 6

∫
PFK

D(x)k(D(0) + 〈x, y〉)dx

= D(0)
∫
PFK

D(x)kdx = D(0)λn(K),

because, since the centroid of K is at the origin we have
∫
PF (K)

D(x)k〈x, y〉dx =

0. It follows that

λn(K) ≤ λF (PFK)1/(k+1)D(0)k/(k+1)λn(K)k/(k+1).

Since D(0)k = λE(K ∩ E), the inequality follows. �

We can apply the previous lemma for the convex body K × −K ⊆ Rn × Rn

and the subspaces E = {(x, x) x ∈ Rn} and F = {(x,−x), x ∈ Rn}. Note that

1. λ2n(K × (−K)) = λn(K)λn(−K) = λn(K)2,

2. λn(K × (−K) ∩ E) = 2n/2λ(K ∩ (−K)),

3. λn(PFK × (−K)) = 2−n/2λn(K − (−K)).

Using also the fact that λn(K − (−K)) = λn(2K) = 2nλ(K) we conclude the
proof of Lemma 1.4.10. �

Definition 1.4.13. Let V be a (real or complex) Hilbert space. Let also K
be a convex subset of V with the origin in its interior. We call the function
‖ · ‖K defined below the gauge of K (or Minkowski functional of K):

‖x‖K := inf{t > 0 : x ∈ tK}.

It is easy to prove that if K is an origin symmetric convex body then ‖ · ‖K
is a norm. In the case where K is not symmetric, then the gauge is not a
norm because there exists x ∈ V such that

‖x‖K , ‖(−1)x‖K .
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Definition 1.4.14. Let K be a convex subset of Rn with the origin in its
interior. Then we define the set

K◦ := {y ∈ Cn : 〈y, x〉 ≤ 1 ∀ x ∈ K}

and call it the polar set of K.

Definition 1.4.15. Let K ⊆ Rn be a Borel set. The volume radius of K is
defined as

vrad(K) :=
(
λ(K)
λ(Bn2)

)1/n

,

where λ is the Lebesgue measure on Rn and Bn2 is the unit ball of Rn with
respect to the 2-norm. In words, the volume radius of K is the radius of
the Euclidean ball which has the same volume as K.

Equivalently, if K is a convex body, then

vrad(K) =

∫
Sn−1
||θ||−nK ds

n−1(θ),

where Sn−1 is the unit sphere of Rn and sn−1 is the spherical measure.

Definition 1.4.16. Let K be a convex body of Rn. Then we define the mean

width of K as follows:

w(K) :=
∫
Sn−1

sup
x∈K
〈u, x〉dsn−1(u).

Alternatively,

w(K) =

∫
Sn−1
‖u‖K◦ds

n−1(u).

Definition 1.4.17. Let Z1, Z2 be two i.i.d. random variables both following
N(0,1). Then we will use the notation NC(0,1) for the distribution of the
complex random variable Z = 1

√
2
(Z1 + iZ2)

Definition 1.4.18. Let V be a real (resp. complex) finite-dimensional
Hilbert space equipped with a Euclidean (resp. Hilbertian) norm. By def-
inition, the standard Gaussian vector in V is a V -valued random variable
whose coordinates with respect to any orthonormal basis of V are indepen-
dent real (resp. complex) standard normal (Gaussian) random variables.
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Remark 1.4.19. A standard Gaussian vector inRn (orCn) is an n-dimensional
random vector whose entries are independent N(0,1) (or NC(0,1))-variables.

Many results, such as the (multivariate) central limit theorem, can be
generalised in all vector spaces (real or complex) using a standard Gaussian
vector of the space.

Remark 1.4.20. Let G be a standard Gaussian vector in a Hilbert space
V . Then D := G/‖G‖ is uniformly distributed, i.e., distributed according
to the normalized Haar measure, on the unit sphere of V . Moreover, D is
stochastically independent from ‖G‖.

To see this, consider the case of a real vector space first. Fix an or-
thonormal basis {v1, . . . , vn} of V , where n = dim(V ), and consider the
isomorphism J : Rn → V defined by J(ei) = vi, i ∈ {1, . . . , n}, and then
extended by linearity on Rn, where {e1, . . . , en} is the standard (say) or-
thonormal basis of Rn. To show that D is distributed according to the
normalized Haar measure on the unit sphere of V , one has to show that
the distribution of D is invariant under the unitary group of V , i.e. the
group of linear transformations on V satisfying T ∗T = IV , where IV the
identity operator on V . The random variables 〈v1, G〉, . . . , 〈vn, G〉 are i.i.d.
N(0,1) random variables, hence one may invoke Remark 1.4.4. Hence, for
any Borel subset A of the unit sphere SV of V and any a, b ∈ [0,+∞] with
a < b, one has that

P(‖G‖ ∈ (a, b), ‖G‖−1G ∈ A) = P(‖G‖ ∈ (a, b), ‖G‖−1J−1(G) ∈ J−1(A))

= P


 n∑
i=1

|〈vi , G〉|
2

1/2

∈ (a, b),

 n∑
i=1

|〈vi , G〉|
2

−1/2 n∑
i=1

〈vi , G〉ei ∈ J
−1(A)


= P


 n∑
i=1

|〈vi , G〉|
2

1/2

∈ (a, b)

 P

 n∑
i=1

|〈vi , G〉|
2

−1/2 n∑
i=1

〈vi , G〉ei ∈ J
−1(A)


= P (‖G‖ ∈ (a, b)) P


 n∑
i=1

|〈vi , G〉|
2

−1/2 n∑
i=1

〈vi , G〉vi ∈ A


= P (‖G‖ ∈ (a, b)) P(D ∈ A),

which shows the independence of ‖G‖ and D. Furthermore, for any linear
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transformation T ∈ B(V ) satisfying T ∗T = IV ,

P(T (D) ∈ A) = P(‖G‖−1T (G) ∈ A)

= P(‖G‖−1J−1TJ(J−1(G)) ∈ J−1(A))

= P


 n∑
i=1

|〈vi , G〉|
2

−1/2

J−1TJ

 n∑
i=1

〈vi , G〉ei

 ∈ J−1(A)


= P


 n∑
i=1

|〈vi , G〉|
2

−1/2 n∑
i=1

〈vi , G〉ei ∈ J
−1(A)


= P


 n∑
i=1

|〈vi , G〉|
2

−1/2 n∑
i=1

〈vi , G〉vi ∈ A


= P(D ∈ A),

the fourth equality using the fact that JTJ−1 is an orthogonal transfor-
mation in Rn and that

(∑n
i=1|〈vi , G〉|

2)−1/2 ∑n
i=1〈vi , G〉ei is Haar (uniformly)

distributed on the sphere Sn−1.

Definition 1.4.21. Let G be a standard Gaussian vector in Rn. Then, for
any non empty bounded set K ⊆ Rn we define the Gaussian mean width of
K as

wG(K) =

∫
Rn

1
(2π)n/2

sup
x∈K
〈u, x〉e−‖u‖

2
2/2du.

We next compare the mean width, the Gaussian mean width and the
volume radius of convex bodies.

Lemma 1.4.22 (Urysohn inequality). Let K be a convex body in Rn. Then

vrad(K) ≤ w(K).

Moreover the above result is true for all bounded Borel sets.

Proof. We will give a sketch of the proof.
For a probability space (Ω, A, µ), where µ is a discrete probability mea-

sure or the limit of discrete probability measures, the following generalisa-
tion of the Brunn-Minkowski inequality holds:∫

Ω

λn(Kt)1/ndµ(t) ≤ λ1/n
n

(∫
Ω

Kt dµ(t)
)
. (1.4.1)
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When the measure µ is purely atomic with N atoms, the result can be
proved by induction on N , the case N = 2 being exactly the Brunn{-
Minkowski inequality. Moreover, the continuous case can then be derived
by approximation. The inequality above makes sense when the function
t → w(Kt , θ) is measurable for every θ ∈ Rn.

If we equip the space O(n) (where O(n) is the class of n × n orthogonal
matrices) with the Haar measure, and set Kt = t(K), t ∈ O(n) then the
convex body L :=

∫
O(n)

t(K)dµ(t) is necessarily a Euclidean ball centered at
the origin. Computing the width of L in an arbitrary direction we see that
L is a Euclidean ball of radius w(K). So, by applying (1.4.1) one may show
that Urysohn’s inequality holds.

For a more detailed proof see [7, Exercise 4.49]. �

Lemma 1.4.23. Let γn = E‖G‖2 where G is a standard Gaussian vector in

Rn and ‖ · ‖2 is the 2-norm. Then one may compute that

√
n − 1 ≤ γn ≤

√
n

Moreover, for any convex body K in Rn it is true that

wG(K) = γnw(K).

Proof. For the first part we know that if X ∼ χ2(n) then

E‖G‖2 = E
√
X.

So, if fX is the probability density function of X and fZ is the probability
density function of a χ−squared random variable with n + 1 degrees of
freedom, we get

E
√
X =

∫
R

√
xfX (x)dx =

∫ ∞

0

(1
2

)n/2

x
n+1

2 −1 exp
(
−
x

2

) 1
Γ(n2 )

dx

=

√
2Γ((n + 1)/2)

Γ(n/2)

∫ ∞

0
fZ (x)dx =

√
2
(
Γ((n + 1)/2)

Γ(n/2)

)
.

In order to prove the first assertion of the lemma we need several well
known properties of the Γ-function.
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1. ∀x ∈ R+ it is true that Γ(x + 1) = xΓ(x),

2. Γ(0) = 1 and Γ(1
2 ) =

√
π,

3. The function log Γ is concave.

The first two properties imply that ∀n ∈ N it is true that Γ(n) = (n − 1)!.
In order to get the lower bound for γn we use induction. The basic

observation, which follows from the properties of the Γ-function, is that
γnγn+1 = n. For n = 1, the lower bound obviously holds, because

√
2/π > 0.

Assuming that the lower bound is true for some k ≤ n, we use the induction
hypothesis and the recursion formula to write

γn+1 =
n

γn
≥

n
√
n

=
√
n.

For the upper bound we note that, by the Cauchy{Schwarz inequality,

E
√
x ≤ (Ex)1/2 =

√
n

as needed.
The second part of the lemma is a simple consequence of Remark 1.4.20.

�

1.4.4 `-norm, `-position and the MM∗-estimate

Next we present a norm on the space of n-dimensional real (or complex)
operators, the so-called `-norm, and some useful properties of it.

Definition 1.4.24. Let K ⊆ Rn be a convex body containing 0 in its interior.
Then, for any T ∈ Mn we define the quantity

`K(T ) = E||T (G)||K

where G is a standard Gaussian vector in Rn (or Cn).
The function `K : Mn → R

+ is a norm and is called `-norm.

Proposition 1.4.25. If K is a convex body with the origin in its interior then
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(i) `K obeys the ideal property: for any S, T ∈ Mn,

`K(TS) ≤ `K(T )‖S‖op.

(ii) `K(I) = wG(K◦) = w(K◦)E‖G‖2.

(iii) If T ∈ Mn is 1-1 then `K(T ) = `T−1K(I).

(iv) If PE denotes the orthogonal projection onto a subspace E ⊆ Rn then

`K(PE) = wG((K ∩ E)◦) = wG(PEK)

where we denote by (K ∩ E)◦ the polar of K ∩ E inside E.

Proof. The only part of the proposition which is not straightforward is (i).
Let S, T ∈ Mn. By homogeneity we may assume that ‖S‖op = 1 and since

` is a norm we may also assume that S is an extreme point of the unit
ball of Mn with respect to the operator norm. One may show that T is an
n-dimensional orthogonal matrix.

Since G is assumed to be a standard Gaussian vector in Rn (or Cn), we
know that under any orthogonal transformation G will remain a standard
Gaussian vector. So, `K(T ) = `K(TS). �

We now introduce the `-position.

Proposition 1.4.26. For any convex body K ⊆ Rn containing 0 in its interior,

there exists a unique positive semi-definite matrix T0 that is a solution to the

maximization problem

max{det(T ) : T is a positive semi-definite matrix, `K(T ) ≤ 1}.

If this unique solution is a multiple of the identity matrix (equivalently oper-

ator) then we say that K is in the `−position.

Proof. We will prove that the solution of the maximization problem in the
statement of the proposition is unique.

Assume that there exist T1, T2 which both solve the maximization prob-
lem. Consider the matrix T = (T1 + T2)/2. Note that `K(T ) ≤ 1.
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We will show that the function log det is strictly concave on the set of
positive semi-definite matrices, which will lead to a contradiction.

We know that a function is concave iff its restriction to any line that
intersects its domain is also concave.

So, we will prove that the function g(t) = log(det(A + tB)) is self-adjoint
where B , 0 is self-adjoint and A is positive semi-definite. Since A is
semi-definite the matrices A1/2 and A−1/2 are well defined and so we get:

g(t) = log det(A + tB) = log det(A1/2(I + tA1/2BA−1/2)A1/2

= log det(A) +

n∑
i=1

(1 + tλi),

where {λi}i∈[n] are the eigenvalues of A−1/2BA−1/2. But the function
∑

log(1+

tλi) is concave. So g(t) is concave and as a result the function log det is
concave, which ends the proof. �

Now we present a crucial result from geometric analysis called ‘‘MM∗-
estimate’’.

Theorem 1.4.27 (MM∗-estimate). For any convex body K which is in the

` − position we have that

1 ≤ w(K)w(K0) ≤ C logn.

Proof. See [7]. �

Another crucial result about the `−position is the following.

Lemma 1.4.28. Let K be a symmetric convex body in Rn (or Cn) and let Γ

be the isometry group of K (i.e. the set of all orthogonal transformations U

such that UK = K ). Then there exists a linear map T such that TK is in the

`−position and

T =
∑
i

λiPEi ,

where λi > 0 and Ei are subspaces invariant under the action of Γ.
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The proof of all the results from Convex Analysis that we presented can
be found in [7].

In the next parts of the thesis we present and prove some additional
tools from convex analysis, such as the Gaussian isoperimetric inequality
2.1.27 and Erhard’s inequality 2.1.26.

1.5 Quantum information theory

In this section we give several definitions from quantum information the-
ory.

Firstly we need to present the tensor product of Hilbert spaces. Through-
out this thesis, all Hilbert spaces will be meant to be complex Hilbert spaces
unless we specify differently.

Definition 1.5.1. Let A, B and C be finite dimensional Hilbert spaces. Then
a mapping f : A × B → C is called bilinear if

f (x1 + x2, y) = f (x1, y) + f (x2, y)

f (x, y1 + y2) = f (x, y1) + f (x + y2)

f (λx, y) = f (x, λy) = λf (x, y)

for all vectors x, y ∈ A × B and λ ∈ C.

Definition 1.5.2. Let A, B be finite dimensional Hilbert spaces. Then we
say that a Hilbert space P is a tensor product of A, B with a bilinear map-
ping f : A × B → P if f has the following properties:

· The closed linear hull of f (A × B) is P.

· 〈f (x1, y1), f (x2, y2)〉P = 〈x1, x2〉A〈y1, y2〉B.

Lemma 1.5.3. Let A, B be two complex finite dimensional Hilbert spaces.

Then their tensor product exists and is unique under isomorphism.

Proof. For a proof see [11]. �
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So, we will use the notation A ⊗ B for the space and ⊗ for the bilinear
function f .

Fact: Let H1, H2 be two finite dimensional complex Hilbert spaces of di-
mension n and m respectively. Let {ei}i∈[n] and {fj}j∈N be bases of H1 and H2

respectively. Then the set {ei ⊗ fj}i,j∈[n]×[m] is a basis for H1 ⊗ H2.

Lemma 1.5.4. Let H1 and H2 be two finite dimensional complex Hilbert

Spaces. Then,

B(H1 ⊗ H2) = B(H1) ⊗ B(H2).

Proof. Let S ∈ B(H1) and T ∈ B(H2). Then consider the function

S ⊗ T : H1 ⊗ H2 → H1 ⊗ H2

with x ⊗ y 7→ S(x) ⊗ T (y). This proves that B(H1) ⊗ B(H2) ⊆ B(H1 ⊗ H2).
On the other hand, for any m-dimensional complex Hilbert space A it

is true that B(A) � Mm(C) since we can associate every linear map to its
matrix. So,

dim(B(A)) = m2.

This implies that dim(B(H1 ⊗H2)) = n2m2 and dim(B(H1) ⊗ B(H2)) = n2m2,
which completes the proof. �

Lemma 1.5.5. Let H1, H2 be two Hilbert spaces of dimension m and n

respectively. Then it is true that

H1 ⊗ H2 � B(H1, H2).

Proof. Fix bases {ej}j∈[n] and {fi}i∈[m] of H1 and H2 respectively. Consider the
function vec : H1 ⊗ H2 → B(H1, H2) with

vec(ei ⊗ fj) = |ei〉〈fj|

and extend it linearly to all the elements of H1 ⊗ H2 by C−linearity. The
function we obtain is a canonical identification between the two spaces. �

Corollary 1.5.6. From the previous lemma, if H1 = Cn and H2 = Cm where

m, n ∈ N we get

Cn ⊗ Cm � Mn,m(C).
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In general, in quantum information theory, tensors are more suitable to
describe and model the problems; the previous proposition allows us to
identify tensor products as spaces of matrices.

Next we give several definitions necessary in quantum information the-
ory.

Definition 1.5.7. Let H be a finite dimensional Hilbert space. Then the
set

D(H) = {ρ ∈ Bsa(H) : ρ ≥ 0, tr(ρ) = 1}

is called the set of states of H.

Definition 1.5.8. Let H be a finite dimensional Hilbert space. Then a state
ρ of H is called pure if there exists a unitary vector y such that

ρ = |y〉〈y|.

Definition 1.5.9. If H is the tensor product of a finite family of finite
dimensional Hilbert spaces, i.e.

H = H1 ⊗ H2 ⊗ · · · ⊗ Hn,

then a pure state ρ of H is called pure separable if the unit vector x ∈ H
for which ρ = |x〉〈x | is a tensor product of unit vectors i.e

x = x1 ⊗ x2 ⊗ · · · ⊗ xn,

where xi ∈ Hi are unit vectors.
In general, a state of H is called separable if it can be written as a convex

combination of pure separable states.
We will use the notation Sep(H) for the set of all separable states of H.

Remark 1.5.10. The set Sep(H) is a convex body containing 0 in its interior.

Definition 1.5.11. The states of a tensorized Hilbert space which are not
separable are called entangled.
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1.6 Tools from Combinatorics and Graph the-

ory

In this section we give several definitions and results from combinatorics
that are used in the rest of the thesis.

Definition 1.6.1. We will call (simple) graph a couple (V, E) if V is a finite
set (the vertex set) and E is a subset of V ×V : for all e ∈ E, |e| = 2 (the edge
set).

Moreover, if A is the set of all graphs, we will work on the set A/ ∼.
Here the relation ∼ is an equivalence relation defined as follows: for two
graphs G,H we have G ∼ H iff there exists f : V (G) → V (H) such f is an
isomorphism and

∀x, y ∈ V (G), {x, y} ∈ E(G)⇐⇒ {f (x), f (y)} ∈ E(H).

Remark 1.6.2. In the previous definition, if we assume that |e| ≤ 2 for all
e ∈ E, we have allowed loops to exist in the graph.

Moreover if we assume that the set E is oriented, meaning that (x, y) ∈ E

does not imply that (y, x) ∈ E, then we get an oriented graph.

In the rest of the thesis we might come across to oriented graphs and/or
graphs with loops but it is sufficient for us to present and use properties
for simple graphs.

Definition 1.6.3. Let G = (V, E) be a simple graph. We will say that G is
connected iff

∀x, y ∈ V ∃v1, v2, . . . , vk ∈ V : {x, v1}, {v1, v2}, . . . , {vk, y} ∈ E,

meaning that we can ‘‘travel’’, via edges, from any vertex to any vertex.
Any set of consecutive edges via which we can travel from x to y is called

a path that connects x and y.

Proposition 1.6.4. If G is a connected graph, then

|E(G)| ≥ |V (G)| − 1.
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Definition 1.6.5. A graph G will be called a tree iff it is connected and
there exists a unique path from any vertex to any other.

One may also define a tree as a connected graph with no circles (meaning
that we cannot travel from any vertex to any other in two different ways).

Proposition 1.6.6. Let G be a connected graph. Then G is a tree iff E(G) =

V (G) − 1.

We end this section with a well-known theorem from combinatorics.

Definition 1.6.7. Let G be a graph. Then we will call G bipartite iff there
exist two disjoint sets X, Y ⊆ V (G) with X ∪ Y = V (G), such that

{x, y} ∈ E =⇒ x ∈ X, y ∈ Y.

Definition 1.6.8. Let G be a simple graph. Let M ⊆ E. We will call M a
matching of G iff

∀e, e′ ∈ M =⇒ e ∩ e′ = ∅.

If M is a matching, then a vertex x ∈ V such that ∃e ∈ M : x ∈ e will be
said to be covered by M.

Moreover we will say that G has a perfect matching iff ∃M ⊆ E such that

(∀x ∈ V ∃ex ∈ M : x ∈ ex).

Theorem 1.6.9 (Hall). Let G be a bipartite graph with parts X and Y . Then

G has a matching that covers all the vertices in X iff for any subset A ⊆ X it

is true that

|{y ∈ Y : ∃x ∈ A : {x, y} ∈ E}| ≥ |A|.

The proof of the results presented in this section can be found in [12].
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Convergence of the empirical

spectral distribution

In this chapter we prove three classical results from random matrix the-
ory. First we introduce the concept of the empirical spectral distribution
(E.S.D.) of an n × n matrix A which will be denoted by µA. More precisely,
if {λi(A)}i∈[n] are the eigenvalues of A then

µA =
1
n

n∑
i=1

δλi (A)

where δ denotes the Dirac measure. In other words, the empirical spectral
distribution of a matrix A is exactly the discrete uniform measure on the
set of the eigenvalues of A.

So one may note that if A is a random matrix then µA is also a random
measure in P(R), the set of all Borel probability measures on R.

Then we present Wigner’s semicircular law [1], the Marchenko-Pastur
law [3] and Bai-Yin’s theorem on convergence to the semicircular law [4].

2.1 Wigner’s semicircular law

2.1.1 Convergence of the E.S.D.

In this subsection we present and prove a fundamental result from random
matrix theory first proved in [1] by Wigner.

Definition 2.1.1. A matrix [A]i,j ∈ Mn,m[F] will be called a random matrix

if ∃i0, j0 ∈ [n] × [m] and a probability space (Ω,A,P) such that Ai0,j0 is a

49
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random variable from that probability space to F. Here F is the field we are
working with. Normally it will be either R or C. In the next chapters we
will work on either R or C and it will be insignificant to further clarify F.

Also, we assume that if there are more than one entries that are random,
all of them are defined on the same probability space.

Definition 2.1.2. Suppose A ∈ Mn. Then the following measure is called
the empirical spectral distribution (E.S.D.) of A:

µA =
1
n

∑
i∈[n]

δλi ,

where λ1, . . . , λn are the eigenvalues of A in increasing order and δλi is the
Dirac measure at the eigenvalue λi.

Remark 2.1.3. Note that if A is random then the E.S.D. will be a random
probability measure.

Definition 2.1.4. The semicircular distribution is the probability measure
with density function

σ(x) =
1[−2,2](x)

2π

√
4 − x2

with respect to the Lebesgue measure.

Remark 2.1.5. Note that the support of the semicircular distribution is the
closed interval [−2,2].

We are ready now to present the main result of this subsection.

Theorem 2.1.6 (Semicircular law). Suppose An, n ∈ N, is a sequence of

random matrices such that

1. An ∈ Mn[R] and An is symmetric for all n ∈ N, or An ∈ Mn(C) and An is

Hermitian for all n ∈ N.

2. For every n, all the entries of An are independent random variables

with zero mean. Moreover the diagonal entries of An are identically

distributed. Likewise for the non-diagonal entries.
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3. For every n ∈ N, E
(
An(1,2)2) = 1, and for every k ∈ N,

max{E |An(1,2)|k,E |An(1,1)|k} < ∞.

Here An(1,2) is the (1,2)-entry of the matrix An and An(1,1) is the

(1,1)-entry of An.

4. For every n ∈ N we have that An(1,1) is i.i.d. with An+1(1,1) and

An(1,2) is i.i.d. with An+1(1,2), where, again, An(i, j) is the (i, j)-entry

of An.

Let Xn = (1/
√
n)An, n ∈ N. Then the empirical spectral distribution of Xn

converges weakly in probability to the semicircular distribution.

We will use the following notation: for any probability measure µ on R
and every function f ,

〈µ, f 〉 :=
∫
R

fdµ,

and if Xn = (1/
√
n)An are the matrices above, then

µn :=
1
n

∑
i∈[n]

δλi

and

µn := E
(1
n

∑
i∈[n]

δλi
)
.

In order to prove the theorem we will need a number of lemmas and the
next remark.

Remark 2.1.7. It is easy to compute the moments of the semicircular law.
They are given by

〈σ, xk〉 =

0 if k is odd

C k
2

if k is even,

where

Cn =
1

n + 1
(2n)!
(n!)2 ,

n ∈ N, are the Catalan numbers.
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Lemma 2.1.8. For any positive integer k, 〈µn, x
k〉, converges to 〈σ, xk〉 as n

tends to infinity .

Note. Note that µn is not a random measure.

Proof. Our starting point is

〈µXn , x
k〉 =

∫
R

xkdµXn =
1
n

trXk
n ,

which holds true because both sides of the equality are equal to

(1/n)(λk1 + · · · + λkn).

Taking expectations and writing ζi,j for the (i, j)-entry of Xn, we get that

〈µn, x
k〉 =

1
n

n∑
i1,i2,...,in=1

Eζi1,i2 · · · ζik−1,ik ζik ,i1. (2.1.1)

To compute the sum in the right hand side of the equality we will use
combinatorial analysis. Consider a sequence I = (i1, i2, . . . , ik) . This se-
quence can be thought of as a (multi)graph GI = (VI , EI) as follows:

1. It has as vertex set VI the set of distinct points of I.

2. A vertex in this graph corresponding to an ij in I is connected via
an (undirected) edge with the vertex corresponding to ij+1, for each
j ∈ {1, . . . , k}, with ik+1 = i1.

Observe that there may be multiple edges between two given vertices and
that the number of edges in the graph GI (i.e., the cardinality of EI ) is
always k.

