Gianna Katsiampoura
(editor)

ISSUES
on Greek Alchemy

Institute of Historical Research
National Hellenic Research Foundation
This research has been sponsored by DACALBO project (Digital archive concerning alchemy in Byzantium and in Greek-speaking communities of the Ottoman Empire), Thales, National Strategic Reference Framework 2007-2013

© IHR/NHRF
Athens 2015
Table of Contents

Efthymios Nicolaidis, Introduction: The DACALBO project 4
Alain Touwaide, The Alchemical Manuscript Tradition. An Overview 6
Vangelis Koutalis, The mutations of alchemy and the development of ‘chymistry’ during the post-Byzantine era in the Greek-speaking 24
Cristina Viano, Olympiodore l'alchimiste et la taricheia. La transformation du minerai d'or: technê, nature, histoire et archéologie 40
Maria K. Papathanassiou, Stéphanos d’Alexandrie: La tradition patristique dans son œuvre alchimique ... 55
Matteo Martelli, Byzantine Alchemy in Two Recently Discovered Manuscripts in Saint Stephen’s (Meteora) and Olympiotissa (Elassona) Monasteries 94
Gianna Katsiampoura, The relationship between alchemy and natural philosophy in Byzantine times ... 128
Rémi Franckowiak, Athanasius Rhetor and the Greek Chemistry in the 17th century Ottoman Empire ... 144
Didier Kahn, Alchemical interpretations of ancient Mysteries 167
Lawrence M. Principe, Texts and Practices: The Promises and Problems of Laboratory Replication and the Chemical Explanation of Early Alchemical Processes .. 184
Kostas Skordoulis, Kostas Exarchakos, The educational applications of the historical material and on the reproduction of alchemical procedures 202
Introduction
The Dacalbo Project

Efthymios Nicolaidis
Institute of Historical Research/
National Hellenic Research Foundation

DACALBO (Digital archive concerning alchemy in Byzantium and in Greek-speaking communities of the Ottoman Empire) project addresses a significant gap in the current historiography of sciences, by exploring and carefully mapping the Byzantine and post-Byzantine alchemy through the creation of a comprehensive, open access, digitized, and searchable database and metadata material. Specifically the project aims to:

a) Identify, collect, digitize and classify all surviving manuscript and printed primary sources relevant to alchemy in Greek language during the periods of Byzantium and of the Ottoman Empire.
b) Collect and classify the secondary bibliography.
c) Create prosopographical entries for every identifiable author.
d) Evaluate the modifications or transformations which Byzantine alchemical tradition has undergone, and to ascertain its relations with Hellenistic, Arabic, or Latin alchemy.
e) Determine what twists in the development of alchemy have taken place after its introduction in the cultural context of Greek-speaking communities of the Ottoman Empire, from the 15th to the 18th century and the passage to “Chymistry”.

Additional objectives:
a) The enrichment of the history of Byzantium, drawing lines of connection between the historiography of Byzantine alchemy and that of the natural sciences in South-Eastern Europe.
b) The production of a historical material that is both profitable in terms of educational applications and suitable for activities tending to promote public awareness of the different temporalities that having been merged in the history of science and render the written monuments of this history tokens of a common cultural legacy.

The interdisciplinary team is constituted by historians, historians of science, philologists, palaeographers, chemists and didacticians.
The project is supported by the International Academy of History of Science and funded by the 7th European Community Framework Program.
The Alchemical Manuscript Tradition.

An Overview

Alain Touwaide
Institute for the Preservation of Medical Traditions

Over the past century and a half, Greek manuscripts with alchemical contents have been extensively researched. Study mainly dealt with the inventory of such codices, the identification of their contents, the determination of the linkages between manuscripts (stemma codicum), the edition and translation of their texts, possibly together with a commentary, and, on this basis, tentative reconstructions of the history of alchemy through time and space. In spite of this intensive activity, no general overview of the whole textual tradition has been attempted. In this paper, I will lay down the basis for such an approach.

This first attempt is based on currently available literature, the material newly brought to light by the DACALBO programme and my own research on medical manuscripts. Although it still is exploratory, it has detected a significant similarity with the transmission of Greek medical texts, and suggests that scientific traditions might have common characteristics. Further study will be needed, to verify whether these preliminary conclusions might be extended to other scientific disciplines.

Defining the field of alchemy

Based on the analysis of the manuscripts containing texts that can be identified as alchemical by either their title or their author, alchemy can be defined from a formal viewpoint as an operative technique combined with some sort of natural philosophy and mystic speculation that brings together a vast set of disciplines (principally in the natural and medical sciences) together with specialized techniques. To this end, it requires specific technical apparatus, selected ingredients, precise tables of weights and measures, and prescriptive descriptions of operations.

All these elements are represented in the figures 1-9. One after the other (in an order that aims to follow in a certain sense the alchemical process, although it might be partially arbitrary), they decompose the very notion of alchemy in a visual way that maps the territory of alchemy. Starting with the basic disciplines that contribute to the
making of the alchemical scientific environment and the elementary ingredients necessary for the alchemical operation,

Figure 1

they introduce the disciplines using these substances

Figure 2
with the requested manipulations

and the weights and measures.

Figure 3

Figure 4
Then they move from the sublunar to the celestial world, with the influence exercised by the astral system on the living creatures in the sublunar world.

Figure 5
and the related discipline, that is, iatromathematics.

Similarly, the concepts of the kosmos and its genesis
open the door to philosophical speculation.

Figure 8
All these components, whatever the order in which they are considered, are brought and hold together by the practical manipulations to be performed by the alchemists, which require ad-hoc instrumentation together with operative techniques and know-how.

Figure 9
Assembling a corpus

Many of the manuscripts that contain the treatises on the basis of which the definition above has been made, have been inventoried and described with great detail, together with the edition of several of their texts from 1924 to 1932 in the renown *Catalogue des manuscrits alchimiques grecs* (*CMAG*). However useful this catalogue might have been, it is now partially obsolete, to the very least with regard to the census of codices. Over the last quarter of the 20th century, codicology greatly developed, including the cataloguing of manuscripts worldwide.

The renewed inventory of alchemical manuscripts on which the present study is based has proceeded in three different, yet complementary phases performed in coordination with the collaborators of the DACALBO programme:

- all the manuscripts mentioned in the *CMAG*, whatever the degree of detail of their description, have been databased in an ACCESS table;
- the manuscripts preserved in libraries in Greece have been systematically searched for, first through published catalogues (ancient and recent) and then by a personal inspection of the collections and the direct examination of identified items in loco as a component of the DACALBO programme;
- a systematic search has been done at the same time a *Corpus of Greek Medical Manuscripts* was compiled on the basis of available catalogues (be they printed or, in some cases, still handwritten), systematic browsing of entire collections, and direct autoptic analysis of items of interest.

All the manuscripts newly identified during the second and third phases briefly described above have been added to the ACCESS database created on the basis of the *CMAG*.

Results were significant: whereas *CMAG* listed only 5 items from the libraries in Greece, the DACALBO programme brought to light 39 new ones (that is, an increase by almost 800% for Greece and almost 40% for the whole corpus of alchemical manuscripts), whereas the *Corpus of Greek Medical Manuscripts* has made it possible to identify multiple previously unknown items that complete the scientific context of alchemy.

For interpretative purposes, I have recorded in the database relevant historical data as the year or time period and place of production of the manuscripts. To that, I have
added any data that might help understand the production of manuscripts, their itinerary, readers and users, and the intermediaries through whom they arrived at their present location, together with the scholars who consulted and used them in their publications.

Reconstructing manuscript production

On the basis of this material – particularly the alchemical manuscripts *stricto sensu*, it is possible to give a first visual representation of the profile of the alchemical tradition.

Preserved manuscripts do not predate the 10th century. After an increase during the 10th century, production declines during the 11th to sharply increase during the 12th. The 13th century, instead, is characterized by a plateau, immediately followed by a new and continued increase during the full 14th and 15th centuries. The beginning of the 16th century corresponds to the peak of production. Further on, manuscripts continued to be copied, even though they were significantly less numerous. Production witnesses a regular, yet slow decline, but not a disappearance, until the
end of the 19th century.

The geography of production underwent a significant transformation from the Byzantine Empire to the Mediterranean after the Fall of Constantinople in 1453, followed by a double diffusion, in the Europe among Western scholars and in the East among the Greek-speaking populations in the Ottoman Empire. None of these data is surprising. They follow the general history of the Byzantine world, particularly the reduction of book production during the 13th century, dominated by the 4th Crusade and the Latin occupation of Constantinople (1204-1261). This decline is followed by the redevelopment of scientific activity after the reconquest of the capital of the Empire. In spite of this general correspondence to the political and, consequently, cultural activity in Byzantium, the degree of increase after 1261 is notable, as is also its continuity after 1453 and the final conquest of Constantinople by the Ottomans. Similarly, the decline during the 16th century, through sharp, is not as dramatic as in other sectors. At any rate, production was pursued until the independence of Greece in 1830 and beyond.

The structure of the manuscript tradition

The database is not limited to the inventory of the manuscripts, but also records the texts contained in each of them. Identification has greatly benefitted from available literature, mainly the ground-breaking (though obsolete) work by Marcelin Berthelot and Charles-Emile Ruelle and the CMAG followed more recently by the critical editions (with substantial introduction and commentary) by Robert Halleux and Jacques Schamp (1985), Michèle Mertens (2002), Andrée Colinet (2002 and 2010) and, ultimately, Matteo Martelli (2011). This material has been significantly complemented by the data resulting from the ongoing work of DACALBO. The database also records information on the linkages between manuscripts as far as they can be established with some degree of plausibility.

The figure 11 summarizes in a visual way the macro-structure of the mainstream tradition of alchemical treatises as it can be determined on the basis of past and ongoing research. The parentheses framing the name of manuscripts Marcianus Venetus graecus 299 and Parisinus graecus 2325 aim to translate the uncertainty that still exists on the question of the relationship between these manuscripts and their supposed descendants. Similarly, the majuscule letters X, Y and Z refer to
Manuscript evidence
In the current state of research it is not yet possible to reconstruct a detailed history of the full textual tradition of the alchemical manuscripts. Nevertheless, some significant phases can be identified as follows.

a) Middle-Byzantine encyclopedism (so-called Macedonian Renaissance)
The manuscript *Venetus Marcianus graecus* 299 on parchment traditionally dated to the 10th century contains a corpus of alchemical texts mainly formed by the following treatises:

- Stephanus Alexandrinus
- Democritus
- Synesius
- Zosimus
• Christianus

It is generally assumed that this corpus was assembled sometimes during the 7th and the 10th century and that the Marcianus might have some relation with the imperial library collection in Constantinople.

The formation of this collection parallels the transformations in a part of the tradition of the Greek text of the major encyclopedia of pharmacopoiesis produced in Antiquity, *De materia medica* by Dioscorides (1st century AD). The part of the tradition referred to here is what is traditionally called the *alphabetical recension*, a central piece of which is the manuscript of Vienna, *medicus graecus* 1 dated 512 ca. and richly illustrated with polychrome representations of medicinal plants. According to current textual reconstruction, these transformations can be summarized in a rather simple, linear way summarized in the figure 12a.

![Diagram](image)

Although it has been received for more than one century, this reconstruction can no longer be accepted as it does not account for the rationale of these transformations and for the fact that the plant illustrations clearly evidence two groups with very different characteristics. An interpretation based on the analysis of the therapeutic uses of the
The important point in such a reconstruction is that it brings to light micro-collections of texts that have been further agglutinated in order to create larger macro-collections. If this is correct, this process of gradual accumulation of material might offer some similarity with the corpus attested by the Marcianus manuscript and account in a dynamic way for the development of alchemical textual collections. Although this has been the general assumption over the past decades (not always with solid manuscript evidence, however), there is no need to postulate that these and similar textual collections of classical and later scientific works have been made sub aegidis of the imperial library in Constantinople in the 10th century, even though such collections might have been present at certain point in time in such library.

b) the Latin Occupation of Constantinople
As already mentioned, during the period 1204-161 Constantinople was occupied by the troops of the 4th Crusade and became the capital of the Latin Kingdom of
Constantinople. Scientific activity was not interrupted, but it migrated as did also the imperial court, which moved to Nicaea.

A manuscript witnesses to this disaspora: the codex Mediolanensis Ambrosianus A 95 sup made of paper. This manuscript on paper is made of three contemporary parts, the first of which (ff. 1-49 and 94-163) contains the following alchemical texts:

- [Orpheus], *Lithica*;
- [Socrates], *De lapidibus*;
- Dionysius, *De lapidibus*.

The manuscript can be dated to the first quarter of the 14th century by its watermarks, and contains on folio 179 verso a date (1345/6) which provides a *terminus ante quem*. The most significant point is that this codex is a manual of medicine with the following texts, which offer a summary of practical medicine from anthropology (in its Christian for) to prevention of health through nutrition and lifestyle:

- Gregorius Nyssenus, *De hominis opificio*;
- [Hippocrates], *De vita et morte*;
- Dioscorides, *De materia medica*;
- [Dioscorides], *De ponderibus et mensuris*;
- [Hippocrates], *Epistula ad Ptolemaeum de sanitate tuenda*;
- *Remedia varia anonyma*.

Interestingly enough, the codex contains a note with a map of Cyprus on folio 180 recto. This suggests that scientists left Constantinople, moved to Mediterranean islands and pursued their activity in decentralized locations. It might be worth mentioning that at least another scientist was in the island during the period of the Latin Kingdom: the astronomer and astrologer Iohannes Abramios.

The most striking characteristic of this manuscript is the connection of alchemy and medicine that it indicates. The *Marcianus* codex is a library piece, whereas the *Mediolanensis* is a notebook of a practitioner. With it we enter the laboratory of an alchemist who was also a druggist, if not a physician.

c) Early Palaeologan Renaissance

Several alchemical manuscripts on paper that can be dated to the 14th century (from early to mid) by their watermarks contain alchemical texts. They are the following in a plausible chronological order:
Two of these manuscripts which also contain medical texts, can be precisely located and one of them can be attributed to an individual known by name. These codices are the Vaticanus graecus 299 and the Parisinus graecus 2286. Both can be located at the so-called Xenodocheion tou Krali (or: Hospital of the [Serbian] King [Stefan Uros Milutin II]), that is, a major hospital in Constantinople which had also within its walls a library, a scriptorium, and a higher education institution.

Among the multiple texts present in the Vaticanus the following are relevant here:
- Democritus, De sympathetic et antipathicis;
- Dioscorides, De materia medica (partim);
- Hospital manuals;
- Formulae medicinarum;
- Arabic and Persian material (medicine, materia medica, pharmacy) translated into Greek.

As for the Parisinus, it is the notebook of a member of the Krali that contains the medical works authored by this individual (including a bilingual lexicon of Arabic and Persian plant names and medical terms with their Greek equivalent), as well as the Coeranides and De materia medica by Dioscorides.

As both the place of origin of these manuscripts and their contents make clear, alchemy and medical practice were intimately associated. The personality and activity of the author, writer and owner of the Parisinus as far as they are known, make this even clearer: Neophytos Prodromenos is indeed a polymath interested in natural sciences, medicine, logic and philosophy, and also alchemy.

Significantly enough both manuscripts contain material translated from Arabic and
Persian into Greek, witnessing to a milieu the interests of which went beyond Greek science and tradition.
These points of contact between the alchemical and medical traditions, topical in nature, are even more interesting as the writers of the Vaticanus and Parisinus participated in a dense activity of collecting previous scientific literature, rearranging it and integrating it with contemporary science in a trans-cultural, international way.

d) Late Palaeologan Renaissance
The late-14th –or early-15th –century manuscript on paper Vaticanus graecus 1174 reproduced some texts of the Venetus Marcianus graecus 299. In CMAG, the authors considered that its texts offer «... une forme plus pure, peut-être, et vierge de toute retouche ...» (“... a purer form, perhaps, and without any intervention ...”).
The philological quality of the text suggests that this manuscript is a direct descendant of the Venetus Marcianus graecus 299 or even of its source. In this view, this Vatican codex, though recentior, is certainly not deterior, and thus contradicts the traditional editorial rule and practice. However, philology should not overshadow the data of the manuscript tradition.
Returning to the Parisinus graecus 2286 and the Vaticanus graecus 299, these two manuscripts were produced in a milieu where editing of ancient texts was common practice. The case of Dioscorides’ De materia medica at the Krali in Constantinople is illuminating from this viewpoint: the text of an old manuscript in majuscule was reproduced in minuscule. Other manuscripts of earlier periods were collected, restored if necessary, and their texts were collated in order to produce a new edition. After a first version was revised, the resulting second version was reproduced in a manuscript that became its archetype and was reproduced with great exactness in another copy. Whereas the new archetype was not used further—it was probably preserved separately, in some sort of special collection—, its first direct copy was used to generate several new apographs.
This new recensio was preferred to all others, most probably because of its philological correctness, it was diffused all across the Mediterranean world, and reached the West. It was eventually printed in Venice in an editio princeps by Aldo Manuzio in 1499. Until the early 20th century this was the form of Dioscorides’ text that Western scholars knew and used.
Knowing this it can be doubted that the version of the alchemical corpus in the manuscript *Vaticanus graecus* 1174 is exempt of any remaking and offers a “purer version” of the texts under study here.

e) The West and the Ottoman Empire

The gradual, yet irreversible decline of the Byzantine Empire and the increasingly rare resources it had did not interrupt the tradition of alchemical texts as the codex *Bononiensis Universitatis* 3602 on paper indicates (it is dated to 1430 ca. thanks to its watermarks). As was the case in the past, alchemical material goes together with medical and pharmacopoietic texts, and activity took place at the *Xenodocheion tou Krali* which was acting as Constantinople’s university among others with such a figure as Ioannes Argyropoulos (1415-1487).

With the Fall of Constantinople and the end of the Empire in 1453, Byzantine scientists and alchemists abandoned the capital and migrated to Crete, Kerkyra (Corfu), Venice, Messina and further West as can be seen from the manuscripts they copied at that time.

Further on, alchemical texts continued to be copied all over the Mediterranean and in the West, though with differentiated profiles in Europe and the Ottoman Empire.

In the West, indeed, no less than 27 manuscripts were produced with the following texts:

- 14 contain Stephanus of Alexandria (that is, half of the Western production in that time), including one that contains only this text;
- the major interest was in Democritus together with Stephanus of Alexandria;
- 2 manuscripts contain Democritus and Zosimus;
- 3 codices are copies of Nicephorus Blemmydes’ alchemical treatise, one of which contains only this text.

In the Ottoman Empire, the number of newly produced codices was much lower than in the West, with only 10 items. The contents of these codices are significant:

- 5 manuscripts contain Stephanus of Alexandria (that is, half of the production, just as in the West);
- 1 is a copy of a collection similar to that of *Venetus graecus* 299;
- 1 manuscript introduces into the tradition a Neo-Hellenic treatise.
Conclusions
The alchemical corpus, made of texts by (or attributed to) Democritus, Cleopatra, Zozimus and Stephanus of Athens (or Alexandria), brought together philosophical speculation on natural history and operative techniques. It might have been gradually assembled, possibly starting with micro-collections that have been further assembled in the form of the corpus attested from the 10th century onward. Such a process can be detected in the field of medicine, particularly Dioscorides’ *De materia medica*, in which two micro-collections dating back to Late Antiquity were assembled before 512 and were further agglutinated with complementary material so as to form a vast corpus on pharmacopoiesis.

Once it was formed, the canonical alchemical corpus was continuously transmitted, being also complemented by original works by such polymaths as Michael Psellus (1018-1070) and Nicephorus Blemmydes (1197-1272). The political turmoil of the Byzantine Empire from the 13th century on (particularly the 4th Crusade and the Latin Occupation of Constantinople) did not interrupt the transmission of this textual body, but led to a decentralisation of activity, which nevertheless might have been reduced.

The reconquest of the Capital of the Empire went together with a recrudescence of scientific activity in which alchemy was included. Significantly enough, manuscripts from that time period on witness to a close proximity of alchemy and medicine, which is attested from the 13th century onward, when Byzantine science was decentralized.

Both alchemy and medicine were present in the capital of the Byzantine Empire in its last institution of higher education, the so-called *Xenodocheion tou Krali*. Activity was not limited to recovering the ancient textual body, but also included—to the very least for the medical texts and probably also for the alchemical ones—editorial work aimed to correct language and to compensate for the unavoidable transformations (and deteriorations) resulting from centuries of repeated copies. Alchemical texts might have been subject to a strong process of transformation because they are practical in nature.

After the Fall of Constantinople, Byzantine scientists and manuscripts dispersed across the Mediterranean World and Europe. Although both worlds shared an interest in Stephanus of Athens, they diverged on their approach to alchemy. Whereas the West seems to have investigated more specifically the ancient roots of alchemy (Democritus) and Zosimus’ corpus, the Greeks perpetuated the tradition of the corpus
attested by the *Marcianus graecus* 299, also including a newly produced treatise. Furthermore, the tradition within the Ottoman Empire extended until the 19th century. In the West, instead, the libraries of such major Renaissance esotericist and scientist as Giovanni Pico della Mirandola (1463-1494) and Nicolao Leoniceno (1428-1524), respectively, did not seem to have contained Greek alchemical manuscripts. Interest in alchemy was shifting from science to antiquarianism and history of science through book collecting, on the one hand, and critical edition, translation, study of, and commenting on, the texts on the other hand. Seventeenth-century scholarly activity was followed by a long hiatus, until the work of the chemist Marcelin Berthelot and the classicist Charles-Emile Ruelle brought the alchemical matter back to the attention of the scientific and scholarly communities of Europe.
The mutations of alchemy and the development of "chymistry" during the post-Byzantine era in the Greek-speaking communities (Looking into some first interesting indications)

Vangelis Koutalis
Institute of Historical Research/
National Hellenic Research Foundation

Introductory remarks: between national science and non-science

The Greek historiography of the Enlightenment in SE Europe has highlighted the emergence, during the second half of 18th century, of ideological orientations among the strata of Greek-speaking Ottoman Christian scholars, clerics, merchants and officials, which were both new in the descriptive sense of being radically different from the hitherto dominant practices and prone to justify, or even exalt, novelties as such. New aspirations grew and were loudly voiced, deviant ways of thinking were espoused, oppositional collective identities were gradually formed, the very feeling of belonging to a community was restructed, the sense of identifying oneself as a Greek started being redefined. Within this cluster of dislocations and shifts, one of the most conspicuous elements is the proliferation of writings and educational courses ‘on nature’, employable for the dissemination of theories drawn from the rich repertoire of the modern, Cartesian or Newtonian philosophia naturalis as markers of a major cultural change already well underway in the societies of Western Europe.1

During the last decades, historians working on this area of research have admittedly made one great step forward, conceding that this dissemination must be interpreted more as an “appropriation” of means of knowledge production by active agents than as a “transfer” of knowledge products to passive recipients. One principal question, though, remains pending: what was really the upshot of the articulation of various theories, conveyed from Western Europe—as well as theories, in not a few cases, sanctioned by existing, prior to Enlightenment, traditions—into new fields of knowledge? Historians find themselves in a quandary about what answer should they pick out. At the one end of the balance, the answer proposed is that the process of appropriation brought about a peculiarly “Greek” scientific discourse. A new, specifically “Greek” kind, therefore, of science have seen the light of day: “Greek”, in so far as the Greek-speaking scholars, despite the lack of original scientific production, did not confine themselves to the role of translators, but incorporated, instead, the new knowledge into “a pre-existing edifice”, without breaking the cultural continuity, and offering thus “new syntheses which shaped, by and large, a different view regarding education, a new scientifico-philosophical insight into the phenomena, a new, different spiritual consciousness” (we shall call this, Thesis I). At the other end of the balance, we are induced to resolve that the appropriation led merely to a “sound philosophy”, a discourse on nature suited howsoever to serve moral edification, all the more so, in a period where the ideals of individual prudence, self-reflectivity, and self-govern mentality had gained considerable ground, but, for all that, bereft of those requirements of rationality and objectivity that are meant to demarcate science proper from philosophy (Thesis II).

In the first case, the difference in the national context of appropriation differentiates what is appropriated. It results in a different species of science, with dissimilar criteria of evaluation to those that have prevailed in the other, West European species, most commonly known to our days as science proper. In the second case, the difference in

the dynamics of appropriation inhibits appropriation itself. The “absence of any discussion concerning the character of the rules of new ways to study nature, the processes of legitimizing the new viewpoint and the initiation of consensual activities to consolidate the new attitude about the ways of dealing with natural phenomena”, an absence readily ascertainable within the various Ottoman Christian scholarly milieus, is interpreted here as an indication, not of a different kind of science, but of the absence of science itself. “In introducing the new sciences, the Greek scholars did not attempt to introduce natural philosophy per se, but, rather, they sought a new way of philosophizing”: the type of discourse they developed “lacked the constitutive features of the discourse of natural philosophy as it was being articulated and legitimized in Western Europe and it was primarily a philosophical discourse”4. What is scientific in the West, and remains scientific after being disseminated to the Western periphery (e.g. to the Iberian Peninsula), is transformed into something strictly, or essentially, philosophical, when it is appropriated in the Eastern periphery. In either case, Ottoman Christian scholars are confessedly presented as active agents, since they appropriate, indeed, scientific knowledge. But their agency ends up distorting this knowledge. Either by altering arbitrarily, just for the reason that another cultural community is posited as the context of its appropriation, the standards of its evaluation, namely, the yardsticks that permit a rational decision to the question whether this knowledge qualifies to pass as scientific or not. Or by altering its nature: diluting scientific knowledge to such a degree that it is not scientific any more.

The distortion carried out is so extensive that we can hardly compare the input of the appropriation process with its output, or even critically relate the one with the other. In Thesis I, the only element that remains common, after the appropriation has been through, is one signifier, “science”, devoid of any meaningful content. In Thesis II, the historian of science can only confirm that some modern theories on natural phenomena eventually passed the borders of this peripheral territory. After getting this done, she has no jurisdiction of going further than noting that what was produced in this territory through appropriation falls short of the mark: it can no longer bear the credentials of being science. Other specialties, philosophers, historians of ideas,

THALES-DACALBO
historians of culture, or historians generally, must now come into play, if this odd singularity, which lies outside the province of science, is to be apprehended at all. Choosing the first option, science is dissolved in its particular national manifestations, ends up being subsumed under the rubric of one population’s cultural distinctiveness. Should we refuse to “adopt different principles for every country in accordance with the saying ‘different countries, different customs’”, or to believe that “in one country $3 \times 1 = 1$, in another that women have no souls, in a third that beer is drunk in heaven”5, and, on the contrary, keep considering science as something that can be evaluated in terms of objective testing and rational criticism, which means something that can be evaluated in similar, or at least converging, terms universally, often against the conditions set by a particular cultural context (how else could we deny, for example, the merits of a Nazi science?), then, we have to switch to the second option. There, science retains without fail its universality, at the price, however, of lapsing into a sheer absence when it gravitates from its productive Western center to the appropriating Eastern periphery. Science is disseminated only to be negated, either in the form of a national species, or in that of a new philosophy.

This seemingly tight knot tends to be a sort of historiographical vicious circle: in the very terms in which this problem is formulated, as a problem necessitating historical reconstructions in order to be tackled as such, non-historical significations are tacitly presupposed, or rather significations that invest historical determinations with the status of ontological ones. “Science”, this common denomination for a number of distinct, self-sustained specialized sciences, as we know them, today, from the specific social historical standpoint that delimits and shapes our view, appears to be the reference standard used to evaluate every knowledge-acquiring undertaking of the past intended, then, and not now, to meet the requirements of objectively assessed experimentation and openness to rational criticism. “Natural philosophy” is but the name of one precursory form of modern physics: if nothing else, it is characterized by the same “processes of legitimizing” the viewpoint proper to it and the same “consensual activities” to consolidate the attitude proper to it. By the same token, the fact that only during the last half of the 19th century philosophy assumed the narrow

sense of a discipline concerned mostly with the manipulation of certain notions abstracted from the specialized sciences, and only very recently it has remitted itself to the precarious condition of being nothing but an appellation for certain university departments doomed to be financial viable or else to get closed, passes entirely unnoticed. A “new way of philosophizing” is but the name of another way of reasoning, since philosophy is tacitly assumed to have been always co-extensive with, or at any rate reducible to, that kind of intellectual activity which has reasoning schemas as its object, and which we have no hesitations, today, in describing as “philosophy”.

There is something, then, that both these interpretative strategies, beneath their procedural differences, share: the non-historical signification of the terms “science” and “philosophy” respectively. Yet another common denominator can be shown to exist. The significantly different formulations notwithstanding, underneath we can detect the same assumption that scientific knowledge migrating from the West bears, essentially and unavoidably, some hallmarks pertaining to a particularly West European mindset, certain inerasable signatures of its cultural origin. Whether it is about “different views regarding education” and “new scientifico-philosophical insights”, according to the more epistemologically oriented Thesis I, or about “processes of legitimizing” and “consensual activities”, according to Thesis II, leaning, as it confessedly does, towards explanations involving cultural history and contextual determinations, what departs from the West as science, and is bound to be transformed, when passing through the Eastern parts of Europe, into a new, Greek species of science or a new way of philosophizing, is regarded as possessing some inherent formal properties, a normative structure above all, that cannot thrive in soil impregnated with different, South-East European cultural values, precisely because these properties are postulated to be inextricably tied to a cultural environment typical for Western Europe.

This stance threatens to create a novel source of stagnation for historical theorizing, additional to the old drawbacks it has seemingly helped us to surmount. The reason is that it prominently involves the elevation of the “network of constraining localities” to a normative structure incumbent on any discourse immersing itself across any given cultural space. The process of appropriation is identified with the “ways devised to overcome cultural resistance and make the new ideas compatible with local
intellectual traditions”, and “hence, understanding the character of resistance to the new scientific ideas becomes of paramount importance”6. But, following this track, “local intellectual traditions” are presumed to be far more solid than they actually, under close examination, could be always proved to be. Substituting the notion of appropriation for that of transfer, time-worn accounts of “what is filtered out” are, thankfully, at last cast aside. In their place, accounts of what is filtered in are to be introduced. Yet, both this “in” and that “out” are presumed to remain more or less unaffected by the processes respectively of going out and coming in. That which weighs most is the character of resistance which the spread of scientific knowledge has encountered, just as the character of the eligible for dissemination scientific knowledge has been previously considered to be the alpha that remains, more or less, alpha regardless of the fact that we often must pass through many of the other letters. Since science, philosophy, cultural context, are equally pushed aside as objects themselves of historical research, let alone being brought in, more generally speaking, as objects themselves of scientific research, historians of science have no new, untrodden terrains to discover and explore, no interesting questions to ask, no tentative answers to test, no science to exercise. Some years ago, Dialetis and Nicolaïdis pointed out that “an anti-history of science position” has been entrenched in the Greek intellectual milieu, due to “the fact that history of science was either part of the history of philosophy, or sociology, or history of education”7 (1994, 124). Strangely enough, recent constructivist accounts, aspiring to remedy this situation by erecting a self-sustaining history of science, tend sometimes to converge with the most profoundly barren historiographical traditions in instituting a cultural chasm between East and West, as a point of departure so ruthlessly fixed as to discourage closer scrutiny by supplying tacitly in advance the general conclusion, and the fixed framework, of any possible historical narrative.

An untrodden territory
A way out from the vicious circle is not likely to be found unless we try to reinstate science and philosophy in their temporal rhythm, in their becoming, and accordingly

6 D. Dialetis & K. Gavroglu, op. cit. (n. 4), p. 74.
to problematize our current notions of what science is, what philosophy should be in regard with what science presently is, and how the South-Eastern and the North-Western parts of Europe are related to each other as cultural spaces. Such a way of proceeding entails the laborious task of reactivating the available, or yet to be located, primary sources, and putting them into interplay with the secondary sources through which the posterior significations of the historical events or entities under study are crystallized and conveyed. The history of alchemy, designating a set of trajectories cutting across multiple fields of experience and a variety of disciplines, opens up one of the most promising avenues for this kind of work.

How and whether alchemy have been practiced, studied or diffused, and under what form or mutations, in Greek-speaking communities, during the post-Byzantine era, is something that up to the present is almost totally unexplored. There are two assumptions, which despite to some evidence to the contrary already available, are still dominant in the Greek historiography of science:

a) Modern sciences emerged in the Greek-speaking communities through the dissemination or appropriation of Newtonianism.

b) Chemistry arrived here only later, when Lavoisier had established his “new chemistry”, through some printed translations.

Alchemy did not play any role, not even that of an obstacle. Although, its origins date back to the encounter between the Greek and Egyptian cultures during the first centuries CE; although it was part of the Greek literary heritage of the Late Antiquity; although the corpus of the surviving Greek alchemical texts was constituted in Byzantine times, between the 7th and the early 11th century, alchemy seems to have been ruled out as an object of intellectual interest, or even just of curiosity, by the Greek-speaking literati in the first two centuries of the early modernity, even more so by those who were principal actors in the Enlightenment. But is it really so?

We know, at least, one instance of a scholar of Greek origin who studied alchemy and wrote about it. Angelo Forte, born at the end of the 15th century in Corfu, which at that time was under Venetian rule, at a young age moved to the capital of the Serenissima Repubblica. It is unclear whether he was given formally there the title of the doctor of the art of medicine, but he eventually used it. He dealt also with

THALES-DACALBO
astrology. From 1520 to 1556 he published a series of treatises of his own in Italian and Latin, the second of which (printed in 1525) was dedicated to the “sacred art” of alchemy (Verità della alchimia), where he defines the alchemical opus as a “medication” of metals. In his later works, especially after his Opera nuova of 1532 he renounced chrysopoeia and turned his attention to iatrochemistry. It is difficult to determine precisely what relations he had formed with the other Greek scholars residing in Venice, but, anyway, it seems that Forte shared certain deep preoccupations with many of his contemporary thinkers aspiring to find a place in the greyer zones of the front line of the Renaissance: Neoplatonism, Hermetism, theories on natural magic, corpuscular matter theories, projects of reformation. Strictly speaking, Forte was not a scholar actively contributing to the intellectual edification of young Greek-speaking students or scholars, since he did not write any of his works in Greek. This is not the case with Nikolaos Mavrocordatos (1670-1730), Grand Dragoman to the Divan (1697), and consequently the first Phanariote

9 For the life and work of Forte see: F. Lotti, Angelo Forte da Corfù a Venezia: Pratica medica, divulgazione cultural e identità greca nel primo Cinquecento; Opera omnia, PhD Dissertation, Pisa: Università degli Studi di Pisa, 2014.

Hospodar of the Danubian Principalities. Nikolaos was one of the most eminent Greek-speaking scholars and officials of the late 17th and the early 18th centuries. In his treatise on the duties of a prince (Περὶ τῶν καθηκόντων βιβλίος, first published in 171911), in the chapter "On the justice towards God, and towards oneself, and towards one’s neighbor" ("Περὶ τῆς εἰς θεόν, καὶ εἰς ἑαυτόν, καὶ εἰς τὸν πλησίον ἀκατοσύνης"), chemistry is compared to astrology and is reproached as a trickery. Two equally vain, and morally harmful, arts: instigated by the passion for gold and silver, the chemist distorts nature, transcends impermissibly the limitations posed by God to each of his creations, and deceives both himself and those around him12. In his Φιλοθέου πάρεργα (written in the period 1716-1719), however, a distinction is drawn between the deceiving and the non-deceiving chemistry. On the one side, we find the Arab swindlers ("ἐν τοῖς περὶ τὴν χρηματίαν φενακισμοῖς τῶν ἀπατεώνων καὶ ἁγυρτῶν

11 The full title is: Nikolaos Mavrocuratos, Περὶ τῶν καθηκόντων βιβλίος, Συγγραφέα παρά τοῦ Εὐσεβεστάτου, Ὑγιόπιταν, καὶ Συζυγίατος Ἀξιόντος καὶ Ηγιασμοῦ Πάσης Οἰκογενείας Αἰγυπτίων Νικόλαου Λαζάρου Μαυροκορδάτου Βοιφόδα. Νῦν πρῶτοι Τύποι ἐκδόθησαν ἐπὶ τῆς Ηγεμονείας τῆς Αἴγυπτος Ὑγιασμοῦ, Ἀρχαγγέλου τῆς Παναγίτου καὶ Θεσπροβλέπου Ἐρμησεῦς Αἰγυπτίων Κατὰ Κατάληξιν Κατὰ Κατάληξιν, ἐπειδή ἐκάθεν διαρρήσιμον τοῦ λογοτεχνίας κῆρ Γεωργίου Τραπεζουντίου, ὁ δικαστήριος τῆς ἐν Ἐκκεραστίῳ αὐθεντικής σχολῆς, ἔκαθεν τις μὲν Μηνή τῶν Ἀγίων Παντὸν τῆς Ἐκκεραστίῳ. Ἐπεὶ ἀπὸ Θεογονίας ψυλλό [=1719]. Κατὰ Μηνία Δεκέμβριον. The book was republished in 1722 and in 1724.

12 "παραπραξοῦσιν ὅτι οἱ ἐπεμφανεῖς ταῖς τῶν ἀστρολόγων ψευδολογίας, τὰ γὰρ ἐπὶ μέρους προνοίᾳ διωκότως. οὐδ’ ἠρνεῖτο ὅτι κινήσεων οἱ ἀστέρες τὴν ἡμέραν προάσκον; τῆς μὲν παρά τοῦ πλαστικοῦ ἑκατον τῆς ἀρχαίας. «διόδο δὲ πρὸς προσόπους τοῦ σιγόμεν τῆς ὑποτελείς, καὶ τὸν ἁντόν, τὸ ἀργάν καὶ τὸ κακόν», ἀδύνα ἐκεῖνος ἄρχοντος καὶ ἀργότος τοῖς περὶ χημικάς πάνως σφετερίς τῆς φυσᾶς, ἐκείνης τέ, καὶ τοῖς ἄλλοις φανακίζων, καὶ ἐθείναι κακουργεῖν, δύναμις τῇ ἐν ἡλίατος θηρίζει λατρείας, καὶ τὸν ἥραν ἑσύνων διώκοντο, ἄφθοος γὰρ ἡ δημοφρονίς τῇ ἐκάθεν γενεσίς τῶν κατάλοιπων, καὶ ὑδρόν ἐθέλος διώκοντο, δό οὐ παρελεύσθωσάντα." Nikolaos Mavrocuratos, op. cit. (n. 11), pp. 87–88"}
Αράβιον”) and on the other, we come up against the depths of the non-deceiving chemistry, which may offer unfathomable and real, though not material, riches (“τὰ ἀδότα τῆς μὴ φεναικιζούσης, μυρίους δ’ ἄγαθοις πλουτιζούσης τὸν βίον χημείας”)\(^\text{13}\). But this contradiction has much wider implications: the deceiving chemistry occupies the same rank with the vain scholasticism, the epicurean mysticism, and generally any theory or stance that is content with the testimony of the senses, with reality as something given. On the other side, we find theories and intellectual stances that are genuinely philosophical, that tend to question what is given and seek what is hidden beneath. Modern chemistry is not anymore a vain art, just as modern Platonism (that of Marsilio Ficino and Giovanni Pico della Mirandola, who are explicitly mentioned, in this regard, by Mavrocordatos\(^\text{14}\)) is not anymore a barren way of philosophical conduct.

In 1719, the same year that Mavrocordatos published his book on the duties of a prince, Anastasios Popas of Ioannina, a scholar “well acquainted with philosophy, theology and the grammatical art”\(^\text{15}\), who was then employed as a teacher in the school of Serres, a post he retained until 1740 (or perhaps until 1742\(^\text{16}\)), composed a book of general knowledge, dialogic in form, called Φεύσφορος. He dedicated it to the physician Michael Perdikares (or Predikares) of Monemvasia\(^\text{17}\), a key figure himself

\(^{14}\) Mavrocordatos, *Les loisirs*, op. cit. (n. 13), 178 (l. 7-10).

\(^{17}\) For Perdikares of Monemvasia see: K. N. Sathas [Κ. Ν. Σάθας], *Νεοελληνική φιλολογία: Βιογραφία τῶν ἐν τῆς γραμματείᾳ διαλείμμαντοι Ελλήνων, ἀπὸ τῆς καταλύσες τῆς Βυζαντινῆς Αυτοκρατορίας μέχρι τῆς Ἕλληνικῆς ιδεογραφίας (1453-1821), ἐν Αθήναις: ἐκ τῆς Τυπογραφίας τῶν τέκνων Ανδρέα Κορομηλά, 1868, pp. 444-445; G. I. Zaviras [Γ. Ι. Ζαβίρας], *Νέα Ελλάς ἢ Ελληνικῶν θεάτρων, ἐκδόθην ὑπὸ Γεωργίου Π. Κρέμου, Γεωργίου Ιοάννου Ζαβίρα Ανέκδοτα Συγγράμματα, Αθήναις: Τύποι
in Anastasios’ wide-embracing multi-thematic literary undertaking: as a matter of fact, the dialogue which takes place in the book is explicitly staged as an encounter between Michael, whose voice is that of the enquirer, and Anastasios, who assumes the role of the respondent.

Having roamed, already from the very outset, over an impressive variety of topics, ranging from the highly abstract preoccupation with the nature of God (“μᾶ ὁρίζε μοι τι εἶναι ὁ θεὸς”), or that with the definition of hell (“Τι εἶναι ἡ κόλασις”), to more particular problems, such as that of the peculiarities in character exhibited by women (“Παρακαλῶ την, νὰ μὲ εἰπῆς μερικὰς γνώμας διὰ τῶς γυναίκας”) or that of the analogical relation between the cosmos as a whole, the macrocosm, and the human being as a “recapitulation” of the cosmos on a smaller scale, the microcosm (“Διατί ὁ ἀνθρώπος λέγεται μικρός κόσμος;”) 18, Popas at one point is invited to answer yet another root philosophical question: what is the primary principle in the created universe (“Ποιὰ εἶναι ἡ ἁρχὴ τοῦ κόσμου;”)? He sums up the conclusions reached by the early Greek philosophers, tacitly restricting himself to those that we customarily classify as ‘pre-Socratics’, who all shared the belief “that God created the world out of matter and form”, and then right away he makes his interlocutor aware of the relevant views held by “the chymists” (“οἱ χημικοὶ”) and Hermes Trismegistus. The first have opined that the primary principles of things are the acid (“ἄκιδον”) and the alkali (“ἄλκαλι”); the second, that this merit belongs to salt, sulfur, and mercury (“ἄλας, θεῖον, καὶ ἐμμεῦν [sic]”). Of course, the true story is to be found beyond the philosophical controversies, in what the Holy Scripture narrates. God created all things “out of non-beings”, as indicated in the book of Judith: “You conceived of everything and everything was produced in you” (“ἐννόησας καὶ πάντα παρήχθησάν σοι”). “And still, chymists”, Popas adds, “decompose everything into water” 19.

19 Popas, op. cit. (n. 18), p. 27.
Although the passage from Judith is inaccurately quoted, the meaning conveyed here is similar to that assigned to the particular verse of the original text, to which Popas refers, by some of the most rigorous Christian thinkers of the past. For John Philoponus, e.g., when Judith addresses God, saying “You had the thought and they came to be; you minded it and they were present”, the clearly discernible idea illustrated by this divinely inspired, poetical wording is that God’s creative power is infinite\(^{20}\). And, what’s more, any attempt to acquire knowledge on the nature of material things should be tuned in to the implications of this conception. Natural philosophy should intersect and interact with theology. The knowledge of nature, of what is created, cannot be dissociated from the knowledge of God, of the creating agent. Popas likewise, in another of his answers, stresses the paramount position occupied by the knowledge of God in the ascending scale of erudition: the sensible soul is subject to the rational soul; the latter is subject to theory; and theory is subject to truth, that is, to God\(^{21}\). By invoking the theory of creation ex nihilo, perhaps he wants to remind his reader of how utterly futile and vain the quest for material primary principles is.

Even more noteworthy, though, at least from the point of view adopted in this paper, is the fact that Popas places the theories on the elementary constituents of reality proposed by this distinct class of philosophers called “the chymists” side by side with those of the early Greek naturalists. As it seems, he is only very roughly familiar with what he is talking about. Nevertheless, his knowledge is in some degree up-to-date. The acid-alkali theory which he succinctly brings up was first formulated by Otto Tachenius (1610-1680)\(^{22}\), in a work entitled *Hippocrates chimicus* which was

\(^{21}\) ἡ αἰσθητικὴ ψυχὴ ὑπόκειται εἰς τὴν λογική, διότι εὐγενεστέρως εἶναι ὃ ἀνθρώπος, ὅπως τὸ χειλικόν πέλλαν ἢ λογικὴ ψυχὴ ὑπόκειται εἰς τὴν θεωρίαν· ὅστε κυλήτερος εἶναι ὃ θεωρητικὸς [sic] ἀνθρώπος, ὁπό τὸν πρακτικόν πέλλαν ἢ θεωρία ὑπόκειται εἰς τὴν ἁλθέσιαν, ἢ ὡστε εἶναι ὃ θεός”. Popas, op. cit. (n. 18), p. 4.

\(^{22}\) Tachenius received the degree of doctor of medicine from the University of Padua, in 1647, and then he moved to Venice, where he remained till his death. For his life see: G. F. Dann, “Beitrag zur Biographie von Otto Tachenius”, in: *Atti del II congress internazionale di storia della farmacia*.
published in 1666, on the basis of the suggestion put forward, less than a decade earlier, by the professor of medicine at the University of Leiden, François de la Boë (or Franciscus Sylvius, 1614-1672), that all physiological processes could be explained in terms of chemical interactions, wherein the polarity between the acidic and the alkaline components was of key importance23. It was developed further, popularized, and defended as well against the objections that Robert Boyle had raised, in the meantime, with his Experiments, Notes, etc. About the Mechanical Origine or Production of divers Qualities (1675), by the French physician François de Saint-André24, whose Entretiens sur l’acide et sur l’alkali (first published in 167725) went

through a second enlarged edition in 168726. As for the theory of Hermes, which Popas lists together with that of “the chymists”, it is the well-known Paracelsian theory of the \textit{tria prima}, which was presented, both by Paracelsus (1493-1541) himself and by his follower, Gerhard Dorn (1530/1535 - † after 1584), as the outcome of a faithful interpretation of the legendary Egyptian wise man’s rediscovered authoritative sayings. It was disseminated broadly during the first half of the 17th century, when Dorn’s \textit{Liber de naturae luce physica, ex Genesi desumpta} (1583) was included in the first volume of the monumental anthology \textit{Theatrum chemicum} edited by Lazarus Zetzner (1602)27.

\begin{itemize}
\end{itemize}
In all probability, it would be erroneous to assume that Popas had read any of the primary sources that we just specified. It is, rather, obvious, that we have to do with information received at second, if not third, hand: perhaps, from one of his own teachers, when he was younger, or from Perdikares himself. This is not to say that Popas’ short encyclopaedic and dialogic guide, which seems to rely much upon the tradition of medieval florilegia, is nothing but an assemblage of unrelated commonplace aphorisms. Even supposing that this was all, we would still have to dwell on the question how theories propounded by Paracelsus or Tachenius found somehow their way into an arsenal of serviceable maxims at the disposal of an average local educator. But there are some indications that this is not all. We will pick out one that is particularly interesting. Popas appended to his Φώσφορον a relatively lengthy “enchiridion called institutes of moral philosophy” (Ἐγχειρίδιον άριστον καλοίμενον Κανόνες τῆς ἥθικῆς φιλοσοφίας), consisting of 767 propositions. In the chapter on God, besides the numerous predictable apophatic pronouncements we may also fall upon some enunciations which link notably more strongly God to the palpable reality of life in this world. Such is the 384th proposition, where we learn that “the world is but a visible image of the invisible deity, because this and other things as well were becoming images of the saints”; the 390th proposition, according to which “God is life-surpassing and life-giving, the overflowing, containing in itself the principle of life, and simplest life”; and the 416th proposition, which goes as follows: “God is the alpha, and the omega, the beginning and the end; in which we live, and move, and exist.” Popas uses commonly known, among literate Orthodox Christians, materials, but, in some instances at least, he shades them in tones reminiscent of certain naturalistic or vitalistic Renaissance philosophical proclivities.

28 Popas, op. cit. (n. 18), pp. 51-204.
31 Ὁ Θεός εἶναι τὸ ἄλφα, καὶ τὸ ὁμήγη ἡ ἀρχή καὶ τὸ τέλος: ἐν τῷ ζωμέν, καὶ κινούμεθα καὶ ἐσμέν”. Popas, op. cit. (n. 18), p. 139.
What we have seen till now are no more than singular cases pointing to a dimension, hitherto unnoticed by the historians of the Enlightenment in SE Europe. A renowned scholar and statesman, such as Mavrocordatos, and an average, perhaps well-educated, teacher, saying a few words about an idiosyncratic field of knowledge, this is what we have seen for the moment. “Chemistry” in the first case and “the chymists” in the second suddenly, though only passingly, appear as something familiar or as something that can be actually embraced or taken into account: both a moral risk of beguilement and a promise of intellectual wealth for Mavrocordatos; an alternative theory on the elementary structure of the universe, comparable to those of the early Greek naturalists, for Popas. But we have only gone across a small segment in the territory that we decided to traverse. The continuation of this paper will examine further, and much richer, evidence provided by some of the surviving manuscripts of the period.
Olympiodore l'alchimiste et la taricheia.
La transformation du minerai d'or : technê, nature, histoire et archéologie

Cristina Viano
CNRS, Paris

Le commentaire d'Olympiodore *Sur le Kat'energeian* de Zosime, débute par la citation d'une phrase de Zosime concernant la « macération » (*taricheia*), opération paradigmatique du traitement du minerai d'or, comportant plusieurs étapes et interprétée comme une allégorie de l'opération alchimique.

Or, la confrontation des procédés décrits par Olympiodore avec le témoignage historique d'Agatharchide sur les mines d'or d'Erythrée ainsi que les résultats de récentes fouilles conduites en Égypte dans les sites miniers aurifères de l'époque ptolémaïque¹, permet de faire lumière sur les enjeux théoriques et pratiques des étapes de la transformation du minerai d'or et notamment sur le rapport entre nature et *technê* tel que le concevaient les alchimistes grecs. Il s'agit d'un très bel exemple de la fécondité d'une approche multidisciplinaire des textes de l'alchimie grecque.

Prémisses: la structure du commentaire sur le *Kat'energeian* de Zosime par Olympiodore

Avant d'aborder le passage qui nous intéresse, et afin de définir sa place dans le commentaire du *Kat'energeian* de Zosime par Olympiodore, je voudrais résumer brièvement les résultats de mes dernières recherches sur la structure, la nature et la composition de ce traité.

Comme la plupart des textes du *corpus* des alchimistes grecs, qui sont fabriqués à partir du démembrement de textes perdus, le commentaire d'Olympiodore présente une nature composite. Le titre même, tel qu'on le trouve dans le manuscrit principal, le *Marcianus Graecus 299* (M) illustre bien cela: «Olympiodore, philosophe d’Alexandrie, sur le livre Selon l’action de Zosime tout ce qui a été dit par Hermès et

¹ Je remercie chaleureusement les collègues archéologues de la Mission Française du Désert Oriental: Jean-Pierre Brun (Collège de France), Thomas Faucher (CNRS, IRAMAT) et Bérangère Redon (CNRS, HiSoMa), pour les précieuses informations et la documentation qu'ils m'ont généreusement transmises au sujet de cette découverte.
Dans sa description de M, Lagercranz² divise le texte d'Olympiodore en deux sections dont seulement la première présente une structure cohérente.

En effet, la première section (M, f. 163r - 166r; BeRu II, 69, 12- 77, 14; § 1-14) est structurée en cinq parties séparées et distinctes : l'opération de l'extraction des paillettes d'or du minerai, à travers la «macération» (taricheia) et le «lessivage» (plusis) (§1-7. Ensuite est introduite la «soudure» (chrysocolle) de l'or (§8-11), qui consiste à rassembler les particules d'or obtenues en un corps homogène. Ces deux opérations spécifiques, de séparation et de réunion, sont ici interprétées comme des allégories de la transmutation des métaux. Viennent ensuite les trois types de teinture des anciens alchimistes (§ 11-14).

La deuxième section — la partie la plus étendue du texte (f. 166r, 26-179r, 4 = II, 77, 15-104, 7; §15-55) — est constituée par une suite destructurée d'excerpta et de digressions accompagnés de notes sur les principales opérations alchimiques.

Or dans une étude récente³, j'ai montré qu'au-delà de cette apparence de désordre et confusion, on peut saisir dans le déroulement de notre traité un dessin rationnel et cohérent, révélé par deux traces. La première consiste dans le fil rouge de la logique qui relie les opérations alchimiques, les principes et les substances fondamentales. On peut en effet constater une progression dans la présentation des composantes de l'alchimie, qui va des opérations fondamentales (lévigation, fusion, teinture) à ses principes causaux et matériels, pour terminer avec des considérations épistémologiques sur cette discipline en tant que technê.

Le deuxième fil rouge consiste en des formules que l'on pourrait définir comme «de raccord et d'accompagnement», où l'auteur parle à la première personne et signale la transition entre les différentes parties ainsi que le but, la méthode et l'organisation interne de son travail. Notre texte se révèle ainsi être une epitomê, un résumé au but

protreptique4, offrant un choix de témoignages, accompagnés de commentaires, découps à partir des écrits des anciens alchimistes, mais aussi des philosophes proprement dits, sur les fondements de l'art (les opérations, les ingrédients, et aussi l'histoire). Il est adressé à quelqu'un, probablement quelqu'un de jeune et de rang élevé dans le but de lui offrir «une vue d'ensemble de l'art complet» (tès enkukliou technês hē sunopsis, §38).

Selon mon hypothèse, un ouvrage perdu d'Olympiodore, rédigé dans une forme plus structurée, était à l'origine du texte que nous possédons. Celui-ci serait constitué au moins de deux couches: le commentaire d'Olympiodore au Kat'energeian de Zosime et l'arrangement d'un compilateur. Celui-ci a pu copier Olympiodore jusqu'à un certain point et ajouter ensuite une série de notes sur les principales opérations alchimiques, accompagnées d'excerpta de Zosime et d'autres auteurs alchimiques, en cousant le tout avec ce double fil rouge: d'une part, celui de la progression logique dans l'apprentissage des opérations et des principes de l'alchimie, et de l'autre, l'introduction de formules signalant la transition entre les parties ainsi que la méthode de composition et le but de ce précis.

Je pense que le morceau initial (§1-7) provient directement du commentaire au Kat'energeian d'Olympiodore le néoplatonicien ainsi qu'une bonne partie de la doxographie sur les Présocratiques que l'on trouve au milieu du traité (§18-27). Puisque dans l'ensemble du traité, les citations de Zosime sont plus fréquentes et plus nombreuses (son nom est cités explicitement vingt fois) que celles des autres alchimistes et, qu'en plus du titre du commentaire, deux excerpta sont explicitement déclarés par la suite comme provenant du Kat'energeian5, il est aussi fort probable que cette compilation se superpose à la trace du commentaire. C'est-à-dire que le compilateur a inséré d'autres excerpta et digressions mais il a pu revenir au commentaire d'Olympiodore sur le Kat'energeian et en copier et/ou paraphrasier d'autres parties, comme justement la partie doxographique qui à mon avis est d'Olympiodore du moins en ce qui concerne les Présocratiques. Il est aussi tout à fait plausible que le Kat'energeian de Zosime soit déjà un ouvrage doxographique en ce

4 Cf. 71, 18: « L'expression "réaliser l'acte de la macération" exhorte au travail pratique» (Τῷ δὲ «στοιχεῖα τῆς ταραχείας ἐνέργειαν» πρὸς τὴν ἐμπρακτὸν ἔργασιαν προτρέπει).
5 Cf. II, 89, 8 (§32): «Et Zosime dans son livre Selon l’action (Kai; Zwvsmo" ejn th'/ Katē ejnvrgeian bivbhw/)...» et 100, 9 (§50): « Et vois que Zosime, dans le livre Selon l’action, dans la seconde section (ejn th'/ Katē ejnvrgeian bivbhw/, tw/ deutevwrw/ lovgw/)...».

