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Abstract

In this thesis we present results and techniques from random matrix the-
ory, the theory which studies matrices whose entries are random variables,
and their connection to quantum information theory.

More precisely, first we define the concept of the empirical spectral distri-
bution of a matrix, which is the uniform discrete measure which is induced
by the eigenvalues of the matrix. Next we study the limiting behaviour, in
the sense of weak convergence of random variables, of the empirical spec-
tral distribution of random matrices as their size grows. The cases we
study, under certain conditions such as i.i.d. entries, finite moments and

more, are the following:
1. The case of square symmetric random matrices.

2. The case of the product of a random matrix (not necessary square)
with its conjugate transpose matrix, when the dimensions of the ma-

trix are proportional.

3. The case of the product of a random matrix (not necessary square)
with its conjugate transpose matrix, when one dimension grows faster
than the other.

In each of these cases we show that the limit is a probability measure
which is absolutely continuous to the Lebesgue measure and has compact
support. Moreover, in each of these cases, we prove that the extreme eigen-
values of the matrices converge to the extreme points of the support of the
corresponding limit of the empirical spectral distribution of the matrices,

when the entries follow the standard Gaussian distribution.



Next we present tools from random matrix theory that are useful in
quantum information theory. We define several concepts such as the
oco—Wasserstein distance and the random (quantum) induced states, and
prove some of their properties. It is proven that the concept of random
quantum state is strongly related with matrices with standard Gaussian
entries. Taking advantage of this connection we apply the results of the
previous chapter to the study of random quantum states.

In the last chapter, using the results that we obtain for the random quan-
tum states, we prove the existence of a threshold function which depends
only on the dimension of the space and separates with high probability
the states which are entangled from those that are not entangled, having
as a criterion the dimension of the space from which the states have been

induced.



IlepiAnyn

Zinv napovoa SIMAe@PATIKY epyacia mapouotadovial arnoteAéopata Kat TeXvi-
Keg G dewpiag tuyxainv mvakev, dndadn g Sewpiag mou peAetd mivarkeg
pe otoixela tuxaieg PETaBANTEG, KAl T OXEON AUI®V HE ATOTEAEoPATA NG
kBavtikng Yewpiag mAnpodopiag.

[Tio ouykekppéva, apXika opidetal n €vvola g EUMEPIKNG PACHATIKNAG
KATAVOMIG €VOG TTivaKd, IOV £ival T0 Opo10popdo H1aKp1td PETPO TTOU enAyeE-
Tat aro Tig 1O10TIHEG TOU. LTI OUVEXELd PEAETATAL TO OP1O, HE TV £vvold TG
aoBevoug oUYKAIONG TUXAi®V PeETaBANTOV, TNG EUMEIPIKAG PACUATIKAG KATa-
vourng tuxaiev mvakov kabog n didotaor) toug peyadovel. Ot TIEPUTIOOELS
mou £§e1ddoulie, mMAVIA UIO KATIO1EG MPOUTIOOEoELG, T.Y. ave§aptnoia Kat 1-
oovoplia TV OTOIXEl®V TOU TTivaKd, IEMEPACHEVEG POTEG KAl AAAd, sivatl ot

aKoAoubeg.
1. H nepimoon 1oV tuXaiov IEIpayevikOov CUPPETPIKOV MTIVAKGOV.

2. H mepimwon tou ywvopévou evog tuyaiou mivaka (0xt kat’ avaykrnv
TETPAY®VIKOU) HPE TOV avaoTpoPo ToU, 1] Tov ouluyr] avAotpopo Tou a-

vtiotolya, urofEtoviag Ot 01 H1a0TACELG TOU €ival AVAAOYEG.

3. H mepimwon tou ywvopévou evog tuyaiou mivaka (0xt kat’ avayrnv
TEIPAY®VIKOU) PE TOV avaotpodod tou, otav 1 pia diaotaon peyadwvet

TTOAU Yp1yopotepa Ao v AAArn.

Y& KAbe pia mepinmtowon arnodelkvuetal Otl 1o 0plo €ival éva pérpo mba-
votntag, andAuta ouvexEg wg pog to PETpo Lebesgue, pe gpaypévo gopéa.
[MapaAAnAa, oe kKABe pia Ao AUTEG TIG TIEPIITTWOEIS ATIOOEIKVUOUHE KAl TNV

OUYKA101] TG PEYAAUTEPNS KAl TG PIKPOTEPNG 1H10TIIHG TV TUXATI®V TTIVAK®V



viii

OTa aviiotolXa dkpd 10U (popéd ToU opiou, He TtV urtobeson o1l Ta ototXeia tou
Tivaka akoAoUBoUV TV TUTTIKI] KAVOVIKY] KATAVOLLL).

Ztn ouvéyela napouotadovial epyaleia g Sewpiag tuxaiov mvakev mnou
elvat yprowpa otnv mneploxy] g KBavukng deswpiag mAnpogpopiag. Opido-
vtal ot €vvoleg tng co-arootaong Wasserstein kat g tuxaiag enayopevng
(kBavtikng) Katdotaong, Katl arodeikvuovidl 1810TNTeEG ToUG. ATTOSEIKVUETAL
OUYKEKPIPEVA TG 1] évvola tng tuxaiag KBavikihg Katdotaong ouvdéstat
10YXUpdA Pe TUXaioug mivakeg Pe ototyeia mou akoAoubouv v KAVOVIKL] Kad-
tavopn. ExpetaAdeudpevol autr ) ouvdeon epappodoupe ta anotedéopata
TV IIPONYOUHEVOV KePAAAimV OTIG TUXAieG KBAVIIKEG KATAOTAOELS.

Zto tedeutaio KepAAalo Xpnotoroimviag ta arnotedéopata yia tg tuyxaieg
KBavTKég KATAOTAOEIS Arodeikvyoupe Vv Unapén ouvaptnong (threshold)
ou e&aptdtat aro v S14otact 10U XHPou Kat Xwpidel pe peydadn rmbavotnta
1§ Kataotdoelg rou eivat entangled and autég rou dev eivat, pe Baon v

d1aotaon tou nep18aAAovtog arod 1o oroio £xouv ertaxOet.



Euyxapiotieg

H napovoa dutdepatikn epyacia ekmovrOnke ota miaiola g anoktnong
10U AtmAepatog Metarmtuytakev Zroudov pe e1dikevon oty Kateubuvor tov
Oswpnukeov Mabnpatukov. H tpipelng ermponn anaptidetal ano tovg K.K.
Anuntpn F'atdoupa, Apioteidn KataBoAo kat ITavieAr) Aodo.

®a 10eAa va euxaplotjoe oAa ta PéAnN NG EMITPOITG Yid TV OUHRHETOXT)
Toug oe autrjv. EmunAéov 9a n0eda va euxapiotron toug K. Aptoteidn KataBo-
Ao rat k. Tlavtedn) Aodo yia ta pabrpata kat ta ogpivapila mou Siopydveoav
Kal apedwoav, Katd tr H1apKe1a T0U TIPOTOU Kal HeUTEPOU KUKAOU OTTIoUd®OV
pou, ta oroia rai§av onuaviiko polo otnv ropeia pou oto Mabnuatiko.

ISwaitepa 9a 1Bsda va suxaplotmoen tov K. Anunitpn 'atdoupa mou pe
glonyaye otg neploxég g Mabnpatikrng Avaduong kat g Oewpiag ITiBa-
VOTTOV PEoa aro Ta TMportuyxiakd pabnuata dlpaypatikrn AvdAuornpy kat
«®@ewpia Métpour, kat 1o petartuxiako pabnpa «Epyodikn Oswpiar, ta oro-
ia 616age oe TOAU VYPNAO eminedo KAt Pe TPOMO TETOI0 TTOU HE EVEITVEUOE Va
aoXoAnbe rmapandve pe aut v neptoxn twv Mabnpatkeov. Emiong tov
£UXAPI0TR V1d TIS WPEG TIOU APIEP®OE O AUTH T SIMA®PATIKY epyaocia, tnv
kaBodnynon xkat tg Wdaitepa BondnTkég mapatnproelg ToU, Kat OUVOAKA
yla 10 €AKPIVEG evdladEpov Tou £6e1§e Katd ) Sidpkreld 1V ortoudev pou.

Eniong 9a 116eAa va euxapiotoem tov K. avvoroudo yia v Ponbeid tou
Kal TG XPIOHES TIAPATHPHOELG TOU Ot SIMA®PATIKI autr], Kab®g Kat yia tnv
UYnArng rowotntag 61daokaldia tou ota pabrpata mou napakoAoubnoa padi
TOoU.

TéAog Sa 116eAa va euxaploTo® TNV O1KOYEVELA KAl TOUG @IAOUG PO yia TV

otpn toug. Edwkotepa 9a r1bsda va euxaplotr)om toug @idoug pou AAESav-



06po ka1 Mavo yla v ouprnapdotacn Kdl TV ouvepyaoia mou eixape, Kal
eArtido va Savaéxoupe, Katd ) ddpkela v oroudmv pag, Kat t Anpnipa

yua v avaykaia otfjpi€n tmg 6Aov autov Tov Kaipo.

MixanA AouBapng
Abnva, 2020



Zmv pvnun touv kadnynt uouv A.I'atlovpa
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Introduction

In this thesis we are going to study the interface between random matrix

theory and quantum information theory.

Historical background and general description

Classical information theory studies the transmission, processing, ex-
traction, and utilization of information. Abstractly, information can be
thought of as the resolution of uncertainty. As quantum mechanics pro-
gressed, several information theoretic concepts were introduced such as
quantum information, which is the information of the state of a quantum
system, and played important role in the area. This is hardly surprising,
since quantum mechanics, as usually presented, is a probabilistic theory.

However, in the 1990s quantum information theory emerged as a distinct
discipline. Moreover, as quantum information theory has been progressing
it has been characterized as the mathematical framework necessary for the
building of a quantum computer.

On the other hand, in 1955 the nuclear physicist E. Wigner [1] intro-
duced the concept of random matrices (i.e. matrices whose entries are
random variables) making the assumption that the spacings between the
lines in the spectrum of a heavy atom nucleus should resemble the spac-
ings between the eigenvalues of a random matrix, and should depend only
on the symmetry class of the underlying evolution. By that, the mathe-
matical field of random matrix theory was born and since then it has been
connected with several research areas such as asymptotic geometric anal-
ysis (and more precisely high-dimensional probability), physics, numerical

analysis, mathematical statistics, theoretical neuroscience, optimal con-

3
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trol and more.

Over the last dozen or so years, it has become clear that quantum in-
formation theory is closely linked to geometric functional analysis (Banach
space theory, operator spaces, high-dimensional probability) and random
matrix theory. In this thesis we study the interface between quantum
information theory and random matrix theory.

We have separated the thesis in three parts.
Part 1

Both quantum information theory and random matrix theory use tools
from several research areas of mathematics such as geometric functional
analysis, combinatorics, probability theory, operator theory and linear al-
gebra. In the first part of this thesis we present all these tools and give a
few proofs. We have avoided to give extended proofs in this part because if
we did we would lose focus on the main goal of the thesis. More precisely
this part contains the following:

- In both random matrix theory and in quantum information theory ma-
trices play a crucial role. So it is only natural that we introduce the ap-
propriate norms (the analogues of the £, norms in R" or C") on the matrix
spaces.

- Next we present Dirac’s Bra-Ket notation which is a well known way to
denote elements in quantum mechanics.

- Probability theory is in the core of this thesis so several “classical”
results such as the Borel-Cantelli lemma and Fubini-Tonelli theorem are
presented since they are necessary.

- In the same section we introduce the concept of a probability metric
space, i.e a metric space equipped with the Borel o-algebra (the small-
est o-algebra that contains the open sets produced by the metric) and a
probability measure defined on that o-algebra.

So one may define the space P(X, d) of the (Borel) probability measures
of a metric space (X,d). It has been proven (see [2]) that this space is a
subspace of the dual of the space of continuous and bounded functions

with the sup —norm. On this space one can construct a metric which can



metricize weak convergence, i.e the convergence with respect to the weak
topology. Note that, when we are in R, weak convergence is the convergence
in distribution that we have seen in probability theory.

We also present Skorohod’s theorem, a beautiful theorem which converts
the convergence in distribution to almost sure convergence and Haar’s the-
orem which states that every locally-compact group has a unique measure
which is invariant under multiplication.

- As mentioned above, geometric functional analysis and high-dimensional
probability are strongly related to both random matrix theory and quan-
tum information theory. So it is natural to use several results from that
area such as the isoperimetric inequality on the sphere: The n-dimensional
sphere has a unique probability measure invariant under orthogonal trans-
formations. There are various ways to define this probability measure but
from a probabilistic point of view it can be defined as follows: Let {X;}in

be i.i.d. random variables all following N(O, 1). Then

s"1A) =P (X, X, ..., X,) € A) )

(T X))
The isoperimetric inequality on the sphere states that if C is a ball with

respect to the geodesic metric on the sphere then
s C,) < s"HAL) L VAC ST s A) = sH0),

where A, = {x : dist(x, A) < €} is the e-extension of A.

After the isoperimetric inequality we also present the well-known Krein-
Milman theorem which states that for a convex and compact set K we have
that

K = conv(ext(K)).

Next we define several ways to “measure the size” of convex sets and men-
tion some notions and inequalities about the volume radius, the mean
width and the Gaussian mean width of sets.

The last result that we need from geometric functional analysis concerns
the /-norm, the /—position and and the MM* estimate for convex bodies.

The ?-norm is defined for all matrices of R" (or C") as follows: if G is an



n-dimensional vector whose coordinates are i.i.d. random variables all

following N(O, 1) and K is a convex body containing O in its interior then
bk (M) = E||IT(G)l|x

The f-position is a special position of a convex body: we say that a convex
body in R" is in /-position iff the (unique) positive semi-definite matrix M of
largest determinant among all matrices in the unit ball with respect to the
lx-norm is a multiple of the identity matrix. A useful property of convex

bodies which are in the /—position is that
1 < w(K)w(K°) < Clogn

where w(K) denotes the mean width of K.

- Next we present the tensor product of two Hilbert spaces. The tensor
product of Hilbert spaces is the appropriate way to define the states used
in quantum mechanics.

The physical phenomena that characterize quantum states such as en-
tanglement and separability are all defined in this section as well.

Despite the way they are defined, in the rest of the thesis we will try
to avoid tensor products, as much as we can, taking advantage of the

following important property. If H;, H, are two Hilbert spaces then
H; ® Hy = B(H,, Hy)

where B(H,, H,) denotes the space of linear operators from H; to Hs.

So, since we will work on multi-dimensional complex spaces, we will
translate states into complex matrices.

- In the last section of the first part we present tools from graph the-
ory and combinatorics such as simple graphs, trees, bipartite graphs and

Hall’s theorem.
Part 2

In the second part of the thesis we present and prove several important

results from random matrix theory. First we introduce the concept of the



empirical spectral distribution (E.S.D.) of an n X n matrix A which will be

denoted by ps. More precisely, if {7;(A)}i[n) are the eigenvalues of A then

n

1
Ha = n Z ()

i=1

where 6 denotes the Dirac measure. In other words, the empirical spectral
distribution of a matrix A is exactly the discrete uniform measure on the
set of the eigenvalues of A.

So one may note that if A is a random matrix then u, is also a random
measure in P(R), the set of all Borel probability measures on R.

The three results from random matrix theory that we are going to discuss
are Wigner’s semicircular law [1], the Marchenko-Pastur law [3] and Bai-
Yin’s theorem on convergence to the semicircular law [4]. The first two
are “classical” results in random matrix theory. The third one is not so

well-known but it is very useful in our case.
WIGNER’S SEMICIRCULAR LAW

In this section we prove the weak convergence of the empirical spectral
distribution of a sequence of random symmetric matrices with i.i.d. entries
which have finite moments (the theorem has been generalised for entries
with are assumed to have only finite second moment, see [5]).

Let A, be a sequence of matrices as above. Then ,LLAT% converges weakly
in probability to the semicircular law, i.e the measure o with density (with

respect to the Lebesgue measure)
1 590(x
o(x)dx = [22—2]() V4 — x2.
T

There are mainly two known ways to prove such theorems: the Stieltjes
method and the moment method. In this thesis we discuss the moment
method.

As the name suggests, the moment method is based on establishing that
the k-th moment of the sequence of the E.S.D. p, ,n converges weakly
in probability to the k-th moment of the semicircular law. Taking into

account:



(i) that since o(x) has bounded support it is uniquely determined by its

moments,

(ii) the Weierstrass approximation theorem which states that there exist

polynomials as close as we want to a continuous bounded function,

we prove that the deterministic measure E(u,, ,,r) is close (as the dimen-
sion grows) to the measure p, ,,» and we reduce the proof of the weak

convergence to the semicircular law to the following:

]E( f xkduAn / \/5) - f x*do(x) Yk € Nin probability.

But it easy to compute that the moments of the semicircular law are

f N 0 if k is odd
x"do =

Cg if k is even,
where
1 (2n)!
" n+1((n)?’

So, using combinatorial analysis we prove that the limit of the k-th moment
(when k is even) of the E.S.D.’s is in fact the cardinality of the set of all the
sequences {a;}je; with k elements which are all either +1’s or —1’s such
thatYje [k—1]Y) 1 a;>0,%5 a=0.

Lastly we prove that the cardinality of the set of the sequences mentioned
above is given exactly by the sequence of Catalan numbers, which ends the

proof of the semicircular law.
CONVERGENCE OF THE EXTREME EIGENVALUES

The next main result that we prove in the thesis is the convergence of
the extreme eigenvalues of matrices seen in the Wigner’s semicircular law
(in the case where the entries are standard Gaussian random variables)
to 2 and -2 respectively. In order to do that, we prove two well-known

inequalities for the Gaussian measure:

(i) The Gaussian isoperimetric inequality, a result analogous to the

spherical isoperimetric inequality, and a consequence of it, which



states that if
Yn(A) = y1((—00, al)

then for any ¢ > 0
Yn(Ae) 2 yi(—00, a + ¢),

where YVm € N, y,(A) = P((X3,...,X;n € A), where X;,...,X,, are

standard Gaussian random variables.

(ii) Erhard’s inequality which states that for any pair of Borel sets A, B

in R"
O (y(AA + (1 — A)B)) > AD (y,(A)) + (1 — D (y.(B)),

where ®(x) is the distribution function of a standard Gaussian ran-

dom variable.

Using the results above we prove that for any 1-Lipschitz function f, if My
is its median then
Mf S EYn(f)’

and a concentration inequality for a 1-Lipschitz function and its median.
Applying these results for f = || - || we prove the convergence of the
extreme eigenvalues.
MARCHENKO-PASTUR LAW
In this case we prove the weak convergence of the E.S.D. of a sequence
of random matrices X;x.X;,,/n, where p/n — y € (0, 1] and the entries

of X, are i.i.d. random variables with finite moments, to a deterministic

measure u that has density (with respect to the Lebesgue measure)

1
du = Ey \/(b = X)(x — @) Lacx<hs

where

a(y) = (1 - Vu)>, b(y) = (1 + Vy)*.

Note that a similar result is true when y € (1, c0) under the weaker as-

sumption that just the second moment of the entries of X, is finite.
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The methods that are used in order to prove the M-P law are very similar
to those used for Wigner’s semicircular law. Again we use the moment
method and prove that every moment of the E.S.D. tends to the respective

moment of u.
CONVERGENCE OF THE EXTREME EIGENVALUES IN M-P

As in the Wigner’s law case we prove the convergence of the extreme
eigenvalues of matrices in the M-P law, when the entries are Gaussian, to
a(y) and b(y) respectively. The proof can be found in [6]. It is done by
working with a more convenient matrix Y which has the same eigenvalues
as X.

The tools that are used in the proof include results about the y—squared
distribution and the Gershgorin circle theorem which states that, for any
complex matrix A, every eigenvalue of it lies into a circle whose radius is

the sum of the 2-norms of the elements of some of the rows of the matrix.
BAI-YIN’S CONVERGENCE TO THE SEMICIRCULAR LAW

In this section we prove another theorem concerning the weak conver-
gence of the E.S.D. of a sequence of random matrices A, = #@(XPX; -
n(p)I,) to the semicircular distribution.

Here X, is a p X n(p) random matrix with i.i.d. entries with variance 1
and finite fourth moment. Also n(p), p — o and p/n(p) — O.

In order to prove the convergence we prove several lemmas. The most
crucial one simplifies the random matrices we work with. The precise
statement is as follows:

Let Y, be a sequence p X n random matrices with i.i.d. entries such that
() EY;, =0and EY}?, = 1 + a,, where a, — 0 as p — oo, and
(i) |Yy.] < e,n'/%, where ¢, — 0 and ,n'/* — .

Then the matrix Z, with

and

Z,; = Z Y, Y, when i # j
lp
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has E.S.D. that converges to the semicircular distribution. For the proof
we use similar methods (the combinatorial approach, the moment method)
as the ones we used for Wigner’s semicircular law.

Next we prove several tools which we use in order to prove that the con-
vergence of the simplified matrices Y}, to the semicircular law is sufficient
for the convergence of the E.S.D. of X,,.

More specifically we prove that the E.S.D.’s of the truncated and centered
matrices X, i.e. the matrices with entries Xi;1x,<e,n, —B(Xi;1jx,i<¢,n,) Where
X;; is an entry of X,,, have the same limiting behaviour as the E.S.D. of X,,.
The proof is completed by combining the simplified lemma and the previous

fact. The complete proof can be found in [4].
CONVERGENCE OF THE EXTREME EIGENVALUES IN BAI-YIN’S CASE

Like in the Marchenko-Pastur case and Wigner’s case we prove the con-
vergence of the extreme eigenvalues of matrices in Bai-Yin’s case, when
the entries are standard Gaussian, to —2 and 2 respectively.

In order to do that, we use the same method we used in the Marchenko-
Pastur case and work with more convenient matrices. This way we show
that it is sufficient to prove the convergence of the extreme eigenvalues
when the matrices have entries that are real standard Gaussian.

The proof is completed by the following very important lemmas from

high-dimensional probability:

(i) (Slepian’s inequality) Let (X;)(cr and (Yy)¢er be two Gaussian processes

such that forany t,s € T

E(Yt - Ys)2 < E(Xt - Xs)2

EX? = EY/.

Then Yx € R

P(sup X; > x) < P(sup Y; > x),
teT teT

which implies that

EsupX; <EsupY;.
teT teT
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(ii) (Gaussian interpolation) Consider two independent n-dimensional
real random vectors X ~ N(0,X%) and Y ~ N(0,XY). Then define

the Gaussian vector
Z(w) = VuX + V1 —uy uelo,1]

For any f : R" — R which is twice diffentiable, it is true that

d2
dxdx (Z(w)).

d 1 ¢
—CE(f(Zzw) = ZJ@E - I))E

(iii) (Chevet-Gordon inequalities) Let B € M, ,, be a random matrix with
independent N(O, 1) entries. Let K C R" and L C SP™! be compact
sets and ri. > O such that K C r.Bj. Then

E max max(Bt, u) < wg(K) + rwg(L),
uel teK

where wg; denotes the Gaussian-mean width of a set.

Combining the previous facts we complete the proof.
Part 3

In this part we introduce and prove several important tools used in quan-
tum information theory and then use the theorems from Part 2 in order to

prove a threshold theorem.
RANDOM MATRICES IN QUANTUM INFORMATION THEORY

The first tool we introduce is the co—Wasserstein distance. It is defined

as follows: for two probability measures p;, [y,

doo (1, p2) = 1nf ||py — pllr,.

where the infimum is over all couples (X;,X,) of random variables with
(marginal) laws u;, up defined on a common probability space. It is shown
that convergence with respect to d., of a sequence of random variables to
a random variable with compact support (say [a, b]) is equivalent to the
weak convergence of these random variables and the convergence of the

inf and sup of the random variables to a and b respectively.
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Next we introduce two models of random states. The most important is
the random induced state. Although this model is defined as the partial

trace of a random variable uniformly distributed on the sphere of C" ® C?,

Wn. S

tr(Wn,s)
where W, ; = BB* and B is an n X s random matrix with i.i.d. entries all

following N-(O, 1).

We prove an important concentration result for y—squared distribution,

we prove and use that the random induced state has distribution

which shows that the element tr(W, ;) can be virtually treated as a con-
stant. So we conclude to the following result:

Let u(A) denote the E.S.D. of a matrix A and let p, s be the distribution of
arandom nX s induced state. If s/n — A € (0, ) then p, s(Sp.s) converges
with respect to the co—Wasserstein distance to the Marchenko-Pastur dis-
tribution (a consequence of the M-P theorem and the convergence of the
extreme eigenvalues).

Likewise, if s/n, s — oo then u( Vns(on s— %)) converges with respect to the
oco—Wasserstein distance to the semicircular distribution (a consequence of

Bai-Yin’s theorem and the convergence of the extreme eigenvalues).
RANDOM QUANTUM STATE

In this section we prove a threshold theorem. For the proof we need the

following tools:

1. For any x,y € R, ie 3, x = X,y; = O with y # 0, and for every

permutation invariant real convex function ¢ on R" it is true that

(p(x)éfp(ZnIIXIIOO )

llylly

2. Let A, B be two unitary invariant random self-adjoint matrices with

zero trace that satisfy

P((deo(u(A), psc) <€) 2 1= p

and

E(dm(usp(A)’ :usc) <e
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and likewise for B. Here g, denotes the distribution of the semicir-

cular law. Then
l-p
Ce+1
for any convex subset of M5%° (the set of all n-dimensional self-adjoint

EllAllx < ElBllx

matrices with zero trace).

Combining the previous tools with the main theorem from the section of
random matrices in quantum information theory, we prove that if n/s,n —
co and if p, s is the distribution of a random quantum state and A, is an

n X n random matrix with Gaussian entries and
G, = A, — tr(AY)],

then
I

Pns — _” < Cn,sE
nliK

G
ny's

=

nys

C'E

ns

<3|

K
for C,s — 1.

Next we prove an appropriate form of the well-known concentration in-
equality, Lévy’s inequality. More precisely, let K be a convex body which
is a subset of the states of C", with inradius r, and let K, = K — % and o, s
be a random induced state. Then, if M is the median of ||p,, s — %IIK (and

likewise for any central value) we have that for any € > O

“(]

Combining the above with results from convex geometric analysis and

I
Ons — —HKO - M‘ > e) < exp(-s) + Zexp(—ezsrzn/72).
n

asymptotic geometric analysis (mentioned in Part 1) we conclude the fol-
lowing very important threshold theorem:

Let so(d) := w(Sep(C* ® C%)°)2, where w(K) denotes the mean width of
a convex set K and Sep(H) denotes the set of separable states of a Hilbert
space. If pis a random induced state of C*®C?, induced by the environment

Cs, then for any € > 0 we have that
(i) If s < (1 - e¢e)so(d) then

P(p is entangled) > 1 — 2 exp(—c(e)d®).
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(i) If s > (1 + €)sp(d) then

P(p is separable) > 1 — 2 exp(—c(e€)s).

The above threshold theorem can be translated as follows:

“Given N identical particles in a generic pure state, if we assign k of
them to Alice and k of them to Bob, their shared state suddenly jumps
from typically entangled to typically separable when k crosses a certain
threshold value ky ~ .7

Lastly we give a result of almost sure entanglement of low-dimensional
environments which is a consequence of asymptotic geometric analysis. It
states that if s, d € N are such that s < (d — 1)? and if p is a random d? X s
induced state then

P(p is separable) = 0.
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Part 1

Preliminaries
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Background

1.1 Matrix norms

In this section we present the concept of matrix norms; we give some
examples and prove some of their properties. Note that an n-dimensional
space of real (or complex) matrices is in fact a real (or complex) vector
space of dimension n?. But since the space of matrices is equipped with
an additional operation, multiplication of matrices, one may use a slightly

different method to estimate matrices.