For each sequence I we define the weight of I, denoted by tI , as the car-
dinality of the vertex set VI of the corresponding graph (or equivalently the
cardinality of I ). From the independence between entries and the fact that
each entry has zero mean, it follows that it suffices to only consider those
sequences I for which each edge in the corresponding graph GI appears
at least twice, as otherwise the expectation in (2.1.1) will be zero and the
sequence will not contribute to the total sum. So we only need to compute
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the sum over all sequences I for which tI ≤ k/2 + 1, because if a sequence
I has weight tI > k/2 + 1, then there are tI indices j1 < j2 < · · · < jtI in [k]

for which the corresponding vertices in the graph are distinct and since
there is an edge of the graph connecting each ijl with ijl+1, there would be at
least tI − 1 > k/2 edges in the graph between the distinct1 pairs of vertices
{ij1 , ij1+1}, {ij2 , ij2+1}, . . . , {ijtI−1 , ijtI−1+1}, and as there are exactly k edges in each
graph corresponding to a sequence, there would not be enough edges left
to satisfy the requirement that each edge {u, v} in the graph appears at
least twice.

Furthermore, we say that two sequences I = (i1, . . . , ik) and J = (j1, . . . , jk)

are equivalent, if there exists a bĳection in Sn, i.e., a permutation of [n],
which, for every a ∈ [k], maps ia to ja. Obviously, if two sequences I and
J are equivalent they have the same weight, as ia = ib ⇐⇒ ja = jb, but
more importantly, since the diagonal entries of Xn are i.i.d., and the same
is true for all non diagonal entries, their corresponding terms in (2.1.1) are
equal. Moreover, observe that the number of distinct equivalence classes
depends on k but not on n, since each class has a representative where
all i1, i2, . . . , ik are in {1, . . . , k} (we can assume that n > k since we will be
concerned with the limit as n tends to infinity).

Given a sequence I = (i1, . . . , ik) with weight t, the number of sequences
equivalent to it is

n(n − 1) · · · (n − t + 1) ≤ nt , (2.1.2)

because we obtain a sequence equivalent to I as follows. If {v1, . . . , vt} are
the distinct elements of the set {i1, . . . , ik}, i.e., the vertex set VI of the graph
GI , we obtain a sequence J = (π(i1), . . . , π(ik)) equivalent to I, where π is
a permutation of [n], simply by choosing the values π(v1), . . . , π(vt), and
there are n(n − 1) · · · (n − t + 1) ways of doing this if these values are to be
distinct and lie in the set [n]. This then completely determines J , because
for each a ∈ [k], ia = vp for some p ∈ [t] and hence ja = π(ia) = π(vp).

As a result, for a sequence I = (i1, . . . , ik) with weight tI < k/2 + 1 we

1If j1 = 1 and jtI = k, then the pair of vertices {ij1 , ij1+1} = {i1, i2} may coincide with
{itI , itI+1} = {ik , i1}, i.e., we might have ik = i2.
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have that
1
n
Eζi1,i2 · · · ζik−1,ik ζik ,i1 ≤ Ck,t ·

1
n
·

1
√
nk
,

with Ck,t being a constant depending only on k and t (since An has uni-
formly bounded moments for all n). So the total sum of all the sequences
equivalent with I in the sum in (2.1.1) is O(nt−k/2−1). So it is negligible as
n −→ ∞.

Also, if k is odd then t , k/2 + 1, so the limit is zero (as one might
suspect from the previous remark). Next we focus on the case where k is
even and the equivalent classes with weight t = k/2 + 1 (and k/2 unique
edges since we can distinct k/2 edges by assigning every vertex, except
ik, to an edge which has this vertex as first coordinate and appears for
the first time in the sequence). For each such I we get that there are no
loops in the graph (meaning there are no equal successive points in the
sequence) since otherwise we could obtain the simple sub-graph, of that
graph, with all the vertices and all the edges (each edge once), except the
loops. Call that graph G. Then G is a connected (since there exists a path
from any vertex to any other vertex) simple graph. But |E(G)| < |V (G)| − 1
which would be a contradiction. As a result we get that in every sequence
with t = k/2 + 1 we must have every edge appearing exactly twice. So for
each such sequence we have that

1
n
Eζi1,i2 · · · ζik−1,ik ζik ,i1 =

1
n
·

1
√
nk
, (2.1.3)

since all the non diagonal entries of An have variance one.
So by (2.1.2) and (2.1.3), we get that if k is even, and writing m for the

number of equivalence classes of sequences with weight k/2+1 and length
k,

lim
n→∞
〈µn, x

k〉 = m.

But since every class has a representative with vertices in [k] and every
type sequence with vertices in [k] belongs to a class, it does not depend of
n. For every sequence, with weight t = k/2 + 1, as above we define its type
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sequence (sj)kj=1 as

sj =

j∑
i=1

ai

where aj = 1 if the edge {j, j + 1} appears for the first time in the sequence,
and aj = −1 otherwise. So every type sequence has the following properties:

(i) It starts with 1 ends with 0.

(ii) |sj − sj−1| = 1 ∀j ∈ [k].

(iii) sj ≥ 0 ∀j ∈ [k].

We will show that these properties characterize type sequences, i.e., every
sequence with these properties is a type sequence for some equivalence
class.

Proposition 2.1.9. Two sequences in [k] are equivalent iff they have the

same type sequence.

Proof. If two sequences (call them I and J ) are equivalent then they have
the same type sequence since an edge will appear for the first time in I if
and only if it appears for the first time in J , which is true by what was done
before.

For the other direction we will use induction: For k = 2 the assertion is
true (obvious).

Suppose it is true for all m ≤ k − 1. Then let I, J be two sequences with
the same type sequence ({s}ki=1).

(i) We know that the corresponding graph of I and J is a tree. So there
exist at least two leaves in I and in J respectively. The leaves in
the sequences are the vertices that appear only once in the sequence
(otherwise, there would be at least four edges in the sequence that
would participate and since each distinct edge appears exactly twice
we would have a contradiction).

(ii) Every leaf of the corresponding tree of I belongs to a symmetric sub-
sequence of I with the leaf in the center of it (meaning a sub-sequence
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such that every edge appears twice, a first time before the leaf and
a second after, and every vertex appears also exactly twice, and in
each appearance it has the same distance from the leaf). Pick the
maximum such sequence for every leaf.

(iii) Note that a maximal sub-sequence of a leaf corresponds to a maximal
sub-sequence of the type sequence of I (or J ) with the property that
it has the same number of +1’s and −1’s with the +1’s preceding in
the sequence.

(iv) Every maximum sub-sequence of the type sequence of I (or J ) which
has the same number of +1’s and −1’s and the +1 appearing first,
corresponds to a path, with every edge appearing twice, in the graph
of I (or J ) starting and ending at the same point. If not (let the length
of the sub-sequence be h) this implies that there exists i such that
the i-th (i > h/2) element of the sequence is −1 does not represent the
edge that appears at the i−h/2 spot of the sub-sequence. Then there
exists a circle in the corresponding graph of I starting and ending at
the first vertex of the edge which appears at the i-th spot of the sub-
sequence. This is a contradiction since the corresponding graph is a
tree.

(v) The end-point of every path mentioned in (iv) (the center vertex in the
corresponding sub-sequence of I or J ) must be a leaf. For a given path
call that point a. This is true, otherwise there would exist a cycle in
the corresponding graph (from the vertex that connects with a in the
path to the vertex that does not belong in the path but connects with
a and to a) which would be a contradiction since the corresponding
graph is a tree.

So we have proven that a vertex is a leaf in the sequence I (or J ) if and
only if there exists a maximal sub-sequence in the type sequence which
has the same amount of +1’s and −1’s and starts with +1. So a vertex is a
leaf in I if and only if the corresponding vertex in J is a leaf. So by deleting
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two leaves of I and the corresponding leaves of J and using the induction
hypothesis we get that I and J are equivalent. �

Proposition 2.1.10. Every sequence with the properties (i)-(iii) is the type

sequence of an equivalence class.

Proof. We will use induction. For k = 2 the statement is true.
Assume that the result holds true for all m < k. Suppose that {si}ki=1 is a

sequence that satisfies (i)-(iii).
Using the same techniques we used in the previous proposition we get

that we can delete a maximal sub-sequence of si that contains the same
amount of +1’s and −1’s in non-increasing order (since all terms of the
sequence are non-negative there exists at least one). If the remaining
sequence is empty then we associate the sequence to the sequence with
weight k/2 + 1 and length k

i = (i1, . . . , ik/2, ik/2+1, ik/2, . . . , i1),

where (i1, i2, . . . , ik/2+1) ⊆ [k]. If the remaining sequence is not empty then
we can apply the induction hypothesis and since the deleted sequence
corresponds to a path as mentioned in the previous proposition we get
that there exists an equivalent class with type sequence si. �

So we need to count the type sequences of length k. We start by choosing
any subset of [k] of length k/2. Then we assign the value +1 to every aj
with j in the chosen subset and −1 for every other j. But this way we have
allowed sj to be negative for some j ∈ [k − 1].

We will prove next that in order to count all the sequences with a negative
term it suffices to count all the subsets of [k] with cardinality k/2 − 1. We
start with the next observation.

Fact: If X and Y are two finite sets for which there exists a surjective map
f : X → Y , then |Y | ≤ |X |.

The proof of this fact is elementary since for every y in Y we can pick a
point x in X so that f (x) = y. Let A be the subset of all these points x in
X . Then, |Y | = |A| ≤ |X |.
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So let

X =

{
A ⊆ [k] : |A| =

k

2
− 1

}
and

Y = {[s]kj=0 : ∃j0 ∈ [k] : sj0 < 0} ∩ {|sj − sj−1| = 1} ∩ {sk = 0} ∩ {s0 = 0}.

We will prove that X and Y have the same cardinality using the previous
fact. For each sequence [s]kj=0 ∈ Y , define aj = sj − sj−1, j ∈ {1, . . . , k}. Since
[s]kj=0 determines [a]kj=0 and vice-versa, we can equivalently think of Y as
the set of sequences of length k, with the same number of +1’s and −1’s,
for which there exists j ∈ {2, . . . , k} such that there are more −1’s than +1’s
in the set of coordinates up to j.

Let f : X → Y be defined as follows. For A ∈ X define f (A) by setting
aj = +1 for every j ∈ A and also j is the largest integer with the property
that

|[j] ∩ [k] \ A| = max{|[i] ∩ [k] \ A| , i ∈ [k]}. (2.1.4)

We will prove that f is well defined. Let A, B ∈ X such that f (A) , f (B).Then
there exists i ∈ [k] such that f (A)i , f (B)i. Without loss of generality
suppose that f (A)i = 1.

Then either i ∈ A in which case (since f (B)i = −1 =⇒ i ∈ Bc) we get that
B , A either i satisfies (2.1.4) for A and not for B (otherwise f (B)i = 1) so
A , B.

Also f is surjective since for every y ∈ Y we can define A to be the set of all
j with sj − sj−1 = +1 except for the largest j for which sj−1 = min{si , i ∈ [k]}.
Then f (A) = y.

Conversely, let g : Y → X be defined as follows. Let {si}ki=1 ∈ Y . Pick the
smallest negative term. Note that the smallest negative term must be an
odd number. So let 2l − 1, where l ∈ [k/2], be that number. We create a
new sequence {di}ki=1 setting

di =

si if i ≤ 2l − 1

−si otherwise
.
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Define g({si}ki=1) to be the set of j with dj−dj−1 = +1. Note that the cardinality
of the set of j with dj − dj−1 = +1 will be exactly k/2 − 1 (since 2l − 1 was
the first negative term).

The map described by the procedure above is well defined. Also, given a
subset (call it A) of [k] with cardinality k/2 − 1:

(i) We find the smallest coordinate that does not belong to A and there
are more coordinates which do not belong in A than the coordinates
that belong to A, until that point.

(ii) After that point we follow the reverse procedure to the one described
above for all the coordinates (assume that every coordinate in A is
assigned with +1 and every coordinate not in A with −1).

(iii) The result of that procedure will be a sequence in Y whose g-image
will be A. So, g is onto.

(iv) From the previous remark we have that |X | = |Y |. As a result, since Y
is exactly the set of all the sequences which are not type sequences,
the cardinality of the set of all the type sequences is:(

k
k
2

)
−

(
k

k
2 − 1

)
= C k

2
,

which proves the lemma.

�

Lemma 2.1.11. Fix ϸ > 0 and k ∈ N. Then:

lim
n−→∞

P
(
|〈µn, χ

k〉 − 〈µn, χ
k〉| > ϸ

)
= 0.

Proof. From Chebychev’s inequality we get:

P(|〈µn, χk〉 − 〈µn, χ
k〉| > ϸ) ≤

1
ϸ2 |E(〈µn, χk〉2) − (E〈µn, χk〉)2|.

Again, as in the previous lemma, we can rewrite moments in terms of
matrix traces:

|E(〈µn, χk〉2) − (E〈µn, χk〉)2| =
1
n2 |E(trXk

n )2 − (EtrXk
n )2| (2.1.5)

=
1
n2

∑
I,J

|EζIζJ − EζIEζJ |,
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where ζI stands for the product ζi1,i2 · · · ζik−1,ik ζik ,i1, I = (i1, i2, . . . , ik) ∈ [n]k

and ζi,j is the (i, j)-entry of Xn. Similarly for ζJ .
As before, each pair (I, J) generates a (multi)graph with vertices

VI,J = (i1, i2, . . . , ik) ∪ (j1, j2, . . . , jk)

and edges
E = (i1i2, . . . , ik i1) ∪ (j1j2, . . . , jk j1).

As before, the weight of (I, J) is defined as the cardinality of VI,J . Also, as
in the previous lemma, two pairs (I, J) and (W,D) are called equivalent if
there exists a bĳection on Sn mapping corresponding indices. As in the
previous lemma, equivalent pairs of sequences have the same weight and
contribute the same in the sum in (2.1.5).

Also if a term in (2.1.5) corresponding to (I, J) is non-zero then we nec-
essarily have:

(i) Each edge in EI,J should appear at least twice since the entries of Xn
have mean zero and are pairwise independent.

(ii) The graphs generated by I and J (as in the previous lemma) should
have at least one edge in common, otherwise from independence,
EζIζJ = EζIEζJ .

So, as in the previous lemma, we get that for a pair (I, J) to be non-zero
we must have t ≤ k/2 + 1 + k/2 + 1 − 1 = k + 1. More precisely, t ≤ k. To
see this, suppose that t = k + 1. Then, since the graph produced by I, and
equivalently for J , must contain each edge twice, there could not exist a
common edge in I and J which is a contradiction.

Also, given a pair of sequences (I, J) there are n(n−1) · · · (n− t+1) ≤ nk+1

equivalent pairs (as in the previous lemma). Moreover, the contribution of
each such sequence in the sum (2.1.5) is O(1/nk+2) since Xn = An/

√
n,

the entries of Xn are independent, and the moments of An are uniformly
bounded for every n. Thus, the equivalent classes with weight t ≤ k + 1
contribute an asymptotically negligible (O( 1

n2 )) amount to (2.1.5). Finally,
since the number of equivalent classes depends on k and not on n (as in
the previous lemma) the sum in (2.1.5) tends to zero as n → ∞. �
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We are now ready to prove the theorem.

Proof of Theorem 2.1.6. To conclude that µn → σ in probability, in the weak
sense, we need to prove that for any bounded continuous function f : R −→

R,
〈µn, f 〉 −→ 〈σ, f 〉 in probability.

The trick is to replace f by a polynomial (by the Weierstrass theorem) and
thus, we can rewrite the integrals above as a linear combination of the
moments (since integrals are linear). Because f needs to be compactly
supported (and since σ has support [−2,2]) by Markov’s inequality we get
that

P(〈µn, |x |k1|x |≥5〉 ≥ ϸ) ≤
1
ϸ
E(〈µn, |x |k1|x |≥5〉) ≤

〈µn, x2k〉

ϸ5k
.

In the last inequality we used the fact that χk/5k ≥ 1 inside the interval.
Using the fact that Ck ≤ 4k and the previous lemma, we let n tend to infinity
and get

lim sup
n→∞

P(〈µn, |x |k1|x |≥5〉 ≥ ϸ) ≤ 〈σ, x2k〉 ≤
4k

5kϸ
,

which holds true for every k ∈ N. Since the left hand side becomes larger
as k grows (the sets become bigger as k becomes bigger), the right hand
side must either be strictly increasing as k gets larger or zero. Since the
right hand side is decreasing as k grows, we get that the left hand side is
zero.

Next, consider δ > 0 and let f : R → R be bounded and continuous (we
can assume that f has compact support, say [−5,5], considering what was
done previously). Let pδ be a polynomial such that |pδ(x) − f (x)| < δ/4 for
all x ∈ [−5,5]. Then, from the triangle inequality we get

|〈µn, f 〉 − 〈σ, f 〉| ≤ |〈µn, f − pδ〉2 − 〈σ, f − pδ〉| + |〈µn, pδ〉 − 〈σ, pδ〉|.

Splitting pδ into the parts where it is smaller or bigger than five in the first
inequality, and by the way it was chosen, we get:

|〈µn, f 〉 − 〈σ, f 〉| ≤
δ

2
+ |〈µn, pδ1|x |≥5〉| + |〈µn, pδ〉 − 〈µn, pδ〉|

+ |〈µn, pδ〉 − 〈σ, pδ〉|.
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Applying this inequality we get

P(|〈µn, f 〉 − 〈σ, f 〉| ≥ δ) ≤ P
(
|〈µn, pδ1|x |≥5〉| ≥

δ

2

)
+ P

(
|〈µn, pδ〉 − 〈µn, pδ〉| ≥

δ

2

)
+ P

(
|〈µn, pδ〉 − 〈σ, pδ〉| ≥

δ

2

)
.

The first term in this inequality tends to zero from what was done before,
and the same is true for the second and the third by the previous lemmas.

�

We can also prove that the convergence can be stronger (meaning almost
surely).

Remark 2.1.12. For any fixed k there exists a constant Ck not depending
on n such that for sufficient large n:

|E(〈µn, χk〉)2 − (E〈µn, χk〉)2| ≤
Ck
n2

We have essentially proven in lemma 3.9 that the term above is O(1/n2) .

Corollary 2.1.13. The convergence in the semicircular law is with probabil-

ity 1 (almost surely).

Proof. By Chebyshev’s inequality,
∞∑
n=1

P(|〈µn, χk〉 − 〈µn, χ
k〉| > ϸ) ≤

∞∑
n=1

1
ϸ2 |E(〈µn, χk〉)2 − (E〈µn, χk〉)2|

≤ c +

∞∑
n=1

Ck
n2 ,

where c is a constant, since the inequality in the previous corollary is true
for large n.

So, the corollary follows from the Borel-Cantelli lemma. Using the same
techniques as in the proof of the semicircular law we conclude the proof. �

Remark 2.1.14. It has been proven that for the convergence as presented
in Corollary 2.1.13 we can assume that only the second moment of the
entries is finite. The proof of this generalisation is done by approximation
via matrices with entries which have all their moments finite. For a proof,
see [13].
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2.1.2 Gaussian isoperimetry

In this subsection we present the main isoperimetric inequalities for the
Gaussian measure on Rn and concentration inequalities that are conse-
quences of them and will be used in the next subsection. We start with the
definition of the concentration function in the general setting of a metric
probability space.

Definition 2.1.15. Let (X, d, µ) be a metric probability space. The concen-
tration function of the space is defined on (0,∞) as follows:

aµ(t) = sup
{
1 − µ(At) : µ(A) ≥

1
2

}
,

where At = {x ∈ X : d(x, A) ≤ t}.

Proposition 2.1.16. The concentration function satisfies

lim
t→∞

aµ(t) = 0.

Proof. It is clear that the concentration function is decreasing. Now, let
0 < ϸ < 1

2 and x ∈ X . Note that since

lim
n→∞

B(x, n) =

∞⋃
n=1

B(x, n) = X,

by the continuity of the measure we get that there exists r ∈ N such that

µ(B(x, r)) ≥ 1 − ϸ.

Then, for any Borel subset A of X with µ(A) > 1
2 we get that

µ(A ∩ B(x, r)) > 0,

which implies that B(x, r) ⊆ A2r , since there exists a ∈ A such that d(a, x) <

r, and hence for every y ∈ B(x, r) we get d(y, a) ≤ d(x, y) + d(y, a) < 2r.
Then, for every t ≥ 2r,

1 − µ(At) ≤ 1 − µ(A2r) ≤ 1 − µ(B(x, r)) < ϸ.

�
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Now we are going to present Erhard’s inequality and, as a consequence,
the Gaussian isoperimetric inequality. We are going to give a sketch of
the proofs of both these fundamental results but we will not get into the
details. For more detailed proofs see [14].

Definition 2.1.17. We use the notation γn for the probability measure on
Rn with density function (with respect to the Lebesque measure on Rn)

dγn(x) = (2π)−
n
2 e−‖x‖

2
2/2dx.

Note: The probability measure γn can be thought as follows. For every
A ∈ B(Rn)

γn(A) = P(X ∈ A)

where X is an n-dimensional random vector whose entries are independent
random variables such that Xi ∼ N(0,1) for all i ∈ [n].

Definition 2.1.18. We use the notation Φ(x) for the distribution function
of the standard normal random variable.

Definition 2.1.19. Let n ∈ N and k ∈ [n]. Let F be an (n − k)-dimensional
subspace of Rn and let e be any unit vector orthogonal to F . For every
A ⊆ Rn which is open or closed, we define A′ ⊆ Rn (which will be called the
Gaussian k-symmetrization of A with respect to F along e) as follows. For
every x ∈ F

(i) If γk(A ∩ (x + F⊥)) = 0 then A′ ∩ (x + F⊥) = ∅.

(ii) If γk(A ∩ (x + F⊥)) = 1 then A′ ∩ (x + F⊥) = x + F⊥.

(iii) If 0 < γk(A ∩ (x + F⊥)) < 1 then: if A is open we set A′ ∩ (x + F⊥) =

H(e, a)∩(x+F⊥), while if A is closed we set A′∩(x+F⊥) = H(e, a)∩(x+

F⊥). Here a is defined so that γk(A∩ (x +F⊥)) = γk(H(e, a)∩ (x +F⊥)).

We may also use the notation S(A) or SF,e(A) for the Gaussian symmetriza-
tion of A.

For every x ∈ Rn and any r ∈ R we use the notation

H(x, r) = {y ∈ Rn : 〈y, x〉 > r}.
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Lemma 2.1.20. For any n ∈ N and every k ∈ [n], any k-Gaussian sym-

metrization S has the following properties:

(i) If A ⊆ B then S(A) ⊆ S(B).

(ii) If {Aj}j∈N are open subsets of Rn then S(∪jAj) = ∪jS(Aj).

(iii) SF,u(Ac) = [SF,−u(A)]c.

(iv) SF,u(A) + (F + 〈u〉)⊥ = SF,u(A).

(v) For any z ∈ F we have S(A + z) = S(A) + z.

(vi) If B ∈ B(Rn) and F⊥ + B = B then

γn(B ∩ A) = γn(B ∩ SF,u(A)).

Moreover,

γn(A) = γn(S(A)).

(vii) If S is a 1 or 2-Gaussian symmetrization and A is a closed subset of

Rn then S(A) is also a closed subset of Rn.

Theorem 2.1.21. If C ∈ Rn is closed and convex then every Gaussian

symmetrization S(C) of C is convex too.

For the proof of Theorem 2.1.21 we need some lemmas.

Lemma 2.1.22. Let F1, F2, F3 be pairwise orthogonal subspaces of Rn and

let u ∈ Sn−1 be orthogonal to Fi. Define S1 = SF1+F2,u and S2 = SF2+F3,u. If A

and S2(A) are closed subsets of Rn then

S1(S2(A)) = SF2,u(A).

Proof. Set F = (F1 + F2 + F3 + 〈u〉)⊥. By Lemma 2.1.20 (claim (iv)) we have
that, for every closed set A,

S1(A) = S1(A) + (F1 + F2 + 〈u〉)⊥ = S1(A) + F3 + F
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and
S2(A) = S2(A) + F1 + F.

Also, by the previous lemma, since F1 ⊆ F1 + F2 we get that

S1(S2(A)) = S1(S2(A)) + F1.

Using the previous equalities we get

S1(S2(A)) = S1(S2(A)) + (F2 + 〈u〉)⊥.

From Lemma 2.1.20, again, we have

SF2,u(A) = SF2,u(A) + (F2 + 〈u〉)⊥.

Since for the sets S1(S2(A)) and SF2,u(A) we may apply claim (v) of Lemma 2.1.20,
and since symmetrization preserves measure, if k = dim(F⊥2 ) then for every
x ∈ F2 and for the set Rx = x + F⊥2 we have

γk(S2(A) ∩ Rx) = γk(A ∩ Rx) = γk(S1(A) ∩ Rx) = γk(S1(S2(A) ∩ Rx)).

It follows that S1(S2(A)) = SF2,u(A). �

Lemma 2.1.23. Let m ∈ N with m > 2 and k ∈ [m] with k > 1. For any

k-Gaussian symmetrization SF,u we can find 2-Gaussian symmetrizations

T1, T2, . . . , Tk−1 so that

SF,u = T1 ◦ T2 ◦ · · · ◦ Tk−1.

Proof. Let v ∈ (F + 〈u〉)⊥. We define three subspaces as follows:

F3 = (F + span{u, v})⊥, F2 = F, F1 = 〈v〉,

and apply the previous lemma for the symmetrizations

S1 = SF1+F2,u , S2 = SF2+F3,u.

Note that S2 is a 2-symmetrization so it preserves closeness of sets. So, for
every closed set A we get

S1 ◦ S2(A) = SF2,u.

Setting Tk−1 = S2 and continuing inductively we can prove the lemma. �
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Proof of Theorem 2.1.21. We will prove the assertion of the theorem for ev-
ery 2-Gaussian symmetrization and by the previous lemma the theorem
will be true for every k ∈ N.

Firstly we will prove it for 1-Gaussian symmetrizations. Let u ∈ Sn−1, set
F = 〈u〉⊥ and consider the 1-symmetrization SF,u. The symmetrization is
done along the lines of the form Rx = x + 〈u〉 where x ∈ F . Let A ⊆ Rn be
convex and closed. We clearly have

A ∩ Rx = x + D〈u〉

where D ⊆ R. Then D is convex, since both A and Rx are convex. So let
a, b ∈ D. Then for any c such that a < c < b we have that

c =
(
1 −

b − c

b − a

)
b +

b − c

b − a
a ∈ D.

So, D is an interval. Also, since A and Rx are closed, we get that D is also
closed. So,

Rx ∩ A = x + [ax , bx], ax , bx ∈ R ∪ {−∞,+∞}, ax < bx .

