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Introduction

The interaction between Operator Theory and Harmonic Analysis of locally
compact groups has occupied mathematicians since the very beginning of the
theory of operator algebras. One of the most important notions connecting
the two areas is the crossed product construction for locally compact group
actions by automorphisms on von Neumann algebras, originally introduced
by Murray and von Neumann in order to construct examples of factors of
type II or III. Since then, the notion of crossed product has been extensively
studied and successfully extended to other categories such as C*-algebras.

Over the last decades, crossed products have been introduced and studied
in the case of group actions on more general categories of operator spaces,
e.g. non-selfadjoint operator algebras, ternary rings of operators, operator
systems and even general operator spaces. For more details on these topics,
the reader is referred to the work of Katsoulis and Ramsey [29], Salmi and
Skalski [44], Amini, Echterhoff and Nikpey [1], Harris and Kim [21], Ng [39],
Hamana [19], Uuye and Zacharias [56] and Crann and Neufang [12].

The need of introducing appropriate crossed product type constructions
for group actions on general operator spaces is dictated by the fact that it
is often necessary to consider more relaxed operator space structures than
von Neumann algebras or C*-algebras, in order to formulate and study sev-
eral concepts from different areas of mathematics using operator theoretic
techniques (quantization).

Motivation and objectives

This thesis concentrates on crossed products arising from locally compact
group actions on dual operator spaces by w*-continuous completely isomet-
ric isomorphisms. In this case, there are (at least) two natural, yet generally
different, kinds of crossed products. Namely, for an action α of a locally com-
pact group G on a dual operator space X, we have a Fubini crossed product
X oFα G and a spatial crossed product XoαG, such that XoαG ⊆ X oFα G.

Informally speaking, the Fubini crossed product X oFα G is the appro-
priate object representing and also generalizing concepts from Harmonic
Analysis defined by fixed point properties, e.g. (jointly) harmonic operators
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and non-commutative Poisson boundaries. On the other hand, the corre-
sponding spatial crossed product XoαG consists of the ‘tractable’ elements
in X oFα G, in the sense of admitting an explicit representation in terms of
elements of X and translation operators. A very interesting problem con-
cerning harmonic operators is to find at least sufficient conditions so that
every operator, which is harmonic with respect to a family of measures on
G, can be explicitly described using only harmonic functions (with respect
to the same family) and translation operators.

Since this problem can be reduced (as we show in Chapter 4) to whether
a certain Fubini crossed product coincides with the corresponding spatial
one, the relation between XoαG and X oFα G deserves to be studied more
thoroughly in a more general setting.

It is already known that XoαG = X oFα G holds when X is a von
Neumann algebra (Digernes-Takesaki [53, Chapter X, Corollary 1.22]) or
more generally a W*-TRO (Salmi-Skalski [44]). However, for an arbitrary
dual operator space X, the equality XoαG = X oFα G may fail even if the
action α is trivial.

On the other hand, Crann and Neufang [12] have recently proved that
if G has the approximation property (AP) of Haagerup and Kraus, then
XoαG = X oFα G holds for any dual operator space X and any G-action α
on X. They have also observed that the converse is true at least under the
assumption that the group G is inner amenable in the sense of Paterson [43]
(e.g. discrete).

The main objectives of the present dissertation can be summarized as
follows:

� Describe the relation between XoαG and X oFα G for an arbitrary
G-action α on some dual operator space X and find necessary and
sufficient conditions for the equality XoαG = X oFα G.

� Prove that the converse of the theorem of Crann and Neufang men-
tioned above remains valid for arbitrary locally compact groups (i.e.
without the assumption of inner amenability).

� Apply the general theory developed in the setting of jointly harmonic
operators.

The key idea to achieve the first of the above objectives is to extend
the main aspects of the classical duality theory for crossed products of von
Neumann algebras by actions of locally compact groups to the setting of
dual operator spaces. To this end, we shall adopt the language of comodules
over Hopf-von Neumann algebras, since this provides a natural and effective
framework for the study of Takesaki-duality (see section 3.3) in the setting
of (not necessarily abelian) locally compact groups.

As for the second objective, i.e. the characterization of groups with the
approximation property in terms of crossed products, the main idea is to



iii

prove that the approximation property for a group G can be equivalently
translated into an algebraic condition (saturation) for the class of comodules
over the group (Hopf-)von Neumann algebra L(G). This will provide us with
a link between the approximation property and the duality theory developed
for the crossed products under discussion.

Last but not least, we will prove that jointly harmonic operators arise
naturally as the Fubini crossed product of jointly harmonic functions by
translation action, whereas the harmonic operators admitting an explicit
representation in terms of jointly harmonic functions and translation oper-
ators are realized as the spatial crossed product associated with the same
action. This fact will allow us to apply our general results in order to shed
some light on the problem of representability (in the above sense) of har-
monic operators.

Structure and results

The main body of this thesis is organized in four chapters. In this section
we summarize the content and basic results of Chapters 1 to 4. For the
definitions required for the summary of each chapter presented below, the
reader is referred to the respective chapter.

