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Summary

In the present thesis the main goal is the construction of a consistent coherent-state

path integral formalism in the continuum limit, for use in the study of both closed and

open quantum systems. Under the scope of this study, the cases of bosonic, fermionic

and spin coherent-state path integrals are considered.

Bosonic and spin coherent-state path integrals are studied with the use of the theory

of geometric quantization. Using this formalism, and understanding how the identi-

fication of the continuum limit of coherent-state path integrals relates to the topic of

Kähler quantization, it is possible not only to approach the problem of interest, but

also to gain new insight in the theory of Kähler quantization. More specifically, the

correct continuum limit is proven to be identifiable through an inverse procedure to

that of geometric quantization, leading at the same time to the first physical argument

regarding the necessity of the metaplectic correction in the context of Kähler quanti-

zation.

Fermionic coherent-state path integrals on the other hand are approached in a dif-

ferent context, in which the use of the Faddeev-Jackiw construction for constrained

systems acts as an intermediate step for the identification of the correct continuum

limit. The results of this approach are immediately applied in more complicated con-

figurations, like the case of the spin-1/2 1D XY Heisenberg spin chain, with the goal

of showcasing their correctness. This leads to many interesting results regarding the

handling of correlation functions using this path integral formalism. The same for-

malism is later generalized in order to handle non-equilibrium dynamics, where the

aforementioned construction is applied for the case of a time dependent transverse

magnetic field, acting on the XY spin chain of interest.

With the use of these two approaches it becomes then possible to proceed with the

generalization and application of this formalism to the case of open quantum sys-

tems. Both cases of bosonic and fermionic systems are studied in this context, where

the analysis remains as general as possible. Later on, the limits of an isotropic interac-

tion and a Markovian environment are considered, in order to compare these results

to known analytical results appearing in the literature, and consequently showcasing

the correctness of these arguments.

4



1 Introduction

The Feynman path integral formalism is the most powerful tool for taking into account

quantum behaviour via classical computations [1, 2]. Ideally suited for semiclassi-

cal calculations, the path integral machinery provides a variety of analytical methods

for studying the dynamics of quantum correlations in closed and open quantum sys-

tems [3,4]. The extension of path integration to the ordinary complex plane C through

the Glauber coherent states [5], to the complex non-flat manifold C̄ through the su(2)

spin coherent states [6–8] and to fermionic systems through the fermionic coherent

states [3, 9] has allowed for the application of path integral techniques to the study of

many-body systems [10, 11]. These systems are of great interest for both condensed

matter physics and quantum information science, due to the fact that they naturally

support entangled states. Correlations in these states have a fundamental quantum

character, as they do not have a classical counterpart, and can serve both as the means

for understanding quantum phase transitions and as the main tool for quantum infor-

mation processing [12–14].

During the last years, there have been considerable advances in the study of the static

properties and the dynamics of closed many-body quantum systems, both at exper-

imental and theoretical level [15, 16]. However, despite these advances, the usage of

path integral techniques in the corresponding analysis is rather restricted. The main

reason is that, currently, there is no universally accepted way to define path integra-

tion on complexified spaces, spanned by the coherent state bases, for a general system

written in terms of bosonic, spin or fermionic operators [17–20]. When free from con-

ceptual and structural issues, path integrals over coherent states can provide a wide

variety of techniques, analytical and numerical, for the analysis of closed and open

quantum systems. In the current thesis a step is made towards this direction, where a

series of inconsistency-free methods are developed for the study of bosonic, spin and

fermionic systems through the use of coherent-state path integrals. Furthermore, this

method is generalized for the study of driven and open quantum systems.

The methods which shall be used in order for this to be achieved, differ tremendously

for the cases of bosonic/spin and fermionic coherent states. In the former cases, a se-
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ries of state-of-the-art mathematical tools coming from the field of geometric quantiza-

tion will be necessary, since both bosonic and spin coherent-state path integrals can be

interpreted as phase-space path integrals over Kähler manifolds [21]. Even though the

theory of quantization over symplectic manifolds is a very mathematically involved

topic, it will become apparent that the use of some specific results, not only allows

for the solution of the issues of bosonic variable coherent-state path integrals, but

also provides clarity to ambiguous topics in the field of Kähler quantization [21–24].

More specifically, the presented methodology allows for the first mathematically strict

answer to the unanswered question regarding the necessity of the metaplectic correc-

tion. The case of fermionic coherent-state path integrals cannot be studied in such a

way though, since fermions do not accommodate a symplectic structure, which leads

to the need of a radically different procedure. The identification of such a procedure is

possible following some recent results regarding the consistent path integral quantiza-

tion of Majorana fermion systems [26]. A series of steps can then be proposed, leading

to the identification of well defined actions for use in complex fermion path integrals,

which are exactly the fermionic coherent-state path integrals. Both these solutions dif-

fer from the known ones [18–20, 28, 29], since the known methods either depend on

the discrete structure, a feature which is unattractive in the context of continuum path

integrals, or are extremely indirect.

The main body of the present thesis is comprised of two parts; the theoretical back-

ground, presented in section 2, and the methods and results, presented in sections

3, 4 and 5. In section 2 all necessary theoretical tools are presented, regarding both

the canonical and the path integral formulation of quantum theory, while emphasis is

given on the issues appearing in coherent-state path integrals, as also on the existing

solutions. In section 3 an inconsistency-free method for the identification of the con-

tinuum limit for bosonic and spin coherent-state path integrals is presented, where a

method for the consistent identification of the continuum limit through the inversion

of the geometric quantization procedure is constructed. All results coming from this

method agree with the known results found in the bibliography [18–20], giving the

correct coherent-state path integrals. The strict phase-space path integral formulation

used in that context is also generalized and results for higher orders and interactions

are also presented. In section 4, fermionic coherent-state path integrals are addressed,
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where the correct continuum limit is found via the corresponding Majorana fermion

one. In the same section this construction is used for the study of the 1D XY spin chain

model [30, 31], allowing for the very simple computation of a series of known results.

These results act as non-trivial verifications for the consistency of the proposed pro-

cedure. This method is then generalized for the driven case, via the formulation of

a Schwinger-Keldysh path integral. In section 5, all aforementioned results for the

bosonic and fermionic coherent-state path integrals are used for the study of open

quantum systems, where a systematic and inconsistency-free formulation of the path

integral for composite systems is constructed. Even though this construction is ini-

tially general, it is later applied for the study of systems interacting with a Markovian

environment. More specifically, the examples of the bosonic and fermionic harmonic

oscillator cases are addressed in detail. Finally, a short epilogue follows, where a sum-

mary of the presented research, and its possible future directions, are presented. The

main text is accompanied by nine appendices, containing calculations and clarifica-

tions on specific topics related to chapters 3, 4 and 5.

2 Theoretical Background

Section summary

In this section, the main goal is the presentation of a comprehensive introduction to

the theory of quantization in both the canonical and path integral formulations. In this

context, great focus is given on the topic of coherent-state path integrals, which until

the time of writing still do not possess a definitive description at the time-continuous

limit, with the identification of such a description being the main topic of study in

some of the following sections. The construction of these integrals and details on their

issues in the continuum limit are extensively provided, as also are the necessary tools

for the use of these continuum structures.

2.1 Classical Mechanics

In the context of classical mechanics [32], a classical system is characterized by a quan-

tity with energy units called the Lagrangian function L, and more specifically its inte-

7



gral

S =
∫ t f

ti

Ldt (2.1)

which defines the action S. The action constitutes a functional of the trajectory a sys-

tem follows along its time evolution from an initial time ti to a final time t f , where

the system trajectory is defined as the value of its corresponding fields at each time

t. If for a system the action is known, then the classical trajectory is defined as that

which makes the action static with respect to each field of the theory. More specifi-

cally, if the action is considered as a functional of a set of fields {φi(t)}, and of their

time derivatives, then according to the stationary action principle, the solution to the

equation
δS(φi(t), φ̇i(t), . . . )

δφj(t′)
= 0 (2.2)

characterizes the classical trajectory. The symbol δ denotes the functional differentia-

tion, which is defined with respect to the fields as

δφi(t)
δφj(t′)

= δi
jδ(t− t′). (2.3)

Here, δi
j is the Kronecker’s delta function, while δ(t− t′) is the Dirac delta distribu-

tion. By considering the value of the fields at times ti and t f equal to zero, or consid-

ering the case of periodic boundary conditions when this assumption is justified, and

the Lagrangian as a function only of the fields, their first derivatives, and possibly of

time itself, it is possible to reduce the equation (2.2) to a more analytical form

δL(φi(t), φ̇i(t), t)
δφj(t)

− d
dt

(
δL(φi(t), φ̇i(t), t)

δφ̇j(t)

)
= 0. (2.4)

In the present thesis all the Lagrangians which will be considered will contain only

derivatives up to the first order, and thus eq. (2.4) is always valid.

In this Lagrangian formulation, for every field φi(t) one can define its conjugate mo-

mentum πj(t) as

πj(t′) =
δS(φi(t), φ̇i(t))

δφ̇j(t′)
. (2.5)
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This equation can then be inverted, with the use of a Lagrange transformation of the

Lagrangian, giving the Hamiltonian function

H(φi(t), πi(t), t) =
n

∑
i=1

πi(t)φ̇i(t)− L(φi(t), φ̇i(t), t), (2.6)

where n is the number of fields in the theory, and for which it can be proved that

φ̇j(t) =
δH(φi(t), πi(t), t)

δπj(t)
(2.7)

and

π̇j(t) = −
δH(φi(t), πi(t), t)

δφj(t)
, (2.8)

which constitute Hamilton’s equations. Using these two equations it is possible to

study the time evolution of any function F of the fields and of their conjugate mo-

menta, since the time evolution can be found to be equal to

dF(t, φi(t), πi(t))
dt

=
∂F(t, φi(t), πi(t))

∂t
+ {F, H}, (2.9)

where { f , g} defines the Poisson bracket

{F, H} = (2.10)

=
n

∑
j=1

(
F(t, φi(t), πi(t))

φj(t)
H(φi(t), πi(t), t)

πj(t)
− H(φi(t), πi(t), t)

φj(t)
F(t, φi(t), πi(t))

πj(t)

)
.

From this result it can be seen that the Hamiltonian function controls the time evolu-

tion of all quantities in a theory. Furthermore, any smooth function of the fields φi(t)

and their conjugate momenta πi(t) is considered as a classical observable.

A very important example of a Poisson bracket is the one calculated between a field

φi(t) and a conjugate momentum πj(t) which gives

{φi(t), φj(t)} = {πi(t), πj(t)} = 0, {φi(t), πj(t)} = δi
j. (2.11)

2.2 Canonical Quantization

Even though the quantum theory is considered as the more fundamental viewing of

physical reality, due to the inability of defining it through a set of physical principles,
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it can be understood only through the process of quantizing a corresponding classical

theory. This quantization is possible through two seemingly equivalent methods; the

canonical quantization [33] and the functional or path integral quantization [3]. Nev-

ertheless, canonical quantization will be mainly addressed in the first subsections of

the present thesis, not only because it historically precedes the path integral quantiza-

tion, but also because the latter can naturally be derived from it as will be later shown.

At the Hamiltonian level, the canonical quantization of a system is possible through

the replacing of the fields of a theory by their corresponding operators, acting linearly

on a Hilbert space, and of the Poisson brackets by commutation relations. However,

this procedure is not always well defined, since for more complicated functions of the

fields and their respective conjugate momenta it leads to mathematical inconsisten-

cies [22, 34, 35]. Nevertheless, it is a fact that in the simple case of the functions φi(t)

and πi(t) themselves, the quantization procedure can consistently be performed at the

operator level, by defining the corresponding operators φ̂i(t), π̂j(t) with the following

commutation relations:

[φ̂i, φ̂j] = [π̂i, π̂j] = 0, [φ̂i, π̂j] = ih̄δi
j. (2.12)

The generalization of this commutator algebra is not straightforward though, as will

be argued later. Here, h̄ = h/2π is the reduced Planck constant.

In this context, the states of a quantum system are expressed either as vectors |ψ〉 of

a Hilbert space, or equivalently as wave-functions ψ(~x), which are locally functions1

of the position ~x. The notation |ψ〉 is called Dirac’s notation for a state with name ψ,

while the corresponding wave-function is connected to this vector through equation

ψ(~x) = 〈~x|ψ〉 , (2.13)

which defines the inner product of the state vector |ψ〉with the vector |~x〉 of the Hilbert

space, the latter signifying the position on a D-dimensional space with coordinates xµ,

µ = 1, . . . , D. In the case of the usual quantum mechanics considered here, the space is

considered to be the Euclidean D-dimensional flat space, and thus the aforementioned

1Wave-functions are not functions per se, in a mathematical sense, but sections of a complex line
bundle. Nevertheless, details on this topic do not need to be addressed when the metric in the space of
fields φi(t) is flat, as in the case of the usual quantum mechanics on the Euclidean plane.
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coordinate system holds globally. The symbol 〈~x| = (|~x〉)† defines the conjugate trans-

pose element to the vector |~x〉, which is defined through the symbol †. Moreover, the

set of position vectors {|~x〉} constitutes a complete orthonormal continuous basis of

Hilbert space, since

〈~x1|~x2〉 = δD(~x1 −~x2), (2.14)

where δD(~x1 − ~x2) is the D-dimensional Dirac delta distribution, and there exists a

resolution of the identity

1̂ =
∫

RD
dDx |~x〉 〈~x| . (2.15)

It is easy to see then, that the inner product of two state vectors can be written as

〈ψ|φ〉 =
∫

RD
dDxψ∗(~x)φ(~x), (2.16)

while the normalization is usually chosen to be

〈ψ|ψ〉 =
∫

RD
dDx|ψ(~x)|2 = 1. (2.17)

It must be noted that the integral in eq. (2.17) converges only when the function ψ(~x)

is square-integrable on RD (ψ(~x) belongs in L2), which is a very important require-

ment for the existence of a wave-function formalism.

In order to always have real eigenvalues, the quantum observables are defined as

Hermitian operators, where for an operator Â, Hermitianicity is defined through the

inner product between two wave-functions (ψ, φ) as

(Âψ, φ) = (ψ, Âφ). (2.18)

Considering now the fields φµ as the usual position coordinates xµ, then the corre-

sponding conjugate momenta are none other than the physical momentum compo-

nents pµ. Then, for the quantization of these quantities, the corresponding operators

acting on elements of the Hilbert space are known to be

X̂µψ(~x) = xµψ(~x), P̂µψ(~x) = −ih̄∂µψ(~x). (2.19)

The representation of quantum mechanics used above, in which the wave-functions

are considered as functions only of the position, is called the position representation.
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With the use of the Fourier transformation of these wave-functions though, it is possi-

ble to relate this representation to the momentum representation in which the wave-

functions are only functions of the momenta.

The structures that have been referenced up to this point can be represented with

the use of a much more strict mathematical formalism, which will be analysed in sub-

section 2.18. In subsection 2.18 the method of Geometric Quantization is presented,

which provides a procedure for constructing the quantum equivalents of classical ob-

servable functions, and the results of which will be used in the section 3 of the present

thesis.

The generalization of canonical quantization for higher order operators was first at-

tempted by Dirac using a set of quantization constraints. According to these, a quanti-

zation map Q̂, taking classical observables (functions) to their corresponding quantum

observables (Hermitian operators), should have the following properties [22, 34]

1. C-linearity: Q̂(r f + g) = rQ̂( f ) + Q̂(g), r ∈ C, f , g smooth functions.

2. Q̂(1) = 1̂.

3. Hermitianicity with respect to the canonical inner product∫
M

µ(~x)ψ∗1 [Q̂( f )ψ2] =
∫

M
µ(~x)[Q̂( f )ψ1]

∗ψ2, (2.20)

where µ(~x) is the measure of integration over the manifold M on which the

quantum theory is defined.

4. Define a Lie-algebra homomorphism

[Q̂( f ), Q̂(g)] = ih̄Q̂[{ f , g}]. (2.21)

5. If { f1, f2, . . . , fn} is a complete set of observable functions, then

{Q̂( f1), Q̂( f2), . . . , Q̂( fn)} is a complete set of observable operators.

It has been proved though [22, 34] that it is impossible for all these constraints to hold

for a general complete set of classical observables, and thus it is usual for the last

two constraints to be weakened such that the map Q̂ is restricted to act at least on a
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closed Lie-subalgebra of observable functions. An example of such an inconsistency

is expressed by the Groenewold-Van Hove theorem [22,34] for the quantization of the

2D Euclidean phase space, which presents the following constraint

Theorem 1 (Groenewold-Van Hove theorem) There does not exist a consistent quanti-
zation map Q̂ which maps the position (x) and momentum (p) observables to their respective
operators, and holds for polynomials of degree equal or higher than three, with respect to x and
p functions.

A loophole which may allow for the avoidance of this issue is that one may consider

eq. (2.21) as perturbative with respect to the h̄ parameter, and as such

[Q̂( f ), Q̂(g)] = ih̄Q̂[{ f , g}] +O(h̄2). (2.22)

Nevertheless, since the form the higher orders should possess is not known, neither

from a physical nor a mathematical viewpoint, one cannot use this equation for quan-

titative calculations, or for the study of quantum mechanics per se. In the context

of this thesis the possibility of quantizing classical observables up to the second or-

der using Dirac’s constraints will be considered as a fact, since it is allowed by the

Groenewold-Van Hove theorem. Using eq. (2.21) it is easy to find then, that for the

position (x) and momentum (p) functions

Q̂(x) = X̂, Q̂(p) = P̂,

Q̂(x2) = X̂2, Q̂(p2) = P̂2, Q̂(xp) =
1
2
(
X̂P̂ + P̂X̂

)
.

(2.23)

However, a different approach is needed for the canonical quantization of fermionic

operators, which appear naturally in the study of systems obeying the Fermi-Dirac

statistics. In such occasions, due to the states of identical fermions being antisymmet-

ric under the exchange of two particles

|φ〉 |ψ〉 = − |ψ〉 |φ〉 , (2.24)

the operator algebra should be expressed through anticommutation relations. Thus,

relations (2.12) are replaced by

{φ̂i, φ̂j} = {π̂i, π̂j} = 0 {φ̂i, π̂j} = ih̄δi
j, (2.25)
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with {, } denoting the anticommutator. In contrast to the bosonic case, canonical quan-

tization of fermionic operators does not present issues, since the anticommutative na-

ture of the quantities at the classical level as Grassmann variables, does not allow for

the construction of higher order classical observables with respect to a single variable.

Thus, in this case the knowledge of the quantization of the first orders is enough for

the complete understanding of the theory.

2.3 Time evolution

In analogy to classical mechanics, where the Hamiltonian function controlled the evo-

lution of a system [32], the time evolution in quantum mechanics is considered driven

by a Hermitian operator Ĥ defined as the Hamiltonian operator [33]. In this case,

the evolution of the system, i.e. of its states/wave-functions, is controlled by the

Schroedinger’s equation2

ih̄
∂

∂t
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 . (2.26)

The solution of this equation gives the evolution of states with respect to time, being

of the form

|ψ(t f )〉 = Û(t f , ti) |ψ(ti)〉 , Û(t f , ti) = T̂e−
i
h̄
∫ t f

ti
dtĤ(t), (2.27)

where T̂ is the time ordering operator and

T̂e−
i
h̄
∫ t f

ti
dtĤ(t)

= (2.28)

=
∞

∑
n=0

(
− i

h̄

)n ∫ t f

ti

∫ tn

ti

∫ tn−1

ti

· · ·
∫ t2

ti

Ĥ(tn)Ĥ(tn−1) · · · Ĥ(t1)dt1dt2 . . . dtn =

=
∞

∑
n=0

1
n!

(
− i

h̄

)n ∫ t f

ti

∫ t

ti

∫ t

ti

· · ·
∫ t

ti

T̂
(

Ĥ(tn)Ĥ(tn−1) · · · Ĥ(t1)
)

dt1dt2 . . . dtn.

This foundation of quantum mechanics, through the evolution of the states of a sys-

tem, is called the Schroedinger picture. Besides this, there exist two more equivalent

ways to describe the time evolution, called the Heisenberg’s and Interaction pictures,

2This equation is known to be valid only for non-relativistic cases, with the Klein-Gordon and Dirac
equations being the relativistic equivalents for bosonic and spin-1/2 particles respectively.
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where in the context of the present thesis only the former will be addressed. In Heisen-

berg’s picture, the states of the theory are considered constant, while the time evolu-

tion in transferred to the operators as

Â(t f ) = Û†(t f , ti)Â(ti)Û(t f , ti), (2.29)

where

Û†(t1, t2) = T̂†e
i
h̄
∫ t2

t1
dtĤ(t), (2.30)

with T̂† being the anti-time ordering operator. Finally, it is easy to prove the property

Û†(t1, t2) = Û(t2, t1). (2.31)

2.4 Correlation functions

The quantities that characterize the dynamic evolution of states are the transition am-

plitudes, while the ones characterizing the dynamic evolution of operators are their

correlation functions [33, 36]. In the Schroedinger picture, for an initial state |ψi〉, its

transition amplitude to a state |ψ f 〉 after a time interval t f − ti is defined as the matrix

element

〈ψ f |Û(t f , ti)|ψi〉 . (2.32)

This quantity cannot be considered as an observable one, since it is complex in gen-

eral, and thus the corresponding physical quantity is its measure, which corresponds

to the probability amplitude of the state |ψi〉 transitioning to the state |ψ f 〉 after time

t f − ti.

In the Heisenberg picture, where the evolution is observed on the operators of the

theory, the n-point correlation functions are defined as the quantities measuring the

correlation between n-operators {Âj}, j = 1, . . . n, during the time evolution from ti to

t f as

H 〈ψ f , t f |T̂
(

Â1(t1)Â2(t2) · · · Ân(tn)
)
|ψi, ti〉H . (2.33)

The initial and final states, characterizing the matrix element, are defined as |ψ, t〉H =

Û†(t, ti) |ψ〉 and correspond to states on which the evolved operators under eq. (2.29)
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act independently of time as

Â(t) |ψ, t〉H = Û†(t, ti)Â(ti) |ψ〉 , (2.34)

where |ψ〉 is a time-independent state in the Heisenberg picture. The choice of these

states is made due to the fact that if a state |ψ〉 is an eigenstate of a Heisenberg operator

ψ̂(ti) then the state |ψ, t〉H is the eigenstate of the evolved operator ψ̂(t):

ψ̂(ti) |ψ〉 = ψ |ψ〉 ⇒ ψ̂(t) |ψ, t〉H = ψ |ψ, t〉H . (2.35)

2.5 Examples of Hilbert spaces

Two very important Hilbert spaces that will be studied extensively in the context of

the present thesis are those of the harmonic oscillator and of spin systems.

2.5.1 The harmonic oscillator

The quantum harmonic oscillator’s evolution is driven by the Hamiltonian operator

Ĥ =

(
k
2

X̂2 +
1

2m
P̂2
)

. (2.36)

This operator constitutes an exact analogue of the corresponding classical Hamilto-

nian function, the canonical quantization of which is consistent under Dirac’s con-

straints. Here, the symbol m denotes the mass of the oscillating object while k defines

the oscillation constant. The study of this system can be performed much more eas-

ily through the definition of the creation and annihilation operators of the harmonic

oscillator

â† =
mω

2h̄

(
X̂− i

mω
P̂
)

, â =
mω

2h̄

(
X̂ +

i
mω

P̂
)

, (2.37)

which obey the commutation relation

[â, â†] = 1, (2.38)
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with ω being the angular frequency. In the basis of these operators it is easy to see that

the Hamiltonian operator assumes the form

Ĥ = h̄ω

(
â† â +

1
2

)
. (2.39)

Defining the vacuum state |0〉 as the state on which â |0〉 = 0, it is easy to see that

the state â†n |0〉, n ∈ N, constitutes an eigenstate of the operator â† â with eigenvalue

n. This indicates that one can define the number operator N̂ = â† â and a countably

infinite basis {|n〉} covering the Hilbert space, for which

â |n〉 =
√

n |n− 1〉 , â† |n〉 =
√

n + 1 |n + 1〉 . (2.40)

This basis is orthonormal and complete, defining a resolution of the identity

1̂ =
∞

∑
n=0
|n〉 〈n| . (2.41)

Since the states {|n〉} are the eigenstates of the number operator, they also define the

quantized energy levels - modes - of the Hamiltonian (2.39). The nature of the eigen-

states of the harmonic oscillator through the aforementioned countably infinite basis

allows for the use of the same basis for the representation of single energy bosonic

degrees of freedom. In that case, the action of the operator N̂ on a state |n〉 provides

the number of bosons n, where |n〉 is the state of n identical bosons.

In analogy to the quantum harmonic oscillator, the Hilbert space of which has an

equivalent structure to that of a system with single energy bosonic degrees of free-

dom, it is possbile to define the fermionic quantum harmonic oscillator, of which the

Hilbert space is equivalent to that of a system with single energy fermionic degrees of

freedom. The fermionic harmonic oscillator is defined as

Ĥ f = h̄ω

(
ψ̂†ψ̂− 1

2

)
, (2.42)

where the creation and annihilation operators ψ̂† and ψ̂ respectively are of fermionic

nature. As a result, the commutation relation (2.38) is switched to the anticommuta-

tion relation {ψ̂, ψ̂†} = 1, while due to the nilpotency of fermionic operators: ψ̂n =

ψ̂†n = 0 ∀n > 1. This result leads to the construction of a two dimensional basis for
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the fermionic Hilbert space {|1〉 , |0〉} where the elements correspond to the existence

or not of a fermionic degree of freedom. This basis is compatible with the Fermi-Dirac

statistics which do not allow for the simultaneous existence of two fermionic degrees

of freedom with the same characteristics. In the case of the bosonic oscillator there

was no such constraint, since bosons obey the Bose-Einstein statistics. The aforemen-

tioned fermionic basis is again orthonormal and complete, providing the resolution of

the identity

1̂ = |0〉 〈0|+ |1〉 〈1| . (2.43)

The analogue of position and momentum operators in the fermionic case, i.e. the

Hermitian operators related to the complex ψ̂, ψ̂† ones, are the Majorana operators

γ̂1 = ψ̂ + ψ̂†, γ̂2 = i
(

ψ̂† − ψ̂
)

; {γ̂a, γ̂b} = iδab. (2.44)

The case of more fermionic operators ψ̂i, i = 1, . . . , N, and their conjugates, can be

generalized naturally by introducing for each couple ψ̂i, ψ̂†
i two Majorana operators

γ̂2i−1 and γ̂2i.

2.5.2 Spin

The algebra of spin generators Ŝx, Ŝy and Ŝz, has the form

[Ŝi, Ŝj] = ih̄ ∑
k=x,y,z

εijkŜk, i, j = x, y, z, (2.45)

which is none other than the su(2) Lie-algebra, with εijk being the fully antisymmetric

tensor. The basis of the corresponding Hilbert space is constructed with respect to the

eigenstates of an su(2) element ŜC generating a Cartan subalgebra, i.e. the maximal

Abelian subalgebra of su(2). This Cartan element is usually chosen to be the operator

Ŝz. In a spin representation with value s it is possible to define a highest weight state

|s, s〉, which constitutes the eigenstate of ŜC with the highest eigenvalue s, and define

the ladder operators Ŝ+ and Ŝ−, obeying the following algebra

[ŜC, Ŝ±] = ±h̄Ŝ±, [Ŝ+, Ŝ−] = 2h̄ŜC. (2.46)
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These operators construct a (2s+ 1)-dimensional basis {|s, j〉} of the Hilbert space and

act as

ŜC |s, j〉 = h̄j |s, j〉 , Ŝ± |s, j〉 = h̄
√
(s∓ j)(s± j + 1) |s, j± 1〉 , (2.47)

where {|s, j〉} is the eigenstates of ŜC with eigenvalue j in the spin-s representation of

su(2). In the case that ŜC = Ŝz is chosen, the ladder operators adopt the form

Ŝ± = Ŝx ± Ŝy. (2.48)

This basis is orthonormal and complete, and thus defines a resolution of the identity

1̂ =
s

∑
j=−s
|s, j〉 〈s, j| . (2.49)

For spin-1/2 it is easy to observe the similarity between the Hilbert spaces of spin

and fermionic degrees of freedom, since both are covered by a two dimensional basis.

This similarity is made formal through the Jordan-Wigner transformation [31] which

identifies the states |s,−1/2〉 = |1〉 and |s,+1/2〉 = |0〉 and defines the mapping

Ŝx =
1
2

(
ψ̂† + ψ̂

)
,

Ŝy =
i
2

(
ψ̂† − ψ̂

)
,

Ŝz =
1
2
− ψ̂†ψ̂.

(2.50)

A similar mapping [31] can be used to identify the tensor product of the Hilbert space

of n fermion modes, with a lattice of n spin-1/2 degrees of freedom, and takes the

form

Ŝxi =
1
2

i−1

∏
k=1

(
1
2
− ψ̂†

k ψ̂k

)(
ψ̂†

i + ψ̂i

)
,

Ŝyi =
i
2

i−1

∏
k=1

(
1
2
− ψ̂†

k ψ̂k

)(
ψ̂†

i − ψ̂i

)
,

Ŝzi =
1
2
− ψ̂†

i ψ̂i,

(2.51)

where ψ̂†
l , ψ̂l are the creation and annihilation operators respectively of the l-th fermionic

mode, and Ŝjl, j = x, y, z, is the Ŝj operator acting on the l-th subsystem, with l =
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1, . . . , n. The product prefactors appearing in eq. (2.51) are necessary, since when re-

ferring to different subsystems, products of the quantities in the r.h.s. anti-commute

in the absence of these prefactors, while the quantities on the l.h.s. always commute.

This issue is solved through the inclusion of these extra factors.

2.6 Coherent states

The Hilbert spaces of bosonic, fermionic and spin systems allow for the definition of

an overcomplete basis, which is called the basis of coherent states [3, 37].

2.6.1 Bosonic coherent states

In the case of bosonic degrees of freedom, the coherent states are defined with respect

to a complex number z as

|z〉b = e−
|z|2

2 ezâ† |0〉 = e−
|z|2

2

∞

∑
n=0

zn
√

n!
|n〉 , (2.52)

where the coefficient e−
|z|2

2 acts as a normalization. These states are the eigenstates of

the annihilation operator since

â |z〉b = z |z〉b . (2.53)

The set {|z〉b}, with z ∈ C, does not constitute an orthonormal basis, given that the

inner product of the coherent states can be found to be

b〈z2|z1〉b = e−
|z1|

2

2 −
|z2|2

2 +z̄2z1 , (2.54)

but nevertheless constitutes an overcomplete basis, since it allows for the resolution

of the identity

1̂ =
1
π

∫
C

d2z |z〉b b〈z|. (2.55)

The integration measure above - and whenever integration is performed over the com-

plex plane - is denoted as d2z = 1
2i dzdz̄ = dRe(z)dIm(z). In this basis, the trace of any

operator can be calculated as

trÔ =
1
π

∫
C

d2z b〈z|Ô |z〉b . (2.56)
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2.6.2 Fermionic coherent states

Coherent states can be similarly defined for fermionic systems using the fermionic

creation and annihilation operators, but this time with respect to a Grassmann variable

θ. Grassmann variables are anticommuting variables, a property which leads - up to

an arbitrary normalization - to the following statements

θ2 = 0,
1√
π

∫
dθ = 0,

1√
π

∫
dθθ = 1, (2.57)

where θ is considered complex. The fermionic coherent states are then defined as

|θ〉 = e−
θ̄θ
2 eψ̂†θ |0〉 = e−

θ̄θ
2 (|0〉 − θ |1〉) , (2.58)

while, in analogy to the bosonic case, they correspond to the eigenstates of the fermionic

annihilation operator since

ψ̂ |θ〉 = θ |θ〉 . (2.59)

Their inner product can also be found to have the form

〈θ2|θ1〉 = e−
θ̄1θ1

2 −
θ̄2θ2

2 +θ̄2θ1 , (2.60)

which again indicates the non-orthonormal nature of this basis. The overcompleteness

is again observed though the resolution of the identity that this basis allows

1̂ =
1
π

∫
dθ̄dθ |θ〉 〈θ| . (2.61)

Finally, in this case, the trace of any operator can be computed as

trÔ =
1
π

∫
dθ̄dθ 〈−θ|Ô|θ〉 . (2.62)

2.6.3 Spin coherent states

The Hilbert space of spin systems allows for the construction of the su(2) coherent

states

|z〉s =
1

(1 + |z|2)s ezŜ− |s, s〉 = 1
(1 + |z|2)s

s

∑
j=−s

[
(2s)!

(s− j)!(s + j)!

] 1
2

zs−j |s, j〉 , (2.63)
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where the factor 1/(1 + |z|2)s acts this time as the normalization, and s is the spin of

the corresponding representation. Once more, these states constitute an overcomplete,

non-orthonormal basis, with inner product

s〈z2|z1〉s =
(1 + z̄2z1)

2s

(1 + |z1|2)s(1 + |z2|2)s (2.64)

and resolution of the identity

1̂S2 =
2s + 1

π

∫
C
|z〉s s〈z|

d2z
(1 + |z|2)2 . (2.65)

The index S2 in eq. (2.65) symbolizes the space over which the integration is per-

formed, which is none other than the 2-Sphere. The canonical measure of integration

is then analogous to d2z/(1 + |z|2)2, with z being the chart coordinate covering the

whole 2-Sphere, except of a point at |z| → ∞. In this case, the trace of any operator

can be computed as

trÔ =
2s + 1

π

∫
C

d2z
(1 + |z|2)2 s〈z|Ô |z〉s . (2.66)

2.7 Open quantum systems

Up to this point, the states were defined to be vectors of a Hilbert space. However, this

formulation cannot hold true for the case of open quantum systems. To allow for the

definition of mixed states and processes like decoherence, one needs to reformulate

quantum mechanics using the density matrix formalism [38,39], which treats the states

as operators. States that can equivalently be expressed as vectors |ψ〉, are called pure

states, and for these the corresponding density matrix is defined as

ρ̂Pure = |ψ〉 〈ψ| . (2.67)

In the general case though, a density matrix ρ̂ is defined to have the following proper-

ties:

1. ρ̂ is positive,

2. trρ̂ = 1,
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and in the case that the state ρ̂ is pure, also trρ̂2 = 1. A very important example of a

mixed state is the thermal state

ρ̂Th =
e−βĤ

Z
, (2.68)

which characterizes a quantum system in thermal equilibrium, and arises as the quan-

tum analogue of the classical canonical ensemble, with Z = tr
[
e−βĤ

]
being the parti-

tion function and β = 1/T the inverse temperature3. In the density matrix formalism,

the expectation value of an arbitrary operator Ô, with respect to a system character-

ized by a state ρ̂, can be found to be

〈Ô〉 = tr
[
ρ̂Ô
]

. (2.69)

2.8 Phase Transitions and Critical Phenomena

A phase transition [40] is a phenomenon observed when a thermodynamic system ap-

pears to change its physical behaviour, at a given point of its parameter space. During

a phase transition, certain properties of the medium change, often discontinuously, as

a result of the change of external conditions, such as temperature, pressure, or others.

