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Abstract (in English) 
 

 The accurate estimation of extreme values for metocean parameters (e.g., wind speed) 

plays a crucial role in the marine renewable energy industry and in coastal and offshore 

engineering applications. Typical challenges that arise in these fields of interest among others 

are the limited source of information in samples, commonly associated by the scarcity of long 

datasets, and the accurate estimation of the underlying dependence structure of the stochastic 

models that can be used for inference on applied problems with extremes. 

 The present analysis, aims to assess the effect of the asymptotic distributional behavior 

of two types of extreme wind speed sampling data that form the basis of all subsequent 

predictions in the long term time scale. The first type of sampling data considered will be 

subsets of observations extracted from blocks of annual length and the second type are subset 

of observations exceeding a high enough threshold. The challenges closely related to the special 

attributes that form these types of sampling data motivate the present thesis which focuses on 

constructing and improving extreme value models to assess the risk associated to extreme wind 

speed episodes. In particular, in this thesis we focus on 

 

 The identification of the combined effects of the samples of wind speed that influence 

the stability of the parameter estimates as well as the efficiency of the estimators to the 

modelling of extremes. 

 Providing alternative methods of modelling extremes of wind speed that are less known 

to the relative fields of interest and infer to demonstrate better in comparison to the 

standard modelling approach. 

 Extending the formulation of the stationary model of extremes to the parameterization 

of a nonstationary model in order to incorporate subject specific knowledge in the 

presence of trends under the assumption of climate wind changes. 

 Extending the classical methods that identify the dependence structure in sample of 

observations in order to effectively model the extremes that are irregularly spaced in 

time. Specifically, the reconstruction of a dependent sample of extremes that are 

irregularly spaced in time is focused on relatively small samples of wind speed where 

the scarcity of long and complete time series is a common restriction in climatological 

studies.  

  

 In this setting, the statistical analysis of the most used and less known estimators that 

model the extremes of wind speed is inferred from a twofold approach. A simulation  study is 

performed first to assess the effect of the sample size to the estimators of the asymptotic 

distribution that model extremes. The evaluation of the simulation results is based on several 

statistical measures. Afterwards, the optimum methods from the simulation analysis are applied 

to wind speed datasets of different sample size and different direction step of sampling. The 

evaluation is based on datasets originated from databases of relatively moderate horizontan 

resolution to the regional locations at the North Sea, at the Pacific coast of central America and 

at the eastern Atlantic Ocean where these locations are exposed to a strong wind climate with 

evidence of extreme wind speeds. Inference of the sample size effect and the directional step 

of sampling to the demonstration of the model estimators is made on the obtained 50- and 100-

year wind speed design values. From this assessment, the combined method of moments is 

advised as the suitable method when the sample size is limited. 

 Other challenges that motivated this study is the modelling of extremes when the 

extremal characteristics are expected not constant over time. To this effect, seasonality and 

long-term trends are probably the main reasons that influence the stationary hypothesis of the 

wind speed processes. In this part of this study, an attempt is made to model the possible trends 

of extremes in the long-term behavior of the process. Since in practice the trend is unknown, 

various formulations of the trend as a function of time are assessed to represent the extremes of 

wind speed when the stationary assumption is not valid in order to alleviate the bias effect from 
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the attempt of de-trending the process before the time series is used. Statistical tests challenged 

the modeling of the trend of rejection or not in favor of stationarity. For the extremes of non-

stationary sequences and the application to wind speed design values, our analysis is based on 

coarse historical data of long datasets at regional locations at the North Sea where trends are 

notable to influence the wind speed variability. From this assessment, the simplest form of 

parameterization in the parameters of the extreme value distribution is advised in modeling 

extremes when stationarity is violated. 

 Another common problem of design to assess risk associated to extremes of wind speed 

in met-ocean fields of interest, is the scarcity of long datasets. To this limitation, many 

applications utilize as many as possible extremes from the available dataset by re-sampling to 

a subset of extremes. However, the re-samples are often affected by dependency and the 

diagnostics related to the independence limitations is usually violated when the observations of 

these samples are irregularly spaced in time. To alleviate this effect, a resampling strategy is 

proposed that effectively models extremes irregularly in time when re-sampling of relatively 

small datasets of wind speed is advised. The proposed DeCA Uncorrelated (DeCAUn) model 

provides an improvement to the current physical De-Clustering Algorithm (DeCA) modelling 

the samples of DeCA irregularly in time.  

 Specifically, the resampling strategy proposed analyzes the correlation effect in 

samples based on the extension of the standard correlation operator setting weight functions to 

observations irregularly spaced in time. To infer in terms of precision and variability, design 

value estimates and confidence bounds of the demonstration of the proposed model are 

evaluated based on the standard approaches that model extremes. The use of a high resolution 

database is crucial to derive detailed data to follow-up the requirements of the resampling 

strategy to short and irregularly samples near the offshore regions of Europe where the 

demonstration of DeCAUn to wind speed is challenged from the highly dependent regional 

effects (surface roughness, landmass, etc.). However, to assess the effect of larger sample sizes 

to the limiting distribution of the excesses that will infer effectively the modelling of DeCAUn, 

larger samples of wind speed from a fairly coarse resolution database are also required for 

evaluation. From this assessment, the proposed model demonstrated as an alternative re-

sampling strategy for extreme wind speed projections when samples are irregularly spaced in 

time. 

 These challenges motivate the present thesis to assess the risk associated to extreme 

wind speed episodes for direct potential application to the relevant fields of interest. In 

particular, the most important findings from this assessment in extremes are outlined in the 

following: 

 

 Based on the evaluation using different sample sizes of wind speed data from both the 

simulation study and applications, the combined method of moments outperforms, in 

many respects, compared to the standard likelihood approach. Overall, regarding the 

design values it is evident that sample sizes greater than 35 years are necessary for a 

substantial reduction of epistemic uncertainty.  
 Under the proviso of nonstationarity at locations where the natural climate variability 

in extreme wind speeds is challenged, the linear form of parameterization in the 

parameters of the extreme value distribution will model effectively the trends in 

extremes. 

 For sample periods of wind speed greater than 15 years, the re-samples of DeCAUn 

demonstrated effective projections in terms of precision and variability. 

 The resampling strategy proposed in this setting showed systematically stronger rate of 

convergence to the asymptotic properties of the extreme value distribution particularly 

for wind speed datasets of higher spatial resolution and a less stronger rate of 

convergence for datasets of lower resolution. 
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Abstract (in Greek) 
 

 Η ανάπτυξη και μελέτη στοχαστικών μοντέλων με σκοπό την επίλυση προβλημάτων 

που σχετίζονται με την εμφάνιση ακραίων τιμών, αποτελεί, τις τελευταίες τρεις δεκαετίες, 

σημαντικό πεδίο έρευνας της επιστήμης των εφαρμοσμένων μαθηματικών. Η μοντελοποίηση 

και μακροπρόθεσμη πρόβλεψη εμφανίσεων ακραίων συμβάντων παίζει σημαντικό ρόλο σε 

εφαρμοσμένα πεδία όπως η Μετεωρολογία, Υδρολογία αλλά και σε έργα θαλάσσιας μηχανικής 

όπου η γνώση της κλιματολογίας της περιοχής είναι απαραίτητη για την εκτίμηση της 

ασφάλειας και την καλή λειτουγία των κατασκευών.  
 Η εκτίμηση λοιπόν της επικινδυνότητας (ρίσκου) εμφάνισης ακραίων συμβάντων 

μελετάται μέσω της Θεωρίας των Ακραίων Τιμών. Οι δύο επικρατέστερες ασυμπτωτικές 

προσεγγίσεις κατανομών από ακραία δεδομένα στην μακροχρόνια κλίμακα του χρόνου είναι 

οι μέγιστες τιμές διατεταγμένων τυχαίων μεταβλητών και η ακολουθία ανεξάρτητων και 

ισόνομα κατανεμημένων τυχαίων μεταβλητών οι οποίες υπερβαίνουν μία “αρκετά υψηλή” τιμή 

κατωφλίου. Στο πλαίσιο της Θεωριάς Ακραίων Τιμών και βασιζόμενοι στις δυο 

επικρατέστερες ασυμπτωτικές προσεγγίσεις, η παρούσα μελέτη αποσκοπεί στην ανάπτυξη μιας 

ολοκληρωμένης, κατά το δυνατόν, προσέγγισης για την μοντελοποίηση των μεγίστων τιμών 

της ταχύτητας του ανέμου, όταν το διαθέσιμο δείγμα είναι περιορισμένο ή εμφανίζει ασυνέχεια 

καταγραφής δεδομένων. Στο πλαίσιο αυτό, οι βασικοί στόχοι της παρούσας διατριβής είναι οι 

εξής: 

 

 Μελέτη επίδρασης του διαθέσιμου δείγματος στην μοντελοποίηση των ακραίων 

ενδεχομένων ταχύτητας ανέμου με χρήση της θεωρίας των ακραίων τιμών,   

 Επισήμανση γνωστών αλλά και λιγότερο γνωστών μεθόδων εκτίμησης παραμέτρων 

της πιθανοθεωρητικής κατανομής των ακραίων τιμών της ταχύτητας του ανέμου και η 

αξιολόγηση συμπεριφοράς της απόδοσής τους έναντι των καθιερωμένων μεθόδων 

εκτίμησης, 

 μοντελοποίηση των παραμέτρων της τυπικής γενικευμένης κατανομής ακραίων τιμών 

με συστηματική μελέτη και σύγκριση διαφόρων συνδυασμών χρονικής εξάρτησης των 

παραμέτρων, 

 ανάπτυξη μιας ολοκληρωμένης προσέγγισης για μονοδιάστατες τυχαίες μεταβλητές 

μέσω ενός προτεινόμενου μοντέλου που λαμβάνει υπόψη την συσχέτιση των ακραίων 

τιμών όταν αυτές εμφανίζονται ακανόνιστα στην κλίμακα του χρόνου. Ο κύριος 

στόχος του μοντέλου είναι η δημιουργία νέου υποδείγματος με ασυμπωτική θεώρηση 

στατιστικά ανεξάρτητων πλέον παρατηρήσεων. 

 

 Ειδικότερα, το πρόβλημα που σχετίζεται με την μελέτη της επίδρασης του διαθέσιμου 

δειγματικού μεγέθους στην εκτίμηση τιμών σχεδιάσεως απο μοντέλα ερμηνείας, εκτιμήσεων 

και προβλέψεων ακραίων συμβάντων, μελετάται διεξοδικά από δύο δειγματοληπτικές 

προσεγγίσεις. Απο προσομοιώσεις τύπου Monte-Carlo και από ανεμολογικά δεδομένα 

χρονοσειρών από βάσεις δεδομένων μέτριας χωρικής ανάλυσης. Η εκτίμηση και η εξάρτηση 

των παραμέτρων της κατανομής από το διαθέσιμο δείγμα θα γίνεται μέσω βασικών αλλά και 

λιγότερο γνωστών μεθόδων. Απο την στατιστική ανάλυση των βέλτιστων μεθόδων εκτίμησης 

με βάση τα κριτήρια καλής απόδοσης σε δεδομένα προσομοίωσης, γίνεται στην συνέχεια 

εκτίμηση της απόδοσης σε ανεμολογικά δεδομένα  διαφορετικών χρονικών περιόδων και 

διαφορετικού χρονικού βήματος. Η παρούσα μελέτη εστιάζει σε σημεία της Βορείου 

Θάλασσας και σε σημεία Ανατολικά και Δυτικά της Κεντρικής Αμερικής όπου ισχυρή 

μετεωρολογική δραστηριότητα στις περιοχές αυτές οδηγεί αναπόφευκτα σε φαινόμενα που 

χαρακτηρίζονται από ακραίες τιμές ταχύτητας ανέμων. Η επίδραση του διαθέσιμου δείγματος 

στην απόδοση των μεθόδων εκτίμησης για τιμές σχεδιάσεως των 50 και 100 ετών περιόδων 

επαναφοράς θα αξιολογηθεί με στατιστικά κριτήρια. Απο την μελέτη αυτή συμπεραίνεται ότι 

η συνδυαστική μέθοδος Σταθμισμένων Ροπών προτείνεται ως η ικανοποιητική μέθοδος για την 

μοντελοποίσηση ακραίων τιμών όταν το διαθέσιμο δείγμα είναι περιορισμένο. 
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 Ο επόμενος άξονας μελέτης σχετίζεται με την διερεύνηση της τάσης μεταβολής των 

πιθανοθεωρητικών χαρακτηριστικών της ασυμπτωτικής κατανομής των ακραίων τιμών της 

ταχύτητας του ανέμου. Ειδικότερα, για την ευρύτερη περιοχή της Βορείου Θάλασσας, όπου 

έχουν παρατηρηθεί τα τελευταία χρόνια μεταβολές του ανεμολογικού κλίματος, γίνεται 

έλεγχος της στασιμότητας των χρονοσειρών ανέμου. Για τις χρονοσειρές στα σημεία που 

ικανοποιούν τον έλεγχο υπόθεσης στασιμότητας απο κατάλληλα στατιστικά κριτήρια, γίνεται 

μοντελοποίηση των παραμέτρων της τυπικής Γενικευμένης Κατανομής Ακραίων Τιμών με 

κατάλληλους συνδυασμούς χρονικής εξάρτησης κυρίως στις κανονικοποιημένες παραμέτρους 

θέσης και κλίμακας. Στην παραμετροποίηση αυτή, η παράμετρος σχήματος της κατανομής 

θεωρήθηκε ανεξάρτητη του χρόνου. Η επιλογή του κατάλληλου μοντέλου, παραμετρικού ή μη 

παραμετρικού, βασίζεται σε στατιστικά κριτήρια καλής προσαρμογής (goodness-of-fit criteria) 

χρησιμοποιώντας ανεμολογικά δεδομένα χαμηλής χωρικής ανάλυσης σε δείγμα με εύρος 

πολλών ετών. Στο πλαίσιο αυτής της μελέτης, συμπεραίνεται ότι η απλούστερη 

παραμετροποίηση της ασυμπτωτικής κατανομής των ακραίων τιμών μοντελοποιεί κατάλληλα 

τις μεταβολές του ανεμολογικού κλίματος. 

 Ο τελευταίος άξονας μελέτης εστιάζει στην μελέτη της πιθανής συσχέτισης ακραίων 

τιμών όταν αυτές εμφανιζονται με ακανόνιστο χρονικό βήμα στην κλίμακα του χρόνου. Στο 

πλαίσιο αυτό, προτείνεται μια νέα μέθοδος αναδειγματοληψίας με κύριο στόχο την δημιουργία 

ενός νέου υπο-δείγματος που αποτελείται από ανεξάρτητες παρατηρήσεις έτσι ώστε να 

πληρούνται τα απαραίτητα στατιστικά κριτήρια για την εκτίμηση των τιμών σχεδιάσεων μέσω 

της θεωρίας των ακραίων τιμών. Η προτεινόμενη μέθοδος DeCA Uncorrelated (DeCAUn) 

model βελτιστοποιεί και διορθώνει την υπάρχουσα μέθοδο αναδειγματοληψίας physical De-

Clustering Algorithm (DeCA) model, λαμβάνοντας υπόψη την συσχέτιση των παρατηρήσεων 

όταν αυτές εμφανίζονται με ακανόνιστο χρονικό βήμα στην κλίμακα του χρόνου. Η 

προτεινόμενη αναδειγματοληπτική μέθοδος θεωρείται ως εναλλακτική από μια σειρά από 

προτεινόμενα μοντέλα που εκτιμούν τον συντελεστή αυτοσυσχέτισης από παρατηρήσεις με 

ακανόνιστο χρονικό βήμα στην κλίμακα του χρόνου. 

 Ειδικότερα, το προτεινόμενο μοντέλο δεν επιχειρεί έλεγχο του φάσματος, αλλά 

υπολογίζει απευθείας την συσχέτιση των χρονικά ακανόνιστων παρατηρήσεων με κατάλληλες 

συναρτήσεις βάρους, καθορίζοντας τον βαθμό εξάρτησης μεταξύ των παρατηρήσεων. 

Συγκριτικά αποτελέσματα των εκτιμώμενων τιμών σχεδιάσεως και διακύμανσης του μοντέλου 

παρουσιάζονται για περιοχές της Ευρώπης που είναι εκτεθειμένες στα καιρικά συστήματα του 

Ατλαντικού Ωκεανού, της Βόρειας Θάλασσας και της Μεσογείου. Για την στατιστική ανάλυση 

του προτεινόμενου μοντέλου χρησιμοποιήθηκε η κλασσική μέθοδος εκτίμησης παραμέτρων 

μέσω της Μεγίστης Πιθανοφάνειας με χρονοσειρές από βάσεις δεδομένων χαμηλής και 

υψηλής ανάλυσης. Τα ανεμολογικά δεδομένα απο βάσεις υψηλής ανάλυσης είναι απαραίτητα 

για την πληρέστερη αναπαράσταση του ακραίου αιoλικού δυναμικού ειδικότερα σε κλειστές 

θαλάσσιες περιοχές. Για τον έλεγχο της ασυμπτωτικής συμπεριφοράς της προτενόμενης 

μεθόδου αναδειγματοληψίας χρειάστηκαν χρονοσειρές απο δείγμα με εύρος πολλών ετών όπου 

αναπόφευκτα η μοντελοποίηση σ’αυτή την περίπτωση πραγματοποιήθηκε απο βάσεις 

δεδομένων χαμηλής ανάλυσης. Στο πλαίσιο αυτής της μελέτης η προτεινόμενη μεθοδολογία 

αναδειγματοληψίας θεωρείται εναλλακτική προσέγγιση για την μοντελοποίηση ακραίων τιμών 

απο μικρό δείγμα λαμβάνοντας υπόψη την συσχέτιση των παρατηρήσεων όταν αυτές 

εμφανίζονται με ακανόνιστο χρονικό βήμα στην κλίμακα του χρόνου. 

 Τα κυριότερα ευρήματα στο πλαίσιο αυτής της μελέτης για την μοντελοποίηση των 

μεγίστων τιμών της ταχύτητας του ανέμου παρουσιάζονται συνοπτικά παρακάτω: 

 

 Η συνδυαστική μέθοδος Σταθμισμένων Ροπών προτείνεται ως η κατάλληλη μέθοδος 

για την μοντελοποίηση ακραίων τιμών σε σχέση με την κλασική προσέγγιση της 

Μεγίστης Πιθανοφάνειας όταν το διαθέσιμο δείγμα είναι περιορισμένο. Το σφάλμα 

αβεβαιότητας στην εκτίμηση των επιθυμητών τιμών σχεδιάσεως μειώνεται σημαντικά 

όταν το διαθέσιμο δείγμα είναι μεγαλύτερο απο 35 έτη.   

 Η ανάλυση αυτή ανέξειξε ότι το γραμμικό μοντέλο της χρονικής εξάρτησης στην 

παράμετρο θέσης μοντελοποιεί κατάλληλα τις ακραίες τιμές της ταχύτητας ανέμου σε 
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σημεία στην Βόρεια Θάλασσα όπου αποδεδειγμένα παρατηρούνται μεταβολές του 

ανεμολογικού κλίματος. 

 Για χρονοσειρές μεγαλύτερες απο 15 έτη συμπεραίνεται ότι η προτεινόμενη 

αναδειγματοληπτική μέθοδος θεωρείται ως εναλλακτική για την μοντελοποίηση των 

ακραίων τιμών της ταχύτητας ανέμου ικανοποιώντας τα κατάλληλα κριτήρια καλής 

απόδοσης. 

 Στα πλαίσια αυτής της μελέτης συμπεραίνεται ότι τα πιθανοθεωρητικά 

χαρακτηριστικά της ασυμπτωτικής κατανομής των ακραίων τιμών της ταχύτητας του 

ανέμου ικανοποιούνται σε μεγαλύτερο βαθμό όταν η μοντελοποίηση που 

πραγματοποιεί η προτεινόμενη μέθοδος DeCAUn με ακανόνιστο χρονικό βήμα στην 

κλίμακα του χρόνου βασίζεται σε χρονοσειρές δεδομένων υψηλής ανάλυσης και σε 

μικρότερο βαθμό απο την μοντελοποίηση που πραγματοποιείται απο δεδομένα 

χαμηλής ανάλυσης. 
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Chapter 1 
Introduction  

 

1.1 Basic Concepts of Extremes 

 

 Extreme value analysis (EVA) of metocean characteristics, such as wind speed, wave 

height, sea-level, etc., is a field of significant importance for engineers and environmental 

scientists. One of the main objectives of EVA refers to the estimation of design values and 

associated return periods with respect to the examined random variable(s). See, for example, 

(Kharin and Zwiers, 2000), (Ronold and Larsen, 2000), (Engeland et al., 2004), (Chen et al., 

2004), (An and Pandey, 2005), (Caires and Sterl, 2005), (Stefanakos et al., 2007), (Larsén and 

Mann, 2009), (Chen and Huang, 2010), (Vinoth and Young, 2011), (Jonathan and Ewans, 

2013), (Panchang et al., 2013), (Gouldby et al., 2014), (Sarkar et al., 2014), (Anastasiades and 

McSharry, 2014), (Cannon et al., 2015), (Su et al., 2017), (Manis and Bloodworth, 2017), (Pes 

et al., 2017), (Wang, 2017),(Kunz et al., 2010), (Naveau et al., 2005) where various applications 

of EVA in ocean, environmental and civil engineering can be found.  

 Design parameters corresponding to environmental loads implied by wind, waves, etc. 

are used in practice to evaluate the resistance and/or reliability of an offshore structure in the 

ultimate limit state. In addition, the accurate estimation of design values greatly facilitates the 

analysis of different serviceability limit states, (Fujino et al., 2012), (Kasperski, 2013). 

Applications of EVA in wind energy assessment and wind turbine structural design are 

provided by (Su et al., 2017) and (Lombardo, 2012), where the effects of wind extremes on the 

safety of wind turbines have been assessed, by (Ali et al., 2017), where a 50-year extreme wind 

speed has been used, among others, as a parameter for wind turbine selection, by (Wang et al., 

2015), where the current status of extreme wind speeds and wind energy assessment has been 

reviewed, and by (Pop et al., 2016) where a method for obtaining extreme wind gust speed 

critical for the safety of wind turbines has been presented. Furthermore, in (Mo et al., 2015), 

wind hazard maps have been produced for China using reanalysis data, in (Kang et al., 2015), 

the effects of the surface conditions on the estimation of design values for wind speed have 

been assessed, and in (Chiodo et al., 2015), a comparison of two different EVA approaches (the 

block maxima approach and a non-parametric Bayesian approach) has been conducted for the 

estimation of wind speed extreme values. The effects of wind and wave loads on the reliability 

of non-axisymmetric support structures have been discussed in (Wei et al., 2016), and in (Viselli 

et al., 2015), extreme metocean parameters (wave height and wind speed) have been estimated 

for the design of offshore wind structures.  

 The most widely used EVA methods are the annual or block maxima (BM) and the 

peaks over threshold (POT). BM and POT methods utilize different extreme type data, fitting 

a distribution function based on solid theoretical grounds. Since the derived results from these 

methods are of asymptotic nature, in practice, limited sample sizes may limit, or even render 

impossible, their applicability. A discussion and comparison of BM and POT methods has been 

provided in (Ferreira and de Haan, 2015). For particular applications regarding the estimation 

of metocean extremes see, e.g. (Caires, 2016), (Orimolade et al., 2016), (Sartini et al., 2015), 

while more information on EVA methods and various alternatives can be found in (Soukissian 

and Kalantzi, 2006; Soukissian and Kalantzi, 2009), (Soukissian et al., 2006). 
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 For the implementation of the BM method, the grouping of data into blocks of equal 

length and the selection of the maximum of each block is required. According to the main 

theoretical result of EVA, these maxima follow asymptotically the Generalized Extreme Value 

(GEV) distribution and thus, the estimation of the GEV parameters is based on the sample of 

these maxima; see Chapter 3 of (Coles, 2001) for a discussion on this issue. Though some 

theoretical restrictions apply (e.g. the maxima should be realizations of independent and 

identically distributed random variables), an important advantage of the BM method is that it 

still works when the maxima are not exactly independent and identically distributed (i.i.d), 

provided that the long range dependence of high level exceedances is weak; (Ferreira and de 

Haan, 2015). Some important issues of debate as regards the application of the BM method 

(and other EVA methods as well) to observed data are the following:  

1. The available sample size: Some of the parameter estimation methods of the GEV 

distribution perform marginally fair with small sample sizes; for example, it is known, that the 

performance of the widely used Maximum Likelihood (ML) method can be extremely erratic 

for small samples, see (Katz et al., 2002), especially with respect to the estimation of extreme 

quantiles of the GEV distribution, (Soukissian and Tsalis, 2018). Long time series are generally 

required for the accurate estimation of extremes; however there is not consensus as regards the 

required length of the time series. For example, in (Cook, 1985), it is suggested that the BM 

method (with 1-year block size) can produce reliable results, when the available records are at 

least of 20 years length; see also (Palutikof et al., 1999). In the discussion of (Dukes and 

Palutikof, 1995), with particular reference to wind speed annual maxima (AM) time series, it 

has been noted that it is difficult to identify the effects of the time series length on the maximum 

return period in order to safely consider the obtained estimates as reliable. Using GEOSAT 

wave measurements, (Panchang et al., 1998) concluded that extreme value estimations from 5 

years or 14 years of data are very close. Some authors, (Jeong and Panchang, 2008), also accept 

that extrapolations to return periods three or four times the data length, are appropriate. In 

(Devis-Morales et al., 2017) the authors claim that 35 years of data are enough to predict the 

100-year wave, while in (Perrin et al., 2006) 30 years of wind speed data have been used for 

the estimation of 50 and 100-years design winds; see also (Polnikov et al., 2017) for a similar 

approach as regards wave height. On the other hand, in (Vanem, 2017), it has been suggested 

that “at-site analyses based on 30 years of data are reasonably accurate for return periods up to 

about 20 years, but not much more than this”. A method introduced by (Cai and Hames, 2011) 

can be used to determine the minimum sample size required for the estimation of the GEV 

distribution parameters based on the asymptotic properties of the ML method. Nevertheless, 

the sample size issue related with the BM approach still remains open.  

2. The choice of the block size: As already mentioned, the most pronounced problem in EVA, 

and particularly in the ΒΜ approach, refers to the appropriateness of the available sample size 

for a rational design value estimation. A small block size might lead to bias and a large one to 

large estimation variance. For wind speed data, there is no natural partition of the year into 

separate seasons. Fawcett and Walshaw (2006 b, 2007, 2008, 2015) argue that by dividing the 

year into twelve equal length seasons, a satisfactory balance is achieved between the two 

conflicting requirements of (i) indicating the continuous nature of seasonal changes in climate 

appropriately and (ii) retaining a substantial amount of data for analysis in each season 

withought the loss of valuable information at that seasons. However, for most environmental 

parameters (wind, waves, sea level, etc.) the block size of one year has been established. 

3. The parameter estimation technique: For the estimation of GEV parameters, a widely used 

method is the ML, mainly due to its well-developed asymptotic properties; (see Katz et al., 

2002). A detailed review, assessment and evaluation of the performance of nine different 

estimation methods for the GEV distribution parametrers has been provided by (Soukissian and 
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Tsalis, 2015); see also Chapter 2. The analysis was based on a simulation study with a constant 

sample size 30, while an application to real wind speed data has been also presented. In the 

same work, it was concluded that the ML, Maximum Product of Spacings (MPS) and Elemental 

Percentile (EP) methods outperform (with respect to bias, variance and mean squared error) (1). 

However, since the simulation study was based on random samples with constant size 30, the 

potential effects of the available sample size to the estimation of the GEV parameters were not 

considered.  

 Regarding the performance of the GEV parameter estimation methods with respect to 

the available sample size, various works assessed different estimation methods. The ML, and 

the methods of L-moments (LMOM) and moments (MOM) have been evaluated through a 

simulation study performed by (Madsen et al., 1997). The evaluation was based on the 

standardized RMSE with respect to the  year event estimator (for  =10, 100 and 1000 years) for 

sample sizes 10, 30, 50. Although the performance of each method was dependent on the value 

of shape parameter, the considered return levels and the sample sizes, it was shown that the 

MOM estimators are preferable. In (Kyselý, 2002), the LMOM and MLE methods have been 

assessed for EVA of temperature; it was concluded that the individual return values were 

affected by the choice of the estimation method although there was no sensitivity as regards the 

estimated parameters by any of the methods. MPS, ML and LMOM methods for small sample 

sizes (10, 20, 50) have been evaluated through simulation by (Wong and Li, 2006). The 

evaluation for each parameter estimate was based on the mean absolute error and the authors 

concluded that the MPS performs better than ML method, while the first is more stable 

compared to ML and LMOM methods for small sample sizes. (Diebolt et al., 2008) introduced 

and evaluated the Generalized Probability-Weighted Moments (GPWM) method and compared 

it with ML and LMOM for small and medium samples (15, 25, 50 and 100). A recent joint 

evaluation of MPS, ML and EP methods (along with the quantile least squares method) can be 

found in (Ashoori et al., 2017). The average scaled absolute error criterion has been used for 

the evaluation of the obtained fits.  

4. The uncertainty in estimations. Another important issue refers to two types of uncertainty 

that are associated with extreme value estimation problems, namely: i) the aleatory (inherent) 

uncertainty, that is due to the randomness of environmental processes and cannot be reduced, 

and ii) the epistemic uncertainty that can be reduced provided that sufficient data for the 

examined process are available. According to (Orimolade et al., 2016), the components of 

epistemic uncertainty are data uncertainty, model (probability) uncertainty, climatic 

uncertainty, and statistical uncertainty. The latter is mainly raised by the limited statistical 

information (e.g. limited sample size) and the parameter estimation method. Epistemic 

uncertainty may be reduced by increasing sample size and/or reducing sample measurement 

error (Wada et al., 2016), while the uncertainty raised by the sample size can be quantified 

using bootstrapping. In this framework and taking into consideration that in metocean practical 

applications EVA is usually based on sample sizes less than 50, (Wada et al., 2016) have taken 

into account the effects of the epistemic uncertainty in the estimates of return values. After a 

simulation study, it was concluded that the Likelihood-Weighted method (LW) provides better 

estimates of epistemic uncertainty from small samples of poor quality. Uncertainties related 

with wind and wave analysis have been also discussed by (Bitner-Gregersen et al., 2014) while 

a detailed discussion on wind measurement errors can be found in (Soukissian and 

Papadopoulos, 2015).  

                                                           
(1) According to bias, the MPS method performs better, while according to the mean squared error, the EP, MPS and 

ML methods seem to outperform. 
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5. The presence of non-stationarity in the annual block maxima. Studying environmental 

processes, non-stationarity is often necessary, due to seasonal effects or longer-term climate 

changes behavior. For example, the role of time–dependence in the statistics of extreme weather 

events has been argued in the context of climate change since the work from Katz and Brown 

(1992). In particular, the detection of trends in the frequency of intense precipitation has been 

the objective in Karl et al. (1995); Karl and Knight (1998) for the USA and Brunetti et al. 

(2004); Panagoulia et al., (2014) for the Mediterranean Sea respectively. The definition of a 

rigorous approach to the study of extremes is not trivial when the property of stationarity is 

questioned. One basic reason is that there is lack of a universal theory of extreme values (such 

as e.g. a generalization of Gnedenko’s Theorem, see Chapter 2) for non-stationary stochastic 

processes. Moreover, in the analysis of observed or generated data from a reanalysis procedure, 

issues regarding the time scales that define the statistical properties and their changes, become 

debatable (Serinaldi and Kilsby, 2015). In Young et al. (2012), global altimeter data of a period 

of more than 20 years is analyzed to determine whether there are measurable trends in extreme 

value return period estimates of wind speed and wave height.A positive trend in extreme wind 

speed was supported in their findings. Nevertheless, for a stationary processes the probability 

characteristics do not change systematically in time, while for non-stationary process the 

parameters of the GEV distribution are allowed to vary through time. When incorporating non-

stationarity into GEV parameters, some major points of concern are (i) what time dependent 

model to select, (ii) what characteristics must the parametric model satisfy in order to describe 

adequately the trend of the extreme event, and (iii) if all parameters truly vary in time.  

Dixon and Tawn (1998) have studied two major classes of methods for estimating the 

distribution of the annual maximum sea-level in a non-stationary state condition. When the sea 

level process is decomposed to the four sources of non-stationarity (mean sea level, tide, surge 

seasonality and tide-surge interaction) and separately modeled, then these methods belong to 

the indirect classes. On the contrary, methods that directly estimate the time dependent process 

using covariate-dependent parameters of the distribution into the likelihood belong to the direct 

classes.   

In addition, a new definition of the return period of a given level value is introduced with respect 

to a non-stationary continuous-time stochastic process. This definition is general and is based 

on the consideration of an appropriate crossing problem.This definition has been first used by 

Middleton, Thompson (1986) (see also Hamon, Middleton (1989)), for the prediction of sea-

level extremes. Subsequently, Soukissian (1995) and Athanassoulis et al. (1995) have applied 

the above definition for the case of the long-term process of sea-states using the MEan Number 

of Upcrossings (MENU method), in order to estimate return periods and design values for the 

significant wave height. Finallly, the non-stationary extreme value analysis (NEVA) software 

package (Cheng et al. 2014) is outlined, as package explicitly designed to facilitate analysis of 

extremes in the geosciences (see Appendix D).  

The benefit on modeling trends in the parameters of the distribution of the extremes is that the 

original data no longer have to be de-trended as classically modeled (Ferreira, 1997) and can 

be used directly. In this work (see Chapter 2), an assessment of various parametric models for 

the detection of the GEV covariate-parameters is made, considering a linear, quadratic and 

cubic trend through time (for the location and scale parameters) and a time independent model 

for the shape parameter. Effective return levels for specific values of the covariates is estimated 

and compared with the stationary case.  

 However, samples with a limited amount of extremes often fail to provide efficient 

quantile estimates for large return periods. When only few extremes are available for analysis, 

augmenting the sample of extremes via data segmentation is often imperative (Ferro and Segers 
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(2003). The question that often arises is how to successfully enrich a sample of extremes, 

encompassing as many discrete events as possible avoiding the approximate independent 

limitations. One classical approach dealing to this dilemma is by including more maxima per 

year using the annually r-largest order statistics concept based on the point process 

characterization (see Chapter3). Resent applications of this concept in wind speed time series 

may be found in An and Pandey (2007). 

 Another sampling approach besides the classical BM is by modeling exceedances over 

a high enough threshold u at which the Generalized Pareto Distribution (GPD) provides a valid 

approximation to the excess distribution. The so called POT approach (Simiu and Heckert, 

1996; Naess, 1998, Harris, 2005; Caires and Sterl, 2005) is widely accepted as the advance 

approach for modeling cluster exceedances and the most suitable for short time series. The 

major disadvantage of POT is related to the selection of the appropriate threshold value in order 

to satisfy the trade-off between bias and variance. Higher thresholds generally verify the 

requirements to the independent and identically distributed limitations. The contrary is met with 

lower thresholds. 

 Other approaches use the entire time series and consider different ways to extract the 

values to be processed under the principles of the extreme value theory. In general, in order to 

obtain a sufficient number of events from the time series, the data must be initially clustered 

and then de-clustered, selecting the maximum value of each cluster respectively. However, 

independency criteria between adjacent maxima are essential in EVA though frequently 

disregarded. The distribution and parameters of limited long-range dependent extremes, are 

strongly affected by the dependence in the series (Leadbetter, 1983). 

 In this study (see Chapter 4), a re-sampling procedure is proposed for the irregular 

samples of observations obtained from physical de-clustering considerations. The proposed 

model performs re-sampling taking into account the correlation effect in the irregular samples 

for a range of discrete energy reduction levels in the time series.  

 

1.2 Main Objectives of this Dissertation 

 
The present study focuses on the characterization of univariate extreme values. In particular, 

we aim on estimating the probability of extreme events occurred in a given period of time based 

on the modelling and extrapolation of these events using EVA on historical data. Clearly, these 

issues of risk analysis are of major importance in ocean and coastal engineering, meteorology 

and offshore wind energy section where this study anticipates to contribute in practical 

applications. 

The specific objectives of this Thesis are outlined in three parts as shown below: 

I. Study the factors (sample size effect and parameter estimation methods) that 

influence the modelling of extremes of wind speed in the univariate case. 

II. Modelling extremes when the stationarity assumption of the process of wind speed 

is violated. 

III. Identify the effect of dependency in extremes when samples of wind speed are 

irregularly spaced in time and find ways to re-sample accordingly to the i.i.d 

limitations. 
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1.3 Outline 
 

This rest of this Thesis is organized as follows:  

In Chapter 2, models and methods along with the main mathematical framework for modelling 

univariate extremes are presented as the theoretical background of this study.  

In Chapter 3 the modeling procedure of dependent sequences is in short discussed with 

emphasis on the demonstration of the well-known models that effectively re-sample the 

dependent events.  

In Chapter 4 a suitable resampling strategy is analytically presented regarding the modelling of 

extremes that are irregularly spaced in time. The proposed methodology and the re-sampling 

schemes of reconstruction are presented in detail. 

In Chapter 5 the datasets of wind speed at the study areas that will be used for this assessment 

are described in short with a preliminary statistical analysis of the samples originated from each 

data product. 

Inference of the model fit obtained from the simulation process and applications is thoroughly 

discussed in Chapter 6 (sub-Section 6.1 and 6.2). The main findings from the proposed 

methodology is presented in 6.3, 6.4, and 6.5 .  

Finally, the conclusions from this assessment are summarized and future work and 

improvements is also proposed. 
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Chapter 2 
Standard modelling of Univariate Extremes 

 

 In this Chapter, a short introduction to the basic theory of univariate extremes is 

presented, along with the main mathematical aspects of the underlying distribution, i.e., the 

Generalized Extreme Value (GEV). In this context an analytical discussion of the theoretical 

background of the examined parameter estimation methods is made, along with the standard 

statistical tools that are used for the modelling of the i.i.d random variables. For a complete 

review of this material see Leadbetter et al. (1983) and de Haan and Ferreira (2006) for 

mathematical accounts and Beirlant et al. (2004) for more statistical treatments. 

2.1 Asymptotic Model Formulation 
 

The classical extreme value theory (EVT) studies the asymptotic derivations of the 

distributions of the maxima from a sequence of random variables, focusing on the inferences 

from the tail estimation where extreme events can be extrapolated with small probability. Let 
{𝑋1, . . . , 𝑋𝑛} denote a sequence of independent random variables, with a common cumulative 

distribution function (cdf) 𝐻(𝑥). The distribution function for the maxima of the sequence 

𝑀𝑛 = max(𝑋1, 𝑋2, . . . , 𝑋𝑛) is easily derived as follows, 

 

Pr{𝑀𝑛 ≤ 𝑥} = Pr{𝑋1 ≤ 𝑥} ⋅ Pr{𝑋2 ≤ 𝑥} ⋅⋅⋅ Pr{𝑋𝑛 ≤ 𝑥} = 𝐻(𝑥)
𝑛, as 𝑛 → ∞.                   (2.1) 

 

Since extremes occur in the upper or lower tails of a distribution, it is important to characterize 

the tail behavior of the distribution 𝐻(𝑥). For this, one needs to consider the asymptotic 

behavior of 𝑀𝑛  and how this is related to the distribution function 𝐻(𝑥) near the end points of 

the tails as → ∞ .  

As pointed out by Coles (2001) and Embrechts et al. (1997), the disadvantage of 𝑀𝑛  

in its current form (relation 2.1) is that its distribution function will degenerate to a point mass 

on the right end point 𝑥+ =  𝑠𝑢𝑝{𝑥 ∈ 𝑅:𝐻(𝑥) < 1}, or 𝑀𝑛
𝑃
→ 𝑥+ as 𝑛 → ∞. This provides no 

further information regarding the asymptotic distribution of 𝑀𝑛. The solution to this problem 

is to normalize the maximum. By choosing an appropriate sequence of normalizing constants 
{𝑎𝑛  >  0} and {𝑏𝑛 ∈ 𝑅}, a linear transformation of 𝑀𝑛 can be found which stabilizes the 

location 𝑏𝑛 and scale 𝑎𝑛 of 𝑀𝑛 as 𝑛 increases, such that 

 

Pr {
𝑀𝑛−𝑏𝑛

𝑎𝑛
≤ 𝑥} = 𝐻𝑛(𝑎𝑛𝑥 + 𝑏𝑛) → 𝐹(𝑥)                                                                           (2.2) 

 

where 𝐹(𝑥) is a non-degenerate distribution function. One of the key results in classical extreme 

value theory is that there are only three possible limiting distributions 𝐹(𝑥)  for the normalized 

maximum. This result originally derived by Fisher and Tippett (1928) and later by Gnedenko 

(1943), is presented in the Fisher-Tippett Theorem, also referred to as the Extremal Types 

Theorem. 

 

Theorem 2.1 (Fisher-Tippett Theorem) 

 

Having an i.i.d sequence {𝑋𝑛} = 𝑋1, 𝑋2, . . . , 𝑋𝑛 of a random sample from a population with 

cdf 𝐻(𝑥), then, for appropriately defined normalizing sequences of constants {𝑎𝑛 > 0} and 
{𝑏𝑛} such that as 𝑛 → ∞ 
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𝑃𝑟[(𝑀𝑛 − 𝑏𝑛) 𝑎𝑛⁄ ≤ 𝑥] → 𝐹(𝑥),                            (2.3) 

 

where 𝐹(𝑥) is a non-degenerate cdf, then 𝐹(𝑥) belongs to one of the following three families 

of distributions: 

 

𝐹𝐼(𝑥) = exp [−exp (−(
𝑥−𝑏

𝑎
))] ,    − ∞ < 𝑥 < ∞, 𝑎 > 0,               (2.4) 

 

𝐹𝐼𝐼(𝑥) = {
exp [−(

𝑥−𝑏

𝑎
)
−𝑐
] , 𝑥 > 𝑏, 𝑎 > 0, 𝑐 > 0

0,    𝑥 ≤ 𝑏, 𝑎 > 0, 𝑐 > 0,
                (2.5) 

 

and 

 

𝐹𝐼𝐼𝐼(𝑥) = {
exp {− [−(

𝑥−𝑏

𝑎
)
𝑐
]} , 𝑥 < 𝑏, 𝑎 > 0, 𝑐 > 0

1, 𝑥 ≥ 𝑏, 𝑎 > 0, 𝑐 > 0.
                            (2.6) 

 

In other words, the above result states that the normalized maximum 𝑀𝑛 converges in 

distribution to a random variable following one of three possible cdf’s shown in the above 

relations. The distribution functions 𝐹(𝑥) as presented in the Fisher-Tippett Theorem are called 

the extreme value (EV) distributions and are also commonly referred to as the Fisher-Tippet 

type I (FT-I or Gumbel class of distributions), type II (FT-II or Fréchet class of distributions) 

and type III (FT-III or reverse Weibull class of distributions) respectively. The Fisher-Tippett 

Theorem has one major implication, i.e., regardless of the distribution function 𝐻(𝑥), the 

extreme value distributions are the only possible limit distributions for a maximum for which 

the scale and the location have been stabilized. Analytical proof of the Fisher-Tippett Theorem 

is provided in Embrechtset al. (1997) and Leadbetter et al. (1983). 

 

2.2 The Generalized Extreme Value Distribution 
 

 The three EV distributions can be combined into a single class of distribution known 

as the Generalized Extreme Value (GEV) distribution which is attributed to Von Mises (1954) 

and Jenkinson (1955). Specifically, the following theorem holds: 

 
Theorem 2.2 (Generalised Extreme Value Distribution GEV). Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a sequence 

of i.i.d random variables arising from a non-degenerate distribution function 𝐻(𝑥). Then, if 

there exist sequences of constants 𝑎𝑛 > 0 and 𝑏𝑛, such that, as 𝑛 → ∞, Theorem 2.1 holds for 

some non-degenerate distribution function 𝐹(𝑥), then 𝐹 is a member of the GEV (𝜇, 𝜎, 𝜉) class 

of distributions given by 

 

𝐹(𝑥) = exp {− [1 + 𝜉 (
𝑥−𝜇

𝜎
)]
−1 𝜉⁄

}, −∞ < 𝑥 < ∞                    (2.7) 

 

where the support is defined by 1 + 𝜉(𝑥 − 𝜇)/𝜎 > 0 and the parameters satisfy −∞ < 𝜇 < ∞, 

𝜎 > 0 and −∞ < 𝜉 < ∞. 

 

The quantities 𝜇, 𝜎 and 𝜉 represent the location, scale and shape parameters for the GEV 

distribution. The Fréchet class of distributions is derived when 𝜉 > 0  and setting 𝜉 = 1/𝑎, 𝜎 =
𝑏/𝑎 and 𝜇 = 𝑎 + 𝑏. The reverse Weibull class of distributions is derived when 𝜉 < 0, and 

setting 𝜉 = −1/𝑎, 𝜎 = 𝑏/𝑎 and 𝜇 = 𝑎 − 𝑏. Finally, the Gumbel class of distributions is 

derived when 𝜉 = 0 and is interpreted as the limit 𝜉 → 0 with 𝜎 = 𝑏 and 𝜇 = 𝑎, which results 

in the following expression 
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𝐹(𝑥) = exp [−exp(
𝜇−𝑥

𝜎
)],    − ∞ < 𝑥 < ∞                 (2.8) 

 

2.2.1 GEV properties for 𝜉 ≠ 0 
 

The shape parameter 𝜉 affects the tail behavior of the GEV distribution. Considering 

𝜉 > 0, the distribution is skewed to the right and the support 1 + 𝜉 (
𝑥−𝜇

𝜎
)
−1/𝜉

> 0  is bounded 

to the left with 𝑥 > 𝜇 −
𝜎

𝜉
. When 𝜉 < 0, the distribution is skewed to the left and the support of 

GEV is bounded to the right with 𝑥 < 𝜇 −
𝜎

𝜉
. Differentiating the GEV distribution, yields the 

probability density function (pdf) 

 

𝑓(𝑥) =
1

𝜎
exp (− [1 + 𝜉 (

𝑥−𝜇

𝜎
)
−1/𝜉

]) [1 + 𝜉 (
𝑥−𝜇

𝜎
)]
−(

1

𝜉
+1)

,               (2.9) 

 

where 1 + 𝜉 (
𝑥−𝜇

𝜎
)
−1/𝜉

> 0, −∞ < 𝜇 < ∞, 𝜎 > 0, −∞ < 𝜉 < ∞.  

The characteristic function, see (Appendix A), determines the behavior and properties 

of the probability distribution of a random variable 𝑋. Considering the GEV pdf, it is derived, 

Muraleedharanet all. (2007): 

 

𝜑𝑋(𝑡) = 𝐸[exp(𝑖𝑡𝑋)] = ∫ exp(𝑖𝑡𝑥)𝑓(𝑥; 𝜇, 𝜎, 𝜉)𝑑𝑥
𝜇−𝜎/𝜉

∞
                          (2.10) 

 

and substituting correspondingly, yields 

 

𝜑𝑋(𝑡) = exp(𝑖𝑡𝜇) [exp(−𝑖𝑡𝜎/𝜉) − ∑
−(𝑖𝑡𝜎)𝑟+1

𝑟!𝜉𝑟
∑ (−1)𝑛𝐶𝑛

𝑟 Γ(1−(𝑛+1)𝜉)

(𝑛+1)𝜉
𝑟
𝑛=0

∞
𝑟=0 ],               (2.11) 

 

for = 0,1,2, . .. , where 𝐶𝑛
𝑟 =

𝑟!

𝑛!(𝑟−𝑛)!
 and Γ(𝑢) = ∫ 𝑦𝑢−1exp(−𝑦)𝑑𝑦

∞

0
, (see Appendix B for 

the Gamma function and derivatives). 

 

The first three moments of the GEV distribution result from the moment generating 

function (MGF), 

 

𝑀𝑋
(𝑛)(0) = 𝐸(𝑋𝑛) = [

𝑑𝑛𝜑𝑋(𝑡)

𝑑𝑡𝑛
]
𝑡=0

,                                  (2.12) 

 

where from differentiating correspondingly the characteristic function it is easily obtained: 

 

𝑀𝑋
(1)(0) = 𝐸(𝑋) = 𝜇 −

𝜎

𝜉
+
𝜎

𝜉
Γ(1 − 𝜉)                            (2.13) 

𝑀𝑋
(2)(0) = 𝐸(𝑋2) =

𝜎2

𝜉2
(1 − 2Γ(1 − 𝜉) + Γ(1 − 2𝜉)) −

2𝜇𝜎

𝜉
(1 − Γ(1 − 𝜉)) + 𝜇2         (2.14) 

𝑀𝑋
(3)(0) = 𝐸(𝑋3) = −

𝜎3

𝜉3
(1 − 3Γ(1 − 𝜉) + 3Γ(1 − 2𝜉) − Γ(1 − 3𝜉)) + 

+
3𝜇𝜎2

𝜉2
(1 − 2Γ(1 − 𝜉) + Γ(1 − 2𝜉)) −

3𝜇2𝜎

𝜉
(1 − Γ(1 − 𝜉)) + 𝜇3                        (2.15) 

 

The first moment only exists when 𝜉 < 1, the second moment only when 𝜉 < 1/2 and the third 

moment only when 𝜉 < 1/3. Therefore, if 𝜉 < 0 the GEV distribution consists of finite 

moments and if 𝜉 > 0 the GEV distribution has finite moments of order less than1/𝜉. 
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Considering 𝑔𝑘 = Γ(1 − 𝑘𝜉),𝑘 = 1,2,3, the theoretical mean, variance and skewness for the 

GEV distribution yields respectively: 

 

mean(𝑋) = {
𝑀𝑋
(1)(0) = 𝐸(𝑋) = 𝜇 −

𝜎

𝜉
+
𝜎

𝜉
𝑔1 𝜉 ≠ 0, 𝜉 < 1

∞ 𝜉 ≥ 1
 ,                           (2.16) 

 

Var(𝑋) = {
𝐸[𝑋2] − (𝐸[𝑋])2 =

𝜎2

𝜉2
[𝑔2 − 𝑔1

2] 𝜉 ≠ 0, 𝜉 < 1/2

∞ 𝜉 ≥ 1/2
 ,                                      (2.17) 

and 

 

Skewness(𝑋) =
𝐸[(𝑋 − 𝐸[𝑋])3]

(𝐸[(𝑋 − 𝐸[𝑋])2])3/2
=
𝐸[𝑋3] − 3𝐸[𝑋] ⋅ 𝑉𝑎𝑟(𝑋) − (𝐸[𝑋])3

(𝑉𝑎𝑟(𝑋))
3/2

= 

= sign(𝜉) [
𝑔3−3𝑔1𝑔2+2𝑔1

3

(𝑔2−𝑔1
2)
3/2 ] = {

sign(𝜉) [
𝑔3−3𝑔1𝑔2+2𝑔1

3

(𝑔2−𝑔1
2)
3/2 ] 𝜉 ≠ 0, 𝜉 < 1/3

∞ 𝜉 ≥ 1/3

.                         (2.18) 

 

The median and the mode of the GEV distribution yield respectively 

 

median(𝑋) = {𝜇 +
𝜎

𝜉
[(ln2)−𝜉 − 1], 𝜉 ≠ 0, and                                                             (2.19) 

 

mode(𝑋) = {𝜇 +
𝜎

𝜉
[(1 + 𝜉)−𝜉 − 1], 𝜉 ≠ 0.                                           (2.20) 

 

2.2.2 GEV Properties for 𝜉 → 0 
 

The distribution function for the Gumbel is obtained by considering the limit of GEV 

as 𝜉 → 0, lim
𝜉→0

𝐹(𝑥; 𝜇, 𝜎, 𝜉), leading to 𝐹(𝑥; 𝜇, 𝜎) as shown previously. Differentiating with 

respect to 𝑥, yields the pdf 

 

𝑓(𝑥) =
1

𝜎
exp [−exp [−(

𝑥−𝜇

𝜎
)]] exp [−(

𝑥−𝜇

𝜎
)].                                                  (2.21) 

 

In order to find the characteristic function, the Gumbel random variable𝑋is first transformed 

into a standard Gumbel random variable using 𝑍 =
𝑋−𝜇

𝜎
. The density of 𝑍 is then given by 

 

𝑓(𝑧) = exp(−exp(−𝑧))exp(−𝑧), for−∞ < 𝑧 < ∞.                                  (2.22) 

 

The characteristic function of 𝑍 yields: 

 

𝜑𝑍(𝑡) = 𝐸[e
𝑖𝑡𝑍] = ∫ e𝑖𝑡𝑧e−e

−𝑧
e−𝑧𝑑𝑧

∞

−∞
= ∫ 𝑢−𝑖𝑡e−𝑢𝑑𝑢

∞

0
= Γ(1 − 𝑖𝑡), 𝑖 = √−1.  

 

Consequently, the characteristic function of variable 𝑋 = 𝜇 + 𝑍𝜎 is provided as follows: 

 

𝜑𝑋(𝑡) = 𝐸[e
𝑖𝑡𝑋] = e𝑖𝑡𝜇Γ(1 − 𝑖𝑡𝜎).             

 

The first three moments of the variable𝑋of the Gumbell type I distribution, result from the 

moment generating function (MGF), 
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𝑀𝑋
(𝑛)(0) = 𝐸(𝑋𝑛) = [

𝑑𝑛𝜑𝑋(𝑡)

𝑑𝑡𝑛
]
𝑡=0

 ,                                         (2.23)    

      

differentiating correspondingly the characteristic function 𝜑𝑋(𝑡) in (2.23) as follow: 

 

{
 
 

 
 𝑀𝑋

(1)(0) = 𝐸(𝑋) = 𝜇Γ(1) − 𝜎Γ′(1) = 𝜇 + 𝜎𝛾,

𝑀𝑋
(2)(0) = 𝐸(𝑋2) = 𝜇2Γ(1) − 2𝜇𝜎Γ′(1) + 𝜎2Γ′′(1) = (𝜇 + 𝜎𝛾)2 + 𝜎2

𝜋2

6

𝑀𝑋
(3)(0) = 𝐸(𝑋3) = 𝜇3Γ(1) − 3𝜎𝜇2Γ′(1) + 3𝜇𝜎2Γ′′(1) − 𝜎3Γ′′′(1),

,                 (2.24) 

 

where 𝛾 = −Γ′(1)  = −∫ e−𝑥ln(𝑥)𝑑𝑥 ≃
∞

0
0.5772156649. .. is Euler’s constant, and 

approximations Γ(1) = 1, 𝜁(2) =
𝜋2

6
, Γ′′(1) = 𝛾2 + 𝜁(2), and  Γ′′′(1) = −2𝜁(3) − 3𝛾𝜁(2) −

𝛾3. 

 

The theoretical mean, variance and skewness for the Gumbel distribution yields respectively: 

 

{
 
 

 
 mean(𝑋) = 𝑀𝑋

(1)(0) = 𝐸(𝑋) = 𝜇 + 𝜎𝛾,

Var(𝑋) = 𝐸[𝑋2] − (𝐸[𝑋])2 = 𝜎2
𝜋2

6
,

Skewness(𝑋) =
𝐸[(𝑋−𝐸[𝑋])3]

(𝐸[(𝑋−𝐸[𝑋])2])3/2
=

𝐸[𝑋3]−3𝐸[𝑋]⋅𝑉𝑎𝑟(𝑋)−(𝐸[𝑋])3

(𝑉𝑎𝑟(𝑋))
3/2 =

12√6𝜁(3)

𝜋3
.

                    (2.25)

    

 

Moreover, the median and the mode of the Gumbel distribution yield respectively 

 

{
median(𝑋) = 𝜇 − 𝜎(ln(ln2)),

mode(𝑋) = 𝜇.
                                         (2.26)

        

 

2.2.3 Return Levels of the Block Maxima 
 

The limiting distribution form of the normalized maxima as presented in Theorem 2.2, points 

out a probability model for the distribution of (BM). The maxima are considered as a sequence 

of single maxima values corresponding each to a specific block of time. Blocks are generally 

considered of equal size, e.g. annual maxima, monthly maxima etc., satisfying the asymptotic 

properties of Theorem 2.2, through the trade-off between bias and variance, i.e. small blocks 

increase the bias, whereas large blocks result in large estimation variance. The BM approach 

presumes that the observed sequence of 𝑛 independent and identically distributed maxima 

𝑥1, 𝑥2, . . . , 𝑥𝑛 is modelled by the GEV distribution. Estimates of extreme quantiles of the BM 

distribution are commonly used in EVA for inference, providing the henceforth definition. 

Definition 2.1. Assuming 𝑝 ∈ (0,1) and 𝐹(𝑥) a distribution function, then the level 𝑥𝑝, for 

which 𝐹(𝑥𝑝) = 1 − 𝑝, is defined as the return level with the associated return period of  1 𝑝⁄ . 

If 𝐹(𝑥) belongs within the class of GEV(𝜇, 𝜎, 𝜉), then estimates of the extreme quantiles (design 

values) for the GEV distribution are provided through the following relation: 

 
 

𝑥𝑝(𝜇, 𝜎, 𝜉) = {
𝜇 −

𝜎

𝜉
{1 − [−log(1 − 𝑝)]−𝜉}, 𝜉 ≠ 0,

𝜇 − 𝜎log[−log(1 − 𝑝)],             𝜉 = 0.
                       (2.27) 
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The level 𝑥𝑝 is expected to be exceeded on average once in 1 𝑝⁄  blocks. From the property of 

a parameter estimator (see subsequent Section), it follows that the parameter estimates of the 

return levels are given by 𝑥𝑝 = 𝑥𝑝(�̂�, �̂�, 𝜉). 

 

 

2.3 Parameter estimation methods 
 

In this section, the following methods for the estimation of the parameters of the GEV 

distribution are presented: the ordinary moments method, the probability weighted moments 

method, the L-moments methods according to Hosking and according to Wang, the maximum 

likelihood method, the maximum product spacings method, the quantile least squares method, 

the elemental percentile method, the method based on the principle of maximum entropy and 

the maximum entropy parameter space expansion method. All methods are also analytically 

studied in (Soukissian and Tsalis, 2015). For reasons of simplicity, we will frequently denote 

by 𝑓(𝑥; 𝛉) any distribution function with parameter(s) 𝛉, while, specifically for the GEV 

distribution function, 𝛉 = (𝜉, 𝜎, 𝜇). Descriptions for some of the above mentioned estimation 

methods for the GEV case can be found in Castillo et al. (2005), Kotz and Nadarajah (2000) 

and a variety of graphical methods for model selection can be also found therein.  

For the most well-known under-examination estimation methods (maximum likelihood, 

ordinary moments, L-moments and least-squares methods) a short description will be provided. 

On the other hand, for the rather unknown or complicated estimation methods (principle of 

maximum entropy, maximum product of spacings method and elemental percentile methods) a 

more detailed presentation of the corresponding mathematical background will be given. 

Additionally, the most popular framework vastly reported in the relative literature for stationary 

POT exceedances, is the maximum likelihood method. Therefore, in this studyit will be 

considered as the only parameter estimation method modelling exceedances under the POT 

approach. Specifically, only the maximum likelihood method is theoretically efficient and 

provides approximate normal distributions and approximate sample variances that can be used 

to generate confidence bounds for estimations. 

 

2.3.1 The maximum likelihood method 

   
The likelihood function 𝐿(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝛉) is the joint density pdf evaluated at 𝑥1, 𝑥2, . . . 𝑥𝑛. 

For the GEV distribution the logarithm of the likelihood function is given as: 
 

 𝑙(𝜇, 𝜎, 𝜉) = −𝑛log𝜎 − (1 + 𝜉)∑ 𝑧𝑖
𝑛
𝑖=1 − ∑ exp(−𝑧𝑖)

𝑛
𝑖=1 ,   𝜉 ≠ 0,           (2.28) 

 

where 𝑧𝑖 =
1

𝜉
log (1 + 𝜉

(𝑥𝑖−𝜇)

𝜎
),                             (2.29) 

 

and 1 + 𝜉 (
𝑥𝑖−𝜇

𝜎
) > 0 for 𝑖 = 1,2, . . . , 𝑛.                                      (2.30) 

 

For 𝜉 = 0, GEV distribution simplifies to the Gumbel distribution and the corresponding log-

likelihood function is  

 

𝑙(𝜇, 𝜎) = −𝑛log𝜎 − ∑ exp [−(
𝑥𝑖−𝜇

𝜎
)]𝑛

𝑖=1 − ∑ [−(
𝑥𝑖−𝜇

𝜎
)]𝑛

𝑖=1 .            (2.31) 

 

Assuming that the log-likelihood function is differentiable, parameters 𝜉, �̂�, �̂�, can be 

estimated by maximizing the log-likelihood function respectively. No closed-form solution to 
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the maximization problem is available; thus, it has to be solved numerically using nonlinear 

optimization methods. It is noted in Hosking, (1985) and Coles and Dixon (1999) that for 𝜉 >
−0.5 the MLE estimates have usual asymptotic properties, for −1 < 𝜉 < −0.5 MLE estimates 

are obtainable but do not have standard asymptotic properties, for 𝜉 < −1 MLE estimates do 

not exist and when 𝜉 > 0.5 second and higher moments do not exist. The case where 𝜉 ≤ −0.5 

is rarely encountered in practical applications in extremes leading to distributions with very 

short bounded upper tail. It is also noted that the MLE method introduces negligible bias for 

sample sizes from 30 up to 100. Furthermore, MLE and relation 𝑙(𝜇, 𝜎, 𝜉) in the neighborhood 

of 𝜉 = 0 should be avoided. In general, for the modeling of random variables like wind speed 

it is likely to obtain more often zero and negative shape parameter estimates rather than positive 

(Jonathan and Ewans, 2013; Brabson and Palutikof, 2000; and Cheng E, Yeung C, 2002). 

 

2.3.2 The Ordinary Moments method 

 
The method of ordinary moments (will be referenced as OM from now on), was 

developed to estimate parameters of linear hydrological models and was initially presented by 

Pearson in 1894, see Pearson (1894) and Nash (1959). The basic assumption of the OM method 

is that sample moments are good estimators of the corresponding population moments. Sample 

moments are equated to corresponding population moments and the obtained equations are 

solved for the unknown parameters of the distribution. Regarding the GEV distribution and 

taking into account Equations (2.16), (2.17) and (2.18) we result to a system with three 

unknowns (𝜉, �̂�, and �̂�), that is not susceptible to a closed form solution and should therefore 

be solved numerically. Accounts for the OM method can be found in Wallis et al. (1974), 

Madsen et al. (1997) and references cited therein. 

 

2.3.3 The probability weighted moments method 

 
Greenwood et al. (1979), introduced the method of Probability Weighted Moments 

(called hereafter PWM) in hydrological applications; see also Hosking et al. (1985). For a 

continuous random variable 𝑋 with pdf 𝑓(𝑥; 𝛉) and cdf 𝐹(𝑥; 𝛉), the PWM estimators are 

obtained by matching the population 𝑘𝑡ℎ weighted-moments with the corresponding weighted 

sample moments. The PWM method for the GEV distribution was implemented in Hosking et 

al. (1985) (2).  

 
The general expression for the weighted moments of order 𝑟, 𝑠, 𝑡 of a random variable 𝑋, is 

given as follows, see Greenwood et al. (1979): 

 

 𝑀(𝑟, 𝑠, 𝑡) = 𝐸{𝑋𝑟[𝐹(𝑋; 𝛉)]𝑠[1 − 𝐹(𝑋; 𝛉)]𝑡}.                          (2.32) 

 

For the special case 𝑟 = 1, 𝑡 = 0 the above relation is written as 

 

 𝛽𝑠 = 𝑀(1, 𝑠, 0) = 𝐸[𝑋{𝐹(𝑋; 𝛉)}
𝑠] = ∫ 𝑥(𝐹)𝐹𝑠𝑑𝐹

1

0
, 𝑠 = 0,1,2,….            (2.33) 

 

Considering the GEV distribution, we obtain the following expression for 𝛽𝑠,:  
 

 𝛽𝑠 = (1 + 𝑠)
−1 [𝜇 −

𝜎

𝜉
(1 − (1 + 𝑠)𝜉Γ(1 − 𝜉))], 𝜉 < 1, and 𝜉 ≠ 0.           (2.34) 

 

Furthermore, for 𝑠 = 0,1,2, after rearrangement, we yield respectively the following equations: 

                                                           
(2) The expressions for the parameters of the GEV distribution according to the PWM method, are the same as those 

obtained by the method of L-moments. For the sake of completeness though, we will present the theoretical 

background of both methods. 
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𝛽0 = 𝜇 −
𝜎

𝜉
{1 − Γ(1 − 𝜉)},                 (2.35) 

 
3𝛽2−𝛽0

2𝛽1−𝛽0
=

(3𝜉−1)

(2𝜉−1)
,                  (2.36)

  

 

2𝛽1 − 𝛽0 =
𝜎

𝜉
Γ(1 − 𝜉)(2𝜉 − 1).                (2.37)

  

 

For an ordered sample 𝑥1:𝑛 ≤ 𝑥2:𝑛 ≤. . . ≤ 𝑥𝑛:𝑛, of size 𝑛, the general unbiased sample estimator 

�̂�𝑠,𝑈 of 𝛽𝑠is given as follows:  

 

 �̂�𝑠,𝑈 =
1

𝑛
∑

(𝑗−1)(𝑗−2)...(𝑗−𝑠)

(𝑛−1)(𝑛−2)...(𝑛−𝑠)
𝑥𝑗:𝑛

𝑛
𝑗=1 .                           (2.38)

  

 

The asymptotic normality of the above estimator for 𝜉 < 0.5 is proved in Hosking et al. (1985), 

where it is also stated that the PWM estimators are superior to the maximum likelihood 

estimators for small samples, see also Martins and Stedinger (2000).  

 

Another simpler, but biased, sample estimator �̂�𝑠,𝐵 for 𝛽𝑠is suggested in Hosking et al. (1985) 

as follows: 

 

 �̂�𝑠,𝐵 =
1

𝑛
∑ 𝑝𝑗:𝑛

𝑠 𝑥𝑗
𝑛
𝑗=1 ,                 (2.39)

  

 

where 𝑝𝑗:𝑛, 𝑗 = 1,2,… , 𝑛, is the sample (empirical) estimate of 𝐹(𝑥), see Equation (D1) in 

Appendix. For reasonable choices of 𝑝𝑗:𝑛, the above estimator is a consistent estimator for 𝛽𝑠. 

