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Abstract (in English)

The accurate estimation of extreme values for metocean parameters (e.g., wind speed)
plays a crucial role in the marine renewable energy industry and in coastal and offshore
engineering applications. Typical challenges that arise in these fields of interest among others
are the limited source of information in samples, commonly associated by the scarcity of long
datasets, and the accurate estimation of the underlying dependence structure of the stochastic
models that can be used for inference on applied problems with extremes.

The present analysis, aims to assess the effect of the asymptotic distributional behavior
of two types of extreme wind speed sampling data that form the basis of all subsequent
predictions in the long term time scale. The first type of sampling data considered will be
subsets of observations extracted from blocks of annual length and the second type are subset
of observations exceeding a high enough threshold. The challenges closely related to the special
attributes that form these types of sampling data motivate the present thesis which focuses on
constructing and improving extreme value models to assess the risk associated to extreme wind
speed episodes. In particular, in this thesis we focus on

e The identification of the combined effects of the samples of wind speed that influence
the stability of the parameter estimates as well as the efficiency of the estimators to the
modelling of extremes.

o Providing alternative methods of modelling extremes of wind speed that are less known
to the relative fields of interest and infer to demonstrate better in comparison to the
standard modelling approach.

e Extending the formulation of the stationary model of extremes to the parameterization
of a nonstationary model in order to incorporate subject specific knowledge in the
presence of trends under the assumption of climate wind changes.

e Extending the classical methods that identify the dependence structure in sample of
observations in order to effectively model the extremes that are irregularly spaced in
time. Specifically, the reconstruction of a dependent sample of extremes that are
irregularly spaced in time is focused on relatively small samples of wind speed where
the scarcity of long and complete time series is a common restriction in climatological
studies.

In this setting, the statistical analysis of the most used and less known estimators that
model the extremes of wind speed is inferred from a twofold approach. A simulation study is
performed first to assess the effect of the sample size to the estimators of the asymptotic
distribution that model extremes. The evaluation of the simulation results is based on several
statistical measures. Afterwards, the optimum methods from the simulation analysis are applied
to wind speed datasets of different sample size and different direction step of sampling. The
evaluation is based on datasets originated from databases of relatively moderate horizontan
resolution to the regional locations at the North Sea, at the Pacific coast of central America and
at the eastern Atlantic Ocean where these locations are exposed to a strong wind climate with
evidence of extreme wind speeds. Inference of the sample size effect and the directional step
of sampling to the demonstration of the model estimators is made on the obtained 50- and 100-
year wind speed design values. From this assessment, the combined method of moments is
advised as the suitable method when the sample size is limited.

Other challenges that motivated this study is the modelling of extremes when the
extremal characteristics are expected not constant over time. To this effect, seasonality and
long-term trends are probably the main reasons that influence the stationary hypothesis of the
wind speed processes. In this part of this study, an attempt is made to model the possible trends
of extremes in the long-term behavior of the process. Since in practice the trend is unknown,
various formulations of the trend as a function of time are assessed to represent the extremes of
wind speed when the stationary assumption is not valid in order to alleviate the bias effect from



the attempt of de-trending the process before the time series is used. Statistical tests challenged
the modeling of the trend of rejection or not in favor of stationarity. For the extremes of non-
stationary sequences and the application to wind speed design values, our analysis is based on
coarse historical data of long datasets at regional locations at the North Sea where trends are
notable to influence the wind speed variability. From this assessment, the simplest form of
parameterization in the parameters of the extreme value distribution is advised in modeling
extremes when stationarity is violated.

Another common problem of design to assess risk associated to extremes of wind speed
in met-ocean fields of interest, is the scarcity of long datasets. To this limitation, many
applications utilize as many as possible extremes from the available dataset by re-sampling to
a subset of extremes. However, the re-samples are often affected by dependency and the
diagnostics related to the independence limitations is usually violated when the observations of
these samples are irregularly spaced in time. To alleviate this effect, a resampling strategy is
proposed that effectively models extremes irregularly in time when re-sampling of relatively
small datasets of wind speed is advised. The proposed DeCA Uncorrelated (DeCAUN) model
provides an improvement to the current physical De-Clustering Algorithm (DeCA) modelling
the samples of DeCA irregularly in time.

Specifically, the resampling strategy proposed analyzes the correlation effect in
samples based on the extension of the standard correlation operator setting weight functions to
observations irregularly spaced in time. To infer in terms of precision and variability, design
value estimates and confidence bounds of the demonstration of the proposed model are
evaluated based on the standard approaches that model extremes. The use of a high resolution
database is crucial to derive detailed data to follow-up the requirements of the resampling
strategy to short and irregularly samples near the offshore regions of Europe where the
demonstration of DeCAUnN to wind speed is challenged from the highly dependent regional
effects (surface roughness, landmass, etc.). However, to assess the effect of larger sample sizes
to the limiting distribution of the excesses that will infer effectively the modelling of DeCAUn,
larger samples of wind speed from a fairly coarse resolution database are also required for
evaluation. From this assessment, the proposed model demonstrated as an alternative re-
sampling strategy for extreme wind speed projections when samples are irregularly spaced in
time.

These challenges motivate the present thesis to assess the risk associated to extreme
wind speed episodes for direct potential application to the relevant fields of interest. In
particular, the most important findings from this assessment in extremes are outlined in the
following:

o Based on the evaluation using different sample sizes of wind speed data from both the
simulation study and applications, the combined method of moments outperforms, in
many respects, compared to the standard likelihood approach. Overall, regarding the
design values it is evident that sample sizes greater than 35 years are necessary for a
substantial reduction of epistemic uncertainty.

e Under the proviso of nonstationarity at locations where the natural climate variability
in extreme wind speeds is challenged, the linear form of parameterization in the
parameters of the extreme value distribution will model effectively the trends in
extremes.

o For sample periods of wind speed greater than 15 years, the re-samples of DeCAUn
demonstrated effective projections in terms of precision and variability.

e The resampling strategy proposed in this setting showed systematically stronger rate of
convergence to the asymptotic properties of the extreme value distribution particularly
for wind speed datasets of higher spatial resolution and a less stronger rate of
convergence for datasets of lower resolution.
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Abstract (in Greek)

H avamtuén kot PeAETN GTOYOGTIKGOV LOVTEA®V IE OKOTO TNV EMIALGT TPOPANUATOV
mov oyetifovior pe TV EUEAVIoN okpaiov TV, amotelel, T TelevTaieg Tpelg dekaetieg,
ONUOVTIKO TS0 EPEVVAG TNG EMOTNUNG TOV EPapUocuévev padnpatikedv. H povtelomoinon
Kot pokpompoesun mpofreyn eppavicemv akpaiov copfdviov mailel onuavtikd polo ot
epappocpéva tedia 6tmg 1 Metemporoyia, Ydporoyio aAld Kot o€ £pyo BOAAGTIOG LNYOVIKNG
Omov 1M Yvdon G KMpatoAoylog TG mEPOYNG €lvarl omapaitnTn Yo TV EKTIUMON NG
OCQAUAELNG KO TNV KOAT AEITOVYIO TOV KOTACKEVOV.

H extiunon Aomdv g emkivouvotntog (piokov) epeavions akpoiov cupfiviov
peAetdrol pécw g Oswpiog tov Axpaiov Tipumv. Ot 600 emKpatéoTEPES AGVUTTOTIKEG
mpooceyyicelg katavopmv and akpaio dedopéva otny pakpoypdvio KAipoKa tov ypdvov givar
Ol PEYIOTEC TIWEG JOTETOYUEVOY TUYOi®V HETAPfANTOV Kol 1 axolovbio avelaptntmv Kot
GOVOLLO, KATAVEUNLEV®V TUYOH®V HETOPANTOV 01 omoie vepPaivouy pia “apketd vynAn” Ty
KatoeAiov. Xto miaiclo g Osopiag Axpoiov Tdv kot Paciiopevol otig dvo
EMKPOTEGTEPEC AGVUMTOTIKEG TPOGEYYIGELS, 1 TAPOVCA UEAETY| ATOCKOTEL GTNV AVATTUEN HLOG
OAOKANPOUEVNC, KOTA TO SUVATOV, TPOGEYYIGNC Yo TNV HOVIEAOTOINGT] T®V UEYIOTOV TIUOV
NG TAYVTNTOS TOV OVELOL, OTOV TO d100Ea10 delypa eival TeplopoUEVO 1 eppavilel acuvéyela
KOTOypoeng 0edoUEVOV. TO TAMIG10 aVTO, 01 BactKol 6TOYOL TG TaPovoag daTpPng eivar o
edng:

o  MeAétn emidpacng Tov OBECIUOV SELYHOTOG GTNV HOVTIEAOTOINGT TOV OKpaimv
EVOEYOLEV®V TAYDTNTOG AVELOL HE XpNoM TS Bempiag TV akpainy TIHdV,

o Emonuavon yvootdv aAld kol AYOTEPO YVOOT®MV HEBOOWMV EKTIUNGONG TAPUUETPOV
NG TOOVODEMPNTIKNG KUTOVOLUNG TOV 0KPAIOV TIUAV TNG TOOTNTAG TOV AVELOD KoL 1)
a&loAdynon GLUTEPIPOPAS TNG anddOonG Tovg Evavil Tov kabiepopévov pedddmv
ektipnong,

®  LOVTEAOTOINGT) TOV TOPAUETPOV TNG TUTIKNG YEVIKEVUEVIC KOTOVOUNG AKPOI®V TILDV
LE GLOTNUOTIKY LEAETT KOl GVYKPLOT S10pOPOY GUVOILOCUOY ¥POVIKNG EEAPTNOTNG TOV
TOPAUETPOV,

e avAamTuén U0G OAOKAP®UEVIG TPOGEYYIONG Yo LOVOILAOoTATEG TUYIES LETAPANTES
UEC® EVOG TPOTEWVOUEVOD LOVTELOL TTOV AAUPAVEL LTTOWYT) TV GUGYETION TOV OKPUi®V
TIUOV 0TV 0VTEG guPavifoviol aKavovioTo, otV KApoko tov yxpdvov. O kHplog
GTOY0G TOV HOVTELOL €ival 1 dNUovpYio VEOL VTOSELYLATOG UE CVUTMTIKN Oedpnon
OTOTIOTIKA aveEAPTNTOV TAEOV TOPATIPTCEDV.

Ewdwdtepa, 10 mpdPAnua mov oyetiCetan pe tnv peAétn g eniopacng Tov Stob€cton
detypatikod peyéboug TNy eKTiunom TIUAV oYESIICEMG QMO LOVTELD, EPUNVELNG, EKTIUNGEMV
kot mpoPAéyemv axpaiov ovufaviov, peietdtor 01e£odikd amd 600 JELYLOTOANTTIKES
npooeyyicels. Amo mpocopoiwoelg tomov Monte-Carlo kot omd avepoloyikd dedopéva
YPOVOGEPDOV 00 PAcelc dedouévav peTplag Y®pikng avaivong. H extiunon xail n e€dptnon
TOV TOPAPETPOV TNG KATAVOUNG 0to T dtabéotuo deiypa Oa yivetol uécm Pactkdy oAl Kot
AMyoTEPO YVOOTOV PEBOS®V. ATO TNV GTATICTIKY| ovdAvon Tov BérTiotov nebddmv ektipnong
pe Paon to KpLTplo. KOANG amdd0oong 6€ de00UEVO TPOGOUOIMONG, YIVETOL GTNV GLVEXELN
EKTIUMON TNC 0OS00MNG GE OVELOAOYIKG OECOUEVE  OLOPOPETIKMOV YPOVIKDY TEPLOdMV Ko
dlpopeTIKoy ypovikoy Pruatog. H mapovoo perétn eotidlel oe onpeion g Bopeiov
®dlaocoag kol og onueion Avatolukd kot Avtikd g Kevipikng Apepwnig 6mov 1oyvpn
UETEMPOAOYIKT] OPUCTNPLOTNTA OTIC TEPLOYES AVTEC 0ONYEL AVUTOPEVKTO GE PUIVOUEVO TOV
yopoaktnpilovral and akpaisg Tinég TayvTNTag avépwy. H emidpacn tov drabéoipov delypartog
oV amd6d0on TV HeBddwV ekTipunong yio TéEG oyedidoemg tav S0 kot 100 etdv Teplddmv
emovapopdc 0o a&loroynOel pe otatiotikd kpitnplo. Amo TNV UEAETN VTN cvurepaiveTat 0Tl
1 ovvdvacTiky péBodog Lrabucuévav Pondv tpoteivetar g 1 ikovomomtiky uéHodoc yio tnv
LOVTELOTOIOT O™ aKPaieV TGV 6Tav To StoBEcpo detypa eivar TEPLOPIGHEVO.

Vi



O emdpevoc dEovag pehétng oyetiletal pe v depedivnon g téong HeTafoing Tov
TOOVODEMPNTIKAOV YOPUKTNPIOTIKMDY TNG OCVUTTOTIKNAG KOTAVOUNG TOV OKPUIOV TIUOV NG
TayOTNTOG TOL ovERoL. Edwotepa, yio tnv gupdtepn meployn g Bopeiov Odlacoag, 6mov
éxovv mapoatnpndel ta tehevtaio ypoévia petaforés Tov avepoloyikoh wAipatog, yivetot
ENEYYOG NG CTUAGIHOTNTOG TMV YPOVOGEPDOV avéLoVL. [ TIg ¥povoceElpég 6Ta GNLELR TOV
KOVOTIOI00V TOV EAEYYO VITOBECTG OTOCIUOTNTAG OO KOTAAANAC OTOTIGTIKG KPLTHpLa, YiveTal
povtehonoinon tov mopapétpov e Tomkng ['evikevpévng Katavoung Akpaiov Tiudv pe
KATAAANAOVG GUVOVLAGLOVS YPOVIKNG EEAPTNONG KUPIMG GTLG KOVOVIKOTOWUEVES TOPAUETPOVS
0éong kot KMPOKOG. TNV TOUPOUETPOTOINGT] QVTH, 1 TOPAUETPOS CYNUOTOC TNG KATUVOUNG
BewpnOnke ave&aptnn Tov ypdvov. H emthoyn Tov KOTAAANAOL LOVTELOL, TOPOUETPIKOD T} 1N
TOPOUETPIKOD, Baoiletal o8 6TOTIOTIKG Kprtipla KOANS Tpocapuoyng (goodness-of-fit criteria)
YPNOUYLOTOIDVTOS OVEUOAOYIKA OeSOUEVOL YOUNANG YOPIKNG avAAvong o€ delypa pe €6pog
TOAM®DV  €TOV. XTO TAMICIO OVTAG TNG HEAETNG, OLUTEPAIVETOL OTL 1 OTAOVOTEPN
TOPOUETPOTOINGN TNG AGVUTTMOTIKYG KOTAVOUNG TOV AKPOi®MV TIHAOV LOVTEAOTOEL KOTAAANAL
T1G LeTAPOAEG TOV AVELOAOYIKOV KAILOTOG.

O tehevtaiog a&ovog pehég eotidlel oV HEAETN TG TOAVIG GLGYETIONG AKPOimV
TIUOV OTAV OVTEC EULPAVICOVTOL PE OKOVOVIGTO XPOVIKO Prio otnv KAlpaKko Tov ypdvov. 10
mAaiclo avtod, TpoteiveTal o véa HEB0d0g avadery LoToANying (e KOPLo GTOYO TNV dnpovpyio
€VOC VEOV VLTO-OElYLOTOC TOV OmoTEAEITAL amd OveEAPTNTEG TOPATNPNOELS £TCL MOTE VO
TANPOVVTOL T ATOPUITTO GTOTIOTIKA KPLTHPLOL Y10 TV EKTIUNGT TOV TILOV GYESIAGEDOV HECH
™mg Bewpiag Tov axpaiov tipnev. H npotewvouevn pébodog DeCA Uncorrelated (DeCAUN)
model BeAtiotomotel kot dropbdvel TNV vdpyovoo pEBodo avadstypatoinyiog physical De-
Clustering Algorithm (DeCA) model, Aapupdvovtag vaoyn Ty GLGYETION TOV TUPATHPNCEDY
otav avtég eppavifovtol pe oKavovioto ypovikd Prjpue otnv KAlpoka tov ypovov. H
TPOTEWOUEVT] aVOOELYLATOANTTIKY] HEB0SOg Bempeitor ¢ eVUALOKTIK OO o GEPA Ao
TPOTEWOUEVA LOVTELD TTOV EKTILOVV TOV GUVIEAEGTN GVTOGLGYETIONG OO TOPATNPNOELS UE
OKOVOVIGTO YPOVIKO Prio 6TV KAMUOKO TOL ¥pOVoD.

Ewwdtepa, 10 mpotevdpevo poviéro Ogv emyelpel €heyyo TOL QACHOTOS, OAAL
voAoyilel anevbeiag TV CLGYETION TOV YPOVIK( OKOVOVIGTMV TOPATNPNCEDY E KATAAANAES
ovvoptioelg Papovg, kabopilovtag tov Pabud e&dptnong uetald TOV TOPATNPHOEDV.
ZUYKPITIKG OTOTELEGLLOTA TOV EKTILOUEVOV TIHMV GYESIACEMG KOl SLOKOLOVOTG TOV HOVTEAOV
napovcidovrol yio teployég tng Evpodnng mov eivon extebeipiéveg oo Kopikd GUGTHKOTA TOV
Athavtikov Qkeovov, e Bopelag Odracoag kot tng Mecoyeiov. o v otatiotikh avaivon
TOV TPOTEWVOUEVOD HOVTEAOL ypnotomodnke 1 KAaoo1kn pHEB0S0g eKTiUNoNG TAUPUUETP®V
péoo g Meyiotg ITiBavopdvelag pe ypovooelpég and Pacelg 0edoUEVOV YOUNANG Kot
VYNNG avdivonc. Ta aveporoyikd dedopuéva amo PAcel VYNANG avaAvoNG Elval amopaitnTa
Yo TV TANPECTEPT OVOTOPAGTAGT TOV OKPAIOV GLOAIKOD SUVOULKOD EOIKOTEPO, GE KAEIGTEG
Boddooieg meployés. o Tov €heyyo NG OCUUMTMOTIKNAG GULUTEPLPOPAS TNG TPOTEVOLEVNG
UeBOS0L aVOSEY LOTOANYING YPELUICTNKOY YPOVOGELPES OO OETY LA LLE EVPOC TTOAADV ETOV OTTOV
OVOTOPEVKTO, 1) UOVTEAOTOINGT G aVTN TNV MEPImT®ON Tpayuotorodnke amo Pacelg
dedoEVOV Yo uUNANG avdAvons. 1o mAaico auThg TG HEAETNG M TpoTEvOpEVT pebodoroyia
avaderypotoAnyiog Bewpeital eVOAAUKTIKE TPOGEYYIOT] Y10 TNV LOVTEAOTOINGT] OKPUI®OV TIUMV
0o KPS Ogiypo Aapfavovtag vaoyn Ty GLOYETION TOV TOPATNPNCE®Y OTOV OVTEG
eppavifovrol pe akavovieTo Xpovikod Prua oty KAipoka Tov povov.

Ta xoproTepa EVPNLUOTA GTO TAOIGLO AVTHG TNG UEAETNG Y10 TNV LOVIEAOTOINGT] TOV
LEYIGTOV TIUDV TNG TOYVTNTOG TOL OVELOV TOPOLGLALOVTOL GUVOTTIK( TOPAKATO:

e H ocvvdvaotikn pébodog Xrabcpévov Pordv mpoteivetol og n katdAinin pébodog
Yl TNV HOVTEAOTOINGT OKPOi®V TIUOV G GYEoN HE TNV KAOGIKN TPOCEYYIOT TNG
Meyiotng [TiBavopdvelog 6tav 10 dabécipo detypo eivar meplopiopévo. To codipa
afePotdTNTOC GTNV EKTIUNGOT TOV EXOVUNTOV TIUOV GYESIUCEMS UELDVETOL CTLOVTIK
otav o dabéoipo delypa ivan peyardtepo amo 35 €.

e H avdivon avt) avéEelée 0Tl TO YPOUMIKO HOVTEAD TNG YPOVIKNG £5APTNONG OTNV
TapAapeTpo BEong LoVIELOTOEL KATAAANAO TIG aKpaieg TILEG TNG TOYLTNTOG AVEHOV O
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onueio otnv Bopelo OAAaGGo OTOL ATOOEdELYLEVO TOPATNPOVVTAL LETABOAEC TOV
OVELOAOYIKOD KATHOTOG,

Mo ypovooepéc peyoddtepec omo 15 €t ocvumepaiveTonr OTL 1) TPOTEWVOUEVN
avaderypotonTtikny nébodog Bempeitol @G EVOALIKTIKY Yo TNV LOVIEAOTOINGT TV
aKpaioV TIHOV TG TaXDTNTOG AVELOD IKOVOTOLOVTOG TO KATAAANAN KPLTipla KaANg
amodoong.

Y10 mlaiocle ovtig g peAétng ovumepoiverar  O6tt To  mBovoBempnTikd
YOPAKTNPLOTIKE TNG ACVUTTAOTIKNG KOTAVOUNG TOV aKPOimV TILMV TNG ToYVTNTAS TOV
OVEHOL  IKOVOTOOOVTOL O€  HEYOADTEPO Pabud o6tav 1M poviehomoinorn mwov
Tpaypatonolet n mpotevopevn uéBodsog DeCAUN pe axovovieTo ypovikd Prne oty
KAipoka Tov ypdvov Paciletar og xpovocelpég dESOUEVOV VYNANG aVAADOTG KOl OE
pikpdtepo Pabud amo v povielomoinomn mov mpaypotomoleitol amo dedopéva
YOUNANG avdAvonC.

Vi
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Chapter 1

Introduction

1.1 Basic Concepts of Extremes

Extreme value analysis (EVA) of metocean characteristics, such as wind speed, wave
height, sea-level, etc., is a field of significant importance for engineers and environmental
scientists. One of the main objectives of EVA refers to the estimation of design values and
associated return periods with respect to the examined random variable(s). See, for example,
(Kharin and Zwiers, 2000), (Ronold and Larsen, 2000), (Engeland et al., 2004), (Chen et al.,
2004), (An and Pandey, 2005), (Caires and Sterl, 2005), (Stefanakos et al., 2007), (Larsén and
Mann, 2009), (Chen and Huang, 2010), (Vinoth and Young, 2011), (Jonathan and Ewans,
2013), (Panchang et al., 2013), (Gouldby et al., 2014), (Sarkar et al., 2014), (Anastasiades and
McSharry, 2014), (Cannon et al., 2015), (Su et al., 2017), (Manis and Bloodworth, 2017), (Pes
etal., 2017), (Wang, 2017),(Kunz et al., 2010), (Naveau et al., 2005) where various applications
of EVA in ocean, environmental and civil engineering can be found.

Design parameters corresponding to environmental loads implied by wind, waves, etc.
are used in practice to evaluate the resistance and/or reliability of an offshore structure in the
ultimate limit state. In addition, the accurate estimation of design values greatly facilitates the
analysis of different serviceability limit states, (Fujino et al., 2012), (Kasperski, 2013).
Applications of EVA in wind energy assessment and wind turbine structural design are
provided by (Su et al., 2017) and (Lombardo, 2012), where the effects of wind extremes on the
safety of wind turbines have been assessed, by (Ali et al., 2017), where a 50-year extreme wind
speed has been used, among others, as a parameter for wind turbine selection, by (Wang et al.,
2015), where the current status of extreme wind speeds and wind energy assessment has been
reviewed, and by (Pop et al., 2016) where a method for obtaining extreme wind gust speed
critical for the safety of wind turbines has been presented. Furthermore, in (Mo et al., 2015),
wind hazard maps have been produced for China using reanalysis data, in (Kang et al., 2015),
the effects of the surface conditions on the estimation of design values for wind speed have
been assessed, and in (Chiodo et al., 2015), a comparison of two different EVA approaches (the
block maxima approach and a non-parametric Bayesian approach) has been conducted for the
estimation of wind speed extreme values. The effects of wind and wave loads on the reliability
of non-axisymmetric support structures have been discussed in (Wei et al., 2016), and in (Viselli
et al., 2015), extreme metocean parameters (wave height and wind speed) have been estimated
for the design of offshore wind structures.

The most widely used EVA methods are the annual or block maxima (BM) and the
peaks over threshold (POT). BM and POT methods utilize different extreme type data, fitting
a distribution function based on solid theoretical grounds. Since the derived results from these
methods are of asymptotic nature, in practice, limited sample sizes may limit, or even render
impossible, their applicability. A discussion and comparison of BM and POT methods has been
provided in (Ferreira and de Haan, 2015). For particular applications regarding the estimation
of metocean extremes see, e.g. (Caires, 2016), (Orimolade et al., 2016), (Sartini et al., 2015),
while more information on EVA methods and various alternatives can be found in (Soukissian
and Kalantzi, 2006; Soukissian and Kalantzi, 2009), (Soukissian et al., 2006).
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For the implementation of the BM method, the grouping of data into blocks of equal
length and the selection of the maximum of each block is required. According to the main
theoretical result of EVA, these maxima follow asymptotically the Generalized Extreme Value
(GEV) distribution and thus, the estimation of the GEV parameters is based on the sample of
these maxima; see Chapter 3 of (Coles, 2001) for a discussion on this issue. Though some
theoretical restrictions apply (e.g. the maxima should be realizations of independent and
identically distributed random variables), an important advantage of the BM method is that it
still works when the maxima are not exactly independent and identically distributed (i.i.d),
provided that the long range dependence of high level exceedances is weak; (Ferreira and de
Haan, 2015). Some important issues of debate as regards the application of the BM method
(and other EVA methods as well) to observed data are the following:

1. The available sample size: Some of the parameter estimation methods of the GEV
distribution perform marginally fair with small sample sizes; for example, it is known, that the
performance of the widely used Maximum Likelihood (ML) method can be extremely erratic
for small samples, see (Katz et al., 2002), especially with respect to the estimation of extreme
quantiles of the GEV distribution, (Soukissian and Tsalis, 2018). Long time series are generally
required for the accurate estimation of extremes; however there is not consensus as regards the
required length of the time series. For example, in (Cook, 1985), it is suggested that the BM
method (with 1-year block size) can produce reliable results, when the available records are at
least of 20 years length; see also (Palutikof et al., 1999). In the discussion of (Dukes and
Palutikof, 1995), with particular reference to wind speed annual maxima (AM) time series, it
has been noted that it is difficult to identify the effects of the time series length on the maximum
return period in order to safely consider the obtained estimates as reliable. Using GEOSAT
wave measurements, (Panchang et al., 1998) concluded that extreme value estimations from 5
years or 14 years of data are very close. Some authors, (Jeong and Panchang, 2008), also accept
that extrapolations to return periods three or four times the data length, are appropriate. In
(Devis-Morales et al., 2017) the authors claim that 35 years of data are enough to predict the
100-year wave, while in (Perrin et al., 2006) 30 years of wind speed data have been used for
the estimation of 50 and 100-years design winds; see also (Polnikov et al., 2017) for a similar
approach as regards wave height. On the other hand, in (Vanem, 2017), it has been suggested
that “at-site analyses based on 30 years of data are reasonably accurate for return periods up to
about 20 years, but not much more than this”. A method introduced by (Cai and Hames, 2011)
can be used to determine the minimum sample size required for the estimation of the GEV
distribution parameters based on the asymptotic properties of the ML method. Nevertheless,
the sample size issue related with the BM approach still remains open.

2. The choice of the block size: As already mentioned, the most pronounced problem in EVA,
and particularly in the BM approach, refers to the appropriateness of the available sample size
for a rational design value estimation. A small block size might lead to bias and a large one to
large estimation variance. For wind speed data, there is no natural partition of the year into
separate seasons. Fawcett and Walshaw (2006 b, 2007, 2008, 2015) argue that by dividing the
year into twelve equal length seasons, a satisfactory balance is achieved between the two
conflicting requirements of (i) indicating the continuous nature of seasonal changes in climate
appropriately and (ii) retaining a substantial amount of data for analysis in each season
withought the loss of valuable information at that seasons. However, for most environmental
parameters (wind, waves, sea level, etc.) the block size of one year has been established.

3. The parameter estimation technique: For the estimation of GEV parameters, a widely used
method is the ML, mainly due to its well-developed asymptotic properties; (see Katz et al.,
2002). A detailed review, assessment and evaluation of the performance of nine different
estimation methods for the GEV distribution parametrers has been provided by (Soukissian and
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Tsalis, 2015); see also Chapter 2. The analysis was based on a simulation study with a constant
sample size 30, while an application to real wind speed data has been also presented. In the
same work, it was concluded that the ML, Maximum Product of Spacings (MPS) and Elemental
Percentile (EP) methods outperform (with respect to bias, variance and mean squared error) (%).
However, since the simulation study was based on random samples with constant size 30, the
potential effects of the available sample size to the estimation of the GEV parameters were not
considered.

Regarding the performance of the GEV parameter estimation methods with respect to
the available sample size, various works assessed different estimation methods. The ML, and
the methods of L-moments (LMOM) and moments (MOM) have been evaluated through a
simulation study performed by (Madsen et al., 1997). The evaluation was based on the
standardized RMSE with respect to the year event estimator (for =10, 100 and 1000 years) for
sample sizes 10, 30, 50. Although the performance of each method was dependent on the value
of shape parameter, the considered return levels and the sample sizes, it was shown that the
MOM estimators are preferable. In (Kysely, 2002), the LMOM and MLE methods have been
assessed for EVA of temperature; it was concluded that the individual return values were
affected by the choice of the estimation method although there was no sensitivity as regards the
estimated parameters by any of the methods. MPS, ML and LMOM methods for small sample
sizes (10, 20, 50) have been evaluated through simulation by (Wong and Li, 2006). The
evaluation for each parameter estimate was based on the mean absolute error and the authors
concluded that the MPS performs better than ML method, while the first is more stable
compared to ML and LMOM methods for small sample sizes. (Diebolt et al., 2008) introduced
and evaluated the Generalized Probability-Weighted Moments (GPWM) method and compared
it with ML and LMOM for small and medium samples (15, 25, 50 and 100). A recent joint
evaluation of MPS, ML and EP methods (along with the quantile least squares method) can be
found in (Ashoori et al., 2017). The average scaled absolute error criterion has been used for
the evaluation of the obtained fits.

4. The uncertainty in estimations. Another important issue refers to two types of uncertainty
that are associated with extreme value estimation problems, namely: i) the aleatory (inherent)
uncertainty, that is due to the randomness of environmental processes and cannot be reduced,
and ii) the epistemic uncertainty that can be reduced provided that sufficient data for the
examined process are available. According to (Orimolade et al., 2016), the components of
epistemic uncertainty are data uncertainty, model (probability) uncertainty, climatic
uncertainty, and statistical uncertainty. The latter is mainly raised by the limited statistical
information (e.g. limited sample size) and the parameter estimation method. Epistemic
uncertainty may be reduced by increasing sample size and/or reducing sample measurement
error (Wada et al., 2016), while the uncertainty raised by the sample size can be quantified
using bootstrapping. In this framework and taking into consideration that in metocean practical
applications EVA is usually based on sample sizes less than 50, (Wada et al., 2016) have taken
into account the effects of the epistemic uncertainty in the estimates of return values. After a
simulation study, it was concluded that the Likelihood-Weighted method (LW) provides better
estimates of epistemic uncertainty from small samples of poor quality. Uncertainties related
with wind and wave analysis have been also discussed by (Bitner-Gregersen et al., 2014) while
a detailed discussion on wind measurement errors can be found in (Soukissian and
Papadopoulos, 2015).

(Y) According to bias, the MPS method performs better, while according to the mean squared error, the EP, MPS and
ML methods seem to outperform.
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5. The presence of non-stationarity in the annual block maxima. Studying environmental
processes, non-stationarity is often necessary, due to seasonal effects or longer-term climate
changes behavior. For example, the role of time—dependence in the statistics of extreme weather
events has been argued in the context of climate change since the work from Katz and Brown
(1992). In particular, the detection of trends in the frequency of intense precipitation has been
the objective in Karl et al. (1995); Karl and Knight (1998) for the USA and Brunetti et al.
(2004); Panagoulia et al., (2014) for the Mediterranean Sea respectively. The definition of a
rigorous approach to the study of extremes is not trivial when the property of stationarity is
guestioned. One basic reason is that there is lack of a universal theory of extreme values (such
as e.g. a generalization of Gnedenko’s Theorem, see Chapter 2) for non-stationary stochastic
processes. Moreover, in the analysis of observed or generated data from a reanalysis procedure,
issues regarding the time scales that define the statistical properties and their changes, become
debatable (Serinaldi and Kilsby, 2015). In Young et al. (2012), global altimeter data of a period
of more than 20 years is analyzed to determine whether there are measurable trends in extreme
value return period estimates of wind speed and wave height.A positive trend in extreme wind
speed was supported in their findings. Nevertheless, for a stationary processes the probability
characteristics do not change systematically in time, while for non-stationary process the
parameters of the GEV distribution are allowed to vary through time. When incorporating non-
stationarity into GEV parameters, some major points of concern are (i) what time dependent
model to select, (ii) what characteristics must the parametric model satisfy in order to describe
adequately the trend of the extreme event, and (iii) if all parameters truly vary in time.

Dixon and Tawn (1998) have studied two major classes of methods for estimating the
distribution of the annual maximum sea-level in a non-stationary state condition. When the sea
level process is decomposed to the four sources of non-stationarity (mean sea level, tide, surge
seasonality and tide-surge interaction) and separately modeled, then these methods belong to
the indirect classes. On the contrary, methods that directly estimate the time dependent process
using covariate-dependent parameters of the distribution into the likelihood belong to the direct
classes.

In addition, a new definition of the return period of a given level value is introduced with respect
to a non-stationary continuous-time stochastic process. This definition is general and is based
on the consideration of an appropriate crossing problem.This definition has been first used by
Middleton, Thompson (1986) (see also Hamon, Middleton (1989)), for the prediction of sea-
level extremes. Subsequently, Soukissian (1995) and Athanassoulis et al. (1995) have applied
the above definition for the case of the long-term process of sea-states using the MEan Number
of Upcrossings (MENU method), in order to estimate return periods and design values for the
significant wave height. Finallly, the non-stationary extreme value analysis (NEVA) software
package (Cheng et al. 2014) is outlined, as package explicitly designed to facilitate analysis of
extremes in the geosciences (see Appendix D).

The benefit on modeling trends in the parameters of the distribution of the extremes is that the
original data no longer have to be de-trended as classically modeled (Ferreira, 1997) and can
be used directly. In this work (see Chapter 2), an assessment of various parametric models for
the detection of the GEV covariate-parameters is made, considering a linear, quadratic and
cubic trend through time (for the location and scale parameters) and a time independent model
for the shape parameter. Effective return levels for specific values of the covariates is estimated
and compared with the stationary case.

However, samples with a limited amount of extremes often fail to provide efficient
guantile estimates for large return periods. When only few extremes are available for analysis,
augmenting the sample of extremes via data segmentation is often imperative (Ferro and Segers
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(2003). The question that often arises is how to successfully enrich a sample of extremes,
encompassing as many discrete events as possible avoiding the approximate independent
limitations. One classical approach dealing to this dilemma is by including more maxima per
year using the annually r-largest order statistics concept based on the point process
characterization (see Chapter3). Resent applications of this concept in wind speed time series
may be found in An and Pandey (2007).

Another sampling approach besides the classical BM is by modeling exceedances over
a high enough threshold u at which the Generalized Pareto Distribution (GPD) provides a valid
approximation to the excess distribution. The so called POT approach (Simiu and Heckert,
1996; Naess, 1998, Harris, 2005; Caires and Sterl, 2005) is widely accepted as the advance
approach for modeling cluster exceedances and the most suitable for short time series. The
major disadvantage of POT is related to the selection of the appropriate threshold value in order
to satisfy the trade-off between bias and variance. Higher thresholds generally verify the
requirements to the independent and identically distributed limitations. The contrary is met with
lower thresholds.

Other approaches use the entire time series and consider different ways to extract the
values to be processed under the principles of the extreme value theory. In general, in order to
obtain a sufficient number of events from the time series, the data must be initially clustered
and then de-clustered, selecting the maximum value of each cluster respectively. However,
independency criteria between adjacent maxima are essential in EVA though frequently
disregarded. The distribution and parameters of limited long-range dependent extremes, are
strongly affected by the dependence in the series (Leadbetter, 1983).

In this study (see Chapter 4), a re-sampling procedure is proposed for the irregular
samples of observations obtained from physical de-clustering considerations. The proposed
model performs re-sampling taking into account the correlation effect in the irregular samples
for a range of discrete energy reduction levels in the time series.

1.2 Main Obijectives of this Dissertation

The present study focuses on the characterization of univariate extreme values. In particular,
we aim on estimating the probability of extreme events occurred in a given period of time based
on the modelling and extrapolation of these events using EVA on historical data. Clearly, these
issues of risk analysis are of major importance in ocean and coastal engineering, meteorology
and offshore wind energy section where this study anticipates to contribute in practical
applications.

The specific objectives of this Thesis are outlined in three parts as shown below:

I Study the factors (sample size effect and parameter estimation methods) that
influence the modelling of extremes of wind speed in the univariate case.

. Modelling extremes when the stationarity assumption of the process of wind speed
is violated.

1. Identify the effect of dependency in extremes when samples of wind speed are
irregularly spaced in time and find ways to re-sample accordingly to the i.i.d
limitations.
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1.3 Outline

This rest of this Thesis is organized as follows:

In Chapter 2, models and methods along with the main mathematical framework for modelling
univariate extremes are presented as the theoretical background of this study.

In Chapter 3 the modeling procedure of dependent sequences is in short discussed with
emphasis on the demonstration of the well-known models that effectively re-sample the
dependent events.

In Chapter 4 a suitable resampling strategy is analytically presented regarding the modelling of
extremes that are irregularly spaced in time. The proposed methodology and the re-sampling
schemes of reconstruction are presented in detail.

In Chapter 5 the datasets of wind speed at the study areas that will be used for this assessment
are described in short with a preliminary statistical analysis of the samples originated from each
data product.

Inference of the model fit obtained from the simulation process and applications is thoroughly
discussed in Chapter 6 (sub-Section 6.1 and 6.2). The main findings from the proposed
methodology is presented in 6.3, 6.4, and 6.5 .

Finally, the conclusions from this assessment are summarized and future work and
improvements is also proposed.
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Chapter 2

Standard modelling of Univariate Extremes

In this Chapter, a short introduction to the basic theory of univariate extremes is
presented, along with the main mathematical aspects of the underlying distribution, i.e., the
Generalized Extreme Value (GEV). In this context an analytical discussion of the theoretical
background of the examined parameter estimation methods is made, along with the standard
statistical tools that are used for the modelling of the i.i.d random variables. For a complete
review of this material see Leadbetter et al. (1983) and de Haan and Ferreira (2006) for
mathematical accounts and Beirlant et al. (2004) for more statistical treatments.

2.1 Asymptotic Model Formulation

The classical extreme value theory (EVT) studies the asymptotic derivations of the

distributions of the maxima from a sequence of random variables, focusing on the inferences
from the tail estimation where extreme events can be extrapolated with small probability. Let
{X1,...,X,,} denote a sequence of independent random variables, with a common cumulative
distribution function (cdf) H(x). The distribution function for the maxima of the sequence
M, = max(Xy,X,,...,X,) is easily derived as follows,
Pr{M,, < x} = Pr{X; < x}-Pr{X, <x} - Pr{X,, <x}=HX)" asn — oo. (2.1)
Since extremes occur in the upper or lower tails of a distribution, it is important to characterize
the tail behavior of the distribution H(x). For this, one needs to consider the asymptotic
behavior of M,, and how this is related to the distribution function H (x) near the end points of
the tails as —» oo .

As pointed out by Coles (2001) and Embrechts et al. (1997), the disadvantage of M,,
in its current form (relation 2.1) is that its distribution function will degenerate to a point mass

on the right end point x, = sup{x € R: H(x) < 1}, or M,, b X4 asn — oo, This provides no
further information regarding the asymptotic distribution of M,,. The solution to this problem
is to normalize the maximum. By choosing an appropriate sequence of normalizing constants
{a, > 0} and {b,, € R}, a linear transformation of M,, can be found which stabilizes the
location b,, and scale a,, of M,, as n increases, such that

Pr{*=2 < x} = H™(@px + by) = F(x) (2.2)
where F (x) is a non-degenerate distribution function. One of the key results in classical extreme
value theory is that there are only three possible limiting distributions F(x) for the normalized
maximum. This result originally derived by Fisher and Tippett (1928) and later by Gnedenko
(1943), is presented in the Fisher-Tippett Theorem, also referred to as the Extremal Types
Theorem.

Theorem 2.1 (Fisher-Tippett Theorem)

Having an i.i.d sequence {X,,} = X1, X,,..., X,, of a random sample from a population with
cdf H(x), then, for appropriately defined normalizing sequences of constants {a,, > 0} and
{b,} suchthatasn — o
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Pr[(Mn - bn)/an < x] - F(x), (23)

where F(x) is a non-degenerate cdf, then F(x) belongs to one of the following three families
of distributions:

F;(x) = exp [—exp( ( ;b)>], —oo<x <o, a>0, (2.4)

Fyy(x) = {exp [— (%)_C], x>b, a>0 ¢c>0 (2.5)
0, x<b,a>0,c>0,

and

Fm(x):{exp{ [ ( ]} x<ba>0c>0 2.6)
1, x=2b,a>0,c>0

In other words, the above result states that the normalized maximum M,, converges in
distribution to a random variable following one of three possible cdf’s shown in the above
relations. The distribution functions F (x) as presented in the Fisher-Tippett Theorem are called
the extreme value (EV) distributions and are also commonly referred to as the Fisher-Tippet
type | (FT-1 or Gumbel class of distributions), type Il (FT-II or Fréchet class of distributions)
and type I (FT-H1 or reverse Weibull class of distributions) respectively. The Fisher-Tippett
Theorem has one major implication, i.e., regardless of the distribution function H(x), the
extreme value distributions are the only possible limit distributions for a maximum for which
the scale and the location have been stabilized. Analytical proof of the Fisher-Tippett Theorem
is provided in Embrechtset al. (1997) and Leadbetter et al. (1983).

2.2 The Generalized Extreme Value Distribution

The three EV distributions can be combined into a single class of distribution known
as the Generalized Extreme Value (GEV) distribution which is attributed to Von Mises (1954)
and Jenkinson (1955). Specifically, the following theorem holds:

Theorem 2.2 (Generalised Extreme Value Distribution GEV). Let X4, X5, ..., X,, be a sequence
of i.i.d random variables arising from a non-degenerate distribution function H(x). Then, if
there exist sequences of constants a,, > 0 and b,,, such that, as n — oo, Theorem 2.1 holds for
some non-degenerate distribution function F(x), then F is a member of the GEV (y, g, &) class
of distributions given by

F(x) = exp {— [1 +¢ (%)]_1/5}, —0 < x < ® (2.7)

where the support is defined by 1 + &£(x — u)/o > 0 and the parameters satisfy —co < u < oo,
o>0and —o < § < oo,

The quantities u, o and & represent the location, scale and shape parameters for the GEV
distribution. The Fréchet class of distributions is derived when ¢ > 0 and settingé = 1/a, 0 =
b/a and u = a + b. The reverse Weibull class of distributions is derived when ¢ < 0, and
setting £ = —1/a, 0 = b/a and u = a — b. Finally, the Gumbel class of distributions is
derived when & = 0 and is interpreted as the limit £ — 0 with 0 = b and u = a, which results
in the following expression
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F(x) = exp [—exp (%)], —0<x <o (2.8)

2.2.1 GEV properties for & # 0

The shape parameter ¢ affects the tail behavior of the GEV distribution. Considering

-\~ 1/¢
& > 0, the distribution is skewed to the right and the support 1 + & (%) > 0 is bounded
to the left with x > u — % When & < 0, the distribution is skewed to the left and the support of

GEV is bounded to the right with x < pu — % Differentiating the GEV distribution, yields the
probability density function (pdf)

por = ewp (=L £ ) v (22)] € es)

—n\"1/¢
where1+§(¥) >0,—0<pu<0,0>0 —00<E< 0o,
The characteristic function, see (Appendix A), determines the behavior and properties

of the probability distribution of a random variable X. Considering the GEV pdf, it is derived,
Muraleedharanet all. (2007):

Px(t) = E[exp(itX)] = [27% exp(itx) f (x; p, 0, §)dx (2.10)
and substituting correspondingly, yields

_(ita.)‘r'+1

. . 00 r(1-(m+1)3$)
9x(8) = exp(itw) [exp(=ita /) = Eio = — Yhoo(-D)"Cr 2] (2.11)

for=0,1,2,..., where C} = n,(:in), and '(w) = [” y“~exp(—y)dy, (see Appendix B for

the Gamma function and derivatives).

The first three moments of the GEV distribution result from the moment generating
function (MGF),

dn
M{P(0) = E(X™) = [F20] | (2.12)

where from differentiating correspondingly the characteristic function it is easily obtained:

MP0) = EX) = u—F+5T(1—9) (2.13)
MP(0) = E(x?) = ‘g—j(l —2I(1— &) + (1 -2¢)) — Z#TG (1-TA-9)+u®  (214)
M(3) _ 3y _ o’

2(0) = E(X3) = —5—3(1 —3T(1—&)+3r(1—28) —-T(1-38))+
+ 3?‘2’2 (1-2r(1—¢& +r(-29)- % (1-TA-9)+ud (2.15)

The first moment only exists when & < 1, the second moment only when ¢ < 1/2 and the third
moment only when & < 1/3. Therefore, if ¢ < 0 the GEV distribution consists of finite
moments and if £ > 0 the GEV distribution has finite moments of order less than1/¢.
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Considering g, = I'(1 — k&),k = 1,2,3, the theoretical mean, variance and skewness for the
GEV distribution yields respectively:

(1) — —y_2.C
mean(X) = {MX O =EQ0) =u 3 + g9 §#0¢<1 , (2.16)
o) &E>1
Var(H) — {E[XZ] - EXD? =Flo -9} §#05<1/2 217
o0 &E=>1/2
and
Skewness(X) = E[(X - E[XD?]  E[X?]-3E[X]-Var(X) — (E[X])® _
Y T EIX—EXDTD2 - Var()”? B
= sign(¢) [—g3_3glg”§/22g %] = Jsign(®) [% §#0.8<1/3 (2.18)
(92-9%) - £>1/3
The median and the mode of the GEV distribution yield respectively
median(X) = {u + % [n2)~¢—1], €+#0,and (2.19)
mode(X) = {u +3la+9* 1] =0 (2.20)

2.2.2 GEV Properties for & - 0

The distribution function for the Gumbel is obtained by considering the limit of GEV
as & - 0, %in(l)F(x;u, 0,§), leading to F(x;u,o) as shown previously. Differentiating with

respect to x, yields the pdf

) =Lexp [—exp - (%)” exp [~ (22)] 2.21)

g

In order to find the characteristic function, the Gumbel random variableXis first transformed
into a standard Gumbel random variable using Z = % The density of Z is then given by

f(z) = exp(—exp(—z))exp(—z), for—oo < z < oo, (2.22)
The characteristic function of Z yields:

9z(t) = E[e"?] = [ eltZe=¢" e 2dz = [ “uT"e ¥du =T(1 —it), i = V—1.
Consequently, the characteristic function of variable X = u + Zo is provided as follows:
px(t) = E[e"*] = e T'(1 — ito).

The first three moments of the variableXof the Gumbell type | distribution, result from the
moment generating function (MGF),

10



Standard modelling of Univariate Extremes

dn
MP©) = E(xm = [£29] (2.23)

differentiating correspondingly the characteristic function @ (t) in (2.23) as follow:

(Do — _ Y —

My (0) = E(X) = ul'(1) —ol'(1) = p + 0y,

M (©) = E(X?) = g21(1) = 2407’ (1) + 01" (1) = (4 + 0y + 025, (2.24)
lM,(f)(O) = E(X?) = 43T (1) — 30u2I"(1) + 3p0?I"'(1) — 031" (1),

where y =-I'(1) = —fooo e *In(x)dx =0.5772156649... is Euler’s constant, and

approximationsI'(1) = 1,{(2) = %2, I'"(1) =y?+7(2),and I'"'(1) = —2¢(3) — 3y¢(2) —

e

The theoretical mean, variance and skewness for the Gumbel distribution yields respectively:

(mean(X) = M,((l)(O) =EX) =u+oy,

2
Var(X) = E[X?] - (E[X])? = 022, (225)
_ E[(x-E[xD?] _ E[X3]-3E[X]Var(O)-(E[XD? _ 12v6{(3)
lSkewness(X) = EIX-EXD2DI? (var(x))*? oo

Moreover, the median and the mode of the Gumbel distribution yield respectively
median(X) = u — a(ln(an)), (2.26)
mode(X) = pu.

2.2.3 Return Levels of the Block Maxima

The limiting distribution form of the normalized maxima as presented in Theorem 2.2, points
out a probability model for the distribution of (BM). The maxima are considered as a sequence
of single maxima values corresponding each to a specific block of time. Blocks are generally
considered of equal size, e.g. annual maxima, monthly maxima etc., satisfying the asymptotic
properties of Theorem 2.2, through the trade-off between bias and variance, i.e. small blocks
increase the bias, whereas large blocks result in large estimation variance. The BM approach
presumes that the observed sequence of n independent and identically distributed maxima
X1,X2,..., Xy 1S modelled by the GEV distribution. Estimates of extreme quantiles of the BM
distribution are commonly used in EVA for inference, providing the henceforth definition.

Definition 2.1. Assuming p € (0,1) and F(x) a distribution function, then the level x,, for
which F(xp) = 1 — p, is defined as the return level with the associated return period of 1/p.

If F (x) belongs within the class of GEV(u, g, £), then estimates of the extreme quantiles (design
values) for the GEV distribution are provided through the following relation:

n—{1—[-logl —pI~¢} ¢ =0,

(2.27)
p — olog[—log(1 —p)], §=0.

Xp (1, 0,§) ={

11
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The level x,, is expected to be exceeded on average once in 1/p blocks. From the property of
a parameter estimator (see subsequent Section), it follows that the parameter estimates of the
return levels are given by £, = x,(, 8, ).

2.3 Parameter estimation methods

In this section, the following methods for the estimation of the parameters of the GEV
distribution are presented: the ordinary moments method, the probability weighted moments
method, the L-moments methods according to Hosking and according to Wang, the maximum
likelihood method, the maximum product spacings method, the quantile least squares method,
the elemental percentile method, the method based on the principle of maximum entropy and
the maximum entropy parameter space expansion method. All methods are also analytically
studied in (Soukissian and Tsalis, 2015). For reasons of simplicity, we will frequently denote
by f(x;0) any distribution function with parameter(s) @, while, specifically for the GEV
distribution function, @ = (&, g, u). Descriptions for some of the above mentioned estimation
methods for the GEV case can be found in Castillo et al. (2005), Kotz and Nadarajah (2000)
and a variety of graphical methods for model selection can be also found therein.

For the most well-known under-examination estimation methods (maximum likelihood,
ordinary moments, L-moments and least-squares methods) a short description will be provided.
On the other hand, for the rather unknown or complicated estimation methods (principle of
maximum entropy, maximum product of spacings method and elemental percentile methods) a
more detailed presentation of the corresponding mathematical background will be given.
Additionally, the most popular framework vastly reported in the relative literature for stationary
POT exceedances, is the maximum likelihood method. Therefore, in this studyit will be
considered as the only parameter estimation method modelling exceedances under the POT
approach. Specifically, only the maximum likelihood method is theoretically efficient and
provides approximate normal distributions and approximate sample variances that can be used
to generate confidence bounds for estimations.

2.3.1 The maximum likelihood method

The likelihood function L(x4, x5, ..., X,; 0) is the joint density pdf evaluated at x4, x5, ... x,.
For the GEV distribution the logarithm of the likelihood function is given as:

l(u,0,8) = —nlogo — (1 + &)Xz, — =, exp(—z), & #0, (2.28)
where z; = %log (1458, (2.29)
and 1+ ¢ (*£4) > 0fori =1,2,...,n. (2.30)

For & = 0, GEV distribution simplifies to the Gumbel distribution and the corresponding log-
likelihood function is

L, 0) = —nlogo — Ty exp |~ (2#)] - Ziua [ (4] (231)

g g

Assuming that the log-likelihood function is differentiable, parameters &, &, fi, can be
estimated by maximizing the log-likelihood function respectively. No closed-form solution to

12
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the maximization problem is available; thus, it has to be solved numerically using nonlinear
optimization methods. It is noted in Hosking, (1985) and Coles and Dixon (1999) that for & >
—0.5 the MLE estimates have usual asymptotic properties, for —1 < ¢ < —0.5 MLE estimates
are obtainable but do not have standard asymptotic properties, for ¢ < —1 MLE estimates do
not exist and when & > 0.5 second and higher moments do not exist. The case where & < —0.5
is rarely encountered in practical applications in extremes leading to distributions with very
short bounded upper tail. It is also noted that the MLE method introduces negligible bias for
sample sizes from 30 up to 100. Furthermore, MLE and relation I(u, g, &) in the neighborhood
of & = 0 should be avoided. In general, for the modeling of random variables like wind speed
it is likely to obtain more often zero and negative shape parameter estimates rather than positive
(Jonathan and Ewans, 2013; Brabson and Palutikof, 2000; and Cheng E, Yeung C, 2002).

2.3.2 The Ordinary Moments method

The method of ordinary moments (will be referenced as OM from now on), was
developed to estimate parameters of linear hydrological models and was initially presented by
Pearson in 1894, see Pearson (1894) and Nash (1959). The basic assumption of the OM method
is that sample moments are good estimators of the corresponding population moments. Sample
moments are equated to corresponding population moments and the obtained equations are
solved for the unknown parameters of the distribution. Regarding the GEV distribution and
taking into account Equations (2.16), (2.17) and (2.18) we result to a system with three
unknowns (£, &, and j2), that is not susceptible to a closed form solution and should therefore
be solved numerically. Accounts for the OM method can be found in Wallis et al. (1974),
Madsen et al. (1997) and references cited therein.

2.3.3 The probability weighted moments method

Greenwood et al. (1979), introduced the method of Probability Weighted Moments
(called hereafter PWM) in hydrological applications; see also Hosking et al. (1985). For a
continuous random variable X with pdf f(x; @) and cdf F(x;0), the PWM estimators are
obtained by matching the population kt* weighted-moments with the corresponding weighted
sample moments. The PWM method for the GEV distribution was implemented in Hosking et
al. (1985) (%).

