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Abstract

Despite the fact that neural networks had been used extensively for decades, a the-
oretical background that would explain their success was, until recently, elusive.
In Chapter 2, we present the main results which settled this question, developed
mostly in the early ‘90s. We prove Cybenko’s theorem, which states that continu-
ous and sigmoidal functions are always universal approximators, and also study
some extensions of this result. Leshno et al. proved that instead of sigmoidal func-
tions, one would suffice to use any function which is not equal to a polynomial
almost everywhere. Connections with the Kolmogorov-Arnold theorem are also
explored.

Chapter 3 is devoted to the study of stochastic approximation algorithms. The
goal of these algorithms is to determine the fixed point of an operator when its
values are not known to us, but they are revealed perturbed by some noise. They
can be seen as extensions of the classical fixed point methods, like Banach’s fixed
point theorem. We also present the proof of the convergence of the Q-Learning
algorithm which is based on this theory. The Q-Learning algorithm is a general-
ization of the successive approximationmethod, amethod used extensively in the
classical dynamic programming, when we have no prior information on the un-
derlying process (transition probabilities and cost functions), but only a method
to draw and observe values from it.

Lastly, in Chapter 4, we study the multi-armed bandit problem, a subfield of
reinforcement learning, where the goal is to determine the most profitable action
among a given set, while simultaneously, maximizing one’s profit. We prove the
Lai-Robbins lower bound, which shows that for a certain class of reward distribu-
tions there are limits to how fast one can reach a maximum profit, and we also
present an algorithm that attains it. We conclude the chapter studying the upper
confidence bound algorithm, introduced by Auer et al., which resolves several
issues of the Lai-Robbins approach.
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Περίληψη

Παρά το γεγονός ότι τα νευρωνικά δίκτυα χρησιμοποιούνταν επί δεκαετίες με
εντυπωσιακά αποτελέσματα, η ανάπτυξη ενός θεωρητικού υπόβαθρου που θα
εξηγούσε αυτήν τους την επιτυχία, είναι σχετικά πρόσφατο επίτευγμα. Στο Κε-
φάλαιο 2, παρουσιάζουμε τα κυριότερα αποτελέσματα που έδωσαν απάντηση σε
αυτά τα ερωτήματα. Το Θεώρημα του Cybenko είναι το πρώτο σχετικό θεώρημα,
σύμφωνα με το οποίο κάθε συνεχής και σιγμοειδής συνάρτηση είναι καθολικός
προσεγγιστής. Οι Leshno et al., επέκτειναν το αποτέλεσμα του Cybenko, δείχνο-
ντας ότι οποιαδήποτε μη πολυωνυμική συνάρτηση αποτελεί καθολικό προσεγ-
γιστή. Παρουσιάζουμε επίσης μία κατασκευαστική απόδειξη στον L2, καθώς και
την προσέγγιση μέσω του Θεωρήματος των Kolmogorov και Arnold.

ΤοΚεφάλαιο 3 είναι αφιερωμένο στη μελέτη αλγορίθμων στοχαστικής προσέγ-
γισης. Αυτοί οι αλγόριθμοι στοχεύουν στην εύρεση του σταθερού σημείου ενός
τελεστή, όταν οι ακριβείς τιμές που παίρνει δεν είναι γνωστές σε εμάς, αλλά μας
αποκαλύπτονται με την παρουσία θορύβου. Παρουσιάζουμε επίσης την απόδειξη
του αλγορίθμου της Q-Μάθησης, και η οποία βασίζεται στους αλγορίθμους αυ-
τούς. Η Q-Μάθηση αποτελεί γενίκευση μιας μεθόδου που χρησιμοποιείται ευ-
ρέως στον κλασσικό δυναμικό προγραμματισμό, της μεθόδου των διαδοχικών
προσεγγίσεων, για προβλήματα στα οποία δεν έχουμε γνώση των διαφόρων πα-
ραμέτρων (πιθανότητες μετάβασης και δομή κόστους), αλλά αντίθετα μπορούμε
μόνο να προσομοιώνουμε παρατηρήσεις από αυτές.

Τέλος, στο Κεφάλαιο 4, μελετάμε το πρόβλημα των multi-armed bandit, το
αντικείμενο του οποίου είναι ο προσδιορισμός της πιο κερδοφόρας δράσης από
ένα δοσμένο σύνολο, μαζί με την ταυτόχρονη μεγιστοποίηση του αναμενόμενου
κέρδους μας. Αποδεικνύουμε το φράγμα των Lai-Robbins, σύμφωνα με το οποίο
για μια συγκεκριμένη κλάση κατανομών, υπάρχουν όρια στο πόσο γρήγορα μπο-
ρούμε να πλησιάσουμε το βέλτιστο κέρδος, ενώ επίσης παρουσιάζουμε και έναν
αλγόριθμο που επιτυγχάνει το φράγμα αυτό. Ο αλγόριθμος των Lai-robbins περι-
έχει αρκετά σκοτεινά σημεία, τα οποία προσπαθεί να απλοποιήσει η μέθοδος up-
per confidence bounds τωνAuer et al., με την οποία ολοκληρώνουμε την εργασία
μας.
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Notation

A f The set of discontinuity points of the function f .
BX The closed unit ball of a normed space (X ,∥ ·∥).
C (X ) The space of continuous functions on X .
C (k)(X ) The space of differentiable functions on X for which the first k

derivatives are continuous.
C∞(X ) The space of smooth functions on X .
C∞

C (X ) The space of smooth functions with compact support on X .
d(A) The natural density of a subset A of N.
E[X |F ] The conditional expectation of a random variable X with respect

to a sigma-algebra F .
In The n-th dimensional cube In = [0,1]n in Rn .
Lp (Ω) The space of p-integrable functions, 1 ≤ p <∞, on Ω.
L∞(Ω) The space of essentially bounded functions on Ω.
L∞
loc(Ω) The space of functions which belong to L∞(K ) for every compact

K subset of Ω.
ℓp The space of p-summable real sequences for 1 ≤ p <∞.

ℓ∞ The space of bounded real sequences.
PF (x) The projection of the point x to the set F , most likely in a Hilbert

space.(
Rn ,∥ ·∥ξ

)
The weighted supremum norm ∥x∥ξ = supi=1,...,n

|xi |
ξi

on Rn , in-
duced by the strictly positive vector ξ.

orb(x,T ) The orbit
{
T n x : n ∈N

}
of a point x under the operator T defined

on some vector space, or some metric space, depending on the
context.

Sn The n-th partial sum, Sn =∑n
k=1 ak , of a sequence (ak )k .

Σn(σ) Theset of all possible functions s : Rn →Rwhich can be generated
by a neural network having σ as an activation function.

(X ,ρ) A metric space.
(X ,∥ ·∥) A normed space.
X ∗ The topological dual of a normed space (X ,∥ ·∥).
(X ,τ) A topological space, or a topological vector space, depending on

the context.
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1
Εκτενής Περίληψη

. Θεωρήματα καθολικής προσέγγισης

Τα νευρωνικά δίκτυα έχουν μια πλούσια ιστορία η οποία ξεκίνησε τη δεκαετία
του ‘40, με την πρώτη τους θεωρητική σύλληψη. Σταδιακά, και με την παράλληλη
εξέλιξη των υπολογιστικών δυνατοτήτων, η χρήση νευρωνικών δικτύων έδωσε
εντυπωσιακά αποτελέσματα στην επίλυση ιδιαίτερα πολύπλοκων προβλημάτων
σε ευρύ φάσμα εφαρμογών. Όμως, ενώ η αποτελεσματικότητα των νευρωνικών
δικτύων είχε επιβεβαιωθεί απο την πρακτική εμπειρία, η θεωρητική αιτιολόγησή
της είναι ένα σχετικά σύγχρονο επίτευγμα το οποίο ανέδειξε τη σύνδεση της
θεωρίας των νευρωνικών δικτύων με κλάδους των θεωρητικών μαθηματικών.

Για να οριστεί ένα νευρωνικό δίκτυο, χρειαζόμαστε δύο κύρια δομικά συστα-
τικά, τις σιγμοειδείς συναρτήσεις και τους αφφινικούς μετασχηματισμούς.

Ορισμός 1.1.1: Μια συνάρτηση σ : R→R καλείται σιγμοειδής, εαν

σ(t ) −→

0, για t →−∞,

1, για t →+∞.
(1.1.1)

Ορισμός 1.1.2: Μια συνάρτηση A : X → Y μεταξύ δύο διανυσματικών χώρων
ονομάζεται αφφινική, εαν ισχύει ότι A

(∑n
i=1λi xi

)=∑n
i=1λi A(xi ) για κάθε n ∈N,

xi ∈ X και κάθε λi ∈R με
∑n

i=1λi = 1.

Ως νευρωνικό δίκτυο, θεωρούμε κάθε συνάρτηση s της μορφής s(x) = T x,
όπου

T = Am+1Sm Am · · · A2S1 A1 (1.1.2)

είναι ένας τελεστής ο οποίος ορίζεται απο τις διαδοχικές συνθέσεις αφφινικών
μετασχηματισμών Ai : Rdi−1 → Rdi με σιγμοειδείς συναρτήσεις Si . Ο αριθμός m
μετρά το πλήθος των στρωμάτων του δικτύου, ενώ οι αριθμοί di το πλήθος των
κόμβων που εμφανίζονται σε κάθε στρώμα. Θα συμβολίζουμε με

Σn(σ) =
{

s : Rn →R : s(x) =
N∑

j=1
a jσ(w⊺

j x +θ j ) : (1.1.3)

N ∈N, a j ∈R, w j ∈Rn ,θ j ∈R

}
, (1.1.4)

το σύνολο των συναρτήσεων s που δύνανται να αναπαρασταθούν από ένα νευ-
ρωνικό δίκτυο βάθους ένα, το οποίο έχει ως συνάρτηση ενεργοποίησης τη σ.
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 extended abstract

Γενικά, δεν είναι σωστό ότι κάθε συνεχής συνάρτηση μπορεί να γραφεί στη
μορφή (1.1.2), και άλλωστε δε θα περιμέναμε εκ των προτέρων να ίσχυε κάτι
τέτοιο. Όμως η πολυετής αποτελεσματική χρήση των νευρωνικών δικτύων σε
πραγματικά προβλήματα, αποτέλεσε ισχυρή ένδειξη ότι κάθε συνεχής συνάρτηση
θα μπορούσε να προσεγγισθεί από τέτοιες συναρτήσεις.

.. Το Θεώρημα του Cybenko

Θεωρούμε ότι οι εμπλεκόμενες συναρτήσεις ορίζονται στο In = [0,1]n , αντί για
ολόκληρο το Rn , ούτως ώστε να εκμεταλλευτούμε τις ιδιότητες του χώρου C (In).
Από μαθηματική σκοπιά, το ερώτημα της καθολικής προσέγγισης διατυπώνεται
ως εξής: Για ποιες συναρτήσεις ενεργοποίησης σ ισχύει ότι το σύνολο

Σn(σ) =
{

f : In →R : f (x) =
N∑

j=1
a jσ(w⊺

j x +θ j ) :

N ∈N, a j ∈R, w j ∈Rn ,θ j ∈R

}
= span

{
f : f (x) =σ

(
w⊺x +θ

)
για w ∈Rn ,θ ∈R

}
.

είναι πυκνό στον C (In); Συναρτήσεις με την ιδιότητα αυτή, καλούνται καθολικοί
προσεγγιστές.Παραδείγματα συγκερκιμένων καθολικών προσεγγιστών ήταν ήδη
γνωστά από τα μέσα της δεκαετίας του ‘80, όμως το πρώτο πραγματικά γενικό
αποτέλεσμα ανήκε στον George Cybenko, ο οποίος το 1989 [Cyb89] απέδειξε ότι
κάθε συνεχής σιγμοειδής συνάρτηση είναι καθολικός προσεγγιστής.

Θεώρημα 1.1.1 (Cybenko): Για κάθε συνεχή σιγμοειδή συνάρτηση σ, το σύνολο
Σn(σ) είναι πυκνό στον C (In).

Ηαπόδειξη του θεωρήματος είναι υπαρξιακή, και ουσιαστικά αποτελεί μια σχε-
τικά απλή, αλλά ιδιαίτερα εντυπωσιακή, εφαρμογή του θεωρήματος Hahn - Ba-
nach. Το σύνολο Y =Σn(σ) αποτελεί γραμμικό υπόχωρο τουC (In). Εαν δεν ήταν
πυκνός, τότε από το Θεώρημα Hahn-Banach, θα υπήρχε κάποιο γραμμικό και
φραγμένο συναρτησιακό 0 ̸= x∗ ∈C (In)∗ με x∗(Y ) = 0.

Από το Θεώρημα Αναπαράστασης του Riesz, ο δυϊκός του C (In) μπορεί να
ταυτιστεί με το χώρο πεπερασμένων, προσημασμένων μέτρων Borel του In , επο-
μένως θα έπρεπε να υπάρχει ένα τέτοιο μη μηδενικό μέτρο µ, με την ιδιότητα
ότι ∫

In

f (x)dµ(x) = 0 (1.1.5)

για κάθε f ∈ Y . Η απόδειξη ολοκληρώνεται καταλήγωντας σε άτοπο, και βασίζε-
ται σε ένα επιχείρημα αρμονικής ανάλυσης που παρουσιάζουμε αναλυτικά (The-
orem 2.2.6).



. θεωρήματα καθολικής προσέγγισης 

... Προβλήματα κατηγοριοποίησης

Ίσως μια εξίσου σημαντική κλάση προβλημάτων, είναι τα προβλήματα κατηγορι-
οποίησης. Σε αυτά τα προβλήματα υποθέτουμε ότι υπάρχουν k το πλήθος διαφο-
ρετικοί πληθυσμοί από τους οποίους λαμβάνουμε παρατηρήσεις, και ο σκοπός
μας είναι να αποφανθούμε από ποιον πληθυσμό προήθλε η κάθε μία. Από μαθη-
ματική άποψη, μας ενδιαφέρει η εκμάθηση μιας συνάρτησης f : In → {1, . . . ,k}, η
οποία σε κάθε σημείο του μοναδιαίου υπερκύβου αναθέτει την αντίστοιχη κατη-
γορία από την οποία έχει προέλθει.

Μιας και οι συγκεκριμένες συναρτήσεις είναι πάντοτε ασυνεχείς (δες σελ. 26),
τα προβλήματα κατηγοριοποίησης χρειάζονται μια μικρή τροποποίηση ώστε να
μπορέσουν να ενταχθούν στο προηγούμενο πλαίσιο. Στην Παράγραφο 2.2.1 εξη-
γούμε πώς το θεώρημα του Cybenko δύναται να εφαρμοστεί σε αυτή την κατηγο-
ρία προβλημάτων. Η βασική ιδέα είναι ότι αντί για την ασυνεχή f , μπορούμε να
προσεγγίσουμε μια συνεχή συνάρτηση που είναι αρκετά κοντά της, η ύπαρξη της
οποίας εξασφαλίζεται από το Θεώρημα του Lusin. Το τίμημα που πληρώνουμε,
είναι ότι υπάρχει πάντα μια αυθαίρετα μικρή, αλλά θετική πιθανότητα να κάνουμε
λάθος κατά την κατηγοριοποίηση.

.. Μη-πολυωνυμικές συναρτήσεις ενεργοποίησης

Όπως έδειξε ο Cybenko, κάθε συνεχής και σιγμοειδής συνάρτηση είναι καθολι-
κός προσεγγιστής. Ένα φυσιολογικό ερώτημα είναι το κατά πόσον μπορούν να
χαλαρώσουν αυτές οι δύο υποθέσεις και η συνάρτηση ενεργοποίησης να εξακο-
λουθήσει να έχει αυτήν την ιδιότητα.

Στην Παράγραφο 2.3 προυσιάζουμε αναλυτικά ένα αποτέλεσμα των Leshno,
Lin, Pinkus και Schocken [LLPS93], οι οποίοι έδωσαν έναν εντυπωσιακό χαρα-
κτηρισμό για τις συναρτήσεις ενεργοποίησης οι οποίες αποτελούν καθολικούς
προσεγγιστές. Απέδειξαν ότι οποιαδήποτε συνάρτηση είναι καθολικός προσεγ-
γιστής, αρκεί να μην είναι ίση με κάποιο πολυώνυμο σχεδόν παντού.

Η μία κατεύθυνση του θεωρήματος είναι αρκετά προφανής. Αν η συνάρτηση
ενεργοποίησης σ είναι πολυώνυμο βαθμού k , τότε ο υπόχωρος Σn(σ) θα αποτε-
λείται με τη σειρά του από πολυώνυμα βαθμού το πολύ k , επομένως αποκλείεται
να είναι πυκνός στις συνεχείς συναρτήσεις. Η αντίστροφη κατεύθυνση είναι ιδι-
αίτερα επίπονη και χρησιμοποιεί ισχυρά εργαλεία από την συναρτησιακή και
αρμονική ανάλυση.

Το αποτέλεσμα των Leshno et al. αναδεικνύει ότι η ουσία ενός νευρωνικού
δικτύου, τουλάχιστον όσον αφορά στις προσεγγιστικές του δυνατότητες, δεν
είναι συνυφασμένη με τις σιγμοειδείς συναρτήσεις. Οποιαδήποτε (μη πολυωνυ-
μική) συνάρτηση μπορεί να χρησιμοποιηθεί στη θέση μιας σιγμοειδούς. Αντίθετα,
οι προσεγγιστικές δυνατότες των νευρωνικών δικτύων πηγάζουν από τη δομή
της σύνθεσης ανάμεσα στα διάφορα επίπεδα του δικτύου.
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.. Κατασκευαστικές αποδείξεις

Η απόδειξη του Cybenko είναι καθαρά υπαρξιακή, γεγονός το οποίο, ιδιαίτερα
αναλογιστεί κανείς την εφαρμοσμένη φύση του όλου προβλήματος, όχι μόνο
δεν έληξε το ζήτημα της καθολικής προσέγγισης, αλλά ώθησε στην αναζήτηση
κατασκευαστικών αποδείξεων και επεκτάσεων. Έχοντας πια ως δεδομένο ότι η
καθολική προσέγγιση ήταν εφικτή, η εύρεση κατασκευαστικώνμεθόδωνόχι απλά
φάνταζε ρεαλιστική, αλλά και θα συνέβαλε σε μια καλύτερη κατανόηση του πώς
ακριβώς επιτυγχάνεται η καθολική προσέγγιση, ένα ζήτημα στο οποίο η απόδειξη
του Cybenko δεν ήταν σε θέση να ρίξει φως.

Η πρώτη κατασκευαστική απόδειξη δόθηκε το 1992 από τους Chen, Chen και
Liu [CCL91], οι οποίοι μάλιστα χαλάρωσαν την υπόθεση περί συνέχειας της συ-
νάρτησης ενεργοποίησης. Ίδιας φιλοσοφίας μπορεί να θεωρηθεί και η προσέγ-
γιση μέσω του Θεωρήματος Υπέρθεσης των Kolmogorov και Arnold που περι-
γράφουμε στην επόμενη παράγραφο και αναπτύχθηκε παράλληλα με το άρθρο
των Chen et al.

Στην Παράγραφο 2.4, παρουσιάζουμε μια κατασκευαστική προσέγγιση στον
L2(X ), η οποία αναπτύχθηκε από τους Kwok and Yeung [KY97]. Υποθέτουμε την
ύπαρξη κάποιου συνόλου Γ τέτοιο ώστε spanΓ= L2(X ). Για παράδειγμα, το Γ θα
μπορούσε να περιέχει τις συναρτήσεις της μορφής{

f : Rn →R : f (x) =σ
(
w⊺x +θ

)
for w ∈Rn ,θ ∈R

}
για μη-πολυνωμιακή συνάρτηση σ, οι οποίες ήταν ήδη γνωστό ότι έχουν αυτή
την ιδιότητα. Η διατύπωση του θεωρήματος είναι αρκετά γενική, ώστε να μη
χρειάζεται να ασχοληθούμε με το τι είδους στοιχεία περιέχονται στο Γ, αλλά
είναι σίγουρα χρήσιμο να θυμόμαστε ότι το σύνολο αυτό παίζει το ρόλο του
νευρωνικού δικτύου.

Θεώρημα 1.1.2 (Kwok-Yeung): Έστω X ⊆Rd συμπαγές και Γ⊆ L2(X ) σύνολο με
την ιδιότητα ότι ο υπόχωρος που παράγει είναι πυκνός στον L2(X ). Έστω επίσης
f ∈ L2(X ). Μπορούμε να κατασκευάσουμε ακολουθία ( fn)n στο spanΓ, τέτοια
ώστε fn → f .

Η βασική ιδέα για την επαγωγική κατασκευή της ακολουθίας ( fn)n είναι η
ακόλουθη: Στο πρώτο βήμα, επιλέγουμε αυθαίρετα μια f1 η οποία ανήκει στο Γ.
Έστω ότι μετά το n-στό βήμα έχουμε αποφασίσει ότι οι συναρτήσεις g1, . . . , gn ∈
Γ πρέπει να παράγουν την fn , δηλαδή ότι fn ∈ span{g1, . . . , gn} =: Fn . Για να
αποφασίσουμε τους συντελεστές βi που θα εμφανίζονται στο γραμμικό συνδυ-
ασμό fn = ∑n

i=1βi gi , παίρνουμε την fn να είναι ίση με την προβολή της f στον
υπόχωρο Fn .1

Συγκεκριμένα, σύμφωνα με την αντίστοιχη θεωρία, υπολογίζονται οι συντε-
λεστές της fn = ∑n

i=1λi ei ως προς κάποια ορθομοναδιάια βάση (ei )n
i=1 του Fn

1Αυτό φυσικά προϋποθέτει ότι γνωρίζουμε ποια είναι η f .
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(Πρόταση A.3.9), και στη συνέχεια η fn ξαναγράφεται ως προς τα gi ’s. Παίρνο-
ντας την προβολή της f στον υπόχωρο Fn , ουσιαστικά εξασφαλίζουμε ότι η fn

είναι το στοιχείο του Fn το οποίο είναι πλησιέστερο στη συνάρτηση f την οποία
επιθυμούμε να προσεγγίσουμε.

Για να αποφασίσουμε το επόμενο στοιχείο gn+1 που θα προστεθεί στο σύνολο
{g1, . . . , gn}, επιλέγουμε το g∗ = gn+1 ∈ Γ που ελαχιστοποιεί το σφάλμα∥∥ f − ( fn−1 +βg )

∥∥
για β ∈ R και g ∈ Γ, και συνεχίζουμε με τον ίδιο τρόπο. Σε κάθε επανάληψη, το
σύνολο {g1, . . . , gn} εμπλουτίζεται, και οι συντελεστές των gi επαναϋπολογίζο-
νται, ώστε να ελαχιστοποιήσουν το σφάλμα.

Αξίζει να σημειωθεί ότι υπάρχουν πολλές παραλλαγές αυτού του αλγορίθμου.
Μάλιστα, σε κάποιους από αυτούς, το πρόβλημα της ελαχιστοποίησης που πρέ-
πει να επιλυθεί κατά την επιλογή του καινούργιου στοιχείου gn+1, προσπερνάται
με έναν αρκετά ευφάνταστο τρόπο: Το καινούργιο στοιχείο επιλέγεται τυχαιοποι-
ώντας. Κάτω από ήπιες υποθέσεις, η ακολουθία που κατασκευάζεται συγκλίνει
στη συνάρτηση που επιθυμούμε με πιθανότητα ένα.

.. Το Θεώρημα των Kolmogorov - Arnold

Στην προσπάθειά τους να επιλύσουν το 13ο πρόβλημα τουHilbert, οι AndreyKol-
mogorov και Vladimir Arnold, δημοσίευσαν στα τέλη της δεκαετίας του ‘50 μία
σειρά από άρθρα, στα οποία όχι μόνο έδωσαν απάντηση στο εν λόγω πρόβλημα,
αλλά και οδήγησαν στην ανακάλυψη ενός εκ των σπουδαιότερων αποτελεσμά-
των των σύγρονων μαθηματικών.

Ο Hilbert είχε εικάσει ότι οι ρίζες της εξίσωσης x7 + ax3 + bx2 + cx + 1 = 0,
ιδωμένες σαν συνάρτηση των τριών μεταβλητών a,b,c , δεν μπορούσαν να γρα-
φούν ως σύνθεση συναρτήσεων δύο μεταβλητών. Ο Arnold [Arn57] πρώτος κα-
τέρριψε την εικασία, αλλάοKolmogorov [Kol57] προχώρησε ένα βήμαπαραπέρα,
αποδεικνύοντας ότι κάθε συνάρτηση d μεταβλητών, ορισμένη στον μοναδιαίο
υπερκύβο f : [0,1]d →R, μπορεί να γραφεί ως υπέρθεση συναρτήσεων μόλις μίας
μεταβλητής.

Θεώρημα 1.1.3 (Kolmogorov-Arnold): Υπάρχουν σταθερές λ1, . . . ,λd ∈ R για
τις οποίες

∑d
j=1λ j ≤ 1, και συνεχείς συναρτήσεις ϕ1, . . . ,ϕ2d+1 από το [0,1] στον

εαυτό του, με την ιδιότητα ότι κάθε f ∈C [0,1]d μπορεί να γραφτεί ως

f (x1, . . . , xd ) =
2d+1∑
i=1

g

(
d∑

j=1
λ jϕi (x j )

)
, (1.1.6)

όπου g ∈C [0,1] μια συνάρτηση που εξαρτάται από την f .

Το 1987, δύο χρόνια προτού ο George Cybenko αποδείξει το πρώτο θεώρημα
καθολικής προσέγγισης, ο Robert Hecht-Nielsen παρατήρησε σε ένα σημείωμά
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του [Hec87] την ομοιότητα μεταξύ της έκφρασης (1.1.6) και των συναρτήσεων
που απαρτίζουν ένα νευρωνικό δίκτυο

s(x) =
N∑

j=1
a jσ(w⊺

j x +θ j ). (1.1.7)

Με μεγάλο ενθουσιασμό, πρότεινε το θεώρημα υπέρθεσης των Kolmogorov και
Arnold ως ένα πιθανό εργαλείο για την υλοποίηση του στόχου της καθολικής
προσέγγισης, σημειώνοντας παράλληλα ότι, εαν αυτό ήταν όντως εφικτό, τότε
θα αποτελούσε και την πρώτη εφαρμογή του θεωρήματος υπέρθεσης, τριάντα
ολόκληρα χρόνια μετά την ανακάλυψή του.

Η ανταπόκριση στο σημείωμα του Nielsen ήταν ιδιαίτερα θερμή. Πρώτα οι
Girosi και Poggio (1989), σε ένα άρθρο τους με τίτλο “Kolmogorov’s theorem is ir-
relevant” [GP89], έδειξαν ότι είναι αδύνατο να επιτύχει κανείς την αναπαράσταση
(1.1.6) χρησιμοποιώντας νευρωνικά δίκτυα, επειδή οι εμπλεκόμενες συναρτήσεις
του θεωρήματος υπέρθεσης είναι παθολογικές, εν αντιθέσει με τις καλώς συμπε-
ριφερόμενες σιγμοειδείς συναρτήσεις που χρησιμοποιεί ένα νευρωνικό δίκτυο.

Όμως, παρά την πρώτη αρνητική απάντηση, το ποτήρι αποδείχθηκε μισογε-
μάτο. Μπορεί το θεώρημα υπέρθεσης να μην ενέπιπτε στα πλαίσια των νευρω-
νικών δικτύων όσον αφορά στην αναπαράσταση συναρτήσεων, εν τούτοις το
εξίσου σημαντικό ζήτημα της προσέγγισης συναρτήσεων παραμένε ανοικτό και
απαντήθηκε καταφατικά δύο χρόνια αργότερα από την Vĕra Kůrková ([Kur91],
[Kur92]), στο άρθρο της με τον εξίσου εύγλωττο τίτλο “Kolmogorov’s theorem
is relevant”. Η ιδέα της ήταν να χρησιμοποιήσει σιγμοειδείς συναρτήσεις για να
προσεγγίσει σημειακά όλες τις συναρτήσεις που εμπλέκονται στο θεώρημα υπέρ-
θεσης και στη συνέχεια, επικαλώντας το, να συμπεράνει την καθολική προσέγ-
γιση των νευρωνικών δικτύων.

Τελικά, όχι απλά το θεώρημα υπέρθεσης αποδείχθηκε σχετικό, αλλά επιπρό-
σθετα η ίδια η ιδιότητα της καθολικής προσέγγισης των νευρωνικών δικτύων
μπορούσε να ιδωθεί ως μια ιδιαίτερη έκφανσή του. Η δουλειά της Kůrková απο-
τέλεσε την αφετηρία για μια σειρά αποτελεσμάτων προς διάφορες κατευθύνσεις,
στα οποία το θεώρημα υπέρθεσης διαδραμάτιζε κεντρικό ρόλο. Στην εργασία μας,
παρουσιάζουμε ένα άρθρο των Vitaly Maiorov και Allan Pinkus (1999) [MP99]
στο οποίο εξετάζουν το πρόβλημα της καθολικής προσέγγισης από μια διαφορε-
τική σκοπιά.

Εως τώρα τα ερωτήματα που έχουμε διατυπώσει, ασχολούνται με το ποιες συ-
ναρτήσεις ενεργοποίησης μπορούν να χρησιμοποιηθούν ως καθολικοί προσεγγι-
στές. Οι Maiorov και Pinkus, από την άλλη, εξετάζουν το κατά πόσον υπάρχει
κάποια συνάρτηση ενεργοποίησης για την οποία να επιτυγχάνεται πάντα κα-
θολική προσέγγιση με σχετικά λίγους κόμβους. Πράγματι, με τη βοήθεια του
θεωρήματος υπέρθεσης, βρίσκουν μια αρκετά παθολογική συνάρτηση ενεργο-
ποίησης, η οποία μπορεί να προσεγγίσει οποιαδήποτε συνεχή συνάρτηση χρη-
σιμοποιώντας μονάχα δύο στρώματα και σχετικά λίγους κόμβους, ο αριθμός των
οποίων εξαρτάται από τη διάσταση d του προβλήματος:
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Θεώρημα 1.1.4 (Maiorov-Pinkus): [MP99] Υπάρχει λεία, σιγμοειδής συνάρτηση
ενεργοποίησης σ, τέτοια ώστε για κάθε d ∈ N, κάθε συμπαγές K ⊆ Rd , κάθε f ∈
C (K ) και ε> 0, να υπάρχουν πραγματικές σταθερές di , ci j , θi j , γi και διανύσματα
wi j ∈Rd , με∣∣∣∣∣ f (x)−

6d+3∑
i=1

diσ

(
3d∑
j=1

ci jσ
(
w⊺

i j x +θi j

)
+γi

)∣∣∣∣∣< ε (1.1.8)

για κάθε x ∈ K .

Απόδειξη: Δες Theorem 2.5.2. ■

. Στοχαστική προσέγγιση

Ένας συνηθισμένος τρόπος επίλυσης δύσκολων προβλημάτων βελτιστοποίησης,
είναι μέσω της χρήσης επαναληπτικών προσεγγιστικών μεθόδων. Η στοχαστική
προσέγγιση αποτελεί επέκταση των μεθόδων αυτών, όταν στο πρόβλημα υπάρχει
κάποιου είδους τυχαιότητα.

.. Ο αλγόριθμος Robbins-Monro

Στην Παράγραφο 3.1, περιγράφουμε τον αλγόριθμο Robbins-Monro [RM51], ο
οποίος ιστορικά αποτελεί και το πρώτο αποτέλεσμα στοχαστική προσέγγισης.
Το πλαίσιο στο οποίο δουλεύουμε είναι το εξής: Υποθέτουμε ότι για κάθε x ∈ R,
παρτηρούμε μια τυχαία μεταβλητή Y = Y (x) με κατανομή P [Y (x) ≤ y] = H(y |x)
και αναμενόμενη τιμή M(x) = E[Y | X = x] = ∫

R yd H(y | x). Εν γένει, η ακριβής
μορφή της M(x), ή ακόμα και της κατανομής H(y | x) δεν είναι γνωστές, αλλά
υποθέτουμε ότι μπορούμε να προσομοιώνουμε από την εν λόγω κατανομή για
οποιαδήποτε τιμή του x. Το ζητούμενο είναι να βρεθεί μια μέθοδος επίλυσης
εξισώσεων της μορφής M(θ) = a ως προς θ. Δηλαδή, μας ενδιαφέρει να βρούμε
ένα κατώφλι, πέρα από το οποίο η απόκριση της τυχαίας μεταβλητής θα είναι
τουλάχιστον a.

Στον αλγόριθμο Robbins-Monro, κατασκευάζεται αναδρομικά μια ακολουθία
(xn)n σύμφωνα με τον τύπο

xn+1 = xn +an(a − yn), (1.2.1)

όπου yn είναι μια παρατήρηση που προσομοιώθηκε από την κατανομή H(y | xn)
και (an)n μια προκαθορισμένη ακολουθία μη αρνητικών αριθμών. Υπο συγκεκρι-
μένες υποθέσεις για τις κατανομές Y (x) και την ακολουθία (an)n , εξασφαλίζεται
η σύγκλιση της (xn)n στο θ κατά πιθανότητα.

Θεώρημα 1.2.1 (Robbins-Monro): Υποθέτουμε ότι υπάρχει σταθερά C > 0 με
P [|Y (x)| ≤ C ] = 1 για κάθε x ∈ R. Επιπλέον, η συνάρτηση M(x) = E[Y | X = x]
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είναι αύξουσα, με M(θ) = a και M ′(θ) > 0. Αν η μη-αρνητική ακολουθία (an)n

ανήκει στον ℓ2 \ℓ1, τότε η ακολουθία (xn)n του αλγορίθμου Robbins-Monro

xn+1 = xn +an(a − yn), (1.2.2)

συγκλίνει στο θ κατά πιθανότητα, xn
P−→ θ.

Η ποσότητα xn στη σχέση (1.2.2) αντιπροσωπεύει την τρέχουσα εκτίμηση για
το θ. Αυτή η τιμή διορθώνεται κατά τον παράγοντα an(a − yn), έτσι ώστε να
δώσει την καινούργια εκτίμηση xn+1. Για την ακρίβεια, η τιμή xn+1 = (1−an)xn+
an(a− yn +xn) αποτελεί κυρτό συνδυασμό της προηγούμενης εκτίμησης xn και
της προτεινόμενης διόρθωσης a− yn +xn . Οι δύο αυτές τιμές, xn και a− yn +xn ,
αποτελόυν τις δύο ακραίες προτάσεις για την xn+1. Η πρώτη υποδεικνύει ότι η
xn+1 πρέπει να αγνοήσει πλήρως τον διορθωτικό όρο a − yn , ενώ η δέυτερη ότι
θα πρέπει να τον αποδεχθεί εξ’ ολοκλήρου. Η ύπαρξη της σταθεράς an καθορίζει
το βάρος που θα δοθεί στε κάθε μία από τις δύο ακραίες αυτές προτάσεις.

Ο ρόλος της ακολουθίας (an)n είναι ιδιαίτερος, καθώς επιμερίζεται μεταξύ δύο
αντικρουόμενων αλλά επιθυμητών συμπεριφορών. Από τη μία πλευρά, οι όροι
της (an)n θα πρέπει να είναι αρκετά μεγάλοι ώστε να ληφθούν υπόψιν οι δι-
ορθώσεις a − yn , αλλά και σχετικά μικροί, ώστε να μη χαραμιστεί η πρόοδος
του αλγορίθμου και η οποία εκφράζεται από την τρέχουσα τιμή του xn . Αυτή
είναι μία έκφανση του διλήμματος εξερεύνησης - εκμετάλλευσης το οποίο θα
ξανασυναντήσουμε στο κεφάλιο των multi-armed bandit.

Οι Robbins και Monro, επιτυγχάνουν αυτόν τον συμβιβασμό, επιλέγοντας την
(an)n να είναι τετραγωνικά αθροίσιμη, αλλά όχι απολύτως αθροίσιμη, δηλαδή
δουλεύοντας με ακολουθίες οι οποίες είναι μεν αρκετά μικρές ώστε να συγκλί-
νουν στο μηδέν, αλλά με σχετικά αργό ρυθμό.

.. Εύρεση σταθερών σημείων υπό τυχαιότητα

Πολλά απαιτητικά προβλήματα στα μαθηματικά, ιδιαίτερα ζητήματα ύπαρξης,
ανάγονται στην εύρεση σταθερού σημείου για κάποια κατάλληλη συνάρτηση.
Στην Παράγραφο 3.2, παρουσιάζουμε ένα εργαλείο που μας επιτρέπει να βρί-
σκουμε το σταθερό σημείο μιας συνάρτησης υπό την παρουσία τυχαιότητας.

Θεωρούμε έναν (όχι απαραίτητα γραμμικό) τελεστή H : X → X που δρα πάνω
στο διανυσματικό χώρο X και ο οποίος γνωρίζουμε ότι έχει μοναδικό σταθερό
σημείο.Μια συνήθης μέθοδος για την προσέγγιση του σημείου αυτού, θα ήταν να
χρησιμοποιήσουμε την αναδρομική ακολουθία (xn)n που ορίζεται από τη σχέση
xn+1 = H xn . Η ακολουθία αυτή ξεκινά από κάποιο αυθαίρετο x1 ∈ X , και εν
συνεχεία ακολουθεί την τροχιά αυτού του σημείου μέσω του τελεστή H . Υπό
κατάλληλες προϋποθέσεις, για παράδειγμαόταν ο H είναι συστολή και ο X χώρος
Banach, η ακολουθία (xn)n όντως συγκλίνει στο ζητούμενο σταθερό σημείο του
H .

Στο πρόβλημα που μελετάμε όμως, λόγω της παρουσίας θορύβου, είναι αδύ-
νατο να γνωρίζουμε την ακριβή τιμή H xn κάθε τέτοιας επανάληψης. Αντίθετα,
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παρατηρούμε μια τιμή H xn + wn , όπου ο wn είναι μια τυχαία μεταβλητή που
παίζει το ρόλο του θορύβου. Η ύπαρξη αυτού του όρου, μας αναγκάζει να προ-
σαρμόσουμε τον τρόπο που ορίζουμε την αναδρομική ακολουθία μας. Πιο συγκε-
κριμένα, και εναρμονισμένοι με τη προσέγγιση των Robbins-Monro, ορίζουμε
την (xn)n σύμφωνα με τη σχέση

xn+1 = (1−γn)xn +γn(H xn +wn) (1.2.3)

όπου (γn)n είναι κατάλληλη ακολουθία στο (0,1]. Η ακολουθία αυτή, δεν είναι
απαραίτητο να είναι προκαθορισμένη, αλλά μπορεί ο κάθε όρος της να εξαρτάται
από την ιστορία της ανέλιξης μέχρι εκείνη τη στιγμή.

Τα δύο κύρια αποτελέσματα που αποδεικνύουμε, αφορούν σε δύο μεγάλες κλά-
σεις τελεστών H : RN →RN , τις ψευδοσυστολές και τους μονότονους τελεστές.

Ορισμός 1.2.1: Έστω (X ,∥ · ∥) χώρος με νόρμα. Μια συνάρτηση H : X → X
καλείται ψευδοσυστολή, εαν υπάρχουν x∗ ∈ X και β ∈ [0,1) τέτοια ώστε

∥H x −x∗∥ ≤β∥x −x∗∥ (1.2.4)

για κάθε x ∈ X .

Συνήθως, οι τελεστές H δε θα είναι συστολές ως προς την ευκλείδεια νόρμα
του RN , αλλά ως προς κάποια ισοδύναμη νόρμα ∥ · ∥ξ. Σημειώνουμε επίσης ότι
κάθε ψευδοσυστολή έχει ως μοναδικό σταθερό της σημείο το x∗.

Πρόταση 1.2.2: Έστω (rn)n η ακολουθία που ορίζεται από την αναδρομική σχέση

rn+1 = (1−γn)rn +γn(Hnrn +wn +un), (1.2.5)

όπου

(a) η ακολουθία (γn)n είναι τέτοια ώστε
∑∞

n=1γn(i ) =∞ και
∑∞

n=1γn(i )2 <
∞ για κάθε i = 1, . . . , N .

(b) Η ακολουθία (wn)n έχει την ιδιότητα ότι

E [wn(i ) |Fn] = 0 και E
[
wn(i )2 |Fn

]≤ A+B∥rn∥2.

(c) Κάθε Hn είναι ψευδοσυστολή ως προς την ίδια νόρμα ∥ · ∥ξ, με το ίδιο
σταθερό σημείο r∗ και την ίδια σταθερά β ∈ [0,1).

(d) Υπάρχει ακολουθία μη-αρνητικών τυχαίων μεταβλητών (θn)n η οποία συ-
γκλίνει στο μηδέν σχεδόν παντού, τέτοια ώστε

∥un∥∞ ≤ θn
(
1+∥rn∥ξ

)
για κάθε n ∈N.
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Τότε η (rn)n συγκλίνει στο r∗ σχεδόν παντού.

Πρόταση 1.2.3: Έστω (rn)n η ακολουθία που ορίζεται από την αναδρομική σχέση

rn+1 = (1−γn)rn +γn(Hrn +wn), (1.2.6)

όπου

(a) η ακολουθία (γn)n είναι τέτοια ώστε
∑∞

n=1γn(i ) =∞ και
∑∞

n=1γn(i )2 <∞
για κάθε i = 1, . . . , N .

(b) Η ακολουθία (wn)n έχει την ιδιότητα ότι

E [wn(i ) |Fn] = 0 και E
[
wn(i )2 |Fn

]≤ A+B∥rn∥2.

(c) Για τον τελεστή H ισχύει ότι

(i) είναι μονότονος, δηλαδή H x ≤ H y για κάθε x ≤ y .

(ii) Για κάθε λ > 0 και r ∈ RN , ισχύει ότι: Hr −λe ≤ H(r −λe) ≤ H(r +
λe) ≤ Hr +λe, όπου e = (1, . . . ,1).

(iii) Έχει μοναδικό σταθερό σημείο, Hr∗ = r∗.

Εαν η (rn)n είναι φραγμένη σχεδόν παντού, τότε συγκλίνει στο r∗ σχεδόν παντού.

.. Q-Μάθηση

Ο δυναμικός προραμματισμός αποτελεί εναν από τους σημαντικότερους κλά-
δους της μαθηματικής βελτιστοποίησης και το αντικείμενο μελέτης του είναι προ-
βλήματα στα οποία η λήψη αποφάσεων γίνεται ακολουθιακά.

