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Abstract

Despite the fact that neural networks had been used extensively for decades, a the-
oretical background that would explain their success was, until recently, elusive.
In Chapter 2, we present the main results which settled this question, developed
mostly in the early ‘90s. We prove Cybenko’s theorem, which states that continu-
ous and sigmoidal functions are always universal approximators, and also study
some extensions of this result. Leshno et al. proved that instead of sigmoidal func-
tions, one would suffice to use any function which is not equal to a polynomial
almost everywhere. Connections with the Kolmogorov-Arnold theorem are also
explored.

Chapter 3 is devoted to the study of stochastic approximation algorithms. The
goal of these algorithms is to determine the fixed point of an operator when its
values are not known to us, but they are revealed perturbed by some noise. They
can be seen as extensions of the classical fixed point methods, like Banach’s fixed
point theorem. We also present the proof of the convergence of the Q-Learning
algorithm which is based on this theory. The Q-Learning algorithm is a general-
ization of the successive approximation method, a method used extensively in the
classical dynamic programming, when we have no prior information on the un-
derlying process (transition probabilities and cost functions), but only a method
to draw and observe values from it.

Lastly, in Chapter 4, we study the multi-armed bandit problem, a subfield of
reinforcement learning, where the goal is to determine the most profitable action
among a given set, while simultaneously, maximizing one’s profit. We prove the
Lai-Robbins lower bound, which shows that for a certain class of reward distribu-
tions there are limits to how fast one can reach a maximum profit, and we also
present an algorithm that attains it. We conclude the chapter studying the upper
confidence bound algorithm, introduced by Auer et al., which resolves several
issues of the Lai-Robbins approach.






Iepilnym

[Tapd to yeyovog OTL Ta vevpwvikd dikTva Xxpnotpomotovvtayv eni dekaetieg pe
EVTUTIWOLAKA amoTeAéopata, N avantudn evog Bewpntikov voPabpov mov Ha
eENyovoe aLTHAV TOVG TNV EMITVXIA, Eival OXETIKA TTPOCPATO emitevya. 210 Ke-
QAAALO 2, TTAPOVOLALOVIE TA KUPLOTEPA ATTOTENETHATA TIOL £5WOAY ATAVTNOT OE
avtd ta epwtnpata. To Oewpnua Tov Cybenko eivat To mpwTto oxeTIko Oewpnua,
obpQwva He To omoio kdbe ouvexng kat olypoetdng ovvaptnon eival kabBoAikog
npooeyylotng. Ot Leshno et al., eméxktetvav to amotéAeopa tov Cybenko, deiyvo-
vtag 0Tt omotadnoTe U TOAVWVLLKT oLVApTHoT anoTelel kaBolwkod mpooey-
ytotr. ITapovotdfove emiong pia kataokevaoTikr anodelfn otov Ly, kabwg kat
™V mpocéyylon péow tov Oewpnuatog Twv Kolmogorov kat Arnold.

To Kepahato 3 eivar aptepwiévo otn perétn akyopiOuwyv 6TOXAOTIKNAG TPOGEY-
ytong. Avtoi ot akyoptBpot atoxevovy 0TV eVpeon Tov 6Tabepov onpeiov £vog
TeAeoTr), OTaV oL akpLPeig TIHEG TOL Taipvel Oev eival YVwOTEG O HAG, AANA Hog
anokavnTovtal pe TNV mapovaia BopvPou. Ilapovatdlovye eniong tnv anoddeién
Tov alyopifpov g Q-Mdabnong, kat n onoia Paciletal oTovg alyopifuovg av-
TovG. H Q-Mdbnon anotelei yevikevon piag pedodov mov xpnotpomoteitat ev-
PEWG OTOV KAAOOLKO SUVAIKO TIPOYPAUHATIONO, TNG peBddov twv dadoxikwv
npooeyyioewy, yla mpoPApata ota omoia dev €xovpe Yvwon Twv dlagopwv ma-
papétpwv (mBavotnteg petafaong kat Sopn KOGTOVG), Al avTiBeta pmopovpe
HOVO VO TIPOCOHOLWVOVLE TIAPATIPTOELG ATIO AVTEG.

Télog, oto KegdAato 4, peletape o mpdPAnpua Twv multi-armed bandit, to
avTikeipevo Tov omoiov eivat o TPoodloplopdg Tng o kepSopopag Spdong amod
éva oopévo 6OVoNo, pall pe TV TAVTOXPOVT HEYLOTOTIOINOT] TOV AVAUEVOHEVOL
képdovg pag. Amodeikvvovpe To ppdypa Twv Lai-Robbins, cvpgwva pe to omoio
Yot [t OUYKEKPLUEVT] KAAOT] KATAVOUWDY, VTIAPXOLY OpLa GTO TTOGO YPIyopa HITo-
povUe va TANGLaoove To PEATIOTO KEPSOG, eV emtiong Ttapovatdfovpe kat Evav
akyopiBpo mov emTuyyxdvel To @paypa avto. O akyoplBpog Twv Lai-robbins mept-
£XEL APKETA OKOTELVA ONUela, Ta omoia Tpoonadei va amhomowoet n péBodog up-
per confidence bounds twv Auer et al., pie TV omoia oAokAnpwvovpe Ty epyacia

pag.
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Af

Bx
C(X)
C(k) (X)

C*(X)
CeRX)
da(A)
E[X]|F]

I
Ly(Q)
L (Q2)
L‘f;’c (Q)
Cp
loo
Pr(x)

(R 11 1lg)

orb(x, T)

Sn
Zn(o)

(X, p)
01
X*
(X,7)

The set of discontinuity points of the function f.
The closed unit ball of a normed space (X, || - ).
The space of continuous functions on X.

The space of differentiable functions on X for which the first k
derivatives are continuous.

The space of smooth functions on X.
The space of smooth functions with compact support on X.
The natural density of a subset A of N.

The conditional expectation of a random variable X with respect
to a sigma-algebra F.

The n-th dimensional cube I,, = [0,1]" in R".
The space of p-integrable functions, 1 < p < oo, on Q.
The space of essentially bounded functions on Q.

The space of functions which belong to Ly, (K) for every compact
K subset of Q.

The space of p-summable real sequences for 1 < p < co.
The space of bounded real sequences.

The projection of the point x to the set F, most likely in a Hilbert

space.
The weighted supremum norm || x[l¢ = sup;_; _, sz—’l on R”, in-
duced by the strictly positive vector ¢.

The orbit {T"x : n € N} of a point x under the operator T defined
on some vector space, or some metric space, depending on the
context.

The n-th partial sum, S, =Y.} | ax, of a sequence (ay).

The set of all possible functions s : R” — R which can be generated
by a neural network having o as an activation function.

A metric space.
A normed space.
The topological dual of a normed space (X, |l - |).

A topological space, or a topological vector space, depending on
the context.
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Extevng Iepidnyn

1.1 Oewphuata kabolikng mpooéyyLong

Ta vevpwvika Siktva €xovv pa Thovola wtopia 1 onoia Eexivnoe ) dekaetia
Tov ‘40, pe TNV TpWTN TOovg BewpnTIKr CVAANYT. Zradiakd, Kat pe TNV mapdAAnAn
e&EMEN TV VITOAOYIOTIKWY SUVATOTHTWY, 1) XPHOT VELPWVIKWY SIKTVWYV €8wae
EVTUTIWOLAKA amoTteNéopata oTny enidvon Wiaitepa moAvTAokwv TpofAnpdtwy
o€ gvpl Paopa eQappoywy. OHwG, eV 1) ATOTEAECUATIKOTNTA TWV VEVPWVIKWY
Siktowv eixe emPeParwdei amo TNV mpakTikn eumnelpia, n Bewpnrikn aittoAdynon
™G eivat éva oxeTIKd cVYXpOVo emitevypa To omoio avédege Tn ovvdeon g
Oewpiag Twv vevpwvikwv SikTOWV pe kKAadovg Twv BewpnTikdvy padnuatikwv.

o va optoTei éva vevpwvikd Siktvo, xpetalopacte dvo kvpla Soptkd ovota-
TIKA, TIG OLYHOELOEIG CLVAPTNOELG KAL TOVG AQPPLVIKOVG LETATNUATIOHUOVG.

Opiopog 1.1.1: Mia ovvdptnon o : R — R kakeitaw orypoetdris, eav

0, t— oo,
o (1) — yia oo (1.1.1)

1, ywt— +oo.

Opiopnog 1.1.2: Mia ovvaptnon A: X — Y peta&d dbo Stavuopatikov xopwv
ovopaletar apouikr), eav oxvet 0Tt A (X1 Aix;) = X1 i Alx;) yrakdBe n €N,
Xi€ X karkdBe l;eRue ¥ | A; =1

Q¢ vevpwvikd diktvo, Bewpodpe kdbe cvvaptnon s TG popeng s(x) = T'x,
omov

T = Ams1SmAm-- ArS1 Ay (1.1.2)

elvat évag teAeoTig 0 omoiog opiletat amo Tig Stadoxikég cLVOETELS APPVIKWY
HETAOYNUATION@Y A; : R%-1 — RY e orypoeideis ovvaptioeis S;. O aplbuog m
petpd 1o mAR00G TwV oTpWHATWV TOL dikTOOV, EVw ot aptBuol d; To mAnBog Twv
KOUPwv ov epgavitovtat oe kabe otpwpa. Oa cuyPolifovpe pe

N

Zn(o):{s:[}'\?"aﬂ%:s(x): Za,-a(w}ij): (1.1.3)
j=1
NeN,a;€R, w]-EIR",HjelR}, (1.1.4)

TO OVVOAO TWV GVVAPTAOEWV § IOV dVvavTal va avanapaotadovv and éva vev-
pwviko diktvo PdBovg €va, To 0moio €XEL WG OLVAPTNOT EVEPYOTIOINONG T1) O.
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Tevika, dev eival owoto OTL k&dbe oLVEXNG oLVAPTNON HUTopel va ypagel 0T
popen (1.1.2), kat dAAwote de Ba mepluévape ek TwV TPOTEPWY VoL IOXVE KATL
Té€1010. OpWG 1 TTOAVETHG AMOTEAEGUATIKY] XPHON TWV VEVPWVIKWV SIKTOWV Og
npaypatikd tpoPAnpata, anotéheoe loxvpn vOeldn 0Tt kdBe cuvexng cuvapTNON
Oa umopovoe va mpooeyylobei and Tétoleg GLVAPTNOEL.

1.1.1  To Oewpnua tov Cybenko

Oewpolpe OTL oL eUmAekOpEVEG CLVAPTNOELS opiovtat oTo I, = [0,1]", avTi yia
olokAnpo 1o R”, 00Twg doTe va ekpeTaAAevTolpe TIG 18LOTNTEG TOL XpOoL C(I,).
Amé paBnuatikr okomid, To epwtnpa TG KaboAkng tpoofyylong Statvmwvetat
w¢ e&NG: Tl To1EG CVVAPTHOELS EVEPYOTIOINTHG T LY VEL 0TI TO TUVOAO

N
Zn(a):{f:lnaﬂ%:f(x) =) aja(w;x+9j):
j=1

Nel\l,aje[R{,wje[R{",QjER}
=span{f: f(x)=0(w'x+0) yia weR",0eR}.

eiveu mukvo otov C(I,); ZovapTnoelg pe TNV 0Tt avTH), KaAovvtal kaboldikol
npooeyyiotés. [apadeiypata ovykepkipévwv kabolikwv mpooeyylotwy frav ndn
yvwotd and ta péoa g dekaeTiag Tov ‘80, OUWE TO TPWTO TPAYHATIKA YEVIKO
anotéleopa aviike otov George Cybenko, o onoiog to 1989 [Cyb89] anédeile o1t
kaBe ovvexng otypoeldng ovvaptnon eivat kaBoAkdg TPooEYYLOTHG.

Ozwpnua 1.1.1 (Cybenko): Iia x&0e ovvex orypoetdny ovvaptnon o, To cvvolo
2, (0) eivau muxvo otov C(1,,).

H an6deign tov Bewprjpatog eivat vtap&lokn, Kat OVOLAOTIKA ATOTEAEL pio Oe-
TIKA& amAn}, aAl& dlaitepa evTuwaotakn, epappoyn Tov Oewprjpatog Hahn - Ba-
nach. To obvolo Y = X, (0) amotelel ypappiko vtoxwpo tov C(I,). Eav dev nrav
TVKVOG, T0Te ano 1o Oswpnua Hahn-Banach, Oa vrpxe kdmolo ypapuxd kat
@paypévo ocuvaptnotako 0 # x* € C(I,)* pue x*(Y) =0.

Amd 1o Oewpnpa Avanapdotaong Tov Riesz, o dvikog Tov C(I,) pmopel va
TOVTIOTEL [IE TO XWPO TIEMEPATHEVWY, TTPOOT|HAoUEVWY PETpwV Borel Tov I, emo-
Hévwg Ba émpeme va LTIAPYEL €va TETOLO pn UNOEVIKO HETPO W, He TNV OLOTHTA
ot

fl Fdux) =0 (1.1.5)

ya k&Be f € Y. H anddei&n odokAnpwvetal katalywvtag o€ &tomo, kat facile-
TaL og €va eMeipnUa appovikig avalvong mov mapovotalovpe avaivtikd (The-
orem 2.2.6).



1.1 Bewpnpata kabolkng Tpooéyylong

1.1.1.1  IlpoPMjuata katrnyopiomoinons

Towg wa e&iocov onpavtikn kAaon npoPfAnudtwy, eivan tTa tpoPAnpata katnyopt-
omoinong. Ze avtd ta tpoPAnpata vrofétovpe 6TL VILApYOLV k To AN 006 Stago-
petikoi mAnBuopoi and Tovg omoiovg AapPdvovpe TapATNPOELS, Kal O OKOTIOG
pag eivat va ano@avBoope and motov mAnBvouo mponOie n kdbe pia. Ao padn-
HaTIKE &moyn), pag evOtagépet 1) ekpadnon pag ovvaptnong f: I, — {1,...,k}, n
omoia o€ kaBe onpeio Tov povadiaiov vrepkvPov avabétel TNV avtioToyn KATH-
yopia and tnv omoia €xet TpoéNDOeL.

Miag Kat oL GUYKEKPLUEVEG CLVAPTHOELG eival TAVTOTE aovvexeis (deg ael. 26),
Ta TPOPANHATA KATNYOPLOTIOINONG XPELAloVTaL [ia [UKPT) TPOTIOTIOINOT WOTE Vat
unopéoovy va evtaxBovv oto mponyodpevo mhaioto. Ztnv Hapaypago 2.2.1 e&n-
yobpe g to Bewpnpa tov Cybenko dVvatat va epappooTei og auTh TNV KATNYO-
pia mpoPAnuatwv. H Baoikn 18éa eivat 6Tt avti yio Tnv acvvexr| f, umopovpe va
TIPOOEYYICOVLE (L GUVEXT] CLVAPTNOT TIOL ELVAL APKETA KOVTA TN, 1 btap&n Tng
omnoiag e§aopaliletal ano to Oewpnua tov Lusin. To Tipnpa mov mAnpwvouyle,
elvat otLvmdpyet mavta pa avBaipeta pikpr), aAld Oetikn mbavoTnTa va kdvovpe
Adbog katd Ty katnyoplomoinom.

1.1.2  My-moAvwvvpIKEG CUVAPTHOELS EVEPYOTIOINONG

Onwg ¢dei&e o Cybenko, k&Be ovvexns kat orypoeidns ovvaptnon eivat kaboAi-
KOG TpooeyyloThG. Eva guotoloyikd epwtna eival To Katd mocov umopodv va
Xohapwoovv avtég ot Vo vobéaoelg kat 1 GuVApTNON vepyoToinong va eako-
AovOnoet va éxet avTtny TNV 181N T

Zmv [apdypago 2.3 mpovoialovpe avalvtika éva anotédeopa Twv Leshno,
Lin, Pinkus kot Schocken [LLPS93], ot omoiot édwoav évav eVTUTWOLaKO Xapa-
KTNPOHO Yia TI§ GUVAPTIOELG EVEPYOTIOINOTG OL OTI0iEG ATTOTEAOVV KABOAIKOVG
npooeyylotés. Anédelfav ot onmoladnimote ovvapTnon eivat kaBoAkog Tpooey-
YLOTNG, APKEL Vo pnv €ivat ion pe kamolo mToAvwvupo oxedov mavTo.

H pia katevBuvon tov Bewprpatog eivat apketd mpogavig. Av nj ovvaptnon
gvepyomoinong o eivat ToAvwvupo Paduod k, ToTe 0 VIIOXWPOG X, (0) Ba amote-
Aeitat pe TN oepd Tov and moAvwvupa Pabuov To oA k, emouévwg amokAeieTat
va givat Tokvog oTig ouvexeig ovvaptioets. H avtiotpoen katevBuvon eivar 18i-
aitepa emimovn Kat XpnolLoToLel LoXVPA epyaleio and TNV oLVAPTNOLAKT Kat
APHOVIKT| aVAAvOT).

To amotéheopa Twv Leshno et al. avadeikviel 6TL n ovoia evog vevpwvikoy
SIKTVOV, TOVAAYLOTOV OO0V APOPA OTIG TPOOEYYLOTIKEG TOV SuvaTOTNTEG, SEV
elvat ouvu@aopévn pe Tig otypoetdeig ovvaptnoels. Omotadnmote (un moAvwvu-
UIKT) ovvapTnon unopei va xpnotpomnownei ot 0€omn piag orypoetdovg. Avtibeta,
Ol TTPOOEYYLOTIKEG SUVATOTEG TWV VEVPWVIKWYV SIKTVWV TtNyaovv and tn dopn
™G ovvBeong avapeoa ota Stagopa enineda Tov StkTdoL.
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1.1.3 Kataokevaotikés amodeibeic

H anddeién tov Cybenko eivat kaBapd vraplaxr, yeyovog to omnoio, diaitepa
avaloYLOTEL KAVEIG TNV EQAPHOCHEVT) GUOT) Tov OAov TpoPAnpatog, oxt Hovo
Sev éAnge to {NTnpa TG kaBoAikrg TpooEyylong, alkd wlnoe oty avadytnon
KATAoKeVAoTIKWV anodeifewv kat enektaoewv. Exovtag ma wg dedopévo otL N
KaBOoAIKN TPOGEYYLOT TAY EQLKTT, 1) EDPEOT) KATAOKEVAGTIKWVY eBddwv Ot amAd
@avtale pealtloTikn, aAlda kat Oa cuvéBale oe pa KAADTEPT KATAVONOT| TOV TIWG
akpLpwg emTvyydvetat n kaboAwkr Tpocéyylon, éva {ntnua oto omoio n anddetdn
tov Cybenko S8ev rfjrav o B¢on va piket pwg.

H npwtn katackevaotikr anodei&n §60nke to 1992 and tovg Chen, Chen kat
Liu [CCL91], ot omoiot paAiota xaldpwoav tny vobeon mepi cuvéxelag Tng ov-
vaptnong evepyomnoinong. Ioag gilocogiag pmopei va Bewpndei kau n mpooéy-
yon péow tov Oewpnuartog YmépBeong twv Kolmogorov kat Arnold mov mept-
YPAQOULE 0TV EMOUEVT TIApAYpaPo Kat avantuxOnke mapdAAnia pe to dpbpo
Twv Chen et al.

v Hapdypago 2.4, Tapovotd{ovpe Pia KATAOKEVATTIKY TPOGEYYLOT OTOV
Ly (X), n omoia avantdxOnke and tovg Kwok and Yeung [KY97]. YroBétovpe tnv
vnap&n kamotov cuvoov I' tétolo wote spanT = Ly (X). Tia mapddetypa, to T Oa
UTTOPOVOE VA TIEPLEXEL TIG CVUVAPTITELG THG HOPPTIG

{fR"=>R: f(x)=0(w'x+0) forweR",0eR}

Yl Un-TIOAVVWHLAKT) GUVAPTNOT O, Ol OToieG TAV NN YVWwoTd OTL £X0VV aUTH
v Wotnta. H Statdnwon tov Bewprpatog eivat apKeTd YEVIKT, OOTE Vo pun
xpetdletat va aoxoAnBobpe pe 1o Tt eidovg otowyeia meptéxovtal oto I', aAAd
elvat oiyovpa xpnowo va Bupodpacte 0Tt T0 cVUVOLo avTd Tailel To poo Tov
VELPWVIKOL StkTOOV.

Oswpnua 1.1.2 (Kwok-Yeung): Eotw X € R ovunayés ko T € Ly(X) otvodo e
HV 1I010THTA OTI 0 VITOYWPOS OV Tapdyel eival mukvos otov Ly (X). Eotw emiong
f € La(X). Mmopovue va kataokevaoovue axorovlia (f,), oto spanl, 1étoix

wote fr— f.

H Baowny 8¢a yla tnv enaywykn kataokevn tng akolovdiog (f), eiva n
akoAovOn: Zto mpwrto Prpa, emAéyovpe avBaipeta pa fi n omoia aviiket oto I'.
Eotw 61t petd 10 n-010 Pripa éxovpe ano@acioel 0Tt oL CLVAPTNHOELS &1,-..,8n €
I' mpénet va mapdyovv v fi, dSnhadn ot f,, € spanigi,...,gn} =: Fp. Tla va
ano@acicovye Tovg oLvTeNeaTEG fB; ov Ba epgavifovrat 0To ypap ko cuvdv-
aopo fr =X, Bigi> maipvovue TV f,, va eivat ion pe v mpoPoln g f otov
vroxwpo Fp.!

Suykekpipéva, ovppwva pe v avtioton Bewpia, vroloyilovtat ot cuvte-
Aeotéq G frn = L1, Aiei wg mpog kdmota opBopovadiua Paon (e;); tov Fy

1 Avté guotkd TpoimoBéTe dT1 yvwpilovpe mota eivan f.



1.1 Bewpnpata kabolkng Tpooéyylong

(ITpéTtaon A.3.9), kaw ot ovvéxeta 1 f, Eavaypagetat wg mpog ta g;’s. Iaipvo-
vtag v mpoPolr| TG f otov vdxwpo Fp, ovotaotikd e§aopalifovpe otLn fiy
elvat To oToteio Tov F,, To omoio eivat TANOLEoTEPO TN GLVAPTNOT f TNV oNola
emBupodpe va mpooeyyicove.

Ta va anogacioovpie To ENOUEVO GTOLXEIO gp+1 TOV Ba TpooTeDei oTO GVUVOAO
{81,...,8n}, emAéyovpe 10 g = gp41 €T OV eAayloTOMOLEL TO GQAANQAL

If = a1+ B9

ya f € R xou g € T, kat cvveyilovpe pe tov idlo tpomo. Xe kdbe emavainymn, to
o0volo {g1,...,gn} eumlovtiletal, Kat oL UVTEAEOTEG TV g; emavabmoloyilo-
VTal, OOTE VA EAAYLOTOTIOCOVY TO GPAApLAL.

A&iCet va onpewwdel 0Tt vapxovy MOANEG Taparlayég avtol Tov akyopibpov.
MdAioTa, 0g KATOLOVG Amd avToVG, To TPOPANHA TNG EAAXIOTOTOINONG TIOV TIPE-
meL va emAvOei katd TNV eMA0YT TOL KAVOUPYLOV GTOLKEIOV §p41, TPOOTIEPVATAL
HE EVaV APKETA EVQAVTAOTO TPOTIO: To KavoUpyLo 0TOLXELO EMAEYETAL TVXALOTIOL-
wvtag. Katw anod nmieg vmobéoeig, n akohovbia mov kataokevaletat ovykAivet
0T ovvaptnon mov embvpovpe pe mbavotnTa éva.

1.1.4 To Oewpnua twv Kolmogorov - Arnold

v npoonadeld Tovg va emAvoovy to 130 tpoPAnpa tov Hilbert, ot Andrey Kol-
mogorov kat Vladimir Arnold, dnpoocievoav ota téAn tng dekaetiag Tov 50 pia
oelpd anod apbpa, ota omoia O HOVO £8woay AMEVTNON 0TO £V Adyw TPOPAnUa,
aAld kat odnynoav otny avakdAvyn evog ek Twv oTovdaldTEPWY ATOTENEOHA-
TWV TWV CVUYPOVWYV HABNUATIKOV.

O Hilbert eixe ewcdoet 0Tt ot pileg Tng eiowong X +ax®+bx*+cx+1=0,
WOwEVEG oAV CLUVAPTNOT TWV TPLWV HeTaPANTWV a, b, ¢, dev pmopovoav va ypa-
@ovV wg avvBeon ovvaptroewy §vo petaPAntwv. O Arnold [Arn57] mpwtog ka-
Téppuye TNy etkaoia, aAdd o Kolmogorov [Kol57] mpoxwpnoe éva frpa mapanépa,
amodelkvbovtag OTL kdbe ovvdptnon d petaPAntay, oplopévn otov povadiaio
vrtepkOPo f 1 [0,1]% — R, umopei va ypagel wg umépOean cuvapTHOEWY HONG iag
petaPAnTrG.

Ozwpnua 1.1.3 (Kolmogorov-Arnold): Ynapyovv otabepés Ay,...,14 € R yiax
TIG OTIOLEG Z?Zl Aj =1, kou ovvexeic ovvapToelS P, ..., Pog41 amo to [0,1] oTov

£qUTO TOU, pe TV 1816THTA 01 K&Oe [ € C[0,11% umopei va ypagrei wg
2d+1 d
[ xa)= ) g(z A,-<p,-(x,~)), (1.1.6)
i=1  \j=1
omov g € C[0, 1] pia ovvaptnon mov eéaptdrar amd v f.

To 1987, §Yo xpovia potov o George Cybenko anodeifel to mpwto Bewpnua
kaBoAwkr|g mpooéyylong, o Robert Hecht-Nielsen mapatripnoe oe éva onpeiwpd
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tov [Hec87] tnv opotdtnta petad g ékppaong (1.1.6) kat Twv cuvaptioewv
7oL anaptifovv £va vevpwvikd Siktvo

N
s(x) =) aja(w}x+9]-). (1.1.7)
=1

Me peydAo evBovotaouod, mpotetve to Bewpnua viépOeong twv Kolmogorov kat
Arnold wg éva mBavo epyaleio yia TV vAomoINon TOV GTOXOV TNG KABOAIKNG
TIPOCEYYLONG, ONUELWVOVTAG TAPAAANA OTL, AV AVTO HTAV OVTWG EPLKTO, TOTE
Oa amotelovoe kat TNV TPWTN ePappoyn Tov Bewpnpatog veépbeong, TpLavTta
OAOKANPa XPOVLIA HETA TNV AVAKAALYT| TOL.

H avtandkpion oto onpeiopa tov Nielsen frav aitepa Oepun. Ipwta ot
Girosi kat Poggio (1989), o€ éva apBpo tovg e titho “Kolmogorov’s theorem is ir-
relevant” [GP89], é8et&av 0Tt eival adVvato va emTUXEL KAVEIG TNV avamapdotaon
(1.1.6) XpNOLHOTIOLOVTAG VEVPWVIKA SIKTVA, ETTELOT OL EUTAEKOEVEG CUVAPTHOELG
Tov Bewprjpatog vépBeong eivat maboloyikég, ev avTiBéoel pe TIG Kadwg cupe-
PLPEPOEVEG OLYHOELSEIG TUVAPTIOELG TTOV XPTOLUOTIOLEL £Val VEVPWVIKO SIKTVO.

Opwg, mapd TNV TPWTN APVNTIKY ATAVTNOT, TO TOTHPL anodeiyOnke piooye-
pdto. Mmopet to Bewpnpa vépBeong va pny evémnte ota mAaiola TV VEVPw-
VKOV SIKTOWV 600V AQopd TNV AvVATAPAOTACT) CUVAPTHOEWY, €V TOVTOLG TO
e&loov onpavTiko {NTpa TG TPOCEYYLONG OCLVAPTHOEWY TIAPAUEVE AVOLKTO Kol
anavtnOnke katagatikd §vo xpovia apyotepa and tnv Véra Kirkova ([Kur9l],
[Kur92]), oto apBpo g pe tov e&icov ebyhwtto titho “Kolmogorovs theorem
is relevant”. H 10¢a TG NTav va XpnotLoToIoeL OlypoetdeiG ouvapTroels yia va
TIPOCEYYIOEL OTHELAKA OAEG TIG OLVAPTHOELS TTOV EUTAEKOVTAL 0TO Bewpnpa vITtép-
Oeong kat 0T oLVEXEL, EMKAAWVTAG TO, VO GUUTEPAVEL TNV KABOAIKT| TIPOCEY-
YLOT TWV VEVPWVIKOV SIKTOWY.

Telkd, ox1 amAd to Bewpnpa vépBeong amodeixOnke oxeTiko, aAAd emumpo-
oBeta n S n W8LOTNTA TG KABOAIKNG TPOTEYYLIONG TWV VEVPWVIKWV SIKTVWV
unopovoe va Wwbei wg pa Wiaitepn ékpavor| Tov. H dovAeid tng Kirkova amo-
TENEOE TNV AQeTNpia yla fiLa oelpd anmoteheopdtwy mpog Sidpopeg katevbivoelg,
ota onoia to Bewpnua viépBeong Stadpapdtile kevTpiko poo. Ztnv epyaocia pag,
napovotalovpe éva apBpo twv Vitaly Maiorov kot Allan Pinkus (1999) [MP99]
oto omoio e&etalovy To MPOPANpa TNG KaBOAKNG Tpocéyyiong amo ua Stapope-
TIKI) OKOTILAL.

Ewg twpa ta gpwtrpata mov €xovpe SIATVTWOEL, aoXOAOVVTAL [E TO TIOLEG OL-
VAPTNOELG EVEPYOTIOINONG HITOpoDV va xpnotpomotnfovv wg kaboAikoi mpooeyyl-
otéc. Ot Maiorov kat Pinkus, and tnv dAAn, egetdlovv to katd mOcOV vITdpPXeL
KATIOlOL CUVAPTNOT EVEPYOTIOINONG Yl TNV OTOlA VA EMTVYXAVETAL TAVTA KO-
Oolwn} mpooéyyion pe oxeTikd Atyoug kopBovg. Ilpaypatt, pe tn Pordeta tov
Oewpnuatog vrépBeong, Ppiokovv pia apketd maboloykn cvvaptnon evepyo-
moinong, n omoia pnopel va mpooeyyioel omoladnTOTE GUVEXT CLVAPTNON XPN-
OlpoTOLWVTAG Hovaxa §VO OTpWHATA Kat OXETIKA Alyous kKOUPoLG, 0 aptduog Twv
omnoiwv e&aptdtat and tn Sidotaocn d Tov TpofAnpatog:
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Ocwpnua 1.1.4 (Maiorov-Pinkus): [MP99] Yrdpyer Aeia, orypoerdnc ovvaptyon
evepyomoinonG o, Tétoix wote yix k&kbe d € N, ke ovunayéc K < RY, ke f €
C(K) kau € > 0, va vmdpyovv mpaypatikés otabdepés d;, ¢; j» 0ij yi Ko Saviouata
w;; € RY

ij > UE

6d+3 3d
fa- ) diU(Z Cz’jU(W,T,-x+9ij)+%) <e (1.1.8)
i=1 j=1
yia k&Oe x € K.
Anddeiln: Aeg Theorem 2.5.2. [ ]

1.2 2TOXXOTIKY] IPOOEYYLON

‘Evag ovvnBiopévog tpomog emidvong Svokolwv mpofAnpdtwy Pektiotonoinong,
elval péow TG Xpriong eMavaAnmTkwy TpooeyyloTikwv pedodwv. H otoxaotikn
npocéyylon anotelei enéktaon Twv uebodwv avty, 6Tav 6To TPOPANHA LITEPXEL
Kamotov eidovg TuxaldTnTa.

1.2.1 O adyopiBuog Robbins-Monro

2y Hapaypago 3.1, meprypdgpovpe Tov alyopifuo Robbins-Monro [RM51], o
0T0l0G LOTOPLKA AMOTEAEL KAl TO TPWTO ATOTEAEGHA GTOXAOTIKY TTPOGEYYLONG.
To mAaiolo oto omoio Sovlevovpe eivat To e§nG: YmoBétovpe Ot yla kdbe x € R,
TapTNPOLUE pia Tuxaia petaPAnt Y = Y (x) pe katavopn PlY (x) < y] = H(y|x)
Kat avapevopevn i M(x) =E[Y | X = x] = [ yd H(y | x). Ev yévei, n akpiprg
pop@r TG M(x), 1} akdpa kat TG katavopuns H(y | x) dev eivat yvwotég, aAla
VToB£TOVE OTL UTTOPOVUE VO TIPOTOHOLWVOVHE ATTO TNV €V AOYW KATAVOWN yla
onotadrmote Tiur tov x. To (nrovpevo eivar va Ppedei pa pébodog emilvong
eflowoewv TG popPng M(0) = a wg mpog 0. Anhadn, pag eviagépet va Bpovpe
£va KATW@AL, TEPA amd TO OToio 1 AmoKpLon TNG Tuxaiag petaPAntrg Ba eivat
TOVAAXLOTOV a.

Ztov alyopiBpo Robbins-Monro, katackevaletal avadpopkd pa akohovdia
(x) n oOUPWVA pe TOV TUTIO

Xp+1 = Xp+ apla—yn), (1.2.1)

OTIOV Y, elval pia TapaTHpnon mov Tpooopotwdnke and tnv katavoun H(y | x,)
Kat (ay), pa mpokaboptopévn akodovBia un apvntikwv aptOpwv. Yo cvykekpt-
péveg vToBETELG Ya TIG KaTavopés Y (x) kaw v akolovBia (a,) », eacpalileton
1 oVykAlon NG (X,), 070 O Katd mbavotnTa.

Ozwpnua 1.2.1 (Robbins-Monro): YmoOétovue 6T vmapyer otalbeps C > 0 pe
PllY(x)| = C] =1 yix k&0 x € R. EmmAéov, n ovvaptnon M(x) = E[Y | X = x]
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eivau avéovoa, pe M(0) = a xar M'(0) > 0. Av n un-apvymixy akolovbia (ap)y,
aviker otov €2\ €1, 167e 11 akodovOiak (x,,),, Tov adyopiBuov Robbins-Monro

Xn+1 = Xp+ anla—yn), (1.2.2)
, . . P
ovykAiver o1o 0 katd mbavoTyTa, x, — 0.

H noootnta x;, otn oxéon (1.2.2) avTimpoowmnedeL TNV TpEXOLOA EKTIUNOT Yia
T0 6. Avt n Tn SopBwvetal kKatd Tov TApAyovTa ay(a— yy), £ToL WOTE va
dwoel Ty Kawvovpyla eKTIHNoN Xp,+1. [la TNy akpifeta, n Tun X1 = (1 —ay) x, +
an(a—yn+ x,) anotekel KLPTO GUVOVACHO TNG TIPONYOVUEVNG EKTIUNONG X,y Kol
™G mpoTetvOpevnG S10pBwong a— yp, + x,. Ot 800 AVTEG TIUEG, Xy KAL A — Yy + X,
anoTeAOLVY TIG SV0 akpaieg TPOTACELS Yia TNV Xp41. H mpwtn vmodetkvoet 0TL N
Xp+1 TPETEL VA ayvonoet TANpwg Tov StopfwTikd 6po a — y,, evw n Sévtepn Ot
Ba mpémet va tov anodexOei e§” ohokAnpov. H vmapén g otabepds a, kabopilet
70 Pdpog mov Ba Sobei oTe KAOe pia amo TG SVo akpaieg AVTEG TPOTATELG.

O porog g axolovbiag (ay) , eivat dtaitepog, kabw¢ emipepietat peta&d dvo
avTikpovopevwy aAld embuuntov cvpnepipopwy. ATo TN pia TAELPA, oL Opot
™S (an)n Ba mpémel va eivar apketd peydhot wote va AngBodv voywy ot 8i-
0pOWoELS a — ¥, aANG Kal OXETIKA [UKPOL, WOTE VAL [N XAPAULOTEL ] TTPO0dOG
Tov aAyopiBpov kat 1 omoia ekPpAleTal amd TNV TPEYOLoA TIHN TOL Xj,. AvTH
elvaw pia éxpavon tov Sikfppatog eEepevvnong - expuetdAAevong to onoio Ba
Eavaovvavtiioovpe 010 ke@alo Twv multi-armed bandit.

Ot Robbins kat Monro, emtvyxdvovv avtdv Tov ovppipacuo, emAéyovrag Tnv
(an)n va eivat tetpaywvikd abpoiotpn, aAld oxt anodbtwg abpoiotun, dSnAadn
dovhevovtag pe akohovbieg oL 0moieG eival HEV APKETA UIKPEG WOTE VAL GUYKAL-
Vouv 670 UndEV, alld pe OXeTIKA apyo puOuo.

1.2.2  Evpeon otabepwv onpeiwy vmo Tuyadtyra

[ToAAG& amautnTikd pofArjuata ota padnuatikd, Waitepa nrrpata vapéng,
avayovtat otnv gvpeon otabepod onpeiov yla kdmota KatdAAnAn cvvaptnon.
Zmv Hapaypago 3.2, mapovoialovpe éva epyaleio mov pag emtpénet va Bpi-
okovle To 6Tabepod onpEio HLag CLVAPTNONG VIO TNV TAPOVCLA TLXAOTNTAG.