The general expression for the weighted moments of order r, s, t of a random variable X, is
given as follows, see Greenwood et al. (1979):

M(r,s,t) = E{X"[F(X; 0)]°[1 — F(X; 8)]}. (2.32)
For the special case r = 1, t = 0 the above relation is written as
Bs = M(1,5,0) = E[X{F(X;0)}] = folx(F)FSdF, s=012,.. (2.33)

Considering the GEV distribution, we obtain the following expression for f;,:

B = (1+s)1 [u —%(1 — (1 +5)r(1 — f))], £<1,and ¢ # 0. (2.34)

Furthermore, for s = 0,1,2, after rearrangement, we yield respectively the following equations:

(%) The expressions for the parameters of the GEV distribution according to the PWM method, are the same as those
obtained by the method of L-moments. For the sake of completeness though, we will present the theoretical
background of both methods.

13
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Bo=u—-{1-T-O} (2.35)

3B2—Bo (35_1)

2B1—Bo  (28-1)

(2.36)

21— o =FT(1 =) (2F - 1). (2.37)

For an ordered sample x;.,, < x5., <...< Xp., Of Size n, the general unbiased sample estimator
Ps,u of Bsis given as follows:

5 1 (G-1DG-2)-.(j-s)
Psu =1 ;l=1(n—1)(n—2)...(n—s) Xjn: (2.38)

The asymptotic normality of the above estimator for ¢ < 0.5 is proved in Hosking et al. (1985),
where it is also stated that the PWM estimators are superior to the maximum likelihood
estimators for small samples, see also Martins and Stedinger (2000).

Another simpler, but biased, sample estimator 35,3 for S,is suggested in Hosking et al. (1985)
as follows:

5 1
ﬁS,B = ;Z}l:l p}s;nle (239)

where pj.,, j = 1,2,...,n, is the sample (empirical) estimate of F(x), see Equation (D1) in
Appendix. For reasonable choices of p;.,,, the above estimator is a consistent estimator for f;.

Combining relation (2.38) or (2.39) for s =0,1,2 with relations (2.35), (2.36), (2.37),
respectively, we result to a system which can be solved with respect to &,  and /1. Accordingly,
equation (2.36) is written

3B2—Po _ (35-1)
2B1-Bo  (25-1)

(2.40)

This equation may be solved both numerically and by following the approximation estimate:

& =7.8590C + 2.9554C? , (2.41)
where
_ 2Pi=Bo _ log2
C =55 gy (2.42)

Having estimated &, parameters & and ji can be then easily obtained from equations (2.35) and
(2.37). Accounts of the PWM method can be found in Hosking (1986).

14
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2.3.4 The L-moments method according to Hosking

The method of L-moments, (LMH) was developed by Hosking (1986, 1990), and is
based on the order statistics theory. Since then, this method has become very popular for
characterization of probability distributions and parameter estimation. L-moments are linear
combinations of order statistics and can be expressed through probability weighted moments.
Analogously to the conventional moments, the L-moments of order one to three characterize
the location, scale, and skewness parameter,respectively.

For the GEV cdf, the first three L-moments are expressed as follows:

Ly = [} x(F)dF = p — §(1 —T(1-9)) = B, (2.43)
L, = [y x(F)2F — DdF = =7 (1 - 25)r(1 — §) = 28, — o, (2.44)
Ly=— <—2((11_‘23;)) =3)2(1-2)1(1 — §) = 68, — 6B, + o, (2.45)

The right-hand side equalities of equations (2.43), (2.44) and (2.45) have been obtained
taking into account relations (2.35), (2.36) and (2.37). Therefore, the results of the L-moments
method are the same as those of the PWM method. Furthermore, by using either the sample
unbiased estimators for the probability weighted moments g, (referred to as the L-Hosking
unbiased estimation method LMHy) or the corresponding sample biased estimators [?S,B
(referred to as the L-Hosking biased estimation method LMHg), the above system can be solved
numerically with respect to the parameters &, o and . Recently accounts of this method is
found in Hosking and Wallis, (1997).

2.3.5 The L-moments method according to Wang

The method of L-moments according to Wang (LMW), see Wang (1996), provides
direct estimations of the sample L-moments, using expressions without involving PWM and
considering all possible combinations. In this case, the first three sample L-moments are given
respectively as follows:

Li=(}) Sz (2.46)
=30 w6 247)
A I ) BTt [ G R (| O (248

Equating the above sample L-moments from equations (2.46), (2.47) and (2.48), with the
corresponding GEV L-moments of equations (2.43), (2.44), and (2.45), we result in a system
with unknowns the parameters of interest &, 8, i.
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2.3.6 The maximum product of spacings method

The method of maximum product of spacings (MPS) was first introduced for estimating
parameters in continuous distribution families in Cheng and Amin (1983), Ranneby (1984).
Since the ML estimators may fail to converge due to the restraints implied from the second
derivative of the log-likelihood, the MPS method can be considered instead. It is noted in Wong
and Li (2006) that although there are problems quite often arising with the use of ML, the MPS
method has been neglected in the extreme value analysis.

The general set-up of the MPS method is as follows: Let x;.,, < x5, < -+ < x5, D€ @ SEQUENCE
of ordered points. Define the spacing between the values of the distribution at two consecutive
ordered points, i.e.:

D;(0) = F(x;.; 0) — F(xj_1.n;0) = f;i_"l. f(x;0)dx,i=12,..,n+1, (2.49)
where x;.,, = —o0 and x,,41., = 0. It then follows immediately that the spacing’s sum to unity,
i.e.,
1D (8) =1, (2.50)
and that
D1(8) = F(x1.n; 0), Dy11(0) =1 — F(xp.n; 0). (2.51)

The MPS method estimates the appropriate value of 0, so that the product of probabilities of a
new observation is maximized between each two neighboring sample points. D;’s are as close
to each other as possible. We choose the parameter 8 so as to maximize the logarithm of the
geometric mean GM of the spacing’s, i.e.,

H(®) = log(GM) = log{IT2: Dy(0)}/ "™ =

1
— Y log[D;(8)], (2.52)
under the constraints for the parameters 0 of the distribution. The optimum MPS log-
estimator is given as:

Hope(8) = log . (2.53)

see also Ranneby (1984). From the above relation, it can be concluded that the basic advantage
of MPS method over the ML is that the log-likelihood function can go to positive infinity,
whereas the MPS log-estimator is always bounded above by log(1/(n + 1)). It may easily be
proved that the optimum maximum of GM is obtained only when all D;’s are equal to D; =
i/(n + 1). Taking into account relation (2.49) and the specific expression for the GEV pdf, we
obtain the following expression

Hope(§,0,1) = —= 4 og [T [exp(—(1+U)™Y/%)(1 + U~/ €+ 7 ax, (2.54)

n+1

where,
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U=¢(*£4)i=12,n+1. (2.55)

The parameters &, o and u are estimated by maximizing the above MPS log-estimator. Similarly
as before, there are not available closed-form solutions; therefore MPS estimators have to be
found numerically using nonlinear optimization methods.

2.3.7 The quantile least squares method

The method of quantile least squares (QLS) has been introduced in Castillo et al.
(1997). The basic principle of QLS method is to estimate the parameters of interest by
minimizing the sum of squares of the differences between the theoretical and the empirical
guantiles.

The sample quantile of the GEV distribution, see relation (2.27), may be estimated, by using
any appropriate plotting position (see Appendix C), as follows:

Xim = 1= {1 = (~log(pi)) | (2.56)

where p;.,, i = 1,2,...,nis the empirical estimate of the unknown cumulative distribution
function. The quantity which is to be minimized is the following:

Q = X [xim — %, ] (2.57)

This is achieved by partially differentiating (2.57) with respect to each parameter. Since no
closed-form solutions are available, the QLS estimators have to be estimated numerically using
nonlinear optimization methods. It is evident that for various plotting positions different results
will be obtained.

2.3.8 The elemental percentile method

The Elemental Percentile (EP) method has been introduced in Castillo and Hadi (1994)
and its estimators are based on order statistics. Specifically, the method consists in two steps:

1. The estimators are obtained by first equating the cdf evaluated at the observed order
statistics, to the corresponding percentile values, and then by using the resulting equations
to obtain initial estimates of the parameters.

2. These estimates are then combined in such a way to be statistically more efficient estimates
of the parameters.

Let x1., < X9., <...< X,,., be an ordered random sample drawn from the GEV distribution,
with corresponding quantile function x(F) = F~1(x; &, 0, 1). In the first step, let I = {i,j, 7}
be a set of three ordered indices i <j <r € (1,2,...,n). By considering an appropriate
plotting position for p;.,, as e.g., the one of equations (C1) or (C2) in the Appendix, and
equating the ordered sample values with the theoretical GEV quantiles for the three indices, we
obtain the following relations:

Xin = 1= 7 [1 = (~logpin)~*], (2.58)
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Xjn = 1= £[1 = (~logpjn) ], (259)

Xrm = H— % [1 - (_logpr:n)_f]- (2-60)

By eliminating u and o from the above equations, we obtain the ratio

-$_—¢ 3
Xjn~Xrm __ Cr _Cj 1_Ajr

Xin—Xrm C;g—Ci_f 1—A;€,

(2.61)

where C; = —log(p;.,) and 4;,- = % Equation (2.61) may be solved using the bisection method

and &; jr Is estimated as a function of the three observations x;.,,, x;.,, X7, Substituting & jr into
equations (2.59) and (2.60) we obtain:

~ E ir (= XintXrn)
Gijr = ”C_E?, (2.62)

and

_E..
aijr<1—Ci Ur)

Sijr

fijr = X + (2.63)
If the estimated parameters do not satisfy the appropriate conditions provided in Theorem 2.2
they are rejected. An analogous procedure can be followed for ¢ = 0.

At the second step, the above procedure is repeated by choosing all the possible combinations
I ={i,j,r}. As before, inconsistent estimates are rejected. The final estimates of &, 4, /i are
considered to be the corresponding medians of the estimated parameter samples, i.e.:

éupp = median(&,&,,..., &y), (2.64)
6MED = median(61l 62' ey 6N)1 (265)
.aMED = median(ﬂl, .ﬁZJ""ﬁN)' (266)

Instead of the median the least median of squares can be also used.

2.3.9 The concept of maximum entropy method

The parameter estimation method that is based on the concept of maximum entropy is probably
the most complicated and rather unknown method for the ocean and coastal engineering
communities. An analytic introduction to this method and the resulting relevant parameter
estimation methods is provided in the monograph of Singh (1998), which is considered as the
basic reference for this subsection.

The concept of entropy quantifies the uncertainty associated with a distribution function which
is employed for the description of a random variable. Shannon first, see Shannon (1948),
provided a measure of uncertainty connected with the pdf f(x; ©) of a random variable X,
defined as follows:
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H(f (;8)) = — [, f (x; )Inf (x; 0)dx, (2.67)
with
[7 £ (x; @)dx = 1. (2.68)

H(f(x; 6)) is called Shannon entropy functional and can be thought of as the mean value
Of—ln(f(x; 9)).
The principle of maximum entropy (POME), closely related to the concept of entropy, was

formulated by Jaynes (1982), who stated that “the minimally prejudiced assignment of
probabilities is that which maximizes the entropy subject to the given information”.

The principle of maximum entropy (POME) method

According to Jaynes (1982), the mathematical translation of the above statement is the
following, see also Singh (1998):

By defining N linearly independent constraints C;:
C; = ff yi()f()dx, i=12,..,N, (2.69)
where y;(x) are functions whose averages over f(x) are specified, the maximum of the

Shannon entropy functional (2.68) subject to the conditions implied from equation (2.69) is
given by the following distribution:

f(x) = exp[—ao — XiL1 aiyi (%], (2.70)

where a;, i = 0,1, ... N, are Lagrange multipliers determined from equations (2.69) and (2.70)
taking also into account the normalizing condition that f (x) must satisfy; see equation (2.68).
In this case, the value of the Shannon entropy functional is given as follows:

H(f(x;0)) = ao+ X a;C;, i =1,2,...,N. (2.71)
In order to estimate the parameters of the distribution, the following steps should be made:
I.  The “given information” should be defined through constraints, which are related to
the data sample,
Il.  The entropy, which is subject to the given information, should be maximized and
finally,
Ill.  The sought-for parameters should be related to the given information.
The available information from the sample is given by equation (2.69). Combining equations

(2.70) and the normalizing condition for f(x) in equation (2.68), we obtain the following zero-
th order Lagrange multiplier:

b
ao = log [ exp[~ TIL, aiyi]dx, (2.72)

It can be also shown that Lagrange multipliers are expressed by means of the constraints as
follows:
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d
—% =C;, (2.73)
and that
290 — Varly,(x)] and 222 = Cov[y;(x), y; (x)]. i # j (2.74)
da? Vi da;da; YilX),yj ! J: '

where Var(:) and Cov(-) denote variance and covariance respectively. In this way, f(x) in
equation (2.70) is unigquely defined.

If, now, a certain form of the pdf f(x) is available and the estimation of the parameters is the
task in hand, then (2.71) has to be maximized. For this, we differentiate partially with respect
to (N — 1) number of Lagrange multipliers, and to N numbered specified parameters directly,
ie.,

MUCEO) _ g j=172,... N-1, (2.75)
6ai
IO g i =12,...,N. (2.76)

Then, the parameter estimates are provided as the solutions of the (2N — 1) equations (2.75)
and (2.76).

Following the above discussion, let us consider the GEV distribution case and denote U =
%(x — w). According to Singh (1998), the GEV constraints in this case are the following:

Jf)dx =1, 2.77)
— [In[1 + Ulf (x)dx = —E[In(1 + U)], (2.78)
[[1+UI"Y3f(x)dx = E[1 + U]~ Y/4. (2.79)

The least-biased pdf based on the POME method will then take the following form:
f(x) = exp{—ay — ayIn[1 + U] — a,[1 + U]"¥/%}. (2.80)
Substituting equation (2.80) into (2.77) we obtain the zeroth Lagrange multiplier as follows:
ao = In [ exp{—a;In[1 + U] — a,[1 + U]"¥¢}dx. (2.81)
Taking under consideration the relations between Lagrange multipliers and constraints, we

obtain three (since the sought-for parameters are three) partial differentiate equations for the
zero Lagrange multiplier as follows:

3—2‘1’ = E[In{1 + U}] = —¢lna, — §¥(—&(a, + 1)), (2.82)
Z—Z;’ =E [{1 + U}_%] = —f—(a;:l), (2.83)
Zizg =Var [{1 + U}_%] = @, (2.84)
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where W(-) is the digamma function, defined as follows:

dlog[I'(w)]

LIJ(u) - du

(2.85)

Comparing equation (2.80) with the GEV pdf we obtain the following expressions for the
Lagrange multipliers:

a, = ——F and a, = 1. (286)

Using equation (2.86), the relations (2.82), (2.83) and (2.84) reduce to the following:

E[QA+U)Y¢] =1, (2.87)
E[In{1 + U}] = —&¥ (1), (2.88)
Var[{1+ U}y = 1. (2.89)

As before, no closed-form solutions for the above equations are available and therefore
nonlinear optimization methods should be used. An application of the POME method in
extreme wind speed analysis can be found in Deng et al. (2011).

A variant of the POME method is also analytically discussed. The method is called (maximum
entropy) parameter space expansion (MESE) method and its application for the GEV
distribution case is presented below.

The maximum entropy parameter-space expansion method

The GEV constraints for this case are the following:

Jf()dx =1, (2.90)
[EE 1+ Ulf Godx = E [F2In(1 + ) (2.91)
JOU+ U4 f()dx = E[1 + U2, (2.92)

The least-biased pdf based on parameter space expansion method takes the following form:
£+1
f(x) =exp {—ao —aqn[14+ U] § —a,[1+ U]‘l/f}. (2.93)
Following the same steps as before, using equation (2.93), equation (2.90) gives:

ag=Ino—[1+(—¢—-1)1 —ay)]lna, + InT([1 + (=& — 1)1 — ay)]). (2.94)

where T'(-) is the Gamma function. Substituting the above expression for a, into equation
(2.93), we obtain

f(x) = exp{—Ino + Klna, — Inl'[1 + (¢ — 1)(1 — a,)]

—a;In(1 + V)8 —q,[1 + U]71/4}
(2.95)
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The relation between Lagrange multipliers and parameters is obtained by comparing equation
(2.95) with the GEV pdf, from where we have

a, = 1 and a, = 1. (296)

The final GEV entropy function is obtained by taking the logarithm of equation (2.95) and
substituting into (2.68), i.e.:

H(f) = Ino — Klna, + lnF[(l +(—¢&-1)(1 - al))] +
+a,E [%111(1 + )| + a1+ U]7YE, (2.97)

The relation between parameters and constraints is obtained by taking partial derivatives of
equation (2.97) with respect to &, g, u, a,, a,and equate to zero, as we search for the maximum
GEV entropy function. Since no closed-form solutions are available, nonlinear optimization
methods should be used.

2.4 Confidence Intervals of the parameter estimates

Quantifying the precision of an estimator is usually made more explicit by calculating
the confidence interval. In this section, the following methods for the confidence bound
estimation of the parameters of the GEV and the GPD distribution (latter introduced in sub-
Section 3.2) are presented in short: the normal approximation to the likelihood, the bootstrap
method (parametric and non-parametric) and the pointwise approach.

2.4.1 The normal approximation of the maximum likelihood estimator

The maximum likelihood principle for parameter estimation is considered the standard
approach for approximations in terms of standard errors and confidence intervals. We restrict
the discussion to continuous random variables generated from an existing probability density
function. The framework is set for data {x,}= x1,x,,...,x, originated as independent
realizations of a random variable {X,} whose probability density function belongs to the
asymptotic forms of probability distributions of parameter 6 with density functions f(x; 6).

Definition 2.2 (multivariate normal distribution)

Based on the validity of the regularity conditions for a large dataset of size n, the standard
result using the maximum likelihood parameter estimation method derives that for the d-
dimensional model parameter 6, the maximum likelihood estimator @ has a limiting
multivariate normal distribution with mean 6, and variance-covariance matrix Vy, denoted

6 » MVN4(6y, Vs, ), if its joint density function has the form

f(8) =———exp{—3(8 —6,)TVo™'(6 — 60)}, 6 € R (2.98)

(2m)/2|v g,

where |V90| is the determinant of Vg = 15(80) 7. The “expected information matrix” which
measures the expected curvature of the log-likelihood surface is defined by
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[e11(6) - e1a(6)]

: (0
Ig(0) =], e;,i(0) f.’]() '

ed,1(9) ed,d(g)

(2.99)

with e, ;(6) = E{—

evaluated at 0 = 6.

a:;e'l(e)} and 1(0) = X7, log f(x;;0) is the log-likelihood function
ig€j

This definition infers that each of the marginal distributions is normal and that the complete
joint distribution is determined when the marginal distribution of the mean 6, and the variance-
covariance matrix at 8, are identified.

Since the true value of 6, is generally unknown, it is usual to approximate the terms of
I; with those of the “observed information matrix”, defined by

[ 02 92 -
_@1(9) ‘ml(‘”
62
: —2_10)
26,06,
lo(0) = 2 ! : (2.100)
: ~ 90,00, 1)
92 92
-_Wl(g) _6_951(9)

and evaluated at 6 = 8. For a general d-dimensional vector model of parameter 6 the inverse
of the information matrix is equivalent to the variance-covariance matrix. Hence, confidence
intervals for the parameters of the model, using the asymptotic normality of the MLEs, are
provided as follows:

~ ~\—1
6+ 74 /Io(e)jj : (2.101)

where 9j is the mle of the j — th estimated parameter, Z,, /, is the percentile point of the standard
normal distribution for constructing (1 — a)100% confidence interval and I, (é);jl is the j —

th diagonal component of the variance-covariance matrix of the maximum likelihood
estimator.

A generalization of the latter stated Definition 2.2 for a scalar function ¢ = g(6) is
considered as the delta method for obtaining confidence intervals for ¢ using the approximate
normality of ¢. Specifically, if the maximum likelihood estimator of ¢ is ¢ = g(8), then ¢ —
N(¢o,Vy) is the limiting multivariate normal distribution with mean ¢, and variance
¢
6_91’
operator evaluated at 8 = . For more details see, Casella and Berger (2002). Therefore, the
approximate normality of @ to estimate confidence intervals for the components of the d-
dimensional vector parameter @ is extendend to the approximate normality of ¢ to obtain
confidence intervals for the scalar functional of ¢.

Using the delta method for the confidence intervals of the return levels from the GEV
distribution, the variance of the estimated X, (see sub-Section 2.2.3) is approximated

Var(®,) = Vx,TVaVx,, where V, is the variance-covariane matrix of the parameters (4, 6, ¢)
and

T
covariance matrix V,, where Vy, = V" VyV¢ and Vo = [ ---,%] with T the transpose
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T
a7 = 22, 222 2
4 ou’ o’ 0¢

= [1, -1 (1 — (~log(1 - p))_f) ,0872 (1 — (~log(1 — p))_f) — o0& (—log(1 - p))_flog(—log(l - p))]

(2.102)
is evaluated at 8 = (4, 6, é’) with p the ploting position formula (see Appendix C).

T
6xp 6xp

Finally, if £ = 0 then prT = [a” ary;

= [1,—log(—log(1 — p))] evaluated at (4, 6).

2.4.2 The bootstrap method

The bootstrap method introduced by Efron (1979) is a resampling process of the N data
points (xq,+,xy). The method uses boot data Sets each containing N points obtained by
random (Monte Carlo) sampling of the original set of N points. During the Monte Carlo
sampling, the probability that a data point is picked is 1/N irrespective of whether it has been
picked before. (In the statistics literature this is called picking from a set “with replacement”).
Hence a given data point x;will, on average, appear once in each Monte Carlo-generated data
set, but may appear not at all, or twice, and so on. The probability that x;appears n;times is
close to a Poisson distribution with mean unity. The term “bootstrap” data sets denotes the
Monte Carlo-generated data sets.Various bootstrap methods have been reviewed by Tajvidi
(2003) for the construction of confidence intervals for the GEV and GPD distribution
parameters and quantiles. The procedure on resampling with replacement from the given
sample and calculating the required statistic from a large number of repeated samples from
which standard errors and Cls of the examined statistic can be determined, is defined as non-
parametric. The parametric version of the bootstrap is based on randomly generated samples
from a parametric model (distribution) fitted to the data. The latter version of the bootstrap is
preferred if a suitable model for the examined sample is known and if the data samples are
relatively short and the tail behavior is particularly important (Davison and Hinkley 1997). Both
cases are used in this analysis.

The results from Kysely (2008) pointed out that for small to moderate sample sizes the
nonparametric bootstrap should be interpreted with caution because it leads to confidence
intervals that are too narrow and underestimate the real uncertainties. It is admitted in general
that the parametric bootstrap should be preferred with caution whenever inferences are based
on small to moderate sample sizes (less or equal to 60) and a suitable bootstrap model for the
data is known, for applications to confidence intervals related to extremes in global and regional
climate model projections.

Parametric bootstrap

The parametric bootstrap method is summarized in the following steps for estimating the
confidence intervals of the extreme value parameters.

Step 1: Estimate the parameters (4, 6, ¢) of the GEV (see sub-Section 2.2.3) or the (6,¢,¢,)
of the GPD (see sub-Section 3.2.3) from the available dataset using one of the estimation
methods as described previously (e.g. MLE, LMOM).

Step 2: Draw a random sample of the same size as the dataset from the estimated parameters
in Step 1 and fit the Extreme Value Distribution (GEV or GPD) of interest to the random sample
and record the parameter estimates and/or return level(s). This is based on the assumption that
the original dataset is realization of a random sample from a distribution of a specific parametric

type.
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Step 3: Repeat step 2 for a large number of repetitions (999 or more).

Step 4: The (1-a)% level of confidence intervals of the parameters/return level(s) is estimated
by finding the (1 — a) quantiles from the large number of repeated samples. The alpha-level is
selected to a =0.05 in general providing the apparent proportion of samples for which the 95%
confidence intervals would fail to cover the examined parameters/return level(s) from the
replicate samples.

Non-Parametric bootstrap

The non-parametric or standard resampling bootstrap approach performs sample replications
without any prior knowledge of the distribution of the sampling data. In general, bootstraping
for deriving confidence bounds in the percentile concept (percentile bootstrap) is arguably the
simplest and most intuitive bootstrap interval approach. This approach is found in various
environmental applications (Davison and Hinkley, 1997; Ferro et al., 2005; Kharin and Zwiers,
2005). The 95% confidence intervals of the examined statistics are estimated from the large
number of repeated samples.

This bootstrap procedure formulates random samples with replacement from the
dataset and analyzes each sample the same way. For the Step 1 now, each observation is
selected separately at random from the original dataset without excluding the possibility that a
particular data point from the original data set could appear multiple times in a given bootstrap
sample. The number of elements in each bootstrap sample equals the number of elements in the
original data set. In addition, the previous Steps 2,3 and 4 are identical.

In the present bootstrap application, 999 bootstrap replicates were produced from
resampling with replacements from the given sample. Furthermore, the so called alpha-level
was selected to a =0.05 for which the 95% confidence intervals would fail to cover the
examined statistics from the generated samples.Moreover, Coles and Simiu (2003) proposed
an empirical correction of the bootstrap estimates, based on a bias correction to the bootstrap
parameter estimates, since there is a tendency of the bootstrap procedure to provide generally
shorter tails than the one from the original time series.Application of this bootstrap approach in
extreme wind speed prediction can be also found in (Naess and Clausen, 2001).

2.4.3 Pointwise confidence interval approach

This method returns confidence interval estimates of the underlining distribution or
related quantiles based on one or two order statistics from the Kolmogorov-Smirnov statistic
(Doksum and Sievers, 1976) of a given sample at given probabilities. Specifically, for the
sample quantile estimates confidence interval are defined as weighted averages of consequtive
order statistics. In general, the quantile of a distribution is defined as

q(p) = F'(p) =inflx: F(x) 2 p}, 0<p <1, (2.103)

where F(x) is the distribution function. Sample quantiles provide nonparametric estimators of
their population counterparts based on a set of independent observations {x;, ... x,,} from the
distribution F.

Definition 2.3 (sample quantiles)
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Denoting {x(l), ...,x(n)} the order statistics of {x,,...x,} and §;(p) the sample quantiles of

specific type (see the gquantile algorithms discussed in Hyndman and Fan (1996), then it is
defined

Gi(p) = (L —y)xg) + ¥x(+1) (2.104)

j—-m+1

where jom <p< , xj is the j -th order statistic, n the sample size, y is a function defined
n n J

at0 <y < 1withy = np + m —j and m € Ris a constant determined by the sample quantile
type. The function §;(p) is defined as a continuous function of pand the sample quantiles are
obtained equivalently by linear interpolation between the points (G~ (p), x()) Where x is
the k -th order statistic and G the empirical distribution function.

Various rules have been suggested for the plotting position formulae p, (see Appendix C). In

practice, each plotting rule corresponds to a sample quantile definition by defining §;(py) =

X(x) and using linear interpolation for p # p,. The specific expression for p, used is p, = E

with m = 1 — p. The lower and upper confidence bands are about the sorted and interpolated
Xy Values using (G~ (py — K/VM), x(3y'¢") for the lower and (G‘l(pk + K/NM), xf‘k‘;p")
for the upper respectively where K = 1.36 and M = myn/m,, + n with m,, the length of x .

2.5 Non stationary sequences

The majority of studies in extreme winds are analyzed under the assumption of
stationarity. As a remark, Lins and Cohn (2011) and Koutsoyiannis and Montanari (2007)
supported the stationarity of climate despite the detection of non-stationarity of climate change.
However, recent studies have pointed out that extremes of weather and climate variables have
been changing in time and that change is considered to obtain in the future (Zwiers and Kharin
1998; Houghton et al. 2001; Solomon et al. 2007; Yan and Jones 2008). Therefore, it is
necessary to examine if trends or any type of non-stationarity are present in data and to adapt
if possible an analytical unified method in such a way that justifies non-stationarities. This
approach in extreme studies, considers estimations in design values in a more realistic way
under the assumption of a time changing climate (Chavez-Demoulin and Davison, 2012;
Jonathan et al., 2014).

If the underlying process is non-stationary, then the parameters of the extreme value
distribution function can be considered as time-dependent functions, Renard et al. (2013),
Gilleland and Katz (2011), Katz (2010), Cooley (2009), which in turn implies that all the
properties of the distribution vary with time (Meehl et al. (2000); Butler et al., (2007); Kysely
et al., (2010); Northrop and Jonathan, (2011)). In the literature, studies have been made
introducing covariates in the parameters of the extreme value distribution (Wang et al. 2004;
Kharin and Zwiers 2005). Coles (2001) investigated annual maximum sea level data at
Fremantle, where only the location parameter was set as time-dependent with a linear model.
In addition, the location parameter was linearly related to the Southern Oscillation Index (SOI).
Katz et al. (2002) introduced a non-stationary GEV model, and suggested a linear model for
the location and a log-transformed model for the scale parameter, whereas the shape parameter
was kept constant. Mendez et al. (2007) published a wide application of a time-dependent GEV
model to monthly extreme sea levels. They used nonlinear time-dependent models for all three
parameters containing seasonal and long-term effects. Hundecha et al. (2008) analyzed changes
in extreme annual wind speeds in Canada with a non-stationary GEV, where location and scale
parameters are considered time-dependent.

The modeling of the time variation of the parameters have found various applications
also in hydrology, where the linear or log-linear models are usually preferred (Begueria et al.,
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2011; Villarini et al., 2010; Villarini et al., 2009; Cunderlik and Burn, 2003; Towler et al., 2010;
Lima et al., 2015). It is most common to assume the location parameter u as a linear function
of time, holding constant values on scale o and shape parameter ¢. The main reason is that
reliable estimates of scale and shape parameter require long-term observations which are not
always available. The main scope of the above studies was to model one or more of the
parameters as linear or nonlinear functions of the covariates on which the data show
dependence. Comparing different methods of detecting trends in extreme values, Zhang et al.
(2004 b) came to a conclusion that methods that are based on modeling trends in the parameters
of the distribution of the extremes are evident methods of detecting significant trends in the
extremes. The benefit of this approach is that the original data no longer have to be de-trended
and can be used directly.

2.5.1 Likelihood

If the time series is assumed to be non-stationary, then the limiting distribution function
is not considered as GEV distributed or any other family. No strong theories of extreme values
exist in this area. However we can use GEV distribution as a template and inserting time
dependent parameters of the form:

G(x; 1 (6), a (1), (D). (2.105)

For a non-stationary process, the associated GEV parameters 6 = (u,0,&) are
considered time-dependent and the properties of the distribution would vary with time. Each of
the GEV distribution parameters are expressed as a function of time ¢ (for the annual maxima
approach, t is the index u(t), a(t), £ (t) of the year). In this way, time is included as a covariate.
The likelihood function takes now the following form:

L(x1, %z, ..., Xn; (), 0(£), E(®)) = [T=q 9 (xe; u(0), 0 (1), (D)), (2.106)

where g(xt; u(t),o(t), g’(t)) is the GEV time dependent probability density function evaluated
at x;. Usually, the shape parameter ¢ is considered time independent in order to avoid numerical
conflicts, due to its importance concerning the distribution.

Consequently, for a time dependent model the log-likelihood function for & # 0 has
the following form:

1061, 2,205 0) = = Sy (1n00) + (SE2) 1 + £ O2(0)] + [1 + £ (92(0] 70,
(2.107)
_EO(rmn®) _ .
where 1 + &é(t)z(t) > 0and z(t) = —————=withindext = 1,2,...,n denoting the number

a(t)
of the BM (xy, x5,...,xp).
In addition, the confidence intervals for the parameters of the model are estimated using
the asymptotic normality of the MLE (see sub-Section 2.4.1).

2.5.2 Testing for non-stationarity

To test whether the common assumption of stationarity is violated two classes of tests
are considered, the trend and unit root tests. The main idea of the non-stationarity tests (see
Appendix F) is to analyze the statistical differences of different data group of the entire time
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series (e.g. Chen and Rao, 2002). Specifically, trend tests such as Mann-Kendall (MK) non-
parametric trend test (Kendall 1976; Mann 1945) and the Cox Stuart (CS) trend test (Cox and
Stuart 1955), are applied to examine whether the values of a series have a general increase or
decrease with the time increase. The choice of the significance level is the default value
(a=0.05) in this setting.

Unit root tests are implemented to determine whether the mean values and variances of
a series vary with time (e.g., see Razmi et al., 2017). If the observed variations in a certain
parameter of different data group are found to be significant, the time series is regarded as
nonstationary. The unit root tests in this setting are referred as the augmented Dickey-Fuller
(ADF) unit root test modified by Said and Dickey (1984) and the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) stationarity test by Kwiatkowski et al. (1992). The first test seeks for the
presence of a unit root in the series (difference stationarity®), while the second tests for the
stationarity around a fixed level (level stationarity) or the stationarity around a deterministic
trend (trend stationarity) as a complement unit root test such as the ADF test. In this assessment,
we considered the level stationarity KPSS test whether the data show stationarity around a fixed
level or not and the ADF test whether there is a unit root present or not. The choice of the
significance level in this setting is the default value a=0.05 for each examined station and test
respectively.

2.5.4 Model selection criteria

There are various combinations modelling the parameters as a function of time and the
guestion is which model represents effectively the extremes in wind speed when the stationarity
of the process is violated. Simple tests of choosing one model against another is the likelihood
ratio test (Deviance Statistic).

Deviance Statistic

The test is based on a comparison of maximized likelihoods for nested models. We
consider two models, M, and M, such that M, € M;. The maximized likelihood under the
smaller model (stationary model) M, is maxgem, L(x; 6) = L(x; Oy, ), where 8y, refers to the
MLE of 6 under model M,. The maximized likelihood under the larger model (non-stationary
model) Mj, is maxgep, L(x; 6) = L(x; By, ), where 8, refers to the MLE of  under model
M;. The ratio of these two quantities, namely

_ L(X;@MO)
L(X;@Ml),

A

(2.108)

is considered to vary between 0 < A < 1. Likelihoods are non-negative and the likelihood of
the smaller model can’t exceed that of the larger model because it is nested on it. Values close
to 0 indicate that the smaller model is not acceptable, compared to the larger model, because it
would correspond to unlikely observed data. Values close to 1 indicate that the smaller model
is acceptable over the large model. The likelihood ratio test statistic (LRT) is defined as

—2In(2) = 2 (InL(x; By, ) = nL(x; By,) ) = 2 (10; Bpr,) — 1(x: B, )). (2.109)

where I(x; 8y, ) and I(x; By, ) are the maximized log likelihood functions of the non-stationary
and stationary model respectively.

(%) Difference stationarity of a process is equivalent to a presence of a unit root. Differencing the reconstructed
higher-order autoregressive process of a mixture of deterministic and stochastic trend yields a stationary process
when a unit root is present.
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Asymptotically, for large samples sizes, n — oo, Wilks theorem (Wilks 1938) imposes
that the test statistic (LRT) or deviance statistic, is distributed as a chi-squared random variable
xZ, with degrees of freedom k equal to the difference in the number of parameters to be
estimated between the two models yielding

~2In(2) = 2 (1(x; B, ) — (3 By,) ) ~x2. (2.110)

In conclusion, model M, is to be rejected over model M; when the deviance statistic is
large enough by a test at the a — level of significance as follows:

2(1(x0,) = 1(x; B, ) ) > ca (2.111)
where c, is considered the (1 — a) quantile of the chi-squared x? distribution.

Akaike Information Criterion (AIC)

AIC is not a hypothesis test, does not imply a test at the a — level of significance.
Instead, the AIC focuses on the strength of evidence and gives a measure of uncertainty for
each model. Akaike (1973) cited by Burnham and Anderson (2002) proposed using Kullback-
Leibler information for model selection. He established a relationship between the maximum
log likelihood and the Kullback-Leibler information. In particularly, he developed an
information criterion to estimate the Kullback-Leibler information. Akaike’s information
criterion (AIC) is defined as follows:

AlCodel = _ZI(X; émodel) + 2Pmodel, (2.112)

where pmoder 1S the number of estimated parameters included in the model and l(x; émodel) is
the maximized log likelihood for each model. The model that explains the data variability
sufficiently well, is the one among all examined models having the lowest AIC.In this way, we
consider the model which minimizes the loss of information.

For small samples we use the corrected AIC (denoted AlCc), which includes a small-
sample correction. If n is the sample size, the corrected AIC criteria is defined as follows:

AICrCr?gdel = _Zl(x; émodel) + 2Pmodel + meodel(pmodel"'l), (2.113)

N—=Pmodel—1

where the third term is the correction term. Further discussion of the formula with examples is
given by Konishi and Kitagawa (2008).

Bayesian Information Criterion (BIC)

In statistics, the Bayesian information criterion (BIC) or Schwarz criterion (Schwarz,
1978) (also SBC, SBIC) is a criterion for model selection among an examined set of models;
the model with the lowest BIC is preferred. BIC is closely related to the Akaike information
criterion (AIC) and is given as follows:

BICiodel = _ZZ(x; émodel) + Pmodelln(n), (2.114)

where pmoder denotes the number of estimated parameters included in the model, n is the
number of data observations and I(x; 8,04e1) is the maximized log likelihood for each model.
Bayesian information criterion generally penalizes more complex models more strongly than
does the AIC, but care must be given in models with values close to the minimum.
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Chapter 3

Threshold Excesses

A crucial problem often arising in climatological and hydrological extreme assessments
is the scarcity of long and complete time series. Regarding wind speed time records, many
authors have outlined a minimum annual length of 10 years to be regarded as the absolute
minimum for a comprehensive Extreme Value Analysis (EVA) based on the Annual-Block
Maximum (BM) sampling approach (Cook, 1985; Abildet al., 1992; Coles and Walshaw,
1994). Additional studies on BM outlineda minimum annual length of 13 years for a
successfully fit to the Generalized Extreme Value (GEV) distribution as proposed by Brabson
and Palutikof (2000). However, samples with a limited amount of extremes often fail to provide
efficient quantile estimates for large return periods. When only few extremes are available for
analysis re-sampling procedures of the dataset is introduced. The drawback from the use of
these procedures that often arise is the possible effect to the approximate independent
limitations of the re-sample. In this Section, a short review of the annually r-largest order
statistics concept is introduced as the classical approach for re-sampling more maxima within
a year block. In addition, the well proposed threshold models from the relevant literarure is also
reviewed as the basic structure for re-sampling. Inevitable, all re-samples will be penalized by
a sort of dependency, where further examination of the excesses is mandatory for the i.i.d
limitations.

Other models are also examined and discussed in this Section where they aim to
initially cluster the events from the time series and then de-cluster selecting the maximum value
of each cluster respectively. However, the issue of strong debate is if the de-cluster models
consider the independency limitations that are mandatory between adjacent clusters. From a
review of the most considerable de-clustering models found and standout in the relevant
literature that sample approximately independent events, are the Block and Runs (Smith and
Weissman, 1994), the improved Method of Independent Storms (MIS) (Harris, 1999), the
filtering de-clustering approach (Fawcett and Walshaw, 2007), the Standard Storm length
(SSL) (Tawn, 1988), the Separation time approach by (Walshaw, 1994; Morton et al., 1997),
and the physical De-Clustering Algorithm (DeCA model) (Soukissian et al., 2006; Soukissian
and Kalantzi, 2009; Bernardara et al., 2014; Arns et al., 2013; Vanem, 2011; Oikonomou et al.,
2020).

3.1 Model Generalization from r-largest Order Statistics

The inference from Point Processes (PP) will generalize the BM approach, providing
the likelihood of an inhomogeneous PP for the r largest extremes in each block. The likelihood
of a non-homogeneous PP is proportional to the likelihood for the " largest order maxima.
The general form of the non-homogeneous Poisson Process likelihood is defined as follows:

L{[tl,tz]x[un,oo)}(xi EJ g, ‘Ll) = exp[_A(un; fl g, )u)] ' {21 (A(x(l), fl g, H))l (31)

and proportional to the likelihood for the " largest ordered maxima that exceed over a high
threshold level u,,,
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(e ("aff“)]_l/f_l), ©2)

where —o < u<oo, >0, —o<&<oandx® >x@ > . >x®O > >x0 =y,

« exp [—(tz —t1) [1 +¢& (%)]_1/f

with 1 + E(x(i) - ,u)/a > 0fori =1,23,...,r. Inaddition, A(u,; &, 0, 1) and A(x(r); g, a,u)
are defined as the intensity measure and the occurrence rate of points per unit region or intensity
density function respectively for the rt" largest ordered maxima in the region {[t;,t,] x
[u,, )}, where [t;,t,] = [0,1], (Smith, 1986). The Theorem H.1 (stated in Appendix H),
unifies the PP representation for Extremes due to Pickands (1971). The statistical modeling of
the r*" largest ordered maxima and the corresponding log likelihood over all available m blocks
is analytically presented in Appendix H. The rt" largest order statistic model gives a likelihood
whose parameters correspond to those of the GEV of BM, but utilizes more information from
the available dataset.

At this point it is important to highlight the unique relation between the point process
characterization of extremes and the threshold excess model. Inference is made in both model
approaches, since the likelihood expression stated in Equation (3.2) for the r-th largest ordered
maxima that exceed over a high threshold level u,, is proportional equal to the likelihood of the
limiting joint distribution function for the r largest order statistics stated in Equation H.8

(Appendix H). Working directly with the full joint distribution of the M,(f) exceedances stated
in Equation (3.2) guarantees a more robust expression for the exceedances.

3.2 Peak Over Threshold (POT) approach

Pickands (1975) and Balkema & de Haan (1974) showed that if there is a non-
degenerate limiting distribution for appropriately linearly rescaled excesses of a sequence of
i.i.d distributed observations above a high enough threshold, then the limiting distribution of
the excesses, will be assigned as the Generalized Pareto Distribution (GPD).

Theorem 3.1 (Pickands-Balkema-de Haan Theorem). Assuming Y = X — u for X > u and that
for n random variables X;, X,, ..., X,, the conditions of the Fisher-Tippett-Gnedenko Theorem
hold (Theorem 2.1), the distribution function P(X < y) of the exceedances y = (x — u)| x>u,
considering u is high enough, can be approximated by the GPD i.e.,

1

-1/
G(y)=1—[1+§ fory >0, (3.3)

where the support is defined by 1 + &y /6 > 0.

The scale parameter is defined as 6 = &(u — 1) and supported for & > 0, while the
shape parameter ¢ is supported for—oo < & < oo. The GPD distribution is generalized because
it assumes different distributions in the same sense as the GEV when & undertakes the following
values: if § < 0 and 0 <y < —4/¢&, the GPD distribution has a finite right end point and is
considered (bounded), following the Uniform or the Beta class of distributions. If ¢ > 0 and
y = 0 the distribution has an infinite right end point and is considered (unbounded) or heavy-
tailed, following the Pareto class of distributions. Finally, the case where & — 0, is interpreted
as the limiting case for GPD converging to the exponential class of distributions

G(y)=1—exp (— X), y > 0. (3.4)

c
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EVA establishes a link between the GEV and GPD distributions. If X is a random variable
arising from F and the limit of Theorem 2.1 holds, then for a large threshold the threshold
excess of the random variable X — u|X > u, converges in distribution within the GPD family
and vice versa. GEV parameterization can be obtained from the GPD under suitable conditions.
In particular, the shape parameter ¢ of the limiting GPD is equal to that of the corresponding
GEV distribution. Additionally, differentiating the GPD, yields the associated pdf

%(1+f§)_1_%, £#0

, (3.5)
fon(-2), =0

consideringy = 0ifé >0,and0 <y < —?when &<o.

3.2.1 Formulation of Pickands-Balkema-de Haan Theorem
Noting {Xy, ..., X,,} as a sequence of i.i.d random variables with a common cumulative

distribution function H(x), the distribution function of M, for appropriately defined
normalizing sequences of constants {a,, > 0} and {b,,} is obtained from Eq. (2.2) as follows:

Pr {M’;—_bn < x} = H"(apx + by).

n

Furthermore, using the classical asymptotic formulation in Theorem 2.1 such that as n — oo,
My, —b x—u\]~ /e
Pr{%gx}AF(x) =exp{— [1+€(T)] }
Equating the latter statements and using the Taylor expansion (%),
xX—U _1/5
H(a,x + b,)" = exp {— [1 + & (T)] }, (3.6)
where for large enough n, the derivation in (3.6) yields:
1 u—u _1/5
1— H(agu+by) ~ >[1+¢(E5)] 7. (3.7)
Similarly for y > 0,

1—H(a,(u+y)+b,) z%[l +§(“ﬂ#)]_l/f. (3.8)

Using the formulation from the conditional distribution, an extreme event is defined for y > 0
as follows:

1-Pr(Xsu+y) _ 1-H(ap(u+y)+by)
1-Pr(X<u) - 1-H(apu+by)

PriX >u+ylX>u) = (3.9)

Moreover, using the conditional probability law, yields:

(%) The Taylor expansion: log H(a,x + b,,) ~ —[1 — H(a,x + b,)].
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PriX>u+ylX>u)=PriX>y)=1-Pr(X <y). (3.10)

Substituting respectively all formulas stated from Equations (3.7) and (3.8) into the latter (3.9),
it is derived:

%[1+5(W+#)]_1/5_[0+€(u+y—u)]_1/5—[1 + f_y]_l/f
e R

The GPD is written in the following form using the conditional distribution stated in (3.10):

PriX>u+ylX>u)=

PriX <y) =GO =1-[1+ & e (3.12)

wherey >0, (1+¢y/6)>0and6 =0 + &(u — ).

3.2.2 Likelihood of the Threshold Exceedances

Assuming yy,¥2,...,Yn, and y; = (x; — w)| x>u @ sequence of n,, exceedances of a
high enough thresholdu, the joint density pdf will be assigned as L(yy,¥2,...,¥n; 6,&). The
corresponding log-likelihood function is derived as follows:

—n,logd — (1 + %) Z?;‘l log(l + f%) , €%0

~ 1 u _
—nylogé — =¥ i, £=0,

1(6,8) = (3.12)

where (1 + f%) >0 for i =1,2,...,n,, contrariwise [(&,&) = o. However, under the

provision that the & parameter characterizes the upper tail behavior of both the GEV and GPD,
the MLE estimator of the GPD follows the exact asymptotically normal properties as the GEV.
As a consequence, regularity conditions do not always exist similarly as in the GEV, e.g., see
Grimshaw (1993) and Tajvidi (2003). The MLE’s are denoted as & and &, providing local
maximum of the [(G, ). Similarly, no closed-form solution to the maximization problem is
available; thus, it has to be transcend numerically using nonlinear optimization methods.

3.2.3 Return Levels of the Threshold exceedances

The advantage of considering the Peak-Over-Threshold (POT) approach against the
classical BM, is that different but still large block size would affect the GEV parameters but
not those of the corresponding GPD distribution of threshold excesses. In addition, quantile
estimates for large return periods will be significant improved by the augmentation of the
available sample size. Parameter ¢ is invariant to block size, while calculations of & is
unperturbed by changes in u and a. The major disadvantage of considering the POT approach,
consists in the selection of the appropriate threshold value in order to safely provide a trade-off
between bias and variance. The suitable threshold will successfully verify that peaks of all
exceedances, meet the requirements of the i.i.d limitations.
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Similarly to the BM approach, evaluating return levels for the model of exceedances described
by the GPD with parameters (G,¢), the return level x,, that is exceeded on average once

every 1/p observations for the model of the POT exceedances assuming that x,, > u over a
suitable high threshold w, is given by

_furflGumi-1] g=0,

xp (6,8, Cu) = (3.13)
u + 6log(¢u/p), §{=0.

Moreover, (Coles, 2001) suggested that the probability of an exceedance of u denoted as ¢, =
Pr(X > u) follows the binomial distribution Bin(n,,), where n is the total number of

observations from the time series. Hence, a natural estimator of ¢, is {,, = n—: where n,, denotes
the number of exceedances. Estimates of the return levels are obtained by £, = x,,(6,¢,¢,).

3.2.4 Bound estimates of GPD based on the delta method

Standard errors and confidence intervals for the return levels x,, (4, ¢, ¢,,) of the GPD
distribution are obtained similar from the delta method based on the normal approximation of
the maximum likelihood estimator (see also sub-Section 2.4.1). Specifically, considering the
variance in the estimation of the ¢,, approximated by Var(¢,) = ¢,(1 — ,)/n, the variance
of the return level estimate is approximated in the form

Var(%,) =~ Vx, VaVx,,.

The variance-covariance matrix for (5, I3 fu) is identified as Vp and the transpose of the
differential operator of the return level is approximated

v T _ axp ax,, ax,,]T
Xpo = 8¢, 05’ 8¢

= |opfcs e {00t — 1} —5¢ 208 — 1} + 68 (%) log(py) |
(3.14)

and evaluated at 8 = (6,€,{,).

As a note, the delta method is arguable the most applied method of inference for return levels
in extremes.

3.3 Extremal Index

The discussion below is based partly on Leadbetter et al. (1983), a standard reference
to the literature on extremes of time series and random processes, and on Beirlant et al., (2004,
Ch. 10), which provides a more recent summary.

Definition 3.1 (the condition of D (u,))

A strictly stationary sequence {X;, X5, ..., X,}with marginal distributionH (x), satisfies the
D(uy) condition if for all iy < <iy<j;<-<jg withjy —ip>1 |Pr{x, <

Uy, ...,Xip < Up, Xj, S Uy, ...,ij < un} — Pr {Xil < Uy, ...,Xl-p < un} Pr {Xh <

34



Threshold Excesses

Un, o Xj, < un}| < a(n,l), where a(n,l) — 0 for some sequence [,, such that [,/n — 0 as

n — oo,

The D (u,,) condition in Definition 3.1 guarantees that rare events sufficiently separated
apart are approximately independent. More generally, for a sequence of thresholds u,, that
increase with the increase of n, the condition ensures that the maxima of dependent data to limit
to the GEV distribution. Thereby, maxima of stationary time series in the long range
dependence at extreme levels, follow the same distributional limit law as those of the
independent series.

Theorem 3.2 (maxima in the long range dependence)

Let {X;} be a stationary sequence with M,, = max(Xy, X5, ..., X;,) for which there exist
sequences of normalizing constants {a, > 0} and {b, € R} with a non-degenerate
distribution F(x) such that

Mp—by,
PT{a—n < X} - F(X),
then for n — o and the D(u,) condition holds with u,, = a,x + b,, for every real x, F(x)
follows the GEV distribution.

Related to the above conditions, it is important to understand the quantitative impact
of non-independent extremes on the estimations of extreme quantiles. The most common
measure of the effect of the short range dependence exhibited by the extremes of a process is
the extremal index 6, defined in the range 0 < 6 < 1. If the sequence {X;} is independent then
6 = 1. Moreover, the extremal index indicates the tendency of the extremes to occur in clusters.
The relation between the maxima of a dependent and of an independent sequence respectively
is summarized in the following theorem:

Theorem 3.3 (limit distribution in the long range dependence)

We denote two sequence of variables {X;} (stationary) and {X;} (independent) with the
same marginal distribution, setting their corresponding maxima as M,, = max(X;, X2,..., X,)
and M,, = max()?l,)?z, . Xn) respectively. If there exist sequences of normalizing constants
{a,, > 0} and {b,, € R} for the independent process such that

Pr {M’;—_b" < x} - F(x), for n — oo, then under suitable regularity conditions the stationary

n

sequence follow a non-degenerate distribution function F(x) subsequently,

Pr {M’;—_b" < x} — F(x) . For some constant (extremal index) 6 € (0,1], the effect of the
n

dependence in the stationary series is considered with the replacement by the limit distribution
followed F(x) = F(x)°?.

The parameters of the limit distribution are also strongly affected by the dependence in
the series, influencing only the location and scale parameters. Accordingly, if distribution of
the maxima M,, is GEV with parameters (u, o, §), then the distribution of M,, is also GEV but
with parameters (g, 0g, &) in the form g = p + %(65 —1),09 = 6%cand & = &.

Leadbetter (1983) notes the following connection between the cluster-size distribution

and the extremal index 6. Assuming the sample of size n is divided into blocks of length m,,,
then a cluster of high level exceedances is obtained as a set of observations above a given
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threshold u,, within a block given that there is at least one exceedance in that block. The cluster
size distributionis defined as (see Ancona-Navarrete & Tawn, 2000)

T, (5 Un, M) = Pr{Xi I(X; > w,) = [T I(X; > uy,) > 0}, forj = 1,...,m,, (3.15)

where I(.) is the indicator function. Therefore, the extremal index 6 is expressed as the
reciprocal of the limiting mean cluster size,
0~ = lim 37 jmy (j; tn, my,). (3.16)

n—-oo

Another characterization of 8 in terms of down-crossings in clusters of extremes is given by
O'Brien (1987) yielding

0 = Ai_r)r(}oPr{Xi < Uy, 2 <i<Il,|X; >uy,}, where l, = o(n). (3.17)

Summarizing, the exceedances from a stationary sequence occur in clusters. The
expected number of exceedances within each cluster is asymptotically unaffected by the
strength of the dependence. Therefore, an average of 1/6 exceedances must occur in each
cluster. The aforementioned characterizations define the extremal index setting the index 6 as
the key parameter when extending the limiting behavior of extremes from independent to
stationary sequences of some dependency.

3.3.1 Intervals Estimate

Investigating the point process of the exceedance times, Hsing et al. (1988) resulted
that the asymptotic distribution of the inter-exceedance times belongs to a one-dimensional
parametric family of distributions indexed by the extremal index. Recent studies from Ferro
and Segers (2003), yield estimation of the extremal index by equating theoretical moments of
the limiting distribution to their empirical counterparts. The observed inter-exceedance times
is denoted as T;, where i = 1,2,..,n,, — 1, yielding limiting argument of the estimated extremal
index (),

( 2(z i)
! (nu—1) X7 (T=1)(Ti-2)

ifmax{T;1<i<n,—1}>2
O(u) = (3.18)

2(ztTy
l(n(_lgg—”u-l)lrz if max{T;1<i<n,—1}<2
u i=1 i

The method is referred as ‘Intervals Estimate’ and in addition supports a bootstrap procedure
for obtaining confidence intervals on estimates of the cluster characteristics.