THALES-DACALBO
qui concerne les opinions des alchimistes et qu'Olympiodore dans son commentaire y ait rajouté une doxographie sur les Présocratiques, structurée selon le schéma typique des doxographies néoplatoniennes. Les parties que je suppose avoir été copiées directement du commentaire d'Olympiodore sont justement caractérisées par des ressemblances formelles (le schéma typique du commentaire selon lexis, théòria, exegesis kata lexin; l'agencement de la doxographie), terminologiques et conceptuelles frappantes avec le commentaire des Meteorologica et d'autres ouvrages d'Olympiodore.

Or, si cette hypothèse est vraie, nous pouvons expliquer que, par la suite, ce texte a été attribué dans son entier à Olympiodore d'Alexandrie, par une sorte d' «attraction» de la partie initiale. J'exclus qu'il était dans les intentions du compilateur du patchwork de s'attribuer le nom d'Olympiodore. Le titre ne fait que refléter précisément ce qu'est cet ouvrage: le commentaire d'Olympiodore à Zosime et une collection d'excerpta. Il faut donc distinguer les deux parties du titre par un kai ou une virgule. Quant au compilateur, on pourrait vraisemblablement songer à ce Théodore, qui aurait rassemblé la collection entière des textes alchimiques à l'époque d'Héraclius et composé la préface en vers qui se trouve au début de M (f. 5v).

La «macération» (taricheia)

Venons maintenant au passage qui nous intéresse. Le lemma cité concerne l'opération de l'extraction des paillettes d'or du minerai, à travers la «macération» (taricheia) et le «lessivage» (plusis) (§1-7). Comme nous l'avons déjà mentionné, il est suivi par la description de la «soudure» (chrysocolle) de l’or (§8-11), qui consiste à rassembler les particules d’or obtenues en un corps homogène. Ces deux opérations spécifiques, de séparation et de réunion, sont ici interprétées comme des allégories de la transmutation des métaux. Viennent ensuite les trois types de teinture des anciens alchimistes (§ 11-14). Le § 15 énonce le but fondamental de la teinture : donner à un corps «dissipable» une nature indélébile. Cela signifie, en termes opératifs, fixer la

coloration d’un métal de manière à lui donner une nature persistante

BeRu, CAAG, II, 69, 15-70, 3:

1. Γίνεται δὲ ἡ ταριχεία ἀπὸ μηνὸς μεχίρ κε’ [και] ἔως μεσωρὶ (15) (70.) κε’: ὅσα ἐν δόνῃ ταριχεύσαι καὶ πλūναι ἔως ἄφης τὰ αὐτὰ ἐν ἀγγείοις ἀποκείμενα. Καὶ ἐὰν δόνῃ ποιῆσαι, ποίησον τῆς ταριχείας τὴν ἐνέργειαν, κάλλιστε τῶν σοφῶν.

«La macération se fait à partir du 25 du mois de méchir jusqu’au 25 du mois de mésori (70). Toutes les choses que tu peux faire macérer et lessiver, mets-les de côté dans des récipients. Et, si tu peux le faire, réalise en acte la macération, toi, le plus noble des sages».

La citation, vraisemblablement de Zosime, est commentée selon le schéma «classique» des commentateurs néoplatoniciens, typique d’Olympiodore le néoplatonicien: d’abord le morceau à commenter, une explication générale, qui correspond à la theoria, et ensuite l’exégèse détaillée des phrase et des termes (lexis), que nous trouvons aux paragraphes 2, 3, 4, 5, 6, 7.

La considération générale porte sur la coutume des anciens de cacher la vérité aux non-initiés au moyen d’allégories et d’un langage ésotérique; l’auteur évoque, de manière obscure (comme il se doit), comme exemple les formulations de Platon et d’Aristote concernant la substance et les accidents. Ensuite Olympiodore annonce l’exégèse du procédé de la taricheia dans la perspective de «pousser les chercheurs des objets physiques vers les objets non physiques».

Même si l’analyse de cette citation se conclut avec la distinction entre le «lavage mystique» (plusis mustikê), le «lavage proprement dit» (plusis apolelumenê) et l’identification de celui-ci au «grand traitement» (megalê therapeia), ce qui semblerait se situer sur le plan allégorique de la transmutation, de fait, l’exégèse détaillée d’Olympiodore, au-delà d’un certain nombre d’obscurités, apparaît essentiellement technique et se référant à des procédés bien réels.

En effet, il y a l’intention d’expliquer, en termes concrets, les étapes, les temps, les outils et les phases de l’opération de la lévigation du minerai d’or, décrite dans la citation de Zosime.

THALES-DACALBO
Ainsi, apprend-on que le point de départ de la «macération» est la «terre boueuse (ou limoneuse)» (§2)\(^8\), qui doit être lessivée jusqu'à ce que la boue ait disparu, et qu'il ne reste que le minerai (*psammos*), c'est-à-dire les paillettes d'or, argentées ou plombées. La phase successive consistera à soumettre les paillettes à l'action du feu. De plus, Olympiodore interprète l'expression «réaliser l'acte de la macération» comme une exhortation au travail pratique. Le terme «acte» (*energeia*, qui donne le titre à l'ouvrage de Zosime ici commenté, le *Kat'energeian*: «selon l'action») est interprété ici comme «action pratique», «opération » (5. Τῷ δὲ «ποιῆσαι τὴς ταριχείας ἐνέργειαν» πρὸς τὴν ἐμπρακτον ἐργασίαν προτρέπεται. Καὶ ἡ ἐνέργεια γὰρ ἐνταῦθα εἰς τὴν πράξειν εἰκλαμβάνεται). Il s'agit donc de mettre en pratique une prescription.

Mais peut-on dire quelque chose de plus concernant la *taricheia*?

La *taricheia* dans le CAAG

Le terme *taricheia* en grec signifie trois choses\(^9\). En premier lieu : a) «dessiccation, salaison, conservation sous sel» (Aristote, *Meteor.*, II, 3, 359 a16 suiv.). Chez Aristote, dans *Meteor.* II, 3, 359 b 12, nous trouvons un rapport entre la «boue» et la «macération». Aristote présente comme preuve (*tekmérion*) du fait que la mer est un mélange d'eau et de sel, la densité de la masse de la mer. En effet, si l'on fait un mélange d'eau, en y mêlant une grande quantité de sel, le résultat est une sorte de «boue» (*w{sper phlov*). La même opération est faite pour les «conserves à la saumure» (*tau{to; de; tou'to drw'si kai; peri; ta;" tariceiva") trad. P. Louis; «dans les salaisons des poissons», J. Tricot, cf. *Hist anim.*, VIII, 30, 607 b 28, où il est question des salaisons des thons). Ici la *taricheia* est décrite comme un procédé de conservation sous sel au moyen d'un mélange de sel et d'eau. C'est le sens le plus

\(^8\) Le morceau de Zosime est attribué à Olympiodore, dans une version plus étendue, dans un recueil de fragments, relativement récent selon Berthelot, intitulé Sur la pierre philosophale, CAAG II, 200, 7 (transcrit sur A) : «La macération a lieu depuis le 25 du mois de méchir jusqu'au 25 du dernier mois de l'automne (6)... Toutes les choses que tu peux faire macérer et lessiver, laisse-les déposer dans des vases (convenables). La macération s'exécute sur la terre limoneuse, jusqu'à ce que la partie limoneuse s'en aille et que le minerai soit isolé. Cet art ne se pratique pas au moyen du feu. » (Γίνεται η ταριχεία ἀπὸ μηνά μέχρι κε' διὰ τὴν ταριχείαν καὶ πλώνα διὰ τὴν πράξειν ταριχείαν. Οἱ ἡ τέχνη αὐτή διὰ πυρὸς οὐ γίνεται). S'agit-il de la version plus complète d'un fragment du *Kat'energeian* de Zosime? En effet ces deux dernières phrases, absentes dans le morceau présenté au début de notre texte, sont ensuite commentées aux paragraphes 2 et 16.

\(^9\) Cf. LSJ: τάριχ-εία, Ion. τάριχ-η, ἦ, (1) preserving, pickling, in pl., εἰς ταριχείας φασόλοι Arist.HA607b28, cf. Mete.359a16: sg., γογγυλίδας εἰς τ. POxy. 736.5 (i A.D.), cf. Gal.6.745. (2) mummification, PEleph.8.8 (iii B.C.), POxy.40.9 (ii A.D.). (3) maceration, Olymp.Alch.p.69B., al. II. Ταριχείαι prob. factories for salting fish, Hdt.2.15,113, Str.3.1.8
commun du mot. b) Dans la taricheia d'Olympiodore, il n'est pas question de sel mais il reste la notion d'un mélange humide et dense d'où il faut séparer la partie solide. Pour la signification de macération, LS renvoie justement à ce passage d'Olympiodore. c) La taricheia peut signifier aussi «momification», il s'agit au fond là aussi d'un traitement de conservation où le sel (natron) joue un rôle important.

Dans le corpus des alchimistes grecs, on trouve de nombreuses occurrences du terme taricheia surtout chez Zosime, ce qui fait penser qu'il s'agit d'une terme central dans le Kat'energeian. Il semble désigner tantôt l'ensemble des opérations de lévigation du minerai d'or, tantôt la phase préalable qui consiste à réaliser un mélange du minerai broyé et réduit en poudre avec de l'eau et à le faire décanter dans des récipients. (cf. CAAG, 121, 18; 136, 8; 155, 19; 199, 1)

Dans l'une des Visions, représentée comme un autel en forme de coupe contenant de l'eau bouillonnante où s'opère la transformation (metabolê) des hommes qui abandonnent les corps et deviennent esprits, elle est le symbole de la purification du minerai d'or de la terre (cf. Mém. auth. X, 37, 50-57 Mertens). Dans d'autres passages, par rapport aux quatre phases principales de la transformation (noir, blanc, jaune et iōsis), elle prend sa place entre le noircissement et le blanchiment (cf. Zosime, 220, 3-14; Comarius, 290, xxx).

Agatharchide

Parmi les témoignages non alchimiques, les étapes techniques de l’extraction du minerai et de son traitement jusqu’à sa transformation en or sont décrites en détail par le géographe Agatharchide (qui a vécu en Égypte à la fin du IIe s. av. J.-C. et a été précepteur de Ptolémée X), qui a laissé un récit très vivant de l’activité des mines d’or du désert Oriental. En réalité, ce témoignage n'est pas du tout extérieur au corpus alchimique puisque dans M (f. 138-141) on en trouve un abrégé :

Sur la pierre métallique; en quels lieux elle est préparée CAAG, 26, 9-27, 3; trad. p. 27-28:

Il faut connaître en quel lieu de la terre de Thébaïde se prépare la paillette métallique: Cléopolis (Héracléopolis), Alycoprios (Lycopolis); Aphrodite; Apolenos (Apollinopolis); Eléphantine.

La pierre métallique ressemble au marbre; elle est dure, et les hommes qui, dans les lieux précités en font l'extraction avec beaucoup de peine, la préparent à l'intérieur (de la terre); ils portent des lampes..., et lorsqu'ils trouvent un filon, ils l'occupent. Leurs femmes broient (la pierre) et en font mouture.

Lorsque, après avoir réduit le minerai en poudre, ils l'ont étalé sur des tables garnies de rainures contrariées et disposées en pente douce, ils y font couler de l'eau; la partie pulvérisée, légère et inutile, est entraînée par l'eau, tandis que la partie utile, retenue par son poids, est recueillie dans les rainures des planchettes. Alors, pour la cuisson, ils resserrent le dépôt, le placent dans un vase de terre cuite et, faisant un mélange selon la formule\(^{11}\), ils luttent le vase et le font chauffer sur un fourneau, pendant cinq jours et cinq nuits; le vase a une issue pour l'extraction (des produits).

\(^{11}\) Chez Photios et Diodore sont indiquées des recettes de cémentation et coupellation. Pour la définition de ces opérations, cf. R. Halleux, «Méthode d'essai et d'affinage des alliages aurifères dans l’Antiquité et au Moyen-âge», dans N. Morrison et alii (éd.), L’or monnayé I, Cahiers Ernest Babelon, Paris, CNRS, 1985, p. 39-77: la cémentation consiste «à chauffer un métal ou un alliage en présence d'une préparation qui modifie ses propriétés plus ou moins profondément à partir de la surface» (p. 45); la
L’opération décrite consiste à « laver » le minerai réduit en poudre en faisant couler de l’eau qui entraîne la partie légère et inutile. Le minerai utile qui reste est placé ensuite dans un vase de terre cuite, qui est luté et chauffé12. Les descriptions précises d’Agatharchide, dont cet abrégé est un échantillon, sur les quatre opérations techniques fondamentales de transformation du minerai: le concassage, le broyage, le lavage (ou lévigation) et l'affinage13 permettent de confirmer que le passage d’Olympiodore se référerait à des procédures bien réelles, mises en place depuis longtemps et qui devaient constituer la base technique fondamentale par rapport à laquelle la réflexion théorique des alchimistes s’est développée aussi bien dans la théorisation des principes méthodologiques que dans les allégories de la transmutation.

Les mines ptolémaïques

Venons-en maintenant à un témoignage très récent et très concret sur la procédure d'extraction et de lavage du minerai d'or, qui constitue pour nous une autre pièce d'importance capitale pour la reconstruction du *puzzle* des opérations des alchimistes grecs. Il s'agit des résultats de fouilles conduites en 2013 en Égypte dans les sites miniers aurifères de l'époque ptolémaïque (fin du IVe s.-milieu du IIIe s. av. J.-C.) de Samut par la mission française du désert Oriental. Dans le compte-rendu nous lisons:

« Désireuse de se pencher sur l’âge d’or de l’exploitation des mines du désert Oriental, la mission française du désert Oriental a débuté ses travaux par l’exploration de la région de Samut, dont les vestiges semblent dater, pour les plus imposants, du début de l’époque ptolémaïque (fin du IVe s.-milieu du IIIe s. av. J.-C.) [...] La région de Samut, dont le nom égyptien ancien signifie «la tour», a de plus l’avantage de comporter des

coupellation «est une technique de séparation des métaux par oxydation qui possède son origine et sa principale application en métallurgie du plomb argentifère» (p. 49).
13 Cf. aussi : «Lévigation = séparation, par entraînement dans un courant d’eau, des constituants d’un mélange préalablement réduit en poudre»; «affinage = purification d’un métal par élimination des impuretés, par cémentation ou coupellation» (Ibid.).
vestiges nombreux, complexes et bien conservés, organisés en un véritable district minier. Il s'organise autour de deux implantations, l'une, au sud, appelée Bi'r Samut (24°48’ N, 33°55’ E), l’autre au nord, qui n’a pas de nom sur les cartes topographiques modernes, et que nous appellerons désormais Samut nord (24°51’ N, 33°55’ E). Les deux sites sont distants de 4,3 km à vol d’oiseau ; le site sud, localisé dans un vaste ouadi, comporte un fortin qui abrite un puits (d’où son appellation de Bi’r, « le puits ») ; le site nord, dans les montagnes, est organisé autour d’un filon aurifère.14

Or, les premiers résultats de la fouille du site de Samut nord ont produit des informations d'importance fondamentale car elles permettent de reconstruire certaines des étapes de la chaîne de l'extraction du minerai et de son traitement jusqu'à la transformation en or. La grande clarté des vestiges en surface ont révélé des installations témoignant des différentes phases du travail: d’abord la phase mécanique du tri, concassage des blocs de quartz aurifère

Figure 1 : Une zone de concassage du minerai en contrebas de la cabane 404 du site de Samut nord (cliché J.-P. Brun, MAFDO)

puis la phase de transformation du minerai en farine (poudre de minerai) qui se pratiquait notamment grâce à deux grands moulins

Figure 2 : Le moulin d'époque ptolémaïque à Compasi (Daghbag IV)(cliché J.-P. Brun)

Figure 3 : Vue des deux moulins de Samut nord (cliché A. Bülow-Jacobsen, 2014, MAFDO)
En revanche, contrairement aux premières hypothèses de l'équipe, les deux dernières étapes décrites par Agatharchide (le lavage et la fonte) n'ont pas été localisées sur le site de Samut nord, soit qu'elles aient été effectuées dans la Vallée, soit, mais c'est moins probable, qu'elles n'aient pas été repérées par les archéologues15.

Nature et technê

Dans le compte-rendu des fouilles nous lisons: «Il existe deux types de gisements aurifères dans le désert Oriental. Le premier est un gisement de type filonien qui se caractérise par l'apparition en surface, souvent sur les crêtes des collines, de longs filons de quartz aurifère. Le second, le gisement alluvionnaire, est une conséquence du premier, puisqu'à une époque géologique, l'érosion du minerai de quartz a éparpillé ce dernier dans des placers16, au bas des collines, qui se retrouvent maintenant dans les ouadis. L'or se trouve alors sous forme de paillettes ou encore dans une gangue de quartz». (Brun, 2013, p. 114, n. 17)

Il est évident que cette technique d'extraction de l'or naît de l'observation de la nature: le broyage du minéral de quartz aurifère et son lavage reproduit la situation naturelle des sables aurifères dans les fleuves.

Ce fait illustre bien la conception des rapports entre technê et nature qui émerge dans les textes alchimiques grecs. Conception qui est conforme à la vision aristotélienne, selon laquelle le technitês, tel le médecin, ne remplace pas la nature, mais crée les conditions pour que la nature agisse, pour que les processus naturels puissent se produire.

En effet, dans *Metaph. Z*, 7, 1032b 1 suiv., où Aristote analyse les productions (poieseis) de l'art, dont la forme est présente dans la pensée du praticien, il donne l'exemple de la médecine. Il décrit le raisonnement du médecin qui cherche à produire la guérison en reliant le cas particulier à la forme de la santé qui est présente dans son esprit en tant que science: puisque la santé consiste en cela, si l'on veut obtenir la guérison, il faut que cette chose se réalise, par exemple, un certain équilibre des fonctions du corps, ultérieurement, si l'on veut obtenir cet équilibre, il faut une certaine chaleur.

15 Cf. Th. Faucher et B. Redon, «The “heavy mineral processing plants” of Samut North are mills!», *Egyptian Archaeology* 48, Printemps 2016, à paraître.

16 Par placer on désigne un gisement secondaire de roches sédimentaires, le plus souvent d'origine alluvionnaire, produisant des métaux et des minéraux lourds, notamment de l'or et des pierres précieuses.

15 C. Faucher et B. Redon, «The “heavy mineral processing plants” of Samut North are mills!», *Egyptian Archaeology* 48, Printemps 2016, à paraître.

16 Par placer on désigne un gisement secondaire de roches sédimentaires, le plus souvent d'origine alluvionnaire, produisant des métaux et des minéraux lourds, notamment de l'or et des pierres précieuses.
Dans le commentaire même d'Olympiodore, on retrouve cette idée répétée à plusieurs endroits, partagée avec Zosime. La méthode correcte consiste à procéder selon nature, et non en lui faisant violence ou opposition, car en fin de comptes c'est la nature qui agit.

Par exemple, en, 75, 15, à propos du «lavage», nous lisons:

Le lavage, disent-ils, est le lavage coagulant les substances fugaces qui s'écoulent ensemble grâce à des paroles de bonne augure et à la nature seule, ou c'est la corporification des esprits non-corporels, c'est-à-dire de leurs âmes, choses accomplies par la seule nature et non par la main de l'homme, comme certains <le croient> (αὐτῶν διὰ μόνης τῆς φύσεως τελούμενα καὶ οὐ διὰ χειρῶν ὡς τινες νομιζοῦσιν)

Mais particulièrement signifiant est un autre passage au sujet de l’«économie» de la chrysocholla:

73, 20: Tu pourrais apprendre, ô ami des Muses, ce que veut dire le mot de «économie». Ne va pas croire, comme le font certains, qu'il désigne une action manuelle (74), mais (comprends) que c'est celle qui se fait par la nature, car c'est une action qui dépasse l'homme (τὴν διὰ χειρῶν ἐνέργειαν μόνον ἠρκοῦσαν εἶναι, ἄλλα καὶ τὴν διὰ τῆς φύσεως γινομένην, ὑπὲρ ἄνθρωπον οὖσαν). Si tu as pris de l'or, tu dois le travailler, et si tu le travailles avec attention, tu auras l’or. Et ne va pas croire, dit-il (Zosime), qu'une teinture soit faite à partir d'autres règles (ἀπὸ ἄλλων τινῶν ἐννοιῶν) et d'autres ingrédients végétaux (plantes), mais consacre ton temps à l'usage même de la nature (ἄλλα αὐτῇ τῇ φυσικῇ χρήσει), et tu auras l’objet cherché.

La méthode à suivre décrite ici de même que dans plusieurs passages du corpus alchimiques, est celle qui laisse agir la nature, car l'homme ne peut pas se mettre à sa place. Cette méthode demande, par conséquent, une connaissance approfondie des propriétés spécifiques des corps, de manière à les faire réagir naturellement.

On remarquera que la liste des couples contraires des propriétés passives de Meteor. IV, 8-9 d'Aristote, qui permettent de classer tous les corps homéomères, organiques et non organiques, sont toutes des propriétés révélées par la techné. Et on peut constater aussi qu'il s'agit, dans la presque totalité, de termes liés au travail minéralier ou
métallurgique: solidifiable, fusible, flexible, friable, modelable, broyable, combustible etc.

La technê permet donc de connaître les propriétés naturelles des corps dont elle s'occupe. En effet, comme le dit très bien R. Halleux17, les anciennes techniques d'affinage constituent l'origine de la chimie analytique.

Il est par ailleurs intéressant que parmi les buts de la Mission du désert Oriental, sont mentionnées : (a) la connaissance des techniques d’extraction, de traitement et de fonte du minerai et (b) la caractérisation chimique de la composition de l’or égyptien18.

La reconstruction du puzzle

En mettant ensemble les pièces du puzzle, on peut avancer une hypothèse de reconstruction de ce que nous dit Olympiodore dans son commentaire. Il me semble que le résultat le plus important de cette enquête porte sur le fait qu'Olympiodore, ou Zosime, se réfèrent à des opérations bien concrètes et réelles.

Le cas de la taricheia illustre très bien la fécondité et l'exigence de l'application d'une méthode multidisciplinaire aux textes alchimiques grecs.

En effet, d'une part, l'appel à d'autres disciplines et témoignages, littéraires, archéologiques ou encore à la chimie, nous permet d'interpréter les textes alchimiques. De l'autre, les textes alchimiques jettent de la lumière sur les enquêtes historiques et archéologiques.

Un autre cas emblématique est la recette pour la fabrication du «bronze noir» que l'on trouve dans des fragments de Zosime en syriaque (manuscrit de Cambridge Mm.6.29)19.

Il s'agit de la seule recette antique que l'on possède sur ce célèbre et mystérieux bronze noir de Corinthe, très prisé par les Romains et dont parle Pline l'ancien (*Hist. Nat.* XXXIV 8) et qui constitue un véritable casse tête pour les archéologues et les chimistes. En effet, ils s'interrogent depuis longtemps sur le lien entre les allusions des

17 R. Halleux, «Méthode d'essaï», art. cit., p. 39,

18 Cf. http://desorient.hypotheses.org/

auteurs classiques et certains objets conservés dans les musées qui présentent justement une étonnante patine noire. Des analyses menées en laboratoire ont permis de reconstituer l'histoire de cette technique qui consistait à enrichir un alliage cuivreux d'une petite quantité d'or et/ou d'argent, ce qui permettait ensuite, grâce à un traitement de surface par réaction chimique, d'obtenir la formation d'une patine artificielle noire particulièrement brillante et apte à faire ressortir la beauté des décorations. Or les recettes de Zosime syriaque sont très techniques et n'ont rien de mystique et les chercheurs cherchent à reproduire en laboratoire. Evidemment l'opération n'est pas facile, à cause de l'identification des ingrédients, mais celle-ci est une autre histoire.

Figure 4 : Encrier de Vaison la Romaine, troisième quart du 1er siècle (échiqué C2RMF Dominique Bagault). Cf. S. Descamps, avec la participation de M. Aucouturier, "L’encrier de Vaison la Romaine et la patine volontaire des bronzes antiques," *Monuments Piot*, 24, 2005, 5-30
Stéphanos d’Alexandrie:
La tradition patristique dans son œuvre alchimique

Maria K. Papathanassiou
National and Kapodistrian University of Athens

Résumé
La plupart des Discours de l’œuvre alchimique de Stéphanos d’Alexandrie commencent et finissent par des prières. Stéphanos s’y réfère surtout à Logos, qui est la lumière, et à la sagesse de Dieu. Selon notre recherche, les sources de Stéphanos sont l’Évangile de saint Jean, les épîtres des Apôtres, le Credo, et les œuvres des Pères de l’Église (ex: Clément d’Alexandrie, Basile de Césarée, Grégoire de Nazianze, Grégoire de Nysse, Jean Chrysostome). On constate que ces prières ne contiennent pas de trace de doctrines hérétiques, soit des monophysites d’Alexandrie soit de Serge, patriarche de Constantinople (610-638). Stéphanos redigea son œuvre alchimique en 617 à Constantinople. Entre 616 et 618 le patriarche Serge proposa son “monoenérgisme” et cherchait des textes en son appui; il continua ses efforts en 622/623 et aux années suivantes. Il paraît que Stéphanos, qui mourut peu de temps après 621, une fois converti du monophysisme en l’Orthodoxie par Eulogios, patriarche d’Alexandrie, il n’a pas suivi l’hérésie de Serge. Il est donc bien probable que la personnalité de Stéphanos est tombée dans l’oubli après sa mort, pendant le patriarchat de Serge et après lui, à cause de son insistance sur la foi orthodoxe.

Introduction

Selon la tradition, Stéphanos d’Alexandrie fut invité par l’empereur Héraclius (610-641) à Constantinople pour enseigner le quadrivium (c’est-à-dire, l’arithmétique, la géométrie, l’astronomie et l’harmonique). C’est pendant les premières années du règne de Héraclius, plus précisément pendant les années 617-619, que Stéphanos écrivit son Commentaire sur les Tables manuelles de Théon, comme on peut conclure des dates pour lesquelles il a calculé les positions des planètes (Neugebauer 1975:1040). D’après mes dernières recherches, c’est aussi en 617 que Stéphanos rédigea ses discours sur la Chrysopée (Papathanassiou 1996; 2006). Selon la tradition manuscrite et son édition par Ideler,\(^1\) cette œuvre se compose d’une série de neuf discours écrits en style rhétorique où Stéphanos commente sur quelques passages empruntés aux œuvres alchimiques antérieures. Mais comme nous avons démontré (Papathanassiou 1996), cette opinion est erronée et la partie finale du dernier discours de Stéphanos est définitivement perdue, et que deux discours originaux ont été plus loin divisés chacun en deux autres discours. Notre nouvelle division de l’œuvre de Stéphanos en discours, qui est peut-être plus proche à l’originale inconnue qui précède le Codex Marcianus et les autres MSS sauvés, est la suivante:\(^2\)

\begin{tabular}{ll}
 Nouvelle division & MSS et Ideler \\
 Discours 1 & Praxis I et Praxis II \\
 Lettre à Théodore & Lettre à Théodore et Praxis III \\
 Discours 2 & Praxis IV \\
 Discours 3 & Praxis V \\
 Discours 4 & Praxis VI \\
\end{tabular}

\(^2\) Dans notre exposé nous nous référons tant aux page(s) et line(s) de l’édition d’Ideler, autant qu’au numéro du Discours et son paragraphe de notre division. E.g. Id(eler), page,line(s); D(iscours) x.(§)y ou (§§)y-z.

THALES-DACALBO
Les Prières au début et à la fin des Discours ne prouvent pas seulement la piété de Stéphanos; elles reflètent aussi ses idées concernant la personnalité et les qualités d’un philosophe pratique qui veut découvrir les secrets du monde matériel. Selon lui, “la philosophie n’est qu’une ressemblance à Dieu autant qu’il est possible à l’homme.”

C’est ainsi que le philosophe, en tant qu’amoureux de la sagesse, tâche continuellement de ressembler à Dieu. Dans un tel contexte on doit examiner le contenu de ses Prières.

Notre exposé comprend trois parties: a) Une présentation générale du contenu des prières et leurs sources patristiques suivie des remarques concernant la foi orthodoxe de Stéphanos. b) La traduction en français des prières avec des références aux œuvres des Pères de l’Église. c) Le texte grec des prières avec les mêmes références aux œuvres patristiques accompagnées de leurs passages relatifs.

Le contenu des Prières

Pendant les longues années de ma recherche sur la “Chrysopée” de Stéphanos j’avais mis au second rang l’étude des “Prières” qui se trouvent en général au début et à la fin de ses Discours. Il est évident que mon objectif était l’étude et l’appréciation des principes philosophiques et des pratiques de la chrysopée, tels qu’ils se présentent dans son œuvre. D’ailleurs, j’avais pourtant en tête de m’en occuper dans la perspective de l’édition critique de l’œuvre. Aujourd’hui, je suis sûr que les “Prières” constituent un argument précieux pour l’éclaircissement de la personnalité de Stéphanos ainsi que pour la compréhension de son œuvre.

Selon W. Wolska-Conus, Stéphanos d’Alexandrie (ou d’Athènes ou philosophe) était un chrétien orthodoxe d’Athènes, qui s’est rendu à Alexandrie pour étudier les sciences. À cause de ses études faites dans le milieu monophysite de Jean Philoponos et de Damianos, patriarque monophysite d’Alexandrie, lui aussi il s’est converti au

3 Id. 224,27-28; L 4.5: Τί γάρ ἐστι φιλοσοφία, ἄλλος ἢ ὁμοίωσις Θεῷ κατὰ τὸ δύναμιν ἀνθρώπῳ;

4 Il y a très longtemps que le Père H. Saffrey a eu la bonté de me confier ses improvisations écrites sur les Discours de Stéphanos pour en faire usage selon mon avis. Parmi ses notes j’ai trouvé la traduction de quelques prières et j’en cite ici celles que je considère qu’elles sont en forme définitive. Elles sont signalées par un astérisque précédant le numéro du passage de la prière.
monophysisme. Plus tard, s’appuyant sur une méditation tout à fait théorique, il découvrit les contradictions de la Christologie monophysite. Il se mit donc à se faire des syllogismes qui détruisaient petit à petit les croyances auxquelles, lui-même, s’était autrefois converti. Désapprouvé par le patriarche Damiano, Stéphanos fut exclu de l’Église monophysite. Alors, reconsidérant ses nouvelles thèses, il aboutit à des conclusions définitives et il rejoint les Chalcédoniens; il trouve refuge auprès d’Euloge, patriarche orthodoxe d’Alexandrie, et il retourne aux seins de l’Orthodoxie. Enfin, quand il fut invité par l’empereur Héraclius à Constantinople, il s’est converti de nouveau au monothélisme par le patriarche Serge. Selon W. Wolska-Conus, ces conversions, notamment la dernière, sont selon toute probabilité, la raison pour laquelle le nom de Stéphanos est tombé à l’oubli. En outre, elle prétend que nous sommes dans l’ignorance par rapport aux conceptions de Stéphanos concernant la religion. W. Wolska-Conus soutient que cette ignorance est due au manque d’information et des textes théologiques de cet écrivain. (Wolska-Conus 1989, 66-68)

Mais ces textes existent jusqu’à nos jours; ils ne sont pas autres que les “Prières,” qui n’ont été l’objet d’aucune étude jusqu’à nos jours.

Pour comprendre le sens profond des “Prières” qui nous aideront à mieux connaître la personnalité de Stéphanos, nous devons essayer de faire revivre l’atmosphère de son époque et celle de la composition de son œuvre.

Après avoir fait une étude approfondie sur un phénomène astronomique décrit dans un Discours, j’abouti à la conclusion que Stéphanos l’a écrit entre le 26 mai et le 3 juin de l’an 617 (Papathanassiou 1996, 258-264; 2006, 180-188). Par conséquent, l’an 617 est la date de la composition de ses Discours sur la Chrysopée. À cette époque-là il écrivait parallèlement son “Commentaire sur les tables faciles de Ptolemée,” où il donnait des exemples des calculs astronomiques pour les années 617-619.

De plus, son “Traité apotélésmatique adressé à Timothéos,” c’est à dire l’Horoscope de l’Islam, calculé pour le 1er Septembre de 621, et le témoignage d’Ananias de Sirak, qui, lorsqu’il se rendit à Constantinople pour ses études, le fameux maître des sciences du quadrivium n’y existait plus, il en résulte que Stéphanos mourut peu après la composition de l’horoscope de l’Islam (Papathanassiou 1997, 117).

Depuis l’an 610 sur le trône de Constantinople était l’empereur Héraclius (610-641) tandis que Serge Ier (610-638) était le patriarche œcuménique. Serge faisait tous ses efforts pour restaurer l’unité religieuse de l’empire byzantin, unité brisée par le
schisme entre les chrétiens orthodoxes qui suivaient la confession de la foi du concile de Chalcédoine de 451 et les monophysites qui appartaient surtout à l’Église jacobite de Syrie et l’Église copte. Le but de ces efforts, encouragés par Héraclius, était le renforcement de l’empire en vue des expéditions de l’empereur contre les Perses et ensuite contre les Arabes. Pour atteindre son but, entre 616 et 618 Serge s’adressa à un moine copte d’Alexandrie (George Arvas) en lui écrivant une lettre où il a exposé sa proposition pour le “monoénergisme.” En plus, Serge demandait au moine de lui procurer des textes en appui de sa théorie du monoénergisme. Cela entraîna les protestations de Jean V le Miséricordieux (610-621), patriarche orthodoxe d’Alexandrie.

Par conséquent, la première question qui se pose est la suivante: Est-ce que les “Prières” des Discours de Stéphanos contiennent des éléments hérétiques soit du monophysisme soit du monoénergisme, nouvellement introduit par Serge? La réponse est Non!

Je vais me référer brièvement au contenu de ces “Prières” en utilisant quelques exemples caractéristiques.

Au début de son œuvre, Stéphanos chante Dieu et le supplie de l’illuminer par la lumière de son omniscience, à fin qu’il puisse arriver à sélectionner les meilleurs éléments du Traité qu’il avait en mains et le rendre digne de révéler la vérité.

Il s’adresse à Dieu triadique en nommant les trois personnes de la Sainte Trinité; par son mot introductif Stéphanos fait allusion au Père: “Après avoir chanté un hymne en l’honneur de l’Auteur de tous les biens, du Roi de l’univers et de son Fils unique, qui a procédé (rayonné) de Lui avant tous les siècles, avec le Saint Esprit.”

Il faut noter

5 La doctrine du monothélisme, une des deux variations du monophysisme, admettait les deux natures de Jésus-Christ, mais ne lui reconnaissait qu’une seule volonté. La volonté humaine est engloutie par la volonté divine. La doctrine du monoénergisme, l’autre variation du monophysisme, qui présuppose celle du monothélisme, admettait que Jésus-Christ est une personne à deux natures, mais que l’opération des deux natures est unique, c’est-à-dire que l’énergie qui manifeste les deux natures est unique. Par conséquent, il n’y a de distinction entre la nature humaine et la nature divine; il s’agit d’une confusion des deux natures, où celle de l’humanité reste passive devant l’action de la divinité. L’Église orthodoxe conçoit Jésus-Christ comme une personne à deux natures parfaits, et lui reconnaît deux opérations distinctes, même s’il y a un seul but à ces deux opérations, un seul acte, un seul résultat. Chaque nature coopère à l’acte unique, selon sa propre manière.

http://christologieecclesiologie.blogspot.gr/2014/03/monoenergisme-et-monothelisme.html

6 Id. 199,6-8 (D 1.1) Θεὸν τὸν πάντων ἀγαθόν ἄτιόν καὶ βασιλέα τῶν ὀλὸν, καὶ τὸν ἐξ αὐτοῦ πρὸ τῶν αἰώνων ἐκλάμψαντα μονογενῆ υἱόν σὺν τῷ Αγίῳ Πνεύματι.
ici que sa référence à la seconde personne de la Sainte Trinité n’est pas loin de celle du Symbole de la foi: “le Fils unique de Dieu, né du Père avant tous les siècles.”

Stéphanos utilise le verbe “rayonner” (ἐκλάμπω) à l’imitation des Pères de l’Église. Par exemple Clément d’Alexandrie fait souvent allusion à “la lumière qui vient d’en haut” (ἀνωθεν φωτοδοσία) et qui émane du Père. Stéphanos se réfère surtout au “Fils-lumière” ou à la “lumière paternelle” (πατρικὸν φῶς) ou “rayonnement” (ἀπαύγασμα); par exemple, il écrit: “qui habite une lumière inaccessible, lumière qui éclaire tout homme venant dans le monde.” Ici il combine quelques mots d’un passage de la première Épître de Paul adressée à Timothé (Tm 6,16: le seul qui possède l’immortalité, qui habite une lumière inaccessible) avec un passage du premier chapitre de l’évangile selon Jean (Jn 1,9: Le Verbe était la lumière véritable, qui éclaire tout homme venant dans le monde.) Ces passages ont été l’objet des commentaires extensifs écrits par les grands Pères de l’Église (Dionysios d’Areopage, Athénagore, Origène, Clément d’Alexandrie, St Basile, Grégoire de Nysse, Grégoire de Nazianze, St Jean Chrysostome et d’autres.

Stéphanos écrit aussi que Jésus est “le Verbe divin de Dieu, ... le Verbe vivant du Père; le Verbe était Dieu et le Verbe était toujours avec Dieu; tout fut par lui,” renvoyant ainsi au début de l’évangile selon Jean (Jn 1,1-4: Au commencement le Verbe était et le Verbe était avec Dieu et le Verbe était Dieu. Il était au commencement avec Dieu. Tout fut par lui et sans lui rien ne fut. De tout être il était la vie.) Il s’agit d’ailleurs, d’un passage commenté plusieurs fois par les Pères de l’Église.

Dans une autre prière à la fin d’un Discours, Stéphanos se réfère au “Seigneur de Tout ... né du Père avant tous les siècles, Créateur de toute création, lumière vraie, née de la lumière, Dieu né de Dieu et étant toujours avec Dieu, et aux derniers jours le même engendré pour notre salut de Marie, la glorieuse Mère de Dieu et toujours vierge,

7 Symbole de la foi: τὸν Υἱὸν τοῦ Θεοῦ τὸν μονογενῆ, τὸν ἐκ τοῦ Πατρὸς γεννηθέντα πρὸ πάντων τῶν εἰῶν.
8 Id. 202,4-5 (D 1.10) φῶς οἰκῶν ἀπόστιτων· φῶς, ὁ φωτίζει πάντα ἄνθρωπον ἐρχόμενον εἰς τὸν κόσμον.
9 Tm 6,16: ὁ μόνος ἔχων ἀθανασίαν, φῶς οἰκῶν ἀπόστιτων.
10 Jn 1,9: Ἡν τῷ φῶς τῷ ἀληθείᾳ, ὁ φωτίζει πάντα ἄνθρωπον, ἐρχόμενον εἰς τὸν κόσμον.
11 Jn 1,14-17 (D 2.1) ὁ θεαρχικὸς τοῦ Θεοῦ Λόγος, ... ὁ ἐξ ὀν παθός τοῦ Θεοῦ ἀεὶ ἄν, ὁ δι’ αὐτὸ τά πάντα ἐγένετο.
12 Jn 1,1-4: Ἐν ἀρχῇ ἦν ὁ λόγος, καὶ ὁ λόγος ἦν πρὸς τὸν θεόν, καὶ θεὸς ἦν ὁ λόγος. Οὕτως ἦν ἐν ἀρχῇ πρὸς τὸν θεόν. πάντα δὲ αὐτῶ ἐγένετο, καὶ χωρὶς αὐτῶ ἐγένετο οὐδὲ ἐν ὁ γέγονεν. ἐν αὐτῶ γοη ἦν.
notre Seigneur Jésus Christ.”

On doit remarquer ici qu’après le mot “engendré” (γεννηθέντα) dans son passage du Symbole de la foi Stéphanos ne cite pas la suite de la phrase: “non pas créé, de même nature que le Père.”

Les références de Stéphanos à “la grande philanthropie de Dieu” et “la bonté sublime de Dieu” renvoient aussi aux œuvres des Pères de l’Église. Par exemple, la confession de Stéphanos, “Tout don excellent, toute donation parfaite vient d’en haut et descend du Père des lumières,” est un passage de l’Épitre de St Jacques (1,17). Ce passage n’a pas été commenté seulement par les Pères, mais on le prononce aussi à la Liturgie de St Jean Chrysostome.

D’autres allusions de Stéphanos à “l’abîme” (ἀβυσσός) ou à “l’abîme de la sagesse du Créateur de tout” et à ses “indicibles” (ἀνέκφραστα) ou “insondables” (ἀνέξερευντα) mystères renvoient aux passages de l’Épitre de Paul aux Romains (11:33): “Ô abîme de la richesse, de la sagesse et de la science de Dieu! Que ses décrets sont insondables et ses voies incompréhensibles!” et à sa première Épitre aux Corinthiens (A, 2:8, “Ce dont nous parlons au contraire, c’est d’une sagesse de...

13 Id. 237,16-22 (D 5,22) πάντων Δεσπότης … τὸν πρὸ αἰώνων ἐκ Πατρὸς γεννηθέντα, τὸν Δημιουργὸν πάσης κτίσεως, τὸ ἐκ τοῦ φωτὸς ἄληθινον φῶς, τὸν ἐκ Θεοῦ Θεόν καὶ πρὸς τὸν Θεόν ἀεὶ ὅντα, ἐπ’ ἐσχάτον δὲ τῶν ἡμερῶν διὰ τῆς ἑνδοξῆς Θεοτόκου καὶ ἀπειπαθῆναι Μαρίας ἑνανθροπίσαντα διὰ τὴν ἠμετέραν σωτηρίαν, τὸν Κύριον ἠμῶν Ἰησοῦν Χριστόν.
14 Symbole de la foi: Καὶ εἰς ἑνα Κύριον Ἰησοῦν Χριστόν, τὸν Υἱὸν τοῦ Θεοῦ τὸν Μονογενῆ, τὸν ἐκ τοῦ Πατρὸς γεννηθέντα πρὸ πάντων τῶν αἰώνων· Φῶς ἐκ φωτὸς, Θεόν ἀληθινόν, ἐκ Θεοῦ ἀληθινόν γεννηθέντα … δ’ οὐ τὰ πάντα ἐγένετο.
15 Profession de foi: ἐπ’ ἐσχάτον δὲ τῶν ἡμερῶν τὸν αὐτόν δ’ ἡμᾶς καὶ διὰ τὴν ἠμετέραν σωτηρίαν ἐκ Μαρίας τῆς παρθένου κατὰ τὴν ἀνθροπότητα, ἑνα καὶ τὸν αὐτὸν Χριστόν, οὐδὲν, Κύριον.
16 Symbole de la foi: ὁ ποιηθέντα, ἀμοιφός τοῦ Πατρός.
17 Id. 202,15-16 (D 1,1) τὴν εἰς ἡμᾶς μετατάξας φύλαξάρχης τοῦ Θεοῦ.
18 Id. 202,19 (D 1,11); 219,22-23 (D 3,1); 244,6-7 (D 7,3) τὴν ὑπεράγαγον τοῦ Θεοῦ ἀγαθότητα.
19 Id. 213,9-10 (D 2,1) Πάσα δόσις ἀγαθή καὶ πάν ὀρίσματα τέλεια, ἀνεφάλλε ἐστι καταβάνων ἀπὸ τοῦ πατρὸς τῶν φωτῶν.
20 Id. 219,20 (D 3,1) τὴν ὑπεράρκειαν σοφίαν τοῦ Δημιουργοῦ τῶν ὠλῶν.
21 Épitre aux Rom. 11:33 Ω̣ βαθὸς πλούσιον καὶ σοφίας καὶ γνώσεως Θεοῦ· ὡς ἀνεξερευνητὰ τὰ κρήματα αὐτοῦ καὶ ἀνεξεχώριστοι αἱ ὁδοὶ αὐτοῦ.
Dieu, mystérieuse, demeurée cachée.”; 2:9: “mais, comme il est écrit, [nous annonçons] ce que l’œil n’a pas vu, ce que l’oreille n’a pas entendu, ce qui n’est pas monté au cœur de l’homme, tout ce que Dieu a préparé pour ceux qui l’aiment.”)22

Ces passages furent commentés par les Pères de l’Église.

Quant à la phrase, “Que tes œuvres sont en grand nombre, ô Éternel! Tu les as toutes faites avec sagesse,”23 c’est un passage du Psalme 103.

On remarque, donc, que Stéphanos ne cite pas n’importe quels passages du Nouveau Testament, mais il en choisit ceux qui furent l’objet de commentaires extensifs par la plupart de Pères de l’Église qui précédèrent son époque; il en résulte que Stéphanos connaissait leurs œuvres principaux.

Le motif terminal des “Prières,” surtout à la fin de chaque Discours, est une phrase glorifiant les personnes de la Sainte Trinité, comme par exemple, “Afin qu’eux aussi glorifient avec nous ton Nom digne de tout honneur et de toute gloire, Père, Fils et Saint-Esprit, maintenant et toujours et dans les siècles des siècles.”26 Il s’agit d’une phrase prononcée à la Liturgie de St Jean Chrysostome.

Dans un de ses Discours Stéphanos s’adresse à son auditoire en le traitant “ouailles sacrées” (ἱερὰ ποίμνη). Avec ses paroles Stéphanos exhorte ces “amoureux de la sagesse” (σοφίας ἔρασται), de lutter contre eux-mêmes et de se parer avec les parures des vertus, de s’arroser par le flux abondant des larmes s’appuyant sur “la foi,

22 A Corinth. 2:8 λαλοῦμεν θεοῦ σοφίαν ἐν μυστηρίῳ, τὴν ἀποκεκρυμμένην. 2:9 άλλα καθὼς γέγραται: Α’ ὁ φθαλμὸς οὐκ οἶδεν καὶ οὕς οὐκ ἠκούσεν καὶ ἐπὶ καρδίαν ἀνθρώπου οὐκ ἀνέβη, ὥσα ἦμασθαι ὁ Θεὸς τοῖς ἁγιασμένοις αὐτῶν.
23 Psalme 103 §24: Ως ἐμεγαλυνθη τὰ ἔργα σου, Κύριε· πάντα ἐν σοφίᾳ ἐποίησας.
24 Id. 202,12-14 (D 1.11) διὰ τῆς ἁρπάσεως τοῦ κυρίου ημῶν Ἡρων Χριστοῦ ποταμοὺς ἀναβλύσαι ὥδατος ζόντος.
25 Jn 7,38: ὁ πιστεύων εἰς ἔμε, καθὼς εἶπεν ἡ γραφή, ποταμοὶ ἐκ τῆς κούλας αὐτῶν ῥεῖσθαι ὥδατος ζόντος.
26 Chrys., Liturgie: ὅπως δοξάζηται τὸ πάντιμον καὶ μεγαλαυστέρες ἐγνῶν ὅνομα τοῦ Πατρὸς καὶ τοῦ Υἱοῦ καὶ τοῦ Αγίου Πνεύματος, νῦν καὶ αἰώνιος. Άμήν.

THALES-DACALBO
l’humilité et l’amour de Dieu.”

Tout cela indique un encouragement pour atteindre une perfection morale et s’est basé sur des passages relatifs des textes patristiques qui se réfèrent à ceux “qui luttent dans la vie” pour arriver à la perfection par l’acquisition de toutes les vertus, afin d’obtenir la sagesse parfaite. Les Pères considèrent comme de très grandes vertus l’humilité et les larmes, qui –comme ils disent– peuvent effacer de grands péchés.

Stéphanos s’adresse à ses auditeurs en les encourageant à contempler de leurs “yeux intellectuels … la lumière-là au dessus de chaque lumière” et aussi à s’écarter de “toutes les œuvres du monde;” de plus, il les exhorte à rechercher “la mort volontaire” par mortification de tout leur corps. Comment peut-on mortifier le corps? Comme St Grégoire de Nysse dit, “la mort du corps est l’extinction des organes de sensation et la dissolution aux éléments affines.” C’est-à-dire, Stéphanos appelle ses auditeurs à mener leur vie sans s’intéresser aux stimulations de leur organes de sensation. C’est ainsi qu’ils pourront s’échapper au niveau matériel de la destruction et remonter jusqu’au niveau spirituel de l’incorruptibilité, c’est-à-dire de l’immortalité; et s’y intégrer. Parce que, selon les Pères, il n’y a pas d’autre moyen pour que notre corps devienne immortel que par sa communion avec l’immortel.

Dans un autre passage Stéphanos souhaite “de s’unir et de s’approprier par la foi et l’amour à Dieu Verbe,” pour “que nous soyons remplis de la grâce divine et devenir ainsi la résidence de Dieu, que nous jouissions de la lumière douce de Dieu.” Dans son Épître St Barnabas dit que “la résidence de notre cœur est une église sainte de Dieu, que nous jouissions de la lumière douce de Dieu et que dans notre résidence Dieu réside vraiment en nous.”

Ici Stéphanos recommande encore: “et aimer le Seigneur notre Dieu de toute notre âme, de tout notre esprit et de tout notre cœur.” Il s’agit d’un passage de l’évangile

27 Id. 214,8-15 (D 2.4) ο ἵερα ποίμνη καὶ σοφίας ἅρσαται … διὰ τῆς τῶν ἁρτετῶν ἑπικοσμήσεως ἐν ἑαυτοῖς άγανιζόθησαν, καὶ τῇ πολλῇ ῥοῇ τῶν διακρόν τῶν ἑαυτοῖς ἅρδευτόσαν, ἐν πίστει καὶ ταπεινοφροσύνῃ καὶ ἁγάτῃ Θεοῦ.

28 Id. 241,33f. (D 6.13) Αν νοεροί ὁμοιεῖται τὰ ἀναριθμητα καὶ ἀμήχανα τοῦτον κάλλη καὶ πρὸ τοῦ φῶς ἀκένο τὸ ἐπάρ πᾶν φῶς ἀτενίσας καὶ θαμάσας τὰ ἐρήμα τα πάντα τὰ ἐν κόσμῳ ἀποθέμενους καὶ τῶν προαμακυντικῶν ἑλεπτησίας θάνατον, καὶ ἁλὸν τὸ ἑαυτοῦ σῶμα κατανεκρώσας, ἐτὶ δὲ καὶ τὴν ἑαυτοῦ ψυχὴν ἀρνητησίμους.

29 Cr. Nyss., Contra Eun. 2, M 45.545B: σώματος … ἕστη θάνατος ἢ τῶν αἰσθητηρίων σβάσεως καὶ ἡ πρὸς τὰ συγγενή τῶν στοιχείων διάλειψις.

30 Id. 242,10–11 (D 6.14) διὰ πίστεως καὶ ἁγάτης ἐνοχήν καὶ οἰκειόθην τὸ Θεοῦ Λόγῳ … τῆς χάριτος ἐμπληθόμενις κατοικητηρίῳ Θεοῦ γενόμενοι, τὸ ἴδιο φῶς τοῦ Θεοῦ ἐναντιλαβόμενον.

31 Barn. 6.15 ναὸς ἄγας … τὸ κυρίο τὸ κατοικητηρίῳ ἧμῶν τῆς καρδίας 16.8 ἐν τῷ κατοικητηρίῳ ἧμῶν ἅλθος ὁ θεὸς κατοικεῖτε ἐν ἡμῖν.

32 Id. 242,12-13 (D 6.14) καὶ αὐτὸν τὸν Κύριον καὶ Θεὸν ἀγαπᾶτε ἐς ὅλης ψυχῆς καὶ ἐς ὅλης τῆς διανοιᾶς καὶ ἐς ὅλης τῆς καρδίας.

THALES-DACALBO
selon Matthieu qui renvoit à ceci du Deuteronome (Mt 22,37; Dt 6,5): “Jésus lui dit: Tu aimeras le Seigneur ton Dieu de tout ton cœur, de toute ton âme et de tout ton esprit.”

On se demande donc à quel titre Stéphanos adresse de tels conseils à son auditoire.

D’après le récit de Jean Moschos dans son Pratum spirituale, lui-même et son ami, le Seigneur Sophronios, plus tard devenu patriarche orthodoxe de Jérusalem, pendant leur premier séjour à Alexandrie, ils sont allés “chez le philosophe Stéphanos, qui habitait à l’église de la Sainte Mère de Dieu, édifiée par le bienheureux Pape Euloge, surnommée de Dorotheée.”

On peut donc se demander, à quel titre Stéphanos habitait dans un édifice appartenant à une église. Il est bien probable, qu’à cette époque-là Stéphanos était sous la protection du patriarche Euloge et c’est ainsi qu’on lui permit d’habiter là.

On doit mentionner ici, que la phrase initiale du texte final d’un Discours de Stéphanos “Trinité transcendant tous les êtres par ton excellence et ta suprême divinité” renvoit au commencement de la Prière de Sophrone à la cérémonie de la Grande bénédiction des eaux à la Théophanie.

Il en est de même pour un autre passage où Stéphanos dit: “tu glorifieras en trinité et unité le Fils Verbe Dieu, qui a accompli tout à fait sagement et convenablement le monde tout entier à partir des quatre éléments, et qui a paré le cycle de l’année avec les quatre conversions,” en le comparant à ceci de Sophrone: “Des quatre éléments tu composas la création, des quatre saisons tu couronnas le cycle de l’année.”

En outre, le passage de Stéphanos “Qui donc pourra chanter tes merveilles, Seigneur?” renvoit aussi à la Prière de Sophrone: “Tu es grand, Seigneur, tes œuvres sont admirables, et nulle parole ne suffira pour chanter tes merveilles.”

33 Mt 22,37; Dt 6,5: ὁ δὲ (Προφαίρετε) ἐναπόφησας κύριον τὸν θεόν σου ἐν ὅλῃ τῇ καρδίᾳ σου καὶ ἐν ὅλῃ τῇ ψυχῇ σου καὶ ἐν ὅλῃ τῇ δύναις σου.
34 Jean Moschos, Pratum spirituale, ch. 77, M 87, 2929D: Απήλθομεν ἐν μιᾷ εἰς τὸν οἶκον Σειφάνου τοῦ σοφιστοῦ [… ἔμενεν δὲ εἰς τὴν ἁγίαν θεοτόκον, ἣν ἐκοσμοῦσαν ὁ μακάριος πάπας Εὐλόγιος, τὴν ἐπονομαζόμενην τῆς Δωροθέας.
35 Id. 207,37-208,1 (D 1.35) Τριάς ὑπερούσας καὶ ὑπεράγαθης καὶ ὑπέρθε. Grande bénédiction des eaux à la Théophanie, Prière de Sophrone, patriarche de Jérusalem: Triaς ὑπερούσας, ὑπεράγαθης, ὑπέρθε.
36 Id. 223,11-15 (D 3.15) δοξάσας τὸν ἐν τριάδι καὶ μονάδι Υἱὸν Λόγον Θεοῦ, τὸν ἐκ τεσσάρων στοιχείων τῶν ἀπαντών κόσμων και τετράσι τροπαίας καὶ εὐφράεως, καὶ τετράσι τροπαίας κομμήσας τὸν κύκλον τοῦ ἐναυτοῦ. Bénédiction des eaux à la Théoph., Prière de Sophrone: Τριάς ὑπερούσας καὶ ὑπεράγαθης τὸν κύκλον τοῦ ἐναυτοῦ ἐστεφάνωσας.
37 Bénédiction des eaux à la Théoph., Prière de Sophrone: Σῶ τοι τεσσάρων στοιχείων τῆς κτίσεως συναρμόσας, τέταρτο οἴκος τοῦ κύκλου τοῦ ἐναυτοῦ ἐστεφάνωσας.
38 Id. 237,8-9 (D 5.21) Τὰς οὖν ἐπὶ πάντα δυνάμεις πρὸς ὄμοιν τῶν θαυμάσιων σου, Δέσποτα; Bénédiction des eaux à la Théoph., Prière de Sophrone: Μέγας εἶ, Κύριε, καὶ θαυμαστὰ τὰ έργα σου, καὶ οὐδὲς λόγος ἐξαρκέσαι πρὸς ὄμοιν τῶν θαυμασίων σου.