Chapter 1 Here we present the necessary mathematical background con-
cerning dual operator spaces. In particular, we recall the basic properties of
Fubini and spatial tensor products of dual operator spaces as well as tensor
product maps, since they constitute the basic tools for the study of comod-
ules over Hopf-von Neumann algebras and, in particular, crossed products.
Next we give a brief discussion on the concept of stable point w*-convergence
for nets of normal completely bounded maps on a von Neumann algebra.
This concept is crucial in order to establish the connection between comod-
ules over group von Neumann algebras and the approximation property of
Haagerup and Kraus. We close this chapter with a short review on the
von Neumann algebras L∞(G) and L(G) associated with a locally compact
group G.

Chapter 2 This chapter begins by introducing the basic notions concern-
ing Hopf-von Neumann algebras and their associated comodules in the dual
operator space framework. Our attention is focused on the notions of non-
degeneracy and saturation for comodules since these two notions play a
crucial rôle in characterizing groups with the approximation property as
well as in extending the concept of duality for crossed products from the
category of von Neumann algebras to the context of dual operator spaces.

The main results of Chapter 2, concerning non-degeneracy and satura-
tion, are the following:
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Corollary 2.2.7. Let (M,∆) be a Hopf-von Neumann algebra. If every
M -comodule is non-degenerate, then every M -comodule is saturated.

Proposition 2.2.9. For a Hopf-von Neumann algebra (M,∆) the following
conditions are equivalent:

(a) Every M -comodule is saturated;

(b) For any M -comodule (X,α) and any x ∈ X, we have x ∈M∗ · x
w∗

;

(c) There exists a net {ωi} ⊆M∗, such that ωi ·x −→ x in the w*-topology
for any M -comodule X and any x ∈ X;

(d) There exists a net {ωi} ⊆ M∗, such that the net {(idM ⊗ ωi) ◦ ∆} ⊆
CBσ(M) converges in the stable point-w*-topology to the identity map
idM .

The above prepare the ground for establishing the connection between
the approximation property (AP) of Haagerup and Kraus and properties of
comodules over group von Neumann algebras. Namely we get the next

Proposition 2.3.14. For a locally compact group G the following conditions
are equivalent:

(a) G has the AP;

(b) Every L(G)-comodule is saturated;

(c) For any L(G)-comodule (Y, δ) and any y ∈ Y , we have y ∈ A(G) · yw*;

(d) There exists a net {ui}i∈I in A(G) such that for any L(G)-comodule
(Y, δ) and any y ∈ Y we have that ui · y −→ y ultraweakly;

(e) Every L(G)-comodule is non-degenerate.

Furthermore, we show that the Hopf-von Neumann algebra L∞(G) ad-
mits only non-degenerate and saturated comodules, with no further assump-
tion on the group G.

Lemma 2.3.5. Every L∞(G)-comodule is non-degenerate and saturated.
In particular, for any L∞(G)-comodule X and any x ∈ X, we have that

x ∈ L1(G) · xw∗
.

Chapter 3 We give the definitions for the Fubini and spatial crossed
products X oFα G and XoαG respectively for an L∞(G)-comodule (X,α)
[12, 19, 44, 56], as well as their ‘dual’ analogues Y nFδ G and YnδG for an
L(G)-comodule (Y, δ) [19, 44, 3].
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The spaces XoαG and XoFαG admit a natural L(G)-comodule structure
via the dual L(G)-action α̂ associated with α as well as an L(G)-bimodule
structure. Similarly, Y nFδ G and YnδG become L∞(G)-comodules via a

dual L∞(G)-action δ̂ and they are also L∞(G)-bimodules.

A first analysis of the aforementioned structure yields the two first main
results of this chapter:

Corollary 3.1.9. For every L∞(G)-comodule (X,α) the Fubini crossed
product (X oFα G, α̂) is a saturated L(G)-comodule and the spatial crossed
product (XoαG, α̂) is a non-degenerate L(G)-comodule.

Theorem 3.2.10. For every L(G)-comodule (Y, δ) we have:

Y nFδ G = YnδG.

It is worthwhile noticing that the proof of Theorem 3.2.10 relies firmly
on the fact that (Y nFδ G, δ̂) and (YnδG, δ̂) are both non-degenerate and
saturated as L∞(G)-comodules (by Lemma 2.3.5). Also, Corollary 3.1.9
suggests that if the equality X oFα G = XoαG is valid for some L∞(G)-
comodule (X,α), then (X oFα G, α̂) and (XoαG, α̂) have to be both non-
degenerate and saturated L(G)-comodules (this happens when G has the
AP; Proposition 2.3.14).

For the rest of Chapter 3, we deal with the double crossed products
associated with an L∞(G)-comodule (X,α) and an L(G)-comodule (Y, δ),
namely

� (XoαG) nα̂ G ⊆ (X oFα G) nα̂ G,

� (Y nδ G)o
δ̂
G ⊆ (Y nδ G) oF

δ̂
G,

where the symbol n can be interpreted either as nF or n thanks to Theorem
3.2.10.

