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Εισαγωγή

Η θεωρία των παραγόμενων συναρτητών (derived functors) σε αβελιανές κατη-
γορίες αποτελεί μια θεμελιώδη έννοια τη ομολογικής άλγεβρας η οποία διατρέχει

όλα τα σύγχρονα μαθηματικά, ειδικότερα την αλγεβρική γεωμετρία, ακόμα και την

θεωρητική φυσική. Ως επόμενο βήμα, η θεωρία των παραγόμενων (derived) κατη-
γοριών είναι ένα ισχυρό εργαλείο που απλοποιεί σημαντικά την ομολογική άλγεβρα.

Η μελέτη, λοιπόν, μετατοπίζεται από τα αντικείμενα μιας κατηγορίας στην μελέτη

των chain complexes, που αποτελούνται από αντικείμενα της καητηγορίας, εφοδι-
ασμένα με μία ισχυρότερη έννοια ισοδυναμίας (αυτή των quasi-ismoprhisms). Η
θεωρία αυτή, έχει τις ρίζες της στην δουλειά [Tohoku] τωνAlexander Grothendieck
και, του μαθητή του, Jean-Louis Verdier, η οποία μας δίνει την δυνατότητα να εκ-
φράσουμε έννοιες με απλό και περισσότερο κατανοητό τρόπο αποφεύγοντας την

χρήση περίπλοκων φασματικών ακολουθιών.

Η ιδέα πίσω από τις derived categories είναι η εξής: «Τα complexes είναι καλά,
ενώ η ομολογία των complexes είναι κακή». ΄Οπως αναφέρθηκε και παραπάνω, θα
θέλαμε τα chain complexes ως ειδοποιό - αμετάβλητο στοιχείο των χώρων, επειδή
έχουν όλη την πληροφορία που μας είναι χρήσιμη για την ομοτοπία ενός χώρου,

- η ομολογία περιέχει λιγότερη πληροφορία - οπότε έτσι προήλθε η παραπάνω

ιδέα. Αφού, λοιπόν, τα στοιχεία της derived category είναι τα chain complexes,
χρειαζόμαστε έναν τρόπο να ταυτίζουμε αυτά τα οποία είναι ισομορφικά, οδηγού-

μαστε έτσι, στην ένοια των quasi-isomorphisms οι οποίοι παίζουν έναν σημαντικό
ρόλο στην κατασκευή της νέας αυτής κατηγορίας, δίνοντάς μας την ισχυρότερη

έννοια ισοδυναμίας που αναφέραμε. Ειδικότερα, ομοτοπικά complexes είναι quasi-
ισομορφικά.

Ο κύριος σκοπός αυτής της διπλωματικής εργασίας είναι η απόδειξη του θεω-

ρήματος της φασματκής ακολουθίας του Grothendieck 5.2.2 η οποία υπολογίζει
τους derived functors της σύνθεσης δύο συναρτητών, γνωρίζοντας μόνο τους de-
rived functors καθένα συναρτητή. Η φασματική ακολουθία του Leray 5.5.8 και
η φασματική ακολουθία των Lyndon-Hochschild-Serre είναι δύο εκ των πολλών
άλλων ειδικών περιπτώσεων της φασματικής ακολουθίας του Grothendieck.

Στο τελευταίο κεφάλαιο της εργασίας θα δούμε δύο αποδείξεις αυτού του

αποτελέσματος, η πρώτη χρησιμοποιώντας μόνον γνώσεις από την θεωρία φασ-

ματικών ακολουθιών και η δεύτερη, πιο άμεση και απλοποιημένη, στη γλώσσα των

derived categories. Δεν θα ήταν λάθος να συμπεράνουμε πως οι derived cate-
gories μας παρέχουν έναν πιο απλό τρόπο να κάνουμε υπολογισμούς οι οποίοι θα
ήταν πολυπλοκότεροι αν γινόντουσαν μέσω φασματικών ακολουθιών.

Πιο συγκεκριμένα, στο πρώτο κεφάλαιο θυμόμαστε κάποιους βασικούς ορισ-

μούς και κατασκευές όπως είναι η (συν)ομολογία, η σχέση ομοτοπίας, τα ακριβή

τρίγωνα και οι τριγωνίσιμες κατηγορίες, θέτοντας έτσι τα θεμέλια για τα ακόλουθα
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κεφάλαια. Στο δεύτερο κεφάλαιο κατασκευάζουμε τους αριστερούς derived func-
tors (και δυϊκά τους δεξιούς), δείχνουμε πως είναι καλά ορισμένοι και οπλιζόμαστε
με τις κατάλληλες προτάσεις και πορίσματα. Εν συνεχεία, στο τρίτο κεφάλαιο,

παίρνουμε μια ιδέα από τον κόσμο των φασματικών ακολουθιών, καταλαβαίνοντας

πώς ορίζονται και συγκλίνουν ενώ παράλληλα βλέπουμε - ως παραδείγματα - πώς

κάποια ήδη γνωστά αποτελέσματα (όπως το Snake Lemma) αποδεικνύονται εύκολα
με χρήση αυτού του νέου εργαλείου. Στο τέταρτο κεφάλαιο, τοπικοποιούμε την

κατηγορία ομοτοπίας μιας αβελιανής κατηγορίας ως προς τους quasi-isomorphisms
παίρνοντας έτσι την derived category, όπου εξηγούμε και πώς αυτή λειτουργεί,
δηλαδή, ποιά είναι τα αντικείμενα, οι μορφισμοί και η σύνθεση μορφισμών της.

Τελικά, στο πέμπτο κεφάλαιο, αποδεικνύουμε το θεώρημα του Grothendieck, όπως
περιγράφηκε παραπάνω, και εν συνεχεία κάνουμε μια σύντομη αναφορά στην φασ-

ματική ακολουθία του Leray τονίζοντας την άμεση επαγωγή της από αυτήν του
πρώτου.

Αθήνα, 30 Μαρτίου 2021



Introduction

The theory involving derived functors on abelian categories is a fundamental
concenpt of homological algebra that has a lot of applications on modern math-
ematics, especially on algebraic geometry, and even on theoretical physics. De-
rived functors, being an important tool, it was necessary to take the next step
and extend our theory, introducing ourselves to derived categories, which sim-
plify a lot of homological algebra. Instead of looking at the objects of a category,
we study their chain complexes which are equipped with a stronger concept of
equivalence (that of quasi-isomorphisms). All this has its roots in [Tohoku], the
work of Alexander Grothendieck and, his student, Jean-Louis Verdier, which
provided us with essential tools to avoid using the, more complex, spectral se-
quences.

The motto - idea, one will find in every paper concerning the derived cat-
egories, is “Complexes Good, Homology of Complexes Bad”. As stated above,
we needed chain complexes as a natural invariant because they have all the
information we want about the homotopy of a space - homology holds little
information about that - thus the motto. With this, quasi-isomorphisms, which
are isomorphisms of the induced maps on homology, come in to play a crucial
role into the construction of derived categories, identifying the isomorphic com-
plexes in our new category, which is the stronger equivalence relation we needed.
Namely, homotopic complexes are also quasi-isomorphic.

The main goal of this thesis is to prove Grothendieck’s Spectral Sequence
Theorem 5.2.2 which computes the derived functors of the composition of two
functors, by knowing the derived functors of each functor. The Leray spectral
sequence 5.5.8 and the Lyndon-Hochschild-Serre spectral sequence are just a
couple out of the many special cases of Grothendieck’s spectral sequence.

We will see two proofs of this result. The first time using some basic knowl-
edge about spectral sequences and hypercohomology and the second time, a
more direct - simplified proof, using derived category language. It wouldn’t be
false to assume that the derived category has provided us with a simpler way
of doing calculations which are rather complicated if done using the spectral
sequence formula.

More precisely, in Chapter 1 we are reminded of some basic definitions and
structures such as (co)homology, homotopy, exact triangles and triangulated
categories, thus setting the stage for the following chapters. In Chapter 2 we
construct the left derived functors (and dually the right ones), we show that they
are well defined and equip ourselves with the needed propositions. In Chapter
3 we take a quick glance into the spectral sequences world, understanding how
they are defined, how they converge as well as seeing some examples of already
known results (like the Snake Lemma) being easily proven using our new tool.
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Next, we localize the homotopy category of an abelian category with respect to
quasi-isomorphisms, thus obtaining the Derived Category in Chapter 4, where
we also explain how this works (object, morphism, composition - wise). Finally,
in Chapter 5, we have all the tools we need to prove Grothendieck’s Spectral
Sequence Theorem, using both spectral sequences and derived categories, the
later making the proof as easy as a corollary. As a direct application of this, we
take a quick look at Leray’s Spectral Sequence.

Athens, April 23, 2021



Chapter 1

Basic Definitions

1.1 Complexes, Homology & Functors

Definition 1.1.1. Let A be an abelian category. A complex is a sequence of
objects (called terms) and morphisms (called differentials),

. . . An+1 An An−1 . . .
dn+1 dn dn−1

(1.1)

with the composite of adjacent morphisms being 0:

dn ◦ dn+1 = 0 , for all n ∈ Z

We write (A•, d•) (or simply A) for the sequence described above.

In the category of left R-Modules RMod the condition dndn+1 = 0 is equiv-
alent to Imdn+1 ⊆ Kerdn.

Definition 1.1.2. Let A be an abelian category. We will define the cate-
gory Ch(A ) of complexes in A as the category which has as objects complexes
(A•, d•) whose terms and differentials are in A , as morphisms chain maps

f = (fn) : (A•, d•) −→ (A
′

•, d
′

•)

making the following diagram commute:

. . . An+1 An An−1 . . .

. . . A
′

n+1 A
′

n A
′

n−1 . . .

fn+1

dn+1 dn

fn fn−1

d
′
n+1 d

′
n

(1.2)

(i.e. fn ◦ dn+1 = d
′

n+1 ◦ fn+1 for all n ∈ Z )
and as composition (gn) ◦ (fn) = (gn ◦ fn) (i.e. coordinatewise composition).

Remark 1.1.3. (i) Ch(A ) is an abelian category when A is. The proof is
really simple, i.e. the zero object is the complex · · · −→ 0 −→ 0 −→
0 −→ . . . and the kernel of a morphism is the complex whose terms are
the Kerfn, n ∈ Z.
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(ii) Every exact sequence is a complex, for the equalities Imdn+1 = Kerdn
imply dn+1dn = 0.

Since Ch(A ) is an abelian category when A is, its Homomorphism sets are
abelian groups, i.e. addition is given by

f + g = (fn + gn), where f = (fn) and g = (gn).

Example 1.1.4.

• If A ∈ Ob(A ) and k ∈ Z is a fixed integer, then the sequence ρk(A) whose
k-th term is A and other terms are 0 and differentials are zero maps is a
complex, called concentrated in degree k.

• Every morphism f : A → B is a differential and the induced complex is
called concentrated in degrees (k, k − 1).

• A short exact sequence can be made into a complex by adding 0s to the
left and right:

· · · → 0→ 0→ A
f−→ B

g−→ C → 0→ 0→ . . .

We assume that A is term 2, B is term 1 and C is term 0.

• Every sequence of objects (Mn) occurs in a complex, namely, (M•, d•) in
which all the differentials dn are 0.

Now we observe that the idea of describing a module by generators and rela-
tions gives rise to a complex. Remember that every R-module M is a quotient
of a free R-module, thus M = F/K, where F is free and K is the submodule of
relations, that is, 0→ K → F →M → 0 is exact; i.e. K = Ker(F →M). If X
is a basis of F then, (X|K) is called a presentation of M . Basically, (X|K)
is a complete description of M up to isomorphism but, in practice it gives us
little information. A presentation though, allows us to treat equations in M as
if they were equations in the free R-module F . Computations in F , especially
those involved in whether elements of F lie in K, become much simpler when
K is also free and thus it has a basis (submodules of free modules need not be
free). However, if R is principal ideal domain then, every submodule of a free
module is free, and so K has a basis Y . In that case we say that (X|Y ) is a
presentation.

For a general ring R we can iterate the idea of presentations in the following
form: if M ' F/K, where F is a free, then K = F1/K1 for some free F1 (thus
K1 is the relations among the relations). Now 0→ K1 → F1 → K → 0 is exact.
Splicing this to the earlier exact sequence gives exactness of

0→ K1 → F1
d−→ F →M → 0

where d : F1 → F is the composite F1 → K ⊆ F and Imd = K = Ker(F →M).
Now, we can repeat this and get K1 ' F2/K2 for some free F2. Contin-

uing this construction gives an infinitely long exact sequence of free modules
and homomorphisms, called a resolution of M , which serves as a generalized
presentation, it is a way of treating equations in M by a sequence of equations
in free modules. Keep in mind that resolutions are exact sequences, and exact
sequences are complexes.
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Definition 1.1.5. A projective resolution of A ∈ Ob(A ), where A is an
abelian category, is an exact sequence P

· · · → P2
d2−→ P1

d1−→ P0
ε−→ A→ 0

in which each Pn is projective (see A). If A is RMod or ModR, then a free
resolution of a module A is a projective resolution in which each Pn is free; a
flat resolution is an exact resolution in which each Pn is flat.

If P is a projective resolution of A, then its deleted projective resolution
is the complex PA

· · · → P2
d2−→ P1

d1−→ P0 → 0.

A projective resolution (or free or flat) is a complex if we assume that it has
been lengthened by adding 0s to the right. Of course, a deleted resolution is no
longer exact if A 6= 0, for Imd1 = Kerε 6= Ker(P0 → 0) = P0.

Deleting A loses no information: A ∼= Cokerd1; the inverse operation, restor-
ing A to PA, is called augmenting. Deleted resolutions should be regarded as
glorified representations.

Proposition 1.1.6. Every (left or right) R-module A has a free resolution
(which is necessarily a projective resolution and a flat resolution).

Proof. There are a free module F0 and an exact sequence

0→ K1
i1−→ F0

ε−→ A→ 0.

Similarly, there are a free module F1, a surjection ε1 : F1 → K1, and an exact
sequence

0→ K2
i2−→ F1

ε1−→ K1 → 0.

Splice these together: define d1 : F1 → F0 to be the composite i1ε1. It is plain
that Imd1 = K1 = Kerε and Kerd1 = K2, yielding the exact row

F1 F0 A 0

0 K2 K1

d1

ε1

ε

i1

This construction can be iterated for all n ≥ 0, and the ultimate exact sequence
is infinitely long.

Now for the parenthetical statement: free ⇒ projective ⇒ flat.

We have proven more.

Corollary 1.1.7. If A is an abelian category with enough projectives, then
every object has a projective resolution.

Remark 1.1.8. An abelian category A is said to have enough projectives if,
for every object A ∈ A there is a projective object P ∈ A and an epimorphism
P → A, or equivalently, a short exact sequence

0→ B → P → A→ 0.
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Definition 1.1.9. An injective resolution of A ∈ Ob(A ), where A is an
abelian category, is an exact sequence E

0→ A
η−→ E0 d0−→ E1 d1−→ E2 → . . .

in which each En is injective (see A).
If E is an injective resolution of A, then its deleted injective resolution

is the complex EA

0 −→ E0 d0−→ E1 d1−→ E2 → . . .

Deleting A loses no information, for A ∼= Kerd0.

Proposition 1.1.10. Every (left or right) R-module A has an injective resolu-
tion.

Proof. Similar to the previous proof, but instead of kernels we use cokernels.

Deleted injective resolutions should be regarded as duals of presentations.

Corollary 1.1.11. If A is an abelian category with enough injectives, then
every object has an injective resolution.

Remark 1.1.12.

• Every sheaf with values in A has an injective resolution.

• Most categories of sheaves do not have enough projectives.

• We may lengthen an injective resolution by adding 0s to the left, but this
does not yet make it a complex, for the definition of complexes the in-
dices must decrease if we go to the right. The simplest way to satisfy the
definition is to use negative indices: define C−n = En, and

0→ A→ C0 → C−1 → C−2 → . . .

is a complex.

Definition 1.1.13. Given a projective resolution P in an abelian category A ,

· · · → Pn
dn−→ Pn−1 → · · · → P1

d1−→ P0
ε−→ A→ 0,

define K0 = Kerε and Kn = Kerdn, for n ≥ 1. We call the Kn the nth syzygy
of P.

Given an injective resolution E

0→ A
η−→ E0

d0−→ E1 → · · · → En
dn−→ En+1 → . . .

define V 0 = Cokerη and V n = Cokerdn−1, for n ≥ 1. We call V n the nth
cosygyzy of E.

Example 1.1.14. Let A be an abelian category
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(i) Let F : A → Ab (the category of abelian groups) be a covariant additive
functor, and let A

· · · → An
dn−→ An−1 → . . .

be a complex. Then (FA, Fd) = FA is

· · · → F (An)
F (dn)−−−−→ F (An−1)→ . . .

is also a complex, for 0 = F (0) = F (dndn+1) = F (dn)F (dn+1) (the equa-
tion 0 = F (0) holds because F is additive). Note that even if the original
complex is exact, the functored complex FA may not be exact.

(ii) If F is a contravariant additive functor, it is also true that FA is a complex
but we have to arrange notation so that differentials lower indices.

Definition 1.1.15. If A is a complex in Ch(A ), where A is an abelian cate-
gory, define

n− chains = An

n− cycles = Zn(A) = Kerdn

n− boundaries = Bn(A) = Imdn+1.

Notice that An, Zn, and Bn all lie in A .

In RMod the equation dndn+1 = 0 in a complex is equivalent to the condi-
tion Imdn+1 ⊆ Kerdn, hence Bn(A) ⊆ Zn(A) for every complex A. This is also
true in an abelian category:

Bn

Zn An An−1.