As a result we get that since S(A)∩Rx = H(u, cx)∩Rx and hence γ1(A∩Rx) =

γ1(H(u, cx) ∩ Rx), we must have

S(A) ∩ Rx = [cx ,∞]u + x,

where cx = −Φ−1(Φ(bx)−Φ(ax)). So, for the convexity of S(A) it is sufficient
to show that, for every x, y ∈ F and any λ ∈ [0,1],

S(A) ∩ Rλx+(1−λ)y ⊇ λ(S(A) ∩ Rx) + (1 − λ)(S(A) ∩ Ry),

which is equivalent to the following inequality:

[cλx+(1−λ)y,∞] ⊇ λ[cx ,∞] + (1 − λ)[cy,∞].

So it is sufficient to show that

cλx+(1−λ)y ≤ λcx + (1 − λ)cy,
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which is equivalent to the following:

Φ−1(Φ(bλx+(1−λ)y)) − Φ(aλx+(1−λ)y))

≥ λΦ−1(Φ(bx) − Φ(ax)) + (1 − λ)Φ−1(Φ(by) − Φ(ay)).

Let d1 ∈ Rx ∩ A and d2 ∈ Ry ∩ A. Then, for any λ ∈ [0,1], we have that
λd1 + (1 − λ)d2 ∈ [λx + (1 − λ)y + 〈u〉] and λd1 + (1 − λ)d2 ∈ A since A is
convex. So,

λx+(1−λ)y+λ[ax , bx]+(1−λ)[ay, by] ⊆ λx+(1−λ)y+[aλx+(1−λ)y), bλx+(1−λ)y],

which implies

aλx+(1−λ)y ≤ λax + (1 − λ)ay ≤ λbx + (1 − λ)by ≤ bλx+(1−λ)y.

Then, we show the following, which will imply the desired inequality:

Φ−1(Φ(λbx + (1 − λ)by) − Φ(λax + (1 − λ)ay))

≥ λΦ−1(Φ(bx) − Φ(ax)) + (1 − λ)Φ−1(Φ(by) − Φ(ay)).

So we need to prove that the function g(a, b) = Φ−1(Φ(b)−Φ(a)) on {(a, b) ∈

R2 : a < b} is concave, which can be proven by computing the Hessian
matrix of g.

In order to show the theorem for any 2-symmetrization, it is now enough
to prove the following.

Lemma 2.1.24. Any 2-symmetrization in Rn is the limit a sequence of com-

positions of 1-symmetrizations.

Proof. We will show the lemma in R2. One can check that the following
sequence {Tj}j∈N of symmetrizations approaches any 2-symmetrization in
R2:

Tj = Sj ◦ Sj−1 ◦ · · · ◦ S1 ◦ S0,

where
Sj = Se⊥j+1,ej

and
ej :=

[
cos

(3π
2

+ 2−jπ
)
, sin

(3π
2

+ 2−jπ
)]
.

Note that ej + e0 ⊥ ej+1 and ej → −e0. �
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Proposition 2.1.25. Note that for every c, c′ > 0 and any closed A ⊆ Rn,

and x ∈ Tj(A),

x + ce0 + c′ej ∈ Tj(A).

Proof. For a proof see [14]. �

Combining the previous lemma with the fact that every 1-symmetrization
preserves convexity we get that every 2-symmetrization preserves convex-
ity. �

Theorem 2.1.26 (Erhard’s inequality). For every pair of non-empty closed

convex subsets A, B ⊆ Rn the following inequality is true for every λ ∈ [0,1]:

Φ−1(γn(λA + (1 − λ)B)) ≥ λΦ−1(γn(A)) + (1 − λ)Φ−1(γn(B)).

Proof. A sketch of the proof is the following. Firstly suppose that A and B
are also compact. Then consider the sets

A′ = A × {1}, B′ = B × {0}

and
C = {y ∈ Rn+1 : y = λa + (1 − λ)b, a ∈ A′, b ∈ B′, λ ∈ [0,1]}.

Let e = (0,0, . . . ,1) ∈ Rn+1 and u = (1,0, . . . ,0) ∈ Rn+1. Obviously, u is a
unit vector orthogonal to 〈e〉. Since C is convex, we have that S〈e〉,u(C) is
also convex. So it is true that

S(C)∩(Rn×{λx+(1−λy)}) ⊇ λS(C)∩[Rn×{x}]+(1−λ)S(C)∩[Rn×{y}] (2.1.6)

since S(C) is convex. But for any z ∈ R we know that S(C) ∩ (Rn × {z}) =

H(u, rz) ∩ (Rn × {z}), where rz is defined by

γn(C ∩ (Rn × {z})) = γn(H(u, rz) ∩ (Rn × {z})),

which implies that
Φ(−rz) = γn(C ∩ (Rn × {z})).

So, rz = −Φ−1(γn((C ∩ (Rn × {z})). But, by (2.1.6),

rλx+(1−λ)y ≤ λrx + (1 − λ)ry.
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Therefore, the function

Q(λ) = Φ−1(γn(C ∩ (Rn × {λ}))) = Φ−1(γn(λA + (1 − λ)B))

is concave on [0,1]. This completes the proof of Erhard’s inequality, since
it is equivalent with the following inequality:

Q(λ) ≥ (1 − λ)Q(0) + λQ(1).

In the case of non-compact sets we can approximate them from the ‘‘inside"
by compact sets and thus prove the desired inequality in the general case.

�

Next we present the isoperimetric inequality for the Gaussian measure.

Theorem 2.1.27 (Gaussian isoperimetric inequality). Let A ⊆ Rn be a Borel

set and define a ∈ R by the equation

γ1((−∞, a]) = γn(A).

Then, for any ϸ > 0 we have

γn(Aϸ) ≥ γ1(−∞, a + ϸ),

or equivalently

Φ−1(γn(Aϸ)) ≥ Φ−1(γn(A)) + ϸ.

A first proof may be given via Erhard’s inequality.

Proof of Theorem 2.1.27. Let A ⊆ Rn and Bn2 = {x ∈ Rn : ||x ||2 ≤ 1}. Note
that

Aϸ = A + ϸBn2 = (1 − λ)[(1 − λ)−1A] + λ(λ−1ϸBn2).

From Erhard’s inequality we get

Φ−1(γn(Aϸ)) ≥ (1 − λ)Φ−1(γn((1 − λ)−1A)) + λΦ−1(γn(λ−1ϸBn2)).

Now letting λ → 0+ it is clear by the continuity of Φ−1 and the continuity of
γn that the first term of the right hand side of the previous inequality tends
to Φ−1(γn(A)). For the second term we observe that

λΦ−1(γn(λ−1ϸBn2)) = ϸ(λ−1ϸ)−1Φ−1(γn(λ−1ϸBn2))→ ϸ,

which proves the desired inequality. �
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We shall give a second proof of the Gaussian isoperimetric inequality
using the spherical isoperimetric inequality and the next lemma which is
attributed to Poincaré although it seems it was known before Poincaré.

Lemma 2.1.28. Let n ∈ N. Then for any N > n we denote by PN+1,n

the projection from RN+1 onto Rn. Let σN =
√
NsN be the Haar probability

measure of the sphere
√
NSN of radius

√
N in RN+1. Then, for every Borel

subset A of Rn,

lim
N→∞

σN (P−1
N+1,n(A) ∩

√
NSN ) = γn(A).

Proof. A sketch of the proof is as follows: Let {gi}i∈N be a sequence of in-
dependent random variables such that gi ∼ N(0,1) for all i ∈ N. Also,
for every k ≥ 1 let R2

k =
∑k
i=1 g

2
i . Then the distribution of the random

vector
√
N

RN+1
(g1, g2, . . . , gN+1) is σN . So, the distribution of

√
N

RN+1
(g1, g2, . . . , gn)

is σN (PN+1,n). Note that R2
n, R

2
N+1 − R

2
n and 1

Rn
(g1, g2, . . . , gn) are pairwise

independent random variables. So, R2
n/R

2
N+1 and 1

Rn
(g1, g2, . . . , gn) are in-

dependent. Also note that from the properties of the χ-squared distribu-
tion (see the previous subsection) R2

n ∼ Gamma(n/2,2) and R2
N+1 − R

2
n ∼

Gamma((N + 1 − n)/2,2). So R2
n

R2
n+R2

N+1−R
2
n
∼ Beta(n2 ,

(N+1−n)
2 ). It follows that

σN (P−1
N+1,n(A) ∩

√
NSN ) = P

 √N
RN+1

(g1, g2, . . . , gn) ∈ A


= P

 √NRn
RN+1

1
Rn

(g1, . . . , gn) ∈ A
 ,

which implies that

σN (P−1
N+1,n(A) ∩

√
NSN )

=

∫
Sn−1

∫ 1

0
1{t∈[0,1]:x

√
Nt∈A}

1
B(n/2, (N + 1 − n)/2)

t
n
2−1(1 − t)

N+1−n
2 −1dtdσn(x).

Setting r =
√
Nt we get

σN (P−1
N+1,n(A) ∩

√
NSN )

= B(n/2, (N + 1 − n)/2)−1 2
Nn/2

∫
Sn−1

∫ √
N

0
1A(rx)rn−1(1 −

r2

N
)
N+1−n

2 −1drdσn(x).
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By the dominated convergence theorem we get

lim
N→∞

σN (P−1
N+1,n(A) ∩

√
NSN ) =

2
Γ(n/2)2n/2

∫
Sn−1

∫ ∞

0
1A(rx)rn−1e−

r2
2 drdσn(x)

which is exactly γn(A) in polar coordinates. �

Now we can return to the proof of the Gaussian isoperimetric inequality.

Second proof of Theorem 2.1.27. Firstly note that for Sn−1, the unit sphere
in Rn equipped with the geodesic metric, there exists a similar result to the
Gaussian isoperimetric inequality, the spherical isoperimetric inequality,
which states that:

Given a ∈ (0,1) let Bq(x, r) the ball with the geodesic metric q(x, y), such

that sn(Bq(x, r)) = a. Then, for every A ⊆ Sn−1 such that sn(A) = a and for

every t > 0 we have that

sn(At) ≥ sn(Bq(x, r + t)).

So the previous lemma reduces the proof to the isoperimetric inequality
on the sphere. Moreover, for a Borel set A ⊆ Rn and an a ∈ R such that
Φ(a) = γn(A) it is true that, for sufficient large N ∈ N and any b < a,

σN (P−1
N+1,n(A) ∩

√
NSN ) ≥ σN (P−1

N+1,1(−∞, b) ∩
√
NSN ).

Also, for any t > 0 one can show that

P−1
N+1,n(At) ∩

√
NSN ⊇ [P−1

N+1,n(A) ∩
√
NSN ]t.

Here in the right hand side of the inclusion the t-extension is taken with
respect to the geodesic metric. A very important observation is that the set
P−1
N+1,1(−∞, b) ∩

√
NSN is a geodesic ball in

√
NSN . So, by the isoperimetric

inequality on the sphere, we have

sN (P−1
N+1,n(At) ∩

√
NSN ) ≥ sN ([P−1

N+1,n(A) ∩
√
NSN ]t)

≥ σN ([P−1
N+1,1(−∞, b) ∩

√
NSN ]t).
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One can show that

[P−1(−∞, b) ∩
√
NSN ]t = P−1(−∞, b + aN ) ∩

√
NSN ,

where
lim
N→∞

aN = t.

So, by the previous lemma,

γn(At) ≥ Φ(b + t).

Since this last inequality is true for any b < a, we get that

γn(At) ≥ Φ(a + t).

�

A consequence of the isoperimetric inequality is the following lemma.

Lemma 2.1.29. If f : Rn → R is 1-Lipschitz and Mf is the median of the

function on the probability space (Rn, γn, B(Rn)) then

γn(|f −Mf | ≥ t) ≤ 2γ1(t,∞).

Proof. Let A = {x ∈ Rn : f (x) ≥ Mf } and B = {x ∈ Rn : f (x) ≤ Mf }. From the
definition of the median we have γn(A) ≥ 1

2 and γn(B) ≥ 1
2 .

So, there exist a, b ≥ 0 such that γ1(−∞, a) = γn(A) and γ1(−∞, b) = γn(B).
Also, since f is 1-Lipschitz we get that if y ∈ At then there exists x ∈ A
such that ‖x − y‖2 < t and hence

f (y) = f (x) − f (x) + f (y) ≥ −d(y, x) +Mf ≥ Mf − t.

Similarly, if y ∈ Bt then there exists x ∈ B such that ‖x−y‖2 < t. Therefore,

f (y) = f (x) − f (x) + f (y) ≤ d(x, y) +Mf ≤ t +Mf .

It follows that if y ∈ At ∩ Bt then

|f (y) −Mf | < t,
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which implies that

γn(|f −Mf | ≥ t) ≤ γn(Act ∪ B
c
t ) ≤ γn(Act ) + γn(Bct ).

On the other hand, by the isoperimetric inequality we have

γn(Act ) ≤ γ1(a + t,+∞) ≤ γ1(t,+∞)

and

γn(Bct ) ≤ γ1(b + t,+∞) ≤ γ1(t,+∞)

since a, b > 0. �

Finally, we shall also need the next simple lemma.

Lemma 2.1.30. If Z ∼ N(0,1) then P(Z > z) ≤ e
−z2

2 for any z > 0.

Proof. For any λ > 0 and any z > 0 we have that

P(Z > z) = P(eλZ−λz ≥ 1) ≤ e−λzE(eλZ ) = e−λz
1
√

2π

∫
R

eλxe−
x2
2 dx.

But
1
√

2π

∫
R

eλxe−
x2
2 dx = e

λ2
2

1
√

2π

∫
R

e−
(x−λ)2

2 dx = e
λ2
2

since the density function for a random variable X ∼ N(λ,1) is

fX (x) =
1
√

2π
e−

(x−λ)2
2 .

As a result we get

P(Z > z) ≥ e−λz+
λ2
2 .

For λ = z we get the desired inequality. �

2.1.3 Convergence of the extreme eigenvalues

In this subsection we seek the limit of the extreme eigenvalues of An when
Ai,j ∼ N(0,1).
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Lemma 2.1.31. If A is a symmetric n × n matrix on R (or hermitian, respec-

tively, on C) then

‖A‖∞ = max{−λ1, λn},

where λ1 is the smallest eigenvalue of A and λn is the largest one.

Proof. If A is symmetric then there exists an orthogonal matrix Q and a
diagonal matrix D such that

A = QDQ∗.

Also, if x ∈ Rn is such that ‖x‖2 = 1 we get that ‖Q∗x‖2 = 1 and the function

x 7→ Q∗x

is a bĳection. So,

‖A‖∞ = sup
{x∈Rn :‖x‖2=1}

|x∗Ax | = sup
{x∈Rn :‖x‖2=1}

|x∗QDQ∗x |

= sup
{y∈Rn :‖y‖2=1}

|y∗Dy| = max{−λ1, λn}.

�

Lemma 2.1.32. If A is an n×n symmetric or hermitian matrix then we have

‖A‖∞ ≤ ‖A‖HS.

Proof. Let {λi}i∈[n] be the eigenvalues of A. Then, for every i ∈ [n],

|λi | ≤
( n∑
j=1

λ2
j

) 1
2 .

So,

max
i∈[n]
|λi | ≤

( n∑
j=1

λ2
j

) 1
2 .

�

Therefore, in the space Msa
n of all symmetric (or Hermitian) n×n matrices

with the Hilbert-Schmidt norm, all we get is that the function ‖ · ‖∞ is 1-
Lipschitz.
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Proposition 2.1.33. Let An be a symmetric (or Hermitian) random matrix

whose entries are independent random variables with standard normal dis-

tribution. Then,

E‖An‖∞ < 2
√
n.

Proof. We will prove it for Hermitian matrices. The symmetric case is
similar.

Let A ∈ Mn(C) be a Hermitian matrix whose entries are independent
random variables such that

{aj,j}j∈N, {
√

2Re(aj,k)}j<k, {
√

2Im(aj,k)}j<k ∼ N(0, σ2).

So, the probability distribution µ of A (as a probability measure on the set
Msa
n (C) of self-adjoint matrices) has density

dµ(H) = c1 exp
(
−

tr(H2)
2σ2

)
dH,

where

c1 =
1

(2πσ2)n2/2

and dH is the Lebesque measure on Msa
n (C).

If we consider the set

Λn = {{λ1, λ2, . . . , λn) ∈ Rn : λ1 ≤ λ2 ≤ · · · ≤ λn}

it is known (see [15]) that the function h : Msa
n → Λn which sets the

eigenvalues of a self-adjoint matrix in increasing order maps the probability
measure µ, mentioned above, to

h(dµ) = dµ(h−1) = c2

∏
1≤j<k≤n

(λj − λk)2 exp

 −1
2σ2

n∑
k=1

λ2
k

dλ1dλ2· · ·dλn,

where c2 > 0 is another normalization constant:

c2 =

πn(n−1)/2
n−1∏
j=1

(j!)


−1

.
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Hence, after averaging over all permutations of λ = (λ1, λ2, . . . , λn) we get
that for any symmetric function φ : Rn → C one has (when both integrals
are defined)∫

Msa
n

φ(λ1(H), λ2(H), . . . , λn(H))dH =

∫
Rn
φ(λ)g(λ)dλ1dλ2· · ·dλn,

where

g(λ) =
c2

n!

∏
1≤j<k≤n

(λj − λk)2 exp

 −1
2σ2

n∑
k=1

λ2
k

 .
The marginal density

h(λ) =

∫
Rn−1

g(λ, λ2, . . . , λn)dλ2· · ·dλn

can be computed explicitly (see [15]). Moreover, for σ2 = 1
2 we have

h(λ) =

n−1∑
k=0

φ2
k(λ)

where
φk(x) =

1
(
√
πk!2k)1/2

e−
x2
2 Hk (x).

Here {Hk}k∈N0 are the Hermite polynomials defined as follows:

Hk(x) = (−1)kex
2
(
dk

dxk
e−x

2
)
.

So, in general one can show that for any σ2

h(λ) =
1

n
√

2σ2

n−1∑
k=0

φk

(
λ
√

2σ2

)
.

In order to prove the proposition we need the following lemma.

Lemma 2.1.34. Let f : R→ R be a Borel function and consider the mapping

A 7→ f (A), a ∈ Msa
n (C) obtained by the usual function calculus for self-adjoint

operators on Hilbert space. Then,

E(tr(f (A))) = n

∫
R

f (λ)h(λ)dλ

given that the right hand side of the equality is well defined, i.e. either f ≥ 0
or

∫
R
|fh |dλ < ∞.
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Proof. By what was done before, and since the function

tr(f (A)) =

n∑
i=1

f (λi(A))

is a symmetric function over the eigenvalues of A, we have

E(tr(f (A)) =

∫
Rn

n∑
j=1

f (λj)g(λ1, λ2, . . . , λn)dλ1dλ2· · ·dλn.

But one can easily verify that g is invariant under permutations of the λi ’s,
so

E(tr(f (A))) = n

∫
R

f (λ)h(λ)dλ.

For the general case we can consider f + and f −. �

Corollary 2.1.35. For any s ∈ C,

E(tr(exp(sA))) =
1

nσ
√

2

∫
R

esλ
n−1∑
k=0

φk

(
λ

σ
√

2

)
dλ

= n exp
(
s2σ2

2

)
Φ(1 − k,2,−s2σ2),

where Φ is the hyper-geometric function defined for any a, c, x ∈ C by

Φ(a, c, x) =

∞∑
n=0

(a)nxn

(c)nn!
.

In order to proceed we need the following lemma.

Lemma 2.1.36. Let σ = 1. Define C(p, n) = E(tr(A2p)). Then, C(0,1) = n,

C(1, n) = n2 and for every n ∈ N the numbers C(p, n) satisfy the recursion

formula

C(p + 1, n) = n
C(p, n)(4p + 2)

p + 2
+
p(4p2 − 1)
p + 2

C(p − 1, n).

Proof. Let a, c ∈ C such that c ∈ Z \ N. Then the function

x → Φ(a, c, x)
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is an entire function which satisfies the differential equation (y = Φ(a, c, x))

x
d2y

dx2 + (c − x)
dy

dx
− ay = 0

(see [16]). By what was done before we get

E(tr(exp(sA)) = n exp
(
s2σ2

2

)
Φ(1 − n,2,−s2).

But since all the moments of sA are finite, by the properties of the mo-
ment generating function (note that A has the same distribution as −A so
E(tr(A2q−1)) = 0 for any q ∈ N) we get

E(exp(sA)) =

∞∑
p=0

s2p

(2p)!
E(tr(A2p)).

It follows thus, that C(p,n)
(2p)! is the coefficient of xp in the power series expan-

sion of the function

σn(x) = n exp
(n
2

)
Φ(1 − n,2,−x).

Since Φ(a, b, x) satisfies the differential equation mentioned above, we get

xσ ′′n (x) + 2σ ′n(x) −
(x
4

+ n
)
σn(x) = 0.

Therefore, σn(x) =
∑∞
p=0 apx

p where ap =
C(p,n)
(2p)! . Going back to the differential

equation and equating the power series we get

(p + 1)(p + 2)ap+1 − nap −
1
4
ap−1 = 0

for p ∈ N and
2a1 − na0 = 0.

So, since tr(In) = tr(A0)) = n we get the recursion formulas. �

The above discussion shows that the quantity dp := E(tr(A2p)) 1
np22p for

p ≥ 1 and d0 = 1 satisfies the recursion formula

dp =
2p − 1
2p + 2

(
dp−1 +

p(p − 1)(2p − 3)
4n22p

dp−2

)



80

and d1 = n
4 . Since we know that for p ∈ {0,1}

dp ≤ n

(
2p
p

)
1

22p(p + 1)

p∏
j=1

(
1 +

j(j − 1)
4n2

)
,

we may use induction and prove that for any p ∈ N0 the previous inequality
is true.

Next, using successively Stirling’s formula to majorize the binomial co-
efficient, the inequalities

∑p
j=1 j(j − 1) ≤ p3

3 and 1 + x ≤ ex to estimate the
product, and denoting t = pn−2/3, we arrive at the following estimate:

dp ≤ n
e

p3

12n2

√
πp

3
2

=
e
t3
12

√
t3π

.

This is valid for t > 0, at least if the corresponding value of p = tn2/3 is
an integer. So, for t = 1,3 and for sufficiently large p, by the continuity of
e
t3
12
√
t3π

, after a calculation we get

dp ≤ e
−0.3 < 1 =⇒ Etr(A2p)1/2p < 2

√
n.

By Jensen inequality and since for any p ∈ N it is true that tr(A2p) ≥ ‖A2p‖∞,
we get

E‖A‖∞ ≤ E(‖A2p‖∞)1/2p ≤ E(tr(A2p))1/2p < 2
√
n.

�

Lemma 2.1.37. If f : Rn → R is a convex function then the median Mf of f

with respect to the standard Gaussian measure γn on Rn satisfies

Mf ≤ E(f ).

Proof. Firstly we are going to prove that the function g : t → Φ−1(γn{f ≤ t})

is concave. Note that, since f is convex, for any t ∈ R the set At := {x ∈ Rn :

f (x) ≤ t} is convex: for any x, y ∈ A and λ ∈ (0,1) we have that

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y) ≤ λt + (1 − λ)t.

Applying Erhard’s inequality we have

λΦ−1(γn(At1)) + (1 − λ)Φ−1(γn(At2)) ≤ Φ−1(γn(λAt1 + (1 − λ)At2)),
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which proves that g is concave. Note that g(Mf ) = 0 so there exists a
supporting line to the graph of g. More precisely, there exists a > 0 such
that, for all t ∈ R,

g(t) ≤ a(t −Mf ) + g(Mf ) = a(t −Mf ).

An equivalent way to express the previous inequality is

γn({f ≤ t}) ≤ P(Z ≤ t),

where Z ∼ N(Mf , a−2). Since stochastic domination implies inequality for
the means of random variables we have

Mf ≤ E(f ).

�

Now we can state and prove the main result of this subsection.

Theorem 2.1.38. Let An a sequence of n×n real symmetric (or complex Her-

mitian) random matrices whose entries are independent random variables

all following the standard normal distribution. Then, for any epsilon > 0,

P

(
λ1

(
1
√
n
An

)
≥ 2 + ϸ

)
→ 0

and

P

(
λn

(
1
√
n
An

)
≤ −2 − ϸ

)
→ 0,

where {λi(A)}i∈[n] are the eigenvalues of an n × n matrix A in decreasing

order.

Proof. Note that

max
{
P

(
λ1

(
1
√
n
An

)
≥ 2 + ϸ

)
,P

(
λn

(
1
√
n
An

)
≤ −2 − ϸ

)}
= P

(∥∥∥∥∥∥ 1
√
n
An

∥∥∥∥∥∥
∞

≥ 2 + ϸ

)
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by Lemma 2.1.31. We have also proven in Lemma 2.1.32 that ‖ · ‖∞ is
a convex 1-Lipschitz function on the space of the n × n symmetric (or
Hermitian) matrices with the Hilbert-Schmidt norm. So,

P

(∥∥∥∥∥∥ 1
√
n
An

∥∥∥∥∥∥
∞

≥ 2 + ϸ

)
= γn({‖x‖∞ ≥ 2

√
n + ϸ

√
n}.

Since the infinity norm is also convex, from Lemma 2.1.37 we have

M‖·‖∞ ≤ Eγn (‖ · ‖∞) ≤ 2
√
n.

So by the previous lemmas we get that

P(‖An‖∞ ≥ 2
√
n + ϸ

√
n) ≤ 2γ1(ϸ

√
n,∞) ≤ 2e

−ϸ2n
2 → 0.

Since it is obvious that P(lim supn λn ≤ −2) = 0 and P(lim infn λ1 ≥ 2) = 0,
by the semicircular law the proof is complete. �

Corollary 2.1.39. By the Borel-Cantelli lemma we conclude that

λ1(An)→ −2 a.s.

and

λn(An)→ 2 a.s.

2.2 Marchenko-Pastur Law

2.2.1 Convergence of E.S.D.

We are going to present now another important theorem in random matrix
theory which can be thought as a generalisation of the semicircular law
and was first proven in [3] by Marchenko-Pastur. The techniques and the
notation we are going to use are similar to the ones we used in the proof of
the semicircular law.

Theorem 2.2.1. Let Xn ∈ Mp×n be a sequence of random matrices such that

all the entries are i.i.d., E(X1,1) = 0 and E(X2
1,1) = 1 and X1,1 has finite

moments, as in the previous theorem. Let

Sn =
1
n
X · X ∗ ∈ Mp.
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Also let µn be the the E.S.D. of Sn. Assume that p(n)/n → y ∈ (0,1]. Then µn

converges (weakly) to µ almost surely, where µ is the deterministic measure

with density (with respect to the Lebesque measure)

dµ =
1

2πxy

√
(b − x)(x − a)1a≤x≤b

and

a(y) = (1 −
√
y)2, b(y) = (1 +

√
y)2.