3.3.2 Return Levels based on the Extremal Index

Taking into account the dependency of extremes, evaluating return levels is also
interpreted as thex, return level that is exceeded on average at least once every 1/p
observations in the same context as previously defined Eq. (3.13). Considering that the GPD
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with parameters (&, ¢) is a suitable model for exceedances provided that x,, > u and & # 0
over a suitable high threshold u, then

u+Z[@o/p) -1, €#0,
u + 6log(¢,8/p), §=0.

A natural estimator of @ is obtained § = % (Hsing et al., 1988), where n,, denotes the

xp(6,8,8u) = (3.19)

number of exceedances and n. denotes the number of clusters obtained over the selected high
enough threshold. Other estimators of 6 and their model performance is found in (Smith and
Weissman, 1994; and Gomes, 1993). A latest approach of the generalization of the extremal
index estimator of Ferro and Segers (2003) for the extension to non-stationary random
sequences with periodic dependence structure is found in Auld and Papastathopoulos (2021).

In our analysis we considered the Extremal Index estimator from the Intervals Estimate
method by Ferro and Segers, (2003) for the identification of clusters.

3.4 Threshold selection

How should someone choose the threshold u? The choice of an appropriate threshold
requires a compromise between precision and bias. There are several technics of choosing an
appropriate value for threshold. High threshold reduces the bias in the extrapolation of the
extreme value but penalizes the variance for the estimators of the GPD parameters from the
reduction of the available sample size. On the contrary, a lower threshold produces a higher
bias along with a moderate variance for the estimators.

The most prominent threshold model-value acceptable used in literature are: (i) Mean
Residual Life Plot (MRL) introduced by Davison & Smith (1990) and examples given by
Beirlant et al. (2004) (ii) Parameter Stability Plot by Coles (2001) and references given in,
Scarrott and Mac Donald (2012), (iii) Rules of Thumb considering one of the sample points as
the optimum threshold with references in Du Mouchel (1983), Reiss and Thomas (2007) and
Ferreira et al. (2003), and finally (iv) Multiple-Threshold Model by Wadsworth & Tawn (2012)
and references given in Bommier (2014). The threshold choosing methods are presented briefly
as followed particularly for the POT model, but can also be used to extract the extreme-type
sample required for clustering.

3.4.1 Mean Residual Life Plot (Graphical diagnostics)

The mean residual life (MRL) plot introduced by Davison & Smith (1990) is the
common graphical diagnostics for threshold choice. This diagnosticsuses the expectation of the
GPD excesses,

(o

E(X —up|X >uy) = % defined for £ < 1, (3.20)

where Oy, denotes the scale parameter corresponding to excesses of the physical threshold w,.
Similarly for threshold choice u > u,,, yields the following expression

_ _ ou _ crup+€u
EX—-ulX>u) = T 1 (3.21)
which is linear in u with gradient 1L_€ and intercept :L_g Empirical estimates of the sample

mean excesses are typically plotted against a range of thresholds, and the appropriate threshold
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is chosen to be the lowest level where all the higher threshold satisfy linearity in the mean
excess above the selected threshold.

The mean residual life plot is considered as a graph which points are as follows:

1 u
{(u,n—uZ?zl(x(i) - u)) u < xmax} , (3.22)
wheren,, is the maximum number of observations that exceed u, (x(1), X2), ..., X(n,)) are the
number of observations that exceed u, and x,,,4 IS considered as the largest observation that
exceedsu.

Due to practical difficulties in interpreting the (MRL) plots they are acknowledged as
threshold diagnostics ofa major disadvantage. Considering such a plot, a subjective selection in
threshold is inevitable as the graph is approximately linear from a very small threshold.

Figure 3.1 provides an example of a MRL plot for the Fort Collins total daily
precipitation data from the extRemes package (Ver. 1.62) in R (Gilleland et al., 2010). The
threshold of u = 0.4 inches suggested by Katz et al. (2002) is justified by the empirical MRL,
considering close to linear above this level, and below this level a curved MRL is observed
indicating a bias due to the GPD asymptotic breaking down.
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Figure 3.1: Mean residual life plot for the Fort Collins daily precipitation data. Solid jagged line is empirical
MRL with approximate pointwise Wald 95% confidence intervals as dashed lines. The MRL implied by
maximum likelihood (ML) parameter estimates for thresholds u = 0.395, 0.85 and 1.2 inches are the upper, middle
and lower straight lines respectively. Vertical dashed lines mark these thresholds. Example of the MRL plot from
Gilleland et al. (2010) using the extRemes package in R

3.4.2 Parameter Stability (PS) Plot

The Parameter Stability plot (PS), (Coles, 2001) is one of the most used methods for
threshold selection. The method involves plotting the parameter estimates from the GPD or
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point process models againstu, for a range of values ofu. The parameter estimates should be
stable (i.e. constant) above the threshold at which the GPD model becomes valid.

If the exceedances of a high threshold u,, follows a GPD distribution with parameters
& and Ouyys then for any other threshold u such that u > w,,, the exceedances will follow a GPD
distribution, with shape parameter ¢, = ¢ and scale parameter ¢, = Oy, + $(u —up).

Parameterizing the scale parameter as o* = a,, — &u, concludes that for a large enough physical
threshold Uy, o* is invariant of the increase in thresholdu.

As a result, if a GPD distribution describes exceedances in extremes above a threshold
u,,, then exceedances in extremes will also follow the same distribution for a higher threshold
u, and parameters ¢*, & will remain invariant of the threshold choice u where u > Up- The idea
is to find the lowest possible threshold whereby a higher threshold would give the same results
within uncertainty bounds.

The considerable disadvantage of Parameter stability plot method, is that the accepted
threshold values often require a great deal of subjective judgement, and are not relied to
analytical unified selection method.

Figure 3.2 provides an example of a Parameter Stability plot for a location in the North
sea (54.00N 2.25E) using daily wind speed data from the ERA-Interim database (sub-Section
5.4.1) of 20 years (1979 to 1998). The threshold value selections of u=(13, 14.8 and 16.59 m/s)
in vertical dashed lines are justified by the empirical PS plot, considering closely unperturbed
estimations above this level.
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Threshold Threshold

Figure 3.2: Parameter Stability plot for the location in the North Sea of 20 years of wind speed data from the ERA-
Interim database. Solid dot line is empirical PS plot for the parameters scale (a) and shape (b), with approximate
pointwise Wald 95% confidence intervals as vertical solid lines. The PS plot used maximum likelihood (ML)
parameter estimates for a range of thresholds (60% quantile < u < 99.5% quantile). Vertical dashed black lines
mark the empirical threshold selection. Example of the PS plot (Tsalis et al., 2019) using the extRemes package in
R of Gilleland and Katz (2016).

3.4.3 Rules of thumb

This procedure known as rules of thumb, consists in choosing one of the sample points
as the appropriate threshold. The method is equivalent of setting the k" order upper statistic
Xn—k+1 fromthe ordered sample X 1), X(2), ..., X (), Of size n. (Scarrott and Mac Donald, 2012)
in their review, pointed out the predominant widely used threshold values. As shown, the 90%
guantile or rule of Du Mouchel (1983), although widely used, this threshold value is not relied
to strong theoretical background. Other threshold choices are to be used such as k = v/n as
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. . n2/3 -
pointed out by Ferreiraet al. (2003), and k = Tog(log(™) proposed by Loretan & Philips (1994).

Reiss & Thomas (2007) proposed as threshold selection the lowest upper order statistic value
k, in order to minimize the expression:

min = %Zﬁ‘zl iﬁ|fi - median(fl,fz,...,fkﬂ, 0<pB<05. (3.23)

Where §; is denoted as the estimated shape parameter of the GPD distribution.

Another selection approach proposed by Ruggiero et al. (2010), was the 99.5th
percentile of the data. Rosbjerg et al. (1992) suggest calculating the physical threshold as the
mean value of the observed series plus three standard deviations. The considerable
disadvantage of The Rules of thumb method, is that the accepted threshold values rely on a
hieratical approach and not derived analytically.

3.4.4 Multiple Threshold Model

Improved threshold diagnostic plots for extreme value analyses is suggested from
Wadsworth & Tawn (2012) and Northrop & Coleman (2014). Score and likelihood ratio tests
fit of equality of the shape parameter over multiple thresholds, considering null hypothesis
Hy: E(w) = é(u,), for all u > u,. Rejection of H, suggests that a threshold higher than u,, is
required.

Wadsworth and Tawn (2012) proposed a two-threshold penultimate extreme value model in
which the shape parameter is modelled as a partially constant function of threshold. For a pair
of thresholds (u, v), where v < u the shape parameter has a change-point at the threshold u:

Sow v<x<u

§(x) = {Eu, > (3.24)

Later on, Northrop & Coleman (2014) proposed a better approximation for £(x), extending the
partially constant representation to an arbitrary number m of thresholds (uq,u,,...,u;) as
follows:

£(x) = {gn zi:u’; SUH fori=12,...,m—1. (3.25)

The latter model is commonly referred to as the NC diagnostics. Provided that &, >
—0.5 (Smith, 1985), p-values of the tests are estimated in a range of thresholds (u;, ..., u,,) for
i=1,2,...,m—1, whether a threshold higher than wu; is required. The asymptotic null
distribution of each test statistic is approximated by the chi-squared x?2,_; distribution. The
optimum threshold value is considered as the lowest value u, with the property that the null
hypothesis is not rejected at it and at all the higher thresholds considered u,.,4,...,Uy. The
idealized scenario is that the p-values increase with threshold until approximate stabilization at
a point where one could set the threshold. An informal approach is by looking for the sharpest
increase in the p-value, referring to threshold that segregates no fewer than 50 events totally,
Jonathan and Ewans (2013) and non-exceeding 5 to 10 events/year, Palutikof et al. (1999). The
considerable advantage of the threshold from the NC diagnostics is that this selection requires
less subjective judgment.
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Example of the threshold selection is presented in Figure 3.3 for the 20 year time series
extending from 1979 to 1998 corresponding to location L18 (54.00 N 2.25 E in the North Sea)
from the ERA-Interim database, with standard Parameter Stability (PS) plot (see sub-Section
2.7.2) as a comparative measure. For the diagnostics, score test is performed for the shape
parameter over multiple thresholds.The threshold range for the test was limited between the
60% and 99.5% sample quantile of the daily wind speed maxima with a step of 0.01. The
empirical threshold selection is depicted as the value associated to the sharpest p-value increase
at the significance level of 0.05. For easier representation, peak p-values and threshold are
located on the vertical dashed line on the diagram of the NC diagnostics. Furthermore, threshold
exceedances are also denoted on the top scale of the same diagram.
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Figure 3.3: Left Panel (a): PS plot. Solid dot line is empirical estimation for shape parameter, with approximate point
wise Wald 95% confidence intervals as vertical solid lines. Vertical dashed line marks the threshold imported from
the NC diagram. Right panel (b): NC diagram. Score test for shape parameter over multiple thresholds. Vertical
dashed line marks the empirical threshold selection of the p-values at the significance level of 0.05. The threshold is
selected at 16.590 m/s where the peak p-value is at 0.734. Example of the threshold diagnostics (Tsalis et al., 2019)
using the extRemes and mev package in R of Gilleland and Katz (2016) and Northrop & Coleman (2014)
respectively.

3.5 De-Clustering models

In order to obtain approximately independent Threshold excesses, some kind of
filtering of the dependent observations is considered removing the dependence by De-clustering
the excesses. In this way De-Clustering approaches of extremes are introduced.

3.5.1 Standard Storm Length (SSL) method

The standard storm length (SSL), is estimated through the autocorrelation function of
an equal distant process and represents the required minimum time distance between successive
maxima in order for them to be statistically independent. The method is based on filtering
observations, in order to extract the " largest independent values. The extraction was
performed as follows:

a) ldentifying and picking out the largest value of the time series which is extracted;
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b) Discarding values with a lag of At = (SZLL) and less, from both side of the value

chosen in (a);
c) Selecting the following largest value of the remaining data;
d) Repeating steps (b) and (c) until the r-largest is finally extracted.

The r-largest of such values for each block size year, could be considered as the
required r-largest independent annual events. The optimum lag time is referred as the SSL
Tawn (1988), satisfying the independence criteria (min. correlation) between events. Extremes
are more likely to be independent if r is kept small (Smith, 1986). Finally, as an application to
wind speed data, Coles & Walshaw (1994) resulted that a possible choice for the standard storm
length is 60k, advocating a reasonable number of maxima within each year to be equal to 10.

3.5.2 Method of Independent Storms (MIS)

The Cook (1982) model of independent storms (MIS) increases the number of extremes
available for analysis, whilst ensuring their independence by separating the parent time series
into independent storms and then selecting the highest value from each storm.

First of all the continuous records are first subjected to a simple block-averaging low-
pass filter technique with a period of ten hours.

Secondly, downward crossings will define the start of the so called lull in the record
and by definition between each pair of lulls, there exist an independent storm. Between lulls
the peak value is selected, the maxima of the event. The selected arbitrary threshold is set at
u=5 (m/s) illustrated in Figure 3.4.
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Figure 3.4: De-clustering the time series to the sample of (X® , X®@ | ..., X™) using the MIS model. The selected
threshold is u =5 (m/s) (Supplamentary material of Tsalis et al., 2019).

Defining N the independent maxima events and R the wind years of the record, the MISmethod
set a typical storm frequency rate to be around r=100 (events/year), where r = N/R .

Third, the extracted maxima are squared in order to transform the parent distribution
closer to an exponential, and converge to the Fisher-Tippett Type 1 extreme value distribution.
Since the event maxima are all independent, it follows that the distribution of the largest annual
maximum out of r independent maxima per year, has a probability distribution for which an
empirical estimate is the set of values (p,,)" associated with the ordered squared data. The
ascending ranked order follows
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Pm =, m=12..,N. (3.26)
The squared data values against the return valueyis illustrated in Figure 3.5, where

y = —In(—In(p,,)") = —ln(—rln(pm)), (3.27)

and obtain the straight line for y = a - (squared data) + £.

a= slope (dispersion)
Least square fit

b= intercept (mode)
® @)

Return value

»
>

Extracted squared max.

Figure 3.5: Least square fit to the squared of the extremes for the estimation of the parameters of the Gumbel
distribution. (Supplamentary material of Tsalis et al., 2019).

Although taking the square of the extremes makes no difference to their rank order, it
does affect the fitting of the straight line in the above figure and hence the parameters of the
Gumbel model. Using a least-squares method to find the best-fit line gives equal weight to each
of the plotted points. However, this approach is often considered unsuitable for extreme value
data, since the error associated with each point varies systematically, being greatest for the
largest extremes.

Various alternative fitting strategies have therefore been developed. One method
widely used for wind extremes has been the Lieblein BLUE (best linear unbiased estimators)
method (Lieblein, 1974, and described in detail by Cook, 1985). The modified BLUE (10)
method follows that the rank of the lowest storm maximum used, is given by the integer which

T
is the nearest solution to (%) = ﬁ The maximum events to be used are N — m and not N,

setting the threshold at a point where an annual rate of r=10 events/year gives a reliable estimate
of the 50-year extreme. Simulations reported by Gross et al. (1994), suggest that in samples
taken from normal or extreme value populations, optimal results are obtained if threshold is
chosen so that the number of exceedances is of order of 10 events/year. Thus, the threshold
must be chosen in order to improve linearity in the Gumbel plot, conducting the appropriate
annual rate of events.

Finally, Harris (1999) introduces two improvements to the MIS. First, to avoid
systematic errors, he modifies the plotting position used by Cook (1982). Second, he substitutes
his own method to find the best-fit line (Harris, 1996) for the BLUE method. This avoids the
need for data reduction, which Cook (1985) found necessary.

3.5.3 Smith’s de-clustering model (1991)
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Smith (1991) pointed out that there is no universally accepted method for identifying
clusters. To his model approach, he consists of specifying a threshold and a time interval. Two
exceedances of the threshold which are closer together than the cluster interval are deemed part
of the same cluster. But when the time interval between successive exceedances is longer than
the cluster interval it is considered that the old cluster has finished and a new one is to begin.
In this way clusters are defined and clusters maxima are pointed out. Threshold and cluster
interval are to be considered arbitrary and different values are used for comparison.

3.5.4 Separation time model

In the literature, a well-known model identifying independency between events, is the
separation time between the end of one event and the beginning of another. It is stated as the
time-lag, for which the autocorrelation between the observations becomes weak and two
consecutive events can be safely considered independent. The value of the time lag is
considered greater than the typical duration of the physical event itself, but not too long in order
to avoid discarding independent events and excluding valuable data information.

Some examples concerning time lag between events are proposed by Egozcue et al.
(2005) who studied wave heights along the Mediterranean coast of Spain and set the time lag
to be 4 days. Haigh et al. (2010) studied the extreme wave height along the English Channel
and required the surge peaks to be separated by 30 h at least. USWRC (1976), Cunnane (1979)
and Lang et al. (1999) concluded that successive river flood events are to be separated by at
least as many days as five plus the natural logarithm of square miles of the basin area. Willems
(2000) required that two rainfall events are separated by at least a 12 h lag. In the study of the
extreme behavior of daily maximum wind gusts over Belgium , Van de Vyver and Delcloo
(2011) set a minimum time separation equal to 3 days.

Zachary et al. (1998) proposed three choices of minimum storm separation interval,
namely 24, 48 or 72 h, Alves, Young (2003) have chosen 72 h, while Morton et al. (1997) and
Morton, Bowers (1997) have proposed 30 hand Mathiesen et al. (1994) 5to 7 days. Van Vledder
et al. (1993) mention that the optimum minimum time between successive independent events
can be assessed by means of correlation analysis and Soares, Scotto (2004) proposed a time
separation interval of the order of 480 h (20 days).

Using correlation analysis, the time lag can also be defined using the autocorrelation
function of the primary time series. For extreme wave heights, Mathiesen et al. (1994),
proposed that the appropriate time lag between successive events cannot be longer than the time
interval for which the autocorrelation function of the primary series drops under 0.3-0.5.

It is clear reviewing the relevant literature, that the proposed from authors time
separation intervals (time-lag), vary dramatically. There is still no robust theory in order to
justify the selection of the optimum separation time interval ensuring the independency between
the events.

3.5.5 Standard Runs model

A method for estimating the extremal index of a stationary sequence (and consequently
a procedure for identifying clusters) regarded as the Runs Estimator was initially proposed from
Smith and Weissman (1994), introducing the idea of runs of observations below a high enough
threshold u. More precisely, the idea was that any sequence of consecutive observations from
a time series exceeding the threshold belongs to the same cluster. Obtaining observations that
fall below the threshold, the previous cluster is defined and once appearing the next exceedance,
a new cluster is initiated. The number of the consecutive observations below the threshold is
defined as the runs length and denoted as n, separating the clusters. Two excesses of the
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threshold belong to the same storm (cluster) if they are separated by less than 7, consecutive
non-exceeding values. The de-clustering procedure of a sample {X;} of size n is stated as
follows:

First, an indicator function is defined as W,,; — 1 if the i*" observation is above the threshold
(i.e.,.X; > uy,) and W, ; — 0 otherwise. The total number of observations above the threshold
will be thenn,, = Y7 W, ;.

Second, the number of clusters containing at least one observation above threshold will be
denoted as Z,,. Ensuring that an exceedance of threshold in position i is counted in the cluster
if and only if the following r;, observations are all below the threshold. In this sense then,

Zi = B Wai(1 = Waiaa) (1 = W) -+ (1= Wair, ). (3.28)

The mean size of the clusters using the runs model is estimated by the ratio n, /Z,. The n, is
closely related with the extremal index 8, where the latter index is defined as the reciprocal of
the limiting mean cluster size (Nandagopalan, 1990),

n/Z;, = 671, (3.29)

Finally, the maximum value of each of the defined clusters is extracted.

The choice of r, is very important for bias and variance considerations. Small values
will arise problems of non-independence for nearby clusters, while large values will lead to
unnecessary concatenation of clusters and so loss of data information. There is no formal
consideration to the choice of r,,. Nandagopalan (1990) and Leadbetter et al. (1989) have used
a version of the runs length with r;, = 1. The advantage of this method, as described in Walshaw
(1994), is that it allows both the duration (persistence) of storms and the duration of intervals
between them to vary according to the data. This procedure was developed for POT and GPD
models, extracting from any given time series the optimum extreme-type sample approximating
the independence limitations, (Fawcett and Walshaw, 2006 b; and Caires and Sterl, 2005). From
these studies, the clusters length varied from 24 to 60 hours.

Before applying the Runs model in this setting for the identification of clusters, the
extremal index should be estimated in order to specify the optimal runs length parameter of the
given time series. Summarizing the implementation of the Runs model, the essential parameters
for identifying clusters and ensuring independent events are optimum values of u and r;,. The
Runs model used, relies in the Intervals Estimate for the associated 6 (w), providing an optimum
threshold u from the Multiple-Threshold Model by the NC diagnostics. The threshold range for
the Score test of the NC diagnostics was limited between the 60% and 99.5% sample quantile
of the daily wind speed maxima with a step of 0.01. Example of the Runs de-clustering model
is illustrated in Figure 3.6.
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Runs Declustering

— 60% sample quantile ~  ------ NC diagn. (Score test) — 99.5% sample quantile

Daily Maxima Wind Speed (m/s)

Days

Figure 3.6: De-cluster daily wind speed data by the Runs model. The extremal index and consequently the runs
length separating the approximately independent clusters is obtained from the Intervals Estimate and the threshold
selection is made from the NC diagnostics. The dataset used is from the MARINA Platform database (sub-Section
5.4) regarding sample period of 15 years (from 1996 to 2010) for location (52.05N 2.15E) in the North Sea. Example
of the Runs de-clustering model (supplementary image of Tsalis et al., 2021) using the extRemes package in R of
Gilleland and Katz (2016).

3.5.6 DeCA model

The physical de-clustering model originaly proposed from Soukissian et al., (2006)
aims at creating approximately independent events assuming physical considerations. The
events are defined as a continuous physical phenomenon of the environmental variable. The
model separates all events by looking at energy reductions between consecutive time steps.
Initially, the available time series are filtered twice using a simple monotonicity criterion
obtaining the series of local maxima. Successive points with the exact same value are removed
thereupon the monotonicity criterion. From the latter series the local maxima and minima are
identified and the cubic power of their corresponding values is estimated. Therefore, numerical
differences of cubic local maxima to the next consecutive cubic local minima are considered.
Selecting a pre-Defined Energy Percentage (DEP) with respect to the third power of the local
max values, the method introduces wind energy percentage reductions. Wind climatology
studies have established that the wind power potential available in a flow of air per unit cross-
sectioned area, normal to the flow, is proportional to the third power of wind speed (Reed,
1974)

1
Pyina = 5pV°, (3.30)

where p is denoted as the air density and v is the wind speed.

The time indexes of local minima that correspond to the identified energy reductions are
referred to as transition points. As a result, the series of transition points clarified the initial
time series into successive and approximately independent wind-state clusters of generally
unequal length. Then, by selecting the maximum value of each previous defined cluster, a
sample of approximately irregular maxima randomly spaced in the time axis is derived. Even
if each event can be associated with a particular instant of occurrence on the time axis, the
derived sample does not depend on time any more. The optimum DEP level should generally
be high enough in order to safely separate independent events. But it should not be extremely
high in order to avoid unnecessary concatenation of clusters and thus loss of data information.
Profound knowledge of the examined phenomenon guarantees that the DeCA model will
include all events in the process.

At this point, it should be mentioned that the initial de-clustering approach by Soukissian
et al. (2006) avoided assumptions regarding the important regularity restrictions of sampling at
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any DEP level. Furthermore, DeCA presumed that the statistical threshold of the de-clustered
sample for the GPD fit should be provided hierarchically and set to the modal value without
further investigation. The rank of dependence of the DeCA samples is analytically presented in
Chapter 4, where a suitable re-sample model is proposed addressing the dependence limitations
when sampling from DeCA.

Taking into account the re-scaled series of local wind energy, for this analysis we
considered eight levels clarifying the series of transition points. The supported DEP reduction
levels are set constant at % values (60, 65, 70, 75, 80, 85, 90 and 95) with the time indexes of
local minima that correspond to these levels, initiating the successive irregular clusters.
Example of the DeCA model is illustrated in Figure 3.7.
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Figure 3.7: Example of the DeCA model with optima DEP level at 75% in order to safely separate approximately
independent events avoiding unnecessary concatenation of clusters. The dataset used is from the MARINA Platform
database (sub-Section 5.4) regarding sample period of 15 years (from 1996 to 2010) for location L6 (58.4N 10.3E)
in the North Sea. Demonstration of the DeCA model of Soukissian et al., (2006) as supplementary image of Tsalis
etal., (2021)
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Chapter 4

Reconstruction of regularly and irregularly spaced samples in
time

The attempt for developing approaches to enlarge the sample extreme values beyond the
annual maxima often provides de-clustered samples that are subjected to irregular sampling
effect. In the irregularly spaced in time samples, the successive differences At = t;,; — t; at
the corresponding observation times t; <t, <. <t; <-- <ty in the sample of N
observations, are not necessarily equal. Unevenly spaced time samples result to an additional
bias and a propagated error, both of which are latter imported in the data processing when
applying standard statistical analysis (Vio et al., 2000; Broersen, 2009; Mondal and Percival,
2010). However, a question arises of how to measure the rate of dependency in a sample of
observations when they are located irregularly in time.

Much research arround this field of interest has been undertaken and in Chapter 4 an
attempt is made in order to transcend the important regularity restrictions of a resample.
Specifically, a proposed methodology is analytically presented as an alternative resampling
procedure considering the irregularly sampling scheme effect in time and deriving
asymptotically independent observations.

Traditionally, the Pearson correlation estimator is the standard approach detecting the
related dependency from de-clustered observations. However, is the standard correlation
estimator the correct approach when the de-clustered samples are irregularly spaced in time?
One of the most classical approaches modelling irregular observations spaced in time is the
Autoregressive Conditional Duration (ACD) model introduced by Engle and Russell (1998).
The model treats the time intervals between events as a stochastic process and proposes a new
class of point processes with dependent arrival rates. Specifically, the arrival times are treated
as random variables of a point process. The basic formulation of the model parameterizes the
conditional intensity as a function of the time between past events, and numerous natural
extensions include other effects such as characteristics associated with past outcomes. The
ACD model has been partly assessed in financial studies such as Bauwens and Giot (2001),
Engle and Russell (2002), Tsay (2002), and Hautsch (2004), that model the behavior of
irregularly time-spaced financial data.

In general, the Pearson estimator is condemned when the sampling is irregular (Scargle,
1989; Zhang et al., 2008). The accepted methods processing irregular observations in terms of
correlation analysis are sorted into three major classes:

(i) Direct transform methods (Spectral Analysis) that estimate the spectrum of the irregular
sample by generalization of the Fourier transform (Lomp-Scargle Periodogram) (Stoica
et al., 2009; Babu and Stoica, 2010),

(if) Interpolation methods that suggest re-sampling at uniform intervals (Schulz &
Stattegger, 1997; Kreindler & Lumsden, 2006) and finally

(iii) Slotting methods that compute the correlation of irregularly spaced samples in order to
generalize the Pearson correlation operator (Mayo, 1993). This is achieved by calculating
the products of observations according to their sampling time differences using the
Gaussian Kernel as a weight function over the observations. The technique was
developed in fluid mechanics and relevant applications can be found in (Tummers and
Passchier, 1996; Benedict et al., 2000; and Rehfeld et al., 2011).

The classical methods for analyzing the correlation effect in samples irregularly spaced
in time, often yield poor performance in comparison to the non-rectangular (Gaussian) Slotting
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method. Examples of other Slotting approaches such as slot boundaries, local normalization,
fuzzy slotting and variable windowing, can be found in Nobach (2002) or in Damaschke et al.
(2018) and references therein.

Resamples are often affected by dependency and the independence limitations is usually
disregarded. To this effect, a suitable model denoted as (DeCAUN) is proposed in sub-Section
4.4. This model provides an improvement to the current physical De-Clustering model
Algorithm (DeCA; see Chapter 3), re-sampling effectively the irregularly in time DeCA
samples. The re-sampling strategy is processed using the Slotting Autocorrelation approach,
which is also analytically presented in this Section.

At the following sub-sections, the standard Direct transform methods (Spectral Analysis)
and Interpolation methods will be briefly discussed. However, our analysis will be based on the
Slotting method. In addition, the Standard Correlation estimator and Standard Periodogram
which disregards the irregular sampling scheme effect is briefly presented before introducing
the Slotting method.

4.1 Analysis of equally spaced samples in time

4.1.1 Standard Correlation estimator

Autocorrelation or lagged correlation refers to the correlation among members of a series
of numbers arranged in time. A random process is considered statistically steady if the first and
second moments are time invariant (covariance stationary) and if the sample moments converge
in probability to the population moments (ergodic). Under this assumption, from a sample of N
number of observations regularly spaced attimes t; < t, < --- < t; < -- < ty, the correlation
between observations that are separated by a lag number of k equally distant time steps At
(4t = t; 41 — t;) is defined as the sample Autocorrelation Function (ACF) at each time lag (k):

o (k) = S0 _ SN (%) (x4 %)

2 1 _
0% Note1 (xe—%)?

, (4.2)

for any positive integer k < N. Cov(k) is the sample autocovariance at time lag (k), and x and
o2 are the sample mean and variance respectively. The sample ACF takes both positive and
negative values —1 < p,.(k) < 1, while the associated plot is referred to as correlogram. The
Generalized Bartlett’s formula for ACF (Bartlett, 1946), yields the following standard error

1425571 (p, (1)
SE, = /% (4.2)

for the associated 95% confidence interval. The confidence bounds of the correlogram,
effectively test the null hypothesis of convergence to an uncorrelated approximation by that
particular lag number of k time steps. If p, (k) is located outside the bounds, this means that
the preceding autocorrelations have not been successfully reduced to close to zero. The desired
lag number of k or lag (k) is set as the first time lag entering the confidence bounds.

For samples irregularly spaced in time the inter-sampling times vary and the standard
ACF described in Equation (4.1) cannot be directly applied (Chatfield, 1996).

4.1.2 Standard Periodogram

We consider a random process as a continuous function of time and observed data
x(t,), where N data points are considered at time ¢, {t,,n = 1,2,..., N}. Ordering the times
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as t; <ty <...< ty and considering evenly spaced intervals At = t,,,4 — t,, the Discrete
Fourier Transform (DFT) is defined as follows:

DFT[x(wi)] = Y= (x(tn)exp(—iwkty,)) (4.3)

The Fourier series theory shows that £(t,,) can be reproduced from a finite Fourier series of N
terms by inverting (4.3) as follows:

2(ty) = RFDFTx(w)]]) = Zp2/% (DFT[x(w)]exp(itywy)), (4.4)

where the sum is defined on evenly spaced frequencies wy = % k= {—%

,..0,..,+§}, and
the sampling interval is definedas T = t,, — t; = (N — 1)At.

For discrete, equally spaced data and frequencies, the Rayleigh theorem is known as Percival
theorem (see Appendix E.1) and is described as follows:

Corollary 4.1 (Parcival equality)

SN (x(t))” = SN2 L IDFT (]I, (4.5)

where the contribution of |DFT[x(w;)]|? to the power at frequency w,, is called the intensity
at this frequency.

The plot of intensity versus frequency, is the Fourier line spectrum P, (w;) (Deeming, 1975):
1
Py (wy) = N IDFT [x(w)]I?

N
= %(Z(x(tn)exp(—iwktn)))
n=1

1

= [N () cos(@ietn)))” + (Bor (x(tn)sin(wita))) ] (4.6)

2

By plotting P, (w;) (Equation (4.6)) against frequency, one will obtain a large narrow
peak, meaning that around that specific frequency range, x(t,;) and exp(—iwgt,) will be in
phase.

As described in Scargle (1989), the fundamental frequency is defined as
n(N-1)
Wrynd = Wmin = N (4.7)

and corresponds to a frequency with the minimum information in the observed data. The
number of frequencies determining the spacing of the frequency vector is given as ofac - N.
According to Hocke and Kampfer (2008) there is no principal limit for the oversampling factor
(ofac), where in general ofac > 1 and is regarded as a smoothing factor. In most cases the
oversampling factor is setto ofac = 2.

The Nyquist frequency is defined as
1/2m TN 1
wnye =3 (5) =5 O fiva = 530 (4.8)

where At :§ corresponds to a value in frequency with the maximum information in the

observed data. In the case of equally spaced data, X(t,,) in Equation (4.4) is in line with the
properties of the Sampling Theorem stated as follows (Bracewell, 2000):
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Theorem 4.1 (Sampling Theorem)

Any function whose Fourier transform is zero forf = fyyq, W = 21fy, is fully specified by
1

values spaced at equal intervals not exceeding . The highest frequency which may be

Nyq
recovered from samples at intervals At is one-half the sampling rate or the Nyquist frequency.

4.1.3 Autocorrelation Function & Power Spectrum

The energy spectrum or power spectrum in the frequency domain is defined by Parseval’s
identity for Fourier transforms or Rayleigh’s theorem (Jenkins and Watts 1969, Priestley 1981,
Press et al., 1992), as the square of the complex absolute value of the Discrete Fourier
Transform, i.e.:

Py (wy) = IDFT[x(wp)]|*. (4.9)

Considering the Wiener-Khinchin Theorem (Khintchine 1934, Papoulis 1991; Bracewell
2000), the normalized expression of the power spectrum of a stationary random process is
related with the (ACF) as a Fourier transform pair. The corresponding ACF in the time domain
is obtained as follows (see E.1 and E.3 in Appendix):

px(k) = m(F_l[Px(wk)])- (4-10)

4.1.4 Example of the inverse Fast Fourier Transform (iFFT) for samples
regularly spaced in time

An example of the Standard Periodogram and the iFFT to the Standard Correlation
estimator is given in Figures 4.1-4.3, illustrating the hourly time series from the MARINA
Platform database of sample period of 15 years (from 1996 to 2010) for location L2 (52.05N
2.15E) in the North Sea.
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Figure 4.1: The time series from the MARINA Platform database (sub-Section 5.4) of sample period of 15 years for
location L2 (52.05N 2.15E) in the North Sea. (Tsalis et al., 2021)
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Figure 4.2: The Standard Periodogram of the equally spaced in time sample of 15 years for location L2 (52.05N
2.15E of the MARINA Platform database) in the North Sea. The choice of the periods is described in Scargle (1989)
and set at 1 (hours) for the fundamental period Ty = Typin = 27T/ Wmax- The maximum period is set at 262990 (hours)
from Tppax = 27/ Wmin = 2(tmax — tmin) N/ (N — 1), where (tnax tmin, N) is the max, min observation times and
the length of the hourly sample respectively. The peak is obtained at period 8766.3 (hours) and the number of
frequencies-periods used is ofac - N=2627 controlled by the oversampling factor (ofac=2). In addition, the
significance level denoted from the dashed line is at 10.8438 (dB5) corresponding to false-alarm probabilities of
alpha level=5%. Example of the Standard periodorgam (supplementary image of Tsalis et al., 2021) using the Isp
package in R of Ruf, (1999).
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Figure 4.3: Example of the Correlogram of IFFT from the Periodogram of the regularly spaced in time sample of
observations as a function of the lag time in hours for location L2 (52.05N 2.15E of the MARINA Platform database
in the North Sea). The 95% confidence intervals in dashed line are obtained from the Generalized Bartlett’s formula
for ACF (see sub-Section 4.1.1). The Correlogram of the regularly sample is supplementary image of Tsalis et al.,
(2021) using the stats package in R of Venables and Ripley, (2002).

5dB=10logio(measured PSD), PSD= Power Spectral Density
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In the following section, we briefly present the principle of the Lomb-Scargle
periodogram as the standard direct transorm method modeling irregular samples in time and
the equivalence of the periodogram to harmonic least square fit.

4.2 Analysis of unequally spaced samples in time

A reasonable approximation of unequally spaced samples in time to the spectrum was
presented initially in the work of (Lomb, 1976; Press et al., 1992) by fitting sine and cosine
waves in a least-squares sense to the observed data and plotting the reduction in the sum of the
residuals against a range of frequencies. This approximation is also known in the relevant
literature as the equivalence to a harmonic least square fit (Lomb, 1976; Scargle, 1981). A
Periodogram analysis equivalent to the Lomb method for handling unequally spaced data by
similar techniques, was introduced by (Barning, 1963).

The least squares fit can be regarded as the natural extension of Fourier methods to
non-uniform data. In the limit of equal spacing, the method reduces to the Fourier power
spectrum. As a result, a maximum in the Periodogram is obtained at the same frequency where
it minimizes the sum of squares of the residuals of the fit of sin and cosine signals to the data.

Specifically, denoting a signal model x;, (t,,) as a discrete second-order stationary time

series with zero mean at observation times t,, and n = 1,2,3,..., N, the signal model yields:
xg, (tn) = Asin[2nfi (t, — )] + B cos[2nfy (¢, — T)]. (4.11)

The amplitudes Ay, By, of the cos and sin signals are unknown but constant functions
of fi.. The choice of the number k of frequencies to be used is quite arbitrary but in general a
finite-length time series will have meaning in a finite amount of statistically independent
Fourier components.

A time delay t is obtained in order to ensure time translation invariance. The latter
invariance statement ensures that a constant shift of the sampling times (t,, — t,, + T), will not
affect the approximation because such a shift will produce an identical shiftin (t - t + T) and
therefore T will cancel out in the argument of equation x, (t,), (Scargle, 1982).

From Lomb (1976) a useful formula is obtained for all values of t as follows:

YN_1cos(2nfi(tn, — 1)) - sin(2rfi (6, — 7)) = 0, (4.12)

where the derivation of (4.12) provides the explicit formula of ,

_ 1 1 [Zh=1SinQwktn) _
T(wy) = 70, a0 [Z,’Yzlcos(Zwktn)] , Wy = 2T f. (4.13)
The least squares approach can be considered as a minimization of the sum of squares of the
differences between the signal model x¢, (t,,) and the observed data x(t,) , as follows:

E(fi) = $N_1[x(tn) — x5, (t)]°, with frequencyfi, k = 1,2,3,..., K. (4.14)

From Horne and Baliunas (1986) it was proven that in the situation of an evenly spaced
time series of length N, the number of independent frequencies in the range [—fNyq, +fNyq] is

N, where fy,q = Z.LM denotes the Nyquist frequency according to the sampling Theorem 4.1

(e.g. see Bendat and Piersol, 1993) and is thus identical to a standard Fourier transformation.
For unevenly spaced time series, the Nyquist frequency cannot be defined, because the
sampling theorem applies only to evenly spaced time series. In this situation, an average
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. 1
NqulSt frequency, average(f,qu) = m

sampling interval, can be used as an alternative. A conservative choice of the frequency range
(Schulz and Stattegger 1997) is by setting k as f, = average(fyyq)-

The minimum value of E(f;,) as a function of frequency f; or (Emin(fi)), is estimated
using numerical or graphical technics. Defining the residual in the sum of squares as AE (fy),
the problem is stated as of estimating a frequency that maximizes AE(f), i.e.,

, With average(At) being the average

AE(fk) = Zgzl[x(tn)]z - Emin(fk)- (4-15)

The useful formula maximizing the residuals in the sum of squares is presented as follows:

_ BN x(t)-cos(2nfi(ta=D)]” | [Ny x(tn)sin(2nfi(ta=D)]"
AE(fi) = YN_ cos2(2mf(tn—1)) + YN sin2(2nfy(t,-1)) ' (4.16)

where for evenly space sampling the time delay t is considered to be zero T = 0.
4.2.1 Power Spectrum estimation (Lomb-Scargle Periodogram)

The Lomb-Scargle method proposed by Scargle (1982, 1989) focuses on the
construction of a Fourier spectrum which is used for the inverse Fourier transform from the
frequency domain back to the time domain. The flow chart of the data analysis for
reconstruction of the irregular sample is illustrated in Figure 4.4.

Fourier Power
IrrsepgaL::I:(;Iy Lomb-Scargle Spectrum estimation
| Periodogram
sample P.(02)
X

x(ty)
\ Y

Inverse Fast
2(tn) = R(F[DFT[x(wp)]]) Fourier

px (k) = RETHP ()]

A /

Figure 4.4. Flow chart of the reconstruction method: The Lomb-Scargle periodogram is used to estimate the Fourier
Power Spectrum of an irregular sample from the time to the frequency domain. The real part of the inverse fast
Fourier transform of the Power Spectrum back to the time domain provides the autocorrelation function for the
equally spaced in time reconstructed sample. (Supplementary chart of Tsalis et al., (2019))

-

Reconstructed evenly spaced sample and
autocorrelation

Transform

Specifically, this method introduced a discrete Fourier transformation (DFT) that can
be applied to evenly and unevenly spaced time series. The generalization of the Discrete Fourier
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Transform for the observed data x(t,,) as a discrete, second-order stationary time series, with
zero mean, obtained at observation times t,,, n = 1,2,3,..., N is formed as follows:

DFT[x(wy)] =
= Fo(wy) - Zﬁ:1(A(wk)x(tn)C05[wk(tn - T(w;c))] + iB(wk)x(tn)Sin[wk(tn - T(‘U;c))])
(4.17)

Coefficients A(wy), B(wy) in (4.17) depend on frequency w; and not on the data t, in the
same context as previously stated in (4.11). It is analytically proven that A(wy), B(wy) yield
as follows:

A(wy) = [ZN-1 cos?[w(t, — T(wK))]]_l/Z and

B(wy) = [ZN_y sin?[wg(t, — t(w)]] %

The choice of the k number of frequencies to be used wy, = 2nfy, k = 1,2,3,...,K is
quite arbitrary but in general K > N (Scargle, 1982; Schulz and Stattegger, 1997). Specifically,
the choice of K depends on the number of independent frequencies N, (Press et al., 2007).
Horne and Baliunas (1986) proved a relationship between K and N, performing extensive
Monte Carlo simulations. In their study, they provided a simple formula to estimate the number
of independent frequencies N, from the number of observations N in a time series, as Ny =
6.362 + 1.193N + 0.00098N?2. This empirical deterministic formula is suitable for most
problems, considering henceforth K = N,.

Fo(wy) in (4.17) is defined as follows:

N . %
Fo(wg) = \EeXp(—lwkt ), (4.18)
where t* functional is t* = —t(wj) and

M} (4.19)

1 -1
T(wg) = —tan [
( k) 2wk Zﬁﬂ cos(Qwyty)

is considered as the time delay. The expression stated in the tangent in (4.19) ensures time
translation invariance in the same context as stated for the explicit formula of = obtained in
(4.13) . For evenly space sampling, 7(wy) is considered to be zero (i.e., T(wy) = 0).

For univariate spectral analysis, the generalized formula for the Lomb-Scargle
periodogram of the Discrete Fourier Transform yields as a normalized expression (Press and
Rybicki 1989),

Po(wi) =~ IDFT[x(w;)]|?
x\WgJ) — E k
= BOOE (91 (x(t) — D)cos[ e (tn — T(@)]] + ZLE [SN_, (x(t,) — Dsin[wi (8 — (@)]]*

or,

_ 1 (BN G -Deos|o(tn=t@)]]’ | [ENeaGeltw)-Dsin[wie(ta=1(@:)]]”
P"(w")_W( Mo cofo(tmt@d)] T st ) (20)

where x and o2 refer correspondingly to the sample mean and sample variance.

Suumarizing the Lomb-Scargle Periodogram approximation to the equivalence of a
harmonic least square fit, a maximum in the periodogram of (4.20) is obtained at the same
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frequency where it maximizes the sum of squares of the residuals in (4.15) or (4.16) of the fit
of sine and cosine signals to the data.

At this point it is important to outline that various authors have proposed modifications
in the sums of the Lomp-Scargle Periodogram, (Reegen, 2007), (Cumming et al., 1999)
resulting inability to account for statistical fluctuations in the mean of the sampled sinusoids.
In addition, there is no theoreticaly procedure for testing the significance of the Periodogram
peaks, Schwarzenberg-Czerny (1998), Vio et al. (2000), Koen (2006), Stoica et al. (2009).
Furthermore, the significant bias in the spectrum does not diminish with the sample size
Broersen et al. (2004 a, b). Summarizing, the LS periodogram as an estimator of the spectrum
is characterized as

0] statistically inconsistent (i.e., its variance does not go to zero as infinite data are
collected),

(i) biased for finite samples, and

(iii)  suffers from spectral leakage.

These issues from a statistical standpoint will bias the aucorrelation estimate when
standard inverse Fourier Transform is applied. While the standard LS periodogram in
geoscience studies remains the common approach for characterizing the properties of unevenly
samples in time (e.g., to compute periodicity of unequally spaced data), many authors question
this approach e.g. (Springford et al. 2020; VanderPlas, 2018; and Hocke and Kampfer, 2008).
Due to the significant drawbacks regarding Periodogram analysis, we therefore do not employ
this approach in the case of uneven sampling. However, an example of the Lomb-Scargle
Periodogram of the irregularly DeCA sample is illustrated in the following section for
inference. Finally, there are a number of alternative methods available for spectral analysis of
unevenly spaced data, where references are found from the work of Roberts et al. (1987) with
the CLEAN method and Schulz and Stattegger (1997) with the SPECTRUM method.

4.2.2 Example of the inverse Fast Fourier Transform for samples irregularly
spaced in time

As an example of the Lomp-Scargle periodogram, the hourly time series from the
MARINA Platform database of sample period of 15 years for location L2 in the North Sea
given in Figure 4.1, is first de-clustered from the DeCA model to the irregularly sample
illustrated in Figure 4.5.
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Figure 4.5: The sample of observations irregularly spaced in time considering the sample period of 15 years at
location L2 (52.05N 2.15E of the MARINA Platform database). The de-clustering procedure is performed from the
DeCA model setting the optima DEP level at 65% in order to safely separate approximately independent events.
(Tsalis et al., 2021)

In the following Figure 4.6 the Lomb-Scargle Periodogram is illustrated in the
frequency domain, considering the irregularly DeCA sample of Figure 4.5. In addition, Figure
4.7 illustrates the ACF of the reconstructed evenly sample in the time domain as the inverse
FFT of the spectrum from the Lomb-Scargle Periodogram.

Lomb-Scargle Periodogram

10 20 30 40 50 60 70
l

Normalized Power Spectral Density

0

T T T T T T T T T
2e+02 5e+02 1e+03 2e+03 5e+03 1e+04 2e+04 5e+04 1e+05

Period (hours)

Figure 4.6: The Lomb-Scargle Periodogram considering the DeCA sample of Figure 4.5. The choice of the periods
is described in Scargle (1989) and set at 169.12 (hours) for the fundamental period Ty = Tppin = 27/ Wpmax = At,
where At = %Z?]:_ﬂ(tiﬂ — t;) is the mean sampling time interval of the DeCA sample used. The maximum period
is set at 131401 (hours) from Ty,ax = 27T/ Wmin = 2(tmax — tmin)N/(N — 1), where (t,qx tmin, N)is the max,
min observation times and the length of the DeCA sample respectively. The peak is obtained at period 8731 (hours)
and the number of frequencies-periods used is ofac - N=15520 controlled by the oversampling factor (ofac=20). In
addition, the significance level denoted from the dashed line is at 10.31751 (dB) corresponding to false-alarm
probabilities of alpha level=5%. Example of the Lomp-Scargle Periodorgam (supplementary image of Tsalis et al.,
2021) using the Isp package in R of Ruf, (1999).
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Figure 4.7: Example of the Correlogram of the irregular DeCA sample obtained from the inverted FFT of the
Spectrum from the Lomp-Scargle Periodogram as a function of the lag time in hours for location L2 (52.05N 2.15E
of the MARINA Platform database). The 95% confidence intervals are obtained from Generalized Bartlett’s formula
for ACF. The Correlogram of the irreregularly sample is supplementary image of Tsalis et al., (2021) using the stats
package in R of Venables and Ripley, (2002).

4.2.3 Interpolation methods

The Interpolation methods consider that the irregularly sampled time series is to be
resampled onto a common regular time grid with constant time increments. The grid spacing is
defined as the mean sampling time intervals of the total time series. One of the most popular
resampling methods considered as interpolation techniques, is the nearest neighbor technique,
where the (ACF) is approximated at the desired grid points by the value of the observation
closest in time. After resampling, standard (ACF) can be employed. This approach revealed
important results such as to a significant shifting bias Broersen (2009), we therefore do not
employ in the case of uneven sampling.

4.3 Slotting method

For irregular time series the inter-sampling times vary, and the standard ACF cannot
be directly applied (Chatfield, 1996). Generalizing the regular correlation operator through a
rectangular or Non-rectangular Kernel function, is commonly called Slotting or Slotting
Autocorrelation approach.

In order to analyze the irregular samples spaced in time, Edelson and Krolik (1988) and
Mayo (1993) considered estimating the pair products of all available observations and
discretizing them into bins according to their sampling time differences. In this study, the
estimator of ACF for irregular samples of N number of observations is derived as the weighted
mean over all available products according to their sampling time differences and desired time
lag for which the correlation is estimated (replacing the sample autocovariance), divided by the
sample variance of the irregular process for zero time lag and is presented as:
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P (k) _ COU(k) _ ?]:1 2?1:1 Xix]' bh(k; tj - ti,h) Z?lzl Zﬁyﬂ xl-ijh(O; tj - tir h)
X - 2 -

(4.21)
Oy ?1212‘.9’:119}1(](; tj - ti! h) ivzlz‘llyzl bh(O; tj - ti,h)

The observations x with indexes i,j in Equation (4.21) hereafter are considered as
centralized and standardized values. In addition, the associated discrete time variables for these
observations are re-scaled as a transformation from the observed t°?S to the t = t°PS /At for

each i,j respectively, where At = %Z?’:‘f(tiﬂ —t;) is the mean sampling time interval.

Accordingly, the lag number of k is also dimensionless considering the re-scaled k=lag(k)/At
for which the ACF is estimated.

The weighting function by, used in Equation (4.21) is generally referred to as the Kernel
estimator for the inter-sampling time intervals ¢; — t;. The estimator b, was introduced by de
Oliveira (1963) and Nadaraya (1964) and is provided as follows:

= —t) ti)) (4.22)

1
bu(k; t; —t;, h) :EK( -

where K is the Kernel that determines the shape of the weighting function (rectangular, triangle,
Gaussian, etc.) which is symmetrical placed around t; — ¢;, and positive on the interval
[tj —ti—htj—t; + h]. The parameter h is defined as the bandwidth or smoothing parameter,
which determines the width of the weighting function and adjusts the amount of smoothing
applied over the inter-sampling time intervals. Hence, the Kernel estimate of the unknown
density f (k) is approximated by

R 1 N N

where N? in (4.23) is the number of the weights used for the inter-sampling time intervals.
Moreover, isolated peak estimates are derived for h — 0, where h € (0, ). The Kronecker
Delta function denoted as & is the approximation to the asymptotic limit }llil’l(l) K(k; tj —

ti, h) = 5(k —(t — tl-)). In general, any function having the following properties can be used
as a Kernel estimator:

Q) K is considered as a pdf with K(u) = 0 and f_tf K(u)du =1,
(i) K is symmetric around zero K (u) = K(—u),

(iii) K (u) = Oconsidering|u| > 1,

(iv) [P uk(wdu =0,

(v) finite second moment[ " u?K (u)du < co.

The disadvantage of the kernel estimators arises when suggesting the required valuable
shape function K and bandwidth h parameter in order to optimize the properties of the
estimator; see e.g.(Bean and Tsokos, 1980),(Silverman, 1986),(Marron, 1988), (Wand and
Jones, 1994), (Simonoff, 1996), and (Scott, 1992). The most popular kernel in practice is the
Gaussian kernel due to its analytic properties. In addition, the optimum bandwidth h,,; is not
guided by mathematical considerations e.g., (Babu and Feigelson, 1996) and Hall et al. (2004).
There is a vast amount of literature suggesting practical optimal bandwidth methods for Kernel
estimation, derived by the minimization of the distance between the unknown density function
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f(k) and the estimator f,, (k). The measure of distance is guided by the Asymptotic Mean
Integrated Squared Error (AMISE) type criteria:

AMISE(f,) = E{ f (Fuw) - f(u))2 du} (4.24)

suggesting an integrability assumption on the unknown function f(u), and by the Integrated
Squared Error (ISE) type criteria

ISE(fy) = f (Fuw) - f(u))zdu. (4.25)

The most well known methods of bandwidth selection using the above measures are
summarized:

1. Rule-based methods. These methods are commonly referred as Rule of thumb and Maximal
Smoothing Principal, based by means of the (AMISE) type criteria. They replace the unknown
density function f (u) by a reference distribution function, rescaling to variance equal to sample
variance 62, pointing out hope bandwidth formula. Considering the usual Gaussian distribution
as reference function, it is determined for The Rule of thumb (Silverman, 1986):

h(aMISE) ppr = 1.066n71/5, (4.26)

and accordingly for The Maximal Smoothing Principal by (Terrell, 1990)

h(AMISE) pp, = 1.1446n71/5 (4.27)

under the requirements h(n) — 0 asymptotically at a very slow rate with the increase of
observations n — oo, and nh(n) — co. The major drawback of both approaches is that they
provide over-smooth density estimates, (Park and Turlach, 1992).

2. A data-driven approach. Other most common numerical approaches dealing with bandwidth
selection, are referred as Least Square Cross-Validation (LSCV) developed by (Rudemo, 1982)
and later from (Bowman, 1984),following the Biased Cross Validation (BCV) in (Scott and
Terrell, 1987). Estimates based by means of the (ISE) type criteria are derived by the(LSCV),
while (BCV) employs the (AMISE) criteria. The major drawback of these approaches is a slow
relative rate of convergence to the optimal bandwidth of ordern=2/1°, obtaining estimates of
high variability. In addition, both approaches may provide multiple minima, less often observed
in (BCV) rather than for (LSCV) e.g.,(Hall and Marron, 1991) and (Jones et al., 1996). As a
result, Cross Validation (CV) approaches lead to bandwidth selection that provide under-
smooth density estimates (Simonoff, 1996).

3. Plug-in methods. These approaches mitigate the problem of (CV) methods regarding slow
convergence to the optimal bandwidth. The Plug-in consideration, replaces the unknown
functional of second derivative continuous and square integrable in the (AMISE) type criteria,
with a suitable estimate, resulting faster convergence (Woodroofe, 1970). Suitable estimates of
this approach may be found in Park-Marron Plug-in, (Park and Marron, 1990), resulting to a
rate of order n=#/13 and in Sheather-Jones Plug-in (Sheatherand Jones, 1991), with a rate of
order n=5/14,

The major drawback of this measure of distance is over and under smooth density
estimates (Jones et al., 1996; Simonoff, 1996). Therefore, in our study for the weighting
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function as defined in Eq. (4.22), we considered the usual Gaussian distribution as the Kernel
function and for the bandwidth selection we did not restrict our analysis to a single optima. On
the contrary, we examined the performance of the irregular ACF estimator as stated previously
in Eq. (4.21) against a range of possible bandwidths recommended by Sheather (2004).