Recall that, in the case of von Neumann algebra crossed products, the
original algebra can be recovered from its double crossed product at the cost
of tensoring by B(L2(G)) (Takesaki-duality). The key observation is that
this happens because the von Neumann algebra structure guarantees non-
degeneracy and saturation for W*-L(G)-comodules. In fact, it turns out
that non-degeneracy is equivalent to Takesaki-duality for spatial crossed
products, whereas saturation is equivalent to Takesaki-duality for Fubini
crossed products. This leads to the following two results, which summarize
Propositions 3.3.2, 3.3.3, 3.3.5 and 3.3.6.

Proposition. For any L∞(G)-comodule (X,α), the double crossed prod-
ucts (XoαG) nα̂ G and (X oFα G) nα̂ G are both canonically isomorphic to
X⊗B(L2(G)).
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Proposition. For any L(G)-comodule (Y, δ), there is a w*-continuous com-
plete isometry φ : Y⊗B(L2(G))→ Y⊗B(L2(G))⊗B(L2(G)), such that:

1. (Y, δ) is non-degenerate if and only if

φ
(
Y⊗B(L2(G))

)
= (Y nδ G)o

δ̂
G;

2. (Y, δ) is saturated if and only if

φ
(
Y⊗B(L2(G))

)
= (Y nδ G) oF

δ̂
G.

A first application of the above duality results yields a more transparent
image of the relation between XoαG and X oFα G for an L∞(G)-comodule
(X,α).

Corollary 3.3.7. For any L∞(G)-comodule (X,α) we have:

(i) (X oFα G) nα̂ G = (XoαG) nα̂ G;

(ii) Sat(XoαG, α̂) = Sat
(
X oFα G, α̂

)
= α̂

(
X oFα G

)
;

(iii) X oFα G = {y ∈ X⊗B(L2(G)) : A(G) · y ⊆ XoαG},
where u · y = (idX⊗B(L2(G)) ⊗ u) ◦ (idX ⊗ δG)(y) for u ∈ A(G) and

y ∈ X⊗B(L2(G)).

(iv) XoαG = spanw∗{A(G) · (X oFα G)}.
Theorem 3.3.8. Let (X,α) be an L∞(G)-comodule. Then, XoαG is the
largest non-degenerate L(G)-subcomodule of (X oFα G, α̂). Also, X oFα G is
the smallest saturated L(G)-subcomodule of (X⊗B(L2(G)), idX ⊗ δG) con-
taining XoαG. In particular, the following conditions are equivalent:

(a) X oFα G = XoαG;

(b)
(
X oFα G, α̂

)
is a non-degenerate L(G)-comodule;

(c) (XoαG, α̂) is a saturated L(G)-comodule.

As a second application of Takesaki-duality, we obtain a complete charac-
terization of locally compact groups with the approximation property (AP)
in terms of the crossed product functors.

Theorem 3.3.10. For a locally compact group G the following conditions
are equivalent:

(i) G has the AP;

(ii) (Y nδ G) oF
δ̂
G = (Y nδ G)o

δ̂
G, for any L(G)-comodule (Y, δ);

(iii) X oFα G = XoαG, for any L∞(G)-comodule (X,α);

(iv) ((Y nδG)oF
δ̂
G,
̂̂
δ) ' (Y⊗B(L2(G)), δ̃) for any L(G)-comodule (Y, δ);

(v) ((Y nδ G)o
δ̂
G,
̂̂
δ) ' (Y⊗B(L2(G)), δ̃) for any L(G)-comodule (Y, δ).
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Chapter 4 In the last chapter, we give a new perspective on the concept of
jointly harmonic operators introduced by Anoussis, Katavolos and Todorov
[5, 6].

Recall the canonical representations of the group measure algebra M(G)
and the completely bounded multiplier algebra McbA(G):

Θ: M(G)→ CB(B(L2(G))),

Θ(ν)(T ) =

∫
G

Adρs(T ) dν(s), ν ∈M(G), T ∈ B(L2(G))

and
Θ̂ : McbA(G)→ CB(B(L2(G))),

Θ̂(u)(λsf) = u(s)λsf, u ∈McbA(G), s ∈ G, f ∈ L∞(G).

For arbitrary families Λ ⊆ M(G) and Σ ⊆ McbA(G), we have the jointly
Λ-harmonic functions

H(Λ) := {f ∈ L∞(G) : Θ(µ)(f) = f for all µ ∈ Λ}

and the jointly Λ-harmonic operators

H̃(Λ) := {T ∈ B(L2(G)) : Θ(µ)(T ) = T for all µ ∈ Λ},

as well as the jointly Σ-harmonic functionals

HΣ := {T ∈ L(G) : Θ̂(σ)(T ) = T for all σ ∈ Σ}

and the jointly Σ-harmonic operators

H̃Σ := {T ∈ B(L2(G)) : Θ̂(σ)(T ) = T for all σ ∈ Σ}.