Remark 2.2.2. Observe that if y = 1 then µ is the semicircular distribution
under the mapping x → x2.

In order to prove the theorem we will need the following.

Remark 2.2.3. It is easy to compute that:∫
xkdµ =

k−1∑
r=1

yr+1

r + 1

(
k

r

)(
k − 1
r

)
.

Lemma 2.2.4. It is true that

〈µn, x
k〉 −→ 〈µ, xk〉.

Proof. Some details of the proof will not be explained because the tech-
niques that are used are the same as in the proof of the semicircular law.
We have

〈µn, x
k〉 =

1
p
E

 p∑
i=1

λi

 =
1
p
E

(
tr(X · X ∗)k

nk

)
(2.2.1)

=
1
pnk

∑
I,J

E(Xi1,j1Xi2,j1Xi2,j2 · · ·Xik ,jkXi1,jk ),

where I ∈ [p]k and J ∈ [n]k.
Note that each term in the sum (2.2.1) is associated with a bipartite

(multi)graph with vertex set V = I ∪J and edge set the coordinates on each
term of the product in (2.2.1), meaning E = ∪m∈[k](im , jm)∪m∈[k](im+1 (mod k), jm).
We can imagine the edge set as a sequence E = (i1, j1, i2, j2, . . . , ik, jk, i1) such
that any two successive terms of the sequence are edges.
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As in the previous theorem, in order for a term to be non-zero, each edge
must appear twice meaning that we have at most k edges, and as a result
at most k + 1 vertices in each such graph.

Suppose that the vertex set of a term (I, J) has cardinality ≤ k. Then let
V = A+B where A is the cardinality of I and B is the cardinality of J . Then
the total number of ways of choosing A vertices for I and B vertices for J
is bounded by CpAnB, where C is a constant independent from n. So, the
contribution of these terms in the expectation is

O(pAnB/pnk) −→n→∞ 0.

Thus we need to look at graphs with exactly k + 1 vertices and k edges
(meaning there are no loops and every edge appears exactly twice in the
sequence and more importantly in reverse, meaning (i, j) and (j, i)).

Let (I, J) be a pair, where card(I) = r+1 and card(J) = k− r. The number
of equivalence classes (there exists a bĳection of [n] × [p] mapping each
term of one graph to another) is the number of permutations of r+1 objects
from p distinct objects and the same respectively for k − r objects from n

distinct objectd. So,(
p

r + 1

)(
n

k − r

)
= np

(p
n

)r (
1 + O

(1
n

))
Thus:

〈µn, x
k〉 =

1
pnk

∑
I,J

E(Xi1,j1Xi2,j1Xi2,j2 · · ·Xik ,jkXi1,jk ) =

k−1∑
r=1

(p
n

)r (
1 + O

(1
n

))
× Dr ,

(2.2.2)
where Dr is the number of equivalence classes with r+1 I-vertices and k−r
J-vertices. Letting n → ∞ in (2.2.2) we get that it is sufficient to show that:

Dr =
1

r + 1

(
k

r

)(
k − 1
r

)
.

So we need to count Dr . In order to do that, for every equivalence class we
define its type sequence [si]2k

i=1 = 1 if in the edge (j, j + 1), j + 1 appears for
the first time in the sequence and j + 1 ∈ I, and = −1 if in the edge (j, j + 1),
j appears for the last time in the sequence and j ∈ I, Otherwise, we set
= 0. �
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Proposition 2.2.5. Every type sequence is well defined, meaning that each

sequence in an equivalence class has the same type sequence.

Proof. Given two pairs (I, J) and (W,V ) with the same type sequence {s}2ki=1

we can use Proposition 2.1.9 for the sequence {di}2ri=1 = {si : si ∈ {−1,1}} to
find a subgraph of each pair which are equivalent. So we can prove the
proposition by adding at the graph above all vertices of J and V respec-
tively, join all edges between an element of I and an element of J that are
successive with the same direction,and lastly delete all vertices amongst I
and W respectively. Using the same technique for the a sequence with J

and W to be non zero and Proposition 2.1.9, we get which points are equal
and that J and W are equivalent. So after we merge the elements of J and
W that are equal we get the same graph. As a result the two pairs are
equivalent. �

Proposition 2.2.6. Every sequence has the following properties which uniquely

determine it:

(i) If i is odd then si ∈ {0,−1}.

(ii) If i is even then si ∈ {1,0}.

(iii) For every l ∈ [2k] we have that
∑l
i=1 si ≥ 0.

(iv) #{i : si = 1} = #{i : si = −1} = r (since ∀i ∈ I we get that i appears

exactly once for the first time and once for the last time and those times

can not be the same).

(v) As a result of the previous properties,
∑2k
i=1 si = 0.

Every type sequence has the properties above (obviously) and every se-

quence with the properties (i)-(v) is a type sequence.

Proof. Given a sequence [si]2k
i=1 with the properties above firstly we dis-

tinct the non zero terms and construct a graph as in the equivalent case
in Proposition 2.1.10. After that we use the same method as in Proposi-
tion 2.1.9 and construct the graph we want.
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So we need to count all the sequences with the properties (i)-(v). If A is
the set of all those sequences and Xb = (j ⊆ [b] : |j| = r) then we define

f : A −→ Xk × Xk−1

where f sends every sequence to the support of the even elements of the
sequence (under the mapping 2m → m) times the support of the odd
elements of the sequence (under the mapping 2m − 1 → m). Note that
s2k = 0 so we just need a subset of [k − 1].

Obviously, f is well-defined and 1-1. Also, every subset of Xk × Xk−1

under the mapping f −1 satisfies the properties (i), (ii), (iv) and (v). So we
just need to count all the subsets which fail property (iii).

So let {si}2ki=1 be a sequence that fails property (iii). Then there exists
l ∈ [k] such that

∑2l−1
i=1 si < 0. We pick the smallest l with that property.

Then we create the following sequence:

di = si ∀i ∈ [2l − 1] ∪ {2k}

(d2i , d2i+1) = (s2i , s2i+1) if l ≤ i ≤ k − 1 and

[(si , si+1) = (0,0) or (si , si+1) = (1,−1)]

(di , di+1) = (si+1, si) otherwise.

Now the sequence di has r + 1 odd elements assigned with −1 (and the rest
0) and r − 1 even elements assigned with +1 (and the rest 0). The mapping
above is clearly well-defined (since there will be one more +1 in [2l,2k] so
in the ‘‘reflected’’ sequence di this will be reversed so there will be two −1’s
more than +1’s). Also the procedure above is reversible. Given a sequence
with r + 1 odd elements assigned with −1 and r − 1 assigned with +1, and
the rest 0, firstly find the first odd number with more −1’s than +1’s until
that point, and then follow the reversed procedure. So the set of sequences
with a negative term has cardinality equal to the number of ways in which
we can pick r + 1 −1’s from k of them and r − 1 +1’s from k − 1 of them.
So:

Dr =

(
k − 1
r

)(
k

r

)
−

(
k − 1
r − 1

)(
k

r + 1

)
=

1
r + 1

(
k − 1
r

)(
k

r

)
.

�
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Lemma 2.2.7. It is true that:

Varµn (x
k) ≤

Ck
n2 .

Proof of Theorem 2.2.1. The proof of the lemma above and as a result the
proof of Marchenko-Pastur law are exactly the same as the proof of the
corresponding steps in the proof of the semicircular law. �

Remark 2.2.8. If y > 1 then one can show that a similar result is true. A
sketch of the proof is the following: Since rank(Sn) = min{p, n} we will have
roughly n(y − 1) zero eigenvalues. Since µn = 1

p

∑p
i=1 δλi we see that there

will be (1−y−1) at 0 in the limiting measure. Since the non-zero eigenvalues
of XX ∗ and X ∗X are the same we get that the limiting distribution is

(1 − y−1)δ{0} + µ,

where µ is the same as in the Marchenko-Pastur law.

2.2.2 Convergence of the extreme eigenvalues

We will continue this section with the proof of some results about the limits
of the extreme eigenvalues of Sn = 1

nXnX
∗
n , where Xp,n is a matrix as in the

beginning of this section, with i.i.d. entries that have distribution N(0,1).
The results presented where first proved in [6].

Theorem 2.2.9. Let Xp,n be as above. Let λ1

(
1
nXp,nX

∗
p,n

)
be the smallest

eigenvalue of the matrix 1
nXp,nX

∗
p,n and p/n → y where y ∈ (0,1]. Then

lim
p,n→∞

λ1

(1
n
Xp,nX

∗
p,n

)
= (1 −

√
y)2.

Proof. First note that the conditions of the Marchenko-Pastur law are sat-
isfied. So we get

µn → µ weakly almost surely,

where µn is the E.S.D. of 1
nXp,nX

∗
p,n and µ is the measure with density (with

respect to the Lebesque measure)

dµ =
1

2πxy

√
(b − x)(x − a)1a≤x≤b
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a(y) = (1 −
√
y)2, b(y) = (1 +

√
y)2.

Let Sp = 1
nXp,nX

∗
p,n. The proof of the theorem is based on the following

lemma and definition.

Lemma 2.2.10 (Gershgorin circle theorem). Let A be a complex n×n matrix

with entries ai,j. For each i ∈ [n] let Ri =
∑
i,j |ai,j| be the sum of the absolute

values of all the non-diagonal entries of the i-th row. Let Di(ai,i , Ri) be the

closed disc with center ai,i and radius Ri. Then every eigenvalue of A lies in

at least one of those discs.

Proof. Let λ be an eigenvalue of A. Choose a corresponding eigenvector
x = (xj) so that one of its components xi is equal to 1 and the others are
of absolute value less than or equal to 1. We may always assume that
such an x exists, simply by dividing any eigenvector by its component with
largest modulus. Since Ax = λx, in particular we have∑

j

ai,jxj = λxi = λ.

So, splitting the sum and taking into account once again that xi = 1, we
get ∑

j,j

ai,jxj + ai,i = λ.

Therefore, applying the triangle inequality,

|λ − ai,i | =

∣∣∣∣∣∣∣∑j,j ai,jxj
∣∣∣∣∣∣∣ ≤∑

j,i

|ai,j||xj| ≤
∑
j,i

|ai,j| = Ri.

�

Returning to the theorem, note that since µ is positive to the right of
(1 − y1/2)2 we immediately get

lim supλ1(Sp) ≤ (1 − y1/2)2.

Definition 2.2.11. Let {Xi} be a sequence of independent standard Gaus-
sian random variables. Then, for every n ∈ N we denote by χ2(n) the
random variable

χ2(n) =

n∑
i=1

X2
i .
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Now we can return to the proof of the theorem. Assume that p < n (since
p/n → y < 1). We will show inductively that we can replace Sp by a matrix
which is easier to work with. Let O1

n be the matrix whose first column is
the first row of Xp×n normalized, by the Gram-Schmidt method, and the
rest columns are non-random linearly independent n-dimensional vectors.
Then, X1

p×n = Xp×nO1
n. After calculation one can see that the first row of

X1
p×n is (Xn,0, . . . ,0), where X2

n ∼ χ
2(n) and Xn ≥ 0, while the remaining

rows are made up by independent N(0,1) random variables. Now let O1
p be

a p × p orthogonal matrix of the form

O1
p =

1 0

0 O1
p−1

 ,
where O1

p−1 is orthogonal, its first row is the normalization (by the Gram-
Schmidt method) of the first column (without the first element) of X1

p×n, as
a vector in Rp−1, and the remaining columns are linearly independent. So,
after calculations one can verify that

O1
pX

1
p×n =


Xn 0

Yp−1 W(p−1)×(n−1)

0 .

 ,
where Y 2

p−1 ∼ χ
2(p − 1) and Yp−1 ≥ 0, while W(p−1)×(n−1) is a (p − 1) × (n − 1)

random matrix made up by i.i.d. N(0,1) entries.
Following the same technique one can show inductively that there exist

two orthogonal matrices Op×p and On×n such that

Op×pXp×nOn×n =



Xn 0 0 0 0 . . . 0
Yp−1 Xn−1 0 0 0 . . . 0

0 Yp−2 Xn−2 0 0 . . . 0
0 0 . . . . . . 0
. . . . . . .

. . . . . . .

. . . . . .

0 0 0 0 Y1 Xs−(n−1) . . .0 0



.
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So, after calculations one can show that Sp is orthogonally similar (so with
the same eigenvalues) to the matrix Dp with the following rows:

D1 =
1
n

(X2
n , XnYp−1,0,0, . . . ,0)

Dp =
1
n

(0,0, . . . , Xn−p+2Y1, Y
2
1 + X2

n−p+1)

and for every j ∈ [p − 2] the (j + 1)-th row has non-zero diagonal element

Dj+1,j+1 =
1
n
Y 2
p−j + X

2
n−j

and non-diagonal elements

1
n
Xn−j+1Yp−j,

1
n
Xn−jYp−j−1,

where {Yi}n∈N, {Xi}n∈N is an independent sequence of random variables such
that X2

i , Y
2
i ∼ χ

2(i) and Xi , Yi ≥ 0, for each i.
By Gershgorin’s circle theorem we get

λ1 ≥ min
{1
n

(X2
n − XnYp−1),

1
n

(Y 2
1 + X2

n−p+1 − Xn−p+2Y1),

min
j

1
n

(Y 2
p−j + X

2
n−j − Xn−j+1Yp−j − Xn−jYp−j−1)

}
.

Now notice that for a sequence of independent random variables {Zn}n∈N
such that Zn ∼ χ2(1) for every n ∈ N we have

P(Z1 = ∞) = 0 =⇒ lim
m

Z1

m
= 0 a.s.

and by Kolmogorov’s strong law of large numbers for i.i.d. random vari-
ables and the fact that E(Z1) = 1,

χ2(m)
m

=

∑m
n=1 Zm
m

→m→∞ 1 a.s.

From these results and the assumption that p/n → y ∈ (0,1] we get

1
n

(X2
n − XnYp−1) =

X2
n

n
−

√
p − 1
√
n

Xn
√
n

Yp−1
√
p − 1

→ 1 −
√
y · 1 a.s.

and likewise
Y 2

1 + X2
n−p+1 − Xn−p+2Y1

n
→ 1 − y a.s.
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Notice that
1 − y ≥ 1 −

√
y ≥ (1 −

√
y)2.

Also, for 0 < ϸ < 1 and s,m ∈ N, by Markov’s inequality we see that

P(etχ
2(m)−tm ≥ etsϸ) ≤ e−tsϸE(etχ

2(m)−tm) = e−tsϸ−tmE
(
e

∑m
n=1 Zn t

)
= e−tsϸ(E(e(Z1−1)t))m.

Now we will show a concentration inequality for a random variable Z ∼
χ2(1). Let t ∈ (0,1/4). Then

E(exp(t(Z − 1)) =
1
√

2π

∫ ∞

−∞

et(z
2−1)e

−z2
2 dz.

Setting y =
√

1 − 2tz we get

E(exp(t(Z − 1)) =
e−t
√

1 − 2t

∫ ∞

−∞

e
−y2

2 dy =
e−t
√

1 − 2t
.

But t ∈ (0,1/4), and hence

e−t
√

1 − 2t
≤ e2t2.

It follows that for t0 ∈ (0,min{14 ,
ϸ
2 }) and m ∈ [s],

P
(
etχ

2(m)−tm ≥ etsϸ
)
≤ e−tsϸ

(
E(e(Z1−1)t)

)m
≤ e2t2m−tsϸ ≤ e(2t2−tϸ)s < 1.

Similarly one can show that for every 0 < ϸ < 1 and s ∈ N there exists a
constant c < 1, depending only on ϸ, such that for all m ∈ [s]

P
(
e−tx

2+tm > etsϸ
)
≤ cs.

So we can conclude that for every ϸ ∈ (0,1), s ∈ N and m ∈ [s] there exists
a constant a ∈ (0,1), depending only on ϸ, such that

P

(∣∣∣∣∣∣χ2(m)
s
−
m

s

∣∣∣∣∣∣ > ϸ
)
≤ 2as.

Returning to the proof of the theorem we have that, for ϸ ∈ (0,1),
∞∑
n=1

P

({
max

n−(p−2)≤m≤n

∣∣∣∣∣∣X2(m)
n

−
m

n

∣∣∣∣∣∣ > ϸ
}
∪

{
max
m≤p−1

∣∣∣∣∣∣X2(m)
n

−
m

n

∣∣∣∣∣∣ > ϸ
})

≤

∞∑
n=1

(2p(n) − 1)4an) < ∞.
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Thus, by the Borel-Cantelli lemma, the following is valid almost surely:

lim
n→∞

(
max

[{
max

n−(p−2)≤m≤n

∣∣∣∣∣∣X2(m)
n

−
m

n

∣∣∣∣∣∣
}
,

{
max
m≤p−1

∣∣∣∣∣∣X2(m)
n

−
m

n

∣∣∣∣∣∣
}])

= 0. (2.2.3)

In order to continue we need the following inequality.

Lemma 2.2.12. For any non-negative real numbers a1, a2, b1, b2 ≥ 0 it is

true that

|a1b1 − a2b2| ≤ |a
2
2 − a

2
1 |

1/2||b2
2 − b

2
1 |

1/2 + |a2
2 − a

2
1 |

1/2|b1| + |a1||b
2
2 − b

2
1 |

1/2.

Proof. We will use the following two facts.

Fact 1: For any two non-negative numbers,

a + b ≤ (
√
a +
√
b)2 =⇒

√
a + b ≤

√
a +
√
b.

Fact 2: For any two non-negative numbers a, b we have that

|a − b| ≤ |a2 − b2|1/2.

To see this, assume without loss of generality that a ≤ b. Then

2a2 ≤ 2ab =⇒ (a − b)2 ≤ b2 − a2 =⇒ |a − b| ≤ |b2 − a2|1/2.

By the previous facts we have

|a1b1 − a2b2| ≤ a1|b1 − b2| + b2|a1 − a2|

≤ a1|b1 − b2| + (|b2 − b1| + b1)|a1 − a2|

≤ a1|b
2
1 − b

2
2 |

1/2 + (|b2
2 − b1|

1/2 + b1)|a2
1 − a

2
2 |

1/2.

�

So,

Anj :=
∣∣∣∣1
n

(Y 2
p−j + X

2
n−j − Xn−j+1Yp−j − Xn−jYp−j−1)

−

(
p − j

n
+
n − j

n
−

√
n − j + 1
√
n

√
p − j
√
n
−

√
n − j
√
n

√
p − j − 1
√
n

) ∣∣∣∣
≤

∣∣∣∣∣∣Y 2
p−j − p − j

n

∣∣∣∣∣∣ +

∣∣∣∣∣∣X2
n−j − n − j

n

∣∣∣∣∣∣ +

∣∣∣∣∣∣Xn−j+1Yp−j −
√
n − j

√
p − j

n

∣∣∣∣∣∣
+

∣∣∣∣∣∣Xn−jYp−j−1 −
√
n − j

√
p − j − 1

n

∣∣∣∣∣∣ .
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From the previous inequality and (2.2.3) we get

max
j≤p−2

Anj −→ 0 a.s.

But the expression∣∣∣∣∣∣p − jn +
n − j

n
−

√
n − j + 1
√
n

√
p − j
√
n
−

√
n − j
√
n

√
p − j − 1
√
n

∣∣∣∣∣∣
achieves its smallest value for j = 1. So,

p − 1
n

+
n − 1
n
−

√
p − 1
√
n
−

√
n − 1
n

√
p − 2
n
→ y + 1 − 2

√
y.

�

For the maximal eigenvalue, the proof of λmax → (1 + y1/2)2 is similar.
We use the same matrix Dp and the fact that for every eigenvalue λ of a
matrix A we have λi ≤ max{

∑p
i=1 |ai,j|} from Gershgorin’s circle theorem.

2.3 Bai-Yin’s Convergence to the semicircular

law

2.3.1 Convergence of the E.S.D.

In this subsection we prove another generalisation of the semicircular law,
first proved in [4] by Bai-Yin. We are going to use the notation we used in
the discussion of the semicircular law.

Theorem 2.3.1. Let Xn ∈ Mp×n be a random matrix with i.i.d. entries for all

p and n (also i.i.d. amongst different p and n). Assume that n(p) −→ ∞ and

p/n −→ 0, also that E|X1,1|
4 < ∞ and Var(X1,1) = 1. Let

Ap =
1

2
√
np

(XX ∗ − nIp).

Then:

µAp → σ a.s.

where σ is the semicircular distribution with density function 1|x |≤1
2
π

√
1 − x2

and µA is the E.S.D. of A.
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Note that the k-th moment of σ is 1
2kCk/2 when k is odd and zero other-

wise.
In order to prove the theorem we need several lemmas.

Lemma 2.3.2. For each p let Yp = [Xi,jp] be a p×n random matrix with i.i.d.

entries, where n = n(p)→ ∞ and p/n → 0 as p tends to infinity, such that:

1. EX1,1p = 0 and EX2
1,1p = 1 + ap, where ap → 0.

2. |X11p | ≤ ϸpn
1
4 , where ϸp → 0 but ϸpn

1
4 → +∞.

Let Bp = [Zi,j] be a p × p random matrix such that Zi,i = 0 and

Zi,j =
1

2
√
np

n∑
l=1

Xi,lXj,lp , i , j.

Then, µBp converges to the semicircular distribution σ(x) almost surely.

Proof. As in the semicircular law we will prove the following:

1. 〈µBp , xk〉 → 〈σ, xk〉.

2.
∑∞
p=1 VarµBp (xk) < ∞.

Firstly we prove (i). We write:

〈µBp , x
k〉 = E

(
1
p

trBkP

)
=

1
p(2
√
pn)k

∑
I,J

E (Xi1,j1Xi2,j1Xi2,j2Xi2,j3 · · ·Xik ,jkXi1,jk ),

where I ⊆ [p]k and J ⊆ [n]k.

Notation: We shall use the following notation:

· ψ(e1, e2, . . . , em) is the number of distinct elements among e1, . . . , em.

· I = (i1, . . . , ik) and J = (j1, . . . , jk).

· ia ∈ [p] and jb = [n], where a, b ∈ [k].

· r = ψ(I) and c = ψ(J).
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· Γ(I, J) denotes the multi-graph defined as follows: Let the I-line and
the J-line be two parallel lines, plot i1, . . . , ik on the I-line and j1 . . . , jk
on the J-line. These are the vertices. The graph has 2k distinct edges
joining the vertices as follows: i1, j1, i2, j2, . . . , ik, jk, i1.

Let dm denote the number of edges of multiplicitym (meaning the vertices
that are connected with exactly m edges). Obviously, for a given multi-
graph Γ(I, J) we have

d1 + 2d2 + · · · + 2kd2k = 2k,

since each edge in Γ(I, J) has multiplicity in [2k].
Now define

A(r, c) = {(I, J) : ψ(I) = r, ψ(J) = c , d1 = 0, i1 , i2 · · · , ik , i1}.

By the above definition we get:

〈µBp , x
k〉 =

1
p(2
√
pn)k

k∑
r,c=1

∑
A(r,c)

E(Xi1,j1Xi2,j1Xi2,j2Xi2,j3 · · ·Xik ,jkXi1,jk )

=

k∑
r,c=1

Sr,c,

where

S(r, c) =
1

p(2
√
pn)k

∑
A(r,c)

E(Xi1,j1Xi2,j1Xi2,j2Xi2,j3 · · ·Xik ,jkXi1,jk ).

We will prove that Sr,c → 0 as p → ∞ unless if r = k/2 + 1 and c = k/2.
Note that

E|Xi1,j1Xi2,j1Xi2,j2Xi2,j3 · · ·Xik ,jkXi1,jk | ≤ |EX1,1|
d1 |EX2

1,1|
d2 · · · |EX2k

1,1|
d2k

≤ |1 + ap|
k(ϸpn1/4)2k−2(d2+···+d2k ).

Since r + c are the distinct vertices of the graph, we get that r + c ≤ d1 +

d2 + · · ·+d2k + 1, because d1 +d2 + · · ·+d2k is the cardinality of the distinct
edges. Also,

|A(r, c)| ≤
(
p

r

)
rkck

(
n

c

)
≤ prncrkck.
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It follows that

|S(r, c)| ≤
1

p(2
√
pn)k

|1 + ap|
k(ϸpn1/4)2k−2(r+c−1)prncrkck. (2.3.1)

We need one more inequality for S(r, c). Let l1, l2, . . . , lc be the different
values of J . Then,

E := E (Xi1,j1Xi2,j1Xi2,j2Xi2,j3 · · ·Xik ,jkXi1,jk ) =

c∏
b=1

E

∏
ja=lb

(Xia ,jaXia+1,ja )


=

c∏
b=1

E (Xnb1
1,1 )E (Xnb2

1,1 ) · · ·E (Xnbs
1,1 ),

where nb1, nb2, . . . , nbs are all ≥ 2 (or else the mean will be zero) and s ≥ 2
depends on b (meaning how many vertices from I are connected with the
b-th element of J ). Then,

|E| ≤
c∏
b=1

(ϸpn1/4)
∑
a nba−2s(1 + |ap|)2 ≤ (ϸpn1/4)2k−4s(1 + |ap|)k. (2.3.2)

Now, suppose that r , k/2 + 1 and c , k/2. We distinguish three cases:

Case 1: r > k/2 + 1. Then since c + r ≤ k + 1 we have

1
2

(r + c − 1 − k) ≤ 0.

By (2.3.1) and the assumption that p/n → 0, we get that |S(r, c)| → 0.

Case 2: c > k/2. Any J-vertex cannot be connected via an edge with
only one I-vertex since every two successive vertices are different, so there
would be at least 4c edges, which is impossible

Case 3: r < k/2 + 1, c < k/2. In this case S(r, c)→ 0 by (2.3.2). So we just
need to compute the case that k = 2m is even and r = m + 1, c = m. In
this case, and since d1 = 0, we have that

k + 1 = r + c ≤ d2 + d3 + · · · + d2k ≤ 1/2(2d2 + 3d3 + · · · + 2kd2k) + 1 = k + 1,

so

d3 = · · · = d2k = 0.
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So, each edge appears exactly twice. Define two pairs I, J and W,V to
be equivalent if the following holds: two vertices are equal in I, J if and
only if the equivalent vertices are equal in W,V . Now by assigning to
each edge +1 if it appears for the first time and −1 otherwise we get, by
the corresponding lemma in the proof of the semicircular law, that the
cardinality of the equivalence classes is Cm (the Catalan number). So:

〈µBP , x
2m〉 = S(m,m + 1) =

1
p(2
√
np)k

Cm(1 + ap)k = O(1).