4.3.1 Statistical properties of Kernel estimators

A Java applet that allows a practitioner to obtain the effects of changing the bandwidth
and the shape of the kernel function on the resulting density estimate can be found at
http://www-users.york.ac.uk/~jb35/mygr2.htm. It is well known that the value of the bandwidth
is of critical importance, while the shape of the kernel function has little practical impact.
Assuming that the underlying density is sufficiently smooth and that the Kernel has finite fourth
moment, the expected value, bias and variance of the f(x) is shown respectively using Taylor
series from Wand and Jones (1994, Ch. 2).

1. Expected value of f(x)

E[f()]=f(x)+ %hz (%) f_*o‘j z?K(2)dz + 0(h?), (4.28)
2. Biasof f(x)

Bias (f(x)) = E[f(0)] - F(x) = 3h2f"(x) [ 22K (2)dz + 0(h?), and (4.29)
3. Variance of f(x)

Var[f@)] = fe) o [17 (K@) dz + 0 (=) (4.30)

The Mean Squared Error (MSE) and Mean Integrated Squared Error (MISE) are the
standard measures serving as criteria for bandwidth selection and efficiency of estimation
performance. Specifically, using the combinations of the latter expressions stated in Equations
(4.28), (4.29) and (4.30) (see proof in Appendix G), it is defined:

w5 (2) = var (70) (s (70))

= f) [T7 (K@) dz + 1 h4(F' ) (S ZZK(z)dz)z, 2
and
mise (f) = E[ 12 (F - r@) ax] = 127 B[ (fo0 - £0) | ax
or,
MISE (f(0)) = [ MSE (f(x)) dx.() (4.32)
Substituting (4.31) in (4.32), yields
MISE (f(x)) = = [*2(K(2)) dz + 2 h*( [ zzK(z)dz)z R 0) dx.

(4.33)

() MISE (f(x)) = f::o Var (f(x)) dx + f_+;o (Bias (f(x))>2 dx.

61



Reconstruction of regularly and irregularly spaced samples in time

The true density f(x) must have its second derivative f'(x) continuous and square integrable.
Selecting small bandwidth h reduces the Bias (f (x)) in (4.29) but increases the Var (f (x))

in (4.30). The standard selection for optimum bandwidth is derived by minimizing the
MISEmeasure in (4.33) as follow:

aMISE(f(x))

o = 0, deriving

B([10 2K (2)dz) - [72(F160) dx — = [ (K (2)) dz = 0, and

(fj;(l{(z))zdz)l/s n-1/5

(fjo:o ZzK(Z)dz)Z/S.(f_’f;(f”(x))zdx)l/s.

(4.34)

opt =

Substituting the optimum bandwidth in (4.34) into (4.33) for the MISEoff (x), yields the
minimum value expression,

mise (fw) =2 (prk@ar) (7 k@) a)" (F2(rw) )

op

(4.35)

The expression found in (4.35) is intractable and not applicable in practice. It has been
found that Kernel function that minimizesMISE, as initially presented by Epanechnikov in
(1969), has the following form

B (1102
K(z) = {m(l ;2%) forlzl <V5 (4.36)
0 otherwise

Efficiency of any Kernel function is considered by comparing it with the Epanechnikov
Kernel as follow:

~ Epanechnicov 5/4
o MISE(f(x))Opt .
ef ficiency(K) = — e = — - L <s.
MlsE(f(X))opt 5v/5 (f—co ZZK(Z)dZ)‘(f—oo (K(Z)) dz)

(4.37)

Efficiency measure as expressed in relation (4.37) provides a measure to compare
different symmetric Kernels with the Epanechnikov Kernel. For any other symmetric Kernel
the closer the efficiency to one, the smaller is the MISE type criteria.

Table 4.1: Kernel estimators and their efficiencies.

Kernels K(z) Efficiency
3 1
—(1 ——22) for |z| < \/E
Epanechnikov 4\[5 5 1
0 otherwise
15
—((- 22)2 for |z] <1
Biweight 16 , 0.9939
0 otherwise
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{1 —|z| for|z| <1

Triangular 0 otherwise 0.9859

1L o2 /2

Gaussian V2m 0.9512

{1/2 for [z] <1

Rectangular 0 otherwise 0.9295

The choice of Kernel type is not so significant. The latter Table 4.1 shows that there is

a very little difference between the various Kernels on being used from (4.35) at

MISE ( f (x)) calculations. The most frequently used Kernel is the Gaussian Kernel and has
t

op
efficiency approximately 95%. Therefore the choice of Kernel type is based on other

considerations, such as computational expense.
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Figure 4.8: The most commonly used Kernel based estimators (Amberg, 2008)

4.3.2 Rectangular Kernel slotting

The Slotting method from Edelson and Krolik (1988) applied rectangular Kernel
function in order to bin the observations into discrete sets, considering discontinuousness in
time. In this case the weighting function selects the products whose time lag is not further than
half the bin width from the given time lag (k), taking the following form:

1 f ti—t;)| —k 1/2,
bh(k; A h) - {0 " ||( ]oth2‘|wise| Y (438)

where the lag bin width in their study is set equal to the mean sampling time interval.

The disadvantage of this technique is that it yields a high variance of the ACF estimator,
excluding a significant number of products accounting to a particular time lag, (Benedict et al.,
2000; Babu and Stoica, 2010). In order to increase the valuable pairs to be averaged into the
sample autocovariance in ACF in Equation (4.21), the Non Rectangular slotting approach is
introduced, considering a certain approximation of the distribution of the inter-sampling times.
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Examples of other slotting approaches such as slot boundaries, local normalization, fuzzy
slotting and variable windowing, can be found in (Nobach, 2002), (van Mannen et al., 1999),
and (Damaschke et al., 2018).

4.3.3 Non-rectangular Kernel

In the Slotting method used for this study, the inter-sampling time intervals will not be
binned into discrete sets by a rectangular Kernel. Instead, weighting the products by applying
a non-rectangular Gaussian Kernel weight function will increase the valuable pairs to be
averaged into the irregular ACF in Equation (4.21). In this way, a sudden cutoff in the time
domain is prevented, weighting the products smoothly according to the difference between the
inter-sampling time interval t; —t; and the considered time lag (k). The Gaussian Kernel
density function tends to zero for time differences much larger or smaller than the considered
time lag (k) (Hall et al.,1994; Bjornstad and Falck, 2001), and is defined as follows:

2
1 k—(t—t;

However, there is no theoretical definition of the effective width of the weight functions.
The Gaussian Kernel used in this study considers the standard width parameter h to be scaled
to the mean sampling time intervals, i.e. At = At = %Z?I:_ll(ti.'.l —t;) in order to adjust the
effective width of the weight function satisfactorily to the mean width of the time intervals. In
this way, it is ensured that observations appearing at an almost constant frequency are rated
higher than infrequent observations. In addition, parameter C is defined as the normalized
bandwidth. For accurate estimations the degree of smoothing is of great importance. Selection
of a large bandwidth will result in an over-smoothed performance of the density function while
a small value will under-smooth the estimation. Examinations on Asian monsoon records from
Rehfeld et al. (2011), revealed empirical normalized bandwidth at C = 0.25. In our analysis we
considered the range C € [0.125, 1] with a 0.125 step, in order to optimize the irregular ACF
estimator in Equation (4.21) as defined in the Slotting method. In the following sub-Sections
the DeCAUN model will be described in detail.

4.4 DeCAUN model

In this section, a re-sampling strategy is analytically presented to alleviate the effect of
dependency in samples of irregularly observations (demonstrated at the 11th international
conference on Extreme Value Analysis, Zagreb 2019). The proposed DeCA Uncorrelated
(DeCAUN) model performs re-sampling taking into account the correlation effect in the
irregular samples of DeCA for a range of discrete energy reduction levels in the samples. In
addition, the proposed model analyzes the correlation effect obtained in the irregular samples
using the Gaussian Kernel weight function for the computation of the generalize Pearson
correlation operator from the Slotting method.

The DeCAUnN model also examines the response of the Kernel function used over a range
of smoothing parameters or bandwidth, enhancing the performance of the Gaussian function as
a weight function over the irregular samples of observations. At this point it is outlined that the
DeCAUN model used the Slotting method and not the Lomb-Scargle periodogram for the
analysis of the correlation effect of the irregular samples as previously discussed.
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The proposed model requires two subjective admissions for its successful statistical
application. These admissions that consist the main objectives of the evaluation of the DeCAUnN
model are:

1. The favorably bound estimation of the energy-reduction level, and
2. the optimal bandwidth smoothing response of the weight function to the
irregularly spaced observations in time.

The response of the DeCAUN model in applications considering a limited availability in
data is the key factor in this work. Therefore, the assessment is carried out for relatively small
datasets of annual wind speed time series, corresponding to four sample periods of 10, 15, 20
and 25 years long. In the following sub-Section, the irregular samples to be fit are defined. In
addition, the Irregular modeling procedure of DeCAUn is presented in steps, considering all
DEP and bandwidth values.

4.4.1 Proposed Methodology for re-sampling

The samples of DeCA at the associated DEP levels required further investigation in
terms of correlation. Re-sampling is advised when the condition of independence is violated
(Miquel, 1984; Lang et al., 1999). In this assessment, two re-sampling scheme strategies for the
samples of DeCA are proposed and denoted as DeCAUN.1 and DeCAUnN.2 respectively. The
re-sampling scheme DeCAUN.1 is formed as follows:

(1 Selecting the maximum value of the corresponding DeCA sample,
(i) identifying and selecting the following lag(k)-apart values of the remaining data
from both sides of the value chosen in (i) until all available values are considered.

The re-sampled DeCAUN.2 is closely related to the concept of the SSL, (Soares and Scotto,
2004). The DeCAUN.2 scheme consists of the following steps:

(1) Identifying and selecting the largest value of the correspondent DeCA sample,
(i) Discarding values with a lag(k)-apart from both sides of the value chosen in (i),
(iii)  Selecting the next largest value of the remaining data and finally,

(iv) Repeat steps (ii) and (iii) until all data are used.

At this point, the lag (k)-apart value for re-sampling is difficult to estimate. It is the
required minimum value between successive irregular maxima of DeCA clusters, which renders
the maxima statistically independent. The desired lag(k) is obtained from the estimator
algorithm of ACF for different time lags. The latter algorithm is defined as SIMILARITY
(Rehfeld and Kurths, 2014) providing estimates for the irregular ACF in Eq. (4.21) using the
non-rectangular Gaussian Kernel (gXCF) in Equation (4.39). In this way, the products x;x; of
the irregular ACF estimator are weighted according to their difference between the product
inter-sampling time interval t; — ¢; and the associated time lag (k) for the samples of DeCA.

The desired lag(k)-apart value is derived as a time lag transformation from the
correlogram. It is set as the value of k observations obtained from the transformation of the first
time lag entering the confidence bounds (i.e., roughly 1 in 20 of the successive p, (k) to have
absolute value greater than 95% CI of zero autocorrelation) described by the Generalized
Bartlett’s formula in sub-Section 4.1.1. Example of the autocorrelation from the SIMILARITY
algorithm is illustrated in Figure 4.9.
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Correlation Slotting of the irregular DeCA sample
T T T T

—DEP(65%)
+ lag(k)=9

"o 100 200 300 400 500 600 700 800
lag(k) in hours

Figure 4.9: Example of the autocorrelation from SIMILARITY as a function of the time lag (k) for the irregularly
DeCA sample. The correlation Slotting method uses the Gaussian Kernel and the 95% confidence intervals of the
ACF are derived from the Generalized Bartlett’s formula. The sample period of the Correlogram is at 15 years
considering the dataset from the MARINA Platform database at location L2 (52.05N 2.15E in the North Sea). The
Correlogram of the irreregularly DeCA sample is supplementary image of Tsalis et al., (2021) using the ACF
estimator algorithm SIMILARITY in Matlab (Rehfeld and Kurths, 2014)

The ACF estimator algorithm SIMILARITY is utilized in sample periods of (10, 15,
20 and 25 years) at the locations described in Chapter 5. The available software analyzing
irregular samples in time and the correlogram at given time lags can be found in the
NESToolbox (https://tocsy.pik-potsdam.de/nest.php) cited in Rehfeld and Kurths, (2014).

4.4.2 Modeling DeCAUnN irregularly in time

The irregularly modeling process was carried out for eight DEP reduction level values
(60, 65, 70, 75, 80, 85, 90 and 95 percent), deriving equal number of DeCA samples.
Furthermore, each DeCA sample was modeled at eight C normalized bandwidths C € [0.125,
1] with a 0.125 step, deriving equal number of SIMILARITY results. In this way, all DeCA
samples are re-sampled to DeCAUN.1 and DeCAUN.2 respectively as described above. The
associated lag (k)-apart value for re-sampling will be estimated by the SIMILARITY function
for all bandwidth considerations.

At this point it is noted that for the evaluation of the statistical model fit of the DeCAUnN
re-samples to the GPD analytically presented in the following three steps, the concept of design
values and return periods is used. In relevant wind and coastal engineering applications where
the proposed model focuses, the concept of return period and design value is widely used. The
formal definition of the return period implies that the design value is expected to be exceeded
on average once during the next N years of observations. The period of N years is called return
period RP, associated with the design value. Specifically, the distribution function Pr(X < y)
of the exceedancesy = (x — u)| x>y, considering u is high enough, can be approximated by
the GPD i.e. G(y) = Pr(X < y). The return period is associated with the exceedance event
X > x,, that has probability of occurrence Pr(X >u +x,|X >u)=Pr(X>x,)=1-

Pr(X <x,) =1—G(x,). Therefore, the return period is defined as follows:

RP(x,) = (4.40)

1
1-G(xp)’
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where x,, is the design value associated with the return period RP, or else the RP-year design
value. Some authors use instead of G(x,), the expression 1 —p, where p = Pr[X > x| =
1/N. In this case, x, is the level expected to be exceeded on average once in any particular N
year with probability p (see also sub-Section 3.2.3).

Step 1. The re-samples of DeCAUN.1 and DeCAUN.2 are effective only if the common
assumption of stationarity is not violated. For this reason, the non-parametric rank-based Mann-
Kendall (M-K) test at a significance level of a = 0.05 was implemented; see also (sub-Section
2.5.2). The aim of the test was to ensure the absence of a monotonic upward or downward trend
of the examined re-samples. The null hypothesis of the test is Hy: No monotonic trend is
present, against the alternative H: There is a monotonic trend present. The test is used and
discussed in the context of EVA in Cheng et al. (2014). It should be noted that the application
of the M-K tests to the re-samples is a fundamental step as the presence of possible temporal
dependence and monotonic trends can affect and bias the GPD model fit, which relies on the
hypothesis of independent observations.

Step 2: The re-samples of DeCAUnN at each DEP level are subjected to a statistical GPD model
fit. However, the statistical threshold considerations for the model fit will be set within a range
of values u = (0, first quartile, mean, mode, and median) obtained from the re-samples
respectively. The optimum re-samples are assigned in terms of the lowest AIC and the lowest
statistic MSE under the statistical threshold considerations.

Step 3: The DeCAUnN re-samples derived from Step 2 are considered optimum for the statistical
GPD model fit. All previous Steps 1 and 2 are repeated over all normalized bandwidth
considerations. At this point, we note that the quantitative comparison of the DeCAUn re-
sampled model fit was not based on the standard AIC and MSE criteria. Thus, neither common
criteria for model selection nor goodness-of-fit tests are appropriate for evaluating the quality
of the model fit. Therefore, we considered a metric guide rule in the least-square sense to
measure the goodness of fit. Each optimum model fit will be counted upon a relative measure
of performance based on the estimated design values (DV) per sample period (Ny) denoted as
DV,,,:(DEP,u, C,Ny). The relativity of the metric is gauged by the associated estimates from
the BM approach within the largest annual available time series DV (max). The quantitative
measure is defined as a normalized root mean square error (nrmse), based on the modal
position of Hyndman and Fan (1996)

1 DV(RP; max) — DV,,;(RP; DEP,u,C,N 2
nrmse(Ny) = J— Z ( ( ) ot ( Y)> , (4.41)

Ny & DV (RP; max)

where T = (2, 10, 20, ..., 90 and 100) indicating the return periods (RP) of length N, = 11 and
Ny = 10, 15,20 and 25 years denoting the four sample periods of examination. The precision
of the nrmse measure will be counted upon the DV (max) estimates of the reference model
(BM Ref.) using the largest available sample of 20 years for the MARINA Platform dataset, 50
years for the ERA-20C and 38 years for the ERA-Interim dataset respectively (see Chapter 5).
Moreover, the parameter estimation method used is the standard MLE for the GEV and GPD
model fit of DeCAUN and BM Ref. respectively to all datasets.

In this implementation, the optimum normalized bandwidth of C € [0.125, 1] with a
0.125 step is the value that minimizes the nrmse estimates from the re-samples in Step 2. At
this optimum bandwidth selection the optimum DEP level is also derived and the optimum re-
sampling scheme of DeCAUnN. This empirical procedure applied for the selection of the
optimum normalized bandwidth to the weighting function is a result of no theoretical rule of
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the effective bandwidth. The aforementioned Steps 1,2, and 3 are respectively applied to the
four sample periods of examination (10,15,20 and 25 years). For clarity, the empirical optimum
bandwidth selection with the associated nrmse at the two sample periods of examination is
presented for only one location (L21; see Table 5.6) in the following Figure 4.10.

0.015
=
0.0125 e
(=] @
2 ® o <« @©
‘;;: 0.01
g
£ e o °©
=] =
=]
0.0075 @
. ¢ DeCAURn (Ny=10 yrs)
¢ DeCAUn (Ny=15 yrs)
®  Opt.bdw

0.005
0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

normalized bdw (4/4z)

Figure 4.10: Optimum normalized bandwidth (bdw) selection for L21 from the MARINA Platform database. The
empirical procedure applied for the selection of the optimum normalized bandwidth is supplementary image of Tsalis
etal., (2021)

From the empirical procedure described in Step 3, the DeCAUnN model set optimum
normalized bandwidth values at 0.625 for the 10 years and 0.125 for the 15 years as illustrated
in Figure 4.10. For a comprehensive overview of the irregularly modeling procedure, a flow
diagram is illustrated in Figure 4.11 summarizing in brief the key-steps in this setting from the
time series to the re-sampling scheme.

Hourly DeCA Slotting method Lowest Optimum
wind speed samples Gaussian bdw Re-samples measures re-samples Lowest Optimum
time series DEP % irregularly C €[0.125, 1] of AIC & of nrmse re-sampling
(1996-2005) (60,65,..,90,95) spaced in witha 0.125 DeCAUn.1 MSE from DeCAUn.1 measure scheme
(1996-2010) time step DeCAUn.2 GPD fit DeCAUn.2

Figure 4.11: Example of the re-sampling strategy illustrating the procedure from the time series to the selected re-
sampling scheme of DeCAUn. The flow chart diagram describes in brief the irregularly modeling process
considering eight DEP % reduction levels and eight normalized bandwidth values. The minimum nrmse measure
derived the optimum scheme for re-sampling. The flow chart is found in Tsalis et al., 2021.

In addition, an example of the declustering process under the DeCA and DeCAUN model
is illustrated for inference in Figure 4.12.
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Figure 4.12: Example of the DeCAUn model in (a) with optimum DEP reduction level at 65% in order to safely
separate approximately independent events avoiding unnecessary concatenation of clusters. The desired lag(k)-apart
value for re-sampling from DeCAUN.2 the irregular observations from DeCA in (b) is estimated at lag(k)=9 as a
time lag transformation from the correlogram. In addition, the No. of DeCA clusters is 778 and the DeCAUnN clusters
is 66, withoptimum normalized bandwidth set at 0.25. The dataset used is from the MARINA Platform database
(sub-Section 5.4) regarding sample period of 15 years (from 1996 to 2010) for location L2 in the North Sea. The
demonstration of the re-sampling strategy of DeCAUnN is illustrated also in Tsalis et al., (2021)

Summarizing the implementation of DeCAUnN, we recall that the main idea is to re-
sample the irregular samples from DeCA to re-samples approximating to the i.i.d limitations.
The re-sampling procedure was processed by the Slotting method, employing a Gaussian
Kernel weight function into the irregular ACF estimator. Moreover, the re-sampling process
accounted a range of DEP reduction levels and a range of bandwidths. In this way, the foregoing
ranges encompassed as many discrete events as possible and avoided over or under smooth
effects on the weight function respectively.
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Chapter 5

Study area and wind speed dataset used

In this Section the time series with their statistical properties are provided for the wind
speed data that are used for the response of the proposed models with regards to the return
levels (design values) and return periods presented in Chapter 6. The datasets are obtained from
four available databases, namely (i) from the National Oceanic and Atmospheric
Administration (NOAA) for buoys located in the Pacific coast of central America and eastern
Atlantic Ocean, (ii) the ERA-20C, (iii) ERA-Interim and (iv) MARINA Platform for locations
selected at the North Sea, the Atlantic Ocean and the Mediterranean Sea.

Our assessment is focused on different offshore regions in Europe, with special focus
in the North Sea, the European coastline that is exposed to the Atlantic Ocean and finally the
Mediterranean. The considered locations in these regions are of high interest in terms of wind
energy and offshore activities. Their characteristics vary and are highly affected by the different
climatological patterns for each region. The wind conditions in the North Sea are driven by the
passage of cyclonic systems such as extra-tropical cyclones influenced by the inflow of oceanic
water from the Atlantic Ocean. This, combined with North Sea’s shallow water basins, result
to a remarkable offshore wind profile (Suselj et al., 2010). The West European offshore
locations exposed to the Atlantic Ocean are affected by the extra or post-tropical cyclones that
are generated along the Polar and the Arctic front respectively (Dodet et al., 2010). Finally, the
Mediterranean Sea is a semi-enclosed basin surrounded by complex mountainous terrain and is
divided in several sub-basins with contradistinctive characteristics. In addition, the Mid-
Latitude cyclone passage results to complicated wind patterns with extreme winds. A detailed
description of the main Mediterranean winds is provided by Zecchetto and Cappa (2001) and
Soukissian et al., (2018) with references therein, where wind climate and wind power potential
characteristics of the Greek Seas found in (Soukissian et al., 2017; Katopodis et al., 2019).

All models are assessed against the BM from these datasets (see Chapter 6). The
maximum available time series is extending from 1976-2012 (37 years long) from the NOAA
product, the ERA-20C is extending from 1961-2010 (50 years long) and the ERA-Interim
product from 1979-2016 (38 years long). The maximum wind speed time series used from the
MARINA Platform database is from 1996 to 2015 (20 years), referred also as the reference
series of the BM model (BM Ref.). A short description of the above mentioned datasets is
presented in the following sub-Sections.

5.1 NOAA database

The National Oceanic and Atmospheric Administration (NOAA) National Data Buoy
Center (NDBC), a part of the National Weather Service (NWS), designs, develops, operates,
and maintains a network of moored buoys and coastal stations throughout the world’s oceans,
seas, and lakes for the purpose of providing civil earth marine observations. NDBC has
provided real-time, oceanographic, and meteorological observations since 1967 to a wide
variety of stakeholders and users. NDBC provides high quality ocean and coastal observations
for public safety use in direct support of short range and extended range NWS forecasts,
Warnings, and Watches.

Wind measurements are made at all NDBC weather stations. NDBC uses 4-blade,
impeller-driven, wind-vane sensors. The final measurements are statistical estimates of the
wind from time series of instantaneous wind samples taken at a minimum rate of 1 Hertz (Hz)
over a particular length of time. The sampling rate is a function of the payload. CMAN stations
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use a 2-minute data acquisition period, and moored buoys use an 8-minute acquisition period.
The following standard wind measurements are produced each hour.

Continuous-wind data are accumulated in segments of 10 minutes, yielding 600
samples per segment, and six 10-minute segments each hour. After each segment period, the
mean of the segment is calculated and stored in a temporary buffer. The accumulations are also
stored for later hourly statistical processing. The payload saves the most recent six
accumulations. At the end of each 10-minute segment, the oldest data, now more than an hour
old are removed from memory and replaced with the most recent.

At the end of an acquisition period, statistical processing is performed, and the output
message is updated with the new statistics and six 10-minute segments. Statistical processing
includes the calculation of the mean for both direction and speed and the standard deviation of
the speed. The hour's data do not represent data from minute 0 to minute 59. Rather, it represents
the latest, complete six 10-minute segments before the end of the last acquisition. The 10-
minute segments are, however, bounded by minutes 0, 10, 20, etc.

Wind measurements undergo range, consistency, standard deviation, and gust-to-speed
ratio checks. Wind speed at 10 m above site elevation (WSPD11, WSPD21) and 20 m above
site elevation (WSPD12, WSPD22) are derived from an algorithm (Liu et al., 1979) that uses
the height of the anemometer, the wind speed (WSPD1 or WSPD?2), a constant relative
humidity of 85%, a constant sea-level pressure of 1013.25, and the air (ATMP1 or ATMP2)
and water temperature (WTMPL). If either the air or water temperature are unavailable, then
the neutral stability is assumed. Assuming neutral stability can introduce an error of up to 5
percent. If both are missing then neither 10 nor 20-m wind speeds are made. Finally many buoys
that are climatologically in the path of hurricanes or intense low pressure systems have the
capability of measuring supplemental one-minute average wind data. A comprehensive
documentation of the NDBC can be downloaded from
http://www.ndbc.noaa.gov/NDBCHandbookofAutomatedDataQualityControl2009.pdf  and
available data sets from http://www.ndbc.noaa.gov/ .

Dataset

In this setting, wind speed datasets from the NOAA database is used to address
effectively the intractable problems of inference of the most used and less known parameter
estimation methods of the GEV distribution. Inference of the demonstration of the parameter
methods is made to the regional locations in the Pacific coast of central America and locations
in the North West Atlantic Ocean which are exposed to a strong wind climate with evidence of
extreme wind speed (Lavin et al., 2006). Specifically, locations (41001 and 44004) in the
Tropical North Atlantic ocean (see Figure 5.1), are related to hurricane activity and locations
(46006 and 51003) are highly exposed to the Eastern North Pacific tropical cyclones (Landsea
et al., 2004). The code numbers of the buoys selected along with the corresponding
geographical locations and the measurement periods are the following:

41001 (34°33'40" N 72°37'50" W, 1976-2012),
44004 (38°292" N 70°25'57" W, 1977-2008),
46006 (40°45'16" N 137°27'51" W, 1977-2012),
51003 (19°1'6" N 160°34'54" W, 1984-2012).
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Figure 5.1: Code numbers of the buoys used for the wind speed dataset from the NOAA database illustrated at the
corresponding geographical locations. These locations are also used in the work from Soukissian and Tsalis, (2015).

The basic statistics of the wind data for the entire measurement period is provided in
Table 5.1. Specifically, the following remarks are outlined: On a mean annual basis, the most
intense wind climate corresponds to the location of the buoy 46006 (mean annual value of wind
speed 7.54 m/s). The overall maximum wind speed was recorded at buoys 41001 and 46006
(equal to 31.2 m/s), while the highest 0.99 percentile point (17.1 m/s) corresponds to the
location of buoy 44004. The greatest variability corresponds to buoy 44004 (coefficient of
variation 50.67 %), which is also characterized by the largest variance. The values of the
kurtosis are of comparable order of magnitude for all locations, and apart from buoy 51003, the
same holds true for skewness.

Table 5.1: Basic statistical parameters for wind speed at the examined buoy locations.

Buoyno. 41001 44004 46006 51003
1976-2012 1977-2008 1977-2012 1984-2012
Annual Sample
37 (yrs) 32 (yrs) 36 (yrs) 29 (yrs)
Number of records 209942 200854 195315 209176
Max 31.2 30.7 31.2 194
Min 0 0 0 0
Mean 7.193 7.323 7.541 6.122
Variance 12.585 13.768 12.871 4.526
Skewness 0.505 0.546 0.494 -0.017
Kurtosis 3.221 3.128 3.152 3.245
0.99 percentile 16.6 171 16.9 11.3
Coefficient of variation 49.32 50.67 47.57 34.75

In addition, the annual wind speed maxima from the time series are illustrated in
Figure 5.2 for the four examined locations to assess the effect of the parameter estimation
methods to the GEV distribution where inference is made in Chapter 6 (sub-Section 6.1).
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Figure 5.2: Time series of the annual maxima for buoys 41001, 44004, 46006 and 51003. The wind speed datasets
at these locations are also found in Soukissian and Tsalis, (2015).

5.2 ERA-20C database

In this section, the statistical features of the ERA-20C wind speed dataset used are
outlined to assess the effects of the sample size and the parameter estimation methods to the n-
year design values of wind speed (n = 10,20,...,100). In order to effectively assess these effects,
long-term wind speed time series are required. In this respect, reanalysis wind data have several
advantages compared to in-situ measurements: the acquired time series are continuous, the
spatial coverage is appropriate, the sampling intervals are constant and they are usually of long
duration (in contrast to in-situ measurements or satellite data that are usually temporally
limited). Reanalysis data has been used in several EVA related applications, see e.g. (Caires
and Sterl, 2005), (Fang et al., 2008), (de Oliveiraetal., 2011), (Agarwal et al., 2013), (Panchang
etal., 2013), (Mo etal., 2015), (Bitner-Gregersen, 2015), (Nicolae Lermaet al., 2015), (Patlakas
et al., 2016). Since reanalysis data offer the convenience to generate long-term datasets on a
defined homogeneous grid for climate research at different historical periods, a detailed
assessment of the effects of the sample size of BM to the wind speed design values is effectively
made.

Based on the above discussion, wind data from the recently released ERA-20C
climatology are utilized. Let it be noted though that numerical model data are subjected to
different limitations, such as model uncertainties and lack of high-frequency information.
However, the temporal resolution (3h) of ERA-20C data is considered satisfactory for the
representation of the high-frequency fluctuations; see also (Reguero, 2011). Moreover, in
(Bitner-Gregersen et al., 2014; Bitner-Gregersen, 2015) it is emphasized that since the
reanalysis data cover long time periods (more than 30 years as in our case), it is anticipated that
the GEV distribution fits are not affected by the model sampling variability.

ERA-20C is the first atmospheric reanalysis of the 20th century (covering the period
1900-2010) provided by the European Centre for Medium Range Weather Forecasting
(ECMWE), developed within the context of the ERA-CLIM project. The weather reanalysis is
based on a coupled Atmosphere/Land-surface/Ocean-waves model by assimilating surface
observations (surface pressures from ISPD v3.2.6 and ICOADS v2.5.1, and surface marine
winds from ICOADS v2.5.1). The horizontal model resolution is approximately 125 km. A
description of the ERA-20C product can be found in (Poli et al.,, 2016). See also
http://www.ecmwf.int/en/research/climate-reanalysis/era-20c.

In order to identify the effects of BM on the wind speed design values and assess the
sensitivity of the latter estimates, the wind speed data time series are split into series of different
lengths, namely 20, 25, 30, 35, 40, 45 and 50 years. Although the primary times series lengths
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are of the order of 110 years, wind data have been restricted to the last 50 years, i.e. 1961-2010,
based on the following grounds: 1) the examined time series and subseries should be stationary
in order to secure the validity of EVA and the assessment of the obtained numerical results; and
2) 1960 is a key-year as regards the number of assimilated observations for the northern
hemisphere with respect to surface pressure and wind zonal and meridional components. This
number is rather stabilized after 1960, while during the 2" World War took its minimum values.
Therefore, in order to avoid potential inhomogeneities of the examined time series, the analyzed
data are limited in 1960-2010. See also (Poli et al., 2013).

Moreover, a new type of comparative assessment is also introduced in the work of
(Soukissian and Tsalis, 2019). Taking into consideration that the available time series extends
from 1961 to 2010, the assessment of the sample size effects can be made in two directions: i)
by allowing the sample size to increase from 1961 forward or ii) by allowing the sample size
to increase from 2010 backwards. For the sake of brevity, the samples obtained by the forward
direction of their size increase are called F-samples (e.g. the sample of 30 annual maxima
obtained during the period 1961-1990, or of 40 annual maxima obtained during the period
1961-2000) and the samples obtained by the backward direction of their size increase are called
B—samples (e.g. the sample of 30 annual maxima obtained during the period 1981-2010, or of
40 annual maxima obtained during the period 1971-2010). See also Figure 5.3 for the schematic
illustration of the different sampling step.

The former case (F—samples) is usually of interest in classical assessment of sample
size effects. This is the case encountered in wind speed measurements, as the corresponding
sample size continuously increases in the time domain. The latter one (B—samples) may also
refer to the estimation of design values based on hindcast model results, a case that is often
encountered in offshore wind energy applications. As hindcast model results extend over the
past, the corresponding sample size of the annual maxima also increases. As far as the authors
are aware of, this case has not been studied. From an alternative point of view, B—samples can
be regarded as F—samples with a different starting and ending point in time.

B-sample (size: 30)

F-sample (size: 30)

B-sample (size: 20)

F-sample (size: 20)

> 2
1 2
P

2

>

Annual maximum wind speed (m/s)

LA L L I L L |

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
Year

F-sample size increase B-sample size increase

Figure 5.3: The illustration of the F— and B—samples definition on a time series of annual maxima. The different
starting and ending point in time is inferred in sub-Section (6.1.2). Supplementary material of Soukissian and
Tsalis, (2019)

5.2.1 Dataset (Stationary analysis)

74



Study area and wind speed dataset used

Based on the stationary analysis for extremes and the combined effects of the sample
size to the estimators, the extreme wind profile in this setting is represented using a suitable
reanalysis dataproduct such as ERA-20C in the offshore region of the North Sea focused at
locations away from the land-sea boundaries. The specific locations are shown in Figure 5.4.

Figure 5.4: Geographical locations of grid points of the ERA-20C data set (from Google maps) illustrated also in
Soukissian and Tsalis, (2018).

The low-resolution dataset used is less vulnerable to systematic errors which may lead
to artificial trends (e.g., see Alexandersson et al. 2000; Matulla et al. 2007). Nevertheless, the
effective representation of the surface wind conditions over the North Sea using a low-
resolution wind speed dataset is challenged and unclear (Suselj et al., 2010). It is evident in
their study that the low-resolution datasets effectively secure and capture the large-scale forcing
on the wind field but rather fail capturing the local effects. To alleviate any inconsistencies of
the model in the nearshore areas the locations in this setting are at distance from the land-sea
topography.

Specifically, for locations L(1,2 and 3) de Winter et al., (2013) resulted that high wind
speeds are compared suitable with those of ERA-20C or the later ERA-Interim. Zappa et al.,
(2013) show that the characteristics of extra tropical cyclones obtained at L(1,2, and 3) are very
close to the representations made from several reanalysis products. The latter reproductions
also discussed in Sterl et al., (2015) is somehow explained by the good representation of the
predominant force pressure pattern over the North Atlantic i.e., the North Atlantic Oscillation.
The extreme wind profile in the German Bight where L4 is located, is well represented by the
relatively low reanalysis resolution of ERA-20C (Suselj et al., 2010). As a remark from the
work of Befort et al., (2014) it is pointed out that the rarest events in the region where L4 is
selected, will potentially show reduced intensity. However, inference of the low reanalysis
product is challenged at the coastal areas where in this part of the study locations are carefully
selected avoiding inconsistencies near the coast.

Further on, the effects of the available time series length on the time series statistics are
assessed. In Table 5.2, the main statistical parameters of wind speed for locations L1, L2, L3
and L4 for different time series lengths are shown. The particular parameters estimated are the
mean value m and standard deviation (s), minimum (min), and maximum (max), the 99™
percentile point, coefficient of variation (CV), excess kurtosis (k) and skewness(sk). N denotes
the specific time series length in years (i.e. 20, 25, 30, 35, 40, 45, and 50) where the statistical
parameters are estimated.

Table 5.2: Descriptive statistics of wind speed at locations L1 (1.125° E - 56.25° N), L2 (1.125° E - 54.00° N), L3
(3.375° E - 58.50° N) and L4 (6.75° E - 54.00° N) for different time series lengths. The case encountered in wind
speed measurements is the F-sample size increase in the time domain, e.g. 20,25,30,35,40,45 and 50 yrs length
corresponded from 1961 to 1980,1985,1990,1995,2000,2005 and 2010 respectively.
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Time series length ) Sample ~mean min max 99% s cv sk k
Location .
(years) size (mfsy (mfs) (mis)  (mis)  (mis)
L1 8.165 22469 17.162 3580 43.845 0451 -0.334
L2 7.536 21.703 16.088 3.436 45599 0416 -0.328
20 58440 2.000
L3 8.176 22245 17.755 3.808 46.580 0455 -0.333
L4 7.045 21419 15.088 3.160 44.857 0.463 -0.216
L1 8.176 22.469 17.233 3.606 44.110 0458 -0.325
L2 7.554 21.703 16.155 3.455 457742 0421 -0.331
25 73048 2.000
L3 8.218 24662 17.805 3.817 46.448 0.450 -0.337
L4 7.065 21419 151153 3.180 45.005 0.463 -0.212
L1 8.244 23525 17.221 3619 43.895 0438 -0.356
L2 7.617 21.703 16.212 3473 45601 0414 -0.338
30
L3 87656 8.275 2.000 24662 17.751 3.817 46.127 0.423 -0.370
L4 7.118 21.419 15178 3.201 44963 0451 -0.244
L1 8.292 23525 17.305 3.631 43.793 0432 -0.361
L2 7.644 22.070 16.248 3.484 45581 0410 -0.344
35 102264 2.000
L3 8.324 24662 17.806 3.830 46.016 0.415 -0.383
L4 7.136 21419 151189 3.209 44968 0.452 -0.250
L1 8.283 23525 17.276 3.633 43.854 0.437 -0.366
L2 7.646 22.070 16.244 3490 45643 0.407 -0.364
40 116880 2.000
L3 8.331 24662 17.813 3.830 45977 0413 -0.383
L4 7.152 21419 15207 3.214 44945 0448 -0.265
L1 8.260 23525 17.220 3.611 43.713 0.437 -0.356
L2 7.629 22.070 16.212 3.482 45642 0.406 -0.365
45 131488 2.000
L3 8.303 24662 17.755 3.813 45927 0415 -0.375
L4 7.129 21419 15171 3.203 44931 0449 -0.266
L1 8.232 23525 17.204 3.608 43.833 0.440 -0.355
L2 7.623 22.070 16.183 3.477 45612 0.404 -0.372
50 146096 2.000
L3 8.281 24662 17.742 3.814 46.061 0.420 -0.370
L4 7.137 21.419 15160 3.196 44.777 0.446 -0.266

Some conclusions that can be drawn from the above results are the following:

1. The largest 99" percentile values are observed for the time series with 35 years length
(for L1 and L2), and 40 years length (for L3 and L4).

2. New (“fresh”) annual maxima (outside the annual maxima range of the previous time
period), enter into the analysis for the 30 years long time series (for L1), 35 years long
time series (for L2) and 25 years long time series (for L3).

3. Excess kurtosis parameter is systematically negative suggesting light-tailed
distributions for wind speed.
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4. Excess kurtosis and skewness parameters remain rather constant for the examined time
series lengths.

In Figure 5.5, the time series of BM of wind speed for locations L1, L2, L3 and L4 are
shown for the period 1961-2010. Notice the presence of an abrupt shift for L3 that occurred in
1981. The presence of this maximum affects the extreme value analysis and in particular, the
design values of wind speed (see sub-Section 6.1.2).

@ _(b)

Location L2 (1125° E, 54.00° )

Figure 5.5: Time series of annual maxima of wind speed (1961-2010) for locations L1 illustrated in (a), L2 in (b),
L3in(c), and L4 in (d). These locations are used to assess the effect of the parameter estimation methods to the GEV
distribution and the sample size in Chapter 6 (sub-Section 6.1). Illustrated also in Soukissian and Tsalis, (2018).

5.2.2 Dataset (Non-Stationary analysis)

The complex dynamics of large-scale atmospheric circulation in a few recurrent and
guasi-stationary patterns is characterized in Synoptic climatology as weather regimes (Cortesi
et al., 2019). The impact of these weather regimes influences near-surface wind speed
variability particularly at mid-latitudes in the Euro-Atlantic region. For a comparison of the
uncertainty affecting near-surface wind speed trends from different reanalyses, see Torralba et
al. (2017a).

In this setting, for the extremes of non-stationary sequences and the application to wind
speed design values, our analysis is based on coarse historical data of annual length 40 years.
The samples of annual maxima wind speed are extracted from the atmospheric weather
reanalysis product ERA-20C, covering the period (1961-2000). Specifically, the samples of
annual maxima will be considered for 5 different locations at the North Sea denoted as
L(1,2,3,4, and 5) in Figure 5.6.
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Location 5 (3.375, 59.625)

Location 1 (0, 55.125)

Location 3 (3.375, 55.128)

Location 4 (4.5, 55.125)
Location 2 (2.25, 55.125)

Figure 5.6: Geographical locations of the ERA 20 dataset for the non-stationary analysis. Wind speed datasets from
these locations are used to assess the effect of trends in the parametric modelling of the likelihood of the GEV
distribution when stationarity is violated. Illustrated also in Tsalis and Kallos, (2017).

The basic statistics of the samples of annual maxima of wind speed extending from

1961 to 2000 are given in Table 5.3. Specifically, the following statistical remarks of the dataset
used for the nonstationary approach are outlined as follows:

On a mean annual basis, the most intense wind climate corresponds to L5 (mean annual
value of wind speed 20.418 m/s). The maximum wind speed of all locations ranges
from 23.2 to 23.7 (m/s), while the greatest variability is shown in L4 (coefficient of
variation 6.8 %), which also shows the largest variance.

The skewness parameter is systematically positive indicating longer right tail for all
locations. This is inline to regions of positive skewness located at midlatitudes in the
Northern Hemisphere, characterized by intermediate mean wind speeds and strong
variability (Monahan, 2006; Part I). Particularly, L1 and L5 show the largest skewness
(0.94 and 0.457) respectively, indicating that at these locations the forcing has larger
mean and considerable larger flunctuations away from the mean. In addition, the
kurtosis parameter is negative (lighter-tail) for L (2,3, and 4) and positive (heavier-tail)
for L1 and L5. Wind speed datasets at Locations L1 and L5 are characterized of having
heavier tails (tail extremity) suggesting more intense extremes than at L (2,3, and 4).

Table 5.3: Basic statistics for samples of annual maxima wind speed at the locations used in the nonstationary

approach.
Location/ nbr.val min max median mean SE. Cl. var  std. cef. skewness Kkurt-
Statistics mean mean. dev  var 0sis

0.95

L1| 40 175 236 195 19465 0.181 0365 1.303 1.142 0.059 0.94 2.25

L2| 40 182 232 20.15 20.168 0.194 0.393 1508 1.228 0.061 053 -0.311

L3| 40 181 237 2025 20270 0215 0436 1.857 1363 0.067 0.367 -0.515

L4| 40 181 233 2015 20.345 0.218 044 1896 1.377 0.068 0.386 -0.84

L5| 40 175 234 2025 20418 0162 0328 1.05 1.025 005 0457 1.844
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In Figure 5.7, the annual wind speed maxima is illustrated for the five examined
locations used in the nonstationary approach. The apparent trend illustrated at these locations
meet the requirements of the MK, CS and KPSS test discussed in sub-Section (2.5.2) and
analytically formulated in Appendix F. The statistical analysis made to the series at these
locations pointed out that the Trend and Stationarity test hypothesis cannot be rejected at the
significance level of 0.05, regarding the absence of a monotonic upward trend over time and
the presence of stationarity around a fixed level. The statistical tests applied in this part of our
analysis to extremes of wind speed strengthens the parameteric modelling in the nonstationary
approach. The test results of this analysis are presented in Chapter 6 (sub-Section 6.2).
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Figure 5.7: Time series of annual maxima of wind speed (1961-2000) per location. Datasets from these locations are
used to assess the effect of the various parametric models used to the parameter estimation of the time dependant
likelihood of the GEV distribution shown in Chapter 6 (sub-Section 6.2). lllustrated also in Tsalis and Kallos, (2017).

5.3 ERA-Interim database

In this sub-section, we describe in short the ERA-Interim data product and the wind
speed time series originated from this database. The relatively small resolution of ERA-Interim
and the previous ERA-20C reanalysis database within the context of the ERA-CLIM project
will challenge the demonstration of the proposed DeCAUN model for the extrapolation of
extreme wind speed estimates.

ERA-Interim is a global atmospheric reanalysis from 1979, continuously updated in
real time. The dynamical core of the atmospheric model is based on a spectral representation
for the basic dynamical variables, a hybrid sigma-pressure vertical coordinate, and a semi-
Lagrangean semi-implicit time stepping scheme. The ERA-Interim configuration uses a 30 min
time step and has a spectral T255 horizontal resolution, which corresponds to approximately
79 km spacing on a reduced Gaussian grid. The vertical resolution uses 60 model layers with
the top of the atmosphere located at 0.1 hPa.

The weather reanalysis is based on a coupled Atmosphere/Land-surface/Ocean-waves
model by assimilating surface observations, producing ERA-Interim assimilation data
consisting on four analyses per day, at 00:00 the first, 06:00 the second, 12:00 the third, and
18:00 UTC the fourth. Archived ERA-Interim data and current data availability can be
downloaded from the ECMWF Data Server at http://data.ecmwf.int/data, or on ECMWF
website at http://www.ecmwf.int/research/era. The data are available at full resolution with
options for regional selection and gridding. A comprehensive documentation of the ERA-
Interim reanalysis system http://onlinelibrary.wiley.com/doi/10.1002/qj.828/abstract has been
published as an open-access article in the Quarterly Journal of the Royal Meteorological
Society, (Dee et al., 2011).
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Dataset

The examined locations are 32 in total, denoted as L1, L.2,...,L.31 and L32 respectively
as shown in Table 5.4.

Table 5.4: Locations of daily wind speed records using the ERA-20 and ERA-Interim products.

ERA-20C ERA-Interim
Location Latitude Longtitude | Location Latitude Longtitude
L1 38.250N 24.750E L17 56.250N 4.500E
L2 41.625N 16.875E L18 54.000N 2.250E
L3 33.750N 33.750E L19 60.000N 2.250E
L4 34.875N 24.750E L20 58.500N 0.000E
L5 40.500N 5.625E L21 56.250N 17.250E
L6 42.750N 4.500E L22 57.000N 19.500E
L7 42.750N 6.750E L23 37.500N 11.250W
L8 42.750N 31.500E L24 51.000N 6.750W
L9 42.750N 34.875E L25 58.500N 10.500W
L10 58.500N 4.500E L26 33.000N 31.500E
L11 46.125N 4.500W L27 41.250N 18.000E
L12 47.250N 3.375W L28 34.500N 12.000E
L13 47.250N 10.125W L29 36.000N 2.250W
L14 34.875N 10.125W L30 37.500N 17.250E
L15 36.000N 11.250W L31 42.000N 3.750E
L16 38.250N 10.125W L32 45.000N 32.250E

(a) (b)
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Figure 5.8: Geographical locations of the ERA-20C (a) and ERA-Interim (b) data set for the DeCA and DeCAUnN
model analysis. Supplementary image of Tsalis et al., (2019).

The descriptive statistics of the wind speed dataset of the 32 locations from the ERA-
20C and ERA-Interim database is presented analyticaly in Table 5.5. The interesting feature
from the statistics associated to the relatively small resolution database is that the skewness
parameter is systematically positive. This finding indicates that the probability density estimate
of the wind speed time series at 10 (m) height at the 32 locations selected from the ERA-20C
and ERA-Inrerim database is characterized by a longer right tail suggesting that the mean value
is larger than the most likely observed values in the series (Marcos et al., 2019).

Another interesting feature is that the excess kurtosis parameter depicts slightly
negative and positive values and varies between -1 and 1 throughout most of the midlatitudes
except L3 depicted at 1.932 and L26 at 1.165. This indicates that the distribution of wind speed

80



Study area and wind speed dataset used

originated from a fairly coarse resolution database such as the ERA-Interim, in general suggests
light-tails for the majority of the midlatitude regional locations used in this study which is also
in agreement based on the study of Monahan, (2006; Part 11) and Marcos et al., (2019).

Given the sparsity of global wind observations, the relatively small reanalysis data
products such as ERA-Interim have demonstrated their potential usefulness for large-scale wind
energy applications (Torralba, et al., 2017b). It is emphasized that since the reanalysis dataset
of low resolution covers long time periods (38 and 50 years in this part of the study) it is
anticipated that the asymptotic model formulation of GEV and GPD will be unaffected from
the climate uncertainty when modelling BM Ref. at the larger available length and will
challenge the modelling of DeCAUnN at sample periods of shorter length. The modelling of
extreme wind parameters is usually manifested using statistical methods based on long datasets
(Kunz et al., 2010; Bonazzi et al., 2012; Jonathan and Ewans, 2013).

The forcing mechanism deriving wind speed observations particularly near the coast is
subjected to many complex, small-scale phenomena which produce large differences over small
distances. The use of database of larger resolution for the demonstration of DeCAUN will
challenge the resampling strategy by incorporating inevitably more extremes. It is rather
expected at that case positive and larger excess kurtosis suggesting distributions of heavy right-
tails as an approximation to the probability density function of the wind speed (see Figure 5.11).
However, the analysis based on the realively small resolution enables us to make the best
possible reconstraction of the irregularly samples given the limitations in the length of records
and their spatial density.

Table 5.5: Descriptive statistics for the 32 locations of the datasets used from the ERA-20C database extending from
1961 to 2010 (50 years) and the ERA-Interim database extending from 1979 to 2016 (38 years).

SE. Cl.mean std. coef.
Location min max median mean var skewness kurtosis
mean 0.95 dev var
L1 0.003 21.736 6.537  6.914 0.010 0.019 13.674 3.698 0.535 0.470 -0.317
L2 0.004 21.050 4666  5.228 0.008 0.016 9.210 3.035 0.581 0.888 0.630
L3 0.005 21.321 4363  4.794 0.007 0.013 6.745 2.597 0.542 1.144 1.932
L4 0.030 21.562 6.636  6.713 0.007 0.015 8.026 2.833 0.422 0.313 0.084
L5 0.022 21.243 5.492 5.980 0.009 0.017 10.909 3.303 0.552 0.703 0.191
L6 0.025 20.608 5.390 6.046 0.009 0.018 12.267 3.502 0.579 0.714 -0.029
L7 0.019 21.287 4.987  5.561 0.009 0.017 10.995 3.316 0.596 0.687 -0.078
L8 0.015 18.836 5.035 5.358 0.007 0.014 7.255 2.694 0.503 0.611 0.187
L9 0.013 19.562 4708  5.033 0.007 0.013 6.915 2.630 0.522 0.700 0.434
L10 0.026 25.095 7.586 7.895 0.010 0.020 15.087 3.884 0.492 0.420 -0.250
L11 0.031 29.785 6.706  7.159 0.009 0.019 13.054 3.613 0.505 0.689 0.427
L12 0.023 21.461 5.030 5.407 0.007 0.014 7.425 2.725 0.504 0.785 0.707
L13 0.027 29.122 7.434 7.812 0.010 0.019 13.985 3.740 0.479 0.551 0.155
L14 0.030 22.119 6.395 6.427 0.007 0.014 7.338 2.709 0.421 0.290 0.155
L15 0.017 24.504 6.689  6.777 0.008 0.015 8.492 2914 0.430 0.265 -0.139
L16 0.013 23.919 6.355 6.482 0.007 0.014 7.746 2.783 0.429 0.334 0.060
L17 0.026 27.667 8.128 8.414 0.016 0.032 14.592 3.820 0.454 0.420 -0.054
L18 0.040 27.058 7.697 8.026 0.016 0.031 13.994 3.741 0.466 0.437 -0.100
L19 0.062 34.147 7.896 8.261 0.018 0.034 17.037 4.128 0.500 0.510 0.047
L20 0.049 28.471 8.108 8.440 0.017 0.033 16.074 4.009 0.475 0.439 -0.079
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L21 0.006 24.266 6.783 7.063 0.014 0.027 10.799 3.286 0.465 0.457 -0.014
L22 0.037 26.062 7.091 7.386 0.015 0.029 11.898 3.449 0.467 0.444 -0.052
L23 0.042 21.805 6.651 6.801 0.012 0.024 8.588 2.930 0.431 0.328 -0.055
L24 0.025 26.707 7.849 8.170 0.016 0.032 14.546 3.814 0.467 0.458 -0.049
L25 0.065 28.907 8.969 9.296 0.018 0.036 18.242 4.271 0.459 0.418 -0.076
L26 0.035 19.039 5.012 5.259 0.010 0.020 6.051 2.460 0.468 0.804 1.165
L27 0.013 19.307 4.449 4.894 0.012 0.024 8.091 2.844 0.581 0.825 0.581
L28 0.016 20.789 5.507 5.839 0.012 0.024 8.061 2.839 0.486 0.627 0.315
L29 0.013 20.456 5.787 5.928 0.014 0.027 10.503 3.241 0.547 0.380 -0.333
L30 0.020 21.295 4.847 5.347 0.012 0.024 8.579 2.929 0.548 0.892 0.824
L31 0.023 21.825 5.053 5.798 0.014 0.028 11.627 3.410 0.588 0.926 0.599
L32 0.014 19.561 5.659 5.949 0.012 0.024 8.350 2.890 0.486 0.506 -0.004

The wind speed datasets originated from the relatively small resolution database will
challenge the assessment of the resamples irregularly spaced in time derived from the DeCAUnN
model for sample periods of (10,15,20 and 25 years). Specifically, sample periods are set from
1961 to 1985 with a 5 years step considering the ERA-20C dataset and from 1979 to 2003 with
a 5 years step using the ERA-Interim dataset that will challenge the asymptotic properties of
GPD modelling DeCAUn to these sample periods. For inference, two representative locations
from the ERA-20C (L5 and L10) and the ERA-Interim (L18 and L30) database are selected for
the demonstration of DeCAUnN in terms of the return level estimates and variability of the
proposed model to each sample period; (see the demonstration of DeCAUN to these locations
in sub-Section 6.4).