Note that the above subspaces of B(L2(G)) are not necessarily von Neu-
mann algebras. However, they are w*-closed subspaces of B(L2(G)) and
thus (concrete) dual operator spaces. Moreover, we have the obvious in-
clusions H(Λ) ⊆ H̃(Λ) and HΣ ⊆ H̃Σ . Also, note that H̃(Λ) is an L(G)-
bimodule, whereas H̃Σ is an L∞(G)-bimodule (because Θ(µ) and Θ̂(σ) are
normal bimodule maps on B(L2(G)) over L(G) and L∞(G) respectively).
Thus it is natural to ask whether the bimodules generated by H(Λ) and HΣ
are sufficient in order to describe H̃(Λ) and H̃Σ respectively, that is whether
the equalities

BimL(G)(H(Λ)) = H̃(Λ), BimL∞(G)(HΣ) = H̃Σ (R)

hold for arbitrary Λ ⊆M(G) and Σ ⊆McbA(G).
The key observation here is that H̃(Λ) coincides with ker Θ(J(Λ)), i.e.

the common kernel of the maps Θ(h) for h ∈ J(Λ), where J(Λ) = H(Λ)⊥ ⊆
L1(G) (the preannihilator of H(Λ)). Similarly, H̃Σ = ker Θ̂(JΣ) for JΣ =
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(HΣ)⊥ ⊆ A(G). Also, J(Λ) and JΣ are closed (left) ideals of L1(G) and
A(G) respectively.

We prove that there is a canonical isomorphism, preserving both the
L∞(G)-comodule and the L∞(G)-bimodule structure, such that ker Θ̂(J) '
J⊥nFδGG and BimL∞(G)(J

⊥) ' J⊥nδGG for any closed ideal J of A(G) (see
Proposition 4.3.1).

Therefore, by an immediate application of Theorem 3.2.10 we obtain the
following, which summarizes Proposition 4.3.1 and Corollary 4.3.2.

Proposition. Let G be a locally compact group. For any closed ideal J of
A(G), it holds

ker Θ̂(J) = BimL∞(G)(J
⊥) ' J⊥ nδG G.

In particular, for any family Σ ⊆McbA(G) we have

H̃Σ = BimL∞(G)(HΣ) ' HΣ nδG G.

The above extends [4, Theorem 3.2] and [5, Corollary 2.12], since our
proof (which is significantly less technical) does not assume second count-
ability of G as in [4, 5].

As a byproduct of the relations ker Θ̂(J) = BimL∞(G)(J
⊥) ' J⊥ nδG G,

we obtain a characterization of those locally compact groups G, for which
every subcomodule of L(G) satisfies a ‘weak Takesaki-duality’ (saturation
condition), in the sense that we can recover any closed ideal J ⊆ A(G) as
(L(G) ∩ BimL∞(G)(J

⊥))⊥. More precisely, we get the next

Proposition 4.3.5. Let G be a locally compact group. Then, the following
conditions are equivalent:

(a) G has Ditkin’s property at infinity, i.e. for any u ∈ A(G), it holds that

u ∈ A(G)u
‖·‖A(G)

.

(b) Every L(G)-subcomodule of (L(G), δG) is saturated.

(c) Every L(G)-subcomodule of (L(G), δG) is non-degenerate.

(d) For every closed ideal J of A(G), we have L(G)∩BimL∞(G)(J
⊥) = J⊥.

This improves [4, Lemma 4.5] and answers a question raised by the
authors in [4, Question 4.8].

Finally, we prove an analogous result (Proposition 4.3.7) for closed left
ideals J of L1(G), namely that

BimL(G)(J
⊥) ' J⊥oαGG ⊆ J

⊥ oFαG G ' ker Θ(J).

This, in combination with the results of Chapter 3, allows us to describe in
more detail the relation between BimL(G)(J

⊥) and ker Θ(J) and, in particu-

lar, the relation between BimL(G)(H(Λ)) and H̃(Λ), for a family Λ ⊆M(G),
by taking J = J(Λ).
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Proposition 4.3.8. For any closed left ideal J of L1(G), BimL(G)(J
⊥) is

the largest non-degenerate L(G)-subcomodule of
(B(L2(G)), δG) contained in ker Θ(J), i.e.

BimL(G)(J
⊥) = spanw∗{Θ̂(u)(T ) : u ∈ A(G), T ∈ ker Θ(J)}

and ker Θ(J) is the smallest saturated L(G)-subcomodule of (B(L2(G)), δG)
containing BimL(G)(J

⊥), i.e.

ker Θ(J) = {T ∈ B(L2(G)) : Θ̂(u)(T ) ∈ BimL(G)(J
⊥), ∀u ∈ A(G)}.