Such phenomena are possible both in classical and quantum systems with examples

ranging from phase transitions between states of matter, to quantum condensations

such as the case of the Bose-Einstein condensate. A very important case is the one of

quantum phase transitions [41], which become apparent at the zero temperature limit

of specific quantum systems, and are immediately related to the entanglement prop-

erties of the ground-state.

Phase transitions are classified in two categories, of the first and of the second or-

der. First order phase transitions are characterized by the absorption or release of a

fixed, and typically large, amount of energy per volume. During such processes, the

temperature of the corresponding system will stay constant as more heat is added,

with the system remaining in a fixed-phase regime, in which some parts of the system

have completed the transition and others have not. Familiar examples are the melting

of ice or the boiling of water.

3The Boltzmann’s constant has been set here kB = 1 for simplicity.
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On the other hand, second-order phase transitions, which are also known as "con-

tinuous phase transitions", are characterized by a divergent susceptibility, an infinite

correlation length, and a power law decay of correlations near criticality. The afore-

mentioned power law is a result of the theory becoming scale invariant at the critical

point. An example of such a transition is the quantum phase transition observed in

the XY spin chain, which will be addressed in the next subsection. Such transitions

are characterized by the Kibble-Zurek mechanism (KZM) or the adiabatic-impulse-

adiabatic approximation [42,43], which is based on the fact that the evolution of a sys-

tem through such a phase transition cannot be considered adiabatic near the critical

point, irrespectively of how slow the driving is. In such cases the evolution is con-

sidered initially adiabatic, becoming non-adiabatic near the critical point. The term

quantum denotes transitions connecting different quantum phases of matter, which is

the reason why these are in general observed at zero temperature. Such transitions are

accompanied by abrupt changes in the ground-state of a many-body system due to its

quantum fluctuations and thus, are immediately related to its entanglement proper-

ties.

The aforementioned singular behaviour of some quantities in a second-order phase

transition can be characterized by a set of critical exponents {α, β, γ, δ, ν, z, η, . . . }. The

two most relevant critical exponents in the context of the present thesis are the expo-

nent ν, corresponding to the divergence of the correlation length ξ, and the dynamic

critical exponent z, corresponding to the divergence of the characteristic time τ. The

divergence of the correlation length is the main reason for the power law behaviour

of correlation functions near the fixed point, since

〈Φ1(x1)Φ2(x2)〉 ∼
e−λ

( |x1−x2|
ξ

)m

|x1 − x2|k
, k, λ, m ≥ 0,

while it is also solely responsible for the singular contributions to thermodynamic

quantities. The divergence of the characteristic time scale can be easily understood

from that of the correlation length as τ ∼ ξz. Models which present the same be-

haviour near criticality, and as a result share the same critical exponents, are said to

belong to the same universality class.
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2.9 Heisenberg spin chains

Heisenberg spin chains are quantum statistical models used both in the study of phase

transitions as also in quantum information processing. They represent models in

which spin degrees of freedom interact successively with each other, usually in a near-

est neighbour fashion. Considering now the case of spin-1/2, the general Hamiltonian

for an 1D chain of N + 1 such spins and only nearest neighbour interactions is

Ĥ = −
N

∑
j=1

[aσx
j σx

j+1 + bσ
y
j σ

y
j+1 + cσz

j σz
j+1 + hσz

j ]. (2.70)

Here, σ
µ
j , µ = x, y, z are the Pauli matrices at the j-th point of the spin lattice, j =

1, ..., N + 1. In the Hamiltonian presented in eq. (2.70) the last term has been included

in order to allow the interaction of the system with an external magnetic field h di-

rected along the z axis. Even though such models in general present many interesting

critical properties at the thermodynamic limit N → ∞, as also strong connections to

2D Quantum Field Theories, in the case of finite N these are also deemed important

for the study of perfect quantum information transfer.

These models are in general named depending on the choice of the factors a, b and

c, i.e. the choice a 6= b 6= c defines the Heisenberg XYZ model, while the choice

a = b 6= c defines the Heisenberg XXZ model. A model which will be studied exten-

sively in the context of this thesis is the transverse field 1D XY model [30, 31]

Ĥ = −
N

∑
j=1

[
1 + r

2
σx

j σx
j+1 +

1− r
2

σ
y
j σ

y
j+1 + hσz

j

]
, (2.71)

where r measures the anisotropy between the x and y couplings. At r = 0 one recovers

the isotropic XY limit, also known as the XX model, while at r = 1 the Ising limit is

recovered. All anisotropic models (0 < r ≤ 1) belong to the same universality class,

i.e. the Ising class, whereas the isotropic XX model belongs to a different universal-

ity class [31]. XY models exhibit three phases: the oscillatory, the ferromagnetic and

paramagnetic phases. In contrast to the paramagnetic phase, which appears in the

h > 1 regime, the first two are ordered phases and appear for r2 + h2 < 1 (oscillatory)

and r2 + h2 > 1, h < 1 (ferromagnetic).
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This model has a quantum second-order phase transition from its ferromagnetic to its

paramagnetic phase at h = 1, when it is studied in the thermodynamic limit N → ∞.

As referenced above, the behaviour of this model at the critical point differs between

the cases of r = 0 and r 6= 0. In the case of the isotropic XX model, it is known that

the correlation length critical exponent is ν = 1/2, and the dynamic critical exponent

is z = 2. On the contrary, for r 6= 0 the model belongs in the Ising universality class, in

which ν = 1 and z = 1. It must be noted that even for r very close to, but not exactly

zero, the system still shows Ising behaviour.

As referenced in subsection 2.5, the spin-1/2 degrees of freedom can be very easily

mapped to fermionic degrees of freedom via the Jordan-Wigner transformation. This

method allows for a much more simple study of the quantum Hamiltonian (2.71),

but also presents a few new subtleties. One such subtlety arises after imposing peri-

odic boundary conditions for the chain, which are made formal through the constraint

σ
µ
Nσ

µ
N+1 = σ

µ
Nσ

µ
1 , µ = x, y, z and not the intuitive choice σ

µ
N+1 = σ

µ
1 . This is necessary,

since the latter choice would not return the correct spectrum and eigenstates for arbi-

trary N, when working with the fermionic degrees of freedom [31]. On the contrary,

the new constraint has two solutions, one being the case of odd number of fermions

and ψ̂N+1 = ψ̂1 and the other the case of even number of fermions and ψ̂N+1 = −ψ̂1.

Thus, for ψ̂′s that are periodic the fermion number is odd, whereas when these are

antiperiodic the fermion number is even.

It is easy to see then that the parity operator

P̂ =
N

∏
j=1

(1− 2ψ̂†
j ψ̂j) =

N

∏
j=1

σz
j , (2.72)

is a symmetry of the Hamiltonian (2.71), and thus the Hilbert space of the model is

split in two sectors, corresponding to the even or odd number of fermions. To in-

corporate the aforementioned boundary conditions on the ψ̂j operators it is usually

preferable working with their Fourier transformations,

ψ̂j =
1√
N

N−1

∑
m=0

ei 2π
N j(m+b) ĉ(b)m , (2.73)
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where b = 0 for periodic ψ̂j’s and b = 1/2 for anti-periodic ψ̂j’s.

2.10 The Schwinger-Keldysh Formalism

In the case of non-equilibrium dynamics, some methods used in the equilibrium case

fail [44], and thus new methods need to be considered for the understanding of such

systems. This failure becomes apparent both in the breakdown of the conventional

Time-Ordered perturbation theory, as also in the inability of regaining information for

the dynamics through the Partition Function and its subsequent Wick’s rotation (see

subsection 2.15). An appropriate method for the study of systems out of equilibrium

is based on the definition of a time contour on the complex plane, along which pertur-

bation theory is indeed valid.

The Schwinger-Keldysh formalism [44–47], which is a basic tool for the study of sys-

tems out of equilibrium, refers to the construction of a specific path in the complex-

time plane for the system to follow, in order to compute expectation values of opera-

tors like the one in eq. (2.69) as functions of time. Since the study can be performed

in the same fashion either in the Schroedinger or the Heisenberg picture, it suffices to

refer to the latter. Considering the time evolution performed only to the operators of

the system as Ô(t) = Û†(t, tin)Ô(tin)Û(t, tin) with tin being an initial reference time,

and the system initially being at a state ρ̂in = ρ̂(tin):

〈Ô(t)〉 = tr
[
ρ̂inÔ(t)

]
= tr

[
ρ̂inÛ†(t, tin)Ô(tin)Û(t, tin)

]
. (2.74)

By introducing a new time instance T through the equation Û†(T, tin)Û(T, tin) = 1̂

and using the property Û†(t1, t2) = Û(t2, t1) eq. (2.74) can be brought to the following

form

〈Ô(t)〉 = tr
[
ρ̂inÛ(tin, T)Û(T, t)Ô(tin)Û(t, tin)

]
. (2.75)

In the case that the system is initially in thermal equilibrium with inverse temperature

β and initial Hamiltonian Ĥin

ρ̂in =
e−βĤin

tr
[
e−βĤin

] , (2.76)
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it is also possible to consider the operator e−βĤin as an evolution operator Û(tin −
iβ, tin) with respect to a constant Hamiltonian Ĥin in the direction of imaginary time.

Then, by defining the partition function of the system as Zin = tr
[
e−βĤin

]
eq. (2.74)

further reduces to

〈Ô(t)〉 = 1
Zin

tr
[
Û(tin − iβ, tin)Û(tin, T)Û(T, t)Ô(tin)Û(t, tin)

]
. (2.77)

This result can be easily translated as the evolution of a system with respect to time

defined in the complex plane, where the specific path can be read from eq. (2.77) from

right to left:

• The system starts at time tin + i0 and evolves above the real axis, until the time

instance t+ = t + i0, in which the operator Ô(tin) acts.

• The system continues to evolve above the real axis until the time T+ = T + i0.

The complete evolution above the real time axis defines the line L+.

• The system evolves backwards in time below the real axis until it returns to the

initial time tin− = tin− i0. The evolution below the time axis defines the line L−.

• The system evolves parallel to the imaginary axis, from tin− to tin− − iβ. The

corresponding line in the complex plane is defined as Lβ.

For simplicity and without loss of generality the choice tin = −T will be used later, to

reduce the number of constants.

The complete path in the complex plane denotes the Keldysh contour, which is pre-

sented in figure (1) and is denoted as C, while the real part consisting only of the lines

L+ and L− is denoted as P. Furthermore, the existence of the trace in eq. (2.77) de-

fines periodic boundary conditions for the fields of the theory, in the case that these

are bosonic, and anti-periodic if these are fermionic.

2.11 Feynman’s Path Integral

In addition to the canonical quantization presented in the previous subsections, it is

possible to construct a new method of quantization through the study of the corre-

lation function. This method is the so called Path Integral quantization [3, 48], which
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Figure 1: The Keldysh Contour

was firstly introduced by Feynman [1,2], who costructed the phase space path integral

in the Euclidean plane. In the following, his original construction is presented, for a

one-dimensional system with Hamiltonian operator Ĥ = 1
2m P̂2 + V(X̂), correspond-

ing to a particle of mass m moving in the presence of a potential V(X̂). The same

procedure directly generalizes to more dimensions.

By discretizing the time evolution of the correlation function (2.32) in the Schroedinger

picture, with initial and final states being elements of the position basis {|x〉}

〈x f |T̂e−
i
h̄
∫ t f

ti
dtĤ(t)|xi〉 = lim

ε→0
lim

N→∞
〈x f |T̂

N

∏
n=1

e−
i
h̄ εĤ(ti+nε)|xi〉 , (2.78)

where (N + 1)ε = t f − ti, and using the resolution of the identity in the space of

position and momentum between the infinitesimal time evolution operators, it is easy

to find [36]

〈x f |T̂e−
i
h̄
∫ t f

ti
dtĤ(t)|xi〉 =lim

ε→0
lim

N→∞

[
N−1

∏
k=1

∫ +∞

−∞
dxk

] [
N−1

∏
k=0

∫ +∞

−∞

dpk
2πh̄

]
×

× exp

(
i
h̄

ε
N−1

∑
k=0

[pk
(xk+1 − xk)

ε
− Hcl(pk, xk)]

)
,

(2.79)
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with x0 = xi, xN = x f and Hcl(pk, xk) = 〈xk, pk|Ĥ|xk, pk〉 =
p2

k
2 + V(xk). This quantity

is considered to have a well defined continuum limit

〈x f |T̂e−
i
h̄
∫ t f

ti
dt′Ĥ(t′)|xi〉 =

∫
Dp

x(t f )=x f∫
x(ti)=xi

Dxexp
(

i
h̄

∫ t f

ti

dt[pq̇− Hcl(q, p)]
)

, (2.80)

where ∫
Dx = lim

ε→0
lim

N→∞

[
N−1

∏
k=1

∫ +∞

−∞
dxk

]
(2.81)

and ∫
Dp = lim

ε→0
lim

N→∞

[
N−1

∏
k=0

∫ +∞

−∞

dpk
2πh̄

]
. (2.82)

It must be noted that, even though the above measures of integration can be well de-

fined as integrals over the paths4, this is not the case for path integrals over more

complicated structures, as is the case of path integrals over fields in quantum field

theories. In such cases, there exists an inability in defining a general functional mea-

sure for the integration, and thus the use of path integrals is not generally well defined

in a strict mathematical sense, despite the fact that it remains the usual practice. For

this reason, it is necessary to refer to the well defined discrete form seen in eq. (2.79),

for the handling of such cases. Nevertheless, this should also be the standard method

even when the continuum limit seems to be well defined, since the correct form of this

limit may be highly non-trivial and not immediately emerging from the discrete one,

as will be noted later.

The same construction can be used for the study of the correlation functions (2.33)

in the Heisenberg picture [36]. In what follows, the procedure in the 2D phase space

(1 spacial dimension) is presented, while the generalization to higher dimensions is

immediate. It is then possible to express the correlation function as

H 〈x f , t f |T̂
(
X̂1(t1)X̂2(t2) · · · X̂n(tn)

)
|xi, ti〉H =

= 〈x f |Û(t f − tn)X̂nÛ(tn − tn−1) . . . X̂1Û(t1 − ti)|xi〉 ,
(2.83)

where the time ordering tn > tn−1 > · · · > t1 is considered, and the operators with no

time argument on the r.h.s. are defined at an arbitrary time t0. In this form, all physical

4This will also prove to be the case for all path integrals over well defined phase-spaces.
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quantities, i.e. the operators X̂j, j = 1, . . . n, and the initial and final states |xi〉, |x f 〉
respectively, have been returned to the form they had at a reference time t0. In the

above relation, one can again perform the aforementioned discretization procedure

and use the resolution of the identity between the ordered exponentials, leading to

the following result

H 〈x f , t f |T̂
(
X̂1(t1)X̂2(t2) · · · X̂n(tn)

)
|xi, ti〉H =

=
∫
Dp

x(t f )=x f∫
x(ti)=xi

Dxx(tn)x(tn−1) . . . x(t1)exp
(

i
h̄

∫ t f

ti

dt[pq̇− Hcl(q, p)]
)

.
(2.84)

Since eq. (2.84) has the same form for all choices of the time ordering of t1, . . . , tn,

this path integral by construction takes all possible time orderings into account. All

the above arguments can be trivially generalized for correlation functions of arbitrary

operators, that are functions of X̂ and P̂. Due to arguments related to symplectic ge-

ometry, the path integral of eq. (2.84) can again be considered well defined in the con-

tinuum. Nevertheless, caution should be exercised with its use, for the reason stated

previously. The most important characteristic of this result is that the fields x(ti) now

appear as functions and not as operators, while the time ordering is included in the

construction itself. As will be pointed out later, the time-continuous form allows for

the use of classical methods for the calculation of quantum results, which is the most

desirable advantage this form has, in contrast to the discretized one. Since the use of

such functional methods can lead to enormous simplifications in complicated prob-

lems, the identification of the exact continuum limit of such quantities becomes very

important, and is a major topic of the present thesis.

The path integral construction analyzed above paved the way for the foundation of

path integral quantization, which was later implemented in both many-body systems

through Coherent-state path integrals [3–11] and Quantum Field theory/Statistical

Mechanics leading to the theory of the Renormalization Group [49,50]. In that context

and for all the cases encountered in the present thesis, path integration is considered

over a set of complex fields {φi}, i = 1, . . . , M and the functional integrals that will be
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calculated are of the following form

∫
BC

[
M

∏
i=1
DφiDφ̄i

]
exp

{
i
∫ t f

ti

dt
M

∑
i,j=1

φ̄i(δiji∂t −Vij)φj

}
, (2.85)

where the index BC denotes the boundary conditions of the quantity the functional

integral corresponds to. In the previous quantity and from this point onward h̄ is set

to h̄ = 1 for simplicity. Such functional integrals will appear in the study of Coherent-

State path integrals.

2.12 Coherent-state path integrals

The aforementioned discretization procedure and the subsequent use of the resolution

of the identity with respect to a given basis can also be performed using coherent state

bases [3–11]. A correlation function in the space of coherent states can be discretized

in analogy to eq. (2.78) as

〈z f |T̂e−i
∫ t f

ti
dtĤ(t)|zi〉 = lim

ε→0
lim

N→∞
〈z f |T̂

N

∏
n=1

e−iεĤ(ti+nε)|zi〉 , (2.86)

where (N + 1)ε = t f − ti. Here, even though coherent states are denoted as |z〉, the

arguments do not necessarily refer to some specific case, but to all three aforemen-

tioned cases of bosonic, fermionic and spin coherent states. Using the resolution of

the identity in a coherent state basis, it is then easy to proceed with the discretization

procedure as

〈z f |T̂e−i
∫ t f

ti
dtĤ(t)|zi〉 =

= lim
ε→0

lim
N→∞

[
N

∏
n=1

∫
C

µ(zn, z̄n)

]
〈z f | e−iεĤN |zN〉 〈z1| e−iεĤ0 |zi〉

N−1

∏
n=1
〈zn+1| e−iεĤn |zn〉 =

= lim
ε→0

lim
N→∞

[
N

∏
l=1

∫
C

µ(z, z̄)

]
〈z f |zN〉 〈z1|zi〉

[
N−1

∏
n=1
〈zn+1|zn〉

]
× (2.87)

× e−iε(∑N−1
n=1 Hn(zn,z̄n+1)+HN(zN ,z̄ f )+H0(zi,z̄1)),

where Hn(zn, z̄n+1) = 〈zn+1|Ĥn|zn〉/〈zn+1|zn〉, Ĥn = Ĥ(ti + nε) and µ(z, z̄) is the mea-

sure of integration of the corresponding set of coherent states. The usual parametriza-
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tion of this quantity can be performed through the introduction of two multiplicative

terms as

〈z f |zN〉 〈z1|zi〉 =
〈z f |zN〉 〈z1|zi〉 〈zN+1|zN〉 〈z1|z0〉

〈zN+1|zN〉 〈z1|z0〉
, (2.88)

where z0 = zi, z̄N+1 = z̄ f , and by redefining the path integral as

〈z f |T̂e−i
∫ t f

ti
dtĤ(t)|zi〉 = (2.89)

= lim
ε→0

lim
N→∞

[
N

∏
n=1

∫
C

µ(zn, z̄n)

]
e−Γ f i

[
N

∏
n=0
〈zn+1|zn〉

]
e−iε ∑N

n=0 Hn(zn,z̄n+1),

where Γ f i = ln
{
〈z f |zN〉 〈z1|zi〉 /〈zN+1|zN〉 〈z1|z0〉

}
is the boundary term. This term

is not necessary for the construction per se, but plays a practical role, since it is crucial

in avoiding discontinuities in the classical paths during the calculations.

Even though the continuum limit of these quantities is not uniquely defined, due to

the asymmetry presented in the Hamiltonian term at the discrete level, it can still be

used for the qualitative study of systems. In the three cases of coherent states pre-

sented in subsection 2.6, the continuum form of the corresponding path integrals is

the following:

• For bosonic coherent states [3, 5]

b〈z f |T̂e−i
∫ t f

ti
dtĤ(t) |zi〉b =

z̄(t f )=z̄ f∫
z(ti)=zi

 ∏
t∈[ti,t f ]

d2z(t)
π

 e−Γ f i×

× exp
(

i
∫ t f

ti

dt
[

i
2
(z̄ż− ˙̄zz)− Hcl(z, z̄)

])
,

(2.90)

with Γ f i =
1
2

(
|z f |2 + |zi|2

)
− 1

2

(
z̄ f z(t f ) + z̄(ti)zi

)
.

• For fermionic coherent states [3, 9]

〈θ f |T̂e−i
∫ t f

ti
dtĤ(t) |θi〉 =

θ̄(t f )=θ̄ f∫
θ(ti)=θi

 ∏
t∈[ti,t f ]

d2θ(t)
π

 e−Γ f i×

× exp
(

i
∫ t f

ti

dt
[

i
2

(
θ̄θ̇ − ˙̄θθ

)
− Hcl(θ, θ̄)

])
,

(2.91)
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with Γ f i =
1
2

(
|θ f |2 + |θi|2

)
− 1

2

(
θ̄ f θ(t f ) + θ̄(ti)θi

)
, and |θ|2 = θ̄θ.

• For spin coherent states [6–8]

s〈z f |T̂e−i
∫ t f

ti
dtĤ(t) |zi〉s =

z̄(t f )=z̄ f∫
z(ti)=zi

 ∏
t∈[ti,t f ]

2s + 1
π

d2z(t)
(1 + |z|2)2

 e−Γ f i×

× exp
(

i
∫ t f

ti

dt
[

is
z̄ż− ˙̄zz
1 + |z|2 − Hcl(z, z̄)

])
,

(2.92)

with Γ f i = sln
(1+z̄ f z(t f ))(1+z̄(ti)zi)

(1+|z f |2)(1+|zi|2)
.

As noted previously, the safest route when using these quantities is to always consider

them at the discrete level, where the Hamiltonian term has an asymmetric form. As

will be commented shortly, the use of these quantities in the continuum fails when it

comes to exact calculations, since the most logical choice of Hamiltonian symbol Hcl

is not the correct one. In this case, further corrections are needed, which must be iden-

tified through other methods.

Since in all cases presented above, path integration was performed over a set of com-

plex fields, for reasons of simplicity the symbol φ will be used instead of z and θ when-

ever methods or arguments hold for all coherent state bases. Furthermore, the general

case of M such sets of complex fields φi, i = 1, . . . , M will be considered whenever

possible, since such cases will be encountered later, when more than one subsystems

are involved.

2.13 Methods for the computation of quadratic path integrals in the
continuum

Quadratic path integrals in the form of eq. (2.85) can be computed in the continuum [3]

through the calculation of the functional determinant of the operator δiji∂t −Vij(t)

∫
BC

[
M

∏
i=1
DφiDφ̄i

]
exp

{
i
∫ t f

ti

dt
M

∑
i,j=1

φ̄i(δiji∂t −Vij)φj

}
=

1
Det [i∂t −V(t)]

, (2.93)

where the operator acts on the space of differentiable functions, in the interval t ∈
[ti, t f ], with the appropriate boundary conditions. In this form the Γ f i factors are not
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included, since the boundary conditions have already been taken into account in the

structure of the function space on which the operator acts. Equation (2.93) is true

only for bosonic variables, since in the case that φi’s are Grassmann, the determinant

appears in the numerator. To compute this functional determinant the following prop-

erty can be used DetA = exp{TrlogA}, which is valid for an arbitrary kernel A. One

can then proceed by introducing the corresponding determinant of the free theory

Det [i∂t −V(t)] = Det [i∂t]
Det [i∂t −V(t)]

Det [i∂t]
. (2.94)

The quantity which needs to be calculated then is

Det [i∂t −V(t)]
Det [i∂t]

= exp {Trlog [i∂t −V(t)]− Trlog [i∂t]} . (2.95)

From this point onward the symbol Tr denotes the functional trace over both time and

matrix indices, and the symbol tr denotes the trace over only matrix indices. Using

the identity

−
∫ 1

0
dλ

V(t)
i∂t − λV(t)

= log [i∂t −V(t)]− log [i∂t] (2.96)

one then finds5

Det [i∂t −V(t)]
Det [i∂t]

= exp
{
−
∫ 1

0
dλTr

V(t)
i∂t − λV(t)

}
. (2.97)

It is easy to see that the previous quantity reduces to

Det [i∂t −V(t)]
Det [i∂t]

= exp
{
−
∫ 1

0
dλTrV(t)Gλ(t, t′)

}
=

= exp
{
−
∫ 1

0
dλtr

∫ t f

ti

dtV(t)Gλ(t, t)
}

,

(2.98)

where Gλ(t, t′) is the Green’s function satisfying the equation (i∂t − λV(t)) Gλ(t, t′) =

1̂δ(t− t′) with the appropriate boundary conditions at ti and t f . The calculation then

proceeds for each case by solving these Green’s equations and substituting the solu-

tions into eq. (2.98). The computation of the factor Det[i∂t] can be performed with

the use of dimensional regularization [3], but this determinant can be considered just

5While this equality holds true in the strict sense only for specific values of V(t), it can be analytically
continued outside of its radius of convergence or, in the case that it is used for general V(t), the result
can be regularized through appropriate methods.
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as a normalization, since its contribution does not contain information regarding the

potential V(t).

2.14 The generating functional

The form given to the path integrals of subsection 2.12 allows for the definition of a

new quantity, the generating functional:

Z[φ f , φi; J] = (2.99)

=

φ̄j(t f )=φ̄j f∫
φj(ti)=φji

[
M

∏
i=1
DφiDφ̄i

]
e−Γ f iexp

{
i
∫ t f

ti

dt
M

∑
i,j=1

[
φ̄iKijφj + J̄i(t)φi(t) + φ̄i(t)Ji(t)

]}
,

with Kij = δiji∂t − Vij for the case of the previous subsection, and Ji(t), J̄i(t) being

external currents. Using this quantity it is possible to construct correlation functions

as

(−i)n δnZ[φ f , φi; J]
δ J̄(tn) . . . δ J̄(t1)

∣∣∣∣
J=0

=

φ̄j(t f )=φ̄j f∫
φj(ti)=φji

[
M

∏
i=1
DφiDφ̄i

]
e−Γ f i φn(tn) . . . φ1(t1)×

× exp

{
i
∫ t f

ti

dt
M

∑
i,j=1

[
φ̄iKijφj

]} (2.100)

and similarly for conjugate fields φ̄i and mixed cases. The same procedure can be

used even if the initial action weighing the path integral is more complicated. It

must be noted that even if φi and φ̄i are the projections of the operators φ̂i and φ̂†
i

respectively on a basis of states, the previous path integral is not necessarily equal to

H 〈φ f , t f |T̂
(
φ̂1(t1)φ̂2(t2) · · · φ̂n(tn)

)
|φi, ti〉H as will be shown later in the main text. On
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the contrary, it must be considered that

H 〈φ f , t f |T̂
(
φ̂1(t1)φ̂2(t2) · · · φ̂n(tn)

)
|φi, ti〉H =

= (−i)nF
(

δ

δ J̄1(t1)

)
. . . F

(
δ

δ J̄n(tn)

)
Z[φ f , φi; J]

∣∣∣∣
J=0

= (2.101)

=

φ̄j(t f )=φ̄j f∫
φj(ti)=φji

[
M

∏
i=1
DφiDφ̄i

]
e−Γ f i F(φ1(t1)) . . . F(φn(tn))exp

{
i
∫ t f

ti

dt
M

∑
i,j=1

[
φ̄iKijφj

]}
,

where F
(

δ
δ J̄i(ti)

)
is a function of the functional derivatives with respect to the external

current J̄i(ti) and F(φi(ti)) the analogue for the function φi(ti). As will be made clear

later, even though the choice F(φi(ti)) = φi(ti) may work in the case of a real space, i.e.

where the fields X̂i are not complex, in the case of coherent states inconsistencies will

become apparent and will make the identification of the correct function F non-trivial.

Nevertheless, when no inconsistencies appear or in the case that these are resolved,

such functional differentiations can produce a large variety of quantum quantities. For

this reason, the generating functional of eq. (2.99) can be expressed in a more practical

form through the change of variables

φi(t)→ φi(t)−
M

∑
j=1

∫ t f

ti

dt′K−1
ij (t, t′)Jj(t′), (2.102)

where for reasons of simplicity the case of periodic boundary conditions is presented6:

Z[Per; J] = (2.103)

= Z[Per; 0]
∫
(+)

[
M

∏
i=1
DφiDφ̄i

]
exp

{
−i
∫ t f

ti

dt
∫ t f

ti

dt′
M

∑
i,j=1

J̄i(t)K−1
ij (t, t′)Jj(t′)

}
.

6In this equation and from now on, the Γ f i factor is dropped when considering periodic/anti-
periodic path integrals (partition functions), since the classical paths with periodic/anti-periodic
boundary conditions are continuous. On the other hand, this factor could be necessary when com-
puting such quantities as

Z =
∫

C
µ(φ, φ̄) 〈±φ|T̂e−i

∫ t f
ti

dtĤ(t)|φ〉 ,

in which case, depending on the method being used, it may or may not be needed in the calculation
of the matrix element. The upper symbol in ± denotes the bosonic case while the lower denotes the
fermionic case.
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The abbreviation Per inside the Z functionals denotes the periodic boundary condi-

tions, while the symbol (+) denotes the same at the level of the path integral. In a

more general case, boundary terms originating from the aforementioned change of

variables may appear, along with any pre-existing boundary term Γ f i.

In the case of quadratic actions of the form

S =
∫ t f

ti

dt
M

∑
i,j=1

φ̄i(δiji∂t −Vij)φj, (2.104)

the kernel K−1
ij appearing in eq. (2.103) is none other than the solution to the Green’s

equation
M

∑
j=1

(δiji∂t −Vij(t))Gjk(t, t′) = δikδ(t− t′), (2.105)

with the appropriate boundary conditions.

2.15 Path integrals in imaginary time and the Wick rotation

The path integral method can be used also for the study of thermal systems [3]. In such

systems, which are defined through the thermal state (2.68), the partition function

Z = tr
[
e−βĤ

]
(2.106)

can be represented as a path integral with periodic/anti-periodic boundary condi-

tions, defined with respect to the imaginary time τ = −ih̄β. The case of periodic

boundary conditions corresponds to bosonic systems, while the case of anti-periodic

conditions corresponds to fermionic ones. The result, found in the case of bosonic

coherent states has the form

Z =
∫
(+)

 ∏
t∈[0,β]

d2z(t)
π

 exp
(
−
∫ β

0
dt
[

1
2
(z̄ż− ˙̄zz) + Hcl(z, z̄)

])
, (2.107)

with the generalization to the fermionic and spin systems being straightforward. Again,

the h̄ constant has been set equal to 1. As expected, one can also introduce external

currents as in the real-time case, the functional derivatives with respect to which, in

this case, provide the expectation values of operators. The results can be related to
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the corresponding real-time quantities through the Wick rotation, which will be in-

troduced in the next paragraph, and thus present an immediate relation between the

dynamic evolution of a system in real-time and the properties of the same system at

thermal equilibrium.

To see what such a change towards the real-time results provides, it is vital to see how

the partition function behaves in the zero-temperature limit. Considering the eigen-

states of the Hamiltonian constituting a complete and orthonormal basis, the partition

function can be expressed as

Z = 〈G.S.|e−βĤ|G.S.〉+ 〈E1|e−βĤ|E1〉+ . . . , (2.108)

where the vector |G.S.〉 denotes the ground state of the system, which in this case is

considered non-degenerate and with energy E0, while the vector |En〉 denotes the n-th

excited state with energy En. For β→ ∞, it is easy to see that

lim
β→∞

Z = lim
β→∞

(
e−βE0 + e−βE1 + . . .

)
= lim

β→∞
e−βE0

(
1 + e−β(E1−E0) + . . .

)
'

' e−βE0 = 〈G.S.|e−βĤ|G.S.〉 .

(2.109)

In case of degeneracy in the ground state, the result at the zero-temperature limit

would just be generalized to an equiprobable mixture of all degenerate ground states.

In the result of eq. (2.109), one can see that with a simple change of variable β = iT

(h̄ = 1), with T defining an imaginary time, the result becomes just a ground state -

ground state correlation function. Similarly, when taking the zero-temperature limit of

expectation values of operators, and after using this change of variables, their ground

state - ground state correlators are recovered. This method is a valid way to study the

dynamic properties of systems with specific Hamiltonians using their thermal proper-

ties at equilibrium. Nevertheless, when the evolution of a system is expressed through

non-equilibrium dynamics this equivalence breaks down, and the study of dynamics

needs to be performed using the Swinger-Keldysh formalism (see subsection 2.10).

The definition of the imaginary time can be made formal through the analytic con-

tinuation of time [51] as

τ = teiε. (2.110)
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The constraint for this procedure to be valid is for the rotation of the time axis in the

complex plane - during the change of ε - to not lead to singularities. This is true for

ε ∈ [0, π], and subsequently the choice τ = it is possible. The use of the Wick rotation

is sometimes the best way to compute real world quantities, since there exist occasions

like in Quantum Field Theory, where the only way for the path integral to make sense

is in imaginary time, where the weight of the paths is real.

2.16 Inconsistencies of the continuum limit

As referenced previously, computations of path integrals in the continuum not always

lead to correct results [17–20]. To showcase this issue, the method presented in sub-

section 2.13 for the calculation of path integrals in the continuum will be addressed

again, in order to present the issue for all coherent state cases referenced previously.

For simplicity, the case of periodic boundary conditions will be studied, while similar

arguments can be used for the case of more general boundary conditions.

Consider the bosonic variable path integral

∫
(+)

[
M

∏
i=1
DφiDφ̄i

]
eiS, (2.111)

where S is the action characterizing the time evolution and φi, φ̄i, i = 1, . . . N, are

the fields of the theory and their conjugates. In the case where the action can be

parametrized as

S =
∫ t f

ti

dt
M

∑
i,j=1

{
φ̄i(δiji∂t −Vij)φj

}
, (2.112)

the calculation has been shown to be possible through the computation of the func-

tional determinant as

∫
(+)

[
M

∏
i=1
DφiDφ̄i

]
eiS =

1
Det[i∂t]

Det[i∂t]

Det [i∂t −V]
=

=
1

Det[i∂t]
e−trlog[i∂t−V]−1+trlog[i∂t]

−1
.