In the following Figure 5.9 the wind speed time series originated from the ERA-20C
and ERA-Interim database is illustrated for the four selected locations L(5, 10, 18, and 30). A
smoothing line (red line) was fitted to the annual maxima wind speed values for better
visualisation of the long-term variability of BM. It is important to point out that the assessment
of DeCAUnN is based to stationary wind speed time series, as the presence of possible temporal
dependence and monotonic trends can affect and bias the GPD model fit, which relies on the
hypothesis of independent observations. The illustration of BM shows not any increase or
decrease over time, i.e., there is no trend present. There is also no obvious anomalies or jumps
in BM. The results are similar for the 32 locations of the ERA-20 and ERA-Interim database.
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Figure 5.9: The time series and the annual or block maxima (BM) of wind speed as the reference dataset for locations
L5 (a) and L10 (b) from ERA-20C are illustrated for the period 19612010 (50 years). Locations L18 (c) and L30
(d) from ERA-Interim correspond to sample period from 1979 to 2016 (38 years). The four locations are selected
considered the intense wind profile that is present at these locations (Tsalis et al., 2019).

5.4 MARINA Platform database

For this statistical analysis of the proposed DeCAUN model, a high resolution database
was employed providing wind speed series on different offshore regions in Europe, with special
focus in the North Sea, the European coastline that is exposed to the Atlantic Ocean and finally
the Mediterranean Sea.

Dataset

The demonstration of DeCAUN in this assessment is also challenged considered a high
resolution data product for the statistical analysis of the proposed resampling model.
Specifically, the time series of wind speed used in this part of the analysis cover a period of 20
years (from 1996 to 2015) extracted from the MARINA Platform database (2014) created
within the framework of the homonymous project. The dataset was produced as an outcome of
atmospheric modeling hindcast simulations providing information for the entire European
coastline with an hourly time frequency and a spatial resolution of 5 km. The atmospheric
model used is SKIRON (Kallos et al., 1997). The outcome has been evaluated within the
framework of MARINA Platform project (see http://forecast.uoa.gr/oldproj.php). In the present
study, the wind components of the model are obtained at 10m above sea level for the 30 in total
selected locations denoted as L1, L2,..., L29 and L30 in Table 5.6 with their descriptive
statistics in Table 5.7.

Table 5.6: Locations of daily wind speed records from the MARINA Platform database used for this analysis.

North Sea Atlantic Ocean Mediterranean Sea
Location Lat Lon Location Lat Lon Location Lat Lon
L1 557N  7.4E L11 5045N  155W L21 408N 55E
L2 5205N 215E L12 5005N  4.25W L22 355N 26.4E
L3 51.65N 3.45E L13 4285N  9.95W L23 339N 299E
L4 548N 135E L14 5325N 10.25W L24 434N 154E
L5 5715N 3.1E L15 4965N 655 W L25 365N 35W
L6 584N 103E L16 5725N  7.65W L26 379N 3.1E
L7 51.65N 1.35E L17 5275N  9.75W L27 433N 75E
L8 57.95N 3.1E L18 5065N  0.95E L28 422N 11.4E
L9 562N 4.15E L19 5485N 8.95W L29 405N 122E

L10 5575N 225E L20 5335N 485W L30 422N 179E

The re-sampling assessment of DeCAUn to samples of wind speed observations
irregularly spaced in time is challenged from the model demonstration of BM, Runs and DeCA
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analyticaly discussed in previous sub-Sections. All models however are applied to the wind
speed datasets of the MARINA Platform at locations respectively shown in Figure 5.10.

60

Figure 5.10: Wind speed datasets at locations used for the irregular extreme value analysis based on the MARINA
Platform database. Illustrated also in Tsalis et al., (2021)

At this point it is important to highlight the use of a high horizontal resolution
dataproduct such as the MARINA Platform database especially near the offshore regions of
Europe where the demonstration of DeCAUnN to wind speed is challenged from the highly
dependent regional effects (surface roughness, landmass, etc.). The use of a high resolution
database is crucial to derive detailed data to follow-up the requirements of the resampling
strategy of DeCAUn to short and irregularly samples at regional locations where the
meteorological model of lower resolution is not able to reproduce the underlying terrain and
capture the wind speed variations sufficiently (Kaiser et al., 2015).

The descriptive statistics of Table 5.7 infer the extremity of wind speed reproduced
from the MARINA Platform database. Specifically, skewness is systematically positive
indicating an elongated right tail distribution as a reasonable approximation to the probability
density function of wind speed at 10 (m) height of the 30 locations, suggesting intermediate
mean and strong variability as in the ERA-20C and ERA-Interim dataproducts. Another
interesting characteristic of the high resolution database is the systematically positive excess
kurtosis parameter to all locations indicating heavy-tailed distributions for the wind speed.
Positive excess kurtosis evidently inferences the ability of high resolution databases to
reproduce more intense extremes particularly at the European offshore regions and strengthens
the re-sampling strategy of DeCAUnN to short samples at these locations; (see the discussion
from Kalogeri et al., (2017) and Weber et al., (2019) for the positive excess kurtosis of wind
speed at closely arranged regional locations to the present study). We highlight the extremity
of wind speed data characterized of being heavy right-tailed and extremes are typically modeled
from short-tailed distributions with finite right endpoint (Pinheiro and Ferrari, 2015).

To infer the extremity of the datasets (i.e., suggesting heavy tail distributions of
elongated right tails as approximations to the probability density function of wind speed) at
regional locations closely arranged from the relatively small resolution database (ERA-20C),
the moderate resolution (ERA-Interim), and the high resolution database (MARINA Platform),
the following three Kernel Density plot diagrams are illustrated in Figure 5.11. The density
estimates illustrated in Figure 5.11 (a) and to a lower extent in Figure 5.11 (b) are characterized
of having a light-right hand tail, where on the contrary density in Figure 5.11 (c) is characterized
of having a heavy-right hand tail.
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Figure 5.11: The Kernel Density estimates as an approximation to the probability density function of wind speed to
the maximum available time series extending from 1961-2010 (50 years long) originated from the ERA-20C data
product of relatively small resolution in (a), the moderate resolution of ERA-Interim extending from 1979-2016 (38
years long), and the high resolution database of the MARINA Platform for the period 1996-2015 (20 years). The
regional locations closely arranged in the Western Mediterranean Sea are set at (42.750N 4.500E) for ERA-20C, at
(42.000N 3.750E) for ERA-Interim, and at (40.800N 5.500E) for the MARINA Platform. The bandwidth of the
Gaussian Kernel estimator is set at (0.2922, 0.3375, and 0.3129) for the Kernel density estimate in (a), (b), and (c)
respectively based on the Silverman's ‘rule of thumb’, Silverman (1986, page 48, Eq. (3.31))". The statistical
software package (extRemes) in R (Gilleland and Katz, 2016) is used for the histogram and Kernel Density diagram
illustration. (Supplementary material of Tsalis et al., 2021)

Table 5.7: Descriptive statistics for the 30 locations of the datasets used from the MARINA Platform database
extending from 1996 to 2015 (20 years).

SE Cl.mean std. coef.
Location min max median mean var skewness kurtosis
nean 0.95 dev var
L1 0 25965 7.691 8.058 0.009 0.017  12.992 3.604 0.447 0.454 3.113
L2 0 26.704 7.236 7.627 0.008 0.017 12.446 3.528 0.463 0.487 3.129
L3 0 26436 6.925 7.327 0.008  0.017 12579 3.547 0.484 0.570 3.210
L4 0  25.840 7.417 7.904 0.009 0.017  13.750 3.708 0.469 0.497 3.050
L5 0  28.389 7.831 8.300 0.009 0.018 14,535 3.812 0.459 0.499 3.110
L6 0 23.912 7.170 7.572 0.009 0.018 14.169 3.764 0.497 0.372 2.661
L7 0 24480 6.810 7.173 0.008 0.016 11.068 3.327 0.464 0.527 3.119
L8 0  28.801 7.968 8.455 0.009 0.019 15.738 3.967 0.469 0.525 3.131
L9 0  26.495 7.714 8.153 0.009 0.017 13583 3.685 0.452 0.489 3.111
L10 0  28.029 7.623 8.098 0.009 0.018 14.139 3.760 0.464 0.494 3.077
L11 0 24330 6.912 7.303 0.009 0.017 13.128 3.623 0.496 0.546 3.162
L12 0 24.877 6.946 7.378 0.009 0.017 13.297 3.646 0.494 0.551 3.154
L13 0  25.098 7.556 7.903 0.009 0.018 14.682 3.832 0.485 0.304 2,513
L14 0 28752 7.777 8.200 0.009 0.018 15351 3.918 0.478 0.523 3.125
L15 0 27.063 7.544 8.015 0.009 0.017 13.568 3.684 0.460 0.539 3.183
L16 0 28671 7.653 8.111 0.010 0.019  16.469 4.058 0.500 0.554 3.081
L17 0 26.142 6.508 7.025 0.009 0.017  13.602 3.688 0.525 0.706 3.400
L18 0 25.769 7.032 7.396 0.009 0.017 13.036 3.611 0.488 0.493 3.131
L19 0  28.851 7.427 7.898 0.010 0.019  15.906 3.988 0.505 0.543 3.041

() Silverman's ‘rule of thumb’: Bandwidth set at 0.9 times the minimum of the standard deviation and
the interquartile range divided by 1.34 times the sample size to the negative one-fifth power.
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L20 0 24.816 7.175 7.639 0.009 0.018  15.415 3.926 0.514 0.548 3.042
L21 0 25.901 5.950 6.582 0.009 0.019 15.637 3.954 0.601 0.911 3.642
L22 0 20.863 7.225 7.121 0.008 0.016  11.392 3.375 0.474 0.072 2.499
L23 0 20.874 5.758 5.822 0.006  0.012 7.112 2.667 0.458 0.584 3.733
L24 0 23.377 4.941 5.487 0.008 0.016 11.976 3.461 0.631 0.847 3.478
L25 0 20.752 4.191 5.194 0.009 0.018 15.145 3.892 0.749 0.855 2.951
L26 0 21.371 5.866 6.021 0.007  0.015 9.625 3.102 0.515 0.637 3.453
L27 0 23.511 4.054 5.323 0.010 0.019 16.441 4.055 0.762 1.131 3.665
L28 0 19.200 3.865 4.460 0.007  0.013 8.101 2.846 0.638 1.008 3.927
L29 0 21.085 4.382 5.040 0.008  0.015 9.881 3.143 0.624 0.976 3.800
L30 0 21.555 4.601 5.047 0.007  0.015 9.725 3.118 0.618 0.769 3.406

The wind speed datasets originated from the high resolution MARINA Platform
database will challenge the assessment of DeCAUnN for sample periods of 10 and 15 years.
Notably, for this database sample periods are set from 1996 to 2010 with a 5 years forward step.
For inference of the demonstration of DeCAUn in terms of the return level estimates and
variability of the proposed model to sample periods of 10 and 15 years, three locations (L2,
L16, and L21) are selected as a good representation of the extreme wind profile observed at the
North Sea, Atlantic Ocean, and Mediterranean Sea respectively; (see the demonstration of
DeCAUnN to these locations in sub-Section 6.3).

In the following Figure 5.12, the wind speed time series originated from the high
resolution database at locations L2, L16 and L21 is illustrated for the period 19962015 (20
years) as the reference dataset for the demonstration of DeCAUN. In order to ensure stationarity
of the series in the same context as in the relatively small resolution database, a smoothing line
(red line) was fitted to the annual maxima wind speed for better visualisation of the absence of
possible temporal dependence and monotonic trends of BM. The stationarity of the time series
is ensured for the 30 locations of the MARINA Platform database.
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Figure 5.12: Time series and BM of wind speed for locations L2 in (a), L16 in (b) and L21 in (c) from the MARINA
Platform database. The three locations are selected considering the intense wind profile that is present at these
regional locations. Supplementary image of Tsalis et al., (2021)
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Chapter 6

Results and discussion

In this Chapter, results of the demonstrastion from all models is presented and inference
is made. Specifically, in sub-Section 6.1 under the proviso that the BM method is selected and
the GEV distribution model is adopted, the primary aim is the identification of the combined
effects of i) the sample size and the direction step of sampling of the annual maxima and ii) the
comparison of the GEV parameter estimation methods to the EVA of wind speed time series.
To this objective, several very common as well some less known distribution parameter
estimation methods are firstly assessed through a simulation analysis. The results of the analysis
showed that the maximum product of spacings (MPS), the elemental percentile (EP), the
principle of ordinary entropy method (POME) or (OEM) or and, in a lesser degree, the
Maximum Likelihood method (ML) or (MLE) and L-moments method (LMOM) or (LMHy)
unbiased method according to Hosking et al., (1985) seem to be, in general, superior to the
other examined methods with respect to bias, mean squared error and variance of the estimated
parameters. The effects of the estimation methods have been also assessed with respect to the
n-year design values of real wind speed measurements. The obtained results suggest that the
MPS and EP methods, which are rather unknown to the engineering community, describe
adequately well the extreme quantiles of the wind speed fixed data samples.

Considering a variable sample period, the performance of the GEV parameter
estimation methods on both the method and the available sample size is analytically performed.
Firstly, a simulation study is implemented based on the ML, the L-moments (LMOM), the EP
and the MPS methods for different sample sizes. It is concluded that the ML should not be
taken for granted since LMOM method performs better in many respects. Afterwards, both
methods are applied for the estimation of the GEV parameters of wind speed annual maxima
series. LMOM method provided the best fits for the overwhelming majority of cases
considered. All results illustrated in sub-Section 6.1 is a part of the work from (Soukissian and
Tsalis, 2015; Soukissian and Tsalis, 2018 and Soukissian and Tsalis, 2019).

In Sub-Section 6.2, a nonstationary EVA that incorporates time as a covariate is
implemented to model the distribution of the extremes in the presence of a significant trend. An
attempt is made under the assumption of climate change to model one or more of the parameters
of the GEV as linear or nonlinear functions of the covariates on which the wind speed data
show dependence. Specifically, an assessment of various parametric models for the estimation
of the GEV parameters is made, considering a linear, quadratic and sinusoidal trend through
time (for the location and scale parameters) and a time independent model for the shape
parameter. The common method used for the estimation of the time dependent GEV parameters
is maximum likelihood (ML) method. The approximate tests of significance in the comparison
between nested models are conducted by Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC). The optimum models are penalized by the likelihood-ratio test
(LR), and effective return levels for specific values of the covariates is estimated and compared
with the stationary case. All results illustrated in sub-Section 6.2 is a part of the work from
(Tsalis and Kallos, 2017).

Further on, in sub-Sections 6.3 and 6.4 an assessment and comparison of the classical
methods analyzing the correlation (dependence) effect in samples that are irregularly spaced in
time is demonstrated. In this part of the study, a re-sampling procedure is proposed for the
irregularly spaced in time wind speed observations obtained from physical de-clustering
considerations. The de-clustering procedure of a dependent sample of extremes from the
proposed model is focused and evaluated on relatively small samples where the scarcity of long
and complete time series is a common restriction in climatological studies. Finally, inference
can be made of the effective sample size and the influence of the data product to the resampling
strategy of DeCAUnN in sub-Section 6.5. From this evaluation, the proposed model
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demonstrated as an alternative model for extreme wind speed projections considering samples
irregularly spaced in time, reconstructing successfully a dependent sample of extremes to an
efficient independent sample converging to the i.i.d limitations

Specifically, inference is made from the challenges obtained in assessing the effect of
the asymptotic distributional behavior of two types of extreme wind speed sampling data. The
first type of sampling data used will be the classical BM and modeled by the GEV family of
distributions. The second type used is the peaks obtained in wind speed samples exceeding a
high enough threshold by the approximation to the GPD within the POT concept. The latter
two distributions is proven to be the limiting distribution of the annual maxima and peak
exceedances for the modeling of extremes in environmental samples, (see Nikulin et al., 2011;
Papalexiou and Koutsoyiannis, 2013). For extreme value analysis, the asymptotic forms of the
GEV and GPD are the most widely used statistical distributions for describing extremes of wind
speed (Beirlant et al., 2004) and (Holmes, 2015). However, when the analysis is restricted to a
set of cluster peak exceedances, the use of a GPD distribution with an upper bound to the
modeling of extremes of wind speed requires caution in applications (Fawcett and Walshaw,
2007). It is shown that the parameter inconsistency of the MLE estimator to small samples
affects the return level estimates of extremes. However, when wind speed is characterized of
being heavy right-tailed and extremes are typically modeled from short-tailed distributions with
finite right endpoint, the asymptotic forms of GEV and GPD can be a reasonable assumption
for modeling recognizing the possible bias effect to the estimates (Fawcett and Walshaw,
2006a, 2006b; Ashkar and Tatsambon, 2007; Pinheiro and Ferrari, 2015).

The performance of the proposed DeCAUn model for relatively small wind speed
samples is evaluated systematically alongside the existing DeCA, the BM and the standard
Runs estimator which is assigned as the standard comparable model in this assessment. For this
evaluation the standard MLE method was implemented although the MLE estimation
performance is questioned in comparison to the LMOM method for environmental extreme
distributions (e.g. Mazas et al., 2014). The MLE estimation approach is selected setting the
discussion within the most popular framework for stationary BM and POT samples, where all
results are easily comparable with those reported in the relative literature. The model results is
illustrated and discussed for wind speed time series from three datasets, the MARINA Platform
database, the ERA-Interim and ERA-20C respectively. All results illustrated in sub-Sections
6.3, 6.4, and 6.5 is a part of the work from (Tsalis et al., 2019) and (Tsalis et al., 2021).

6.1 Parameter estimation methods

In this Section results for the assessment of the most used GEV distribution parameter
methods are presented for the fixed and variable sample period of examination. At each sample
period considered, results in terms of the simulation study and applications is illustrated.

6.1.1 Fixed sample size (simulation study and applications)

Main scope of a fixed sample period study, is the assessment of the effect of the
aforementioned GEV parameter estimation methods on the design values and return periods of
wind speed. In order to do that, a two-stage procedure will be implemented. Firstly, a detailed
simulation study will be performed for the evaluation of all examined estimation methods.
Moreover, three main statistical criteria of the performance of each method will be adopted and
will be assessed. Secondly, the entire group of GEV parameter estimation methods will be
applied to real wind data sets, to identify the deviations in the obtained design values and
associated return periods of wind speed. It should be noted that since the methods presented
here are quite generic, they can be applied equally well to any other environmental parameter
potentially affecting the safety of an offshore or coastal structure (sea level, wave height, etc.).
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Simulation study

In this section, a simulation study has been performed based on 1000 random samples
drawn from the GEV distribution with sample size 30. The sample size of 30 has been chosen
as being appropriate for wind speed extreme value analysis. Most of the measured offshore
wind data in the world cover a period of around up to 30 years while some established wind
and wave climatologies refer, more or less, to the same time period (such as the ERA-Interim
data obtained from the European Centre for Medium-Range Weather Forecasts - ECMWF). In
this sub-Section, the examined estimation methods will be applied to the measured wind speed
data from the Atlantic Ocean in order to quantify the uncertainties in the n —year wind speed
design values, which are raised by the parameter estimation method of the GEV probability
model. The GEV distribution parameters estimation methods that have been tested in the
simulation study are the following:

1) Ordinary moments method (OM);

2) L-moments method according to Hosking: i) unbiased (LMHu) (%) and ii) biased (LMH3).
It should be noted that LMHy estimators exist if £ < 1, since the quantity 1 — & appearing
in the Gamma function in relations (2.53), (2.54) and (2.55) should be positive. Hence the
LMHy estimator is well defined even when the MOM estimator is not defined, i.e., for
& < 1/3. In addition, the LMHy estimator is known to be better than the ML estimator for
small sample cases;

3) L-moments method according to Wang (LMW);

4) Maximum likelihood method (ML);

5) Maximum product of spacings method (MPS);

6) Quantile least squares (QLS) method with different plotting positions as suggested in
(Cunnane, 1978), see also relation (C.2). In this context, various values of 0 < a < 1 are
tested and the one providing the best results is finally selected:;

7) Elemental percentile method (EP);

8) Maximum entropy parameter space expansion method (MESE).

9) Principle of maximum or ordinary entropy method (POME) or (OEM);

The steps used for the numerical simulation analysis were the following:

Step 1: Generate 1000 random samples with sample size 30, choosing values for shape
parameter in the range —0.5 < & < 40.5 with step 0.1, and keeping constant the values of the
scale and location parameters, namely ¢ = 1 and u = 0, respectively.

Step 2: Evaluate (&,,&,, ..., &1000), (81,82, ) 81000)s (i1, fiz, -, fl1000), TOr the shape, scale
and location parameters respectively for each of the 1000 samples and by each estimation
method. If some of the estimated parameter values are not consistent with the conditions of
Theorem 2.2, then these values are discarded.

Step 3: From the obtained parameter samples, estimate the corresponding sample means and
variances, i.e.,

Zi: ’g\l
= 6.1)

Dy
I

and

(3%) As mentioned above, the method of probability weighted moments provides the same results as the L-moments
method; therefore, PWM method will not be further assessed.

89



Results and discussion

) ’ (6.2)

where 8;, i = 1,2,3,...,N denotes the parameter estimates obtained from each of the N
samples, A denotes the sample mean obtained from all samples, and s(% the corresponding
sample variance (6 can be any of the (population) parameters &, o or p).

Step 4: Evaluate the bias, the mean squared error and the variance for the shape, scale, and
location parameter for each estimation method as follows:

Bias =6 -6, (6.3)
MSE = s2 + (Bias[8])’, (6.4)

Let us note that the bias measures the systematic error while the variance measures the random
error.

In Figure 6.1, the bias, the mean squared error and the variance of the & parameter for
various values of & are shown. In Figure 6.2, the same quantities are shown for the o parameter
and in Figure 6.3 for the u parameter.
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Figure 6.1: Bias (a), mean squared error (b) and variance (c) for the & parameter obtained from simulation for various
values of ¢. (Soukissian and Tsalis, 2015)
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Figure 6.2: Bias (a), mean squared error (b) and variance (c) for the o parameter (for o= 1) obtained from simulation
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Figure 6.3: Bias (a), mean squared error (b) and variance (c) for the u parameter (for u= 0) obtained from simulation
for various values of ¢. (Soukissian and Tsalis, 2015)

As regards the bias in the estimation of the parameters, the following conclusions can be drawn:

For the case of & parameter (Figure 6.1, upper left panel), the ML, MPS and POME
methods provide biases lying in a rather narrow strip of values (suggesting an almost
constant bias), for all examined ¢ values. In the mean, the absolutely smallest biases are
provided by the aforementioned methods for the entire range of & values. In addition, the
POME method provides the smallest values of bias for all & apart from the cases & =
—0.3,-0.5.

For the case ¢ = 1 (Figure 6.2, upper left panel), the LMHy and LMW methods provide,
in the mean, the absolutely smallest values of bias for the entire range of & values. The
method is not so efficient for the two extreme cases, ¢ = +0.5. On the other hand, the ML,
MPS and POME methods provide almost constant biases for the entire range of ¢ values.
For the case u = 0 (Figure 6.3, upper left panel), the MPS method provides an almost
constant and very small bias (around -0.025), for the entire range of ¢ values. MPS and
POME methods provide, in the mean, the absolutely smallest values of bias for the entire
range of & values. In addition, the POME method provides again the absolutely smallest
values of bias (very close to 0) for all £ apart from the cases § = —0.3,—0.5.

As regards the mean squared error in the estimation of the GEV distribution parameters the
following remarks can be derived:

For the case of & parameter (Figure 6.1, upper right panel), the smallest values of MSE are
provided, in the mean, by the EP, POME, LMHy and LMHg methods, with EP method
being the most efficient. These methods exhibit also the narrowest strips of MSE values.
For the case o = 1 (Figure 6.2, upper right panel), the ML, MPS, EP and POME methods
are superior, providing, in the mean, the smallest MSE values among all methods for the
entire range of & values.

For the case u = 0 (Figure 6.3, upper right panel), the ML, POME and MPS methods are
the most efficient for the entire range of ¢ values, while EP method exhibits a fair behavior
and the narrowest strip of MSE values.

As regards the variance in the estimation of the parameters the following conclusions can be
drawn:
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e For the case of & parameter (Figure 6.1, lower left panel), the smallest values of variance,
in the mean, are provided by the EP and LMHg methods. POME, LMHy and LMW
methods also exhibit a fair behavior.

e For the case ¢ = 1 (Figure 6.2, lower left panel), the ML, POME, MPS and EP methods
are superior, providing the smallest variances among all methods for the entire range of ¢
values.

e For the case u = 0 (Figure 6.3, lower left panel), many methods provide small variances.
The behavior of LMHy and LMW methods is very similar. On the other hand, the ML,
POME, EP and MPS methods provide, in the mean, the smallest variances among all
methods for the entire range of ¢ values.

From the simulation analysis and the statistical parameters considered for fixed sample size
inference is made for the optimum parameter estimation methods:

e Considering the bias, the most efficient estimation methods are MPS and POME.
Furthermore, for the mean squared error, the most efficient estimation methods are ML,
EP, MPS and POME, whist for the variance, the most efficient estimation methods are
ML, POME, EP and MPS.

e Focusing on samples of wind speed where prior evidence exists of the & parameter as
negative (Brabson and Palutikof, 2000), it seems that EP, POME, MPS, and LMHy
methods and, in a smaller degree, the ML method, are very reasonable solutions for all
the cases and criteria examined.

Applications

In this sub-Section n —year (n = 10,20, ...,100) design values of wind speed are
provided for measured data obtained from four buoys, where two buoys are located in the
Pacific coast of central America and two buoys located in the North West coast of the Atlantic
Ocean (see Figure 5.1). The relevant wind speed time series are available from the National
Oceanic and Atmospheric Administration (NOAA). The code numbers of the buoys, the
corresponding geographical locations and the measurement periods are the following:

41001 (34°33'40" N 72°37'50" W, 1976-2012),
44004 (38°292" N 70°25'57" W, 1977-2008),
46006 (40°45'16" N 137°27'51" W, 1977-2012),
51003 (19°1'6" N 160°34'54" W, 1984-2012).

Based on the annual maxima extracted from the above time series, the n — year
(n=10,20,...,100) design values have been estimated using BM method. The sample sizes of
the annual maxima obtained from the aforementioned buoys are greater than 20, as previously
discussed in sub-Section 1.1. The basic statistics of the wind data for the entire measurement
period is provided in Table 5.1 in sub-Section 5.1, where samples are approximated to a size of
30 years.

Using wind speed datasets from the four locations (41001, 44004, 46006, and 51003)
the GEV parameters are estimated using the methods from the simulation study. In order to
obtain estimates of the standard errors and confidence intervals of the GEV parameters, we
have also implemented a bootstrap approach. Though for some estimation methods confidence
intervals and standard errors can be directly provided by analytic formulas, in order to treat the
results in a uniform way, we prefer to provide the standard error by using a common technigque
for all methods. Specifically, 1000 random samples have been generated from the annual
maxima data sets for each buoy using the standard non-parametric bootstrap approach; (see
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sub-Section 2.4.2). Furthermore, the estimates of the standard errors as obtained from the
bootstrap method for each estimation method is given in Table 6.1 (in parentheses).

Table 6.1: Parameters and 95% bootstrap standard errors (in parenthesis) of the GEV distribution for each estimation
method and each buoy.

Buoy No.
Method of 41001 44004 46006 51003
Estimation
¢ ¢ p & 6 4 & & a4 & & 4
oM -0.3563 4.0415 21.0555 -0.0424 2.4564 21.1969 -0.1140 3.0545 21.0228 0.0635 1.0302 13.8228
(0.139) (0.710) (0.671) (0.074) (0.382) (0.468) (0.093)  (0.468)  (0.566)  (0.097)  (0.199)  (0.208)
LMHU -0.2999 3.8826 20.9699 0.0012 2.3874 21.1346 -0.0804 2.9854 20.9717 0.1483 0.9436 13.7807
(0.139) (0.657) (0.658) (0.114) (0.364) (0.465) (0.126)  (0.481)  (0.566)  (0.142)  (0.175)  (0.209)
LMHB -0.2616 4.0237 20.8220 -0.0126 2.6504 21.0185 -0.0760 3.1929 20.8551 0.0865 1.1759 13.6980
(0.127) (0.636) (0.663)  (0.098) (0.345) (0459)  (0.112)  (0.452)  (0.561)  (0.117)  (0.168)  (0.208)
LMW -0.2558 3.7929 20.8919 0.0693 2.2325 21.0634 -0.0275 2.8562 20.9007 0.2633 0.8092 13.7377
(0.146) (0.683) (0.656)  (0.110) (0.368) (0.459)  (0.126)  (0.490)  (0.562)  (0.122)  (0.174)  (0.204)
ML -0.3174 3.9891 21.0054 -0.0171 2.3505 21.1905 -0.1379 3.0559 21.0828 0.1499 0.9225 13.8005
(0.151) (0.706) (0.693) (0.147) (0.342) (0.478) (0.158)  (0.512)  (0.562)  (0.186)  (0.146)  (0.223)
I\/I PS -0.3061 4.3940 20.8388 0.0110 2.5828 21.1113 -0.1216 3.3749 20.9751 0.2043 1.0076 13.7682
(0.156) (0.771) (0.687) (0.148) (0.368) (0.473) (0.158)  (0.561)  (0.561)  (0.189)  (0.158)  (0.218)
Q LS -0.3098 3.6101 21.1035 -0.0537 2.3332 21.2575 -0.1251 2.9062 21.0972 0.1485 0.9158 13.8077
(0.125) (0.621) (0.671)  (0.092) (0.407) (0.474)  (0.098)  (0.493)  (0.568)  (0.140)  (0.208)  (0.215)
EP -0.1639 3.6936 20.7921 0.0137 2.5019 21.0772 -0.0606 3.1954 20.8310 0.2414 0.9827 13.7634
(0.136) (0.570) (0.663)  (0.116) (0.380) (0.487)  (0.121)  (0.511)  (0.579)  (0.131)  (0.181)  (0.209)
M ESE -0.3844 4.4447 21.3780 -0.0191 2.3683 21.2079 -0.1597 3.2223 21.2304 0.1387 0.9028 13.7774
(0.270) (1.278) 0.717) (0.142) (0.442) (0.512) (0.180)  (0.685)  (0.612)  (0.145)  (0.141)  (0.219)
POME -0.3895 4.1855 21.1924 -0.0118 2.3505 21.1856 -0.1700 3.1199 21.1480 0.1609 0.9178 13.7945

(0.182)  (0.774)  (0.644)  (0.147)  (0.327)  (0.477)  (0.182)  (0.540)  (0.547)  (0.164)  (0.134)  (0.218)

The most intractable parameter in the relevant wind speed extremes literature (but also
for other geophysical parameters) is undoubtedly &. There are a lot of controversies as regards
the values that this parameter may or is feasible to take. In the relevant discussion in Palutikof
etal., (1999), it is stated that “In the light of these conflicting views, it is difficult to offer advice
on the choice of distribution type”. In addition, the same authors note that “if the assumption
that the distribution type is FT-I rather than FT-I11 is incorrect, then the resulting errors should
lead to an overestimate of return period extremes, which, from the safety point of view, is
desirable”. The estimation of the standard error and the 95 % bootstrap confidence interval (CI)
for & parameter in particular may also provide further suggestions as regards the specific type
of the asymptotic extreme distribution. As regards to the estimates of the GEV distribution
parameters in Table 6.1 the following remarks can be derived:
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For the examined cases, all estimation methods seem to provide consistent results as
regards the & values. ¢ is clearly lower than O for buoy 41001, almost 0 and very close
to 0 for buoys 44004 and 46006, respectively, and slightly above 0 for buoy 51003.
However, for all buoys (except for 41001), the 95 % bootstrap Cls obtained by all
estimation methods include zero. For buoy 41001, the 95 % bootstrap Cls obtained by
OM, LMHU, LMHB, ML, QLS and MESE methods do not include zero.

As a remark, it would be risky to overlook the results that are provided consistently by
all estimation methods and select another type of extreme value distribution. Moreover,
it should be reminded that the present work emphasizes in evaluating the performance
of the various parameter estimation methods and not in the estimation of the inherent
uncertainties.

From the simulation analysis of the parameter estimation methods and application in extremes
of wind speed for the four buoys respectively, return levels (design values) at the corresponding
return periods from 10 to 100 years are obtained in Figure 6.4.
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Figure 6.4: Design values of wind speed and associated return periods for buoys 41001, 44004, 46006 and 51003 in
(a,c,e and g) and the corresponding Q—Q plots in (b, d, f and h) respectively. The colored red dot line outlines the
QLS as the parameter estimation method that underestimates the return levels. The colored olive lines outline the
optimum parameter estimation methods derived from the simulation study. (Soukissian and Tsalis, 2015)

In the right panels of the same figures of 6.4 (b,d,f and h), the Q—Q plots of OEM,
LMHy, ML, MPS and EP methods are provided. If the empirical data align closely with the
modelled estimates, then it is likely that the chosen parameter method for the samples of wind
speed is a good representation of the true extreme asymptotic form for these samples. As
regards to the design value estimates of Figure 6.4 the following remarks can be derived:

e Regarding the extreme quantiles of the GEV distribution (right tail), the MPS and EP
methods provide results that are systematically closer to the theoretical GEV line than
the other methods (except for buoy 51003, where EP and MPS methods perform better
only for the most extreme quantile)

for buoy 41001, all methods perform sufficiently well for the entire range of quantiles;
for buoys 44404 and 46006, all methods perform well for the left tail and the medium

range of quantiles, while only EP and MPS methods perform well for the right tail with

respect to to the theoretical GEV line

o for buoy 51003, all methods perform very well for the left tail; for the right tail with
respect to to the theoretical GEV line, LMHy, ML and OEM methods perform fair

96



Results and discussion

(except for the most extreme quantile), providing very similar quantile values, while
MPS and EP methods perform better for the most extreme guantile.

In addition to the Q—Q plots of the performance of the parameter estimation methods
the statistical goodness-of-fit criteria provided below reveal some additional features of good
performance. For the overall numerical evaluation of the obtained fits via the different
estimation methods, two different measures of the goodness of fit are implemented:

a) the standard error of fit (SEF) is defined as, (Kite, 1988):

N -
SEF = Bt (6.5)
-np

and

b) the mean absolute relative deviation (MARD) that is defined as, (Jain and Singh,
1987):

100 <N

x,-—)?i
N i=1

MARD =

, (6.6)

Xi

where x; are the available values of the sample (i.e., the sample annual maxima), x; are the
values estimated by the fitted distribution corresponding to the same return periods of the
sample values, N is the size of the available sample, and np is the number of parameters of the
GEV distribution function (i.e., np = 3).

In Table 6.2, the values of the aforementioned measures of goodness of fit are provided.
The minimum values of the above parameters are shown in bold. Regarding the MARD
criterion, EP method provides the best fit for two buoys (41001, 51003) and the second best fit
for the other two buoys, MPS method provides the best fit for buoy 44004 and the second best
fit for buoy 51003, and LMW method provides the best fit for buoy 46006 and the second best
fit for buoy 41001. Regarding the SEF criterion, EP method provides the best fit for two buoys
(46006, 51003) and the second best fit for buoy 44004, LMHB method provides the best fit for
buoy 41001 and the second best fit for buoy 46006, and MPS method provides the best fit for
buoy 44004 and the second best fit for buoy 51003. Taking into account the above results, it
can be concluded that EP and MPS methods provide the overall best fits to the examined annual
maxima wind speeds.

Table 6.2: Values of SEF and MARD goodness of fit criteria for all GEV parameter estimation methods.

Buoy No. 41001 44004 46006 51003

ggtelmgé’r‘: SEF  MARD SEF  MARD SEF  MARD SEF  MARD
oM 0.778 2.486 0.524 1.301 0.584 1778  0.355 0.942
LMHu 0.785 2.357 0.483 1.287 0.563 1688  0.320 0.850
LMHe 0.760 2.506 0.421 1.272 0.509 1705  0.288 1.262
LMW 0.794 2317 0.473 1.400 0.558 1653 0318 1.138
ML 0.769 2.420 0.544 1.347 0.625 1844 0334 0.891
MPS 0.794 3.007 0.391 1.162 0.539 1978  0.208 0.826
QLS 0.905 2.408 0.638 1.469 0.690 1861  0.342 0.912
EP 0.833 2.287 0.405 1.201 0.504 1687  0.195 0.806
MESE 0.899 3.284 0.532 1.328 0.611 2125  0.381 1.032
POME 0.790 2.600 0.532 1.335 0.654 1979  0.324 0.872
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Taking into consideration over- and under-design criteria for the behavior of the
parameter estimation methods of the GEV distribution, the corresponding 50- and 100-year
wind speed design values for each examined buoy are presented in Table 6.3. The differences
between the maximum and the minimum 100-year design values are shown for the examined
locations along with the estimation methods in parentheses. The methods that seem to provide
higher 100-year design values (with respect to the other methods) are the EP (for buoys 41001,
46006 and 51003) and the MPS (for buoy 44004). The method that generally provides lower
100-year design values is QLS (for buoys 41001, 44004). The relative differences between the
maximum and the minimum 100-year design values are the following: for buoy 41001, 8.46 %,
for buoy 44004, 7.6 %, for buoy 46006, 7.59 %, and for buoy 51003, 12.36 %. On the other
hand, the method that provides results lying in-between the results provided by all estimation
methods is LMHy for buoys 44004 and 46006, LMW for buoy 41001 and LMHg for buoy
51003.

Table 6.3: The 50 and 100-years design values for wind speed (ms?) calculated with various GEV parameter
estimation methods in buoys 41001, 44004, 46006 and 51003.

Buoy no. 41001 44004 46006 51003

50 and 100 years design values (ms™)

Estimation 50 100 50 100 50 100 50 100
oM 29574 30196  30.031 31463  30.643 31957 18384  19.3%6
LMHy 29.906 30667 30473 32149  30.974 32457 18764  20.000
LMHg 30661 31586 31110 32864 31636 33250  10.156  20.342
LMW 30255 31149 31067 33160 31468 33242 19251  20.984
ML 29.931 30655 30063 31590  30.305 31493 18692  19.911
MPS 30846 31682 31400 33208 31460 32865 10781  21.458
QLs 29278 20954 20471 30768  30.070 31263 18649  19.851
EP 31439 32724 31106 32958 31936 33660 20134 22,051
MESE 30.360 30967  30.113 31638  30.587 31728 18451  19.588
POME 29587 30146  30.149 31710  30.046 31104 18778  20.048
?gg_ ;‘gz’r('(;zl?g‘r’]f 2.770 2.530 2.556 2.725
(EP-QLS) (MPS-QLS) (EP-POME) (EP-OM)

value

As regards to the design value estimates the following remarks can be derived for ML
method, which is the most commonly used in GEV parameter estimation and the MPS and EP
methods, which are rather unknown to the engineering community. Taking as reference the
mean value of all 100-year design wind speeds as provided by all the examined estimation
methods, ML provides results that are systematically below the mean, i.e., 1.03 % for buoy
41001, 1.77 % for buoy 44004, 2.50 % for buoy 46006 and 2.19 % for buoy 51003. On the
contrary, the MPS method provides results that are systematically greater than the mean, i.e.,
2.24 % for buoy 41001, 3.42 % for buoy 44004, 1.71 % for buoy 46006 and 5.14 % for buoy
51003. Similarly, the EP method also provides results that are systematically greater than the
mean, i.e., 5.35 % for buoy 41001, 2.42 % for buoy 44004, 4.03 % for buoy 46006 and 7.69 %
for buoy 51003.

It can be also concluded that for the 100-year design values, the corresponding relevant
absolute differences between ML and MPS methods are 3.24 % for buoy 41001, 5.13 % for
buoy 44004, 4.18 % for buoy 46006 and 7.21 % for buoy 51003. The relevant absolute
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differences between ML and EP methods are 6.32 % for buoy 41001, 4.15 % for buoy 44004,
6.44 % for buoy 46006 and 9.71 % for buoy 51003. The above results suggest that the relevant
differences between ML and MPS are generally smaller than the differences between ML and
EP methods.

The aim of this part of this study was the assessment of the most popular, along with
some less popular, (or even unknown to the wider ocean and coastal engineering communities),
methods for the estimation of the parameters of the GEV distribution. The analysis was based
on a simulation study for fixed sample size and application of the estimation methods to wind
speed datasets from four buoys located in the Atlantic and Pacific Ocean basins. From a
statistical point of view, MPS, EP and POME methods meet important requirements
satisfactorily, but when the design values are of significance importance, these three methods
lead to over-design. In this respect, ML and LMHy method leads to slight under-design.

6.1.2 Variable sample size (simulation study and applications)

In this Section, the simulation and comparison of ML, MPS, EP and LMOM estimators
is performed for different sample sizes ranging from 20 to 50. The considered small to medium
sample sizes roughly correspond to the usually available sample sizes in relevant met-ocean
applications. The LMOM method is also included since it has been suggested by other authors
that it is more suitable, especially for small sample sizes; see e.g. (Hosking et al., 1985 and
Hosking, 1990). For the evaluation of each estimation method performance four statistical
criteria are adopted. Two of these criteria refer to the evaluation of each parameter estimate; in
this respect, let it be noted that it is common ground in the relevant literature to evaluate one-
by-one the parameter estimates of the GEV distribution. The other two criteria that are adopted
(average absolute difference and average of the maximum absolute difference) refer to the
overall evaluation of the combined effects of all parameter estimates with respect to the true
and the estimated GEV cdf. The simulation part of this work essentially complements and
completes the work of (Soukissian and Tsalis, 2015) and prepares the ground for the assessment
of wind speed design values.

Simulation Study

In this section, the simulation study is presented in detail with the obtained results. The
aim of the simulation is to assess and evaluate the performance of each examined estimation
method with respect to the available sample size of maxima. Since the acquired sample sizes
of AM in wind energy and metocean applications is usually of the order of 20-30, and the
required return periods are of the order of 30-50 years, design values in the particular range
(i.e. 20, 25, ..., 50) are considered.

Each simulation run produces N =1000 random samples of size ng= 20,25,...50,
drawn from a GEV cdf F(x; ng, ®), with fixed location and scale parameters (u = 0, o = 1).
The shape parameter ¢ lies in the range [—0.25,0.25] with a 0.05 step. The limits of this range
are derived according to the EVA of wind speed presented in the latter Sections. For each
considered value of &, © is estimated from each of the 1000 random samples (of size ng)
produced and the corresponding sample mean values and variances (of ) are calculated. The
metrics adopted for the evaluation of the performance of each method with respect to sample
size, are the bias and the mean squared error. F (x; ng, ﬁ) denotes the corresponding estimated
GEV distribution function.

Specifically, the simulation analysis can be described as follows:
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Step 1: Specify a value for the sample size ng(ng = 20,25, ...,50) and another one for the
shape parameter ¢ € [—0.25,0.25].

Step 2: Generate N = 1000 random samples each of size ng from a GEV distribution (with
fixedu = 0,0 = 1 and & as was selected in Step 1).

Step 3: Evaluate éj,nB, j=1,2,..,1000, for the considered sample, by implementing the
examined estimation methods. 9]-,,13 denotes any of the three parameters of the GEV distribution
(i.e. location y, scale o or shape ¢ parameter) as is estimated from the j —th random sample,
j=1,2,..,1000, with size ng.

Step 4: From the obtained samples of the distribution parameters (9]-,,13, j=12,..,1000)
estimate the corresponding sample means and variances, i.e.

A —1yN 5 2 __1 N (5 5 \°
g = § 201 Oy and s =280 (B — By ) 6.7)

2

where 6, , Séng

denote the sample mean and the corresponding sample variance, respectively.
Using the estimates from Step 4 confidence intervals covering the parameters are derived as

= SénB = SﬁnB
<9n3 ~ 196228, + 196 ) 6.8)

Step 5: Evaluate the bias and the mean squared error (MSE) for each distribution parameter,
and estimation method, as follows:

Bias(ng) = 9713 — 0, MSE(ng) = sgnB + (Bias[énB])z, (6.9)

for0=pu=0andfd =0 =1.

In order to consider the combined effects of all parameter estimates along with the examined
sample sizes, the following measures, suggested by (Castillo and Hadi, 1995 a,b), are also
considered:

1) The average absolute difference D, between the true (initial) and the estimated distribution
function taking into consideration all the randomly generated samples, i.e.:

Dgps = NLTLBE:?]:l Yforall nBlF(xj;nB'e) - ﬁ(xj;nB’ﬁ)L (6.10)
and

2) the average of the maximum absolute difference D, between the true and the estimated
distribution function within each sample, i.e.:

Dpmax = %Z?’ﬂ rrTﬁx|F(xj; ng, 9) — ﬁ(xj; nB,ﬁ)l. (6.11)

Step 6: If the considered values of & are exhausted, then select a different value for ngand
repeat the procedure. Otherwise, repeat the procedure for a different value of &.

At the end of the simulation, the behaviour of bias and MSE is obtained along with the
values of D, and Dy, With respect to the examined parameter estimation methods and
sample sizes. Implementing the above described procedure, the results of the numerical
simulation study with respect to the different values of ¢ are obtained. Firstly, the results
regarding the estimates of the parameters u,o and &are presented and evaluated by using bias
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and MSE. Secondly, the results regarding the performance of the total GEV fits derived by
using Dy and Dy, .« are provided and discussed.

The effects of the sample size on the estimation of location parameter

In Figure 6.5, the bias (left panel) and the MSE (right panel) of the location parameter
u (as estimated by the examined methods) with respect to sample size is shown. Let it be
reminded that the random samples are generated from a GEV distribution with u= 0. It can be
noted that bias and MSE curves follow fairly the same trend with respect to the examined
estimation methods. Regarding the absolute bias, it seems that it does not tend in a definite way
towards zero. Therefore, the simulation study was extended to larger sample sizes (not
presented here) and the decrease of the absolute bias was eventually more pronounced for all
methods.

(@) (b)
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Figure 6.5: Biasin (a,c,e, and g) and MSE in (b,d,f, and h) of location parameter u (for ¢ = —0.25,—0.05, 0.05,0.25)
with respect to sample size obtained from all parameter estimation methods. (Soukissian and Tsalis, 2018)

Moreover, it can be concluded that for all examined values of &, LMOM performs
better, since it provides the smallest absolute bias. This is also true for the smaller sample sizes
examined. For & = 0.25, LMOM performs better for sample sizes up to 40, while for sample
sizes greater than 40, EP and MPS perform slightly better. Finally, MPS provides systematically
positive values for bias, while EP and ML provide negative.

Regarding MSE, its behaviour is much more systematic. It exhibits a clearly decreasing
trend towards zero for all estimation methods and values of &, as the sample size increases. This
behaviour suggests that the effect of the variance in Equation (6.7) plays a major role in the
calculation of MSE (Equation (6.9), shaping in a great extent, its clearly decreasing behaviour.
The provided curves suggest that LMOM provides overall the smallest values of MSE. Another
interesting feature is that, for small sample sizes, ML provides the greatest values of MSE. For
increasing values of & and sample size, the MSE curves corresponding to the different
estimation methods are hardly distinguishable.

From the simulation study considering ¢ € [—0.25,0.25], the mean values and the 95%
confidence intervals (CI) of the mean (described in the previous Step 4) of location parameter
w are illustrated with respect to sample size in Figure 6.6. The narrowest 95% CI widths are
provided by LMOM and MPS for all values of &. For & = 0.25, the CI widths become very
similar. All methods have a clearly decreasing trend towards zero as the sample size increses.
It is clear that for negative values of ¢ =-0.25 and -0.05, where strong evidence of negative
values exists in modeling extreme wind speed (An and Pandey, 2007), ML and LMOM methods
have a clearly decreasing trend towards zero following by the smoothly decreasing width of the
Cl as the sample size increases.
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Figure 6.6: Mean values and 95% ClI of location parameter u (for ¢ = —0.25,—0.05,0.05,0.25) in (a,b,c, and d)
respectively to sample size obtained from all parameter estimation methods. (Soukissian and Tsalis, 2018)

The effects of the sample size on the estimation of scale parameter

In Figure 6.7, the bias (left panel) and the MSE (right panel) of the scale parameter ¢
with respect to the sample size is shown (note that the random samples were generated from a
GEV distribution with ¢ = 1). For the same reasons as stated above, the simulation study was
extended to larger sample sizes and the decrease of the absolute bias was evident for all
methods. It is concluded that LMOM performs clearly better for all values of ¢ and sample
sizes (except for & = 0.25, where EP performs slightly better). MPS method provides, in
absolute terms, the largest values of bias.

Regarding MSE, LMOM, and ML methods perform better providing very similar
values of MSE for negative values of &; however, for & = 0.25, LMOM provides the largest
values of MSE. For & > 0, ML method performs better for all examined sample sizes.
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Figure 6.7: Bias in (a,c,e and g) and MSE in (b,d,f, and h) of scale parameter ¢ (for ¢ = —0.25,—0.05, 0.05,0.25)
with respect to sample size obtained from all parameter estimation methods. (Soukissian and Tsalis, 2018)
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In the same context as in the parameter estimates of the location inferred in Figure 6.6,
from the simulation study considering £€[-0.25,0.25], the mean values and the 95% confidence
intervals of the mean estimates of the scale parameter o are illustrated with respect to sample
size in Figure 6.8. The narrowest 95% CI widths are provided by MLE and LMOM for ¢ =
—0.25, —0.05, 0.05, and MLE and MPS for & = 0.25. MLE method provides systematically
the narrowest 95% CI. All methods assessed in this setting have a clearly decreasing trend
towards o=1 as the sample size increses. The decreasing trend in the scale estimates indicates
a successfully simulation as the random samples enforced to all methods are generated from a
GEV distribution of scale parameter set to unit value. The demonstration of LMOM shows the
smoother decreasing rate towards =1 as the sample size increases. Inference is also made to
the statndard ML method demonstrating a smooth decreasing rate of the scale parameter for
sample sizes greater than 35 indicating the intractable problem of inference for smaller sample
sizes, i.e., samples of 20 to 35; (Kharin and Zwiers, 2000; Kunz et al., 2010).
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Figure 6.8: Mean values and 95% CI of scale parameter o (for ¢ = —0.25,—0.05,0.05,0.25) in (a,b,c, and d) with
respect to sample size obtained from all parameter estimation methods. (Soukissian and Tsalis, 2018)
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The effects of the sample size on the estimation of shape parameter

The GEV distribution is essentially governed by the shape parameter £. In Figure 6.9,
the bias (left panel) and the MSE (right panel) of this parameter with respect to sample size is
shown. For £= -0.25 and -0.05, LMOM and MPS provide the smallest absolute bias and, in
general, LMOM performs better for small sample sizes. For é= 0.05 and 0.25, ML provides
overall the smallest bias. Regarding MSE, its behaviour is more systematic, i.e. it clearly
decreases with increasing sample size, tending to zero. The smallest values of MSE are
provided by LMOM and EP, while the largest ones by ML and MPS.
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MSE for the estimate of the shape
par: I value £=0.25)

Figure 6.9: Bias in (ace and g) and MSE in (b,d,f, and h) of shape parameter estimate (foré =
—0.25,—-0.05,0.05,0.25) with respect to sample size obtained from all parameter estimation methods. (Soukissian
and Tsalis, 2018)

In Figure 6.10, the mean values and the 95% CI of shape parameter & are depicted with
respect to sample size. The narrowest Cl widths are provided by EPM and LMOM for all
examined values of £&. EPM method provides systematically the narrowest 95% CI. It is clear
that for negative values of ¢ =-0.25 and -0.05, where great interest is in modeling extreme wind
speed, ML and LMOM methods have a clearly convergence trend towards the initialy fixed &
values of the simulation. The demonstration of LMOM shows the smoother decreasing rate as
the sample size increases, outlining the fast converegence rate of the latter method to the shape
parameter set for evaluation specifically for the relatively small sample sizes of 20 to 30. For
the four methods inference is also made of the smoothly decreasing width of the ClI as sample
size increases pointing out the acceptable behavior of these parameter estimation methods.
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Figure 6.10: Mean values and 95% CI of shape parameter estimate (for ¢ = —0.25,—0.05,0.05,0.25) in (a,b,c, and
d) with respect to sample size obtained from all parameter estimation methods. (Soukissian and Tsalis, 2018)

Evaluation of the effects of sample size and estimation method to the GEV distribution

In order to evaluate the overall effects of both the sample size and of the particular
estimation method, the results of the metrics D, and Dy, .« are presented for different values
of &. Note that these metrics evaluate the GEV distribution overall fit. Specifically, in Figure
6.11, D,y (left panel) and Dy, .« (right panel) are shown with respect to sample size. Regarding
Daps, LMOM performs clearly better for all examined values of &, while for ¢ = —0.25 and
0.25, the values provided by ML method are fairly close to the values provided by the LMOM,
especially for larger sample sizes. For small sample sizes, the superiority of LMOM method is
more pronounced. With respect to D,,.x, LMOM performs clearly better for all examined
values of ¢. The performance of ML is very close to LMOM’s for larger values of £ and greater
sample sizes. It is also evident that the values of both metrics tend to zero as the sample size
increases.
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Figure 6.11: D, in (a,c,e and g) and D, in (b,d,f, and h) for & = —0.25,—-0.05,0.05,0.25 with respect to the
sample size and the parameter estimation method. (Supplementary image of Soukissian and Tsalis, 2018)
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From the simulation study considering a variable sample size of (20,25,30,35,40,45, and 50
years) the following remarks are outlined:

1. With respect to the location parameter , LMOM method provides the smallest values
of bias for small sample sizes and the smallest values of MSE overall.

2. Regarding the scale parameter o, LMOM method provides overall the smallest values
of bias while LMOM and ML methods provide the smallest values for MSE.

3. With respect to the shape parameter &, LMOM performs better with respect to bias for
small sample sizes, while LMOM and EP methods provided the smallest values for
MSE. For the initialy fixed & values (-0.25 and -0.05) of the simulation, the ML and
LMOM methods showed a smoother convergence rate towards the initially fixed &
parameters for sample sizes larger than 35 and to a lower extent for samples larger than
30. From the simulation assessment, the ML method fails to perform better than the
other examined estimation methods.

4. Considering the overall behaviour of the estimation methods (for all three parameters
simultaneously) a systematic behaviour is observed. Specifically, LMOM method
performed clearly better with respect to both metrics D, and Dy,.x, for the majority
of the examined sample sizes and in particular, for the smaller ones.

5. Regarding the 95% CI with respect to u, the narrowest Cl widths are provided by
LMOM and MPS methods. With respect to o, the narrowest Cl widths are provided by
ML method and in terms of &, the narrowest Cl widths are provided by EPM.