θ
j

0

i dn

Definition 1.1.16. If A is a complex in Ch(A ), where A is an abelian cate-
gory, and n ∈ Z, its n-th homology is

Hn(A) = Zn(A)/Bn(A).

Now Hn(A) lies in Ob(A ) if quotients are viewed as objects. However, if we
recognise A as a full subcategory of Ab, then an element of Hn(A) is a coset
z +Bn(A), which we call a homology class, and often denote it by cls(z).

Example 1.1.17.

(i) A complex A is an exact sequence if and only if Hn(A) = 0 for all n.
Thus, homology measures the deviation of a complex from being an exact
sequence. An exact sequence is often called an acyclic complex; which
means no cycles that are boundaries.

(ii) There are two fundamental exact sequences arising from a complex A
for each n ∈ Z,

0→ Bn
in−→ Zn → Hn(A)→ 0
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and

0→ Zn
jn−→ An

d′n−→ Bn−1 → 0,

where in, jn are inclusions and jn−1in−1d
′
n = dn; that is d′n is just dn with

its target changed from An−1 to Imdn = Bn−1.

(iii) If A is a complex with all dn = 0, then Hn(A) = An for all n ∈ Z, for

Hn(A) = Kerdn/Imdn+1 = Kerdn = An.

In particular, the subcomplexes Z of cycles and B of boundaries have all
differentials 0, and so Hn(Z) = Zn and Hn(B) = Bn

Metatheorem 1.1.18. Let A be an abelian category.

(i) If a statement is of the form “p implies q”, where p and q are categorical
statements about a diagram in A , and if the statement is true in Ab, then
the statement is true in A .

(ii) Consider a statement of the form “p implies q”, where p is a categori-
cal statement concerning a diagram in A , and q states that additional
morphisms exist between certain objects in the diagram and that some cat-
egorical statement is true of the extended diagram. If the statement can be
proved in Ab by constructing the additional morphisms through diagram
chasing, then the statement is true in A .

Proposition 1.1.19. If A is an abelian category, then Hn : Ch(A ) → A is
an additive functor for each n ∈ Z.

Proof. In light of the Metatheorem, it suffices to prove this proposition when
A = Ab. We have definedHn on objects, it remains to defineHn on morphisms.
If f : A→ A′ is a chain map, define Hn(f) : Hn(A)→ Hn(A′) by

Hn(f) : cls(zn) 7→ cls(fnzn).

We must show that fnzn is a cycle and that Hn(f) is independent of the choice
of cycle zn; both of these follow from f being a chain map, that is, from com-
mutativity of the following diagram:

. . . An+1 An An−1 . . .

. . . A
′

n+1 A
′

n A
′

n−1 . . .

fn+1

dn+1 dn

fn fn−1

d
′
n+1 d

′
n

First, let z be an n-cycle in Zn(A), so that dnz = 0. Then commutativity of
the diagram gives d′nfnz = fn−1dnz = 0, so that fnz is an n-cycle.

Next, assume that z +Bn(A) = y +Bn(A), hence z − y ∈ Bn(A);

z − y = dn+1a

for some a ∈ An+1. Applying fn gives

fnz − fny = fndn+1a = d′nfn+1a ∈ Bn(A′).
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Thus, cls(fnz) = cls(fny), and Hn(f) is well-defined.
Let us now see that Hn is a functor. It is obvious that Hn(1A) is the identity.

If f and g are chain maps whose composite gf is defined, then for every n-cycle
z, we have (with obvious abbreviations)

Hn(gf) : cls(z) 7→ (gf)ncls(z)

= gnfn(cls(z))

= Hn(g)(cls(fnz))

= Hn(g)Hn(f)(cls(z)).

Finally, Hn is additive: if f, g : A→ A′ are chain maps, then

Hn(f + g) : cls(z) 7→ (fn + gn)cls(z)

= cls(fnz + gnz)

= (Hn(f) +Hn(g))cls(z).

The previous proposition says that if A is a complex in an abelian category
A , then Hn(A) ∈ Ob(A ) for all n ∈ Z. In particular, if A is the category of
all sheaves of abelian groups over a space X, then Hn(A) is a sheaf.

Definition 1.1.20. We call Hn(f) the induced map, and we usually denote
it by f∗n or simply f∗.

The following construction is fundamental. It gives a relation between dif-
ferent homologies. The proof is a series of diagram chases, which is legitimate
because of the Metatheorem.

Proposition 1.1.21. Let A be an abelican category. If

0→ A′
i−→ A

p−→ A′′ → 0

is an exact sequence in Ch(A ), then, for each n ∈ Z, there is a moprhism in
A

∂n : Hn(A′′)→ Hn−1(A′)

defined by
∂n : cls(z′′n) 7→ cls(i−1

n−1dnp
−1
n z′′n).

Definition 1.1.22. The morphisms ∂n : Hn(A′′)→ Hn−1(A′) are called con-
necting homomorphisms.

The first question we ask is what homology functors do to a short exact
sequence of complexes. The next theorem is also proved by diagram chasing.

Theorem 1.1.23. (Long Exact Sequence) Let A be an abelian category. If

0→ A′
i−→ A

p−→ A′′ → 0

is an exact sequence in Ch(A ), then, there is an exact sequence in A

· · · → Hn+1(A′′)
∂n+1−−−→ Hn(A′)

i∗−→ Hn(A)
p∗−→ Hn(A′′)

∂n−→ Hn−1(A′)→ . . .
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Proof.

The Long Exact Sequence theorem is often called the exact triangle be-
cause of the diagram

H•(A
′) H•(A)

H•(A
′′)

i∗

p∗∂

Corollary 1.1.24. (Snake Lemma) Let A be an abelian category. Given a
commutative diagram in A with exact rows,

0 A′ A A′ 0

0 B′ B B′′ 0

f g h

there is an exact sequence in A

0→ Kerf → Kerg → Kerh→ Cokerf → Cokerg → Cokerh→ 0.

Proof. If we view each of the vertical maps f, g and h as a complex concentrated
diagram in degrees 1, 0, then the given commutative diagram can be viewed as
a short exact sequence of complexes. The homology of each of these complexes
has only two nonzero terms (H1 = Kerf, H0 = Cokerf and the other Hn = 0).
The lemma now follows from the long exact sequence.

Theorem 1.1.25. (Naturality of ∂) Let A be an abelian category. Given a
commutative diagram in Ch(A ) with exact rows,

0 A′ A A′′ 0

0 B′ B B′′ 0

i

f g

p

h

j q

there is a commutative diagram in A with exact rows

. . . Hn(A′) Hn(A) Hn(A′′) Hn−1(A′) . . .

. . . Hn(B′) Hn(B) Hn(B′′) Hn−1(B′) . . .

i∗

f∗ g∗

p∗ ∂

h∗ f∗

j∗ q∗ ∂′
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Proof. Exactness of the rows is the Long Exact Theorem, while commutativity
of the first two squares follows from Hn being a functor. To prove commutativity
of the square involving the connecting homomorphisms, let us first display the
chain maps and differentials in one (3D) diagram:

0 A′n An A′′n 0

0 A′n−1 An−1 A′′n−1 0

0 B′n Bn B′′n 0

0 B′n−1 Bn−1 B′′n−1 0

i

d′

f∗

p

d
g∗ h∗

d′′

f∗

i p

g∗ h∗

j

δ′

q

δ δ′′

j q

If cls(z′′) ∈ Hn(A′′), we must show that f∗∂cls(z
′′) = ∂h∗cls(z

′′). Let a ∈ An
be a lifting of z′′, that is, pa = z′′. Now ∂cls(z′′) = cls(z′), where iz′ = da.
Hence, f∗∂cls(z

′′) = clscls(fz′). On the other hand, since h is a chain map, we
have qga = hpa = hz′′. In computing ∂′cls(hz′′), we choose ga as the lifting of
hz′′. Hence, ∂′cls(hz′′) = cls(u′), where ju′ = δga. But jfz′ = giz′ = gda =
δga = ju′, and so fz′ = u′, because j is injective.

1.2 Homotopic Chain Maps

There are interresting maps of complexes that are not chain maps.

Definition 1.2.1. Let A and B be complexes, and let p ∈ Z. A map of degree
p, denoted by s : A→ B, is a sequence s = (sn) with sn : An → Bn+p for all n.

For example, a chain map is a map of degree 0, while the differentials of A
form a map d : A → A of degree -1.

We know introduce a notion that arises in topology.

Definition 1.2.2. A chain map f : A → A′ is null-homotopic, denoted by
f ' 0 (where 0 is the zero chain map) if , for all n, there is a map s = (sn) :
A→ A′ of degree +1 with

fn = d′n+1sn + sn−1dn.

. . . An+1 An An−1 . . .

. . . A′n+1 A′n A′n−1 . . .

fn+1

dn+1

sn
fn

dn

sn−1
fn−1

d′n+1 d′n

Definition 1.2.3. Two chain maps f, g : A→ A′ are homotopic, denoted by
f ' g, if, f − g ' 0.

Theorem 1.2.4. Homotopic chain maps induce the same morphism in homol-
ogy: if f, g : A→ A′ are chain maps and f ' g, then for all n,

f∗n = g∗n : Hn(A)→ Hn(A′)
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Proof. If z is an n-cycle, then dnz = 0 and

fnz − gnz = d′n+1snz + sn−1dnz = d′n+1snz.

Therefore, fnz − gnz ∈ Bn(A′), and so f∗n = g∗n .

Definition 1.2.5. A complex A has a contracting homotopy if its identity
1A is null-homotopic. A complex A is contractible if its identity 1 = 1A is
null-homotopic; that is, there is s : A→ A of degree +1 with 1 = sd+ ds.

Proposition 1.2.6. A complex A having a contracting homotopy is acyclic,
that is, it is an exact sequence.

Proof. 1A : Hn(A) → Hn(A) is the identity map, while 0∗ : Hn(A) → Hn(A)
is the zero map. Since 1A ' 0, however, these maps are the same. It follows
that Hn(A) = {0} for all n, that is, Kerdn = Imdn+1 for all n, and this is the
definition of exactness.

Definition 1.2.7. The homotopy category of complexes K(A ) is the category
whose objects are the objects of Ch(A ), i.e. Ob(K(A )) = Ob(Ch(A )), and
morphisms HomK(A )(A,A

′) = HomCh(A )(A,A
′)/ ∼.

That definition makes sense, i.e. that the composition is well-defined in
K(A ), follows from the following assertions which are easily verified.

Proposition 1.2.8.

(i) Homotopy equivalence between morphisms A −→ A′ of complexes is an
equivalence relation.

(ii) Homotopically trivial morphisms form an ideal in the ring of morphisms
of Ch(A ).

(iii) If f ' g : A −→ A′, then Hn(f) = Hn(g) for all i.

(iv) f : A −→ A′ and g : A′ −→ A are given such that f ◦ g ' idB and
g ◦ f ' idA , then f and g are quasi-isomorphisms (which means that

the induced morphisms Hn(A)
f∗n−−→ Hn(A′)

g∗n−−→ Hn(A) of homology
groups, of f and g, are isomorphisms for all n, see 4.1.1) and actually,
Hn(f−1) = Hn(g).

1.3 Cohomology As a Dual to Homology

The Cohomology is dual to homology in the sense that it is obtained by reindex-
ing with superscripts. Namely, we take the so called cochain complex with
rising indices by: An = A−n.

Definition 1.3.1. Let A be an abelian category. A cochain complex A in A
is a sequence of objects (terms) An ∈ A and morphisms (differentials):

· · · → An−1 dn−1

−−−→ An
dn−→ An+1 → . . .

with the composite of adjacent morphisms being 0.



1.4 Triangulated Categories · 11

Morphisms, which now are called cochain maps (and later on the quasi-
isomorphisms, see 4.1.1) are defined exactly as for chain complexes. All the
cochain complexes of A form the category Co(A ) of cochain complexes in A .
Now we have the following for an cochain complex A:

(i) Zn(A) = Ker(dn) are the n-cocycles,

(ii) Bn(A) = Im(dn−1) are the n-coboundaries,

(iii) and the subquotient Hn(A) = Zn(A)/Bn(A) is the n-cohomology of A.

1.4 Triangulated Categories

One of the most important things that we lost in passing to the homotopy
category (K(A ) = the category whose objects are complexes of objects in A
and morphisms are chain maps modulo the homotopy equivalence relation) is
the ability to say that a sequence of morphisms is exact: we no longer have
notions of kernel and cokernel, since it is not an abelian category. Verdier′s
initial contribution to the development of derived category was the observation
that a form of exactness is still preserved, in the notion of exact triangles.

Definition 1.4.1. Let D be an additive category. The structure of a triangulated
category is given by an additive equivalence

T : D −→ D ,

the shift functor, and a set of distinguished (or “exact”) triangles

A −→ B −→ C −→ T (A)

subject to the axioms TR1 - TR4 below:

Before we actually explain the axioms TR, we’ll introduce the notation
A[1] ..= T (A) for any A ∈ Ob(D) and f [1] = T (f) ∈ Hom(A[1], B[1]), for
any f ∈ Hom(A,B). Similarly, one writes A[n] ..= Tn(A) and f [n] ..= Tn(f) for
n ∈ Z. Thus a triangle will also be denoted by A→ B → C → A[1].

A morphism between two triangles is given by a commutative diagram:

A B C A[1]

A′ B′ C ′ A′[1]

f g h T (f)

It is an isomorphism if f, g, h are isomorphisms.
Now we need to define what a distinguised triangle actually is. For this, we

need to start by explaining how the autofunctor [n] : Co(A )→ Co(A ) works.
It is defined by:

[n]A• := A•+n and [n]d•A• := (−1)nd•+nA• ,

for (A•, d•A•) ∈ Co(A ).
We usually write A[n] and dA[n] meaning [n]A• and [n]d•A• respectively.
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Example 1.4.2. For [1] : Co(A ) → Co(A ), a morphism f : A → B in
Ch(A ):

. . . An B An+2 . . .

. . . Bn Bn+1 Bn+2 . . .

dnA

fn

dn+1
A

fn+1 fn+2

dnB dn+1
b

[1]f = f [1] : A[1]→ B[1], becomes:

. . . An+1 An+2 An+3 . . .

. . . Bn+1 Bn+2 Bn+3 . . .

−dn+1
A

fn+1

−dn+2
A

fn+2 fn+3

−dn+1
B −dn+2

b

Let f : A → B and g : B → C be two morphisms in K(A ). Then we have

A
f−→ B

g−→ C. If there is a morphism h : C → A[1] in K(A ), then the sequence:

A→ B → C → A[1]

is said to be a triangle in K(A ) and we sometimes write such triangle as:

A B

C

f

gh

(1)

A morphism of triangles (α, β, γ, α[1]) is the commutative diagram of the
top and bottom triangles:

A B C A[1]

A′ B′ C ′f A′[1]

f

α

g

β

h

γ α(1)

f ′ g′ α

in K(A ). When α, β, γ are isomorphisms of K(A ), then the triangles are said
to be isomorphic triangles.

For an arbitrary given morphism f : A→ B of complexes, we can construct
a complex Cf and morphisms β and α so that

A
f−→ B

β−→ Cf
α−→ A[1]

may become a triangle. Define the complex Cf by

Cnf := An+1 ⊕Bn = A[1]n ⊕Bn
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and dnC : Cnf → Cn+1
f by

dnC

(
xn+1

yn

)
=

[
dA[1]n 0
f [1]n dnB

](
xn+1

yn

)
=

(
−dn+1

A (xn+1)
fn+1(xn+1) + dnb (yn)

)
∈ Cn+1

f .

Then we have

dn+1
C ◦dnC

(
xn+1

yn

)
=

(
−dn+2

A ◦ dn+1
A (xn+1)

fn+2(−dn+1
A (xn+1)) + dn+1

B (fn+1(xn+1) + dnB(yn))

)
=

(
0
0

)
∈ Cn+2

f

from the commutativity of the diagram:

. . . An An+1 An+2 . . .

. . . Bn Bn+1 Bn+2 . . .

dnA

fn

dn+1
A

fn+1 fn+2

dnB dn+1
B

We have proven tha Cf is a complex. For Cf = A[1] ⊕ B, define β : B → Cf

and α : Cf → A[1] in A → B
β−→ Cf

α−→ A[1], by β :=

[
0

1B

]
and α := [1A[1], 0].

Then A → B
β−→ Cf

α−→ A[1] becomes a triangle. Notice that 0 → A → B
β−→

Cf
α−→ A[1]→ 0 is an exact sequence in Ch(A ).
A triangle A→ B → C → A[1] is said to be a distinguished triangle when

for a morphism A′
f ′−→ B′ of complexes there is an isomorphism of triangles

A B C A[1]

A′ B′ Cf ′ A′[1]

f

'

g

'

h

' T (f)

f ′ β α

in K(A ).
The complex Cf is said to be the mapping cone of f : A → B. Notice

that Cf depends upon the homotopy equivalence classes. Namely, if we have
f1 ' f2, then there is an isomorphism Cf1 ' Cf2 in K(A ).

We will write “(f1, g1, h1) on (A,B,C) ” meaning the distinguished triangle

A
f1−→ B

g1−→ C
h1−→ A[1].

Now here are the Axioms for a triangulated category:

TR1 (i) Any triangle of the form

A
id−→ A −→ 0 −→ A[1]

is distinguished.
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(ii) Any triangle isomorphic to a distinguished triangle is distinguished.

(iii) Any morphism f : A → B can be completed into a distinguished
triangle:

A
f−→ B → Cf → A[1]

TR2 The triangle

A
f−→ B

g−→ C
h−→ A[1]

is a distinguished triangle if and only if

B
g−→ C

h−→ A[1]
−f [1]−−−→ B[1]

is a distinguished triangle.