Κεντρικό ρόλο στα προβλήματα δυναμικού προγραμματισμού, διαδραματίζει
η εξίσωση του Bellman, η οποία αποτελεί μια συναρτησιακή εξίσωση για τη συ-
νάρτηση βέλτιστης τιμής J∗:

J∗(i ) = min
a∈A(i )

{∑
j∈S

pi j (a)
(
c(i , a, j )+ J∗( j )

)}
. (1.2.7)

Η επίλυση της εξίσωσης αυτής είναι άμεσα συνυφασμένη και με τη λύση του υπό
μελέτη προβλήματος. Για απλά προβλήματα, η εξίσωση (1.2.7) γίνεται να λυθεί
αλγεβρικά, αλλά εν γένει αυτό δεν είναι εφικτό. Για τον λόγο αυτό, ακόμα και στη
κλασσική θεωρία του δυναμικού προγραμματισμού, είναι σημαντική η εύρεση
μεθόδων για την προσεγιστική επίλυσή της. Ένα παράδειγμα τέτοιας μεθόδου
είναι η μέθοδος των διαδοχικών προσεγγίσεων, σύμφωνα με την οποία ξεκινάμε
με κάποια αυθαίρετη συνάρτηση J0 και σε κάθε στάδιο ορίζουμε

Jn+1(i ) = min
a∈A(i )

{∑
j∈S

pi j (a)
(
c(i , a, j )+ Jn( j )

)}
. (1.2.8)
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Η σύγκλιση της ακολουθίας (Jn)n στην J∗ εξασφαλίζεται μέσω του θεωρήματος
σταθερού σημείου του Banach, καθώς ο τελεστής T : C (S) →C (S), που ορίζεται
ώς

(T f )(i ) := min
a∈A(i )

{∑
j∈S

pi j (a)
(
c(i , a, j )+ f ( j )

)}
, f ∈C (S), i ∈ S,

αποτελεί συστολή.
ΗQ-Μάθηση μπορεί να θεωρηθεί σαν μια επέκταση αυτού του αποτελέσματος,

για την επίλυση προβλημάτων όπου είναι αδύνατη η χρησιμοποίησή του, λόγω
έλλειψης απαιτούμενων πληροφοριών. Στην κλασσική περίπτωση, οι πιθανότη-
τες μετάβασης pi j (a) καθώς και τα κόστη c(i , a, j ) είναι εκ τωνπροτέρωνγνωστά,
έτσι ο υπολογισμός της έκφρασης στη σχέση (1.2.8) είναι εφικτός. Στο πλαίσιο
της Q-Μάθησης, οι τιμές αυτές είναι άγνωστες. Αντίθετα, υποθέτουμε ότι μπο-
ρούμε να προσομοιώνουμε τις μεταβάσεις της αλυσίδας οι οποίες περιγράφονται
από τις κατανομές pi j (a) και να παρατηρούμε τα κόστη που επιφέρει κάθε με-
τάβαση. Έτσι, ενώ δε γνωρίζουμε τις ακριβείς παραμέτρους του προβλήματος,
διαθέτουμε έναν έμμεσο τρόπο να εξάγουμε συμπεράσματα για αυτές.

Ο αλγόριθμος της Q-Μάθησης διατυπώθηκε από τον Chris Watkins στη διδα-
κτορική διατριβή του [Wat89] και αποτελέι ένα συνδυασμό της μεθόδου διαδο-
χικών προσεγγίσεων με τη μέθοδο της στοχαστικής προσέγγισης των Robbins-
Monro. Το υπό μελέτη πρόβλημα ανάγεται στην επίλυση της συναρτησιακής εξί-
σωσης

Q(i , a) := (1−γ)Q(i , a)+γ
N∑

j=0
pi j (a)

(
c(i , a, j )+ min

b∈A( j )
Q( j ,b)

)
(1.2.9)

για κάθε κατάσταση i και απόφαση a ∈ A(i ). Καθώς δε γνωρίζουμε τις πιθανό-
τητες μετάβασης pi j (a), η αναμενόμενη τιμή που εμφανίζεται στη σχέση (1.2.9),
αντικαθίσταται από μία τιμή j η οποία προσομοιώνεται από την κατανομή pi ,·(a).
Ομοίως, το c(i , a, j ) δεν είναι εκ των προτέρων γνωστό, αλλά παρατηρείται κατά
την πραγματοποίηση της εν λόγω μετάβασης. Τέλος, η σταθερά γ αντικαθίσταται
από ακολουθίες που συγκλίνουν στο μηδέν αρκετά αργά, όπως και στον αλγό-
ριθμο των Robbins-Monro:

Θεώρημα1.2.4: [BT96]Θεωρούμε την ακολουθία (Qn)n που ορίζεται αναδρομικα
από τη σχέση

Qn+1(i , a) = (
1−γn(i , a)

)
Qn(i , a)+γn(i , a)

(
c(i , a, j )+ min

b∈A( j )
Qn( j ,b)

)
, (1.2.10)

όπου σε κάθε βήμα, η τιμή j έχει προσομοιωθεί από την κατανομή pi ,·(a) και η
ακολουθία (γn)n είναι τέτοια ώστε

∑∞
n=0γn(i , a) = ∞ και

∑∞
n=0γn(i , a)2 < ∞

για κάθε i = 1, . . . , N και a ∈ A(i ). Κάτω από κατάλληλες υποθέσεις, Qn(i , a) →
Q∗(i , a) για κάθε i , a ∈ A(i ) σχεδόν παντού, όπου Q∗ είναι ο βέλτιστος Q- παρά-
γοντας, δηλαδή η λύση της εξίσωσης (1.2.9).
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Η ιδέα της απόδειξης είναι να οριστεί κατάλληλα ένας τελεστής H , όπως και
στην απόδειξη της σύγκλισης της μεθόδου διαδοχικών προσεγγίσεων, το στα-
θερό σημείο του οποίου θα είναι ο ζητούμενος βέλτιστος Q-παράγοντας και ο
οποίος θα εμπίπτει σε κάποια από τα θεωρήματα στοχαστικής προσέγγισης της
προηγούμενης παραγράφου. Συγκεκριμένα, ο τελεστής H : C (S̃) → C (S̃) που
ορίζεται ως

(HQ)(i , a) =
N∑

j=0
pi j (a)

(
c(i , a, j )+ min

b∈A( j )
Q( j ,b)

)
. (1.2.11)

για Q στο C (S̃), προκύπτει είτε ότι είναι συστολή ως προς κάποια κατάλληλη
νόρμα, είτε ότι είναι μονότονος, έτσι τα αποτελέσματα της προηγούμενης παρα-
γράφου μπορούν να εφαρμοστούν.

. Multi-armed bandits

Το πλαίσιο των multi-armed bandits αποτελεί ένα από τα πιο αντιπροσωπευτικά
και εύληπτα παραδείγματα του κλάδου της ενισχυτικής μάθησης (reinforcement
learning). Μελετήθηκαν για πρώτη φορά από τον Herbert Robbins στις αρχές
τις δεκαετίας του ‘50 και εξακολουθούν να αποτελοούν κεντρικό πεδίο έρευνας,
τόσο από θεωρητική άποψη, όσο και στο κομμάτι των εφαρμογών τους.

Στην απλούστερη μορφή του, το πρόβλημα που θα μας απασχολήσει είναι το
εξής: Έχουμε τη δυνατότητα να τραβάμε παρατηρήσεις από δύο διαφορετικούς
πληθυσμούς A και B , οι οποίοι χαρακτηρίζονται από τις κατανομές FA και FB ,
με αναμενόμενες τιμές a και b αντίστοιχα. Σε κάθε γύρο, επιλέγουμε έναν εκ
των δύο πληθυσμών, τραβάμε μια παρατήρηση x σύμφωνα με την αντίστοιχη
κατανομή, την οποία και εισπράττουμε σαν κέρδος.Ο στόχος μας είναι να βρούμε
μια στρατηγική επιλογής του δείγματος x1, . . . , xn ούτως ώστε να μεγιστοποιή-
σουμε το αναμενόμενο κέρδος Sn = x1 + . . .+xn .

Εαν γνωρίζαμε εξ’ αρχής τις τιμές των a και b, τότε το πρόβλημα θα ήταν τε-
τριμμένο, αφού σε κάθε γύρο θα επιλέγαμε τον πληθυσμό με την μεγαλύτερη.
Από τη στιγμή όμως που οι τιμές αυτές είναι άγνωστες, τότε σε κάθε γύρο το
μέσο κέρδος μας θα έχει τη μορφή

E[Sn/n] = 1

n

n∑
i=1

E[Xi ] = kn

n
a + n −kn

n
b,

όπου kn ο αριθμός δειγμάτων από τον πληθυσμό A μετά από n γύρους. Δηλαδή,
το μέσο κέρδος E[Sn/n] θα αποτελεί, εν γένει, έναν κυρτό συνδυασμό των a και
b.

Η ιδιαιτερότητα του προβλήματος συνίσταται στο ότι για να το προσεγγίσουμε
σωστά, είναι απαραίτητο να χρησιμοποιήσουμε ταυτόχρονα δύο αντικρουόμενες
στρατηγικές. Από τη μία μεριά, πρέπει να τραβήξουμε αρκετές τιμές και από τους
δύο πληθυσμούς ώστε να έχουμε μια καλή εκτίμηση του ποιος εκ των δύο είναι
ο καλύτερος. Αυτό σημαίνει ότι είμαστε διατεθειμένοι να επιλέξουμε τον λάθος
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πληθυσμό αρκετές φορές ούτως ώστε να μάθουμε την αναμενόμενη τιμή του.
Από την άλλη, όταν είμαστε αρκετά βέβαιοι για το ποιος είναι ο καλύτερος, πρέ-
πει να τραβάμε ολοένα περισσότερες παρατηρήσεις από αυτόν τον πληθυσμό,
ώστε να μεγιστοποιήσουμε το αναμενόμενο κέρδος μας. Η πρώτη στρατηγική
ονομάζεται εξερεύνηση, ενώ η δεύτερη εκμετάλλευση, και η εύρεση αλγορίθμων
που επιτυγχάνουν τη σωστή εξισορρόπηση ανάμεσά τους είναι το αντικείμενο
του Κεφαλαίου 4.

Υπάρχει ένας πολύ απλός αλγόριθμος, ο οποίος διατυπωθηκε από τον ίδιο τον
Robbins [Rob52] το 1952, και επιτυγχάνει ασυμπτωτικά το μέγιστο δυνατό ανα-
μενόμενο κέρδος. Σύμφωνα με αυτόν, επιλέγονται δύο ξένα, άπειρα υποσύνολα
φυσικών αριθμών J A και JB με μηδενική πυκνότητα.2 Όταν ο γύρος n στον οποίο
βρισκόμαστε, ανήκει στο J A , επιλέγουμε πάντα τον πληθυσμό A. Αντίστοιχα επι-
λέγουμε τον B πληθυσμό όταν n ∈ JB . Σε όλους τους υπόλοιπους γύρους, επιλέ-
γουμε τον πληθυσμό ο οποίος έχει τον μεγαλύτερο δειγματικό μέσο, σύμφωνα
με τις παρατηρήσεις που έχουν ληφθεί εως εκείνη τη στιγμή.

Καθώς τα σύνολα J A και JB έχουν πυκνότητα μηδέν, οι παρατηρήσεις που
λαμβάνουμε επάνω τους δεν έχουν κάποια επίδραση στο μέσο κέρδος μας ασυμ-
πτωτικά. Επομένως, πάνω σε αυτά τα σύνολα μπορούμε να εξερευνούμε όσο
θέλουμε, χωρίς αρνητικές συνέπειες. Επιπλέον, εφόσον και τα δύο αυτά σύνολα
είναι άπειρα, η στρατηγική μας είναι σίγουρο ότι θα επιλέγει πάντα άπειρες το
πλήθος παρατηρήσεις και από τους δύο πληθυσμούς. Από τον Ισχυρό Νόμο των
Μεγάλων Αριθμών, οι δειγματικοί μέσοι των δύο πληθυσμών θα συγκλίνουν
στους πραγματικούς μέσους με πιθανότητα ένα.

Άρα, από κάποιον γύρο και έπειτα, οι δειγματικοί μέσοι των δύο πληθυσμών θα
είναι τόσο κοντά στους πραγματικούς μέσους, ώστε επιλέγοντας τον μεγαλύτερο
δειγματικό μέσο, ουσιαστικά επιλέγουμε και τον καλύτερο πληθυσμό. Έτσι, η
στρατηγική μας από ένα γύρο και μετά, θα επιλέγει μονίμως τον καλύτερο πλη-
θυσμό, εκτός από τους γύρους που ανήκουν στο σύνολο J A ∪ JB , οι οποίοι όμως
είναι τόσο αραιοί που δεν επηρεάζουν το αναμενόμενο κέρδος μας ασυμπτωτικά.

.. Ασυμπτωτικά βέλτιστα κάτω φράγματα

Σε πραγματικά προβλήματα, όπου δεν συνεχίζουμε να παίζουμε επ’ άπειρον, είναι
σημαντικό όχι απλά να εξασφαλίσουμε την επίτευξη του στόχου ασυμπτωτικά,
αλλά και όσο το δυνατόν γρηγορότερα. Όμως, ενώ η εύρεση αλγορίθμων που
επιτυγχάνουν το μέγιστο δυνατό αναμενόμενο κέρδος ασυμπτωτικά ήταν μια
απλή εφαρμογή του ΙΝΜΑ, το ερώτημα του πόσο γρήγορα μπορεί να επιτευχθεί
αυτό το κέρδος αποδείχθηκε πολύ δυσκολότερο και απαντήθηκε 30 χρόνια αρ-
γότερα από τους Tze Leung Lai και Herbert Robbins [LR85].

2Για παράδειγμα μπορούμε να επιλέξουμε J A = {n2 : n ∈N} και JB = {n2 +1 : n ∈N}.
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Θα θεωρήσουμε την πιο γενική περίπτωση, όπου έχουμε k το πλήθος πληθυ-
σμούς με αναμενόμενες τιμές a1, . . . , ak . Για κάθε στρατηγική ϕ : N → {1, . . . ,k}
ορίζουμε την απώλεια (regret) μετά από n γύρους, ως

Rn(ϕ) = n max{a1, . . . , ak }−E [Sn] . (1.3.1)

Οι Lai και Robbins έδειξαν ότι στην περίπτωση που οι κατανομές των κερδών
ικανοποιούν κάποιες συγκεκριμένες υποθέσεις, η απώλεια οποιουδήποτε αλγο-
ρίθμου δε μπορεί να αυξάνει πιο αργά από o(lnn). Επιπλέον, κατασκεύασαν έναν
αλγόριθμο ο οποίος επιτυγχάνει αυτό το κάτω φράγμα, και άρα συμπεριφέρεται
βέλτιστα όσον αφορά στην ταχύτητα σύγκλισης.

Όλες οι κατανομές στο συγκεκριμένο θεώρημα είναι μονοπαραμετρικές f (x;θ)
με θ ∈ Θ ⊆ R, και το Θ με τη σειρά του ικανοποιεί κάποια αξιώματα που εξα-
σφαλίζουν ότι θα έχει μια σχετικά πλούσια δομή. Επίσης, διατυπώνονται κάποιες
υποθέσεις συνέχειας της μετρικήςKullback-Leibler.Όλες αυτές οι υποθέσεις, μπο-
ρεί εκ πρώτης όψεως να φαίνονται αντιδιαισθητικές, αλλά στην πραγματικότητα
εξασφαλίζουν ότι το πρόβλημα είναι διατυπωμένο σε ρεαλιστικά πλαίσια και επί-
σης αποφεύγουν τετριμμένες απαντήσεις.

Για την εύρεση του κάτω φράγματος o(lnn), οι Lai και Robbins χρησιμοποιούν
το εξής βασικό επιχείρημα: Αν υποθέσουμε ότι έχουμε στα χέρια μας έναν αλγό-
ριθμο ο οποίος συγκλίνει γρήγορα για όλες τις δυνατές κατανομές, δηλ. για όλα
τα δυνατά θ ∈Θ, τότε αυτή ακριβώς η ισχυρή του ιδιότητα, στην πραγματικότητα
λειτουργεί σε βάρος του: Επιλέγοντας με προσοχή συγκεκριμένες τιμές τις παρα-
μέτρου θ, στις οποίες ο αλγόριθμος αναγκαστικά θα πρέπει να συγκλίνει γρή-
γορα, καταφέρνουν και παίρνουν αντίστροφα φράγματα. Το ηθικό δίδαγμα της
απόδειξης, είναι ότι εαν έχουμε στην κατοχή μας έναν αλγόριθμο ο οποίος συ-
γκλίνει γρήγορα για όλα τα θ ∈Θ, τότε αναγκαστικά θα υπάρχουν κάποια θ στα
οποία, θα συγκλίνει μεν γρήγορα, αλλά δε θα συγκλίνει ταχύτατα.

Για την κατασκευή του αλγορίθμου που το υλοποιεί, χρησιμοποιούν την αρχή
της αισιοδοξίας εν όψει αβεβαιότητας (optimism in the face of uncertainty). Η
κύρια διαφορά σε σχέση με τον πολύ απλό αλγόριθμο που αναφέραμε στην προ-
ηγούμενο παράγραφο, είναι ότι σε κάθε γύρο δε συγκρίνονται οι δειγματικοί
μέσοι των διαφόρων πληθυσμών. Αντίθετα, για τους πληθυσμούς που δεν έχουν
επιλεγεί αναλογικά αρκετές φορές, κατασκευάζεται ένα διάστημα εμπιστοσύνης
για τον μέσο, και οι ίδιοι οι πληθυσμοί αντιπροσωπεύονται όχι από τον δειγματικό
τους μέσο, αλλά από το άνω άκρο του διαστήματος εμπιστοσύνης. Με αυτή την
πρακτική, ο αλγόριθμος δίνει ένα παραπάνω κίνητρο προς εξερεύνηση, προσφέ-
ροντας επιπλέον ευκαιρίες σε πληθυσμούς που δείχνουν υποσχόμενοι, αλλά ίσως
να έχουν μικρούς δειγματικόυς μέσους λόγω τυχαιότητας.

.. O αλγόριθμος UCB

Η κατασκευή των διαστημάτων εμπιστοσύνης στη δουλειά των Lai και Robbins
είναι ιδιαίτερα λεπτή υπόθεση. Στο άρθρο τους, αναφέρονται τα αξιώματα που τα
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διαστήματα εμπιστοσύνης θα πρέπει να ικανοποιούν, και δίνονται παραδείγματα
για συγκεκριμένες κατανομές, αλλά εν γένει, δεν παρέχεται κάποιος κανόνας κα-
τασκευής τους. Ακόμα όμως και όταν τα διαστήματα είναι γνωστά, ο υπολογι-
σμός τους είναι αρκετά απαιτητικός.

Το πρόβλημα αυτό προσπαθεί να αντιμετωπίσει ο αλγόριθμος Upper Confi-
dence Bound (UCB) των Auer, Cesa-Bianchi και Fischer [ACBF02], στον οποίον
τα διαστήματα εμπιστοσύνης έχουν την απλούστατη έκφραση

Διάστημα Εμπιστοσύνης j -πληθυσμού= x j ,n j ±
√

3lnn

2n j
, (1.3.2)

όπου x j ,n j είναι ο δειγματικός μέσως του j -πληθυσμού και n j το πλήθος φορών
που επιλέχθηκε κατά τους πρώτους n γύρους. Επιπλέον, η μόνη υπόθεση για τις
κατανομές των κερδών είναι να λαμβάνουν τιμές στο [0,1].

Το τίμημα που πληρώνουμε είναι ότι, ενώ μεν επιτυγχάνεται και πάλι ταχύτητα
σύγκλισης o(lnn), η σταθερά είναι χειρότερη από τη βέλτιστη δυνατή. Τροποποι-
ώντας όμως κατάλληλα τον αλγόριθμο αυτόν, η σταθερά μπορεί να πλησιάσει
αυθαίρετα κοντά στη βέλτιστη σταθερά. Αυτό υλοποιείται στον αλγόριθμο Up-
per Confidence Bounds with epochs, όπου σε κάθε γύρο, ο πληθυσμός που επι-
λέγεται, δεν παίζεται μόνο μία φορά, αλλά ολοένα και περισσότερες φορές.
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2
Approximation Capabilities of Neural
Networks

Neural Networks have exhibited tremendous results during the past decades, of-
fering approximate solutions to problems often conceived intractable. Despite the
fact that they were firstly conceived in the mid ’40s, the systematic study of their
approximation capabilities emerged relatively recently. It relied on tools from ab-
stract mathematics, like functional analysis and probability theory, and progres-
sively reached deeper into their foundations.

In Section 2.1 we describe themathematical formulation of the problem, and in
Section 2.2 we present Cybenko’s approximation theorem, which is the first ma-
jor relevant theorem, proving that continuous sigmoidal activation functions are
universal approximators. In Section 2.3 we investigate if the sigmoidal property
of the activation function is really necessary for the approximation property to
hold. Leshno, Lin, Pinkus and Schocken answered this question in the negative,
providing an impressive and simple characterization of the activation functions
that are universal approximators. In Section 2.4 we present a constructive appro-
ximationmethod in L2, based on the work of Kwok and Yeung. Lastly, Section 2.5
is devoted to an alternative method of obtaining approximation results, based on
the Kolmogorov - Arnold Representation Theorem.

. The universal approximation property

In Approximation Theory, one is usually trying to approximate functions using
simpler ones. Probably the most famous relevant result is the Stone - Weierstrass
Theorem, which asserts that one can approximate continuous functions using
polynomials. Artificial Neural Networks are architectures that are used in this
setting, however, the “simpler” functions that a neural network uses in order to
approximate more complex ones, are not polynomials, but have another very spe-
cific form [BT96, p. 64]: Any function s created by a neural network has the form
s(x) = T x, where

T = Am+1Sm Am · · · A2S1 A1

is an operator consisting of sequential compositions of two types of transforma-
tions; the affine transformations Ai and the sigmoidal ones Si .

Suppose that f : Rn → R is the function we are trying to approximate. Let m ∈
N and consider a sequence of natural numbers d0 = n, d1, . . . ,dm+1. For each
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i = 1, . . . ,m + 1, let Ai : Rdi−1 → Rdi be an affine transformation.1 Additionally,
suppose thatσ1, . . . ,σm : R→R are real functions (not necessarily linear), and for
every i = 1, . . . ,m, every d ∈ N and z ∈ Rd , we define Si z to be the vector Si z =
[σi (z1), . . . ,σi (zd )]⊺. Specifically, Si applies the function σi to every element of
the vector z. Note here that Si is a (not necessarily linear) function that respects
the input dimension, that is, Si : Rd →Rd for every d .

Under this notation, given an input x ∈Rn , the output s(x) of a neural network
with m layers and having σ1, . . . ,σm as its activation functions, is:

s(x) = Am+1Sm Am · · · A2S1 A1x. (2.1.1)

The activation functionsσi , aremost commonly sigmoidal functions, that is, func-
tions having the property that limt→−∞σ(t ) = 0 and limt→+∞σ(t ) = 1. A single
layered network (m = 1) has an output of the form

s(x) = A2S1 A1x.

In this particular case, the set of all possible functions s which can be generated
by a neural network, having σ as an activation function, is:

Σn(σ) =
{

s : Rn →R : s(x) =
N∑

j=1
a jσ(w⊺

j x +θ j ) :

N ∈N, a j ∈R, w j ∈Rn ,θ j ∈R

}
.

The elements w⊺
j x+θ j correspond to the first affine transformation, A1 : Rn →

RN , applied on x, namely

A1x = (w⊺
1 x +θ1, . . . , w⊺

N x +θN ).

For the next step, on each of the coordinates of this vector, the activation function
σ is applied, producing the vector

S1 A1x = (σ(w⊺
1 x +θ1), . . . ,σ(w⊺

N x +θN ))

Finally, the (linear) operator A2 : RN → R, defined as A2(x) = ∑N
i=1 ai xi for x ∈

RN , is applied, to produce the final linear combination
∑N

j=1 a jσ(w⊺
j x +θ j ). 2

1A function A : X → Y between two vector spaces is called affine, when it is the translation of a
linear operator. This means that there exist T : X → Y linear and y0 ∈ Y , such that A(x) = T (x)+y0

for every x ∈ X . Equivalently, A is affine if A
(∑n

i=1λi xi

)
= ∑n

i=1λi A(xi ) for every n ∈N, xi ∈ X

and λi ∈R such that
∑n

i=1λi = 1. Linear operators are special cases of affine transformations; this
can readily be seen by picking y0 = 0 in the first definition given above, or by observing that for
linear operators T , the identity T

(∑n
i=1λi xi

)
=∑n

i=1λi T (xi ) holds for any n ∈ N and any choice
of λi .

2One could observe here that from the final sum, the constant part of the affine transformation
A2 appears to bemissing. However, by picking w j = 0 and θ j such thatσ(θ j ) ̸= 0, we canmake sure
that the constant function will appear in this last combination, so we can use a linear combination,
instead of an affine one, for simplicity.
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The use of neural networks in approximation problems has been proven to be
extremely successful. Of course, one cannot expect that any function f will be
exactly equal to some function of the form (2.1.1), however, one could hope that
it would be possible to approximate any given f arbitrarily close, using functions
of this form. This is indeed the case, and is achievable for a variety of activation
functions. Activation functions which have this property, are called universal ap-
proximators. In what follows, we will focus on single layered networks,3 since if
we manage to show that an activation function σ is a universal approximator for
such a network, then clearly the same would hold for multilayered networks as
well.

We should point out here that although approximation theorems assert that
we can always approximate any unknown function f , they are not designed to
provide a rule of how to do so. In real life applications, the researcher is usu-
ally given a vector of observations (xi , f (xi ))i , or more realistically (xi , yi )i where
yi = f (xi )+εi for some noise εi , and just based on it, he tries to determine the
appropriate values of the parameters w j , θ j , as well as the activation function σ,
so as the corresponding predicted values of his model (s(xi ))i are “close” to the
observed ones (yi )i , expecting that the resulting s will be acceptably close to f on
the whole domain. The importance of the approximation theorems in this con-
text, is that they ascertain that his efforts are not in vain: parameters for which s
is sufficiently close to the real f do exist, as long as he chooses a universal approx-
imator as an activation function.

. Cybenko’s approximation theorem

One of the first and most important relevant theorems, belongs to George Cy-
benko [Cyb89] who, in 1989, proved that continuous sigmoidal activation func-
tions are universal approximators.Theproof is a beautiful application of theHahn-
Banach and Riesz Representation theorems. The reader who is unfamiliar with
the terminology, or the results, may need to consult Appendix A.2 for a basic
treatment, or his favorite functional analysis book for a more thorough one.

We use In = [0,1]n to denote the n-dimensional cube and by C (In) we denote
the Banach space of continuous functions on In , equipped with the supremum
norm ∥ f ∥ = ∥ f ∥∞ = sup{| f (x)| : x ∈ In}. Since In is compact, the Riesz Represen-
tation Theorem [AB06, Corollary 14.15] applies and asserts that the dual space of
C (In) can be identified as the space of finite, signed Borelmeasures on In , denoted
as M(In).

3Intuitively, one expects that a multilayered network will be at least as good of an aproximator
as a single layered one, as long as the additional Ai ’s and Si ’s are chosen properly. For example, if
the output of the network is s(x) = Am+1 . . . A3S2 A2S1 A1x, then by using σ(x) = x and A = I to
define all the additional operators, we have that Am+1Sm Am . . . A3S2 is the identity operator, thus
our network is able to reproduce the single layered network defined by A2S2 A1.
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Definition 2.2.1: A function σ : R→R is called sigmoidal if

σ(t ) −→

0, as t →−∞,

1, as t →+∞.
(2.2.1)

Given a sigmoidal function σ, the set

Σn(σ) =
{

f : In →R : f (x) =
N∑

j=1
a jσ(w⊺

j x +θ j ) :

N ∈N, a j ∈R, w j ∈Rn ,θ j ∈R

}
= span

{
f : f (x) =σ

(
w⊺x +θ

)
for w ∈Rn ,θ ∈R

}
.

contains all the possible functions that can be generated by a single layered neural
network, having σ as an activation function. Cybenko’s theorem states that Σn(σ)
is dense4 in C (In) for continuous sigmoidal functions σ.

Definition 2.2.2: Let σ : R→ R be a real function and µ ∈ M(In) be a measure.
We say that σ is discriminatory for µ if∫

In

σ(w⊺x +θ)dµ(x) = 0 (2.2.2)

for every w ∈Rn and every θ ∈R implies that µ≡ 0.

The proof idea5 is to show that Σn(σ) is dense in C (In) whenever σ is discrim-
inatory, and then prove that sigmoidal functions share the discriminatory prop-
erty. It is based on two fundamental theorems in functional analysis, the Hahn-
Banach and the Riesz Reperesentation Theorems.

Theorem 2.2.3 (Hahn-Banach): [Arg04, Proposition 5.7] Let X be a normed
space and Y be a closed proper subspace of X . Then, there exists a nonzero x∗ ∈
X ∗ such that x∗(y) = 0 for every y ∈ Y .

Theorem 2.2.4 (Riesz Representation): [AB06, Theorem 14.16] Let X be a com-
pactmetrizable space and F ∈C (X )∗ be a bounded, linear functional onC (X ).Then,
there exists a unique, finite, signed Borel measure µ on X , such that F ( f ) = ∫

X f dµ

for every f ∈C (X ).

4A subset D ⊆ X of a metric space (X ,ρ) is dense if D = X . There are several equivalent refor-
mulations of this definition, the most useful of which is that for every ε> 0 and every x ∈ X there
exists some d ∈ D with ρ(d , x) < ε. In our setting, Σn (σ) being dense in C (In ) means that for every
ε > 0 and f ∈ C (In ), there exists some g ∈ Σn with ∥ f − g∥∞ < ε. Simply put, g approximates f
well enough.

5One could be tempted to use the Stone-Weierstrass Theorem to conclude that Σn (σ) is dense.
Unfortunately, the Stone-Weierstrass Theorem is not applicable here without some modifications.
We postpone this discussion until p. 28.
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Theorem 2.2.5: Let σ : R→R be a continuous and discriminatory function. Then,
the set

Σn(σ) =
{

f : In →R : f (x) =
N∑

j=1
a jσ(w⊺

j x +θ j ) :

N ∈N, a j ∈R, w j ∈Rn ,θ j ∈R

}
(2.2.3)

is dense in C (In).

Proof. The set Σn(σ) is clearly a subspace of C (In). Indeed, if λ ∈ R and f (x) =∑N
j=1 a jσ(y⊺

j x +θ j ) ∈Σn(σ), then

λ f (x) =
N∑

j=1
λa jσ(y⊺

j x +θ j ) =
N∑

j=1
a′

jσ(y⊺
j x +θ j )

for a′
j =λa j ∈R, thus belongs to Σn(σ). Similarly, if

f (x) =
N∑

j=1
a jσ(y⊺

j x +θ j ) and g (x) =
M∑

j=1
b jσ(z⊺

j x +k j )

belong to Σn(σ), their sum can be written as

f (x)+ g (x) =
N+M∑

j=1
a jσ(y⊺

j x +θ j ) ∈Σ(σ),

where we set aN+i = bi , y⊺
N+i = z⊺

i and θN+i = ki for every i = 1, . . . , M . Alter-
natively, one could simply observe that Σn(σ) is just the linear subspace of C (In)
generated by the functions of the form f (x) =σ(w⊺x +θ).

Suppose that Σn(σ) is not dense in C (In). Then, Y = Σn(σ) is a proper closed
subspace of C (In). By the Hahn-Banach Theorem, there exists some nonzero,
bounded linear functional x∗ on C (In), such that x∗( f ) = 0 for every f ∈ Y . By
the Riesz RepresentationTheorem, there exists some finite, signed, nonzero Borel
measure µ ∈ M(In), such that

x∗( f ) =
∫

In

f (x)dµ(x)

for every f ∈C (In). However, since x∗ is zero on Y , this implies that for every f ∈
Σn(σ) ⊆ Y ,

∫
In

f (x)dµ(x) = 0, which combined with the discriminatory property
of σ, yields that µ ≡ 0, a contradiction. Therefore Σn(σ) must be dense in C (In).

■

Theorem 2.2.6: Any bounded, measurable sigmoidal function σ is discriminatory.

Proof. Let σ be a bounded, measurable sigmoidal function and suppose that for
every w ∈Rn and θ ∈R,

∫
In
σ (w⊺x +θ)dµ(x) = 0 holds. We fix w ∈Rn and θ,ϕ ∈
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R and define a sequence of real functions (σk )k on In as follows: For every k ∈N,
let σk (x) =σ(k(w⊺x +θ)+ϕ). We have that

lim
k→∞

σk (x) = γ(x) :=


0, when w⊺x +θ < 0,

1, when w⊺x +θ > 0,

σ(ϕ), when w⊺x +θ = 0.

(2.2.4)

Sinceσ is bounded, there exists some M > 0 such that |σk (x)| ≤ M for every k ∈N

and x ∈ In . By applying Lebesgue’s Dominated Convergence Theorem, which still
holds for signed measures, we obtain that

0 = lim
k→∞

∫
In

σk (x)dµ(x) =µ(Hw ,θ)+σ(ϕ)µ(Kw ,θ), (2.2.5)

where Hw ,θ = {x : w⊺x +θ > 0} and Kw ,θ = {x : w⊺x +θ = 0} are the open half-
spaces and hyperplanes, defined by the parameters w ,θ respectively. Since rela-
tion (2.2.5) holds for every ϕ ∈R, by letting ϕ→−∞ we obtain that µ(Hw ,θ) = 0
for every w ∈ Rn and every θ ∈ R. Similarly, by letting ϕ→+∞ we conclude the
same for every hyperplane Kw ,θ . 6 For some fixed w ∈Rn we define the transfor-
mation Tw : Rn → R by Tw (x) = w⊺x for x ∈ Rn . Let also ν = µT −1 denote the
pushforward measure on R, defined as ν(A) = µ(T −1(A)) = µ({x : w⊺x ∈ A}) for
every Borel A ⊆R.

Consider the linear functional F : L1(R,ν) →R defined as

F (h) =
∫

In

h
(
w⊺x

)
dµ(x) for h ∈ L1(R,ν).

According to the Change of Variables formula, [AB06, Theorem 13.46]7

F (h) =
∫

In

h
(
w⊺x

)
dµ(x) =

∫
R

h(t )dµT −1(t ) =
∫
R

h(t )dν(t ) (2.2.6)

and

|F (h)| =
∣∣∣∣∫

R
h(t )dν(t )

∣∣∣∣≤ ∫
R
|h(t )|d |ν|(t ) =: ∥h∥1,ν, (2.2.7)

so F is also bounded. For every θ ∈R, the function h = I(θ,∞) belongs to L1(R,ν),
so

F (I(θ,∞)) =µ
(
{x : w⊺x > θ

)=µ(Hw ,θ) = 0. (2.2.8)

6If µ was a positive measure, this would be enough to conclude that µ ≡ 0, since In can be
written as the union of two such half-spaces, In = Hw0,θ0

∪H−w0,−θ0
for some arbitrary w0 and

θ0. However, the measure µ is signed, so we need a more involved argument to deduce that µ is
zero.

7Suppose that T : (X ,A,µ) → (Y ,B) is ameasurable function and ν=µT−1 is the pushforward
measure on Y Then for any integrable function f : Y → R, the function f ◦T is also integrable and∫

Y f dν= ∫
X f ◦T dµ.
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By picking h = I[θ,∞) we obtain that F (I[θ,∞)) = 0 for every θ. As a result, F is zero
on the characteristic function of every interval and also on linear combinations
of such characteristic functions.

Recall that simple functions have the form ϕ = ∑m
i=1 ai I Ai for some m ∈ N,

ai ∈ R and Ai measurable subsets of R. This means that, F (ϕ) = 0 when ϕ is a
simple functionwhosemeasurable sets Ai are all intervals. Sincewe are in L1(R,ν),
we can deduce that F (ϕ) = 0 for every simple ϕ using an ε-argument: Let A ⊆ R

be a Borel set with µ(A) > 0 and let ε> 0. By the outer regularity of µ, there exists
some open set U ⊇ A with µ(A \ U ) < ε

2 . Additionally, U can be written as the
disjoint union of open intervals [Arg11, Theorem 6.13], U =∪∞

k=1Ik and we can
pick an n0 such that µ

(∪n0

k=1 Ik
) ∈ (µ(U )− ε

2 ,µ(U )+ ε
2 ). So, if we set J =∪n0

k=1Ik we
obtain that ∥I A − I J∥1 ≤ µ (J△A) < ε. By the triangle inequality and the fact that
F (I J ) = 0, the quantity F (I A) can be made arbitrarily small.

As simple functions are dense in L1(R,ν) [AB06, Theorem 13.8] and F is con-
tinuous, we conclude that F (h) = 0 for every h ∈ L1(R,ν). For some fixed m ∈ R,
let h1(t ) = sinmt and h2(t ) = cosmt . Clearly h1,h2 ∈ L1(R,ν) since both of them
are bounded and ν is a finite measure. By applying F to h2 + i h1, we obtain that

F (h1 + i h2) =
∫

In

cos(m⊺x)+ i sin(m⊺x)dµ(x)

=
∫

In

e i m⊺x dµ(x) =: µ̂(m) = 0

for every m ∈R, where µ̂(m) denotes the Fourier coefficient of themeasureµ at m.
Since every Fourier coefficient of µ is zero, µ is also zero, thus σ is discriminatory.

■

Theorem 2.2.7: Every continuous, sigmoidal function σ is discriminatory and the
set Σn(σ) is dense in C (In).

Proof. Every continuous, sigmoidal function σ is bounded. Indeed, let ε= 1 and
pick t0 < t1 ∈ R such that σ(t ) < 1 for every t < t0 and σ(t ) < 2 for every t ≥
t1. Since σ|[t0,t1] is continuous, we have that σ(t ) ≤ M for every t ∈ [t0, t1] for
some M > 0. Therefore, σ is bounded on the whole real line by max{2, M }. By the
previous theorem, σ is discriminatory and by Theorem 2.2.5, Σn(σ) is dense in
C (In). ■

.. Applications to classification problems

Let P1, . . . ,Pk be a partition of In and f : In → {1, . . . ,k} be the function with the
property that f (x) = j if and only x ∈ P j . In a physical setting, In can be viewed as
the set consisting of the whole population, whereas each partition Pi represents
a subgroup of the original population. The function f assigns each individual to
his respective group. We are interested in approximating the function f using
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neural networks, however Cybenko’s theorem is not directly applicable, as such
classification functions are always8 discontinuous,9 unless the partition is trivial.

Approximation of classification functions by neural networks is possible, if one
iswilling to accept an arbitrarily small but predefined probability ε of beingwrong.
Let λ be the Lebesgue measure, or any other Borel measure on In . Using Lusin’s
Theorem, we can approximate any classification function by a continuous func-
tion on a compact subset of In that supports most of the measure λ.

Theorem 2.2.8 (Lusin): [AB06, Theorem 12.8] Let (X ,ρ) be a metric space, µ a
Borel measure on X and f : X → R a measurable function. Then, for every ε > 0,
there exists a compact set K ⊂ X such that µ(K c ) < ε and the restriction of f on K
is continuous

Theorem 2.2.9 (Tietze): [Mun13, Theorem 35.1] Let (X ,ρ) be a metric space, A
⊆ X be a closed subset of X and f : A → R be a continuous function. Then there
exists a continuous function f̃ : X → R such that f̃ (a) = f (a) for every a ∈ A.

Theorem2.2.10: Letσ be a continuous sigmoidal function and f be a classification
function on some finite partition of In . Then for every ε> 0, there exists a function
G of the form

G(x) =
N∑

j=1
a jσ

(
w⊺

j x +θ j

)
(2.2.9)

and a compact set K ⊆ In with λ(K c ) < ε, such that ∥G − f ∥∞ < ε on K .

Proof. By Lusin’s theorem, there exists some compact set K with the property
that λ(K c ) < ε and the restriction of f on K is continuous. By Tietze’s extension
theorem, there exists some continuous h : In →R such that h(x) = f (x) for every
x ∈ K . ByTheorem 2.2.7, there exists some function G(x) of the form (2.2.9), such
that ∥G−h∥∞ < ε on In , thus |G(x)− f (x)| = |G(x)−h(x)| < ε for every x ∈ K . ■

The previous theorem can provide us with a classification rule S that is correct
with probability 1− ε. This rule is classifying a drawn point x according to the
closest integer of the value G(x) and may give a wrong classification only when
x ̸∈ K .

8A topological space (X ,τ) is called connected, if it cannot be written as the union of two
nonempty open sets. For A ⊆ X , we define the boundary of A as, bd A = A \ Å. In any connected
space, every set ; ̸= A ⊊ X has a nonempty boundary. Indeed, if bd A =;, then A = A = Å would
be a clopen set, and so would X \ A. Then, X = A∪(X \ A) with both sets being nonempty and open,
a contradiction.

9Let P1, . . . ,Pk , k ≥ 2, be a partition of the connected space In , and f be a classification func-
tion. Pick an x ∈ bdP1 and two sequences (xn )n , (yn )n that converge to x, the former belonging in
P1 and the latter in P c

1 . Using the Pigeonhole Principle, wemay assume that every element of (yn )n

belongs to the same partition set, say P j for some j ̸= 1. Then f (xn ) → 1, whereas f (yn ) → j ̸= 1,
so f cannot be continuous.
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Corollary 2.2.11: Let f be a classification function on the partition P1, . . . ,Pk of
In and suppose that we are sampling according to a Borel probability measure λ on
In . Then for every ε < 1

2 , there exists a neural network induced classification rule
S : In → {1, . . . ,k} which is correct at least (1−ε)% of the time.

Proof. Let ε< 1
2 and G , K be the function and compact set provided by Theorem

2.2.10 respectively. Suppose that we draw the value x ∈ In . Let S(x) denote the
index which is closer to G(X ), namely S(x) = argmin j=1,...,k {|G(x)− j |}. If x ∈ K ,
then |G(x)− f (x)| < ε< 1

2 and |G(x)− j | > 1
2 > ε for every j ̸= f (x). This implies

that S(x) = f (x) for every x ∈ K and since we are drawing samples from λ, the
probability that a drawn value belongs to K , is λ(K ) > 1−ε. So the classification
rule S is correct at least (1−ε)% of the time. ■

.. Measurable activation functions

In the case where the function f we are trying to approximate is not continuous,
but belongs to some Lp (In) for 1 ≤ p <∞, the set Σn(σ) is still dense in Lp under
the ∥ ·∥p norm.

Theorem 2.2.12: Let 1 ≤ p < ∞, λ be the Lebesgue measure, or any other finite
Borel measure, on In andσ be a bounded and measurable sigmoidal function. Then
the set

Σn(σ) =
{

f : In →R : f (x) =
N∑

j=1
a jσ(w⊺

j x +θ j ) :

N ∈N, a j ∈R, w j ∈Rn ,θ j ∈R

}
(2.2.10)

is dense in Lp for every 1 ≤ p <∞.

Proof. Suppose not.ThenΣn(σ)⊊ Lp . By theHahn-Banach theorem, there exists
some nonzero linear and bounded functional F : Lp →R with F ( f ) = 0 for every
f ∈ Σn(σ). Let q denote the conjugate exponent of p .10 By the Riesz Representa-
tion Theorem for Lp , [RF10, §19.2]11 there exists an h ∈ Lq (In) such that

F ( f ) =
∫

In

f (x)h(x)dλ(x)

for every f ∈ Lp (In). Additionally, the fact that F is zero on Σn(σ) implies that∫
In

σ(w⊺x +θ)h(x)dµ(x) = 0

10Two real numbers p, q with 1 ≤ p, q ≤∞ are said to be conjugate exponents, if they satisfy the
relation 1

p + 1
q = 1, where for p = 1 we have made the convention that 1

1 + 1
∞ = 1.