Thus, the following conditions are equivalent:

(a) BimL(G)(J
⊥) = ker Θ(J);

(b) (ker Θ(J), δG) is a non-degenerate L(G)-comodule, i.e.

ker Θ(J) = spanw∗{Θ̂(A(G))(ker Θ(J))};

(c) (BimL(G)(J
⊥), δG) is a saturated L(G)-comodule, i.e. if T ∈ B(L2(G))

satisfies Θ̂(u)(T ) ∈ BimL(G)(J
⊥) ∀u ∈ A(G), then T ∈ BimL(G)(J

⊥).

Note that if G has the AP, then every L(G)-comodule is saturated.
Thus BimL(G)(J

⊥) = ker Θ(J) for any left closed ideal J of L1(G) and

thus BimL(G)(H(Λ)) = H̃(Λ) for any Λ ⊆M(G).

The equality BimL(G)(J
⊥) = ker Θ(J) was originally shown by Anoussis,

Katavolos and Todorov [6] for the case where G is either abelian or compact
or weakly amenable discrete and for arbitrary locally compact groups with
the AP by Crann and Neufang [12].

The above analysis of the relation between BimL(G)(J
⊥) and ker Θ(J)

allows us now to introduce a condition on G, a priori weaker than the
AP, which also guarantees the validity of BimL(G)(J

⊥) = ker Θ(J) and

BimL(G)(H(Λ)) = H̃(Λ).

Corollary 4.3.9. If every operator T ∈ B(L2(G)) satisfies

T ∈ BimL(G){Θ̂(u)(T ) : u ∈ A(G)}, (1)

then ker Θ(J) = BimL(G)(J
⊥) for any closed left ideal J of L1(G). In par-

ticular, if condition (1) is satisfied for all T ∈ B(L2(G)), then H̃(Λ) =
BimL(G)(H(Λ)) for any family Λ ⊆M(G).

Note that condition (1) is a priori much weaker than the AP. Indeed,
the AP implies that there is a net {ui} ⊆ A(G) such that

Θ̂(ui)(T ) −→ T ultraweakly for all T ∈ B(L2(G))
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and the net {ui} is independent of the choice of the operator T ∈ B(L2(G)).
On the other hand, condition (1) means that an operator T ∈ B(L2(G)) can
be approximated in the ultraweak topology by linear combinations of the
form

n∑
j=1

xjΘ̂(uj)(T )yj , with uj ∈ A(G), xj , yj ∈ L(G),

where now the choice of the functions uj and the translation operators xj
and yj may depend on the choice of that particular T .

In fact, to the author’s knowledge, it is unknown whether there exist
groups failing condition (1).

Some of the main results of Chapters 2, 3 and 4 appear in the following
works of the author:

1. D. Andreou, Crossed products of dual operator spaces by locally com-
pact groups, Studia Mathematica 258 (2021), no. 3, 241-267.

2. D. Andreou, Crossed products of dual operator spaces and a char-
acterization of groups with the approximation property, (submitted)
arXiv.org:2004.07169 (2020)
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Περίληψη

Στην παρούσα διατριβή ασχολούμαστε με σταυρωτά γινόμενα που προ-

κύπτουν από δράσεις τοπικά συμπαγών ομάδων σε δυϊκούς χώρους τελεστών

μέσω w*-συνεχών πλήρως ισομετρικών ισομορφισμών. Σε αυτήν την περίπτω-

ση, υπάρχουν (τουλάχιστον) δύο φυσιολογικά, αν και γενικά διαφορετικά, είδη

σταυρωτών γινομένων. Ειδικότερα, για μια δράση α μιας τοπικά συμπαγούς

ομάδας G σε ένα δυϊκό χώρο τελεστών X, ορίζεται ένα σταυρωτό γινόμενο

Fubini X oFα G και ένα χωρικό (spatial) σταυρωτό γινόμενο XoαG, τέτοια

ώστε XoαG ⊆ X oFα G.

΄Ατυπα μιλώντας, το σταυρωτό γινόμενο Fubini XoFα G είναι το κατάλληλο

αντικείμενο για την αναπαράσταση, αλλά και γενίκευση, εννοιών από την Αρ-

μονική Ανάλυση που ορίζονται μέσω ιδιοτήτων σταθερού σημείου, όπως, για

παράδειγμα, οι από κοινού αρμονικοί τελεστές (jointly harmonic operators) και

τα μη μεταθετικά σύνορα Poisson. Εξ άλλου, το αντίστοιχο χωρικό σταυρωτό

γινόμενο XoαG αποτελείται από τα ανιχνεύσιμα στοιχεία του XoFα G, δηλαδή

εκείνα που μπορούν να αναπαρασταθούν χρησιμοποιώντας μόνο στοιχεία του

X και τελεστές μετατόπισης.