Oewpovpe Evav (0xt amapaitnta ypaupko) teleotr H : X — X mov Spa mévw
0710 StavuopaTikd xwpo X kat 0 omoiog yvwpilovpe Ott éxel povadikd otabepd
onpeio. Mia ovviing uéBodog yia tnv mpooéyylomn tov onpeiov avtov, Ba frav va
XPNopomot|oovpe Y avadpopkn akohovdia (x,), mov opileTat and t oxéon
Xp+1 = Hxy. H akolovBia avtr| Eexivd and kdmoto avBaipeto x; € X, kau €v
ovveyeia akolovBel TNV Tpoxid avTod Tov onueiov péow Tov TeAeotn H. Ymod
KatdAAnAeg mpoimobéaoelg, ya mapadetypa dtav o H eivat ovoToAn kato X xwpog
Banach, n akohovBia (x;), 0vTwg cuykAivel oto {nrovpevo otabepd onpeio Tov
H.

2to mpoPAnpa ov peleTdpe Opws, Adyw TG mapovaiag BopvPov, eivar adv-
vato va yvwpilovpe v akpPn T Hx, kaBe tétolag emavdAnyng. Avtifeta,
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TapaTnpovpe o T Hx, + wy, 0mov o w,, eivat pua toxaia petapAntn mov
naiCet o poro tov BopvPov. H vmapén avtov tov dpov, pag avaykalel va mpo-
0appoooLpE TOV TPOTIO TToL opilovpe TNV avadpoyukr akolovbia pag. o ovyke-
KPLHEVQ, KAl EVOPUOVIOUEVOL pe TN Tpoo€yylon Twv Robbins-Monro, opifovpe
v (X,), OOPPWVA [E TN OXEOT

Xn+1 =0 =yYn)Xn+yYn(Hxp + wy) (1.2.3)

Omov (Yn)n eivat katdAAnAn akolovBia oto (0, 1]. H akolovbia avtn, dev eivat
anapaitnto va eivat tpokaboptopévn, aAld pmopei o kaBe 6pog ¢ va eEaptatat
and TNV wotopia TG avél&ng uéxpt exeivn tn oteypn.

Ta dvo kOpla amoteréopata mov anodetkviovpe, agopodv e dVo peydAeg kAA-
oeic teheotwv H:RY — RV, 1¢ YevOOOVOTOAEG KAl TOVG HOVOTOVOUG TEAEOTEG.

Opiopnog 1.2.1: 'Eotw (X, [l - [I) xwpog pe vopua. Mia ocvvaptnon H : X — X
KaAeitat yevdoovoTody, eav vdpyovy x* € X kot B € [0,1) TéTola WOTE

| Hx—x*|| < Bllx—x*| (1.2.4)

yia k&0 x € X.

ZvviiBwg, ot Tedeotéq H e Oa eival cvoToAEG wg pog TNV evkAeidela vopua
tov RY, aA\d wg mpog kémota tooSVvapn vopua | - [l¢. Enpetdvovpe emiong 6t
Kd0e Yev80ovaTOAN éxel WG povadikd otabepd Tng onpeio To x*.

IIpotaon 1.2.2: Eotw (ry), 1 axolovBia mov opietau amd v avadpopikh axéon

ne1 = A =yR)rn+yn(Hyrp + wy + uy), (1.2.5)
omov
(a) n axorovbia (y,), eivau Tétoi wote 357 | ¥, (i) = 0o Kau Zj’f:lyn(i)z <
ooyl ke i =1,...,N.

(b) H akxolovbia (wy), éxet TV 1010THTA 011

Elw, ()| Ful =0 xar E[wy,(i)*|Fpn] < A+ Byl

(c) K&be H, eivau yevdoovotodyy ws mpog tnv idiex vopua | - ¢, pe 1o idio
o1abepo onueio r* keu THY idix oTabepd B € [0, 1).

(d) Ymépyer axorovbia un-apvnrikwv Toxaioy yetafAntwv (6,) , 1 omoix ov-
ykAiver aTo undév oxedov mavTov, TETOIX WOTE

ltnlloo < On (1+1ITnll¢)

yio k&kOe n e N.
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Tote n (ry) n ovyKAiver 010 1™ 0YedOV TAVTO.

Mpotaon 1.2.3: Eotw (ry) , 1 akolovbia wov opietou amd v avadpouixn oxéon
Tpe1 = A =yp)rn+yn(Hrp + wy), (1.2.6)
omov

(a) n axolovbia (yn), eivau Tétota wote 357 | Yn(i) = 0o ko Y57 Yn(i)? < oo
yiaxibei=1,...,N.

(b) H axolovbia (wy), éxer TV 1010THTA OT1

Elwu(i) | Ful =0 xar E[wy(i)*|Fn] < A+ Byl

(c) L tov tedeoth) H 10yVet 0T
(i) eiveu povotovos, Sndadny Hx < Hy yia k&Oe x < y.

(ii) T k4B A > 0 ko 7 € RN, 1oyver 6mi: Hr —Ae < H(r — le) < H(r +
Ae) < Hr+ Ade, 6move=(1,...,1).

(iii) ‘Exet povadixo otabepo onueio, Hr* =r*.

Eav 11 (rp) n eivau ppaypévny ayedov mavtot, 16te ovykAiver oto r* oyxedov mavtod.

1.2.3  Q-Mdabnony

O SVVaIKOG TTPOPAPUATIOHOG ATTOTEAEL EVAV QTG TOVG OTHAVTIKOTEPOVG KAG-
dovg NG padnuatikng feATIOTOTOINONG KAt TO AVTIKEILEVO HEAETNG TOL elval TipO-
BApata ota omoia n Afyn ano@doewy yivetat akoAoviakd.

Kevtpikod podo ota mpoPAfpata Suvapkod mpoypappatiopot, dtadpapatiet
n e§iowon tov Bellman, 1 onoia amotelei wa cvvaptnotakn egiowon yia ™ ov-
vaptnon BEAtiotng Tung J*:

J*) = J?,}f}) {j;smj(a) (ctia, )+T" (j))}. (1.2.7)
H enilvon tng e§icwong avtng eivat duesa cuvu@acpévn kat pe tn Avor Tov vd
pelétn mpoPAnpatog. Tia anAd mpoPAnpata, n egiowon (1.2.7) yiverat va AvBel
alyePpikd, alAd ev yével avTo Sev eivatl epikTo. Tia Tov Adyo avTd, akopa Kat ot
khaoowkn Bewpia TOv SLVAUIKOD TPOYPAUHATIONOD, €ival ONUAVTIK 1] EVPEDT
uefodwv yia tnv mpooeytotiky enilvon te. Eva mapddetypa tétotag uebodov
eivat 1 péBodog Twv diadoyikwv mpooeyyioewv, oOPPWVa pe TNV omoia Eekivdype
pe kamota avBaipetn ovvaptnon Jo kat oe kdBe otadio opilovpe

Jn+1(i) = min {Z pijla) (c(i,a,j)+]n(j))}. (1.2.8)
acA(Q) jes
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H obykAion g akolovBiag (J,,), otnv J* efaopaliletat péow tov Bewprpatog
otabepol onpeiov Tov Banach, kabwg o teheatng T : C(S) — C(S), mov opiletat
wg

(Tf)(i) := min {Z pij(a)(cl,a, j) +f(j))}, feC(s),ies,
acA(Q) jes
anotelel GUOTOAT).

H Q-MdaOnon propei va Bewpnbei oav pa eméktaon avtod Tov anoTeAEoHatog,
yta TV emidvon mpoPAnpdtwy O6mov eivat advvatn 1 xpnolponoinotn Tov, Aoyw
ENAELYNG ATAUTOVHEVWY TTANPOPOPLWYV. ZTNV KAACOIK TePIMTwOoT), ot lavotn-
Teg petdPfaong pij(a) kaBwg kat takootn ¢(i, a, j) eival ek TWV TPOTEPWYV YVWOTA,
£TOL 0 VTOAOYLONOG TNG EkPpaong oTn oxéon (1.2.8) eivan e@ikTog. 210 TAAioo
™G Q-Mdabnong, ot Tipég avtég eival dyvwotes. Avtifeta, vobétovpe OTt pmo-
POVLE VA TIPOCOUOLWVOLHLE TIG HeTAPAoeL TG alvoidag ot oToieg eptypagovTtat
amo TIG KATAVOUES p; (@) KAl VA TTAPATNPOVLE Ta KOOTH TOL eM@EPeL kdbe pe-
t&PBaon. Etol, evad de yvwpilovpe Tig akpiPei mapapétpouvg tov mpoPAnpuatog,
Stabétovpe Evav €upeco TpoTo va eEdyove CUUTEPATHATA YL AVTEG.

O alyopiBpog tng Q-Mabnong dratvnwOnke and tov Chris Watkins otn Sida-
kTopikn StatptPr) Tov [Wat89] kat amotelét éva ovvdvaouod g pedodov Stado-
XKWV Tpooeyyioewv pe T uébodo Tng otoxaoTikng mpooéyytong Twv Robbins-
Monro. To vrt6 perétn mpoPAnpa avayetal oTny enilvon TG ovvaptnotaxng e&i-
owong

N
QU @) :=1-YQGa+y Y. pij@|cli,a )+ min Qj,b)|  (12.9)
j=0 be A(j)

yta kaBe kataotaon i kat andeaon a € A(i). Kabwg 8¢ yvwpifovpe tig mbavo-
nteg petaPaong p; j(a), n avauevouevn Tiun mov eppavifetat otn oxéon (1.2.9),
avtikadiotatat and pia Tipn j n omoia TPocopoLWVETaAL antd TNV KaTtavoun p;,.(a).
Opoiwg, To c(i, a, j) Sev eivat ek TwV TPOTEPWYV YVWOTO, AAAA TapaTnpeital Katd
NV Tpaypatonoinon g ev Aoyw petapaong. Téhog, n otabepd y avtikabiotatal
and akolovBieg mov cuykAivovy 0To UNdéV apketd apyd, OTwG Kat 6ToV akyo-
pBpo Twv Robbins-Monro:

Ozwpnual.2.4: [BT96] Ocwpoipe tnv akolovbia (Qy) , mov opiletar avadpopika
and 11 oyéon

Qne1(i,a) = (1=y,(i, @) Qnli,a) +yn(i,a) c(i,a,j)+br€n/§3)on(j,b) , (1.2.10)

omov oe k&Oe Prua, n Tiun j éxer mpooopoiwBel amd Ty katavoun p;.(a) kar y
axodlovBia (y,)y eivau Tétoi wote Y57 ynli,a) = oo kar Y57 )fn(i,cl)2 < o0
yiax k&be i =1,...,N xou a € A(i). Kdtw and kardAAnles vmobéoeis, Q,(i, a) —
Q*(i,a) yix k&Oe i, a € A(i) oxeddv mavtot, omov Q* eivau o BéATioTog Q- Mapd-
yovtag, dndadn n Avon s e&iowong (1.2.9).

11
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H 18¢a g anddei&ng eivat va opiotei katdAAnla évag teheotig H, 0mwg kat
otnv anode&n g ovykiiong g pebodov Stadoxikwv mpooeyyicewy, To ota-
Bepo onpeio Tov omoiov Ba ivat o {nrodpevog PérTiotog Q-tapdyovtag kaL o
omoiog Ba gumintel oe kAmOlAL ATO TA BEWPTHATA CTOXAOTIKNG TTPOTEYYIONG TNG
TpoNyoLHEVNG Tapaypd@ov. Zvykekpipéva, o tedeotis H : C(S) — C(S) mov
opiletat wg

N
(HQ)(i,a) = j;opij(a) cli,a, j) + brg(r})o(j,b) : (1.2.11)

ya Q oto C(S), mpokvmTel £ite OTL eival GLOTON WG TTPOG KATOLA KATAAANAN
VOpUa, €ITE OTL Eival LOVOTOVOG, £TOL TA ATOTEAEOHATA TNG TIPOTYOUUEVNG TTaPa-
YPAPOL HTTOPOVV VO EQAPLLOTTODY.

1.3 Multi-armed bandits

To mAaioto Twv multi-armed bandits amotehel éva amd Ta MO AVTITPOCWTEVTIKA
Kat evAnmTa mapadeiypata Tov kKAASoL TNG eVIoXVTIKAG udbnong (reinforcement
learning). MehetOnkav ya mpwtn gopd amd tov Herbert Robbins otig apyég
T1G Sexaetiag Tov 50 kat e§akolovBolv va arotedoovv kevTpiko medio Epevvag,
1000 amod BewpnTikr dmoyn, 660 KAl 0TO KOUHUATL TWV EQAPHOYWY TOVG.

Ztnv amhoboTtepn pop@ry Tov, To TPOPANUa mov Ba pag anacyoAnost eivat To
e&ng: Exovpe ) Suvatdtnra va tpaBape mapatnproeg and 0o SlapopeTikong
mAnBvopovg A kat B, ot omoiot xapaktnpifovtal and Tig katavopes Fa kat Fp,
HE aVOUEVOUEVEG TIUEG @ Kal b avTioTotxa. Ze kabe yOpo, emAéyovpe évav ek
Twv 600 MANBVoPWY, TPAPape o TAPATHPNOT X CVUPWVA [E TNV avTioToln
KATOAVOU, TNV OTtola Kat eLoTpdTTovpe oav kEpSog. O aTdX0G Hag eivat va Bpolpe
Lot OTPATNYIKT ETMAOYNG TOL OelyHaTOG X1, ..., X, OVTWG WOTE VO [HEYLOTOTOLN-
OOVYE TO AVAUEVOUEVO KEPOOG Sy = X1 +... + Xp.

Eav yvwpilape €€ apxng Tig Tiég Twv a kat b, tote 10 mpoPAnpa Ba nrav te-
TpLppévo, agov ot kabe yvpo Ba emAéyaue Tov mAnOvouod pe Ty peyakvtepn.
Amé TN oTIyp} OpwG IOV OL TIHEG AVTEG eival dyvwoTeG, TOTe o€ kdbe yvpo To
Héoo képdog pag Ba €xet Tn popen

n—ky

E[S,/n] = 1 Y E[X;]= k”a+

= — b,
ni= n

omov kjy, 0 aplBpog detypdtwv and tov mAnbuopuo A petd anod n ybpovs. Aniadn,
10 uéoo képdog E[S,/ n] Ba amotelel, ev yével, évav KupTO GUVSLACUO TWV a Kat
b.

H StattepotnTa ToU mpoPARHAToq cuVIOTATAL GTO OTL VLA VAL TO TTPOCGEYYITOVE
OWOTA, €ival amapaiTnTo Vo XproLUOTO 0OV E TAVTOXPOVA §VO AVTIKPOLOUEVEG
OTPATNYIKEG. ATIO T1) pia HepLd, TIPETEL Va TPaBrEovpLe apKETEG TIHEG Kat aTtd TOVG
dvo mAnBuopods woTe va éxovpe pia KaAn eKTIENOT TOV TOLOG €K TwV SVO eival
0 KAAUTEPOG. AUTO onpaivel 0Tt eipaote StateBeipévol va emhégovpe tov AdBog
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TANOVOUO APKETEG POPEG OVTWG WOTE Vo PABovpe TNV avapevouevn Tiur Tov.
Amé v &AAn, Otav eipaote apketa BEPatot yia To oLog eival o KakvTePOG, TpE-
el va TpaPape ohoéva mePLOCOTEPEG TTAPATNPHOEL A0 avTOV ToV TANBVONO,
(OOTE VOl HEYLOTOTOLOOVHE TO avapevopuevo képdog pag. H mpwtn otpatnykn
ovopaletal eéepevvion, v 1 Sevtepn expetdAlevon, kat i evpean akyopiBuwv
TIOV ETUTVYXAVOLV T OWOTH €§LOOPPOTINOT AVANETA TOVG EivaL TO AVTIKEIHEVO
tov Kegalaiov 4.

Yrapyxet évag ToAD anhog alyodpiBuog, o omoiog StatvnwOnke and tov idio Tov
Robbins [Rob52] 1o 1952, kat emTUYXAVEL ACVUTITWTIKA TO HEYLOTO SLVATO ava-
HEVOHEVO KEPSOG. ZVHPwva pe avTdy, eméyovTat §vo Eéva, amelpa vtoovuvola
PUOIKWY aplOPdV J4 ke J pe undevixr mukvotnta.” Otav 0 ydpog 1 6Tov omoio
BpLoKoOpaoTE, AVIKeL 0TO J 4, emAEyovpe Tdvta Tov TAnBvopd A. AvtioTtowya emt-
Aéyovpe Tov B mAnBuouod otav n € Jp. Ze GAOVG TOVG VTTOAOLTOVG YUPOUG, ETILAE-
youpe Tov TAnOvouo 0 omoiog éxel Tov peyalvTepo SetypHatikd HETo, COpPWVA
LE TIG TapaTn POl Tov £xouv Angbei ewg ekeivn T oTLypn.

KaBwg ta ovvola J4 kat Jp éxovv mukvotnta Undév, oL mapatnproels mov
Aapavovpe emdvw Tovg Sev xovv KATmoLa eMidpact) 0To HETo kEPSOG Hag aovp-
ntwtikd. Enopéveg, mdvw og avtd ta ouvola pmopodpe va eggpevvodpe 600
Béhovpe, xwpig apvnTikég ovvémeleg. EmmAéov, epooov kat Ta 0o avtd cuvola
elval dmelpa, N oTPATNYIKN pag eival aiyovpo otL Ba emAéyel mavta dnelpeg To
TANR00¢ Tapatnproels kat and Tovg dvo mAnbvopove. Ano tov Ioxvpo Nopo twv
Meydlwv ApiBuwv, ot detypatikoi péoot Twv dbo mAnbvopwv Ba cvykhivovv
O0TOVG TIPAYHATIKOVG HEOOVG (e ThavoTnTa éva.

Apa, amo kamotov yOpo kat £mtetta, ot Setypatikoi péoot twv dvo mAnbuopwv Oa
€lval TO00 KOVTA GTOVG TTPAYUATIKOVG HECOVG, WOTE EMAEYOVTOG TOV LEYAAVTEPO
detypatikd pHéco, ovolaoTika eMAEYOVE kat Tov KaAvTepo mAnBvouo. Etot, n
OTPATNYIKA Hag and éva yopo Kat petd, Ba emAéyet povipws Tov kakvtepo TAN-
Buopo, eKTOG amd Tovg YOPOUG IOV AVHKOLY GTO OUVOAO J4 U Jp, OL 0TI0iOL OpWG
elvat Too0 apatoi mov dev ennpedalovy TO AVApEVOHEVO KEPSOG HAG ACVUTTWTIKA.

1.3.1  Aovuntwtikd PEATIOTA KATW QPAYUATR

Ze mpaypatika tpoBArpata, omov dev ovveyifovpe va mailovpe em dmelpoy, ivat
ONUAVTIKO OXt anmAd va eao@alicovpe TNV emitevln TOL OTOXOV ACVUTTWTIKA,
aAld kat 600 1o Suvatov ypnyopodtepa. Ouwg, evw n evpeon alyopibuwv mov
EMTVYXAVOLY TO HEYLOTO SuvaTO AVAUEVOUEVO KEPSOG ACVUMTWTIKA NTAV {La
amAn epappoyn Tov INMA, To ep@tnua Tov Tdco ypryopa pmopei va emitevyOei
avto To képdog amodeixOnke moAd SvokoAdTtepo kat amavtiOnke 30 xpovia ap-
yoTepa and tovg Tze Leung Lai kau Herbert Robbins [LR85].

2T mapddetypa propodye va emhéEovpe J4 = (n?: neN} kat Jg = (n? +1: neNj.
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Oa Bewprioovpe TNV O YEVIKT TEPIMTWOT), 61OV £X0vpe k To MARBog MAnBv-
OHOVG € AVAUEVOUEVES TWEG dy, ..., Ak. [la kaBe otpatnywn ¢ : N — {1,..., k}
opiovpe v anwlewa (regret) petd ano n ybopovg, wg

R, (¢p) = nmax{ay,...,ar} —E[S,]. (1.3.1)

Ot Lai kat Robbins €8ei&av 6TL 0TV TePINTWOT TTOL OL KATAVOES TWV KEPOWV
LKAVOTIOLOVV KATIOLEG OLYKEKPLUEVEG VTTOBETELS, 1] anwAeta omotovdnmote alyo-
piBpov de umopei va avfavel o apyd and o(In n). EmmAéov, katackevaoav Evav
akyoptOpo 0 0moi0G EMTLYXAVEL AVTO TO KATW QPPAYUA, KAl APa CUUTEPLPEPETAL
BéATioTa 600V APopd 0TV TaxOTNTA CUYKALOTG.

O\eg oL katavopég 0To ovykekpiuévo Bewpnua eivat povomapapetpikés f(x;0)
pe 6 € © € R, xat To O pe TN oelpd TOL KavoToLel Kamota aglwpata ov e&a-
o@alifovv 0tL Ba éxet pa oxetkd mhovaota Sopry. Emiong, Statvndvovtat kdmoteg
vno0éoeig ovvéxetag Tng petpknig Kullback-Leibler. OAeg avtég ot vmobéoelg, pmo-
pel ek TPATNG OYewg va @aivovtal avTidtatodnTikés, aAAd oTny mpaypatikoTnTa
egao@alifovv ott to TpoPAnua eivat Statumwpévo oe peakloTika TAaioLa Kat ETti-
ONG AMOPEVYOVV TETPLUHEVEG ATIAVTIOELG.

Ta v e0peon Tov katw @paypatog o(In n), ot Lai kat Robbins xpnoiponolovv
10 £€MG Paotko emeipnua: Av vtoBEécovpie OTL £XOVHE 0TA XEPLA HaG EVay akyo-
plBpo 0 omoiog cuykAivel ypriyopa yla 0Aeg Tig Suvatég Katavopég, dnA. yia oha
Ta duvatd b € O, ToTe avTh akpBWws N LOXVPT TOL IOLOTNTA, OTNY TPAYUATIKOTNTA
Aettovpyei og Bapog Tov: EmAéyovtag e mpoooxr ouyKeKPLUEVEG TIHEG TIG TTAPa-
pétpov 0, oTig omoieg o alyodpiBuog avaykaotikd Oa mpémel va ovykAivel ypn-
YOpa, KAtapEpvouy kat maipvovy avtiotpoga @pdypata. To nducod didaypa tng
anodel€ng, eivat 0t eav éxovpe otV Katoxn pag Evav akydplBpo o onoiog ou-
yrAivet ypriyopa yia 0Aa ta 0 € ©, tdte avaykaoTtikd Oa vtapxovv kamota 8 ota
omoia, Oa cvykAivel pev ypryopa, aAld 8e Ba ocvykAiver Tayvtata.

Ta TNV kataokevr) Tov alyopiBov mov To VAOTOLEL, XPNOLHOTIOLOVY TNV apXn
™G awarododias v dyer afefarotnrag (optimism in the face of uncertainty). H
KVpla Slapopd og oX€oT He TOV TTOAD amAd alydpiBo mov avagépape oTny mpo-
nyobvpevo mapdypago, eivar 0Tt oe kabe yvpo de ouykpivovtal ot Serypatikol
péoot Twv Stagopwv mAnBvopwv. Avtifeta, yia Tovg mAnBuopotg mov Sev éxovv
eTAEYEL AVANOYIKA APKETEG POPES, KATATKEVALETAL £VaL SIAGTNHA EUTLOTOOVVIG
yla ToV oo, kat ot idtot ot TAnBuopol avTImpoowTeoVTAL OXL ATIO TOV SELYHATIKO
TOVG H€TO, AAAG ATtO TO VW AKPO TOL SLACTHHATOG EUTILGTOOVVNG. Me auth TV
TPAKTIKY, 0 akydpiBpog Sivel Eva mapandvw kivtpo mpog e&epevvnon, Tpoo@é-
povTag emmAEoV evkalpieg o€ TANOVOHOVG IOV deiXvouy LTTOOXOEVOL, AAAA lowG
Va €OV UIKPOVG SELYHATIKOVG HEGOVG AOYW TUXAULOTNTAG.

1.3.2 O adydpiBuos UCB

H kataokevr] Twv Staotnpdtwy epumotoovvng otn dovheld twv Lai kat Robbins
elvat i8laitepa Aemtr) vdBeon. Zto dpBHpo Tovg, avagépovtal Ta aLdpaTa oL TA
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Staotnpata epmotoovvng Ba mpémeL va tkavoTolovy, kat divovtat mapadeiypata
Ylat CUYKEKPLUEVEG KATAVOUES, AAAA eV YEVEL, SEV TAPEXETAL KATIOLOG KAVOVAG Ka-
TAOKEVNG TOVG. AKOHA OpwG Kal OTav Ta SlaoThpata elval yvwoTtd, o VToOAoYL-
OMOG TOVG €ival ApKETA ATAUTNTIKOG.

To mpoPAnua avto mpoonabei va avtipetwmioet o alyopiBupog Upper Confi-
dence Bound (UCB) twv Auer, Cesa-Bianchi kot Fischer [ACBF02], otov omoiov
Ta SLACTAUATA EUTLOTOOVVNG £XOVV TNV ATAOVOTATN €KPPACT)

. . ; .= 3lnn
Awdotnpa Epmotoodvng j-mAnbuopov =X, +4 | T (1.3.2)
nj

OOV X j n; €lvau 0 derypatikds péows Tov j-mAnBuopod kau 12 o TABoG popwv
mov emAéxOnke katd TOLG TPWTOLVG 1 YVpoLG. EmmAéov, n pdvn vmdbeon yia Tig
KATAvopéG Twv kepdwv eivat va Aappdvovy tiég oto [0, 1].

To Tipnpa mov TANPWVOLE eivatl OTL, EVW PEV EMTVYXAVETAL KAL TTAAL TaYVTNTA
ovykAong o(Inn), n otabepd eivan xetpdtepn and tn PéAtiotn Suvarr. Tpomomot-
WVTAG OpWG KATAAANAa ToV akyoptBpo avtov, n otabepd pmopei va mAnolaoet
avBaipeta kovtd otn PéAtiotn otabepd. Avtd vAomoteitar otov akyopBuo Up-
per Confidence Bounds with epochs, 6mov oe kdbe yOpo, o mAnBvopog mov emi-
Aéyetat, Sev mailetat povo pia popd, ahld oAoéva Kat TEPLOTOTEPEG POPEG.
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THEORETICAL FOUNDATIONS






Approximation Capabilities of Neural
Networks

Neural Networks have exhibited tremendous results during the past decades, of-
fering approximate solutions to problems often conceived intractable. Despite the
fact that they were firstly conceived in the mid ’40s, the systematic study of their
approximation capabilities emerged relatively recently. It relied on tools from ab-
stract mathematics, like functional analysis and probability theory, and progres-
sively reached deeper into their foundations.

In Section 2.1 we describe the mathematical formulation of the problem, and in
Section 2.2 we present Cybenko’s approximation theorem, which is the first ma-
jor relevant theorem, proving that continuous sigmoidal activation functions are
universal approximators. In Section 2.3 we investigate if the sigmoidal property
of the activation function is really necessary for the approximation property to
hold. Leshno, Lin, Pinkus and Schocken answered this question in the negative,
providing an impressive and simple characterization of the activation functions
that are universal approximators. In Section 2.4 we present a constructive appro-
ximation method in Ly, based on the work of Kwok and Yeung. Lastly, Section 2.5
is devoted to an alternative method of obtaining approximation results, based on
the Kolmogorov - Arnold Representation Theorem.

2.1 The universal approximation property

In Approximation Theory, one is usually trying to approximate functions using
simpler ones. Probably the most famous relevant result is the Stone - Weierstrass
Theorem, which asserts that one can approximate continuous functions using
polynomials. Artificial Neural Networks are architectures that are used in this
setting, however, the “simpler” functions that a neural network uses in order to
approximate more complex ones, are not polynomials, but have another very spe-
cific form [BT96, p. 64]: Any function s created by a neural network has the form
s(x) = Tx, where

T=Amni1SmAm - A2514;

is an operator consisting of sequential compositions of two types of transforma-
tions; the affine transformations A; and the sigmoidal ones S;.

Suppose that f : R"” — R is the function we are trying to approximate. Let m €
N and consider a sequence of natural numbers dy = n, di,...,d;,+1. For each
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i=1,....m+1, let A; : R%-1 — R% be an affine transformation.’ Additionally,
suppose that oy,...,0,, : R — Rare real functions (not necessarily linear), and for
everyi=1,...,m,everydeNand z € R%, we define S;z to be the vector S;z =
[0i(21),...,0i(24)]T. Specifically, S; applies the function o; to every element of
the vector z. Note here that S; is a (not necessarily linear) function that respects
the input dimension, that is, S; : R — R% for every d.

Under this notation, given an input x € R”, the output s(x) of a neural network
with m layers and having 01,...,0,, as its activation functions, is:

s(x) :Am+1SmAm--~A281A1x. (2.1.1)

The activation functions o ;, are most commonly sigmoidal functions, that is, func-
tions having the property that lim;._, 0 (#) =0 and lim;_ ., 0(#) = 1. A single
layered network (m = 1) has an output of the form

s(x) = AleAlx.

In this particular case, the set of all possible functions s which can be generated
by a neural network, having o as an activation function, is:

N
>, (0) = {S:IR” —R:s(x)=)_ ajo(w]T.x+6j) :
j=1

NeN,ajeR,w;eR",0; ER}.
The elements w]T.x +0; correspond to the first affine transformation, A; : R"” —
RN, applied on x, namely
Alx=w{x+01,...,wyx+0y).

For the next step, on each of the coordinates of this vector, the activation function
o is applied, producing the vector

S1A1x = (@(W{x+61),...,0(wyx+6y))

Finally, the (linear) operator Ay : RN — R, defined as A, (x) = Zﬁ.\i L aix; for x €

RY, is applied, to produce the final linear combination Z;V: \a ja(w]T.x +0;).°

LA function A: X — Y between two vector spaces is called affine, when it is the translation of a
linear operator. This means that there exist 7: X — Y linear and yg € Y, such that A(x) = T(x) + yo
for every x € X. Equivalently, A is affine if A(Zl'.’zl /’l,'xi) = er'lzl AjA(x;) for every neN, x; € X
and A; € R such that ' | A; = 1. Linear operators are special cases of affine transformations; this
can readily be seen by picking yp = 0 in the first definition given above, or by observing that for
linear operators T, the identity T [Z;’Zl /1,~x,-) =¥, A;T(x;) holds for any n € N and any choice
of A i

20ne could observe here that from the final sum, the constant part of the affine transformation
Ay appears to be missing. However, by picking w; = 0and 6 ; such that (6 ;) # 0, we can make sure
that the constant function will appear in this last combination, so we can use a linear combination,
instead of an affine one, for simplicity.



2.2 CYBENKO’S APPROXIMATION THEOREM

The use of neural networks in approximation problems has been proven to be
extremely successful. Of course, one cannot expect that any function f will be
exactly equal to some function of the form (2.1.1), however, one could hope that
it would be possible to approximate any given f arbitrarily close, using functions
of this form. This is indeed the case, and is achievable for a variety of activation
functions. Activation functions which have this property, are called universal ap-
proximators. In what follows, we will focus on single layered networks,” since if
we manage to show that an activation function o is a universal approximator for
such a network, then clearly the same would hold for multilayered networks as
well.

We should point out here that although approximation theorems assert that
we can always approximate any unknown function f, they are not designed to
provide a rule of how to do so. In real life applications, the researcher is usu-
ally given a vector of observations (x;, f (x;));, or more realistically (x;, y;); where
yi = f(x;) +&; for some noise ¢;, and just based on it, he tries to determine the
appropriate values of the parameters wj, 0}, as well as the activation function o,
so as the corresponding predicted values of his model (s(x;)); are “close” to the
observed ones (y;);, expecting that the resulting s will be acceptably close to f on
the whole domain. The importance of the approximation theorems in this con-
text, is that they ascertain that his efforts are not in vain: parameters for which s
is sufficiently close to the real f do exist, as long as he chooses a universal approx-
imator as an activation function.

2.2 Cybenkos approximation theorem

One of the first and most important relevant theorems, belongs to George Cy-
benko [Cyb89] who, in 1989, proved that continuous sigmoidal activation func-
tions are universal approximators. The proofis a beautiful application of the Hahn-
Banach and Riesz Representation theorems. The reader who is unfamiliar with
the terminology, or the results, may need to consult Appendix A.2 for a basic
treatment, or his favorite functional analysis book for a more thorough one.

We use I, = [0,1]" to denote the n-dimensional cube and by C(I,,) we denote
the Banach space of continuous functions on I, equipped with the supremum
norm || fll = | flleo = supflf(x)| : x € I,}. Since I, is compact, the Riesz Represen-
tation Theorem [ABO06, Corollary 14.15] applies and asserts that the dual space of
C(Ip,) can be identified as the space of finite, signed Borel measures on I,, denoted
as M(1,).

3Intuitively, one expects that a multilayered network will be at least as good of an aproximator
as a single layered one, as long as the additional A;’s and S;’s are chosen properly. For example, if
the output of the network is s(x) = Apy+1... A3S2A2S1 A1 x, then by using o(x) =xand A=1to
define all the additional operators, we have that A;;,4+1SmAm ... A3Sz is the identity operator, thus
our network is able to reproduce the single layered network defined by A2S> Aj.
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Definition 2.2.1: A function o : R — R is called sigmoidal if

0, ast— —oo,
o(t) — (2.2.1)

1, ast— +oo.

Given a sigmoidal function o, the set
N
>,.(0) = {f: I,—=R:fx)=) aja(w}x+6j) :
j=1

NeN,aje[R,wje[R”,QjeR}
=span{f: f(x)=0(w'x+0) forweR",0€eR}.

contains all the possible functions that can be generated by a single layered neural
network, having o as an activation function. Cybenko's theorem states that X, (o)
is dense* in C(I,,) for continuous sigmoidal functions o.

Definition 2.2.2: Let 0 : R — R be a real function and u € M(I;) be a measure.
We say that o is discriminatory for p if

f o(w'x+0)du(x)=0 (2.2.2)
I

for every w € R and every 0 € R implies that = 0.

The proof idea® is to show that £,,(0) is dense in C(I,;) whenever ¢ is discrim-
inatory, and then prove that sigmoidal functions share the discriminatory prop-
erty. It is based on two fundamental theorems in functional analysis, the Hahn-
Banach and the Riesz Reperesentation Theorems.

Theorem 2.2.3 (Hahn-Banach): [Arg04, Proposition 5.7] Let X be a normed
space and Y be a closed proper subspace of X. Then, there exists a nonzero x* €
X* such that x*(y) =0 for every y€ Y.

Theorem 2.2.4 (Riesz Representation): [AB06, Theorem 14.16] Let X be a com-
pact metrizable space and F € C(X)™* be a bounded, linear functional on C(X). Then,
there exists a unique, finite, signed Borel measure y on X, such that F(f) = [y fdu
for every f e C(X).

4A subset D € X of a metric space (X, p) is dense if D = X. There are several equivalent refor-
mulations of this definition, the most useful of which is that for every € > 0 and every x € X there
exists some d € D with p(d, x) < €. In our setting, 3, (0) being dense in C(I;;) means that for every
£>0and f € C(Ip), there exists some g € Zp with || f — glleo < €. Simply put, g approximates f
well enough.

50ne could be tempted to use the Stone-Weierstrass Theorem to conclude that 25 (o) is dense.
Unfortunately, the Stone-Weierstrass Theorem is not applicable here without some modifications.
We postpone this discussion until p. 28.
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Theorem 2.2.5: Let 0 : R — R be a continuous and discriminatory function. Then,
the set

N
Zalo) = {f: In—R: f(x)= ) ajowix+0;):
j=1

Nel\l,ajelR,wjelR”,BjelR} (2.2.3)

is dense in C(I,).

Proof. The set Z,(0) is clearly a subspace of C(I,). Indeed, if A € R and f(x) =
Z}V:laja(y}x+6j) €2,(0), then
N N
Af(x) =) Aaja(yJT.x+6j) =) a;.cr(yJT.x+9j)
j=1 j=1

for a;. = Aaj € R, thus belongs to X, (). Similarly, if

N M
fx)= Ziaja(y}x+9j) and g(x) = Zlbja(z}x+ kj)
j= j=

belong to X, (0), their sum can be written as

N+M
f)+gx) = aja(y]T.x+0j)€Z(0),

j=1

where we set ani;i = b, = zl.T and Oy = k; for every i = 1,..., M. Alter-

YNei
natively, one could simply é)Vt;rslerve that X, (o) is just the linear subspace of C(1,)
generated by the functions of the form f(x) = o(wTx +0).

Suppose that Z,,(0) is not dense in C(I,). Then, Y = Z,,(0) is a proper closed
subspace of C(I). By the Hahn-Banach Theorem, there exists some nonzero,
bounded linear functional x* on C(I,), such that x*(f) = 0 for every f € Y. By
the Riesz Representation Theorem, there exists some finite, signed, nonzero Borel

measure y € M(I), such that

x*(f) sz fodu(x)

for every f € C(I,). However, since x™ is zero on Y, this implies that for every f €
a0 ey, I, f(x)du(x) = 0, which combined with the discriminatory property
of o, yields that u = 0, a contradiction. Therefore X, (0) must be dense in C(I},).

|

Theorem 2.2.6: Any bounded, measurable sigmoidal function o is discriminatory.

Proof. Let o be a bounded, measurable sigmoidal function and suppose that for
every w e R" and 0 € R, fln o(wTx+6)du(x) =0holds. We fix w e R" and 0, ¢ €
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R and define a sequence of real functions (o) on I, as follows: For every k e N,
let 04 (x) = o (k(wTx +8) + ). We have that

0, when wTx+6 <0,
lim o (x) =y(x) =41, when wTx+6 >0, (2.2.4)

o(¢p), when wTx+6=0.