11 If 1 ≤ p, q ≤∞ are conjugate exponents, then Lp (µ)∗ is isometrically isomorphic to Lq (µ)
under the operator T : Lp → Lq , defined as T (g )( f ) = ∫

f g dµ for every f ∈ Lq .
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for every w ∈ Rn and θ ∈ R. Let ν be the signed Borel measure induced by h,
namely ν(A) = ∫

A h(x)dλ(x) for every A ∈ B(In). By Hölder’s inequality,

|ν(A)| =
∣∣∣∣∫

A
h(x)dλ(x)

∣∣∣∣= ∣∣∣∣∫
In

h(x)I A(x)dλ(x)

∣∣∣∣
≤

∫
In

|h(x)|I A(x)dλ(x)

≤

∥h∥pλ(A)1/q <∞, when p > 1,

∥h∥1λ(A) <∞, when p = 1,

and in either case ν is a finite, Borel signed measure with
∫

In
σ(w⊺x+θ)dν(x) = 0

for every w ∈ Rn and θ ∈ R. As we saw earlier, bounded sigmoidal functions are
discriminatory, so ν≡ 0 and consequently, F ≡ 0, a contradiction. ■

Corollary 2.2.13: Let f be a classification function for the partition P1, . . . ,Pk of
In and σ be a bounded and measurable sigmoidal function. For every ε > 0, there
exists a function G of the form

G(x) =
N∑

j=1
a jσ

(
w⊺

j x +θ j

)
(2.2.11)

and a set D ⊆ In with λ(Dc ) < ε and ∥G − f ∥∞ < ε on D .

Proof. By the previous theorem, there exists a G of the desired form such that
∥G − f ∥p < ε1+1/p . By Markov’s Inequality,

P
(
{x : |G(x)− f (x)| ≥ ε}

)= P
(
{x : |G(x)− f (x)|p ≥ εp }

)
≤ ∥G − f ∥p

p

εp <
(
ε1+1/p

)p

εp = ε,

as promised. ■

As in the continuous case, under the previous assumptions, for every ε < 1
2 ,

there always exists a neural network based classification rule that is correct (1−
ε)% of the time.

.. Stone - Weierstrass Approximation

As we mentioned in a previous note, in Cybenko’s proof one cannot simply ap-
ply the Stone-Weierstrass Theorem on the vector space Σn(σ) to deduce that it
is dense in C (In). Let us see why this is the case and how we can modify the set
Σn(σ) for the Stone-Weierstrass Theorem [AB06, p. 352] to be applicable.
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Theorem 2.2.14 (Stone-Weierstrass): Let X be a compact space and A be a subal-
gebra12 of C (X ) that separates the points13 of X and contains the constant function
1.14 Then A is dense in C (X ).

It is easy to see that Σn(σ) satisfies every condition of the Stone - Weierstrass
theorem, except that it may not necessarily be closed under multiplication. As a
counterexample, let n = 1 and σ be the function

σ(x) =


0, x ≤ 0,

x, x ∈ (0,1),

1, x ≥ 1.

We will show that σ(x)2 does not belong in Σ1(s). Suppose that it does. Then

N∑
j=1

a jσ
(
w j x +θ j

)=


0, x ≤ 0,

x2, x ∈ (0,1),

1, x ≥ 1,

for some N ∈ N, a j ,θ j ∈ R and w j ∈ R. For j = 1 and I0 = [0,1], we can pick a
subinterval I1 ⊆ I0 where σ(w1x + θ1) is either constant, or equal to w1x + θ1.
For j = 2 and the previously chosen I1, we can pick a subinterval I2 ⊆ I1 where
σ(w2x +θ2) is either constant, or equal to w2x +θ2. By proceeding inductively,
after N steps we end up with an interval I with the property that for every j =
1, . . . , N , the functionσ(w j x+θ j ) is either constant, or equal to w j x+θ j for every
x ∈ I . Consequently, if we set A = { j : σ(w j x+θ j ) = 1∀x ∈ I } and B = { j : σ(w j x+
θ j ) = w j x +θ j ∀x ∈ I }, we have that

N∑
j=1

a jσ
(
w j x +θ j

)= ∑
j∈A

a j +
∑
j∈B

a j (w j x +θ j ) = x2, ∀x ∈ I .

By the last expression, the polynomials Q(x) =∑
j∈A a j +∑

j∈B a j (w j x +θ j ) and
P (x) = x2 are identical on the open interval I , thus they must be identical every-
where.15 However P (x) is a polynomial of degree two, whereas Q(x) has a degree
of at most one, a contradiction.

12Let X be a topological space. The space of continuous functions on X , can be equipped with a
multiplication operation “·” which is defined pointwise: For every f , g ∈C (X ) we define ( f ·g )(x) =
f (x)g (x) for every x ∈ X . A subspace A of C (X ) is called a subalgebra, if it is closed under the
multiplication operation. Namely, for every f , g ∈ A, their product f · g also belongs to A.

13We say that a set A ⊆ C (X ) separates the points of X , if for every x ∈ X there exist f , g ∈ A
such that f (x) ̸= g (x).

14The constant function 1 is defined as 1(x) = 1 for every x ∈ X .
15If P ,Q are polynomials that agree on the open interval I , then R = P −Q is a polynomial for

which R(x) = 0 for every x in I . Since the only polynomial with infinitely many roots is the zero
polynomial, we have that P =Q .
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Hornik, Stinchcombe andWhite [HSW89,Theorem 2.1] proved that if we close
Σn(G) under multiplication, we can assure that the resulting set will be dense in
C (In) for any continuous nonconstant functionG , regardless ofG being sigmoidal
or not:

Definition 2.2.15: For G : R→R measurable, we define ΣΠn(G) as

ΣΠn(G) =
{

f : In →R : f (x) =
N∑

j=1
a j

l j∏
k=1

G(y⊺
j ,k x +θ j ,k ) :

N , l j ∈N, a j ,θ j ,k ∈R, y j ,k ∈Rn
}

.

Theorem 2.2.16: If G : R → R is continuous and nonconstant, then ΣΠn(G) is
dense in C (In).

Proof. Let

f (x) =
N∑

j=1
a j

l j∏
k=1

G(y⊺
j ,k x +θ j ,k ), and g (x) =

Ñ∑
j=1

ã j

l̃ j∏
k=1

G(ỹ⊺
j ,k x + θ̃ j ,k )

be two elements in ΣΠn(G). Their product can be written as

f (x)g (x) =
N∑

j=1
a j

l j∏
k=1

G(y⊺
j ,k x +θ j ,k ) ·

Ñ∑
j=1

ã j

l̃ j∏
k=1

G(ỹ⊺
j ,k x + θ̃ j ,k )

=
N∑

j=1

Ñ∑
i=1

a j ãi

l j∏
k=1

G(y⊺
j ,k x +θ j ,k ) ·

l̃i∏
k=1

G(ỹ⊺
i ,k x + θ̃i ,k )

=
N∑

j=1

Ñ∑
i=1

a j ãi

l j+l̃i∏
k=1

G(z⊺
i , j ,k x +ρi , j ,k ),

where zi , j ,k = y j ,k when k = 1, . . . , l j and zi , j ,k = ỹi ,k when k = l j + i for i =
1, . . . , l̃i . The ρ’s are defined in a similar manner. Clearly f g belongs in ΣΠn(G),
so ΣΠn(G) is an algebra.

Let x0 = (x1, . . . , xn) ∈ In . Since G is nonconstant, there exist t1 ̸= t2 ∈ R such
that G(t1) ̸= G(t2). Pick w = (1, . . . ,1) ∈ Rn and set b1 = t1 −∑n

i=1 xi and b2 =
t2 −∑n

i=1 xi . Then

G(w⊺x +b1) =G(t1) ̸=G(t2) =G(w⊺x +b2),

so the functions s1(x) =G(w⊺x+b1) and s2(x) =G(w⊺x+b2) separate x0. Finally,
for w = (0, . . . ,0) and θ0 such that G(θ0) ̸= 0, the constant function G(θ0) belongs
toΣΠn(G), alongwith its scalar products. In particular, so does 1= 1

G(θ0) ·G(θ0). By
the Stone-Weierstrass Theorem we conclude that ΣΠn(G) is dense in C (In). ■
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. Approximation using nonpolynomial activation
functions

Cybenko’s Theorem has been improved upon, both by relaxing its assumptions
and by strengthening its conclusions. Chen, Chen and Liu [CCL91] presented
an alternative proof of Cybenko’s theorem in which the approximation was con-
structed explicitly, as opposed to the original one which was purely existential.
Kurt Hornik [Hor91] relaxed the assumption that σ should be a sigmoidal func-
tion and showed that every continuous nonconstant function σ gives rise to a
dense set Σn(σ):

Theorem 2.3.1: Ifψ is continuous, bounded and nonconstant, then Σn(ψ) is dense
in C (X ) for every compact set X ⊆Rn .

Theproof relies on the same ideas, however its implementation is not as straight-
forward.16 Leshno, Lin, Pinkus and Schocken [LLPS93] improved Hornik’s result
by showing that, essentially, a function ϕ has the property that Σn(ϕ) is dense
in C (X ) for every compact X ⊆ Rn , if and only if ϕ is not equal to a polynomial
almost everywhere. We devote the rest of the section to their proof.

First let us fix some terminology. Let Ω ⊆ Rn . The space L∞(Ω) contains all
the measurable functions f : Ω→ R for which there exists some M > 0 such that
| f (x)| ≤ M for almost every x ∈Ω.WhenΩ⊆Rn is open, we define L∞

loc(Ω), as the
space which contains the measurable functions f for which f ∈ L∞(K ) for every
compact K ⊆Ω. In particular, C (Rn) ⊆ L∞

loc(Rn), as every continuous function is
bounded on compact sets.

We will say that a subset F ⊆ L∞
loc(Rn) is dense in C (Rn), if its closure with re-

spect to the compact topology17 contains C (Rn), that is, C (Rn) ⊆ F . We use M to
denote the set of functions in L∞

loc(R) with the property that the closure of the set
of their discontinuity points has measure zero,

M =
{

f ∈ L∞
loc(Rn) : λ(A f ) = 0

}
. (2.3.1)

Any such function σ ∈ M induces a family of functions from Rn to R, exactly as
in the case of Cybenko’s theorem:

Σn(σ) = span
{

f : Rn →R : f (x) =σ
(
w⊺x +θ

)
for w ∈Rn ,θ ∈R

}
.

Leshno et. al proved that for a function σ ∈ M , the set Σn(σ) is dense in C (Rn) if
and only if σ is not a polynomial. We will use a series of lemmas that simplify the
proof significantly:

16Using the exact same argument as Cybenko, one suffices to show that every bounded and
nonconstant function is discriminatory (as opposed to the claim that every sigmoidal function is
discriminatory which was proved by Cybenko). In order to prove this, Hornik uses tools from
Fourier analysis in the same spirit as Cybenko, but quite more involved.

17Due to the fact that some elements of C (Rn ) are unbounded, the supremum norm does not
turn C (Rn ) into a normed space. We therefore equip it with a different topology, the topology of
compact convergence. According to it, a sequence of functions ( fk )k in C (Rn ) converges to some
f ∈C (Rn ) if ( fk )k converges uniformly to f on every compact subset of Rn .
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Lemma 2.3.2: Ifσ ∈ M is not a polynomial andΣ1(σ) is dense in C (R), thenΣn(σ)
is dense in C (Rn) for every n ∈N.

Proof. The subspace

V = span
{

fa,y : Rn →R : fa,y (x) = g (a⊺x) for some g ∈C (R), a ∈Rn}
is dense in C (Rn). Indeed, as mentioned in [Pin99], by picking g (x) = ex , we have
that the vector space

A = span
{

ha : Rn →R : ha(x) = ea⊺x for some a ∈Rn
}

is contained in V . Additionally, it is easy to see that A is a subalgebra of C (Rn)
that satisfies the assumptions of the Stone-Weierstrass theorem, thus A = C (K )
for every compact K ⊆Rn , and the same must hold for V .

Suppose that Σ1(σ) is dense in C (R). Let g ∈ C (Rn), K ⊆ Rn be a compact set
and ε > 0. Since V = C (K ), there exists an h of the form h(x) = ∑m

i=1 fi (a⊺
i x),

such that ∥h − g (x)∥∞ < ε
2 on K , where fi ∈ C (K ) and ai ∈ Rn . The functions

λi : Rn → R defined as λi (x) = a⊺
i x are continuous,18 so there exist Mi > 0 such

that |λi (x)| ≤ Mi∥x∥ for every x ∈ Rn and for i = 1, . . . ,m. Since K is compact,
there exists some M > 0 such that ∥x∥ ≤ M for every x ∈ K , therefore there exist
M ′

i such that |λi (x)| ≤ M ′
i for every x ∈ K and for i = 1, . . . ,m. This implies that

there exist intervals Ii = [ai ,bi ] such that a⊺
i x ∈ Ii for every x ∈ K and i = 1, . . . ,m.

By setting y = a⊺
i x we observe that fi (a⊺

i x) = fi (y) for some y ∈ Ii . Since Σ1(σ)
is dense, there exist Gi ∈ Σ1(σ) such that ∥Gi − fi∥∞ < ε

2m on Ii . By the triangle
inequality,∥∥∥∥∥g −

m∑
i=1

Gi

∥∥∥∥∥∞ ≤ ∥g −h∥∞+
∥∥∥∥∥h −

m∑
i=1

Gi

∥∥∥∥∥∞
≤ ε

2
+

∥∥∥∥∥ m∑
i=1

fi (a⊺
i x)−

m∑
i=1

Gi (x)

∥∥∥∥∥∞
≤ ε

2
+

m∑
i=1

ε

2m
= ε

on K . ■

Lemma 2.3.3: If σ ∈ M is a nonpolynomial smooth function, then Σ1(σ) is dense
in C (R).

Proof. For every w ,h and θ ∈R, the function h = hw ,h,θ defined as

h(x) = σ((w +h)x +θ)−σ(w x +θ)

h

18Each λi is a linear functional on Rn , and linear functionals on finite dimensional spaces are
always continuous.
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belongs in Σ1(σ), and consequently xkσ(w x +θ) = d kσ(w x+θ)
d w k belongs in Σ1(σ)

for every k ∈ N. As σ is nonpolynomial, for every k there exists a θk such that
σ(k)(θk ) ̸= 0. By setting w = 0 and θ = θk , we obtain thatλk (x) = xkσ(θk ) ∈Σ1(σ),
which implies that Σ1(σ) contains all polynomials, thus it is dense in C (R). ■

Theorem2.3.4 (Dini’sTheorem): [AB06,Theorem 2.66] If a decreasing sequence
of continuous functions converges pointwise on a compact set to some continuous
function, then the convergence is uniform.

Lemma2.3.5: Suppose thatσ ∈ M .Thenσ∗ϕ ∈Σ1(σ) for everyϕ ∈C∞
C (R), where

C∞
C (R) denotes the space of smooth real functions with compact support, whereas

(σ∗ϕ)(x) = ∫
Rσ(x − y)ϕ(y)d y is the convolution of the functions σ and ϕ.

Proof. We will prove the lemma in the simpler case where σ is additionally as-
sumed to be continuous. For the general case, see [LLPS93, Step 4, pp.864-865].
Letϕ be a smooth functionwith a compact support K and pick a compact interval
I = [a,b] that contains K . We create a sequence of partitions (Pn)n of I as follows:
The first partition P1 = {I } contains only I . The second one contains the two in-
tervals I1 = [a, a +δ/2], I2 = [a +δ/2,b], where δ= b −a. Similarly, P3 contains
4 intervals, the first two of which split I1 in half, whilst the last two split I2. We
proceed inductively.

For every partition Pn = {I1, . . . , I2n } we define sn as:19

sn(x) =
2n∑

i=1
max
y∈Ii

{σ(x − y)ϕ(y)}λ(Ii ).

By the way (Pn)n was constructed, we have that (sn)n is a decreasing sequence
of continuous20 functions that converges pointwise to the continuous function
σ∗ϕ. Additionally, the convergence is uniformon compact sets byDini’sTheorem.
Since each sn belongs toΣ1(σ), we conclude that their limitσ∗ϕ belongs toΣ1(σ).

■

Lemma 2.3.6: Let σ ∈ M and f ∈Σ1(σ). Then Σ1( f ) ⊆Σ1(σ).

Proof. Let σ and f as in the statement above and ε > 0. There exists some G ∈
Σ1(σ), which has the form G(x) = ∑m

i=1 aiσ(wi x + θi ), with the property that
supK⊆R compact ∥ f −G∥∞ < ε. For every w ,θ ∈ R, the function f̃ (x) = f (w x +θ)

also belongs toΣ1(σ): If w = 0, the claim is trivial. For w ̸= 0, let G̃(x) =G(w x+θ)
and K ⊆R compact. Then

sup
{∣∣ f̃ (x)−G̃(x)

∣∣ : x ∈ K
}= sup

{∣∣ f (w x +θ)−G(w x +θ)
∣∣ : x ∈ K

}
19Each sn (x) is just the n-th Darboux upper sum of the function σ(x − y)ϕ(y) and, as is well

known, (sn (x))n converges to its Darboux integral, which coincides with the Riemann integral∫
σ(x−y)ϕ(y)d y . Since the convergence holds for every x ∈R, we have that (sn )n converges point-

wise to σ∗ϕ.
20With a simple sequential argument, it can easily be shown that each gi (x) = maxy∈Ii

{σ(x −
y)ϕ(y)}λ(Ii ) is continuous, and so is sn , being the sum of continuous functions.
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= sup
{∣∣ f (y)−G(y)

∣∣ : y ∈ wK +θ
}< ε,

since the set wK +θ is compact. The claim we just proved, implies that Σ1( f ) ⊆
Σ1(σ), so Σ1( f ) ⊆Σ1(σ) as promised. ■

Remark 2.3.7: An obvious consequence of the previous lemma is that if f ∈
Σ1(σ) is such that Σ1( f ) is dense in C (R), then so is Σ1(σ).

Lemma 2.3.8: Let σ ∈ M such that for some ϕ ∈C∞
C (R) their convolution σ∗ϕ is

not a polynomial. Then Σ1(σ) is dense in C (R).

Proof. By [AF03, pp. 29-31], σ∗ϕ ∈ C∞(R). Since σ∗ϕ is not a polynomial, it
is dense in C (R) by Lemma 2.3.3. Additionally, Lemma 2.3.5 asserts that σ∗ϕ ∈
Σ1(σ), thus Σ1(σ) is dense in C (R) by Remark 2.3.7. ■

Lemma 2.3.9: Let σ ∈ M such that for every ϕ ∈C∞
C (R), their convolution σ∗ϕ is

a polynomial. Then, there exists an m ∈N such that σ∗ϕ is a polynomial of degree
at most m for every ϕ ∈C∞

C (R).

Proof. Let C∞
C [a,b] denote the set of smooth functions supported on the interval

[a,b] and suppose that σ∗ϕ is a polynomial for every ϕ ∈C∞
C ([a,b]). The space

C∞
C [a,b] is equipped with the following metric:

ρ( f , g ) =
∞∑

i=0

1

2i

∥ f − g∥i

1+∥ f − g∥i
, (2.3.2)

where ∥ f ∥i = ∑i
j=0 supx∈[a,b]

∣∣ f ( j )(x)
∣∣. It is easy to see that (C∞

C ([a,b]),ρ) is a
Fréchet space.21

Vk = {
ϕ ∈C∞

C ([a,b]) : σ∗ϕ is a polynomial of degree at most k
}

.

Clearly, Vk is a closed subspace of C∞
C ([a,b]) for every k : Let (ϕn)n be a sequence

in Vk that converges to some ϕ ∈C∞
C ([a,b]). Then

ρ(σ∗ϕn ,σ∗ϕ) =
∞∑

i=0

1

2i

∥σ∗ϕn −σ∗ϕ∥i

1+∥σ∗ϕn −σ∗ϕ∥i

=
k∑

i=0

1

2i

∥σ∗ϕn −σ∗ϕ∥i

1+∥σ∗ϕn −σ∗ϕ∥i
+

∞∑
i=k+1

1

2i

∥σ∗ϕn −σ∗ϕ∥i

1+∥σ∗ϕn −σ∗ϕ∥i
.

For i > k , we have that

∥σ∗ϕn −σ∗ϕ∥i =
k∑

j=0
sup

x∈[a,b]

∣∣∣(σ∗ϕn)( j )(x)− (σ∗ϕ)( j )(x)
∣∣∣+

i∑
j=k+1

sup
x∈[a,b]

∣∣∣(σ∗ϕ)( j )(x)
∣∣∣ ,

21A Fréchet space is a completely metrizable locally convex topological vector space (see Ap-
pendix A.4).
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as (σ∗ϕn)(l ) ≡ 0 for every l ≥ k . Since (ρ(ϕn ,ϕ))n converges to zero and the sum∑i
j=k+1 supx∈[a,b]

∣∣(σ∗ϕ)( j )(x)
∣∣ is independent of n, for every i ≥ k +1 we have

that ∥(σ∗ϕ)(i )∥ = 0, so σ∗ϕ has a degree of at most k .
By our assumption, C∞

C ([a,b]) =∪∞
k=0 Vk , and since (C∞

C ([a,b]),ρ) is complete,
by Baire’s Category Theorem [Arg11, Theorem 8.18],22 there exists some m ∈ N

such that Vm has a nonempty interior. Since Vm is a subspace of a topological
vector space with a nonempty interior, we conclude that it has to be equal to the
whole space,23 Vm =C∞

C ([a,b]).
So, the claim has been proven regarding the space C∞

C ([a,b]). The next step is
to show that Vm =C∞

C (I ) for every closed interval I of length equal to b−a. This
means that the same m works for all intervals of the given length b −a. Suppose
that σ∗ϕ is a polynomial for every ϕ ∈ C∞

c [a′,b′], where b′ − a′ = b − a. The
function σ̃ defined as σ̃(x) = σ(x − a + a′), also belongs to M . Additionally, for
every ϕ ∈ C∞

C [a,b], the function ϕ̃ defined as ϕ̃(x) = ϕ(x − a′ + a), belongs to
C∞

C [a′,b′].
Let ϕ ∈C∞

C [a,b]. Then

(σ̃∗ϕ)(x) =
∫ b

a
σ̃(x − y)ϕ(y)d y =

∫ b′

a′
σ̃(x +a′−a − z)ϕ(z −a′+a)d z

=
∫ b′

a′
σ(x − z)ϕ̃(z)d z = (σ∗ ϕ̃)(x),

where ϕ̃ ∈C∞
C [a′,b′], and by our assumption the latter is a polynomial.We proved

that σ̃∗ϕ is a polynomial for every ϕ ∈C∞
C [a,b], thus by the previous step, σ̃ is a

polynomial of degree at most m and so is σ, being just a translation of σ̃.
For the final step, suppose that σ∗ϕ is a polynomial for every ϕ ∈ C∞

c [c,d ],
where d − c is arbitrary. We cover [c,d ] by finitely many closed intervals [c,d ] =∪N

i=1 Ii , each having length λ(Ii ) = b−a. On each Ii we define a ϕi ∈C∞
C (Ii ) such

that ϕ=∑N
i=1ϕi . Then σ∗ϕ=∑N

i=1σ∗ϕi and by the previous step, each σ∗ϕi

is a polynomial of degree at most m. ■

Lemma 2.3.10: If σ ∈ M and σ∗ϕ is a polynomial of degree at most m for every
ϕ ∈C∞

C (R), then σ is itself a polynomial of degree at most m.

Proof. For every ϕ ∈C∞
C (R),

0 = (σ∗ϕ)(m+1)(x) =
∫

σ(m+1)(x − y)ϕ(y)d y =−
∫

σ(x − y)ϕ(m+1)(y)d y .

By [Fri63, pp. 57-59], we conclude thatσ is a polynomial of degree atmost m. ■

22Let (X ,ρ) be a complete metric space and (Fn )n be a sequence of closed sets in X with the
property that X =∪∞

n=1Fn . Then there exists some n0 ∈N such that Fn0 has a nonempty interior.
23This is a standard fact for normed spaces [Arg04, Proposition 2.3] which remains true for

topological vector spaces. The proof is similar, and is based on the fact that every topological vector
space contains a neighborhood base at zero, consisting of absorbing sets (see Appendix A.4 for
more details).
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We can now establish their result:

Theorem 2.3.11: Let σ ∈ M . The set Σn(σ) is dense in C (Rn) if and only if σ is not
a polynomial.

Proof. If σ is a polynomial of degree k , then for every w ∈ Rn and θ ∈ R, the
functionσ(w⊺x+θ) is a polynomial of degree atmost k , and so is

∑m
i=1 aiσ(w⊺

i x+
θi ) for every m, ai , wi and θi .This implies that 〈Σ(σ)〉 ⊆ Pk , where Pk is the space
of all polynomials of degree at most k . Let K ⊆Rn be a compact set. Then

〈Σ(σ)|K 〉 ⊆ Pk |K = Pk |K ⊊C (K ),

since the space Pk |K of polynomials in K of degree at most k , is a finite dimen-
sional subspace of C (K ) and thus closed [Arg04, Corollary 2.10] in it.

Conversely, suppose that σ is not a polynomial. In view of Lemma 2.3.9, σ∗ϕ

cannot be a polynomial for every ϕ ∈ C∞
C (R). Therefore, there exists some ϕ ∈

C∞
C (R) such that σ∗ϕ is not a polynomial. By Lemma 2.3.8, we have that Σ1(σ)

is dense in C (R), and by Lemma 2.3.2 we conclude that Σn(σ) is dense in C (Rn)
for every n. ■

. A constructive approach for the universal approximation

As mentioned before, all the universal approximation proofs we presented so far
were purely existential. In this sectionwe study an algorithm,24 proposed byKwok
and Yeung [KY97], that constructs this approximation for functions f that be-
long to L2(X ) for some compact X ⊆ Rn . The approximation functions used to
approach f belong to some set Γ with the property that spanΓ = L2(X ). For ex-
ample, Γ could contain functions of the form{

f : Rn →R : f (x) =σ
(
w⊺x +θ

)
for w ∈Rn ,θ ∈R

}
for some nonpolynomial continuous function, which were proven to share this
property during the previous section. However, exact knowledge of the functions
contained in Γ is not necessary for their construction to work. In a purely mathe-
matical formulation, we can state the problem as follows:

Problem 2.4.1: Let X ⊆ Rd be a compact set and let Γ ⊆ L2(X ) be a set with
the property that its span is dense in L2(X ). Suppose that f ∈ L2(X ). Construct a
sequence ( fn)n in spanΓ such that fn → f .

The main idea behind the algorithm is easily explained: Suppose that after the
n-th step, we have decided that the functions g1, . . . , gn ∈ Γ should appear in our
representation of fn , namely fn ∈ span{g1, . . . , gn} =: Fn . In order to determine
the coefficients βi that will appear in the linear combination fn = ∑n

i=1βi gi , we

24In order to follow the proof, the reader should be familiar with some basic results fromHilbert
space theory (see Appendix A.3).
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take fn to be equal to the projection of f on Fn . We can compute the coefficients
of fn =∑n

i=1λi ei with respect to an orthonormal basis (ei )n
i=1 of Fn (Proposition

A.3.9), and then rewrite fn in terms of the gi ’s.25 By taking the projection, we can
assure that fn is the element of Fn which minimizes the distance between f and
Fn . In a sense, fn is the closest representative of Fn to the real function f .

To determine the next element gn+1 to be added to the set {g1, . . . , gn}, we min-
imize the residual error ∥ f − ( fn−1+βg )∥ over every β ∈R and g ∈ Γ. We add the
minimizer gn to our set, Fn+1 = span{g1, . . . , gn , gn+1} on which we once again
take the projection of f , and so on. During each iteration, the set {g1, . . . , gn} is
enriched, and additionally, the coefficients of each gi are recalculated so as to
minimize the residual error.

Lemma 2.4.2: For a fixed g ∈ Γ, the expression ∥ f − ( fn−1 +βg )∥ attains its min-
imum m for β∗ = 〈en−1,g 〉

∥g∥2 . Additionally, this minimum is equal to m = ∥en−1∥2 −
2 〈en−1,g 〉2

∥g∥2 .

Proof. The minimum m of the expression ∥ f − ( fn−1 +βg )∥ with respect to β

is equal to the distance between the element f − fn−1 and the closed subspace
generated by g , F = 〈g 〉, and according to the relevant theory (see Proposition
A.3.9), m is achieved at the projection PF (en−1) of en−1 = f − fn−1 to F . The
space F is spanned by the unit vector g

∥g∥ , so this projection is equal to

PF (en−1) =
⟨

en−1,
g

∥g∥
⟩

g

∥g∥ = 〈en−1, g 〉
∥g∥2 g ,

which implies that β∗ = 〈en−1,g 〉
∥g∥2 is the uniqueminimizer of the expression in ques-

tion.
For the additional part, the distance d(en−1,F ) between en−1 and F satisfies

d(en−1,F )2 =
∥∥∥∥en−1 − 〈en−1, g 〉

∥g∥2 g

∥∥∥∥2

= ∥en−1∥2 + 〈en−1, g 〉2

∥g∥4 ∥g∥2 −2
〈en−1, g 〉2

∥g∥2

= ∥en−1∥2 − 〈en−1, g 〉2

∥g∥2 (2.4.1)

as promised. ■

By Lemma 2.4.2, given that we have constructed fn−1 and the corresponding
error en−1 = f − fn−1, in order to minimize the expression ∥en−1 −βg∥ over all
β ∈ R and g ∈ Γ, we need to minimize (2.4.1), or equivalently, to compute the

25The projection of the element f to the subspace Fn = 〈e1, . . . ,en〉 is equal to fn =∑n
i=1〈 f ,ei 〉ei . Since each ei belongs to Fn and Fn is also spanned by {g1, . . . , gn }, we can write

every ei as a linear combination of g1, . . . , gn , and thus obtain an expression of f involving only
the elements gi , say fn =∑n

i=1β
n
i gi .
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argmaxg∈Γ
{ 〈en−1,g 〉2

∥g∥2

}
. The lack of any analytical structure on Γ excludes, in gen-

eral, the possibility for this maximum to exist, however we can settle with less: By
the Cauchy – Schwarz inequality, the set

{ 〈en−1,g 〉2

∥g∥2 : g ∈ Γ
}
is bounded by ∥en−1∥2,

so its supremum, say Mn , is finite, and picking a gn such that 〈en−1,gn〉2

∥gn∥2 is larger
than Mn/2 suffices for the proposed algorithm to converge.

The Kwok-Yeung Algorithm

Step  Initialize with f0 = 0 and e0 = f − f0 = f .

Step  Suppose that fn−1 = ∑n−1
i=1 βn−1

i gi has been constructed, with each
gi ∈ Γ. Set en−1 = f − fn−1, Mn = supg∈Γ

{ 〈en−1,g 〉2

∥g∥2

}
and pick some

gn ∈ Γ such that 〈en−1,gn〉2

∥gn∥2 > Mn
2 .

Step  Set βn−1
n = 〈en−1,gn〉

∥gn∥2 , Fn = span{g1, . . . , gn} and f̃n = fn−1 +βn−1
n gn =∑n−1

i=1 βn−1
i gi +βn−1

n gn .

Step  Project f to the closed subspace Fn , to obtain an fn =∑n
i=1β

n
i gi .

Step  Go to Step 2.

Table 1: The Kwok-Yeung Algorithm [KY97].

Theorem 2.4.3: The sequence ( fn)n constructed by the Kwok-Yeung algorithm con-
verges to f .

Proof. Let f̃n ∈ Fn as defined in Step 3 of the Algorithm. Since fn is the projection
of f on Fn , we have that ∥ f − fn∥ ≤ ∥ f − f̃n∥. Therefore,

∥en−1∥2 −∥en∥2 = ∥ f − fn−1∥2 −∥ f − fn∥2

≥ ∥ f − fn−1∥2 −∥ f − f̃n∥2

= ∥en−1∥2 −∥ẽn∥2, (2.4.2)

where en−1 = f −∑n−1
i=1 βn−1

i gi and ẽn = f −∑n−1
i=1 βn−1

i gi −βn−1
n gn . Since ẽn ⊥ gn

and ẽn = en−1 −βn−1
n gn−1, we have that ẽn ⊥ ẽn − en−1, so by the Pythagorean

Theorem,

∥en−1∥2 = ∥ẽn +en−1 − ẽn∥2 = ∥ẽn∥2 +∥en−1 − ẽn∥2,

which implies that

∥en−1∥2 −∥ẽn∥2 = ∥ẽn −en−1∥2 = ∥βn−1
n gn∥2 = 〈en−1, gn〉2

∥gn∥2 .

This, combined with (2.4.2), yields that

∥en−1∥2 −∥en∥2 ≥ 〈en−1, gn〉2

∥gn∥2 ≥ 0 (2.4.3)
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for every n ∈N. Notice here that if 〈en−1,gn〉2

∥gn∥2 = 0 for some n, this would imply that
〈en−1, g 〉 = 0 for every g ∈ Γ, which would in turn force en−1 to be equal to zero.26

In this case, fn−1 = f and the algorithm terminates having found the exact form
of f . So, lets assume that (2.4.3) is strictly greater than zero for every n ∈N. Then
the real sequence (∥en∥)n is strictly decreasing, thus converges to its infimum. In
particular, for every ε > 0 there exists some n0 ∈ N such that ∥en∥2 −∥em∥2 < ε

for every m > n > n0.
By Step 4 of the algorithm, each en is orthogonal to {g1, . . . , gn}, and for ev-

ery m > n > n0, em − en ∈ span{g1, . . . , gm}, so em ⊥ em − em . Again by the
PythagoreanTheoremweobtain that ∥en−em∥2 = ∥en∥2−∥em∥2 < ε.This implies
that (en)n is a Cauchy sequence in the Banach space L2(X ) and so it converges to
some e ∈ L2(X ).

By taking limits in (2.4.3), we obtain that limn→∞
〈en−1,gn〉2

∥gn∥2 = 0. Furthermore,

for every g ∈ Γ, we have that 〈en−1,g 〉2

∥g∥2 ≤ 〈en−1,gn〉2

∥gn∥2 for every n, so by the continuity
of the inner product,

〈e, g 〉2

∥g∥2 = lim
n→∞

〈en−1, g 〉2

∥g∥2 ≤ lim
n→∞

〈en−1, gn〉2

∥gn∥2 = 0.

Thus, 〈e, g 〉 = 0 for every g ∈ Γ, and as spanΓ= L2(X ), we conclude that e = 0. ■

Remark 2.4.4: The previous algorithm requires the knowledge of f in each com-
putation involving en , which in real life problems is not possible. Kwok andYeung
propose how to estimate the en ’s using appropriate consistent estimators based on
information available from the training data set [KY97, p. 1134].

. The Kolmogorov-Arnold approximation

In their efforts to answerHilbert’s famous 13th problem,AndreyKolmogorov and
Vladimir Arnold published a series of articles in the late ‘50s, which resulted in
one of the most surprising and elegant results of modern mathematics. Hilbert’s
conjecture was that the roots of the equation x7 + ax3 +bx2 + cx + 1 = 0, seen
as a function of the parameters a,b,c , could not be written as a superposition
of functions of two variables. Arnold [Arn57] disproved this conjecture, but Kol-
mogorov [Kol57] went one step further, showing that any multivariate function
f : [0,1]n → R can be written as a superposition of functions of just a single vari-
able.

Theorem 2.5.1 (Kolmogorov-Arnold): [Kol57] There exist universal constants
λ1, . . . ,λd with

∑d
j=1λ j ≤ 1, and continuous, strictly increasing universal functions

26By the linearity of the inner product, 〈en−1, g 〉 = 0 for every g ∈ spanΓ, and by its continuity,
〈en−1, g 〉 = 0 for every g ∈ spanΓ= L2. As a result, 〈en−1,en−1〉 = 0, which implies that en−1 = 0.
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ϕ1, . . . ,ϕ2d+1 which map [0,1] to itself, such that every function f ∈C [0,1]d can be
represented as

f (x1, . . . , xd ) =
2d+1∑
i=1

g

(
d∑

j=1
λ jϕi (x j )

)
, (2.5.1)

where g ∈C [0,1] is a continuous real function that depends on f .

In 1987, two years before Cybenko’s theorem, Robert Hecht-Nielsen published
a short note [Hec87] in which he pointed out the resemblance between the ex-
pression in (2.5.1) and the one appearing in the neural network functions

N∑
j=1

a jσ(w⊺
j x +θ j ), (2.5.2)

suggesting the possibility of using the Kolmogorov-Arnold Theorem to obtain
representation results in this framework. However, the functions ϕi appearing
in (2.5.1) were highly non-smooth, so an exact representation of this form using
sigmoidal functions in the place of the ϕi ’s seemed to be excluded. But since the
goal was to approximate functions, rather than to actually represent them, the
functions ϕi could instead serve as targets that one could try to approach, using
sigmoidal ones.

This idea was formulated and implemented four years later by Vĕra Kůrková
([Kur91], [Kur92]), who also provided upper bounds for the number of nodes
needed. This number was not fixed, but depended on the level of accuracy and on
some smoothness properties of the target function f .

A common theme in all theorems we presented so far, is that in the expression∑N
j=1 a jσ(w⊺

j x +θ j ), the number of nodes N depended on the choice of the ac-
tivation function σ and the desired accuracy level ε, and in general, it could get
arbitrarily large. Perhaps at the other side of the spectrum, VitalyMaiorov and Al-
lan Pinkus (1999) [MP99] constructed a specific activation function σ which has
the property that any continuous function f : [0,1]d →R can be approached by a
two layer neural network which uses at most 3d and 6d +3 nodes at each layer re-
spectively. Their work was also based on the Kolmogorov-Arnold representation
theorem.

Theorem 2.5.2 (Maiorov-Pinkus): [MP99] There exists a smooth sigmoidal acti-
vation function σ such that for any d ∈N, any compact K ⊆Rd , any f ∈C (K ) and
any ε> 0, there exist real constants di , ci j , θi j , γi and vectors wi j ∈Rd , such that∣∣∣∣∣ f (x)−

6d+3∑
i=1

diσ

(
3d∑
j=1

ci jσ
(
w⊺

i j x +θi j

)
+γi

)∣∣∣∣∣< ε (2.5.3)

for every x ∈ K .

Proof. We will prove the result for K = [−1,1]. Recall that C [−1,1] is a separable
space [AB06, Lemma 3.99] and that one can easily find a countable dense set in
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C [−1,1] consisting of smooth functions. Indeed, the set consisting of the polyno-
mials with rational coefficients

Q[x] =
{

n∑
i=0

qi xi : n ∈N, qi ∈Q

}
,

is countable and dense in C [−1,1] by the Weierstrass Theorem. So, let (uk )k be a
countable and dense subset of C [−1,1] consisting of smooth functions. We begin
by showing that there exists some strictly increasing and smooth sigmoidal func-
tion ϕ, such that for every g ∈C [−1,1] and ε> 0, there exists an m ∈N and a, b,
c ∈R with∣∣g (t )− (

aϕ(t −7)+bϕ(t −3)+ cϕ(t +4m +1)
)∣∣< ε ∀t ∈ [−1,1]. (2.5.4)

Consider a strictly increasing and smooth sigmoidal function h, for example, one
can take h(x) = 1

1+e−x . On the intervals of the form Ik = [4k,4k+2] for k = 0,1, . . . ,
we define ϕ as

ϕ(t +4k +1) = bk + ck t +dk uk (t ) for t ∈ [−1,1],

where bk , ck and dk are coefficients, chosen so thatϕ(4k) = h(4k) and 0 <ϕ′(t ) ≤
h′(t ) for all t ∈ Ik . Such coefficients always exist: By the continuity of h′ and u′

k
on the compact set Ik , there exists some mk < Mk with mk ≤ h′(t ) ≤ Mk for every
t ∈ Ik , and similarly some ak < Ak with ak ≤ u′

k (t ) ≤ Ak . So our two requirements
can be met, if both

bk − ck +dk uk (−1) = h(4k) and ck +dk Ak ≤ mk

can be solved simultaneously, which is clearly the case. On each the intervals
J1 = [−4,−2] and J2 = [−8,−6], ϕ is an affine function that satisfies the same two
properties. Additionally, if ϕ(t − 3) and ϕ(t − 7) denote the restrictions of ϕ on
these two intervals for t ∈ [−1,1], without loss of generality, we may assume that
they are linearly independent (if they are not, just scale one of them accordingly).

On the rest of the real line,ϕ is extended in away that it remains smooth, strictly
monotone and, additionally, limt→−∞ϕ(t ) = 0. Notice that for every k , there exist
ak ,bk ,ck ∈R such that

uk (t ) = (akϕ(t −7)+bkϕ(t −3)+ ckϕ(t +4m +1) (2.5.5)

for t ∈ [−1,1], so our claim has been proven.
Now we return to our proof. Let f ∈ C [0,1] and ε > 0. By the Kolmogorov-

Arnold theorem, f can be represented as

f (x1, . . . , xd ) =
2d+1∑
i=1

g

(
d∑

j=1
λ jϕi (x j )

)
. (2.5.6)
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By the density of (uk )k , there exists some uk with ∥g −uk∥∞ < ε
2(2d+1) . Applying

(2.5.5) for this specific uk , provides a1, a2, a3,m1,m2,m3 ∈R, such that∣∣g (t )− (a1ϕ(t +m1)+a2ϕ(t +m2)+a3ϕ(t +m3)
∣∣< ε

2(2d +1)
(2.5.7)

for all t ∈ [−1,1]. Then, (2.5.6) and (2.5.7), combined with the triangle inequality,
yield that for every x ∈ [0,1]d ,∣∣∣∣ f (x)−

2d+1∑
i=1

[
a1ϕ

( d∑
j=1

λ jϕi (x j )+m1

)
+

a2ϕ

( d∑
j=1

λ jϕi (x j )+m2

)
+ a3ϕ

( d∑
j=1

λ jϕi (x j )+m3

)]∣∣∣∣=
=

∣∣∣∣2d+1∑
i=1

g

(
d∑

j=1
λ jϕi (x j )

)
−

2d+1∑
i=1

[
a1ϕ

( d∑
j=1

λ jϕi (x j )+m1

)
+

a2ϕ

( d∑
j=1

λ jϕi (x j )+m2

)
+a3ϕ

( d∑
j=1

λ jϕi (x j )+m3

)]∣∣∣∣=
=

∣∣∣∣∣2d+1∑
i=1

[
g (t )− (

a1ϕ(t +m1)+a2ϕ(t +m2)+a3ϕ(t +m3)
)]∣∣∣∣∣≤

≤
2d+1∑
i=1

ε

2(2d +1)
= ε

2
.