Definition 1.1.1. Throughout this thesis we will use the following nota-

tions.

e M, ., for the class of n X m, either real or complex, matrices and M,

for the class of n X n matrices.

o M %(C) for the class of self-adjoint complex matrices. Note that M:;*(C)

is in fact an n?—dimensional real vector space.

e AT for the transpose of a matrix A and A* for the conjugate transpose
of A. Note that A* = AT when A has real entries.

e Given a finite dimensional complex or real Hilbert space H, we will
denote by B(H;, H,) the space of linear maps (operators) from H; to
H, and by B(H;) the space of linear operators from H; to H;. When
H; = C" and H, = C™ then B(H;, H,) can be identified with M, ,(C).

Next we present the £,—norms in R" (equivalently C") and then we will

present the analogous norms for matrices.

19
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Definition 1.1.2. We define the £,-norm, p € [1, o), on R" by

n 1/p
Il o= [Zw)

i=1

for any x € R", while for p = co we set
lIxlleo := max|x,
i€[n]
where [n] ={1,2,...,n}.

Next we give the definition and/or some properties of matrix norms.

Since M, is itself a vector space of dimension n?, one can measure the
“size” of a matrix by using any norm on C"™. However, M, is not just a
high-dimensional vector space; it has a natural multiplication operation,
and, when we want to obtain estimates, it is common to relate the “size” of

a product AB to the “sizes” of A and B.

Definition 1.1.3. A function || - ||: M, — R is a matrix norm if, for all

A, B € M, the following hold:
1. ||A|]l = 0 and ||Al| = O if and only if A = 0O,
2. |lc-All =|c| - ||A]|, for all ¢ € C,
3. llA+ Bl < [|All + [1BI|,
4. |la- Bl < lAll - [IB]|.

A matrix norm is sometimes called a ring norm. The first three proper-
ties of a matrix norm are identical to the axioms for a norm. A norm on
matrices that does not satisfy property (4) for all A and B is a vector norm
on matrices.

We are now ready to present the analogues of the /, norms for matrices.

Definition 1.1.4. Let M € M,,,,, be a real or complex Euclidean space. We
will denote |[M| := (M*M)"'/2. Then we define its Schatten p-norm, p € [1, o),
as

M|, := (tr|MP) 7P,
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Remark 1.1.5. The most commonly used norms in quantum information

theory are the following.

e The Schatten 1-norm (the trace norm).

e The Hilbert-Schmidt norm (Frobenius norm) or Schatten 2-norm,
which is the analogue of the /5-norm. In the rest of the thesis we will

use this norm if not otherwise specified.

e The Schatten co-norm, which can be considered to be the limit of
IM||, as p tends to infinity. This implies that Schatten co-norm is the
operator norm, meaning

IMlleo = [IMllop = sup ||Mx]l,.

{x: lIxlla<1}

An equivalent way to define the Schatten p-norms is via the singular
values of a matrix M, meaning the eigenvalues of |[M|. Denote s(M) the

singular values of M arranged in non-increasing order. Then
IMllp = lsM)ll,  p=1,

where on the right-hand side of the equality the norm is the £,-norm of the
vector s(M). By this equivalent definition it easy to show that the Schatten
p-norms are in fact matrix norms and that the matrices M and M* have
the same Schatten p-norm (obviously considered as elements of different
matrix spaces) since MM* and M*M have the same non-zero eigenvalues.

We end this section with a useful tool from linear algebra.

Theorem 1.1.6 (Singular value decomposition). Let M € M, ,, be a real or

complex Euclidean space. Assume n < m. Then
M =UXV

where U is an n X n unitary matrix, V is an m X m unitary matrix and X is
an n X m “diagonal” matrix, i.e. X;; = 0 when i # j, whose diagonal entries

are the singular values of M.

Everything from this section and more about matrices and matrix norms

can be found in the first chapters of [7].
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1.2 Bra-ket notation

When working with objects related to Hilbert spaces, particularly the com-
plex ones, we use throughout the thesis Dirac’s bra-ket notation. This
notation generalises the column-row vector convention for elements of real
(or complex) spaces.

More precisely, if H is a Hilbert space, then a standard element x € H
is written |x) (a ket-vector). The same element x can be considered as a
linear mapping from H to C which acts on an element y € H via the scalar
product (y, x) and then it is being denoted by (x|.

Moreover, let H;, H, be two finite dimensional Hilbert spaces (real or
complex) and let y;, y, be elements of H;, Hy, respectively. Then we use
the notation |y, )(y,| for the operator H, — H; which acts on a ket-vector

x € Hy as

) = (yzl0ly1)

or in the standard notation x — (y,, x)y;.

1.3 Tools from probability theory

In this section we are going to present some tools from probability theory

needed in the rest of the thesis.

1.3.1 Weak convergence

Firstly we are going to present some properties of weak convergence of

probability measures on metric spaces.

Definition 1.3.1. Let (X, d) be a metric space. We will use the notation
B(X) for the Borel o-algebra (the smallest o-algebra that contains all open
sets of X with respect to the metric d). When (X, d) is separable, then
equivalently B(X) is the smallest o-algebra that contains every open (or
closed) ball of X (with respect to the metric d). The definition of Borel sets

can be extended to arbitrary topological spaces in a similar way.
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Definition 1.3.2. Let (X, d) be a metric space. A function u: B(X) —» R*

will be called a Borel probability measure if

u® =0, wX)=1
and . -
" (U An) = > mAy
n=1 n=1
whenever {A,},av € B(X) is a sequence of pairwise disjoint Borel subsets
of X. We will use the notation P(X, d) for the set of all Borel probability

measures of (X, d). We will also use the notation P(X) when the underlying

metric is clear from the context.
Lemma 1.3.3. Any u € P(X) has the following properties.

1. If{A,}nen s an increasing sequence of Borel sets then
lim p(A,) = p (U An) .
2. If{A.}.en is a decreasing sequence of Borel sets then
lim p(A,) = p (ﬂ An) .
3. u is inner regular, meaning that for any B € B(X),
u(B) = sup{u(C): C C B, C closed}.

4. u is outer regular, meaning that for any B € B(X),

u(B) = inf{u(C): U 2 B, U open}.

O

. If (X, d) is a compact metric space, then

u(A) = sup{u(K): K C A, K compact}.

We are now ready to give the definition of weak convergence in any metric

space.
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Definition 1.3.4. Let (X, d) be a metric space. We will use the notation
Co(X) ={f: X > R | f continuous and bounded}.

Let {n}nen € P(X) and p € P(X). We will say that pu,, converges weakly to u
iff
ffdun - ffdu VJf € Cu(X).

Lemma 1.3.5. Let (X, d) be a metric space and {i,}nen € P(X) and u € P(X).

Then the following statements are equivalent.
(i) . converges weakly to u.

(i) f gdu, — f gdu for all real uniformly continuous and bounded func-

tions g on X.
(iii) lim sup, pn(C) < u(C) for every closed C C X.
(iv) liminf, pu,(U) > w(U) for every open U C X.

(v) lim,, u,(A) = u(A) for every Borel set A such that u(0A) = 0, where A
denotes the boundary of A.

Note that weak convergence is in fact the convergence in distribution of

real random variables as seen in probability theory.

Definition 1.3.6. Let P(X) be the set of Borel probability measures of the
metric space (X, d). Then the function dp: P(X) X P(X) — [0, +c0) defined
by

dp(u, v) = infla > 0: u(A) < V(A + a, V(A) < WAy + a, YA € B(X)}
is called the Prokhorov metric on P(X, d). Here
A, ={xeX:d(xA) < al.

Obviously if A € B(X), then A, € B(X).
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Proposition 1.3.7. The Prokhorov metric dp is a metric on the space P(X, d).
Also, if dp(u,, p) — O then u, converges weakly to u. Moreover, when (X, d)

is separable, then the other direction is also true, i.e.,
Un converges weaklytop << dp(u,, pu) — O.

Note that when X = R then there exists an equivalent way to metrize
weak convergence of real random variables (or equivalently probability

measures on R), called Lévy’s distance, defined as follows
dp(pu, v) =inf{e > 0: pu(—co, t — €] — € < v(—o0o, t] < u(—oo, t+ €] +eVteR}

One may find the proofs of all the results of this subsection, and more

about probability measures on metric spaces, in [2].

1.3.2 Haar measure

Now we proceed with the definition of Haar measure. The following theorem
proves that in locally compact topological groups there exists a measure

(essentially unique) which is invariant under the group operation.

Definition 1.3.8. A topological group (G, -) is a group with a topology such
that the functions

GXG—->G:(xyrx-y

and

G-oG . x x

are continuous.

Definition 1.3.9. Let (X, T) be a topological space. Then (X, T) will be
called locally compact if for every x € X there exist U € T and a compact
subset K of X such that x € U C K.

Definition 1.3.10. Let (X, T) be a topological space. Then (X, T) will be
called a Hausdorff space if for all x,y € X with x # y, there exist U,V € T
suchthatxe U,ye Vand UNV = 0.
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Theorem 1.3.11 (Haar). Let (G, -) be a locally compact, Hausdorff topologi-
cal group. Then there exists a Borel measure yu which is invariant under left

(right) multiplication, meaning that, for all A € B(G) and all g € G,

w(gA) = u(A).

Moreover u is unique in the following sense: if u, v are both invariant under

left (respectively right) multiplication, then
U=cv

for some constant ¢ € R*. Finally, the Haar measure is finite if and only if

the group G is compact.

A measure which is invariant with respect to left (respectively right) mul-
tiplication will be called a left (respectively right) Haar measure.

Note that in the case G = R" (or equivalently C"), with addition - = + as
the group operation and the usual topology, any Haar measure will be a

multiple of the Lebesgue measure.

Proposition 1.3.12. One may extend Haar’s theorem to the space of left
(respectively right) cosets of a locally compact Hausdorff topological group,
on which the group acts on the left (respectively right) by multiplication.

One may find a proof of Haar’s theorem and more in [8].

1.3.3 Skorohod’s theorem

In this subsection we are going to present a beautiful theorem which con-
verts the convergence in distribution of a sequence of real random variables

to almost sure convergence.

Theorem 1.3.13 (Skorohod). Let X,, be a sequence of real random vari-
ables that converges weakly to a random variable X, meaning that the Borel
probability measures defined as distributions of the random variables X,
converge weakly to the distribution of X. Then there exists a probability

space (Q, A, P) and random variables Y,, n € N, such that
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(i) the random variables Y,,Y are all defined on the probability space
(Q, A,P);

(i) Y, — Y almost surely;

(i Y, ~X,, neN,andY ~ X, ~ meaning that the corresponding random

variables have the same distributions.

An important tool used in the proof of Skorohod’s theorem is the gener-

alised inverse function of a random variable, which can be found in [9].

1.3.4 Several results from Probability theory

We end this section with several results from Probability theory. A random
variable is a measurable function defined on a probability space.

First we introduce the y—squared distribution.

Definition 1.3.14. Let {Xi},, be independent random variables all fol-
lowing the standard Gaussian distribution N(O, 1). Then we will say that
X := YL, X? follows the y—squared distribution with n degrees of freedom.

One can check that X ~ F(g, %), where I' denotes the gamma distribution.

Lemma 1.3.15 (Borel-Canteli Lemma). Let {A,} be a sequence of events in

a probability space {Q, A, P}. Then

D P(A) <o = P(limsupA,) =0.
neN

Definition 1.3.16. Let (Q2;, A, P;) and (£),, 8, P,) be two probability spaces.
The probability space (Q2, A X B, P) will be called their product probability

space if
1. Q = Ql X QZ

2. AXB =0(AXB:AeA,Be B}, where for a class of sets D we denote
by o(D) the smallest o-algebra containing D.

3. YA e Aand ¥YB € B it is true that

P(A X B) = P,(A) Py(B).



28

It is a standard fact that, given two probability spaces (Q;, A, P;) and
(Qy, B,Py), such a product probability space always exists.

Theorem 1.3.17 (Fubini-Tonelli theorem). Let (Q,, A,P;) and (s, B,P,)
be two probability spaces. Let (Q, A X B,P) be their product probability
space. Let X be a real random variable defined on that space. Then if X is

either integrable with respect to P or non-negative, we have that

Q; Qo Q Q

Now we present a useful corollary of the Fubini-Tonelli theorem.

Lemma 1.3.18. If X is a real random variable defined on a probability
space (2, A, P), with E|X| < +co, then

00 0]
EX = f P(X > t)dt — f P(X < t)dt.
0 _

(o)

Definition 1.3.19. Let X, Y be two real random variables, not necessarily
defined on a common probability space, with distribution functions Fx, Fy
respectively, that is Fx(x) := P(X < x) and similarly for Fy. We will use the
notation X <y Y and say that Y stochastically dominates X if Fx(t) > Fy(t)
VteR.

From the previous lemma one has the following.
Corollary 1.3.20. If X < Y and E|X| < +00 and E|Y| < +00, then

EX < EY.

Next we present some “classical” results from probability and measure

theory.
Theorem 1.3.21. Let {X,},av be a sequence of real random variables.

(i) (Fatou) If X,, = O for all n € N, then it is true that

Eliminf X,, < liminf EX,.
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(ii) (Beppo-Levi) If X,, > O for all n € N, then it is true that

n=1 n=1

(iii) (Monotone Convergence Theorem) If X,,.1 =2 X,, =2 O foralln € N, then it

is true that

IimEX,, = Elim X,

(iv) (Dominated Convergence Theorem) If X,, — X a.e. and there exists a
random variable Y such that |X,| < Y for all n € N and E|Y| < +oo,
then

EX = limEX,.

We end this subsection with the definition of a median of a random

variable.

Definition 1.3.22. Let (Q2, A, P) be a probability space and let X be a real
random variable defined on that probability space. Then a real number
M € R will be called median of X if

min{P(X > M),P(X < M)} >

1
5

Remark 1.3.23. One may prove that every random variable has a median.
Moreover, there are many concentration inequalities for the deviation of a

random variable from its median.

All the results of this subsection, including Skorohod’s theorem, can be

found in any textbook on probability theory, for example in [9].

1.4 Tools from Convex Analysis

In this part we will gather some important results from convex analysis.
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1.4.1 Isoperimetric inequality on the sphere

We denote by S™! the unit sphere of R", n > 2.

Definition 1.4.1. We will say that a set K € R" is a convex body if it is a

convex compact set with non-empty interior.

Definition 1.4.2. Consider the function g: S*! x S*! — [0, o) which
assigns to a pair of points x, y € S*"! the angle xOy in the plane defined by
x, y and the origin. Note that g(x, y) = 2 arcsin (%Hx - y||2).

The function g is a metric and is equivalent with the restriction to the

sphere of the metric induced by the 2-norm on R".

Definition 1.4.3. Let n € N. Then we define a probability measure on
the sphere S™!, called the spherical measure (the unique Haar probability

measure on the sphere), as follows: For every Borel subset A of S*!,

1
An(By)

s"HA) = ([0, 11A)

where jl, is the Lebesgue measure in R", By = {x € R": [|x|]s < 1} and

[0,1]A = {at: t € [0,1], a € A}. Equivalently s""! can be expressed as
s"1(A) = ya((0, +0)A),

where y,, denotes the standard Gaussian measure on R", i.e., the measure
on R" with density (21)""/2 exp (—%HXH%), x € R", with respect to A,.

By the rotational invariance of the Lebesgue measure A,, or equivalently

by the rotational invariance of the Gaussian measure y,, s"*

is rotationally
invariant. Hence it is the unique Haar probability measure on S*!. In-
deed, S*! can be identified with the set of cosets of the group of orthogonal
transformations on R" and hence its Haar measure is a measure invari-
ant under orthogonal transformations; furthermore, this Haar measure is
unique up to multiplication by a constant.

Remark 1.4.4. By the representation via the standard Gaussian measure

n—1

on R" above, s"' can also be expressed as follows. Let X;,X,...,X, be
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i.i.d. random variables defined on a common probability space (Q, A, P),
such that X; ~ N(0O, 1), i.e., Xj has a standard Gaussian distribution y; in
R. Then for every Borel subset A of S*! it is true that

n -1/2
sI(A) :P((ZX?) (Xl,Xz,...,Xn)eA].
i=1

In fact, integrating in polar coordinates yields

noo\1/2 n
P[[Zxﬁ] € (a b), [Zxﬁ)

= (2m) "2 f f 1(a,b)XA(r,a)r”‘le‘r2/2dadr
0 Sn—l

b
:(zn)—n/2f r”_le_rz/zdr-fda
n al/2 An
AT e
i=1 i=1

for all Borel A € S*! and a,b € [0,4+c] with a < b, and this shows
that, furthermore, the random variable (} ;. , Xiz)l/ ? and the random vector

(OIN Xf)_l/2 (X1, Xy, ...,X,) are also independent.

-1/2

(Xl,Xz,...,Xn)eA]

-1/2
(Xl,Xg,...,Xn)EA)

Theorem 1.4.5 (Isoperimetric inequality on the sphere). Let n € N with
n > 2. Consider the probability metric space (S*!, B(S*!), s"™1). Let C be

an open ball of the sphere and A C S™! measurable such that
s"HCO) = s"H(A).
Then for every € > 0, it is true that
s"H(Co) < 8" (AD).
Corollary 1.4.6. Ifn> 2 and if s"'(A) > ; for some A € B(S"™"), then
s"HA) > s} (C (x, ST+ e)) >1— e/
Jorany e > 0.

One may find the isoperimetric inequality on the sphere in [7].
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1.4.2 Krein-Milman theorem

Next we present an important result from functional analysis which implies
that in Banach spaces (or more generally locally convex topological vector
spaces) a convex and compact set is the convex hull of some of its elements
(most of the times significantly fewer). In the thesis we use the Krein-

Milman theorem to simplify several proofs.

Definition 1.4.7. Let X be a Banach space and let K C X be a convex
subset. Then a subset F C K will be called extreme subset of K if

xyekK A4€(0,1), Ax+(1-AyeF = x,y€eF.

If F = {f}, we will call f an extreme point of K. We will use the notation
ext(K) for the set of the extreme points of K.

Theorem 1.4.8 (Krein-Milman theorem). Let K be a compact and convex
subset of a Banach space X. Then ext(K) # 0 and

conv(ext(K)) = K.

One may find the Krein-Milman theorem in [10].

1.4.3 Some facts about convex sets

At this point we are going to introduce some geometric parameters of con-
vex sets (the most important one is volume, i.e., Lebesgue measure). First

we give a useful inequality.
Definition 1.4.9. Let K be a convex body of R". Then we define its centroid,

g(K), to be
fK xdx

An(K)
where 7, denotes Lebesgue measure on R".

9(K) :=

Lemma 1.4.10. If K is a convex body in R" (or C") with its centroid at the
origin, then
(KN (=K)) 2 27" A (K).
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Proof. We will prove the lemma in several steps. First we mention the
Brunn-Minkowski inequality, which is an important tool from convex ge-

ometry and will be used in the proof of this lemma.

Theorem 1.4.11 (Brunn-Minkowski inequality). Let K, L be two Borel sub-
sets of R". Then

AK + L)Y > A (K™ + AL

An equivalent statement is as follows. For any two Borel sets K, L C R"™ and
any A € [0, 1],
An(AK + (1 = ML) > An(K) An(L)' .

Note. The first inequality implies the second in the theorem above; this is

an immediate consequence of the inequality Ax + (1 — A)y > x y' 7, valid

for x,y >0 and A€ [0, 1]:
An(AK + (1 = L) 2 [ARE)Y™ + (1 = DAL = Au(K) An(L)'
If H C R" is a linear or affine subspace of R", we will use the notation Ay

for the dim(H)-dimensional Lebesgue measure on H.

Lemma 1.4.12. Let K C R" be a convex body with its centroid at the origin.

IfE is a subspace of R" and F is the orthogonal complement of E, then
A(K) < Ae(K N E) Ap(PrK),

where Pr denotes projection onto the subspace F.

Proof. Define the function D: PrK — R* as follows
D(x) = Ag (KN E + x)'/*,

Here k = dim(E). By convexity and by Theorem 1.4.11 we see that the
function D is concave. Applying the Fubini-Tonelli theorem and Hoélder’s
inequality we get that

k/(k+1)
A(K) = f D(x)*dx < Ap(PpK)'/0tD ( f D(x)k“dx)
PrK Pp

K
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Since D is concave, there exists y € F such that for any x € PrK
D(x) < D(0) + {x, y).
It follows that

f D) 'dx < f D(x)*(D(0) + {x, y))dx

PrK

- D) f D(x)*dx = D(0)A(K).
PrK

because, since the centroid of K is at the origin we have fp D(x)*(x, yydx =

F(K)
0. It follows that
A(K) < Ap(PeK) YD D0Y</ 0D g (gyk/ e+ D),
Since D(0)* = Az(K N E), the inequality follows. O

We can apply the previous lemma for the convex body K X —K € R" X R"
and the subspaces E = {(x,x) x € R"} and F = {(x, —x), x € R"}. Note that

1. Aon(K X (=K)) = A(K)An(=K) = A(K)?,
2. AKX (=K)NE) = 223K N (-K)),
3. A(PrK X (-K)) = 27"273,(K - (-K)).

Using also the fact that 4,,(K — (-K)) = 4,(2K) = 2"A(K) we conclude the
proof of Lemma 1.4.10. m

Definition 1.4.13. Let V be a (real or complex) Hilbert space. Let also K
be a convex subset of V with the origin in its interior. We call the function

| - |lx defined below the gauge of K (or Minkowski functional of K):
lIx||x := inf{t > O0: x € tK}.

It is easy to prove that if K is an origin symmetric convex body then || - ||
is a norm. In the case where K is not symmetric, then the gauge is not a

norm because there exists x € V such that

lIxllx # I(=Dxllk-
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Definition 1.4.14. Let K be a convex subset of R" with the origin in its

interior. Then we define the set
K :={yeC":(y,x) <1VY¥xeK}
and call it the polar set of K.

Definition 1.4.15. Let K C R" be a Borel set. The volume radius of K is

defined as

ﬂ(K) )l/n
ABY)

where jl is the Lebesgue measure on R" and Bj is the unit ball of R" with

vrad(K) := (

respect to the 2-norm. In words, the volume radius of K is the radius of

the Euclidean ball which has the same volume as K.

Equivalently, if K is a convex body, then
vrad(K) = f 18]I ds" (8),
snfl

where S"! is the unit sphere of R" and s"! is the spherical measure.

Definition 1.4.16. Let K be a convex body of R". Then we define the mean
width of K as follows:
w(K) = f sup{u, x) ds"*(u).
s-1 xeK

Alternatively,
w(K) = f llullk-ds™ (w).
Sn—l

Definition 1.4.17. Let Z,, Z, be two i.i.d. random variables both following
N(0, 1). Then we will use the notation N:(0, 1) for the distribution of the

complex random variable Z = \%(Zl +i2)

Definition 1.4.18. Let V be a real (resp. complex) finite-dimensional
Hilbert space equipped with a Euclidean (resp. Hilbertian) norm. By def-
inition, the standard Gaussian vector in V is a V-valued random variable
whose coordinates with respect to any orthonormal basis of V are indepen-

dent real (resp. complex) standard normal (Gaussian) random variables.



36

Remark 1.4.19. A standard Gaussian vector in R™ (or C") is an n-dimensional

random vector whose entries are independent N(O, 1) (or Nc(0, 1))-variables.

Many results, such as the (multivariate) central limit theorem, can be
generalised in all vector spaces (real or complex) using a standard Gaussian

vector of the space.

Remark 1.4.20. Let G be a standard Gaussian vector in a Hilbert space
V. Then D := G/||G|| is uniformly distributed, i.e., distributed according
to the normalized Haar measure, on the unit sphere of V. Moreover, D is
stochastically independent from ||G]|.

To see this, consider the case of a real vector space first. Fix an or-
thonormal basis {v;,...,v,} of V, where n = dim(V), and consider the
isomorphism J: R" — V defined by J(e;) = v;, i € {1,...,n}, and then
extended by linearity on R", where {ey,...,e,} is the standard (say) or-
thonormal basis of R". To show that D is distributed according to the
normalized Haar measure on the unit sphere of V, one has to show that
the distribution of D is invariant under the unitary group of V, i.e. the
group of linear transformations on V satisfying T*T = Iy, where I, the
identity operator on V. The random variables (v;, G), ..., (v, G) are i.i.d.
N(0, 1) random variables, hence one may invoke Remark 1.4.4. Hence, for
any Borel subset A of the unit sphere Sy of V and any a, b € [0, +co] with
a < b, one has that

P(IGll € (a, b), IGII"'G € A) = P(IGll € (a, b), IGIT'J(G) € T} (A))

n 1/2 n -1/2 n
= P{(Zm, G>|2J € (ab), (Zm, G>|2) D (v Ge e J‘%A))
i=1 i=1

i=1

n 1/2 n -1/2
= P{(ZK% G>|2] €(a b)] P[ [Zm, G>|2) D (v Ge e J*(A)]
i=1 ) _11:/12 ) i=1
= P(IGIl € (a. b)) P{ [ZKvi, G>|2] D (v Gy € A)
i=1 i=1

=P (Gl € (a. b)) P(D € A),

which shows the independence of ||G|| and D. Furthermore, for any linear
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transformation T € B(V) satisfying T*T = Iy,

P(T(D) € A) = P(|GI "' T(G) € A)
=P(IGIT'I ' TIIH(G)) € TH(A))

n -1/2 n
=P Zl(vi, Pl gy (Z(vi, G)ei) c J‘l(A)]

i=1

n -1/2 n
= P|| D (v G Z<vi,a>eieJ-l(A)]

n -1/2 n
=P Zl|<vi,c>|2 Z‘wi,awieAJ

=P(D € A),

the fourth equality using the fact that JTJ™' is an orthogonal transfor-
mation in R" and that (3}, v, G)Iz)_l/ 2 Y (v, GYe; is Haar (uniformly)
distributed on the sphere S !.

Definition 1.4.21. Let G be a standard Gaussian vector in R". Then, for
any non empty bounded set K C R" we define the Gaussian mean width of
K as

1 2
we(K) = — sup(u, x)e /2 gy,
G( ) Ln (27'E)n/2 p< >

xeK
We next compare the mean width, the Gaussian mean width and the

volume radius of convex bodies.

Lemma 1.4.22 (Urysohn inequality). Let K be a convex body in R". Then
vrad(K) < w(K).

Moreover the above result is true for all bounded Borel sets.

Proof. We will give a sketch of the proof.
For a probability space (2, A, u), where p is a discrete probability mea-
sure or the limit of discrete probability measures, the following generalisa-

tion of the Brunn-Minkowski inequality holds:

f ﬂn(Kt)l/”du(t)Sﬂ;/”( f thu(t)). (1.4.1)
Q Q
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When the measure p is purely atomic with N atoms, the result can be
proved by induction on N, the case N = 2 being exactly the Brunn{-
Minkowski inequality. Moreover, the continuous case can then be derived
by approximation. The inequality above makes sense when the function
t — w(K;, 9) is measurable for every 8 € R".

If we equip the space O(n) (where O(n) is the class of n X n orthogonal
matrices) with the Haar measure, and set K; = t(K),t € O(n) then the
convex body L := f

o(n)
the origin. Computing the width of L in an arbitrary direction we see that

t(K)du(t) is necessarily a Euclidean ball centered at

L is a Euclidean ball of radius w(K). So, by applying (1.4.1) one may show
that Urysohn’s inequality holds.

For a more detailed proof see [7, Exercise 4.49]. O

Lemma 1.4.23. Let y,, = E||Glly where G is a standard Gaussian vector in

R™ and || - || is the 2-norm. Then one may compute that
Vn-1<y,< Vn
Moreover, for any convex body K in R" it is true that
wg(K) = yaw(K).
Proof. For the first part we know that if X ~ y?(n) then
E|IGll> = EVX.

So, if fx is the probability density function of X and f; is the probability

density function of a y—squared random variable with n + 1 degrees of

L Vxfx(x)dx = fo“’ (%)"/2 x5 exp (_)2_() r(lg)dx

~ V2I(n+ 1)/2) f"" _ (F((n+ 1)/2))
~ TI(n/2) 0 S = V2 r(n/2) |

freedom, we get

E VX

In order to prove the first assertion of the lemma we need several well

known properties of the I'-function.
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1. Vx € R" it is true that I'(x + 1) = xI'(x),
2. I'(0) = 1 and F(%) = /m,
3. The function logI is concave.

The first two properties imply that Vn € N it is true that ['(n) = (n — 1)!.