TR3 Suppose there exists a commutative diagram of distinguished triangles
with vertical arrows f and g:

A B C A[1]

A′ B′ C ′ A′[1]

f g h T (f)

Then the diagram can be completed into a commutative one, i.e. to a
morphism (f, g, h) of triangles, by a (not necessarily) unique h : C → C ′.

TR4 (Octahedron Axiom). Suppose that there are three distinguished triangles

(f1, g1, h1) on (A,B,C ′),

(f2, g2, h2) on (B,C,A′),

(f1f2, g3, h3) on (A,C,B′).

Then there is a forth one

(f4, g4, h4) on (C ′, B′, A′)

such that in the following octahedron we have,

1. the four distinguished triangles form four of the faces,

2. the remaining four faces commute, that is h1 = h3f4 : C ′ → B →
A[1] and g2 = g4g3 : C → B′ → A′,

3. h3f2 = f4g2 : B → B′,

4. f1h3 = h2g4 : B′ → B.
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C

A′

B B′

A

C ′

g3
g2

h2

h4

f2

g1

∃g4

h3

f1f2

f1

∃f4
h1

The first two axioms TR1 and TR2 seem very natural. Essentially, they are
saying that the set of distinguished triangles is preserved under shift and isomor-
phisms and that there are enough distinguished triangles available. The third
one, TR3, seems a little less so, due to the non-uniqueness of the completing mor-
phism. Note, a priori we have not required that in a triangleA→ B → C → A[1]
the composition A → C is zero. But this can be easily deduced by combining
TR1 and TR3.

Definition 1.4.3. An additive functor

F : D −→ D ′

between triangulated categories D and D ′ is called exact if the following two
conditions are satisfied:

(i) There is a natural transformation

F ◦ TD
∼−→ TD′ ◦ F.

(ii) Any distinguished triangle A → B → C → A[1] in D is mapped to a
distinguished triangle F (A) → F (B) → F (C) → F (A)[1] in D ′, where
F (A[1]) is identified with F (A)[1] via the functor isomorphism in (i).





Chapter 2

Derived Functors

Derived Functors is the source we need to get short exact sequences of complexes.
The main idea is to replace every module by a deleted resolution of it. Given a
short exact sequence of modules, we shall see that this replacement gives short
exact sequence of complexes. We then apply either Hom or ⊗, and the resulting
homology modules are called Ext or Tor.

2.1 The Comparison Theorem

We know that a module has many presentations; since resolutions are general-
ized presentations, the next result is foundamental.

Theorem 2.1.1. (Comparison Theorem). Let A be an abelian category.
Given a morphism f : A −→ A′ in A consider the diagram

. . . P2 P1 P0 A 0

. . . P ′2 P ′1 P ′0 A′ 0

d2

f̂2 f̂1

d1 ε

f̂0 f

d′2 d′1 ε′

where the rows are complexes. If each Pn in the top row is projective, and if
the bottom row is exact, then there exists a chain map f̂ : PA −→ P ′A′ mak-
ing the completed diagram commute. Moreover, any two such chain maps are
homotopic.

Remark 2.1.2. The dual of the theorem is also true. Given a morphism g :
A′ → A, consider the diagram of the negative complexes

0 A E0 E1 E2 . . .

0 A′ X0 X1 X2 . . .

g

If the bottom row is exact and each En in the top row is injective, then there
exists a chain map XA′ → EA making the completed diagram commute.

Proof. It suffices to prove the result for A = Ab.
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(i) We prove the existence of f̂n by induction on n ≥ 0.

For the base step n = 0, consider the diagram

P0

P ′0 A′ 0.

fε
f̂0

ε′

Since ε′ is surjective and P0 is projective, there is a map f̂0 : P0 → P ′0
with ε′f̂0 = fε.

For the inductive step, consider the diagram

Pn+1 Pn Pn−1

P ′n+1 P ′n P ′n−1.

dn+1 dn

f̂n f̂n−1

d′n+1 d′n

If Imf̂ndn+1 ⊆ Imd′n+1, then we have the diagram

Pn+1

P ′n+1 Imd′n+1 0,

f̂ndn+1

f̂n+1

d′n+1

and projectivity of Pn+1 gives f̂n+1 : Pn+1 → P ′n+1 with d′n+1f̂n+1 =

f̂ndn+1. To check that this holds, note the exactness of P ′n of the bottom
row of the original diagram gives Imd′n+1 = Kerd′n, and so it suffices to

prove that d′nf̂ndn+1 = 0. But d′nf̂ndn+1 = f̂n−1dndn+1 = 0.

(ii) We prove the uniqueness of f̂ up to homotopy. If h : PA → P ′A is another
chain map with ε′h0 = fε, we construct the terms sn : Pn → P ′n of a
homotopy s by unduction on n ≥ −1. That is we will show that

hn − f̂n = d′n+1sn + sn+1dn.

For the base step, first view A and 0 as being terms −1 and −2 in the
top complex, and define d0 = ε and d−1 = 0. Also view A′ and 0 as being
terms −1 and −2 in the bottom complex, and define d′0 = ε′ and d−1 = 0.

Finally, define f̂−1 = f = h−1 and s−2 = 0.

. . . P1 P0 A 0

. . . P ′1 P ′0 A′ 0.

d1 d0=ε

s0
h0f̂0 s−1

f

d−1

s−2

d′1 d′0=ε′ d′−1

With this notation, defining s−1 = 0 gives h−1 − f̂−1 = f − f = 0 =
d′0s−1 + s−2d−1.
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For the inductive step, it suffices to prove, for all n ≥ −1, that

Im(hn+1 − f̂n+1 − sndn+1) ⊆ Imd′n+2,

for then we have a diagram with exact row

Pn+1

P ′n+2 Imd′n+2 0,

hn+1−f̂n+1−sndn+1

sn+1

d′n+2

and projectivity of P ′n+1 gives a map sn+1 : Pn+1 → P ′n+2 satisfying the
desired equation. As in the proof of part (i), exactness of the bottom
row of the original diagram gives Imd′n+2 = Kerd′n+1, and so it suffices to

prove d′n+1(hn+1 − f̂n+1 − sndn+1) = 0. But

d′n+1(hn+1 − f̂n+1 − sndn+1) = d′n+1(hn+1 − f̂n+1)− d′n+1sndn+1

= d′n+1(hn+1 − f̂n+1)− (hn − f̂n − sn−1dn)dn+1

= d′n+1(hn+1 − f̂n+1)− (hn − f̂n)dn+1

and the last term is zero because h and f̂ are chain maps.

We introduce a term to describe the chain map f̂ just constructed.

Definition 2.1.3. If f : A → A′ is a morphism and PA and PA′ are deleted
projective resolutions of A and A′, respectively, then a chain map f̂ : PA → P ′A′

is said to be over f if fε = ε′f̂0.

. . . P2 P1 P0 A 0

. . . P ′2 P ′1 P ′0 A′ 0.

d2

f̂2 f̂1

d1 ε

f̂0 f

d′2 d′1 ε′

Given a morphism f : A→ A′, the comparison theorem implies that a chain
map over f exists between deleted projective resolutions of A and A′. Moreover,
such a chain map is unique up to homotopy.

2.2 Left Derived Functors

Given an additive covariant functor T : A → B between abelian categories,
where A has enough projectives, we construct the left derived functors LnT :
A → B, for all n ∈ Z. We will define it firstly on objects and then on mor-
phisms.

Choose a projective resolution P (we will later prove that the definition
doesn’t depend on the choice of projective resolution)
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· · · → P2
d2−→ P1

d1−→ P0
ε−→ A −→ 0

for every object A. From the deleted resolution PA, form the complex TPA,
take homology, and define

(LnT )A = Hn(TPA).

Let f : A → A′ be a morphism. By the comparison theorem, there is a chain
map f̂ : PA → PA′ over f . Then T f̂ : TPA → TPA′ is also a chain map, and
we define (LnT )f : (LnT )A→ (LnT )A′ by

(LnT )f = Hn(T f̂) = (T f̂)∗n .

In more detail, if z ∈ KerTdn, then

(LnT )f : z + ImTdn+1 7→ (T f̂n)z + ImTd′n+1,

that is,

(LnT )f : cls(z) 7→ cls(T f̂nz).

In pictures, look at the chosen projective resolutions:

. . . P2 P1 P0 A 0

. . . P ′2 P ′1 P ′0 A′ 0.

f

Fill in a chain map f̂ over f , delete A and A′ and apply T to this diagram,
then take the map induced by T f̂ in homology.

Theorem 2.2.1. If T : A → B is an additive covariant functor between abelian
categories, where A has enough projectives, then LnT : A → B is an additive
covariant functor for every n ∈ Z.

Lemma 2.2.2. If f, g : A → A′ are chain maps, and let F : A → B be an
additive functor. If f ' g, then Ff ' Fg.

Proof. We will prove that LnT is well defined on morphisms, it is then routine to
check that is an additive covariant functor (Hn is an additive covariant functor
Ch(A )→ A ).

If h : PA → PA′ is another chain map over f , then the comparison theorem
says that h ' f̂ , therefore, Th ' T f̂ , and so Hn(Th) = Hn(T f̂) by Theorem
1.2.4

Definition 2.2.3. Given an additive covariant functor T : A → B between
abelian categories, where A has enough projectives, the functors LnT are called
the left derived functors of T .

Proposition 2.2.4. If T : A → B is an additive covariant functor between
abelian categories, then (LnT )A = 0 for all negative n and for all A.
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Proof. (LnT )A = 0 because for all negative n the n-th term of PA is 0.

The functors LnT are called left derived functors because of the last propo-
sition. Since LnT = 0 on the right, that is, for all negative n, these functors are
of interest only on the left; that is, for n ≥ 0.

Definition 2.2.5. If B is a left R-module and T = 2⊗R B, define

TorRn (2, B) = LnT.

Thus if P
· · · → P2

d2−→ P1
d1−→ P0

ε−→ A −→ 0

is the chosen projective resolution of a right R-module A, then

TorRn (A,B) = Hn(PA ⊗R B) =
Ker(dn ⊗ 1B)

Im(dn+1 ⊗ 1B)
.

The domain of TorRn (2, B) is ModR and its target is Ab. In particular if
R is commutative, then A⊗B is an R-module, and so the values of TorRn (2, B)
lie in RMod.

We can also form the left derived functors A ⊗R 2, obtaining functors

RMod→ Ab.

Definition 2.2.6. If A is a right R-module and T = A⊗R2, define

torRn (A,2) = LnT.

Thus, if Q

· · · → Q2
d2−→ Q1

d1−→ Q0
η−→ B −→ 0

is the chosen projective resolution of a left R-module B, then

torRn (A,B) = Hn(A⊗R QB) =
Ker(1A ⊗ dn)

Im(1A ⊗ dn+1)
.

One known result of Homological Algebra which we will later prove on 2.2.21
is:

Theorem 2.2.7. If A is a left R-module and B is a right R-module, then, for
all n ≥ 0

TorRn (A,B) ∼= torRn (A,B).

Now we show that LnT is independent of the choice of projective resolution.

Proposition 2.2.8. Let A be an abelian category with enough projectives. As-
sume that new choices P̂A of deleted projective resolutions have been made, and
denote the left derived functors arising from these new choices by L̂nT .

If T : A → C is an additive covariant functor, where C is an abelian cate-
gory, then the functors LnT and L̂nT , for each n ≥ 0, are naturally isomorphic.
In particular, for all A, the objects

(LnT )A ∼= (L̂nT )A

are independent of the choice of projective resolution of A.
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Proof. Consider the following diagram:

. . . P2 P1 P0 A 0

. . . P̂2 P̂1 P̂0 A 0,

1A

where the top row is the chosen projective resolution of A used to define LnT
and the bottom is that used to define L̂nT . By the comparison theorem, there is
a chain map ι : PA → P̂A over 1A. Applying T gives a chain map Tι : TPA →
T P̂A over T1A = 1TA. This last chain map induces morphisms for each n,

τA = (Tι)∗ : (LnT )A→ (L̂nT )A.

We now prove that each τA is an isomorphism (proving the last statement in
the theorem) by constructing its inverse.

Turn the preceding diagram upside down, so that the chosen projective reso-
lution PA is now the bottom row. Again, the comparison theorem gives a chain
map, say, κ : PA → P̂A. Now the composite κι is a chain map from PA to itself
over 1A. By uniqeness in the statement of the comparison theorem κι ' 1PA .
Similarly, ικ ' 1P̂A . It follows that, T (κι) ' 1TPA and T (ικ) ' 1T P̂A

. Hence,
1(L̂nT )A = (Tικ)∗ = (Tι)∗(Tκ)∗ and 1(LnT )A = (Tκι)∗ = (Tκ)∗(Tι)∗. There-

fore, τA = (Tι)∗ is an isomorphism. We now prove that the isomorphisms τA
constitute a natural isomorphism; that is, if f : A −→ B is a morphism, then the
following diagram commutes:

(LnT )A (L̂nT )A

(LnT )B (L̂nT )B

τA

(LnT )f (L̂nT )f

τB

To evaluate the clockwise direction, consider the diagram

. . . P1 P0 A 0

. . . P̂1 P̂0 A 0

. . . Q̂1 Q̂0 B 0,

1A

f

where the bottom is the new chosen projective resolution of B. The comparison
theorem gives a chain map PA → Q̂B over f1A = f . Going counterclockwise,
the picture will now have the original chosen projective resolution of B as its
middle row, and we get a chain map PA → Q̂B over 1Bf = f . The uniqueness
statement in the comparison theorem tells us that these two chain maps are
homotopic, and so they induce the same morphism in homology. Thus, the
appropriate diagram commutes, showing that τ : LnT → L̂nT is a natural
isomorphism.
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Corollary 2.2.9. The modules TorRn (A,B) are independant of the choice of
projective resolution of A and the modules torRn (A,B) are independent of the
choice of projective resolution of B.

Corollary 2.2.10. Let T :RMod→SMod be an additive covariant functor. If
P is a projective module then (LnT )P = {0} for all n ≥ 1. In particular if A
and P are right R-modules with P projective, and if B and Q are left R-modules
with Q projective, then for all n ≥ 1,

TorRn (P,B) = {0} and torRn (A,Q) = {0}.

Proof. Since P is projective, a projective resolution is P, the complex with 1P
concentrated in degrees 0, −1. The corresponding deleted projective resolution
PP is the complex with P concentrated in degree 0. Hence, TPP has the nth
term {0} for all n ≥ 1, and so (LnT )P = Hn(TPP ) = {0} for all n ≥ 1.

Corollary 2.2.11. Let A be an abelian category with enough projectives. Let
P

· · · → P2
d2−→ P1

d1−→ P0
ε−→ A −→ 0

be a projective resolution of A ∈ ObjA . Define K0 = Kerε and Kn = Kerdn
for all n ≥ 1. Then

(Ln+1T )A ∼= (LnT )K0
∼= (Ln−1T )K1

∼= . . . ∼= (L1T )Kn−1

In particular if A = ModR and B is a left R-module,

TorRn+1(A,B) ∼= TorRn (K0, B) ∼= . . . ∼= TorR1 (Kn−1, B).

Similarly, if A is a left R-module and P′

· · · → P ′2
d′2−→ P ′1

d′1−→ P ′0
ε′−→ B −→ 0

be a projective resolution of a left R-module B, and define V0 = Kerε′ and
Vn = Kerd′n for all n ≥ 1. Then,

torRn+1(A,B) ∼= torRn (A, V0) ∼= . . . ∼= torR1 (A, Vn−1) .

Proof. By exactness of P, we have K0 = Kerε = Imd1, and so Q

· · · → P2
δ2−→ P1

δ1−→ K0 → 0

is a projective resolution of K0 if we relabel the indices (replace each n by n−1
and define Qn = Pn+1 and δn = dn+1 for all n ≥ 0 ). Since the value of LnT
on a module is independent of the choice of projective resolution, we have

(LnT )K0 = Hn(TQK0
) =

KerTδn
ImTδn+1

=
KerTdn+1

ImTdn+2
= Hn+1(TPA) ∼= (Ln+1T )A.

The remaining isomorphisms are obtained by iteration.
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We are now going to show that there is a long exact sequence of left derived
functors. We begin with a useful lemma; it says that if we are given a short
exact sequence 0 → A′ → A → A′′ → 0 as well as projective resolutions of
A′ and A′′ , then we can “fill in the horseshoe”; that is, there is a projective
resolution of A that fits in the middle.

Proposition 2.2.12. (Horseshoe Lemma). Given a diagram in an abelian
category A with enough projectives,

...
...

P ′1 P ′′1

P ′0 P ′′0

0 A′ A A′′ 0,
i q

where the columns are projective resolutions and the row is exact, then there
exist a projective resolution of A and chain maps so that the three columns form
an exact sequence of complexes.

Remark 2.2.13. The dual theorem, in which projective resolutions are replaced
by injective resolutions, is also true.

Proof. We show first that there are a projective Q0 and a commutative 3 × 3
diagram with exact columns and rows:

0 0 0

0 K ′0 V0 K ′′0 0

0 P ′0 Q0 P ′′0 0

0 A′ A A′′ 0

0 0 0

ε′

i0

ε

q0

ε′′
σ

i q

Define Q0 = P ′0
⊕
P ′′0 , it is projective because both P ′0 and P ′′0 are projective.