΄Ενα εξαιρετικά ενδιαφέρον πρόβλημα αναφορικά με τους αρμονικούς τελε-

στές είναι η εύρεση τουλάχιστον ικανών συνθηκών, προκειμένου κάθε αρμονι-

κός τελεστής ως προς μια οικογένεια μέτρων στην G να μπορεί να αναπαρα-

σταθεί χρησιμοποιώντας μόνον αρμονικές συναρτήσεις της G (ως προς την ίδια

οικογένεια) και τελεστές μετατόπισης. Εφ’ όσον, λοιπόν, αυτό το πρόβλημα

ανάγεται (όπως δείχνουμε στο κεφάλαιο 4) στο κατά πόσον ένα συγκεκριμένο

σταυρωτό γινόμενο Fubini συμπίπτει με το αντίστοιχο χωρικό σταυρωτό γι-

νόμενο, η σχέση μεταξύ των σταυρωτών γινομένων XoαG και X oFα G αξίζει

να μελετηθεί πιο διεξοδικά σε ένα γενικότερο πλαίσιο.

Κεφάλαιο 1: Εισαγωγικά

Στην ενότητα 1.1 παρουσιάζονται επιλεγμένα θέματα από τα [7, 14, 52] που

αφορούν βασικές έννοιες της Θεωρίας Χώρων και Αλγεβρών Τελεστών. Στην

επόμενη ενότητα 1.2, έχοντας ως αναφορές τις [7, 14, 19, 20, 30, 31, 52, 55],

συνοψίζουμε τις βασικές ιδιότητες του χωρικού (spatial) τανυστικού γινομένου

και του τανυστικού γινομένου Fubini για δυϊκούς χώρους τελεστών, τις οποίες

θα χρησιμοποιήσουμε στα επόμενα. Η ενότητα 1.3 αποτελεί μια σύντομη, αλλά

επαρκή για τον σκοπό της παρούσας διατριβής, παρουσίαση της έννοιας της

stable point-w*-σύγκλισης για πλήρως φραγμένες w*-συνεχείς απεικονίσεις

αλγεβρών von Neumann [13, 22, 32]. Τέλος, στην ενότητα 1.4, συνοψίζονται οι

βασικές ιδιότητες τοπικά συμπαγών ομάδων, καθώς και των βασικών αλγεβρών

von Neumann και Banach που ορίζονται από μια τοπικά συμπαγή ομάδα [15,

16, 23, 46, 47].
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Κεφάλαιο 2: Γενική θεωρία συμπροτύπων

Σε αυτό το κεφάλαιο, ακολουθώντας κυρίως την ορολογία του [19], ασχολο-

ύμαστε με δυϊκούς χώρους τελεστών που είναι συμπρότυπα (comodules) πάνω

από άλγεβρες Hopf-von Neumann (οι βασικοί ορισμοί δίνονται στην ενότητα

2.1). Στην ενότητα 2.2, ορίζουμε τις έννοιες κορεσμένο (saturated) και μη

εκφυλισμένο (non-degenerate) για συμπρότυπα. Αφ’ ενός, δείχνουμε ότι αν

κάθε συμπρότυπο μιας άλγεβρας Hopf-von Neumann M είναι μη εκφυλισμένο,

τότε κάθε συμπρότυπο της M είναι κορεσμένο. Αφ’ ετέρου, αποδεικνύουμε ότι

μια άλγεβρα Hopf-von Neumann M διαθέτει μόνο κορεσμένα συμπρότυπα αν

και μόνον αν η ταυτοτική απεικόνιση idM προσεγγίζεται στην τοπολογία της

stable point-w*-σύγκλισης από απεικονίσεις της μορφής (idM ⊗ ω) ◦∆, όπου

ω ∈M∗ και ∆ το συνγινόμενο (comultiplication) της M .

Στην ενότητα 2.3, για μια τοπικά συμπαγή ομάδα G, περιγράφουμε την

κανονική δομή Hopf-von Neumann των αλγεβρών L∞(G) και L(G) [46, 49].

Κατόπιν, αποδεικνύουμε ότι κάθε L∞(G)-συμπρότυπο είναι ταυτόχρονα κορε-

σμένο και μη εκφυλισμένο. Επί πλέον, δείχνουμε ότι κάθε L(G)-συμπρότυπο
είναι κορεσμένο αν και μόνον αν κάθε L(G)-συμπρότυπο είναι μη εκφυλισμένο

αν και μόνον αν η G έχει την προσεγγιστική ιδιότητα (AP) κατά Haagerup-
Kraus [22].

Κεφάλαιο 3: Σταυρωτά γινόμενα

Σε αυτό το κεφάλαιο θεωρούμε σταυρωτά γινόμενα δυϊκών χώρων τελεστών.

΄Εστω ένα L∞(G)-συμπρότυπο (X,α) και ένα L(G)-συμπρότυπο (Y, δ). Τα

σταυρωτά γινόμενα Fubini XoFα G και Y nFδ G ορίζονται ως τα σταθερά σημεία

κάποιων καταλλήλων δράσεων, ενώ τα αντίστοιχα χωρικά σταυρωτά γινόμενα

XoαG και YnδG ορίζονται, το μεν πρώτο ως το w*-κλειστό L(G)-διπρότυπο
που παράγεται από το α(X), το δε δεύτερο ως το w*-κλειστό L∞(G)-διπρότυπο
που παράγεται από το δ(Y ). Επίσης, τα μεν XoαG και X oFα G αποκτούν

δομή L(G)-συμπροτύπου μέσω της δυϊκής δράσης α̂, τα δε YnδG και Y nFδ G
αποκτούν δομή L∞(G)-συμπροτύπου μέσω της δυϊκής δράσης δ̂.