Letting p → ∞ and using the same method as in the proof of the semicir-
cular law we conclude the proof of (i).

The proof of (ii) is similar to the one of Corollary 2.1.13. �

Lemma 2.3.3. Let X be a real random variable such that E|X | < ∞. Then

∞∑
n=1

P(|X | ≥ n) < ∞.

Proof. Let An = {ω ∈ Ω : n ≤ |Xn(ω)| < n + 1}. Then

∞∑
i=1

n1An ≤ |X |.

So, by integration,

E
∞∑
i=1

n1An ≤ E|X |.

But, by the Beppo-Levi and Tonelli theorems,

E
∞∑
i=1

n1An =

∞∑
i=1

nP(An) =

∞∑
i=1

P(An)
n∑
k=1

1

=

∞∑
k=1

∞∑
n=k

P(An) =

∞∑
k=1

P(|X | ≥ k).

�

Lemma 2.3.4. If E(X4) < ∞ then there exists {ϸp}p∈N such that

1. ϸp → 0, but epp1/4 → ∞.
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2. P(|X | ≥ ϸpn1/4) ≤ ϸp/n.

Proof. Since p/n → 0 we have that p < n if n is sufficient large. So, we can
assume that p(n) < n for all n ∈ N .

Let {ap} be a decreasing sequence such that ap → 0 but app1/4 → ∞

increasingly. We denote by δp the sequence

δp = 5
√
E(X41|X |>app1/4).

Note that δp is a decreasing sequence which tends to zero by the dominated
convergence theorem (for all p ∈ N we have that X4 ≥ X4

1|X |>app1/4 ). Then,
define

ϸp := max{δp, ap}.

Since ap ≤ ϸp we get that ϸpp1/4 → ∞. Note also that ϸp is non-increasing
and tends to zero as it is the maximum of two non-increasing sequences
which tend to zero. So,

nP
(
|X | > ϸpn

1/4) ≤ nP(|X | > ϸnn1/4) ≤ E(X41|X |>ϸnp1/4
)

ϸ4
n

=
δ5
n

ϸ4
n

≤ δn ≤ ϸn ≤ ϸp.

�

Lemma 2.3.5. Let Y1, Y2, Y3, . . . be i.i.d. random variables such that P(Y1 =

1) = q = 1 − P(Y1 = 0). Then,

P

 n∑
i=1

Yi − nq ≥ nϸ

 ≤ e−nh(ϸ−qh)

for all ϸ > 0, n ∈ N and h ∈ [0,1/2].

Proof. Let ϸ > 0, n ∈ N and h ∈ [0, 1
2 ]. Then, by Markov’s inequality and

since the Yi ’s are i.i.d. we get

P

 n∑
i=1

Yi ≥ n(q + ϸ)

 = P
(
e

∑n
i=1 hYi ≥ ehn(q+ϸ)

)
≤ e−hn(q+ϸ)E

n∏
i=1

ehYi

= e−hn(q+ϸ)
n∏
i=1

EehYi = e−hn(q+ϸ)(EehY1)n.
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But, EehY1 = ehq+ 1− q = (eh −1)q+ 1 and since for all x ∈ (0,+∞] we have
x + 1 ≤ ex and eh − 1 < (h + 1)h, we get that

E (ehY1) ≤ e(eh−1)q ≤ e(h+1)hq.

So,

P

 n∑
i=1

Yi ≥ n(q + ϸ)

 ≤ e−hn(q+ϸ)e(h+1)hnq,

which proves the lemma. �

Remark 2.3.6. Note that if F, G are the mass functions (with respect to the
Lebesque measure) of two empirical spectral distributions of size n then∫

|F (x) − G(x)|dx =
1
n

n∑
i=1

|λi − µi |,

where λi are the eigenvalues of the matrix which corresponds to F in in-
creasing order and similarly for µi and G.

Lemma 2.3.7. Let {(ai , bi), i ∈ N} be the set of all intervals with rational

endpoints and length less than 1. Let

fi(x) =

∫ x

−∞

1(ai ,bi )(t)dt

and

D(F, G) =
∑
i

1
2i

∣∣∣∣∣∫ fid(F (x) − G(x))
∣∣∣∣∣ ,

where F, G are empirical spectral distributions. Then D(Fn, F ) → 0 implies

that Fn → F weakly.

Proof. In order to prove the lemma we are going to use the characterization
of weak convergence from Lemma 1.3.5 which says that a sequence µn of
Borel probability measures on a metric space (X, d) converges weakly to a
probability measure µ if and only if, for all open subsets U of X ,

lim inf
n→∞

µn(U ) ≥ µ(U ).
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Let µ be the probability measure on R with distribution F , and likewise µn
for Fn. It is easy to compute, using Fubini’s theorem, that for every i ∈ N,∣∣∣∣∣∫ fid(F (x) − G(x))

∣∣∣∣∣ = |(µn − µ)((ai , bi))|,

which tends to zero as n tends to infinity. Also, for all x ∈ R. Given an
open subset U of R, we write it as a infinite (countable) union of disjoint
intervals with rational endpoints and length less than 1 plus a countable
set. Let U = ∪∞i=1Ui be these intervals. Since D(Fn, F ) → 0 we get that
µn(Ui)→ µ(Ui). So, if i, n ∈ N then

µn(U ) ≥
i∑

k=1

µn(Uk)

As a result, since this is true for every n,

lim inf
n→∞

µn(U ) ≥
i∑

k=1

lim inf µn(Uk) =

i∑
k=1

µ(U )

and since this is true for every i we get

lim inf
n→∞

µn(U ) ≥
∞∑
k=1

µ(Uk) = µ(U ).

�

Lemma 2.3.8. Let A,B be two p × p symmetric matrices with eigenvalues

{λ1 ≤ λ2 · · · ≤ λp} and {µ1 ≤ µ2 · · · ≤ µp} respectively. Then,

p∑
i=1

(λi − µi)2 ≤ tr(A − B)2.

Proof. We begin by diagonalizing A and B. Since they are symmetric, there
exist orthogonal matrices U, V and diagonal matrices Λ and M, which have
as entries the eigenvalues of A and B respectively (in the order we have
mentioned), such that

A = UΛU ∗

and
B = VMV T∗.
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So,
tr(AB) = tr(UΛU ∗VMV ∗) = tr((VU ∗)Λ(V ∗U )M).

Setting W = V ∗U and after some calculations we get:

tr(AB) =
∑

1≤i,j≤p

λiµjW
2
i,j.

In order to proceed we need some definitions.

Definition 2.3.9. An n × n matrix will be called doubly stochastic if all its
entries are non-negative and the sum of the elements of each row and each
column is equal to 1.

Definition 2.3.10. Let A be a p × p matrix. Then A will be called a per-

mutation matrix if there exists p ∈ Sn such that Ai,j = 1 ⇐⇒ p(i) = j and
Ai,j = 0⇐⇒ pi , j.

Note: Since every p ∈ Sn is a bĳection from [n] to [n], every permutation
matrix is doubly stochastic.

Now, sinceW is orthogonal we get
∑p
i=1W

2
i,j = 1 for each j and

∑p
j=1W

2
i,j = 1

for each i. So, setting ui,j = W 2
i,j we have that {ui,j}

p
i,j=1 is doubly stochastic.

Let Dp denote the set of all doubly stochastic p × p matrices. Then,

tr(AB) =
∑

1≤i,j≤p

λiµjui,j ≤ sup
(ai,j)∈Dp

∑
1≤i,j≤p

λiµjai,j

Note that Dp is convex (any convex combination of doubly stochastic p × p
matrices will remain doubly stochastic) and the function

{ai,j}
p
i,j=1 7→

∑
1≤i,j≤p

λiµjai,j

is linear. Therefore, the supremum on Dp is achieved at an extreme point
of Dp.

We will prove that the extreme points of Dp are the permutation matrices
(Birkhoff Theorem).

The proof that every permutation matrix is an extreme point is elemen-
tary since, if A, B are doubly stochastic matrices, P is a permutation matrix
and r ∈ (0,1) such that

rA + (1 − r)B = P,
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then for each i, j ∈ [p] such that pi,j = 0 we have that rai,j = −(1 − r)bi,j and
since every entry of a doubly stochastic matrix is non-negative we get

ai,j = bi,j = 0.

So, since the sum of the elements of each row and column of A and B must
be equal to 1, we get that A = B = P.

In order to prove the opposite direction, we will prove that every doubly
stochastic matrix is a convex combination of permutation matrices. To
prove this, we will need another definition and a very important lemma:

Definition 2.3.11. For every doubly stochastic p × p matrix A we define
its associated graph G with

V (G) = {ik : k ∈ [p]} ∪ {jk : k ∈ [p]}

and
E(G) = {(ik, jm) : Ak,m > 0}.

Note: The graph of every doubly stochastic matrix is bipartite.

The idea behind this definition is that for a doubly stochastic matrix we
create its graph by turning each row and each column into a vertex and we
connect a row (call it i) and a column (call it j) via an edge if the element
on the spot (i, j) is not zero.

Lemma 2.3.12. The graph of every doubly stochastic matrix has a perfect

matching.

Proof. Assume, by way of contradiction, that there exists a doubly stochas-
tic matrix such that its graph does not have a perfect matching. Call this
matrix A, and call R(A) the first part (the rows) and C(A) the other part (the
columns). By Hall’s theorem, without loss of generality, we get that there
exists B ⊆ V (R(A)) such that N(B) < |B|. Now, we see that∑

i∈B,j∈N(B)

Ai,j = |B|.

This is true since for any vertex (column) in B every row connected to it
belongs to N(B), and since the matrix is doubly stochastic we get that the
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sum above gives the cardinality of B (a term 1 for each vertex in B). But
the fact that A is doubly stochastic gives that the same sum equals to the
cardinality of N(B) which is a contradiction. �

So in order to prove the opposite direction of Birkhoff’s theorem, we will
use induction on the number of non-zero entries of a matrix. For k = 2 the
opposite direction is true.

Let the opposite direction be true for all m < k and let A be a matrix
with k non-zero elements. By the previous lemma, the associated graph of
A has a perfect matching. Underline the entries associated to the edges of
the perfect matching. Since the edges in the perfect matching are disjoint
we get that there is exactly one element in each row and column. Let P
be the permutation matrix with entries 1 exactly at the positions of the
underlined elements. Let c be the minimum of those entries. If c = 1 then
A = P. If not, then the matrix M = A − cP/(1 − c) is doubly stochastic with
one non-zero entry less than the ones for A. So, since A = (1 − c)M + cP,
and by the induction hypothesis, the proof is complete.

Now we can return to the proof of Lemma 2.3.8. By what was done above
we get that

tr(AB) ≤ max
σ∈Sp

∑
1≤i≤p

λiµσ(i).

Using the fact that µi and λi are in non-decreasing order we will prove that
the maximum is achieved by the identity permutation. If not, then for i > j

λiµi + λjµj − λjµi − λiµj = (λj − λi)(µi − µj) ≥ 0.

Let σ ∈ Sp be a permutation different than the identity. So, there exist
i, j ∈ [p] such that j < i and σ(j) < σ(i). Let σ ′ be a permutation with the
property that σ ′(i) = i,σ ′(j) = j and for all d ∈ [p]\ {i, j} we have σ ′(d) = σ(d).
The permutation σ has one more order reversal than σ ′. Iterating this
process we see that the sum is maximized for the permutation id. So,

tr(AB) ≤
p∑
i=1

λiµi



104

Finally since trA2 =
∑p
i=1 λ

2
i and trB2 =

∑p
i=1 µ

2
i we get:

p∑
i=1

(λi − µi)2 =

p∑
i=1

λ2
i + µ2

i − 2λiµi

≤

p∑
i=1

λ2
i +

2∑
i=1

µ2
i − 2 trAB

= trA2 + trB2 − 2 trAB = tr(A − B)2.

�

Definition 2.3.13. Given a matrix A ∈ Mn, the matrix obtained after delet-
ing the i-th row and the i-th column of A for some i ∈ [n] is called principal
sub-matrix of A.

Definition 2.3.14. Let A be symmetric or Hermitian matrix in Mn(Rn) or
Mn(Cn) respectively. Consider the standard inner product 〈·, ·〉 on Rn or Cn.
The Rayleigh-Rietz quotient is the function

RA(x) =
〈Ax, x〉

〈x, x〉

defined on all the non-zero elements of Rn or Cn.

Lemma 2.3.15 (min-max theorem). Let A be a symmetric matrix A ∈ Mn

and let {λi}ni=1 be the eigenvalues of A in non-decreasing order. For every

k ∈ [n] let

Ak = {U ⊆ Rn : dim(U ) = k}.

Then,

λk = min
U∈Ak

max
x∈U\{0}

RA(x)

and

λk = max
U∈An−k+1

min
x∈U\{0}

RA(x).

Proof. Since A is symmetric it is diagonalizable and we can chose an or-
thogonal basis of eigenvectors {u1, u2, . . . , un}, where ui is the eigenvec-
tor corresponding to λi for each i ∈ [n]. If U is a subspace of dimen-
sion k then its intersection with span{uk, uk+1, . . . , un} is non-empty. Let
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u ∈ span{uk, uk+1, . . . , un} ∩ U \ {0}. Then we can write u as

u =

n∑
i=k

aiui ,

and its Rayleigh quotient is

RA(u) =

∑n
i=k a

2
i λi∑n

i=k a
2
i

≥ λk

∑n
i=k a

2
i∑n

i=k a
2
i

= λk.

Since this is true for every subspace U we get:

λk ≤ min
U∈Ak

max
x∈U\{0}

RA(x).

For the other direction note that for the subspace V = span{u1, u2, . . . , uk}

and for every u ∈ V we have

RA(u) ≤ λk,

since λk is the largest eigenvalue for U . So,

λk = min
U∈Ak

max
x∈U\{0}

RA(x) = max
v∈V\{0}

RA(v).

The proof of the other equality is similar. In the case where U is a subspace
of dimension n − k + 1, we proceed in a similar fashion: Consider the k-
dimensional subspace span{u1, . . . , uk}. Its intersection with U is not {0}
(by simply checking dimensions) and hence there exists a non-zero vector
v in this intersection, which we can write as

v =

k∑
i=1

aiui.

So,

RA(v) =

∑k
i=1 a

2
i λi∑k

i=1 a
2
i

≤ λk,

and since this is true for all U we have the first inequality.
To get the other inequality, note again that every eigenvector u of λk is

contained in V = span{uk, . . . , un} so that we can conclude the equality.
Also, as before, we get

λk = max
U∈An−k+1

min
x∈U\{0}

RA(x) = min
x∈V\{0}

RA(v).

�
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Lemma 2.3.16 (Cauchy interlacing theorem). Let A be a symmetric (or

Hermitian in C) matrix in Mn. Let B be a principal sub-matrix of A and let

{λ1 ≤ λ2 ≤ · · · ≤ λn} be the eigenvalues of A and {µ1 ≤ µ2 ≤ · · · ≤ µn−1} be

the eigenvalues of B, both in non-decreasing order. Then:

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ λ3 · · · ≤ λn−1 ≤ µn−1 ≤ λn.

Proof. Assume without loss of generality that we have deleted the n-th row,
and so, let

A =

B x

x z

 .
Let {x1, x2, . . . , xn} be the eigenvectors of A and let {y1, . . . , yn−1} be the
eigenvectors of B. We define the following vector spaces:

V = span{xk, . . . , xn}

W = span{y1, . . . , yk}

W ′ =


w0

 : w ∈ W

 .
Since dim(V ) = n − k + 1 and dim(W ′) = dim(W ) = k we see that the
intersection of W ′ and V is non-trivial, meaning that there exists u ∈

W ′ ∩ V \ {0}. So,

u =

w0


for some w ∈ W . Then

u∗Au =
[
w∗ 0

] B x

x z

 w0
 = w∗Bw

But from the min-max theorem we get

λk = min
v∈V

RA(v)

and
µk = max

d∈W
RB(d).

So, λk ≤ µk.
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The proof of the other inequality is similar. We now define the vector
spaces

V = span{x1, . . . , xk+1}

W = span{yk, . . . , yn−1}

W ′ =


w0

 : w ∈ W

 .
Since dim(V ) = k + 1 and dim(W ) = dim(W ′) = n − k, there exists u ∈
W ′ ∩ V \ {0}. So, as before,

u =

w0


for some w ∈ W . Then we have u∗Au = w∗Bw. So, again from the min-max
theorem,

λk+1 = max
v∈V

RA(v) ≥ RA(u) = RB(w) ≥ min
d∈W

RB(d) = µk.

�

Note: In the previous theorem we can replace Rn with Cn and the symmetric
matrix with a Hermitian matrix.

We are now ready to prove the main theorem of this chapter.

Proof. By Lemma 2.3.4 we can choose ϸp such that ϸp → 0 and ϸpp1/4 → ∞

such that P(|X1,1| ≥ ϸpn1/4) ≤ ϸp/n. Define

X ′p = [X ′i,j : i = 1,2 . . . , p; j = 1,2 . . . , n]

where

X ′i,j = Xi,j1|Xi,j |<ϸpn1/4

Let

A′p =
1

2
√
np

(X ′pX
′∗
p − nIp)

and

hi,j = 1|Xi,j |≥ϸpn1/4.
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Proposition 2.3.17. The following inequality holds true:

sup
x
|FAp(x) − FA

′
p(x)| ≤

1
p

p∑
i=1

n∑
j=1

hi,j.

Proof. Firstly note that

sup
x
|FAp(x) − FA

′
p(x)| = sup

x
|FXpX

∗
p (x) − FX

′
pX
′∗
p (x)|.

Since

det(Ap − xIp) =
1

(2
√
np)p

det(XpX ∗p − (n + 2x
√
pn)Ip),

substituting u := n + x2
√
pn we see that the roots with respect to u are

the eigenvalues of XpX ′p. So, solving for x we get that if λi is the i-th (in
non-decreasing order) eigenvalue of Ap and di is the i-th eigenvalue of XpX ∗p
then we have

λi = n + di2x
√
pn.

Since the same is true for A′p and since we are interested in the supremum
over all x, we see that we can investigate the eigenvalues of XX ∗ and X ′X ′∗

instead.
Let x ∈ R and let

Lp = {(i, j) ∈ [p] × [n] : Xi,j , X ′i,j}.

We will prove that, for every p ∈ N, if g ≤ p and XpX ∗p is the matrix defined
above for p, n(p), and

g = p|FXpX
∗
p (x) − FX

′
pX
′∗
p (x)|,

then

g ≤ |Lp|,

using induction on p.
For p = 1 the assertion is true; if not, we would have X1 = X ′1 i.e. the

two matrices would be equal but with different eigenvalues (the root of the
polynomial f = X1 − 1 · λ) which would be a contradiction.
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Suppose that for all m ≤ p − 1 the statement is true. Consider the
matrices XpX ∗p and X ′pX ′∗p as before. If

|FXpX
∗
p (x) − FX

′
pX
′∗
p (x)| = 0

then obviously

|FXpX
∗
p (x) − FX

′
pX
′∗
p (x)| ≤ |Lp|.

If not, then there exist i, j such that Xi,j , X ′i,j. Without loss of generality let
i = p. Let B be the principal sub-matrix of XpX ∗p deleting the p-th row and
column, and similarly let B′ be the corresponding sub-matrix for X ′pX ′p−1.
Note that B = Xp−1X ∗p−1 and B′ = X ′p−1X

′∗
p−1. So, we can apply the induction

hypothesis for B and B′, which gives that

p|FB(x) − FB(x)| ≤ |Lp−1|.

But, by Cauchy’s interlacing theorem, we get that

p|FXpX
∗
p (x) − FX

′
pX
′∗
p (x)| ≤ p|FXp−1X∗p−1(x) − FX

′
p−1X

′∗
p−1(x)| + 1.

Also, since there exists an element on the p-th row such that Xp,j , X ′p,j for
some j, we get that

|Lp−1| + 1 ≤ |Lp|.

It follows that

p|FXpX
∗
p (x) − FX

′
pX
′∗
p (x)| ≤ p|FXp−1X∗p−1(x) − FX

′
p−1X

′∗
p−1(x)| + 1 ≤ |Lp−1| + 1 ≤ |Lp|.

The inequality above is true for all x ∈ R and for all p ∈ N. Also note that
if hi,j denotes the event that the (i, j)-th element of Xp is different from the
element in the same spot of X ′p, we get that

|Lp| ≤
p∑
i=1

n∑
j=1

hi,j.

So, the proof of the proposition is complete. �
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Since P(hi,j = 1) = P(|Xi,j| ≤ ϸpn1/4) = qp (say), if δ > 0, by what was done
before we get

P

(
sup
x
|FAp − FA′p | ≥ δ

)
≤ P

1
p

∑
i

∑
j

hi,j ≥ δ


= P

∑
i

∑
j

hi,j − pnqp ≥ pn
δ

n
− qp


≤ exp

(
−nph

(δ
n
− qp − qph

))
≤ exp

(
−nqh

(δ
n
− (1 + h)

ϸp
n

))
≤ exp

(
−p
δh

2

)
for ϸp < δ/3. We can choose h = 1/2. Thus, by the Borel-Cantelli lemma,

sup
x
|FAp(x) − FA

′
p(x)| → 0 a.s.

Note that we can replace X ′p with Yp = X ′P − E(Xp) and we would have the
same result (see [17] p.81 and A-46)). But by Lemma 2.3.2 we know that

sup
x
|FAp − FBp | → 0 a.s.

where Bp is defined as in Lemma 2.3.2 starting from the matrix Yp defined
above. Thus in order to prove the theorem it is sufficient to prove that

D(FA
′′
p , FBp) =

∑
i

1
2i

∣∣∣∣∣∫ fid(FA
′′
p (x) − FBp(x))

∣∣∣∣∣→ 0

as in Lemma 2.3.7. Here, A′′p = 1
2
√
pn (YpY ∗p − nI), also X ′′i,j = X ′i,j − E(X ′i,j), and

λi are the eigenvalues of A′′p and µi the eigenvalues of Bp. So by integration
by parts, Remark 2.3.6 and Lemma 2.3.8 we get that

D2(FA
′′
p , FBp) ≤

1
p

p∑
i=1

|λi − µi |

2

≤
1
p

p∑
i=1

(λi − µi)2 ≤
1
p

tr(A′′p − Bp)
2

=
1

4np2

p∑
i=1

 n∑
m=1

(X ′′i,m − 1)

2

≤
1

2np2

p∑
i=1

 n∑
m=1

(X ′′2i,m − E(X ′′2i,m )

2

+
n

2p
(1 − EX ′′2i,m )2.
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For sufficiently large p we have:

n

2p
(1 − EX ′′2) ≤

n

2p
4
nϸ4

p

E2X4
1,1 → 0.

So, for the first term on the right hand side of the inequality we have:

1
4np2

p∑
i=1

 n∑
m=1

(X ′′i,m − 1)

2

≤
1

2np2

p∑
i=1

 n∑
m=1

(X ′′2i,m − E(X ′′2i,m ))

2

≤
1

2p2n

p∑
i=1

n∑
m=1

[X ′′2im − E(X ′′2i,m )]2

+
1

2np2

p∑
i=1

∑
m1,m2

(X ′′2i,m1
− EX ′′2i,m1

)(X ′′2i,m2
− EX ′′2i,m2

)

= S1,p + S2,p.

Then, for any ϸ > 0, by Markov’s inequality we have:

∞∑
p=1

P(|S2,p| > ϸ) =

∞∑
p=1

P(S2
2,p > ϸ

2)

≤
1
ϸ2

∞∑
p=1

E(S2
2,p)

=

∞∑
p=1

1
2np2

p∑
m=1

2n(n − 1)E2(X ′′21,1 − EX
′′2
1,1)2

≤

∞∑
p=1

1
2p3E

2X4
1,1 < ∞.

Thus, by the Borel-Cantelli lemma we get

S2,p → 0 a.s.
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For S1,p we have

S1,p =
1

2p2n

p∑
i=1

n∑
m=1

[X ′′2im − E(X ′′2i,m )]2

≤
1

2p2n

p∑
i=1

n∑
m=1

X ′′4im + E2(X ′′2i,m )

≤
1

2p2n

p∑
i=1

n∑
m=1

X ′′4im − E(X ′′4i,m )] +
K

p
EX4

1,1 = ∆p +
K

p
EX4

1,1

for some K > 0. So, as before, we have
∞∑
p=1

E∆2
p =

∞∑
p=1

1
4p4n4

p∑
i=1

n∑
m=1

E(X ′′4im − E(X ′′4i,m ))2

≤

∞∑
p=1

K2

4n2p4 (n
1
4 ϸp)EX4

1,1 < ∞.

This completes the proof. �

2.3.2 Convergence of the extreme eigenvalues

In this subsection we are going to prove the convergence of the extreme
eigenvalues of Ap to −2 and 2 respectively (using the same notation as
in the previous subsection) under the assumption that all the entries of
Xp ∈ Mp×n follow the standard normal distribution, and n(p) → ∞ and
p/n → 0. By the convergence to the semicircular law we have that µAp → σ

(here, again, we use the same notation as in the previous subsection). We
will use similar arguments as in the previous similar cases. So we need
the following:

Proposition 2.3.18. Let B be a random p × n matrix whose entries are

independent random variables with distribution NC(0,1). Then, for any

t > 0,

P(‖B‖op ≥
√
n +
√
p + t) ≤ 2e−t

2/2.

Also, if n > p then for any t > 4
√

2 ln p√
n
p−1

it is true that

P(sn(B) ≤
√
n −
√
p − t) ≤ 2e

−t2
4 ,
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where sn(B) denotes the smaller singular value of B

Suppose that the previous proposition is proven. Then we get

P(‖B‖op ≥
√
n +
√
p + t)

= P(‖B‖2op − n ≥ t
2 + p + 2t

√
n + 2

√
np + 2t

√
p)

= P

(
(‖B‖2op − n)

1
√
np
≥

t2
√
np

+

√
p

n
+

2t
√
p

+ 2 +
2t
√
n

)
.

Letting (p, n)→ ∞ we get that

lim
(p,n)→∞

f (n, s) = 0

where

f (n, s) =
t2
√
np

+

√
p

n
+

2t
√
p

+
2t
√
n
,

and since this is true for any t > 0 we get

P(lim sup ‖An,s‖op ≥ 2) = 0.

Then, since the E.S.D of An,s tends to the semicircular law and the operator
norm is the largest eigenvalue of a matrix we get that

P(lim inf ‖An,p‖op ≤ 2) = 0.

Likewise one can show that the second part of the proposition implies the
convergence of the smallest eigenvalue of An,p. So it is sufficient to prove
the proposition.