(2.113)
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In the above equation, (i∂t −V)−1 ≡ G is the Green’s function satisfying equation

(i∂t −V) G(t − t′) = δ(t − t′) with periodic boundary conditions, while (∂t)
−1 ≡

G0 is the respective Green’s function for the free theory, with respect to which the

normalization is performed. The calculation in the continuum then takes as granted a

symmetric discrete form for the term involving V

lim
ε→0

lim
N→∞

∫
(+)

[
N

∏
n=1

M

∏
i=1

∫
C

µ(φi,n, φ̄i,n)

]
exp

(
i

N

∑
n=0

[iφ̄in∇nφin −V(φi,n, φ̄i,n)]

)
, (2.114)

where ∇nφin = (φi,n+1 − φin)/ε is the lattice derivative, and µ(φi,n, φ̄i,n) is the mea-

sure of integration in the space of φi and φ̄i at time t = ti + nε. It is easy to see that

this is not the quantity under study in the case that the fields φi correspond to the

eigenvalues of coherent states, since the Hamiltonian term is of the asymmetric form

Hcl(zn, z̄n+1).

Nevertheless, if one proceeds with the calculation of the coherent-state path integral

through the functional determinant, and thus assumes the above symmetric structure,

the results will be wrong. Furthermore, the same wrong results would be recovered if

one computes the discrete determinant of coherent-state path integrals with the sym-

metric discretization of eq. (2.114) and then performs the limit N → ∞. On the con-

trary, the correct result can be found by calculating the discrete determinant for the

asymmetric Hamiltonian term and then performing the limit N → ∞. Three exam-

ples of the wrong results that this naive use of the symmetric calculation can lead to

are the following:

• In the study of the harmonic oscillator Ĥ = ω
(
â† â + 1/2

)
through bosonic co-

herent states, if the Hamiltonian symbol is chosen to be b〈z|Ĥ |z〉b = ω
(
|z|2 + 1/2

)
:

∫
(+)

 ∏
t∈[ti,t f ]

d2z(t)
π

 exp
(

i
∫ t f

ti

dt
[

i
2
(z̄ż− ˙̄zz)−ω

(
|z|2 + 1

2

)])
= (2.115)

= e−
i
2 ω(t f−ti)

∞

∑
n=0

e−iω(t f−ti)(n+ 1
2 ) 6=

∞

∑
n=0

e−iω(t f−ti)(n+ 1
2) = tr

[
e−i(t f−ti)ω(â† â+1/2)

]
.

• In the study of the fermionic harmonic oscillator Ĥ = ω
(
ψ̂†ψ̂− 1/2

)
through

fermionic coherent states, if the Hamiltonian symbol is chosen to be
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〈θ|Ĥ|θ〉 = ω
(
θ̄θ − 1/2

)7:

∫
(−)

 ∏
t∈[ti,t f ]

d2θ(t)
π

 exp
(

i
∫ t f

ti

dt
[

i
2

(
θ̄θ̇ − ˙̄θθ

)
−ω

(
θ̄θ − 1

2

)])
= (2.116)

= 2e
i
2 ω(t f−ti)cos

(
ω

t f − ti

2

)
6= 2cos

(
ω

t f − ti

2

)
= tr

[
e−i(t f−ti)ω(ψ̂†ψ̂−1/2)

]
.

• In the study of the spin operator ωŜz through spin coherent states, if the Hamil-

tonian symbol is chosen to be s〈z|Ĥ |z〉s = sω 1−|z|2
1+|z|2 :

∫
(+)

 ∏
t∈[ti,t f ]

2s + 1
π

d2z(t)
(1 + |z|2)2

 exp
(

i
∫ t f

ti

dt
[

is
z̄ż− ˙̄zz
1 + |z|2 − sω

1− |z|2
1 + |z|2

])
=

= e
i
2 ω(t f−ti)

s

∑
j=−s

eijω(t f−ti) 6=
s

∑
j=−s

eijω(t f−ti) = tr
[
e−i(t f−ti)ωŜz

]
. (2.117)

Even though these results differ from the correct ones just by a phase factor, for higher

order operators it is easy to see that the changes would be much more severe. It must

be emphasized again that if the same calculations were performed in the discrete level

using the original asymmetric form of the Hamiltonian symbol, and the subsequent

limit N → ∞, the results would indeed be the correct ones. Even though the solution

to this issue is not obvious, the mistake which leads to it is clearly the wrong trans-

lation of the countably infinite product of integrals, in the original discretized path

integral, to an uncountably infinite one.

2.17 Proposals for the solution of the issues

Even though an immediate method for the solution of the inconsistencies of coherent-

state path integrals has not been invented until today, there have been attempts of at

least recovering the correct results through the study of the continuum limit. In this

subsection two such cases will be addressed [18–20, 28, 29].

The first method attempts to solve the issues at the level of the computation of the

functional determinant, using the fact that the quantity Gλ(t, t′) in equation (2.98)

7The symbol (−) denotes the antiperiodic boundary conditions of the corresponding path integral.
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presents a discontinuity at the value t′ = t. This can be seen from its exact form, since

the solution of eq. (i∂− λV(t)) Gλ(t, t′) = δ(t− t′), in the case of periodic boundary

conditions and for one set of complex fields φ, φ̄, is

Gλ(t, t′) = −i

Θ(t− t′)−
(

1− eiλ
∫ t f

ti
V(t1)dt1

)−1
 e−iλ

∫ t
t′ V(t1)dt1 , (2.118)

where the discontinuity appears due to the step function Θ. This shows that differ-

ent choices for Θ(0) lead to different results, with the Heaviside Theta prescription

Θ(0) = 1/2 leading to the wrong result presented in the previous subsection.

The proposal that has been made in this context [28,29], in order to recover the correct

result, is to take into account the discrete ancestor of the continuous Hamiltonian and

use the limit form Gλ(t, t) = i

(
1− eiλ

∫ t f
ti

V(t1)dt1

)−1

for t′ = t in eq. (2.98). This way

the calculation of the path integral yields the correct result and the correct answer for

the partition function is recovered.

Even though this prescription is enough to cure the inconsistences presented in the

computations of (2.115), (2.116) and (2.117), which refer to quadratic path integrals,

this is not the case for less trivial systems such as the Bose-Hubbard model or the spin

system Ŝ2
z . In the context of fermionic systems, it is a fact that terms of higher orders

cannot appear, and thus one may argue that the problem has been solved. Neverthe-

less this is not true, since for more complex systems, where the classical Hamiltonian

may need further manipulations (e.g. a diagonalization), these are only possible -

and mathematically consistent - when the underlying discrete time lattice is symmet-

ric. This is due to the fact that the asymmetric discrete action is not invariant under

canonical transformations, a fact that contradicts the physical demand for the path in-

tegral to share this invariance with classical mechanics [3].

A less immediate procedure, which though circumvents the issue altogether, was pre-

sented in [18, 20]. In these works the Hamiltonian operator of a bosonic system under

study is firstly projected on an orthonormal basis interpreted as the set of position

and momentum eigenstates of the Hilbert space, before performing the discretization

procedure and the subsequent leap to the continuum limit. The resulting limit then,

being inheretly symmetric, yields a consistently defined classical action, which is a
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function of the corresponding position and momentum variables, identified as the

eigenvalues of the previous eigenstates. By virtue of invariance of classical mechanics

under canonical transformations, the system could then be returned to the space of

complex coordinates, which are then identified as the eigenvalues of the annihilation

and creation operators on the set of coherent states. This way, the correct action is

recovered, in the sense that the functional determinant computed with the use of the

symmetric slicing hypothesis (and thus of the Heaviside Theta Θ(0) = 1/2 limit for

the discontinuity) leads to the correct result. For the case of the harmonic oscillator

Ĥ = ω(â† â + 1/2), the correct Hamiltonian function for use in path integrals was

thus identified to be

Hharm(z, z̄) = ω|z|2. (2.119)

The same technique was later generalized [19] for spin systems, where the Hamilto-

nian operator Ŝz was mapped to a function of the the harmonic oscillator’s number

operator, restricted on a subset of the corresponding Hilbert space. The dimension of

this subset was chosen equal to the dimension of the representation of su(2) used in

the problem. This mapping was possible through the Holstein-Primakoff transforma-

tion [52], which for Ŝz gives in the spin s representation of su(2)

Ŝz = s− â† â. (2.120)

Using the respective position and momentum basis of this harmonic oscillator rep-

resentation, the correct continuum limit was again recovered. In the case of the ωŜz

operator, the correct Hamiltonian symbol for use in path integrals was found to be

HωŜz
(z, z̄) = ω

[
s

1− |z|2
1 + |z|2 +

1
2

]
. (2.121)

This indicated that the discretization procedure successfully reproduces the correct

continuum limit, when performed on a basis that leads to a symmetric discrete struc-

ture. This procedure, used both in bosonic and spins systems, was successfully imple-

mented for higher order Hamiltonian operators, where it again led to the recovery of

the correct results.
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2.18 Geometric Quantization

The classical and quantum formalisms, defined in the previous subsections, can be

described very naturally through the use of symplectic geometry and the theory of

vector bundles [21–24, 53].

The mathematical formalism of classical mechanics [53] is based on the definition of

the phase space of a theory as a symplectic manifold M, i.e. a C∞-manifold of even

number of dimensions 2n, on which a non-degenerate closed 2-form ω can be defined.

The properties of this space M allow always for the local identification of a set of co-

ordinates qi and pi, called the Darboux coordinates, which parametrize the 2-form ω

as

ω =
n

∑
i=1

dpi ∧ dqi, (2.122)

with i = 1, . . . n. The vector fields ξ on the manifold M, which preserve ω along their

flow, are called Hamiltonian vector fields. The effect of a vector field’s flow on k-forms

is defined through the action of the Lie-derivative

Lξω =
(
iξd + diξ

)
ω, (2.123)

where d =
(

∂
∂xµ

)
dxµ is the exterior derivative and iξ = ξµ ∂

∂xµ is the interior deriva-

tive with respect to a vector field ξ. In these equations it must be noted that dxµ and
∂

∂xµ , which can be found on the right of the exterior and the interior derivative respec-

tively, are nothing more than the coordinates of these quantities in the space of 1-forms

Ω1(M) and vector fields T1M respectively, and act on each other as

dxµ ∂

∂xν
=

∂

∂xν
dxµ = δµ

ν. (2.124)

The closedness of ω: dω = 0, leads to a very important relation between the vector

fields that preserve ω and the set of C∞-functions on the manifold M, since from eq.

(2.123) it can be observed that to each Hamiltonian vector field ξ corresponds a C∞-

function H, and vice-versa:

dH = −iξω ⇒ ∂µH = −ξνωνµ. (2.125)
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It can be easily seen at this point that the definition of the Poisson bracket can be

naturally reproduced as the change of a function, with respect to time t, under the

flow of a Hamiltonian vector field ξ

∂t f ≡ Lξ f = ξµ∂µ f = ω#µν∂νH∂µ f ≡ { f , H}, (2.126)

where ω#µν is the inverse tensor of ωνµ, and the function f is not immediately de-

pendent on time. In the following the index # is dropped, and the inverse property is

identified by the upper position of the space indices. In the local set of Darboux coordi-

nates, the aforementioned quantity assumes the form ∂t f = ∑n
i=1

(
∂qi f ∂pi H − ∂qi H∂pi H

)
as expected. The general form of eq. (2.126) has the advantage of not needing the use

of a local coordinate patch, parametrized as the "position" and "momentum" coordi-

nates, but allows for the study of more complicated phase-spaces, which as will be

emphasized later have very important roles in quantum mechanics.

For the construction of the quantum theory [21–24] the next step is the identification

of the proper formalism for the study of wave-functions and of the operators acting

on those. The intuitive idea that wave-functions are functions though proves not to be

mathematically consistent in the general case. This is due to the fact that the presence

of curvature on a manifold makes it necessary for all derivatives appearing inside the

operators (e.g. the momentum) to be substituted by their covariant analogues, the

latter acting by definition on sections of vector bundles [53]. The most formal way of

defining wave-functions is thus as sections of a C-line bundle over a manifold M. The

C-line bundle structure is simply the definition of a complex space C over each point

of a given manifold, and a section is a specific choice of element from the complex

space over each point. In the case where the manifold is symplectic, it is very easy to

define a proper inner product for the sections of the aforementioned bundle

(Ψ1, Ψ2) =
∫

µ(~x)Ψ∗1(~x)Ψ2(~x), (2.127)

with the measure of integration being the canonical symplectic induced one

µ(~x) =
ω

(2n)!
=
√

detωd2nx. (2.128)
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The Hermitianicity condition of an operator Ĥ in turn becomes∫
d2nx
√

detωΨ∗1 [ĤΨ2] =
∫

d2nx
√

detω[ĤΨ1]
∗Ψ2. (2.129)

For the preservation of the covariance, in the case of a curved symplectic space, the

covariant derivative is defined as

Dµ = ∂µ + iAµ, (2.130)

where A is the symplectic potential, locally satisfying eq. ω = −dA.

Since in the context of this formalism wave-functions can locally be considered as

functions of all the coordinates of the phase-space, they define a reducible represen-

tation of the quantum theory. In order to reduce the dimensions of the representa-

tions by half and in turn construct irreducible representations (e.g. the position and

momentum representations) one has to define a polarization for the wave-functions.

This polarization is performed through the choice of an n-dimensional sheet P of the

2n-dimensional phase space M, where the flow of vector fields ξ oriented along P

preserve the polarized wave-functions

ξµDµΨ = 0. (2.131)

In the case where M is chosen as the usual Euclidean phase space, a polarization

with respect to the momentum directions would provide the position representation

of quantum mechanics and vice-versa. In the case of complex manifolds, which will

be studied later, the polarization is performed along the antiholomorphic directions.

In the context of geometric quantization it is then possible to identify an operator

P̂( f ) for all classical C∞-functions f , of the form

P̂( f ) = −i(ξµDµ + i f ). (2.132)

This operator acts on wave-functions and satisfies the weakened set of Dirac’s con-

straints presented in subsection 2.2, such that it is at least valid for a subset of the

space of smooth functions. Here, ξ is the Hamiltonian vector field corresponding to

the function f , as defined in eq. (2.125). In the case where a real polarization is con-
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sidered, the Hermitianicity property of an operator does not hold after the choice of

polarization. To see this, one should consider the case of the aforementioned momen-

tum polarization. For the reduced phase-space, spanned only by the position coor-

dinates, the integration measure cannot remain
√

ωdnxdn p, since, if wave-functions

depend only on ~x, all inner products would diverge due to the integrations over the

momenta. Even though in the case of the Euclidean space the new measure over the

reduced phase-space can be chosen to be dnx, in a curved space, like the 2-Sphere,

the reduced phase-space would have a much more complicated measure of integra-

tion J(xµ). This measure though would lack in general the properties of the canonical

measure of integration ω/(2n)!. As a result, this would lead to the breakdown of

Hermitianicity∫
JdnxΨ∗1(P̂( f )Ψ2)−

∫
Jdnx(P̂( f )Ψ1)

∗Ψ2 = i
∫

Jdnx[∂µξµ + ξµ∂µlnJ]Ψ∗1Ψ2. (2.133)

For this reason the operator P̂( f ) is called the pre-quantum one, at this point in the

construction. This issue can be avoided through the redefinition of wave-functions

not only as sections of a C-line bundle, but as a tensor product of such sections with

sections of the half-form bundle δ. The sections of the latter bundle have the property

δ1 ⊗ δ2 ∈ Ω(M), (2.134)

where Ω(M) is the space of k-forms over a manifold M and δ1, δ2 are elements of

the half-form bundle over the same manifold. Wave-functions are thus defined as

elements which are locally represented in the form

Ψ(x)
√

J(x), (2.135)

with Ψ(x) being the old polarized wave-function and
√

J(x) the new polarized half-

form contribution. The action of the operator, which is now defined as the quantum

one, is then found to be

Q̂( f )[Ψ(x)
√

J(x)] = [−i(ξµDµ + i f )Ψ(x)]
√

J(x)− iΨ(x)Lξ

√
J(x), (2.136)

where

Lξ

√
J(x) =

(
1
2

∂µξµ + ξµ∂µ

)√
J(x) (2.137)
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is the Lie-derivative with respect to the Hamiltonian vector field ξ of the C∞-function

f , acting on the half-form
√

J(x). The index µ in the above equation corresponds to

the coordinates of the reduced phase-space only. The new term appearing in (2.136,

containing the Lie-derivative, defines the metaplectic correction. This procedure is

considered mathematically and physically consistent, but is valid only in the case

where the vector field ξ, the flow of which drives the time evolution, preserves the

polarization, i.e. for a polarized vector field V ∈ T1M/T1P:

LξV ∈ T1M/T1P. (2.138)

If this condition is not met it is necessary to introduce further mathematical struc-

ture during the construction of the operator and its action, in the form of the BKS

kernels [21]. These, in theory, act by correcting the possible change made to the po-

larization, under the flow of a vector field ξ. The topic of BKS kernels though falls

out of the scope of the present thesis, since geometric quantization will be used only

for the study of polarization preserving vector fields. Nevertheless, this construction

leads to the major result that path integrals can emerge naturally as limits of the BKS

construction. Such phase-space path integrals are defined through the lifting of the in-

tegration to the space of paths, with boundary conditions depending on the quantity

under investigation, and assume the form

∫
BC

 ∏
t∈[ti,t f ]

ωn(xν(t))
(2n)!

 ei
∫ t f

ti
dt{Aµ(xν(t))ẋµ(t)−H(xν(t))}. (2.139)

Here, Aµ defines the symplectic potential on the manifold the classical action is de-

fined on, xµ is a set of coordinates on the phase-space, and

∏
t∈[ti,t f ]

ωn(xν(t))
(2n)!

= lim
N→∞

N

∏
j=1

ωn(xν
j )

(2n)!
(2.140)

is the functional measure. The path integral presented above corresponds to a func-

tional integral over the whole phase-space and not over a reduced one produced after

the choice of a polarization. The Hamiltonian function H in this formula represents

the classical observable that controls the evolution of wave-functions of the Hilbert

space, through the flow of its corresponding Hamiltonian vector field.
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While in the case of real polarizations issues appear in the identification of a new well

defined measure J(xµ) for the reduced phase-space, the same is not true in the case of

complex polarizations. In the case of Kähler manifolds [54], i.e. Hermitian manifolds

on which the Kähler form is closed, one can keep using the old symplectic-induced

measure of integration of the complete phase-space, since the inner products continue

to converge even after the holomorphic polarization is applied. To understand this

statement an introduction to the theory of complex manifolds must be made.

A 2n-dimensional complex manifold M is a manifold on which, for each point p ∈ M,

one can find an open neighbourhood which can be charted by a complex set of coor-

dinates {zi, z̄i}, with i = 1, . . . , n. On such a manifold, both the space of vector fields

and the space of 1-forms are separated in disjoint unions of spaces, spanned by the

holomorphic and anti-holomorphic elements respectively. One can then easily define

a tensor Jp acting on vector fields as

Jp
∂

∂zµ = i
∂

∂zµ , Jp
∂

∂z̄µ = −i
∂

∂z̄µ , (2.141)

which is called the almost complex structure. A Hermitian manifold is a complex

manifold, on which a metric gp can be defined on the coordinate patch around each

point p ∈ M, and has the following compatibility property:

gp(JpX, JpY) = gp(X, Y), X, Y ∈ TpM. (2.142)

Here, the index p is used to signify the local nature of this argument. Using this metric

one can also define the corresponding Kähler form Ωp, which acts on vector fields as

Ωp(X, Y) = gp(JpX, Y), X, Y ∈ TpM. (2.143)

This 2-form has the important property that it provides a nowhere vanishing top-form

Ω ∧ · · · ∧Ω, (2.144)

where the index p has been dropped in order to denote that this property holds over

the whole manifold M. This top-form then is well-fit for use as a measure of integra-
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tion over the manifold M. It must be noted that a manifold with the aforementioned

properties is not necessarily symplectic, which is the case only when dΩ = 0. Complex

manifolds on which a closed Kähler form can be defined are called Kähler manifolds.

To show why the holomorphic polarization does not lead to the need of a new mea-

sure of integration, it suffices to study the case of a 2-dimensional Kähler manifold M.

On such a manifold, the holomorphic polarization is defined through equation

Dz̄Φ(z, z̄) = 0 =⇒
(

∂

∂z̄
+ iAz̄

)
Φ(z, z̄) = 0, (2.145)

where the connection A is the symplectic potential on the underlying symplectic man-

ifold and Φ a wave-function in the usual sense, i.e. a section of a C-line bundle.

The sign in front of Az̄ must be such that this equation has a solution Φ(z, z̄) =

φ(z)exp [−Y(z, z̄)/2], where Y is a function with the property Re [Y(z, z̄)] → +∞ suf-

ficiently fast for |z| → +∞. Then, a canonical inner product can be defined [24] for the

polarized wave-functions as

(Φ1, Φ2) =
∫

M
φ∗1(z̄)φ2(z)e−Y(z,z̄)µ(z, z̄), (2.146)

again using the canonical measure of the 2-dimensional Kähler manifold µ(z, z̄). The

aforementioned inner product defines a structure that coincides with a Bargmann

space of holomorphic functions on the complex plane, with measure e−Y(z,z̄) µ(z,z̄)
dz∧dz̄

8.

This shows that complex irreducible representations of quantum mechanics can exist

without the introduction of the half-form structure.

Nevertheless, one could perform the same construction after introducing the half-

form structure, in which case the holomorphicaly polarized wave-functions are locally

of the form

Φ(z, z̄) = φ(z)e−
Y(z,z̄)

2
√

dz. (2.147)

Here, the polarization of the function part remained the same as before, and the con-

dition of holomorphic polarization for the half-form part was also taken into account.

The canonical inner product for this half-form improved structure is defined through

8In what follows, the symbol a
b with a and b differential forms of the same degree is the function for

which
( a

b
)
× b = a.

51



the BKS pairing [24]

(Φ1, Φ2) = k
∫

M

(
(Φ∗1 ⊗Φ∗1) ∧ (Φ2 ⊗Φ2)

µ(z, z̄)

) 1
2

µ(z, z̄), (2.148)

where k is a normalization constant. By substituting eq. (2.147) in (2.148) this expres-

sion simplifies to

(Φ1, Φ2) = k
∫

M
φ∗1(z̄)φ2(z)e−Y(z,z̄)

(
dz ∧ dz̄
µ(z, z̄)

) 1
2

µ(z, z̄), (2.149)

which once again coincides with a Bargmann space of holomorphic functions on the

complex plane, but this time with measure

e−Y(z,z̄)
(

µ(z, z̄)
dz ∧ dz̄

) 1
2

, (2.150)

which in general may differ from the non half-form corrected result. In the case of

Kähler manifolds, both structures - categorized by the inclusion or not of the half-

form structure - are mathematically consistent, and thus the inclusion or not of the

metaplectic correction in the construction of the quantum operators has more of a

physical than a mathematical significance. Even though it is considered that the meta-

plectic correction leads to more physically correct results [23], its significance has not

yet been quantitatively studied. As will be argued in section 3, this study can be eas-

ily performed through the application of geometric quantization in the construction

of coherent-state path integrals in the continuum.

To understand how the metaplectic correction contributes to the resulting operators, it

is essential to continue with the study of 2D Kähler manifolds. In that case, if the holo-

morphic polarization is considered, the half-form part of the polarized wave-function

(2.147) can be chosen to be
√

dz, since any extra coefficient can be absorbed in the

holomorphic function part φ(z). As a result

Lξ

√
dz =

1
2

∂zξz
√

dz. (2.151)
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The action of the operator on the polarized wave-functions can then be expressed as

Q̂( f )[Φ(z, z̄)] = −i
(

ξzDz + i f +
1
2

∂zξz
)

Φ(z, z̄). (2.152)

By writing explicitly the form of the holomorphic wave-functions (2.147), one finds

the action of the quantum operator on the function part φ(z) to be

Q̂( f )φ(z) =
(
−iξz∂z −

i
2
(∂z + 4iAz) ξz + f

)
φ(z). (2.153)

The metaplectic correction then appears in the action of Q̂( f ) as the − i
2 ∂zξz contribu-

tion.

2.19 WKB approximation

The WKB (Wentzel-Kramers-Brillouin) approximation is commonly used in the con-

text of path integrals in order to compute the semiclassical approximation of quantum

quantities. In that context, one expands the action of the exponential, acting as the

weight of path integration, around its saddle point. Since this saddle point is identi-

fied by demanding the functional derivative of the action with respect to the fields to

be zero, the field solutions are exactly the classical configurations of the theory. Con-

sidering the fields φi - not necessarily complex - of a theory, this expansion then takes

the following form

S = S|φi=φicl + ∑
i,j

δ2S
δφiδφj

∣∣∣∣
φi=φicl

δφiδφj + . . . , (2.154)

where φi = φicl + δφi. Truncating the aforementioned expansion after the second term,

the path integral reduces to the form of a Gaussian one

∫
BC

∏
i
DφieiS = eiS|φi=φicl

φi(t f )=0∫
φi(ti)=0

∏
i
Dδφie

i ∑i,j
δ2S

δφiδφj

∣∣
φi=φicl

δφiδφj
=

= eiS|φi=φicl Det

[
δ2S

δφiδφj

∣∣∣∣
φi=φicl

]∓ 1
2

,

(2.155)
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where the negative exponent corresponds to the bosonic case and the positive expo-

nent to the fermionic one. When path integration is considered over a symplectic

phase-space, where the fields are the phase-space coordinates, there exist cases where

this approximation can truly be exact due to the path integral generalization of the

Duistermaat-Heckman theorem [55]. These are the cases where the Hamiltonian flow,

driving the evolution of a system, leaves the metric of the underlying phase-space

invariant, i.e. when the Lie-derivative of the metric with respect to the Hamiltonian

vector field is equal to zero [56]

Lξ g = 0. (2.156)

2.20 Faddeev-Jackiw method for path integrals over Majorana vari-
ables

The path integral representation of Majorana fermions has proved to be a highly non-

trivial problem, since their complicated canonical quantization does not allow for the

usual discretization construction. The proposal for the consistent path integral quanti-

zation was presented in [26], where the system of Majorana fermions was considered

as a constrained system of complex fermions. This was achieved by working at the

canonical level, in the Hilbert space generated by the fermionic operators ψ̂†
a and ψ̂a,

with the constraint Ω̂ ≡ ψ̂†
a − ψ̂a = 0 being applied. To make the transition from this

construction to the path integral representation of Majorana variables, the Faddeev-

Jackiw method was used.

The Faddeev-Jackiw formalism [25] for a constrained system - which will not be ad-

dressed further in the context of the present thesis - is a method for obtaining a clas-

sical theory, consistent with the algebra of the quantum problem. Once this classical

field theory is obtained, quantization can then proceed via both path integral and

canonical quantization. In [26] the extension of this procedure to fermionic degrees of

freedom was used to achieve exactly this in the case of Majorana fermions, where the

correct Lagrangian, fit for use in path integration over real Grassmann variables, was

identified. This procedure led to the result that for the identification of the classical

Hamiltonian from the quantum one, it is enough just to substitute all Majorana oper-

ators γ̂i with their Grassmann variable counterparts9. As will be argued in section 4,

9This is in contrast to the complex fermion case, in which the action weighing path integration can’t
be identified that easily, similarly to the bosonic and spin cases (see subsections 2.16 and 2.17).
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a solution for the issues encountered in fermionic coherent-state path integrals can be

easily found through this result.

3 Coherent state path integrals in the continuum via Ge-
ometric de-quantization

Section summary

In this section, bosonic variable path integrals will be studied, as is the case for bosonic

and spin systems, where with the use of geometric quantization it will be possible to

identify the correct continuum limit. Details on the topic of Kähler quantization are

also extensively studied, with great focus given on the importance of the metaplectic

correction in quantization theory. This section is based on the works presented in

[57, 58].

Section introduction

Before proceeding, it is necessary to understand that the issues inherited at the con-

tinuum limit are reflected only on the Hamiltonian term, since the kinematical one,

being a consequence of the inner product (see eq. (2.89)), is independent of the slicing

procedure; it depends only on the choice of the basis. On the contrary, the Hamilto-

nian term not only depends on this procedure, but also, its discrete form, which is

not always symmetric with respect to the time slicing [3], does not translate uniquely

to the continuum. Such an asymmetric structure cannot be invariant under canonical

transformations - as should be the case with classical mechanics - and consequently

does not represent the discrete form of a well defined classical Hamiltonian. As a re-

sult, the continuum limit should not be confused with a classical action and any direct

calculation using functional techniques cannot be considered as legitimate10. In order

to identify this limit with a classical action, strict conditions must be met to ensure

its validity in the context of Hamiltonian mechanics. In appendix A the dependence

of this limit on the slicing procedure is addressed. Furthermore, as has been shown

10Quantum field theory methods based on the computation of a functional determinant necessarily
imply a symmetric underlying discrete structure.
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in [18–20] and referenced in subsection 2.17, the correct continuum limit can be recov-

ered if the discretization procedure leads to a symmetric discrete form, since each slice

is invariant under canonical transformations in its own right.

In the present section this issue is approached from the point of view of half-form

quantization, allowing for a more formal understanding of the continuum limit. As

explained in subsection 2.18, path integrals emerge naturally in the study of geometric

quantization as limits of the BKS construction [21]. This procedure leads to mathemat-

ically well defined phase-space path integrals, which share a lot of common traits with

the ones constructed through the usual path integral construction [59–68]. Neverthe-

less, there has been no consideration of using geometric quantization to confront the

inconsistencies plaguing the latter. This task is undertaken here, where a map is iden-

tified with the use of half-form quantization, taking operators to their corresponding

correct Hamiltonian symbols for use in coherent-state path integrals. For this reason,

the contribution of the metaplectic correction to all results is extensively studied and

its necessity in the context of path integration is proved. This section is accompanied

by two appendices: in appendix A a series of comments regarding the dependence of

the continuum limit on the slicing procedure is presented; in appendix B some known

no-go theorems that have been proved in the context of quantization theory are ad-

dressed.

3.1 Half-form quantization on 2D Kähler manifolds

As mentioned in subsection 2.18, geometric quantization defines a procedure through

which one can identify the formal structure of the Hilbert space constructed over a

given symplectic manifold, while providing at the same time a consistent quantiza-

tion map for the classical observables. In the case of Kähler manifolds it was further

argued how the formalism of the Hilbert space did not necessarily need the introduc-

tion of half-forms, but nevertheless that this was also possible. The quantum operator

corresponding to a classical observable function f , identified under the context of half-

form quantization, was then found to be

Q̂( f ) = −iξz∂z −
i
2
(∂z + 4iAz) ξz + f , (3.1)
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where ξµ = ωµν∂ν f is the Hamiltonian vector field corresponding to the smooth func-

tion f . In this form, the operator (3.1) acts only on the holomorphic function φ(z) of

the half-form corrected polarized wave-functions (2.147) and is Hermitian [24] under

the inner product (2.148). The presence of the half-form formalism can be seen from

the inclusion of the metaplectic correction term − i
2 ∂zξz of eq. (3.1). In the context of

geometric quantization of Kähler manifolds this correction, even if not mathematically

necessary, appears to be needed in order to construct the desirable quantum mechan-

ics, even in the simple case of the harmonic oscillator [23].

A very strict constraint this construction must adhere to refers to the Hamiltonian vec-

tor field ξ, the flow of which induces the action of the respective operator. This field

must preserve the polarization [21–24], i.e. its Lie Derivative acting on any polarized

vector field P = φ(z) ∂
∂z must lie in the space of polarized vector fields

Lξ (P) = [ξ, P] = (ξz∂zφ− φ∂zξz) ∂z, ∀z ∈ C, (3.2)

with the coefficient of the antiholomorphic direction−φ∂zξ z̄ being equal to zero. Thus,

it suffices to have

∂zξ z̄ = 0. (3.3)

If this condition is not met the operator is not legitimate, since the preservation of the

polarization is a strict condition for the validity of the whole procedure. In the case

where polarization is not preserved, one needs to include further structure during the

construction, provided by the BKS kernels [69]. It must be also noted that the proce-

dure leading to (3.1) is expected to hold only for operators which contain derivatives

up to the first order, since only these are linearly related to vector fields. In subsec-

tion 3.3 it will be argued that the extension of this procedure to higher powers of such

operators can be performed with the use of functional techniques, without the intro-

duction of extra mathematical structure.

In the case of Kähler manifolds, two maximally symmetric spaces, the 2D Euclidean

plane and the 2-Sphere, have proved to be of fundamental importance in the study

of physical systems. These manifolds appear in the study of bosonic [70] and spin

systems [71, 72] respectively, while the complex coordinates used to chart them enter

as the complex variables in the definitions of the coherent states. The relation of these
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systems with the aforementioned symplectic manifolds arises naturally in both cases,

since the same algebra is shared both at the level of the generators of the quantum

algebra and of the isometries over the respective manifold.

The main idea, advocated in the next subsection, is to consider the quantum oper-

ator as known and use eq. (3.1) as a first order differential equation with respect to

the function f . In this case, the condition (3.3) is required to be fulfilled by the Hamil-

tonian vector field corresponding to the function f , both if the function is considered

connected to the operator through half-form and simple quantization, i.e. with and

without the metaplectic correction. This way the aim is to understand how the action

of that operator is represented as a classical observable on a given symplectic man-

ifold and use this reasoning to identify the correct Hamiltonian symbol, weighing

time-continuous coherent-state path integrals. The choice of the symplectic structure

during this procedure, along with the necessity of the metaplectic correction, are ad-

dressed in detail in the next subsection, where the connection of the aforementioned

results with the definition of the continuum limit of path integration is explicitly stud-

ied. Even though, the significance of the metaplectic correction has been argued exten-

sively [23] in the context of canonical quantization, with the aforementioned inverse

procedure the aim is to prove its unavoidable necessity in the context of path integrals.

It must be emphasized that in the proposed procedure the fundamental quantities will

be the quantum operators, and thus no pre-existing knowledge is considered regard-

ing the classical observables and their corresponding vector fields. For this reason,

by considering a specific operator and reversing half-form quantization, the Hamilto-

nian vector field corresponding to the identified classical observable, could prove not

to preserve the polarization. This is not the case in original half-form quantization,

where functions were considered as the fundamental quantities, and thus all functions

were chosen initially to share this property. In that case, the final operators differed

depending on the inclusion or not of the half-form structure.
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3.2 Path integral construction in the continuum

In this subsection it will be showcased how half-form quantization can be used to

identify the correct continuum limit for the Hamiltonian symbol appearing in path

integrals. To connect geometric quantization with the usual Dirac bra/ket notation

the set of coherent states |z〉 has to be expressed through their more abstract mathe-

matical definition [24]. These are elements of the Hilbert space, the inner product of

which with an arbitrary state |φ〉 gives the value of the corresponding holomorphic

wavefunction at a point z

φ(z) = 〈z|φ〉 . (3.4)

This definition allows eq. (2.149) to be rewritten as

(Φ1, Φ2) = 〈φ1|
{

k
∫

M
|z〉 〈z| e−Y(z,z̄)

(
dz ∧ dz̄
µ(z, z̄)

) 1
2

µ(z, z̄)

}
|φ2〉 , (3.5)

through which the resolution of the identity can be formally defined

1̂ = k
∫

M
|z〉 〈z| e−Y(z,z̄)

(
dz ∧ dz̄
µ(z, z̄)

) 1
2

µ(z, z̄). (3.6)

The existence of the resolution of the identity allows for the use of coherent states

during the discretization of - real or imaginary - time evolution, through which the

path integral representation of the generating functional or the partition function is

constructed [3,70–72] as shown in section 2. Sets of coherent states were presented for

both the cases of bosonic and of spin systems in subsection 2.6 and possess very inter-

esting physical properties as states of each Hilbert space. In this subsection though, it

will be more appropriate to express these in their not normalized, holomorphic form,

for reasons that will become apparent later. In the bosonic case then, the holomorphic

coherent states have the following form [3]

|z〉(0)b = ezâ† |0〉 =
∞

∑
n=0

zn
√

n!
|n〉 , (3.7)

with resolution of the identity [64, 65, 67]

1̂E2 =
1

2πi

∫
C
|z〉(0)b

(0)
b〈z|e

−|z|2dz ∧ dz̄, (3.8)
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where the upper index (0) denotes the lack of normalization. Similarly, for a spin sys-

tem in the highest weight s representation of su(2), the corresponding overcomplete

set of coherent states [37] is given by

|z〉(0)s = ezŜ− |s, s〉 =
s

∑
j=−s

[
(2s)!