Therefore,∣∣∣∣∣ f (x)−
6d+3∑
i=1

diϕ

( d∑
j=1

λ jϕi (x j )+γi

)∣∣∣∣∣< ε

2
for all x ∈ [0,1]d , (2.5.8)

where each of the functions (ϕi )6d+3
i=1 is equal to one of the original functions

{ϕ1, . . . ,ϕd }. In turn, for each δ> 0 and i = 1, . . . ,6d +3, there exists bi 1,bi 2,bi 3 ∈
R and ri 1,ri 2,ri 3 ∈N, such that∣∣ϕi (x j )− (

(bi 1ϕ(x j + ri 1)+bi 2ϕ(x j + ri 2)+bi 3ϕ(x j + ri 3)
)∣∣< δ

for every x j ∈ [0,1]. Multiplying by λi and summing with respect to i = 1, . . . ,d ,
yields that∣∣∣∣∣ d∑

i=1
λ jϕi (x j )−

3d∑
i=1

ci j

(
ϕ(e⊺j x +θi j )

)∣∣∣∣∣< δ for all x ∈ [0,1]d . (2.5.9)

As ϕ is continuous, its restriction on any compact set is a uniformly continuous
function [Arg11, Theorem 9.27], so we can pick a δ sufficiently small so that for
all d j ,∣∣∣∣∣ϕ

(
d∑

j=1
λ jϕi (x j )

)
−ϕ

(
3d∑
j=1

ci j

(
ϕ(e⊺j x +θi j )

))∣∣∣∣∣< ε

2d j (6δ+3)
for all x ∈ [0,1]d

and thus,∣∣∣∣∣6d+3∑
i=1

diϕ

(
d∑

j=1
λiϕi (x j )+γi

)
−

6d+3∑
i=1

diϕ

(
3d∑
j=1

ci j

(
ϕ(e⊺j x +θi j )

)
+γi

)∣∣∣∣∣< ε

2
(2.5.10)

for all x ∈ [0,1]d . The result then follows from (2.5.8), (2.5.10) and the triangle
inequality. ■
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3
Stochastic Approximation

A common way of solving optimization problems, is through iteration methods.
Stochastic iterative algorithms are extensions of these methods in the presence
of randomness. In Section 3.1, we present the classic Robbins-Monro algorithm,
which is one of the first algorithms developed in this setting. In Section 3.2 we
study the basic tools on which many modern stochastic approximation methods
are based.Themain goal is to prove the convergence of theQ-Learning algorithm,
which is presented in Section 3.3.

. The Robbins-Monro algorithm

Suppose that for each x ∈ R we have a random variable Y = Y (x) with distribu-
tion P [Y (x) ≤ y] = H(y | x), and let M(x) denote the expectation of Y given x,
namely M(x) is given by M(x) = E[Y | X = x] = ∫

R yd H(y | x). Such an hierarchy
is common in applications. For example, one could be interested in calculating
the effect of a treatment on a patient. If Y is the treatment duration and X is the
quantity of the prescribed drug, one may have that given X = x, the distribution
of Y is a known distribution, having a parameter that depends on x. In some cases,
one could choose the family (Y (x))x carefully, so that M(x) could be computed
explicitly, but in general this may not be possible.

In our setting, we presume that we do not know the exact forms of M(x) or
H(y |x), although we have a method to sample from the distribution H(y |x) for
every x, and we want to solve the equation M(θ) = a for some fixed a. A practical
reason for solving this problem is that, assuming M(x) is a nondecreasing func-
tion, by solving the equation M(θ) = a we can find a threshold value θ for X , for
which the expected response is at least a. This is very useful in applications were
we are looking for conditions on X so that a certain expected level of efficiency
can be achieved for Y .

In this section we present a solution of this problem using the Robbins-Monro
algorithm [RM51]. According to it, a sequence (xn)n is constructed inductively
based on the formula

xn+1 = xn +an(a − yn), (3.1.1)

where yn is a random variable with distribution H(y | xn) and (an)n is a prede-
termined sequence of nonnegative numbers. Under certain assumptions on the
distribution of each Y (x), and by picking (an)n appropriately, Herbert Robbins
and Sutton Monro showed that xn converges in probability to θ.
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 stochastic approximation

The number xn in (3.1.1) is the current estimate of θ. This value is being cor-
rected by an(a− yn) to produce the next estimate xn+1. The quantity a− yn is the
difference between the drawn value yn and the target value a. Each an acts as a
weight that adjusts the impact of a − yn on the output xn+1.1 The role of the se-
quence (an)n is subtle, as it serves two different, and rather conflicting, purposes.
It needs to be large enough to allow the correction term a − yn to express itself,
but also small enough to not waste the progress made thus far by xn . Additionally,
very small values of (an)n can make the convergence of (xn)n easier, but may also
confine the algorithm’s range to some interval that does not contain θ. On the
other hand, large values of (an)n , expand the search of θ to a larger domain, but
may exhibit poor convergence properties.

The compromise between these two effects is achieved by picking a sequence
(an)n that converges to zero, but at a slow pace. In the Robbins -Monro algorithm,
as well as in a large variety of similar stochastic approximation algorithms, (an)n

is chosen to be a square summable, but not an absolutely summable sequence:∑∞
n=1 a2

n <∞, but
∑∞

n=1 an =∞.
We will present the proof, based on a series of lemmas. Firstly, in the Robbins-

Monro paper [RM51, p. 403, relation (26)], the sequence (an)n is chosen so that
the series

∑∞
n=1

an
Sn

diverges, where Sn denotes the n-th partial sumof the sequence
(ak )k . This condition is equivalent to the divergence of

∑∞
n=1 an :

Lemma 3.1.1: Let (an)n be a sequence of nonnegative real numbers and Sn = a1+
. . .+an be their n-th partial sum. Then

∑∞
n=1 an =∞ if and only if

∑∞
n=2

an
Sn−1

=∞.

Proof. Suppose that
∑∞

n=2
an

Sn−1
= ∞, yet the sum

∑∞
n=1 an does not diverge. As

all the terms of (an)n are nonnegative, the sequence of the partial sums (Sn)n is
increasing, thus converges to its supremum, say

∑∞
n=1 an = R < ∞. We pick an

n0 ∈N such that R
2 ≤ Sn ≤ 3R

2 for every n ≥ n0. This implies that
∞∑

n=2

an

Sn−1
=

n0∑
n=2

an

Sn−1
+

∞∑
n=n0+1

an

Sn−1

=Λ0 +
∞∑

n=n0+1

an

Sn−1

≤Λ0 +
∞∑

n=n0+1

an

R/2
≤Λ0 +2 <∞,

a contradiction.
For the converse, suppose that

∑∞
n=1 an =∞ and let p ∈N. Then

an

Sn−1
+ . . .+ an+p

Sn+p−1
≥ 1

Sn+p−1
(an + . . .+an+p ) = Sn+p −Sn−1

Sn+p−1
,

1In the relation (3.1.1), xn+1 can be rewritten as a convex combination of the elements xn and
a− yn +xn when an ∈ [0,1]: Specifically, xn+1 = (1−an )xn +an (a− yn +xn ). These two elements,
xn and a− yn +xn , represent the two extreme proposed values for xn+1. The former suggests that
xn+1 should completely ignore the correction term a − yn , whereas the latter suggests that xn+1

should fully embrace it. The value of an determines what weight will be given to each of these two
suggestions.
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with

lim
p→∞

Sn+p −Sn−1

Sn+p−1
= lim

p→∞
Sn+p

Sn+p−1
− lim

p→∞
Sn−1

Sn+p−1
≥ 1, (3.1.2)

since Sn+p

Sn+p−1
≥ 1 for all p and limp→∞ Sn+p−1 =∞. Inequality (3.1.2) suggests that

the sequence of the partial sums of the series
∑∞

n=2
an

Sn−1
is not a Cauchy sequence,

and since it is increasing, it must be divergent. ■

Lemma 3.1.2: Suppose that there exists some C > 0 such that for every x ∈ R,
P [|Y (x)| ≤ C ] = 1. Additionally, M(x) = E[Y | X = x] satisfies the property that
M(x) ≤ a for x < θ and M(x) ≥ a for x > θ. Suppose that (an)n is a square
summable sequence and let

dn = E[(xn −θ)(M(xn)−a)] and

en = E

[∫ ∞

−∞
(y −a)2d H(y | xn)

]
.

If there exists some sequence (kn)n of nonnegative numbers such that dn ≥ knbn and∑∞
n=1 ankn =∞, then the sequence (xn)n constructed by Robbins-Monro algorithm,

xn+1 = xn +an(a − yn), (3.1.3)

converges in probability to θ.2

Proof. Let bn = E[(xn − θ)2]. We will show that bn → 0. By substituting (3.1.3)
into E[(xn −θ)2], and conditioning on xn ,3 we obtain that bn+1 = E[(xn+1−θ)2] =
E[E[(xn+1 −θ)2 | xn]], with

E[(xn+1 −θ)2 | xn] = E[(xn −θ+an(a − yn))2 | xn]

= E[(xn −θ)2 +a2
n(a − yn)2−

−2an(xn −θ)(yn −a) | xn]

= (xn −θ)2 +a2
n

∫
(a − y)2d H(y | xn)

−2an(xn −θ)(M(xn)−a).

Thus,

bn+1 = E[E[(xn+1 −θ)2 | xn]]

= E[(xn −θ)2]+a2
n E

[∫
(a − y)2d H(y | xn)

]
2Asequence of randomvariables (Xn ) is said to converge in probability to X , denoted as Xn

P−→
X , if for every ε> 0, limn→∞ P [|Xn −X | ≥ ε] = 0.

3By the Law of total expectation, if X and Y are random variables, then E[X ] = E[E[X |Y ]] as
long as E[X ] exists.
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−2an E[(xn −θ)(a −M(xn))]

= bn +a2
nE

[∫ ∞

−∞
(y −a)2d H(y | xn)

]
−2anE[(xn −θ)(M(xn)−a)]

= bn +a2
nen −2andn ,

and

bn+1 −bn = a2
nen −2andn . (3.1.4)

Since xn −θ and M(xn)−a have the same sign, dn is always nonnegative. Addi-
tionally, by our assumptions on Y , −C ≤ Y (x) ≤C for every x a.e., which implies
that −C −|a| ≤ |Y −a| ≤C +|a| a.e., so |Y −a| ≤C +|a| a.e.. Therefore

en = E[(a −Y )2 |X = xn] ≤ (C +|a|)2 <∞.

Consequently,
∑∞

n=1 a2
nen ≤ (C + |a|)2 ∑∞

n=1 a2
n < ∞. By summing (3.1.4), from

n = 1 to n = N , we have that

bn+1 = b1 +
N∑

n=1
a2

nen −2
N∑

n=1
andn ,

which implies that
∑∞

n=1 andn converges, as

N∑
n=1

andn = 1

2

(
b1 −bN+1 +

N∑
n=1

a2
nen

)
≤ 1

2

(
b1 +

N∑
n=1

a2
nen

)

and
∑∞

n=1 a2
nen <∞. As a result, the sequence (bn)n is convergent and its limit b

is nonnegative:

b = b1 +
∞∑

n=1
a2

nen −2
N∑

n=1
andn ≥ b1 +

∞∑
n=1

a2
nen −

(
b1 −

∞∑
n=1

a2
nen

)
≥ 0.

Let (kn)n as in the Lemma’s statement. Since
∑∞

n=1 andn <∞ and dn ≥ knbn , we
have that

∑∞
n=1 anknbn ≤ ∑∞

n=1 andn < ∞, from which we deduce that b = 0.4

We showed that (xn)n converges to θ in L2. Convergence in probability follows
by the Chebyshev inequality.5 ■

The following lemma provides a sufficient condition, so that there exists some
(kn)n with the aforementioned properties:

4The sequence (bn )n has a subsequence that converges to zero. Otherwise, there would exist
some constant M > 0 such that bn ≥ M for every n, which would force the sum

∑∞
n=1 an kn bn ≥

M
∑∞

n=1 an kn = +∞ to diverge. As (bn )n converges to b and has a null convergent subsequence,
it has to be that b = 0.

5For every ε> 0, we have that P [|xn −θ| ≥ ε] ≤ ∥xn−θ∥2
2

ε2 = bn
ε2 → 0 as n →∞.
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Lemma 3.1.3: Under the notation of Lemma 3.1.2, let (An)n and (kn)n be defined
as

An = |x1 −θ|+ (C +|a|)
n−1∑
i=1

ai , (3.1.5)

kn = inf

{
M(x)−a

x −θ
: 0 < |x −θ| < An

}
. (3.1.6)

Suppose that
∑∞

n=1 an =∞ and that there exists some K > 0 and n0 ∈N such that
kn ≥ K

An
for every n ≥ n0. Then (xn)n converges in probability to θ.

Proof. The functions M(x)−a and x−θ have he same sign, so (kn)n is a sequence
of nonnegative numbers. Let Pn be the distribution of xn . Then

dn = E[(xn −θ)(M(xn)−a)] =
∫
R

(x −θ)(M(x)−a)dPn(x)

=
∫
|x−θ|≤An

(x −θ)(M(x)−a)dPn(x)

≥
∫
|x−θ|≤An

kn(x −θ)2dPn = knbn ,

as xn −θ is supported at [−An , An].6 So (kn)n satisfies dn ≥ knbn for every n. It
is left to show that

∑∞
n=1 ankn =∞.

Let n0 ∈ N such that kn ≥ K
An

for every n ≥ n0 and set Sn = ∑n
i=1 ai . Let also

n1 ∈N such that (C +|a|)∑n
i=1 ai ≥ |x1−θ|.7 Then for every n ≥ n3 = max{n0,n1},

ankn ≥ anK

An
= anK

|x1 −θ|+ (C +|a|)∑n
i=1 ai

≥ anK

2(C +|a|)∑n
i=1 ai

= K

2(C +|a|)
an

Sn−1
.

By Lemma 3.1.1, we obtain that
∑∞

n=n3
ankn ≥ K

2(C+|a|)
∑∞

n=n3

an
Sn−1

= ∞, and by
Lemma 3.1.3 we conclude that (xn)n converges to θ in probability. ■

Definition 3.1.4: A sequence (an)n is said to be of type 1/n if it belongs to ℓ2 \ℓ1,
namely (an)n is square summable but not absolutely summable.

Theorem 3.1.5: Suppose that there exists some C > 0 such that for every x ∈ R,
P [|Y (x)| ≤ C ] = 1. Additionally, M(x) = E[Y | X = x] is a nondecreasing function
with M(θ) = a and M ′(θ) > 0. If (an)n is a nonnegative sequence of type 1/n, then
the sequence (xn)n constructed by Robbins-Monro algorithm,

xn+1 = xn +an(a − yn), (3.1.7)
6One can easily confirm that xn −θ = x1 −θ+∑n−1

i=1 ai (a − yi ). As we have already shown in
the proof of the previous Lemma, |a−Y | ≤C +|a| a.e., so |xn −θ| ≤ |x1−θ|+(C +|a|)∑∞

i=1 ai = An

with probability one.
7Such a n1 always exists, as the series

∑∞
n=1 an diverges.
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converges in probability to θ, that is, xn
P−→ θ.

Proof. By the differentiability of M(x) at x = θ, there exists some function e(x)
with the property that M(x) = M(θ)+M ′(θ)(x−θ)+e(x)(x−θ) and limx→θ e(x) =
0. We pick a δ> 0 such that e(x) ≥−1

2 M ′(θ) > 0 for every x ∈ (θ−δ,θ+δ).
For θ+δ≤ x ≤ θ+ An ,

M(x)−a

x −θ
≥ M(θ+δ)−a

An
≥ δM ′(θ)

2An
.

Similarly, the same holds for θ− An ≤ x ≤ θ−δ, so

M(x)−a

x −θ
≥ δM ′(θ)

2An
(3.1.8)

for every x such that |x −θ| ≤ max{An ,δ}. By picking δ sufficiently small, we can
assure that max{An ,δ} = An .8

We proved that kn = inf
{

M(x)−a
x−θ : 0 < |x −θ| < An

}
≥ K

An
, where we set K =

δ1M ′(0)
2 > 0, so the convergence property follows from Lemma 3.1.3. ■

The Robbins-Monro Algorithm

Step  Pick a sequence (an)n ∈ ℓ2 \ℓ1 and fix some x1 ∈R.

Step  Suppose that a sample x1, . . . , xn−1 has been drawn. Draw a value yn

from the distribution H(y | xn) and set xn+1 = xn +an(a − yn).

Step  Return to Step 2 and iterate.

Table 2: The Robbins-Monro Algorithm [RM51].

. Stochastic approximation algorithms

Stochastic approximation algorithms are used in order to determine the fixed
point of a (not necessarily linear) operator H : X → X defined on some vector
space X . To obtain meaningful results, we will assume throughout that the given
operator H has indeed a unique fixed point; for example, H could be a contraction
defined on a Banach space.

The idea of using iterative algorithms for determining the fixed point of a func-
tion is not only old, but also quite fundamental. As a didactic example, recall one
of the cornerstones of fixed point theorems, and real analysis in general, proven
by Stefan Banach in 1922 [Ban22]:

8We have that An →∞, so there exists some n0 ∈N with An ≥ δ for every n ≥ n0. We set δ1 =
min{δ, A1, . . . , An0−1}. Then for every x ∈ (θ−δ1,θ+δ1), relation (3.1.8) holds and, additionally,
max{δ, An } = An for every n ∈N.
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Definition 3.2.1: A function H : (X ,ρ) → (X ,ρ) defined on some metric space
(X ,ρ), is called a β-contraction, where β is a non-negative constant, if

ρ(H x, H y) ≤βρ(x, y)

for every x, y ∈ X .

Theorem 3.2.2 (Banach’s Fixed PointTheorem): Let (X ,ρ) be a complete metric
space and H : X → X be a β-contraction for some β ∈ (0,1). Then H has a unique
fixed point, namely there exists a unique x0 ∈ X with H x0 = x0.

The theorem is not just existential, but its proof also provides a way to ap-
proximate the fixed point. The idea behind it is simple, yet powerful. Pick any
x0 ∈ X and follow the “orbit” of it through the iterations of H , namely the set
orb(x, H) = {

H n x0 : n ∈N
}
. Then, the sequence (H n x0)n converges to the unique

fixed point of H . In particular, during the theorem’s proof, one can show that for
all n,

d
(
H n x0, x∗)≤ βn

1−β
(x0, H x0) −→ 0, (3.2.1)

thus also establishing the convergence rate to the fixed point x∗.
In Banach’s theorem, we are essentially able to approach x∗ by picking an arbi-

trary x0, and then using the iteration

xn+1 = H xn for n ∈N. (3.2.2)

The good properties of the operator H and the underlyingmetric space, are strong
enough to guarantee the convergence of the iterative algorithm for any initial
point x0.

Relying on the orbits of H will be crucial in our approach as well, however,
in our setting we will not be able to invoke Banach’s theorem directly, as some
of its assumptions have to be relaxed. Most importantly, due to the presence of
chance, the exact value of H xn may not be known, but instead only a value H xn+
wn , where wn is an error term, can be observed. A modified iteration, similar to
(3.2.2), would be

xn+1 = (1−γ)xn +γ(H xn +wn) (3.2.3)

for some γ ∈ (0,1]. For γ= 1 we obtain the direct analog of (3.2.2), whereas for γ ∈
(0,1), the latest iteration xn+1 is a convex combination of the old one xn and the
proposed value H xn+wn .9 If we can guarantee that the sequence (xn)n generated
by (3.2.3) is convergent to some x̃, if H is continuous and if wn → 0, then by taking
limits in (3.2.3) we have that x̃ = H x̃ and the algorithm converges to the desired
fixed point.

9For γ= 0 the sequence (xn )n is convergent, but it is also constant and equal to x0, so it is not
worth considering.
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In this section we examine conditions which can assert this convergence. Our
main goal is to establish the convergence of the Q-Learning algorithm.This proof,
is far from straightforward, and will be presented in the next section. Essentially,
all the results mentioned in this paragraph will be aimed towards this goal, but we
should point out that they also have many other applications besides Q-Learning,
as well as an intrinsic value on their own. Our treatment is based on Chapter 4
of the “Neuro-Dynamic Programming” textbook by Dimitri Bertsekas and John
Tsitsiklis [BT96], whereas many of the results belong to John Tsitsiklis himself
[Tsi94].

The operators under study, may not necessarily be contractions, but they satisfy
a contraction-like property under some suitable norm. In our current discussion,
the underlying space will be RN and the suitable norm will be a weighted supre-
mum norm:

Definition 3.2.3: Let ξ ∈RN with ξi > 0 for every i = 1, . . . , N . The function ∥·∥ξ :
RN →R defined as

∥x∥ξ = max
i=1,...,N

|xi |
ξi

(3.2.4)

for x ∈RN , is called the weighted supremum norm induced by ξ.

It is easy to see that ∥ · ∥ξ is indeed a norm10 and by taking ξ = e = (1, . . . ,1),
the induced ∥·∥ξ is just the usual supremum norm. A known fact from functional
analysis is that all norms inRN are equivalent.This can be reformulated as follows:
Any two normed spaces of the same finite dimensionmust be isomorphic [Arg04,
Corollary 3.27].

It is not true, however, that they must also be isometrically isomorphic. For ex-
ample, (Rn ,∥ ·∥2) is never isometrically isomorphic to (Rn ,∥ ·∥∞) for n ≥ 2, since
the former is a Hilbert space, and the latter is not. An interesting property of
weighted supremum spaces of the same dimension, is that they are all isometri-
cally isomorphic. This is a useful remark that we will refer to later on:

Remark 3.2.4: Let ξ ∈RN be a strictly positive vector.Then
(
RN ,∥ ·∥∞

)
is isomet-

rically isomorphic to
(
RN ,∥ ·∥ξ

)
. Indeed, let S :

(
RN ,∥ ·∥ξ

)→ (
RN ,∥ ·∥∞

)
defined

as S(x) = (xi /ξi )N
i=1 for x ∈RN . The operator S is linear and onto. Additionally,

∥Sx∥∞ = ∥∥(xi /ξi )N
i=1

∥∥∞ = max
i=1,...,N

|xi |
ξi

= ∥x∥ξ

for every x ∈RN , so S is an isometry.
In a similar manner, L = S−1 :

(
RN ,∥ ·∥∞

) → (
RN ,∥ ·∥ξ

)
defined as L(x) =

(ξi xi )N
i=1 for x ∈ RN , is an isometric isomorphism. Both operators S and L will

be used during the proof of the convergence of some stochastic approximation
10More generally, let ξ : [0,1] → R be a continuous function with ξ(x) > 0 for every x ∈ [0,1].

Then ∥ · ∥ξ defined as ∥ f ∥ξ = supx∈[0,1]
| f (x)|
ξ(x) induces a norm on C [0,1] which is equivalent to its

usual supremum norm.
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algorithms, in our effort to reformulate the problem to an equivalent one, stated
on an appropriate weighted supremum space (see Figure 1 for example).11

A class of functions that plays a central role in stochastic approximation, is the
pseudo-contractions. These functions generalize the notion of a contraction and,
naturally, they share some similar properties.

Definition 3.2.5: Let (X ,∥·∥) be a normed space. A function H : X → X is called
a pseudo-contraction, if there exists some x∗ ∈ X and some β ∈ [0,1) such that

∥H x −x∗∥ ≤β∥x −x∗∥ (3.2.5)

for every x ∈ X .

We collect a few remarks and examples whichwill help us demystify this notion:

Remark 3.2.6: Every pseudo-contraction H with x∗ and β as in (3.2.5) has a
unique fixed point at x∗ and is continuous at x∗. Indeed, by setting x = x∗ in
(3.2.5), we obtain that ∥H x∗−x∗∥ = 0, thus H x∗ = x∗. In order to show that x∗ is
the only fixed point of H , suppose that x0 is such that H x0 = x0. Then by setting
x = x0 in (3.2.5), we obtain that ∥x0−x∗∥ ≤β∥x0−x∗∥, and sinceβ< 1, this yields
that x0 = x∗.

For the continuity, suppose that (xn)n is a sequence that converges to x∗. Then

∥H xn −x∗∥ ≤ b∥xn −x∗∥→ 0,

so H xn → x∗ = H x∗, as we wanted.

We mentioned that pseudo-contractions generalize the notion of a contraction,
so one would expect that any contraction should be a pseudo-contraction as well.
However, as we just showed, every pseudo-contraction has a fixed point, whereas,
a contraction may not. So, in general, a contraction H need not be a pseudo-
contraction. A necessary and sufficient condition for this implication to hold, is
that H should possess a fixed point:

Remark 3.2.7: Suppose that H is a contraction with a fixed point x∗. Then H is a
pseudo-contraction: Since H is a contraction, we have that ∥H x−H y∥ ≤β∥x−y∥
for every x, y ∈ X . Let y = x∗ be the fixed point of H .Then ∥H x−x∗∥ ≤β∥x−x∗∥
for all x, thus H is a pseudo-contraction. In particular, every contraction is also a
pseudo-contraction when X is a Banach space.12

It will often be useful, given a pseudo-contraction H with a fixed point at x∗, to
“translate” it in a way that the resulting function H ′ is a pseudo-contraction with
a fixed point at zero.

11On the other hand, none of the ℓp norms for 1 < p <∞ are isometrically isomorphic to any
weighted supremum norm. This can easily be seen by examining the shape of the unit sphere under
the various norms. In addition, and only for N = 2, the space

(
R2,∥ ·∥1

)
is isometrically isomorphic

to the usual supremum norm, thus to any weighted supremum norm as well.
12This is a consequence of Banach’s fixed point theorem (see the discussion in the beginning of

this section and Theorem 3.2.2).
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Remark 3.2.8: Suppose that H : X → X is a pseudo-contraction with a fixed
point at x∗ and a constant β ∈ [0,1). Then, the function H ′ : X → X defined as
H ′(x) = H(x + x∗)−H(x∗) for x ∈ X , is a pseudo-contraction with a fixed point
at zero, and with the same constant β: Let x ∈ X . Then H ′(0) = 0 and

∥H ′(x)−0∥ = ∥H(x +x∗)−H(x∗)∥
= ∥H(x +x∗)−x∗+x∗−H(x∗)∥
= ∥H(x +x∗)−x∗∥ ≤β∥x∥.

Example 3.2.9: An example of a contraction on a (non-complete) metric space
that is not a pseudo-contraction: Let H : (0,1) → (0,1) defined as H(x) = 1

2 x.
Clearly H is a contraction with β = 1

2 , but it is not a pseudo-contraction since
H has no fixed points.

Example 3.2.10: An example of a pseudo-contraction which is not a contraction:
Let T : R→R defined as follows:

T (x) =


1
2 x, x ̸= 2012,2016,

4, x = 2012,

8, x = 2016.

Then

|T (x)−T (0)| ≤ 1

2
|x −0|,

|T (2012)−T (0)| = 4 < 2012

2
and

|T (2016)−T (0)| = 8 < 2016

2
,

which prove that T is a pseudo-contraction around zero. However, it is not a con-
traction as |T (2012)−T (2016)| = 4, which is never less or equal than 4β for any
β ∈ [0,1).

We can now study the convergence of some iterative algorithms, starting with
the iteration

rn+1 = rn +γn sn , (3.2.6)

where γn and sn are random variables denoting the step sizes and the update di-
rections respectively. We also let

Fn =σ
(
r0, . . . ,rn ,γ0, . . . ,γn , s0, . . . , sn

)
, (3.2.7)

denote the sigma-algebra generated by history of the algorithmup to the n-th step
just before sn is revealed. Although the following proposition, strictly speaking,
does not assure convergence, it is a relevant convergence result on which some
future arguments will be based:
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Proposition 3.2.11: Consider the iteration

rn+1 = rn +γn sn , (3.2.8)

where the step sizes (γn)n are such that
∑∞

n=0γn(i ) =∞ and
∑∞

n=0γn(i )2 <∞ for
every i = 1, . . . , N . Let also f : RN →R be a function for which

(a) f (x) ≥ 0 for every x ∈RN .

(b) The function ∇ f is Lipschitz, that is, there exists some L > 0 such that

∥∇ f (x)−∇ f (y)∥ ≤ L∥x − y∥ for every x, y ∈RN . (3.2.9)

(c) There exists some C > 0 such that

C∥∇ f (rn)∥2 ≤−〈∇ f (rn), E[sn |Fn]〉 for all n ∈N. (3.2.10)

(d) There exist K1,K2 > 0 such that

E
[∥sn∥2 |Fn

]≤ K1 +K2∥∇ f (rn)∥2 for all n ∈N. (3.2.11)

Then, the sequence ( f (rn))n is convergent, the sequence (∇ f (rn))n converges to zero
and every limit point of (rn)n is a stationary point of f .13

Proof. We first show that for every x, y ∈RN ,

f (y) ≤ f (x)+〈∇ f (x), y −x〉+ L

2
∥y −x∥2. (3.2.12)

Let g (λ) = f
(
λy + (1−λ)x

)
. Then

f (y)− f (x) = g (1)− g (0) =
∫ 1

0

d g (λ)

dλ
dλ=

∫ 1

0

d f (λy + (1−λ)x)

dλ
dλ

=
∫ 1

0

⟨
y −x, ∇ f (λy + (1−λ)x)

⟩
dλ

=
∫ 1

0

⟨
y −x, ∇ f (λy + (1−λ)x)−∇ f (x)+∇ f (x)

⟩
dλ

≤
∫ 1

0
〈y −x, ∇ f (x)〉dλ+

+
∫ 1

0
∥y −x∥ ·∥∥∇ f (λy + (1−λ)x)−∇ f (x)

∥∥dλ

≤
∫ 1

0
〈y −x, ∇ f (x)〉dλ+

∫ 1

0
Lλ∥y −x∥2dλ

13The last statement means that for every r ∈ RN for which there exists some subsequence of
(rn )n that converges to it (that is, r is a limit point of the sequence (rn )n), we have that ∇ f (r ) = 0.
Notice, however, that the Proposition does not guarantee the existence of any limit points of (rn )n

to begin with.
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= 〈∇ f (x), y −x〉+ L

2
∥y −x∥2,

and (3.2.12) is established. By setting x = xn and y = xn +γn sn in it, we obtain

f (rn+1) ≤ f (rn)+γn〈∇ f (rn), sn〉+
Lγ2

n

2
∥sn∥2,

and by taking expectations,

E[ f (rn+1) |Fn] ≤ E[ f (rn) |Fn]+γn E[〈∇ f (rn), sn〉 |Fn]+ L

2
E
[
γ2

n∥sn∥2 |Fn
]

= f (rn)+γn〈∇ f (rn), E[sn |Fn]〉+ Lγ2
n

2
E[∥sn∥2 |Fn]

≤ f (rn)−γnC∥∇ f (rn)∥2 + Lγ2
n

2

(
K1 +K2∥∇ f (rn)∥2)

≤ f (rn)−γn∥∇ f (rn)∥2
(
C − Lγn

2
K2

)
+ K1Lγ2

n

2
, (3.2.13)

due to Proposition B.3.3. We set

Xn =

γn

(
C − LK2γn

2

)
∥∇ f (rn)∥2, if LK2γn ≤ 2C ,

0, otherwise,
(3.2.14)

Zn =


LK1γ

2
n

2 , if LK2γn ≤ 2C ,

LK1γ
2
n

2 −γn

(
C − LK2γn

2

)
∥∇ f (rn)∥2, otherwise,

(3.2.15)

and (3.2.13) can written as

E[ f (rn+1) |Fn] = f (rn)−Xn +Zn . (3.2.16)

Both (Xn)n and (Zn)n consist of non-negative randomvariables with the property
that Xn and Zn are Fn-measurable for every n ∈N. Since γn → 0, we can pick an
n0 ∈ N such that Zn = LK1γ

2
n

2 for every n ≥ n0, thus
∑∞

n=1 Zn <∞. By the Super-
martingale Convergence Theorem (see p. 135), we obtain that ( f (rn))n converges
almost surely to a non-negative random variable, and that

∑∞
n=1 Xn <∞ as well.

So the first claim has been proven.
We pick an n1 ∈N such that LK2γn

2 ≤ C
2 for every n ≥ n1. Then

Xn = γn

(
C − LK2γn

2

)
∥∇ f (rn)∥2 ≥ C

2
γn∥∇ f (rn)∥2

for every n ≥ n1 and +∞>∑∞
n=1 Xn ≥ C

2

∑∞
n=1γn∥∇ f (rn)∥2, so

∞∑
n=1

γn∥∇ f (rn)∥2 <∞. (3.2.17)
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This implies that liminfn ∥∇ f (rn)∥2 = 0. 14 We will show that ∥∇ f (rn)∥→ 0.
Let ε > 0. We say that the interval of natural numbers [n,n∗] is an upcrossing

interval from ε/2 to ε, if ∥∇ f (rn)∥ < ε
2 , ∥∇ f (rn∗)∥ > ε and ε

2 ≤ ∥∇ f (rk )∥ ≤ ε, for
every k ∈ (n,n∗).We set wn = sn−E[sn |Fn]. By the projection property of the con-
ditional expectation (see Proposition B.3.2), each wn is orthogonal to E[sn |Fn],
so by the Pythagorean Theorem,

∥wn∥2 +∥E[sn |Fn]∥2 = ∥wn +E[sn |Fn]∥2 = ∥sn∥2,

and after conditioning on Fn we obtain that

E[∥wn∥2 |Fn]+E
[∥E[sn |Fn]∥2 |Fn

]= E[∥sn∥2 |Fn] ⇒
E[∥wn∥2 |Fn]+∥E[sn |Fn]∥2 ≤ K1 +K2∥∇ f (rn)∥2 (3.2.18)

for every n. Let (Xn)n be defined as

Xn =

1, if ∥∇ f (rn)∥ < ε,

0, otherwise.

Each Xn is clearly Fn-measurable. We also define the sequence (Un)n as follows:
Un =∑n−1

k=0 Xkγk wk . We will show that (Un)n converges almost surely whenever∑∞
n=0γ

2
n ≤ A almost surely for some deterministic constant A:

Each Un is Fn-measurable with

E[Xnγn wn |Fn] =Xnγn E[wn |Fn] = 0,

therefore

E[Un+1 |Fn] = E[Un +Xnγn wn |Fn] = E[Un |Fn] =Un

for all n. When Xn = 0,

E
[∥Un+1∥2 |Fn

]= E
[∥Un∥2 |Fn

]= ∥Un∥2, (3.2.19)

whereas when Xn = 1,

E
[∥Un+1∥2 |Fn

]= E
[∥Un +γn∥wn∥2 |Fn

]
= E

[∥Un∥2 +γ2
n∥wn∥2 +2γn〈Un , wn〉 |Fn

]
= ∥Un∥2 +γ2

n E
[∥wn∥2 |Fn

]+2γn〈Un , E[wn |Fn]〉
= ∥Un∥2 +γ2

n E
[∥wn∥2 |Fn

]
≤ ∥Un∥2 +γ2

n

(
K1 +K2∥∇ f (rn)∥2)

≤ ∥Un∥2 +γ2
n

(
K1 +ε2K2

)
, (3.2.20)

14Otherwise there would exist some ε> 0 and n2 ∈N such that ∥∇ f (rn )∥ ≥ ε for every n ≥ n2,
which would in turn force the series

∑∞
n=1γn∥∇ f (rn )∥2 ≥ ε

∑∞
n=n2

γn =+∞ to diverge.
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by (3.2.18). By taking expectations in (3.2.20),

E
[
E
[∥Un+1∥2 |Fn

]]= E
[∥Un+1∥2]≤ E

[∥Un∥2]+ (
K1 +ε2K2

)
E
[
γ2

n

]
,

so

N−1∑
n=0

E
[∥Un+1∥2]≤ N−1∑

n=0
E
[∥Un∥2]+ (

K1 +ε2K2
)
E

[
N−1∑
n=0

γ2
n

]
, so

E
[∥UN∥2]≤ (

K1 +ε2K2
)
E

[
N−1∑
n=0

γ2
n

]
≤ A

(
K1 +ε2K2

)
.

By taking suprema in the last expression,

sup
n

E[∥Un∥] ≤ sup
n

E
[
1+∥Un∥2]≤ 1+ A

(
K1 +ε2K2

)
,

and the almost sure convergence of (Un)n is asserted by the Martingale Conver-
gence Theorem (Theorem B.3.5).

We now extend the claim we just proved, for the case where
∑∞

n=0γ
2
n is not

bounded by the same determninistic constant, but it is merely convergent almost
surely. We will show that (Un)n converges almost surely when

∑∞
n=0γ

2
n < ∞ al-

most surely.
For every k ∈N we define the process (U k

n )n as follows:

U k
n =

Un , when
∑n−1

i=0 γ2
i ≤ k,

Un0 , when n ≥ n0,

where n0 = min
{
n :

∑n−1
i=0 γ2

i > k
}

. The sequence (U k
n )n is either eventually con-

stant, if there exists such an n0, or it is equal to (Un)n if
∑∞

i=0γ
2
i ≤ k . In either case,

it converges almost surely. Set

Ωk =
{
ω ∈Ω :

(
U k

n (ω)
)

n
does not converge

}
and Ω′ =Ω\

∞∪
k=1

Ωk .

Then P (Ω′) = 1 and for every ω ∈Ω′, (U k
n (ω))n converges for every k . Let also

Ω′′ =
{
ω ∈Ω′ :

∞∑
i=0

γi (ω) <∞
}

.

Then P (Ω′′) = 1 and for everyω ∈Ω′′, there exists some kω ∈Nwith
∑∞

i=0γi (ω)2 ≤
kω, so U k

n (ω) =Un(ω) for every k ≥ kω and since ω ∈Ω′, the sequence (U k
n (ω))n

converges for every k ≥ kω.This implies that (Un(ω))n converges for everyω ∈Ω′′,
as we wanted.

Using the previous claim, wewill show that a sample pathmay only have finitely
many upcrossing intervals from ε/2 to ε. Suppose not. Let

(
[tk , t ′k ]

)
k
be a sequence
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of upcrossing intervals. We have that Xn = 1 for n ∈ [tk , t ′k ), so
∑t ′k−1

n=tk
γn wn ≤∑∞

n=tk
Xnγn wn with

lim
k→∞

t ′k−1∑
n=tk

γn wn ≤ lim
k→∞

∞∑
n=tk

Xnγn wn = 0 (3.2.21)

almost surely. By the triangle inequality,∥∥∇ f (rtk+1)
∥∥−∥∥∇ f (rtk )

∥∥≤ ∥∥∇ f (rtk+1)−∇ f (rtk )
∥∥≤ L

∥∥rtk+1 − rtk

∥∥
= L

∥∥γtk stk

∥∥≤ Lγtk

∥∥wtk

∥∥+Lγtk

∥∥E[
stk |Ftk

]∥∥
≤ Lγtk

∥∥wtk

∥∥+Lγtk

(
K1 +K2ε

2)
by (3.2.18), so ∥∇ f (rtk+1)∥−∥∇ f (rtk )∥ −−−−→

k→∞
0, and since ∥∇ f (rtk+1)∥ > ε, there

exists some k0 such that ∥∇ f (rtk )∥ ≥ ε/4 for every k ≥ k0. Additionally,

ε

2
≤

∥∥∥∇ f
(
rt ′k

)∥∥∥−∥∥∇ f
(
rtk

)∥∥≤
∥∥∥∇ f

(
rt ′k

)− f
(
rtk

)∥∥∥
≤ L

∥∥∥rt ′k
− rtk

∥∥∥= L

∥∥∥∥∥
t ′k−1∑
n=tk

γn sn

∥∥∥∥∥
≤ L

t ′k−1∑
n=tk

γn ∥E [sn |Fn]∥+L

∥∥∥∥∥
t ′k−1∑
n=tk

γn wn

∥∥∥∥∥
≤ L

t ′k−1∑
n=tk

γn
(
1+K1 +K2ε

2)+L

∥∥∥∥∥
t ′k−1∑
n=tk

γn wn

∥∥∥∥∥ ,

with the second term converging to zero as k →∞, by (3.2.21). Therefore,

liminf
k

t+k ′∑
n=tk

γn ≥ ε

2L
(
1+K1 +K2ε2

) . (3.2.22)

On the other hand, for n ∈ [tk , t ′k ), we have that ∥∇ f (rn)∥ ≥ ε
4 , so

liminf
k

t+k ′∑
n=tk

γn∥∇ f (rn)∥2 ≥ ε3

32L
(
1+K1 +K2ε2

) and

∞∑
n=0

γn∥∇ f (rn)∥2 ≥ ∑
n∈∪k [tk ,tk−1)

γn∥∇ f (rn)∥2 =+∞,

which contradicts (3.2.17). We showed that for every ω ∈ Ω, there exist finitely
many upcrossing intervals from ε/2 to ε.Thismeans that for every ε> 0, there ex-
ists some n∗

ε ∈Nwith 0 ≤ ∥∇ f (rn)∥ ≤ ε for every n ≥ n∗
ε , implying that∇ f (rn) →

0.
Lastly, if r0 is a limit point of (rn)n , there exists some subsequence of it with

rkn → r0 and by the (Lipschitz) continuity of ∇ f , we have that ∇ f (rkn ) → 0 =
∇ f (r0), so r0 is a stationary point of f . ■
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Remark 3.2.12: The conclusion of the previous proposition still holds if assump-
tion (d) is replaced by the weaker one:

(d’) There exist a K2 > 0 and a sequence of random variables (An)n which
is bounded a.s., such that

E
[∥sn∥2 |Fn

]≤ An +K2∥∇ f (rn)∥2 for all n ∈N. (3.2.23)

Indeed, letΩ′ denote the set of allω’s for which (An(ω))n is bounded.We proceed
as in the proof of Proposition 3.2.11, except that (Zn)n will be now defined as

Zn =


L Anγ

2
n

2 , if LK2γn ≤ 2C ,

L Anγ
2
n

2 −γn

(
C − LK2γn

2

)
∥∇ f (rn)∥2, otherwise.

(3.2.24)

By the convergence of (γn)n to zero, there exists some n0 such that Zn = L Anγ
2
n

2
for every n ≥ n0. In particular, for every ω ∈Ω′, by the boundedness of (An(ω))n ,
we have that Zn(ω) = L An (ω)γ2

n
2 ≤ LMωγ

2
n

2 for some Mω > 0, thus
∑∞

n=1 Zn(ω) <∞
for all ω ∈Ω′. The rest of the proof remains unchanged.

Corollary 3.2.13: Consider the recursion

rn+1 = (1−γn)rn +γn wn , (3.2.25)

where

(a) the step sizes (γn)n are such that
∑∞

n=1γn(i ) = ∞ and
∑∞

n=1γn(i )2 < ∞
for every i = 1, . . . , N .

(b) The noise terms (wn)n are such that E[wn |Fn] = 0 and E[w2
n |Fn] ≤ An ,

where (An)n is a sequence of random variables which is bounded with prob-
ability one, with each An being Fn-measurable.

Then (rn)n converges to zero with probability one.

Proof. By setting sn = wn − rn into (3.2.13), we can can obtain (3.2.25) as a spe-
cial case of it, rn+1 = rn +γn sn . Set f (r ) = r 2 ≥ 0, with ∇ f (r ) = 2r . We will con-
firm that all of the assumptions of Proposition 3.2.11 are met. Clearly, ∇ f is a
2-Lipschitz function and

−⟨∇ f (rn), E [wn − rn |Fn]
⟩=−〈2rn , −rn〉 = 2∥rn∥2, so

c∥∇ f (rn)∥2 = 4c∥rn∥2 ≤ 2∥rn∥2

is satisfied for c = 1
2 . Additionally, by Proposition B.3.3, we have that for every n,

E[〈wn , rn〉 |Fn] = 〈rn , E[wn |Fn]〉, so

E
[∥sn∥2 |Fn

]= E
[∥wn − rn∥2 |Fn

]= E
[∥wn∥2 +∥rn∥2 +2〈wn , rn〉 |Fn

]
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≤ An +∥rn∥2 +2E
[〈wn , rn〉 |Fn

]
= An + 1

4
∥2rn∥2 +2〈rn , E [wn |Fn]〉 = An + 1

4
∥∇ f (rn)∥2

with probability one. By Proposition 3.2.11 and Remark 3.2.12, we obtain that
limn→∞∇ f (rn) = limn→∞ 2rn = 0 with probability one. ■

We now state one of the main tools that will be used in the stochastic approxi-
mation for pseudo-contractions. It does not assert the convergence of (rn)n , but
merely its boundedness, so it is more of an auxiliary result.