Since o is bounded, there exists some M > 0 such that |0k (x)| < M forevery ke N
and x € I,,. By applying Lebesgue’s Dominated Convergence Theorem, which still
holds for signed measures, we obtain that

0= kh—»n;o ] or()du(x) = p(Hyg) + o (@)u(Ky 0), (2.2.5)
where Hy, g9 = {x: wTx+60 >0} and K, p = {x : wTx+ 0 = 0} are the open half-
spaces and hyperplanes, defined by the parameters w, 0 respectively. Since rela-
tion (2.2.5) holds for every ¢ € R, by letting ¢ — —oco we obtain that p(H,,9) =0
for every w € R” and every 6 € R. Similarly, by letting ¢ — +oco we conclude the
same for every hyperplane K, g. ® For some fixed w € R" we define the transfor-
mation T, : R” — R by T, (x) = w'x for x € R". Let also v = uT~! denote the
pushforward measure on R, defined as v(A) = ,u(T‘l(A)) =u({x: wx e A}) for
every Borel ACR.

Consider the linear functional F : L} (R, v) — R defined as

F(h):f h(wTx)du(x) for he L'®,v).

n

According to the Change of Variables formula, [AB06, Theorem 13.46]7
F(h) :f h(w'x) dp(x) :f h(t)duT ™\ (1) :f h(t)dv(r) (2.2.6)
I R R

and

\F()| = ’ fR h(Ddv(?)

< fR RO IVI(D) =: Bl 1, (2.2.7)

so F is also bounded. For every 6 € R, the function & = g o, belongs to LYR,v),
SO

Fg,o0) = p({x: wx>0) = u(Hy,p) =0. (2.2.8)

STf 1 was a positive measure, this would be enough to conclude that u = 0, since I, can be
written as the union of two such half-spaces, I = Hy,; g, U H_yy, g, for some arbitrary wg and
69. However, the measure p is signed, so we need a more involved argument to deduce that y is
zZero.

7Suppose that T: (X, A, u) — (Y, B) is ameasurable function and v = uT_l is the pushforward
measure on Y Then for any integrable function f: Y — R, the function fo T is also integrable and

Jyfav=JxfeTdp.
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By picking h = Ijp ) we obtain that F(Ijg ) = 0 for every 6. As a result, F is zero
on the characteristic function of every interval and also on linear combinations
of such characteristic functions.

Recall that simple functions have the form ¢ = Z;’i L @ila; for some m € N,
a; € R and A; measurable subsets of R. This means that, F(¢) = 0 when ¢ is a
simple function whose measurable sets A; are all intervals. Since we are in LY(R,v),
we can deduce that F(¢p) = 0 for every simple ¢ using an e-argument: Let A < R
be a Borel set with (1(A) > 0 and let € > 0. By the outer regularity of y, there exists
some open set U 2 A with u(A\U) < % Additionally, U can be written as the
disjoint union of open intervals [Argl1, Theorem 6.13], U = U | Iy and we can
pick an ng such that (L_JZ":1 Ii) € (W) - £, +5). So, if we set J = uZ"zllk we
obtain that |14 — I7ll; < p(JAA) < €. By the triangle inequality and the fact that
F(Iy) =0, the quantity F(I4) can be made arbitrarily small.

As simple functions are dense in LY(R,v) [AB06, Theorem 13.8] and F is con-
tinuous, we conclude that F(h) = 0 for every h € L'(R,v). For some fixed m € R,
let hy () = sinm¢t and hy(t) = cosmt. Clearly hy, hy € LY(R, v) since both of them
are bounded and v is a finite measure. By applying F to hy + i h1, we obtain that

F(hy+ihy) :f cos(m'x) + isin(m"x)du(x)

In

=fl e *du(x) =: fim) = 0

for every m € R, where [i(m) denotes the Fourier coefficient of the measure p at m.
Since every Fourier coefficient of y is zero, p is also zero, thus o is discriminatory.
[ |

Theorem 2.2.7: Every continuous, sigmoidal function o is discriminatory and the
set 2,,(0) is dense in C(I,,).

Proof. Every continuous, sigmoidal function o is bounded. Indeed, let € = 1 and
pick 7o < f; € R such that o(#) < 1 for every t < tp and o () < 2 for every t =
t1. Since o4, is continuous, we have that o(¢) = M for every t € [, 1] for
some M > 0. Therefore, o is bounded on the whole real line by max{2, M}. By the
previous theorem, o is discriminatory and by Theorem 2.2.5, %, (o) is dense in
CI,). |

2.2.1  Applications to classification problems

Let Py, ..., Py be a partition of I, and f: I, — {1,..., k} be the function with the
property that f(x) = j ifand only x € P;. In a physical setting, I, can be viewed as
the set consisting of the whole population, whereas each partition P; represents
a subgroup of the original population. The function f assigns each individual to
his respective group. We are interested in approximating the function f using
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neural networks, however Cybenko’s theorem is not directly applicable, as such
classification functions are always® discontinuous,” unless the partition is trivial.

Approximation of classification functions by neural networks is possible, if one
is willing to accept an arbitrarily small but predefined probability € of being wrong.
Let A be the Lebesgue measure, or any other Borel measure on I,,. Using Lusin’s
Theorem, we can approximate any classification function by a continuous func-
tion on a compact subset of I, that supports most of the measure A.

Theorem 2.2.8 (Lusin): [ABO06, Theorem 12.8] Let (X, p) be a metric space, |1 a
Borel measure on X and f : X — R a measurable function. Then, for every € > 0,
there exists a compact set K X such that /(K°) < € and the restriction of f on K
is continuous

Theorem 2.2.9 (Tietze): [Munl3, Theorem 35.1] Let (X, p) be a metric space, A
C X be a closed subset of X and f : A — R be a continuous function. Then there
exists a continuous function f : X — R such that f(a) = f(a) for every a€ A.

Theorem 2.2.10: Let o be a continuous sigmoidal function and f be a classification
function on some finite partition of I,,. Then for every € > 0, there exists a function
G of the form

N
G =Y ajo(wlx+0;) (2.2.9)
j=1

and a compact set K < I, with A(K°) <€, such that |G — flle < € on K.

Proof. By Lusin’s theorem, there exists some compact set K with the property
that A(K°) < € and the restriction of f on K is continuous. By Tietze’s extension
theorem, there exists some continuous  : I, — R such that h(x) = f(x) for every
x € K. By Theorem 2.2.7, there exists some function G(x) of the form (2.2.9), such
that |G- hlle < € 0n Iy, thus |G(x)— f(x)| = |G(x) - h(x)| < e foreveryxe K. W

The previous theorem can provide us with a classification rule S that is correct
with probability 1 — €. This rule is classifying a drawn point x according to the
closest integer of the value G(x) and may give a wrong classification only when
x¢ZK.

8A topological space (X,7) is called connected, if it cannot be written as the union of two
nonempty open sets. For A € X, we define the boundary of A as, bd A= A\ A. In any connected
space, every set @ # A C X has a nonempty boundary. Indeed, if bd A = @, then A=A = A would
be a clopen set, and so would X \ A. Then, X = AU (X \ A) with both sets being nonempty and open,
a contradiction.

9Let Py,..., Py, k=2, be a partition of the connected space I;, and f be a classification func-
tion. Pick an x € bd P1 and two sequences (x5) 5, (¥n)n that converge to x, the former belonging in
Py and the latter in P{. Using the Pigeonhole Principle, we may assume that every element of (y5)
belongs to the same partition set, say P; for some j # 1. Then f(xp) — 1, whereas f(yn) — j#1,
so f cannot be continuous.
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Corollary 2.2.11: Let f be a classification function on the partition Py,..., P} of
I, and suppose that we are sampling according to a Borel probability measure A on
I,. Then for every € < L, there exists a neural network induced classification rule
S:1I,—1{1,...,k} which is correct at least (1 — €)% of the time.

Proof. Let € < 3 and G, K be the function and compact set provided by Theorem
2.2.10 respectively. Suppose that we draw the value x € I;,. Let S(x) denote the
index which is closer to G(X), namely S(x) = argminj-;_ {|G(x) - jI}. f x € K,
then |G(x) — f(x)| <& < 3 and |G(x) — j| > 3 > € for every j # f(x). This implies
that S(x) = f(x) for every x € K and since we are drawing samples from A, the
probability that a drawn value belongs to K, is A(K) > 1 —&. So the classification
rule S is correct at least (1 — €)% of the time. [ ]

2.2.2 Measurable activation functions

In the case where the function f we are trying to approximate is not continuous,
but belongs to some L, (1) for 1 < p < oo, the set Z,,(0) is still dense in L, under
the || - | , norm.

Theorem 2.2.12: Let 1 < p < oo, A be the Lebesgue measure, or any other finite
Borel measure, on I, and o be a bounded and measurable sigmoidal function. Then
the set

N
>,.(0) = {f:In —R:f(x)=) aja(w]T.x+6j) :
j=1
Nel\l,ajelR,wjelR",HjelR} (2.2.10)

is dense in L), for every 1 < p <oo.

Proof. Suppose not. Then X,,(9) C L,. By the Hahn-Banach theorem, there exists
some nonzero linear and bounded functional F: L, — R with F(f) =0 for every
f €2,(0). Let q denote the conjugate exponent of p.!” By the Riesz Representa-
tion Theorem for L, [RF10, §19.2]'! there exists an h € L4(I) such that

Fif) = | feontai
for every f € L,(I,). Additionally, the fact that F is zero on X, (o) implies that

f o(wTx+0)h(x)du(x) =0
I

10Two real numbers p, ¢ with 1 < p, g < oo are said to be conjugate exponents, if they satisfy the
relation < + L = 1, where for p =1 we have made the convention that % + % =1.

U1 < p,q < oo are conjugate exponents, then Lp(u)* is isometrically isomorphic to Lg(w)
under the operator T: L, — Ly, defined as T(g)(f) = [ fgdu for every f € Lg.
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28  APPROXIMATION CAPABILITIES OF NEURAL NETWORKS
for every w € R"” and 6 € R. Let v be the signed Borel measure induced by #,
namely v(A) = [ 4 h(x)dA(x) for every A € B(I,). By Holder’s inequality,

[v(A)|

U h(x)dA(x)
A

[ h(x)I4(x)dA(x)
I,

IA

fl (0 L4 (x) dA()

IRl ,A(A) 7 <00, when p>1,
[ 2ll1 A(A) < oo, when p=1,

and in either case v is a finite, Borel signed measure with [; o(w"x+0)dv(x) =0
for every w € R and 0 € R. As we saw earlier, bounded sigmoidal functions are
discriminatory, so v =0 and consequently, F =0, a contradiction. |

Corollary 2.2.13: Let f be a classification function for the partition Py,..., P of
I, and o be a bounded and measurable sigmoidal function. For every € > 0, there
exists a function G of the form

N
Gx) = Y. ajo(wlx+6;) (2.2.11)
=1

and a set D € I, with A(D°) <€ and |G- fllo < € on D.

Proof. By the previous theorem, there exists a G of the desired form such that
IG— fll, < e'*1/P. By Markov’s Inequality,

P({x:1G(x) - f(0] = ¢e}) =P ({x:1G(x) - f(x)IP = €"})

G- 14 £1+1/p 14
_IG=11p _ (1)
ep ep

:6’

as promised. [ ]

As in the continuous case, under the previous assumptions, for every € < L

there always exists a neural network based classification rule that is correct (1 —
€)% of the time.

2.2.3 Stone - Weierstrass Approximation

As we mentioned in a previous note, in Cybenko’s proof one cannot simply ap-
ply the Stone-Weierstrass Theorem on the vector space X, (o) to deduce that it
is dense in C(I},). Let us see why this is the case and how we can modify the set
>, (o) for the Stone-Weierstrass Theorem [ABO6, p. 352] to be applicable.



2.2 CYBENKO’S APPROXIMATION THEOREM

Theorem 2.2.14 (Stone-Weierstrass): Let X be a compact space and A be a subal-
gebra'? of C(X) that separates the points'> of X and contains the constant function
1.2% Then A is dense in C(X).

It is easy to see that X, (0) satisfies every condition of the Stone - Weierstrass
theorem, except that it may not necessarily be closed under multiplication. As a
counterexample, let 7 = 1 and o be the function

0, x=<0,
oxX)=4x, x€(01),

1, x=1.

We will show that o (x)? does not belong in X (s). Suppose that it does. Then

N 0, x<0,
> ajo(wjx+0;)=1x2 xe(0,1),
j=1

1, x=1,

for some N €N, a;,0; € Rand w; € R. For j =1 and Iy = [0, 1], we can pick a
subinterval I) < Iy where o(w;x + 6;) is either constant, or equal to w;x + 6.
For j =2 and the previously chosen I;, we can pick a subinterval I, < I; where
o (w2 x + 67) is either constant, or equal to w,x + 62. By proceeding inductively,
after N steps we end up with an interval I with the property that for every j =
1,..., N, the function o (w;x+6);) is either constant, or equal to w;x+6; for every
x € I. Consequently,if weset A= {j : o(wjx+0j)=1VxellandB={j:o(w;x+
0j)=wjx+0; Vxe I}, we have that

N

Z aja(wjx+9j) = Z aj+ Z aj(wjx+0j) :xz, Vxel.
j=1 JjEA JjEB

By the last expression, the polynomials Q(x) =Y jeaaj + ¥ jepaj(wjx+6;) and

P(x) = x? are identical on the open interval I, thus they must be identical every-

where.!”> However P(x) is a polynomial of degree two, whereas Q(x) has a degree

of at most one, a contradiction.

12Let X be a topological space. The space of continuous functions on X, can be equipped with a
multiplication operation “-” which is defined pointwise: For every f, g € C(X) we define (f-g)(x) =
f(x)g(x) for every x € X. A subspace A of C(X) is called a subalgebra, if it is closed under the
multiplication operation. Namely, for every f, g € A, their product f - g also belongs to A.

Bywe say that a set A € C(X) separates the points of X, if for every x € X there exist f,ge€ A
such that f(x) # g(x).

14The constant function 1 is defined as 1(x) = 1 for every x € X.

I51f P, Q are polynomials that agree on the open interval I, then R = P — Q is a polynomial for
which R(x) = 0 for every x in I. Since the only polynomial with infinitely many roots is the zero
polynomial, we have that P = Q.
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Hornik, Stinchcombe and White [HSW89, Theorem 2.1] proved that if we close
2, (G) under multiplication, we can assure that the resulting set will be dense in
C(Ip,) for any continuous nonconstant function G, regardless of G being sigmoidal

or not:

Definition 2.2.15: For G : R — R measurable, we define XI1,,(G) as

N l;
21, (G) :{len—wR:f(x) Za] ]'[ G(y PERLUTE
j=1 k=1

N, lj enN, aj,Gj,k € R»yj,k € Rn}.

Theorem 2.2.16: If G : R — R is continuous and nonconstant, then XI1,(G) is
dense in C(I,).

Proof. Let
N N B
fo=>a;[] G(J’]T_kx"'gj,k), andg(x) =) a; [] G(J7]T~_kx+9j,k)
=1 k=1 =1 k=1

be two elements in XI1,(G). Their product can be written as

2 l,

N N
g = Z a;j [] Gy] X +0x) ") 4j X+00)
k=1 = e

(y] kx+6] K- H G(yl kx+61 k)

Il
M= T

Il
™M= T
W [\/]2. W sz

Fl
il

T
(Zl',j’kx"'pi,j,k),

1l
—

J

where z; jx = yjx when k =1,...,1; and z; j x = Ji,x when k = [; +i for i =
.,1i. The p’s are defined in a similar manner. Clearly fg belongs in XI1,(G),
so ZI1,(G) is an algebra.
Let xo = (x1,...,X,) € I,,. Since G is nonconstant, there exist f; # > € R such
that G(#;) # G(tp). Pick w = (1,...,1) € R” and set b; = f; —Zl 1 Xi and b, =
=Y, Xi. Then

G(w x+ by) = G(n) # G(t2) = G(w x + by),

so the functions s1(x) = G(wTx+ b;) and sz (x) = G(wT x+ by) separate xo. Finally,
for w = (0,...,0) and 0 such that G(8y) # 0, the constant function G(6) belongs
to XI1,,(G), along with its scalar products. In particular, so does 1 = %-G(Bo). By
the Stone-Weierstrass Theorem we conclude that XI1,,(G) is dense in C(I;;). H



2.3 NONPOLYNOMIAL ACTIVATION FUNCTIONS

2.3 Approximation using nonpolynomial activation
functions

Cybenko's Theorem has been improved upon, both by relaxing its assumptions
and by strengthening its conclusions. Chen, Chen and Liu [CCL91] presented
an alternative proof of Cybenko’s theorem in which the approximation was con-
structed explicitly, as opposed to the original one which was purely existential.
Kurt Hornik [Hor91] relaxed the assumption that o should be a sigmoidal func-
tion and showed that every continuous nonconstant function o gives rise to a
dense set X, (0):

Theorem 2.3.1: Ify is continuous, bounded and nonconstant, then Z,,(y) is dense
in C(X) for every compact set X < R".

The proofrelies on the same ideas, however its implementation is not as straight-
forward.'® Leshno, Lin, Pinkus and Schocken [LLPS93] improved Hornik’s result
by showing that, essentially, a function ¢ has the property that X, (¢) is dense
in C(X) for every compact X < R”, if and only if ¢ is not equal to a polynomial
almost everywhere. We devote the rest of the section to their proof.

First let us fix some terminology. Let Q < R”. The space L*(Q) contains all
the measurable functions f : Q — R for which there exists some M > 0 such that
|f(x)] = M for almost every x € Q. When Q < R" is open, we define Li’;’C(Q), as the
space which contains the measurable functions f for which f € L*°(K) for every
compact K < Q. In particular, C(R") < L7 (R"), as every continuous function is
bounded on compact sets.

We will say that a subset F < Llo(;’c (R™) is dense in C(R"), if its closure with re-
spect to the compact topology17 contains C(R"), that is, C(R") < F. We use M to
denote the set of functions in L‘l’;’C(R) with the property that the closure of the set
of their discontinuity points has measure zero,

M={fe L2 ®R" : A(A7) =0}. (2.3.1)
Any such function o € M induces a family of functions from R” to R, exactly as
in the case of Cybenko’s theorem:

Zn(0)=span{f:R"—>R: f(x) =c(w'x+6) for weR",0€R}.

Leshno et. al proved that for a function o € M, the set Z,(0) is dense in C(R") if
and only if o is not a polynomial. We will use a series of lemmas that simplify the
proof significantly:

16Using the exact same argument as Cybenko, one suffices to show that every bounded and
nonconstant function is discriminatory (as opposed to the claim that every sigmoidal function is
discriminatory which was proved by Cybenko). In order to prove this, Hornik uses tools from
Fourier analysis in the same spirit as Cybenko, but quite more involved.

17Duye to the fact that some elements of C(R™) are unbounded, the supremum norm does not
turn C(R") into a normed space. We therefore equip it with a different topology, the topology of
compact convergence. According to it, a sequence of functions (fi) in C(R™) converges to some
f € CR™) if (fi)f converges uniformly to f on every compact subset of R”.
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Lemma 2.3.2: Ifo € M is not a polynomial and Z, (o) is dense in C(R), then Z,(0)
is dense in C(R") for every n e N.

Proof. The subspace
V =span{f,,:R" —R: f,(x) = g(a'x) for some g€ C(R),acR"}

is dense in C(R"). Indeed, as mentioned in [Pin99], by picking g(x) = e*, we have
that the vector space

A= span{ha ‘R" > R: hy(x) = e** for some a€ R”}

is contained in V. Additionally, it is easy to see that A is a subalgebra of C(R")
that satisfies the assumptions of the Stone-Weierstrass theorem, thus A=C(K)
for every compact K < R", and the same must hold for V.

Suppose that Z; (o) is dense in C(R). Let g € C(R"), K < R" be a compact set
and € > 0. Since V = C(K), there exists an h of the form h(x) = Z;’ilfi(a}x),
such that |h— g(X) |l < % on K, where f; € C(K) and a; € R". The functions
A; :R" — R defined as 1;(x) = alTx are continuous,'® so there exist M; > 0 such
that [1;(x)| = M;l x|l for every x € R” and for i = 1,..., m. Since K is compact,
there exists some M > 0 such that || x|| < M for every x € K, therefore there exist
Ml’. such that |1;(x)| < Ml’ for every x € K and for i = 1,..., m. This implies that
there exist intervals I; = [a;, b;] such that alTx €liforeveryxe Kandi=1,...,m.

By setting y = alTx we observe that f; (alT x) = fi(y) for some y € I;. Since 21 (0)
is dense, there exist G; € Z;(g) such that [|G; — filleo < ﬁ on I;. By the triangle

inequality,
m m
g-2.Gi| =lg-hleo+||h-) G;
i=1 oo i1 |loo
£ m m
<-+|) filalx)- ) Gi(x)
N s i=1 oo
m
s£+2i:e
2 32m
on K. |

Lemma 2.3.3: If 0 € M is a nonpolynomial smooth function, then X, (o) is dense
in C(R).

Proof. For every w, h and 0 € R, the function & = hy, j, o defined as

ol(w+h)x+0)—oc(wx+06)
h

h(x) =

18Each A; is a linear functional on R", and linear functionals on finite dimensional spaces are
always continuous.
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belongs in Z;(0), and consequently x*o (wx +0) = —dkg,;:)ufrg)

for every k € N. As o is nonpolynomial, for every k there exists a 8y such that
a® @) £0. By setting w = 0 and 6 = 0, we obtain that A (x) = x*a ;) € Z,(0),
which implies that X, (o) contains all polynomials, thus it is dense in C(R). W

belongs in X (0)

Theorem 2.3.4 (Dini’s Theorem): [ABO06, Theorem 2.66] If a decreasing sequence
of continuous functions converges pointwise on a compact set to some continuous
function, then the convergence is uniform.

Lemma 2.3.5: Suppose that o € M. Then o x ¢ € Z1(0) for every p € CZ(R), where
CZ(R) denotes the space of smooth real functions with compact support, whereas
(0 *P)(x) = fRU(x — Y P(y)dy is the convolution of the functions o and ¢.

Proof. We will prove the lemma in the simpler case where o is additionally as-
sumed to be continuous. For the general case, see [LLPS93, Step 4, pp.864-865].
Let ¢ be a smooth function with a compact support K and pick a compact interval
I = [a, b] that contains K. We create a sequence of partitions (P,), of I as follows:
The first partition P; = {I} contains only I. The second one contains the two in-
tervals I} = [a,a+08/2], I, = [a+ /2, b], where 6 = b — a. Similarly, P3 contains
4 intervals, the first two of which split I; in half, whilst the last two split I,. We
proceed inductively.

For every partition P, = {I;,..., on} we define s, as:!?

on
sp(x) = )_maxfo(x— y)P(IAU;).
i=1 yel;

By the way (P,), was constructed, we have that (s,), is a decreasing sequence
of continuous?’ functions that converges pointwise to the continuous function
o *¢. Additionally, the convergence is uniform on compact sets by Dini’s Theorem.
Since each s, belongs to Z; (o), we conclude that their limit o * ¢ belongs to ¥, (0).

]

Lemma 2.3.6: Let 0 € M and f € Z1(0). Then Z1(f) € Z1(0).

Proof. Let o and f as in the statement above and & > 0. There exists some G €
>1(0), which has the form G(x) = Z;’il a;o(w;x + 0;), with the property that
SUPKcR compact |/ — Glloo < €. For every w,0 € R, the function f(x) = f(wx +6)
also belongs to mz If w = 0, the claim is trivial. For w # 0, let G(x) = G(wx+6)
and K < R compact. Then

sup{|f(x) - G| : xe K} =sup{|f(wx+0) - G(wx+0)|: x e K}

9Each sy, (x) is just the n-th Darboux upper sum of the function o'(x — y)¢(y) and, as is well
known, (s5(x))5 converges to its Darboux integral, which coincides with the Riemann integral
Jo(x—y)p(y)dy. Since the convergence holds for every x € R, we have that (s;),; converges point-
wise to o * ¢.

20With a simple sequential argument, it can easily be shown that each g;(x) = m {o(x—-

ax._+—
VEl;
YIGMIA;) is continuous, and so is sy, being the sum of continuous functions.
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=sup{|f() - Gy)|:y€ wK+6} <¢,

since the set wK + 0 is compact. The claim we just proved, implies that Z; (f) <
>1(0), 50 Z1(f) € X1 (0) as promised. [ ]

Remark 2.3.7: An obvious consequence of the previous lemma is that if f €
31 (0) is such that £, (f) is dense in C(R), then so is Z; (0).

Lemma 2.3.8: Let 0 € M such that for some ¢ € Cg"([R{) their convolution o * ¢ is
not a polynomial. Then X, (0) is dense in C(R).

Proof. By [AFO03, pp. 29-31], 0 * ¢p € C*°(R). Since o * ¢ is not a polynomial, it
is dense in C(R) by Lemma 2.3.3. Additionally, Lemma 2.3.5 asserts that o * ¢ €
fl (0), thus X1 (0) is dense in C(R) by Remark 2.3.7. [ |

Lemma 2.3.9: Let 0 € M such that for every ¢ € CE®), their convolution g * ¢ is
a polynomial. Then, there exists an m € N such that o * ¢ is a polynomial of degree
at most m for every ¢ € CZ(R).

Proof. Let CZ[a, b] denote the set of smooth functions supported on the interval
[a, b] and suppose that o * ¢ is a polynomial for every ¢ € Cgo([a, b]). The space
CZ’la, b] is equipped with the following metric:

o 1 lf-gli
8= (2.3.2
U= Lo T i -gl :
where | fll; = 3.:0 SUP e (qp) | F ()] Tt is easy to see that (CX([a, b)), p) is a
21

Fréchet space.
Vi = {(j) € CZ(la, b)) : 0 * ¢ is a polynomial of degree at most k}.

Clearly, V} is a closed subspace of C¢([a, b]) for every k: Let (¢p,,) » be a sequence
in Vj that converges to some ¢ € Cgo([a, b]). Then

S 1 lloxpp—0o=*dl;

(C*xpp,oxP)=) —
pl*fnox¢ Z2i 1+ |0 *dpp—0*Pl;

_il lox¢n-0x¢li & 1 lox¢n=-0*l;

0211+ loxpp—0oxpll; ;57,2 l+llo*x¢pp—a*pl;
For i > k, we have that

k . .
loxdu—cxpli=Y sup |@x¢n)P -+ P 00|+

j=0x€la,bl

1

> sup [oxp ],

j=k+1x€la,b]

21 A Fréchet space is a completely metrizable locally convex topological vector space (see Ap-
pendix A.4).
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as (0 * )P = 0 for every I = k. Since (0 (¢, P)),, converges to zero and the sum
Zj’:k+1 SUP e | (0 * §)V)(x)| is independent of n, for every i = k+ 1 we have
that [|(o * (l))(i) | =0, s0 o * ¢ has a degree of at most k.

By our assumption, CZ?([a, b)) = Uz"zo Vi, and since (Cgo([a, b)), p) is complete,
by Baire’s Category Theorem [Argl1, Theorem 8.18],> there exists some m € N
such that V,, has a nonempty interior. Since V,, is a subspace of a topological
vector space with a nonempty interior, we conclude that it has to be equal to the
whole space,23 Vin = Cgo([a, b)).

So, the claim has been proven regarding the space Cg"([a, b]). The next step is
to show that V;, = CZ(1) for every closed interval I of length equal to b — a. This
means that the same m works for all intervals of the given length b — a. Suppose
that o * ¢ is a polynomial for every ¢ € C°[a’,b'], where b' —a’ = b— a. The
function & defined as 6(x) = o(x — a + a’), also belongs to M. Additionally, for
every ¢ € CX[a, b, the function ¢ defined as ¢(x) = ¢p(x — a’ + a), belongs to
cXld,b).

Let ¢ € C¥[a, b]. Then

b

b’
(5*(P)(x)=f 6(x—y)</)(y)dy:f 6(x+d -a-2)p(z—ad +a)dz
a/

a

!

b!
:f o(x— z)gﬁ(z)dz = (o * (Z))(x),

where ¢ € C[a',b'], and by our assumption the latter is a polynomial. We proved
that & * ¢ is a polynomial for every ¢ € CZ’[a, ], thus by the previous step, & is a
polynomial of degree at most m and so is 0, being just a translation of 7.

For the final step, suppose that o * ¢ is a polynomial for every ¢ € C°[c, d],
where d — c is arbitrary. We cover [c, d] by finitely many closed intervals [c, d] =
Uf.\il I;, each having length A(I;) = b—a. On each I; we definea ¢; € Cgo(li) such
that ¢ = Zﬁ.\il ¢i. Then o *p = Zé\il o * ¢p; and by the previous step, each o * ¢;
is a polynomial of degree at most m. [ ]

Lemma 2.3.10: If o € M and o * ¢ is a polynomial of degree at most m for every
P € CX(R), then o is itself a polynomial of degree at most m.

Proof. For every ¢ € CXM®),

0= (0 *) " V(x) = f o™ (x - y)p(y)dy = - f o(x-y)¢" V() dy.

By [Fri63, pp. 57-59], we conclude that o is a polynomial of degree at most m. W

221t (X, p) be a complete metric space and (Fy), be a sequence of closed sets in X with the
property that X = U9 | Fp,. Then there exists some ng € N such that Fp, has a nonempty interior.

237This is a standard fact for normed spaces [Arg04, Proposition 2.3] which remains true for
topological vector spaces. The proof is similar, and is based on the fact that every topological vector
space contains a neighborhood base at zero, consisting of absorbing sets (see Appendix A.4 for
more details).
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We can now establish their result:

Theorem 2.3.11: Let 0 € M. The set Z,(0) is dense in C(R") if and only if o is not
a polynomial.

Proof. If o is a polynomial of degree k, then for every w € R"” and 0 € R, the
function o (w7 x+6) is a polynomial of degree at most k, and sois Y- | a;o (w] x+
0;) for every m, a;, w; and 6;. This implies that (X(0)) < Py, where Py is the space
of all polynomials of degree at most k. Let K <R" be a compact set. Then

(Z(0) k) € Pix = Prjx & C(K),

since the space Pk g of polynomials in K of degree at most k, is a finite dimen-
sional subspace of C(K) and thus closed [Arg04, Corollary 2.10] in it.
Conversely, suppose that o is not a polynomial. In view of Lemma 2.3.9, 0 * ¢
cannot be a polynomial for every ¢ € Cgo([R). Therefore, there exists some ¢ €
CgO(IR) such that o * ¢ is not a polynomial. By Lemma 2.3.8, we have that Z; (o)
is dense in C(R), and by Lemma 2.3.2 we conclude that X, (o) is dense in C(R")
for every n. [ ]

2.4 A constructive approach for the universal approximation

As mentioned before, all the universal approximation proofs we presented so far
were purely existential. In this section we study an algorithm,?* proposed by Kwok
and Yeung [KY97], that constructs this approximation for functions f that be-
long to Ly(X) for some compact X < R". The approximation functions used to
approach f belong to some set I' with the property that spanT = L(X). For ex-
ample, T’ could contain functions of the form

{fR">R:f(x)=0(w'x+0) for weR",0€cR}

for some nonpolynomial continuous function, which were proven to share this
property during the previous section. However, exact knowledge of the functions
contained in I' is not necessary for their construction to work. In a purely mathe-
matical formulation, we can state the problem as follows:

Problem 2.4.1: Let X € RY be a compact set and let T € L,(X) be a set with
the property that its span is dense in Ly (X). Suppose that f € L,(X). Construct a
sequence (f), in spanT such that f,, — f.

The main idea behind the algorithm is easily explained: Suppose that after the
n-th step, we have decided that the functions gi,..., g, € I' should appear in our
representation of f,,, namely f, € span{gi,..., s} =: Fy. In order to determine
the coefficients ; that will appear in the linear combination f,, = X, B;gi, we

241 order to follow the proof, the reader should be familiar with some basic results from Hilbert
space theory (see Appendix A.3).
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take f;, to be equal to the projection of f on F,,. We can compute the coeflicients
of fu =X, Aie; with respect to an orthonormal basis (e;)} | of F,, (Proposition
A.3.9), and then rewrite f;, in terms of the g;’s.>> By taking the projection, we can
assure that f;, is the element of F;, which minimizes the distance between f and
Fp.In a sense, f, is the closest representative of Fj, to the real function f.

To determine the next element g, to be added to the set {g1,..., gx}, we min-
imize the residual error || f — (f;,—1 + Bg) |l over every B € Rand g € I'. We add the
minimizer g, to our set, F,41 = span{gi,..., §n, §n+1} on which we once again
take the projection of f, and so on. During each iteration, the set {g1,...,gn} is
enriched, and additionally, the coefficients of each g; are recalculated so as to
minimize the residual error.

Lemma 2.4.2: For a fixed g €T, the expression || f — (fn—1 + Bg) | attains its min-

imum m for §* = <e”§h,2g>_ Additionally, this minimum is equal to m = |le,—; 12—
2 (en711g>2
lgl?

Proof. The minimum m of the expression || f — (f,—1 + fg)Il with respect to f
is equal to the distance between the element f — f,,—; and the closed subspace
generated by g, F = (g), and according to the relevant theory (see Proposition
A.3.9), m is achieved at the projection Pr(e,—1) of e,—1 = f — f,—1 to F. The
space F is spanned by the unit vector %, so this projection is equal to

8 g <en—1;g>
Pr(e;- ):<e - ,—>—:— :
Fren-U =\l /gl = gl ¢

which implies that * = (e|T;|'2g> is the unique minimizer of the expression in ques-

tion.
For the additional part, the distance d(e,,—1, F) between e,,_; and F satisfies

2
2 _ <en—1;g>
d(ep-1,F)" = en—l—”g—”28
(en-1,8)* (en-1,8)*
:||en_1||2+’|’|g—ll|fngn2—z’ﬁg—l||;"'
(el’lflrg>2
=llep1 l1? - ——2>— (2.4.1)
ol g2
as promised. [ ]

By Lemma 2.4.2, given that we have constructed f;,—; and the corresponding
error e;—1 = f — fu—1, in order to minimize the expression | e,—; — gl over all
peRand g €T, we need to minimize (2.4.1), or equivalently, to compute the

2>The projection of the element f to the subspace Fy = (e1,...,en) is equal to f, =
Z?zl(f,e,-)ei. Since each e; belongs to Fy and Fy, is also spanned by {g1,...,gn}, we can write
every e; as a linear combination of g,..., gy, and thus obtain an expression of f involving only
the elements g;, say fn =X1_, B g;.
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2
argmaxger {% } The lack of any analytical structure on I excludes, in gen-

eral, the possibility for this maximum to exist, however we can settle with less: By

the Cauchy - Schwarz inequality, the set { <e’|’|‘g1|i2g i 1ge F} is bounded by [le;_11I%,

so its supremum, say My, is finite, and picking a g, such that
than M,,/2 suffices for the proposed algorithm to converge.

THE KWOK-YEUNG ALGORITHM

Step 1 Initialize with fy=0and ey =f - fo=f.

<en—1;gn>2
lgnll?

is larger

Step2  Suppose that f,,_; = X/} "~1g; has been constructed, with each
(en—lrg>2

gi€l.Sete,-1=f—fu_1, My = SUPger{”gT} and pick some
(en—lrgn>2 M,

&n €T such that TR
Step3 Set fi7l = wﬁ‘é;%{‘), F, =spanigy,...,gnt and f, = fu1 + B gy =

Z?z_ll ,'-l_lgi +,Bz_lgn-
STEP 4 Project f to the closed subspace Fy, to obtainan f,, =Y. | B7g;.

Step 5 Go to Step 2.

Table 1: The Kwok-Yeung Algorithm [KY97].

Theorem 2.4.3: The sequence (fy,), constructed by the Kwok-Yeung algorithm con-
verges to f.

Proof. Let fy, € F,, as defined in Step 3 of the Algorithm. Since f;, is the projection
of f on F;, we have that || f — fIl = ||f—fn||. Therefore,

len-11? = llenll* = I f = fu-1ll* = ILf = full?
> f = fac1 2 =1L f = full®
=llen-11% =&, 1%, (2.4.2)

wheree, 1= f-Y!" | p' 'giand &, = f-X I B gi— P ' gn. Since &, L gp
and €, = e;_1 — ﬁz_lgn_l, we have that é, L &, — e,—1, so by the Pythagorean

Theorem,
2 _na = 02 s 12 = 12
len-11° =€y +en—1—enll” =llénll” + llen—1—€xnll”,
which implies that

2
2 s 12— 115 2 1. 2 _ fen-1,8n)
len—1l” = lénll® =llén—en1ll =IIﬂZ gnll :IIg—IIZ
n

This, combined with (2.4.2), yields that

<en—1»gn>2 -

243
I gnll? (243)

2 2
len-1l”—llenl” =
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(en—lrgn>2
f lgnll?
(en-1,8) = 0for every g € I', which would in turn force e;—; to be equal to zero.

In this case, f,,—1 = f and the algorithm terminates having found the exact form
of f. So, lets assume that (2.4.3) is strictly greater than zero for every n € N. Then
the real sequence (|le, ), is strictly decreasing, thus converges to its infimum. In

for every n € N. Notice here that i =0 for some n, this would imply that

26

particular, for every € > 0 there exists some 7 € N such that lenll? = llemll® < &
for every m > n > ny.

By Step 4 of the algorithm, each e, is orthogonal to {g,...,gn}, and for ev-
ery m > n > ny, e, — e, € spanigy,...,gm}, so ey, L ey — ey Again by the
Pythagorean Theorem we obtain that ||e,—e;, 12 = llenll®—llemnll? < €. This implies
that (e;,),, is a Cauchy sequence in the Banach space L, (X) and so it converges to
some e € Ly (X).