Η βασική μας ιδέα είναι ότι το X oFα G είναι το ελάχιστο κορεσμένο L(G)-
συμπρότυπο που περιέχει το XoαG, ενώ το XoαG είναι το μέγιστο μη εκφυλι-

σμένο L(G)-συμπρότυπο που περιέχεται στο XoFα G. ΄Οπως αποδεικνύουμε, η

ίδια αρχή ισχύει και για τα L∞(G)-συμπρότυπα YnδG και Y nFδ G και επομένως

η ισότητα YnδG = Y nFδ G είναι πάντα αληθής, αφού κάθε L∞(G)-συμπρότυπο
είναι πάντοτε κορεσμένο και μη εκφυλισμένο.

Στην συνέχεια, δείχνουμε ότι μια τοπικά συμπαγής ομάδα G έχει την προ-

σεγγιστική ιδιότητα (AP) των Haagerup-Kraus αν και μόνον αν XoαG =
X oFα G για κάθε L∞(G)-συμπρότυπο (X,α). Η μια κατεύθυνση (ευθύ), που

αποδείχθηκε αρχικά από τους Crann και Neufang [12] χρησιμοποιώντας αρκε-

τά τεχνικά επιχειρήματα, προκύπτει άμεσα από τα αποτελέσματα που έχουμε

αναπτύξει μέχρι στιγμής. Για την αντίστροφη κατεύθυνση, το βασικό εργαλείο



xiii

που χρησιμοποιούμε είναι το εξής: για ένα L(G)-συμπρότυπο (Y, δ), έχουμε

(Y nδ G)o
δ̂
G ' Y⊗B(L2(G)) αν και μόνον αν το Y είναι μη εκφυλισμένο,

ενώ (Y nδ G) oF
δ̂
G ' Y⊗B(L2(G)) αν και μόνον αν το Y είναι κορεσμένο.

Επομένως, αν XoαG = X oFα G για κάθε L∞(G)-συμπρότυπο (X,α), τότε

(Y nδ G) oF
δ̂
G = (Y nδ G)o

δ̂
G για κάθε L(G)-συμπρότυπο (Y, δ). Αυτό

σημαίνει ότι κάθε κορεσμένο L(G)-συμπρότυπο είναι και μη εκφυλισμένο, το

οποίο, όπως δείχνουμε με ένα απλό επιχείρημα, συνεπάγεται ότι κάθε L(G)-
συμπρότυπο είναι μη εκφυλισμένο, δηλαδή, ότι η G έχει την προσεγγιστική

ιδιότητα (AP).

Κεφάλαιο 4: Εφαρμογές στην Αρμονική Ανάλυση

Στο τελευταίο κεφάλαιο, αποδεικνύουμε ότι οι χώροι των από κοινού αρμο-

νικών τελεστών H̃(Λ) και H̃Σ [5, 6] για αυθαίρετα υποσύνολα Λ ⊆ M(G)
και Σ ⊆ McbA(G) ταυτίζονται αντίστοιχα με τα σταυρωτά γινόμενα (Fubini)
H̃(Λ) ' H(Λ)oFαG G και H̃Σ ' HΣ nFδG G, όπου H(Λ) οι Λ-αρμονικές συναρ-

τήσεις στην L∞(G) και HΣ τα Σ-αρμονικά συναρτησοειδή στην L(G). Ταυ-

τόχρονα, μέσω των ίδιων ισομορφισμών έχουμε H(Λ)oαGG ' BimL(G)(H(Λ))
και HΣnδGG ' BimL∞(G)(HΣ).

Σαν εφαρμογή των παραπάνω γενικεύουμε αποτελέσματα των [4, 5] για

αυθαίρετες (όχι απαραιτήτως δεύτερες αριθμήσιμες) τοπικά συμπαγείς ομάδες.

Επίσης, απαντάμε στο εξής ερώτημα που έθεσαν οι Ανούσης, Κατάβολος και

Todorov στο [4]: για ποιες ομάδες G, ισχύει L(G) ∩ BimL∞(G)(J
⊥) = J⊥

για κάθε κλειστό ιδεώδες J της A(G); Τέλος, βρίσκουμε συνθήκες, a priori
ασθενέστερες της προσεγγιστικής ιδιότητας (AP) των Haagerup και Kraus,
οι οποίες εξασφαλίζουν ότι η ισότητα H̃(Λ) = BimL(G)(H(Λ)) θα ισχύει για

κάθε Λ ⊆M(G), γενικεύοντας αντίστοιχα αποτελέσματα των [6, 12].
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Chapter 1

Preliminaries

1.1 Operator spaces

We begin by presenting some basic elements and notions from Operator
Space Theory and von Neumann Algebra Theory. The proofs of the results
stated in this section have been omitted since the topics selected here can
be found in many books such as [7, 14, 52].