Proof of Proposition 2.3.18. In order to prove the first part of the proposi-
tion we need the following lemmas

Lemma 2.3.19. It is true that

E‖B‖op ≤
√
n +
√
p.

Proof. Using the same method as the one we used in the corresponding
subsection for the Marchenko-Pastur law we get that for any p ≤ n and
any p×n random matrix A with independent entries which all follow N(0,1)
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there exist an orthogonal p × p matrix U and an orthogonal n × n matrix V
such that

A = URV,

where R is a p × n matrix whose entries ri,j have the following properties:

· The entries of R are independent random variables.

· For all i ∈ [p] we have that ri,i ∼ x(n − i + 1).

· For all i ∈ {2,3, . . . , p} we have that ri,i−1 ∼ x(p + 1 − i).

· All the other entries are almost surely zero.

Here, for any m ∈ N the notation x(m) is used for a positive random
variable such that χ2(m) is a chi-squared random variable with m degrees
of freedom.

Likewise one can show that for any p ≤ n and any p × n random matrix
B such that all the entries of B are independent random variables which
all follow NC(0,1) there exist an orthogonal p × p matrix U and an n × n

orthogonal matrix V such that

B =
√

2USV,

where the entries si,j of S are independent random variables such that:

· For all i ∈ [p] we have that si,i ∼ x(2n + 2 − 2i).

· For all i ∈ {2,3, . . . , p} we have that si,i−1 ∼ x(2p + 2 − 2i).

· All the other entries are almost surely zero.

So, we can consider both A (a 2p × 2n random matrix with i.i.d. standard
normal entries) and B (a p × n random matrix with i.i.d. standard complex
normal entries) defined on a common probability space in such a way that
si,j ≤ ri,j almost surely (where si,j and ri,j are the entries of the matrices S
and R respectively, as defined before). This can be done since 2n + 2−2i ≤
2n+1−i and 2p+2−2i ≤ 2p+1−i so we can couple the matrices in a common
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probability space in such a way that ri,j is the square root of the sum of
the same standard normal random variables as si,j plus i − 1 additional
standard normal random variables. Hence, since the eigenvalues of A and
B are also the eigenvalues of R and

√
2S respectively, and since both R

and S have non-negative entries (so they are both positive), we get that

‖B‖op ≤
1
√

2
‖A‖op =⇒ E‖B‖op ≤

1
√

2
E‖A‖op.

So it is sufficient to prove that for any p × n random matrix A with inde-
pendent N(0,1) entries it is true that

E‖A‖op ≤
√
n +
√
p.

In order to do this, we need some definitions and lemmas.

Definition 2.3.20. A Gaussian process X = (Xt)t∈T is simply a family of
jointly Gaussian random variables, usually with mean zero, defined on
some probability space Ω, which may or may not be specified.

For more details see [18].

Lemma 2.3.21 (Slepian’s inequality). Let X = (Xt)t∈T and Y = (Yt)t∈T be

Gaussian processes such that for any t, s ∈ T

E(Yt − Ys)2 ≤ E(Xt − Xs)2

and

EY 2
t = EX2

t .

Then for any x ∈ R

P

(
sup
t∈T

Xt ≥ x

)
≤ P

(
sup
t∈T

Yt ≥ x

)
.

Consequently, by stochastic dominance we have

E

(
sup
t
Xt

)
≤ E

(
sup
t
Yt

)
.
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Note: To avoid measurability issues, we study random processes through
their finite sub-processes meaning that we interpret E supt Xt as

sup
{T0⊆T :|T0 |<∞}

Emax
t∈T0

Xt.

Proof. We shall assume that |T | < ∞ and then we can generalise the result
(since the supremum of a quantity depending on an infinite set is the
supremum of the same quantity over all finite subsets).

Suppose that |T | = n. Then X and Y are both Gaussian random vectors
in Rn. We may also assume that X and Y are independent (by constructing
the analogous product space). So we define the Gaussian random vector
Z (u) in Rn that continuously interpolates between Z (0) = Y and Z (1) = X :

Z (u) :=
√
uX +

√
1 − uY, u ∈ [0,1].

Fix d ∈ R. We need to show that the function Ef (Z (u)) (where f : Rn → R

is defined by f (x) = 1maxi∈[n] xi≤d(x)) is increasing in u, which will give us

Ef (Z (0)) ≤ Ef (Z (1)),

which implies the desired inequality.

Firstly we will show that:

Lemma 2.3.22. Let X ∼ N(0,1) and f : R→ R be a differentiable function.

Then,

Ef ′(X ) = E (Xf (X )).

Proof. Let p(x) be the density function of X . Then, by integration by parts,
we have

Ef ′(X ) =

∫
R

f ′(x)p(x)dx = −

∫
R

f (x)p′(x)dx.

Combining this equality with the fact p′(x) = −p(x)x we get the lemma. �

Note: For a random variable X ∼ N(0, σ) it is true that

E(f ′(X )) = σ2E (f (X )X ),

since X = σZ where Z ∼ N(0,1). By what was done before we have the
following generalisation.
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Lemma 2.3.23. Let X ∼ N(0,Σ) be a Gaussian random vector in Rn. Then

E (Xf (X )) = ΣE (∇f (X )).

Proof. Let X = Σ1/2Z , where Z ∼ N(0, In). So,

Xi =

n∑
k=1

(Σ1/2)i,kZk

and

E (Xif (X )) =

n∑
k=1

(Σ1/2)i,kE (Zkf (Σ1/2Z )).

So, using the previous lemma for E (Zkf (Σ1/2Z ) conditionally on all random
variables except Zk ∼ N(0,1) and simplifying we get the desired equality. �

Lemma 2.3.23 is equivalent to the following: For any i ∈ [n] it is true
that

E (Xif (X )) =

n∑
j=1

Σi,jE

(
df

dxj
(X )

)
.

Lemma 2.3.24 (Gaussian interpolation). Consider two independent Gaus-

sian random vectors X ∼ N(0,ΣX ) and Y ∼ N(0,ΣY ). Define the interpolating

Gaussian random vector

Z (u) =
√
uX +

√
1 − uY, u ∈ [0,1].

Then for any twice differentiable function f : Rn → R we have that

d

du
E (f (Z (u))) =

1
2

n∑
i,j=1

(ΣXi,j − ΣYi,j)E
(
d2

dxidxj
(Z (u))

)
.

Proof. Using the chain rule we have

d

du
E (f (Z (u))) =

n∑
i=1

E

(
df

dxi
(Z (u))

dZi
du

)
=

1
2

n∑
i=1

E

(
df

dxi
(Z (u))

Xi
√
u
−

Yi
√

1 − u

)
.
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Let us break this sum into two, and first compute the contribution of the
terms containing Xi. To this end, we condition on Y and express

1
2

n∑
i=1

1
√
u
E

(
df

dxi
(Z (u))Xi

)
=

1
2

n∑
i=1

1
√
u
E (Xig(Xi)),

where gi(X ) =
df
dxi

(
√
uX +

√
1 − uY ). So by the previous lemma we have

E (Xgi(X )) =

n∑
j=1

ΣXi,jE

(
dgi
dxj

(X )
)

=

n∑
j=1

ΣXi,jE

(
d2f

dxixj
(
√
uX +

√
1 − uY )

√
u

)
.

So,

1
2
√
u

n∑
i=1

E

(
Xi
df

dxi
(Z (u))

)
=

1
2

n∑
i,j=1

ΣXi,jE

(
d2f

dxixj
(
√
uX +

√
1 − uY )

)
.

Taking expectation of both sides with respect to Y , we lift the conditioning
on Y .

Similarly we can evaluate the second part of the sum and by that prove
the lemma. �

Now we can return to the proof of the Slepian’s inequality. Firstly note
that for any f : Rn → R such that

df

dxidxj
≥ 0

for all i , j we get that Ef (X ) ≥ Ef (Y ) which follows from Lemma 2.3.23
and the fact that the assumptions in Slepian’s inequality imply that for
any i ∈ [n] it is true that ΣXi,i = ΣYi,i and that for any i, j ∈ [n] it is true that
ΣXi,j ≥ ΣYi,j.

Now we are going to approximate an indicator function 1x≤d by a se-
quence of twice differentiable functions. Let n ∈ N. Consider the 5-th
degree polynomial gn with the following properties:

· gn
(
d − 1

n

)
= 1.

· gn
(
d + 1

n

)
= 0.

· g′n
(
d − 1

n

)
= g′′n

(
d − 1

n

)
= 0.
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· g′n
(
d + 1

n

)
= g′′n

(
d + 1

n

)
= 0.

· gn(x) ≥ 0, x ∈
[
d − 1

n , d + 1
n

]
.

Now consider the following function

hn(x) =

1x≤d x ∈ R \
(
d − 1

n , d + 1
n

)
gn(x) x ∈

[
d − 1

n , d + 1
n

] .

By the definition of gn we have that hn is twice differentiable and the se-
quence of functions hn(x) approximates the indicator function 1x≤d. Note
that for all n ∈ N the function hn is non-increasing.

Fix m, n ∈ N. By what was done before, we have that the function
fm : Rn → R

fm(x1, x2, . . . , xn) =

n∏
i=1

hm(xi)

is twice differentiable. The sequence of functions fm(x) is an approximation
to the indicator function 1maxi xi≤d.

But
dfm
dxidxj

= h′m(xi)h′m(xj)
∏

k∈[n]\{i,j}

hm(xk).

But, by construction, the third part of the product is non-negative and
the first two are both non-positive (since hm is non-increasing). So, the
product is non-negative.

As a result we have

E (fm(X )) ≥ E (fm(Y )).

�

Lemma 2.3.25 (Chevet-Gordon inequalities). Let B ∈ Mp,n be a random

matrix with independentN(0,1) entries. LetK ⊆ Rn and L ⊆ Sp−1 be compact

sets and rk > 0 such that K ⊆ rkBn2 (K is a subset of the Euclidean ball of Rn

with center at zero and radius rk ). Then,

Emax
u∈L

max
t∈K
〈Bt, u〉 ≤ wG(K) + rKwG(L).
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Proof. Let G be a Gaussian vector in Rn ⊕Rp. We are going to compare the
following Gaussian processes induced by (t, u) ∈ K × L:

Xt,u = 〈Bt, u〉,

Yt,u = 〈G, t ⊕ rku〉.

One can check that, for any (t, u), (t′, u′) ∈ K × L it is true that

E(Xt,u − Xt′,u′)2 ≤ E(Yt,u − Yt′,u′)2.

So, by Slepian’s inequality we get

Emaxu∈L max
t∈K
〈Bt, u〉 ≤ Emax

u∈L
max
t∈K

Yt,u = wG(K) + rkwG(L).

�

Since supt∈Sn−1 supu∈Sp−1〈Bt, u〉 = ‖B‖op for any matrix B ∈ Mn,p, for a matrix
A ∈ Mn,p with independent N(0,1) random entries one has

E‖A‖op ≤ wG(Sn−1) +wG(Sp−1).

But, by definition, one has that for anym ∈ N it is true thatwG(Sm−1) = E|G|

where G is the Gaussian vector of Rm. So, by Jensen’s inequality,

E‖G‖2 ≤ (E‖G‖22)1/2 =
√
m,

which proves the desired inequality. �

So, since the operator norm is convex and 1-Lipschitz with respect to the
Hilbert Schmidt norm, ifM is the median of ‖B‖op we have thatM ≤

√
n+
√
p

by Lemma 2.1.37. Therefore, as in the proof of the semicircular law we get
that

P(‖B‖op ≥
√
n +
√
p + t) ≤ 2e−t

2/2.

Now we can start the proof of the second part of the proposition. Since sn
is 1-Lipschitz with respect to the Hilbert-Schmidt norm, if M is the median
of sn(B) then for any t > 0 we have that

1
2

exp(−tM2) ≤ E exp(−tBB∗) ≤ n exp(−(
√
n −
√
p)2t2 + (s + n)2t).
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The first part of the previous inequality is true since M ≤ E (sn(B)) (see
Lemma 2.1.37) and for the second part see [19, Lemma 7.2]. So, for t =
√

(n + p) ln(2p) and by the inequality
√
a − b ≥

√
a − b

√
a

which is valid for
any a ≥ b ≥ 0, we get

M ≥
√
n −
√
p − 2

√
p + n

√
ln(2p)

√
n −
√
p

So, for t ≥ 4
√

ln(2n)√
n
p−1

P(sn(B) ≤
√
n −
√
p − t) ≤ P(sn(B) ≤ M −

t

2
) ≤ 2e−t

2/2.

The last inequality can be proved with the same method as the one that
we used for the semicircular law. �
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Part III

Quantum information theory

123





Random matrices in quantum

information theory

In this part we study some results about random matrices that are strongly
related to quantum information theory. Before that, we ‘‘translate’’ the
results in quantum information theory terms.

In this chapter we are going to use the following notation: Msa
n (R) (or C)

will denote the subspace of symmetric (or Hermitian) n × n matrices in Mn.
We denote byMsa,0

n (F) the subspace of matrices inMsa
n (F) with trace equal

to zero. Here F is either R or C.
For any A ∈ Mn we will also write {λi(A)}ni=1 for the eigenvalues of A in

non increasing order and µA for the E.S.D. of A.

3.1 The ∞− Wasserstein distance

Definition 3.1.1. Let µ1, µ2 be two probability measures on R. Their
∞−Wasserstein distance is defined as

d∞(µ1, µ2) := inf ‖µ1 − µ2‖L∞ ,

where the infimum is over all couples (X1, X2) of random variables with
(marginal) laws µ1,µ2 defined on a common probability space. Similarly,
if Y1, Y2 are real random variables, their ∞−Wasserstein distance will be
meant to be the ∞−Wasserstein distance of their laws.

Note: The definition of the ∞−Wasserstein distance can be generalised on
a metric space (E, d) by replacing inf ‖X1 − X2‖L∞ by the smallest ∆ such
that P(d(X1, X2) ≤ ∆) = 1.
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We will now describe an alternative way to compute the ∞−Wasserstein
distance.

Lemma 3.1.2. For any real random variables X, Y we have

d∞(X, Y ) = inf{ϸ > 0 : FX (t − ϸ) ≤ FY (t) ≤ FX (t + ϸ), ∀t ∈ R}.

Proof. Let (Ω,A,P) and X ′, Y ′ be real random variables such that X ′ ∼ X
and Y ′ ∼ Y defined on this probability space. Let d := ‖X − Y ‖L∞ denote
the L∞ distance in this probability space. Then, for any t > 0

P(X ≤ t − d) ≤ P(X + |Y − X | ≤ t) ≤ P(Y ≤ t),

and likewise
P(Y ≤ t) ≤ P(X ≤ t + d).

So {
d > 0 : ∃(Ω,A,P) : X ′, Y ′ : (Ω,A,P)→ R,

‖X − Y ‖L∞((Ω,A,P)) = d, X ′ ∼ X, Y ′ ∼ Y
}

⊆ {ϸ > 0 : FX (t − ϸ) ≤ FY (t) ≤ FX (t + ϸ), ∀t ∈ R}.

It follows that

d∞(X, Y ) ≤ inf{ϸ > 0 : ∀t ∈ R, FX (t − ϸ) ≤ FY (t) ≤ FX (t + ϸ)}.

Conversely, let ϸ0 ∈ {ϸ > 0 : ∀t ∈ R, FX (t − ϸ) ≤ FY (t) ≤ FX (t + ϸ)}. Con-
sider the probability space ((0,1), B(0,1), λ) (here λ stands for Lebesque
measure) and the random variables X ′(ω) = {inf t : FX (t) ≥ ω} and Y ′(ω) =

{inf t : FY (t) ≥ ω}.
Fix ω ∈ (0,1) and set Iω = {t : FX (t) ≥ ω}. Note that Iω is non-empty

since limn→∞ F (n) = 1. Also, Iω is an interval because FX is increasing (if
t ∈ Iω then [t,+∞) ⊆ Iω). But since Iω , R (because limn→∞ FX (−n) = 0) and
since any distribution function is right-continuous, which implies that Iω
is closed, we get that Iω has the form

Iω = [b(ω),∞),
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and since inf Iω = X ′(ω) we get that b(ω) = X ′(ω). Note that

t ∈ Iω ⇐⇒ X ′(ω) ≤ t.

So, for any t ∈ R,

FX ′(t) = P(X ′ ≤ t) = λ({ω ∈ (0,1) : X ′(ω) ≤ t}) = λ({ω ∈ (0,1) : t ∈ Iω})

= λ({ω ∈ (0,1) : Fx(t) ≥ ω}) = Fx(t).

So X ∼ X ′, and similarly Y ∼ Y ′. The functions X ′ and Y ′ are called
generalised inverse functions of FX and FY respectively. As a result we
have, for any ω ∈ (0,1),

{t : FX (t − ϸ0) ≥ ω} ⊆ {t : FY (t) ≥ ω}} ⊆ { t : FX (t + ϸ0) ≥ ω}.

But
{t : FY (t − ϸ0) ≥ ω} = {s + ϸ0 : FY (s) ≥ ω},

and similarly
{t : FY (t + ϸ0) ≥ ω} = {s − ϸ0 : FY (s) ≥ ω},

which implies that

inf{t : FY (t − ϸ0) ≥ ω} = Y ′(ω) + ϸ0

inf{t : FY (t + ϸ0) ≥ ω} = Y ′(ω) − ϸ0.

Therefore, we get that

Y ′(ω) − ϸ0 ≤ X
′(ω) ≤ Y ′(ω) + ϸ0 =⇒ ‖X ′ − Y ′‖L∞((0,1),B(0,1),λ) ≤ ϸ0,

which shows that

d∞(X, Y ) ≥ inf{ϸ > 0 : ∀t ∈ R, FX (t − ϸ) ≤ FY (t) ≤ FX (t + ϸ)}.

�

Lemma 3.1.3. The d∞ distance is greater than the Lévy distance dL which

metricizes weak convergence.
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Proof. Let X, Y be two real random variables. For any ϸ ∈ {ϸ : FX (t − ϸ) ≤

FY (t) ≤ FX (t + ϸ)} we get that ϸ ∈ {ϸ : FX (t − ϸ) − ϸ ≤ FY (t) ≤ FX (t + ϸ) + ϸ}.
Hence

{ϸ : FX (t − ϸ) ≤ FY (t) ≤ FX (t + ϸ)} ⊆ {ϸ : FX (t − ϸ) − ϸ ≤ FY (t) ≤ FX (t + ϸ) + ϸ},

which implies

d∞(X, Y ) = inf{ϸ : FX (t − ϸ) ≤ FY (t) ≤ FX (t + ϸ)}

≥ inf{ϸ : FX (t − ϸ) − ϸ ≤ FY (t) ≤ FX (t + ϸ) + ϸ}

= dL(X, Y ).

�

Note: Convergence with respect to d∞ implies weak convergence.

Lemma 3.1.4. Let Z be a real random variable distributed according to a

probability measure νZ whose support is a bounded interval [a, b]. If {Yn}n∈N

is a sequence of random variables then the following are equivalent:

1. d∞(Yn, Z )→ 0.

2. Yn → Z weakly and supYn → b, inf Yn → a.

Note: By sup and inf we mean the essential supremum and infimum
respectively.

Proof. (i) =⇒ (ii): We have already proven that convergence with respect to
the ∞−Wasserstein distance implies weak convergence. Also, we have

max{| supYn − sup Z |, | inf Yn − inf Z |} ≤ ‖Yn − Z‖L∞.

This proves this direction.

(ii) =⇒ (i): Given ϸ > 0 choose a = x1 < x2 < x3 · · · xr = b such that

xj+1 − xj < ϸ

for all j ∈ [r −1]. Suppose also that {xi}r−1
i=1 are points of continuity of FZ (we

may assume this, because the points of discontinuity of any distribution
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function form a countable set, and hence the set of points of continuity
is dense). Since the support of νZ is the interval [a, b], we have that FZ
is strictly increasing on [a, b], and hence there exists c > 0 such that
FZ (xj+1) ≥ FZ (Xj) + c for all 0 6 j < r. Also, for large enough n we get that

inf Yn > a − ϸ

and
supYn < b + ϸ,

and since {xj}rj=1 is a set of points of continuity of FZ we have

|FZ (xj) − FYn (xj)| < c.

Let t ≥ b + ϸ. Then,

FYn (t) = P(Yn ≤ t) ≥ P(Yn < b + ϸ) ≥ P(Yn ≤ supYn) = 1

≥ P(Z ≤ t − 2ϸ) = FZ (t − 2ϸ).

Let t ≤ x2. Since x2 − x1 < 2ϸ we get that t − 2ϸ ≤ x2 − 2ϸ < x1. So

FZ (t − 2ϸ) ≤ FZ (x1) = FZ (a) = 0 ≤ FYn (t).

Note that this is true since a is a continuity point of FZ . Finally, let t ∈
(x2, b + ϸ). Pick j such that j ∈ [r] satisfies

xj−1 ≤ t ≤ xj.

Then, t ≤ xj ≤ xj−2 + 2ϸ. Hence

FZ (t − 2ϸ) ≤ FZ (xj−2) ≤ FZ (xj−1) − c ≤ FZ (xj−1) − |FYn (xj−1) − FZ (xj−1)|

≤ FYn (xj−1) ≤ FYn (t).

So, for every t ∈ R we have

FZ (t − 2ϸ) ≤ FYn (t).

Likewise, we can prove the inequality

FYn (t) ≤ FZ (t + 2ϸ).

As a result, for sufficiently large n we get

d∞(Z, Yn) ≤ 2ϸ.

�
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3.2 Wishart matrices and random induced states

Definition 3.2.1. Consider the space Msa
n (C) of complex Hermitian n × n

matrices equipped with the Hilbert-Schmidt norm. We say that a matrix
A ∈ Msa

n (C) is a GUE(n)-matrix (Gaussian Unitary Ensemble) if

ai,j ∼ NC(0,1) i , j

ai,j ∼ NR(0,1) i = j

and the entries of A are pairwise independent.
Note that if U is a unitary matrix then UAU ∗ ∼ A.

Definition 3.2.2. Consider the space Msa,0
n (C) equipped with the Hilbert-

Schmidt norm. Then if A is in GUE(n) we say that the matrix B = A − trA
n I

is in GUE0(n).
Note that the coefficient trA

n has distribution N(0,1/n) and is independent
from B.

Definition 3.2.3. Let n, s ∈ N. Consider the space Mn×s and let B ∈ Mn×s

be a random matrix whose entries are independent random variables all
following NC(0,1). Then the matrix W = BB∗, which is in Msa

n , is called
Wishart matrix and its distribution is denoted by Wishart(n, s).

There are several models that can be used to study random states. Next
we are presenting two of them.

Definition 3.2.4. (i) A random n × s state is a matrix generated by the fol-
lowing procedure. Consider independent unit vectors {ψi}i∈[s] distributed
uniformly on the sphere of Cn and consider the average of the correspond-
ing pure states, i.e.

ρ =
1
s

s∑
i=1

|ψi〉〈ψi |.

We are now going to present some results about tensor products that
can lead to a closely related and often better model of random states. A
fundamental concept in quantum information theory is the partial trace
which we define bellow:
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Definition 3.2.5. Let H1 ⊗H2 be a bipartite Hilbert space (meaning that it
is the tensor product of two finite dimensional Hilbert spaces). A function
trH2 : B(H1) ⊗ B(H2)→ B(H1) is called partial trace over H2 if and only if

trH2(A ⊗ B) = tr(B)A

for all A ∈ B(H1) and B ∈ B(H2).

Lemma 3.2.6. If y ∈ Cn⊗Cm then by Corollary 1.5.6 there existsM ∈ Mn,m(C)

such that M = y. So

trCm |y〉〈y| = MM∗.

Proof. In order to prove the lemma we need the following useful tool.

Lemma 3.2.7 (Schmidt decomposition). Let H1, H2 be two Hilbert spaces.

Then, every pure state |ψ〉 ∈ H1 ⊗ H2 can be written as a linear combination

|ψ〉 =

d∑
k=1

λk |φ
1
k〉|ψ

2
k〉,

where d = min
{
dim(H1), dim(H2)

}
, {|φ1

k〉} ⊆ H1 and {|ψ2
k〉} ⊆ H2 are orthonor-

mal sets, and {λk}dk=1 are non-negative real coefficients with
∑d
k=1 λ

2
k = 1.

Proof. We denote d1 = dim(H1) and d2 = dim(H2) and assume that d1 ≥ d2.
We can write a vector |ψ〉 ∈ H1 ⊗ H2 in terms of orthonormal bases {i1k }

d1
k=1

and {j2l }
d2
l=1

|ψ〉 =

d1,d2∑
k,l=1

ai,j|i
1
k 〉|j

2
l 〉.

Let E = [ai,j] ∈ Md1,d2 be the corresponding matrix. Now we can apply the
singular value decomposition to the matrix E, which implies that there
exist unitary matrices U ∈ Md1, V ∈ Md2 and a positive diagonal matrix
Σ ∈ Md2 whose entries {λk}d2

k=1 are the singular values of E (since the non-
zero singular values of E are at most d2), such that

E = U

Σ0
V ∗.
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It follows that

|ψ〉 =
∑
i,j,k

ui,kλkvk,j|i
1〉|j2〉 =

d2∑
k=1

λk |φ
1
k〉|ψ

2
k〉,

where the vectors {|φ1
k〉} constitute an orthonormal set in H1, and the same

for {|ψ2
k〉} in H2, due to the fact that U, V are unitary. Finally, since |ψ〉 is

a unit vector, the corresponding matrix has Hilbert-Schmidt norm equal
to one: in other words, ‖E‖22 =

∑
i,j |ai,j|

2 = 1 which in turn implies that∑
k λ

2
k = 1. �

Now, let y ∈ Cn ⊗Cm. Write {xi}i∈[n] for the n-dimensional standard basis
and {φj}j∈[m] for the m-dimensional standard basis. From the Schmidt
decomposition we have that there exist λi,j such that

y =
∑
i

λixi ⊗ φi.

So,
|y〉〈y| =

∑
i,j

λiλj|x〉i〈x |j ⊗ yi ⊗ yj.

Let δi(j) = 1j=i. By linearity of the partial trace, and since the set {φi}i∈[m] is
orthogonal, we have

trCm |y〉〈y| =
∑
i,j

λiλj|x〉i〈x |j〈φ|i |φ〉j = sumi,jλiλj|x〉i〈x |jδi(j)

=
∑
i

λ2
i |x〉i〈x |i ,

which is exactly the matrix BB∗, where B is the matrix which is equivalent
to the state y. �

Now we are ready to give the definition of another random state model,
which is slightly different from the previous one, and sometimes better.
Recall that the first one was given in Definition 3.2.4.