 

Combining relation (2.38) or (2.39) for 𝑠 = 0,1,2 with relations (2.35), (2.36), (2.37), 

respectively, we result to a system which can be solved with respect to 𝜉, �̂� and �̂�. Accordingly, 

equation (2.36) is written  

 
3�̂�2−�̂�0

2�̂�1−�̂�0
=

(3𝜉−1)

(2𝜉−1)
.                  (2.40)

  

 

This equation may be solved both numerically and by following the approximation estimate: 

 

𝜉 = 7.8590𝐶 + 2.9554𝐶2 ,                (2.41)

  

 

where  

 

𝐶 =
2�̂�1−�̂�0

3�̂�2−�̂�0
−
log2

log3
.                  (2.42)

  

 

Having estimated 𝜉, parameters �̂� and �̂� can be then easily obtained from equations (2.35) and 

(2.37). Accounts of the PWM method can be found in Hosking (1986). 
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2.3.4 The L-moments method according to Hosking 

 
The method of L-moments, (LMH) was developed by Hosking (1986, 1990), and is 

based on the order statistics theory. Since then, this method has become very popular for 

characterization of probability distributions and parameter estimation. L-moments are linear 

combinations of order statistics and can be expressed through probability weighted moments. 

Analogously to the conventional moments, the L-moments of order one to three characterize 

the location, scale, and skewness parameter,respectively.  

 
For the GEV cdf, the first three L-moments are expressed as follows: 

 

 𝐿1 = ∫ 𝑥(𝐹)𝑑𝐹
1

0
= 𝜇 −

𝜎

𝜉
(1 − Γ(1 − 𝜉)) = 𝛽0,              (2.43)

     

 

 𝐿2 = ∫ 𝑥(𝐹)(2𝐹 − 1)𝑑𝐹
1

0
= −

𝜎

𝜉
(1 − 2𝜉)Γ(1 − 𝜉) = 2𝛽1 − 𝛽0,            (2.44)

  

 

𝐿3 = −(
2(1−3𝜉)

(1−2𝜉)
− 3)

𝜎

𝜉
(1 − 2𝜉)Γ(1 − 𝜉) = 6𝛽2 − 6𝛽1 + 𝛽0.             (2.45)

  

 

The right-hand side equalities of equations (2.43), (2.44) and (2.45) have been obtained 

taking into account relations (2.35), (2.36) and (2.37). Therefore, the results of the L-moments 

method are the same as those of the PWM method. Furthermore, by using either the sample 

unbiased estimators for the probability weighted moments �̂�𝑠,𝑈 (referred to as the L-Hosking 

unbiased estimation method LMHU) or the corresponding sample biased estimators �̂�𝑠,𝐵 

(referred to as the L-Hosking biased estimation method LMHB), the above system can be solved 

numerically with respect to the parameters 𝜉, 𝜎 and 𝛽. Recently accounts of this method is 

found in Hosking and Wallis, (1997). 

 

2.3.5 The L-moments method according to Wang 

 
The method of L-moments according to Wang (LMW), see Wang (1996), provides 

direct estimations of the sample L-moments, using expressions without involving PWM and 

considering all possible combinations. In this case, the first three sample L-moments are given 

respectively as follows: 

 

�̂�1 = (
𝑛
1
)
−1
∑ 𝑥𝑖:𝑛
𝑛
𝑖=1 ,                                           (2.46)

  

�̂�2 =
1

2
(
𝑛
2
)
−1
∑ [(

𝑖 − 1
1

) − (
𝑛 − 𝑖
1

)] 𝑥𝑖:𝑛
𝑛
𝑖=1 ,                                       (2.47)

  

�̂�3 =
1

3
(
𝑛
3
)
−1
∑ [(

𝑖 − 1
2

) − 2 (
𝑖 − 1
1

) (
𝑛 − 𝑖
1

) + (
𝑛 − 𝑖
2

)] 𝑥𝑖:𝑛
𝑛
𝑖=1 .                         (2.48)

  

 

Equating the above sample L-moments from equations (2.46), (2.47) and (2.48), with the 

corresponding GEV L-moments of equations (2.43), (2.44), and (2.45), we result in a system 

with unknowns the parameters of interest 𝜉, �̂�, �̂�.  
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2.3.6 The maximum product of spacings method 

 
The method of maximum product of spacings (MPS) was first introduced for estimating 

parameters in continuous distribution families in Cheng and Amin (1983), Ranneby (1984). 

Since the ML estimators may fail to converge due to the restraints implied from the second 

derivative of the log-likelihood, the MPS method can be considered instead. It is noted in Wong 

and Li (2006) that although there are problems quite often arising with the use of ML, the MPS 

method has been neglected in the extreme value analysis.  

 
The general set-up of the MPS method is as follows: Let 𝑥1:𝑛 ≤ 𝑥2:𝑛 ≤ ⋯ ≤ 𝑥𝑛:𝑛 be a sequence 

of ordered points. Define the spacing between the values of the distribution at two consecutive 

ordered points, i.e.:  

 

𝐷𝑖(𝛉) = 𝐹(𝑥𝑖:𝑛; 𝛉) − 𝐹(𝑥𝑖−1:𝑛; 𝛉) = ∫ 𝑓(𝑥; 𝛉)𝑑𝑥
𝑥𝑖:𝑛
𝑥𝑖−1:𝑛

, 𝑖 = 1,2,… , 𝑛 + 1,            (2.49) 

 

where 𝑥0:𝑛 = −∞ and 𝑥𝑛+1:𝑛 = ∞. It then follows immediately that the spacing’s sum to unity, 

i.e.,  

 

∑ 𝐷𝑖
𝑛
𝑖=1 (𝛉) = 1,                   (2.50)

  

 

and that  

 

𝐷1(𝛉) = 𝐹(𝑥1:𝑛; 𝛉),  𝐷𝑛+1(𝛉) = 1 − 𝐹(𝑥𝑛:𝑛; 𝛉).             (2.51)

  

 

The MPS method estimates the appropriate value of 𝛉, so that the product of probabilities of a 

new observation is maximized between each two neighboring sample points. 𝐷𝑖’s are as close 

to each other as possible. We choose the parameter 𝛉 so as to maximize the logarithm of the 

geometric mean 𝐺𝑀 of the spacing’s, i.e.,  

 

𝐻(𝛉) = log(𝐺𝑀) = log{∏ 𝐷𝑖(𝛉)
𝑛+1
𝑖=1 }

1 (𝑛+1)⁄
=

1

𝑛+1
∑ log[𝐷𝑖(𝛉)]
𝑛+1
𝑖=1 ,            (2.52) 

 

under the constraints for the parameters 𝛉 of the distribution. The optimum MPS log-

estimator is given as: 

 

𝐻𝑜𝑝𝑡(𝛉) = log
1

𝑛+1
,                 (2.53)

  

 

see also Ranneby (1984). From the above relation, it can be concluded that the basic advantage 

of MPS method over the ML is that the log-likelihood function can go to positive infinity, 

whereas the MPS log-estimator is always bounded above by log(1 (𝑛 + 1)⁄ ). It may easily be 

proved that the optimum maximum of 𝐺𝑀 is obtained only when all 𝐷𝑖’s are equal to 𝐷𝑖 =
𝑖/(𝑛 + 1). Taking into account relation (2.49) and the specific expression for the GEV pdf, we 

obtain the following expression  

 

𝐻𝑜𝑝𝑡(𝜉, 𝜎, 𝜇) =
1

𝑛+1
∑ log∫ [exp(−(1 + 𝑈𝑖)

−1 𝜉⁄ )(1 + 𝑈𝑖)
−1 (𝜉+1)⁄ 1

𝜎
] 𝑑𝑥

𝑥𝑖
𝑥𝑖−1

𝑛+1
𝑖=1 ,            (2.54) 

 

where,  
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𝑈𝑖 = 𝜉 (
𝑥𝑖−𝜇

𝜎
), 𝑖 = 1,2,⋯ , 𝑛 + 1.                (2.55)

  

 

The parameters 𝜉, 𝜎 and 𝜇 are estimated by maximizing the above MPS log-estimator. Similarly 

as before, there are not available closed-form solutions; therefore MPS estimators have to be 

found numerically using nonlinear optimization methods.  

 

2.3.7 The quantile least squares method 

 
The method of quantile least squares (QLS) has been introduced in Castillo et al. 

(1997). The basic principle of QLS method is to estimate the parameters of interest by 

minimizing the sum of squares of the differences between the theoretical and the empirical 

quantiles.  

 

The sample quantile of the GEV distribution, see relation (2.27), may be estimated, by using 

any appropriate plotting position (see Appendix C), as follows:  

 

𝑥𝑖:𝑛 = 𝜇 −
𝜎

𝜉
[1 − (−log(𝑝𝑖:𝑛))

−𝜉
],               (2.56)

      

 

where 𝑝𝑖:𝑛, 𝑖 = 1,2, . . . , 𝑛 is the empirical estimate of the unknown cumulative distribution 

function. The quantity which is to be minimized is the following:  

 

 𝑄 = ∑ [𝑥𝑖:𝑛 − 𝑥𝑝]
2𝑛

𝑖=1 .                 (2.57)

       

 

This is achieved by partially differentiating (2.57) with respect to each parameter. Since no 

closed-form solutions are available, the QLS estimators have to be estimated numerically using 

nonlinear optimization methods. It is evident that for various plotting positions different results 

will be obtained. 

 

2.3.8 The elemental percentile method 

 
The Elemental Percentile (EP) method has been introduced in Castillo and Hadi (1994) 

and its estimators are based on order statistics. Specifically, the method consists in two steps: 

 
1. The estimators are obtained by first equating the cdf evaluated at the observed order 

statistics, to the corresponding percentile values, and then by using the resulting equations 

to obtain initial estimates of the parameters. 

2. These estimates are then combined in such a way to be statistically more efficient estimates 

of the parameters.  

 
Let 𝑥1:𝑛 < 𝑥2:𝑛 <. . . < 𝑥𝑛:𝑛 be an ordered random sample drawn from the GEV distribution, 

with corresponding quantile function 𝑥(𝐹) = 𝐹−1(𝑥; 𝜉, 𝜎, 𝜇). In the first step, let 𝐼 = {𝑖, 𝑗, 𝑟} 
be a set of three ordered indices 𝑖 < 𝑗 < 𝑟 ∈ (1,2, . . . , 𝑛). By considering an appropriate 

plotting position for 𝑝𝑖:𝑛, as e.g., the one of equations (C1) or (C2) in the Appendix, and 

equating the ordered sample values with the theoretical GEV quantiles for the three indices, we 

obtain the following relations: 

 

 𝑥𝑖:𝑛 = 𝜇 −
𝜎

𝜉
[1 − (−log𝑝𝑖:𝑛)

−𝜉],                (2.58) 

 



  Standard modelling of Univariate Extremes 

18 

 

𝑥𝑗:𝑛 = 𝜇 −
𝜎

𝜉
[1 − (−log𝑝𝑗:𝑛)

−𝜉
],               (2.59)

  

 𝑥𝑟:𝑛 = 𝜇 −
𝜎

𝜉
[1 − (−log𝑝𝑟:𝑛)

−𝜉].                (2.60)

  

 

By eliminating 𝜇 and 𝜎 from the above equations, we obtain the ratio 

 

 
𝑥𝑗:𝑛−𝑥𝑟:𝑛

𝑥𝑖:𝑛−𝑥𝑟:𝑛
=

𝐶𝑟
−𝜉
−𝐶𝑗

−𝜉

𝐶𝑟
−𝜉
−𝐶𝑖

−𝜉 =
1−𝐴𝑗𝑟

−𝜉

1−𝐴𝑖𝑟
−𝜉,                             (2.61)

  

where 𝐶𝑖 = −log(𝑝𝑖:𝑛) and 𝐴𝑖𝑟 =
𝐶𝑖

𝐶𝑟
. Equation (2.61) may be solved using the bisection method 

and 𝜉𝑖𝑗𝑟 is estimated as a function of the three observations 𝑥𝑖:𝑛, 𝑥𝑗:𝑛 , 𝑥𝑟:𝑛. Substituting 𝜉𝑖𝑗𝑟 into 

equations (2.59) and (2.60) we obtain: 

 

 �̂�𝑖𝑗𝑟 =
�̂�𝑖𝑗𝑟(−𝑥𝑖:𝑛+𝑥𝑟:𝑛)

𝐶𝑟
−�̂�
−𝐶𝑖

−�̂�
,                              (2.62)

  

and 

 

�̂�𝑖𝑗𝑟 = 𝑥𝑖:𝑛 +
�̂�𝑖𝑗𝑟(1−𝐶𝑖

−�̂�𝑖𝑗𝑟
)

�̂�𝑖𝑗𝑟
.                 (2.63)

  

If the estimated parameters do not satisfy the appropriate conditions provided in Theorem 2.2 

they are rejected. An analogous procedure can be followed for 𝜉 = 0.  

 

At the second step, the above procedure is repeated by choosing all the possible combinations 

𝐼 = {𝑖, 𝑗, 𝑟}. As before, inconsistent estimates are rejected. The final estimates of 𝜉, �̂�, �̂� are 

considered to be the corresponding medians of the estimated parameter samples, i.e.: 

 

 𝜉𝑀𝐸𝐷 = median(𝜉1, 𝜉2, . . . , 𝜉𝑁),                (2.64)

  

 �̂�𝑀𝐸𝐷 = median(�̂�1, �̂�2, . . . , �̂�𝑁),                (2.65)

  

 �̂�𝑀𝐸𝐷 = median(�̂�1, �̂�2, . . . , �̂�𝑁).               (2.66)

  

 

Instead of the median the least median of squares can be also used.  

 

2.3.9 The concept of maximum entropy method 
 

The parameter estimation method that is based on the concept of maximum entropy is probably 

the most complicated and rather unknown method for the ocean and coastal engineering 

communities. An analytic introduction to this method and the resulting relevant parameter 

estimation methods is provided in the monograph of Singh (1998), which is considered as the 

basic reference for this subsection. 

The concept of entropy quantifies the uncertainty associated with a distribution function which 

is employed for the description of a random variable. Shannon first, see Shannon (1948), 

provided a measure of uncertainty connected with the pdf 𝑓(𝑥; 𝛉) of a random variable 𝑋, 

defined as follows: 
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 𝐻(𝑓(𝑥; 𝛉)) = −∫ 𝑓(𝑥; 𝛉)ln𝑓(𝑥; 𝛉)𝑑𝑥
𝑏

𝑎
,               (2.67) 

 

with 

 

∫ 𝑓(𝑥; 𝛉)𝑑𝑥 = 1
𝑏

𝑎
.                 (2.68)

  

𝐻(𝑓(𝑥; 𝛉)) is called Shannon entropy functional and can be thought of as the mean value 

of−ln(𝑓(𝑥; 𝛉)).  
 

The principle of maximum entropy (POME), closely related to the concept of entropy, was 

formulated by Jaynes (1982), who stated that “the minimally prejudiced assignment of 

probabilities is that which maximizes the entropy subject to the given information”.  

 
The principle of maximum entropy (POME) method 

 
According to Jaynes (1982), the mathematical translation of the above statement is the 

following, see also Singh (1998):  

 

By defining 𝑁 linearly independent constraints 𝐶𝑖:  
 

𝐶𝑖 = ∫ 𝑦𝑖(𝑥)𝑓(𝑥)𝑑𝑥
𝑏

𝑎
,  𝑖 = 1,2, … ,𝑁,                (2.69)

  

where 𝑦𝑖(𝑥) are functions whose averages over 𝑓(𝑥) are specified, the maximum of the 

Shannon entropy functional (2.68) subject to the conditions implied from equation (2.69) is 

given by the following distribution:  

 

𝑓(𝑥) = exp[−𝑎0 − ∑ 𝑎𝑖𝑦𝑖(𝑥)
𝑁
𝑖=1 ],                (2.70)

  

where 𝑎𝑖, 𝑖 = 0,1,…𝑁, are Lagrange multipliers determined from equations (2.69) and (2.70) 

taking also into account the normalizing condition that 𝑓(𝑥) must satisfy; see equation (2.68). 

In this case, the value of the Shannon entropy functional is given as follows:  

 

𝐻(𝑓(𝑥; 𝛉)) = 𝑎0 + ∑ 𝑎𝑖𝐶𝑖
𝑁
𝑖=1 , 𝑖 = 1,2, . . . , 𝑁.                (2.71)

  

In order to estimate the parameters of the distribution, the following steps should be made:  

 

I. The “given information” should be defined through constraints, which are related to 

the data sample,  

II. The entropy, which is subject to the given information, should be maximized and 

finally,  

III. The sought-for parameters should be related to the given information. 

 

The available information from the sample is given by equation (2.69). Combining equations 

(2.70) and the normalizing condition for 𝑓(𝑥) in equation (2.68), we obtain the following zero-

th order Lagrange multiplier:  

 

𝑎0 = log∫ exp[−∑ 𝑎𝑖𝑦𝑖
𝑁
𝑖=1 ]𝑑𝑥

𝑏

𝑎
,                (2.72) 

 

It can be also shown that Lagrange multipliers are expressed by means of the constraints as 

follows:  
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−
𝜕𝑎0

𝜕𝑎𝑖
= 𝐶𝑖,                   (2.73) 

 

and that  

 
𝜕2𝑎0

𝜕𝑎𝑖
2 = 𝑉𝑎𝑟[𝑦𝑖(𝑥)] and 

𝜕2𝑎0

𝜕𝑎𝑖𝜕𝑎𝑗
= 𝐶𝑜𝑣[𝑦𝑖(𝑥), 𝑦𝑗(𝑥)], 𝑖 ≠ 𝑗,                        (2.74)   

 

where 𝑉𝑎𝑟(⋅) and 𝐶𝑜𝑣(⋅) denote variance and covariance respectively. In this way, 𝑓(𝑥) in 

equation (2.70) is uniquely defined.  

 

If, now, a certain form of the pdf 𝑓(𝑥) is available and the estimation of the parameters is the 

task in hand, then (2.71) has to be maximized. For this, we differentiate partially with respect 

to (𝑁 − 1) number of Lagrange multipliers, and to 𝑁 numbered specified parameters directly, 

i.e., 

 
𝜕𝐻(𝑓(𝑥;𝛉))

𝜕𝑎𝑖
= 0 , 𝑖 = 1,2, . . . , 𝑁 − 1,                            (2.75) 

 
𝜕𝐻(𝑓(𝑥;𝛉))

𝜕𝜃𝑖
= 0 ,𝑖 = 1,2, . . . , 𝑁.                                         (2.76) 

 

Then, the parameter estimates are provided as the solutions of the (2𝑁 − 1) equations (2.75) 

and (2.76).  

 

Following the above discussion, let us consider the GEV distribution case and denote 𝑈 =
𝜉

𝜎
(𝑥 − 𝜇). According to Singh (1998), the GEV constraints in this case are the following:  

 

 ∫𝑓(𝑥)𝑑𝑥 = 1,                  (2.77) 

 

−∫ ln[1 + 𝑈]𝑓(𝑥)𝑑𝑥 = −𝐸[ln(1 + 𝑈)],              (2.78) 

 

 ∫[1 + 𝑈]−1 𝜉⁄ 𝑓(𝑥)𝑑𝑥 = 𝐸[1 + 𝑈]−1 𝜉⁄ .               (2.79) 

 

The least-biased pdf based on the POME method will then take the following form: 

 

 𝑓(𝑥) = exp{−𝑎0 − 𝑎1ln[1 + 𝑈] − 𝑎2[1 + 𝑈]
−1 𝜉⁄ }.             (2.80) 

 

Substituting equation (2.80) into (2.77) we obtain the zeroth Lagrange multiplier as follows: 

 

 𝑎0 = ln∫ exp{−𝑎1ln[1 + 𝑈] − 𝑎2[1 + 𝑈]
−1 𝜉⁄ }𝑑𝑥.             (2.81) 

 

Taking under consideration the relations between Lagrange multipliers and constraints, we 

obtain three (since the sought-for parameters are three) partial differentiate equations for the 

zero Lagrange multiplier as follows:  

 

 
𝜕𝑎0

𝜕𝑎1
= 𝐸[ln{1 + 𝑈}] = −𝜉ln𝑎2 − 𝜉Ψ(−𝜉(𝑎1 + 1)),              (2.82) 

 

 
𝜕𝑎0

𝜕𝑎2
= 𝐸 [{1 + 𝑈}

−
1

𝜉] = −𝜉
(𝑎1+1)

𝑎2
,                (2.83) 

 

 
𝜕2𝑎0

𝜕𝑎2
2 = 𝑉𝑎𝑟 [{1 + 𝑈}

−
1

𝜉] =
𝜉(𝑎1+1)

𝑎2
2 ,                (2.84) 
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where Ψ(⋅) is the digamma function, defined as follows:  

 

Ψ(𝑢) =
𝑑log[Γ(𝑢)]

𝑑𝑢
.                             (2.85)

  

 

Comparing equation (2.80) with the GEV pdf we obtain the following expressions for the 

Lagrange multipliers:  

 

 𝑎1 = −
1+𝜉

𝜉
, and 𝑎2 = 1.                (2.86) 

 

Using equation (2.86), the relations (2.82), (2.83) and (2.84) reduce to the following:  

 

 𝐸[(1 + 𝑈)−1 𝜉⁄ ] = 1,                 (2.87) 

 

 𝐸[ln{1 + 𝑈}] = −𝜉Ψ(1),                 (2.88) 

 

 𝑉𝑎𝑟[{1 + 𝑈}−1 𝜉⁄ ] = 1.                  (2.89) 

 

As before, no closed-form solutions for the above equations are available and therefore 

nonlinear optimization methods should be used. An application of the POME method in 

extreme wind speed analysis can be found in Deng et al. (2011).  

 

A variant of the POME method is also analytically discussed. The method is called (maximum 

entropy) parameter space expansion (MESE) method and its application for the GEV 

distribution case is presented below. 

 

The maximum entropy parameter-space expansion method  

 

The GEV constraints for this case are the following: 

 

 ∫𝑓(𝑥)𝑑𝑥 = 1,                (2.90) 

 

 ∫
𝜉+1

𝜉
ln[1 + 𝑈]𝑓(𝑥)𝑑𝑥 = 𝐸 [

𝜉+1

𝜉
ln(1 + 𝑈)],                        (2.91) 

 

 ∫[1 + 𝑈]−1 𝜉⁄ 𝑓(𝑥)𝑑𝑥 = 𝐸[1 + 𝑈]−1 𝜉⁄ .              (2.92) 

 

The least-biased pdf based on parameter space expansion method takes the following form: 

 

 𝑓(𝑥) = exp {−𝑎0 − 𝑎1ln[1 + 𝑈]
𝜉+1

𝜉 − 𝑎2[1 + 𝑈]
−1 𝜉⁄ }.             (2.93) 

 

Following the same steps as before, using equation (2.93), equation (2.90) gives: 

 

𝑎0 = ln𝜎 − [1 + (−𝜉 − 1)(1 − 𝑎1)]ln𝑎2 + lnΓ([1 + (−𝜉 − 1)(1 − 𝑎1)]).           (2.94) 

 

where Γ(⋅) is the Gamma function. Substituting the above expression for 𝑎0 into equation 

(2.93), we obtain  

 

𝑓(𝑥) = exp{−ln𝜎 + 𝐾ln𝑎2 − lnΓ[1 + (−𝜉 − 1)(1 − 𝑎1)] 
 

−𝑎1ln(1 + 𝑈)
(1+𝜉) 𝜉⁄ − 𝑎2[1 + 𝑈]

−1 𝜉⁄ }.           

                 (2.95) 
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The relation between Lagrange multipliers and parameters is obtained by comparing equation 

(2.95) with the GEV pdf, from where we have  

 

 𝑎1 = 1 and 𝑎2 = 1.                  (2.96) 

 

The final GEV entropy function is obtained by taking the logarithm of equation (2.95) and 

substituting into (2.68), i.e.:  

 

𝐻(𝑓) = ln𝜎 − 𝐾ln𝑎2 + lnΓ[(1 + (−𝜉 − 1)(1 − 𝑎1))] + 

         +𝑎1𝐸 [
𝜉+1

𝜉
ln(1 + 𝑈)] + 𝑎2𝐸[1 + 𝑈]

−1 𝜉⁄ .           (2.97)

  

The relation between parameters and constraints is obtained by taking partial derivatives of 

equation (2.97) with respect to 𝜉, 𝜎, 𝜇, 𝑎1, 𝑎2and equate to zero, as we search for the maximum 

GEV entropy function. Since no closed-form solutions are available, nonlinear optimization 

methods should be used.  

 

2.4 Confidence Intervals of the parameter estimates 
 

 Quantifying the precision of an estimator is usually made more explicit by calculating 

the confidence interval. In this section, the following methods for the confidence bound 

estimation of the parameters of the GEV and the GPD distribution (latter introduced in sub-

Section 3.2) are presented in short: the normal approximation to the likelihood, the bootstrap 

method (parametric and non-parametric) and the pointwise approach. 

 

2.4.1 The normal approximation of the maximum likelihood estimator 
 

 The maximum likelihood principle for parameter estimation is considered the standard 

approach for approximations in terms of standard errors and confidence intervals. We restrict 

the discussion to continuous random variables generated from an existing probability density 

function. The framework is set for data {𝑥𝑛} = 𝑥1, 𝑥2, . . . , 𝑥𝑛 originated as independent 

realizations of a random variable {𝑋𝑛} whose probability density function belongs to the 

asymptotic forms of probability distributions of parameter 𝜃 with density functions 𝑓(𝑥; 𝜃). 

Definition 2.2 (multivariate normal distribution) 

Based on the validity of the regularity conditions for a large dataset of size 𝑛, the standard 

result using the maximum likelihood parameter estimation method derives that for the d-

dimensional model parameter 𝜃, the maximum likelihood estimator 𝜃 has a limiting 

multivariate normal distribution with mean 𝜃0 and variance-covariance matrix 𝑉𝜃0 denoted  

𝜃 → 𝑀𝑉𝑁𝑑(𝜃0, 𝑉𝜃0), if its joint density function has the form  

𝑓(𝜃) =
1

(2𝜋)𝑑/2|𝑉𝜃0|
1/2 𝑒𝑥𝑝 {−

1

2
(𝜃 − 𝜃0)

𝑇𝑉𝜃
−1(𝜃 − 𝜃0)} , 𝜃 ∈ 𝑅

𝑑                        (2.98) 

where |𝑉𝜃0| is the determinant of 𝑉𝜃0 = 𝐼𝐸(𝜃0)
−1. The “expected information matrix” which 

measures the expected curvature of the log-likelihood surface is defined by 
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𝐼𝐸(𝜃) =

[
 
 
 
 
𝑒1,1(𝜃) ⋯ ⋯ 𝑒1,𝑑(𝜃)

⋮ ⋱ 𝑒𝑖,𝑗(𝜃) ⋯

⋮ 𝑒𝑗,𝑖(𝜃) ⋱ ⋯

𝑒𝑑,1(𝜃) ⋯ ⋯ 𝑒𝑑,𝑑(𝜃)]
 
 
 
 

,                           (2.99) 

with 𝑒𝑖,𝑗(𝜃) = 𝐸 {−
𝜕2

𝜕𝑒𝑖𝜕𝑒𝑗
𝑙(𝜃)} and 𝑙(𝜃) = ∑ 𝑙𝑜𝑔𝑛

𝑖=1 𝑓(𝑥𝑖; 𝜃) is the log-likelihood function 

evaluated at 𝜃 = 𝜃0. 

This definition infers that each of the marginal distributions is normal and that the complete 

joint distribution is determined when the marginal distribution of the mean 𝜃0 and the variance-

covariance matrix at 𝜃0 are identified. 

 Since the true value of 𝜃0 is generally unknown, it is usual to approximate the terms of 

𝐼𝐸  with those of the “observed information matrix”, defined by 

 

𝐼O(𝜃) =

[
 
 
 
 
 
 
 −

𝜕2

𝜕𝜃1
2 𝑙(𝜃) ⋯ ⋯ −

𝜕2

𝜕𝜃1𝜕𝜃𝑑
𝑙(𝜃)

⋮ ⋱ −
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
𝑙(𝜃) ⋯

⋮ −
𝜕2

𝜕𝜃𝑗𝜕𝜃𝑖
𝑙(𝜃) ⋱ ⋯

−
𝜕2

𝜕𝜃𝑑𝜕𝜃1
𝑙(𝜃) ⋯ ⋯ −

𝜕2

𝜕𝜃𝑑
2 𝑙(𝜃) ]

 
 
 
 
 
 
 

 ,          (2.100) 

and evaluated at 𝜃 = 𝜃. For a general d-dimensional vector model of parameter 𝜃 the inverse 

of the information matrix is equivalent to the variance-covariance matrix. Hence, confidence 

intervals for the parameters of the model, using the asymptotic normality of the MLEs, are 

provided as follows: 

 

𝜃𝑗 ± Ζ𝑎 2⁄ √𝐼O(𝜃)𝑗𝑗
−1

,                             (2.101)

      

where 𝜃𝑗 is the mle of the 𝑗 − 𝑡ℎ estimated parameter, Ζ𝑎 2⁄  is the percentile point of the standard 

normal distribution for constructing (1 − 𝑎)100% confidence interval and 𝐼O(𝜃)𝑗𝑗
−1

  is the 𝑗 −

𝑡ℎ diagonal component of the variance-covariance matrix of the maximum likelihood 

estimator. 

 A generalization of the latter stated Definition 2.2 for a scalar function 𝜙 = 𝑔(𝜃) is 

considered as the delta method for obtaining confidence intervals for 𝜙 using the approximate 

normality of �̂�. Specifically, if the maximum likelihood estimator of 𝜙 is �̂� = 𝑔(𝜃), then �̂� →

N(𝜙0, 𝑉𝜙) is the limiting multivariate normal distribution with mean 𝜙0 and variance 

covariance matrix 𝑉𝜙, where 𝑉𝜙 = ∇𝜙
𝑇𝑉𝜃∇𝜙 and ∇𝜙 = [

𝜕𝜙

𝜕𝜃1
, ⋯ ,

𝜕𝜙

𝜕𝜃𝑑
]
𝑇
with 𝑇 the transpose 

operator evaluated at 𝜃 = 𝜃. For more details see, Casella and Berger (2002). Therefore, the 

approximate normality of 𝜃 to estimate confidence intervals for the components of the d-

dimensional vector parameter 𝜃 is extendend to the approximate normality of �̂� to obtain 

confidence intervals for the scalar functional of 𝜙. 

Using the delta method for the confidence intervals of the return levels from the GEV 

distribution, the variance of the estimated 𝑥𝑝 (see sub-Section 2.2.3) is approximated 

𝑉𝑎𝑟(𝑥𝑝) ≈ ∇𝑥𝑝
𝑇𝑉𝜃∇𝑥𝑝, where 𝑉𝜃 is the variance-covariane matrix of the parameters (�̂�, �̂�, 𝜉) 

and 
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∇𝑥𝑝
𝑇 = [

𝜕𝑥𝑝

𝜕𝜇
,
𝜕𝑥𝑝

𝜕𝜎
,
𝜕𝑥𝑝

𝜕𝜉
]
𝑇

= [1,−𝜉−1 (1 − (−log(1 − 𝑝))
−𝜉
) , 𝜎𝜉−2 (1 − (−log(1 − 𝑝))

−𝜉
) − 𝜎𝜉−1(−log(1 − 𝑝))

−𝜉
log(−log(1 − 𝑝))]

           

                              (2.102) 

is evaluated at  𝜃 = (�̂�, �̂�, 𝜉) with 𝑝 the ploting position formula (see Appendix C). 

Finally, if 𝜉 = 0 then ∇𝑥𝑝
𝑇 = [

𝜕𝑥𝑝

𝜕𝜇
,
𝜕𝑥𝑝

𝜕𝜎
]
𝑇

= [1,−log(−log(1 − 𝑝))] evaluated at (�̂�, �̂�). 

 

2.4.2 The bootstrap method 
 

 The bootstrap method introduced by Efron (1979) is a resampling process of the 𝑁 data 

points (𝑥1,⋯ , 𝑥𝑁). The method uses boot data sets each containing 𝑁 points obtained by 

random (Monte Carlo) sampling of the original set of 𝑁 points. During the Monte Carlo 

sampling, the probability that a data point is picked is 1/𝑁 irrespective of whether it has been 

picked before. (In the statistics literature this is called picking from a set “with replacement”). 

Hence a given data point 𝑥𝑖will, on average, appear once in each Monte Carlo-generated data 

set, but may appear not at all, or twice, and so on. The probability that 𝑥𝑖appears 𝑛𝑖times is 

close to a Poisson distribution with mean unity. The term “bootstrap” data sets denotes the 

Monte Carlo-generated data sets.Various bootstrap methods have been reviewed by Tajvidi 

(2003) for the construction of confidence intervals for the GEV and GPD distribution 

parameters and quantiles. The procedure on resampling with replacement from the given 

sample and calculating the required statistic from a large number of repeated samples from 

which standard errors and CIs of the examined statistic can be determined, is defined as non-

parametric. The parametric version of the bootstrap is based on randomly generated samples 

from a parametric model (distribution) fitted to the data. The latter version of the bootstrap is 

preferred if a suitable model for the examined sample is known and if the data samples are 

relatively short and the tail behavior is particularly important (Davison and Hinkley 1997). Both 

cases are used in this analysis. 

 The results from Kyselý (2008) pointed out that for small to moderate sample sizes the 

nonparametric bootstrap should be interpreted with caution because it leads to confidence 

intervals that are too narrow and underestimate the real uncertainties. It is admitted in general 

that the parametric bootstrap should be preferred with caution whenever inferences are based 

on small to moderate sample sizes (less or equal to 60) and a suitable bootstrap model for the 

data is known, for applications to confidence intervals related to extremes in global and regional 

climate model projections.  

 

Parametric bootstrap 

The parametric bootstrap method is summarized in the following steps for estimating the 

confidence intervals of the extreme value parameters. 

Step 1: Estimate the parameters (�̂�, �̂�, 𝜉) of the GEV (see sub-Section 2.2.3) or the (�̂̃�, 𝜉, 𝜁𝑢) 

of the GPD (see sub-Section 3.2.3) from the available dataset using one of the estimation 

methods as described previously (e.g. MLE, LMOM). 

Step 2: Draw a random sample of the same size as the dataset from the estimated parameters 

in Step 1 and fit the Extreme Value Distribution (GEV or GPD) of interest to the random sample 

and record the parameter estimates and/or return level(s). This is based on the assumption that 

the original dataset is realization of a random sample from a distribution of a specific parametric 

type. 
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Step 3: Repeat step 2 for a large number of repetitions (999 or more). 

Step 4: The (1-a)% level of confidence intervals of the parameters/return level(s) is estimated 

by finding the (1 – a) quantiles from the large number of repeated samples. The alpha-level is 

selected to 𝑎 =0.05 in general providing the apparent proportion of samples for which the 95% 

confidence intervals would fail to cover the examined parameters/return level(s) from the 

replicate samples. 

Non-Parametric bootstrap 

The non-parametric or standard resampling bootstrap approach performs sample replications 

without any prior knowledge of the distribution of the sampling data. In general, bootstraping 

for deriving confidence bounds in the percentile concept (percentile bootstrap) is arguably the 

simplest and most intuitive bootstrap interval approach. This approach is found in various 

environmental applications (Davison and Hinkley, 1997; Ferro et al., 2005; Kharin and Zwiers, 

2005). The 95% confidence intervals of the examined statistics are estimated from the large 

number of repeated samples.  

 This bootstrap procedure formulates random samples with replacement from the 

dataset and analyzes each sample the same way. For the Step 1 now, each observation is 

selected separately at random from the original dataset without excluding the possibility that a 

particular data point from the original data set could appear multiple times in a given bootstrap 

sample. The number of elements in each bootstrap sample equals the number of elements in the 

original data set. In addition, the previous Steps 2,3 and 4 are identical. 

 In the present bootstrap application, 999 bootstrap replicates were produced from 

resampling with replacements from the given sample. Furthermore, the so called alpha-level 

was selected to 𝑎 =0.05 for which the 95% confidence intervals would fail to cover the 

examined statistics from the generated samples.Moreover, Coles and Simiu (2003) proposed 

an empirical correction of the bootstrap estimates, based on a bias correction to the bootstrap 

parameter estimates, since there is a tendency of the bootstrap procedure to provide generally 

shorter tails than the one from the original time series.Application of this bootstrap approach in 

extreme wind speed prediction can be also found in (Naess and Clausen, 2001). 

 

2.4.3 Pointwise confidence interval approach 
 

 This method returns confidence interval estimates of the underlining distribution or 

related quantiles based on one or two order statistics from the Kolmogorov-Smirnov statistic 

(Doksum and Sievers, 1976) of a given sample at given probabilities. Specifically, for the 

sample quantile estimates confidence interval are defined as weighted averages of consequtive 

order statistics. In general, the quantile of a distribution is defined as 

 𝑞(𝑝) = 𝐹−1(𝑝) = inf{𝑥: 𝐹(𝑥) ≥ 𝑝}, 0 < 𝑝 < 1,                  (2.103) 

where 𝐹(𝑥) is the distribution function. Sample quantiles provide nonparametric estimators of 

their population counterparts based on a set of independent observations {𝑥1, … 𝑥𝑛} from the 

distribution 𝐹.  

Definition 2.3 (sample quantiles) 
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Denoting {𝑥(1), … , 𝑥(𝑛)} the order statistics of {𝑥1, … 𝑥𝑛} and �̂�𝑖(𝑝) the sample quantiles of 

specific type (see the quantile algorithms discussed in Hyndman and Fan (1996), then it is 

defined 

�̂�𝑖(𝑝) = (1 − 𝛾)𝑥(𝑗) + 𝛾𝑥(𝑗+1),               (2.104) 

where 
𝑗−𝑚

𝑛
≤ 𝑝 ≤

𝑗−𝑚+1

𝑛
, 𝑥𝑗 is the 𝑗 -th order statistic, 𝑛 the sample size, 𝛾 is a function defined 

at 0 ≤ 𝛾 ≤ 1 with 𝛾 = 𝑛𝑝 +𝑚 − 𝑗 and 𝑚 ∈ 𝑅is a constant determined by the sample quantile 

type. The function �̂�𝑖(𝑝) is defined as a continuous function of 𝑝and the sample quantiles are 

obtained equivalently by linear interpolation between the points (𝐺−1(𝑝𝑘), 𝑥(𝑘)) where 𝑥(𝑘) is 

the 𝑘 -th order statistic and 𝐺 the empirical distribution function.  

Various rules have been suggested for the plotting position formulae 𝑝𝑘 (see Appendix C). In 

practice, each plotting rule corresponds to a sample quantile definition by defining �̂�𝑖(𝑝𝑘) =

𝑥(𝑘) and using linear interpolation for 𝑝 ≠ 𝑝𝑘. The specific expression for 𝑝𝑘 used is 𝑝𝑘 =
𝑘−1

𝑛−1
 

with 𝑚 = 1 − 𝑝. The lower and upper confidence bands are about the sorted and interpolated 

𝑥(𝑘) values using (𝐺−1(𝑝𝑘 − 𝐾/√𝑀), 𝑥(𝑘)
𝑙𝑜𝑤𝑒𝑟) for the lower and (𝐺−1(𝑝𝑘 + 𝐾/√𝑀), 𝑥(𝑘)

𝑢𝑝𝑝𝑒𝑟
) 

for the upper respectively where 𝐾 = 1.36 and 𝑀 = 𝑚𝑘𝑛/𝑚𝑘 + 𝑛 with 𝑚𝑘 the length of 𝑥(𝑘). 

 

2.5 Non stationary sequences 
 

 The majority of studies in extreme winds are analyzed under the assumption of 

stationarity. As a remark, Lins and Cohn (2011) and Koutsoyiannis and Montanari (2007) 

supported the stationarity of climate despite the detection of non-stationarity of climate change. 

However, recent studies have pointed out that extremes of weather and climate variables have 

been changing in time and that change is considered to obtain in the future (Zwiers and Kharin 

1998; Houghton et al. 2001; Solomon et al. 2007; Yan and Jones 2008). Therefore, it is 

necessary to examine if trends or any type of non-stationarity are present in data and to adapt 

if possible an analytical unified method in such a way that justifies non-stationarities. This 

approach in extreme studies, considers estimations in design values in a more realistic way 

under the assumption of a time changing climate (Chavez-Demoulin and Davison, 2012; 

Jonathan et al., 2014). 

 If the underlying process is non-stationary, then the parameters of the extreme value 

distribution function can be considered as time-dependent functions, Renard et al. (2013), 

Gilleland and Katz (2011), Katz (2010), Cooley (2009), which in turn implies that all the 

properties of the distribution vary with time (Meehl et al. (2000); Butler et al., (2007); Kyselý 

et al., (2010); Northrop and Jonathan, (2011)). In the literature, studies have been made 

introducing covariates in the parameters of the extreme value distribution (Wang et al. 2004; 

Kharin and Zwiers 2005). Coles (2001) investigated annual maximum sea level data at 

Fremantle, where only the location parameter was set as time-dependent with a linear model. 

In addition, the location parameter was linearly related to the Southern Oscillation Index (SOI). 

Katz et al. (2002) introduced a non-stationary GEV model, and suggested a linear model for 

the location and a log-transformed model for the scale parameter, whereas the shape parameter 

was kept constant. Mendez et al. (2007) published a wide application of a time-dependent GEV 

model to monthly extreme sea levels. They used nonlinear time-dependent models for all three 

parameters containing seasonal and long-term effects. Hundecha et al. (2008) analyzed changes 

in extreme annual wind speeds in Canada with a non-stationary GEV, where location and scale 

parameters are considered time-dependent. 

 The modeling of the time variation of the parameters have found various applications 

also in hydrology, where the linear or log-linear models are usually preferred (Beguería et al., 
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2011; Villarini et al., 2010; Villarini et al., 2009; Cunderlik and Burn, 2003; Towler et al., 2010; 

Lima et al., 2015). It is most common to assume the location parameter 𝜇 as a linear function 

of time, holding constant values on scale 𝜎 and shape parameter 𝜉. The main reason is that 

reliable estimates of scale and shape parameter require long-term observations which are not 

always available. The main scope of the above studies was to model one or more of the 

parameters as linear or nonlinear functions of the covariates on which the data show 

dependence. Comparing different methods of detecting trends in extreme values, Zhang et al. 

(2004 b) came to a conclusion that methods that are based on modeling trends in the parameters 

of the distribution of the extremes are evident methods of detecting significant trends in the 

extremes. The benefit of this approach is that the original data no longer have to be de-trended 

and can be used directly.  

 

2.5.1 Likelihood 
 

 If the time series is assumed to be non-stationary, then the limiting distribution function 

is not considered as GEV distributed or any other family. No strong theories of extreme values 

exist in this area. However we can use GEV distribution as a template and inserting time 

dependent parameters of the form:  

 

𝐺(𝑥; 𝜇(𝑡), 𝜎(𝑡), 𝜉(𝑡)).                  (2.105) 

 

 For a non-stationary process, the associated GEV parameters 𝜃 = (𝜇, 𝜎, 𝜉) are 

considered time-dependent and the properties of the distribution would vary with time. Each of 

the GEV distribution parameters are expressed as a function of time 𝑡 (for the annual maxima 

approach, 𝑡 is the index 𝜇(𝑡), 𝜎(𝑡), 𝜉(𝑡) of the year). In this way, time is included as a covariate. 

The likelihood function takes now the following form: 

 

𝐿(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝜇(𝑡), 𝜎(𝑡), 𝜉(𝑡)) = ∏ 𝑔(𝑥𝑡; 𝜇(𝑡), 𝜎(𝑡), 𝜉(𝑡))
𝑛
𝑡=1 ,          (2.106) 

 

where 𝑔(𝑥𝑡; 𝜇(𝑡), 𝜎(𝑡), 𝜉(𝑡)) is the GEV time dependent probability density function evaluated 

at 𝑥𝑡. Usually, the shape parameter 𝜉 is considered time independent in order to avoid numerical 

conflicts, due to its importance concerning the distribution. 

 Consequently, for a time dependent model the log-likelihood function for 𝜉 ≠ 0 has 

the following form:  

 

𝑙(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝜃) = −∑ (ln𝜎(𝑡) + (
1+𝜉(𝑡)

𝜉(𝑡)
) ln[1 + 𝜉(𝑡)𝑧(𝑡)] + [1 + 𝜉(𝑡)𝑧(𝑡)]

−
1

𝜉(𝑡))𝑛
𝑡=1 , 

                  (2.107) 

 

where 1 + 𝜉(𝑡)𝑧(𝑡) > 0 and 𝑧(𝑡) =
𝜉(𝑡)(𝑥𝑡−𝜇(𝑡))

𝜎(𝑡)
 with index 𝑡 = 1,2, . . . , 𝑛 denoting the number 

of the BM (𝑥1, 𝑥2, . . . , 𝑥𝑛). 
 In addition, the confidence intervals for the parameters of the model are estimated using 

the asymptotic normality of the MLE (see sub-Section 2.4.1). 

 

2.5.2 Testing for non-stationarity 
 

 To test whether the common assumption of stationarity is violated two classes of tests 

are considered, the trend and unit root tests. The main idea of the non-stationarity tests (see 

Appendix F) is to analyze the statistical differences of different data group of the entire time 
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series (e.g. Chen and Rao, 2002). Specifically, trend tests such as Mann-Kendall (MK) non-

parametric trend test (Kendall 1976; Mann 1945) and the Cox Stuart (CS) trend test (Cox and 

Stuart 1955), are applied to examine whether the values of a series have a general increase or 

decrease with the time increase. The choice of the significance level is the default value 

(𝑎=0.05) in this setting. 

 Unit root tests are implemented to determine whether the mean values and variances of 

a series vary with time (e.g., see Razmi et al., 2017). If the observed variations in a certain 

parameter of different data group are found to be significant, the time series is regarded as 

nonstationary. The unit root tests in this setting are referred as the augmented Dickey-Fuller 

(ADF) unit root test modified by Said and Dickey (1984) and the Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) stationarity test by Kwiatkowski et al. (1992). The first test seeks for the 

presence of a unit root in the series (difference stationarity(3)), while the second tests for the 

stationarity around a fixed level (level stationarity) or the stationarity around a deterministic 

trend (trend stationarity) as a complement unit root test such as the ADF test. In this assessment, 

we considered the level stationarity KPSS test whether the data show stationarity around a fixed 

level or not and the ADF test whether there is a unit root present or not. The choice of the 

significance level in this setting is the default value a=0.05 for each examined station and test 

respectively.  

 

2.5.4 Model selection criteria 
 

 There are various combinations modelling the parameters as a function of time and the 

question is which model represents effectively the extremes in wind speed when the stationarity 

of the process is violated. Simple tests of choosing one model against another is the likelihood 

ratio test (Deviance Statistic). 

Deviance Statistic 

 The test is based on a comparison of maximized likelihoods for nested models. We 

consider two models, 𝑀0 and 𝑀1, such that 𝑀0 ⊂ 𝑀1. The maximized likelihood under the 

smaller model (stationary model) 𝑀0 is max𝜃∈𝑀0𝐿(𝑥; 𝜃) = 𝐿(𝑥; 𝜃𝑀0), where 𝜃𝑀0 refers to the 

MLE of 𝜃 under model 𝑀0. The maximized likelihood under the larger model (non-stationary 

model) 𝑀1, is max𝜃∈𝑀1𝐿(𝑥; 𝜃) = 𝐿(𝑥; 𝜃𝑀1), where 𝜃𝑀1 refers to the MLE of 𝜃 under model 

𝑀1. The ratio of these two quantities, namely  

 

𝜆 =
𝐿(𝑥;�̂�𝑀0)

𝐿(𝑥;�̂�𝑀1)
,                                         (2.108)

       

is considered to vary between 0 < 𝜆 < 1. Likelihoods are non-negative and the likelihood of 

the smaller model can’t exceed that of the larger model because it is nested on it. Values close 

to 0 indicate that the smaller model is not acceptable, compared to the larger model, because it 

would correspond to unlikely observed data. Values close to 1 indicate that the smaller model 

is acceptable over the large model. The likelihood ratio test statistic (LRT) is defined as 

 

−2ln(𝜆) = 2 (ln𝐿(𝑥; 𝜃𝑀1) − ln𝐿(𝑥; 𝜃𝑀0)) = 2 (𝑙(𝑥; 𝜃𝑀1) − 𝑙(𝑥; 𝜃𝑀0)),          (2.109) 

 

where 𝑙(𝑥; 𝜃𝑀1) and 𝑙(𝑥; 𝜃𝑀0) are the maximized log likelihood functions of the non-stationary 

and stationary model respectively.  

                                                           
(3) Difference stationarity of a process is equivalent to a presence of a unit root. Differencing the reconstructed 

higher-order autoregressive process of a mixture of deterministic and stochastic trend yields a stationary process 

when a unit root is present. 
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 Asymptotically, for large samples sizes, 𝑛 → ∞, Wilks theorem (Wilks 1938) imposes 

that the test statistic (LRT) or deviance statistic, is distributed as a chi-squared random variable 

𝑥𝑘
2, with degrees of freedom 𝑘 equal to the difference in the number of parameters to be 

estimated between the two models yielding 

 

−2ln(𝜆) = 2 (𝑙(𝑥; 𝜃𝑀1) − 𝑙(𝑥; 𝜃𝑀0))~𝑥𝑘
2.                                                  (2.110)

    

 In conclusion, model 𝑀0 is to be rejected over model 𝑀1 when the deviance statistic is 

large enough by a test at the 𝑎 − 𝑙𝑒𝑣𝑒𝑙 of significance as follows: 

 

2 (𝑙(𝑥; 𝜃𝑀1) − 𝑙(𝑥; 𝜃𝑀0)) > 𝑐𝑎,                           (2.111)

     

where 𝑐𝑎 is considered the (1 − 𝑎) quantile of the chi-squared 𝑥𝑘
2 distribution.  

 

Akaike Information Criterion (AIC) 

 AIC is not a hypothesis test, does not imply a test at the 𝑎 − 𝑙𝑒𝑣𝑒𝑙 of significance. 

Instead, the AIC focuses on the strength of evidence and gives a measure of uncertainty for 

each model. Akaike (1973) cited by Burnham and Anderson (2002) proposed using Kullback-

Leibler information for model selection. He established a relationship between the maximum 

log likelihood and the Kullback-Leibler information. In particularly, he developed an 

information criterion to estimate the Kullback-Leibler information. Akaike’s information 

criterion (AIC) is defined as follows:  

 

AICmodel = −2𝑙(𝑥; 𝜃model) + 2𝑝model,                          (2.112)

    

where 𝑝model is the number of estimated parameters included in the model and 𝑙(𝑥; 𝜃model) is 

the maximized log likelihood for each model. The model that explains the data variability 

sufficiently well, is the one among all examined models having the lowest AIC.In this way, we 

consider the model which minimizes the loss of information. 

 For small samples we use the corrected AIC (denoted AICc), which includes a small-

sample correction. If 𝑛 is the sample size, the corrected AIC criteria is defined as follows: 

 

AICmodel
𝑐𝑜𝑟 = −2𝑙(𝑥; 𝜃model) + 2𝑝model +

2𝑝model(𝑝model+1)

𝑛−𝑝model−1
,                        (2.113)

  

where the third term is the correction term. Further discussion of the formula with examples is 

given by Konishi and Kitagawa (2008). 

 

Bayesian Information Criterion (BIC) 

 In statistics, the Bayesian information criterion (BIC) or Schwarz criterion (Schwarz, 

1978) (also SBC, SBIC) is a criterion for model selection among an examined set of models; 

the model with the lowest BIC is preferred. BIC is closely related to the Akaike information 

criterion (AIC) and is given as follows:  

  

BICmodel = −2𝑙(𝑥; 𝜃model) + 𝑝modelln(𝑛),              (2.114)

   

where 𝑝model denotes the number of estimated parameters included in the model, 𝑛 is the 

number of data observations and 𝑙(𝑥; 𝜃model) is the maximized log likelihood for each model. 

Bayesian information criterion generally penalizes more complex models more strongly than 

does the AIC, but care must be given in models with values close to the minimum. 
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Chapter 3 
Threshold Excesses 

 

 A crucial problem often arising in climatological and hydrological extreme assessments 

is the scarcity of long and complete time series. Regarding wind speed time records, many 

authors have outlined a minimum annual length of 10 years to be regarded as the absolute 

minimum for a comprehensive Extreme Value Analysis (EVA) based on the Annual-Block 

Maximum (BM) sampling approach (Cook, 1985; Abildet al., 1992; Coles and Walshaw, 

1994). Additional studies on BM outlineda minimum annual length of 13 years for a 

successfully fit to the Generalized Extreme Value (GEV) distribution as proposed by Brabson 

and Palutikof (2000). However, samples with a limited amount of extremes often fail to provide 

efficient quantile estimates for large return periods. When only few extremes are available for 

analysis re-sampling procedures of the dataset is introduced. The drawback from the use of 

these procedures that often arise is the possible effect to the approximate independent 

limitations of the re-sample. In this Section, a short review of the annually r-largest order 

statistics concept is introduced as the classical approach for re-sampling more maxima within 

a year block. In addition, the well proposed threshold models from the relevant literarure is also 

reviewed as the basic structure for re-sampling. Inevitable, all re-samples will be penalized by 

a sort of dependency, where further examination of the excesses is mandatory for the i.i.d 

limitations. 

Other models are also examined and discussed in this Section where they aim to 

initially cluster the events from the time series and then de-cluster selecting the maximum value 

of each cluster respectively. However, the issue of strong debate is if the de-cluster models 

consider the independency limitations that are mandatory between adjacent clusters. From a 

review of the most considerable de-clustering models found and standout in the relevant 

literature that sample approximately independent events, are the Block and Runs (Smith and 

Weissman, 1994), the improved Method of Independent Storms (MIS) (Harris, 1999), the 

filtering de-clustering approach (Fawcett and Walshaw, 2007), the Standard Storm length 

(SSL) (Tawn, 1988), the Separation time approach by (Walshaw, 1994; Morton et al., 1997), 

and the physical De-Clustering Algorithm (DeCA model) (Soukissian et al., 2006; Soukissian 

and Kalantzi, 2009; Bernardara et al., 2014; Arns et al., 2013; Vanem, 2011; Oikonomou et al., 

2020). 

  

   

3.1 Model Generalization from r-largest Order Statistics 
 

 The inference from Point Processes (PP) will generalize the BM approach, providing 

the likelihood of an inhomogeneous PP for the r largest extremes in each block. The likelihood 

of a non-homogeneous PP is proportional to the likelihood for the 𝑟𝑡ℎ largest order maxima. 

The general form of the non-homogeneous Poisson Process likelihood is defined as follows: 

𝐿{[𝑡1,𝑡2]×[𝑢𝑛,∞)}(𝑥; 𝜉, 𝜎, 𝜇) = exp[−Λ(𝑢𝑛; 𝜉, 𝜎, 𝜇)] ⋅ ∏ (𝜆(𝑥(𝑖); 𝜉, 𝜎, 𝜇))𝑟
𝑖=1 ,             (3.1) 

and proportional to the likelihood for the 𝑟𝑡ℎ largest ordered maxima that exceed over a high 

threshold level 𝑢𝑛, 
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∝ exp [−(𝑡2 − 𝑡1) [1 + 𝜉 (
𝑢𝑛−𝜇

𝜎
)]
−1 𝜉⁄

]∏ (
1

𝜎
[1 + 𝜉 (

𝑥(𝑖)−𝜇

𝜎
)]
−1 𝜉⁄ −1

)𝑟
𝑖=1 ,                          (3.2) 

where −∞ < 𝜇 < ∞, 𝜎 > 0, −∞ < 𝜉 < ∞ and 𝑥(1) ≥ 𝑥(2) ≥. . . ≥ 𝑥(𝑖) ≥. . . ≥ 𝑥(𝑟) = 𝑢𝑛 

with 1 + 𝜉(𝑥(𝑖) − 𝜇) 𝜎⁄ > 0 for 𝑖 = 1,2,3, . . . , 𝑟. In addition, Λ(𝑢𝑛; 𝜉, 𝜎, 𝜇) and 𝜆(𝑥(𝑟); 𝜉, 𝜎, 𝜇) 
are defined as the intensity measure and the occurrence rate of points per unit region or intensity 

density function respectively for the 𝑟𝑡ℎ largest ordered maxima in the region {[𝑡1, 𝑡2] ×
[𝑢𝑛,∞)}, where [𝑡1, 𝑡2] = [0,1], (Smith, 1986). The Theorem H.1 (stated in Appendix H), 

unifies the PP representation for Extremes due to Pickands (1971). The statistical modeling of 

the 𝑟𝑡ℎ largest ordered maxima and the corresponding log likelihood over all available 𝑚 blocks 

is analytically presented in Appendix H. The 𝑟𝑡ℎ largest order statistic model gives a likelihood 

whose parameters correspond to those of the GEV of BM, but utilizes more information from 

the available dataset.  

 At this point it is important to highlight the unique relation between the point process 

characterization of extremes and the threshold excess model. Inference is made in both model 

approaches, since the likelihood expression stated in Equation (3.2) for the 𝑟-th largest ordered 

maxima that exceed over a high threshold level 𝑢𝑛 is proportional equal to the likelihood of the 

limiting joint distribution function for the r largest order statistics stated in Equation H.8 

(Appendix H). Working directly with the full joint distribution of the 𝑀𝑛
(𝑟)

 exceedances stated 

in Equation (3.2) guarantees a more robust expression for the exceedances. 

 

3.2 Peak Over Threshold (POT) approach 
 

Pickands (1975) and Balkema & de Haan (1974) showed that if there is a non-

degenerate limiting distribution for appropriately linearly rescaled excesses of a sequence of 

i.i.d distributed observations above a high enough threshold, then the limiting distribution of 

the excesses, will be assigned as the Generalized Pareto Distribution (GPD). 

 

Theorem 3.1 (Pickands-Balkema-de Haan Theorem). Assuming 𝑌 = 𝑋 − 𝑢 for 𝑋 > 𝑢 and that 

for 𝑛 random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 the conditions of the Fisher-Tippett-Gnedenko Theorem 

hold (Theorem 2.1), the distribution function 𝑃(𝑋 ≤ 𝑦) of the exceedances 𝑦 = (𝑥 − 𝑢)| 𝑥>𝑢, 

considering 𝑢 is high enough, can be approximated by the GPD i.e., 

 

𝐺(𝑦) = 1 − [1 +
𝜉𝑦

�̃�
]
−1 𝜉⁄

, for 𝑦 > 0,               (3.3) 

 

where the support is defined by 1 + 𝜉𝑦 �̃�⁄ > 0. 

 The scale parameter is defined as �̃� = 𝜉(𝑢 − 𝜇)  and supported for �̃� > 0, while the 

shape parameter 𝜉 is supported for−∞ ≤ 𝜉 ≤ ∞. The GPD distribution is generalized because 

it assumes different distributions in the same sense as the GEV when 𝜉 undertakes the following 

values: if 𝜉 < 0 and 0 ≤ 𝑦 ≤ −�̃�/𝜉, the GPD distribution has a finite right end point and is 

considered (bounded), following the Uniform or the Beta class of distributions. If 𝜉 > 0  and 

𝑦 ≥ 0 the distribution has an infinite right end point and is considered (unbounded) or heavy-

tailed, following the Pareto class of distributions. Finally, the case where 𝜉 → 0, is interpreted 

as the limiting case for GPD converging to the exponential class of distributions 

 

𝐺(𝑦) = 1 − exp (−
𝑦

�̃�
), 𝑦 > 0.                                        (3.4) 
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EVA establishes a link between the GEV and GPD distributions. If 𝑋 is a random variable 

arising from 𝐹 and the limit of Theorem 2.1 holds, then for a large threshold the threshold 

excess of the random variable 𝑋 − 𝑢|𝑋 > 𝑢, converges in distribution within the GPD family 

and vice versa. GEV parameterization can be obtained from the GPD under suitable conditions. 

In particular, the shape parameter 𝜉 of the limiting GPD is equal to that of the corresponding 

GEV distribution. Additionally, differentiating the GPD, yields the associated pdf  

 

𝑔(𝑦) = {

1

�̃�
(1 + 𝜉

𝑦

�̃�
)
−1−

1

𝜉
, 𝜉 ≠ 0

1

�̃�
exp (−

𝑦

�̃�
) , 𝜉 = 0

,          (3.5) 

 

considering 𝑦 ≥ 0 if 𝜉 ≥ 0, and 0 ≤ 𝑦 ≤ −
�̃�

𝜉
 when 𝜉 < 0. 

 

3.2.1 Formulation of Pickands-Balkema-de Haan Theorem 

 
Noting {𝑋1, . . . , 𝑋𝑛} as a sequence of i.i.d random variables with a common cumulative 

distribution function 𝐻(𝑥), the distribution function of 𝑀𝑛 for appropriately defined 

normalizing sequences of constants {𝑎𝑛 > 0} and {𝑏𝑛} is obtained from Eq. (2.2) as follows: 

 

Pr {
𝑀𝑛−𝑏𝑛

𝑎𝑛
≤ 𝑥} = 𝐻𝑛(𝑎𝑛𝑥 + 𝑏𝑛).        

Furthermore, using the classical asymptotic formulation in Theorem 2.1 such that as 𝑛 → ∞,  

Pr {
𝑀𝑛−𝑏𝑛

𝑎𝑛
≤ 𝑥} → 𝐹(𝑥) = exp {− [1 + 𝜉 (

𝑥−𝜇

𝜎
)]
−1 𝜉⁄

}.    

Equating the latter statements and using the Taylor expansion (4), 

𝐻(𝑎𝑛𝑥 + 𝑏𝑛)
𝑛 ≈ exp {− [1 + 𝜉 (

𝑥−𝜇

𝜎
)]
−1 𝜉⁄

},                             (3.6) 

where for large enough 𝑛, the derivation in (3.6) yields: 

1 − 𝐻(𝑎𝑛𝑢 + 𝑏𝑛) ≈
1

𝑛
[1 + 𝜉 (

𝑢−𝜇

𝜎
)]
−1 𝜉⁄

.  (3.7) 

Similarly for 𝑦 > 0, 

1 − 𝐻(𝑎𝑛(𝑢 + 𝑦) + 𝑏𝑛) ≈
1

𝑛
[1 + 𝜉 (

𝑢+𝑦−𝜇

𝜎
)]
−1 𝜉⁄

.                (3.8) 

Using the formulation from the conditional distribution, an extreme event is defined for 𝑦 > 0 

as follows: 

Pr(𝑋 > 𝑢 + 𝑦|𝑋 > 𝑢) =
1−Pr(𝑋≤𝑢+𝑦)

1−Pr(𝑋≤𝑢)
=

1−𝐻(𝑎𝑛(𝑢+𝑦)+𝑏𝑛)

1−𝐻(𝑎𝑛𝑢+𝑏𝑛)
.                           (3.9) 

Moreover, using the conditional probability law, yields: 

                                                           
(4) The Taylor expansion: log 𝐻(𝑎𝑛𝑥 + 𝑏𝑛) ≈ −[1 −𝐻(𝑎𝑛𝑥 + 𝑏𝑛)]. 
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Pr(𝑋 > 𝑢 + 𝑦|𝑋 > 𝑢) = Pr(𝑋 > 𝑦) = 1 − Pr(𝑋 ≤ 𝑦).                          (3.10) 

Substituting respectively all formulas stated from Equations (3.7) and (3.8) into the latter (3.9), 

it is derived: 

Pr(𝑋 > 𝑢 + 𝑦|𝑋 > 𝑢) =
1

𝑛
[1+𝜉(

𝑢+𝑦−𝜇

𝜎
)]
−1 𝜉⁄

1

𝑛
[1+𝜉(

𝑢−𝜇

𝜎
)]
−1 𝜉⁄

=[
𝜎+𝜉(𝑢+𝑦−𝜇)

𝜎+𝜉(𝑢−𝜇)
]
−1 𝜉⁄

=[1 +
𝜉𝑦

�̃�
]
−1 𝜉⁄

. 

The GPD is written in the following form using the conditional distribution stated in (3.10): 

Pr(𝑋 ≤ 𝑦) = 𝐺(𝑦) = 1 − [1 +
𝜉𝑦

�̃�
]
−1 𝜉⁄

 ,  (3.11) 

where 𝑦 > 0, (1 + 𝜉𝑦 �̃�⁄ ) > 0 and �̃� = 𝜎 + 𝜉(𝑢 − 𝜇). 

 

3.2.2 Likelihood of the Threshold Exceedances 
 

Assuming 𝑦1, 𝑦2, . . . , 𝑦𝑛𝑢 and 𝑦𝑖 = (𝑥𝑖 − 𝑢)| 𝑥𝑖>𝑢 a sequence of 𝑛𝑢 exceedances of a 

high enough threshold𝑢, the joint density pdf will be assigned as 𝐿(𝑦1, 𝑦2, . . . , 𝑦𝑛; �̃�, 𝜉). The 

corresponding log-likelihood function is derived as follows: 

 

𝑙(�̃�, 𝜉) = {
−𝑛𝑢log�̃� − (1 +

1

𝜉
)∑ log (1 + 𝜉

𝑦𝑖

�̃�
) ,

𝑛𝑢
𝑖=1 𝜉 ≠ 0

−𝑛𝑢log�̃� −
1

�̃�
∑ 𝑦𝑖 ,
𝑛𝑢
𝑖=1 𝜉 = 0,

 (3.12)

  

where (1 + 𝜉
𝑦𝑖

�̃�
) > 0 for 𝑖 = 1,2, . . . , 𝑛𝑢, contrariwise 𝑙(�̃�, 𝜉) = ∞. However, under the 

provision that the 𝜉 parameter characterizes the upper tail behavior of both the GEV and GPD, 

the MLE estimator of the GPD follows the exact asymptotically normal properties as the GEV. 

As a consequence, regularity conditions do not always exist similarly as in the GEV, e.g., see 

Grimshaw (1993) and Tajvidi (2003). The MLE’s are denoted as �̂̃� and 𝜉, providing local 

maximum of the 𝑙(�̃�, 𝜉). Similarly, no closed-form solution to the maximization problem is 

available; thus, it has to be transcend numerically using nonlinear optimization methods. 

 

3.2.3 Return Levels of the Threshold exceedances 
 

 The advantage of considering the Peak-Over-Threshold (POT) approach against the 

classical BM, is that different but still large block size would affect the GEV parameters but 

not those of the corresponding GPD distribution of threshold excesses. In addition, quantile 

estimates for large return periods will be significant improved by the augmentation of the 

available sample size. Parameter 𝜉 is invariant to block size, while calculations of �̃� is 

unperturbed by changes in 𝜇 and 𝜎. The major disadvantage of considering the POT approach, 

consists in the selection of the appropriate threshold value in order to safely provide a trade-off 

between bias and variance. The suitable threshold will successfully verify that peaks of all 

exceedances, meet the requirements of the i.i.d limitations. 
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Similarly to the BM approach, evaluating return levels for the model of exceedances described 

by the GPD with parameters (�̃�, 𝜉), the return level 𝑥𝑝 that is exceeded on average once 

every 1/𝑝 observations for the model of the POT exceedances assuming that 𝑥𝑝 > 𝑢 over a 

suitable high threshold 𝑢, is given by  

 

𝑥𝑝(�̃�, 𝜉, 𝜁𝑢) = {
𝑢 +

�̃�

𝜉
[(𝜁𝑢/𝑝)

𝜉 − 1],     𝜉 ≠ 0,

𝑢 + �̃�log(𝜁𝑢/𝑝),             𝜉 = 0.
                           (3.13) 

 

Moreover, (Coles, 2001) suggested that the probability of an exceedance of 𝑢 denoted as 𝜁𝑢 =
Pr(𝑋 > 𝑢) follows the binomial distribution Bin(𝑛, 𝜁𝑢), where 𝑛 is the total number of 

observations from the time series. Hence, a natural estimator of 𝜁𝑢 is 𝜁𝑢 =
𝑛𝑢

𝑛
 where 𝑛𝑢 denotes 

the number of exceedances. Estimates of the return levels are obtained by 𝑥𝑝 = 𝑥𝑝(�̂̃�, 𝜉, 𝜁𝑢). 
 