Proposition 3.2.14: We consider the iteration

rn+1 = (1−γn)rn +γn(Hnrn +wn +un), (3.2.26)

where

(a) the step sizes (γn)n are such that
∑∞

n=1γn(i ) = ∞ and
∑∞

n=1γn(i )2 < ∞
for every i = 1, . . . , N .

(b) The noise terms (wn)n have the properties that

E [wn(i ) |Fn] = 0 and E
[
wn(i )2 |Fn

]≤ A+B∥rn∥2.

(c) Each Hn is a map Hn : RN → RN , and there exist ξ ∈ RN++, β ∈ [0,1) and
D > 0 such that ∥Hnrn∥ξ ≤ ∥rn∥ξ+D .

(d) There exists a sequence of non-negative random variables (θn)n which con-
verges to zero with probability one, such that

∥un∥∞ ≤ θn
(
1+∥rn∥ξ

)
for every n ∈N.

Then, the sequence (rn)n is bounded with probability one.

Proof. Let us consider first the case where ξ= (1, . . . ,1) and ∥ ·∥ξ is just the supre-
mumnorm.Wepick aG ≥ 1 such thatβG+D <G and an h such thatβG+D = hG .
Then β < h < 1 and we can pick an ε > 0 such that (1+ε)h = 1. We define a se-
quence (Gn)n as follows: Set G0 = max{∥r0∥∞,G} and suppose that Gn has been
defined. Then

Gn+1 =

Gn , if ∥rn+1∥∞ ≤ (1+ε)Gn ,

G0(1+ε)k , otherwise,
(3.2.27)

where k ∈N is such that G0(1+ε)k−1 < ∥rn+1∥∞ ≤G0(1+ε)k =Gn+1. We notice
that ∥rn∥∞ ≤ (1+ ε)Gn for every n ∈ N and that ∥rn∥∞ ≤ Gn whenever Gn−1 <
Gn . Additionally, (Gn)n is increasing: If Gn+1 ̸= Gn , then Gn+1 = G0(1+ ε)k ≥
∥rn+1∥∞ > (1+ε)Gn >Gn .
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Since βε+h < hε+h < 1, we can pick a θ∗ ≥ 0 such that βε+h+θ∗(2+ε) ≤ 1.
We also pick an n∗ ∈N such that θn ≤ θ∗ with probability one for every n ≥ n∗.
Then

∥Hnrn∥∞+θn(∥rn∥∞+1) ≤β∥rn∥∞+D +θ∗(1+ (1+ε)Gn)

≤β(1+ε)Gn + (h −β)G +θ∗(1+ (1+ε)Gn)

≤β(1+ε)Gn + (h −β)Gn +θ∗(1+ (1+ε)Gn)

= (βε+h)Gn +θ∗(2+ε)Gn

≤Gn . (3.2.28)

Let w ′
n = wn

Gn
. We have that

E[w ′
n(i ) |Fn] = E[wn(i ) |Fn]

Gn
= 0 and

E[w ′
n(i )2 |Fn] = E[w2

n(i ) |Fn]

G2
n

≤ A+B∥rn∥2

G2
n

≤ A+B(1+ε)2G2
n

G2
n

≤ A+B(1+ε)2.

We define the following families of recursions: For every n0 ∈ N, let W ′
n0,n0

= 0
and

W ′
n+1,n0

= (1−γn)W ′
n,n0

+γn w ′
n for n ≥ n0.

We will show that for every δ> 0, there exists some n0 ∈N such that∥∥W ′
n,n0

∥∥
∞ ≤ δ (3.2.29)

for every n ≥ n0 almost surely. By Corollary 3.2.13, we have that W ′
n,0(i ) → 0

almost surely, for every i = 1, . . . , N . Using induction we can show that

W ′
n,0 =

n−1∏
k=n0

(1−γk )W ′
n0,0 +W ′

n,n0
(3.2.30)

for every n ≥ n0. For n = n0 it holds trivially. Suppose that W ′
n,0 = ∏n−1

k=n0
(1−

γk )W ′
n0,0 +W ′

n,n0
for some n ≥ n0. Then

W ′
n+1,0 = (1−γn)W ′

n,0 +γn w ′
n

= (1−γn)
n−1∏

k=n0

(1−γk )W ′
n0,0 + (1−γn)Wn,n0 +γn w ′

n

=
n∏

k=n0

(1−γk )W ′
n0,0 +Wn+1,n0 ,

and the induction is complete. By (3.2.30) we have that for n0 large enough so
that ∥γn∥∞ ≤ 1, ∥Wn0,0∥∞ < δ

2 and ∥Wn,0∥∞ < δ
2 all hold with probability one for

every n ≥ n0,
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∥W ′
n,n0

∥∞ =
∥∥∥∥∥W ′

n,0 −
n−1∏

k=n0

(1−γk )W ′
n0,0

∥∥∥∥∥
∞

≤ ∥∥W ′
n,0

∥∥
∞+

n−1∏
k=n0

(1−γk )
∥∥W ′

n0,0

∥∥
∞

≤ δ

2
+ δ

2
= δ

for every n ≥ n0.
Pick an n0 ∈N such that ∥rn0∥∞ ≤Gn0 , ∥W ′

n,n0
∥∞ ≤ ε, ∥γn∥ ≤ 1 and θn ≤ θ∗ all

hold with probability one for every n ≥ n0. We will show inductively that

Gn =Gn0 and
−Gn0 (1+ε) ≤−Gn0 +W ′

n,n0
Gn0 ≤ rn ≤Gn0 +W ′

n,n0
Gn0 ≤Gn0 (1+ε)

(3.2.31)

for every n ≥ n0. For n = n0, (3.2.31) becomes

−Gn0 (1+ε) ≤−Gn0 ≤ rn ≤Gn0+≤Gn0 (1+ε),

which clearly holds. Suppose that (3.2.31) both hold for some n ≥ n0. Then

rn+1 = (1−γn)rn +γn (Hnrn +wn +un)

≤ (1−γn)(Gn0 +W ′
n,n0

+Gn0 )+γn w ′
nGn +γn (Hnrn +θn(∥rn∥∞+1))

≤Gn0 +Gn0

(
(1−γn)W ′

n,n0
+w ′

nγn
)

=Gn0 +Gn0W ′
n+1,n0

,

where we used the induction hypothesis on rn and the fact that Gn = Gn0 . In
a similar manner we obtain the other half of (3.2.31). Additionally, ∥rn+1∥∞ ≤
Gn0 (1+ ε) implies that Gn = Gn0 . We showed that Gn = Gn0 for every n ≥ n0.
The boundedness of (rn)n then follows from the relation ∥rn∥∞ ≤ (1+ ε)Gn =
(1+ε)Gn0 which holds for every n ≥ n0.

We now examine the general case, where ξ is strictly positive but not necessarily
equal to e = (1, . . . ,1). Using the isometries S and L between (RN ,∥·∥∞) and (RN ,∥·
∥ξ), as introduced in Remark 3.2.4, we can reformulate the problem as follows (see
also Figure 1):

We set r ′
n = Srn , H ′

n = S ◦ Hn ◦ L, w ′
n = Swn and u′

n = Sun for every n ∈ N.
Then, the elements r ′

n belong to (RN ,∥·∥∞) and by applying the operator S to the
iteration (3.2.26) we obtain that:

rn+1 = (1−γn)rn +γn(Hnrn +wn +un) ⇒
Srn+1 = (1−γn)Srn +γn(SHnrn +Swn +Sun) ⇒

r ′
n+1 = (1−γn)r ′

n +γn(SHnL(Srn)+w ′
n +u′

n) ⇒
r ′

n+1 = (1−γn)r ′
n +γn(H ′

n(r ′
n)+w ′

n +u′
n), (3.2.32)
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(
RN ,∥ ·∥∞

) (
RN ,∥ ·∥∞

)

(
RN ,∥ ·∥ξ

) (
RN ,∥ ·∥ξ

)

L isometry

Hn

isometry S

H ′
n = S ◦Hn ◦L

Figure 1: Reformulating the problem so that the induced operator H ′
n on (Rn ,∥ ·∥∞) has

the same properties as the original one Hn defined on (Rn ,∥ ·∥ξ).

so the newly introduced elements r ′
n , H ′

n , w ′
n and u′

n satisfy the same relation
(3.2.26). Furthermore,

E
[
w ′

n(i ) |Fn
]= 1

ξi
E [wn(i ) |Fn] = 0,

E
[
w ′

n(i )2 |Fn
]= 1

ξ2
i

E
[
wn(i )2 |Fn

]≤ max
i=1,...,n

{
1

ξ2
i

}
E
[
wn(i )2 |F]

≤C (A+B∥rn∥ξ) ≤ A′+B ′∥rn∥∞,

∥H ′
nr ′

n∥∞ = ∥SHnLr ′
n∥∞ = ∥HnLr ′

n∥ξ ≤β∥Lr ′
n∥ξ+D

=β∥r ′
n∥∞+D ,

∥u′
n∥∞ = ∥un∥ξ ≤ θn(1+∥rn∥ξ) ≤ θn(1+C∥rn∥∞),

the last inequality holding by the equivalency of the ∥ · ∥ξ and ∥ · ∥∞ norms. If
C ≤ 1, then ∥u′

n∥∞ ≤ θn(1+∥rn∥∞) with θn → 0 in probability. If C > 1, then
∥u′

n∥∞ ≤Cθn(1+∥rn∥∞) with Cθn → 0 in probability.
All the requirements of the proposition are satisfied for (r ′

n)n with respect to the
ℓ∞ norm. From our previous step, there exists some M > 0 such that ∥r ′

n∥∞ ≤ M
with probability one. This implies that ∥rn∥ξ ≤ M with probability one and the
ℓ∞ boundedness of (rn)n follows from the equivalency of the two norms. ■

.. Stochastic approximation for pseudo-contractions

We are now ready to state and prove the first of our two main convergence results.
Instead of proving it for a single pseudo-contraction H , we consider the more
general case where we have a sequence of pseudo-contractions (Hn)n , with the
same fixed point x∗, the same constant β, and with respect to the same weighted
supremum norm.
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Proposition 3.2.15: Let (rn)n be the sequence generated by the iteration

rn+1 = (1−γn)rn +γn(Hnrn +wn +un), (3.2.33)

where

(a) the step sizes (γn)n are such that
∑∞

n=1γn(i ) = ∞ and
∑∞

n=1γn(i )2 < ∞
for every i = 1, . . . , N .

(b) The noise terms (wn)n have the properties that

E [wn(i ) |Fn] = 0 and E
[
wn(i )2 |Fn

]≤ A+B∥rn∥2.

(c) Each Hn is a pseudo-contraction (see Definition 3.2.5) with respect with
the same ∥ · ∥ξ norm, with the same fixed point r∗ and the same constant
β ∈ [0,1).

(d) There exists a sequence of non-negative random variables (θn)n which con-
verges to zero almost surely, such that

∥un∥∞ ≤ θn
(
1+∥rn∥ξ

)
for every n ∈N.

Then (rn)n converges to r∗ almost surely.

Proof. Suppose first that r∗ = 0 and ξ = (1, . . . ,1). Then, the pseudo-contraction
property can be written as ∥Hnrn∥∞ ≤ β∥rn∥∞ for all n, so Proposition 3.2.14
applies and yields that (rn)n is bounded almost surely. Let D0 > 0 be such that
∥rn∥∞ ≤ D0 almost surely for every n ∈N and pick some ε> 0 such thatβ+2ε< 1.
We set Dk = (β+2ε)k D0 for k ∈N.

We will show inductively that for every k , there exists some nk ∈ N such that
∥rn∥∞ ≤ Dk for every n ≥ nk almost surely. For k = 0, this relation becomes
∥rn∥ ≤ D0 which holds for every n ∈N. Suppose that ∥rn∥∞ ≤ Dk for every n ≥ nk

a.s. for some k .
We define the following sequence (Wn)n in RN :

W0 = 0, Wn+1(1−γn)Wn +γn wn . (3.2.34)

By assupmtion (b), E
[
wn(i )2 |Fn

]≤ A+B∥rn∥2
2, and since (rn)n is bounded a.s.,

Corollary 3.2.13 applies and asserts that (Wn)n converges a.s. to zero.
For every ν ∈N, we define

Wν,ν = 0 and Wn+1,ν = (1−γn)Wn,ν+γn wn , for n ≥ ν. (3.2.35)

Again by Corollary 3.2.13, Wn,ν −−−−→
n→∞ 0 a.s. for every ν ∈N. In addition, for every

n ≥ nk ,

∥un∥∞ ≤ θn
(
1+∥rn∥ξ

)≤ θn(Dk +1) −−−−→
n→∞ 0 a.s.
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We pick an νk ≥ nk such that ∥un∥∞ ≤ εDk for every n ≥ νk , and define Yνk =
(Dk , . . . ,Dk ), and

Yn+1 = (1−γn)Yn +γn(βDk +εDk )

= Yn +γn(βDk +εDk −Yn) for n ≥ nk . (3.2.36)

We will show that

−Yn +Wn,νk ≤ rn ≤ Yn +Wn,νk (3.2.37)

for every n ≥ νk using induction: For n = νk , the inequality becomes −Dk ≤ rn ≤
Dk for all n ≥ νk which follows from our previous inductive assumption. Suppose
that (3.2.37) holds for som n ≥ νk . Since ∥Hnrn∥ ≤β∥rn∥ ≤βDk , we have that

rn+1 = (1−γn)rn +γn(Hnrn +wn +un)

≤ (1−γn)(Yn +Wn,νk )+γn(βDk +wn +εDk )

= (1−γn)Yn +γn(βDk +εDk )+ (1−γn)Wn,νk +γn wn

= Yn+1 +Wn+1,νk .

In the same manner we can prove the other half of (3.2.37) for n := n +1.

By summing (3.2.36) from n = 0 to n = m −1 we obtain

Ym = Y0 +
m−1∑
n=0

γn(βDk +εDk −Yn). (3.2.38)

Notice that by its construction, Yn+1 ∈ [Yn , (ε+β)Dk ] for all n, so (Yn)n is in-
creasing and bounded, thus convergent. If we take limits in (3.2.38), we have that
limm Ym = Y0+∑∞

n=0γn(βDk+εDk−Yn), and since
∑

n γn =+∞, it has to be that
limn Yn =βDk+εDk .Then, (3.2.37) yields that limsupn ∥rn∥ ≤ (β+ε)Dk = Dk+1,
as promised.

We showed that for every k , there exists some nk ∈N and some Ωk of measure
one, such that ∥rn(ω)∥∞ ≤ Dk for every n ≥ nk and every ω ∈ Ωk . By setting
Ω′ = ∩kΩk , we have that P (Ω′) = 1 and ∥rn(ω)∥∞ ≤ Dk for every n ≥ nk and
every ω ∈Ω′. Since Dk → 0, we obtain that ∥rn∥∞ → 0 almost surely.

We proved the proposition in the special case where r∗ = 0 and ξ = (1, . . . ,1).
The proof for the general case is based on the same argument as in Proposition
3.2.14, p. 66, and we will only sketch it here to avoid repetition.

Suppose that the proposition holds whenever (Hn)n is a sequence of pseudo-
contractions with r∗ = 0 and ξ arbitrary. We define H ′

n(x) = Hn(x + r∗)−H(r∗)
and r ′

n = rn − r∗. Then each H ′
n is a pseudo-contraction with zero as its fixed

point15 and

r ′
n+1 = (1−γn)r ′

n +γn
(
H ′

nr ′
n +wn +un

)
,

15As was proven in Remark 3.2.8.
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so the proposition applies for (r ′
n)n and r ′

n = rn − r∗ → 0 almost surely.
Suppose that the proposition holds whenever (Hn)n is a sequence of pseudo-

contractions with r∗ arbitrary and ξ = (1, . . . ,1). Using the isometries S,L, we
again define H ′

n = SHnL, r ′
n = Srn , w ′

n = Swn and u′
n = Sun for all n. It is easy to

confirm that

r ′
n+1 = (1−γn)r ′

n +γn
(
H ′

nr ′
n +w ′

n +u′
n

)
,

and that all the assumptions of the proposition, concerning (w ′
n)n and (u′

n)n , are
satisfied.

For the general case, where both r∗ and ξ associated with Hn are arbitrary, one
needs to consecutively apply the previous two transformations. More specifically,
r ′′

n will be equal to r ′′
n = S(rn −r∗) and the proposition applied on it will yield that

r ′′
n → 0 a.s., so Srn → Sr∗ and rn = LSrr → LSr∗ = r∗ almost surely. ■

.. Stochastic approximation for monotone operators

For our last convergence result, we drop the pseudo-contraction assumption, and
assume that H is a monotone operator instead. Monotonicity is assumed with
respect to the usual pointwise order of RN , but there also exist results involving
more general linear orders [Wai19b].

Proposition 3.2.16: Let (rn)n be the sequence generated by the iteration

rn+1 = (1−γn)rn +γn(Hrn +wn), (3.2.39)

where

(a) the step sizes (γn)n are such that
∑∞

n=1γn(i ) =∞ and
∑∞

n=1γn(i )2 <∞ for
every i = 1, . . . , N .

(b) The noise terms (wn)n have the properties that

E [wn(i ) |Fn] = 0 and E
[
wn(i )2 |Fn

]≤ A+B∥rn∥2.

(c) For the operator H we have that

(i) it is monotone, meaning that H x ≤ H y for every x ≤ y .

(ii) For every λ> 0 and r ∈ RN , the following inequality holds: Hr −λe ≤
H(r −λe) ≤ H(r +λe) ≤ Hr +λe, where e = (1, . . . ,1).

(iii) It has a unique fixed point, Hr∗ = r∗.

If (rn)n is bounded a.s., then (rn)n converges to r∗ almost surely.
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Proof. Suppose that (rn)n is bounded a.s., and let λ> 0 be a random variable with
r∗−λe ≤ rn ≤ r∗+λe.16 We define two sequences (Ln)n and (U n)n as follows:

L0 = r∗−λe, Lk+1 = Lk +HLk

2
, k ≥ 0,

U 0 = r∗+λe, U k+1 = U k +HU k

2
, k ≥ 0.

We can show inductively that

HU k ≤U k+1 ≤U k and (3.2.40)

HLk ≥ Lk+1 ≥ Lk (3.2.41)

for every k ∈N. For k = 0, HU 0 = H(r∗−λe) and U 1 = r ∗+λe+H(r ∗+λe)
2 and since

H(r∗ −λe) ≤ H(r∗ +λe),r∗ +λe we also have that H(r∗ −λe) is less or equal
than any convex combination of them. In the samemanner, r∗+λe, H(r∗+λe) ≤
r∗+λe, so U 1 = r ∗+λe

2 + H(r ∗+λe)
2 ≤ r∗+λe =U 0.

Suppose that HU m ≤U m+1 ≤U m for every m = 0,1, . . . ,k . Then

U k+2 = U k+1 +HU k+1

2
≤ U k

2
+ HU k+1

2
≤ U k

2
+ HU k

2
=U k+1,

since U k+1 ≤U k by our inductive hypothesis and H is monotone. It remains to
be shown that HU k+1 ≤ U k+2, but this follows immediately from the fact that
HU k+1 ≤ HU k ≤ U k+1 and U k+2 ∈ [HU k+1,U k+1]. The inequalities involving
Lk can be proven similarly.

We will show that the sequences (U k )k and (Lk )k converge to r∗ almost surely.
For every k , we have that U k ≤ . . . ≤ U 0, so for each i = 1, . . . , N , the sequence
(U k (i ))k is non-increasing. It is also bounded below by r∗(i ), as

U k+1 = U k +HU k

2
≥ r∗+HU k

2
≥ r∗+Hr∗

2
= r∗.

Thus, for every i = 1, . . . , N , the sequence (U k (i ))k converges to its infimum. By
taking limits in U k+1(i ) = U k (i )+HU k (i )

2 , and taking advantage of the continuity of
H , we obtain that its limit U has the property that U = U+HU

2 , so U = r∗ is the
unique fixed point of H . We work similarly for (Lk )k .

The two sequences defined above, restrict the behavior of (rn)n . In particular,
we will show that for every k ∈N, there exists some nk ∈N such that Lk ≤ rn ≤U k

for every n ≥ nk . For k = 0, the claim is trivial, as L0 = r∗−λe ≤ rn ≤ r∗+λe =U 0

holds for every n ∈N.
For the inductive step, suppose that there exist n1, . . . ,nk , such that Ll ≤ rn ≤U l

for every n ≥ nl for l = 1, . . . ,k . We define a sequence (Wn)n as follows:

W0 = 0, Wn+1 = (1−γn)Wn +γn wn , for n ≥ 0,

16For almost every ω, there exists an Mω > 0 with the property that ∥rn (ω)∥∞ ≤ Mω for all n.
Then the inequality holds for λ(ω) = Mω+∥r∗∥∞.
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and for every ν ∈N, we also define

Wν,ν = 0, Wn+1,ν = (1−γn)Wn,ν+γn wn , for n ≥ ν.

By Corollary 3.2.13, Wn → 0 and Wn,ν → 0 almost surely for every ν ∈ N. Let
(Xn)∞n=nk

be defined as follows:

Xnk =U k , Xn+1 = (1−γn)Xn +γn HU k , forn ≥ nk .

We will show that for every n ≥ nk ,

rn ≤ Xn +Wn,nk . (3.2.42)

For n = nk , the relation becomes rn ≤ U k , which holds. Suppose that rl ≤ Xl +
Wl ,nk for l = 1, . . . ,n. Then

rn+1 = (1−γn)rn +γn Hrn +γn wn

≤ (1−γn)(Xn +Wn,nk )+γn Hrn +γn wn

≤ (1−γn)(Xn +Wn,nk )+γn HU k +γn wn

≤ (1−γn)Xn +γn HU k + (1−γn)Wn,nk +γn wn

= Xn+1 +Wn+1,nk

and relation (3.2.42) has been established.
For each k ∈N, let

Ak =
{

i : U k (i ) ̸= HU k (i )
}

and δk = 1

4
min
i∈Ak

{
U k (i )−HU k (i )

}
.

Then δk ≥ 0 and δk is zero if and only if U k = HU k . If δk = 0, then U k = r∗ and
U m = r∗ for every m ≥ k , so rn ≤U m for every n ≥ nk1 trivially.

Suppose thatδk ̸= 0 for every k ∈N. Pick an n′
k ∈N such that n′

k ≥ nk ,
∏n′

k
t=nk

(1−
γt (i )) ≤ 1

4
17 and Wn,nk ≤ δk

18 all hold. Then rn ≤U k+1 for every n ≥ n′
k . Indeed,

let i ∈ {1, . . . , N }. If U k+1(i ) =U k (i ), then rn(i ) ≤U k (i ) =U k+1(i ). Suppose that
U k+1(i ) <U k (i ). Then for every n ≥ n′

k ,

Xn+1(i ) = (1−γn(i ))Xn(i )+γn(i )HU k

= (1−γn(i ))[(1−γn−1(i ))Xn−1(i )+γn−1(i )HU k (i )]+γn(i )HU k (i )

= (1−γn(i ))(1−γn−1(i ))Xn−1(i )+ [
1− (1−γn(i ))(1−γn−1(i ))

]
HU k (i ),

and inductively we obtain that for every n ≥ n′
k ,

Xn =
n−1∏
t=nk

(1−γt )U k +
(

1−
n−1∏
t=nk

(1−γt )

)
HU k =λU k + (1−λ)HU k ,

17By taking products in the elementary inequality 1−x ≤ e−x , we have that
∏∞

t=nk
(1−γt (i )) ≤

e
−∑∞

t=nk
γt (i ) = 0, for every i = 1, . . . , N . So for every i there exists some ñi with the property that∏n

t=nk
(1−γt (i )) ≤ 1

4 for every n ≥ ñi . Set ñ = maxi {ñi }.
18Pick an n ∈N such thatWn,nk ≤ δk for every n ≥ n.This is possible due to the a.s. convergence

of (Wn,nk )n . To find a common index, just set n′
k = max{nk , ñ,n}.
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for λ< 1
4 and U k ≥ HU k . Hence,

Xn(i ) ≤ 1

4
U k (i )+ 3

4
HU k (i )

= 1

2
U k (i )+ 1

2
HU k (i )− 1

4

(
U k (i )−HU k (i )

)
≤U k+1(i )−δk and

rn(i ) ≤ Xn(i )+Wn,nk (i ) ≤U k+1(i )−δk +Wn,nk (i ) ≤U k+1(i )

for all n ≥ n′
k . Similarly, we obtain that Lk+1(i ) ≤ rn(i ) for all i and n ≥ n′′

k . By
setting nk+1 = max

{
n′

k ,n′′
k

}
, we complete the inductive step. ■
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. Q-Learning

Q-Learning is an algorithm proposed by Chris Watkins [Wat89] to provide ap-
proximate solutions to dynamic programming problems, when we do not have
enough information on the underlying model to approach it with the usual meth-
ods. Despite the relative simplicity of the algorithm itself, the actual proof of its
convergence came later and is quite involved. In this section we will present a
proof, belonging to John Tsitsiklis [Tsi94], that builds upon the tools developed
in the previous sections.

.. Dynamic Programming

In Dynamic Programming [Ros83], we are trying to minimize the expected cost
of a process, through decisions that are taken sequentially. During each stage n,
we observe the current state i ∈ S of the process and we choose an action a ∈ A(i ).
Then, the process transitions to a state j according to some probability distribu-
tion pi ·(a) which depends on the previous state i and the decision a that we took.
Additionally, the transition we just described, incurs a cost of c(i , a, j ). The costs
accumulate over time, and our goal is to minimize the total expected cost.

A policy π is a sequence π = (µ0,µ1, . . .), where each µk is a function µk : S →
∪i∈S A(i ) with µk (i ) ∈ A(i ) for all i ∈ S. Namely, a policy dictates which action
we will choose at each state and stage of the problem. A stationary policy π =
(µ,µ, . . .) = µ, is a policy which is indifferent to the current stage of the problem,
and depends only on the current state.

Suppose that we follow a policy π = (µ0,µ1, . . .) and that the sequence of the
states the process visits is ( jk )∞0 . This sequence is not known in advance, but each
jk+1 depends on the previous state jk and the decision that was taken during the
k-th round. However, this decision was dictated by µk and, in particular, it was
equal to µk (ik ). So, the total expected cost Jπ(i ) when the initial state is i0 = i and
policy π is employed, is equal to

Jπ(i ) = lim
N→∞

E

[
N∑

k=0
c
(
ik ,µk (ik ), ik+1

) | i0 = i

]
, (3.3.1)

provided that this limit exists.The optimal cost-to-go function J∗(i ) when starting
at state i , is defined as the best we can do, under any policy π:

J∗(i ) = min
π

Jπ(i ). (3.3.2)

Perhaps themost important property of J∗, is that it satisfies a functional equation
called Bellman’s equation:

J∗(i ) = min
a∈A(i )

{∑
j∈S

pi j (a)
(
c(i , a, j )+ J∗( j )

)}
. (3.3.3)
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This equation also demonstrates the difficulty when one is trying to solve a dy-
namic programming problem. For example, the rather naive strategy of minimiz-
ing the cost in just one step forward,19 may not be an optimal strategy, because it
may cause the process to visit states which will lead to large incurred costs in later
rounds. Bellman’s equation suggests that in order to solve the problem, one needs
to take into an account both the expected cost in one step,

∑
j∈S pi j (a)c(i , a, j )

and in the later rounds,
∑

j∈S pi j (a)J∗( j ).
For simple problems, solving the Bellman equation is possible, but in general it

is difficult to find algebraic solutions of it. An approximatemethod of solving it, is
the value iteration method, according to which we initialize with some function
J0, and at each stage n +1 we define

Jn+1(i ) = min
a∈A(i )

{∑
j∈S

pi j (a)
(
c(i , a, j )+ Jn( j )

)}
. (3.3.4)

The Value Iteration Algorithm

Step  Initialize with some function J0 : S → S.

Step  Suppose that Jn has been constructed. During stage n + 1, set
Jn+1(i ) = mina∈A(i )

{∑
j∈S pi j (a)

(
c(i , a, j )+ Jn( j )

)}
.

Step  Iterate, by returning to Step .

Table 3: The Value Iteration Algorithm.

The resulting sequence of functions (Jn)n converges to J∗ uniformly, regardless
of the initial choice of J0.This is a consequence of the contractivity of the operator
T : C (S) →C (S), defined as

(T f )(i ) := min
a∈A(i )

{∑
j∈S

pi j (a)
(
c(i , a, j )+ f ( j )

)}
, f ∈C (S), i ∈ S,

and Banach’s fixed point theorem.
In the usual dynamic programming setting, all the parameters involved in the

problem (incurred costs, probability distributions, decisions and process states)
are known in advance to the player. Due to the non-linearity of the Bellman equa-
tion, even in this setting, one usually has to settle with approximate solutions. But
what happens if we go one step further and assume no prior knowledge on the un-
derlyingmodel? Is it possible tomodify the value iterationmethod in a way to still
be able to approximate a solution through it?

More specifically, we consider the same dynamic programming setting as be-
fore, with the following modifications: (i) We do not know what the probability

19Often called greedy or myopic strategy.
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distributions pi ·(a) are, for any i ∈ S or a ∈ A(i ). (ii) We do not know what the
cost functions c are. To compensate with this lack of information, we assume that
we can simulate the process, meaning that we can draw values from the unknown
distributions pi ·(a). We also assume that we can observe the incurred costs after
any such simulation.

The Q-Learning algorithm comes to provide a solution for a specific class of
problems called stochastic shortest path problems.

... Stochastic shortest path problems

In this paragraph we describe a special class of dynamic programming problems,
governed by the following assumptions: There exists an absorbing state, denoted
as i = 0, and when the system visits it, it remains there with no further cost. We
also assume that termination is inevitable, and the goal is to minimize the ex-
pected cost until termination. In our treatment, the state space S = {0,1, . . . ,n} as
well as the action sets A(i ) at each i ∈ S, are all assumed to be finite.

We will say that a stationary policy is proper, if when using this policy, there
is a positive probability that the termination state will be reached after at most n
stages, regardless of the initial state i0. As usual, for any stationary policy µ, we
introduce the operators T and Tµ : C (S) →C (S). For every J ∈C (S) =Rn+1,

(T J )(i ) = min
a∈A(i )

{
n∑

j=0
pi j (a)

(
c(i , a, j )+ J ( j )

)}
and (3.3.5)

(Tµ J )(i ) =
n∑

j=0
pi j (µ(i ))

(
c(i ,µ(i ), j )+ J ( j )

)
for i = 0,1, . . . ,n. (3.3.6)

The components that correspond to i = 0 are all equal to zero and will be omitted
from now on.

Proposition 3.3.1: [BT96, Proposition 2.1]. Consider a stochastic shortest path
problem for which there exists at least one proper policy and such that for every
improper policy µ, there exists some i with Jµ(i ) infinite. Then

(a) The optimal cost-to-go function J∗ has all of its components finite and is the
unique fixed point of T , that is, T J∗ = J∗.

(b) We have that limk→∞ T k J = J∗ for every J ∈C (S).

(c) A stationary policy µ is optimal if and only if Tµ J∗ = T J∗.

(d) For every proper policy µ, its value Jµ is the unique fixed point of Tµ, and
additionally, limk→∞ T k

µ J = Jµ for every J .

The operators T and Tµ are also contractions with respect to some appropriate
weighted supremum norm.20

20See also the discussion that follows Definition 3.2.3 for more details on these norms.
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Definition 3.3.2: Let ξ ∈RN with ξi > 0 for every i = 1, . . . , N . The function ∥·∥ξ :
RN →R defined as

∥x∥ξ = max
i=1,...,N

|xi |
ξi

(3.3.7)

for x ∈RN is called the weighted supremum norm induced by ξ.

Proposition 3.3.3: Consider a stochastic shortest path problem for which all the
stationary policies are proper. Then, there exists a strictly positive vector ξ such that
the maps T and Tµ are contractions with respect to the weighted supremum norm
∥ ·∥ξ for all stationary policies µ. In particular, there exists some β< 1 such that

n∑
j=1

pi j (a)ξ j ≤βξi , for every i = 1, . . . ,n and a ∈ A(i ). (3.3.8)

Proof. We introduce a modified stochastic shortest path problem which has the
same states S = {0,1, . . . ,n}, action sets A(i ) and transition probabilities pi j (a) as
the original one, except that all the costs from the non-terminal states are now
equal to −1, namely c(i , a, j ) =−1 for every i = 1, . . . ,n, every a ∈ A(i ) and every
j = 0,1, . . . ,n.

By letting all such costs be negative, we are in fact giving the player the incentive
to continue playing for as long as possible. Additionally, since all states contribute
the same to the player’s fortune, the player is rather indifferent to which states he
visits, as far as the incurred costs are concerned, and his only goal is to visit the
ones which will help him prolong the game.21

Let J̃ denote the optimal cost-to-go function for the modified problem. Then
for every stationary policy µ and every i = 1, . . . ,n,

J̃ (i ) = min
a∈A(i )

{
n∑

j=0
pi j (a)

(−1+ J̃ ( j )
)}=−1+ min

a∈A(i )

{
n∑

j=1
pi j (a) J̃ ( j )

}

≤−1+
n∑

j=1
pi j (µ(i )) J̃ ( j ). (3.3.9)

Let ξi = J̃ (i ) for i = 1, . . . ,n and β= maxi=1,...,n
ξi−1
ξi

. We will show that β ∈ [0,1).
Since c(i , a, j ) ≤ 0 for every i , j and a ∈ A(i ), we also have that

J̃ (i ) = lim
N→∞

[
N−1∑
k=0

c(ik , ak , ik+1) | i0 = i

]
≤ 0,

so ξi =− J̃ (i ) ≥ 0. Additionally, for every i ̸= 0,

J̃ (i ) =−1+ min
a∈A(i )

{
n∑

j=0
pi j (a) J̃ ( j )

}
≤ 1,

21Note also that since all the stationary policies are proper, the process will reach the terminal
state i = 0 at some point with probability one, no matter what policy the player chooses. So Jµ will
always be finite.
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so ξi ≥ 1.
If pi 0(a) = 1 for every a ∈ A(i ), then the problem is trivial. So, lets assume that

there exists some i0 ∈ {1, . . . ,n} and a0 ∈ A(i0) with pi0,0(a0) < 1. Then J̃ (i0) =
−1+∑n

j=0 pi0 j (a∗
0 ) J̃ ( j ) for some a∗

0 ∈ A(i0). If pi0,0(a1) = 1 for some a1 ∈ A(i0),
then −1+∑n

j=0 pi0 j (a1) J̃ ( j ) =−1, whereas

−1+
n∑

j=0
pi0 j (a0) J̃ ( j ) =−1+

n∑
j=1

pi0 j (a0) J̃ ( j )

≤−1−
n∑

j=1
pi0 j (a0)

=−1− (1−pi00(a0))

<−1

=−1+
n∑

j=0
pi0 j (a1) J̃ ( j ),

so a decision which leads to the terminal state with probability one, is never op-
timal. Consequently, J̃ (i0) < −1 and ξi0 > 1. Since ξi ≥ 0 for all i and there ex-
ists some i0 with ξi0 −1 > 0, the quantity β= maxi=1,...,n

ξi−1
ξi

belongs to [0,1) as
promised.22

Let J , J ′ ∈C (S). Then for every stationary policy µ,

∣∣Tµ J (i )−Tµ J ′(i )
∣∣= ∣∣∣ n∑

j=0
pi j (µ(i ))

(
c(i ,µ(i ), j )+ J ( j )

)
−

n∑
j=0

pi j (µ(i ))
(
c(i ,µ(i ), j )+ J ′( j )

)∣∣∣
=

n∑
j=0

pi j (µ(i )) · ∣∣J ( j )− J ′( j )
∣∣

≤
n∑

j=1
pi j (µ(i )) · |J ( j )− J ′( j )|

=
n∑

j=1
pi j (µ(i )) ·ξ j · |J ( j )− J ′( j )|

ξ j

≤
n∑

j=1
pi j (µ(i ))ξ j

∥∥J − J ′
∥∥
ξ

≤βξi
∥∥J − J ′

∥∥
ξ . (3.3.10)

By dividing with ξi and taking suprema, we obtain that Tµ is a ∥ · ∥ξ contraction.
Concerning the operator T , by (3.3.10) we have that

Tµ J (i ) ≤ Tµ J ′(i )+βξi
∥∥J − J ′

∥∥
ξ

22Also for all stationary policies µ and states i , we have that
∑n

j=1 pi j (µ(i ))ξ j ≤ ξi −1 ≤βξi , so
the “in particular” part of the proposition has been established.
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for every i = 1, . . . ,n and every stationary policy µ. So

min
µ

Tµ J (i ) =: T J (i ) ≤ min
µ

{
Tµ J ′(i )+βξi

∥∥J − J ′
∥∥
ξ

}
= min

µ
Tµ J ′(i )+βξi

∥∥J − J ′
∥∥
ξ

= T J ′(i )+βξi
∥∥J − J ′

∥∥
ξ ,

and T J (i )−T J ′(i ) ≤βξi
∥∥J − J ′

∥∥
ξ. By reversing the role of J and J ′ we obtain that

|T J (i )−T J ′(i )| ≤βξi
∥∥J − J ′

∥∥
ξ for all i , so once again, dividing with ξi and taking

suprema yields the desired result. ■

.. The Q-Learning algorithm and its convergence

We consider a stochastic shortest path problem with state space S = {0,1, . . . , N },
action sets A(i ) and costs c(i , a, j ) for i = 1, . . . , N , a ∈ A(i ) and j ∈ S. For every
(i , a) ∈ S × A(i ), we define the optimal Q-factor Q∗(i , a) as

Q∗(0, a) = 0 and Q∗(i , a) =
N∑

j=0
pi j (a)

(
c(i , a, j )+ J∗( j )

)
for i = 1, . . . , N ,

(3.3.11)

where J∗ is the optimal cost-to-go function, satisfying the Bellman equation,

J∗( j ) = min
a∈A(i )

{
N∑

j=0
pi j (a)

(
c(i , a, j )+ J∗( j )

)}
. (3.3.12)

Plugging Bellman’s equation into (3.3.11), we obtain that

Q∗(i , a) =
N∑

j=0
pi j (a)

(
c(i , a, j )+ min

b∈A( j )
Q∗( j ,b)

)
for i = 1, . . . , N , (3.3.13)

so the optimal Q-factors satisfy the functional equation (3.3.13). In fact, they are
the unique solutions of it:

Proposition 3.3.4: Consider a stochastic shortest path problem and suppose that
J satisfies (3.3.13) and also that J (0, a) = 0 for all a. Then J is the optimal Q-factor
Q∗.

Proof. Set J̃ (i ) = mina∈A(i ) J (i , a) for i = 0, . . . , N . In view of (3.3.13), J̃ satisfies

J̃ (i ) = min
a∈A(i )

J (i , a) = min
a∈A(i )

N∑
j=0

pi j (a)

(
c(i , a, j )+ min

b∈A( j )
J ( j ,b)

)

= min
a∈A(i )

N∑
j=0

pi j (a)
(
c(i , a, j )+ J̃ ( j )

)
,
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which is just the Bellman equation. By the uniqueness of its solution, we have that
J̃ = J∗, which plugged into (3.3.13) yields that

J (i , a) =
N∑

j=0
pi j (a)

(
c(i , a, j )+ J̃ ( j )

)
=

N∑
j=0

pi j (a)
(
c(i , a, j )+ J∗( j )

)
=: Q∗(i , a)

for all i = 1, . . . , N and a ∈ A(i ). For i = 0, we also have that J (0, a) =Q∗(0, a) = 0,
so J =Q∗. ■

A direct analogue of the value iteration algorithm applied to Q-factors, would
be the iteration

Q(i , a) :=
N∑

j=0
pi j (a)

(
c(i , a, j )+ min

b∈A( j )
Q( j ,b)

)
(3.3.14)

In the spirit of the Robbins-Monro approximation, a more general version of it, is
to consider the convex combination

Q(i , a) := (1−γ)Q(i , a)+γ
N∑

j=0
pi j (a)

(
c(i , a, j )+ min

b∈A( j )
Q( j ,b)

)
(3.3.15)

of the previous value of Q(i , a) with the newly proposed one, with a weight of
γ ∈ (0,1]. However, in the absence of any knowledge regarding the probability
distributions, or even the cost functions, it is not possible to solve (3.3.15) with
the standard methods.

Q-Learning [Wat89] is an algorithm that addresses this problem. Although the
transition distributions and the cost functions are not known in advance, we as-
sume that we can simulate values from them. In particular, we assume that at each
state (i , a) we can generate a new state j according to the transition distribution
pi ·(a) and observe a cost of c(i , a, j ).

The algorithm is essentially a combination of the Robbins-Monro stochastic
approximation and of the value iteration methods. In the absence of any knowl-
edge of the transition probabilities pi j (a), the expectation appearing in the right
hand side of (3.3.15) is replaced by a single value j which is drawn by the distri-
bution pi ,·(a). Similarly, c(i , a, j ) is the observed cost when the aforementioned
event occurred. The stepsizes γ are also allowed to vary with each iteration n and
to depend on the current state (i , a). Most commonly, they are chosen so that∑∞

n=0γn(i , a) =∞ and
∑∞

n=0γn(i , a)2 <∞ for every i and a ∈ A(i ).

Qn+1(i , a) = (
1−γn(i , a)

)
Qn(i , a)+γn(i , a)

(
c(i , a, j )+ min

b∈A( j )
Qn( j ,b)

)
,

The sequence (Qn(i , a))n defined by the previous iteration, converges almost
surely to the optimal Q-factor Q∗(i , a) for every i ∈ S and a ∈ A(i ). The proof we
present here belongs to John Tsitsiklis [Tsi94].
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The Q-Learning Algorithm

Step  Pick a sequence of functions (γn)n defined on the set S̃ = {(i , a) :
i = 1, . . . , N , a ∈ A(i )}, with the property that

∑∞
n=0γn(i , a) =∞ and∑∞

n=0γn(i , a)2 <∞ for every i = 1, . . . , N and a ∈ A(i ).

Step  Initialize with some function Q0(i , a) for i = 1, . . . , N and a ∈ A(i ).

Step  Suppose that Qn(i , a) has been generated for all such (i , a) for
some n ≥ 0. For every (i , a), draw a value ji ,a according to the
distribution pi ,·(a) and set Qn+1(i , a) = (1 − γn(i , a))Qn(i , a) +
γn(i , a)

(
c(i , a, ji ,a)+minb∈A( ji ,a ) Qn( ji ,a ,b)

)
.

Step  Return to Step .

Table 4: The Q-Learning Algorithm.

Theorem 3.3.5: [BT96, Proposition 5.5. (a)] Consider the Q-Learning iteration

Qn+1(i , a) = (
1−γn(i , a)

)
Qn(i , a)+γn(i , a)

(
c(i , a, j )+ min

b∈A( j )
Qn( j ,b)

)
, (3.3.16)

where j has been drawn according to the distribution pi ,·(a) and (γn)n is such that∑∞
n=0γn(i , a) =∞ and

∑∞
n=0γn(i , a)2 <∞ for every i = 1, . . . , N and a ∈ A(i ). If

all policies are proper, then Qn(i , a) → Q∗(i , a) for every i , a ∈ A(i ) almost surely,
where Q∗ is the optimal Q-factor.