(s− j)!(s + j)!

] 1
2

zs−j |s, j〉 , (3.9)

where the resolution of the identity is [56, 65]

1̂S2 =
2s + 1

2πi

∫
C
|z〉(0)s

(0)
s〈z|e−2sln[1+|z|2] dz ∧ dz̄

(1 + |z|2)2 . (3.10)

It is easy to see though, that using the definitions of the normalized coherent states

(2.52) and (2.63)

|z〉b = e−
|z|2

2

∞

∑
n=0

zn
√

n!
|n〉 , (3.11)

|z〉s =
1

(1 + |z|2)s

s

∑
j=−s

[
(2s)!

(s− j)!(s + j)!

] 1
2

zs−j |s, j〉 , (3.12)

the resolution of the identity in both systems, presented in eqs. (2.55) and (2.65), takes

the form

1̂ ∼
∫

M
µ(j)(z, z̄) |z〉j j〈z|, (3.13)

where µ(j)(z, z̄) ∼ ω(j)(z, z̄)zz̄dz ∧ dz̄ is the canonical measure of integration, on the

2D Euclidean plane for bosonic systems and on the 2-Sphere for spin systems. The

index j = b, s signifies the bosonic and the spin coherent states respectively and will

be dismissed in the following segment for simplicity. Furthermore, in what follows

the measure will be denoted as d2z∧ = dz ∧ dz̄, in order to simplify the integral ex-

pressions.

As mentioned in subsection 2.16, the discrete construction of a path integral is in-

deed well defined, as long as it is considered as a product of countably infinite terms.

Considering the case of the partition function, the usual slicing procedure [3, 70] was

shown (see eq. (2.89)) to lead to the following result

tr

[
T̂e−i

∫ t f
ti

dtĤ
]
= lim

ε→0
lim

N→∞

∫
(+)

N

∏
j=0

µ(zj, z̄j)
N

∏
j=0
〈zj+1|zj〉 e−iεH(z̄j+1,zj), (3.14)
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where

H(z̄j+1, zj) =
〈zj+1|Ĥj|zj〉
〈zj+1|zj〉

+O(ε)

is the discrete form of the Hamiltonian symbol weighing the paths, |zN+1〉 = |z0〉 is

the periodicity condition and Ĥj is the Hamiltonian operator at time t = εj. Neverthe-

less, the standard assumption limε→0 〈zj+1|Ĥj|zj〉 / 〈zj+1|zj〉 → 〈z|Ĥ|z〉 was shown

not to produce correct results [17, 18]. In the approach presented in this section, the

limit of the aforementioned countably infinite product to an uncountably infinite one

is demanded to be well defined in the context of Hamiltonian mechanics, a demand

which is vital for the existence of a consistent time-continuous path integral. Next, this

demand can be quantified by requiring the continuum limit of the discrete expression

(3.14) to coincide with the mathematically well-defined phase-space path integral pro-

duced as the result of geometric quantization (see eq. (2.139)). The partition function

is then defined to be of the form [21, 55]

tr

[
T̂e−i

∫ t f
ti

dtĤ
]
= (3.15)

=
∫
(+)

N

 ∏
t∈[ti,t f ]

d2z∧(t)
√

det||ω(z(t), z̄(t))||

 ei
∫ t f

ti
dt{Aµ(z(t),z̄(t))ẋµ(t)−H(z(t),z̄(t))},

where Aµ defines the symplectic potential of the manifold, on which the classical ac-

tion is defined, xµ = {z, z̄} is the set of complex coordinates, and

∏
t∈[ti,t f ]

d2z∧(t)
√

det||ω(z(t), z̄(t))|| = lim
N→∞

N

∏
j=0

d2zj∧

√
detω(zj, z̄j) (3.16)

is the functional measure. The Hamiltonian function H in this formula represents

the classical observable that controls the evolution of wave-functions of the Hilbert

space, through the flow of its corresponding Hamiltonian vector field. At this point

it is important to note that the discrete structure which supports the integral (3.15) is

symmetric by construction. The ”normalization factor”N comes from the fact that the

measure of integration ∏t∈[ti,t f ]
µ(z(t), z̄(t)) = lim

N→∞
∏N

j=0 µ(zj, z̄j), originating from

(3.14), may not match perfectly with the symplectic structure appearing in the action11

11In the sense that µ(z, z̄) 6= ω(z, z̄) = −dA.
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and can be modified as

µ(z(t), z̄(t)) =
µ(z(t), z̄(t))√

det||ω(z(t), z̄(t))||d2z∧(t)

√
det||ω(z(t), z̄(t))||d2z∧(t) ≡

≡ N
√

det||ω(z(t), z̄(t))||d2z∧(t),

in order to bring forth the canonical measure of the symplectic manifold. This match-

ing becomes necessary when one wants to perform semi-classical calculations at the

continuum limit. If this factor is constant, it can just be factored out, as in the case of

bosonic and spin systems [55] where

Nb = lim
N→∞

N

∏
j=0

−1
2π

, NS = lim
N→∞

N

∏
j=0

s + 1/2
s
−1
2π

(3.17)

respectively. Otherwise, this factor must be implemented to the action as a functional

determinant similarly to the Faddeev-Poppov procedure of non-Abelian Gauge theo-

ries [49]. Formula (3.15) will be the formal definition of a time-continuous coherent-

state path integral.

The first step in the construction, before changing the point of view to geometric quan-

tization, is the identification of the symplectic manifold over which the path integra-

tion occurs. The symplectic potential A, defining the underlying symplectic structure

in the continuum limit (3.15), can be easily found from the limit of the countably infi-

nite product of inner product terms in eq. (3.14) as

lim
ε→0

lim
N→∞

N

∏
j=0
〈zj+1|zj〉 ≡ ei

∫ t f
ti

dtAµ(z(t),z̄(t))ẋµ(t). (3.18)

This limit can be easily seen to be well defined, since it is independent of the slicing

procedure. At the same time, the symplectic potential A can be interpreted as an emer-

gent connection on the curved classical manifold, since it dictates how the time slices

are sewed together at the continuum limit.

Due to the interpretation of the continuum limit of (3.14) as (3.15), the limit of the

Hamiltonian term is now expected to represent the classical observable, the quanti-

zation of which generates the time evolution of wave-functions on the manifold with
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symplectic potential A. Formally, for operators represented as first order differen-

tial ones and which correspond to polarization preserving Hamiltonian vector fields,

this limit should be the smooth function f satisfying eq. (3.1). The inclusion of the

metaplectic correction in this equation will prove to be the only ingredient needed to

correct the problematic Hamiltonian symbols encountered in the literature, making

eq. (3.15) computationally true and not an "up to a phase" proportionality, or worse in

the case of higher order operators.

To proceed, the classical function appearing in eq. (3.1) can be defined as the inverse

of Q̂ acting on the operator Ĥ, while the operators for which this procedure is valid

are defined as Q̂−1 de-quantizable. The continuum limit of the Hamiltonian symbol

can then be defined for the set of Q̂−1 de-quantizable operators (labelled by the index

d.q.) as

lim
ε→0

lim
N→∞

Hd.q.(z̄j+1, zj) ≡ Q̂−1(Ĥd.q.)(z(t), z̄(t)). (3.19)

It must be noted that if eq. (3.1) is to be used, the representation of an operator as a dif-

ferential one should be identified though its action on the purely holomorphic form of

the coherent states, i.e. when these are not normalized. This operator representation

is not expected to be a representation in the Lie-algebra sense, since the coordinate

induced forms these operators take are just the result of their specific action on the

corresponding set of coherent states. It is also easy to see that the Hamiltonian sym-

bol corresponding to the identity operator is trivially Q̂−1(1̂) = 1 over all symplectic

manifolds.

This procedure is not expected to be valid when the Hamiltonian vector field cor-

responding to an operator does not preserve the polarization, i.e. for operators that

do not belong in the set of Q̂−1 de-quantizable ones. This case will not be discussed in

the context of this thesis.

Bosonic coherent states

The identification (3.18) in the basis of bosonic coherent states (3.7) yields the follow-

ing result

Aµ ẋµ =
i
2
(z̄ż− z ˙̄z). (3.20)

63



This identifies the symplectic potential of the induced classical mechanics to be

A = i
2(z̄dz − zdz̄). The coordinate induced forms for the annihilation and creation

operators on the Kähler manifold are12

â |z〉(0)b =z |z〉(0)b and â† |z〉(0)b =
∂

∂z
|z〉(0)b (3.21)

respectively, while for the number operator

â† â |z〉(0)b =z
∂

∂z
|z〉(0)b . (3.22)

Plugging these into equation (3.1) it is easy to find the respective smooth functions

Q̂−1(z) = z, Q̂−1
(

∂

∂z

)
= z̄ (3.23)

and

Q̂−1
(

z
∂

∂z

)
= |z|2 − 1

2
, (3.24)

which indeed are known to provide correct results [3,18] when used as classical Hamil-

tonians in the respective time-continuous coherent-state path integrals. More specifi-

cally, through this method the result of [18], presented in eq. (2.119), was reproduced.

In all considerations a symmetric underlying discrete structure is implied. In this ex-

ample, the metaplectic correction contributed only in the case of the number operator,

appearing as the extra −1
2 term in eq. (3.24). In the opposite point of view, it is con-

sidered [23] that the correct quantum physics for the observable |z|2 are provided by

the operator z ∂
∂z +

1
2 and not by z ∂

∂z . This is based on arguments related to the zero

point energy of the harmonic oscillator and the commutator algebra appearing after

the quantization. Nevertheless, no direct or mathematically robust argument could be

given until now, regarding why the correction should be included. In this example it

was proved that the de-quantization procedure gives such a reason, since this correc-

tion was vital for the computationally exact mapping between the canonical and path

integral quantization of this system.

For the bosonic system at hand, the canonical to path integral de-quantization map-

ping is thus possible for all the generators of the algebra. Due to the linearity of this

12These forms can be found explicitly by acting with the operators on the set of coherent states, and
as explained previously do not constitute a representation of the operator algebra.
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map it is possible to also deduce the correct Hamiltonian symbol corresponding to

any linear function of the previous three operators

F̂(k, l, m, d) = kâ† â + lâ + mâ† + d1̂, (3.25)

where k, l, m, d ∈ C. This is found to be

Q̂−1 (F̂(k, l, m, d)
)
= k

(
|z|2 − 1

2

)
+ lz + mz̄ + d. (3.26)

As expected, if the metaplectic correction is not taken into account, these results be-

come the expectation values of the respective operators in the coherent-state basis,

which if used in time-continuous path integration lead to wrong results [17, 18, 20].

Spin coherent states

For the spin coherent states (3.9), the corresponding construction defines the kinematic

term [71, 72]

A(s)
µ ẋµ = is

(z̄ż− z ˙̄z)
1 + |z|2 , (3.27)

which identifies the connection as A(s) = s i
1+|z|2 (z̄dz− zdz̄). The coordinate induced

forms of the su(2) generators Ŝx, Ŝy and Ŝz in the highest weight s representation, can

be found from their action on the coherent states to be

Ŝx |z〉(0)s =

[
1− z2

2
∂

∂z
+ sz

]
|z〉(0)s , (3.28)

Ŝy |z〉(0)s =

[
i
1 + z2

2
∂

∂z
− isz

]
|z〉(0)s , (3.29)

Ŝz |z〉(0)s =

[
−z

∂

∂z
+ s
]
|z〉(0)s . (3.30)

For these operators now eq. (3.1) can be used to compute the corresponding classical

Hamiltonians.

Plugging Ŝz in eq. (3.1) one can easily find

Q̂−1 (Ŝz
)
= s

1− |z|2
1 + |z|2 +

1
2

. (3.31)
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After this result, the partition function for the simple system Ĥ = ωŜz assumes the

following form

Z = tr
[
e−iTωŜz

]
= (3.32)

= NS

∫
(+)

 ∏
t∈[0,T]

2si
d2z∧(t)

(1 + |z(t)|2)2

 e
i
∫ T

0 dt
{

is z̄(t)ż(t)−z(t) ˙̄z(t)
1+|z(t)|2

−ω

(
s 1−|z(t)|2

1+|z(t)|2
+ 1

2

)}
.

The measure of integration is constructed such that

NS

∫  ∏
t∈[0,T]

2si
d2z∧(t)

(1 + |z(t)|2)2

 = lim
N→∞

N

∏
j=0

2s + 1
2πi

∫ d2zj∧
(1 + |zj|2)2 (3.33)

and gives the canonical measure of integration coming from the coherent states. Note

that, the discrete form of the integral (3.32) is again defined through the symmetric

slicing |z|2 ↔ z̄jzj, as it was also in the bosonic case. The integration in (3.32) is easily

performed [18] with the use of the WKB approximation (see subsection 2.19), yielding

the correct result Z = ∑s
j=−s e−iωTj = sin[ωT(s + 1/2)]/sin[ωT/2]. In this example

the WKB approximation returned the complete result, since the Hamiltonian vector

field corresponding to the Ŝz operator is an isometry, and thus the approximation is

exact due to the generalization of Duistermaat-Heckman theorem. The metaplectic

correction, appearing as the +1
2 term in eq. (3.31), was once again exactly the term

needed for the correct partition function to be recovered. It must be emphasized that

this result coincides with the result found in [19] and presented in eq. (2.121).

For the Ŝx and Ŝy operators one finds

Q̂−1 (Ŝx
)
= s

z + z̄
1 + |z|2 +

z
2

, (3.34)

Q̂−1 (Ŝy
)
= −is

z− z̄
1 + |z|2 − i

z
2

, (3.35)

which, due to the metaplectic correction, correspond to classical observables with po-

larization changing Hamiltonian vector fields. This fact renders them untrustworthy

for use. Once again, if no metaplectic correction is taken into account, the usual spin

coherent-state expectation values of the previous operators are retained, which are

known though to provide wrong results [17,18]. Nevertheless, it is interesting that the

not half-form corrected results indeed lead to polarization preserving Hamiltonian
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vector fields, even though they are wrong for use in path integration. The problematic

metaplectic correction appearing in eqs. (3.34) and (3.35) can be traced back to the

de-quantization of the operator Ŝ+, since the linear combination Ŝ− = Ŝx− iŜy admits

no correction.

From eqs. (3.23), (3.24) and (3.31) it can be deduced that if the classical observable

of a quantum operator corresponds to a polarization preserving vector field (with and

without its metaplectic correction) then the corrected observable can be used as the

Hamiltonian term in the corresponding time-continuous path integral. In the context

of path integral quantization thus, the metaplectic correction appears to be a consistent

and immediate way to arrive at correct results in the continuum, making its impor-

tance unambiguous. However, in cases like (3.34), (3.35), where the polarization is not

preserved, the procedure fails and no useful information can be gained for the contin-

uum limit without the introduction of extra mathematical structure.

At this point a comment is in order. It is interesting to see that the study of the resolu-

tion of the identity on the 2-Sphere would give through the use of eq. (3.6)

1̂S2 = k′
∫

C
|z〉(0)s

(0)
s〈z|e

−YS2 (z,z̄) dz ∧ dz̄
1 + |z|2 . (3.36)

If this expression is demanded to coincide with the one appearing in eq. (3.10), the

function in the exponent should be YS2 = 2
(

s + 1
2

)
ln
(
1 + |z|2

)
. If one had made

the connection with geometric quantization at this level of structure, i.e. during the

construction of the functional measure, a natural choice would be to identify YS2

as above. Taking into account that YS2 is also defined through the solution of eq.

(2.145) one would then get, for the underlying symplectic structure, the 1-form A′ =(
s + 1

2

)
i

1+|z|2 (z̄dz − zdz̄), which differs from the connection A that appears in eq.

(3.27). As can be readily checked, the use of A′ instead of A in eq. (3.1) yields a

Hamiltonian function which leads to a wrong result for the partition function (3.32).

As a consequence, the symplectic structures defined from the functional measure and

those defined from the kinematic term of the action differ in the half-form corrected

construction. This was not the case with bosonic path integrals for which both sym-

plectic structures coincide. Nevertheless, in the procedure proposed in the present

thesis, the symplectic structure must be necessarily defined through the kinematic
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term, since this way it is immediately related to the classical mechanics defined by the

action.

Returning to the topic at hand, it was shown that for the proper de-quantization of the

Ŝx and Ŝy operators, extra structure is needed during the construction of the contin-

uum path integral, since neither correspond to polarization preserving vector fields.

While this is indeed a drawback, it is not totally unexpected, since during the path

integral construction a choice has been made for the operator Ŝz to act as the genera-

tor of the Cartan subalgebra of the su(2) algebra. From that point onward, a specific

representation of su(2) was used, with respect to which the coherent states were con-

structed. This issue can be bypassed for any operator that is a constant linear com-

bination of the spin operators over R, by defining through it a new generator of the

Cartan subalgebra and using it as a redefined Ŝ′z.

This formal redefinition is possible through the rotation

Ĥ = aŜx + bŜy + cŜz ≡ ωŜ′z, a, b, c ∈ R, (3.37)

where ω =
√

a2 + b2 + c2. Any functional integration then proceeds the same way

as with the usual Ŝz operator, by considering a path integral constructed in the basis

of the Ŝ′z induced coherent states. It must be noted that spin-1/2 systems can also

be addressed through fermionic path integrals [73], for which a procedure for the

identification of the correct continuum limit will be presented in section 4.

3.3 Higher orders and interactions

3.3.1 Higher orders

The generalization of the previous results for some higher order operators can pro-

ceed with no need of additional mathematical structure, since the rigorous formal-

ism of functional integrals allows for power reducing manipulations. Through these,

path integration naturally defines a more general de-quantization map, which pro-

vides the proper Hamiltonian symbols for operators that are not necessarily Q̂−1 de-

quantizable. By definition, this map is expected to share a lot of common traits with
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the inverse of a consistent - under Dirac’s constraints - quantization map [22, 34].

These similarities and possible differences will be addressed in depth, while details

on Dirac’s constraints and no-go theorems in quantization theory can be found in ap-

pendix B.

So far, a consistent de-quantization procedure has been proposed, which maps first

order differential operators to their respective Hamiltonian symbols through the ac-

tion of Q̂−1. Nevertheless, if path integration is to be considered as a useful technique

for actual systems, a generalization of this procedure to include higher order opera-

tors and interactions must be defined. This procedure can be initially defined through

the action of a more general de-quantization map Q−1, this time taking arbitrary op-

erators to their respective Hamiltonian symbols in the continuum

lim
ε→0

lim
N→∞

H(z̄j+1, zj) ≡ Q−1(Ĥ(z(t), z̄(t))). (3.38)

The action of this map on Q̂−1 de-quantizable operators is defined as in the previous

subsection

Q−1|d.q. = Q̂−1, (3.39)

where Q̂−1 is the de-quantization map constructed via half-form quantization. Never-

theless, the action ofQ−1 on higher order operators cannot be understood that simply

through geometric quantization13 and for this reason the corresponding study will be

performed with the use of functional techniques. While in the definition of Q−1 the

exponent −1 was used, in analogy to the case of Q̂−1, it is not guaranteed that there

exists a corresponding unique quantization map Q such that (Q−1)−1 = Q. Thus,

the map Q−1 is not considered to be invertible and the −1 exponent is used only as

an index to suggest its de-quantization property. In the same context the map Q−1

is neither considered to be necessarily linear on the space of operators, since during

the usual slicing procedure the Hamiltonian symbol may acquire non-trivial contribu-

tions from commutator terms. In the following, the action of Q−1 on polynomials of

Q̂−1 de-quantizable operators will be extensively studied.

In what follows, all arguments will refer strictly to constant Hamiltonian operators

13Unless one introduces extra mathematical structure.
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and thus for simplicity the time ordering operator T̂ is dropped from the expres-

sions. The functional identity which will be used to identify the Hamiltonian symbol

in higher orders is

tr
[
e±iTĤ2

]
∼ tr

[∫
Dξe

{
∓ i

4
∫ T

0 dtξ2+i
∫ T

0 dtξĤ
}]

=
∫
Dξe∓

i
4
∫ T

0 dtξ2
tr
[
ei
∫ T

0 dtξĤ
]

(3.40)

and its generalization for an arbitrary positive integer power k

tr
[
e±iTĤk

]
= tr

[
e±iT

{
1
2(Ĥ+Ĥk−1)

2− 1
2 Ĥ2− 1

2 Ĥ2k−2
}]
∼ (3.41)

∼ tr
[∫
Dξ1

∫
Dξ2

∫
Dξ3e∓

i
4
∫ T

0 dt{ξ2
1−ξ2

2−ξ2
3}e

i√
2

∫ T
0 dt(ξ1+ξ2)Ĥ+ i√

2

∫ T
0 dt(ξ1+ξ3)Ĥk−1

]
,

both of which are valid for an operator Ĥ which has a complete set of eigenstates.

Through recursive use of eq. (3.41), it is easy to prove the power mapping property

Q−1
(

Ĥk
)
=
(

Q̂−1 (Ĥ
))k

, k ∈N, (3.42)

for all constant Hermitian Q̂−1 de-quantizable operators Ĥ. This provides the Hamil-

tonian symbol corresponding to the operator Ĥk in time-continuous coherent-state

path integration. More specifically, starting with tr
[
e−iTĤk

]
and lowering the power

of the operator to its first order, through the recursive use of eq. (3.41), one can map the

trace involving the first order operator to its path integral representation in the way

showcased in subsection 3.2. Then, one easily arrives at eq. (3.42), after integrating out

the auxiliary fields ξi. This result can be generalized for the case of time dependent

Hamiltonians, when the time dependence factors out as Ĥ(t) = f (t)Ĥ, where Ĥ is a

constant Hermitian operator and f (t) is a real smooth function.

Moving to the case of linear combinations of operators, where the de-quantization

of each one is considered known independently, one cannot be sure that Q−1 will act

linearly on these and for a deeper understanding of its behaviour more sophisticated

methods should be considered. Nevertheless, linearity is true for the case when all

operators appearing in the linear combination commute, since the previous construc-

tion can proceed independently for each operator. This property can be checked by
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studying the action of Q−1 on the quantum operator

Ĥ =
N

∑
n=0

cn(â† â)n, cn ∈ R, (3.43)

the de-quantization of which according to the previous arguments gives

Hcl = Q−1

(
N

∑
n=0

cn(â† â)n

)
=

N

∑
n=0

cn

(
|z|2 − 1

2

)n
. (3.44)

In cases like this, the factors cn can be considered time dependent, since the operators

do not mix and continue to commute at all times. For the sake of simplicity though,

these will be considered constant in the following. The calculation of the partition

function

Z =
∫
(+)

D2z(t)ei
∫ T

0 dt( i
2 (z̄ż− ˙̄zz)−∑N

n=0 cn(|z|2− 1
2)

n
), (3.45)

where∫
D2z(t) = N

∫ {
∏t∈[0,T] id2z(t)

}
= lim

N→∞
∏N

j=0
1

2πi

∫
d2zj, proceeds then by introduc-

ing the identity [74–77]

1 =
∫
Dζδ[ζ − |z|2] =

∫
Dζ

∫
Dσe−i

∫ T
0 dtσ(ζ−|z|2) (3.46)

in eq. (3.45). As a result, the partition function (3.45) can be recasted into the form

Z =
∫
Dζ

∫
Dσe−i

∫ T
0 dt(σζ+∑N

n=0 cn(ζ− 1
2)

n
)F(ζ, σ), (3.47)

where

F(ζ, σ) =
∫
(+)

D2zei
∫ T

0 dt( i
2 (z̄ż− ˙̄zz)+σ|z|2). (3.48)

The last integral can be calculated by standard means [3], giving

F(ζ, σ) = ∑∞
m=0 ei

∫ T
0 dtσ(m+ 1

2) and consequently

Z =
∞

∑
m=0

∫
Dζ

∫
Dσe−i

∫ T
0 dt(σ(ζ−m− 1

2)+∑N
n=0 cn(ζ− 1

2)
n
). (3.49)
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The integration over the field σ yields the functional delta δ[ζ −m− 1
2 ] and thus fixes

the ζ variable to the values m + 1
2 , leading to

Z =
∞

∑
m=0

e−iT ∑N
n=0 cnmn

, (3.50)

which is the correct result.

At this point an important observation is in order. In the aforementioned construc-

tion, no consideration regarding the ordering was made. This is because the choice of

the continuum limit depends only on the de-quantization of the first order operator,

which is performed through eq. (3.1). If in the previous example a different ordering

was initially used for the operator (3.43) (normal, anti-normal or Weyl) the resulting

continuum limit arising from the aforementioned procedure would again provide the

correct Hamiltonian symbol for use in each case. This is a result of the preservation

of the Q̂−1 de-quantizable operators’ commutation properties at the level of the path

integral, since the property (
ââ† − â† â

)
|z〉 = |z〉 (3.51)

leads to

Q̂−1
(

ââ†
)
= Q̂−1

(
â† â
)
+ 1. (3.52)

It is easy to understand then, that the process of expressing the Hamiltonian (3.43)

with respect to the operators ââ†, and then mapping it through Q̂−1 (ââ†) = |z|2 + 1
2

commutes with the process of mapping the initial form with Q̂−1 (â† â
)
= |z|2 − 1

2 .

Thus, the aforementioned construction naturally provides the correct and uniquely

defined Hamiltonian symbol for each case, at the continuum limit of path integration.

For the study of general Hamiltonian operators that are products of equal powers of

â and â† or linear combinations of such terms, the correct mapping can then be identi-

fied by firstly rewriting the Hamiltonian in the form of (3.43) and then de-quantizing

it as showcased above. This argument can be generalized even more, to state that

whenever a Hamiltonian operator can be parametrized as a polynomial of a Hermi-

tian Q̂−1 de-quantizable one, the mapping to the continuum limit can be performed

linearly using eq. (3.42). In the case of the harmonic oscillator, this argument can

thus be applied for the study of higher powers of the general Hermitian operator
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Ĥ = kâ† â + câ + c̄â† + d, where k, d ∈ R and c ∈ C, which is indeed a Q̂−1 de-

quantizable operator.

Summarizing the results up to this point, for the bosonic case the action of the de-

quantization map Q−1 on operators of the form

F̂ =
N

∑
n=0

ln
(

kâ† â + câ + c̄â† + d
)n

, (3.53)

was identified to be

Q−1 (F̂) = N

∑
n=0

ln

[
k
(
|z|2 − 1

2

)
+ cz + c̄z̄ + d

]n
, (3.54)

providing the corresponding Hamiltonian symbols in the continuum. Here, k, d ∈ R

and c ∈ C are constant, but the ln ∈ R factors can in general be time dependent

∀n = 1, . . . , N. More formally, it was shown that for the aforementioned k, d ∈ R and

c ∈ C, the map Q−1 takes elements linearly, from the set

N(b)
q = spanR

{(
kâ† â + câ + c̄â† + d

)n
|n ≥ 0

}
(3.55)

to elements of the set

N(b)
cl = spanR

{[
k
(
|z|2 − 1

2

)
+ cz + c̄z̄ + d

]n ∣∣n ≥ 0
}

. (3.56)

When acting on the subset of operators (3.55), Q−1 can be seen to be invertible. Fur-

thermore, its inverse shares a lot of similarities with a quantization map subjected to

Dirac’s constraints and as long as it only connects (3.56) with (3.55), it does not violate

any no-go theorems presented in quantization theory [22, 34]. It must be noted that

while operators of the form (3.55) correspond to a large class of physical systems, they

still span a relatively restricted set. However, extensions of this set may be possible

through different functional methods downgrading the complexity of quantum oper-

ators, or the inversion of more general geometric quantization methods.

In the case of spin systems, the classical Hamiltonian corresponding to the gener-

ator Ŝz in the highest weight s representation of su(2) appears in (3.31). The de-

quantization of its higher powers can be identified again, through the recursive use
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of eq. (3.41). In the functional integration formalism the action of Q−1 can then be

identified, this time taking elements linearly from the set

N(s)
q = spanR

{
Ŝn

z |n ≥ 0
}

(3.57)

to elements of the set

N(s)
cl = spanR

{(
s

1− |z|2
1 + |z|2 +

1
2

)n ∣∣n ≥ 0

}
, (3.58)

providing the correct Hamiltonian symbols. The validity of these symbols will be

checked through a highly non-trivial example in the next subsection. As expected, act-

ing on the subset of operators (3.57),Q−1 is invertible and its inverse acting on the cor-

responding subset of functions (3.58) is again valid under Dirac’s constraints [22, 34],

since the algebra in both subsets is Abelian.

The aforementioned compatibility of the inverse of Q−1 with Dirac’s constraints was

expected due to the method used for its construction. To clarify this statement, some

important steps in the aforementioned procedure must be addressed. At the level of

algebra generators, the identification of the Hamiltonian symbol proceeded through

the inversion of eq. (3.1), where for the quantum operator Q̂ the following property

holds

[Q̂( f ), Q̂(g)] = iQ̂({ f , g}), (3.59)

for all the consistently de-quantizable cases studied, i.e. for the operators Q̂ = â, â†,

â† â and Ŝz. This property is one of Dirac’s constraints for the canonical quantization

of classical observables. It is known that (3.59) cannot hold for general sets of quan-

tizable classical functions { f , g, . . . }, since the inclusion of higher order classical ob-

servables in many occasions leads to inconsistencies [22,34,35]. When the observables

commute this property is trivially true, since both the Poisson brackets and the com-

mutation relations of all elements in eq. (3.59) are zero. In the previous cases, all the

operator/function subsets connected through the general de-quantization map Q−1:

(3.55)/(3.56) and (3.57)/(3.58), shared this property. These subsets were identified by

solving eq. (3.1) for a first order operator with respect to its classical observable and

generalizing this result for higher powers through functional methods. This proce-

dure produced Abelian subsets on which Q−1 is invertible and
(
Q−1)−1 satisfies eq.
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(3.59), making it compatible with Dirac’s constraints. Nevertheless, even though geo-

metric quantization provided an invertible map for the above examples,Q−1 may not

be invertible in general and thus bare no relation to an inverse theory of quantization.

3.3.2 Interactions

Through the previously proposed methods it is also possible to study some very gen-

eral classes of interactions analytically. These are the cases involving linear combina-

tions of tensor products of operators, which can be simultaneously de-quantized and

used as Hamiltonian symbols in functional integrals. Such systems appear in the form

Ôint =
N

∑
l=1

ωlÔl1 ⊗ Ôl2 ⊗ · · · ⊗ Ôlk, (3.60)

where Ôl j represents the operator of the j-th system participating in the l-th interac-

tion term.

To approach such systems, it is firstly necessary to understand how the map Q−1

acts on tensor products of operators. Any consistent path integration map, providing

the Hamiltonian symbols in the continuum limit, should map operators acting on dif-

ferent Hilbert spaces independently. This property can be derived naturally from the

discretization construction. By definition then, Q−1 has this property which quantita-

tively is expressed as

Q−1 (Ĥ1 ⊗ Ĥ2
)
= Q−1 (Ĥ1

)
· Q−1 (Ĥ2

)
. (3.61)

Then, regarding operators of the form (3.60), the map Q−1 acts on these as

Q−1 (Ôint
)
=

N

∑
l=1

ωlQ−1
(
Ôl1
)
Q−1

(
Ôl2
)
· · · Q−1

(
Ôlk
)

, (3.62)

as long as all N operators corresponding to each subsystem can be simultaneously de-

quantized. Of course, this is trivially true when all N operators commute. In bosonic

systems, the previous arguments allow for the consistent study of interaction terms

between k subsystems of the form:

1. Interactions where all subsystems take part through a single first order operator
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and its powers:

Ô(bos)
int1 =

N

∑
l=1

ωl ⊗k
j=1

(
k j â†

j âj + cj âj + c̄j â†
j + dj1̂

)nl j
,

ωl, k j, dj ∈ R, cj ∈ C.

(3.63)

Here, the index j refers to the subsystems, l to the interaction term and nl j ∈ N

is the power of the j-th subsystem operator in the l-th interaction term. The

parameters k j, dj and cj are considered constant, but ωl may be time-dependent.

2. Interactions where at least one subsystem takes part through different, but si-

multaneously de-quantizable operators:

Ô(bos)
int2 = F̂(1) ⊗ â†

j âj + F̂(2) ⊗ âj + F̂(2)∗ ⊗ â†
j + F̂(3) ⊗ 1̂j. (3.64)

Here, the index j refers to the subsystem with the aforementioned property, and

F̂(1), F̂(3) ∈ R, F̂(2) ∈ C are functions of the operators of all the other subsystems,

which also have to be simultaneously de-quantizable.

In the same fashion, in spin systems one can study interactions of the form

Ô(spin)
int =

N

∑
l=1

ωl Ŝ
nl1
C1
⊗ Ŝnl2

C2
⊗ · · · ⊗ Ŝnlk

Ck
, nl j ∈N, (3.65)

where all the indices have the same meaning as in the aforementioned bosonic case.

In this context, the operator Ŝm
Cj

identifies the m-th power of a generator of the j-th

subsystem’s Cartan subalgebra, where ŜCj can be decomposed as (3.37). The path in-

tegral construction then proceeds as if considering Ŝm
Cj
→ Ŝm

zj
in a rotated frame.

To showcase the validity of this mapping, the general N-system interaction Hamil-

tonian containing Ŝz operators up to a power k will be studied

Ĥk =
k1

∑
a1=1
· · ·

kN

∑
aN=1

ca1...aN Ŝa1
z1 ⊗ · · · ⊗ ŜaN

zN , (3.66)

76



where aj ∈ N, ∑N
j=1 k j = k and ca1...aN ∈ R. For this operator the de-quantization

procedure leads to

H(s)
cl (|z1|, . . . , |zN|) = Q−1

(
k1

∑
a1=1
· · ·

kN

∑
aN=1

ca1...aN Ŝa1
z1 ⊗ · · · ⊗ ŜaN

zN

)
= (3.67)

=
k1

∑
a1=1
· · ·

kN

∑
aN=1

ca1...aN

(
s

1− |z1|2
1 + |z1|2

+
1
2

)a1

· · ·
(

s
1− |zN|2
1 + |zN|2

+
1
2

)aN

.