3.2.4 Bound estimates of GPD based on the delta method  
 

 Standard errors and confidence intervals for the return levels 𝑥𝑝(�̃�, 𝜉, 𝜁𝑢) of the GPD 

distribution are obtained similar from the delta method based on the normal approximation of 

the maximum likelihood estimator (see also sub-Section 2.4.1). Specifically, considering the 

variance in the estimation of the 𝜁𝑢 approximated by 𝑉𝑎𝑟(𝜁𝑢) ≈ 𝜁𝑢(1 − 𝜁𝑢)/𝑛, the variance 

of the return level estimate is approximated in the form 

 𝑉𝑎𝑟(𝑥𝑝) ≈ ∇𝑥𝑝
𝑇𝑉𝜃∇𝑥𝑝.  

The variance-covariance matrix for (�̂̃�, 𝜉, 𝜁𝑢) is identified as 𝑉𝜃 and the transpose of the 

differential operator of the return level is approximated 

∇𝑥𝑝
𝑇 = [

𝜕𝑥𝑝

𝜕𝜁𝑢
,
𝜕𝑥𝑝

𝜕�̃�
,
𝜕𝑥𝑝

𝜕𝜉
]
𝑇

        = [�̃�𝑝𝜉𝜁𝑢
𝜉−1

, 𝜉−1{(𝑝𝜁𝑢)
𝜉 − 1},−�̃�𝜉−2{(𝑝𝜁𝑢)

𝜉 − 1} + �̃�𝜉−1(𝑝𝜁𝑢)
𝜉log(𝑝𝜁𝑢)]

  

                                (3.14) 

and evaluated at 𝜃 = (�̂̃�, 𝜉, 𝜁𝑢). 

As a note, the delta method is arguable the most applied method of inference for return levels 

in extremes. 

 

3.3 Extremal Index 
 

 The discussion below is based partly on Leadbetter et al. (1983), a standard reference 

to the literature on extremes of time series and random processes, and on Beirlant et al., (2004, 

Ch. 10), which provides a more recent summary. 

 

Definition 3.1 (the condition of 𝐷(𝑢𝑛)) 

A strictly stationary sequence {𝑋1, 𝑋2, … , 𝑋𝑛}with marginal distribution𝐻(𝑥), satisfies the 

𝐷(𝑢𝑛) condition if for all 𝑖1 < ⋯ < 𝑖𝑝 < 𝑗1 < ⋯ < 𝑗𝑞 with𝑗1 − 𝑖𝑝 > 𝑙, |𝑃𝑟 {𝑋𝑖1 ≤

𝑢𝑛, … , 𝑋𝑖𝑝 ≤ 𝑢𝑛, 𝑋𝑗1 ≤ 𝑢𝑛, … , 𝑋𝑗𝑝 ≤ 𝑢𝑛} − 𝑃𝑟 {𝑋𝑖1 ≤ 𝑢𝑛, … , 𝑋𝑖𝑝 ≤ 𝑢𝑛}𝑃𝑟 {𝑋𝑗1 ≤
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𝑢𝑛, … , 𝑋𝑗𝑝 ≤ 𝑢𝑛}| ≤ 𝑎(𝑛, 𝑙), where  𝑎(𝑛, 𝑙) → 0 for some sequence 𝑙𝑛 such that 𝑙𝑛/𝑛 → 0 as 

𝑛 → ∞. 

 The 𝐷(𝑢𝑛) condition in Definition 3.1 guarantees that rare events sufficiently separated 

apart are approximately independent. More generally, for a sequence of thresholds 𝑢𝑛 that 

increase with the increase of 𝑛, the condition ensures that the maxima of dependent data to limit 

to the GEV distribution. Thereby, maxima of stationary time series in the long range 

dependence at extreme levels, follow the same distributional limit law as those of the 

independent series. 

Theorem 3.2 (maxima in the long range dependence) 

 Let {𝑋𝑖} be a stationary sequence with 𝑀𝑛 = 𝑚𝑎𝑥(𝑋1, 𝑋2, . . . , 𝑋𝑛) for which there exist 

sequences of normalizing constants {𝑎𝑛  >  0} and {𝑏𝑛 ∈ 𝑅} with a non-degenerate 

distribution 𝐹(𝑥) such that  

𝑃𝑟 {
𝑀𝑛−𝑏𝑛

𝑎𝑛
≤ 𝑥} → 𝐹(𝑥), 

then for 𝑛 → ∞ and the 𝐷(𝑢𝑛) condition holds with 𝑢𝑛 = 𝑎𝑛𝑥 + 𝑏𝑛 for every real 𝑥, 𝐹(𝑥) 
follows the GEV distribution. 

 Related to the above conditions, it is important to understand the quantitative impact 

of non-independent extremes on the estimations of extreme quantiles. The most common 

measure of the effect of the short range dependence exhibited by the extremes of a process is 

the extremal index 𝜃, defined in the range 0 < 𝜃 ≤ 1. If the sequence {𝑋𝑖} is independent then 

𝜃 = 1. Moreover, the extremal index indicates the tendency of the extremes to occur in clusters. 

The relation between the maxima of a dependent and of an independent sequence respectively 

is summarized in the following theorem: 

 

Theorem 3.3 (limit distribution in the long range dependence) 

 We denote two sequence of variables {𝑋𝑖} (stationary) and {�̃�𝑖} (independent) with the 

same marginal distribution, setting their corresponding maxima as 𝑀𝑛 = 𝑚𝑎𝑥(𝑋1, 𝑋2, . . . , 𝑋𝑛) 

and �̃�𝑛 = 𝑚𝑎𝑥(�̃�1, �̃�2, . . . , �̃�𝑛) respectively. If there exist sequences of normalizing constants 

{𝑎𝑛  >  0} and {𝑏𝑛 ∈ 𝑅} for the independent process such that 

𝑃𝑟 {
�̃�𝑛−𝑏𝑛

𝑎𝑛
≤ 𝑥} → �̃�(𝑥),  for 𝑛 → ∞, then under suitable regularity conditions the stationary 

sequence follow a non-degenerate distribution function 𝐹(𝑥) subsequently, 

𝑃𝑟 {
𝑀𝑛−𝑏𝑛

𝑎𝑛
≤ 𝑥} → 𝐹(𝑥) . For some constant (extremal index) 𝜃 ∈ (0,1], the effect of the 

dependence in the stationary series is considered with the replacement by the limit distribution 

followed 𝐹(𝑥) = �̃�(𝑥)𝜃. 

 The parameters of the limit distribution are also strongly affected by the dependence in 

the series, influencing only the location and scale parameters. Accordingly, if distribution of 

the maxima �̃�𝑛 is GEV with parameters (𝜇, 𝜎, 𝜉), then the distribution of 𝑀𝑛 is also GEV but 

with parameters (𝜇𝜃, 𝜎𝜃, 𝜉𝜃) in the form 𝜇𝜃 = 𝜇 +
𝜎

𝜉
(𝜃𝜉 − 1), 𝜎𝜃 = 𝜃

𝜉𝜎 and 𝜉𝜃 = 𝜉. 

 Leadbetter (1983) notes the following connection between the cluster-size distribution 

and the extremal index 𝜃. Assuming the sample of size 𝑛 is divided into blocks of length 𝑚𝑛, 

then a cluster of high level exceedances is obtained as a set of observations above a given 



  Threshold Excesses 

36 

 

threshold 𝑢𝑛 within a block given that there is at least one exceedance in that block. The cluster 

size distributionis defined as (see Ancona-Navarrete & Tawn, 2000) 

 

𝜋𝑛(𝑗; 𝑢𝑛,𝑚𝑛) = Pr{∑ 𝐼(𝑋𝑖 > 𝑢𝑛) = 𝑗|∑ 𝐼(𝑋𝑖 > 𝑢𝑛) > 0
𝑚𝑛
𝑖=1

𝑚𝑛
𝑖=1 } , for𝑗 = 1, . . . , 𝑚𝑛, (3.15) 

where 𝐼(. ) is the indicator function. Therefore, the extremal index 𝜃 is expressed as the 

reciprocal of the limiting mean cluster size, 

𝜃−1 = lim
𝑛→∞

∑ 𝑗𝜋𝑛(𝑗; 𝑢𝑛,𝑚𝑛)
𝑚𝑛
𝑗=1 .                (3.16) 

Another characterization of 𝜃  in terms of down-crossings in clusters of extremes is given by 

O'Brien (1987) yielding 

 

𝜃 = lim
𝑛→∞

Pr{𝑋𝑖 ≤ 𝑢𝑛, 2 ≤ 𝑖 ≤ 𝑙𝑛|𝑋1 > 𝑢𝑛}, where 𝑙𝑛 = 𝑜(𝑛).                                (3.17) 

 

 Summarizing, the exceedances from a stationary sequence occur in clusters. The 

expected number of exceedances within each cluster is asymptotically unaffected by the 

strength of the dependence. Therefore, an average of 1/𝜃 exceedances must occur in each 

cluster. The aforementioned characterizations define the extremal index setting the index 𝜃 as 

the key parameter when extending the limiting behavior of extremes from independent to 

stationary sequences of some dependency. 

   

3.3.1 Intervals Estimate 
 

 Investigating the point process of the exceedance times, Hsing et al. (1988) resulted 

that the asymptotic distribution of the inter-exceedance times belongs to a one-dimensional 

parametric family of distributions indexed by the extremal index. Recent studies from Ferro 

and Segers (2003), yield estimation of the extremal index by equating theoretical moments of 

the limiting distribution to their empirical counterparts. The observed inter-exceedance times 

is denoted as 𝑇𝑖, where 𝑖 = 1,2, . . , 𝑛𝑢 − 1, yielding limiting argument of the estimated extremal 

index 𝜃(𝑢),  

𝜃(𝑢) =

{
 
 

 
 2(∑ (𝑇𝑖−1)

𝑛𝑢−1
𝑖=1 )

2

(𝑛𝑢−1)∑ (𝑇𝑖−1)(𝑇𝑖−2)
𝑛𝑢−1
𝑖=1

𝑖𝑓 max{𝑇𝑖: 1 ≤ 𝑖 ≤ 𝑛𝑢 − 1} > 2

2(∑ 𝑇𝑖
𝑛𝑢−1
𝑖=1 )

2

(𝑛𝑢−1)∑ 𝑇𝑖
2𝑛𝑢−1

𝑖=1

𝑖𝑓 max{𝑇𝑖: 1 ≤ 𝑖 ≤ 𝑛𝑢 − 1} ≤ 2

 (3.18)

  

The method is referred as ‘Intervals Estimate’ and in addition supports a bootstrap procedure 

for obtaining confidence intervals on estimates of the cluster characteristics. 

 

3.3.2 Return Levels based on the Extremal Index 
 

 Taking into account the dependency of extremes, evaluating return levels is also 

interpreted as the𝑥𝑝 return level that is exceeded on average at least once every 1/𝑝 

observations in the same context as previously defined Eq. (3.13). Considering that the GPD 
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with parameters (�̃�, 𝜉) is a suitable model for exceedances provided that 𝑥𝑝 > 𝑢 and 𝜉 ≠ 0 

over a suitable high threshold 𝑢, then 

𝑥𝑝(�̃�, 𝜉, 𝜁𝑢) = {
𝑢 +

�̃�

𝜉
[(𝜁𝑢𝜃/𝑝)

𝜉 − 1],   𝜉 ≠ 0,

𝑢 + �̃�log(𝜁𝑢𝜃/𝑝),             𝜉 = 0.
                           (3.19) 

 A natural estimator of 𝜃 is obtained 𝜃 =
𝑛𝑐

𝑛𝑢
 (Hsing et al., 1988), where 𝑛𝑢 denotes the 

number of exceedances and 𝑛𝑐 denotes the number of clusters obtained over the selected high 

enough threshold. Other estimators of 𝜃 and their model performance is found in (Smith and 

Weissman, 1994; and Gomes, 1993). A latest approach of the generalization of the extremal 

index estimator of Ferro and Segers (2003) for the extension to non-stationary random 

sequences with periodic dependence structure is found in Auld and Papastathopoulos (2021). 

 In our analysis we considered the Extremal Index estimator from the Intervals Estimate 

method by Ferro and Segers, (2003) for the identification of clusters. 

  

3.4 Threshold selection 
 

 How should someone choose the threshold 𝑢? The choice of an appropriate threshold 

requires a compromise between precision and bias. There are several technics of choosing an 

appropriate value for threshold. High threshold reduces the bias in the extrapolation of the 

extreme value but penalizes the variance for the estimators of the GPD parameters from the 

reduction of the available sample size. On the contrary, a lower threshold produces a higher 

bias along with a moderate variance for the estimators. 

 The most prominent threshold model-value acceptable used in literature are: (i) Mean 

Residual Life Plot (MRL) introduced by Davison & Smith (1990) and examples given by 

Beirlant et al. (2004) (ii) Parameter Stability Plot by Coles (2001) and references given in, 

Scarrott and Mac Donald (2012), (iii) Rules of Thumb considering one of the sample points as 

the optimum threshold with references in Du Mouchel (1983), Reiss and Thomas (2007) and 

Ferreira et al. (2003), and finally (iv)  Multiple-Threshold Model by Wadsworth & Tawn (2012) 

and references given in Bommier (2014). The threshold choosing methods are presented briefly 

as followed particularly for the POT model, but can also be used to extract the extreme-type 

sample required for clustering. 

  

3.4.1 Mean Residual Life Plot (Graphical diagnostics) 
 

 The mean residual life (MRL) plot introduced by Davison & Smith (1990) is the 

common graphical diagnostics for threshold choice. This diagnosticsuses the expectation of the 

GPD excesses,  

𝐸(𝑋 − 𝑢𝑝|𝑋 > 𝑢𝑝) =
𝜎𝑢𝑝

1−𝜉
  defined for 𝜉 < 1,                           (3.20) 

where 𝜎𝑢𝑝 denotes the scale parameter corresponding to excesses of the physical threshold 𝑢𝑝. 

Similarly for threshold choice 𝑢 > 𝑢𝑝, yields the following expression 

𝐸(𝑋 − 𝑢|𝑋 > 𝑢) =
𝜎𝑢

1−𝜉
=

𝜎𝑢𝑝+𝜉𝑢

1−𝜉
                                                                                       (3.21)  

which is linear in 𝑢 with gradient 
𝑢

1−𝜉
  and intercept 

𝜎𝑢𝑝

1−𝜉
. Empirical estimates of the sample 

mean excesses are typically plotted against a range of thresholds, and the appropriate threshold 
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is chosen to be the lowest level where all the higher threshold satisfy linearity in the mean 

excess above the selected threshold.  

The mean residual life plot is considered as a graph which points are as follows: 

 

{(𝑢,
1

𝑛𝑢
∑ (𝑥(𝑖) − 𝑢)
𝑛𝑢
𝑖=1 ) : 𝑢 < 𝑥max} ,  (3.22) 

where𝑛𝑢 is the maximum number of observations that exceed 𝑢, (𝑥(1), 𝑥(2), . . . , 𝑥(𝑛𝑢)) are the 

number of observations that exceed 𝑢, and 𝑥max is considered as the largest observation that 

exceeds𝑢. 

 Due to practical difficulties in interpreting the (MRL) plots they are acknowledged as 

threshold diagnostics ofa major disadvantage. Considering such a plot, a subjective selection in 

threshold is inevitable as the graph is approximately linear from a very small threshold. 

 Figure 3.1 provides an example of a MRL plot for the Fort Collins total daily 

precipitation data from the extRemes package (Ver. 1.62) in R (Gilleland et al., 2010). The 

threshold of 𝑢 = 0.4 inches suggested by Katz et al. (2002) is justified by the empirical MRL, 

considering close to linear above this level, and below this level a curved MRL is observed 

indicating a bias due to the GPD asymptotic breaking down. 

 

 

Figure 3.1: Mean residual life plot for the Fort Collins daily precipitation data. Solid jagged line is empirical 

MRL with approximate pointwise Wald 95% confidence intervals as dashed lines. The MRL implied by 

maximum likelihood (ML) parameter estimates for thresholds u = 0.395, 0.85 and 1.2 inches are the upper, middle 

and lower straight lines respectively. Vertical dashed lines mark these thresholds. Example of the MRL plot from 

Gilleland et  al. (2010) using the extRemes package in R 

 

3.4.2 Parameter Stability (PS) Plot 
 

 The Parameter Stability plot (PS), (Coles, 2001) is one of the most used methods for 

threshold selection. The method involves plotting the parameter estimates from the GPD or 
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point process models against𝑢, for a range of values of𝑢. The parameter estimates should be 

stable (i.e. constant) above the threshold at which the GPD model becomes valid. 

 If the exceedances of a high threshold 𝑢𝑝 follows a GPD distribution with parameters 

𝜉 and 𝜎𝑢𝑝, then for any other threshold 𝑢 such that 𝑢 > 𝑢𝑝, the exceedances will follow a GPD 

distribution, with shape parameter 𝜉𝑢 = 𝜉 and scale parameter 𝜎𝑢 = 𝜎𝑢𝑝 + 𝜉(𝑢 − 𝑢𝑝). 

Parameterizing the scale parameter as 𝜎∗ = 𝜎𝑢 − 𝜉𝑢, concludes that for a large enough physical 

threshold 𝑢𝑝, 𝜎∗ is invariant of the increase in threshold𝑢.   

 As a result, if a GPD distribution describes exceedances in extremes above a threshold 

𝑢𝑝, then exceedances in extremes will also follow the same distribution for a higher threshold 

𝑢, and parameters 𝜎∗, 𝜉 will remain invariant of the threshold choice 𝑢  where 𝑢 > 𝑢𝑝. The idea 

is to find the lowest possible threshold whereby a higher threshold would give the same results 

within uncertainty bounds. 

 The considerable disadvantage of Parameter stability plot method, is that the accepted 

threshold values often require a great deal of subjective judgement, and are not relied to 

analytical unified selection method. 

 Figure 3.2 provides an example of a Parameter Stability plot for a location in the North 

sea (54.00N 2.25E) using daily wind speed data from the ERA-Interim database (sub-Section 

5.4.1) of 20 years (1979 to 1998). The threshold value selections of 𝑢=(13, 14.8 and 16.59 m/s) 

in vertical dashed lines are justified by the empirical PS plot, considering closely unperturbed 

estimations above this level. 

 

       (a)        (b) 

  
Figure 3.2: Parameter Stability plot for the location in the North Sea of 20 years of wind speed data from the ERA-

Interim database. Solid dot line is empirical PS plot for the parameters scale (a) and shape (b), with approximate 

pointwise Wald 95% confidence intervals as vertical solid lines. The PS plot used maximum likelihood (ML) 

parameter estimates for a range of thresholds (60% quantile ≤ 𝑢 ≤ 99.5% quantile). Vertical dashed black lines 

mark the empirical threshold selection. Example of the PS plot (Tsalis et al., 2019) using the extRemes package in 
R of Gilleland and Katz (2016). 

 

3.4.3 Rules of thumb 
 

 This procedure known as rules of thumb, consists in choosing one of the sample points 

as the appropriate threshold. The method is equivalent of setting the 𝑘𝑡ℎ order upper statistic 

𝑋𝑛−𝑘+1 from the ordered sample 𝑋(1), 𝑋(2), . . . , 𝑋(𝑛), of size 𝑛. (Scarrott and Mac Donald, 2012) 

in their review, pointed out the predominant widely used threshold values. As shown, the 90% 

quantile or rule of Du Mouchel (1983), although widely used, this threshold value is not relied 

to strong theoretical background. Other threshold choices are to be used such as 𝑘 = √𝑛 as 
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pointed out by Ferreira et al. (2003), and 𝑘 =
𝑛2/3

log(log(𝑛))
 proposed by Loretan & Philips (1994). 

Reiss & Thomas (2007) proposed as threshold selection the lowest upper order statistic value 

𝑘, in order to minimize the expression: 

 

min =
1

𝑘
∑ 𝑖𝛽|𝜉𝑖 −𝑚𝑒𝑑𝑖𝑎𝑛(𝜉1, 𝜉2, . . . , 𝜉𝑘)|
𝑘
𝑖=1 , 0 ≤ 𝛽 ≤ 0.5.                                          (3.23)  

Where 𝜉𝑖 is denoted as the estimated shape parameter of the GPD distribution. 

 Another selection approach proposed by Ruggiero et al. (2010), was the 99.5th 

percentile of the data. Rosbjerg et al. (1992) suggest calculating the physical threshold as the 

mean value of the observed series plus three standard deviations. The considerable 

disadvantage of The Rules of thumb method, is that the accepted threshold values rely on a 

hieratical approach and not derived analytically. 

 

3.4.4 Multiple Threshold Model 
 

 Improved threshold diagnostic plots for extreme value analyses is suggested from 

Wadsworth & Tawn (2012) and Northrop & Coleman (2014). Score and likelihood ratio tests 

fit of equality of the shape parameter over multiple thresholds, considering null hypothesis 

H0: 𝜉(𝑢) = 𝜉(𝑢𝑜), for all 𝑢 ≥ 𝑢𝑜. Rejection of H0 suggests that a threshold higher than 𝑢𝑜 is 

required.  

Wadsworth and Tawn (2012) proposed a two-threshold penultimate extreme value model in 

which the shape parameter is modelled as a partially constant function of threshold. For a pair 

of thresholds (𝑢, 𝑣), where 𝑣 < 𝑢 the shape parameter has a change-point at the threshold 𝑢: 

𝜉(𝑥) = {
𝜉𝑣𝑢, 𝑣 < 𝑥 < 𝑢
𝜉𝑢, 𝑥 > 𝑢

.  (3.24)

  

Later on, Northrop & Coleman (2014) proposed a better approximation for 𝜉(𝑥), extending the 

partially constant representation to an arbitrary number 𝑚 of thresholds (𝑢1, 𝑢2, . . . , 𝑢𝑚) as 

follows: 

𝜉(𝑥) = {
𝜉𝑖 , 𝑢𝑖 < 𝑥 < 𝑢𝑖+1
𝜉𝑚, 𝑥 > 𝑢𝑚

 , for 𝑖 = 1,2, . . . , 𝑚 − 1.              (3.25) 

 The latter model is commonly referred to as the NC diagnostics. Provided that 𝜉𝑚 >
−0.5 (Smith, 1985), p-values of the tests are estimated in a range of thresholds (𝑢𝑖, . . . , 𝑢𝑚) for 

𝑖 = 1,2, . . . , 𝑚 − 1, whether a threshold higher than 𝑢𝑖 is required. The asymptotic null 

distribution of each test statistic is approximated by the chi-squared 𝑥𝑚−𝑖
2  distribution. The 

optimum threshold value is considered as the lowest value 𝑢𝑜 with the property that the null 

hypothesis is not rejected at it and at all the higher thresholds considered 𝑢𝑜+1, . . . , 𝑢𝑚. The 

idealized scenario is that the p-values increase with threshold until approximate stabilization at 

a point where one could set the threshold. An informal approach is by looking for the sharpest 

increase in the p-value, referring to threshold that segregates no fewer than 50 events totally, 

Jonathan and Ewans (2013) and non-exceeding 5 to 10 events/year, Palutikof et al. (1999). The 

considerable advantage of the threshold from the NC diagnostics is that this selection requires 

less subjective judgment. 
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 Example of the threshold selection is presented in Figure 3.3 for the 20 year time series 

extending from 1979 to 1998 corresponding to location L18 (54.00 N 2.25 E in the North Sea) 

from the ERA-Interim database, with standard Parameter Stability (PS) plot (see sub-Section 

2.7.2) as a comparative measure. For the diagnostics, score test is performed for the shape 

parameter over multiple thresholds.The threshold range for the test was limited between the 

60% and 99.5% sample quantile of the daily wind speed maxima with a step of 0.01. The 

empirical threshold selection is depicted as the value associated to the sharpest p-value increase 

at the significance level of 0.05. For easier representation, peak p-values and threshold are 

located on the vertical dashed line on the diagram of the NC diagnostics. Furthermore, threshold 

exceedances are also denoted on the top scale of the same diagram. 

 

    (a)                                                      (b) 

 
Figure 3.3: Left Panel (a): PS plot. Solid dot line is empirical estimation for shape parameter, with approximate point 

wise Wald 95% confidence intervals as vertical solid lines. Vertical dashed line marks the threshold imported from 

the NC diagram. Right panel (b): NC diagram. Score test for shape parameter over multiple thresholds. Vertical 

dashed line marks the empirical threshold selection of the p-values at the significance level of 0.05. The threshold is 

selected at 16.590 m/s where the peak p-value is at 0.734. Example of the threshold diagnostics (Tsalis et al., 2019) 

using the extRemes and mev package in R of Gilleland and Katz (2016) and Northrop & Coleman (2014) 

respectively. 
 

3.5 De-Clustering models 
 

 In order to obtain approximately independent Threshold excesses, some kind of 

filtering of the dependent observations is considered removing the dependence by De-clustering 

the excesses. In this way De-Clustering approaches of extremes are introduced. 

 

3.5.1 Standard Storm Length (SSL) method 
 

 The standard storm length (SSL), is estimated through the autocorrelation function of 

an equal distant process and represents the required minimum time distance between successive 

maxima in order for them to be statistically independent. The method is based on filtering 

observations, in order to extract the  𝑟𝑡ℎ largest independent values. The extraction was 

performed as follows: 

a) Identifying and picking out the largest value of the time series which is extracted; 
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b) Discarding values with a lag of Δ𝑡 =
(SSL)

2
  and less, from both side of the value 

chosen in (a);  

c) Selecting the following largest value of the remaining data; 

d) Repeating steps (b) and (c) until the 𝑟-largest is finally extracted. 

 The 𝑟-largest of such values for each block size year, could be considered as the 

required 𝑟-largest independent annual events. The optimum lag time is referred as the SSL 

Tawn (1988), satisfying the independence criteria (min. correlation) between events. Extremes 

are more likely to be independent if 𝑟 is kept small (Smith, 1986). Finally, as an application to 

wind speed data, Coles & Walshaw (1994) resulted that a possible choice for the standard storm 

length is 60ℎ, advocating a reasonable number of maxima within each year to be equal to 10.  

 

3.5.2 Method of Independent Storms (MIS) 
 

 The Cook (1982) model of independent storms (MIS) increases the number of extremes 

available for analysis, whilst ensuring their independence by separating the parent time series 

into independent storms and then selecting the highest value from each storm.  

 First of all the continuous records are first subjected to a simple block-averaging low-

pass filter technique with a period of ten hours. 

 Secondly, downward crossings will define the start of the so called lull in the record 

and by definition between each pair of lulls, there exist an independent storm. Between lulls 

the peak value is selected, the maxima of the event. The selected arbitrary threshold is set at 

𝑢=5 (m/s) illustrated in Figure 3.4. 

 

 

Figure 3.4: De-clustering the time series to the sample of (X(1) , X(2) ,…, X(n)) using the MIS model. The selected 

threshold is u = 5 (m/s) (Supplamentary material of Tsalis et al., 2019). 

Defining 𝑁 the independent maxima events and 𝑅 the wind years of the record, the MISmethod 

set a typical storm frequency rate to be around 𝑟=100 (events/year), where 𝑟 = 𝑁 𝑅⁄  . 

 Third, the extracted maxima are squared in order to transform the parent distribution 

closer to an exponential, and converge to the Fisher-Tippett Type 1 extreme value distribution. 

Since the event maxima are all independent, it follows that the distribution of the largest annual 

maximum out of 𝑟  independent maxima per year, has a probability distribution for which an 

empirical estimate is the set of values (𝑝𝑚)
𝑟 associated with the ordered squared data. The 

ascending ranked order follows 

u 

t 

X
(1)

 

X
(2)

 

X
(4) 

X
(3)

 

10h 

lull 



  Threshold Excesses 

43 

 

 

𝑝𝑚 =
𝑚

𝑁+1
 , 𝑚 = 1,2, . . . , 𝑁.                             (3.26) 

The squared data values against the return value𝑦is illustrated in Figure 3.5, where 

𝑦 = −ln(−ln(𝑝𝑚)
𝑟) = −ln(−𝑟ln(𝑝𝑚)),                (3.27) 

and obtain the straight line for 𝑦 = 𝑎 ⋅ (𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑑𝑎𝑡𝑎) + 𝛽.  

 

 

Figure 3.5: Least square fit to the squared of the extremes for the estimation of the parameters of the Gumbel 

distribution. (Supplamentary material of Tsalis et al., 2019). 

 

 Although taking the square of the extremes makes no difference to their rank order, it 

does affect the fitting of the straight line in the above figure and hence the parameters of the 

Gumbel model. Using a least-squares method to find the best-fit line gives equal weight to each 

of the plotted points. However, this approach is often considered unsuitable for extreme value 

data, since the error associated with each point varies systematically, being greatest for the 

largest extremes. 

 Various alternative fitting strategies have therefore been developed. One method 

widely used for wind extremes has been the Lieblein BLUE (best linear unbiased estimators) 

method (Lieblein, 1974, and described in detail by Cook, 1985). The modified BLUE (10) 

method follows that the rank of the lowest storm maximum used, is given by the integer which 

is the nearest solution to (
𝑚

𝑁+1
)
𝑟
=

1

11
. The maximum events to be used are 𝑁 −𝑚 and not 𝑁, 

setting the threshold at a point where an annual rate of 𝑟=10 events/year gives a reliable estimate 

of the 50-year extreme. Simulations reported by Gross et al. (1994), suggest that in samples 

taken from normal or extreme value populations, optimal results are obtained if threshold is 

chosen so that the number of exceedances is of order of 10 events/year. Thus, the threshold 

must be chosen in order to improve linearity in the Gumbel plot, conducting the appropriate 

annual rate of events.   

 Finally, Harris (1999) introduces two improvements to the MIS. First, to avoid 

systematic errors, he modifies the plotting position used by Cook (1982). Second, he substitutes 

his own method to find the best-fit line (Harris, 1996) for the BLUE method. This avoids the 

need for data reduction, which Cook (1985) found necessary. 

 

3.5.3 Smith’s de-clustering model (1991) 

 

Extracted squared max.  

Least square fit 
a= slope (dispersion) 

b= intercept (mode) 
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 Smith (1991) pointed out that there is no universally accepted method for identifying 

clusters. To his model approach, he consists of specifying a threshold and a time interval. Two 

exceedances of the threshold which are closer together than the cluster interval are deemed part 

of the same cluster. But when the time interval between successive exceedances is longer than 

the cluster interval it is considered that the old cluster has finished and a new one is to begin. 

In this way clusters are defined and clusters maxima are pointed out. Threshold and cluster 

interval are to be considered arbitrary and different values are used for comparison. 

 

3.5.4 Separation time model 
 

 In the literature, a well-known model identifying independency between events, is the 

separation time between the end of one event and the beginning of another. It is stated as the 

time-lag, for which the autocorrelation between the observations becomes weak and two 

consecutive events can be safely considered independent. The value of the time lag is 

considered greater than the typical duration of the physical event itself, but not too long in order 

to avoid discarding independent events and excluding valuable data information.   

 Some examples concerning time lag between events are proposed by Egozcue et al. 

(2005) who studied wave heights along the Mediterranean coast of Spain and set the time lag 

to be 4 days. Haigh et al. (2010) studied the extreme wave height along the English Channel 

and required the surge peaks to be separated by 30 h at least. USWRC (1976), Cunnane (1979) 

and Lang et al. (1999) concluded that successive river flood events are to be separated by at 

least as many days as five plus the natural logarithm of square miles of the basin area. Willems 

(2000) required that two rainfall events are separated by at least a 12 h lag. In the study of the 

extreme behavior of daily maximum wind gusts over Belgium , Van de Vyver and Delcloo 

(2011) set a minimum time separation equal to 3 days. 

 Zachary et al. (1998) proposed three choices of minimum storm separation interval, 

namely 24, 48 or 72 h, Alves, Young (2003) have chosen 72 h, while Morton et al. (1997) and 

Morton, Bowers (1997) have proposed 30 hand Mathiesen et al. (1994) 5 to 7 days. Van Vledder 

et al. (1993) mention that the optimum minimum time between successive independent events 

can be assessed by means of correlation analysis and Soares, Scotto (2004) proposed a time 

separation interval of the order of 480 h (20 days). 

 Using correlation analysis, the time lag can also be defined using the autocorrelation 

function of the primary time series. For extreme wave heights, Mathiesen et al. (1994), 

proposed that the appropriate time lag between successive events cannot be longer than the time 

interval for which the autocorrelation function of the primary series drops under 0.3-0.5. 

 It is clear reviewing the relevant literature, that the proposed from authors time 

separation intervals (time-lag), vary dramatically. There is still no robust theory in order to 

justify the selection of the optimum separation time interval ensuring the independency between 

the events. 

 

3.5.5 Standard Runs model 
 

 A method for estimating the extremal index of a stationary sequence (and consequently 

a procedure for identifying clusters) regarded as the Runs Estimator was initially proposed from 

Smith and Weissman (1994), introducing the idea of runs of observations below a high enough 

threshold 𝑢. More precisely, the idea was that any sequence of consecutive observations from 

a time series exceeding the threshold belongs to the same cluster. Obtaining observations that 

fall below the threshold, the previous cluster is defined and once appearing the next exceedance, 

a new cluster is initiated. The number of the consecutive observations below the threshold is 

defined as the runs length and denoted as 𝑟𝑛 separating the clusters. Two excesses of the 
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threshold belong to the same storm (cluster) if they are separated by less than 𝑟𝑛 consecutive 

non-exceeding values. The de-clustering procedure of a sample {𝑋𝑖} of size 𝑛 is stated as 

follows: 

 

First, an indicator function is defined as 𝑊𝑛,𝑖 → 1 if the 𝑖𝑡ℎ observation is above the threshold 

(i.e.,𝑋𝑖 > 𝑢𝑛) and 𝑊𝑛,𝑖 → 0 otherwise. The total number of observations above the threshold 

will be then 𝑛𝑢 = ∑ 𝑊𝑛,𝑖
𝑛
𝑖=1 . 

 

Second, the number of clusters containing at least one observation above threshold will be 

denoted as 𝑍𝑛
∗ . Ensuring that an exceedance of threshold in position 𝑖 is counted in the cluster 

if and only if the following 𝑟𝑛 observations are all below the threshold. In this sense then, 

 

𝑍𝑛
∗ = ∑ 𝑊𝑛,𝑖(1 −𝑊𝑛,𝑖+1)(1 −𝑊𝑛,𝑖+2) ⋅⋅⋅ (1 −𝑊𝑛,𝑖+𝑟𝑛)

𝑛
𝑖=1 .              (3.28) 

 

The mean size of the clusters using the runs model is estimated by the ratio 𝑛𝑢/𝑍𝑛
∗ . The 𝑟𝑛 is 

closely related with the extremal index 𝜃, where the latter index is defined as the reciprocal of 

the limiting mean cluster size (Nandagopalan, 1990), 

 

𝑛𝑢/𝑍𝑛
∗ = 𝜃−1.                                (3.29) 

 

Finally, the maximum value of each of the defined clusters is extracted. 

 The choice of 𝑟𝑛 is very important for bias and variance considerations. Small values 

will arise problems of non-independence for nearby clusters, while large values will lead to 

unnecessary concatenation of clusters and so loss of data information. There is no formal 

consideration to the choice of 𝑟𝑛. Nandagopalan (1990) and Leadbetter et al. (1989) have used 

a version of the runs length with 𝑟𝑛 = 1. The advantage of this method, as described in Walshaw 

(1994), is that it allows both the duration (persistence) of storms and the duration of intervals 

between them to vary according to the data. This procedure was developed for POT and GPD 

models, extracting from any given time series the optimum extreme-type sample approximating 

the independence limitations, (Fawcett and Walshaw, 2006 b; and Caires and Sterl, 2005). From 

these studies, the clusters length varied from 24 to 60 hours. 

 Before applying the Runs model in this setting for the identification of clusters, the 

extremal index should be estimated in order to specify the optimal runs length parameter of the 

given time series. Summarizing the implementation of the Runs model, the essential parameters 

for identifying clusters and ensuring independent events are optimum values of 𝑢 and 𝑟𝑛. The 

Runs model used, relies in the Intervals Estimate for the associated 𝜃(𝑢), providing an optimum 

threshold 𝑢 from the Multiple-Threshold Model by the NC diagnostics. The threshold range for 

the Score test of the NC diagnostics was limited between the 60% and 99.5% sample quantile 

of the daily wind speed maxima with a step of 0.01. Example of the Runs de-clustering model 

is illustrated in Figure 3.6. 
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Figure 3.6: De-cluster daily wind speed data by the Runs model. The extremal index and consequently the runs 

length separating the approximately independent clusters is obtained from the Intervals Estimate and the threshold 

selection is made from the NC diagnostics. The dataset used is from the MARINA Platform database (sub-Section 

5.4) regarding sample period of 15 years (from 1996 to 2010) for location (52.05N 2.15E) in the North Sea. Example 

of the Runs de-clustering model (supplementary image of Tsalis et al., 2021) using the extRemes package in R of 

Gilleland and Katz (2016). 

 

3.5.6 DeCA model 
 

 The physical de-clustering model originaly proposed from Soukissian et al., (2006) 

aims at creating approximately independent events assuming physical considerations. The 

events are defined as a continuous physical phenomenon of the environmental variable. The 

model separates all events by looking at energy reductions between consecutive time steps. 

Initially, the available time series are filtered twice using a simple monotonicity criterion 

obtaining the series of local maxima. Successive points with the exact same value are removed 

thereupon the monotonicity criterion. From the latter series the local maxima and minima are 

identified and the cubic power of their corresponding values is estimated. Therefore, numerical 

differences of cubic local maxima to the next consecutive cubic local minima are considered. 

Selecting a pre-Defined Energy Percentage (DEP) with respect to the third power of the local 

max values, the method introduces wind energy percentage reductions. Wind climatology 

studies have established that the wind power potential available in a flow of air per unit cross-

sectioned area, normal to the flow, is proportional to the third power of wind speed (Reed, 

1974) 

 

𝑃𝑤𝑖𝑛𝑑 =
1

2
𝜌𝑣3 ,                                           (3.30) 

 

where 𝜌 is denoted as the air density and 𝑣 is the wind speed. 

The time indexes of local minima that correspond to the identified energy reductions are 

referred to as transition points. As a result, the series of transition points clarified the initial 

time series into successive and approximately independent wind-state clusters of generally 

unequal length. Then, by selecting the maximum value of each previous defined cluster, a 

sample of approximately irregular maxima randomly spaced in the time axis is derived. Even 

if each event can be associated with a particular instant of occurrence on the time axis, the 

derived sample does not depend on time any more. The optimum DEP level should generally 

be high enough in order to safely separate independent events. But it should not be extremely 

high in order to avoid unnecessary concatenation of clusters and thus loss of data information. 

Profound knowledge of the examined phenomenon guarantees that the DeCA model will 

include all events in the process.  

At this point, it should be mentioned that the initial de-clustering approach by Soukissian 

et al. (2006) avoided assumptions regarding the important regularity restrictions of sampling at 
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any DEP level. Furthermore, DeCA presumed that the statistical threshold of the de-clustered 

sample for the GPD fit should be provided hierarchically and set to the modal value without 

further investigation. The rank of dependence of the DeCA samples is analytically presented in 

Chapter 4, where a suitable re-sample model is proposed addressing the dependence limitations 

when sampling from DeCA.   

Taking into account the re-scaled series of local wind energy, for this analysis we 

considered eight levels clarifying the series of transition points. The supported DEP reduction 

levels are set constant at % values (60, 65, 70, 75, 80, 85, 90 and 95) with the time indexes of 

local minima that correspond to these levels, initiating the successive irregular clusters. 

Example of the DeCA model is illustrated in Figure 3.7. 

  

 

Figure 3.7: Example of the DeCA model with optima DEP level at 75% in order to safely separate approximately 

independent events avoiding unnecessary concatenation of clusters. The dataset used is from the MARINA Platform 

database (sub-Section 5.4) regarding sample period of 15 years (from 1996 to 2010) for location L6 (58.4N 10.3E) 

in the North Sea. Demonstration of the DeCA model of Soukissian et al., (2006) as supplementary image of Tsalis 

et al., (2021) 
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Chapter 4 
Reconstruction of regularly and irregularly spaced samples in 

time 

 
 The attempt for developing approaches to enlarge the sample extreme values beyond the 

annual maxima often provides de-clustered samples that are subjected to irregular sampling 

effect. In the irregularly spaced in time samples, the successive differences 𝛥𝑡 = 𝑡𝑖+1 − 𝑡𝑖 at 

the corresponding observation times 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑖 < ⋯ < 𝑡𝑁 in the sample of 𝑁 

observations, are not necessarily equal. Unevenly spaced time samples result to an additional 

bias and a propagated error, both of which are latter imported in the data processing when 

applying standard statistical analysis (Vio et al., 2000; Broersen, 2009; Mondal and Percival, 

2010). However, a question arises of how to measure the rate of dependency in a sample of 

observations when they are located irregularly in time.  

 Much research arround this field of interest has been undertaken and in Chapter 4 an 

attempt is made in order to transcend the important regularity restrictions of a resample. 

Specifically, a proposed methodology is analytically presented as an alternative resampling 

procedure considering the irregularly sampling scheme effect in time and deriving 

asymptotically independent observations. 

 Traditionally, the Pearson correlation estimator is the standard approach detecting the 

related dependency from de-clustered observations. However, is the standard correlation 

estimator the correct approach when the de-clustered samples are irregularly spaced in time? 

One of the most classical approaches modelling irregular observations spaced in time is the 

Autoregressive Conditional Duration (ACD) model introduced by Engle and Russell (1998). 

The model treats the time intervals between events as a stochastic process and proposes a new 

class of point processes with dependent arrival rates. Specifically, the arrival times are treated 

as random variables of a point process. The basic formulation of the model parameterizes the 

conditional intensity as a function of the time between past events, and numerous natural 

extensions include other effects such as characteristics associated with past outcomes. The 

ACD model has been partly assessed in financial studies such as Bauwens and Giot (2001), 

Engle and Russell (2002), Tsay (2002), and Hautsch (2004), that model the behavior of 

irregularly time-spaced financial data. 

 In general, the Pearson estimator is condemned when the sampling is irregular (Scargle, 

1989; Zhang et al., 2008). The accepted methods processing irregular observations in terms of 

correlation analysis are sorted into three major classes: 

 

(i) Direct transform methods (Spectral Analysis) that estimate the spectrum of the irregular 

sample by generalization of the Fourier transform (Lomp-Scargle Periodogram) (Stoica 

et al., 2009; Babu and Stoica, 2010), 

(ii) Interpolation methods that suggest re-sampling at uniform intervals (Schulz & 

Stattegger, 1997; Kreindler & Lumsden, 2006) and finally 

(iii) Slotting methods that compute the correlation of irregularly spaced samples in order to 

generalize the Pearson correlation operator (Mayo, 1993). This is achieved by calculating 

the products of observations according to their sampling time differences using the 

Gaussian Kernel as a weight function over the observations. The technique was 

developed in fluid mechanics and relevant applications can be found in (Tummers and 

Passchier, 1996; Benedict et al., 2000; and Rehfeld et al., 2011). 

 

 The classical methods for analyzing the correlation effect in samples irregularly spaced 

in time, often yield poor performance in comparison to the non-rectangular (Gaussian) Slotting 
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method. Examples of other Slotting approaches such as slot boundaries, local normalization, 

fuzzy slotting and variable windowing, can be found in Nobach (2002) or in Damaschke et al. 

(2018) and references therein. 

 Resamples are often affected by dependency and the independence limitations is usually 

disregarded. To this effect, a suitable model denoted as (DeCAUn) is proposed in sub-Section 

4.4. This model provides an improvement to the current physical De-Clustering model 

Algorithm (DeCA; see Chapter 3), re-sampling effectively the irregularly in time DeCA 

samples. The re-sampling strategy is processed using the Slotting Autocorrelation approach, 

which is also analytically presented in this Section. 

 At the following sub-sections, the standard Direct transform methods (Spectral Analysis) 

and Interpolation methods will be briefly discussed. However, our analysis will be based on the 

Slotting method. In addition, the Standard Correlation estimator and Standard Periodogram 

which disregards the irregular sampling scheme effect is briefly presented before introducing 

the Slotting method. 

 

4.1 Analysis of equally spaced samples in time 
 

4.1.1 Standard Correlation estimator 
 

Autocorrelation or lagged correlation refers to the correlation among members of a series 

of numbers arranged in time. A random process is considered statistically steady if the first and 

second moments are time invariant (covariance stationary) and if the sample moments converge 

in probability to the population moments (ergodic). Under this assumption, from a sample of 𝑁 

number of observations regularly spaced at times 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑖 < ⋯ < 𝑡𝑁, the correlation 

between observations that are separated by a lag number of 𝑘 equally distant time steps 𝛥𝑡 
(𝛥𝑡 = 𝑡𝑖+1 − 𝑡𝑖) is defined as the sample Autocorrelation Function (ACF) at each time lag (𝑘): 

 

𝜌𝑥(𝑘) =
𝐶𝑜𝑣(𝑘)

𝜎𝑥
2 =

1

𝑁−𝑘
∑𝑡=1
𝑁−𝑘(𝑥𝑡−�̅�)(𝑥𝑡+𝑘−�̅�)

1

𝑁
∑𝑡=1
𝑁 (𝑥𝑡−�̅�)

2
,                        (4.1) 

  

for any positive integer 𝑘 < 𝑁. 𝐶𝑜𝑣(𝑘) is the sample autocovariance at time lag (𝑘), and �̅� and 

𝜎𝑥
2 are the sample mean and variance respectively. The sample ACF takes both positive and 

negative values −1 ≤ 𝜌𝑥(𝑘) ≤ 1, while the associated plot is referred to as correlogram. The 

Generalized Bartlett’s formula for ACF (Bartlett, 1946), yields the following standard error 

 

𝑆𝐸𝜌𝑥 =
√1+2∑𝑖=1

𝑘−1(𝜌𝑥(𝑖))
2

𝑁
                   (4.2) 

 

for the associated 95% confidence interval. The confidence bounds of the correlogram, 

effectively test the null hypothesis of convergence to an uncorrelated approximation by that 

particular lag number of 𝑘 time steps. If 𝜌𝑥(𝑘) is located outside the bounds, this means that 

the preceding autocorrelations have not been successfully reduced to close to zero. The desired 

lag number of 𝑘 or lag (𝑘) is set as the first time lag entering the confidence bounds.  

 For samples irregularly spaced in time the inter-sampling times vary and the standard 

ACF described in Equation (4.1) cannot be directly applied (Chatfield, 1996). 

 

4.1.2 Standard Periodogram 
 

 We consider a random process as a continuous function of time and observed data 

𝑥(𝑡𝑛), where 𝑁 data points are considered at time 𝑡𝑛, {𝑡𝑛, 𝑛 = 1,2, . . . , 𝑁}. Ordering the times 
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as 𝑡1 < 𝑡2 <. . . < 𝑡𝑁 and considering evenly spaced intervals Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛, the Discrete 

Fourier Transform (DFT) is defined as follows: 

𝐷𝐹𝑇[𝑥(𝜔𝑘)] = ∑ (𝑥(𝑡𝑛)exp(−𝑖𝜔𝑘𝑡𝑛))
𝑁
𝑛=1                              (4.3) 

The Fourier series theory shows that 𝑥(𝑡𝑛) can be reproduced from a finite Fourier series of 𝑁 

terms by inverting (4.3) as follows: 

𝑥(𝑡𝑛) = ℜ(F
−1[𝐷𝐹𝑇[𝑥(𝜔𝑘)]]) = ∑ (𝐷𝐹𝑇[𝑥(𝜔𝑘)]exp(𝑖𝑡𝑛𝜔𝑘))

+𝑁 2⁄
𝑘=−𝑁 2⁄ ,                          (4.4) 

where the sum is defined on evenly spaced frequencies 𝜔𝑘 =
2𝜋𝑘

𝑇
 , 𝑘 = {−

𝑁

2
, . .0, . . , +

𝑁

2
}, and 

the sampling interval is defined as 𝑇 = 𝑡𝑛 − 𝑡1 = (𝑁 − 1)Δ𝑡. 

For discrete, equally spaced data and frequencies, the Rayleigh theorem is known as Percival 

theorem (see Appendix E.1) and is described as follows: 

Corollary 4.1 (Parcival equality) 

1

𝑁
∑ (𝑥(𝑡𝑛))

2𝑁
𝑛=1 = ∑ |𝐷𝐹𝑇[𝑥(𝜔𝑘)]|

2+𝑁 2⁄
𝑘=−𝑁 2⁄ ,                 (4.5) 

where the contribution of |𝐷𝐹𝑇[𝑥(𝜔𝑘)]|
2 to the power at frequency 𝜔𝑘  is called the intensity 

at this frequency. 

The plot of intensity versus frequency, is the Fourier line spectrum 𝑃𝑥(𝜔𝑘) (Deeming, 1975): 

𝑃𝑥(𝜔𝑘) =
1

𝑁
|𝐷𝐹𝑇[𝑥(𝜔𝑘)]|

2 

=
1

𝑁
(∑(𝑥(𝑡𝑛)exp(−𝑖𝜔𝑘𝑡𝑛))

𝑁

𝑛=1

)

2

 

=
1

𝑁
[(∑ (𝑥(𝑡𝑛)cos(𝜔𝑘𝑡𝑛))

𝑁
𝑛=1 )

2
+ (∑ (𝑥(𝑡𝑛)sin(𝜔𝑘𝑡𝑛))

𝑁
𝑛=1 )

2
].                   (4.6) 

 

 By plotting 𝑃𝑥(𝜔𝑘) (Equation (4.6)) against frequency, one will obtain a large narrow 

peak, meaning that around that specific frequency range, 𝑥(𝑡𝑛) and exp(−𝑖𝜔𝑘𝑡𝑛) will be in 

phase.  

As described in Scargle (1989), the fundamental frequency is defined as  

𝜔𝑓𝑢𝑛𝑑 = 𝜔min =
𝜋(𝑁−1)

𝑇⋅𝑁
,                   (4.7) 

and corresponds to a frequency with the minimum information in the observed data. The 

number of frequencies determining the spacing of the frequency vector is given as 𝑜𝑓𝑎𝑐 ⋅ 𝑁. 

According to Hocke and Kämpfer (2008) there is no principal limit for the oversampling factor 

(𝑜𝑓𝑎𝑐), where in general 𝑜𝑓𝑎𝑐 > 1 and is regarded as a smoothing factor. In most cases the 

oversampling factor is set to 𝑜𝑓𝑎𝑐 = 2. 

The Nyquist frequency is defined as 

𝜔𝑁𝑦𝑞 =
1

2
(
2𝜋

Δ𝑡
) =

𝜋𝑁

𝑇
, or 𝑓𝑁𝑦𝑞 =

1

2Δ𝑡
,                               (4.8) 

where Δ𝑡 =
𝑇

𝑁
 corresponds to a value in frequency with the maximum information in the 

observed data. In the case of equally spaced data, 𝑥(𝑡𝑛) in Equation (4.4) is in line with the 

properties of the Sampling Theorem stated as follows (Bracewell, 2000):  
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Theorem 4.1 (Sampling Theorem) 

Any function whose Fourier transform is zero for𝑓𝑘 ≥ 𝑓𝑁𝑦𝑞, 𝜔𝜅 = 2𝜋𝑓𝑘,  is fully specified by 

values spaced at equal intervals not exceeding  
1

2𝑓𝑁𝑦𝑞
. The highest frequency which may be 

recovered from samples at intervals 𝛥𝑡 is one-half the sampling rate or the Nyquist frequency. 

 

4.1.3 Autocorrelation Function & Power Spectrum 
 

 The energy spectrum or power spectrum in the frequency domain is defined by Parseval’s 

identity for Fourier transforms or Rayleigh’s theorem (Jenkins and Watts 1969, Priestley 1981, 

Press et al., 1992), as the square of the complex absolute value of the Discrete Fourier 

Transform, i.e.: 

 

𝑃𝑥(𝜔𝑘) = |𝐷𝐹𝑇[𝑥(𝜔𝑘)]|
2.          (4.9)

  

 Considering the Wiener-Khinchin Theorem (Khintchine 1934, Papoulis 1991; Bracewell 

2000), the normalized expression of the power spectrum of a stationary random process is 

related with the (ACF) as a Fourier transform pair. The corresponding ACF in the time domain 

is obtained as follows (see E.1 and E.3 in Appendix): 

𝜌𝑥(𝑘) = ℜ(F
−1[𝑃𝑥(𝜔𝑘)]).        (4.10) 

   

4.1.4 Example of the inverse Fast Fourier Transform (iFFT) for samples 

regularly spaced in time 
 

 An example of the Standard Periodogram and the iFFT to the Standard Correlation 

estimator is given in Figures 4.1-4.3, illustrating the hourly time series from the MARINA 

Platform database of sample period of 15 years (from 1996 to 2010) for location L2 (52.05N 

2.15E) in the North Sea. 

 

Figure 4.1: The time series from the MARINA Platform database (sub-Section 5.4) of sample period of 15 years for 

location L2 (52.05N 2.15E) in the North Sea. (Tsalis et al., 2021) 
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Figure 4.2: The Standard Periodogram of the equally spaced in time sample of 15 years for location L2 (52.05N 

2.15E of the MARINA Platform database) in the North Sea. The choice of the periods is described in Scargle (1989) 

and set at 1 (hours) for the fundamental period 𝑇0 = 𝑇𝑚𝑖𝑛 = 2𝜋/𝜔𝑚𝑎𝑥. The maximum period is set at 262990 (hours) 

from 𝑇𝑚𝑎𝑥 = 2𝜋/𝜔𝑚𝑖𝑛 = 2(𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛)𝑁/(𝑁 − 1), where (𝑡𝑚𝑎𝑥, 𝑡𝑚𝑖𝑛, 𝑁) is the max, min observation times and 

the length of the hourly sample respectively. The peak is obtained at period 8766.3 (hours) and the number of 

frequencies-periods used is 𝑜𝑓𝑎𝑐 ⋅ 𝑁=2627 controlled by the oversampling factor (ofac=2). In addition, the 

significance level denoted from the dashed line is at 10.8438 (dB5) corresponding to false-alarm probabilities of 

alpha level=5%. Example of the Standard periodorgam (supplementary image of Tsalis et al., 2021) using the lsp 

package in R of Ruf, (1999). 

 

 

Figure 4.3: Example of the Correlogram of IFFT from the Periodogram of the regularly spaced in time sample of 

observations as a function of the lag time in hours for location L2 (52.05N 2.15E of the MARINA Platform database 

in the North Sea). The 95% confidence intervals in dashed line are obtained from the Generalized Bartlett’s formula 

for ACF (see sub-Section 4.1.1). The Correlogram of the regularly sample is supplementary image of Tsalis et al., 

(2021) using the stats package in R of Venables and Ripley, (2002). 

 

                                                           
5dB=10log10(measured PSD), PSD= Power Spectral Density 
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 In the following section, we briefly present the principle of the Lomb-Scargle 

periodogram as the standard direct transorm method modeling irregular samples in time and 

the equivalence of the periodogram to harmonic least square fit. 

 

4.2 Analysis of unequally spaced samples in time 
 

 A reasonable approximation of unequally spaced samples in time to the spectrum was 

presented initially in the work of (Lomb, 1976; Press et al., 1992) by fitting sine and cosine 

waves in a least-squares sense to the observed data and plotting the reduction in the sum of the 

residuals against a range of frequencies. This approximation is also known in the relevant 

literature as the equivalence to a harmonic least square fit (Lomb, 1976; Scargle, 1981). A 

Periodogram analysis equivalent to the Lomb method for handling unequally spaced data by 

similar techniques, was introduced by (Barning, 1963). 

 The least squares fit can be regarded as the natural extension of Fourier methods to 

non-uniform data. In the limit of equal spacing, the method reduces to the Fourier power 

spectrum. As a result, a maximum in the Periodogram is obtained at the same frequency where 

it minimizes the sum of squares of the residuals of the fit of sin and cosine signals to the data.  

 Specifically, denoting a signal model 𝑥𝑓𝑘(𝑡𝑛) as a discrete second-order stationary time 

series with zero mean at observation times 𝑡𝑛 and 𝑛 = 1,2,3, . . . , 𝑁, the signal model yields:  

 

𝑥𝑓𝑘(𝑡𝑛) = 𝐴𝑘sin[2𝜋𝑓𝑘(𝑡𝑛 − 𝜏)] + 𝐵𝑘cos[2𝜋𝑓𝑘(𝑡𝑛 − 𝜏)].             (4.11) 

 

 The amplitudes 𝐴𝑘 , 𝐵𝑘 of the cos and sin signals are unknown but constant functions 

of 𝑓𝑘. The choice of the number 𝑘 of frequencies to be used is quite arbitrary but in general a 

finite-length time series will have meaning in a finite amount of statistically independent 

Fourier components. 

 A time delay 𝜏 is obtained in order to ensure time translation invariance. The latter 

invariance statement ensures that a constant shift of the sampling times (𝑡𝑛 → 𝑡𝑛 + 𝑇), will not 

affect the approximation because such a shift will produce an identical shift in (𝜏 → 𝜏 + 𝑇) and 

therefore 𝑇 will cancel out in the argument of equation 𝑥𝑓𝑘(𝑡𝑛), (Scargle, 1982). 

 From Lomb (1976) a useful formula is obtained for all values of 𝜏 as follows: 

 

∑ cos(2𝜋𝑓𝑘(𝑡𝑛 − 𝜏)) ⋅ sin(2𝜋𝑓𝑘(𝑡𝑛 − 𝜏))
𝑁
𝑛=1 = 0,                          (4.12) 

 

where the derivation of (4.12) provides the explicit formula of 𝜏, 
 

𝜏(𝜔𝑘) =
1

2𝜔𝑘
tan−1 [

∑ sin(2𝜔𝑘𝑡𝑛)
𝑁
𝑛=1

∑ cos(2𝜔𝑘𝑡𝑛)
𝑁
𝑛=1

] , 𝜔𝜅 = 2𝜋𝑓𝑘.              (4.13) 

 

The least squares approach can be considered as a minimization of the sum of squares of the 

differences between the signal model 𝑥𝑓𝑘(𝑡𝑛) and the observed data 𝑥(𝑡𝑛) , as follows: 

 

𝐸(𝑓𝑘) = ∑ [𝑥(𝑡𝑛) − 𝑥𝑓𝑘(𝑡𝑛)]
2𝑁

𝑛=1 , with frequency𝑓𝑘, 𝑘 = 1,2,3, . . . , 𝐾.                            (4.14) 

 

 From Horne and Baliunas (1986) it was proven that in the situation of an evenly spaced 

time series of length 𝑁, the number of independent frequencies in the range [−𝑓𝑁𝑦𝑞, +𝑓𝑁𝑦𝑞] is  

𝑁, where 𝑓𝑁𝑦𝑞 =
1

2⋅Δ𝑡
 denotes the Nyquist frequency according to the sampling Theorem 4.1 

(e.g. see Bendat and Piersol, 1993) and is thus identical to a standard Fourier transformation.  

 For unevenly spaced time series, the Nyquist frequency cannot be defined, because the 

sampling theorem applies only to evenly spaced time series. In this situation, an average 
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Nyquist frequency, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑓𝑁𝑦𝑞) =
1

2⋅𝑎𝑣𝑒𝑟𝑎𝑔𝑒(Δ𝑡)
 , with 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(Δ𝑡) being the average 

sampling interval, can be used as an alternative. A conservative choice of the frequency range 

(Schulz and Stattegger 1997) is by setting  𝑘 as 𝑓𝑘 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑓𝑁𝑦𝑞). 

 The minimum value of 𝐸(𝑓𝑘) as a function of frequency 𝑓𝑘 or (𝐸min(𝑓𝑘)), is estimated 

using numerical or graphical technics. Defining the residual in the sum of squares as Δ𝐸(𝑓𝑘), 
the problem is stated as of estimating a frequency that maximizes Δ𝐸(𝑓𝑘), i.e., 

 

Δ𝐸(𝑓𝑘) = ∑ [𝑥(𝑡𝑛)]
2𝑁

𝑛=1 − 𝐸min(𝑓𝑘).                (4.15) 

 

The useful formula maximizing the residuals in the sum of squares is presented as follows: 

 

Δ𝐸(𝑓𝑘) =
[∑ 𝑥(𝑡𝑛)⋅cos(2𝜋𝑓𝑘(𝑡𝑛−𝜏))
𝑁
𝑛=1 ]

2

∑ cos2(2𝜋𝑓𝑘(𝑡𝑛−𝜏))
𝑁
𝑛=1

+
[∑ 𝑥(𝑡𝑛)⋅sin(2𝜋𝑓𝑘(𝑡𝑛−𝜏))
𝑁
𝑛=1 ]

2

∑ sin2(2𝜋𝑓𝑘(𝑡𝑛−𝜏))
𝑁
𝑛=1

,                                 (4.16) 

 

where for evenly space sampling the time delay 𝜏 is considered to be zero 𝜏 = 0.  

 

4.2.1 Power Spectrum estimation (Lomb-Scargle Periodogram) 
 

 The Lomb-Scargle method proposed by Scargle (1982, 1989) focuses on the 

construction of a Fourier spectrum which is used for the inverse Fourier transform from the 

frequency domain back to the time domain. The flow chart of the data analysis for 

reconstruction of the irregular sample is illustrated in Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Flow chart of the reconstruction method: The Lomb-Scargle periodogram is used to estimate the Fourier 

Power Spectrum of an irregular sample from the time to the frequency domain. The real part of the inverse fast 

Fourier transform of the Power Spectrum back to the time domain provides the autocorrelation function for the 

equally spaced in time reconstructed sample. (Supplementary chart of Tsalis et al., (2019)) 

  

 Specifically, this method introduced a discrete Fourier transformation (DFT) that can 

be applied to evenly and unevenly spaced time series. The generalization of the Discrete Fourier 
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Transform for the observed data 𝑥(𝑡𝑛) as a discrete, second-order stationary time series, with 

zero mean, obtained at observation times 𝑡𝑛, 𝑛 = 1,2,3, . . . , 𝑁 is formed as follows: 

𝐷𝐹𝑇[𝑥(𝜔𝑘)] =

= 𝐹0(𝜔𝑘) ⋅ ∑ (𝐴(𝜔𝑘)𝑥(𝑡𝑛)cos[𝜔𝑘(𝑡𝑛 − 𝜏(𝜔𝜅))] + 𝑖𝐵(𝜔𝑘)𝑥(𝑡𝑛)sin[𝜔𝑘(𝑡𝑛 − 𝜏(𝜔𝜅))])
𝑁
𝑛=1

         

                    (4.17) 

Coefficients 𝐴(𝜔𝑘), 𝐵(𝜔𝑘) in (4.17) depend on frequency 𝜔𝑘 and not on the data 𝑡𝑛 in the 

same context as previously stated in (4.11). It is analytically proven that 𝐴(𝜔𝑘), 𝐵(𝜔𝑘) yield 

as follows: 

𝐴(𝜔𝑘) = [∑ cos2[𝜔𝑘(𝑡𝑛 − 𝜏(𝜔𝜅))]
𝑁
𝑛=1 ]

−1/2
 and 

𝐵(𝜔𝑘) = [∑ sin2[𝜔𝑘(𝑡𝑛 − 𝜏(𝜔𝜅))]
𝑁
𝑛=1 ]

−1/2
.  

 

 The choice of the 𝑘 number of frequencies to be used 𝜔𝑘 = 2𝜋𝑓𝑘, 𝑘 = 1,2,3, . . . , 𝐾 is 

quite arbitrary but in general 𝐾 > 𝑁 (Scargle, 1982; Schulz and Stattegger, 1997). Specifically, 

the choice of 𝐾 depends on the number of independent frequencies 𝑁0 (Press et al., 2007). 

Horne and Baliunas (1986) proved a relationship between 𝐾 and 𝑁0 performing extensive 

Monte Carlo simulations. In their study, they provided a simple formula to estimate the number 

of independent frequencies 𝑁0  from the number of observations 𝑁 in a time series, as 𝑁0 ≈

6.362 + 1.193𝑁 + 0.00098𝑁2. This empirical deterministic formula is suitable for most 

problems, considering henceforth 𝐾 = 𝑁0. 

𝐹0(𝜔𝑘) in (4.17) is defined as follows:  

𝐹0(𝜔𝑘) = √
𝑁

2
exp(−𝑖𝜔𝑘𝑡

∗),            (4.18) 

where 𝑡∗ functional is 𝑡∗ = −𝜏(𝜔𝑘) and  

𝜏(𝜔𝑘) =
1

2𝜔𝑘
tan−1 [

∑ sin(2𝜔𝑘𝑡𝑛)
𝑁
𝑛=1

∑ cos(2𝜔𝑘𝑡𝑛)
𝑁
𝑛=1

],                            (4.19) 

is considered as the time delay. The expression stated in the tangent in (4.19) ensures time 

translation invariance in the same context as stated for the explicit formula of 𝜏 obtained in 

(4.13) . For evenly space sampling, 𝜏(𝜔𝑘) is considered to be zero (i.e., 𝜏(𝜔𝑘) = 0). 

 For univariate spectral analysis, the generalized formula for the Lomb–Scargle 

periodogram of the Discrete Fourier Transform yields as a normalized expression (Press and 

Rybicki 1989), 

 

𝑃𝑥(𝜔𝑘) =
1

𝑁
|𝐷𝐹𝑇[𝑥(𝜔𝑘)]|

2

=
[𝐴(𝜔𝑘)]

2

2
[∑ (𝑥(𝑡𝑛) − �̅�)cos[𝜔𝑘(𝑡𝑛 − 𝜏(𝜔𝜅))]

𝑁
𝑛=1 ]

2
+

[𝐵(𝜔𝑘)]
2

2
[∑ (𝑥(𝑡𝑛) − �̅�)sin[𝜔𝑘(𝑡𝑛 − 𝜏(𝜔𝜅))]

𝑁
𝑛=1 ]

2
,
 

or, 

𝑃𝑥(𝜔𝑘) =
1

2𝜎2
(
[∑ (𝑥(𝑡𝑛)−�̅�)cos[𝜔𝑘(𝑡𝑛−𝜏(𝜔𝜅))]
𝑁
𝑛=1 ]

2

∑ cos2[𝜔𝑘(𝑡𝑛−𝜏(𝜔𝜅))]
𝑁
𝑛=1

+
[∑ (𝑥(𝑡𝑛)−�̅�)sin[𝜔𝑘(𝑡𝑛−𝜏(𝜔𝜅))]
𝑁
𝑛=1 ]

2

∑ sin2[𝜔𝑘(𝑡𝑛−𝜏(𝜔𝜅))]
𝑁
𝑛=1

),       (4.20)  

where �̅� and 𝜎2 refer correspondingly to the sample mean and sample variance.  