2
By taking limits in (2.4.3), we obtain that lim,, o, =820

= 0. Furthermore,

lgnli?
for every g € T', we have that <e’|‘|;g1|i2g>2 < <e’|“‘gﬁ2"> " for every n, so by the continuity
of the inner product,
(e,8)* m (en-1,8)" _ m (en-1,8n)° _
Igl? ~n=co ligl>  Tn=co lgul?

Thus, (e, g) = 0forevery g € I',and as spanI’ = L, (X), we conclude thate=0. W

Remark 2.4.4: The previous algorithm requires the knowledge of f in each com-
putation involving e,, which in real life problems is not possible. Kwok and Yeung
propose how to estimate the e,’s using appropriate consistent estimators based on
information available from the training data set [KY97, p. 1134].

2.5 The Kolmogorov-Arnold approximation

In their efforts to answer Hilbert’s famous 13th problem, Andrey Kolmogorov and
Vladimir Arnold published a series of articles in the late ‘50s, which resulted in
one of the most surprising and elegant results of modern mathematics. Hilbert’s
conjecture was that the roots of the equation X' +ax>+bx’+cx+1=0, seen
as a function of the parameters a, b, ¢, could not be written as a superposition
of functions of two variables. Arnold [Arn57] disproved this conjecture, but Kol-
mogorov [Kol57] went one step further, showing that any multivariate function
f:10,1]1" — R can be written as a superposition of functions of just a single vari-
able.

Theorem 2.5.1 (Kolmogorov-Arnold): [Kol57] There exist universal constants
A1y, Ag with Zj.l:l Aj <1, and continuous, strictly increasing universal functions

26 By the linearity of the inner product, (e;;,—1, g) = 0 for every g € spanT, and by its continuity,

(epn—1,8) =0 for every g e spanT = Ly. As a result, (e;,—1,e,—1) = 0, which implies that e;,_1 = 0.
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P1,...,P24+1 which map [0,1] to itself, such that every function f € CI0, 119 can be
represented as

2d+1 d
f,.xa)= ) g(z A,~¢,~(xj)), (2.5.1)
i=1 =1

J

where g € C[0,1] is a continuous real function that depends on f.

In 1987, two years before Cybenko’s theorem, Robert Hecht-Nielsen published
a short note [Hec87] in which he pointed out the resemblance between the ex-
pression in (2.5.1) and the one appearing in the neural network functions

N

> ajo(wjx+0)), (2.5.2)

j=1
suggesting the possibility of using the Kolmogorov-Arnold Theorem to obtain
representation results in this framework. However, the functions ¢; appearing
in (2.5.1) were highly non-smooth, so an exact representation of this form using
sigmoidal functions in the place of the ¢;’s seemed to be excluded. But since the
goal was to approximate functions, rather than to actually represent them, the
functions ¢; could instead serve as targets that one could try to approach, using
sigmoidal ones.

This idea was formulated and implemented four years later by Véra Ktirkova
([Kur91], [Kur92]), who also provided upper bounds for the number of nodes
needed. This number was not fixed, but depended on the level of accuracy and on
some smoothness properties of the target function f.

A common theme in all theorems we presented so far, is that in the expression
Z;V: ,a ja(w]T.x +0;), the number of nodes N depended on the choice of the ac-
tivation function o and the desired accuracy level €, and in general, it could get
arbitrarily large. Perhaps at the other side of the spectrum, Vitaly Maiorov and Al-
lan Pinkus (1999) [MP99] constructed a specific activation function o which has
the property that any continuous function f : [0,1]¢ — R can be approached by a
two layer neural network which uses at most 3d and 6d + 3 nodes at each layer re-
spectively. Their work was also based on the Kolmogorov-Arnold representation
theorem.

Theorem 2.5.2 (Maiorov-Pinkus): [MP99] There exists a smooth sigmoidal acti-
vation function o such that for any d € N, any compact K <R%, any f € C(K) and
any € > 0, there exist real constants dj, c;j, 0;j, y; and vectors w;; € R%, such that

6d+3 3d
fo-3 dia(z cija(w;jx+9ij)+yi) <€ (2.5.3)
i=1 i=1

for every x € K.

Proof. We will prove the result for K = [—1,1]. Recall that C[-1,1] is a separable
space [AB06, Lemma 3.99] and that one can easily find a countable dense set in
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C[-1,1] consisting of smooth functions. Indeed, the set consisting of the polyno-
mials with rational coefficients

n
Q[x] = {Zqixi : nel\l,qie@},
i=0

is countable and dense in C[—-1, 1] by the Weierstrass Theorem. So, let (1) be a
countable and dense subset of C[—1,1] consisting of smooth functions. We begin
by showing that there exists some strictly increasing and smooth sigmoidal func-
tion ¢, such that for every g € C[-1,1] and € > 0, there exists an m € N and a, b,
¢ € R with

lg(®) —(ap(t—7)+bp(t—3) +cp(t+4m+1))| <e Vie[-1,1]. (2.5.4)

Consider a strictly increasing and smooth sigmoidal function £, for example, one
can take h(x) = ﬁ. On the intervals of the form I} = [4k,4k+2] for k=0,1,...,
we define ¢ as

G(t+4k+1) = b+ cpt +drug(t) for te[-1,1],

where by, ¢ and dj are coeflicients, chosen so that ¢p(4k) = h(4k) and 0 < ¢/ (1) <
h'(z) for all ¢ € Iy. Such coefficients always exist: By the continuity of 4’ and )
on the compact set Iy, there exists some my < My with my. < h/(t) < M for every
t € Iy, and similarly some ay < Ay with aj < u;C(t) < Ag. So our two requirements
can be met, if both

by — cx + diup(—1) = h(4k) and cp +di A < my

can be solved simultaneously, which is clearly the case. On each the intervals
J1=1[-4,-2] and J, = [-8,—6], ¢ is an affine function that satisfies the same two
properties. Additionally, if ¢(# —3) and ¢(¢ —7) denote the restrictions of ¢ on
these two intervals for ¢ € [-1, 1], without loss of generality, we may assume that
they are linearly independent (if they are not, just scale one of them accordingly).

On the rest of the real line, ¢ is extended in a way that it remains smooth, strictly
monotone and, additionally, lim;_. _, ¢p(#) = 0. Notice that for every k, there exist
ay, by, ¢ € R such that

ue(t) = (apd(t —7) + bpd(t —3) + crp(t +4m +1) (2.5.5)

for t € [-1,1], so our claim has been proven.
Now we return to our proof. Let f € C[0,1] and € > 0. By the Kolmogorov-
Arnold theorem, f can be represented as

2d+1 d
fl,nx) =) g(z /1j¢i(xj)). (2.5.6)
=1 \j=1

J
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By the density of (1), there exists some uy with [|g — uglloo < m. Applying
(2.5.5) for this specific u, provides a1, ay, as, my, my, ms € R, such that

|g(0) — (a1t + my) + axp(t + mp) + asp(t + mg)| < (2.5.7)

€
22d+1)
for all £ € [-1,1]. Then, (2.5.6) and (2.5.7), combined with the triangle inequality,
yield that for every x € [0, 114,
2d+1

‘f(x)— Yy

i=1
1

d
al(l)( Z /lj([),-(xj)+m1 +

j=1

G?_‘P(

—

d d

y /lj¢i(xj)+m2)+ a3¢( Y Aj¢i(xj)+m3” ‘ =
J j=1

2d+1 d )

> g(]il M‘Pi(xf')) - X

i=1 i=

Y Ajilxj)+my |+
j=1

ap| Y Ajhi(xj)+my
j=1

P
| d

d
+a3(/)( Aj(pi(xj)+m3)H:
=1
2d+1

Y [g(0) = (@rp(e+ my) + axp(t + mo) + azp(t + m3)) ]
i=1

= =<

2d+1

ol ol
= ,; 20d+1) 2
Therefore,
6d+3 d €
f-> dicp(ZAjgb,-(xj)wi) <3 for all x € [0,1]%, (2.5.8)
i=1 j=1

where each of the functions ((/)i)?f;“ 3 is equal to one of the original functions

{¢1,...,¢4}. Inturn, foreach d >0and i = 1,...,6d + 3, there exists b;1, bj2, b;3 €
R and rj1, ri2, 133 € N, such that

|pi(x)) = ((Birp(xj + rin) + bio(x + i) + bisp(xj +1i3))| < &
for every x; € [0, 1]. Multiplying by A; and summing with respectto i =1,...,d,
yields that

<6 forall xe 0,114, (2.5.9)

d 3d
Y Ajilx) =) cij (¢(€}x+9i]‘))
i=1 i=1

As ¢ is continuous, its restriction on any compact set is a uniformly continuous

function [Argl1, Theorem 9.27], so we can pick a ¢ sufficiently small so that for
all dj,

d 3d . e d

¢ ];Ajgbi(xj) —¢ j;c,-j (ptelx+0:p)]| < sa ey Pralreon

and thus,
6d+3 d 6d+3 3d €
) d,-<p(z ;L,-<p,-(xj)+y,~)— Y dl-¢>(z cij (¢(e}x+9ij))+yl-) <3 (2510)
i=1 j=1 i=1 j=1

for all x € [0,1]%. The result then follows from (2.5.8), (2.5.10) and the triangle
inequality. [ ]
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Stochastic Approximation

A common way of solving optimization problems, is through iteration methods.
Stochastic iterative algorithms are extensions of these methods in the presence
of randomness. In Section 3.1, we present the classic Robbins-Monro algorithm,
which is one of the first algorithms developed in this setting. In Section 3.2 we
study the basic tools on which many modern stochastic approximation methods
are based. The main goal is to prove the convergence of the Q-Learning algorithm,
which is presented in Section 3.3.

3.1 The Robbins-Monro algorithm

Suppose that for each x € R we have a random variable Y = Y (x) with distribu-
tion P[Y (x) < y] = H(y|x), and let M(x) denote the expectation of Y given x,
namely M (x) is given by M(x) =E[Y | X = x] = fR ydH(y|x). Such an hierarchy
is common in applications. For example, one could be interested in calculating
the effect of a treatment on a patient. If Y is the treatment duration and X is the
quantity of the prescribed drug, one may have that given X = x, the distribution
of Y is a known distribution, having a parameter that depends on x. In some cases,
one could choose the family (Y (x)) carefully, so that M(x) could be computed
explicitly, but in general this may not be possible.

In our setting, we presume that we do not know the exact forms of M(x) or
H(y| x), although we have a method to sample from the distribution H(y|x) for
every x, and we want to solve the equation M (0) = a for some fixed a. A practical
reason for solving this problem is that, assuming M(x) is a nondecreasing func-
tion, by solving the equation M(0) = a we can find a threshold value 6 for X, for
which the expected response is at least a. This is very useful in applications were
we are looking for conditions on X so that a certain expected level of efficiency
can be achieved for Y.

In this section we present a solution of this problem using the Robbins-Monro
algorithm [RM51]. According to it, a sequence (x;), is constructed inductively
based on the formula

Xn+1 = Xn+ anla—yn), (3.1.1)

where y;, is a random variable with distribution H(y| x,) and (a;), is a prede-
termined sequence of nonnegative numbers. Under certain assumptions on the
distribution of each Y (x), and by picking (a,), appropriately, Herbert Robbins
and Sutton Monro showed that x,, converges in probability to 6.
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The number x,, in (3.1.1) is the current estimate of 6. This value is being cor-
rected by a,(a— y,) to produce the next estimate x,.;. The quantity a— y,, is the
difference between the drawn value y, and the target value a. Each a,, acts as a
weight that adjusts the impact of a — y,, on the output Xp+1." The role of the se-
quence (ay), is subtle, as it serves two different, and rather conflicting, purposes.
It needs to be large enough to allow the correction term a — y, to express itself,
but also small enough to not waste the progress made thus far by x,,. Additionally,
very small values of (a,), can make the convergence of (x,), easier, but may also
confine the algorithm’s range to some interval that does not contain 8. On the
other hand, large values of (a,),, expand the search of  to a larger domain, but
may exhibit poor convergence properties.

The compromise between these two effects is achieved by picking a sequence
(an) n that converges to zero, but at a slow pace. In the Robbins - Monro algorithm,
as well as in a large variety of similar stochastic approximation algorithms, (a;)
is chosen to be a square summable, but not an absolutely summable sequence:

~1 a? < oo, but Y92, Gn = 0o.

We will present the proof, based on a series of lemmas. Firstly, in the Robbins-
Monro paper [RM51, p. 403, relation (26)], the sequence (a;), is chosen so that
the series Y2 | 22 diverges, where S, denotes the n-th partial sum of the sequence

n=1S§,
(ax) k. This condition is equivalent to the divergence of 397, ay:

Lemma 3.1.1: Let (a,), be a sequence of nonnegative real numbers and S,, = a; +

...+ ay be their n-th partial sum. Then Y57 | a, = oo ifand only if Y5, SZ: = 0o0.

a IS

Proof. Suppose that 337 , g™~ = oo, yet the sum }.77, a, does not diverge. As
all the terms of (a,), are nonnegative, the sequence of the partial sums (S,), is
increasing, thus converges to its supremum, say }>.7° | a, = R < co. We pick an
npeNsuchthat £<§, < % for every n = ng. This implies that

[e.e]

o0 an
=Aog+ 2:
n=np+1 Sp-1
<A+ i In < pp+2<
< —_— 00,
0 Ri2~ 0

a contradiction.
For the converse, suppose that }.9° | a, = oo and let p € N. Then
an An+p - 1 Sn+p — Sn-1

(@n+...t Qpip) = ——,
Sn+p—1

Sn-1 o Sn+p—1 - Sn+p—1

1n the relation (3.1.1), x;,+1 can be rewritten as a convex combination of the elements x;, and
a—yn+xy when ay, € [0,1]: Specifically, x,+1 = (1 — an)Xn + an(a—yn+ xy). These two elements,
Xp and a— yy + Xy, represent the two extreme proposed values for x;,+1. The former suggests that
Xp+1 should completely ignore the correction term a — yy, whereas the latter suggests that x,,41
should fully embrace it. The value of a; determines what weight will be given to each of these two
suggestions.
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with

S —-Su- S Sn—
P2 o lim —P  im 2, (3.12)
Sn+p—1 p—oo Sn+p—1 p—oo SrH—p—l

lim
p—oo

Sn+p

simce S

o 21 forall p and limy_.oo Sy4p-1 = 0o. Inequality (3.1.2) suggests that

the sequence of the partial sums of the series 9, Si: is not a Cauchy sequence,

and since it is increasing, it must be divergent. [ ]

Lemma 3.1.2: Suppose that there exists some C > 0 such that for every x € R,
P[|Y (x)| = C] = 1. Additionally, M(x) = E[Y | X = x] satisfies the property that
M(x) < a for x < 0 and M(x) = a for x > 0. Suppose that (a,), is a square
summable sequence and let

dn =El(x, —0)(M(x,) — a)] and

e,=E

f (y—a)*dH(y|xp)|.

Ifthere exists some sequence (ky) , of nonnegative numbers such that d,, = k, b, and
Y001 anky = oo, then the sequence (xy,),, constructed by Robbins-Monro algorithm,

Xn+1 = Xp+ apla—yn), (3.1.3)

converges in probability to 0.

Proof. Let by, = E[(x,, — 6)?]. We will show that b,, — 0. By substituting (3.1.3)
into E[(x,,—0)?], and conditioning on Xn,” we obtain that b4 = E[(x,11—0)?] =
E[E[(Xn+1 —60)* | 411, with

El(Xn+1—0) | xn] = E[(xy — 0 + an(@a— yn))? | xp)
=E[(x, —0)* + a’(a— yn)*~

—2ap(xp—0)(yn— a) | Xyl
= (X, —0)+ ai[(u— Y2dH(y| xp)
—2an(x, —0)(M(xy,) — a).
Thus,
b1 = E[E[(Xp41 —0)7 | xp]]

=E[(x, - 0)*] + a*E

f (a—y)?>dH(y| xp)

2 A sequence of random variables (X;,) is said to converge in probability to X, denoted as X, N
X, if for every € > 0, limy—oo Pl| Xy — X| = €] = 0.

3By the Law of total expectation, if X and Y are random variables, then E[X] = E[E[X | Y]] as
long as E[X] exists.
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—2a,El(xp —6)(a— M(xp))]

f (y—a)*dH(y| xp)

= b, +a’E

—2auEl(x, —0)(M(x;,)— a)]

=b,+ aien -2and,,
and

Since x, —6 and M(x,) — a have the same sign, d, is always nonnegative. Addi-
tionally, by our assumptions on Y, —C < Y (x) < C for every x a.e., which implies
that —-C—|al<|Y —a| < C+]al a.e.,,so |Y —al| < C +|a| a.e.. Therefore

e, =El(a-Y)?| X =x,] < (C+]al? < oco.

Consequently, ¥ a%e, < (C+|al)* L%, a4 < co. By summing (3.1.4), from
n=1to n= N, we have that

N N
2
bpi1=b + Z a,e,—2 Z a,dy,
n=1 n=1

which implies that 37 | a,d, converges, as

N 1 N ) 1 N )
Y ananE by —bns+ ) ayen =3 bi+ ) asen
n=1 n=1 n=1

and 907, aien < 0o. As a result, the sequence (by,), is convergent and its limit b
is nonnegative:

00 N 00 (e8]
b=bi+ Y en-2 andpzbi+y agen_(bl_ 5 agen) =0,
n=1 n=1 n=1 n=1

Let (kp)p, as in the Lemma’s statement. Since Y07, a,d; < oo and d, = k;, by, we
have that 357, a,k,b, < ¥ | ayd;, < oo, from which we deduce that b = 0.4
We showed that (x,), converges to 6 in L. Convergence in probability follows
by the Chebyshev inequality.” [ ]

The following lemma provides a sufficient condition, so that there exists some
(kn)n with the aforementioned properties:

4The sequence (by)p, has a subsequence that converges to zero. Otherwise, there would exist
some constant M > 0 such that b, = M for every n, which would force the sum Y00 | anknby =
MY | ankn = +oo to diverge. As (bp)p converges to b and has a null convergent subsequence,
it has to be that b = 0.

xp—012
SForevery€>0,wehave that P[|x;, — 0| =¢] < H"g—zllz = % —0asn— oo.
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Lemma 3.1.3: Under the notation of Lemma 3.1.2, let (Ay), and (ky), be defined
as

n—1
Ap=1x1-01+(C+lal) ) a;, (3.1.5)
i=1
M —
kn:inf{%:0<lx—9|<An}. (3.1.6)

Suppose that 357, a, = oo and that there exists some K > 0 and ng € N such that
ky = &< for every n = ng. Then (x,), converges in probability to 6.

Proof. The functions M (x)—a and x—0 have he same sign, so (k) is a sequence
of nonnegative numbers. Let P, be the distribution of x,. Then

dy =El(xp —0)(M(x,) — a)] = ‘[R(X—e)(M(x) —a)dPp(x)
=f (x—60)(M(x) — a)d Py (x)
[x-0|=Ay
|x-0|<A,

as x, — 0 is supported at [—A,, Anl.% So (ky), satisfies d,, = kb, for every n. It
is left to show that 9> | a,,ky = co.
Let ng € N such that k;, = Aﬁn for every n = ng and set S, = X" | a;. Let also

ny € Nsuch that (C+al) X", a; = |x;—0].” Then for every n = ng = max{no, n},

a, K a, K
An -0+ (C+lal X, ai
> a, K _
2(C+lah Xi_, ai
B K an
2(C+lal) Sp-1”
By Lemma 3.1.1, we obtain that Y52, ankn = 5han Zoen, 32 = 00, and by
Lemma 3.1.3 we conclude that (x,), converges to 6 in probability. [ |

Definition 3.1.4: A sequence (a,), is said to be of type 1/n if it belongs to £\ ¢4,
namely (ay), is square summable but not absolutely summable.

Theorem 3.1.5: Suppose that there exists some C > 0 such that for every x € R,
P[|Y (x)| = C) = 1. Additionally, M(x) = E[Y | X = x] is a nondecreasing function
with M(0) = a and M'(0) > 0. If (a,) , is a nonnegative sequence of type 1/n, then
the sequence (x,), constructed by Robbins-Monro algorithm,

Xn+1 = Xp+ apla—yn), (3.1.7)

%One can easily confirm that x, -0 = x; -6 + Zl'.’z_l a;j(a—y;). As we have already shown in
the proof of the previous Lemma, |a— Y| < C+|al a.e., so |xp—0| < |x1 —0|+(C+]al) Z‘l?zl a;=Ap
with probability one.

7Such a n1 always exists, as the series X072 an diverges.
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converges in probability to 0, that is, x,, Lo

Proof. By the differentiability of M(x) at x = 0, there exists some function e(x)
with the property that M (x) = M(0)+ M’ (6) (x—6) +e(x)(x—0) and lim,_.g e(x) =
0. We pick a > 0 such that e(x) = —%M’(G) >0 for every x€ (0 - 6,0 +9).
ForO0+86<x<0+A,,
Mx)—a_ M@+d6)—a_ M)
> > .

x-6 A 24,

Similarly, the same holds for 6 — A, < x <60 -9, so

M(x)—a 6M'0)
>

> 3.1.8
x—0 2A, ( )

for every x such that |x — 0] < max{A,,d}. By picking ¢ sufficiently small, we can
assure that max{A,,8} = A,,.
We proved that k, = inf{% :0<|x—-0]< An} > Aﬁn, where we set K =

&MTI(O) >0, so the convergence property follows from Lemma 3.1.3. [ ]

THE ROBBINS-MONRO ALGORITHM

Step 1 Pick a sequence (ay), € €2\ ¢ and fix some x; € R.

SteEP 2 Suppose that a sample x;,...,x,—; has been drawn. Draw a value y,,
from the distribution H(y|x;) and set x,+1 = X, + an(@a— yn).

STEP 3  Return to Step 2 and iterate.

Table 2: The Robbins-Monro Algorithm [RM51].

3.2 Stochastic approximation algorithms

Stochastic approximation algorithms are used in order to determine the fixed
point of a (not necessarily linear) operator H : X — X defined on some vector
space X. To obtain meaningful results, we will assume throughout that the given
operator H has indeed a unique fixed point; for example, H could be a contraction
defined on a Banach space.

The idea of using iterative algorithms for determining the fixed point of a func-
tion is not only old, but also quite fundamental. As a didactic example, recall one
of the cornerstones of fixed point theorems, and real analysis in general, proven
by Stefan Banach in 1922 [Ban22]:

8We have that A;, — oo, so there exists some 19 € N with A, = 6 for every n=ng. Weset 91 =
min{§, A,..., Apy—1}. Then for every x € (6 — 61,6 + 51), relation (3.1.8) holds and, additionally,
max{5, Ap} = Ap, for every neN.
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Definition 3.2.1: A function H : (X, p) — (X, p) defined on some metric space
(X, p), is called a B-contraction, where f3 is a non-negative constant, if

p(Hx,Hy) < Bp(x,y)
for every x,y € X.

Theorem 3.2.2 (Banach’s Fixed Point Theorem): Let (X, p) be a complete metric
space and H : X — X be a B-contraction for some € (0,1). Then H has a unique
fixed point, namely there exists a unique xo € X with Hxy = Xo.

The theorem is not just existential, but its proof also provides a way to ap-
proximate the fixed point. The idea behind it is simple, yet powerful. Pick any
Xo € X and follow the “orbit” of it through the iterations of H, namely the set
orb(x, H) = {H "xo:ne N}. Then, the sequence (H" xp) , converges to the unique
fixed point of H. In particular, during the theorem’s proof, one can show that for
all n,

1-p

thus also establishing the convergence rate to the fixed point x*.
In Banach’s theorem, we are essentially able to approach x* by picking an arbi-
trary xo, and then using the iteration

d(H"xp,x") < (x0, Hxg) — 0, (3.2.1)

Xp+1 = Hx, for neN. (3.2.2)

The good properties of the operator H and the underlying metric space, are strong
enough to guarantee the convergence of the iterative algorithm for any initial
point xp.

Relying on the orbits of H will be crucial in our approach as well, however,
in our setting we will not be able to invoke Banach’s theorem directly, as some
of its assumptions have to be relaxed. Most importantly, due to the presence of
chance, the exact value of Hx,, may not be known, but instead only a value Hx,, +
wy, where w,, is an error term, can be observed. A modified iteration, similar to
(3.2.2), would be

Xn+1= A =Y)xn+y(Hxp + wy) (3.2.3)

for some y € (0, 1]. For y = 1 we obtain the direct analog of (3.2.2), whereas for y €
(0,1), the latest iteration x,4 is a convex combination of the old one x, and the
proposed value Hx,, + wy,.” If we can guarantee that the sequence (x,), generated
by (3.2.3) is convergent to some X, if H is continuous and if w,, — 0, then by taking
limits in (3.2.3) we have that X = HX and the algorithm converges to the desired
fixed point.

9For Y =0 the sequence (x5), is convergent, but it is also constant and equal to xp, so it is not
worth considering.
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In this section we examine conditions which can assert this convergence. Our
main goal is to establish the convergence of the Q-Learning algorithm. This proof,
is far from straightforward, and will be presented in the next section. Essentially,
all the results mentioned in this paragraph will be aimed towards this goal, but we
should point out that they also have many other applications besides Q-Learning,
as well as an intrinsic value on their own. Our treatment is based on Chapter 4
of the “Neuro-Dynamic Programming” textbook by Dimitri Bertsekas and John
Tsitsiklis [BT96], whereas many of the results belong to John Tsitsiklis himself
[Tsi94].

The operators under study, may not necessarily be contractions, but they satisfy
a contraction-like property under some suitable norm. In our current discussion,
the underlying space will be RY and the suitable norm will be a weighted supre-
mum norm:

Definition 3.2.3: Let & € RN with &; > 0 for every i =1,...,N. The function || - ||¢ :
RN — R defined as

X
lxlle = max —— (3.2.4)

for x € RN, is called the weighted supremum norm induced by .

It is easy to see that || - [|¢ is indeed a norm!Y and by taking ¢ = e = (1,...,1),
the induced |- ||¢ is just the usual supremum norm. A known fact from functional
analysis is that all norms in RY are equivalent. This can be reformulated as follows:
Any two normed spaces of the same finite dimension must be isomorphic [Arg04,
Corollary 3.27].

It is not true, however, that they must also be isometrically isomorphic. For ex-
ample, (R", ]| - |l2) is never isometrically isomorphic to (R”, || - loo) for n = 2, since
the former is a Hilbert space, and the latter is not. An interesting property of
weighted supremum spaces of the same dimension, is that they are all isometri-
cally isomorphic. This is a useful remark that we will refer to later on:

Remark 3.2.4: Let ¢ € RN be a strictly positive vector. Then (IRN I+ lloo) is isomet-
rically isomorphic to (RY, || - [l¢). Indeed, let S: (RN, |- 1ls) — (RY, Il - lloo) defined
as S(x) = (x;/¢& i)?i  forxe RN, The operator S is linear and onto. Additionally,
S _ EAN _ |1 _
1Sxlloo = || (xi /€)7oy |l o = [max, === I xlle

for every x € RV, so S is an isometry.

In a similar manner, L = 7! : (RN, I lloo) — ([RN, I-ll¢) defined as L(x) =
(& ,-x,-)f.\i 1 for x € RN, is an isometric isomorphism. Both operators S and L will
be used during the proof of the convergence of some stochastic approximation

10More generally, let ¢ : [0,1] — R be a continuous function with ¢(x) > 0 for every x € [0, 1].

Then || - || defined as || fllz = sup e, 1] ljg((—z))l induces a norm on C[0, 1] which is equivalent to its
usual supremum norm.
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algorithms, in our effort to reformulate the problem to an equivalent one, stated
on an appropriate weighted supremum space (see Figure 1 for example).'!

A class of functions that plays a central role in stochastic approximation, is the
pseudo-contractions. These functions generalize the notion of a contraction and,
naturally, they share some similar properties.

Definition 3.2.5: Let (X, ||-||) be a normed space. A function H: X — X is called
a pseudo-contraction, if there exists some x* € X and some f3 € [0, 1) such that

| Hx—x*|| < Bllx—x™| (3.2.5)
for every x € X.
We collect a few remarks and examples which will help us demystify this notion:

Remark 3.2.6: Every pseudo-contraction H with x* and f as in (3.2.5) has a
unique fixed point at x* and is continuous at x*. Indeed, by setting x = x* in
(3.2.5), we obtain that | Hx* — x*| = 0, thus Hx* = x*. In order to show that x* is
the only fixed point of H, suppose that xg is such that Hxo = xp. Then by setting
X = Xpin (3.2.5), we obtain that || xo—x* || < Bllxo—x" ||, and since § < 1, this yields
that xg = x*.

For the continuity, suppose that (x,), is a sequence that converges to x*. Then

|Hx, — x|l < bllx,—x*| — 0,
* *
so Hx, — x* = Hx", as we wanted.

We mentioned that pseudo-contractions generalize the notion of a contraction,
so one would expect that any contraction should be a pseudo-contraction as well.
However, as we just showed, every pseudo-contraction has a fixed point, whereas,
a contraction may not. So, in general, a contraction H need not be a pseudo-
contraction. A necessary and sufficient condition for this implication to hold, is
that H should possess a fixed point:

Remark 3.2.7: Suppose that H is a contraction with a fixed point x*. Then Hisa
pseudo-contraction: Since H is a contraction, we have that | Hx— Hy| < Bllx—yl
forevery x, y € X. Let y = x* be the fixed point of H. Then || Hx—x" || < Bllx—x*||
for all x, thus H is a pseudo-contraction. In particular, every contraction is also a

pseudo-contraction when X is a Banach space.'?

It will often be useful, given a pseudo-contraction H with a fixed point at x*, to
“translate” it in a way that the resulting function H' is a pseudo-contraction with
a fixed point at zero.

110n the other hand, none of the ¢ p norms for 1 < p < oo are isometrically isomorphic to any
weighted supremum norm. This can easily be seen by examining the shape of the unit sphere under
the various norms. In addition, and only for N = 2, the space (R?, || - || ) is isometrically isomorphic
to the usual supremum norm, thus to any weighted supremum norm as well.

12This is a consequence of Banach’s fixed point theorem (see the discussion in the beginning of
this section and Theorem 3.2.2).
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Remark 3.2.8: Suppose that H : X — X is a pseudo-contraction with a fixed
point at x* and a constant § € [0,1). Then, the function H' : X — X defined as
H'(x) = H(x + x*) — H(x*) for x € X, is a pseudo-contraction with a fixed point
at zero, and with the same constant f: Let x € X. Then H'(0) = 0 and
IH (x) -0l = [|H(x+ x™) = H(x™)||

=|Hx+x")-x"+x"—Hx")|

=[|H(x+x")—x"|| < Bllx|.
Example 3.2.9: An example of a contraction on a (non-complete) metric space
that is not a pseudo-contraction: Let H : (0,1) — (0,1) defined as H(x) = %x.

Clearly H is a contraction with § = 3, but it is not a pseudo-contraction since
H has no fixed points.

Example 3.2.10: An example of a pseudo-contraction which is not a contraction:
Let T : R — R defined as follows:

3X,  x#2012,2016,
T(x)=494, x=2012,
8,  x=2016.
Then

IT(x)-T(0)| = %IX—OI,

2012
|T(2012)-T(0)|=4< and

2016
|T(2016)-T(0)|=8< 0

which prove that T is a pseudo-contraction around zero. However, it is not a con-
traction as |T(2012) — T'(2016)| = 4, which is never less or equal than 4 for any
Be01).

We can now study the convergence of some iterative algorithms, starting with
the iteration

Tnel =Tn+YnSn (3.2.6)

where y,, and s, are random variables denoting the step sizes and the update di-
rections respectively. We also let

Fun=0 (10, T, Y0, -2 Y180 +++»Sn) » (3.2.7)

denote the sigma-algebra generated by history of the algorithm up to the n-th step
just before s, is revealed. Although the following proposition, strictly speaking,
does not assure convergence, it is a relevant convergence result on which some
future arguments will be based:
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Proposition 3.2.11: Consider the iteration

Tn+1=Tn+YnSn, (3.2.8)

where the step sizes (yp), are such that Y5 v, (i) = co and 3.5 yn(i)? < oo for
everyi=1,...,N. Let also f : RN — R be a function for which

(a) f(x)=0 forevery xe RV,

(b) The function Vf is Lipschitz, that is, there exists some L > 0 such that

IVF(x) =Vl <Lix—yll forevery x,y € RN, (3.2.9)

(c) There exists some C > 0 such that

CIVFUrn)l? < —(Vf(ry), Elsy| Fpl) forall neN. (3.2.10)

(d) There exist K1, K > 0 such that
E[lIsnll? | Fu] < Ko + Ko IVF(ra)I1? forall neN. (3.2.11)
Then, the sequence (f (1)) is convergent, the sequence (V f (), converges to zero
and every limit point of (), is a stationary point of f."?
Proof. We first show that for every x,y € RY,

L
fO) < fx)+(Vfx), y—x)+5||y—x||2. (3.2.12)

Let g(A) = f(Ay+ (1 —A)x). Then

Ydg) Ldfdy+1-1)x)
) - f(x) = g(1) - g(0) = l 480 3 - l LD

=f01<y—x, VFy+(1-)x))dA

:fol<y—x, VFOAY+1=00 - V() +Vf(0))dA
sf()l<y—x, Vx)dA+

+f01 ly - xI- [V Ay + (1 - x) - VF) | dA

1 1
sf (y-x, Vf(x)>d/1+f LAy - x|?dA
0 0

13 The last statement means that for every r € RY for which there exists some subsequence of

(rn)n that converges to it (that is, r is a limit point of the sequence (1)), we have that Vf(r) = 0.

Notice, however, that the Proposition does not guarantee the existence of any limit points of (1),

to begin with.
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L
= (Vf(0, y=x+ Sy =xI%,
and (3.2.12) is established. By setting x = x,, and y = x,, + ¥, S, in it, we obtain

D ysoi2,
2

fUne1) = frp) +yndVfra), sp)+

and by taking expectations,

L
ELf (rnst) | Fn] SELF () | Fl +YnEUVF (), s} | Fol + 5 E (Y2821 | F]
L

2
= FUr) +Yn(V (), Elsn| Ful) + Z Ellspl2 | F]

< frw) =yaCIVF(ra)I* + Lf (Ki+ K20V f(ra)l1?)
< f(rn) = yYnll VL) 12 (C— L’Z/” Kz) + Klgﬁ’, (3.2.13)
due to Proposition B.3.3. We set
x, = LGB ISP, if LRaya <2€, .
0, otherwise,
LK

, if LKyy, <2C,
z,={ 2 2Yn (3.2.15)

My (C - HE) IV F eI, otherwise,
and (3.2.13) can written as
Elf(rps1) | Ful = frn) = Xn+ Zp. (3.2.16)

Both (X,), and (Z,) , consist of non-negative random variables with the property

that X, and Z,, are F,,-measurable for every n € N. Since y,, — 0, we can pick an
2

ng € N such that Z,, = LKZIY” for every n = ng, thus Y37, Z, < co. By the Super-

martingale Convergence Theorem (see p 135), we obtain that ( f(rn)), converges

almost surely to a non-negative random variable, and that 377 , X, < oo as well.
So the first claim has been proven.

We pick an n; € N such that % < & for every n = ny. Then
LKg’yn

2

C
Xpn=Yn (C— ) IVFOrI* = ZynllVf )l
for every n > nj; and +oo> Y77, X, = %Zflozl Yl VFr)l?, so

Y Yull VLI < oo. (3.2.17)
n=1
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This implies that liminf, |V f (ry,) 2 = 0. '* We will show that IVfr)ll — 0.

Let € > 0. We say that the interval of natural numbers [n, n*] is an upcrossing
interval from €/2 to &, if [V f(rp)l < 5, IVf(rp<)| > € and § < |V f(ri)ll < €, for
every k € (n,n*). Wesset w, = s,—E[s,|F,]. By the projection property of the con-
ditional expectation (see Proposition B.3.2), each w), is orthogonal to E[s, | 7],
so by the Pythagorean Theorem,

lwall® + IELsn | Falll? = Nwy +Elsp | Fall® = lIsall?,
and after conditioning on F,, we obtain that

Elllwpll® | Fl +E [IELsy | Full® | Fp] = Ellspll®* | Fnl =
Elllwnll? | Fpl + IELsy | Fulll? < Ky + Ko IV F(rp) 112 (3.2.18)

for every n. Let (X)), be defined as

X, = 1, ifIVf(rpl<e,

0, otherwise.

Each &), is clearly F,,-measurable. We also define the sequence (Uy,),, as follows:
U, = ZZ;& XYk wk. We will show that (Uy,),, converges almost surely whenever
Y2 ¥4 < A almost surely for some deterministic constant A:

Each U,, is F,;-measurable with

ElXnynwn| Fnl = XnynElwn | Fnl =0,
therefore

ElUn+1|Fnl =ElUn+ Xnynwn | Fnl =ElUn | Fnl = Uy
for all n. When X, =0,

E[1Un1li? 1 Fu] = E[1UI% | Fu] = U, (3.2.19)
whereas when X, =1,

E[I1Uns11* | Fu] =E[I1Up +yullwall? 1 F]
=E[IUI* + Y5l wnll? + 2y n(Un, wi) | Fn]
= Unl® + Y5 E[Ilwnll® | Fn] + 2y n(Un, Elwy | Ful)
= UL IP + YR E [l wal® | Fa]
< 1Unl?+75 (K + KNV F(ra) 1)
<1 Ux 2 +7% (Ky +€°Ka), (3.2.20)

140 therwise there would exist some ¢ > 0 and 7, € N such that IVf(rp)ll = € for every n = ny,
which would in turn force the series Z%ozl YulVf(rn) 12> exX 2 n, ¥Yn =+ooto diverge.
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by (3.2.18). By taking expectations in (3.2.20),

E[E[NUns11* | Fn]] = E[1Upi1 2] SE[1URI%] + (K1 +€°K2) E[y2],

SO
N-1 N-1 N-1
Y E[IlUn1l?] = Y E[IUAIP] + (K1 + 2 K)E| Y ¥4 |, so
n=0 n=0 n=0

E[1UNI?] < (Ki + &Ko) E < A(Ky +€°K).

