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A B S T R A C T

In the present study, through use of parallel high-resolution/accuracy im-
plicit Large-Eddy Simulation (LES), we examine the development of turbu-
lence and its impact on the vertical structure of background stratification
and sheared currents, which have been established through interaction with
rotation in the oceanic near-surface zone. Inspiration for the problem set-
up has originated from large-scale regional ocean model results and the
associated turbulent mixing parameterization. The simulations rely on a
high-accuracy hybrid modal-spectral-element/Fourier method incompress-
ible Navier-Stokes flow solver. One of our main goals is to validate this code
on a new HPC platform, and, to accurately reproduce and initialize a theoret-
ical Ekman spiral projected on a 3-dimensional domain. Through a selective
exploration of parameter space, simulations investigate the impact of stratifi-
cation on a complex Ekman-spiral-driven turbulent velocity field, including
both qualitative and quantitative metrics. The physical time of each simu-
lation is 40 minutes. The computational domain consists of a horizontally-
periodic cubic box characterized by 2pm length in every direction. Analysis
of results focuses on comparing scale-dependent turbulent processes of one
unstratified and one stratified case, based on flow structure visualization and
on monitoring the associated kinetic energy evolution. Finally, a discussion
on extrapolating the findings to the oceanic scales is conducted.



Περίληψη	

	

	

	

Στην	παρούσα	μελέτη,	μέσω	της	χρήσης	παράλληλης	υψηλής	ανάλυσης	/	ακρίβειας	implicit	

Large	Eddy	Simulation	(ILES),	εξετάζουμε	την	εξέλιξη	της	τύρβωδους	ροής	και	τον	αντίκτυπό	

της	 στην	 κατακόρυφη	 δομή	 της	 διαστρωμάτωσης	 και	 των	 ρευμάτων	 διάτμησης	 του	

περιβάλλοντος,	 τα	 οποία	 έχουν	 δημιουργηθεί	 μέσω	 αλληλεπίδρασης	 με	 την	 πλανητική	

περιστροφή	 στην	 επιφανειακή	 ωκεάνια	 ζώνη.	 Η	 έμπνευση	 για	 τη	 εγκατάσταση	 του	

προβλήματος	προήλθε	από	 τα	αποτελέσματα	που	παράγονται	 από	 τα	μεγάλης	 κλίμακας	

περιφερειακά	ωκεάνια	μοντέλα	και	από	τη	σχετιζόμενη	παραμετροποίηση	της	τυρβώδους	

ανάμιξης.	 Οι	 προσομοιώσεις	 βασίζονται	 σε	 μια	 υψηλής	 ακρίβειας	 υβριδική	 μέθοδο-

φασματικών-στοιχείων	/	Fourier,	σε	ασυμπιέστη	Navier-Stokes	ροή.	Ένας	από	τους	κύριους	

στόχους	μας	είναι	η	επικύρωση	αυτού	του	κώδικα	σε	μια	νέα	πλατφόρμα	HPC	και,	η	ακριβής	

αναπαραγωγή	και	αρχικοποίηση	μιας	θεωρητικής	σπείρας	Ekman	που	προβάλλεται	σε	έναν	

τρισδιάστατο	 τομέα.	 Μέσω	 μιας	 επιλεκτικής	 εξερεύνησης	 του	 χώρου	 παραμέτρων,	 οι	

προσομοιώσεις	διερευνούν	τον	αντίκτυπο	της	διαστρωμάτωσης	σε	ένα	σύνθετο	τυρβώδες	

πεδίο	 ταχύτητας	 που	 βασίζεται	 στη	 σπείρα	 του	 Ekman,	 συμπεριλαμβανομένων	 τόσο	

ποιοτικών	όσο	και	ποσοτικών	μετρήσεων.	Ο	φυσικός	χρόνος	κάθε	προσομοίωσης	είναι	40	

λεπτά.	Ο	υπολογιστικός	τομέας	αποτελείται	από	ένα,	περιοδικό	στην	οριζόντια	διέθυνση,	

κυβικό	 κουτί	 που	 χαρακτηρίζεται	 από	μήκος	 2π	m	σε	 κάθε	 κατεύθυνση.	Η	ανάλυση	 των	

αποτελεσμάτων	επικεντρώνεται	στη	σύγκριση	των,	εξαρτημένων	από	την	εκάστοτε	κλίμακα,	

διαδικασιών	τυρβώδους	ροής,	μίας	μη	στρωματοποιημένης	και	μιας	στρωματοποιημένης	

περίπτωσης,	με	βάση	 την	οπτικοποίηση	 της	δομής	 της	ροής	 και	 την	παρακολούθηση	 της	

σχετικής	 εξέλιξης	 της	 κινητικής	 ενέργειας.	 Τέλος,	 διεξάγεται	 συζήτηση	 σχετικά	 με	 την	

μεταφορά	των	ευρημάτων	στις	ωκεάνιες	κλίμακες.	

	

	



Big whorls have little whorls
Which feed on their velocity,

And little whorls have lesser whorls
And so on to viscosity.

—Richardson, 1922
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Part I

T H E S I S



1
I N T R O D U C T I O N

1.1 motivation

In the field of physical oceanography, the present study focuses on the in-
vestigation of the fluid mechanics in the oceanic surface stratified turbulent
Ekman layer. Turbulent motions are ubiquitous in all environmental fluids.
In an oceanic surface Ekman layer, wind forcing produces shear that gen-
erates turbulent flow, impacting the mixing of any stably stratified layers.
Vertical mixing plays an essential role in ocean dynamics, as it controls the
seasonal stratification profile and it must therefore be correctly estimated.
One main objective of ocean modeling is to understand in depth the mech-
anisms that define turbulent mixing and, in this particular context, the re-
lationship between Ekman dynamics with the variability of the mixed layer
depth. The mixed layer is an oceanic surface layer in which active turbulence
has homogenized the temperature and salinity (and therefore the density),
until the density is fairly uniform. The Mixed Layer Depth (MLD) plays a
very important role in the energetic exchanges between the ocean and the
atmosphere, as well as in associated biogeochemical processes (Reffray et al.,
2015). On one hand, large-scale ocean circulation models usually parameter-
ize the dynamics of the stratified Ekman layer, taking advantage of different
turbulent closure schemes (Pollard et al., 1973, Price et al., 1986, Price et al.,
1999, Large et al., 1994, Li et al., 2019). On the other hand, the deepening
of an Ekman-spiral-driven turbulent layer into a stratified layer has been
investigated in small-scale laboratory and high-resolution numerical stud-
ies (Zikanov et al., 2003, Pham et al., 2017). A crucial challenge for ocean
scientists is, not only to understand the fundamental physics of stratified
turbulence but also correctly parameterize it for use in large-scale circula-
tion models (Diamessis et al., 2005, Peters et al., 1988). Therefore, motivated
by both Ekman-spiral-driven turbulence, the present study focuses on in-
vestigating the entrainment of turbulence and its effect on the stratification,
through a high accuracy three-dimensional turbulence-resolving simulation,
using a spectral element method / Fourier-Galerkin multidomain incom-
pressible Navier-Stokes solver. Moreover, an opportunity arises for velocity
vertical profiles to be compared thoroughly between a Large Eddy Simula-
tion and a Reynolds Average Navier-Stokes simulation, as long as applied
the same boundary and initial conditions. The initialization set up of the LES
originates from a theoretical Ekman profile similar to the one in Zikanov et
al., 2003.
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1.2 outline

Whereas this chapter aims to provide an introduction of the present study,
in the next chapter (2), the necessary theoretical background is provided.
The Ekman dynamics localized in the upper water column and the related
turbulent motions that appear, as well as the main modelling approaches,
are introduced in separate sections. The ocean interacts with the wind cre-
ated in the atmospheric boundary layer via its surface stratified layer. Due
to the shear in the vertical, turbulence occurs and plays an important role
in mixing. The traditional method to handle turbulent mixing is through
parameterizations, as applied in the RANS large-scale ocean modeling. The
DNS/LES approach aims to fully or partially resolve turbulence.

In the third chapter, the methodology of the study is reported in detail.
The computational domain and the time discretization scheme is defined.
Moreover, the time step and the computational grid in 3-dimensional space
is generated, in respect to the CFL criterion. The governing equations are
mentioned in a non-dimensional form. An extended discussion about the
incorporation or not of the Coriolis force is conducted. Regarding the initial-
ization of the simulation process, the initial conditions and the interpolated
method used, as well as the conditions that fit the boundaries, are reported.
Last but not least, in this chapter, the necessary information that explains the
validation process of the code in the National High-Performance Computing
facility A.R.I.S, is included.

In chapter 4, the creation of the initial conditions, as well as each simula-
tion setup is included. In these sections, there are clearly noted any differ-
ences between the simulations conducted. Furthermore, chapter 4 contains
every aspect that affected each model formulation and the results of every
simulated setup are cited. The parameters of interest of each case are de-
scribed, examined, compared and evaluated.