 Suumarizing the Lomb-Scargle Periodogram approximation to the equivalence of a 

harmonic least square fit, a maximum in the periodogram of (4.20) is obtained at the same 
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frequency where it maximizes the sum of squares of the residuals in (4.15) or (4.16) of the fit 

of sine and cosine signals to the data. 

 At this point it is important to outline that various authors have proposed modifications 

in the sums of the Lomp-Scargle Periodogram, (Reegen, 2007), (Cumming et al., 1999) 

resulting inability to account for statistical fluctuations in the mean of the sampled sinusoids. 

In addition, there is no theoreticaly procedure for testing the significance of the Periodogram 

peaks, Schwarzenberg-Czerny (1998), Vio et al. (2000), Koen (2006), Stoica et al. (2009). 

Furthermore, the significant bias in the spectrum does not diminish with the sample size 

Broersen et al. (2004 a, b). Summarizing, the LS periodogram as an estimator of the spectrum 

is characterized as 

 

(i) statistically inconsistent (i.e., its variance does not go to zero as infinite data are 

collected),  

(ii) biased for finite samples, and  

(iii) suffers from spectral leakage.  

 

 These issues from a statistical standpoint will bias the aucorrelation estimate when 

standard inverse Fourier Transform is applied. While the standard LS periodogram in 

geoscience studies remains the common approach for characterizing the properties of unevenly 

samples in time (e.g., to compute periodicity of unequally spaced data), many authors question 

this approach e.g. (Springford et al. 2020; VanderPlas, 2018; and Hocke and Kämpfer, 2008). 

Due to the significant drawbacks regarding Periodogram analysis, we therefore do not employ 

this approach in the case of uneven sampling. However, an example of the Lomb-Scargle 

Periodogram of the irregularly DeCA sample is illustrated in the following section for 

inference. Finally, there are a number of alternative methods available for spectral analysis of 

unevenly spaced data, where references are found from the work of Roberts et al. (1987) with 

the CLEAN method and Schulz and Stattegger (1997) with the SPECTRUM method. 

  

4.2.2 Example of the inverse Fast Fourier Transform for samples irregularly 

spaced in time 
 

 As an example of the Lomp-Scargle periodogram, the hourly time series from the 

MARINA Platform database of sample period of 15 years for location L2 in the North Sea 

given in Figure 4.1, is first de-clustered from the DeCA model to the irregularly sample 

illustrated in Figure 4.5. 
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Figure 4.5: The sample of observations irregularly spaced in time considering the sample period of 15 years at 

location L2 (52.05N 2.15E of the MARINA Platform database). The de-clustering procedure is performed from the 

DeCA model setting the optima DEP level at 65% in order to safely separate approximately independent events. 

(Tsalis et al., 2021) 

 

 In the following Figure 4.6 the Lomb-Scargle Periodogram is illustrated in the 

frequency domain, considering the irregularly DeCA sample of Figure 4.5. In addition, Figure 

4.7 illustrates the ACF of the reconstructed evenly sample in the time domain as the inverse 

FFT of the spectrum from the Lomb-Scargle Periodogram. 

 

  

 

Figure 4.6: The Lomb-Scargle Periodogram considering the DeCA sample of Figure 4.5. The choice of the periods 

is described in Scargle (1989) and set at 169.12 (hours) for the fundamental period 𝑇0 = 𝑇𝑚𝑖𝑛 = 2𝜋/𝜔𝑚𝑎𝑥 = 𝛥𝑡̅̅ ̅, 

where 𝛥𝑡̅̅ ̅ =
1

𝑁
∑ (𝑡𝑖+1 − 𝑡𝑖)
𝑁−1
𝑖=1  is the mean sampling time interval of the DeCA sample used. The maximum period 

is set at 131401 (hours) from 𝑇𝑚𝑎𝑥 = 2𝜋/𝜔𝑚𝑖𝑛 = 2(𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛)𝑁/(𝑁 − 1), where (𝑡𝑚𝑎𝑥, 𝑡𝑚𝑖𝑛, 𝑁)is the max, 

min observation times and the length of the DeCA sample respectively. The peak is obtained at period 8731 (hours) 

and the number of frequencies-periods used is 𝑜𝑓𝑎𝑐 ⋅ 𝑁=15520 controlled by the oversampling factor (ofac=20). In 

addition, the significance level denoted from the dashed line is at 10.31751 (dB) corresponding to false-alarm 

probabilities of alpha level=5%. Example of the Lomp-Scargle Periodorgam (supplementary image of Tsalis et al., 

2021) using the lsp package in R of Ruf, (1999). 
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Figure 4.7: Example of the Correlogram of the irregular DeCA sample obtained from the inverted FFT of the 

Spectrum from the Lomp-Scargle Periodogram as a function of the lag time in hours for location L2 (52.05N 2.15E 

of the MARINA Platform database). The 95% confidence intervals are obtained from Generalized Bartlett’s formula 

for ACF. The Correlogram of the irreregularly sample is supplementary image of Tsalis et al., (2021) using the stats 

package in R of Venables and Ripley, (2002). 

 

4.2.3 Interpolation methods 
 

 The Interpolation methods consider that the irregularly sampled time series is to be 

resampled onto a common regular time grid with constant time increments. The grid spacing is 

defined as the mean sampling time intervals of the total time series. One of the most popular 

resampling methods considered as interpolation techniques, is the nearest neighbor technique, 

where the (ACF) is approximated at the desired grid points by the value of the observation 

closest in time. After resampling, standard (ACF) can be employed. This approach revealed 

important results such as to a significant shifting bias Broersen (2009), we therefore do not 

employ in the case of uneven sampling. 

 

4.3 Slotting method 
 

 For irregular time series the inter-sampling times vary, and the standard ACF cannot 

be directly applied (Chatfield, 1996). Generalizing the regular correlation operator through a 

rectangular or Non-rectangular Kernel function, is commonly called Slotting or Slotting 

Autocorrelation approach. 

 In order to analyze the irregular samples spaced in time, Edelson and Krolik (1988) and 

Mayo (1993) considered estimating the pair products of all available observations and 

discretizing them into bins according to their sampling time differences. In this study, the 

estimator of ACF for irregular samples of 𝑁 number of observations is derived as the weighted 

mean over all available products according to their sampling time differences and desired time 

lag for which the correlation is estimated (replacing the sample autocovariance), divided by the 

sample variance of the irregular process for zero time lag and is presented as: 
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𝜌𝑥(𝑘) =
𝐶𝑜𝑣(𝑘)

𝜎𝑥
2 =

∑ ∑ 𝑥𝑖𝑥𝑗
𝑁
𝑗=1 𝑏ℎ(𝑘; 𝑡𝑗 − 𝑡𝑖, ℎ)

𝑁
𝑖=1

∑ ∑ 𝑏ℎ(𝑘; 𝑡𝑗 − 𝑡𝑖, ℎ)
𝑁
𝑗=1

𝑁
𝑖=1

/
∑ ∑ 𝑥𝑖𝑥𝑗𝑏ℎ(0; 𝑡𝑗 − 𝑡𝑖, ℎ)

𝑁
𝑗=1

𝑁
𝑖=1

∑ ∑ 𝑏ℎ(0; 𝑡𝑗 − 𝑡𝑖, ℎ)
𝑁
𝑗=1

𝑁
𝑖=1

. (4.21) 

   

 The observations 𝑥 with indexes 𝑖, 𝑗 in Equation (4.21) hereafter are considered as 

centralized and standardized values. In addition, the associated discrete time variables for these 

observations are re-scaled as a transformation from the observed 𝑡𝑜𝑏𝑠 to the 𝑡 = 𝑡𝑜𝑏𝑠 𝛥𝑡̅̅ ̅⁄  for 

each 𝑖, 𝑗 respectively, where 𝛥𝑡̅̅ ̅ =
1

𝑁
∑ (𝑡𝑖+1 − 𝑡𝑖)
𝑁−1
𝑖=1  is the mean sampling time interval. 

Accordingly, the lag number of 𝑘 is also dimensionless considering the re-scaled 𝑘=lag(𝑘)/𝛥𝑡̅̅ ̅ 
for which the ACF is estimated. 

 

 The weighting function 𝑏ℎ used in Equation (4.21) is generally referred to as the Kernel 

estimator for the inter-sampling time intervals 𝑡𝑗 − 𝑡𝑖. The estimator 𝑏ℎ was introduced by de 

Oliveira (1963) and Nadaraya (1964) and is provided as follows: 

 

𝑏ℎ(𝑘; 𝑡𝑗 − 𝑡𝑖, ℎ) =
1

ℎ
𝐾 (

𝑘 − (𝑡𝑗 − 𝑡𝑖)

ℎ
), (4.22) 

where 𝐾 is the Kernel that determines the shape of the weighting function (rectangular, triangle, 

Gaussian, etc.) which is symmetrical placed around 𝑡𝑗 − 𝑡𝑖, and positive on the interval 

[𝑡𝑗 − 𝑡𝑖 − ℎ, 𝑡𝑗 − 𝑡𝑖 + ℎ]. The parameter ℎ is defined as the bandwidth or smoothing parameter, 

which determines the width of the weighting function and adjusts the amount of smoothing 

applied over the inter-sampling time intervals. Hence, the Kernel estimate of the unknown 

density 𝑓(𝑘) is approximated by 

 

𝑓ℎ(𝑘) =
1

𝑁2
∑ ∑ 𝑏ℎ(𝑘; 𝑡𝑗 − 𝑡𝑖 , ℎ)

𝑁

𝑗=1

𝑁

𝑖=1
, (4.23) 

where  𝑁2 in (4.23) is the number of the weights used for the inter-sampling time intervals. 

Moreover, isolated peak estimates are derived for ℎ → 0, where ℎ ∈ (0,∞). The Kronecker 

Delta function denoted as 𝛿 is the approximation to the asymptotic limit lim
ℎ→0

𝐾(𝑘; 𝑡𝑗 −

𝑡𝑖, ℎ) =𝛿(𝑘 − (𝑡𝑗 − 𝑡𝑖)). In general, any function having the following properties can be used 

as a Kernel estimator:  

 

(i) 𝐾 is considered as a pdf with 𝐾(𝑢) ≥ 0 and ∫ 𝐾(𝑢)𝑑𝑢
+∞

−∞
= 1, 

(ii) 𝐾 is symmetric around zero 𝐾(𝑢) = 𝐾(−𝑢), 
(iii) 𝐾(𝑢) = 0considering|𝑢| > 1, 

(iv) ∫ 𝑢𝐾(𝑢)𝑑𝑢
+∞

−∞
= 0, 

(v) finite second moment∫ 𝑢2𝐾(𝑢)𝑑𝑢
+∞

−∞
< ∞.  

 

 The disadvantage of the kernel estimators arises when suggesting the required valuable 

shape function 𝐾 and bandwidth ℎ parameter in order to optimize the properties of the 

estimator; see e.g.(Bean and Tsokos, 1980),(Silverman, 1986),(Marron, 1988), (Wand and 

Jones, 1994), (Simonoff, 1996), and (Scott, 1992). The most popular kernel in practice is the 

Gaussian kernel due to its analytic properties. In addition, the optimum bandwidth ℎ𝑜𝑝𝑡 is not 

guided by mathematical considerations e.g., (Babu and Feigelson, 1996) and Hall et al. (2004). 

There is a vast amount of literature suggesting practical optimal bandwidth methods for Kernel 

estimation, derived by the minimization of the distance between the unknown density function 
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𝑓(𝑘) and the estimator 𝑓ℎ(𝑘). The measure of distance is guided by the Asymptotic Mean 

Integrated Squared Error (AMISE) type criteria:  

 

𝐴𝑀𝐼𝑆𝐸(𝑓ℎ) = 𝐸 {∫(𝑓ℎ(𝑢) − 𝑓(𝑢))
2
𝑑𝑢} (4.24) 

suggesting an integrability assumption on the unknown function 𝑓(𝑢), and by the Integrated 

Squared Error (ISE) type criteria 

𝐼𝑆𝐸(𝑓ℎ) = ∫(𝑓ℎ(𝑢) − 𝑓(𝑢))
2
𝑑𝑢. (4.25) 

The most well known methods of bandwidth selection using the above measures are 

summarized: 

 

1. Rule-based methods. These methods are commonly referred as Rule of thumb and Maximal 

Smoothing Principal, based by means of the (AMISE) type criteria. They replace the unknown 

density function 𝑓(𝑢) by a reference distribution function, rescaling to variance equal to sample 

variance �̂�2, pointing out ℎ𝑜𝑝𝑡 bandwidth formula. Considering the usual Gaussian distribution 

as reference function, it is determined for The Rule of thumb (Silverman, 1986): 

ℎ(𝑎𝑀𝐼𝑆𝐸)𝑜𝑝𝑡 = 1.06�̂�𝑛
−1 5⁄ , (4.26) 

and accordingly for The Maximal Smoothing Principal by (Terrell, 1990) 

ℎ(𝐴𝑀𝐼𝑆𝐸)𝑜𝑝𝑡 = 1.144�̂�𝑛
−1 5⁄  (4.27) 

under the requirements ℎ(𝑛) → 0 asymptotically at a very slow rate with the increase of 

observations 𝑛 → ∞, and 𝑛ℎ(𝑛) → ∞. The major drawback of both approaches is that they 

provide over-smooth density estimates, (Park and Turlach, 1992). 

 

2. A data-driven approach. Other most common numerical approaches dealing with bandwidth 

selection, are referred as Least Square Cross-Validation (LSCV) developed by (Rudemo, 1982) 

and later from (Bowman, 1984),following the Biased Cross Validation (BCV) in (Scott and 

Terrell, 1987). Estimates based by means of the (ISE) type criteria are derived by the(LSCV), 

while (BCV) employs the (AMISE) criteria. The major drawback of these approaches is a slow 

relative rate of convergence to the optimal bandwidth of order𝑛−1/10, obtaining estimates of 

high variability. In addition, both approaches may provide multiple minima, less often observed 

in (BCV) rather than for (LSCV) e.g.,(Hall and Marron, 1991) and (Jones et al., 1996). As a 

result, Cross Validation (CV) approaches lead to bandwidth selection that provide under-

smooth density estimates (Simonoff, 1996). 

 

3. Plug-in methods. These approaches mitigate the problem of (CV) methods regarding slow 

convergence to the optimal bandwidth. The Plug-in consideration, replaces the unknown 

functional of second derivative continuous and square integrable in the (AMISE) type criteria, 

with a suitable estimate, resulting faster convergence (Woodroofe, 1970). Suitable estimates of 

this approach may be found in Park-Marron Plug-in, (Park and Marron, 1990), resulting to a 

rate of order 𝑛−4/13 and in Sheather-Jones Plug-in (Sheatherand Jones, 1991), with a rate of 

order 𝑛−5/14. 

 

 The major drawback of this measure of distance is over and under smooth density 

estimates (Jones et al., 1996; Simonoff, 1996). Therefore, in our study for the weighting 
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function as defined in Eq. (4.22), we considered the usual Gaussian distribution as the Kernel 

function and for the bandwidth selection we did not restrict our analysis to a single optima. On 

the contrary, we examined the performance of the irregular ACF estimator as stated previously 

in Eq. (4.21) against a range of possible bandwidths recommended by Sheather (2004). 

 

4.3.1 Statistical properties of Kernel estimators 
 

 A Java applet that allows a practitioner to obtain the effects of changing the bandwidth 

and the shape of the kernel function on the resulting density estimate can be found at 

http://www-users.york.ac.uk/∼jb35/mygr2.htm. It is well known that the value of the bandwidth 

is of critical importance, while the shape of the kernel function has little practical impact. 

Assuming that the underlying density is sufficiently smooth and that the Kernel has finite fourth 

moment, the expected value, bias and variance of the �̂�(𝑥) is shown respectively using Taylor 

series from Wand and Jones (1994, Ch. 2). 

 

1. Expected value of 𝑓(𝑥) 

𝐸[𝑓(𝑥)] = 𝑓(𝑥) +
1

2
ℎ2𝑓′′(𝑥) ∫ 𝑧2𝐾(𝑧)𝑑𝑧

+∞

−∞
+ 0(ℎ2),                          (4.28) 

2. Bias of 𝑓(𝑥) 

𝐵𝑖𝑎𝑠 (𝑓(𝑥)) = 𝐸[𝑓(𝑥)] − 𝑓(𝑥) =
1

2
ℎ2𝑓′′(𝑥)∫ 𝑧2𝐾(𝑧)𝑑𝑧

+∞

−∞
+ 0(ℎ2), and           (4.29) 

3. Variance of 𝑓(𝑥) 

𝑉𝑎𝑟[𝑓(𝑥)] ≃ 𝑓(𝑥)
1

𝑛ℎ
∫ (𝐾(𝑧))

2
𝑑𝑧

+∞

−∞
+ 0(

1

𝑛ℎ
).                           (4.30) 

 The Mean Squared Error (MSE) and Mean Integrated Squared Error (MISE) are the 

standard measures serving as criteria for bandwidth selection and efficiency of estimation 

performance. Specifically, using the combinations of the latter expressions stated in Equations 

(4.28), (4.29) and (4.30) (see proof in Appendix G), it is defined: 

 

𝑀𝑆𝐸 (𝑓(𝑥)) = 𝑉𝑎𝑟 (𝑓(𝑥)) + (𝐵𝑖𝑎𝑠 (𝑓(𝑥)))
2

                     =
1

𝑛ℎ
𝑓(𝑥) ∫ (𝐾(𝑧))

2
𝑑𝑧

+∞

−∞
+
1

4
ℎ4(𝑓′′(𝑥))

2
(∫ 𝑧2𝐾(𝑧)𝑑𝑧

+∞

−∞
)
2
,

          (4.31) 

and 

𝑀𝐼𝑆𝐸 (𝑓(𝑥)) = 𝐸 [∫ (𝑓(𝑥) − 𝑓(𝑥))
2
𝑑𝑥

+∞

−∞
] = ∫ 𝐸 [(𝑓(𝑥) − 𝑓(𝑥))

2
] 𝑑𝑥

+∞

−∞
, 

or, 

 𝑀𝐼𝑆𝐸 (𝑓(𝑥)) = ∫ 𝑀𝑆𝐸 (𝑓(𝑥))𝑑𝑥
+∞

−∞
.(6)               (4.32)

    

Substituting (4.31) in (4.32), yields 

𝑀𝐼𝑆𝐸 (𝑓(𝑥)) =
1

𝑛ℎ
∫ (𝐾(𝑧))

2
𝑑𝑧

+∞

−∞
+
1

4
ℎ4(∫ 𝑧2𝐾(𝑧)𝑑𝑧

+∞

−∞
)
2
⋅ ∫ (𝑓′′(𝑥))

2
𝑑𝑥

+∞

−∞
.                     

                     (4.33) 

                                                           

(6) 𝑀𝐼𝑆𝐸 (𝑓(𝑥)) = ∫ 𝑉𝑎𝑟 (𝑓(𝑥)) 𝑑𝑥
+∞

−∞
+ ∫ (𝐵𝑖𝑎𝑠 (𝑓(𝑥)))

2

𝑑𝑥
+∞

−∞
. 
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The true density 𝑓(𝑥) must have its second derivative 𝑓′′(𝑥) continuous and square integrable. 

Selecting small bandwidth ℎ reduces the 𝐵𝑖𝑎𝑠 (𝑓(𝑥)) in (4.29) but increases the 𝑉𝑎𝑟 (𝑓(𝑥)) 

in (4.30). The standard selection for optimum bandwidth is derived by minimizing the 

𝑀𝐼𝑆𝐸measure in (4.33) as follow: 

𝜕𝑀𝐼𝑆𝐸(�̂�(𝑥))

𝜕ℎ
= 0, deriving  

ℎ3(∫ 𝑧2𝐾(𝑧)𝑑𝑧
+∞

−∞
)
2
⋅ ∫ (𝑓′′(𝑥))

2
𝑑𝑥

+∞

−∞
−

1

𝑛ℎ2
∫ (𝐾(𝑧))

2
𝑑𝑧

+∞

−∞
= 0, and 

ℎ𝑜𝑝𝑡 =
(∫ (𝐾(𝑧))

2
𝑑𝑧

+∞

−∞
)
1/5

⋅𝑛−1/5

(∫ 𝑧2𝐾(𝑧)𝑑𝑧
+∞

−∞
)
2/5

⋅(∫ (𝑓′′(𝑥))
2
𝑑𝑥

+∞

−∞
)
1/5.                       (4.34) 

Substituting the optimum bandwidth in (4.34) into (4.33) for the 𝑀𝐼𝑆𝐸of𝑓(𝑥), yields the 

minimum value expression, 

𝑀𝐼𝑆𝐸 (𝑓(𝑥))
𝑜𝑝𝑡

=
5𝑛−4/5

4
(∫ 𝑧2𝐾(𝑧)𝑑𝑧

+∞

−∞
)
2/5

(∫ (𝐾(𝑧))
2
𝑑𝑧

+∞

−∞
)
4/5

(∫ (𝑓′′(𝑥))
2
𝑑𝑥

+∞

−∞
)
1/5

.    

                    (4.35) 

 The expression found in (4.35) is intractable and not applicable in practice. It has been 

found that Kernel function that minimizes𝑀𝐼𝑆𝐸, as initially presented by Epanechnikov in 

(1969), has the following form 

 

𝐾(𝑧) = {
3

4√5
(1 −

1

5
𝑧2) for |𝑧| < √5

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                            (4.36) 

 Efficiency of any Kernel function is considered by comparing it with the Epanechnikov 

Kernel as follow: 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝐾) = (
𝑀𝐼𝑆𝐸(�̂�(𝑥))

𝑜𝑝𝑡

Epanechnicov

𝑀𝐼𝑆𝐸(�̂�(𝑥))
𝑜𝑝𝑡

other Kernel )

5/4

=
3

5√5√(∫ 𝑧2𝐾(𝑧)𝑑𝑧
+∞

−∞
)⋅(∫ (𝐾(𝑧))

2
𝑑𝑧

+∞

−∞
)

, |𝑧| < 5.          

                              (4.37) 

 Efficiency measure as expressed in relation (4.37) provides a measure to compare 

different symmetric Kernels with the Epanechnikov Kernel. For any other symmetric Kernel 

the closer the efficiency to one, the smaller is the 𝑀𝐼𝑆𝐸 type criteria. 

 

Table 4.1: Kernel estimators and their efficiencies. 

Kernels 𝐾(𝑧) Efficiency 

 

Epanechnikov 
{

3

4√5
(1 −

1

5
𝑧2) for |𝑧| ≤ √5

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

1 

 

Biweight 
{
15

16
(1 − 𝑧2)2 for |𝑧| ≤ 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

0.9939 
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Triangular 

{
1 − |𝑧| for |𝑧| ≤ 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

0.9859 

 

Gaussian 

1

√2𝜋
⋅ e−𝑧

2/2 
 

0.9512 

 

Rectangular 

{
1/2 for |𝑧| ≤ 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

0.9295 

 

 The choice of Kernel type is not so significant. The latter Table 4.1 shows that there is 

a very little difference between the various Kernels on being used from (4.35) at 

𝑀𝐼𝑆𝐸 (𝑓(𝑥))
𝑜𝑝𝑡

 calculations. The most frequently used Kernel is the Gaussian Kernel and has 

efficiency approximately 95%. Therefore the choice of Kernel type is based on other 

considerations, such as computational expense. 

 

Figure 4.8: The most commonly used Kernel based estimators (Amberg, 2008) 

 

4.3.2 Rectangular Kernel slotting 
 

 The Slotting method from Edelson and Krolik (1988) applied rectangular Kernel 

function in order to bin the observations into discrete sets, considering discontinuousness in 

time. In this case the weighting function selects the products whose time lag is not further than 

half the bin width from the given time lag (𝑘), taking the following form:  

 

𝑏ℎ(𝑘; 𝑡𝑗 − 𝑡𝑖, ℎ) = {
1 for ||(𝑡𝑗 − 𝑡𝑖)| − 𝑘| < 1/2,

0 otherwise,
                          (4.38) 

 

where the lag bin width in their study is set equal to the mean sampling time interval. 

 

 The disadvantage of this technique is that it yields a high variance of the ACF estimator, 

excluding a significant number of products accounting to a particular time lag, (Benedict et al., 

2000; Babu and Stoica, 2010). In order to increase the valuable pairs to be averaged into the 

sample autocovariance in ACF in Equation (4.21), the Non Rectangular slotting approach is 

introduced, considering a certain approximation of the distribution of the inter-sampling times. 
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Examples of other slotting approaches such as slot boundaries, local normalization, fuzzy 

slotting and variable windowing, can be found in (Nobach, 2002), (van Mannen et al., 1999), 

and (Damaschke et al., 2018). 

 

4.3.3 Non-rectangular Kernel 
 

 In the Slotting method used for this study, the inter-sampling time intervals will not be 

binned into discrete sets by a rectangular Kernel. Instead, weighting the products by applying 

a non-rectangular Gaussian Kernel weight function will increase the valuable pairs to be 

averaged into the irregular ACF in Equation (4.21). In this way, a sudden cutoff in the time 

domain is prevented, weighting the products smoothly according to the difference between the 

inter-sampling time interval 𝑡𝑗 − 𝑡𝑖 and the considered time lag (𝑘). The Gaussian Kernel 

density function tends to zero for time differences much larger or smaller than the considered 

time lag (𝑘) (Hall et al.,1994; Bjornstad and Falck, 2001), and is defined as follows: 

 

𝑏ℎ(𝑘; 𝑡𝑗 − 𝑡𝑖, ℎ) = {
1

ℎ√2𝜋
exp (−

|𝑘 − (𝑡𝑗 − 𝑡𝑖)|
2

2ℎ2
) , ℎ = 𝐶∆τ.             (4.39) 

 

However, there is no theoretical definition of the effective width of the weight functions. 

The Gaussian Kernel used in this study considers the standard width parameter ℎ to be scaled 

to the mean sampling time intervals, i.e. Δτ = 𝛥𝑡̅̅ ̅ =
1

𝑁
∑ (𝑡𝑖+1 − 𝑡𝑖)
𝑁−1
𝑖=1  in order to adjust the 

effective width of the weight function satisfactorily to the mean width of the time intervals. In 

this way, it is ensured that observations appearing at an almost constant frequency are rated 

higher than infrequent observations. In addition, parameter 𝐶 is defined as the normalized 

bandwidth. For accurate estimations the degree of smoothing is of great importance. Selection 

of a large bandwidth will result in an over-smoothed performance of the density function while 

a small value will under-smooth the estimation. Examinations on Asian monsoon records from 

Rehfeld et al. (2011), revealed empirical normalized bandwidth at 𝐶 = 0.25. In our analysis we 

considered the range 𝐶 ∈ [0.125, 1] with a 0.125 step, in order to optimize the irregular ACF 

estimator in Equation (4.21) as defined in the Slotting method. In the following sub-Sections 

the DeCAUn model will be described in detail. 

  

4.4 DeCAUn model 
 

In this section, a re-sampling strategy is analytically presented to alleviate the effect of 

dependency in samples of irregularly observations (demonstrated at the 11th international 

conference on Extreme Value Analysis, Zagreb 2019). The proposed DeCA Uncorrelated 

(DeCAUn) model performs re-sampling taking into account the correlation effect in the 

irregular samples of DeCA for a range of discrete energy reduction levels in the samples. In 

addition, the proposed model analyzes the correlation effect obtained in the irregular samples 

using the Gaussian Kernel weight function for the computation of the generalize Pearson 

correlation operator from the Slotting method.  

The DeCAUn model also examines the response of the Kernel function used over a range 

of smoothing parameters or bandwidth, enhancing the performance of the Gaussian function as 

a weight function over the irregular samples of observations. At this point it is outlined that the 

DeCAUn model used the Slotting method and not the Lomb-Scargle periodogram for the 

analysis of the correlation effect of the irregular samples as previously discussed. 
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The proposed model requires two subjective admissions for its successful statistical 

application. These admissions that consist the main objectives of the evaluation of the DeCAUn 

model are:  

 

1. The favorably bound estimation of the energy-reduction level, and 

2. the optimal bandwidth smoothing response of the weight function to the 

irregularly spaced observations in time. 

The response of the DeCAUn model in applications considering a limited availability in 

data is the key factor in this work. Therefore, the assessment is carried out for relatively small 

datasets of annual wind speed time series, corresponding to four sample periods of 10, 15, 20 

and 25 years long. In the following sub-Section, the irregular samples to be fit are defined. In 

addition, the Irregular modeling procedure of DeCAUn is presented in steps, considering all 

DEP and bandwidth values. 

 

4.4.1 Proposed Methodology for re-sampling 
 

 The samples of DeCA at the associated DEP levels required further investigation in 

terms of correlation. Re-sampling is advised when the condition of independence is violated 

(Miquel, 1984; Lang et al., 1999). In this assessment, two re-sampling scheme strategies for the 

samples of DeCA are proposed and denoted as DeCAUn.1 and DeCAUn.2 respectively. The 

re-sampling scheme DeCAUn.1 is formed as follows: 

 

(i) Selecting the maximum value of the corresponding DeCA sample, 

(ii) identifying and selecting the following lag(𝑘)-apart values of the remaining data 

from both sides of the value chosen in (i) until all available values are considered. 

 

The re-sampled DeCAUn.2 is closely related to the concept of the SSL, (Soares and Scotto, 

2004). The DeCAUn.2 scheme consists of the following steps:  

 

(i) Identifying and selecting the largest value of the correspondent DeCA sample, 

(ii) Discarding values with a lag(𝑘)-apart from both sides of the value chosen in (i), 

(iii) Selecting the next largest value of the remaining data and finally, 

(iv) Repeat steps (ii) and (iii) until all data are used.  

 

 At this point, the lag (k)-apart value for re-sampling is difficult to estimate. It is the 

required minimum value between successive irregular maxima of DeCA clusters, which renders 

the maxima statistically independent. The desired lag(k) is obtained from the estimator 

algorithm of ACF for different time lags. The latter algorithm is defined as SIMILARITY 

(Rehfeld and Kurths, 2014) providing estimates for the irregular ACF in Eq. (4.21) using the 

non-rectangular Gaussian Kernel (gXCF) in Equation (4.39). In this way, the products 𝑥𝑖𝑥𝑗 of 

the irregular ACF estimator are weighted according to their difference between the product 

inter-sampling time interval 𝑡𝑗 − 𝑡𝑖 and the associated time lag (𝑘) for the samples of DeCA.  

 The desired lag(𝑘)-apart value is derived as a time lag transformation from the 

correlogram. It is set as the value of 𝑘 observations obtained from the transformation of the first 

time lag entering the confidence bounds (i.e., roughly 1 in 20 of the successive 𝜌𝑥(𝑘) to have 

absolute value greater than 95% CI of zero autocorrelation) described by the Generalized 

Bartlett’s formula in sub-Section 4.1.1. Example of the autocorrelation from the SIMILARITY 

algorithm is illustrated in Figure 4.9. 
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Figure 4.9: Example of the autocorrelation from SIMILARITY as a function of the time lag (𝑘) for the irregularly 

DeCA sample. The correlation Slotting method uses the Gaussian Kernel and the 95% confidence intervals of the 

ACF are derived from the Generalized Bartlett’s formula. The sample period of the Correlogram is at 15 years 

considering the dataset from the MARINA Platform database at location L2 (52.05N 2.15E in the North Sea). The 

Correlogram of the irreregularly DeCA sample is supplementary image of Tsalis et al., (2021) using the ACF 

estimator algorithm SIMILARITY in Matlab (Rehfeld and Kurths, 2014) 

 

 The ACF estimator algorithm SIMILARITY is utilized in sample periods of (10, 15, 

20 and 25 years) at the locations described in Chapter 5. The available software analyzing 

irregular samples in time and the correlogram at given time lags can be found in the 

NESToolbox (https://tocsy.pik-potsdam.de/nest.php) cited in Rehfeld and Kurths, (2014). 

 

4.4.2 Modeling DeCAUn irregularly in time  
 

 The irregularly modeling process was carried out for eight DEP reduction level values 

(60, 65, 70, 75, 80, 85, 90 and 95 percent), deriving equal number of DeCA samples. 

Furthermore, each DeCA sample was modeled at eight 𝐶 normalized bandwidths 𝐶 ∈ [0.125, 

1] with a 0.125 step, deriving equal number of SIMILARITY results. In this way, all DeCA 

samples are re-sampled to DeCAUn.1 and DeCAUn.2 respectively as described above. The 

associated lag (𝑘)-apart value for re-sampling will be estimated by the SIMILARITY function 

for all bandwidth considerations.  

 At this point it is noted that for the evaluation of the statistical model fit of the DeCAUn 

re-samples to the GPD analytically presented in the following three steps, the concept of design 

values and return periods is used. In relevant wind and coastal engineering applications where 

the proposed model focuses, the concept of return period and design value is widely used. The 

formal definition of the return period implies that the design value is expected to be exceeded 

on average once during the next 𝑁 years of observations. The period of 𝑁 years is called return 

period 𝑅𝑃, associated with the design value. Specifically, the distribution function Pr(𝑋 ≤ 𝑦) 
of the exceedances𝑦 = (𝑥 − 𝑢)| 𝑥>𝑢, considering 𝑢 is high enough, can be approximated by 

the GPD i.e. 𝐺(𝑦) = Pr(𝑋 ≤ 𝑦). The return period is associated with the exceedance event 

𝑋 > 𝑥𝑝, that has probability of occurrence Pr(𝑋 > 𝑢 + 𝑥𝑝|𝑋 > 𝑢) = Pr(𝑋 > 𝑥𝑝) = 1 −

Pr(𝑋 ≤ 𝑥𝑝) = 1 − 𝐺(𝑥𝑝). Therefore, the return period is defined as follows:  

 

𝑅𝑃(𝑥𝑝) =
1

1−𝐺(𝑥𝑝)
,                               (4.40)  
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where 𝑥𝑝 is the design value associated with the return period 𝑅𝑃, or else the 𝑅𝑃-year design 

value. Some authors use instead of 𝐺(𝑥𝑝), the expression 1 − 𝑝, where 𝑝 = Pr[𝑋 > 𝑥𝑝] =

1/𝑁. In this case, 𝑥𝑝 is the level expected to be exceeded on average once in any particular N 

year with probability 𝑝 (see also sub-Section 3.2.3). 

 

Step 1: The re-samples of DeCAUn.1 and DeCAUn.2 are effective only if the common 

assumption of stationarity is not violated. For this reason, the non-parametric rank-based Mann-

Kendall (M-K) test at a significance level of 𝑎 = 0.05 was implemented; see also (sub-Section 

2.5.2). The aim of the test was to ensure the absence of a monotonic upward or downward trend 

of the examined re-samples. The null hypothesis of the test is 𝐻0: No monotonic trend is 

present, against the alternative 𝐻: There is a monotonic trend present. The test is used and 

discussed in the context of EVA in Cheng et al. (2014). It should be noted that the application 

of the M-K tests to the re-samples is a fundamental step as the presence of possible temporal 

dependence and monotonic trends can affect and bias the GPD model fit, which relies on the 

hypothesis of independent observations. 

 

Step 2: The re-samples of DeCAUn at each DEP level are subjected to a statistical GPD model 

fit. However, the statistical threshold considerations for the model fit will be set within a range 

of values 𝑢 = (0, first quartile, mean, mode, and median) obtained from the re-samples 

respectively. The optimum re-samples are assigned in terms of the lowest AIC and the lowest 

statistic MSE under the statistical threshold considerations. 

Step 3: The DeCAUn re-samples derived from Step 2 are considered optimum for the statistical 

GPD model fit. All previous Steps 1 and 2 are repeated over all normalized bandwidth 

considerations. At this point, we note that the quantitative comparison of the DeCAUn re-

sampled model fit was not based on the standard AIC and MSE criteria. Thus, neither common 

criteria for model selection nor goodness-of-fit tests are appropriate for evaluating the quality 

of the model fit. Therefore, we considered a metric guide rule in the least-square sense to 

measure the goodness of fit. Each optimum model fit will be counted upon a relative measure 

of performance based on the estimated design values (𝐷𝑉) per sample period (Ny) denoted as 

𝐷𝑉𝑜𝑝𝑡(DEP, 𝑢, 𝐶, Ny). The relativity of the metric is gauged by the associated estimates from 

the BM approach within the largest annual available time series 𝐷𝑉(max). The quantitative 

measure is defined as a normalized root mean square error (𝑛𝑟𝑚𝑠𝑒), based on the modal 

position of Hyndman and Fan (1996) 

 

𝑛𝑟𝑚𝑠𝑒(Ny) = √
1

𝑁𝑇
∑ (

𝐷𝑉(𝑅𝑃;max) − 𝐷𝑉𝑜𝑝𝑡(𝑅𝑃; DEP, 𝑢, 𝐶, Ny)

𝐷𝑉(𝑅𝑃;max)
)

2

𝑅𝑃∈𝑇

, (4.41) 

 

where 𝑇 = (2, 10, 20, …, 90 and 100) indicating the return periods (𝑅𝑃) of length 𝑁𝑇 = 11 and 

Ny = 10, 15,20 and 25 years denoting the four sample periods of examination. The precision 

of the 𝑛𝑟𝑚𝑠𝑒 measure will be counted upon the 𝐷𝑉(max) estimates of the reference model 

(BM Ref.) using the largest available sample of 20 years for the MARINA Platform dataset, 50 

years for the ERA-20C and 38 years for the ERA-Interim dataset respectively (see Chapter 5). 

Moreover, the parameter estimation method used is the standard MLE for the GEV and GPD 

model fit of DeCAUn and BM Ref. respectively to all datasets. 

 In this implementation, the optimum normalized bandwidth of 𝐶 ∈ [0.125, 1] with a 

0.125 step is the value that minimizes the nrmse estimates from the re-samples in Step 2. At 

this optimum bandwidth selection the optimum DEP level is also derived and the optimum re-

sampling scheme of DeCAUn. This empirical procedure applied for the selection of the 

optimum normalized bandwidth to the weighting function is a result of no theoretical rule of 
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the effective bandwidth. The aforementioned Steps 1,2, and 3 are respectively applied to the 

four sample periods of examination (10,15,20 and 25 years). For clarity, the empirical optimum 

bandwidth selection with the associated nrmse at the two sample periods of examination is 

presented for only one location (L21; see Table 5.6) in the following Figure 4.10. 

 

 
 

Figure 4.10: Optimum normalized bandwidth (bdw) selection for L21 from the MARINA Platform database. The 

empirical procedure applied for the selection of the optimum normalized bandwidth is supplementary image of Tsalis 

et al., (2021) 

 From the empirical procedure described in Step 3, the DeCAUn model set optimum 

normalized bandwidth values at 0.625 for the 10 years and 0.125 for the 15 years as illustrated 

in Figure 4.10. For a comprehensive overview of the irregularly modeling procedure, a flow 

diagram is illustrated in Figure 4.11 summarizing in brief the key-steps in this setting from the 

time series to the re-sampling scheme. 

 

 
 

Figure 4.11: Example of the re-sampling strategy illustrating the procedure from the time series to the selected re-

sampling scheme of DeCAUn. The flow chart diagram describes in brief the irregularly modeling process 

considering eight DEP % reduction levels and eight normalized bandwidth values. The minimum nrmse measure 

derived the optimum scheme for re-sampling. The flow chart is found in Tsalis et al., 2021. 

In addition, an example of the declustering process under the DeCA and DeCAUn model 

is illustrated for inference in Figure 4.12. 
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(a) 

 

(b) 

 

Figure 4.12: Example of the DeCAUn model in (a) with optimum DEP reduction level at 65% in order to safely 

separate approximately independent events avoiding unnecessary concatenation of clusters. The desired lag(𝑘)-apart 

value for re-sampling from DeCAUn.2 the irregular observations from DeCA in (b) is estimated at lag(𝑘)=9 as a 

time lag transformation from the correlogram. In addition, the No. of DeCA clusters is 778 and the DeCAUn clusters 

is 66, withoptimum normalized bandwidth set at 0.25. The dataset used is from the MARINA Platform database 

(sub-Section 5.4) regarding sample period of 15 years (from 1996 to 2010) for location L2 in the North Sea. The 

demonstration of the re-sampling strategy of DeCAUn is illustrated also in Tsalis et al., (2021) 

  

 Summarizing the implementation of DeCAUn, we recall that the main idea is to re-

sample the irregular samples from DeCA to re-samples approximating to the i.i.d limitations. 

The re-sampling procedure was processed by the Slotting method, employing a Gaussian 

Kernel weight function into the irregular ACF estimator. Moreover, the re-sampling process 

accounted a range of DEP reduction levels and a range of bandwidths. In this way, the foregoing 

ranges encompassed as many discrete events as possible and avoided over or under smooth 

effects on the weight function respectively. 
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Chapter 5 
Study area and wind speed dataset used 

 

 In this Section the time series with their statistical properties are provided for the wind 

speed data that are used for the response of the proposed models with regards to the return 

levels (design values) and return periods presented in Chapter 6. The datasets are obtained from 

four available databases, namely (i) from the National Oceanic and Atmospheric 

Administration (NOAA) for buoys located in the Pacific coast of central America and eastern 

Atlantic Ocean, (ii) the ERA-20C, (iii) ERA-Interim and (iv) MARINA Platform for locations 

selected at the North Sea, the Atlantic Ocean and the Mediterranean Sea.  

Our assessment is focused on different offshore regions in Europe, with special focus 

in the North Sea, the European coastline that is exposed to the Atlantic Ocean and finally the 

Mediterranean. The considered locations in these regions are of high interest in terms of wind 

energy and offshore activities. Their characteristics vary and are highly affected by the different 

climatological patterns for each region. The wind conditions in the North Sea are driven by the 

passage of cyclonic systems such as extra-tropical cyclones influenced by the inflow of oceanic 

water from the Atlantic Ocean. This, combined with North Sea’s shallow water basins, result 

to a remarkable offshore wind profile (Sušelj et al., 2010). The West European offshore 

locations exposed to the Atlantic Ocean are affected by the extra or post-tropical cyclones that 

are generated along the Polar and the Arctic front respectively (Dodet et al., 2010). Finally, the 

Mediterranean Sea is a semi-enclosed basin surrounded by complex mountainous terrain and is 

divided in several sub-basins with contradistinctive characteristics. In addition, the Mid-

Latitude cyclone passage results to complicated wind patterns with extreme winds. A detailed 

description of the main Mediterranean winds is provided by Zecchetto and Cappa (2001) and 

Soukissian et al., (2018) with references therein, where wind climate and wind power potential 

characteristics of the Greek Seas found in (Soukissian et al., 2017; Katopodis et al., 2019). 

All models are assessed against the BM from these datasets (see Chapter 6). The 

maximum available time series is extending from 1976-2012 (37 years long) from the NOAA 

product, the ERA-20C is extending from 1961-2010 (50 years long) and the ERA-Interim 

product from 1979-2016 (38 years long). The maximum wind speed time series used from the 

MARINA Platform database is from 1996 to 2015 (20 years), referred also as the reference 

series of the BM model (BM Ref.). A short description of the above mentioned datasets is 

presented in the following sub-Sections. 

 

5.1 NOAA database 
  

 The National Oceanic and Atmospheric Administration (NOAA) National Data Buoy 

Center (NDBC), a part of the National Weather Service (NWS), designs, develops, operates, 

and maintains a network of moored buoys and coastal stations throughout the world’s oceans, 

seas, and lakes for the purpose of providing civil earth marine observations. NDBC has 

provided real-time, oceanographic, and meteorological observations since 1967 to a wide 

variety of stakeholders and users. NDBC provides high quality ocean and coastal observations 

for public safety use in direct support of short range and extended range NWS forecasts, 

Warnings, and Watches.  

 Wind measurements are made at all NDBC weather stations. NDBC uses 4-blade, 

impeller-driven, wind-vane sensors. The final measurements are statistical estimates of the 

wind from time series of instantaneous wind samples taken at a minimum rate of 1 Hertz (Hz) 

over a particular length of time. The sampling rate is a function of the payload. CMAN stations 
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use a 2-minute data acquisition period, and moored buoys use an 8-minute acquisition period. 

The following standard wind measurements are produced each hour. 

 Continuous-wind data are accumulated in segments of 10 minutes, yielding 600 

samples per segment, and six 10-minute segments each hour. After each segment period, the 

mean of the segment is calculated and stored in a temporary buffer. The accumulations are also 

stored for later hourly statistical processing. The payload saves the most recent six 

accumulations. At the end of each 10-minute segment, the oldest data, now more than an hour 

old are removed from memory and replaced with the most recent.  

 At the end of an acquisition period, statistical processing is performed, and the output 

message is updated with the new statistics and six 10-minute segments. Statistical processing 

includes the calculation of the mean for both direction and speed and the standard deviation of 

the speed. The hour's data do not represent data from minute 0 to minute 59. Rather, it represents 

the latest, complete six 10-minute segments before the end of the last acquisition. The 10-

minute segments are, however, bounded by minutes 0, 10, 20, etc. 

 Wind measurements undergo range, consistency, standard deviation, and gust-to-speed 

ratio checks. Wind speed at 10 m above site elevation (WSPD11, WSPD21) and 20 m above 

site elevation (WSPD12, WSPD22) are derived from an algorithm (Liu et al., 1979) that uses 

the height of the anemometer, the wind speed (WSPD1 or WSPD2), a constant relative 

humidity of 85%, a constant sea-level pressure of 1013.25, and the air (ATMP1 or ATMP2) 

and water temperature (WTMP1). If either the air or water temperature are unavailable, then 

the neutral stability is assumed. Assuming neutral stability can introduce an error of up to 5 

percent. If both are missing then neither 10 nor 20-m wind speeds are made. Finally many buoys 

that are climatologically in the path of hurricanes or intense low pressure systems have the 

capability of measuring supplemental one-minute average wind data. A comprehensive 

documentation of the NDBC can be downloaded from 

http://www.ndbc.noaa.gov/NDBCHandbookofAutomatedDataQualityControl2009.pdf and 

available data sets from http://www.ndbc.noaa.gov/ . 

  

Dataset 
 

 In this setting, wind speed datasets from the NOAA database is used to address 

effectively the intractable problems of inference of the most used and less known parameter 

estimation methods of the GEV distribution. Inference of the demonstration of the parameter 

methods is made to the regional locations in the Pacific coast of central America and locations 

in the North West Atlantic Ocean which are exposed to a strong wind climate with evidence of 

extreme wind speed (Lavin et al., 2006). Specifically, locations (41001 and 44004) in the 

Tropical North Atlantic ocean (see Figure 5.1), are related to hurricane activity and locations 

(46006 and 51003) are highly exposed to the Eastern North Pacific tropical cyclones (Landsea 

et al., 2004). The code numbers of the buoys selected along with the corresponding 

geographical locations and the measurement periods are the following:  

 

 41001 (34°33'40" N 72°37'50" W, 1976-2012),  

 44004 (38°29'2" N 70°25'57" W, 1977-2008),  

 46006 (40°45'16" N 137°27'51" W, 1977-2012),  

 51003 (19°1'6" N 160°34'54" W, 1984-2012). 

 

http://www.ndbc.noaa.gov/NDBCHandbookofAutomatedDataQualityControl2009.pdf
http://www.ndbc.noaa.gov/
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Figure 5.1: Code numbers of the buoys used for the wind speed dataset from the NOAA database illustrated at the 

corresponding geographical locations. These locations are also used in the work from Soukissian and Tsalis, (2015). 

 

 The basic statistics of the wind data for the entire measurement period is provided in 

Table 5.1. Specifically, the following remarks are outlined: On a mean annual basis, the most 

intense wind climate corresponds to the location of the buoy 46006 (mean annual value of wind 

speed 7.54 m/s). The overall maximum wind speed was recorded at buoys 41001 and 46006 

(equal to 31.2 m/s), while the highest 0.99 percentile point (17.1 m/s) corresponds to the 

location of buoy 44004. The greatest variability corresponds to buoy 44004 (coefficient of 

variation 50.67 %), which is also characterized by the largest variance. The values of the 

kurtosis are of comparable order of magnitude for all locations, and apart from buoy 51003, the 

same holds true for skewness. 

  
Table 5.1: Basic statistical parameters for wind speed at the examined buoy locations. 

Buoy no.  41001 44004 46006 51003 

Annual Sample 
1976-2012 

37 (yrs) 

1977-2008 

32 (yrs) 

1977-2012 

36 (yrs) 

1984-2012 

29 (yrs) 

Number of records 209942 200854 195315 209176 

Max 31.2 30.7 31.2 19.4 

Min 0 0 0 0 

Mean 7.193 7.323 7.541 6.122 

Variance 12.585 13.768 12.871 4.526 

Skewness 0.505 0.546 0.494 -0.017 

Kurtosis 3.221 3.128 3.152 3.245 

0.99 percentile 16.6 17.1 16.9 11.3 

Coefficient of variation 49.32 50.67 47.57 34.75 

 
          In addition, the annual wind speed maxima from the time series are illustrated in 

Figure 5.2 for the four examined locations to assess the effect of the parameter estimation 

methods to the GEV distribution where inference is made in Chapter 6 (sub-Section 6.1). 
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Figure 5.2: Time series of the annual maxima for buoys 41001, 44004, 46006 and 51003. The wind speed datasets 

at these locations are also found in Soukissian and Tsalis, (2015). 

  

5.2 ERA-20C database 
  

 In this section, the statistical features of the ERA-20C wind speed dataset used are 

outlined to assess the effects of the sample size and the parameter estimation methods to the 𝑛-

year design values of wind speed (𝑛 = 10,20,...,100). In order to effectively assess these effects, 

long-term wind speed time series are required. In this respect, reanalysis wind data have several 

advantages compared to in-situ measurements: the acquired time series are continuous, the 

spatial coverage is appropriate, the sampling intervals are constant and they are usually of long 

duration (in contrast to in-situ measurements or satellite data that are usually temporally 

limited). Reanalysis data has been used in several EVA related applications, see e.g. (Caires 

and Sterl, 2005), (Fang et al., 2008), (de Oliveira et al., 2011), (Agarwal et al., 2013), (Panchang 

et al., 2013), (Mo et al., 2015), (Bitner-Gregersen, 2015), (Nicolae Lerma et al., 2015), (Patlakas 

et al., 2016). Since reanalysis data offer the convenience to generate long-term datasets on a 

defined homogeneous grid for climate research at different historical periods, a detailed 

assessment of the effects of the sample size of BM to the wind speed design values is effectively 

made. 

 Based on the above discussion, wind data from the recently released ERA-20C 

climatology are utilized. Let it be noted though that numerical model data are subjected to 

different limitations, such as model uncertainties and lack of high-frequency information. 

However, the temporal resolution (3h) of ERA-20C data is considered satisfactory for the 

representation of the high-frequency fluctuations; see also (Reguero, 2011). Moreover, in 

(Bitner-Gregersen et al., 2014; Bitner-Gregersen, 2015) it is emphasized that since the 

reanalysis data cover long time periods (more than 30 years as in our case), it is anticipated that 

the GEV distribution fits are not affected by the model sampling variability.  

 ERA-20C is the first atmospheric reanalysis of the 20th century (covering the period 

1900–2010) provided by the European Centre for Medium Range Weather Forecasting 

(ECMWF), developed within the context of the ERA-CLIM project. The weather reanalysis is 

based on a coupled Atmosphere/Land-surface/Ocean-waves model by assimilating surface 

observations (surface pressures from ISPD v3.2.6 and ICOADS v2.5.1, and surface marine 

winds from ICOADS v2.5.1). The horizontal model resolution is approximately 125 km. A 

description of the ERA-20C product can be found in (Poli et al., 2016). See also 

http://www.ecmwf.int/en/research/climate-reanalysis/era-20c.  

 In order to identify the effects of BM on the wind speed design values and assess the 

sensitivity of the latter estimates, the wind speed data time series are split into series of different 

lengths, namely 20, 25, 30, 35, 40, 45 and 50 years. Although the primary times series lengths 

http://www.ecmwf.int/en/research/climate-reanalysis/era-20c
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are of the order of 110 years, wind data have been restricted to the last 50 years, i.e. 1961–2010, 

based on the following grounds: 1) the examined time series and subseries should be stationary 

in order to secure the validity of EVA and the assessment of the obtained numerical results; and 

2) 1960 is a key-year as regards the number of assimilated observations for the northern 

hemisphere with respect to surface pressure and wind zonal and meridional components. This 

number is rather stabilized after 1960, while during the 2nd World War took its minimum values. 

Therefore, in order to avoid potential inhomogeneities of the examined time series, the analyzed 

data are limited in 1960-2010. See also (Poli et al., 2013).  

 Moreover, a new type of comparative assessment is also introduced in the work of 

(Soukissian and Tsalis, 2019). Taking into consideration that the available time series extends 

from 1961 to 2010, the assessment of the sample size effects can be made in two directions: i) 

by allowing the sample size to increase from 1961 forward or ii) by allowing the sample size 

to increase from 2010 backwards. For the sake of brevity, the samples obtained by the forward 

direction of their size increase are called F–samples (e.g. the sample of 30 annual maxima 

obtained during the period 1961–1990, or of 40 annual maxima obtained during the period 

1961–2000) and the samples obtained by the backward direction of their size increase are called 

B–samples (e.g. the sample of 30 annual maxima obtained during the period 1981-2010, or of 

40 annual maxima obtained during the period 1971–2010). See also Figure 5.3 for the schematic 

illustration of the different sampling step.  

 The former case (F–samples) is usually of interest in classical assessment of sample 

size effects. This is the case encountered in wind speed measurements, as the corresponding 

sample size continuously increases in the time domain. The latter one (B–samples) may also 

refer to the estimation of design values based on hindcast model results, a case that is often 

encountered in offshore wind energy applications. As hindcast model results extend over the 

past, the corresponding sample size of the annual maxima also increases. As far as the authors 

are aware of, this case has not been studied. From an alternative point of view, B–samples can 

be regarded as F–samples with a different starting and ending point in time. 

 

 

 

Figure 5.3: The illustration of the F– and B–samples definition on a time series of annual maxima. The different 

starting and ending point in time is inferred in sub-Section (6.1.2). Supplementary material of Soukissian and 

Tsalis, (2019) 

 

5.2.1 Dataset (Stationary analysis) 
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 Based on the stationary analysis for extremes and the combined effects of the sample 

size to the estimators, the extreme wind profile in this setting is represented using a suitable 

reanalysis dataproduct such as ERA-20C in the offshore region of the North Sea focused at 

locations away from the land-sea boundaries. The specific locations are shown in Figure 5.4. 

  

 

Figure 5.4: Geographical locations of grid points of the ERA-20C data set (from Google maps) illustrated also in 

Soukissian and Tsalis, (2018). 

 The low-resolution dataset used is less vulnerable to systematic errors which may lead 

to artificial trends (e.g., see Alexandersson et al. 2000; Matulla et al. 2007). Nevertheless, the 

effective representation of the surface wind conditions over the North Sea using a low-

resolution wind speed dataset is challenged and unclear (Sušelj et al., 2010). It is evident in 

their study that the low-resolution datasets effectively secure and capture the large-scale forcing 

on the wind field but rather fail capturing the local effects. To alleviate any inconsistencies of 

the model in the nearshore areas the locations in this setting are at distance from the land-sea 

topography. 
 Specifically, for locations L(1,2 and 3) de Winter et al., (2013) resulted that high wind 

speeds are compared suitable with those of ERA-20C or the later ERA-Interim. Zappa et al., 

(2013) show that the characteristics of extra tropical cyclones obtained at L(1,2, and 3) are very 

close to the representations made from several reanalysis products. The latter reproductions 

also discussed in Sterl et al., (2015) is somehow explained by the good representation of the 

predominant force pressure pattern over the North Atlantic i.e., the North Atlantic Oscillation. 

The extreme wind profile in the German Bight where L4 is located, is well represented by the 

relatively low reanalysis resolution of ERA-20C (Sušelj et al., 2010). As a remark from the 

work of Befort et al., (2014) it is pointed out that the rarest events in the region where L4 is 

selected, will potentially show reduced intensity. However, inference of the low reanalysis 

product is challenged at the coastal areas where in this part of the study locations are carefully 

selected avoiding inconsistencies near the coast.  
 Further on, the effects of the available time series length on the time series statistics are 

assessed. In Table 5.2, the main statistical parameters of wind speed for locations L1, L2, L3 

and L4 for different time series lengths are shown. The particular parameters estimated are the 

mean value 𝑚  and standard deviation (𝑠), minimum (min), and maximum (max), the 99th 

percentile point, coefficient of variation (𝐶𝑉), excess kurtosis (𝑘) and skewness(𝑠𝑘). 𝑁 denotes 

the specific time series length in years (i.e. 20, 25, 30, 35, 40, 45, and 50) where the statistical 

parameters are estimated. 

 
Table 5.2:  Descriptive statistics of wind speed at locations L1 (1.125° E - 56.25° N), L2 (1.125° E - 54.00° N), L3 

(3.375° E - 58.50° N) and L4 (6.75° E - 54.00° N) for different time series lengths. The case encountered in wind 

speed measurements is the F-sample size increase in the time domain, e.g. 20,25,30,35,40,45 and 50 yrs length 

corresponded from 1961 to 1980,1985,1990,1995,2000,2005 and 2010 respectively. 
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Time series length 

(years) 
Location  

Sample 

size 

mean 

(m/s) 

min 

(m/s) 

max 

(m/s) 

99% 

(m/s) 

𝑠 

(m/s) 

𝐶𝑉 

 

𝑠𝑘 

 

𝑘 

 

20 

L1 

58440 

8.165 

2.000 

22.469 17.162 3.580 43.845 0.451 -0.334 

L2 7.536 21.703 16.088 3.436 45.599 0.416 -0.328 

L3 8.176 22.245 17.755 3.808 46.580 0.455 -0.333 

L4 7.045 21.419 15.088 3.160 44.857 0.463 -0.216 

25 

L1 

73048 

8.176 

2.000 

22.469 17.233 3.606 44.110 0.458 -0.325 

L2 7.554 21.703 16.155 3.455 45.742 0.421 -0.331 

L3 8.218 24.662 17.805 3.817 46.448 0.450 -0.337 

L4 7.065 21.419 15.153 3.180 45.005 0.463 -0.212 

30 

L1 

 

87656 

8.244 

 

2.000 

23.525 17.221 3.619 43.895 0.438 -0.356 

L2 7.617 21.703 16.212 3.473 45.601 0.414 -0.338 

L3 8.275 24.662 17.751 3.817 46.127 0.423 -0.370 

L4 7.118 21.419 15.178 3.201 44.963 0.451 -0.244 

35 

L1 

102264 

8.292 

2.000 

23.525 17.305 3.631 43.793 0.432 -0.361 

L2 7.644 22.070 16.248 3.484 45.581 0.410 -0.344 

L3 8.324 24.662 17.806 3.830 46.016 0.415 -0.383 

L4 7.136 21.419 15.189 3.209 44.968 0.452 -0.250 

40 

L1 

116880 

8.283 

2.000 

23.525 17.276 3.633 43.854 0.437 -0.366 

L2 7.646 22.070 16.244 3.490 45.643 0.407 -0.364 

L3 8.331 24.662 17.813 3.830 45.977 0.413 -0.383 

L4 7.152 21.419 15.207 3.214 44.945 0.448 -0.265 

45 

L1 

131488 

8.260 

2.000 

23.525 17.220 3.611 43.713 0.437 -0.356 

L2 7.629 22.070 16.212 3.482 45.642 0.406 -0.365 

L3 8.303 24.662 17.755 3.813 45.927 0.415 -0.375 

L4 7.129 21.419 15.171 3.203 44.931 0.449 -0.266 

50 

L1 

146096 

8.232 

2.000 

23.525 17.204 3.608 43.833 0.440 -0.355 

L2 7.623 22.070 16.183 3.477 45.612 0.404 -0.372 

L3 8.281 24.662 17.742 3.814 46.061 0.420 -0.370 

L4 7.137 21.419 15.160 3.196 44.777 0.446 -0.266 

 

Some conclusions that can be drawn from the above results are the following:  

1. The largest 99th percentile values are observed for the time series with 35 years length 

(for L1 and L2), and 40 years length (for L3 and L4).  

2. New (“fresh”) annual maxima (outside the annual maxima range of the previous time 

period), enter into the analysis for the 30 years long time series (for L1), 35 years long 

time series (for L2) and 25 years long time series (for L3).  

3. Excess kurtosis parameter is systematically negative suggesting light-tailed 

distributions for wind speed.  
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4. Excess kurtosis and skewness parameters remain rather constant for the examined time 

series lengths.  

 

 In Figure 5.5, the time series of BM of wind speed for locations L1, L2, L3 and L4 are 

shown for the period 1961–2010. Notice the presence of an abrupt shift for L3 that occurred in 

1981. The presence of this maximum affects the extreme value analysis and in particular, the 

design values of wind speed (see sub-Section 6.1.2).  

    (a)     (b) 

  
    (c)     (d) 

  
 

Figure 5.5: Time series of annual maxima of wind speed (1961-2010) for locations L1 illustrated in (a), L2 in (b), 

L3 in (c), and L4 in (d). These locations are used to assess the effect of the parameter estimation methods to the GEV 

distribution and the sample size in Chapter 6 (sub-Section 6.1). Illustrated also in Soukissian and Tsalis, (2018). 

 

5.2.2 Dataset (Non-Stationary analysis) 
 

 The complex dynamics of large-scale atmospheric circulation in a few recurrent and 

quasi-stationary patterns is characterized in Synoptic climatology as weather regimes (Cortesi 

et al., 2019). The impact of these weather regimes influences near-surface wind speed 

variability particularly at mid-latitudes in the Euro-Atlantic region. For a comparison of the 

uncertainty affecting near-surface wind speed trends from different reanalyses, see Torralba et 

al. (2017a). 

 In this setting, for the extremes of non-stationary sequences and the application to wind 

speed design values, our analysis is based on coarse historical data of annual length 40 years. 

The samples of annual maxima wind speed are extracted from the atmospheric weather 

reanalysis product ERA-20C, covering the period (1961-2000). Specifically, the samples of 

annual maxima will be considered for 5 different locations at the North Sea denoted as 

L(1,2,3,4, and 5) in Figure 5.6. 
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Figure 5.6: Geographical locations of the ERA 20 dataset for the non-stationary analysis. Wind speed datasets from 

these locations are used to assess the effect of trends in the parametric modelling of the likelihood of the GEV 

distribution when stationarity is violated. Illustrated also in Tsalis and Kallos, (2017). 

 The basic statistics of the samples of annual maxima of wind speed extending from 

1961 to 2000 are given in Table 5.3. Specifically, the following statistical remarks of the dataset 

used for the nonstationary approach are outlined as follows: 

 

 On a mean annual basis, the most intense wind climate corresponds to L5 (mean annual 

value of wind speed 20.418 m/s). The maximum wind speed of all locations ranges 

from 23.2 to 23.7 (m/s), while the greatest variability is shown in L4 (coefficient of 

variation 6.8 %), which also shows the largest variance.  

 The skewness parameter is systematically positive indicating longer right tail for all 

locations. This is inline to regions of positive skewness located at midlatitudes in the 

Northern Hemisphere, characterized by intermediate mean wind speeds and strong 

variability (Monahan, 2006; Part I). Particularly, L1 and L5 show the largest skewness 

(0.94 and 0.457) respectively, indicating that at these locations the forcing has larger 

mean and considerable larger flunctuations away from the mean. In addition, the 

kurtosis parameter is negative (lighter-tail) for L (2,3, and 4) and positive (heavier-tail) 

for L1 and L5. Wind speed datasets at Locations L1 and L5 are characterized of having 

heavier tails (tail extremity) suggesting more intense extremes than at L (2,3, and 4). 

 
Table 5.3: Basic statistics for samples of annual maxima wind speed at the locations used in the nonstationary 

approach. 

Location/ 

Statistics         

nbr.val min max median mean SE. 

mean 

CI. 

mean. 

0.95 

var std. 

dev 

cef. 

var 

skewness kurt- 

osis 

L1 40 17.5 23.6 19.5 19.465 0.181 0.365 1.303 1.142 0.059 0.94 2.25 

L2 40 18.2 23.2 20.15 20.168 0.194 0.393 1.508 1.228 0.061 0.53 -0.311 

L3 40 18.1 23.7 20.25 20.270 0.215 0.436 1.857 1.363 0.067 0.367 -0.515 

L4 40 18.1 23.3 20.15 20.345 0.218 0.44 1.896 1.377 0.068 0.386 -0.84 

L5 40 17.5 23.4 20.25 20.418 0.162 0.328 1.05 1.025 0.05 0.457 1.844 
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 In Figure 5.7, the annual wind speed maxima is illustrated for the five examined 

locations used in the nonstationary approach. The apparent trend illustrated at these locations 

meet the requirements of the MK, CS and KPSS test discussed in sub-Section (2.5.2) and 

analytically formulated in Appendix F. The statistical analysis made to the series at these 

locations pointed out that the Trend and Stationarity test hypothesis cannot be rejected at the 

significance level of 0.05, regarding the absence of a monotonic upward trend over time and 

the presence of stationarity around a fixed level. The statistical tests applied in this part of our 

analysis to extremes of wind speed strengthens the parameteric modelling in the nonstationary 

approach. The test results of this analysis are presented in Chapter 6 (sub-Section 6.2). 

 

 
 

Figure 5.7: Time series of annual maxima of wind speed (1961-2000) per location. Datasets from these locations are 

used to assess the effect of the various parametric models used to the parameter estimation of the time dependant 

likelihood of the GEV distribution shown in Chapter 6 (sub-Section 6.2). Illustrated also in Tsalis and Kallos, (2017). 

 

5.3 ERA-Interim database 
 

 In this sub-section, we describe in short the ERA-Interim data product and the wind 

speed time series originated from this database. The relatively small resolution of ERA-Interim 

and the previous ERA-20C reanalysis database within the context of the ERA-CLIM project 

will challenge the demonstration of the proposed DeCAUn model for the extrapolation of 

extreme wind speed estimates.  

 ERA-Interim is a global atmospheric reanalysis from 1979, continuously updated in 

real time. The dynamical core of the atmospheric model is based on a spectral representation 

for the basic dynamical variables, a hybrid sigma-pressure vertical coordinate, and a semi-

Lagrangean semi-implicit time stepping scheme. The ERA-Interim configuration uses a 30 min 

time step and has a spectral T255 horizontal resolution, which corresponds to approximately 

79 km spacing on a reduced Gaussian grid. The vertical resolution uses 60 model layers with 

the top of the atmosphere located at 0.1 hPa.  