In order to get the lower bound for y,, we use induction. The basic
observation, which follows from the properties of the I'-function, is that
YnYn+1 = N. For n = 1, the lower bound obviously holds, because V2 /n > 0.
Assuming that the lower bound is true for some k < n, we use the induction
hypothesis and the recursion formula to write
n,n
Yo Wn

For the upper bound we note that, by the Cauchy{Schwarz inequality,

= vn.

Yn+1 =

EvVx < (Ex)'* = vn

as needed.
The second part of the lemma is a simple consequence of Remark 1.4.20.
O

1.4.4 /-norm, /-position and the MM*-estimate

Next we present a norm on the space of n-dimensional real (or complex)

operators, the so-called /-norm, and some useful properties of it.

Definition 1.4.24. Let K C R" be a convex body containing O in its interior.

Then, for any T € M, we define the quantity
bk (T) = EIIT(G)lIx

where G is a standard Gaussian vector in R" (or C").

The function ?x : M,, —» R* is a norm and is called #-norm.

Proposition 1.4.25. [f K is a convex body with the origin in its interior then
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(i) 2k obeys the ideal property: for any S, T € M,

lx(TS) < bx(T)|ISllop-

(i) Lk(D = we(K®) = w(K)E|Gll,.
(iii) If T € M,, is 1-1 then £x(T) = Lr-1(D).
(iv) If Pr denotes the orthogonal projection onto a subspace E C R" then
lk(Pg) = we((K N E)°) = we(PgK)
where we denote by (K N E)° the polar of K N E inside E.

Proof. The only part of the proposition which is not straightforward is (i).
Let S, T € M,. By homogeneity we may assume that ||S||,, = 1 and since
? is a norm we may also assume that S is an extreme point of the unit
ball of M,, with respect to the operator norm. One may show that T is an
n-dimensional orthogonal matrix.
Since G is assumed to be a standard Gaussian vector in R" (or C"), we
know that under any orthogonal transformation G will remain a standard

Gaussian vector. So, x(T) = #x(TS). O
We now introduce the -position.

Proposition 1.4.26. For any convex body K C R" containing O in its interior,
there exists a unique positive semi-definite matrix T, that is a solution to the

maximization problem
max{det(T) : T is a positive semi-definite matrix, {x(T) < 1}.

If this unique solution is a multiple of the identity matrix (equivalently oper-

ator) then we say that K is in the {—position.

Proof. We will prove that the solution of the maximization problem in the
statement of the proposition is unique.

Assume that there exist Ty, T, which both solve the maximization prob-
lem. Consider the matrix T = (T} + T,)/2. Note that #x(T) < 1.
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We will show that the function logdet is strictly concave on the set of
positive semi-definite matrices, which will lead to a contradiction.

We know that a function is concave iff its restriction to any line that
intersects its domain is also concave.

So, we will prove that the function g(t) = log(det(A + tB)) is self-adjoint
where B # O is self-adjoint and A is positive semi-definite. Since A is

semi-definite the matrices A'/2 and A™'/? are well defined and so we get:
g(t) = logdet(A + tB) = log det(A/2(I + tA'/?BA™1/2)A!/2

= log det(A) + Z(l + ),

i=1

where {A;}i[n are the eigenvalues of A™/2BA~'/2, But the function 3 log(1+
tA;) is concave. So g(t) is concave and as a result the function logdet is

concave, which ends the proof. i

Now we present a crucial result from geometric analysis called “MM*-

estimate”.

Theorem 1.4.27 (MM*-estimate). For any convex body K which is in the

? — position we have that
1 < wK)w(K®) < Clogn.
Proof. See [7]. O
Another crucial result about the /—position is the following.

Lemma 1.4.28. Let K be a symmetric convex body in R" (or C") and let I
be the isometry group of K (i.e. the set of all orthogonal transformations U

such that UK = K). Then there exists a linear map T such that TK is in the

T = ZﬂiPEi,
i

where A; > 0 and E; are subspaces invariant under the action of T'.

!—position and



42

The proof of all the results from Convex Analysis that we presented can
be found in [7].

In the next parts of the thesis we present and prove some additional
tools from convex analysis, such as the Gaussian isoperimetric inequality
2.1.27 and Erhard’s inequality 2.1.26.

1.5 Quantum information theory

In this section we give several definitions from quantum information the-
ory.

Firstly we need to present the tensor product of Hilbert spaces. Through-
out this thesis, all Hilbert spaces will be meant to be complex Hilbert spaces

unless we specify differently.

Definition 1.5.1. Let A, B and C be finite dimensional Hilbert spaces. Then
a mapping f : AX B — C is called bilinear if

Ja +x,y) = f0a. y) + (. y)
Sy +y2) = O yr) + f(x + y2)
JUix, y) = f(x, Ay) = Af (x, y)

for all vectors x,y € AX Band A€ C.

Definition 1.5.2. Let A, B be finite dimensional Hilbert spaces. Then we
say that a Hilbert space P is a tensor product of A, B with a bilinear map-

ping f : AX B — P if f has the following properties:
- The closed linear hull of f(A X B) is P.

- Y1) SO, Ya))p = (X1, X2) AUt Ya) -

Lemma 1.5.3. Let A, B be two complex finite dimensional Hilbert spaces.

Then their tensor product exists and is unique under isomorphism.

Proof. For a proof see [11]. O
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So, we will use the notation A ® B for the space and ® for the bilinear

function f.

Fact: Let H;, H, be two finite dimensional complex Hilbert spaces of di-
mension n and m respectively. Let {e;}in) and {f;}je be bases of H; and H,

respectively. Then the set {e; ® fi};je(nxm] 1S a basis for H; ® H,.

Lemma 1.5.4. Let H; and H, be two finite dimensional complex Hilbert
Spaces. Then,
B(H1 ® H2) = B(Hl) ® B(Hz)

Proof. Let S € B(H,) and T € B(H,). Then consider the function
S®T . H1 ®H2 g H1 ®H2

with x ® y — S(x) ® T(y). This proves that B(H;) ® B(Hy) C B(H; ® Hy).

On the other hand, for any m-dimensional complex Hilbert space A it
is true that B(A) = M,,(C) since we can associate every linear map to its
matrix. So,

dim(B(A)) = m>.

This implies that dim(B(H, ® H,)) = n?m? and dim(B(H,) ® B(H,)) = n?m?,
which completes the proof. O

Lemma 1.5.5. Let H,, H, be two Hilbert spaces of dimension m and n

respectively. Then it is true that
H, ® H, = B(H,, H).

Proof. Fix bases {ej}jc(n) and {fi}icim) of H; and H, respectively. Consider the
function vec : H; ® Hy, — B(H;, H,) with

vec(e; ® f;) = le){fjl

and extend it linearly to all the elements of H; ® H, by C-linearity. The

function we obtain is a canonical identification between the two spaces. O

Corollary 1.5.6. From the previous lemma, if H; = C" and H, = C™ where
m, n € N we get

C"®C™ = M, n(C).
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In general, in quantum information theory, tensors are more suitable to
describe and model the problems; the previous proposition allows us to
identify tensor products as spaces of matrices.

Next we give several definitions necessary in quantum information the-

ory.

Definition 1.5.7. Let H be a finite dimensional Hilbert space. Then the

set

D(H) ={p € Bwa(H) : p 2 0, tr(p) = 1}

is called the set of states of H.

Definition 1.5.8. Let H be a finite dimensional Hilbert space. Then a state

p of H is called pure if there exists a unitary vector y such that

o = lyXyl.

Definition 1.5.9. If H is the tensor product of a finite family of finite

dimensional Hilbert spaces, i.e.
H:H1®H2®"'®Hn,

then a pure state p of H is called pure separable if the unit vector x € H

for which p = |x){x| is a tensor product of unit vectors i.e
X=X1 QX Q- Q Xy,

where x; € H; are unit vectors.
In general, a state of H is called separable if it can be written as a convex
combination of pure separable states.

We will use the notation Sep(H) for the set of all separable states of H.
Remark 1.5.10. The set Sep(H) is a convex body containing O in its interior.

Definition 1.5.11. The states of a tensorized Hilbert space which are not

separable are called entangled.
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1.6 Tools from Combinatorics and Graph the-
ory

In this section we give several definitions and results from combinatorics

that are used in the rest of the thesis.

Definition 1.6.1. We will call (simple) graph a couple (V, E) if V is a finite
set (the vertex set) and E is a subset of VX V: for all e € E, |e| = 2 (the edge
set).

Moreover, if A is the set of all graphs, we will work on the set A/ ~.
Here the relation ~ is an equivalence relation defined as follows: for two
graphs G, H we have G ~ H iff there exists f : V(G) — V(H) such f is an

isomorphism and
Vx,y € V(G). {x. y} € E(G) = {f(%).f(y)} € E(H).

Remarlk 1.6.2. In the previous definition, if we assume that |e| < 2 for all
e € E, we have allowed loops to exist in the graph.
Moreover if we assume that the set E is oriented, meaning that (x,y) € E

does not imply that (y, x) € E, then we get an oriented graph.

In the rest of the thesis we might come across to oriented graphs and/or
graphs with loops but it is sufficient for us to present and use properties

for simple graphs.

Definition 1.6.3. Let G = (V, E) be a simple graph. We will say that G is

connected iff
Vx,ye V Av, vg,..., 0 € V:i{x v}, {v1, 0},....{vc, y} € E,

meaning that we can “travel”, via edges, from any vertex to any vertex.
Any set of consecutive edges via which we can travel from x to y is called

a path that connects x and y.

Proposition 1.6.4. If G is a connected graph, then

IE(G)| = [V(G)] - 1.
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Definition 1.6.5. A graph G will be called a tree iff it is connected and
there exists a unique path from any vertex to any other.
One may also define a tree as a connected graph with no circles (meaning

that we cannot travel from any vertex to any other in two different ways).

Proposition 1.6.6. Let G be a connected graph. Then G is a tree iff E(G) =
V(G) - 1.

We end this section with a well-known theorem from combinatorics.

Definition 1.6.7. Let G be a graph. Then we will call G bipartite iff there
exist two disjoint sets X, Y C V(G) with X U Y = V(G), such that

{(xyye E=>=xeXyey.

Definition 1.6.8. Let G be a simple graph. Let M C E. We will call M a
matching of G iff

Ve, e M = ené€e =0.

If M is a matching, then a vertex x € V such that de € M : x € e will be
said to be covered by M.
Moreover we will say that G has a perfect matching iff AM C E such that

VxeVde, eM: xce<e,.

Theorem 1.6.9 (Hall). Let G be a bipartite graph with parts X and Y. Then
G has a matching that covers all the vertices in X iff for any subset A C X it
is true that

HyeY:dAxe€A:{xy}€E}>|A.

The proof of the results presented in this section can be found in [12].



Part 11

Random Matrix Theory

47






Convergence of the empirical

spectral distribution

In this chapter we prove three classical results from random matrix the-
ory. First we introduce the concept of the empirical spectral distribution
(E.S.D.) of an n X n matrix A which will be denoted by 4. More precisely,
if {A:(A)}iern) are the eigenvalues of A then

n

1
Ma = — Z Opy(a)

i=1
where 6 denotes the Dirac measure. In other words, the empirical spectral
distribution of a matrix A is exactly the discrete uniform measure on the
set of the eigenvalues of A.
So one may note that if A is a random matrix then p, is also a random
measure in P(R), the set of all Borel probability measures on R.
Then we present Wigner’s semicircular law [1], the Marchenko-Pastur

law [3] and Bai-Yin’s theorem on convergence to the semicircular law [4].

2.1 Wigner’s semicircular law

2.1.1 Convergence of the E.S.D.

In this subsection we present and prove a fundamental result from random

matrix theory first proved in [1] by Wigner.

Definition 2.1.1. A matrix [A];; € M, »[F] will be called a random matrix

if dip.jo € [n] X [m] and a probability space (€2, A, P) such that A, is a

49
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random variable from that probability space to F. Here F is the field we are

working with. Normally it will be either R or C. In the next chapters we

will work on either R or C and it will be insignificant to further clarify F.
Also, we assume that if there are more than one entries that are random,

all of them are defined on the same probability space.

Definition 2.1.2. Suppose A € M,. Then the following measure is called
the empirical spectral distribution (E.S.D.) of A:

Ua = %Z@?i,

where f,, ..., A, are the eigenvalues of A in increasing order and 6j, is the

Dirac measure at the eigenvalue A;.

Remark 2.1.3. Note that if A is random then the E.S.D. will be a random

probability measure.

Definition 2.1.4. The semicircular distribution is the probability measure

with density function
1j_2.91(x
o(x) = — 222 ;2]( ) Va2
T

with respect to the Lebesgue measure.
Remark 2.1.5. Note that the support of the semicircular distribution is the
closed interval [-2, 2].

We are ready now to present the main result of this subsection.

Theorem 2.1.6 (Semicircular law). Suppose A, n € N, is a sequence of

random matrices such that

1. A, € M,[R] and A,, is symmetric for alln € N, or A,, € M,,(C) and A,, is

Hermitian for alln € N,

2. For every n, all the entries of A, are independent random variables
with zero mean. Moreover the diagonal entries of A, are identically

distributed. Likewise for the non-diagonal entries.
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3. For every n € N, E(A,(1,2)?) = 1, and for every k € N,
max{E |A,(1,2)|, E|A,(1, D[} < 0.

Here A,(1,2) is the (1, 2)-entry of the matrix A, and A,(1,1) is the
(1, 1)-entry of A,..

4. For every n € N we have that A,(1,1) is i.i.d. with A,1(1,1) and
An(1,2) is i.i.d. with Any1(1,2), where, again, A,(i,j) is the (i, j)-entry
of A,.

Let X, = (1/4/n)A,. n € N. Then the empirical spectral distribution of X,

converges weakly in probability to the semicircular distribution.

We will use the following notation: for any probability measure u on R

and every function f,

(%f%:ijL
R

and if X,, = (1/+yn)A, are the matrices above, then

Un = %Z 6ﬂi

i€e[n]

and
_ 1
Un = E(; Z 6]"1)'
i€[n]
In order to prove the theorem we will need a number of lemmas and the

next remark.

Remark 2.1.7. It is easy to compute the moments of the semicircular law.
They are given by

5 0] if k is odd
(0,x") =
Cz% if k is even,

where
1 (2n)!

n+1(nh?’

n € N, are the Catalan numbers.




52

Lemma 2.1.8. For any positive integer k, (i1,,, X*), converges to (o, x*) as n

tends to infinity .
Note. Note that p, is not a random measure.

Proof. Our starting point is
k K 1 k
(ux,, x) = | x“dux, = —trX,,
R n
which holds true because both sides of the equality are equal to
(L/m)AY + -+ + ).

Taking expectations and writing ¢; for the (i, j)-entry of X,,, we get that

_ 1 <
B =~ D Bl Gl 2.1.1
i1,i,...,ip=1

To compute the sum in the right hand side of the equality we will use
combinatorial analysis. Consider a sequence I = (i, i,..., ) . This se-

quence can be thought of as a (multi)graph G; = (V}, E;) as follows:
1. It has as vertex set V; the set of distinct points of I.

2. A vertex in this graph corresponding to an i in I is connected via
an (undirected) edge with the vertex corresponding to i, for each

je{l,...,k}, with ik+1 = i].

Observe that there may be multiple edges between two given vertices and
that the number of edges in the graph G; (i.e., the cardinality of E)) is
always .

For each sequence I we define the weight of I, denoted by ¢;, as the car-
dinality of the vertex set V; of the corresponding graph (or equivalently the
cardinality of I). From the independence between entries and the fact that
each entry has zero mean, it follows that it suffices to only consider those
sequences I for which each edge in the corresponding graph G; appears
at least twice, as otherwise the expectation in (2.1.1) will be zero and the

sequence will not contribute to the total sum. So we only need to compute
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the sum over all sequences I for which t; < k/2 + 1, because if a sequence
I has weight t; > k/2 + 1, then there are t; indices j; < j, < -+ < jyi in [k]
for which the corresponding vertices in the graph are distinct and since
there is an edge of the graph connecting each i, with i, there would be at
least t; — 1 > k/2 edges in the graph between the distinct' pairs of vertices
G, Gy b Gy, Gyeads - oo AT, 1 §, 1), and as there are exactly k edges in each
graph corresponding to a sequence, there would not be enough edges left
to satisfy the requirement that each edge {u, v} in the graph appears at
least twice.

Furthermore, we say that two sequences I = (i}, ..., ) andJ = (jy, . . ., jk)
are equivalent, if there exists a bijection in S, i.e., a permutation of [n],
which, for every a € [k], maps i, to j,. Obviously, if two sequences I and
J are equivalent they have the same weight, as i, = i, & j, = jp, but
more importantly, since the diagonal entries of X, are i.i.d., and the same
is true for all non diagonal entries, their corresponding terms in (2.1.1) are
equal. Moreover, observe that the number of distinct equivalence classes
depends on k but not on n, since each class has a representative where
all i},iy,...,0 arein {1, ..., k} (we can assume that n > k since we will be
concerned with the limit as n tends to infinity).

Given a sequence I = (i, ..., i) with weight ¢, the number of sequences

equivalent to it is

nn-1)---(n—t+1)<n, (2.1.2)

because we obtain a sequence equivalent to I as follows. If {vy,..., v} are
the distinct elements of the set {i}, ..., i}, i.e., the vertex set V; of the graph
G;, we obtain a sequence J = (7(iy), ..., n(i;)) equivalent to I, where 7 is
a permutation of [n], simply by choosing the values n(v,), ..., n(vy), and
there are n(n—1)---(n—t+ 1) ways of doing this if these values are to be
distinct and lie in the set [n]. This then completely determines J, because
for each a € [k], iy = v, for some p € [t] and hence j, = n(i,) = (V).

As a result, for a sequence I = (iy, ..., i) with weight t; < k/2 + 1 we

1fj, = 1 and Jy = k. then the pair of vertices {i;, i1} = {i1, &} may coincide with

{iy,, i1} = {ik, 01}, i.e., we might have i = ip.
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have that

1 1 1
EEZil.iz GGt < Croe o W

with Ci; being a constant depending only on k and t (since A, has uni-
formly bounded moments for all n). So the total sum of all the sequences
equivalent with I in the sum in (2.1.1) is O(n""/?>71). So it is negligible as
n— oo,

Also, if k is odd then t # k/2 + 1, so the limit is zero (as one might
suspect from the previous remark). Next we focus on the case where k is
even and the equivalent classes with weight t = k/2 + 1 (and k/2 unique
edges since we can distinct k/2 edges by assigning every vertex, except
ir, to an edge which has this vertex as first coordinate and appears for
the first time in the sequence). For each such I we get that there are no
loops in the graph (meaning there are no equal successive points in the
sequence) since otherwise we could obtain the simple sub-graph, of that
graph, with all the vertices and all the edges (each edge once), except the
loops. Call that graph G. Then G is a connected (since there exists a path
from any vertex to any other vertex) simple graph. But |E(G)| < |[V(G)| - 1
which would be a contradiction. As a result we get that in every sequence
with t = k/2 + 1 we must have every edge appearing exactly twice. So for
each such sequence we have that

1 1 1
;Egil,iz T gik—l,ikgk,il = E ’ W’

(2.1.3)

since all the non diagonal entries of A, have variance one.

So by (2.1.2) and (2.1.3), we get that if k is even, and writing m for the
number of equivalence classes of sequences with weight k/2+ 1 and length
ks

lim (ﬁn,xk) =m.
n—oo
But since every class has a representative with vertices in [k] and every

type sequence with vertices in [k] belongs to a class, it does not depend of

n. For every sequence, with weight t = k/2 + 1, as above we define its type
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sequence (), as

szzai

J
i=1
where a; = 1 if the edge {j.j + 1} appears for the first time in the sequence,

and a; = —1 otherwise. So every type sequence has the following properties:
(i) It starts with 1 ends with O.
(i) |s; — sj-1l = 1 Vj € [Kk].
(it) s; >0 Vj € [K].

We will show that these properties characterize type sequences, i.e., every
sequence with these properties is a type sequence for some equivalence

class.

Proposition 2.1.9. Two sequences in [k] are equivalent iff they have the

same type sequence.

Proof. If two sequences (call them I and J) are equivalent then they have
the same type sequence since an edge will appear for the first time in I if
and only if it appears for the first time in J, which is true by what was done
before.

For the other direction we will use induction: For k = 2 the assertion is
true (obvious).

Suppose it is true for all m < k — 1. Then let I, J be two sequences with

the same type sequence ({s}ﬁ‘zl].

(i) We know that the corresponding graph of I and J is a tree. So there
exist at least two leaves in I and in J respectively. The leaves in
the sequences are the vertices that appear only once in the sequence
(otherwise, there would be at least four edges in the sequence that
would participate and since each distinct edge appears exactly twice

we would have a contradiction).

(ii) Every leaf of the corresponding tree of I belongs to a symmetric sub-

sequence of I with the leaf in the center of it (meaning a sub-sequence
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such that every edge appears twice, a first time before the leaf and
a second after, and every vertex appears also exactly twice, and in
each appearance it has the same distance from the leaf). Pick the

maximum such sequence for every leaf.

(iif) Note that a maximal sub-sequence of a leaf corresponds to a maximal
sub-sequence of the type sequence of I (or J) with the property that
it has the same number of +1’s and —1’s with the +1’s preceding in

the sequence.

(iv) Every maximum sub-sequence of the type sequence of I (or J) which
has the same number of +1’s and —1’s and the +1 appearing first,
corresponds to a path, with every edge appearing twice, in the graph
of I (or J) starting and ending at the same point. If not (let the length
of the sub-sequence be h) this implies that there exists i such that
the i-th (i > h/2) element of the sequence is —1 does not represent the
edge that appears at the i—h/2 spot of the sub-sequence. Then there
exists a circle in the corresponding graph of I starting and ending at
the first vertex of the edge which appears at the i-th spot of the sub-
sequence. This is a contradiction since the corresponding graph is a

tree.

(v) The end-point of every path mentioned in (iv) (the center vertex in the
corresponding sub-sequence of I or J) must be a leaf. For a given path
call that point a. This is true, otherwise there would exist a cycle in
the corresponding graph (from the vertex that connects with a in the
path to the vertex that does not belong in the path but connects with
a and to a) which would be a contradiction since the corresponding

graph is a tree.

So we have proven that a vertex is a leaf in the sequence I (or J) if and
only if there exists a maximal sub-sequence in the type sequence which
has the same amount of +1’s and —1’s and starts with +1. So a vertex is a

leaf in I if and only if the corresponding vertex in J is a leaf. So by deleting
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two leaves of I and the corresponding leaves of J and using the induction

hypothesis we get that I and J are equivalent. O

Proposition 2.1.10. Every sequence with the properties (i)-(iii) is the type

sequence of an equivalence class.

Proof. We will use induction. For k = 2 the statement is true.

Assume that the result holds true for all m < k. Suppose that {si}’l.‘=1 isa
sequence that satisfies (i)-(iii).

Using the same techniques we used in the previous proposition we get
that we can delete a maximal sub-sequence of s; that contains the same
amount of +1’s and —1’s in non-increasing order (since all terms of the
sequence are non-negative there exists at least one). If the remaining
sequence is empty then we associate the sequence to the sequence with
weight k/2 + 1 and length k

i=(i, ..., 02 G/osrs Gesos oo o0 1),

where (i), i, . . ., i/2+1) € [k]. If the remaining sequence is not empty then
we can apply the induction hypothesis and since the deleted sequence
corresponds to a path as mentioned in the previous proposition we get

that there exists an equivalent class with type sequence s;. |

So we need to count the type sequences of length k. We start by choosing
any subset of [k] of length k/2. Then we assign the value +1 to every g
with j in the chosen subset and —1 for every other j. But this way we have
allowed s; to be negative for some j € [k — 1].

We will prove next that in order to count all the sequences with a negative
term it suffices to count all the subsets of [k] with cardinality k/2 — 1. We

start with the next observation.
Fact: If X and Y are two finite sets for which there exists a surjective map
f:X —> Y, then |Y| < |X].

The proof of this fact is elementary since for every y in Y we can pick a

point x in X so that f(x) = y. Let A be the subset of all these points x in
X. Then, |Y| = |A] < |X].
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So let
k
X:{AQ[k]:lAl:E—l}

and
Y = {[SJ’.‘:0 : djo € [K] : 55, < O} N{ls; — si1] = 1} N {s,. = O} N {sp = O}.

We will prove that X and Y have the same cardinality using the previous
fact. For each sequence [s]}‘:O €Y, define q; = s;— 51, j € {1,..., k}. Since
[s] J’.‘: o determines [a] J’.‘: o and vice-versa, we can equivalently think of Y as
the set of sequences of length k, with the same number of +1’s and —1’s,
for which there exists j € {2, ..., k} such that there are more —1’s than +1’s
in the set of coordinates up to j.

Let f : X — Y be defined as follows. For A € X define f(A) by setting
a; = +1 for every j € A and also j is the largest integer with the property
that

U1 N (k] \ Al = max{[[i] N [k]\ Al i € [K]}. (2.1.4)

We will prove that f is well defined. Let A, B € X such that f(A) # f(B).Then
there exists i € [k] such that f(A); # f(B);. Without loss of generality
suppose that f(A); = 1.

Then either i € A in which case (since f(B); = —1 = i € B‘) we get that
B # A either i satisfies (2.1.4) for A and not for B (otherwise f(B); = 1) so
A #+ B.

Also f is surjective since for every y € Y we can define A to be the set of all
Jjwith s; —s;_; = +1 except for the largest j for which s;_; = min{s; , i € [k]}.
Then f(A) = y.

Conversely, let g : Y — X be defined as follows. Let {s;}, € Y. Pick the
smallest negative term. Note that the smallest negative term must be an
odd number. So let 21 — 1, where | € [k/2], be that number. We create a

new sequence {d;}X | setting

S; lf i < 2l -1
di = .
—s; otherwise
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Define g({si}fz 1) to be the set of j with d;—d;_; = +1. Note that the cardinality
of the set of j with d; — d;_; = +1 will be exactly k/2 — 1 (since 21 — 1 was
the first negative term).

The map described by the procedure above is well defined. Also, given a
subset (call it A) of [k] with cardinality k/2 — 1:

(i) We find the smallest coordinate that does not belong to A and there
are more coordinates which do not belong in A than the coordinates
that belong to A, until that point.

(ii) After that point we follow the reverse procedure to the one described
above for all the coordinates (assume that every coordinate in A is

assigned with +1 and every coordinate not in A with —1).

(iii) The result of that procedure will be a sequence in Y whose g-image

will be A. So, g is onto.

(iv) From the previous remark we have that |[X| = |Y]. As a result, since Y
is exactly the set of all the sequences which are not type sequences,

the cardinality of the set of all the type sequences is:

(k)(kl)c

which proves the lemma.

’

(e

Lemma 2.1.11. Fixe > 0 and k € N. Ther:
Tim P((pn. X" = (G X" > €) = 0.
Proof. From Chebychev’s inequality we get:
P(I(pn XY = (B XN > ©) < éIE(wn,xk)Q) ~ (B, XN

Again, as in the previous lemma, we can rewrite moments in terms of

matrix traces:

1
B s X)) = B, X2 = ¥|E<trx,’f)2 — (BtrX)?| (2.1.5)

= = > [BG% ~ EGEG
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where § stands for the product G i, & 1.6Guis I = (i, b, ..., 0) € [n]*
and ¢ is the (i, j)-entry of X,,. Similarly for ¢;.

As before, each pair (I,J) generates a (multi)graph with vertices

‘/LJ = (il, i2, e ,ik) U (jl,jz,. . ’jk)

and edges
E = (iyip, ..., i) U (o, - - - o Jic1)-

As before, the weight of (I,J) is defined as the cardinality of V;;. Also, as
in the previous lemma, two pairs (I,J) and (W, D) are called equivalent if
there exists a bijection on S, mapping corresponding indices. As in the
previous lemma, equivalent pairs of sequences have the same weight and
contribute the same in the sum in (2.1.5).

Also if a term in (2.1.5) corresponding to (I,J) is non-zero then we nec-

essarily have:

(i) Each edge in E;; should appear at least twice since the entries of X,

have mean zero and are pairwise independent.