Finally, chapter 5 consists of a summary of the study, as well as a conclu-
sion of the findings. As the present work is an early attempt to initialize an
idealized case, future work for transforming results from a large-scale model
into a large eddy simulation initial field, is strongly recommended.



2
T H E O R E T I C A L B A C K G R O U N D

2.1 oceanic turbulence

Turbulence is generally defined to be an energetic, rotational, and eddying
state of motion that results in the dispersion of material and the transfer of
momentum, heat, and solutes at rates far higher than those of molecular pro-
cesses alone. Back in 1895, Osborne Reynolds was the first to recognize that
an essential feature of turbulence is that its eddying motions transport mo-
mentum. Moreover, the dissipation of energy is one of the most important
functions of turbulence in the ocean and is most often used as a measure to
characterize it (Thorpe, 2005). Turbulent motions occur in the ocean on scales
ranging from millimeters to hundreds of kilometers. The kinetic energy of
turbulent motion is spread over a broadband of length or wavenumber scales.
Energy is injected in the large scales and transferred to smaller scales. The
smallest scales are responsible for the dissipation of energy and mixing as
well. Length scales are typically the characteristic diameter of coherent vor-
tical motions, often termed "eddies". In a stratified ocean, turbulent eddies
must raise dense fluid above less dense fluid to overturn. In this procedure,
as shown in figure 2.1, kinetic energy is converted to potential energy and
vice-versa.

Figure 2.1: Schematic of an overturning eddy on a stratified interface,
Thorpe - An introduction to turbulence

In the near-surface layer of the ocean, the main sources of turbulence are
background shear, breaking surface waves, internal waves, Kelvin - Helmholtz
instability, and convection (Soloviev, 2006). Shear is the spatial gradient of
the velocity in a direction normal to its direction. Both shear and conver-
gence (or divergence) are inherent in the three-dimensional eddying motion
of the turbulent flow.

Generally, there are two fundamental non-dimensional parameters that
are necessary to take into account when dealing with turbulence. At first,
the Reynolds number (Re) characterizes the transition from laminar flow
to turbulent. Furthermore, the Richardson number (Ri) describes the con-
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ditions necessary, but not sufficient, for a stably stratified shear flow to be
unstable, allowing small disturbances in a finite band of wavenumbers to
grow, known as Kelvin – Helmholtz instability (Thorpe, 2007). K-H insta-
bility produces overturning billows, that can occur only when the gradient
Richardson number is less than its critical value somewhere in the flow. This
is known as the Miles–Howard theorem. It is essential to highlight that, Ri
lower than the critical value does not necessarily imply the birth of turbu-
lence. Both parameters and their critical values may be formally defined as:

• Re = U·L
v , where U describes the velocity, L the length and v the

viscocity. The critical value for a flow to be considered turbulent is
Recritical � 1000.

• Ri = (N
S )

2, where N is the buoyancy frequency (N2 = � g·∂r
r·∂z ) and S

is the shear (S = dU
dz ) (assuming that the background is not varying in

x,y). The critical value is Ricritical  1
4 .

In general, in a parallel shear-driven stratified flow, 2-dimensional K-H
instability can be developed. During this process, overturning billows are
being formed. The billows grow and develop pairs of vortices that will usu-
ally produce convective rolls. At this stage, relatively small-scale internal
motions develop within the billows, their early stages being regular and spa-
tially periodic, though rapidly becoming disorganized, three-dimensional,
and turbulent. The turbulent patches, still retaining the vestiges of period-
icity of the billows, become elongated in the flow direction, resulting in a
layer of turbulence containing small-scale density fluctuations. Turbulence
eventually subsides, leaving a layer thicker than the original interfacial layer
(Thorpe, 2007). This procedure is shown in figure (2.2). This is the canonical
scenario, yet in this study, we will not investigate this progressive transition
to turbulence.

In this study, we localize our interest in the examination of turbulent
events in the upper ocean. K - H instability does not appear clearly some-
where in the flow, as we use the “bypass transition to turbulence" technique
in our simulations (Jacobs et al., 2001, Voke et al., 1995). In this way, we as-
sume that a turbulent state of motion is already present in our flow, without
following the step-by-step transition that described above.
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Figure 2.2: Evolution of a simulated K-H instability to 3D turbulence in snapshots,
Smyth et al., 2000

2.2 surface ekman layer

Upper-ocean turbulence resulting from shear and convection may be sub-
stantially influenced by the diurnal cycle of solar radiation and precipitation
events. The upper-ocean boundary layer includes the sea surface and its
wave field, the mixed layer, and the upper part of the pycnocline. The thick-
ness of this layer is not fixed and is directly affected by the atmosphere.

An Ekman layer occurs wherever there is horizontal frictional stress, such
as, in our case, along the ocean surface, where waters are subject to wind
stress (Cushman-Roisin et al., 2011). This specific phenomenon, first studied
by Ekman in a historic paper in 1905. In these layers, mean flows spiral in
direction as the surface boundary is approached, a consequence of Coriolis
and frictional forces. The Ekman layer currents form a spiral-shaped profile
in which the current vector decays and rotates to the right with increasing
depth. In the following figure, we visualize the x-z plane of u and v compo-
nents (left), as well as a three-dimensional representation of the mean hori-
zontal velocity vector through the z-axis, as presented in Cushman-Roisin.

However, reality seems to diverge a little bit from theory. There are three
main observational factors that account for substantial differences: turbu-
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Figure 2.3: Structure of the surface Ekman layer. Mean horizontal velocity pro-
file (left), Theoretical horizontal velocity vector forming Ekman spiral
(Right). From Cushman-Roisin: Introduction to GFD

lence, stratification, and horizontal gradients. The dramatic effect of strati-
fication is observed under low wind speed conditions when the turbulence
regime depends strongly on near-surface stratification, while the strong strat-
ification is also the result of reduced turbulent mixing (Soloviev, 2006). The
observed spirals differ mainly in their thickness. They have a shape that is
somewhat similar to that of a classical Ekman spiral, while the difference in
detail is that, compared to a classical Ekman spiral, the velocity decreases
with depth more rapidly than the current vector rotates to the right and
these spirals appear to be flattened or compressed in the downwind direc-
tion (Price et al., 1999)

2.3 reynolds-average navier-stokes approach

Turbulent flows can be characterized as somewhat random fluctuations of
the flow variables; rapid diffusion due to mixing; three-dimensional turbu-
lent structures due to vorticity, i.e., eddies; dissipation of energy and vor-
ticity; non-linearities (Kundu, 2012). The Reynolds averaged Navier–Stokes
(RANS) equations usually are being employed in numerical simulations that
do not resolve turbulence, they strictly parameterize it, and, aim to produce
results at a reasonable and time-efficient computational cost. The reference
equations can be defined by applying the Reynolds decomposition, such as
using in the momentum equation two velocity components: one mean profile
and one that describes a temporal, lower in order perturbation. In the RANS
momentum equation, special attention must be paid to additional terms re-
sulting from fluid velocity (Wu et al., 2019 ). In the light of the momentum
exchange within fluid layers due to turbulence, these terms can be inter-
preted as Reynolds stresses (Windt et al., 2020). The occurrence of additional
terms in the RANS momentum equations contain unknown variables and
requires additional equations to achieve closure of the system of equations.
This problem is known as the Turbulence Closure Problem. These additional
equations can be provided in the form of turbulence closure models, and
make use of additional algebraic or differential relations. The type of closure
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(algebraic or differential) and the number of auxiliary equations defines the
closure level (Hanjalić, 1994).

In large-scale ocean modeling, the turbulence issue raises the question of
how to compute accurately the associated vertical turbulent viscosity and
diffusivity (Reffray et al., 2015). Eddy coefficients are commonly used in
providing a parameterization of turbulent fluxes, with the eddy diffusion
coefficient times the gradient of the transferred quantity being equal to the
turbulent flux, i.e. the Reynolds stress. More specifically, there are many
ways of computing these eddy coefficients that are related to different tur-
bulent closure schemes. The method identified as one of the most applied
turbulence models in the literature is known as the “General Length Scale"
scheme that includes "k-e", "k-w and "Mellor-Yamada" models (Mellor et
al., 1982 ,Umlauf et al., 2005). It is also usually used the approach of "Tur-
bulence Kinetic Energy" and the "Richardson dependent" closure scheme
(Cuxart et al., 2000). For validating and calibrating these turbulence models,
the Kato–Phillips (Kato et al., 1969) laboratory experiment is classically used
(Deleersnijder et al., 2008). Regarding the applied resolution of scales, all the
different closure schemes referred to above, do not have the ability to di-
rectly recognize and resolve turbulence. As a result, the numerical approach
that someone will choose usually is guided by the scope of the study and
the associated resolution of scales needed. In this study, we aim to resolve
a great variety of turbulent scales, and, as a consequence, we will not use
RANS.