THALES-DACALBO
Le fait que Stéphanos s’inspira et emprunta le poème de Sophrone, pourrait signifier certaines choses:

Premièrement, Stéphanos d’Alexandrie est la même personne que Stéphanos le sophiste ou philosophe à Alexandrie.

Deuxièmement, il est bien probable que Sophrone écrivit son poème bien avant l’an 617, juste la date de la composition de l’œuvre de Stéphanos; et c’est ainsi que le poème de Sophrone lui fut connu. L’an 617 est donc un terminus ante quem pour le poème de Sophrone. Si Sophrone avait composé son poème pendant son premier séjour à Alexandrie avec Moschos et même plus tard, il aurait sûrement pu être connu à Stéphanos, qui alla à Constantinople vers l’an 612. Je suppose que tous les trois se trouvaient dans le milieu des patriarches orthodoxes d’Alexandrie, Euloge (581-608), Théodore Ier Scribon (608-610) et Jean V le Miséricordieux (610-621).

Troisièmement, Sophrone était très connu comme partisant ardent de l’Orthodoxie beaucoup d’années avant son élection comme patriarche de Jérusalem à la fin de sa vie (634-638): Par conséquent, Stéphanos, empruntant des passages du poème de Sophrone, il témoigne d’avantage de son attachement à l’Orthodoxie.

Quatrièmement, Stéphanos avait une forte inclination au mysticisme chrétien; c’est exactement cette qualité qui l’apparait plus à Sophrone.

Maintenant on peut se poser une autre question: Est-ce que le patriarche de Jérusalem Sophrone s’identifie avec le personnage de Sophrone dont parla Stéphanos dans son Traité apotélésmatique?
Il faut se rappeler que Jean Moschos et Sophrone voyageaient ensemble pendant presque trente ans. Leur dernier lieu de résidence était Rome, où ils se réfugièrent après l’invasion des Perses en Égypte au mois de Septembre de l’an 616 et la résistance d’Alexandrie, qui avait comme résultat son siège pendant des mois et enfin sa chute par trahison.

Moschos mourut en Septembre de 619 à Rome. Son dernier souhait était que son corps soit transporté dans un cercueil en bois et qu’il soit enterré au Sinaï. En effet, Sophrone transporta le corps embaumé de Moschos de Rome à Ascalon, port de Palestine. Un tel voyage à travers la mer, au milieu de l’hiver, aurait pu durer au moins 20 jours. Sophrone, quand il arriva à Ascalon, constata qu’il était impossible de continuer son voyage jusqu’au Sinaï qui était déjà occupé par des barbares (l’Islam). Il continua donc son voyage aux Lieux saints occupés par les Perses, jusqu’au Monastère de St Théodose le Grand à Jérusalem, où il enterra le corps de Moschos en janvier de 620 et il resta là.

Questions importantes: Sophrone fit-il un voyage à Constantinople, où il se rencontra après bien des années (30 ans) avec Stéphanos, dont il fut l’un de ses disciples à Alexandrie en 581-584? Cette vieille relation entre maître et disciple, pourrait-elle expliquer l’intimité dont Stéphanos s’exprime en disant “j’ai mandé mon Sophrone” (τῷ ἐμῷ Σωφρονίῳ ἐνετειλάμην) dans son “Traité apotélésmatique,” quand Epiphanius, commerçant d’Arabie, demande à Stéphanos d’ordonner à un de ses disciples de “suspendre l’astrolabe” (τὸν ἀστρολάβον διαρτᾶν) et de noter les résultats de l’obsevation pour le calcul de l’horoscope de l’Islam? (Usener 1914, 272; Papathanassiou 1997; 2006, 189f.)

Je voudrais souligner ici que l’astrolabe était le meilleur instrument pour la détermination du temps avec grande précision aux observations astronomiques (Ptolémée, *Tetrabiblos*, III. 2); de plus, son usage était bien connu. En outre Sophrone suivi des leçons de médecine données par Stéphanos (le philosophe), commentateur des œuvres d’Hippocrate. Dans son œuvre “Des airs, des eaux et des lieux” Hippocrate explique l’influence des phénomènes astronomiques annuels à la santé et aux maladies des hommes et dit que la contribution de l’astronomie à la médecine est grande. On constate donc que l’utilisation de l’astrolabe n’était pas inconnue aux médecins et ce n’était pas du tout surprenant qu’un étudiant de la médecine s’en sert.
En tout cas, s’il s’agit vraiment de Sophrone, le futur patriarche de Jérusalem, est-ce que la connaissance de l’horoscope de l’Islam lui servirait-il, 16 ans après, en 637, à ses négociations avec le khalifh Omar pour la reddition de Jérusalem?

Après avoir étudié les “Prières” et prenant en considération les nouveaux éléments qui en résultent, je crois que l’opinion de W. Wolska-Conus, que j’avais, d’ailleurs, moi-même adopté autrefois, selon laquelle Stéphanos renonça à l’Orthodoxie et se convertit au monothélisme du patriarche Serge, est erronée.

Ce qui s’est passé est exactement le contraire. Stéphanos a réussi à rester orthodoxe dans le milieu de Serge, quand celui-ci commençait ses activités pour introduire d’abord son “monoénergisme”. Il est évident que Stéphanos n’offrit pas son aide au patriarche Serge avec ses connaissances philosophiques, et c’est pour cela que Serge s’adressa à un moine d’Egypte. D’ailleurs, comment Stéphanos pourrait-il secourir Serge avec ses connaissances philosophiques et se convertir de nouveau, après avoir abandonné le monophysisme à cause des contradictions logiques qu’il a découvertes quand il était à Alexandrie?

On pourrait supposer que l’activité intense de Stéphanos, en tant qu’écrivain, pendant ces années (Sur la chrysopée, Commentaire sur les tables faciles de Ptolémée éditées par Théon, et plus tard le Traité apotélésmatique) était assez dure pour son âge et il est bien probable que cela justifie la neutralité de son comportement. Donc, comme il évita de se convertir au monoénergisme d’une part et d’autre part il se rencontra probablement avec Sophrone, qui était toujours un adversaire ardent de Serge, tout cela aurait pu contribuer à l’omission de son nom après sa mort, étant donné que Serge resta au trône patriarchal encore seize ans.
PRIÈRES (Traduction)

Stéphanos d’Alexandrie, professeur œcuménique de philosophie et maître en ce grand et saint art “Sur la fabrication de l’or.” Avec l’aide de Dieu, premier discours.

1.1. [Id. 199,6-12] Après avoir chanté un hymne en l’honneur de l’Auteur de tous les biens, du Roi de l’univers et de son Fils unique, qui a procédé (rayonné\(^1\)) de Lui avant tous les siècles, avec le Saint Esprit, et après avoir supplié Dieu de nous illuminer avec la lumière de sa connaissance, nous commençons à cueillir les plus beaux fruits du traité de cette œuvre que nous avons entre les mains. Appliquons-nous à poursuivre les traces de la vérité. Pour l’instant, il faut construire le sujet en question à partir de la vraie science de la nature.

*1.6. [Id. 200,30-34] Je proclame\(^2\) la grâce\(^3\) du don de la lumière qui vient d’en-haut\(^4\), qui nous est donnée de la part du Père des lumières. Écoutez, en tant qu’intellects égaux aux anges,\(^5\) rejetez la considération des choses matérielles, afin que vous soyez jugés dignes de voir avec les yeux de votre intelligence\(^6\) le mystère caché.

*1.10. [Id. 202,1-10] Écoutez, les amoureux de la sagesse, et vous connaîtrez les magnificences de Dieu Pantokrâtôr (tout-puissant), car il est le pourvoyeur de toute sagesse, qui habite une lumière inaccessible;\(^7\) lumière, qui éclaire tout homme venant dans le monde.\(^8\) Car nous ne sommes rien sans sa puissance divine\(^9\). Ce don que nous cherchons n’est absolument rien en comparaison de sa béatitude. Approchez-vous, ô amis de la vertu, de cet objet incorporel de votre désir. Apprenez comme elle est

\(^1\) Clem. Alex., Strom. 7.9, M 9.480A. Gr. Nyss., Epist. xxvi ad Evagr. mon., M 46.1104.
\(^2\) Orig., Jo. 32.18, M 14.821C.
\(^3\) Clem. Rom., Epist. ad Corinth. I 23.1, M 1.199.
\(^4\) Dion. Areop., De div. nom. 1.4, M 3.464A.
\(^5\) Max., Schol. in Dion. Areop. Cœl. hier. 1.2, M 4.32A,B.
\(^6\) Euseb., Vita Const. 4.19, M 20.1168A.
\(^7\) I Tm. 6,16: le seul qui possède l’immortalité, qui habite une lumière inaccessible, que nul d’entre les hommes n’a vu ni ne peut voir. Athénagore, Apologie des Chrétiens, trad. M. de Genoude: Car il (Dieu) est lui-même toutes choses, lumière inaccessible, monde parfait, esprit, puissance et raison. Gr. Naz., De filio orat. 30, 13.6, M 36.120; id. orat. 44.3, M 36.609B. Chrys., in Epist. I ad Timoth. orat. 18, M 62.595 et 62.597.

THALES-DACALBO
douce la lumière de Dieu. Les choses que l’on admire aujourd’hui ne sont rien à côté de cette merveilleuse bienheureuse destinée.

*1.11. [Id. 202,10-19] Apparentons-nous à Lui par l’amour, et de Lui nous recevrons notre part de la sagesse insondable qui jaillit de l’abîme, afin que par la grâce de notre Seigneur Jésus-Christ nous soyons rendus capables de faire jaillir des fleuves d’eau vive,10 si bien que, par admiration pour la si grande sagesse du Créateur, tu puisses chanter un hymne à sa grande philanthropie11. Pourquoi faut-il admirer la forme du corail d’or? Il faut admirer davantage la beauté incircrinscriptible de Dieu. Cependant je remplirai votre désir, afin que vous soyez rendus dignes de L’aimer au point de prêcher avec des hymnes la bonté sublime12 de Dieu.

*1.34. [Id. 207,30-37] Ô mystères inexprimables de la sagesse de Dieu! Ô dons pleins de richesse pour ceux qui aiment le Seigneur! Ô abîme de la richesse, de la sagesse et de la science des mystères!13 Si ces choses du temps présent sont merveilleuses et extraordinaires, combien plus celles de l’éternité que nul intellect ne peut expliquer? Si cette opération matérielle est pour nous l’objet d’un discours en quelque sorte ineffable, combien plus les biens absolument purs et les beautés inscrutables et que nulle force ne peut contempler?

*1.35. [Id. 207,37-208,3] Je te loue, je t’adore, je te glorifie, Trinité transcendant tout les êtres par ton excellence et ta suprême divinité.14 Qui peut proclamer quelque chose qui approche de la louange de tes merveilles? Que tes œuvres sont en grand nombre, ô Éternel! Tu les as toutes faites avec sagesse.15
Du même Stéphanos sur l’œuvre intitulé “En l’action;” avec l’aide de Dieu, deuxième discours.

2.1. [Id. 213,9-27] Tout don excellent, toute donation parfaite vient d’en haut et descend du Père des lumières. Eh bien, nous avons invoqué Jésus, lumière paternelle, Étre vrai, lumière de lumière, qui éclaire tout homme venant dans le monde. Car c’est Lui qui est la lumière, la vérité et la vie, le Verbe divin de Dieu, la sagesse et la force, la sagesse capable de tout faire et indicible de Dieu, le Verbe vivant du Père, le Verbe était Dieu et le Verbe était toujours avec Dieu, tout fut par lui. C’est Lui qui confère la lumière aux croyants pour qu’ils aient la connaissance des êtres et qu’ils chantent les merveilles de Dieu pantokrâtôr; car c’est Lui le bienfaiteur et le Sauveur du monde. Qu’Il illumine notre esprit et notre cœur et qu’Il fasse rallumer le flambeau en nous, resplendissant en nous les profondeurs inextricables de sa connaissance et de sa sagesse en vue de la vraie et droite connaissance qui consiste à Te connaître, Toi, notre seul Dieu vivant et vrai, la sainte et consubstantielle Trinité et le Père vivifiant tout, le Fils et le Saint Esprit, maintenant et toujours et pour les siècles des siècles. Amen.

2.4. [Id. 214,8-15] Mais, ô ouailles sacrées et vous amoureux de la sagesse, vous qui voulez découvrir ce mystère tâchant de concevoir Dieu, luttez contre vous-mêmes.
par la parure des vertus, et arrosez-vous par le flux abondant des larmes, s’appuyant sur la foi, l’humilité et l’amour de Dieu, pour que rien des choses matérielles ne vous étonne ni n’attire votre admiration, sauf Dieu qui vous a aimés.

2.20. [Id. 219,1-14] Il y a un grand mystère en cela et on voit se produire des choses extraordinaires. Pleins d’admiration on chantera Dieu Père pantokratôr, ainsi que sa sagesse toute puissante, et son Esprit vivifiant. Car le Verbe de Dieu tout parfait et dominant porte en soi tout par la force de sa parole. Que ce Verbe illumine notre intelligence et notre cœur, afin de nous approprier à la lumière vraie de sa connaissance et nous apprêter à elle par son amour. Illuminés ainsi par la vraie lumière nous puissions connaître les êtres, et contempler les œuvres de Dieu de l’univers, afin qu’il soit glorifié ton Nom digne de tout honneur et de toute gloire, Père, Fils et Saint-Esprit, maintenant et toujours et dans les siècles des siècles. Amen.

3.1. [Id. 219,18-220,6] Qui est le bienheureux qui puisse agréer les jugements de Dieu pantokratôr? Qui est si savant et sage pour raconter la sagesse insondable du Créateur de tout? Qui est si heureux pour comprendre les puissances de Dieu universel qui surveille tout et le glorifier pour sa bonté sublime? D’une part, il m’est bien évident de parler facilement, infaiblement et aisément; j’examine clairement les idées énigmatiques des prédécesseurs à l’aide de Dieu pantokratôr. D’autre part, il semblerait bon pour vous, en tant que prudents, de reconsidérer vos idées pour adhérer à ce qui a été admis par nombre de savants, pour pouvoir agréer leurs idées. Vous pourrez ainsi passer à mon petit œuvre très bref, demandant à notre unique vrai Dieu

26 Orig., Jo. 32.15, M 14.780D.
27 Athan., De virgin. 17, M 28.272B. Just. dial. 90.5, M 6.692A. Chrys., Anna 3.1, M 54.721E; id. hom. in Mt, M 57.68.
28 Athan., Exp. Ps. 85:1, M 27.373C.
30 Pss. Sal. 18.3. Gr. Nyss., Contra Eun. 3, M 45.601D.
31 Dion. Areop., De div. nom. 4.1, M 3.693B. Gr. Nyss., Vita Mos. 7, M 44.301A. Chrys., Hom. 13.6 in Mt, M 57.215; id. hom. 78.4 in Mt, M 58.715.
d’illuminer l’œil de votre intelligence\footnote{Chrys., Or. 54 in Mt., M 58.536. Bénédiction des eaux à la Théoph., Prière de Sophrone: illumine les yeux de mon intelligence.} et faire briller vos cœurs par sa lumière immatérielle dans le but de connaître la domination de Dieu pantokrâtor et sa gloire, souhaiter de Le rencontrer dans votre cœur purifié et de chanter les magnificences de Dieu de tout et gloriﬁer le Nom très saint et digne de toute gloire, du Père, du Fils et du Saint-Esprit, maintenant et toujours et dans les immenses siècles des siècles. Amen.

3.15. [Id. 223,5-19] Car, si tu transformes les corps incorporels en corporels et les corporels en incorporels, tu travailleras efficacement, facilement et admirablement; c’est-à-dire, tu dois atteindre le but de ton désir au prix de ta peine: étudier le corps qui \textit{se compose de quatre éléments},\footnote{Gr. Nyss., Imag., M 44.1328B.} le traitement ternaire et le mouvement des conversions aux douze signes du zodiaque. Ils existent sept astres appelés planètes dans une unique union extrême des corps, des formes et des contemplations. Tu glorifieras pour cela le Fils Verbe Dieu en trinité et unité, \textit{qui a accompli tout à fait sagement et convenablement le monde tout entier à partir des quatre éléments, et qui a paré le cycle de l’année avec les quatre conversions},\footnote{Grande bénédiction des eaux à la Théophanie, Prière de Sophrone: Des quatre éléments tu composas la création, des quatre saisons tu couronnes le cycle de l’année} et qui après les sept aïons il fera entrer ceux qui ont vécu de manière digne, à son repos\footnote{Bas. h. myst. 60.} au royaume infini du ciel, faisant l’hymne de la lumière unique et inconcevable de la Trinité, dans le Père, le Fils et le Saint-Esprit, maintenant et toujours et dans les siècles des siècles. Amen.

Du même Stéphanos philosophe; avec l’aide de Dieu, quatrième discours.

4.29. [Id. 231,1-5] Ayant acquis cette vertu nous viendrons à la lumière douce de Dieu et apprendrons la si grande sagesse de la grâce à partir de Lui, qui étonne et brille en ceux qui ont cru à Lui, Jésus notre Dieu.

Du même Stéphanos philosophe; avec l’aide de Dieu, cinquième discours.
5.1. [Id. 231,8-14] Je chante, je glorifie et je rends grâces à Dieu l’indicible, le Père de la sagesse et de la vérité, le dispensateur de la vie et de la lumière, *la cause de tout et au delà de tout,* et à son Fils unique (monogène) qui est issu de Lui, ainsi qu’à l’Esprit divin de la vérité qui procède de Lui, pour terminer sous sa guidance ce sixième ouvrage qui est entre nos mains.

5.2. [Id. 231,8-14] Que cela soit le préambule selon notre coutume. Les leçons qui nous conduisent des choses matérielles aux choses immatérielles, et des choses composées aux choses simples et non composées parées par l’inspiration divine, sont des exercices de l’âme; car ce sont des pensées et des sujets de philosophie. Telle est la méthode, telles sont les leçons. Tel est le but, tel est la proposition qui maintenant met fin aux idées théoriques. Tel est le discours qui accomplit la pratique. Telle est la méthode, telles sont les leçons. Que la richesse de la grâce est grande! Que les trésors de la sagesse indicible sont nombreux! Que les dons sont inénarrables! Que les eaux de cette pratique sont des *fleuves d’eau vive!* Que l’abîme est source de la sagesse de Dieu! Que la venue du Saint Esprit est une lumière très pure!

5.3. [Id. 231,26-232,3] Rien n’est supérieur à la sagesse; car c’est par elle que le Verbe dominant de Dieu a tout créé; c’est par elle qu’Il a paré les illuminations nobles des intelligences célestes; c’est par elle que le paradis spirituel a été préparé pour la jouissance des êtres qui vivent éternellement; c’est par elle qu’Il a préparé pour nous le Royaume des Cieux. Comment donc pourrons-nous nous élever vers la sagesse? Comment pourrons-nous nous apparer à elle? Comment revêtrons-nous sa tunique incorruptible? Seule l’amour de Dieu nous attire vers la passion de la sagesse.

5.21. [Id. 237,5-16] Ô grâce de la sagesse! Ô œuvre d’intelligence! Ô accomplissement des idées! Ô perfection de la parole! Ô dons du Démiurge de tout! Ô cadeaux riches reçus du Père des lumières! *Qui donc pourra chanter tes merveilles, Seigneur?* Quelle bouche est en mesure de te célébrer, Seigneur, Maître de tout? Quel intellect ne tremblera pas d’effroi à contempler le bon ordre de l’arrangement

* 36 Clem. Alex., Strom., 1.28.177, M 8.924A,B.
* 38 Dion. Areop., De cœl. hier. 10.1, M 3.273A.
* 39 Bénédiction des eaux à la Théoph., Prière de Sophron: Tu es grand, Seigneur, tes œuvres sont admirables, et nulle parole ne suffira pour chanter tes merveilles.
universel? *Qui ne chantera pas les magnificences de Dieu tout-puissant?* Que tes magnificences sont grandes, Sauveur! Que ta philanthropie est grande, Seigneur! Que la pitié de ta bonté est riche! Que tes dons sont source de toute sagesse!

5.22. [Id. 237,16-31] Je te chante et te glorifie *Seigneur de tout, né du Père avant tous les siècles, Créateur de toute création, lumière vraie, née de la lumière, Dieu né de Dieu et étant toujours avec Dieu, et aux derniers jours le même engendré pour notre salut de Marie, la glorieuse Mère de Dieu et toujours vierge, notre Seigneur Jésus Christ, notre vrai Dieu.* 40 Car il n’y a plus rien à ajouter à Toi, qui es complet et qui veux toujours faire du bien à tous. Ni vie, ni mort, ni ange, ni les choses présentes dont il est question, ni principes, ni puissances, ni encore les choses présentes et celles à venir ne nous sépareront pas de ton amour, Jésus Christ, notre Dieu. C’est par celui-ci que nous adressons au Père gloire, honneur, louange, et majesté, avec son très saint et adorable et vivifiant Esprit, *dans tous les immenses siècles des siècles. Amen.*

Du même Stéphanos philosophe œcuménique; sixième discours sur l’œuvre intitulé “*Sur la division de l’art sacré.***

6.12. [Id. 241,24-33] Des contemplations sensibles passe maintenant aux contemplations intellectuelles et vois le bon ordre immatériel des êtres célestes. Toi, ayant contemplé leurs nobles apparences et ayant levé la pensée au dessus de la matière, ayant compris la grande et très brillante gloire et félicité des anges, ne

40 *Symbole de la foi: ... créateur du ciel et de la terre, de l’univers visible et invisible. Je crois en un seul Seigneur, Jésus-Christ, le Fils unique de Dieu, né du Père avant tous les siècles; Il est Dieu, né de Dieu, lumière, née de la lumière, vrai Dieu, né du vrai Dieu, Engendré, non pas créé, de même nature que le Père, et par lui tout a été fait. Pour nous les hommes, et pour notre salut, il descendit du ciel; Par l’Esprit Saint, il a pris chair de la Vierge Marie, et s’est fait homme.*
Issues on Greek Alchemy

retourne plus à la formation matérielle d’une vulgaire fabrication d’or, mais attache ce travail aux principes de la philosophie et découvre cette technique dans le traité que tu as devant les yeux. Pourtant élève tout ton intellect en haut et fais-le s’envoler lumineux, ressemblant aux substances les plus élevées.

6.13. [Id. 241,33-242,9] Si toi, après avoir contemplé et admiré par des yeux intellectuels leur beautés innombrables et extraordinaires et vers cette lumière-là au dessus de chaque lumière, et après avoir écarté de toi toutes les œuvres du monde et avoir recherché la mort41 volontaire, après avoir fait mourir tout ton corps, et en plus avoir nié tout ton âme42, avoir chanté et glorifié avec des hymnes incessants le Roi de tout et Seigneur de la gloire, après avoir frissonné de peur extrême devant la force toute-puissante, tu comprendras sa bonté sublime. La langue est saisie de vertige et l’intelligence ne peut pas expliquer du tout, comment tout est produit par sa sagesse indicible; et tu ne pourras pas assumer ni explorer du tout ni exprimer les magnificences de Pantokratôr.

6.14. [Id. 242,9-21] Ayant conçu tout cela en nous-mêmes, hâtons-nous, mes frères, de s’unir et de s’approprier par la foi et l’amour43 à Dieu Verbe, qui nous a aimés; et aimer le Seigneur notre Dieu de toute notre âme, de tout notre esprit et de tout notre cœur.44 Ayant admiré ce trésor de la vie que nous glorifions toujours sous n’importe quelle condition ou lieu, nous pourrons ainsi nous réjouir de la théologie et nous serons dignes de la relation avec Dieu. Nous serons remplis de la grâce et constituerons la résidence de Dieu45; par conséquent nous jouirons de sa douce lumière. Précipitons-nous vers cette lumière qui illumine toute créature rationnelle, qui brille et éclaire46 les sens, les cœurs et les intelligences de tous ceux qui aiment le Seigneur.

41 Gr. Nyss., Contra Eun. 2, M 45.545B.
42 Gr. Nyss., De hom. opif. 29,3, M 44.236B; id. Oratione catechet. 37, M 45.93C; id. De anima et res., M 46.29B.
43 Basil., Hom. in Ps. 44, M 29.392A. Gr. Nyss., Hom. 5 in Cant., M 44.857D.
44 Mt 22,37 (Dr 6,5): Jésus lui dit: Tu aimeras le Seigneur ton Dieu de tout ton cœur, de toute ton âme et de tout ton esprit.
45 Barn. 6.15; ib. 16.7; ib. 16.8.
46 Clem. Alex., Protr. 9, M 8.197A. Euseb., Dem. evang. 4.6, M 22.214C. Lit. Marc. (Brightman p. 135.19).
6.15. [Id. 242,22-32] Plaise à Dieu que nous aboutissions au port47 de sa volonté par la foi et l’amour de Dieu, afin de jouir de biens éternels, \textit{par la grâce et la philanthropie du Fils unique de Dieu}, avec Lui, l’incorruptible, qui est la cause de tout, Dieu Roi et Père de tout, \textit{ainsi que l’Esprit très saint, adorable et vivifiant}, inspirant de sa grandeur, respect, domination, adoration, gloire, magnificence, hymne éternel avant le début de tous les siècles et après toute l’éternité, et \textit{maintenant et toujours et dans tous les siècles éternels des siècles}. Amen.48

7.1. [Id. 243,4-23] Dieu sans commencement et Tout-dominant, bon par nature au dessus de la bonté, au caractère bienveillant, inconcevable et incompréhensible, Dieu universel et Pantokrатор, \textit{le Démiurge de toute la création},49 après avoir fait passer tout de l’inexistance à l’existence et avoir construit tout par sa gloire, sa volonté, sa puissance et sa sagesse, Il a créé l’homme \textit{à son image}50 et à sa ressemblance, raisonnable, intellectuel et libre51, et Il l’a établi comme roi de toute la création. Dieu Pantokrатор et Souverain des souverains, t’a établi empereur œcuménique sur la terre entière pour détenir le pouvoir sur toutes les autres créatures bienveillemment et scrupuleusement. Ce Dieu pantokrатор t’a accordé sa faveur faisant un signe de sa main droite compréhensive et créatrice. De sa source inépuisable ont germé à toi toutes les joies et tous les dons bienveoles. Il t’a inspiré des idées multiformes de bienfaisance et t’a révélé ainsi la sérénité bénie et la piété exprimée par des activités variées, te rendant son serviteur digne et confesseur de foi en Dieu vrai et unique et en Jésus Christ, le Fils de Dieu vivant, qu’Il a envoyé sur terre.

7.2. [Id. 243,23-244,3] Il est donc vraiment équitable, ô roi couronné par Dieu, d’accourir avec bienveillance, amour sincère et crainte de Dieu, pour pouvoir par la

47Clem. Alex. fr. 44. Jo. D., Hom. 2.7, M 96.588B.
50Basil., \textit{De struct. hom.} 1.16, M. 30.24D.
51Gr. Nyss., \textit{Orat. catech.} 21, M. 45.57C.
grâce de notre Seigneur Jésus Christ faire jaillir des fleuves d'eau vive et hériter ce grand désir de s'installer à droite de Dieu. Aucune créature qui est à présent vue et admirée n’est digne dans tel aboutissement serein. Pourvue qu’on s’apparente à Lui par l’amour et recevoir de la source insondable qui sort de l’abîme d’où jaillit la pitié de nous. Ce que l’œil n’a pas vu, ce que l’oreille n’a pas entendu, ce qui n’est pas monté au cœur de l’homme, tout ce que Dieu a préparé pour toi et tes ressemblants, ainsi que pour ceux qui l’aiment depuis la création du monde. Dieu qui est digne de glorification, d’honneur et de magnificence, Père, Fils et Saint-Esprit, dans les siècles des siècles et au-delà de l’éternité. Amen.

7.3. [Id. 244,3-9] Je reviendrai de nouveau à ce sujet et je m’efforcerai d’accomplir ton désir, ô roi excellent en tout. Je manifesterai mon discours, pour que tu sois jugé digne d‘aimer, de disserter de la divinité et de chanter la bonté sublime de Dieu, après avoir rejété la multitude des choses matérielles pour t’orienter compatissant vers la passion pour Dieu.

52 1 Épître aux Corinthiens I, 2:9: mais, comme il est écrit, [nous annonçons] ce que l’œil n’a pas vu, ce que l’oreille n’a pas entendu, ce qui n’est pas monté au cœur de l’homme, tout ce que Dieu a préparé pour ceux qui l’aiment. Basil., De paradiso orat. 3, 7B, M 30.68C.
PRIÈRES (Texte grec)

Στεφάνου Ἀλεξανδρέως οἰκουμενικοῦ φιλοσόφου καὶ διδασκάλου τῆς μεγάλης καὶ ἱερᾶς ταύτης τέχνης Περὶ χρυσοποιίας· πράξεις σφίν Θεόν πρώτη.

1.1. [Id. 199,6-12] Θεόν τῶν πάντων ἁγιῶν αἰτιῶν καὶ βασιλεά τῶν ὅλων, καὶ τῶν οὔτω πρὸ τῶν αἰώνων ἐκλάμψαντα 1 μονογενῆ ύιόν σὺν τῷ Ἄγιῳ Πνεύματι ὑμνήσαντες, καὶ τὸ τῆς αὐτοῦ γνώσεως φῶς ἐλλαμφῆναι ἡμῖν καθικτεύσαντες, τῆς ἐν χερσὶ πραγματείας τούτῃ τοῦ συγγράμματος ἀπαρξώμεθα τὰ κάλλιστα ὁρέσπεσθαι καὶ τὰ ἀληθῆ ἀνιχνεύειν ἐπιστωσάμεθα. Νυνὶ δὲ ἐκ τῆς ἀληθοῦς φυσικῆς θεωρίας κατασκευαστέον τὸ πρόβλημα.

1.6. [Id. 200,30-34] Ὄμολογος 2 τῆς ἀνωθέν φωτοδοσίας 3 τὴν χάριν, 4 ἢ παρά τοῦ πατρὸς τῶν φῶτων ἡμῖν διδώρηται. Ἀκούσατε ὡς ἱσάγγελοι 5 νόες. Ἀπόδηθε τὴν ύλόδηθθε θεωρίαν, ὅπως τοῖς νοεροῖς 6 ἡμῶν ὀφθαλμοῖς ἰδίων ἀξιώθητε τὸ ἀποκεκρυμμένον μυστήριον.

1.10. [Id. 202,1-10] Ἀκούσατε οἱ τῆς σοφίας ἐρασταί, καὶ εἰςεῦθες τὰ μεγαλεία τοῦ παντοκράτορος Θεοῦ· αὐτὸς γάρ ἐστὶν ὁ πάτης σοφίας χορηγὸς· φῶς ὅικὼν ἀπρόστιτον. 7 φῶς, ὃ φωτίζει πάντα ἀνθρώπων ἐρχόμενον εἰς τὸν κόσμον. 8 οὐδέν γὰρ

2 Orig., Jo. 32.18, M 14.821C: χάριτας ὁμολογούμεν τῷ θεῷ οὕτω πολλὴ μείζοντος τῆς ημετέρας αἰξίας.

3 Dion. Areop., De div. nom. 1,4, M 3.464A: τῆς ... νοητῆς αὐτοῦ φωτοδοσίας ἐν ἀπαθεί καὶ ἀδόλῳ τῷ νόῳ μετέχοντες.

5 Max., Schol. In Dion. Areop. Cal. hier. 1,2, M 4.32A,B: νόες καλοῦσι καὶ οἱ παρ’ Ἑλληνικὸς φιλόσοφοι τὰς νοερᾶς, ὅτι γνωρισμένος δυνατός ἐπετίθη τὸ πᾶν νοεῖς ἐστὶν έσκατος αὐτῶν, καὶ τὴν οὐσίαν ἀπαίσιον νανούν γώναν εἰς τὸ εὐς τὸ ἀγανών οὐσιομετέχου έχα.

6 Euseb., Vita Const. 4,19, M 20.1168A: ἐπὶ τοῦ οὐρανίου βασιλεία τοῖς τῆς διανοίας παραπεμπόμενος ὀφθαλμοῖς.

έσμεν ἄτερ τῆς αὐτοῦ θεαρχίας. Οὐδὲν ὅλως ἔστι τὸ ζητούμενον τοῦτο δόρον πρὸς τὴν αὐτοῦ μακαριστήτα. Προσεγγίσατε, ὃ φίλοι ἁρετίς, πρὸς τὴν ἁύλον ἐκείνην ἔφεσιν. Μάθετε ὡς γλυκὸ Θεοῦ φῶς. Οὕκ ἀξία τὰ νῦν θαυμαζόμενα πρὸς τὴν μακαρίαν ἐκείνην λήξειν.

1.11. [Id. 202,10-19] Μόνον οἰκειοθάνομεν αὐτῷ δι᾽ ἀγάπης καὶ ληψόμεθα παρ’ αὐτοῦ τὴν ἡμᾶς ἄμως-συν παρὰ σοφοῦσαν σοφίαν, ἵνα δυνηθῶμεν διὰ τῆς χάριτος τοῦ κυρίου Ἱησοῦ Χριστοῦ ποταμοὺς ἀναβλέπων ὑδάτως ζῶντος. Ὅπως θαυμάσας τοῦ Δημιουργοῦ τὴν τοσοῦτον σοφίαν ψυχῆς τῆς αὐτοῦ τὴν εἰς ἡμᾶς μεγάλης φιλανθρωπίας. Τί θαυμάζειν δεῖ χρυσοκόραλλον εἶδος; Θαυμάζειν δὲ δεῖ πρὸς τὸ ἀπέργαστον κάλλος. Ὅμως καὶ τὸν πόθον ὑμῖν πληρῶσαι, ἵνα τοσοῦτον ἐρῶν ἄξιωθηνεῖ μεθ’ ὑμνωδὶς θεολογεῖν φιλανθρωπίαν τοῦ Κυρίου ἡμῶν Ἰησοῦ Χριστοῦ καὶ τὴν ὑπεράγαθον τοῦ Θεοῦ ἀγαθότητα.

1.34. [Id. 207,30-37] Ὡ σοφίας Θεοῦ ἀνέκφραστα μυστήρια! Ὡ πλούσιαι δωρεάς τοῖς ἡγαθωκόποι τῶν Κύριων! Ὡ βάθος πλοῦτον καὶ σοφίας καὶ γνώσεως μυστηρίων! Εἰ τὰ...
παρόντα τοιαῦτα θαυμαστά καὶ ἐξαίσια, ποταπά τὰ αἰώνια, ὁ οὐδεὶς νοὺς ἐξηγήσασθαι δύναται; Εἰ τὸ ἔνυλον ἔργον ἁρρήτο τινὶ λόγῳ τοιοῦτον ἤµῖν φαίνεται, ποταπὰ τὰ ἀκέρατα ἄγαθα καὶ ἀνεξιχνίαστα κάλλη, ὁ οὐδεὶς ἵσχῡε θεάσασθαι;

1.35. [Id. 207,37-208,3] Ὑμνῶ καὶ προσκυνῶ καὶ δοξολογῶ σε Τριὰς ὑπερούσης καὶ ὑπεράγαθη καὶ ὑπέρθει.14 Τίς ἐξετείνυ δύναται πρὸς ὅµοιν τὸν θαυμασίαν σου; Ως ἐμεγαλύνθη τὰ ἔργα σου, Κύριε· πάντα ἐν σοφίᾳ ἐποίησας.15

Τοῦ αὐτοῦ Στεφάνου εἰς τὸ Κατ᾽ ἐνέργειαν πράξεις σὺν Θεῷ δευτέρα.

2.1. [Id. 213,9-27] Πᾶσα δόσις ἁγάθη καὶ πᾶν δόρμη τέλειον, ἀνωθέν ἐστι καταβάινον ἀπὸ τοῦ πατρὸς τῶν φῶτων.16 Ὑπερούσην Ἰησοῦν ἔπικαλεσάμενοι, τὸ πατρικὸν φῶς, τὸ ὄν τὸ ἀληθινόν, φωτός ἀπαύγασμα,17 φωτίζους πάντα ἀνθρώπον ἐγγεμένων εἰς τὸν κόσμον.18 Αὐτὸς γὰρ ἐστὶ τὸ φῶς καὶ ἡ ἀλήθεια καὶ ἡ ζωή, ὁ θεαρχικὸς τοῦ Θεοῦ Λόγος, ἡ σοφία καὶ δύναμις,19 ἡ παντοποιώς καὶ ἐρρητὸς τοῦ Θεοῦ σοφία,20 ὁ μὸν

ταῦτα ἐν τῇ πρὸς Κορινθίους ἐπιστολῇ ὁ Λόγος αἰθιαμβάνων εἴρηκεν: Σοφίαν δὲ λαλοῦσαν εἰς τῶν τελειών, σοφίαν δὲ τῇ τοῦ αἰώνος τούτου τῶν καταρχομένων· ἀλλὰ λαλοῦσιν θεὸς σοφίαν εἰς μυστηρίον, τὴν ἀποκηρυχήσεως, Théodore. De providentia, or. 10, M 83,740.

Orig., Hom. 9.4 in Jer., M 13,337A: τὸ ἀπαύγασμα τῆς δόξης ὁ ὅς γεγέννηται καὶ ὁ ὅς γεννᾶται ἀλλὰ δόσις ἐστὶν τὸ φῶς ποιητικὸν τοῦ ἄπαυγασματος ἐπί τοιούτου γεννᾶται τὸ ἀπαύγασμα τῆς δόξης τοῦ θεοῦ. Gr. Nyss., Contra Eun. 8, M 45,775B: ὅπῃς, ὅς γεγέννηται τὸ φῶς τὸ ἀπαύγασμα τοῦ ἐστὶν τῷ ἀληθινῷ φωτὶ πανταχόθεν παρασυρόμενον ... ὁ ἐστὶν τῷ συναφεὶς τῷ καὶ αἰώνις τῆς τοῦ Πατρὸς ὑπάρξεις τοῦ Μονογενοῦς παραδίδος ὁ Ἀπόστολος, ἀπαύγασμα δόξης τοῦ Υἱοῦ κατοικώμενος.

Dion. Areop., De cœl. hier. 1., M 3,121A: Οὐκ ἴσως Ἰησοῦν ἐπικαλεσάμενοι, τὸ πατρικὸν φῶς, τὸ ὄν τὸ ἀληθινὸν, ὁ φωτείζω πάντα ἀνθρώπον ἐγγεμένων εἰς τὸν κόσμον ... ἴσως τὴν πρὸς τὸν ἄρχοντα πατέρα προσαγογῆς ἐγκήκημεν.

Orig., Exp. in Pr. 9,1, M 17,185B: τῆς σοφίας ... διδασκόν, ἐπιλαμβάνει, τῇ ἐν πνεύματος ἐγγίζοι ... ἴσως ... ἡ ἐπίγνωσις τοῦ θεοῦ τὸ κόσμῳ ἐγνωρισθῇ: ἡσαστείς δὲ καὶ τὸν ἐνυπόστατον ὑίον τοῦ θεοῦ. id.

THALES-DACALBO
2. 4. [Id. 214.8-15] Ἀλλ’, ὃ ἵνα ποίην καὶ σοφίας ἐρασταί, οἱ τούτῳ εὑρεῖν βουλόμενοι τῇ πρὸς τὸν Θεόν ἐννοοῦσί διὰ τῆς τῶν ἀρετῶν ἐπικοσμήσεως ἐν ἑαυτοῖς ἀγωνιζόμεθαν ἐν τῇ πολλῆς Ῥῆ τῶν διακρίνων ἐκαυτοὺς ἀρδευόμεθαν, ἐν ἑαυτῷ.
πίστει καὶ ταπεινοφροσύνην 28 καὶ ἀγάπη Θεοῦ σπηριζόμενοι, ἵνα μηδὲν τῶν ἐνύλων ὑμᾶς ἑξενία ἢ θαυμάση, πλὴν τοῦ ἀγαπήσαντος ἡμᾶς Θεοῦ.

2.20. [Id. 219,1-14] Μέγα ἐν τούτοις μυστήριοι ἐλήφθηνεν καὶ παραδόξα θεωροῦν γινόμενα. Θαυμάσας ὑμνήσει Θεόν παντοκράτορον πατέρα, ἀμα τῆς παντοδυνάμου αὐτοῦ σοφίας, σὺν τῷ ζωοποιῷ πνεύματι. Αὐτός γὰρ ὁ παντέλειος καὶ ὑπεράρχιος τοῦ Θεοῦ Λόγος, ἐνι ἐφέρων τὰ πάντα τῷ ῥήματι τῆς δυνάμεως αὐτοῦ, φωτίσθηκεν ἡμῖν τὸν νου θαυμασών τὰς καρδίας καὶ διὰ τῆς ἀγάπης αὐτοῦ οἴκειοθῆναι καὶ ἑνώθηκι τῷ ἀληθινῷ φωτὶ τῆς αὐτοῦ θεογνοσίας, ἵνα διὰ τοῦ ἀληθινοῦ φωτὸς κατανυγζόμενοι δυνηθεῖμεν τὴν τῶν ὄντων γνῶσιν καταλαβεῖν, καὶ θεάσασθαι τὰ ἔργα του Θεοῦ τῶν ὄλων, ὅπως δοξάζηται τὸ πάντιμον καὶ μεγαλοπρεπές ἀγιόν ὄνομα τοῦ Πατρὸς καὶ τοῦ Υἱοῦ καὶ τοῦ Αιγίου Πνεύματος, νῦν καὶ ἀεὶ καὶ εἰς τῶν αἰώνων τῶν αἰώνων. Αμήν. 29

Τοῦ αὐτοῦ Στεφάνου φιλοσόφου εἰς τὸ Κατ’ ἐνέργειαν τῆς θείας τέχνης· πρᾶξις σὺν Θεῷ τρίτη.

3.1. [Id. 219,18-220,6] Τίς μακάριος καὶ συνήσει τὰ κρίματα 30 τοῦ παντοκράτορος Θεοῦ; Τίς σοφὸς καὶ συνετός καὶ διηγήσεται τὴν ὑπεράβυσσον σοφίαν τοῦ Δημιουργοῦ τῶν ὄλων; Τίς εὐμναιός καὶ κατανοήσῃ τὰς δυναστείας τοῦ παντεπόπτου καὶ καθολικοῦ Θεοῦ καὶ δοξάσει τὴν ὑπεράγαθον ἀγαθότητα αὐτοῦ 31; Ἐμοὶ μὲν ἰδιός καὶ ἀπτότως καὶ εὐχερῶς ὁμιλεῖν εὐθύλην ἐστίν καὶ τὰς γρήγορας ἅμοιας τῶν προγενεστέρων ἐμφανός τὰς πεύσεις ποιομεν συνεργοῦντος τοῦ παντοκράτορος

28 Athan., Exp. Ps. 85.1, M 27.373C: μέγα ... ἐφόδιον πρὸς τὸ εὐχόμενον ἐπακούσῃ ἢ ταπεινοφροσύνην.
29 Chr is., Liturgie: ὁ Ἱερεύς Ἰνα καὶ αὐτοὶ σὺν ἡμῖν δοξάζοσι τὸ πάντιμον καὶ μεγαλοπρεπὲς ὄνομα Σου, τοῦ Πατρὸς καὶ τοῦ Υἱοῦ καὶ τοῦ Αιγίου Πνεύματος, νῦν καὶ ἀεὶ καὶ εἰς τῶν αἰώνων τῶν αἰώνων. Αμήν.
30 Ps. Sal. 18.3: τά κρίματα σου ἐπὶ πᾶσαν τὴν γῆν μετ’ ἐλέους. Gr. Nyss., Contra Eun. 3, M 45.601D: τὸν ἰδίωτα τὸ λόγῳ Παύλου διδάσκεσιν τῶν ὑπὸ γνώσιν μυστήριοι ποιούμενην· διὸ τοσοῦτον ἀπέχει τὸν τήν θείαν φόρον ἐντὸς τῆς ἀνθρωπινῆς περιοχῆς οἴσθα, ὡς καὶ τὰ κρίματα τοῦ Θεοῦ ανεξερεύνητα λέγει, καὶ τὰς ὄμοις ἀνεξερεύνητος, καὶ τὰ τὸς ἀγαπῶν αὐτὸν ὑπὲρ τῶν ἐν τῷ βίῳ τούτῳ κατορθώντων ἐπηγγελμένα, ὑπὲρ κατάληψιν εἶναι διασχηματίσθαι· ὡς καὶ ὀφθαλμὸμ λαβεῖν, καὶ ἀκοὴ παραδεξαῖται, καὶ τοῖς καρδιαί κορίτσιν μικροῖς εἶναι.
31 Dion. Areop., De div. nom. 4.1, M 3.693B: τὴν θεωρήσκων ὑπαρξεῖ, ἀγαθότητα λέγοντες. Gr. Nyss., Vita Mos. 7, M 44.301A: τὸ πρῶτον καὶ κυρίως ἀγαθόν, ὡς ἡ φύσις ἀγαθότης ἕστι, καὶ τὸ ἱερόν. Chr is., Hom. 13.6 in Mt, M 57.215: ἢ δὲ ἀπέραντος ἀγαθότης, ὁ θεός, ἢ ἀρατος φιλανθρωπία. id. hom. 78.4 in Mt, M 58.715: φιλανθρωπίας γὰρ ἐστίν ὁ δεσπότης, καὶ τῆς ἀγαθότητος αὐτοῦ τὸ δόρον γίνεται.
Θεοῦ. Ὑμῖν δὲ ἔοικεν ὡς ἐχέφροσιν ἀναχαιτίσασθαι καὶ σφετερίζειν τὰ ύπο πολλῶν σοφῶν ἱδρυμένα καὶ καταντῆσαι τὰς ἑκείνων ἐννοίας, καὶ οὕτως πρὸς τὸ βραχύτατον μου πόνημα ἀπείναι αἰτούμενοι τὸν μόνον ἀληθινὸν Θεὸν ἡμῶν, ἵνα ὑμῖν φωτίσῃ τὸ τῆς διανοίας ὦμα να καταντῆσαι τὰς ἐκείνων ἐννοίας, καὶ οὕτως πρὸς τὸ εἰδέναι τὰς δυναστείας του παντοκράτορος Θεοῦ καὶ τῆς δόξης αὐτοῦ, ἵνα γένοιτο ἡμᾶς ἐν καθαρᾷ ἐπιτυχεῖν καρδίᾳ καὶ ὑμνεῖν τὰ μεγαλεῖα τοῦ Θεοῦ τῶν ὅλων καὶ δοξάζειν τὸ πανάγιον καὶ μεγαλοπρεπὲς ὄνομα τοῦ Πατρὸς καὶ τοῦ Υἱοῦ καὶ τοῦ Αγίου Πνεύματος, νῦν καὶ ἀεὶ καὶ εἰς τοὺς ἀπεράντους αἰῶνας τῶν αἰώνων, ἀμήν.

3.15. [Id. 223,5-19] Εἰ γὰρ ποιήσεις τὰ σώματα ἀσώματα καὶ τὰ ἀσώματα σώματα, μεγάλως καὶ εὐπαραγώγως καὶ θαυμασίως ἐργάσῃ. Ἐπιτευξόμενο δηλονότι τῆς ἐφέσεως δι᾿ ὧν στενοῦμεν τετραστοίχῳ σώματι τριαδικῇ οἰκονομίᾳ δωδεκαζωδιακῇ τροπῶν κινήσει. Ἑπτὰ δὴ ποιήσεις τὰ καταντήσατε σώματα καὶ ἐννοίας τοῦ ἐν Τριάδι καὶ μονάδι Υἱον Λόγον Θεόν, τὸν ἐκ τεσσάρων στοιχείων τὸν ἅπαντα κόσμον ἀπελεσίουργήσαντα πανσόφως καὶ εὐπρεπῶς, καὶ τετράσι τροπαῖς κοσμήσαντα τὸν κύκλον τοῦ ἐνιαυτοῦ καὶ μετὰ τοὺς ἑπτὰ αἰῶνας εἰσάξοντας τοὺς ἀξίως πολιτευσαμένους εἰς τὴν αὐτοῦ κατάπαυσιν ἐν τῇ τῶν οὐρανῶν ἀλήκτῳ βασιλείᾳ, ὑμνοῦντας τὸ τῆς Τριάδος ἑνιαῖον καὶ ἀκατάληπτον φῶς, ἐν Πατρὶ καὶ Υἱῷ καὶ Ἁγίῳ Πνεύματι, νῦν καὶ ἀεὶ καὶ εἰς τοὺς αἰῶνας τῶν αἰώνων, ἀμήν.

Τοῦ αὐτοῦ Στεφάνου φιλοσόφου· πρᾶξις σὺν Θεῷ τετάρτη.

4.29. [Id. 231,1-5] Καὶ διὰ ταύτης μᾶλλον τῆς ἀρετῆς διαπεράσαντες ἔλθωμεν ἐπὶ τὸ ἡδὺ τοῦ Θεοῦ φῶς καὶ μάθωμεν τὴν ἐξ αὐτοῦ τοσαύτην τῆς χάριτος σοφίαν ἐκπλήττουσαν καὶ ἐκλάμπουσαν ἐπὶ τοὺς εἰς αὐτὸν πεποιθότας, τὸν Ἰησοῦν Θεὸν ἡμῶν.

32 Chrys., Orat. 54 in Mt., M 58.536: Διὰ τοῦτο καὶ ἐνδιατρίβει (ὁ Ἰησοῦς) τοῖς δυσχερέσι, καὶ ἐμπλατύνει τὸν λόγον, ἵνα διανοίξῃ αὐτῶν (τῶν μαθητῶν) τὴν δάξιαν, καὶ συνόψις ἐκ ποτέ ἐστι τὸ λεγόμενον. Bénédiction des eaux à la Théoph., Prière de Sophrone: φώτισόν μου τῆς διανοίας τὰ ὄμματα.

33 Gr. Nyss., Imag., M 44.1328B: Συντελέσας γὰρ ὁ Κτίστης τὸν ἁπλόν καὶ νουροτατόν τῶν αὐτῶν νυνίσκων κόσμον, μεθ’ ὑλικόν τούτον καὶ ὁρόμενον, τὸν ἐκ τεσσάρων στοιχείων συναρμόσας.

34 Bénédiction des eaux à la Théoph., Prière de Sophrone: Σὺ ἐκ τεσσάρων στοιχείων τὴν κτίσιν συναρμόσας, τέταρτη καρφώσει τὸν κύκλον τοῦ ἐνιαυτοῦ ἐστεφάνωσας.

35 Basil., Hist. myst. 60: μεταστάντας ἐνθάδε πρὸς τὰς ἐκείθεν μονὰς καὶ κατάπαυσαν.
Τοῦ αὐτοῦ Στεφάνου φιλοσόφου· πράξεις σὺν Θεῷ πέμπτη.

5.1. [Id. 231.8-14] Θεὸν τὸν ἄρρητον, τὸν σοφίας καὶ ἀληθείας πατέρα, τὸν ζωῆς καὶ φωτός δοτήρα, τὸν τῶν ὅλων αἴτιον καὶ πάντων ἑπέκεινα,36 καὶ τὸν ἐξ αὐτοῦ μονογενῆ37. Υἱὸν σὺν τῷ θείῳ τῆς ἀληθείας Πνεύματι, τῷ παρ᾿ αὐτοῦ ἐκπορευομένῳ, ὑμνῶ καὶ δοξολογῶ καὶ εὐχαριστῶ, ἵνα καὶ τὸ μετὰ χεῖρας τούτο έκτον σύγγραμμα συνοδηγίᾳ τῇ παρ᾿ αὐτοῦ ἐκεράνω.

5.2. [Id. 231.14-26] Κατὰ δὲ τὸ ἔθος ἡμῶν ἐχέτω τὸ προοίμιον. Γυμνάσια μὲν εἰσὶ τῆς ψυχῆς τὰ μαθήματα ἐκ τῶν ἐνύλων ἡμᾶς ἐπὶ τὰ ἄ_Syntax, καὶ τῶν συνθέτων ἐπὶ τὰ ἁπλὰ καὶ ἁσύνθετα ἐνθεαστικῶς ἀγλαΐζοντα· σοφίας γὰρ εἰσὶ νοήματα καὶ φιλοσοφίας πράγματα. Ἀλλ᾿ οὗτος ὁ τρόπος καὶ ταῦτα τὰ μαθήματα, οὗτος ὁ σκοπὸς καὶ αὐτὴ ἡ πρότασις, ἣ νῦν τὰς θεωρητικὰς ἀποκόπτει ἀκτῖνας καὶ ὁ λόγος τὰς πρακτικὰς ἀποπληροῖ περατώσεις38. Οὗτος ὁ τρόπος, ταῦτα τὰ μαθήματα, μέγας ὁ πλοῦτος τῆς χάριτος, πολλοὶ τῆς ἀρρήτου σοφίας οἱ θησαυροί, ἀνεκδιήγητα τὰ χαρίσματα, ποταμοὶ ὕδατος ζῶντο τὰ τοιαῦτα ὕδατα, πηγὴ σοφίας τοῦ Θεοῦ ἡ ἄβυσσος, φῶς καθαρώτατον τοῦ Ἁγίου Πνεύματος ἡ ἐπιφοίτησις.

5.3. [Id. 231.26-232,3] Οὐδὲν σοφίας ἀνώτερον· δι᾿ αὐτῆς γὰρ ὁ ὑπεράρχιος τοῦ Θεοῦ Λόγος τὰ πάντα ἐδημιούργησε, δι᾿ αὐτῆς τὰς τῶν οὐρανίων νόων εὐπρεπεῖς ἐλλάμψεις ἐκόσμησε, δι᾿ αὐτῆς ὁ νοητὸς παράδεισος εἰς ἀπόλαυσιν τῶν ἀεὶ ζώντων εὐτρέπισται, δι᾿ αὐτῆς τὴν τῶν οὐρανῶν βασιλείαν ἡμῖν προητοίμασε. Πόθεν οὖν ἡμῖν πρὸς τὴν σοφίαν ἡ ἄνοδος; Πῶς αὐτὴν οἰκειωσόμεθα; Πῶς αὐτῆς τὸν ἄφθαρτον χιτῶνα περιβαλλόμεθα; Μόνη τοῦ Θεοῦ ἡ ἀγάπη πρὸς τὸν πόθον αὐτῆς ἕλκει.