(i) The graphs generated by I and J (as in the previous lemma) should
have at least one edge in common, otherwise from independence,
Eg¢ = EQEG.

So, as in the previous lemma, we get that for a pair (I,J) to be non-zero
we must have t < k/2+ 1+ k/2+ 1—-1 = k+ 1. More precisely, t < k. To
see this, suppose that t = k + 1. Then, since the graph produced by I, and
equivalently for J, must contain each edge twice, there could not exist a
common edge in I and J which is a contradiction.

Also, given a pair of sequences (I, J) there are n(n—1)--- (n—t+1) < n*"!
equivalent pairs (as in the previous lemma). Moreover, the contribution of
each such sequence in the sum (2.1.5) is O(1/n**?) since X, = A,/ Vn,
the entries of X;, are independent, and the moments of A, are uniformly
bounded for every n. Thus, the equivalent classes with weight t < k + 1
contribute an asymptotically negligible (@(#)) amount to (2.1.5). Finally,
since the number of equivalent classes depends on k and not on n (as in

the previous lemma) the sum in (2.1.5) tends to zero as n — co. O
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We are now ready to prove the theorem.

Proof of Theorem 2.1.6. To conclude that p,, — o in probability, in the weak
sense, we need to prove that for any bounded continuous function f : R —
R,

(U, ) — (0.f) in probability.

The trick is to replace f by a polynomial (by the Weierstrass theorem) and
thus, we can rewrite the integrals above as a linear combination of the
moments (since integrals are linear). Because f needs to be compactly
supported (and since o has support [-2, 2]) by Markov’s inequality we get

that .
(Hn, X5)
eblk
In the last inequality we used the fact that x*/5* > 1 inside the interval.

1
P({ptn, 1x* L 55) > €) < ;E«ﬂm Il 1 1g5)) <

Using the fact that Cy. < 4" and the previous lemma, we let n tend to infinity

and get
k

lim sup P({ptn, [x]*11g55) = €) < (0, x**) < %
which holds true for every k € N. Since the left hand side becomes larger
as k grows (the sets become bigger as k becomes bigger), the right hand
side must either be strictly increasing as k gets larger or zero. Since the
right hand side is decreasing as k grows, we get that the left hand side is
Zero.

Next, consider 6 > 0 and let f : R —» R be bounded and continuous (we
can assume that f has compact support, say [-5, 5], considering what was
done previously). Let ps be a polynomial such that |ps(x) — f(x)| < 6/4 for
all x € [-5, 5]. Then, from the triangle inequality we get

K. ) = 0. O < K. f = )2 = {0.f = ps)| + Kin. P5) = (0. ps)l.

Splitting ps into the parts where it is smaller or bigger than five in the first

inequality, and by the way it was chosen, we get:

5
[{ttns ) — (0. )] < gt [{ttns Ps1ix=s)| + [{tns Ps) — (Hns P

+ [(tn. ps) — (0. ps)-
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Applying this inequality we get
6
B(Kpn- £ = $0.1)| 2 6) < B(Kpn Ps Lo 2 )

+ Bt o) — (T PN = 3)

+ B(Gr. o) = 0Pl 2 5).

The first term in this inequality tends to zero from what was done before,
and the same is true for the second and the third by the previous lemmas.

O

We can also prove that the convergence can be stronger (meaning almost
surely).
Remark 2.1.12. For any fixed k there exists a constant C, not depending

on n such that for sufficient large n:
Cx
B s XD = B, X*))?| < =
We have essentially proven in lemma 3.9 that the term above is O(1/n?) .

Corollary 2.1.13. The convergence in the semicircular law is with probabil-

ity 1 (almost surely).

Proof. By Chebyshev’s inequality,

- o1
2 Bk X = T XN > ©) < 3 1B, X)) = . )
n=1 n=1

<c+ E 5
n
n=1

where c is a constant, since the inequality in the previous corollary is true
for large n.
So, the corollary follows from the Borel-Cantelli lemma. Using the same

techniques as in the proof of the semicircular law we conclude the proof. O

Remark 2.1.14. It has been proven that for the convergence as presented
in Corollary 2.1.13 we can assume that only the second moment of the
entries is finite. The proof of this generalisation is done by approximation
via matrices with entries which have all their moments finite. For a proof,

see [13].
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2.1.2 Gaussian isoperimetry

In this subsection we present the main isoperimetric inequalities for the
Gaussian measure on R" and concentration inequalities that are conse-
quences of them and will be used in the next subsection. We start with the
definition of the concentration function in the general setting of a metric

probability space.

Definition 2.1.15. Let (X, d, u) be a metric probability space. The concen-

tration function of the space is defined on (0, o) as follows:
1
a,(t) = SUP{l - u(Ay) 1 wA) = 5},
where A, = {x € X : d(x, A) < t}.
Proposition 2.1.16. The concentration function satisfies
}im a,(t) = 0.

Proof. 1t is clear that the concentration function is decreasing. Now, let

O<e< % and x € X. Note that since

lim By, n) = Bl n) = X,
n—oo
n=1
by the continuity of the measure we get that there exists r € N such that
uB(x,r)>1-c¢
Then, for any Borel subset A of X with u(A) > % we get that

u(AN B(x,r)) > 0,

which implies that B(x, r) C A,,, since there exists a € A such that d(a, x) <
r, and hence for every y € B(x,r) we get d(y,a) < d(x, y) + d(y,a) < 2r.
Then, for every t > 2r,

1 - u(A) < 1= p(Ag) < 1 - pu(B(x, 1)) < e
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Now we are going to present Erhard’s inequality and, as a consequence,
the Gaussian isoperimetric inequality. We are going to give a sketch of
the proofs of both these fundamental results but we will not get into the

details. For more detailed proofs see [14].

Definition 2.1.17. We use the notation y, for the probability measure on

R™ with density function (with respect to the Lebesque measure on R")
dyn(x) = (2m) 2 e M2 dx,

Note: The probability measure y, can be thought as follows. For every
A € B(R")

Yn(A) =P(X € A)
where X is an n-dimensional random vector whose entries are independent
random variables such that X; ~ N(O, 1) for all i € [n].

Definition 2.1.18. We use the notation ®(x) for the distribution function

of the standard normal random variable.

Definition 2.1.19. Let n € N and k € [n]. Let F be an (n — k)-dimensional
subspace of R" and let e be any unit vector orthogonal to F. For every
A C R™ which is open or closed, we define A’ C R" (which will be called the
Gaussian k-symmetrization of A with respect to F along e) as follows. For

every x € I
(i) fy(AN(x+ F*)=0then A’ N(x+F*) =0.
(i) fy(AN(x+F*Y)=1then A’ N(x+F') =x+F".

(iii) If 0 < y(A N (x + F*)) < 1 then: if A is open we set A’ N (x + F*) =
H(e, a)N(x+F*), while if A is closed we set A’N(x+F*) = H(e, a)N(x+
F*). Here a is defined so that y (AN (x + F')) = yi(H(e, a) N (x + F1)).

We may also use the notation S(A) or Sr.(A) for the Gaussian symmetriza-
tion of A.

For every x € R" and any r € R we use the notation

H(x,r)={yeR": (y,x) > r}.
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Lemma 2.1.20. For any n € N and every k € [n], any k-Gaussian sym-

metrization S has the following properties:

(i) IfA C B then S(A) C S(B).

(if) If {Aj}jen are open subsets of R" then S(U;4;) = U;S(4;)).
(ii) Spu(A°) = [Sp-u(A)]°.
(iv) Spu(A) + (F +(u)* = Spu(A).

(v) For any z € F we have S(A + z) = S(A) + z.

(vi) If B€ B(R") and F*+ + B = B then

Ya(BN A) = yo(B N Spu(A)).

Moreover,
Yn(A) = Ya(S(A)).

(vii) If S is a 1 or 2-Gaussian symmetrization and A is a closed subset of
R™ then S(A) is also a closed subset of R™.

Theorem 2.1.21. [f C € R" is closed and convex then every Gaussian

symmetrization S(C) of C is convex too.
For the proof of Theorem 2.1.21 we need some lemmas.

Lemma 2.1.22. Let Fy, F», F3 be pairwise orthogonal subspaces of R" and
let u € S*! be orthogonal to F;. Define S, = Sp+mu and Sy = Spyip . If A
and S,(A) are closed subsets of R" then

51(S2(A)) = Sp,u(A).

Proof. Set F = (F\ + F, + F5 + (u))*. By Lemma 2.1.20 (claim (iv)) we have
that, for every closed set A,

Si(A) =S1(A)+(Fi+F+u)" =S1(A)+F;+F
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and
S2(A) = S;(A) + Fy + F.
Also, by the previous lemma, since F; C F} + F; we get that
S1(S:(4)) = S1(S:(A)) + Fr.
Using the previous equalities we get
S1(S2(A)) = S1(S2(A)) + (Fy + ()™
From Lemma 2.1.20, again, we have
Sk, u(A) = Sp,.u(A) + (Fy + (w) ™

Since for the sets S;(Sz(A)) and Sp, ,,(A) we may apply claim (v) of Lemma 2.1.20,
and since symmetrization preserves measure, if k = dim(F;") then for every

x € F, and for the set R, = x + F;- we have
Yie(S2(A) N Ry) = vi(A N Ry) = vi(S1(A) N Ry) = yi(S1(S2(A) N Ry)).
It follows that S;(S3(A)) = Sg, u(A). O

Lemma 2.1.23. Let m € N with m > 2 and k € [m] with k > 1. For any
Ie-Gaussian symmetrization Sg,, we can find 2-Gaussian symmetrizations
Ty, T,,...,T) so that

Spu=TyoTy0---0T_;.
Proof. Let v € (F + (u))*-. We define three subspaces as follows:
F; = (F + span{u, v})*, F, = F, F} = (v),
and apply the previous lemma for the symmetrizations
S, = SF1+F2,u’ Sy = SF2+F3,LL-

Note that S, is a 2-symmetrization so it preserves closeness of sets. So, for

every closed set A we get

Sy 0 S3(A) = Sp, u-

Setting Ti—; = S; and continuing inductively we can prove the lemma. O
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Proof of Theorem 2.1.21. We will prove the assertion of the theorem for ev-
ery 2-Gaussian symmetrization and by the previous lemma the theorem
will be true for every k € N.

Firstly we will prove it for 1-Gaussian symmetrizations. Let u € S*!, set
F = (u)* and consider the 1-symmetrization Sr,. The symmetrization is
done along the lines of the form R, = x + (u) where x € F. Let A C R" be

convex and closed. We clearly have
ANR, = x+ D{u)

where D C R. Then D is convex, since both A and R, are convex. So let

a, b € D. Then for any c such that a < ¢ < b we have that

b—c)b b-c

C=(1— +
b-—a b-—a

a € D.

So, D is an interval. Also, since A and R, are closed, we get that D is also

closed. So,
R.NA=x+][ay, by], a,, by € RU {—00, +o0}, a, < b,.

As aresult we get that since S(A)NR, = H(u, ¢c,)NR, and hence y;(ANR,) =
y1(H(u, ¢) N R,), we must have

S(A) NR, = [Cx’ oo]u + X,

where ¢, = —® 1 (®(b,) — D(ay,)). So, for the convexity of S(A) it is sufficient
to show that, for every x,y € F and any A € [0, 1],

S(A) N Raxs(1-pyy 2 ASA) N Ry) + (1 — A)(S(A) N Ry),
which is equivalent to the following inequality:
[epes1-mys 0] 2 Alce, 0] + (1 = Aley, 0]
So it is sufficient to show that

Cx+(1-pyy < Ac + (1 — A)cy,
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which is equivalent to the following:

q)_l(q)(bﬂx+(1—ﬂ)y)) - (D(aﬁx+(1—ﬁ)y))
> ADH(D(by) — D(ay)) + (1 — D (D(by) — D(ay)).
Let d; € ReNA and dy € Ry N A. Then, for any i € [0, 1], we have that
Ady + (1 — ANdy € [Ax+ (1 — Dy + (w)] and Ad; + (1 — A)dy € A since A is

convex. So,
Ax+(1=My+Alax, bl +(1-MDlay, byl € Ax+(1 =Ny +[aaca-ny» Pax+a-ayl-
which implies
Apxr(1-pyy < Ay + (1 = A)ay < Aby + (1 = by < baxr-py-
Then, we show the following, which will imply the desired inequality:

O~ (Db, + (1 = Mby) - O(Aa, + (1 — A)ay))
> A0 (@(by) - ©(a)) + (1 = NP (D(b,) — D(a)).

So we need to prove that the function g(a, b) = ®~(®(b) — ®(a)) on {(a, b) €
R? : a < b} is concave, which can be proven by computing the Hessian
matrix of g.

In order to show the theorem for any 2-symmetrization, it is now enough

to prove the following.

Lemma 2.1.24. Any 2-symmetrization in R" is the limit a sequence of com-

positions of 1-symmetrizations.

Proof. We will show the lemma in R?. One can check that the following
sequence {Tj}jey of symmetrizations approaches any 2-symmetrization in
R2:
’1}:Sjosj—lo"'osloso,
where
S

% = Seﬁvej
and
31 . . (31 »
e = [cos(— +2 Jn),sm(— +2 Jn)].
2 2

Note that ¢; + ¢, L e, and ¢; = —ep. O
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Proposition 2.1.25. Note that for every c,c’ > 0 and any closed A € R",
and x € T;(A),

X+ cey + e € Ti(A).
Proof. For a proof see [14]. O

Combining the previous lemma with the fact that every 1-symmetrization
preserves convexity we get that every 2-symmetrization preserves convex-

ity. O

Theorem 2.1.26 (Erhard’s inequality). For every pair of non-empty closed

convex subsets A, B C R" the following inequality is true for every A € [0, 1]:
O (v (AA + (1 — MB)) > AP (y,(A) + (1 = AP (y.(B)).

Proof. A sketch of the proof is the following. Firstly suppose that A and B

are also compact. Then consider the sets
A"’ =Ax{1},B = Bx{0}

and
C={yeR"™ :y=aa+(1-A)b,acA’,beB,Ac[0,1]}.

Let e = (0,0,...,1) € R*" and u = (1,0,...,0) € R*!, Obviously, u is a
unit vector orthogonal to (e). Since C is convex, we have that S ,(C) is

also convex. So it is true that
S(ONR"x{Ax+(1-Ay)}) 2 AS(C)N[R"X{x}]+(1-A)S(C)N[R"X{y}] (2.1.6)

since S(C) is convex. But for any z € R we know that S(C) N (R" X {z}) =
H(u, r,) N (R" X {z}), where r, is defined by

Ya(C N R" x{2}) = ya(H(w. 1) N (R" X {2}).

which implies that
O(-r,) = ya(CN R" X {2})).

So, 1, = ~O~ 1 (y,((C N (R™ X {z})). But, by (2.1.6),

rﬁx+(1—ﬂ)y < ﬁrx + (1 - ﬁ)ry-
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Therefore, the function
Q) = O (yu(CN R X (7)) = O (ya(AA + (1 — A)B))

is concave on [0, 1]. This completes the proof of Erhard’s inequality, since

it is equivalent with the following inequality:

Q) 2 (1 - MY(0) + AQ(L).
In the case of non-compact sets we can approximate them from the “inside"
by compact sets and thus prove the desired inequality in the general case.
O

Next we present the isoperimetric inequality for the Gaussian measure.

Theorem 2.1.27 (Gaussian isoperimetric inequality). Let A C R" be a Borel

set and define a € R by the equation
Vi((=c0, al) = yn(A).
Then, for any € > 0 we have
Yn(Ae) 2 yi(—00,a + ¢€),

or equivalently
D™ (ya(Ae)) = O (yalA)) + €.
A first proof may be given via Erhard’s inequality.
Proof of Theorem 2.1.27. Let A C R" and B = {x € R" : [|x]|; < 1}. Note

that
Ac=A+eB) =(1- A - A) Al + AA ' eBy).

From Erhard’s inequality we get
D (ya(Ad) 2 (1 = MO (ya((1 = A7 A)) + AD™ (ya(A ' €By)).

Now letting A — O™ it is clear by the continuity of ® ! and the continuity of
v that the first term of the right hand side of the previous inequality tends
to @ !(y,(A)). For the second term we observe that

A (A eBY)) = e(A7 e) O (yu(A " eBY)) o e,

which proves the desired inequality. |
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We shall give a second proof of the Gaussian isoperimetric inequality
using the spherical isoperimetric inequality and the next lemma which is

attributed to Poincaré although it seems it was known before Poincaré.

Lemma 2.1.28. Let n € N. Then for any N > n we denote by Pyyin
the projection from R¥*! onto R™. Let o¥ = VNs" be the Haar probability
measure of the sphere YNS" of radius VN in RN*'. Then, for every Borel
subset A of R",

lim o"(Pyl, ,(4) N VNSY) = y,(A).

Proof. A sketch of the proof is as follows: Let {g;};cn be a sequence of in-
dependent random variables such that g; ~ N(0, 1) for all i € N. Also,
for every k > 1 let R2 = Y g?. Then the distribution of the random
vector %(gl,gg, ....gn+1) is oV, So, the distribution of W‘/i(gl,gz, e gn)
is 0"(Pys1,). Note that R, R2 | — R2 and Rln(gl,gz, ....gp) are pairwise
independent random variables. So, R2/R% ., and Rin(gl,gz, ...,0gn) are in-

dependent. Also note that from the properties of the y-squared distribu-

tion (see the previous subsection) RZ2 ~ Gamma(n/2,2) and Ry,, - R2 ~
2
Gamma((N + 1 — n)/2,2). So m—"— ~ Beta(Z, =) It follows that
nt Ry —Ra

VN

oV(Py!, (A N VNSY) = P( (1.2, - - gn) € A)
RN+1

VNR, 1
=P( —(g1,--..9n) €EA|,
RN+1 Rn

which implies that

o"(Py!, .(4) N VNSY)

1
1
= 1 .
fs fo (01X VNEA B /9 (N + 1 — ) /2)

Setting r = VNt we get

N+

R dtdo"(x).

t27(1 - t)

oV(Py!, (A) N YNSY)

VN 2

2 +1-n

= B(n/2.(N +1-n)/2)" = f f La(ror"™ (1 = =) drdo” (x).
s+=1 Jo
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By the dominated convergence theorem we get

2 0 P
lim o"(Py}, (A) N VNSV) = —f f La(r)r" e = drdo™(x
lim 0"(Py, () )= R o ) 1A 0"(x)
which is exactly y,(A) in polar coordinates. m|

Now we can return to the proof of the Gaussian isoperimetric inequality.

Second proof of Theorem 2.1.27. Firstly note that for S*!, the unit sphere
in R" equipped with the geodesic metric, there exists a similar result to the
Gaussian isoperimetric inequality, the spherical isoperimetric inequality,
which states that:

Given a € (0, 1) let By(x, r) the ball with the geodesic metric q(x, y), such
that s"(By(x,r)) = a. Then, for every A C S™1 such that s"(A) = a and for
every t > 0 we have that

s"(Ay) = s"(By(x, T + t)).

So the previous lemma reduces the proof to the isoperimetric inequality
on the sphere. Moreover, for a Borel set A C R" and an a € R such that

®(a) = y,(A) it is true that, for sufficient large N € N and any b < a,
oV(Pyl, (&) N YNSY) > oV(Pyl, (=00, b) N VNSY).
Also, for any t > O one can show that
Pyl (A) N VNSV 2 [Py, .(A) N VNS,

Here in the right hand side of the inclusion the t-extension is taken with
respect to the geodesic metric. A very important observation is that the set
Pyl (=0, b) N VNSV is a geodesic ball in VNSY. So, by the isoperimetric

inequality on the sphere, we have

sV(PL, (A N VNSY) > sV([PyL, .(A) N VNS
> O'N([P;]_lfl,l(_ooy b) N \/]_VSN]t)
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One can show that
[P~}(~c0, b) N VNSV, = P}(~c0, b+ ay) N VNSV,
where

lim ay =t

N—oo

So, by the previous lemma,
Yn(A¢) = O(b + t).
Since this last inequality is true for any b < a, we get that

A consequence of the isoperimetric inequality is the following lemma.

Lemma 2.1.29. If f : R" — R is 1-Lipschitz and My is the median of the
function on the probability space (R", y,, B(R")) then

Yallf = My 2 ) < 2y1(t, 00).

Proof. Let A ={x € R": f(x) > My} and B = {x € R" : f(x) < My}. From the
definition of the median we have y,(A) > 5 and y,(B) > 3.

So, there exist a, b > 0 such that y;(—o0, a) = y,(A) and y,(—o0, b) = y,.(B).
Also, since f is 1-Lipschitz we get that if y € A; then there exists x € A

such that ||x — y||» < t and hence
J@) =) = f00) +f(y) 2 —d(y. x) + My > My - t.

Similarly, if y € B; then there exists x € B such that |[[x—y||s < t. Therefore,
J@W) =50) - fO0) + f(y) <d(x.y) + My < t + M.

It follows that if y € A; N B; then

F(y) =Myl < t,
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which implies that
Yalll = Myl 2 ) < ya(A7 U BY) < yn(AY) + ya(B)).
On the other hand, by the isoperimetric inequality we have
Va(AY) < yi(a + t,+00) <y (L, +o0)

and

Yn(By;) < y1(b + t, +00) < y;(t, +0)

since a, b > 0. O
Finally, we shall also need the next simple lemma.
Lemma 2.1.30. IfZ ~ N(0, 1) thenP(Z > z) < ez for any z > O.

Proof. For any A > 0 and any z > O we have that

P(Z> z) = (%7 > 1) < e “E(e™) = e’ﬂZ% fR e T dx.

But

1 f X2 A2 1 (X—ﬂ)z 2
—— | e Tdx=e? fe_ 2 dx=e7
V2 Jr V2 Jr

since the density function for a random variable X ~ N(A, 1) is

1 =2
2

Jx(x) = me

As a result we get

2
P(Z>z)> e 7.

For A = z we get the desired inequality. O

2.1.3 Convergence of the extreme eigenvalues

In this subsection we seek the limit of the extreme eigenvalues of A,, when
Aij ~ N(O, 1).
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Lemma 2.1.31. If A is a symmetric n X n matrix on R (or hermitian, respec-
tively, on C) then
”A”oo = maX{_ﬂl;ﬂn},

where 1, is the smallest eigenvalue of A and A, is the largest one.

Proof. If A is symmetric then there exists an orthogonal matrix Q and a

diagonal matrix D such that
A= QDQ".
Also, if x € R" is such that ||x||; = 1 we get that ||Q" x| = 1 and the function
X Q'x
is a bijection. So,
lAlle = sup |x"Ax|= sup |x"QDQx|

{xeR™||x|l2=1} {xeR™:||x]l2=1}

= sup |y'Dy| = max{-7;, A.}.
(yeRm:yllo=1}

O

Lemma 2.1.32. [f A is an n X n symmetric or hermitian matrix then we have
lAlleo < [|Allss-

Proof. Let {A;}in) be the eigenvalues of A. Then, for every i € [n],

A< ()"
j=1

NI~

So,
max |7 < () 7).
O

Therefore, in the space M;“ of all symmetric (or Hermitian) n X n matrices
with the Hilbert-Schmidt norm, all we get is that the function || - ||, is 1-
Lipschitz.
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Proposition 2.1.33. Let A,, be a symmetric (or Hermitian) random matrix
whose entries are independent random variables with standard normal dis-

tribution. Then,
EllA.llo < 2Vn.

Proof. We will prove it for Hermitian matrices. The symmetric case is
similar.
Let A € M,(C) be a Hermitian matrix whose entries are independent

random variables such that
{a;j}jen. { ‘/ERe(aj,k)}j<k’ { \/Elm(aj,k)}j<k ~ N(0, 0°).

So, the probability distribution i of A (as a probability measure on the set
M:%(C) of self-adjoint matrices) has density

tr(HZ)) -

d]l.(H) = C1 €Xp (—2—02

where
1

a= (2mo?)v/2
and dH is the Lebesque measure on M;*(C).

If we consider the set
A=, As,.... ) ER" A1 <Ay << Ay}

it is known (see [15]) that the function h : M;* — A, which sets the
eigenvalues of a self-adjoint matrix in increasing order maps the probability

measure i, mentioned above, to

-1 &
h(dp) = du(h™) = ¢, ]_[ (A — M)? exp(ﬁ Zﬁi} df,dy- - - df,,,
k=1

1gj<ksn

where ¢, > 0 is another normalization constant:

n—-1 -1
¢, = n”(”_l)/zl—[(j!)} :
J=1
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Hence, after averaging over all permutations of A = (7, A, ..., A,) we get
that for any symmetric function ¢ : R* — C one has (when both integrals

are defined)
f (p(ﬂl(H)!ﬁZ(H);---,ﬂn(H))dH:f p(MNgNdi dily: - - dily,
sa R

where

_ Coy 9 -1 T 9
g = ) l_[ (A — )" exp (2—02 ;ﬂk}

1gj<k<n

The marginal density

h() = f IR, P - .. Ay d,
Rn—l

can be computed explicitly (see [15]). Moreover, for 0% = % we have
n—1
() = > gr(A)
k=0

where
_ 1 ~2 ()
Pi(x) = (Vrkl2h)i/2

Here {H}key, are the Hermite polynomials defined as follows:

d°
Hil(x) = (- 1)’“‘(ka )

So, in general one can show that for any o>

= n\/2_022 (202)

In order to prove the proposition we need the following lemma.

Lemma 2.1.34. Letf : R — R be a Borel function and consider the mapping
A f(A), a € M%(C) obtained by the usual function calculus for self-adjoint

operators on Hilbert space. Then,

E(tr(f(A)) = n fR Jh()dA

given that the right hand side of the equality is well defined, i.e. either f > 0
or fR lfhldA < oo.
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Proof. By what was done before, and since the function

tr(f(A) = ) F(A(A))

is a symmetric function over the eigenvalues of A, we have
E(tr(f(4)) = f Zf (Ag(, Az, - - ., A)dArdAy: - - Al
U

But one can easily verify that g is invariant under permutations of the A;’s,

SO

E(tr(f(A))) = n f SR AA.
R

For the general case we can consider f* and f~. |

Corollary 2.1.35. Forany s € C,

1 n—1 ﬂ
E A))) = sA d
(tr(exp(sA))) s Re 2 ¢k(o \/5) A

2 2
= nexp(sza )(D(l -k, 2,-5%0%),

where ® is the hyper-geometric _function defined for any a, ¢, x € C by

O(a, c, x) =

In order to proceed we need the following lemma.

Lemma 2.1.36. Let 0 = 1. Define C(p, n) = E(tr(A%P)). Then, C(0,1) = n,
C(1,n) = n? and for every n € N the numbers C(p, n) satisfy the recursion

Sformula

C(p.n)(4p + 2) N p(4p* - 1)
p+2 p+2

Clp+1,n)=n C(p—1,n).

Proof. Let a, c € C such that ¢ € Z \ N. Then the function

x — O(a, c, x)
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is an entire function which satisfies the differential equation (y = ®(a, c, x))

2

dx2+(c x)——ay 0

(see [16]). By what was done before we get

2 2

E(tr(exp(sA)) = n exp( )(D(l -n,2,-s%).

But since all the moments of sA are finite, by the properties of the mo-
ment generating function (note that A has the same distribution as —A so
E(tr(A2971)) = O for any q € N) we get

S
E(exp(sA)) =
<= (2p)!