2.4 les approach

Numerical simulation of turbulence is an extremely complicated task, charac-
terized by very high numbers of degrees of freedom. When in need of high
accuracy in resolving turbulence from the point of view of computational
fluid dynamics, more complex approaches can be applied. Direct numerical
simulation (DNS) or large eddy simulation (LES) are more detailed but more
costly approaches to consider turbulence in numerical modeling. The reso-
lution of scales in both LES / DNS approaches is far better than in RANS,
where the mesh that is applied cannot recognize and resolve the turbulent
spatial scales. LES is situated somewhere between the DNS and the RANS
approach, as the larger domain eddies are directly resolved, while smaller
eddies are parameterized. More specifically, the RANS approach in the ocean
is based on statistical averaging that leads to steady, 2-dimensional equations
(where the third direction is described by hydrostatic balance), while LES is
based on local filtering, where the equations are unsteady and 3D. The fil-
tering operation on the flow variables introduces a technique that resolves
large scales of the motion and only the repercussions of the small ones needs
to be modeled. DNS tend to resolve in detail all scales bigger than molecular
scales. In the next figure (2.4), there is a representation in the physical space
of the different scales that can be directly resolved in a RANS or LES model.



2.4 les approach 9

Figure 2.4: Schematic representation of scales in physical space. Black lines repre-
sent the computational grid, while the arrows show the representation
of an eddying motion. Red lines show the lengthscale of the eddies that
each method can resolve. LES deals with scales smaller than those the
RANS can recognize. SGS model is used for even smaller scales than the
LES resolution.

As referred in the introduction, turbulent flows are characterized by vor-
tices with a wide range of spatial and temporal scales. The interaction be-
tween these different-scale vortices transfers the mean square vorticity to
higher wavenumbers as time passes, an evolution known as ‘cascade of
energy’. A crucial factor for this section is to clarify in detail the relation
between the scales of energy and wavenumbers magnitude. For this pur-
pose, the above scales in wavenumber space and their dependence of energy
content of turbulent motions, are presented here, in a homogeneous and
isotropic turbulent flow. The diagram below (figure 2.5), is a great contribu-
tion to the work of many famous scientists, such as Andrey Kolmogorov and
Geoffrey Ingram Taylor.

Figure 2.5: Representation of scales in spectral space. Energy cascade from highly
energised large structures to smaller lengthscales. From P.A. Davidson.
Turbulence: an introduction for scientists and engineers. Oxford Univer-
sity. Cut-off of the LES is located somewhere between inertial subrange
and viscocity-dependend eddies.
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Hence, in most cases, LES explicitly deals with the eddies of turbulent mo-
tion of a fluid that are most energetic. In the range of higher wavenumbers
that contain less amount of energy, there is usually a Subgrid Scale model
used for the coupling of the resolved and unresolved scales. In our study,
we make use of the Implicit Large Eddy Simulation (ILES) (Diamessis et al.,
2011). In this case, the effects of small scales that cannot be resolved directly
on the LES mesh are represented by a different approach, in contrast with
the SGS model, that was initially proposed by Boris et al., 1992. In explicit
LES, an SGS model is usually used to resolve the dissipative scales as a way
to overcome the restrictions in available computer resources. The implicit
LES approach is based on the observation that truncation errors in certain
discretizations of Navier–Stokes equations introduce numerical dissipation
with the implicit effects of the discretization qualitatively similar to the ef-
fects of the explicit SGS models in traditional LES (Diamessis et al., 2011).
Alternatively, if one uses a higher order method (e.g. spectral) the, explicitly
controlled, numerical dissipation is provided by either spectral filtering or
use of hyperviscous operator. Details of this method and its applications are
given by Fureby et al., 2002. The simulations presented herein may be viewed
as a spectral implicit LES, based on high order methods, where the stabiliza-
tion is not provided by the truncation error of the numerical discretization,
but by the spectral filter (Diamessis et al., 2011). For the purposes of this
study, a flow solver that consists of a hybrid Fourier/Spectral-Element spa-
tial discretization of the incompressible Navier-Stokes equations under the
Boussinesq approximation is employed. The code mentioned is a modified
version of the code that was originally created by Professor P.J. Diamessis
and used in the publication of "Diamessis et al., 2005". In the updated ver-
sion of the code, there is a transition to modal spectral element methods
in the vertical direction. In the next chapter, the governing equations are
presented, as well as the domain setup used.

2.5 objectives

In this section, the objectives of the research project are provided. First
of all, one of our main goals is to validate the code on a new HPC plat-
form, and, simulate an idealized case in order to gain confidence in inves-
tigating an Ekman layer that derives from the RANS simulation, in the
future. Furthermore, we attempt to accurately reproduce and initialize a
theoretical Ekman spiral projected on a 3-dimensional domain. This ideal-
ized case takes place in a small-size computational domain, and any poten-
tial to extrapolate the findings to the oceanic scales is discussed in section
(5.2). We insist on constructing the most suitable initial state, based on the
complex Ekman velocity field. Moreover, we analyze and compare the re-
sults of one unstratified and one stratified case. The analysis includes both
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qualitative and quantitative metrics. On the one hand, we visualize the ve-
locity, density, and vorticity field. On the other hand, we calculate the kinetic
energy of the mean profile, as well as of the perturbation fields. Overall, the
present study focuses on setting up and validating a simple implicit Large
Eddy Simulation, that is necessary in order to pursue our initial, broad re-
search goals (mentioned in section 5.1), in the future.



3
M E T H O D O L O G Y

3.1 governing equations

The equations governing the problem investigated are the 3-dimensional in-
compressible Navier– Stokes equations under the Boussinesq approximation
(Diamessis et al., 2011). The system of these equations for a turbulent flow
field can be written in the following form:

∂u
∂t

+
1
2
[u ·ru +r(u · u)] = Fg + Fc �

1
r0

rp0 + nr2u (3.1)

where, Fg = �g
r0

r0
k̂ , Fc = �2W ⇥ u (3.2)

r · u = 0 (3.3)

∂r0

∂t
= �r · (u(r0 + r(z))) + kr2r0 (3.4)

A right-handed coordinate system is used, where x points to the east, y
points north, and z points up. The equation (3.1) represents the Navier-
Stokes in 3 diamensions, as u is the velocity vector : u = (u, v, w). More-
over, the non-linear term in equation (3.1) is written in the skew-symmetric
form to minimize aliasing effects in the numerical solution (Boyd, 1989). In
equation (3.2), there is the gravity force, with k the normal unit vector in
the vertical direction. The Fc term represents the Coriolis force. In equation
(3.3) is the continuity equation. In equation (3.1), we use the pressure per-
turbation p0 and in equation (3.4), the density perturbation q0, from their
respective (mean) reference values. Both originate from a decomposition of
their corresponding total values, as:

p = p(x, y, z) + p0(x, y, z, t) (3.5)
r = r0 + r(z) + r0(x, y, z, t) (3.6)

Last but not least, under the Boussinesc approximation, the reference pres-
sure and density are in hydrostatic balance:

∂p
∂z

= �(r0 + r) · g (3.7)
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3.2 coriolis force

At this point, one must necessarily include a extended discussion about
the Coriolis force. The Coriolis force is equal to the product of the Corio-
lis parameter ( f ) and the horizontal velocity component. More specifically,
Fc = f · v in the x-direction, and Fc = � f · u in the y-direction. The Coriolis
parameter (or frequency, as many times referred to in the literature) varies
with latitude q ( f = 2Wsin(q), where W is the Earth’s rotation frequency and
q is the latitude).

Figure 3.1: Earth’s rotation schematic,Kundu, 2012

However, this variation is important only for phenomena having very long
time scales (several days to weeks) or very long length scales (hundreds to
thousands of kilometers). For many purposes, we can assume f to be a con-
stant, say f0 = 2Wsin(q0), where q0 is the central latitude of the region under
study (Kundu, 2012). In this study, we assume that our idealised case is
situated in the North Pacific, where the NOAA PAPA buoy lays (for com-
parison with results sampled from a RANS model, in future work). As a
consequence, we compute f0 = 1.114 · 10�4s�1.

Figure 3.2: PAPA station, located in 50°07’58.9" N 144°49’33.9"W

The Coriolis parameter plays an important role in the formation of the
surface Ekman layer. More broadly, the Coriolis parameter affects the depth
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of the Ekman spiral and layer as well (DEkman ⇠
q

Av
f , Av represents the

eddy viscocity and diffusivity parameter, vertically). However, the spatial
scale of the domain under review (⇠ 6m), as well as the temporal scales of
our study (⇠ 40min), lead us to the conclusion that in our simulations, that
have initialized with a predefined Ekman spiral, water particles do not have
the ability to feel the Coriolis effect. In this study, we include phenomena
so rapid that, after a temporal scaling in the Navier-Stokes equations there
is no reason to take its effect into account. The above conclusion is easily
explained, using another non-dimensional parameter; Rossby number.

• Ro = U
L f , where U represents the scale of the velocity, f the Coriolis

frequency and L the length scale of the phenomenon under review

Ro is an index that shows the importance of timescales between gravity
and rotation. The critical Ro value, where gravity timescale is equal to rota-
tion, is obviously Ro ⇠ 1. In our idealized case, we make use of a maximum
velocity ' 0.05 m/s in a domain length ⇠ 2p m, that results in a Ro ⇠ 100.
It is clear that gravity and the associated non-linear effects dominate over ro-
tation. As a result, the contribution of the Coriolis force is so small that can
be ignored without the simulation discussed here generating any spurious
physics.