5.21. [Id. 237.5-16] Ὡ σοφίας χάρις, ὦ συνέσεως ἐργον, ὦ νοήματος πρᾶγμα, ὦ λόγων συμπλήρωσις, ὦ σοφίας πράξεως, ὦ πλούσιαι δωρεαὶ παρὰ τοῦ πατρὸς τῶν φώτων. Τίς οὖν εἰπεῖν δυνήσηται πρὸς ὑμῶν πρὸς τὴν σοφίαν;
δασφαλίσας τού σου. Θάγων σου, ἰκανόν πρὸς ἀξίαν ὑμνήσαι σε, τὸν πάντων
dεσπότην καὶ κύριον; Ποίος νοῦς μεθ᾿ ὑμνωδίας οὐκ ἔκπληγήσεται, τὸν ἀγαθότατον
σου τὰς εὐκοσμίας θεωρῶν; Τίς μὴ ὑμνήσει τὰ μεγαλεία τοῦ Πάντοκράτορος Θεοῦ;
Μεγάλα τὰ δασφάλα σου, Σωτήρ; πολλὴ ἡ φιλανθρωπία σου, Δέσποτα: πλούσιον τὸ
ἔλεος τῆς σῆς ἀγαθότητος, πηγή πάσης σοφίας τὰ σὰ χαρίσματα.

5.22. [Id. 237,16-31] Ἑμνάν τὸν πάντων Δεσπότην, καὶ σὲ δοξολογω τὸν πρὸ
dαιόν ἐκ Πατρὸς γεννηθέντα, τὸν Δήμουργόν πάσης κτίσεως, τὸ ἐκ τοῦ φωτός
ἀληθινόν φῶς, τὸν ἐκ Θεοῦ Θεόν καὶ ἐκπαρθένου Μαρίας ἐνανθρωπήσαντα διὰ τὴν
ἡμετέραν σωτηρίαν, τὸν Κύριον Ἰησοῦν Χριστόν, τὸν ἀληθινὸν ἡμῶν Θεόν.

6.1. [Id. 238,1-13] Ἐξομολογοῦμαι σοι, Πάτερ ἅγιε, Κύριε ὁ Θεὸς τοῦ οὐρανοῦ καὶ
tῆς γῆς; ὁ καθολικὸς Θεός καὶ Παντοκράτωρ, ὁ τῶν πάντων ἀγαθῶν αἴτιος καὶ δοτήρ,
ὁ διὰ τοὺς οὐρανοὺς ἐξομολογοῦνται καὶ δηγοῦνται τὰ δασφάλα σου τοῦ Παντοκράτορος
Θεοῦ καὶ τῆς δόξας σου, ἡς γένοιτο καὶ ἡμᾶς ἐν καθαρᾷ καρδίᾳ ὑμνεῖν, αἰνεῖν,
dοξολογεῖν καὶ λατρεύειν τὰ μεγαλεῖα σοῦ τοῦ Θεοῦ τῶν ὅλων· τούτων ὄντως
ἀγαθῶν αἴτιος καὶ μεγαλοπρεπέως εἰς πάντα κοινοῖς ἀνθρώποις καὶ εἰς τὸν ἀιῶνα

39 Bénédiction des eaux à la Théoph., Prière de Sophrone: Μέγας εἰ, Κύριε, καὶ δασφάλα τα ἅγια σου,
καὶ σῶσε δοσιμένος ἀλλήλων ὑμῶν τῶν δασφάλων σου.
40 Symbole de la foi: ... ποιητήν οὐρανοὺς καὶ γῆς, ὅρατον τὰ πάντα καὶ ἀδιάφορον. Καὶ εἰς ἐκ τῆς
Κύριου Ηρών Χριστόν, τὸν Υἱόν τοῦ Θεοῦ τοῦ Μονογενοῦς, τὸν ἐκ τοῦ Πατρὸς γεγεννηθέντα τοῦ πάντων τῶν
αἰώνων· Φῶς ἐκ φωτός, Θεόν ἀληθινόν, ἐκ Θεοῦ ἀληθινόν γεγεννηθέντα, οὕτω ποιηθέντα, ὁμοούσιον τῷ
Πατρὶ, δι᾿ τὰ πάντα ἐγένετο. Τὸν δι᾿ ἡμᾶς τοὺς ἀνθρώποις καὶ διὰ τὴν ἡμετέραν σωτηρίαν
κατελθόντα ἐκ τῶν οὐρανῶν, καὶ σαρκωθέντα ἐκ Πνεύματος Ἁγίου καὶ Μαρίας τῆς Παρθένου καὶ
ἐνανθρωπήσαντα.
6.12. [Id. 241,24-33] Εκ τῶν αἰσθητῶν μετάβηθι ἐπὶ τὰ νοητά θεάματα καὶ οὐδὲν ὑπεραστάτουσι τῆς δόξης καὶ χαρᾶς τοσαύτης τῶν ἀγγέλων ἔννοιαν, μὴ καταγραφῇ τὴν μέγαν καὶ ἀναπτήτου τῆς ἐμφιλοσόφου χρυσοποιίας. Ἀλλὰ ὅλον σεαυτοῦ τὸν νοῦν ἐπὶ τὰ ἄνω αἰρεῖ καὶ φωτεινῶς τῶν ὑπερτάτων οὐσιῶν ἀναπτήτορα ἀναπτύσσεται.

6.13. [Id. 241,33-242,9] Ἀν νοεροὶς ὄμμασι τὰ ἀναρίθμητα καὶ ἀμήχανα τῶν καλλίτερων καὶ πρός τοῦτο ὑπερήφανα ἐπικοινωνεῖς καὶ θαυμάζετε τὰν πολλὴν καλλίτερην ἀναπτύσσεται, μὴ παρατραπῇς τὸ λοιπὸν ἐπὶ τὴν ἐνυλῶν μορφῶν, οὕτωσιν ἁμαρτῶν τῆς χαμαιζήλου ταύτης τοῦ μετὰ χεῖρα ζητοῦμεν καὶ ἀνακαλυπτομένου τῆς ἐμφιλοσόφου χρυσοποιίας. Πῶς τὰ πάντα παρήχθη διὰ τῆς ἀρρήτου αὐτοῦ σοφίας ἐκείνης δὲ γλῶττα καὶ νοῦς οὐκ ἰσχύει φέρειν ἢ ἀσβεστίας σβέσις καὶ ἡ τῶν αἰσθητῶν σβεσίς καὶ ἡ πρός τον τοίχο τῶν κατανεκρωμένων τῆς ἀνθρώπου καρδίας καὶ ἡ τῶν αἰσθητῶν σβεσίς.
θαυμάσαντες δοξάσωμεν αἰεὶ καὶ διὰ παντὸς ἐν παντὶ καιρῷ τε καὶ τόπῳ τῇ θεολογίᾳ ἐπευφραινόμενοι καὶ τῆς τοῦ Θεοῦ συνομίλιας ἀξιούμενοι, τῆς χάριτος ἐμπλησθῶμεν κατοικητήριον.

45 Ἐντὸς εἰς τὸν Θεοῦ ἐναπολαύσωμεν. Πρὸς εἰς τὸν Θεοῦ ἐναπολαύσωμεν. Πρὸς ἐκεῖνο τὸ φῶς σπεύδοντες τὸ φωτιστικὸν πάσης τῆς λογικῆς φύσεως, τὸ φωτίζον καὶ καταυγάζον τὰς αἰσθήσεις καὶ καρδίας καὶ διανοίας πάντων τῶν ἀγαπώντων τὸν Κύριον.

6.15. [Id. 242.22-32] Ἡς γένοιτο ἡμᾶς διὰ πίστεως καὶ ἀγάπης Θεοῦ ἐπὶ τὸν λιμένα καταντῆσαι τοῦ θελήματος αὐτοῦ καὶ τῶν αἰώνων ἀπολαύσαι ἀγαθῶν, χάριτι καὶ πρᾶξις σὺν Θεῷ ἑβδόμη.

7.1. [Id. 243,4-23] Ὁ ἄναρχος καὶ ὑπεράρχιος Θεός, ὁ ἀγαθὸς καὶ ὑπεράγαθος τῇ φύσει, καὶ φιλάνθρωπος τῷ τρόπῳ, ὁ ἀπερίγραπτος καὶ ἀκατάληπτος, ὁ καθολικὸς Θεὸς καὶ Παντοκράτωρ, ὁ Δημιουργὸς πάσης τῆς κτίσεως, ὁ ἐκ τοῦ μὴ ὄντος εἰς τὸ εἶναι παραγαγὼν τὰ πάντα, ὁ τῇ ἰδίᾳ δόξῃ καὶ βουλήσει καὶ δυνάμει καὶ σοφίᾳ οἷος ἢς γένοιτο ... τῷ κυρίῳ τῆς καρδίας. ib. 16.7: πρὸς τοῦ θείου φωτεινοῦ ψυχήν καταυγάζων τέλειος λόγος. Lit. Marc. (Brightman p. 135.19): διὰ τῆς ἐπιφοιτήσεως τοῦ ... πνεύματος κατακαύσαν τοὺς ὀρθαλμοὺς τῆς διανοοῦσας ἡμῶν.

46 Clem. Alex., Protr. 9, M 8.197A: φῶς ... ὁ λόγος ... δι' ὑμῶν καταναλώσαμε τοῦ θείου. Euseb., Dem. evang. 4.6, M 22.214C: τὰς ἁμαρτίας δύναμις ὁ λόγος τοῦ θεοῦ καταυγάζων τέλειος λόγος. Lit. Marc. (Brightman p. 135.19): διὰ τῆς ἐπιφοιτήσεως τοῦ ... πνεύματος κατακαύσαν τοὺς ὀρθαλμοὺς τῆς διανοοῦσας ἡμῶν.

κτίσας τὰ σύμπαντα, καὶ καθ’ ὁμοίωσιν καὶ κατ’ εἰκόνα50 πλάσας τὸν ἀνθρώπον λογικόν τε καὶ νοερόν καὶ αὐτεξουσίον51, καὶ ποιήσας αὐτὸν βασιλέα πάσης τῆς αὐτοῦ κτίσεως, αὐτὸς σὲ ὁ Παντοκράτωρ καὶ Βασιλέως τῶν βασιλεύοντων οἰκουμενικῶν καὶ αὐτοκράτορα βασιλέα κατέστησεν ἐπὶ πάσης τῆς γῆς καὶ ἄρχειν πάσης τῆς αὐτοῦ κτίσεως μετ’ εὑρεμενίας καὶ συνειδήσεως ἀνέδειξε· καὶ ὄπω τῆς αὐτοῦ συνεκτικῆς τε καὶ συνημικῆς δεξιάς τὸ νεῦμα ἐχαρίσατο· καὶ ἐκ τῆς ἀειναίας αὐτοῦ πηγῆς πᾶσα εὐφροσύνη καὶ δώρημα ἀγαθὸν ἐν σοὶ ἐβλάστησε, καὶ τὰς πολυμερεῖς ἰδέας τῶν ἀγαθοεργίων τῆς θεοστέφου σου γαλήνης καὶ πολυτρόπου εὐσεβείας ὑπέδειξε καὶ λάτρην καὶ ὁμολογητήν, τὸν μόνον ἀληθινὸν Θεόν καὶ ὃν ἀπέστειλεν Ἰησοῦν Χριστὸν τὸν Υἱὸν τοῦ Θεοῦ τοῦ ζῶντος, ἀνέδειξε.

7.2. [Id. 243,23-244,3] Δίκαιον οὖν σοί ἐστιν ὡς ἀληθῶς, ὦ θεοστέπε βασιλεῦ, προσδραμεῖν μετ’ εὐμενείας καὶ φόβου Θεοῦ καὶ ἀνυποκρίτου ἀγάπης, ἵνα δυνηθῇς διὰ τῆς χάριτος τοῦ Κυρίου ἡμῶν Ἰησοῦ Χριστοῦ ποταμοὺς ἀναβλῦσαι ὕδατος ζῶντος καὶ κληρονομῆσαι τῆς μεγάλης ἐκείνης ἐφέσεως τῆς ἐκ δεξιῶν τοῦΘεοῦ παραστάσεως, ὧν οὐκ ἄξια τὰ νῦν ὁρώμενα καὶ θαυμαζόμενα πρὸς τὴν μακαρίαν ἐκείνην λῆξιν. Μόνον οἰκειωθῶμεν αὐτῷ δι´ ἀγάπης καὶ ληψόμεθα παρ’ αὐτοῦ τὴν ἐξ ἀβύσσου πηγάζουσαν ἔλεος· ἃ ὀφθαλμὸς οὐκ εἶδεν καὶ οὖς οὐκ ἤκουσε, καὶ ἐπὶ καρδίαν ἀνθρώπου οὐκ ἀνέβη, ἃ ἡτοίμασεν ὁ Θεὸς τοῖς κατὰ σὲ καὶ τοῖς ἀγαπῶσιν αὐτὸν ἅπο καταβολῆς κόσμου. Ὡ πρέπει δόξα τιμή τε καὶ μεγαλοπρέπεια, τῷ Πατρὶ καὶ τῷ Υἱῷ καὶ τῷ Ἁγίῳ Πνεύματι, εἰς τοὺς αἰῶνας τῶν αἰώνων καὶ ἐπαιώνων καὶ ἐπὶ, ἀμήν.

7.3. [Id. 244,3-9] Πάλιν ἐπὶ τὸ προκείμενον ἐπανελεύσομαι καὶ τὸν πόθον σου, ὦ πανάριστε βασιλεῦ, ἀναπληρώσω· καὶ ἐπιφανῶς τὰς ῥήσεις ποιήσομαι, ἵνα τοσοῦτον ἀξιωθῇς μεθ’ ὑμνωδίας τὸν ὑπεράγαθον τοῦ θεοῦ ἀγαθότητα, τὴν

51 Gr. Nyss., Orat. catech. 21, M. 45.57C: μίμημα τῆς θείας φύσεως κατεσκευάσθη ὁ ἄνθρωπος, τοῖς τε λοιποῖς τῶν ἀγαθῶν καὶ τῷ αὐτεξουσίῳ τῆς προαιρέσεως τῆς πρὸς τὸ θεὸν διασώζον οἰκουμενικὸν.
52 I Épître aux Corinthiens: ἀλλὰ καθός γέγραπται· Ἄφθαρμος ως οὐκ ἔδει καὶ αὐτὸς ἐκ τοῦ πολιτεύματος ἐνεύρεται ὡς οὐκ ἔκατεν καὶ ἐπὶ καρδίαν ἀνθρώπου όικούμενον, ὡς ἔδει καὶ αὐτὸς ἐπικατηφρώσεται καὶ ἐπικατηφρώσεται ὡς ἔδει καὶ αὐτὸς ἐπικατηφρώσεται καὶ ἐπὶ καρδίαν ἀνθρώπου ἀνέβη. THALES-DACALBO
πολυπληθείαν τῶν ἐνύλων ἀπωσάμενος καὶ ύπὸ τῆς εὐσπλαχνίας τοῦ πάθους ἐπειγόμενος.

RÉFÉRENCES

THALES-DACALBO

Sources Patristiques

Migne, Patrologia Graeca (tome.colonne)

Athanasius Alexandrinus (Athan.),

Expositio in Pss., M 27.56

Epistulae ad Castorem, M 28.849

Epistula I ad Serapionem, M 26.529

De virginitate, M. 28.251

Basilius Caesariensis (Basil.),

THALES-DACALBO
Issues on Greek Alchemy

Historia mystagogica, F. E. Brightman JTS 9 (1908), 257, 387.

Homilia. in Ps. 44, M 29.388
Homiliae de hominis structura, M 30.9
Homilia de Spiritu sancto, M 32.68
Homilia de paradiso, M 30.61
Divine Liturgie de Saint Basile, http://www.pagesorthodoxes.net/liturgie/basile.htm

Chrysostomus, Joannes (Chrys.),
Homiliae in Mt: hom. 6 (M. 57.61), hom. 13 (M 57.207), hom. 54 (M 58.531), hom. 78 (M 58.711)
Homilia 7 in Jo., M 59.61
Sermones de Anna, 3, M 54.652
In cap. I Genes. homilia II, M 53.26
In Epist. I ad Timoth. (or. 18), M 62.501
Ad homiliam in Psalmum 118 (hom. in Ps 118), M 55.67
La Divine Liturgie de St-Jean Chrysostome, The Canadian Journal of Orthodox Christianity, VII/2 (2012)

Clemens Alexandrinus (Clem. Alex.),
Protrepticus, M 8.49
Stromateis, 1-6, M 8.685, M 9.9; 7-8, M 9.401
Clem. Alex. fr. 44.

Clemens Romanus,
Epist. ad Corinthios I, M 1.199

Confession de la foi

Dionysius Areopagita (Dion. Areop.),
De cælesti hierarchia, M 3.120
De divinis nominibus, M 3.585

Eusebius Caesariensis (Euseb.),
Issues on Greek Alchemy

Demonstratio evangelica, M 22.13
De laudibus Constantini, M 20.1316
De vita Constantini, M 20.905

Gregorius Nazianzenus (Gr. Naz.),
De filio (orat. 30), M 36.104
De spiritu sancto (orat. 31), M 36.133
De se ipso (orat. 36), M 36.265
In novem Dominicam (or. 44), M 36.607

Gregorius Nyssenus (Gr. Nyss.),
De anima et resurrectione, M 46.12
Epistula xxvi ad Evagrium monachum, M 46.1100
Contra Eunomium, M 45.244
Homiliae in Canticum canticorum, hom. 5, M 44.857; hom. 9, M 44.953
De hominis opificio, M 44.125
Homilia 1.3 in Jo.
Quid sit, ad imaginem dei, M 441328
Oratio catechetica, M 45.9
De vita Mosis, M 44.297

Joannes Damascenus (Jo. D.),
Homiliae 1-4, M 96.545

Justinus Martyr (Just.),
Dialogus cum Typhone Judaeo, M 6.472

Lit. Marc. (Brightman p. 135.19).

Maximus Confessor (Max.),
Scholia in Dion. Areop. de cæl. hier., M 4.29

Nouveau Testament,
Issues on Greek Alchemy

Évangile selon Matthieu,
Évangile selon Jean,
Épître aux Romains
Épître A aux Corinthiens
Épître à Timothée,
Épître de Saint Jacques
Épître de Saint Barnabas

Grande bénédiction des eaux à la Théophanie, Prière de Sophrone, patriarche de Jérusalem.

Origenes (Orig.),
Adnotationes in Dt, M 17.24
Commentarii in Jo, M.14.21
De oratione, M 11.416
Exhortatio ad martyrium, M 11.564
Homiliae in Jer. (hom. 1-20 in Jer.), M 13.256
Exp. in Pr. 9:1, M 17.185B
Comm. in Evang. Ioannis, M 14.740

Psalmi Salomonis (Pss. Sal.)
Ps. 18; Ps. 104

Symbole de la foi

Theodoretus Cyrrhensis (Theodoret.)
De providentia (provid.) or. 10, M 83.740
Byzantine Alchemy
in two recently discovered manuscripts
(Saint Stephen’s (Meteora) and Olympiotissa (Elassona) Monasteries)

Matteo Martelli
Humboldt Universität zu Berlin

The manuscript n. 97 in the library of Saint Stephen’s monastery in Meteora (Meteora MS hereafter) and the manuscript n. 197 in the library of Olympiotissa monastery in Elassona (Elassona MS hereafter) rank among the earliest alchemical codices nowadays kept in Greece. These testimonies were not taken into account by M. Berthelot and C.É. Ruelle in their pioneering edition of the Greek alchemical collection, neither they were described or discussed in the more recent catalogue of the Greek alchemical manuscripts published between 1924 and 1932 under the aegis of the Union Académique Internationale.¹ In this chapter, I shall first present a short description of the two manuscripts; then I shall compare their contents and investigate more in depth specific sections, which, when necessary, will be illustrated by taking into account the other known testimonies of the Corpus alchemicum – in particular, the MSS Marcianus gr. 299 (10th century AD), Parisini gr. 2325 (13th c.) and 2327 (1478), and Laurentianus gr. 86.16 (1492).² Finally, special attention will be devoted to the last section of the Meteora MS, which preserves a long Byzantine book of recipes on the art of goldsmiths, which until now was only known in the recensio preserved in the MS Parisinus gr. 2327 (= CAAG II 321-337).

¹ In particular the fifth volume of the Catalogue des manuscrits alchimiques grecs is devoted to the manuscripts of Athens (see, in particular, pp. 143-173). In the introduction, the author A. Severyns (1928, 144) explained the difficulties he encountered in describing the alchemical codices kept in Greece outside Athens: “Devant le résultat de mes recherché à Athènes, j’avais d’abord formé le projet d’étendre mes investigations à tous les manuscrits conserves en territoire grec. Plusieurs raisons m’ont forcé à y renoncer. Etant donné le peu de temps dont je disposais, je ne pouvais songer à éplocher tous les catalogues imprimés ou manuscrits, non plus qu’à visiter les nombreuses bibliothèques de monastères […]. D’un autre côté, l’expérience m’a appris qu’il est pratiquement impossible de faire venir à Athènes un manuscrit conserve en province“. This ambitious aim has been now achieved by the members of the DACALBO project, whom I warmly thank for the precious information they shared with me.

² For an introduction to these manuscripts, see Martelli 2012, 3-54; Mertens 1995, xx-lxviii.
A Short Description of the Two Manuscripts

The Meteora MS -- bearing the n. 97 in the third volume of Sophianos’ catalogue describing all the manuscripts kept in the Meteora monasteries 3 -- is a small size paper codex (160 x 105 mm) that counts 203 folia. Two colophons at fol. 203v mention the name of its scribe and the year when he finished copying the manuscript:

(fol. 203v1-5; red ink) ἐτελειώθη τῷ παρῶν βηβλήων [lege τῷ παρῶν βιβλίων] διὰ χειρὸς κάμοῦ Γεωργίου [lege Γεώ-] ἐπὶ ἔτους Ἀ.β. (a second hand added: ἐν τοῦ Ἀγίου Στεφάνου) ἀθλήως Γεώργηος [lege ἀθλίως Γεώργιος] ὁ ξήσας ἑρμηνείαν περὶ χρυσοποιίας.4

“I Georgios finished handwriting myself this book in the year 7012, i.e. 1503/1504 AD [2nd hand: in Saint Stephen’s (monastery)].

Georgios who humble wrote (lit. scratched out) the explanation of the making of gold”.

A few lines above, a similar, yet less detailed information is given in a monokynydilion:

(fol. 203v6-8) ἐγράφη τῷ παρ(ῶν) βηβλί(ον) [lege βιβλί-] διὰ χειρὸς Γεωργίου [lege -γίου] περὶ αποιών [i.e. χρυσωπ-] καὶ σποίων [i.e. ἀργυροπ-].

“Georgios handwrote this book on the making of gold and on the making of silver”.

Regrettably, it is difficult to judge the reliability of the additional information provided by an anonymous reader, who integrated the first colophon with a reference to the place where the codex had been supposedly produced. If we rely on this information and infer that Georgios completed his work in Saint Stephen’s monastery,

3 Sophianos 1986, 305-309. I was able to study the manuscript during a stay in Saint Stephen’s monastery in 2010. I would like to warmly thank the sisters of the monastery, who provided me with all the necessary help and support to carry out my investigation.

4 The second part of the sentence is written with a cryptographic alphabet: εξηθὸς ἀβληθοῦ, that is, ἑρμηνεία περὶ χρυσοποιίας. A second hand partly added the solution above the line: ἑρμηνεία περὶ [lacuna]. Another anonymous copyist (the same who added ‘In Saint Stephen’s (monastery)’ in the colophon) copied again the cryptography after the colophon (fol. 203v8; black ink). The system used to encode the information is quite simple and widespread in Byzantine manuscripts. The Greek letters were divided into three groups of nine letters (stigma, kappa and sampi included) and in each group the first letter corresponded to the last one, the second letter to the second last one, and so on. For instance, the first group includes α, β, γ, δ, ε, ζ, η, and θ, where α = θ, β = η, γ = ζ, δ = ε, and ε = ε.
we might be tempted to identify the copyist with the homonymous Giorgios mentioned in one of the possession’s notes scattered in the manuscript. Many marginal notes, indeed, make clear that the codex was property of Saint Stephen’s monastery; among them the note at the margin of fol. 179v reads:

“Father Giorgios donated this book to Saint Stephen’s (monastery); whoever takes it away from this monastery, may he be damned and may God cut his life short. Woe to him. Amen.”

On the other hand, we must note that an almost identical note (yet written by a different hand) occurs in the flysheet of the manuscript, where the patriarch of Constantinople (rather than the priest Giorgios) is mentioned as donor of the codex. Regrettably, the other possession’s notes do not add further information about the exact time or the specific circumstances under which the manuscript entered the library of the monastery, so that it remains difficult to understand whether the book was originally produced in the monastery or was donated as a gift by a later possessor.

The Elassona MS is a paper codex (145 x 100 mm) written by three different copyists. It currently counts 105 folia, yet some original pages or quires of the manuscript went probably missing. The 18th century monk Margarites transcribed the first section of the codex (fol. α-ζ), as clearly recorded in a short note at fol. 1r:

ὑπαρχὴ τοῦ Μαργαρίτη ἱερέως x 1741,

“The opening section is by the monk Margarites, (year) 1741”.

5 See Sophianos 1986, 308-309, where all the possession’s notes are recorded.
6 The first segment of the sentence (τὸ παρὸν βιβλίον τὸ ἀφιέρωσεν) occurs twice in this folium; it was first written by Georgios, who copied down the rest of the page (containing a list of alchemical signs); then a second scribe wrote the sentence again and completed the note in the form reported above.
7 At the bottom of the flysheet the following note is transcribed: τὸ παρὸν βιβλίον ταφιέροσεν (sic) ὁ μακάριος πατριάρχης ἀπὸ κοσταντινούπολη (sic) κτλ.
This first part includes short texts dealing with various topics related to alchemy, medicine, and natural philosophy, such as the seven planets and the zodiac (fol. a')\(^8\), the association between seasons, human humours (blood, phlegm, black and yellow bile) and natural elements (identified with air, ether, water and fire; see fol. B')\(^9\), the correspondences between planets and metals (fol. στ’), and the seven ages of human beings (fol. γ’-δ’\(^10\)). The same copyist Margarites also compiled the last part of the codex, namely fol. 104r-110v.

These two parts somehow enclose the earlier section of the manuscript, which counts 66 folia progressively paginated from 1 to 103. It is evident that some folia went lost, probably after that the current foliation had been introduced (in each folium, the recto is marked by an Arabic number and the verso by the correspondent Greek number).

This earlier section was copied by two anonymous scribes in the 16\(^{th}\) century. The first scribe finished copying the folia 1-98r in 1507, as a short notes at fol. 98r reports: after the explicit of a treatise entitled Περὶ λευκώσεως (On Whitening, fol. 98r4-14), someone recorded the date 1507 in Greek (i.e. ΑΦΞ′) and Arabic numbers. A second, more or less contemporary copyist wrote the fol. 98v-103v.

The contents of the two manuscripts: a comparison

The contents of the Meteora MS largely overlap with the contents of the Elassona MS (i.e. the section written in 1507, that is, foll. 1-98r). In both manuscripts two anonymous short passages serve as introductory texts to the collection, which opens with a section devoted to the alchemical lectures (πρᾶξεις) by Stephanus of Alexandria (7\(^{th}\) c. AD).\(^11\) The Meteora MS hands down ten lectures: the first without title, the following five lectures progressively numbered from 2 to 6,\(^12\) and the last four lectures numbered from 6 (again!) to 9. The loss of some quires (fol. 9-51) in the Elassona MS does not allow us to see whether it followed the same order:

8 The MS, fol. α’r1-2 reads (a diplomatic transcription is provided): Περὶ τὸν επτά πλανίτων καὶ τῇ ζώδια ἔχουν.
9 The MS, fol. β’r1-2 reads (a diplomatic transcription is provided): Περὶ τῶν τεσσάρων· κεράν τοῦ χρόνου· καὶ τὰ στοιχεῖα· τοῦ ἀνθρώπου· πῶς ἐλατι
10 For instance, fol. γ’ν9 reads (a diplomatic transcription is provided): ἕπτα ἡμῶν καὶ η ἠλωκία· τοῦ σώματος τοῦ ἀνθρώπου· ἐως τὸ γύμνας.
11 An uncritical edition of Stephanus of Alexandria’s alchemical lectures is available in Ideler 1842, 199-253. A few lectures has been reedited by Taylor 1937 (Lectures 1-2); idem 1938 (Letter to Theodore + Lecture 3). On Stephanus, see Papathanassiou 2006.
12 The Meteora MS introduces here three different works -- one by Pelagius and two by Zosimus (see below).
in fact, it only preserves the first two lectures and the last one, which lacks of title and incipit. Despite this lacuna, we must note that the sequence attested in the Meteora MS differs from what we find in the other known testimonies of Stephanus’ work, in particular in the MSS Marcianus gr. 299 (= M), Parisinus gr. 2325 (= B), Parisinus gr. 2327 (= A) and Laurentianus 86.16 (= L). All these manuscripts preserve nine lectures and a letter addressed to a certain Theodoros, whereas the Meteora MS hands down ten praxeis. Thus read their titles in the different testimonies:

First text = II 199-202 Ideler
Meteora MS (1v9-7r4) = Elassona MS (1v1-4r14): Sine titulo
Other MSS: (M) Στεφάνου Αλεξανδρέως οἰκουμενικοῦ φιλοσόφου καὶ διδασκάλου τῆς μεγάλης καὶ ιερᾶς ταύτης τέχνης περὶ χρυσοποιίας. πράξεις σῦν θεῷ πρώτη; (BAL) Στεφάνου Αλεξανδρέως οἰκουμενικοῦ φιλοσόφου περὶ τῆς ιερᾶς καὶ θείας τέχνης τῆς τοῦ χρυσοῦ ποιήσεως· πράξεις πρώτη

Second text = II 203-208,3 Ideler
Meteora MS (7r5-15v15): Στεφάνου σῦν θεῷ πράξεις βʹ = Elassona MS (4r14-8v) πράξεις βʹ (in mg. Στεφάνου)
Other MSS (MBAL): τοῦ αὐτοῦ Στεφάνου σῦν θεῷ πράξεις δευτέρα

Third Text = II 208,4-34 Ideler
Meteora MS (15r15-17r11): τοῦ αὐτ(οῦ) Στεφάνου, πράξεις ἐνύλου κόσμου(ου) σῦν θεῷ τρίτη
Other MSS (MBAL): τοῦ αὐτοῦ Στεφάνου ἐπιστολὴ πρὸς Θεόδωρον

Fourth Text = II 209-213,6 Ideler
Meteora MS (17r11-24v1) τοῦ αὐτ(οῦ) Στεφάνου φιλοσόφου διὰ τὸ κατενέργειαν (sic) τῆς θείας καὶ ιερᾶς τέχνης· πράξεις σῦν θεῷ δʹ
Other MSS (MBAL): τοῦ αὐτοῦ Στεφάνου περὶ τοῦ ἐνύλου κόσμου πράξεις σῦν θεῷ τρίτη

13 On the structure of Stephanus’ lectures in these manuscripts, see Papathanassiou 1996 (who maintains that Stephanus’ writings were originally divided into 7 lectures).
Fifth text = II 213,7-219,14 Ideler
Meteora MS (24v2-34r4) τοῦ αὐτοῦ Στεφάνου σὺν θεῷ πρᾶξις ε’
Other MSS (MBAL): τοῦ αὐτοῦ Στεφάνου εἰς τὸ κατ’ ἐνέργειαν πρᾶξις σὺν θεῷ τετάρτη

Sixth text = 219,15-223,19 Ideler
Meteora MS (34r4-40v7) τοῦ αὐτοῦ Στεφάνου εἰς τὸ κατενέργειαν (sic) τῆς θείας καὶ ιερᾶς τέχνης πρᾶξις σὺν θεῷ στ’
Other MSS (MBAL): τοῦ αὐτοῦ Στεφάνου εἰς τὸ κατ’ ἐνέργειαν τῆς θείας τέχνης πρᾶξις σὺν θεῷ πέμπτη

Seventh text = II 223,20-231,5 Ideler
Meteora MS (57v9-70v11) τοῦ αὐτοῦ Στεφάνου πρᾶξις σὺν θεῷ στ’· ἑρμοῦ’ (sic) ἀγαθοδαίμονος.
Other MSS (MBAL): τοῦ αὐτοῦ Στεφάνου φιλοσόφου πρᾶξις σὺν θεῷ ἑκτη

Eighth text = II 231,6-237 Ideler
Meteora MS (70v12-80v) τοῦ αὐτοῦ Στεφάνου πρᾶξις σὺν θεῷ ζ’
Other MSS (MBAL): τοῦ αὐτοῦ Στεφάνου φιλοσόφου πρᾶξις σὺν θεῷ ἐβδόμη (M; ζην. A)

Ninth text = II 238-242 Ideler
Meteora MS (81r1-88r) τοῦ αὐτοῦ Στεφάνου πρᾶξις σὺν θεῷ η’· περὶ τομῆς τῆς ιερᾶς τέχνης
Other MSS (MBAL): τοῦ αὐτοῦ Στεφάνου ὁικουμενικοῦ φιλοσόφου πρᾶξις ὁγδόη περὶ τομῆς τῆς ιερᾶς τέχνης.

Tenth text = II 243-253 Ideler
Meteora MS (88v-107v) [= Elassona MS, fol. 52r-60v; titulum et incipit deficiunt] τοῦ αὐτοῦ Στεφάνου διδασκαλία πρὸς Ἡράκλειον τὸν βασιλέα πρᾶξις σὺν θεῷ θ’
Other MSS (MBAL): τοῦ αὐτοῦ Στεφάνου φιλοσόφου διδασκαλία πρὸς Ἡράκλειον τὸν βασιλέα πρᾶξις σὺν θεῷ ἑννάτη.

14 This lecture bears the same title 'sixth lecture' than the precedent one.
After Stephanus’ lectures both the Meteora and the Elassona MSS hand down Synesius’s commentary on Ps.-Democritus alchemical books (4th century AD),15 two works by the so-called Philosopher Anonymous (8th-9th century AD),16 and a selection of excerpts attributed to the Graeco-Egyptian alchemist Zosimus of Panopolis (3rd-4th century AD). The overlapping between the two testimonies is shown in the following synoptic table:

<table>
<thead>
<tr>
<th>Meteora MS</th>
<th>Elassona MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fol. 1r</td>
<td>Fol.</td>
</tr>
<tr>
<td>Short passage from Psellus (red ink)</td>
<td>Short passage from Psellus</td>
</tr>
<tr>
<td>1v</td>
<td>Title of a recipe-book (red ink)</td>
</tr>
<tr>
<td>= CAAG II 220,</td>
<td>Title of a recipe-book</td>
</tr>
<tr>
<td>= CAAG II 220</td>
<td>= CAAG II 220</td>
</tr>
<tr>
<td>2r-17r</td>
<td>Stephanus, Lectures I-II</td>
</tr>
<tr>
<td>= II 199-208,3 Ideler</td>
<td>1r-8v Stephanus, Lectures I-II</td>
</tr>
<tr>
<td>= II 199-208,3 Ideler</td>
<td>= II 199-208,3 Ideler</td>
</tr>
<tr>
<td>17r-88r</td>
<td>Stephanus, Lectures III-VI</td>
</tr>
<tr>
<td>= II 208,4-223,19 Ideler</td>
<td>52r-60v Stephanus, Lecture IX (Lacking of the title and the incipit)</td>
</tr>
<tr>
<td>= II 208,4-223,19 Ideler</td>
<td>= II 238-242 Ideler</td>
</tr>
<tr>
<td>Pelagius, On this Divine and Holy Art</td>
<td>52r-60v Stephanus, Lecture IX (Lacking of the title and the incipit)</td>
</tr>
<tr>
<td>= CAAG II 253-262</td>
<td>= II 238-242 Ideler</td>
</tr>
<tr>
<td>Zosimus, On Virtue</td>
<td>52r-60v Stephanus, Lecture IX (Lacking of the title and the incipit)</td>
</tr>
<tr>
<td>= X 39-42 Mertens</td>
<td>= II 238-242 Ideler</td>
</tr>
<tr>
<td>Zosimus, On Lime</td>
<td>52r-60v Stephanus, Lecture IX (Lacking of the title and the incipit)</td>
</tr>
<tr>
<td>= XIII 48-49 Mertens</td>
<td>= II 238-242 Ideler</td>
</tr>
<tr>
<td>Stephanus, Lectures VI-VIII</td>
<td>52r-60v Stephanus, Lecture IX (Lacking of the title and the incipit)</td>
</tr>
<tr>
<td>= II 223,20-237 Ideler</td>
<td>= II 238-242 Ideler</td>
</tr>
</tbody>
</table>

15 On Synesius, see Martelli 2014, 52-56.
16 According to Letrouit (1995,63-65), two different authors may be recognized behind the general ‘title’ of philosopher Anonymous, both active in the 8th/9th century. Letrouit distinguishes between ‘le philosophe anépigraphe 1”, who composed a long work (without title) that Berthelot-Ruelle published in different sections of their edition (i.e. CAAG II 433,11-436,18 + 219,13-220,10 + 436,20-441,25), and ‘le philosophe anépigraphe 2’, who composed the two works handed down in the Meteora and the Elassona MSS.
The text of Synesius’ commentary on Ps.-Democritus alchemical books deserves particular attention, since some discrepancies are detectable in the two collections. Whereas the Elassona MS accommodates the complete treatise by Synesius between Stephanus’ last lecture and an alchemical work ascribed to the so-called philosopher Anonymous, the Meteora MS splits Synesius’ treatise into two parts, which are divided by the insertion of philosopher Anonymous’s work.

Synesius’ treatise is a dialogue between the philosopher Synesius and Dioscorus, a priest of the Alexandrian temple of Serapis. The main topic of their conversation is the alchemical teaching of Democritus, which they effort to interpret by commenting on a selection of passages taken from the four books on dyeing, which the alchemical tradition ascribes to him. In both MSS the dialogue is introduced by the title:

(Meteora MS, fol.108r1-3 = Elassona MS, fol. 61r1-3) Συνεσίου φιλοσόφου πρὸς Διόσκορον εἰς τὴν βιβλίον [ββββλον MetMS] Δημοκρίτου ὡς ἐν ἁχολίοις [sic MSS; lege σχολίοις]. Διοσκόρῳ ἱερεῖ τοῦ μεγάλου Σεραπίδος [sic MSS; lege σχολίοις] τοῦ ἐν Ἀλεξανδρείᾳ θεοῦ τε ἀνεί ἐυδοκοῦντος Συνεσίος ὁ φιλόσοφος χαίρω.

In the central part of the dialogue Synesius explains to Dioscorus the nature of quicksilver (ὕδραργυρος), its main properties, and the role it plays in the dyeing processes. Whereas the Elassona MS preserves this section without any gap, in the Meteora MS the discussion between the two characters suddenly breaks off, since we

17 On this treatise and its tradition, see Lagercrantz 1927, 18-19 and Letrouit 1995, 64
find philosopher Anonymous’ work *On the Whitening of Sulphur* in the middle of the following passage (= Syn. § 11,174-182 Martelli = CAAG II 63,18-64,1; I marked the interruption we find in the Meteora MS with the sign I):

Διόσκορος. Μή ἂρα τοῦτο ἔλεγεν ὁ φιλόσοφος· ὦ φύσεις οὐράνιοι φύσεων ὅμοιοιργοί, ταῖς μεταβολαῖς νικῶσαι τὰς φύσεις·

Συνέσιος. Ναί, διὰ τοῦτο εἶπεν· εἰ μὴ ἐκστραφῇ, ἀδύνατο γενέσθαι τὸ προσδοκόμενον καὶ μάτην κάμνουσιν18 οἱ τὰς ὄλας ἐξευρόντες καὶ μὴ φύσεις τῶν σωμάτων μαγνησίας ξητοῦντες. Ἐξέστι γὰρ τοῖς ποιηταῖς καὶ συγγραφεῦσιν τὰς αὐτὰς λέξεις ἄλλωσ τε καὶ ἄλλους σχηματίζειν. Σῶμα οὖν τῆς μαγνησίας εἰρηκέν, τοιτέστιν τὴν μίξιν τῶν οὐσιῶν κτλ.

“Dioscorus. Did not the philosopher say these words: “O celestial natures, artificers of natures, which conquer natures with your transformations”? Synesius. Yes, he did, and that is why he said: “if you do not turn (the natures) inside out, it will be impossible to reach what is expected; those who examine the natures and do not investigate the natures of the bodies of magnēsia wear themselves out in vain”. Indeed, poets and prose-writers are allowed to fashion the same speeches using different figurative expressions. Therefore he said: “the body of magnēsia”, that is, the mixing of the substances” (Martelli 2014,137).

In order to better illustrate the situations in the two manuscripts, in the following table I provide a diplomatic transcription of the passage quoted above as it stands in the two testimonies:

18 The Elasonna and Meteora MSS read καὶ μάτην ἐνοῦσιν.
In the Meteora MS a note in red ink is introduced after the point in which the first part of Synesius’ treatise suddenly stops (i.e. after καὶ μάτην ἐνοῦσιν). The note reads:

“According to the sequence of the argument, the term ‘ἐνοῦσιν’ seeks for (i.e. is connected with) the expression ‘εἰς [lege oi] τὰς ὄλας ἐξερευνόντες’. Here there is this
precious (treatise ?)19: the Philosopher Anonymous, \textit{On the Whitening of Sulphur Water.}20

The copyist of the Meteora MS (or an anonymous reader who annotated its antigraph) was aware of the fact that Synesius’ treatise continues with the words οἱ τὰς ὅλας ἐξευρενῶντες21, that are precisely the words by which the second part of Synesius’ treatise is opened in the Meteora MS, fol. 117r11. On the other hand, the copyist of the Elassona MS added a marginal note after the expression ‘καὶ μάτην ἐνοῦσιν’, in which he claims: “here something is written: “. These words correspond to the \textit{incipit} of philosopher Anonymous’ treatise, which the Meteora MS hands down between the first and the second part of Synesius’ treatise. Moreover, after the marginal note the copyist of the Elassona MS adds a sign (¥, i.e. a stroke with two dots above), which is used as reference to philosopher Anonymous’ treatise \textit{On the Whitening of Sulphur Water}. The same sign, in fact, occurs in the margin of fol. 68v3-4, where we find the \textit{incipit} of Anonymous’ treatise in the Elassona MS:

[in the left margin: ¥] Ἀνεπιγράφου φιλοσόφου περὶ θείου ΧΖ τῆς λευκόσ(εω)ς.

(inc.) Καθόσον καὶ χρεία καλεῖ τοσούτων προδῆδωτε (sic)

It seems quite clear that the scribe of the Elassona MS copied from an antigraph, where the treatise \textit{On the Whitening of Sulphur Water} occupied the same position than in the Meteora MS. We may wonder whether the Meteora MS itself may be identified with the source of the Elassona MS. In that case, the above-mentioned note in the Meteora MS, which introduces the insertion of philosopher Anonymous’ treatise, would have left no sign in the Elassona MS. Probably only a complete collation of the two manuscripts will allow us to answer this question. For the moment, we can certainly draw the preliminary conclusion that the Elassona MS is based on an antigraph that followed the same order of treatises that we find in the Meteora MS.

19 The exact meaning of the sign (¥) after τὸ τίμιον τὸδε is not evident. It does not seem to correspond to an alchemical ingredient (it is not recorded in the explanatory table transcribed at fol. 177v-179v of the Meteora MS). It could be interpreted just as a reference to the following treatise by the philosopher Anonymous.

20 The expression ‘sulphur water’ is rendered in the MS with the alchemical signs: X (i.e. ‘sulphur’) and Z (i.e. ‘water’).

21 That is, ‘those who investigate the matter’, who are the subject of the verb ἐνοῦσιν.
Further evidence, in fact, can be provided to confirm this point. In the Meteora MS the two treatises by the philosopher Anonymous are not consecutive, since the second part of Synesius’ commentary divides them. At fol. 114v the title of the above mentioned work *On the Whitening of Sulphur Water* is introduced, and the treatise ends at fol. 117r10, where the second part of Synesius’ dialogue starts. The dialogue ends at fol. 122v, where the second work *On the Making of Gold* by the philosopher Anonymous begins:

Meteora MS, fol. 122v14-17

[explicit of Synesius’ commentary] θεοῦ δὲ βοηθοῦντος ἀρξομαί ὑπομνηματίζειν
[title of the second treatise by the philosopher Anonymous] ἀνεπιγράφου φιλοσόφου κατὰ ἀκολουθεῖας χρήσεως ἐμφενὸν τὴν τῆς ἀποείας συνεπηγιμένος σῦν θεῷ

On the contrary, the Elassona MS hands down the two works by the philosopher Anonymous one after the other. However, the use of marginal signs shows that the copyist of the Elassona MS relied on a source, where the second treatise by the philosopher Anonymous came after the explicit of Synesius’ work (i.e. in the same position attested in the Meteora MS). The copyist, in fact, added a interesting marginal sign at the end of Synesius’ treatise (Elassona MS, fol. 68v1-2):

Θεοῦ (with the sign Ṛ above the line) δὲ βοηθοῦντος ἀρξομαί ὑπομνηματήζειν (sic)

This explicit, introduced by the same marginal sign (Ř) is copied again at fol. 70r1, in the upper margin above the *incipit* of philosopher Anonymous’ second treatise (that is, the treatise that comes after the end of Synesius’ dialogue in the Meteora MS):

(Elassona MS, fol. 70r1-2) [upper margin: Ṛ θεοῦ δὲ βοηθοῦντος ἀρξομαί ύπομνηματήζειν] ἀνεπιγράφου φιλοσόφου κατὰ ἀκολουθείας χρήσεως ἐμφενὸν τὸν τῆς ἀποείας συνεπηγιμένος σῦν θεῷ

The repetition of the *explicit* of Synesius’ treatise in the upper margin and the use of the marginal sign clearly show that the copyist of the Elassona MS was reading a
source, in which Synesius’ treatise and philosopher Anonymous’ treatise *On the Making of Gold* were one after the other.

In the section following the treatise *On the Making of Gold*, it is possible to find further correspondences between the two manuscripts, although the Meteora MS seems to preserve a richer and more complete selection of texts. Both the MSS preserve some writings attributed to Zosimus of Panopolis; on the other hand, the Elassona MS omits a few technical sections that are available in the other manuscript:

| 132r-157r | Zosimus, *On Virtue and Interpretation*
= CAAG II 118,13-138,4 + 263,3-267,15
| 75r-90r | Zosimus, *On Virtue and Interpretation*
= CAAG II 118,13-138,4 + 263,3-267,15 |
| 157r-159v | Zosimus, *On the Evaporation of Sulphur Water*
= CAAG II 138,5-140,8
| 90r-91v | Zosimus, *On the Evaporation of Sulphur Water*
= CAAG II 138,5-140,8 |
| 159v-163r | *(sine titulo) inc.* Take eggs etc.
= IX 1-81 Mertens
| 91v-93v | *(sine titulo) inc.* Take eggs etc.
= IX 1-81 Mertens |
| 163v-165r | *On the Composition of Waters*
= X 1-16 Mertens
| 94r | *On the Composition of Waters*
= X 1-16 Mertens |
| 163v-165r | *On Fires*
= CAAG II 144,10-145,14
| 94r-95r | *On Fires*
= CAAG II 144,10-145,14 |
| 165r-169v | *On the Making of Glasses*
= CAAG II 348-350,3 + 250,13-252,21
| 95r-98r | *On the Making of Glasses*
= CAAG II 348-350 + 250,13-252,21 |
| 169v | *On Whitening*
= CAAG II 211,3-12
| 98r | *On Whitening*
= CAAG II 211,3-12 |
| 169v-171r | *Tinctures discovered by the Persians*
= CAAG II 346,1-347,7
| 171v | Originally blank |

22 This work ascribed to Zosimus represents the second part of philosopher Anonymous’ treatise *On the Making of Gold*; see see Lagercrantz 1927, 18-19.

23 The last paragraph of the text (CAAG II 140,9-20) is omitted in the Meteora and Elassona MSS.

24 This section is probably part of Synesius’ treatise; see Martelli 2014,150-151.
The last excerpt on eggs lacks of the final part in the Elassona MS. This omission is not easily understandable: a mechanical loss of folia or squares (although not to be excluded) would not be a sufficient explanation for the incompleteness of this writing. A second scribe, in fact, started writing a new section on fol. 98v, which had been probably left blank by the earlier copyist. In any case, after the excerpt on eggs, the two manuscripts preserve two different selections of texts. In the Elassona MS, at the fol. 98v a different section begins (as already seen, written by another copyist), which hands down a short collection of pharmaceutical and magical recipes. On the other hand, the Meteora MS includes a richer selection of alchemical texts in its last part:

<table>
<thead>
<tr>
<th>Meteora MS</th>
<th></th>
</tr>
</thead>
</table>
| 173r-175v | *On the Making of Quicksilver*
= CAAG II 220,17-222,17 |
| 175v-177r | *On Measures and Weights* |
| 177v-179v | *Alchemical signs*
= CAAG I 104 and 108 |
| 180r-180v | *List of Alchemists*
= CAAG II 25,5-26,6 |
| 180v-202v | Collection of recipes
≈ CAAG II 321-337 |

The two introductory passages in the Meteora and Elassona MSS

The opening sections of the two manuscripts deserve a special attention, since they preserve an interesting selection of passages serving as introductory texts. Both, in

25 §§ 11-13 of the text in Berthelot’s edition (CAAG II 19,18-20,15) are omitted in the Meteora MS.

26 See below, § 4.
fact, hand down two short texts that seem to provide the reader with a preliminary description of the contents of the collection of alchemical writings copied in the two codices. The first passage does not occur in any other alchemical testimony known so far (such as the above-mentioned Marcianus gr. 299, Parisini gr. 2325 and 2327, and Laurentianus 86,16):

“I admire people who discovered these writings and I kindly welcome who laid the foundations of these techniques, and I like people who love this topic. We must praise this writing on the metallic art which has a spiral form: in fact, the beginning of the writing resembles coiled snakes; they conceal their head inside the coils and thrusts the rest of their body forward; so the book makes a beginning of its middle, and the onset of the story, which it has, so to speak, inherited, slips through (to end up) in the middle”.

The anonymous composer refers to a book on μεταλλική τέχνη (‘the art of metals’), an expression that seems to summarizes the contents of the collection of texts copied in the two testimonies. He focuses his attention especially on the structure of this collection, which is described as a ‘spiral-shaped writing’ (ἐλικοειδῆς γραφῆ). The expression introduces the reader to the second part of the passage, which clearly echoes the words used by Psellus to praise the plot-construction of the Hellenistic novel Aethiopica in his essay on Heliodorus’ and Achilles Tatius’ novels. In the short

27 It is worth mentioning that both the MSS hand down the following note in the upper margin: ἀρχὴ τῆς ἱερᾶς καὶ θείας τέχνης.
treatise What is the Difference between the Novels which Deal with Chariclea and Leucippe? (Τὶς ἡ διάκρισις τῶν συγγραμμάτων, ὃν τὸ μὲν Χαρίκλεια, τὸ δὲ Λευκίππη ὑποθέσεις καθεστήκατον;), Psellus takes part in a contemporary debate on the artistic merits of the two novels28 and defends the value of the Aethiopica, whose stylistic features are highlighted in different respects. The first point made by the Byzantine scholar regards the plot of the story: Heliodorus did not only open his tale in medias res, but he also constructed a complicated plot, in which the prior events are revealed only in the middle of the story. In order to emphasize the merits of such a sequence of events, Psellus introduces the comparison with a coiled snake, which reads as follows (p. 92, ll. 24-28 Dyck):

Καὶ αὐτῇ δὲ ἡ ἁρχὴ τοῦ συγγράμματος εἶσε τοῖς ἐλκτοῖς δέση· οὕτῳ τε γὰρ τὴν κεφαλὴν εἴσω τῆς σπείρας κατακαλύπτει, τὸ λοιπὸν σώμα προβεβληται, καὶ τὸ βιβλίον τὴν τῆς ὑποθέσεως εἰσιβολήν ἐν μέσῳ διολισθήσασαν ὧσπερ κληροσάμενον ἁρχὴν πεποίηται τὴν μεσότητα.

“The beginning of the work itself resembles a coiled snake: the snake conceals its head inside the coils and thrusts the rest of its body forward; so the book makes a beginning of its middle, and the onset of the story, which it has, so to speak, inherited, slips though (to end up) in the middle”.29

The connection between such a stylistic analysis of a novel and the structure of an alchemical compendium is not completely transparent. We may certainly suppose that the anonymous writer of the above-mentioned introductory passage wanted to emphasize the difficulty of the alchemical opus, which could be accomplished only after a long investigation on the copied treatises. The reader of the alchemical collection had not to limit himself to study only the opening treatises, yet he had to carry on a deep investigation in order to fully understand the core of the preserved alchemical teaching. On the other hand, the choice of the anonymous writer could have depended on the authority that Psellus had gained in the field of alchemy. Many alchemical collections, in fact, include a short treatise that the Byzantine scholar

28 See Dick 1986, 83.
29 Transl. by Dyck 1986, 93.
wrote on the art of gold-making.30 His reputation as an alchemist could have led the anonymous writer to look at other Psellus’ writings in order to find alchemically relevant passages.

Moreover, we must note that the expression \textit{μεταλλικὴ τέχνη} (‘the art of metals’) is rare in the collection of Greek alchemical texts. It is therefore noteworthy the is occurs again in the second introductory text preserved by the Meteora and the Elassona MSS, which read:

\begin{quote}
[Bible MS, fol. 1r13-1v8 – Elassona MS, fol. 1r10-21] Βιβλιος μεταλλικη και χρισμεντικη περι χρυσοποιιας [apoiias MSS], ἀργυροποιιας [σποιας MSS], ύδραργυρου [b MSS], τηξεως – ἐχων (lege ἔχουσα) αἰθάλας [gg MSS], βαφας και φρούμας [sic MSS; lege φούρμας] ἀπο βροντησιου – ὠσατος και λίθων πρασινων, και λυχνιων, και ἐτέρων παντιων [sic] χρωμάτων, και μαργάρων και δερμάτων ἐρυθροδανσις [lege ἐρυθροδανσεως] βασιλικων. Ταύτα δὲ πάντα γίνονται ὑπὸ υδάτων θαλασσίων [y MSS], ὕδων [A MSS], δια τέχνης μεταλλικης.

“Book on metals and alchemy dealing with the making of gold, the making of silver, the solidification of mercury – it includes also vapours, dyes, and the hollow moulds made of copper – as well as green stones (emeralds), and rubies, and all the other colours, and pearls, and the red dyeing of royal leathers. All these (techniques) are based on sea waters, on eggs, according to the art on metals”.
\end{quote}

This passage occurs in other alchemical manuscripts as well: it seems to work as an erratic textual block moving in different positions within four different collections. In MSS Parisinus gr. 2327 (fol. 240v24-240v5) and Laurentianus 86,16 (fol. 219v8-17) - - that are, the oldest MSS preserving this short text -- it is copied immediately after an excerpt from the work of the above-mentioned philosopher Anonymous (CAAG II 436,19-437,13). In their edition, Berthelot-Ruelle arbitrarily published this passage within the section devoted to Zosimus’ writings (CAAG II 220,11-16). However, in a footnote, Berthelot suggested identifying the text with either the title or the preface of

30 See Bidez 1928, 1-47; Katsiampoura 2008.
a Byzantine handbook of practical chemistry dating between the eight and the ten century, which probably included several recipes on a wide set of techniques (such as gold-making, silver-making, the making of precious stones, and so on). The opening position of this passage in the Meteora and Elassona MSS seems to confirm this interpretation: in the two manuscripts the text introduces to an extent the technical information preserved in the collection, whose structure was praised in the previous passage taken by Psellus. The two texts seem to complement each other, providing a general description of the structure and the practical contents of the alchemical ‘book’ that was copied down in the two manuscripts.