Proof. Let S̃ = {(i , a) : i = 1, . . . , N , a ∈ A(i )}. This is a finite set and each Q-vetor
Q is a function Q : S̃ → R and can be viewed either as an element in C (S̃) or as a
vector in R|S̃|. We define the operator H : C (S̃) →C (S̃) as follows. For every Q in
C (S̃),

(HQ)(i , a) =
N∑

j=0
pi j (a)

(
c(i , a, j )+ min

b∈A( j )
Q( j ,b)

)
. (3.3.17)

By letting wn be equal to

wn(i , a) = c(i , a, j )+ min
b∈A( j )

Qn( j ,b)−
N∑

j=0
pi j (a)

(
c(i , a, j )+ min

b∈A( j )
Qn( j , a)

)
,

(3.3.18)

the Q-Learning iteration (3.3.16) can be re-written as

Qn+1(i , a) = (1−γn(i , a))+Qn(i , a)+γn(i , a) (HQn(i , a)+wn(i , a)) , (3.3.19)

with

E [wn(i , a) |Fn] =
N∑

j=0
pi j (a)c(i , a, j )+

N∑
j=0

pi j (a) min
a∈A( j )

Qn( j , a)−
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−
N∑

j=0
pi j (a)c(i , a, j )−

N∑
j=0

pi j (a) min
b∈A( j )

Qn( j , a)

= 0, and

E
[
wn(i , a)2 |Fn

]= E

[
c(i , a, j )2 + min

a∈A( j )
Qn( j , a)2

∣∣∣Fn

]
+

+
[

N∑
j=0

pi j (a)

(
c(i , a, j )+ min

b∈A( j )
Qn( j , a)

)]2

+

+E

[
2c(i , a, j ) min

a∈A( j )
Qn( j , a)

∣∣∣Fn

]
−

−2
N∑

j=0
pi j (a)

(
c(i , a, j )+ min

b∈A( j )
Qn( j , a)

)
E[c(i , a, j ) |Fn]−

−2
N∑

j=0
pi j (a)

(
c(i , a, j )+ min

b∈A( j )
Qn( j , a)

)
E

[
min

a∈A( j )
Qn( j , a)2

∣∣∣Fn

]

≤ K 2 +max
j ,a

Q2
n( j , a)+2K max

j ,a
Qn( j , a)2 +

(
K +max

j ,a
Qn( j , a)2

)2

≤Λ

(
1+max

j ,a
Q( j , a)2

)
,

where K = max
{
c(i , a, j ) : i = 1, . . . ,n, a ∈ A(i )

}
andΛ= 2K 2+4K+2. So the noise

terms (wn)n , satisfy the assumptions of Proposition 3.2.15.
By Proposition 3.3.3, there exists a strictly positive ξ ∈RN such that

N∑
j=1

pi j (a)ξ j ≤βξi

for every i = 1, . . . , N and a ∈ A(i ). Each Q can be seen as a vector in RM , where
M is the cardinality of the set S̃. In particular, if one sets ki = |A(i )|, then Q :
Rk1+...+kN → R. We extend ξ ∈ RN into a vector ξ̃ ∈ Rk1+...+kN , by just repeating
each coordinate i of ξ, a total of ki times:

ξ̃l =



ξ1, l ∈ [1,k1],

ξ2, l ∈ (k1,k1 +k2],
...

...

ξn , l ∈ (∑n−1
i=1 ki ,

∑n
i=1 ki

]
.

Wecan define the ξ̃weighted supremumnormonRk1+...+kN , and by the definition
of ξ it has the property that

∥Q∥ξ̃ = max
i ,a∈A(i )

|Q(i , a)|
ξi

(3.3.20)

for every Q ∈Rk1+...+kN . Let Q,Q ′ ∈Rk1+...+kN . Then

∣∣HQ(i , a)−HQ ′(i , a)
∣∣= ∣∣∣∣∣ N∑

j=1
pi j (a)

(
min

a∈A( j )
Q( j , a)− min

a∈A( j )
Q ′( j , a)

)∣∣∣∣∣
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≤
N∑

j=1
pi j (a)

∣∣∣∣ min
a∈A( j )

Q( j , a)− min
a∈A( j )

Q ′( j , a)

∣∣∣∣
≤

N∑
j=1

pi j (a) max
j ,a∈A( j )

∣∣Q( j , a)−Q ′( j , a)
∣∣

=
N∑

j=1
pi j (a)ξ j · max

j ,a∈A( j )

|Q( j , a)−Q ′( j , a)|
ξ j

=
N∑

j=1
pi j (a)ξ j · ∥Q −Q ′∥ξ̃

≤βξi∥Q −Q ′∥ξ̃,

so H is a β-contraction with respect to the weighted supremum norm. By Propo-
sition 3.2.15, (Qn)n converges with probability one to the fixed point of H , which
is just the optimal Q-factor Q∗. ■
Theorem 3.3.6: [BT96, Proposition 5.5. (b)] Consider the Q-Learning iteration

Qn+1(i , a) = (1−γn(i , a))Qn(i , a)+γn(i , a)

(
c(i , a, j )+ min

b∈A( j )
Qn( j ,b)

)
, (3.3.21)

where j has been drawn according to the distribution pi ,·(a) and (γn)n is such that∑∞
n=0γn(i , a) = ∞ and

∑∞
n=0γn(i , a)2 < ∞ for every i = 1, . . . , N and a ∈ A(i ).

Suppose that there exists at least one proper policy, and that for every improper one
µ, the corresponding value Jµ(i0) is infinite for some state i0. If (Qn)n is bounded
with probability one, then Qn(i , a) → Q∗(i , a) for every i , a ∈ A(i ) almost surely,
where Q∗ is the optimal Q-factor.

Proof. The operator H defined in (3.3.17) is monotone: Suppose that Q ≤ Q ′ in
the usual order of RM , where M = |{(i , a) : i = 1, . . . , N , a ∈ A(i )}|. Then

(HQ)(i , a) =
N∑

j=0
pi j (a)

(
c(i , a, j )+ min

b∈A( j )
Q( j ,b)

)

≤
N∑

j=0
pi j (a)

(
c(i , a, j )+ min

b∈A( j )
Q ′( j ,b)

)
= (HQ ′)(i , a)

for every i and a ∈ A(i ). The operator H has also a unique fixed point. Indeed, a
fixed point Q of H must satisfy the functional equation

Q(i , a) =
N∑

j=0
pi j (a)

(
c(i , a, j )+ min

b∈A( j )
Q( j ,b)

)
(3.3.22)

for all i = 1, . . . , N and a ∈ A(i ), and Q(0, a) = 0 for all a. As we showed in Propo-
sition 3.3.4, this equation has a unique solution.
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Lastly, for every λ > 0, by taking into account the monotonicity of H and the
fact that Q −λe ≤Q +λe for all Q , we have that

(HQ −λe)(i , a) =
N∑

j=0
pi j (a)

(
c(i , a, j )+ min

b∈A( j )
Q( j ,b)

)
−λ

=
N∑

j=0
pi j (a)

(
c(i , a, j )+ min

b∈A( j )
Q( j ,b)−λ

)

=
N∑

j=0
pi j (a)

(
c(i , a, j )+ min

b∈A( j )
(Q( j ,b)−λ)

)
= H(Q −λe)

≤ H(Q +λe)

=
N∑

j=0
pi j (a)

(
c(i , a, j )+ min

b∈A( j )
Q( j ,b)+λ

)

=
N∑

j=0
pi j (a)

(
c(i , a, j )+ min

b∈A( j )
Q( j ,b)

)
+λ

= (HQ +λe)(i , a)

for every i , a ∈ A(i ). This shows that HQ−λe ≤ H(Q−λe) ≤ H(Q+λe) ≤ H(Q)+
λe. By Proposition 3.2.16, we have that (Qn)n converges to Q∗ almost surely, pro-
vided that it is bounded. ■
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4
Multi-armed Bandits

Multi-armed bandits is a subfield of Reinforcement Learning which was first for-
mulated during the early ‘50s through the work of Herbert Robbins. In the last
decades the interest towards it has re-emerged, resulting in strong contributions
both to its foundations and its practical implications. In Section 4.2 we present
the Robbins algorithm, which is a very basic argument that achieves maximum
mean reward asymptotically. The question of how fast this reward can be ap-
proached, requires some heavy machinery, and is studied in detail in Section 4.3
through the Lai-Robbins arguments. In Sections 4.4 and 4.5 we present the Auer-
Bianci-Fischer upper confidence bound algorithms, which simplify some of the
Lai-Robbins ideas with a relatively small price in performance.

. Introduction

In its simplest form, the problem can be stated as follows: We are given the oppor-
tunity to draw samples from two different statistical populations A and B , speci-
fied by the distributions FA and FB , with finite means a and b respectively. Each
time we draw a value x, we get to keep it as a reward. Our goal is to draw a sam-
ple x1, . . . , xn in a way to maximize the expected sum Sn = x1 + . . .+ xn . In each
step, we can decide from which population we will draw the next value, based on
some rule which will possibly take into consideration the values sampled up to
that point.

By the linearity of the expectation,

E[Sn/n] = 1

n

n∑
i=1

E[Xi ] = kn

n
a + n −kn

n
b,

where kn is the number of samples drawn from A during the first n repetitions.
This means that E[Sn/n] is a convex combination of a and b and belongs to the
interval [min{a,b},max{a,b}]. Clearly, if we knew the actual values of a and b
we could maximize E[Sn/n] by constantly drawing from the population with the
largest mean. However, neither the values of a and b, nor their respective order
are known in advance.

In order to approach the problem efficiently, we need to employ simultaneously
two contradictory strategies. Firstly, we should draw enough values from both
populations in order to estimate the means a and b adequately. This implies that
we need to be willing to deliberately choose the suboptimal arm a fair amount of
times, so as to make sure that it is indeed suboptimal. Secondly, once we are fairly
certain on which arm is the optimal one, we should pick it progressively more
often, so as to maximize our expected profit.
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 multi-armed bandits

The first strategy is called exploration, whereas the second one exploitation, and
the multi-armed bandit setting is one of the most natural and didactic paradigms
of the so-called exploration vs exploitation dilemma/trade off, namely the problem
of finding the correct balance between these two conflicting strategies.

. The Robbins algorithm

Let ϕ be a drawing rule from the populations A and B . Here ϕ : N → {A,B} is
just a function which at each stage n selects a population to draw from. The value
of ϕ(n) is usually not predetermined, but it depends on the values of the sample
obtained thus far until stage n. We define

Ln(A,B ,ϕ) = max{a,b}−E

[
Sn

n

]
, (4.2.1)

a quantity that measures the distance between the expected value of Sn , when fol-
lowing the ruleϕ, and the best possible outcome max{a,b} after n draws. Herbert
Robbins [Rob52] showed that there always exists a rule ϕ for which

lim
n→∞Ln(A,B ,ϕ) = 0,

thus one can always approach this maximum asymptotically.
The rule proposed byRobbins, estimates the true values of a and b progressively

and chooses the sampling population accordingly. In order to make sure that its
estimates for a and b are accurate, the rule has to draw infinitely many samples
from both populations and rely on the Law of Large Numbers to distinguish be-
tween a and b. However, drawing too many values from the wrong population
could potentiallymove E[Sn/n] away from itsmaximumpossible value max{a,b}.

Robbins ensures that E[Sn/n] will be unaffected, by choosing to draw from A
and B for predetermined indices J A and JB ⊆N. If J A and JB are sparse enough,
the drawn values will have no effect on the mean value of Sn . For the rest of the
indices N \ (J A ∪ JB ), he allows the rule to draw from the population that seems
to be the best up to that point. In this context, the “sparseness” of a set is being
measured by its natural density, and by sparse subsets of N we mean infinite sets
with zero natural density (see Appendix C.1 for more details):

Definition 4.2.1: Let J ⊆N. We define its natural density d(J ) as

d(J ) = lim
n→∞

#J ∩ {1, . . . ,n}

n
, (4.2.2)

provided that this limit exists.

An example of two disjoint infinite sets with zero density are J A = {n2 : n ∈N} and
JB = {n2 +1 : n ∈N}.

For proving Robbins result, it will be useful to study the behavior of the Cesàro
averages of a sequence when we can “decompose” it into two subsequences with
known Cesàro limits, prescribed on index sets of known natural densities. Sup-
pose that we have two sequences (an)n and (bn)n and a set J ⊆N such that both
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J and J c are infinite. We can “merge” the two sequences into one sequence (cn)n

according to the following rule:
For the indices that belong to J , cn will be equal to the first unassigned term

of the sequence (an)n , whereas for n ̸∈ J , cn will be equal to the first unassigned
term of (bn)n . In this way, the newly defined sequence (cn)n contains both (an)n

and (bn)n as subsequences, the exact positions of which are fully determined by J
and J c respectively. In mathematical terms, (cn)n has the property that (an)n∈N =
(cn)n∈J and (bn)n∈N = (cn)n∈J c .

Definition 4.2.2: Let (an)n and (bn)n be two sequences, and J ⊆N be a set such
that both J and J c are infinite. We define the merge of (an)n and (bn)n over (J , J c ),
as the sequence (cn)n with the property that (an)n∈N = (cn)n∈J and (bn)n∈N =
(cn)n∈J c .

More explicitly, for every n ∈ N set dn = #J ∩ {1, . . . ,n}. Then (cn)n can be de-
fined as

cn =
adn , if n ∈ J ,

bn−dn , if n ∈ J c .

One can easily extend the previous definition in order to merge more than two
sequences.1 Suppose now that we have two Cesàro summable sequences (an)n ,
(bn)n and that J ⊆ N is an infinite set such that J c is also infinite with d(J ) well
defined. If we merge the two sequences over (J , J c ), we intuitively expect that the
resulting sequence (cn)n will also be Cesàro summable and that its sumwill be the
weighted average of the two individual Cesàro sums, with the weights being equal
to the corresponding densities of the partition sets.The following lemma suggests
that the merge operation indeed respects the Cesàro limits and index densities.

Lemma4.2.3: Let (an)n and (bn)n be twoCesàro summable sequences with respec-
tive Cesàro limits a and b, and let J ⊆ N such that both J and J c are infinite and
d(J ) is well defined. Then, the merge of (an)n and (bn)n over (J , J c ) is also Cesàro
summable, and its Cesàro sum is equal to c = d(J )a + (1−d(J ))b.

Proof. Let (cn)n denote their merge. Then by definition,

c1 + . . .+ cn

n
= a1 + . . .+adn

n
+ b1 + . . .+bn−dn

n

= a1 + . . .+adn

dn
· dn

n
+ b1 + . . .+bn−dn

n −dn
· n −dn

n
,

with limn→∞ dn
n = d(J ) and limn→∞ n−dn

n = 1−d(J ) = d(J c ).2 Additionally, we
have that limn→∞

a1+...+adn
dn

= a and limn→∞
b1+...+bn−dn

n−dn
= b, since both (dn)n

and (n −dn)n tend to infinity as n →∞. ■
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The Robbins Rule

Step  Choose J A , JB ⊆N infinite sets with zero density.

Step  Suppose that a sample x1, . . . , xn−1 has been drawn. If n ∈ J A , draw
Xn from population A. If n ∈ JB , draw Xn from B .

Step  For n ̸∈ J A ∪ JB , set an =
∑

{i :Xi ∼FA } xi

#{i :Xi∼FA} and bn =
∑

{i :Xi ∼FB } xi

#{i :Xi∼FB } . If an ≥ bn

draw Xn from population A, else draw it from B .

Table 5: The Robbins Rule [Rob52].

We can now state the Robbins rule and prove the asymptotic properties of
E[Sn/n] under it, using the previous Lemma.

Theorem 4.2.4: Let A, B be two populations with mean a and b respectively, and
let (Xn)n be a sequence of random variables constructed according to the Robbins
rule. Then E

[
Sn
n

]
→ max{a,b}.

Proof. For each ω ∈Ω, let Xn(ω) be the n-th observation according to this rule.
Each Xn(ω) is either taken from population A or population B , and regardless of
the sampling strategy, the sequence (Xn(ω))n contains infinite samples from both
populations. Let 3

I A(ω) = {n ∈N : Xn(ω) has been taken from A} and IB (ω) =N\ I A(ω).

Although the exact elements of I A(ω) and IB (ω) are not known in advance, it
is certain that they must contain J A and JB respectively, as on these two sets the
population from which the sample will be taken has been predetermined.

By the Strong Law of Large Numbers,

1

#{1, . . . ,k}∩ I A(ω)

∑
n∈{1,...,k}∩I A (ω)

Xn(ω) −−−−→
k→∞

a and

1

#{1, . . . ,k}∩ IB (ω)

∑
n∈{1,...,k}∩IB (ω)

Xn(ω) −−−−→
k→∞

b,

for almost every ω ∈Ω. Suppose that a < b. Then for almost every ω ∈Ω, there
exists a nω ∈N such that n ∈ IB (ω) for every n ≥ nω as long as n ̸∈ J A . Additionally,
(Xn(ω))n can be viewed as the merge of the two sequences (Xn(ω))n∈I A(ω) and
(Xn(ω))n∈IB (ω). By Lemma 4.2.3, the Cesàro averages of the sequence (Xn(ω))n

1Let (a1
n )n , . . . , (aN

n )n be N sequences and J1, . . . , JN a partition of N such that each Ji is an
infinite set. We define the merge of them over the partition {J1, . . . , JN } as the sequence (cn )n with
the property that (cn )n∈Ji = (ai

n )n for every i = 1, . . . , N .
2See Lemma C.1.2 for the reason why d satisfies this measure-like property.
3The set I A(ω) contains J A and possibly some values of n for n ≤ nω. Consequently, it is con-

tained in the union of two sets, I A(ω) ⊆ J A∪{1, . . . ,nω}, both of which have zero density, the former
by our assumption and the latter being finite. By LemmaC.1.2, it follows that I A(ω) has zero density
as well.
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converge to 0·a+1·b = b = max{a,b} for almost everyω, since d(I A) = 0. Having
4 established the almost sure convergence of ( Sn

n )n , we can additionally conclude
that E

[
Sn
n

]
→ max{a,b}, using the following argument:

Let ε > 0. By the absolute continuity of the Lebesgue integral (Proposition
B.2.1), for each n ∈ I A , there exists some δA > 0 such that

∫
E XndP < ε/2 for

every E with λ(E) < δA . Similarly, for each n ∈ IB , there exists some δB > 0 such
that

∫
E XndP < ε/2 for every E with λ(E) < δB . Set δ = min{δA ,δB }. Then for

every E with λ(E) < δ,∫
E
|Sn/n|dm ≤ kn

n

∫
E
|X A|dm + n −kn

n

∫
E
|XB |dm

≤ kn

n

ε

2
+ n −kn

n

ε

2
= ε,

where kn is the amount of samples taken from A during the first n draws and X A ,
XB are random variables with distributions FA and FB respectively. Additionally,
(Sn/n)n is bounded in L1 by the triangle inequality:

∥Sn/n∥1 = ∥(X1 + . . .+Xn)/n∥1 ≤ 1

n

n∑
i=1

∥Xi∥1 ≤ max{a,b}.

By Theorem B.2.3, (Sn/n)n is uniformly integrable and by Theorem B.2.4, we ob-
tain that E[Sn/n] → max{a,b}. ■

. Asymptotically optimal lower bounds

The Robbins Rule achieves the maximum possible mean reward asymptotically,
but does not address the question of how fast this reward is approached. For real
life problems, where one is not allowed to play the game ad infinitum, but has
to stop at some finite time n0, the Robbins Rule could be completely impractical.
The rate of convergence question was addressed and answered in an impressive
manner by Tze Leung Lai and Herbert Robbins [LR85] more than 30 years after
Robbin’s original publication.

They showed, that for reward distributions that satisfy certain assumptions, the
regret of any algorithm may not grow slower than o(lnn). They also proposed an
algorithm which achieves this lower bound, thus behaving optimally with respect
to its asymptotic rate of convergence.

.. The Kullback-Leibler divergence

TheKullback-Leibler divergence [Joy11], [BLM13, Paragraph 4.8], [Wai19a, Para-
graph 3.3.2] is a notion of distance between probability distributions that plays

4It is known from Probability Theory, that when a sequence of random variables (Xn )n con-
verges in L1 to some random variable X , then it converges to it in probability. However, in general,
the converse does not hold, so in order to show that the converse holds for (Sn /n)n , we will have
to rely on some specific strong properties of it, namely its uniform integrability (see Appendix B.2).
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a central role in the bandit setting, both when trying to find asymptotic lower
bounds and when constructing algorithms that attain them.

Definition 4.3.1: Let (Ω,A,P ) be a probability space and suppose that Q is a
probability measure on A which is absolutely continuous with respect to P . Let
Y = dQ

dP . We define the Kullback-Leibler divergence I (Q,P ) of Q with respect to
P , as

I (Q,P ) : = EP [Y lnY ] =
∫

Y lnY dP

= EQ [lnY ] =
∫

lnY dQ.

The first line is the usual definition of the Kullback-Leibler divergence, whereas
in the second line we changed the measure with respect to which we integrate,
using the following theorem:

Theorem 4.3.2: [AB06, Theorem 13.23] Let µ, ν be sigma-finite measures on the
sigma-algebra A such that ν is absolutely continuous with respect to µ. Let also
g = dν

dµ be the Radon-Nikodym derivative of ν with respect to µ. Then, for every
ν-integrable function f , the function f g is µ-integrable and∫

f dν=
∫

f g dµ. (4.3.1)

When both Q and P are absolutely continuous with respect to some measure ν
with densities f (x;λ) and f (x;µ) respectively, I (Q,P ) can also be written as

I (Q,P ) = I (λ,µ) =
∫

f (x;λ) ln
f (x;λ)

f (x;µ)
dν(x). (4.3.2)

Using Jensen’s inequality on the convex function Φ(x) = x ln x, it is easy to see
that I (Q,P ) ≥ 0. Additionally, I (Q,P ) = 0 if and only if P = Q , however I does
not meet the rest of the metric axioms in general,5hence the term “divergence”
instead of “metric”.

.. The theoretical lower bound

Lai and Robbins make certain assumptions on the reward distributions. Firstly,
they assume that they are all parametric with densities belonging in the fam-
ily ( f (x;θ))θ∈Θ for some one-dimensional parameter space Θ ⊆ R. Secondly, the
Kullback-Leibler divergence between the members of the family ( f (x;θ))θ∈Θ sat-
isfies a certain continuity type property, and thirdly, the set Θ itself is “rich” in
elements. We will explain what we mean in detail below.

5A glance at (4.3.2) reveals that I need not be symmetric, but even if we consider its “sym-
metrization” I ′(Q,P ) = 1

2 (I (Q,P )+ I (P ,Q)), which makes sense when both P and Q are absolutely
continuous with respect to each other, then I ′ may still fail the triangle inequality.
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Assumption 4.3.3: The family of distributions f (x;λ) has the properties that 0 <
I (θ,λ) <∞ whenever µ(λ) >µ(θ) and that for every ε> 0 and every θ,λ ∈Θ such
that µ(λ) >µ(θ), there exists some δ> 0 such that

|I (θ,λ)− I (θ,λ′)| < ε, whenever µ(λ) ≤µ(λ′) ≤µ(λ)+δ. (4.3.3)

This assumption is in fact a continuity-type property of I with respect, not to its
second variable, but rather to its dependence through µ(λ). Using an argument
similar to the proof of the sequential property of the usual continuity, we can
reformulate this assumption into a more intuitive one involving sequences.

Proposition 4.3.4: Let f (x;λ) be a family of distributions. The following are equiv-
alent:

(a) For every ε> 0 and every θ,λ ∈Θ such that µ(λ) >µ(θ), there exists some
δ> 0 such that

∣∣I (θ,λ)− I (θ,λ′)
∣∣< ε whenever µ(λ) ≤µ(λ′) ≤µ(λ)+δ.

(b) For every λ,θ ∈ Θ with µ(λ) > µ(θ), and every real sequence (λn)n such
that µ(λn) ↓µ(λ),6 we have that I (θ,λn) → I (θ,λ).

Proof. (a) ⇒ (b) Fix θ,λ ∈Θ with µ(λ) > µ(θ) and pick a sequence (λn)n such
that µ(λn) ↓ µ(λ). Let ε > 0. There exists a δ > 0 such that for every λ′ with
µ(λ) ≤ µ(λ′) ≤ µ(λ)+δ, we have that

∣∣I (θ,λ)− I (θ,λ′)
∣∣ < ε. For this δ, there ex-

ists some n0 ∈ N such that µ(λ) ≤ µ(λn) ≤ µ(λ)+δ for every n ≥ n0, and thus
|I (θ,λ)− I (θ,λn)| < ε for every n ≥ n0.

(b) ⇒ (a) Suppose that (a) does not hold. Then there exists some ε> 0 and some
θ,λ ∈Θwith µ(λ) >µ(θ), such that for every δ> 0, there exists some λδ such that
µ(λ) ≤µ(λδ) ≤µ(λ)+δ and |I (θ,λ)− I (θ,λδ) | ≥ ε.

By setting δ= 1
n , we can inductively construct a sequence (λn)n such that

µ(λ) ≤µ(λn) ≤µ(λ)+ 1

n
and |I (θ,λ)− I (θ,λn)| ≥ ε (4.3.4)

for all n ∈ N. Without loss of generality, and by passing to a subsequence of it if
necessary, we may also assume that

(
µ(λn)

)
n is non-increasing. By (b), we have

that I (θ,λn) → I (θ,λ), which clearly contradicts the second part of (4.3.4). ■
Remark 4.3.5: Under the Assumption 4.3.3, if λ,λ′ are such that µ(θ) < µ(λ) =
µ(λ′), then I (θ,λ) = I (θ,λ′). Indeed, the constant sequence (λn)n for which λn =
λ for all n ∈ N, has the property that (µ(λn))n is non-increasing with µ(λn) →
µ(λ) = µ(λ′), so (I (θ,λn))n converges to both I (θ,λ) and I (θ,λ′), by part (b) of
the previous Proposition.

Assumption 4.3.3 involved a “compatibility” condition between the Kullback-
Leibler divergence and the expectation function µ. The second assumption they
impose, involves a condition between the parameter space Θ and µ:

6We use the symbol an ↓ a to denote a sequence of real numbers (an )n which is nonincreasing
and convergent to a.
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Assumption 4.3.6: The setΘ⊆R is such that for everyλ ∈Θ and every δ> 0, there
exists some λ′ ∈Θ such that

µ(λ) <µ(λ′) <µ(λ)+δ. (4.3.5)

This is a density assumption that can be equivalently reformulated as follows:

Assumption 4.3.7: Let A =µ(Θ) ⊆R denote the image ofΘ underµ : Θ→R.Then,
for every ε> 0 and every a ∈ A, we have that

(a, a +ε)∩ A ̸= ;. (4.3.6)

In particular, every point of A is an accumulation point of it. Indeed, let a ∈ A
and apply (4.3.6) for εn < 1

n to inductively construct a strictly decreasing sequence
(an)n in A with an → a. Equivalently, A is dense in itself, meaning that it contains
no isolated points.7 We therefore have the following proposition:

Proposition 4.3.8: A set A ⊆ R satisfies (4.3.6) if and only if for every a ∈ A there
exists some strictly decreasing sequence (an)n in A with an ↓ a.

So, Assumption 4.3.6 can be restated again:

Assumption 4.3.9: For every λ ∈ Θ, there exists some sequence (λn)n in Θ such
that (µ(λn))n is strictly decreasing with µ(λn) ↓µ(λ).

At this point, we should stress out how Assumption 4.3.6 and Proposition 4.3.4
(b) complement with each other: The former asserts that it is always possible to
approach any µ(λ) with a strictly decreasing sequence (µ(λn))n , while the latter
allows us to conclude that I (θ,λn) → I (θ,λ).

During the proof of themain theorem,wewill use the fact that when a sequence
of random variables (Xn)n has the property that Xn

n → a > 0 almost surely, then
maxk=1,...,n Xk

n also converges to a almost surely; a fact that follows from the lemma
below:

Lemma 4.3.10: Let (an)n be a sequence of real numbers such that an
n → a ≥ 0, and

let (Mn)n denote the sequence of its partial maxima, Mn = maxk=1,...,n{ak }. Then
Mn
n = maxk=1,...,n {ak }

n → a.

Proof. Suppose first that a = 0. Let ε> 0 and pick some n0 ∈N such that |an |
n < ε

2
for every n ≥ n0. Then

Mn

n
≤ Mn0 +max{|an0+1|, . . . , |an |}

n
= Mn0

n
+ max{|an0+1|, . . . , |an |}

n

= Mn0

n
+ |akn |

n
for some kn ∈ {n0 +1, . . . ,n}

= Mn0

n
+ kn

n

|akn |
kn

≤ Mn0

n
+ ε

2
7However, not every dense in itself set satisfies (4.3.6); for example A = [0,1].
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for n ≥ n0. Pick also an n1 ∈N such that Mn0
n < ε

2 for every n ≥ n1. Then for every
n ≥ max{n0,n1}, we have that Mn

n ≤ ε, so limsupn
Mn
n ≤ 0. On the other hand,

Mn
n ≥ an

n → 0, so Mn
n → 0.

Suppose now that a > 0. Set bn = an −na and

M b
n = max

k=1,...,n
{|bk |} = max

k=1,...,n
{|ak −ka|}.

Since bn
n = an

n → a, by the previous step we have that M b
n

n → 0. Notice that

M b
n

n
= maxk=1,...,n{|ak −ka|}

n

≥ maxk=1,...,n{ak −ka}

n

≥ maxk=1,...,n{ak −na}

n

= maxk=1,...,n{ak }

n
−a,

with the LHS tending to zero. So limsupn
M a

n
n ≤ a. Additionally,

M a
n

n
−a ≥ an

n
−a → 0,

from which we conclude that liminfn
M a

n
n ≥ a. ■

Suppose that we have K bandits with parameters θ1, . . . ,θK ∈ Θ and expecta-
tions µ(θ1), . . . ,µ(θK ) respectively. For every j ∈ {1, . . . ,K }, we partition the set
Θk = {(θ1, . . . ,θK ) : θi ∈Θ ∀i } into Θk =Θ j ∪Θ∗

j ∪Θ∗∗
j , where

Θ j =
{
θ = (θ1, . . . ,θK ) : µ(θ j ) < max

i ̸= j
µ(θi )

}
,

Θ∗
j =

{
θ = (θ1, . . . ,θK ) : µ(θ j ) > max

i ̸= j
µ(θi )

}
,

Θ∗∗
j =

{
θ = (θ1, . . . ,θK ) : µ(θ j ) = max

i ̸= j
µ(θi )

}
.

The setΘ j contains the parameters for which j is not the best arm, the setΘ∗
j the

parameters forwhich j is the unique best arm,whereas the last one the parameters
for which j is the best, but not the unique best.

Theorem 4.3.11: [LR85, Theorem 2] Suppose that the families of distributions of
the arms satisfy Assumptions 4.3.3 and 4.3.6. Fix an index j ∈ {1, . . . ,K } and let ϕ
be any rule such that for every θ ∈Θ∗

j ,∑
i ̸= j

Eθ[Tn(i )] = o(na) for every a > 0. (4.3.7)
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Then, for every θ ∈Θ j and every ε> 0,

lim
n

P

[
Tn( j ) ≥ (1−ε) lnn

I (θ j ,θ∗)

]
= 1 and (4.3.8)

liminf
n

E

[
Tn( j )

lnn

]
≥ 1

I (θ j ,θ∗)
. (4.3.9)

Proof. Suppose that j = 1, θ ∈Θ1 and θ∗ = θ2 and fix a δ ∈ (0,1). Since i = 2 is the
unique best arm, we have that µ(θ2) >µ(θ1). There exists some λ ∈Θ such that

µ(λ) >µ(θ2) and |I (θ1,λ)− I (θ1,θ2)| < δI (θ1,θ2). (4.3.10)

Indeed, if we set ε = δI (θ1,θ2) and apply Proposition 4.3.3, we obtain a δ′ > 0
such that (4.3.3) holds, namely |I (θ1,λ)−I (θ1,θ2)| < δI (θ1,θ2), wheneverµ(θ2) ≤
µ(λ) ≤ µ(θ2)+δ′. By the density Assumption 4.3.6, there exists some λ ∈Θ with
µ(θ2) <µ(λ) <µ(θ2)+δ′, from which we obtain (4.3.10).

We define a new parameter vector γ = (λ,θ2, . . . ,θK ). Since µ(λ) > µ(θ2), we
have that γ ∈Θ∗

1 . Additionally,

n =
n∑

i=1
Eγ[Tn(i )] = Eγ[Tn(1)]+

n∑
i=2

Eγ[Tn(i )],

which implies that

Eγ[n −Tn(1)] =
n∑

i=2
Eγ[Tn(i )] = o(na) for all a ∈ (0,δ) (4.3.11)

by the asymptotic property (4.3.7), which also holds for the parameter vector γ.
Using the Markov inequality, we can find a lower bound for Eγ[n −Tn(1)] with
respect to the probability of the events An =

[
Tn(1) < (1−δ) lnn

I (θ1,λ)

]
:

Eγ[n −Tn(1)] =
∫

An

(n −Tn(1))dPγ+
∫

Ac
n

(n −Tn(1))dPγ

≥
∫

An

(n −Tn(1))dPγ,

as n−Tn(1) ≥ 0. On the set An we have that n−Tn(1) > n− (1−δ) lnn
I (θ1,λ) , so for every

a ∈ (0,δ),

o(na) = Eγ[n −Tn(1)] ≥ n − (1−δ) lnn

I (θ1,λ)
Pγ (An) . (4.3.12)

Let Y1,Y2, . . . denote successive observations from the first arm and set

Lm =
m∑

i=1
ln

(
f (Yi ;θ1)/ f (Yi ,λ)

)
. (4.3.13)

Let also

Cn = An ∩ [
LTn (1) ≤ (1−a) lnn

]
. (4.3.14)
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For the sets An we have that Pγ(An )
na−1 − lnnPγ(An )

na
1−δ

I (θ1,λ) → 0, and since the second
term of this sequences converges to zero, we conclude that Pγ(Cn) ≤ Pγ(An) =
o(na−1).

For every k-tuple ñ = (n1, . . . ,nK ), let

Añ = [
Tn(1) = n1, . . . ,Tn(K ) = nK and Ln1 ≤ (1−a) lnn

]
.

Then

Pγ(Añ) =
∫

Añ

n1∏
i=1

f (yi ;λ)
n2∏

i=1
f (y2

i ;θ2) · · ·
nK∏
i=1

f (yK
i ;θK )d ỹ

=
∫

Añ

∏n1
i=1 f (yi ;λ)∏n1

i=1 f (yi ;θ1)

n1∏
i=1

f (yi ;θ1)
n2∏

i=1
f (y2

i ;θ2) · · ·
nK∏
i=1

f (yK
i ;θK )d ỹ

=
∫

Añ

∏n1
i=1 f (yi ;λ)∏n1

i=1 f (yi ;θ1)
dPθ. (4.3.15)

The inequality Ln1 ≤ (1−a) lnn implies that
∑n1

i=1 ln f (yi ;θ1)
f (yi ;λ) ≤ (1−a) lnn and thus,

ln
∏n1

i=1
f (yi ;λ)
f (yi ;θ1) ≤−(1−a) lnn, so (4.3.15) yields that

Pγ(Añ) =
∫

Añ

∏n1
i=1 f (yi ;λ)∏n1

i=1 f (yi ;θ1)
dPθ ≥ Pθ(Añ)e−(1−a) lnn = na−1Pθ(Añ)

for every Añ . Since Cn can be written as the disjoint union of the sets Añ for ñ
such that n1 + . . .+nK = n, the same inequality holds for the sets Cn as well:

Pθ(Cn) ≤ n1−aPγ(Cn) → 0 for all n. (4.3.16)

By the Strong Lawof LargeNumbers, Lm
m → I (θ1,λ) > 0 almost surelywith respect

to Pθ , and by Lemma 4.3.10, p. 92, so does maxi=1,...,m Li

m .
For every n, we set bn = (1−δ) lnn

I (θ1,λ) . We have that

Pθ

[
max

i=1,...,[bn ]
Li > (1−a) lnn

]
= Pθ

[
max

i=1,...,[bn ]

Li

[bn]
> (1−a) lnn

[bn]

]
≤ Pθ

[
max

i=1,...,[bn ]

Li

[bn]
> (1−a) lnn

(1−δ) lnn/I (θ1,λ)

]
= Pθ

[
max

i=1,...,[bn ]

Li

[bn]
> (1+M)I (θ1,λ)

]
→ 0

almost surely in Pθ since maxi=1,...,[bn ]
Li

[bn ] → I (θ1,λ) a.s. and (1+M)I (θ1,λ) >
I (θ1,λ). Therefore, if we set Bn = [

LTn (1) ≤ (1−a) lnn
]
, we have that Pθ(Bn) → 1.

In turn, this implies that limn Pθ(An) = limn Pθ(An ∩Bn) = limPθ(Cn) = 0.
By (4.3.10), 1

I (θ1,λ) ≥ 1
(1+δ)I (θ1,θ2) , so

Pθ

[
Tn(1) < (1−δ) lnn

(1+δ)I (θ1,θ2)

]
≤ Pθ

[
Tn(1) < (1−δ) lnn

I (θ,λ)

]
→ 0 (4.3.17)
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and (4.3.8) is established.
Lastly, we show that liminfn E

[
Tn ( j )
lnn

]
≥ 1

I (θ j ,θ∗) . Let ε > 0. By the Markov in-
equality,

E

[
Tn( j )

lnn

]
=

∫
[

Tn
lnn ≥ 1−ε

I (θ j ,θ∗)

] Tn( j )

lnn
dP +

∫
[

Tn
lnn < 1−ε

I (θ j ,θ∗)

] Tn( j )

lnn
dP

≥ 1−ε

I (θ j ,θ∗)
P

[
Tn

lnn
≥ 1−ε

I (θ j ,θ∗)

]
,

so, by taking limits we obtain that

liminf
n

E

[
Tn( j )

lnn

]
≥ liminf

n

1−ε

I (θ j ,θ∗)
P

[
Tn

lnn
≥ 1−ε

I (θ j ,θ∗)

]
= 1−ε

I (θ j ,θ∗)
. (4.3.18)

Since (4.3.18) holds for every ε> 0, by letting ε→ 0, we have that

liminf
n

E

[
Tn( j )

lnn

]
≥ 1

I (θ j ,θ∗)
,

as we wanted. ■
Theorem 4.3.12: Suppose that the families of distributions of the arms satisfy As-
sumptions 4.3.3 and 4.3.6. Let ϕ be a rule whose regret satisfies the property that

Rn(θ) = o(na) (4.3.19)

for every θ = (θ1, . . . ,θK ) ∈ΘK and a > 0. Then for every θ such that the µ(θi ) are
not all equal, we have that

liminf
n

Rn(θ)

lnn
≥ ∑

i :µ(θi )<µ∗

µ∗−µ(θi )

I (θi ,θ∗)
. (4.3.20)

Proof. Wewill use the elementary property from real analysis, according towhich
for any two real sequences (an)n , (bn)n ,

liminf
n

(an +bn) ≥ liminf
n

an + liminfbn .

By applying it for Rn , we obtain that

liminf
n

Rn(θ)

lnn
= liminf

n

∑K
i=1

(
µ∗−µ(θi )

)
Eθ[Tn(i )]

lnn

≥ ∑
i :µ(i )<µ∗

(µ∗−µ(θi )) liminf
n

Eθ[Tn(i )]

lnn

≥ ∑
i :µ(i )<µ∗

µ∗−µ(θi )

I (θi ,θ∗)

which establishes 4.3.20. ■
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.. An algorithm which achieves the theoretical lower bound

In the same article, Lai and Robbins proposed an algorithm which achieves the
optimal lower bound.The principle behind their idea is called optimism in the face
of uncertainty and can be summarized as follows: Recall that in the classical Rob-
bins Rule, at each stage we compared the populations sample means and chose
the one with the largest. In this algorithm instead, the arms which have not been
explored enough are not represented by their sample mean, but by an upper con-
fidence bound of it. By comparing the samplemeans of some arms with the upper
confidence bounds of some others, we are giving the algorithm the incentive to
explore more.

This principle of regarding the upper confidence bounds to be better indica-
tor of what the expectation could be, than the sample mean, will be a common
theme in all of the algorithms we present in this chapter. However, it is important
to realize that the difficult task of finding a balance between exploitation and ex-
ploration, has not been addressed yet, but has only been reformulated into: How
large should the confidence intervals be?

The larger the intervals, the more our algorithm tends to explore, but the more
it explores, the less it exploits. Optimism, as a general principle, is a first step to-
wards the right direction, but when actually employing it, one needs to also be
prepared for the difficult task of quantifying exactly how optimistic he is willing
to be. As one can already imagine, determining the upper confidence bounds re-
quires extremely delicate work.

Lai and Robbins tackle it by listing certain axioms the upper confidence func-
tions gni need to satisfy. They also allow for the sample mean to be replaced by
somemore general statistic h satisfying another list of axioms, but we should keep
in mind that both of these classes of functions are intended to generalize the no-
tions of upper confidence bounds and sample means respectively.

Assumption 4.3.13: For every n ∈ N and i = 1, . . . ,n, there exist Borel functions
gni : Ri → R, called the upper confidence bounds, such that for every θ ∈ Θ, every
r <µ(θ) and every λ with µ(λ) >µ(θ),

lim
ε↓0

(
limsup

n

n∑
i=1

Pθ

[
gni (Y1, . . . ,Yi ) ≥µ(λ)−ε

]
lnn

)
≤ 1

I (θ,λ)
, (4.3.21)

Pθ

[
r ≤ gni (Y1, . . . ,Yi ) for all i ≤ n

]= 1−o(n−1) and (4.3.22)
gni is nondecreasing with respect to n ≥ i for every fixed i . (4.3.23)

The existence of such functions is not straightforward and [LR85, Section 4]
contains some general rules of constructing them, as well as specific examples for
several known distributions. However, things are a little easier when constructing
the expectation estimates:

Assumption 4.3.14: There exist functions hi : Ri →R, called point estimates of the
expectation, which satisfy the following properties:

hi ≤ gni for all n ≥ i (4.3.24)
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and

Pθ

[
max

δn≤i≤n
|hi (Y1, . . . ,Yi )−µ(θ)| > ε

]
= o(n−1) (4.3.25)

for all θ ∈Θ,ε> 0 and δ ∈ (0,1).

Anexample of a statistic that satisfies (4.3.25) is the samplemean h(Y1, . . . ,Yn) =
Y1+...+Yn

n = Sn
n . We can show this, using the Kolmogorov andMarcinkiewicz - Zyg-

mund inequalities.