In this regard, according to the above discussion, a rather safe choice is to select the
LMOM method for the estimation of the GEV distribution parameters, particularly when the
available sample size is relatively small.

Applications

In the second part of this work, the optimum methods MLE and LMOM from the
simulation analysis are applied to wind speed datasets of different sample size and different
direction step of sampling to assess the effect of the latter characteristics to the estimators of
the GEV parameters. Specifically, the wind data used in this work are in the form of 50 years
long time series at four locations (L1,2,3, and 4) in the offshore region of the North Sea obtained
from the suitable ERA-20C reanalysis dataset utilizing gridded analysis wind speed data sets
of coarse resolution. The statistical analysis of the wind data for the four locations is presented
in sub-Section 5.2.1 with respect to different time series lengths. The regional locations selected
in this study are in the offshore area of the North Sea and far away one from each other in order
to alleviate any correlation effect.

The Mann-Kendall test is applied to the corresponding subsamples of annual BM in
order to secure that the relevant time series are non-monotonic. Then the effects of the GEV
parameter estimation methods and the sample size and type on the 50- and 100-year design
values for wind speed are studied in detail. Since the effects of the wind data sample size can
be considered in two ways, i.e.,

i) for increasing sample sizes from the past to the future (F-samples), and

i) from the current period (“now”) to the past (B-samples), both types of effects are
assessed (Soukissian and Tsalis; 2019). Specifically, the n-year design values of
wind speed (for n = 10,20, ... 100 years) for the examined locations are provided
for different time series lengths and the deviations between the corresponding
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estimates are commented. In addition, the relative confidence intervals is estimated
and discussed.

Before proceeding to the GEV parameter and the design value estimation using the
methods ML and LMOM to the ERA-20C datasets, Stationarity tests are required. The period
1961-2010 lies within the climate change era and potentially includes climate change signals.
Therefore, it is likely that time series statistics, and in particular annual maxima, are affected
and thereby cancel out the stationarity assumption under which the BM approach is valid.
Consequently it is necessary to examine whether the examined time series are stationary; for
this purpose, the non-parametric rank-based Mann-Kendall (M-K) test is implemented, at a
significance level @ = 0.05. In the frame of the M-K test, it is examined whether there is a
monotonic upward or downward trend; in other words, assuming a linear trend, the M-K test is
used to test whether the slope of the regression line is different from zero. The null hypothesis
is Hy: No monotonic trend is present, against the alternative H,: There is a monotonic trend
present. The M-K test for trend detection and implementation is described in Appendix F. The
main M-K test results (i.e. M-K score S, its variance Var(S), and p—value for each examined
location with respect to the different time series lengths of B— and F—samples) are shown in
Table 6.4. The results were produced using the R Kendall package; (see https://cran.r-
project.org/web/packages/Kendall/Kendall.pdf).

Table 6.4: Results of the Mann-Kendall test for all examined locations and time series lengths.

Location Time S?;ffofgg;hr;?nggars and Sg | Sg Var(Sg) Var(Sg) Pr Dy
20 (1961-1980, 1991-2010) -16 | -34 | 950.000 950.000 | 0.626 | 0.284
25 (1961-1985, 1986-2010) 42 | -48 | 1833.333 | 1833.333 | 0.338 | 0.272
30 (1961-1990, 1981-2010) 57 | -107 | 3141.667 | 3141.667 | 0.318 | 0.059
L1 35 (1961-1995, 1976-2010) 85 | -71 | 4958.333 | 4958.333 | 0.233 | 0.320
40 (1961-2000, 1971-2010) 140 | -14 | 7366.667 | 7366.667 | 0.105 | 0.880
45 (1961-2005, 1966-2010) 86 | -2 | 10450.000 | 10450.000 | 0.406 | 0.992
50 (1961-2010) 15 14291.67 0.907
20 (1961-1980, 1991-2010) 36 | -42 | 950.000 950.000 | 0.256 | 0.183
25 (1961-1985, 1986-2010) 62 | -70 | 1833.333 | 1833.333 | 0.154 | 0.107
30 (1961-1990, 1981-2010) 105 | -79 | 3141.667 | 3141.667 | 0.064 | 0.164
L2 35 (1961-1995, 1976-2010) 133 | -113 | 4958.333 | 4958.333 | 0.061 | 0.112
40 (1961-2000, 1971-2010) 150 | -68 7366.667 7366.667 | 0.083 | 0.435
45 (1961-2005, 1966-2010) 158 | -10 || 10450.000 | 10450.000 | 0.125 | 0.930
50 (1961-2010) 57 14291.67 0.639
20 (1961-1980, 1991-2010) 22 14 950.000 950.000 | 0.496 | 0.673
25 (1961-1985, 1986-2010) 20 0 1833.333 1833.333 | 0.657 | 1.000
L3 30 (1961-1990, 1981-2010) 57 3 3141.667 3141.667 | 0.318 | 0.972
35 (1961-1995, 1976-2010) 39 -11 | 4958.333 4958.333 | 0.589 | 0.887
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40 (1961-2000, 1971-2010) 88 | -24 | 7366.667 | 7366.667 | 0.311 | 0.789

45 (1961-2005, 1966-2010) 34 | 66 | 10450.000 | 10450.000 | 0.747 | 0.525

50 (1961-2010) 55 14291.67 0.651

20 (1961-1980, 1991-2010) 16 4 950.000 950.000 | 0.626 | 0.922

25 (1961-1985, 1986-2010) 52 8 1833.333 | 1833.333 | 0.234 | 0.870

30 (1961-1990, 1981-2010) 63 | -29 | 3141.667 | 3141.667 | 0.269 | 0.617

L4 35 (1961-1995, 1976-2010) 65 | -41 | 4958.333 | 4958.333 | 0.363 | 0.570

40 (1961-2000, 1971-2010) 112 | 38 7366.667 | 7366.667 | 0.196 | 0.666

45 (1961-2005, 1966-2010) 114 | 96 | 10450.000 | 10450.000 | 0.269 | 0.353

50 (1961-2010) 109 14291.67 0.366

Evidently, all p—values for all examined locations, time series lengths and sample types
are not significant, since p> 0.06. Therefore, the assumption of no monotonic trend in the AM
time series cannot be rejected. In (Orimolade et al., 2016) it was also found that the long-term
time series of significant wave height for the Barents Sea (based on the Norwegian reanalysis
data set NORAL0) did not suggest a temporal trend.

Inference of the sample size effect to the GEV parameter estimates

For the estimation of the GEV distribution parameters, ML and LMOM methods are
implemented. ML is used since it is a standard parameter estimation technique, while LMOM
has been suggested as the overall best estimation method by the results of the simulation study
described in the foregoing section. In Figure 6.12, the location, scale, and shape parameters of
the GEV distribution are provided with respect to the available number of annual maxima
considered for the F—samples (continuous lines) and B—samples (dashed lines).
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Figure 6.12: Estimation of the GEV distribution parameters according to LMOM method in (a,c, and €) and ML in
(b,d, and f) for various sample sizes of annual maxima. Continuous lines correspond to F—samples and dotted lines
correspond to B—samples. (Soukissian and Tsalis, 2019)

As can be seen from Figure 6.12 there is a strong variation of the estimated parameters
for each examined case, depending on the sample size and type (F— or B—sample), and the
estimation method. For locations L1, L2 and L3, the values of the estimated parameters o and
& are strongly dependent on the sample type. The fluctuation of ¢ is of most importance, since
it affects the specific asymptotic form of the GEV distribution. In this respect, a significant
jump (increase) in the estimated value of ¢ is observed for L3; for F—sample size 20, the values
provided by the LMOM and ML were -0.375 and -0.461, respectively, while for sample size
25, the corresponding values of & were 0.0001 and 0.0348. This abrupt shift is due to the
appearance of the new maximum (24.662 m/s) to the 25 years long data-set, with value well
above the existing AM values. On the contrary, the corresponding shift is almost negligible for
uando.

Although the challenging results, some general remarks can be pointed out and summarized as
follows:
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[y

It seems that only u parameter is rather insensitive to the sample type;

2 For location L4 where the extreme wind profile in the German Bight is related to the
low sea level pressure pattern over Scandinavia (Suselj et al., 2010; Befort et al., 2014)
it seems that the sample type has minor effects to all estimated parameters;

3 The estimates of the parameters obtained from F— and B-samples converge to a
stronger rate as sample size increases (larger than 40 and to a lower extent larger than
35), which was an expected behaviour;

4 The general trends for each location and estimated parameters with respect to the
examined estimation method are much alike. For example, the trends of the two black
lines (for both sample types) providing the fluctuation of ¢ as estimated by the LMOM
and the ML method for location L1, are identical;

5 & parameter estimates obtained from the F—samples are systematically greater than the
corresponding estimates obtained from the B—samples (except for location L4 where
both estimates are very close);

6 o parameter estimates obtained from the B—samples are systematically greater than the

estimates obtained from the F—samples (except for location L4).

For the evaluation of the obtained GEV fits, let xy < -+ < x, < x; denote the ordered
sample of AM, and N the corresponding sample size. Let also T denote the corresponding return
periods obtained by means of an appropriate plotting position formula, such as the Weibull
plotting position formula:

i=12,..,N, (6.12)

where i denotes the order of the particular value in the sample. Moreover, let Xy < - < X, <
X, denote the values estimated by the fitted GEV distribution that correspond to the same return
periods. For a quantitative evaluation of the obtained fits with respect to the different sample
sizes and types, and parameter estimation methods, two different goodness-of-fit measures are
implemented, thestandard error of fit (SEF) and the mean absolute relative deviation (MARD)
(see expressions previously stated in Equations (6.5) and (6.6).

In Table 6.5, the values of SEF and MARD criteria are summarized for different sample
sizes and types and for both estimation methods. Results shown with boldface numbers denote
minimum values for the F— and B—samples (with respect to estimation method). Boldface and
italics numbers denote overall minimum values (with respect to estimation method and sample
type). From this table, the following conclusions can be summarized:

Table 6.5: Values of MARD and SEF criteria for different sample sizes, sample types (F and B) and estimation
methods. Boldface numbers denote minimum values for the F— and B—samples. Boldface and italics numbers
denote overall minimum values.

imati Sample size
Location | Criterion Estimation | Sample

method | type "5 T 25 [ 30 | 35 | 40 | 45 | 50
F 0213 | 0200 | 0.222 | 0.223 | 0177 | 0172
ML 0.181
B | 0335 0311 | 0.247 | 0.199 | 0.188 | 0.189
SEF
F | 0171 | 0.155 | 0.197 | 0.214 | 0.155 | 0.147
LMOM 0.174
L1 B | 0319 | 0.300 | 0.239 | 0.191 | 0.179 | 0.186
F 0698 | 0.797 | 0.756 | 0.771 | 0.651 | 0.641
ML 0.616
MARD B | 1223 | 1.148 | 0.870 | 0.634 | 0.592 | 0.608
LMOM F | 0527 | 0563 | 0.700 | 0.767 | 0.593 | 0.570 | 0.599
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B 1.148 | 1.101 | 0.836 | 0.604 | 0.576 | 0.596
F 0.280 | 0.197 | 0.200 | 0.180 | 0.147 | 0.138
ML 0.124
B 0.239 | 0.202 | 0.190 | 0.173 | 0.157 | 0.138
SEF
F 0.259 | 0.168 | 0.173 | 0.152 | 0.117 | 0.107
LMOM 0.095
Lo B 0.204 | 0.157 | 0.160 | 0.134 | 0.125 | 0.108
F 0.837 | 0.715 | 0.750 | 0.686 | 0.585 | 0.574
ML 0.495
B 0.862 | 0.866 | 0.814 | 0.732 | 0.647 | 0.566
MARD
F 0.811 | 0.654 | 0.663 | 0.600 | 0.475 | 0.440
LMOM 0.386
B 0.739 | 0.656 | 0.642 | 0.519 | 0.498 | 0.449
F 0.176 | 0.375 | 0.317 | 0.283 | 0.247 | 0.244
ML 0.213
B 0.201 | 0.177 | 0.265 | 0.234 | 0.224 | 0.220
SEF
F 0.155 | 0.370 | 0.314 | 0.296 | 0.259 | 0.263
LMOM 0.229
B 0.159 | 0.155 | 0.269 | 0.241 | 0.236 | 0.234
L3
F 0.637 | 0.792 | 0.659 | 0.683 | 0.611 | 0.664
ML 0.541
B 0.733 | 0.636 | 0.646 | 0.538 | 0.545 | 0.569
MARD
F 0.556 | 0.796 | 0.648 | 0.646 | 0.589 | 0.594
LMOM 0.473
B 0.580 | 0.560 | 0.632 | 0.522 | 0.508 | 0.526
F 0.295 | 0.243 | 0.203 | 0.188 | 0.152 | 0.146
ML 0.134
B 0.238 | 0.194 | 0.179 | 0.185 | 0.166 | 0.151
SEF
F 0.261 | 0.206 | 0.167 | 0.165 | 0.128 | 0.116
LMOM 0.111
B 0.209 | 0.165 | 0.152 | 0.159 | 0.143 | 0.127
L4
F 1.026 | 0.958 | 0.804 | 0.664 | 0.552 | 0.602
ML 0.528
B 0.823 | 0.746 | 0.732 | 0.692 | 0.599 | 0.570
MARD
F 0.959 | 0.859 | 0.706 | 0.629 | 0.474 | 0.495
LMOM 0.463
B 0.729 | 0.631 | 0.623 | 0.617 | 0.543 | 0.509

F—samples: For locations L1, L2, and L4 both MARD and SEF criteria take their
minimum values for LMOM method, for all sample sizes. For location L3, SEF
criterion takes its minimum values for LMOM for small sample sizes (up to 30) and
for ML for sample sizes (35-50). The minimum values of MARD criterion are obtained
from LMOM for all sample sizes (except for sample size 25).

B-samples: For locations L1, L2, and L4, both MARD and SEF criteria take their
minimum values for LMOM method, for all sample sizes. For location L3, SEF
criterion takes its minimum values for LMOM for small sample sizes (up to 25) and
for ML for the sample sizes between 30 and 50. The minimum values of MARD
criterion are obtained from LMOM for all sample sizes.

Failling of definitive conclusions as regards of the performance of ML and LMOM
estimation methods with respect to the sample types (F and B). The criteria with respect
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to sample size, location and estimation method do not exhibit a strong systematic
behaviour.

Inference of the sample size effect to the wind speed design values of the GEV distribution

In this section, the particular effects of the available number of AM and the parameter
estimation methods on the design values of wind speed are assessed. For the sake of simplicity,
the n-years design values of wind speed (for n=10,20,...,100) obtained from the time series of
N-year length (N= 20, 30, 40 and 50) are denoted by Up (n; N). Along with the obtained wind
speed design values in Figure 6.13, the corresponding 95% CI were also estimated and
presented. For the MLE method the usual normal approximation to the likelihood is
implemented and for the LMOM method, the 95% CI was estimated using the parameteric
bootstrap method, (see sub-Section 2.6.2.1). The main steps for the parameteric bootstrap
method used are the following:

i) Generate K = 2000 random samples of AM each of size N, all derived from the fitted
examined GEV pdf. The value K = 2000 has been selected by a trial and error
procedure as is suggested in the R extRemes package (https://cran.r-
project.org/web/packages/extRemes/extRemes.pdf). For this value of K, the results
regarding Cl are clearly stabilized;

ii) Estimate the GEV parameters of the K random samples by means of the LMOM
method, and;

iii) Calculate the 95% CI of the parameters of interest directly from the bootstrap samples.

For the evaluation of the obtained results regarding Cl, the relative ClI (RCI) and width
of CI (WCl) is introduced. Denoting by [Up, ;, Up ] the 95% Cl of Uy, RCI and WCI is defined
as follows:

Upu—-Up,L
RC] = ———=,
Up (6.13)
WCI == UD,U - UD,L'

In Figure 6.13, Up(n; N) is illustrated for locations L1, L2, L3 and L4, whereas the
parameters of the GEV distribution are estimated by the LMOM method (left column) and the
ML method (right column). An interesting behaviour that is illustrated from this figure refers
to location L3 where the design values provided by the 20 years long time series are clearly
outside the bulk of the rest curves. This is inferred from the abrupt change in the estimated
value of & parameter from the 20 and 30 years of time series. This effect at the NW location of
the North Sea is somehow explained by the inability of the low-resolution product to capture
the influence of the local circulation patterns into the relatively small sample period of 20 years
(Suselj et al., 2010). The high deviations of extremes extrapolated between the 20 and 30 years
sample period from L3 confirms the disadvantage of the low-resolution dataset to resolve the
local characteristics that influence the extreme wind profile at that region.

For a comprehensive statististical analysis in terms of the variation of each estimation
method, in Figure 6.14 RCI of the 50- year design value DV(50) and the WCI of the estimated
parameters (u, g, &) are illustrated for the four locations assigning in (continuous lines) the
Forward count samples for LMOM and ML, and in (dotted lines) the Backward samples
respectively.
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Figure 6.13: The n-year (n = 10,20, ---,100years ) design values of wind speed at locations L1, L2, L3, and L4, for
different annual maxima sample sizes and sample types using LMOM method (a,c,e, and g), and ML method (b,d,f,
and h). Continuous lines correspond to F—samples and dotted lines correspond to B—samples. (Soukissian and Tsalis,

2019)
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Figure 6.14: RCI for the DV(50) of wind speed and WCI for the estimated parameters at locations L1 (a,b,c, and d),
L2 (e,f,g, and h), L3 (i,j,k, and I) and L4 (m,n,o, and p) for different annual maxima sample sizes using LMOM and
ML methods. (Supplementary image of Soukissian and Tsalis, 2019)
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As regards to the parameter estimation methods ML and LMOM of the GEV
distribution for the variable sample size and the direction step of sampling, the following
remarks from Figures 6.13 and 6.14 can be derived as following:

e The general behavior of the design value curves for each location is the same for
LMOM and ML methods.

e The design values provided by B-samples (size 40), are systematically closer to the
design values provided by the sample of 50 AM than the corresponding values provided
by the F—samples. This is also true for the corresponding samples of size 30 (except for
L3).

e The dispersion of the design values provided by the B—-samples for different sample
sizes, is, in the mean, smaller than the one provided by the F—samples.

o The F—samples with sizes 20 or 30 do not provide design values comparable to the
design values provided by the samples of size 50.

e In general, as the sample size increases, RCI and WCI values decrease

o For sample sizes greater than 40 and to a lower extent graeter than 35, the values of
RCI of F- and B-samples corresponding to the same return periods are similar from
LMOM and ML.

o The largest values of RCI (for both F— and B—samples) correspond to the smallest
sample sizes

e With respect to sample size, the scatter of the values of RCI obtained from the B—
samples is smaller than the one obtained from the F—samples.

The aim of this part of this study was the assessment of the most popular methods for
the estimation of the parameters of the GEV distribution considering the combined effects of
variable sample size and the different direction step of sampling. The analysis was based on a
simulation study for variable sample sizes and application of the estimation methods MLE and
LMOM to wind speed datasets from the ERA-20C reanalysis at regional locations in the North
Sea. Considering the variable sample size, inference is made from the simulation study pointing
out that, in general to the estimated parameters (u, o, and &), LMOM performs better with
respect to bias for small sample sizes, while LMOM and EP methods provide the smallest
values for MSE. Inference of the design values to wind speed datasets pointed out that for small
sample sizes (size 20 and 30), the extremes extrapolated from the analysis based on the B—
samples are, in general to the F—samples, closer to the extrapolated extremes based on the
samples of size 50 especially for low return periods (up to 50 years). The latter argument is in
some measure supported from the significant positive trend in ERA-20C in the number of
extratropical cyclones in the North European regions (Befort et al., (2016) and Varino et al.,
(2018)). The B—samples are, in general to the F—samples, found with stronger wind profile.

6.2 Non Stationary approach

The study of extremes through the classical method of BM is more complicated when
the stationarity assumption is not valid. In practical applications, under the presence of non-
stationarity the parameters of the GEV distribution are considered time dependent and time is
taken as a covariate. The underlying assumption of this approach is that the probability of
occurrence of the considered extreme events evolves in time and the associated GEV
parameters are considered time-dependent and the properties of the distribution vary with time;
(see sub-Section 2.5.1). This is often the case when time series under climate change conditions
are considered; (e.g., see Vanem, 2015). For this assessment, four steps summarize the non-
stationary approach as follows:
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i.  First Step, the annual wind speed data series from the atmospheric weather reanalysis
product ERA-20C is considered.

ii.  Secondly, for each examined location L (1, 2, 3, 4, and 5) illustrated in Figure 5.6 with
their descriptive statistics in Table 5.3, Trend and Stationarity test are implemented
setting p-value<0.05.

iii.  Third, the likelihood is formulated for the various non-stationary GEV parametric
models, following from the estimation of the minimum model selection criteria of the
AIC, BIC and LR test respectively for each location.

iv.  Finally, in Step four the effective design values of each optimum parametric GEV
model is estimated.

In the present work, the location parameter and the scale parameter are modelled as
polynomial functions of time. The exponential in the scale parameter is used to ensure positivity
for all values of time t. Shape parameter is of most importance for the distribution and due to
its difficulty to be estimated with accuracy, we keep shape parameter time independent,
following the work from Nogaj et al., (2007), El Adlouni et al., (2007) and Cannon (2010). In
the following Table 6.6, the various time dependent forms of the parametric models are
presented.

Table 6.6: Basic models of various functional forms of (u(t), a(t), (t)) for the non-stationary analysis.

Model Functional form of u(t) Functional form of o (t) &(t)

B

Mo+t 9o

to + iyt + 1 t?

Mo+t exp(gy + 01t)

to + fyt + 1 t?

7 . 21 21 + ( 2m t)+ ( 27 t)
M°+”15m(365.25t)+H2COS(365.25t) exXp{ 9o + uSIN\zeemst) + 02C08 365 25

6.2.1 Trend and unit root tests

In this assessment, two tests are first applied to verify the presence of trend to extremes
of annual wind speed in the North Sea region. The first test is the Mann-Kendall (MK) non-
parametric trend test and second the Cox Stuart (CS) trend test (see sub-Section (2.5.2)), in
order to assess whether the considered time series are characterized by an increasing, decreasing
or stationary trend. Secondly, two additional unit root tests are implemented referred to as the
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) stationarity test and the Augmented Dickey-Fuller
(ADF) unit root test (see also sub-Section (2.5.2) and Appendix F). The KPSS test makes
inquiries about the stationarity of the considered time series around a fixed level (level
stationarity) and the ADF test examines if the process is stationary or not from the presence of
a unit root. The null hypothesis of the MK and CS tests is no monotonic trend present, and the
null hypothesis of KPSS is level stationarity. However, the null hypothesis of the ADF test is
of the presence of a unit root (i.e., non-stationary process set as null). The extreme value
analysis in this setting based on the nonstationary approach considers data of length 40 years
corresponding to annual maxima wind speed records from the ERA-20C data product, covering
the period (1961-2000).
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The annual maxima of wind speed at the selected locations meet the requirements of
the MK, CS, KPSS, and ADF tests presented in Table 6.7. Specifically, the trend tests MK and
CS regarding the absence of a monotonic upward trend over time cannot be rejected at the
significance level of 0.05. In the same context, the level stationarity test of the non existence of
a unit root (i.e., indicating a stationary process) cannot be rejected at the significance level of
0.05 for the KPSS, where for the ADF test the presence of a unit root (i.e., indicating a non-
stationary process) cannot be rejected at the same significance level of 0.05.

Table 6.7: The p — values testing for non-stationarity per location.

p-valqes/ L1 L2 L3 L4 L5
Location
MK-Test| 0.028 0.003 0.010 0.003 0.043
CS-Test| 0.003 0.003 0.018 0.018 0.003
KPSS-Test| 0.021 0.010 0.010 0.010 0.017
ADF-Test| 0.436 0.099 0.078 0.134 0.350

6.2.2 AIC & BIC test

In the following Figure 6.15, the AIC and BIB model criteria are illustrated for each location.
It is apparent that Model 2 and 3 derive the lowest AIC per location in (a) and considering the
BIC values in (b) the Model 2 derived the lowest respectively.
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Figure 6.15: The AIC and BIC parametric model criteria for each location in (a) and (b) respectively. (Tsalis and
Kallos, 2017)

6.2.3 LR test for optimum Models

In this sub-Section inference is made from the acception or rejection of the likelihood-
ratio test of the six nested extreme value distribution models as a better representation of the
extremes of wind speed when the stationarity assumption (demonstrated from Model 1) is
violated. When the objective of the nonstationary analysis is how to incorporate effectively
covariates into an extreme value analysis model, one method is to incorporate them into the
parameters of the extreme value distributions themselves in a regression-like manner (Coles,
2001; Reiss and Thomas, 2007). In order to statisticaly justify whether or not the specific
inclusion of the order of covariates into the model is significant or not is to apply the likelihood-
ratio test (Wilks et al., 2011). The test is only valid for comparing nested models. That is, the
parameters of Models (2,3,4,5, and 6) are undertaken as a subset of the parameters of the
stationary Model 1.

The likelihood-ratio statistic (or deviance statistic) formulared in sub-Section (2.5.4) is
inferred to the (1 - alpha) quantile of the chi-square distribution with degrees of freedom equal
to the difference in the number of model parameters for alpha= 0.05. Specifically, the null
hypothesis of the likelihood-ratio test to the optimum models obtained from the AIC and BIC
criteria (i.e., Models 2 and 3) is challenged of rejection or not in favor of the stationary Model
1. The LR-statistic presented in Table 6.8 of the null hypothesis challenging the stationary
Model 1 at the significance level of 0.05 infer that Model 2 is a better representation of GEV
based on the nonstationary analysis of extremes of wind speed for the five locations.

Table 6.8: LR test for Model 1 vs Model 2 in (a) and LR test for Model 1 vs Model 3 in (b).

() (b)

Model 1 vs LR p-value Model 1 vs LR p-value
Model 2 Statistic <0.05 Model 3 Statistic ~ <0.05
L1 4.032 0.045 L1 4.076 0.130
L2 8.692 0.003 L2 11.545 0.003
L3 9.822 0.002 L3 11.785 0.003
L4 10.474 0.001 L4 11.512 0.003
L5 7.076 0.008 L5 7.093 0.029

In the same context, the rejection of the null hypothesis at the significance level of 0.05 of
Model 2 against the alternative parametric Model 3 is presented in Table 6.9.
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Table 6.9: LR test for Model 2 vs Model 3.

Model 2 vs LR p-value
Model 3 Statistic <0.05
L1 0.044 0.834
L2 2.853 0.091
L3 1.963 0.161
L4 1.038 0.308
L5 0.017 0.897

To alleviate any evidence of the use of the Gumbel distributions to fit extremes, many
studies suggest a likelihood ratio test and if not rejected the latter distribution could alternatively
model the extremes of wind speed; (e.g., An and Pandey, 2005 and Perrin et al., 2006).
Spesifically, in Table 6.10 the LR-test results of the null hypothesis at the significance level of
0.05 inference that there is strong evidence that the stationary Gumbel distribution (except L1)
is challenged from the parametric Models 2 and 3 as the best fit to the annual extremes of wind
speed. Moreover, a possible underestimation of the extremes extrapolated at these locations
(except L5) is expected from the stationary Model 1 (three parameters), since the stationary
Gumbel distribution (two parameters) which is in the domain of attraction of the GEV
distribution, is known to normally give higher extremes for a given return period than the
stationary Type 1l form; (Palutikof et al., (1999)). However, it is arguably preferable to always
allow the shape parameter to be non zero even if the LR-test results supports the Gumbel
hypothesis. This recommendation is based on practical considerations as given in Coles et al.,
(2003) and on penultimate approximations in extreme value theory (Reiss and Thomas, 2007).
Specifically, Coles (2001) and Coles and Pericchi (2003) showed that even in cases where a
reduction to the Gumbel class (i.e., infer to narrower confidence bounds) is justifiable based on
standard statistical tests, is a risky strategy instead of the more general GEV (i.e., infer to wider
confidence bounds).

Table 6.10: LR test for Gumbel distr. vs Model 1,2, and 3 in (a), (b), and (c) respectively.

() (b) (©)

Stationary LR p-value Stationary LR p-value Stationary LR p-value
Gumbel Statistic ~ <0.05 Gumbel  Statistic  <0.05 Gumbel Statistic  <0.05
distr. vs distr. vs distr. vs
Model 1 Model 2 Model 3

L1 0.407 0.523 L1 4.440 0.109 L1 4.484 0.214
L2 0.362 0.547 L2 9.054 0.011 L2 11.907 0.008
L3 0.973 0.324 L3 10.795 0.005 L3 12.758 0.005
L4 0.458 0.499 L4 10.932 0.004 L4 11.970 0.007
L5 6.401 0.011 L5 13.477 0.001 L5 13.493 0.004

Summarizing the results in this sub-Section:

1. Model 1 is rejected compared to Model 2 for all locations,
2. Model 1 is rejected compared to Model 3 except for L1,
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3. Model 2 cannot be rejected compared to Model 3 for all locations,

4. Stationary Gumbel distribution is rejected compared to Models 2 and 3 except for L1,
and finally,

5. Stationary Gumbel distribution is not rejected in favor of Model 1 except for L5

6.2.4 Effective design values and Q-Q Plot diagrams

In addition to the assessment based on the nonstationary approach at the regional
locations in the North Sea, extrapolations from all models are made for the better understanding
of wind speed variability in potentially reducing risk at such regions. At this point it is important
to outline the challenging findings associating the influence of natural climate variability in
extreme wind speeds in the evaluated studies on projected changes of the NAO and storm track
characteristics reported over the North Sea (e.g., Wang et al., 2004; Kumar et al., 2016 and
Malter et al., 2016). The inference of the latter studies (which is inline in this assessment) found
evidence of a slight increase in the frequency of high wind speeds over regional locations at
midlatitudes in the Northern Europe challenging the modeling of extremes.

The primarily interset of this assessment is to inference which model represents
effectively the extremes in wind speed when the stationarity of the process is violated in order
to alleviate the bias effect from the attempt of de-trending the process before the time series is
used. Based on the likelihood ratio tests of Models 2 and 3 in this setting fitting better the
nonstationary GEV distribution, influences of climate variability on extremes of wind speed
are found to occur largely through the location parameter (i.e., Model 2 and 3) with negligible
influences on scale and shape parameters (i.e., Models 4,5,6, and 7). Specifically, the design
values for the n-th year (10,20,...,100) is illustrated in Figure 6.16 for locations L(1,2,3,4, and
5) in the North Sea to infer the demonstration of all considered parametric models.

To assess the fit of the stationary Model 1 with the fit of the outlining parametric
Models 2 and 3, the Q-Q plots are illustrated in Figure 6.16 visualising the good representation
of the extremes from these models. If the empirical data align closely with the modelled
estimates, then it is likely that the chosen model is a good representation of the true extreme
asymptotic form for these samples. It is outlined that Model 2 shows the better fit in terms of
the quantile estimates for all locations. These findings are inline with the study from Cheng et
al., 2014 in the NEVA assessment (see Apendix D) and from Smith, (2003) manifesting that
the simple representation of the trend in the parameterization of the location parameter (i.e., the
most likely observed extremes) allows estimating return values in a more realistic way
consistent with the climatic variability of extremes. However, Model 2 is challenged at L1
where although the null hypothesis is regected compared to Model 1 (stationary 3 parameters),
it is not rejected compared to the Gumbel model (stationary 2 parameters). This is somehow
reasonable from the intractable problem of inference of the maximum likelihood estimator to
distributions of more parameters to be estimated (Model 1 of three parameters) than less
parameters estimated such as the Gumbel distribution of two parameters. However, the
extrapolations made at L1 inference the underestimation of Model 1 as a stationary model of 2
parameters. The uneffectiveness of Model 1 as a stationary model of 3 parameters is also
demonstrated at L5 in comparison to the return level estimates made from the parametric
Models 2 and 3.

The dataset used is ERA-20C and the estimations of the parametric GEV is based on
the Maximum Likelihood Estimator. The statistical software package (extRemes) in R
(Gilleland and Katz, 2016) is used for the estimation of the associated parameters. Inference
from the effective design values pointed out that the stationary model of 2 or 3 parameters in
general, underestimates the extrapolations made of the extremes of wind speed.
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Figure 6.16: Estimation of the Design Values for the parameterized GEV distribution parameters in (a,c,e,g, and i)
and the Q-Q Plots for Models 1,2 and 3 in (b,d,f,h, and j). (Tsalis and Kallos, 2017)

In addition, the parameter estimates of the parametric Model 2 is presented in Table
6.11 as the effective model with the simplest form representing the trend of the most likely
observed extremes in a time dependent climate. The similar force mechanism previously
discussed (i.e., associated to the NAO and the srorm track changes) that influences the climate
variability on extremes of wind speed is obtained at locations where the parametric model
represents the trend in a similar way. Specifically, the Model 2 at locations L (2,3, and 4) is a
good representaion of the trend based on the parameterization of u, and p; of the same
magnitude. However, in L1 and L5 parameter u, is of the same magnitude as in L(2,3,and 4)
but less similar estimates is obtained for parameter u,. This intractable problem of inference is
somehow explained from the different forcing mechanism that suggests different patterns of
climate variability between regional location in the Northern and Central North Sea (Kumar et
al., 2016). To this effect, we recall the previous discussion made in sub-Section 5.2.2 where the
tail extremity of the time series in L1 and L5 suggested more intense extremes than in L(2,3,
and 4). As also discussed in Wang et al., (2004), in the strong forcing cases obtained at the
Northern and Central North Sea locations a simple linear representation of the trend (i.e., Model
2) is probably not the best representation indicating a faster increase of the trend such as a
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quadratic form (i.e., Model 3). However, given the powerful statistical tests applied to several
parametric models and the long period (40 years) of data, Model 2 inferred as an effective
model that represents the trend in extremes of wind speed in a simple linear form when the
stationarity of the process is violated.

Table 6.11: Parameters and (SE) in parenthesis of the linear trend in location from Model 2.

Locations Ho I o) $o
L1 18.455 0.027 0.929 -0.096
(0.313) (0.014) (0.112) (0.089)
L2 18.794 0.045 0.954 -0.119
(0.337) (0.015) (0.117) (0.109)
L3 18.648 0.053 1.033 -0.077
(0.378) (0.016) (0.135) (0.130)
L4 18.720 0.053 1.007 -0.044
(0.354) (0.015) (0.133) (0.133)
L5 19.310 0.036 0.891 0.174
(0.308) (0.013) (0.101) (0.076)

Numerus authors however resulted similar wind speed positive trend estimations with
the present analysis in the North Sea. For example, Siegismund and Schrum (2001) detected an
increase of the annual mean wind speed of about 10 % over the North Sea based on the
NCEP/NCAR Reanalysis dataset (NCEP) (Kalnay et al., 1996) over the period 1958 - 1997.
Also based on NCEP, Pryor and Barthelmie (2003) found increased wind speeds at 850 hPa
over the Baltic Sea during the latter half of the 20th century in both mean and extreme wind
speeds. Alexander et al., (2005) used pressure values to show a similar increase in the number
of storms over the UK since 1950. However, updated time series show that an increase until
1990 was followed by a decrease since the 1990s (e.g. Matulla et al., 2007; Alexandersson et
al., 2000).

The main scope of the present analysis was to effectively model non stationary GEV
distribution parameters, as linear or nonlinear functions of the covariates on which the data
show dependence. The basic remarks from the demonstration of these parametric models are
the following:

e The linear Model 2 and quadratic Model 3 are overall evident models of detecting
significant trends of the extremes of wind speed in the North Sea.

e The stationary Model 1 generally provided relatively small 50 and 100-year design
values over all locations.

This approach in extreme environmental studies considers estimations in design values
in a more realistic way under the assumption of a time changing climate. In addition to the
study of existing trends in reanalysis or hindcast data, climate scenarios are tested for the
occurrence of future trends. Evidence of future trends influencing the wind profile in the North
Sea can be found in the literature. Most of them are connected to changes in the North-Atlantic
storm track. Rockel and Woth (2007) identified increases in the storm climate with most
significant trends for regions, influenced by the North Atlantic extra-tropical storms. Carnell et
al., (1996) resulted a progressive rise in storm activity in the North-East Atlantic. This is linked
to a northern shift of the North Atlantic storm track (Bengtssonet et al., 2006; Knippertz et al.,
2000). A more detailed view of observed trends and variability in the wind climate of the North
Sea during the last decades, is still lacking and further examination is mandatory.
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6.3 The response of DeCAUnN using the MARINA Platform database

The response of the DeCAUnN model in applications considering a limited availability
in data is one key factor in this part of the results. Therefore, the assessment is carried out for
relatively small datasets of annual wind speed time series, corresponding to four sample periods
of 10, 15, 20 and 25 years long. The performance of the re-sampled models DeCAUnN.1 and
DeCAUN.2, are compared within the quantile estimates from the standard de-clustering Runs
in a POT selection, the DeCA model and the BM model at equally correspondent sample size.

For this evaluation the standard MLE method was implemented to the proposed and
existing models. Furthermore, the quantile estimations of all models is evaluated based on
estimates from the BM approach with block size of one year and assuming the available records
are of at least 20 years. This BM will be regarded as the reference model (BM Ref.) considering
the maximum available time series extending from 1979-2016 (38 years long) originated from
the ERA-Interim product, from the ERA-20C extending from 1961-2010 (50 years long) and
for the period 19962015 (20 years) from the MARINA Platform database.

The second key factor illustrated and discussed henceforth, is the response of the
proposed model with regards to the return levels (design values) and return periods of wind
speed originated from a high resolution dataproduct for locations selected over the North Sea,
the Atlantic Ocean and the Mediterranean Sea. The findings of the model response from the
statistical analysis will be discussed in the following sub-Sections summarizing the
performance of DeCAUnN for the selected 30 locations of the MARINA Platform database.

The criteria of the regional locations selected in this study are related to storm-related
losses as evidence of increasing vulnerability to wind extremes in the offshore study region
(Schwierz et al., 2010). In this analysis a high resolution dataset is used for a better
representation of the wind climate at locations that are exposed to topographically complex
regions especially near the coastline in this study. The effects on the simulation of wind climates
from the increase in horizontal resolution is discussed from Pryor et al., (2010). In their study,
the increase in model resolution increased the domain-averaged mean wind speed at 10 (m)
height and the extrapolated 50 year return levels. In addition to their findings, the impact effect
of the increase in model resolution is considerable in wind climate extremes rather than the
effect in the mean wind speed. However it is important to stress that the high resolution product
such as the MARINA Platform database is limited to the number of historical data where this
effect is alleviated using reanalysis products such as the ERA-Interim or the ERA-20.

Considering the restrictions of re-sampling a relatively small sample, a dependent
sample of extremes was reconstructed successfully by DeCAUn to an efficient independent
sample converging to the i.i.d limitations. In addition, the number of the re-sampled extremes
for each location is in agreement with the extreme wind variability at these sites of interest.

All re-samples from the DeCAUN model assume that an average of at least 1.65 peaks
per year should be selected in a POT approach in order to gain advantage over BM (Cunnane,
1973; Tanaka and Takara, 2002; Serinaldi and Kilsby, 2014). The nrmse measure of the re-
samples was evaluated for all DEP reduction levels (60,65,70,75,80,85,90 and 95), normalized
bandwidths C €[0.125,1] with a 0.125 step and statistical threshold considerations. In addition,
the nrmse measure of performance was applied for samples of 10 and 15 years, regarding
sample periods from 1996-2005 and 1996-2010 respectively. Furthermore, the quantile
estimates from DeCAUn were compared to the corresponding estimates obtained by the
reference model (BM Ref.), employing to the latter the maximum available series extending
from 1996 to 2015 (20 years).

Estimations in terms of the optimum DEP levels will be presented for the physical de-
clustering DeCA approach at each sample period for the 30 selected locations in sub-Section
6.3.1. In addition to the results for these locations, estimations of the normalized bandwidth C
and the desired lag (k)-apart value of observations are included in sub-Sections 6.3.2 - 6.3.3
for the optimum performance of the Gaussian Kernel estimator and the optimum irregular re-
sampling process used, respectively. Moreover, the associated nrmse measure of performance
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is also presented in sub-Section 6.3.4 for the optimum re-sample of the DeCAUnN model at each
location and in sub-Section 6.3.5 the estimates are summarized for the 30 locations.

Furthermore, for a comprehensive analysis, one characteristic location from each examined
area (locations L2, L16, and L21) was selected for the evaluation in terms of the quantile
projection and variability of the DeCAUN model. The foregoing estimations are highlighted in
sub-Sections 6.3.6-6.3.8 respectively.

6.3.1 DEP level estimates

Beginning with the estimated DEP level of energy reductions for the physical de-clustering
approach from DeCA, the results are presented in Figure 6.17 by means of colored dots assigned
to the eight % levels (60,...,95) with a 5% step. The DEP level estimates per sample period
resulted a safe range for DeCA to cluster events without the loss of valuable information. In
general, the increase in sample size lead to reductions in the DEP level for the majority of the
locations. Specifically, as the sample period increased from 10 to 15 years the modal value
estimate of DEP was slightly reduced for the 10 locations (L1, L2, ... L9, and L10) in the North
Sea. Additionally, reductions of the mode estimate of the DEP level is obtained for the 10 locations
in the Atlantic (L11, L12, ... L19, and L20) and the 10 locations (L21, L22, ... L29, and L30) in
the Mediterranean respectively. The increase in sample size does not necessarily follow the large
increase in the number of extreme events as expected. The approximate stable or reduced DEP
level estimates as the sample size increased controlled the DeCA model to encompass the largest
number of events as possible. The response of DeCAUn to the modal value estimates of the DEP
levels is illustrated in the following Figure 6.17 (a,b) at the 30 regional locations of interest.
Inference is made for the number of observations of the samples of DeCA that are irregularly
spaced in time and most likely to be sampled from these locations.
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Figure 6.17: DEP (%) level estimates of energy reductions for the physical de-clustering approach from DeCA using
samples of (a) 10 and (b) 15 years. The modal value estimates of the DEP (%) reduction level to the 10 locations in
each region for sample periods of 10 and 15 years illustrated in (c) and the likely number of events from DeCA to
these locations in (d). (Tsalis et al., 2021)

The moderate to low mode value estimates of the DEP levels for the 10 locations in the
North Sea (0.68 for the 10 years and 0.66 for the 15 years) are in line with the variability of
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extreme winds over this region. One key point of this agreement is the influence described by
the large-scale circulation patterns such as the North Atlantic oscillation (NAO) on the wind
speed over the North Sea. The index of the North Atlantic oscillation (NAOI) is strongly
correlated with the wind speed over northern Europe, having an impact on the cyclones
generating in this area by shifting the westerly zonal flow. However, an increase in the NAOI
and the mean wind speeds from the 1960s to the mid-1990s does not necessarily increase the
extreme wind profile (Suselj et al., 2010). Thus, the DEP estimates for these locations are
controlled by DeCA to a moderate to low level in order to enlarge as much as possible the
number of extreme wind storm events.

Considering the Atlantic where strong extra-tropical storms can cause massive storm
surges affecting the 10 locations there, the moderate to high mode value estimates of DEP (0.83
for the 10 years and 0.74 for the 15 years) is somewhat reasonable. It is well known that the
extra-tropical cyclones travel eastward along the polar jet stream, e.g. (the Icelandic Low and
Azores High.). Thus, the prevailing westerlies affecting the locations (L16, L19, L14, L17, and
L20) in the North Atlantic (Feser et al., 2015), justify the moderate to high DEP estimates from
a large number of extreme wind storm events obtained over these sites. On the other hand,
locations (L15, L12, L11, and L18) in the Central and location L13 in the South Atlantic are
also influenced by the strong pressure centers over the Atlantic Ocean. Specifically, the number
of atmospheric circulation patterns that govern the extreme wind speed variability at these
locations are influenced by the atmospheric dynamics in the North Atlantic as discussed in
Pascual et al., (2013), justifying the DEP estimates at this region.

For the 10 locations in the Mediterranean, the mode value estimates of the DEP level is
characterized as moderate to high (0.85 for the 10 years) and low (0.63 for the 15 years). The
nature of the storms in this semi-enclosed basin is subjected to many external factors, like land—
sea contrasts, near-surface temperatures, atmospheric waves and large-scale weather patterns
(Flaounas et al., 2015 b; Campins et al., 2011). Although the windiest areas of the
Mediterranean Sea are located in the NW- SW part e.g. locations (L25, L26, L21, and L27) and
the SE part e.g. locations (L22 and L23) the DEP level estimations at these locations are
characterized as moderate. This effect is due to the large but constant wind conditions at these
sites, where DeCA is controlled by a moderate level of DEP in order to encompass the largest
number of extreme wind storm events as possible. On the contrary, locations (L28, L29, L24,
and L30) at the Central and North Mediterranean are characterized by a high DEP level as
expected, where the largest number of explosive cyclogenesis is observed.

From the demonstration of DeCAUnN to the MARINA Platform database the assessment
yielded the most likely DEP reduction level to range approximately from 0.68 to 0.85 with
regards to the sample period of 10 years and from 0.63 to 0.74 for the sample of 15 years.

6.3.2 Bandwidth estimates

In this Section, the results of the optimum normalized bandwidths for the 30 locations are
presented from the empirical selection procedure as described previously in sub-Section 4.4.
The most likely optimal normalized bandwidth estimates illustrated in Figure 6.18 (a,b) range
in a bound from 0.126 to 0.267 avoiding over or under smoothing Kernel adjustments. It is
apparent that as the sample period increased from 10 to 15 years, the optimal normalized
bandwidth was reduced for the majority of the locations.

Given the relatively small sample period of data such as 10 years, it is not surprising that
we obtain a limited number of events from the DeCA model. Thus, the irregular sample of
DeCA will be characterized by a limited amount of values surrounding the mean width of the
time intervals. As a consequence, the Gaussian weight function adjusted accordingly to the
largest bandwidth for the sample period of 10 years. In this way, for the estimator of the
irregular ACF in Equation (4.21) the largest possible number of higher weights is assigned to
the inter-sampling time intervals closer to the given time lag (k). In other words, the weight
function stretched out to a wider bandwidth scale in sample periods where little information is
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available. Conversely, as the sample period increased from 10 to 15 years the optimal
normalized bandwidth reduced, leading accordingly to a less wide bandwidth adjustment of the
weight function. For locations characterized of strong but stable wind profile the increase of
the sample period increased the bandwidth as a response of DeCAUn to the inconsistent
increase of extremes as the sample size increased. In general, as the sample size increased the
bandwidth estimates reduced as shown from the Gaussian—based correlation analysis of the
ACF estimator SIMILARITY in the irregular DeCA samples. The reduced trend of the most
likely optimal normalized bandwidth estimates to smaller values as the sample size increased
is systematically obtained in the regional locations at the North Sea and the Mediterranean and
to a lower extent obtained at the Atlantic as illustrated in Figure 6.18 (c).
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Figure 6.18: Optimum normalized bandwidth estimates of the Gaussian Kernel weight function applied to the
irreqular ACF estimator using samples of (a) 10 and (b) 15 years. The modal value estimates of the optimum
normalized bandwidth considering the 30 regional locations are illustrated for sample periods of 10 and 15 years in
(c). (Tsalis et al., 2021)

For inference of DeCAUnN to the bandwidth response using the MARINA Platform
database at the 30 regional locations, estimations of the most likely optimal normalized
bandwidths pointed out to range approximately from 0.203 to 0.267 for the sample of 10 years
and from 0.126 to 0.25 for the sample of 15 years.

6.3.3 Lag (k) estimates

The required lag(k)-apart value of observations is presented for the re-sampling procedure
at each location. The desired lag value estimates of k will assign the statistically independent
events from the optimum re-sample of DeCAUn at each sample period.

With an increasing sample period, the lag(k) also increased for the majority of the
examined locations illustrated in Figure 6.19 (a,b). In general, for the sample period of 10 years,
the lower lag value estimate of k ensures a successful trade-off between excluding events and
loss of information. Thus, in order to increase the number of events and consequently the
associated inter-sampling time intervals of the weights to be applied, a lower lag(k) is selected.
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Conversely, as the sample period increased from 10 to 15 years the irregular ACF estimator
was adjusted to a larger lag(k). As a consequence, the ACF estimator included a sufficient
amount of independent events more efficiently at the larger sample period. The effect of
DeCAUnN to the mode estimates of the desired lag(k) is illustrated in Figure 6.19 (c), where
generally an increment of the mode estimates is obtained as the sample size increases. Inference
is also made illustrating DeCAUN.2 to the most likely re-sampling scheme from the
demonstration of DeCAUn at each sample period and region in Figure 6.19 (d).
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Figure 6.19: Lag(k)-apart value of observations for re-sampling the irregular DeCA samples from DeCAUn using
samples of (a) 10 and (b) 15 years. The modal value estimates of the desired lag(k) to each region illustrated for
sample periods of 10 and 15 years in (c). The re-sampling scheme performance of DeCAUn as a percentage (%) to
the regional locations and at each sample period is illustrated in (d). (Tsalis et al., 2021)

The response of DeCAUN to the lag(k) estimates is also closely related to the DEP%
estimates that form the samples of DeCA. Specifically, for locations of strong winds and low
volatility in extremes, the demonstration of DeCAUn in the increase of sample period resulted
to higher DEP and to relatively smaller lag(k). When little information of extremes is apparent
at these locations, the lower lag(k) is preferable to form clusters efficiently of larger length and
consequently derive samples of higher DEP. To this effect, an example is presented in the
following Table 6.12 for one case at the two sample periods of examination.

Table 6.12: DeCAUn model response using samples of 10 and 15 years for the NW location L21 in the
Mediterranean

No. re- AlC- No. (mis) No.
Ny nrmse DEP  DeCA bdw sampling lowest lag(k) DeCAUn u Thres.
MSE
cluster scheme cluster Exceedances
10 yrs 0.011 60% 635 0.625 DeCAUn.1 MSE  64.700 11 57 0.000 57
15 yrs 0.007 80% 737 0.125 DeCAUn2 MSE  9.420 3 200 16.997 90

Inference based on the lag value estimates of k at the associated DEP level is also made
for the number of the asymptotically independent events from DeCAUnN. Under the DeCAUN.2
scheme for the locations in the North Sea, the likely number of re-sampled events is
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approximated at (3.8/year) for the sample period of 10 years, and at (3.9/year) events for the 15
years respectively. Similarly, for the locations in the Atlantic the likely number of re-sampled
events under the DeCAUN.2 scheme, is approximated at (4.8/year) for the 10 years and at
(3.7/year) for the 15 years. Finally, for the locations in the Mediterranean DeCAUN.2 re-
sampled approximately a number of (5.4/year) events for the 10 years and a number of
(5.2/year) for the 15 years respectively. As a remark also discussed in 6.3.1 and 6.3.3, the
increase in sample size does not necessarily follow the large increase in the number of extreme
events, setting the estimated range of events in line with the variability of extreme winds over
these regions.

6.3.4 The nrmse measure for DeCAUnN

The estimation of the nrmse measure and its relation to the sample period resulted in
something unsurprising for the majority of locations. Increase in the sample period increased
the precision of nrmse to the quantile estimates of DeCAUN. To this effect, the re-sampled
models and their fit to the GPD distribution are based on a larger amount of values containing
more information about the tail behavior. Therefore, the quantile estimates of DeCAUn to a
GPD fit converged with the increase in sample period to the quantile estimates of the BM Ref.
fit to the GEV. This is illustrated in Figure 6.20(a) where the quantitative measure of
performance of the optimum re-sampled models from DeCAUn generally reduced as the
sample period increased. It is also outlined at the bar chart of Figure 6.20(b) that as the sample
size increased from 10 to 15 years the most likely observed nrmse statistic of DeCAUnN reduced
smoothly considering the 30 regional locations of the MARINA Platform database.

(@)

0,025 1 DeCAUnN m DeCAUN
nrmse (Ny= 10 yrs) nrmse (Ny= 15 yrs)
0,02 -

0,015 -

nrmse

0,01 -

O*I II IIIII I-I ] I -III |
r-- - - - -rCcC - - - - - - - - - - - C D0 D0 Ko CCCr
P N WA OO N 0 © PR R R R R R R, R R DN DN DN DN NN NN W
o B N W b OO N 0 © O F N W s OO N 0o o o
Locations
=
34
< Ny in (yrs)
=10
|15
o
24
S
L)
28
E 3
o
o
o
o) T
od

c 10 yrs 15 yrs
MARINA Platform

135



Results and discussion

Figure 6.20: nrmse for the optimum re-sample of the DeCAUn model regarding the 30 locations (L1,..,L.29, and
L30). The increase in sample period reduced the nrmse measure for the majority of locations in (a). (Tsalis et al.,
2021). The modal value estimates of the nrmse measure illustrated for sample periods of 10 and 15 years in (b).

(Supplementary material of Tsalis et al., 2021)

The increase in sample period does not reduce the nrmse measure for all locations. This
reverse proportional behavior of the measure is possible explained by the weak performance of
the reference model BM Ref. at the locations (L1, L4, L13, L19, L22, and L24). The over-
under quantile estimates from the reference model using small samples such as the available
sample of 20 years, is also discussed in (An and Pandey, 2007; Ceppi et al., 2008; and Della-
Marta et al., 2009). However, high wind speeds are frequently apparent at these locations as
obtained in Table 5.7. To this effect, the available samples will probably force the fit of the
extremes to the GEV to lie near the mode of the distribution and hence away from the tail area
of interest. Hence, the reference model described by the BM approach will probably not give
the best fit to the tail of the distribution at these locations. For samples of limited information
in extremes, the validity of the asymptotic form is challenged. To assess the fit of the reference
model BM Ref. to the GEV and the DeCAUn model to the GPD, the Q-Q, P-P and Kernel
Density plots is illustrated in Figure 6.21 for one case (L13). If the empirical data align closely
with the modelled estimates, then it is likely that the chosen model for relatively small samples
of wind speed is a good representation of the true extreme asymptotic form for these samples.
In addition, the 95% confidence bands are also provided based on the Kolmogorov-Smirnov
statistic (Doksum and Sievers, 1976).
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Figure 6.21: Visual inspection of the Q-Q, P-P and Kernel Density plot for L13 using the reference model BM Ref.
for samples of 20 years in (a, d, g) and the proposed model DeCAUnN for samples of 10 years in (b, e, h) and 15 years
in (c, f, and i). For the Kernel Density plots of the BM Ref. model the bandwidth is set at 0.918 for the Empirical
Density and at 0.8066 for the Modeled Density. Considering the DeCAUn model at 10 and 15 years the bandwidth
is set at 0.9635 and 0.8052 for the Empirical and at 0.8542 and 0.7473 for the Modeled Density respectively. Dashed
light grey lines in (a, b, ¢, d, e, and f) show the 95% pointwise tolerance intervals. The statistical software package
(extRemes) in R (Gilleland and Katz, 2016) is used for the estimation of the associated parameters and diagram
illustration. Illustrated also in Tsalis et al., (2021).
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6.3.5 Summarizing DeCAUnN model estimates

Estimations from the DeCAUN model are presented for the 30 locations with regards

to the sample period of 10 and 15 years, obtaining design values of the 50 years return period
DV (50) and the confidence intervals denoted in italics, (Table 6.13 and 6.14). As a comparable
measure we also denote the design value estimates DV from the BM Ref. model at the same
return period. The number of cluster maxima before and after the irregular modeling is also
provided, the re-sampled models of DeCAUnN, the lowest AIC and MSE statistic measures of
the models, and finally the associated total number of peak exceedances fitting the GPD
distribution.