3.3 problem configuration

The accuracy of a numerical simulation is highly contingent on the choice of
numerical discretization. The types of numerical discretizations of the time-
dependent, incompressible Navier-Stokes equations are varied and widely
formulated (Durran, 2010 ,Ferziger et al., 2020 ). Generally speaking, the
main differences among them lie in the time-discretization scheme, the spa-
tial discretization strategies and the algebraic solvers that are used. For the
purposes of this study, Fourier-Galerkin spectral discretization and Spectral
Element Methods are applied.

In general, SEM are a hybrid of Finite Element Methods and Spectral Meth-
ods. FEM use local basis functions of limited degree (1st or 2nd), whereas
SM use global basis functions of high degree. In SEM, the domain is subdi-
vided into elements (M), while the degree of the polynomial basis function
is P is sufficiently high (Boyd, 1989).

Spectral element discretization provides the most accurate numerical ap-
proximation of the governing equations for capturing a great range of scales,
while it reduces the operation count and impact of round-off error compared
to a single domain computation with the same number of grid points. The
most important advantage of the SEM is that, the elements in the vertical
direction will be arranged in order to localize resolution in areas of interest.
Moreover, SEM minimize the number of diffusion, as the smallest resolved
scales are not artificially damped. Furthermore, when one seeks for high
accuracy in complex flows, he needs to push up the Re number. SEM use
less grid points for representing with same accuracy the related flow, than
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a FEM method does. As a result, one can use SEM in order to simulate a
higher Reynolds number flow with the same computational cost, as FEM
use for a smaller Re. Last but not least, SEM tend to have minimal numerical
dispersion.

Figure 3.3: SM, FEM, SEM schematic representation and comparison. Boyd, 1989

In this study, the computational domain is a 3-dimensional volume in-
side an extended Ekman layer region. Within this volume of dimensions
Lx ⇥ Ly ⇥ Lz , the three-dimensional and time-dependent Ekman flow field
is computed. The domain is assumed to be periodic in both horizontal direc-
tions.

The computational domain is chosen to represent an oceanic cubic box
with L=6 m. In both zonal and meridional directions, a Fourier-Galerkin
spectral discretization is used. The total number of grid points in each hori-
zontal direction is chosen in such a way as to secure a resolution of less than
10 centimeters. In the vertical direction, modal spectral element methods are
applied. The domain is partitioned into M subdomains of variable height,
while within each subdomain, Legendre-Lobatto polynomials with fixed or-
der P are used. Subdomains communicate with their neighbors via a simple
patching condition. Between two elements, there is a fixed number of nodes
Q. The total number of vertical nodes in physical space is Nz = M(Q� 1)+ 1.
This amount of nodes ensures a vertical resolution finer than 10 centimeters
in the localized areas of interest, confirmed by the vulnerable-thickness ele-
ments.
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Figure 3.4: Computational domain. Cubic box characterized by L = 2p m. Dis-
cretization scheme applied on each direction is shown.

For the grid resolutions considered in this study, in conjunction with at-
taining Re values, as close as possible, of true oceanic conditions in our sim-
ulations, we are in need of a strategy that ensures stability in the numerical
solution. In our case, we apply a low-pass spectral filter on the numerical
solution. In practise, an exponential filter that is shown below, is used, in
order to provide sufficiently stable numerical solution. The use of the filter
consists of a highly advantageous way of introducing the dissipation needed
for stabilization (Hesthaven et al., 2008), which bypasses the numerical stiff-
ness associated, by using a hyperviscous operator in the vertical. The filter
transfer function is defined as:

s(k) =

8
<

:
1, if 0  k  Nc

exp[�a( k�Nc
N�Nc

)s], Nc  k  N,
(3.8)

where s is the filter order, Nc the filter lag and a = � ln em with em be-
ing the machine precision. In Legendre space, k and N represent the mode
number and total number of available modes, respectively. In Fourier space,
k and N represent the two-dimensional wavenumber vector magnitude and
the corresponding maximum value over all resolved horizontal wavenum-
bers, respectively (Diamessis et al., 2011). In the next figure (3.5), examples
of different order filters are shown. As shown in the figure, this study uses
Nc = 0.
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Figure 3.5: Exponential filter plots for different filter choices. Function is shown in
equation (3.8)

In the incompressible spectral Fourier / SEM solver presented in this
study, spectral filtering is applied in all three directions. In equation (3.8),
we choose s = 18 for the solutions in the horizontal directions, and, s = 12
for those in the vertical. For the Re under consideration, use of spectral filter-
ing is the inevitable price when confronted with the associated high-degree
of under-resolution (see next section of actual values of grid spacing). Fil-
tering should not be viewed as a waste of resolution because a significant
percentage of modes of the numerical solution are not directly affected by
the filtering procedure. The filtered modes act as a sink of both numerical
noise and energy flux from the large scales. Although their content is not
necessarily physically correct, their presence is needed to maintain the sta-
bility and spectral accuracy of the solution at the larger resolved (physical)
scales (Diamessis et al., 2005).

3.4 grid spacing & timestep selection

In both horizontal directions, the number of grid points is Nx = Ny = Nh =
128. As a result, for the domain setup discussed above (Lx = Ly = Lz =
L = 6m), Dx and Dy are both constant and equal to L/Nh. In contrast, Dz
is not constant over the whole z-axis, as the elements are placed in such a
way that secures the resolution needed to capture a wide range of turbulent
scales. In the localized areas of interest, Dz approaches a value less than one
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quarter of 1 meter. The computational timestep Dt was chosen as such that
the CFL stability criterion is obeyed in all three spatial directions for a 3rd
order stiffly stable scheme, in a similar way as applied in Diamessis et al.,
2011. The following requirements are imposed:

Dt
umax

Dx
< 0.2 (3.9)

Dt
vmax

Dy
< 0.2 (3.10)

Dt[
w
Dz

]max < 0.2 (3.11)

The time step (Dt) that is computed above in each direction, is character-
ized by an order of magnitude ' 0.1 seconds, and, is kept fixed for the whole
simulation.

3.5 initial and boundary conditions

The intrinsic sensitivity of a spectral/spectral-element scheme to any as-
sumptions on initial/boundary conditions and forcing (Boyd, 1989) has led
to a much more rigorous and careful treatment of simulation initialization
than that usually given in the literature (Diamessis et al., 2011). The initial
conditions consist of a three-dimensional velocity field, in conjunction with
a uniform in x and y direction, z dependent density profile. Following the
above discussion, the initial flow field is chosen as the superposition of a
mean velocity profile and a turbulent fluctuation field:

u(x, y, z, t) = umean(z, t) + u0(x, y, z, t) (3.12)

v(x, y, z, t) = vmean(z, t) + v0(x, y, z, t) (3.13)

w(x, y, z, t) = w0(x, y, z, t) (3.14)

The predeveloped field of the velocity perturbations is a result of the "by-
pass transition to turbulence" approach, mentioned in the previous chapter.
A variety of approaches may be found in the literature regarding the spec-
ification of the magnitude and distribution of the mean and fluctuating ve-
locity fields. In our setup, the umean and vmean components, that derive from
the same equations presented in Zikanov et al., 2003 (section 4.1 - equations
4.1 & 4.2) are responsible for the Ekman spiral formation (details of the
spiral can be found in section 2.2). The initial wmean velocity is set to zero.
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The three-dimensional fluctuating velocity field is constructed as spectrally
filtered white noise in three-dimensional Fourier space following a k�5/3 en-
ergy spectrum slope. An inverse Fourier transform is applied to convert the
noise into physical space and in the vertical, the fields are projected on the
non-uniform Lobatto–Legendre grid of each subdomain. The noise is tested
to respect the periodicity of the code at the boundaries and to secure the
stability of the numerical solution. The initial conditions were generated in
Matlab in netcdf format, and, the windowing of the noise is presented in
detail in the next chapter.

Initially, the fluctuating and mean velocity fields are uncorrelated. As a
result, the most expected scenario for the turbulent fluctuations would be to
evolve independently of the mean and decay after only a few eddy turnover
times, beyond which the mean flow decays strictly due to viscous effects.
To avoid this behavior, which is caused by the lack of correlation between
fluctuating and mean velocity fields, a preliminary ‘relaxation’ simulation
(Dommermuth et al., 2002) is run to generate a physically realistic velocity
field. During relaxation, the flow is forced to maintain constant mean and
fluctuating velocity profiles, while the spatial distribution of the turbulent
fluctuations, and thus the Reynolds stresses, is allowed to vary.