Define i0 : P ′0 → P ′0
⊕
P ′′0 by x′ → (x′, 0) and define q0 : P ′0

⊕
P ′′0 → P ′′0 by

(x′, x′′)→ x′′. It is clear that

0→ P ′0
i0−→ Q0

q0−→ P ′′0 → 0

is exact. Since P ′′0 is projective, there exists a map σ : P ′′0 → A with qσ = ε′′.
Now define ε : Q0 → A by ε : (x′, x′′) 7→ iε′x′ + σx′′ (the map σ makes the



2.2 Left Derived Functors · 25

square with base A
q−→ A′′ commute). Surjectivity of ε follows from the Five

Lemma (which will be proven later on as an example on spectral sequences
3.4.2). It is a routine exercise that if V0 = Kerε, then there are maps K ′0 → K0

and K0 → K ′′0 (where K ′0 = Kerε′ and K ′′0 = Kerε′′), so that the resulting 3× 3
diagram commutes. Exactness of the top row is also a simple exercise and its
omited.

We now prove, by induction on n ≥ 0, that the bottom n rows of the desired
diagram can be constructed. For the inductive step, assume that the first n
steps have been filled in, and let Vn = Ker(Qn → Qn−1), while K ′n = Kerd′n
and K ′′n = Kerd′′n. As in the base step, there is a commutative diagram with
exact rows and columns.

0 0 0

0 K ′n+1 Vn+1 K ′′n+1 0

0 P ′n+1 Qn+1 P ′′n+1 0

0 K ′n Vn K ′′n 0

0 0 0

d′n+1

in+1

δn+1

qn+1

d′′n+1

Now splice this diagram to the nth diagram by defined δn+1 : Qn+1 → Qn as
the composite Qn+1 → Vn → Qn.

Corollary 2.2.14. Let 0 → A′ → A → A′′ → 0 be an exact sequence of left
R-modules. If both A′ and A′′ are finitely presented, then A is finitely presented.

Proof. There are exact sequences 0 → K ′0 → P ′0 → A′ → 0 and 0 → K ′′0 →
P ′′0 → A′′ → 0, where P ′0, P

′′
0 ,K

′
0,K

′′
0 are finitely generated and P ′0, P

′′
0 are

projective. As in the begining of the proof of the previous proposition, there is
a 3× 3 commutative diagram, with Q0 projective, whose rows and columns are
exact.

0 0 0

0 K ′0 V0 K ′′0 0

0 P ′0 Q0 P ′′0 0

0 A′ A A′′ 0

0 0 0
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Both Q0 and V0 are finitely generated, being extensions of finitely generated
modules, and so A is finitely generated.

Theorem 2.2.15. Given a commutative diagram of right R-modules having
exact rows,

0 A′ A A′′ 0

0 C ′ C C ′′ 0

i

f

p

g h

j q

there is a commutative diagram with exact rows for every left R-module B,

TorRn (A′, B) TorRn (A,B) TorRn (A′′, B) TorRn−1(A′, B)

TorRn (C ′, B) TorRn (C,B) TorRn (C ′′, B) TorRn−1(C ′, B)

i∗

f∗ g∗

p∗

h∗

∂n

f∗

j∗ q∗ ∂′n

The similar statement for torRn (A,2) is also true.

Proof. Exactness of 0→ A′ → A→ A′′ → 0 gives exactness of the sequence of
deleted complexes 0 → PA′ → PA → PA′′ → 0. If T = 2 ⊗R B, then 0 →
TPA′ → TPA → TPA′′ → 0 is still exact, for every row splits because each term
of PA′′ is projective. Therefore the naturality of connecting homomorphisms ∂
applies at once.

We now show that a short exact sequence gives a long exact sequence of left
derived functors.

Theorem 2.2.16. Let A be an abelian category with enough projectives. If

0 −→ A′
i−→ A

p−→ A′′ → 0 is an exact sequence in A and T : A → B is an
additive covariant functor, where B is an abelian category, then there is a long
exact sequence in B

· · · → (LnT )A′
(LnT )i−−−−→ (LnT )A

(LnT )p−−−−−→ (LnT )A′′
∂n−→

(Ln−1T )A′
(Ln−1T )i−−−−−−→ (Ln−1T )A

(Ln−1T )p−−−−−−→ (Ln−1T )A′′
∂n−1−−−→ . . .

which ends with

· · · → (L0T )A′ −→ (L0T )A→ (L0T )A′′ → 0.

Proof. Let P′ and P′′ be the chosen projective resolutions of A′ and A′′, re-
spectively. By the Horseshoe Lemma, there is a projective resolution P̂ of A
with

0→ P′A′
j−→ P̂A

q−→ P′′A′′ → 0.

Here, j is a chain map over i and q is a chain map over p. Applying T gives the
sequence of complexes

0→ TP′A′
Tj−−→ T P̂A

Tq−−→ TP′′A′′ → 0.
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This sequence is exact, for each row 0→ P ′m
jn−→ P̂n

qn−→ P ′′n → 0 is a split exact
sequence (because P ′′n is projective, and additive functors preserve split exact
sequences). Thus, there is a long exact sequence

· · · → Hn(TP′A′)
(Tj)∗−−−→ Hn(T P̂

′
A)

(Tq)∗−−−→ Hn(TP′′A′′)
∂n−→ Hn−1(TP′A′)

(Tj)∗−−−→ . . .

that is, there is an exact sequence

· · · → (LnT )A′
(Tj)∗−−−→ (L̂nT )A

(Tq)∗−−−→ (LnT )A′′
∂n−→ (Ln−1T )A′

(Tj)∗−−−→ . . .

The sequence does terminate with 0, for L−1T is zero for all negative n, by
Proposition 2.2.4.

We do not know that P̂A arises from the projective resolution of A originally
chosen, and so we must change it into the sequence we seek. There are chain
maps κ : PA → P̂A and λ : P̂A → PA, where both κ, λ are chain maps over 1A
in opposite direction. Indeed, as in the proof of Proposition 2.2.8, TκTλ and
TλTκ are chain maps over 1TA in opposite directions, whose induced maps in
homology are isomorphisms, in fact (Tλ)∗ : L̂nT → LnT is the inverse of (Tκ)∗.
Now î is a chain map over i and p̂ is a chain map over p, while κ, λ are chain
maps over 1A.

The diagram displaying these chain maps is not commutative.

P′A′ P̂A P′′A′′

PA

j

î
λ

q

p̂
κ

Consider the diagram after applying T and taking homology.

. . . Hn(TP′A′) Hn(T P̂A) Hn(TP′′A′′) . . .

Hn(TPA)

(Tj)∗

(T î)∗
(T λ̂)∗

(Tq)∗

(T p̂)∗
(Tκ)∗

The noncommutative diagram remains noncommutative after applying T , but
the last diagram is commutative. Now, TλTj ' T î because both are chain maps
TP′A′ → TPA over Ti, hence, (TλTj)∗ = (T î)∗, because homotopic chain maps
induce the same homomorphism in homology. But (TλTj)∗ = (Tλ)∗(Tj)∗, and
so

(Tλ)∗(Tj)∗ = (T î)∗ = (LnT )i.

Similarly, (Tq)∗(Tκ)∗ = (T p̂)∗ = (LnT )p.
The proof that

(LnT )A′
(LnT )i−−−−→ (LnT )A

(LnT )p−−−−−→ (LnT )A′′

is exact can be completed easily.

Corollary 2.2.17. If T :RMod→SMod is an additive covariant functor, then
the functor L0T is right exact.
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Proof. If A→ B → C → 0 is exact then so is (L0T )A→ (L0T )B → (L0T )C →
0.

Theorem 2.2.18.

(i) If an additive covariant functor T : A → B is right exact, where A , B
are abelian categories and A has enough projectives, then T is naturally
isomorphic to L0T .

(ii) The functor 2 ⊗R B is naturally isomoprhic to TorR0 (2, B), and the
functor A ⊗R 2 is naturally isomorphic to torR0 (A,2). Hence for all
right R-modules A and left R-modules B, there are isomorphisms

TorR0 (A,B) ∼= A⊗R B ∼= torR0 (A,B).

Proof.

(i) Let P

· · · → P1
d1−→ P0

ε−→ A→ 0

be the chosen projective resolution ofA. By definition (L0T )A = CokerTd1.
But right exactness of T gives a right exact sequence

TP1
Td1−−→ TP0

Tε−−→ TA→ 0.

Now Tε induces an isomorphism σA = CokerTd1 → TA, by the First
Isomorphism Theorem, that is,

CokerTd1 = TP0/ImTd1 = TP0/KerTε
σA−−→ ImTε = TA.

It is easy to prove that σ = (σA)A∈Obj(ModR) : L0T → T is a natural
isomorphism.

(ii) Immediate from part (i), for both 2 ⊗R B and A ⊗R 2 are additive
covariant right exact functors.

Corollary 2.2.19. If 0→ A′ → A→ A′′ → 0 is a short exact sequence of right
R-modules, then there is a long exact sequence for every left R-module B,

· · · →TorR2 (A′, B)→ TorR2 (A,B)→ TorR2 (A′′, B)

→ TorR1 (A′, B)→ TorR1 (A,B)→ TorR1 (A′′, B)

→ A′ ⊗R B → A⊗R B → A′′ ⊗R B → 0.

The similar statement holds for torRn (2, B).

Thus the Tor sequence repairs the loss of exactess after tensoring a short
exact sequence.

We prove now that Tor and tor are the same, and we begin with a variation
of the snake lemma.
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Lemma 2.2.20. Given the commutative diagram with exact rows and columns
in an abelian category A

Kerf 0 Kerh

Kerα L′ M ′ N ′ 0

0 L M N 0

Kerb L′′ M ′′ N ′′ 0

0 0 0

i

j

f

α

g h

b

then Kerf ' Kerα and Kerh ' Kerb.

Proof. It is a routine exercise (using a variation of the Snake Lemma) to obtain
exactness of

Kerg → Kerh→ Cokerf → Cokerg.

Now Kerg = {0}, Cokerf = L′′, Cokerg = M ′′, and we may assume Cokerf →
Cokerg is b. Thus, 0 → Kerh → L′′

b−→ M ′′ is exact, and we conclude that
Kerh ' Kerb.

We may assume that i and j are inclusions. Commutativity of the square
with coker corner Kerα gives fj = 0, that is Kerα = Im j ⊆ Kerf = Im i.
Commutativity of the square with corner Kerf gives αi = 0, that is, Kerf =
Im i ⊆ Kerα = Im j. Therefore Im i = Im j and Kerf = Kerα.

Theorem 2.2.21. Let A be a right R-module and B be a left R-module and P

· · · → P1
d1−→ P0

ε−→ A→ 0

and Q

· · · → Q1
d′1−→ Q0

ε′−→ B → 0

be projective resolutions. Then Hn(PA ⊗R B) ' Hn(A ⊗R QB) for all n ≥ 0,
that is,

TorRn (A,B) ' torRn (A,B).

Proof. The proof is by inclusion on n ≥ 0.
The base step n = 0 is true, by Theorem 2.2.18 (ii). Let us display the

syzygies of P by “factoring” it into short exact sequences:

P3 P2 P1 P0 A 0.

K2 K1 K0

There are exact sequences 0 → Ki → Pi → Ki−1 → 0 for all i ≥ 0 if we write
A = K−1 (so that 0 → K0 → P0 → A → 0 has the same notation as the
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others). Similarly we display the syzygies of Q by factoring it into short exact
sequences 0 → Vj → Qj → Vj−1 → 0 for all j ≥ 0. Since tensor is a functor of
two variables, the following diagram commutes for each i, j ≥ 0.

X 0 W

Y Ki ⊗ Vj Ki ⊗Qj Ki ⊗ Vj−1 0

0 Pi ⊗ Vj Pi ⊗Qj Pi ⊗ Vj−1 0

Z Ki−1 ⊗ Vj Ki−1 ⊗Qj Ki−1 ⊗ Vj−1 0

0 0 0

The rows and columns are exact because tensor is right exact; the modules
X,Y, Z,W are, by definition, kernels of obvious arrows. Zeros flank the middle
row and column because Pi and Qj are flat (they are even projective). Now
W = Tor1(Ki−1, Vj−1), X = Tor1(Ki−1, Vj), Y = tor1(Ki, Vj−1) and Z =
tor1(Ki−1, Vj−1). By the previous Lemma we conclude that, for all i, j ≥ −1,

Tor1(Ki−1, Vj−1) ' tor1(Ki−1, Vj−1).

If i = 0 = j, then Tor1(A,B) ' tor1(A,B) because K−1 = A and V−1 = B.
The theorem has been proved for n = 1.

We now prove the inductive step. Corollary 2.2.11 gives

torn+1(A,B) ' tor1(A, Vn−1) = tor1(K−1, Vn−1),

T orn+1(A,B) ' Tor1(Kn−1, B) = Tor1(Kn−1, V−1).

Use these isomorphisms and the isomorphisms X ' Y , i.e.

Tor1(Ki−1, Vj) = tor1(Ki, Vj−1).

To go from any equation to the one below it, use the theorem for n = 1:

torn+1(A,B) ' tor1(K−1, Vn−1),

T or1(K−1, Vn−1) ' tor1(K0, Vn−2),

T or1(K0, Vn−2) ' tor1(K1, Vn−3),

. . .

T or1(Kn−2, V0) ' tor1(Kn−1, V−1),

T or1(Kn−1, V−1) ' Torn+1(A,B).

2.3 Right Derived Functors

Right derived functors is the dual notion of left derived functors and so every-
hting that holds true for the left derived funtors so does for the right derived
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functors. This paragraph’s goal is to give an idea about the right derived func-
tors and to see how they are actually dual to the left ones and so all the proofs
will be omitted.

Given an additive covariant functor T : A → B between abelian categories
where A has enough injectives, we construct the right derived functors RnT :
A → B, for all n ∈ Z.

Choose an injective resolution E

0→ B
η−→ E0 d0−→ E1 d1−→ E2 d2−→ . . .

for every object B. Form the complex TEB , where EB is the deleted injective
resolution, and take homology:

(RnT )B = Hn(TEB) =
KerTdn

ImTdn−1
.

The definition of (RnT )f , where f : B → B′ is a homomorphism, is similar to
that for the left derived functors:

By the dual of the comparison theorem, there is a chain map f̂ : EB →
EB′ over f , unique to homotopy, and so there is a well-defined map (RnT )f :

Hn(TEB)→ Hn(TEB′) induced in homology, namely, (T f̂)n∗.
In pictures, look at the chosen injective resolutions:

0 B′ E′0 E′1 . . .

0 B E0 E1 . . .

f

Fill in a chain map f̂ over f , then apply T to this diagram and then take the
map induced by T f̂ in homology.

Theorem 2.3.1. If T : A → B is an additive covariant functor between abelian
categories, where A has enough injectives, then RnT : A → B is an additive
covariant functor for every n ∈ Z.

Definition 2.3.2. If T : A → B is an additive covariant functor between
abelian categories, where A has enough injectives, the functors RnT are called
the right derived functors of T .

Proposition 2.3.3. If T : A → B is an additive covariant functor between
abelian categories, where A has enough injectives, then (RnT )B = 0 for all
negative n and for all B.

Assume that new choises Ê of injective resolutions have been made; denote
the right derived functors arising from these choise by R̂nT .

Proposition 2.3.4. If T : A → B is an additive covariant functor between
abelian categories, where A has enough injectives, then the functors RnT and
R̂nT are naturally isomorphic for each n. In particular for all B ∈ Obj(A ),

(RnT )B ∼= (R̂nT )B,

and so these objects are independent of the choise of their injective resolutions.
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Theorem 2.3.5. If 0→ B
i−→ B

p−→ B′′ → 0 is an exact sequence in an abelian
category A with enough injectives, and if TA → B is an additive covariant
functor, where B is an abelian category, then there exists a long exact sequence

· · · → (RnT )B′
(RnT )i−−−−→ (RnnT )B

(RnT )p−−−−−→ (RnnT )B′′
∂n−→

(Rn+1T )B′
(Rn+1T )i−−−−−−→ (Rn+1T )B

(Rn+1T )p−−−−−−→ (Rn+1T )B′′
∂n+1

−−−→ . . .

that begins with

0→ (R0T )B′ → (R0T )B → (R0T )B′′ → . . . .

Corollary 2.3.6. If T : A → B is an additive covariant functor between
abelian categories, where A has enough injectives, then the functor R0T is left
exact.

Theorem 2.3.7. If an additive covariant functor T : A → B is left exact,
where A and B are abelian categories and A has enough injectives, then T is
naturally isomorphic to R0T .



Chapter 3

Spectral Sequences

Spectral sequences are a powerful book-keeping tool for proving things involving
complicated commutative diagrams [RV]. Our first goal will be to find the coho-
mology of the double complex, and for that we will need the spectral sequence
which is a recipe for computing some information regarding it.

In this section we will be working in ModR of R-modules over some ring A.

3.1 Double Complexes

Definition 3.1.1. A double complex is a collection of R-modules (Ep,q)p,q∈Z
along with a set of “rightward” morphisms dp,q→ : Ep,q → Ep+1,q and “upward”
morphisms dp,q↑ : Ep,q → Ep,q+1 satisfying the following conditions:

(i) dp,q→ ◦ dp+1,q
→ = d2

→ = 0,

(ii) dp,q↑ ◦ d
p,q+1
↑ = d2

↑ = 0,

(iii) either d→d↑ = d↑d→ (all the squares commute) or d→d↑ + d↑d→ = 0 (all
the squares anticommute).

Remark 3.1.2. In the superscript, the first entry denotes the column number
(the “x-coordinate”), and the second entry denotes the row number (the “y-
coordinate”). This is opposite to the convetion for matrices. The subscript is
meant to suggest the direction of arrows. We will write d→ and d↑ and ignore
the superscript.