Table 6.13: Model estimations for DeCAUnN with regards to the sample period of 10 years extending from 1996 to

2005.
Width .
Location PveEo OfB(l\(ill) DDe \(/:fLoj)n Wl(t(j:tr) o Ngii;A samrg-ling ':‘Algé lowest Degxun Hme E’:gé;g:;s
BM Ref. Ref. DeCAUNn scheme cluster
L1 25.894 0.945 25.793 1.980 513 DeCAUN.2 AIC 238.075 68 15.007 51
L2 26.592 4.835 26.841 5.989 225 DeCAUN.2 AIC 100.512 30 16.852 22
L3 25.836 5.397 26.154 7.652 528 DeCAUN.1 MSE 15.720 106 12.142 53
L4 26.093 6.010 26.086 4.495 419 DeCAUN.2 AIC 78.251 64 19.273 22
L5 28.433 4.657 28.226 8.381 545 DeCAUN.1 MSE 73.450 45 0.000 45
L6 23.930 1.796 23.576 3.854 406 DeCAUN.2 AIC 153.035 51 16.068 38
L7 24.331 2.643 24.350 7.011 514 DeCAUN.1 MSE 55.100 43 0.000 43
L8 28.669 4.947 28.940 5.557 465 DeCAUN.2 MSE 20.140 35 17.110 26
L9 26.686 2.845 26.660 3.629 467 DeCAUN.2 MSE 16.700 34 16.387 25
L10 27.805 4.303 28.065 4.726 448 DeCAUN.2 MSE 20.510 32 16.748 24
L11 24.266 0.997 24.284 2.700 431 DeCAUN.2 MSE 8.740 50 17.040 25
L12 24.767 1.122 24.826 4.214 298 DeCAUN.2 AIC 82.652 34 17.703 20
L13 25.174 2.055 25.172 4.969 375 DeCAUN.2 AlC 119.096 61 17.574 30
L14 28.200 5.343 28.800 5.840 289 DeCAUN.2 AIC 109.212 32 18.443 24
L15 26.827 3.061 26.919 7.304 400 DeCAUN.1 AIC 293.395 44 0.000 44
L16 28.721 2.403 28.859 7.353 315 DeCAUN.2 MSE 10.150 52 20.659 23
L17 26.110 1.869 26.036 5.710 600 DeCAUN.1 MSE 69.920 75 0.000 75
L18 25.632 2.859 25.808 4.275 250 DeCAUN.2 AIC 74.992 35 17.403 17
L19 28.542 4.625 28.751 7.501 540 DeCAUN.2 MSE 6.540 45 19.433 24
L20 24.830 0.960 24.773 1771 600 DeCAUN.2 MSE 7.460 53 18.470 26
L21 25.791 3.672 25.786 4.282 635 DeCAUN.1 MSE 64.700 57 0.000 57
L22 20.875 1.968 20.929 2.374 444 DeCAUN.2 MSE 6.400 187 12.129 140
L23 20.910 3.048 20.610 4.785 490 DeCAUN.1 AlIC 419.345 245 10.266 112
L24 23.727 4.748 23.785 5.759 547 DeCAUN.2 AIC 58.360 54 17.983 20
L25 20.700 0.904 20.724 2.070 653 DeCAUN.2 MSE 5.080 103 14.075 57
L26 21.429 1.754 21.366 2.702 308 DeCAUN.2 AlIC 57.326 43 16.784 18
L27 23.886 3.955 24.012 4.789 531 DeCAUN.2 AIC 66.129 48 18.529 21
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L28 19.174 0.498 19.170 2.770 301 DeCAUN.2 AIC 98.418 37 13.442 27
L29 21.219 2.404 21.101 3.003 383 DeCAUN.1 MSE 9.720 127 11.788 57
L30 21.427 0.968 21.155 4.023 428 DeCAUN.2 MSE 5.470 115 15.012 45

Table 6.14: Model estimations for DeCAUnN with regards to the sample period of 15 years extending from 1996 to
2010.

DV Width .
eaon 0 pven M o TEPIE e ot e

BM BM DeCAUN scheme cluster

Ref. Ref.
L1 25.894 0.945 25.745 3.994 720 DeCAUN.2 MSE 10.510 71 18.202 34
L2 26.592 4.835 26.672 6.033 778 DeCAUN.2 AIC 129.915 66 18.164 33
L3 25.836 5.397 25.890 5.854 454 DeCAUN.1 MSE 13.990 227 13.678 103
L4 26.093 6.010 25.839 4.540 900 DeCAUN.2 AIC 87.682 104 20.024 29
L5 28.433 4.657 28.541 5.487 864 DeCAUN.2 AlIC 111.829 51 19.113 25
L6 23.930 1.796 23.942 2.278 635 DeCAUN.2 AIC 243,521 130 16.252 62
L7 24.331 2.643 24.403 3.057 610 DeCAUN.2 AlIC 102.150 52 17.252 26
L8 28.669 4.947 28.788 6.148 704 DeCAUN.2 AIC 114.597 53 19.787 27
L9 26.686 2.845 26.720 3.365 878 DeCAUN.2 AlIC 124.461 57 18.653 30
L10 27.805 4.303 27.818 4.113 347 DeCAUN.2 AIC 185.238 56 16.411 39
L11 24.266 0.997 24.258 1.177 645 DeCAUN.2 AlIC 86.283 50 19.114 25
L12 24.767 1.122 24.811 1.498 368 DeCAUN.2 AIC 105.115 77 19.207 30
L13 25.174 2.055 25.163 2.677 298 DeCAUN.2 AlIC 251.810 130 17.057 65
L14 28.200 5.343 28.106 5.970 541 DeCAUN.1 MSE 18.980 180 14.318 90
L15 26.827 3.061 26.939 2.727 712 DeCAUN.2 MSE 10.580 50 18.029 37
L16 28.721 2.403 28.644 1.844 742 DeCAUN.2 MSE 17.910 a7 18.325 35
L17 26.110 1.869 26.111 2.345 582 DeCAUN.2 AlIC 94.653 51 19.767 25
L18 25.632 2.859 25.676 3.457 843 DeCAUN.2 AlIC 120.108 60 17.974 30
L19 28.542 4.625 28.662 5.210 918 DeCAUN.2 MSE 5.890 54 19.811 27
L20 24.830 0.960 24.834 1.685 677 DeCAUN.2 MSE 7.540 140 17.681 64
L21 25.791 3.672 25.865 2.831 737 DeCAUN.2 MSE 9.420 200 16.997 a0
L22 20.875 1.968 20.864 1.795 617 DeCAUN.2 MSE 7.010 127 12.928 95
L23 20.910 3.048 20.789 4.602 598 DeCAUN.2 AlIC 120.056 61 14.013 33
L24 23.727 4,748 23.577 4.383 996 DeCAUN.2 AlIC 88.248 77 17.816 30
L25 20.700 0.904 20.693 1.132 1237 DeCAUN.2 AlIC 77.223 76 16.975 29
L26 21.429 1.754 21.437 2.691 509 DeCAUN.2 AlIC 63.457 67 17.625 25
L27 23.886 3.955 23.916 4.427 1087 DeCAUN.2 MSE 3.380 62 18.703 27
L28 19.174 0.498 19.154 0.797 1189 DeCAUN.2 AIC 160.306 91 13.474 45
L29 21.219 2.404 21.107 2.084 606 DeCAUnN.1 MSE 11.410 303 10.902 148
L30 21.427 0.968 21.399 1.825 1054 DeCAUN.1 AIC 1058.479 175 0.000 175
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In line with the aforementioned remarks, design value estimations DV (50) for the 30

locations are illustrated in Figure 6.22 (a) for inference of the wind speed projections of the
DeCAUN model. The variability of the design value estimates DV (50) of DeCAUnN with the
increase of the sample period is illustrated in Figure 6.22 (b).
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Figure 6.22: The DV (50) estimates of the reference BM Ref. model for sample periods of 20 years (from 1996 to
2015) and DeCAUn for sample periods of 10 years (from 1996 to 2005) and 15 years (from 1996 to 2010) for the
30 locations illustrated in (a). Width of the 95% CI for the DV (50) of DeCAUnN for sample periods of 10 years (from
1996 to 2005) and 15 years (from 1996 to 2010) for the 30 locations illustrated in (b). The standard non-parametric
bootstrap method (Percentile) is applied to DeCAUnN and the normal approximation applied to the BM Ref. model
for sample period of 20 years (from 1996 to 2015). Illustrated also in Tsalis et al., (2021)

The most important findings from the assessment of the proposed re-sampling

procedure for the 30 locations using wind speed data from the MARINA Platform database can
be summarized as follows:

The assessment yielded the most likely DEP reduction level to range approximately
from 0.68 to 0.85 with regards to the sample period of 10 years and from 0.63 to 0.74
for the sample of 15 years.

Furthermore, estimations in terms of the most likely optimal normalized bandwidths
are summarized approximately to range from 0.203 to 0.267 for the sample of 10 years
and from 0.126 to 0.25 for the sample of 15 years.

Although the 50 years return levels of DeCAUn are reasonable for both sample periods
of 10 and 15 years in comparison to the extrapolation made from the BM Ref. model
based on samples of 20 years, the proposed model is confounded by large variability
followed by the reduction in sample size from the proposed re-sampling procedure.
Inference is made on the most likely re-sampled number of independent events which
is in line with the variability of extreme wind speed over the 30 regional locations.
Specifically, based on the re-sampling strategy from DeCAUn the number of
approximated events range from 3.8 to 3.9/year over the locations in the North Sea,
from 3.7 to 4.8/year for the locations over the Atlantic and from 5.2 to 5.4/year for the
regional locations over the Mediterranean. It is evident that to alleviate any chanse of
bias estimations of the return levels based on the modeling of DeCAUnN to the GPD
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distribution, a data length longer than 15 years seems sufficient for these sites to
include more than 50 events in total; (Larsén, 2013; Jonathan and Ewans, 2013).

e The extremes extrapolated based on the re-sampling strategy of DeCAUn is also
strengthened from the high resolution wind database used for the analysis, ensured as
possible the extreme efficient characteristics primarily near the coasts and in narrow
straits and basins where applied, avoiding the apparent underestimation of the extreme
variability of wind speed.

6.3.6 Design Values

Design value estimations (DV in (m/s)) for various return periods are presented for the
two relatively small sample periods of examination (10 and 15 years). Henceforth, all results
will be referring to the selected locations L2, L16, and L21. The use of a high resolution
database at these sites will challenge the requirements of the resampling strategy of DeCAUn
to short and irregularly samples where the meteorological model of lower resolution is not able
to reproduce the underlying terrain and capture the wind speed variations sufficiently.
Specifically, the three representative locations of the strong wind conditions observed within
each area are located in the Southern part of the North Sea (L2 with highest wind speed 26.704
m/s), the Northern part of the Atlantic (L16 with 28.671 m/s the highest wind speed) and the
Western part of the Mediterranean (L21 with 25.901 m/s the highest wind speed) respectively.
The intensity of the extreme wind profile at these sites is reinsured from the systematically
positive excess kurtosis parameter to these three locations indicating heavy-tailed distributions
for the wind speed (see also Table 5.7 in sub-Section 5.4).

Alongside the DV estimations of the optimal re-samples from the DeCAUn model we
include estimations from the initial de-clustering approach, the DeCA model for inference. The
performance of the Runs is also presented as the standard comparable model at each sample
period of examination. Moreover, the BM model refers to sample periods of (10 and 15 years)
and the BM Ref. at the maximum available sample period (20 years).

Regarding L2, DV estimates of the 50 years return period DV (50) for BM Ref. (the
reference model for both sample periods of examination) yielded 26.59 m/s(see Figure 6.22).
DeCAUnN provided DV (50) estimates at 26.84 m/s with an nrmse measure at 0.013 with regards
to the sample period of 10 years (Figure 6.23a) and 26.67 m/s followed by a reduction of the
nrmse measure to 0.003 for the 15 years (Figure 6.23b).

Proceeding with the estimates from the other models, the DV (50) obtained from DeCA
pointed out 26.61 m/s with an nrmse at 0.020 and 26.28 m/s followed by a reduction of nrmse
to 0.014 respectively for the two sample periods. Runs yielded DV (50) at 28.09 m/s and 26.50
m/s with nrmse at 0.053 and followed by a considerable reduction to 0.007 respectively.

Furthermore, BM yielded DV(50) at 29.81 m/s with an nrmse at 0.121 and 27.49 m/s
followed by a considerable reduction of nrmse to 0.035 respectively for the two sample periods
of examination.
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Figure 6.23: Design values using the de-clustering models for sample periods of (a) 10 and (b) 15 years regarding
L2. (Tsalis et al., 2021)

The DV (50) for BM Ref. regarding L16 was estimated at 28.72 m/s. Subsequently the
estimations for L16 with regards to the DV (50) and nrmse measure illustrated in Figure 6.24
are outlined in the same context as previously.

DeCAUnN provided DV (50) estimates at 28.86 m/s with an nrmse measure at 0.005 with
regards to the sample period of 10 years (Figure 6.24a) and 28.64 m/s followed by a reduction
of the nrmse measure to 0.003 for the 15 years (Figure 6.24b).

Proceeding with the estimates from the other models, the DV (50) obtained from DeCA
pointed out 28.60 m/s with an nrmse at 0.007 and 28.84 m/s followed by a slight reduction of
nrmse to 0.006 respectively for the two sample periods. Runs yielded DV(50) at 29.92 m/s and
30.04 m/s with nrmse at 0.040 and followed by a slight increment to 0.044 respectively.

Furthermore, BM yielded DV (50) at 28.32 m/s with an nrmse at 0.018 and 28.77 m/s
followed by a considerable reduction of nrmse to 0.004 respectively for the two sample periods
of examination.
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Figure 6.24: Design values using the de-clustering models for sample periods of (a) 10 and (b) 15 years regarding
L16. (Tsalis et al., 2021)

Finally, the DV (50) for BM Ref. regarding L21 was estimated at 25.79 m/s. In the same
context as before we subsequently outlined the estimations for L21 with regards to the DV(50)
and nrmse measure.

DeCAUnN provided DV (50) estimates at 25.79 m/s with an nrmse measure at 0.011 with
regards to the sample period of 10 years (Figure 6.25a) and 25.86 m/s followed by a reduction
of the nrmse measure to 0.007 for the 15 years (Figure 6.25b).

141



Results and discussion

Proceeding with the estimates from the other models, the DV (50) obtained from DeCA
pointed out 26.00 m/s with an nrmse at 0.013 and 25.72 m/s followed by a reduction of nrmse
to 0.008 respectively for the two sample periods. Runs yielded DV (50) at 26.25 m/s and 26.07
m/s with nrmse at 0.018 and followed by a reduction to 0.011 respectively.

At last, BM yielded DV (50) at 31.72 m/s with an nrmse at 0.244 and 26.16 m/s followed
by a considerable reduction of nrmse to 0.014 respectively for the two sample periods of
examination.
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Figure 6.25: Design values using the de-clustering models for sample periods of (a) 10 and (b) 15 years regarding
L21. (Tsalis et al., 2021)

As a general remark of the DV estimates made from the DeCAUn model, the proposed
model slightly overestimated the quantile projection (with regards to BM Ref.) for small-scale
return periods of 50 years, as obtained for all three locations. This effect is more obvious
considering the sample period of 10 years in Figure 6.23a, Figure 6.24a and Figure 6.25a. On
the contrary, for the larger sample period of 15 years there is a remarkable convergence of
DeCAUnN towards the BM Ref. model. Moreover, Runs failed to provide reliable DV estimates
for the sample of 10 years yielding quantile overestimates in comparison to those made from
the reference model. Finally, we anticipated weak performance from the BM model for the two
sample periods, although the latter model was supplied as a weak comparable measure of
prediction. For completeness in terms of the quantile projection of the DeCAUn model
considering the design value estimations DV (50) for the 30 locations see (Tables 6.13 and 6.14).

6.3.7 Confidence bounds

For locations (L2, L16, and L21) and to each sample period of examination, only the
confidence bound of the estimated DV (50) of the 50 years return period for each model is
demonstrated. The interval estimates are supported by two methods. The first method is the
normal approximation and is applied only to the BM Ref. model. The second method is the
standard non-parametric bootstrap method (Percentile) and is applied to the models BM, Runs,
DeCA and DeCAUN.

The DeCAUN model for L2 (Figure 6.26a) yielded a slight increment in the width of
the 95% confidence interval (Width of CI) at +0.044 m/s with the increase of the sample period
from 10 to 15 years. On the contrary, a considerable reduction in the Width of CI at -5.509 m/s
and -1.451 m/s is obtained for L16 (Figure 6.26b) and L21 (Figure 6.26c) respectively.

Proceeding with the variability of DeCA within the same context as before, the model
provided an increment in the Width of ClI at +0.798 m/s for L2 with the increase of the sample
period, followed by a considerable reduction in Width at -0.630 m/s and -0.780 m/s respectively
for L16 and L21.
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At last, Runs model derived a considerable reduction in the Width of Cl at -4.111 m/s
with the increase of the sample period, followed by a reduction in Width at -0.716 m/s for L16
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Figure 6.26: Width of CI for the DV (50) of all models for sample periods of 10 and 15 years regarding (a) L2, (b)

L16, and (c) L21. (Tsalis et al., 2021)

With regards to the DeCAUN model the confidence bounds are considerably wider in
comparison to DeCA for all three locations. The estimations confirmed the wider bound effect
that was expected. Despite the fact that a bootstrap approach was performed for a reliable
inference in terms of variability, it failed to overcome the weakness of small samples such as
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the irregular re-samples from DeCAUN. The inevitable high variability of the proposed model
is caused by the reduction in the sample size as a repercussion from re-sampling at the
associated DEP levels. Moreover, the increase of the sample period to 15 years positively
affected DeCA, DeCAUnN and Runs, yielding narrower confidence bounds. Finally, BM
confirmed the inability to provide trustful bounds in comparison to the other models. For
completeness regarding the variability of the DeCAUn model for the 30 locations see (Tables
6.13 and 6.14) and Figure 6.22.

6.3.8 Model Parameters

For easier representation of the asymptotic distributional behavior in sample
observations derived from each model, only the estimated shape parameter (£) is provided at
the three locations. The 95% confidence intervals of the estimated parameters of the GEV and
GPD distributions at each sample period are derived by two methods in the same context as
previously presentedin sub-Section 6.3.7. For this analysis, the MLE method was implemented
setting the discussion within the most popular framework for stationary BM and POT samples.
This way, all results are easily comparable with those reported in the relevant literature. The
regularity conditions of the GEV and GPD exist when the shape parameter which is equal for
the two distributions is restricted (see the discussion in sub-Section 2.3.1). Specifically, the
MLE is valid when & > -1, although the asymptotically normal properties of the parameters are
valid for & >-0.5. When & <-1, the estimators generally do not exist (Davison and Smith, 1990;
Grimshaw, 1993; Tajvidi, 2003). In practice, for the modeling of extremes of wind speed, it is
likely to obtain more often zero and negative estimates (i.e., indicating right-tail distributions
of an exponential type or short and light-tailed respectively with an infinite or finite right
endpoint), rather than positive value estimates of the shape parameter (Jonathan and Ewans,
2013; Brabson and Palutikof, 2000).

Assuming that the shape parameter estimation with regards to the BM Ref. model
¢ rey) has a reduced degree of uncertainty, it will be considered as the reference estimation for
the comparisons made in the parameter () for both sample periods of examination. In general,
DeCAUn estimates of € resulted a width reduction of the 95% Cl in the increase of the sample
period from 10 to 15 years for the three locations L2, L16, and L21 illustrated in Figure 6.27.
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Figure 6.27: Estimates of the £ parameter with the 95% Width of CI to all models for sample periods of 10 and 15
years regarding locations (a) L2, (b) L16, and (c) L21. The parameter interval estimate of £ for the BM Ref. model
is inferred from the normal approximation method. The interval estimates for the models BM, Runs, DeCA and
DeCAUnN is infered from the standard non-parametric bootstrap method (Percentile). (Tsalis et al., 2021)

The estimates of the shape parameter of DeCAUnN for locations (L2, L16, and L21)
ranged from -0.471 to -0.771 and even wider for the associated bounds. However, as the sample

period increased we observed ¢ estimates converging to the éRef- This convergence confirmed

the unique relationship between the distributions of GEV and GPD fitting successfully the
samples of the reference and proposed model respectively. In this implementation, the residual

RESID (€) =ég.; — € will be used as a visual metric for comparison of the DeCAUn model for
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each location respectively. The & rey Parameter estimates to locations L2, L16 and L21 are at -
0.168, -0.473 and -0.170 respectively shown in (Figure 6.27a, Figure 6.27b and Figure 6.27c).

DeCAUn yielded RESID (£) at 0.303, 0.018 and 0.601 with a Width of CI at 1.037,
1.434 and 0.977 for the sample period of 10 years from the three locations. With regards to the
15 years, the RESID is followed by a reduction at 0.121 (converging to fRef), increment at
0.243 (diverging negatively from éRef) and reduction at 0.178 (converging to éRef)- In the same
context regarding the 15 years, the Width of CI are obtained as reductions at 1.028, 0.993 and

0.473 respectively.
For inference of the shape parameter estimates of DeCAUN to the 30 locations, Figure

6.28 is given. In general, the RESID (&) metric reduced to zero (converging to éRef) as the
sample period increased for the majority of the locations.
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Fig. 6.28: The RESID metric estimates of ¢ from the DeCAUn model regarding the 30 locations for sample periods
of 10 and 15 years. Parameter estimates of éRef and £ are derived from the standard MLE method to models BM
Ref. and DeCAUn fitting the GEV and GPD distributions respectively. (Tsalis et al., 2021)
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As a remark, the parameter assessment from the proposed model derived almost week
asymptotically normal properties especially for the sample periods of 10 years (i.e., L5, L7,
L15, and L21). A possible explanation is given from the over/underestimation of & under the
standard MLE method considering the relatively small number of observation at these
locations. In addition, the inverse proportional behavior of the metric measure RESID in the
increase of sample period (e.g., location L13) is also possible related to the intractable problems
of inference for the éRef parameter of GEV under MLE. However, for the relatively small
samples, using the LMOM method according to Hosking and Wallis (1997) would probably
model in a better way the statistical weakness of the small re-samples obtained from DeCAUN.

We close our results in the following sub-Section 6.3.9 with the threshold selection for
the Runs model at the three aforementioned locations.

6.3.9 Threshold diagnostics for the Runs model

The effective threshold to the Runs model and the selection criteria is thoroughly
discussed in sub-Sections 3.4 and 3.5. This part of the results highlights the detailed
demonstration of the Runs model used, providing an optimum threshold u from the Multiple-
Threshold Model by the NC diagnostics. The threshold range for the Score test of the NC
diagnostics is limited between the 60% and 99.5% sample quantile of the daily wind speed
maxima with a step of 0.01. As a remark, the threshold from NC required less subjectivity and
experience to detect in comparison to alternative diagnostics also discussed previously in sub-
Section 3.4. Inference of the Multiple-Threshold Model by the NC diagnostics confirmed the
advantage against the standard PS plot.

The NC diagnostics is presented for the sample periods of 10 (diagrams b, f and j) and
15 years (diagrams d, h and 1), with the standard Parameter Stability (PS) plot (see sub-Section

146



Results and discussion

2.7.2) as a comparative measure (diagrams a, e and i for 10 years and diagrams c, g and k for
15 years respectively) in Figure 6.29. For the diagnostics, Score test is performed for the shape
parameter over multiple thresholds to the three locations (L2, L16 and L21). The empirical
threshold selection is depicted as the value associated to the sharpest p-value increase at the
significance level of 0.05. For easier representation, peak p-values and threshold are located on
the vertical dashed line on the diagram of the NC diagnostics. Furthermore, threshold
exceedances are also denoted on the top scale of the same diagram. The threshold setting for
the samples of wind speed at the 30 locations is in line with the suggestions of Jonathan and
Ewans (2013) for threshold adjustments of clustering no fewer than 50 events totally.
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Figure 6.29: Threshold model diagnostics for the Runs model. Diagrams of PS plot in (a,c,e,g,i,k) and NC diagnostics
in (b,d,f,h,j,I) for sample periods of 10 and 15 years respectively. The threshold selection from the NC diagnostics
is transferred onto the PS plot as a comparative measure. The NC threshold obtained from the PS plot is located on
the diagram as the solid dot line highlighting empirical estimation for the shape parameter and as vertical solid lines
at the same diagram the approximate point wise Wald 95% confidence intervals. (Tsalis et al., 2021)

Additional diagnostics of the Runs model to the threshold from NC are summarized
considering the three locations. Specifically, the p-value estimates, threshold and No. of cluster
peak exceedances over threshold from the NC diagram are summarized in Table 6.15.

Table 6.15: Threshold diagnostics for the de-clustering scheme of the Runs model.

Ny= 10 yrs Ny= 15 yrs
No. Peak No. Peak
Locations p-value  u(m/s) p-value  u(m/s)
exceedances exceedances
L2 0.851 16.342 70 0.981 15.550 121
L16 0.535 18.439 71 0.934 18.701 104
L21 0.851 16.341 92 0.658 17.124 90
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As regards to the estimates of the NC diagnosics for the threshold setting the following remarks
can be derived:

e The number of cluster peak exceedances over threshold yielded in a range from 70
to 121 with regards to the sample period of 10 and 15 years.

e The threshold of wind speed is set in a range from 15.55 (m/s) to 18.70 (m/s) with
regards to the sample period of 10 and 15 years.

6.4 The response of DeCAUnN using the ERA 20C and ERA Interim
database

In this analysis, we assess the performance of the most reasonably de-clustering models
discussed in 6.3 using relatively small annual wind speed time series, in a range of 10, 15, 20
and 25 years long. The examined locations for applying all models are 32 in total, denoted as
L1,L2,...,L31, and L32 respectively, addressing two different data products, the ERA-Interim
and ERA-20C covering the North Sea, Atlantic, Mediterranean and Black Sea.

In the same context as in the MARINA Platform in sub-Section 6.3, all re-samples from
the DeCAUN model obtained using the ERA-Interim and ERA-20C assume that an average of
at least 1.65 peaks per year should be selected in a POT approach in order to gain advantage
over BM. The nrmse measure of the re-samples was evaluated also in this setting for all DEP
reduction levels (60,65,70,75,80,85,90 and 95). However, the DeCAUN model reconstructed
the dependent sample of extremes to an efficient independent sample, using a normalized
bandwidth value at €=0.25 for the Gaussian Kernel estimator. The bandwidth value was set for
the resampling procedure at this value based on the work of (Rehfeld et al., 2011) on Asian
monsoon records.

We assessed the performance of all de-clustering models in terms of the extreme wind
speed quantile estimates and compared all results to the estimates of the BM model regarding
the longest available time series from each data product. Specifically, the maximum available
time series extending from 1979-2016 (38 years long) originated from the ERA-Interim
product, or from the ERA-20C extending from 1961-2010 (50 years long). Our implementation
is highlighted on the Intervals Estimate method for estimating the runs length, addressing a
threshold value from the Multiple-Threshold Model when performing the GPD analysis via the
Runs model. Standard errors and confidence intervals for the estimated parameters and return
values of the GEV and GPD distribution parameters are derived by two approaches, the normal
approximation to the distribution of the MLE estimator and by the non-parametric bootstrap
method (Percentile), (see sub-Section 2.4 on the discussion of the confidence bound estimates).
Before proceeding to our analysis, a summary Table 6.16 is presented with the basic
characteristics of the models used in this part of our study.

Table 6.16: Models and basic characteristics

Models | Characteristics

Annual-Block Maximum sampling approach. This BM will be regarded as the reference model counted upon the
BM Ref. | largest available sample of 38 years from 1979 to 2016 (ERA-Interim) and sample of 50 years from 1961 to 2010
(ERA 20C) .

Annual-Block Maximum sampling approach.

BM | This BM will be regarded as the model counted upon the samples of 10, 15, 20, and 25 years of the ERA-Interim
and ERA-20C .

Runs | Standard de-clustering model which samples approximately independent events (Smith and Weissman, 1994)
The physical De-Clustering Algorithm (DeCA model) forming samples of events approximately independent and
DeCA | irregularly spaced in time. The samples from DeCA are formed assuming physical considerations from energy
reduction levels DEP at % values (60,65,70,75,80,85,90 and 95).

The proposed DeCA Uncorrelated (DeCAUN) model. The model performs re-sampling taking into account the
DeCAUnN | correlation effect in the irregular samples of DeCA. The response of DeCAUn to the irregular correlation analysis
considering Gaussian Kernel functions is assessed at the normalized bandwidth value of €=0.25.
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It is important at this point to emphasize the potential usefulness for the large-scale
wind energy applications the use of reanalysis data products such as ERA-20C and ERA-
Interim of relatively small special scale manifested in the study of Torralba, et al., (2017b). The
sample sizes of long-term wind speed larger than 30 that are found with relative ease at these
dataproducts, has set a sound base for studying the various factors that cause the uncertainties
in the estimation of return level estimates based on the asymptotic model formulation of GEV
and GPD in extremes (e.g., Larsén et al., 2013).

The demonstration of DeCAUnN reconstructing irregularly wind speed samples is
primarily challenged from the sample size effect as previously discussed in sub-Section 6.3.
However, the demonstration of the resampling strategy was controled to relatively small sample
sizes of 10 and 15 years based on the available time series of wind speed originated from the
MARINA Platform database of high resolution. The asymptotic properties of GPD modelling
DeCAUnN is challenged to samples of very small sizes (Holmes and Moriarty, 1999; Galambos
and Macri, 1999; Katz et al., 2002; Jonathan and Ewans, 2013; and Wang and Holmes, 2020).
Therefore, to assess the effect of larger sample sizes to the asymptotic properties of GPD will
infer effectively the modelling of DeCAUn in line to the i.i.d limitations. In this respect, larger
wind speed sample sizes from a fairly coarse resolution database such as the ERA-20C and
ERA-Interim are required to evaluate the demonstration of DeCAUN.

However, the proposed resampling strategy is challenged from the intractable problems
of inference associated to the distribution of wind speed from these dataproducts suggesting
light-tails for the majority of the midlatitude regional locations used in this part of the
assessment; (see also the discussion made in sub-Section 5.3). It is important to outline that if
the parent distribution is characterized of being heavy tailed responsible of the natural forcing
mechanism reconstructing the wind speed time series, then extremes of wind speed are
modelled from a distribution with a bounded tail (e.g., FT-I11 or reverse Weibull class); (see
Katz, 2002; Holmes, 2015; Pinheiro and Ferrari, 2015). The light-tails of wind speed originated
from ERA-20C and ERA-Interim will challenge the modelling of DeCAUn to samples of less
extremes at different sample periods (i.e., 10, 15, 20, and 25 years). The demonstration of
DeCAUN to these relatively small datasets is also challenged from the bias effect to the return
level estimates when the modelling at different periods is strongly influenced from the extreme
wind climate changes obtained at each sample period (e.g., Larsén and Mann, 2009).

To infer the effect of the relatively short sample periods from 10 to 25 years of ERA-
20C and ERA-Interim to the response of DeCAUn, the design value estimates in (m/s)
corresponding to the 50 years return period are illustrated in the following Figures 6.30 and
6.31. It is importatnt to outline that the demonstration of DeCAUn is compared to the DeCA
model and BM model at equally correspondent sample size based on the nrmse statistic. Only
optimum model estimates based on the minimum nrmse value and reference model BM Ref.
in parenthesis is illustrated in a,b,c, and d respectively to the sample periods of 10, 15, 20, and
25 years using ERA-20C (from 1961 to 1985 of a 5 years step forward) and ERA-Interim (from
1979 to 2003 respectively). In this setting, DeCAUNn manifested as the optimum model
particularly at sample periods of 10 and 15 years.
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Figure 6.30: Optimum model estimates based on the minimum nrmse statistic and reference model BM Ref. in
parenthesis of the 50 years design value respectively. Design value estimates are in (m/s) in (a,b,c, and d) respectively
to the sample periods of 10, 15, 20, and 25 years of wind speed from the ERA-20C data product. (Tsalis et al., 2019)
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Figure 6.31: Optimum model estimates based on the minimum nrmse statistic and reference model BM Ref. in
parenthesis of the 50 years design value respectively. Design value estimates are in (m/s) in (a,b,c, and d) respectively
to the sample periods of 10, 15, 20, and 25 years of wind speed from the ERA-Interim data product. (Tsalis et al.,
2019).

The number of the effective models that infer closer to the stability properties of the
GEV limit distribution that modeled BM Ref. is presented in the following Table 6.17(a)
summarizing the demonstration of each model in terms of the nrmse based criteria at each
sampling period and data product respectively. Particularly, the demonstration of the optimum
re-samples DeCAUN.1 and DeCAUN.2 modelling the GPD threshold model is assessed to the
return level estimates made from DeCA, Runs and BM model at equally correspondent sample
size based on the minimum nrmse value. It is outlined at the bar chart of Table 6.17(b) that as
the sample size increased the most likely observed nrmse statistic of DeCAUnN reduced
smoothly and at a higher rate degree in regards to the 16 regional locations of ERA-Inrerim and
to a lower extent regarding the 16 locations of ERA-20C. The strong bias effect to the return
level estimates is rather reasonable to ERA-20C as the modelling of DeCAUn is strongly
influenced from the inability of the data product to reproduce the extreme wind changes at the
relatively small sample periods. The nrmse statistic of DeCAUn shows a smoother response to
the increase of sample period when the modelling of extremes is originated from samples of
ERA-20C (greater than 20 years) and ERA-Interim (greater than 15 years).

In addition, inference is also made for the DEP levels of the resampling strategy of
DeCAUnN based on the ERA-20C and ERA-Interim data products. In general, the increase in
sample size from 10 to 25 years lead to small reductions of the most likely observed DEP level
for the majority of the regional locations of ERA-Interim and to a small increase of the mode
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estimate of DEP from 10 to 15 years for ERA-20C and to a smaller increase from 20 to 25
years. Specifically, in line with the previous results of the model based on the MARINA
Platform in sub-Section 6.3, the increase in sample size does not necessarily follow the large
increase in the number of extreme events as expected. The approximate stable or reduced modal
value estimate of the DEP level of the irregular DeCA samples at locations from ERA-Interim
controlled DeCAUnN to encompass the largest number of events as possible as the sample size
increased from 10 to 25 years. However, the reduction of the modal value estimate of the DEP
level is clear for samples larger than 15 years for the ERA-20C challenging the inability of the
ERA-20C to reproduce to a reasonable certainty the extreme wind changes at the relatively
small sample periods up to 15 years. The response of DeCAUn to the modal value estimates of
the DEP levels is illustrated at the bar chart of Table 6.17(c) considering the 16 regional
locations of interest from the ERA-20C and ERA-Interim respectively.

The response of DeCAUN to the lag(k)-apart estimates is also closely related to the
DEP estimates that form the samples of DeCA (see discussion in sub-Section 6.3.3).
Specifically, for the majority of locations the demonstration of DeCAUnN in the increase of
sample period resulted to larger (lower) DEP level and to relatively smaller (larger) lag(k).
Clearly, for locations e.g., in the NW and central part of the Mediterranean Sea that are
characterized of having strong winds and relatively low volatility in extremes (i.e., larger DEP
and relatively smaller lag(k)), the DEP and lag(k)-apart estimates of L5 of ERA-20C is
illustrated in Table 6.17 (d and f) and the estimates of L30 of ERA-Interim illustrated in Table
6.17 (e and g); (see changes in the frequency and intensity of cyclones and associated
windstorms affecting the extremes into the Mediterranean region from Nissen et al., (2014)).
When little information of extremes is apparent at these locations, the lower lag(k) is preferable
to form clusters efficiently of larger length and consequently derive samples of higher DEP.
The effect of the DEP increase (reduction) and reduction (increase) in the lag(k)-apart value of
observations of DeCAUnN as the sample size increased in illustrated in the bar chart of Table
6.17 (fand g) for locations of ERA-20C and ERA-Interim respectively.

Following the mode estimates of the DEP in Table 6.17 (c), inference is also made for
the mode estimates of the lag(k)-apart value of observations of DeCAUnN as the sample size
increased in Table 6.17 (h). Specifically, the small reduction of the mode estimate of DEP as
the sample size increased from 10 to 25 years in Table 6.17 (c) for the ERA-Interim locations,
derived in general a small increase of the mode estimate of the lag(k) illustrated in Table 6.17
(h). However, for the locations of ERA-20C the reverse proportional relation of the DEP and
lag(k) is more pronounced for samples larger than 15 years.

Table 6.17: The number of optimum models based on the minimum nrmse statistic of good performance presented
in (a) infer closer to BM Ref. at the regional locations from ERA-20C and ERA-Interim. The mode estimate of the
minimum nrmse statistic of DeCAUn to each data product is illustrated in (b) for the sample periods of 10, 15, 20,
and 25 years of wind speed. In addition, the most likely value estimates of the DEP (%) reduction level of DeCAUn
to the 16 locations in each region of the ERA-20C and ERA-Interim data products for sample periods of 10, 15, 20,
and 25 years is illustrated in (c) and DEP estimates for each location respectively in (d and e). The lag(k)-apart value
of observations of DeCAUn as the sample size increased in illustrated in the bar chart of (f and g) for locations of
ERA-20C and ERA-Interim respectively, with the mode estimates of the lag(k)-apart value of observations of
DeCAUnN as the sample size increased in (h); (supplementary image of Tsalis et al., 2019). All models and parameter
estimates are derived by the extRemes package (Ver. 2.0) in R; (Gilleland and Katz, 2016)
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The major remarks of the sample size effect to the demonstration of DeCAUn in terms
of the return level estimates are outlined in the following:

o The DeCAUN model succeeds as the optimum model based on the nrmse statistical
criteria of good performance compared to DeCA, Runs, and BM for sample sizes of 10
and 15 years of wind speed at the regional locations from ERA-20C and ERA-Interim
(see Figures 6.30 and 6.31 and Table 6.17(a)).

154



Results and discussion

The Runs and DeCA models seem to converge closely to DeCAUnN for sample sizes
greater than 20 years.

The most likely observed nrmse statistic of DeCAUnN reduced smoothly and at a higher
rate degree as the sample size increased in regards to the regional locations of ERA-
Inrerim and to a lower extent to locations of ERA-20C (see the bar chart of Table
6.17(b)).

The resampling strategy DeCAUnN showed systematically stronger rate of convergence
to the stability properties of GEV that modeled BM Ref. particularly at regional locations
from ERA-Interim and a less stronger rate of convergence at locations from ERA-20C.
BM systematically inferred as a model of great instability particularly of sample sizes up
to 25 years.

The resampling strategy DeCAUN.2 to wind speed for sample periods of 10 and 15 years
succeded when data are originated using ERA-20C and DeCAUN.1 when using ERA-
Interim. DeCAUN.2 is also outlined as the best re-sampling strategy using the MARINA
Platform database at the relatively small sample periods of 10 and 15 years. The
assessment to the irregularly samples obtained from the high resolution product controled
the bandwidth of the Gaussian Kernel effectively to DeCAUn rather better than the
assessment made using the low resolution product having a constant bandwidth.

It is evident from the bar charts illustrated in Table 6.17(b) and Figure 6.20(b) that as the
sample size increases, the most likely observed nrmse statistic of DeCAUnN at the regional
locations reduced smoothly and at a higher rate degree in regards to the datasets of the
MARINA Platform database and to a lower extent regarding datasets from ERA-20C and
ERA-Interim. Particularly, the resampling strategy proposed showed systematically
stronger rate of convergence to the asymptotic properties of the extreme value
distribution for wind speed datasets of high spatial resolution and to a less stronger rate
of convergence for datasets of lower resolution.

From the demonstration of DeCAUn to the ERA-20C and ERA-Interim the most likely
DEP (%) reduction level yield to range approximately from 0.61 to 0.78 with regards to
the sample period from 10 to 25 years for the ERA-20C, and from 0.62 to 0.68 for the
ERA-Interim respectively (see bar chart in Table 6.17(c)).

From the demonstration of DeCAUn to the ERA-20C and ERA-Interim the most likely
lag(k)-apart value of observations of DeCAUn as the sample size increased from 10 to
25 years yield to range approximately from 2 to 5 for the ERA-20C, and from 3 to 4 for
the ERA-Interim respectively (see bar chart in Table 6.17(h)).

Based on the most likely observed nrmse statistic of DeCAUnN as the sample period
increases (i.e., reduction in general of nrmse as sample increases), DeCAUN shows
stronger rate of convergence to the asymptotic forms for samples larger than 20 from
ERA-20C and larger than 15 from ERA-Interim.

At this point we outline the primarily interest of this study is to assess the effect of the

sample period to the asymptotic properties of GPD that modeled DeCAUnN and not the response
of the proposed re-sampling strategy to the specific features responsible to bias samples
originated from data products of low resolution. It is reasonable for assessing risk associated to
extreme wind speed episodes to use high-resolution simulations especially in the coastal areas
(Susel;j et al., 2010). Allthough modelled wind speed patterns differ between models they are
usually small when compared to natural variability. Assessments made from Nikulin et al
(2011) avoiding any statistical downscaling showed no significant changes in the 20 year return
wind speed over the North Sea, and Pryor et al (2012) found no changes in the strength of wind
gusts. These results strengthens the use of a low-resolution reanalysis data product such as
ERA-Interim or ERA-20C when the primarily target is on the large-scale forcing of the wind
field and not on the local effects.
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Under the proviso of the statistical downscaling, two representative location from the
ERA-20C (L5 and L10) and the ERA-Interim (L18 and L30) database is selected for the
demonstration of DeCAUN in terms of the return level estimates and variability of the proposed
model to each sample period. The locations L5 and L30 are a good representative of the strong
wind climate in the Mediterranean also discussed in Flaounas et al., (2015 b) and locations L10
and L18 model typically the extreme wind characteristics obtained in the North Sea also studied
from Suselj et al., (2010).

The return level estimates of the DeCAUN model in association with the extrapolations
made from BM, Runs and DeCA models for the four sample periods of 10, 15, 20, and 25 years
from each data product respectively is illustrated in the following Figures. Specifically, Figures
(6.32 and 6.33) inference the stability properties of the limit distributions in extremes that
modeled all resampling strategies based on wind speed samples originated from ERA-20C and
Figures (6.34 and 6.35) from ERA-Interim respectively. The demonstration of DeCAUn
showed the systematically model convergence to BM Ref. particularly at sample periods of 10
and 15 years. The modelling of DeCAUnN was extended to larger sample sizes (hot presented
here) and the decrease of the absolute return level estimates to each return period was eventually
more pronounced to the estimations made based on BM Ref. Additional diagnostics of the
DeCAUnN response to the sample period for the four locations (L5, L10, L18, and L30) using
the low resolution data products is presented in Appendix I. The diagnostics of all models are
inferred to the four sample periods of ERA-20C and ERA-Interim set from 1961 to 1985 and
from 1979 to 2003 with a 5 years step forward to each data product respectively.
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Figure 6.32: Design value estimates based on the resampling strategies of BM, Runs, DeCA, and DeCAUn regarding
location L5 of the ERA-20C data product. Estimates of all models are in (m/s) and shown in (a,b,c, and d)
respectively to the sample periods of 10, 15, 20, and 25 years of wind speed. (Tsalis et al., 2019).
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Figure 6.33: Design value estimates based on the resampling strategies of BM, Runs, DeCA, and DeCAUn regarding
location L10 of the ERA-20C data product. Estimates of all models are in (m/s) and shown in (a,b,c, and d)
respectively to the sample periods of 10, 15, 20, and 25 years of wind speed. (Tsalis et al., 2019).

The inability of ERA-20C to capture the extreme wind climate changes at different

periods is systematically influencing the demonstration of the Runs, DeCA and DeCAUn
models particularly in L10. However, DeCAUn inferred as the model with the fastest
convergence rate as the sample period increased. All models demonstrated a rather smoother
convergence to BM Ref. for sample sizes greater than 20 years.
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Figure 6.34: Design value estimates based on the resampling strategies of BM, Runs, DeCA, and DeCAUn regarding
location L18 of the ERA-Interim data product. Estimates of all models are in (m/s) and shown in (a,b,c, and d)
respectively to the sample periods of 10, 15, 20, and 25 years of wind speed. (Tsalis et al., 2019).
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Figure 6.35: Design value estimates based on the resampling strategies of BM, Runs, DeCA, and DeCAUn regarding
location L30 of the ERA-Interim data product. Estimates of all models are in (m/s) and shown in (a,b,c, and d)
respectively to the sample periods of 10, 15, 20, and 25 years of wind speed. (Tsalis et al., 2019).

In regards to the sample size effect of the model demonstration in terms of the return
level estimates the following remarks can be derived:
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o For sample size greater than 20 all models converge to the extrapolations made from
the BM Ref.

e DeCAUnN show the higher convergence rate to the BM Ref. especially considering
sample sizes of 10 and 15 years

e The resampling strategy DeCAUN.1 shows better convergence to the extrapolations
made from BM Ref. for return periods lower than 50 years and DeCAUn.2 for return
periods higher than 50 years

o For a sample period greater than 15 and 20 years DeCA and DeCAUN models show
similar extrapolation behavior

e The relatively stronger flunctuations of the nrmse statistic is obtained at locations from
ERA-20C and to a lower extent at locations from ERA-Interim. The bias effect of the
inability of ERA-20C to capture the extreme wind variability at different periods is
systematically more intence than at the regional locations from ERA-Interim
influencing accordingly the return level estimates of all models.

¢ BM failed to converege to the BM Ref. especially for relatively small sample periods
of 10 and 15 years.

In addition, inference of the variability of DeCAUnN to the design value estimates at
return period of 50 years is made using two approaches for the confidence bound estimates.
The first approach namely the normal approximation (delta method) and the second the non-
parametric bootstrap method (Percentile) for locations (L5, L10, L18, and L30) as illustrated in
Figure 6.36. The sample period of 10, 15, 20, and 25 years data is set on the x axis challenging
all model estimates with the width of Cl on the y axis respectively. However, the standard
approach to infer the approximate normality of the maximum likelihood estimator is challenged
for small sample sizes pointing out very high quantile estimation variances that are not
physically plausible as evidence in (a, c, e, and g) of Figure 6.36. To this effect an alternative
approach to alleviate the intractable problem of inference of the uncertainty analysis based on
small datasets is using the non-parametric bootstrap approach in (b, d, f, and h) of Figure 6.36;
(see also the discussion of Pandey et al., 2003). Under the proviso of the two confidence bound
estimate approximations inference is made pointing out the following:

e The confidence bound estimates of DeCA and DeCAUn are systematically of larger
width using the normal approximation to the likelihood in panel (a, c, e, and g) of
Figure 6.36 than the estimates made using the non-parametric bootstrap approach
illustrated in panel (b, d, f, and h) respectively.

e The maximum width of CI in (m/s) of the design value estimates of DeCAUnN using
the non-parametric bootstrap approach for locations (L5, L10, L18, and L30) is
reduced to (4.201, 4.248, 6.954, and 5.273) from the non physically plausible estimates
of (14.551, 6.352, 15.100, and 49.706) of the normal approximation.

e The high variance effect to the return level estimates using the non-parametric
bootstrap approach influenced at a greater extent locations of lower bias. Specifically,
L18 and L30 of ERA-Interim illustrated in b, d, f, and h show larger width of the bound
estimates than L5 and L10 of ERA-20C in panel a, c, e, and g respectively.

e The intractable problems of inference related to the normal approximation as the
sample size increased showed larger inconsistencies of the bound estimates for
DeCAUnN and to a lower extent when using the non-parametric bootstrap approach.
The smoother bound estimates from the bootstrap approach is also notable for the
models DeCA and Runs.

e The normal approximation to the likelihood showed symmetric bound estimates to all
models and the non-parametric approach assymetric bounds with the upper design
value estimate considerable narrower than the lower estimate respectively.

o BM failed to demonstrate reasonable bound estimates from both approximations to the
relatively small sample periods.
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DeCAUnN show the greater rate of converegence to BM Ref. especially based on the
bound approximation of the non parametric approach for samples greater than 15 or
20 years. The demonstration of DeCA showed a more smoother convergence at
smaller sample sizes. However, estimates in extremes based on sample sizes smaller
than 10 years is probably unrealistic (not demonstrated in this setting) as samples of
such small sizes is reported to bias strongly the design value estimates of the 50 years
return period (e.g., Larsén et al., 2013).

Despite the fact that a non parametric bootstrap approach was performed to alleviate
in some degree the large variability, it failed to overcome the weakness of small
samples such as the irregularly re-samples from DeCAUN. The inevitable high
variability of the proposed model is caused by the reduction in the sample size as a
repercussion from re-sampling at the associated DEP levels. To a lower extent
however this effect is also obtained at datasets originated from the MARINA Platform
database.
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Figure 6.36: CI estimations from the normal approximation (delta method) in the left panel (a,c,e, and g) and from
the non-parametric bootstrap (Percentile) method in the right panel (b,d,f, and h), for locations L5, L10, L18 and
L30. (supplementary image of Tsalis et al., 2019)

6.5 Inference of DeCAUnN to datasets of different scale resolution

Finally, inference can be made of the effective sample size and the influence of the data
product to the resampling strategy of DeCAUN. At this point we recall that this is not the
primarily interest of this study however interesting remarks can be outlined of the response of
DeCAUnN to wind speed datasets originated from the three data products (ERA-20C, ERA-
Interim, and the MARINA Platform database) at regional locations that are closely arranged in
the Northern North Sea, the Central Atlantic Ocean, and the Western Mediterranean Sea.

The regional locations from each data product in this setting are based on the similar
forcing mechanism that suggest similar patterns of wind variability to each site of interest.
However, the resampling strategy of DeCAUnN is challenged from the effectiveness of the
different datasets in scale resolution in simulating regional aspects of climate variability and
forcing scenario uncertainty to provide reliable information of extremes at the same sample
period.

Particularly, in the following Tables 6.18 and 6.19 the effective DEP (%) reduction
level, the resampling scheme (i.e., DeCAUN.1 or DeCAUN.2), the likely number of the
approximately independent events resampled from DeCAUn, the lag (k)-apart value of
observations and & parameter estimates, are presented for samples of different statistical
resolution based on the response of DeCAUnN to sample periods of 10 years (from 1996 to 2005)
and 15 years (from 1996 to 2010). In the same context of the previous evaluation of DeCAUnN
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in 6.3 and 6.4 the standard MLE method is set as the parameter estimator of the GPD
distribution that models the resamples of the proposed model. Furthermore, the response of
DeCAUnN is evaluated based on estimates regarded the reference model BM Ref. considering
the maximum available time series extending from 1979-2016 (38 years long) originated from
the ERA-Interim product, from the ERA-20C extending from 1961-2010 (50 years long) and
for the period 1996-2015 (20 years) from the MARINA Platform database.

Table 6.18. Estimates of DeCAUn using statistical high and downscaled resolution datasets of wind speed. The
sample period of 10 years is set at (1996-2005) respectively for the datasets originated from the ERA-20C, ERA-
Interim, and the MARINA Platform database.

No.
10 years Lat. Long. DEP re-sampling DeCAUn DV (50) WCI (50) lag é bdw
(%) scheme cluster (m/s) (m/s) (k)

Northern ERA-20C 58.500N  4.500E EQ) DeCAUN.1 209 24.803 4.668 1 0271 0125
North ERA-Interim  60.000N  2.250E 80 DeCAUN.2 32 32,556 17.201 3 0081 0125
Sea MARINA Platform 57.95N  3.1E 70 DeCAUN.2 35 28.940 5.557 10  -0523  0.625
ERA-20C 47250N 10125W 75 DeCAUN.2 a1 27.608 11.137 7 -0.162 05
Central
- ERA-Interim  51.000N  6.750W 60 DeCAUN.1 58 26.498 7.092 3 0325 0125
Atlantic
s MARINA Platform  42.85 N 9.95 W 80 DeCAUN.2 61 25.172 4.969 5 0497  0.625
cean
ERA-20C 42.750N  4.500E 65 DeCAUnN.2 38 20,419 2.798 9 -0.443 0.75
Western
Med/nean ERA-Interim  42.000N  3.750E 60 DeCAUN.1 65 21.838 4.481 4 -0.403  0.125
: MARINA Platform 408N 55E 60 DeCAUN.1 57 25.786 4.282 11 0771 0.625
ea

Table 6.19. Estimates of DeCAUn using statistical high and downscaled resolution datasets of wind speed. The
sample period of 15 years is set at (1996-2010) respectively for the datasets originated from the ERA-20C, ERA-
Interim, and the MARINA Platform database.