 The weather reanalysis is based on a coupled Atmosphere/Land-surface/Ocean-waves 

model by assimilating surface observations, producing ERA-Interim assimilation data 

consisting on four analyses per day, at 00:00 the first, 06:00 the second, 12:00 the third, and 

18:00 UTC the fourth. Archived ERA-Interim data and current data availability can be 

downloaded from the ECMWF Data Server at http://data.ecmwf.int/data, or on ECMWF 

website at http://www.ecmwf.int/research/era. The data are available at full resolution with 

options for regional selection and gridding. A comprehensive documentation of the ERA-

Interim reanalysis system http://onlinelibrary.wiley.com/doi/10.1002/qj.828/abstract has been 

published as an open-access article in the Quarterly Journal of the Royal Meteorological 

Society, (Dee et al., 2011). 

http://data.ecmwf.int/data
http://www.ecmwf.int/research/era
http://onlinelibrary.wiley.com/doi/10.1002/qj.828/abstract
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Dataset 
 

 The examined locations are 32 in total, denoted as L1, L2,…,L31 and L32 respectively 

as shown in Table 5.4. 

 
Table 5.4: Locations of daily wind speed records using the ERA-20 and ERA-Interim products. 

Location Latitude Longtitude Location Latitude Longtitude

L1 38.250N 24.750E L17 56.250N 4.500E

L2 41.625N 16.875E L18 54.000N 2.250E

L3 33.750N 33.750E L19 60.000N 2.250E

L4 34.875N 24.750E L20 58.500N 0.000E

L5 40.500N 5.625E L21 56.250N 17.250E

L6 42.750N 4.500E L22 57.000N 19.500E

L7 42.750N 6.750E L23 37.500N 11.250W

L8 42.750N 31.500E L24 51.000N 6.750W

L9 42.750N 34.875E L25 58.500N 10.500W

L10 58.500N 4.500E L26 33.000N 31.500E

L11 46.125N 4.500W L27 41.250N 18.000E

L12 47.250N 3.375W L28 34.500N 12.000E

L13 47.250N 10.125W L29 36.000N 2.250W

L14 34.875N 10.125W L30 37.500N 17.250E

L15 36.000N 11.250W L31 42.000N 3.750E

L16 38.250N 10.125W L32 45.000N 32.250E

ERA-20C ERA-Interim

 

 

(a) (b) 

  

Figure 5.8: Geographical locations of the ERA-20C (a) and ERA-Interim (b) data set for the DeCA and DeCAUn 

model analysis. Supplementary image of Tsalis et al., (2019). 

 

 The descriptive statistics of the wind speed dataset of the 32 locations from the ERA-

20C and ERA-Interim database is presented analyticaly in Table 5.5. The interesting feature 

from the statistics associated to the relatively small resolution database is that the skewness 

parameter is systematically positive. This finding indicates that the probability density estimate 

of the wind speed time series at 10 (m) height at the 32 locations selected from the ERA-20C 

and ERA-Inrerim database is characterized by a longer right tail suggesting that the mean value 

is larger than the most likely observed values in the series (Marcos et al., 2019).  

 Another interesting feature is that the excess kurtosis parameter depicts slightly 

negative and positive values and varies between -1 and 1 throughout most of the midlatitudes 

except L3 depicted at 1.932 and L26 at 1.165. This indicates that the distribution of wind speed 
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originated from a fairly coarse resolution database such as the ERA-Interim, in general suggests 

light-tails for the majority of the midlatitude regional locations used in this study which is also 

in agreement based on the study of Monahan, (2006; Part II) and Marcos et al., (2019). 

 Given the sparsity of global wind observations, the relatively small reanalysis data 

products such as ERA-Interim have demonstrated their potential usefulness for large-scale wind 

energy applications (Torralba, et al., 2017b). It is emphasized that since the reanalysis dataset 

of low resolution covers long time periods (38 and 50 years in this part of the study) it is 

anticipated that the asymptotic model formulation of GEV and GPD will be unaffected from 

the climate uncertainty when modelling BM Ref. at the larger available length and will 

challenge the modelling of DeCAUn at sample periods of shorter length. The modelling of 

extreme wind parameters is usually manifested using statistical methods based on long datasets 

(Kunz et al., 2010; Bonazzi et al., 2012; Jonathan and Ewans, 2013).  

 The forcing mechanism deriving wind speed observations particularly near the coast is 

subjected to many complex, small-scale phenomena which produce large differences over small 

distances. The use of database of larger resolution for the demonstration of DeCAUn will 

challenge the resampling strategy by incorporating inevitably more extremes. It is rather 

expected at that case positive and larger excess kurtosis suggesting distributions of heavy right-

tails as an approximation to the probability density function of the wind speed (see Figure 5.11). 

However, the analysis based on the realively small resolution enables us to make the best 

possible reconstraction of the irregularly samples given the limitations in the length of records 

and their spatial density. 

 

Table 5.5: Descriptive statistics for the 32 locations of the datasets used from the ERA-20C database extending from 

1961 to 2010 (50 years) and the ERA-Interim database extending from 1979 to 2016 (38 years). 

Location min max      median              mean 

       SE. 

       mean 

CI.mean 

0.95 

var 

std. 

dev 

coef. 

var 

skewness kurtosis 

L1 0.003 21.736 6.537 6.914 0.010 0.019 13.674 3.698 0.535 0.470 -0.317 

L2 0.004 21.050 4.666 5.228 0.008 0.016 9.210 3.035 0.581 0.888 0.630 

L3 0.005 21.321 4.363 4.794 0.007 0.013 6.745 2.597 0.542 1.144 1.932 

L4 0.030 21.562 6.636 6.713 0.007 0.015 8.026 2.833 0.422 0.313 0.084 

L5 0.022 21.243 5.492 5.980 0.009 0.017 10.909 3.303 0.552 0.703 0.191 

L6 0.025 20.608 5.390 6.046 0.009 0.018 12.267 3.502 0.579 0.714 -0.029 

L7 0.019 21.287 4.987 5.561 0.009 0.017 10.995 3.316 0.596 0.687 -0.078 

L8 0.015 18.836 5.035 5.358 0.007 0.014 7.255 2.694 0.503 0.611 0.187 

L9 0.013 19.562 4.708 5.033 0.007 0.013 6.915 2.630 0.522 0.700 0.434 

L10 0.026 25.095 7.586 7.895 0.010 0.020 15.087 3.884 0.492 0.420 -0.250 

L11 0.031 29.785 6.706 7.159 0.009 0.019 13.054 3.613 0.505 0.689 0.427 

L12 0.023 21.461 5.030 5.407 0.007 0.014 7.425 2.725 0.504 0.785 0.707 

L13 0.027 29.122 7.434 7.812 0.010 0.019 13.985 3.740 0.479 0.551 0.155 

L14 0.030 22.119 6.395 6.427 0.007 0.014 7.338 2.709 0.421 0.290 0.155 

L15 0.017 24.504 6.689 6.777 0.008 0.015 8.492 2.914 0.430 0.265 -0.139 

L16 0.013 23.919 6.355 6.482 0.007 0.014 7.746 2.783 0.429 0.334 0.060 

L17 0.026 27.667 8.128 8.414 0.016 0.032 14.592 3.820 0.454 0.420 -0.054 

L18 0.040 27.058 7.697 8.026 0.016 0.031 13.994 3.741 0.466 0.437 -0.100 

L19 0.062 34.147 7.896 8.261 0.018 0.034 17.037 4.128 0.500 0.510 0.047 

L20 0.049 28.471 8.108 8.440 0.017 0.033 16.074 4.009 0.475 0.439 -0.079 
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L21 0.006 24.266 6.783 7.063 0.014 0.027 10.799 3.286 0.465 0.457 -0.014 

L22 0.037 26.062 7.091 7.386 0.015 0.029 11.898 3.449 0.467 0.444 -0.052 

L23 0.042 21.805 6.651 6.801 0.012 0.024 8.588 2.930 0.431 0.328 -0.055 

L24 0.025 26.707 7.849 8.170 0.016 0.032 14.546 3.814 0.467 0.458 -0.049 

L25 0.065 28.907 8.969 9.296 0.018 0.036 18.242 4.271 0.459 0.418 -0.076 

L26 0.035 19.039 5.012 5.259 0.010 0.020 6.051 2.460 0.468 0.804 1.165 

L27 0.013 19.307 4.449 4.894 0.012 0.024 8.091 2.844 0.581 0.825 0.581 

L28 0.016 20.789 5.507 5.839 0.012 0.024 8.061 2.839 0.486 0.627 0.315 

L29 0.013 20.456 5.787 5.928 0.014 0.027 10.503 3.241 0.547 0.380 -0.333 

L30 0.020 21.295 4.847 5.347 0.012 0.024 8.579 2.929 0.548 0.892 0.824 

L31 0.023 21.825 5.053 5.798 0.014 0.028 11.627 3.410 0.588 0.926 0.599 

L32 0.014 19.561 5.659 5.949 0.012 0.024 8.350 2.890 0.486 0.506 -0.004 

  

 The wind speed datasets originated from the relatively small resolution database will 

challenge the assessment of the resamples irregularly spaced in time derived from the DeCAUn 

model for sample periods of (10,15,20 and 25 years). Specifically, sample periods are set from 

1961 to 1985 with a 5 years step considering the ERA-20C dataset and from 1979 to 2003 with 

a 5 years step using the ERA-Interim dataset that will challenge the asymptotic properties of 

GPD modelling DeCAUn to these sample periods. For inference, two representative locations 

from the ERA-20C (L5 and L10) and the ERA-Interim (L18 and L30) database are selected for 

the demonstration of DeCAUn in terms of the return level estimates and variability of the 

proposed model to each sample period; (see the demonstration of DeCAUn to these locations 

in sub-Section 6.4).  

 In the following Figure 5.9 the wind speed time series originated from the ERA-20C 

and ERA-Interim database is illustrated for the four selected locations L(5, 10, 18, and 30). A 

smoothing line (red line) was fitted to the annual maxima wind speed values for better 

visualisation of the long-term variability of BM. It is important to point out that the assessment 

of DeCAUn is based to stationary wind speed time series, as the presence of possible temporal 

dependence and monotonic trends can affect and bias the GPD model fit, which relies on the 

hypothesis of independent observations. The illustration of BM shows not any increase or 

decrease over time, i.e., there is no trend present. There is also no obvious anomalies or jumps 

in BM. The results are similar for the 32 locations of the ERA-20 and ERA-Interim database. 

  

(a) (b) 
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(c) 

 

(d) 

  

Figure 5.9: The time series and the annual or block maxima (BM) of wind speed as the reference dataset for locations 

L5 (a) and L10 (b) from ERA-20C are illustrated for the period 1961–2010 (50 years). Locations L18 (c) and L30 

(d) from ERA-Interim correspond to sample period from 1979 to 2016 (38 years). The four locations are selected 

considered the intense wind profile that is present at these locations (Tsalis et al., 2019). 

  

5.4 MARINA Platform database 
 

 For this statistical analysis of the proposed DeCAUn model, a high resolution database 

was employed providing wind speed series on different offshore regions in Europe, with special 

focus in the North Sea, the European coastline that is exposed to the Atlantic Ocean and finally 

the Mediterranean Sea.  

 

Dataset 
 

 The demonstration of DeCAUn in this assessment is also challenged considered a high 

resolution data product for the statistical analysis of the proposed resampling model. 

Specifically, the time series of wind speed used in this part of the analysis cover a period of 20 

years (from 1996 to 2015) extracted from the MARINA Platform database (2014) created 

within the framework of the homonymous project. The dataset was produced as an outcome of 

atmospheric modeling hindcast simulations providing information for the entire European 

coastline with an hourly time frequency and a spatial resolution of 5 km. The atmospheric 

model used is SKIRON (Kallos et al., 1997). The outcome has been evaluated within the 

framework of MARINA Platform project (see http://forecast.uoa.gr/oldproj.php). In the present 

study, the wind components of the model are obtained at 10m above sea level for the 30 in total 

selected locations denoted as L1, L2,…, L29 and L30 in Table 5.6 with their descriptive 

statistics in Table 5.7. 

 
Table 5.6:  Locations of daily wind speed records from the MARINA Platform database used for this analysis. 

North Sea Atlantic Ocean Mediterranean Sea 

Location Lat Lon Location Lat Lon Location Lat Lon 
L1 55.7 N 7.4 E L11 50.45 N 1.55 W L21 40.8 N 5.5 E 

L2 52.05 N 2.15 E L12 50.05 N 4.25 W L22 35.5 N 26.4 E 

L3 51.65 N 3.45 E L13 42.85 N 9.95 W L23 33.9 N 29.9 E 

L4 54.8 N 1.35 E L14 53.25 N 10.25 W L24 43.4 N 15.4 E 

L5 57.15 N 3.1 E L15 49.65 N 6.55 W L25 36.5 N 3.5 W 

L6 58.4 N 10.3 E L16 57.25 N 7.65 W L26 37.9 N 3.1 E 

L7 51.65 N 1.35 E L17 52.75 N 9.75 W L27 43.3 N 7.5 E 

L8 57.95 N 3.1 E L18 50.65 N 0.95 E L28 42.2 N 11.4 E 

L9 56.2 N 4.15 E L19 54.85 N 8.95 W L29 40.5 N 12.2 E 

L10 55.75 N 2.25 E L20 53.35 N 4.85 W L30 42.2 N 17.9 E 

 
 The re-sampling assessment of DeCAUn to samples of wind speed observations 

irregularly spaced in time is challenged from the model demonstration of BM, Runs and DeCA 

http://forecast.uoa.gr/oldproj.php


  Study area and wind speed dataset used 

84 

 

analyticaly discussed in previous sub-Sections. All models however are applied to the wind 

speed datasets of the MARINA Platform at locations respectively shown in Figure 5.10. 

 

 
 

Figure 5.10: Wind speed datasets at locations used for the irregular extreme value analysis based on the MARINA 

Platform database. Illustrated also in Tsalis et al., (2021) 

 At this point it is important to highlight the use of a high horizontal resolution 

dataproduct such as the MARINA Platform database especially near the offshore regions of 

Europe where the demonstration of DeCAUn to wind speed is challenged from the highly 

dependent regional effects (surface roughness, landmass, etc.). The use of a high resolution 

database is crucial to derive detailed data to follow-up the requirements of the resampling 

strategy of DeCAUn to short and irregularly samples at regional locations where the 

meteorological model of lower resolution is not able to reproduce the underlying terrain and 

capture the wind speed variations sufficiently (Kaiser et al., 2015). 

 The descriptive statistics of Table 5.7 infer the extremity of wind speed reproduced 

from the MARINA Platform database. Specifically, skewness is systematically positive 

indicating an elongated right tail distribution as a reasonable approximation to the probability 

density function of wind speed at 10 (m) height of the 30 locations, suggesting intermediate 

mean and strong variability as in the ERA-20C and ERA-Interim dataproducts. Another 

interesting characteristic of the high resolution database is the systematically positive excess 

kurtosis parameter to all locations indicating heavy-tailed distributions for the wind speed. 

Positive excess kurtosis evidently inferences the ability of high resolution databases to 

reproduce more intense extremes particularly at the European offshore regions and strengthens 

the re-sampling strategy of DeCAUn to short samples at these locations; (see the discussion 

from Kalogeri et al., (2017) and Weber et al., (2019) for the positive excess kurtosis of wind 

speed at closely arranged regional locations to the present study). We highlight the extremity 

of wind speed data characterized of being heavy right-tailed and extremes are typically modeled 

from short-tailed distributions with finite right endpoint (Pinheiro and Ferrari, 2015). 

 To infer the extremity of the datasets (i.e., suggesting heavy tail distributions of 

elongated right tails as approximations to the probability density function of wind speed) at 

regional locations closely arranged from the relatively small resolution database (ERA-20C), 

the moderate resolution (ERA-Interim), and the high resolution database (MARINA Platform), 

the following three Kernel Density plot diagrams are illustrated in Figure 5.11. The density 

estimates illustrated in Figure 5.11 (a) and to a lower extent in Figure 5.11 (b) are characterized 

of having a light-right hand tail, where on the contrary density in Figure 5.11 (c) is characterized 

of having a heavy-right hand tail. 
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(a) (b) (c) 

   
 
Figure 5.11: The Kernel Density estimates as an approximation to the probability density function of wind speed to 

the maximum available time series extending from 1961-2010 (50 years long) originated from the ERA-20C data 

product of relatively small resolution in (a), the moderate resolution of ERA-Interim extending from 1979-2016 (38 

years long), and the high resolution database of the MARINA Platform for the period 1996–2015 (20 years). The 

regional locations closely arranged in the Western Mediterranean Sea are set at (42.750N 4.500E) for ERA-20C, at 

(42.000N 3.750E) for ERA-Interim, and at (40.800N 5.500E) for the MARINA Platform. The bandwidth of the 

Gaussian Kernel estimator is set at (0.2922, 0.3375, and 0.3129) for the Kernel density estimate in (a), (b), and (c) 

respectively based on the Silverman's ‘rule of thumb’, Silverman (1986, page 48, Eq. (3.31))7. The statistical 

software package (extRemes) in R (Gilleland and Katz, 2016) is used for the histogram and Kernel Density diagram 

illustration. (Supplementary material of Tsalis et al., 2021) 

 
Table 5.7: Descriptive statistics for the 30 locations of the datasets used from the MARINA Platform database 

extending from 1996 to 2015 (20 years). 

Location min max      median        mean 

    SE 

.mean 

CI.mean 

0.95 

var 

std. 

dev 

coef. 

var 

skewness kurtosis 

L1 0 25.965 7.691 8.058 0.009 0.017 12.992 3.604 0.447 0.454 3.113 

L2 0 26.704 7.236 7.627 0.008 0.017 12.446 3.528 0.463 0.487 3.129 

L3 0 26.436 6.925 7.327 0.008 0.017 12.579 3.547 0.484 0.570 3.210 

L4 0 25.840 7.417 7.904 0.009 0.017 13.750 3.708 0.469 0.497 3.050 

L5 0 28.389 7.831 8.300 0.009 0.018 14.535 3.812 0.459 0.499 3.110 

L6 0 23.912 7.170 7.572 0.009 0.018 14.169 3.764 0.497 0.372 2.661 

L7 0 24.480 6.810 7.173 0.008 0.016 11.068 3.327 0.464 0.527 3.119 

L8 0 28.801 7.968 8.455 0.009 0.019 15.738 3.967 0.469 0.525 3.131 

L9 0 26.495 7.714 8.153 0.009 0.017 13.583 3.685 0.452 0.489 3.111 

L10 0 28.029 7.623 8.098 0.009 0.018 14.139 3.760 0.464 0.494 3.077 

L11 0 24.330 6.912 7.303 0.009 0.017 13.128 3.623 0.496 0.546 3.162 

L12 0 24.877 6.946 7.378 0.009 0.017 13.297 3.646 0.494 0.551 3.154 

L13 0 25.098 7.556 7.903 0.009 0.018 14.682 3.832 0.485 0.304 2.513 

L14 0 28.752 7.777 8.200 0.009 0.018 15.351 3.918 0.478 0.523 3.125 

L15 0 27.063 7.544 8.015 0.009 0.017 13.568 3.684 0.460 0.539 3.183 

L16 0 28.671 7.653 8.111 0.010 0.019 16.469 4.058 0.500 0.554 3.081 

L17 0 26.142 6.508 7.025 0.009 0.017 13.602 3.688 0.525 0.706 3.400 

L18 0 25.769 7.032 7.396 0.009 0.017 13.036 3.611 0.488 0.493 3.131 

L19 0 28.851 7.427 7.898 0.010 0.019 15.906 3.988 0.505 0.543 3.041 

                                                           
(7) Silverman's ‘rule of thumb’: Bandwidth set at 0.9 times the minimum of the standard deviation and 

the interquartile range divided by 1.34 times the sample size to the negative one-fifth power. 



  Study area and wind speed dataset used 

86 

 

L20 0 24.816 7.175 7.639 0.009 0.018 15.415 3.926 0.514 0.548 3.042 

L21 0 25.901 5.950 6.582 0.009 0.019 15.637 3.954 0.601 0.911 3.642 

L22 0 20.863 7.225 7.121 0.008 0.016 11.392 3.375 0.474 0.072 2.499 

L23 0 20.874 5.758 5.822 0.006 0.012 7.112 2.667 0.458 0.584 3.733 

L24 0 23.377 4.941 5.487 0.008 0.016 11.976 3.461 0.631 0.847 3.478 

L25 0 20.752 4.191 5.194 0.009 0.018 15.145 3.892 0.749 0.855 2.951 

L26 0 21.371 5.866 6.021 0.007 0.015 9.625 3.102 0.515 0.637 3.453 

L27 0 23.511 4.054 5.323 0.010 0.019 16.441 4.055 0.762 1.131 3.665 

L28 0 19.200 3.865 4.460 0.007 0.013 8.101 2.846 0.638 1.008 3.927 

L29 0 21.085 4.382 5.040 0.008 0.015 9.881 3.143 0.624 0.976 3.800 

L30 0 21.555 4.601 5.047 0.007 0.015 9.725 3.118 0.618 0.769 3.406 

 

 The wind speed datasets originated from the high resolution MARINA Platform 

database will challenge the assessment of DeCAUn for sample periods of 10 and 15 years. 

Notably, for this database sample periods are set from 1996 to 2010 with a 5 years forward step. 

For inference of the demonstration of DeCAUn in terms of the return level estimates and 

variability of the proposed model to sample periods of 10 and 15 years, three locations (L2, 

L16, and L21) are selected as a good representation of the extreme wind profile observed at the 

North Sea, Atlantic Ocean, and Mediterranean Sea respectively; (see the demonstration of 

DeCAUn to these locations in sub-Section 6.3). 

 In the following Figure 5.12, the wind speed time series originated from the high 

resolution database at locations L2, L16 and L21 is illustrated for the period 1996–2015 (20 

years) as the reference dataset for the demonstration of DeCAUn. In order to ensure stationarity 

of the series in the same context as in the relatively small resolution database, a smoothing line 

(red line) was fitted to the annual maxima wind speed for better visualisation of the absence of 

possible temporal dependence and monotonic trends of BM. The stationarity of the time series 

is ensured for the 30 locations of the MARINA Platform database. 

 

(a) (b) 

  

(c)  

 

 

Figure 5.12: Time series and BM of wind speed for locations L2 in (a), L16 in (b) and L21 in (c) from the MARINA 

Platform database. The three locations are selected considering the intense wind profile that is present at these 

regional locations. Supplementary image of Tsalis et al., (2021) 
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Chapter 6 
Results and discussion 

 

 In this Chapter, results of the demonstrastion from all models is presented and inference 

is made. Specifically, in sub-Section 6.1 under the proviso that the BM method is selected and 

the GEV distribution model is adopted, the primary aim is the identification of the combined 

effects of i) the sample size and the direction step of sampling of the annual maxima and ii) the 

comparison of the GEV parameter estimation methods to the EVA of wind speed time series. 

To this objective, several very common as well some less known distribution parameter 

estimation methods are firstly assessed through a simulation analysis. The results of the analysis 

showed that the maximum product of spacings (MPS), the elemental percentile (EP), the 

principle of ordinary entropy method (POME) or (OEM) or  and, in a lesser degree, the 

Maximum Likelihood method (ML) or (MLE) and L-moments method (LMOM) or (LMHU) 

unbiased method according to Hosking et al., (1985) seem to be, in general, superior to the 

other examined methods with respect to bias, mean squared error and variance of the estimated 

parameters. The effects of the estimation methods have been also assessed with respect to the 

n-year design values of real wind speed measurements. The obtained results suggest that the 

MPS and EP methods, which are rather unknown to the engineering community, describe 

adequately well the extreme quantiles of the wind speed fixed data samples.  

 Considering a variable sample period, the performance of the GEV parameter 

estimation methods on both the method and the available sample size is analytically performed. 

Firstly, a simulation study is implemented based on the ML, the L–moments (LMOM), the EP 

and the MPS methods for different sample sizes. It is concluded that the ML should not be 

taken for granted since LMOM method performs better in many respects. Afterwards, both 

methods are applied for the estimation of the GEV parameters of wind speed annual maxima 

series. LMOM method provided the best fits for the overwhelming majority of cases 

considered. All results illustrated in sub-Section 6.1 is a part of the work from (Soukissian and 

Tsalis, 2015; Soukissian and Tsalis, 2018 and Soukissian and Tsalis, 2019). 

 In Sub-Section 6.2, a nonstationary EVA that incorporates time as a covariate is 

implemented to model the distribution of the extremes in the presence of a significant trend. An 

attempt is made under the assumption of climate change to model one or more of the parameters 

of the GEV as linear or nonlinear functions of the covariates on which the wind speed data 

show dependence. Specifically, an assessment of various parametric models for the estimation 

of the GEV parameters is made, considering a linear, quadratic and sinusoidal trend through 

time (for the location and scale parameters) and a time independent model for the shape 

parameter. The common method used for the estimation of the time dependent GEV parameters 

is maximum likelihood (ML) method. The approximate tests of significance in the comparison 

between nested models are conducted by Akaike Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC). The optimum models are penalized by the likelihood-ratio test 

(LR), and effective return levels for specific values of the covariates is estimated and compared 

with the stationary case. All results illustrated in sub-Section 6.2 is a part of the work from 

(Tsalis and Kallos, 2017). 

 Further on, in sub-Sections 6.3 and 6.4 an assessment and comparison of the classical 

methods analyzing the correlation (dependence) effect in samples that are irregularly spaced in 

time is demonstrated. In this part of the study, a re-sampling procedure is proposed for the 

irregularly spaced in time wind speed observations obtained from physical de-clustering 

considerations. The de-clustering procedure of a dependent sample of extremes from the 

proposed model is focused and evaluated on relatively small samples where the scarcity of long 

and complete time series is a common restriction in climatological studies. Finally, inference 

can be made of the effective sample size and the influence of the data product to the resampling 

strategy of DeCAUn in sub-Section 6.5. From this evaluation, the proposed model     
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demonstrated as an alternative model for extreme wind speed projections considering samples 

irregularly spaced in time, reconstructing successfully a dependent sample of extremes to an 

efficient independent sample converging to the i.i.d limitations 

 Specifically, inference is made from the challenges obtained in assessing the effect of 

the asymptotic distributional behavior of two types of extreme wind speed sampling data. The 

first type of sampling data used will be the classical BM and modeled by the GEV family of 

distributions. The second type used is the peaks obtained in wind speed samples exceeding a 

high enough threshold by the approximation to the GPD within the POT concept. The latter 

two distributions is proven to be the limiting distribution of the annual maxima and peak 

exceedances for the modeling of extremes in environmental samples, (see Nikulin et al., 2011; 

Papalexiou and Koutsoyiannis, 2013). For extreme value analysis, the asymptotic forms of the 

GEV and GPD are the most widely used statistical distributions for describing extremes of wind 

speed (Beirlant et al., 2004) and (Holmes, 2015). However, when the analysis is restricted to a 

set of cluster peak exceedances, the use of a GPD distribution with an upper bound to the 

modeling of extremes of wind speed requires caution in applications (Fawcett and Walshaw, 

2007). It is shown that the parameter inconsistency of the MLE estimator to small samples 

affects the return level estimates of extremes. However, when wind speed is characterized of 

being heavy right-tailed and extremes are typically modeled from short-tailed distributions with 

finite right endpoint, the asymptotic forms of GEV and GPD can be a reasonable assumption 

for modeling recognizing the possible bias effect to the estimates (Fawcett and Walshaw, 

2006a, 2006b; Ashkar and Tatsambon, 2007; Pinheiro and Ferrari, 2015). 

 The performance of the proposed DeCAUn model for relatively small wind speed 

samples is evaluated systematically alongside the existing DeCA, the BM and the standard 

Runs estimator which is assigned as the standard comparable model in this assessment. For this 

evaluation the standard MLE method was implemented although the MLE estimation 

performance is questioned in comparison to the LMOM method for environmental extreme 

distributions (e.g. Mazas et al., 2014). The MLE estimation approach is selected setting the 

discussion within the most popular framework for stationary BM and POT samples, where all 

results are easily comparable with those reported in the relative literature. The model results is 

illustrated and discussed for wind speed time series from three datasets, the MARINA Platform 

database, the ERA-Interim and ERA-20C respectively. All results illustrated in sub-Sections 

6.3, 6.4, and 6.5 is a part of the work from (Tsalis et al., 2019) and (Tsalis et al., 2021). 

  

6.1 Parameter estimation methods 
 

 In this Section results for the assessment of the most used GEV distribution parameter 

methods are presented for the fixed and variable sample period of examination. At each sample 

period considered, results in terms of the simulation study and applications is illustrated. 

 

6.1.1 Fixed sample size (simulation study and applications) 
 

 Main scope of a fixed sample period study, is the assessment of the effect of the 

aforementioned GEV parameter estimation methods on the design values and return periods of 

wind speed. In order to do that, a two-stage procedure will be implemented. Firstly, a detailed 

simulation study will be performed for the evaluation of all examined estimation methods. 

Moreover, three main statistical criteria of the performance of each method will be adopted and 

will be assessed. Secondly, the entire group of GEV parameter estimation methods will be 

applied to real wind data sets, to identify the deviations in the obtained design values and 

associated return periods of wind speed. It should be noted that since the methods presented 

here are quite generic, they can be applied equally well to any other environmental parameter 

potentially affecting the safety of an offshore or coastal structure (sea level, wave height, etc.). 
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Simulation study 

 In this section, a simulation study has been performed based on 1000 random samples 

drawn from the GEV distribution with sample size 30. The sample size of 30 has been chosen 

as being appropriate for wind speed extreme value analysis. Most of the measured offshore 

wind data in the world cover a period of around up to 30 years while some established wind 

and wave climatologies refer, more or less, to the same time period (such as the ERA-Interim 

data obtained from the European Centre for Medium-Range Weather Forecasts - ECMWF). In 

this sub-Section, the examined estimation methods will be applied to the measured wind speed 

data from the Atlantic Ocean in order to quantify the uncertainties in the 𝑛 −year wind speed 

design values, which are raised by the parameter estimation method of the GEV probability 

model. The GEV distribution parameters estimation methods that have been tested in the 

simulation study are the following:  

 

1) Ordinary moments method (OM); 

2) L-moments method according to Hosking: i) unbiased (LMHU) (8) and ii) biased (LMHB). 

It should be noted that LMHU estimators exist if 𝜉 < 1, since the quantity 1 − 𝜉 appearing 

in the Gamma function in relations (2.53), (2.54) and (2.55) should be positive. Hence the 

LMHU estimator is well defined even when the MOM estimator is not defined, i.e., for 

𝜉 < 1 3⁄ . In addition, the LMHU estimator is known to be better than the ML estimator for 

small sample cases; 

3) L-moments method according to Wang (LMW);  

4) Maximum likelihood method (ML);  

5) Maximum product of spacings method (MPS);  

6) Quantile least squares (QLS) method with different plotting positions as suggested in 

(Cunnane, 1978), see also relation (C.2). In this context, various values of 0 < 𝑎 < 1 are 

tested and the one providing the best results is finally selected; 

7) Elemental percentile method (EP);  

8) Maximum entropy parameter space expansion method (MESE).  

9) Principle of maximum or ordinary entropy method (POME) or (OEM); 

 

The steps used for the numerical simulation analysis were the following:  

 

Step 1: Generate 1000 random samples with sample size 30, choosing values for shape 

parameter in the range −0.5 ≤ 𝜉 ≤ +0.5 with step 0.1, and keeping constant the values of the 

scale and location parameters, namely 𝜎 = 1 and 𝜇 = 0, respectively. 

Step 2: Evaluate (𝜉1, 𝜉2, … , 𝜉1000), (�̂�1, �̂�2, … , �̂�1000), (�̂�1, �̂�2, … , �̂�1000), for the shape, scale 

and location parameters respectively for each of the 1000 samples and by each estimation 

method. If some of the estimated parameter values are not consistent with the conditions of 

Theorem 2.2, then these values are discarded.  

Step 3: From the obtained parameter samples, estimate the corresponding sample means and 

variances, i.e.,  

 

 �̅� =
∑ �̂�𝑖
𝑁
𝑖=1

𝑁
                    (6.1) 

 

and 

 

                                                           
(10) As mentioned above, the method of probability weighted moments provides the same results as the L-moments 

method; therefore, PWM method will not be further assessed.  
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 𝑠�̂�
2 =

∑ (�̂�𝑖−�̅̂�)
2𝑁

𝑖=1

𝑁−1
,                    (6.2) 

 

where 𝜃𝑖, 𝑖 = 1,2,3, . . . , 𝑁 denotes the parameter estimates obtained from each of the 𝑁 

samples, �̅� denotes the sample mean obtained from all samples, and 𝑠�̂�
2 the corresponding 

sample variance (𝜃 can be any of the (population) parameters 𝜉, 𝜎 or 𝜇). 

Step 4: Evaluate the bias, the mean squared error and the variance for the shape, scale, and 

location parameter for each estimation method as follows:  

 

𝐵𝑖𝑎𝑠 = 𝜃 − 𝜃,                     (6.3) 

 

𝑀𝑆𝐸 = 𝑠�̂�
2 + (𝐵𝑖𝑎𝑠[𝜃])

2
,                   (6.4) 

 

Let us note that the bias measures the systematic error while the variance measures the random 

error.  

 

 In Figure 6.1, the bias, the mean squared error and the variance of the 𝜉 parameter for 

various values of 𝜉 are shown. In Figure 6.2, the same quantities are shown for the 𝜎 parameter 

and in Figure 6.3 for the 𝜇 parameter.  

 

(a) (b) 
 

  

(c)  

 

 

 

Figure 6.1: Bias (a), mean squared error (b) and variance (c) for the 𝜉 parameter obtained from simulation for various 

values of 𝜉. (Soukissian and Tsalis, 2015) 
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(a) 
 

(b) 

  
(c) 
 

 

 

 

 

Figure 6.2: Bias (a), mean squared error (b) and variance (c) for the 𝜎 parameter (for 𝜎= 1) obtained from simulation 

for various values of 𝜉. (Soukissian and Tsalis, 2015) 

(a) 
 

(b) 
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(c) 
 

 

 

 

Figure 6.3: Bias (a), mean squared error (b) and variance (c) for the 𝜇 parameter (for 𝜇= 0) obtained from simulation 

for various values of 𝜉. (Soukissian and Tsalis, 2015) 

As regards the bias in the estimation of the parameters, the following conclusions can be drawn:  

 

 For the case of 𝜉 parameter (Figure 6.1, upper left panel), the ML, MPS and POME 

methods provide biases lying in a rather narrow strip of values (suggesting an almost 

constant bias), for all examined 𝜉 values. In the mean, the absolutely smallest biases are 

provided by the aforementioned methods for the entire range of 𝜉 values. In addition, the 

POME method provides the smallest values of bias for all 𝜉 apart from the cases 𝜉 =
−0.3,−0.5. 

 For the case 𝜎 = 1 (Figure 6.2, upper left panel), the LMHU and LMW methods provide, 

in the mean, the absolutely smallest values of bias for the entire range of 𝜉 values. The 

method is not so efficient for the two extreme cases, 𝜉 = ±0.5. On the other hand, the ML, 

MPS and POME methods provide almost constant biases for the entire range of 𝜉 values.  

 For the case 𝜇 = 0 (Figure 6.3, upper left panel), the MPS method provides an almost 

constant and very small bias (around -0.025), for the entire range of 𝜉 values. MPS and 

POME methods provide, in the mean, the absolutely smallest values of bias for the entire 

range of 𝜉 values. In addition, the POME method provides again the absolutely smallest 

values of bias (very close to 0) for all 𝜉 apart from the cases 𝜉 = −0.3,−0.5. 

 

As regards the mean squared error in the estimation of the GEV distribution parameters the 

following remarks can be derived:  

 

 For the case of 𝜉 parameter (Figure 6.1, upper right panel), the smallest values of MSE are 

provided, in the mean, by the EP, POME, LMHU and LMHB methods, with EP method 

being the most efficient. These methods exhibit also the narrowest strips of MSE values.  

 For the case 𝜎 = 1 (Figure 6.2, upper right panel), the ML, MPS, EP and POME methods 

are superior, providing, in the mean, the smallest MSE values among all methods for the 

entire range of 𝜉 values.  

 For the case 𝜇 = 0 (Figure 6.3, upper right panel), the ML, POME and MPS methods are 

the most efficient for the entire range of 𝜉 values, while EP method exhibits a fair behavior 

and the narrowest strip of MSE values.  

 

As regards the variance in the estimation of the parameters the following conclusions can be 

drawn:  
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 For the case of 𝜉 parameter (Figure 6.1, lower left panel), the smallest values of variance, 

in the mean, are provided by the EP and LMHB methods. POME, LMHU and LMW 

methods also exhibit a fair behavior. 

 For the case 𝜎 = 1 (Figure 6.2, lower left panel), the ML, POME, MPS and EP methods 

are superior, providing the smallest variances among all methods for the entire range of 𝜉 

values.  

 For the case 𝜇 = 0 (Figure 6.3, lower left panel), many methods provide small variances. 

The behavior of LMHU and LMW methods is very similar. On the other hand, the ML, 

POME, EP and MPS methods provide, in the mean, the smallest variances among all 

methods for the entire range of 𝜉 values.  

 

From the simulation analysis and the statistical parameters considered for fixed sample size 

inference is made for the optimum parameter estimation methods: 

 

 Considering the bias, the most efficient estimation methods are MPS and POME. 

Furthermore, for the mean squared error, the most efficient estimation methods are ML, 

EP, MPS and POME, whist for the variance, the most efficient estimation methods are 

ML, POME, EP and MPS.  

 Focusing on samples of wind speed where prior evidence exists of the 𝜉 parameter as 

negative (Brabson and Palutikof, 2000), it seems that EP, POME, MPS, and LMHU 

methods and, in a smaller degree, the ML method, are very reasonable solutions for all 

the cases and criteria examined. 

 

Applications 

 In this sub-Section 𝑛 −year (𝑛 = 10,20,… ,100) design values of wind speed are 

provided for measured data obtained from four buoys, where two buoys are located in the 

Pacific coast of central America and two buoys located in the North West coast of the Atlantic 

Ocean (see Figure 5.1). The relevant wind speed time series are available from the National 

Oceanic and Atmospheric Administration (NOAA). The code numbers of the buoys, the 

corresponding geographical locations and the measurement periods are the following:  

 

 41001 (34°33'40" N 72°37'50" W, 1976-2012),  

 44004 (38°29'2" N 70°25'57" W, 1977-2008),  

 46006 (40°45'16" N 137°27'51" W, 1977-2012),  

 51003 (19°1'6" N 160°34'54" W, 1984-2012).  

 

 Based on the annual maxima extracted from the above time series, the 𝑛 − year 

(𝑛=10,20,…,100) design values have been estimated using BM method. The sample sizes of 

the annual maxima obtained from the aforementioned buoys are greater than 20, as previously 

discussed in sub-Section 1.1. The basic statistics of the wind data for the entire measurement 

period is provided in Table 5.1 in sub-Section 5.1, where samples are approximated to a size of 

30 years.  

 Using wind speed datasets from the four locations (41001, 44004, 46006, and 51003) 

the GEV parameters are estimated using the methods from the simulation study. In order to 

obtain estimates of the standard errors and confidence intervals of the GEV parameters, we 

have also implemented a bootstrap approach. Though for some estimation methods confidence 

intervals and standard errors can be directly provided by analytic formulas, in order to treat the 

results in a uniform way, we prefer to provide the standard error by using a common technique 

for all methods. Specifically, 1000 random samples have been generated from the annual 

maxima data sets for each buoy using the standard non-parametric bootstrap approach; (see 
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sub-Section 2.4.2). Furthermore, the estimates of the standard errors as obtained from the 

bootstrap method for each estimation method is given in Table 6.1 (in parentheses). 

  
Table 6.1: Parameters and 95% bootstrap standard errors (in parenthesis) of the GEV distribution for each estimation 

method and each buoy. 

Buoy No. 

Method of 

Estimation 

 

41001 

 

 

44004 

 

 

46006 

 

51003 

 𝜉 �̂� �̂� 𝜉 �̂� �̂� 𝜉 �̂� �̂� 𝜉 �̂� �̂� 

OM -0.3563 4.0415 21.0555 -0.0424 2.4564 21.1969 -0.1140 3.0545 21.0228 0.0635 1.0302 13.8228 

 (0.139) (0.710) (0.671) (0.074) (0.382) (0.468) (0.093) (0.468) (0.566) (0.097) (0.199) (0.208) 

LMHU -0.2999 3.8826 20.9699 0.0012 2.3874 21.1346 -0.0804 2.9854 20.9717 0.1483 0.9436 13.7807 

 (0.139) (0.657) (0.658) (0.114) (0.364) (0.465) (0.126) (0.481) (0.566) (0.142) (0.175) (0.209) 

LMHB -0.2616 4.0237 20.8220 -0.0126 2.6504 21.0185 -0.0760 3.1929 20.8551 0.0865 1.1759 13.6980 

 (0.127) (0.636) (0.663) (0.098) (0.345) (0.459) (0.112) (0.452) (0.561) (0.117) (0.168) (0.208) 

LMW -0.2558 3.7929 20.8919 0.0693 2.2325 21.0634 -0.0275 2.8562 20.9007 0.2633 0.8092 13.7377 

 (0.146) (0.683) (0.656) (0.110) (0.368) (0.459) (0.126) (0.490) (0.562) (0.122) (0.174) (0.204) 

ML -0.3174 3.9891 21.0054 -0.0171 2.3505 21.1905 -0.1379 3.0559 21.0828 0.1499 0.9225 13.8005 

 (0.151) (0.706) (0.693) (0.147) (0.342) (0.478) (0.158) (0.512) (0.562) (0.186) (0.146) (0.223) 

MPS -0.3061 4.3940 20.8388 0.0110 2.5828 21.1113 -0.1216 3.3749 20.9751 0.2043 1.0076 13.7682 

 (0.156) (0.771) (0.687) (0.148) (0.368) (0.473) (0.158) (0.561) (0.561) (0.189) (0.158) (0.218) 

QLS -0.3098 3.6101 21.1035 -0.0537 2.3332 21.2575 -0.1251 2.9062 21.0972 0.1485 0.9158 13.8077 

 (0.125) (0.621) (0.671) (0.092) (0.407) (0.474) (0.098) (0.493) (0.568) (0.140) (0.208) (0.215) 

EP -0.1639 3.6936 20.7921 0.0137 2.5019 21.0772 -0.0606 3.1954 20.8310 0.2414 0.9827 13.7634 

 (0.136) (0.570) (0.663) (0.116) (0.380) (0.487) (0.121) (0.511) (0.579) (0.131) (0.181) (0.209) 

MESE -0.3844 4.4447 21.3780 -0.0191 2.3683 21.2079 -0.1597 3.2223 21.2304 0.1387 0.9028 13.7774 

 (0.270) (1.278) (0.717) (0.142) (0.442) (0.512) (0.180) (0.685) (0.612) (0.145) (0.141) (0.219) 

POME -0.3895 4.1855 21.1924 -0.0118 2.3505 21.1856 -0.1700 3.1199 21.1480 0.1609 0.9178 13.7945 

 (0.182) (0.774) (0.644) (0.147) (0.327) (0.477) (0.182) (0.540) (0.547) (0.164) (0.134) (0.218) 

   

 The most intractable parameter in the relevant wind speed extremes literature (but also 

for other geophysical parameters) is undoubtedly 𝜉. There are a lot of controversies as regards 

the values that this parameter may or is feasible to take. In the relevant discussion in Palutikof 

et al., (1999), it is stated that “In the light of these conflicting views, it is difficult to offer advice 

on the choice of distribution type”. In addition, the same authors note that “if the assumption 

that the distribution type is FT-I rather than FT-III is incorrect, then the resulting errors should 

lead to an overestimate of return period extremes, which, from the safety point of view, is 

desirable”. The estimation of the standard error and the 95 % bootstrap confidence interval (CI) 

for 𝜉 parameter in particular may also provide further suggestions as regards the specific type 

of the asymptotic extreme distribution. As regards to the estimates of the GEV distribution 

parameters in Table 6.1 the following remarks can be derived:  



  Results and discussion 

95 

 

 

 For the examined cases, all estimation methods seem to provide consistent results as 

regards the 𝜉 values. 𝜉 is clearly lower than 0 for buoy 41001, almost 0 and very close 

to 0 for buoys 44004 and 46006, respectively, and slightly above 0 for buoy 51003. 

However, for all buoys (except for 41001), the 95 % bootstrap CIs obtained by all 

estimation methods include zero. For buoy 41001, the 95 % bootstrap CIs obtained by 

OM, LMHU, LMHB, ML, QLS and MESE methods do not include zero.  

 As a remark, it would be risky to overlook the results that are provided consistently by 

all estimation methods and select another type of extreme value distribution. Moreover, 

it should be reminded that the present work emphasizes in evaluating the performance 

of the various parameter estimation methods and not in the estimation of the inherent 

uncertainties.  

  

From the simulation analysis of the parameter estimation methods and application in extremes 

of wind speed for the four buoys respectively, return levels (design values) at the corresponding 

return periods from 10 to 100 years are obtained in Figure 6.4. 

 

(a) (b) 

  

(c) (d) 
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(e) (f) 

  

(g) (h) 

  

 
Figure 6.4: Design values of wind speed and associated return periods for buoys 41001, 44004, 46006 and 51003 in 

(a,c,e and g) and the corresponding Q–Q plots in (b, d, f and h) respectively. The colored red dot line outlines the 

QLS as the parameter estimation method that underestimates the return levels. The colored olive lines outline the 

optimum parameter estimation methods derived from the simulation study. (Soukissian and Tsalis, 2015) 

 

 In the right panels of the same figures of 6.4 (b,d,f and h), the Q–Q plots of OEM, 

LMHU, ML, MPS and EP methods are provided. If the empirical data align closely with the 

modelled estimates, then it is likely that the chosen parameter method for the samples of wind 

speed is a good representation of the true extreme asymptotic form for these samples. As 

regards to the design value estimates of Figure 6.4 the following remarks can be derived: 

 

 Regarding the extreme quantiles of the GEV distribution (right tail), the MPS and EP 

methods provide results that are systematically closer to the theoretical GEV line than 

the other methods (except for buoy 51003, where EP and MPS methods perform better 

only for the most extreme quantile) 

 for buoy 41001, all methods perform sufficiently well for the entire range of quantiles; 

 for buoys 44404 and 46006, all methods perform well for the left tail and the medium 

range of quantiles, while only EP and MPS methods perform well for the right tail with 

respect to to the theoretical GEV line 

 for buoy 51003, all methods perform very well for the left tail; for the right tail with 

respect to to the theoretical GEV line, LMHU, ML and OEM methods perform fair 
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(except for the most extreme quantile), providing very similar quantile values, while 

MPS and EP methods perform better for the most extreme quantile. 

 

 In addition to the Q–Q plots of the performance of the parameter estimation methods 

the statistical goodness-of-fit criteria provided below reveal some additional features of good 

performance. For the overall numerical evaluation of the obtained fits via the different 

estimation methods, two different measures of the goodness of fit are implemented:  

 

a) the standard error of fit (SEF) is defined as, (Kite, 1988):  

 

𝑆𝐸𝐹 = √
∑ (𝑥𝑖−�̂�𝑖)

2𝑁
𝑖=1

𝑁−𝑛𝑃
,                               (6.5) 

 

and  

 

b) the mean absolute relative deviation (MARD) that is defined as, (Jain and Singh, 

1987): 

 

𝑀𝐴𝑅𝐷 =
100

𝑁
∑ |

𝑥𝑖−�̂�𝑖

𝑥𝑖
|𝑁

𝑖=1 ,                  (6.6) 

 

where 𝑥𝑖 are the available values of the sample (i.e., the sample annual maxima), 𝑥𝑖 are the 

values estimated by the fitted distribution corresponding to the same return periods of the 

sample values, 𝑁 is the size of the available sample, and 𝑛𝑃 is the number of parameters of the 

GEV distribution function (i.e., 𝑛𝑃 = 3).  

 In Table 6.2, the values of the aforementioned measures of goodness of fit are provided. 

The minimum values of the above parameters are shown in bold. Regarding the MARD 

criterion, EP method provides the best fit for two buoys (41001, 51003) and the second best fit 

for the other two buoys, MPS method provides the best fit for buoy 44004 and the second best 

fit for buoy 51003, and LMW method provides the best fit for buoy 46006 and the second best 

fit for buoy 41001. Regarding the SEF criterion, EP method provides the best fit for two buoys 

(46006, 51003) and the second best fit for buoy 44004, LMHB method provides the best fit for 

buoy 41001 and the second best fit for buoy 46006, and MPS method provides the best fit for 

buoy 44004 and the second best fit for buoy 51003. Taking into account the above results, it 

can be concluded that EP and MPS methods provide the overall best fits to the examined annual 

maxima wind speeds. 

 
Table 6.2: Values of SEF and MARD goodness of fit criteria for all GEV parameter estimation methods. 

Buoy No. 41001 44004 46006 51003 

Method of 

estimation 
SEF MARD SEF MARD SEF MARD SEF MARD 

OM 0.778 2.486 0.524 1.301 0.584 1.778 0.355 0.942 

LMHU 0.785 2.357 0.483 1.287 0.563 1.688 0.320 0.850 

LMHB 0.760 2.506 0.421 1.272 0.509 1.705 0.288 1.262 

LMW 0.794 2.317 0.473 1.400 0.558 1.653 0.318 1.138 

ML 0.769 2.420 0.544 1.347 0.625 1.844 0.334 0.891 

MPS 0.794 3.097 0.391 1.162 0.539 1.978 0.208 0.826 

QLS 0.905 2.408 0.638 1.469 0.690 1.861 0.342 0.912 

EP 0.833 2.287 0.405 1.201 0.504 1.687 0.195 0.806 

MESE 0.899 3.284 0.532 1.328 0.611 2.125 0.381 1.032 

POME 0.790 2.600 0.532 1.335 0.654 1.979 0.324 0.872 
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 Taking into consideration over- and under-design criteria for the behavior of the 

parameter estimation methods of the GEV distribution, the corresponding 50- and 100-year 

wind speed design values for each examined buoy are presented in Table 6.3. The differences 

between the maximum and the minimum 100-year design values are shown for the examined 

locations along with the estimation methods in parentheses. The methods that seem to provide 

higher 100-year design values (with respect to the other methods) are the EP (for buoys 41001, 

46006 and 51003) and the MPS (for buoy 44004). The method that generally provides lower 

100-year design values is QLS (for buoys 41001, 44004). The relative differences between the 

maximum and the minimum 100-year design values are the following: for buoy 41001, 8.46 %, 

for buoy 44004, 7.6 %, for buoy 46006, 7.59 %, and for buoy 51003, 12.36 %. On the other 

hand, the method that provides results lying in-between the results provided by all estimation 

methods is LMHU for buoys 44004 and 46006, LMW for buoy 41001 and LMHB for buoy 

51003. 

  
Table 6.3: The 50 and 100-years design values for wind speed (ms-1) calculated with various GEV parameter 

estimation methods in buoys 41001, 44004, 46006 and 51003. 

Buoy no. 41001 44004 46006 51003 

 50 and 100 years design values (ms-1) 

Estimation 

methods 
50 100 50 100 50 100 50 100 

OM 29.574 30.196 30.031 31.463 30.643 31.957 18.384 19.326 

LMHU 29.906 30.667 30.473 32.149 30.974 32.457 18.764 20.000 

LMHB 30.661 31.586 31.110 32.864 31.636 33.250 19.156 20.342 

LMW 30.255 31.149 31.067 33.160 31.468 33.242 19.251 20.984 

ML 29.931 30.655 30.063 31.590 30.305 31.493 18.692 19.911 

MPS 30.846 31.682 31.409 33.298 31.460 32.865 19.781 21.458 

QLS 29.278 29.954 29.471 30.768 30.070 31.263 18.649 19.851 

EP 31.439 32.724 31.106 32.958 31.936 33.660 20.134 22.051 

MESE 30.360 30.967 30.113 31.638 30.587 31.728 18.451 19.588 

POME 29.587 30.146 30.149 31.710 30.046 31.104 18.778 20.048 

Diff. max-min of  

100-year design 

value 

 
2.770  

(EP-QLS) 
 

2.530 
(MPS-QLS) 

 
2.556 

(EP-POME)                   
 

2.725 
(EP-OM)                                

 

 As regards to the design value estimates the following remarks can be derived for ML 

method, which is the most commonly used in GEV parameter estimation and the MPS and EP 

methods, which are rather unknown to the engineering community. Taking as reference the 

mean value of all 100-year design wind speeds as provided by all the examined estimation 

methods, ML provides results that are systematically below the mean, i.e., 1.03 % for buoy 

41001, 1.77 % for buoy 44004, 2.50 % for buoy 46006 and 2.19 % for buoy 51003. On the 

contrary, the MPS method provides results that are systematically greater than the mean, i.e., 

2.24 % for buoy 41001, 3.42 % for buoy 44004, 1.71 % for buoy 46006 and 5.14 % for buoy 

51003. Similarly, the EP method also provides results that are systematically greater than the 

mean, i.e., 5.35 % for buoy 41001, 2.42 % for buoy 44004, 4.03 % for buoy 46006 and 7.69 % 

for buoy 51003.  

 It can be also concluded that for the 100-year design values, the corresponding relevant 

absolute differences between ML and MPS methods are 3.24 % for buoy 41001, 5.13 % for 

buoy 44004, 4.18 % for buoy 46006 and 7.21 % for buoy 51003. The relevant absolute 



  Results and discussion 

99 

 

differences between ML and EP methods are 6.32 % for buoy 41001, 4.15 % for buoy 44004, 

6.44 % for buoy 46006 and 9.71 % for buoy 51003. The above results suggest that the relevant 

differences between ML and MPS are generally smaller than the differences between ML and 

EP methods.  

 The aim of this part of this study was the assessment of the most popular, along with 

some less popular, (or even unknown to the wider ocean and coastal engineering communities), 

methods for the estimation of the parameters of the GEV distribution. The analysis was based 

on a simulation study for fixed sample size and application of the estimation methods to wind 

speed datasets from four buoys located in the Atlantic and Pacific Ocean basins. From a 

statistical point of view, MPS, EP and POME methods meet important requirements 

satisfactorily, but when the design values are of significance importance, these three methods 

lead to over-design. In this respect, ML and LMHU method leads to slight under-design.  

 

6.1.2 Variable sample size (simulation study and applications) 
 

 In this Section, the simulation and comparison of ML, MPS, EP and LMOM estimators 

is performed for different sample sizes ranging from 20 to 50. The considered small to medium 

sample sizes roughly correspond to the usually available sample sizes in relevant met-ocean 

applications. The LMOM method is also included since it has been suggested by other authors 

that it is more suitable, especially for small sample sizes; see e.g. (Hosking et al., 1985 and 

Hosking, 1990). For the evaluation of each estimation method performance four statistical 

criteria are adopted. Two of these criteria refer to the evaluation of each parameter estimate; in 

this respect, let it be noted that it is common ground in the relevant literature to evaluate one-

by-one the parameter estimates of the GEV distribution. The other two criteria that are adopted 

(average absolute difference and average of the maximum absolute difference) refer to the 

overall evaluation of the combined effects of all parameter estimates with respect to the true 

and the estimated GEV cdf. The simulation part of this work essentially complements and 

completes the work of (Soukissian and Tsalis, 2015) and prepares the ground for the assessment 

of wind speed design values. 

 

Simulation Study 

 In this section, the simulation study is presented in detail with the obtained results. The 

aim of the simulation is to assess and evaluate the performance of each examined estimation 

method with respect to the available sample size of maxima. Since the acquired sample sizes 

of AM in wind energy and metocean applications is usually of the order of 20–30, and the 

required return periods are of the order of 30–50 years, design values in the particular range 

(i.e. 20, 25, …, 50) are considered.  

 Each simulation run produces 𝑁 =1000 random samples of size 𝑛𝐵= 20,25,…50, 

drawn from a GEV cdf 𝐹(𝑥; 𝑛𝐵, 𝛉), with fixed location and scale parameters (𝜇 = 0, 𝜎 = 1). 

The shape parameter 𝜉 lies in the range [−0.25,0.25] with a 0.05 step. The limits of this range 

are derived according to the EVA of wind speed presented in the latter Sections. For each 

considered value of 𝜉, �̂� is estimated from each of the 1000 random samples (of size 𝑛𝐵) 

produced and the corresponding sample mean values and variances (of �̂�) are calculated. The 

metrics adopted for the evaluation of the performance of each method with respect to sample 

size, are the bias and the mean squared error. �̂�(𝑥; 𝑛𝐵, �̂�) denotes the corresponding estimated 

GEV distribution function.  

 

Specifically, the simulation analysis can be described as follows:  
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Step 1: Specify a value for the sample size 𝑛𝐵(𝑛𝐵 = 20,25,… ,50) and another one for the 

shape parameter 𝜉 ∈ [−0.25,0.25].  
Step 2: Generate 𝑁 = 1000 random samples each of size 𝑛𝐵 from a GEV distribution (with 

fixed 𝜇 = 0, 𝜎 = 1 and 𝜉 as was selected in Step 1). 

Step 3: Evaluate 𝜃𝑗,𝑛𝐵, 𝑗 = 1,2,… ,1000, for the considered sample, by implementing the 

examined estimation methods. 𝜃𝑗,𝑛𝐵 denotes any of the three parameters of the GEV distribution 

(i.e. location 𝜇, scale 𝜎 or shape 𝜉 parameter) as is estimated from the 𝑗 −th random sample, 

𝑗 = 1,2,… ,1000, with size 𝑛𝐵.  

Step 4: From the obtained samples of the distribution parameters (𝜃𝑗,𝑛𝐵, 𝑗 = 1,2,… ,1000) 

estimate the corresponding sample means and variances, i.e.  

 

 �̅�𝑛𝐵 =
1

𝑁
∑ 𝜃𝑗,𝑛𝐵
𝑁
𝑗=1 , and 𝑠�̂�𝑛𝐵

2 =
1

𝑁−1
∑ (𝜃𝑗,𝑛𝐵 − �̅�𝑛𝐵)

2
𝑁
𝑗=1 ,              (6.7) 

 

where �̅�𝑛𝐵 , 𝑠�̂�𝑛𝐵
2  denote the sample mean and the corresponding sample variance, respectively.  

Using the estimates from Step 4 confidence intervals covering the parameters are derived as 

 

(�̅�𝑛𝐵 − 1.96
𝑠�̂�𝑛𝐵

√𝑁
, �̅�𝑛𝐵 + 1.96

𝑠�̂�𝑛𝐵

√𝑁
).                     (6.8) 

 

Step 5: Evaluate the bias and the mean squared error (MSE) for each distribution parameter, 

and estimation method, as follows: 

 

𝐵𝑖𝑎𝑠(𝑛𝐵) = 𝜃𝑛𝐵 − 𝜃, 𝑀𝑆𝐸(𝑛𝐵) = 𝑠�̂�𝑛𝐵
2 + (𝐵𝑖𝑎𝑠[𝜃𝑛𝐵])

2
,                            (6.9) 

 

for 𝜃 = 𝜇 = 0 and 𝜃 = 𝜎 = 1.  

 

In  order to consider the combined effects of all parameter estimates along with the examined 

sample sizes, the following measures, suggested by (Castillo and Hadi, 1995 a,b), are also 

considered: 

  

1) The average absolute difference 𝐷𝑎𝑏𝑠 between the true (initial) and the estimated distribution 

function taking into consideration all the randomly generated samples, i.e.:  

 

𝐷𝑎𝑏𝑠 =
1

𝑁𝑛𝐵
∑ ∑ |𝐹(𝑥𝑗; 𝑛𝐵, 𝛉) − �̂�(𝑥𝑗; 𝑛𝐵, �̂�)|for all 𝑛𝐵
𝑁
𝑗=1 ,              (6.10) 

 

and  

 

2) the average of the maximum absolute difference 𝐷max between the true and the estimated 

distribution function within each sample, i.e.:  

 

𝐷max =
1

𝑁
∑ max

𝑛𝐵
|𝐹(𝑥𝑗; 𝑛𝐵, 𝛉) − �̂�(𝑥𝑗; 𝑛𝐵, �̂�)|

𝑁
𝑗=1 .                          (6.11) 

 

Step 6: If the considered values of 𝜉 are exhausted, then select a different value for 𝑛𝐵and 

repeat the procedure. Otherwise, repeat the procedure for a different value of 𝜉. 

 At the end of the simulation, the behaviour of bias and MSE is obtained along with the 

values of 𝐷𝑎𝑏𝑠 and 𝐷max with respect to the examined parameter estimation methods and 

sample sizes. Implementing the above described procedure, the results of the numerical 

simulation study with respect to the different values of 𝜉 are obtained. Firstly, the results 

regarding the estimates of the parameters 𝜇,𝜎 and 𝜉are presented and evaluated by using bias 
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and MSE. Secondly, the results regarding the performance of the total GEV fits derived by 

using 𝐷𝑎𝑏𝑠 and 𝐷max are provided and discussed.  

 

The effects of the sample size on the estimation of location parameter 

 

 In Figure 6.5, the bias (left panel) and the MSE (right panel) of the location parameter 

𝜇 (as estimated by the examined methods) with respect to sample size is shown. Let it be 

reminded that the random samples are generated from a GEV distribution with 𝜇= 0 . It can be 

noted that bias and MSE curves follow fairly the same trend with respect to the examined 

estimation methods. Regarding the absolute bias, it seems that it does not tend in a definite way 

towards zero. Therefore, the simulation study was extended to larger sample sizes (not 

presented here) and the decrease of the absolute bias was eventually more pronounced for all 

methods.  

 

(a) (b) 

  

(c) (d) 

  

(e) (f) 
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(g) (h) 

  

Figure 6.5:  Bias in (a,c,e, and g) and MSE in (b,d,f, and h) of location parameter 𝜇 (for 𝜉 = −0.25,−0.05, 0.05,0.25) 

with respect to sample size obtained from all parameter estimation methods. (Soukissian and Tsalis, 2018) 

 Moreover, it can be concluded that for all examined values of 𝜉, LMOM performs 

better, since it provides the smallest absolute bias. This is also true for the smaller sample sizes 

examined. For 𝜉 = 0.25, LMOM performs better for sample sizes up to 40, while for sample 

sizes greater than 40, EP and MPS perform slightly better. Finally, MPS provides systematically 

positive values for bias, while EP and ML provide negative.  

 Regarding MSE, its behaviour is much more systematic. It exhibits a clearly decreasing 

trend towards zero for all estimation methods and values of 𝜉, as the sample size increases. This 

behaviour suggests that the effect of the variance in Equation (6.7) plays a major role in the 

calculation of MSE (Equation (6.9), shaping in a great extent, its clearly decreasing behaviour. 

The provided curves suggest that LMOM provides overall the smallest values of MSE. Another 

interesting feature is that, for small sample sizes, ML provides the greatest values of MSE. For 

increasing values of 𝜉 and sample size, the MSE curves corresponding to the different 

estimation methods are hardly distinguishable.  

 From the simulation study considering 𝜉 ∈ [−0.25,0.25], the mean values and the 95% 

confidence intervals (CI) of the mean (described in the previous Step 4) of location parameter 

𝜇 are illustrated with respect to sample size in Figure 6.6. The narrowest 95% CI widths are 

provided by LMOM and MPS for all values of 𝜉. For 𝜉 = 0.25, the CI widths become very 

similar. All methods have a clearly decreasing trend towards zero as the sample size increses. 

It is clear that for negative values of 𝜉 =-0.25 and -0.05, where strong evidence of negative 

values exists in modeling extreme wind speed (An and Pandey, 2007), ML and LMOM methods 

have a clearly decreasing trend towards zero following by the smoothly decreasing width of the 

CI as the sample size increases. 
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(a) (b) 

  

(c) (d) 

  

Figure 6.6: Mean values and 95% CI of location parameter 𝜇 (for 𝜉 = −0.25,−0.05, 0.05,0.25) in (a,b,c, and d) 

respectively to sample size obtained from all parameter estimation methods. (Soukissian and Tsalis, 2018) 

 

The effects of the sample size on the estimation of scale parameter 

 

 In Figure 6.7, the bias (left panel) and the MSE (right panel) of the scale parameter 𝜎 

with respect to the sample size is shown (note that the random samples were generated from a 

GEV distribution with 𝜎 = 1). For the same reasons as stated above, the simulation study was 

extended to larger sample sizes and the decrease of the absolute bias was evident for all 

methods. It is concluded that LMOM performs clearly better for all values of 𝜉 and sample 

sizes (except for 𝜉 = 0.25, where EP performs slightly better). MPS method provides, in 

absolute terms, the largest values of bias.  

 Regarding MSE, LMOM, and ML methods perform better providing very similar 

values of MSE for negative values of 𝜉; however, for 𝜉 = 0.25, LMOM provides the largest 

values of MSE. For 𝜉 > 0, ML method performs better for all examined sample sizes.  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

  

Figure 6.7: Bias in (a,c,e and g) and MSE in (b,d,f , and h) of scale parameter 𝜎 (for 𝜉 = −0.25,−0.05, 0.05,0.25) 

with respect to sample size obtained from all parameter estimation methods. (Soukissian and Tsalis, 2018) 
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 In the same context as in the parameter estimates of the location inferred in Figure 6.6, 

from the simulation study considering ξ∈[-0.25,0.25], the mean values and the 95% confidence 

intervals of the mean estimates of the scale parameter 𝜎 are illustrated with respect to sample 

size in Figure 6.8. The narrowest 95% CI widths are provided by MLE and LMOM for 𝜉 =
−0.25, −0.05, 0.05, and MLE and MPS for 𝜉 = 0.25. MLE method provides systematically 

the narrowest 95% CI. All methods assessed in this setting have a clearly decreasing trend 

towards 𝜎=1 as the sample size increses. The decreasing trend in the scale estimates indicates 

a successfully simulation as the random samples enforced to all methods are generated from a 

GEV distribution of scale parameter set to unit value. The demonstration of LMOM shows the 

smoother decreasing rate towards 𝜎=1 as the sample size increases. Inference is also made to 

the statndard ML method demonstrating a smooth decreasing rate of the scale parameter for 

sample sizes greater than 35 indicating the intractable problem of inference for smaller sample 

sizes, i.e., samples of 20 to 35; (Kharin and Zwiers, 2000; Kunz et al., 2010). 

 

(a) (b) 

  

(c) (d) 

  

Figure 6.8: Mean values and 95% CI of scale parameter 𝜎 (for 𝜉 = −0.25,−0.05, 0.05,0.25) in (a,b,c, and d) with 

respect to sample size obtained from all parameter estimation methods. (Soukissian and Tsalis, 2018) 
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The effects of the sample size on the estimation of shape parameter 

 

 The GEV distribution is essentially governed by the shape parameter 𝜉. In Figure 6.9, 

the bias (left panel) and the MSE (right panel) of this parameter with respect to sample size is 

shown. For 𝜉= -0.25 and -0.05, LMOM and MPS provide the smallest absolute bias and, in 

general, LMOM performs better for small sample sizes. For 𝜉= 0.05 and 0.25, ML provides 

overall the smallest bias. Regarding MSE, its behaviour is more systematic, i.e. it clearly 

decreases with increasing sample size, tending to zero. The smallest values of MSE are 

provided by LMOM and EP, while the largest ones by ML and MPS.  