About condition (iii), both cases come up in nature and we can switch from
one to the other by replacing dp,q↑ with (−1)pdp,q↑ . So from now on we will assume
that all the squares anticommute, knowing how to turn the commuting case into
this one. There is no differece in the “recipe”, basically because the image and
kernel of homomorphism f equal the image and kernel respectively of −f .
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Ep,q+1 Ep+1,q+1

anticommutes

Ep,q Ep+1,q

dp,q+1
→

dp,q→

dp,q↑ dp+1,q
↑

From the double complex we construct the corresponding single complex
E• = Tot•⊕ with Ek =

⊕
iE

i,k−i, with d = d→ + d↑. So, when there is a single
superscript k, we mean the sum of the k-th antidiagonal of the double complex.
This single complex is also called the direct sum total complex. Note that
d2 = (d→ + d↑)

2 = d2
→ + (d→d↑ + d↑d→) + d2

↑ = 0, so E• is indeed a complex.

We could have - instead of direct sum - taken the product Totk∏ =
∏
iE

i,k−1

(and d = d→ + d↑ like above) giving us the product total complex of the
double complex.

The cohomology of the single complex is called the hypercohomology of
the double complex.

3.2 Spectral Sequences

Definition 3.2.1. A spectral sequence with rightward orientation is a
sequence of tables or pages →E

p,q
0 , →E

p,q
1 , →E

p,q
2 , . . . for p, q ∈ Z, where

→E
p,q
0 = Ep,q, along with a differential

→d
p,q
r : →E

p,q
r → →E

p−r+1,q+r
r

with →d
p,q
r ◦→ dp+r−1,q−r

r = 0, and with an isomorphism of the cohomology of

→dr at →E
p,q
r (i.e. Ker→d

p,q
r /Im→d

p+r−1,q−r
r ) with →E

p,q
r+1

The orientation indicates that our 0-th differential is the rightward one d0 =
d→ . The left subscript “→” is usually ommited.

We write →E
•,•
• and we mean the rightward oriented spectral sequence with

differential →d
p,q
r .

The order of the morphisms is best understood visually:

•

•

•

• •
d0

d1

d2
d3

each of the morphisms applies to different pages.
Before we continue with the complete defintion of →E

•,•
• and its differential,

we describe d0, d1, d2 to better understand how this construction works.
Note that Ep,qr is always a subquotient of the corresponding term on the i-th

page Ep,qi for all i < r. In particular, if Ep,q = Ep,q0 = 0 then Ep,qr = 0 for all r.
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Suppose now that E•,• is a first quadrant double complex, i.e. Ep,q = 0
if q < 0 or p < 0. So Ep,qr = 0 for all r unless p, q ∈ N

⋃
{0}. Then for any fixed

pair (p, q) once r is sufficiently large, Ep,qr+1 is computed from (E•,•r , dr) using
the complex:

0

Ep,qr

0

dp,qr

dp+r−1,q−r
r

and thus we have canonical isomorphisms

Ep,qr ' Ep,qr+1 ' E
p,q
r+2 ' . . . .

We denote this module Ep,q∞ . The same idea works in other circumstances,
for example if the double complex is only nonzero in a finite number of rows
(Ep,q = 0 for all q ∈ [q0, q1]. This will come up for example in the mapping
cones.

Now we are ready to describe the first few pages of the spectral sequence
explicitly. As stated above, the differential d0 on E•,•0 = E•,• is defined to be
d→, the rows are complexes:

• • •

The 0th page E0 : • • •

• • •

and so E1 is just the table of cohomologies of the rows. There are now vertical
maps dp,q1 : Ep,q1 → Ep,q+1

1 of the row cohomology groups, induced by d↑,
and these make the columns into complexes (which is essentially that a map
of complexes induces a map on homology). We have “used up the horizontal
morphisms, but the vertical differentials live on”.

• • •

The 1st page E1 : • • •

• • •

Now, we take, again, cohomology of d1 on E1, giving us a new table Ep,q2 . It
turns out that there are natural morphisms from each entry to the entry two
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above and one to the left, and that the composition of these two is 0.

• • •

The 2nd page E2 : • • •

• • •

This is the begining of the pattern and we are able to see by now that the
morphisms of the 3rd page won’t fit in our 3 x 3 diagram.

Definition 3.2.2. A cohomology spectral sequence is said to be bounded if for
each n ∈ Z there are finitely many non-zero terms of total degree n in Ep,qr , i.e.
there are finitely many Ep,qr 6= 0 with p + q = n. If so, then for each p and
q there is an r0 such that Ep,qr = Ep,qr+1 for all r ≥ r0. We write Ep,q∞ for this
stable value of Ep,qr .

We say that a bounded spectral sequence →E
•,•
• converges to H•(E•) = Hn

if we are given a family of objects Hn each having a finite filtration

0 = F tHn ⊆ · · · ⊆ F p+1Hn ⊆ F pHn ⊆ F p−1Hn ⊆ · · · ⊆ F sHn = Hn

and we are given isomorphisms Ep,q∞
∼= F pHn/F p+1Hn.

We write Ep,qr ⇒ Hp+q for the bounded convergence.

If a first quadrant cohomology spectral sequence converges to H•, then each
Hn has a finite filtration of length n+ 1:

0 = Fn+1Hn ⊆n+1 Hn ⊆ · · · ⊆ F 1Hn ⊆ F 0Hn = Hn.

The bottom peace FnHn ' En,0∞ is located on the x−axis (called the base
term) and the top quotient Hn/F 1Hn ' E0,n

∞ is located on the y−axis (called
the fiber term). Note that each arrow leaving the y−axis is zero and each arrow
landing on the x−axis is also zero. The resulting maps E0,n

r → E0,n
∞ ⊂ Hn and

Hn → En,0∞ ⊂ En,0r are called the edge homomorphisms.

Theorem 3.2.3. There is a filtration of Hn(E•) by Ep,q∞ where p+q = n. More
precicely, there is a filtration

E0,n
∞

E1,n−1
∞

↪−−−−→ ?
E2,n−2
∞

↪−−−−→ . . .
En,0∞
↪−−−→ Hn(E•), (3.1)

where the quotients are displayed above each inclusion.

A tip for remember which way the quotients are supposed to go. The dif-
ferentials on later and later pages point deeper and deeper into the filtration.
Thus the entries in the direction of the later arrowheads are the subobjects, and
the entries in the direction of the later “arrowtails” are quotients. This tip has
the advantage of being independent of the details of the spectral sequence, e.g.,
the “quadrant” or the orientation.

Although the filtration gives only partial information about H•(E•), some-
times one can find H•(E•) precisely. For example, if all Ei,k−i∞ = 0 or if all



3.3 The Completion of the Definition of Spectral Sequences · 37

but one of them are zero (e.g. E•,•r has precisely one non-zero row or column).
Another example is in the category of vector spaces over a field, in which case
we can find the dimension of Hk(E•) . Also, in “lucky circumstances”, E2 (or
some other small page) already equals E∞.

Remark 3.2.4. The Other Orientation
We could as well have done everything in the opposite direction, i.e. revers-

ing the roles of horizontal and vertical morphisms.Then the sequence of arrows
giving the spectral sequence would look like this:

•

• •

•

•

This spectral sequence is denoted by ↑E
•,•
• (with the “upward orientation”).

Then we would again get pieces of a filtration of H•(E•) (where we would have
to be a bit careful with the order with which ↑E

p,q
∞ corresponds to the subquotients

- it is the opposite order of that of eq.(3.1) for →E
p,q
∞ . In general there is no

isomorphism between ↑E
p,q
∞ and →E

p,q
∞ .

Whichever map we choose, either the horizontal or the vertical one, both
algorithms compute information about the same thing (H•(E•)).

3.3 The Completion of the Definition of Spectral Sequences

To complete the definition of spectral sequences we have yet to describe the
pages and the diffential of the spectral sequence explicitly, and prove that they
behave the way we want them to. More precisely, we want:

(i) describe Ep,qr and consequently verify that Ep,q0 = Ep,q,

(ii) describe dr and verify that d2
r = 0,

(iii) verify that Ep,qr+1 is given by cohomology using dr,

(iv) verify that Hk(E•) is filtered by Ep,k−p∞ as in eq.(3.1).

Remark 3.3.1. Spectral sequences are actually spectral functors. It is useful
to notice that the proof implies that spectral sequences are functorial in the 0-
th page: the spectral sequence formalism has good functorial properties in the
double complex.

We say that an element of E•,• is a (p, q)-strip if it is an element of
⊕i 6=0E

p−i,q+i. Its non-zero entries lie on an ”upper leftwards” semi-infinite
intidiagonal starting with position (p, q). We say that the (p, q)-entry (the pro-
jection to Ep,q is the leading term of the (p, q)-strip. Let Sp,q ⊂ E•,• be the
submodule of all the (p, q)-strips. Clearly, Sp,q ⊂ Ep+q and Sk,0 = Ek.
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. . . 0 0 0 0

0 ∗p−2,q+2 0 0 0

0 0 ∗p−1,q+1 0 0

0 0 0 ∗p,q 0

0 0 0 0 0p+1,q−1

Note that the differential d = d↑ + d→ sends a (p, q)-strip x to a (p+ 1, q)-strip
dx. If dx is futhermore a (p − r + 1, q + r)-strip r 6= 0, then we say that x is
an r-closed (p, q)-strip - ”the differential knocks x atleast r terms deepre into
the filtration”. We denote the set of all r-closed (p, q)-strips Sp,qr . For example,

Sp,q0 = Sp,q and Sk,00 = Ek.
An element of Sp,qr may be depicted as:

. . . ?

∗p+2,q−2 0

∗p+1,q−1 0

∗p,q 0

We are now ready to give a first definition of Ep,qr , which by construction
should be a subquotient of Ep,q. We describe it as such by describing two
submodules Y p,qr ⊂ Xp,q

r ⊂ Ep,q, and defining

Ep,qr =
Xp,q
r

Y p,qr
.

Let Xp,q
r be the elements of Ep,q that are leading terms of r-closed (p, q)-strips.

Note that, by definition, d sends (r−1)-closed (p+(r−1)−1, q− (r−1))-strips
to (p, q)-strips.
Let Y p,qr be the leading (p, q)-terms of the differential d of (r − 1)-closed
(p + (r − 1) − 1, q − (r − 1))-strips (where the differential is considered as a
(p, q)-strip).

Remark 3.3.2. It is easy to verify that Ep,q0 is (canonically isomorphic to)
Ep,q.

Now, for the defintion of the differential dr of such an element x ∈ Xp,q
r ,

we take any r-closed (p, q)-strip with leading term x. Its differential d is a
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(p − r + 1, q + r)-strip, and we take its leading term. The choise of r-closed
(p, q)-strip, means that is not a well-defined element of Ep,q. But it is well-
defined modulo the differentials of the (r − 1)-closed (p − 1, q + 1)-strips, and
hence gives a map Ep,qr → Ep−r+1,q+r

r .
This definition is fairly short, but not much fun to work with, so we will

forget it, and instead dive into a snakes’ nest of subscripts and superscripts.

Remark 3.3.3. The following are easily verified.

(i) Sp,q = Sp−1,q+1 ⊕ Ep,q.

(ii) Any closed (p, q)-strip is r-closed for all r, i.e. any element x ∈ Sp,q =
Sp,q0 that is a cycle (dx = 0), is automatically in Sp,qr for all r. For
exapmple, this holds when x is a boundary (i.e. of the form dy).

(iii) For fixed p, q
Sp,q0 ⊃ Sp,q1 ⊃ · · · ⊃ Sp,qr ⊃ . . .

stabilizes for r >> 0. (i.e. Sp,qr = Sp,qr+1 = . . . ). Denote the stabilized
module Sp,q∞ . Now, Sp,q∞ is the set of closed (p, q)-strips (those strips an-
nihilated by d, i.e. the cycles). In particular, Sk,0∞ is the set of cycles in
Ek.

Definition 3.3.4. Define

Xp,q
r =

Sp,qr

Sp−1,q+1
r−1

and

Y p,qr =
dS

p+(r−1)−1,q−(r−1)
r−1 + Sp−1.q+1

r−1

Sp−1,q+1
r−1

.

Then Y p,qr ⊂ Xp,q
r .

We define

Ep,qr =
Xp,q
r

Y p,qr
=

Sp,qr

dS
p+(r−1)−1,q−(r−1)
r−1 + Sp−1.q+1

r−1

.

We have completed our first request (i).

Corollary 3.3.5. Ep,q∞ gives subquotients of Hk(E•): Ep,qr stabilizes as r →∞.

For r >> 0, interpret Sp,qr /dS
p+(r−1)−1,q−(r−1)
r−1 as the cycles in Sp,q∞ ⊂ Ep+q

modulo those boundary elements of dEp+q−1 contained in Sp,q∞ . Finally, we can
show that Hk(E•) is indeed filtered (as described in the previous paragraph).

We have completed our forth request (iv).
For the definition of the map dr : Ep,qr → Ep−r+1,q+r

r we notice that it is
induced by our differential d: d sends r-closed (p, q)-strips Sp,qr to (p−r+1, q+r)-
strips Sp−r+1,q+r, by the definition ”r-closed”, whose image lies in Sp−r+1,q+r

r .
Again, we can verify that d sends

dS
p+(r−1)−1,q−(r−1)
r−1 +Sp−1,q+1

r−1 → dS
(p−r+1)+(r−1)−1,(q+r)−(r−1)
r−1 +S

(p−r+1)−1,(q+r)−1
r−1 .

The first term on the left goes to 0 from d2 = 0 and the second term on the left
goes to the first term on the right.
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Definition 3.3.6.
dr : Ep,qr → Ep−r+1,q+r

r

where

Ep,qr =
Sp,qr

dS
p+(r−1)−1,q−(r−1)
r−1 + Sp−1,q+1

r−1

and

Ep−r+1,q+r =
Sp−r+1,q+r
r

dSp−1,q+1
r−1 + Sp−r,q+r+1

r−1

and clearly d2
r = 0 (as we may interpret it as taking an element of Sp,qr and

applying d twice).

We have completed our second request (ii).
Now, to verify the cohomology of dr at Ep,qr is Ep,qr+1:

Sp+r−1,q−r
r

dSp+2r−3,q−2r+1
r−1 + Sp+r−2,q−r+1

r−1

dr−−−−−−−−−→ Sp,qr

dSp+r−2,q−r+1
r−1 + Sp−1,q+1

r−1

dr−−−−−−−−−→ Sp−r+1,q+r
r

dSp−1,q+1
r−1 + Sp−r,q+r+1

r−1

(3.2)

is naturally identified with

Sp,qr+1

dSp+r−1,q−r
r + Sp−1,q+1

r

.

We begin by understanding the kernel of the right map on eq.(3.2). Suppose
that a ∈ Sp,qr is mapped to 0. This means that da = db+ c, where b ∈ Sp−1,q+1

r−1 .

If u = a − b, then u ∈ Sp,q, while du = c ∈ Sp−r,q+r+1
r−1 ⊂ Sp−r,q+r+1, from

which u is (r + 1)-closed, i.e. u =∈ Sp,qr+1. Thus, a = b + u ∈ Sp−1,q+1
r−1 + Sp,qr+1.

Conversely, any a ∈ Sp−1,q+1
r−1 + Sp,qr+1 satisfies

da ∈ dSp−1,q+1
r−1 + dSp,qr+1 ⊂ dS

p−1,q+1
r−1 + Sp−r,q+r+1

r−1

using dSp,qr+1 ⊂ S
p−r,q+r+1
0 and Remark 3.3.3 (ii). So any such a is indeed the

kernel of

Sp,qr → Sp−r+1,q+r
r

dSp−1,q+1
r−1 + Sp−r,q+r+1

r−1

.

Hence, the kernel of the right map of eq.(3.2) is

Ker =
Sp−1,q+1
r−1 + Sp,qr+1

dSp+r−2,q−r+1
r−1 + Sp−1,q+1

r−1

.

Next, the image of the left map of eq.(3.2) is immediately

Im =
dSp+r−1,q−r

r + dSp+r−2,q−r+1
r−1 + Sp−1,q+1

r−1

dSp+r−2,q−r+1
r−1 + Sp−1,q+1

r−1

=
dSp+r−1,q−r

r + Sp−1,q+1
r−1

dSp+r−2,q−r+1
r−1 + Sp−1,q+1

r−1
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as Sp+r−1,q−r
r contains Sp+r−2,q−r+1

r−1 .
Thus the cohomology of eq.(3.2) is:

Ker/Im =
Sp−1,q+1
r−1 + Sp,qr+1

dSp+r−1,q−r
r + Sp−1,q+1

r−1

=
Sp,qr+1

Sp,qr+1 ∩ (dSp+r−1,q−r
r + Sp−1,q+1

r−1 )

where the equality on the right uses the fact that dSp+r−1,q−r
r ⊂ Sp,qr+1 and an

isomorphism theorem. Thus we must show that

Sp,qr+1 ∩ (dSp+r−1,q−r
r + Sp−1,q+1

r−1 ) = dSp+r−1,q−r
r + Sp−1,q+1

r .

However,

Sp,qr+1 ∩ (dSp+r−1,q−r
r + Sp−1,q+1

r−1 ) = dSp+r−1,q−r
r + Sp,qr+1 ∩ S

p−1,q+1
r−1

and Sp,qr+1 ∩ S
p+1,q−1
r−1 consists of (p− 1, q + 1)-strips whose differential vanishes

up to row p+ r, from which Sp,qr+1 ∩ S
p−1,q+1
r−1 = Sp−1,q+1

r as desired.
We have completed our third and final request (iii).