It follows thus, that c((zp )r:) is the coeflicient of x* in the power series expan-

sion of the function
on(x) = nexp( )dD(l -n2,-x).
Since ®(a, b, x) satisfies the differential equation mentioned above, we get

X0!(x) + 20 (x) (z ; n) 0a(x) = O

Therefore, o,(x) = > p=0 a,x? where a,, = c(g;)r:)- Going back to the differential

equation and equating the power series we get
1
(p+ Dp +2)0p1 = nap = Gy =0

for p € N and
2a; — nag = 0.
So, since tr(I,) = tr(A%) = n we get the recursion formulas. O

The above discussion shows that the quantity d, := = E(tr(A%P)) =1

p = 1 and dy = 1 satisfies the recursion formula

np22p for

2p—-1 -1D)2p-3
p A+ p(p—1)(2p-3) d s
2p + 2 4n?2p

p =
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and d, = §. Since we know that for p € {0, 1}

2p 1 L JG-1
= ”(p)zzp(m 1)1:1[(“ an? )

we may use induction and prove that for any p € N, the previous inequality

is true.
Next, using successively Stirling’s formula to majorize the binomial co-

efficient, the inequalities Zle JjGg-1) < %3 and 1 + x < € to estimate the

2/3

product, and denoting t = pn™“/~, we arrive at the following estimate:

o 3
e 12n2 ez
d<n =

T Nmpt Ven

This is valid for t > 0, at least if the corresponding value of p = tn?/® is

an integer. So, for t = 1, 3 and for sufficiently large p, by the continuity of
3

Il
el2

Vedr’

after a calculation we get
d, < e <1 = Etr(A%)"/? < 2vn.

By Jensen inequality and since for any p € N it is true that tr(A%P) > ||A?"||.,
we get
EllAlle < E(IA?P]l0)'?P < E(tr(A?P))'/?P < 2y/n.

O

Lemma 2.1.37. If f : R" — R is a convex function then the median My of f

with respect to the standard Gaussian measure y, on R" satisfies
My < E(f).

Proof. Firstly we are going to prove that the function g : t —» @~ !(y,{f < t})
is concave. Note that, since f is convex, for any t € R the set A; := {x e R":

f(x) < t} is convex: for any x,y € A and A € (0, 1) we have that
fAx+ (1 -y < Afx)+ (1 = ADf(y) < At + (1 — At.
Applying Erhard’s inequality we have

AP (yu(Ay)) + (1 = DD (ya(Ap)) < O H(yn(AA, + (1 — MAy)),
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which proves that g is concave. Note that g(M;) = O so there exists a
supporting line to the graph of g. More precisely, there exists a > 0 such
that, for all t € R,

g(t) < a(t — My) + g(My) = a(t — My).
An equivalent way to express the previous inequality is

vwf <th) <PZ<0),

where Z ~ N(M;, a™2). Since stochastic domination implies inequality for

the means of random variables we have

M; < E(f).

Now we can state and prove the main result of this subsection.

Theorem 2.1.38. Let A, a sequence of nXn real symmetric (or complex Her-
mitian) random matrices whose entries are independent random variables
all following the standard normal distribution. Then, for any epsilon > 0,
1
Pl ﬁAn >2+¢|l—0
and
1
P(ﬂn ($An) < -2 - 6) i 0,

where {A;(A)}i[n are the eigenvalues of an n X n matrix A in decreasing

order.

Proof. Note that

max (B (1 (=) 2.+ ) B, G, < -2~ o)}

(|

Z2+e)

(o)
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by Lemma 2.1.31. We have also proven in Lemma 2.1.32 that || - || is
a convex l-Lipschitz function on the space of the n X n symmetric (or

Hermitian) matrices with the Hilbert-Schmidt norm. So,
1
—A,

P(\m

Since the infinity norm is also convex, from Lemma 2.1.37 we have

22+ 6) = ya({lixlle = 2 Vn + e Vn}.

[

M. <E,.(llle) <2vn.

So by the previous lemmas we get that
P(lllqnlloo > 2 \/Fl + €\/ﬁ) < 2y1(€ ﬁ’ 00) < 2@% — O

Since it is obvious that P(limsup, A, < —2) = 0 and P(liminf, 7, > 2) = 0,

by the semicircular law the proof is complete. |

Corollary 2.1.39. By the Borel-Cantelli lemuna we conclude that
ﬂl(An) — -2 a.s.

and
AA) — 2 as.

2.2 Marchenko-Pastur Law

2.2.1 Convergence of E.S.D.

We are going to present now another important theorem in random matrix
theory which can be thought as a generalisation of the semicircular law
and was first proven in [3] by Marchenko-Pastur. The techniques and the
notation we are going to use are similar to the ones we used in the proof of

the semicircular law.

Theorem 2.2.1. Let X, € M, be a sequence of random matrices such that
all the entries are i.i.d., E(X;;) = 0 and E(Xlzyl) = 1 and X;; has finite

moments, as in the previous theorem. Let

1
Sp= =X X" €M,
n
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Also let u, be the the E.S.D. of S,,. Assume that p(n)/n — y € (0, 1]. Then u,
converges (weakly) to u almost surely, where u is the deterministic measure

with density (with respect to the Lebesque measure)

1
duy=—— (b—x)(x - a)las)csb
2nxy

and
a(y) = (1 = Vy)*, by) = (1 + Vu)*.
Remark 2.2.2. Observe that if y = 1 then u is the semicircular distribution
under the mapping x — x2.
In order to prove the theorem we will need the following.
Remark 2.2.3. It is easy to compute that:

[ra-S L)

r

—~

Lemma 2.2.4. It is true that

(P, XY — (u, X5).

Proof. Some details of the proof will not be explained because the tech-
niques that are used are the same as in the proof of the semicircular law.
We have

k
G, X< :—E(Zﬁl)— (%) 2.2.1)

pnk Z E(X11J1X12J1X12J2 " XX Jk)

where I € [p]* and J € [n]*.

Note that each term in the sum (2.2.1) is associated with a bipartite
(multi)graph with vertex set V = TUJ and edge set the coordinates on each
term of the product in (2.2.1), meaning E = U (i) (im, jm)Ymeri (m+1 (mod k)»Jm)-
We can imagine the edge set as a sequence E = (i}, i, s, jo, - - - , I, jx, 11) such

that any two successive terms of the sequence are edges.
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As in the previous theorem, in order for a term to be non-zero, each edge
must appear twice meaning that we have at most k edges, and as a result
at most k + 1 vertices in each such graph.

Suppose that the vertex set of a term (I, J) has cardinality < k. Then let
V = A+ B where A is the cardinality of I and B is the cardinality of J. Then
the total number of ways of choosing A vertices for I and B vertices for J
is bounded by Cp*n®, where C is a constant independent from n. So, the

contribution of these terms in the expectation is
o(p*n®/pn*) —, . 0.

Thus we need to look at graphs with exactly Ik + 1 vertices and k edges
(meaning there are no loops and every edge appears exactly twice in the
sequence and more importantly in reverse, meaning (i, j) and (j, i)).

Let (I, J) be a pair, where card(I) = r+ 1 and card(J) = k—r. The number
of equivalence classes (there exists a bijection of [n] X [p] mapping each
term of one graph to another) is the number of permutations of r+ 1 objects
from p distinct objects and the same respectively for k — r objects from n
distinct objectd. So,

5 i R C)
B[+

(2.2.2)

where D, is the number of equivalence classes with r+ 1 I-vertices and k—r

Thus:

k-1

1
<ﬂn' xk> = pnk Z E(Xi1J1Xi2J1Xi2J2 o 'XikaXile) =
ILJ

r=1

J-vertices. Letting n — oo in (2.2.2) we get that it is sufficient to show that:

o= )

So we need to count D,. In order to do that, for every equivalence class we

define its type sequence [si]l.zzk1 = 1 if in the edge (j,j + 1), j + 1 appears for
the first time in the sequence and j+ 1 € I, and = -1 if in the edge (j,j+ 1),
Jj appears for the last time in the sequence and j € I, Otherwise, we set

=0. O
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Proposition 2.2.5. Every type sequence is well defined, meaning that each

sequence in an equivalence class has the same type sequence.

Proof. Given two pairs (I, J) and (W, V) with the same type sequence {s}?:k1

we can use Proposition 2.1.9 for the sequence {d;}*, = {s;: s; € {-1, 1}} to
find a subgraph of each pair which are equivalent. So we can prove the
proposition by adding at the graph above all vertices of J and V respec-
tively, join all edges between an element of I and an element of J that are
successive with the same direction,and lastly delete all vertices amongst I
and W respectively. Using the same technique for the a sequence with J
and W to be non zero and Proposition 2.1.9, we get which points are equal
and that J and W are equivalent. So after we merge the elements of J and
W that are equal we get the same graph. As a result the two pairs are

equivalent. O

Proposition 2.2.6. Every sequence has the following properties which uniquely

determine it:
() Ifiis odd thens; € {O,—1}.
(ii) Ifiis even then s; € {1, 0}.
(iii) For everyl € [2k] we have that 25:1 s; > 0.

(iv) #{i:s; =1} =#{i: s; = -1} = r (since Vi € I we get that i appears
exactly once for the first time and once for the last time and those times

can not be the same).
(v) As a result of the previous properties, Zizzkl s; = 0.

Every type sequence has the properties above (obviously) and every se-

quence with the properties (i)-(v) is a type sequence.

Proof. Given a sequence [s; fzkl with the properties above firstly we dis-

tinct the non zero terms and construct a graph as in the equivalent case
in Proposition 2.1.10. After that we use the same method as in Proposi-

tion 2.1.9 and construct the graph we want.
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So we need to count all the sequences with the properties (i)-(v). If A is
the set of all those sequences and X, = (j C [b] : |j| = r) then we define

f:A—)XkXXk_l

where f sends every sequence to the support of the even elements of the
sequence (under the mapping 2m — m) times the support of the odd
elements of the sequence (under the mapping 2m — 1 — m). Note that
Sor = 0 so we just need a subset of [k — 1].

Obviously, f is well-defined and 1-1. Also, every subset of Xj X Xj_;
under the mapping f -1 satisfies the properties (i), (ii), (iv) and (v). So we
just need to count all the subsets which fail property (iii).

So let {si}%:k1 be a sequence that fails property (iii). Then there exists
l € [k] such that Z?:l s; < 0. We pick the smallest [ with that property.

Then we create the following sequence:
d; = s; Vie[2l-1]U {2k}
(dai, dais1) = (Soi, Soiv1) U I<i<k-1 and
[(si, sir1) =(0,0)  or  (si,s41) =(1,-1)]
(d;, dis1) = (Si41,S;)  otherwise.

Now the sequence d; has r+ 1 odd elements assigned with —1 (and the rest
0) and r — 1 even elements assigned with +1 (and the rest 0). The mapping
above is clearly well-defined (since there will be one more +1 in [2], 2k] so
in the “reflected” sequence d; this will be reversed so there will be two —1’s
more than +1’s). Also the procedure above is reversible. Given a sequence
with r + 1 odd elements assigned with —1 and r — 1 assigned with +1, and
the rest O, firstly find the first odd number with more —1’s than +1’s until
that point, and then follow the reversed procedure. So the set of sequences
with a negative term has cardinality equal to the number of ways in which

we can pick r + 1 —1’s from k of them and r — 1 +1’s from k — 1 of them.

O 1 R T ey
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Lemma 2.2.7. It is true that:

Ci
Varun(xk) < PR

Proof of Theorem 2.2.1. The proof of the lemma above and as a result the

proof of Marchenko-Pastur law are exactly the same as the proof of the

corresponding steps in the proof of the semicircular law. O

Remark 2.2.8. If y > 1 then one can show that a similar result is true. A
sketch of the proof is the following: Since rank(S,) = min{p, n} we will have
roughly n(y — 1) zero eigenvalues. Since u, = iZle 65, we see that there
will be (1-y™ 1) at 0 in the limiting measure. Since the non-zero eigenvalues

of XX* and X*X are the same we get that the limiting distribution is
(1 -y o + 1.

where p is the same as in the Marchenko-Pastur law.

2.2.2 Convergence of the extreme eigenvalues

We will continue this section with the proof of some results about the limits
of the extreme eigenvalues of S,, = rlanX:;, where X, , is a matrix as in the
beginning of this section, with i.i.d. entries that have distribution N(O, 1).

The results presented where first proved in [6].

Theorem 2.2.9. Let X,,,, be as above. Let i, (%Xp,nX;,n) be the smallest

eigenvalue of the matrix ,—IIXp,nX;,n and p/n — y where y € (0, 1]. Then

. 1
lim 7, (Exp,nxp‘n) - (1- VD)™
p.n—0oo

Proof. First note that the conditions of the Marchenko-Pastur law are sat-

isfied. So we get
Un — U weakly almost surely,

where p, is the E.S.D. of ,—IIXp,nX;,n and u is the measure with density (with

respect to the Lebesque measure)

1
dy=—— (b —x)(x — a)l-anSb
2mxy
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a(y) = (1 = >, b(y) = (1 + Vy)*.
Let S, = %Xp,nX;_n. The proof of the theorem is based on the following

lemma and definition.

Lemma 2.2.10 (Gershgorin circle theorem). Let A be a complex nXn matrix
with entries a;;. For eachi € [n] let R; = }.;,;|a;;| be the sum of the absolute
values of all the non-diagonal entries of the i-th row. Let D/(a;;, R;) be the
closed disc with center a;; and radius R;. Then every eigenvalue of A lies in

at least one of those discs.

Proof. Let A be an eigenvalue of A. Choose a corresponding eigenvector
x = (x;) so that one of its components x; is equal to 1 and the others are
of absolute value less than or equal to 1. We may always assume that
such an x exists, simply by dividing any eigenvector by its component with

largest modulus. Since Ax = jix, in particular we have
J

So, splitting the sum and taking into account once again that x; = 1, we
get

Z au)g +aq; = A.

J#i
Therefore, applying the triangle inequality,

Z ainJ' = Z |a1J||)9| < Z |aiJ| = Ri-

J#j J#i J#L

A - ai,il =

O
Returning to the theorem, note that since p is positive to the right of
(1 — y'/?)?> we immediately get
limsup A,(S,) < (1 — y'/?)*.

Definition 2.2.11. Let {X;} be a sequence of independent standard Gaus-
sian random variables. Then, for every n € N we denote by x?(n) the

random variable

() = i Xl2
i=1
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Now we can return to the proof of the theorem. Assume that p < n (since
p/n — y < 1). We will show inductively that we can replace S, by a matrix
which is easier to work with. Let O, be the matrix whose first column is
the first row of X, normalized, by the Gram-Schmidt method, and the
rest columns are non-random linearly independent n-dimensional vectors.
Then, X;Xn = X,xnO;}. After calculation one can see that the first row of
Xpin is (X5, 0,...,0), where X7 ~ x*(n) and X, > 0, while the remaining

rows are made up by independent N(O, 1) random variables. Now let O; be

a p X p orthogonal matrix of the form

1 o
0 O,

O, =

’

where O;_l is orthogonal, its first row is the normalization (by the Gram-
Schmidt method) of the first column (without the first element) of X;Xn, as
a vector in RP™!, and the remaining columns are linearly independent. So,

after calculations one can verify that

X, 0

1v1

Opoxn_ p-1 Vv(p—l)X(n—l)’
(0]

where Ys_l ~ x*(p—1) and Y,_; > 0, while W, 1xn-nisa (p—1)x(n—1)
random matrix made up by i.i.d. N(O, 1) entries.
Following the same technique one can show inductively that there exist

two orthogonal matrices Oy, and Opyx, such that

(X, O 0O 0 O
Y1 X,y O 0 O
Yp2 Xpo O O

© O © O

Opx pox nOnxn =

|0 0 0 0 Y, Xepuy...0 O
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So, after calculations one can show that S, is orthogonally similar (so with

the same eigenvalues) to the matrix D, with the following rows:

1
D, = —=(X?,X,Y,-1,0,0,...,0)
n

1
D, ;(0, 0,.... XnpraY1, YT + X2 )

and for every j € [p — 2] the (j + 1)-th row has non-zero diagonal element
_ 1o, 2
Dirjer = 2¥p + X

and non-diagonal elements
1
EXn—j+l Yp—j’ EXn—j Yp—j—l ’

where {Y;}.en, {Xi}nen is an independent sequence of random variables such
that X2, Y2 ~ x*(i) and X, Y; > O, for each i.

By Gershgorin’s circle theorem we get

n-p+1

(1 1
mqu#ﬁ—&nnﬁwﬁxa Xopra Y1),
1
min —(V; + Xy = Xojir Yoy = Xy Ypy1)}-

Now notice that for a sequence of independent random variables {Z,}cn
such that Z, ~ x%(1) for every n € N we have
.4
P(Z, =0)=0=1lim— =0 a.s.
m m
and by Kolmogorov’s strong law of large numbers for i.i.d. random vari-
ables and the fact that E(Z;) = 1,

Xz(m) _ 221:1 Zn
m m

—mooo 1 a.s.

From these results and the assumption that p/n — y € (0, 1] we get

1 X2 \p-1X, Y,
—(X? - X, Y1) = — - =2
n n Vn yn+p-1

—1-4/y-1 a.s.

and likewise
Y2+ X2 Xn-p+a Y1

n—p+1 -

- 1-y a.s.
n
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Notice that
1-y>1-+y=>(1- vy’
Also, for 0 < ¢ < 1 and s, m € N, by Markov’s inequality we see that
P(etxz(m)—tm > etse) < e—tseE(etx2(m)—tm) — g tse-tmpg (ezT:lZ”t)
= e (BB Dtyym,

Now we will show a concentration inequality for a random variable Z ~
x%(1). Let t € (0,1/4). Then

1 0 2 722
E(exp(t(Z - 1)) = o f e Ve2 dz.
T J-

Setting y = V1 — 2tz we get

—t
-2

e2 dy=

et °
E(exp((Z — 1)) = ———— €
(exp(( ) V1 -2t \[oo J 1-2t

But t € (0, 1/4), and hence

—t
e 2
< eZt .

V-2t

It follows that for t, € (0. min{}, £}) and m € [s],
P(etx2(m)—tm > etse) < e—tse (E(e(Zl—l)t))m < e2t2m—tse < e(2t2_te)s < 1.

Similarly one can show that for every O < € < 1 and s € N there exists a

constant ¢ < 1, depending only on €, such that for all m € [s]
P(e—tx2+tm > etse) < CS.

So we can conclude that for every € € (0, 1), s € N and m € [s] there exists

a constant a € (0, 1), depending only on €, such that

|

Returning to the proof of the theorem we have that, for € € (0, 1),

P({ max > e} U { max > e})
— n—(p—2)<m<n m<p-1

< Y (2p(n) - 1)4a™) < .

x’(m) m

S S

> e) < 2a’.

X2(m) m

n n

X?(m) m

n n

M

—
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Thus, by the Borel-Cantelli lemma, the following is valid almost surely:

{ max },{max }]) =0. (2.2.3)
n—(p—-2)<m<n m<p-1

In order to continue we need the following inequality.

Lemma 2.2.12. For any non-negative real numbers a,, ds, by, by > 0 it is

true that

X2(m) m

X2(m) m

n—oo

n n n n

lim (max

2 211/2 2 211/2 2 211/2 2 211/2
lay by — agho| < |aZ — a2|?||bZ — B2|'/? + |aZ — a?|"?|by| + |a||b2 - B?|M2.

Proof. We will use the following two facts.

Fact 1: For any two non-negative numbers,
a+b<(Va+ Vb)? = Va+b< Va+ Vb.
Fact 2: For any two non-negative numbers a, b we have that
la — b| < |a® - b?|'/2.
To see this, assume without loss of generality that a < b. Then
2a® < 2ab = (a-b)> < b? - a®> = |a- b| < |b* - a®|'/2.
By the previous facts we have

|a; by — agbs| < a;|b; — by| + byla; — ay
a;|by — by| + (|bs — bi| + by)la; — ay

a|b? — B2I'2 + (b2 — b|'? + by)a® - &2|'/2.

IA

IA

So,

1
A= 'E(Yz?—j + Xy Xnge1 Yooy = X Ypoyo1)

_(p—j+ n-—j Vn-j+I+vp-j +n-j \/p—j—l)‘
n n Vn Vn Vn Vn
Xnj1Ypj— Yyn—j Vp_j‘

n

2 . 2 .
Yooy = P—J| Xy —n—J

n
XnjYpj1 = Vn—jVp—j—1 ‘
n

+

E

n

+
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From the previous inequality and (2.2.3) we get

max A' — 0 a.s.
j<p-2 Y

But the expression

+

n n Vo Wn vno n

achieves its smallest value for j = 1. So,
p—-1 n—-1 +p-1 n-1 [p—2
+ - - 1/ —y+1-24/y.
n n \n n n Y vy

For the maximal eigenvalue, the proof of Ay — (1 + y'/?)? is similar.

p-j_ n-j_ Nn-j+T+vp—j ~n-j x/p—j—l‘

O

We use the same matrix D, and the fact that for every eigenvalue A of a

matrix A we have A; < max{ le |a;;|} from Gershgorin’s circle theorem.

2.3 Bai-Yin’s Convergence to the semicircular

law

2.3.1 Convergence of the E.S.D.

In this subsection we prove another generalisation of the semicircular law,
first proved in [4] by Bai-Yin. We are going to use the notation we used in

the discussion of the semicircular law.

Theorem 2.3.1. Let X, € M,y,, be a random matrix with i.i.d. entries for all
p and n (also i.i.d. amongst different p and n). Assume that n(p) — oo and
p/n — 0, also that E|X; ,|* < co and Var(X; ;) = 1. Let

1
A = ———(XX*—nl).
p=5 hnp( )
Then:
Ha, = O a.s.

where o is the semicircular distribution with density function 1\x|51% V1 - x2
and u, is the E.S.D. of A.
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Note that the k-th moment of o is Ck/2 when k is odd and zero other-
wise.

In order to prove the theorem we need several lemmas.

Lemma 2.3.2. Foreachp letY, = [X;;,] be a p X n random matrix with i.i.d.

entries, where n = n(p) — o and p/n — 0 as p tends to infinity, such that:
1. EX;,, =0 and EX}?, =1+ a,, wherea, — 0.
2. X1, < epni, where €, — 0 but epni — 400,

Let B, = [Z;;] be a p X p random matrix such that Z;; = 0 and

Then, ug, converges to the semicircular distribution o(x) almost surely.
Proof. As in the semicircular law we will prove the following:

L. (up,. x*) = (0. x").

2. Yo, Vary, (x¥) < co.

Firstly we prove (i). We write:

1
(s, X =E (1_9 tr B’g)

p(2 ,—pn)k Z E(X 11J1X12J1X12J2X12J3 ) XlkaXHJk)
where I C [p]® and J C [n]*.
Notation: We shall use the following notation:
- yw(ey, e,,...,ey)is the number of distinct elements among ey, . .., e,.

. I:(il,...,ik) andJ:(]'l,...,jk).
€ [p] and j, = [n], where a, b € [k].

- r=w() and c = y(J).
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- I'(I, J) denotes the multi-graph defined as follows: Let the I-line and
the J-line be two parallel lines, plot i}, ..., i, on the I-line and j; .. ., ji
on the J-line. These are the vertices. The graph has 2k distinct edges

joining the vertices as follows: iy, j, i, jo, - - -, U, Ji» U1

Let d,, denote the number of edges of multiplicity m (meaning the vertices
that are connected with exactly m edges). Obviously, for a given multi-
graph I'(I,J) we have

d1+2d2+"'+2kd2k:2k,

since each edge in I'(1, J) has multiplicity in [2k].

Now define
A(r,c) = {(I,J) . l//(I) =T, I/I(J) =C ,d1 = O,il Flh--F i # ll}
By the above definition we get:

I
1
(up, Xy = —— Z Z E(Xi, 1 X Xy o Xig g+ XX i)
’ p(2 pn) r,c=1 A(r,c)

k
=) Ses

r,c=1
where

S(r’ C) )k Z E(X11J1X12J1X12J2X12J3 t XikaXil Jk)'

(2 Vpn A(r,c)

We will prove that S,. — 0 as p — oo unless if r = k/2 + 1 and ¢ = k/2.
Note that

EIX;, 1, Xips X s Xy s+ - X X

i J14M Jo< gz fic Jie 21 ke

| < [EXy 0|V EXT, % - - [EXT|%x

< |1 + ap|k(€pn1/4)2k_2(d2+"'+d2k).

Since r + ¢ are the distinct vertices of the graph, we get that r + ¢ < d; +
dy +---+dy+ 1, because d; + dy + - - - + dyy is the cardinality of the distinct
edges. Also,

|A(r, 0)| < (p)rkck( ) < p'nerkck.
r c
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It follows that

1/4)2k—2(r+c—1) rck k (2 3 1)

|S(r, ¢)| < 1+ aplk(epn p'n°rec”.

1
p(2 /pr)*
We need one more inequality for S(r,c). Let L}, b,..., L be the different

values of J. Then,

b=1

C
E = B (X ju Xiy o Xiy o Xis s+ * Ko X ) = H EU—[ (XiaJaXiauJa))

ja=l

o

EX"HEX")---EX),

b=1

where ny,, g, . .., Ny are all > 2 (or else the mean will be zero) and s > 2
depends on b (meaning how many vertices from I are connected with the
b-th element of J). Then,

Cc
E| < ]—[(epnl/‘*)za Wa=25(1 + |a,))® < (epn' /A1 + |ay))*. 2.3.2)
b=1

Now, suppose that r # k/2 + 1 and ¢ # k/2. We distinguish three cases:

Case 1: r > k/2 + 1. Then since c+ r < k + 1 we have
1
5(r+c—1—k)§0.

By (2.3.1) and the assumption that p/n — 0, we get that |S(r, ¢)| — O.

Case 2: ¢ > k/2. Any J-vertex cannot be connected via an edge with
only one I-vertex since every two successive vertices are different, so there

would be at least 4c edges, which is impossible

Case 3: r < k/2 + 1, ¢ < k/2. In this case S(r, ¢) — 0 by (2.3.2). So we just
need to compute the case that k = 2misevenand r=m+ 1, c=m. In

this case, and since d; = 0, we have that
k+l=r+c<dy+ds+---+dy<1/2(2dy+3ds+---+2kdy)+1=k+1,

SO
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So, each edge appears exactly twice. Define two pairs I,J and W,V to
be equivalent if the following holds: two vertices are equal in I,J if and
only if the equivalent vertices are equal in W, V. Now by assigning to
each edge +1 if it appears for the first time and —1 otherwise we get, by
the corresponding lemma in the proof of the semicircular law, that the

cardinality of the equivalence classes is C,, (the Catalan number). So:

(u,, xX*™y = S(m,m + 1) = )ka(l +ay)* = 0(1).

1
p(2y/np
Letting p — oo and using the same method as in the proof of the semicir-

cular law we conclude the proof of (i).

The proof of (ii) is similar to the one of Corollary 2.1.13. O

Lemma 2.3.3. Let X be a real random variable such that E|X| < co. Then
ZP(lXI >n) < oo.
n=1

Proof. Let A, ={weQ: n<|X,(w)| <n+ 1}. Then

(59

Z nl, <X

i=1
So, by integration,

B nl,, <EIXI.

i=1

But, by the Beppo-Levi and Tonelli theorems,

Lemma 2.3.4. I[fE(X*) < co then there exists {€,} ,en Such that

1. ¢, — 0, but e,p'/* - co.
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2. P(X| > e,n'’*) < e, /n.

Proof. Since p/n — 0 we have that p < n if n is sufficient large. So, we can
assume that p(n) < nfor all n € N.
Let {a,} be a decreasing sequence such that a, — 0 but appl/ 5 oo

increasingly. We denote by 6, the sequence

6p = V}E()(4 1|X|>app1/4)'

Note that 6, is a decreasing sequence which tends to zero by the dominated
convergence theorem (for all p € N we have that X* > X41|X|>app1/4)' Then,
define

€p 1= max{6,, a,}.

Since a, < ¢, we get that eppl/ * — co. Note also that €, is non-increasing
and tends to zero as it is the maximum of two non-increasing sequences
which tend to zero. So,

E(X41|X|>enp1/4)

nP(X| > epn1/4) < nP(IX| > e,n'’*) < i
n

= <6, <€, <€,

:("3} | :c&

O

Lemma 2.3.5. LetY,,Y,, Ys,... bei.id. random variables such that P(Y; =
1)=qg=1-P(Y; =0). Then,

n
P(Z Y; - nq > ne] < g "lemah

i=1

foralle >0, ne Nandh € [0,1/2].

Proof. Let ¢ > 0, n € N and h € [O, %]. Then, by Markov’s inequality and

since the Y;’s are i.i.d. we get

P{ZY‘ > n(q+ e))

i=1

n
P(ezir‘:l hY; > ehn(q+e)) < e—hn(q+e)En eth
i=1

n
— e—hn(q+e) l_l Eeth — e—hn(q+e)(EehY1)n.
i=1
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But, Ee™ = e'q+1-q = (e - 1)q+ 1 and since for all x € (0, +oo] we have
x+1<e‘and e -1 < (h+ 1)h, we get that

E(ehYl) < e(eh—l)q < e(h+1)hq.