N1,
> T
n=0

By taking suprema in the last expression,

SUpE[| Uyl < supE [1+|U,lI*] <1+ A(K; +€°Kz),
n n

and the almost sure convergence of (Uy),, is asserted by the Martingale Conver-
gence Theorem (Theorem B.3.5).

We now extend the claim we just proved, for the case where ¥°°  y2 is not
bounded by the same determninistic constant, but it is merely convergent almost
surely. We will show that (Uy),, converges almost surely when ¥ ;% < oo al-
most surely.

For every k € N we define the process (U¥),, as follows:

Uk = U,, when Z?:_()l y? <k,
=

Uy,, when n = ny,

where ng = min{n: Y] y? > k}. The sequence (UK, is either eventually con-

i=
[e )

stant, if there exists such an ny, or it is equal to (Uy) , if X572 y? < k. In either case,

it converges almost surely. Set

oo
Q= {w eQ: (Ulf(w))n does not converge} and Q'=Q\ kU Q.
-1

Then P(Q)') =1 and for every w € 0/, (U,’lC (w)), converges for every k. Let also

o0
Q' = {weQ’: Zyi(w) <oo}.
i=0
Then P(Q") = 1 and for every w € Q", there exists some k,, € N with rX0Yi (w)? <
ke, SO U,’§ () = Up(w) for every k = k,, and since w € Q’, the sequence (U,’f (W) n
converges for every k = k,,. This implies that (U, (w)) , converges for every w € Q”,
as we wanted.

Using the previous claim, we will show that a sample path may only have finitely
many upcrossing intervals from £/2 to €. Suppose not. Let ([, t,’c]) k be a sequence
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of upcrossing intervals. We have that X}, = 1 for n € [#, tk), SO Zn e }/n wy, <
Y oss, XnYnwn with

—1

lim Z YnWn < hm Z XnYnwn =0 (3.2.21)

k_'oo}’l I _’°°n 173
almost surely. By the triangle inequality,
Voo | = VFE| < |V Co) =V G| S Ll 1|

=L ”Ytksfk " <Lyq " Wi ” +Lyy ”[E [Sl‘k |}—l‘k] ”
<Lyq ” Wy ” +Lyg (Kl + KZEZ)

by (3.2.18), s0 [V f(ry+ DI = IV f(re )l -
exists some ko such that ||V f(r; )|l = €/4 for every k = ky. Additionally,

0, and since |V f(rs+1)ll > €, there
o0

s <) | - IV G = | V£ () - ()

t-1
<L H rt;c —ry||=L Z YnSn
n=ty
-1 -1
<LZYn IE[sn | Fnlll+L Zann
n=ty n=ty
-1 -1
<L) ya(1+ K +Ke®)+L| Y. yawnl|,
n=ty n=ty

with the second term converging to zero as k — oo, by (3.2.21). Therefore,

t+k' €
liminf > .
k n;k)’n 2L(1+ Ky + Ko€2)

(3.2.22)

On the other hand, for n € [#, t]’c), we have that |V f(r,) || = £, so

=7,
t+k' , 63
liminf IVfrle= and
k n;k}’n Jrn 32L(1+K; + K2€2)

S valVEeDIP= Y yallVu)I? = +oo,
n=0

neEU[ty, tr—1)

which contradicts (3.2.17). We showed that for every w € €, there exist finitely
many upcrossing intervals from /2 to €. This means that for every € > 0, there ex-
ists some n; e Nwith 0 < [|[Vf(r,) | < € for every n = n}, implying that V f(r,,) —
0.

Lastly, if rp is a limit point of (r,),, there exists some subsequence of it with
rt, — To and by the (Lipschitz) continuity of V f, we have that Vf(r ) — 0 =
V f(ro), so 1y is a stationary point of f. |
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Remark 3.2.12: The conclusion of the previous proposition still holds if assump-
tion (d) is replaced by the weaker one:

(d) There exist a K» > 0 and a sequence of random variables (A;), which
is bounded a.s., such that

E[Isnll* | Fn] < A+ K2lIVf(rp)I? forall neN. (3.2.23)

Indeed, let Q' denote the set of all w’s for which (A, (w)), is bounded. We proceed
as in the proof of Proposition 3.2.11, except that (Z,),, will be now defined as

LAy}, .
_ 2 if LKy, <2C,
Zn = LA,y? LKaYn 9 ) (3.2.24)
—3 ~Tn (C - T) IVf(ra)ll¢, otherwise.

2

By the convergence of (y,), to zero, there exists some ng such that Z, = %

for every n = ny. In particular, for every w € Q', by the boundedness of (A, (w)) ;,
2 2

we have that Z,,(w) = LA”(zw)Y" < LMZ“Y” for some M, >0, thus Y77 | Z,,(w) < oo

for all w € Q'. The rest of the proof remains unchanged.

Corollary 3.2.13: Consider the recursion
i1 = =Yp)Tn+YnWn, (3.2.25)
where

(a) the step sizes (yn), are such that Y5 |y, (i) = co and Z‘,’;’:lyn(i)z <00
foreveryi=1,...,N.

(b) The noise terms (wy,),, are such that E{w,, | F,] =0 and [E[wfl | Ful < Ap,
where (Ay) y, is a sequence of random variables which is bounded with prob-
ability one, with each A, being F,-measurable.

Then (rp), converges to zero with probability one.

Proof. By setting s, = wy, — r, into (3.2.13), we can can obtain (3.2.25) as a spe-
cial case of it, 7,41 = 7' +YnSn. Set f(r) = r? = 0, with Vf(r)=2r. We will con-
firm that all of the assumptions of Proposition 3.2.11 are met. Clearly, Vf is a
2-Lipschitz function and

—~(Vf(rp), Elwy —rn| Ful) = —=@rp, —1n) =2lr4l?, so
IV ra)l? = acliryl? < 2|12

is satisfied for ¢ = 3. Additionally, by Proposition B.3.3, we have that for every n,
Ewn, ra) | Fnl =y, Elwy | Frl), so

E[IsnlI* 1 Fn] = E[lwn — 1ol | F] = €[l wnl? + 17 + 2w, ) | Fn)
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SAp+ ”rn”z +2[E[<wn» 'n) |]:n]
1 1
= An+ 21201° +2r, Elwp | Ful) = An+ IV f(ra)
with probability one. By Proposition 3.2.11 and Remark 3.2.12, we obtain that
lim;,—.co Vf(ry) =lim,—oo 21, = 0 with probability one. [ ]

We now state one of the main tools that will be used in the stochastic approxi-
mation for pseudo-contractions. It does not assert the convergence of (r,),, but
merely its boundedness, so it is more of an auxiliary result.

Proposition 3.2.14: We consider the iteration
i1 = A=y rn+yn(Hpry + wy + uy), (3.2.26)

where
(a) the step sizes (yn)yn are such that 357, v, (i) = co and Z‘,’l"zlyn(i)2 <00
foreveryi=1,...,N.

(b) The noise terms (wy), have the properties that

Elw, ()| Ful =0 and E[w,(i)*|Fp] < A+ Blral*

(c) Each Hy, is a map Hy : RN — RN, and there exist & € [R+N+, B€0,1) and
D > 0 such that | Hu 1yl < 1pll¢ + D.

(d) There exists a sequence of non-negative random variables (0,,) , which con-
verges to zero with probability one, such that

ltnlloo < O (1+II7nlle)
for every neN.
Then, the sequence (1), is bounded with probability one.

Proof. Let us consider first the case where { = (1,...,1) and | - [|¢ is just the supre-
mum norm. We picka G = 1 such that G+ D < Gand an h such that G+ D = hG.
Then < h < 1 and we can pick an € > 0 such that (1 +¢)h = 1. We define a se-
quence (Gy),, as follows: Set Gy = max{||7olloo, G} and suppose that G, has been
defined. Then

Gy, if |7 <(1+&)Gy,
Gpa1={ 17n51lloo 4 (3.2.27)

Go(1+ €)% otherwise,

where k € N is such that Go(1 + €)* ! < 741 lleo < Go(1 + €)% = G,,41. We notice
that |7;lleo < (14 €)Gp, for every n € N and that |7, lleo < G, whenever G,—1 <
Gy,. Additionally, (Gy), is increasing: If G,4+1 # Gy, then Gp41 = Go(1 + )k >
ITn41lloe > (1 +€)Gp > Gy
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Since Be+h < he + h <1, we can picka 8* = 0 such that Be + h+0*(2+¢) < 1.

We also pick an n* € N such that 8,, < 8* with probability one for every n = n*.
Then

IHpTnlloo +0nlTnlloo +1) < Blirpllos + D+ 6% (1 + (1 +€)Gp)
<BA+eG+(h-PG+0*" 1+ (1+¢)Gy)
<BA+&)Gu+(h—P)G+0" 1+ (1+¢€)Gp)
=(Be+ MG, +0"2+¢€)Gy,
<G,. (3.2.28)

Let wy, = 5. We have that

Elwn() | Fa)

Elw),(i)| Fpl = ————=0 and
Gp
E[w?(i)| Fnl A+Blr,l? A+B(l+¢)?*G?
Elw) ()2 ) = o1l AXBInIE A+ BO o7y
Gy Gy Gy
<A+B(l+¢)
We define the following families of recursions: For every ng € N, let Wy, =0
and
Wyitn, = A=Y) Wy o +Ynw), for n=ne.
We will show that for every 6 > 0, there exists some 7y € N such that
IWenolloo =6 (3.2.29)

for every n = ng almost surely. By Corollary 3.2.13, we have that W, (i) — 0
almost surely, for every i =1,..., N. Using induction we can show that
n-1

Wyo= [T A=yW 0+ W, (3.2.30)

k:no

for every n = no. For n = np it holds trivially. Suppose that W, , = Hz;}%(l -
YW, o+ W, ,, for some n = ng. Then

Wyi0= A=Y Wy o+ Y},

n—-1
=1-yn) [[ A=yW 0+ A=Y Wyn, +yawy,

k:I’lo

n
= l_[ I-vr) W,;O,() + Whtt,ng

k:no

and the induction is complete. By (3.2.30) we have that for ng large enough so
that |7l < 1, Wiy 0lleo < g and | W, olleo < g all hold with probability one for
every n = n,
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n-1
||W;/1,n0 lloo = H W;;,o - H a _Yk)Wr,zg,O

k=ng oo

o0

for every n = ny.
Pick an ng € N such that |7, oo < G, |l W,’Ln0 loo<é€ llynl <land 8, <6*all
hold with probability one for every n = ny. We will show inductively that

Gn=Gp, and
, , (32.31)
—Gpy(1+8) = =Gpy+ Wy, 1, Gy < 700 < Gy + W, Gy < Gy (1 +€)
for every n = ng. For n = ny, (3.2.31) becomes
—Gpy(14+8) < —Gpy < Tp < Gy + < Gy (1+6),

which clearly holds. Suppose that (3.2.31) both hold for some n = ny. Then

Tne1 =0 =Yp)rn+Yn(Hpln+ wp + Up)
< (A =Yn)(Gpy + Wy o + Grg) +Yn Wy, Gn+ ¥ (Hurp + 0, (I 7plloo + 1))
< Gy + G, ((1 - Yn)erz,no + WyYn)
=Gy, + G, W,

1o

+1,ny?

where we used the induction hypothesis on r, and the fact that G, = G,. In
a similar manner we obtain the other half of (3.2.31). Additionally, [7,+1llcc <

Gp, (1 + €) implies that G, = G,,. We showed that G, = G, for every n = ny.

The boundedness of (ry), then follows from the relation |7l < (1 +€)G,, =
(1+€)Gp, which holds for every n = ny.

We now examine the general case, where ¢ is strictly positive but not necessarily
equaltoe=(1,...,1). Using the isometries S and L between RN || loo) and (RN, ||-
ll¢), as introduced in Remark 3.2.4, we can reformulate the problem as follows (see
also Figure 1):

We set r;, = Sry,, H), = So Hy o L, w), = Swy, and u), = Su, for every n € N.

Then, the elements ), belong to (RN || loo) and by applying the operator S to the
iteration (3.2.26) we obtain that:

Tn1 =L =Yp)rn+Yn(Hpl'n+ wp + Up) =
Srny1=AQ-v)Srn+yn(SHyry+Swy, + Suy,) =

o1 ==y +Yn(SHL(Sry) + W), + u),) =

o = A=y, +yn(H,(r) + w), + u)), (3.2.32)
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N H), =SoHuoL N
(R, - lloo) ===~ *(®Y, 1 lloo)
L | isometry isometry | §
(®Y,11-1¢) i, (RN 1-1l¢)

Figure 1: Reformulating the problem so that the induced operator Hj, on (R", |l - |loo) has
the same properties as the original one H, defined on (R", || - [¢).

so the newly introduced elements r},, H),, w), and u), satisfy the same relation
(3.2.26). Furthermore,

1
[E[w;(lnfn] = é._[E[wn(lH—Fn] =0,
i

: 1 . 1 ,
E|w),()? | Fp) = ?E[wn(z)2|fn] < ,-i?,‘}?fn{f—z}[E[Wn(”z | F]

i i

<C(A+Blrnly) < A +B'lIrpllcor
IHy 1y lloo = 1SHR Ly lloo = | Hp L1y llg < BIILrylle + D
= Blirplleo + D,
) lloo = Ntnlle <OnA+lTnlle) < 0,1+ Clirnlloo),

the last inequality holding by the equivalency of the || - [l and || - [looc norms. If
C <1, then |t} llco < 0,1 + lITnlloo) with 8,, — 0 in probability. If C > 1, then
12! lloo < COR(1+ [ lleo) with CO,, — 0 in probability.

All the requirements of the proposition are satisfied for (r},) , with respect to the
¢ norm. From our previous step, there exists some M > 0 such that ||7},[lco < M
with probability one. This implies that ||7,[l¢ < M with probability one and the
¢~ boundedness of (1), follows from the equivalency of the two norms. [ ]

3.2.1  Stochastic approximation for pseudo-contractions

We are now ready to state and prove the first of our two main convergence results.
Instead of proving it for a single pseudo-contraction H, we consider the more
general case where we have a sequence of pseudo-contractions (H,),, with the
same fixed point x*, the same constant 3, and with respect to the same weighted
supremum norm.



3.2 STOCHASTIC APPROXIMATION ALGORITHMS

Proposition 3.2.15: Let (1), be the sequence generated by the iteration
a1 = A =y)rpn+yn(Hpry + wy + uy), (3.2.33)

where

[e.e]

(a) the step sizes (yn)n are such that Y57 | yn(i) = co and anlyn(i)2 < oo

foreveryi=1,...,N.
(b) The noise terms (wy) , have the properties that

Elwn ()| Fpl =0 and E[w,()*|Fn] < A+Blral?.

(c) Each Hy is a pseudo-contraction (see Definition 3.2.5) with respect with
the same | - ||¢ norm, with the same fixed point r* and the same constant

Bel0,1).

(d) There exists a sequence of non-negative random variables (0,,) , which con-
verges to zero almost surely, such that

ltnlloo <60n (1+1rnlle)
for every neN.
Then (ry), converges to r* almost surely.

Proof. Suppose first that r* =0 and ¢ = (1,...,1). Then, the pseudo-contraction
property can be written as || H,7plloo < BlITnlloo for all n, so Proposition 3.2.14
applies and yields that (r,), is bounded almost surely. Let Dy > 0 be such that
I7nllco < Do almost surely for every n € N and pick some € > 0 such that f+2¢ < 1.
We set Dy = (B +2¢)%Dy for ke N.

We will show inductively that for every k, there exists some n; € N such that
I7nlloo < Dy for every n = nj almost surely. For k = 0, this relation becomes
[ 7,ll = Do which holds for every n € N. Suppose that || 7, loo < Dj for every n = ny
a.s. for some k.

We define the following sequence (W,), in RV

Wo=0, Wpri(1—y)Wy+7y,wy. (3.2.34)

By assupmtion (b), E [w,,(i)? | F] < A+ Blirl3, and since (r,),, is bounded a.s.,
Corollary 3.2.13 applies and asserts that (W), converges a.s. to zero.
For every v € N, we define

Wyy=0 and Wy, =0 -y )Wy +ynwy, fornz=wv. (3.2.35)

Again by Corollary 3.2.13, Wy, ,, —0as. for every v € N. In addition, for every
—00
n=ng,

0 a.s.

ltnlloo < On (1+lIrplle) < 60n(Dg+1)

n—oo
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We pick an vy = nj such that |u,lle < €Dy for every n = v, and define Y, =
(Dk,...,Dk), and

Ynr1=A -y Yy +vn(BDy +€Dy)

=Y, +Yn(BDy+eDy—Yy) for n=ny. (3.2.36)
We will show that
Y+ Why, s1tn = Yn+ Wy, (3.2.37)

for every n = v using induction: For n = v, the inequality becomes —Dy < 1, <
Dy for all n = v which follows from our previous inductive assumption. Suppose
that (3.2.37) holds for som n = v. Since || H, 1yl < Bllrall < BDy, we have that

Tl = A =y)rn+Yn(Hyry + wy + uy)
= _Yn)(Yn + Wn,vk) +Yn(ﬂDk + wp +€Dyg)
=1-yn)Yy +Yn(ﬁDk +eDp)+(1 _Yn)Wn,vk +YnWn

=Yne1+ Whitv,
In the same manner we can prove the other half of (3.2.37) for n:=n+1.

By summing (3.2.36) from n =0 to n = m — 1 we obtain

m-1
Yn=Yo+ ). Yn(BDi+€Dr—Yy). (3.2.38)
n=0
Notice that by its construction, Y+ € [Yy, (€ + B)Dg] for all n, so (Y;), is in-
creasing and bounded, thus convergent. If we take limits in (3.2.38), we have that
lim,, Yy, = Yo+ X5 Yn(BDr+eDy—Yy), and since ¥ ,, 7, = +00, it has to be that
lim, Y, = BDy+€Dy. Then, (3.2.37) yields that limsup,, | 7, |l < (B+€) D = Dg41,
as promised.

We showed that for every k, there exists some n; € N and some Qj of measure
one, such that |r,(w)lle < Dy for every n = nj and every w € Q. By setting
Q' = N Qg, we have that P(Q') = 1 and |7, (w)lleo < Dy for every n = nj and
every w € Q. Since Dy — 0, we obtain that ||, [looc — 0 almost surely.

We proved the proposition in the special case where r* =0 and £ = (1,...,1).
The proof for the general case is based on the same argument as in Proposition
3.2.14, p. 66, and we will only sketch it here to avoid repetition.

Suppose that the proposition holds whenever (H,), is a sequence of pseudo-
contractions with r* = 0 and ¢ arbitrary. We define H},(x) = Hy(x+r1*) - H(r*)
and r}, = r, — r*. Then each H), is a pseudo-contraction with zero as its fixed

t15

point'” and

r;I1+1 ==y, +Yn (H;lqr;ﬁ wn+un);

15 As was proven in Remark 3.2.8.
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so the proposition applies for (r},), and 1, = r, — r* — 0 almost surely.

Suppose that the proposition holds whenever (H,), is a sequence of pseudo-
contractions with r* arbitrary and ¢ = (1,...,1). Using the isometries S, L, we
again define Hy, = SH,L, r;, = Sry, W), = Swy, and u), = Su,, for all n. It is easy to
confirm that

/ / roa ' '
Tn+1 :(l_yn)rn+7/n(Hnrn+wn+un)’

and that all the assumptions of the proposition, concerning (w},) , and (u},) , are
satisfied.

For the general case, where both r* and ¢ associated with H,, are arbitrary, one
needs to consecutively apply the previous two transformations. More specifically,
r; will be equal to 1, = S(r, —r*) and the proposition applied on it will yield that
ri —0a.s., so Srp, — Sr* and ry, = LSr, — LSr* = r* almost surely. [ ]

3.2.2  Stochastic approximation for monotone operators

For our last convergence result, we drop the pseudo-contraction assumption, and
assume that H is a monotone operator instead. Monotonicity is assumed with
respect to the usual pointwise order of RV, but there also exist results involving
more general linear orders [Wail9b].

Proposition 3.2.16: Let (1), be the sequence generated by the iteration
Tne1 = (L =y)Tn+Yn(Hrp + wy), (3.2.39)
where

(a) the step sizes (), are such that Y57, Y, (i) = oo and Z‘,’l"zlyn(z')2 < oo for
everyi=1,...,N.

(b) The noise terms (wy), have the properties that

Elw, ()| Ful =0 and E|[w,(i)*|Fn] < A+ Blral®

(c) For the operator H we have that
(i) it is monotone, meaning that Hx < Hy for every x < y.

(ii) For every A >0 and r € RV, the following inequality holds: Hr — Ae <
H(r—Ae)<H(r+Ae) < Hr+ e, wheree=(1,...,1).

(iii) It has a unique fixed point, Hr* =r*.

If (ry) pn is bounded a.s., then (1), converges to r* almost surely.
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Proof. Suppose that (1), is bounded a.s., and let A > 0 be a random variable with
r*—Ae<r,<r*+le.'® We define two sequences (L"), and (U™),, as follows:

Lk + HLk
L°=r*-Ae, Lk“:—2 , k=0,

U* + HU¥
U'=r*+de, Uk“:T, k=>0.

We can show inductively that

HU* < U < U* and (3.2.40)
HLF > [+ > 1k (3.2.41)

for every k e N. For k=0, HU’ = H(r* — Ae) and U' = M and since
H(r*—Ae) < H(r* + Ae), r* + Ae we also have that H(r* — Ae) is less or equal
than any convex combination of them. In the same manner, r* + e, H(r* + Ae) <
r* + e, so Ul = L3Ae 4 HITHAG < vy fo= 0,

Suppose that HU™ < umtl < ym™ for every m=0,1,..., k. Then
Uk+l +HUk+1 Uk Huk+l Uk HUk
—_— < —+ <—+—=U~,
2 2 2 2 2

Uk+2 —

since U**! < U by our inductive hypothesis and H is monotone. It remains to
be shown that HU**! < U**2, but this follows immediately from the fact that
HUM' < HU* < UM and U**? € [HU**!, U**1]. The inequalities involving
LF can be proven similarly.

We will show that the sequences (U ky r and (L% k converge to r* almost surely.
For every k, we have that U* < ... < U, so for each i = 1,..., N, the sequence
UAID) k is non-increasing. It is also bounded below by r* (i), as

U+ HU* r*+HU* r*+Hr
> >

U’C+1= > > =r*.
2 2 2

Thus, for every i = 1,..., N, the sequence (U¥ (1))} converges to its infimum. By
taking limits in U**1(j) = w, and taking advantage of the continuity of
H, we obtain that its limit U has the property that U = %, so U =r" is the
unique fixed point of H. We work similarly for (L% k-

The two sequences defined above, restrict the behavior of (r,),. In particular,
we will show that for every k € N, there exists some 1 € N'such that L¥ < r,, < U*
for every n = ny. For k = 0, the claim is trivial, as L = r*—~Ae<r, < r* +le= U’
holds for every n € N.

For the inductive step, suppose that there exist ny, ..., g, such that L' < r,<U l

for every n=n; for [ =1,..., k. We define a sequence (W), as follows:

WOZO) W}’l+l :(1—Yn)Wn+ann, fornzo;

16For almost every w, there exists an M, > 0 with the property that |7, (@)oo < My, for all n.
Then the inequality holds for A(w) = Mg, + I7* || co-
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and for every v € N, we also define
Wyy=0, Wpiiv=0=yYp)Wyy+Ynwy, fornz=wv.

By Corollary 3.2.13, W, — 0 and W,,, — 0 almost surely for every v € N. Let
(Xn)5%p, be defined as follows:

Xp, = U, Xpi1= A=y Xy +y,HUY, forn=ny.
We will show that for every n = ny,
Fn < Xn+ Wi, (3.2.42)

For n = ny, the relation becomes r,, < U¥, which holds. Suppose that r; < X; +
Wi, for I=1,...,n. Then
1 =0—-y)drntynHrp+yawy
SA-y)(Xn+Wyn)+ynHrp+ynwy
=A-y)Xn+ Wn,nk) +YnHUk +YnWn
=(1-yn)Xy +'}’nHUk +(1 —Yn)Wn,nk +YnWn
=Xp41 t an+1,n;C

and relation (3.2.42) has been established.
For each ke N, let

Ap = {i Uk () # HUk(i)} and &) = imin{Uk(i) - HUk(i)}.

€Ak
Then 8 = 0 and 0 is zero if and only if Uk = HU*.1f 5, = 0, then U¥ = r* and
U™ =r* for every m = k, so r, < U™ for every n = ny, trivially.

Suppose that §4 # 0 for every k € N. Pickan n}c € N'such that n}c > 1y, H?ﬁnk(l—
Ye() < i” and W, ,,, < 6% all hold. Then r,, < U+ for every n = n;C. Indeed,
let i € {1,..., N}. If U**1(i) = UX(i), then r,(i) < U*(i) = U¥*'(i). Suppose that
U**1(i) < UX(i). Then for every n = n,

Xp1(D) = (L= Y (D) Xn (i) +yn () HU*

= (L= YOI = Yno1(D) X1 (1) + Yno1 D HUR(@)] + 7, () HUF (i)
= (1= yp()A=Yno1 (D) Xp1 (D) + [1= A=y (D) (A = yp_1 ()] HUX (D),

and inductively we obtain that for every n=n’,

n—1 n—1
Xo= 11 (1—%)U’“+(1— I1 (I—Yr))HUk=/lUk+(l—7L)HUk,

=ny =ny

17By taking products in the elementary inequality 1 —x < e™*, we have that l_[?c:’ e Q-7y¢() <

—_y o 1
e ZEn D 0, for every i = 1,..., N. So for every i there exists some 7i; with the property that

n A=y < i for every n = 1;. Set 7i = max; {i;}.

t=ny
18pjck an 7 € N such that Wi, n; < 6y forevery n = 7. This is possible due to the a.s. convergence
of (Wpn,n;)n. To find a common index, just set n;c = max{ny, i1, n1}.
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for/1<iand U* > HU*. Hence,
X, (i) < lU’C(z’)+§HU’€(i)
Ty 4
_1 ko l ke Yfrikon ks
= SUS) + ZHU* () Z(U (i) - HU (1))
<UM1(j) -6, and
T (i) < Xp (i) + Wy, (1) < UKL (1) = 61 + Wiy (D) < UFTL(0)

forall n > n}c Similarly, we obtain that L*¥*1() < r, (i) for all i and n > n;c’ By
setting ngy1 = max{nj, n}}, we complete the inductive step. [ ]
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3.3 Q-Learning

Q-Learning is an algorithm proposed by Chris Watkins [Wat89] to provide ap-
proximate solutions to dynamic programming problems, when we do not have
enough information on the underlying model to approach it with the usual meth-
ods. Despite the relative simplicity of the algorithm itself, the actual proof of its
convergence came later and is quite involved. In this section we will present a
proof, belonging to John Tsitsiklis [Tsi94], that builds upon the tools developed
in the previous sections.

3.3.1  Dynamic Programming

In Dynamic Programming [Ros83], we are trying to minimize the expected cost
of a process, through decisions that are taken sequentially. During each stage n,
we observe the current state i € S of the process and we choose an action a € A(i).
Then, the process transitions to a state j according to some probability distribu-
tion p;.(a) which depends on the previous state i and the decision a that we took.
Additionally, the transition we just described, incurs a cost of c(i, a, j). The costs
accumulate over time, and our goal is to minimize the total expected cost.

A policy m is a sequence 7 = (o, i1,...), where each p is a function py : S —
UiesA(i) with ug(i) € A(i) for all i € S. Namely, a policy dictates which action
we will choose at each state and stage of the problem. A stationary policy m =
(4, 1, ...) = W, is a policy which is indifferent to the current stage of the problem,
and depends only on the current state.

Suppose that we follow a policy 7 = (uo, t1,...) and that the sequence of the
states the process visits is (j kg This sequence is not known in advance, but each
Jk+1 depends on the previous state ji and the decision that was taken during the
k-th round. However, this decision was dictated by py and, in particular, it was
equal to pg(ig). So, the total expected cost J” (i) when the initial state is ip = i and
policy 7 is employed, is equal to

N
T = lim B\ D e (i pili), k) o= |, (3.3.1)
- k=0

provided that this limit exists. The optimal cost-to-go function J* (i) when starting
at state i, is defined as the best we can do, under any policy 7:

JH () = n;lin]”(i). (3.3.2)

Perhaps the most important property of J*, is that it satisfies a functional equation
called Bellman’s equation:

JE) = min { Y pij@(cti,a,p)+T* (j))}. (3.3.3)

A(D) JjeS
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This equation also demonstrates the difficulty when one is trying to solve a dy-
namic programming problem. For example, the rather naive strategy of minimiz-
ing the cost in just one step forward,' may not be an optimal strategy, because it
may cause the process to visit states which will lead to large incurred costs in later
rounds. Bellman’s equation suggests that in order to solve the problem, one needs
to take into an account both the expected cost in one step, Y. jespijl@c(i,a,j)
and in the later rounds, Zjes pij@J*(j).

For simple problems, solving the Bellman equation is possible, but in general it
is difficult to find algebraic solutions of it. An approximate method of solving it, is
the value iteration method, according to which we initialize with some function
Jo, and at each stage n + 1 we define

Jn+1(i) = min {Z pij(@ (cli,a, j) +]n(j))}. (3.3.4)
acA(i) jes

THE VALUE ITERATION ALGORITHM

STeP 1 Initialize with some function Jp: S — S.

Step2 Suppose that J, has been constructed. During stage n + 1, set
Jn+1() = minge ay {X jes pij (@) (¢l a, j) + Tu(N)} -

STEP 3 Iterate, by returning to STEP 2.
Table 3: The Value Iteration Algorithm.

The resulting sequence of functions (J,,) , converges to J* uniformly, regardless
of the initial choice of Jy. This is a consequence of the contractivity of the operator
T :C(S) — C(S), defined as

(T := min { Y pij@(ct,a i)+ £(j) } fecC(), ies,
acA(i) jes

and Banach’s fixed point theorem.

In the usual dynamic programming setting, all the parameters involved in the
problem (incurred costs, probability distributions, decisions and process states)
are known in advance to the player. Due to the non-linearity of the Bellman equa-
tion, even in this setting, one usually has to settle with approximate solutions. But
what happens if we go one step further and assume no prior knowledge on the un-
derlying model? Is it possible to modify the value iteration method in a way to still
be able to approximate a solution through it?

More specifically, we consider the same dynamic programming setting as be-
fore, with the following modifications: (i) We do not know what the probability

190ften called greedy or myopic strategy.
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distributions p;.(a) are, for any i € S or a € A(i). (ii) We do not know what the
cost functions c are. To compensate with this lack of information, we assume that
we can simulate the process, meaning that we can draw values from the unknown
distributions p;.(a). We also assume that we can observe the incurred costs after
any such simulation.

The Q-Learning algorithm comes to provide a solution for a specific class of
problems called stochastic shortest path problems.

3.3.1.1  Stochastic shortest path problems

In this paragraph we describe a special class of dynamic programming problems,
governed by the following assumptions: There exists an absorbing state, denoted
as i = 0, and when the system visits it, it remains there with no further cost. We
also assume that termination is inevitable, and the goal is to minimize the ex-
pected cost until termination. In our treatment, the state space S=1{0,1,...,n} as
well as the action sets A(i) at each i € S, are all assumed to be finite.

We will say that a stationary policy is proper, if when using this policy, there
is a positive probability that the termination state will be reached after at most n
stages, regardless of the initial state iy. As usual, for any stationary policy u, we
introduce the operators T and T}, : C(S) — C(S). For every J € C(S) = R"*1,

(TH@) = mj?){z pij(@ (c(i,a,j)+](j))} and (3.3.5)
aeA(1 j:0
n

(T D@ =) pij(u@) (cl,u@), ) +J(j)) fori=0,1,...,n. (3.3.6)
j=0

The components that correspond to i = 0 are all equal to zero and will be omitted
from now on.

Proposition 3.3.1: [BT96, Proposition 2.1]. Consider a stochastic shortest path
problem for which there exists at least one proper policy and such that for every
improper policy , there exists some i with ], (i) infinite. Then

(a) The optimal cost-to-go function J* has all of its components finite and is the
unique fixed point of T, that is, T]* = J*.

(b) We have that limy_.., T*J = J* for every J € C(S).
(c) A stationary policy w is optimal if and only if T, J* = TJ*.

(d) For every proper policy p, its value J* is the unique fixed point of T, and
additionally, limy_. oo T!’f J =J* for every J.

The operators T and T}, are also contractions with respect to some appropriate
weighted supremum norm.?’

20Gee also the discussion that follows Definition 3.2.3 for more details on these norms.
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Definition 3.3.2: Let & € RY with &; > 0 for every i =1,...,N. The function || - || :
RY — R defined as

|le|5— max —— (3.3.7)

i

for x € RN is called the weighted supremum norm induced by ¢.

Proposition 3.3.3: Consider a stochastic shortest path problem for which all the
stationary policies are proper. Then, there exists a strictly positive vector & such that
the maps T and Ty, are contractions with respect to the weighted supremum norm
| - ll¢ for all stationary policies p. In particular, there exists some f <1 such that

n
Z pij(@)é; < Pé;, foreveryi=1,...,nand ac A(i). (3.3.8)
j=1
Proof. We introduce a modified stochastic shortest path problem which has the
same states S = {0, 1,..., n}, action sets A(i) and transition probabilities p;;(a) as
the original one, except that all the costs from the non-terminal states are now
equal to —1, namely c(i,a, j) = -1 forevery i = 1,..., n, every a € A(i) and every
j=0,1,...,n
By letting all such costs be negative, we are in fact giving the player the incentive
to continue playing for as long as possible. Additionally, since all states contribute
the same to the player’s fortune, the player is rather indifferent to which states he
visits, as far as the incurred costs are concerned, and his only goal is to visit the
ones which will help him prolong the game.”!
Let J denote the optimal cost-to-go function for the modified problem. Then
for every stationary policy g and every i =1,...,n,

J(i) = min {Z pij(a) (- 1+7(j))}=—1+a12§n {Zpl,(a)](ﬁ}

<-1+ Z pij (@) (3.3.9)
j=1
Leté;=J(i) fori=1,...,nand f = max;_;,_p ‘(‘5—_11 We will show that § € [0,1).
Since c(i,a, j) <0 for every i, j and a € A(i), we also have that

N-1

Y cli, ak, ig+1) 1 io =i
k=0

Ji) = llm <0,

so &; = —J(i) = 0. Additionally, for every i # 0,

J@)=-1+ min {Z pl](a)f(])} <1,

ae

21Note also that since all the stationary policies are proper, the process will reach the terminal
state i = 0 at some point with probability one, no matter what policy the player chooses. So J, will
always be finite.
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soé;=1.

If pio(a) =1 for every a € A(i), then the problem is trivial. So, lets assume that
there exists some iy € {1,..., 1} and ag € A(ip) with pip,0(ap) < 1. Then J(io) =
-1 +Z7:0 pioj(ag)f(j) for some aj € A(ip). If p;,0(a;) = 1 for some a; € A(ip),
then -1+ Z?:o pioj(al)f(j) = —1, whereas

—1+ Y pij@a)J()=-1+ Y piyj(an)J(j)

j=0 j=1
-1-) piyj(ao)
j=1
=—-1-(1-piyoaop)
<-1
=-1+) pijla)J(j),
j=0

so a decision which leads to the terminal state with probability one, is never op-
timal. Consequently, J(ip) < —1 and ¢; i, > 1. Since &; = 0 for all i and there ex-
ists some 7y with ¢;, — 1 > 0, the quantity f = max;—; —_11 belongs to [0,1) as

.....

promised.*?

Let J,J' € C(S). Then for every stationary policy (,
| T () - T J' ()] = | Y pij (@) (e, p(@), )+ J())
j=0

n
=3 pa ) (e, p@), )+ 1))

j=0
=Y pij (@) - |[J(H =T
j=0

n

<Z pij (@) -JGH =7 (I
]:

=) piju@)-&;-

]:

=2 pijue; 1=
=

<p&|I-7 ||f. (3.3.10)

S

() =T (DI
$j

N

By dividing with ¢; and taking suprema, we obtain that T}, is a || - || contraction.