3.4 Examples

We are now ready to see how this is useful. The moral of these examples is the
following. In the past, we may have proved various facts involving various sorts
of diagrams, by chasing elements around. Now, we will just plug them into a
spectral sequence, and let the spectral sequence machinery do your chasing for
us.

Example 3.4.1. Proving the Snake Lemma.
Consider the diagram:

0 D E F 0

0 A B C 0

α β γ

where the rows are exact in the middle (at A, B, C, D , E and F) and the
squares commute. Normally the Snake Lemma is described with the vertical
arrows pointing downwards, but we want to fit this into our Spectral Sequence
conventions. We wish to show that there is an exact sequence:

0→ Kerα→ Kerβ → Kerγ → Cokerα→ Cokerβ → Cokerγ → 0. (3.3)

We ”plug” this into our spectral sequence machinery. We first compute the
cohomology using the rightward orientation, then, because the rows are exact,
Ep,q1 = 0, so the spectral sequence has already converged: Ep,q∞ = 0

We next compute this ”0” in another way, by computing the spectral sequence
using the upward orientation. Then ↑E

•,•
1 (with its differentials) is:

0 Cokerα Cokerβ Cokerγ 0

0 Kerα Kerβ Kerγ 0
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Then, ↑E
•,•
2 is of the form:

0 0

0 ?? ? ? 0

0 ? ? ?? 0

0 0

We see that after ↑E
•,•
2 all the terms will stabilize except for the double-question-

marks - all the maps to and from the single-question-marks are to and from 0
- entries. And after ↑E

•,•
3 , even these two double-question-mark terms will

stabilize. But in the end our complex must be the 0 complex. This means that
in ↑E

•,•
2 all entries must be 0, except for the two double-question-marks, and

these two must be isomorphic. That means that 0 → Kerα → Kerβ → Kerγ
and Cokerα → Cokerβ → Cokerγ → 0 are both exact - which comes from the
vanishing of the single question marks - and

Coker(Kerβ → Kerγ) ' Ker(Cokerα→ Cokerβ)

is an isomorphism - that comes from the equality of the double question marks.
Taken together we have proven the exactness of eq.(3.3) and hence the Snake
Lemma.

We notice that in the end we didn’t really care about the double complex, we
just needed it as a prop to prove the Snake Lemma.

Example 3.4.2. The Five Lemma.
Suppose

F G H I J

A B C D E

α β γ δ ε

where the rows are exact and the squares commute.
Suppose that α, β, δ, ε are isomorphisms. We will show that γ is an isomor-

phism.
We first compute the cohomology of the total complex using the rightward

orientation. We choose this because we see that we will get a lot of zeros.
Then, →E

•,•
1 looks like this:

? 0 0 0 ?

? 0 0 0 ?

Then, →E
•,•
2 looks similar, and the sequence will converge by E2, as well as

never get any arrows between two nonzero entries in a table thereafter. We
can’t conclude that the cohomology of the total complex vanishes, but we can
note that it vanishes in all but four degrees - and most important, it vanishes in



3.5 Spectral Sequence of a Double Complex · 43

the two degrees corresponding to the entries C and H (the source and target of
γ).

We next compute this using the upward orientation, then, ↑E
•,•
1 looks like

this:

0 0 ? 0 0

0 0 ? 0 0

and the spectral sequence converges at this step. We wish to show that these two
question marks are zero. But they are precisely the cohomology groups of the
total complex that we just showed were zero.

3.5 Spectral Sequence of a Double Complex

There are two filtrations associated to every double complex E•,• (one by
columns and one by rows), resulting to two spectral sequences related to the
homology of Tot(E).

Definition 3.5.1. (Filtration by Columns) If E = E•,• is a double complex,
we may filter the (product or direct sum) total complex Tot(E) by the columns
of E, letting IFnTot(E) be the total complex of the double subcomplex of C:

(Iτ≤nE)p,q = Ep,q, p ≤ n, and 0 otherwise.

. . . ∗ ∗ 0 0

. . . ∗ ∗ 0 0

. . . ∗ ∗ 0 0

This gives rise to a spectral sequence IEp,qr starting with the 0-page being the
double complex itself and the differentials being its “rightward” morphisms:

IEp,q0 = Ep,q and d0 =→ d.

So the first page -which is the essentially the cohomology induced by the
“rightward” morphisms of the double complex- and its maps -which are induced
on cohomology from the “upward” morphisms- are:

IEp,q1 = Hq(Ep,•) and d1 =↑ d∗ : Hq(Ep,•)→ Hq(Ep+1,•).

So now, continuing this construction, we get:

IEp,q2 = Hp(Hq(E)).

Remark 3.5.2. If E is a first quadrant double complex, i.e. p ≥ 0, q ≥ 0, the
filtration is canonically bounded, and we have a convergent spectral sequence:

IEp,q2 = Hp(Hq(E))⇒ Hp+q(Tot(E)).
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Filtering the double complex by rows (by doing the same thing but inter-
changing the roles of p and q in the notation and also the roles of “upward” and
“rightward” morphisms), gives rise to a spectral sequence IIEp,qr with its 0-page
being the double complex itself and differentials being the “upward” morphisms:

IIEp,q0 = Eq,p and d0 =↑ d.

The next two pages are:

IIEp,q1 = Hq(E•, p) and d1 =→ d∗ : Hq(E•,p)→ Hq(E•,p+1),

IIEp,q2 = Hp(Hq(E)).

Of course, if E is a first quadrant double complex, this filtration is canonically
bounded, and the spectral sequence converges to to Hp+q(Tot(E)).

Remark 3.5.3. Interchange of p and q in the notation should not be surprising,
since interchanging the roles of p and q converts the filtration by rows into the
filtration by columns and interchanges the spectral sequences IE and IIE.



Chapter 4

Derived Categories

Behind the construction of the derived category there is a general procedure,
called localization. Roughly, one constructs the localization of a category with
respect to a localizing class of morphisms. In our case, these are the quasi-
isomorphisms. It turns out that quasi-isomorphisms indeed form a localizing
class in K(A ) (but not in Ch(A )). For now we won’t bother with that, we will
instead skip that part and assume that derived categories exist in “our universe”
(Theorem 4.1.2). In the following chapter (4.1) we see what is a morphism in
derived category and how composition of morphisms has meaning. In chapter
(4.2) we will do all the work necessary to explain why derived categories exist
through localizing the class of quasi-ismorphisms.

4.1 A Thorough Introduction to Derived Categories

Definition 4.1.1. A morphism of complexes f : A• −→ B• is called a quasi-
isomorphism (or qis, for short) if for all i ∈ Z the induced map Hi(f) :
Hi(A•) −→ Hi(B•) is an isomoprhism.

With this definition we can reveal that the central idea for the definition of
the derived category is this: quasi-isomorphic complexes should become isomor-
phic objects in the derived category. We shall begin with the following existence
theorem. Details of the construction are provided in the next chapter.

Theorem 4.1.2. Let A be an abelian category and let Ch(A ) be its category
of complexes. Then, there exists a category D(A ), the derived category of A ,
and a functor

Q : Ch(A ) −→ D(A )

such that:

(i) If f : A• −→ B•, is a quasi-isomorphism, then Q(f) is an isomorphism
in D(A ).

(ii) Any functor F : Ch(A ) −→ D satisfying property (i) factorizes uniquely
over Q : Ch(A ) −→ D(A ), i.e. there exists a unique functor (up to
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isomorphism) G : D(A ) −→ D with F ' G ◦Q :

Ch(A ) D(A )

D

Q

F

G

The theorem is a pure existence result. In order to be able to work with the
derived category, we need to understand which objects become isomorphic under
Q : Ch(A ) −→ D(A ) and how to represent morphisms in the derived category.
Explaining this, will provide the proof for the above theorem. Moreover, we shall
observe the following facts:

Corollary 4.1.3.

(i) Under the functor Q : Ch(A ) −→ D(A ) the objects of the two categories
are identified.

(ii) The cohomology objects Hi(A•) of an object A• ∈ D(A ) are well-defined
objects of the abelian category A .

(iii) Viewing any object in A as a complex concentrated in degree zero yields
an equivalence between A and the full subcategory of D(A ) that consists
of complexes A• with Hi(A•) = 0 for i 6= 0.

Remark 4.1.4. The term “concentrated in degree zero” refers to mapping an
object A ∈ A to the complex · · · −→ 0 −→ A −→ 0 −→ . . . which identifies A
with a full subcategory of Ch(A ).

Unlike the category of complexes Ch(A ), the derived category D(A ) is not
always abelian, but it is always triangulated. The shift functor descends to
D(A ) and a natural class of distinguished triangles can be found.

Suppose we have a quasi-isomorphism C• −→ A• in Ch(A ). As the derived
category is to be constructed in a way that any quasi-isomorphism (in Ch(A ))
becomes an isomorphism (in D(A )), any morphism of complexes C• −→ B•

will have to count as a morphism A• −→ B• in the derived category. This leads
to the definition of morphism in the derived category as diagrams of the form:

C•

A• B•

qis

In order to make this an actual definition of the morphism in the derived
category, one has to explain when two such “roofs” are considered equal and
how to define their composition. The natural context for both problems is the
homotopy category of complexes K(A ). This will provide an intermediate step
in passing from Ch(A ) to D(A ):

Ch(A ) D(A )

K(A )
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By abuse of notation we shall again write Q : K(A ) −→ D(A ) for the
natural functor.

Let us now recall some useful stuff from Paragraph 1.2. Two morphisms
of complexes

f, g : A• −→ B•

are called homotopically equivalent (f ∼ q) if there exists a collection of homo-
morphisms hi : Ai −→ Bi−1, i ∈ Z, such that

f i − gi = hi+1 ◦ diA + diB ◦ hi.

The homotopy category of complexes K(A ) is the category whose objects
are the objects of Ch(A ), i.e. Ob(K(A )) = Ob(Ch(A )), and morphisms
HomK(A )(A

•, B•) = HomCh(A )(A
•, B•)/ ∼.

That definition makes sense, i.e. that the composition is well-defined in
K(A ), follows from the following assertions which are easily verified.

Proposition 4.1.5.

(i) Homotopy equivalence between morphisms A• −→ B• of complexes is an
equivalence relation.

(ii) Homotopically trivial morphisms form an ideal in the morphisms of Ch(A ).

(iii) If f ' g : A• −→ B•, then Hi(f) = Hi(g) for all i.

(iv) f : A• −→ B• and g : B• −→ A• are given such that f ◦ g ' idB
and g ◦ f ' idA , then f and g are quasi-isomorphisms (and actually,
Hi(f−1) = Hi(g).

Now, for the definition of derived category, we have all the tools we need.

(1) The objects of the derived category come naturally as follows:

Ob(D(A )) = Ob(K(A )) = Ob(Ch(A ))

(2) The set of morphisms HomD(A )(A
•, B•) viewed as objects in D(A ) is

the set of equivalent classes of diagrams of the form:

C•

A• B•

qis

Two such diagrams are equivalent if they are dominated in the homotopy
category K(A ) by a third one of the same short, which means that the
following diagram is commutative:

C•

C•1 C•2

A• B•

qis

qis qis
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Now two things we need to point is that composition of quasi-isomorphisms
is a quasi-isomorphism (i.e. C• → C•1 → A• is a qis) and that the com-
positions C• → C•1 → A• and C• → C•2 → A• are homotopy equivalent,
so since the first one is a qis, so is the second one.

(3) Now we have to define the composition of two morphisms. If two mor-
phisms:

C•1 and C•2

A• B• B• C•

qis qis

are given, we want the composition of both be given by a commutative
diagram (in the homotopy category K(A ) ) of the form

C•0

C•1 C•2

A• B• C•

qis

qis qis

(4.1)

Now we have to make sure that (1) such diagram exists and that (2) is
unique up to isomorphism. Both things hold true but first we need to
remember the concept of mapping cone from Paragraph 1.4 in order to
explain why will it also play the central role in the definition of triangulated
structure on K(A ) and D(A ).

Definition 4.1.6. Let f : A• −→ B• be a complex morphism. Its mapping
cone is the complex Cf with

Cif = Ai+1 ⊕Bi and diCf =

(
−di+1

A 0
f i+1 diB

)
.

It is easy to verify that mapping cone is a complex. Moreover, there exist
two natural complex morphisms:

β : B• −→ Cf and α : Cf −→ A•[1]

given by the natural injection B• → Ai+1 ⊕ Bi and the natural projection
Ai+1 ⊕ Bi → A•[1]i = Ai+1, respectively. The composition B• → Cf → A•[1]
is trivial and the composition A• → B• → Cf is homotopic to the trivial map.
Moreover, B• → Cf → A•[1] is a short exact sequence of complexes, so we
obtain a long exact cohomology sequence:

· · · −→ Hi(A•) −→ Hi(B•) −→ Hi(Cf ) −→ Hi+1(A•) −→ . . .

Also, by construction, any commutative diagram can be completed as follows:

A•1 B•1 Cf1 A•1[1]

A•2 B•2 Cf2 A•2[1]

f1

f2

(the first square commutes).
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Proposition 4.1.7. Let f : A• −→ B• be a morphism of complexes and let
Cf be its mapping cone. Then there exists a complex morphism g : A•[1] −→
Cβ which is an isomorphism in K(A ) and such that the following diagram is
commutative in K(A ):

B• Cf A•[1] B•[1]

B• Cf Cβ B•[1]

β

=

α

=

−f

g =

β ββ αβ

Proof. We define the morphism g : A•[1] −→ Cβ as follows. Let:

A•[1] = Ai+1 −→ Ciβ = Bi+1 ⊕ Cif = Bi+1 ⊕Ai+1 ⊕Bi

be the map (−f i+1, id, 0) which is easy to verify that is indeed a complex mor-
phism.
The inverse g−1 in K(A ) can be given as the projection from the middle factor.
The commutativity (in K(A )) of the square:

A•[1] B•[1]

Cβ B•[1]

−f

g =

αβ

is trivial. The remaining square:

Cf A•[1]

Cf Cβ

α

= g

ββ

does not commute in Ch(A ), but it does commute up to homotopy. To prove
this we need to check that g ◦ g−1 is homotopic to the identity and then use it
to check that g−1 ◦ ββ = α.

Now we’ll see how to use the construction of the mapping cone in order to
compose two morphisms in the derived category.

Proposition 4.1.8. Let f : A• −→ B• be a quasi-isomorphism and g : C• −→
B• be an arbitrary morphism. There exists a commutative diagram in K(A ):

C•0 C•

A• B•

qis

= g

f

qis

.
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Proof. Note that the existence of a commutative diagram (even in Ch(A ) and
even without A• −→ B• being a qis) is trivial. The difficulty consists in con-
structing it such that C•0 −→ C• is a qis.
The idea is to make use of a commutative diagram of the form:

Cβ◦g[1] C• Cf Cβ◦g

A• B• Cf A•[1]

β

g =

f β

Due to the previous proposition (4.1.7) we know that B• Cf A•[1]
β

in K(A ) is isomorphic to the triangle B• Cf Cβ
β

. Now we can just

use the natural morphism Cβ◦g −→ Cβ .
Using the long exact cohomology sequence we can prove that the morphism
C•0

..= Cβ◦g[−1] −→ C• is a quasi-isomorphism.

Now we get the corollary we worked for:

Corollary 4.1.9. The composition of mophisms in the derived category as prop-
posed in eq.(4.1) exists and is well defined.

Proof. Apply Proposition (4.1.8) to

C•1

C•2 B•
qis

.

in eq.(4.1).

4.2 Localizing into the the Derived Category

The derived category D(A ) is defined to be the localization S−1K(A ) of the ho-
motopy category of complexes K(A ) at the collection S of quasi-isomorphisms,
in the sense of the following definition:

Definition 4.2.1. Let S be a collection of morphisms in a category C . A
localization of C with repsect to S is a category S−1(C ) together with a functor
q : C −→ S−1(C ) such that:

(i) q(s) is an isomorphism in S−1(C ) for every s ∈ S,

(ii) any functor F : C −→ D such that F (s) is an isomorphisms for all s ∈ S
factors uniquely through q.

Remark 4.2.2. (1) Compare this to the Theorem 4.1.2 and see the obvious
connection.

(2) Again like in the Theorem 4.1.2 (ii) the localization is unique up to
isomorphism.
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Example 4.2.3. (i) Let S be the collection of chain homotopy equivalences in
Ch(A ). The universal property of Ch(A ) −→ K(A ) (every other functor
from Ch(A ) to some category that sends chain homotopy equivalences to
isomorphisms, factors uniquely through K(A )) shows that K(A ) is the
localization S−1Ch(A ).

(ii) Let Ŝ be the collection of all quasi-isomorphisms in Ch(A ). Since Ŝ
contains S of part (i), it follows that

Ŝ−1Ch(A ) = Ŝ−1(S−1Ch(A )) = S−1K(A ) = D(A ).

Therefore we could have defined the derived category to be the localization
Ŝ−1Ch(A ). However, in order to prove that Ŝ−1Ch(A ) exists we must first
prove that Ŝ−1K(A ) exists, by giving an explicit description of the morphisms.

Remark 4.2.4. If C is a small category, every localization S−1C exists. It is
also not hard to see that S−1C exists when the class S is a set. However, when
the class S is not a set, the existence of localization is a delicate set-theoritic
question.

The issue of whether or not S−1C exists in our universe is important to
some schools of thought, and in particular to topologists who need to localize
with respect to homology theories. In this section we shall consider a special
case in which S−1C can be constructed “within our universe”, the case in which
S is a locally small multiplicative system. Later we will see that the class of
quasi-isomorphisms in K(A ) is a localy small multiplicative system when A is
either ModR of right R-modules or Sheaves(X) of sheaves on a topological
space X.