An additional preliminary simulation, a ‘transition’ run, is performed,
where mean and fluctuating velocity profiles are allowed to adjust. Dur-
ing the transition run, an initial fluctuating density field is generated by the
evolving turbulent field in an ambient density gradient (and the Brunt–Vaisala
frequency N) that are gradually ramped to the desired value to avoid re-
stratification-related transients. The whole procedure of relaxation and tran-
sition, shown in the next figure (3.6), is very similar to that applied in Di-
amessis et al., 2011.

Figure 3.6: Schematic of the stages of the simulation. Relaxation refers to the velocity
field adaptation. In transition, the density gradient is gradually injected.
Main run starts after both procedures.

The boundary conditions used in the numerical model correspond to the
description of the previously discussed computational domain. In the hori-
zontal directions, periodic boundary conditions are employed. In both top
and bottom boundaries, a free-slip non-deformable surface condition is ap-
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plied for the relaxation and transition stages. In the main code, one is able
to choose between the free slip and a constant forcing at the surface. We
choose not to use the finite stress boundary condition, due to lack of time to
investigate thoroughly some numerical instabilities that appeared. Instead,
we used free-slip boundary condition for the velocity field, at both the top
and bottom boundaries. Finally, the density perturbation is subject to zero
flux ( ∂r0

∂z = 0) at the vertical boundaries.

3.6 validation

The installation and implementation of such a code in a new HPC plat-
form has been challenging task. The setup took place in the National High-
Performance Computer A.R.I.S., as we were in need of high memory capa-
bilities and computing power. Keeping in mind that it is the first time that
Ekman dynamics will be resolved by this code, it was essential for one to be
100% confident that the code produces exactly the same results compared to
previously tested cases. This testing procedure included many benchmarks
cases. However, only the most significant of them are presented here.

The first method of verification presented here is the vortex dipole ex-
periment (Clercx et al., 2006). In this experiment, we verified that we are
able to represent in detail the well-known "Vortex Dipole" in an unstratified
2-dimensional domain, compared to the results of Clercx et al., 2006. We in-
cluded a qualitative examination of the vortex dipole development, as well
as a quantitative comparison, based on time series of kinetic energy and
enstrophy.

The second case presented here is the "DJL solitary wave", which is based
on the Dubreil-Jacotin-Long equation. The (DJL) equation is derived from
the steady, incompressible Euler equations. The result is a single, non-linear
equation for the isopycnal displacement. The initial conditions were created
in Matlab as in Dunphy et al., 2011. To solve the DJL equation, the pseu-
dospectral numerical method developed by Dunphy et al., 2011 is employed,
in a stratified 2-dimensional domain. In this experiment, we verified that the
wave maintains constant wave form, fixed propagation speed equal to theo-
retical value, and, coherent kinetic energy. Our results can be verified by the
results presented in Rivera-Rosario et al., 2020.

In our last test case, we successfully tested a stratified 3-dimensional tur-
bulent experiment. In this particular case, the mean velocity profile scaling
and the vorticity structure of a stably stratified, initially turbulent wake of
a towed sphere, in a predefined Re = 5000, was examined. Our results are
a successful representation of those presented in Diamessis et al., 2011. The
above mentioned benchmarks served as a progressive test procedure that
resulted in gaining confidence for setting up our case using the same numer-
ical solver.
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E X P E R I M E N T S A N D R E S U LT S

The simulations set-up follows a progressive procedure: initially creating the
background profiles, building the perturbations field, and following a spin-
up phase, conducting unstratified and stratified simulations. In this chapter,
the details of each simulation that took place are reported. Although there
are many approaches on how to compute Re (e.g. Pham et al., 2017), we will
use the definition mentioned in section (2.1). In every simulation we will
consider Re ' 105, calculated by the maximum velocity Vmax = 0.05 m/s
(as shown in the following section), the Ekman-spiral depth as the length
scale (⇠ 5m), and, viscosity very close to the actual oceanic value, equal to
n = 10�6 m2/sec.

4.1 background velocity profile

As discussed in section (2.2), Ekman assumed a balance between the Coriolis
force, viscous friction and the pressure gradient, adopted the approximation
of constant vertical eddy viscosity Az, and derived a solution now known
as the ‘Ekman spiral’ (figure 2.3). For the purpose of building this Ekman
spiral, we follow a similar procedure as in Zikanov et al., 2003. In the case
of a steady wind in the x-direction, the steady-state, surface Ekman velocity
profile in the open ocean is (for the northern hemisphere) :

u = V0 cos (
p

4
+

p

D
z) exp (�p

D
z) (4.1)

v = �V0 sin (
p

4
+

p

D
z) exp (�p

D
z) (4.2)

The background velocity consists of an one-dimensional, depth-dependent
profile for each u and v component, where z represents the vertical coordi-
nate. In addition, V0 =

p
2pt0/Dr0 f is the amplitude of the surface velocity,

D = p(2Az/ f )( 1
2 ) is the Ekman depth of exponential decay, t0 is the surface

shear stress, and, f is the Coriolis parameter for the PAPA station (figure
3.2). The surface shear is computed as t0 = Cdrairv2

10, where Cd = 1.41̇0�3

is the unitless drag coefficient, rhoair = 1.3 kg/m3 is the air density, and
v10 = 2 m/s is the wind speed at 10 m. This profile was initially built for a
larger domain (L ⇠ 120m and D ⇠ 80m), and then, due to the computational
limitation of the flow solver, was finally adapted to our computational do-
main (figure 3.4). In figure (4.1), the final u and v velocity profiles are shown.
In figure (4.2), the mean horizontal velocity as a function of depth, as well
as the Ekman spiral produced, are presented.
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Figure 4.1: u & v profile that form an Ekman spiral. Both values derive from equa-
tions (4.1) and (4.2) respectively.

In the next section, in order to generate the initial turbulent velocity field,
we are going to overlay an artificially predeveloped spectrally-filtered noise
field on the background velocity profile, as explained in section (3.5).

Figure 4.2: Mean horizontal velocity (u & v shown in figure (4.1) (left), and the
associated Ekman spiral (right)
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Figure 4.3: Half Gaussian versus hyperbolic tangent multiplicative factors as a func-
tion of depth.

4.2 fluctuation field

The initial perturbation field is initially conducted to be white noise, i.e. by
random values varying from �1 to 1. Moreover, this noise field is statistically
homogeneous in xy � plane. Additional details on the construction of the
turbulent fluctuations field is given in section (3.5). After creating the initial
field, we then scale these velocity perturbations in a way that they have veloc-
ities less than 10% of the mean profile magnitude, everywhere throughout
the domain. In an attempt to spatially focus the fluctuations in the vertical
scale that higher velocity magnitudes are located in the upper layer, where
the higher values of the mean profile are found, we experimented multi-
plying with two different windowing functions. Figure (4.3) shows these
two windowing functions. The orange line represents a half Gaussian curve,
where the peak of the curve lies on the surface of the domain. For the blue
line, we made use of a hyperbolic tangent function. Both factors vary from 0
to 1 (multiplied by 10�3 in order to get the appropriate velocity magnitude).
Their main difference, as shown, is that the "tanh" provides half of the do-
main with more than 90% of the higher absolute values. After testing both
approaches, we concluded that the hyperbolic tangent serves better than the
half Gaussian, as the latter produces a weaker perturbations’ field. We finally
add the perturbations field onto the mean velocity field. In figure (4.4), there
is an example of a vertical profile for each velocity component.
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Figure 4.4: 1-D Initial vertical profiles of instantaneous background and perturba-
tions sampled at x=y=L/2.

Figure 4.5: u contours in xy � plane in z = L/2 (left), and, in z = L/8 (right). We
observe a similar pattern without direction preference. Colorbar limits
are: [�6.2,�4.6] · 10�3 (left), [2.8, 4.6] · 10�3 (right)

Finally, the velocity field used for the initialization of the simulations is
shown via contour plots on horizontal and vertical planes (figures 4.5, 4.6,
4.7). As expected, each component’s xy plane structure follows a similar ran-
dom pattern. In other words, the perturbations do not show any directional
preference or adaptation to the mean profile, in the initial condition. This
behavior is highlighted in figure (4.5), where u contours in the xy � plane
are shown in two different depths.
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In addition, taking advantage of the xy uniform structure of the mean pro-
file, whose velocity values are O(10) larger than those of the perturbations,
we are able to compute a mean profile for the whole domain at any specific
time. This calculation will be very useful, in order to subtract the perturba-
tion field from the total one, in any time step needed. Moreover, in the initial
state, there are not significant differences between xz � plane and yz � plane
contour plots, as the pattern is dominated by the mean profile.

In figure (4.6), both , u and v total, and corresponding perturbations con-
tours are presented. As one may expect from the fact that we considered
wind stress applied only in the x direction, the u component is character-
ized by a more intense gradient than the v component. In figure (4.7), w
velocity contours both in the xy � plane and in the yz � plane are shown.
It is obvious that the total w velocity field is reflected to perturbations, as
confirmed by the equations (4.1) & (4.2).