Theorem 4.3.15 (Kolmogorov’s Maximal Inequality [Gut13, Thm 1.6, p. 122]):
Let (Xn)n be a sequence of independent random variables with E[Xn] = 0 and
V (Xn) <∞ for all n ∈N. Then, for every ε> 0,

P

[
max

1≤k≤n
|Sk | > ε

]
≤

∑n
k=1 V (Xk )

ε2 = V (Sn)

ε2 = E[S2
n]

ε2 . (4.3.26)

If, in addition, the sequence (Xn)n is identically distributed, then

P

[
max

1≤k≤n
|Sk | > ε

]
≤ nV (X1)

ε2 = nE[X 2
1 ]

ε2 . (4.3.27)

We actually need a strengthened version ofKolmogorov’s Inequality (for a proof,
see [Saa17] or [Doo90, p. 317]), where the exponent 2 is replaced by any p ≥ 1:

Theorem 4.3.16 (Doob-Kolmogorov): Let (Xn)n be a sequence of independent
random variables with E[Xn] = 0 and V (Xn) < ∞ for all n ∈ N. Then, for every
ε> 0 and p ≥ 1,

P

[
max

1≤k≤n
|Sk | > ε

]
≤ E[|Sn |p ]

εp . (4.3.28)

Theorem 4.3.17 (Marcinkiewicz-Zygmund Inequality [MZ37]): Let (Xn)n be a
sequence of independent random variables with E[Xn] = 0 and E |Xn |p <∞ for all
n ∈N for some p ≥ 1. Then, there exist constants Ap ,Bp depending only on p, such
that

Ap E

[(
n∑

k=1
X 2

k

)p/2]
≤ E |Sn |p ≤ Bp E

[(
n∑

k=1
X 2

k

)p/2]
(4.3.29)

for all n. If, in addition, the sequence (Xn)n is identically distributed, then there
exists a constant B∗

p depending only on p, such that

E |Sn |p ≤
nB∗

p E |X1|p , 1 ≤ p ≤ 2,

np/2Bp E |X1|p/2, p ≥ 2.
(4.3.30)

Proposition 4.3.18: [CR75, p. 55] Suppose that (Yn)n is an i.i.d. sequence for
which there exists some p > 2 such that E[|Y1|p ] <∞. Let also µ denote their com-
mon expectation. Then the sample means Y n = Y1+···+Yn

n satisfy property (4.3.25),
namely

Pθ

[
max

δn≤i≤n
|Y i −µ| > ε

]
= o(n−1)

for all ε> 0 and δ ∈ (0,1).
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Proof. For the sequence Xn = Yn −µ, we have that that E[Xn] = 0 for all n and
E[|X1|p ] <∞. Additionally, Sn

n := X1+...+Xn
n = Y n −µ. A trivial, but extremely im-

portant observation, is that[
max

δn≤i≤n

∣∣∣∣Si

i

∣∣∣∣> ε

]
⊆

[
max

δn≤i≤n

∣∣∣∣ Si

δn

∣∣∣∣> ε

]
.

This allows the denominators appearing in these events to be absorbed by ε, so
that we can apply Kolmogorov’s Inequality afterwards.

Pθ

[
max

δn≤i≤n
|Y i −µ| > ε

]
= P

[
max

δn≤i≤n

∣∣∣∣Si

i

∣∣∣∣> ε

]
≤ P

[
max

δn≤i≤n

∣∣∣∣ Si

δn

∣∣∣∣> ε

]
= Pθ

[
max

1≤i≤n
|Si | > nεδ

]
≤ E[Sp

n ]

npεpδp Kolmogorov’s Inequality

≤ np/2Bp E |X1|p/2

npεpδp Marcinkiewicz-Zygmund

= C

np/2
.

By multiplying with n, we obtain that

nPθ

[
max

δn≤i≤n
|Y i −µ| > ε

]
≤ nC

np/2
→ 0,

since p
2 > 1.

■
To return to the multi-armed bandit setting, suppose that we have K -bandits

with densities f (x;θ1), . . . , f (x;θK ) and let ϕ be a rule of sampling from them.
For each j ∈ {1, . . . ,K }, let Tn( j ) denote the number of times ϕ sampled from the
j -bandit during the first n-stages, namely

Tn( j ) = #
{
i ∈ {1, . . . ,n} : ϕ(i ) = j

}
. (4.3.31)

We denote the successive observations from the j -bandit during the first n-stages
as Y j 1, . . . ,Y j Tn ( j ), and in accordance with our previous discussion, we define the
mean estimates and upper confidence bounds of µ(θ j ) based on this sample as

µ̃n( j ) = hTn ( j )
(
Y j 1, . . . ,Y j Tn ( j )

)
and (4.3.32)

Un( j ) = gnTn ( j )
(
Y j 1, . . .Y j Tn ( j )

)
(4.3.33)

respectively.
Lai and Robbins use the point and upper confidence bound estimates to con-

struct their algorithm: We fix a δ ∈ (0,1/k) and define their rule ϕ adaptively
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as follows: During the first K -rounds, we pick each arm exactly once. For every
n ≥ K , we set

In = {
j ∈ {1, . . . ,K } : Tn( j ) ≥ δn

}
.

By the Pigeonhole Principle, these sets are always nonempty. Indeed, if some In

was empty, then Tn( j ) < nδ should hold for every j = 1, . . . ,K . But then, n =∑n
j=1 Tn( j ) < nkδ< n, a contradiction. For all such n’s, we also set

jn = argmax
{
µ̃n( j ) : j ∈ In

}
and µ̃n( jn) = max

{
µ̃n( j ) : j ∈ In

}
.

Suppose that the rule has just drawn its n-th value with n ≥ K and let j ∈
{1, . . . ,K } be such that n +1 ≡ j mod K . Then

ϕ(n +1) =
 j , if µ̃n( jn) ≤Un( j ),

jn , otherwise.
(4.3.34)

So, the algorithm compares the mean estimate of the current leader among the
bandits which have been played enough times (≥ δn), with the upper confidence
bound of the newly proposed bandit, and chooses accordingly.

The Lai-Robbins Algorithm

Step  For k = 1, . . . ,K set ϕ(k) = k .

Step  Suppose that ϕ(n) has been drawn for n ≥ K and let j be such
that n + 1 ≡ j mod K . Set In = {k ∈ {1, . . . ,K } : Tn(k) ≥ δn}, jn =
argmax

{
µ̃n(k) : k ∈ In

}
and µ̃n( jn) = max

{
µ̃n(k) : k ∈ In

}
.

Step  If µ̃n( jn) ≤Un( j ), set ϕ(n +1) = j , otherwise set ϕ(n +1) = jn .

Step  Go to Step 2.

Table 6: The Lai-Robbins Algorithm [LR85].

We mention two lemmas which will be used in the proof of the convergence rate.

Lemma 4.3.19: If for the real sequence (an)n we have that limsupn an ≤ M , then
an ≤ M +o(1).

Proof. Clearly an ≤ M +an −M for all n ∈N. Set

bn =
an −M , when an ≥ M ,

0, when an < M .

It is easy to confirm that an ≤ M +bn for all n and that bn → 0. ■
Lemma 4.3.20: If (an)n is o(n−1) then

(∑N
n=1 an

)
N = o(ln N ).
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Proof. We will show that for every ε > 0 there exists some N0 ∈ N such that∑N
n=1 an ≤ ε ln N for every N ≥ N0. Since (an)n is o(n−1), there exists some n0

such that an ≤ ε
2n for every n ≥ n0. By the elementary inequality

∑N
n=1

1
n ≤ 1+∫ N

1
1
x d x = 1+ ln N , we obtain that

N∑
n=1

an ≤
n0−1∑
n=1

an + ε

2

N∑
n=n0

1

n
≤

n0−1∑
n=1

an + ε

2
(ln N − ln(n0 −1)) ≤

n0−1∑
n=1

an + ε

2
ln N

for every N ≥ n0. Pick some n1 such that
∑n0−1

n=1 an ≤ ε
2 lnn1. Then for every N ≥

max{n0,n1}, the inequality
∑N

n=1 an ≤ ε holds. ■
Theorem 4.3.21: [LR85, Theorem 3] Suppose that I (θ,λ) satisfies Assumption
4.3.3 and let ϕ be the Lai-Robbins rule. Then for every θ = (θ1, . . . ,θK ) and every j
such that µ(θ j ) <µ(θ∗),

Eθ[Tn( j )] ≤
(

1

I (θ j ,θ∗)
+o(1)

)
lnn. (4.3.35)

If, in addition,Θ satisfies the density Assumption 4.3.6, then Eθ[Tn( j )] ∼ lnn
I (θ j ,θ∗) for

every such j , and the regret Rn of ϕ satisfies

Rn ∼
( ∑

j :µ(θ j )<µ∗

µ∗−µ(θ j )

I (θ j ,θ∗)

)
lnn (4.3.36)

Proof. Let L denote the set of optimal arms, L = {l ∈ {1, . . . ,L} : µ(θl ) =µ(θ∗)}, and
set ε< 1

2 min{µ(θ∗)−µ(θ j ) : j ̸∈ L}. For every j ̸∈ L and N ∈N, we can partition
the event TN ( j ) as follows:

TN ( j ) = #
{
n ∈ {1, . . . , N } : ϕ(n) = j

}
= 1+#

{
n ∈ {1, . . . , N −1} : jn ∈ L, |µ̃n( jn)−µ(θ∗)| ≤ ε,ϕ(n +1) = j

}+
+#

{
n ∈ {1, . . . , N −1} : jn ∈ L, |µ̃n( jn)−µ(θ∗)| > ε,ϕ(n +1) = j

}+
+#

{
n ∈ {1, . . . , N −1} : jn ̸∈ L,ϕ(n +1) = j

}
≤ 1+#

{
n ∈ {1, . . . , N −1} : jn ∈ L, |µ̃n( jn)−µ(θ∗)| ≤ ε,ϕ(n +1) = j

}︸ ︷︷ ︸
A1

+

+#
{
n ∈ {1, . . . , N −1} : jn ∈ L, |µ̃n( jn)−µ(θ∗)| > ε

}︸ ︷︷ ︸
A2

+

+#
{
n ∈ {1, . . . , N −1} : jn ̸∈ L

}︸ ︷︷ ︸
A3

.

In order to bound A1, notice that since |µ̃n( jn)−µ(θ∗)| ≤ ε and ϕ(n+1) = j , then
it has to be that gni (Y j 1, . . . ,Y j i ) > µ(θ∗)− ε, where i is the number of observa-
tion taken from the j -bandit after the first n ≤ N −1 rounds. Furthermore, gni is
increasing with respect to n, so

A1 ≤ 2+#
{
1 ≤ i ≤ N −1 : gNi (Y j 1, . . . ,Y j i ) ≥µ(θ∗)−ε

}
. (4.3.37)
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Let Aε
i =

[
gni (Y j 1, . . . ,Y j i ) ≥µ(λ)−ε

]
. By (4.3.21), we have that

lim
ε↓0

(
limsup

n

n∑
i=1

Pθ

(
Aε

i

)
lnn

)
≤ 1

I (θ,λ)
,

so for every ρ > 0, there exists some ε0 > 0 such that

limsup
n

n∑
i=1

Pθ

(
Aε

i

)
lnn

≤ 1

I (θ j ,θ∗)
+ ρ

I (θ j ,θ∗)

for every 0 < ε≤ ε0. By Lemma 4.3.19,

n∑
i=1

Pθ

(
Aε

i

)
lnn

≤ 1+ρ

I (θ j ,θ∗)
+o(1),

which implies that

n∑
i=1

Pθ

(
Aε

i

)≤ 1+ρ+o(1)

I (θ j ,θ∗)
lnn

for all 0 < ε< ε0. Lastly,

E
[
#
{
1 ≤ i ≤ n : Aε

i occurs
}]= E

[
n∑

i=1
I Aε

i

]
=

n∑
i=1

P (Aε
i ) ≤ 1+ρ+o(1)

I (θ j ,θ∗)
lnn

for ε small enough.
For the A2 term, let Bn = [

jn ∈ L, |µ̃n( jn)−µ(θ∗)| > ε
]
. By (4.3.25),

Pθ[Bn] ≤ Pθ

[
max

l∈L
max

δn≤i≤n
|hi (Yi 1, . . . ,Yl i )−µ(θ∗)| > ε

]
= o(n−1),

so, by Lemma 4.3.20,

Eθ[A2] =
N−1∑
n=1

o(n−1) = o(ln N ). (4.3.38)

We will show in Lemma 4.3.22 that Eθ[A3] is also o(ln N ), so combining all the
above we obtain that

Eθ[Tn( j )] ≤ 1+ρ+o(1)

I (θ j ,θ∗)
lnn for all ρ > 0.

Therefore, with an argument similar to the one in the proof of Lemma 4.3.19,

Eθ[Tn( j )] ≤
(

1

I (θ j ,θ∗)
+o(1)

)
lnn. (4.3.39)

The additional part follows from (4.3.39) and (4.3.9). ■
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Lemma 4.3.22: Under the notation of the previous Theorem and its proof, let c ∈N

and for r = 0,1. . ., define

Ar =
K∩

j=1

[
max

δcr−1≤n≤cr+1

∣∣hn(Y j 1, . . . ,Y j n)−µ(θ j )
∣∣≤ ε

]
and

Br =
∩
l∈L

[
gni (Yl1, . . . ,Yl i ) ≥µ(θ∗)−ε, ∀1 ≤ i ≤ δn, ∀cr−1 ≤ n ≤ cr+1] .

Then Pθ(Ac
r ) = o(c−r ) and Pθ(B c

r ) = o(c−r ). Additionally, if c > 1
1−kδ , then jn ∈ L

for all n ∈ [cr ,cr+1] on Ar ∩Br , for r sufficiently large. Consequently,

Eθ
[
#{1 ≤ n ≤ N : jn ̸∈ L}

]= N∑
n=1

Pθ[ jn ̸∈ L] = o(ln N ).

Proof. For fixed c and r as in the statement of the Lemma, we consider the se-
quence of intervals

I1 = [δcr−1,cr−1],

I2 = [cr−1,δ−1cr−1],

I3 = [δ−1cr−1,δ−2cr−1],...
In+1 = [δ−n+1cr−1,δ−ncr−1],

until δ−ncr−1 ≥ cr+1 for the first time, namely for n = n0 :=
[
−2lnc

lnδ

]
+1. Then

Ac
r =

K∪
j=1

[
max

δcr−1≤n≤cr+1

∣∣hn(Y j 1, . . . ,Y j n)−µ(θ j )
∣∣> ε

]

⊆
K∪

j=1

(
n0∪

l=1

[
max
n∈Il

∣∣hn(Y j 1, . . . ,Y j n)−µ(θ j )
∣∣> ε

])
, so

P (Ac
r ) ≤

K∑
j=1

n0∑
l=1

P

[
max
n∈Il

∣∣hn(Y j 1, . . . ,Y j n)−µ(θ j )
∣∣> ε

]

=
K∑

j=1

n0∑
l=1

o

(
δl−1

cr−1

)
, by Property 4.3.25,

= o(c−r ),

since K is constant and n0 is independent of r . Regarding B c
r , for t = 0, . . . ,n0, let

nt =
[

cr−1

δt

]
and

D t =
∩
l∈L

[
gnt i (Yl 1, . . . ,Yl i ) ≥µ(θ∗)−ε, ∀i ≤ nt

]
.

By (4.3.22),

Pθ(Dc
t ) ≤ ∑

l∈L
Pθ

([
gnt i (Yl 1, . . . ,Yl i ) ≥µ(θ∗)−ε, ∀i ≤ nt

]c)
≤ #L ·o(n−1

t )
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= o(n−1
t )

= o(c−r ),

the last one following from the inequality cr−1 − 1 ≤ nt ≤ δ−n0 cr−1 + 1 for t =
0, . . . ,n0. Given n ∈ [cr−1,cr+1] and i ∈ [1,δn], there exists a t ∈ {0, . . . ,n0 − 1}
such that nt+1 > n ≥ nt ≥ i . Indeed, the inequality nn0 ≥ cr+1 > cr−1 ≥ n0 =
[cr−1] yields the existence of some t ∈ {0, . . . ,n0 −1} with nt+1 > n ≥ nt . By the
monotonicity of the family g , we have that gni (Yl1, . . . ,Yl i ) ≥ gnt i (Yl 1, . . . ,Yl i ) ≥
µ(θ∗)−ε for all l ∈ L on ∩n0

t=0D t . Since B c
r ⊆∪n0

t=0D t we obtain that

P (B c
r ) ≤

n0∑
t=0

P (D t ) ≤ (n0 +1)o(c−r ) = o(c−r ).

For the additional part, suppose that c > 1
1−kδ . Let νL(n) denote the number of

times ϕ samples from L during the first n rounds. Then

νL(n) = ∑
l∈L

Tn(l ) ≤ ∑
l∈L

max
k∈L

Tn(k) = #L ·max
k∈L

Tn(k), so

νL(n)

#L
≤ max

k∈L
Tn(k). (4.3.40)

We consider the round n +1 ≡ l mod K with l ∈ L and cr−1 ≤ n < cr+1. We will
show thatϕmust sample from L on the event Ar ∩Br . According to the algorithm,
if jn ∈ L, then the only two candidate arms to sample from during the n+1 round,
are jn and l , both of which belong to L, so ϕ draws from L trivially. So only the
case where jn ̸∈ L needs to be addressed.

Suppose that jn ̸∈ L. Since Tn( jn) ≥ δn and 2ε < µ(θ∗)−max j ̸∈L µ(θ j ) (see p.
101), we have that

µ̃n( jn) ≤ max
j ̸∈L

µ(θ j )+ε<µ(θ∗)−ε (4.3.41)

on Ar . For the l-arm there are two possibilities, either Tn(l ) ≥ δn, or Tn(l ) < δn.
When the former holds, on Ar we have that

µ(θ∗)−ε≤ hTn (l )(Yl1, . . . ,YlTn (l )) ≤ gnTn (l )(Yl 1, . . . ,YlTn (l )), (4.3.42)

so µ̃n( jn) < gnTn (l )(Yl 1, . . . ,YlTn (l )) and ϕ samples from l ∈ L at round n +1.
When Tn(l ) < δn, the same is true, since

µ(θ∗)−ε≤ gnTn ( j )(Yl1, . . . ,YlTn ( j ))

on the event Br .Therefore,ϕ always samples from L on the event Ar ∩Br , at every
stage n +1 for which n +1 ≡ l mod K with l ∈ L and n ∈ [cr−1,cr+1].

In order to find a lower bound for νL(n) on Ar ∩Br , we diverge slightly from
the Lai-Robbins article, and additionally assume that c ≥ 2, δ and k are chosen
such that they also satisfy the relations δ < 1

100K and 1−c−1

K > δc .8 Observe that

8One can easily verify that there always exists such c , δ and k .
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on the interval [cr−1,n], the algorithm always draws from L during the round m
when m +1 ≡ l mod K with l ∈ L, something which occurs at least #L times for
each cycle. Then,

νL(n) ≥ #

{
Observations from L
on the interval [1,K ]

}
+#

{
Observations from L

on the interval [cr−1,n]

}
≥ #L+#L ·#

{
Disjoint intervals of
length K in [cr−1,n]

}
≥ #L+#L ·

[
n − cr−1

K

]
≥ #L+#L ·

(
n − cr−1

K
−1

)
= #L · n − cr−1

K

≥ #L · cr (1− c−1)

K
≥ #L · crδc

≥ #L ·δn.

Comparing it with (4.3.40), we obtain that on Ar ∩Br , maxl∈L Tn(l ) > δn for all
n ∈ [cr ,cr+1]. In particular, the set {µ̃n(l ) : Tn(l ) ≥ δn, l ∈ L} is nonempty, so

max
{
µ̃n(k) : Tn(k) ≥ δn,k ̸∈ L

}≤ max
j ̸∈L

µ(θ j )+ε<µ(θ∗)−ε

≤ min
{
µ̃n(l ) : Tn(l ) ≥ δn, l ∈ L

}
,

and ϕ draws from jn ∈ L for cr ≤ n ≤ cr+1 on Ar ∩Br .
For the final claim, by the previous argument, [ jn ̸∈ L] ⊆ Ac

r ∪B c
r , so

Pθ[ jn ̸∈ L] ≤ Pθ(Ac
r )+Pθ(B c

r ) = o(c−r ),

for n ∈ [cr ,cr+1], so

cr+1∑
n=cr

Pθ[ jn ̸∈ L] ≤ (cr+1 − cr +1)o(c−r ) = cr o(c−r )+o(1) = o(1).

For any N ∈N,
∑N

n=1 Pθ[ jn ̸∈ L] =∑c
n=1 Pθ[ jn ̸∈ L]+∑N

n=c+1 Pθ[ jn ̸∈ L]. We pick a
k ∈N such that ck < N ≤ ck+1. Then k ≤ ln N

lnc , hence

N∑
n=c

Pθ[ jn ̸∈ L] ≤
ck+1∑
n=c

Pθ[ jn ̸∈ L] =
c2∑

n=c
Pθ[ jn ̸∈ L]+ . . .+

ck+1∑
n=ck

Pθ[ jn ̸∈ L]

= ko(1) ≤ ln N

lnc
o(1) = o(ln N ).

Combining the above together,

N∑
n=1

Pθ[ jn ̸∈ L] =
c∑

n=1
Pθ[ jn ̸∈ L]+o(ln N ) = c0 +o(ln N ) = o(ln N ),

as we wanted. ■
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. The upper confidence bound algorithm

A serious drawbackwhen implementing the Lai-Robbins algorithm, is that it does
not provide us with a general rule of constructing the upper confidence bounds
functions gni . Designing such functions has only been achieved for specific dis-
tributions, but even when we do have examples of gni , actually computing them
is demanding.

Peter Auer, Nicolò Cesa-Bianchi and Paul Fischer [ACBF02], proposed an al-
gorithm called the Upped Confidence Bound Algorithm (UCB) which addresses
these issues. It relies on a similar sampling rule as with the Lai-Robbins, where
the populations are drawn after comparing their mean and an upper confidence
bound estimates. Here the mean estimates are just the sample means and the up-
per confidence bounds are

x j ,n j +
√

3lnn

2n j
, (4.4.1)

where x j ,n j is the average reward obtained so far from machine j and n j is the
number of times machine j was played during the first n rounds.9 In essence, the
principle of optimism under uncertainty is still present, but the hard task of find-
ing and computing the Lai-Robbins functions gni ’s is replaced by computing the
simple expression (4.4.1). Their algorithm achieves logarithmic regret, although
with a larger logarithmic constant than the Lai-Robins method.

The Upper Confidence Bound Algorithm

Step  Play each machine once.

Step  During the n +1-th round, play the machine that maximizes x j ,n j +√
3lnn
2n j

, where x j ,n j is the average reward obtained so far from ma-
chine j and n j is the number of times machine j was played during
the first n rounds.

Table 7: The Upper Confidence Bound Algorithm (UCB) [ACBF02].

Remark 4.4.1: In any implementation of theUCB algorithm, each hand is played
infinitely often with probability one. This follows by an argument similar to the
one used in the proof of the consistency of the Robbins rule (Theorem 4.2.4): Sup-
pose that there exist some arms, say A ⊆ {1, . . . ,K }, which after an implementation
have been chosen only finitelymany times. Let also NA <∞ denote the last round
during which an arm from A has been chosen.

9The actual the upper bound formula that was given by Auer et al. was x j ,n j
+√

2lnn
n j

, but we

will use this slight modification [Mun14] as it leads to a better logarithmic bound (6/∆2
j compared

to 8/∆2
j of the original one). However, both of them are larger than the Lai-Robbins constant.
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For every j ̸∈ A, the set N j = {n : ϕ(n) = j } is infinite, so by the Strong Law of
Large Numbers, x̃ j ,n j → µ( j ) as n j →∞. Since we draw from j infinitely many
times, it has to be that for any k ∈ A,

x j ,n j +
√

3lnn
2n j

> xk,nk +
√

3lnn
2nk

≥ xk,nk +
√

3lnn
2nA

for infinitely many n’s. After a few manipulations, this implies that for n large
enough so that the quantity xk,nk −x j ,n j is near its limit α, we have that√

3lnn
2

(
1p
n j

− 1p
nA

)
≥α−1

holds for infinitely many n’s, which is a contradiction since the LHS of this in-
equality tends to −∞.

Theorem 4.4.2 ([ACBF02, Theorem 1]): Suppose that we run the Upper Confi-
dence Bound (UCB) Algorithm on K arms with expectations µ1, . . . ,µK and reward
distributions P1, . . . ,PK supported on [0,1]. Then, during the first n rounds, every
suboptimal arm k is expected to be played E [Tk (n)] times with

E [Tk (n)] ≤ 6lnn

∆2
k

+ π2

3
+1, (4.4.2)

where ∆k =µ∗−µk . Additionally, the expected regret Rn after n rounds is at most

Rn := nµ∗−
K∑

j=1
µ j E[T j (n)] ≤ 6

∑
k :∆k>0

lnn

∆k
+K

(
π2

3
+1

)
. (4.4.3)

Proof. Suppose that a suboptimal arm k is pulled during round n > K , namely
ϕ(n) = k ̸∈ L. This means that

xk,Tk (n−1) +
√

3lnn

2Tk (n −1)
≥ xk∗,Tk∗ (n−1) +

√
3lnn

2Tk∗(n −1)
(4.4.4)

for every optimal arm k∗ ∈ L. Additionally, for every k∗ ∈ L, at least one of the
following three claims must hold:

(i) xk∗,Tk∗ (n−1) +
√

3lnn
2Tk∗ (n−1) <µ∗,

(ii) xk,Tk (n−1) >µk +
√

3lnn
2Tk (n−1) ,

(iii) µk +2
√

3lnn
2Tk (n−1) ≥µ∗.

Indeed, if both (i) and (ii) failed, then

µ∗ ≤ xk∗,Tk∗ (n−1) +
√

3lnn

2Tk∗(n −1)
due to (i)
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≤ xk,Tk (n−1) +
√

3lnn

2Tk (n −1)
due to (4.4.4)

<µk +2

√
3lnn

2Tk (n −1)
due to (ii)

and (iii) would hold. Therefore, at every stage n > K , either a suboptimal is not
pulled, or at least one of (i)-(iii) holds. Let n > K and set an = 6lnn

∆2
k

+1. Then,

Tk (n) =
n∑

t=1
I[ϕ(t )=k] ≤

[an ]∑
t=1

1+
n∑

t=[an ]+1
I[ϕ(t )=k,Tk (t )>[an ]]

≤ an +
n∑

t=[an ]+1
I[ϕ(t )=k,Tk (t )>[an ]].

Let t ≥ [an]+1 and consider the events At = [ϕ(t ) = k,Tk (t ) > [an]]. Since

Tk (t ) > [an] =
[

6lnn

∆2
k

+1

]
> 6lnn

∆2
k

,

claim (iii) fails to hold10 for any such t = [an]+1, . . ., and sinceϕ(t ) is suboptimal,
for these t ’s either (i) or (ii) must hold. Using Hoeffding’s Inequality (Theorem
B.1.7), we can bound the probability of the event appearing in (i) as follows:

P
[

xk∗,Tk∗ (n−1) +
√

3lnn
2Tk∗ (n−1) <µ∗

]
≤ P

[
xk∗,s +

√
3lnn

2s <µ∗ for some 1 ≤ s ≤ t

]
≤

t∑
s=1

P

[
xk∗,s +

√
3lnn

2s <µ∗
]

≤
t∑

s=1
e−6ln t =

t∑
s=1

1

t 6 ≤ 1

t 2 .

With a similar argumentwe obtain the samebound for the events in (ii), so Tk (n) ≤
an +∑n

t=[an ]+1 I At with P (At ) ≤ 2
t 2 for all t . Therefore,

E[Tk (n)] ≤ an +2
n∑

t=[an ]+1

2

t 2 ≤ 6lnn

∆2
k

+ π2

3
+1.

The bound for the expected regret is then

Rn =
K∑

k :∆k>0
∆k E[Tk (n)] ≤

K∑
k=1

∆k

(
6lnn

∆2
k

+ π2

3
+1

)

≤ 6
∑

k :∆k>0

lnn

∆k
+K

(
π2

3
+1

)
,

which completes the proof. ■
10When (iii) is true, it has to be that Tk (t −1) ≤ 6ln t

∆2
k

.
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Although the UCB algorithm achieves logarithmic regret, the logarithmic con-
stant in the expression

EUCB[T j (n)] ≤ 6

∆ j
lnn + c (4.4.5)

is greater than the one in the Lai-Robbins algorithm,

ELR ≤
(

1

I (θ j ,θ∗)
+o(1)

)
lnn ≤

(
1

2∆2
j

+o(1)

)
lnn, (4.4.6)

since the factor 1
I (θ j ,θ∗) is less or equal than 1

2∆2
j
by the Pinsker Inequality.

The Lai-Robbins Algorithm The UCB Algorithm

Makes certain assumptions on the reward
distributions (they need to be parametric,
to satisfy certain properties with respect
to the Kullback-Leibler divergence, etc.).

The only assumption is that the reward
distributions need to be supported in
[0,1].

Involves a family of “upper confidence
bounds” functions gni , the construction
of which is not straightforward. Even
when they are available, their actual com-
putation is usually demanding.

The “upper confidence bound” functions
are simple, easily implemented and com-
putationally efficient.

Achieves logarithmic regret asymptoti-
cally.

Achieves logarithmic regret both asymp-
totically and uniformly in time.

The logarithmic constant in the expres-
sion for regret is 1

2∆ j
for any suboptimal

machine j .

The corresponding regret constant is
6
∆ j

> 1
2∆ j

.

Table 8: A comparison between the Lai-Robbins and the Upper Confidence Bound Algo-
rithms.

Theorem 4.4.3 (Pinsker’s Inequality): [BLM13, Theorem 4.19] Let P ,Q be two
probability distributions on (X ,A). Then

δ(P ,Q) ≤
√

1

2
I (P ,Q), (4.4.7)

where δ(P ,Q) = supA∈A |P (A)−Q(A)| is the total variation distance and I (P ,Q) is
the Kullback-Leibler divergence between the two distributions.

Corollary 4.4.4: Let X ∗, X j be random variables on (X , ,P ) with expectations µ∗

and µ j respectively. Set ∆ j =µ∗−µ j . Then

I (PX ∗ ,PX j ) ≥ 2∆2
j .
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Proof. By Pinsker’s Inequality, 2δ(PX ∗ ,PX j )2 ≤ I (PX ∗ ,PX j ), so it suffices to show
that δ(PX ∗ ,PX j ) ≥∆ j :

∆ j = E[X ∗]−E[X j ]

=
∫ 1

0

(
P [X ∗ > t ]−P [X j > t ]

)
d t

≤
∫ 1

0
sup

A

∣∣PX ∗(A)−PX j (A)
∣∣d t

= δ(PX ∗ ,PX j ),

as we wanted. ■
Before closing this section, it isworth tomention that using theCauchy-Schwarz

Inequality, we can also obtain a bound for the regret which does not involve the
unknown quantities ∆k :

Corollary 4.4.5: The expected regret of the UCB algorithm is bounded by

Rn ≤
√

K n

(
6lnn + π2

3
+1

)
. (4.4.8)

Proof. Applying the Cauchy-Schwarz Inequality to the formula of the regret, we
obtain that

E [Rn] =
K∑

k=1
∆k

√
E[Tk (n)]

√
E[Tk (n)] ≤

(
K∑

k=1
∆2

k E[Tk (n)]

)1/2 (
K∑

k=1
E[Tk (n)]

)1/2

≤p
n

√√√√ K∑
k=1

∆2
k

(
6lnn

∆2
k

+ π2

3
+1

)
≤

√
nK

(
6lnn +

(
π2

3
+1

))
,

as ∆k ∈ [0,1] for all k and thus
∑K

k=1∆
2
k ≤ K . ■

. The upper confidence bound algorithm with epochs

As we saw in the previous paragraph, the UCB algorithm achieves logarithmic
regret growth, but the logarithmic constant is larger than the optimal one. In the
same article, Auer et al. constructed an extension in which the logarithmic con-
stant can get arbitrarily close to it. The main principles of this algorithm are the
same as in UCB, but there are also two main differences.

Firstly, the upper confidence bounds have a slightly more involved expression,
and secondly, the arm chosen in each round is not played just once, but instead
the algorithm sticks with it for a whole time interval called epoch. The lengths of
these epochs get increasingly larger the more often an arm is picked, resulting in
larger exploitation progressively. The rate in which these lengths increase needs
to be chosen carefully, and is closely related to the exploration-exploitation trade
off.
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The Upper Confidence Bound Algorithm with epochs

Step  Initialize with r j = 0 for j = 1, . . . ,K and play each machine once.

Step  Select the machine j that maximizes the quantity x j + an,r j , where
x j is the average reward obtained so far by the j machine, an,r j =√

(1+a) ln en
τ(r j )

2τ(r j ) , τ(r ) = ⌈(1+ a)r ⌉ and n is the number of total pulls
done so far overall.

Step  Play the j machine exactly τ(r j +1)−τ(r j ) times.

Step  Set r j := r j +1 and return to Step .

Table 9: The Upper Confidence Algorithm with epochs (UCB2) [ACBF02].

The algorithm contains a parameter a ∈ (0,1) which the researcher is free to
choose as he desires. The value of it has a direct effect on the rate of growth of the
epoch lengths, and thus to the asymptotic behavior of the regret. Indeed, the r -th
epoch of an arm when parameter a is used, has a length of La(r ) = ⌈(1+a)r+1⌉−
⌈(1+a)r ⌉. We will discuss the practical implications of this formula in the end of
the paragraph, after we have established the corresponding asymptotic properties
of the regret.

Remark 4.5.1: For small values of a, the quantity τ(r j +1)−τ(r j ) which appears
in Step 3 may be equal to zero, which means that the algorithm picks a machine
but never actually draws from it. However, this does not cause much trouble
[Sta20] since by proceeding to Step 3, we set r j := r j + 1 and return to Step 1
for the next iteration.

As no value was drawn, all the quantities xk + an,rk remained unchanged for
k ̸= j . Additionally, for the j machine, we have that r j is equal to r j = r +1 for
some r with the property that τ(r +1) = τ(r ). Plugging this into an,r j , we obtain
that

an,r j = an,r+1 =
√

(1+a) ln en
τ(r+1)

2τ(r +1)
=

√
(1+a) ln en

τ(r )

2τ(r )
= an,r ,

so the value of an,r j remained the same as well.
This implies that when we repeat the Step 1 of the algorithm, the same machine

j will be picked again. But this time it will be played a total of τ(r +2)−τ(r +1)
times. If this number also happens to be equal to zero, then after a finite number
of iterations we will definitely end up with a non-zero quantity. This is clear from
the inequality τ(r +1)−τ(r ) ≥ (1+a)r (1+a)−1 →∞, so after a finite number of
possibly “empty loops”, the algorithm always pulls the arms it chooses.

Theorem 4.5.2 ([ACBF02, Theorem 2]): Let a ∈ (0,1) and suppose that the up-
per confidence bound algorithm with epochs (UCB2) is run on K machines having
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expectations µ(1), . . . ,µ(K ) and reward distributions P1, . . . ,PK respectively, sup-
ported in [0,1]. Then, the expected regret Rn after n ≥ maxi :µi<µ∗ e

2∆2
i

is at most

Rn ≤ ∑
i :µi<µ∗

(
(1+a)(1+4a) ln(2e∆2

i n)

2∆i
+ ca

∆i

)
, (4.5.1)

where ca is a constant which converges to infinity as a → 0.

Proof. Suppose that n ≥ e
2∆2

j
for all suboptimal arms j and let r̃ j be the largest

integer such that

τ(r j −1) ≤
(1+4a) ln(2e∆2

j )

2∆2
j

.

For r = 1, we have that τ(r −1) = τ(0) = 1, whereas

(1+4a) ln(2e∆2
j )

2∆2
j

≥ 1+4a

∆2
j

≥ 1+4a > 1 = τ(r ),

so it must be that r̃ j ≥ 1. Due to the presence of epochs, the total number of pulls
from an arm j during the first n rounds T j (n) has amore complicated expression:

T j (n) ≤ 1+ ∑
r≥1

(τ(r )−τ(r −1)) I[machine j finished its r -epoch]

= 1+τ(r j )−τ(0)+ ∑
r≥r j+1

(τ(r )−τ(r −1)) I[machine j finished its r -epoch]

= τ(r j )+ ∑
r≥r j+1

(τ(r )−τ(r −1)) I[machine j finished its r -epoch]. (4.5.2)

In particular, if machine j just finished its r -epoch when the total draws were n,
then T j (n) = 1+∑r

k=1(τ(k)−τ(k −1)) = τ(r ).
Pick a suboptimal machine j and suppose that it just finished its r -epoch.Then,

theremust exist a previous point in time, say t , where j was picked to start its r -th
epoch. At this time t , (a) the machine had already finished its r −1-epoch, thus
had been played exactly τ(r −1)-times up to that point, and (b) some epoch just
finished and we entered the comparison stage. The result of the comparison was
to pick machine j , thus we had that

x j ,τ(r−1) +at ,r−1 ≥ x∗
τ(i ) +at ,i , (4.5.3)

where x∗
τ(i ) + at ,i was the upper confidence bound of the optimal machine. The

latter machine had been chosen during i -epochs until time t for some i ≥ 0, re-
sulting to a total of τ(i ) draws, hence the indices that appear in x∗

τ(i )+at ,i . Notice
also that t ≥ τ(i )+τ(r −1) since the optimal machine and machine j have been
played τ(i ) and τ(r −1) times respectively up until round t .
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Therefore, there exists some i ≥ 0 and t ≥ τ(r −1)+τ(i ) such that (4.5.3) holds.
In turn, this implies that either there exists some t ≥ τ(r −1) with

x j ,τ(r−1) +at ,r−1 ≥µ∗− a∆ j

2
,

or that there exists an i ≥ 0 and a τ′ ≥ τ(r −1)+τ(i ) with

x∗
τ(i ) +at ′,i ≤µ∗− a∆ j

2
.

Indeed, otherwise for every i ≥ 0 and t ≥ τ(t −1)+τ(i ) we would have that

x j ,τ(r−1) +at ,r−1 <µ∗− a∆ j

2
< x∗

τ(i ) +at ′,i ,

which contradicts (4.5.3).
Suppose now that machine j just finished its r -epoch during round n. Since

at ,r is increasing with respect to t , we also have that either

x j ,τ(r−1) +an,r−1 ≥µ∗− a∆ j

2
(4.5.4)

or that there exists an i ≥ 0 such that

x∗
τ(i ) +aτ(r−1)+τ(i ),i ≤µ∗− a∆ j

2
. (4.5.5)

By taking expectations in (4.5.2),

E[T j (n)] ≤ τ(r j )+ ∑
r≥r j+1

(τ(r )−τ(r −1))P
[
machine j finished its r -epoch

]
≤ τ(r j )+ ∑

r≥r j+1

(τ(r )−τ(r −1))P
[

x j ,τ(r−1) +an,r−1 ≥µ∗− a∆ j

2

]
+ ∑

r≥r j+1

∑
i≥1

(τ(r )−τ(r −1))P
[

x∗
τ(i ) +aτ(r−1)+τ(i ),i ≤µ∗− a∆ j

2

]
andwe need to bound the probabilities of these two events. Firstly, observe that by

the definition of r j , for every r > r j , we have that τ(r −1) > (1+4a) ln(2e∆2
j )

2∆2
j

> 1
2∆2

j
,

so

an,r−1 =
√

(1+a) ln en
τ(r−1)

2τ(r−1) ≤
√√√√√ (1+a) ln en

τ(r−1)
(1+4a) ln(2e∆2

j )

∆2
j

≤∆ j

√
1+a

1+4a , (4.5.6)

which is also less or equal than ∆ j (1+ a) for a < 0.1. We bound the probabil-
ity of the events

[
x j ,τ(r−1) +an,r−1 ≥µ∗− a∆ j

2

]
using Hoeffding’s Inequality. The

random variables appearing in the Cesàro sum x j ,τ(r−1) are i.i.d. with mean µ j ,
so

P
[

x j ,τ(r−1) +an,r−1 ≥µ∗− a∆ j

2

]
= P

[
x j ,τ(r−1) +an,r−1 ≥µ j +∆ j − a∆ j

2

]
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= P

x j ,τ(r−1) ≥µ j +
(
∆ j−

a∆ j

2 −an,r−1

)
τ(r−1)

τ(r−1)


≤ exp

(
−2τ(r −1)

(
∆ j − a∆ j

2 −an,r−1

)2
)

≤ exp
(
−2τ(r −1)∆2

j

(
1− a

2 − (1−a)
)2

)
≤ exp

(
−τ(r−1)∆2

j a2

2

)
(4.5.7)

for a < 0.1. Using the elementary inequality

τ(r ) = ⌈(1+a)r ⌉ ≤ (1+a)r +1 = (1+a)r−1(1+a)+1

≤ ⌈(1+a)r−1⌉(1+a)+1 = τ(r −1)(1+a)+1,

we have that for the function g (x) = x−1
1+a , the inequality g (x) ≤ τ(r −1) holds for

every r ≥ 1 and x ∈ [τ(r −1),τ(r )]. Set c =∆2
j a2 < 1. Then,

∫ ∞

0
e−cg (x)d x =

∞∑
r=1

∫ τ(r )

τ(r−1)
e−cg (x)d x

≥
∞∑

r=1

∫ τ(r )

τ(r−1)
e−cτ(r−1)d x

=
∞∑

r=1
(τ(r −1)−τ(r ))e−cτ(r−1)

≥ ∑
r≥r j+1

(τ(r −1)−τ(r ))P
[

x j ,τ(r−1) +an,r−1 ≥µ∗− a∆ j

2

]
.

Additionally,
∫ ∞

0 e−cg (x)d x = e
c

1+a 1+a
c ≤ (1+a)e

∆2
j a2 , so

∑
r≥r j+1

(τ(r −1)−τ(r ))P
[

x j ,τ(r−1) +an,r−1 ≥µ∗− a∆ j

2

]
≤ (1+a)e

∆2
j a2

. (4.5.8)

For the events
[

x∗
τ(i ) +aτ(r−1)+τ(i ),i ≤µ∗− a∆ j

2

]
, using againHoeffding’s Inequal-

ity, we have that

P
[

x∗
τ(i ) +aτ(r−1)+τ(i ),i ≤µ∗− a∆ j

2

]
≤ exp

(
−τ(i )

a2∆2
j

2 − (1+a) ln
(
e τ(r−1)+τ(i )

τ(i )

))
and the expression

A = ∑
r≥r j+1

∑
i≥1

(τ(r )−τ(r −1))P
[

x∗
τ(i ) +aτ(r−1)+τ(i ),i ≤µ∗− a∆ j

2

]
can be bounded by

A ≤ ∑
i≥0

exp

(
−τ(i )a2∆2

j

2

) ∑
r≥r j+1

(τ(r )−τ(r −1))
(
1+ τ(r−1)

τ(i )

)−1−a
.
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We define the function h(x) =
(
1+ x−1

(1+a)τ(i )

)−1−a
. Then h(x) ≥

(
1+ τ(r−1)

τ(i )

)−1−a

for every x ∈ [τ(r −1),τ(r )] and for all i ,

τ(i )

(
1+a

a

)1+a

≥ τ(i )
1+a

a

(
1− 1

(1+a)τ(i )

)−a

=
∫ ∞

0
g (x)d x

≥
∞∑

r=1

∫ τ(r )

τ(r−1)

(
1+ τ(r−1)

τ(i )

)−1−a
d x

=
∞∑

r=1
(τ(r )−τ(r −1))

(
1+ τ(r−1)

τ(i )

)−1−a
,

so

A ≤
(

1+a

a

)1+a ∑
i≥0

τ(i )exp

(
−τ(i )a2∆2

j

2

)
. (4.5.9)

We define the function w(x) = (1+a)x +1. Then, for every x ∈ [i , i +1], we have
that w(x) ≥ τ(i ) ≥ (1+a)x−1, so

1+
∫ ∞

1
w(x)exp

(
− (1+a)x−1a2∆2

j

2

)
d x = 1+

∞∑
i=1

∫ i+1

i
w(x)exp

(
− (1+a)x−1a2∆2

j

2

)
d x

≥ 1+
∞∑

i=1

∫ i+1

i
τ(i )exp

(
− (1+a)x−1a2∆2

j

2

)
d x

≥ 1+
∞∑

i=1

∫ i+1

i
τ(i )exp

(
−τ(i )a2∆2

j

2

)
d x

=
∞∑

i=0
τ(i )exp

(
−τ(i )a2∆2

j

2

)
.