The calculation of the partition function

Z =
∫
(+)

(
N

∏
i=1
D2µ(zi)

)
e

i ∑N
i=1
∫ T

0 dt
{

is z̄i żi−zi ˙̄zi
1+|zi |2

−H(s)
cl (|z1|,...,|zN |)

}
, (3.68)

where
∫
D2µ(z) = NS

∫ {
∏t∈[0,T] 2si d2z(t)

(1+|z(t)|2)2

}
= lim

N→∞
∏N

j=0
2s+1
2πi

∫ d2zj
(1+|zj|2)2 , proceeds

again by introducing the identity [74–77]

1 =
∫ ( N

∏
i=1
Dζi

)
δ

[
ζi −

(
s

1− |zi|2
1 + |zi|2

+
1
2

)]
=

=
∫ ( N

∏
i=1
Dζi

) ∫ ( N

∏
i=1
Dσi

)
e
−i
∫ T

0 dtσi

(
ζi−

(
s 1−|zi |

2

1+|zi |2
+ 1

2

)) (3.69)

in eq. (3.68). As a result, the partition function (3.68) can be recasted into the form

Z =
∫ ( N

∏
i=1
Dζi

) ∫ ( N

∏
i=1
Dσi

)
e−i ∑N

i=1
∫ T

0 dt
(

σiζi+H(s)
cl (ζ1,...,ζN)

) N

∏
i=1

F(ζi, σi), (3.70)

where

F(ζi, σi) =
∫
(+)

D2µ(zi)e
i
∫ T

0 dt
{

is z̄i żi−zi ˙̄zi
1+|zi |2

+σi

(
s 1−|zi |

2

1+|zi |2
+ 1

2

)}
(3.71)

and

H(s)
cl (ζ1, . . . , ζN) =

k1

∑
a1=1
· · ·

kN

∑
aN=1

ca1...aN ζa1
1 · · · ζ

aN
N . (3.72)
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The last integral can be calculated by standard means [19, 29, 56, 65] and the result

reads F(ζi, σi) = ∑s
mi=−s eimi

∫ T
0 dtσi , leading to

Z =
s

∑
m1=−s

· · ·
s

∑
mN=−s

∫ ( N

∏
i=1
Dζi

) ∫ ( N

∏
i=1
Dσi

)
× (3.73)

× exp

[
−i

N

∑
i=1

∫ T

0
dt
(

σi (ζi −mi) + H(s)
cl (ζ1, . . . , ζN)

)]
.

Finally, the integrations over the fields σi yield N functional delta distributions δ [ζi −mi],

fixing the ζi variables to the values mi and thus give

Z =
s

∑
m1=−s

· · ·
s

∑
mN=−s

e−iT ∑
k1
a1=1···∑

kN
aN=1 ca1...aN m

a1
1 ···m

aN
N , (3.74)

which is the correct result.

4 Fermionic path integrals and correlation dynamics in
an 1D XY system

Section summary

In this section, the case of fermionic path integrals is considered, and the results and

methods are based on the work [73]. For such integrals neither the symplectic method

presented in section 3, nor the leap through Hermitian operators presented in sub-

section 2.17 generalize, since Grassmann manifolds do not allow for a symplectic de-

scription and the canonical quantization of the real Majorana operators is not straight-

forward. Thus, a different approach should be considered. This will be the use of the

result found through the Faddeev-Jackiw procedure, which was presented in subsec-

tion 2.20. This construction is later applied to the case of an 1D XY spin chain, with

both constant and time-dependent transverse magnetic fields.
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Section introduction

To show how this construction is possible, the known example of the simple fermionic

oscillator will be presented

Ĥ = ω

(
ψ̂†ψ̂− 1

2

)
, (4.1)

which is connected to the spin Hamiltonian Ĥ = −ωŜz via the Jordan-Wigner trans-

formation. The partition function in this case can be trivially computed without any

reference to path integration: tr
[
e−βĤ

]
= eωβ/2 + e−ωβ/2 = 2cosh (ωβ/2), as refer-

enced in section 2.

By introducing the Majorana operators of eq. (2.44), the Hamiltonian (4.1) assumes

the form Ĥcl = −i ω
2 γ̂2γ̂1. The construction of the corresponding path integral pro-

ceeds then via the Faddeev-Jackiw method and dictates [26] the form Hcl = −i ω
2 γ2γ1

for the classical function which weighs the path integration, with {γa, γb} = 0. The in-

tegral constructed in this way represents the partition function of the system as a path

integral over real Majorana Grassmann variables. It is then an inevitable demand

for this integral to be connected with the corresponding integral over complex Grass-

mann variables through the canonical transformation γ1 = ζ + ζ̄, −iγ2 = ζ̄ − ζ. This

approach yields the Hamiltonian HM = ωζ̄ζ as the proper weight for the integration

over fermionic paths

Z =
∫
(−)

Dζ̄Dζexp
{
−
∫ β/2

−β/2
dτζ̄ (∂τ + ω) ζ

}
. (4.2)

It is worth noting that for the above mentioned canonical transformation to be valid,

the discretization prescription underlying the continuous form must be the symmet-

ric one ζ̄nζn −→
N→∞

ζ̄ζ. Thus, for the calculation of the above integral one must use the

symmetric limit value Gλ(0) = 1
2 −

(
1 + eβλω

)−1 for the Green’s function in (2.98). In

this way, the correct result is produced.

The calculation presented above can be summarized in a simple proposal: in order

to use the path integral formalism for a system, the quantum Hamiltonian of which

is given in terms of fermionic creation and annihilation operators, the first step is to

rewrite it in terms of Majorana operators. By replacing these with the corresponding
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real Grassmann variables, according to the Faddeev-Jackiw procedure, one then gets

the well defined, unique action for the real Grassmann variable path integral. Finally,

the canonical change of variables to complex Grassmann fields provides the classical

Hamiltonian that must weigh the paths over fermionic coherent states. This whole

construction fixes the discrete ancestor of the continuous expressions to be the sym-

metric one.

4.1 Spin systems through fermionic path integrals

To demonstrate the general form of the quantum Hamiltonians of interest, consider

the spin Hamiltonian

Ĥ = −
N

∑
j=1

[
ajσ

x
j σx

j+1 + bjσ
y
j σ

y
j+1 + cjσ

z
j σz

j+1 + hjσ
z
j

]
. (4.3)

By applying the Jordan-Wigner transformation (2.51), the Hamiltonian operator (4.3)

can be re-expressed in terms of fermionic creation and annihilation operators as

Ĥ =−
N

∑
j=1

[
aj

(
ψ̂†

j − ψ̂j

) (
ψ̂†

j+1 + ψ̂j+1

)
+ bj

(
ψ̂†

j+1 − ψ̂j+1

) (
ψ̂†

j + ψ̂j

)
+

+ cj

(
1− 2ψ̂†

j ψ̂j

) (
1− 2ψ̂†

j+1ψ̂j+1

)
+ hj

(
1− 2ψ̂†

j ψ̂j

) ]
. (4.4)

Introducing the Majorana operators

γ̂2j−1 = ψ̂†
j + ψ̂j, −iγ̂2j = ψ̂†

j − ψ̂j;
{

γ̂j, γ̂k
}
= δjk, (4.5)

the Hamiltonian (4.3) assumes the form

Ĥ = i
N

∑
j=1

(
ajγ̂2jγ̂2j+1 + bjγ̂2j+2γ̂2j−1 + icjγ̂2j−1γ̂2jγ̂2j+1γ̂2j+2 + hjγ̂2j−1γ̂2j

)
. (4.6)

Using the Faddeev-Jackiw procedure one can now identify the classical Hamiltonian

weighing the functional integral over Majorana variables, by replacing the Majorana

operators with classical real Grassmann variables γj. By changing these back to the
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complex Grassmann variables via the canonical transformation

γ2j−1 = ζ̄ j + ζ j, −iγ2j = ζ̄ j − ζ j;
{

ζ j, ζk
}
=
{

ζ̄ j, ζk
}
=
{

ζ̄ j, ζ̄k
}
= 0, (4.7)

the Hamiltonian weighing the functional integral over complex Grassmann variables

is recovered

Hcl =
N

∑
j=1

[
aj
(
ζ̄ j+1 + ζ j+1

) (
ζ̄ j − ζ j

)
+ bj

(
ζ̄ j + ζ j

) (
ζ̄ j+1 − ζ j+1

)
−

− 4cj|ζ j|2|ζ j+1|2 + 2hj|ζ j|2
]

, (4.8)

which is also the Hamiltonian weighing the corresponding fermionic coherent-state

path integral. In the present section, the focus will be on the dynamics of ground

state correlators in a spin-chain system described by the XY model. Besides the exact

evaluation of correlators’ time-dependence, some known results, that have been eval-

uated by different means, shall be recovered, in order to perform a series of non-trivial

checks regarding the proposed procedure. As a concrete example, a simple calculation

pertaining to the two-spin system Ĥ = −ω~̂S1 · ~̂S2 is presented in appendix C.

4.2 Time dependent correlations

The study of entanglement in 1D, spin-1/2 chain models, is of great interest not only

in the field of condensed matter physics, but also in quantum information science,

where entangled states are of fundamental importance in information processing.

As explained in subsection 2.9, the XY model is a well-known and exactly solvable

model that exhibits a quantum phase transition. This transition signals the onset of

long-range correlations in the ground state of the system, and is of purely quantum

mechanical nature, as it is connected to the entanglement properties of the ground

state [12–14]. Thus, the XY model constitutes the ideal stage for the application of the

aforementioned path integral formalism, which in turn provides very practical tools

for the study of the dynamics of vacuum correlation functions.

The couplings in the anisotropic XY model are defined [12–14] to be aj = (1 + r)/2,

bj = (1− r)/2 and hj = h, cj = 0 ∀j, while the spin chain is considered to have an even
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number of sites N and periodic boundary conditions for the spin interactions. Thus,

the Hamiltonian (4.8) reads as follows

HXYcl =
N

∑
j=1

[
r
(
ζ jζ j+1 − ζ̄ jζ̄ j+1

)
+
(
ζ jζ̄ j+1 − ζ̄ jζ j+1

)
+ 2hζ̄ jζ j

]
. (4.9)

For the purposes of this chapter it is natural to introduce Grassmann sources, redefin-

ing the generating functional as

Z[J] =
∫
(−)

Dζ̄Dζexp

{
−
∫ β/2

−β/2
dτ

[
N

∑
j=1

ζ̄ jζ̇ j + HXYcl − i
N

∑
j=1

( J̄jζ j + ζ̄ j Jj)

]}
. (4.10)

The functional derivatives of this integral generate the expectation values of operators

as

δ2lnZ[J]
δJb(τ2)δ J̄a(τ1)

∣∣∣∣
J=0

= 〈T̂
(

ψ̂†
b(τ2)ψ̂a(τ1)

)
〉

c
. (4.11)

Here T̂ signifies the time ordering of the operators, which is implied by the path inte-

gral procedure, and the index c denotes the connected part of the expectation values.

This equation is not true though when b = a and τ2 = τ1 simultaneously since, when

all indices (time and site) are equal, one should expect similar issues as those appear-

ing during the identification of the correct classical Hamiltonian weighing the path

integration. To identify the correct way to handle such cases, it is enough to under-

stand how the simple spin operators of the original system are mapped in this context.

Spin-spin correlators of the form 〈σα
i σ

β
j 〉c = 〈σα

i σ
β
j 〉 − 〈σ

α
i 〉 〈σ

β
j 〉 , (α, β = x, y, z) are

physically quite important as they probe the entanglement content of the ground

state [12]. Such types of correlators can be produced by applying on the generating

integral (4.10) the appropriate functional derivatives:

〈T̂
(

σα
i (τ2)σ

β
j (τ1)

)
〉

c
= Dα

i (τ2)Dβ
j (τ1)lnZ[J]

∣∣
J=0. (4.12)

To determine the form of these operations one can begin from the defining relation

〈σα
j 〉 =

1
Z(β)

tr
(

e−βĤ(ψ̂†,ψ̂)σα
j (ψ̂

†, ψ̂)
)

, (4.13)
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where the operators σα
j (ψ̂

†, ψ̂) are expressed through the Jordan-Wigner transforma-

tion (2.51)14. The next step is to interpret eq. (4.13) as a path integral over fermionic

coherent states. In the standard formulation, presented in section 2.16, the operator

σz
j = 1− 2ψ̂†

j ψ̂j is interpreted by the classical function 1− 2ζ̄ jζ j, while the Faddeev-

Jackiw approach, presented in section 4.1, yields the function −2ζ̄ jζ j. Since the σz
j

operator enters non-trivially in each and every spin correlation function, it is evident

that the two prescriptions produce different results. Given that the static correlation

functions for the XY model are known, they can serve as a criterion for distinguishing

between the two approaches. In the following, it is proved that the correct results are

produced through the Faddeev-Jackiw construction, which yields

〈σx
j 〉 =

1
Z(β)

∫
(−)

Dζ̄Dζe−S(ζ̄,ζ)

(
j−1

∏
k=1

2ζk ζ̄k

)
(ζ̄ j + ζ j),

〈σy
j 〉 =

i
Z(β)

∫
(−)

Dζ̄Dζe−S(ζ̄,ζ)

(
j−1

∏
k=1

2ζk ζ̄k

)
(ζ̄ j − ζ j),

〈σz
j 〉 =

2
Z(β)

∫
(−)

Dζ̄Dζe−S(ζ̄,ζ)ζ jζ̄ j.

(4.14)

Thus, the operations in eq. (4.12) are defined as

Dx
j (τ) ≡

(
j−1

∏
k=1

2
δ2

δ J̄k(τ)δJk(τ)

)(
δ

δJj(τ)
+

δ

δ J̄j(τ)

)
,

Dy
j (τ) ≡ i

(
j−1

∏
k=1

2
δ2

δ J̄k(τ)δJk(τ)

)(
δ

δJj(τ)
− δ

δ J̄j(τ)

)
,

Dz
j (τ) ≡ 2

δ2

δ J̄j(τ)δJj(τ)
.

(4.15)

This result also indicates the correct prescription for the equal time fermionic correla-

tion functions15 to be

〈ψ̂†
b(τ)ψ̂a(τ)〉c =

δ2lnZ[J]
δJb(τ)δ J̄a(τ)

∣∣∣∣
J=0

+
1
2

δab. (4.16)

14For spin-1/2 the spin operators Ŝµ and Pauli matrices σµ, µ = x, y, z, are related through the equa-
tion Ŝµ = σµ/2.

15In the case that both operators are holomorphic or antiholomorphic the equal time/site limit is
trivially 0, due to the nilpotency of fermionic operators.
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If the ground state of the system is unique, eq. (4.12) produces at the limit β →
∞ the ground state expectation value of the operator. In the case of degeneracy,

the zero-temperature limit projects on an equiprobable mixture of the degenerate

ground states. At the limit β → ∞ and after the Wick rotation τ → it the operation

(4.12) generates the time dependent, two-point connected, vacuum correlation func-

tion 〈T̂
(

σa
i (t2)σ

b
j (t1)

)
〉

c
[51]. The study of the static entanglement entropy has been

based [12, 13] on the equal time version of the above defined correlation functions.

In the current section the aforementioned path integral technique will be used to in-

vestigate the dynamics of ground-state correlation functions, while a series of known

results will be confirmed.

To deal with path integration weighted by (4.9), the usual [12–14, 31] tactic of sepa-

rating the Hilbert space of the system into two independent sectors (see subsection

2.9), corresponding to periodic (odd fermion number) or anti-periodic (even fermion

number) boundary conditions for the fermionic degrees of freedom, will be followed.

Consequently, this also allows for the path integral study of each sector independently,

as explained in detail in appendix D. In the following, the case of anti-periodic condi-

tion ζN+1 = −ζ1 will be studied, which is defined through the Fourier transform of

the Grassmann fields (see eq. (2.73) for the operator analogues)

ζ j =
1√
N

N−1

∑
m=0

ei 2π
N (m+ 1

2)jcm, Jj =
1√
N

N−1

∑
m=0

ei 2π
N (m+ 1

2)jλm. (4.17)

In turn, this is connected to a chain of even number of fermions. For the sector corre-

sponding to the odd fermion number case, the change m + 1/2 → m is required [31].

It must be noted that expectation values found with the use of sector specific generat-

ing functionals (as is the case in the following), which correspond to the independent

contribution of a given sector, are valid only for operators that preserve the sectors.

Further details on the sector representation in the context of path integrals can be

found in appendix D. From now on, the upper indices (e)/(o) are used to denote

quantities representing the even/odd fermion number sectors respectively.

Inserting (4.17) in (4.9), the classical Hamiltonian corresponding to the generating
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functional of the even sector Z(e)[J] adopts the form

H(e)
XYcl =

N/2−1

∑
m=0

H(e)
m , (4.18)

H(e)
m = 2

(
c̄m cN−m−1

) ( km −ilm
ilm −km

)(
cm

c̄N−m−1

)
,

where the following abbreviations have been used

km = h− cos
2π

N

(
m +

1
2

)
lm = rsin

2π

N

(
m +

1
2

)
. (4.19)

The crucial observation here is that the interactions connect only the fields c̄m with cm

and c̄N−m−1, and the fields cm with c̄m and cN−m−1. Thus, the generating functional

can be factorized as

Z(e)[J] =
N/2−1

∏
m=0

Z(e)
m [J], (4.20)

Z(e)
m [J] =

∫
(−)

Dc̄mDcmDc̄N−m−1DcN−m−1e−S(e)
m [J],

where

S(e)
m [J] =

∫ β/2

−β/2
dτ

{
(c̄m ċm + c̄N−m−1ċN−m−1) + H(e)

m − (4.21)

− i
(
λ̄mcm + c̄mλm + λ̄N−m−1cN−m−1 + c̄N−m−1λN−m−1

) }
.

The Hamiltonian H(e)
m , defined in (4.18), can be easily diagonalized through a unitary

Bogoliubov transformation

H(e)
m = Um

(
εm 0
0 −εm

)
U†

m, Um =

(
cosθm isinθm
isinθm cosθm

)
. (4.22)

In this expression

εm = 2

√(
h− cos

2π

N

(
m +

1
2

))2

+

(
rsin

2π

N

(
m +

1
2

))2

(4.23)

and

tan (2θm) =
rsin2π

N

(
m + 1

2

)
h− cos2π

N

(
m + 1

2

) . (4.24)
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By making the change of variables(
cm

c̄N−m−1

)
= Um

(
ξm

ξ̄N−m−1

)
, (4.25)

the action (4.21) can then be written in the following form

S(e)
m [J] =

∫ β/2

−β/2
dτ (η̄mDmηm − iµ̄mηm − iη̄mµm) , (4.26)

where

ηm =

(
ξm

ξ̄N−m−1

)
, Dm =

(
∂τ + εm 0

0 ∂τ − εm

)
(4.27)

and

µ̄m =
(

λ̄m −λN−m−1
)

Um. (4.28)

Before proceeding, it is worth noting that the change of variables (4.25) (and the subse-

quent diagonalization) is permitted by the symmetric form of the discrete time lattice

structure which defines the path integral. On the contrary, if the asymmetric discrete

form had been kept, this change would not be possible. Written in this form, the inte-

grals in (4.20) can be easily calculated.

In the limit β→ ∞, the generating functional (4.20) becomes

Z(e)
m [J] = Z(e)

m [0]exp
{
−
∫ ∞

−∞
dτ
∫ ∞

−∞
dτ′µ̄m(τ)Gm(τ − τ′)µm(τ

′)

}
, (4.29)

with

Gm ≡ D−1
m =

(
G(+)

m 0
0 G(−)

m

)
and

G(+)
m (τ − τ′) = Θ(τ − τ′)e−(τ−τ′)εm , G(−)

m (τ − τ′) = −Θ(τ′ − τ)e−(τ
′−τ)εm . (4.30)

The Green’s function G(+)
m , which propagates the m modes, has been chosen to obey

casuality: G(+)(τ − τ′) = 0 for τ − τ′ < 0. It is, in fact, the antiperiodic function

G(+)
m (τ − τ′) =

[
Θ(τ − τ′)−

(
1 + eβεm

)−1
]

e−(τ−τ′)εm at the limit β → ∞. The ad-

vanced function G(−)
m (τ − τ′) propagates the N −m− 1 conjugate modes backwards,

and obeys the boundary condition G(−)
m (τ − τ′) = 0 for τ − τ′ > 0. As expected, it is
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the β→ ∞ limit of the antiperiodic Green’s function

G(−)
m (τ − τ′) =

[(
1 + eβεm

)−1 −Θ(τ′ − τ)
]

e−(τ
′−τ)εm . Note that, according to the

aforementioned prescription, the Θ function appearing in (4.30) is the Heaviside step

function, for which Θ(0) = 1/2. In eq. (4.29), the system’s partition function Z(e)
m [0],

corresponding to the even fermion number sector, appears as a normalization factor.

The path integral computation of this quantity can be found in appendix D, where the

known result [78] is recovered. Nevertheless, as long as one is interested in the study

of a single sector (the even one in this case), this factor proves to be irrelevant in the

computation of 〈T̂
(
ψ̂†

b(τ2)ψ̂a(τ1)
)
〉(e)c .

By acting with the functional derivatives on the generating functional (4.29), it is an

easy task to compute the following expressions, that are the basis for all correlation

functions in the even sector:

〈T̂
(

ψ̂b(τ2)ψ̂
†
a(τ1)

)
〉
(e)

c
= (4.31)

=
1
N

N−1

∑
m=0

e
2πi
N (m+ 1

2)(b−a)
(

cos2θmG(+)
m (τ2 − τ1) + sin2θmG(−)

m (τ2 − τ1)
)

,

〈T̂
(

ψ̂†
b(τ2)ψ̂a(τ1)

)
〉
(e)

c
= (4.32)

= − 1
N

N−1

∑
m=0

e
2πi
N (m+ 1

2)(b−a)
(

cos2θmG(+)
m (τ1 − τ2) + sin2θmG(−)

m (τ1 − τ2)
)

,

〈T̂
(

ψ̂†
b(τ2)ψ̂

†
a(τ1)

)
〉
(e)

c
= (4.33)

=
i

2N

N−1

∑
m=0

e
2πi
N (m+ 1

2)(b−a)sin(2θm)
(

G(+)
m (τ1 − τ2)− G(−)

m (τ1 − τ2)
)

,

〈T̂
(
ψ̂b(τ2)ψ̂a(τ1)

)
〉(e)c = (4.34)

= − i
2N

N−1

∑
m=0

e
2πi
N (m+ 1

2)(b−a)sin(2θm)
(

G(+)
m (τ2 − τ1)− G(−)

m (τ2 − τ1)
)

.
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Note that, by interchanging τ1, τ2 and a, b in (4.32) and comparing the result with (4.31)

it can be seen that 〈T̂
(
ψ̂b(τ2)ψ̂

†
a(τ1)

)
〉(e)c = − 〈T̂

(
ψ̂†

a(τ1)ψ̂b(τ2)
)
〉(e)c , which is antici-

pated due to the fermionic nature of the operators. Furthermore, it is easy to see that

〈T̂
(
ψ̂b(τ2)ψ̂a(τ1)

)
〉(e)∗c = 〈T̂† (ψ̂†

a(τ1)ψ̂
†
b(τ2)

)
〉(e)c . In the equal time case, due to eq.

(4.16), the correlation functions (4.31) and (4.32) receive an extra +1
2 δab contribution.

Due to the quadratic nature of the Hamiltonian at hand, these correlation functions

contain all the information needed for the analysis of the system. As a first exam-

ple the transverse magnetization 〈σz〉 of the even sector is presented, which is a site-

independent quantity due to the translational invariance of the system

〈σz〉(e) = 2
δ2lnZ(e)[J]

δ J̄j(τ)δJj(τ)

∣∣∣∣
J=0

=
1
N

N−1

∑
m=0

cos(2θm). (4.35)

At the thermodynamic limit N → ∞ this result reduces to the full expectation value

of the operator, coinciding with the known [79] result

〈σz〉 = 1
π

∫ π

0
dφ

|h− cosφ|√
(h− cosφ)2 + (rsinφ)2

, (4.36)

which confirms that the correct functional operations representing the spin operators

are those given in eq. (4.15). From the physical point of view, more interesting is the

connected time dependent correlation function

〈T̂
(

σz
j (τ2)σ

z
k (τ1)

)
〉

c
= 4

δ4lnZ[J]
δ J̄j(τ2)δJj(τ2)δ J̄k(τ1)δJk(τ1)

∣∣∣∣
J=0

, (4.37)

where in order to find the real time result, one just needs to perform the Wick rotation

τ → it. The calculation of the even sector contribution to the correlator (4.37) is then

quite simple and yields the following result:

〈T̂
(

σz
j+l(t2)σ

z
j (t1)

)
〉
(e)

c
= Al(|t2 − t1|) + Bl(|t2 − t1|), (4.38)
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where in the last expression the following abbreviations are used

Al(|t|) =
{

2
N

N−1

∑
m=0

e−i|t|εmcos2θmcos (φml)

}{
2
N

N−1

∑
m=0

e−i|t|εmsin2θmcos (φml)

}
,

Bl(|t|) =
{

1
N

N−1

∑
m=0

e−i|t|εmsin2θmsin (φml)

}2

, φm =
2π

N

(
m +

1
2

)
(4.39)

By taking into account that G(+)
m (0) = −G(−)

m (0) = 1/2 and setting r = 1, for reasons

of comparison, the static result is recovered

〈σz
j+lσ

z
j 〉

(e)
c

= −Σ(l)Σ(−l), Σ(l) = hR(l)− R(l + 1), (4.40)

with

R(l) =
1
N

N−1

∑
m=0

cos(φml)√
(h− cosφm)2 + sin2φm

=
N→∞

1
π

∫ π

0
dφ

cos(φl)√
(h− cosφ)2 + sin2φ

, (4.41)

which in the thermodynamic limit again represents the complete correlation function.

Despite the fact that the result (4.40) has been known for a long time [79]16, it was

re-derived here because it is a strong indication that the correct way to define path

integration over fermionic coherent states is through the Faddeev-Jackiw method.

For a further check, at the thermodynamic limit N → ∞, the functions (4.39) form-

ing the correlator (4.38) adopt the following form

Al(|t|) =
1

π2

∫ π

0
dφ
∫ π

0
dφ′

e−i|t|(ε(φ)+ε(φ′))

ε(φ)ε(φ′)
×

× [ε(φ) + 2(h− cosφ)]
[
ε(φ′)− 2(h− cosφ′)

]
cos(φl)cos(φ′l),

Bl(|t|) =
4

π2

∫ π

0
dφ
∫ π

0
dφ′

e−i|t|(ε(φ)+ε(φ′))

ε(φ)ε(φ′)
sinφsinφ′sin(φl)sin(φ′l).

(4.42)

16The sign difference in h is due to the sign difference of the magnetic field used in the Hamiltonian
of the cited paper.
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The integrations in eq. (4.42) can then be reorganized as follows:

Al(|t|) =
1

4π2

∫ π

−π
dφe−i|t|ε(φ)+ilφ

[
1 +

2(h− cosφ)

ε(φ)

]
×

×
∫ π

−π
dφ′e−i|t|ε(φ′)+ilφ′

[
1− 2(h− cosφ′)

ε(φ′)

] (4.43)

and

Bl(|t|) = −
[

1
π

∫ π

−π
dφe−i|t|ε(φ)+ilφ sinφ

ε(φ)

]2

. (4.44)

By using the continuum version of eq. (4.24): tan(2θ(φ)) = sinφ/(h− cosφ), it is easy

to find that

cos(2θ(φ)) = 2(h− cosφ)/ε(φ), sin(2θ(φ)) = 2sinφ/ε(φ) (4.45)

and consequently

〈T̂
(

σz
j+l(t2)σ

z
j (t1)

)
〉

c
=

[
1

2π

∫ π

−π
dφeilφ−i|t|ε(φ)

]2

−

−
[

1
2π

∫ π

−π
dφeilφ−i|t|ε(φ)cos(2θ(φ))

]2

−
[

1
2π

∫ π

−π
dφeilφ−i|t|ε(φ)sin(2θ(φ))

]2

.

(4.46)

This result coincides with the zero-temperature limit of the exact result that has been

found by Th. Niemeijer [80]. Here, ε(φ) is the continuum limit of the discrete energy

εm

ε(φ) = 2
√
(h− cosφ)2 + (rsinφ)2. (4.47)

As it is obvious, the correlator (4.38) and consequently the entanglement, disappear at

the limit t → ∞ due to strong oscillations. However, this argument does not hold at

the critical point, where |h− cosφ| = λ << 1 and φ ∼ λ. Thus, the time after which

correlations are strongly diminished scales as t ∼ 1/λ. Even though the result of eq.

(4.38) was produced for the even fermion number sector, the corresponding result for

the odd sector could be immediately recovered through the change m + 1
2 → m. An

important note is that while this method takes advantage of the sector separation pre-

sented in eq. (D.2) of appendix D, it remains valid only for operators that preserve

the sector. For operators that do not have this property though this method should be

modified, in order to include the possible sector interpolation (as for example in the

case where the expectation value of the single σx
j operator is considered).
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It is also easy to compute the real time correlator of the Majorana operators (4.5)

iBba(t2, t1) ≡ 〈T̂ (γ̂2b(t2)γ̂2a−1(t1))〉c . (4.48)

Inserting the Wick rotated correlators (4.31)-(4.34) into eq. (4.48), one gets the even

sector, real time correlator

B(e)
ba (t2, t1) = −

1
N

N−1

∑
m=0

e
2πi
N (m+ 1

2)(b−a)−2iθm e−i|t2−t1|εm , (4.49)

which at the thermodynamic limit N → ∞ reduces to the complete correlation func-

tion

Bl(t) ≡ Bba(t2, t1) = −
1

2π

∫ 2π

0
dφeilφ−2iθ(φ)e−i|t|ε(φ), l = b− a, t = t2 − t1. (4.50)

In this expression, the function θ(φ) is defined as

2θ(φ) =

{
arctan rsinφ

h−cosφ , h− cosφ > 0,

arctan rsinφ
h−cosφ + π , h− cosφ < 0.

(4.51)

For the XX model (r = 0) and |h| ≤ 1 the integral (4.50) simplifies to

Bl(t) =
1

2π

∫ 2π

0
dφeilφsign(cosφ− h)e−2i|t||cosφ−h| =

=
1
π

∫ φh

−φh

dφeilφcos [2t(h− cosφ)] , (4.52)

where φh is defined through the equation cosφh = h.

The evaluation of this integral yields the result

Bl(t) =
2
π

∞

∑
k=−∞

Jk(2t)
sin [(l + k)φh]

l + k
cos

(
2ht− k

π

2

)
, (4.53)

with Jk being the Bessel functions. For the static case, one does not have to take into

account eq. (4.16) and repeat all computations, since when identifying the weighted

quantity corresponding to T̂ (γ̂2b(t)γ̂2a−1(t)), through the Faddeev-Jackiw prescrip-

tion, all extra 1/2 contributions cancel, giving the function γ2b(t)γ2a−1(t). Thus, the

limit t1 = t2 of eq. (4.53) can be performed trivially, in which case only the k = 0 term
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survives, giving

Bba,eq(t) =
2
π

sin(lφh)

l
. (4.54)

Here, the abbreviation used for the equal time correlation function is Bba,eq(t) ≡ Bba(t, t).

At the vicinity of the critical value h = 1 one can then find φh '
√

2λ where λ ≡
1− h→ +0. This value sets the scale after which strong oscillations diminish correla-

tions. Thus, the correlation length behaves as ξ ∼ λ−
1
2 ∼ λ−ν giving the correspond-

ing critical exponent ν = 1/2 [41]. As |t| → ∞, the correlator (4.53) goes to zero as

Bl ∼ |t|−1/2, except for the critical vicinity where it oscillates as

Bl(t) '
2

πl
sin(φhl)cos(2tλ). (4.55)

The time scale after which correlations are turned off due to the strong oscillations

can easily be seen from the last equation being: t ∼ λ−1 ∼ ξ2. Consequently, the

dynamic critical exponent defined through equation t ∼ ξz is z = 2 [42]. Therefore,

the entanglement entropy is expected [12–14] to scale as S ∼ 1
3 logξ ∼ 1

6 logt at the

critical vicinity.

4.3 Driven correlations

In this subsection the case of a time dependent transverse field h = h(t) that drives

the evolution of an XY spin chain will be considered. For the quantum Ising model

(r = 1) and for a field linearly dependent on time, the entanglement dynamics have

been extensively studied [15, 16, 81–83], mainly by numerical methods. The present

work is a contribution to the analytical methods available for the study of spin systems

out of equilibrium. The quantities of interest are of the form

〈T̂
(
Ô1H(t1)Ô2H(t2) · · · ÔNH(tN)

)
〉 ≡ (4.56)

tr
[
ρ̂inT̂

(
Ô1H(t1)Ô2H(t2) · · · ÔNH(tN)

)]
,

where ρ̂in = ρ̂(tin) is the initial density matrix of the system at time tin and ÔnH(tn) is

a Heisenberg operator at time tn:

ÔnH(tn) = Û(tin, tn)Ôn(tin)Û(tn, tin), Û(t, tin) ≡ T̂e−i
∫ t

tin
dt′Ĥ(t′). (4.57)
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In the following, the system is assumed to be initially in thermal equilibrium of tem-

perature β

ρ̂in =
e−βĤin

Zin(β)
, (4.58)

where Zin(β) is the partition function with respect to Ĥin. In this expression, the sym-

bol Ĥin identifies the Hamiltonian operator at time tin, where the magnetic field has

its initial value hin = h(tin). By taking the zero temperature limit β → ∞, and as long

as the ground state is unique, the density matrix reduces to ρ̂in = |0in〉 〈0in|. If the

ground state though isn’t unique, the zero-temperature limit produces an equiprob-

able mixture of degenerate states. In the following, the case of interest is that of two

Heisenberg operators Ô1 = ψ̂†
b and Ô2 = ψ̂a, where the a and b indices indicate the

fermionic modes.

To deal with the out-of-equilibrium dynamics of the system, the expectation value

of the Heisenberg operator ψ̂†
b(t2)ψ̂a(t1) is re-expressed in the following form:

Gba(ρ; t2, t1) = tr
[
ρ̂(tin)ψ̂

†
b(t2)ψ̂a(t1)

]
Θ(t2 − t1)− tr

[
ρ̂(tin)ψ̂a(t1)ψ̂

†
b(t2)

]
Θ(t1 − t2) =

= tr
[
ρ̂(tin)Û(tin, t2)ψ̂

†
b(tin)Û(t2, t1)ψ̂a(tin)Û(t1, tin)

]
Θ(t2 − t1)−

− tr
[
ρ̂(tin)Û(tin, t1)ψ̂a(tin)Û(t1, t2)ψ̂

†
b(tin)Û(t2, tin)

]
Θ(t1 − t2), (4.59)

for t2 6= t1, with Θ being the Heaviside Theta function. The − symbol in the above

equation is a consequence of the fermionic nature of the operators, while, as will be

made clear in section 5, in the bosonic case it would be replaced by a + symbol.