Figure 4.6: utotal and uperturbation velocity contours in the xz � plane (top)
vtotal and vperturbation velocity contours in the yz � plane (bottom)
Colorbar limits are: [�0.01, 0.05] (top-left), [�0.05, 0.01] (bottom-left),
[�1, 1] · 10�3 (right)
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Figure 4.7: w contours in xy-plane(left), and in yz-plane(right).
Colorbar: [-8,8]·10�4 (left), [-1,1]·10�3 (right)

4.3 relaxation procedure

In the previous sections, we defined the initial state for the velocity, which
will be used in our simulations. Before proceeding to the main unstrati-
fied run, one preliminary simulation takes place, the relaxation part. As
discussed in detail in section (3.5) (see also figure 3.6), a relaxation proce-
dure is introduced to correlate the fluctuations field with the mean velocity
field, before the main calculation is performed. Although, this procedure is
deemed as necessary in the simulation of wakes to avoid any rapid decay
of the perturbations, described by Dommermuth et al., 2002, and, Diamessis
et al., 2011, we are not completely confident that this procedure is necessary
for the simulation of our Ekman layer. Nonetheless, following the proce-
dure used in numerical wakes experiments, we will explore this preliminary
run. In our case, we conducted two test runs for a short time period af-
ter initialization, in order to examine for any differences between using or
not using the relaxation. For this purpose, we calculated the volume inte-
gral of the perturbation kinetic energy of the whole domain, for each run
(KEPdomain =

RRR
KEpert dx dy dz). We then nondimensionalized this integral

with the volume integral of the kinetic energy value of the initial state. Both
the simulations are unstratified, where the density remains constant and the
gradient is zero over the full domain depth (r = r0 = 1026 kg/m3). The
results are shown in figure (4.8).

The total duration of the relaxation process is a very important factor for
the efficiency of this procedure. In order to ensure an appropriate duration,
we are in need of finding a characteristic time scale of the phenomenon.
For this purpose, we define a turnover time (Tt), based on a characteristic
background velocity and Ekman depth (shown in equation 4.3). The total
relaxation time should correspond to enough turnover times. We compute
Tt = 59.7 sec, while we run relaxation for 300 seconds of physical time. As a
result, the corresponding total relaxation time is Rtime ' 5.03 turnover times.

Tt =
D

|Umax|
, where |Umax| =

q
|u|2 + |v|2 (4.3)
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Figure 4.8: Kinetic Energy for two unstratified runs of 20 minutes each, with (red
line) and without (black line) relaxation procedure

In figure (4.8), the red line begins after the relaxation run, while the black
line does not include this procedure at all. We can observe that the case that
included relaxation tends to increase the perturbations’ kinetic energy after
almost 14 minutes. However, we did not test the above behavior in a long
run. Moreover, we did not have the time insist to on more tests and find
the most satisfactory duration of the relaxation for our experiment. In any
case, we will include the same relaxation of the above test in all following
simulations, and the results will be shown after the relaxation period.

4.4 unstratified results

4.4.1 Flow visualization

In this section, we are going to present the main results of the unstratified
case, initialized with the relaxation velocity field described above. The dura-
tion of the total actual production, post relaxation, is 40 minutes.

In figure (4.9), contours of the perturbations field of the u velocity in a
xy � plane after 40 minutes of simulation, are shown at 4 different depths.
These plots show that the velocity perturbations feel the effect of the mean
profile, in contrast with the initial state (figure 4.5).

Inspecting at figure (4.9), one could easily recognize that the pattern of
the perturbations shows different orientations. This is happening due to the
different directions of the mean horizontal velocity vector, to which the per-
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turbations field has adapted. Additionally, the higher the position in the
domain, where larger mean velocity values occur, the larger and more dif-
fuse the contour patterns seem to be. At this point, it is essential to clarify
that the total u on the xy� plane appears to have the exact same pattern with
the fluctuations field, multiplied by the mean horizontal velocity magnitude,
in any z. Overall, we have established confidence that the code produces
physically consistent vector after our initial set-up.

Figure 4.9: u perturbations in 4 different corresponding depths. Obvious direc-
tion preference is shown, compared to initial state (figure 4.5). Top-left
z=0.79m, Top-right z=1.57m, Bottom-left z=3.14m, Bottom-right z=5.24m
Colorbar limits are: [�4, 4] · 10�3 (Top-left), [�1.5, 1.5] · 10�3(Top-
right),[�5, 5] · 10�4(bottom-left), [�6, 6] · 10�5(bottom-right)

In the following figures, the evolution of the structure of the velocity field
will be presented. In figure (4.10), snapshots of the xy � plane contours of u
and v components, for two different time steps (t1 = 600s and t2 = 2400s),
are shown. The y coordinate of this transect is in the middle of the domain
length. On xz � plane (figure 4.10), the small-scale disturbances of the initial
condition (figure 4.6) seem to eventually disappear, while larger-scale struc-
tures with wave-like characteristics take their place, located in the depth that
the velocity gradient is larger for each component. In figure (4.11), we visu-
alize the xy � plane contours for both u and v. The vertical coordinate of
this transect is equal to 2m, where umean ' vmean, while the time chosen is
the same with the above (t1 and t2). Looking at the results qualitatively, it is
obvious that the structures appear more diffused and are characterized by
larger spatial scales over time.
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Subsequently, we will present contours of the w velocity. In figure (4.12),
the xy � plane contours are shown, for 3 different timesteps, at 2 different
depths. Furthermore, in figure (4.13), we may see both xz and yz planes,
where the third corresponding coordinate is located in the middle of the
domain in each plot. The upper snapshots show the xz � plane, while the
lower placed refer to the yz � plane. For all w0 figures, snapshots on the left
refer to 600s, while in the middle to 1200s, and on the right to 2400s, respec-
tively. In figure (4.13), we can observe that the higher w values shift towards
the surface over time. This evolution implies that, as time passes by, the ini-
tial small-scale w perturbations are concentrated in the upper layer, creating
larger-scale structures. As a result, the vertical movements possibly would
localize in the upper domain, keeping the rest of it almost still. In addition,
the maximum w value is growing by almost one order of magnitude, after
40 simulated minutes.

Figure 4.10: Contours of u in xz � plane (top) and v in xz � plane (bottom) in y=p
m. Left figures correspond to t1 = 600s, right figures to t2 = 2400s.
Colorbar min & max are: [�0.005, 0.04] (top), [�0.05, 0.005] (bottom)
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Figure 4.11: Contours of u(top) & v(bottom) (xy-plane, z=2m).
t1=600s (left), t2=2400s (right) Colorbar limits are: [-1,1]·10�2

Figure 4.12: W contours in xy-plane (z=0.79m (top), z=pm (bottom)).
Colorbar limits are [�2, 2]1̇0�4 everywhere except from (top-right),
where min & max are: [�8, 8]1̇0�4
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Figure 4.13: Contours of W in xz-plane (top), in yz-plane (bottom).
Colorbar limits are: [�20, 10] · 10�5 (left), [�2, 1.5] · 10�4 (middle),
[�6, 6] · 10�4 (right).

Similar behavior with the velocity perturbations’ evolution over time is
also found in the vorticity flow structure. Small-scaled disturbances develop
in larger-in-length structures. To be more specific, in figure (4.14), the z-
vorticity is shown (in a xy � plane) in the same 3 timesteps presented in
figure (4.12). Moreover, the visualization of the vorticity is captured at two
different depths, associated with one smaller and one larger mean horizontal
velocity value, respectively. As expected, larger structures are found in the
area driven by larger mean velocity. A remarkable observation is that in the
lower layer (z=pm), the structures seem more diffused and their maximum
absolute value decreases over time. In the upper area (z=1.57m), although
the patterns seem to follow the same diffusive behavior, the maximum abso-
lute vorticity value remains in the same order of magnitude.

Figure 4.14: Z-vorticity for z=1.57 (top), z = p (bottom). Colorbar limits are: [�1, 1] ·
10�2 (top), [�1, 1] · 10�2 (bottom-left), [�5, 5] · 10�3 (bottom-right)
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4.4.2 Quantitative results

Having now followed the development of the velocity field qualitatively, we
will proceed to quantitatively monitor the kinetic energy of the flow. Assum-
ing that the total velocity is the sum of the mean and the fluctuation field
of all 3 components (more details in section 3.5, equations 3.12 - 3.13 - 3.14),
the total velocity will be:

��!
Utotal = u · î + v · ĵ + w · k̂ ) |Utotal |2 = U2

mean + U2
pert + U2

mp (4.4)

where, U2
mean = u2

mean + v2
mean, (4.5)

U2
pert = u02 + v02 + w02, (4.6)

U2
mp = 2(umeanu0 + vmeanv0) (4.7)

The total kinetic energy per unit mass will be:

KEi =
KEtotal(i)

r
=

|Utotal |(i)2

2
) KEi = KEmean(i) + KEpert(i) + KEmp(i),

(4.8)

where we consider i = i(x, y, z) as the index of any random position in
our domain (i represents any combination of x,y and z). Therefore, the total
kinetic energy of the whole domain will be the volume integral of the KEi
as:

KE =
ZZZ

KEi dx dy dz (4.9)

We subsequently compute the mean kinetic energy value as well as the per-
turbations’ kinetic energy. The KEmp value lies in the order of 10�10, and as
a result we are justified in overlooking it in our calculations. In figure (4.15),
we show the evolution in time of the total kinetic energy in the domain, for
both the mean and perturbations, respectively. It is clear that the mean pro-
file dominates the total kinetic energy behavior. Furthermore, we observe
that the perturbations’ kinetic energy is 3 orders of magnitude smaller than
that of the mean profile. As a consequence, although the perturbations’ ki-
netic energy rises over time, this rise is too small to impact the mean profile.
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Figure 4.15: Total & mean kinetic energy (left), Mean & perturbations kinetic energy
(right)

Finally, we compute the spatial spectrum of the kinetic energy in both
horizontal directions, for different times and depths. In figure (4.16), the spa-
tial spectrum of the kinetic energy as a function of wavenumber, in the x
direction (KE(Kx) = (|û(Kx)|2 + |v̂(Kx)|2 + |ŵ(Kx)|2)/2), is shown, while
in (4.17) it is presented in the y direction. In both figures, the blue line cor-
responds to a depth equal to 0.63m, while the red line to pm. The tempo-
ral evolution is monitored through 4 different times: t = 0s t = 600s t =
1200s t = 2400s from left to right.