 

(a) (b) 

  

(c) (d) 

  

(e) (f) 
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(g) (h) 

 
 

Figure 6.9: Bias in (a,c,e and g) and MSE in (b,d,f, and h) of shape parameter estimate (for 𝜉 =
−0.25,−0.05, 0.05,0.25) with respect to sample size obtained from all parameter estimation methods. (Soukissian 

and Tsalis, 2018) 

 

 In Figure 6.10, the mean values and the 95% CI of shape parameter 𝜉 are depicted with 

respect to sample size. The narrowest CI widths are provided by EPM and LMOM for all 

examined values of 𝜉. EPM method provides systematically the narrowest 95% CI. It is clear 

that for negative values of 𝜉 =-0.25 and -0.05, where great interest is in modeling extreme wind 

speed, ML and LMOM methods have a clearly convergence trend towards the initialy fixed 𝜉 

values of the simulation. The demonstration of LMOM shows the smoother decreasing rate as 

the sample size increases, outlining the fast converegence rate of the latter method to the shape 

parameter set for evaluation specifically for the relatively small sample sizes of 20 to 30. For 

the four methods inference is also made of the smoothly decreasing width of the CI as sample 

size increases pointing out the acceptable behavior of these parameter estimation methods. 

 

(a) (b) 
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(c) (d) 

  

Figure 6.10: Mean values and 95% CI of shape parameter estimate (for 𝜉 = −0.25,−0.05, 0.05,0.25) in (a,b,c, and 

d) with respect to sample size obtained from all parameter estimation methods. (Soukissian and Tsalis, 2018) 

 

Evaluation of the effects of sample size and estimation method to the GEV distribution 

 

 In order to evaluate the overall effects of both the sample size and of the particular 

estimation method, the results of the metrics 𝐷𝑎𝑏𝑠 and 𝐷max are presented for different values 

of 𝜉. Note that these metrics evaluate the GEV distribution overall fit. Specifically, in Figure 

6.11, 𝐷𝑎𝑏𝑠 (left panel) and 𝐷max (right panel) are shown with respect to sample size. Regarding 

𝐷𝑎𝑏𝑠, LMOM performs clearly better for all examined values of 𝜉, while for 𝜉 = −0.25 and 

0.25, the values provided by ML method are fairly close to the values provided by the LMOM, 

especially for larger sample sizes. For small sample sizes, the superiority of LMOM method is 

more pronounced. With respect to 𝐷max, LMOM performs clearly better for all examined 

values of 𝜉. The performance of ML is very close to LMOM’s for larger values of 𝜉 and greater 

sample sizes. It is also evident that the values of both metrics tend to zero as the sample size 

increases.  

 

(a) (b) 
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(c) (d) 

  

(e) (f) 

  

(g) (h) 

  

Figure 6.11: 𝐷𝑎𝑏𝑠 in (a,c,e and g) and 𝐷𝑚𝑎𝑥 in (b,d,f, and h) for  𝜉 = −0.25,−0.05, 0.05,0.25 with respect to the 

sample size and the parameter estimation method. (Supplementary image of Soukissian and Tsalis, 2018) 
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From the simulation study considering a variable sample size of (20,25,30,35,40,45, and 50 

years) the following remarks are outlined: 

 

1. With respect to the location parameter 𝜇, LMOM method provides the smallest values 

of bias for small sample sizes and the smallest values of MSE overall.  

2. Regarding the scale parameter 𝜎, LMOM method provides overall the smallest values 

of bias while LMOM and ML methods provide the smallest values for MSE. 

3. With respect to the shape parameter 𝜉, LMOM performs better with respect to bias for 

small sample sizes, while LMOM and EP methods provided the smallest values for 

MSE. For the initialy fixed ξ values (-0.25 and -0.05) of the simulation, the ML and 

LMOM methods showed a smoother convergence rate towards the initially fixed ξ 

parameters for sample sizes larger than 35 and to a lower extent for samples larger than 

30. From the simulation assessment, the ML method fails to perform better than the 

other examined estimation methods.  

4. Considering the overall behaviour of the estimation methods (for all three parameters 

simultaneously) a systematic behaviour is observed. Specifically, LMOM method 

performed clearly better with respect to both metrics 𝐷𝑎𝑏𝑠 and 𝐷max, for the majority 

of the examined sample sizes and in particular, for the smaller ones.  

5. Regarding the 95% CI with respect to 𝜇, the narrowest CI widths are provided by 

LMOM and MPS methods. With respect to 𝜎, the narrowest CI widths are provided by 

ML method and in terms of 𝜉, the narrowest CI widths are provided by EPM.  

 

 In this regard, according to the above discussion, a rather safe choice is to select the 

LMOM method for the estimation of the GEV distribution parameters, particularly when the 

available sample size is relatively small. 

 

Applications 

 

 In the second part of this work, the optimum methods MLE and LMOM from the 

simulation analysis are applied to wind speed datasets of different sample size and different 

direction step of sampling to assess the effect of the latter characteristics to the estimators of 

the GEV parameters. Specifically, the wind data used in this work are in the form of 50 years 

long time series at four locations (L1,2,3, and 4) in the offshore region of the North Sea obtained 

from the suitable ERA-20C reanalysis dataset utilizing gridded analysis wind speed data sets 

of coarse resolution. The statistical analysis of the wind data for the four locations is presented 

in sub-Section 5.2.1 with respect to different time series lengths. The regional locations selected 

in this study are in the offshore area of the North Sea and far away one from each other in order 

to alleviate any correlation effect. 

 The Mann-Kendall test is applied to the corresponding subsamples of annual BM in 

order to secure that the relevant time series are non-monotonic. Then the effects of the GEV 

parameter estimation methods and the sample size and type on the 50- and 100-year design 

values for wind speed are studied in detail. Since the effects of the wind data sample size can 

be considered in two ways, i.e., 

 

i) for increasing sample sizes from the past to the future (F-samples), and  

ii) from the current period (“now”) to the past (B-samples), both types of effects are 

assessed (Soukissian and Tsalis; 2019). Specifically, the 𝑛-year design values of 

wind speed (for 𝑛 = 10,20,…100 years) for the examined locations are provided 

for different time series lengths and the deviations between the corresponding 
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estimates are commented. In addition, the relative confidence intervals is estimated 

and discussed. 

 

 Before proceeding to the GEV parameter and the design value estimation using the 

methods ML and LMOM to the ERA-20C datasets, Stationarity tests are required. The period 

1961–2010 lies within the climate change era and potentially includes climate change signals. 

Therefore, it is likely that time series statistics, and in particular annual maxima, are affected 

and thereby cancel out the stationarity assumption under which the BM approach is valid. 

Consequently it is necessary to examine whether the examined time series are stationary; for 

this purpose, the non-parametric rank-based Mann-Kendall (M-K) test is implemented, at a 

significance level 𝛼 = 0.05. In the frame of the M-K test, it is examined whether there is a 

monotonic upward or downward trend; in other words, assuming a linear trend, the M-K test is 

used to test whether the slope of the regression line is different from zero. The null hypothesis 

is 𝐻0: No monotonic trend is present, against the alternative 𝐻1: There is a monotonic trend 

present. The M-K test for trend detection and implementation is described in Appendix F. The 

main M-K test results (i.e. M-K score 𝑆, its variance 𝑉𝑎𝑟(𝑆), and 𝑝–value for each examined 

location with respect to the different time series lengths of B– and F–samples) are shown in 

Table 6.4. The results were produced using the R Kendall package; (see https://cran.r-

project.org/web/packages/Kendall/Kendall.pdf). 

 

 

Table 6.4: Results of the Mann-Kendall test for all examined locations and time series lengths. 

Location 
Time series length in years and 

period examined  
𝑆𝐹 𝑆𝐵 𝑉𝑎𝑟(𝑆𝐹) 𝑉𝑎𝑟(𝑆𝐵) 𝑝

𝐹
 𝑝

𝐵
 

L1 

20 (1961-1980, 1991-2010) -16 -34 950.000 950.000 0.626 0.284 

25 (1961-1985, 1986-2010) 42 -48 1833.333 1833.333 0.338 0.272 

30 (1961-1990, 1981-2010) 57 -107 3141.667 3141.667 0.318 0.059 

35 (1961-1995, 1976-2010) 85 -71 4958.333 4958.333 0.233 0.320 

40 (1961-2000, 1971-2010) 140 -14 7366.667 7366.667 0.105 0.880 

45 (1961-2005, 1966-2010) 86 -2 10450.000 10450.000 0.406 0.992 

50 (1961-2010) 15 14291.67 0.907 

L2 

20 (1961-1980, 1991-2010) 36 -42 950.000 950.000 0.256 0.183 

25 (1961-1985, 1986-2010) 62 -70 1833.333 1833.333 0.154 0.107 

30 (1961-1990, 1981-2010) 105 -79 3141.667 3141.667 0.064 0.164 

35 (1961-1995, 1976-2010) 133 -113 4958.333 4958.333 0.061 0.112 

40 (1961-2000, 1971-2010) 150 -68 7366.667 7366.667 0.083 0.435 

45 (1961-2005, 1966-2010) 158 -10 10450.000 10450.000 0.125 0.930 

50 (1961-2010) 57 14291.67 0.639 

L3 

20 (1961-1980, 1991-2010) 22 14 950.000 950.000 0.496 0.673 

25 (1961-1985, 1986-2010) 20 0 1833.333 1833.333 0.657 1.000 

30 (1961-1990, 1981-2010) 57 3 3141.667 3141.667 0.318 0.972 

35 (1961-1995, 1976-2010) 39 -11 4958.333 4958.333 0.589 0.887 

https://cran.r-project.org/web/packages/Kendall/Kendall.pdf
https://cran.r-project.org/web/packages/Kendall/Kendall.pdf
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40 (1961-2000, 1971-2010) 88 -24 7366.667 7366.667 0.311 0.789 

45 (1961-2005, 1966-2010) 34 66 10450.000 10450.000 0.747 0.525 

50 (1961-2010) 55 14291.67 0.651 

L4 

20 (1961-1980, 1991-2010) 16 4 950.000 950.000 0.626 0.922 

25 (1961-1985, 1986-2010) 52 8 1833.333 1833.333 0.234 0.870 

30 (1961-1990, 1981-2010) 63 -29 3141.667 3141.667 0.269 0.617 

35 (1961-1995, 1976-2010) 65 -41 4958.333 4958.333 0.363 0.570 

40 (1961-2000, 1971-2010) 112 38 7366.667 7366.667 0.196 0.666 

45 (1961-2005, 1966-2010) 114 96 10450.000 10450.000 0.269 0.353 

50 (1961-2010) 109 14291.67 0.366 

 

 Evidently, all 𝑝– values for all examined locations, time series lengths and sample types 

are not significant, since 𝑝> 0.06. Therefore, the assumption of no monotonic trend in the AM 

time series cannot be rejected. In (Orimolade et al., 2016) it was also found that the long-term 

time series of significant wave height for the Barents Sea (based on the Norwegian reanalysis 

data set NORA10) did not suggest a temporal trend. 

 

Inference of the sample size effect to the GEV parameter estimates 

 

 For the estimation of the GEV distribution parameters, ML and LMOM methods are 

implemented. ML is used since it is a standard parameter estimation technique, while LMOM 

has been suggested as the overall best estimation method by the results of the simulation study 

described in the foregoing section. In Figure 6.12, the location, scale, and shape parameters of 

the GEV distribution are provided with respect to the available number of annual maxima 

considered for the F–samples (continuous lines) and B–samples (dashed lines).  

 

(a) (b) 
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(c) (d) 

  

(e) (f) 

  

Figure 6.12: Estimation of the GEV distribution parameters according to LMOM method in (a,c, and e) and ML in 

(b,d, and f) for various sample sizes of annual maxima. Continuous lines correspond to F–samples and dotted lines 

correspond to B–samples. (Soukissian and Tsalis, 2019) 

 As can be seen from Figure 6.12 there is a strong variation of the estimated parameters 

for each examined case, depending on the sample size and type (F– or B–sample), and the 

estimation method. For locations L1, L2 and L3, the values of the estimated parameters 𝜎 and 

𝜉 are strongly dependent on the sample type. The fluctuation of 𝜉 is of most importance, since 

it affects the specific asymptotic form of the GEV distribution. In this respect, a significant 

jump (increase) in the estimated value of 𝜉 is observed for L3; for F–sample size 20, the values 

provided by the LMOM and ML were -0.375 and -0.461, respectively, while for sample size 

25, the corresponding values of 𝜉 were 0.0001 and 0.0348. This abrupt shift is due to the 

appearance of the new maximum (24.662 m/s) to the 25 years long data-set, with value well 

above the existing AM values. On the contrary, the corresponding shift is almost negligible for 

𝜇 and 𝜎. 

 

Although the challenging results, some general remarks can be pointed out and summarized as 

follows: 
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1 It seems that only 𝜇 parameter is rather insensitive to the sample type;  

2 For location L4 where the extreme wind profile in the German Bight is related to the 

low sea level pressure pattern over Scandinavia (Sušelj et al., 2010; Befort et al., 2014) 

it seems that the sample type has minor effects to all estimated parameters;  

3 The estimates of the parameters obtained from F– and B–samples converge to a 

stronger rate as sample size increases (larger than 40 and to a lower extent larger than 

35), which was an expected behaviour; 

4 The general trends for each location and estimated parameters with respect to the 

examined estimation method are much alike. For example, the trends of the two black 

lines (for both sample types) providing the fluctuation of 𝜉 as estimated by the LMOM 

and the ML method for location L1, are identical;  

5 𝜉 parameter estimates obtained from the F–samples are systematically greater than the 

corresponding estimates obtained from the B–samples (except for location L4 where 

both estimates are very close);  

6 𝜎 parameter estimates obtained from the B–samples are systematically greater than the 

estimates obtained from the F–samples (except for location L4).  

 

 For the evaluation of the obtained GEV fits, let 𝑥𝑁 ≤ ⋯ ≤ 𝑥2 ≤ 𝑥1 denote the ordered 

sample of AM, and 𝑁 the corresponding sample size. Let also 𝑇 denote the corresponding return 

periods obtained by means of an appropriate plotting position formula, such as the Weibull 

plotting position formula:  

 

 𝑇 =
𝑖

𝑁+1
,   𝑖 = 1,2, … ,𝑁,                 (6.12) 

 

where 𝑖 denotes the order of the particular value in the sample. Moreover, let 𝑥𝑁 ≤ ⋯ ≤ 𝑥2 ≤
𝑥1 denote the values estimated by the fitted GEV distribution that correspond to the same return 

periods. For a quantitative evaluation of the obtained fits with respect to the different sample 

sizes and types, and parameter estimation methods, two different goodness-of-fit measures are 

implemented, thestandard error of fit (SEF) and the mean absolute relative deviation (MARD) 

(see expressions previously stated in Equations (6.5) and (6.6). 

 In Table 6.5, the values of SEF and MARD criteria are summarized for different sample 

sizes and types and for both estimation methods. Results shown with boldface numbers denote 

minimum values for the F– and B–samples (with respect to estimation method). Boldface and 

italics numbers denote overall minimum values (with respect to estimation method and sample 

type). From this table, the following conclusions can be summarized: 

 

Table 6.5: Values of MARD and SEF criteria for different sample sizes, sample types (F and B) and estimation 

methods. Boldface numbers denote minimum values for the F– and B–samples. Boldface and italics numbers 

denote overall minimum values. 

Location Criterion 
Estimation 

method 

Sample 

type 

Sample size 

20 25 30 35 40 45 50 

L1 

SEF 

ML 
F 0.213 0.200 0.222 0.223 0.177 0.172 

0.181 
B 0.335 0.311 0.247 0.199 0.188 0.189 

LMOM 
F 0.171 0.155 0.197 0.214 0.155 0.147 

0.174 
B 0.319 0.300 0.239 0.191 0.179 0.186 

MARD 
ML 

F 0.698 0.797 0.756 0.771 0.651 0.641 
0.616 

B 1.223 1.148 0.870 0.634 0.592 0.608 

LMOM F 0.527 0.563 0.700 0.767 0.593 0.570 0.599 
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B 1.148 1.101 0.836 0.604 0.576 0.596 

L2 

SEF 

ML 
F 0.280 0.197 0.200 0.180 0.147 0.138 

0.124 
B 0.239 0.202 0.190 0.173 0.157 0.138 

LMOM 
F 0.259 0.168 0.173 0.152 0.117 0.107 

0.095 
B 0.204 0.157 0.160 0.134 0.125 0.108 

MARD 

ML 
F 0.837 0.715 0.750 0.686 0.585 0.574 

0.495 
B 0.862 0.866 0.814 0.732 0.647 0.566 

LMOM 
F 0.811 0.654 0.663 0.600 0.475 0.440 

0.386 
B 0.739 0.656 0.642 0.519 0.498 0.449 

L3 

SEF 

ML 
F 0.176 0.375 0.317 0.283 0.247 0.244 

0.213 
B 0.201 0.177 0.265 0.234 0.224 0.220 

LMOM 
F 0.155 0.370 0.314 0.296 0.259 0.263 

0.229 
B 0.159 0.155 0.269 0.241 0.236 0.234 

MARD 

ML 
F 0.637 0.792 0.659 0.683 0.611 0.664 

0.541 
B 0.733 0.636 0.646 0.538 0.545 0.569 

LMOM 
F 0.556 0.796 0.648 0.646 0.589 0.594 

0.473 
B 0.580 0.560 0.632 0.522 0.508 0.526 

L4 

SEF 

ML 
F 0.295 0.243 0.203 0.188 0.152 0.146 

0.134 
B 0.238 0.194 0.179 0.185 0.166 0.151 

LMOM 
F 0.261 0.206 0.167 0.165 0.128 0.116 

0.111 
B 0.209 0.165 0.152 0.159 0.143 0.127 

MARD 

ML 
F 1.026 0.958 0.804 0.664 0.552 0.602 

0.528 
B 0.823 0.746 0.732 0.692 0.599 0.570 

LMOM 
F 0.959 0.859 0.706 0.629 0.474 0.495 

0.463 
B 0.729 0.631 0.623 0.617 0.543 0.509 

 

 F–samples: For locations L1, L2, and L4 both MARD and SEF criteria take their 

minimum values for LMOM method, for all sample sizes. For location L3, SEF 

criterion takes its minimum values for LMOM for small sample sizes (up to 30) and 

for ML for sample sizes (35–50). The minimum values of MARD criterion are obtained 

from LMOM for all sample sizes (except for sample size 25). 

 

 B–samples: For locations L1, L2, and L4, both MARD and SEF criteria take their 

minimum values for LMOM method, for all sample sizes. For location L3, SEF 

criterion takes its minimum values for LMOM for small sample sizes  (up to 25) and 

for ML for the sample sizes between 30 and 50. The minimum values of MARD 

criterion are obtained from LMOM for all sample sizes.  

 

 Failling of definitive conclusions as regards of the performance of ML and LMOM 

estimation methods with respect to the sample types (F and B). The criteria with respect 
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to sample size, location and estimation method do not exhibit a strong systematic 

behaviour. 

 

Inference of the sample size effect to the wind speed design values of the GEV distribution 

 

 In this section, the particular effects of the available number of AM and the parameter 

estimation methods on the design values of wind speed are assessed. For the sake of simplicity, 

the 𝑛-years design values of wind speed (for 𝑛=10,20,...,100) obtained from the time series of 

𝑁-year length (𝑁= 20, 30, 40 and 50) are denoted by 𝑈𝐷(𝑛; 𝑁). Along with the obtained wind 

speed design values in Figure 6.13, the corresponding 95% CI were also estimated and 

presented. For the MLE method the usual normal approximation to the likelihood is 

implemented and for the LMOM method, the 95% CI was estimated using the parameteric 

bootstrap method, (see sub-Section 2.6.2.1). The main steps for the parameteric bootstrap 

method used are the following:  

 

i) Generate 𝐾 = 2000 random samples of AM each of size 𝑁, all derived from the fitted 

examined GEV pdf. The value 𝐾 = 2000 has been selected by a trial and error 

procedure as is suggested in the R extRemes package (https://cran.r-

project.org/web/packages/extRemes/extRemes.pdf). For this value of 𝐾, the results 

regarding CI are clearly stabilized;  

ii) Estimate the GEV parameters of the 𝐾 random samples by means of the LMOM 

method, and;  

iii) Calculate the 95% CI of the parameters of interest directly from the bootstrap samples.  

 

 For the evaluation of the obtained results regarding CI, the relative CI (𝑅𝐶𝐼) and width 

of CI (WCI) is introduced. Denoting by [𝑈𝐷,𝐿 , 𝑈𝐷,𝑈] the 95% CI of 𝑈𝐷, 𝑅𝐶𝐼 and WCI is defined 

as follows: 

 

{
𝑅𝐶𝐼 =

𝑈𝐷,𝑈−𝑈𝐷,𝐿

𝑈𝐷
,

𝑊𝐶𝐼 = 𝑈𝐷,𝑈 − 𝑈𝐷,𝐿.
                              (6.13) 

 

 In Figure 6.13, 𝑈𝐷(𝑛;𝑁) is illustrated for locations L1, L2, L3 and L4, whereas the 

parameters of the GEV distribution are estimated by the LMOM method (left column) and the 

ML method (right column). An interesting behaviour that is illustrated from this figure refers 

to location L3 where the design values provided by the 20 years long time series are clearly 

outside the bulk of the rest curves. This is inferred from the abrupt change in the estimated 

value of 𝜉 parameter from the 20 and 30 years of time series. This effect at the NW location of 

the North Sea is somehow explained by the inability of the low-resolution product to capture 

the influence of the local circulation patterns into the relatively small sample period of 20 years 

(Sušelj et al., 2010). The high deviations of extremes extrapolated between the 20 and 30 years 

sample period from L3 confirms the disadvantage of the low-resolution dataset to resolve the 

local characteristics that influence the extreme wind profile at that region.  

 For a comprehensive statististical analysis in terms of the variation of each estimation 

method, in Figure 6.14 RCI of the 50- year design value DV(50) and the WCI of the estimated 

parameters (𝜇, 𝜎, 𝜉) are illustrated for the four locations assigning in (continuous lines) the 

Forward count samples for LMOM and ML, and in (dotted lines) the Backward samples 

respectively. 

 

 

  

https://cran.r-project.org/web/packages/extRemes/extRemes.pdf
https://cran.r-project.org/web/packages/extRemes/extRemes.pdf
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(a)  (b) 

  

(c) (d) 

  

(e) (f) 

  

 

 

 

 



  Results and discussion 

118 

 

(g) (h) 

  

Figure 6.13: The 𝑛-year (𝑛 = 10,20,⋯ ,100years ) design values of wind speed at locations L1, L2, L3, and L4, for 

different annual maxima sample sizes and sample types using LMOM method (a,c,e, and g), and ML method (b,d,f, 

and h). Continuous lines correspond to F–samples and dotted lines correspond to B–samples. (Soukissian and Tsalis, 

2019) 

 

(a) (b) 

  

(c) (d) 
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(e) (f) 

  

(g) (h) 

  

(i) (j) 
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(k) (l) 

  

(m) (n) 

  

(o) (p) 

  

Figure 6.14: RCI for the DV(50) of wind speed and WCI for the estimated parameters at locations L1 (a,b,c, and d), 

L2 (e,f,g, and h), L3 (i,j,k, and l) and L4 (m,n,o, and p) for different annual maxima sample sizes using LMOM and 

ML methods. (Supplementary image of Soukissian and Tsalis, 2019) 
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 As regards to the parameter estimation methods ML and LMOM of the GEV 

distribution for the variable sample size and the direction step of sampling, the following 

remarks from Figures 6.13 and 6.14 can be derived as following: 

 The general behavior of the design value curves for each location is the same for 

LMOM and ML methods.  

 The design values provided by B–samples (size 40), are systematically closer to the 

design values provided by the sample of 50 AM than the corresponding values provided 

by the F–samples. This is also true for the corresponding samples of size 30 (except for 

L3).  

 The dispersion of the design values provided by the B–samples for different sample 

sizes, is, in the mean, smaller than the one provided by the F–samples. 

 The F–samples with sizes 20 or 30 do not provide design values comparable to the 

design values provided by the samples of size 50.  

 In general, as the sample size increases, RCI and WCI values decrease 

 For sample sizes greater than 40 and to a lower extent graeter than 35, the values of 

RCI of F- and B-samples corresponding to the same return periods are similar from 

LMOM and ML. 

 The largest values of RCI (for both F– and B–samples) correspond to the smallest 

sample sizes 

 With respect to sample size, the scatter of the values of RCI obtained from the B–

samples is smaller than the one obtained from the F–samples. 

 

 The aim of this part of this study was the assessment of the most popular methods for 

the estimation of the parameters of the GEV distribution considering the combined effects of 

variable sample size and the different direction step of sampling. The analysis was based on a 

simulation study for variable sample sizes and application of the estimation methods MLE and 

LMOM to wind speed datasets from the ERA-20C reanalysis at regional locations in the North 

Sea. Considering the variable sample size, inference is made from the simulation study pointing 

out that, in general to the estimated parameters (𝜇, 𝜎, and 𝜉), LMOM performs better with 

respect to bias for small sample sizes, while LMOM and EP methods provide the smallest 

values for MSE. Inference of the design values to wind speed datasets pointed out that for small 

sample sizes (size 20 and 30), the extremes extrapolated from the analysis based on the B–

samples are, in general to the F–samples, closer to the extrapolated extremes based on the 

samples of size 50 especially for low return periods (up to 50 years). The latter argument is in 

some measure supported from the significant positive trend in ERA-20C in the number of 

extratropical cyclones in the North European regions (Befort et al., (2016) and Varino et al., 

(2018)). The B–samples are, in general to the F–samples, found with stronger wind profile.   

 

6.2 Non Stationary approach 
  

 The study of extremes through the classical method of BM is more complicated when 

the stationarity assumption is not valid. In practical applications, under the presence of non-

stationarity the parameters of the GEV distribution are considered time dependent and time is 

taken as a covariate. The underlying assumption of this approach is that the probability of 

occurrence of the considered extreme events evolves in time and the associated GEV 

parameters are considered time-dependent and the properties of the distribution vary with time; 

(see sub-Section 2.5.1). This is often the case when time series under climate change conditions 

are considered; (e.g., see Vanem, 2015). For this assessment, four steps summarize the non-

stationary approach as follows: 
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i. First Step, the annual wind speed data series from the atmospheric weather reanalysis 

product ERA-20C is considered.  

ii. Secondly, for each examined location L (1, 2, 3, 4, and 5) illustrated in Figure 5.6 with 

their descriptive statistics in Table 5.3, Trend and Stationarity test are implemented 

setting p-value<0.05.  

iii. Third, the likelihood is formulated for the various non-stationary GEV parametric 

models, following from the estimation of the minimum model selection criteria of the 

AIC, BIC and LR test respectively for each location.  

iv. Finally, in Step four the effective design values of each optimum parametric GEV 

model is estimated. 

 

 In the present work, the location parameter and the scale parameter are modelled as 

polynomial functions of time. The exponential in the scale parameter is used to ensure positivity 

for all values of time 𝑡. Shape parameter is of most importance for the distribution and due to 

its difficulty to be estimated with accuracy, we keep shape parameter time independent, 

following the work from Nogaj et al., (2007), El Adlouni et al., (2007) and Cannon (2010). In 

the following Table 6.6, the various time dependent forms of the parametric models are 

presented.   

 
Table 6.6: Basic models of various functional forms of (𝜇(𝑡), 𝜎(𝑡), 𝜉(𝑡)) for the non-stationary analysis. 

Model  Functional form of 𝜇(𝑡) Functional form of 𝜎(𝑡) 𝜉(𝑡) 

1 𝜇0 

𝜎0 

𝜉0 

2 𝜇0 + 𝜇1𝑡 

3 𝜇0 + 𝜇1𝑡 + 𝜇2𝑡
2 

4 𝜇0 

exp(𝜎0 + 𝜎1𝑡) 5 𝜇0 + 𝜇1𝑡 

6 𝜇0 + 𝜇1𝑡 + 𝜇2𝑡
2 

7 𝜇0 + 𝜇1sin (
2𝜋

365.25
𝑡) + 𝜇2cos (

2𝜋

365.25
𝑡) exp(𝜎0 + 𝜎1sin (

2𝜋

365.25
𝑡) + 𝜎2cos (

2𝜋

365.25
𝑡)) 

 

6.2.1 Trend and unit root tests 

 

 In this assessment, two tests are first applied to verify the presence of trend to extremes 

of annual wind speed in the North Sea region. The first test is the Mann-Kendall (MK) non-

parametric trend test and second the Cox Stuart (CS) trend test (see sub-Section (2.5.2)), in 

order to assess whether the considered time series are characterized by an increasing, decreasing 

or stationary trend. Secondly, two additional unit root tests are implemented referred to as the 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) stationarity test and the Augmented Dickey-Fuller 

(ADF) unit root test (see also sub-Section (2.5.2) and Appendix F). The KPSS test makes 

inquiries about the stationarity of the considered time series around a fixed level (level 

stationarity) and the ADF test examines if the process is stationary or not from the presence of 

a unit root. The null hypothesis of the MK and CS tests is no monotonic trend present, and the 

null hypothesis of KPSS is level stationarity. However, the null hypothesis of the ADF test is 

of the presence of a unit root (i.e., non-stationary process set as null). The extreme value 

analysis in this setting based on the nonstationary approach considers data of length 40 years 

corresponding to annual maxima wind speed records from the ERA-20C data product, covering 

the period (1961-2000).  
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 The annual maxima of wind speed at the selected locations meet the requirements of 

the MK, CS, KPSS, and ADF tests presented in Table 6.7. Specifically, the trend tests MK and 

CS regarding the absence of a monotonic upward trend over time cannot be rejected at the 

significance level of 0.05. In the same context, the level stationarity test of the non existence of 

a unit root (i.e., indicating a stationary process) cannot be rejected at the significance level of 

0.05 for the KPSS, where for the ADF test the presence of a unit root (i.e., indicating a non-

stationary process) cannot be rejected at the same significance level of 0.05. 

 
Table 6.7: The p – values testing for non-stationarity per location. 

p-values/ 

Location    

L1 L2 L3 L4 L5 

MK-Test 0.028 0.003 0.010 0.003 0.043 

CS-Test 0.003 0.003 0.018 0.018 0.003 

KPSS-Test 0.021 0.010 0.010 0.010 0.017 

ADF-Test 0.436 0.099 0.078 0.134 0.350 

 

6.2.2 AIC & BIC test 
 

In the following Figure 6.15, the AIC and BIB model criteria are illustrated for each location. 

It is apparent that Model 2 and 3 derive the lowest AIC per location in (a) and considering the 

BIC values in (b) the Model 2 derived the lowest respectively. 

(a) 

 

(b) 
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Figure 6.15: The AIC and BIC parametric model criteria for each location in (a) and (b) respectively. (Tsalis and 

Kallos, 2017) 

 

6.2.3 LR test for optimum Models 
 

 In this sub-Section inference is made from the acception or rejection of the likelihood-

ratio test of the six nested extreme value distribution models as a better representation of the 

extremes of wind speed when the stationarity assumption (demonstrated from Model 1) is 

violated. When the objective of the nonstationary analysis is how to incorporate effectively 

covariates into an extreme value analysis model, one method is to incorporate them into the 

parameters of the extreme value distributions themselves in a regression-like manner (Coles, 

2001; Reiss and Thomas, 2007). In order to statisticaly justify whether or not the specific 

inclusion of the order of covariates into the model is significant or not is to apply the likelihood-

ratio test (Wilks et al., 2011). The test is only valid for comparing nested models. That is, the 

parameters of Models (2,3,4,5, and 6) are undertaken as a subset of the parameters of the 

stationary Model 1. 

 The likelihood-ratio statistic (or deviance statistic) formulared in sub-Section (2.5.4) is 

inferred to the (1 - alpha) quantile of the chi-square distribution with degrees of freedom equal 

to the difference in the number of model parameters for alpha= 0.05. Specifically, the null 

hypothesis of the likelihood-ratio test to the optimum models obtained from the AIC and BIC 

criteria (i.e., Models 2 and 3) is challenged of rejection or not in favor of the stationary Model 

1. The LR-statistic presented in Table 6.8 of the null hypothesis challenging the stationary 

Model 1 at the significance level of 0.05 infer that Model 2 is a better representation of GEV 

based on the nonstationary analysis of extremes of wind speed for the five locations.  

 

Table 6.8: LR test for Model 1 vs Model 2 in (a) and LR test for Model 1 vs Model 3 in (b). 

(a) (b) 
 

Model 1 vs  

Model 2 

LR  

Statistic 

p-value 

<0.05 

L1 4.032 0.045 

 L2 8.692 0.003 

L3 9.822 0.002 

L4 10.474 0.001 

L5 7.076 0.008 

 

Model 1 vs  

Model 3 

LR  

Statistic 

p-value 

<0.05 

L1 4.076 0.130 

L2 11.545 0.003 

L3 11.785 0.003 

L4 11.512 0.003 

L5 7.093 0.029 

 

In the same context, the rejection of the null hypothesis at the significance level of 0.05 of 

Model 2 against the alternative parametric Model 3 is presented in Table 6.9. 
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Table 6.9: LR test for Model 2 vs Model 3. 

 Model 2 vs          

Model 3 

LR  

Statistic 

p-value 

<0.05 

L1 0.044 0.834 

L2 2.853 0.091 

L3 1.963 0.161 

L4 1.038 0.308 

L5 0.017 0.897 

 

 To alleviate any evidence of the use of the Gumbel distributions to fit extremes, many 

studies suggest a likelihood ratio test and if not rejected the latter distribution could alternatively 

model the extremes of wind speed; (e.g., An and Pandey, 2005 and Perrin et al., 2006). 

Spesifically, in Table 6.10 the LR-test results of the null hypothesis at the significance level of 

0.05 inference that there is strong evidence that the stationary Gumbel distribution (except L1) 

is challenged from the parametric Models 2 and 3 as the best fit to the annual extremes of wind 

speed. Moreover, a possible underestimation of the extremes extrapolated at these locations 

(except L5) is expected from the stationary Model 1 (three parameters), since the stationary 

Gumbel distribution (two parameters) which is in the domain of attraction of the GEV 

distribution, is known to normally give higher extremes for a given return period than the 

stationary Type III form; (Palutikof et al., (1999)). However, it is arguably preferable to always 

allow the shape parameter to be non zero even if the LR-test results supports the Gumbel 

hypothesis. This recommendation is based on practical considerations as given in Coles et al., 

(2003) and on penultimate approximations in extreme value theory (Reiss and Thomas, 2007). 
Specifically, Coles (2001) and Coles and Pericchi (2003) showed that even in cases where a 

reduction to the Gumbel class (i.e., infer to narrower confidence bounds) is justifiable based on 

standard statistical tests, is a risky strategy instead of the more general GEV (i.e., infer to wider 

confidence bounds). 

 

Table 6.10: LR test for Gumbel distr. vs Model 1,2, and 3 in (a), (b), and (c) respectively. 

(a) (b)  (c) 
 

Stationary 

Gumbel 

distr. vs 

Model 1 

LR  

Statistic 

p-value 

<0.05 

L1 0.407 0.523 

L2 0.362 0.547 

L3 0.973 0.324 

L4 0.458 0.499 

L5 6.401 0.011 

 

Stationary 

Gumbel 

distr. vs 

Model 2 

LR  

Statistic 

p-value 

<0.05 

L1 4.440 0.109 

L2 9.054 0.011 

L3 10.795 0.005 

L4 10.932 0.004 

L5 13.477 0.001 

 

Stationary 

Gumbel 

distr. vs 

Model 3 

LR  

Statistic 

p-value 

<0.05 

L1 4.484 0.214 

L2 11.907 0.008 

L3 12.758 0.005 

L4 11.970 0.007 

L5 13.493 0.004 

 
 

Summarizing the results in this sub-Section: 

 

1. Model 1 is rejected compared to Model 2 for all locations, 

2. Model 1 is rejected compared to Model 3 except for L1, 
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3. Model 2 cannot be rejected compared to Model 3 for all locations,  

4. Stationary Gumbel distribution is rejected compared to Models 2 and 3 except for L1, 

and finally, 

5. Stationary Gumbel distribution is not rejected in favor of Model 1 except for L5 

 

6.2.4 Effective design values and Q-Q Plot diagrams 
 

 In addition to the assessment based on the nonstationary approach at the regional 

locations in the North Sea, extrapolations from all models are made for the better understanding 

of wind speed variability in potentially reducing risk at such regions. At this point it is important 

to outline the challenging findings associating the influence of natural climate variability in 

extreme wind speeds in the evaluated studies on projected changes of the NAO and storm track 

characteristics reported over the North Sea (e.g., Wang et al., 2004; Kumar et al., 2016 and 

Mölter et al., 2016). The inference of the latter studies (which is inline in this assessment) found 

evidence of a slight increase in the frequency of high wind speeds over regional locations at 

midlatitudes in the Northern Europe challenging the modeling of extremes. 

 The primarily interset of this assessment is to inference which model represents 

effectively the extremes in wind speed when the stationarity of the process is violated in order 

to alleviate the bias effect from the attempt of de-trending the process before the time series is 

used. Based on the likelihood ratio tests of Models 2 and 3 in this setting fitting better the 

nonstationary GEV distribution, influences of climate variability on extremes of wind speed 

are found to occur largely through the location parameter (i.e., Model 2 and 3) with negligible 

influences on scale and shape parameters (i.e., Models 4,5,6, and 7). Specifically, the design 

values for the n-th year (10,20,…,100) is illustrated in Figure 6.16 for locations L(1,2,3,4, and 

5) in the North Sea to infer the demonstration of all considered parametric models.  

 To assess the fit of the stationary Model 1 with the fit of the outlining parametric 

Models 2 and 3, the Q-Q plots are illustrated in Figure 6.16 visualising the good representation 

of the extremes from these models. If the empirical data align closely with the modelled 

estimates, then it is likely that the chosen model is a good representation of the true extreme 

asymptotic form for these samples. It is outlined that Model 2 shows the better fit in terms of 

the quantile estimates for all locations. These findings are inline with the study from Cheng et 

al., 2014 in the NEVA assessment (see Apendix D) and from Smith, (2003) manifesting that 

the simple representation of the trend in the parameterization of the location parameter (i.e., the 

most likely observed extremes) allows estimating return values in a more realistic way 

consistent with the climatic variability of extremes. However, Model 2 is challenged at L1 

where although the null hypothesis is regected compared to Model 1 (stationary 3 parameters), 

it is not rejected compared to the Gumbel model (stationary 2 parameters). This is somehow 

reasonable from the intractable problem of inference of the maximum likelihood estimator to 

distributions of more parameters to be estimated (Model 1 of three parameters) than less 

parameters estimated such as the Gumbel distribution of two parameters. However, the 

extrapolations made at L1 inference the underestimation of Model 1 as a stationary model of 2 

parameters. The uneffectiveness of Model 1 as a stationary model of 3 parameters is also 

demonstrated at L5 in comparison to the return level estimates made from the parametric 

Models 2 and 3.  

 The dataset used is ERA-20C and the estimations of the parametric GEV is based on 

the Maximum Likelihood Estimator. The statistical software package (extRemes) in R 

(Gilleland and Katz, 2016) is used for the estimation of the associated parameters. Inference 

from the effective design values pointed out that the stationary model of 2 or 3 parameters in 

general, underestimates the extrapolations made of the extremes of wind speed. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 
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(g) (h) 

  

(i) (j) 

  

 

Figure 6.16: Estimation of the Design Values for the parameterized GEV distribution parameters in (a,c,e,g, and i) 

and the Q-Q Plots for Models 1,2 and 3 in (b,d,f,h, and j). (Tsalis and Kallos, 2017) 

 In addition, the parameter estimates of the parametric Model 2 is presented in Table 

6.11 as the effective model with the simplest form representing the trend of the most likely 

observed extremes in a time dependent climate. The similar force mechanism previously 

discussed (i.e., associated to the NAO and the srorm track changes) that influences the climate 

variability on extremes of wind speed is obtained at locations where the parametric model 

represents the trend in a similar way. Specifically, the Model 2 at locations L (2,3, and 4) is a 

good representaion of the trend based on the parameterization of 𝜇0 and 𝜇1 of the same 

magnitude. However, in L1 and L5 parameter 𝜇0 is of the same magnitude as in L(2,3,and 4) 

but less similar estimates is obtained for parameter 𝜇1. This intractable problem of inference is 

somehow explained from the different forcing mechanism that suggests different patterns of 

climate variability between regional location in the Northern and Central North Sea (Kumar et 

al., 2016). To this effect, we recall the previous discussion made in sub-Section 5.2.2 where the 

tail extremity of the time series in L1 and L5 suggested more intense extremes than in L(2,3, 

and 4). As also discussed in Wang et al., (2004), in the strong forcing cases obtained at the 

Northern and Central North Sea locations a simple linear representation of the trend (i.e., Model 

2) is probably not the best representation indicating a faster increase of the trend such as a 
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quadratic form (i.e., Model 3). However, given the powerful statistical tests applied to several 

parametric models and the long period (40 years) of data, Model 2 inferred as an effective 

model that represents the trend in extremes of wind speed in a simple linear form when the 

stationarity of the process is violated. 

 
Table 6.11: Parameters and (SE) in parenthesis of the linear trend in location from Model 2. 

Locations 𝜇0 𝜇1 𝜎0 𝜉0 

L1 18.455 0.027 0.929 -0.096 

 (0.313) (0.014) (0.112) (0.089) 

L2 18.794 0.045 0.954 -0.119 

 (0.337) (0.015) (0.117) (0.109) 

L3 18.648 0.053 1.033 -0.077 

 (0.378) (0.016) (0.135) (0.130) 

L4 18.720 0.053 1.007 -0.044 

 (0.354) (0.015) (0.133) (0.133) 

L5 19.310 0.036 0.891 -0.174 

 (0.308) (0.013) (0.101) (0.076) 

 

 Numerus authors however resulted similar wind speed positive trend estimations with 

the present analysis in the North Sea. For example, Siegismund and Schrum (2001) detected an 

increase of the annual mean wind speed of about 10 % over the North Sea based on the 

NCEP/NCAR Reanalysis dataset (NCEP) (Kalnay et al., 1996) over the period 1958 - 1997. 

Also based on NCEP, Pryor and Barthelmie (2003) found increased wind speeds at 850 hPa 

over the Baltic Sea during the latter half of the 20th century in both mean and extreme wind 

speeds. Alexander et al., (2005) used pressure values to show a similar increase in the number 

of storms over the UK since 1950. However, updated time series show that an increase until 

1990 was followed by a decrease since the 1990s (e.g. Matulla et al., 2007; Alexandersson et 

al., 2000). 

 The main scope of the present analysis was to effectively model non stationary GEV 

distribution parameters, as linear or nonlinear functions of the covariates on which the data 

show dependence. The basic remarks from the demonstration of these parametric models are 

the following:  

 The linear Model 2 and quadratic Model 3 are overall evident models of detecting 

significant trends of the extremes of wind speed in the North Sea.  

 The stationary Model 1 generally provided relatively small 50 and 100-year design 

values over all locations. 

 This approach in extreme environmental studies considers estimations in design values 

in a more realistic way under the assumption of a time changing climate. In addition to the 

study of existing trends in reanalysis or hindcast data, climate scenarios are tested for the 

occurrence of future trends. Evidence of future trends influencing the wind profile in the North 

Sea can be found in the literature. Most of them are connected to changes in the North-Atlantic 

storm track. Rockel and Woth (2007) identified increases in the storm climate with most 

significant trends for regions, influenced by the North Atlantic extra-tropical storms. Carnell et 

al., (1996) resulted a progressive rise in storm activity in the North-East Atlantic. This is linked 

to a northern shift of the North Atlantic storm track (Bengtssonet et al., 2006; Knippertz et al., 

2000). A more detailed view of observed trends and variability in the wind climate of the North 

Sea during the last decades, is still lacking and further examination is mandatory. 
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6.3 The response of DeCAUn using the MARINA Platform database 
 

 The response of the DeCAUn model in applications considering a limited availability 

in data is one key factor in this part of the results. Therefore, the assessment is carried out for 

relatively small datasets of annual wind speed time series, corresponding to four sample periods 

of 10, 15, 20 and 25 years long. The performance of the re-sampled models DeCAUn.1 and 

DeCAUn.2, are compared within the quantile estimates from the standard de-clustering Runs 

in a POT selection, the DeCA model and the BM model at equally correspondent sample size.  

 For this evaluation the standard MLE method was implemented to the proposed and 

existing models. Furthermore, the quantile estimations of all models is evaluated based on 

estimates from the BM approach with block size of one year and assuming the available records 

are of at least 20 years. This BM will be regarded as the reference model (BM Ref.) considering 

the maximum available time series extending from 1979-2016 (38 years long) originated from 

the ERA-Interim product, from the ERA-20C extending from 1961-2010 (50 years long) and 

for the period 1996–2015 (20 years) from the MARINA Platform database.  

 The second key factor illustrated and discussed henceforth, is the response of the 

proposed model with regards to the return levels (design values) and return periods of wind 

speed originated from a high resolution dataproduct for locations selected over the North Sea, 

the Atlantic Ocean and the Mediterranean Sea. The findings of the model response from the 

statistical analysis will be discussed in the following sub-Sections summarizing the 

performance of DeCAUn for the selected 30 locations of the MARINA Platform database.  

 The criteria of the regional locations selected in this study are related to storm-related 

losses as evidence of increasing vulnerability to wind extremes in the offshore study region 

(Schwierz et al., 2010). In this analysis a high resolution dataset is used for a better 

representation of the wind climate at locations that are exposed to topographically complex 

regions especially near the coastline in this study. The effects on the simulation of wind climates 

from the increase in horizontal resolution is discussed from Pryor et al., (2010). In their study, 

the increase in model resolution increased the domain-averaged mean wind speed at 10 (m) 

height and the extrapolated 50 year return levels. In addition to their findings, the impact effect 

of the increase in model resolution is considerable in wind climate extremes rather than the 

effect in the mean wind speed. However it is important to stress that the high resolution product 

such as the MARINA Platform database is limited to the number of historical data where this 

effect is alleviated using reanalysis products such as the ERA-Interim or the ERA-20. 

Considering the restrictions of re-sampling a relatively small sample, a dependent 

sample of extremes was reconstructed successfully by DeCAUn to an efficient independent 

sample converging to the i.i.d limitations. In addition, the number of the re-sampled extremes 

for each location is in agreement with the extreme wind variability at these sites of interest. 

All re-samples from the DeCAUn model assume that an average of at least 1.65 peaks 

per year should be selected in a POT approach in order to gain advantage over BM (Cunnane, 

1973; Tanaka and Takara, 2002; Serinaldi and Kilsby, 2014). The 𝑛𝑟𝑚𝑠𝑒 measure of the re-

samples was evaluated for all DEP reduction levels (60,65,70,75,80,85,90 and 95), normalized 

bandwidths 𝐶 ∈[0.125,1] with a 0.125 step and statistical threshold considerations. In addition, 

the 𝑛𝑟𝑚𝑠𝑒 measure of performance was applied for samples of 10 and 15 years, regarding 

sample periods from 1996-2005 and 1996-2010 respectively. Furthermore, the quantile 

estimates from DeCAUn were compared to the corresponding estimates obtained by the 

reference model (BM Ref.), employing to the latter the maximum available series extending 

from 1996 to 2015 (20 years). 

Estimations in terms of the optimum DEP levels will be presented for the physical de-

clustering DeCA approach at each sample period for the 30 selected locations in sub-Section 

6.3.1. In addition to the results for these locations, estimations of the normalized bandwidth 𝐶 

and the desired lag (𝑘)-apart value of observations are included in sub-Sections 6.3.2 - 6.3.3 

for the optimum performance of the Gaussian Kernel estimator and the optimum irregular re-

sampling process used, respectively. Moreover, the associated 𝑛𝑟𝑚𝑠𝑒 measure of performance 
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is also presented in sub-Section 6.3.4 for the optimum re-sample of the DeCAUn model at each 

location and in sub-Section 6.3.5 the estimates are summarized for the 30 locations. 

Furthermore, for a comprehensive analysis, one characteristic location from each examined 

area (locations L2, L16, and L21) was selected for the evaluation in terms of the quantile  

projection and variability of the DeCAUn model. The foregoing estimations are highlighted in 

sub-Sections 6.3.6-6.3.8 respectively. 

 

6.3.1 DEP level estimates 
 

Beginning with the estimated DEP level of energy reductions for the physical de-clustering 

approach from DeCA, the results are presented in Figure 6.17 by means of colored dots assigned 

to the eight % levels (60,…,95) with a 5% step. The DEP level estimates per sample period 

resulted a safe range for DeCA to cluster events without the loss of valuable information. In 

general, the increase in sample size lead to reductions in the DEP level for the majority of the 

locations. Specifically, as the sample period increased from 10 to 15 years the modal value 

estimate of DEP was slightly reduced for the 10 locations (L1, L2, … L9, and L10) in the North 

Sea. Additionally, reductions of the mode estimate of the DEP level is obtained for the 10 locations 

in the Atlantic (L11, L12, … L19, and L20) and the 10 locations (L21, L22, … L29, and L30)  in 

the Mediterranean respectively. The increase in sample size does not necessarily follow the large 

increase in the number of extreme events as expected. The approximate stable or reduced DEP 

level estimates as the sample size increased controlled the DeCA model to encompass the largest 

number of events as possible. The response of DeCAUn to the modal value estimates of the DEP 

levels is illustrated in the following Figure 6.17 (a,b) at the 30 regional locations of interest. 

Inference is made for the number of observations of the samples of DeCA that are irregularly 

spaced in time and most likely to be sampled from these locations. 

 

Figure 6.17: DEP (%) level estimates of energy reductions for the physical de-clustering approach from DeCA using 

samples of (a) 10 and (b) 15 years. The modal value estimates of the DEP (%) reduction level to the 10 locations in 

each region for sample periods of 10 and 15 years illustrated in (c) and the likely number of events from DeCA to 

these locations in (d). (Tsalis et al., 2021)  

 

The moderate to low mode value estimates of the DEP levels for the 10 locations in the 

North Sea (0.68 for the 10 years and 0.66 for the 15 years) are in line with the variability of 

  

(c) (d) 
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extreme winds over this region. One key point of this agreement is the influence described by 

the large-scale circulation patterns such as the North Atlantic oscillation (NAO) on the wind 

speed over the North Sea. The index of the North Atlantic oscillation (NAOI) is strongly 

correlated with the wind speed over northern Europe, having an impact on the cyclones 

generating in this area by shifting the westerly zonal flow. However, an increase in the NAOI 

and the mean wind speeds from the 1960s to the mid-1990s does not necessarily increase the 

extreme wind profile (Sušelj et al., 2010). Thus, the DEP estimates for these locations are 

controlled by DeCA to a moderate to low level in order to enlarge as much as possible the 

number of extreme wind storm events. 

Considering the Atlantic where strong extra-tropical storms can cause massive storm 

surges affecting the 10 locations there, the moderate to high mode value estimates of DEP (0.83 

for the 10 years and 0.74 for the 15 years) is somewhat reasonable. It is well known that the 

extra-tropical cyclones travel eastward along the polar jet stream, e.g. (the Icelandic Low and 

Azores High.). Thus, the prevailing westerlies affecting the locations (L16, L19, L14, L17, and 

L20) in the North Atlantic (Feser et al., 2015), justify the moderate to high DEP estimates from 

a large number of extreme wind storm events obtained over these sites. On the other hand, 

locations (L15, L12, L11, and L18) in the Central and location L13 in the South Atlantic are 

also influenced by the strong pressure centers over the Atlantic Ocean. Specifically, the number 

of atmospheric circulation patterns that govern the extreme wind speed variability at these 

locations are influenced by the atmospheric dynamics in the North Atlantic as discussed in 

Pascual et al., (2013), justifying the DEP estimates at this region. 

For the 10 locations in the Mediterranean, the mode value estimates of the DEP level is 

characterized as moderate to high (0.85 for the 10 years) and low (0.63 for the 15 years). The 

nature of the storms in this semi-enclosed basin is subjected to many external factors, like land–

sea contrasts, near-surface temperatures, atmospheric waves and large-scale weather patterns 

(Flaounas et al., 2015 b; Campins et al., 2011). Although the windiest areas of the 

Mediterranean Sea are located in the NW- SW part e.g. locations (L25, L26, L21, and L27) and 

the SE part e.g. locations (L22 and L23) the DEP level estimations at these locations are 

characterized as moderate. This effect is due to the large but constant wind conditions at these 

sites, where DeCA is controlled by a moderate level of DEP in order to encompass the largest 

number of extreme wind storm events as possible. On the contrary, locations (L28, L29, L24, 

and L30) at the Central and North Mediterranean are characterized by a high DEP level as 

expected, where the largest number of explosive cyclogenesis is observed. 

From the demonstration of DeCAUn to the MARINA Platform database the assessment 

yielded the most likely DEP reduction level to range approximately from 0.68 to 0.85 with 

regards to the sample period of 10 years and from 0.63 to 0.74 for the sample of 15 years. 

 

 

6.3.2 Bandwidth estimates 
 

In this Section, the results of the optimum normalized bandwidths for the 30 locations are 

presented from the empirical selection procedure as described previously in sub-Section 4.4. 

The most likely optimal normalized bandwidth estimates illustrated in Figure 6.18 (a,b) range 

in a bound from 0.126 to 0.267 avoiding over or under smoothing Kernel adjustments. It is 

apparent that as the sample period increased from 10 to 15 years, the optimal normalized 

bandwidth was reduced for the majority of the locations.  

Given the relatively small sample period of data such as 10 years, it is not surprising that 

we obtain a limited number of events from the DeCA model. Thus, the irregular sample of 

DeCA will be characterized by a limited amount of values surrounding the mean width of the 

time intervals. As a consequence, the Gaussian weight function adjusted accordingly to the 

largest bandwidth for the sample period of 10 years. In this way, for the estimator of the 

irregular ACF in Equation (4.21) the largest possible number of higher weights is assigned to 

the inter-sampling time intervals closer to the given time lag (𝑘). In other words, the weight 

function stretched out to a wider bandwidth scale in sample periods where little information is 
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available. Conversely, as the sample period increased from 10 to 15 years the optimal 

normalized bandwidth reduced, leading accordingly to a less wide bandwidth adjustment of the 

weight function. For locations characterized of strong but stable wind profile the increase of 

the sample period increased the bandwidth as a response of DeCAUn to the inconsistent 

increase of extremes as the sample size increased. In general, as the sample size increased the 

bandwidth estimates reduced as shown from the Gaussian–based correlation analysis of the 

ACF estimator SIMILARITY in the irregular DeCA samples. The reduced trend of the most 

likely optimal normalized bandwidth estimates to smaller values as the sample size increased 

is systematically obtained in the regional locations at the North Sea and the Mediterranean and 

to a lower extent obtained at the Atlantic as illustrated in Figure 6.18 (c). 

 

  
                                      

                      (c) 

 
 

Figure 6.18: Optimum normalized bandwidth estimates of the Gaussian Kernel weight function applied to the 

irregular ACF estimator using samples of (a) 10 and (b) 15 years. The modal value estimates of the optimum 

normalized bandwidth considering the 30 regional locations are illustrated for sample periods of 10 and 15 years in 

(c). (Tsalis et al., 2021) 

 

 For inference of DeCAUn to the bandwidth response using the MARINA Platform 

database at the 30 regional locations, estimations of the most likely optimal normalized 

bandwidths pointed out to range approximately from 0.203 to 0.267 for the sample of 10 years 

and from 0.126 to 0.25 for the sample of 15 years. 

6.3.3 Lag (𝑘) estimates 
 

The required lag(𝑘)-apart value of observations is presented for the re-sampling procedure 

at each location. The desired lag value estimates of 𝑘 will assign the statistically independent 

events from the optimum re-sample of DeCAUn at each sample period.  

With an increasing sample period, the lag(𝑘) also increased for the majority of the 

examined locations illustrated in Figure 6.19 (a,b). In general, for the sample period of 10 years, 

the lower lag value estimate of 𝑘 ensures a successful trade-off between excluding events and 

loss of information. Thus, in order to increase the number of events and consequently the 

associated inter-sampling time intervals of the weights to be applied, a lower lag(𝑘) is selected. 
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Conversely, as the sample period increased from 10 to 15 years the irregular ACF estimator 

was adjusted to a larger lag(𝑘). As a consequence, the ACF estimator included a sufficient 

amount of independent events more efficiently at the larger sample period. The effect of 

DeCAUn to the mode estimates of the desired lag(𝑘) is illustrated in Figure 6.19 (c), where 

generally an increment of the mode estimates is obtained as the sample size increases. Inference 

is also made illustrating DeCAUn.2 to the most likely re-sampling scheme from the 

demonstration of DeCAUn at each sample period and region in Figure 6.19 (d).  

          

  

                                                                    

(c) 

                                                                    

(d) 

  
 

Figure 6.19: Lag(𝑘)-apart value of observations for re-sampling the irregular DeCA samples from DeCAUn using 

samples of (a) 10 and (b) 15 years. The modal value estimates of the desired lag(𝑘) to each region illustrated for 

sample periods of 10 and 15 years in (c). The re-sampling scheme performance of DeCAUn as a percentage (%) to 

the regional locations and at each sample period is illustrated in (d). (Tsalis et al., 2021) 

The response of DeCAUn to the lag(𝑘) estimates is also closely related to the DEP% 

estimates that form the samples of DeCA. Specifically, for locations of strong winds and low 

volatility in extremes, the demonstration of DeCAUn in the increase of sample period resulted 

to higher DEP and to relatively smaller lag(𝑘). When little information of extremes is apparent 

at these locations, the lower lag(𝑘) is preferable to form clusters efficiently of larger length and 

consequently derive samples of higher DEP. To this effect, an example is presented in the 

following Table 6.12 for one case at the two sample periods of examination.  
 

Table 6.12: DeCAUn model response using samples of 10 and 15 years for the NW location L21 in the 

Mediterranean 

𝐍𝐲 

 

𝒏𝒓𝒎𝒔𝒆 

 

DEP 

No. 

DeCA 

cluster 

 

bdw 

re-

sampling 

scheme 

AIC-

MSE 
lowest 

 

lag(𝒌) 
No. 

DeCAUn 

cluster 

𝒖(m/s) 

 

No.  

Thres.         

Exceedances 

10 yrs 0.011 60% 635 0.625 DeCAUn.1 MSE 64.700 11 57 0.000 57 

15 yrs 0.007 80% 737 0.125 DeCAUn.2 MSE 9.420 3 200 16.997 90 

 

 

Inference based on the lag value estimates of 𝑘 at the associated DEP level is also made 

for the number of the asymptotically independent events from DeCAUn. Under the DeCAUn.2 

scheme for the locations in the North Sea, the likely number of re-sampled events is 
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approximated at (3.8/year) for the sample period of 10 years, and at (3.9/year) events for the 15 

years respectively. Similarly, for the locations in the Atlantic the likely number of re-sampled 

events under the DeCAUn.2 scheme, is approximated at (4.8/year) for the 10 years and at 

(3.7/year) for the 15 years. Finally, for the locations in the Mediterranean DeCAUn.2 re-

sampled approximately a number of (5.4/year) events for the 10 years and a number of 

(5.2/year) for the 15 years respectively. As a remark also discussed in 6.3.1 and 6.3.3, the 

increase in sample size does not necessarily follow the large increase in the number of extreme 

events, setting the estimated range of events in line with the variability of extreme winds over 

these regions. 

 

6.3.4 The nrmse measure for DeCAUn 
 

The estimation of the nrmse measure and its relation to the sample period resulted in 

something unsurprising for the majority of locations. Increase in the sample period increased 

the precision of nrmse to the quantile estimates of DeCAUn. To this effect, the re-sampled 

models and their fit to the GPD distribution are based on a larger amount of values containing 

more information about the tail behavior. Therefore, the quantile estimates of DeCAUn to a 

GPD fit converged with the increase in sample period to the quantile estimates of the BM Ref. 

fit to the GEV. This is illustrated in Figure 6.20(a) where the quantitative measure of 

performance of the optimum re-sampled models from DeCAUn generally reduced as the 

sample period increased. It is also outlined at the bar chart of Figure 6.20(b) that as the sample 

size increased from 10 to 15 years the most likely observed nrmse statistic of DeCAUn reduced 

smoothly considering the 30 regional locations of the MARINA Platform database. 

 

(a) 
 

 

                                        (b) 
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Figure 6.20: nrmse for the optimum re-sample of the DeCAUn model regarding the 30 locations (L1,..,L29, and 

L30). The increase in sample period reduced the nrmse measure for the majority of locations in (a). (Tsalis et al., 

2021). The modal value estimates of the nrmse measure illustrated for sample periods of 10 and 15 years in (b). 

(Supplementary material of Tsalis et al., 2021) 

 

The increase in sample period does not reduce the nrmse measure for all locations. This 

reverse proportional behavior of the measure is possible explained by the weak performance of 

the reference model BM Ref. at the locations (L1, L4, L13, L19, L22, and L24). The over- 

under quantile estimates from the reference model using small samples such as the available 

sample of 20 years, is also discussed in (An and Pandey, 2007; Ceppi et al., 2008; and Della-

Marta et al., 2009). However, high wind speeds are frequently apparent at these locations as 

obtained in Table 5.7. To this effect, the available samples will probably force the fit of the 

extremes to the GEV to lie near the mode of the distribution and hence away from the tail area 

of interest. Hence, the reference model described by the BM approach will probably not give 

the best fit to the tail of the distribution at these locations. For samples of limited information 

in extremes, the validity of the asymptotic form is challenged. To assess the fit of the reference 

model BM Ref. to the GEV and the DeCAUn model to the GPD, the Q-Q, P-P and Kernel 

Density plots is illustrated in Figure 6.21 for one case (L13). If the empirical data align closely 

with the modelled estimates, then it is likely that the chosen model for relatively small samples 

of wind speed is a good representation of the true extreme asymptotic form for these samples. 

In addition, the 95% confidence bands are also provided based on the Kolmogorov-Smirnov 

statistic (Doksum and Sievers, 1976). 

 

   

   

   

 
Figure 6.21: Visual inspection of the Q-Q, P-P and Kernel Density plot for L13 using the reference model BM Ref. 

for samples of 20 years in (a, d, g) and the proposed model DeCAUn for samples of 10 years in (b, e, h) and 15 years 

in (c, f, and i). For the Kernel Density plots of the BM Ref. model the bandwidth is set at 0.918 for the Empirical 

Density and at 0.8066 for the Modeled Density. Considering the DeCAUn model at 10 and 15 years the bandwidth 

is set at 0.9635 and 0.8052 for the Empirical and at 0.8542 and 0.7473 for the Modeled Density respectively. Dashed 

light grey lines in (a, b, c, d, e, and f) show the 95% pointwise tolerance intervals. The statistical software package 

(extRemes) in R (Gilleland and Katz, 2016) is used for the estimation of the associated parameters and diagram 

illustration. Illustrated also in Tsalis et al., (2021). 
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6.3.5 Summarizing DeCAUn model estimates 
 

 Estimations from the DeCAUn model are presented for the 30 locations with regards 

to the sample period of 10 and 15 years, obtaining design values of the 50 years return period 

𝐷𝑉(50) and the confidence intervals denoted in italics, (Table 6.13 and 6.14). As a comparable 

measure we also denote the design value estimates 𝐷𝑉 from the BM Ref. model at the same 

return period. The number of cluster maxima before and after the irregular modeling is also 

provided, the re-sampled models of DeCAUn, the lowest AIC and MSE statistic measures of 

the models, and finally the associated total number of peak exceedances fitting the GPD 

distribution. 

 

Table 6.13: Model estimations for DeCAUn with regards to the sample period of 10 years extending from 1996 to 

2005. 

Location 

DV (50) 

BM Ref. 

Width 

of (CI) 

BM 

Ref. 

DV (50) 

DeCAUn 

Width of 

(CI) 

DeCAUn 

No.DeCA 

cluster 

re-

sampling 

scheme 

AIC-

MSE 
lowest 

No. 

DeCAUn 

cluster 

𝒖(m/s) 

 

No. Thres.         

Exceedances 

L1 25.894 0.945 25.793 1.980 513 DeCAUn.2 AIC 238.075 68 15.007 51 

L2 26.592 4.835 26.841 5.989 225 DeCAUn.2 AIC 100.512 30 16.852 22 

L3 25.836 5.397 26.154 7.652 528 DeCAUn.1 MSE 15.720 106 12.142 53 

L4 26.093 6.010 26.086 4.495 419 DeCAUn.2 AIC 78.251 64 19.273 22 

L5 28.433 4.657 28.226 8.381 545 DeCAUn.1 MSE 73.450 45 0.000 45 

L6 23.930 1.796 23.576 3.854 406 DeCAUn.2 AIC 153.035 51 16.068 38 

L7 24.331 2.643 24.350 7.011 514 DeCAUn.1 MSE 55.100 43 0.000 43 

L8 28.669 4.947 28.940 5.557 465 DeCAUn.2 MSE 20.140 35 17.110 26 

L9 26.686 2.845 26.660 3.629 467 DeCAUn.2 MSE 16.700 34 16.387 25 

L10 27.805 4.303 28.065 4.726 448 DeCAUn.2 MSE 20.510 32 16.748 24 

L11 24.266 0.997 24.284 2.700 431 DeCAUn.2 MSE 8.740 50 17.040 25 

L12 24.767 1.122 24.826 4.214 298 DeCAUn.2 AIC 82.652 34 17.703 20 

L13 25.174 2.055 25.172 4.969 375 DeCAUn.2 AIC 119.096 61 17.574 30 

L14 28.200 5.343 28.800 5.840 289 DeCAUn.2 AIC 109.212 32 18.443 24 

L15 26.827 3.061 26.919 7.304 400 DeCAUn.1 AIC 293.395 44 0.000 44 

L16 28.721 2.403 28.859 7.353 315 DeCAUn.2 MSE 10.150 52 20.659 23 

L17 26.110 1.869 26.036 5.710 600 DeCAUn.1 MSE 69.920 75 0.000 75 

L18 25.632 2.859 25.808 4.275 250 DeCAUn.2 AIC 74.992 35 17.403 17 

L19 28.542 4.625 28.751 7.501 540 DeCAUn.2 MSE 6.540 45 19.433 24 

L20 24.830 0.960 24.773 1.771 600 DeCAUn.2 MSE 7.460 53 18.470 26 

L21 25.791 3.672 25.786 4.282 635 DeCAUn.1 MSE 64.700 57 0.000 57 

L22 20.875 1.968 20.929 2.374 444 DeCAUn.2 MSE 6.400 187 12.129 140 

L23 20.910 3.048 20.610 4.785 490 DeCAUn.1 AIC 419.345 245 10.266 112 

L24 23.727 4.748 23.785 5.759 547 DeCAUn.2 AIC 58.360 54 17.983 20 

L25 20.700 0.904 20.724 2.070 653 DeCAUn.2 MSE 5.080 103 14.075 57 

L26 21.429 1.754 21.366 2.702 308 DeCAUn.2 AIC 57.326 43 16.784 18 

L27 23.886 3.955 24.012 4.789 531 DeCAUn.2 AIC 66.129 48 18.529 21 
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L28 19.174 0.498 19.170 2.770 301 DeCAUn.2 AIC 98.418 37 13.442 27 

L29 21.219 2.404 21.101 3.003 383 DeCAUn.1 MSE 9.720 127 11.788 57 

L30 21.427 0.968 21.155 4.023 428 DeCAUn.2 MSE 5.470 115 15.012 45 

 

Table 6.14: Model estimations for DeCAUn with regards to the sample period of 15 years extending from 1996 to 

2010. 