So,
n
P(Z Y; > Tl(q + 6)] < e—hn(q+e)e(h+l)hnq’
i=1

which proves the lemma. i

Remark 2.3.6. Note that if F, G are the mass functions (with respect to the

Lebesque measure) of two empirical spectral distributions of size n then

n

1
f IFG) = GEoldx = — ) 17— ul.

i=1

where A; are the eigenvalues of the matrix which corresponds to F in in-

creasing order and similarly for y; and G.

Lemma 2.3.7. Let {(a;, b;),i € N} be the set of dll intervals with rational
endpoints and length less than 1. Let

ﬁ(x):f 1(q,py() dt

and

D6 = Y, 5| [ w0 - 6o,

where F, G are empirical spectral distributions. Then D(F,, F) — 0 implies
that F,, — F weakly.

Proof. In order to prove the lemma we are going to use the characterization
of weak convergence from Lemma 1.3.5 which says that a sequence u, of
Borel probability measures on a metric space (X, d) converges weakly to a

probability measure p if and only if, for all open subsets U of X,

liminf p,(U) > pu(U).
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Let u be the probability measure on R with distribution F, and likewise p,

for F,,. It is easy to compute, using Fubini’s theorem, that for every i € N,

‘ffid(F(X) — G(x))| = [(un — w((az, b))

which tends to zero as n tends to infinity. Also, for all x € R. Given an
open subset U of R, we write it as a infinite (countable) union of disjoint
intervals with rational endpoints and length less than 1 plus a countable
set. Let U = U, U; be these intervals. Since D(F,,F) — 0 we get that
un(U;) — w(Uy). So, if i, n € N then

i

Hn(U) = ) pn(U)

k=1
As a result, since this is true for every n,
lim inf w,,(U) > Z lim inf w,,(Uy) = Z uU)
k=1 k=1

and since this is true for every i we get

lim inf p,(U) > D w(U = p(v).
k=1

O

Lemma 2.3.8. Let A,B be two p X p symmetric matrices with eigenvalues

{M <Ay < Ay} and {puy < pp - -+ < pp} respectively. Then,

p
D A=) < (A= B
i=1

Proof. We begin by diagonalizing A and B. Since they are symmetric, there
exist orthogonal matrices U, V and diagonal matrices A and M, which have
as entries the eigenvalues of A and B respectively (in the order we have
mentioned), such that

A =UAU"

and
B=VMVT,
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So,
tr(AB) = tr(UAU"VMV™) = tr((VU")A(V*U)M).

Setting W = V*U and after some calculations we get:
tr(AB) = > AwW2.
1<ij<p

In order to proceed we need some definitions.

Definition 2.3.9. An n X n matrix will be called doubly stochastic if all its
entries are non-negative and the sum of the elements of each row and each

column is equal to 1.

Definition 2.3.10. Let A be a p X p matrix. Then A will be called a per-
mutation matrix if there exists p € S, such that A;; = 1 & p(i) = j and

Note: Since every p € S, is a bijection from [n] to [n], every permutation
matrix is doubly stochastic.

Now, since W is orthogonal we get 3.7 | W = 1 foreachjand },7 | W2 = 1
for each i. So, setting u;; = Wf] we have that {u; J}szl is doubly stochastic.
Let D, denote the set of all doubly stochastic p X p matrices. Then,

tr(AB) = Z Aipug; < sup Z Miyaq,

1<ij<p (a))€Dp 1 <ij<p
Note that D, is convex (any convex combination of doubly stochastic p X p
matrices will remain doubly stochastic) and the function

{agly -, = Z i

1<ij<p

is linear. Therefore, the supremum on D, is achieved at an extreme point
of D,.

We will prove that the extreme points of D, are the permutation matrices
(Birkhoff Theorem).

The proof that every permutation matrix is an extreme point is elemen-
tary since, if A, B are doubly stochastic matrices, P is a permutation matrix
and r € (0, 1) such that

rA+(1-r)B=P,
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then for each i,j € [p] such that p;; = 0 we have that ra;; = —(1 — r)b;; and

since every entry of a doubly stochastic matrix is non-negative we get

So, since the sum of the elements of each row and column of A and B must
be equal to 1, we get that A = B = P.

In order to prove the opposite direction, we will prove that every doubly
stochastic matrix is a convex combination of permutation matrices. To

prove this, we will need another definition and a very important lemma:

Definition 2.3.11. For every doubly stochastic p X p matrix A we define
its associated graph G with

V(G) = {ix : k € [p]} U {ji : k € [pl}

and
E(G) = {(ic.Jm) : Aigm > O}
Note: The graph of every doubly stochastic matrix is bipartite.

The idea behind this definition is that for a doubly stochastic matrix we
create its graph by turning each row and each column into a vertex and we
connect a row (call it i) and a column (call it j) via an edge if the element

on the spot (i, j) is not zero.

Lemma 2.3.12. The graph of every doubly stochastic matrix has a perfect

matching.

Proof. Assume, by way of contradiction, that there exists a doubly stochas-
tic matrix such that its graph does not have a perfect matching. Call this
matrix A, and call R(A) the first part (the rows) and C(A) the other part (the
columns). By Hall’s theorem, without loss of generality, we get that there
exists B C V(R(A)) such that N(B) < |B|. Now, we see that
> Ay=1Bl
ieBjeN(B)

This is true since for any vertex (column) in B every row connected to it

belongs to N(B), and since the matrix is doubly stochastic we get that the
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sum above gives the cardinality of B (a term 1 for each vertex in B). But
the fact that A is doubly stochastic gives that the same sum equals to the
cardinality of N(B) which is a contradiction. O

So in order to prove the opposite direction of Birkhoff’s theorem, we will
use induction on the number of non-zero entries of a matrix. For k = 2 the
opposite direction is true.

Let the opposite direction be true for all m < k and let A be a matrix
with k non-zero elements. By the previous lemma, the associated graph of
A has a perfect matching. Underline the entries associated to the edges of
the perfect matching. Since the edges in the perfect matching are disjoint
we get that there is exactly one element in each row and column. Let P
be the permutation matrix with entries 1 exactly at the positions of the
underlined elements. Let ¢ be the minimum of those entries. If ¢ = 1 then
A = P. If not, then the matrix M = A — cP/(1 — ¢) is doubly stochastic with
one non-zero entry less than the ones for A. So, since A = (1 — ¢)M + cP,

and by the induction hypothesis, the proof is complete.

Now we can return to the proof of Lemma 2.3.8. By what was done above

we get that
tr(AB) < I&%f Z Ailho(i)-

1<i<p
Using the fact that i; and A; are in non-decreasing order we will prove that

the maximum is achieved by the identity permutation. If not, then for i > j
A + A — Ay — Ay = (A — A) (i — ) = 0.

Let 0 € S, be a permutation different than the identity. So, there exist
i,j € [p] such that j < i and o(j) < o(i). Let 0’ be a permutation with the
property that o’(i) = i,0’(j) =j and for all d € [p] \ {i,j} we have o'(d) = o(d).
The permutation o has one more order reversal than o’. Iterating this

process we see that the sum is maximized for the permutation id. So,

P
tr(AB) < Z At
i=1
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Finally since trA* = 37 4% and tr B> = }_ | u? we get:

Z(ﬁ u)? Zﬂ + 12 — 2

sZﬁ?+Zui2—2trAB
i=1 i=1

=trA®> +tr B> — 2tr AB = tr(A — B)>.
O

Definition 2.3.13. Given a matrix A € M,,, the matrix obtained after delet-
ing the i-th row and the i-th column of A for some i € [n] is called principal

sub-matrix of A.

Definition 2.3.14. Let A be symmetric or Hermitian matrix in M, (R") or
M, (C") respectively. Consider the standard inner product (-, -) on R" or C".

The Rayleigh-Rietz quotient is the function

(Ax, x)

Ra(x) = (X, x)

defined on all the non-zero elements of R™ or C".

Lemma 2.3.15 (min-max theorem). Let A be a symmetric matrix A € M,
and let {;}]L, be the eigenvalues of A in non-decreasing order. For every
ke[n]let

A ={U CR": dim(U) = k}.

Then,

A = min max Ru(x)
UeAy, xeU\(0}

and

A= max min Ry(x).
UeAn—i+1 x€U\{0}

Proof. Since A is symmetric it is diagonalizable and we can chose an or-
thogonal basis of eigenvectors {u;, u, ..., u,}, where w; is the eigenvec-
tor corresponding to A; for each i € [n]. If U is a subspace of dimen-

sion k then its intersection with span{uy, t1, ..., W,} is non-empty. Let



u € span{uy, W1, ..., Uy} N U\ {0}. Then we can write u as

n
u= § a;u;,
i=k

and its Rayleigh quotient is
n 2
i= ﬂl i=
Dizic & > ﬂkZ Ik a12

1ka lkal

Ra(w) = e
Since this is true for every subspace U we get:

A < min max Ry(x).
UeA xeU\{0}

For the other direction note that for the subspace V = span{u;, u,, ...

and for every u € V we have
since jli is the largest eigenvalue for U. So,

A = min max Ru(x) = max R4 ().
UeA; xeU\{0} €V\{0}
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, Wi}

The proof of the other equality is similar. In the case where U is a subspace

of dimension n — k + 1, we proceed in a similar fashion: Consider the k-

dimensional subspace span{u, ..., u}. Its intersection with U is not {0}

(by simply checking dimensions) and hence there exists a non-zero vector

v in this intersection, which we can write as
k
v= Z a;u;.
i=1

k 2
i=1 @ i
Ru(v) = —Z kl - 5 < F
i=1 4

and since this is true for all U we have the first inequality.

So,

To get the other inequality, note again that every eigenvector u of j is

contained in V = span{uy,..., u,} so that we can conclude the equality.

Also, as before, we get

A= max min Ry(x) = min Ry(v).
UeAn-ic+1 x€U\{0} xeV\{0}
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Lemma 2.3.16 (Cauchy interlacing theorem). Let A be a symmetric (or
Hermitian in C) matrix in M,,. Let B be a principal sub-matrix of A and let
{M < Ay < --- < A} be the eigenvalues of A and {u; < up < -++ < Un_1} be

the eigenvalues of B, both in non-decreasing order. Then:
M < Sﬂzﬁﬂz <Az < < Hn-1 < .

Proof. Assume without loss of generality that we have deleted the n-th row,

and so, let
B x

X Z

Let {x;,xs,...,x,} be the eigenvectors of A and let {y;,...,y,_1} be the

eigenvectors of B. We define the following vector spaces:

V = span{xy, ..., X}

W = span{yi, ..., Yk}

.

Since dim(V) = n— k + 1 and dim(W’) = dim(W) = k we see that the
intersection of W’ and V is non-trivial, meaning that there exists u €

W’ NV \{0}. So,
[ )
=
0

B x

X Z

for some w € W. Then

w
0

u'Au = [w* O] = w'Bw

But from the min-max theorem we get
A = min Ry(v)
veEV

and

= Rp(d).
Wi = max B(d)

So, ﬂk < U
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The proof of the other inequality is similar. We now define the vector

spaces

V = span{xy,..., X1}

W = span{yx, .. ., Yn-1}

e {e) o)

Since dim(V) = k + 1 and dim(W) = dim(W’) = n — k, there exists u €
W’ N V\{0}. So, as before,
w
u =
0

for some w € W. Then we have u*Au = w*Bw. So, again from the min-max

theorem,
A1 = Max Ra(v) > Ra(u) = Rp(w) = min Rp(d) = pi.
veVv dew
O

Note: In the previous theorem we can replace R" with C" and the symmetric

matrix with a Hermitian matrix.

We are now ready to prove the main theorem of this chapter.

Proqf. By Lemma 2.3.4 we can choose ¢, such that €, — 0 and ¢,p'/* — o
such that P(1X; 1| > e,n'/*) < ¢,/n. Define

X =[X,;:1=1.2....p;j=1.2....n]

where
Xi; = Xijlix jceni/s
Let
A = ﬁ(xéxé* ~nl)
and

hyj = 1|XiL,|2epn1/4~
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Proposition 2.3.17. The following inequality holds true:

, 1 & v
sup |[F(x) — F%(x)| < = Z Z h;.

i=1 j=1

Proof. Firstly note that
sup |F* (x) — F%(x)| = sup [F**> (x) — FX*% (x)|.

Since

det(A, — x1,) = det(X, X, — (n + 2x /p)l,),

1
(2 y/np)?
substituting u := n + x2 /pn we see that the roots with respect to u are
the eigenvalues of X,X/. So, solving for x we get that if /1; is the i-th (in
non-decreasing order) eigenvalue of A, and d; is the i-th eigenvalue of X, X}

then we have
A =n+d2x+/pn.

Since the same is true for A, and since we are interested in the supremum
over all x, we see that we can investigate the eigenvalues of XX* and X' X"
instead.

Let x € R and let

L, = {(i)) € [p] X [n] : X;; # X ;}.

We will prove that, for every p € N, if g < p and X, X is the matrix defined
above for p, n(p), and

g = pIF%*(x) — F¥% (x),

then
g <Lyl

using induction on p.
For p = 1 the assertion is true; if not, we would have X; = X i.e. the
two matrices would be equal but with different eigenvalues (the root of the

polynomial f = X; — 1 - /) which would be a contradiction.
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Suppose that for all m < p — 1 the statement is true. Consider the

matrices XPX; and XI’JXI’J* as before. If
%% (x) — F%% (x)| = 0
then obviously
|F%%0(x) — F¥% (x)| < L.

If not, then there exist i, j such that X;; # X/;. Without loss of generality let
i = p. Let B be the principal sub-matrix of X, X’ deleting the p-th row and
column, and similarly let B" be the corresponding sub-matrix for X)X’ ,.
Note that B = X, X’ , and B’ = X/ ,X’",. So, we can apply the induction
hypothesis for B and B’, which gives that

PIFP() = FP(x)| < |Lpa .
But, by Cauchy’s interlacing theorem, we get that
PIF% (x) = F%% (x)] < plF % (x) = F¥2 % (x0)] + 1.

Also, since there exists an element on the p-th row such that X,,; # XI; j for

some j, we get that

|Lp—1| + 1 < |Ly|.

It follows that

3

PIFS% (x) — F¥% (x)| < plFX%1(x) — FX1%1(0)| + 1 < Ly | + 1 < L.

The inequality above is true for all x € R and for all p € N. Also note that
if h;; denotes the event that the (i, j)-th element of X, is different from the

element in the same spot of X/, we get that

eSS

i=1 j=1

So, the proof of the proposition is complete. O
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Since P(h; = 1) = P(X;;| < e,n'’*) = q, (say), if 6 > 0, by what was done

before we get

1
PsuplFAp—Fr|26)SP— hij>6
fpte -t o)< 2| 3
=P ZZh~—pnq >pn§—q
Ly p = PIto — 4p
i J

con(own (00w
< exp (—rlqh(é —(1+ h)ep))

i n n
con(2)

for €, < 6/3. We can choose h = 1/2. Thus, by the Borel-Cantelli lemma,
sup |F(x) — F%(x) — 0 a.s.

Note that we can replace X, with Y, = X}, — E(X;) and we would have the
same result (see [17] p.81 and A-46)). But by Lemma 2.3.2 we know that

sup |[F — Fp | > 0 a.s.
X

where B, is defined as in Lemma 2.3.2 starting from the matrix Y}, defined

above. Thus in order to prove the theorem it is sufficient to prove that

DGR FP) = Z 2l ‘ f Fid(F% (x) — FP(x))| — 0

as in Lemma 2.3.7. Here, A] = (Y,Y, —nl), also XL’J’ = Xi’J - E(X{J), and

2 \/1071
A; are the eigenvalues of A" and y; the eigenvalues of B,. So by integration

by parts, Remark 2.3.6 and Lemma 2.3.8 we get that

2
D2<FA%’,FBP>3[ 3 iai- ul) <—Z<ﬂ o’ <—tr<A"— )’

i=1

1 < . 2
np? Z Z(X ]

i=1

2§ S

i=1

N

2
n
+ —(1 - EX/2)*.
2p

N



For sufficiently large p we have:

n n 4
—(1-EX"?) < ——E?X}, — 0.
2p 2p ne; ’

So, for the first term on the right hand side of the inequality we have:

n 2
S

2
széﬂijiygﬁ—ﬂﬁﬁ4

i=1 Lm=1

< [X-UZ _ E(X-UZ ]2

2 im im

2p n i=1 m=1
1 p
12 712 712 112

" 2np? Z (Xi'ml N EXivml)(Xi,mz - EXi.mz)

p i=1 my#my
=Si1p+Sep

D RSyl > @) = ) P(SE, > €2)
p=1 p=1
<< > ES3,)
p=1
=> o D 2n(n- DE*(X]} - EX]?)”
p=1 m=1

Thus, by the Borel-Cantelli lemma we get

Sop—0 a.s.
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For S, , we have

1 N C 12 112N\12
p
< NV NV X B
= 2p2n — 4 um im
i=1 m=
1 C 4 22 K K
= 2p’n Z X — Bl + EEX;L,I =Ap + ;EX;L,I

0 0 1 P n
2 _ 14 114N\\2
PIET P YL 3 g Lt
p=1 p=1 i=1 m=1
< Z oo (N1 e)EX] ) < o0
p=1 p
This completes the proof. m|

2.3.2 Convergence of the extreme eigenvalues

In this subsection we are going to prove the convergence of the extreme
eigenvalues of A, to —2 and 2 respectively (using the same notation as
in the previous subsection) under the assumption that all the entries of
X, € M,y follow the standard normal distribution, and n(p) — oo and
p/n — 0. By the convergence to the semicircular law we have that p,, — o
(here, again, we use the same notation as in the previous subsection). We
will use similar arguments as in the previous similar cases. So we need

the following:

Proposition 2.3.18. Let B be a random p X n matrix whose entries are
independent random variables with distribution Nc(0, 1). Then, for any
t>0,

P(Bllop = VL + YD+ 1) < 2e7C72,

Also, if n > p then for any t > V2P 4t is true that

\/E—l
P(sn(B) < Vn— yp—1t) < 2eF,
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where s,(B) denotes the smaller singular value of B

Suppose that the previous proposition is proven. Then we get

P(||Bllop > Vi + vp+ 1)
=P(|BIZ, - n = t* + p+2tVn+2+np+ 2t p)

1 t2 p 2t ot
=P|(IBI?, - n)— 2 +\/j+—+2+—),
( P \/np \/np n \/I_g n

Letting (p, n) — oo we get that

lim f(n,s)=0

(p,n)—o0

where

t? [p 2t 2t
f(n,s) = + L=t —=+—,
\/np n p +n
and since this is true for any t > O we get

P(lim sup ”An,sllop >2)=0.

Then, since the E.S.D of A, s tends to the semicircular law and the operator

norm is the largest eigenvalue of a matrix we get that
P(liminf [|A pllop < 2) = O.

Likewise one can show that the second part of the proposition implies the
convergence of the smallest eigenvalue of A, ,. So it is sufficient to prove

the proposition.

Proof of Proposition 2.3.18. In order to prove the first part of the proposi-

tion we need the following lemmas

Lemma 2.3.19. It is true that

ElBllop < VR + +/p.

Proof. Using the same method as the one we used in the corresponding
subsection for the Marchenko-Pastur law we get that for any p < n and

any pXn random matrix A with independent entries which all follow N(O, 1)
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there exist an orthogonal p X p matrix U and an orthogonal n X n matrix V
such that
A = URYV,

where R is a p X n matrix whose entries r;; have the following properties:
- The entries of R are independent random variables.
- For all i € [p] we have that r;; ~ x(n -1+ 1).
- Forallie{2,3,...,p} we have that r;; 1 ~ x(p+ 1 — i).
- All the other entries are almost surely zero.

Here, for any m € N the notation x(m) is used for a positive random
variable such that xy*(m) is a chi-squared random variable with m degrees
of freedom.

Likewise one can show that for any p < n and any p X n random matrix
B such that all the entries of B are independent random variables which
all follow N¢(O, 1) there exist an orthogonal p X p matrix U and an n X n

orthogonal matrix V such that
B = V2USV,
where the entries s;; of S are independent random variables such that:
- For all i € [p] we have that s;; ~ x(2n + 2 — 2i).
- Forallie{2,3,...,p} we have that s;;_; ~ x(2p + 2 — 2i).
- All the other entries are almost surely zero.

So, we can consider both A (a 2p X 2n random matrix with i.i.d. standard
normal entries) and B (a p X n random matrix with i.i.d. standard complex
normal entries) defined on a common probability space in such a way that
sij < ry; almost surely (where s;; and r;; are the entries of the matrices S
and R respectively, as defined before). This can be done since 2n+2 —2i <

2n+1-iand 2p+2-2i < 2p+1—iso we can couple the matrices in a common
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probability space in such a way that r;; is the square root of the sum of
the same standard normal random variables as s;; plus i — 1 additional
standard normal random variables. Hence, since the eigenvalues of A and
B are also the eigenvalues of R and V2S respectively, and since both R

and S have non-negative entries (so they are both positive), we get that
1
V2

So it is sufficient to prove that for any p X n random matrix A with inde-

1
”B”op < ”AHOp - E”B”op < EE”A”OP

pendent N(O, 1) entries it is true that

EllAllop, < VR + V.
In order to do this, we need some definitions and lemmas.

Definition 2.3.20. A Gaussian process X = (Xi)r is simply a family of
jointly Gaussian random variables, usually with mean zero, defined on

some probability space 2, which may or may not be specified.
For more details see [18].

Lemma 2.3.21 (Slepian’s inequality). Let X = (Xp)er and Y = (Y)ier be

Gaussian processes such that forany t,s € T
E(Y; - Ys)* < E(X, - X,)*

and

EY? = EX?.

Then for any x € R

P(supXt > x) < P(squt > x).

teT teT

Consequently, by stochastic dominance we have

E (sup Xt) <E (sup Yt) .
t t
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Note: To avoid measurability issues, we study random processes through

their finite sub-processes meaning that we interpret E sup, X; as

sup EmaxX;.
{ToCT:|Tol<co}  1€T0

Proof. We shall assume that |T| < co and then we can generalise the result
(since the supremum of a quantity depending on an infinite set is the
supremum of the same quantity over all finite subsets).

Suppose that [T| = n. Then X and Y are both Gaussian random vectors
in R". We may also assume that X and Y are independent (by constructing
the analogous product space). So we define the Gaussian random vector
Z(u) in R" that continuously interpolates between Z(0) = Y and Z(1) = X:

Z(w) = VuX + V1 —-uY, ue]l0,1].

Fix d € R. We need to show that the function Ef(Z(u)) (where f : R" - R

is defined by f(x) = Ly, x<a(X)) is increasing in u, which will give us

Ef(z(0)) < Ef(z(1)).
which implies the desired inequality.
Firstly we will show that:

Lemma 2.3.22. Let X ~ N(0, 1) and f : R — R be a differentiable function.
Then,

Ef'(X) = E(Xf(X)).

Proof. Let p(x) be the density function of X. Then, by integration by parts,

we have
Ef'(X) = ff’(X)p(X)dx == ff(X)p'(X)dX-
R R
Combining this equality with the fact p’(x) = —p(x)x we get the lemma. 0O
Note: For a random variable X ~ N(O, o) it is true that
E(f'(X)) = 0’E (f(X)X),

since X = oZ where Z ~ N(O,1). By what was done before we have the

following generalisation.
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Lemma 2.3.23. Let X ~ N(0, ) be a Gaussian random vector in R". Then
E(Xf(X)) = 2E (Vf(X)).

Proof. Let X = £'/?Z, where Z ~ N(0, I,). So,

n
X; = 3 ()
k=1

and

E(Xf(X) = Y () (4 f(E22).
k=1

So, using the previous lemma for E (Z.f(X!/2Z) conditionally on all random

variables except Z, ~ N(O, 1) and simplifying we get the desired equality. O

Lemma 2.3.23 is equivalent to the following: For any i € [n] it is true
that

- d
B (Xf(0) = ) T E (é(X)) .
J=1 7

Lemma 2.3.24 (Gaussian interpolation). Consider two independent Gaus-
sian random vectors X ~ N(0,X%X) and Y ~ N(0,XY). Define the interpolating

Gaussian random vector
Z(uw) = VuX + V1 -uY, ucel0,1].

Then for any twice differentiable function f : R* — R we have that

d 1O ox oy
CE(@W) = 5 - ZipE(

ij=1

d2
P (Z(u))) :

Proof. Using the chain rule we have

dxi du

i=1

LE(Ew) =Y, E( Y 2w dZi)

ax (Z(w) o i)

1 "E(df X; Y; )

i=1
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Let us break this sum into two, and first compute the contribution of the

terms containing X;. To this end, we condition on Y and express

—Z—E( ) Z —=E (XgX0),

where g;(X) = %( VuX + V1 — uY). So by the previous lemma we have

I (ax + mnw)

xLxJ

S x40
E(Xgi(X) = ) 3] E(
2.7,

So,

Z (%L zun) = 5 > wie(GL v+ viaw).

iJ: 1 xtxJ

Taking expectation of both sides with respect to Y, we lift the conditioning
onyY.
Similarly we can evaluate the second part of the sum and by that prove

the lemma. O

Now we can return to the proof of the Slepian’s inequality. Firstly note
that for any f : R" — R such that

af

>0
dx,dx;

for all i # j we get that Ef(X) > Ef(Y) which follows from Lemma 2.3.23
and the fact that the assumptions in Slepian’s inequality imply that for
any i € [n] it is true that Z ZY and that for any i,j € [n] it is true that
Zf] > ZY

Now we are going to approximate an indicator function 1,.4 by a se-
quence of twice differentiable functions. Let n € N. Consider the 5-th

degree polynomial g, with the following properties:
© gn (d - %) = 1.

: gn(d+}1):0.
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g (d+3)=gi(a+t)=o0.
c gn(0) 20, x€e|d-1.d+1|
Now consider the following function

RPN xeR\(d-1.d+1)
gn(x) xe[d—%,d+%]

By the definition of g, we have that h, is twice differentiable and the se-
quence of functions h,(x) approximates the indicator function 1,.4. Note
that for all n € N the function h,, is non-increasing.

Fix m,n € N. By what was done before, we have that the function
SmiR"> R

InCa %, ) = | | ()
i=1

is twice differentiable. The sequence of functions f;,(x) is an approximation
to the indicator function 1y, x,<d-

But
Ao ome) [ ] oo
Xidy el n]\{i}
But, by construction, the third part of the product is non-negative and
the first two are both non-positive (since h,, is non-increasing). So, the
product is non-negative.

As a result we have

E (fn(X)) 2 E (fn(Y)).

O

Lemma 2.3.25 (Chevet-Gordon inequalities). Let B € M, , be a random
matrix with independent N(0, 1) entries. Let K C R" and L C SP~! be compact
sets and ri. > O such that K C r.Bj (K is a subset of the Euclidean ball of R"
with center at zero and radius r.). Then,

E max max(Bt, u) < wg(K) + rgwg(L).
ueL teK
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Proof. Let G be a Gaussian vector in R" @ RP. We are going to compare the

following Gaussian processes induced by (t,u) € K X L:

Xiu = (Bt, uy,
Yiu = (G, t® r.u).
One can check that, for any (t, u), (t',u’) € K X L it is true that
E(Xpu = Xew)? < E(You = Yeu)™.
So, by Slepian’s inequality we get
Emax,c;, rgg{x(Bt, u) < Emax max Y, = wg(K) + rewg(L).

ueL teK

O

Since sup, gn1 SUP, g1 (Bt, u) = ||Bl|op, for any matrix B € M, p,, for a matrix

A € M, , with independent N(O, 1) random entries one has
EllAllop < we(S™™) + we(SP).