Concerning the operator T, by (3.3.10) we have that

T, J () < T J' () +BSi | T-T'||

22 Als0 for all stationary policies u and states i, we have that Z;?Zl pij(@)§j <& —1=p&;,s0

the “in particular” part of the proposition has been established.
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for every i = 1,..., n and every stationary policy u. So
rrbin T,J (i) =: TJ(i) SI‘I‘EH{T#I ) +BEi | T-T ”é}
:mJnTu],(i)"',Bfi l7=71
= TJ'G)+ i 7= 7]

and TJ(i)—TJ'(i) < Bé; ||]—]’||€. By reversing the role of J and J’ we obtain that
ITJ(@)-TJ ()| < pé; ||]— ]’||(f forall i, so once again, dividing with ¢; and taking
suprema yields the desired result. [ ]

3.3.2  The Q-Learning algorithm and its convergence

We consider a stochastic shortest path problem with state space S ={0,1,..., N},
action sets A(i) and costs c(i,a, j) fori =1,...,N, a€ A(i) and j € S. For every
(i,a) € S x A(i), we define the optimal Q-factor Q* (i, a) as

N

Q*(0,a)=0 and Q*(i,a)=)_ pij(a)(cli,a,j)+J*(j)) fori=1,...,N,
j=0

(3.3.11)

where J* is the optimal cost-to-go function, satisfying the Bellman equation,

i

N
J() = Igli{l) { Y pijla) (cli,a, )+ T () } (3.3.12)
a j=0

Plugging Bellman’s equation into (3.3.11), we obtain that

N
Q*(i,a) = Z pija) (c(i,a,j)+ min Q*(j,b)) fori=1,...,N, (3.3.13)
j=0 be A(j)

so the optimal Q-factors satisfy the functional equation (3.3.13). In fact, they are
the unique solutions of it:

Proposition 3.3.4: Consider a stochastic shortest path problem and suppose that
] satisfies (3.3.13) and also that J(0,a) = 0 for all a. Then ] is the optimal Q-factor

Q.
Proof. Set JIOE minge a¢) J(i,a) for i =0,..., N. In view of (3.3.13), J satisfies

N
Jti) = min J,a) = ggg)j;)pu(a) cli,a,j)+ bre%)fu,b)

N
= min ,;o pij@ (ct,a,j)+ 7)),
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which is just the Bellman equation. By the uniqueness of its solution, we have that
J = J*, which plugged into (3.3.13) yields that

N
JG,a) =) pij(@(cl,a,j)+ ()
j=0

N
=Y pij@(cli,a j)+T* ()
j=0

=:Q%(i,a)

forall i =1,...,N and a € A(i). For i = 0, we also have that J(0,a) = Q*(0,a) =0,
so J=Q*. [ ]

A direct analogue of the value iteration algorithm applied to Q-factors, would
be the iteration

N
QU,a):=)_ pij(@|c(,a,j)+ min Q(j,b)) (3.3.14)
j=0 be A(j)
In the spirit of the Robbins-Monro approximation, a more general version of it, is
to consider the convex combination

N
QU,a):=(1-7)QU, @) +Y)_ pijla) (C(l',a, J)+ min Q(j, b) (3.3.15)
j=0 be A(j)
of the previous value of Q(i,a) with the newly proposed one, with a weight of
Y € (0,1]. However, in the absence of any knowledge regarding the probability
distributions, or even the cost functions, it is not possible to solve (3.3.15) with
the standard methods.

Q-Learning [Wat89] is an algorithm that addresses this problem. Although the
transition distributions and the cost functions are not known in advance, we as-
sume that we can simulate values from them. In particular, we assume that at each
state (i, a) we can generate a new state j according to the transition distribution
pi.(a) and observe a cost of c(i, a, j).

The algorithm is essentially a combination of the Robbins-Monro stochastic
approximation and of the value iteration methods. In the absence of any knowl-
edge of the transition probabilities p;;(a), the expectation appearing in the right
hand side of (3.3.15) is replaced by a single value j which is drawn by the distri-
bution p;,.(a). Similarly, c(i, a, j) is the observed cost when the aforementioned
event occurred. The stepsizes y are also allowed to vary with each iteration 7 and
to depend on the current state (7, a). Most commonly, they are chosen so that
Y2, ¥nli,a) =00 and Y2, ¥, (i, @)? < oo for every i and a € A(i).

Qua1(i,a) = (1=yn(i,@) Quli,a) +yn(i,a) c(i,a, j) + bgg) Qn(j,b)|,

The sequence (Q,(i, a)), defined by the previous iteration, converges almost
surely to the optimal Q-factor Q* (i, a) for every i € S and a € A(i). The proof we
present here belongs to John Tsitsiklis [Tsi94].
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THE Q-LEARNING ALGORITHM

STep 1 Pick a sequence of functions (y,), defined on the set S=1{ia:
i=1,...,N,a € A(i)}, with the property that ¥%° ;v (i, a) = co and
Y oloYnli, a)? < oo for everyi=1,...,Nand a€ A(i).

Step 2 Initialize with some function Qg (i, a) for i =1,..., N and a € A(i).

SteEp 3  Suppose that Q,(i,a) has been generated for all such (i,a) for
some n = 0. For every (i,a), draw a value j;, according to the
distribution p;.(a) and set Qu+1(i,@) = (1 —yn(i,a)Qx(i,a) +
Yn(i,a) (C(i’ a,jia) + minbeA(ji,a) Qnji,a b))

STEP 4 Return to STEP 3.

Table 4: The Q-Learning Algorithm.

Theorem 3.3.5: [BT96, Proposition 5.5. (a)] Consider the Q-Learning iteration
Qu+1(i,a@) = (1-y,i, @) Qnli,a) +yn(i, @) |cl,a, j) + bx&i(r];) Qn(j,b)|, (3.3.16)

where j has been drawn according to the distribution p;.(a) and (yy), is such that
Yo Ynli,a) = oo and Zflozoyn(i,a)z <oo foreveryi=1,...,N and a € A(i). If
all policies are proper, then Q,(i,a) — Q* (i, a) for every i, a € A(i) almost surely,

where Q* is the optimal Q-factor.

Proof. Let S={(i,a):i=1,...,N,a€ A(i)}. This is a finite set and each Q-vetor
Q is a function Q: S — R and can be viewed either as an element in C(S) or as a
vector in RS, We define the operator H: C (S) = C(8) as follows. For every Q in
C(S),

N
(HQ)(i,@) =Y pij(@|c(i,a, j)+ min Q(j,b)). (3.3.17)
j=0 beA(j)
By letting w), be equal to
N
wp(i,a)=cli,a, j)+ brgg) Qn(j,b) —jgopij(a) (c(z, a,j)+ br&}(r}) Qn(j,a|,
(3.3.18)

the Q-Learning iteration (3.3.16) can be re-written as
Quiii,a)=A-yui,a)+Quli,a)+y,(i,a) (HQx(i,a) + w,(i,a)), (3.3.19)
with

N N
Elw,(i,@) | Fal= Y pij@cl,a,j)+ ) pij(a) min Q,(j,a)-
20 =0 acA(j)
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N N
_ j;opij(a)c(z, a,j)— j;opij(a) blgl/g}) Qu(j,a)

=0, and

E[wn(i,@)? | Fn] =[E[c(i,a,j)2+ min Qn(j,a)z\fn +
acA(j)

N 2
Z pij(a) +

j=0

+

c(i,a, j) brg(r})Qn(J a))

+E

2¢(i,a,j) min Qu(j,® |y
aeA(j)

N
-2 pija (C(i,a,j)+ min Qn(j,a))lE[C(i,a,j)IFn]—
j=0 be A(j)

N
— .. ; . . . . . 5
2];]%1 (a) (c(z,a,]) +b1g1[{(r;) Qn(],a))[E Lrég{}) Qn(j,a) |]:n

2
< K*+maxQ5(j, @) + 2K maxQ,(j, a)* + (K+maxon(j, a)z)
J,a J.a j,a

<A (1 +nr_1axQ(j,a)2
J,a

)

where K =max{c(i,a,j):i=1,...,n,a€ A(i)} and A = 2K*+4K+2. So the noise
terms (wp) ,, satisfy the assumptions of Proposition 3.2.15.
By Proposition 3.3.3, there exists a strictly positive ¢ € RV such that

N
Y pij@é; < BE;
i

forevery i = 1,...,N and a € A(i). Each Q can be seen as a vector in RM where
M is the cardinality of the set S. In particular, if one sets k; = |A(i)[, then Q :
RE*-+kv . R We extend & € RN into a vector & € R\T+kN by just repeating
each coordinate i of ¢, a total of k; times:

fl» lE[].,k]_],
éa, le(ky, b+ ksl

sl
~
Il
AN\

Enr le (Z:lz_ll ki» Z?:l kl] .

We can define the £ weighted supremum norm on R¥1*+*%~¥ and by the definition
of ¢ it has the property that

1Qlg= max 20

(3.3.20)
iacAl) &

for every Q € RFi+-*kv Let Q,Q' € REi*-+kv Then

|HQ(i,a) - HQ'(i,a)| =

N
j;pij(a) (a?Alf})Q(]’“) - Inin Q (J,a))

81



82

STOCHASTIC APPROXIMATION

. . . _ . I/«
ijla) arglﬁ(r})Q(],a) agg)Q (j,a)
. . _ ! .

(@) max |QUj, @) - Q'(j,a)|

<
<

.. .. |Q(j’a)_Q,(jra)|
(@& max, 3

N
2P
j=1
N
P
j=1
N
P
j=1
N
leij(a)fj-nQ—Q’llg
Jj=

<B&ilQ-Q'llg,

so H is a -contraction with respect to the weighted supremum norm. By Propo-
sition 3.2.15, (Qy) , converges with probability one to the fixed point of H, which
is just the optimal Q-factor Q*. [

Theorem 3.3.6: [BT96, Proposition 5.5. (b)] Consider the Q-Learning iteration
Qn+1(,a) =1 —yn(i,a)Qnli,a) +ynli,a)|c(i,a, j) +br€nj(r]1_) Qn(j,b|, (3.3.21)

where j has been drawn according to the distribution p;.(a) and (yp), is such that
Y oYnli,a) = co and Z;O:oyn(i,a)z < oo for every i = 1,...,N and a € A(i).
Suppose that there exists at least one proper policy, and that for every improper one
W, the corresponding value J* (i) is infinite for some state iy. If (Qn), is bounded
with probability one, then Q,(i,a) — Q* (i, a) for every i, a € A(i) almost surely,
where Q™ is the optimal Q-factor.

Proof. The operator H defined in (3.3.17) is monotone: Suppose that Q < Q' in
the usual order of RM, where M = |{(i,a):i=1,...,N,a€ A(i)}. Then
N
HQ)(i,a) = ij(a)|c(i,a,j)+ min Q(j,b
(HQ)(i,a) ]gopl,( )( (i, )+ min Q(j ))
N !/
< ii(a@)|cli,a,j)+ min i, b
jgopl,( )( (i, )+ min Q'(j ))
= (HQ)(i,a)
for every i and a € A(i). The operator H has also a unique fixed point. Indeed, a

fixed point Q of H must satisfy the functional equation

N
QU, a) =j§0pi j@|etia, )+ min Q(j,b) (3.322)

foralli=1,...,Nand a€ A(i), and Q(0,a) = 0 for all a. As we showed in Propo-
sition 3.3.4, this equation has a unique solution.
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Lastly, for every A > 0, by taking into account the monotonicity of H and the
fact that Q — Ae < Q + Ae for all Q, we have that

(HQ-Ae)(i,a) = Zp,](a) (c(z a,j)+ mm Q(] b))
j=0

N

ZZ ,](a)(c(z a,j)+ mm Q(] b) - )

2

=) pijla (C(z a, j)+ rmn (QUj.b) - /1))
]:

=H(Q-Ae)
<H(Q+Ae)

2

=) pijla (c(z a,j)+ mln Q(] b)+/1)
j=0

2

= Z ,](a)(c(z a, j)+ mln Q(] b))+/l
=
=(HQ+Me)(i,a)

for every i,a € A(i). This shows that HQ— e < H(Q—Ae) < H(Q+1e) < H(Q)+
Ae. By Proposition 3.2.16, we have that (Q,), converges to Q* almost surely, pro-
vided that it is bounded. [ ]
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Multi-armed Bandits

Multi-armed bandits is a subfield of Reinforcement Learning which was first for-
mulated during the early 50s through the work of Herbert Robbins. In the last
decades the interest towards it has re-emerged, resulting in strong contributions
both to its foundations and its practical implications. In Section 4.2 we present
the Robbins algorithm, which is a very basic argument that achieves maximum
mean reward asymptotically. The question of how fast this reward can be ap-
proached, requires some heavy machinery, and is studied in detail in Section 4.3
through the Lai-Robbins arguments. In Sections 4.4 and 4.5 we present the Auer-
Bianci-Fischer upper confidence bound algorithms, which simplify some of the
Lai-Robbins ideas with a relatively small price in performance.

4.1 Introduction

In its simplest form, the problem can be stated as follows: We are given the oppor-
tunity to draw samples from two different statistical populations A and B, speci-
fied by the distributions F4 and Fp, with finite means a and b respectively. Each
time we draw a value x, we get to keep it as a reward. Our goal is to draw a sam-
ple x1,...,x, in a way to maximize the expected sum S, = x; +...+ x,. In each
step, we can decide from which population we will draw the next value, based on
some rule which will possibly take into consideration the values sampled up to
that point.
By the linearity of the expectation,

n—ky

12 kn
E[S,/n] = —Z X,]——a+ b,
n :

where kj, is the number of samples drawn from A during the first n repetitions.
This means that E[S,/n] is a convex combination of @ and b and belongs to the
interval [min{a, b}, max{a, b}]. Clearly, if we knew the actual values of a and b
we could maximize E[S,/n] by constantly drawing from the population with the
largest mean. However, neither the values of a and b, nor their respective order
are known in advance.

In order to approach the problem efficiently, we need to employ simultaneously
two contradictory strategies. Firstly, we should draw enough values from both
populations in order to estimate the means a and b adequately. This implies that
we need to be willing to deliberately choose the suboptimal arm a fair amount of
times, so as to make sure that it is indeed suboptimal. Secondly, once we are fairly
certain on which arm is the optimal one, we should pick it progressively more
often, so as to maximize our expected profit.
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The first strategy is called exploration, whereas the second one exploitation, and
the multi-armed bandit setting is one of the most natural and didactic paradigms
of the so-called exploration vs exploitation dilemma/trade off, namely the problem
of finding the correct balance between these two conflicting strategies.

4.2 The Robbins algorithm

Let ¢ be a drawing rule from the populations A and B. Here ¢ : N — {A, B} is
just a function which at each stage n selects a population to draw from. The value
of ¢p(n) is usually not predetermined, but it depends on the values of the sample
obtained thus far until stage n. We define

Sn

L,(A,B,¢) = max{a, b} —E 7], (4.2.1)

a quantity that measures the distance between the expected value of S,;, when fol-
lowing the rule ¢, and the best possible outcome max{a, b} after n draws. Herbert
Robbins [Rob52] showed that there always exists a rule ¢ for which

lim L,(A,B,¢) =0,
n—oo

thus one can always approach this maximum asymptotically.

The rule proposed by Robbins, estimates the true values of @ and b progressively
and chooses the sampling population accordingly. In order to make sure that its
estimates for a and b are accurate, the rule has to draw infinitely many samples
from both populations and rely on the Law of Large Numbers to distinguish be-
tween a and b. However, drawing too many values from the wrong population
could potentially move E[S,,/ n] away from its maximum possible value max{a, b}.

Robbins ensures that E[S,/n] will be unaffected, by choosing to draw from A
and B for predetermined indices /4 and Jp € N. If /4 and Jp are sparse enough,
the drawn values will have no effect on the mean value of S,,. For the rest of the
indices N\ (J4 U JB), he allows the rule to draw from the population that seems
to be the best up to that point. In this context, the “sparseness” of a set is being
measured by its natural density, and by sparse subsets of N we mean infinite sets
with zero natural density (see Appendix C.1 for more details):

Definition 4.2.1: Let J < N. We define its natural density d(J) as

dQ) = lim Ot 1 (4.2.2)

n—oo n
provided that this limit exists.

An example of two disjoint infinite sets with zero density are J4 = {n® : n € N} and
Jp=1{n*+1:neN}.

For proving Robbins result, it will be useful to study the behavior of the Cesaro
averages of a sequence when we can “decompose” it into two subsequences with
known Cesaro limits, prescribed on index sets of known natural densities. Sup-
pose that we have two sequences (a,), and (b,), and a set J =N such that both
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J and J¢ are infinite. We can “merge” the two sequences into one sequence (cy),
according to the following rule:

For the indices that belong to J, ¢, will be equal to the first unassigned term
of the sequence (ay),, whereas for n ¢ J, ¢, will be equal to the first unassigned
term of (by),. In this way, the newly defined sequence (c,),, contains both (a,),
and (by,) ,, as subsequences, the exact positions of which are fully determined by J
and J¢ respectively. In mathematical terms, (c,,) , has the property that (a,) nen =
(cn)ney and (by) pen = (Cn)neje.

Definition 4.2.2: Let (a,), and (b;), be two sequences, and J N be a set such
that both J and J are infinite. We define the merge of (ay,), and (by,), over (J, J°),
as the sequence (c,), with the property that (a,)nen = (cn)nes and (bp) pen =
(cn)neje.

More explicitly, for every n € N set d, = #Jn{1,...,n}. Then (c,), can be de-
fined as

aq,, ifne]j,
Cn =
bn—d,,r ifneJje.

One can easily extend the previous definition in order to merge more than two
sequences.' Suppose now that we have two Cesaro summable sequences (ay)
(b)), and that J < N is an infinite set such that J€ is also infinite with d(J) well
defined. If we merge the two sequences over (J, J¢), we intuitively expect that the
resulting sequence (c;) , will also be Cesaro summable and that its sum will be the
weighted average of the two individual Cesaro sums, with the weights being equal
to the corresponding densities of the partition sets. The following lemma suggests
that the merge operation indeed respects the Cesaro limits and index densities.

Lemma4.2.3: Let (a,), and (by), be two Cesaro summable sequences with respec-
tive Cesaro limits a and b, and let ] < N such that both J and J¢ are infinite and
d(]) is well defined. Then, the merge of (an), and (by), over (J,J¢) is also Cesaro
summable, and its Cesaro sum is equal to c =d()a+ (1 —d(]))b.

Proof. Let (c,), denote their merge. Then by definition,

c+...+cp d1+---+dd,,+b1+---+bn—d,,
n n n
a+...+ag dn+b1+...+bn_dn n—-d,

a d, n n—dy n

n

’

with limy—.co 2 = d(J) and lim—.co =% = 1~ d(J) = d(J°).> Additionally, we
have that lim,,_. W = a and lim;_.o % = b, since both (d,),

and (n—d,,), tend to iﬂqﬁnity as n— oo. [ ]
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THE RoBBINS RULE

SteEr 1 Choose J4,/p SN infinite sets with zero density.

STEP 2  Suppose that a sample x,...,X;—; has been drawn. If n € J4, draw
X, from population A. If n € Jp, draw X, from B.

i:X;~F ) Xi i:X;~Fg} Xi
STEP 3 Forn¢]AU]B,setan=%andbn:%.lfanzbn

draw X, from population A, else draw it from B.

Table 5: The Robbins Rule [Rob52].

We can now state the Robbins rule and prove the asymptotic properties of
E[S,/n] under it, using the previous Lemma.

Theorem 4.2.4: Let A, B be two populations with mean a and b respectively, and
let (X,,)n be a sequence of random variables constructed according to the Robbins

rule. Then E [%”] — max{a, b}.

Proof. For each w € Q, let X,(w) be the n-th observation according to this rule.
Each X, (w) is either taken from population A or population B, and regardless of
the sampling strategy, the sequence (X}, (w)), contains infinite samples from both
populations. Let ®

I1(w) = {neN: X, (w) has been taken from A} and Ig(w) =N\ I4(w).

Although the exact elements of I4(w) and Ip(w) are not known in advance, it
is certain that they must contain J4 and Jp respectively, as on these two sets the
population from which the sample will be taken has been predetermined.

By the Strong Law of Large Numbers,

1
Xp(w) —— a and
#1,..., kNI () ne{l_"%ﬂmw T koo

1
Xp(@w) —— b,
#1,..., kN Ig(w) ne{l’_“%mw) T koo

for almost every w € Q. Suppose that a < b. Then for almost every w € , there
exists a n,, € N'such that n € Ig(w) for every n = n,, aslongas n ¢ J 4. Additionally,
(X, (w)), can be viewed as the merge of the two sequences (X, (w)) ner,w) and
(X5 (W) nery(w)- By Lemma 4.2.3, the Cesaro averages of the sequence (X, (w)),

1let (a},)n, s (afiv)n be N sequences and Ji,...,Jy a partition of N such that each J; is an
infinite set. We define the merge of them over the partition {/1,..., J} as the sequence (cy) 5, with
the property that (cp) pej; = (al), forevery i=1,...,N.

2See Lemma C.1.2 for the reason why d satisfies this measure-like property.

3The set I A(w) contains J4 and possibly some values of n for n < n,,. Consequently, it is con-
tained in the union of two sets, 14(w) S JaU{L, ..., ny}, both of which have zero density, the former
by our assumption and the latter being finite. By Lemma C.1.2, it follows that I 4 () has zero density
as well.
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converge to 0-a+1-b = b =max{a, b} for almost every w, since d(I4) = 0. Having
4 established the almost sure convergence of (S—n") n» we can additionally conclude
that E [87"] — max{a, b}, using the following argument:

Let € > 0. By the absolute continuity of the Lebesgue integral (Proposition
B.2.1), for each n € I, there exists some § 4 > 0 such that [ X,dP < €/2 for
every E with A(E) < 6 4. Similarly, for each n € I, there exists some 5 > 0 such
that fEXndP < £/2 for every E with A(E) < dp. Set § = min{6 4,0p}. Then for
every E with A(E) <9,

n_kn

k
flSn/nldms—nleAldm+
E n Je

k -k
ke n-kpe_

f|XB|dm
E

= g,

n 2 n 2

where k;, is the amount of samples taken from A during the first n draws and X4,
Xp are random variables with distributions F4 and Fp respectively. Additionally,
(Sn/n)p is bounded in L; by the triangle inequality:

1 n
1Sp/nllh =I1(Xy +...+ Xp) /0|y < " Z | X;ll1 < max{a, b}.
i=1
By Theorem B.2.3, (S,,/n), is uniformly integrable and by Theorem B.2.4, we ob-
tain that E[S,,/ n] — max{a, b}. [ ]

4.3 Asymptotically optimal lower bounds

The Robbins Rule achieves the maximum possible mean reward asymptotically,
but does not address the question of how fast this reward is approached. For real
life problems, where one is not allowed to play the game ad infinitum, but has
to stop at some finite time 7, the Robbins Rule could be completely impractical.
The rate of convergence question was addressed and answered in an impressive
manner by Tze Leung Lai and Herbert Robbins [LR85] more than 30 years after
Robbin’s original publication.

They showed, that for reward distributions that satisfy certain assumptions, the
regret of any algorithm may not grow slower than o(In n). They also proposed an
algorithm which achieves this lower bound, thus behaving optimally with respect
to its asymptotic rate of convergence.

4.3.1  The Kullback-Leibler divergence

The Kullback-Leibler divergence [Joy11], [BLM13, Paragraph 4.8], [Wail9a, Para-
graph 3.3.2] is a notion of distance between probability distributions that plays

41t is known from Probability Theory, that when a sequence of random variables (X;,),, con-
verges in L] to some random variable X, then it converges to it in probability. However, in general,
the converse does not hold, so in order to show that the converse holds for (S;,/n);,, we will have
to rely on some specific strong properties of it, namely its uniform integrability (see Appendix B.2).
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a central role in the bandit setting, both when trying to find asymptotic lower
bounds and when constructing algorithms that attain them.

Definition 4.3.1: Let (Q2,.4, P) be a probability space and suppose that Q is a
probability measure on A which is absolutely continuous with respect to P. Let
Y = Z—g. We define the Kullback-Leibler divergence I(Q, P) of Q with respect to
P, as

I(Q,P)::[Ep[YlnY]:lenYdP
=EqllnY] :flnYdQ.

The first line is the usual definition of the Kullback-Leibler divergence, whereas
in the second line we changed the measure with respect to which we integrate,
using the following theorem:

Theorem 4.3.2: [ABO06, Theorem 13.23] Let 1, v be sigma-finite measures on the
sigma-algebra A such that v is absolutely continuous with respect to . Let also
g= g—l‘; be the Radon-Nikodym derivative of v with respect to p. Then, for every
v-integrable function f, the function f g is u-integrable and

ffdv:ffgdp. (4.3.1)

When both Q and P are absolutely continuous with respect to some measure v
with densities f(x;A) and f(x; p) respectively, I(Q, P) can also be written as

1(Q,P) =TI\, ) = f ) Ao (4.32)
fow
Using Jensen’s inequality on the convex function ®(x) = xInx, it is easy to see
that I(Q, P) = 0. Additionally, I(Q, P) = 0 if and only if P = Q, however I does
not meet the rest of the metric axioms in general,”hence the term “divergence”
instead of “metric”

4.3.2.  The theoretical lower bound

Lai and Robbins make certain assumptions on the reward distributions. Firstly,
they assume that they are all parametric with densities belonging in the fam-
ily (f(x;0))geeo for some one-dimensional parameter space ©® < R. Secondly, the
Kullback-Leibler divergence between the members of the family (f(x;6))gee sat-
isfies a certain continuity type property, and thirdly, the set © itself is “rich” in
elements. We will explain what we mean in detail below.

°A glance at (4.3.2) reveals that I need not be symmetric, but even if we consider its “sym-
metrization” I'(Q, P) = %(I (Q,P)+I(P,Q)), which makes sense when both P and Q are absolutely
continuous with respect to each other, then I’ may still fail the triangle inequality.
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Assumption 4.3.3: The family of distributions f(x;A) has the properties that 0 <
1(0, 1) < co whenever u(A) > u(0) and that for every € > 0 and every 0, A € © such
that w(A) > w(0), there exists some 6 > 0 such that

|1(0,1)—10,1)| <&, whenever p(A)<pud)<ud)+86. (4.3.3)

This assumption is in fact a continuity-type property of I with respect, not to its
second variable, but rather to its dependence through p(A). Using an argument
similar to the proof of the sequential property of the usual continuity, we can
reformulate this assumption into a more intuitive one involving sequences.

Proposition 4.3.4: Let f(x; 1) be a family of distributions. The following are equiv-
alent:

(a) Forevery € >0 and every 0, A € © such that u(A) > u(0), there exists some
6 >0 such that |1(6,1) — 1(0,A")| < € whenever u(A) < (') < u(A) +6.

(b) For every A,0 € © with u(A) > u(0), and every real sequence (1), such
that u(A,) | p(A),° we have that 1(0,1,) — 16, A).

Proof. (a) = (b) Fix 0,1 € © with p(A) > u(0) and pick a sequence (1,), such
that p(1,) | p(A). Let € > 0. There exists a § > 0 such that for every A’ with
p) < p(A) < p(d) + 8, we have that |1(6,1) — 1(0,1")| < e. For this &, there ex-
ists some 19 € N such that pu(1) < p(A,) < p(d) + 6 for every n = nop, and thus
[1(0,1) —I(0,A,)| <€ for every n = ny.

(b) = (a) Suppose that (a) does not hold. Then there exists some £ > 0 and some
0, A € © with u(A) > u(0), such that for every & > 0, there exists some A such that
pA) < p(Ag) < () +6 and |10, 1) — 16, A5) | = €.

1

By setting 6 = > We can inductively construct a sequence (1,), such that

L) < pdy) < p) + % and |1(6,1) —1(0,A,)| =€ (4.3.4)

for all n € N. Without loss of generality, and by passing to a subsequence of it if
necessary, we may also assume that (1(1,)),, is non-increasing. By (b), we have
that 1(6,1,) — I(6, 1), which clearly contradicts the second part of (4.3.4). [ ]

Remark 4.3.5: Under the Assumption 4.3.3, if A, A are such that u(0) < u(A) =
(1), then I(6,1) = I(6,1"). Indeed, the constant sequence (1,),, for which A, =
A for all n € N, has the property that (u(1,)), is non-increasing with p(A,) —
A = u(Ah, so (1(6,1,)), converges to both 1(0,1) and 1(0,1"), by part (b) of
the previous Proposition.

Assumption 4.3.3 involved a “compatibility” condition between the Kullback-
Leibler divergence and the expectation function p. The second assumption they
impose, involves a condition between the parameter space © and p:

5We use the symbol ay, | @ to denote a sequence of real numbers (), which is nonincreasing
and convergent to a.
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Assumption 4.3.6: The set © < R is such that for every A € © and every 6 > 0, there
exists some A' € © such that

nA) < ) < pd) +6. (4.3.5)
This is a density assumption that can be equivalently reformulated as follows:

Assumption4.3.7: Let A = p(0) < R denote the image of © under pu: © — R. Then,
for every € >0 and every a € A, we have that

(a,a+e)NA#QP. (4.3.6)

In particular, every point of A is an accumulation point of it. Indeed, let a € A
and apply (4.3.6) for £, < L to inductively construct a strictly decreasing sequence
(an)p in Awith a, — a. Equivalently, A is dense in itself, meaning that it contains
no isolated points.” We therefore have the following proposition:

Proposition 4.3.8: A set A < R satisfies (4.3.6) if and only if for every a € A there
exists some strictly decreasing sequence (an), in A with a, | a.

So, Assumption 4.3.6 can be restated again:

Assumption 4.3.9: For every A € O, there exists some sequence (Ay)p in © such
that (L(A )y is strictly decreasing with (A,) | w(A).

At this point, we should stress out how Assumption 4.3.6 and Proposition 4.3.4
(b) complement with each other: The former asserts that it is always possible to
approach any p(A) with a strictly decreasing sequence (1£(1,)),, while the latter
allows us to conclude that 1(6,1,) — I(6,7).

During the proof of the main theorem, we will use the fact that when a sequence

of random variables (X},), has the property that % — a > 0 almost surely, then
maXg=1

""" Xk also converges to a almost surely; a fact that follows from the lemma

Lemma 4.3.10: Let (ay), be a sequence of real numbers such that % —a=0,and

let (M), denote the sequence of its partial maxima, M, = maxy=, ,{ax}. Then
M, _ maXi-1,..nidkl

— a.
n n

Proof. Suppose first that a = 0. Let £ > 0 and pick some rng € N such that % <$
for every n = ng. Then

My _ Mp, + maxildny+1l,-...1anlt _ My N max{lany+1l,...,lanl}
n n n n
M, la, |
=—24+ " forsomek,€{nyg+1,...,n}
n
_ My, |k lai,|
n n k,
My, ¢
S —
n 2

"However, not every dense in itself set satisfies (4.3.6); for example A = [0,1].
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. M,
for n > ny. Pick also an n; € N such that —2 < % for every n = n;. Then for every
n = max{ng, n1}, we have that % < g, so limsup,, Ma < 0. On the other hand,

n
%z%—»o,so%—»o.

n
Suppose now that a > 0. Set b,, = a,, — na and

ML= max {|bgl}= max {la; - kal}.
k=1,..,n k=1,...,n

. n _ Qn . MZ .
Since =% = “2 — a, by the previous step we have that =2 — 0. Notice that

M?  maxy_y, nflag —kal}

n n
_ maXg=1, ., nlar — ka}
B n
maxg=1, ,n{ar —na
B n
. maxkzl,...,n{ak} _
n )
with the LHS tending to zero. So limsup,, Aft" < a. Additionally,
M} a
2 _az=—"-a—0,
n
from which we conclude that liminf, % >a. [ ]

Suppose that we have K bandits with parameters 60,,...,0x € © and expecta-
tions p(601),...,u(0k) respectively. For every j € {1,...,K}, we partition the set
©F={(01,...,0x) :0; €© Vi} into ©F =0; UOF UO**, where

0= {9: 01,...,0K) - u(0;) <r¥;a]xp(9,-)},

@;‘f = {9: 01,...,0K) : u(6;) >r§;a]xu(0,-)},

0;" = {9 =(01,...,0K) : pu0)) = ma,X,u(Hi)}.
i#]

The set ©; contains the parameters for which j is not the best arm, the set @;f the

parameters for which j is the unique best arm, whereas the last one the parameters

for which j is the best, but not the unique best.

Theorem 4.3.11: [LR85, Theorem 2] Suppose that the families of distributions of
the arms satisfy Assumptions 4.3.3 and 4.3.6. Fix an index j € {1,...,K} and let ¢
be any rule such that for every 0 € G);.,

Y EglTn(i)] = o(n®) forevery a>0. (4.3.7)
i#]
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Then, for every 0 € © and every € > 0,

. . _(Q-8&lnn]
o Tn(j) 1
1 fE = . 4.3.
M T | 7 105,0m) (439)

Proof. Supposethat j=1,0€0©; and8* =0, and fixad € (0,1). Since i = 2 is the
unique best arm, we have that p(6;) > p(61). There exists some A € O such that

@A) > @) and |1(61,4) - 1(01,05) < 51(01,05). (4.3.10)

Indeed, if we set € = §1(6;,60,) and apply Proposition 4.3.3, we obtain a §’ > 0
such that (4.3.3) holds, namely [1(61,1)—1(01,02)| < 61(61,02), whenever u(6,) <
p(A) < (@) +8'. By the density Assumption 4.3.6, there exists some A € © with
1(62) < w(A) < u(62) + &', from which we obtain (4.3.10).

We define a new parameter vector y = (1,60,,...,0). Since p(A) > wu(6,), we
have that y € ©7. Additionally,

n=7Y EJT,()] =E [T,(D]+ ) Ey [T, ()],
i=1 i=2

which implies that

n
Eyln—Ty(D)] = Y E/[Ty()] = 0o(n® forall ae(0,6) (4.3.11)
i=2

by the asymptotic property (4.3.7), which also holds for the parameter vector y.

Using the Markov inequality, we can find a lower bound for Ey[n — T} (1)] with

respect to the probability of the events A, = [Tn(l) < uﬁgf%” :

Ey(n—T,(1)] =fA (n- Tn(l))dPy+fAE (n—Ty(1)dPy

> f (n—T,(1)dPy,
An

as n—T,(1) =0. On the set A, we have that n— T,,(1) > n— uﬁgf%", so for every
ac€(0,0),

B 1-9)Inn

ay — —
o(n®) =k, [n-T,(1)]=zn 0.1

Py (Ap). (4.3.12)
Let Y1, Y, ... denote successive observations from the first arm and set

L= In(f(Y;;60)/f(Y;,1). (4.3.13)
i=1

Let also

Chn=A,n[Ly,0)<(1-a)lnn]. (4.3.14)
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p, An InnP,(A,) 71— .
For the sets A,, we have that ( ) _lnn nya( ) 1(191% — 0, and since the second

term of this sequences converges to zero, we conclude that Py (Cy,) < Py(Ap) =
o(n%1.
For every k-tuple 71 = (n, ..., ng), let

An=[Ta(D)=ny,...,Ty(K) =ng and L, <(1-a)lnn].

Then

Py(Ap) = H fyiA) H f(%02) - H foS00dy

A i=1
f(.Vl» ) I nK }
:f —l_[f(ylﬂl)]"[f(y,,ez) Tl ro500dy
Aj f(yl’gl) izl
2 fis )
:_[ rlzfl—f T . (4.3.15)
Aj Hi:l fyi;01)
The inequality L,, < (1—a)Inn implies thath‘ In ’}((yy’ Al)) < (1-a)Inn and thus,
In H; 1 ]{((;t@l) <—-(-a)lnn,so (4.3.15) yields that

l’l
L) - _
Py (A7) = —dp > Py(Az)e” =@ - pa-lp 4.
v (An) f INTORTR 9 = Pp(An)e n 0(Ar)

n

for every Aj. Since C, can be written as the disjoint union of the sets Ay for 72
such that n; +...+ ng = n, the same inequality holds for the sets C,, as well:

Py(Cy) =n'"*Py(Cy) — 0 forall n. (4.3.16)

By the Strong Law of Large Numbers, L—’” -1 (01 ,A) > 0 almost surely with respect

to Py, and by Lemma 4.3.10, p. 92, so does
For every n, we set b, = (11(3 )1/111)n We have that

L; (1 —a)lnn
Pg max L;>(1—-a)lnn|="Py
=1,...,[by] i:1 ..... [bn] [bn] [by]

L; Ql-a)lnn ]
i:1 ..... [bn] [bn] (1—6)lnn/1(01,/1)

> (1+M)I(91,/1)] -0

.....

I(01,1). Therefore, if we set Bn = [LTn(D < (1-a) 1nn] we have that Pg(B,) — 1.

In turn, this implies that lim,, Pg(A;) = lim, Pg(A; N B,) =lim Py(C,) =0

1 1
By (4.3.10), 15,75 = a5a77m@55) S©

T, <=0l o519
" 16,1) -

1-0)Inn

o1 1W< G 510,,00

<Py
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and (4.3.8) is established.

Lastly, we show that liminf, E [ Th”l(rjl') = R 9 - Let € > 0. By the Markov in-
equality,

Tn(]) Tn(])dp+ Tn(])dp
Inn h>1g]lnn Tu E]lnn

Inn=16;6* Inn ~1(0;,6%)

l1-¢ T, 1-¢

= — = ,
10,6 |Inn~ 16,6%)

so, by taking limits we obtain that

o Tn(j) 1-¢ Ty l-¢ l-¢
1 fE =i f — = = . (4.3.18
miE | | = e o P e = 10,0 | ~ 16,00 41
Since (4.3.18) holds for every € > 0, by letting € — 0, we have that
liminf €| 220> L
n Inn 10,0%)
as we wanted. [ ]

Theorem 4.3.12: Suppose that the families of distributions of the arms satisfy As-
sumptions 4.3.3 and 4.3.6. Let ¢ be a rule whose regret satisfies the property that

R, (0) = o(n®) (4.3.19)

for every 0 = (04,...,0x) € ©K and a > 0. Then for every 0 such that the u(0;) are
not all equal, we have that

Rn(e) - Z /J* _H(Gi)

liminf > .
e nn 16,,6%

(4.3.20)
i) <u*

Proof. We will use the elementary property from real analysis, according to which
for any two real sequences (ay) ,, (by)n»

limir’%f(an + by) = lim ir’%fan +liminfb,,.