Figure 4.16: Total kinetic energy spectrum in x-direction. t=0s (top-left), t=600s (top-
right), t=1200s (bottom-left), t=2400s (bottom-right)
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Figure 4.17: Total kinetic energy spectrum in y-direction. t=0s (top-left), t=600s (top-
right), t=1200s (bottom-left), t=2400s (bottom-right)

4.5 stratified results

Whereas the previous section is used to monitor the behavior of the code
initialized only by our complex velocity field, in this section we add a back-
ground density profile. We choose to begin with setting up a case with an
idealized linear density gradient. The total density r (for details see section
(3.1), equation (3.6)) as a function of depth, is shown in the left side of the
figure (4.18). The Brunt-Vaisala frequency that corresponds to this profile,
is, as expected, constant and equal to N = 0.012 rad/s. In the right side of
the same figure, the Richardson number is presented as a function of z, in
logarithmic axis. This non-dimensional parameter has been calculated using
the vertical shear produced by the horizontal mean velocity, shown in figure
(4.2). As mentioned in section (2.1), it is necessary to reach a Ri less than
1
4 , for turbulence to develop and be maintained for same time. The red line
highlights this critical value, and, what is more, it gives us an approximation
of the vertical area where turbulence could develop. In a more realistic flow,
the density profile shows complexity that results in a Ri that does not nec-
essarily increase over depth. As a consequence, the fact that the turbulent
area coincides with the upper layer of the domain, is a result of the idealized
assumptions of this case.

The duration of the stratified run is the same as the unstratified one (to-
tal time = 40minutes). In the following figures, the evolution of the velocity
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Figure 4.18: (left) Density profile, x-axis limits are:[1026, 1026.1]
(right) Richardson number logarithmic profile, x-axis limits
are:[10�2, 103]

fields will be provided at 3 different times (t1 = 600s, t2 = 1200s , and,
t3 = 2400s). In figure (4.19), the evolution of w contours in both xz � plane
and yz � plane is shown, at the above mentioned times. The behavior ap-
pears similar to the corresponding of the unstratified case visualization. In
figures (4.20), (4.21) and (4.22), the evolution of each velocity component on
the xy � plane is provided. The snapshots are taken at two different depths
(z1 = L/10 m and z2 = L/2 m), where z1 refers to the area characterized by
Riinitial < Ricritial , while z2 to a Riinitial > Ricritial . Moreover, in figure (4.23)
the z-vorticity contours are shown. The patterns do not show any significant
difference, compared to the corresponding visualization of the unstratified
case. However, regarding the upper layer in t3, the maximum value is smaller
by one order of magnitude compared to the corresponding of the unstrati-
fied case.

Figure 4.19: Contours of W in xz-plane (top), in yz-plane (bottom).
Colorbar limits are: [�1, 1] · 10�4 to [�3, 3] · 10�4 (left to right).
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Figure 4.20: W contours in xy-plane (z=L/10m (top), z=L/2m (bottom).
Colorbar limits are: [�8, 6] · 10�5 to [�2, 4] · 10�4 (top - left to right),
[�1, 1] · 10�4 to [�6, 6] · 10�5 (bottom - left to right)

Figure 4.21: V contours in xy-plane (z=L/10m (top), z=L/2m (bottom).
Colorbar limits are: [�0.0375,�0.0385] (top - left to right), [0, 12] · 10�4

(bottom - left to right)

The velocity field interacts with and impacts the density field. As shown
in equation (3.6), the total density constitutes the sum of 3, independent of
each other, contributions. The first variable (r0) is constant everywhere in
the domain while the second one (r) uses a constant gradient through the
z-axis, and, what is more, r is kept frozen in every timestep. The final part
(r0) is set to zero in the initial state, while it remains free to vary during the
simulation.
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Figure 4.22: U contours in xy-plane (z=L/10m (top), z=L/2m (bottom).
Colorbar limits are: [�0.02,�0.015] (top), [�7,�5] · 10�3 (bottom)

Figure 4.23: Z-vorticity contours in xy-plane (z=L/4 (top), z=L/2 (bottom).
Colorbar limits are: [�1, 1] · 10�2 (top), [�1, 1] · 10�2 to [�5, 5] ·
10�3(bottom - left to right)

In figure (4.24), the r0 in xz � plane and in yz � plane is shown for the
same t1, t2 and t3 as above. In figure (4.25), we see the xy � plane of the den-
sity perturbation. These snapshots also refer to the same 2 different depths
(z1 and z2) mentioned above. Although this needs further analysis, the evo-
lution over time seems like there is a domain scale internal wave of varying
mean amplitude that creates these weak highs and lows. It is important to
highlight that we do not have enough data in the window [0, 2p] to examine
initial adjustment of turbulence to buoyancy.
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Figure 4.24: r0 in xz-plane (top), yz-plane (bottom).
Colorbar limits are: [0, 4] · 10�7 to [�12, 0] · 10�6 (top - left to right),
[�2.5, 1.5] · 10�7 to [�10, 6] · 10�7(bottom - left to right)

Figure 4.25: r0 in xy-plane in L/10 (top), L/2 (bottom).
Colorbar limits are: [�3, 3] · 10�7 to [�1, 1] · 10�6 (top - left to right),
[�2, 2] · 10�7 to [�5, 5] · 10�7(bottom - left to right)

Finally, in figure (4.26), the volume integral of kinetic energy of the mean
profile, as well as the perturbations’ kinetic energy, are shown and compared
with the corresponding results of the unstratified case. Due to limited time
and additional testing that is required, we cannot be confident the physical
interpretation of those timeseries. More specifically, the fact that the curve
of the kinetic energy of the mean profile in the stratified case is above the
unstratified corresponding (figure 4.26 - left), remains a mystery. We could
potentially attribute this difference to restratification effects, i.e. conversion
of potential energy to kinetic energy as isopycnals return to their equilib-
rium position. Regarding the perturbations’ kinetic energy, as expected their
value is smaller during the whole simulation, probably due to the stratifica-
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Figure 4.26: Mean-kinetic energy (left), Perturbations-kinetic energy (right). Com-
parison between unstratified (red line) and stratified case (blue line).

tion effect. However, we cannot determine the reason of the kinetic energy
growth after 20 minutes of simulation.

In an attempt to explain this growth, the integral of the kinetic energy of
the horizontal components, as well as for the vertical one, is shown in the
figure (4.27). In this plot, we may observe that all 3 components are smaller
than the corresponding of the unstratified case. Nonetheless, these results
refer to the whole domain. Although we saw previously that w tends to
concentrate in the upper layer, we did not have the time to calculate this
energy per different vertical domain subsections.

Figure 4.27: Horizontal K E perturbations (left), Vertical K E Perturbations(right).
Comparison between unstratified (dashed line) and stratified case
(solid line).
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C O N C L U S I O N A N D D I S C U S S I O N

5.1 summary & connection with project obgectives

This study has aimed to explore the development of turbulence in a strat-
ified surface oceanic Ekman velocity field, through the use of spectral Im-
plicit Large Eddy Simulations. Adopting the approach known as "bypass
transition to turbulence", we construct the initial state of a theoretical Ekman-
spiral-driven turbulent layer. Through the use of an incompressible spectral
Fourier / modal-spectral-element-method solver, we localize our interest in
the examination of turbulent events inside a spiral-shaped velocity profile,
and, we analyze and compare the results of one unstratified and one strati-
fied case. Both experiments were conducted at a predefined Reynolds num-
ber (Re ⇠ 105).

In summary, we constructed an initial state that included a mean Ekman
velocity and a fluctuations’ field. As for the latter, we created a non-uniform
and statistically homogeneous fluctuations field in the xy � plane and con-
cluded that the most appropriate way of windowing it in the vertical di-
rection is through the use of a multiplicative factor, based on a hyperbolic
tangent function (compared to the half Gaussian profile). We then shortly
tested the behavior of the code including a preliminary simulation, called
"relaxation", and, subsequently used it in the simulations that followed.