The forward-backward time structure of such correlators has been examined a long

time ago through the Schwinger-Keldysh formalism [3,45–47] presented in subsection

2.10. The basic ingredient of this formalism is that the time variable is defined on the

complex plane along a time-closed contour P, which encircles the real t axis, running

from tin+ ≡ tin + i0 to tin− ≡ tin − i0. The contour consists of two straight lines. The

first one, denoted as L+, joins the points tin + i0 and T + i0, where T is an arbitrary

time instance, up to which the evolution of the system is considered. Along this line

the time variable is denoted as t+. The second line joins the points T− i0 and tin − i0.

Along this line, defined as L−, time is denoted as t−. In the case of thermal initial
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states this contour can be further extended by a complex time line, running parallel

to the imaginary axis, from tin− to tin− − iβ, where β is the inverse temperature of the

corresponding thermal state. This third line on the complex time plane is denoted as

Lβ, while the extended contour as C. A natural ordering arises in this configuration

(as did already in P) since times along L+ are before times along L−, which also are

considered to be before times along Lβ (see Fig. (1)).

The introduction of the resolution of the identity in the space of coherent states |~ζ〉,
between the operators in eq. (4.59), leads to the re-writing of the correlation function

(4.59) as a series of matrix elements

Gba(ρ; t2, t1) =
∫

d2~ζd2~ζ ′ 〈−~ζ|ρ̂(tin)|~ζ ′〉 Fba

(
~ζ ′,~ζ; t2, t1

)
, (4.60)

where

Fba

(
~ζ ′,~ζ; t2, t1

)
= 〈~ζ ′|Û(tin, t2)ψ̂

†
b(tin)Û(t2, t1)ψ̂a(tin)Û(t1, tin)|~ζ〉Θ(t2 − t1)−

− 〈~ζ ′|Û(tin, t1)ψ̂a(tin)Û(t1, t2)ψ̂
†
b(tin)Û(t2, tin)|~ζ〉Θ(t1 − t2),

(4.61)

which can be handled through the path integral method according to the rules pre-

sented in section 4.1. Here, the vector symbol denotes the set of all degrees of freedom

for the system. Leaving the details for appendix E - where both the cases of bosons

and fermions are considered - the path integral form of the aforementioned correlation

function is found to be

Gba(ρ; t2, t1) =
1

Zin(β)

∫
(−)

D2~ζ(tC)e
i
∫

C dtC

[
i~̄ζ~̇ζ−HXYcl(

~̄ζ,~ζ)
]
ζ̄b(t2+)ζa(t1+), (4.62)

which allows for the definition of the Keldysh contour generating functional for the

out-of-equilibrium expectation values

Z[J] =
1

Zin(β)

∫
(−)

D2~ζ(tC)e
i
∫

C dtC

[
i~̄ζ~̇ζ−HXYcl(

~̄ζ,~ζ)
]
−i
∫

C dtC
~̄J~ζ−i

∫
C dtC

~̄ζ~J . (4.63)

This integral has been constructed in exactly the same way as the corresponding imag-

inary time generating functional presented in section 4.1. In the present case, the

time variable runs along the Keldysh contour C, where the fields ~ζ(t±) ≡ ~ζ±(t) are

treated as independent. The magnetic field is considered to be the same along L±:
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h+(t) = h−(t), while along Lβ it retains its initial value hin. This way, correlation

functions can be retrieved via functional differentiation of eq. (4.63). Without loss of

generality, for the rest of this section it is considered that tin = −T.

Apart from the complications of the Schwinger-Keldysh formalism, the calculation

proceeds by following the same steps as in the imaginary time case. It must be noted

that once again the study will be performed on the even fermion number sector of the

system. The basic calculational difficulty then resides in the fact that both the eigen-

values εm and the matrix Um, that diagonalizes the Hamiltonian in eq. (4.18), become

time dependent quantities, due to the time dependence of the magnetic field. As a

consequence, the extra off-diagonal contribution along the P contour

U†
mi∂tPUm = −θ̇mσx,

θ̇m = −ḣ
2r
ε2

m
sin
[

2π

N

(
m +

1
2

)]
= −ḣ

2r
ε2

m
sinφm (r 6= 0)

(4.64)

appears in the kinematic term of the Keldysh analogue of (4.26), a fact that makes the

calculation more involved. However, due to the quadratic nature of the action, the

calculation can be carried out.

The generating functional in eq. (4.20) is then transcribed to the Keldysh language as

Z(e)[J] =
N/2−1

∏
m=0

Z(e)
m [J], Z(e)

m [J] =
∫
(−)

Dη̄mDηmeiS(e)
m [J], (4.65)

with

S(e)
m [J] =

∫
C

dtC
[
η̄m
(

Dm − θ̇mσx) ηm − µ̄mηm − η̄mµm
]

. (4.66)

Here, the operator Dm is the real time version of the corresponding operator in eq.

(4.27)

Dm =

(
i∂tC − εm(tC) 0

0 i∂tC + εm(tC)

)
. (4.67)

The generating functional can be calculated exactly, according to the Keldysh contour

algebra rules presented in appendix F, and the result reads as follows

Z(e)
m [J] = Z(e)

m [0]exp
[
−i
∫

C
dtC

∫
C

dt′Cµ̄m(tC)G̃m(tC, t′C)µm(t′C)
]

, (4.68)
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where the Green’s function G̃m is defined as the antiperiodic solution of the Green’s

equation (
Dm − θ̇mσx) G̃m = 1̂, (4.69)

along the contour C. The solution to this equation and the computation of the normal-

ization factor of eq. (4.68) are presented in appendix G.

Regarding G̃m, it is shown that it can be expressed as

G̃m = Gm + Mm, (4.70)

where Mm is a convergent series in θ̇m, which can be systematically computed order

by order

Mm = Gmθ̇mσxGm +O
(

θ̇2
m

)
. (4.71)

Here, Gm is the antiperiodic Green’s function satisfying the equation DmGm = 1̂ over

C, the solution to which can be found in appendix F. Now, all the needed correlation

functions can be deduced through the corresponding functional differentiations, as

for example is the case of

〈T̂
(

ψ̂†
b(t2)ψ̂a(t1)

)
〉

c
=

δ2Z[J]
δJb(t2+)δ J̄a(t1+)

∣∣∣∣
J=0

, (4.72)

which, as noted in section 4.1, receives an additive factor in the limit where t2 = t1

and b = a simultaneously. In the following, the equal time case will be considered.

The contribution of the even fermion number sector to the equal time correlator, up to

the first order in θ̇m, is then found to be

〈ψ̂†
b(t)ψ̂a(t)〉

(e)
c = − i

2N

N−1

∑
m=0

e−i 2π
N (m+ 1

2)(b−a)× (4.73)

× tr
([

(1 + Gmθ̇mσx)Gm
]
(t, t)

[
cos(2θm(t))σz − sin(2θm(t))σy

])
+

1
2

δba +O(θ̇2
m).

The case of a magnetic field h = h(ωt) was further examined in appendix G, in the

limit T → ∞ and β → ∞, where it was proved that at the adiabatic limit, the contri-

bution of Mm = Gmθ̇mσxGm +O(θ̇2
m) in eq. (4.73) is strongly suppressed as ω → 0. In
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this case, the dominant term in eq. (4.73) is the one coming from Gm and thus

〈ψ̂†
b(t)ψ̂a(t)〉

(e)
c

ω→0' − i
2N

N−1

∑
m=0

ei 2π
N (m+ 1

2)(b−a)cos (2θm(t)) tr
[
Gm(t, t)σz]+ 1

2
δba =

β→∞

=
β→∞

− 1
2N

N−1

∑
m=0

ei 2π
N (m+ 1

2)(b−a)cos (2θm(t)) +
1
2

δba, (4.74)

where the property G(−)(tC, t′C) = −G(+)(t′C, tC) was used. From this result it is easy

to also compute the even sector expectation value of the Heisenberg operator σz
i (t),

as 〈σz
i (t)〉c = 1− 2 〈ψ̂†

i (t)ψ̂i(t)〉c. A comparison with the results obtained for a time-

independent field in eqs. (4.32) and (4.35), leads to the conclusion that at the adiabatic

limit the main change in the correlation function is the replacement θm → θm(t). How-

ever, as proved in appendix G, this statement holds only away from the critical region

|h − 1| ∼ O(ω1/2). In that neighbourhood, irrespective of how slow the driving is,

the contribution of Mm in eq. (4.73) becomes equally important to that of Gm. This

is in accordance with the so-called Kibble-Zurek mechanism (KZM) or the adiabatic-

impulse-adiabatic approximation [42, 43], presented in subsection 2.8. It is easy to see

then that, even if the evolution of the system is considered adiabatic away from the

critical point, when near that point the evolution becomes non-adiabatic, as the energy

gap changes with a rate comparable to the energy gap itself: |ḣ|/|h− 1| ∼ O(ω1/2).

In such a case, the entanglement entropy is expected [16] to behave as S ' 1
12 log2

1
ω .

5 Reduced dynamics for bosonic and fermionic systems

Section summary

In this section, a path integral method for the study of dynamics of bosonic and

fermionic systems embedded in thermal quantum environments will be presented.

The methodology will be presented simultaneously for the bosonic and fermionic

cases, since the differences in the context of path integrals are remarkably subtle. It

must be noted that an analogous methodology to the fermionic one can be also used

for the study of spin-1/2 systems, which relate to fermionic systems via the Jordan-

Wigner transformation [31]. This section is based on the upcoming work [84].
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5.1 The Reduced Generating Functional

In order to study the reduced dynamics of a system S, coupled to a thermal environ-

ment E, the compound system will be considered to be driven by the usual quantum

Hamiltonian

Ĥ = ĤS ⊗ ÎE + ÎS ⊗ ĤE + ĤI(t). (5.1)

In the following, it will be taken as granted that all the parts of the total Hamilto-

nian are expressed in terms of the corresponding creation and annihilation (bosonic

or fermionic) operators: ĤS = ĤS(â†, â), ĤE = ĤE(b̂†, b̂), ĤI = ĤI(â†, â; b̂†, b̂). Here,

the notation â and â† is used to denote the operators of the system, and the notation b̂

and b̂† to denote the operators of the environment.

For the analysis, the following physical picture shall be adopted: Up to a moment tin

the environment and the system are independent of each other
(

ĤI(t < tin) = 0
)

and

the initial density operator can be expressed in the product form ρ̂ = ρ̂E⊗ ρ̂S. Further-

more, prior to the moment tin, the environment will be assumed to be in equilibrium

at a temperature T = 1/β, meaning that ρ̂E = e−βĤE /ZE(β), with ZE(β) being the

corresponding partition function. No prior information is considered regarding the

system’s initial state, but this specific topic will play an important role later.

After the initialization of the interaction, the two interacting systems become entan-

gled and the evolution of the subsystem is in general highly non-trivial. To probe it,

the objects of interest are again going to be averages of the form:

G(T)
ij (ρ; t2, t1) = 〈T̂

(
â†

iS(t2)âjS(t1)
)
〉

ρ
= tr

[
ρ̂(tin)T̂

(
â†

iS(t2)âjS(t1)
)]

. (5.2)

In this expression âiS(t) is a Heisenberg operator that refers to the subsystem at a spe-

cific time t, the subscript i is a site/space or mode index, ρ̂(tin) = ρ̂in is the initial

density operator of the compound system, T̂ is the time ordering operator and the

trace operation refers to both the environment’s and the subsystem’s degrees of free-

dom. In this subsection the formalism will be kept as general as possible, in order to

present the structure of the method, leaving for appendices E, H and I the details of

the calculations, and skipping for the next subsection the discussion of the examples

of the bosonic and the fermionic harmonic oscillators. The generalization to n point

correlators is, at least in principle, straightforward.
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By writing the Heisenberg operators in eq. (5.2) as

âiS(t) =
[

T̂†ei
∫ t

tin
dt′Ĥ(t′)

]
âiS(tin)

[
T̂e−i

∫ t
tin

dt′Ĥ(t′)
]
≡ Û(tin, t)âiSÛ(t, tin), (5.3)

where T̂† is the anti-time ordering operator, it is easy to proceed exactly as in the case

of subsection 4.3 and express the correlator (5.2) in the following form:

G(T)
ij (ρ; t2, t1) = Tr

[
ρ̂(tin)â†

iS(t2)âjS(t1)
]

Θ(t2 − t1)± Tr
[
ρ̂(tin)âjS(t1)â†

iS(t2)
]

Θ(t1 − t2) =

= Tr
[
ρ̂(tin)Û(tin, t2)â†

iS(tin)Û(t2, t1)âjS(tin)Û(t1, tin)
]

Θ(t2 − t1)±

± Tr
[
ρ̂(tin)Û(tin, t1)âjS(tin)Û(t1, t2)â†

iS(tin)Û(t2, tin)
]

Θ(t1 − t2), (5.4)

for t2 6= t1, with Θ being the Heaviside Theta function. In the ± symbol appear-

ing above and in what follows, the upper symbol corresponds to the bosons and the

lower to fermions. Once again, the Keldysh contour parametrization will be used to

construct the appropriate path integral.

To analyse correlators of the type (5.4) it is possible again to express them as path

integrals over the space spanned by the bosonic or fermionic coherent states. In the

following, the notation |~zS〉 ≡ |z1, . . .〉 = ⊗j∈S |zj〉 and |~ζE〉 ≡ |ζ1, . . .〉 = ⊗µ∈E |ζµ〉
will be used for the overcomplete bases pertaining to the subsystem and the environ-

ment respectively. For the composite system the notation |~Z〉 ≡ |~zS,~ζE〉 = |~zS〉 ⊗ |~ζE〉
will be used, while the completeness will be expressed in the abbreviated form:

∫
d2~Z |~Z〉 〈~Z| = ∏

j∈S

∫ dz̄jdzj

π
|zj〉 〈zj| ⊗∏

µ∈E

∫ dζ̄µdζµ

π
|ζµ〉 〈ζµ| = 1̂. (5.5)

with d2z ≡ dRe(z)dIm(z) for z of bosonic nature and d2z ≡ dz̄dz for z of Grassmann

one. In this basis, the correlator (5.4) can be written as

Gij(ρ; t2, t1) =
∫

d2~Zd2~Z′ 〈±~Z|ρ̂(tin)|~Z′〉 Fij

(
~Z′, ~Z; t2, t1

)
, (5.6)
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where

Fij

(
~Z′, ~Z; t2, t1

)
= 〈~Z′|Û(tin, t2)â†

iS(tin)Û(t2, t1)âjS(tin)Û(t1, tin)|~Z〉Θ(t2 − t1)±

± 〈~Z′|Û(tin, t1)âjS(tin)Û(t1, t2)â†
iS(tin)Û(t2, tin)|~Z〉Θ(t1 − t2).

(5.7)

In appendix E it was proved that the last amplitude can be interpreted as a path inte-

gral over the Keldysh contour P (see fig. (1)) as follows:

Fij(~Z′, ~Z; t2, t1) = (5.8)

=

~̄ZP(tin−)=~̄Z′∫
~ZP(tin+)=~Z

D2 ~ZP(tP)e
−Γin−,in+(

~̄Z′,~Z)+i
∫

P dtP

[
i
2 (
~̄ZP·~̇ZP−~̇̄ZP·~ZP)−H(~̄ZP,~ZP)

]
z̄Pi(t2+)zPj(t1+).

The time variable tP, that parametrizes the paths under integration, is defined along

the P contour, at the end of which the boundary conditions are set. The factor in the

last integral is defined as

Γin−,in+(
~̄Z′, ~Z; ~̄ZP, ~ZP) =

1
2

(
|~Z′|2 + |~Z|2

)
− 1

2

(
~̄Z′ · ~ZP(tin−) + ~̄ZP(tin+) · ~Z

)
=

= ΓS
in−,in+(~̄z

′,~z;~̄zP,~zP) + ΓE
in−,in+(

~̄ζ ′,~ζ; ~̄ζP,~ζP),
(5.9)

and corresponds to the usual boundary term, used for the consistent calculation of

coherent-state path integrals, with the two terms of the second line referring to the

contribution of the subsystem and the environment respectively. In appendix E the

result (5.8) was further modified, for the case where ~Z corresponded to an isolated

thermal system, in order to represent an evolution not only along the contour P, but

also extended on a line Lβ parallel to the imaginary axis. In the present case though,

only the environment will be considered being initially in a thermal state, and thus

this extension is impossible for all degrees of freedom.

100



By inserting eq. (5.8) into eq. (5.6), the latter can be recasted as follows,

G(T)
ij (ρ; t2, t1) =

∫
d2zd2z′ 〈±~z|ρ̂S(tin)|~z′〉 ×

×
~̄zP(tin−)=~̄z′∫
~zP(tin+)=~z

D2~zP(tP)e
−Γin−,in+(~̄z′,~z;~̄zP,~zP)+i

∫
P dtP

[
i
2 (~̄zP·~̇zP−~̇̄zP·~zP)−HS(~̄zP,~zP)

]
×

× z̄Pi(t2+)zPj(t1+)IE
[
~̄zP(tP),~zP(tP)

]
≡ Gij,++(ρ; t2, t1),

(5.10)

where the last factor

IE
[
~̄zP(tP),~zP(tP)

]
=
∫

d2ζd2ζ ′ 〈±~ζ|ρ̂E(tin)|~ζ ′〉 × (5.11)

×

~̄ζP(tin−)=
~̄ζ ′∫

ζP(tin+)=~ζ

D2~ζP(tP)e
−Γin−,in+(

~̄ζ ′,~ζ;~̄ζP,~ζP)+i
∫

P dtP

[
i
2 (
~̄ζP·~̇ζP−~̇̄ζP·~ζP)−HE(

~̄ζP,~ζP)−HI(
~̄ZP,~ZP)

]

corresponds to the influence functional of the Feynman-Vernon’s technique and in-

corporates the influence of the environment on the correlation function. By following

the same steps, similar expressions can be derived for all correlation functions of the

subsystem. Thus, it is useful to define the reduced generating functional

ZS[~J,~̄J] =
∫

d2zd2z′ 〈±~z|ρ̂S(tin)|~z′〉 × (5.12)

×
~̄zP(tin−)=~̄z′∫
~zP(tin+)=~z

D2~zP(tP)e
−Γin−,in+(~̄z′,~z;~̄zP,~zP)+i

∫
P dtP

[
i
2 (~̄zP·~̇zP−~̇̄zP·~zP)−HS(~̄zP,~zP)

]
−i
∫

P dtP

(
~̄J·~zP+~̄zP·~J

)
×

× IE
[
~̄zP(tP),~zP(tP)

]
,

with the help of which all correlation functions of the system, Gij,±±, can be derived

through the appropriate functional differentiations. Note that the fields ~zP(t+) ≡
~z+(t) and ~zP(t−) ≡ ~z−(t) are independent fields and must be integrated separately.

The r.h.s. notation for these fields is meant to signify the complex-time line (L+ or L−
respectively) on which they are supported on.

The matrix element of the thermal environment’s density matrix, appearing in eq.

(5.11), can again be expressed as a path integral with respect to fields parametrized
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along the lower imaginary axis, running from tin− to tin− − iβ, as

〈±~ζ|ρ̂E(tin)|~ζ ′〉 = (5.13)

=
1

ZE(β)

~̄ζ(tin−−iβ)=±~̄ζ∫
~ζ(tin−)=~ζ ′

D2~ζim(tim)e
−Γβ,in−(

~̄ζ,ζ ′,~̄ζim,~ζim)+i
∫ tin−−iβ

tin−
dtim

[
i
2 (
~̄ζim·~̇ζim−~̇̄ζim·~ζim)−HE(

~̄ζim,~ζim)

]
,

where

Γβ,in−(
~̄ζ, ζ ′, ~̄ζim,~ζim) =

1
2

(
|~ζ|2 + |~ζ ′|2

)
− 1

2

(
~̄ζ ·~ζim(tin − iβ) + ~̄ζim(tin−) ·~ζ ′

)
. (5.14)

Combining the expressions (5.11) and (5.13) one then arrives at a path integral parametrized

along the Keldysh contour C (see Fig. (1))

IE
[
~̄zP(tP),~zP(tP)

]
= (5.15)

=
1

ZE(β)

∫
(±)

D2~ζC(tC)e
i
∫

C dtC

[
i~̄ζC·~̇ζC−HE(

~̄ζC,~ζC)
]
−i
∫

P dtP HI(
~̄ZP,~ZP).

The subsript (±) on the path integral denotes the periodic or antiperiodic boundary

conditions, induced by the trace operation for bosonic and fermionic systems respec-

tively. Regarding the integral over P alone, which appears in the exponential of the

previous equation, the symbol ~ZP has been used (and subsequently~zP and ~ζP) for the

fields. This is just a choice of notation, in order to show that the degrees of freedom

contained in the last integral of the exponential are only those over P, and thus it is

considered ζC(tP) ≡ ζP(tP). Path integration of eq. (5.15) is thus performed with re-

spect to ~ζC, which is parametrized along the whole Keldysh contour C. This will also

be the case for the fields of the subsystem S, in the case that its initial state is consid-

ered thermal with some temperature βS.

Regarding the matrix element 〈±~z|ρ̂S(tin)|~z′〉 appearing in eqs. (5.10) and (5.12), and

considering the case where the system was not initially in a thermal state17, this matrix
17Such a thermal case allows for this matrix element to be represented as an imaginary time evolu-

tion. In that case, this term together with the path integral over P can be sewed, in order to provide a
periodic/anti-periodic path integral on a complete Keldysh contour CS

ZS[~J,~̄J] ∼
∫
(±)

D2~zC(tC)e
i
∫

CS
dtC[i~̄zC ·~̇zC−HS(~̄zC ,~zC)]−i

∫
P dtP

(
~̄J·~zP+~̄zP ·~J

)
IE
[
~̄zP(tP),~z(tP)

]
,
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element is bound to provide a function f (±~̄z,~z′) = 〈±~z|ρ̂S(tin)|~z′〉 of ~̄z and ~z′. This

results to the reduced generating functional simplifying to

ZS[~J,~̄J] =
∫

d2zd2z′ f (±~̄z,~z′)× (5.16)

×
~̄zP(tin−)=±~̄z′∫
~zP(tin+)=~z

D2~zP(tP)e
−Γin−,in+(~̄z′,~z;~̄zP,~zP)+i

∫
P dtP

[
i
2 (~̄zP·~̇zP−~̇̄zP·~zP)−HS(~̄zP,~zP)

]
−i
∫

P dtP

(
~̄J·~zP+~̄zP·~J

)

× IE
[
~̄zP(tP),~z(tP)

]
,

which represents a path integral over fields parametrized only over P. A case which

can enormously simplify calculations is when the initial state of the system is consid-

ered pure and of the form ∏j∈S⊗ |0j〉, for which f (±~̄z,~z′) = 1. In that case, (5.16)

becomes a path integral over the whole complex phase-space, from the initial Keldysh

time tin+ to the final instance tin−. This property will be used extensively in the fol-

lowing, while the methodology for recovering results for other initial states will be

addressed in detail.

Up to this point, the analysis has been completely general, except for the product form

that has been adopted for the initial density operator. In general, a closed-form result

for the influence functional (5.15) is not possible. However, the embodiment of the en-

vironment in a path integral with periodic/anti-periodic boundary conditions offers

a variety of techniques for a systematic approximation of the environment’s influence

on the system. In the present investigation, the environment and its interaction with

the system will be considered to correspond to a solvable model. More specifically, the

environment will be assumed to be simulated by a collection of bosonic/fermionic os-

cillators

ĤE = ∑
µ∈E

Eµ

(
b̂†

µb̂µ ±
1
2

)
. (5.17)

with the operators b̂µ and b̂†
µ denoting the annihilation and creation operators respec-

tively, of the environment modes. The methodology would be similar to the presented

one for any other choice of quadratic Hamiltonian corresponding to the environment.

In the case that higher order Hamiltonians are considered, for which though a consis-

tent continuum limit must first be identified, the same methodology could be gener-

similar to the path integral pertaining to the environment in eq. (5.15).
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alized at least at the semiclassical level. The interaction term ĤI is chosen to be of the

linear form

ĤI = ∑
j∈S,µ∈E

(
gjµb̂†

µ âj + g∗jµ â†
j b̂µ

)
. (5.18)

The influence functional (5.15) for the bosonic and fermionic Hamiltonians presented

above can then be parametrized as

IE
[
~̄zP(tP),~zP(tP)

]
=

=
1

ZE(β) ∏
µ∈E

∫
(±)

D2ζCµ(tC)e
i
∫

C dtC[iζ̄Cµ·ζ̇Cµ−Eµ ζ̄CµζCµ−r̄µζCµ−ζ̄Cµrµ], (5.19)

where the following abbreviation has been used for the interaction term rµ(tC) =

∑j∈S zCj(tC)gjµ(tC), with the understanding that gjµ(tC) = 0 along the imaginary

part Lβ of the Keldysh contour. In the last equation, the classical function HE =

∑µ∈E Eµζ̄µζµ, which represents the quantum Hamiltonian (5.17) at the level of path

integration, has been constructed according to the rules derived in sections 3 and 4,

for the bosonic and fermionic cases respectively. Due to its quadratic structure, the

functional integral (5.19) can be calculated exactly. Leaving the details of the calcula-

tion for appendix H, here it is enough to quote the result

IE
[
~̄zP(tP),~zP(tP)

]
=

= C̃−1
E exp

[
−
∫

P
dtP

∫
P

dt′P ∑
j,k∈S

z̄Pj(tP)∆P,jk(tP − t′P)zPk(t′P)

]
,

(5.20)

with the kernel ∆P,jk(tP − t′P) being non-local in both time and space indices

∆P,jk(tP − t′P) = ∑
µ∈E

g∗jµgkµ

[
ΘP(tP − t′P)−

(
1∓ eβEµ

)−1
]

e−i(tP−t′P)Eµ (5.21)

and ΘP(tP − t′P) being the step function defined with respect to the Keldysh contour

P. The normalization constant C̃−1
E = C−1

E Z−1
E (β) is also computed in appendix H.

Thus, the generating functional (5.16) for the reduced correlators can be written in
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the following form

ZS[~J,~̄J] = C̃−1
E

∫
d2zd2z′ f (±~̄z,~z′)

~̄zP(tin−)=~̄z′∫
~zP(tin+)=~z

D2~zP(tP)e−Γin−,in+(~̄z′,~z;~̄zP,~zP)+iS(~̄zP,~zP), (5.22)

where the action weighing path integration is

S(~̄zP,~zP) =
∫

P
dtP

[
i
2
(~̄zP ·~̇zP − ~̇̄zP ·~zP)− HS(~̄zP,~zP)

]
+ (5.23)

+ i
∫

P
dtP

∫
P

dt′P
N

∑
j,k=1

z̄Pj(tP)∆P,jk(tP − t′P)zPk(t′P)−
∫

P
dtP

N

∑
j=1

(
J̄jzPj + z̄Pj Jj

)
.

It is easy to see that the introduction of the ∆P,jk factor, originating from the integra-

tion of the environmental degrees of freedom, leads to two inter-related results: the

first one is that the initially independent fields~zP(t+) ≡ ~z+(t) and~zP(t−) ≡ ~z−(t) are

now connected. The second one is that the kernel (5.21) leads to the appearance of a

non-zero imaginary part in the action (5.23), which signals the onset of diffusion for

the system.

If the system’s Hamiltonian is quadratic and diagonalizable, the generating functional

can now, in principle, be calculated. In such a case, the system’s connected correlation

functions Gij,±±(ρ; t2, t1) can be systematically derived by applying the proper func-

tional derivatives on the generating functional, where as an example

G(T)
ij (ρ; t2, t1) ≡ Gij,++(ρ; t2, t1) = ∓

δ2lnZ[~J,~̄J]
δJi(t1+)δ J̄j(t2+)

∣∣∣∣
J=0

. (5.24)

Furthermore, when the Hamiltonian is not diagonalizable, the generating functional

(5.22) can be used as the basis of a systematic perturbative approach to the system’s

dynamics. For reasons of comparison and for the sake of practical calculations, the in-

fluence functional (5.20) is re-represented, in appendix H, in terms of the conventional

time notation.

In the equal time and index case eq. (5.24) accepts an extra −1/2 factor in the case of

fermionic systems as stated in section 4 [73] and an +1/2 factor in the case of bosonic

systems; the latter case will be confirmed through an example later on. In both cases,
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these extra ±1/2 factors come exactly from the identification of the correct functions

corresponding to the operators at the continuum limit, now though at the level of path

integrated quantities and not at the level of the action. In the present construction, the

equal time limit of the system’s reduced correlation function (5.10) becomes then

G(T)
ij (ρ; t, t) =

∫
d2zd2z′ 〈±~z|ρ̂S(tin)|~z′〉 ×

×
~̄zP(tin−)=~̄z′∫
~zP(tin+)=~z

D2~zP(tP)e
−Γin−,in+(~̄z′,~z;~̄zP,~zP)+i

∫
P dtP

[
i
2 (~̄zP·~̇zP−~̇̄zP·~zP)−HS(~̄zP,~zP)

]
×

×
(

z̄Pj(t+)zPk(t+)±
1
2

δjk

)
IE
[
~̄zP(tP),~zP(tP)

]
,

(5.25)

which leads to the need of an extra ±1
2 δjk factor for the computation of connected cor-

relation functions, after the application of the appropriate functional derivatives on

the generating functional.

At this point, it is important to present the method for handling the f (±~̄z,~z′) term.

Starting with the case of the initial state ρ̂S(tin) = ∏j∈S⊗ |0j〉 〈0j|, it is easy to see that

the reduced generating functional (5.22) simplifies tremendously, since f (±~̄z,~z′) = 1,

to the form

Z(0)
S [~J,~̄J] = C̃−1

E

∫
D2~zP(tP)eiS(~̄zP,~zP), (5.26)

where the action weighing the path integral remains the same. The path integral pre-

sented above has simplified, and now can be computed as an integral over the whole

space of fields zP and z̄P, from the instance tin+ to the instance tin− on the Keldysh

contour P. The boundary term is not present in this case, since the path integral in

this form does not present any specific boundary conditions at tin+ or tin−. The choice

of such an initial state for the system can in many cases be ideal, especially when the

time scales in which one is interested in are typically large, and thus the initial condi-

tions are not expected to have an impact. More importantly though, this choice can

also serve as a first step for the computation of correlation functions for a system with

initial state ρ̂S(tin) = ∏j∈S⊗ |nj〉 〈nj|, where nj is the number of particles in the j− th

subsystem.
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In the case of the initial state ρ̂S(tin) = ∏j∈S⊗ |nj〉 〈nj| it is easy to compute

f (±~̄z,~z′) = (−1)∑j∈S nj ∏
j∈S

(
z̄jz′j
)nj

, (5.27)

leading to the generating functional (5.22) reducing to the form

ZS[~J,~̄J] = (5.28)

= (−1)∑j∈S nj C̃−1
E

∫
d2~zd2~z′∏

j∈S

(
z̄jz′j
)nj

~̄zP(tin−)=~̄z′∫
~zP(tin+)=~z

D2~zP(tP)e−Γin−,in+(~̄z′,~z;~̄zP,~zP)+iS(~̄zP,~zP).

Even though the Γin−,in+(~̄z′,~z;~̄zP,~zP) term is included in the above integral, it exists

for calculational reasons only, since with its use the classical orbits become continu-

ous. Nevertheless, the path integral defined here corresponds to a path integral from

the initial variables ~z, ~̄z at tin+ to the final variables ~z′, ~̄z′ at tin−, even if the classi-

cal orbit used for the calculation satisfies only the initial constraint for the holomor-

phic variable, and the final constraint for the anti-holomorphic one. Thus, the vari-

ables z̄j = z̄Pj(tin+) and z′j = zPj(tin−) can easily be identified with the action of the

functional derivatives ±i δ
δJ(tin+)

and i δ
δ J̄(tin−)

, respectively, on the zero-particle initial

state generating functional (5.26). This way, it becomes possible to compute correla-

tion functions for more complicated initial configurations, using boundary functional

derivatives on the zero-particle initial state generating functional Z(0)
S [~J,~̄J]. This spe-

cific methodology will be addressed in more detail after the computation of the zero-

particle result.

There are some simplifying assumptions that can be made in the following, according

to the physical problem of interest. The first one refers to the coupling strengths gjµ.

A rather common choice is to consider them as equal both in magnitude and phase

for all sites: ∀j ∈ S : gjµ = γµ, µ ∈ E. In this way, the presence of the environment

induces interactions all over the system’s range. The structure of the environment can

be then specified by its spectral density

D(E) = ∑
µ∈E
|γµ|2δ(E− Eµ). (5.29)
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At the continuum limit, the usually adopted form [39] for this function reads as fol-

lows

D(E) = λE
(

E
Ec

)n−1

e−E/Ec , (E > 0). (5.30)

where λ is a dimensionless coupling constant, and Ec is an exponential cut-off. De-

pending on the value of n, the environment is classified as sub-ohmic (0 < n < 1),

ohmic (n = 1) and super-ohmic (n > 1) [39]. The second simplification, which is

mandatory for the Lindblad equation, refers to the case of a Markovian environment.

To quantify the Markovian limit, the fields corresponding to the system can be rede-

fined in eq. (5.22) as zPj(tP) → zPj(tP)e−iεStP , where εS ∼ 1/τS sets the shortest time

scale τS that characterizes significant changes in the system. In this way, the kernel

(5.21) is recasted to the form

∆P(tP, t′P) = ∑
µ∈E
|γµ|2

[
θP(tP − t′P)−

(
1∓ eβEµ

)−1
]

e−i(tP−t′P)(Eµ−εS) =

=
∫ ∞

0
dED(E)

[
θP(tP − t′P)−

(
1∓ eβE

)−1
]

e−i(tP−t′P)(E−εS),

(5.31)

which now is a scalar with respect to the field indices, due to the equal coupling

strength choice. The Markovian environment corresponds to the case in which the

system’s time scale τS is much larger than the corresponding environmental charac-

teristic scale τE and, consequently, the environmental memory effects are absent. This

is a natural expectation when the environment is stochastic and much larger than

the system itself. In appendix H it is taken into account that, at the aforementioned

Markovian limit, integrands like the one appearing in eq. (5.20) can be assumed to be

very fast decaying functions of the time difference, thus allowing for the expansion

zPj±(t
′) ' zPj±(t) +O(t− t′). The functional (5.20) then assumes the form

IE
[
~̄zP(tP),~zP(tP)

]
= C̃−1

E exp
[
−
∫

P
dtP

∫
P

dt′P ∑
j,k∈S

z̄Pj(tP)∆̃P(tP − t′P)zPk(t′P)
]

, (5.32)

where

∆̃P(tµ − t′ν) = ∆µνδ(t− t′), µ, ν = +,−, (5.33)
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∆++ = −iδE + Γ
(

1
2
− b
)

, ∆−− = iδE + Γ
(

1
2
− b
)

,

∆+− = −Γb, ∆−+ = Γ (1− b)

(5.34)

and

Γ = 2πD(εs), δE = Pr.
∫ ∞

0
dE

D(E)
E− εs

, b =
1

1∓ eβεS
. (5.35)

Here, δ(t− t′) is the conventional delta function, which connects to the contour delta

function on P (see appendix H) as δ(t− t′) = δP(t+ − t′+) = −δP(t− − t′−).