Definition 3.2.8. Let m, n ∈ N and let y be uniformly distributed on the
sphere of Cn ⊗ Cm. Then, the partial trace trCn |y〉〈y| of y over Cn (likewise
on Cm ) is called random n ×m induced state.
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We also use the notation µn,s for the distribution of the random n × s

induced state.

In the rest of the thesis we will work on with random induced states.
The next lemma shows that a random induced state is a normalization of
Wishart matrices. More precisely:

Lemma 3.2.9. The distribution of a random n×s induced state is W
trW where

W ∼ Wishart(n, s) and the random induced state is independent from trWn,s.

Proof. The first part of the lemma is merely a combination of the fact that
a random vector uniformly distributed on the sphere of Cn ⊗ Cs is an
n × s-matrix whose entries are independent random variables all follow-
ing NC(0,1) and Lemma 3.2.6 which implies that the partial trace of y over
Cn is exactly what the lemma says.

For the second part, the proof is a simple consequence of Remark 1.4.20.
�

The results that we have presented for the Empirical Spectral Distribu-
tion have applications to random induced states. In order to state and
prove them, we need the following concentration lemmas.

Lemma 3.2.10. Let X ∼ χ2(n) .Then

P(|X − n| ≥ ϸn) ≤ 2 exp
(
−

nϸ2

4 + 8ϸ/3

)
.

Proof. By the definition of the χ2(n)-distribution there exist i.i.d. random
variables {Zi}i∈[n] such that Zi ∼ N(0,1) and X =

∑n
i=1 Z

2
i . So, for any

s ∈ (0, 1
2 ), by independence and isonomy we have that

E(exp(sX )) = E

exp
n∑
i=1

sZ2
i

 = E

 n∏
i=1

exp(sZ2
i )

 =

n∏
i=1

E exp(sZ2
i ).

But

E exp(sZ2) =

∫
R

1
√

2π
exp(sx2) exp

(
−

1
2
x2

)
dx

=
1

(1 − 2s)1/2

∫
(1 − 2s)1/2

(2π)1/2
exp

(
−

1
2
x2(1 − 2s)

)
dx

= (1 − 2s)−1/2,
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since the probability density function of a random variable Y ∼ N(0, (1−2s))

is fY (x) =
(1−2s)1/2

(2π)1/2 exp
(
−1

2x
2(1 − 2s)

)
. It follows that

E(exp(sX )) = (1 − 2s)−n/2.

So, given ϸ > 0 and for s = ϸ
2(1+ϸ) , by Markov’s inequality we get

P(X ≥ (1 + ϸ)n) = P(sX ≥ s(1 + ϸ)n) = P(exp(sX ) ≥ exp(1 + ϸ)sn)

≤ [(1 + ϸ) exp(−ϸ)]n/2.

From the inequality 1 + ϸ ≤ exp(ϸ − (ϸ2 − ϸ3)/2) we see that

P(X ≥ (1 + ϸ)n) ≤ exp(−(ϸ3 − ϸ2)n/2).

Similarly, for s = ϸ
2(1−ϸ) we get

P(X ≤ (1 − ϸ)) = P(exp(−sX ) ≥ exp(−s(1 − ϸ)n)) ≤ exp(−(ϸ3 − ϸ2)n/4).

Therefore, for any ϸ ∈ (0,1) we get the desired inequality. �

Lemma 3.2.11. Let W be a Wishart(n, s) matrix. Then, for any t > 0 we

have that

P(|trW − ns| ≥ tns) ≤ 2 exp
(
−

nst

2 + 4t/3

)
.

Proof. If W = BB∗ then

2trW =

n∑
i,j=1

2|Re(Bi,j)|2 + 2|Im(Bi,j)|2.

This sum is exactly the sum of ns squared independent N(0,1) random
variables. So, combining this observation with the previous lemma we
conclude the proof. �

Corollary 3.2.12. For any ϸ > 0

P
(∣∣∣∣∣trWn,s

ns
− 1

∣∣∣∣∣ ≥ ϸ)→ 0.

Moreover, the convergence is stronger (meaning almost surely) by the Borel-

Cantelli lemma.
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We are now ready to translate all the random matrix theory results of
Part II to the language of random induced states.

Theorem 3.2.13. Given n, s ∈ N, let ρn,s be a random induced state with

probability distribution µn,s. Then

(i) If n is fixed and s tends to infinity then C
√
s(ρn,s − I

n ) converges in dis-

tribution towards a GUE0(n) matrix, where C is an absolute constant.

(ii) If lim s/n = λ ∈ (0,∞) then µns(sρn,s) (the E.S.D.) converges weakly in

distribution towards µMP(λ) (the Marchenko-Pastur distribution). If λ ≥

1 then the convergence is also true for the ∞−Wasserstein distance.

(iii) If s/n, s → ∞ then µsn(
√
ns(ρn,s − I

n )) converges in probability with

respect to the ∞-Wasserstein distance towards the semicircular law

µSC.

Proof. (i) By the multivariate central limit theorem for the vector space
Msa,0
n , if {Gi}i∈N is a sequence of standard normal vectors in Cn and Ai =

|Gi〉〈Gi |, and since trWn,s can be virtually treated as a constant, we have∑s
i=1 Ai − sI
√
s

→ GUE0(n) =⇒ n
√
s
(
ρn,s −

I

n

)
→ GUE0(n).

(ii) In the general case, where λ ∈ (0,∞), the proof follows from the next
facts:

Fact 1: If Xn and Yn are sequences of random variables defined on a com-
mon probability space that converge in probability towards the random
variables X and Y respectively, then XnYn converges in probability towards
XY .

Fact 2: From the results of the section on the Marchenko-Pastur theorem,
if Wn,s is a Wishart matrix then µ(Wn,s/n) converges in probability towards
the Marchenko-Pastur distribution (see 2.2.1).

Fact 3: By 3.2.12 we have that trWn,s/ns converges weakly towards 1.

In the case where λ ≥ 1 we have that the extreme eigenvalues of Wn,s

also converge in probability towards the infimum and the maximum of
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the Marchenko-Pastur density function. So, by the characterization of the
∞−Wasserstein distance and Facts 1 and 3, the proof is complete. (see
2.2.9).

(iii) The proof is similar with the one of (ii) by Proposition 2.3.18 and The-
orem 2.3.1. �



Random quantum states

4.1 Miscellaneous tools

In the first section of this chapter we give some necessary definitions and
prove some important tools.

4.1.1 Majorization inequalities

Definition 4.1.1. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn. Let also
σ ∈ Sn be a permutation of n elements such that the coordinates of x via
σ are being arranged in decreasing order, and let d be a permutation of n
elements such that the coordinates of y via d are also being arranged in de-
creasing order. Let x ′ = (x ′1, . . . , x

′
n), y′ = (y′1, . . . , y

′
n) be the n-dimensional

vectors that we obtain when we apply the permutations σ and d to x and
y respectively. If

∑n
i=1 xi =

∑n
i=1 yi we will say that x is majorized by y and

write x ≺ y if

for all k ∈ [n] we have that
k∑
i=1

x ′i ≤
k∑
i=1

y′i .

The next lemma provides some simple properties of majorization.

Lemma 4.1.2 (properties of majorization). Let n ∈ N and x, y, z ∈ Rn. Then:

(i) If x ≺ y and y ≺ z then x ≺ z.

(ii) If λ ∈ (0,∞) and x ≺ y then λx ≺ λy.

(iii) If x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn are such that
∑n
i=1 xi =∑n

i=1 yi = 0 and x ≺ y then for any λ ∈ (0,1) we have that λx ≺ y.

137
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(iv) If x ≺ z and y ≺ z then for any λ ∈ (0,1) we have that

λx + (1 − λ)y ≺ z.

Proof. Let x ′, y′, z′ ∈ Rn be the vectors with the same elements as x, y, z
respectively, arranged in decreasing order.

(i) By the assumption we have that for any k ∈ [n]
k∑
i=1

x ′i ≤
k∑
i=1

y′i ≤
k∑
i=1

z′i

which proves that x ≺ z since it is also true that
∑n
i=1 xi =

∑n
i=1 yi =

∑n
i=1 zi.

(ii) Since
∑n
i=1 xi =

∑n
i=1 yi we get that

∑n
i=1(λxi) =

∑n
i=1(λyi). Also, since

k∑
i=1

x ′i ≤
k∑
i=1

y′i

for every k ∈ [n] and λ > 0, we see that

λ
k∑
i=1

x ′i ≤ λ
k∑
i=1

y′i

for every k ∈ [n].

(iii) Firstly note that
∑n
i=1 xi =

∑n
i=1 y1 =

∑n
i=1(λxi) = 0.

Secondly since λ ∈ (0,1) the rearrangement of the elements of the vector
x in decreasing order will arrange the elements of λx in decreasing order
as well. Also, for any k ∈ [n], we have

∑k
i=1 x

′
i ≥ 0, and hence

k∑
i=1

(λx ′i ) ≤
k∑
i=1

x ′i .

So, λx ≺ x. Then, using (i) for the vectors λx, x, y we get λx ≺ y.

(iv) Let λ ∈ (0,1). Note that
n∑
i=1

λxi + (1 − λ)yi = λ
n∑
i=1

zi + (1 − λ)
n∑
i=1

zi =

n∑
i=1

zi.

Then, by (ii), for any k ∈ [n] we have that
k∑
i=1

λx ′i + (1 − λ)y′i ≤
k∑
i=1

λzi +

k∑
i=1

(1 − λ)zi =

k∑
i=1

zi.

�



139

Next, we present several characterizations of majorization.

Lemma 4.1.3. Let x, y ∈ Rn. Suppose also that
∑n
i=1 xi =

∑n
i=1 yi. Then, the

following are equivalent:

(i) x ≺ y.

(ii) x can be written as a convex combination of coordinate-wise permuta-

tions of y.

(iii) There exists a doubly stochastic n × n matrix B such that Bx = y.

(iv) If φ is a permutation invariant convex function on Rn then φ(x) ≤ φ(y).

(v) For every t ∈ R we have that
∑n
i=1 |xi − t | ≤

∑m
i=1 |yi − t |.

(vi) For every t ∈ R we have that
∑n
i=1(xi − t)+ ≤

∑m
i=1(yi − t)+ where, for

any z ∈ R we use the notation z+ = max{z,0}.

Proof. Given a vector a ∈ Rn we will use the notation a↓ for the vector in
Rn which the same elements as a but in decreasing order.

For the equivalence of (i) and (ii) consider the set

Ay = {z ∈ Rn : z ≺ y}.

Note that Ay is convex and its extreme points are permutations of y, mean-
ing those z ∈ Rn that satisfy z↓ = y↓. Now, the equivalence follows by the
Krein-Milman theorem.

For the equivalence of (ii) and (iii), similarly, we use the classical Birkhoff
theorem, which asserts that the extreme points of the set of doubly stochas-
tic matrices are exactly the permutation matrices. So the equivalence is
implied by using the same permutation whose convex combination is B to
receive x from extreme elements of Ay and vice-versa.

The implications (ii) =⇒ (iv) =⇒ (v) are obvious.

For the equivalence of (v) and (vi) we just combine the facts that |x | =

2x+ − x and
∑n
i=1 xi =

∑n
i=1 yi
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Finally for the implication (vi) =⇒ (i) set t = y↓k for some k ∈ [n]. Then

n∑
i=1

(yi − t)+ =

k∑
i=1

y↓i − kt,

but
n∑
i=1

(xi − t)+ =

n∑
i=1

(x↓i − t)
+ ≥

k∑
i=1

x↓i − kt,

which ends the proof. �

Definition 4.1.4. We will use the notation Rn,0 for the hyperplane

Rn,0 =

x ∈ Rn :
n∑
i=1

xi = 0

 .
Lemma 4.1.5. Let x, y ∈ Rn,0. Assume that ‖y‖∞ ≤ 1 and ‖y‖1 ≥ an for

some a ∈ (0,1]. Then

x ≺
(2
a
− 1

)
‖x‖∞y.

Proof. By homogeneity and property (ii) of majorization we may assume
that ‖x‖∞ ≤ 1. So we need to show that for any x ∈ Rn,0 with ‖x‖∞ ≤ 1 it is
true that x ≺ ( 2

a − 1)y. Consider the set

A( 2
a −1)y =

{
z ∈ Rn,0 : z ≺

(2
a
− 1

)
y
}
.

We will also use the notation Bn,0∞ for the n-dimensional unit ball with
respect to the infinity norm restricted on the hyperplane Rn,0.

By the properties of majorization we get that the set A( 2
a −1)y ∩ B

n,0
∞ is

convex. So, if we show that

ext(Bn,0∞ ) ⊆ A( 2
a −1)y ∩ B

n,0
∞ ,

then by the Krein-Milman theorem we will have

Bn,0∞ = A( 2
a −1)y ∩ B

n,0
∞ ,

which will prove the lemma. Here for a convex set D ⊆ Rn we use the
notation ext(D) for the set of extreme points of D.

In order to do this, we need first to specify which are the extreme points
of Bn,0∞ .
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Lemma 4.1.6. If n ∈ 2N then

ext(Bn,0∞ ) =

{
x ∈ Bn,0∞ : |{i ∈ [n] : xi = 1}| = |{i ∈ [n] : xi = −1}| =

n

2

}
,

and if n ∈ 2N + 1 then

ext(Bn,0∞ ) =

{
x ∈ Bn,0∞ : |{i ∈ [n] : xi = 1}| = |{i ∈ [n] : xi = −1}| =

n − 1
2

}
.

Note: In the case where n is odd, if x ∈ ext(Bn,0∞ ) then the coordinates of x
which are not equal to 1 or −1 must be equal to zero since

∑
i∈[n] xi = 0.

Proof. We assume that n ∈ 2N. The case where n is odd is very similar and
is omitted.

(⊇) Let d ∈
{
x ∈ Bn,0∞ : |{i ∈ [n] : xi = 1}| = |{i ∈ [n] : xi = −1}| = n

2

}
. Suppose

that there exist y, z ∈ Bn,0∞ and λ ∈ (0,1) such that

d = λy + (1 − λ)z.

We will prove that y = z. If there exists i ∈ [n] such either |yi | < 1 or |zi | < 1
then

|λyi + (1 − λ)zi | ≤ λ|yi | + (1 − λ)|zi | < 1,

which is a contradiction.
So |yi | = |zi | = 1 for all i ∈ [n]. Suppose now that there exists i ∈ [n] such

that zi = −yi. Then 2λyi + zi ∈ {−1,1}. But then, λ ∈ {−1,0,1}, which is
a contradiction. Therefore, z = y and as a result d is an extreme point of
Bn,0∞ .

(⊆) Let d ∈ ext(Bn,0∞ ). Suppose that there exists j ∈ [n] such that 0 < |di | < 1.
Since

∑n
i=1 di = 0 there must exist another coordinate k ∈ [n], k , j such

that 0 < |dk | < 1 and dkdj < 0. Without loss of generality we may assume
that dj > 0 > dk. We may find an ϸ > 0 such that dj + ϸ < 1, dj − ϸ > 0,
dk − ϸ > −1, dk + ϸ < 0. Then, consider the vectors z and y with

∀i ∈ [n] \ {j, k} zi = di , zk = dk − ϸ, zj = dj + ϸ

and
∀i ∈ [n] \ {j, k} yi = di , yk = dk + ϸ, yj = dj − ϸ.
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Then,
d =

1
2
y +

1
2
z,

and by the way ϸ was chosen z, y ∈ Bn,0∞ which shows that d can not have
a non-zero coordinate different from 1 and −1.

Suppose that there exists j such that dj = 0. By what was done before
and since

∑n
i=1 di = 0 there must exist k ∈ [n], k , j such that dk = 0. But

then, for the vectors z and y with

∀i ∈ [n] \ {j, k} zi = di , zj = −zk = 1

and
∀i ∈ [n] \ {j, k} zi = di , zj = −zk = −1,

we have that z, y ∈ Bn,0∞ and, as before,

d =
1
2
z +

1
2
y.

So d cannot be an extreme point.
The conclusion is that an extreme point of Bn,0∞ must have all its coor-

dinates non-zero and with absolute value 1. But since the sum of all its
coordinates must be zero we see that the cardinality of the set of coordi-
nates equal to 1 must be equal to the cardinality of the set of coordinates
equal to −1. So, the proof is complete. �

Returning now to the proof of the main lemma we need to show that for
any x ∈ ext(Bn,0∞ ) we have

x ≺
(2
a
− 1

)
y.

We may also assume that ‖y‖1 = an, by the properties of majorization, and
that n ∈ 2N (the proof in the case where n is odd is very similar and is
omitted).

Let x ∈ ext(Bn,0∞ ). Consider the sets

C = {i ∈ [n] : yi ≥ 0}

and
D = {i ∈ [n] : yi < 0}.
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Both sets are non-empty, since
∑
i∈[n] |yi | > 0 so there exists at least one

non-zero coordinate and y ∈ Rn,0 and as a result there exists at least
another coordinate with different value than the previous one. Also it is
obvious that

C ∪ D = [n].

Since y ∈ Rn,0, it is true that ∑
i∈C

yi = −
∑
i∈D

yi ,

and as a result, since ‖y‖1 = an, we get∑
i∈C

yi +
∑
i∈D

−yi = an =⇒
∑
i∈C

yi =
an

2
= −

∑
i∈D

yi.

Finally, since ‖y‖∞ ≤ 1,

an

2
≤ |C| and |D| ≤ 1 −

an

2
.

Suppose without loss of generality that |D| ≤ |C|. Now consider the vector
y′ with

y′i =

∑
i∈C yi
|C|

for all i ∈ |C| and y′i =

∑
i∈D yi
|D|

for all i > |C|.

Obviously, y′ ∈ Rn,0. By the previous inequalities we have that

a

2 − a
≤ |y′i |.

Now consider the vector d with

di = y′i for all i ∈ [n/2] and di =

∑
i> n

2
y′i

n/2
for all i > n/2.

Finally we have constructed a vector with the first n/2 coordinates equal
and positive and the last n/2 coordinates equal and negative. So, we have
that a

2−ax ≺ |d1|x = d. Note that, by construction, the elements of both d

and y′ are in decreasing order. Now, let k ∈ [n].

If k ≤ n
2 then

k∑
i=1

di =

k∑
i=1

y′i .
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If k ≥ n
2 then obviously

n − k ≤ |C| =⇒
∑
i=k+1

y′i ≤
(n − k)
n/2

∑
i>n/2

y′i ,

which implies that
k∑
i=1

di ≤
k∑
i=1

y′i .

So, we have proven that d ≺ y′.
Let z be a vector of Rn with the same coordinates as y but arranged in

decreasing order.

Note: Let {am}m∈N be a sequence in decreasing order. Then, for any N ∈ N,

aN+1 ≤

∑N
i=1 ai
N

.

Using the same method inductively for the coordinates of the vector y we
have that for any k ∈ [|C| − 1]

|C|∑
i=k+1

yi
|C| − k

≤

k∑
i=1

yi
k

=⇒

k∑
i=1

y′i ≤
k∑
i=1

zi.

Obviously, we have that
∑|C|
i=1 y

′
i =

∑|C|
i=1 zi.

Likewise, for any |C| < k < n using again the note inductively we get

k∑
i=|C|+1

y′i ≤
k∑
i=1

zi =⇒

k∑
i=|C|+1

y′i ≤
k∑
i=1

zi.

Then we must have that y′ ≺ z, which is equivalent to y′ ≺ y. So we have
proven that

a

2 − a
x ≺ d ≺ y′ ≺ y.

Using the properties of majorization we get a
2−ax ≺ y, and this completes

the proof. �

Lemma 4.1.7. Let x, y ∈ Rn,0 and y , 0. Then

x ≺
2n‖x‖∞
‖y‖1

y.
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Proof. By homogeneity, we may assume that ‖y‖∞ = 1 and the result fol-
lows from the previous lemma. �

Proposition 4.1.8. Let x, y ∈ Rn,0. Assume that ‖x − y‖∞ < ϸ and ‖y‖1 ≥ an

for some a > 0. Then

x ≺
(
1 +

2ϸ
a

)
y.

Proof. We use the following elementary property of majorization: If x1 ≺ λ1y

and x2 ≺ λ2y for some positive λ1, λ2 then

x1 + x2 ≺ (λ1 + λ2)y.

Setting x1 = y ,x2 = x − y, λ1 = 1 and using the previous lemma we see
that we can also set λ2 = 2ϸ

a and the proposition follows. �

4.1.2 Spectra and norms of unitarily invariant random

matrices

At this point we are going to work on the spectra of norms of unitarily
invariant matrices in order to approximate a specific gauge or norm.

It is convenient to work in the hyperplane Msa,0
n of self-adjoint complex

n ×n matrices with trace zero. We say that a Msa,0
n -valued random variable

A is unitarily invariant if, for any U ∈ U (n), the random matrices A and
UAU ∗ have the same distribution. We will also use the notation µSC for the
semicircular distribution, µsp(A) for the empirical spectral distribution of a
self-adjoint matrix A, and d∞ for the ∞-Wasserstein distance.

Proposition 4.1.9. LetA andB be twoMsa,0
n -valued random variables which

are unitarily invariant and satisfy the conditions

P(d∞(µsp(A), µSC) ≤ ϸ) ≥ 1 − p

and

E(d∞(µsp(A), µSC(A)) ≤ ϸ

for some ϸ, p ∈ (0,1) and similarity for B. Then, for any convex and compact

set K ⊆ Msa,0
n containing the origin in its interior, we have that

1 − p
1 + Cϸ

E ‖A‖K ≤ E ‖B‖K ≤
1 + Cϸ

1 − p
E ‖A‖K ,
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where C > 0 is an absolute constant.

Proof. Consider a (product) probability space (Ω, A, P) such that both A

and B are defined there and are independent.
Let φ : Rn,0 → R be the function defined by

φ(x) = EU ‖UDiag(x)U ∗‖K ,

where U ∈ U (n) denotes a Haar-distributed random unitary matrix (inde-
pendent of everything else) and Diag(x) is the diagonal matrix whose ii-th
entry is xi. By unitary invariance we have that

E ‖A‖K = Eφ(spec(A))

and similarly for B. Consider the event

E = {d∞(µSP(B), µSC) ≤ ϸ}.

In order to continue we need the following lemma.

Lemma 4.1.10. Let f : R → R+ be an L-Lipschitz function and set g =

(f − Lϸ)+. If d∞(X,Y ) ≤ ϸ then

Ef (Y ) ≥ Eg(X ).

Proof. If ‖X − Y ‖L∞ ≤ then, obviously, f (X ) ≥ g(Y ). So by the definition of
the ∞−Wasserstein distance the lemma follows. �

Assume for the moment that the event E holds. Then by Lemma 4.1.10
we have

‖B‖1 = n

∫
|x |dµSP(B) ≥ n

∫ 2

−2
(|x | − ϸ)+dµsp(x)

≥ n

∫ 2

−2
(|x | − 1)+dµSC(x) = na.

Applying Lemma 4.1.5 for C = 2
a we get

spec(A) ≺ (1 + Cd∞(µSP(A), µSP(B)))spec(B).
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But since φ is convex and permutation invariant, by the characterization
of majorization we get

φ(spec(A)) ≤ (1 + Cd∞(µSP(A), µSP(B)))φ(spec(B)).

So by taking expectation over A and then over B (recall that we have as-
sumed that they are defined on a product probability space), and taking
into consideration the fact that d∞(µSP(A), µSP(B)) ≤ ϸ + d∞(µSP(B), µSC), we
get

Eφ(spec(A)) ≤ (1 + 2Cϸ)Eφ(spec(B)).

So, in the general case we get by independence

Eφ(spec(B)) ≥ Eφ(spec(B))1E ≥ (1 + 2Cϸ)−1P(E)Eφ(spec(A)).

Since P(E) ≥ 1 − p, the proof of the inequality is complete. The other
inequality follows by symmetry. �

A very similar result is the following.

Proposition 4.1.11. Let A, B be two Msa,0
n -valued random matrices which

are unitarily invariant. Assume that

P(‖A‖1 ≥ c1n) ≥ 1 − p

and

E‖A‖∞ ≤ C2.

Let K ⊆ Msa,0
n be a convex body containing the origin in its interior. Then

C−1E‖A‖K ≤ E‖B‖K ≤ CE‖A‖K ,

where C = (1 − p)−12C2/c1.

Proof. The proof is similar with the proof of the previous lemma. First
define A and B in the same probability space. Then, suppose that the
event E = {‖B‖1 ≥ c1n} holds. Finally, use Proposition 4.1.8 and continue
with the same method as in the previous proposition. �
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4.1.3 Gaussian approximation to induced states

We are going to investigate typical properties of random induced states,
in the large dimension regime. Their spectral properties were discussed
in previous sections, and are described either by the Marcenko-Pastur
distribution (when s is proportional to n) or by the semicircular distribution
(when s � n).

However, we are also interested in properties that cannot be inferred
from the spectrum (the main example being separability vs. entanglement
on a bipartite system). In this context, it is useful to compare induced
states with their Gaussian approximation. Indeed, the Gaussian model
allows us to connect with tools from convex geometry, such as the mean
width.

It is convenient to work in the hyperplane Msa,0
n and to consider the

shifted operators ρ−I/n, which we compare with a GUE0(n) random matrix.
The following proposition compares the expected value of any norm (or
gauge) computed for both models. First we give a definition.

Definition 4.1.12. Let H be a Hilbert space and let A ⊆ H be a convex
body. We say that r > 0 is the inradius of A if it is the largest radius of a
Euclidean ball contained in A.

Likewise, we say that r is the outer radius of A if it is the smallest radius
of a Euclidean ball that contains A.

Proposition 4.1.13. Let n, s ∈ N and write ρn,s for a random induced state

on Cn with distribution µn,s and Gn for an n × n GUE0 random matrix. Let

Cn,s be the smallest constant such that the following holds: For any convex

body K ∈ Msa,0
n containing 0 in its interior,

C−1
n,sE

∥∥∥∥∥∥ Gn
n
√
s

∥∥∥∥∥∥
K

≤ E

∥∥∥∥∥ρ − In
∥∥∥∥∥
K
≤ Cn,sE

∥∥∥∥∥∥ Gn
n
√
s

∥∥∥∥∥∥
K

.

Then, if (nk) and (sk) are two sequences such that limk→∞ nk = limk→∞ sk/nk =

∞, we have that limCnk ,sk = 1.

Proof. Firstly we will prove the following lemma.
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Lemma 4.1.14. Let X and Y be two Rn-valued random vectors with the

property that for any t ∈ Sn−1

0 < E |〈X, t〉|,E |〈Y, t〉| < ∞.

There exists a constant C depending on (n, X, Y ) such that, for any convex

body K containing 0 in its interior,

E‖X‖K ≤ CE‖Y ‖K .