Location 

DV 

(50) 

BM 

Ref. 

Width 

of (CI) 

BM 

Ref. 

DV (50) 

DeCAUn 

Width of 

(CI) 

DeCAUn 

No.DeCA 

cluster 

re-sampling 

scheme 

AIC-

MSE 
lowest 

No. 

DeCAUn 

cluster 

𝒖(m/s) 

 

No. Thres.         

Exceedances 

L1 25.894 0.945 25.745 3.994 720 DeCAUn.2 MSE 10.510 71 18.202 34 

L2 26.592 4.835 26.672 6.033 778 DeCAUn.2 AIC 129.915 66 18.164 33 

L3 25.836 5.397 25.890 5.854 454 DeCAUn.1 MSE 13.990 227 13.678 103 

L4 26.093 6.010 25.839 4.540 900 DeCAUn.2 AIC 87.682 104 20.024 29 

L5 28.433 4.657 28.541 5.487 864 DeCAUn.2 AIC 111.829 51 19.113 25 

L6 23.930 1.796 23.942 2.278 635 DeCAUn.2 AIC 243.521 130 16.252 62 

L7 24.331 2.643 24.403 3.057 610 DeCAUn.2 AIC 102.150 52 17.252 26 

L8 28.669 4.947 28.788 6.148 704 DeCAUn.2 AIC 114.597 53 19.787 27 

L9 26.686 2.845 26.720 3.365 878 DeCAUn.2 AIC 124.461 57 18.653 30 

L10 27.805 4.303 27.818 4.113 347 DeCAUn.2 AIC 185.238 56 16.411 39 

L11 24.266 0.997 24.258 1.177 645 DeCAUn.2 AIC 86.283 50 19.114 25 

L12 24.767 1.122 24.811 1.498 368 DeCAUn.2 AIC 105.115 77 19.207 30 

L13 25.174 2.055 25.163 2.677 298 DeCAUn.2 AIC 251.810 130 17.057 65 

L14 28.200 5.343 28.106 5.970 541 DeCAUn.1 MSE 18.980 180 14.318 90 

L15 26.827 3.061 26.939 2.727 712 DeCAUn.2 MSE 10.580 50 18.029 37 

L16 28.721 2.403 28.644 1.844 742 DeCAUn.2 MSE 17.910 47 18.325 35 

L17 26.110 1.869 26.111 2.345 582 DeCAUn.2 AIC 94.653 51 19.767 25 

L18 25.632 2.859 25.676 3.457 843 DeCAUn.2 AIC 120.108 60 17.974 30 

L19 28.542 4.625 28.662 5.210 918 DeCAUn.2 MSE 5.890 54 19.811 27 

L20 24.830 0.960 24.834 1.685 677 DeCAUn.2 MSE 7.540 140 17.681 64 

L21 25.791 3.672 25.865 2.831 737 DeCAUn.2 MSE 9.420 200 16.997 90 

L22 20.875 1.968 20.864 1.795 617 DeCAUn.2 MSE 7.010 127 12.928 95 

L23 20.910 3.048 20.789 4.602 598 DeCAUn.2 AIC 120.056 61 14.013 33 

L24 23.727 4.748 23.577 4.383 996 DeCAUn.2 AIC 88.248 77 17.816 30 

L25 20.700 0.904 20.693 1.132 1237 DeCAUn.2 AIC 77.223 76 16.975 29 

L26 21.429 1.754 21.437 2.691 509 DeCAUn.2 AIC 63.457 67 17.625 25 

L27 23.886 3.955 23.916 4.427 1087 DeCAUn.2 MSE 3.380 62 18.703 27 

L28 19.174 0.498 19.154 0.797 1189 DeCAUn.2 AIC 160.306 91 13.474 45 

L29 21.219 2.404 21.107 2.084 606 DeCAUn.1 MSE 11.410 303 10.902 148 

L30 21.427 0.968 21.399 1.825 1054 DeCAUn.1 AIC 1058.479 175 0.000 175 
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 In line with the aforementioned remarks, design value estimations 𝐷𝑉(50) for the 30 

locations are illustrated in Figure 6.22 (a) for inference of the wind speed projections of the 

DeCAUn model. The variability of the design value estimates 𝐷𝑉(50) of DeCAUn with the 

increase of the sample period is illustrated in Figure 6.22 (b). 

(a) 

 

(b) 

 
Figure 6.22: The DV (50) estimates of the reference BM Ref. model for sample periods of 20 years (from 1996 to 

2015) and DeCAUn for sample periods of 10 years (from 1996 to 2005) and 15 years (from 1996 to 2010) for the 

30 locations illustrated in (a). Width of the 95% CI for the DV (50) of DeCAUn for sample periods of 10 years (from 

1996 to 2005) and 15 years (from 1996 to 2010) for the 30 locations illustrated in (b). The standard non-parametric 

bootstrap method (Percentile) is applied to DeCAUn and the normal approximation applied to the BM Ref. model 

for sample period of 20 years (from 1996 to 2015). Illustrated also in Tsalis et al., (2021) 

 The most important findings from the assessment of the proposed re-sampling 

procedure for the 30 locations using wind speed data from the MARINA Platform database can 

be summarized as follows: 

 

 The assessment yielded the most likely DEP reduction level to range approximately 

from 0.68 to 0.85 with regards to the sample period of 10 years and from 0.63 to 0.74 

for the sample of 15 years.  

 Furthermore, estimations in terms of the most likely optimal normalized bandwidths 

are summarized approximately to range from 0.203 to 0.267 for the sample of 10 years 

and from 0.126 to 0.25 for the sample of 15 years. 

 Although the 50 years return levels of DeCAUn are reasonable for both sample periods 

of 10 and 15 years in comparison to the extrapolation made from the BM Ref. model 

based on samples of 20 years, the proposed model is confounded by large variability 

followed by the reduction in sample size from the proposed re-sampling procedure. 

 Inference is made on the most likely re-sampled number of independent events which 

is in line with the variability of extreme wind speed over the 30 regional locations. 

Specifically, based on the re-sampling strategy from DeCAUn the number of 

approximated events range from 3.8 to 3.9/year over the locations in the North Sea, 

from 3.7 to 4.8/year for the locations over the Atlantic and from 5.2 to 5.4/year for the 

regional locations over the Mediterranean. It is evident that to alleviate any chanse of 

bias estimations of the return levels based on the modeling of DeCAUn to the GPD  
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distribution, a data length longer than 15 years seems sufficient for these sites to 

include more than 50 events in total; (Larsén, 2013; Jonathan and Ewans, 2013). 

 The extremes extrapolated based on the re-sampling strategy of DeCAUn is also 

strengthened from the high resolution wind database used for the analysis, ensured as 

possible the extreme efficient characteristics primarily near the coasts and in narrow 

straits and basins where applied, avoiding the apparent underestimation of the extreme 

variability of wind speed. 

 

6.3.6 Design Values 
 

 Design value estimations (DV in (m/s)) for various return periods are presented for the 

two relatively small sample periods of examination (10 and 15 years). Henceforth, all results 

will be referring to the selected locations L2, L16, and L21. The use of a high resolution 

database at these sites will challenge the requirements of the resampling strategy of DeCAUn 

to short and irregularly samples where the meteorological model of lower resolution is not able 

to reproduce the underlying terrain and capture the wind speed variations sufficiently. 

Specifically, the three representative locations of the strong wind conditions observed within 

each area are located in the Southern part of the North Sea (L2 with highest wind speed 26.704 

m/s), the Northern part of the Atlantic (L16 with 28.671 m/s the highest wind speed) and the 

Western part of the Mediterranean (L21 with 25.901 m/s the highest wind speed) respectively. 

The intensity of the extreme wind profile at these sites is reinsured from the systematically 

positive excess kurtosis parameter to these three locations indicating heavy-tailed distributions 

for the wind speed (see also Table 5.7 in sub-Section 5.4). 

 Alongside the 𝐷𝑉 estimations of the optimal re-samples from the DeCAUn model we 

include estimations from the initial de-clustering approach, the DeCA model for inference. The 

performance of the Runs is also presented as the standard comparable model at each sample 

period of examination. Moreover, the BM model refers to sample periods of (10 and 15 years) 

and the BM Ref. at the maximum available sample period (20 years).  

 Regarding L2, 𝐷𝑉 estimates of the 50 years return period 𝐷𝑉(50) for BM Ref. (the 

reference model for both sample periods of examination) yielded 26.59 m/s(see Figure 6.22). 

DeCAUn provided 𝐷𝑉(50) estimates at 26.84 m/s with an nrmse measure at 0.013 with regards 

to the sample period of 10 years (Figure 6.23a) and 26.67 m/s followed by a reduction of the 

nrmse measure to 0.003 for the 15 years (Figure 6.23b). 

 Proceeding with the estimates from the other models, the 𝐷𝑉(50) obtained from DeCA 

pointed out 26.61 m/s with an nrmse at 0.020 and 26.28 m/s followed by a reduction of nrmse 

to 0.014 respectively for the two sample periods. Runs yielded 𝐷𝑉(50) at 28.09 m/s and 26.50 

m/s with nrmse at 0.053 and followed by a considerable reduction to 0.007 respectively. 

 Furthermore, BM yielded 𝐷𝑉(50) at 29.81 m/s with an nrmse at 0.121 and 27.49 m/s 

followed by a considerable reduction of nrmse to 0.035 respectively for the two sample periods 

of examination. 
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Figure 6.23: Design values using the de-clustering models for sample periods of (a) 10 and (b) 15 years regarding 

L2. (Tsalis et al., 2021) 

 

 The 𝐷𝑉(50) for BM Ref. regarding L16 was estimated at 28.72 m/s. Subsequently the 

estimations for L16 with regards to the 𝐷𝑉(50) and 𝑛𝑟𝑚𝑠𝑒 measure illustrated in Figure 6.24 

are outlined in the same context as previously. 

 DeCAUn provided 𝐷𝑉(50) estimates at 28.86 m/s with an nrmse measure at 0.005 with 

regards to the sample period of 10 years (Figure 6.24a) and 28.64 m/s followed by a reduction 

of the nrmse measure to 0.003 for the 15 years (Figure 6.24b). 

 Proceeding with the estimates from the other models, the 𝐷𝑉(50) obtained from DeCA 

pointed out 28.60 m/s with an nrmse at 0.007 and 28.84 m/s followed by a slight reduction of 

nrmse to 0.006 respectively for the two sample periods. Runs yielded 𝐷𝑉(50) at 29.92 m/s and 

30.04 m/s with nrmse at 0.040 and followed by a slight increment to 0.044 respectively. 

 Furthermore, BM yielded 𝐷𝑉(50) at 28.32 m/s with an nrmse at 0.018 and 28.77 m/s 

followed by a considerable reduction of nrmse to 0.004 respectively for the two sample periods 

of examination. 

 

 

Figure 6.24: Design values using the de-clustering models for sample periods of (a) 10 and (b) 15 years regarding 

L16. (Tsalis et al., 2021) 

 

 Finally, the 𝐷𝑉(50) for BM Ref. regarding L21 was estimated at 25.79 m/s. In the same 

context as before we subsequently outlined the estimations for L21 with regards to the 𝐷𝑉(50) 

and 𝑛𝑟𝑚𝑠𝑒 measure. 

 DeCAUn provided 𝐷𝑉(50) estimates at 25.79 m/s with an nrmse measure at 0.011 with 

regards to the sample period of 10 years (Figure 6.25a) and 25.86 m/s followed by a reduction 

of the nrmse measure to 0.007 for the 15 years (Figure 6.25b). 
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 Proceeding with the estimates from the other models, the 𝐷𝑉(50) obtained from DeCA 

pointed out 26.00 m/s with an nrmse at 0.013 and 25.72 m/s followed by a reduction of nrmse 

to 0.008 respectively for the two sample periods. Runs yielded 𝐷𝑉(50) at 26.25 m/s and 26.07 

m/s with nrmse at 0.018 and followed by a reduction to 0.011 respectively. 

 At last, BM yielded 𝐷𝑉(50) at 31.72 m/s with an nrmse at 0.244 and 26.16 m/s followed 

by a considerable reduction of nrmse to 0.014 respectively for the two sample periods of 

examination. 

 

 

Figure 6.25: Design values using the de-clustering models for sample periods of (a) 10 and (b) 15 years regarding 

L21. (Tsalis et al., 2021) 

 As a general remark of the 𝐷𝑉 estimates made from the DeCAUn model, the proposed 

model slightly overestimated the quantile projection (with regards to BM Ref.) for small-scale 

return periods of 50 years, as obtained for all three locations. This effect is more obvious 

considering the sample period of 10 years in Figure 6.23a, Figure 6.24a and Figure 6.25a. On 

the contrary, for the larger sample period of 15 years there is a remarkable convergence of 

DeCAUn towards the BM Ref. model. Moreover, Runs failed to provide reliable 𝐷𝑉 estimates 

for the sample of 10 years yielding quantile overestimates in comparison to those made from 

the reference model. Finally, we anticipated weak performance from the BM model for the two 

sample periods, although the latter model was supplied as a weak comparable measure of 

prediction. For completeness in terms of the quantile projection of the DeCAUn model 

considering the design value estimations 𝐷𝑉(50) for the 30 locations see (Tables 6.13 and 6.14). 

 

6.3.7 Confidence bounds 
 

 For locations (L2, L16, and L21) and to each sample period of examination, only the 

confidence bound of the estimated 𝐷𝑉 (50) of the 50 years return period for each model is 

demonstrated. The interval estimates are supported by two methods. The first method is the 

normal approximation and is applied only to the BM Ref. model. The second method is the 

standard non-parametric bootstrap method (Percentile) and is applied to the models BM, Runs, 

DeCA and DeCAUn.   

 The DeCAUn model for L2 (Figure 6.26a) yielded a slight increment in the width of 

the 95% confidence interval (Width of CI) at +0.044 m/s with the increase of the sample period 

from 10 to 15 years. On the contrary, a considerable reduction in the Width of CI at -5.509 m/s 

and -1.451 m/s is obtained for L16 (Figure 6.26b) and L21 (Figure 6.26c) respectively.  

 Proceeding with the variability of DeCA within the same context as before, the model 

provided an increment in the Width of CI at +0.798 m/s for L2 with the increase of the sample 

period, followed by a considerable reduction in Width at -0.630 m/s and -0.780 m/s respectively 

for L16 and L21. 
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 At last, Runs model derived a considerable reduction in the Width of CI at -4.111 m/s 

with the increase of the sample period, followed by a reduction in Width at -0.716 m/s for L16 

and -0.083 m/s for L21 respectively. 

                                                           (a) 

 

                                

                         (b)                   (c)  

 

Figure 6.26: Width of CI for the DV (50) of all models for sample periods of 10 and 15 years regarding (a) L2, (b) 

L16, and (c) L21. (Tsalis et al., 2021) 

 

 With regards to the DeCAUn model the confidence bounds are considerably wider in 

comparison to DeCA for all three locations. The estimations confirmed the wider bound effect 

that was expected. Despite the fact that a bootstrap approach was performed for a reliable 

inference in terms of variability, it failed to overcome the weakness of small samples such as 
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the irregular re-samples from DeCAUn. The inevitable high variability of the proposed model 

is caused by the reduction in the sample size as a repercussion from re-sampling at the 

associated DEP levels. Moreover, the increase of the sample period to 15 years positively 

affected DeCA, DeCAUn and Runs, yielding narrower confidence bounds. Finally, BM 

confirmed the inability to provide trustful bounds in comparison to the other models. For 

completeness regarding the variability of the DeCAUn model for the 30 locations see (Tables 

6.13 and 6.14) and Figure 6.22. 

 

6.3.8 Model Parameters 
 

For easier representation of the asymptotic distributional behavior in sample 

observations derived from each model, only the estimated shape parameter (𝜉) is provided at 

the three locations. The 95% confidence intervals of the estimated parameters of the GEV and 

GPD distributions at each sample period are derived by two methods in the same context as 

previously presentedin sub-Section 6.3.7. For this analysis, the MLE method was implemented 

setting the discussion within the most popular framework for stationary BM and POT samples. 

This way, all results are easily comparable with those reported in the relevant literature. The 

regularity conditions of the GEV and GPD exist when the shape parameter which is equal for 

the two distributions is restricted (see the discussion in sub-Section 2.3.1). Specifically, the 

MLE is valid when 𝜉 > -1, although the asymptotically normal properties of the parameters are 

valid for 𝜉 >-0.5. When 𝜉 <-1, the estimators generally do not exist (Davison and Smith, 1990; 

Grimshaw, 1993; Tajvidi, 2003). In practice, for the modeling of extremes of wind speed, it is 

likely to obtain more often zero and negative estimates (i.e., indicating right-tail distributions 

of an exponential type or short and light-tailed respectively with an infinite or finite right 

endpoint), rather than positive value estimates of the shape parameter (Jonathan and Ewans, 

2013; Brabson and Palutikof, 2000). 

Assuming that the shape parameter estimation with regards to the BM Ref. model 

(𝜉𝑅𝑒𝑓) has a reduced degree of uncertainty, it will be considered as the reference estimation for 

the comparisons made in the parameter (𝜉) for both sample periods of examination. In general, 

DeCAUn estimates of 𝜉 resulted a width reduction of the 95% CI in the increase of the sample 

period from 10 to 15 years for the three locations L2, L16, and L21 illustrated in Figure 6.27. 
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              (a) 

 

 

          (b)              (c) 

 

Figure 6.27: Estimates of the 𝜉 parameter with the 95% Width of CI to all models for sample periods of 10 and 15 

years regarding locations (a) L2, (b) L16, and (c) L21. The parameter interval estimate of 𝜉 for the BM Ref. model 

is inferred from the normal approximation method. The interval estimates for the models BM, Runs, DeCA and 

DeCAUn is infered from the standard non-parametric bootstrap method (Percentile). (Tsalis et al., 2021) 

 

 The estimates of the shape parameter of DeCAUn for locations (L2, L16, and L21) 

ranged from -0.471 to -0.771 and even wider for the associated bounds. However, as the sample 

period increased we observed 𝜉 estimates converging to the 𝜉𝑅𝑒𝑓. This convergence confirmed 

the unique relationship between the distributions of GEV and GPD fitting successfully the 

samples of the reference and proposed model respectively. In this implementation, the residual 

RESID (𝜉) =𝜉𝑅𝑒𝑓 − 𝜉 will be used as a visual metric for comparison of the DeCAUn model for 
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each location respectively. The 𝜉𝑅𝑒𝑓 parameter estimates to locations L2, L16 and L21 are at -

0.168, -0.473 and -0.170 respectively shown in (Figure 6.27a, Figure 6.27b and Figure 6.27c). 

 DeCAUn yielded RESID (𝜉) at 0.303, 0.018 and 0.601 with a Width of CI at 1.037, 

1.434 and 0.977 for the sample period of 10 years from the three locations. With regards to the 

15 years, the RESID is followed by a reduction at 0.121 (converging to 𝜉𝑅𝑒𝑓), increment at 

0.243 (diverging negatively from 𝜉𝑅𝑒𝑓) and reduction at 0.178 (converging to 𝜉𝑅𝑒𝑓). In the same 

context regarding the 15 years, the Width of CI are obtained as reductions at 1.028, 0.993 and 

0.473 respectively.  

 For inference of the shape parameter estimates of DeCAUn to the 30 locations, Figure 

6.28 is given. In general, the RESID (𝜉) metric reduced to zero (converging to 𝜉𝑅𝑒𝑓) as the 

sample period increased for the majority of the locations.  

 

 
Fig. 6.28: The RESID metric estimates of 𝜉 from the DeCAUn model regarding the 30 locations for sample periods 

of 10 and 15 years. Parameter estimates of 𝜉𝑅𝑒𝑓 and 𝜉 are derived from the standard MLE method to models BM 

Ref. and DeCAUn fitting the GEV and GPD distributions respectively. (Tsalis et al., 2021) 

As a remark, the parameter assessment from the proposed model derived almost week 

asymptotically normal properties especially for the sample periods of 10 years (i.e., L5, L7, 

L15, and L21). A possible explanation is given from the over/underestimation of 𝜉 under the 

standard MLE method considering the relatively small number of observation at these 

locations. In addition, the inverse proportional behavior of the metric measure RESID in the 

increase of sample period (e.g., location L13) is also possible related to the intractable problems 

of inference for the 𝜉𝑅𝑒𝑓 parameter of GEV under MLE. However, for the relatively small 

samples, using the LMOM method according to Hosking and Wallis (1997) would probably 

model in a better way the statistical weakness of the small re-samples obtained from DeCAUn.  

We close our results in the following sub-Section 6.3.9 with the threshold selection for 

the Runs model at the three aforementioned locations.  

 

6.3.9 Threshold diagnostics for the Runs model 
 

 The effective threshold to the Runs model and the selection criteria is thoroughly 

discussed in sub-Sections 3.4 and 3.5. This part of the results highlights the detailed 

demonstration of the Runs model used, providing an optimum threshold 𝑢 from the Multiple-

Threshold Model by the NC diagnostics. The threshold range for the Score test of the NC 

diagnostics is limited between the 60% and 99.5% sample quantile of the daily wind speed 

maxima with a step of 0.01. As a remark, the threshold from NC required less subjectivity and 

experience to detect in comparison to alternative diagnostics also discussed previously in sub-

Section 3.4. Inference of the Multiple-Threshold Model by the NC diagnostics confirmed the 

advantage against the standard PS plot. 

 

 The NC diagnostics is presented for the sample periods of 10 (diagrams b, f and j) and 

15 years (diagrams d, h and l), with the standard Parameter Stability (PS) plot (see sub-Section 
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2.7.2) as a comparative measure (diagrams a, e and i for 10 years and diagrams c, g and k for 

15 years respectively) in Figure 6.29. For the diagnostics, Score test is performed for the shape 

parameter over multiple thresholds to the three locations (L2, L16 and L21). The empirical 

threshold selection is depicted as the value associated to the sharpest p-value increase at the 

significance level of 0.05. For easier representation, peak p-values and threshold are located on 

the vertical dashed line on the diagram of the NC diagnostics. Furthermore, threshold 

exceedances are also denoted on the top scale of the same diagram. The threshold setting for 

the samples of wind speed at the 30 locations is in line with the suggestions of Jonathan and 

Ewans (2013) for threshold adjustments of clustering no fewer than 50 events totally. 

 

 
 

Figure 6.29: Threshold model diagnostics for the Runs model. Diagrams of PS plot in (a,c,e,g,i,k) and NC diagnostics 

in (b,d,f,h,j,l) for sample periods of 10 and 15 years respectively. The threshold selection from the NC diagnostics 

is transferred onto the PS plot as a comparative measure. The NC threshold obtained from the PS plot is located on 

the diagram as the solid dot line highlighting empirical estimation for the shape parameter and as vertical solid lines 

at the same diagram the approximate point wise Wald 95% confidence intervals. (Tsalis et al., 2021) 

 

Additional diagnostics of the Runs model to the threshold from NC are summarized 

considering the three locations. Specifically, the p-value estimates, threshold and No. of cluster 

peak exceedances over threshold from the NC diagram are summarized in Table 6.15. 

 
Table 6.15: Threshold diagnostics for the de-clustering scheme of the Runs model. 

 Ny= 10 yrs Ny= 15 yrs 

Locations   𝒑-value 𝒖(m/s) 

No. Peak 

exceedances 
𝒑-value 𝒖(m/s) 

No. Peak 

exceedances 

L2   0.851 16.342 70 0.981 15.550 121 

L16   0.535 18.439 71 0.934 18.701 104 

L21   0.851 16.341 92 0.658 17.124 90 



  Results and discussion 

148 

 

As regards to the estimates of the NC diagnosics for the threshold setting the following remarks 

can be derived: 

 The number of cluster peak exceedances over threshold yielded in a range from 70 

to 121 with regards to the sample period of 10 and 15 years. 

 The threshold of wind speed is set in a range from 15.55 (m/s) to 18.70 (m/s) with 

regards to the sample period of 10 and 15 years. 

 

6.4 The response of DeCAUn using the ERA 20C and ERA Interim 

database 
 

 In this analysis, we assess the performance of the most reasonably de-clustering models 

discussed in 6.3 using relatively small annual wind speed time series, in a range of 10, 15, 20 

and 25 years long. The examined locations for applying all models are 32 in total, denoted as 

L1, L2,…, L31, and L32 respectively, addressing two different data products, the ERA-Interim 

and ERA-20C covering the North Sea, Atlantic, Mediterranean and Black Sea. 

 In the same context as in the MARINA Platform in sub-Section 6.3, all re-samples from 

the DeCAUn model obtained using the ERA-Interim and ERA-20C assume that an average of 

at least 1.65 peaks per year should be selected in a POT approach in order to gain advantage 

over BM. The 𝑛𝑟𝑚𝑠𝑒 measure of the re-samples was evaluated also in this setting for all DEP 

reduction levels (60,65,70,75,80,85,90 and 95). However, the DeCAUn model reconstructed 

the dependent sample of extremes to an efficient independent sample, using a normalized 

bandwidth value at 𝐶=0.25 for the Gaussian Kernel estimator. The bandwidth value was set for 

the resampling procedure at this value based on the work of (Rehfeld et al., 2011) on Asian 

monsoon records. 

 We assessed the performance of all de-clustering models in terms of the extreme wind 

speed quantile estimates and compared all results to the estimates of the BM model regarding 

the longest available time series from each data product. Specifically, the maximum available 

time series extending from 1979-2016 (38 years long) originated from the ERA-Interim 

product, or from the ERA-20C extending from 1961-2010 (50 years long). Our implementation 

is highlighted on the Intervals Estimate method for estimating the runs length, addressing a 

threshold value from the Multiple-Threshold Model when performing the GPD analysis via the 

Runs model. Standard errors and confidence intervals for the estimated parameters and return 

values of the GEV and GPD distribution parameters are derived by two approaches, the normal 

approximation to the distribution of the MLE estimator and by the non-parametric bootstrap 

method (Percentile), (see sub-Section 2.4 on the discussion of the confidence bound estimates). 

Before proceeding to our analysis, a summary Table 6.16 is presented with the basic 

characteristics of the models used in this part of our study. 

 

 
Table 6.16: Models and basic characteristics 

Models Characteristics  

BM Ref. 
Annual-Block Maximum sampling approach. This BM will be regarded as the reference model counted upon the 

largest available sample of 38 years from 1979 to 2016 (ERA-Interim) and sample of 50 years from 1961 to 2010 
(ERA 20C) . 

BM 
Annual-Block Maximum sampling approach. 

This BM will be regarded as the model counted upon the samples of 10, 15, 20, and 25 years of the ERA-Interim 
and ERA-20C . 

Runs Standard de-clustering model which samples approximately independent events (Smith and Weissman, 1994) 

DeCA 
The physical De-Clustering Algorithm (DeCA model) forming samples of events approximately independent and 

irregularly spaced in time. The samples from DeCA are formed assuming physical considerations from energy 
reduction levels DEP at % values (60,65,70,75,80,85,90 and 95). 

DeCAUn 
The proposed DeCA Uncorrelated (DeCAUn) model. The model performs re-sampling taking into account the 

correlation effect in the irregular samples of DeCA. The response of DeCAUn to the irregular correlation analysis 

considering Gaussian Kernel functions is assessed at the normalized bandwidth value of 𝐶=0.25. 
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 It is important at this point to emphasize the potential usefulness for the large-scale 

wind energy applications the use of reanalysis data products such as ERA-20C and ERA-

Interim of relatively small special scale manifested in the study of Torralba, et al., (2017b). The 

sample sizes of long-term wind speed larger than 30 that are found with relative ease at these 

dataproducts, has set a sound base for studying the various factors that cause the uncertainties 

in the estimation of return level estimates based on the asymptotic model formulation of GEV 

and GPD in extremes (e.g., Larsén et al., 2013).  

 The demonstration of DeCAUn reconstructing irregularly wind speed samples is 

primarily challenged from the sample size effect as previously discussed in sub-Section 6.3. 

However, the demonstration of the resampling strategy was controled to relatively small sample 

sizes of 10 and 15 years based on the available time series of wind speed originated from the 

MARINA Platform database of high resolution. The asymptotic properties of GPD modelling 

DeCAUn is challenged to samples of very small sizes (Holmes and Moriarty, 1999; Galambos 

and Macri, 1999; Katz et al., 2002; Jonathan and Ewans, 2013; and Wang and Holmes, 2020). 

Therefore, to assess the effect of larger sample sizes to the asymptotic properties of GPD will 

infer effectively the modelling of DeCAUn in line to the i.i.d limitations. In this respect, larger 

wind speed sample sizes from a fairly coarse resolution database such as the ERA-20C and 

ERA-Interim are required to evaluate the demonstration of DeCAUn.  

 However, the proposed resampling strategy is challenged from the intractable problems 

of inference associated to the distribution of wind speed from these dataproducts suggesting 

light-tails for the majority of the midlatitude regional locations used in this part of the 

assessment; (see also the discussion made in sub-Section 5.3). It is important to outline that if 

the parent distribution is characterized of being heavy tailed responsible of the natural forcing 

mechanism reconstructing the wind speed time series, then extremes of wind speed are 

modelled from a distribution with a bounded tail (e.g., FT-III or reverse Weibull class); (see 

Katz, 2002; Holmes, 2015; Pinheiro and Ferrari, 2015). The light-tails of wind speed originated 

from ERA-20C and ERA-Interim will challenge the modelling of DeCAUn to samples of less 

extremes at different sample periods (i.e., 10, 15, 20, and 25 years). The demonstration of 

DeCAUn to these relatively small datasets is also challenged from the bias effect to the return 

level estimates when the modelling at different periods is strongly influenced from the extreme 

wind climate changes obtained at each sample period (e.g., Larsén and Mann, 2009). 

 To infer the effect of the relatively short sample periods from 10 to 25 years of ERA-

20C and ERA-Interim to the response of DeCAUn, the design value estimates in (m/s) 

corresponding to the 50 years return period are illustrated in the following Figures 6.30 and 

6.31. It is importatnt to outline that the demonstration of DeCAUn is compared to the DeCA 

model and BM model at equally correspondent sample size based on the 𝑛𝑟𝑚𝑠𝑒 statistic. Only 

optimum model estimates based on the minimum 𝑛𝑟𝑚𝑠𝑒 value and reference model BM Ref. 

in parenthesis is illustrated in a,b,c, and d respectively to the sample periods of 10, 15, 20, and 

25 years using ERA-20C (from 1961 to 1985 of a 5 years step forward) and ERA-Interim (from 

1979 to 2003 respectively). In this setting, DeCAUn manifested as the optimum model 

particularly at sample periods of 10 and 15 years. 
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Figure 6.30: Optimum model estimates based on the minimum nrmse statistic and reference model BM Ref. in 

parenthesis of the 50 years design value respectively. Design value estimates are in (m/s) in (a,b,c, and d) respectively 

to the sample periods of 10, 15, 20, and 25 years of wind speed from the ERA-20C data product. (Tsalis et al., 2019) 
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Figure 6.31: Optimum model estimates based on the minimum nrmse statistic and reference model BM Ref. in 

parenthesis of the 50 years design value respectively. Design value estimates are in (m/s) in (a,b,c, and d) respectively 

to the sample periods of 10, 15, 20, and 25 years of wind speed from the ERA-Interim data product. (Tsalis et al., 

2019). 

  

 The number of the effective models that infer closer to the stability properties of the 

GEV limit distribution that modeled BM Ref. is presented in the following Table 6.17(a) 

summarizing the demonstration of each model in terms of the 𝑛𝑟𝑚𝑠𝑒 based criteria at each 

sampling period and data product respectively. Particularly, the demonstration of the optimum 

re-samples DeCAUn.1 and DeCAUn.2 modelling the GPD threshold model is assessed to the 

return level estimates made from DeCA, Runs and BM model at equally correspondent sample 

size based on the minimum 𝑛𝑟𝑚𝑠𝑒 value. It is outlined at the bar chart of Table 6.17(b) that as 

the sample size increased the most likely observed nrmse statistic of DeCAUn reduced 

smoothly and at a higher rate degree in regards to the 16 regional locations of ERA-Inrerim and 

to a lower extent regarding the 16 locations of ERA-20C. The strong bias effect to the return 

level estimates is rather reasonable to ERA-20C as the modelling of DeCAUn is strongly 

influenced from the inability of the data product to reproduce the extreme wind changes at the 

relatively small sample periods. The nrmse statistic of DeCAUn shows a smoother response to 

the increase of sample period when the modelling of extremes is originated from samples of 

ERA-20C (greater than 20 years) and ERA-Interim (greater than 15 years). 

 In addition, inference is also made for the DEP levels of the resampling strategy of 

DeCAUn based on the ERA-20C and ERA-Interim data products. In general, the increase in 

sample size from 10 to 25 years lead to small reductions of the most likely observed DEP level 

for the majority of the regional locations of ERA-Interim and to a small increase of the mode 



  Results and discussion 

152 

 

estimate of DEP from 10 to 15 years for ERA-20C and to a smaller increase from 20 to 25 

years. Specifically, in line with the previous results of the model based on the MARINA 

Platform in sub-Section 6.3, the increase in sample size does not necessarily follow the large 

increase in the number of extreme events as expected. The approximate stable or reduced modal 

value estimate of the DEP level of the irregular DeCA samples at locations from ERA-Interim 

controlled DeCAUn to encompass the largest number of events as possible as the sample size 

increased from 10 to 25 years. However, the reduction of the modal value estimate of the DEP 

level is clear for samples larger than 15 years for the ERA-20C challenging the inability of the 

ERA-20C to reproduce to a reasonable certainty the extreme wind changes at the relatively 

small sample periods up to 15 years. The response of DeCAUn to the modal value estimates of 

the DEP levels is illustrated at the bar chart of Table 6.17(c) considering the 16 regional 

locations of interest from the ERA-20C and ERA-Interim respectively.  

 The response of DeCAUn to the lag(𝑘)-apart estimates is also closely related to the 

DEP estimates that form the samples of DeCA (see discussion in sub-Section 6.3.3). 

Specifically, for the majority of locations the demonstration of DeCAUn in the increase of 

sample period resulted to larger (lower) DEP level and to relatively smaller (larger) lag(𝑘). 
Clearly, for locations e.g., in the NW and central part of the Mediterranean Sea that are 

characterized of having strong winds and relatively low volatility in extremes (i.e., larger DEP 

and relatively smaller lag(𝑘)), the DEP and lag(𝑘)-apart estimates of L5 of ERA-20C is 

illustrated in Table 6.17 (d and f) and the estimates of L30 of ERA-Interim illustrated in Table 

6.17 (e and g); (see changes in the frequency and intensity of cyclones and associated  

windstorms affecting the extremes into the Mediterranean region from Nissen et al., (2014)). 

When little information of extremes is apparent at these locations, the lower lag(𝑘) is preferable 

to form clusters efficiently of larger length and consequently derive samples of higher DEP. 

The effect of the DEP increase (reduction) and reduction (increase) in the lag(𝑘)-apart value of 

observations of DeCAUn as the sample size increased in illustrated in the bar chart of Table 

6.17 (f and g) for locations of ERA-20C and ERA-Interim respectively.  

 Following the mode estimates of the DEP in Table 6.17 (c), inference is also made for 

the mode estimates of the lag(𝑘)-apart value of observations of DeCAUn as the sample size 

increased in Table 6.17 (h). Specifically, the small reduction of the mode estimate of DEP as 

the sample size increased from 10 to 25 years in Table 6.17 (c) for the ERA-Interim locations, 

derived in general a small increase of the mode estimate of the lag(𝑘) illustrated in Table 6.17 

(h). However, for the locations of ERA-20C the reverse proportional relation of the DEP and 

lag(𝑘) is more pronounced for samples larger than 15 years. 

 
Table 6.17: The number of optimum models based on the minimum 𝑛𝑟𝑚𝑠𝑒 statistic of good performance presented 

in (a) infer closer to BM Ref. at the regional locations from ERA-20C and ERA-Interim. The mode estimate of the 

minimum nrmse statistic of DeCAUn to each data product is illustrated in (b) for the sample periods of 10, 15, 20, 

and 25 years of wind speed. In addition, the most likely value estimates of the DEP (%) reduction level of DeCAUn 

to the 16 locations in each region of the ERA-20C and ERA-Interim data products for sample periods of 10, 15, 20, 

and 25 years is illustrated in (c) and DEP estimates for each location respectively in (d and e). The lag(k)-apart value 

of observations of DeCAUn as the sample size increased in illustrated in the bar chart of (f and g) for locations of 

ERA-20C and ERA-Interim respectively, with the mode estimates of the lag(k)-apart value of observations of 

DeCAUn as the sample size increased in (h); (supplementary image of Tsalis et al., 2019). All models and parameter 

estimates are derived by the extRemes package (Ver. 2.0) in R; (Gilleland and Katz, 2016) 
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(a) 

 

Models
1961 - 1970      

(10 Years)

 1961 - 1975         

(15 Years)

 1961 - 1980 

(20 Years)

1961 - 1985 

(25 Years)

1979 - 1988 

(10 Years)

 1979 - 1993 

(15 Years)

 1979 - 1998 

(20 Years)

1979 - 2003 

(25 Years)

BM 0 2 2 2 1 1 0 3

Runs 0 0 2 0 0 2 3 1

DeCA 2 4 5 8 0 1 4 6

DeCAUn.1 5 5 2 3 11 8 2 1

DeCAUn.2 9 5 5 3 4 4 7 5

 No. of Optimum models from ERA-20C  

16 Locations

 No. of Optimum models from ERA-Interim  

16 Locations

 

(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

 
(g)  

 
(h) 

 
  

 The major remarks of the sample size effect to the demonstration of DeCAUn in terms 

of the return level estimates are outlined in the following: 

 

 The DeCAUn model succeeds as the optimum model based on the 𝑛𝑟𝑚𝑠𝑒 statistical 

criteria of good performance compared to DeCA, Runs, and BM for sample sizes of 10 

and 15 years of wind speed at the regional locations from ERA-20C and ERA-Interim 

(see Figures 6.30 and 6.31 and Table 6.17(a)). 
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 The Runs and DeCA models seem to converge closely to DeCAUn for sample sizes 

greater than 20 years. 

 The most likely observed nrmse statistic of DeCAUn reduced smoothly and at a higher 

rate degree as the sample size increased in regards to the regional locations of ERA-

Inrerim and to a lower extent to locations of ERA-20C (see the bar chart of Table 

6.17(b)). 

 The resampling strategy DeCAUn showed systematically stronger rate of convergence 

to the stability properties of GEV that modeled BM Ref. particularly at regional locations 

from ERA-Interim and a less stronger rate of convergence at locations from ERA-20C. 

 BM systematically inferred as a model of great instability particularly of sample sizes up 

to 25 years.  

 The resampling strategy DeCAUn.2 to wind speed for sample periods of 10 and 15 years 

succeded when data are originated using ERA-20C and DeCAUn.1 when using ERA-

Interim. DeCAUn.2 is also outlined as the best re-sampling strategy using the MARINA 

Platform database at the relatively small sample periods of 10 and 15 years. The 

assessment to the irregularly samples obtained from the high resolution product controled 

the bandwidth of the Gaussian Kernel effectively to DeCAUn rather better than the 

assessment made using the low resolution product having a constant bandwidth. 

 It is evident from the bar charts illustrated in Table 6.17(b) and Figure 6.20(b) that as the 

sample size increases, the most likely observed nrmse statistic of DeCAUn at the regional 

locations reduced smoothly and at a higher rate degree in regards to the datasets of the 

MARINA Platform database and to a lower extent regarding datasets from ERA-20C and 

ERA-Interim. Particularly, the resampling strategy proposed showed systematically 

stronger rate of convergence to the asymptotic properties of the extreme value 

distribution for wind speed datasets of high spatial resolution and to a less stronger rate 

of convergence for datasets of lower resolution. 

 From the demonstration of DeCAUn to the ERA-20C and ERA-Interim the most likely 

DEP (%) reduction level yield to range approximately from 0.61 to 0.78 with regards to 

the sample period from 10 to 25 years for the ERA-20C, and from 0.62 to 0.68 for the 

ERA-Interim respectively (see bar chart in Table 6.17(c)).  

 From the demonstration of DeCAUn to the ERA-20C and ERA-Interim the most likely 

lag(𝑘)-apart value of observations of DeCAUn as the sample size increased from 10 to 

25 years yield to range approximately from 2 to 5 for the ERA-20C, and from 3 to 4 for 

the ERA-Interim respectively (see bar chart in Table 6.17(h)).   

 Based on the most likely observed nrmse statistic of DeCAUn as the sample period 

increases (i.e., reduction in general of nrmse as sample increases), DeCAUn shows 

stronger rate of convergence to the asymptotic forms for samples larger than 20 from 

ERA-20C and larger than 15 from ERA-Interim. 

 At this point we outline the primarily interest of this study is to assess the effect of the 

sample period to the asymptotic properties of GPD that modeled DeCAUn and not the response 

of the proposed re-sampling strategy to the specific features responsible to bias samples 

originated from data products of low resolution. It is reasonable for assessing risk associated to 

extreme wind speed episodes to use high-resolution simulations especially in the coastal areas 

(Sušelj et al., 2010). Allthough modelled wind speed patterns differ between models they are 

usually small when compared to natural variability. Assessments made from Nikulin et al 

(2011) avoiding any statistical downscaling showed no significant changes in the 20 year return 

wind speed over the North Sea, and Pryor et al (2012) found no changes in the strength of wind 

gusts. These results strengthens the use of a low-resolution reanalysis data product such as 

ERA-Interim or ERA-20C when the primarily target is on the large-scale forcing of the wind 

field and not on the local effects. 
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 Under the proviso of the statistical downscaling, two representative location from the 

ERA-20C (L5 and L10) and the ERA-Interim (L18 and L30) database is selected for the 

demonstration of DeCAUn in terms of the return level estimates and variability of the proposed 

model to each sample period. The locations L5 and L30 are a good representative of the strong 

wind climate in the Mediterranean also discussed in Flaounas et al., (2015 b) and locations L10 

and L18 model typically the extreme wind characteristics obtained in the North Sea also studied 

from Sušelj et al., (2010).  

 The return level estimates of the DeCAUn model in association with the extrapolations 

made from BM, Runs and DeCA models for the four sample periods of 10, 15, 20, and 25 years 

from each data product respectively is illustrated in the following Figures. Specifically, Figures 

(6.32 and 6.33) inference the stability properties of the limit distributions in extremes that 

modeled all resampling strategies based on wind speed samples originated from ERA-20C and 

Figures (6.34 and 6.35) from ERA-Interim respectively. The demonstration of DeCAUn 

showed the systematically model convergence to BM Ref. particularly at sample periods of 10 

and 15 years. The modelling of DeCAUn was extended to larger sample sizes (not presented 

here) and the decrease of the absolute return level estimates to each return period was eventually 

more pronounced to the estimations made based on BM Ref. Additional diagnostics of the 

DeCAUn response to the sample period for the four locations (L5, L10, L18, and L30) using 

the low resolution data products is presented in Appendix I. The diagnostics of all models are 

inferred to the four sample periods of ERA-20C and ERA-Interim set from 1961 to 1985 and 

from 1979 to 2003 with a 5 years step forward to each data product respectively. 

 

(a) (b) 

  

(c) (d) 

  

Figure 6.32: Design value estimates based on the resampling strategies of BM, Runs, DeCA, and DeCAUn regarding 

location L5 of the ERA-20C data product. Estimates of all models are in (m/s) and shown in (a,b,c, and d) 

respectively to the sample periods of 10, 15, 20, and 25 years of wind speed. (Tsalis et al., 2019). 
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(a) (b) 

  

(c) (d) 

  

Figure 6.33: Design value estimates based on the resampling strategies of BM, Runs, DeCA, and DeCAUn regarding 

location L10 of the ERA-20C data product. Estimates of all models are in (m/s) and shown in (a,b,c, and d) 

respectively to the sample periods of 10, 15, 20, and 25 years of wind speed. (Tsalis et al., 2019). 

 
 The inability of ERA-20C to capture the extreme wind climate changes at different 

periods is systematically influencing the demonstration of the Runs, DeCA and DeCAUn 

models particularly in L10. However, DeCAUn inferred as the model with the fastest 

convergence rate as the sample period increased. All models demonstrated a rather smoother 

convergence to BM Ref. for sample sizes greater than 20 years. 

 

(a) (b) 
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(c) (d) 

  

Figure 6.34: Design value estimates based on the resampling strategies of BM, Runs, DeCA, and DeCAUn regarding 

location L18 of the ERA-Interim data product. Estimates of all models are in (m/s) and shown in (a,b,c, and d) 

respectively to the sample periods of 10, 15, 20, and 25 years of wind speed. (Tsalis et al., 2019). 

 

(a) (b) 

  

(c) (d) 

  

Figure 6.35: Design value estimates based on the resampling strategies of BM, Runs, DeCA, and DeCAUn regarding 

location L30 of the ERA-Interim data product. Estimates of all models are in (m/s) and shown in (a,b,c, and d) 

respectively to the sample periods of 10, 15, 20, and 25 years of wind speed. (Tsalis et al., 2019). 

 
 In regards to the sample size effect of the model demonstration in terms of the return 

level estimates the following remarks can be derived: 
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 For sample size greater than 20 all models converge to the extrapolations made from 

the BM Ref.  

 DeCAUn show the higher convergence rate to the BM Ref. especially considering 

sample sizes of 10 and 15 years 

 The resampling strategy DeCAUn.1 shows better convergence to the extrapolations 

made from BM Ref. for return periods lower than 50 years and DeCAUn.2 for return 

periods higher than 50 years 

 For a sample period greater than 15 and 20 years DeCA and DeCAUn models show 

similar extrapolation behavior 

 The relatively stronger flunctuations of the nrmse statistic is obtained at locations from 

ERA-20C and to a lower extent at locations from ERA-Interim. The bias effect of the 

inability of ERA-20C to capture the extreme wind variability at different periods is 

systematically more intence than at the regional locations from ERA-Interim 

influencing accordingly the return level estimates of all models. 

 BM failed to converege to the BM Ref. especially for relatively small sample periods 

of 10 and 15 years. 

 In addition, inference of the variability of DeCAUn to the design value estimates at 

return period of 50 years is made using two approaches for the confidence bound estimates. 

The first approach namely the normal approximation (delta method) and the second the non-

parametric bootstrap method (Percentile) for locations (L5, L10, L18, and L30) as illustrated in 

Figure 6.36. The sample period of 10, 15, 20, and 25 years data is set on the x axis challenging 

all model estimates with the width of CI on the y axis respectively. However, the standard 

approach to infer the approximate normality of the maximum likelihood estimator is challenged 

for small sample sizes pointing out very high quantile estimation variances that are not 

physically plausible as evidence in (a, c, e, and g) of Figure 6.36. To this effect an alternative 

approach to alleviate the intractable problem of inference of the uncertainty analysis based on 

small datasets is using the non-parametric bootstrap approach in (b, d, f, and h) of Figure 6.36; 

(see also the discussion of Pandey et al., 2003). Under the proviso of the two confidence bound 

estimate approximations inference is made pointing out the following: 

  

 The confidence bound estimates of DeCA and DeCAUn are systematically of larger 

width using the normal approximation to the likelihood in panel (a, c, e, and g) of 

Figure 6.36 than the estimates made using the non-parametric bootstrap approach 

illustrated in panel (b, d, f, and h) respectively. 

 The maximum width of CI in (m/s) of the design value estimates of DeCAUn using 

the non-parametric bootstrap approach for locations (L5, L10, L18, and L30) is 

reduced to (4.201, 4.248, 6.954, and 5.273) from the non physically plausible estimates 

of (14.551, 6.352, 15.100, and 49.706) of the normal approximation. 

 The high variance effect to the return level estimates using the non-parametric 

bootstrap approach influenced at a greater extent locations of lower bias. Specifically, 

L18 and L30 of ERA-Interim illustrated in b, d, f, and h show larger width of the bound 

estimates than L5 and L10 of ERA-20C in panel a, c, e, and g respectively. 

 The intractable problems of inference related to the normal approximation as the 

sample size increased showed larger inconsistencies of the bound estimates for 

DeCAUn and to a lower extent when using the non-parametric bootstrap approach. 

The smoother bound estimates from the bootstrap approach is also notable for the 

models DeCA and Runs.  

 The normal approximation to the likelihood showed symmetric bound estimates to all 

models and the non-parametric approach assymetric bounds with the upper design 

value estimate considerable narrower than the lower estimate respectively.  

 BM failed to demonstrate reasonable bound estimates from both approximations to the 

relatively small sample periods. 
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 DeCAUn show the greater rate of converegence to BM Ref. especially based on the 

bound approximation of the non parametric approach for samples greater than 15 or 

20 years. The demonstration of DeCA showed a more smoother convergence at 

smaller sample sizes. However, estimates in extremes based on sample sizes smaller 

than 10 years is probably unrealistic (not demonstrated in this setting) as samples of 

such small sizes is reported to bias strongly the design value estimates of the 50 years 

return period (e.g., Larsén et al., 2013). 

 Despite the fact that a non parametric bootstrap approach was performed to alleviate 

in some degree the large variability, it failed to overcome the weakness of small 

samples such as the irregularly re-samples from DeCAUn. The inevitable high 

variability of the proposed model is caused by the reduction in the sample size as a 

repercussion from re-sampling at the associated DEP levels. To a lower extent 

however this effect is also obtained at datasets originated from the MARINA Platform 

database. 

 

(a) (b) 

  

  

(c)  

 

(d) 
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(e)  (f) 

  

(g) (h) 

  

Figure 6.36: CI estimations from the normal approximation (delta method) in the left panel (a,c,e, and g) and from 

the non-parametric bootstrap (Percentile) method in the right panel (b,d,f, and h), for locations L5, L10, L18 and 

L30. (supplementary image of Tsalis et al., 2019) 

 

6.5 Inference of DeCAUn to datasets of different scale resolution 
  

 Finally, inference can be made of the effective sample size and the influence of the data 

product to the resampling strategy of DeCAUn. At this point we recall that this is not the 

primarily interest of this study however interesting remarks can be outlined of the response of 

DeCAUn to wind speed datasets originated from the three data products (ERA-20C, ERA-

Interim, and the MARINA Platform database) at regional locations that are closely arranged in 

the Northern North Sea, the Central Atlantic Ocean, and the Western Mediterranean Sea. 

 The regional locations from each data product in this setting are based on the similar 

forcing mechanism that suggest similar patterns of wind variability to each site of interest. 

However, the resampling strategy of DeCAUn is challenged from the effectiveness of the 

different datasets in scale resolution in simulating regional aspects of climate variability and 

forcing scenario uncertainty to provide reliable information of extremes at the same sample 

period. 

 Particularly, in the following Tables 6.18 and 6.19 the effective DEP (%) reduction 

level, the resampling scheme (i.e., DeCAUn.1 or DeCAUn.2), the likely number of the 

approximately independent events resampled from DeCAUn, the lag (𝑘)-apart value of 

observations and 𝜉 parameter estimates, are presented for samples of different statistical 

resolution based on the response of DeCAUn to sample periods of 10 years (from 1996 to 2005) 

and 15 years (from 1996 to 2010). In the same context of the previous evaluation of DeCAUn 
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in 6.3 and 6.4 the standard MLE method is set as the parameter estimator of the GPD 

distribution that models the resamples of the proposed model. Furthermore, the response of 

DeCAUn is evaluated based on estimates regarded the reference model BM Ref. considering 

the maximum available time series extending from 1979-2016 (38 years long) originated from 

the ERA-Interim product, from the ERA-20C extending from 1961-2010 (50 years long) and 

for the period 1996–2015 (20 years) from the MARINA Platform database. 

 

 
Table 6.18. Estimates of DeCAUn using statistical high and downscaled resolution datasets of wind speed. The 

sample period of 10 years is set at (1996-2005) respectively for the datasets originated from the ERA-20C, ERA-

Interim, and the MARINA Platform database.  

  

10 years 

 

Lat. 

 

Long. 

 

DEP 

(%) 

 

re-sampling 

scheme 

No. 

DeCAUn 

cluster 

 

DV (50)  

(m/s) 

 

WCI (50)             

(m/s) 

 

lag 

(𝑘) 

 

𝜉 

 

bdw 

Northern 
North  

Sea 

ERA-20C 58.500N 4.500E 90 DeCAUn.1 209 24.803 4.668 1 -0.271 0.125 

ERA-Interim 60.000N 2.250E 80 DeCAUn.2 32 32.556 17.201 3 -0.081 0.125 

MARINA Platform 57.95 N 3.1 E 70 DeCAUn.2 35 28.940 5.557 10 -0.523 0.625 

Central 
Atlantic 

Ocean 

ERA-20C 47.250N 10.125W 75 DeCAUn.2 41 27.608 11.137 7 -0.162 0.5 

ERA-Interim 51.000N 6.750W 60 DeCAUn.1 58 26.498 7.092 3 -0.325 0.125 

MARINA Platform 42.85 N 9.95 W 80 DeCAUn.2 61 25.172 4.969 5 -0.497 0.625 

Western 

Med/nean 
Sea 

ERA-20C 42.750N 4.500E 65 DeCAUn.2 38 20.419 2.798 9 -0.443 0.75 

ERA-Interim 42.000N 3.750E 60 DeCAUn.1 65 21.838 4.481 4 -0.403 0.125 

MARINA Platform 40.8 N 5.5 E 60 DeCAUn.1 57 25.786 4.282 11 -0.771 0.625 

 

Table 6.19. Estimates of DeCAUn using statistical high and downscaled resolution datasets of wind speed. The 

sample period of 15 years is set at (1996-2010) respectively for the datasets originated from the ERA-20C, ERA-

Interim, and the MARINA Platform database. 

  

15 years 

 

Lat. 

 

Long. 

 

DEP 
(%) 

 

re-sampling 
scheme 

No. 

DeCAUn 
cluster 

 

DV (50)  
(m/s) 

 

WCI (50)             
(m/s) 

 

lag 

(𝑘) 

 

𝜉 

 

bdw 

Northern 

North  

Sea 

ERA-20C 58.500N 4.500E 65 DeCAUn.1 140 24.198 4.011 5 -0.275 0.125 

ERA-Interim 60.000N 2.250E 80 DeCAUn.2 36 31.726 8.938 4 -0.488 0.125 

MARINA Platform 57.95 N 3.1 E 70 DeCAUn.2 53 28.788 6.148 10 -0.378 0.25 

Central 

Atlantic 

Ocean 

ERA-20C 47.250N 10.125W 65 DeCAUn.1 249 27.430 8.460 3 -0.128 0.125 

ERA-Interim 51.000N 6.750W 60 DeCAUn.2 56 26.460 4.741 4 -0.355 0.125 

Marina Platform 42.85 N 9.95 W 95 DeCAUn.2 130 25.163 2.677 2 -0.408 0.125 

Western 
Med/nean 

Sea  

ERA-20C 42.750N 4.500E 90 DeCAUn.2 188 20.543 1.829 2 -0.369 0.125 

ERA-Interim 42.000N 3.750E 95 DeCAUn.1 82 21.725 2.151 2 -0.497 0.125 

MARINA Platform 40.8 N 5.5 E 80 DeCAUn.2 200 25.865 2.831 3 -0.349 0.125 

 

The major remarks that is outlined from the resampling strategy of DeCAUn to irregularly 

samples of wind speed originated from databases of different scale resolution are pointed out 

in the following: 

 

 The response of the Gaussian weight function confirmed the effect of stretching out to 

a wider bandwidth scale in sample periods of 10 years where little information is 

available (bdw estimates of Table 6.18). Conversely, as the sample period increased 

from 10 to 15 years the optimal normalized bandwidth reduced, leading accordingly to 

a less wide bandwidth adjustment of the weight function; (see bdw estimates of Table 

6.19). 

 The approximate stable or reduced DEP level estimates as the sample size increased 

controlled the irregularly DeCA samples to encompass the largest number of events as 

possible. The response of DeCAUn to the increase in sample size does not necessarily 

follow the large increase in the number of extreme events as expected for all product 

types. Specifically, for locations characterized of strong winds and low volatility in 

extremes (e.g., locations at the Western Med/nean Sea), the demonstration of DeCAUn 

in the increase of sample period resulted to higher DEP and to relatively smaller lag(k). 

When little information of extremes is apparent at these locations, the lower lag(k) is 
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preferable to form clusters efficiently of larger length and consequently derive samples 

of higher DEP.  

 In general, for sample period set at 15 years it is evident that from the No. of the 

DeCAUn clusters in Table 6.19, any chanse of bias estimations of the return levels 

based on the modeling of DeCAUn to the GPD distribution is alleviated at these sites 

where the reconstruction process derived more than 50 events in total. To a lower extent 

the latter is challenged for location (60.00N and 2.25E) of the ERA-Interim database. 

 The resampling scheme DeCAUn.2 handles effectively the irregularly samples for 

larger sample periods in comparison to DeCAUn.1. This also is confirmed from the 

findings of the assessment made using the high resolution product (Figure 6.19 (d)) and 

the low resolution product (Table 6.17 (a)). Although DeCAUn.1 succeeds for samples 

of 10 and 15 years only using the ERA-Interim, for samples larger than 15 years 

DeCAUn.2 is strongly recommended as the effectively resampling strategy. 

 The parameter assessment from the DeCAUn model derived almost weak 

asymptotically normal properties especially for the sample periods of 10 years for all 

data products. This is the major drawback of the inconsistency of the standard MLE 

method considering the relatively small number of observation at these locations. For 

moderate or small samples, the anomalous behavior of the likelihood when sampling 

from the GPD distribution is also discussed in (Davison and Smith, 1990; Castillo and 

Hadi, 1997; and Castillo and Daoudi, 2009). The intractable problems of inference of 

the parameters of GPD under MLE for small samples challenged DeCAUn especially 

for samples of 10 years. However, using the LMOM method according to Hosking and 

Wallis (1997) would probably model in a better way the statistical weakness of the 

small re-samples obtained from DeCAUn. 

 The estimations confirmed the wider bound effect that was expected. Despite the fact 

that a bootstrap approach was performed for a reliable inference in terms of variability, 

it failed to overcome the inconsistency of small samples from DeCAUn. The inevitable 

high variability of the proposed model to samples originated from all dataproducts is 

caused by the reduction in the sample size as a repercussion from re-sampling at the 

associated DEP levels. 

 

Finaly, to assess the fit of the DeCAUn model to GPD when samples of wind speed are of 

different scale resolution, return level estimates, Q-Q and Kernel Density plots are illustrated 

in Figures 6.37, 6.38, and 6.39 for the regional locations closely arranged at the Northern North 

Sea, Central Atlantic Ocean, and Western Mediterranean Sea. The sample period is equally set 

to all datasets at 10 years (from 1996 to 2005) and 15 years (from 1996 to 2010). If the empirical 

data in the Q-Q and Kernel Density plots align closely with the modelled estimates, then it is 

likely that the chosen model for relatively small samples of wind speed is a good representation 

of the true extreme asymptotic form for these samples.  

 

(a) (b) 
 

10 (yrs)  

 

15 (yrs) 
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Figure 6.37: Visual inspection of the return level estimates in (a) and (b) of DeCAUn, with the Q-Q plot diagrams 

in (c,d,e,i, j, and k) and Kernel Density plot diagrams in (f,g,h,l,m, and n) for samples of 10 and 15 years for regional 

locations closely arranged in the Northern North Sea. Dashed light grey lines of the Q-Q plots show the 95% 

pointwise tolerance intervals. The statistical software package (extRemes) in R (Gilleland and Katz, 2016) is used 

for the estimation of the associated parameters and diagram illustration. (Supplementary material of Tsalis et al., 

2021) 
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As regards in relation to the demonstration of DeCAUn for samples of 10 and 15 years of 

different scale resolution at the three regional locations closely arranged in the Northern North 

Sea, the following remarks can be derived from this setting: 

 

 Regarding the extreme quantiles of the GPD distribution (right tail), the response of 

DeCAUn to datasets originated from the Marina Platform and ERA-20C provide 

results that are systematically closer to the theoretical GPD line and to a lower extent 

from ERA-Interim as illustrated in the Q-Q diagrams of Figure 6.37.  

 DeCaUn reconstructed the irregularly samples more easily for sample period of 15 

years using datasets of larger scale resolution as obtained in the comparison of the Q-

Q diagrams in (i,j, and k) of Figure 6.37. The response of DeCAUn is also controlled 

from the maximum available dataset of each dataproduct. Although the high resolution 

data product succeds in scale, ERA-20C succeds in long records setting the latter 

dataset also effective for DeCAUn as obtained in diagrams (k) and (n) of Figure 6.37.  

 The relatively small datasets originated from ERA-Interim challenged the 

reconstruction of DeCAUn in a better scale resolution than of ERA-20C but controlled 

the DEP and bandwidth parameters from a less available maximum data record. To this 

effect, the demonstration of DeCAUn is characterized less effective to these samples 

as illustrated in the Q-Q diagram (j) and Kernel density diagram (m) of Figure 6.37, 

particularly for the smaple period of 15 years. 

 The non parametric bootstrap approach to the bound estimate of the 50 years return 

levels from the modelling of DeCAUn yield extremely wide confidence/credible 

intervals regarding the samples of ERA-Interim, and to a lower extent from the 

modelling of DeCAUn to samples of ERA-20C and MARINA Platform; (see Table 

6.18 and 6.19). 

 In general, return level estimates from the modelling of DeCAUn to these regional 

locations of  ERA-20C and ERA-Interim yielded under and over estimates as illustrated 

in (a) and (b) of Figure 6.37. 
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Figure 6.38: Visual inspection of the return level estimates in (a) and (b) of DeCAUn, with the Q-Q plot diagrams 

in (c,d,e,i, j, and k) and Kernel Density plot diagrams in (f,g,h,l,m, and n) for samples of 10 and 15 years for regional 

locations closely arranged in the Central Atlantic Ocean. Dashed light grey lines of the Q-Q plots show the 95% 

pointwise tolerance intervals. (Supplementary material of Tsalis et al., 2021) 

 

As regards to the demonstration of DeCAUn at the three regional locations closely arranged in 

the Central Atlantic Ocean the following remarks can be derived from this setting: 

 

 The asymptotic properties of the maximum likelihood estimator at these regional 

locations are less challenged from the modelling of DeCAUn to samples of different 
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scale resolution. The model-based curve and empirical estimates are in reasonable 

agreement for all samples as obtained in the Q-Q and Kernel density diagrams of Figure 

6.38. The shape parameter estimates are 𝜉 > -0.5 for all samples assigning valid the 

regularity conditions that are required for the usual asymptotic properties associated 

with the maximum likelihood estimator (Smith, 1985). 

 The response of DeCAUn at these locations is less influenced from the land-sea 

topography. Particularly, the different scale-resolution datasets effectively reproduced 

the large-scale forcing on the wind field alleviating any inconsistencies in the nearshore 

areas. However, the extreme quantiles of the GPD distribution are systematically closer 

to the theoretical GPD line regarding the high resolution datasets of the MARINA 

Platform as illustrated in the Q-Q diagrams (c) and (i) of Figure 6.38, and to a lower 

extent from the low-resolution datasets of ERA-Interim in (d and j), and of ERA-20C 

in (e and k), respectively. 

 The wind speed data usually show a skewness to the right (i.e., right-skewed 

distribution of a long right tail) and the modeled shape parameter is usually negative; 

(see also Jonathan and Ewans, 2013; Marcos et al., 2019). The right-skewed 

distribution effect is also demonstrated in this setting illustrated in the Kernel density 

diagrams of Figure 6.38 and the modeled shape parameter is clearly negative as shown 

in Table 6.18 and 6.19.  

 The high variance effect of the maximum likelihood estimator to the 50 years return 

levels is obtained strongly for the samples of ERA-20C and to a lower extent for the 

samples of ERA-Interim and the MARINA Platform. The intractable problems of 

inference in terms of the strong variability from the modelling of DeCAUn to the 

relatively small samples of ERA-20C in this setting, set difficulties to verify that the 

ML estimator meets the desired asymptotic properties. 

 Return level estimates illustrated in (a) and (b) of Figure 6.38 show small bias effect to 

the modelling of DeCAUn to samples from the MARINA Platform in comparison to 

the modelling made to samples of lower scale resolution. However, the large scale 

distance of the locations in this setting show difficulties to verify inference of under or 

over-estimation in the return level estimates from the modelling of DeCAUn to these 

samples. 
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Figure 6.39: Visual inspection of the return level estimates in (a) and (b) of DeCAUn, with the Q-Q plot diagrams 

in (c,d,e,i, j, and k) and Kernel Density plot diagrams in (f,g,h,l,m, and n) for samples of 10 and 15 years for regional 

locations closely arranged in the Western Mediterranean Sea. Dashed light grey lines of the Q-Q plots show the 95% 

pointwise tolerance intervals. (Supplementary material of Tsalis et al., 2021) 

 

As regards to the demonstration of DeCAUn at the three regional locations closely arranged in 

the Western Mediterranean Sea the following remarks can be derived from this setting: 

 

 The response of DeCAUn at these locations is strongly influenced from the land-sea 

topography. Particularly, for the sample period of 15 years in the nearshore areas to 
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this setting the extreme quantiles of the GPD distribution are systematically closer to 

the theoretical GPD line regarding the high resolution datasets of the MARINA 

Platform as illustrated in the Q-Q diagram (i) of Figure 6.39, and to a lower extent from 

the low-resolution datasets of ERA-Interim in (j), and of ERA-20C in (k), respectively. 

The higher scale-resolution datasets reproduced the wind speed pattern effectively for 

the modelling of DeCAUn in comparison to the downscaled datasets as expected. 

 The right-skewed distribution effect is also in line with the wind speed characteristics 

illustrated in the Kernel density diagrams of Figure 6.39. Specifically, for the sample 

period of 15 years the modeled density of DeCAUn based on samples of the MARINA 

Platform show stronger rate of convergence to the empirical density in the (l) diagram 

and to a lower extent from ERA-20C in (n), and to a less extent from ERA-Interim in 

(m). 