By applying it for R,, we obtain that

RO Y (0 - p0)Eg[Ta(D)]
liminf =liminf
n nn n Inn
Eg[ T, (i
= (,u*—,u(Hi))liminf—B[ n(@)]
() <p* " Inn
B = u0:)
ip(i)<p* I(Gi,e*)

which establishes 4.3.20. [ ]
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4.3.3  An algorithm which achieves the theoretical lower bound

In the same article, Lai and Robbins proposed an algorithm which achieves the
optimal lower bound. The principle behind their idea is called optimism in the face
of uncertainty and can be summarized as follows: Recall that in the classical Rob-
bins Rule, at each stage we compared the populations sample means and chose
the one with the largest. In this algorithm instead, the arms which have not been
explored enough are not represented by their sample mean, but by an upper con-
fidence bound of it. By comparing the sample means of some arms with the upper
confidence bounds of some others, we are giving the algorithm the incentive to
explore more.

This principle of regarding the upper confidence bounds to be better indica-
tor of what the expectation could be, than the sample mean, will be a common
theme in all of the algorithms we present in this chapter. However, it is important
to realize that the difficult task of finding a balance between exploitation and ex-
ploration, has not been addressed yet, but has only been reformulated into: How
large should the confidence intervals be?

The larger the intervals, the more our algorithm tends to explore, but the more
it explores, the less it exploits. Optimism, as a general principle, is a first step to-
wards the right direction, but when actually employing it, one needs to also be
prepared for the difficult task of quantifying exactly how optimistic he is willing
to be. As one can already imagine, determining the upper confidence bounds re-
quires extremely delicate work.

Lai and Robbins tackle it by listing certain axioms the upper confidence func-
tions g,; need to satisfy. They also allow for the sample mean to be replaced by
some more general statistic / satisfying another list of axioms, but we should keep
in mind that both of these classes of functions are intended to generalize the no-
tions of upper confidence bounds and sample means respectively.

Assumption 4.3.13: For every n€ N and i = 1,...,n, there exist Borel functions
gni : R" = R, called the upper confidence bounds, such that for every 0 € ©, every
r < u(@) and every A with () > u(@),

" Pg[gni(Y1,...,Y)) = p(A) — €] _ 1

lim |1i =< , 4.3.21

H RN I TZETR
Py(r<gnii,....,Yy) foralli<n|=1-o0(n"") and (4.3.22)
gni is nondecreasing with respect to n = i for every fixed i. (4.3.23)

The existence of such functions is not straightforward and [LR85, Section 4]
contains some general rules of constructing them, as well as specific examples for
several known distributions. However, things are a little easier when constructing
the expectation estimates:

Assumption 4.3.14: There exist functions h; : R* — R, called point estimates of the
expectation, which satisfy the following properties:

hi<gni foralln=i (4.3.24)
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and
Py 6max [hi(Y1,...,Y:) —u@)| >¢ =o(n (4.3.25)
n<i<n

forall@€®,e>0and b€ (0,1).

An example of a statistic that satisfies (4.3.25) is the sample mean h(Y1,...,Y,) =
w = 87" We can show this, using the Kolmogorov and Marcinkiewicz - Zyg-
mund inequalities.

Theorem 4.3.15 (Kolmogorov’s Maximal Inequality [Gut13, Thm 1.6, p. 122]):
Let (X,)n be a sequence of independent random variables with E[X,] = 0 and
V(X,) < oo for all n e N. Then, for every € > 0,

Y VXY VS, E[S?
P| max [Si|>¢| < =k=L _VSa) _ES:T (4.3.26)
1=k=n g2 €2 X
If, in addition, the sequence (X), is identically distributed, then
nV(X)) nEIX]]
P| max [Sgl>¢| < (2 U _ ~L (4.3.27)
1<k<n & &

We actually need a strengthened version of Kolmogorov’s Inequality (for a proof,
see [Saal7] or [D0090, p. 317]), where the exponent 2 is replaced by any p = 1:

Theorem 4.3.16 (Doob-Kolmogorov): Let (X,), be a sequence of independent
random variables with E[X,] = 0 and V(X},) < oo for all n € N. Then, for every
e>0andp=1,

p
< El1SxI7] ) (4.3.28)
ep

P | max |Si|>¢€

1<k<n

Theorem 4.3.17 (Marcinkiewicz-Zygmund Inequality [MZ37]): Let (X,), bea
sequence of independent random variables with E[X,,] = 0 and E|X,|P < oo for all
n €N for some p = 1. Then, there exist constants Ay, B;, depending only on p, such

that
n pi2 n
2 2
(ZXJ (ZXk
k=1 k=1

for all n. If, in addition, the sequence (Xp), is identically distributed, then there
exists a constant B, depending only on p, such that

pl2
ApE <E|S,|” < ByE ] (4.3.29)

nBXE|X;|P, lsp=<2,
[E|Sn|p5{ pEIXil p (4.3.30)

nP?B,E|X1|P'?, p=z2.

Proposition 4.3.18: [CR75, p. 55] Suppose that (Yy), is an i.i.d. sequence for

which there exists some p > 2 such that E[|Y1|P] < co. Let also u denote their com-
mon expectation. Then the sample means Y ,, = w satisfy property (4.3.25),

namely

= o(n_l)

Pg[ max I?,-—,u|>£
on<i<n

foralle >0and 6 €(0,1).
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Proof. For the sequence X,, = Y,, — u, we have that that E[X},] = 0 for all n and
E[1X;[P] < co. Additionally, 57" = % =Y, — p. A trivial, but extremely im-
portant observation, is that

1

on

i

1

max - > €

on<i<n

> € max

on<i<n

This allows the denominators appearing in these events to be absorbed by ¢, so
that we can apply Kolmogorov’s Inequality afterwards.

Pyp| max |Y;—pul>€e|=P| max |—|>¢
on<i<n on<isn| 1
<P| max [—|>¢
sn<i=n|dn

Py | max |S;| > ned
1<i<n

E[Sh]
T nbPePbp
_ nPPBEIX, 1P
nPebPHp

Kolmogorov’s Inequality

Marcinkiewicz-Zygmund

By multiplying with n, we obtain that

P Vi-u>el < o
n max P — els——s—
0 on<i<n imH I’lp/?‘ ’
sinceg>1.
[ |

To return to the multi-armed bandit setting, suppose that we have K-bandits
with densities f(x;01),..., f(x;0k) and let ¢ be a rule of sampling from them.
For each je{1,...,K}, let T,(j) denote the number of times ¢ sampled from the
j-bandit during the first n-stages, namely

Ta(j)=#{ief{l,...,n}: () = j}. (4.3.31)

We denote the successive observations from the j-bandit during the first n-stages
as Yj1,..., Yjr,(j), and in accordance with our previous discussion, we define the
mean estimates and upper confidence bounds of (6 ;) based on this sample as

Bn() = h1,y (Yj1,--, Yjr,(j) and (4.3.32)
Un(j) = gnr,(jy (Yj1--- YiT, () (4.3.33)
respectively.

Lai and Robbins use the point and upper confidence bound estimates to con-
struct their algorithm: We fix a § € (0,1/k) and define their rule ¢ adaptively
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as follows: During the first K-rounds, we pick each arm exactly once. For every
n =K, we set

In={je{l,....K}: Tn(j) = 6n}.

By the Pigeonhole Principle, these sets are always nonempty. Indeed, if some I,
was empty, then T,(j) < nd should hold for every j = 1,...,K. But then, n =
27:1 Ty (j) < nké < n, a contradiction. For all such n’s, we also set

jn=argmax{fin(j):j€I,} and [i,(jn) = max{i,(j):j€ In}.

Suppose that the rule has just drawn its n-th value with n = K and let j €
{1,...,K} be such that n+1=j mod K. Then

P(n+1) = i i gn(n) s Un(j), (4.3.34)
jn, otherwise.

So, the algorithm compares the mean estimate of the current leader among the
bandits which have been played enough times (= 6 n), with the upper confidence
bound of the newly proposed bandit, and chooses accordingly.

THE LAI-ROBBINS ALGORITHM

Step1  For k=1,...,K set ¢p(k) = k.

STeEP 2 Suppose that ¢p(n) has been drawn for n = K and let j be such
that n+1 = j modK. Set I, = {ke{l,...,K}: Tp(k)=6n}, j, =
argmax{fi,(k) : k€ I,} and fi,(jn) = max{f,(k): k€ I,}.

Ster 3 If i, (jn) < Upn(j), set p(n+ 1) = j, otherwise set ¢p(n + 1) = jp,.

STEP 4 Go to Step 2.

Table 6: The Lai-Robbins Algorithm [LR85].

We mention two lemmas which will be used in the proof of the convergence rate.

Lemma 4.3.19: If for the real sequence (ay), we have that limsup,, a, < M, then
a, <M+o(1).

Proof. Clearly a, < M+ a, — M for all neN. Set
b < a,—M, whena, =M,
n=
0, when a,, < M.

It is easy to confirm that a, < M + b,, for all n and that b, — 0. [ ]

Lemma 4.3.20: If (a,)n is o(n™Y) then (£, a,)y = o(InN).
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Proof. We will show that for every £ > 0 there exists some Ny € N such that
ZnN:I an < elnN for every N = Nj. Since (a,), is o(n™1), there exists some 7
such that a, < £ for every n = no. By the elementary inequality ¥/, L <1+
le 1dx=1+InN, we obtain that

no—l £ }’10—1 £
<) ap+-(InN-In(np-1)< ) ap+-InN
n=1 2 n=1 2

N M
M=
S|~

N }’10—1
Y an< ) an+
n=1 n=1 n=nop

for every N = ny. Pick some n; such that ZZ":_II ay < §Inn;. Then for every N =

max{ny, n1}, the inequality ¥, a, < £ holds. ]

Theorem 4.3.21: [LR85, Theorem 3] Suppose that 1(6,1) satisfies Assumption
4.3.3 and let ¢ be the Lai-Robbins rule. Then for every 0 = (01, ...,0k) and every j
such that p(0;) < u0*),

Eg[T,(j)] < ( +0(1))ln n. (4.3.35)

16 i 0*)
If, in addition, © satisfies the density Assumption 4.3.6, then Eg [T, (j)] ~ % for
every such j, and the regret R, of ¢ satisfies

Proof. Let L denote the set of optimalarms, L={l € {1,..., L} : u(0;) = u(0*)},and

set € < %min{p(e*) —u(0)) : j ¢ L}. For every j ¢ L and N € N, we can partition
the event T () as follows:

(4.3.36)

Tn(j) =#{ne{l,...,N}:p(n) = j}
=1+#{nefl,....N=1}: jpe L1,(ju) —u@")| <e,p(n+1) = j} +
+#{ne{l,....N=1}: ju € L |fin(jn) —p@O")| > &, p(n+1) = j}+
+#{nefl,...,N-1}: jp, ¢ Lp(n+1) = j}
<1+#{ne{l,...N=1}: jp€ L |fin(jn) — @) <e,p(n+1) = j} +

A
+#{ne{l,....N=1}: ju € L |fin(jn) —p@")| > e} +
Ay

+#{ne{l,...,.N-1}:j, ¢ L}.

Ay
In order to bound Ay, notice that since |fi,,(j,) — (@*)| < € and ¢p(n+1) = j, then
it has to be that g,;(Yj1,...,Y};) > u(0*) — &, where i is the number of observa-

tion taken from the j-bandit after the first n < N — 1 rounds. Furthermore, gy,; is
increasing with respect to n, so

A =2+#{1<i<N-1:8n;(Yj1,...,Yj)) 2 n(0") —€}. (4.3.37)
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Let A% = [gni(Yj1,..., Yji) = w(A) — €]. By (4.3.21), we have that

1
T I6,0)°

Py (AS
hm (hm sup Z a )
nin Inn

so for every p > 0, there exists some &9 > 0 such that

Py (A7) 1 p
I
lms%pizl mn 10,67 10,09

for every 0 < € < £9. By Lemma 4.3.19,

" Py (AE) 1+p
> = 70,07 +o(1),

i1 Inn
which implies that

L 1+p+o0(1)
Py(AS) s ———1

for all 0 < & < g¢. Lastly,

1+p+o0(1)

1
10,00

E[#{1<i<n:Af occurs}]

n
=E|) Ip
e

=) P(AD <
i=1

for € small enough.
For the A, term, let By, = [j, € L, |1 (jn) — p(0*)] > €]. By (4.3.25),

Pg[By] < Py |max max |h;(Yiy,..., Vi) —p@*)|>¢e| =o(n™),

leL dn<i<n

so, by Lemma 4.3.20,

N-1
EglAz] = Y o(n”') = o(InN). (4.3.38)

n=1

We will show in Lemma 4.3.22 that Eg[As3] is also o(In N), so combining all the
above we obtain that

1+p+o(1)

B0l Tu()1 = g5

Inn forall p>0.

Therefore, with an argument similar to the one in the proof of Lemma 4.3.19,

Eo[Tn(j)] = ( +0(1))lnn. (4.3.39)

10;,0%)

The additional part follows from (4.3.39) and (4.3.9). [ ]
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Lemma 4.3.22: Under the notation of the previous Theorem and its proof, let c e N
and forr =0,1..., define

K
A= max

j=1loc=n=crt!

hn(Yj1,...,Yjn) —p@))| < €| and

By = [gni(Yi1,---, Vi) 2 u(0*) —¢, V1<i<dn, ¥c" ' <sn<c.
leL

Then Py(AS) = o(c™") and Py(Bf) = o(c™"). Additionally, if ¢ > 25, then j, € L
forall ne(c",c"™ on A, N By, for r sufficiently large. Consequently,

N
Eg[#l<n<N:j, &L} =) Pyljn¢Ll=o0(nN).
n=1

Proof. For fixed c and r as in the statement of the Lemma, we consider the se-
quence of intervals

h=[6c"1 H],

In+1 [5—n+1 r— 15 n r 1]

’

until 57 "¢"" = ¢! for the first time, namely for n=ng := [ Zhlln;] +1. Then

|hn(Y]1, an)—,u(Hj)|>£

), SO

Scr— 1<n<cr+

no

nel;

max|h (Yj1,..., Yjn) — (@) > €

L)
= Z ( ), by Property 4.3.25,

since K is constant and ny is independent of r. Regarding B¢, for t =0,..., ng, let
c 1

ny = [ 57 ] and
Di=([8ni(Yn,-.., Yii) = u(0*) — ¢, Vi < ny].
leL
By (4.3.22),

Py(DY) <Y Po([gn,i(Vi1,..., Vi) = p(0*) ¢, Vi< ny|°)
leL

<#L-o(n; ")
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=o(n; "

=o(c™"),

the last one following from the inequality ¢’ ™! —1 < n, < § ¢! +1 for ¢ =
0,...,n9. Given n € [¢"!,¢"*] and i € [1,6n], there exists a t € {0,...,n9 — 1}
such that 7,41 > n > n; = i. Indeed, the inequality n,, = ¢"*! > ¢’ = ny =
[c™ 1 yields the existence of some ¢ € {0,...,n9 — 1} with n;4; > n = n,. By the
monotonicity of the family g, we have that g,,; (Y1,..., Y;) 2 gn,i (Y11,..., Y1) 2
u@*)—eforallle Lon ﬂ?ioDr- Since Bf U';QODI we obtain that

g
P(Bf) < Z PDy) = (ng+Dolc N =o0(c").
t=0

For the additional part, suppose that ¢ > ﬁ. Let v (n) denote the number of
times ¢ samples from L during the first n rounds. Then

vi(m) =) T,() < Z?&xTn(k) =#L-max T, (k), so

leL leL
vi(n)
<maxT, (k). 4.3.40
o na (k) ( )

We consider the round n+1=1 mod K with [ € Land ¢! < n < "1, We will
show that ¢) must sample from L on the event AN B;. According to the algorithm,
if j, € L, then the only two candidate arms to sample from during the n+1 round,
are j, and [, both of which belong to L, so ¢ draws from L trivially. So only the
case where j, ¢ L needs to be addressed.

Suppose that j, ¢ L. Since T, (j,) = 6n and 2¢ < u(0*) — max;gr pu(6;) (see p.
101), we have that

fn(jn) s?&xu(ﬁﬂ +e<u@*) ¢ (4.3.41)

on Ay. For the [-arm there are two possibilities, either T,,(I) = dn, or T,,(I) <6 n.
When the former holds, on A, we have that

pO*)—e<hr,iy(Yin,..., Yir,ay) < &nr, 0y Y115 YiT, (), (4.3.42)

$0 fin(jn) < &nr,y(Y11,..., Y11, 1)) and ¢ samples from ! € L at round n+1.
When T,,(1) < d n, the same is true, since

pO*) —e < gur,(h Y1, Yiz,(jy)

on the event B,. Therefore, ¢ always samples from L on the event A, N B,, at every
stage nn+ 1 for which n+1=1 mod K with I € Land ne [¢""},c 1.

In order to find a lower bound for v (n) on A, N B;, we diverge slightly from
the Lai-Robbins article, and additionally assume that ¢ = 2, § and k are chosen

such that they also satisfy the relations § < 155z and 1—12-1 > §¢.® Observe that

80ne can easily verify that there always exists such ¢, § and k.
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on the interval [c" 7!, n], the algorithm always draws from L during the round m
when m+1=1 mod K with [ € L, something which occurs at least #L times for
each cycle. Then,

Observations from L Observations from L
on the interval [1, K] on the interval [¢" !, n]

vi(n) 2#{

> #L 4+ #L- #{ Disjoint intervals of}

length K in )

n_cr—l
=sL 4L |
K

n_cr—l
2#L+#L-( —1)
K

n— Cr—l

K
c"1-chH
K
=>#L-c"6¢c
>#L-On.

=#L

= #L

Comparing it with (4.3.40), we obtain that on A, N B, max;er, T, (1) > dn for all
nelc,c™ 1. In particular, the set {fi,,(I) : T,,(I) = 6n, [ € L} is nonempty, so

max{fi,(k): Tn(k)=6n, kg L} < m;pr(ej) +te<u®*)-¢
J
<min{f,(): To() =6n,le L},

and ¢ draws from j, € Lfor ¢ <n<c"*!' on A, N B,.
For the final claim, by the previous argument, [j, ¢ L] < A% U B¢, so

Pyljn & L1 < Pg(A}) + Po(B;) = o(c™"),

fornec",c ™, so

Cr+1

Y Poljng LI < ("™ —c"+Do(c™) =c"olc™) +0(1) = 0(1).

n=c’
Forany NeN, Y Pyljn ¢ L1 =Y5_ 1 Poljn @ LI+ X)_ .,  Poljn & L]. We pick a
k € N such that ¢cf < N < c**1. Then k < llnn—lg, hence

k+1 k+1

N c c? c
Y Poljn€Ll< ) Poljn€Ll=) Pyljn€Ll+...+ Y Poljn¢ Ll

n=ck

InN
=ko(l) < —o0() =0o(nN).
Inc

Combining the above together,

N 4
Y Pyljn¥Ll=)_ PyljngLl+o0(nN)=co+o(nN)=o0(nN),
n=1

n=1

as we wanted. [ ]
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4.4 The upper confidence bound algorithm

A serious drawback when implementing the Lai-Robbins algorithm, is that it does
not provide us with a general rule of constructing the upper confidence bounds
functions g;. Designing such functions has only been achieved for specific dis-
tributions, but even when we do have examples of g,;, actually computing them
is demanding.

Peter Auer, Nicolo Cesa-Bianchi and Paul Fischer [ACBF02], proposed an al-
gorithm called the Upped Confidence Bound Algorithm (UCB) which addresses
these issues. It relies on a similar sampling rule as with the Lai-Robbins, where
the populations are drawn after comparing their mean and an upper confidence
bound estimates. Here the mean estimates are just the sample means and the up-
per confidence bounds are

_ 3lnn
Ej 1\ 5 (4.4.1)
nj

where X;,,,; is the average reward obtained so far from machine j and n; is the
number of times machine j was played during the first 7 rounds.” In essence, the
principle of optimism under uncertainty is still present, but the hard task of find-
ing and computing the Lai-Robbins functions g,;’s is replaced by computing the
simple expression (4.4.1). Their algorithm achieves logarithmic regret, although
with a larger logarithmic constant than the Lai-Robins method.

THE UPPER CONFIDENCE BOUND ALGORITHM

STEP 1 Play each machine once.

Step 2 During the n2 + 1-th round, play the machine that maximizes X;,,; +

\/ 3212_”, where X, is the average reward obtained so far from ma-
)

chine j and n; is the number of times machine j was played during
the first n rounds.

Table 7: The Upper Confidence Bound Algorithm (UCB) [ACBFO02].

Remark 4.4.1: In any implementation of the UCB algorithm, each hand is played
infinitely often with probability one. This follows by an argument similar to the
one used in the proof of the consistency of the Robbins rule (Theorem 4.2.4): Sup-
pose that there exist some arms, say A < {1,..., K}, which after an implementation
have been chosen only finitely many times. Let also N4 < co denote the last round
during which an arm from A has been chosen.

9The actual the upper bound formula that was given by Auer et al. was X jon; t/2R8, but we
1 j
will use this slight modification [Mun14] as it leads to a better logarithmic bound (6/ A? compared

to 8/ A? of the original one). However, both of them are larger than the Lai-Robbins constant.



4.4 THE UPPER CONFIDENCE BOUND ALGORITHM

For every j ¢ A, the set N; = {n: ¢(n) = j} is infinite, so by the Strong Law of
Large Numbers, %;,,, — p(j) as nj — oo. Since we draw from j infinitely many
times, it has to be that for any k € A,

= 3lnn = 3lnn _ = 3lnn
. 280 >
x]v"j + \/ 2n; > Xieny + V 2np = Xieny + \V 2n,4

for infinitely many n’s. After a few manipulations, this implies that for n large
enough so that the quantity X, — X;,n, is near its limit a, we have that

Bnn (1 _ 1\
2~ )z

holds for infinitely many n’s, which is a contradiction since the LHS of this in-
equality tends to —oo.

Theorem 4.4.2 ([ACBF02, Theorem 1]): Suppose that we run the Upper Confi-
dence Bound (UCB) Algorithm on K arms with expectations [, ..., ix and reward
distributions Py, ..., Pk supported on [0,1]. Then, during the first n rounds, every
suboptimal arm k is expected to be played E[Ty(n)] times with

6lnn 7?
E[Ti(m)] = A2 +?+1, (4.4.2)
k

where A = u* — ux. Additionally, the expected regret R, after n rounds is at most

K Inn 2
R, := np*—z,uj[E[Tj(n)]SG Z —+K(—+1). (4.4.3)
j=1 k:A>0 Ak 3

Proof. Suppose that a suboptimal arm k is pulled during round n > K, namely
¢(n) = k ¢ L. This means that

3lnn _ 3lnn

—— > Xp* T (n—-1) +1 —————— 4.4.4
ST 1) = VKT D) ( )

x 1+
k, Tr.(n—-1) 2T (n—1)

for every optimal arm k* € L. Additionally, for every k* € L, at least one of the
following three claims must hold:

N ¥ 3lnn
(D) Xkr, T (-1 +\/ 3T (oo <K

ey — 3lnn
(i) Xk, 1e(n-1) > Mk +\/ T -1

31
(ifl) px+24/ 2Tk(1;zfl) >y,

Indeed, if both (i) and (ii) failed, then

. o= N 3lnn due to (i)
< Xk* T (n— —_— ue to (i
H= Xk Te o) F\[ 5 R70 )
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_ 3lnn
= Xk, Te(n-1) m due to (4.4.4)
3lnn
<Up+2{| ——— due to (ii
Bi+24 2Ten—1) ue to (ii)

and (iii) would hold. Therefore, at every stage n > K, either a suboptimal is not
pulled, or at least one of (i)-(iii) holds. Let n > K and set a,, = Gm” + 1. Then,

[an]

n
Tx(n) = Zl[d)m k1<21+ Y Lipw=k Te(>(an)]

t=[a,]+1

<an+ Y Tip(o=k, T (01>, )
r=ian+1

Let t = [a,] + 1 and consider the events A; = [p(t) = k, Ti(£) > [an]]. Since

Tt > (@] 61nn+1 6lnn
a,l = _

claim (iii) fails to hold' for any such ¢ = [a,]+1,...,and since ¢(?) is suboptimal,
for these s either (i) or (ii) must hold. Using Hoeffding’s Inequality (Theorem
B.1.7), we can bound the probability of the event appearing in (i) as follows:

= 3lnn * = 31nn
p xk*ka*(n_1)+\/m<u ]SP Xies+\/ S <p” forsomel<s<t

<Y P|Xpe s+ 302 <
s=1
t t 1 1
-6Int _
SZe —ZES§.
s=1 s=1

With a similar argument we obtain the same bound for the events in (ii), so Ty (n) <
a, + Z?:[a,,]+1 Iy, with P(Ap) < % for all . Therefore,

BTl <an+2 3 2 61n"+”2+1
TR .V IR

k

The bound for the expected regret is then

2
Z AGE[Te(m)] < Z Ak(mAnn +%+1)

k: Ak>0 =1 k
Inn n?
<6 ) —+K|—+1
k: A>0 Ak 3
which completes the proof. [ ]

10\When (iii) is true, it has to be that T (- 1) < 6ln¢



4.4 THE UPPER CONFIDENCE BOUND ALGORITHM

Although the UCB algorithm achieves logarithmic regret, the logarithmic con-
stant in the expression

6
EycslTj(n)] < A—lnn+c (4.4.5)
j
is greater than the one in the Lai-Robbins algorithm,
E <( 1 +0(1))lnn< 1 +0(1)|Inn (4.4.6)
=1 T10;,0M ~\2a2 ’ -

1
2
2Aj

THE LAI-ROBBINS ALGORITHM THE UCB ALGORITHM

since the factor W is less or equal than 5 by the Pinsker Inequality.

Makes certain assumptions on the reward
distributions (they need to be parametric,
to satisfy certain properties with respect
to the Kullback-Leibler divergence, etc.).

Involves a family of “upper confidence
bounds” functions gy;, the construction
of which is not straightforward. Even
when they are available, their actual com-
putation is usually demanding.

Achieves logarithmic regret asymptoti-
cally.

The logarithmic constant in the expres-
sion for regret is f for any suboptimal
J

machine j.

The only assumption is that the reward
distributions need to be supported in
[0,1].

The “upper confidence bound” functions
are simple, easily implemented and com-
putationally efficient.

Achieves logarithmic regret both asymp-
totically and uniformly in time.

The corresponding regret constant is

6 o 1
> 5.
a; 7 2A;

Table 8: A comparison between the Lai-Robbins and the Upper Confidence Bound Algo-
rithms.

Theorem 4.4.3 (Pinsker’s Inequality): [BLM13, Theorem 4.19] Let P, Q be two
probability distributions on (X, A). Then

5(P,Q) < \/éup, Q.

where 8 (P, Q) = sup 4 4 |P(A)— Q(A)| is the total variation distance and I(P, Q) is
the Kullback-Leibler divergence between the two distributions.

(4.4.7)

Corollary 4.4.4: Let X*, X; be random variables on (X,,P) with expectations u*
and i respectively. Set Aj = pu* — ;. Then

I(Px+, Px)) 22A§.
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Proof. By Pinsker’s Inequality, 26 (PX*,PX].)2 < I(Px+,Px;), so it suffices to show
that 5(PX*,PXj) > Aj :
Aj=E[X*] -E[X]]
1
:f (PIX* > 1] -P[X; > 1) dt
0
1
sfo sup |Px- (A) - Px; (A)| dt
A
=06(Px-, Px;),
as we wanted. [ ]

Before closing this section, it is worth to mention that using the Cauchy-Schwarz
Inequality, we can also obtain a bound for the regret which does not involve the
unknown quantities A:

Corollary 4.4.5: The expected regret of the UCB algorithm is bounded by

2
R, < Kn(Glnn+?+1). (4.4.8)

Proof. Applying the Cauchy-Schwarz Inequality to the formula of the regret, we
obtain that

K K / K 1/2
E[Rp] = Y AVEITe(WIVE[Ti(n)] < (Z AirE[Tk(nn) (Z [E[Tk(n)])

kzl : =
61nn nz nz
A? 61 —+1||,
<\/_\l ; ( A ) \/ nn+ 3t ))
as A €10,1] for all k and thus Y¥5_, A2 < K. [ ]

4.5 The upper confidence bound algorithm with epochs

As we saw in the previous paragraph, the UCB algorithm achieves logarithmic
regret growth, but the logarithmic constant is larger than the optimal one. In the
same article, Auer et al. constructed an extension in which the logarithmic con-
stant can get arbitrarily close to it. The main principles of this algorithm are the
same as in UCB, but there are also two main differences.

Firstly, the upper confidence bounds have a slightly more involved expression,
and secondly, the arm chosen in each round is not played just once, but instead
the algorithm sticks with it for a whole time interval called epoch. The lengths of
these epochs get increasingly larger the more often an arm is picked, resulting in
larger exploitation progressively. The rate in which these lengths increase needs
to be chosen carefully, and is closely related to the exploration-exploitation trade
off.
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THE UPPER CONFIDENCE BOUND ALGORITHM WITH EPOCHS

Step 1  Initialize with r; =0 for j=1,...,K and play each machine once.

Step 2  Select the machine j that maximizes the quantity X; + ay,,;, where
Xj is the average reward obtained so far by the j machine, ay,,; =

en
r(r]-)
Zr(rj)

done so far overall.

(1+a)ln
, T(r) = [l + @)"] and n is the number of total pulls

Step 3 Play the j machine exactly 7(r; +1) —7(r;) times.

STEP 4 Setrj:=rj+1 and return to STEP 2.

Table 9: The Upper Confidence Algorithm with epochs (UCB2) [ACBF02].

The algorithm contains a parameter a € (0,1) which the researcher is free to
choose as he desires. The value of it has a direct effect on the rate of growth of the
epoch lengths, and thus to the asymptotic behavior of the regret. Indeed, the r-th
epoch of an arm when parameter a is used, has a length of L, (r) = [(1 + a) -
[(1+ a)"]. We will discuss the practical implications of this formula in the end of
the paragraph, after we have established the corresponding asymptotic properties
of the regret.

Remark 4.5.1: For small values of a, the quantity 7(r; +1) — 7(r;) which appears
in Step 3 may be equal to zero, which means that the algorithm picks a machine
but never actually draws from it. However, this does not cause much trouble
[Sta20] since by proceeding to Step 3, we set rj := rj + 1 and return to Step 1
for the next iteration.

As no value was drawn, all the quantities X + a,,r, remained unchanged for
k # j. Additionally, for the j machine, we have that r; is equal to rj = r +1 for
some r with the property that 7(r + 1) = 7(r). Plugging this into a,, > We obtain

that
\/(1+a)lnr(ffl) \/(1+a)ln%
a .=a = = =da ’
mry = Sl 27(r +1) 27(r) mr

so the value of a,;; remained the same as well.

This implies that when we repeat the Step 1 of the algorithm, the same machine
j will be picked again. But this time it will be played a total of 7(r +2) —7(r + 1)
times. If this number also happens to be equal to zero, then after a finite number
of iterations we will definitely end up with a non-zero quantity. This is clear from
the inequality 7(r+1) —7(r) = (1+ a)" (1 + @) — 1 — oo, so after a finite number of
possibly “empty loops”, the algorithm always pulls the arms it chooses.

Theorem 4.5.2 ([ACBF02, Theorem 2]): Let a € (0,1) and suppose that the up-
per confidence bound algorithm with epochs (UCB2) is run on K machines having
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expectations p(1),..., w(K) and reward distributions Py, ..., Pk respectively, sup-
ported in [0,1]. Then, the expected regret Ry, after n = max;.y,<y* 557 is at most

(1+a)(1+4a)In(2eAin) ¢,
+ —
24 A

Rp< )

L <p

: (4.5.1)

where cq is a constant which converges to infinity as a — 0.

e

Proof. Suppose that n = Ty for all suboptimal arms j and let 7; be the largest

integer such that
(1+4a) 1n(2eA§)
202
J

T(?j—l)S

For r =1, we have that 7(r — 1) = 7(0) = 1, whereas
2
(1+4a) ln(ZeAj) 1+4a

2A2 = A?
] ]

>1+4a>1=1(r),

so it must be that 7; > 1. Due to the presence of epochs, the total number of pulls
from an arm j during the first 72 rounds T'j(n) has a more complicated expression:

T](n) =1+ Z @) —-1(r-1) I[machine Jj finished its r-epoch]

rz1
=1+ T(Fj) -7(0) + Z (@(r) = 7(r = 1) Iimachine J finished its r-epoch]
r=rj+l
= T(F]) + Z @) —-7(r-1) I[machine Jj finished its r-epoch] - (4.5.2)
rzrj+l

In particular, if machine j just finished its r-epoch when the total draws were 7,
then Tj(m) =1+Y;_, (x(k) —7(k-1) =7(r).

Pick a suboptimal machine j and suppose that it just finished its r-epoch. Then,
there must exist a previous point in time, say ¢, where j was picked to start its r-th
epoch. At this time ¢, (a) the machine had already finished its r — 1-epoch, thus
had been played exactly 7(r — 1)-times up to that point, and (b) some epoch just
finished and we entered the comparison stage. The result of the comparison was
to pick machine j, thus we had that

Xjor-1) + Ar,r-12 X; ) + A, (4.5.3)

where X7 ;) + a;,; was the upper confidence bound of the optimal machine. The
latter machine had been chosen during i-epochs until time ¢ for some i = 0, re-
sulting to a total of 7(i) draws, hence the indices that appear in X7 ;) + a;,;. Notice
also that £ = 7(i) + 7(r — 1) since the optimal machine and machine j have been

played 7(i) and 7(r — 1) times respectively up until round ¢.
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Therefore, there exists some i =0 and ¢ = 7(r — 1) + (i) such that (4.5.3) holds.

In turn, this implies that either there exists some ¢ = 7(r — 1) with

aA]

Xjr(r-1) + Qt,r— = B

or that there existsan i =0 and a 7/ = 7(r — 1) + 7(i) with

ali;
—% % ]
oy ¥ ari SH -

Indeed, otherwise for every i = 0 and ¢ = 7(¢# — 1) + 7(i) we would have that

- . GAj
Xjror-ntarr-1 <l — ) < x‘[(l) +ay i,
which contradicts (4.5.3).
Suppose now that machine j just finished its r-epoch during round n. Since
a;,r is increasing with respect to ¢, we also have that either
al j

Xjror-n+anr-1Z [ = - (4.5.4)

or that there exists an i = 0 such that

aA]

f:(i)Jr“T(r—l)H(i)z u R (4.5.5)

By taking expectations in (4.5.2),

E(Tj(m]<t(F))+ Y (z(r)—7(r—1))P[machine j finished its r-epoch]

I‘>Fj+1
A
<tFp+ Y @n- r(r—n)P[x],(, Dzt =2
r>r]+1
£ Y Y a0 -1 = P[F )+ Qrnsen < p - ]
r>r i+1i=1

and we need to bound the probabilities of these two events. Firstly, observe that by
(1+4a)In(2eA?) 1

the definition of 7}, for every r > 7, we have that 7(r — 1) > T > Z?’
)
(1+a)In T(r”l) (1+a)In T(r”l) \/ﬁ
An,r-1= \/ T VR (1+4a)In(2eA?) =Aj\ Traa (4.5.6)

AZ
]

which is also less or equal than A;(1 + a) for a < 0.1. We bound the probabil-

ity of the events [x jar-nFanro1 = — —] using Hoeflding’s Inequality. The
random variables appearing in the Cesaro sum X; ;(r—1) are i.i.d. with mean p;,
sO

al;
P[x”" nFanr-1= 4 __] P[x]Tr Nt a1z pj+A -t
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al;
(A]-—Tj—an_,,l)r(r—l)

7(r-1)

=P yj,r(r—l) = ﬂj +

dAj

2
<exp (—Zr(r— 1) (Aj - - an,r_l) )

<exp(-2r(r- DAY (1- 4~ (1-@)’)

-1)A2q?
<exp (—w) (4.5.7)
for a < 0.1. Using the elementary inequality

N=[0+a) 1<0+a) +1=(0+a) 'Q+a)+1

<0+a)  Nl+a)+1=10r-DA+a)+1,

we have that for the function g(x) = fT_;, the inequality g(x) < 7(r — 1) holds for

everyr=1 and x€ [t(r—1),7(r)]. Set ¢ = A?az < 1. Then,

o0 o r1(r)
f e 8Wgx= Zf e 8Wqx
0

r=1J71(r-1)
() T(r)
> Zf e—cr(r—l)dx
r=1J1(r-1)
[e.@]
=Y @r-D-1(r)e TV
r=1
_ al;
> (T(r—l)—T(T))P[xj,r(r—l)+an,r—l >u" -,
rzrj+l
Additionally, [5°e™°8Wdx = eTva 112 < (IAJ;Z;E, so
_ al; (1+a)e
Y, @ =D=1()P|Xjre-n+an-12p" ~ 5| < — 5 (458)
rzrj+l A]’a

_ A; . . .
For the events [x:(i) + ar(r—1)+16),i S B — %] , using again Hoeffding’s Inequal-
ity, we have that

2A2
J

_ A NGy D+l
p [x:m + Ar(r_ 1)1ty S U — %] <exp (—‘L’(l) 5~ —(1+a)ln (ew))

T(i)

and the expression

—x% * Aj
A= Y Y am-tr=0P[F+ G <4 - 3]

r=rj+lizl
can be bounded by
1(D)a’A’

AsZexp(— . ) y (T(r)—r(r—l))(1+M)7lia.