But, by definition, one has that for any m € N it is true that wg(S™ ') = E|G|

where G is the Gaussian vector of R™. So, by Jensen’s inequality,
ElIGIl; < (BIGIp'* = Vm,
which proves the desired inequality. i

So, since the operator norm is convex and 1-Lipschitz with respect to the
Hilbert Schmidt norm, if M is the median of || B||,, we have that M < Vn+ \p
by Lemma 2.1.37. Therefore, as in the proof of the semicircular law we get
that

P(|Bllop = VN + VP + 1) <2772,

Now we can start the proof of the second part of the proposition. Since s,
is 1-Lipschitz with respect to the Hilbert-Schmidt norm, if M is the median
of s,(B) then for any t > O we have that

%exp(—tMQ) < Eexp(—tBB") < nexp(—(Vn — y/p)*t* + (s + n)*t).
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The first part of the previous inequality is true since M < E(s,(B)) (see
Lemma 2.1.37) and for the second part see [19, Lemma 7.2]. So, for t =
v(n + p)In(2p) and by the inequality Va—b > Va — % which is valid for

any a > b > 0, we get

JPF R VIRE@D)
V- vp

M>vn-+p-2

p—l

So, for t > +¥h@en

B(su(B) < VA= VP — 1) < B(s,(B) < M - ) < 2/

The last inequality can be proved with the same method as the one that

we used for the semicircular law. O



122



Part 111

Quantum information theory
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Random matrices in quantum

information theory

In this part we study some results about random matrices that are strongly
related to quantum information theory. Before that, we “translate” the
results in quantum information theory terms.

In this chapter we are going to use the following notation: M *(R) (or C)
will denote the subspace of symmetric (or Hermitian) n X n matrices in M,.

We denote by M5*°(F) the subspace of matrices in M3%(F) with trace equal
to zero. Here F is either R or C.

For any A € M, we will also write {7;,(A)}iL, for the eigenvalues of A in

non increasing order and p, for the E.S.D. of A.

3.1 The o— Wasserstein distance

Definition 3.1.1. Let pu;,u, be two probability measures on R. Their

oco—Wasserstein distance is defined as

Ao (1, po) = 1nf ||y — piollr,

where the infimum is over all couples (X;, X,) of random variables with
(marginal) laws u;,uy, defined on a common probability space. Similarly,
if Y, Y, are real random variables, their co—Wasserstein distance will be

meant to be the co—Wasserstein distance of their laws.

Note: The definition of the co—Wasserstein distance can be generalised on
a metric space (E, d) by replacing inf || X; — X5||., by the smallest A such
that P(d(X;,X;) < A) = 1.
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We will now describe an alternative way to compute the co—Wasserstein

distance.

Lemma 3.1.2. For any real random variables X, Y we have
de(X,Y) = inf{e > 0 : Fx(t — €) < Fy(t) < Fx(t+ ¢), Vt € R}.

Proof. Let (Q,A,P) and X’, Y’ be real random variables such that X’ ~ X
and Y’ ~ Y defined on this probability space. Let d := ||X — Y||,, denote
the L., distance in this probability space. Then, for any t > O

PX<t—-d)<PX+|Y-X|<t) <P(Y <),
and likewise
P(Y<t) <PX<t+d).

So

{d >0:3(Q,AP): XY :(Q AP) > R,
IX - Yl (oap =dX ~X Y ~ Y}

C{e>0: Fx(t—¢) < Fy(t) < Fx(t+¢), Yt € R}.
It follows that
d(X,Y) <infle > 0:Vt e R, Fx(t — €) < Fy(t) < Fx(t + ¢€)}.

Conversely, let g € {¢ > 0 : Vt € R, Fx(t — €) < Fy(t) < Fx(t + ¢)}. Con-
sider the probability space ((0, 1), B(0, 1), A) (here A stands for Lebesque
measure) and the random variables X'(w) = {inf t : Fx(t) > »} and Y'(w) =
{inf t : Fy(t) > w}.

Fix o € (0,1) and set I, = {t : Fx(t) > ®}. Note that I, is non-empty
since lim,_,, F(n) = 1. Also, I, is an interval because Fy is increasing (if
t € I, then [t,+c0) C I). But since I, # R (because lim,,_,. Fx(—n) = 0) and
since any distribution function is right-continuous, which implies that I,

is closed, we get that I, has the form

I, = [b(&)), oo),
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and since inf I, = X'(») we get that b(w) = X’'(®). Note that
tel, — X'(o) <t
So, for any t € R,

Fx(D)=PX <t)=A{w€(0,1): X' () < th = A0 € (0,1) : t € I,})
= A({w € (0, 1) : Fi(t) 2 @}) = Fi(D).

So X ~ X', and similarly Y ~ Y’. The functions X’ and Y’ are called
generalised inverse functions of Fx and Fy respectively. As a result we

have, for any w € (0, 1),
{t: Fx(t—e) >} C{t:Fy(t) > w}} C{t: Fx(t+ ¢) > o}.

But
{t: Fy(t—e) > o} ={s+ ¢ : Fy(s) > w},

and similarly
{t: Fy(t+ ¢) > o} ={s— ¢ : Fy(s) > w},

which implies that
inf{t: Fy(t— &) > 0w} = Y(0) + €

ll'lf{t . Fy(t + 60) > 6)} = Y,(G)) — €.

Therefore, we get that
Y(iw)-e<X(@<Y(@+e = X —YIL1.501.5 =< €,
which shows that
d(X,Y) > inf{e > 0 : YVt € R, Fx(t — €) < Fy(t) < Fx(t + ¢€)}.
O

Lemma 3.1.3. The d., distance is greater than the Lévy distance d;, which

metricizes wealk convergence.
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Proof. Let X, Y be two real random variables. For any € € {e : Fx(t — ¢) <
Fy(t) < Fx(t+ ¢)} we get that € € {e : Fx(t — €) — € < Fy(t) < Fx(t+ ¢) + €}.

Hence
{e:Fx(t—e€) < Fy(t) < Fx(t+¢e)} C{e: Fx(t—¢€)— e < Fy(t) < Fx(t+ €) + €},
which implies

d(X,Y) = inf{e : Fx(t — €) < Fy(t) < Fx(t + ¢)}
> inf{e : Fx(t — €) — € < Fy(t) < Fx(t + €) + €}
= dL(X, Y)

Note: Convergence with respect to d,, implies weak convergence.

Lemma 3.1.4. Let Z be a real random variable distributed according to a
probability measure v, whose support is a bounded interval [a, b]. If{Y,}nen

is a sequence of random variables then the following are equivalent:
1. do(Yn, Z) — 0.
2. Y, > Z weakly andsupY,, — b, inf Y;, = a.

Note: By sup and inf we mean the essential supremum and infimum

respectively.

Proof. (i) = (ii): We have already proven that convergence with respect to

the co—Wasserstein distance implies weak convergence. Also, we have
max{|sup Y, — sup Z|, |inf Y,, —inf Z|} < ||Y, — Z||...

This proves this direction.

(ii) = (i): Given € > O choose a = x; < X3 < X3+ X, = b such that
Xiy1 — X < €

for all j € [r—1]. Suppose also that {Xi};l are points of continuity of F, (we

may assume this, because the points of discontinuity of any distribution
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function form a countable set, and hence the set of points of continuity
is dense). Since the support of v; is the interval [a, b], we have that F,
is strictly increasing on [a, b], and hence there exists ¢ > O such that

Fz(Xj+1) 2 Fz(X;) + c for all 0 <j < r. Also, for large enough n we get that
infY, >a-ce

and

supY, < b+e,
and since {x;}_, is a set of points of continuity of F; we have
|Fz(x)) — Fy, (%) < c.
Let t > b+ e. Then,
Fy () =P(Y, <t) >P(Y, < b+¢e)>P(Y, <sup¥,) = 1

>P(Z <t—2¢) = F5(t — 2¢).

Let t < xp. Since x; — x; < 2e we get that t —2e < x5 —2e < x7. So
Fz(t — 2¢€) < Fz(x1) = Fz(a) = 0 < Fy (t).

Note that this is true since a is a continuity point of F;. Finally, let t €
(x2, b + €). Pick j such that j € [r] satisfies

Xi-1 St < X.
Then, t < x; < x5 + 2¢. Hence
Fy(t — 2€) < Fz(Xj-2) < Fz(x-1) — ¢ < Fz(x5-1) — |Fy, (x-1) — Fz(x3-1)|
< Fy,(x-1) < Fy, (D).
So, for every t € R we have
F;(t — 2¢) < Fy, (1).
Likewise, we can prove the inequality
Fy, (t) < Fz(t + 2¢).

As a result, for sufficiently large n we get

do(Z,Y,) < 2e.
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3.2 Wishart matrices and random induced states

Definition 3.2.1. Consider the space M:*(C) of complex Hermitian n X n
matrices equipped with the Hilbert-Schmidt norm. We say that a matrix
A € M7%(C) is a GUE(n)-matrix (Gaussian Unitary Ensemble) if

a;; ~ NR(O, 1) i :_]

and the entries of A are pairwise independent.
Note that if U is a unitary matrix then UAU" ~ A.

Definition 3.2.2. Consider the space M5*°(C) equipped with the Hilbert-
Schmidt norm. Then if A is in GUE(n) we say that the matrix B= A — %I
is in GUEy(n).

Note that the coefficient “TA has distribution N(0O, 1/n) and is independent

from B.

Definition 3.2.3. Let n, s € N. Consider the space M,xs and let B € M«
be a random matrix whose entries are independent random variables all
following N¢(0, 1). Then the matrix W = BB, which is in M:>%, is called

Wishart matrix and its distribution is denoted by Wishart(n, s).

There are several models that can be used to study random states. Next

we are presenting two of them.

Definition 3.2.4. (i) A random n X s state is a matrix generated by the fol-
lowing procedure. Consider independent unit vectors {y;}.[s distributed
uniformly on the sphere of C" and consider the average of the correspond-

ing pure states, i.e.
1 S
p=- Zl lwXwil.
i=

We are now going to present some results about tensor products that
can lead to a closely related and often better model of random states. A
fundamental concept in quantum information theory is the partial trace

which we define bellow:
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Definition 3.2.5. Let H; ® H,; be a bipartite Hilbert space (meaning that it
is the tensor product of two finite dimensional Hilbert spaces). A function
try, : B(H,) ® B(H;) — B(H,) is called partial trace over H, if and only if

trp,(A® B) = tr(B)A
for all A € B(H;) and B € B(H,).

Lemma 3.2.6. Ify € C"®C™ then by Corollary 1.5.6 there exists M € M,, ,(C)
such that M = y. So
tremyXyl = MM

Proof. In order to prove the lemma we need the following useful tool.

Lemma 3.2.7 (Schmidt decomposition). Let H,, H, be two Hilbert spaces.

Then, every pure state |) € H; ® H, can be written as a linear combination
d
W)y = > Aoy},
k=1

where d = min { dim(H,), dim(Hy)}, {lp})} € Hy, and {|y?)} C H, are orthonor-

mal sets, and { ﬂk}gzl are non-negative real coefficients with Z‘;zl ﬂi =1.

Proof. We denote d;, = dim(H;) and d, = dim(H,) and assume that d; > ds.
We can write a vector |y) € H; @ H, in terms of orthonormal bases {

and {jf}flj1

.1 d
Geiem

dy,da

Wy = aylidli).

Il=1
Let E = [a;;] € Mg, 4, be the corresponding matrix. Now we can apply the
singular value decomposition to the matrix E, which implies that there
exist unitary matrices U € My,, V € Mg, and a positive diagonal matrix
X € My, whose entries { ﬂk}‘;'il are the singular values of E (since the non-
zero singular values of E are at most dy), such that

X .
E=U| |V~
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It follows that

)
W) = D waelvglH? = - Adolyd),
i,k k=1
where the vectors {|¢,)} constitute an orthonormal set in H;, and the same
for {|l//i>} in Hy, due to the fact that U, V are unitary. Finally, since |y) is
a unit vector, the corresponding matrix has Hilbert-Schmidt norm equal
to one: in other words, ||E||§ = ZiJlaile = 1 which in turn implies that

Zkﬁizl' O

Now, let y € C" ® C™. Write {x;}[n for the n-dimensional standard basis
and {@;}je[m for the m-dimensional standard basis. From the Schmidt

decomposition we have that there exist j;; such that
y= Z ix; @ ;.

So,
yXyl = D Aok @ ui @ y;

i
Let 6;(j) = 1,—;. By linearity of the partial trace, and since the set {@;}ic(m; is

orthogonal, we have
tren|y)Xyl = Zﬁiﬁj|x>i<x|j<¢|i|¢>j = SumiJﬂtJ:'J'|X>i<x|J'5i(i)
ij
= > A,

which is exactly the matrix BB*, where B is the matrix which is equivalent

to the state y. m|

Now we are ready to give the definition of another random state model,
which is slightly different from the previous one, and sometimes better.

Recall that the first one was given in Definition 3.2.4.

Definition 3.2.8. Let m,n € N and let y be uniformly distributed on the
sphere of C" ® C™. Then, the partial trace trc:|y){(y| of y over C" (likewise

on C™) is called random n X m induced state.
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We also use the notation u,s for the distribution of the random n X s

induced state.

In the rest of the thesis we will work on with random induced states.
The next lemma shows that a random induced state is a normalization of
Wishart matrices. More precisely:

W
trw

W ~ Wishart(n, s) and the random induced state is independent fromtrW,, .

Lemma 3.2.9. The distribution of a random n X s induced state is where

Proof. The first part of the lemma is merely a combination of the fact that
a random vector uniformly distributed on the sphere of C" ® C°® is an
n X s-matrix whose entries are independent random variables all follow-
ing N¢(0, 1) and Lemma 3.2.6 which implies that the partial trace of y over
C" is exactly what the lemma says.

For the second part, the proof is a simple consequence of Remark 1.4.20.

O

The results that we have presented for the Empirical Spectral Distribu-
tion have applications to random induced states. In order to state and

prove them, we need the following concentration lemmas.

Lemma 3.2.10. Let X ~ x*(n) .Then

ne?
P(X —n| > en) < 2exp (—m)
Proof. By the definition of the y?(n)-distribution there exist i.i.d. random
variables {Z}, such that Z, ~ N(0,1) and X = YL, Z? So, for any

s € (0, 1), by independence and isonomy we have that

E(exp(sX)) = E [exp > sz?] =B (]—[ exp(szf)] = [ [Eexp(sz)).
i=1

=1 i=1
But

E exp(sZ?) = f L exp(sx?) exp (—lxz) dx
R V21 2

1 (1-2s)'7? 1
= 1 297 f @01 exp (—5)(2(1 - 25))dx

=(1-2s)7"2,
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since the probability density function of a random variable Y ~ N(O, (1-2s))

is fy(x) = (1(22)31)/1; exp (—— x%(1 - 23)). It follows that

E(exp(sX)) = (1 — 2s) ™2,

So, given € > 0 and for s = by Markov’s inequality we get

2(1+ %

P(X > (14 ¢)n) =P(sX > s(1 + ¢)n) = P(exp(sX) > exp(1 + €)sn)
< [(1 + €)exp(—e)]"2.

From the inequality 1 + € < exp(e — (e — €°)/2) we see that
P(X > (1 + €)n) < exp(—(e® — €*)n/2).

Similarly, for s = we get

2(1 €)

P(X < (1 —¢€)) = P(exp(—sX) > exp(—s(1 — e)n)) < exp(—(e3 - )n/4).
Therefore, for any € € (0, 1) we get the desired inequality. |

Lemma 3.2.11. Let W be a Wishart(n, s) matrix. Then, for any t > 0 we
have that

t
P(ltrW — ns| > tns) < 2exp (— ne )

2 +4t/3)°
Proof. If W = BB* then

n
2UrW = Z 2|Re(By)|* + 2[Im(By)|*.
ij=1

This sum is exactly the sum of ns squared independent N(O, 1) random

variables. So, combining this observation with the previous lemma we

conclude the proof. i

Corollary 3.2.12. Forany ¢ > 0

7

Moreover, the convergence is stronger (meaning almost surely) by the Borel-

trW,, s
ns

—1‘26’)—)0.

Cantelli lemma.
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We are now ready to translate all the random matrix theory results of

Part II to the language of random induced states.

Theorem 3.2.13. Given n,s € N, let p, s be a random induced state with

probability distribution u,s. Then

(i) Ifnis fixed and s tends to infinity then C vs(o, s — %) converges in dis-

tribution towards a GUEq(n) matrix, where C is an absolute constant.

(i) Iflims/n = A € (0, o) then u,s(sp.s) (the E.S.D.) converges weakly in
distribution towards uypn (the Marchenko-Pastur distribution). If A >

1 then the convergence is also true for the co—Wasserstein distance.

(iii) If s/n,s — oo then ug(Vns(o,s — ﬁ)) converges in probability with

respect to the co-Wasserstein distance towards the semicircular law
Hsc-
Proof. (i) By the multivariate central limit theorem for the vector space

M3%°, if {G}ien is a sequence of standard normal vectors in C" and A; =

|G:){G;|, and since trW, s can be virtually treated as a constant, we have
Y Ai— sl
Vs

(ii) In the general case, where A € (0, ), the proof follows from the next

I
— GUEqy(n) — nx/g(pn,s - —) — GUEq(n).
n

facts:

Fact 1: If X, and Y,, are sequences of random variables defined on a com-
mon probability space that converge in probability towards the random
variables X and Y respectively, then X, Y, converges in probability towards
XY.

Fact 2: From the results of the section on the Marchenko-Pastur theorem,
if W, s is a Wishart matrix then u(W,, s/n) converges in probability towards
the Marchenko-Pastur distribution (see 2.2.1).

Fact 3: By 3.2.12 we have that trW,, ;/ns converges weakly towards 1.

In the case where A > 1 we have that the extreme eigenvalues of W,

also converge in probability towards the infimum and the maximum of
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the Marchenko-Pastur density function. So, by the characterization of the
oco—Wasserstein distance and Facts 1 and 3, the proof is complete. (see
2.2.9).

(iii) The proof is similar with the one of (ii) by Proposition 2.3.18 and The-

orem 2.3.1. O



Random quantum states

4.1 Miscellaneous tools

In the first section of this chapter we give some necessary definitions and

prove some important tools.

4.1.1 Majorization inequalities

Definition 4.1.1. Let x = (x;,...,x,) and y = (y1,...,yn) in R". Let also
o0 € S, be a permutation of n elements such that the coordinates of x via
o are being arranged in decreasing order, and let d be a permutation of n
elements such that the coordinates of y via d are also being arranged in de-
creasing order. Let X’ = (x],....x)), Y = (y].....y,) be the n-dimensional
vectors that we obtain when we apply the permutations o and d to x and
y respectively. If >\', x; = XL, y; we will say that x is majorized by y and
write x < y if

K Kk
for all k € [n] we have that Z x; < Z ..

i=1 i=1

The next lemma provides some simple properties of majorization.
Lemma 4.1.2 (properties of majorization). Let n € N and x, y, z € R". Then:

@ Ifx<yandy< z thenx < z.

(ii) If A € (0,0) and x < y then Ax < Ay.

(i) If x = (x,....x) and y = (Y1,...,Yn) € R" are such that )., x; =
Yt Ui = 0 and x < y then for any A € (0, 1) we have that Ax < y.

137
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(iv) If x < z and y < z then for any A € (0, 1) we have that

Ax+(1-ANy<z

Proof. Let x',y’,Zz" € R" be the vectors with the same elements as x, y, z
respectively, arranged in decreasing order.
(i) By the assumption we have that for any k € [n]
k K K
x| < Z y; < Z Z
i=1 i=1 i=1
which proves that x < z since it is also true that ;" , x; = XL, Ui = Dby Zie

(ii) Since Y i, x; = Yo, Y we get that )1 (Ax) = XL, (Ay;). Also, since

for every k € [n].
(iii) Firstly note that },', x; = 2L, y1 = b, (Ax) = 0.

Secondly since A € (0, 1) the rearrangement of the elements of the vector
x in decreasing order will arrange the elements of jix in decreasing order

as well. Also, for any k € [n], we have X, x/ > 0, and hence

So, jix < x. Then, using (i) for the vectors Ax, x, y we get jix < y.
(iv) Let A € (0, 1). Note that
S At Q-My=Ay 2+1-Ny z=Y z
i=1 i=1 i=1 i=1
Then, by (ii), for any k € [n] we have that

I I

DA+ (1= Ay, < Zk:ﬂzi + Zk:u -Mz=) 7
i=1 i=1

i=1 i=1
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Next, we present several characterizations of majorization.

Lemma 4.1.3. Let x,y € R". Suppose also that i, x; = Y-, y;. Then, the

following are equivalent:
@ x<uy.

(ii) x can be written as a convex combination of coordinate-wise permuta-

tions of y.
(iii) There exists a doubly stochastic n X n matrix B such that Bx = y.
(iv) If ¢ is a permutation invariant convex function on R" then ¢(x) < ¢(y).
(v) Foreveryt € R we have that 3.7, |x; — t| < X7, |y — ¢l

(vi) For every t € R we have that Y, ,(x; — t)* < X, (y; — t)* where, for

any z € R we use the notation z* = max{z, 0}.

Proof. Given a vector a € R" we will use the notation a' for the vector in

R™ which the same elements as a but in decreasing order.

For the equivalence of (i) and (ii) consider the set
Ay={zeR":z<y}.

Note that A, is convex and its extreme points are permutations of y, mean-
ing those z € R" that satisfy z' = y*. Now, the equivalence follows by the

Krein-Milman theorem.

For the equivalence of (ii) and (iii), similarly, we use the classical Birkhoff
theorem, which asserts that the extreme points of the set of doubly stochas-
tic matrices are exactly the permutation matrices. So the equivalence is
implied by using the same permutation whose convex combination is B to

receive x from extreme elements of A, and vice-versa.
The implications (ii) = (iv) = (v) are obvious.

For the equivalence of (v) and (vi) we just combine the facts that |x| =
2x" —xand i, x = XL Ui
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Finally for the implication (vi) = (i) set t = yt for some k € [n]. Then

an(yi - = Zk: y; — kt,
i=1 i=1

but .
Z(xi _ = Z(xil S Zx} — kt,
i=1 i=1 i=1
which ends the proof. O

Definition 4.1.4. We will use the notation R™° for the hyperplane

R”’O:{xeanixi:O}.
i=1

Lemma 4.1.5. Let x,y € R*°. Assume that ||yll. < 1 and ||yl > an for

some a € (0, 1]. Then 0
x< (2= 1) Iy,
a

Proof. By homogeneity and property (ii) of majorization we may assume
that ||x|lo < 1. So we need to show that for any x € R™° with ||x||. < 1 it is
true that x < (% — 1)y. Consider the set
A2y = {z eR™:z< (% - l)y}.
a a

We will also use the notation B™° for the n-dimensional unit ball with
respect to the infinity norm restricted on the hyperplane R™°.

By the properties of majorization we get that the set Az, N B is

convex. So, if we show that
ext(BL°) € A(z_y), N B,
then by the Krein-Milman theorem we will have
B = gz, N BLY.

which will prove the lemma. Here for a convex set D C R" we use the
notation ext(D) for the set of extreme points of D.

In order to do this, we need first to specify which are the extreme points
of B,
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Lemma 4.1.6. If n € 2N then
n,0 n,0 . . n
ext(BL; ):{XEBOC; Hien]:x =1} ={ie€[n] :xi:—l}I:—},

and if n € 2N + 1 then

ext<B;°>:{XEB$°:|{te[n1 tx= 1l =Hienl:x = -1l = n;}'

Note: In the case where n is odd, if x € ext(B™°) then the coordinates of x

which are not equal to 1 or —1 must be equal to zero since ), X; = O.

Proof. We assume that n € 2N. The case where n is odd is very similar and
is omitted.

(2) Let d € {x eB:|lie[n:x=1}={ie[n]:x=-1} = ’51} Suppose
that there exist y, z € B%° and A € (0, 1) such that

d=7Ay+ (1 -z

We will prove that y = z. If there exists i € [n] such either |y;| < 1 or |z]| < 1
then
Ay + (1 = Dz < Alyd + (1 - ADlz| < 1,

which is a contradiction.

So |yl = |z| = 1 for all i € [n]. Suppose now that there exists i € [n] such

that z; = —y;. Then 2Ay; + z; € {—1, 1}. But then, A € {—1,0, 1}, which is
a contradiction. Therefore, z = y and as a result d is an extreme point of
Bx°.
(C) Let d € ext(B™°%). Suppose that there exists j € [n] such that 0 < |d;| < 1.
Since )., d; = O there must exist another coordinate k € [n], k # j such
that O < |di| < 1 and d,d; < 0. Without loss of generality we may assume
that d; > 0 > d,. We may find an € > O such thatd;+e < 1, d;j—€¢ > 0,
di — €> —1, di. + € < 0. Then, consider the vectors z and y with

Vie[n]\U. k} z=d, zr=dc—€ z=di+¢€

and
Vie[n\{ikl y=d. yu=di+e y=d—e
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Then,

d 1 N 1
= — -2z,
2y 2

and by the way e was chosen z, y € B":° which shows that d can not have
a non-zero coordinate different from 1 and —1.

Suppose that there exists j such that d; = 0. By what was done before
and since )1, d; = O there must exist k € [n], k # j such that d; = 0. But

then, for the vectors z and y with
Vie[n]\U. k} z=d, z=-2z.=1

and
Vie[n]\{jk} z=4d, z=-2z.=-1,

we have that z, y € B™° and, as before,

d 1 +1
=—z+ —y.
2 2y

So d cannot be an extreme point.

The conclusion is that an extreme point of B*:° must have all its coor-
dinates non-zero and with absolute value 1. But since the sum of all its
coordinates must be zero we see that the cardinality of the set of coordi-
nates equal to 1 must be equal to the cardinality of the set of coordinates

equal to —1. So, the proof is complete. O

Returning now to the proof of the main lemma we need to show that for
any x € ext(B%°) we have
x < (g - 1) y.
a
We may also assume that ||y||; = an, by the properties of majorization, and
that n € 2N (the proof in the case where n is odd is very similar and is
omitted).

Let x € ext(B°). Consider the sets
C={ie[n]:y; =0}

and

D={ie[n]:y; <O}
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Both sets are non-empty, since ), |y;l > O so there exists at least one
non-zero coordinate and y € R"® and as a result there exists at least
another coordinate with different value than the previous one. Also it is
obvious that
CUD=[n].
Since y € R™°, it is true that
Z YU =-— Z Yi,
ieC i€eD
and as a result, since ||y||; = an, we get
an
Zyi+z_yi: an = Zyi -5 = _Zyi-
ieC i€eD ieC i€eD
Finally, since ||yllo < 1,

an an
— <|C|] and |D|<1-—.
2 2

Suppose without loss of generality that |D| < |C|. Now consider the vector
Yy’ with

y; = MforalliEICI and y; = Zie Ui
|C] Dl

Obviously, iy € R™°. By the previous inequalities we have that

for all i > |C|.

2 <y
2—q - Ut

Now consider the vector d with

, A Zi>g y; .
d;=y,forallie[n/2] and d; = 5 for alli > n/2.

Finally we have constructed a vector with the first n/2 coordinates equal
and positive and the last n/2 coordinates equal and negative. So, we have
that ;% x < |di|x = d. Note that, by construction, the elements of both d

and y’ are in decreasing order. Now, let k € [n].

If kc < 5 then

di = Zy:

L

I
i=1

I
=1
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If k >  then obviously

n-k<|C] = Z y; < (nn;zk) Z Y,

which implies that

I I
=1 i=1

£

£

So, we have proven that d < y'.
Let z be a vector of R" with the same coordinates as y but arranged in

decreasing order.

Note: Let {a,,}men be a sequence in decreasing order. Then, for any N € N,

Using the same method inductively for the coordinates of the vector y we
have that for any k € [|C| — 1]

k k i
Yi Ui ’
Obviously, we have that Zliill Y, = Zliill z;.

Likewise, for any |C| < k < n using again the note inductively we get

Then we must have that y’ < z, which is equivalent to y’ < y. So we have
proven that

a ’
2—x<d<y <y.

Using the properties of majorization we get ;*-x < y, and this completes

the proof. i

Lemma 4.1.7. Let x,y € R*° and y # 0. Then

2n|ix|le
llyll,
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Proof. By homogeneity, we may assume that ||y|l. = 1 and the result fol-

lows from the previous lemma. O

Proposition 4.1.8. Let x,y € R™°. Assume that ||x — yll. < € and ||y|l; > an
for some a > 0. Then
X < (1 + §) y.
a
Proof. We use the following elementary property of majorization: If x; < A,y

and x; < jly for some positive j,, A, then
X1+ X < (A1 + A)y.