 The inconsistency of the maximum likelihood estimator to the sample size of 10 years 

failed to infer the asymptotic properties particularly for the higher scale resolution 

dataset and to a lower extent for the downscaled datasets. 

 The non parametric bootstrap approach to the bound estimate of the 50 years return 

levels from the modelling of DeCAUn yield normal confidence/credible intervals in 

respect to samples of all datasets, giving bounds that lie within the physical constraints 

of the wind speed variable studied as shown in Table 6.18 and 6.19.  

 Return level estimates illustrated in (a) and (b) of Figure 6.39 show larger values from 

the modelling of DeCAUn to samples of the MARINA Platform in comparison to the 

estimates made to samples of lower scale resolution. 

 

 To sum up then, from this assessment the ML method confirmed the fact that may lead 

to very high quantile estimation variances and biased estimates when fitting the standard GPD 

distribution based on small sample sizes of 10 and 15 years (Davison  and  Smith, 1990; Fawcett 

and Walshaw 2015). The intractable problems of inference in terms of the strong variability 

from the modelling of DeCAUn to the relatively small samples of high and downscaled 

resolution datasets in this setting, set difficulties to verify that the ML estimator meets the 

desired asymptotic properties particularly for the sample sizes of 10 years. The inconsistencies 

from the estimator are alleviated when the sample period of wind speed is set no less than 15 

years. However, despite the challenging problems of inference when the available sample is 

small, from this evaluation, the DeCAUn model is proposed as an alternative re-sampling 

strategy reconstructing a dependent sample of observations irregularly spaced in time to a 

sample based on the i.i.d limitations. 

 Recent work in Fawcett and Walshaw (2006a, 2007, 2012) and Eastoe and Tawn 

(2012) revealed estimation bias for the model parameters as well as the return levels. 

Specifically, from their assessment to the modelling of extremes based on the standard GPD, 

they showed in some cases significant under-estimation of the return levels. The major effect 

from the reconstruction procedure of DeCAUn is the considerable reduction of the available 

number of observations. To this effect, a challenging aim for the improvement of DeCAUn in 

future work is to investigate the use of methods that maximise the number of extremes from 

observations irregularly spaced in time. For example, Eastoe and Tawn (2012) and Fawcett and 

Walshaw (2012, 2015), proposed methods that can substantially reduce return level estimation 

uncertainty relative to the standard modelling of extremes based on GPD. Specifically, if 

DeCAUn is modelled to sample sizes less than 15 years an alternative to the standard GPD 

distribution will probably be the sub-asymptotic model as proposed from Eastoe and Tawn 

(2012), that will probably model more effectively the irregularly cluster maxima of the small 

resamples. 
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Chapter 7 
Conclusions and future work 

 

7.1 Main contributions and most important findings 
 

The present study contributed on the modeling and extrapolation of extreme events based 

on simulation analysis and applications using historical data of wind speed. In particular,  

 

 Identification of the combined effects of i) the sample size (along with the direction step 

of sampling) of the annual maxima and ii) the comparison of the parameter estimation 

methods to these effects to wind speed. 

 Inference from the nonstationary modelling of extreme wind speed setting one or more 

of the parameters of the distribution as linear or nonlinear functions of the covariates on 

which the data show dependence in time. 

 A proposed methodology for the modelling of extremes based on the asymptotic model 

formulation of the standard distributions when samples are irregularly spaced in time. 

Specifically, focusing on relatively small samples of wind speed the proposed model 

demonstrated as an alternative strategy for reconstructing a dependent sample of 

observations irregularly spaced in time to a re-sample in line to the i.i.d limitations.  

The most important findings from this assessment in extremes are outlined in the following 

considering the distributional behavior of the two types of extreme wind speed sampling data 

used (the classical BM and the POT concept):  

 

 Focusing on samples of wind speed where prior evidence exists of the estimated 𝜉 

parameter of the GEV distribution as negative, it seems that the rather less known 

methods (EP, POME, and MPS) and, in a smaller degree, the well known ML and LMHU 

methods, are very reasonable solutions for modeling extremes. This is evident based on 

the statistical criteria assessed from the simulation and applications to wind speed setting 

fixed sample periods of 30 years.  

 Based on the evaluation using different sample sizes of wind speed data, LMOM method 

outperforms, in many respects, compared to the MLE method. Overall, regarding the 

design values from both the simulation study and applications it is evident that sample 

sizes greater than 35 are necessary for a substantial reduction of epistemic uncertainty. 

On the other hand, LMOM method should be preferred for small sample sizes. 

 Under the proviso of nonstationarity at locations in the North Sea, the stationary model 

generally provided the lowest return level estimates in comparison to the parametric 

models set to assess the trend in wind speed. The inference made of the models assessed 

to the likelihood is that linear and quadratic are overall evident models of detecting 

significant trends of the annual extremes in the North Sea. 

 No definitive conclusions can be drawn as regards the performance of MLE and LMOM 

estimation methods with respect to the sample types (F or B), since the values of the 

criteria fluctuate with respect to sample size, location and estimation method and do not 

exhibit a systematic pattern. However, inference of the design values to wind speed 

pointed out that for small sample sizes (size 20 and 30), the extremes from the analysis 

based on the B–samples are, in general to the F–samples, closer to the extrapolations 

based on the samples of size 50 especially for low return periods (up to 50 years).  



  Conclusions and future work 

171 

 

 The effective DEP level estimates and bandwidth response of the proposed resampling 

strategy to the irregularly sample of observations set the reconstructed range of events in 

line with the variability of extreme winds over the regional locations in this analysis. 

 For sample periods of wind speed greater than 15 years the re-samples of DeCAUn 

modeled by the approximation to the GPD demonstrated effective projections in terms 

of precision and variability.  

 With regards to the 50 year design values, DeCAUn yielded larger confidence bounds in 

comparison to the extrapolations made from the standard models within the POT 

concept. The samples of 10 and 15 years confirmed the inconsistency of MLE to BM to 

provide reasonable bound estimates resulting in a weak comparable measure of 

prediction to these samples. 

 The high resolution database used for the analysis, ensured as possible the extreme 

efficient characteristics of the resamples of DeCAUn primarily near the coasts and in 

narrow straits and basins where applied, avoiding the apparent underestimation of the 

extreme variability of wind speed.  

 However, the proposed model was confounded by large variability following by the 

reduction in sample size from the proposed sampling procedure. A more comprehensive 

investigation with regards to the optimization of the parameter estimation and the 

sampling uncertainties must be undertaken before the proposed model is widely applied.  

 

7.2 Future improvements of this study 
 

 A better approach, would require reducing the uncertainty of the return level estimates 

from GEV. Bias correction techniques such as the Bayesian hierarchical model have been 

introduced in order to improve predictions of extremes from global climate and ocean 

models, see Oliver et al., (2014). Future work could include the MPS and EP estimation 

methods along with the common estimation methods, for cases of advanced correction 

methods of this kind. 

 It is suggested that further assessment is necessary to the response of sample types of 

different count for extrapolations, since different sample types are challenged in practical 

applications.  

 Additional issues related to the proposed re-sampling procedure still remain and worth 

to be further assessed. For example, the L-moments (LMOM) method is probably more 

suitable for the modelling of extremes based on the relatively small sample periods (see 

application of LMOM in Pandey et al., 2001). Following the findings of the simulation 

study for large and small samples from Šimková and Picek (2016), LMOM succeeded 

for heavy or moderate tailed distributions, while MLE method is recommended for light-

tailed distributions. Although the modelling of extremely high wind speeds in general 

supports a bounded tail, the use of the Gumbel type and LMOM for relatively small 

samples is strongly recommended in engineering design in practice (e.g., see Katz, 2002). 

 Additionally, the use of the parametric bootstrap approach (Davison and Hinkley, 1997) 

for the DeCAUn model validation will probably improve the uncertainty bound effect of 

the estimates. This remark also follows the suggestion from Kyselý (2008) for inference 

based on the small to moderate sample sizes such as those reconstructed from DeCAUn. 

 Finally, a modelling basis for the multivariate probabilistic assessment of DeCAUn 

considering the limiting distribution of more than one vector random variables that are 

extreme in at least one component based on the conditional extremes approach proposed 

by Heffernan & Tawn (2004) and later formalized by Heffernan & Resnick (2007), will 

address respectively all danger parameters in a more natural way to wind speed 

applications. 
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Appendix 
 

A. Characteristic Function 
 

 A function𝜑𝑋(𝑡) is defined as a characteristic function(see Ochi, 1998), 

 

𝜑𝑋(𝑡) = 𝐸[exp(𝑖𝑡𝑋)] = ∫ e𝑖𝑡𝑥𝑑𝐹𝑋(𝑥)𝑅
= ∫ e𝑖𝑡𝑥𝑓𝑋(𝑥)𝑑𝑥𝑅

,                           (A.1) 

with properties: 

 

I. 𝜑𝑋(𝑡) must be continuous in 𝑡 
II. 𝜑𝑋(𝑡) is defined in every finite 𝑡 interval 

III. 𝜑𝑋(0) = 1 

IV. 𝜑𝑋(𝑡) and 𝜑𝑋(−𝑡) are considered to be conjugate quantities. 

 

B. Gamma function and derivatives 
 

The values of the derivatives of the Gamma function at the point 1, yields from the expansion 

of Gamma function  

 

Γ(𝑧 + 1) = exp (−𝛾𝑧 + ∑
(−1)𝑘𝜁(𝑘)𝑧𝑘

𝑘
∞
𝑘=2 ) , |𝑧| < 1                                       (B.1) 

e.g., see (Rivoal 2009) and (Abramowitz and Stegun 1972) as follows: 

 

Γ(𝑠)(𝑛 + 1) = 𝑛! ∑ (
𝑠
𝑗)H𝑛

[𝑠−𝑗]𝑠
𝑗=0 Γ(𝑗)(1) ,                                                      (B.2) 

for any integers 𝑛 ≥ 0 and 𝑠 ≥ 0. 

 

Function H𝑛
[𝑠]

 and Riemann Zeta function 𝜁(𝑠) are defined recursively 

 

H𝑛
[𝑠] = 𝑠!∑

1

𝑖1𝑖2⋅⋅⋅𝑖𝑠
1≤𝑖1<...<𝑖𝑠≤𝑛 , for 𝑠 ≥ 0 and                (B.3) 

 

𝜁(𝑠) =
1

Γ(𝑠)
∫

1

e𝑥−1
𝑥𝑠

𝑑𝑥

𝑥

∞

0
, for Re(𝑧) > 1.                            (B.4) 

 

 

C. Plotting position formulae 
 

The plotting position problem has been discussed by many authors; see for example Cunnane 

(1978), Makkonen (2006, 2008), Kim et al., (2012),Gringorten (1963), Arnell et al., (1986), In-

na et al., (1989), Goel and De (1993) and Goda (2011). By 1960 many new formulae had 

appeared, but there was no criterion by which a single formula could be chosen to give unique 

results over all distributions. In order to choose the best plotting position formula, the estimated 

quantile should be free from bias and should have minimum variance among graphical 

estimates. See also the relevant discussion in Makkonen (2006, 2008) about plotting position 

formulae in extreme value analysis. Since quantiles are an important ingredient in plotting 

position and return period calculations, there is a clear connection between them: First, the data 

(e.g., annual maxima) are ranked in increasing order of magnitude and a cumulative probability 

is associated to each point. Then, a best-fit line is fitted to the ranked values by some fitting 

procedure. An extrapolation of this line provides long-return periods of the extreme value of 

interest. 
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Let 𝑥min = 𝑥1:𝑛 ≤ 𝑥2:𝑛 ≤ ⋯𝑥𝑛:𝑛 = 𝑥max be an ordered random sequence. The most well-

known plotting position formula is probably the Weibull formula, i.e.,  

 

𝐹(𝑥𝑖:𝑛) = Pr[𝑋 < 𝑥𝑖:𝑛] = 𝑝𝑖:𝑛 =
𝑖

𝑛+1
, 𝑖 = 1,2,… , 𝑛.               (C.1) 

 

In the above relation as well as for all plotting positions formulae, 𝐹(𝑥𝑖:𝑛) is the empirical 

estimate of the non-exceedance probability of the 𝑖 − 𝑡ℎ smallest member in an ordered sample. 

The plotting position provided by relation (C1) is the only one justified for return period 

calculations. 

 

In (Cunnane, 1978) the following general representation for the plotting position formulae is 

proposed:  

 

𝑝𝑖:𝑛 = (𝑖 − 𝑎) 𝑛⁄ , or 𝑝𝑖:𝑛 = (𝑖 − 𝑎) (𝑛 + 1 − 2𝑎)⁄ , for 0 < 𝑎 < 1.             (C.2) 

 

The value of 𝑎 (plotting position parameter) in the above relation, yields approximately 

unbiased plotting positions for a variety of different distributions and determines the efficiency 

of the plotting position as regards the fit of a given theoretical distribution. For example, 𝑎 = 0 

is valid for all distributions (Weibull formula), 𝑎 = 0.44 is valid for the GEV and exponential 

distributions (Gringorten formula), 𝑎 = 0.5 for the GEV distribution (Hazen formula) and 𝑎 =

3/8 for the normal distribution.  

 

Recently, in (Kim et al., 2012), the authors using a genetic optimization method, proposed the 

following plotting position formula for the GEV distribution:  

 

𝑝𝑗:𝑛 =
𝑗−0.32

𝑛+0.0149𝑔2−0.1364𝑔+0.3225
,   𝑗 = 1,2, . . . , 𝑛,                           (C.3) 

 

where 𝑔 denotes the skewness coefficient. The authors compared also the proposed formula 

with the formulas provided in Cunnane (1978), Gringorten (1963), Arnell et al. (1986), In-na 

et al. (1989), Goel and De (1993).  

 

 

D. NEVA 
 

 The work from Cheng et.al., (2014), represents a computational platform for estimating 

stationary and non-stationary return levels, return periods and climatic extremes using Bayesian 

inference. The software package in MATLAB environment is named NEVA after Non-

stationary Extreme Value Analysis. In a Bayesian approach, NEVA estimates the extreme value 

parameters with a Differential Evolution Markov Chain (DE-MC) approach for global 

optimization over the parameter space. 

 NEVA provides three different methods for estimation of return levels: (i) standard 

return levels (commonly used in hydrologic design) in which the exceedance probability is 

constant for any given return period during the life of the design (design exceedance 

probability); (ii) constant thresholds with time varying exceedance probability; and (iii) 

effective return levels. A unique feature of NEVA is that it estimates and provides the 

associated probability intervals and uncertainty bounds for the return level estimates under non-

stationarity. NEVA offers a range of return levels, and the user can select the upper bound (low 

risk) or the lower bound (high risk) depending on the application at hand. 
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 Furthermore, the function detects the presence of a trend by implementing the MK 

trend test at the choice of the significance level (default choice 𝑎 = 0.05). If the null hypothesis 

is not rejected, NEVA will perform extreme value analysis under the stationary assumption. 

Upon detection of a trend at the 5 % significance level, the GEV parameters will be estimated 

under the non-stationary assumption.  

 Finally, NEVA is also used in studies for stationary and non-stationary extreme value 

analysis of annual temperature maxima from the Climatic Research Unit (New et al., 2000) 

gridded monthly temperature data (1901–2009).  

 

 

E. Spectrum Autocorrelation 
 

E.1 Parseval’s identity for Fourier transforms-(Rayleigh’s Theorem) 
 

The contribution of each frequency 𝑣(𝐻𝑧) to a signal 𝑓(𝑡) is defined by the Fourier transform 

FT(𝑓) of the signal as follows: 

𝐹(𝑣) = FT[𝑓(𝑣)] = ∫ 𝑓(𝑡)𝑒−2𝜋𝑣𝑡⋅𝑖𝑑𝑡
+∞

−∞
 , −∞ ≤ 𝑣 ≤ +∞.             (E.1.1) 

The function of Fourier transform FT(𝑓) is a complex valued function of frequency 𝑣(𝐻𝑧). 

The inverse Fourier transform F−1(𝐹) is defined as follows: 

𝑓(𝑡) = F−1[𝐹(𝑡)] = ∫ 𝐹(𝑣)𝑒+2𝜋𝑣𝑡⋅𝑖𝑑𝑣
+∞

−∞
 , −∞ ≤ 𝑡 ≤ +∞.            (E.1.2) 

Considering together Fourier transform and its inverse, it is provided a way of passing between 

equivalent representations of a signal via the Fourier inversion theorem: 

𝑓(𝑡) ⇄ 𝐹(𝑣)                              (E.1.3) 

An important relation between the energy of the signal in the time domain and the energy 

spectrum in the frequency domain is given by Parseval’s identity for Fourier transforms or 

Rayleigh’s Theorem, which relates the variances of a signal 𝑓(𝑡) and its Fourier transform 

FT(𝑓), by the equation  

∫ |𝑓(𝑡)|2𝑑𝑡
+∞

−∞
= ∫ |𝐹(𝑣)|2𝑑𝑣

+∞

−∞
.                  (E.1.4) 

               

The total power can therefore be expressed either in terms of the integral of the original function 

or its Fourier transform (Parseval's theorem), as follow (Priestley, 1981): 

 

total power = ∫ |𝑓(𝑡)|2𝑑𝑡
+∞

−∞
= ∫ |𝐹(𝑣)|2𝑑𝑣

+∞

−∞
                               (E.1.5) 

 

The square magnitude of the Fourier transform of a signal 𝑓(𝑡) is called the power spectrum 

𝑃(𝑣) = |𝐹(𝑣)|2 = 𝐹(𝑣) ⋅ 𝐹∗(𝜈),  −∞ ≤ 𝑣 ≤ +∞ or the spectral power density, or the energy 

spectrum, and 𝐹∗(𝑣) = FT[𝑓(−𝜈)] is the complex conjugate of the Fourier transform. 

 

 

E.2 Convolution and Correlation Theorem 
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Referring to the Time Convolution Theorem, the Fourier transform 𝐻(𝑣) of the convolution 

ℎ(𝑡) of two functions 𝑓(𝑡) and 𝑔(𝑡), equals to the product of Fourier transforms 𝐹(𝑣) and 

𝐺(𝑣) of the two functions (e.g see Bronshtein and Semendyayev, 1985, p. 582). 

Considering 𝑓(𝑡) ⇄ 𝐹(𝑣), 𝑔(𝑡) ⇄ 𝐺(𝑣) and (𝑓 ∗ 𝑔)(𝑡) = ℎ(𝑡), the equivalent expressions 

are derived as follow: 

ℎ(𝑡) ⇄ 𝐹(𝜈) ⋅ 𝐺(𝜈),                              (E.2.1) 

(𝑓 ∗ 𝑔)(𝑡) ⇄ 𝐹(𝜈) ⋅ 𝐺(𝜈), and                         (E.2.2) 

∫ 𝑓(𝑡 − 𝜏)𝑔(𝜏)𝑑𝜏
+∞

−∞
⇄ 𝐹(𝜈) ⋅ 𝐺(𝜈).                                       (E.2.3) 

Closely related to the Time Convolution theorem, is the correlation theorem. Considering the 

time convolution theorem and Fourier inverse-transform properties 

𝑓(−𝑡) ⇄ 𝐹∗(𝑣) and 𝐹∗(𝑣) = 𝐹(−𝜈),                                                   (E.2.4) 

the product of a Fourier transform with the complex conjugate of its Fourier transform can be 

reduced to the form 

{
 
 

 
 
𝑓(𝑡) ∗ 𝑓(−𝑡) ⇄ 𝐹(𝜈) ⋅ 𝐹∗(𝜈),

𝑓(𝑡) ∗ 𝑓(−𝑡) ⇄ 𝐹(𝜈) ⋅ 𝐹(−𝜈),

∫ 𝑓(𝑡 − 𝜏)𝑓(−𝜏)𝑑𝜏 ⇄ 𝐹(𝜈) ⋅ 𝐹(−𝜈).
+∞

−∞

              (E.2.5) 

Substitution of 𝑓(−𝜏) = 𝑓(𝜏) and 𝑓(𝑡 − 𝜏) = 𝑓(𝑡 + 𝜏) into the expressions stated in (E.2.5), 

the Fourier transform of the correlation theorem is stated 

∫ 𝑓(𝑡 + 𝜏)𝑓(𝜏)𝑑𝜏
+∞

−∞
⇄ 𝐹(𝜈) ⋅ 𝐹(−𝜈),                              (E.2.6) 

since 𝑓(𝑡) is considered a real and even signal. 

 

E.3 Wiener-Khinchin Theorem 
 

Considering the time Convolution theorem stated in Equation (E.17), the Correlation theorem 

and Fourier inverse-transforms in (E.20), the covariance and the spectrum function can be 

expressed as a Fourier transform pair, 

∫ 𝑓(𝑡 + 𝜏)𝑓(𝜏)𝑑𝜏
+∞

−∞
⇄ 𝐹(𝜈) ⋅ 𝐹∗(𝜈), and                (E.3.1) 

𝐶𝑜𝑣𝑓(𝑡) ⇄ 𝑃(𝜈).                      (E.3.2)      

Normalizing the Covariance and spectrum function dividing respectively by the total power or 

Parseval's Theorem, 

𝐶𝑜𝑣𝑓(0) = 𝜎
2 = ∫ |𝑓(𝑡)|2𝑑𝑡

+∞

−∞
= ∫ |𝐹(𝑣)|2𝑑𝑣

+∞

−∞
= total power,            (E.3.3)                  

it is derived, 

𝐶𝑜𝑣𝑓(𝑡)

total power
⇄

𝑃(𝜈)

total power
, and                                (E.3.4) 
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𝐶𝑜𝑣𝑓(𝑡)

∫ |𝑓(𝑡)|2𝑑𝑡
+∞

−∞

⇄
𝑃(𝜈)

∫ |𝐹(𝑣)|2𝑑𝑣
+∞

−∞

.                              (E.3.5) 

 

Therefore, the autocorrelation and the normalized expression of spectrum function can be 

expressed as a Fourier transform pair, 

𝜌(𝑡) ⇄
𝑃(𝜈)

𝜎2
.                                 (E.3.6)   

 

F. Trend and unit root tests 
 

Mann-Kendall (MK) non-parametric trend test 

 The non-parametric MK test is commonly employed to detect monotonic trends in 

series of environmental data, climate data or hydrological data. The MK test for trend detection 

has also been mentioned in the work from (Cunderlik and Burn 2002; Hundecha et.al, 2008; 

van Belle G. and Hughes J.P., 1984; Kundzewicz and Robson, 2004). This aim of the MK test 

is to examine the hypothesis that there is a monotonic upward or downward trend of the 

variable. Assuming a linear trend, the MK test, in other words, is used to test whether the slope 

of the regression line is different from zero.  

The null hypothesis of the test is expressed as follows:  

 

𝐻0: No monotonic trend is present, i.e., data come from a population with independent 

realizations and are identically distributed, against the alternative,  

 

𝐻1: There is a monotonic trend present. 

 

The steps for the implementation of the test are described as follows; see also Gilbert (1987): 

 

1. Let 𝑀1,𝑀2, … ,𝑀𝑁 be the time series of the annual maxima for year 1,2,… ,𝑁. 

 

2. Calculate all the possible differences Δ𝑗𝑖 = 𝑀𝑗 −𝑀𝑖, for all 𝑗 > 𝑖 and consider the sign 

indicator function 𝐼(𝑗, 𝑖) taking the values -1, 0 and 1 for Δ𝑗𝑖 < 0, Δ𝑗𝑖 = 0 and Δ𝑗𝑖 > 0,  

respectively. The total number of differences is 𝑁(𝑁 − 1) 2⁄ . 

 

 

3. Estimate the MK score 𝑆 and the variance  𝑉𝑎𝑟(𝑆) as follows: 

 

𝑆 = ∑ ∑ Δ𝑗𝑖
𝑁
𝑗−𝑖+1

𝑁−1
𝑖−1 ,                  (F.1) 

 

and the corresponding variance as follows:  

 

𝑉𝑎𝑟(𝑆) =
1

18
[𝑁(𝑁 − 1)(2𝑁 + 5) − ∑ 𝑡𝑝(𝑡𝑝 + 1)(2𝑡𝑝 + 5)

𝑔
𝑝=1 ],              (F.2) 

 

where 𝑔 denotes the number of tied groups and 𝑡𝑝 is the number of observations (data) 

in the 𝑝 −th group in the sample of the actual observations 𝑀1,𝑀2, … ,𝑀𝑁. 

 

4. Finally, by applying the following transformation:  
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𝑧𝑀−𝐾 =

{
 
 

 
 

𝑆−1

√𝑉𝑎𝑟(𝑆)
,    𝑆 > 0

        0,         𝑆 = 0
𝑆+1

√𝑉𝑎𝑟(𝑆)
,    𝑆 < 0

                 (F.3) 

 

the test statistic (score) 𝑆 is approximately normally distributed. It is noted by (Hipel and 

McLeod, 1994) that the minimum acceptable value of 𝑁 for implementing this method is 10, 

unless the number of ties is significant. The null hypothesis of no trend is rejected if the p-value 

(9) is less than a significance level (𝑎 =0.05). In other words, the null hypothesis is rejected at 

the significance level if |𝑍𝑀−𝐾| > 𝑧𝑎/2 where 𝑧𝑎/2 is the critical value obtained from the 

standard normal distribution with a probability of exceedance of 𝑎/2. Contrarily, when the 

estimated p-value is larger than 0.05 the null hypothesis cannot be rejected. 

Cox Stuart (CS) trend test 

 The Cox–Stuart test belongs to the class of nonparametric tests, as the Mann–Kendall 

test and is a robust method to detect the presence of the trend regardless of the distribution of 

the data. The statistical hypothesis in testing for trend in a series of random variables are: 

 

𝐻0: No monotonic trend exists in the series, against the alternative 

 

𝐻1: The series is characterized by a monotonic trend. 

 

Considering the independent series of data{𝑦𝑡 , 𝑡 = 1,⋯ , 𝑛 − 1, 𝑛}. In the testing procedure, 

first the series are divided into three sequences of data. In this way, it is compared whether the 

data of the first third of the series are larger or smaller than the data of the last third of the series. 

Secondly, all paired differences 𝐷 = 𝑦𝑛−𝑐+1:𝑛 − 𝑦1:𝑐  are derived in respect to 𝑐, with the latter 

defined as the point index separating the first third of the data. The totals of the positive or 

negative sign in 𝐷 are denoted as 𝐷+or 𝐷−respectively. The z-statistic of the CS trend test is 

defined: 

 

𝑧 =  |𝐷 −  𝑛/6|/𝑠𝑞𝑟𝑡(𝑛/12), for 𝑛 >  30 ,                       (F.4) 

 

and including a continuity correction as 

 

𝑧 =  (|𝐷 −  𝑛/6| − 0.5)/𝑠𝑞𝑟𝑡(𝑛/12), for 𝑛 <  30.                            (F.5) 

 

 The CS test is performed for a positive trend (increase) considering the 𝐷+, negative 

trend (decrease) with the 𝐷−, or as a two sided test with 𝐷 = min(𝐷+, 𝐷−). The z-statistic is 

normally distributed where p-values are estimated respectively. In order to REJECT the null 

hypothesis for this test, a p-value of less than 0.05 (or smaller) must be obtained. 

 

Unit root 

 In probability theory and statistics, a unit root is a feature of some stochastic processes 

(such as random walks) that can cause problems in statistical inference involving time series 

models. A linear stochastic process has a unit root, if the process's characteristic equation has a 

root of value equal to one. Such a process is non-stationary but does not always have a trend. 

                                                           
(9)  p-value =Pr{|𝑍𝑀−𝐾| > 𝑧}=Pr{𝑍𝑀−𝐾 < −𝑧 ⋃ 𝑍𝑀−𝐾 > 𝑧}=Pr{𝑍𝑀−𝐾 < −𝑧}+Pr{𝑍𝑀−𝐾 > 𝑧}=2Pr{𝑍𝑀−𝐾 > 𝑧}, 
where Pr{𝑍𝑀−𝐾 > 𝑧} is the probability from a standard normal distribution. 
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A discrete-time stochastic process {𝑦𝑡 , 𝑡 = 1,2,⋯ ,∞} can be written as an autoregressive 

process of order 𝑝 as follows: 

 

𝑦𝑡 = 𝑎1𝑦𝑡−1 + 𝑎2𝑦𝑡−2 +⋯+ 𝑎𝑝𝑦𝑡−𝑝 + 𝑒𝑡,                  (F.6) 

 

where {𝑒𝑡, 𝑡 = 0,1,⋯ ,∞} is a serially uncorrelated, zero-mean stochastic process with constant 

variance. The component 𝑒𝑡 is also regarded as the (white noise) process. If 𝑚 = 1 is a root 

of the characteristic equation:  

 

𝑚𝑝 −𝑚𝑝−1𝑎1 −𝑚
𝑝−2𝑎2 −⋯− 𝑎𝑝 = 0,                  (F.7) 

 

then the stochastic process has a unit root. Tests to check for the existence of a unit root is the 

primarily Dickey–Fuller test (DF) proposed by (Dickey and Fuller, 1979) or the augmented 

Dickey–Fuller (ADF) and the KPSS type tests that complement unit root tests such as the ADF 

test. 

 

Dickey-Fuller (DF) test 

Considering a first order auto-regression model of the form 

𝑦𝑡 = 𝑎 + 𝛽𝑡 + 𝜌𝑦𝑡−1 + 𝑒𝑡,                  (F.8) 

the Dickey-Fuller test is testing the presence of a unit root 𝜌 = 1 for this model. The 

presence of a unit root is also regarded as a non-stationary process. The coefficients (𝑎, 𝛽) 

denote the drift and the trend component respectively of the model. For the DF unit root test, 

the model is written as 

Δ𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 = 𝑎 + 𝛽𝑡 + 𝛾𝑦𝑡−1 + 𝑒𝑡,                (F.9) 

where 𝛾 = 𝜌 − 1 and 𝑦𝑡 is the data. The model is written this way in order to perform a 

linear regression of Δ𝑦𝑡 against 𝑡 and 𝑦𝑡−1, and test if 𝛾 is different from 0. If 𝛾 = 0 then the 

process is considered nonstationary. A unique nonstationary process for (𝑎 = 0, 𝛽 = 0, 𝛾 =

0) is also regarded as a (random walk). Contrariwise, if 𝛾 < 0 and (−2 < 𝛾 < 0), the process 

is considered stationary. 

Augmented Dickey-Fuller (ADF) unit root test 

 The Augmented Dickey-Fuller test examines higher-order autoregressive processes 

by including Δ𝑦𝑡−𝑝 in the model. The number of lagged difference terms is denoted as 𝑝 and 

specified. The model is written as follow: 

 

Δ𝑦𝑡 = 𝑎 + 𝛽𝑡 + 𝛾𝑦𝑡−1 + 𝛿1Δ𝑦𝑡−1 + 𝛿2Δ𝑦𝑡−2 +⋯+ 𝛿𝑝Δ𝑦𝑡−𝑝 + 𝑒𝑡,             (F.10) 

where the null hypothesis of the presence of a unit root is 𝐻0: 𝛾 = 0 (non-stationary process) 

under the alternative hypothesis, 𝐻1: 𝛾 < 0 (stationary process).  

In order to REJECT the null hypothesis of this test, a p-value less than 0.05 (or smaller) 

must be obtained. The ADF test statistic is defined as ADF=𝛾/𝑆𝐸(𝛾), where 𝛾 is the least 

squares estimate and 𝑆𝐸(𝛾) the corresponding standard error. The p-value of the test is 

derived by interpolating the test statistics from the corresponding critical values in (Table 

10.A.2 in Fuller (1996)). The DF test is a special case of the ADF test when 𝑝 = 1. 

(KPSS) stationarity test 

 The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) stationarity test by Kwiatkowski et 

al. (1992) examines if a time series is stationary around a mean (level stationary) or linear trend 
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stationary (trend stationary), or manifests the series under the alternative hypothesis as non-

stationary due to a presence of a unit root. The series is expressed as the sum of a deterministic 

trend, random walk, and stationary error by the regression equation as follows: 

𝑦𝑡 = 𝑎 + 𝛽𝑡 + 𝑥𝑡 + 𝜀𝑡,                            (F.11) 

where the first part {𝑎 + 𝛽𝑡} considers the drift and trend into the model, {𝑥𝑡, 𝑥𝑡 = 𝑥𝑡−1 +

𝑒𝑡} is the component of a random walk process and finally the stationary error where 

{𝜀𝑡 , 𝑡 = 0,1,⋯ ,∞} is a serially uncorrelated, zero-mean stochastic process with zero variance. 

The KPSS test performs the Score test of the hypothesis that the random walk has zero variance 

𝐻0: 𝜎𝑒
2 = 0 (stationary process), under the alternative hypothesis 𝐻1: 𝜎𝑒

2 > 0 (non-stationary 

process). In order to REJECT the null hypothesis for this test, a p-value of less than 0.05 (or 

smaller) must be obtained. The KPSS statistic is defined as  

KPSS=(
1

𝑛2
∑ �̂�𝑡

2𝑛
𝑡=1 ) /�̂�,                        (F.12) 

where �̂�𝑡 = ∑ 𝜀�̂�
𝑡
𝑗=1  and �̂� = ∑ 𝜀̂2𝑡

𝑗=1 /𝑛 for a given data sample of size 𝑛. The residuals of a 

regression of the 𝑦𝑡 data on the corresponding 𝑡 are denoted as 𝜀�̂�.  

 If the data are stationary the series will be stationary around a fixed level. The test uses 

the Ordinary Least Squares method (OLS) to estimate the residuals 𝜀�̂�, depending on whether 

to test for level stationarity or trend stationarity (Kočenda and Černý, 2007). A simplified 

version of the KPSS test without the time trend component is used to test level stationarity (see 

also Syczewska, 2010). Finally, the p-values are obtained by the interpolation of the test statistic 

from tables of critical values (Table 5, Hobijn et al., 2004). 

 

G. Kernel properties 
 

1. Expected value of �̂�(𝒙) 
 

𝐸[𝑓(𝑥)] = 𝑓(𝑥) +
1

2
ℎ2𝑓′′(𝑥) ∫ 𝑧2𝐾(𝑧)𝑑𝑧

+∞

−∞
+ 0(ℎ2).                          (G.1) 

Proof:  

𝐸[𝑓(𝑥)] = 𝐸 [
1

𝑛ℎ
∑ 𝐾 (

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1 ] =
1

𝑛
∑ 𝐸 [

1

ℎ
𝐾 (

𝑥−𝑥𝑖

ℎ
)]𝑛

𝑖=1 = 𝐸 [
1

ℎ
𝐾 (

𝑥−𝑥𝑖

ℎ
)].                      (G.2) 

Using the integral of the expected value operator and the appropriate change of variables 𝑧 =
𝑥−𝑡

ℎ
, and 𝑑𝑡 = |−ℎ|𝑑𝑧 into (G.2) yields, 

𝐸 [
1

ℎ
𝐾 (

𝑥−𝑥𝑖

ℎ
)] =

1

ℎ
∫ 𝐾 (

𝑥−𝑡

ℎ
) 𝑓(𝑡)𝑑𝑡

+∞

−∞
= ∫ 𝐾(𝑧)𝑓(𝑥 − ℎ𝑧)𝑑𝑧

+∞

−∞
.                         (G.3) 

Expanding 𝑓(𝑥 − ℎ𝑧) = 𝑓(𝑥) − ℎ𝑧𝑓′(𝑥) +
1

2
(ℎ𝑧)2𝑓′′(𝑥) + 0(ℎ)2 with Taylor series into 

(G.3), then 

∫ 𝐾(𝑧)𝑓(𝑥 − ℎ𝑧)𝑑𝑧
+∞

−∞
=

= 𝑓(𝑥) ∫ 𝐾(𝑧)𝑑𝑧
+∞

−∞
− ℎ𝑓′(𝑥)∫ 𝑧𝐾(𝑧)𝑑𝑧

+∞

−∞
+
1

2
ℎ2𝑓′′(𝑥) ∫ 𝑧2𝐾(𝑧)𝑑𝑧

+∞

−∞
+ 0(ℎ2).

         (G.4)   

Substituting the Kernel pdf properties, (G.4) finally yields Silverman (1986, Ch. 3) or Wand 

and Jones (1995, Ch. 2) 
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∫ 𝐾(𝑧)𝑓(𝑥 − ℎ𝑧)𝑑𝑧
+∞

−∞
= 𝑓(𝑥) +

1

2
ℎ2𝑓′′(𝑥)∫ 𝑧2𝐾(𝑧)𝑑𝑧

+∞

−∞
+ 0(ℎ2).                (G.5) 

Terms of the form 0(ℎ2)converge to zero faster than ℎ2 as ℎ → 0. 

2. Bias of �̂�(𝒙) 

 

𝐵𝑖𝑎𝑠 (𝑓(𝑥)) = 𝐸[𝑓(𝑥)] − 𝑓(𝑥) =
1

2
ℎ2𝑓′′(𝑥)∫ 𝑧2𝐾(𝑧)𝑑𝑧

+∞

−∞
+ 0(ℎ2), and            (G.6) 

3. Variance of �̂�(𝒙) 

 

𝑉𝑎𝑟[𝑓(𝑥)] ≃ 𝑓(𝑥)
1

𝑛ℎ
∫ (𝐾(𝑧))

2
𝑑𝑧

+∞

−∞
+ 0(

1

𝑛ℎ
).                           (G.7) 

Proof: 

𝑉𝑎𝑟[𝑓(𝑥)] = 𝑉𝑎𝑟 [
1

𝑛ℎ
∑ 𝐾 (

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1 ] =
1

𝑛2ℎ2
∑ 𝑉𝑎𝑟 [𝐾 (

𝑥−𝑥𝑖

ℎ
)]𝑛

𝑖=1 .                            (G.8)           

Considering 𝑛real observations(𝑥1, 𝑥2, . . . , 𝑥𝑛) independent and identical distributed, the 

Variance of the Kernel estimator is derived: 

𝑉𝑎𝑟 [𝐾 (
𝑥−𝑥𝑖

ℎ
)] = 𝐸 [(𝐾 (

𝑥−𝑥𝑖

ℎ
))
2

] − (𝐸 [𝐾 (
𝑥−𝑥𝑖

ℎ
)])

2
.                                       (G.9) 

Using the integral of the expected value operator into (G.9), 

𝑉𝑎𝑟 [𝐾 (
𝑥−𝑥𝑖

ℎ
)] = ∫ (𝐾 (

𝑥−𝑡

ℎ
))
2

𝑓(𝑡)𝑑𝑡
+∞

−∞
− (∫ 𝐾 (

𝑥−𝑡

ℎ
)𝑓(𝑡)𝑑𝑡

+∞

−∞
)
2
,                        (G.10) 

and substituting correspondingly into (G.8) yields 

𝑉𝑎𝑟[𝑓(𝑥)] =
1

𝑛2ℎ2
∑𝑉𝑎𝑟 [𝐾 (

𝑥 − 𝑥𝑖
ℎ

)]

𝑛

𝑖=1

                     =
1

𝑛ℎ2
( ∫ (𝐾 (

𝑥 − 𝑡

ℎ
))

2

𝑓(𝑡)𝑑𝑡

+∞

−∞

− ( ∫ 𝐾 (
𝑥 − 𝑡

ℎ
) 𝑓(𝑡)𝑑𝑡

+∞

−∞

)

2

)

                     =
1

𝑛
∫ (

1

ℎ
𝐾 (

𝑥 − 𝑡

ℎ
))

2

𝑓(𝑡)𝑑𝑡

+∞

−∞

−
1

𝑛
(
1

ℎ
∫ 𝐾 (

𝑥 − 𝑡

ℎ
) 𝑓(𝑡)𝑑𝑡

+∞

−∞

)

2

                     =
1

𝑛
∫ (

1

ℎ
𝐾 (

𝑥 − 𝑡

ℎ
))

2

𝑓(𝑡)𝑑𝑡

+∞

−∞

−
1

𝑛
(𝐸[𝑓(𝑥)])

2
,

 

therefore, 

𝑉𝑎𝑟[𝑓(𝑥)] =
1

𝑛
∫ (

1

ℎ
𝐾 (

𝑥−𝑡

ℎ
))
2

𝑓(𝑡)𝑑𝑡
+∞

−∞
−
1

𝑛
(𝐵𝑖𝑎𝑠[𝑓(𝑥)] + 𝑓(𝑥))

2
 .                            (G.11) 

Using the appropriate change of variables 𝑧 =
𝑥−𝑡

ℎ
 into (G.11), it is derived 
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𝑉𝑎𝑟[𝑓(𝑥)] =
1

𝑛
∫ (

1

ℎ
𝐾 (

𝑥 − 𝑡

ℎ
))

2

𝑓(𝑡)𝑑𝑡

+∞

−∞

−
1

𝑛
(𝑓(𝑥) +

1

2
ℎ2𝑓′′(𝑥) ∫ 𝑧2𝐾(𝑧)𝑑𝑧

+∞

−∞

+ 0(ℎ2))

2

=
1

𝑛ℎ
∫ (𝐾(𝑧))

2
𝑓(𝑥 − ℎ𝑧)𝑑𝑧 −

+∞

−∞

1

𝑛
(𝑓(𝑥) +

1

2
ℎ2𝑓′′(𝑥) ∫ 𝑧2𝐾(𝑧)𝑑𝑧

+∞

−∞

+ 0(ℎ2))

2

,

 

and expanding 𝑓(𝑥 − ℎ𝑧) with Taylor series yields, 

𝑉𝑎𝑟[�̂�(𝑥)] =
1

𝑛ℎ
∫ (𝐾(𝑧))

2
𝑓(𝑥 − ℎ𝑧)𝑑𝑧 −

+∞

−∞

1

𝑛
(𝑓(𝑥) +

1

2
ℎ2𝑓′′(𝑥) ∫ 𝑧2𝐾(𝑧)𝑑𝑧

+∞

−∞

+ 0(ℎ2))

2

=
1

𝑛ℎ
∫ (𝐾(𝑧))

2
(𝑓(𝑥) − ℎ𝑧𝑓′(𝑥) +

1

2
(ℎ𝑧)2𝑓′′(𝑥) + 0(ℎ)2)𝑑𝑧

+∞

−∞

−
1

𝑛
(𝑓(𝑥) +

1

2
ℎ2𝑓′′(𝑥) ∫ 𝑧2𝐾(𝑧)𝑑𝑧

+∞

−∞

+ 0(ℎ2))

2

.

 

                   (G.12) 

Considering 𝑛 → ∞ and ℎ → 0, the latter stated in Equation (G.12) is derived as follow: 

 𝑉𝑎𝑟[𝑓(𝑥)] ≃ 𝑓(𝑥)
1

𝑛ℎ
∫ (𝐾(𝑧))

2
𝑑𝑧

+∞

−∞
+ 0(

1

𝑛ℎ
).                                      (G.13) 

 

H. Likelihood approximation for the 𝑟-largest order statistics 
 

Theorem H.1 (Convergence law of Point Processes for Extremes) 

We denote 𝑀𝑛 = 𝑚𝑎𝑥(𝑋1, . . . , 𝑋𝑛) as the maximum of a random sample of size 𝑛 with 

independent and identical variables. If there exists sequences of constants {𝑎𝑛 > 0} and 

{𝑏𝑛 ∈ 𝑅}, such that the sequence of point processes 

𝑃𝑛 = {𝑖 (𝑛 + 1)⁄ ,
(𝑋𝑖−𝑏𝑛)

𝑎𝑛
: 𝑖 = 1,2,3, . . . , 𝑛} → 𝑃, 𝑛 → ∞               (H.1) 

for some large value of 𝑢𝑛, then 𝑃 follows a non-homogeneous Poisson process with integrated 

intensity measurein the time interval [𝑡1, 𝑡2] = [0,1] and over the region [𝑡1, 𝑡2] × [𝑢𝑛,∞) as 

follows, 

Λ([𝑡1, 𝑡2] × [𝑢𝑛,∞)) = (𝑡2 − 𝑡1)𝑉(Α),                        (H.2) 

where 𝑉(𝐴) is the expected number of exceedances obtainedover the region Α =
{(0,1) × [𝑢𝑛,∞)}. 

Moreover, considering the independent and identically distributed 𝑀𝑛
(𝑟) = 𝑟𝑡ℎ largest 

of (𝑋1, 𝑋2, . . . , 𝑋𝑛) that exceed of a level 𝑢𝑛 denoted as 

(
𝑋(1)−𝑏𝑛

𝑎𝑛
,
𝑋(2)−𝑏𝑛

𝑎𝑛
, . . . ,

𝑋(𝑖)−𝑏𝑛

𝑎𝑛
, . . . ,

𝑋(𝑟)−𝑏𝑛

𝑎𝑛
),                             (H.3) 

then for a fixed value of 𝑟 the expected number of exceedances in a time interval (0,1) over the 

region {(0,1) × [𝑢𝑛,∞)} converge into (see Smith, 1990): 

𝑉(𝑥(𝑟); 𝜉, 𝜎, 𝜇) = [1 + 𝜉 (
𝑥(𝑟)−𝜇

𝜎
)]
−1/𝜉

= [1 + 𝜉 (
𝑢𝑛−𝜇

𝜎
)]
−1/𝜉

, 𝑥(𝑟) = 𝑢𝑛.            (H.4) 
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The occurrence rate of points per unit region 𝜆(𝑥(𝑟); 𝜉, 𝜎, 𝜇), is just the negative derivative of 

the 𝑉(𝑥(𝑟); 𝜉, 𝜎, 𝜇): 

𝜆(𝑥(𝑟); 𝜉, 𝜎, 𝜇) = −
𝜕

𝜕𝑥(𝑟)
𝑉(𝑥(𝑟); 𝜉, 𝜎, 𝜇) =

1

𝜎
[1 + 𝜉 (

𝑥(𝑟)−𝜇

𝜎
)]
−1/𝜉−1

,𝑥(𝑟) ≥ 𝑢𝑛.              (H.5) 

 Making the appropriate substitutions of Equations (H.4) and (H.5) into the likelihood 

of the non-homogeneous Poisson process stated in Equation (3.1), the general form of the non-

homogeneous Poisson process likelihood stated in Equation (3.2) is obtained for the 𝑟𝑡ℎ largest 

ordered maxima that exceed over a high threshold level 𝑢𝑛. 

 

H.1 Likelihood approximation of the non-homogeneous Poisson process for the 

𝑟-largest order statistics 
 

 At this point it is reasonable to point out that the likelihood obtained from the modeling 

derived by Coles (2001) is equivalent to the initial formulation made from Weissman (1978) or 

by Leadbetter et al. (1983, Chapter 2). 

(Leadbetter 1983) associated the identical events, Pr [𝑀𝑛
(𝑟) ≤ 𝑢𝑛] = Pr[𝑆𝑛 < 𝑟], where 𝑆𝑛 

denotes the number of (𝑋1, 𝑋2, . . . , 𝑋𝑛) which exceed 𝑢𝑛. In other words, the probability of the 

𝑟𝑡ℎ largest of (𝑋1, 𝑋2, . . . , 𝑋𝑛) which does not exceed 𝑢𝑛 is in the same sense as the probability 

of no more than 𝑆𝑛 number of exceedances exceeding 𝑟. Consequently, the distribution function 

of the 𝑟𝑡ℎ largest order statistic is stated by the following Theorem H.2. 

Theorem H.2 (Leadbetter 1983): 

If the expected number of exceedances 𝑉(𝛢) in a time interval (0,1) over the region𝛢 =

{(0,1) × [𝑢𝑛,∞)} converge into a Poisson variable with mean 𝑉(A) = 𝑉(𝑥(𝑟); 𝜃) =

[1 + 𝜉 (
𝑥(𝑟)−𝜇

𝜎
)]
−1/𝜉

= [1 + 𝜉 (
𝑢𝑛−𝜇

𝜎
)]
−1/𝜉

 , 𝜃 = (𝜇, 𝜎, 𝜉), then 

𝑃𝑟 [
𝑀𝑛
(𝑟)
−𝑏𝑛

𝑎𝑛
≤ 𝑢𝑛] → 𝐹𝑟(𝑢𝑛),                             (H.6) 

 for a linear renormalization of the random variables with 

𝐹𝑟(𝑢𝑛) = 𝑒𝑥𝑝{−𝑉(𝛢)}∑
𝑉(𝛢)𝑠

𝑠!
𝑟−1
𝑠=0 , where 𝑠 denotes the number of (𝑋1, 𝑋2, . . . , 𝑋𝑛) exceeding 

𝑢𝑛. 

The latter stated Theorem H.2 gives information for the approximate distribution of each of the 

elements of 𝑀𝑛
(𝑟)

 in Equation (H.6), but does not guarantee the independency over the 

components of 𝑀𝑛
(𝑟)

, and does not formulate the full joint distribution of the 𝑀𝑛
(𝑟)

 exceedances. 

 Therefore, Tawn (1988) attempted a formulation of the limiting joint Generalized 

Extreme Value distribution for the r largest order statistics. The formulation therein suggested 

that from a sample of independent and identically distributed random variables exceeding of a 

level 𝑢𝑛 and a fixed r value, the limiting joint distribution function for the r largest order 

statistics considering 𝑥(1) ≥ 𝑥(2) ≥ ⋯ ≥ 𝑥(𝑖) ≥ ⋯ ≥ 𝑥(𝑟) with 𝑥(𝑟) = 𝑢𝑛 is: 
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Pr {
𝑋(1) − 𝑏𝑛

𝑎𝑛
< 𝑥(1),

𝑋(2) − 𝑏𝑛
𝑎𝑛

< 𝑥(2), . . . ,
𝑋(𝑖) − 𝑏𝑛

𝑎𝑛
< 𝑥(𝑖), . . . ,

𝑋(𝑟) − 𝑏𝑛
𝑎𝑛

< 𝑥(𝑟)} 

→ ∑ ∑ ⋯ ∑
(𝑉(𝑥(2); 𝜃) − 𝑉(𝑥(1); 𝜃))

𝑠1

𝑠1!
⋯

𝑟−1−𝑠1−⋯−𝑠𝑟−2

𝑠𝑟−1=0

2−𝑠1

𝑠2=0

1

𝑠1=0

(𝑉(𝑥(𝑟); 𝜃) − 𝑉(𝑥(𝑟−1); 𝜃))
𝑠𝑟−1

𝑠𝑟−1!
exp (−𝑉(𝑥(𝑟); 𝜃)). 

                     (H.7) 

The limiting joint density of the r largest order statistics is found to be: 

𝑓(𝑥(1), … , 𝑥(𝑟); 𝜇, 𝜎, 𝜉) = 

𝜎−𝑟exp {−(1 + 𝜉 (
𝑥(𝑟)−𝜇

𝜎
))

−1/𝜉

− (1 + 1/𝜉)∑ log(1 + 𝜉 (
𝑥(𝑗)−𝜇

𝜎
))𝑟

𝑗=1 }                      (H.8)

   

where  1 + 𝜉 (
𝑥(𝑗)−𝜇

𝜎
) > 0 for 𝑗 = 1,2, . . . , 𝑟.  

 

H.2 Statistical modeling of the r-largest Order Maxima 
 

 The likelihood of a non-homogeneous Poisson process for extremes is derived when 

all of the available data are grouped into 𝑚 blocks, selecting the 𝑟𝑡ℎ largest ordered maxima in 

each block. It is usually to set equal 𝑟𝑡ℎ largest number of maxima over all blocks as 𝑟𝑏𝑙𝑜𝑐𝑘1
𝑡ℎ =

𝑟𝑏𝑙𝑜𝑐𝑘2
𝑡ℎ =. . . = 𝑟𝑏𝑙𝑜𝑐𝑘 𝑚

𝑡ℎ = 𝑟. The optimum selection of the 𝑟𝑡ℎ value is crucial due to the bias-

variance trade-off effect (10). Assuming that data from separated blocks are independent, then 

the product of these joint densities is the appropriate joint density for the set of whole 

observations. 

 The general form of the non-homogeneous Poisson process likelihood for the 𝑟𝑡ℎ 

largest ordered maxima that exceed over a high threshold level𝑢𝑛, over all available 𝑚 blocks, 

is defined as follows: 

𝐿{[𝑡1,𝑡2]×(𝑢𝑛,∞),(𝑚 𝑏𝑙𝑜𝑐𝑘𝑠)} (𝑥𝑏𝑙𝑜𝑐𝑘
(1) , . . . , 𝑥𝑏𝑙𝑜𝑐𝑘

(𝑟) ; 𝜉, 𝜎, 𝜇)= 

=∏ (exp [−(𝑡2 − 𝑡1) [1 + 𝜉 (
𝑢𝑛(𝑏𝑙𝑜𝑐𝑘)

−𝜇

𝜎
)]
−1 𝜉⁄

]∏ (
1

𝜎
[1 + 𝜉 (

𝑥𝑏𝑙𝑜𝑐𝑘
(𝑖)

−𝜇

𝜎
)]

−1 𝜉⁄ −1

)𝑟
𝑖=1 )𝑚

𝑏𝑙𝑜𝑐𝑘=1 ,    

                        (H.9) 

where −∞ < 𝜇 < ∞, 𝜎 > 0, −∞ < 𝜉 < ∞. In addition,  

{
 
 

 
 𝑥𝑏𝑙𝑜𝑐𝑘=1

(1) ≥ 𝑥𝑏𝑙𝑜𝑐𝑘=1
(2) ≥. . . ≥ 𝑥𝑏𝑙𝑜𝑐𝑘=1

(𝑖) ≥. . . ≥ 𝑥𝑏𝑙𝑜𝑐𝑘=1
(𝑟) = 𝑢𝑛(𝑏𝑙𝑜𝑐𝑘=1)

𝑥𝑏𝑙𝑜𝑐𝑘=2
(1) ≥ 𝑥𝑏𝑙𝑜𝑐𝑘=2

(2) ≥. . . ≥ 𝑥𝑏𝑙𝑜𝑐𝑘=2
(𝑖) ≥. . . ≥ 𝑥𝑏𝑙𝑜𝑐𝑘=2

(𝑟) = 𝑢𝑛(𝑏𝑙𝑜𝑐𝑘=2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑥𝑏𝑙𝑜𝑐𝑘=𝑚
(1) ≥ 𝑥𝑏𝑙𝑜𝑐𝑘=𝑚

(2) ≥. . . ≥ 𝑥𝑏𝑙𝑜𝑐𝑘=𝑚
(𝑖) ≥. . . ≥ 𝑥𝑏𝑙𝑜𝑐𝑘=𝑚

(𝑟) = 𝑢𝑛(𝑏𝑙𝑜𝑐𝑘=𝑚)

 

                                                           
(10) Small 𝑟 values will generate few data leading to a high variance. On the contrary, large values of 𝑟 leads to high 

bias. 



  Appendix 

184 

 

provided 1 + 𝜉 (𝑥𝑏𝑙𝑜𝑐𝑘
(𝑖)

− 𝜇) 𝜎⁄ > 0 for 𝑖 = 1,2,3, . . . , 𝑟.  

 

When 𝜉 = 0 the following form of the likelihood is considered: 

𝐿{[𝑡1,𝑡2]×(𝑢𝑛,∞),(𝑚 𝑏𝑙𝑜𝑐𝑘𝑠)} (𝑥𝑏𝑙𝑜𝑐𝑘
(1)

, . . . , 𝑥𝑏𝑙𝑜𝑐𝑘
(𝑟)

; 𝜉 = 0, 𝜎, 𝜇)= 

=∏ (exp [−exp(−(𝑡2 − 𝑡1) (
𝑢𝑛(𝑏𝑙𝑜𝑐𝑘)

−𝜇

𝜎
))]∏ (

1

𝜎
exp [−(

𝑥𝑏𝑙𝑜𝑐𝑘
(𝑖)

−𝜇

𝜎
)])𝑟

𝑖=1 )𝑚
𝑏𝑙𝑜𝑐𝑘=1 .       (H.10) 

Special case 𝑟 = 1 for each block in Equations (H.9) and (H.10), reduces to the likelihood 

family of GEV for BM. The 𝑟𝑡ℎ largest order statistic model gives a likelihood whose 

parameters correspond to those of the GEV of BM, but uses more information from the data. 

The corresponding log likelihood of the above expressions can be maximized numerically in 

order to obtain maximum likelihood estimates. The log likelihood is therefore: 

 

𝑙 (𝑥𝑏𝑙𝑜𝑐𝑘
(1) , . . . , 𝑥𝑏𝑙𝑜𝑐𝑘

(𝑟) ; 𝜇, 𝜎, 𝜉)= 

−𝑟ln𝜎 −𝑚𝑦𝑒𝑎𝑟𝑠 [1 + 𝜉 (
𝑢𝑛(𝑏𝑙𝑜𝑐𝑘)

−𝜇

𝜎
)]
−1 𝜉⁄

− (1/𝜉 + 1)∑ ln [1 + 𝜉 (
𝑥𝑏𝑙𝑜𝑐𝑘
(𝑖)

−𝜇

𝜎
)]𝑟

𝑖=1 ,        (H.11) 

where 𝑚𝑦𝑒𝑎𝑟𝑠 denotes the number of years of observation. 

 

I. Additional diagnostics  
 

 Additional diagnostics are presented for the four locations (L5, L10, L18, and L30) 

using the low resolution ERA-20C and ERA-Interim in sub-Section 6.4. Statistical estimates of 

DeCA and the proposed resampling strategy DeCAUn are outlined for the four locations, 

yielding AIC and MSE statistic measures, optima DEP values and the associated re-sampling 

factor 𝑘 −th lag from the Similarity function in Table I.1. For each sample period we also 

include the number of cluster maxima, threshold values and number of exceedances fitting the 

GPD. The four sample periods of the ERA-20C and the ERA-Interim are set from 1961 to 1985 

and from 1979 to 2003 with a 5 years step forward respectively to each data product.  
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Table I.1: Model estimations for the DeCA and DeCAUn model using the ERA-20C and ERA-Interim database 

Ny DeCA DeCAUn DeCA DeCAUn DeCA DeCAUn DeCA DeCAUn

Lowest                

AIC-MSE

MSE      

8.660

Un.1            

MSE      

8.650

MSE      

9.220

Un.2            

MSE      

9.560

MSE      

8.140

Un.1            

MSE      

16.490

AIC          

194.832

Un.1            

MSE      

47.450

DEP 60% 80% 80% 60% 65% 70% 95% 65%

Similarity (lag) 1 1 3 5

No. of clusters 480 343 339 535 145 43 83 41

u (m/sec)
11.214 

mode

11.577 

median

13.712 

mode

13.233 

mode

16.248 

mode

13.669  

25%

11.786 

mode
0

No. of Thres. 

exceedances
252 170 169 264 62 32 45 41

Lowest                 

AIC-MSE

AIC          

810.727

Un.1            

MSE      

38.670

MSE      

11.210

Un.1            

MSE      

11.550

MSE      

9.580

Un.1            

MSE      

10.990

AIC          

338.440

Un.1            

MSE      

45.080

DEP 95% 80% 60% 60% 75% 60% 95% 65%

Similarity (lag) 9 1 3 5

No. of clusters 358 67 973 973 169 82 134 61

u (m/sec)
11.560 

mode
0

11.673 

mode

11.462  

25%

16.266 

mode

16.212 

median

11.514 

mode
0

No. of Thres. 

exceedances
206 67 688 727 83 41 80 61

Lowest                  

AIC-MSE

AIC          

1342.320

Un.2            

AIC      

186.464

MSE      

9.420

Un.1            

MSE      

8.850

AIC          

307.004

Un.1            

MSE      

15.710

MSE      

10.670

Un.1            

MSE      

46.690

DEP 95% 60% 80% 60% 90% 75% 85% 65%

Similarity (lag) 12 1 3 5

No. of clusters 533 84 933 1432 130 73 238 79

u (m/sec)
11.267 

mode

14.814 

mode

13.169 

mode

12.992  

median

16.366 

mode

13.630          

25%

10.954 

mode
0

No. of Thres. 

exceedances
347 52 508 713 71 54 148 79

Lowest                   

AIC-MSE

MSE           

7.500

Un.2            

AIC      

217.820

AIC          

1779.529
Un.1            AIC      884.961

AIC          

327.028

Un.2            

MSE      

7.960

MSE           

8.060

Un.2            

AIC      

245.641

DEP 60% 80% 95% 95% 95% 70% 90% 60%

Similarity (lag) 7 2 3 6

No. of clusters 1750 138 649 325 144 88 251 74

u (m/sec)
10.961 

mode

15.477 

mode

12.871 

mode

12.983 

mode

16.108 

mode

18.192 

mean

13.053 

mode

11.073 

mode

No. of Thres. 

exceedances
1035 66 423 211 74 44 100 53

25 

Years

L18 L30

15 

Years

20 

Years

10 

Years

L5 L10

 

 

Parameter model estimates are presented in Table I.2 as a demonstration of the standard 

MLE estimator to the asymptotic distributions of extremes in samples of different size for only 

one location (54.00 N 2.25 E in the North Sea corresponding to location L18 from the ERA-

Interim database). Location L18 is also used for the threshold selection of the Runs model 

presented in Figure 3.3 for the 20 year time series (from 1979 to 1998). The 95% confidence 

intervals of the estimated parameters of the GEV and GPD distributions at each sample period 

(10,15,20, and 25 years) are derived by two methods using normal and non-parametric 

bootstrap approximations as previously discussed in sub-Section 2.4. Τhe nonparametric 

bootstrap estimator is considered to be more robust relative to the parametric, when sampling 

uncertainties appear in relation to probabilities (return periods) and high quantiles 

(design/return values) of extreme climatological and hydrological events (see Kyselý, 2008). 
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Table I.2: Parameter estimation for location L18. CI are denoted in italics 

p-value 

MK-test

Ny Model μ σ ξ μ σ ξ

BM Ref. 

(GEV)

21.202  

20.630  

21.775

1.604  

1.197  

2.010

-0.077        

-0.306                

0.152

0.365

BM        

(GEV)

20.234      

20.234       

20.234

0.398         

0.398  

0.398

4.395  

4.387  

4.403

20.234       

20.181       

23.84 8

0.398  

0.155   

4.278

4.395               

-1.564                     

5.756

0.721

Runs 

(GPD)

1.977    

1.211        

2.744

8.81E-08        

-0.294              

0.294

1.977 

1.384  

3.006

8.81E-08        

-0.304        

0.237

0.392

DeCA 

(GPD)

3.371  

2.303   

4.438

  -0.233       

-0.437             

-0.029

3.371   

2.596   

4.623

-0.233                

-0.543             

-0.096

DeCAUn.1 

(GPD)

5.824   

3.258    

8.391

 -0.375             

-0.677              

-0.073   

5.824   

4.217    

9.928

-0.375                 

-1.172             

-0.205  

0.983

BM        

(GEV)

21.516            

20.391            

22.641

1.932       

1.109   

2.755  

-0.190           

-0.636    

0.256   

21.516     

20.205    

23.215

1.932     

0.507     

3.571

-0.190            

-1.236     

5.337 

0.767

Runs 

(GPD)

3.615    

2.854   

4.376

-0.254         

-0.388         

-0.121   

3.615     

2.975     

4.563

-0.254           

-0.456              

-0.129

0.683

DeCA 

(GPD)

3.540      

2.567       

4.514

-0.266             

-0.447            

-0.085   

3.540     

2.687    

4.718

-0.266            

-0.521           

-0.112 

DeCAUn.1 

(GPD)

3.942     

2.343      

5.541

-0.283            

-0.563          

-0.003

3.942     

2.719      

6.533

-0.283            

-0.775              

-0.011

0.898

BM         

(GEV)

21.406    

20.520     

22.293

1.769     

1.125     

2.413

-0.042            

-0.409       

0.324

21.406     

20.504      

22.475 

1.769     

0.800      

2.637

-0.042           

-0.551     

1.084

0.626

Runs 

(GPD)

3.376     

2.598    

4.153

-0.245            

-0.389           

-0.101

3.376     

2.724    

4.156

-0.245           

-0.474           

-0.130

0.656

DeCA 

(GPD)

4.389     

3.119     

5.658

-0.345             

-0.535          

-0.155

4.389    

3.364    

5.838

-0.345           

-0.633             

-0.203

DeCAUn.1 

(GPD)

6.196    

4.363   

8.030

-0.427          

-0.598           

-0.256

6.196    

5.112       

10.235

-0.427           

-1.090           

-0.325

0.764

BM          

(GEV)

21.371   

20.682   

22.059

1.576    

1.087   

2.065

-0.031           

-0.302    

0.241

21.371    

20.684    

22.133

1.576    

0.849    

2.162

-0.031                

-0.341                

0.519

0.469

Runs 

(GPD)

3.388    

2.679   

4.097

-0.253            

-0.382         

-0.124

3.388     

2.825    

4.102

-0.253           

-0.490               

-0.151

0.892

DeCA 

(GPD)

4.774     

3.435    

6.114

-0.381           

-0.566          

-0.195

4.774    

3.589    

6.352

-0.381            

-0.649                

-0.217

DeCAUn.2 

(GPD)

3.653   

2.245    

5.060

-0.324            

-0.589           

-0.059

3.653     

2.456     

5.377

-0.324            

-0.701                

-0.133

0.291

25 

Years

Normal approximation
Nonparametric Bootstrap  

(Percentile)

10 

Years

20 

Years

15 

Years

 

  

 Regarding the four locations, the estimated threshold values for the standard Runs 

model is obtained from the NC-diagnostics in Table I.3, with the corresponding p-values 

associated to the Score test. The threshold exceedances are considered as the peak De-clustered 

values from the Runs model. The GPD fit of daily max wind speeds, was performed for 

threshold values in a range from 11.2 to 18.6 m/s, or 91% to 98% sample quantiles, yielding 

total number of peak exceedances between 52 and 177. 
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Table I.3: Threshold model diagnostics for the Runs model using the ERA-20C and ERA-Interim database 

 

 

Ny L5 L10 L18 L30

p-value       

(Score test)
0.458 0.984 0.995 0.213

u (m/sec)                     

u (quantile)

13.267  

92%

16.344  

95%

17.474    

97%

12.207   

94%

No. of Peak 

exceedances
65 64 56 52

p-value       

(Score test)
0.187 0.750 0.683 0.732

u (m/sec)                     

u (quantile)

13.544  

93%

15.775  

93%

15.294  

91%

11.202   

91%

No. of Peak 

exceedances
105 116 136 113

p-value       

(Score test)
0.594 0.468 0.734 0.792

u (m/sec)                     

u (quantile)

14.097  

95%

15.338  

91%

16.590   

95%

11.499  

92%

No. of Peak 

exceedances
114 177 112 138

p-value       

(Score test)
0.962 0.463 0.801 0.718

u (m/sec)                     

u (quantile)
14.094  

95%

18.565  

98%

16.544   

95%

11.480  

92%

No. of Peak 

exceedances
141 92 132 161

10 Years

15 Years

25 Years

20 Years
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