No.
15 years Lat. Long. DEP re-sampling DeCAUn DV (50) WCI (50) lag & bdw
(%) scheme cluster (mf/s) (mf/s) (k)

Northern ERA-20C 58.500N  4.500E 65 DeCAUN.1 140 24.198 4.011 5 -0275 0.125

North ERA-Interim 60.000N 2.250E 80 DeCAUN.2 36 31.726 8.938 4 -0.488 0.125

S MARINA Platform ~ 57.95N  3.1E 70 DeCAUN.2 53 28.788 6.148 10 -0.378 0.25
ea

Central ERA-20C 47.250N  10.125W 65 DeCAUN.1 249 27.430 8.460 3 -0.128 0.125

Atlantic ERA-Interim 51.000N  6.750W 60 DeCAUN.2 56 26.460 4,741 4 -0.355 0.125

0 Marina Platform 4285N 9.95W 95 DeCAUN.2 130 25.163 2.677 2 -0.408 0.125

cean

Western ERA-20C 42750N  4500E 90 DeCAUN.2 188 20543 1.829 2 0369 0.125

Med/nean ERA-Interim 42.000N 3.750E 95 DeCAUN.1 82 21.725 2.151 2 -0.497 0.125

S MARINA Platform 40.8 N 55E 80 DeCAUN.2 200 25.865 2.831 3 -0.349 0.125
ea

The major remarks that is outlined from the resampling strategy of DeCAUn to irregularly
samples of wind speed originated from databases of different scale resolution are pointed out
in the following:

e The response of the Gaussian weight function confirmed the effect of stretching out to
a wider bandwidth scale in sample periods of 10 years where little information is
available (bdw estimates of Table 6.18). Conversely, as the sample period increased
from 10 to 15 years the optimal normalized bandwidth reduced, leading accordingly to
a less wide bandwidth adjustment of the weight function; (see bdw estimates of Table
6.19).

e The approximate stable or reduced DEP level estimates as the sample size increased
controlled the irregularly DeCA samples to encompass the largest number of events as
possible. The response of DeCAUn to the increase in sample size does not necessarily
follow the large increase in the number of extreme events as expected for all product
types. Specifically, for locations characterized of strong winds and low volatility in
extremes (e.g., locations at the Western Med/nean Sea), the demonstration of DeCAUnN
in the increase of sample period resulted to higher DEP and to relatively smaller lag(k).
When little information of extremes is apparent at these locations, the lower lag(k) is
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preferable to form clusters efficiently of larger length and consequently derive samples
of higher DEP.

In general, for sample period set at 15 years it is evident that from the No. of the
DeCAUnN clusters in Table 6.19, any chanse of bias estimations of the return levels
based on the modeling of DeCAUn to the GPD distribution is alleviated at these sites
where the reconstruction process derived more than 50 events in total. To a lower extent
the latter is challenged for location (60.00N and 2.25E) of the ERA-Interim database.

The resampling scheme DeCAUN.2 handles effectively the irregularly samples for
larger sample periods in comparison to DeCAUN.1. This also is confirmed from the
findings of the assessment made using the high resolution product (Figure 6.19 (d)) and
the low resolution product (Table 6.17 (a)). Although DeCAUnN.1 succeeds for samples
of 10 and 15 years only using the ERA-Interim, for samples larger than 15 years
DeCAUN.2 is strongly recommended as the effectively resampling strategy.

The parameter assessment from the DeCAUn model derived almost weak
asymptotically normal properties especially for the sample periods of 10 years for all
data products. This is the major drawback of the inconsistency of the standard MLE
method considering the relatively small number of observation at these locations. For
moderate or small samples, the anomalous behavior of the likelihood when sampling
from the GPD distribution is also discussed in (Davison and Smith, 1990; Castillo and
Hadi, 1997; and Castillo and Daoudi, 2009). The intractable problems of inference of
the parameters of GPD under MLE for small samples challenged DeCAUnN especially
for samples of 10 years. However, using the LMOM method according to Hosking and
Wallis (1997) would probably model in a better way the statistical weakness of the
small re-samples obtained from DeCAUN.

The estimations confirmed the wider bound effect that was expected. Despite the fact
that a bootstrap approach was performed for a reliable inference in terms of variability,
it failed to overcome the inconsistency of small samples from DeCAUnN. The inevitable
high variability of the proposed model to samples originated from all dataproducts is
caused by the reduction in the sample size as a repercussion from re-sampling at the
associated DEP levels.

Finaly, to assess the fit of the DeCAUN model to GPD when samples of wind speed are of

different scale resolution, return level estimates, Q-Q and Kernel Density plots are illustrated
in Figures 6.37, 6.38, and 6.39 for the regional locations closely arranged at the Northern North
Sea, Central Atlantic Ocean, and Western Mediterranean Sea. The sample period is equally set
to all datasets at 10 years (from 1996 to 2005) and 15 years (from 1996 to 2010). If the empirical
data in the Q-Q and Kernel Density plots align closely with the modelled estimates, then it is
likely that the chosen model for relatively small samples of wind speed is a good representation
of the true extreme asymptotic form for these samples.
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Figure 6.37: Visual inspection of the return level estimates in (a) and (b) of DeCAUN, with the Q-Q plot diagrams
in (c,d,e,i, J, and k) and Kernel Density plot diagrams in (f,g,h,I,m, and n) for samples of 10 and 15 years for regional
locations closely arranged in the Northern North Sea. Dashed light grey lines of the Q-Q plots show the 95%
pointwise tolerance intervals. The statistical software package (extRemes) in R (Gilleland and Katz, 2016) is used
for the estimation of the associated parameters and diagram illustration. (Supplementary material of Tsalis et al.,

2021)
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As regards in relation to the demonstration of DeCAUN for samples of 10 and 15 years of
different scale resolution at the three regional locations closely arranged in the Northern North
Sea, the following remarks can be derived from this setting:

—~
QD
=

Regarding the extreme quantiles of the GPD distribution (right tail), the response of
DeCAUnN to datasets originated from the Marina Platform and ERA-20C provide
results that are systematically closer to the theoretical GPD line and to a lower extent
from ERA-Interim as illustrated in the Q-Q diagrams of Figure 6.37.

DeCaUn reconstructed the irregularly samples more easily for sample period of 15
years using datasets of larger scale resolution as obtained in the comparison of the Q-
Q diagrams in (i,j, and K) of Figure 6.37. The response of DeCAUn is also controlled
from the maximum available dataset of each dataproduct. Although the high resolution
data product succeds in scale, ERA-20C succeds in long records setting the latter
dataset also effective for DeCAUnN as obtained in diagrams (k) and (n) of Figure 6.37.
The relatively small datasets originated from ERA-Interim challenged the
reconstruction of DeCAUn in a better scale resolution than of ERA-20C but controlled
the DEP and bandwidth parameters from a less available maximum data record. To this
effect, the demonstration of DeCAUn is characterized less effective to these samples
as illustrated in the Q-Q diagram (j) and Kernel density diagram (m) of Figure 6.37,
particularly for the smaple period of 15 years.

The non parametric bootstrap approach to the bound estimate of the 50 years return
levels from the modelling of DeCAUnN yield extremely wide confidence/credible
intervals regarding the samples of ERA-Interim, and to a lower extent from the
modelling of DeCAUnN to samples of ERA-20C and MARINA Platform; (see Table
6.18 and 6.19).

In general, return level estimates from the modelling of DeCAUnN to these regional
locations of ERA-20C and ERA-Interim yielded under and over estimates as illustrated
in (@) and (b) of Figure 6.37.
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Figure 6.38: Visual inspection of the return level estimates in (a) and (b) of DeCAUnN, with the Q-Q plot diagrams
in (c,d,e,i, j, and k) and Kernel Density plot diagrams in (f,g,h,I,m, and n) for samples of 10 and 15 years for regional
locations closely arranged in the Central Atlantic Ocean. Dashed light grey lines of the Q-Q plots show the 95%
pointwise tolerance intervals. (Supplementary material of Tsalis et al., 2021)

As regards to the demonstration of DeCAUn at the three regional locations closely arranged in
the Central Atlantic Ocean the following remarks can be derived from this setting:

e The asymptotic properties of the maximum likelihood estimator at these regional
locations are less challenged from the modelling of DeCAUn to samples of different
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scale resolution. The model-based curve and empirical estimates are in reasonable
agreement for all samples as obtained in the Q-Q and Kernel density diagrams of Figure
6.38. The shape parameter estimates are & > -0.5 for all samples assigning valid the
regularity conditions that are required for the usual asymptotic properties associated
with the maximum likelihood estimator (Smith, 1985).

The response of DeCAUN at these locations is less influenced from the land-sea
topography. Particularly, the different scale-resolution datasets effectively reproduced
the large-scale forcing on the wind field alleviating any inconsistencies in the nearshore
areas. However, the extreme quantiles of the GPD distribution are systematically closer
to the theoretical GPD line regarding the high resolution datasets of the MARINA
Platform as illustrated in the Q-Q diagrams (c) and (i) of Figure 6.38, and to a lower
extent from the low-resolution datasets of ERA-Interim in (d and j), and of ERA-20C
in (e and k), respectively.

The wind speed data usually show a skewness to the right (i.e., right-skewed
distribution of a long right tail) and the modeled shape parameter is usually negative;
(see also Jonathan and Ewans, 2013; Marcos et al., 2019). The right-skewed
distribution effect is also demonstrated in this setting illustrated in the Kernel density
diagrams of Figure 6.38 and the modeled shape parameter is clearly negative as shown
in Table 6.18 and 6.19.

The high variance effect of the maximum likelihood estimator to the 50 years return
levels is obtained strongly for the samples of ERA-20C and to a lower extent for the
samples of ERA-Interim and the MARINA Platform. The intractable problems of
inference in terms of the strong variability from the modelling of DeCAUn to the
relatively small samples of ERA-20C in this setting, set difficulties to verify that the
ML estimator meets the desired asymptotic properties.

Return level estimates illustrated in (a) and (b) of Figure 6.38 show small bias effect to
the modelling of DeCAUn to samples from the MARINA Platform in comparison to
the modelling made to samples of lower scale resolution. However, the large scale
distance of the locations in this setting show difficulties to verify inference of under or
over-estimation in the return level estimates from the modelling of DeCAUn to these
samples.
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Figure 6.39: Visual inspection of the return level estimates in (a) and (b) of DeCAUnN, with the Q-Q plot diagrams
in (c,d,e,i, j, and k) and Kernel Density plot diagrams in (f,g,h,I,m, and n) for samples of 10 and 15 years for regional
locations closely arranged in the Western Mediterranean Sea. Dashed light grey lines of the Q-Q plots show the 95%
pointwise tolerance intervals. (Supplementary material of Tsalis et al., 2021)

As regards to the demonstration of DeCAUn at the three regional locations closely arranged in
the Western Mediterranean Sea the following remarks can be derived from this setting:

e The response of DeCAUn at these locations is strongly influenced from the land-sea
topography. Particularly, for the sample period of 15 years in the nearshore areas to
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this setting the extreme quantiles of the GPD distribution are systematically closer to
the theoretical GPD line regarding the high resolution datasets of the MARINA
Platform as illustrated in the Q-Q diagram (i) of Figure 6.39, and to a lower extent from
the low-resolution datasets of ERA-Interim in (j), and of ERA-20C in (Kk), respectively.
The higher scale-resolution datasets reproduced the wind speed pattern effectively for
the modelling of DeCAUnN in comparison to the downscaled datasets as expected.

e The right-skewed distribution effect is also in line with the wind speed characteristics
illustrated in the Kernel density diagrams of Figure 6.39. Specifically, for the sample
period of 15 years the modeled density of DeCAUnN based on samples of the MARINA
Platform show stronger rate of convergence to the empirical density in the (I) diagram
and to a lower extent from ERA-20C in (n), and to a less extent from ERA-Interim in
(m).

e The inconsistency of the maximum likelihood estimator to the sample size of 10 years
failed to infer the asymptotic properties particularly for the higher scale resolution
dataset and to a lower extent for the downscaled datasets.

e The non parametric bootstrap approach to the bound estimate of the 50 years return
levels from the modelling of DeCAUnN yield normal confidence/credible intervals in
respect to samples of all datasets, giving bounds that lie within the physical constraints
of the wind speed variable studied as shown in Table 6.18 and 6.19.

e Return level estimates illustrated in (a) and (b) of Figure 6.39 show larger values from
the modelling of DeCAUnN to samples of the MARINA Platform in comparison to the
estimates made to samples of lower scale resolution.

To sum up then, from this assessment the ML method confirmed the fact that may lead
to very high quantile estimation variances and biased estimates when fitting the standard GPD
distribution based on small sample sizes of 10 and 15 years (Davison and Smith, 1990; Fawcett
and Walshaw 2015). The intractable problems of inference in terms of the strong variability
from the modelling of DeCAUnN to the relatively small samples of high and downscaled
resolution datasets in this setting, set difficulties to verify that the ML estimator meets the
desired asymptotic properties particularly for the sample sizes of 10 years. The inconsistencies
from the estimator are alleviated when the sample period of wind speed is set no less than 15
years. However, despite the challenging problems of inference when the available sample is
small, from this evaluation, the DeCAUn model is proposed as an alternative re-sampling
strategy reconstructing a dependent sample of observations irregularly spaced in time to a
sample based on the i.i.d limitations.

Recent work in Fawcett and Walshaw (2006a, 2007, 2012) and Eastoe and Tawn
(2012) revealed estimation bias for the model parameters as well as the return levels.
Specifically, from their assessment to the modelling of extremes based on the standard GPD,
they showed in some cases significant under-estimation of the return levels. The major effect
from the reconstruction procedure of DeCAUN is the considerable reduction of the available
number of observations. To this effect, a challenging aim for the improvement of DeCAUn in
future work is to investigate the use of methods that maximise the number of extremes from
observations irregularly spaced in time. For example, Eastoe and Tawn (2012) and Fawcett and
Walshaw (2012, 2015), proposed methods that can substantially reduce return level estimation
uncertainty relative to the standard modelling of extremes based on GPD. Specifically, if
DeCAUnN is modelled to sample sizes less than 15 years an alternative to the standard GPD
distribution will probably be the sub-asymptotic model as proposed from Eastoe and Tawn
(2012), that will probably model more effectively the irregularly cluster maxima of the small
resamples.
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Chapter 7

Conclusions and future work

7.1 Main contributions and most important findings

The present study contributed on the modeling and extrapolation of extreme events based
on simulation analysis and applications using historical data of wind speed. In particular,

¢ Identification of the combined effects of i) the sample size (along with the direction step
of sampling) of the annual maxima and ii) the comparison of the parameter estimation
methods to these effects to wind speed.

¢ Inference from the nonstationary modelling of extreme wind speed setting one or more
of the parameters of the distribution as linear or nonlinear functions of the covariates on
which the data show dependence in time.

o A proposed methodology for the modelling of extremes based on the asymptotic model
formulation of the standard distributions when samples are irregularly spaced in time.
Specifically, focusing on relatively small samples of wind speed the proposed model
demonstrated as an alternative strategy for reconstructing a dependent sample of
observations irregularly spaced in time to a re-sample in line to the i.i.d limitations.

The most important findings from this assessment in extremes are outlined in the following
considering the distributional behavior of the two types of extreme wind speed sampling data
used (the classical BM and the POT concept):

e Focusing on samples of wind speed where prior evidence exists of the estimated &
parameter of the GEV distribution as negative, it seems that the rather less known
methods (EP, POME, and MPS) and, in a smaller degree, the well known ML and LMHy
methods, are very reasonable solutions for modeling extremes. This is evident based on
the statistical criteria assessed from the simulation and applications to wind speed setting
fixed sample periods of 30 years.

o Based on the evaluation using different sample sizes of wind speed data, LMOM method
outperforms, in many respects, compared to the MLE method. Overall, regarding the
design values from both the simulation study and applications it is evident that sample
sizes greater than 35 are necessary for a substantial reduction of epistemic uncertainty.
On the other hand, LMOM method should be preferred for small sample sizes.

o Under the proviso of nonstationarity at locations in the North Sea, the stationary model
generally provided the lowest return level estimates in comparison to the parametric
models set to assess the trend in wind speed. The inference made of the models assessed
to the likelihood is that linear and quadratic are overall evident models of detecting
significant trends of the annual extremes in the North Sea.

¢ No definitive conclusions can be drawn as regards the performance of MLE and LMOM
estimation methods with respect to the sample types (F or B), since the values of the
criteria fluctuate with respect to sample size, location and estimation method and do not
exhibit a systematic pattern. However, inference of the design values to wind speed
pointed out that for small sample sizes (size 20 and 30), the extremes from the analysis
based on the B—samples are, in general to the F—samples, closer to the extrapolations
based on the samples of size 50 especially for low return periods (up to 50 years).
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o The effective DEP level estimates and bandwidth response of the proposed resampling
strategy to the irregularly sample of observations set the reconstructed range of events in
line with the variability of extreme winds over the regional locations in this analysis.

o For sample periods of wind speed greater than 15 years the re-samples of DeCAUnN
modeled by the approximation to the GPD demonstrated effective projections in terms
of precision and variability.

o With regards to the 50 year design values, DeCAUn yielded larger confidence bounds in
comparison to the extrapolations made from the standard models within the POT
concept. The samples of 10 and 15 years confirmed the inconsistency of MLE to BM to
provide reasonable bound estimates resulting in a weak comparable measure of
prediction to these samples.

e The high resolution database used for the analysis, ensured as possible the extreme
efficient characteristics of the resamples of DeCAUnN primarily near the coasts and in
narrow straits and basins where applied, avoiding the apparent underestimation of the
extreme variability of wind speed.

e However, the proposed model was confounded by large variability following by the
reduction in sample size from the proposed sampling procedure. A more comprehensive
investigation with regards to the optimization of the parameter estimation and the
sampling uncertainties must be undertaken before the proposed model is widely applied.

7.2 Future improvements of this study

e A better approach, would require reducing the uncertainty of the return level estimates
from GEV. Bias correction techniques such as the Bayesian hierarchical model have been
introduced in order to improve predictions of extremes from global climate and ocean
models, see Oliver et al., (2014). Future work could include the MPS and EP estimation
methods along with the common estimation methods, for cases of advanced correction
methods of this kind.

e |t is suggested that further assessment is necessary to the response of sample types of
different count for extrapolations, since different sample types are challenged in practical
applications.

e Additional issues related to the proposed re-sampling procedure still remain and worth
to be further assessed. For example, the L-moments (LMOM) method is probably more
suitable for the modelling of extremes based on the relatively small sample periods (see
application of LMOM in Pandey et al., 2001). Following the findings of the simulation
study for large and small samples from Simkova and Picek (2016), LMOM succeeded
for heavy or moderate tailed distributions, while MLE method is recommended for light-
tailed distributions. Although the modelling of extremely high wind speeds in general
supports a bounded tail, the use of the Gumbel type and LMOM for relatively small
samples is strongly recommended in engineering design in practice (e.g., see Katz, 2002).

o Additionally, the use of the parametric bootstrap approach (Davison and Hinkley, 1997)
for the DeCAUN model validation will probably improve the uncertainty bound effect of
the estimates. This remark also follows the suggestion from Kysely (2008) for inference
based on the small to moderate sample sizes such as those reconstructed from DeCAUN.

o Finally, a modelling basis for the multivariate probabilistic assessment of DeCAUn
considering the limiting distribution of more than one vector random variables that are
extreme in at least one component based on the conditional extremes approach proposed
by Heffernan & Tawn (2004) and later formalized by Heffernan & Resnick (2007), will
address respectively all danger parameters in a more natural way to wind speed
applications.
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A. Characteristic Function

A functiongy (t) is defined as a characteristic function(see Ochi, 1998),

ox() = Elexp(itX)] = [ e dFx(x) = [, e fy(x)dx, (A1)
with properties:

I.  @x(t) must be continuous in t
Il.  @x(t) is defined in every finite t interval

.  @x(0) =1
IV.  @x(t) and px(—t) are considered to be conjugate quantities.

B. Gamma function and derivatives

The values of the derivatives of the Gamma function at the point 1, yields from the expansion
of Gamma function

_1\k k
['(z+1) =exp (—yz + Z,‘;‘;Z%) )zl <1 (B.1)

e.g., see (Rivoal 2009) and (Abramowitz and Stegun 1972) as follows:

S _i ;
rOm+1) =n ¥ (]) HE= (1), (B.2)
for any integersn > 0 and s > 0.

Function HE] and Riemann Zeta function ¢(s) are defined recursively

HE] = s! lei1<...<i <n ;, fors > 0 and (B.3)
STV g lpls
—_1 (o 1  sdx
{(s) = G Jo Zx°— forRe(z) > 1. (B.4)

C. Plotting position formulae

The plotting position problem has been discussed by many authors; see for example Cunnane
(1978), Makkonen (2006, 2008), Kim et al., (2012),Gringorten (1963), Arnell et al., (1986), In-
na et al., (1989), Goel and De (1993) and Goda (2011). By 1960 many new formulae had
appeared, but there was no criterion by which a single formula could be chosen to give unique
results over all distributions. In order to choose the best plotting position formula, the estimated
guantile should be free from bias and should have minimum variance among graphical
estimates. See also the relevant discussion in Makkonen (2006, 2008) about plotting position
formulae in extreme value analysis. Since quantiles are an important ingredient in plotting
position and return period calculations, there is a clear connection between them: First, the data
(e.g., annual maxima) are ranked in increasing order of magnitude and a cumulative probability
is associated to each point. Then, a best-fit line is fitted to the ranked values by some fitting
procedure. An extrapolation of this line provides long-return periods of the extreme value of
interest.
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Let Xmin = X100 < Xo.p < " Xpop = Xmax D€ an ordered random sequence. The most well-
known plotting position formula is probably the Weibull formula, i.e.,
i

F(Xin) = Pr[X < Xin] = Pim = —

i=1.2,..,1. (C.1)

In the above relation as well as for all plotting positions formulae, F(x;.,,) is the empirical
estimate of the non-exceedance probability of the i — th smallest member in an ordered sample.
The plotting position provided by relation (C1) is the only one justified for return period
calculations.

In (Cunnane, 1978) the following general representation for the plotting position formulae is
proposed:

Pin=>0—a)/n,orpip=>{—a)/(n+1—-2a),for0<a<1. (C.2)

The value of a (plotting position parameter) in the above relation, yields approximately
unbiased plotting positions for a variety of different distributions and determines the efficiency
of the plotting position as regards the fit of a given theoretical distribution. For example, a = 0
is valid for all distributions (Weibull formula), a = 0.44 is valid for the GEV and exponential
distributions (Gringorten formula), a = 0.5 for the GEV distribution (Hazen formula) and a =
3/8 for the normal distribution.

Recently, in (Kim et al., 2012), the authors using a genetic optimization method, proposed the
following plotting position formula for the GEV distribution:

_ j—0.32 =1
Pjm = n+0.0149g2-0.1364g+0.3225° J=5

2’.”"”, (C3)

where g denotes the skewness coefficient. The authors compared also the proposed formula
with the formulas provided in Cunnane (1978), Gringorten (1963), Arnell et al. (1986), In-na
et al. (1989), Goel and De (1993).

D. NEVA

The work from Cheng et.al., (2014), represents a computational platform for estimating
stationary and non-stationary return levels, return periods and climatic extremes using Bayesian
inference. The software package in MATLAB environment is named NEVA after Non-
stationary Extreme Value Analysis. In a Bayesian approach, NEV A estimates the extreme value
parameters with a Differential Evolution Markov Chain (DE-MC) approach for global
optimization over the parameter space.

NEVA provides three different methods for estimation of return levels: (i) standard
return levels (commonly used in hydrologic design) in which the exceedance probability is
constant for any given return period during the life of the design (design exceedance
probability); (ii) constant thresholds with time varying exceedance probability; and (iii)
effective return levels. A unique feature of NEVA is that it estimates and provides the
associated probability intervals and uncertainty bounds for the return level estimates under non-
stationarity. NEV A offers a range of return levels, and the user can select the upper bound (low
risk) or the lower bound (high risk) depending on the application at hand.
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Furthermore, the function detects the presence of a trend by implementing the MK
trend test at the choice of the significance level (default choice a = 0.05). If the null hypothesis
is not rejected, NEVA will perform extreme value analysis under the stationary assumption.
Upon detection of a trend at the 5 % significance level, the GEV parameters will be estimated
under the non-stationary assumption.

Finally, NEVA is also used in studies for stationary and non-stationary extreme value
analysis of annual temperature maxima from the Climatic Research Unit (New et al., 2000)
gridded monthly temperature data (1901-2009).

E. Spectrum Autocorrelation

E.1 Parseval’s identity for Fourier transforms-(Rayleigh’s Theorem)

The contribution of each frequency v(Hz) to a signal f(t) is defined by the Fourier transform
FT(f) of the signal as follows:

F) =FT[f)] = [ f(De 2™ dt , —o0 < v < +oo. (E.1.1)

The function of Fourier transform FT(f) is a complex valued function of frequency v(Hz).
The inverse Fourier transform F~1(F) is defined as follows:

O =FF©®] = [1) Fw)e*?™tdy, —o < t < +oo, (E.1.2)

Considering together Fourier transform and its inverse, it is provided a way of passing between
equivalent representations of a signal via the Fourier inversion theorem:

f(O) 2 Fv) (E.1.3)

An important relation between the energy of the signal in the time domain and the energy
spectrum in the frequency domain is given by Parseval’s identity for Fourier transforms or
Rayleigh’s Theorem, which relates the variances of a signal f(t) and its Fourier transform
FT(f), by the equation

2@ 1Rde = [71F )| 2dv. (E.1.4)

The total power can therefore be expressed either in terms of the integral of the original function
or its Fourier transform (Parseval's theorem), as follow (Priestley, 1981):

total power = [ 7| f(0)|2dt = [ |F(v)|2dv (E.15)

The square magnitude of the Fourier transform of a signal f(t) is called the power spectrum
P(v) = |[F(w)|? = F(v) - F*(v), —o < v < +oo or the spectral power density, or the energy
spectrum, and F*(v) = FT[f(—v)] is the complex conjugate of the Fourier transform.

E.2 Convolution and Correlation Theorem
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Referring to the Time Convolution Theorem, the Fourier transform H(v) of the convolution
h(t) of two functions f(t) and g(t), equals to the product of Fourier transforms F (v) and
G (v) of the two functions (e.g see Bronshtein and Semendyayev, 1985, p. 582).

Considering f(t) 2 F(v), g(t) 2 G(v) and (f * g)(t) = h(t), the equivalent expressions
are derived as follow:

h(t) 2 Fv) - G(v), (E.2.1)
(f * 9)(t) 2 F(v) - G(v), and (E.2.2)
T2t - g@)de 2 FWv) - G(v). (E.2.3)

Closely related to the Time Convolution theorem, is the correlation theorem. Considering the
time convolution theorem and Fourier inverse-transform properties

f(=t) 2 F*(v) and F*(v) = F(-v), (E.2.49)

the product of a Fourier transform with the complex conjugate of its Fourier transform can be
reduced to the form

(f(t) *f(=t) @ F(v) - F*(v),
f@*f(=t) 2 F(v) - F(—v), (E.2.5)

P2 F(t — D f (—=1)dr 2 F(v) - F(—v).

Substitution of f(—1) = f(r) and f(t — 1) = f(t + 7) into the expressions stated in (E.2.5),
the Fourier transform of the correlation theorem is stated

[F2f(e +Df (D)dr 2 F() - F(-v), (E.2.6)

since f(t) is considered a real and even signal.

E.3 Wiener-Khinchin Theorem

Considering the time Convolution theorem stated in Equation (E.17), the Correlation theorem
and Fourier inverse-transforms in (E.20), the covariance and the spectrum function can be
expressed as a Fourier transform pair,

J52f(e + D f(@)dr 2 F(v) - F*(v), and (E.3.1)
Covp(t) 2 P(v). (E.3.2)

Normalizing the Covariance and spectrum function dividing respectively by the total power or
Parseval's Theorem,

Covp(0) = 0% = szlf(t)lzdt = _Jr;olF(v)lzdv = total power, (E.3.3)

it is derived,

Covf(t) 5 P(v)
total power  total power’

(E.3.4)
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Covf(t) o P(v) .
F21r@1zat -~ [F2|Fw)|2dv

(E.3.5)

Therefore, the autocorrelation and the normalized expression of spectrum function can be
expressed as a Fourier transform pair,

P(v)
o2

p(t) 2 (E.3.6)

F. Trend and unit root tests

Mann-Kendall (MK) non-parametric trend test

The non-parametric MK test is commonly employed to detect monotonic trends in
series of environmental data, climate data or hydrological data. The MK test for trend detection
has also been mentioned in the work from (Cunderlik and Burn 2002; Hundecha et.al, 2008;
van Belle G. and Hughes J.P., 1984; Kundzewicz and Robson, 2004). This aim of the MK test
is to examine the hypothesis that there is a monotonic upward or downward trend of the
variable. Assuming a linear trend, the MK test, in other words, is used to test whether the slope
of the regression line is different from zero.

The null hypothesis of the test is expressed as follows:

H,y: No monotonic trend is present, i.e., data come from a population with independent
realizations and are identically distributed, against the alternative,

H;: There is a monotonic trend present.
The steps for the implementation of the test are described as follows; see also Gilbert (1987):

1. Let My, M,, ..., My be the time series of the annual maxima for year 1,2, ..., N.

2. Calculate all the possible differences A;; = M; — M;, for all j > i and consider the sign
indicator function /(j, i) taking the values -1, 0 and 1 for A; < 0, 4;; = 0and A;; > 0,
respectively. The total number of differences is N(N — 1) /2.

3. Estimate the MK score S and the variance Var(S) as follows:

S =N B i s (F.1)
and the corresponding variance as follows:

Var(s) = 1—18 [NV = D)@N +5) = 29_, t,(t, + 1)(2t, + 5)], (F.2)

where g denotes the number of tied groups and t,, is the number of observations (data)
in the p —th group in the sample of the actual observations M;, M,, ..., My.

4. Finally, by applying the following transformation:
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( s-1
Jvar(s)’

LS+1 S<0

Jvar(s)’

the test statistic (score) S is approximately normally distributed. It is noted by (Hipel and
McLeod, 1994) that the minimum acceptable value of N for implementing this method is 10,
unless the number of ties is significant. The null hypothesis of no trend is rejected if the p-value
(°) is less than a significance level (a =0.05). In other words, the null hypothesis is rejected at
the significance level if |Zy_g| > z,,, where z,,, is the critical value obtained from the
standard normal distribution with a probability of exceedance of a/2. Contrarily, when the
estimated p-value is larger than 0.05 the null hypothesis cannot be rejected.

Cox Stuart (CS) trend test

The Cox—Stuart test belongs to the class of nonparametric tests, as the Mann—Kendall
test and is a robust method to detect the presence of the trend regardless of the distribution of
the data. The statistical hypothesis in testing for trend in a series of random variables are:

Hy: No monotonic trend exists in the series, against the alternative
H,: The series is characterized by a monotonic trend.

Considering the independent series of data{y;,t = 1,---,n — 1,n}. In the testing procedure,
first the series are divided into three sequences of data. In this way, it is compared whether the
data of the first third of the series are larger or smaller than the data of the last third of the series.
Secondly, all paired differences D = y,,_.+1.n — Y1.c are derived in respect to c, with the latter
defined as the point index separating the first third of the data. The totals of the positive or
negative sign in D are denoted as D*or D respectively. The z-statistic of the CS trend test is
defined:

z = |D — n/6|/sqrt(n/12),forn > 30, (F.4)
and including a continuity correction as
z = (ID — n/6] —0.5)/sqrt(n/12), forn < 30. (F.5)

The CS test is performed for a positive trend (increase) considering the D*, negative
trend (decrease) with the D™, or as a two sided test with D = min(D*, D™). The z-statistic is
normally distributed where p-values are estimated respectively. In order to REJECT the null
hypothesis for this test, a p-value of less than 0.05 (or smaller) must be obtained.

Unit root

In probability theory and statistics, a unit root is a feature of some stochastic processes
(such as random walks) that can cause problems in statistical inference involving time series
models. A linear stochastic process has a unit root, if the process's characteristic equation has a
root of value equal to one. Such a process is non-stationary but does not always have a trend.

(®) p-value =Pr{|Zy_x| > z}=Pr{Zy_x < —z U Zy_g > z}=Pr{Zy_x < —zHPr{Zy_x > z}=2Pr{Zy_x > z},
where Pr{Z,,_x > z} is the probability from a standard normal distribution.
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A discrete-time stochastic process {y;,t = 1,2,-:-,00} can be written as an autoregressive
process of order p as follows:

Ye = A1Yt-1 + QY + 0+ apYep + €4, (F.6)

where {e;,t = 0,1,---, o} is a serially uncorrelated, zero-mean stochastic process with constant
variance. The component e; is also regarded as the (white noise) process. If m = 1 is a root
of the characteristic equation:

mP —mP~la; —mP~%a, — - —a, =0, (F.7)

then the stochastic process has a unit root. Tests to check for the existence of a unit root is the
primarily Dickey—Fuller test (DF) proposed by (Dickey and Fuller, 1979) or the augmented
Dickey—Fuller (ADF) and the KPSS type tests that complement unit root tests such as the ADF
test.

Dickey-Fuller (DF) test

Considering a first order auto-regression model of the form

ye=a+pt+py._1+e, (F.8)

the Dickey-Fuller test is testing the presence of a unit root p = 1 for this model. The
presence of a unit root is also regarded as a non-stationary process. The coefficients (a, 8)
denote the drift and the trend component respectively of the model. For the DF unit root test,
the model is written as

Aye =y —Yi-1=a+ Pt +yy._q1 +ey, (F.9)

where y = p — 1 and y; is the data. The model is written this way in order to perform a
linear regression of Ay, against t and y,_4, and test if y is different from 0. If y = 0 then the
process is considered nonstationary. A unique nonstationary process for (a =0, =0,y =
0) is also regarded as a (random walk). Contrariwise, if y < 0 and (-2 < y < 0), the process
is considered stationary.

Augmented Dickey-Fuller (ADF) unit root test

The Augmented Dickey-Fuller test examines higher-order autoregressive processes
by including Ay,_,, in the model. The number of lagged difference terms is denoted as p and
specified. The model is written as follow:

Ay =a+ Bt +yye-1 + 618yt-1 4 68y + -+ Ay + €y, (F.10)

where the null hypothesis of the presence of a unit root is Hy: y = 0 (non-stationary process)
under the alternative hypothesis, H,:y < 0 (stationary process).

In order to REJECT the null hypothesis of this test, a p-value less than 0.05 (or smaller)
must be obtained. The ADF test statistic is defined as ADF=7/SE(7), where 7 is the least
squares estimate and SE(y) the corresponding standard error. The p-value of the test is
derived by interpolating the test statistics from the corresponding critical values in (Table
10.A.2 in Fuller (1996)). The DF test is a special case of the ADF test when p = 1.

(KPSS) stationarity test

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) stationarity test by Kwiatkowski et
al. (1992) examines if a time series is stationary around a mean (level stationary) or linear trend
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stationary (trend stationary), or manifests the series under the alternative hypothesis as non-
stationary due to a presence of a unit root. The series is expressed as the sum of a deterministic
trend, random walk, and stationary error by the regression equation as follows:

Ve =a+ Pt +x; + &, (F.11)

where the first part {a + St} considers the drift and trend into the model, {x;, x; = x;_1 +
e:} is the component of a random walk process and finally the stationary error where
{e;,t =0,1,---, 00} is a serially uncorrelated, zero-mean stochastic process with zero variance.
The KPSS test performs the Score test of the hypothesis that the random walk has zero variance
Hy:02 = 0 (stationary process), under the alternative hypothesis H;: g2 > 0 (non-stationary
process). In order to REJECT the null hypothesis for this test, a p-value of less than 0.05 (or
smaller) must be obtained. The KPSS statistic is defined as

KPSS=(=; 2, §2) /4, (F.12)

where S, = 2521 & and 1= 2521 &2 /n for a given data sample of size n. The residuals of a
regression of the y, data on the corresponding ¢ are denoted as ;.

If the data are stationary the series will be stationary around a fixed level. The test uses
the Ordinary Least Squares method (OLS) to estimate the residuals £;, depending on whether
to test for level stationarity or trend stationarity (Kogenda and Cerny, 2007). A simplified
version of the KPSS test without the time trend component is used to test level stationarity (see
also Syczewska, 2010). Finally, the p-values are obtained by the interpolation of the test statistic
from tables of critical values (Table 5, Hobijn et al., 2004).

G. Kernel properties

1. Expected value of f(x)

E[f0)] = f@) +5h2f"(x) [ 22K (2)dz + 0(h?). (G.1)
Proof:
7wl =P ek (5] =imm B (5] =6 [k (5. o2

Using the integral of the expected value operator and the appropriate change of variables z =
=, and dt = |—h|dz into (G.2) yields,

E EK (’“;lxi)] =277k (S5) foat = [T K(@f (x - hz)dz. (G.3)

Expanding f(x — hz) = f(x) — hzf'(x) + % (hz)?f" (x) + 0(h)? with Taylor series into
(G.3), then

[*° K@ f (x — hz)dz =

= f(x) f_+ozo K(z)dz — hf'(x) fjozo zK(z)dz + %hzf”(x) fjozo z2K(2)dz + 0(h?). (G4)

Substituting the Kernel pdf properties, (G.4) finally yields Silverman (1986, Ch. 3) or Wand
and Jones (1995, Ch. 2)
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T2 K@) f(x — hz)dz = f(x) + %hz £ [ 22K (2)dz + 0(h?). (G.5)

Terms of the form 0(h?)converge to zero faster than h? as h — 0.

2. Bias of f(x)
Bias (f(x)) = E[f ()] — () = 3h?f"(x) [ 22K (2)dz + 0(h?), and (G.6)
3. Variance of f(x)
Var[f (0] = fG) = [*2(K(@)) dz+0(=). (G.7)
Proof:
Var[f (0] = Var [ 3, K (52)] = =5 3, var [ (52)] (G.8)

Considering nreal observations(x;,x,,...,%,) independent and identical distributed, the
Variance of the Kernel estimator is derived:

var[ic (9] = £ | (52)) | - (2 [ (59)])" ©9

Using the integral of the expected value operator into (G.9),

var [k (529)] = 172 (K ("T‘t))2 F@de— (17K (54 f(t)dt)z, (G.10)
and substituting correspondingly into (G.8) yields
Var[f(x)] = nzlhz Z Var [K (x ;xi)]
i=1

+ 00 +0o

il T (o5 roa( ] e(e5yrou)

— 00 — 00

+ 00 +0o

3 (el v 3 5 rom)

— 00 — 00

L[ (b () rod- el

therefore,

1

varl[f(] = 227 (1K (’“T‘t))2 f@dt — (Bias[f (0] + £ ()

2

(G.11)

Using the appropriate change of variables z = XT_t into (G.11), it is derived
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2
+0o0

) 1 (1 x—t\)° 1 1 i
Var[f(x)]z;f <EK<x t)) f(t)dt—g f(x)+zh2f”(x) f 22K (z)dz + 0(h?)

h

— 00

2

1 400 , 1 1 oo
=Th f (K@) f(x — hz)dz ——| fe0+ Ehzf"(x) f 22K(2)dz + 0(h?) | ,
and expanding f'(x — hz) with Taylor series yields,
e +00 2
Varlfe] = % f (K@)"f(x = ha)dz —%(f @)+ %hzf”(x) f 2K (2)dz + O(h2)>

2
1 400 1 1 1 400
= J. (K(z))Z (f(x) — hzf'(x) + E(hz)zf”(x) + O(h)2>dz - E(f(x) + Ehzf”(x) J- 2?K(2)dz + 0(h2)> .

(G.12)

Considering n —» o and h — 0, the latter stated in Equation (G.12) is derived as follow:

Var[f ()] = £ () 7 12 (K(2) dz + 0 (). (6.13)

H. Likelihood approximation for the r-largest order statistics

Theorem H.1 (Convergence law of Point Processes for Extremes)

We denote M,, = max(Xy,...,X,) as the maximum of a random sample of size n with
independent and identical variables. If there exists sequences of constants {a, > 0} and
{b,, € R}, such that the sequence of point processes

Po={i/(+1), ¥ =123, 0} 5 Pno o (H.1)

an

for some large value of u,,, then P follows a non-homogeneous Poisson process with integrated
intensity measurein the time interval [t,, t,] = [0,1] and over the region [t, t,] X [u,, ) as
follows,

A([tptz] X [up, 00)) = (t; —tV(A), (H.2)

where V(A) is the expected number of exceedances obtainedover the region A =
{(0,1) X [uy, )}

Moreover, considering the independent and identically distributed M = " largest
of (X4, X,,...,X,) that exceed of a level u,, denoted as

(H.3)

) yreey yrey

xW_p, x@_p, xD_p, xM_p,
an an an an '

then for a fixed value of r the expected number of exceedances in a time interval (0,1) over the
region {(0,1) X [u,, %)} converge into (see Smith, 1990):

V(x;¢0,u) = [1 +< (xm_u)]_l/f - [1 +¢ (%)]_1/5’ 2 =y, (H.4)

g
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The occurrence rate of points per unit region }t(x(’) ;€,0, y), is just the negative derivative of
the V(x(r); ¢, 0, y):

3 1 xM_y -1/§-1
Mx®;¢,0,u) =— V(x™;&0,u) == [1 + E( )] x>, (H.5)

ax™ o o

Making the appropriate substitutions of Equations (H.4) and (H.5) into the likelihood
of the non-homogeneous Poisson process stated in Equation (3.1), the general form of the non-
homogeneous Poisson process likelihood stated in Equation (3.2) is obtained for the " largest
ordered maxima that exceed over a high threshold level u,,.

H.1 Likelihood approximation of the non-homogeneous Poisson process for the
r-largest order statistics

At this point it is reasonable to point out that the likelihood obtained from the modeling
derived by Coles (2001) is equivalent to the initial formulation made from Weissman (1978) or
by Leadbetter et al. (1983, Chapter 2).

(Leadbetter 1983) associated the identical events, Pr [M,(f) < un] = Pr[S,, < r], where S,

denotes the number of (X3, X5, ..., X,,) which exceed u,,. In other words, the probability of the
rt largest of (X, X5, ..., X,) which does not exceed u,, is in the same sense as the probability
of no more than S,, number of exceedances exceeding r. Consequently, the distribution function
of the " largest order statistic is stated by the following Theorem H.2.

Theorem H.2 (Leadbetter 1983):

If the expected number of exceedances V(4) in a time interval (0,1) over the regionA =
{(0,1) x [u,, )} converge into a Poisson variable with mean V(A) =V(x™;0) =

[1 y ("m‘”)]_l/f =[1+¢ (%)]_1/5 0= (uo,), then

ag

™) _
Pr [M“a—b" < un] - FE-(uy), (H.6)

n
for a linear renormalization of the random variables with

V(A)S
s!

Fr (un) = exp{_V(A)} Zg;%
Up.

, Where s denotes the number of (X3, X5,...,X;) exceeding

The latter stated Theorem H.2 gives information for the approximate distribution of each of the

elements of M,(f) in Equation (H.6), but does not guarantee the independency over the

components of M,(f), and does not formulate the full joint distribution of the M,([) exceedances.

Therefore, Tawn (1988) attempted a formulation of the limiting joint Generalized
Extreme Value distribution for the r largest order statistics. The formulation therein suggested
that from a sample of independent and identically distributed random variables exceeding of a
level u,, and a fixed r value, the limiting joint distribution function for the r largest order
statistics considering x( > x@ > .. > x® > ... > x™ with x™ = u,, is:
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@ _ @ _ W _ " _
pelf T X oy X b o X The

1 2-5; Tr—1-S;——Sy_y (V(x(z); 9) _ V(x(l); 9)) (V(x(r); 9) — V(x(r—l); 9))5r—1

> Z Z Z o . P— exp (—V(x(r);e)).

S1

=0 5,20 5720
(H.7)
The limiting joint density of the r largest order statistics is found to be:
f(x(l), Xy g, &)=
B { xM_y Al . XDy
5 Texp _<1+5( . )) G+ 1/E)Z]-=1log(1 +5( . ))} (H.8)

G
where 1 +f(xiT“) >0forj=12,...,r.

H.2 Statistical modeling of the r-largest Order Maxima

The likelihood of a non-homogeneous Poisson process for extremes is derived when
all of the available data are grouped into m blocks, selecting the " largest ordered maxima in
each block. It is usually to set equal " largest number of maxima over all blocks as £ .1 =
gl ez =...= 1l 4 = 7. The optimum selection of the " value is crucial due to the bias-
variance trade-off effect (*°). Assuming that data from separated blocks are independent, then
the product of these joint densities is the appropriate joint density for the set of whole
observations.

The general form of the non-homogeneous Poisson process likelihood for the rt"
largest ordered maxima that exceed over a high threshold levelu,,, over all available m blocks,
is defined as follows:

&) ™ . _
Li(t,,t21% (un,00),m blocks)) (xblock' c o Xplocks $1 0 #)—

Un - - 0 - _1/ -
:Hmock=1 (exp [_(tz - t1) [1 + f ( (bl(;rck) ”)] 1/6] le=1 (i [1 + 6 (@)] %’ 1>>,

(H.9)

where —co < uy < oo, ¢>0, —oo<¢& < oo, Inaddition,

(€Y} (2) ® (D) _

{xblock=1 = Xpiock=1 =+ = Xplock=1 =+ = Xplock=1 — Yngiock=1)
(&Y} (2) ® D) _

{xblockzz = Xplock=2 =+ = Xplock=2 =+ = Xplock=2 — Ungpiock=2)
(1) 2 (O] (r) _

lxblock=m = xblock=m 2.2 xblock=m 2.2 xblock=m - un(block:m)

(3% Small r values will generate few data leading to a high variance. On the contrary, large values of r leads to high
bias.
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provided 1 + ¢ (xlg?ock - H)/G >0fori=1,23,...,r.

When & = 0 the following form of the likelihood is considered:

(1 ) L _ —
L{[tbtz]x(un.oo)l(m blocks)} (xblock' o2 Xplock’ §=0,0, u)—

“Wiock=s (exp [—exp <_(t2 ~t) (<—>"))] iz (Gexp |- (u)])> (H10

Special case r = 1 for each block in Equations (H.9) and (H.10), reduces to the likelihood
family of GEV for BM. The rt" largest order statistic model gives a likelihood whose
parameters correspond to those of the GEV of BM, but uses more information from the data.

The corresponding log likelihood of the above expressions can be maximized numerically in
order to obtain maximum likelihood estimates. The log likelihood is therefore:

(1) ) . _
l (xblock, e Xplocks U O, g)_

1IN0 — Myeqrs [1 +¢ (—un(bli:k)_”)]—1/f -1/ +1DY.1In [1 + ¢ <—xl(’il)°;k_“>], (H.11)

where m,,qq,s denotes the number of years of observation.

l. Additional diagnostics

Additional diagnostics are presented for the four locations (L5, L10, L18, and L30)
using the low resolution ERA-20C and ERA-Interim in sub-Section 6.4. Statistical estimates of
DeCA and the proposed resampling strategy DeCAUnN are outlined for the four locations,
yielding AIC and MSE statistic measures, optima DEP values and the associated re-sampling
factor k —th lag from the Similarity function in Table I.1. For each sample period we also
include the number of cluster maxima, threshold values and number of exceedances fitting the
GPD. The four sample periods of the ERA-20C and the ERA-Interim are set from 1961 to 1985
and from 1979 to 2003 with a 5 years step forward respectively to each data product.
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Table 1.1: Model estimations for the DeCA and DeCAUn model using the ERA-20C and ERA-Interim database

L5 L10 L18 L30
Ny DeCA DeCAUn| DeCA DeCAUn| DeCA DeCAUn| DeCA DeCAUn
Lowest MSE ,\ler;é MSE ,\lergé MSE '\lensé AlC ,\lensé
AIC-MSE  8.660 8.650 9.220 0560 8.140 16.490 194.832 47450
DEP  60% 80% 80% 60% 65% 70% 95% 65%
10 | Similarity (lag) 1 1 3 5
Years | No. of clusters 480 343 339 535 145 43 83 41
u (misec) 11.214 11.577 13.712 13.233 16.248 13.669 11.786 0
mode median mode mode mode 25% mode
No.of Thres. 0, 170 169 264 62 32 45 41
exceedances
Lowest  AIC |l\J/|nsé MSE '\L/Jlnsé MSE ,\lensé AlC ,\L/JI”Sé
AIC-MSE 810.727 38.670 11.210 11,550 9.580 10.990 338.440 45.080
DEP 95% 80% 60% 60% 75% 60% 95% 65%
15 Similarity (lag) 9 1 3 5
Years | No. of clusters 358 67 973 973 169 82 134 61
u (mfsec) 11.560 0 11.673 11.462 16.266 16.212 11.514 0
mode mode 25% mode median mode
No. of Thres. 67 688 727 83 a1 80 61
exceedances
Lowest  AIC LA{TCZ MSE ,\ler;é AlC '\lensé MSE ,\lensé
AIC-MSE 1342.320 186.464 9.420 8.850 307.004 15.710 10.670 46.690
DEP  95% 60% 80% 60% 90% 75% 85% 65%
20 | Similarity (lag) 12 1 3 5
Years | No. of clusters 533 84 933 1432 130 73 238 79
u (misec) 11.267 14.814 13.169 12.992 16.366 13.630 10.954 0
mode mode mode median mode 25% mode
No.of Thres. 5, 52 508 713 71 54 148 79
exceedances
Lowest MSE l/ir:cz AIC Ac | AIC ,\ler;é MSE i?cz
AIC-MSE 7.500 217.820 1779.529 327.028 7.960 8.060 245,641
DEP 60% 80% 95% 95% 95% 70% 90% 60%
25 Similarity (lag) 7 2 3 6
Years | No. of clusters 1750 138 649 325 144 88 251 74
10.961 15.477 12.871 12.983 16.108 18.192 13.053 11.073
u (m/sec)
mode mode mode mode mode mean mode mode
No. of Thres. ) g 66 423 211 74 44 100 53
exceedances

Parameter model estimates are presented in Table 1.2 as a demonstration of the standard
MLE estimator to the asymptotic distributions of extremes in samples of different size for only
one location (54.00 N 2.25 E in the North Sea corresponding to location L18 from the ERA-
Interim database). Location L18 is also used for the threshold selection of the Runs model
presented in Figure 3.3 for the 20 year time series (from 1979 to 1998). The 95% confidence
intervals of the estimated parameters of the GEV and GPD distributions at each sample period
(10,15,20, and 25 years) are derived by two methods using normal and non-parametric
bootstrap approximations as previously discussed in sub-Section 2.4. The nonparametric
bootstrap estimator is considered to be more robust relative to the parametric, when sampling
uncertainties appear in relation to probabilities (return periods) and high quantiles
(design/return values) of extreme climatological and hydrological events (see Kysely, 2008).
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Table 1.2: Parameter estimation for location L18. ClI are denoted in italics

L Nonparametric Bootstrap p-value
Normal approximation .
(Percentile) MK -test
Ny Model 0 c g 0 c g
21202 1604  -0.077
B'\G/'EFi/ef' 20.630 1.197  -0.306 0.365
(CEV) 51775 2010 0152
iy 20234 0398 4395 20234 0398 4395
(Geyy 20234 0398 4387 20181 0155 1564 0721
20.234 0.398 4.403 23.848 4278  5.756
1977 8.81E-08 1.977 8.81E-08
10 Runs
vears| (GPD) 1211  -0.294 1.384 -0.304  0.392
2.744  0.294 3.006  0.237
3371 -0.233 3371 -0.233
(E()SeF?S 2.303  -0.437 2506  -0.543
4.438  -0.029 4623  -0.096
5824  -0.375 5824  -0.375
De(gﬁg)”'l 3.258  -0.677 4217 -1.172 0983
8.391  -0.073 9.928  -0.205
iy 21516 1932  -0.190 21516 1932  -0.190
(Gevy 20391 1109 0636 20205 0507 1236 0767
22641 2755 0256 23.215 3.571  5.337
s 3615  -0.254 3615  -0.254
(GPD) 2.854  -0.388 2.975 -0.456  0.683
15 4376  -0.121 4563  -0.129
Years 3540  -0.266 3540  -0.266
(DGEPCS 2567  -0.447 2.687  -0.521
4514  -0.085 4718  -0.112
3942  -0.283 3942  -0.283
Digﬁg)”'l 2.343  -0.563 2,719 -0.775  0.898
5541  -0.003 6.533  -0.011
iy 21406 1769  -0.042 21406 1769  -0.042
(Gevy 20520 1125 0400 20504 0800 0551  0.626
22293 2413 0324 22.475 2.637  1.084
s 3376  -0.245 3376  -0.245
(©PD) 2508  -0.389 2.724  -0.474  0.656
20 4153  -0.101 4.156  -0.130
Years 4389  -0.345 4389  -0.345
%efs 3.119  -0.535 3.364  -0.633
(GPD) 5658  -0.155 5.838  -0.203
6.196  -0.427 6.196  -0.427
De((éﬁg)”'l 4363  -0.598 5112 -1.090  0.764
8.030  -0.256 10.235  -0.325
iy 21371 1576 0031 21371 1576  -0.031
(GEyy 20682 1087 0302 20684 0849 0341 0469
22059 2.065 0241 22133 2162  0.519
s 3388  -0.253 3388  -0.253
(GPD) 2.679  -0.382 2.825 -0.490  0.892
25 4.097 -0.124 4102 -0.151
Years 4774  -0.381 4774 -0.381
(E(’;F?S 3.435  -0.566 35890  -0.649
6.114  -0.195 6.352  -0.217
3653  -0.324 3653  -0.324
De(gﬁg;'z 2.245  -0.589 2.456 -0.701  0.201
5.060  -0.059 5377  -0.133

Regarding the four locations, the estimated threshold values for the standard Runs
model is obtained from the NC-diagnostics in Table 1.3, with the corresponding p-values
associated to the Score test. The threshold exceedances are considered as the peak De-clustered
values from the Runs model. The GPD fit of daily max wind speeds, was performed for
threshold values in a range from 11.2 to 18.6 m/s, or 91% to 98% sample quantiles, yielding
total number of peak exceedances between 52 and 177.
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Table 1.3: Threshold model diagnostics for the Runs model using the ERA-20C and ERA-Interim database

Ny L5 L10 L18 L30
p-value
(Score test) 0.458 0.984 0.995 0.213
u(misec) 13.267 16344  17.474  12.207
10'ears u (quantile) ~ 92% 95% 97% 94%
No. of Peak  ¢p 64 56 52
exceedances
p-value
(Score test) 0.187 0.750 0.683 0.732
15 Years u (m/gec) 13544  15.775 15.294 11.202
u (quantile)  93% 93% 91% 91%
No.of Peak 44z 116 136 113
exceedances
pvalue  ocor 0468 0734 0792
(Score test)
u(m/sec) 14.097 15.338 16.590 11.499
20 years u(quantile) 95%  91%  95% 920
No.of Peak 4, 177 112 138
exceedances
pvalue 96 0463 0801 0718
(Score test)
25 Year u(mfsec) 14.094 18565 16544  11.480
ears u (quantile)  95% 98% 95% 92%
No.of Peak 4, 92 132 161
exceedances
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