The recipe-book in the Meteora manuscript

Some of the techniques mentioned in the introductory passages analyzed above (especially in the second one) are clearly described in the long collections of recipes, which is handed down in the last part of the Meteora MS. This collection largely overlaps with the recipe-book published in CAAG II 321.1-337.13, which was based on MS Parisinus gr. 2327, the only testimony of this book known so far. The manuscript hands down 57 metallurgical recipes under the general heading: ἑρμηνεία σὸν θεοῦ τῆς τιμωστάτης καὶ πολυφήμου χρυσοχοικῆς, “With the help of God, explanation of the very precious and famous art of goldsmiths”. A few of these recipes occur in a third manuscript as well, the Laurentianus 86,16 (= L), at fol. 253v-256r and fol. 286v-290v. The first section includes two recipes which coincide with CAAG II 336,12-337,9 (= L, fol. 253v1-254r12 ὑδωρ πιστῆς οἰκονομίας) and CAAG II 337,10ff. (= L, fol. 254r12-256r9 καὶ ἄλλος φησίν); the second section includes 15 recipes, six of which coincide with six recipes edited in CAAG:

1. L, fol. 286v1-16, ἄλλος μέθοδος μυστικῆ = CAAG II 332,1-11
2. L, fol. 286v15-187r20 ἔτερον ὑδωρ θείον = CAAG II 332,12-333,6
3. L, fol.287r21-287v12 ὑδωρ ἵνα ἐκβάλης χρύσομαν ἀπὸ ύσημην = CAAG II 333,7-17
4. L, fol. 287v12-288r3 ἔτερον ὠσαῦτος = CAAG II 334,18-27
5. L, 288r3-12 λαγάρισμαν χρυσαφίου = CAAG II 333,28-334,6

31 See CAAG III 360.
The remaining 9 recipes of this section (fol. 288v3-290r16) do not coincide with any of the CAAG recipes and have not been edited so far.33

Against this picture the Meteora MS stands out as the testimony preserving the richest selection of recipes, which is opened by five recipes (not grouped under any general heading) that are not handed down in the \textit{Parisinus} and that only in one case overlap with the selection preserved in the \textit{Laurentianus}. A preliminary edition of these five texts is provided below:

(1) 180v10-181r4 Περὶ χρυσογραμμίας σιδήρου
Melánisòn <ἐν> ἄρχη34 τὸ σίδηρον· πῦρσον αὐτὸ καὶ τρίψον τὸ σίδηρον μετὰ στέατι αἰγείῳ καὶ ἀλειψον αὐτὸ μὲ χρυσέλαιον καὶ γίνεται μελάνον· εἴθε οὕτως σκίασον κλαδίν ἢ γράμματα καὶ καθάρισαι αὐτὰ μετὰ τὸ ὑπέρον καὶ στυψίσαι τὰ γράμματα μὲ τὴν στῦψιν· εἴθε οὕτως χρύσον [χρύσον MS] αὐτὰ ὀσπερ τὸ ἂσεμν μὲ τὸν ὑδράργυρον καὶ ἄκρως πῦρον· καὶ βουρτζίζει35 καὶ χρύσωνε.36

How to write golden letters on iron
First make the iron black: set it on fire, break iron into pieces with fat of goats, and anoint it with the oil of Christ, and it will turn black. Then use it to sketch a twig37 or letters and cleanse them (the drawings?) with a

33 For an introduction to this section, see the preliminary description by Hammer-Jensen in \textit{Zuretti} 1927, 57-58 (where not all the recipes are recorded): (1) \textit{L}, 288v3-10 περὶ τοῦ ποιήσα κόλλαν καλήν; (2) 288v10-13 ἄλλον; (3) 288v13-289v3 ἄπερον; (4) 289v3-17 ἄπερον κόλλας; (5) 289r18-289v3 ἄπερον; (6) 289v3-10 ἄπερα κόλλας; (7) 289v10-21 ἤρμηνεια τῆς ἔλαιοκονίας; (8) 289v21-290r16 ἄλλον; (9) 290v9-16 ἄλλον

34 The MS reads μελάνισον ἄρχη. The standard meaning of μελανίζω in classical Greek is ‘to be black or blackish’ (LSJ3 1095), which seems to be maintained in Byzantine and Modern Greek too (see Trapp 991, s.v. μελανίζομαι, and Dimitrakos 4540 respectively). An active sense, on the contrary, seems to be necessary in the recipe.

35 Trapp 292, s.v. βουρτζίζει, ‘(ab)bürsten’: DuCange I 222, s.v. βουρτζίζει, polire; see CAAG II 329,19: θέτες εἰς δόξα νυφρόν καθαρὸν καὶ βουρτζίζουν, "mets dans l’eau froide et brosse" (CAAG III 315); CAAG II 331,23 ἔπειτα τὸ ἄσπρον καὶ βουρτζίζουσαν τὰ ἀκρώτα (sic), "ensuite, blanchis et polis ce qui n’a pas été travaillé" (CAAG III 317).

36 The forms πορὼν and χρυσόνεν are Byzantine (and Modern Greek) equivalents for πυρός and χρυσός (see Colinet 2010, xxvii). The MS reads πύρων and χρύσων; the spelling with omicron is maintained by Berthelot in his editions of late alchemical texts: for πορὼν see CAAG II 392,15 (cf. DuCange I 1277, s.v. πορὼν, urete); for χρυσόνεν, see CAAG II 328,4 and 10; 329,1 and 10.

37 On this practice, see below, recipes n. # (= CAAG II 327,26) Περὶ τοῦ χρυσόστατος ζῶος εἰς κόλλαν ἢ κλαδίν ἢ ἄλλον ἄπερον καὶ τὸ ἄλλον ἄρχωστον, to be translated as suggested by Stephanidès 1922, 307: "Sur la manière de tracer dans une coupe des animaux ou un rameau ou toute autre chose dorée et de laisser le fond non doré"; recipe n. # (in CAAG II 331,7): ἔπειτα τὸ ποιῆται σῳδή καὶ φύλλα καὶ κλαδία καὶ ἄσπρον κτλ., “puis, fais-en des fils, des feuilles, des rameaux, des étoiles, etc." (CAAG III 316).
In the earlier alchemical texts, the term στύψις referred to the process of in an astringent substance (see Halleux 1981, 44-45); on the other hand, in later alchemical texts, στύψις is often used to refer to the astringent substance itself (see, e.g., Colinet 2010, 140 s.v. στύψις). The term ἐλαιοκονία refers to a 'plaster made from lime and oil' (LSJ\ 527), which is mentioned by Zosimus among other substances used to seal the different parts of distillatory devices (Zos. IX 13 Mertens). Stephanus too mentions this compound in his commentary on Hippocrates' Aphorisms (in Aph. IV 1 = II 208,24-26 Westerink): οὕτως οὖν <καὶ> οἱ θρασυγοι πούσσαν τοὺς γὰρ σαλήνας κατασφαλίζουσιν καὶ ἐμποτοῦσιν αὐτὸς ἐλαιοκονία ἢ κηρομαρμάρῳ καὶ τοῖς τοιούτοις, ἵνα μὴ ἀπόληται τὸ ὄνεον, "Hydraulic engineers do the same: when connecting water-pipes, they caulk them with a mixture of oil and lime, or wax and ground marble, etc., so that no water is lost." A Graeco-Latin glossary records the term ἐλαιοκονίων, which is interpreted as malla (II 294 Loewe).

In this passage L reads εἰς κόρην.

40 The same reading occurs in L (δόροις). My correction (δέρνε; see Trapp 348, s.v. δέρνεν, 'schlagen, peitschen') is based on the comparison with the recipe 11 of the MS Holkamicus 109 (Colinet 2010, 44, H11, § 3, II. 15-17): καὶ δέρνε το καλά ἐξ όσου νί γένη ὁποῖν ζωμάρι, "et battez bien le mélange jusqu'à ce qu'il se forme une sorte de pâte".

41 In this passage L reads μιστροθλίβους. I suggested to read the verb μιστροσθλίβω, from μύστρον, 'spoon', and σθλίβω, 'to rub' (see LSJ\ suppl. 274, s.v. σθλίβων; DuCange II 1363, s.v. σθλίβειν). For σθλίβω, see, e.g., CAAG II 323,4 εἰδ' οὕτως σθλίβουσαν αὐτῷ μετὰ ἐλάιωκον, "et frotte avec de la cendre d'olivier" (CAAG III 307); CAAG II 323,17 καὶ σθλίβουσαν μετὰ κάλαμου, "puis frotte avec une plume" (CAAG III 310); CAAG II 334,26 σθλίβουσαν μὲ λαθάριν ἢ μὲ λυκοῦδόντι, "polis avec une petite pierre ponce, ou une dent de loup" (CAAG III 320).
well. Take this decoction and mix lime with crushed and sifted bricks, with hen eggs, and hemp or flax (?),43 and mix well all the ingredients together. Then anoint (the distillatory device?) and use a spoon to rub the surface (of it) with linseed oil.

(3) 181v3-15 εἰς τὸ χρυσόσασι γράμματα

Θείς πάμπανυ πετάλην αέραν· ξυλόκουκα γ’ καὶ υδάργυρον [ξυλόκουκον] α’· τρίγον πρώτον τὸ χρυσάφην εἰς μάρμαρον κοκκίνον· καὶ στάξει πρώτον χριστέλαιον καθαρὸν ἄδολον [ἀδοῦ- MS]· μία ή δύο στάλαγμοὺς· καὶ ἔπειτα θέει τὸν υδάργυρον καὶ ἐνωσάται ἁμα’· καὶ τρίγον ἀμφότερα· πλήν μετὰ προσοχῆς· καὶ εἰς τόπον νὰ μηδὲν πνέει ἀήρ· θές δὲ καὶ κρομμυδίου [κρομι-] ζωμόν· εἴτε βαλῶν ὅπου θέλεις θέσει· σύνασε·44 αὐτὸ μὲ πτερόν· καὶ ὅταν θέλης γράφει καὶ χρύσονε.

To gild letters

Set a leaf completely made of copper; siliqua, 3 parts and mercury, 1 part; first break the gold into pieces on a scarlet marble; and first drip (shed drop by drop) unadulterated pure oil of Christ, 1 or 2 drops; then set the mercury and amalgamate together; break both ingredients into pieces, but be careful, do not do it in a ventilated place. Put the juice of a small onion as well; apply it in the point (of the leaf) that you prefer, collect it with a feather and, when you want, write with golden letters.

(4) 181v16-182v9 ἄλλον

Λαβῶν ἄσβεστον κίτρινον ὅσον θέλης· καὶ ἄλας ἀμμονιακόν· καμπάνος ἄλλο τόσον· καὶ τρίγον αὐτὰ λεπτῶς· καὶ θές τα εἰς τζουκάλιν45 μικρόν· καὶ σκέπασε τα μὲ πηλὸν τῆς σοφίας· καὶ θές ἐν φουρνείῳ λίῳ καὶ ἁς σταθῇ μίαν νύκταν· καὶ τὸ πρῶτον αὐτὸν καὶ ἐσαν ἐνα [ήνα MS] ψυχρανθήται· καὶ ἄρον ἐκ το τζουκάλιν καὶ ζύμωσε το· καὶ πρόσθες ἄλας

43 The expression ἢ λύων [λύων L] seems to refer either to a different name for hemp or to an equivalent substance (substitute); many Byzantine lexica often link λίνον to κάνναβις: see Pollux, Ονομ. VII 72.6-7 καὶ ἡ κάνναβις δ’ ὃμιον ἐστὶ λίνῳ; Hesych. κ 673,1 κάνναβις ἐστὶ δὲ φυτόν τι λίνῳ ὃμιον.

44 σύνασε as well as σύναζε are byzantine forms for σύναγε.

45 The term (from Latin zucca) refers to an earthen pot; see DuCange II 1574, s.v. τζουκάλι (τζουκάλι τζουκάλον) olla fictilis; Colinet 2010, xlv.
Take as much yellow lime as you want, and ammoniac salt, and the same amount of kampanon; grind them finely; put them in a small earthen pot; cover them with the lutum sapientiae and set them in a small furnace and left it there for one night. In the morning take it and let it get cold. Take (the substance) out of the pot and knead it, and add another equal amount of ground ammoniac salt; perform the same operation you did before with the lutum (sapientiae), so that no vapour gets out, and set again (the pot) in a small furnace; perform the entire process so that it turns into the previous kampanon. Then take it and put in in a vessel made of gypsum in order to work it; put it in shady place for one night, then pour part of these waters on silver (placed) on charcoals; when you notice that the waters evaporate, pour more water so that the silver remains covered; (do it) until all the water has evaporated, then mix the silver with

46 See Trapp 430, s.v. ἀβραῖνον (εὐβραῖον <ἐκβραῖον) ‘herausgehen’.

47 This form is an aorist imperative from ῥίξω (DuCange II 1302), Byzantine cognate of ῥίπτω, ‘to throw, to cast’ (Colinet 2010, xxxvi). The form ῥίξε occurs in an alchemical recipe preserved in MS Holkhamicus gr. 109 (H5 in Colinet 2010, p. 50, l. 7: καὶ ῥίξε τὰ μέσα ἐς τὸ ἱπποῦ ὅπου ἔχει τὸ νερὸν τὸ καθαρὸν, “jetez-le dans le ballon qui contient le liquide pur”).

48 DuCange II 1292 records the form ῥηγλωχύτης, “vas chymicum in regulae forman diductum, in quo liquatum metallum effunditur”. Also see Trapp 1502, s.v. ῥηγλόν, ‘Stange, Leiste’.

49 The verb φυράω (‘to knead’ in ancient Greek; see LSJ 9730) seems to have taken on the same meaning than φυραίνω, ‘to be reduced, decrease, diminish in size/weight’ (see Dimitrakos 7730); I translated it as ‘to evaporate’, thus following Colinet’s translation of rec. 2 of the MS Holkhamicus 109 (Colinet 2010, 21): καὶ τότε βράσα αὐτὸς ἐκεῖ ὅπου νά φυράσῃ τὸ ἡμίσι, “faites bouillir jusqu’a ce que la moitié du liquid s’évapore”. Lagercrantz (1924, 57) commented on φυράσῃ: “‘abate’, cf. ingr. φαινόν: ἀπομειοῦμαι, ὕφισται ἀπομειόων φόρα ἐλέπτωσις ποσοῦ, βάρους ή ἄξιας (Hépites, Lexicon). Exemplum vetustius non novi.”

THALES-DACALBO
pure copper, and melt them together in a melting-pot; collect them and melt them in an ingot mould; take it and it will be suitable for any purpose.

(5) 182v9-13 ἄλλον

λάβε κασσίτερον καὶ θές εἰς χωνίον εν τῇ πυρᾷ καὶ ὅταν λυθῇ, χύσον αὐτὸ εἰς χύλον πηγάνου καὶ κάμνῃ ἄγάπη· ὁ νοῦν νοεῖτο.

Take tin and put it in a melting-pot on fire; when it melts, pour it on rue juice; do hard work with pleasure. Who is clever will understand.

After this point, 59 recipes follow in the Meteora MS, which are grouped under the general title (fol. 183v13-15): ἐρμηνεία σὸν Θεῷ τῆς τιμιωτάτης καὶ πολυφήμου χρυσοχοικῆς [χρυσοχοικῆς MS]. This recipe-book substantially overlaps with the version edited by Berthelot-Ruelle, except for the omission of four recipes – namely, CAAG II 323, 19-26; 324,1-6; 336,15-337,9; 337,10-11 – and the inclusion of a few texts that are not in the Parisinus. I list below the titles of the Meteora MS recipes and provide a preliminary transcription of two complete recipes (rec. 3 and 29), whose differences with respect to the versions edited by Berthelot-Ruelle are recorded in footnotes.

(1) 182v15-183v3 ἀρχ(ή) εἰς λαγάρισμα χρυσαφίου [χρυσαφήου MS], “Incipit. To purify gold” (= Recipe 1 in CAAG II 321,3-322,3: Περὶ τοῦ λαγαρίσαι τὸ χρυσίον).

(2) 183v4-15 Εἰς τὸ λαγάρισμα τοῦ ἀσημίου [ἀσημείου MS], “To purify silver” (= Rec. 2 in CAAG II 322,4-10: εἰς τὰ λαγαρίσαι ἀργυρὸν).

(3) 183v16-184v4 ἐρμηνεία τοῦ χρυσώματος (= Rec. 3 in CAAG II 322,11-23: same title).

Λαβὼν χρυσάφιν ἔξαγιον α’, σφύρισον αὐτὸ ἐν τὸ ἁκμόνι ὀσπερ λεπτόν, καὶ κατάκοψον, καὶ θές ἐν τῷ χωνίῳ ἐν τῇ πυρᾷ ὅστε ἐρυθρία.

50 CAAG II 322,11: χρυσίον.
51 CAAG II 322,13: ἐρυθρία.
Kai ἐκτετε βάλε\\(^{52}\) μέσον τὸ χρυσάφιον\\(^{53}\) νὰ ποιήσης <ἐ>ος ὄραιν [ἄρα MS] πατέρ ἡμῶν. Καὶ βάλλων διάργυρον εἰς τὸ χωνίν\\(^{54}\), καὶ μίξον, καὶ ἄρον ἐκ\\(^{55}\) τοῦ πυρῷ· καὶ βαλὼν ὅδωρ εἰς χηβάδιν [χω- MS], θὲς εἰς [ἡς MS] κάρβουνα ξωτανα μέσον· καὶ σβέσον αὐτὰ· εἰδ' οὕτος [εἰλοῦτος MS] χύσων τὸ χρυσάφιν μέσον τοῦ κο<γ>χυλίου ἢ εἰς τὸ χηβάδιν [χω- MS]\\(^{56}\) καὶ ἄρον αὐτό· καὶ πλύνων καλὸς ἐν τῇ χειρί σου· καὶ βαλὼν ὑδράργυρον ἐτερον, θὲς αὐτό εἰς τὸ ὅδωρ τοῦ κοκκυλίου, καὶ διαργύρισον [∙∙∙γύρησον in CAAG] τὸ ἁσήμιν [καὶ] μὲ νεράντζι\\(^{57}\). Καὶ ἐκτετε χρύσῳσε\\(^{58}\) μὲ τὸ χρυσωτηρίον. Καὶ βαλὼν αὐτό ἐν τῇ πύρᾳ\\(^{59}\) κατὰ πέντε καὶ ἔξη φοράς, καὶ ὅταν ἢδης τὴν χρώσαν ὅτι ἐξεβαίνει, πύρωσον πλέον, καὶ θὲς τῷ ὑδάτι· εἰδ' οὕτως σθλίβωσον αὐτό [scripsi post CAAG II; σκλήβοσον αὐτὸ MS], καὶ πάλιν πύρωσον\\(^{60}\), θὲς ἐν τῷ ὑδάτι.

Explanation of (how to make) a gold object

Tale gold, one exagion; hammer it on an anvil to make it thin, cut it into pieces and put it in a melting-pot on fire, so that it turns reddish. From this moment put the gold in the middle of the crucible, so that you work it for the time of a Pater Noster. Then add mercury in the melting-pot, mix, and take it away from the fire. Pour water in a container, place it on burning charcoal, and quench them. Then melt the gold in the shell or container. Remove it and wash it in your hands. Add further mercury, pour it in the water of the shell and apply this mercury on silver with an orange (?); then gild it with a gilding tool. After setting it on fire for five or six times,
when you see that the color comes out, burn it a bit longer, then put it in water; then rub it, burn it again, and put it in water.

(4) 184v5-185r2 χρύσωμα [χρύσωμα MS] ἄλλον κλαπωτὸν61 [κλαπόντον MS], “Another gold object suitable for gold wires” (= Rec. 4 in CAAG II 322,24-323,6: same title).

(5) 185r2-185v7 ἐρμηνεία εἰς τὴν ἔγκαψιν, “Explanation of an enameling technique” (= Rec. 5 in CAAG II 323,7-18: ἐρ. εἰς τὴν ἔγκοψις)62

(6) 185v7-18 ἐρμηνεία ἑτέρα τοῦ σαπουν(ίου), "Another explanation of (how to make) soap" (= Rec. 863 in CAAG II 324,7-13: ἐρμηνεία ἑτέρου σαπουνίου).

(7) 186r1-9 ἐρμηνεία τῆς βασιλικῆς κολλήσεως64 [κώλησις MS] τῆς χρυσῆς, “Explanation of the imperial technique to solder gold” (= Rec. 9 in CAAG II 324,14-18: same title, except for the omission of τῆς χρυσῆς)

(8) 186r10-186v2 περὶ τῆς βασιλικῆς κολλήσεως [κώλησις MS] τῆς ἄργυρης [-εἰς MS], “Explanation of the imperial technique to sold silver” (= Rec. 10 in CAAG II 324,19-24: same title)

(9) 186v3-12 ἄλλη ἐρμην(εία) εἰς τὴν ἄργυροκόλλησιν [ἀργυροκόλλησιν MS], "Another explanation of how to sold silver" (= Rec. 11 in CAAG II 324,25 – 325,2: ἄλ. ἐρ. τῆς ἄρ.)

61 See Trapp 835, s.v. κλαπωτός, '(gold)bestickt für Golddraht'; DuCange I 659.
62 We must note that the Parisinus gr. 2325, fol. 281r14 reads τὴν ἔγκαψην. In the comment on this recipe (CAAG III 309, n. 3) we read: “Il s’agit sans doute d’une operation d’émaillage, désignée par le mot ἔγκαψην, ἔγκαψην ou ἔγκαψιν”.
63 Rec. 6 (CAAG II 323,19-26 : ἐρμηνεία τοῦ σμάρδου) and rec. 7 (CAAG II 324,1-6: ἐρμηνεία τοῦ σαπουνίου) are omitted in the Meteora MS.
64 The genitive κόλλησις would be possible as well, at least for the form κολλήση (Dimitrakos 4000, s.v. κόλλησις).
119

(10) 186v12-187r16 ἄλλη κόλλησις [κόλλυσις MS] ἐγρηγόρη [ἐγλη- MS]· ἢ ἀλαμάρσα, “Another quick soldering, the alamarsa” (= Rec. 12 CAAG II 325,3-13 ἢ ἄλη ἢ ἀλαμάρσα).

(11) 187r17-187v7 ἐρμηνεία νά ποιήσης χρόαν [χρῶαν MS] χρυσαφίου, “Explanation of how to produce the colour of gold” (= Rec. 13 in CAAG II 325,14-18: ἢρ. εἰς τό ποιήσαι χρ. χρ.).

(12) 187v7-5 εἰς τό ποιήσαι χρόαν [χρῶαν MS] ἐν ἀργύρῳ σκεύει χρυσωμ(ἐνην) [χρυσο- MS], “To give a golden colour to an silver object” (= Rec. 14/1 in CAAG II 325,19-24)

(13) 187v15-188r3 εἰς τήν ἐγκαψιν (-ην MS), “To enamel” (= Rec. 14/2 in CAAG II 325,24-26)

(14) 188r3-7 εἰς τό γανῶσαι [τό λανεῖς MS] ἄργυρον, “To make silver shiny” (= Rec. 15 in CAAG II 325,27-326,2: same title).

(15) 188r7-16 σημείωσις [-είς MS], “Indication” (= Rec. 16 in CAAG II 326,3-7: same title)

(16) 188r16-188v5 εἰς στάλαγμα,65 To produce a distilled substance (= Rec. 17 in CAAG II 326,8-11: εἰς μάλαγμα)

(17) 188v5-189r13 νά ποιήσης [-είς MS] φουρμάς,66 “To make hollow moulds” (= Rec. 18 in CAAG II 326,12-26: περί τοῦ ποιήσαι φ.)

(18) 189r13-189v7 Περί χρυσογραμμίας, “On gold writings” (= Rec. 19 in CAAG II 32327,1-8: Π. χρ. ἢτερον)

65 The reading Στάμ in the MS has been interpreted on the basis of the last sentence of the recipe, which reads: καὶ γίνεται ἄληθινὸν στάλαγμα (CAAG II 326,10-11 reads καὶ γίνεται ἄληθινὸν μάλαγμαν).
66 On the term φουρμά (and other Byzantine technical terms related to metallurgy), see Merianos 2014, 252, and Papathanassiou 2002, 123-125.
(19) 189v8-190v1 διήγησις νὰ ποιήσης [-τς MS] χρυσά κεφάλα(ια) εἰς βιβλίον, “Description of how to write gold capital letters in a book” (= Rec. 20 in CAAG II 327,9-25: Περὶ τοῦ ποιῆσαι χρ. κεφ. εἰς β.)

(20) 190v2-10 διήγησις ὅτι νὰ θέλῃς χρυσώσαι [-ός MS] ζώα· ἢ κούπ(αν)· ἢ κλαθήν· ἢ ἄλλον ἔτερον· καὶ τὸ ἄλ<λ>ον ἅχρυσωτον, “Description of how to draw golden animals, or a (golden) coup, or a golden twig, or something else, without gilding the rest (of the object)”67 (= Rec. 21 in CAAG II 327,26-328,4: περὶ τοῦ χρυσώσαι ζώα εἰς κούπαν κτλ.)

(21) 190v10-11 Περὶ τῆς ἐγκαύσεως, “On enameling”68 (= Rec. 22 in CAAG II 328,5-6: same title)

(22) 190v12-191r1 εἰς τὸ χρυσώσαι [-ός MS] ζώα εἰς κούπαν· καὶ ὁ κάμπος νὰ ἔναι ἀσπ(ρος), “To draw golden animals on a coup by leaving its bottom white” (= Rec. 23 in CAAG II 328,7-10: same title)

(23) 191r2-5 εἰς τὴν χρυσῆν τὴν κόλλησιν [κόλλησιν MS], “To solder gold” (= Rec. 24 in CAAG II 328,11-13: εἰς τὴν χρυσοκόλλησιν)

(24) 191r6-16 περὶ τοῦ χρυσώσαι χαλκὸν μετὰ ἄσημιν, “On how to gild copper with silver” (= Rec. 25 in CAAG II 328,14-20: Π. τ. χ. χ. με τὸν ἄσημον)

(25) 191r17-191v11 εἰς τὸ χρύσωμαν τοῦ ἄερος τοῦ μαλάγματος, “To (make) a gold object made of a amalgam of bronze (?)”69 (= Rec. 26 in CAAG II 328,21 – 329,1: περὶ τοῦ χρυσώματος τοῦ ἄ. τοῦ μ.)

67 See above.
68 See above.
69 See Stéphanidès 1922, 308, who explains: “le ἀερ μαλάγματος est le ἀερ χρυσός (CAAG II 324, 22), c’est-à-dire des feuilles très minces (aériennes) d’or (l’oripeau).”
Issues on Greek Alchemy

(26) 191v12-192r3 κόλλησις [κόλλωσιν MS] ἀπὸ κοπὴ ῥίνη [-οί MS], “Soldering if (??)” (= Rec. 27 in CAAG II 329,2-7: κόλλησις ἀνκοπυρίνη)

(27) 192r3-7 δὴν χρυσώνης ἀσήμιν [-ήμην MS] καὶ οὐδὲν πιάνη [-εί MS], “If you gild solver and nothing holds” (= Rec. 28 in CAAG II 329,8-10: no title)

(28) 192r8-13 εἰς τὸ χρυσώδασι [-όσε MS] ζῶα εἰς κούπαν· καὶ ὁ κάμπος ἀχρύσαςτος, “To draw golden animals in a coup and keeping its bottom not gilded” (= Rec. 29 in CAAG II 329,11-14: εἰς τὸ χρ. ζ. εἰς κάμπον κούπας καὶ ὁ κ. ἐναι ἄγ.)

(29) 192r13-192v5 εἰς τὸ δῶδαρ χρόαν [χρόω- MS] εὐμόρφην (sic) εἰς ἅσημιν [-ήμην MS] χρυσώμενον (= Rec. 30 in CAAG II 329,15-19. περὶ τοῦ ποιῆσαι χρόαν όραιοτάτην εἰς ἅσημον χρυσώμενον)

‘Ἐπαρον τιάφην μέρη γ’, καὶ τρυγίαν καθαράν ἀπὸ Μονοβασίας μέρη β’, καὶ ᾧ μέρος α’, καὶ τρίψουν καλῶς ὁ βράσουσ’ καλαί καὶ γεύσουσ’ ὁ Μονοβασίας μέρη β’, καὶ ὁ βραστὸς στοίχημαν τότο, θές εἰς νεφόν κρίον καθαρόν, καὶ βούρτζισον [-ήζον MS].
To give a beautiful colour to silver.
Take sulphur, 3 parts, pure lees of Monemvasian wine, 2 parts, and salt, 1 part; grind them well and boil them well in water. Then put silver in the middle and (keep it) for the time of a Pater Noster. Then remove it, put it in pure cold water, and brush (it) off.72

(30) 192v5-13 δὴν σκάζῃ [-εί MS] τὸ ἅσημιν [-ήμην MS], “If silver is defective” (= Rec. 31 in CAAG II 329,20-24

(31) 192v13-193r1 εἰς τὴν κόλλησιν [κόλλωσιν MS] τοῦ σμάρδου,73 “To solder an enamel”

70 CAAG II 329,18: ἅσημα.
71 CAAG II 329,19: ἀδωρ ψυχρὸν.
72 See Merianos 2015, 255.
73 See DuCange II 1404, s.v. σμάγδος, encaustum, pigmentum metallicum.

THALES-DACALBO
Issues on Greek Alchemy

(32) 193r1-7 εἰς τὸ ποιῆσαι σύρμα [σή- MS] κούφιον, “To make a thin (metallic) wire” (= Rec. 33 in CAAG II 330,1-5: Περὶ τοῦ π. σύρμαν κ.)

(33) 193r8-17 νὰ κάνῃς [-ς MS] ἐγκαυσιν, “To perform an enameling technique” (= Rec. 34 in CAAG II 330,6-11 (Περὶ τοῦ ποιῆσαι ἐγκαυσιν)

(34) 193r18-193v8 εἰς τὸ ποιῆσαι χρῶν [χρω- MS] ἐ<δ>μορφόν εἰς χρυσομένον ἀσήμιν [-ήμην MS] “To give a good colour to gilded silver” (= Rec. 35 in CAAG II 330,12-17: Περὶ τοῦ ποιῆσαι χρ. εὐμόρφην εἰς χ. ἀσήμιν)

(35) 193v8-17 εἰς τὸ ποιῆσαι κόλλησιν [κόδςιν MS] τῶν κακκαίων εἰς λούτρον καὶ εἰς <σω>λήναρια 74 [λινάρια MS], “To solder small pots (to make) a washbasin and tubes” (= Rec. 36 in CAAG II 330,18-23: Περὶ τοῦ ποιῆσαι κόλλησιν τῶν κακκαίων καὶ εἰς σουλινάρια λούτρον)

(36) 193v18-194r4 εἰς τὸ λαμπρύναι μαργαρίτην, “To make a pearl shiny” (= Rec. 37 in CAAG II 330,24-27: same title)

(37) 194r4-6 ἔτερον εἰς αὐτὸ, “Another recipe for the same purpose” (= Rec. 38 in CAAG II 330,28 – 331,2: ἄλλον)

(38) 194r7-195v3 ἔξηγησις τῆς τιμωτάτης καὶ ψυλωτάτης [ψυ- MS] καὶ ἀχειροθέτου (? αχειρο MS) τέχνης τῶν συρμάτων τῆς χρυσοχοικῆς τέχνης, “Explanation of the very precious and easy and divine (i.e. not belonging to human beings) art of (making metallic) wires for the art of goldsmiths” (= Rec. 39 in CAAG II 331,3-28: Περὶ τῶν συρμάτων τῆς χρυσοχοικῆς τέχνης)

74 See DuCange II 1514, s.v. σωληναρίον (or σωλν-), tubus.
(39) 195v3-196r24 σμάρδωμαν ἄλλον, “Another enameled object” (not included in CAAG)

(40) 196r24-196v5 ἐτέρα δουλία, “Another work” (= Rec. 40 in CAAG II 332,1-11: ἄλλη μέθοδος μυστική)

(41) 196v6-197v3 ἔτερον ὁδώρ X [i.e. θείου/θείον], “Another (recipe for) sulphur/divine water” (= Rec. 41 in CAAG II 332,12–333,6: same title).75

(42) 197v4-198r4 ἔτερον θείον X [i.e. θείου] ὁδώρ νὰ ἐ<κ>βάλης τὸ χρύσουμα [-ωμα MS] ἀπὸ τὸ ἄση(μιν), “Another sulphur/divine water to divide gold from silver” (= Rec. 42 in CAAG II 333,7-17: “Ὑδωρ ἵνα ἐκβάλης χρύσουμαν ἀπὸ ἄσήμην)

(43) 198r4-198v5 ἔτερον εἰς αὐτὸ, “Another recipe for the same purpose” (= Rec. 43 in CAAG II 333,18-27: ἔτερον ὀσαύτως)76

(44) 198v5-15 λαγάρισμα χρυσαφίου [-φήου MS], “Purification of gold” (= Rec. 24 in CAAG II 333,28-334,6: τὸ λαγάρισμαν χρυσαφίου)

(45) 198v15-199r5 ὁμ(οίον) εἰς ἄσημον [-ήμην MS] χρυσῶ<μενον> [χρυσῶ MS], “The same for gilded silver” (= Rec. 45 in CAAG II 334,7-11: ἔτερον ὁμοίον εἰς ἄσημον

(46) 199r5-8 δόταν σκάζῃ τὸ ἄσήμ(ιν) ἣ [εÎ MS] τὸ χρυσάφιν, “If silver or gold are defective” (= Rec. 46 in CAAG II 334,12-14: same title)

(47) 199r9-13 τὸ πῶς νὰ σταγματίσῃς ἄργυρον, “How to harden silver” (= Rec. 47 in CAAG II 334,15-17: τὸ ποῦ σταγμάτισες ὑδραργύρου)

75 On sulphur/divine water, see Viano 1997; Martelli 2009.
76 On recipes 42-43 see Halleux 1985, 56-57.
(48) 199r13-199v3 ἄλλον, “Another (recipe)” (= Rec. 48 in CAAG II 334,18-21: same title)

(49) 199v3-200r1 εἰς τὸ ποιῆσαι γράμματα χρυσά, “To make golden letters” (= Rec. 49 in CAAG II 334,22 – 335,2: περὶ τοῦ ποιῆσαι γρ. χρ.)

(50) 200r2-13 εἰς τὸ ποιῆσαι ὁραίον χαλκὸν ὡς αχρυσὸν [i.e. χρυσόν], “How to make copper as beautiful as gold” (= Rec. 50 in CAAG II 335,3-10: περὶ τοῦ ποιῆσαι ὁραίοχαλκὸς ὡςπερ χρυσὸν)

(51) 200r13-16 ἔτερον εἰς σαπούνιον, “Another recipe for soap” (= Rec. 51 in CAAG II 335,11-12: Περὶ τοῦ σαπουνίου)

(52) 200r17-200v2 ἄλλον, “Another recipe” (= Rec. 52 in CAAG II 335,13-14: ἔτερον)

(53) 200v2-4 Τὸ ὑαλί [γεαλή MS], “Glass” (= Rec. 53 in CAAG II 335,15-16: ὁ ὑάλος)

(54) 200v4-201r7 εἰς τὸ λευκάν(α) χαλκόν, “To whiten copper” (= Rec. 54 in CAAG II 335,17 – 336,3: Περὶ τοῦ λ. χ.)

(55) 201r7-201v8 εἰς τὸ ποιῆσαι χαλκὸν ὡςπερ α [i.e. χρυσόν], “To make copper like gold” (= Rec. 55 in CAAG II 336,4-14: Περὶ τοῦ π. χ. ὡς. χρ.)

(56) 201v8-202r7 ἕτερα ἐρμηνεία εἰς τὸ ἄξιγγοσάπουνον [ἄξηγγοσάπουνον MS],79 “Other explanation for a fatty soap” (not included in CAAG)

77 The alchemical sign of copper is hardly readable in the MS.
78 Rec. 56 (CAAG II 336,15-337,9: ὄναρ πιστῆς οἰκονομίας) and rec. 57 (CAAG II 337,10-11: καὶ ὄνομας φηνίν) are omitted in the Meteora MS.
79 ἄξηγγοσάπουνον is a hapax that is not recorded in the lexica. The term ἄξιγγο/ἀξιγγον (Byzantine spelling for ἄξούγγον, ‘animal fat, tallow, grease’; see DuCange I 94) refers to the main ingredient of the soap (σάπων or σαπούνον), whose preparation is explained in the recipe.
(57) 202r7-202v6 εἰς τὸ ποιῆσαι φούρμας, “To make hollow moulds” (not included in CAAG)

(58) 202v7-12 Sine titulo (not included in CAAG)

(59) 202v13-17 Sine titulo (not included in CAAG).

REFERENCES

Abbreviations

Dimitrakos - Δημητρακού, Δ. (1953), Μέγα λεξικόν όλης της Ελληνικής γλώσσης. Αθήνα: Έκδοσες Δόμη.

DuCange - Du Fresne C., seigneur Du Cange (1688), Glossarium ad scriptores mediae et infimae graecitatis. Lyon.

Secondary literature

Bidez, J. (1928), Michel Psellus, Épître sur la chryopoée, oposcules et extraits sur l’alchimie, la météorologie et la démonologie (Catalogue des manuscrits alchimiques grecs, 6). Bruxelles: Maurice Lamertin Éditeur

Issues on Greek Alchemy

Skouvaras, E.A. (1967; Σκουβαράς, Ε.Α.), Ολυμπιώτισσα. Περιγραφή και ιστορία της Μόνης. Η βιβλιοθήκη και τα χειρόγραφα. Κατάλογος των χειρογράφων και χρονικά σημειώματα, ακολουθία Παναγίας της Ολυμπιωτίσσης, έγγραφα εκ του αρχείου της Μόνης 1336-1900. Αθήναι, Ακαδημία Αθηνών.

Sophianos, A.Z. (1986; Σοφιανός, Α.Ζ.), Τα χειρόγραφα των μονών Μετεορών, τόμος Γ, τα χειρόγραφα της Μονής Αγίου Στεφάνου, Αθήναι, Ακαδημία Αθηνών.

The relationship between alchemy and natural philosophy in Byzantine times

Gianna Katsiampoura
Institute of Historical Research/
National Hellenic Research Foundation

Introduction
This presentation is a part of a research project in progress about natural philosophy, sciences and alchemy in the Byzantine era. The paper addresses a significant void in the current historiography of science by surveying and mapping a previously unexplored area: the relationship between alchemy and natural philosophy in the Byzantine era after 750 AD (according to historiographical boarders of history of science and culture). Although our aim is to explore the concepts of matter, its characteristics, properties and of course its potential transmutation, within the epistemological, educational, technical and also religious context of this period, and generally we don’t adopt the epistemological tradition of the Great Man of History, our study is based mainly on the examination of the life and works of the scholars who presented works on both natural philosophy and alchemy. This methodological approach is a choice imposed upon, because, among the many difficulties in the study of the relation of byzantine natural philosophy and alchemy is that the sources are very few and fragmentary. However, except of the texts by scholars who wrote on alchemy and natural philosophy, other relevant sources, such as theological and philosophical texts, byzantine dictionaries, chronicles, laws etc., are also examined.
On the other hand, philosophy, the arts, and technology were not separated by clear boundaries, as the surviving sources reveal. So, a clear definition of these disciplines, although is necessary, is very problematic. In addition, the more one examines the

differences among texts, contexts, and even social roles of the Byzantine thinkers, the more one realizes how multiform and versatile this tradition is.²

In this paper the texts under the term “natural philosophy” are the ones having as a main subject the study of nature and the physical universe. Byzantines usually used the terms physica, or physiki akroasis (according to Aristotle), or natural science³, or physikos logos (discourse about nature) according to the definition by the Suida Lexicon, from 10th century, where we are reading: “discourse about nature by philosophers, i.e. about bodies, principles, elements, about universe and space and vacuum” etc.⁴

On the other hand, for the term “alchemy” in Byzantine texts, the term in use was “chymeia” in different forms (χημεία or χημεία or χυμία or χιμία)⁵, or chymeftikos logos (discourse about chymeia)⁶ and its definition, again by the Suida Lexicon, was the following: “the making of silver and gold, which the relative books burned by Diocletian” (here the Lexicon referred to Greco-Egyptian alchemical texts).⁷

Emperor Konstantinos Porphyrogenitus, in 10th century, gives the same definition in his work virtutibus et vitius.⁸ In Byzantine texts the terms “chrysopoiesis” or “poiesis chrysou” or “chrysopoiia” is also in use for the goldmaking, which is the main subject of the Byzantine alchemical texts from the middle Byzantine era and onwards, as we

3 As Michael Psellus wrote: “[Aristotle] was the first which intentionifined the natural science” («[Ο Αριστοτέλης] τὴν φυσικὴν πρῶτον ἑπτάτημα ἀκρίβωσαν»), Boissonade J.Fr. (ed.), Michael Psellus, De Operatione Daemonum, Norimbergae 1838, p. 163.
5 Robert Halleux, Les Textes Alchimiques, Brepols, Turnhout, Belgium 1979, p. 45.
7 «χημία: Η τὸν ἄργυρον καὶ χρυσὸν κατασκευή, ὡς τὰ βιβλία διαφευγόμενας ὁ Διοκλητιανός, ἔκαψεν. Ὄτα δὲ τὰ νεοεμποδιστὰ Ἀγιττοῦς Διοκλητιανός τούτοις ἀνημέρος καὶ φονικὸς ἔχρησατο. Ὄτε δὲ καὶ τὰ περὶ χημείας χρυσὸν καὶ ἄργυρον τοῖς παλαιοῖς αὐτῶν γεγραμμένα βιβλιὰ διαφευγόμενας, ἔκαψεν, πρὸς τὸ μηκέτι πλοῦτον Ἀγιττοῦς ἓκ τούς τοιαύτας προσβῆναι τέχνης, μηδὲ χρημάτων αὐτῶν διαφρονότας περιουσία, τοῦ λοιποῦ Ῥωμαίοις ἀνταίρειν»: Suidae Lexicon, op.cit., c. 3899.
can see from the work by Anonymous from the 7/8 c., Cosmas Ieromonachus from the 11th c., in vernacular Greek, Michael Psellos from the 11th c., Nikephorus Blemmydes from the 13th c.). In addition, references to goldmaking exist in non alchemical texts, such as in Carmina Moralia by Gregory of Nazianzos, while the myth of Hermes, who discovered gold is common not only among the alchemists, as Julius Sextus Africanus, but also among Byzantine chronographers who reproduce his narration.

Alchemy in Byzantine era

The Greco-Egyptian alchemical tradition, according to different sources, was known to the Byzantine scholars from the early period. There are references to alchemy in philosophical, theological, historical texts, etc.

There is a lot of this kind of references. In the category of the philosophical texts, for example, Aeneas of Gaza, a Neoplatonist philosopher who became a Christian and lived in the 5th-6th centuries, in his dialogue entitled Theophrastus about immortality of the soul and the resurrection of the body, accepts that the change of matter is

11 As example, «ἐκ φασμάθου δὲ μέγε θζοχος ἐπέλευσο χρυσός», J.-P. Migne, Patrologiae cursus completus, tome 37, Paris 1862, col. 575. See also cols 914, 967.
possible and uses as an example the making of gold from cheaper metals, such as silver and tin. Aeneas says that in the same way the bodies are joined with the souls.\footnote{14} According to Aeneas, the alchemical process changes the eidos (form) of matter.

About a century later, John of Antioch, a monk in the 7th century, apparently contemporary with emperor Heraclius, composed a chronicle (\textit{Istoria Χρονική}), where he refers to the burning of alchemical texts by emperor Diocletian. As he writes, the reason for the burning was that Diocletian was afraid of the power of money Egyptians could have:

\begin{quote}
\textasciitilde{} Ὄτε δὴ καὶ τὰ περὶ χημείας ἀργύρου καὶ χρυσοῦ τοῖς παλαιοῖς αὐτῶν γεγραμμένα βιβλία διερευνησάμενος ἔκαυσε πρὸς τὸ μηκέτι πλοῦτον Αἰγυπτίους ἐκ τοῖς τοιαύτης περιγίνεσθαι τέχνης, μηδὲ χρημάτων αὐτοὺς θαρροῦντας περιουσία, τὸ δ' λοιπὸν ὢρμαίους ἀνταίρειν».\footnote{15}
\end{quote}

Both Porphyrogenitus and the Suida Lexicon, as mentioned above, repeat this sentence, such us other texts (\textit{Acta St. Procopius}).\footnote{16} The interesting point here is that there isn’t any comment for the ability of the Egyptian alchemists to produce gold or silver.

Another chronicler, George Syncellus, from the 8th century, in his chronicle \textit{Ecloga Chronographia} refers to Greco-Egyptian alchemists commenting on different types of their approach to the transmission of their alchemical knowledge.\footnote{17}

George Malalas, in his work titled \textit{Chronographia}, describes the story of a fake alchemist, John Isthmeos, who, during the reign of Anastasios I, swindled many

\footnotesize{15 C. Muller, \textit{Fragmenta Historicum Graecorum}, vol. IV, Paris 1883, p. 602, par. 145.

\footnotesize{17 17 «Δημόκριτος Αθῆνης ψυχικός ἠκμαίζες ἐν Ἀγίουτο μιμήθης ὑπὸ Ὀστάνου του Μήδου σταυλόντας ἐν Ἀγίουτα παρὰ τῶν τηναύξατα βασιλείων Περσῶν ἄργουν τὸν ἐν Ἀγίουτα ιερῶν. ἐν τῷ ιερῷ τῆς Μέμφεως σὺν ἄλλῃς ἱερατίς καὶ χρηστότητι, ἐν οἷς ἦν καὶ Μαρία τῆς Εβραίας σοφή καὶ Παμμένης, συνέγραψε περὶ χρυσοῦ καὶ ἄργουρο καὶ λίθου καὶ πορφύρας λοξᾶς, ὡμοίως δὲ καὶ Μαρία. ἀλλ’ οὕτωι λῦν Ἰδροκρίτως καὶ Μαρία ἐπιθυμίαν περὶ Ὀστάνου ὡς πολλοὶς καὶ σοφοῖς αἰνήσασι κραύγας τὴν τέχνην, Παμμένους δὲ κατέγνωσεν ἀφρόνους γράφαντος»: Alden A. Mosshamer (ed.), \textit{Georgii Synclii, Ecloga Chronographia}, Teubner, Leipsig 1984.}
silversmiths in Constantinople. After this, the emperor had arrested him and exiled him to Petra. 18 Cedrenus, 19 and other chronographers tell the same story.

Another category of sources is the one referencing alchemy and alchemists. Photius, in his Bibliothèque, makes a synopsis of the work of Olympiodorus and refers to Zosimus. 20

Until the 11th century, the references to alchemy and alchemists show that the interest about them is alive among the Byzantines, as a subject for debate, according to Photius.

Also, in the late eleventh century, in a poem entitled Dioptra, which is in the form of a dialogue between body and soul, the monk Philip Monotropos uses the alchemical process too: just as an alchemist changes lead into gold, in the same manner Christ will change human nature. 21

In our opinion, these texts are important because they show that the principles of alchemy, as Suidas defined it, have a continuous existence in Byzantine thought in a theoretical, not only practical, level.

In addition, there are reports in historical sources for the interest about alchemical practice. For example, the report of ‘Umāra ibn-Hamza (d. 814/815), the ambassador of caliph al-Mansūr (754-775) to the Byzantine court, evokes the alchemical interests of emperor Constantine V Kopronymos (741-775). The report describes that two

experiments in the ambassador’s presence transmuted lead into silver and copper into gold.22

The discourse on matter in Byzantium

The tradition of Aristotelian physics in the Byzantine period is more or less known. The byzantine approach to nature was a Christian version based on Aristotelian works, with some elements of Platonic and Neoplatonic philosophy.23

Here, the discussion will focus on the concept of matter, which was a common topic not only for the philosophers, but also for the theologists. Besides, most Byzantine scholars were both theologically and scientifically informed and they understood that theological beliefs necessarily entailed scientific beliefs and the opposite.24

As mentioned above, the conversation (discourse) about matter was common among the Byzantine scholars. From Basil the Great, from the 4th century, until Nikephoros Gregoras, in the 14th century, the concept of matter attracts the interest of scholars and discussions are held not only about its creation, its eternity or not, but also about its characteristics and its properties, the possibility of transmutation etc.

In the Byzantine texts the concepts of sympathia, meixis and krasis and transmutation of matter exist very often. The process of meixis and krasis exists not only in alchemical or texts of natural philosophy, according to Suida, as mentioned aboved, but also in theological texts. Sometimes, the discussion is about the combination of the created and the non-created world, others about the union of soul and body or about the union of Jesus’ divine and human nature, as we will see later in what Psellos writes.

Many Christian beliefs, which exist in Byzantine texts, are discussed in natural philosophy’s and alchemical terms, such the transfiguration in Thabor mount, the resurrection of the body, the transubstantiation in the Eucharist. Aeneas of Gaza, for

example, uses the alchemical finishing of basic metals to demonstrate the transfiguration of the resurrected body.25 Theophylaktos of Bulgaria, archbishop of Ohrid from the 11-12th century and student of Michael Rsellos, also uses an example from nature, the combination of fire and iron, to explain the union of human will with the divine.26

Nikephoros Gregoras, one of the scholars of the Paleologian Period (14th century), discussing about created and non-created things, wrote that all the created could be increased or reduced. In another section of this chronicle, he wrote that the only non-created thing is the divine nature. All the others are created, so they could change.27 In his «Ερμηνεία εις τον Συνεσίου περί ενυπνίων λόγον» (Comments on Synesios’ Discourse on dreams), Gregoras wrote that the world under the moon consists of the four elements and its nature changes (πάσχειν και αλλοιούται), giving examples for this change.28

As we already said, another term which is very often in use by the Byzantine scholars in the discourse on nature is the one of sympatheia, a stoic principle whose origins were incorporated into Greek thought by Poseidonius (c. 135-51 BC), formed part of the early alchemical theory.29 The concept of sympatheia is basic in the medical and astrological discourse and exists in ancient and Byzantine medical texts (by Galen, Aetius, Paul, John Actuarius, Symeon Seth), astrological texts (by Ptolemy etc.) and texts by pagan philosophers (Iamblichus, Simplicius, Proclus, John Stobaios etc.).

In the Christian Byzantine tradition, the concept of sympatheia remained in use for a long time: from Basil of Caesarea,30 in the 4th century, to Theodorus Metochites, in the 14th century.31 Gregory of Nyssa, brother of Basil of Caesarea and also among the

25 Aeneas of Gaza, “Theophrastus”, in J.-P. Mignet , Patrologia Graeca cursus completus, tome 85, Paris 1860, cols 984, 992. See also Robert Halleux, op.cit. p. 141.
27 Nikephoros Gregoras, “Byzantiae Historiae”, in J.-P. Mignet , Patrologia Graeca cursus completus, tome 149, Paris 1865, cols 241, 244.
28 Nikephoros Gregoras, «Ερμηνεία εις τον Συνεσίου περί ενυπνίων λόγον» (Comments on Synesios’ Discourse on dreams) J.-P. Mignet , Patrologia Graeca cursus completus, tome 149, Paris 1865, cols 548, 595.
31 «ἐξ τὰ ὑπὸ τὸ ὀνόμα τῶν λομικῶν συμπάθειας, καὶ συνδιατίθησι ποι ἀυτά, καὶ μωρίαν ἐν αὐτοῖς ἐμποιεῖ μεταβολήν», B. Bydén, Theodore Metochites’ Stoicheiosis astrononike and the study of natural

THALES-DACALBO
Fathers of the Church, refers to sympatheia in different texts, discussing God, the human body and the creation of the world. 32 Theophylaktos Simocattes, chronicler and natural philosopher in the 7th century, used the term to interpret the relation between iron and lodestone in his work “Dialogos peri diaforon fysikon aperomaton” (Questiones physicae).33 Here we can not fail to mention Ioannes Philoponus,34 from the 6th century, and his text about the combination of natural bodies, and the work by Theodore Laskaris,35 emperor of Nikaea and student of Nikephoros Blemmydes, in the 13th century.

It is therefore more than obvious from the previously mentioned sources that the alchemical terms constitute an important interpretative tool for Byzantine natural philosophy.

Texts about goldmaking, natural philosophy and their writers

Returning to the main question of this presentation, the relation between alchemy and natural philosophy, it’s important to examine two interesting cases of Byzantine scholars and their work, Michael Psellos and Nikephoros Blemmydes. Both of them were monks, writers and teachers, and wrote about natural philosophy, medicine and philosophy and mathematics in early Palaiologan Byzantium, Acta Universitatis Gothoburgensis, Göteborg 2003, ch. 5, lines 238-240.

36 «αὐτοί δὲ ἐν τοιαύτας αὕται, εἰ καθάπευς ἡμῶν ζωῆς τινος ἦσαν τὰ ἄγυρα; τί δὲ βούλεται αὐτὸς ἢ διαπλοκῇ τῆς ψυχῆς πρὸς τὸ συμμετέχεις τοῦ κόσμου; λέγω σοι δὲ ρητῶς ρητῶν τούτων μίξεων, τῆς κατὰ παράδειγμα καθ᾽ ἵνα συνεβαλλόμενοι εἰσίν ἄλλης αὐτὰς οἱ λίθοι ἢ οὐhoa ἢ οὐκ, καὶ τῆς κατὰ κράσιν, ὡς ἐπὶ τοῦ όνομα τοῦ ὀδός, καὶ τῆς κατὰ διαπλοκῇ ὡς ἐπὶ τῶν σχοινίων, ἢ μὲν κατὰ παράδειγμα ἀσυμμαθής ἡ συμπάθεια (σωματίων γὰρ τίνης τοῦ παρακείμενην πρὸς ἀλλήλα συμπάθειαν), ἢ δὲ κατὰ κράσιν σύγχυσιν τῶν κυριμαμένον ἐργάζεται, ἢ μέντοι κατὰ διαπλοκῇ μέσῃ πώς ἢ πρασίνῳ ὅπερ τῆς παραγόντως τὸ ἀσυμμαθὴς ἐχαρίαν ὅπερ τῆς κράσεως τούτων ἑτερογενέων συνάπτεται γὰρ ἄλληλα κατὰ πλέον μόρια», M. Hayduck, Ioannis Philoponi in Aristotelis de anima libros commentaria, Commentaria in Aristotelem Graeca 15, Reimer, Berlin 1897, p. 20-21.

37 «καὶ εἰ ἐν ἀμφότερο τῆς προσομον τινος γυναίκας παρά τῶν ἐνεργῶν συνεχής στοιχείων, γιούδες ὡς αὐτοῦ ἐκτελοῦνται ἄμοι, οὐ ρανόμοιο ἡμῖν, ἢ τῆς ἐνεργείας ἡ γενωρζομένη, νόσοις τελουντές οὐ κατὰ προτοπάθειαν ἢ κατὰ συμπάθειαν ἢ λύσιν τῆς συνεχείας ἢ τῶν ὁμοιομερῶν μερῶν παρὰ φύσιν περιοδικήν ἢ συνεχής ἀνομίαλοιν», N. Festa, "Θεοδόρου του Λάσκαρη Κοσμική Δήλωσις," Giornale della Società Asiatica Italiana 11-12, 1897-1899, here 11, p. 110, lines 2-7.
gold making. As mentioned above, the alchemical works from Byzantine period were about goldmaking, while the references to gold as material can be often encountered in other texts.