By using the influence functional (5.32), and restoring the fields that have been rescaled,

the generating functional (5.22) simplifies through the replacement of the kernel ∆P

with ∆̃P.

In the next subsection the present methodology is developed for all quadratic and

diagonalizable Hamiltonians, and its application is presented on the characteristic ex-

amples of the bosonic and fermionic harmonic oscillators, as a proof-of-concept.

5.2 Computing the generating functional

The zero-particle initial state generating functional

Proceeding with the case of the zero-particle initial state, the Hamiltonian operators

under consideration will be of the following form

ĤS =
N

∑
j,k=1

â†
j Kjk âk + Ĥnl + C, (5.36)

where the term Ĥnl is defined to include all higher order terms, which are bound to

lead to non-linearities in the equations of motion. It is easy to see that the classical

Hamiltonian corresponding to the operator (5.36) is

HS,cl = ∑
j,k∈S

z̄jKjkzk ±
1
2 ∑

j∈S
Kjj + Hnl(~̄z,~z) + C, (5.37)

where the quadratic term was identified according to the rules defined in sections 3

and 4 [18–20,26,27,73], and a classical function Hnl must in general also be consistently
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identified for the higher order terms. Considering C = ∓1
2 ∑j∈S Kjj for simplicity, it

is easy to see that the zero-particle initial state generating functional, for the system’s

reduced correlation functions, simplifies to the following form

Z(0)
S [~J,~̄J] = C̃−1

E

∫
D2~zP(tP)eiS(~̄zP,~zP), (5.38)

where the action weighing path integration is

S(~̄zP,~zP) =
∫

P
dtP
[
~̄zPj(tP)(iδjk∂tP − Kjk)zPk(tP)− Hnl(~̄z,~z)

]
+ (5.39)

+ i
∫

P
dtP

∫
P

dt′P
N

∑
j,k=1

z̄Pj(tP)∆P,jk(tP − t′P)zPk(t′P)−
∫

P
dtP

N

∑
j=1

(
J̄jzPj + z̄Pj Jj

)
.

At the Markovian limit, the only change in the above result is the substitution of the ∆P

kernel by the ∆̃P one of eq. (5.33). It is easy to see that the real contribution of the i∆P

term produces a shift to the energy scales of the system, which appears in both equal

site and interaction quadratic terms, in some cases even leading to the appearance of

interactions between degrees of freedom that initially were not communicating. At

the Markovian limit this shift was computed explicitly in the previous section, and it

was found to be the contribution of the −δE term of eq. (5.35) to all entries of the K

matrix. Proceeding with the Markovian case, and in order to consistently take into

account the energy shift, the renormalized matrix K can be defined, with elements

K(R)
ij = Kij − δE, as also the ∆̃′P kernel representing the initial ∆̃P kernel without the

δE terms. Thus, the action now can be seen to be of the form

S(~̄zP,~zP) =
∫

P
dtP

[
~̄zPj(tP)(iδjk∂tP − K(R)

jk )zPk(tP)− Hnl(~̄z,~z)
]
+ (5.40)

+ i
∫

P
dtP

∫
P

dt′P
N

∑
j,k=1

z̄Pj(tP)∆̃′P(tP − t′P)zPk(t′P)−
∫

P
dtP

N

∑
j=1

(
J̄jzPj + z̄Pj Jj

)
.

In the action above, the ∆̃′P kernel includes only the diffusion effect of the environ-

ment, and all dynamic effects have been included in the renormalized matrix K(R).

It is a known fact that in the case of a non-zero Hnl(~̄z,~z) term the equations of mo-
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tion corresponding to this specific action adopt the following non-linear form

(
i∂tP δjk − Kjk

)
zcl

k (tP)− ∂z̄j Hnl + i ∑
k∈S

∫
P

dt′P∆jk(tP − t′P)z
cl
k (t
′
P) = Jj(tP) (5.41)

(
i∂tP δjk + Kjk

)
z̄cl

j (tP)± ∂zj Hnl − i ∑
k∈S

∫
P

dt′Pz̄cl
k (t
′
P)∆kj(t′P − tP) = − J̄j(tP), (5.42)

which in general can be solved only perturbatively with respect to J. This allows for

the computation of the classical solutions as series of~J and ~̄J, which afterwards can be

used at the semiclassical level to produce semiclassical correlation functions.

For the computation of the zero-particle initial state reduced correlation functions it

is also possible to proceed with the use of the Effective Action Γ(0)
S [~z,~̄z] [3, 99], which

is defined as the Legendre transformation of the generating functional of connected

correlation functions W(0)
S [~J,~̄J] = −ilnZ(0)

S [~J,~̄J]:

Γ(0)
S [~z,~̄z] = ~̄J ·~z +~̄z ·~J −W(0)

S [~J,~̄J]. (5.43)

In the above definition of the Effective action the fields ~z and ~̄z are the background

fields, which at the semiclassical limit are equal to the classical configurations of the

physical fields. The Effective action is usually used in order to compute 1-Particle

Irreducible Feynman diagrams, but it also simplifies tremendously the calculations of

connected two-point functions, since the property

δ2Γ(0)
S [~z,~̄z]

δzj(tP)δz̄k(t′P)
=

δJk(t′P)
δzj(tP)

, (5.44)

combined with

± iG(c;T)
jk (tP, t′P) ≡

δ2W(0)
S [~J,~̄J]

δJj(tP)δ J̄k(t′P)
=

δzk(t′P)
δJj(tP)

, (5.45)

leads to
δ2Γ(0)

S [~z,~̄z]
δz̄j(tP)δzk(t′P)

= ∓iG(c;T)−1
jk (tp, t′P), (5.46)

where G(c;T)
jk (tP, t′P) = 〈T̂

(
â†

j (tP)âk(t′P)
)
〉
(c)

ρ
is the 2-point connected correlator for the

system. Similar methods can be also used for the computation of higher order con-

nected correlation functions.
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At the aforementioned semiclassical limit the Effective action reduces to the form

Γ(0)
S [~z,~̄z] = S(~z,~̄z)

∣∣
J=0 ± itrlog

[
δ2S(~z,~̄z)

δz̄j(t)δzk(t′)

]
, (5.47)

where h̄ has been set to h̄ = 1. In the quadratic case though, which will be the case

under study in the following, the second term reduces to a constant which is absorbed

by the measure of path integration.

In the following, the case of a quadratic and diagonalizable Hamiltonian will be pre-

sented, since it serves as a prime example for the structure of the approach. For this

case it is possible to redefine the fields using a unitary transformation Û, which diag-

onalizes the matrix K(R)

K(R) = ÛDÛ†, Djk = ε
(R)
j δjk. (5.48)

Here, ε
(R)
j are the renormalized eigenvalues, which include the contribution coming

from the energy shift. Through a redefinition of the fields as ηj = ∑k∈S Û†
jkzk and

η̄j = ∑k∈S z̄kÛkj, the reduced Effective action can be then brought to the very simple

form

Γ(0)
S
[
~̄ηP,~ηP

]
=
∫

P
dtP ∑

j∈S
η̄Pj(tP)(i∂tP − ε

(R)
j )ηPj(tP)+ (5.49)

+ i
∫

P
dtP

∫
P

dt′P
N

∑
j,k=1

η̄Pj(tP)∆̃′P(tP − t′P)ηPk(t′P),

thus leading to the identification of the following Green’s equation for the reduced

2-point connected correlation function of the ~η and ~̄η fields

∑
k∈S

∫
P

dt̃P

[(
i∂tP − ε

(R)
j

)
δjkδP(tP − t̃P) + i∆̃′P(tP, t̃P)

]
Lkl(t̃P, t′P) = δjlδP(tP − t′P),

(5.50)

where Lkl(t̃P, t′P) = ∓iG(c;T)
kl (t̃P, t′P). These equations call for some explanations. As

already discussed these equations can be easily solved. The functions ∆̃′P, which are

present exclusively due to the interaction with the environment, are responsible for

the decoherence and dissipation effects induced on the system’s evolution. From this

point of view, the corresponding terms share a lot of similarities with the dissipator
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function in the Lindblad equation. It must be noted however, that eq. (5.50) is not

equivalent to the Lindblad equation in many aspects. First of all, eq. (5.50) holds even

if memory effects are present for a non-Markovian environment, alas with the ∆′P ker-

nel now being the real part of (5.31); the imaginary part is considered again absorbed

inside the renormalized energies. Secondly, its corresponding Green’s equation yields

the full time-dependent correlator and not its equal-time version only, as would be the

case if we had relied on the Lindblad equation alone.

It must be also noted that even though the renormalized energy parametrization above

appears to be the most physical one, it is still a valid choice to work with and diagonal-

ize the initial non-renormalized Hamiltonian. This just means keeping the initial i∆̃P

kernel, containing both real and imaginary contributions, and not including the −δE

factor to the Hamiltonian prior to its diagonalization. This may sometimes simplify

calculations, as will be the case presented later in the example. The method which will

now be followed can hold in an analogous form even in the case of non-Markovian

dynamics [100].

It is easy to see how equation (5.50) can be solved, using the corresponding Fourier

transformations for all elements of the Green’s operator

Lij(tP, t′P) =
∫ ∞

−∞

dk
2π

e−ik(tP−t′P)LF
ij;PP′(k), (5.51)

where the indices P, P′ take the values +/− depending on which of the lines L+ and

L− the element Lij is supported on, in each case. The appropriate solution for this

Green’s equation has to satisfy the constraint L(tin+, t′P) = 0 at the initial instance

tin+, where the boundary conditions for the holomorphic propagating fields would be

considered in the classical equations of motion. This constraint must be set even if no

boundary condition exists for the field η, as is the case in this configuration, in order

to consistently define the Green’s function in the Keldysh contour P. Nevertheless,

the propagator identified via the Fourier transformation may differ from the desirable

one up to a solution of the homogeneous equation and must be modified accordingly.

Finally, even though the reduced 2-point connected correlation function can be easily

computed via the above arguments for a zero-particle initial state, it is also important

to present the generating functional Z(0)
S [~J,~̄J] in its final form, at least for the quadratic
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case. This is because the Z(0)
S [~J,~̄J] functional can then be used for the construction of

the non-zero-particle initial state generating functionals as stated in subsection 5.1. To

do this, it suffices to compute the classical configurations for the ~η and ~̄η fields, which

are found to be the following

ηcl
j =

∫
P

dt′PLjk(tP, t′P)λk(t′P), η̄cl
j =

∫
P

dt′Pλ̄k(t′P)Lkj(t′P, tP), (5.52)

with λj = ∑k∈S Ûjk Jk and λ̄j = ∑k∈S J̄kÛ†
kj being the redefined currents after the di-

agonalization. Thus, by perturbing the action (5.23) - with Hnl(~z,~̄z) = 0 - around its

classical configuration, one can identify the resulting zero-particle initial state reduced

generating functional for the system’s correlation functions to be

Z(0)
S [~J,~̄J] ∼ exp

[
−i ∑

j,k∈S

∫
P

dtP

∫
P

dt′Pλ̄j(tP)Ljk(tP, t′P)λk(t′P)

]
. (5.53)

The similarity symbol used above identifies the existence of a series of irrelevant nor-

malization terms. The use of this generating functional allows now for the study of

zero and non-zero particle initial states, in the latter case through the use of appropri-

ate boundary functional derivatives on (5.53), as discussed in the previous subsection.

In order not to burden the text, the application of these functional derivatives will be

showcased in the context of the following example.

The harmonic oscillator case

In this subsection the aforementioned method will be applied for the cases of the

bosonic and fermionic harmonic oscillators, coupled to a Markovian environment,

since this setup can serve as the ideal example for testing the presented methodology.

It will be made apparent that by using the above theoretical tools, one can consistently

compute all correlation functions for the system, and at the equal time limit recover

exactly the results that have been found with the use of the Lindblad equation. The

Hamiltonian operator corresponding to the dynamics of the harmonic oscillator is

given as

Ĥ = ε

(
â† â± 1

2

)
, (5.54)

where the energy scale ε is the unique scale of the system, and thus it is also the energy

εS with respect to which the Markovian approximation is performed. The classical
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Hamiltonian can be easily identified then to be

HS = εz̄z, (5.55)

and thus the Green’s equation (5.50) reduces to the following form∫
P

dt̃P

[
(i∂tP − ε(R))δP(tP − t̃P) + i∆̃′P(tP, t̃P)

]
L(t̃P, t′P) = δP(tP − t′P), (5.56)

where L = ∓iG(c;T) and ε(R) = ε− δE(ε). The solution to this Green’s equation along

the Keldysh contour P is found in appendix I to be the following

L(tP, t′P) = L̃(tP, t′P) + Lhom(tP, t′P), (5.57)

where

L̃(t+, t′+) = −iΘ(t− t′)e−iε(R)(t−t′)−Γ(t−t′)/2 + ibe−iε(R)(t−t′)−Γ|t−t′|/2 (5.58)

L̃(t−, t′+) = −i(1− b)e−iε(R)(t−t′)−Γ|t−t′|/2 (5.59)

L̃(t−, t′−) = −iΘ(t′ − t)e−iε(R)(t−t′)−Γ(t′−t)/2 + ibe−iε(R)(t−t′)−Γ|t−t′|/2 (5.60)

L̃(t+, t′−) = ibe−iε(R)(t−t′)−Γ|t−t′|/2, (5.61)

and

Lhom(tP, t′P) = −ibe
+Γ
(

tin+−
tP
2 −

t′P
2

)
−iε(R)(tP−t′P). (5.62)

In this result, the Lhom(tP, t′P) term is the solution of the homogeneous analogue of

the Green’s equation (5.56), which is found by the constraint for the Green’s function

L(tP, t′P) to vanish as its first argument goes to tin+. Note that, by ignoring the presence

of the environment (b = 0, Γ = 0) the zero temperature limit of the correlators appears.

It is easy to compute then the correlation functions of the system where, as an example,

the time ordered case is presented

〈T̂
(

â†(t2)â(t1)
)
〉
(c;0)

ρ
= ∓

δ2lnZ(0)
S

δJ(t2+)δ J̄(t1+)

∣∣∣∣
J=0

= ±iL++(t1, t2), (5.63)

which, as noted in subsection 5.1, admits an extra additive ∓1/2 factor when the time

instances are equal. It is very interesting to study this equal time limit, which then
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gives

〈â†(t)â(t)〉(c;0)
ρ = ∓

δ2lnZ(0)
S

δJ(t+)δ J̄(t+)

∣∣∣∣
J=0
∓ 1

2
=

1
eβε ∓ 1

[
1− e−Γ(t−tin)

]
. (5.64)

This result shows that the mean occupation number is initially (t = tin) zero, as the

system begins from its vacuum state. When the system becomes coupled to a finite

temperature environment, particles from the environment can be absorbed by the sys-

tem and emitted back. This transaction leads, at t → ∞, to a mean occupation num-

ber which is equal to
(
eβε ∓ 1

)−1, meaning that the system becomes thermalized, ap-

proaching the temperature of the environment. If this temperature is zero, 〈â† â〉 = 0

as the system remains in its ground state.

It is also straightforward to consider the case of the initial state being ρ̂S(tin) = |1〉 〈1|,
in which case the corresponding generating functional can be easily related to the

zero-particle initial state one as

Z(1)
S [~J,~̄J] ∼ ∓ ∂

∂J(tin+)

∂

∂ J̄(tin−)
Z(0)

S [~J,~̄J] ∼ ∂

∂J(tin+)

∂

∂ J̄(tin−)
e−i

∫
P dtP

∫
P dt′P J̄(tP)L(tP,t′P)J(t′P) =

=

[
iL(tin−, tin+) +

∫
P

dtP

∫
P

dt′PL(tin−, tP)L(t′P, tin+)J(tP) J̄(t′P)
]

Z(0)
S [~J,~̄J] = (5.65)

=

[
1±

∫
P

dtP

∫
P

dt′PL(tin−, tP)L(t′P, tin+) J̄(t′P)J(tP)

]
Z(0)

S [~J,~̄J].

Thus, all the 2-point connected correlation functions can be computed from the log-

arithm of this generating functional. As an example we present here the equal time

result

〈â†(t)â(t)〉(c;1)
ρ = ∓

δ2lnZ(1)
S [~J,~̄J]

δJ(t+)δ J̄(t+)

∣∣∣∣
J=0
∓ 1

2
=

= ∓
δ2lnZ(0)

S [~J,~̄J]
δJ(t+)δ J̄(t+)

∓ 1
2
− L(tin−, t+)L(t+, tin+) = (5.66)

= e−Γ(t−tin) +
1

eβε ∓ 1

[
1− e−Γ(t−tin)

]
.

The same result can be easily found using the Lindlad equation [88], thus showcasing

the validity of the presented procedure. Nevertheless, the most important advantage
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of the above method is that it further allows for the computation of unequal-time cor-

relation functions.

It is simple to also tackle the generalization of the above system to the case of N

initially de-coupled harmonic oscillators, with equal energy ε. In this case, as was

commented in the previous subsection, it is simpler to work with the initial Hamil-

tonian and use the complex i∆̃ kernel instead of the purely imaginary one i∆̃′. This

leads to the equation for the propagator (5.50) reducing to the form

∑
k∈S

∫
P

dt̃P
[
(i∂tP − ε) δjkδP(tP − t̃P) + i∆̃P(tP, t̃P)

]
Lkl(t̃P, t′P) = δjlδP(tP − t′P). (5.67)

The ∆̃ kernel here is the initial one found in (5.34). The simplification of using this

parametrization is that by summing the N differential equations one gets∫
P

dt̃P
[
(i∂tP − ε) δP(tP − t̃P) + iN∆̃P(tP, t̃P)

]
L(N)(tP, t′P) = δP(tP − t′P), (5.68)

where L(N)(tP, t′P) = ∑j∈S Ljk(t̃P, t′P). In the previous Green’s function no site index is

used, since it is a site independent quantity. At this point it can be seen that by adding

the real part of iN∆̃P to the energy of the system, the corresponding Green’s equation

becomes equivalent to (5.56), with the substitutions Γ→ NΓ and δE→ NδE. Thus, the

value of L(N)(tP, t′P) follows accordingly. Substituting the value of ∑j∈S Ljk(t̃P, t′P) in

eq. (5.68) with the solution L(N)(tP, t′P) leads to the following result for the propagator

of the fields zj over the P contour

Lij(tP, t′P) = G(0)(tP, t′P)δij − iF(tP, t′P), (5.69)

where

G(0)(tP, t′P) = −iΘP(tP − t′P)e
−iε(tP−t′P) (5.70)

is the free propagator for a field of the system and

F(tP, t′P) =
∫

P
dt1P

∫
P

dt2PG(0)(tP, t1P)∆̃P(t1P − t2P)L(N)(t2P, t′P) (5.71)

is the complete contribution of the environment. Using the result of eq. (5.69) it is

possible then to compute many quantities corresponding to the system of N initially

independent harmonic oscillators in the vacuum state. As an example, the resulting
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expectation value of the number operator of each subsystem is presented

〈â†
j (t)âj(t)〉

(c;0)

ρ
=

1
N

1
eβε ∓ 1

[
1− e−NΓ(t−tin)

]
. (5.72)

This showcases the very interesting result that even though the harmonic oscillators

start as independent, they end up thermalizing as a unique harmonic oscillator due to

their interaction with the environment. It must be noted that correlation functions for

non-zero-particle initial states can again be identified using the appropriate generating

functionals constructed via boundary functional derivatives of the zero-particle initial

state one.
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6 Epilogue

In the present thesis, the main goal was the construction of a consistent coherent-state

path integral formalism, which could provide, in a direct way, the correct continuum

functional integrals for finite quantum systems. Even though this undertaking was

entirely successful in the context of fermionic coherent-state path integrals, it led only

to a partial solution in the bosonic and general spin cases. Nevertheless, in the latter

case, the presented construction was enough to provide a definite answer regarding

the need for the metaplectic quantization in Kähler manifolds, a topic in mathematical

physics which, for decades now, hasn’t received a straightforward answer.

The consistency of the aforementioned formalism allowed not only for the application

of the coherent-state path integral formalism in driven and open quantum systems,

but proved to significantly simplify their study. More specifically, the application on

the driven XY chain in subsection 4.3 led to highly non-trivial results with tremen-

dously little effort, such as the manifestation of the Kibble-Zurek mechanism. Fur-

thermore, the application of the formalism in open quantum systems proved not only

to be possible, but also to provide new tools such as the differential relations between

the generating functionals of systems with different initial states and the easily solv-

able Green’s equations pertaining to the connected two point correlation functions,

which proved to be the generalization of the Linblad equation.

At this point, two future directions can be understood to be of major importance. The

first one is the understanding of the geometric de-quantization theory for the cases

of operators corresponding to non-polarization-preserving Hamiltonian vector fields.

For this, the formalism should touch on the topic of BKS kernels, which though is a

highly non-trivial topic, due to the inability of providing a closed solution for all oper-

ators. In the case that progress is made in that sense, many major results are expected

to be presented in the context of quantization theory. The second direction is to pro-

ceed with the application of the existing formalism on more complicate systems, such

as Heisenberg spin chains coupled to a thermal environment, which would provide

important insight in the physics of such systems.
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A Connection with overcompleteness

The dependence of the continuum limit on the discretization procedure can be easily

verified from the simple case of the quantum harmonic oscillator. As indicated in the

main text, the standard discretization procedure in the space of coherent states leads

to the classical Hamiltonian Hcl = |z|2 + 1
2 , which in turn gives the wrong value for

the partition function Z = ∑∞
n=0 e−iT(n+1). Using a different manipulation where, for

each slice, a symmetric form

e−iεĤ =
1

2πi

∫
|zj〉 e−iεH j

cl(z̄j,zj)d2zj 〈zj| (A.1)

is considered, the partition function can be expressed as

Z =
∫

∏N
j=0

1
2πi d

2zj 〈zj+1|zj〉 e−iεH j
cl , where |zN+1〉 = |z0〉. For each slice it is now

possible to employ the Fock resolution of the exponential operator, from which the

H j
cl of this construction can be found. Equation

〈zk|e−iεĤ|zk〉 =
1

2πi

∫
〈zk|zj〉 e−iεH j

cl d2zj 〈zj|zk〉 (A.2)

can be solved, up to the first order in ε, through the choice of the Ansatz H j
cl = A|zj|2 +

Bzj + Cz̄j + D, giving the factors to be

A = 1, B = 0, C = 0, D = −1
2

. (A.3)

Thus, using the usual convergence rule zj+1 ' zj + ε∇jzj, the continuum limit of

the classical Hamiltonian can be found to be H j
cl = |zj|2 − 1

2 . The calculation of the

partition function in the continuum, with the use of this weight, yields the wrong

result Z = ∑∞
n=0 e−iTn. It is interesting that both methods not only lead to wrong

results, but also to results that differ from each other. Inconsistencies such as these

have been observed only in cases where overcomplete sets of states are used during

the construction. On the contrary, in the usual Feynman procedure, the continuum

limit appears to be uniquely defined [3].
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B Obstruction results in quantization theory

Along the lines of quantization theory a great number of no-go theorems have been

proved, defining very strict bounds for the subsets of observables which can be consis-

tently mapped to operators. In this context, consistency is defined as the compatibility

of a mapping under the maximum possible number of Dirac’s quantization constraints

presented in subsection 2.2 of the main text. As mentioned there, it has been proved

impossible keeping all of these properties at the same time, with the last two usu-

ally being weakened, such that the map is restricted only to a subspace of observable

functions. Groenewold-Van Hove theorem for the 2D Euclidean plane [22, 34] (see

subsection 2.2) and its generalization for the 2-Sphere [35] give the two simplest cases

of this obstruction.

The proof for this theorem is very simple for the case of the 2D Euclidean phase space,

and can be summed up in only a few lines. Let Q̂ be a homomorphism between the

algebras of classical observables and operators - as indicated in (2.21) - acting on the

space of smooth functions in the usual way: Q̂(1) = Î, Q̂(x) = X̂ and Q̂(p) = P̂.

Through the use of [2.21] one can identify the action of this map on second order

operators

Q̂(x2) = X̂2, Q̂(p2) = P̂2, Q̂(xp) =
1
2
(X̂P̂ + P̂X̂), (B.1)

which is found to be unique. Up to this point the subsets of observables and their

operator images are closed and thus Q̂ is indeed a homomorphism. On the contrary,

the extension of this subset through the inclusion of higher order observables fails to

remain consistent. To show this, firstly one has to extend the previous calculation and

compute

Q̂(x3) = X̂3, Q̂(p3) = P̂3,

Q̂(x2p) =
1
2
(X̂2P̂ + P̂X̂2), Q̂(xp2) =

1
2
(X̂P̂2 + P̂2X̂).

(B.2)

These results do not behave well under the closedness condition, since the calculation

of {x3, p3} and {x2p, xp2} through [2.21] gives rise to a false equality

1
3
[X̂3, P̂3] =

1
4
[X̂2P̂ + P̂X̂2, X̂P̂2, P̂X̂2]. (B.3)

121



This result renders the higher order generalization of the map Q̂ invalid. Thus, the

maximal quantizable subalgebra of the space of observables, containing the subset

{1, x, p}, is {1, x, p, x2, p2, xp} with Q̂ defined from the previous mappings.

Through the canonical transformation

z =
1√
2
(x + ip), z̄ =

1√
2
(x− ip), (B.4)

this can be rephrased, such that the maximal quantizable subalgebra of observables

containing {1, z, z̄} is {1, z, z̄, z2, z̄2, z̄z}, mapping these observables 1-1 to the subset of

operators {
1, â, â†, â2, â†2, â†a +

1
2

}
. (B.5)

The generalization of Groenewold’s theorem for S2 is also presented, albeit without

the proof, since it is highly more involved [35]:

Theorem 2 (Groenewold’s theorem for S2) Let S1, S2, S3 be observable functions on the
2-Sphere satisfying {Si, Sj} = ∑3

k=1 εijkSk. Then, the maximal Poisson subalgebra on the
2-Sphere, which contains {1, S1, S2, S3}, and can be consistently quantized, is just that gen-
erated by {1, S1, S2, S3} itself.

C Functional integration of Ĥ = −ω~̂S1 · ~̂S2

In this appendix, a simple system described by the Hamiltonian Ĥ = −ω~̂S1 · ~̂S2 is

considered, using the method presented in section 4. The partition function of this

system is known to be

Z = tr
[
e−βĤ

]
= e−3βω/4 + 3eβω/4. (C.1)

Using the Jordan-Wigner transformation, the Hamiltonian at hand assumes the form

Ĥ = −ω

4

[ (
ψ̂†

1 − ψ̂1

) (
ψ̂†

2 + ψ̂2

)
+
(

ψ̂†
2 − ψ̂2

) (
ψ̂†

1 + ψ̂1

)
+

+
(

1− 2ψ̂†
1 ψ̂1

) (
1− 2ψ̂†

2 ψ̂2

) ]
,

(C.2)
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which in terms of Majorana operators reads as

Ĥ = i
ω

4
(γ̂2γ̂3 + γ̂4γ̂1 − iγ̂1γ̂2γ̂3γ̂4) . (C.3)

According to the Faddeev-Jackiw quantization scheme, the classical function entering

the Majorana path integral representation is the classical counterpart of (C.3)

HM = i
ω

4
(γ2γ3 + γ4γ1 − iγ1γ2γ3γ4) , (C.4)

which in turn translates to the complex Grassmann variables as

H = −ω

2

(
ζ̄1ζ2 + ζ̄2ζ1 + 2|ζ1|2|ζ2|2

)
. (C.5)

Thus, the integral to be evaluated is

Z =

 2

∏
j=1

∫
(−)

Dζ̄ jDζ je
−
∫ β

2
− β

2

dτζ̄ j ζ̇ j

 exp
[

ω

2

∫ β/2

−β/2
dτ
(
ζ̄1ζ2 + ζ̄2ζ1 + 2|ζ1|2|ζ2|2

)]
. (C.6)

It is convenient to perform a change of variables, induced through the unitary trans-

formation (
ζ1
ζ2

)
=

1√
2

(
1 1
1 −1

)(
η1
η2

)
. (C.7)

After this change, the integral (C.6) is recasted to the form

Z =

 2

∏
j=1

∫
(−)

Dη̄jDηje
−
∫ β

2
− β

2

dτη̄j η̇j

 exp
[

ω

2

∫ β/2

−β/2
dτ
(
|η1|2 − |η2|2 + 2|η1|2|η2|2

)]
. (C.8)

It is easy now to perform the integration over the first Grassmann field

Z1 =
∫
(−)

Dη̄1Dη1exp
[
−
∫ β/2

−β/2
dτη̄1

(
∂τ −

ω

2
−ω|η2|2

)
η1

]
=

= 2cosh
(

βω

4
+

ω

2

∫ β/2

−β/2
dτ|η2|2

)
. (C.9)

To arrive at the last result, the symmetric prescription for the underlying lattice struc-

ture was considered. By inserting eq. (C.9) into eq. (C.8), the correct quantum result
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is recovered

Z = eβω/4
∫
(−)

Dη̄2Dη2e
−
∫ β

2
− β

2

dτη̄2η̇2
+ e−βω/4

∫
(−)

Dη̄2Dη2e
−
∫ β

2
− β

2

dτη̄2(∂τ+ω)η2
=

= e−3βω/4 + 3eβω/4. (C.10)

D The path integral representation of the fermion num-
ber sector decomposition

In this appendix details regarding the sector separation in the context of path integrals

are presented. In this context, the partition function pertaining to the even sector of

the 1D XY spin chain, appearing in eq. (4.29), is computed.

In the main text, path integration was only considered over the even fermion num-

ber sector. This was allowed by the sector separation of the Hilbert space, which can

also be easily observed in the context of path integration. When considering the par-

tition function, its functional integral form can be separated in two independent path

integrals, each one of which is defined with respect to fields abiding under the corre-

sponding fermionic boundary conditions

Z = tr
[
e−βĤ

]
=

1
2

tr[(1̂ + eiπN̂)e−βĤ(e)
] +

1
2

tr[(1̂− eiπN̂)e−βĤ(o)
] ≡ Z(e) + Z(o). (D.1)

Here, N̂ = ∑N
j=1 ψ̂†

j ψ̂j is the number operator expressed in the space of fermionic de-

grees of freedom, and the parity operator P̂ = ∏N
j=1 σz

j = eiπN̂ is a symmetry of the

model. This symmetry leads to the separation of the Hilbert space in two independent

sectors, corresponding to the eigenvalues ±1 of P̂ respectively. Eq. (D.1) can then eas-

ily be transcribed to the path integral language, with the constraint that the 1̂± eiπN̂

factors are absorbed in the functional measures, in order to be taken into account dur-

ing all subsequent functional integrations. The same argument can further be used

when considering expectation values of operators which preserve the sectors, where

as an example the complete correlation function of T̂
(
ψ̂†

b(τ2)ψ̂a(τ1)
)

can be computed
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as

〈T̂
(

ψ̂†
b(τ2)ψ̂a(τ1)

)
〉

c
=

Z(e)

Z
δ2lnZ(e)[J]

δJb(τ2)δ J̄a(τ1)

∣∣∣∣
J=0

+
Z(o)

Z
δ2lnZ(o)[J]

δJb(τ2)δ J̄a(τ1)

∣∣∣∣
J=0

. (D.2)

In the main text the study focused only on the first term, where

〈T̂
(

ψ̂†
b(τ2)ψ̂a(τ1)

)
〉
(e)

c
=

δ2lnZ(e)[J]
δJb(τ2)δ J̄a(τ1)

∣∣∣∣
J=0

, (D.3)

which can also provide the result for the corresponding 〈T̂
(
ψ̂†

b(τ2)ψ̂a(τ1)
)
〉(o)c factor

through the change of m + 1/2 → m in the Fourier transformation (4.17). In the ther-

modynamic limit N → ∞, both these factors are expected to reduce to the full correla-

tion function. Nevertheless, the decomposition (D.2) of the generating functionals is

valid only in the case that the operator under study preserves the sector. In the oppo-

site case a different approach should be considered.

Regarding the partition function (D.1), the path integral computation becomes a bit

more involved when considering each sector separately, exactly due to the 1̂± eiπN̂

factors which must be taken into account during all calculations. Considering the

case of Z(e), the computation of the corresponding functional integral can proceed us-

ing two methods. The first one is to continue with the aforementioned construction

and compute the functional determinants of the operators ∂τ + εm, restricted to the

Hilbert space spanned by the even sector. This procedure though is far more involved

than the following one, which amounts to taking into account the projection factor by

including it in the Hamiltonian of the system and not by absorbing it into the measure.

In the main text the Z(e) term was studied, in which the Hamiltonian is restricted

only on the even fermion number sector. This allowed for the use of the Fourier trans-

formations (4.17) and the subsequent Bogoliubov transformation, which diagonalized

the Hamiltonian function as given in eq. (4.22). For the functional derivation of Z(e)

one then has to compute two functional integrals corresponding to tr
[
e−βĤ(e)

]
and to
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tr
[
eiπN̂e−βĤ(e)

]
. The first trace can be immediately found to be

tr
[
e−βĤ(e)

]
=

N/2−1

∏
m=0

∫
(−)

Dη̄mDηme

∫ β
2
− β

2

dτη̄mDmηm
, (D.4)

in analogy to the main text. This integral differs from the normalization of (4.29),

which needs to be computed, since in eq. (D.4) the computation of the functional

determinant has no sector constraint. The even sector constraint will be taken into

account through the calculation of the second trace. The computation proceeds then

as usual [3] giving

tr
[
e−βĤ(e)

]
=

N−1

∏
m=0

2cosh(βεm/2). (D.5)

For the second trace, it is far more simple to perform the Fourier and the subsequent

Bogoliubov transformations on the operators ψ̂j of the quantum Hamiltonian, instead

of performing them in the fields of the path integral. This leads to the very simple

rewriting of the parity operator P̂ = eiπN̂ in the space of the ξ̂m Bogoliubov modes

P̂ = eiπ ∑N
j=1 ψ̂†

j ψ̂j = eiπ ∑N−1
m=0 ĉ†

m ĉm =
N/2−1

∏
m=0

(
1− 2ĉ†

m ĉm

) (
1− 2ĉ†

N−m−1ĉN−m−1

)
=

=
N/2−1

∏
m=0

(
1− 2ξ̂†

mξ̂m

) (
1− 2ξ̂†

N−m−1ξ̂N−m−1

)
= eiπ ∑N−1

m=0 ξ̂†
m ξ̂m ≡ eiπN̂q .