In a 40-minute physical time simulation, that was generated after an al-
most 7-hours of computational time using 128 processors, we investigated
an unstratified case. In this experiment, we observed the predefined per-
turbations’ field correlate with the mean flow, and as a consequence, the
xy � plane pattern of the velocity components to appear more stretched in
regions with larger shear. Moreover, we visualized the temporal evolution of
the small-scale perturbations and observed that their pattern appeared more
diffused and larger in length scale over time. Similar observations were made
for the z-vorticity field. Finally, we followed by quantifying the total kinetic
energy and its spatial spectrum in each horizontal direction. The integral of
the domain’s kinetic energy was calculated, both for the mean profile and
for the perturbations. It was obvious that the mean profile’s kinetic energy
decays over time, possibly as an effect of viscosity, while the perturbations
grow over time. However, this growth is 3 orders of magnitude smaller than
the mean profile’s value.

Regarding the stratified case, a 40-minute-long simulation was again con-
ducted. All velocity parameters defined in the unstratified case were kept
exactly the same, while a constant background density gradient was intro-
duced. The associated Brunt-Vaisala frequency was selected in a way to se-
cure a Richardson number less than its critical value in the upper region
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of the domain. A qualitative analysis similar to the unstratified case was
conducted. Furthermore, we visualized the density perturbations, where the
patterns in all xy, xz, yz planes seem to imply the eventual establishment
of a weak domain-scale internal wave. In addition, we compared the kinetic
energy of the stratified experiment to the corresponding unstratified results.
As expected, the perturbations’ kinetic energy is decreased, compared to
the associated behavior of the unstratified one. However, we did not have
the time to divide the domain into vertical sub-regions in order to investi-
gate thoroughly the stratified results as a function of depth. Hence, more
research in this scientific project should be conducted in the future.

At this point, a discussion about our original goals is included. We started
this study more ambitiously, aiming to use the results of a regional-scale
RANS simulation as the initial state of our ILES simulation. However, it
turned out that it was necessary to begin with a simpler, idealized case. Re-
garding the original project objectives, the chosen initial profiles are sampled
from a 1D-NEMO configuration (Nucleus for European Modelling of the
Ocean), built for the PAPA station in North Pacific and described in Reffray
et al., 2015. NEMO is generally based on the 3-D primitive equations result-
ing from Reynolds averaging of the Navier–Stokes equations and transport
equations for temperature and salinity. To focus on vertical turbulent mix-
ing, we used NEMO-1D, a feature included in NEMO, to consider only one
column of water. Although all the different closure schemes referred to in
section (2.3) were used in different runs, the results selected were derived
from the "k-e" method. Our initial plan also included an analysis of the re-
lationship between the turbulent flow field and the induced variation of the
depth of the seasonal thermocline, inside the Ekman layer region. Last but
not least, a preliminary calculation of the LES-calculated eddy diffusivity co-
efficients would complete the goals of this study. However, reality forced us
to reconsider these goals. To be more specific, we had to deal with issues con-
cerning the code setup, which, in conjunction with the limited-available time
of a masters’ thesis, led us to a more conservative study with more modest
objectives. Although the results of the NEMO model mentioned above have
been produced, we did not manage to use them as drivers in the LES as
expected.

5.2 extrapolating the current data set into the ocean

Our computational domain described in section (3.3), in reality, effectively
represents a tank-scale experiment, instead of a real oceanic region. As a
result of the limited-available time of the masters’ thesis and of some issues
concerning the numerical stability of the code, which is being updated, we
had to become more conservative in our research. Our initial goal was to
simulate an oceanic region characterized by a cubic box with a length 10
to 20 times bigger than our actual current domain size. To extrapolate the
current data set into real oceanic conditions, one needs to re-scale some of
the main non-dimensional parameters.
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First of all, the domain length would be 20 to 200 times larger, for a domain
length equal to 120m to 1200m, respectively. As a consequence, the Reynolds
number (see section 2.1) would be 10 to 1000 times larger than the currently
defined Re, if one needs velocities up to 10 times larger. These scales are an
example of the separation that exists between the real ocean and the compu-
tational laboratory simulations. It is obvious that one would need more than
1000 points in each direction (referring to 120m-based domain), in order to
capture the various length scales at an appropriate resolution/accuracy.

Additionally, for the Richardson number (see section 2.1) to remain con-
stant, in order to contain both turbulent and non-turbulent regions, one
should either reduce the density gradient or increase the vertical velocity
gradient. In our study, both the Brunt-Vaisala frequency and the velocity gra-
dient values, are chosen in such a way that secures this transition to smaller
or larger gradients, without escaping real observable oceanic conditions.

Last but not least, an area of interest more than 100 or 1000 times larger
than the present domain length, considering the same to 10 times larger max-
imum velocity magnitude, would necessitate introduction of another term in
the Navier-Stokes equations, the Coriolis force. This is clearly shown if one
tries to re-calculate the Rossby number (see section 3.2). In conclusion, all of
those re-scaling factors would practically mean more computational power
in conjunction with computational time.

5.3 future work

Regarding the future work of this research project, there are many develop-
ments that one can pursue. To begin with, more tests on finding the most
appropriate time for the relaxation procedure are necessary. As for the strat-
ified case, more tests should be performed in the field of the mean kinetic
energy and the associated smaller decrease over time, in contrast with the
corresponding unstratified one. Moreover, one should turn the top bound-
ary conditions for velocity to finite wind stress over the whole surface of
the domain. Although this step is easy to incorporate in the code, we kept
free-slip boundary conditions due to numerical instabilities that appeared
and lack of time to deal with them. As far as the time-stepping scheme is
concerned, there is an alternative option: an adaptive time-stepping scheme,
which is employed to smoothly increase the time step during the less ener-
getic buoyancy-dominated regime of the flow evolution, thereby minimizing
the cost of advancing the simulations as far as possible in time. The adaptive
time-stepping scheme is activated whenever the time step reaches the lower
or upper bound of the vertical CFL criterion and the time step is increased
or decreased. In addition, it is crucial for the oceanic research field to shift
this research region to larger domain lengths/depths (as the scales referred
to above). For a computational domain that represents at least a cubic box
of ⇠ 120m in length, the procedure described in section (5.2) must be care-
fully conducted. In these larger scales, one should calculate the characteristic
turbulent length and time scales.
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At this point, it is essential to highlight that there is more than one ap-
proach in the literature. More specifically, "Zikanov et al., 2003" define the
Turbulent Length Scale (TLS) as shown in equation (5.1), while "Pham et
al., 2017" compute the same variable as shown in equation (5.2). Both ap-
proaches use the friction velocity u⇤ shown in equation (5.3), where t is the
wind surface stress. This characteristic length scale is responsible for tur-
bulent entrainment, so it needs to be well resolved in order to obtain an
accurate entrainment law. Moreover, in "Pham et al., 2017", another impor-
tant characteristic length scale is introduced: the buoyancy length scale (BLS)
shown in equation (5.4). As the stratification increases among the cases, the
scales of the turbulent motion get smaller in the same manner as the buoy-
ancy length scale, as discussed in detail in "Pham et al., 2017". Regarding
the time scales, the non-dimensional N · t is commonly used (N is the Brunt-
Vaisala frequency). Nevertheless, the Eddy turnover time (Et) is typically
used, too (shown in equation 5.5). The added value of these characteristic
scales is that gives the reader the opportunity to monitor the development of
a turbulent event properly, and, as a result, to understand better any general
characteristics of the motion. Furthermore, it is easier for one to investigate
scale-dependent turbulent mixing processes in the surface Ekman layer by
examining flow structure visualization.

TLSZ =
U⇤
f

(5.1)

TLSPS =
U⇤p
N · f

(5.2)

U⇤ =
r

t

r0
(5.3)

BLSPS =
U⇤
N

(5.4)

Et =
L
U

(5.5)
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Finally, alongside the transition to larger domain length, one should con-
struct the initial state using the results of a RANS model or field obser-
vations. The most significant parameters that would be sampled from the
large-scale model are the density profile and the mean velocity profile. The
profiles shown in figure (5.1) are sampled from the NEMO 1D built for the
PAPA station in North Pacific (referred to in section 5.1), where the lati-
tude of the computed Coriolis is located (shown in figure 3.2). These pro-
files, in conjunction with the rest of the parameters that constitute the initial
conditions, serve both of the following goals: At first, one can use the LES-
calculated eddy diffusivity coefficients in order to enable an assessment of
the effectiveness of large-scale model parameterization. In addition, it would
be a pioneer study to use the results from a RANS model as the LES initial
state, because, that would raise the opportunity for an easy and cheap way
to find data sets to initialize LES models with less idealized assumptions
and more realistic conditions.

Figure 5.1: Velocity profiles (left), Density profile (right)
Both are sampled from RANS NEMO model
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