One can verify that

1+
∫ ∞

1
w(x)exp

(
− (1+a)x−1a2∆2

j

2

)
d x ≤ 1+ 1

ln(1+a)

[
e−λ

λ
+

∫ ∞

λ

e−x

x
d x

]
,

where λ= a2∆2
j

2(1+a) < 1
4 . The last expression F (λ) = e−λ

λ +∫ ∞
λ

e−x

x d x can be bounded
from above by F (λ) ≤ 11

10λ = 11(1+a)
5a2∆2

j
. Combining all the previous steps, we obtain

that

E[T j (n)] ≤ τ(r j )+ (1+a)e

∆2
j a2

+
(

1+a

a

)1+a
(

1+ 1

ln(1+a)
· 11(1+a)

5a2∆2
j

)
,

with τ(r j ) ≤ (1+a)τ(r j −1)+1 ≤ (1+a)(1+4a) ln(2en∆2
j )

2∆2
j

+1, therefore,

E[T j (n)] ≤ (1+a)(1+4a) ln(2en∆2
j )

2∆2
j

+1+ (1+a)e
∆2

j a2 + (1+a
a

)1+a
(
1+ 1

ln(1+a) · 11(1+a)
5a2∆2

j

)
≤ (1+a)(1+4a) ln(2en∆2

j )

2∆2
j

+ 1
∆2

j

(
(1+a)e

a2 + (1+a
a

)1+a
(
1+ 11(1+a)

5a2 ln(1+a)

))
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= (1+a)(1+4a) lnn
2∆2

j
+ c ′

a

∆2
j
, (4.5.10)

for c ′a = (1+a)(1+4a) ln(2e∆2
j )

2∆2
j

+1+ (1+a)e
a2 + (1+a

a

)1+a
(
1+ 11(1+a)

5a2 ln(1+a)

)
. ■

Relation (4.5.10) is particularly informative regarding the algorithm’s behavior.
Its first term reveals that, regardless of the choice for a ∈ (0,1), the algorithm al-
ways leads us to a logarithmic asymptotic regret. The second term is a constant
that we may not avoid, and despite the fact that its effect will vanish as n → ∞,
it may not be negligible for small n’s. By picking a sufficiently small, we can ap-
proach the optimal asymptotic lower bound arbitrarily close. However, although
the first term (1+a)(1+4a) lnn

2∆2
j

converges to the Lai-Robbins bound lnn
2∆2

j
as a → 0,

the corresponding second term c ′a tends to infinity. This means that the closer we
want to get to the optimal bound asymptotically, the higher the toll we have to
pay in finite time.

This is a typical aspect of the exploitation-exploration trade off that we men-
tioned in the beginning on the paragraph, when we stressed out the significance
of the rate in which the epoch lengths increase. By definition, the length La(r )
of the r -th epoch of an arm is equal to La(r ) = ⌈(1+a)r+1⌉−⌈(1+a)r ⌉, and one
can easily verify that the sequence (La(r ))r increases more slowly as a decreases.
This has the implication that for small values of a, the first epochs last relatively
short, giving the algorithm more opportunities to explore between the arms. This
increased tendency to explore, especially in early stages, leads to the appearance
of the large constant c ′a .
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Part III

APPENDIX

In our thesis we heavily relied on results from diverse fields of Pure
Mathematics, most of which are not usually taught at an undergrad-
uate level. In this appendix, we present them in a relatively brief but
coherent manner. The curious reader will certainly find fascinating
the fact that in order to establish results with such important practi-
cal applications, it was necessary to build on deep theoretical tools.





A
Functional Analysis

This appendix contains basic definitions and results that we need fromFunctional
Analysis. We use [Arg04] and [Gia03] as our main references, although complete
treatments and proofs of them can be found in any Functional Analysis or Hilbert
Space Theory book.

a. Metric spaces

We first mention a few results from metric spaces that we need.

Definition A.1.1: Let X be a nonempty set. A metric ρ on X is a function ρ :
X ×X →R that satisfies the following properties:

(i) For every x, y ∈ X , ρ(x, y) ≥ 0 and ρ(x, y) = 0 if and only if x = y .

(ii) For every x, y ∈ X , ρ(x, y) = ρ(y , x).

(iii) For every x, y , z ∈ X , ρ(x, y) ≤ ρ(x, z)+ρ(y , z).

The pair (X ,ρ) is called a metric space.

A metric space (X ,ρ) is called complete if every Cauchy sequence is convergent.
In any metric space, if we consider a finite family of open and dense sets (Ui )n

i=1,
their intersection U =∩n

i=1Ui is also open and dense. This result does not con-
tinue to hold in general when the family (Ui )∞i=1 is countable. Baire’s Category
Theorem asserts that this intersection is dense, if one works in a complete metric
space.

Theorem A.1.2 (Baire): Let (X ,ρ) be a complete metric space and (Ui )∞i=1 be a
sequence of open and dense subsets of it. Then their intersection U = ∩∞

i=1Ui is
dense in X .

A very useful consequence of Baire’sTheorem is the fact that if a complete space
can be written as the countable union of closed sets, then at least one of them has
a nonempty interior.

Theorem A.1.3: Let (X ,ρ) be a complete metric space and (Fn)n be a sequence of
closed subsets of it with X =∪Fn . Then there exists some n0 ∈N such that F̊n0 ̸= ;.

a. Normed spaces

DefinitionA.2.1: A normed space is a pair (X ,∥·∥), where X is a real vector space,
and ∥ ·∥ : X →R is a real function that satisfies the following axioms:
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 functional analysis

(i) For every x ∈ X , ∥x∥ ≥ 0, and ∥x∥ = 0 if and only if x = 0.

(ii) For every x ∈ X and λ ∈R, ∥λx∥ =λ∥x∥.
(iii) For every x, y ∈ X , ∥x + y∥ ≤ ∥x∥+∥y∥.

A complete normed space is called a Banach space.

Every norm induces a metric ρ on X , by defining ρ(x, y) = ∥x − y∥ for every
x, y ∈ X . In this way, tools and results from real analysis can be used, or even be
strengthened significantly, during the study of normed spaces.

DefinitionA.2.2: Let (X ,∥·∥) be a normed space and f : X →R be a real function
on X . We say that f is linear if f (λx+µy) =λ f (x)+µ f (y) for every x, y ∈ X and
λ,µ ∈R. If, in addition, f is continuous, it is called a bounded linear functional, or
simply a bounded functional.1

The space X ∗ is always a Banach space, under the norm defined by

∥x∗∥ = sup
x∈BX

|x∗(x)|, for x∗ ∈ X ∗,

where BX = {x ∈ X | : ∥x∥ ≤ 1} denotes the unit ball of X . Although X ∗ is always
nonempty, as it contains the zero functional, it is highly nontrivial to show that it
contains nonzero elements when X is infinite-dimensional.This is asserted by the
celebrated Hahn-Banach theorem, along with its consequences [Arg04, Chapter
5], which show that X ∗ has a wealth of elements.2

Theorem A.2.3 (Hahn-Banach): Let X be a linear space and p : X →R be a sub-
linear functional, namely p(λx) =λp(x) and p(x+y) ≤ p(x)+p(y) for every λ> 0
and x, y ∈ X . Suppose that Z is a linear subspace of X and f : Z →R is a linear func-
tional with the property that f (x) ≤ p(x) for every x ∈ X . Then there exists some
linear functional f̃ : X →R such that f̃ (x) = f (x) for every x ∈ Z and f̃ (x) ≤ p(x)
for every x ∈ X .

Theproperty that f̃ (x) = f (x) on Z denotes that f̃ is an extension of f , whereas
the property that f̃ (x) ≤ p(x) for every x ∈ X denotes that f̃ is still dominated by
p on the whole space, and not only on Z . The most common proofs of the Hahn-
Banach theorem require some form of the Axiom of Choice, although there exists
proofs without the use of it.

One of the most important applications of the Hahn-Banach theorem, is that
one can always separate any element x of a normed space X from any closed sub-
space of it Y ⊆ X which does not contain x, with a bounded and linear functional.
This consequence was used in the proof of Cybenko’s Universal Approximation
Theorem:

1The term bounded comes from the property that a linear functional f is continuous if and
only if | f (x)| ≤ M∥x∥ for some M > 0 for every x ∈ X . Clearly, nontrivial linear functionals can
never be bounded in the usual sense, since their image is the whole real line f (X ) =R, however the
term bounded has prevailed due to the aforementioned property.

2In cardinality terms, X∗ contains at least as many elements as X [KS16]. This is equivalent to
the fact that dim X∗ ≥ dim X .
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Proposition A.2.4: Let (X ,∥·∥) be a normed space, Y ⊆ X be a closed subspace of
it and let x ∈ X \ Y . Then there exists some f ∈ X ∗ such that f (x) = d(x,Y ) > 0,
∥ f ∥ = 1 and f (y) = 0 for every y ∈ Y .

a. Hilbert spaces

Definition A.3.1: Let X be a vector space. A mapping 〈·, ·〉 : X ×X →R is called
an inner product if it satisfies the following axioms:

(i) For every x ∈ X , 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0.

(ii) For every x, y ∈ X , 〈x, y〉 = 〈y , x〉.
(iii) For every x, y , z ∈ X and λ,µ ∈R, 〈λx +µz, y〉 =λ〈x, y〉+µ〈z, y〉.

In every inner product space, the Cauchy-Schwarz inequality holds:

Theorem A.3.2 (Cauchy-Schwarz inequality): Let (X ,〈·, ·〉) be an inner product
space. Then for every x, y ∈ X ,

|〈x, y〉| ≤
√

〈x, x〉√〈y , y〉, (A.3.1)

with equality if and only if x and y are linearly dependent.

Every inner product induces a norm on the underlying space, defined by ∥x∥ =p〈x, x〉. If X is complete under this norm, then X is called a Hilbert space. An
easy consequence of theCauchy-Schwarz inequality is that the inner product 〈·, ·〉 :
X × X → R is a continuous function when X × X is equipped with any product3

metric [Arg04, Proposition 4.4]:

Proposition A.3.3: Let (X ,〈·, ·〉) be an inner product space. If xn → x and yn → y ,
then 〈xn , yn〉→ 〈x, y〉.

Norms induced by inner products, enjoy two very useful geometric properties,
the Parallelogram Law4 and the Pythagorean Theorem. Their proofs follow im-
mediately from the defining properties of the inner product:

Proposition A.3.4 (Parallelogram Law): Let (X ,〈·, ·〉) be an inner product space.
For every x, y ∈ X , the parallelogram identity holds

∥x + y∥2 +∥x − y∥2 = 2∥x∥2 +2∥y∥2. (A.3.2)
3Things get more complicated if one asks whether the inner product is a uniformly continu-

ous function. In this case, the answer depends on which product metric has been used and, not
surprisingly, for every inner product space (X ,〈·, ·〉), there always exist two distinct, but equivalent,
product metrics on X ×X , such that 〈·, ·〉 is uniformly continuous with respect to one but not with
respect to the other.

4As a matter of fact, inner product spaces not only have property (A.3.2), but are completely
characterized by it, in the sense that a norm is induced by an inner product, if and only if it satisfies
the Parallelogram Law. In order to prove the converse direction, one considers a norm ∥ · ∥ which
satisfies the Parallelogram Law, and defines a function ϕ : X ×X →R as ϕ(x, y) = 1

4 (∥x+ y∥2−∥x−
y∥2). With some moderate effort, one can show that ϕ is an inner product which induces ∥ ·∥.
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Definition A.3.5: Two elements x, y of an inner product space are said to be or-
thogonal, if 〈x, y〉 = 0. We usually use the symbol x ⊥ y to denote this. Similarly,
if A,B are subsets of X , they are called orthogonal when a ⊥ b for every a ∈ A and
b ∈ B .

Proposition A.3.6 (Pythagorean Theorem): Let (X ,〈·, ·〉) be an inner product
space and x, y ∈ X such that 〈x, y〉 = 0. Then

∥x + y∥2 = ∥x∥2 +∥y∥2. (A.3.3)

If an inner product space is also a Banach space under the norm induced by the
inner product, then it is called a Hilbert space.

Definition A.3.7: A complete inner product space is called a Hilbert space.

The typical example of a Hilbert space is

ℓ2(N) =
{

(an)n :
∑
n

a2
n <∞

}
,

the space of square summable real sequences,5 equipped with the inner product
defined by 〈x, y〉 =∑∞

n=1 xn yn for every x = (xn)n and y = (yn)n in ℓ2. In a similar
manner, one can define the ℓp space for every 1 ≤ p <∞ as the space that contains
all sequences (an)n such that

∑∞
n=1 |an |p <∞. All theℓp spaces are Banach spaces,

however ℓ2 is the only Hilbert space among them.6 The basic inequality |a|q ≤
|a|p which holds for every p ≤ q and a such that |a| < 1, and the fact that any
summable sequence has to converge to zero, thus eventually the absolute value of
its terms are less than one, has as a consequence that ℓp ⊆ ℓq for every p ≤ q .This
inclusion is always strict when p < q . In particular, we have that ℓ1 ⊂ ℓ2, and in
the spirit of Robbins-Monro, we say that the elements in the set ℓ2 \ℓ1 are type
1/n sequences.

In our thesis we are mostly working on the Hilbert space of square integrable
functions on some compact set X ⊆Rd :

L2(X ) =
{

f : X →R :
∫

X
f (x)2dλ(x) <∞

}
,

equipped with the inner product

〈 f , g 〉 =
∫

X
f (x)g (x)dλ(x)

for f , g ∈ L2(X ).

DefinitionA.3.8: A family {ei : i ∈ I } in an inner product space is called orthonor-
mal, if ∥ei∥ = 1 for every i ∈ I and ei ⊥ e j for every i ̸= j ∈ I .

5In a certain sense, ℓ2 is the only Hilbert space as every Hilbert space H is isometrically iso-
morphic to ℓ2(κ) for some set κ of cardinality equal to the Hilbert dimension of H . By the term
Hilbert dimension we mean the cardinality of the smallest orthonormal basis of H .

6For any p ̸= 2, one can easily find x, y ∈ ℓp for which the Parallelogram Law fails to hold.
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It is easy to see that every orthonormal family is a linearly independent set. If
{e1, . . . ,en} is a finite orthonormal family and Fn is the subspace generated by it,
then {e1, . . . ,en} is called an orthonormal basis of Fn . Furthermore, for every finite
n-dimensional subspace F of an inner product space, we can find an orthonormal
basis of it, having cardinality n, using the Gram-Schmidt process.

Perhaps one of themost striking results inHilbert spaces H , thatmay not neces-
sarily hold in an arbitrary normed space, is the fact that for every x ∈ H and every
closed subspace M , there always exists a unique projection of x on M . Recall that
if x is an element of a metric space (X ,ρ) and M ⊆ X is a subset of it, we define
the distance between x and M as d(x, M) = inf{ρ(x,m) : m ∈ M }. In general this
infimum may not be attained, even when M is a closed set. 7

However, when (X ,∥·∥) is a Hilbert space and M is a closed and convex subset
of it, there always exists an m0 ∈ M such that d(x, M) = ρ(x,m0) = ∥x −m0∥.
Furthermore, m0 is unique and has the property that x −m0 is orthogonal to M .
This result also applies when M is a closed subspace of X , as every subspace is a
convex set. We will state the result for finite dimensional subspaces F , although it
holds for infinite dimensional subspaces as well, with some obviousmodifications
[Arg04, Proposition 4.21]:

Proposition A.3.9: Let (X ,〈·, ·〉) be an inner product space and F be a finite di-
mensional subspace of it, having {e1, . . . ,en} as an orthonormal basis. If x ∈ X , then
the closest point of x to F is the element y0 = ∑n

i=1〈x,ei 〉ei , that is, y0 satisfies the
property that ∥x − y0∥ = d(x,F ). Additionally, x − y0 is orthogonal to F .

The element y0 of the previous proposition is called the projection of x on the
subspace F , and is usually denoted by y0 = PF (x). The projection of x on F is the
only element z of F with the property that x − z is orthogonal to F :

PropositionA.3.10: Let (X ,〈·, ·〉) be an inner product space, F be a closed subspace
of it and PF (x) be the projection of x on F . Suppose that z ∈ F satisfies the property
that x − z is orthogonal to F . Then z = PF (x).

Proof. We have that

∥z −PF (x)∥2 = 〈z −x +x −PF (x), z −PF (x)〉
= 〈z −x, z −PF (x)〉+〈x −PF (x), z −PF (x)〉
= 0,

both z −x, x −PF (x) being orthogonal to F , and z −PF (x) ∈ F . ■

a. Topological vector spaces

In every normed space (X ,∥ · ∥) the addition and scalar multiplication opera-
tions are continuous. Topological vector spaces are the natural generalization of

7As an example, one can take X = (0,1)∪ {2} equipped with the metric induced by the usual
metric in R. Then F = (0,1) is a closed set in X , the distance between 2 and F is equal to one, yet it
is not attained.
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normed spaces, where the norm is replaced by a topology τ that “respects” the lin-
ear structure of X , meaning that the vector space operations are continuous with
respect to τ. To avoid trivialities, we usually work with Hausdorff8 topologies.

Definition A.4.1: A vector space X equipped with a Hausdorff topology τ such
that the addition operation+ : X ×X → X and the scalar multiplication operation
· : R×X → X are continuous, is called a topological vector space.

Definition A.4.2: A topological vector space (X ,τ) is called locally convex if ev-
ery neighborhood of zero contains a convex neighborhood of zero. A completely
metrizable9 locally convex space, is called a Fréchet space.

Since Fréchet spaces are complete, Baire’s theorem is applicable. Thus, if we
write a Fréchet (X ,τ) as the countable union of closed sets, X =∪∞

n=1Fn , at least
one of them must have a nonempty interior. If, in addition, each Fn is a subspace
of X , then there exists a subspace Fn0 of X with a nonempty interior, which yields
that X = Fn0 . This fact was used in the proof of Lemma 2.3.9, p. 34.

Definition A.4.3: Let (X ,τ) be a topological vector space. A set A ⊆ X is called
absorbing if for every x ∈ X , there exists some λ0 > 0 such that λx ∈ A for every
0 ≤λ≤λ0.

Theorem A.4.4: If a subspace Y of a topological vector space X has a nonempty
interior, then Y = X .

Proof. Any topological vector space contains a neighborhood base consisting of
absorbing sets [AB06, Structure Theorem 5.6]. Suppose that Y is a subspace of X
with a nonempty interior. This means that, there exists some y0 ∈ Y and an open
set U such that y0 ∈U . Then 0 ∈U − y0 which is also an open set contained in Y ,
since Y is a subspace. Let W be an absorbing open set contained in U − y0. Then
W ⊆ Y and for every x ∈ X , λx ∈ W ⊆ Y for some λ > 0, thus X ⊆ ∪λ>0λY =
Y . ■

8A topological space (X ,τ) is said to be aHausdorff space, or to satisfy the T2 axiom, if for every
x, y ∈ X with x ̸= y , there exist two disjoint open sets Ux and Uy , such that x ∈Ux and y ∈Uy .

9A topological space (X ,τ) is called completely metrizable, if there exists some metric ρ on X ,
such that (X ,ρ) is a complete metric space and ρ induces the topology τ on X .
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b. Subgaussian random variables

Subgaussian random variables have the defining property that their tail probabil-
ities are bounded by the respective probabilities of a gaussian random variable.
Because of this property, they are only candidate random variables for which the
Hoeffding inequality can hold. Most of the results mentioned in this section can
be found in Omar Rivasplata’s expository article [Riv12].

Definition B.1.1: A random variable X is said to be σ-subgaussian, if for every
t ∈R,

MX (t ) := E
[
e t X ]≤ eσ

2t 2/2. (B.1.1)

The right hand side of (B.1.1) is just the moment generating function of a nor-
mal random variable with mean zero and variance equal to σ2. So, a random
variable is σ-subgaussian when its moment generating function is dominated by
the one of N (0,σ2).

Subgaussian random variables have always zero mean and a finite variance,
bounded by, but not necessarily equal to, the σ2 that appears in (B.1.1).

Proposition B.1.2: If a random variable X is b-subgaussian, then E[X ] = 0 and
V (X ) ≤ b2.

Proof. Using the Taylor’s expansion and Lebesgue’s Dominated ConvergenceThe-
orem,

E
[
e t X ]= E

[ ∞∑
n=0

t n X n

n!

]
=

∞∑
n=0

t n

n!
E
[

X n]= 1+ t E[X ]+ t 2

2
E
[

X 2]+o(t 2) ≤ e
b2 t2

2

as t → 0. Dividing with t and taking limits as t → 0, we obtain that E[X ] ≤ 0.
Repeating the same argument for −X gives us the opposite inequality.

Dividing with t 2 yields that E[X 2] = V (X ) ≤ b2. In fact, using the formula
E |X p | = ∫ ∞

0 P [|X |p ≥ t ]d t and the tail bound property that we will mention
shortly, one can show that every moment of a subgaussian r.v. X is finite. ■

By abusing the definition and the previous proposition, we may use the term
subgaussian even for random variables X for which E[X ] ̸= 0, implying that Y =
X −E[X ] is subgaussian.

The sum of two subgaussian random variables is also subgaussian. Additionally,
scalar products of subgaussian random variables remain subgaussian:
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Theorem B.1.3: Let (Ω,A,P ) be a measurable space and let G denote the set of
all subgaussian random variables on it. Then G is a vector space under the usual
addition and scalar product.

Proof. Suppose that X ,Y are b1 and b2-subgaussian random variables respec-
tively and let c ∈R.

For t ∈R,

Mc X (t ) = E
[
e tc X ]= MX (ct ) ≤ e

t2c2b2

2 ,

so c X ∈G , and in particular, it is |c|b-subgaussian.
Regarding their sum, byHölder’s Inequality we have that for every p, q > 1 with

1
p + 1

q ,

E
[
e t (X+Y )]≤ E

[
e t p X ]1/p

E
[
e t qY ]1/q ≤

(
exp

t 2p2b2
1

2

)1/p (
exp

t 2q2b2
2

2

)1/q

= e
t2

2 (pb2
1+qb2

2).

The function f (p) = pb2
1+qb2

2 = pb2
1+ p

1−p b2
2 attains itsminimum for p0 = b1+b2

b1
,

with f (p0) = (b1 +b2)2, therefore X +Y is (b1 +b2)-subgaussian. ■
A simple application of the Markov inequality is that for a b-subgaussian ran-

dom variable X , its tails satisfy the properties

P (X ≥λ) ≤ e−
λ2

2b2 and P (X ≤−λ) ≤ e−
λ2

2b2 (B.1.2)

for every λ> 0. Indeed, for every t > 0,

P (X ≥λ) = P (t X ≥ tλ) ≤ E
[
e t X

]
eλt

≤ e−λt+ b2 t2

2

and for t∗ = λ
b2 we obtain the desired upper bound. Applying the result to −X ,

yields the respective lower tail bound.
In fact, inequalities (B.1.2) completely characterize subgaussian random vari-

ables. We collect all the equivalent definitions below.

Theorem B.1.4: [Ver18, Proposition 2.5.2] Let X be a centered random variable.
The following are equivalent:

(i) There exists some b > 0 such that E
[
e t X

]≤ e
b2 t2

2 for every t ∈R.

(ii) There exists some c > 0 such that

P (X ≥λ) ≤ e−cλ2
and P (X ≤−λ) ≤ e−cλ2

for all λ> 0.

(iii) There exists some C > 0 such that ∥X ∥p ≤C
p

p for every p ≥ 1.
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(iv) There exists some a > 0 such that E
[

eaX 2
]
≤ 2.

The typical example of a subgaussian random variable are normal random vari-
ables N (0,σ2) with mean zero. Another extremely useful class of examples are
random variables taking values on some finite interval. Their subgaussianity is
asserted by Hoeffding’s Lemma.

Lemma B.1.5 (Popovicius Inequality): [ABCD05] Let X be a random variable
that takes values in the interval [a,b] with probability one. Then V (X ) ≤ (b−a)2

4 .

Proof. The variance of X has the property that V (X ) = minc E(X − c)2. For c0 =
a+b

2 , we notice that |X − a+b
2 | ≤ b−a

2 , so V (X ) ≤ E
∣∣∣X − a+b

2

∣∣∣2 ≤ (b−a)2

4 . ■

LemmaB.1.6 (Hoeffding): [BLM13, Lemma 2.2] A centered random variable X :
(Ω,A,P ) →R, taking values on [a,b] a.s., is b−a

2 -subgaussian.

Proof. For every λ> 0, we define the random variable Yλ : Ω→ R as Yλ = eλY

MY (λ) ,
where MY (λ) = EP

[
eλY

]
is the m.g.f. of Y . Let also Pλ = Yλ ·P denote the proba-

bility measure induced by the random variable Yλ, namely

Pλ(A) =
∫

A
YλdP =

∫
A

eλY

MY (λ)
dP for all A ∈A.

By Theorem 4.3.2, for every random variable Z , we also have that

EPλ
[Z ] = EP

[
Z eλY

MY (λ)

]
.

In particular, setting Z = X and Z = X 2, yields that

EPλ
[Y ] = EP

[
Y eλY

MY (λ)

]
and EPλ

[
Y 2]= EP

[
Y 2eλY

MY (λ)

]
. (B.1.3)

Let ψY (λ) = lnEP
[
eλY

]
. Then,

ψ′
Y (λ) = E

[
Y eλY

]
MY (λ)

and ψ′′
Y (λ)

E
[
Y 2eλY

]
MY (λ)

−
(
E
[
Y eλY

]
MY (λ)

)2

,

and by comparing it with (B.1.3), we obtain that

ψ′′
Y (λ) = EPλ

[
Y 2]− (

EPλ
[Y ]

)2 =VPλ
[Yλ] ≤ (b −a)2

4
,

by Popovicius Inequality, since Pλ[Y ∈ [a,b]] = 1. Fix some λ > 0. By Taylor’s
theorem, there exists some θ ∈ [0,λ] such that

ψY (λ) =ψY (0)+λψ′
Y (0)+ λ2

2
ψ′′

Y (θ) = λ2

2
ψ′′

Y (θ) ≤ λ2(b −a)2

8
.

The proof is concluded by taking exponents in the last inequality. ■



 probability theory

Since sums of subgaussian r.v. are also subgaussian, if we begin with a sequence
(Xn)n of such r.v., then each of their partial sums Sn = X1 + . . .+ Xn is also sub-
gaussian, so one can bound the tails of these sums, either using the subgaussian
property (B.1.2) directly, or with an argument similar to the one that appears in
the proof of it.

Theorem B.1.7 (Hoeffding’s inequality): [BLM13, Theorem 2.8] Let X1, . . . , Xn

be independent random variables such that each Xi takes its values in [ai ,bi ] almost
surely. Let Sn be their centered partial sum, Sn =∑n

i=1(Xi −E[Xi ]). Then for every
t > 0,

P (Sn ≥ t ) ≤ e
− 2t2∑n

i=1
(bi −ai )2 and P (Sn ≤−t ) ≤ e

− 2t2∑n
i=1

(bi −ai )2
. (B.1.4)

Proof. Each of the random variables Yi = Xi −E[Xi ] is centered and takes values
on [ai −E[Xi ],bi −E[Xi ]] a.s., so it is bi−a1

2 -subgaussian. Set Sn = Y1+ . . .+Yn . By
the independence of (Xi )i ,

E
[

eλSn

]
=

n∏
i=1

E
[

eλYi

]
≤ e

λ2 ∑n
i=1(bi −ai )2

8

and by the Chernoff method,

P [Sn ≥ t ] = P
[

eλSn ≤ eλt
]
≤ E

[
eλSn

]
eλt

≤ e
λ2 ∑n

i=1(bi −ai )2

8 −λt

for all λ > 0. The last quantity is minimized for λ∗ = t
4
∑n

i=1(bi−ai )2 , resulting in
(B.1.4). ■

The vector space of the subgaussian random variables G has a richer structure.
Clearly, if a random variable is σ-subgaussian, then it is also τ-subgaussian for
every τ ≥ σ. This observation leads us to define the subgaussian moment of a
random variable X , as the smallest constant σ for which X is σ-subgaussian:

Definition B.1.8: Let X be a subgaussian random variable.We define its subgaus-
sian moment σ(X ) as

σ(X ) = inf
{
σ≥ 0 : E

[
e t X ]≤ eσ

2t 2/2 for all t ∈R
}

. (B.1.5)

This infimum is in fact a minimum: Let (σn)n be a non-increasing sequence
of non-negative numbers such that σn → σ(X ). For every t ∈ R, we have that
MX (t ) ≤ eσ

2
n t 2/2 → eσ(X )2t 2/2, so the number σ(X ) also belongs to the set appear-

ing in the right hand side of (B.1.5), which proves that every subgaussian random
variable X is σ(X )-subgaussian.

The function σ defines a complete norm on the space of subgaussian random
variables.

Theorem B.1.9: The space (G ,σ) is a normed space.
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Proof. If X = 0 a.s., then E
[
eλX

] = 1 ≤ eb2t 2/2 for every b ≥ 0 and t ∈ R, so
σ(X ) = 0. Conversely, suppose that X is such that σ(X ) = 0. Then, for any fixed
λ ∈ R, we have that E

[
eλX

] ≤ 1. The function f (x) = eλx is convex, so by the
Jensen inequality, E[ f (X )] ≥ f (E[X ]), namely E

[
eλX

]≥ e0 = 1, which implies that
MX (λ) = 1 for every λ ∈ R. But this is just the m.g.f. of the random variable Y
which is zero almost surely. By the uniqueness of the m.g.f. [Gut13, Theorem 8.1]
we conclude that X and Y have the same distribution, so X = 0 almost surely.

We now prove that σ is positively homogenous. Let X ∈ G and a ∈ R. We ob-
serve that

E
[

eλX
]
≤ e

λ2σ2

2 ∀λ ∈R ⇐⇒ E
[

eaλX
]
≤ e

a2λ2σ2

2 ∀λ ∈R,

so

σ(X ) = inf

{
σ> 0 : E

[
eλX

]
≤ e

λ2σ2

2

}
= inf

{
σ> 0 : E

[
eλaX

]
≤ e

λ2(aσ)2

2

}
= 1

|a| inf

{
|a|σ> 0 : E

[
eλaX

]
≤ e

λ2(aσ)2

2

}
= 1

|a| inf

{
τ> 0 : E

[
eλaX

]
≤ e

λ2τ2

2

}
= 1

|a|σ(aX ),

thus σ(aX ) = |a|σ(X ).
Lastly, let X ,Y ∈ G . Since the infima in σ(X ) and σ(Y ) are attained, X and Y

are σ(X ) and σ(Y )-subgaussians respectively. As we saw in the proof of Theorem
B.1.3, X +Y is σ(X )+σ(Y )-subgaussian, so σ(X +Y ) ≤ σ(X )+σ(Y ), and σ is
subadditive. ■
Theorem B.1.10: [BK80, Theorem 1]. The space (G ,σ) is a Banach space.

Proof. Let (Xn)n be a Cauchy sequence in G under the σ norm. We observe that
for every n,m ∈N,

V (Xn −Xm) = E
[
(Xn −Xm)2]≤σ(Xn −Xm),

so (Xn)n is also Cauchy in L2, thus convergent to some X ∈ L2. By the inequality
∥Z∥1 ≤ ∥Z∥2 which holds for every Z ∈ L2 [AB06, Corollary 13.3], we also have
that X ∈ L1 and Xn → X in L1 as well. By [AB06, Theorem 13.6], we can pass to a
subsequence of it, say (Xn)n∈N1 , which converges to X almost surely.

We will show that X ∈G and also that σ(Xn −X ) → 0. For the first claim, notice
that for every λ ∈R and ε> 0,

sup
n∈N1

E

[(
eλXn

)1+ε]= sup
n∈N1

E
[

eλ(1+ε)Xn

]
≤ sup

n∈N1

e
λ2(1+ε)2σ(Xn )2

2 <∞,
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the last supremum being finite because the sequence (σ(Xn))n is bounded.1 By
[Gut13,Theorem 4.2], the sequence (eλXn )n∈N1 is uniformly integrable and it also
converges to eλX almost surely. By Theorem B.2.4,

E
[

eλX
]
= lim

n∈N1

E
[

eλXn

]
≤ lim

n∈N1

e
λ2σ2(Xn )

2 ≤ e
λ2 supn σ2(Xn )

2 ,

which implies that X is subgaussian with σ(X ) ≤ supn σ(Xn).
For every n, the random variable X − Xn is subgaussian and the sequence of

random variables (exp(λ(Xm −Xn)))n us uniformly integrable. Indeed, for every
λ ∈R and ε> 0,

sup
m∈N1,m≥n

E
[

eλ(1+ε)(Xm−Xn )
]
≤ sup

m∈N1,m≥n
e

λ2(1+ε)2σ2(Xm−Xn )
2

≤ e
λ2(1+ε)2

2 supm∈N1,m≥n σ
2(Xm−Xn ) <∞.

Additionally, limm∈N1,m≥n eλ(Xm−Xn ) = eλ(X−Xn ) a.s., so

E
[

eλ(X−Xn )
]
= lim

m∈N1,m≥n
E
[

eλ(Xm−Xn )
]
≤ e

λ2

2 supm σ2(Xm−Xn ),

thus σ(X − Xn) ≤ supm∈N1,m≥n σ
2(Xm − Xn) → 0 as n → ∞, establishing that

(Xn)n∈N1 converges to X in σ. Since (Xn)n is a Cauchy sequence in σ with a
convergent subsequence, the original sequence (Xn)n is also convergent [Arg11,
Proposition 8.2]. ■

b. Convergence of random variables

We will assume throughout that the reader is familiar with the various notions of
convergence of random variables. We only mention a few results which are not
always taught in probability courses. First of all, we need to recall the absolute
continuity property of the Lebesgue integral [Sar18, Proposition 4.29]:

Proposition B.2.1: Let X be an integrable random variable on E ⊆ R. Then for
every ε> 0, there exists some δ> 0 such that

∫
A | f |dm < ε for every measurable A

with m(A) < δ.

DefinitionB.2.2: A sequence of random variables (Xn)n defined on a probability
space (Ω,A,P ) is called uniformly integrable if

lim
a→∞sup

n
E[|Xn |I|Xn |≤a|] = 0.

The following equivalent definition of uniform integrability is often useful [Gut13,
Theorem 4.1].

Theorem B.2.3: A sequence of random variables (Xn)n is uniformly integrable if
and only if the following two conditions are met:

1The inequality |σ(Xn )−σ(Xm )| ≤σ(Xn−Xm ) implies that (σ(Xn ))n is Cauchy, thus bounded.
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(i) There exists some M > 0 such that ∥Xn∥1 ≤ M for every n ∈N.

(ii) For every ε> 0 there exists some δ> 0, such that for every A with P (A) < δ,∫
A |Xn | < ε holds for every n ∈N.

The notion of uniform integrability is extremely useful, as it provides us with
a necessary and sufficient condition to be able to conclude the convergence of
the expectations, given that a sequence converges in probability [Gut13,Theorem
5.4]:

Theorem B.2.4: Let (Xn)n be a sequence of random variables such that Xn con-
verges to a random variable X in probability. The following are equivalent

(i) The sequence (Xn)n is uniformly integrable.

(ii) E[Xn] → E[X ].

b. Conditional expectation

In connection with the Hilbert Space Theory, the conditional expectation of a
square integrable random variable X can be seen as the projection of X to an
appropriate closed subspace of L2. This property was used during the proof of
Proposition 3.2.11.

Lemma B.3.1: Let (Ω,F ,P ) be a probability space and G ⊆F be a sigma-algebra.
Then L2(Ω,G,P ) is a closed subspace of L2(Ω,F ,P ).

Proof. If f ∈ L2(Ω,G,P ), then f is G-measurable, thus F-measurable due to the
inclusion G ⊆F . Additionally,

∫
Ω | f |2dP <∞, so f ∈ L2(Ω,F ,P ), which proves

that L2(Ω,G,P ) is a subset of L2(Ω,F ,P ). Since L2(Ω,G,P ) is always a vector
space, it follows that it is also a subspace of it.

To show that it is closed, let ( fn)n be a sequence in L2(Ω,G,P ) that converges to
f ∈ L2(Ω,F ,P ). By [AB06,Theorem13.6], ( fn)n has a subsequence that converges
to f almost surely, say fkn → f . Since each fkn is G-measurable, so is their limit
f , concluding the proof. ■
Proposition B.3.2: Let (Ω,F ,P ) be a probability space and G ⊆ F be a sigma-
algebra. Suppose that X ∈ L2(Ω,F ,P ). Then the conditional expecttion E[X |G] is
the orthogonal projection of X on the closed subspace L2(Ω,G,P ).

Proof. We will show that X −E[X |G] ⊥ L2(Ω,G,P ). Let Z ∈ L2(Ω,G,P ). Then

E[(Z (X −E[X |G])] = E[E[(Z (X −E[X |G])] |G] = 0,

since E[X Z |G] = Z E[X |G] and E[Z E[X |G]|G] = Z E[X |G]. By PropositionA.3.10,
we have that E[X |G] = PL2(Ω,G,P )(X ). ■

A well known property of the conditional expectation is that

E[X Y |G] = X E[Y |G]



 probability theory

whenever X is G-measurable. The following proposition extends this result when
the usual product of X and Y is replaced by their inner product.

Proposition B.3.3: Let (Ω,F ,P ) be a probability space and G ⊆ F , be a sigma-
algebra. Suppose that Y ∈ L2(Ω,F ,P ) and that X ∈ L2(Ω,G,P ).Then

E[〈X ,Y 〉 |G] = 〈X ,E[Y |G]〉. (B.3.1)

Proof. Suppose first that X = I A is a characteristic function with A ∈G. For every
B ∈F ,∫

B
〈X ,E[Y |G]〉dP =

∫
B
〈I A ,E[Y |G]〉dP =

∫
B

(∫
Ω

I A E[Y |G]dP

)
dP

=
∫

B

(∫
A

Y dP

)
dP

=
∫

B
〈I A ,Y 〉dP

=
∫

B
〈X ,Y 〉dP

=
∫

B
E [〈X ,Y 〉 |G]dP .

If X =∑n
i=1 ai I Ai is a simple function with Ai ∈G for all i , then for every B ∈F ,

∫
B
〈X ,E[Y |G]〉dP =

∫
B

⟨
n∑

i=1
ai I Ai ,E[Y |G]

⟩
dP

=
∫

B

n∑
i=1

ai 〈I Ai ,E[Y |G]〉dP

=
n∑

i=1
ai

∫
B
〈I Ai ,E[Y |F ]〉dP

=
n∑

i=1
ai

∫
B
E[〈I Ai ,Y 〉 |G]dP

=
∫

B

E

[⟨
n∑

i=1
ai I Ai ,Y

⟩]
dP

=
∫

B
〈X ,Y 〉dP ,

by the previous step and the linearity of the conditional expectation.
Suppose now that X ≥ 0 is non-negative, square-integrable and G- measurable

function. Let (sn)n be an increasing sequence of simple functions that converges
to it pointwise.Then (〈sn ,Y 〉)n is also increasing, bounded by Z = 〈X ,Y 〉 ∈ L1 and
converges to 〈X ,Y 〉 pointwise. By Lebesgue’s Dominated Convergence Theorem,
we have that E[〈sn ,Y 〉 |G] → E[〈X ,Y 〉]. In a similar manner

E[〈sn ,E[Y |G]〉] → E[〈X ,E[Y |G〉] = E[〈X ,Y 〉].
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For the general case, X we can write it as a difference of two non-negative func-
tions X = X +− X −, and the result follows immediately from the linearity of the
conditional expectation. ■

The proofs of the following theorems can be found in [Nev75].

TheoremB.3.4 (SupermartingaleConvergenceTheorem): Let (Xn)n , (Yn)n and
(Zn)n be three sequences of random variables and (Fn)n be a sequence of nested
sigma-algebras. Suppose that

(a) Each Xn ,Yn , Zn is non-negative and Fn-measurable.

(b) For every n ∈N, we have that E[Yn+1 |Fn] ≤ Yn −Xn +Zn .

(c) The series
∑∞

n=0 Zn converges.

Then the series
∑∞

n=0 Xn also converges and there exists some non-negative random
variable Y , such that Yn → Y almost surely.

TheoremB.3.5 (Martingale ConvergenceTheorem): Let (Xn)n be a sequence of
random variables and (Fn)n be a sequence of nested sigma-algebras. Suppose that

(a) Each Xn is Fn-measurable.

(b) For every n ∈N, we have that E[Xn+1 |Fn] = Xn .

(c) There exists a constant M > 0 such that E[|Xn |] ≤ M for every n ∈N.

Then (Xn)n converges almost surely to a random variable X .





C
Additional Topics

c. Natural density

When trying to compare two infinite subsets of N we often face the paradox that
although onemay intuitively seem to be “larger” than the other, they both have the
same cardinality. For example, one can consider the sets A =N and B = 2N. Both
A and B are countably infinite, but as one goes throughN, encounters elements of
A twice as often as elements of B .The notion of cardinality is not strong enough to
distinguish between these two sets, and for this reason we introduce the concept
of the natural density:

Definition C.1.1: Let J ⊆N. We define its natural density d(J ) as

d(J ) = lim
n→∞

#J ∩ {1, . . . ,n}

n
, (C.1.1)

provided that this limit exists.

The natural density d is not defined for every subset of N and even if we con-
sider the family of setsA on which d is well defined,A is not an algebra [Did13].
However, d exhibits some probability measure-like properties that proved useful
during the sequential design of experiments treatment:

Lemma C.1.2: Let d denote the natural density on N.

(i) The density of the empty set is equal to zero, and the density of N is equal
to one.

(ii) If A, B are two disjoint subsets ofN for which d(A) and d(B) is well defined,
then d(A∪B) is also well defined and d(A∪B) = d(A)+d(B).

Proof. The proof of (i) is obvious. For the second part,

d(A∪B) = lim
n→∞

#(A∪B)∩ {1, . . . ,n}

n

= lim
n→∞

#A∩ {1, . . . ,n}

n
+ lim

n→∞
#B ∩ {1, . . . ,n}

n
= d(A)+d(B),

which proves the finite additivity of d . ■
Although d is finitely additive, it is not σ-additive. For example, the disjoint

sets An = {n} all have density d(An) = 0, but their union is equal to N, which has
density one.
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