Michael Psellos

Michael Psellos was one of the scholars who attached particular importance to the study of the natural world, also as a subject for teaching. He was a scholar in the imperial court, monk for a while, head of the Imperial School of Philosophy under Constantine IX Monomachos (1042-1055) with the rank of the consul of the philosophers (*hypatos*), and was called “polyhistor” on the grounds of his multiplicity of interests. He lived in the 11th c., when the interest in the natural world essentially made its appearance\(^{36}\) and was associated with a more general secularization of Byzantine thought. Psellos’ contemporary historiographers, like Zonaras or Skylitzes’ Continuatus, criticize his work from a traditional Christian perspective.\(^{37}\) It should be noted that, earlier in the end of the 10th century or in the beginning of the 11th, the Byzantine scholars collected the surviving alchemical texts and compiled a coherent corpus.\(^{38}\)

It should be noted herein what Psellos himself writes in his *Chronographia* about his scientific and philosophical culture: After the study of Plato and Aristotle, he studied Plotinus, Porphyry, Iamblichus and Proclus, and learned from them the scientific accuracy.\(^{39}\) In another quotation, he writes that the aim of philosophy is to investigate the nature of beings and to interpret the arcane theories (ἀρρήτους θεωρίας).\(^{40}\)

\(^{38}\) Codex Marcianus Graecus 299 (= M), surviving in the San Marco Library in Venice.

\(^{40}\) “ἡ δὲ φιλοσοφία τοῦ περιπτυσσομένου τὸν λόγον κάλλους ἦττον φροντίζομαι, τάς τε φύσεις ἀνιχνεύει τῶν ὄντων καὶ τὰς ἀρρήτους θεωρίας παρίστητι”, É. Renauld, *Michel Psellos*, op. cit., 175.8-10.
Michael Pselllos, as mentioned above, wrote a lot of works, some of them important for the study of natural philosophy in Byzantium. Among others, we should mention the *Omnifaria Doctrina* (Διδασκαλία Παντοδαπή), Theologica, De Operatione daemonum, etc. but there are a lot of interesting quotes in other texts.

In his letter to patriarch John Xifilinos, Pselllos argues for his interest on natural philosophy. According to his argument, the interest about nature was, on one hand, a main characteristic of a Father of the Church, such as Maximus or Basil of Caesarea, and, on the other, he says that mater exists everywhere… So, the existence of matter per se is the motivation for the research. In the Opuscula logica, physica, allegorica, alia he discuss in detail the substance of matter, the matter and its qualities and the composition of bodies and its different forms (Περί της διαφοράς των σύνθετων σωμάτων), using gold and silver as an example. In a letter to an unknown recipient („Τῷ αὐτῷ“) Pselllos, explaining the natural causes, says that among them is the sympatheia («διὰ τὴν ἐν τῷ πάντι συμπάθειαν»). In addition, we have to mention another Psellus’ text, «Περί παραδόξων αναγνωσμάτων», where the scholar on one hand says that he studied even vicious and hideous ideas to refute them, on the other refers to the alchemist Julius Sextus Africanus and his belief that technique is a process like birth-γέννησις.

After this outline of Pselllos’ epistemological framework, let’s return to his main texts about alchemy and natural sciences.

The text *Περί χρυσοποιίας* (On gold making) is a letter by Psellos to the Patriarch Michael Kerullarios or to John Xiphilinos, in which the writer, still relatively young, discusses the production of gold, outlining a number of possible methods. An important point in Διδασκαλία παντοδαπή from an alcemical view is, according to Psellos, the relation between making and understanding. Psellos, talking about divine

and human mind, writes that the making is located in understanding in the same way the understanding is located in making. This principle in the epistemic level is very serious for the scientific discussion in Byzantium as well as in the whole of Middle Ages, when the scientific observation of nature, precise description of what is observed and, the most important, experiment in accordance with a strict methodology, were unknown. As we can see, the making, the basis of alchemical process, is legitimized by Psellos in a philosophical context.

The first sentence of Χρυσοποιία is exactly about the relationship between philosophers and the practical art of alchemy (ἐμπύριος και βάναυσος). Psellos claims that alchemy, which is accused as manual and crude according to the ancient Greek tradition of demarcation of sciences and arts, must become a philosophical discipline. His proposal is that the philosopher has to study the alchemical practices and techniques, which are valuable for scientific knowledge. So, according to Psellos, the alchemical practices and techniques become scientific activity, not occult or magic. A similar sentence exists in another text, a letter by Psellos, where he refers to cheese production and he stresses the importance of working manually.

Here, a corresponding principle by Stephanos of Alexandria should be noted. Stephanos, in the 7th century, wrote that a born of God (θεογενής) and godly-minded (θεόφρων) man have to learn by doing, and by theologies and mystical orations.

The second serious point in Omnifaria Doctrina is Psellos’ perception of Creation and functioning of the natural world. As he writes, God is the creator and the first cause, but after him in the natural world we could find a lot of causes, which explain the creation and function of bodies. In addition, in another text, echoing mainly the Stoics, he writes that things are in sympathy with each other, so they act in togetherness (in sympnoia – σύμπνοια) and all are under the first Cause. So, this dogmatic principle allows the changes of natural bodies, by human action and

49 «Καὶ η ποίησις εν τω νοείν καὶ η νόησις εν τω ποιείν», 28.10-11
50 1.4-10
53 «Ἀρχή των ὄντων πρῶτη μὲν καὶ υπερμήνεις ο Θεός, μετά δὲ θεῶν πολλάι αρχά των φυσικῶν πραγμάτων εστι», §83.2-3.
intervention. The scholar, supporting the relative autonomy of the laws of nature, legitimizes the human effort to change the natural bodies on the basis of natural laws. As he writes in a letter, the providence of nature is wise.56

On the same grounds, in Χρυσοποιία, Psellos on the basis of the principle that the cause of transformations in things must be sought in nature, he goes on to present and analyze the methods for producing gold. At no point in the text, there are to be found references to the divine will. Presentation and interpretation of the issues is transparently secular. The basic interpretative tool, i.e. the relationship between cause and effect, claims universal validity insofar as hermeneutic approaches to the natural world are concerned.

Another point, which relates Psellos’ philosophy with alchemy, is his ideas about matter and things. In Omnifaria Doctrina, on Earth, all material things are under continuous change, as he writes in various paragraphs.57 Material bodies can change quantitatively and qualitatively.58 On the other hand, matter is the basis of the four elements (earth, water, fire, air), which we can keep in mind if we remove from them the qualitative characteristics. Nevertheless, this pure form of matter doesn’t exist in the natural world.

On the above basis of the principle that the cause of transformations in things must be sought in nature, as well as that bodies could be changed quantitatively and qualitatively, Psellos in Χρυσοποιία goes on to present and analyze the methods for producing gold, emphasizing that for himself the question of transmutation of stones is of equal interest. As he writes, the alchemical art processes matter.59 However, he limits the discussion on the one hand to methods for production of gold, on the other to directions for doubling of its existing quantity, improvement of its quality, and heightening of its lustre.

The last crucial point in Omnifaria Doctrina is the issue about mixing and constitution of bodies.60 The argument for this process is related with alchemical process, so we can find here another relationship between the philosophical view of matter and alchemy.

56 “σοφόν δὲ ἄρα ἢ τῆς φύσεως πρόνοια”, Letter 206, in Kurtz E. (ed.), Michaellis Pselli Scripta Minora, op.cit. p. 236.30

57 “Πράγματα αλλοίωσι καὶ μεταβλητά”, 17.4.

58 See §86

59 “Τὰς ὑλὰς μετακινεῖν καὶ τὰς φύσεις μεταποιεῖν”, 1.6-7.

60 “Περὶ μίξεως καὶ κράσεως”, § 90.
In Χρυσοποιία, we can find a lot of examples for the aforementioned mixing. But these recipes seem to be only academic, so it’s more possible that Psellos did not enter into alchemy. Nevertheless, this fact doesn’t change the significance of his philosophical principles.

Finally, it is very important here to mention a quotation from Psellos work “What is the difference between the novels deal with Chariclea and Leucippe” («Τίς ἡ διάκρισις τῶν συγγραμμάτων, ὅν τῷ μὲν Χαρίκλεια, τῷ δὲ Λευκίππη ύποθέσις καθεστήκατον;») about the novels by Heliodore (3rd c. AD) and Achilleus Tatius (5th c. BC): “The beginning of the work itself resembles a coiled snake: the snake conceals its head inside the coils and thrusts the rest of its body forward; so the book makes a beginning of its middle, and the onset of the story, which it has, so to speak, inherited, slips through (to end up) in the middle".

This quotation with slight variations can be found as introduction in the manuscript 97, in Library of the Monastery of Aghios Stephanos, Meteora, from 1503/4, and also in the manuscript 197, in Library of the Monastery of Panaghia Olympiotissa, Elassona, from 1507 and 1741. One could argue here that the symbol of the snake used here by Psellos takes him into the tradition of the alchemists and it is another indication for his relation with them.

63 οὐδάμαξο τοὺς εὑρόντας τὰ γράμματα, καὶ τοὺς κτισαμένους τὰς τέχνας ἀστάμαζομαι, καὶ τὸν υλὸν τῶις ἀνάγοντας αὐτοῦ· ἐμπνευστεὶ (ἄγαν) ἔκατον τῆς ἐλεκτοῦς γραφῆς τῆς μεταλικῆς τέχνης· ἐκάθετε ἡ ἄρχη τοῦ συγγράμματος τῆς ἐλεκτοῦς ἔπεκτεν ὄστερον· ὁ μέσῳ τὴν κεφαλῆν· ὅσος τὴς πύρας κατακαλύφαντες (δὲ) τὸ λυσών σῶμα προβέβληται· καὶ τὸ βιβλίον τῆς τοιούτου [sic] θέσεως, εἰσβάλει ἐν μέσῳ διαλυόστησις, ὄστερον κλήρου κληροσιμένοιν· τὴν ἄρχην πεποίησαν τὴν μεσόστησιν», man. 97, Library of the Monastery of Aghios Stephanos, Meteora, f. 1r.
64 [12.] (f. 1r) ἄρχῃ τῆς θεώς καὶ ἱερᾶ τέχνης. Inc. (manu B): «Θομασίων τοὺς εὑρόντας τὰ γράμματα· καὶ τοὺς κτισαμένους τὰς τέχνας ἀστάμαζομαι· τὸν υλὸν τῶις ἀνάγοντας αὐτοῦ· ἐκάθετε δὲ τῆς ἐκτῆτος γραφῆς τῆς μεταλικῆς τέχνης· ἐκάθετε ἡ ἄρχη τοῦ συγγράμματος· τὸν υλὸν τῶις ἀνάγοντας αὐτοῦ· τὸ λυσών σῶμα προβέβληται· καὶ τὸ βιβλίον τῆς τοιούτου θέσεως εἰσβάλει ἐν μέσῳ διαλυόστησις· τὴν ἄρχην κληροσιμένοιν· τὴν μεσόστησιν».

THALES-DACALBO
Nikephoros Blemmydes

There are fewer sources for Nikephoros Blemmydes, monk and teacher of Theodore II Laskaris, emperor of Nicæa, which are related with his beliefs about natural science. Although Blemmydes wrote a lot of works in different subjects, he wrote only an extensive textbook under the title Περὶ φυσικῆς ἀκρόασεως (Epitome physica), for the students in his school in his monastery in Emathia, near Ephesus. The Epitome survived in numerous manuscripts up to the 19th century, an indication of the popularity it enjoyed at schools thereafter. On the other hand, unfortunately we have only the problematic edition in Patrologia Graeca but not a scholarly standard edition yet. Blemmydes wrote a work on alchemy too, where he mentions a recipe for goldmaking from eggs.65

Nikephoros Vlemmydes, in the 32 chapters of Epitome physica, presented in detail the main topics of natural philosophy. He uses the Aristotelian works, mainly the Φυσική Ἀκρόασις and Μετεωρολογικά, as well as the commentaries by Alexander from Afrodisias, John Philoponus, Simplicius and others.

The first chapter is about natural principles and causes, and Vlemmydes writes here that the first efficient cause is God and the first final cause is divine kindness.66 In other words, God created the world and so someone could know God by knowing nature. Then, Vlemmydes presents the main principles of Aristotelian physics, adding Christian cosmological principles (God is the first cause Creation,67 God is the architect who created the world68).

Blemmydes in Epitome devotes a large part in the debate on matter and its properties, according to Aristotelian principles, changing only the first cause, which for him is the Christian God. However, some excerpts listed in other sections are very interesting. One of these refers to metals and their natural properties. Here, Blemmydes presents the properties of metals and their different types, such us metals and ores. These different types are made by different natural process. He states, for example, the exhalation and the burning, usual and frequent processes for the

66 Ὅθεν ποιητικὸν αἴτιον (καὶ) κυρίως καὶ πρῶτως ὁ θεῖος ἐστι νοῦς καὶ τελικόν ἢ αὐτοῦ ἀγαθότης, δι᾿ ἣν πᾶσαν κτίσιν ἐδημιουργήσεν, ἦν γνωρίζηται καὶ κηρύττηται», 1025γ.
67 «γενέσεως ἀρχή καὶ αἵτια μόνη ἐστὶν τὸ παντουργὸς σοφία καὶ δύναμις τοῦ Θεοῦ», 1065στ.
68 «κατὰ τὴν νεῦσιν τοῦ μόνου σοφοῦ ἀρχιτέκτονος καὶ παντατίου Θεοῦ», 1097δ.
alchemists.69 In other passages, he refers as natural caused processes the condensation and the sublimation.70

In the alchemical text which passed down under his name, the \textit{Crysopee}, Blemmydes gives a technical recipe for gold making, using mainly natural materials as eggs, earth, and water. He seems to know well the power of fire and in his text gives precise instructions for the amount of material and the necessary tools and utensils.71 It should be noted that these short text doesn’t refer to any philosophical or alchemical principles.

\textbf{Conclusions}

A first conclusion from this presentation is that both scholars, Blemmydes and Psellos, were to a great extend familiar with the subject and shows that they believed in the theoretical possibility of transmutation, as a consequence of the laws governing the four elements.

In this context, they considered that the alchemical process is a natural processes, based on the properties of matter, and in agreement with the Divine will. Blemmydes, for example, mentions in the first and final lines of his text that his recipe was performed with the synergy of God.72 So, the maker-chraftsman could change nature only with divine synergy and help. The Creator created the world but he gave to humans the freedom for changes. Therefore, alchemy is based on natural and divine principles and doesn’t have any relation with occult practices or paganism. This rational schema shows a possible difference between the origins of alchemy and the Byzantine scholarly tradition, and in this way it is directly connected with the dominant Byzantine eschatological context of understanding of the world.73

Of course, the matters arising here are more complex. For example, the relation between laymen knowledge and formal knowledge. Alchemy is above all a practical knowledge based on the knowledge and skills of the craftsmen and therefore accessible by laymen and laywomen. An important issue therefore has to do with the

69 Migne J.P. (ed.), «Νικηφόρου τοῦ Βλεμμίδου Εἰσαγωγικῆς Έπιτομῆς Βιβλίον Β. Περὶ φυσικῆς Ἀκροάσεως», \textit{Patrologia Graeca}, vol. 142, 1863, c. 1211 C-D.-1213 A.

70 As example in c. 1165, op.cit.

73 John Haldon, \textit{Byzantium. A history}, op.cit. (p. 250 in Greek edition).
extend that the knowledge of the craftsmen influenced formal/typical natural philosophy. And this brings us directly to the work by Edgar Zilsel.

Within the social and religious movements of the sixteenth century, new kinds of intellectual activities emerged that combined philosophical ideas with technical interests. The mathematical logic of scholastic philosophers was combined with the practical skills of artisan craftsmen into a new kind of instrumental rationality. The previously separated roles, or identities of scholars and craftsmen were mixed together in new combinations, giving rise to what Edgar Zilsel termed the modern ‘scientific spirit’. At the same time, a range of movement intellectuals propounded ideas about making knowledge useful by adopting new methods for investigating both human and non-human reality. As such, the cognitive praxis of the Reformation provided a point of departure for the discourses, methods and practices that would later come to be characterized as modern science.

A last point for more research: It is also probable that the plans of the Emperor Konstantinos Monomachos (the Gladiator) for the foundation of an Imperial Technical School are connected with Psellos’ interests on Alchemy (Νεαρά-Novelle 1047),

In the middle of the eleventh century technical training was provided in Constantinople through special schools. These schools were, possibly, functioning under the imperial authority. We assume, further, that the innovation in technical training was due to Constantine IX, and that this innovation aimed to reinforce the «new class» of merchants and craftsmen, which arose during his reign.

Athanasius Rhetor and the Greek Chemistry in the 17th century Ottoman Empire

Rémi Franckowiak
Lille 1 University

Two unidentified Greek alchemical manuscripts
Andrée Colinet notes in the 11th volume’s introduction of Les alchimistes grecs that “the Greek alchemical manuscripts [starting from the end of the Byzantine Empire] are very few and well-known”¹. And yet two manuscripts, at least, are missing from that general inventory. These missing manuscripts do not belong to the “relics”² which Paul Kraus was talking about, i.e. some alchemical recipes found among Medieval Greek texts of astronomy, astrology or magic. These two manuscripts represent a relatively important and coherent whole, and are – as for their form – totally new. They are rather late since they date from the 17th century. It might be the reason why nobody has been interested in them until now. They are too late for the scholars specialized in Byzantine period and too far from the interests of the historians of chemistry of that time who give more importance to the Western chemistry. The two manuscripts I am talking about are not unknown for all that, even if they have never been studied nor even perhaps been read: actually they appeared in the catalogue of the France National Library collections. They are the manuscripts “Supplément Grec 1027” (SG 1027) and “Supplément Grec 1030” (SG 1030) of the Department of the Western manuscripts. Their author is Athanasius Rhetor³.

The reason why these manuscripts have been preserved until now is that they were integrated – with other Athanasius’ papers⁴ – into Chancellor Pierre Séguier’s library at Athanasius’ death in 1663 or as soon as 1655 when Séguier confiscated several

⁴ The other papers of Athanasius included to Séguier’s library concern particularly philosophical and theological matters.
manuscripts from Athanasius. We know that the Ms. SG 1027 appeared in the 12 August 1672 inventory of Séguier’s library5 several months after his death. But even if none of Athanasius’ papers had been included to the detailed inventory of the Greek manuscripts published by Bernard de Montfaucon in 1715, entitled \textit{Bibliotheca Coisliniana}, a stamp on Athanasius’ manuscripts attests that these documents (recipes, letters, notes, rough drafts, and a dozen unpublished Athanasius’ writings6 as well) were in the 18th century in the library of Séguier’s grandson and heir, Henri-Charles de Cambout de Coislin, bishop of Metz. It was only in the 19th century that Athanasius’ papers were taken into account when Séguier’s collection was added to the France National Library through the abbey of Saint-Germain-des-Prés collections7, with the following classification marks: Coislin 138-143, Coislin 162, Coislin 391, Fonds Grec 2106, SG 582, SG 1014, SG 1026, SG 1027 and SG 10308, the last two concerning chemistry. Therefore, thanks to the preservation of Séguier’s entire library, Athanasius’ papers have been saved.

Athanasius’ biography

Unlike compilers and copyists of the Greek alchemists’ corpus, the broad outlines of Athanasius’ life are known. But in order to clear up a possible misunderstanding, let us specify immediately that Athanasius was not a copyist; if he was a copyist, he was the copyist of his own writings, as we shall see. Athanasius was first and foremost a Greek scholar who used to write down chemical notes and recipes for himself and perhaps for a few Greek-speaking people of the Levant, too. He was a man who had devoted, as he said, all his life to study9; and he had for chemistry, at least at some point of his life, an unquestionable interest.

5 The Ms. SG 1027 was the ancient Ms. Séguier 385; see the “procès-verbal de prisée de la bibliothèque grecque du Chancelier Séguier, dressé le 12 août 1672” (Devrèse R. (1945), \textit{Bibliothèque Nationale, Dépt. des manuscrits, Catalogue des manuscrits grecs II Le Fonds Coislin}, Paris, p. X).

8 We can add the Ms. 1018 (Suppl. R grec & latin 268 bis, in 4°) of the Bibliothèque Sainte-Geneviève (which is a rough draft of 1641 Athanasius’ book).

9 Athanasius’ 1662 letter to the king Louis XIV of France (\textit{placard in-folio} which is part of the Ms. 17562, \textit{Fonds français} collection, France National Library; see Legrand, E. (1894-1903), \textit{Bibliographie
The links between Séguier and Athanasius go back to the late 1630s. Since 1635 Séguier had been Chancellor of France and Athanasius was for more than 10 years in Paris where he was taking part in the intellectual debates and polemics of his time. He must have belonged by this time to the entourage of Séguier to whom he dedicated several works. Thus in 1639 and 1641, he published three philosophical and theological books. The first one (about the knowledge of God and the eternal truths) was only dedicated to the Chancellor Séguier, the second one (on the vices and virtues of the human beings according to Iamblichus who was a rather rare Neoplatonic reference at that time) to Cardinal Richelieu and the third one (against those who were claiming that the rational soul was mortal and that this was Aristotle’s position) to Séguier, as well as to the bishop of Saint-Malo, Achille de Harlay de Sancy, who was ambassador of France to Constantinople during the period 1610-1619. In 1655, 1657 and 1662, Athanasius published five more volumes on the union of the Christian churches and against the 1637 Parisian edition of Campanella’s *De sensu rerum et magia* (in February 1638 Athanasius had already received for this purpose the authorization of the Sorbonne’s theological authorities to print this book); volumes were dedicated to Cardinal Spada, Latin patriarch of Constantinople, to Séguier and to Louis XIV. The East was thus regularly represented through Athanasius’ dedications. Athanasius was born in Cyprus, in Costanza precisely, about the year of the Turkish invasion of the island in 1571. He lost his parents when he was rather young, but he managed to move to Constantinople where he was taken into care by the Patriarchate.

10 Here are Athanasius’ books:
- 1639: *Delitiae animae sive hortus ex iis quae Iamblichoi magno elaborate sunt consitus*, (Latin and Greek), Paris, dedicated to Richelieu.
- 1655 (1657 for the second edition) and 1662: *D.[octoris] Athanasii Rhetoris Presbyteri Byzantini Anticampanella in Compendium redactus adversus librum de sensu rerum & Magia*, (Latin only), Paris, dedicated to Cardinal Spada (and to Séguier) and Louis XIV.

11 On Athanasius’ life, see SG 1027 ff. 347r-350r; Legrand, vol. 3: 417-418; Omont, H. (1902), *Missions archéologiques françaises en Orient aux XVIIe et XVIIIe siècles*, Paris, 1: 1-26; Astruc, Consty, p. 113; and O’Meara, 483-484.
Then he became *hieromonachus* (i.e. a priestmonk) and *Protosyggelos* (i.e. vicar-general) of the Church of Constantinople. Although he was Orthodox, Athanasius was also educated in a Jesuit College, at the Patriarchs’ expense\(^{12}\). It is certainly under such influences – but also in a particular climate of the Orthodox Patriarchate’s pursuit of a Western support against the Turks – that Athanasius became an ardent defender of a catholic Orthodoxy; and his position gave rise to controversy in 1614 with Hilarion, Metropolitan of Heraclea. About that time, “for the love of learning”\(^{13}\), Athanasius decided to go to Rome in the hope of joining the Pontifical Greek College ‘Saint Athanasius’ (he had converted to Catholicism meanwhile). Indeed, he was rejected because of his age (he was around 50 years old); however, he stayed in Rome. Then he came to Paris probably in 1615\(^{14}\) and in the 1620s he settled there where he got in touch with, inter alia, Séguiier. At about the end of the year 1642, Séguiier had the project to enrich his library with Greek manuscripts. For that purpose, he sent 71-year-old Athanasius to the East in order to buy and send to him rare and precious manuscripts. On 1 August 1643, Athanasius introduced himself to the ambassador of France in Constantinople, Jean de La Haye, before starting his mission in monasteries in Constantinople, Cyprus, Thrace, Macedonia and Thessaly\(^{15}\). Almost at the same time – in 1643 – Cardinal Mazarin thought of enhancing his own library with Greek and Eastern manuscripts, too. To this end, he wrote to the ambassador of France in Constantinople to request his assistance. About the middle of the following year, Jean de La Haye sent a capuchin, Father Romain, towards Mount Lebanon to explore the Arab libraries, and Athanasius towards Thessaloniki. Athanasius was thus in charge of an identical mission on behalf of two different and powerful figures. His mission was long and rather perilous (Venetian blockade, pirates, corsairs, aggressiveness of the monks, health problems). Athanasius spent 10 years in the East

\(^{12}\) It should be noted that the Jesuit mission in Constantinople – set up in 1583 – enjoyed the patronage of the kings of France and the full support of the French ambassadors to the Porte. Furthermore, a manuscript in Athanasius’ hand in the France National Library (Coislin 391) contains a Greek version of Jesuit manuals of Rhetoric, Logic and Physics. See O’Meara, p. 483.

\(^{13}\) See O’Meara, p. 483.

\(^{14}\) Besides, Athanasius might have also gone to Rome, then to Paris, as part of a mission about a possible unification of the Christian churches (as suggested by Blanchet, L. (1920), *Les antécédents historiques du ‘Je pense, donc je suis’*, Paris, p. 130).

and sent more than 300 Greek manuscripts to France. As far as Séguier was concerned, he paid 4,500 pounds for his acquisitions. Nevertheless, it has to be said that Athanasius did not devote all his time, during the 10 years he stayed in the East, to the achievement of his mission. He was living as a priest with the authorization of Patriarch Parthenion. Moreover, it is strongly probable that Athanasius also devoted his time to the learning chemistry, to the meeting of craftsmen and chemists, and to the writing of the recipes of SG 1027 and SG 1030 manuscripts as we will see.

Upon his return to France, Athanasius was to be responsible in Séguier’s library for the Greek manuscripts he had chosen and sent. But a disagreement very quickly appeared between him and his patron. By 1655, the Chancellor Séguier acquired – through the seizure of a baillif who spent a whole day in Athanasius’ home to this end – 116 Greek manuscripts which Athanasius had brought for his own account from the East. He never managed to get them back, nor to get money in compensation. On 13 March 1663, Athanasius – 92 years old – died in rue Saint-Jean-de-Beauvais, in a house depending on the abbey of Sainte-Genevieve, and was buried in the church of Saint-Etienne-au-Mont. A fortnight later, Séguier was officially granted Athanasius’ 116 manuscripts (par droit d’aubaine); Athanasius’ other possessions were given to a musketeer of the king and to his footmen. However,

17 Indeed, the following quotation could intimate that Athanasius was acting as a kind of librarian in Séguier’ library for the Greek manuscripts: “Je trouvay, par le moyen de M. d’Herouval et d’un autre de mes amis, toute entrée dans la bibliothèque très magnifique du Chancelier, qui, étant luy-même très scøvant, avoit de la joie que ses livres et ses manuscripts, qui étoient en fort grand nombre, pussent servir au public. Mais comme je sceus qu’entre les manuscrits de cette bibliothèque, nouvellement apportez du Levant par un moyne grec, et scellez, il y en avoit un de S. Climaque, qu’on disoit estre très beau et très ancien, j’usay d’adresse avec le sieur Blaise, bibliothécaire, afin d’engager ce moyne à nous le montrer, quelque grande répugnance qu’il y eust. Nous lui parlâmes d’un autre de la Bibliothèque du Roy, que nous jugions pouvoir être ancien de 800 ans et dont nous lui relevâmes beaucoup la beauté extraordinaire et l’exactitude […]. Après que nous l’eûmes fait enfin résoudre à nous faire voir ce livre, nous y trouvâmes la chose du monde la plus surprenante. [Le manuscrit du moyne grec] apporté nouvellement du Levant se trouve si parfaitement conforme à celuy de la Bibliothèque du Roy […]” (from Mémoires de Pierre Thomas, sieur du Fossé, quoted by Omont (1902), p. 21).
19 Athanasius appealed in vain to Séguier, then to Baluze, at the time – 1661 – working for the bishop of Toulouse Pierre de Marca, and in 1662 to the king himself in the hope of finding a solution to the disagreement with Séguier. See Omont (1902), 1: 22-24. At this occasion, Baluze described him at about this time as “learned, but ragged and poor (in his notes of his Beati Servati Lupi … Ferrariensis ... opera, Paris, 1664, p. 443). “However, de Marca did not deem the man contemptible on that account, a man in whom were present, apart from good mind and extensive knowledge of sacred matters and of divine and human philosophy, a modesty worthy of a Christian and a blameless character” (Omont (1902), p. 22, and O’Meara, p. 484).
the books that Athanasius owned were preserved at the abbey of Sainte-Genevieve’s library.

Presentation of Athanasius’ alchemical papers

Athanasius was the subject of a few studies (theological, philosophical or philological studies from the late 19th century to 1970s). His name is still occasionally quoted about an inventory of collections or studies of a particular Greek manuscript which he sent from his mission in the East. Nevertheless, Athanasius’ alchemical papers have gone completely unnoticed.

The Ms. SG 1027 contains 522 folios and has a 17th century parchment binding. As for the Ms. SG 1030, it is made up of 161 folios and is bound with a simple cardboard from the 19th century. Only a proportion of these two manuscripts concerns chemistry. Chemistry in these papers represents more than 250 pages for more than 300 recipes, and is close to craftsmen’s chemistry (dyeing, whitening, preparation of metals and coins, purification of natural substances, preparations of saline and acid bodies, preparations of some clays, pharmacological preparations against arthritis, plague,

20 Omont (1902), p. 25.

23 In the French National Library Catalogue’s description of the Mss. SG 1027 and SG 1030, it is just written, from time to time, “alchemical notes” or “alchemical recipes”.

THALES-DACALBO
gout, eye diseases, or to preserve the memory, to give strength) as well as alchemy (preparations of philosopher’s stone, potable gold, metal transmutation, fixing or extraction of mercury, gold and silver production by more or less complicated chemical combinations).

There is certainly a reason why the Ms. SG 1030 had not been correctly bound as soon as it was integrated Séguier’s possessions neither written down in Montfaucon’s inventory. Unlike the Ms. SG 1027, the chemical papers of the Ms. SG 1030 contain many recipes crossed out and/or carelessly written. As far the chemical folios are concerned, the Ms. SG 1030 gathers indeed Athanasius’ rough drafts, original versions and notes of a rather large proportion of recipes neatly written in the Ms. SG 1027. Actually, around 30% of the recipes in the papers are in two, even three, similar versions. Thus, these two manuscripts show us an extremely lively way how Athanasius used to work and study chemistry (and perhaps also how authors of Greek chemical manuscripts generally used to work): notes, rough drafts, choices, translations, additions, corrections, and writings up of recipes, and sometimes annotations and questions on the recipes.

Recipes in Athanasius’s papers can be distinguished on the basis of the language in which they were written. Approximately 60% of the recipes are in Italian and 40% in (classical and demotic) Greek. But if one withdraws the recipes obviously not written by Athanasius’ hand, a balance is achieved: half in Italian, half in Greek. In addition, a few recipes are also in French (3) and Latin (1). It would be tempting to think that the language used in the papers indicates the geographical origin of the recipes. Nevertheless, the criterion of the language might not be so pertinent about Athanasius who was educated in both languages, Greek and Italian; two languages he apparently used to practise very fluently. So the Italian language does not necessarily indicate a western source. As we will see, an eastern recipe could be directly written in Italian, and a western one in Greek. On the other hand, a more significant criterion to make a distinction between eastern and western recipes would be rather based on the units of weight employed by Athanasius in his papers. In some recipes were used “ounces” and “pounds” and in others “okka” and “dramia”. The latter were not the result of any translation of western texts with conversion in Ottoman units of the ounces and pounds. The Ottoman units do reveal us an eastern chemical practice, maybe suspected but never seriously envisaged by historians of science to study it. We will
deal with this point further, after talking about the presence of Turkish terms in the recipes.

Very many Athanasius’ recipes contain names of ingredients in Turkish. The most present are “nisantiri” [i.e. sal ammoniac], “touri” [i.e. tartar], “kouvergilè” [i.e. niter], “rastik tasi” to say “rastikopetra” – grecized term which meant according Athanasius “ferretto di spagna” – copper calcined with sulphur, and “soulima” probably to say corrosive sublimate (or even perhaps white lead).

As regards the Turkish vocabulary in some recipes of Holkhamicus 109, Lagercrantz suggested that there had to be a Turkish alchemy in the 16th century. As for Andrée Colinet, such a Turkish terminology simply related back to a trade name which helped the Greek alchemists to get their supplies from Ottoman traders. However, without denying the need to use Turkish names to get ingredients for the practice of chemistry in the Ottoman Empire, the study of Athanasius’ manuscripts would rather agree with Lagercrantz, even if one has more correctly to talk about a Levantine alchemy and not a Turkish alchemy, as long as in the Ottoman empire – made up of several communities – half of the 30 million or so inhabitants were Christian by 1600.

\[\text{In Athanasius’ manuscripts, the Turkish names could be written in Latin letters as well as in Greek letters but they were always phonetically written.}\]

\[\text{According to the fourth edition of the Lessicografia della Crusca (1730, vol. 2, p. 436) (the 1691 third one said only it is a kind of calcined copper (vol. 2, p. 675)).}\]

\[\text{Colinet (p. 102, n. 108) says that the ‘soulima’ could actually be the corrosive sublimate (i.e. mercury (II) chloride) but its meaning remains quite vague in alchemy.}\]

\[\text{For example, here is a typical recipe with Turkish terminology: “A far oro. Rx ruch tutia δραμια 10 και λύσετε την, και όταν ανάπτη, ρίχνε απάνω ξύγκι. λυθείσης δε χύσε την εις το κανάλι. είτα κούπανησον 20 δρ. ραστικόπετραν ψιλώτατα, και 10 δρ. τρίχαν ανθρωπινάς ψιλώτατα κομμένας, και ανακάπωσενταις με 30 δρ. νισαντήρι με την ραστικόπετραν, και ανάλυσέτα εις μίαν χούλιαν σιδηράν, είτα ζύγασε τα, καὶ όσον λείπει βάλε πάλιν απὸ το νισαντήρι, ἐπειτὰ τρίψετα, μετὰ τούτου κουπάνησε την ριθείσαν τουτία ψιλώτατα, καὶ κώσε την τετράγωνα. Εἰτὰ ραστικόπετραν ἐκαμες και απάνω απ' αυτὴν, και απάνω βάλε πυρ καὶ ἀνωθὲν καὶ κάτωθ εἰς οποὺ αναλύσου ὅλα, εἴτα χύσε τα εἰς έναν κίτρινος κίτρινος ξιρόν, έπειτα μάζοξε τα σπιριά τα κίτρινα καὶ ανάλυσε αὐτὰς καὶ χύσετα εἰς το κανάλι καὶ ἔσται χρυσός ἀριστός, πλην ὃν σολυμάς τὸν τρώγει” (SG 1027, ff. 485r–486v).}\]

24 In Athanasius’ manuscripts, the Turkish names could be written in Latin letters as well as in Greek letters but they were always phonetically written.

25 According to the fourth edition of the Lessicografia della Crusca (1730, vol. 2, p. 436) (the 1691 third one said only it is a kind of calcined copper (vol. 2, p. 675)).

26 Colinet (p. 102, n. 108) says that the ‘soulima’ could actually be the corrosive sublimate (i.e. mercury (II) chloride) but its meaning remains quite vague in alchemy.

27 For example, here is a typical recipe with Turkish terminology: “A far oro. Rx ruch tutia δραμια 10 και λύσετε την, και όταν ανάπτη, ρίχνε απάνω ξύγκι. λυθείσης δε χύσε την εις το κανάλι. είτα κούπανησον 20 δρ. ραστικόπετραν ψιλώτατα, και 10 δρ. τρίχαν ανθρωπινάς ψιλώτατα κομμένας, και ανακάπωσενταις με 30 δρ. νισαντήρι με την ραστικόπετραν, και ανάλυσέτα εις μίαν χούλιαν σιδηράν, είτα ζύγασε τα, καὶ όσον λείπει βάλε πάλιν απὸ το νισαντήρι, ἐπειτὰ τρίψετα, μετὰ τούτου κουπάνησε την ριθείσαν τουτία ψιλώτατα, καὶ κώσε την τετράγωνα. Εἰτὰ ραστικόπετραν ἐκαμες και απάνω απ’ αυτὴν, και απάνω βάλε πυρ καὶ ἀνωθὲν καὶ κάτωθ εἰς οποὺ αναλύσου ὅλα, εἴτα χύσε τα εἰς έναν κίτρινος κίτρινος ξιρόν, έπειτα μάζοξε τα σπιριά τα κίτρινα καὶ ανάλυσε αὐτὰς καὶ χύσετα εἰς το κανάλι καὶ ἔσται χρυσός ἀριστός, πλην ὃν σολυμάς τὸν τρώγει” (SG 1027, ff. 485r–486v).
use of Turkish terms by Athanasius in his recipes was actually not systematic and met very variable criteria. Moreover, all the ingredients in Turkish could not necessarily be found at the market such as the roots called “otoulki” and “zerdehiaf” – for the cleaning of metals\(^{32}\) or for the preparation of gold\(^ {33}\) –, or even still plants acting as philosopher’s stone\(^ {34}\) like “kaiapasha” which was in Latin the ‘parisia’\(^ {35}\) and “zevetounié” which was the lunar herb ‘borissa’, according to Athanasius\(^ {36}\).

The Turkish terms written down by Athanasius were certainly already present in the original recipes taken up in his manuscripts; these original recipes could be transmitted to him through books, handwritten texts or even verbally, as we will see.

Indeed, when Athanasius wrote down a specific word from a transmitted recipe, he used to adopt this word such as he read or heard it. For example, in SG 1027 f. 450v – translated from an Italian version – he wrote: “Λάβε πράσινον χαλκόν και άλας αρμονιακόν” [= ‘take green copper and sal ammoniac’] but he did not write “Λάβε πράσινον χαλκόν και νισαντίρι” [= ‘take green copper and nisantiri’] if he wanted to specify a trade name. In SG 1027 f. 452v, a sentence was translated from an Italian in the following manner: “λάβε μερκούριο” [= ‘take quicksilver’] instead of “λάβε διάργυρο” if Athanasius wanted to give an accurate translation into Greek, or “λάβε γκικά” [= ‘take gika’] if he wanted to show the Turkish term\(^ {37}\). In several recipes, he wrote in Greek letters “κινάπριον” [= ‘cinnabar’] borrowed from the Latin instead of “κιννάβαρης” or “κινναβαρίτης” in a correct form such as in SG 1027 f. 485v. Moreover, the Italian word « solfaro » was always preferred by Athanasius to say ‘sulfur’ – even if the recipe was written in Greek –, except once, in SG 1027 f. 485v.

\(^{32}\) Certainly to clean the copper: “ρίζα ονομαζόμενη τουρκιστί οτολκί δράμια 30, σκόροδον καθαρισμένον [δρ.] 100. όξος δυνατόν [δρ.] 400. κόχλασον αυτά ἕως το ήμισυ, και τότε λύσε το γαλάκτωμα καὶ ρίψων αὐτὸ ἕνδον. Καὶ πάλιν λύσον καὶ ρίψων ἕνδον, καὶ οὕτως ἕως το ήμισυ, καὶ τότε λύσε το χάλκωμα καὶ ρίψον αὐτὸ ἐνδόν.” (SG 1030 f. 52v).

\(^{33}\) Indeed, for gold preparation: “λέγουσι νὰ βάλης τριμμένον ύαλλόν εις το χονή, εἶτα τετριμμένην ρίζαν καλουμένην τουρκιστί ζερδεχιάφ, επ’αὐτὴν δὲ μόλυβδον, εἴτε αὕτη επ’αὐτὴν τὴν ρίζαν οὐκ ὑπ’αὐτὴν εἰπε δε αὐτὴν πάλιν, ύαλλόν. Και εἴσῃ ὅτι τὸ χονή θέλει νὰ εἰναι τριμμένον, ὅπερ ἠθέλεις ἐπάνω εἰς ὄλο χονή γερό, ἐπίστα βάλεις εἰς τὸ ποῦ κάπη τοὺς χρυσοφοίς, καὶ όταν λυθη, ἔξαγε τὸ ρυέν εἰς τὸ γερό, καὶ εὑρήσεις χρυσόν. Δοκίμασον” (SG 1030 f. 74r).

\(^{34}\) Such vegetable philosopher’s stones were usually related to a particular planet. The best known is the lunar one that we can find in the 13\(^{th}\) century writings of Paul of Taranto (Theorica et practica) and of Arnaldus de Villa Nova (Liber noui testament) as well as in the Latin and Byzantine medieval time hermetic herbaria of the astrological botanic. One of the lunar ones, the borissa comes from the Alexandrian period. See Colinet, pp. lxx-lxxxiii.

\(^{35}\) SG 1030 f. 127 bis b: “καλαύσας τουρκιστί η λαρίσα”. And SG 1027 f. 442v.

\(^{36}\) SG 1030 f. 105r: “borissa κεβουτοντι αραβιστι”. And SG 1027 ff. 450v-452v / SG 1030 f. 78r.

\(^{37}\) In SG 1027 f. 438p, Athanasius wrote that ‘gika’ means ‘diáργυρο’.
where he used the Greek word “διάφι”. And, in the Greek recipe SG 1027 f. 485r, he wrote precisely the word “ρακή” [= ‘raki’] and not any other brandy.

Through all these examples, we can put forward that the reason why some ingredients of recipes written in Greek or Italian appear with their Turkish names, was that such ingredients were already in Turkish in the original recipes transmitted to and copied or translated by Athanasius. Thus, the lists of chemical words in Greek with their translation in Turkish (in Greek letters)\(^{38}\) which we find in Athanasius’ manuscripts can be interpreted as vocabularies helping to understand the Levantine recipes transmitted to him. And similarly, Athanasius drew up some lists of alchemical symbols with their meanings\(^{39}\) in order to understand exactly what alchemical recipes he got said.

Here are, for instance, two similar recipes in Athanasius’ manuscripts about the composition of silver. The first one is doubly crossed out and comes from the Ms. SG 1030. It is the original but rough draft version of the second which is carefully written and comes from the Ms. SG 1027. From one to the other recipe, a word in Turkish ‘τουρτί’ disappeared to be translated into Greek ‘ταρτάρων’:

- SG1030 ff. 30r-v (first version):

 “10 dr. of mercury. 10 dr. of white pontikofarmakon. 10 dr. of tourti. 5 dr. of alum. Crush them well all together on a piece of marble. Then knead them with egg white, then put them in a piece of cloth and tie up its opening and hang it in a copper box and cover it with its lid and coat it

\(^{38}\) For example, at SG 1027 f. 438r (whose rough draft is at SG 1030 f. 35v without translation):

“ραστικόπετρα --- ραστικ τάχ τουρκιστή
βετρίολο ευρίσκεται εις την κύπρον και ρώμην --- ζάκκυβρις
τυτιαλεξανδρίεια --- τούτα μαραζή.
άλος βουλιλομένον. ευρίσκεται εν ικονίω. --- μιλχί εντρανί
μπρα. οσολμά
σαλαντίρινον. Ευρίσκεται εν καισαρεία της καππαδοκίας, και έστι διπλούν δι’ άργυρον και χρυσόν. ---
κουβεργίλε.
αρσένικον έστι διπλόν δι’ άργυρον και χρυσόν. ---σισάνθι
νισαντήρι ή sal harmoniacum. και ευρίσκεται εις την αίγυπτον.--- νισαντήρι
διάργυρο --- σισάνθι
σουλφαρωμά. --- κιπρίκ.
κανάπριον --- ζικίφρα
στίψιν. έστι διπλή λευκή και ερυθρά --- χιάτ
τάρταρον ---τουρτί
terra sigillata”.

\(^{39}\) SG 1030 f. 54r and f. 105r.
entirely with the kind of clay that is used for making bowls or another kind that is fire resistant.[40] Then bury it in common glowing charcoal and leave it for about six hours, then when it has cooled[,40] open it and remove the mercury which will look like a shiny skin from the cloth, and gather it and melt it in a crucible, then in another crucible, melting one dr. of it together with 3 of copper, then take this, and 1dr. of silver and remelt it and you will see. And you will whiten it as goldsmiths whiten silver. It has been tried. Has been written down.40

- SG1027 f. 496v (second version) [see figure 1]:

“Georgakis Kasapoglis from Ex Marmara41 gave me the composition. It has been tried.

Take 10 dramia of mercury[,] 10 dr. of white pontikofarmakon, 10 dr. of tartar, 5 dr. of alum. Crush them well all together on a piece of marble. Then knead them with egg white, then put them in a piece of cloth and tie up its opening and put it in a copper box, and cover it with its lid, and coat it entirely with the kind of clay that is used for making bowls, or another kind that is fire resistant. Then bury it in common glowing charcoal and leave it for about six hours. Then[,] when it has cooled[,] open it and remove the mercury which will look like a shiny skin from the cloth, and gather it and melt it in a crucible, then in another crucible. (if you do not have a box, put it in a crucible, and cover it all over with copper filings, then cover it with a piece of tile and coat it with clay[,] as said above. And the following), then from what was melted in the crucible take one dr., and three dr. of copper, and melt them all together. Then take the melted

40 “διάργυρο δρ. 10 ποντικοφάρμακον ἁσπαρ δρ. 10. τουρτί. δρ. 10 . στίψι δρ. 5 . τρίψε τα εις μάρμαρον καλά μαζί είτα μεθ’ ενός άυο λευκού του ωού ζυμόσεις τα τετριμμένα, είτα θήσεις αυτά εις πάννιον και θήσεις αυτού το στόμα και θήσεις εις ένα κουτή χαλκοματένο και να το σφαλήσεις με το καπάκι του και να το χρίσεις όλον με τον πηλόν που κάμνουν τα σκουτέλια ή άλλο οπού να βαστάς εις το πυρ είτα κρύωντα εις τα κάρβουνα τα κοινά τα ημμένα δος ωράν εξ, έπειτα ψυχθέντος άνοιξον και ευρήσεις εξω του παννίου τον διάργυρον εσών φλοίον ζωμάζειν, και την μαζίνα και την λίσις εις το χονή, ἐπειτα εις το χυτήρι, αφ’ού δρ. έν εις 3 του χαλκώματος λόγοντος μαζί, ἐπειτα λάβε αυτό, και ἐν δρ. αργύρου και χαλκολυστε και όφεις και θέλες το ασπίζει καθώς οι χρυσοχόι ασπίζουν το ασίμι. εδοκιμάσθη. εγράφη” (SG1030 ff. 30r-v).

41 ‘Ex Marmara’ was a neighbourhood of Constantinople which is today ‘Alti Mermer’.

THALES-DACALBO
material, and one dr. of silver and remelt it, and you will see if it needs more silver. And you will whiten it as goldsmiths whiten silver.”

42 “σύνθεσις ἤν μοι ἐδόκειν ο γεωργάκης κασάπογλης εἰς τα εξ μάρμαρα. Ἐδοκιμάσθη.
Λάβε διάργυρον δράμια 10 ποντικοφάρμακον ἁσπρόν, δρ: 10. τάρταρον, δρ: 10. στίψι, δρ.5. τρίψε τα εἰς μάρμαρον καλά μαζῆ. Εἶτα μεθ’ ενός λεοκοῦ τοῦ ωσί ζύμωσαν τα τετριμένα, εἶτα θες αυτά εἰς παννίον, καὶ δήσον αὐτῷ τὸ στόμα καὶ θες εἰς εν κουτί χαλκωματένον, καὶ σφάλισε το με το κατάκει του, καὶ χρίσε το ὅλον μὲ τὸν πηλὸν σαπόν τα σκαντέλια, ἢ ἄλλο σαπόν να βαστάτε εἰς τὸ πυρ. Εἶτα κρύψε το ἐις τα κάρβουνα τα κοινά τα ἡμέρας ως ὧραιος ἐξ. Ἐπείτα ψυχθέντος ἀνοίξον καὶ κρύψας το ἐν κοινά τα κάρβουνα τας ἡμέρας, ἐπείτα αὐτό τὸ λυθέν, καὶ ἔν δρ. αργύρου καὶ ἔνδρευσό, καὶ χρίσετο ἐπι χρήζη πλείονος αργύρου. Καὶ θέλεις τὸ ασπίζειν καθὼς οἱ χρυσοχῶροι ασπίζον τὸν ἄργυρον” (SG 1027 f. 496v).
An unnoticed network of eastern chemists

This recipe SG 1027 f. 496v is very interesting because it had been tried, but mostly because the name of the chemist who gave it to Athanasius was revealed, as well as the place where he used to live in Constantinople: Georgakis Kasapoglis from the neighbourhood called Ex-Marmara. This information was not mentioned in the original version SG 1030 ff. 30r-v in which other details were also absent. Considering that almost one third of the recipes in Athanasius’ manuscripts are in two – or more rarely three – versions, this example of two versions of the same recipe inform us about the way Athanasius worked in chemistry. He used to write the recipes in two stages: first, he gets a recipe which he quickly retranscribed such as he has got it, secondly, he neatly rewrites it by including some details after having tried by himself the recipe or after having got some information in another way. And so, the second version – supposed to remain and perhaps to circulate among other chemists – erased the Turkish terminology but kept the peculiar compound called ‘pontikofarmakon’ which seems to belong to the Greek chemistry in its own\(^{43}\); both versions being here in demotic Greek. In addition, the second version became more complete and contains two details. One, put in brackets, is about a technical detail, the other completes a sentence which had remained unfinished (“[…] remelt it and you will see”) as its meaning was obvious when Athanasius wrote it down. Moreover, Athanasius might have even got the recipe verbally from Kasapoglis himself.

In fact, the verbal transmission of chemical practices to a scholar could be a quite common practice. In Athanasius’ manuscripts, we found two specific pieces of evidence:

- In SG 1027 ff. 439r-439v: the recipe begins with the following comment: “ο ειρηκώς μοι τούτο, είληφεν αυτού πείραν” [= ‘the person who told me that did the experiment’];

- In SG 1030 ff. 81r-82r: the recipe was not written by Athanasius but contains two annotations of his: it is a strange enough recipe of gold preparation from partridges, bile and stomach of ox, worms, snake, sheep excrement, yolk, glass, lead mixed with wheat, which ends with the following mention: « Κατά τον ιηρούντα

\(^{43}\) The word “pontikofarmakon” appears also in a 1478 manuscript presented in Berthelot, M. (1888), Collection des anciens alchimistes grecs, III, “Cinquième partie – Les traités techniques – V.1 Sur la très précieuse et célèbre orfèvrerie”, Paris, recipe 49, pp. 335 (translation, p. 320); see pp. 307-308 for the presentation of that manuscript. In Bethelot’s book, “pontikofarmakon” was translated into “litharge”.

THALES-DACALBO
So, what is really noteworthy to be emphasized in the example of the two versions of Kasapoglis’ recipe is that Athanasius in Constantinople – where he used to live up to 1610s and where he spent most of his time during his missions on behalf of his two patrons – was in contact with alchemists/craftsmen, not to mention the possibility for him to be part of a kind of network of people interested in chemistry. Georgakis Kasapoglis’ name appears elsewhere – on a scrap of paper – in Athanasius’ manuscripts. Actually, other names of people are found on scraps of paper about chemistry in the Ms. SG 1030:

- f. 34r a: “γεωργάκης κασάπογλις εἰς τα ἔξη μάρμαρα” [= ‘Georgakis Kasapoglis in Ex-Marmara’]
- f. 126r b: “νικόλα φαρσαλιότη εἰς τα βρούλα (sic) τοῦ ζωγράφου” [= ‘Nikolas Farsaliotis in Vourla of Zografos’]
- f. 126r b: “Χεσίς φεστλής ἐμήρις εἰς το πεσικτασί” [= ‘Hechis Festlis emir in Besiktashi’]
- f. 127 bis b: “παπά μιχαήλ μητροφάνη” [= ‘Father Mihail Mitrofanis’]
- f. 132r b: “μεχέμετ δεδέ εἰς τον κασουμπαχία” [= ‘Mehmet Dede in Kasimpasha’]
- f. 34r b: “Malaheh il taloppia ?”
- f. 34r b: “Andrea grimaldi pretre trambuchi ?”
- f. 34r b: “baltasar andrigoy?”

Let us specify that ‘Ex-Marmara’, ‘Vourla of Zografos’, ‘Besiktashi’ and ‘Kasimpasha’ were all Constantinople neighbourhoods. It is reasonable to think that these names are names of people interested in chemistry or names of craftsmen with whom Athanasius was in contact in Constantinople. So it
should be noticed that among his chemical acquaintances there were Greeks, Westerners as well as Turks.44 Athanasius’ chemical papers contain other names of unknown people. This time, these names accompany some recipes and belong to authors of those recipes:

- f. 63v: “αρχον καρητζη” [= ‘sir Karitzis’]
- f. 64r: “del P. Carazzoli”
- f. 64v: “Παπά κυρ Δανιήλ” [= ‘Father Daniel’]
- f. 44r: “Monsieur Gras docteur en médecine demeurant chez mr devertrieu en dauphine à seriere”
- f. 44v: “Monsieur de St Sorlin recommande à la cortesie de mr larange hoste du faucon à marseille”
- f. 45r: “Ph. Bordier - chez monsieur de Creil maistre de Requestes rue de Lions proche St. Paul à Paris”

So there are here a Greek, an Italian and Frenchmen.

It is difficult to know who these people were but we can point out that two manuscripts of Athos Mount dealing with pharmacological subjects, the Ms. Dionysiou Monastery 610 (17th century) and the Ms. Iviron Monastery 183 (18th century), were written by a certain Daniel; in the first case, Daniel was a hieromonk and, in the second case, a priest. Obviously, nothing permits us to link them to Father Daniel in Athanasius’ papers.

\textbf{An alchemist in action}

Athanasius was not an “alchemist by his pen”45; he really used to practise chemistry. He was part of a network – made up of people working in chemistry and more or less concentrated in Constantinople – in which chemical recipes could pass from hand to hand. It is the reason why his chemistry, as it appears in his manuscripts, was very lively, not to say a chemistry of living people. The recipes he wrote were selected,

44 Besides it is known that in the 17th century Ottoman Empire dervishes were interested in the pharmacy and were the most inclined to get in touch with Christians; now Mehmet Dede could be a dervish according to his name and he used to live in the neighbourhood of the imperial arsenal.
45 Indeed, “alchemist by his pen” (’alchimiste de plume’) is an expression used by Andrée Colinet to characterize the copyist of the Holkhamicus 109 (Colinet, t. X, p. xciii), i.e. an alchemist practising only the writing of alchemical recipes without really carrying out them.
rewritten, completed or revised. And sometimes he might even have met chemists to ask them some questions about recipes.

Athanasius seems to have a preference for certain topics of alchemical recipes, as mercury congelation or metal transmutation by a plant. The latter was the subject of twenty or so recipes; some of them were illustrated. Thus Athanasius’ papers contain a set of six anonymous drawings of such plants; for instance, “το λεγόμενον ομφαλός της Αφροδίτης” in SG 1030 f. 123r [see Figure 2]. One of those recipes on the use of a vegetable philosopher’s stone is even rather similar to a recipe of Paul of Taranto. But it should be noted that such a philosopher’s stone was already quite rare in the medieval alchemy, and since it had not been at all a topic of the western early modern chemistry. According to Athanasius, this kind of plant grew in Rhodes, Cyprus, Smyrna, Πολύκανδρος (i.e. Folegandros) or near Ancona in Italy, and in his manuscripts he gave its name in Greek, Italian, and French as well as in Turkish, Persian and Arabic. Thus we may see with the vegetable philosophers’ stone a peculiar topic belonging to 17th century Greek or eastern alchemy.