(D.6)

At the same time, the Hamiltonian operator of the even sector assumes the form

Ĥ(e) =
N−1

∑
m=0

εm

(
ξ̂†

mξ̂m −
1
2

)
, (D.7)

with εm given in eq. (4.23). The transition to path integration then proceeds smoothly

by combining the operators N̂q and Ĥ(e) in a single exponential,

eiπN̂q e−βĤ(e)
= exp

{
iπ

N−1

∑
m=0

ξ̂†
mξ̂m − β

N−1

∑
µ=0

εm

(
ξ̂†

mξ̂m −
1
2

)}
=

= eiπ N
2 exp

{
−β

N−1

∑
m=0

(
εm − i

π

β

)(
ξ̂†

mξ̂m −
1
2

)}
,

(D.8)
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which is possible since [N̂q, Ĥ(e)] = 0, and define a new Hamiltonian operator

ˆ̃H(e) =
N−1

∑
µ=0

(
εm − i

π

β

)(
ξ̂†

mξ̂m −
1
2

)
. (D.9)

It is easy to see that by mapping the trace of this operator to its path integral represen-

tation one ends up with

tr
[
e−β ˆ̃H(e)

]
= eiπ N

2

N/2−1

∏
m=0

∫
(−)

Dη̄mDηme

∫ β
2
− β

2

dτη̄mD′mηm
, (D.10)

where the matrix D′m is now defined as

D′m =

(
∂τ + εm − i π

β 0
0 ∂τ − εm + i π

β

)
. (D.11)

This path integral can be computed with the usual method [3] leading to

tr
[
e−β ˆ̃H(e)

]
= eiπ N

2

N−1

∏
m=0

(
eβεm/2−iπ/2 + e−βεm/2+iπ/2

)
=

N−1

∏
m=0

2sinh (βεm/2) . (D.12)

The complete Z(e) can then be recovered as

Z(e) =
1
2

(
tr
[
e−βĤ(e)

]
+ tr

[
e−β ˆ̃H(e)

])
= (D.13)

=
1
2

(
N−1

∏
m=0

2cosh (βεm/2) +
N−1

∏
m=0

2sinh (βεm/2)

)

and coincides with the known result [30]. The computation of Z(o) can be performed

using the same method, giving

Z(o)(β) =
1
2

(
N−1

∏
m=0

2cosh (βεm/2)−
N−1

∏
m=0

2sinh (βεm/2)

)
, (D.14)

with m + 1/2 → m. It is easy to see that in both of these results the second factor

becomes irrelevant in the thermodynamic limit N → ∞, where eqs. (D.13) and (D.14)

become equal

lim
N→∞

Z(e)(β) = lim
N→∞

Z(o)(β) =
1
2

N−1

∏
m=0

2cosh(βεm/2). (D.15)
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Since for finite N the generating functionals in the even and the odd sectors are weighted

by different normalization factors, as seen in eq. (D.2), this normalization has to be

taken into account for the complete correlation function. Nevertheless, these factors

prove to be irrelevant when one is interested in the study of a single sector, as pointed

out in the main text.

E Path integral formulation and the Schwinger-Keldysh
formalism

In this appendix, eqs. (4.62) and (5.8) of sections 4 and 5 of the main text will be de-

rived.

The main idea is to consider a set of degrees of freedom - denoted ~Z - which may

correspond to an isolated system, as in section 4, or may be separated to system and

environment ones, as in section 5. Since the construction of the formalism initially

does not depend on this specific nature of the degrees of freedom, the following for-

mulation will proceed as generally as possible and specific cases will be considered

only when necessary.

The first step towards these proofs is to interpret [18,20] the coherent-state basis matrix

elements of the time evolution operator as in eqs. (2.90), (2.91)

〈~Zb|Û(tb, ta)|~Za〉 =
∫ ~̄Z(tb)=

~̄Zb

~Z(ta)=~Za
D2~Ze−Γba+i

∫ tb
ta dt

[
i
2

(
~̄Z~̇Z−~̇̄Z~Z

)
−Hcl(

~̄Z,~Z)
]
, (E.1)

with

Γba =
1
2

(
|~Zb|2 + |~Za|2

)
− 1

2

(
~̄Zb~Z(tb) +

~̄Z(ta)~Za

)
. (E.2)
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The key identity which shall be used then, is the one that refers to the measure of

integration in coherent-state path integrals:

∫
d2~Zb

~̄Z(tc)=~̄Zc∫
~Z(tb)=~Zb

D2~Z(t)e−Γcb+i
∫ tc

tb
dtL(~̄Z,~Z)

~̄Z(tb)=
~̄Zb∫

~Z(ta)=~Za

D2~Z′(t)e−Γba+i
∫ tb

ta dtL(~̄Z′,~Z′) =

=

~̄Z(tc)=~̄Zc∫
~Z(ta)=~Za

D2~Z(t)e−Γca+i
∫ tc

ta
dtL(~̄z,~Z).

(E.3)

This identity, which can be easily proved using the discrete version of the relevant

integrals, represents the fundamental property of the time evolution operator

Û(tc, tb)Û(tb, ta) = Û(tc, ta), ta < tb < tc, (E.4)

translated in the language of coherent-state path integrals.

This identity can then be applied repeatedly if the first term of eq. (4.61) - and (5.7) in

the more general case - is written in a form parametrized along the Keldysh contour:

F(t2>t1)
ij

(
~Z′, ~Z; t2, t1

)
=

= 〈~Z′|Û(tin−, T−)Û(T+, t2+)â†
i (tin)Û(t2+, t1+)âj(tin)Û(t1+, tin+)|~Z〉Θ(t2 − t1) =

=
∫

d2~Z1

∫
d2~Z2

∫
d2~Z3 〈~Z′|(tin−, T−)|~Z3〉 〈~Z3|(T+, t2+)|~Z2〉 × (E.5)

× 〈~Z2|â†
i (tin)Û(t2+, t1+)âj(tin)|~Z1〉 〈~Z1|Û(t1+, tin+)|~Z〉Θ(t2 − t1),

where an arbitrary time instance T has been introduced, which will act as the limit

between the time and anti-time ordered phases of the time evolution of the system.

By interpreting each one of the factors as a path integral, the following expression can
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then be found:

F(t2>t1)
ij

(
~Z′, ~Z; t2, t1

)
=
∫

d2~Z1

∫
d2~Z2

∫
d2~Z3

~̄m(tin−)=~̄Z′∫
~m(T−)=~Z3

D2~m(t−)e
−Γin−,3+i

∫ tin−
T−

dt−L(~̄m,~m))×

×
~̄n(T+)=~̄Z3∫
~n(t2+)=~Z2

D2~n(t+)e
−Γ32+i

∫ T+
t2+

dt−L(~̄n,~n)

~̄k(t2+)=~̄Z2∫
~k(t1+)=~Z1

D2~k(t+)e
−Γ21+i

∫ t2+
t1+

dt+L(~̄k,~k)k̄i(t2+)k j(t1+)×

×

~̄λ(t1+)=
~̄Z1∫

~λ(tin+)=~Z

D2~λ(t+)e
−Γ1,in++i

∫ t1+
tin+

dt+L(~̄λ,~λ)Θ(t2 − t1). (E.6)

The combining identity (E.3) can be then applied along the Keldysh contour P to arrive

at the result

F(t2>t1)
ij (~Z′, ~Z; t2, t1) = (E.7)

=

~̄Z(tin−)=~̄Z′∫
~Z(tin+)=~Z

D2~Z(tP)e−Γin−,in++i
∫

P dtPL(~̄z,~z,~̄ζ,~ζ)Z̄i(t2+)Zj(t1+)Θ(t2 − t1).

Following the same reasoning, the second term in eqs. (4.61) and (5.7) can also be

parametrized along the contour P to get

F(t2>t1)
ij

(
~Z′, ~Z; t2, t1

)
= (E.8)

= 〈~Z′|Û(tin−, T−)Û(T+, t1+)âj(tin)Û(t1+, t2+)â†
i (tin)Û(t2+, tin+)|~Z〉Θ(t1 − t2),

which can be represented as a path integral of the form

F(t1>t2)
ij (~Z′, ~Z; t2, t1) = (E.9)

=

~̄Z(tin−)=~̄Z′∫
~Z(tin+)=~Z

D2~Z(tP)e−Γin−,in++i
∫

P dtPL(~̄z,~z,~̄ζ,~ζ)Z̄i(t2+)Zj(t1+)Θ(t1 − t2).

The exponential factor appearing in the last expression assumes the standard form:

Γin−,in+ =
1
2

(
|~Z|2 + |~Z′|2

)
− 1

2

(
~̄Z(tin+) · ~Z + ~̄Z′ · ~Z(tin−)

)
. (E.10)
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By combining then eqs. (E.7) and (E.9), eq. (5.8) of the main text is recovered, in which

case the fields Z̄i and Zj correspond only to a specific subsystem.

In the following segment of the present appendix, the degrees of freedom ~Z are con-

sidered corresponding to an isolated thermal quantum system of inverse temperature

β, which is the case of subsection 4.3. This allows for the extension of the P contour by

a straight line, denoted Lβ, running parallel to the imaginary axis from tin− to tin−− iβ.

This differs from the case analyzed in section 5, where the degrees of freedom are sep-

arated to system and environment ones and the procedure may be generalized such

that only the environment is in a thermal state.

In the following, the case of subsection 4.3 is addressed, yet in more generality, since

both cases of bosons and fermions are considered. Furthermore, the symbol ~Z is re-

tained for the fields, despite that in sections 4 and 5 different symbols may be used

to denote each specific case. In the case that the initial state of the system is con-

sidered isolated and thermal with inverse temperature β, the first matrix element of

eq. (4.60), corresponding to the density matrix, can also be written as a path integral.

More specifically, its corresponding path integral form

〈±~Z|ρ̂(tin)|~Z′〉 = (E.11)

=
1

Zin(β)

~̄Z(tin−iβ)=±~̄Z∫
~Z(tin−i0)=~Z′

D2~Z(tim)e
−Γβ0+i

∫ tin−iβ
tin−i0 dtim

[
i
2

(
~̄Z~̇Z−~̇̄Z~Z

)
−Hin,cl(

~̄Z,~Z)
]
,

is such that, the paths are parametrized along the lower imaginary axis, running from

tin − i0 to tin − iβ. Here and in the following, the upper symbol in ± denotes the

bosonic case, while the lower denotes the fermionic one. The reason for the unconven-

tional parametrization of eq. (E.11) is that, combining all the path integral expressions

in eq. (4.60) and using the identity (E.3), one gets a functional integral parametrized

along the Keldysh contour C (see fig. (1))

Gij(ρ; t2, t1) =
1

Zin(β)

∫
(±)

D2~Z(tC)e
i
∫

C dtC

[
i~̄Z~̇Z−HXYcl(

~̄Z,~Z)
]
Z̄i(t2+)Zj(t1+). (E.12)
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The parametrization in this integral has been defined along the Keldysh contour and

can be read from expressions (E.5) and (E.8), beginning from the right end: in the case

of eq. (E.5) (t2 > t1) the contour begins from the point tin + i0 and continues till the

point t1 + i0 ≡ t1+ , where the operator âj(t1) acts. Then, it continues till the point

t2 + i0, where the operator â†
j (t2) acts and afterwards proceeds to a point T + i0 com-

pleting the contour part above the real axis, which in its entirety is denoted as L+.

Afterwards, the contour continues along the line L−, which joins the points T− i0 and

tin − i0, below the real axis. Finally, the contour continues parallel to the imaginary

axis, joining the point tin − i0 with tin − iβ, with the corresponding contour line de-

noted Lβ. The trace operation in eq. (4.56) induces the periodic/anti-periodic bound-

ary conditions, which are symbolically denoted as (±) in the path integral. These

boundary conditions are responsible for the disappearance of the boundary terms that

appear in each of the individual integrals. This is an important simplification, as will

be confirmed both in subsection 4.3 and in section 5, where in the latter the more gen-

eral case of a system coupled to a thermal environment is addressed. The case of eq.

(E.8) (t1 > t2) follows naturally. In eq. (4.63) one can also find the corresponding

generating functional, through which all correlation functions can be produced, with

an example being the two point functions

Gij,µν(ρ; t2, t1) =
1

Zin(β)

∫
(±)

D2~Z(tC)e
i
∫

C dtC

[
i~̄Z~̇Z−HXYcl(

~̄Z,~Z)
]
Z̄i(t2µ)Zj(t1ν), (E.13)

where µ, ν = +,−.

F Calculations along the Keldysh Contour

For calculations along the Keldysh contour, it is important to take into account the

natural ordering defined on it. In this context, it is natural to introduce the contour

step function ΘC(tC− t′C), which becomes 1 only when the time instance tC follows the

time instance t′C along the Keldysh contour C. More specifically, it is easy to see that

along L+: ΘC(t+ − t′+) ≡ Θ++(t− t′) = Θ(t− t′), along L−: ΘC(t− − t′−) ≡ Θ−−(t−
t′) = Θ(t′ − t), while after a Wick rotation tim = tin − iτ one gets ΘC(tim − t′im) ≡
Θ(τ − τ′), along the imaginary axis Lβ. In accordance, the contour delta function
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δC(tC − t′C) can be easily derived through equation∫
C

dt′C f (t′C)δC(t′C − tC) = f (tC). (F.1)

This equation gives that δC(tC − t′C) is zero when the time instances tC and t′C belong

in different points of C, while δC(t+ − t′+) = δ(t− t′), δC(t− − t′−) = −δ(t− t′) and

δC(tim − t′im) = iδ(τ − τ′). As expected, the following distribution property holds:

∂tC ΘC(tC − t′C) = δC(tC − t′C). (F.2)

Using these rules for the algebra, one can study integrals like the ones in eq. (4.65)
exactly like their real time analogues, just by substituting all functions/distributions
appearing along the way with their Keldysh contour equivalents. This procedure,
used specifically for the integrals in (4.65), leads to the result (4.68). A strict method
to derive this algebra is presented in appendix H, where the empirical procedure of
subsection 4.3 is performed more strictly for the calculation of the influence functional
(5.15), along the Keldysh contour.

As a concrete example for the use of the aforementioned algebra, the solution to the
Green’s equation (4.69) without the θ̇m term follows. This Green’s function will prove
very useful in the main text(

i∂tC − εm(tC) 0
0 i∂tC + εm(tC)

)(
G(+)

m (tC, t′C) 0

0 G(−)
m (tC, t′C)

)
= 1̂δC(tC − t′C). (F.3)

According to the conventions used here for the magnetic field, the energy does not

distinguish the L+ and L− lines and thus εm(t+) = εm(t−), while it remains constant

along the imaginary axis εm = εm(hin). The function G(+)
m , which propagates the ζ

modes (ζ being the field symbol used in section 4), obeys the antiperiodic boundary

conditions and assumes the form

G(+)
m (tC, t′C) = −i

[
ΘC(tC − t′C)−

(
1 + eβεm(hin)

)−1
]

e
−i
∫ tC

t′C
dt′′Cεm(t′′C). (F.4)

The corresponding function for the N−m− 1 modes, which again obeys the antiperi-

odic boundary conditions assumes the form

G(−)
m (tC, t′C) = −i

[(
1 + eβεm(hin)

)−1
−ΘC(t′C − tC)

]
e

i
∫ tC

t′C
dt′′Cεm(t′′C). (F.5)
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These functions, at the zero-temperature limit, are the Keldysh analogues of the func-

tions G(±)
m in eq. (4.30) of the main text. Finally, it is easy to see that G(−)

m (tC, t′C) =

−G(+)
m (t′C, tC).

G Calculation of equal time correlation functions

In this appendix one can find the proofs for the basic relations of subsection 4.3.

The normalization factor of eq. (4.68) can be expressed in the form

Z(e)
m [0] = Det

(
Dm − θ̇mσx) = Det (Dm)Det (1− Km) , (G.1)

with Km = Gmθ̇mσx18 and thus

Z(e)[0] = Z(e)
0 (β)

(
N/2−1

∏
m=0

Det (1− Km)

)
, (G.2)

with Z(e)
0 (β) = Z(e)

in (β) = ∏N/2−1
m=0 Det (Dm). In the previous equation the Green’s

function Gm has been introduced, satisfying eq. DmGm = 1̂, the solution of which was

found in appendix F. Repeating the arguments of appendix D, the first factor in eq.

(G.2) is immediately found to be

Z(e)
0 (β) =

1
2

{
N−1

∏
m=0

2cosh (βεm(hin)/2) +
N−1

∏
m=0

2sinh (βεm(hin)/2)

}
. (G.3)

For the calculation of the second term one can rewrite

Det
(
1̂− Km

)
= Det

(
1̂− λKm

) ∣∣
λ=1, (G.4)

in order to take advantage of the fact that the Det
(
1̂− λKm

)
can be expanded as a

convergent power series with respect to λ [85]

Det
(
1̂− λKm

)
=

∞

∑
n=0

1
n!

a(m)
n λn, (G.5)

18In index notation (
Km(tC − t′C)

)a
b =

(
Gm(tC − t′C)

)a
c (σ

x)c
b θ̇m(t′C).

134



with

a(m)
n = (−1)ndet


TrKm n− 1
TrK2

m TrKm n− 2
. . . .
. . . .

TrKn
m TrKn−1

m . . TrKm

 , n ≥ 1 (G.6)

and a0 = 1. In this expression, the trace symbol denotes tracing over time and matrix

indices:

Tr (. . . ) = tr
∫

C
dtC 〈tC|(. . . )|tC〉 =

∫
C

dtC ∑
a
〈tC|(. . . )aa|tC〉 . (G.7)

This series is convergent ∀ λ as long as Km is well behaved, i.e. when ||Km||2 < ∞,

which is true for the Keldysh contour as long as β < ∞ and T < ∞. In any case

though, one can compute the result in the region where the series converges and then

analytically continue it outside of it. Thus, each order can be systematically under-

stood from this expansion as a series in powers of θ̇m. It can be easily confirmed that

TrK2ν−1
m = 0, ν = 1, 2, . . . . Thus, in the coefficients (G.6) only the even powers of Km

contribute. Taking then the limit of λ = 1, the functional determinant can be brought

to the form

Det
(
1̂− Km

)
= exp

{
logDet

(
1̂− Km

)}
=

= exp
{

log
[

1− 1
2

TrK2
m −

1
4

(
TrK4

m −
1
2

(
TrK2

m

)2
)
+ . . .

]}
=

= exp
{
−1

2
TrK2

m −
1
4

TrK4
m − . . .

}
.

(G.8)

As a result, the normalization factor (G.1) can be recasted to the form

Z(e)[0] = Z(e)
0 (β)e−

1
2 ∑N−1

m=0 Em , (G.9)

where

Em =
1
2

TrK2
m +

1
4

TrK4
m + . . . . (G.10)

Regarding the solution to the Green’s equation

D̃mG̃m =
(

Dm − θ̇mσx) G̃m = 1̂, (G.11)

it can be seen that

G̃m =
1̂

1̂− Km
Gm, Km = Gmθ̇mσx, (G.12)
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which can be easily handled using the Hemholtz technique [86]. Through this tech-

nique, G̃m can be interpreted in the following form:

G̃m =
1

Det(1̂− Km)

(
∞

∑
k=0

1
k!

b(m)
k

)
Gm, (G.13)

where the coefficients b(m)
k can be found by substituting TrKn

m → TrKn
m − Kn

m in a(m)
k of

eq. (G.6).

To express this result in the form of a single sum, the abbreviation A(m)
n can be used

for the term involving all terms of the form Kk
mTrKl

m for which k + l = n. The previous

result can then symbolically be written as the expansion

G̃m =
∞

∑
n=0

A(m)
n Gm = Gm + Mm. (G.14)

Considering the case of a magnetic field h = h(ωt), one can easily estimate the con-

tribution of the terms Mm = KmGm +O(θ̇2
m), by performing the rescaling ωtC → tC.

Since the function θ̇m appears always tied to a time integration (in the expansions of

(G.8) and (G.14)), the rescaling leaves intact the combination
∫

C dtC θ̇m(tC) at the limit

β → ∞ and T → ∞. Thus, the frequency ω appears only in the exponential factors of

the Green’s functions as19

exp
(

i
∫ tC

t′C
dt′′Cε(t′′C)

)
→ exp

(
i
∫ tC

t′C
dt′′Cε(t′′C)/ω

)
. (G.15)

In the β→ ∞ limit then, one can use the following identity repeatedly

exp
(

i
∫ tC

t′C
dt′′Cε(t′′C)/ω

)
= −i

ω

εm(tC)
∂tCexp

(
i
∫ tC

t′C
dt′′Cε(t′′C)/ω

)
(G.16)

and perform the necessary partial integrations, in all terms appearing inside Mm. As-

suming that the boundary terms go sufficiently fast to zero as T → ∞, this method

leads to a series expansion in powers of ω, which justifies the conclusion presented in

the main text, that the contribution of Mm in eq. (4.73) is suppressed at the adiabatic

limit. However, this argument fails if
∫ tC

t′C
dt′′Cε(t′′C) ' ω → 0. This can only hap-

19The limits of integration appear unchanged, since the corresponding time variables have also been
rescaled.
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pen when the driven system approaches its critical neighbourhood: in the region of

width δt ∼ ω1/2, where ε ∼ |h− 1| ∼ ω1/2, the exponential factor in (G.15) is almost

constant and the adiabatic expansion is not valid, in accordance to the KZ mechanism.

H Computation of the Influence Functional

In this appendix the integral

IE
[
~̄zs(tP),~zs(tP)

]
=

1
ZE(β)

∫
(±)

D2~ζ(tC)e
i ∑µ∈E

∫
C dtC(iζ̄µ∂tC ζµ−Eµ ζ̄µζµ−ζ̄µrµ−r̄µζµ) (H.1)

is calculated.

Calculations along the C contour can be understood by introducing the parametriza-

tion

tC = tC(λ), λ ∈ [0, 1], tC(0) = tin+, tC(1) = tin − iβ, (H.2)

which allows for the change of variable

∫
C

dtC(...) =
∫ 1

0
dλṫC(...). (H.3)

By performing the change of variables to the λ variable, the action in eq. (H.1) adopts

the following form

SE =
∫ 1

0
dλ
(
iζ̄µ∂λζµ − ṫCEµζ̄µζµ − ṫC ζ̄µrµ − ṫC r̄µζµ

)
. (H.4)

Due to the quadratic form of the Hamiltonian, the integral can be exactly calculated

just by minimizing the relevant action, leading to the following equations of motion

for the fields ζµ and ζ̄µ

(i∂λ − ṫCEµ)ζµ = ṫCrµ, (i∂λ + ṫCEµ)ζ̄µ = −ṫC r̄µ. (H.5)

The corresponding solutions with periodic/anti-periodic boundary conditions assume

the form

ζ
(cl)
µ =

∫ 1

0
dλ′Gµ(λ, λ′)ṫC(λ

′)rµ(λ
′), ζ̄

(cl)
µ = −

∫ 1

0
dλ′Ḡµ(λ, λ′)ṫC(λ

′)r̄µ(λ
′), (H.6)
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where the Green’s functions Gµ and Ḡµ propagating the ζµ and ζ̄µ modes are defined
through the equations

(
i∂λ − ṫC(λ)Eµ

)
Gµ(λ, λ′) = δ(λ− λ′),

(
i∂λ + ṫC(λ)Eµ

)
Ḡµ(λ, λ′) = δ(λ− λ′). (H.7)

The solutions of eqs. (H.7) with periodic/anti-periodic boundary conditions can be

found to be

Gµ(λ, λ′) = −i
[

θ(λ− λ′)−
(

1∓ eβEµ

)−1
]

e−iEµ
∫ λ′

λ dλ′′ ṫC(λ
′′), (H.8)

Ḡµ(λ, λ′) = −i
[(

1∓ eβEµ

)−1
− θ(λ′ − λ)

]
e−iEµ

∫ λ
λ′ dλ′′ ṫC(λ

′′). (H.9)

Performing then the changes of variables ζµ → ζ
(cl)
µ + nµ, ζ̄µ → ζ̄

(cl)
µ + n̄µ in the

integral (H.1), where n(0) = ±n(1), n̄(0) = ±n̄(1), one finds

IE
[
~̄zs(tP),~zs(tP)

]
= C̃−1

E e−i ∑µ∈E
∫ 1

0 dλ
∫ 1

0 dλ′ ṫC(λ)r̄µ(λ)Gµ(λ,λ′)rµ(λ′)ṫC(λ
′), (H.10)

where C̃−1
E = C−1

E Z−1
E (β) and

C−1
E =

∫
(±)

D2n(tC)e
i ∑µ∈E

∫
C dtC n̄µ(tC)(i∂tC−Eµ)nµ(tC) =

= ∏
µ∈E

[
Det

(
i∂tC − Eµ

)]∓1
= ∏

µ∈E
e∓

βEµ
2

(
1∓ e−βEµ

)∓1
(H.11)

is the normalization factor. One can see that the return to the variables tC = tC(λ)

leads to the Keldysh contour Green’s functions

Gµ(tC, t′C) = −i
[

ΘC(tC − t′C)−
(

1∓ eβEµ

)−1
]

e−iEµ(tC−t′C), (H.12)

Ḡµ(tC, t′C) = −i
[(

1∓ eβEµ

)−1
−ΘC(t′C − tC)

]
e−iEµ(t′C−tC), (H.13)

where the contour step function is defined as

ΘC(tC − t′C) = ΘC
(
tC(λ)− tC(λ

′)
)
= Θ(λ− λ′), (H.14)

coinciding with the Keldysh contour Θ presented in appendix H. As a result, the cor-

responding Keldysh contour delta distribution is defined accordingly.
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With respect to the natural time indices tC, the influence functional then becomes

IE
[
~̄z(tP),~z(tP)

]
= C̃−1

E e−∑j,k∈S
∫

P dtP
∫

P dt′P z̄sj(tP)∆j,k(tP,t′P)zsk(t′P), (H.15)

with

∆j,k(tP, t′P) = ∑
µ∈E

g∗jµgkµ

[
ΘC(tP − t′P)−

(
1∓ eβEµ

)−1
]

e−i(tP−t′P)Eµ . (H.16)

The integrals in the last exponential are only over the P contour due to the couplings

gkµ and g∗jµ being zero in the Lβ line and coming only from the interaction terms.

Restoring the parametrization along the contours allows for the definition of the fol-

lowing quantities

wµ(t) = ∑
j∈S

gjµzj(t+) = ∑
j∈S

gjµzj+(t), yµ(t) = ∑
j∈S

gjµzj(t−) = ∑
j∈S

gjµzj−(t),

w̃µ =
∫

L+

dteitEµ wµ(t), ỹµ =
∫

L−
dteitEµ yµ(t),

(H.17)

where the contour parametrization of the lines L+ and L− is absorbed into the defini-

tion of the complex fields z (and their conjugates), such that the fields z+ and z− are

defined only over L+ and L− respectively. It is then easy to find

IE
[
~̄z(tP),~z(tP)

]
= C̃−1

E ∏
µ∈E

exp
[
−
∫ ∞

−∞
dt
∫ t

−∞
dt′w̄µ(t)e−i(t−t′)Eµ wµ(t′)

]
×

×∏
µ∈E

exp
[
−
∫ ∞

−∞
dt
∫ ∞

t
dt′ȳµ(t)e−i(t−t′)Eµ yµ(t′)

]
×

×∏
µ∈E

exp
[
− ¯̃yµw̃µ +

|ỹµ + w̃µ|2(
1∓ eβEµ

) ].

(H.18)

Furthermore, in order to perform the Markovian approximation, the rescaling zSj(tP)→
zSj(tP)e−iεstP may be performed on the system’s fields, where εS sets the shortest time

scale τs ∼ 1/εs that characterizes significant changes to the system. As pointed out in

the main text, it is useful to consider an isotropic interaction of the environment with

the subsystem’s degrees of freedom, with gjµ = γµ, and define the spectral density

for the environment as D(E) = ∑µ∈E |γµ|2δ(E− Eµ), which can later be extended in
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the continuum limit. The integrals can then be easily studied in the Markovian limit,

where the integrands can be assumed to be very fast decaying functions of the time

difference [87–89], thus allowing for the expansion zSj±(t
′) ' zSj±(t) +O(t− t′). In

the same context, the integration over the t′ variable, acting only on the Green’s func-

tion of the environment, can be further extended from−∞ to +∞ [39], again by taking

into account the speed of its oscillations. The integrals in eq. (H.18) can then be eas-

ily computed, where in the first two lines the integral representation of the Heaviside

step function, and the Sokhotski-Plemelj theorem of complex calculus can be used to

find

∑
µ∈E

∫ ∞

−∞
dt
∫ t

−∞
dt′w̄µ(t)e−i(t−t′)Eµ wµ(t′) '

(
−iδE +

Γ
2

) ∫ ∞

−∞
dt
∣∣∑

j∈S
z+j(t)

∣∣2, (H.19)

∑
µ∈E

∫ ∞

−∞
dt
∫ ∞

t
dt′ȳµ(t)e−i(t−t′)Eµ yµ(t′) '

(
iδE +

Γ
2

) ∫ ∞

−∞
dt
∣∣∑

j∈S
z−j(t)

∣∣2, (H.20)

with

Γ = 2πD(εs), δE = Pr.
∫ ∞

0
dE

D(E)
E− εs

, (H.21)

while for the rest of the terms

∑
µ∈E

¯̃yµw̃µ = −Γ
∫ ∞

−∞
dt ∑

j,k∈S
z̄−j(t)z+k(t), (H.22)

∑
µ∈E

|ỹµ + w̃µ|2(
1∓ eβEµ

) = Γb(εs)
∫ ∞

−∞
dt ∑

j,k∈S
(z̄+j(t)− z̄−j(t))(z+k(t)− z−k(t)), (H.23)

where b(εs) =
(
1∓ eβεs

)−1.

Combining all previous results it can be seen that

IE
[
~̄z(tP),~z(tP)

]
= (H.24)

= C̃−1
E exp

[
−
∫ ∞

−∞
dt ∑

j,k∈S

(
z̄+k(t) z̄−j(t)

) ( ∆++ −∆+−
−∆−+ ∆−−

)(
z+k(t)
z−k(t)

) ]
,

with

∆++ = −iδE + Γ
(

1
2
− b(εs)

)
, ∆−− = iδE + Γ

(
1
2
− b(εs)

)
∆+− = −Γb(εs), ∆−+ = Γ (1− b(εs)) .

(H.25)
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It is useful to re-express this result along the P contour, by writing

∫ ∞

−∞
dt ∑

j,k∈S

(
z̄+j(t) z̄−j(t)

) ( ∆++ −∆+−
−∆−+ ∆−−

)(
z+k(t)
z−k(t)

)
=

=
∫ ∞

−∞
dt
∫ ∞

−∞
dt′δ(t− t′) ∑

j,k∈S

(
z̄+j(t) z̄−j(t)

) ( ∆++ −∆+−
−∆−+ ∆−−

)(
z+k(t′)
z−k(t′)

)
,

(H.26)

which allows for the use of the time parametrization zj(t+), zj(t−) instead of the field

parametrization z+j(t), z−j(t) respectively. The ∆ kernel is then given as

∆̃(tµ − t′ν) = ∆µνδ(t− t′), µ, ν = +,−, (H.27)

where in this case the delta distribution is the usual one, which refers only to the real

coefficients of tP and t′P and differs from the Keldysh contour delta defined in (F.1).

The result (H.24) then reduces to the form

IE
[
~̄z(tP),~z(tP)

]
= C̃−1

E exp
[
−
∫

P
dtP

∫
P

dt′P ∑
j,k∈S

z̄j(tP)∆̃(tP − t′P)zk(t′P)
]

. (H.28)

I The harmonic oscillator’s Green’s function

In this appendix we present the solution to the equation∫
P

dt̃P

[(
i∂tP − ε(R)

)
δP(tP − t̃P) + i∆̃′P(tP, t̃P)

]
L̃P(t̃P, t′P) = δP(tP − t′P). (I.1)

We use here the notation L̃ instead of simply L for the Green’s function, in order to

note that the solution identified using the Fourier transformation method may need

an extra contribution from a solution of the homogeneous equation, to provide the

appropriate propagator. By introducing the Fourier transforms

L̃P(tP, t′P) =
∫ ∞

−∞

dk
2π

e−ik(tP−t′P) L̃F
PP′(k), (I.2)

we can analyze eq. (I.1) along the branches of the Keldysh contour to find that

(k− ε+)L̃F
++(k) + iΓbL̃F

−+(k) = 1, (k− ε−)L̃F
−+(k) + iΓ(1− b)L̃F

++(k) = 0,

(k− ε−)L̃F
−−(k) + iΓ(1− b)L̃F

+−(k) = −1, (k− ε+)L̃F
+−(k) + iΓbL̃F

−−(k) = 0.
(I.3)
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In these equations we used the abbreviations

ε+ = ε(R) − iΓ
(

1
2
− b
)

, ε− = ε(R) + iΓ
(

1
2
− b
)
= ε̄+. (I.4)

The system’s (I.3) equations can be easily solved, giving

L̃++(k) =
k− ε−

D
, L̃−+(k) = −i

Γ(1− b)
D

,

L̃−−(k) = −
k− ε+

D
, L̃+−(k) = i

Γb
D

,

(I.5)

with

D = (k− k+)(k− k−), k± = ε± i
Γ
2

. (I.6)

By taking the inverse Fourier transforms of these results we find

L̃P(t+, t′+) = L̃++(t, t′) = −iΘ(t− t′)e−iε(R)(t−t′)−Γ(t−t′)/2 + ibe−iε(R)(t−t′)−Γ|t−t′|/2 (I.7)

L̃P(t−, t′+) = L̃−+(t, t′) = −i(1− b)e−iε(R)(t−t′)−Γ|t−t′|/2 (I.8)

L̃P(t−, t′−) = L̃−−(t, t′) = −iΘ(t′ − t)e−iε(R)(t−t′)−Γ(t′−t)/2 + ibe−iε(R)(t−t′)−Γ|t−t′|/2 (I.9)

L̃P(t+, t′−) = L̃+−(t, t′) = ibe−iε(R)(t−t′)−Γ|t−t′|/2. (I.10)

To identify then the true Green’s function, one needs to add a solution Lhom(tP, t′P) of

the homogeneous analogue of (I.1) to the above result, in such a way that L(tin+, t′P) +

Lhom(tin+, t′P) = 0. This function can be identified, through the above constraint and

by imposing its continuity at the arbitrary time instance +T, to be of the form

Lhom(tP, t′P) = −ibe
+Γ
(

tin−
tP
2 −

t′P
2

)
−iε(R)(tP−t′P). (I.11)

The true Green’s function over the Keldysh contour P is thus given as

L(tP, t′P) = L̃(tP, t′P) + Lhom(tP, t′P). (I.12)
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