Definition 4.2.5. A collection S of morphisms in a category C is called a
multiplicative system in C if it satisfies the following self-dual axioms:

(1) S is closed under composition and contains all identity morphisms.

(2) (Ore Condition) If t : Z → Y is in S, then for every g : X → Y in C
there is a commutative diagram in C “gs = tf”, s ∈ S:

W Z

X Y

f

s t

g

.

(3) (Cancellation) If f, g : X → Y are parallel morphisms (i.e. they have
the same source and target) in C then the following two conditions are
equivalent:

sf = sg for some s ∈ S with source Y

ft = gt for some t ∈ S with target X

Example 4.2.6. (Localizations of rings) An associative ring R with unit may
be considered as an additive category R with one object • via R = EndR(•).
Let S be a subset of R closed under multiplication and containing 1. If R is
commutative, or more generally if S is in the center of R, then S is always
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a multiplicative system in R. The usual ring of fractions S−1R is also the
localization S−1R of the category R.

If S is not central, then S is a multiplicative system in R if and only if
it is a “2-sided denominator set” (we won’t bother with its definition) in R.
This is the tool we need to construct the classical ring of fractions S−1R which
is the prototype we will use in the construction of the localization S−1C. Each
element in the ring of fraction is being represented as either fs−1 or t−1g (f, g ∈
R and s, t ∈ S) (remember the Ore Condition above, gs = tf), and again S−1R
is the localization of the category R.

We call a chain in C of the form:

fs−1 : X X1 Ys f

a (left) fraction if s ∈ S.

Now we define two such fractions fs−1 and gt−1 : X X2 Yt g

to be equivalent if a third fraction X X3 Y exists, fitting into a

commutative diagram in C :

X1

X X3 Y

X2

s f

t g

It is easy to verify that this is an equivalence relation. We will writeHomS(X,Y )
for the family of the equivalence classes of such fractions. Unfortunately, there
is no reason for this to be a set, unless S is locally small in the sense of the
following definition.

Definition 4.2.7. A multiplicative system S is called localy small (on the left)
if for each X ∈ Ob(C ) there exists a set of morphisms SX in S, all having target
X, such that for every X1 → X in S there is a map X2 → X1 in C so that the
composite X2 → X1 → X is in SX .

If S is locally small, then to see that HomS(X,Y ) is a set for every X,Y

we make SX the objects of a small category, a morphism from X1 Xs to

X2 Xt being a map X2 X1 in C so that t is X2 X1 X.s

The Ore Condition says that by enlarging SX slightly we can make it a filtered
category. There is a functor HomC ( , Y ) from SX to Sets sendind s to the set
of fraction fs−1, and HomS(X,Y ) to the colimit of this functor.

Composition of fractions is defined as follows:

To compose X X ′ Y
g

with Y Y ′ Z
t

we use the Ore con-

dition to find a diagram

W Y ′ Z

X X ′ Y

s

f

t

g
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with s ∈ S. The composite is the class of the fraction X W Z in
HomS(X,Z). It is not hard to verify that the equivalence class of the composite
is independent of the choice of X ′ and Y ′, so that we have well-defined a pairing

HomS(X,Y )×HomS(Y, Z) −→ HomS(X,Z).

It is clear from the construction that composition is associative. TheHomS(X,Y )
(if they are sets) form the morphisms of a category having the same objects as
C ; it will be our localization S−1C .

Theorem 4.2.8. Let S be a locally small multiplicative system of morphisms
in a category C . Then the category S−1C constructed above exists and is a
localization of C with respect to S. The universal functor q : C −→ S−1C send

f : X −→ Y to the sequence X X Y= f
.

Proof. To see that q : C −→ S−1C is a functor, observe that the composition of

X
=←− X f−→ Y and Y

=←− Y h−→ Z is X
=←− X hf−−→ Z since we can choose t = idX

and f = g. If s ∈ S then q(s) is an isomorphism because the composition

X
=←− X

s−→ Y and Y
s←− X

=−→ X is X
=←− X

=−→ X (take W = X). Finally,
suppose that F : C → D is another functor sendind S to isomorphisms. Define
S−1F : S−1C → D by sending the fraction fs−1 to F (f)F (s)−1. Given g and
t, the equality gs = tf in C shows that F (g)F (s) = F (t)F (f) ⇐⇒ F (t−1g) =
F (fs−1); it follows that S−1F respects composition and is a functor. It is clear
that F = S−1F ◦ q and that this factorization is unique.

Corollary 4.2.9. S−1C can be constructed using equivalence classes of “right

fractions” t−1g : X Y ′ Y
g

t
. provided that S is locally small on the

right (the dual notion of locally small, involving maps Y → Y ′ in S).

Proof. Sop is a multiplicative system in C op. Since C op → (Sop)−1C op is a
localizaion, so is its dual C → [(Sop)−1(C op)]op, but this is constructed using
the fractions t−1g.

Corollary 4.2.10. Two parallel maps f, g : X → Y in C become identified in
S−1C if and only if sf = sg for some s : X3 → X, x ∈ S.

Corollary 4.2.11. Suppose that C has a zero object. The for every X in C :

q(0) ∼= 0 in S−1 ⇐⇒ S contains the zero map X
0−→ X.

Proof. Since q(0) is a zero object in S−1C , q(0) ∼= 0 if and only if the parallel
maps 0, idX : X → X become identified in S−1C , that is, if and only if 0 =
s ◦ 0 = s for some s.

Corollary 4.2.12. If C is an additive category, then so is S−1C, and q is an
additive functor.



54 · Derived Categories

Proof. If C is an additive category, we can add fractions from X to Y as follows.
Given fractions f1s

−1
1 and f2s

−1
2 , we use the Ore condition to find an s : X2 → X

in S and f ′1, f
′
2 : X2 → Y , so that f1s

−1
1 ∼ f ′1s

−1 and f2s
−1
2 ∼ f ′2s

−1; the sum
(f ′1 +f ′2)s−1 is well defined up to equivalence. Since q(X×Y ) ∼= q(X)×q(Y ) (if
the product X ×X exists in C the ” ∼= ” holds) in S−1C , it follows that S−1C
is an additive category and that q is an additive functor.

Now we are ready to show that D(A ) is a triangulated category and that
it exists, at least if A is ModR or Sheaves(X). For this we generalize slightly.
Let K be a triangulated category. The system S arising from a cohomological
functor H : K → A is the collection of all morphisms s in K such that Hi(s)
is an isomorphism for all i ∈ Z. For example, the quasi-isomorphisms Ŝ arise
from the cohomological functor H0.

Proposition 4.2.13. If S arises from a cohomological functor, then

(1) S is a multiplicative system.

(2) S−1K is a triangulated category, and K→ S−1K is a morphism of trian-
gulated categories (in any universe containing S−1K).

Proof. We first show that the system S is multiplicative, by checking that the
axioms hold.

(1) The first Axiom (S is closed under composition and contains all identity
morphisms) is trivial.

(2) To prove this, let f : X → Y and s : Z → Y be given. Embed s in an
exact triangle (s, u, δ) on (Z, Y,C) using (TR1). Complete uf : X → C
into an exact triangle (t, uf, v) on (W,X,C). By axiom (TR3) there is a
morphism g such that

W X C W [−1]

Z Y C Z[−1]

t

g

uf

f

v

= Tg

s u δ

is a morphism of triangles. If H•(s) is an isomorphism, H•(C) = 0.
Applying this to the long exact sequence of the other triangle, we see that
H•(t) is also an isomorphism. The symmetric assertion may be proven
similarly, or by appeal to Kop = A op.

(3) To verify this, we consider the difference h = f − g. Given s : Y → Y ′ in
S with sf = sg, embed s in an exact triangle (u, s, δ) on (Z, Y, Y ′). Note
that H•(Z) = 0. Since HomK(X, ) is a cohomological functor,

HomK(X,Z)
u−→ HomK(X,Y )

s−→ HomK(X,Y ′)

is exact. Since s(f − g) = 0, there is a g : X → Z in K such that
f − g = ug. Embed g in an exact triangle (t, g, w) on (X ′, X, Z). Since
gt = 0, (f − g)t = ugt = 0, whence ft = gt. And since H•(X ′) ∼= H•(X),
that is, t ∈ S. The other implication of axiom (3) is analogous and may
be deducted from the above by appeal to Kop = A op.
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Now suppose that S−1K exists. The formula T (fs−1) = T (f)T (s)−1 defines
a translation functor T on S−1K. To show that S−1K is triangulated, we
need to define exact triangles. Given us−1

1 : A → B, vs−1
2 : B → C and

ws−1
3 : C ←− C ′ → T (A), the Ore condition for S yields morphisms t1 : A′ → A

and t2 : B′ → B in S and u′ : A′ → B′, v′ : B′ → C ′ in C so that us−1
1
∼= t2u

′t−1
1

and vs−1
2
∼= s3v

′t−1
2 . We say that (us−1

1 , vs−1
2 , ws−1

3 ) is an exact triangle in
S−1K just in case (u′, v′, w) is an exact triangle in K.
The verification that S−1K is triangulated is omitted being straightforward
but lengthy; one uses the fact that HomS(X,Y ) may also be calculated using
fractions of the form t−1g.

Corollary 4.2.14. (Universal Property) Let F : K → L be a morphism of
triangulated categories such that F (s) is an isomorphism for all s ∈ S, where
S arises from a cohomological functor. Since q : K → S−1K is a localization,
there is a unique functor F ′ : S−1K→ L such that F = F ′ ◦ q. In fact, F ′ is a
morphism of triagnulated categories.

Corollary 4.2.15. D(A ) is a triangulated category.

Proposition 4.2.16. Let R be a ring. Then D(A ) exists and is a triangulated
category if A is the category ModR or either of

• Presheaves(X), presheaves of R-modules on a topological space X,

• Sheaves(X), sheaves of R-modules on a topological space X.

Proof. We will use A instead of A• for cochain complexes in this proof in order
to make it more coherent and readable.

We have to prove that the multiplicative system Ŝ is locally small. Given
a fixed cochain complex of R-modules A, choose an infinite cardinal number κ
larger than the cardinality of the sets underlying the Ai and R. Call a cochain
complex B petite if its underlying sets have cardinality < κ; there is a set of
isomorphism classes of petite cochain complexes, hence a set SX of isomorphism
classes of quasi-isomorphisms A′ → A with A′ petite.

Given a quasi-ismorphism B → A it suffices to show that B contains a petite
subcomplex B′ quasi-isomorphic to A. Since H•(A) has cardinality < κ, there
is a petite subcomplex B0 of B such that the map f0 : H•(B0)→ H•(A) is onto.
Since Ker(f0) has cardinality < κ, we can enlarge B0 to a petite subcomplex
B1 such that Ker(f0) vanishes in H•(B1). Inductively, we can construct an
increasing sequence of petite subcomplexes Bn of B such that the kernel of
H•(Bn)→ H(A) vanishes in H•(Bn+1), but then their union B′ =

⋃
n∈NBn is

a petite subcomplex of B with

H•(B′) ∼= lim
−→

H•(Bn) ∼= H•(A).

The proof for presheaves is identical, except that κ must bound the number of
open subsets U as well as the cardinality of A(U) for every open subset U of X.
The proof for sheaves is similar, using the following three additional facts:

(1) if κ bounds the cardinal of A(U) for all U and the number of such U , then
κ also bounds the cardinality of the stalks Ax for x ∈ X,
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(2) a map B → A is a quasi-isomorphism in Sheaves(X) if and only if every
map of stalks Bx → Ax is a quasi-isomorphism,

(3) for every directed system of sheaves, we have

H•(lim
−→

Bn) = lim
−→

H•(Bn) .



Chapter 5

Grothendieck’s Spectral
Sequence Theorem

In his classic paper, [Tohoku], Grothendieck introduced a spectral sequence
associated to the composition of two functors. Today it is one of the organi-
zational principles of Homological Algebra. In this chapter our main goal is to
prove Grothendieck’s Spectral Sequence Theorem 5.2.2 using spectral se-
quences and then simplify this result using derived categories. In a nutshell this
very powerful tool Grothendieck has provided us with, is a spectral sequence
that computes the derived functors of the composition of two functors solely by
the knowledge of their derived functors. Before doing all that we will need to
define what a hyper-derived functor is, which will play a crucial role in the
following chapter.

5.1 Hypercohomology

Definition 5.1.1. Let A be an abelian category that has enough projectives. A
(left) Cartan - Eilenberg resolution P•,• of a chain complex A• in Ch(A ) is an
upper half-plane double complex (i.e. Pp,q = 0 if q < 0), consisting of projective

objects of A together with a chain map, called augmentation P•,0
ε−→ A• such

that for every p

(1) If Ap = 0, the column Pp,• is zero.

(2) The maps on boundaries and homology

Bp(ε) : Bp(P, d→)→ Bp(A)

Hp(ε) : Hp(P, d→)→ Hp(A)

are projective resolutions in A . Here Bp(P, d→) denotes the horizontal bound-
aries in the (p, q) spot, that is, the chain complex whose qth term is d→(Pp+1,q).
The chain complexes Zp(P, d→) and Hp(P, d→) = Zp(P, d→)/Bp(ε) are defined
similarly.

Lemma 5.1.2. Every chain complex A• has a Cartan - Eilenberg resolution
P•,• → A•.
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Definition 5.1.3. Let F : A → B be a right exact functor and A be an abelian
category with enough projectives. We define the left hyper-derived functors LiF
as follows:

If A is a chain complex in Ch(A ) and P → A is Cartan - Eilenberg reso-
lution, then LiF (A) = HiTot

⊕(F (P )).

If f : A→ B is a chain map and f̂ : P → Q is a map of Cartan - Eilenberg
resolutions over f , then LiF (f) = HiTot(f̂) from LiF (A) to LiF (B).

Remark 5.1.4. We can show that LF (A) is independent of the choise of P .

Basically if f, g : A → B are homotopic chain maps and f̂ , ĝ : P → Q are
Cartain-Eilenberg resolutions lying over them, then f̂ is chain homotopic to ĝ.
Then we can show that any two Cartan - Eilenberg resolutions P , Q of A are
chain homotopy equivalent. With this we can conclude that for any additive
functor F the chain complexes HiTot

⊕(F (P )) and HiTot
⊕(F (Q)) are chain

homotopy equivalent.

Lemma 5.1.5. If 0 → A → B → C → 0 is a short exact sequence of bounded
below complexes, there is a long exact sequence

· · · → Li+1F (C)
δ−→ LiF (A)→ LiF (B)→ LiF (C)

δ−→ . . . .

Proposition 5.1.6. There is always a convergent spectral sequence

IIE2
p,q = (LpF )(Hq(A))⇒ Lp+qF (A).

If A is bounded below, there is a convergent spectral sequence

IE2
p,q = Hp(LqF (A))⇒ Lp+qF (A).

Corollary 5.1.7.

(1) If A is exact, LiF (A) = 0, for all i.

(2) Any quasi-isomorphism f : A→ B induces isomorphisms

L•F (A) ∼= L•F (B).

(3) If each Ap is F -acyclic, that is, LqF (Ap) = 0, for all q 6= 0, and A is
bounded below, then

LpF (A) = Hp(F (A)), for all p.

As always we can define and get the dual cohomological variant of all the
above:

Hypercohomology Spectral Sequence 5.1.8. Let A be an abelian category
with enough injectives. A (right) Cartan - Eilenberg resolution of a cochain com-
plex A• in Co(A ) is an upper half-plane complex I•,• of injective objects of A ,
together with an augmentation A• → I•,0 such that the maps on coboundaries
and cohomology are injective resolutions of Bp(A) and Hp(A). Every cochain
complex has a Cartan - Eilenberg resolution A → I. If F : A → B is a left
exact functor, we define RiF (A) to be HiTotΠ(F (I)), at least when TotΠ(F (I))
exists in B. The RiF are called the right hyper-derived functors of F .
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If A is in Co(A ), the two spectral sequences arising from the upper half
plane double cochain complex F (I) becomes

IIEp,q2 = (RpF )(Hq(A))⇒ Rp+qF (A), weakly convergent,

and
IEp,q2 = Hp(RqF (A)⇒ Rp+qF (A), if A is bounded below.

5.2 Grothendieck’s Spectral Sequence

In this chapter we will be working in A ,B and C which are abelian categories
such that both A and B have enough injectives. We are given left exact functors
G : A −→ B and F : B −→ C .

A B

C
FG

G

F

Definition 5.2.1. Let F : B −→ C be a left exact functor. An object B ∈ Ob(B)
is called F -acyclic if the derived functors of F vanish on B, that is, RiF (B) = 0
for i 6= 0.

Grothendieck’s Spectral Sequence Theorem 5.2.2. Given the above co-
homological setup, suppose that G sends injective objects of A to F -acyclic
objects of B. Then, there exists a first quadrant cohomological sequence of each
A ∈ Ob(A ):

IEp,q2 = (RpF )(RqG)(A)⇒ Rp+q(FG)(A).

The edge maps in spectral sequence are the natural maps

(RpF )(GA) −→ Rp(FG)(A) and Rq(FG)A −→ F (RqG(A)).

The exact sequence of low term is

0 −→ (R1F )(GA) −→ R1(FG)(A)→ F (R1G(A))→ (R2F )(GA)→ R2(FG)A.

Proof. Choose an injective resolution A → I of A in A and apply G to get a
cochain complex G(I) in B. Using a first quadrant Cartain-Eilenberg resolution
of G(I), form the hyper-derived functors RnF (G(I)). There are two spectral
sequences converging to hyper-derived functors. The first spectral sequence is

IEp,q2 = Hp((RqF )(GI))⇒ (Rp+qF )(GI).