46 SG 1030 f. 31r, f. 34r, f. 44r, ff. 54r-54v, f. 66r, f. 78r, ff. 96v-97v, ff. 101v-102r, ff. 108v-109v, f. 113v, ff. 122r-125r, f. 127v, f. 128v, ff. 129r-ff. 130v-131r, and SG 1027 f. 442v, ff. 450v-452v, f. 453v, ff. 457v-458v, f. 466r-467r, f. 491v.

47 Indeed, the recipe SG 1027 ff. 450v-452v is rather similar, at least in its first part, to one of those of Paul of Taranto (in his Theorica et practica) pointed out by Colinet (pp. lxii-lxiv).
But Athanasius was not interested in all the recipes he could get: he used to pick some of them according to his personal interests and leave the rest. We can clearly see it for instance in the anonymous 55 page set of leaves in Italian included in the Ms. SG 1030. He marked several of its recipes he copied with the following sentence written next to the title of the concerned recipes: “Questo non ho scritto” [= ‘I did not write this one’]48. Recipes without such a mark were in fact copied in Italian or translated into Greek by Athanasius elsewhere in his manuscripts49. In addition, as we can see in the two Greek translations of same and quite long recipe concerning the philosopher’s stone from this Italian notebook50, Athanasius only selected the passages he wanted51.

48 For example, in SG 1030 f. 95v (“Olio di tartaro col quele si fa l’argento dandici legue”).
49 For example, the three recipes in SG 1030 96r (“On Congellation di mercurio”, “A congellare et fissare il mercurio”, “Altro modo sensa odor di mettalo”) were copied by Athanasius respectively in SG 1027 f. 457r, ff. 457r-v and 1027 f. 457v.
50 The Italian original version is in SG 1030 ff. 100r-101v (“Della pietra d’un Certo filosopho ον ευρήσεις 51” , “On Congellation di mercurio ον νί μείνη εν τω πυρί τω σφοδρώ, ουκ αν δύναιτο φαρον ονομάζεται, περί ού είρηται, τιμάτε τον βασιλέα θη”).
51 For instance, here are the ends of the two Greek versions. The first version in SG 1030 f. 35v: “καὶ δὲ αὐξήσαν οἱ πυρ ἐνεκτρίτου βαθμοῦ, διατί οἱ αυτοῖς μέρος τοῦ αἰχμαλώτου τότε τὸ τοῦ σύλυται ἐστὶν ἀφθαρτοῖς καὶ καθότι οὐκ οὐκέτι ἀργύριον κάλλιστον ἐν τῷ πυρί τῷ σφοδρῷ, οὐκ ἀν δύναιτο οὐκέτι εἶναι βασιλέα θη.”
It is obvious, in both Greek versions, that he experienced difficulty in translating into Greek some technical and alchemical terms. But it is probably not for this reason, in the first one, he dropped all the alchemical rhetoric and theoretical developments of the original Italian version, and simplified the alchemical terms he used (except for the “θαυμαστόν ἀλας” [= ‘miraculous salt’] which remained in such a form). Athanasius apparently was an alchemist who used to pay more attention to the practice than to the theory. But it is quite problematic that, in spite of the simplifications of the original recipe, the conclusion could remain the same: this Greek version’s recipe leads to the philosopher’s stone, too. So, in the second Greek translation – based on the first one –, Athanasius reintroduced some theoretical developments of the Italian text into his recipe as well as some specific alchemical terms in order to restore the recipe’s alchemical sense: for instance, “το νερό” [= ‘the water’] and the common “σούλφαρο” [= ‘sulphur’] of the first Greek translation were substituted for “το πολύτιμον ύδωρ” [= ‘the precious water’] and the “ευλογημένον σόλφαρον” [= ‘the blessed sulphur’].

Still more significant about Athanasius’ chemical practice is his critical reading of recipes he wrote down. For instance, in SG 1027 f. 456r, he clarified information of a recipe he was copying by a detail in brackets: “… δίδοντας πυρ από το πρωί μέχρι τρίτης (δοκεί μοι ώρας)…” [= ‘by heating from the morning to three ([three] the afternoon, in my opinion)’]. Or in SG 1027 f. 489v, just after a recipe in Italian on the
Issues on Greek Alchemy

Thales-Dacalbo

arcanum of tartar, he wrote in Latin: “Quosto liquore servere per la transmutatione dei metalli. Sed ego ignoro modum” [= ‘This liquor is used to transmute metals. But I do not know how’].

Athanasius did not at all comprehend passively the chemical practices he recorded. This is obvious in SG 1030 f. 67v [see Figure 3]. There are here only a few lines on a rough draft leaf but they are very practical questions in order to carry out several recipes and very interesting so as to understand what kind of alchemist Athanasius was:

“- σμίξε τον διάργυρο με το μάλαμα, πως ; [= ‘Mix silver and gold, how?’]
- β[ρ]άσε τον με το νερόν ώστε να κοκινήσει, εἰς τι ; [= ‘Boil it with water until it turns red, in what (container)?’]
- τι το χωρίζον το ορπιμέντο από το άλας ; [= ‘What does pull theorpiment off from the salt?’]
- τι ποιητέον το άλας ; [= ‘What to do with the salt?’]
- τι εάν καταλυθή όλο το ορπιμέντο ; [= ‘What happens if all the orpiment disappears?’]
- το αλκαλί λέγουν ειστό β’ν, έψημα πως γίνεται τόσον δυνατόν οπού διαρρήγνυσι το άγγος. [= ‘It is said that the alkali in the 2nd cooking becomes so strong that it breaks the container’]
- τίνα τάρταρον ; [= ‘Which tartar?’]
- [πως] από την τρύπα του σκουτέλου ρίχνεται το στάνιο ; [= ‘How can the pewter be poured through the spoon’s hole?’]”
These questions are actually crossed out. Athanasius was in the habit of crossing out in the Ms. SG 1030 what he had copied or dealt with in the Ms. SG 1027. So that means that these questions have to get their answers in the Ms. SG 1027. Moreover, they have to refer to recipes in an original version in Ms. SG 1030. It goes indeed like that. So the two first questions refer to the recipe SG 1030 f. 67r and their answers are in two notes in the margin of the recipe SG 1027 ff. 485v-486r which is the same Greek recipe but neatly copied with a title in Italian “à far oro”:

- ‘Mix silver and gold, how?’ => “ως ποιούσιν οι χρυσοχόι” [‘as goldsmiths do’]
- ‘Boil it with water until it turns red, in what (container)?’ => “μέσα εις δύο βεντοίζατε” [‘in two phials’]54

54 Here is the recipe SG 1030 f. 67r enriched with the answers of the two first questions in SG 1030 f. 67v: “à far oro. Rx ραστικόπετα δρ. 50 σαλνίτριο δρ. εκατόν βιτρίολο δρ. 50 τρίψε τα καλά, και σμίξετον μετά πέντε δραμίων χρυσού [in the margin: ως ποιούσιν οι χρυσοχοί], έπειτα βράσε τον [in the margin: μέσα εις δύο βεντοίζατε] μετά τού νεροῦ οπού ελαμπκαρίσθη και γίνεται ένα κόκινο χώμα, και όσον βαρεί τότε το χώμα, λάβε και άλλο τόσον κινάβαρι και τρίψε τόσον κινάβαρι γι᾽ αυτά έπειτα Rx 200 δρ. νισαντήρι, και σολνίτριο δρ. 100 και σούλφαρο δρ. 50 και λαμπικάστα. Είτε Rx διαργύρου δρ. 50 και σμίξε τον. και το νερόν ευγή πότιζε την κινάβαρι και το χώμα. Ποτισθέντος δε,
The same for the other questions:
- The three following questions refer to SG 1030 88r recipe and their answers are in SG 1027 484r-484v version.
- The sixth question concerns an original recipe not found in the Ms. SG 1030 but its answer appears in SG 1027 f. 485r recipe.
- The two last questions concern SG 1027 f. 485r recipe.

All the answers to these questions are in recipes copied one after another in two leaves of the Ms. SG 1027 (from f. 484r to f. 486v). Thus, Athanasius dealt with them at the same time. Having said that, in our turn we can ask: who did Athanasius intend to ask his questions to? Himself or the craftsman/chemist who would have given him the recipes concerned? Or another person from whom he expected some help to carry them out? Without any doubt Athanasius had carried out chemistry himself but also had mixed with chemists. So he could get directly, verbally, chemical recipes or even attend experiments carried out by a craftsman (actually some of recipes’ versions in Athanasius’ papers are abridged enough to make us presume that they were transmitted verbally). Thus the details added in the second version of Georgakis Kasapoglis’ recipe we are talking about could correspond to answers of such Athanasius’ questions, too.

The Ottoman units of weight
In order to tackle the last point of my paper, I would like to return to the strange anonymous partridge-based recipe for gold preparation mentioned above. Actually there are two versions of this recipe in Athanasius’ manuscripts; both in Greek but written by two different persons who are not Athanasius. The first one was verbally given to the copyist by a craftsman and reproduced thus the voice of the latter: it was written in demotic (every day Greek language), used a more prosaic terminology,

έπαιρε κομάτι ασίμι πτανόν και πύρωσέτο να κοκινήση, και βάλε ολίγον απ’ αυτής της κόνεως, και αν κτερίνησε όλον, είναι καλόν, ειδή μή, ολλά καπνίζει, πότιστα ακόμη από του ειρημένου νερού, έως οπού να μην καπνίζει. Έπειτα λάβε εξ αυτής δρ.1, και βάλε τα εις 10 δρ. χρυσού λελυμένου. Έπειτα αυτά τα 2 δρ. βάλε τα εις 10 δρ. αργύρου, και έσται χρυσός. εδοκιμάσθη" (SG 1027 ff. 485v-486r).

55 SG 1030 ff. 81r-82r.
56 But strangely the copyist put a dot on each iota of his text.
and gave more details (like the stench of the partridges after having their throats cut, and the lumpy consistency ["τραχανά"] of the lead/wheat mixture). As for the second version\(^57\), it rather makes us hear the voice of an educated person who did not seem willing to carry out what the recipe said and who seemed to content himself with writing it: it was written in a pure Greek language (i.e. in ancient Greek) with a finer terminology. At the very beginning of this second version, the recipe was explicitly defined as a chemical recipe and it said with a certain contempt that the original version on which it was based was written in a very faltering Greek (barbaric Greek)\(^58\). This second version erased all the foreign words of the first version (like “τζυκάλιν” [= ‘pot’] and “άμπουλλα” [= ‘phial’]), and corrected a misinterpretation. Actually, the craftsman’s version did not master enough the alchemical doctrine and the copyist who wrote down what he said wrongly pointed out that the “rain of May” was simply the “clean rain” in opposition to the “dirty rain” streaming from the houses’ roofs (while the rain of May was – alchemically speaking – the rain under the influence of the Lion constellation, i.e. a rain rich in virtues of the universal spirit); so a third but original version might have inspired the craftsman’s version. Nevertheless, what is important to notice here, in this partridge-based recipe, is the pedantry of the second copyist. He translated the first version into a pure Greek as far as the unit of weight is concerned: the Ottoman unit of weight ‘drami’ ("δράμι") became ‘drachma’ ("δραχμή"), the unit of weight of the ancient Greek time. The unit of weight changed but the quantities mentioned in the recipe – in both versions – related carefully to the divisions of the Ottoman ‘okka’ (made up of 400 dramia): 100, 200 and 400. This remark allows us to introduce the question of the recipes using the dramia in Athanasius’ manuscripts.

In Athanasius’ papers, all the recipes in Greek do not contain ingredients in Turkish but the use of the Ottoman units of weight is almost systematic. In Kasapoglis’ recipe the dramia are used as well as in those of the anonymous copyists and in most of the other recipes; the exceptions show us that Athanasius never mistook the Italian ounce for the Ottoman okka. The spelling in Greek of these two units sets them well apart. For instance, in the recipe SG 1027 ff. 456r-v, entitled “εις το ποιήσαι χρυσόν μετά της marchesita” – which came from the Italian recipe SG 1030 ff. 94v-95r using the

\(^57\) SG 1030 ff. 128r bis-133r bis.

\(^58\) “Περί της ζητουμένης χυμείας εύρομεν και ταύτην την ερμηνείαν γεγραμένας σολοκοβαρβάρως λέξει ταύταις λεγούσαις ημίν […]” (SG 1030 f. 128r bis).
ounces (i.e. ‘uncia’) entitled “à far oro con marchesita” – Athanasius was careful to always write “ουνγγία” while, elsewhere the okka was written “οκγία” or “ογγία” (for example, in SG 1027 ff. 442r-v). Furthermore, when the quantities in the same recipe changed from one version to the other, the right proportions were always respected; as with the two versions SG 1030 ff. 77r-v and SG 1027 ff. 440v-442r in which 40 dramia (i.e. 1/5 okka) of seleima, the same quantity of nisantiri and 10 dramia of arsenic became 50 dramia (i.e. 1/4 okka) for each of the two first ingredients and 13 dramia of the third one.

But it is important to add that the use of the Ottoman units of weight okka and dram was not specifically linked to the use of the Greek language. That only depended on the place where the recipes were carried out, that is probably Constantinople. So Levantine recipes could also be written in Italian, as the recipe SG 1030 f. 73v which contains measures in «occa» and which was rewritten half in Greek and half in Italian in SG 1027 ff. 490v-491r with right conversion of the okka unit into “400 dramia”.

As mentioned by Athanasius, this recipe came from certain notebooks he got (“rescriptum est in quaternionibus perfectus”). At the end of the recipe SG 1030 f. 84r, he wrote too: “questo é recopiato nelli quaternioni chimico in 4”. This last recipe has another version in SG 1027 454v without the mention of its source but with a title which gives the following detail: “a far oro, chè è stato provato d’un di nostra conossensa.” So these notebooks seem to be laboratory notebooks of an Italian-

59 `uncia 2' / `uncia 2'; `uncia 1' / `uncia 1'; `uncia 10' / `uncia 10'; `uncia 8' / `uncia 8' (SG 1030 ff. 94-95r / SG 1027 ff. 456r-v).

60 SG 1030 ff. 77r-77v: “Σελειμάν και νισαντήρι ομόζυγα άμφω ως 40 δράμια από καθ’ένα, τρίψετα καλά και τα δύο και βάλετα εις κάθε άμουλαν και βάλετα εις τη χόβολη, id est στάκτη θερμήν και ασταθή τόσον ώστε οπού να κοπή ο καπνός οπού ευγένη από την άμουλαν[...].”

Quere quod deest ut argentum efficatur.
speaking acquaintance who used to practise chemistry in the Ottoman Empire61. We found once more such a reference in the recipe SG 1030 f. 83r using also the dramia: “tutte queste recette sono recopiate nelle quaternioni chimici che sono in 4o”. The same recipe was neatly copied in SG 1027 f. 455v and completed with Turkish names for each of its ingredients. In addition, the recipe SG 1030 f. 73r is a rough draft in Italian using the dramia and the Turkish ingredient “selymà” (probably for “solyma”) written with the same stress as in Greek and in Turkish62. Thus all these recipes in Italian actually reflect a Levantine chemistry, as well as the Greek ones.

Conclusion

The present paper is the first study on Athanasius’ chemical manuscripts ignored until now. These manuscripts show a chemistry which was not in line with the 17th century Western chemistry. And yet Athanasius had lived in Rome and Paris for a long time and he knew Michael Sendivogius’ name which is written on a scrap of paper in his manuscripts63 as well as the titles of some Johann Rudolph Glauber’s works64. On the other hand, Athanasius’ chemical manuscripts do not just revive the byzantine alchemy’s tradition. These papers rather show us a really lively and particular 17th century chemistry: Constantinople chemistry with its own character. It used to be practised in two languages (Italian and Greek) but within the framework of the Ottoman Empire customs and with its specific corpus of recipes. So not only does the study of Athanasius’ manuscripts present a new character of the Greek alchemy’s history and state how writings of the early modern Greek alchemy could be shaped, but it also reveals the existence of a Levantine chemistry made up of craftsmen and chemists who could meet together and share their recipes. In this chemistry Christian and Muslim chemists might have even been in contact with one another.

61 In addition, these two versions contain some sketches of chemical apparatus.

62 In the recipe SG 1027 f. 477r in Italian, the Turkish ingredient “sulima” is also present.

63 Actually, Athanasius strangely wrote Sendivogius’ name with its anagram: “Michael Sendivogius / divi leschi genus amo” (SG 1030 f. 42v).

64 Athanasius wrote down the following references in SG 1027 f. 435r (on scraps of paper): “glauberus in prima parte de prosperitate germanie, non malè loquitur de miraculo panum quod christus fecit. pag : 4. dedicatoriaie. et pag: 22 de ebrietate.” / “glauberus in consolatione navigantium de embritudine pag : 77, et ante hanc et post, ubi in Ssum : Joannem baptistam blasphemat.”. Such quotations do not help us to precisely date Athanasius’ manuscripts, but they prove that the Ms. SG 1027 – at least – had not been already taken by Séguier in 1655, since Johann Rudolph Glauber’s *Prosperitatis Germaniae...* was first published in 1656 and his *Consolatio navigantium...* in 1657.
Nevertheless, for a Greek, studying chemistry in the Ottoman Empire was probably not without difficulty, where, indeed, printing books or getting books from the West was not so easy for the Christians. Consequently, the diffusion of the Greek 17th century chemistry in the Levant had to be a matter of handwritten texts circulating inside certain networks. It is certainly the reason why Athanasius copied some recipes of Guglielmo Gratarolo’s *Verae Alchemiae Artisque Metallicae*... from an anonymous Italian handwritten source⁶⁵ (even if, as we know, he owned the 1561 Basel edition of this book at least at the moment of his death⁶⁶) and translated one recipe of Jean Liebaut’s often republished book, entitled *Quatre livres des secrets de médecine et de la philosophie chimique*⁶⁷, into Italian, then into Greek, from an anonymous French handwritten version. The question of Athanasius’ sources is important and I will deal with it, as well as with a more detailed examination of his recipes, in a next study.

⁶⁵ Four recipes: SG 1027 ff. 468r-471v. Let us add that a recipe attributed to Archelaus is also found in that anonymous Italian source (SG 1030 ff. 97v-98r); this recipe is copied by Athanasius in SG 1027 458v. On Archelaus, see Colinet, pp. lix-lxviii.

⁶⁶ The Sainte-Genevieve Library has Athanasius’ copy of Gratarolo’s book with an explicit ex-libris.

⁶⁷ SG 1030 ff. 32r-32v. The French title of 1573 Jean Liébault’s original version is “Huile de naphte, c’est à dire, de soufre, laquelle est incombustible, incensive & clarifiante des esprits”.

THALES-DACALBO
Sacred initiation related to alchemy is a topic not widely diffused in alchemical texts, except in commonplace statements.¹ Yet it can be traced from the origins of alchemy up to the 20th century. In the Physica kai mystica of pseudo-Democritus, we are told that Democritus’ master died before having completed the initiation of his pupil. He hid a secret formula in a column of a temple, which suddenly opened in front of Democritus. The temple will be later given a name: Memphis, and the master as well: Ostanes.² Specialists of Greek and Arabic alchemy might give us many other examples of such initiatic schemes, but in the Latin West, a real alchemical interpretation of ancient Mysteries cannot be found, to the best of my knowledge, until the early modern times, when poetry was no longer considered as mere lies (as it was in Aristotle’s works, and more generally in medieval culture), but began to be commonly praised as “poetic theology,” a way for the Ancients to hide divine truths behind fables.³

The notion of “poetic theology” was resonating with that of prisca theologia, prisca philosophia, or prisca sapientia, an idea which originated from late Antiquity philosophers such as Diogenes Laërtius, Iamblichus or Proclus, and Church Fathers like Augustine, Lactantius or Tertullian, according to which the most ancient theologians and philosophers – Hermes Trismegistus, Zoroaster, Orpheus, Pythagoras, Democritus or Plato –, though pagan they were, were in Egypt and received part of the teaching of Moses, the most ancient theologian of them all. Their doctrines were therefore imbued with part of the genuine Christian revelation, which made them invaluable, since they were closer to the origins of the revelation of God than any

¹ E.g. Jacques Gohory, preface to [Colonna] (1554), v° of the title-page (Jacobus Gohorius Parisiensis Lectori S.): “Quæ arcana sub his architecturae ac cerimoniarium involucris tegantur, vulgo non sciri, reip. interesse aiunt: sed ab iis tantum sanctioris Philosophiae sacris initiati, sese in rerum abstrusarum contemplatione abdiderunt.” Paracelsus (1568?), dedicatory epistle, fol. 3 r°-v°: “Si tandem eorum vel minimus, qui sacris & abditis nature mysteriis operam dant, experientiaque sensuali Philosophiam veram exercent, opere quopiam nos aggredetur certandi gratia: mox e Philosophis reddebamur asini Literati saltum.”
² See Martelli (2014).
³ On this topic, see Kahn (2013), 97-99 (with bibliography).
other doctrine. This idea was revived by the Florentine Renaissance in the second half of the 15th century.\footnote{Ibid., 109-110. On the prisca theologa, the major study is still Schmitt (1966). On mythology and alchemy, see Matton (1992).} Classical mythology was understood by many Renaissance thinkers as the proper theology of the Greeks and Romans. It was therefore quite natural for Renaissance alchemists to investigate classical myths in order to discover a hidden truth in them. This was clearly expressed, for example, in 1585 by the English alchemist Richard Bostocke: “Divers Poets before the tyme of Plato, and also after his tyme did wrapp and hide this Arte in Ridles, darke speeches and fables. As by the fable of the golden Fleece [...]”\footnote{Quoted by Debus (1987), 20. On Bostocke, see Harley (2000).} Thus, Renaissance alchemists began to interpret alchemically Greek, Roman and Egyptian mythology, hoping to discover the alchemical truths hidden there by the Ancients. Fables, they argued, had preserved these truths more safely and faithfully than the alchemical writers did in their obscure treatises. Besides, Renaissance alchemists were now in a position to claim much older roots in history than before, when alchemy was still considered an Arabic import in Europe.

Within a few decades, the alchemical interpretation of classical mythology became an essential nutriment to alchemy. In 1544, Giovanni Bracesco assigned an alchemical meaning to a huge number of ancient fables in his influential treatise \textit{La espositione di Geber filosofo}.\footnote{See Matton (1992), [11]-[17].} At the end of the 16th century, Vincenzo Percolla interpreted no less than 209 myths in his manuscript \textit{Auriloquo}.\footnote{Percolla (1996).} But the first alchemist to give a proper interpretation of ancient Mysteries was, not surprisingly, Michael Maier in his \textit{Arcana Arcanissima}, published in London in 1614.\footnote{On Maier, see Leibenguth (2002); Lenke, Roulet and Tilton (2014) (with bibliography).}

Relying on Diodorus Siculus’ and Plutarch’s statements that Dionysos is obviously none other than Osiris, and on the common opinion that most of the Greek \textit{prisci philosiophi} had received in Egypt their knowledge in science and philosophy, Maier rhetorically asked why the Egyptian priests did conceal alchemical secrets under the veil of sacred celebrations, instead of disclosing them to all and everyone.\footnote{Maier (1614), e.g. 4, 19-20, 47; Maier (2005), e.g. 25, 42-43, 77.} – For two reasons, he answered: had anyone known that the Great Work was currently performed among Egyptian priests and that this was the actual meaning of these
celebrations, then the celebrations would have been attended in droves by all nations; furthermore, Egypt would have been threaten by countless military expeditions sent at once by all kings from abroad. Therefore the priests made sure that everyone of them was forbidden, under death penalty, to disclose the secrets of alchemy. There were other reasons as well, including, Maier wrote, the very reasons why craftsmen always hide their processes to other people, and the fear that common people make a foreseeable misuse of this secret.10 Maier’s more general argument was that all classical myths, considered as historical narratives, are entirely implausible, if not deeply shocking: they only make sense if we accept that they are intended to conceal mysteries. This argument was a blow to both the euhemerist and moral readings of classical myths.11 Consistently, Maier explained the many prodigies occurring in ancient Mysteries, such as empty bottles put in the temple and found full of wine on the next morning, as mere trickeries performed by the priests in order to deceive the people: an explanation quite identical, by the way, to those given by libertine thinkers, in the same years, for pagan (and implicitly Christian) miracles.12 But Maier’s conclusion, of course, was different: these trickeries were not a proof that there are no gods, but that the meaning of the ancient celebrations was secret – \textit{i.e.} alchemical.13 It is also interesting to see that in Maier’s works, contrarily to many supporters of the \textit{prisca theologia}, Orpheus is not given the prominent place, as the one who imported the Egyptian sacred celebrations in Greece: in Maier’s opinion, the most plausible account of Orpheus’ death is that he was struck by lightning for having disclosed initiatic secrets to ordinary people, which was a good revenge for God, not only for this sinful disclosure, but also for the dreadful idolatry which it caused everywhere in the world.14 This opinion reflects the Lutheran position of Maier, which was less dogmatic than that of Libavius, for example, and can be best described as a Christian humanism typical of the Protestant, post-Renaissance (or, let us say, post-Ficinian)
thinking, where David, not Orpheus, was given the most prominent place among poets.15

Coming to the origins of the Eleusinian Mysteries, Maier recalled the legend of Demeter, who tried to make young Triptolemus immortal by secretly anointing him with ambrosia and laying him in the flames in order to gradually burn away his mortal self. Who cannot see at once, Maier wrote, that such tales are plain alchemical secrets? Who ever heard of children usually hidden under red coals? Triptolemus is our philosophical fetus, which is long hidden in fire and fed with fire as it were pure milk, until he is able to endure the violence of every fire.16 All the details of the Eleusinian celebrations were similarly alchemically explained by Maier, who referred to this general interpretation in his subsequent works and even added interpretations of other Mysteries, such as those of Samothrace.17

The alchemical meaning given to the Eleusinian Mysteries can also be found in the \textit{Chryseis} (\textit{Chryseidos libri IIII}) of Johannes Nicolaus Furichius, published in 1631. This less-known work written by a Strasbourg physician is one of the main early modern Latin alchemical poems. Chryseis is the name that Furichius gave to Proserpine, implicitly referring to the word \textit{chrysos} (gold) and explaining it with this gloss in the margin: “Chryseis is imagined as Ceres’ daughter, because gold is taken out of the earth.”18 When Chryseis married Dis (or Hades), Furichius explains, she received the hidden caves of gold as a dowry and dwelt among the smoky sulphurs of the metal (an allusion to Hades’s words of comfort to Proserpina in Claudian’s \textit{De raptu Proserpinae}).19 Whenever she returned on earth, she left clues to extract the seeds from crude gold. These clues have yet to be explained, for no one can understand them without help. The goal of the poem is to explain them. Not surprisingly, the secrets of alchemy are identified to the Eleusinian Mysteries through the character of Chryseis’ mother, expressly named “sanctae mater Eleusinae”, and through the metaphor of Dionysos’ cistus as the receptacle of all these secrets.20

Michael Maier’s suggestions were taken for granted by a number of alchemists, among which we should first quote Isaac Newton, perhaps the most eager reader and

\begin{flushleft}
15 Leibenguth (2002), 88-89 and 280-283.
16 Maier (2005), 249; Maier (1614), 176.
17 E.g. Maier (1617), 101, 105-108.
18 Reiser (2011), 106 and 262.
19 Ibid., 106 and 263. The \textit{De raptu Proserpinae} is dated 395-397 A.D.
20 Ibid., 172 and 342.
\end{flushleft}
interpreter of Maier’s writings, who transcribed and translated in a manuscript a brief marginal summary by Maier, taken from Maier’s Symbola Aureae Mensae: “Sacra Bacchi (vel Dionysiaca) instituted by Orpheus were of a Chymicall meaning.” This idea can be found again in several alchemical writings from the eighteenth century, such as the Clavicula Hermeticae Scientiae ab Hyperboreo, an anonymous work published in Marburg in 1746. There, in a historical excerpt, the Eleusinian Mysteries were named as a landmark of the transmission of alchemy. In 1773, the French alchemist Etienne Libois repeated this mention in his Encyclopédie des Dieux et des Héros sortis des qualités des quatre éléments et de leur quintessence, suivant la Science Hermétique. Meanwhile, Maier’s Arcana Arcanissima had been plagiarised, and even extended, by A.-J. Pernety in The Egyptian and Greek Fables Unveiled and Reduced to One and the Same Principle, a work published in 1758 and re-edited until 1795, which offered a pleasant, useful and learned rendering of Maier’s views in the vernacular. The weight of the Freemasonic rituals in the transmission of the alchemical interpretation of Ancient Mysteries throughout the second half of the eighteenth century should also be mentioned.

The alchemical reading of classical mythology often supposed the interpreters to be endowed with a considerable knowledge of Antiquity. In 1617, Michael Maier theorised this practice, locating it at the very core of the intellectual activity of the alchemists. Maier wanted the alchemists to master the arts of discourse and language – especially poetics, since the very subject of poetry had first been to conceal alchemical allegories and enigmas, but even grammar, rhetoric and logic, which formed the basis of all other fields of knowledge. Besides, the alchemist had to know geometry, arithmetic, astronomy, and physics; and, of course, medicine. Without these arts and sciences, the alchemist was unable to interpret the allegories and translate them into laboratory processes, an ignorance which would bring about mere darkness, instead of the truth hidden behind the veils of the fables. In addition, the

21 Quoted by Dobbs (1975), 90. See Maier (1617), 101: “Orpheus Bacchi sacra instituit Thebisis.” Ibid.: “Sacra Dionysiacae esse Chymica.” On Newton’s deep interest in Maier, see Figala (1984), 192-206. Still more references to Newton’s comments on Maier are given in Figala, Harrison and Petzold (1992), 158-159.
22 Clavicula (1751), 30. This work is sometimes attributed to the Swedish politician Gustaf Bonde (1682-1764).
23 Libois (1773), vol. I, 455.
alchemist must learn more specific arts like docimastics, which allows one to know the differences between all the minerals and metals, to analyze the purity of precious metals, to know what pertains to their colours, their vitrification. The arts of the goldsmith and smith were also of great help. Finally, the alchemist must become much experienced in the observation of nature (especially the nature of minerals), and perfectly learned and skilled in the very theory and practice of alchemy. Accordingly, the ideal alchemist, in Maier’s opinion, was none other than an encyclopaedic scholar, competent in academic, scientific and technical fields at once, due to his major task: alchemically interpreting the classical myths in order to translate their secret learning into concrete laboratory operations.27 Thus, alchemical research opened up to a genuine quest for universal knowledge.

The alchemical interpretation of ancient Mysteries still left traces even after the complete decline of alchemy, in the 19th and even 20th century, in the most unexpected places. Thus in 1829, the German classicist Christian August Lobeck began his \textit{Aglaophamus} with a brief survey of the diverse interpretations of ancient Mysteries since the seventeenth century up to his time. Lobeck’s purpose was to oppose the view of his contemporary colleague Georg Friedrich Creuzer that Greek mythology came from an Eastern source.28 Creuzer was probably the last philologist to be a follower of the \textit{prisca philosophia}. Lobeck aimed to show, on the contrary, that the ancient Mysteries were an integral part of the Greek religion and had no proper esoteric content. The first author mentioned in his survey of interpretations of ancient Mysteries was Michael Maier, “the most learned of the Spagyrics,” who “stated that the principles of alchemy had been secretly transmitted in the Eleusinian, Samothracian and Olympian Mysteries”.29 Needless to say, Lobeck did not delve further into this subject.

The alchemical interest in ancient Mysteries can be traced further to the pioneer of the spiritualist 19th-century English revival of alchemy, Mary Anne Atwood. In her \textit{Suggestive Inquiry into the Hermetic Mystery} (1850), Atwood devoted most of the second part to the “Mysteries”30. Beginning with the assumption that “the Egyptian, that is the Hermetic Art, or Art of Divine works” (i.e. alchemy) “was by the Greeks

27 This encyclopaedic purpose was exemplified in 1617 in Maier’s famous Atalanta fugiens.
28 Creuzer (1810-1819).
29 Lobeck (1829), vol. 1, 6. On Lobeck and the puzzling title of his book, see Brisson (2005), 120-121.
30 I owe this reference to Larry Principe.
Issues on Greek Alchemy

called Theurgy”, Atwood could easily shift towards the ancient Mysteries: this Art, she went on, “was extensively practised at Eleusis”. 31 Furthermore, Atwood connected alchemy, ancient Mysteries and Mesmerism: in Principe and Newman’s words, “Atwood claims that the trance-like state necessary for self-purification and the concentration or manifestation of the ‘matter’ was achieved in ancient times by the devotees of the Eleusinian mysteries and contemporaneously by the practitioners of Mesmerism – ‘the first key opening to the vestibule of this experiment’.” 32 In Atwood’s book, the whole Great Work as she conceived it is likewise connected to the Eleusinian Mysteries.

A further interest in the alchemical interpretation of ancient Mysteries may be noticed in the early work of W. B. Yeats as well – not surprisingly, given Yeats’ temporary addiction to “occult” secret societies. Thus his tale Rosa Alchemica (1897) significantly opens, since its third edition (1914), on a quotation from Euripides celebrating those initiated into the rites of Dionysus. 33

Some thirty years later, another unexpected place to find a new alchemical interpretation of ancient Mysteries was the collection of essays The Theatre and Its Double by the famous French writer Antonin Artaud, published in 1938. This collection included a short text from 1932, The Alchemical Theatre, in which Artaud offered a comparison between his conception of theatre as a radical, ontological performance involving the whole being of the people composing the audience, and alchemy as he understood it through a number of readings into the contemporary esoteric literature. 34 Admittedly, in 1925, the French 20th-century alchemist Fulcanelli had perpetuated the alchemical tradition of Maier and Pernety in his first book, Le Mystère des Cathédrales, which offered an interpretation of the Eleusinian Mysteries partially based on new (and quite fanciful) elements. 35 However, it is highly implausible that Artaud, as early as 1932, knew Fulcanelli’s book. No one among, nor

31 Atwood (1918), 181.
33 Euripides, Bacchae 72-77. See Yeats (1914), 190; Arkins (1990), 103.
35 Fulcanelli (1964), 93, n. 1 and 192; see also 108-109.
around, the surrealists did know it – until the beginning of the years 1950, when André Breton met Fulcanelli’s disciple René Alleau. Artaud’s comparison between theatre and alchemy rested upon the fact that the origins of theatre lay in ancient Mysteries. Theatre as Artaud conceived it had to recover the original strength which once characterised both (though differently) the Eleusinian Mysteries and the dramatic allegories used by the alchemists to describe the Great Work. Only this original strength was able to lead theatre toward the ideal Artaud dreamed of. In Artaud’s words:

“the Orphic Mysteries which subjugated Plato must have possessed on the moral and psychological level something of this definitive and transcendent aspect of the alchemical theatre, [and] with elements of an extraordinary psychological density, […] must have evoked the passionate and decisive transfusion of matter by mind”.

This is not exactly an alchemical interpretation of the Orphic Mysteries, but rather an analogy between these Mysteries and the alchemical allegories (termed “alchemical theatre” by Artaud). Yet this analogy was probably inferred from Artaud’s reading of an attractive, coloured-illustrated anthology of alchemical texts published in 1929 by Emile-Jules Grillot de Givry (1874–1929): Le Musée des sorciers, mages et alchimistes. Artaud certainly did not draw directly from the ancient books of Maier or Pernety: reading through old books from a remote past was not Artaud’s customary practice. Grillot de Givry, on the other hand, was also the author of an Anthologie de l’occultisme (1922), and translated into French John Dee’s famous Monas Hieroglyphica (1925): all these publications immediately won the attention of
several members of the surrealist group, including Michel Leiris, a close friend to Artaud. 38 Grillot de Givry is, therefore, a very likely source of Artaud. In Le Musée des sorciers, Artaud could find a suggestive comparison between the athanor and the Orphic egg:

“the athanor, where the transmutation is performed, is an egg-shaped matrix, just as the whole world, which is itself a gigantic egg: the Orphic egg underlying every initiation, in Egypt and in Greece alike.”39

As for the puzzling mention of Plato subjugated by the Orphic Mysteries, it needs to be explained. This view does not fit well with Plato’s works. It was only held in late Antiquity, by such neo-platonists as Proclus.40 To the best of our knowledge, Plato had only ironic remarks about the initiates in Orphic Mysteries.41 As it happens, Artaud’s opinion only reflects the status quaestionis commonly held among early 20th-century scholars, especially in France. Before the works of Wilamowitz, Festugière and Linforth, it was currently accepted that Plato had borrowed his myths of the Afterworld from an Orphic cosmogony.42 In France, Mario Meunier’s comments on Plato’s Phaedo, published in 1922 and 1926, are a good example.43 We cannot state that Artaud spontaneously read Meunier’s edition, but Meunier’s comments were abundantly quoted by the French writer Rolland de Renéville, Artaud’s friend since 1925, in his best-seller on Arthur Rimbaud, Rimbaud le voyant (1929).44 Artaud was most probably led to Meunier’s edition by this very book. In addition, Artaud certainly read Édouard Schuré’s best-seller Les Grands

38 Grillot de Givry (1922); Dee (1925); Grillot de Givry (1980). See Leiris (1927), esp. 63; Leiris (1929).
39 Grillot de Givry (1980), 386: “[…] l’athanor où s’opère la transmutation est une matrice en forme d’œuf, comme le monde lui-même, qui est un œuf gigantesque, l’œuf orphique qu’on trouve à la base de toutes les initiations, en Égypte, comme en Grèce […]”
40 These opinions are conveniently quoted in the work of the late English neoplatonist Thomas Taylor (1790). On Plato considered as a follower of Orphism by late Antiquity Neoplatonists, see among others Brisson (1995); Brisson (2002).
41 For a recent reassessment on this subject, see Bernabé (2011).
43 Plato (1926). See also Euripides (1923), e.g. 71; Bergson (1932), 234.
44 See Habrekorn’s preface to Rolland de Renéville (1985), 7 and 22-23, as well as Rolland de Renéville’s footnotes. The first edition is Rolland de Renéville (1929): see 37-81.
Initiès (1889), a work continuously reprinted until 1931, a chapter of which described Plato as an initiate into Eleusinian Mysteries.\footnote{Schuré (1889). New editions appeared, among others, in 1918, 1921, 1927, 1931.}

Returning to Artaud’s essay, what Artaud tried to express here was his conception of theatre as a kind of material basis arranged in order to induce a massive psychological impact on the audience, resulting in the transmutation of the spectators’ minds. Thus, he spiritualized the alchemical meaning which, in the times of Michael Maier, had only consisted of plain laboratory processes. As an example, the castration of Osiris meant, according to Maier, that the penis of the god was « these black, useless faeces through which Osiris first took his growth, but which must be separated, after the dissolution, from the cleaned, pure rest of the body ».\footnote{Quoted by Matton (1987), 213.}

However, Artaud’s interpretation of alchemy was not a forerunner of the spiritualist interpretations given by Carl Gustav Jung and Mircea Eliade just a few years later. Artaud was not by far a spiritualist. Rather a monist, as were his former surrealist friends, he insisted on the necessary fusion of matter and mind:

“We are told that the Mysteries of Eleusis confined themselves to the mise en scène of a certain number of moral truths. I believe instead that they must have consisted of projections and precipitations of conflicts, indescribable battles of principles joined from that dizzying and slippery perspective in which every truth is getting lost in realizing the inextricable and unique fusion of the abstract and the concrete, and I think that by certain musics of instruments, by certain notes and combinations of colors and shapes, of which we have lost every notion, they must have managed […] to resolve by conjunctions unimaginably strange to our waking minds, to resolve or even annhilate every conflict produced by the antagonism of matter and mind, idea and form, concrete and abstract, and to dissolve all appearances into one unique expression which must have been the equivalent of spiritualized gold.”\footnote{Artaud (1958), trans. Richards, 52 (slightly modified); Artaud, ed. Grossman (2004), 534-535: “Les Mystères Orphiques qui subjuguaient Platon devaient posséder sur le plan moral et psychologique un peu de cet aspect transcendant et définitif du théâtre alchimique […] [§] […] ils devaient mettre en scène des projections et des précipitations de conflits, des luttes indescriptibles de principes, prises sous cet angle vertigineux et glissant où toute vérité se perd en réalisant la fusion inextricable et unique de l’abstrait et du concret, et je pense que par des musiques d’instruments et des notes, des combinaisons
Strangely enough, Artaud’s essay had an impact on further interpretations of ancient Mysteries, later on in the 20th century. In 1953, the French alchemist René Alleau, who was close to the surrealists, drew massively from Michael Maier for his own interpretation of the Samothracian Mysteries, but Artaud was invoked by him as a major authority as well. In the same period, the works of Jung, Eliade and René Guénon contributed much to strengthen the opinion that alchemy was a sort of gnostic, initiatic doctrine. As long as this opinion prevailed, it was extremely difficult, as we know, to make real and tangible progress in the history of alchemy.

REFERENCES

de couleurs et de formes, dont nous avons perdu jusqu’à l’idée, ils devaient […] résoudre par des conjonctions inimaginables et étranges pour nos cerveaux d’hommes encore éveillés, résoudre ou même anihiler tous les conflits produits par l’antagonisme de la matière et de l’esprit, de l’idée et de la forme, du concret et de l’abstrait, et fondre toutes les apparence en une expression unique qui devait être pareille à l’or spiritualisé.”

49 Ibid., 117.

Figala, K., Harrison, J., and Petzold, U. (1992), “*De Scriptoribus Chemicis*: Sources for the Establishment of Isaac Newton’s (Al)chemical Library”, in Harman, P. M.,

Grillot de Givry, E.-J. (1922), *Anthologie de l’occultisme ou les meilleures pages des auteurs qui se sont illustrés dans les sciences hermétiques depuis les temps anciens jusqu’à nos jours*. Paris: La Sirène.

Maier, M. (1617), *Symbola aureae mensae duodecim nationum [...]*. Francfort: Lucas Jennis, 1617.

Issues on Greek Alchemy

For a long time historians of chemistry tended to give primary attention to the succession of chemical theories and understandings of chemical change (such as the nature of elements or atoms) or to the study of historical chemists’ biographies or trajectories. But chemistry is first and foremost a practical endeavor. Throughout its long history, chemistry (or chymistry, or alchemy) has been predominantly about making stuff, producing new materials, often of commercial value. More recently, the history of science has begun paying greater attention to the practical and material aspects of the sciences. Within the history of chemistry, this broader focus now includes the more serious examination of such things as the technological applications and deployments of chemistry, as well as what chemical practitioners were actually doing in their workshops or laboratories, how they were doing it, and why they were doing it in particular ways.

Several methods can be used to explore the practical, materially-productive aspect of chemistry. There are the usual historical methods of examining written sources like books and manuscripts, especially laboratory notebooks when they survive. But a complementary method that I have long practiced and advocated, and that is now rather suddenly receiving broader interest, involves attempting to replicate historical processes and experiments.¹ In this way, one has the opportunity of experiencing (to some extent) what historical actors experienced. In chemistry this includes not only

seeing what they saw but often enough smelling what they smelled, and indeed, the highly *sensual* nature of chemistry, as a science predominantly of qualities, renders historical replication especially promising as an additional source of valuable information about historical events and ideas. Careful, circumspect replication can provide the historian with fresh insights that may help us reach a better understanding of what the authors were doing, of how and why they interpreted their results in certain ways, and of the texts they left behind. In this way, I see textual methods and experimental replication as not only complementary, but also dynamic, in the sense that the texts must initially direct the course of experimental research, the results of which should then help us better understand and interpret the texts, and the better understanding of the texts may thereafter allow us to modify the replication, and so forth.

The ability to replicate experiments is a foundational principle of modern science. But, as any practicing experimenter knows, this notion is usually a much easier to realize in theory than in practice. Every replication encounters the problems that arise when one person translates a practice into words and then another person tries to retranslate those words back into practice. Details that are obvious to, or unnoticed by, the first experimenter are often left unmentioned, yet these features may be unknown to, perhaps even unimagined by, the second. Personal experience and habits (of hand or of mind) can cause the second experimenter to misinterpret unconsciously the words of the first. Such difficulties only increase when we move to older and older texts, where the cultural, philosophical, theoretical, and linguistic contexts of writer and reader move ever further apart. I examine here a few of these difficulties as they emerge in some ancient texts that describe chemical operations, and point out how modern replications can help us better understand the texts and perhaps even help guide philological endeavors, especially in the translation of technical texts. I will also point out some problems that occur when modern chemical knowledge is too easily or casually applied to ancient texts--what I call “armchair” chemical interpretation--without the benefit of historically-sensitive replication.

I examine here a seemingly simple process, one practiced in various forms for over two thousand years, namely the production of a substance known as lead white (Gr. *ψιμύθιον*, Lat. *cerussa*). Lead white was used first as a cosmetic, and later for medical, artistic, and other purposes. It is cited as an ingredient in many Classical and
Later chemical texts, such as the *Four Books* of ps-Democritus and the Leiden Papyrus.\(^2\) Its production is described in more or less detail by four important ancient authors: Theophrastus (*Peri lithōn*, 56), Vitruvius (*De architectura*, 7:12), Dioscorides (*De materia medica*, 5:88), and Pliny the Elder (*Naturalis historia*, 34:54). These four authors, and most of their successors, describe the basic method of making lead white largely uniformly. It *seems* a very simple process. Lead, either in thin sheets, scrapings, or brick-like blocks, is exposed to the action of vinegar. Notably, the lead is always kept above the surface of the vinegar and exposed only to its vapors. Thus the lead is either supported on a mat of reeds or wooden sticks, suspended by a cord or rod, or placed like a cover upon the jar containing the vinegar.

In order to replicate these conditions in a way that could be observed and recorded, I suspended a sheet of lead by a cord within a glass flask above a solution of 10% acetic acid.\(^3\) The flask was then covered and left on the laboratory benchtop for three weeks. A time-lapse video, with frames taken every thirty minutes, was taken over the course of 20 days. (Video 1: Note that the jittering movement of the lead is due to the winding and unwinding of the twine suspending the lead owing to changes in humidity levels and to changes in the lead’s center of gravity as it corrodes.) After this time, it can be seen that a substantial layer of white crust has formed, significantly swelling the original dimensions of the lead. This white crust is easily scraped or flaked off. (Figures 1 and 2). The overall chemical reaction can be expressed thus\(^4\):

\[2\]

\(^3\) Note that an *absolutely accurate* replication would have utilized wine vinegar, an earthenware vessel, and many other specifics of the ancient process. However, performing replications for historical purposes is not a type of antiquarianism but an attempt to gain further scientific and historical understanding, and for this purpose I advocate beginning with a “stripped down” version of the original process that limits the number of variables and potential chemical complications. Often this proves inadequate for achieving the original results, and further “complications” need to be added in order to achieve the desired results (see Principe, “Chemical Translation”).

\(^4\) Because of the commercial importance of this process in the nineteenth and early twentieth centuries, the chemistry of the transformation was repeatedly investigated; it is clearly far more complicated than the simple reaction shown here--some of these complications are introduced later in the paper.
Scheme 1: The overall (simplified) transformation of lead into lead white

Figure 1: Before and after photographs of the lead white experiment; at the start of the experiment (left) and after twenty days (right). Author’s laboratory
Types of Problems in Understanding Practical Texts

I shall return to this chemistry shortly. But first it will be useful to classify the types of problems encountered in texts, particularly in the technical literature. These problems can be conveniently broken into two main groups—those stemming from the texts, and those stemming from the readers. In regard to the texts, the authors were often not themselves practitioners; this is certainly the case in the example of lead white. It is highly unlikely that Theophrastus or Dioscorides ever made lead white themselves, and very possibly never even saw it being made. Their accounts are at best second-hand, and therefore their knowledge of the process was itself more or less imperfect. In other words, there is an unavoidable gap between the (probably illiterate) artisans who actually made the product and the literate scholars who wrote about it. It is difficult to assess how much crucial or simply pertinent information failed to be transmitted across that gap. This problem may not be as significant when the authors
Issues on Greek Alchemy

are themselves practitioners; however, there remains of course the well-known problem of unexpressed, or “tacit” knowledge. In such cases, a replication aims at spanning that gap by bringing the modern reader closer to the practitioner, perhaps enabling the recovery of some information lost in the original transmission from practitioner to author.

A second problem in the texts is technical vocabulary--were the authors aware of it and did they use it? If they were not aware of it, they might have failed to make distinctions in language that the practitioners considered crucial. In short, even if the authors understood a process fairly well, did they use the right words to describe it? Modern English offers a good example of this problem: non-chemists often conflate the two words “melt” and “dissolve” because both melt and dissolve describe the transformation of a solid into a liquid. But speaking correctly, melting occurs strictly as a result of heat, and dissolving strictly by means of a solvent. Thus when we are presented with a historical text it can be difficult to determine at what level of technical and linguistic proficiency we should interpret its vocabulary.

The second main category contains problems due to the reader. The reader could either be a modern historian, or an historical author copying or paraphrasing an earlier text. The first problems come from the reader being a non-practitioner. This is almost always the case, rarely does a reader have first-hand practical knowledge of what he is reading about in a historical technical text. Experimental replication addresses this problem most directly by providing, or at least approximating, first-hand practical knowledge. Without the information provided by replication, several errors can arise from imperfect knowledge of the processes, and these are similar to those faced by non-practitioner authors. More critically, and in my experience most commonly, a good historian endeavoring to understand a technical text goes to modern technical literature to get a better understanding of what he is reading about. Unfortunately, historians are not necessarily--and can hardly be expected to be--familiar with the intricacies (and potential pitfalls) of the scientific literature, and so this potentially very promising solution can instead produce fresh problems. In some cases this occurs by innocently using outdated or substandard sources, or by missing crucial details and creating oversimplifications. Chemical experimentalists know how complicated even a theoretically “simple” process can really be in practice. Unfortunately, chemists (or at least chemical textbooks) have the unfortunate tendency to keep that experience a
secret. Oversimplifications can also occur by assuming that modern chemical
substances are equivalent to ancient ones, without taking into account the presence
and role of impurities, or the very different technical conditions of apparatus, heating
methods, and physical environment. Finally, there is another feature to the problem
of technical vocabulary mentioned above; namely, even if the author uses technical
vocabulary correctly, will a subsequent reader be able recognize it as such and
understand it? This is obviously most serious with languages that are no longer
spoken, in which we might have very few usages of a particular word, or perhaps only
one as in the well-known philological problem of the *hapax legomenon*. A similar
problem can occur however even with common words. For example, the word
“metal,” a common enough word with a clear meaning, is often used by seventeenth-
century glassworkers to refer to the molten glass with which they are working, which
usage proves highly confusing to those not familiar with it.

The Lead White Case-Study
A case-study of lead white offers examples of these problems and also demonstrates
how replications can help solve them. Beginning with the problem of non-practitioner
authors, I turn first to Pliny. His text reads

Psimithium likewise, that is, lead white, is produced in the workshops of
lead-works, the most praised of which is at Rhodes. It is made when very
thin shavings of lead are placed atop a vessel of very sharp vinegar, and
thus produced by dropping down. Whatever falls off from the lead into the
vinegar itself is dried, ground, and sifted….

[Psimithium quoque, hoc est cerussam, plumbariae dant officinae,
laudatissimam in Rhodo. Fit autem ramentis plumbi tenuissimis super vas
aceti asperrimi inpositis atque ita destillantibus. quod ex eo cecedit in
ipsum acetum, arefactum molitur et cribatur…]⁵

⁵ Pliny, *Naturalis historia*, 34:54. All translations are mine unless otherwise indicated.
Here Pliny writes that the lead white is retrieved from the vinegar, presumably strained out and then “dried, ground, and sifted.” But in the replication of this process no white lead is found in the vinegar, as can be clearly seen in figure 1.

In fact, we should not expect to find lead white in the vinegar because lead white dissolves in vinegar. Indeed, throughout my replication of the process, fragments of the lead white “dropped down” frequently into the vinegar, but dissolved there in a matter of minutes. Tests on the residual liquid at the end of twenty days showed it to be full of lead in the form of acetates. Pliny is thus certainly mistaken, but how did he go wrong? A hint may be offered by his use of the crucial word destillantibus, “by dropping off.” It is surely Pliny’s Latin rendering of the Greek verb katarrheō which Dioscorides uses in his own account of making lead white—thus strongly suggesting that Dioscorides is Pliny’s main source for this process.6 But Dioscorides himself notes that the workers first put a mat of reeds into the jar over the vinegar, and then place the lead on top of that.7 What “drops off” of the lead would then fall onto the mat of reeds and be collected. So Pliny, presumably unfamiliar with the process and the properties of lead white, “over-edited” Dioscorides’ description and thereby gave an incorrect account. Readers should have been sceptical anyway. The whole value of lead white lies in its pure, dense white color. The vinegar that a Roman or Greek artisan would have used to prepare lead white was not the clear, colorless distilled vinegar of today, but almost certainly sour wine, probably sour red wine. Therefore, even though the residual liquid in the modern replication does give a very handsome lead white if it is allowed to evaporate very slowly, this method could not have worked in antiquity since the coloring matters in the crude vinegar would have ruined the product’s whiteness and thus rendered it worthless.

Applying modern chemical knowledge too easily to ancient texts can sometimes be as misleading as not applying it at all. In 1932, Kenneth Bailey, in his study of chemical subjects in Pliny, argued that what the ancients produced was not lead white (a basic lead carbonate) at all, but rather lead acetate, also known as sugar of lead. He based

this claim on the fact that when vinegar acts on lead, lead acetate is produced first, and then carbon dioxide converts this acetate into the basic carbonate known as lead white. But since the vessels containing the lead and vinegar were sealed, he argued, no atmospheric or other source of carbon dioxide could enter, and thus the reaction would stop at the acetate.\(^8\) This is true as far as it goes, but proves the proverb that a little learning is a dangerous thing. Bailey was in fact not the first person to remark upon the apparent “lack” of carbon dioxide in the ancient recipes. The earliest indication I have located is from William Pulsifer in 1888, who concluded that the ancients did not distinguish between lead acetate and lead white.\(^9\) This conclusion is less than convincing given the widely divergent appearance and properties of the two substances. A similar observation regarding the lack of provision for carbon dioxide was also made in 1909 by C. D. Holley and in 1927 by J. W. Mellor. Yet neither of these two latter authors took the subsequent step of asserting that the ancients really produced lead acetate rather than the basic carbonate (lead white).\(^10\) What Bailey (and presumably Pulsifer as well) did not account for was an equally crucial first step, without which no reaction at all—not even to lead acetate—can take place. There must be atmospheric oxygen present in order to oxidize the lead before the vinegar can begin to act upon it. The need for oxygen, besides being obvious from chemical theory, has been known (and experimentally demonstrated) since at least 1842.\(^11\) So, if the ancient jars were actually sealed air-tight, the conversion of the lead would have quickly come to a halt as soon as the oxygen trapped within the jar was used up. But since the ancient accounts are clear that the lead was indeed corroded, that means that oxygen must have had access to the lead, and if atmospheric oxygen had access then so did atmospheric carbon dioxide. Thus Bailey’s reasoning about the identity of the product is based on a false foundation.