Proof. Let Z be the random variable defined by

P(Z = ei) = P(Z = −ei) =
1

2n
,

where {ei}i∈[n] is the standard basis in Rn. Assume also that Z is indepen-
dent from X and Y .

Then, by the assumptions we made for X and by independence we get
that

E‖X‖K ≤
n∑
i=1

E|Xi | ‖eisign (Xi)‖K = 2n
n∑
i=1

E|Xi | ‖eisignXi‖K1Z=eisignXi

= 2n
n∑
i=1

E|Xi | ‖Z‖K1Z=eisignXi ≤ 2n
n∑
i=1

E|Xi | ‖Z‖K = 2nE|X |1E‖Z‖K .

So, we may set C1 = 2nE|X |1.
For the second part let A = {E(Y1A), where A is measurable}. Note that

for any y ∈ conv(A) we have ‖y‖K ≤ E‖Y ‖K . Note also that the interior of
conv(A) contains 0 in its interior, otherwise there would exist t0 ∈ Sn−1

such that

E|〈t0, Y 〉| = 0,

which is a contradiction.
So, there exists ϸ > 0 such that

±ϸei ∈ conv(A) for all i ∈ [n].

Then ϸE‖Z‖K ∈ conv(A). So, for C = 1
C1ϸ

we get the desired inequality. �
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We can now continue with the proof of the proposition. Assume that the
sequences s := sk and n := nk have the property that both nk and sk/nk

tend to infinity. Then, let Ak =
√
ns

(
ρn,s − I/n

)
and Bk = Gn/

√
n.

We will also use the notation

Xk = d∞(µsp(Ak), µSC)

and
Yk = d∞(µsp(Bk), µSC).

Firstly note that
Xk ≤ ‖Ak‖∞ + 2

and
Yk ≤ ‖Bk‖∞ + 2.

We have proven in Theorem 2.1.38, Proposition 2.1.33, Lemma 2.3.19 and
Proposition 2.3.18 that the means of ‖Ak‖∞ and ‖Bk‖∞ are bounded by
absolute constants and that both Ak and Bk tend almost surely to 2. We
will prove that

limEXk = limEYk = 0.

We write
E‖Bk‖∞ ≤ 2 =⇒ lim inf E‖Bk‖∞ ≤ 2,

and since ‖Bk‖∞ → 2 in probability we have lim inf ‖BK‖∞ = 2. By Fatou’s
lemma,

lim inf E‖Bk‖∞ = 2.

Now let fk = 2 + ‖Bk‖∞ − Yk. Applying again Fatou’s lemma we get

E lim inf fk ≤ lim inf Efk =⇒ E lim supYk ≥ lim supEYk.

Finally, since Yk converges in probability to zero we get that lim supYk = 0.
We argue in the same way for Xk.

Note that equivalently if we had only assumed convergence in probability
then we could have used Skorohod’s theorem.

So we can apply Proposition 4.1.9 for two sequences {ϸk} and {pk} with
ϸk → 0 and pk → 0 to conclude the proof. �
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Remark 4.1.15. The previous result can be generalised by removing the
assumption of n, s/n → ∞ and then one may show that for any a > 0 we
have sup{Cn,s : s ≥ an} < ∞. For a proof see [7, Chapter 10].

Remark 4.1.16. We emphasize that the quantity E‖Gn‖K appearing in Propo-
sition 4.1.13 is exactly the Gaussian mean width of the polar set K◦. In-
deed, consider Gn in the space Msa,0

n (equipped with the Hilbert-Schmidt
scalar product, as always) which is exactly a GUE0(n) random matrix.
We could have equivalently formulated Proposition 4.1.13 using the usual
mean width: if C′n,s denotes the smallest constant such that the inequalities

w(K◦)
C
′−1
n,s
√
s
≤ E

∥∥∥∥∥ρn,s − In
∥∥∥∥∥
K
≤
C′n,s
√
s
w(K◦),

then the conclusion of Proposition 4.1.13 holds for C′n,s as well.

4.1.4 Concentration for gauges of induced states

We present a concentration result which is valid for any gauge evaluated
on random induced states. We start with some concentration inequalities.

Lemma 4.1.17 (Lévy’s lemma). Let n > 2. If f : Sn−1 → R is an L−Lipschitz

function and Mf is the median of f then, for every t > 0,

sn−1(|f −Mf | > t) ≤ exp(−nt2/2L2).

Proof. Let A = {f < Mf } and set ϸ = t
L . Since f is L-Lipschitz it is easy to

prove that
Aϸ ⊆ {f ≤ Mf + t}.

Likewise, one can show that if B = {f > Mf } then

Bϸ ⊆ {f ≥ Mf + t}.

So by Corollary 1.4.6 we get the desired inequality. �

Definition 4.1.18. Let f : Sn−1 → R. A value M will be called central value
of f if either it is the mean value of f or

sn−1(f ≥ M) and sn−1(f ≤ M) ≥
1
4
.
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An equivalent way to define the central values is via the first and the third
quartile of a random variable Y defined on an probability space (Ω, A, P).

The first quartile of Y is defined by

µ = inf
{
t ∈ R : P(Y ≥ t) ≥

1
4
,P(Y ≤ t) ≥

1
4

}
,

and the third quartile of Y is defined by

M = sup
{
t ∈ R : P(Y ≥ t) ≥

1
4
,P(Y ≤ t) ≥

1
4

}
.

So a central value of a random variable Y on a probability space (Ω, A, P)

(in particular on the sphere) is defined to be either the mean value of Y or
some t ∈ R such that µ ≤ t ≤ M.

The goal is to generalise Lévy’s lemma for any central value of a function
f defined on the probability metric space (Sn−1, sn−1, g, B(Sn−1)), where g is
the geodesic metric.

Proposition 4.1.19. If f is an L-Lipschitz function with median Mf and M

is any central value of f then

|M −Mf | ≤
√

2 log(2)n−1/2

and

P(f ≥ M + t) ≤ exp(−nt2/4L2).

In order to prove this generalisation of Lévy’s lemma we need the follow-
ing lemma.

Lemma 4.1.20. Let Y be a real random variable and let M be any central

value of Y . Let a ∈ R and let A ≥ 1/2 and λ > 0 be constants such that for

any t > 0 it is true that

max{P(Y > a + t),P(Y < a − t)} ≤ A exp(−λt2).

Then, |M − a| ≤
√
λ−1 log(4A) and consequently. for any t ≥

√
λ log(4A),

max{P(Y > M + t),P(Y < M − t)} ≤ 4A2 exp(−λ−1t2/2).
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Proof. First note that if |M − a| ≤
√
λ−1 log(4A) then for t ≥

√
log(4A)λ−1 by

hypothesis we have that

P(Y ≥ M + t) ≤ P(Y ≥ a −
√
λ−1 log(4A) + t) ≤ A exp(−λ(t −

√
λ−1 log(4A))2).

Since for any c, d ∈ R it is true that 4cd ≤ c2 + 4d2 we then get that

P(Y ≥ M + t) ≤ 4A2 exp(−λt2/2).

Likewise, one can show that the quantity P(Y ≤ M − t) is bounded by
4A2 exp(−λt2/2). So we get the desired inequality.

Thus, in order to prove the lemma we just need to prove that

|M − a| ≤
√
λ−1 log(4A). (4.1.1)

Firstly we will prove the inequality (4.1.1) for the mean of Y . For simplicity
we will assume that λ = 1 and by linearity the result will be true in general.

Let Y0 be a random variable such that P(Y0 ≥ t) ≤ A exp(−t2). Then by
the properties of the mean we get

EY0 ≤ EY
+
0 =

∫ ∞

0
P(Y +

0 ≥ t)dt ≤ A
∫ ∞

0
exp(−t2)dt

= A
√
π/2

∫ ∞

0
fz(t)dt,

where fZ is the density function of a random variable Z ∼ N(0,1/2), taking
also into account the inequality

∫ ∞
u

exp(−t2)dt ≤ (
√
u2 + 1 − u) exp(−u2)

which holds true for any u ≥ 0. So, for u =
√

log+(A) we get

EY0 ≤

∫ √log+ A

0
exp(−t2)dt +

∫
√

log+(A)
≤

√
1 + log+(A).

This shows that

EY0 ≤ min{
√

1 + log+(A), A
√
π/2} ≤ log(4A).

Then, setting Y0 = Y − a and Y0 = a − Y we get the inequality

|EY − a| ≤
√

log(4A).
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Likewise it easy to prove that for a random variable Y0 such that P(Y0 ≥

t) ≤ A exp(−t2), if M3 is its third quartile then M3 ≤
√

log(A).
So setting Y0 = Y − a , Y0 = a − Y (and likewise for the first quartile) we

get that for any value M between the first and the third quartile of Y it is
true that

|M − a| ≤
√

log(A),

which ends the proof. �

Remark 4.1.21. The proof of the previous lemma shows that if a is the
median of the random variable then no restrictions on t is needed.

Proof of Proposition 4.1.19. Combining Lemma 4.1.20 with Lévy’s lemma
we get the desired inequality. �

Corollary 4.1.22 (Lévy’s lemma – local version). Let f : Sn−1 → R and

Ω ⊆ Sn−1 such that P(Ω) ≥ 3
4 and the restriction of f on Ω is L-Lipschitz.

Also, let Mf be the median of f . Then, for every ϸ > 0,

P(|f −Mf | ≥ ϸ) ≤ P(Sn−1 \Ω) + 2 exp(−nϸ2/4L2).

The proof of this fact is very similar to the one of Lévy’s lemma and is
based on it.

Proof. Let f ′ = infy∈Ω f (y) + Ld(x, y). Then, M is a central value of f ′. We
split the set into its intersection with the sets {f , f ′} and {f = f ′} and
apply Lévy’s lemma in the version of Proposition 4.1.19 to get the desired
inequality. �

Lemma 4.1.23. Let Mn,s(C) denote the set of n × s matrices. Consider the

sphere SHS ⊆ Mn,s equipped with the Hilbert-Schmidt norm. Consider also

the function

g : M ∈ SHS 7→ M∗M.

Let Ωt = {M ∈ SHS : ‖M‖op ≤ t}. Then the restriction of g onto Ωt is 2t-
Lipschitz.
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Proof. Let M,N ∈ Ωt. Then

‖MM∗ − NN∗‖HS ≤ ‖M(M∗ − N∗) − (M − N)N)‖HS ≤ (‖M‖op + ‖N‖op)‖M − N‖HS

≤ 2t‖M − N‖op.

�

Now we can present the main result of this paragraph.

Proposition 4.1.24. Let s ≥ n and let K ⊆ D(Cn) be a convex body with

inradius r. Let ρ be a random induced state with distribution µn,s. Let M be

the median of
∥∥∥ρ − I

n

∥∥∥
K0

, where K0 = K − I
n . Then, for every ϸ > 0,

P

(∣∣∣∣∣∣
∥∥∥∥∥ρ − In

∥∥∥∥∥
K0

−M

∣∣∣∣∣∣ ≥ ϸ
)
≤ 2 exp(−s) + 2 exp(−n2sr2ϸ2/72).

Proof. We have already proved in Lemma 3.2.9 that a random induced
state has the same distribution as Wishart(n,s)

tr(Wishart(n,s)) or equivalently as a matrix
DD∗ where D is uniforlmy distributed on the Hilbert-Schmidt sphere of
Mn,s.

So, consider the function f : SHS → R defined by

f (A) =

∥∥∥∥∥AA∗ − In
∥∥∥∥∥
K0

.

Also, for every t > 0, let Ωt = {A ∈ SHS : ‖A‖op ≤ t}.
The function f is a composition with several properties:

· The map A 7→ ‖A‖K0 is by definition 1/r-Lipschitz with respect to the
Hilbert-Schmidt norm. This fact is true since ‖A‖−1

HSr(A− I/n) ∈ K0 for
all A ∈ SHS.

· The function A 7→ A − I/n is an isometry for the Hilbert-Schmidt.

· The map A 7→ AA∗ is 2t-Lipschitz with respect to the Hilbert-Schmidt
norm in Ωt (see Lemma 4.1.23).

From the facts above we obtain that the function f is 2t/r Lipschitz with
respect to the Hilbert-Schmidt norm on Ωt.
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So we can apply the local version of Lévy’s (Lemma 4.1.22). For every
ϸ > 0 we have that

P(|f −Mf | ≥ ϸ) ≤ P(SHS \Ωt) + 2 exp(−nsr2ϸ2/8t2).

From the fact that D is uniformly distributed on the sphere, the above
probabilities can be equivalently expressed as

P(|f −Mf | ≥ ϸ) = P

(∣∣∣∣∣∣
∥∥∥∥∥AA∗ − In

∥∥∥∥∥
K0

−M

∣∣∣∣∣∣ ≥ ϸ
)

and
P(SHS \Ωt) = P(‖D‖op ≥ t).

We can now complete the proof of the proposition, using Proposition 2.3.18
and Corollary 3.2.12 (the norm of the matrix can be treated as constant)
which imply that

P

(
‖D‖op ≥

1
√
n

+
1 + ϸ
√
s

)
≤ exp(−nϸ2).

Choosing ϸ =
√
t/n we conclude the proof. �

Remark 4.1.25. The previous argument for t = 1 shows that the global
Lipschitz constant is bounded by 1/r. Moreover by (4.1.1) we get that any
two central values differ by at most C/r

√
ns.

4.2 Separability of random states

Assume now that we work in a bipartite Hilbert space, and for simplicity
consider the case of Cd ⊗ Cd where both parties play a symmetric role.
Throughout this section we write Sep for Sep(Cd⊗Cd) and consider random
induced states on Cd ⊗ Cd with distribution µd2,s.

4.2.1 Almost sure Entanglement for low-dimensional en-

vironment

In order to prove the main proposition of this subsection we need the
following very important theorem.
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Theorem 4.2.1. Let H = Cd1 ⊗Cd2 ⊗ · · ·Cdk . Also let n0 =
∏k

i=1 di −
∑k
i=1 di +

k − 1.

(i) If m > n0 then any m-dimensional subspace of H contains a (non-zero)

product vector.

(ii) Ifm ≤ n0 then anym-dimensional subspace ofH contains no (non-zero)

product vector.

Proof. We will prove the second part of the theorem (the first assertion can
be proved via the projective dimension theorem from algebraic geometry;
for proof see [20]).

For simplicity we will prove the theorem when H = Cd × Cd (so m ≤

n0 = (d − 1)2)). The general case is similar. The theorem will be proven
by probabilistic dimensional counting. First we give some definitions and
prove some necessary lemmas.

Definition 4.2.2. We denote by P(Cd) the complex projective space of Cd,
i.e., the quotient of SCd under the identification of the elements φ,ψ ∈ SCd

if and only if

φ = exp(iθ)y , θ ∈ R.

We also equip P(Cd) with the following metric (called Fubini-Study metric,
or Bures metric):

d([y], [x]) = arccos |〈y, x〉|.

Moreover, if H = Cd1 ⊗ Cd2 we consider the Sagre variety of H

Seg = {φ ⊗ ψ , φ ∈ SCd1 , ψ ∈ SCd2 }.

One can show that Seg ⊆ P(Cd1 ⊗ Cd2.

Definition 4.2.3. The space Gr(k, V ) is the family of all k-dimensional sub-
spaces of an n-dimensional vector space V . It is called the k-Grassmann

manifold of V . Since the properties depend only on the dimension of V we
will work on the spaces Gr(k,Rn) and Gr(k,Cn).
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Remark 4.2.4. Let O(n) denote the space of n × n orthogonal matrices. Fix
0 < k < n and consider the canonical action of O(n) to Gr(k,Rn). We
note that the stabilizer sub-group of O(n) that fixes Rk consists of block
matrices of the form O1 0

0 O2

 ,
where O1 ∈ O(k) and O2 ∈ O(n − k), and hence it can be identified with
O(k)×O(n−k). Since the action of O(n) on Gr(k,Rn) is transitive, it follows
that Gr(k,Rn) is a homogeneous space for O(n) and can be identified with
the quotient space O(n)/O(k) × O(n − k).

Moreover similar results can be proven for Gr(k,Cn) and the n×n unitary
matrices, denoted by U (n).

So each Grassmann manifold carries a natural probability measure
which can be constructed as the push-forward of the Haar measure on
O(n) via the quotient map O(n) → O(n)/O(k) × O(n − k), and likewise
U (n) 7→ U (n)/U (k) × U (n − k).

Definition 4.2.5. Let K be a compact subset of a metric space (M, d). We
will say that a finite subset N ⊆ K is an ϸ−net of K if and only if for all x ∈ K
we have that d(x, N) < ϸ. We will write N(ϸ, K) for the minimal cardinality
of an ϸ−net of K.

Proposition 4.2.6. Let M ∈ Gr(k,Rn) or M ∈ Gr(k,Cn) equipped with a

metric generated by the Shatten p-norm for some p ∈ [1,∞]. Then, for any

ϸ ∈ (0, diam(M)],(
c diam(M)

ϸ

)dimM

≤ N(M, ϸ) ≤
(
C diam(M)

ϸ

)dimM

for some constants c, C > 0 independent of n, k, p and ϸ.

Proof. For a proof see [7, Theorem 5.11]. �

Now we can proceed with the proof of the theorem. We are going to work
on P(H) with the Bures metric. The ball with center ψ and radius ϸ will be
denoted by B(ψ, ϸ).
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Let F be a random m-dimensional sub-vector of H with respect to the
Haar measure on Gr(m,H). More concretely, from what was mentioned
before, we may assume that M = U (F0) where U is Haar-distributed on
U (d2) and F0 is some fixed m−dimensional subspace of H.

We are going to prove that the event D = {Seg∩ F = ∅} has probability 1.
Given ϸ > 0, by Proposition 4.2.6 let Mϸ be an ϸ−net inside the projective
space P(F0) with card(Mϸ) ≤ (C′/ϸ)2m−2. Next let Nϸ be an ϸ-net inside
P(H) such that, again by Proposition 4.2.6, card(Nϸ) ≤ (C′/2ϸ)2d−2. We can
check that N2

ϸ := Nϸ ⊗ Nϸ is an 2ϸ−net inside Seg. Therefore,

P(Dc) ≤ P(∪φ∈N2
ϸ
B(φ,2ϸ) ∩ U (∪ψ∈MϸB(ψ, ϸ)) , ∅)

≤
∑

φ∈N2
ϸ ,ψ∈Mϸ

P(B(φ,2ϸ) ∩ U (B(ψ, ϸ) , ∅)

≤
∑

φ∈N2
ϸ ,ψ∈Mϸ

P(d(φ, Uψ) < 3ϸ).

But the quantity P(d(φ, Uψ) < 3ϸ) does not depend on φ or ψ and is
bounded by (C′′ϸ)d

2−2 (by the definition of P(H); for a detailed proof see
[7, Ex. 5.11]). It follows that

P(Dc) ≤ (C′′ϸ)2d2−2card(N2
ϸ )card(Mϸ) ≤ Cϸ2d2−2−(2m−2)−2(2d−2).

So, provided thatm ≤ (d−1)2, the last quantity tends to zero as ϸ → 0. This
shows that the event Dc has probability 0 and as a result D has probability
1. �

The next proposition is just a consequence of the previous theorem.

Proposition 4.2.7. Let d, s be integers such that s ≤ (d − 1)2. Then

µd2,s(Sep) = 0.

Proof. Let S ⊆ Cd ⊗ Cd be the range of ρ (meaning the image of the
corresponding matrix transformation). Obviously, S is almost surely s-
dimensional. In order for ρ to be separable, S must contain product vec-
tors. But, by the previous theorem, this cannot be true. So,

P(ρ is separable) = µd2,s(Sep) = 0.

�



160

4.2.2 The threshold theorem

In this subsection we can achieve the main goal of this chapter:

Consider a system of N identical particles (e.g., N qubits) in a
random pure state. For some k ≤ N/2, let A and B be two sub-
systems, each consisting of k particles. There exists a threshold
function k0(N) which satisfies k0(N) ∼ N as N → ∞ and such
that the following holds. If k ≤ k0(N), then with high probability
the two subsystems A and B share entanglement. Conversely,
if k > k0(N), then with high probability the two subsystems A
and B do not share entanglement.

In order to continue we need the following very important theorem.

Theorem 4.2.8. Let s0(d) = w(Sep(Cd ⊗ Cd)◦)2 for some d ∈ N.Then

cd3 ≤ s0(d) ≤ Cd3 log2 d

where C,c are absolute constants.

Proof. We will give a sketch of the proof. By Lemma 1.4.23 an equivalent
way to express the desired inequality is the following:

cd7/2 ≤ E‖G‖S0 ≤ Cd
7/2 logd.

Here we consider the equivalence of Corollary 1.5.6, so we work on Sep(Cn),
where n = d2, S0 = Sep(Cn) − In and G is a GUE0(n) matrix.

Now set
Ssym = S0 ∩ (−S0).

Obviously, Ssym is a symmetric convex body in Msa,0
n containing 0 in its

interior. Firstly note that

‖G‖S0 ≤ ‖G‖Ssym = max{‖G‖S0 , ‖ − G‖S0} ≤ ‖G‖S0 + ‖ − G‖S0.

Since −G ∼ G, we have

E‖G‖S0 ≤ E‖G‖Ssym ≤ 2E‖G‖S0 ,
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which implies that we can work with ‖G‖Ssym instead.
One may show that w(S0) � vrad(S0) � n−3/4, meaning that after multi-

plication with appropriate absolute constants these quantities are all com-
parable [21].

Now notice that the following chain of inequalities is true

w(Ssym) ≤ w(S0) � vrad(S0) ≤ 2−nvrad(Ssym) ≤ w(Ssym).

Here the first inequality comes from the fact that Ssym ⊆ S0, the second
one comes from Lemma 1.4.10 and the last one by Uryshon’s inequality
(Lemma 1.4.22).

So we conclude that
w(Ssym) � n−3/4.

Using again Lemma 1.4.23 we get that

E‖G‖S◦sym � n
1/4.

Finally, we will show that, for some absolute constants c, C,

cn2 ≤ E‖G‖SsymE‖G‖S◦sym ≤ Cn
2 logn, (4.2.1)

which will end the proof.
Let E ⊆ Msa,0

n be the subspace spanned by the operators σ1 ⊗ σ2, where
σi i = 1,2 are self-adjoint operators on Cd. Let F be the orthogonal com-
plement of E, i.e.

F = {σ ⊗ I, tr(σ) = 0} ⊕ {I ⊗ σ , tr(σ) = 0}.

Note that dim(F ) = 2n − 2.
By Lemma 1.4.28 we have that there exists a linear map u : Msa,0

n → Msa,0
n

such that u(Ssym) is in the `−position and has the form

u = PE + 0 ⊕ v,

where v : F → F is a positive semi-definite operator.
By Lemma 1.4.28 and by the ideal property of the `-norm we get that

`Ssym(PE) = `Ssym(uPE) ≤ `Ssym(u)
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and likewise for `S◦sym.
Similarly, since u−1 = PE + 0 ⊕ v−1 we get that

`Ssym(PE)`S◦sym(PE) ≤ `Ssym(u)`S◦sym(u−1).

Moreover, by Theorem 1.4.27 and by the ideal property of the `−norm we
get

`Ssym(PE)`S◦sym(PE) ≤ Cn2 logn,

where C is an absolute constant.
Now note that for every A ∈ S0 we have that

A ≥ −
1
n
I,

which implies that, for every A ∈ Ssym,

‖A‖∞ ≤ 1/n,

and hence the outer radius of Ssym is bounded by 1/
√
n.

Moreover, the inradius of Ssym is bounded by the inradius of S0 which
(by [21]) is known to be equal to (n(n − 1))−1/2. So, by the properties of the
`−norm and by Lemma 1.4.23 we get

`Ssym(PF ) = wG((Ssym ∩ F )◦) ≤ n
√

2n − 2 ≤ C′n,

and likewise

`S◦sym(PF ) ≤ C′′,

where C′ and C′′ are both absolute constants.
Finally, by the triangle inequality,

wG(Ssym) = `Ssym(I) ≤ `Ssym(PE ) + `Ssym(PF ),

and similarly for wG(S◦sym).
So, we get (4.2.1) which ends the proof. �

We are now ready to present a threshold theorem.
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Theorem 4.2.9. Consider the function s0(d) = w(Sep(Cd ⊗ Cd)◦)2, which

satisfies

cd3 ≤ s0(d) ≤ Cd3 logd3

for some absolute constants C, c as proved in the previous theorem. Then,

s0(d) is the threshold between separability and entanglement in the follow-

ing sense.

If ρ is a random state on Cd ⊗ Cd induced by the environment Cs then, for

any ϸ > 0,

(i) If s ≤ (1 − ϸ)s0(d) then we have

P(ρ is entangled ) ≥ 1 − 2 exp(−c(ϸ)d3). (4.2.2)

(ii) If s ≥ (1 + ϸ) then we have

P(ρ is separable) ≥ 1 − 2 exp(−c(ϸ)s), (4.2.3)

where c(ϸ) is a constant depending only on ϸ.

Proof. (ii) Let ρd2,s be a random induced state with distribution µd2,s. Denote

· Sep0 = Sep − I
d2 ,

· f (ρ) = ||ρ − I
d2 ||Sep0

,

· Es,d = Ef (ρd2,s).

Now fix ϸ > 0 and let s, d be such that s ≥ (1 + ϸ)s0(d). Note that by the
assumption on s we have (if we consider a sequence of s, d) d2, s/d2 → ∞.

So, if d is appropriately large enough, we can apply Proposition 4.1.13 (i)
(in the version given in Remark 4.1.16) to get

Ed,s ≤ C
′

d2,s

w(Sep◦0)
√
s

≤
C′
d2,s

√
1 + ϸ

,

where C′n,s is very close to 1.



164

Now let Md,s be the median of f (ρd,s). We have already mentioned that
the inradius of Sep is O(d2). So, from Proposition 4.1.24 we get

P(f (ρd,s) ≥ ϸ +Md,s) ≤ 2 exp(−s) + 2 exp(−csϸ2).

Moreover, since Ed,s is a central value (see Remark 4.1.25) we get that there
exists h > 0 depending only on ϸ such that Md,s + h ≤ 1. Now the proof of
(4.2.3) ends if one notices that, for any state ρ,

ρ is separable ⇐⇒ ρ ∈ Sep ⇐⇒ ρ −
I

d2 ∈ Sep0 ⇐⇒ f (ρ) ≤ 1.

Note that for small values of d we can adjust using an appropriate constant.

(i) The proof of (4.2.2) is similar with the proof of (ii) since Proposi-
tion 4.1.24 gives a similar bound for P(f (ρd,s) < Md,s − h). �
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