4 = T(i)
=0 rzrj+l
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. -1 —-1-a T(r=1) —-1-a
We define the function h(x) = (1 + m) . Then h(x) = (1 + W)
for every x € [1(r —1),7(r)] and for all i,

(‘)(1+a)l+a> ()1+6l(1 ) f ()d
g =T (l+6l)‘L'(l) glaax

oo t(r) “1-a

7(r-1)
Z[( I T
i

r—1)
1-
(r(r) -t —1) (1+2250) 7,

SO

(4.5.9)

1+a
A< (HTa) Zr(z)exp(

2
T()a Aj)
i=0

We define the function w(x) = (1+ a)* + 1. Then, for every x € [i, i + 1], we have
that w(x) =7() = 1+ a)*"}, so

o0 (1+ax Ta2n? i+l (1+a)* a2
1+f wx)exp|-———1 dx—1+z w(x) exp _T] dx
1 i=1
00 i+1 x=1,2 72
. (1+a)* " aAs
=1+) T(z)exp(—T’) dx
i=1i
i+1

(i) a?A?

21+Z' T(i)exp(— > f)dx

= Z T(z)exp(

1(i)a AZ)

One can verify that

o0 (1+a)*' a®A? 1 et [oex
1+f W(X)eXp(—%)dst— —+f ——dx|,
1 In(1+ a) 1 X
a2A2 —X
where 1 = ) a) The last expression F(A) = /1 L. f £-dx can be bounded
from above by F (/1) < 1op = 151[(1122‘2’). Combining all the previous steps, we obtain
j
that
E[T‘(n)]<r(7_)+(1+a)e+(1+a)1+“ Lt 111 +a)
ST AZa? a In(l+a) 5a2A’
_ (1+a)(1+4a) In(2enA?)
witht(F)<(Q+a)r(F;-1)+1< a +222n e + 1, therefore,
j
(1+a)(1+4a)In(2enn?) Q+ae . (1+a\1+a 1 1(+a)
[E[Tj(n)] = 2A§ +1+ AZ >t (Ta) 1+ n(+a) 5a2A§

(1+a)(1+4a)In(2enA?2) 1+
J 1 ((d+a)e l+a a 11(1+a)
= 247 A% ( a? +( a ) (1 + 5a21n(1+a)))
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1+a)(1+4a)l <,
_( +a)(222 a)lnn + 5, (4.5.10)
] ]
(1+a)(1+4a) In(2eA?) 1+
r_ J (1+a)e 1+a a 11(1+a)
for ¢/, = e +1+ ST 4 (1) (1+—5a21n(1+a))- [ ]

Relation (4.5.10) is particularly informative regarding the algorithm’s behavior.
Its first term reveals that, regardless of the choice for a € (0, 1), the algorithm al-
ways leads us to a logarithmic asymptotic regret. The second term is a constant
that we may not avoid, and despite the fact that its effect will vanish as n — oo,
it may not be negligible for small n’s. By picking a sufficiently small, we can ap-
proach the optimal asymptotic lower bound arbitrarily close. However, although
the first term W converges to the Lai-Robbins bound lznT’; asa— 0,
the corresponding sec]ond term c/, tends to infinity. This means that th]e closer we
want to get to the optimal bound asymptotically, the higher the toll we have to
pay in finite time.

This is a typical aspect of the exploitation-exploration trade off that we men-
tioned in the beginning on the paragraph, when we stressed out the significance
of the rate in which the epoch lengths increase. By definition, the length L,(r)
of the r-th epoch of an arm is equal to L,(r) = [(1 + a)"™ =11+ a)"], and one
can easily verify that the sequence (L,(r)), increases more slowly as a decreases.
This has the implication that for small values of a, the first epochs last relatively
short, giving the algorithm more opportunities to explore between the arms. This
increased tendency to explore, especially in early stages, leads to the appearance
of the large constant c/,.
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Part I1I

APPENDIX

In our thesis we heavily relied on results from diverse fields of Pure
Mathematics, most of which are not usually taught at an undergrad-
uate level. In this appendix, we present them in a relatively brief but
coherent manner. The curious reader will certainly find fascinating
the fact that in order to establish results with such important practi-
cal applications, it was necessary to build on deep theoretical tools.






Functional Analysis

This appendix contains basic definitions and results that we need from Functional
Analysis. We use [Arg04] and [Gia03] as our main references, although complete
treatments and proofs of them can be found in any Functional Analysis or Hilbert
Space Theory book.

A.1  Metric spaces

We first mention a few results from metric spaces that we need.

Definition A.1.1: Let X be a nonempty set. A metric p on X is a function p :
X x X — R that satisfies the following properties:

(i) Forevery x,ye X, p(x,y)=0and p(x,y) =0ifand onlyif x = y.
(ii) Forevery x,y€ X, p(x,y) = p(y,x).
(iii) Forevery x,y,z€ X, p(x,y) < p(x,2) + p(¥, 2).
The pair (X, p) is called a metric space.

A metric space (X, p) is called complete if every Cauchy sequence is convergent.
In any metric space, if we consider a finite family of open and dense sets (Ui);’zl,
their intersection U = M_, U; is also open and dense. This result does not con-
tinue to hold in general when the family (U;)$2, is countable. Baire’s Category
Theorem asserts that this intersection is dense, if one works in a complete metric

space.

Theorem A.1.2 (Baire): Let (X, p) be a complete metric space and (Ui)‘l?il be a
sequence of open and dense subsets of it. Then their intersection U = (52,U; is
dense in X.

A very useful consequence of Baire’s Theorem is the fact that if a complete space
can be written as the countable union of closed sets, then at least one of them has
a nonempty interior.

Theorem A.1.3: Let (X, p) be a complete metric space and (Fp),, be a sequence of
closed subsets of it with X = UF,,. Then there exists some ng € N such that ﬁno £ .

A.2  Normed spaces

Definition A.2.1: A normed spaceis a pair (X, ||-|I), where X is a real vector space,
and |- || : X — R s a real function that satisfies the following axioms:
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(i) Forevery x€ X, [x|l =20, and [ x|l =0 if and only if x = 0.
(ii) Forevery xe X and AR, [|[Ax| = Al x]|.
(iii) Forevery x,ye X, Ix+yl < lxll+1yll.
A complete normed space is called a Banach space.

Every norm induces a metric p on X, by defining p(x,y) = [l x — yl| for every
x,y € X. In this way, tools and results from real analysis can be used, or even be
strengthened significantly, during the study of normed spaces.

Definition A.2.2: Let (X, ||-||) be a normed space and f : X — Rbeareal function
on X. We say that f is linear if f(Ax+py) = Af(x)+puf(y) for every x,y € X and
A, p e R.If, in addition, f is continuous, it is called a bounded linear functional, or
simply a bounded functional.’

The space X* is always a Banach space, under the norm defined by

|x*|l = sup |x*(x)|, forx* e X",
X€By
where Bx = {x € X| : |lx|| < 1} denotes the unit ball of X. Although X* is always
nonempty, as it contains the zero functional, it is highly nontrivial to show that it
contains nonzero elements when X is infinite-dimensional. This is asserted by the
celebrated Hahn-Banach theorem, along with its consequences [Arg04, Chapter
5], which show that X* has a wealth of elements.

Theorem A.2.3 (Hahn-Banach): Let X be a linear space and p : X — R be a sub-
linear functional, namely p(Ax) = Ap(x) and p(x+y) < p(x)+p(y) for every A >0
and x,y € X. Suppose that Z is a linear subspace of X and f : Z — R is a linear func-
tional with the property that f(x) < p(x) for every x € X. Then there exists some
linear functional f : X — R such that f(x) = f(x) for every x € Z and f(x) < p(x)
for every x € X.

The property that f(x) = f(x) on Z denotes that f is an extension of f, whereas
the property that f(x) < p(x) for every x € X denotes that f is still dominated by
p on the whole space, and not only on Z. The most common proofs of the Hahn-
Banach theorem require some form of the Axiom of Choice, although there exists
proofs without the use of it.

One of the most important applications of the Hahn-Banach theorem, is that
one can always separate any element x of a normed space X from any closed sub-
space of it Y < X which does not contain x, with a bounded and linear functional.
This consequence was used in the proof of Cybenko’s Universal Approximation
Theorem:

I'The term bounded comes from the property that a linear functional f is continuous if and
only if | f(x)| = Ml x| for some M > 0 for every x € X. Clearly, nontrivial linear functionals can
never be bounded in the usual sense, since their image is the whole real line f(X) =R, however the
term bounded has prevailed due to the aforementioned property.

2In cardinality terms, X* contains at least as many elements as X [KS16]. This is equivalent to
the fact that dim X* = dim X.



A.3 HILBERT SPACES

Proposition A.2.4: Let (X, |- |) be a normed space, Y < X be a closed subspace of
it and let x € X \'Y. Then there exists some f € X* such that f(x) =d(x,Y) >0,
Ifll=1and f(y)=0forevery ycY.

A.3  Hilbert spaces

Definition A.3.1: Let X be a vector space. A mapping (,-) : X x X — R is called
an inner product if it satisfies the following axioms:

(i) Forevery x€ X, (x,x) =0 and (x,x) =0 ifand only if x = 0.
(ii) Forevery x,y€ X, (x,y) = (¥, x).
(iii) Forevery x,y,z€ X and A, u e R, (Ax+ uz, y) = A(x, y) + udz, ).
In every inner product space, the Cauchy-Schwarz inequality holds:

Theorem A.3.2 (Cauchy-Schwarz inequality): Let (X,:,-)) be an inner product
space. Then for every x,y € X,

1<, M < VX, 0V, 00, (A.3.1)

with equality if and only if x and y are linearly dependent.

Every inner product induces a norm on the underlying space, defined by ||x|| =
V/{x,x). If X is complete under this norm, then X is called a Hilbert space. An
easy consequence of the Cauchy-Schwarz inequality is that the inner product (-, ) :
X x X — R is a continuous function when X x X is equipped with any product®
metric [Arg04, Proposition 4.4]:

Proposition A.3.3: Let (X, (:,-)) be an inner product space. If x, — x and y, — ¥,
then (xp, yn) — (X, y).

Norms induced by inner products, enjoy two very useful geometric properties,
the Parallelogram Law” and the Pythagorean Theorem. Their proofs follow im-
mediately from the defining properties of the inner product:

Proposition A.3.4 (Parallelogram Law): Let (X, :,-)) be an inner product space.
For every x,y € X, the parallelogram identity holds

Ilx+ylI2+lx—yI? = 2llxI* + 2l yl%. (A.3.2)

3Things get more complicated if one asks whether the inner product is a uniformly continu-
ous function. In this case, the answer depends on which product metric has been used and, not
surprisingly, for every inner product space (X, (-,-)), there always exist two distinct, but equivalent,
product metrics on X x X, such that (-,-) is uniformly continuous with respect to one but not with
respect to the other.

4 As a matter of fact, inner product spaces not only have property (A.3.2), but are completely
characterized by it, in the sense that a norm is induced by an inner product, if and only if it satisfies
the Parallelogram Law. In order to prove the converse direction, one considers a norm || - || which
satisfies the Parallelogram Law, and defines a function ¢p: X x X — Ras ¢(x,y) = %(I|x+y||2 —lx-
y||2). With some moderate effort, one can show that ¢ is an inner product which induces || - ||.
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Definition A.3.5: Two elements x, y of an inner product space are said to be or-
thogonal, if (x, y) = 0. We usually use the symbol x L y to denote this. Similarly,
if A, B are subsets of X, they are called orthogonal when a L b for every a € A and
beB.

Proposition A.3.6 (Pythagorean Theorem): Let (X,(-,-)) be an inner product
space and x,y € X such that (x,y) =0. Then

Ix+ ylI2 = x> + I ylI°. (A.3.3)

If an inner product space is also a Banach space under the norm induced by the
inner product, then it is called a Hilbert space.

Definition A.3.7: A complete inner product space is called a Hilbert space.

The typical example of a Hilbert space is

lo(N) = {(an)n DI oo},
n

the space of square summable real sequences,” equipped with the inner product
defined by (x, y) =307, Xy, for every x = (x,), and y = (), in £>. In a similar
manner, one can define the £, space for every 1 < p < oo as the space that contains
all sequences (a,), such that Y%, |a,|P < co. All the £, spaces are Banach spaces,
however ¢, is the only Hilbert space among them.® The basic inequality |al? <
|a|” which holds for every p < g and a such that |a| < 1, and the fact that any
summable sequence has to converge to zero, thus eventually the absolute value of
its terms are less than one, has as a consequence that £, < ¢, for every p < q. This
inclusion is always strict when p < g. In particular, we have that ¢, c £,, and in
the spirit of Robbins-Monro, we say that the elements in the set £, \ £, are type
1/n sequences.

In our thesis we are mostly working on the Hilbert space of square integrable
functions on some compact set X < R:

Ly(X) = {f:X—» R :[ F(x)?dA(x) <oo},
X

equipped with the inner product

(f, 8= fxf(x)g(x)dﬂt(x)

for f,g e Ly(X).

Definition A.3.8: A family {e; : i € I} in an inner product space is called orthonor-
mal, if |e;|| =1 for every i€ I and e; L ej forevery i # je I.

5In a certain sense, /5 is the only Hilbert space as every Hilbert space H is isometrically iso-
morphic to £2(x) for some set x of cardinality equal to the Hilbert dimension of H. By the term
Hilbert dimension we mean the cardinality of the smallest orthonormal basis of H.

5For any p # 2, one can easily find x,y € ¢ p for which the Parallelogram Law fails to hold.
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It is easy to see that every orthonormal family is a linearly independent set. If
{e1,..., ey} is a finite orthonormal family and F), is the subspace generated by it,
then {ey,..., e,} is called an orthonormal basis of F,,. Furthermore, for every finite
n-dimensional subspace F of an inner product space, we can find an orthonormal
basis of it, having cardinality n, using the Gram-Schmidt process.

Perhaps one of the most striking results in Hilbert spaces H, that may not neces-
sarily hold in an arbitrary normed space, is the fact that for every x € H and every
closed subspace M, there always exists a unique projection of x on M. Recall that
if x is an element of a metric space (X, p) and M < X is a subset of it, we define
the distance between x and M as d(x, M) = inf{p(x, m) : m € M}. In general this
infimum may not be attained, even when M is a closed set. 7

However, when (X, || - ||) is a Hilbert space and M is a closed and convex subset
of it, there always exists an my € M such that d(x, M) = p(x, mp) = ||x — mpl.
Furthermore, my is unique and has the property that x — m is orthogonal to M.
This result also applies when M is a closed subspace of X, as every subspace is a
convex set. We will state the result for finite dimensional subspaces F, although it
holds for infinite dimensional subspaces as well, with some obvious modifications
[Arg04, Proposition 4.21]:

Proposition A.3.9: Let (X,(:,-)) be an inner product space and F be a finite di-
mensional subspace of it, having {e1, ..., en} as an orthonormal basis. If x € X, then
the closest point of x to F is the element yo = .1 (X, e;)e;, that is, yo satisfies the

property that | x — yol = d(x, F). Additionally, x — yy is orthogonal to F.

The element y; of the previous proposition is called the projection of x on the
subspace F, and is usually denoted by yy = Pr(x). The projection of x on F is the
only element z of F with the property that x — z is orthogonal to F:

Proposition A.3.10: Let (X, (-,-)) be an inner product space, F be a closed subspace
of it and Pr(x) be the projection of x on F. Suppose that z € F satisfies the property
that x — z is orthogonal to F. Then z = Pr(x).

Proof. We have that

lz— Pr(x)|I* = (z— x + x — Pp(x), z— Pp(x))
=({z-x,z2— Pp(x)) +{(x— Pp(x),z— Pp(x))
:(),

both z — x, x — Pr(x) being orthogonal to F, and z— Pr(x) € F. [ |
A.4  Topological vector spaces

In every normed space (X, - ) the addition and scalar multiplication opera-
tions are continuous. Topological vector spaces are the natural generalization of

7 As an example, one can take X = (0,1) U {2} equipped with the metric induced by the usual
metric in R. Then F = (0,1) is a closed set in X, the distance between 2 and F is equal to one, yet it
is not attained.
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normed spaces, where the norm is replaced by a topology 7 that “respects” the lin-
ear structure of X, meaning that the vector space operations are continuous with
respect to 7. To avoid trivialities, we usually work with Hausdorff® topologies.

Definition A.4.1: A vector space X equipped with a Hausdorff topology 7 such
that the addition operation + : X x X — X and the scalar multiplication operation
1R x X — X are continuous, is called a topological vector space.

Definition A.4.2: A topological vector space (X, 1) is called locally convex if ev-
ery neighborhood of zero contains a convex neighborhood of zero. A completely
metrizable’ locally convex space, is called a Fréchet space.

Since Fréchet spaces are complete, Baire’s theorem is applicable. Thus, if we
write a Fréchet (X, 7) as the countable union of closed sets, X = Uzolen, at least
one of them must have a nonempty interior. If, in addition, each F;, is a subspace
of X, then there exists a subspace Fj,, of X with a nonempty interior, which yields
that X = F,,. This fact was used in the proof of Lemma 2.3.9, p. 34.

Definition A.4.3: Let (X, 7) be a topological vector space. A set A< X is called
absorbing if for every x € X, there exists some Ay > 0 such that Ax € A for every
0=<A<Ay.

Theorem A.4.4: If a subspace Y of a topological vector space X has a nonempty
interiot, then Y = X.

Proof. Any topological vector space contains a neighborhood base consisting of
absorbing sets [AB06, Structure Theorem 5.6]. Suppose that Y is a subspace of X
with a nonempty interior. This means that, there exists some yp € Y and an open
set U such that yg € U. Then 0 € U — yy which is also an open set contained in Y,
since Y is a subspace. Let W be an absorbing open set contained in U — yo. Then
W C Y and for every x € X, Ax e W € Y for some A > 0, thus X € Uy5oAY =
Y. ]

8 A topological space (X, 7) is said to be a Hausdorff space, or to satisfy the T, axiom, if for every
X,y € X with x # y, there exist two disjoint open sets Uy and Uy, such that xe Uy and y € Uy.

oA topological space (X, 1) is called completely metrizable, if there exists some metric p on X,
such that (X, p) is a complete metric space and p induces the topology 7 on X.



Probability Theory

B.1 Subgaussian random variables

Subgaussian random variables have the defining property that their tail probabil-
ities are bounded by the respective probabilities of a gaussian random variable.
Because of this property, they are only candidate random variables for which the
Hoeffding inequality can hold. Most of the results mentioned in this section can
be found in Omar Rivasplata’s expository article [Riv12].

Definition B.1.1: A random variable X is said to be o-subgaussian, if for every
reR,

Mx (1) :=E[eX] <e” */2. (B.1.1)

The right hand side of (B.1.1) is just the moment generating function of a nor-
mal random variable with mean zero and variance equal to o2. So, a random
variable is o-subgaussian when its moment generating function is dominated by
the one of N(0,c2).

Subgaussian random variables have always zero mean and a finite variance,
bounded by, but not necessarily equal to, the g that appears in (B.1.1).

Proposition B.1.2: If a random variable X is b-subgaussian, then E[X] = 0 and
V(X) < b~

Proof. Using the Taylor’s expansion and Lebesgue’s Dominated Convergence The-
orem,

t" b2
_l

(o]
Z E[X"] —1+t[E[X]+E[E[X2]+0(t)<e2
as t — 0. Dividing with ¢ and taking limits as ¢ — 0, we obtain that E[X] < 0.
Repeating the same argument for —X gives us the opposite inequality.

Dividing with £2 yields that E[X?] = V(X) < b2 In fact, using the formula
E|XP| = fé’o P[|X|P = t]ldt and the tail bound property that we will mention
shortly, one can show that every moment of a subgaussian r.v. X is finite. [ ]

By abusing the definition and the previous proposition, we may use the term
subgaussian even for random variables X for which E[X] # 0, implying that Y =
X —[E[X] is subgaussian.

The sum of two subgaussian random variables is also subgaussian. Additionally,
scalar products of subgaussian random variables remain subgaussian:
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Theorem B.1.3: Let (Q, A, P) be a measurable space and let G denote the set of
all subgaussian random variables on it. Then G is a vector space under the usual
addition and scalar product.

Proof. Suppose that X,Y are b; and bp-subgaussian random variables respec-
tively and let c € R.
For teR,

1202 p2

M.x(5) =E[e"X] = Mx(ct)<e 7 ,

so c¢X € G, and in particular, it is |c|b-subgaussian.

Regarding their sum, by Holder’s Inequality we have that for every p, g > 1 with

1 1
42
p q

1/ 1/ 2,22 1/p 2 22 2 1/q
E[e" X V] <E[ePX] P E[e'Y] q<(exp#) (exp”’z—Z)

)
The function f(p) = pb; +qbj = pbi + 15 b] attains its minimum for po = bl; b
with f(po) = (by + by)?, therefore X + Y is (b + by)-subgaussian. ]

A simple application of the Markov inequality is that for a b-subgaussian ran-
dom variable X, its tails satisfy the properties

2 2
P(X2A)<e # and P(X<-A)<e 3?2 (B.1.2)
for every A > 0. Indeed, for every ¢ >0,

1X 22
PX=A)=PtX=tA) < — [ ] At

and for t* b we obtain the desired upper bound. Applying the result to —X,
yields the respective lower tail bound.

In fact, inequalities (B.1.2) completely characterize subgaussian random vari-
ables. We collect all the equivalent definitions below.

Theorem B.1.4: [Verl18, Proposition 2.5.2] Let X be a centered random variable.
The following are equivalent:

(i) There exists some b > 0 such that E [e'X] < ' for every teR.
(ii) There exists some ¢ > 0 such that
PXzM<e N and PX<-D<e N
forall A >0.

(iii) There exists some C > 0 such that | X||, < C\/p for every p = 1.



B.1 SUBGAUSSIAN RANDOM VARIABLES

The typical example of a subgaussian random variable are normal random vari-
ables N(0,02) with mean zero. Another extremely useful class of examples are
random variables taking values on some finite interval. Their subgaussianity is
asserted by Hoeftfding’s Lemma.

Lemma B.1.5 (Popovicius Inequality): [ABCDO05] Let X be a random variable
that takes values in the interval [a, b] with probability one. Then V(X) < (b= “)

Proof. The variance of X has the property that V(X) = minc[E(X —¢)%. For ¢y =

2
44b | we notice that | X — 42| < 224 50 V(X) < [E|X a+b < =at -

Lemma B.1.6 (Hoeffding): [BLM13, Lemma 2.2] A centered random variable X :
(Q, A, P) — R, taking values on [a, D] a.s., is %—subgaussian.

Proof. For every A >0, we define the random variable Y} : Q@ — Ras Y} = %,

where My (1) =Ep [e”] is the m.g.f. of Y. Let also P) = Y} - P denote the proba-
bility measure induced by the random variable Y), namely

oY
P,l(A)zf YydP= | ———dP forall Ac A.
A My (A)

By Theorem 4.3.2, for every random variable Z, we also have that

ZeMY
My Q)

Ep,[Z] =Ep

In particular, setting Z = X and Z = X2, yields that
AY y2elY

My ()

Ep, [Y]=Ep and Ep, [Y?]=Ep (B.1.3)

Let ¢y (A1) =InEp [e’w]. Then,
E[ve'”]
My(/l)

vy (A) = and ' (1)

E[v2erY] (E[ver'])?
My Q) MyA) |’

and by comparing it with (B.1.3), we obtain that

bh— 2
W (A) =Ep, [Y?] - (Ep, [Y])* = Vp, [Y] < ( 4“) ,

by Popovicius Inequality, since Py[Y € [a, b]] = 1. Fix some A > 0. By Taylor’s
theorem, there exists some 0 € [0, A] such that

A2 212 A2(b— a)?
Yy =y ) + Ay} (0) + — wY(B) wY(Q) %

The proof is concluded by taking exponents in the last inequality. [ ]
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Since sums of subgaussian r.v. are also subgaussian, if we begin with a sequence
(X)) of such r.v,, then each of their partial sums S, = Xj +...+ X, is also sub-
gaussian, so one can bound the tails of these sums, either using the subgaussian
property (B.1.2) directly, or with an argument similar to the one that appears in
the proof of it.

Theorem B.1.7 (Hoeffding’s inequality): [BLM13, Theorem 2.8] Let X3,..., X,
be independent random variables such that each X; takes its values in [a;, b;] almost
surely. Let Sy, be their centered partial sum, S, = Y.1' | (X; —E[X;]). Then for every
>0,

212 212

P(Sy=t<e “m gnd P(S,<—f)<e Siabi’ (B.1.4)

Proof. Each of the random variables Y; = X; — E[X;] is centered and takes values
on [a; —E[X;], b; —E[X;]] a.s., so it is b’;'ll -subgaussian. Set S, = Y1 +...+ Y. By
the independence of (X;);,

/12):;‘=1(hi—al~)2
[E[e“"]=1_[[E[e’W"]Se 8

i=1

S

and by the Chernoff method,

E [els”] Pxl bi-ap?
<——<e 8 -

PIS,=t]=P [e“n < e“] < At

e/lt

for all A > 0. The last quantity is minimized for 1* = m, resulting in
i=1\Wi—ai

(B.1.4). ]

The vector space of the subgaussian random variables G has a richer structure.
Clearly, if a random variable is o-subgaussian, then it is also 7-subgaussian for
every T = 0. This observation leads us to define the subgaussian moment of a
random variable X, as the smallest constant o for which X is o-subgaussian:

Definition B.1.8: Let X be a subgaussian random variable. We define its subgaus-
sian moment o(X) as

o(X) = inf{a >0:E[eX]<e” " forall e IR}. (B.1.5)

This infimum is in fact a minimum: Let (0,), be a non-increasing sequence
of non-negative numbers such that o, — o(X). For every ¢ € R, we have that
Mx(t) < et _, eU(X)ZtZ/Z, so the number o (X) also belongs to the set appear-
ing in the right hand side of (B.1.5), which proves that every subgaussian random
variable X is o (X)-subgaussian.

The function o defines a complete norm on the space of subgaussian random
variables.

Theorem B.1.9: The space (G, 0) is a normed space.
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Proof. If X = 0 a.s., then E[e?X] = 1 < e”"/2 for every b = 0 and ¢ € R, s0
0 (X) = 0. Conversely, suppose that X is such that o(X) = 0. Then, for any fixed
A € R, we have that E[e**] < 1. The function f(x) = e** is convex, so by the
Jensen inequality, E[ f(X)] = f(E[X]), namely E [e’lX ] = €° = 1, which implies that
Mx(A) =1 for every A € R. But this is just the m.g.f. of the random variable Y
which is zero almost surely. By the uniqueness of the m.g.f. [Gut13, Theorem 8.1]
we conclude that X and Y have the same distribution, so X = 0 almost surely.

We now prove that o is positively homogenous. Let X € G and a € R. We ob-
serve that

2,2 2202
[E[eAX]SeﬂT VAER —< [ e“’lx]se 5 VAER,

SO
2,2 2 (40)2
U(X)zinf{a>0:E[eAX] se%}:inf{a>0:[E e’mx] sel(z) }
1 2a02
:minf{|a|a>0:[E[eMX <o }
1 2.2
:minf{r>0:[E[e’1“X]seﬂz }
1
=—o(aX),
|al

thus o(aX) = |alo(X).

Lastly, let X,Y € G. Since the infima in o(X) and o(Y) are attained, X and Y
are 0(X) and o (Y)-subgaussians respectively. As we saw in the proof of Theorem
B.1.3, X+ Y is 0(X) + o(Y)-subgaussian, so (X +Y) < 0(X) +0(Y), and o is
subadditive. [ |

Theorem B.1.10: [BK80, Theorem 1]. The space (G, 0) is a Banach space.

Proof. Let (X,), be a Cauchy sequence in G under the o norm. We observe that
for every n,meN,

V(Xn— Xm) = E[(Xn — Xi)?] < 0(Xp — Xom),

s0 (Xp)p is also Cauchy in Ly, thus convergent to some X € L. By the inequality
I Zll1 < I Zll2 which holds for every Z € L, [ABO06, Corollary 13.3], we also have
that X € L; and X, — X in L, as well. By [AB06, Theorem 13.6], we can pass to a
subsequence of it, say (X;,) sen,, which converges to X almost surely.

We will show that X € G and also that o (X;, — X) — 0. For the first claim, notice
that for every A € Rand € > 0,

2 2 2
(e/an)HE /1(1+8)Xn] A*(1+€)%0(Xn)

=supe 2 <00,
nenN,

sup E

nenN;

=suplle
nenN,;
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the last supremum being finite because the sequence ((Xy)),, is bounded.! By
[Gutl13, Theorem 4.2], the sequence (eMn) e N, is uniformly integrable and it also
converges to e*X almost surely. By Theorem B.2.4,

2262 (Xp) 22 suprfoz(Xn)

<lime 2z =<e 2 ,
nenN;

E [eAX] = lim E |eM»
nenN,

which implies that X is subgaussian with o (X) < sup,, o(X},).

For every n, the random variable X — X, is subgaussian and the sequence of
random variables (exp(A(X,, — X;,))), us uniformly integrable. Indeed, for every
AeRand e >0,

- 120+9%0% Xin=Xn)
sup E|rHOEn=Xd| < qup e 3
meN;,m=n meN,,m=n
12(1+6)2
< e%sumeNl,mznaz(Xm_Xn) < oo.

Additionally, lim ;e N, m=n MEm=Xn) = QAMX=Xn) 3 50

[E[e’“XfX”)]: lim E

2
e/l(meXn)] < 7 SUPp O X =Xy),
meN,,m=n

thus 0(X — Xp) < SUPpen, mzn 0°Xm — Xn) — 0 as n — oo, establishing that
(Xn)nen, converges to X in o. Since (X,), is a Cauchy sequence in o with a
convergent subsequence, the original sequence (X,), is also convergent [Argl]1,
Proposition 8.2]. [ ]

B.2  Convergence of random variables

We will assume throughout that the reader is familiar with the various notions of
convergence of random variables. We only mention a few results which are not
always taught in probability courses. First of all, we need to recall the absolute
continuity property of the Lebesgue integral [Sar18, Proposition 4.29]:

Proposition B.2.1: Let X be an integrable random variable on E < R. Then for
every € > 0, there exists some 8 > 0 such that [,|fldm < ¢ for every measurable A
with m(A) < 0.

Definition B.2.2: A sequence of random variables (X},), defined on a probability
space (Q, A, P) is called uniformly integrable if

lim supE[| Xy|Ix,|<q] =0.
a—oo p

The following equivalent definition of uniform integrability is often useful [Gut13,
Theorem 4.1].

Theorem B.2.3: A sequence of random variables (X,), is uniformly integrable if
and only if the following two conditions are met:

I The inequality |0 (Xp) -0 (Xm)| < 0(Xp—Xym) implies that (0 (Xy,)) 5, is Cauchy, thus bounded.
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(i) There exists some M > 0 such that | X,y < M for every n € N.

(ii) Forevery € > 0 there exists some 6 > 0, such that for every A with P(A) <0,
S 41Xl < € holds for every n € N.

The notion of uniform integrability is extremely useful, as it provides us with
a necessary and sufficient condition to be able to conclude the convergence of
the expectations, given that a sequence converges in probability [Gut13, Theorem
5.4]:

Theorem B.2.4: Let (X,), be a sequence of random variables such that X,, con-
verges to a random variable X in probability. The following are equivalent

(i) The sequence (Xy),, is uniformly integrable.

(i) E[Xn] — E[X].

B.3 Conditional expectation

In connection with the Hilbert Space Theory, the conditional expectation of a
square integrable random variable X can be seen as the projection of X to an
appropriate closed subspace of L,. This property was used during the proof of
Proposition 3.2.11.

Lemma B.3.1: Let (Q, F, P) be a probability space and G < F be a sigma-algebra.
Then Ly(Q2,G, P) is a closed subspace of L, (Q, F, P).

Proof. If f € L,(Q,G, P), then f is G-measurable, thus F-measurable due to the
inclusion G < F. Additionally, fQ lf I2dP < oo, so f € La(Q, F, P), which proves
that L,(Q,G, P) is a subset of Ly(Q,F,P). Since L»(2,G, P) is always a vector
space, it follows that it is also a subspace of it.

To show that it is closed, let (f;,) , be a sequence in L(Q, G, P) that converges to
f € Lx(Q,F,P). By [ABO6, Theorem 13.6], (f,,) » has a subsequence that converges
to f almost surely, say fi, — f. Since each fi is G-measurable, so is their limit
f> concluding the proof. [ ]

Proposition B.3.2: Let (Q,F,P) be a probability space and G < F be a sigma-
algebra. Suppose that X € Ly(Q, F, P). Then the conditional expecttion E[X | G] is
the orthogonal projection of X on the closed subspace L, (Q,G, P).

Proof. We will show that X —E[X |G] L L»(Q,G,P). Let Z € L,(Q,G, P). Then
EN(Z(X -EIX|GD] =E[E[(Z(X -EIX|GDIG] =0,

since E[XZ|G] = ZE[X|G] and E[ZE[X|G]|G] = ZE[X|G]. By Proposition A.3.10,
we have that E[X | G] = P, ,6,p) (X). u

A well known property of the conditional expectation is that

EIXY |Gl = XE[Y|G]
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whenever X is G-measurable. The following proposition extends this result when
the usual product of X and Y is replaced by their inner product.

Proposition B.3.3: Let (Q, F,P) be a probability space and G < F, be a sigma-
algebra. Suppose that Y € L, (Q, F, P) and that X € L,(Q,G, P).Then

EKX, V) 1G] =(X,E[Y |GD). (B.3.1)

Proof. Suppose first that X = I is a characteristic function with A € G. For every
Be F,

f(X,[E[YIQDdP:f<IA,[E[Y|Q]>dP=[ (f IA[E[YIQ]dP)dP
B B B \Ja

:fB(fAYdP)dP

Zf([A, Y)dP
B
=f(X, Y)dP
B
=thE[<X,Y>|91dP.

If X =37 ajly, isasimple function with A; € G for all i, then for every B € F,

fB<X,[E[Y|g]>dP:f<ZaiIAi,[E[Y|g]>dP
B \i=1

n
:f > ailla, E[Y |GydP
Bi=1

if (Ia ELY | FI)dP
B

n
Y a
i=1
n
Y a
i=1

= i B[E[<IA,-,Y>|Q]dP
n
:f[E <Zai1Ai,Y> dp
B i=1
=f<X, Y)dPp,
B

by the previous step and the linearity of the conditional expectation.

Suppose now that X = 0 is non-negative, square-integrable and G- measurable
function. Let (s;), be an increasing sequence of simple functions that converges
to it pointwise. Then ({s, Y)), is also increasing, bounded by Z = (X,Y) € L; and
converges to (X, Y) pointwise. By Lebesgue’s Dominated Convergence Theorem,
we have that E[{s,, Y) | G] — E[(X, Y)]. In a similar manner

El¢sn, ELY |GD] = EKX,E[Y [ G)] = EKX, V).
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For the general case, X we can write it as a difference of two non-negative func-
tions X = X* — X7, and the result follows immediately from the linearity of the
conditional expectation. [ ]

The proofs of the following theorems can be found in [Nev75].

Theorem B.3.4 (Supermartingale Convergence Theorem): Let (X},),, (Y,), and
(Zn)n be three sequences of random variables and (Fy), be a sequence of nested
sigma-algebras. Suppose that

(a) Each Xy, Yy, Zy is non-negative and JF,-measurable.
(b) Forevery neN, we have that E[Yy1 | Fpl < Yy, — X+ Zy.
(c) The series Y07 ) Zy, converges.

Then the series Y5, X,, also converges and there exists some non-negative random
variable Y, such that Y,, — Y almost surely.

Theorem B.3.5 (Martingale Convergence Theorem): Let (X},), be a sequence of
random variables and (Fy), be a sequence of nested sigma-algebras. Suppose that

(a) Each X,, is Fp-measurable.
(b) Forevery neN, we have that E[Xy11 | Fpl = Xj.
(c) There exists a constant M > 0 such that E[| X,|] < M for every n € N.

Then (X,,),, converges almost surely to a random variable X.
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Additional Topics

C.1 Natural density

When trying to compare two infinite subsets of N we often face the paradox that
although one may intuitively seem to be “larger” than the other, they both have the
same cardinality. For example, one can consider the sets A=Nand B = 2N. Both
A and B are countably infinite, but as one goes through N, encounters elements of
Atwice as often as elements of B. The notion of cardinality is not strong enough to
distinguish between these two sets, and for this reason we introduce the concept
of the natural density:

Definition C.1.1: Let J < N. We define its natural density d(J) as

d() = lim 0L 1 (C.L1.1)

n—oo n
provided that this limit exists.

The natural density d is not defined for every subset of N and even if we con-
sider the family of sets A on which d is well defined, A is not an algebra [Did13].
However, d exhibits some probability measure-like properties that proved useful
during the sequential design of experiments treatment:

Lemma C.1.2: Let d denote the natural density on N.

(i) The density of the empty set is equal to zero, and the density of N is equal
to one.

(ii) If A, B are two disjoint subsets of N for which d(A) and d(B) is well defined,
then d(AU B) is also well defined and d(AuU B) = d(A) + d(B).

Proof. The proof of (i) is obvious. For the second part,

d(AUB) = lim #(AUB)N{L,...,n}
im, ,
FAOML.om) o #BOML., )

= lim ——— —+ lim
n—oo n n—oo n

=d(A)+d(B),

which proves the finite additivity of d. [ ]

Although d is finitely additive, it is not o-additive. For example, the disjoint
sets A, = {n} all have density d(A;) = 0, but their union is equal to N, which has
density one.
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