Scheme 2: A more complete (but still simplified) scheme of the production of lead white from lead showing the critical roles of acetic acid, oxygen, carbon dioxide, and water.

When such confident and apparently scientific or authoritative claims get into the historical literature they are difficult to purge. This result can be seen clearly in what the translator for the Loeb Classical Library did: he incorporated Bailey’s erroneous chemical claim directly into his translation. He thus rendered Pliny’s text as “psimithium also, that is cerussa or lead acetate, is produced at lead-works.” He even supplies a footnote keyed to the term “lead acetate” that explains, based on Bailey, that the material produced is “sugar of lead, not the modern basic lead carbonate or ‘white lead.’” ¹² The error should have been immediately apparent since “sugar of lead” is a colorless, crystalline, easily water-soluble material, completely unlike the bright white, powdery, water-insoluble white lead. Thus, sugar of lead (lead acetate) is completely unsuitable for use as either a cosmetic or a pigment.¹³ While it is useful to clarify the identity of premodern chemical products, such direct “translations” of ancient terms into modern chemical ones should never be done; they are almost always misleading if not simply wrong.

¹³ This point had been made by Holley, *Lead and Zinc*, p. 3.
The question of where the necessary carbon dioxide was coming from garnered a number of responses over the years. Some writers, taking their cues from the “Dutch Process” that was in use for making lead white from the seventeenth until the mid-twentieth century and in which fermenting tan-bark was used as a source of carbon dioxide and gentle warmth, opined that some similar organic matter—perhaps grape residues in the crude vinegar itself—evolved carbon dioxide during its putrefaction. Besides being questionable whether an adequate supply of carbon dioxide could be generated in this manner, it does not resolve the difficulty (which was not pointed out by any commentator on the ancient processes of which I am aware) regarding the necessary role of oxygen. Bailey certainly overestimated the ability of premoderns to seal clay vessels air-tight. Yet, even if the jars of lead and vinegar were simply covered reasonably well (which is all the texts describe) rather than actually sealed how could a sufficient supply of oxygen and carbon dioxide get into jars to produce a reasonable yield of lead white?

Replication of the process made this clear, and partly by the kind of accident that is not uncommon in practical work. Some months after the video above was recorded, I attempted to make a similar video, but was frustrated to find that the process no longer worked the way it had previously. Multiple attempts were made, but with equally poor results: the production of the lead white was extremely slow, and soon came to a halt before anything more than a thin and partial crust, largely of lead acetate rather than of white lead, was produced (video #2). The only obvious difference was the seemingly incidental fact that in the meantime I had relocated my laboratory to a new building. The crucial difference turned out to be temperature control. The first laboratory had very poor temperature control, and the first video was shot during extremely cold weather such that the daytime and nighttime temperatures of the laboratory varied by as much as 10° Centigrade. The second laboratory had much more constant temperatures. The temperature fluctuations in the first locale

14 Lloyd G. Stevenson, “On the Meaning of the Words cerussa and psimithium (psimythion),” Journal of the History of Medicine, (1955):109-11; Pulsifer, Notes, pp. 211-214; and Caley and Richards, On Stones, pp. 187-88; it is especially noteworthy that the last of these authors carried out their own simple replication of Theophrastus’ process, they claim to have obtained only lead acetate but that after dissolving the crusts in water, atmospheric carbon dioxide caused the precipitation of a considerable amount of lead white. It is true that lead acetate forms first during the exposure to vinegar, but given moisture and carbon dioxide, this then converts to lead white; Caley and Richards experiment therefore was possibly not carried out for a long enough time.
meant that during cooler nighttime temperatures, the vinegar vapors within the vessel condensed and the enclosed air contracted in volume, thus pulling fresh external air into the vessel. During the warmer daytime periods, more vinegar evaporated and the air expanded, thereby pushing some of the “old” air out of the vessel. (In the first video one can at times observe the vinegar vapors alternatingly condensing and evaporating from the walls of the flask through the diurnal cycle.) Thus the temperature fluctuations produced a daily cycle of “breathing”; each night fresh air—containing oxygen and carbon dioxide—was pulled into the flask, thus allowing for both the formation of lead acetate and its subsequent conversion to carbonate. The ancients manufactured the material outdoors without anything like modern temperature controls, and where the difference between daytime and nighttime temperatures was significant. Accordingly, when I tried the replication in a sheltered place outdoors, the production of lead white was rapid and efficient. Since the daily “breathing” of the vessel is driven by differential air pressure, that means that even a very small opening into the vessel would suffice to permit the daily replenishing of the oxygen and carbon dioxide within the flask. Thus in this case, replication provided completely unexpected insights.

Replication As an Aid to Philology

Finally, let me turn to Theophrastus to illustrate how replication can potentially help clarify problems of technical vocabulary. The crucial passage (*De Lap.*, 56) regarding the elaboration of the lead white is rendered as follows by Caley and Richards.

> …the part that is scraped off is ground in a mortar and decanted frequently, and what is finally left at the bottom is white lead.
> [...τὸ δ’ἀποξυόμενον ἐν τριπτῇ τρίβουσι καὶ ἄφηθοῦσιν ἄει, τὸ δ’ἔσχατον ύψιστάμενόν ἐστι τὸ ψιμύθιον.]

The consensus of the three Vatican manuscripts of Theophrastus provides a strange spelling of the verb [ἄφηθοῦσιν], which Caley and Richards, following Schneider, correct to ἄφηθοῦσιν, and translate as “decant,” implying that the scrapings were ground with water and the supernatant water poured off the top, leaving a washed
white lead behind at the bottom of the mortar.\footnote{Caley and Richards, \textit{On Stones}, pp. 28 and 40; Johann Gottlob Schneider, \textit{Theophrasti Eresii quae supersunt opera}, 5 vols., (Leipzig, 1818-21).} This rendering makes good chemical sense, and presumably incorporates results from the translators’ own replication of the process. The use of water, although not explicitly mentioned in the text, would purify the desired product because the crude lead white, by my analysis, contains both insoluble basic lead carbonate (the lead white) and soluble lead acetate, often in roughly equal amounts by weight. Ancient samples of lead white discovered in burials have been shown by analysis to be the pure basic carbonate, suggesting that some method was employed to remove the acetate, and the simplest way of doing this is by washing the scrapings with water.\footnote{Caley and Richards, \textit{On Stones}, pp. 189-190 and references therein.}

Eichholz corrects the problematic verb further into the more common form ἀπηθοῦσιν and translates it as “strain away,” which seems plausible enough philologically, but gives a translation that is hard to understand in practical terms: “the scrapings are pounded in a mortar and continually strained away [ἀπηθοῦσιν]; and the white lead is the material finally left deposited.” What exactly is strained away? Where exactly is the lead white deposited? His commentary explains that water is poured on the scrapings and strained away, therefore presumably implying something close to what Caley and Richards suggest: washing away the acetate with repeated affusions of water, finally leaving pure lead white behind in the mortar or perhaps on a filter or strainer of some sort.

But when I tried replicating this part of the process, I discovered two unexpected problems. The first is that the scrapings contain many tiny particles of unreacted lead—five to ten percent of the weight. This result is because the lead, whether in the form of a thin plate or the kind of a brick [\textit{plinthos}] that Theophrastus mentions, exfoliates dramatically during the reaction, sluffing off thin fragments of lead that are subsequently either fully or only partially converted to acetate or carbonate. Since the \textit{psimuthion} was originally used primarily as a face powder or fine white pigment, the lead particles would make it gritty and grey rather than smooth and white. How did ancient workers remove the unreacted lead particles? The methods suggested by the translations above would leave these lead particles with the lead white. Second, grinding with water gave a bigger problem as can be seen in video #3.
The lead white produced by this method is so finely divided that nearly all of it comes off suspended in the wash water, as a fluid white like milk; the product is not left behind in the mortar. The lead white actually takes many hours to settle out, up to two entire days, thus it would have been impossible to “decant” the water directly or to “strain it away” without taking the lead white along. Indeed, measurements of the size of the particles of lead white produced by the exposure of lead to air and vinegar vapors indicate average diameters ranging from 0.04 to 0.3 microns (by comparison, a human blood cell is about 5 microns in diameter). Nevertheless, this discovery did solve the first problem: all the unreacted lead particles were left behind in the mortar. Since they are much denser, they settle out much faster than the lead white and so are not carried out of the mortar with the poured off water. These grey-black particles can be seen still in the mortar at the end of the video.

These practical results, if they in fact replicate accurately the experiences of the ancient workers, encourage us to turn back to classical philological methods for a resolution. Theophrastus uses this same (possibly problematic) verb in one other place. In his History of Plants, when describing the means of extracting juices from plants, he writes that some plants are so dry that no juice can be obtained from them by pressing or squeezing. He reports that in such cases, the workmen pour water over the crushed plants, and then “…ὑδώρ ἐπιχέαντες ὀπηθοῦσι καὶ λαμβάνουσι τὴν ὑπόστασιν” (9.8.3). What they collect is called here the hupostasis. The Greek medical literature uses hupostasis specifically to refer to the sediment that urine deposits upon standing for a day. In other contexts, it refers to the sediment or lees deposited by wine as it ages. Thus it would seem that Theophrastus’ use of hupostasis does not refer to material that remains on a filter or strainer, but rather to the solid that settles out from a liquid over time. So here the verb cannot mean something like our concept of filtration, a process that would remove all the solid material suspended in the liquid such that nothing would be left to settle out. There are two possible interpretations. First, the straining would be only to hold back the large pieces of vegetable matter, and the desired hupostasis settles out of the strained liquid upon standing. This kind of straining might have been done using the kind of sieves that the

18 Suzanne Amigues, in Théophraste, Recherches sur les plantes, p. 21 and 121 renders hupostasis as sédiment but then implies that this sédiment is the solid left on a filter, which is correctly called a résidu.
ancients possessed--pierced metal sieves to strain wine, and woven sieves of reeds or fibers for processing grain. Such straining might instead have been more efficiently done by filtering through cloth. In either case, the openings in the sieves or in the weave of cloth would have been too large to retain very fine particles, and the strained liquid would then still have deposited this finest material as a hupostasis upon standing. The other possibility is that the verb means merely “draw off” or simply “pour off” and does not involve anything akin to filtration or straining through some sort of barrier. In this latter case, the larger solid particles would be left behind, while the poured off supernatant liquid would then in time deposit the fine particles it carried in suspension as the hupostasis.

Combining these interpretations with the results from the replication of the lead white process now suggests satisfactory explanations of what the ancient workers were actually doing. The may have poured the milky water out of the mortar through a cloth, which would have held back large material--perhaps particles of lead or foreign matter that may have become mixed with the crude material during processing. The lead white would pass through the weave of the cloth, and upon standing, deposit the lead white which could then be recovered. This interpretation preserves the idea of “straining” in the verb, but with the proviso that the lead white is not recovered as a residue on a strainer but from the liquid that passes through the strainer as a slowly settled-out hupostasis or sediment.

The other possibility, which I tend to think more likely, is that what Theophrastus is really describing in the lead white passage is a process known today as levigation. This is a particular kind of washing where different materials are separated based on their different rates of settling out of a liquid. Ancient writers do describe such a process, and very often particularly in the context of pigments--and indeed Theophrastus describes lead white in the middle of his section on mineral pigments. Pliny describes levigation clearly and unambiguously for the separation of a yellow pigment (litharge, a lead oxide) from lead dross: “after being finely broken up, it is washed in mortars until the water draws out the yellow color, and [that water] is poured out into a clean vessel, and this is done repeatedly until what it most useful settles out.”19 This process works by getting and keeping the finer and less dense

19 Pliny, NH 34:171: “lavatur haec in mortariis minutim fracta, donec aqua luteum colorem trahat, et transfunditur in vas purum, idque saepius usque dum subsidat quod utilissimum est.” In describing
particles of litharge suspended in the wash-water while the larger and more dense particles of lead and dross settle out. The colored wash-water with litharge in suspension is then poured off carefully into a new vessel where it is allowed to stand until the desired particles of pigment settle out, the water poured off and the pigment dried and collected.

Theophrastus does describe the process of levigation unambiguously in a passage adjacent to his description of the manufacture of lead white. For the preparation of cinnabar as a pigment, Theophrastus notes that the raw mineral is thoroughly ground and then “washed” \[plunousin\]. “Indeed, that which has gone underneath to the bottom is the cinnabar, that which is above and is the most part of it, is wash-water \[γίνεται δὲ τὸ μὲν γὰρ ύψος \[̓]τὸ κατ’ θέσιν κιννάβαρι, τὸ δ’ ἐπάνω καὶ πλείου πλάσμα\]” \(\text{De Lap. 58}\). The top-quality cinnabar is thus “that which goes to the bottom” \[huphistamenon\] or sediment, described here using the same word that Theophrastus uses in the section on lead white. This is clearly a process of levigation, where particles of the very dense cinnabar (mercuric sulfide) settle out from the water much faster than those of the much less dense minerals with which it is found in the mine. \(^{20}\)

The wash-water \[plusma\] would still contain suspended a portion of the smallest particles of cinnabar along with the other lighter minerals, and thus retain some value “for painting walls” (presumably by allowing it to sit for a longer time until everything settles out, thus providing a paler, lower-quality pigment). Theophrastus notes that the yield depends upon a certain skill \[technē\] in carrying out the operation, presumably the experience of knowing exactly how long to allow for sedimentation; too short a time and the yield is low, too long a time and the product is poor-quality.

A similar process of levigation might also be implied in the section immediately preceding lead white, where Theophrastus notes how the blue frit pigment \textit{kyanos} is prepared in four different shades depending on the size of its particles \(\text{De Lap. 55}\).

Although the use of water is not mentioned here, it is possible that the separation of \textit{kyanos} particles by size was carried out by means of levigation. It is however also possible that the ancient artisans simply ground the pigment for a longer or shorter

\(^{20}\) Note that here, the denser material is what is desired--the cinnabar settles out first--whereas in Pliny’s description of the yellow pigment, it is the lighter material that is desired--the lead settles out first (or never gets into suspension) and the pigment sediments later, after the washes are poured off. Both cases are examples of levigation.
period, even though that method would not have provided as homogeneous a product as levigation.

Reading Theophrastus’ description of lead white either as straining followed by sedimentation or as levigation now better explains what he means when he says that the lead white is *eschaton huphistamenon*, literally “that which has gone underneath last.” During the process of sedimenting or levigating lead white the desired product is in fact what is obtained last and “underneath.” The finest material settles to the bottom of the vessel at the end of the process. This result is in opposition to a method of filtering or straining out a substance where the desired solid is obtained first and above (while the filtered or strained water trickles below), a process that could not have been successful in antiquity given the extreme fineness of lead white particles and the coarseness of available strainers. So I would suggest translating *eschaton huphistamenon* as “that which settles to the bottom last,” a phrase which rightly distinguishes the lead white from the residual lead particles that settle out first, or any foreign matter than might be left on a cloth.21 Levigation and sedimentation also provide an additional benefit. As shown by the replication, during the length of time required for the finely-divided lead white to settle out of the wash water, atmospheric carbon dioxide acts upon the dissolved lead acetate, converting it to basic lead carbonate (lead white) which then precipitates and increases the overall yield.

Thus, combining the results of replication and philological analysis, and in light of the positioning of the lead white passage amid other pigments for which levigation is clearly employed, I would propose translating the critical passage from Theophrastus as

…that which is scraped off is ground in a mortar and continuously levigated, what settles out last is the lead white.

21 The phrase *eschaton huphistamenon* is similarly rendered as “what at last subsides to the Bottom of the Vessel” by Sir John Hill in his eighteenth-century translation of Theophrastus. He also follows the Aldus 1497 *editio princeps* by giving ἑφθοῦσιν for the problematic verb ἀφιθοῦσιν, which he then translates as “boil.” Despite this philologically questionable modification, the resultant translation is at least chemically felicitous, as extended boiling allows much of the lead acetate to convert to basic carbonate under the influence of atmospheric carbon dioxide, thus enhancing the yield and reducing waste. Sir John Hill, *Theophrastou tou Eresiou peri Ton Lithon biblion: Theophrastus's History of Stones* (London, 1774), pp. 224-25.
I should mention that the verb ἀπητοῦσι might reasonably be rendered as “sift away,” which is certainly plausible and avoids the objection that Theophrastus does not explicitly mention the use of water for working up the crude lead white; however, other serious problems would arise. On the one hand, this translation would not work for the passage from *History of Plants*, where water is explicitly mentioned. On the other, no separation of the three chemical components of the scrapings (residual lead, lead acetate, and lead white) would occur. Also, by means of sifting, the fine-grained solid product one wants is collected below the sieve, but first not last. That said, the text of Dioscorides does appear to describe a process of dry sifting as the final operation, but that method does not fit Theophrastus’ text. Indeed, there is no sense in being needlessly reductionist by endeavoring to propose a single method used in antiquity, as there was surely some variation in operations between different manufacturing centers and over time. However, the process of levigation better fits both the sense of Theophrastus’ text and the practical process: it separates the unreacted lead particles from the lead white, dissolves away the soluble lead acetate, and the final product, purified basic lead carbonate, i.e. lead white, is collected at last as a fine sediment from underneath the poured off wash water.

So actually trying to reproduce a process provided several additional pieces of information, and this is, finally, the real value of replication— it provides us with an additional source of information and insight. That further information, of course, has to be subjected to the same critical judgement and assessment as the information gleaned from more traditional historical sources. However, in an enterprise as difficult as trying to understand the past, we should be happy to obtain additional information from any reasonable source for inclusion in our work.
The educational applications of the historical material and on the reproduction of alchemical procedures

Kostas Skordoulis, Kostas Exarchakos
National and Kapodistrian University of Athens

In this presentation, we will at first give a short account of the role of History of Science in Science Teaching underlying the merits of the historical approach in the science classroom. Following we will report on the design and development of a series of teaching activities based on the History of Alchemy (4th-17th centuries) as it is reconstructed through the collections of primary and secondary literature in the data bases of the project DACALBO.

Two sets of teaching activities have been designed and developed: 1) Activities aiming in the training of secondary teachers of Chemical and Life Sciences in using original (alchemical) texts for the reconstruction of apparatuses in the school laboratory and 2) Activities aiming in raising awareness on issues of cultural heritage for the wider public.

Namely, activities supported by innovative interactive charts and timelines, activities exploring the relation between the Greek, Arabic and European alchemical traditions, and activities highlighting the technical applications of Alchemy (eg. pigments), the relation of alchemy to medicine and the presence of alchemy in poetry, literature and myths.

Collateral topical activities have been also developed such as the description of the materials used for writing, the laboratories of copying (Scriptoria), the coloring of clothes and the use of plants during the Medieval and Modern period.

On how History and Philosophy of Science contribute to Science teaching and learning processes

The following points have emerged as crucial/fundamental with regard to the contribution of History and Philosophy of Science in improving teaching and learning Science, (Matthews M. 2007, p. 73):
- The History and Philosophy of Science present a more human approach of the scientific task, setting connections with additional aspects such as the moral or the cultural aspect.

- The Philosophy of Science, in particular, enhances an individual’s competence to analyse and rationalize, thus contributing to a more refined critical thinking.

- The History and Philosophy of Science also invest on mathematical formulas and equations, denotations and concepts, so that they are not understood under a purely instrumentalist perspective, as a mere causal nexus of a rigidly rational structure.

- The History and Philosophy of Science further improve teachers’ training, since they help develop a more profound and rich understanding of different scientific aspects. Furthermore, the teachers’ viewpoints on the very nature of the science they teach directly affect/influence the way they teach it.

- The History and Philosophy of Science may also provide indications regarding possible difficulties in understanding different concepts. In science education, it is acceptable to form a cautious comparison/parallel between the way scientific knowledge is built and the way the student builds knowledge. The way science confronted each occasional difficulty could jointly form the potential strategy to be used in order to lift the alternative perceptions of the students.

Historiographical standpoints on Alchemy as a source of alternative ideas

It is generally accepted that, in terms of science education, the learning procedure is but an effort to bring together/mix new cognitive structures with the ones already present in the students’ mind. In order to provide a teaching plan, it is essential to gather information on students’ perception over the subject/item to be taught. Students’ perceptions usually ignore the scientifically accepted/acceptable approach and it is necessary to identify them given the fact that it is the very substrate/foundation on which the teaching intervention will be founded/will build upon. It is therefore reasonable to consider that students’ perceptions on Alchemy are formed within a context of different historiographical approaches available, whether modern or obsolete. Thus, it is absolutely necessary to list and identify the principle
question arising from said approaches, which could significantly contribute in structuring any teaching effort.

The use of the History and Philosophy of Science in order to teach Natural Sciences is predominantly based on historical examples stemming from the fields of Physics and Astronomy, while lacking examples from the fields of Biology and Chemistry, a scarcity usually explained given the far longer historical presence of the former (McComas 2008). Such perception relies on the, historiographically accepted, complete distinction between Chemistry and Alchemy, according to which, Alchemy has no scientific background whatsoever, while Chemistry on the other hand fulfills the standards which promote it to a scientific corpus of knowledge, as it is structured since the late 18th century, the relevant landmark being Antoine Lavoisier’s influential textbook “Traité Elementaire de Chimie” (Elementary Treatise of Chemistry).

From a linguistic point of view, similar perceptions have been encouraged by the belief that the concurrent use of the terms “alchemia” and “chemia” in 17th century Latin literature was but an indication of complete distinction between the two, an approach nowadays rejected by modern historians. On the contrary, it has been proved that the use of the term “alchemia” in Latin literature was used to describe methods and phenomena which are considered direct precursors of methods and phenomena that are unanimously considered to be integrated in the science of Chemistry ever since the 18th century. In addition, the term “chemia”, has been used, again within Latin literature, to describe processes which aimed, among other things, to metal transmuting into gold. (Newman & Principe 1998). A similar interpretation is used for other terms present in different texts of the Byzantine literature such as “cheimeftos” / “chymefios”, which refer to enamel decorations. It has been claimed that this particular terminology was used to describe both purely technical and alchemical practices (Merianos & Sakorrafou 2013).

Accepting Alchemy as a non-scientific knowledge corpus, as opposed to Chemistry, is equally supported by influential interpretations constituted in psychological terms, the most emblematic among them being Carl Gustav Jung’s Psychology and Alchemy. In such context, Alchemy is accepted as a mainly psychic process, de-materialised and independent from physical phenomena. Under this perspective, studying Alchemy is experienced as an ahistorical, completely self-referring process in terms of the alchemist’s communication with physical phenomena; so, by completing alchemical
processes, said communication aims to *restore/reinstate the communication between the conscious and the unconscious mind*. The self-referring character of this process lies on the fact that within this particular interpretive scheme, the alchemical processes are conceived as the object on which the acting individual projects his/her emotional/psychological load. It is worth noting that Jung clearly accepts the historiographical distinction between Alchemy and Chemistry, in terms of a transition from theoretical patterns with no scientific characteristics to explanatory schemes with purely scientific conceptualisations.

There are also other perceptions with regards to the nature of Alchemy which have unequally promoted aspects which increasingly pinpoint issues relating to its so-called “esoteric” character.¹ This category includes hermeneutic schemes which are presented as a mixture of elements from the fields of witchcraft and mysticism whereas the corresponding perceptions completely lack any practical aspects, which are present in Jung’s point of view, even though it is weaker since it is merely a vector of convergence between the conscious and the unconscious. In some of these hermeneutic schemes, Alchemy is conceived as a *field expressing religious quests*, as primarily depicted by researchers such a Mircea Eliade.² In others, it is considered as a *field expressing arcane hermeneutic schemes*; said approach was mapped via the contribution of different researchers and was led by the works of Antoine Faivre. One of their predominant characteristics is the emerging influence of Hermeticism in texts which are part of the alexandrine Alchemy but also the Latin alchemic literature, dating from 12th century AD onwards. (1995, pp. 20-21).

In other cases, it is the *purely practical aspect* of Alchemy which is unequally promoted. With regards to its conception as a predominantly practical task, current historic research keeps pointing out the ability of Alchemy to assimilate different techniques from a range of professional areas (glassworks, metallurgy, pigment production, etc), but in a way that transcends the sterile adaptation of methods and incorporates new technical paths of refining theoretical questions. The alchemic practice was in continuous interaction with particular interpretive schemes regarding the structure of the material world; it adopted specific guidelines in accordance with

² A typical example can be Eliade Mircea, *The forge and the crucible: The origins and structure of alchemy*, University of Chicago Press, Chicago 1974
them and was defining them through the continuous accumulation of empirical data. To that end, several indicative examples can be mentioned: one of them is Geber’s *Summa Perfectionis*, where already known techniques, such as amalgamation or the exposure to organic acids, are used as a means to theoretically establish the structure of metals. (Newman 2011).

In an effort to reconsider perspectives such as the aforementioned ones, new research fields are now addressing the History of Alchemy, trying to delegitimize the a priori rejection of its subject matter as non-scientific, thus resulting to a constant accumulation of new information, growing in geometric sequences, during the past two decades (Martinon-Torres 2011). Even though it would not be accurate to treat the approaches of all Science historians who study Alchemy as equal, we should by all means consider there is a convergence as to restore the scientific character of Alchemy, in an effort to disengage it from the “non-scientific” rhetoric, which has been triggered for different reasons. These reasons relate to charlatanry with regards to its alleged potential, the effort, on behalf of the dominant social class, of exercising social control through such alleged potential, particularly in terms of gold-making, following the attacks it underwent by the newly established field of Chemistry, which began to define its identity mainly during the 18th century; other factors are to be considered as well. The point of view adopted within this framework is the one that wishes to re-approach Alchemy as a system where theory and practice intertwine; historical research should, thus, refrain from conceiving the alchemic task either as fraudulent or as a mere projection of ideotypical forms inhabiting psychological and occultist schemes or a purely technical process, striped of any theoretical structure (Principe 2011). However, this does not mean that a historiographic standpoint which would follow historical sources regarding the type of knowledge incorporated in Alchemy should put/push aside those aspects that pinpoint its psychological or occultist character, by turning to a fully positivist approach. A rather balanced mixture of all historical data should take into account every single aspect, rejecting opinion dichotomies such as “esoteric vs scientific” and providing each one with the corresponding importance as it is defined through the findings of modern historical research (Calian 2010).

Therefore, the entire teaching effort aims to provide the necessary conditions so that students change the idea/image they have on Alchemy, which probably results from
historiographical perspectives which are rather distorting as it is proved by current historic research.

On teaching goals using History of Science to teach Science

The use of History of Science in order to teach Science is part of the NOS (Nature Of Science) field. Within the NOS has been established a rather acceptable convergence between historians of science, philosophers of science, scientists and science teachers regarding the intended goals of such subject matter (Lederman et.al 2002). These include the following:

- Putting forward the *empirical character* and *creative nature of scientific knowledge*, in cases where there is no possibility of directly observing physical phenomena. A fundamental aspect of the goals resulting from this particular feature of science is to develop students’ ability to evaluate the contribution of empirical observation as well as of their personal, creative involvement in providing explanatory schemes of the material world.

- Distinguishing between *scientific theories and laws*.

- Putting forward the fact that observational data are depending on the theoretical acceptance on which they are articulated (*theory ladenness of observation*).

- Putting forward the interdependence between the production of scientific knowledge and the *social and cultural context* which is defined by it and within which this knowledge is produced.

- Dealing with the issue of one (or not!) *single and unique scientific method*.

- The *provisional character of the scientific method*. In particular, the idea that this medley of facts, laws and theories are under constant transformation.

From one point of view, convergence on these matters has proved to be beneficial, since it has promoted their *integration into the teaching action*. From a different point of view, the mere fact of establishing such categories has led to a *dogmatic acceptance* of their constituent elements, which consolidates an attitude completely *opposite to the spirit of the goals* it aspires to promote. In addition, it has been pointed out that it favours the consolidation of specific dichotomies (the most characteristic one being the “scientific vs non-scientific”), the incoherent mix of epistemological,
sociological, psychological, moral and other issues. To respond to this tendency, the suggestion was to introduce a wider regulatory grid incorporating a wider range of debatable issues, directly falling to NOS through which they will be featured \textit{not as goals to be achieved but as fields of conflict}. Such suggestion is summarized in the proposal of \textit{Features Of Science} (FOS) (Matthews 2011), which maintains the basic elements the NOS revolves around, and are the following:

1. Empirical basis
2. Scientific theories and laws
3. Creativity
4. Theory dependence
5. Cultural embeddedness
6. Scientific method
7. Tentativeness

To these, we can also add, aspects such as:

1. Conduct historical experiments
2. Discuss on the creation and operation of models
3. The nature of the involvement of technology
4. Choosing between adversarial theories
5. The role of religion in science
6. The conflict between realism and constructivism

The important thing, however, is not the fact of expanding the issues related to the new model. What proves to be defining is the fact that those issues are not presented as predetermined teaching goals which must be achieved by the end of a predetermined teaching path but as fields where debate over them is favoured. This perspective of FOS is complying with aspects to be examined, which are stemming from the History of Alchemy. This is because modern Science historians understand Alchemy as a subject matter which is constantly growing, is particularly flexible and prone to constant re-views and re-interpretations, whose boundaries remain open to
interaction with other fields. As a consequence, it cannot be perceived in a dogmatic way by the teacher who will try to incorporate it in Science education.

On the methods of using History of Science in Science Education

Available methods within *formal education* regarding the use of the History of Science in Science education, include:

- lectures,
- reading and interpreting original historical sources,
- replicating historical experiments,
- creating narratives,
- role playing,
- descriptions of historical personalities and scientific objects, etc.

These methods work as a means to fulfill a wide range of teaching goals which may vary from merely instrumentalist ones, such as developing skills regarding the use of equipment, to goals aiming to redefine the perceptions related to the nature of science.

Beyond formal education, History of Science may also be used for the purposes of the *informal sources of learning such as scientific exhibitions, science centers and above all science museums*.

On the use of historical experiments in Science Education

The replication of historical experiments *within the framework of History of Science* is a research method with multiple benefits, which is becoming more and more popular. Under the term “historical experiments” we include those experiments whose scientific paradigms are no longer in use. Chang (2011) distinguishes three categories of historical experiments, each one having their own aims and restraints; these are historical replications, physical replications and extensions.

During a *historical replication* what is replicated is the precise experiment procedure, as it took place in the past. What is necessary for such task is a high degree of “completeness” on what concerns the available historical information. However, it is not always possible to make sure that the scientific instruments we have in our hands are in a condition which would ensure an accurate replication of the experiment. It is also possible that specific information, necessary for the replication, is not available,
precisely because it is taken for granted during the time the experiment was conducted, therefore it is omitted from its description. In any case, the procedure is structured based on the type of questions answered by the experiment as it was conducted in the past.

Physical replications aim mainly into reproducing particular physical procedures, without reproducing the entire amount of historical information related to the experiment as it was conducted in the past. During a physical replication, we are allowed to use modern-day instruments and techniques as long as they fully reproduce the desired phenomenon. The process is bound by the type of questions which are considered timely by modern science and not by science as it was structured at the time when the experiment took place for the first time. Furthermore, the role of the experiment designer is crucial since it is s/he who chooses the type of information to be presented.

The *extensions* are experiments which follow as a result of the historical and physical replications. They may be dealing either with additional parametrisation of well-known historical experiments or with innovative experimental devices which are used to verify questions which emerged after conducting a historical or physical replication.

The use of historical experiments *in science education* can fulfill a wide range of *teaching goals*, including:

- acquiring skills in using different instruments.
- presenting the scientific task not as an abstract set of ideas but as a project which includes a practical aspect as well, which takes place in science labs.
- favouring a more positive attitude towards science (Allchin 1999).
- through the participation into planning a historical experiment, emerges a set of tacit and explicit theoretical assertions on which an experiment is based.
- they can be used as a tool which can pinpoint and on the same time transcend/overcome the students’ alternative ideas (Seroglou, Koumaras & Tselves 1998).
- the production of scientific knowledge is presented as a process directly involving the human factor (Allchin 1999).
- through the use of historical experiments as the framework to provide arguments and counter-arguments, it is the historical debates that surface whereas scientific knowledge is not presented as a set of non-negotiable views but as a process of social nature. (Hottecke 2000).
- students become aware of what escapes a rational evaluation of the contribution of scientific practice to the individual who exercises it, an aspect known as tacit knowledge (Hottecke 2000).
- the phenomena examined are not considered individually but interrelated to others so that the scientific task appears all the more complete (Cavicchi 2008).
- precisely because the replication of historical experiments often requires that the intermediate stages be filled during the experiment, since they are not always included in its representation as it was preserved till our days, it is also possible to be considered as an opportunity for the students to fill the gaps of the intermediate stages so in that case, they will manage to get to the bottom of concepts (Chang 2011) but also of the History of science (Hottecke 2000).

On the methodology of conducting historical experiments

In order to achieve teaching goals, it is necessary to create a suitable methodological tool, which is usually structured in three levels: creating the device, in case students are to participate in that part, replicating the experimental procedure, and placing the experiment within a historical, philosophical, social context. The third level is included as such not in terms of temporal priority; it is present throughout the activities taking place during the experiment replication. Regarding the first two levels, this methodological tool must provide the following (Heering 2003):

- collecting an adequate amount of information, with regards to the experiment. More particularly, lab notes, original published papers, monographs, scientific conference proceedings are all to be used.
- drawing adequate information from historical sources regarding the structure of the experimental device (its individual constituent parts), construction material, special conditions while conducting the experiment, if applicable, etc.
- putting together the individual parts of the instrument. To complete this phase, experienced technicians must be involved. For the cases where we choose to involve students as well, during the construction phase, we also have the possibility to fill the gaps of the historical description of the experiment or proceed to the re-conceptualisation of particular elements of the historical sources, using information stemming from the way the device works.
- adjusting the device in order to replicate the results indicated in the historical sources.
- analyzing and interpreting the results following the experiment.

Teaching Activities in the context of the DACALBO project

In the context of the project:
1. two historical experiments were designed and conducted as replications of recipes found in the chymicstic book (Codex 107) of the Monastery of Olympiotissa in Elassona, Larissa (central Greece).
2. two alchemical instruments were designed and built, in order to be used as display material in the context of informal sources of learning.
3. a methodological tool was developed contributing to writing biographies suitable for science teaching.

Historical experiments

The recipes which were designed and executed were “ζουλαπίον του βασιλέως αλέξιου” – joulapion tu vassileos aleksiou (i.e. King Alexios’ joulapion), as it was retrieved by page/sheet 99 of the Codex No. 197 (chymicstic book) from the Monastery of Olympiotissa in Elassona, as well as “ζουλαπίον κινητικόν” – joulapion kinitikon, as it was retrieved by page/sheet 102 of the same Codex; both recipes are ιατροσόφια – iatrossofia, i.e. home remedies or nostrums. The term ιατροσόφια–iatrossofia describes simple notes or a synopsis used to treat an illness; they can be the product of a doctor’s/healer’s individual work in order to facilitate the medical/healing practice of his/her profession or of more doctors/healers, in the context of healing within hospitals; they are written in Greek language, probably between mid 15th century to late 19th century (Tselikas 1995). Quite often, they are the
issues on greek alchemy

THALES

THALES-DACALBO
Ζουλάπιον τοῦ βασιλέως ἀλεξίου. "Ὑδατος γλυκέους # δ’, ξαχάριτος # γ’ ρέου εξάγια β’, σαντάλου εξάγια α’, δέξιας δράμας γ’ χελιδονίας εξάγιαν α’, πότε δέ και β’, καπνίου εξάγια α’, ἀνθομορπίου εξάγια α’ S’, ἶνιαμελλίου εξάγια β’. Ταῦτα πάντα ως βράσουν μετὰ τοῦ ὑδατος ὠς οὐ τριτοθῆ τὸ ὁδόρ και εἰς τὸ ἀπόβρασμα τούτων τίθει ζίχαρ τού νόημα β’ και δέξιας σιναμεκής δράμας α’ καὶ τὴν ανακάτωσιν τοῦ ποτηρίου καθ’ ἔκκαθεν καὶ ἐκκόπτει καὶ τὴν ἀμεταμετρόν καταμηνίας Ῥύσιν.

"Ζουλάπιον κινητικών"

The transliterated form of the text is the main source from which students will try to replicate the recipe. In this way, they will also practice reading and interpreting original sources.

A. Tracing the terms that are important for the recipe.
The terms constitute 3 main categories: plant names, units of measurement, numbers representing quantities.

b. Plant names
The terms corresponding to plants do not go by the Linnaean taxonomy, since it was established after the recipe was written. Quite often, each term corresponds to a whole genus of plants, which may include several species. In order to have a clearer picture, we should trace the historical and cultural context this recipe was a product of. As a consequence, the demand resulting from the third level of the methodological tool on historical experiments replication, i.e. placing the experiment in its historical, philosophical, social, etc context, is also satisfied.

In some cases, the information that are necessary in order to render a term clearer are of purely historic character, such is case of the term “ζαχάριτος”- jacharitos included in the recipe of King Alexios’ joulapion. The only criterion allowing us to decide whether it refers to sugarcane or sugar beet is the time the recipe was written, probably sometime in the early 16th century. Sugar production from fodder beet was only introduced in mid-18th century. The triggering event to that was the “Law on molasses” that Great Britain imposed, in 1733, to sugar imports to North America by non British colonies; said law aimed at making the sugar market a British monopoly. Therefore, the sugar mentioned in the recipe is the one produced by sugarcane and not the one produced by sugar beet.

Other cases, however, demanded a much more complex approach; this was for instance the case of “reon”. To understand this term, we need to bring together different scientific fields.

- The History of Science informs us that Dioskouridis in “Περὶ ὑλῆς ἱατρικῆς”- Peri ylis iatrikis (On medical matter) refers to “ρα”-ra, “ρίον”-reon but also “ρήον”-rion, which he claims that grows in the area of Bosp(h)orus while he recommends the use of its roots only (Tselikas, 1998, p. 192). The reference of the name “ρα”-ra is often followed by comments on the red colour of the plant. “Ρα”-Ra was also the name the Scythians used for the river Volgas, used in the ancient times as the commercial channel used to carry reon in Ancient Greece.
The term “ρέον”-reon corresponds to the Latin name of the genus Rheum. *Modern botany* indicates there two well-known species of the genus Rheum having a pharmaceutical use: Rheum Rhabarbarum and Rheum Officinalis. The species with the distinctive red colour is Rheum Rhabarbarum; the name of the plant is linguistic loan from its Greek name “Ῥα βάρβαρον” – ra varvaron (barbaric ra).

Modern pharmacology points out that plants with pharmaceutical uses that belong to the Rheum genus owe their pharmaceutical properties to the anthranoids (Westendorf 1993). In particular, Rheum Rhabarbarum is used for its *antidiarrheal* and laxative action (Barnes 2007, p. 507), which is in accordance with the overall properties of the mixture, the *joulapion*, as it is indicated in the recipe. More specifically, the recipe recommends to drink the brew in order to cure, among others, stomach problems (*πρὸς τὰς θερμὰς γαστέρας* – pro tas thermas gasteras – to cure hot/aching stomachs).

For each ingredient, a separate profile is drawn up, based on the information collected for it from different scientific fields. 14 different ingredients were identified in total for both recipes and they are presented as follows: 1) Saccharum Officinarum (*ζάχαρη*) 2) Rheum Rhabarbarum L. (*ραβέντι*) 3) Santalum Album (*σάνταλο*, σανταλόξυλο) 4) Vitis Vinifera L. (*στάφυλος*) 5) Chelidonium Majus L. (*χελιδόνιο*, χελιδονόχορτο, δοντόχορτο) 6) Fumaria Officinalis (*καπνία*, καπνία, καπνόχορτο, φουμαρία) 7) Adiantum Capillus – Veneris (*πολυτρίχι*, μαλλόχορτο, καλλίτριχο, κα.) 8) Anethum Graveolens (*άνηθος*) 9) Apium Graveolens 10) Cinnamomum Cassia (κινέζικη κανέλα, κινέζικη κασσία, κασία) 11) Cassia Angustifolia (Senna, Tinnitus Senna, Indian Senna, Cassia Senna) 12) Cassia Senna (Cassia Acutifolia) (Senna, Alexandrian Senna, Khartoum Senna, Egyptian Senna) 13) Polypodium Vulgare (*δεντροφθείρι*, πολύριζο) 14) Cinnamomum Verum (*σιναμική, σιναμό*)

c. Units of measurement

In order to calculate the exact quantity of each ingredient in the recipe it is necessary to convert the units of measurement mentioned in the text into the corresponding modern units. Through this procedure, it is once more the historical and cultural context of the experiment that emerges, under the perspective of metrology this time. Again, the timeframe in which the recipe is written plays a significant role, as the
same units correspond to different quantities throughout the different historical periods. This was the way that “ἑξάγια”- eksayia, “οὐγγίες”-oughies, “λύτρα”-lytra, “δράμια”-dramia, etc, turned into grams.

Another important issue is the use of Letters to represent numbers. Most of the recipe ingredients are followed by letters of the Greek alphabet that indicate numbers. Knowing precisely the quantities of each ingredient makes it possible to reach to conclusions regarding the type of the brew. More particularly, in the recipe of the King Alexios’ joulapion the ratio of sugar to water is 3/4, which indicates that texture of the end product will probably be syrup-like, an element which is in accordance with the designation of the brew as a joulapion.

d. The identification of Other terms present in the recipes

“ζουλάπιον” - joulapion

The term “ζουλάπιον” - joulapion, which is also mentioned as “ζουλάπιν”-joulapin or “ζουλάπι”-joulapi, refers to a «liquid pharmaceutical mix, made out of water and flower extracts, sugar or honey, which is used either as an emollient and soothing product or as a means to dilute other medicines» (Kazazis & Karanastassis 2001).

The recipe about “King Alexios’ joulapion” is about a solution of water and sugar, from where the rest of the ingredients are extracted via ebullition; this is what is indicated by the specific quantities mentioned in the recipe. Water and sugar, the means in which the rest of the ingredients will be extracted, are to be calculated at 1280gr and 1600gr respectively, while all other ingredients are to be calculated to a a few tens of grams.

In the recipe of “Ζουλάπιον κινητικὸν”- joulapion kinitikon, the dominant ingredient is raisins. More particularly, the recipe indicates the use of 160 grams of raisins, much smaller quantities for the rest of the ingredients and no sugar at all. The much bigger quantity of raisins is responsible for the distinctive syrup-like texture of the joulapion, which is merely the result of the extraction of the raisin sugars.

Planning and conducting the experimental procedure

Planning the procedure includes collecting all of the ingredients to be used. Almost all of the plants for pharmaceutical use can be found in retail stores. In only one case,
“polypodium vulgare”, commonly known as “polypod” or “brake root” we had to collect the respective plant directly from Nature. The plant was finally collected, in high altitude, rocky and humid locations in the Prefectures of Evritania and Trikala (Central Greece).

King Alexios’ joulapion

The preparation of the King Alexios’ joulapion recipe indicated boiling all of the following ingredients in water, until their volume is reduced to 1/3 of its original quantity. The ingredients participating in the boiling procedure are presented below followed by the exact quantities in grams, after relevant unit conversion.

Unit conversion

<table>
<thead>
<tr>
<th>Unit Conversion</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 λίτρα-litra</td>
<td>320 g</td>
</tr>
<tr>
<td>1 υγγία-oughia</td>
<td>26.7 g</td>
</tr>
<tr>
<td>1 ἐξάγι-eksayi</td>
<td>4.5 g</td>
</tr>
</tbody>
</table>

Exact ingredient quantities

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
<th>Approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>4 x 320</td>
<td>1280 g</td>
</tr>
<tr>
<td>sugar</td>
<td>3 x 320</td>
<td>1600 g</td>
</tr>
<tr>
<td>rheum</td>
<td>2 x 4.5</td>
<td>18.0 g</td>
</tr>
<tr>
<td>sandalwood</td>
<td>2 x 4.5</td>
<td>9.0 g</td>
</tr>
<tr>
<td>strong vinegar</td>
<td>3 x 26.7</td>
<td>133.5 g</td>
</tr>
<tr>
<td>χελιδονία (ή 9.0 g)</td>
<td>1 x 4.5</td>
<td>4.5 g</td>
</tr>
<tr>
<td>καπνίον</td>
<td>12 x 4.5</td>
<td>54.0 g</td>
</tr>
<tr>
<td>ανιθόρριζον</td>
<td>1 x 4.5</td>
<td>4.5 g</td>
</tr>
<tr>
<td>celery</td>
<td>2 x 4.5</td>
<td>9.0 g</td>
</tr>
</tbody>
</table>

In order to prepare the syrup in the lab and proceed to the qualitative identification of the ingredients which are responsible for its pharmaceutical action, the mass of each individual ingredient used was reduced by 61% (the respective ratio within the recipe remained stable. The quantities were reduced so that the volume used during the
recipe preparation reaches 500ml. So, from the original quantities included in the recipe, the following quantities were weighted and used:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweet water</td>
<td>500.00 g (ml)</td>
</tr>
<tr>
<td>sugar</td>
<td>374.40 g</td>
</tr>
<tr>
<td></td>
<td>249.60 g (second addition/round)</td>
</tr>
<tr>
<td>rheum</td>
<td>3.51 g</td>
</tr>
<tr>
<td></td>
<td>3.51 g (second addition/round)</td>
</tr>
<tr>
<td>sandalwood</td>
<td>3.51 g</td>
</tr>
<tr>
<td>vinegar</td>
<td>31.24 g (first addition/round)</td>
</tr>
<tr>
<td></td>
<td>20.83 g (second addition/round)</td>
</tr>
<tr>
<td>χελιδονία</td>
<td>1.76 g</td>
</tr>
<tr>
<td>καπνία</td>
<td>1.76 g</td>
</tr>
<tr>
<td>αδίαντο</td>
<td>21.06 g</td>
</tr>
<tr>
<td>ανιθόρριζα</td>
<td>1.76 g</td>
</tr>
<tr>
<td>σελινόρριζα</td>
<td>1.76 g</td>
</tr>
<tr>
<td>ιντιβόρριζα</td>
<td>3.52 g</td>
</tr>
</tbody>
</table>

The total amount of the ingredients mentioned in the recipe which are used during the first part of boiling were placed into a 1L conical container. Following that, the ingredients were boiled while on the same time they were constantly stirred. After 3h10’, the volume of the solution was reduced to 1/3 of the original quantity. The product was then thrice filtered in vacuum, and the extra quantity of vinegar and sugar; as soon as the sugar was dissolved, a sample of the product was taken. The solution was left to boil until its texture was semi-liquid (“μέχρι μελιτώδους συστάσεως”-until its texture was like honey). Following that stage, it was left to cool down and the extra quantity of rheum was added then.

Zουλάπιον κινητικὸν – joulapion kinitikon
The preparation of the recipe “Zουλάπιον κινητικὸν”– joulapion kinitikon includes boiling all of the ingredients, except common cinnamon in water, until the volume of the solution was reduced to 1/3 of the original quantity. After that, the common cinnamon is also added to the solution. The ingredients participating in the boiling
procedure are presented below followed by the exact quantities in grams, after relevant unit conversion (1 δράμα = about 3.2 g).

In order to prepare the filtrate in the lab and proceed to the qualitative identification of the ingredients which are responsible for its pharmaceutical action, the mass of each individual ingredient used was reduced by 80% (the respective ratio within the recipe remained stable. So, from the original quantities included in the recipe, the following quantities were weighted and used:

- common cinnamon = 6.43 g
- συναμεκὴ senna = 6.60 g
- polypod/brake root = 5.17 g
- raisins = 32.12 g
- cinnamon = 0.69 g

The total amount of the ingredients mentioned in the recipe which are used during the first part of boiling were placed into a 500ml conical container, which was then filled up with water until the total amount of ingredients and water reached 500ml. Following that, the ingredients were boiled while on the same time they were constantly stirred for 2h30min. After the initial extraction, the total amount of the product was measured at 300ml. Then, the common cinnamon was added and the solution was left to boil for another 10min, while constantly stirred on the same time. Finally, the solution was thrice filtered, the first time not in vacuum but the other two in vacuum.

e. Analysis and interpretation of the findings

Both recipes replicate, on a macroscopic level, the characteristics of the brew type they belong, that is the joulapion. Following the evaporation of the largest quantity of water, they both obtain a honey-like texture, owed either to direct addition of sugar in “King Alexios’ joulapion”, or to the extraction of the sugars of the raisins in “joulapion kinitikon”. The different way each recipe chooses to produce the result of the syrup-like texture is indicative of the wealth – or lack thereof – of the person to whom it is addressed. “King Alexios’ joulapion” recipe which is made for King Alexios includes a large amount of sugar, a particularly expensive ingredient. On the
contrary, the recipe for “joulapion kinitikon” uses raisins to achieve the syrup-like texture, since they are much cheaper, but they are also used in a much smaller quantity. This information indicates that there is an interrelation between the production of knowledge and the social and cultural context from which it emerges and which it jointly defines.

At the end of the recipe regarding “King Alexios’ joulapion”, there are also the situations for which it is recommended to use it, whereas there are also information regarding the theoretical context within which the effectiveness of the ingredients is explained. Thus, we have the possibility to compare with the respective theoretical context of modern Pharmacology, the conclusion being that the data observed are limited by the theoretical assumption on which they are articulated.

The role of Historical Biographies

Biographies are perhaps the most frequently used method that actually leverages the History of Science for school textbooks, usually by providing, short excerpts regarding the life of famous scientists. The fundamental role of the scientist’s personality when writing a biography is what makes it fall in the type of narrative known as “heroic science story”. The “heroic science story” often creates perceptions regarding the role of the scientist, which are sometimes oversimplified and sometimes inaccurate (Allchin 2003). In particular:

- The scientist is presented as the sole vector of true knowledge about the world.
- Scientific knowledge is considered fully independent of any human filter, a fact which guarantees the truth even though it is the product of human work.
- The scientific task is often interpreted as a process of discovery.
- This point of view presents science as timeless and capable to be conceived outside of specific social, ideological etc restraints. (Milne 1998).
- It is claimed that scientists are mainly male, while women seem to be obliged to complete tasks that lack creativity and imagination (Brush 1985; Schiebinger 1987).
- Observation is considered more important compared to providing interpretive schemes and predictions (Milne 1998).
The central role of a personality when writing a biography, which is inevitably a result of its own structure, can also influence the following aspects:

- Pinpoint excessively specific personal traits, sometimes as part of an anecdotal description, which could give the impression that science is a particular type of knowledge addressed to certain people, a priori endowed with those characteristics which are necessary for their involvement with it, an aspect which could provoke the indifference of the students (Brush 1974; Duschl 1990; Martin & Brouwer 1991).

- Focusing unilaterally to the personal dramatized history of the scientist, so the romantic character of the narrative triggers parallels between the scientist and the student, within a subjective context. This could strip science from being considered as a task involving objective elements. (Solomon 2002).

- The uneven presentation of the intellectual aspect of the scientific task as opposed to its practical aspect.

However, the principal contribution of biography as a method to teach natural sciences lies to its ability to turn the abstract and impersonal image of science into a more “human” one. (Dagher & Ford 2005). The humanization of science is achieved when associating the students’ experiences to the practices adopted by certain scientists in such way that the scientific task is presented not as an abstract procedure of gathering information but as a procedure executed by individuals and a procedure which might overturn even the most deeply established scientific perceptions (Wang & Marsh 2002). Therefore, there must be a balance between the request for a humanised depiction of science and the request for avoiding an approach focusing on the individual with regards to the scientific work. To make this possible, the following could apply:

- Present a wider grid of social, ideological etc restraints which make up science. The scientist as an idea could be established as a channel of all those restraints, so that the degree of liberty of the scientific work is evaluated compared to the context within which it is shaped.

- In order not to identify the scientific task with the intellectual processes taking place into the scientist’s head/brain but to depict in a balanced way the
involvement of the intellect with the practical aspects of science με την πρακτική πλευρά της άσκησης της επιστήμης, it would be fit to create an image which will value both the special traits of a scientist’s personality and the particular research methods s/he adopts as well as the way these methods invest her/his thoughts with new meaning.

- Writing a biography is balancing between creating a reality which shapes traits that are familiar with reality as perceived by the student now, so that it is more direct and stimulates her/his interest (Solomon 2002); however, it should not commit the error of completely recreating the narrative under the perspective of present perceptions. (Mayr 1990).

- Through the biographies, it is possible to upgrade the contribution of female scientists and minority groups to the production of scientific knowledge (Brush 1985).

a. Methodological Considerations
First of all, using biographies as a method to teach Science, means they are not exhaustive. Its extent and completeness serve particular teaching goals. However, it is recommended to produce different biographies on the same person as it encourages students to accept multiple representations of the same reality. (Milne 1998). The successive phases of writing a biography could be summarized to the following:

- First, we collect all of the events/occurrences to be used through available historical sources. They should be quite balanced in terms of the aforementioned aspects.

- Then, we include those events/occurrences in different categories, each one of which corresponds to a different level of teaching science, as they are described in the theoretical framework of the Story-Driven Contextual Approach (SDCA). Those contexts are the theoretical, the practical, the social, the historical and the emotional context each one of them aiming to bring out different aspects of the scientific task (Klassen 2006).

- After the events/occurrences put into categories, we use the theoretical context of the semiotic circle of Scholes (1981), the way Milne leverages it (1998). The semiotic circle is mainly constituted by facts which are chosen among
others. Once the text is invested with meaning and values, we proceed to its interpretations, which could transcend the historical live of events. In this way, under the light of new interpretations, the events may be invested with a new meaning and values, so that the narrative uses feedback to maintain a circular feed.

REFERENCES

Καζάζης Ι.Ν. & Καραναστάσης Τ.Α. (επιμ.), Επιτομή του Λεξικού της Μεσαιωνικής Ελληνικής Δημώδους Γραμματείας 1100-1669 του Εμμανουήλ Κριαρά, τόμ. A΄ (α-κ), Θεσσαλονίκη 2001

retrieved 9/3/2014 from

Matthews M. R. (2010), Διδάσκοντας Φυσικές Επιστήμες. Ο ρόλος της ιστορίας και της φιλοσοφίας των φυσικών επιστημών στη διδασκαλία των φυσικών επιστημών, *Επίκεντρο, Θεσσαλονίκη*

Mayr, E. (1990), When is historiography whiggish?, *Journal of the History of Ideas, 51*(2), pp. 301-309

McComas W.F. (2008), Seeking historical examples to illustrate key aspects of the nature of science, *Science & Education, 17*, pp. 249-263

Μέριανος Γ. & Σακορράφου Σ. (2013), Μαρτυρίες περί αλχημείας στο Βυζάντιο σε μη αλχημικά κείμενα, στο: Ειρ. Μεργούπη-Σαβαΐδου - Γ. Μέριανος - Φ. Παπανελοπόουλος - Χ. Χριστοπούλου (εκδ.), *Επιστήμη και Τεχνολογία. Ιστορικές και ιστοριογραφικές μελέτες [Εταιρεία Μελέτης και Διάδοσης της Ιστορίας των Επιστημών και της Τεχνολογίας 1]*, Εκδοτική Αθηνών, Αθήνα 2013, pp. 45-65

Τσελίκας Α., Τα Ελληνικά γιατροσόφια: Μία Περιφρονημένη Κατηγορία Χειρογράφων, in Διαμαντόπουλος Α. (ed.) *Ιατρικά Βυζαντινά Χειρόγραφα, Δόμος*, Αθήνα 1995, pp. 57-69

Τσελίκας, Α., Διοσκουρίδης, Περί ύλης ιατρικής: ο έλληνικός κώδικας 1 της Εθνικής Βιβλιοθήκης τής Νεαπόλεως, Μίλητος 1998