Setting x; = y .xo = x — y, j; = 1 and using the previous lemma we see

that we can also set jl, = % and the proposition follows. m|

4.1.2 Spectra and norms of unitarily invariant random

matrices

At this point we are going to work on the spectra of norms of unitarily
invariant matrices in order to approximate a specific gauge or norm.

It is convenient to work in the hyperplane M3*° of self-adjoint complex
n X n matrices with trace zero. We say that a M3*°-valued random variable
A is unitarily invariant if, for any U € U(n), the random matrices A and
UAU™ have the same distribution. We will also use the notation ugc for the
semicircular distribution, us,(A) for the empirical spectral distribution of a

self-adjoint matrix A, and d., for the co-Wasserstein distance.

Proposition 4.1.9. Let A and B be two M$*°-valued random variables which

are unitarily invariant and satisfy the conditions

P(deo(psp(A). pisc) < €) 2 1 = p

and
B(deo(psp(A), psc(A)) < €

Jor some €, p € (0, 1) and similarity for B. Then, for any convex and compact
set K C M5%° containing the origin in its interior, we have that
+ Ce

p 1
~EllAllk < EliBllx <

E ||Allk.
T+ C lAllx
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where C > 0 is an absolute constant.

Proof. Consider a (product) probability space (Q2, A,P) such that both A
and B are defined there and are independent.
Let ¢ : R™® — R be the function defined by

@(x) = Ey [[UDiag(x)U|Ik.

where U € U(n) denotes a Haar-distributed random unitary matrix (inde-
pendent of everything else) and Diag(x) is the diagonal matrix whose ii-th

entry is x;. By unitary invariance we have that
EllAllx = E ¢(spec(A))
and similarly for B. Consider the event

E = {dw(usp(B), usc) < €}.

In order to continue we need the following lemma.

Lemma 4.1.10. Let f : R —» R" be an L-Lipschitz function and set g =
(f - L€)+. Ifdoo(x,y) < € then

Ef(Y) > Eg(X).

Proof. If || X — Y||., < then, obviously, f(X) > g(Y). So by the definition of

the co—Wasserstein distance the lemma follows. O

Assume for the moment that the event E holds. Then by Lemma 4.1.10

we have

2
IBll, = n f Ixldusp(B) = n f (IXl = €)" dpsp(x)
-2

v

2

n f (x| = 1)" dpsc(x) = na.
-2

Applying Lemma 4.1.5 for C = % we get

spec(A) < (1 + Cdw(usp(A), usp(B)))spec(B).
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But since ¢ is convex and permutation invariant, by the characterization

of majorization we get

@(spec(A)) < (1 + Cdw(usp(A), pusp(B)))p(spec(B)).

So by taking expectation over A and then over B (recall that we have as-
sumed that they are defined on a product probability space), and taking
into consideration the fact that d.(usp(A), usp(B)) < € + do(usp(B), Usc), we
get

Eg(spec(A)) < (1 + 2Ce)Eg(spec(B)).

So, in the general case we get by independence
Eg(spec(B)) > Eg(spec(B))1g > (1 + 2Ce) 'P(E)E¢(spec(A)).

Since P(E) > 1 — p, the proof of the inequality is complete. The other
inequality follows by symmetry. O

A very similar result is the following.

Proposition 4.1.11. Let A, B be two M:*°-valued random matrices which

are unitarily invariant. Assume that
P(lAl Z2ean)21-p

and

Let K C M3*° be a convex body containing the origin in its interior. Then
C'EllAllx < ElIBllx < CEl|All.
where C = (1 — p) 12C,/c;.

Proof. The proof is similar with the proof of the previous lemma. First
define A and B in the same probability space. Then, suppose that the
event E = {||B||; > c;n} holds. Finally, use Proposition 4.1.8 and continue

with the same method as in the previous proposition. O



148

4.1.3 Gaussian approximation to induced states

We are going to investigate typical properties of random induced states,
in the large dimension regime. Their spectral properties were discussed
in previous sections, and are described either by the Marcenko-Pastur
distribution (when s is proportional to n) or by the semicircular distribution
(when s > n).

However, we are also interested in properties that cannot be inferred
from the spectrum (the main example being separability vs. entanglement
on a bipartite system). In this context, it is useful to compare induced
states with their Gaussian approximation. Indeed, the Gaussian model
allows us to connect with tools from convex geometry, such as the mean
width.

It is convenient to work in the hyperplane M3*° and to consider the
shifted operators p—I/n, which we compare with a GUEy(n) random matrix.
The following proposition compares the expected value of any norm (or

gauge) computed for both models. First we give a definition.

Definition 4.1.12. Let H be a Hilbert space and let A C H be a convex
body. We say that r > O is the inradius of A if it is the largest radius of a
Euclidean ball contained in A.

Likewise, we say that r is the outer radius of A if it is the smallest radius

of a Euclidean ball that contains A.

Proposition 4.1.13. Let n, s € N and write p, s for a random induced state
on C" with distribution wu, s and G, for an n X n GUE, random matrix. Let
C..s be the smallest constant such that the following holds: For any convex

body K € M5*° containing O in its interior,

G

n n
nys

nys

Then, if (ny) and (s;) are two sequences such thatlimy._,, e = limy_, Sic/Mye =

C'E

n,s

I
n

< ChE

K K K

oo, we have thatlim C,,_s, = 1.

Proof. Firstly we will prove the following lemma.
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Lemma 4.1.14. Let X and Y be two R"-valued random vectors with the

property that for any t € S*!
0 <EKX, O, EKY, t)| < oo.

There exists a constant C depending on (n, X, Y) such that, for any convex

body K containing O in its interior,
EllX|lx < CE[Y]lk.
Proof. Let Z be the random variable defined by
1
P(Z=¢e)=P(Z=-¢)=—,
2n

where {e;};[n is the standard basis in R". Assume also that Z is indepen-
dent from X and Y.

Then, by the assumptions we made for X and by independence we get
that

n n
BIX|lk < ) EIXilllesign (X)llx = 2n Y EIXlesignXlx1z-qsienx,

i=1 i=1
n n
=21 > BIX|1Zllk1o-esens < 20 Y | EIX{ Zllx = 2nEIXEllZI k.
i=1 i=1
So, we may set C; = 2nE|X]|;.

For the second part let A = {E(Y1,), where A is measurable}. Note that
for any y € conv(A) we have ||y|[x < E||Y]||x. Note also that the interior of
conv(A) contains O in its interior, otherwise there would exist t, € S*!
such that

Eto. Y)[ = 0,

which is a contradiction.

So, there exists € > 0 such that
+ee; € conv(A) for all i € [n].

Then €E||Z||x € conv(A). So, for C = ég we get the desired inequality. O
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We can now continue with the proof of the proposition. Assume that the
sequences s := s, and n := ny, have the property that both n, and si/n
tend to infinity. Then, let A, = Vns(o,s — I/n) and B, = G,/ Vn.

We will also use the notation

X = doo(,usp(Ak)’ I’LSC)

and
Y = doo(ﬂsp(Bk)’ ]J'SC)-

Firstly note that
Xie < ||Aklleo + 2

and
Yie < ||Billeo + 2.

We have proven in Theorem 2.1.38, Proposition 2.1.33, Lemma 2.3.19 and
Proposition 2.3.18 that the means of ||Axll. and ||By|l. are bounded by
absolute constants and that both A, and By tend almost surely to 2. We
will prove that

IimEX, = limEY, = 0.

We write
ElBillo <2 = liminfE||By|l- < 2,

and since ||By|lc — 2 in probability we have liminf ||Bgk|l., = 2. By Fatou’s
lemma,
lim inf E||B;||c = 2.

Now let fi, = 2 + ||Billo — Yi. Applying again Fatou’s lemma we get
Eliminf fi, < liminf Efy, = Elimsup Y > limsup EY.

Finally, since Y} converges in probability to zero we get that lim sup Yy = O.
We argue in the same way for X.

Note that equivalently if we had only assumed convergence in probability
then we could have used Skorohod’s theorem.

So we can apply Proposition 4.1.9 for two sequences {e,} and {p,} with

ex — 0 and p, — O to conclude the proof. O
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Remark 4.1.15. The previous result can be generalised by removing the
assumption of n, s/n — o and then one may show that for any a > 0 we

have sup{C,, s : s > an} < co. For a proof see [7, Chapter 10].

Remark 4.1.16. We emphasize that the quantity E||G,||x appearing in Propo-
sition 4.1.13 is exactly the Gaussian mean width of the polar set K°. In-
deed, consider G, in the space M*° (equipped with the Hilbert-Schmidt
scalar product, as always) which is exactly a GUEq(n) random matrix.
We could have equivalently formulated Proposition 4.1.13 using the usual
mean width: if C,  denotes the smallest constant such that the inequalities

C'—l
w(Ko)% <E

/
mn

d Cns (K°)
L ,
Vs

OPns — —
n

<
K

then the conclusion of Proposition 4.1.13 holds for C; ; as well.

4.1.4 Concentration for gauges of induced states

We present a concentration result which is valid for any gauge evaluated

on random induced states. We start with some concentration inequalities.

Lemma 4.1.17 (Lévy’s lemma). Letn > 2. Iff : S*"! — R is an L—Lipschitz
Junction and My is the median of f then, for every t > 0,

s = My| > t) < exp(—nt®/2L3).

Proof. Let A = {f < My} and set € = f Since f is L-Lipschitz it is easy to
prove that
A, C {f < Mf + t}.

Likewise, one can show that if B = {f > M;} then
B. C{f > M; + t}.
So by Corollary 1.4.6 we get the desired inequality. O

Definition 4.1.18. Let f : S*! — R. A value M will be called central value

of f if either it is the mean value of f or

s (f > M) and s"'(f<M)>

NI
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An equivalent way to define the central values is via the first and the third
quartile of a random variable Y defined on an probability space (€2, A, P).

The first quartile of Y is defined by
. 1 1
u:mf{teR:P(YZ t) > Z’P(YS t) > Z}
and the third quartile of Y is defined by
1 1
M:sup{teR:P(YZ t) > Z,P(YSt)Z Z}

So a central value of a random variable Y on a probability space (2, A, P)
(in particular on the sphere) is defined to be either the mean value of Y or
some t € Rsuch that u <t < M.

The goal is to generalise Lévy’s lemma for any central value of a function
f defined on the probability metric space (S*!, s"1, g, B(S*"!)), where g is

the geodesic metric.

Proposition 4.1.19. If f is an L-Lipschitz function with median My and M

is any central value of f then

IM — M| < \21log(2)n"1/2

and

P(f > M + t) < exp(—nt®/4L?).

In order to prove this generalisation of Lévy’s lemma we need the follow-

ing lemma.

Lemma 4.1.20. Let Y be a real random variable and let M be any central
value of Y. Leta € R and let A > 1/2 and A > 0 be constants such that for
any t > 0 it is true that

max{P(Y > a + t),P(Y < a — t)} < Aexp(—At?).

Then, [M — a| < /A7 log(4A) and consequently. for any t > \/Alog(4A),

max{P(Y > M + t),P(Y < M — t)} < 4A% exp(—A"'2/2).
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Proof. First note that if [M — a| < /A7 !1log(4A) then for t > /log(4A)A~! by
hypothesis we have that

P(Y >M+1t) <P(Y > a—- A 'log(4A) + t) < Aexp(—A(t — A ! log(4A))?).
Since for any c, d € R it is true that 4cd < ¢® + 4d? we then get that
P(Y > M + t) < 4A% exp(—At*/2).

Likewise, one can show that the quantity P(Y < M — t) is bounded by
4A? exp(—At? /2). So we get the desired inequality.

Thus, in order to prove the lemma we just need to prove that

IM — a| < /A 1log(4A). 4.1.1)

Firstly we will prove the inequality (4.1.1) for the mean of Y. For simplicity
we will assume that A4 = 1 and by linearity the result will be true in general.
Let Y, be a random variable such that P(Y, > t) < Aexp(—t?). Then by

the properties of the mean we get
EY, <EY; = f P(Yy > t)dt < A f exp(—t?)dt
0 0
=AVr/2 | f(bdt,
0

where f is the density function of a random variable Z ~ N(0, 1/2), taking
also into account the inequality fu “exp(—t2)dt < (Vu2 + 1 — wexp(—u?)
which holds true for any u > 0. So, for u = +/log*(A) we get

Vlog*™ A
EY, < f exp(—tz)dt+f < /1 +log*(A).

0 Vlog*(4)

This shows that

EY, < min{+/1 + log*(A), AVr/2} < log(4A).

Then, setting Yo = Y — a and Yy, = a — Y we get the inequality

EY — al < +/log(4A).
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Likewise it easy to prove that for a random variable Y, such that P(Y, >
t) < Aexp(—t?), if Ms is its third quartile then Mz < m.

So setting Yo =Y —a, Yo = a— Y (and likewise for the first quartile) we
get that for any value M between the first and the third quartile of Y it is
true that

IM — al < ylog(A),

which ends the proof. O

Remark 4.1.21. The proof of the previous lemma shows that if a is the

median of the random variable then no restrictions on t is needed.

Proof of Proposition 4.1.19. Combining Lemma 4.1.20 with Lévy’s lemma
we get the desired inequality. i

Corollary 4.1.22 (Lévy’s lemma - local version). Let f : S - R and
Q C S*! such that P(Q) > % and the restriction of f on Q is L-Lipschitz.
Also, let My be the median of f. Then, for every € > 0,

P(f =Ml > ¢) < P(S™ '\ Q) + 2 exp(—ne®/4L?).

The proof of this fact is very similar to the one of Lévy’s lemma and is

based on it.

Proof. Let f" = infyeq f(y) + Ld(x,y). Then, M is a central value of . We
split the set into its intersection with the sets {f # f’} and {f = f’} and
apply Lévy’s lemma in the version of Proposition 4.1.19 to get the desired
inequality. O

Lemma 4.1.23. Let M, ((C) denote the set of n X s matrices. Consider the
sphere Suys © M, s equipped with the Hilbert-Schmidt norm. Consider also

the function

g:MESHsf—)M*M.

Let Q; = {M € Sys : |[Ml|lop < t}. Then the restriction of g onto Q; is 2t-
Lipschitz.
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Proof. Let M, N € Q,. Then

IMM"™ — NN||lgs < |IM(M* = N*) = (M = N)N)llas < (IMllop + [INllop)lIM — Nllus
< 2t||M = Nlop.

Now we can present the main result of this paragraph.

Proposition 4.1.24. Let s > n and let K C D(C") be a convex body with
inradius r. Let p be a random induced state with distribution u, s. Let M be

the median of”p - ﬁ”Ko where Ky = K — L. Then, for every e > 0,

I
([
Ko

Proof. We have already proved in Lemma 3.2.9 that a random induced

Wishart(n,s)
tr(Wishart(n,s))

DD* where D is uniforlmy distributed on the Hilbert-Schmidt sphere of
M, s.
So, consider the function f : Sys — R defined by

> e) < 2exp(=s) + 2exp(-n?sr?e? /72).

state has the same distribution as or equivalently as a matrix

I |
fA) = ”AA - —” .
ik,
Also, for every t > 0, let Q; = {A € Sys : ||Allop < t}.

The function f is a composition with several properties:

- The map A — ||Allg, is by definition 1/r-Lipschitz with respect to the
Hilbert-Schmidt norm. This fact is true since ||All;5r(A—1/n) € K, for
all A € Sys.

- The function A — A — I/n is an isometry for the Hilbert-Schmidt.

- The map A — AA" is 2t-Lipschitz with respect to the Hilbert-Schmidt

norm in Q; (see Lemma 4.1.23).

From the facts above we obtain that the function f is 2t/r Lipschitz with
respect to the Hilbert-Schmidt norm on €;.
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So we can apply the local version of Lévy’s (Lemma 4.1.22). For every
€ > 0 we have that

P(f — Mf| > €) < P(Sys \ Q) + 2 exp(—nsr’e®/8t°).

From the fact that D is uniformly distributed on the sphere, the above

> ¢

probabilities can be equivalently expressed as

P(f — My| > €) :P(”'AA*—i -M

HHKO

and
P(Sus \ €¢) = P(|IDllop > ).
We can now complete the proof of the proposition, using Proposition 2.3.18
and Corollary 3.2.12 (the norm of the matrix can be treated as constant)
which imply that
1 l1+e
—+
Vi s

Choosing € = Vt/n we conclude the proof. |

IP’(IIDIIOp > ) < exp(—ne?).

Remark 4.1.25. The previous argument for ¢t = 1 shows that the global
Lipschitz constant is bounded by 1/r. Moreover by (4.1.1) we get that any
two central values differ by at most C/r y/ns.

4.2 Separability of random states

Assume now that we work in a bipartite Hilbert space, and for simplicity
consider the case of C* ® C% where both parties play a symmetric role.
Throughout this section we write Sep for Sep(C?®C?) and consider random

induced states on C¢ ® C% with distribution g .

4.2.1 Almost sure Entanglement for low-dimensional en-

vironment

In order to prove the main proposition of this subsection we need the

following very important theorem.



157

Theorem 4.2.1. Let H=CY®C%®---C%. Alsoletny = [|\, di— S i, di +
k-1.

(i) If m > ny then any m-dimensional subspace of H contains a (non-zero)

product vector.

(i) If m < ng then any m-dimensional subspace of H contains no (non-zero)

product vector.

Proof. We will prove the second part of the theorem (the first assertion can
be proved via the projective dimension theorem from algebraic geometry;
for proof see [20]).

For simplicity we will prove the theorem when H = C¢ x C% (so m <
ny = (d — 1)®)). The general case is similar. The theorem will be proven
by probabilistic dimensional counting. First we give some definitions and

prove some necessary lemmas.

Definition 4.2.2. We denote by P(C%) the complex projective space of C¢,
i.e., the quotient of Sc« under the identification of the elements ¢, i € Sca
if and only if

@ =exp(i®)y ,d € R.

We also equip P(C%) with the following metric (called Fubini-Study metric,

or Bures metric):

d([yl. [x]) = arccos [(y, x)|.

Moreover, if H = C* ® C* we consider the Sagre variety of H
Seg ={p®y ,p € Scar , Y € Scar}.

One can show that Seg C P(C% @ C%.

Definition 4.2.3. The space Gr(k, V) is the family of all k-dimensional sub-
spaces of an n-dimensional vector space V. It is called the k-Grassmann
manifold of V. Since the properties depend only on the dimension of V we
will work on the spaces Gr(k,R") and Gr(k, C").
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Remark 4.2.4. Let O(n) denote the space of n X n orthogonal matrices. Fix
0 < k < n and consider the canonical action of O(n) to Gr(k,R"). We
note that the stabilizer sub-group of O(n) that fixes R* consists of block

matrices of the form
O, O

0 O,

s

where O; € O(k) and O, € O(n — k), and hence it can be identified with
O(k)x O(n—k). Since the action of O(n) on Gr(k,R") is transitive, it follows
that Gr(k,R") is a homogeneous space for O(n) and can be identified with
the quotient space O(n)/0O(k) x O(n — k).

Moreover similar results can be proven for Gr(k, C") and the nXn unitary
matrices, denoted by U(n).

So each Grassmann manifold carries a natural probability measure
which can be constructed as the push-forward of the Haar measure on
O(n) via the quotient map O(n) — O(n)/O(k) X O(n — k), and likewise
U(n) —» Un)/U(k) x U(n - k).

Definition 4.2.5. Let K be a compact subset of a metric space (M, d). We
will say that a finite subset N C K is an e—net of K if and only if for all x € K
we have that d(x, N) < e. We will write N(e, K) for the minimal cardinality

of an e—net of K.

Proposition 4.2.6. Let M € Gr(l,R") or M € Gr(k,C") equipped with a
metric generated by the Shatten p-norm for some p € [1, c0]. Then, for any

€ € (0, diam(M)],

dim M

( c diam(M)

dim M .
" ) < N(M, 6) < (M)

Jor some constants c, C > O independent of n, k, p and .
Proof. For a proof see [7, Theorem 5.11]. O

Now we can proceed with the proof of the theorem. We are going to work
on P(H) with the Bures metric. The ball with center y and radius ¢ will be
denoted by B(y, €).
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Let F be a random m-dimensional sub-vector of H with respect to the
Haar measure on Gr(m, H). More concretely, from what was mentioned
before, we may assume that M = U(Fy) where U is Haar-distributed on
U(d?) and F, is some fixed m—dimensional subspace of H.

We are going to prove that the event D = {Seg N F = 00} has probability 1.
Given € > 0, by Proposition 4.2.6 let M, be an e—net inside the projective
space P(F,) with card(M,) < (C'/e)*™ 2. Next let N, be an e-net inside
P(H) such that, again by Proposition 4.2.6, card(N,) < (C’'/2¢€)?>?"2, We can
check that Nf := N, ® N, is an 2e—net inside Seg. Therefore,

P(D°) < P(Uyenz B(, 2€) N U(Uyyen, B(w, €)) # 0)
< > PB(B(@.2¢)NUBy,e) #0)

@eN2Z,yeM,

< Z P(d(p, Up) < 3e).

@eNZ .yeM.
But the quantity P(d(¢, Uy) < 3e€) does not depend on ¢ or y and is
bounded by (C" )P 2 (by the definition of P(H); for a detailed proof see
[7, Ex. 5.11]). It follows that

P(D) < (C” 6)2d2_20ard(N€2)card(M€) < Q2 -2-2m=-2)-2(2d-2)

So, provided that m < (d—1)2, the last quantity tends to zero as ¢ — 0. This
shows that the event D¢ has probability O and as a result D has probability
1. O

The next proposition is just a consequence of the previous theorem.
Proposition 4.2.7. Let d, s be integers such that s < (d — 1)?. Then
a2 s(Sep) = 0.

Proof. Let S € C? ® C% be the range of p (meaning the image of the
corresponding matrix transformation). Obviously, S is almost surely s-
dimensional. In order for p to be separable, S must contain product vec-

tors. But, by the previous theorem, this cannot be true. So,

P(p is separable) = pg2 s(Sep) = 0.
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4.2.2 The threshold theorem

In this subsection we can achieve the main goal of this chapter:

Consider a system of N identical particles (e.g., N qubits) in a
random pure state. For some k < N/2, let A and B be two sub-
systems, each consisting of k particles. There exists a threshold
function ky(N) which satisfies ky(N) ~ N as N — oo and such
that the following holds. If k < ky(IN), then with high probability
the two subsystems A and B share entanglement. Conversely,
if k > Ip(N), then with high probability the two subsystems A

and B do not share entanglement.

In order to continue we need the following very important theorem.
Theorem 4.2.8. Let sy(d) = w(Sep(C* ® C%)°)? for some d € N.Then
cd® < so(d) < Cd®log? d
where C,c are absolute constants.

Proof. We will give a sketch of the proof. By Lemma 1.4.23 an equivalent

way to express the desired inequality is the following:
cd’’? < E||Glls, < Cd”*log d.

Here we consider the equivalence of Corollary 1.5.6, so we work on Sep(C"),
where n = d?, Sy = Sep(C") — % and G is a GUEy(n) matrix.
Now set
Seym = So N (=So).

Obviously, Sy, is a symmetric convex body in M54 containing O in its

interior. Firstly note that
IGlls, < IGlls,,,, = max{[|Glls,.ll = Glls,} < [IGlls, + Il = Glls,-
Since -G ~ G, we have

EllGlls, < EllGlls,,, < 2ElGlls,.
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which implies that we can work with ||Gl|s,,,, instead.

One may show that u(Sy) = vrad(S,) = n~%/%, meaning that after multi-
plication with appropriate absolute constants these quantities are all com-
parable [21].

Now notice that the following chain of inequalities is true
W(Seym) < W(Sp) = vrad(Sy) < 27"vrad(Seym) < W(Ssym)-

Here the first inequality comes from the fact that Sy, C Sp, the second
one comes from Lemma 1.4.10 and the last one by Uryshon’s inequality
(Lemma 1.4.22).

So we conclude that

W(Seym) = N34,

Using again Lemma 1.4.23 we get that
EllGlls;,,, = n'/*.
Finally, we will show that, for some absolute constants c, C,

cn® < E||Glls,,,,EllGlls;

'sym

< Cn’logn, (4.2.1)

which will end the proof.
Let E C M3*° be the subspace spanned by the operators 0, ® 0,, where
0; i = 1,2 are self-adjoint operators on C%. Let F be the orthogonal com-

plement of E, i.e.
F={o®I tr(oc) =0} {l® 0o ,tr(o) = 0}.

Note that dim(F) = 2n — 2.
By Lemma 1.4.28 we have that there exists a linear map u : M3*° — M5%°

such that u(Sym) is in the £—position and has the form

where v : F — F is a positive semi-definite operator.

By Lemma 1.4.28 and by the ideal property of the /-norm we get that

bs,,.(Pg) = Ls,,,,(UPg) < Is (0
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and likewise for Bs;ym.

Similarly, since u™! = Py + 0® v™! we get that

ls (Pe)lss,, (Pg) < Pssym(u)fsgym(u_l)-

Moreover, by Theorem 1.4.27 and by the ideal property of the /—norm we
get

[ssym (PE)Bsgym (PE) < an log n,
where C is an absolute constant.

Now note that for every A € S, we have that

1
A>——1,
n

which implies that, for every A € Sy,
Al < 1/n,

and hence the outer radius of Sy, is bounded by 1/ +/n.
Moreover, the inradius of Sy, is bounded by the inradius of S, which
(by [21]) is known to be equal to (n(n — 1))"'/2. So, by the properties of the

?—morm and by Lemma 1.4.23 we get
[Ssym(PF) = wG((Ssym N F)O) <nv2n-2< C'n,

and likewise

bs;,,(Pr) < C7,

where C’ and C” are both absolute constants.

Finally, by the triangle inequality,

W6 (Ssym) = s (D) < s, () + sy (Pr),

and similarly for wG(S;’ym).

So, we get (4.2.1) which ends the proof. O

We are now ready to present a threshold theorem.
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Theorem 4.2.9. Consider the function sy(d) = w(Sep(C? ® C%)°)2, which
satisfies

cd® < so(d) < Cd®log d®

for some absolute constants C, ¢ as proved in the previous theorem. Then,
so(d) is the threshold between separability and entanglement in the _follow-
ing sense.

If p is a random state on C% ® C% induced by the environment C® then, for

any € > 0,
(@) Ifs £ (1 — e)so(d) then we have

P(p is entangled ) > 1 — 2 exp(—c(e)d®). (4.2.2)

(i) If s > (1 + €¢) then we have

P(p is separable) > 1 — 2 exp(—c(e)s), (4.2.3)

where c(e) is a constant depending only on e.

Proof. (ii) Let ps2 s be a random induced state with distribution ps2 . Denote
- Sep, = Sep — %,
- f(0) = llo = Fllsep,
 Esa = Ef(paz.s).

Now fix € > 0 and let s, d be such that s > (1 + €)so(d). Note that by the
assumption on s we have (if we consider a sequence of s, d) d?,s/d?* — oo.
So, if d is appropriately large enough, we can apply Proposition 4.1.13 (i)

(in the version given in Remark 4.1.16) to get

Sep? C
Egqs < C wiSepy) - Cas

“@T Vs Vite

where C] , is very close to 1.
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Now let M, s be the median of f(oss). We have already mentioned that
the inradius of Sep is O(d?). So, from Proposition 4.1.24 we get

P(f(pas) > € + Mys) < 2exp(—s) + 2 exp(—cse?).

Moreover, since E, s is a central value (see Remark 4.1.25) we get that there
exists h > O depending only on € such that My s + h < 1. Now the proof of

(4.2.3) ends if one notices that, for any state p,
1
pis separable < peSep — p- = €Sep, <= f(p)<1.

Note that for small values of d we can adjust using an appropriate constant.

(i) The proof of (4.2.2) is similar with the proof of (ii) since Proposi-

tion 4.1.24 gives a similar bound for P(f(o4s) < Mgs — h). |
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