By hypothesis, each G(Ip) is F -acyclic, so (RqF )(G(Ip)) = 0 for q 6= 0. There-
fore this spectral sequence collapses to yield

(RpF )(GI) ∼= Hp(FG(I)) = Rp(FG)(A).

The second spectral sequence is therefore

IIEp,q2 = (RpF )Hq(G(I))⇒ Rp+q(FG)(A).

Since Hq(G(I)) = RqG(A), it is Grothendieck’s spectral sequence.
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Corollary 5.2.3. (Homology Spectral Sequence) Let A , B and C be abelian
categories such that both A and B have enough projectives. Suppose given
right exact functors G : A → B and F : B → C such that G sends projective
objects of A to F -acyclic objects of B. Then there is a convergent first quadrant
homology spectral sequence for each A ∈ Ob(A ):

E2
p,q = (LpF )(LqG)(A)⇒ Lp+q(FG)(A).

The exact sequence of low degree term is

L2(FG)A→ (L2F )(GA)→ F (L1G(A))→ L1(FG)A→ (L1F )(GA)→ 0.

5.3 Morphisms of Triangulated Cateogories

This will set the stage for the next paragraph: we will state some known results
which will later be useful to us. The proofs will be omitted.

Definition 5.3.1. A morphism F : K → K′ of triangulated categories is a
(covariant) additive functor that commutes with the translation functor T and
sends exact triangles to exact triangles.

For example, suppose we are given a morphism F : A → B between two
abelian categories. Since F preserves chain homotopy equivalences, it extends
to additive functors Ch(A )→ Ch(B) and K(A )→ K(B). Since F commutes
with translation of chain complexes, it preserves mapping cones and exact tri-
angles. Thus F : K(A )→ K(B) is a morphism of triangulated categories.

We would like to extend F to a functor D(A ) → D(B). If F : A → B is
exact, this is easy. However, if F is not exact, the functor K(A )→ K(B) will
not preserve quasi-isomorphisms, and this may not be possible. The thing to
expect is that if F is left or right exact, then the derived functors of F will be
needed to extend something like the hyper-derived functors of F.

Let K denote K+(A ) the category of bounded bellow cochain complexes or
any other localizing triangulated subcategory of K(A ), and let D denote the
full subcategory of the derived category D(A ) corresponding to K.

Definition 5.3.2. Let F : K→ K(B) be a morphism of triangulated categories.
A (total) right derived functor of F on K is a morphism RF : D → D(B) of
triangulated categories, together with a natural transformation ξ:

qF : K K(B) D(B)

(RF )q : K D D(B)

ξ

which is universal in the sense that if G : D → D(B) is another morphism
equipped with a natural transformation ζ : qF ⇒ Gq, then there exists a unique
natural transformation η : RF ⇒ G so that ζA = ηqA ◦ ξA for every A in D.

This universal property guarantees that if RF exists, it is unique up to nat-
ural isomoporphism and that if K′ ⊂ K, then there is a natural transformation
from the right derived functor R′F on D′ to the restriction of RF to D′.

Similarly we can define the left derived functor of F as a morphism LF :
D → D(B) together with a natural transformation ξ : (LF )q ⇒ qF satisfying
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the dual universal propery (G factors uniquely through η : G⇒ LF ). Sine LF
is R(F op)op, where F op : Kop → K(Bop) we can translate any statement about
RF into a dual statement about LF .

Remark 5.3.3. If F : A → B is an exact functor, F preserves quasi-isomorphisms.
Hence F extends trivially to F : D(A ) → D(B). In effect, F is its own left
derived functor.

Theorem 5.3.4. (Existence Theorem) Let F : K+(A ) → K(B) be a mor-
phism of triangulated categories. If A has enough injectives, then the right
derived functor R+F exists on D+(A ), and if I is a bounded bellow complex of
injectives, then

R+F (I) ∼= qF (I).

Corollary 5.3.5. Let F : A → B is an additive functor between abelian cate-
gories. If A has enough injectives, then the hyper-derived functors RiF (X) are
the cohomology of RF (X): RiF (X) ∼= HiR+F (X) for all i.

Theorem 5.3.6. (Generalized Existence Theorem) Suppose that K′ is a trian-
gulated subcategory of K such that:

(1) Every X in K has a quasi-isomorphism X → X ′ to an object of K′.

(2) Every exact complex in K′ is F-acylic.

Then D′
'−→ D and RF : D ' D′

R′F−−−→ D(B) is a right derived functor of F.

5.4 Replacing Spectral Sequences

Theorem 5.4.1. (Composition Theorem) Let K ⊂ K(A ) and K′ ⊂ K(B)
be localizing triangulated subcategories, and suppose given two morphisms of
triangulated categories G : K → K′ and F : K′ → K(C ). Assume that RF ,
RG and R(FG) exist, with RF (D) ⊆ D′. Then:

(1) There is a unique natural transformation ζ = ζF,G : R(FG)⇒ RF ◦RG,
such that the following diagram commutes in D(C ) for each A in K.

qFG(A) (RF )(qGA)

R(FG)(qA) (RF )(RG)(qA)

ξF

ξFG ξG

ζqA

(2) Suppose that there are triangulated subcategories K0 ⊆ K and K′0 ⊆ K′

satisfying the hypothesis of the Generalized Existance Theorem 5.3.6 for
G and F, and suppose that G sends K0 to K′0. Then ζ is an isomorphism

ζ : R(FG) ∼= (RF ) ◦ (RG).

Proof. The first part follows from the universal property 5.3.2 of R(FG). For
the second one, it suffices to observe that if A is in K0, then

R(FG)(qA) = qFG(A) ∼= RF (q(GA)) ∼= RF (RG(qA)).
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Corollary 5.4.2. (Grothendieck’s Spectral Sequences) Let A , B and C be
abelian categories that both A and B have enough injectives, and suppose we
are given left exact functors G : A → B and F : B → C . If G sends injective
objects of A to F-acyclic objects of B, then

ζ : R+(FG) ∼= (R+F ) ◦ (R+G).

There is also a convergent spectral sequence for all A:

Ep,q2 = (RpF )(RqG)(A)⇒ Rp+q(FG)(A).

If A is an object of A , this is Grothendieck’s Spectral Sequence of 5.2.2.

Proof. The hypercohomology spectral sequence 5.1.8 converging to (Rp+qF )(RG(A))
has Ep,q2 term (RpF )Hq(RG(A)) = (RpF )(RqG(A)).

Conceptually, the composition of functors R(FG) ∼= (RF ) ◦ (RG) is much
simpler than the original spectral sequence.

5.5 The Leray Spectral Sequence

We will, now, state some useful facts in the form of reminders (for proofs see
[CW]). The goal of this section is to see a direct application of Grothendieck’s
Spectral Sequence 5.2.2, the Leray Spectral Sequence 5.5.8.

Definition 5.5.1. We say that a pair L : A → B and R : B → A of
additive functors between abelian categories are adjoint, if there is a natural
isomorphism

τ : HomB(L(A), B)
'−→ HomA (A,R(B)).

Remark 5.5.2. In this case, L is right exact and R is left exact.

Definition 5.5.3. Now, let f : X → Y be a continuous map of topological
spaces. For any sheaf F on X, we define the direct image sheaf f∗F on Y by
(f∗F)(V ) = F(f−1V ) for every open V on Y .

Remark 5.5.4. f∗F is a sheaf.

Definition 5.5.5. For any sheaf G on Y , we can define the inverse sheaf f−1G
to be the sheafification of the presheaf sending an open set U in X to the direct
limit lim

−→
G(V ) over the poset of all open sets V in Y containing f(U).

We can show that there is a natural map f−1f∗F → F , for every sheaf F
on X, and a natural map G → f∗f

−1G, for every sheaf G on Y . This means
that f−1 and f∗ are adjoint to each other, so f−1 preserves projectives and f∗
preserves injectives. Moreover, f−1 is right exact and f∗ is left exact.

Definition 5.5.6. The derived functors Rif∗ are called the higher direct im-
age sheaf functors.

Definition 5.5.7. The global sections functor Γ from Sheaves(X) to Ab is
the functor Γ(F) = F(X).
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The global sections functor Γ is right adjoint to the constant sheaves functor,
so Γ is left exact.

The right derived functors of Γ are the cohomology functors on X:

Hi(X,F) = RiΓ(F).

Leray Spectral Sequence 5.5.8. In this setup, if F is a sheaf of abelian
groups on X, the global sections of f∗F is the group

(f∗F)(Y ) = F(f−1Y ) = F(X) :

Sheaves(X) Sheaves(Y )

Ab
Γ

f∗

Γ

The Grothendieck Spectral Sequence 5.2.2 in this case is called the Leray Spec-
tral Sequence: since RpΓ is sheaf cohomology, it is actually written as

E2
pq = Hp(Y,Rqf∗F)⇒ Hp+q(X,F).

This spectral sequence is a tool to much of modern algebraic geometry.





Appendix A

Projective And Injective
Modules

Definition A.0.1. A covariant functor T : RMod → Ab is an exact functor
if, for every exact sequence

0 −→ A
i−→ B

p−→ C −→ 0

the sequence

0 −→ T (A)
T (i)−−−→ T (B)

T (p)−−−→ T (C) −→ 0

is also exact.
A contravariant functor is an exact functor if there is always exactness of

0 −→ T (C)
T (p)−−−→ T (B)

T (i)−−−→ T (A) −→ 0

For the next theorem, take note that every left module is a quotient of a free
left module.

Theorem A.0.2. Let F be a free left R-module. If p : A −→ A′′ is surjective,
then for every h : F −→ A′′, there exists an R-homomorphism g, making the
following diagram commute:

F

A A′′ 0

h
g

p

The proof for this is easy and it’s emitted.

Definition A.0.3. A lifting of a map h : C −→ A′′ is a map g : C → A with
pg = h

C

A A′′

h
g

p

That g is a lifting of h says that h = p∗(g)
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If C is any, not necessarily free, module, then a lifting, if one exists, need
not be unique. Exactness of

0→ Ker(p)
i−→ A

p−→ A′′

where i is the inclusion, gives pi = 0. Any other lifting has the form g + if for
f : C → Kerp; this follows from exactness of

0→ Hom(C,Kerp)
i∗−→ Hom(C,A)

p∗−→ Hom(C,A′′)

for any two liftings of h differ by a map if ∈ Imi∗ = Kerp∗.

Definition A.0.4. A left R-module P is projective if, whenever p is surjective
and h is any map, there exists a lifting g, that is, there exists a map g making
the following diagram commute:

P

A A′′ 0

h
g

p

Theorem A.0.2 says that every free left R-module is projective. Though, not
every projective R-module is free, it depends on the ring R.

Projective modules arise in a natural way: We know that the Hom functors
are left exact; that is, for any module P , applying HomR(P,2) to an exact
sequence

0→ A′
i−→ A

p−→ A′′

gives an exact sequence

0→ HomR(P,A′)
i∗−→ HomR(P,A)

p∗−→ HomR(P,A′′).

Proposition A.0.5. A left R-module P is projective if and only if HomR(P,2)
is an exact functor.

Remark A.0.6. Since HomR(P,2) is a left exact functor, the point of the
proposition is that p∗ is surjective whenever p is surjective.

Proof. If P is projective, then for some h : P → A′′, there exists a lifting g :
P → A with pg = h. Thus, if h ∈ HomR(P,A′′), then h = pg = p∗(g) ∈ Imp∗,
and so p∗ is surjective. Hence, HomR(P,2) is an exact functor.

For the converse, assume that Hom(P,2) is an exact functor, so that p∗ is
surjective: if h ∈ HomR(P,A′′), there exists g ∈ HomR(P,A) with h = p∗(g) =
pg. This says that given p and h, there exists a lifting g making the diagram
commute. That is, P is projective.

Proposition A.0.7. A left R-module P is surjective if and only if every exact

sequence 0→ A
i−→ B

p−→ P → 0 splits.

The proof is emitted.
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Definition A.0.8. A left R-module E is injective if, whenever i is an injec-
tion, there exists a map g making the following diagram commute:

E

0 A B
i

f
g

Proposition A.0.9. A left R-module E is injective if and only if Hom(2, E)
is an exact functor.

Proof. If

0→ A
i−→ B

p−→ C → 0

is a short exact sequence, we must prove exactness of

0→ HomR(C,E)
p∗−→ HomR(B,E)

i∗−→ HomR(A,E)→ 0.

Since Hom(2, E) is a left exact contravariant functor, the point of the propo-
sition is that the induced map i∗ is injective. If f ∈ HomR(A,E), there exists
g ∈ HomR(A,E), then f = gi = i∗(g) ∈ Imi∗, and so the induced map i∗ is
surjective. Therefore, Hom(2, E) is an exact functor.

Proposition A.0.10. If a left R-module E is injective, then every short exact

sequence 0→ E
i−→ B

p−→ C → 0 splits.

Proof.

E

0 E B
i

1E
g

Since E is injective, there exists g : B → E making the diagram commute.
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Flat Modules

Definition B.0.1. If R is a ring, then a right R-module A is flat if A
⊗

R2
is an exact functor, that is, whenever

0→ B′
i−→ B

p−→ B′′ → 0

is an exact sequence of left R-modules, then

0→ A⊗R B′
1A⊗i−−−→ A⊗R B

1A⊗p−−−→ A⊗R B′′ → 0

is an exact sequence of abelian groups. Flatness of left R-modules is defined
similarly.

The functors A
⊗

R2 : Mod→ Ab being right exact, gives us that a right
R-module A is flat, if and only if, whenever i : B′ → B is an injection, then
1A ⊗ i : A⊗R B′ → A⊗R B is also an injection.

Proposition B.0.2. Let R be an arbitrary ring.

(i) The right R-module R is a flat right R-module.

(ii) A direct sum
⊕

jMj of right R-modules if flat, if and only if each Mj is flat.

(iii) Every projective right R-module is flat.

Lemma B.0.3. Let 0→ A
i−→ B be an exact sequence of left R-modules, and let

M be a right R-module. If u ∈ Ker(1M ⊗ i), then there are a finitely generated
submodule N ⊆M and an element u′ ∈ N ⊗R A such that:

(i) u′ ∈ Ker(1N ⊗ i),

(ii) u = κ⊗ 1A, where κ : N →M is the inclusion.

Proposition B.0.4. If every finitely generated submodule of a right R-module
M is flat, then M is flat.

Proof. It suffices to prove the exactness of 0 → A
i−→ B gives exactness of

0 → M ⊗R A
1M⊗i−−−−→ M ⊗R B. If u ∈ Ker(1M ⊗ i), then the lemma provides

a finitely generated submodule N ⊆ M and an element u′ ∈ N ⊗R A with
u′ ∈ Ker(1N ⊗ i) and u = (κ⊗ 1A)(u′). Now 1N ⊗ i is injective, by hypothesis,
so that u′ = 0; moreover, u = (κ⊗1A)(u′) = 0. Therefore, 1M ⊗ i is an injection
and M is flat.
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Limits

We say that a category is a small category if the objects and the morphisms
are sets. Now, if F is any small category and C is any category, then a functor
F : F → C (with an onject Ai ∈ C for every i ∈ F , and appropriate commuting
morphisms dictated by F ) is said to be a diagram indexed by F . We call F
an index category.

Example C.0.1. (i) One useful indexed category is a partially ordered set,
in which there is at most one morphism between any two objects.

(ii) Another index category is the following square:

∗ ∗

∗ ∗

If C is another category, the functor from square to C is precicely the data
of a commuting diagram.

Definition C.0.2. The limit of the diagram is an object lim
←F

Ai of C along

with morphisms fj : lim
←F

Ai → Aj for each j ∈ F , such that if m : j → k is a

morphism in F , then the following diagram commutes:

lim
←F

Ai

Aj Ak

fj
fk

F (m)

and this object and maps to each Ai are universal with respect to this property.
More precisely, given any other object W alogn with maps gi : W → Ai com-
muting with the F (m) (if m : j → k is a morphism in F , then gk = F (m)◦ gj),
then there is a unique map

g : W → lim
←F

Ai

so that gi = fi ◦ g for all i.

Remark C.0.3. If the limit exists, it is unique up to isomorphism.





Appendix D

Filtration

The filtration is the generalization of the normal series of groups.

Definition D.0.1. A filtration of a module M is a family (Mp)p∈Z of sub-
modules of M such that

· · · ⊆Mp−1 ⊆Mp ⊆Mp+1 ⊆ . . . .

The factor modules of this filtration form the grades module (Mp/Mp−1)p∈Z.

One can define filtrations of objects in any abelian category. In particular,
a filtration of a complex C is a family of subcomplexes (F pC)p∈Z with

· · · ⊆ F p−1C ⊆ F pC ⊆ F p+1C . . . .

In more detail, a filtration of C is a commutative diagram such that, for each
n, the nth column is a filtration of Cn.

. . . Cn+1 Cn Cn−1 . . .

. . . F pn+1 F pn F pn−1 . . .

. . . F p−1
n+1 F p−1

n F p−1
n−1 . . .

Remark D.0.2. Filtrations need not be ascending, they can be descending too
(with re-indexed submodules). Either case is a filtration.

Filtrations may have only finitely many terms; if we have M0 ⊆M1 ⊆ · · · ⊆
Mn−1 ⊆ Mn, we can define Mi = M0 for all i < 0 and Mj = Mn for all j > n.
Moreover, the “endpoints” (if there are any) of a filtration of M need not be
{0} or M ; that is, neither {0} nor M must equalt to Mp for some p.
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