For Hilbert spaces H and K, we denote by B(K,H) the space of bounded
operators from K to H. We also write B(H) for B(H,H).

We make the following notational convention. We denote the identity
map on X by idX (omitting the subscript X when implied by the context).
Also, we write 1M for the unit element of an algebra M (again omitting the
subscript if it is clear). In the special case M = B(H) for a Hilbert space
H, we write 1H := idH = 1B(H).

For positive integers m and n and a vector space V , we denote by
Mm,n(V ) the m × n matrices with entries in V . Also, we write Mn(V ) :=
Mn,n(V ) and Mm,n := Mm,n(C).

Suppose that X and Y are vector spaces and that u : X → Y is a linear
map. For a positive integer n, we write un for the associated map

un : Mn(X)→Mn(Y ) : [xij ] 7→ [u(xij)].

This may also be thought of as the map idMn ⊗ u on the algebraic tensor
product Mn ⊗X. Similarly one may define um,n : Mm,n(X)→Mm,n(Y ). If
each of the matrix spaces Mn(X) and Mn(Y ) has a given norm ‖ · ‖n and if
un is an isometry for all n ∈ N, then we say that u is completely isometric,
or is a complete isometry. Similarly, u is completely contractive if each un is
a contraction. A map u is completely bounded if

‖u‖cb := sup{‖[u(xij)]‖n : ‖[xij ]‖n ≤ 1,∀n ∈ N} <∞.

Compositions of completely bounded maps are completely bounded, and

1
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one has the expected relation

‖u ◦ v‖cb ≤ ‖u‖cb‖v‖cb.

If u : X → Y is a completely bounded linear bijection, and if its inverse is
completely bounded too, then we say that u is a complete isomorphism. In
this case, we say that X and Y are completely isomorphic.

If m,n ∈ N, and K,H are Hilbert spaces, then Mm,n(B(K,H)) inherits
a norm ‖ · ‖m,n via the natural algebraic isomorphism

Mm,n(B(K,H)) ' B(K(n), H(m))

which becomes an isometry. Recall that H(m) is the Hilbert space direct
sum of m copies of H.

A concrete operator space is a norm closed linear subspace X of B(K,H),
for Hilbert spaces H, K (since B(K,H) ⊆ B(H⊕K) it is enough to consider
the case H = K). An abstract operator space is a pair (X, {‖ · ‖n}n≥1),
consisting of a vector space X, and a norm on Mn(X) for all n ∈ N, such
that there exists a linear complete isometry u : X → B(K,H) for some
Hilbert spaces H and K. In this case we call the sequence {‖ · ‖n}n≥1 an
operator space structure on the vector space X. An operator space structure
on a normed space (X, ‖ · ‖) means a sequence of matrix norms as above,
but with ‖ · ‖ = ‖ · ‖1.

Clearly subspaces of operator spaces are again operator spaces. We often
identify two operator spaces if they are completely isometrically isomorphic.

Operator space structures on vector spaces can be abstractly character-
ized by Ruan’s representation theorem.

Theorem 1.1.1 (Ruan). Suppose that X is a vector space, and that for
each n ∈ N we are given a norm ‖ · ‖n on Mn(X). Then X is linearly
completely isometrically isomorphic to a linear subspace of B(H), for some
Hilbert space H if and only if the following conditions hold:

(R1) ‖αxβ‖n ≤ ‖α‖‖x‖n‖β‖ for all n ∈ N and all α, β ∈ Mn and x ∈
Mn(X);

(R2) For all x ∈Mm(X) and y ∈Mn(X), we have∥∥∥∥[ x 0
0 y

]∥∥∥∥
m+n

= max{‖x‖m, ‖y‖n}.

Conditions (R1) and (R2) are often called Ruan’s axioms.

If X, Y are operator spaces, then the space CB(X,Y ) of completely
bounded linear maps from X to Y , is also an operator space, with matrix
norms determined via the canonical isomorphism

Mn(CB(X,Y )) ' CB(X,Mn(Y )).
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Equivalently, if [uij ] ∈Mn(CB(X,Y )), then

‖[uij ]‖n = sup{‖[uij(xkl)]‖nm : [xkl] ∈Mm(X), ‖[xkl]‖ ≤ 1, m ∈ N} (1.1)

where the matrix [uij(xkl)] is indexed on rows by i and k and on columns
by j and l. Applying the above with n replaced by nN , to the space of
matrices MN (Mn(CB(X,Y ))) = MnN (CB(X,Y )), yields

Mn(CB(X,Y )) ' CB(X,Mn(Y )) (1.2)

completely isometrically.
One can verify that the norms (1.1) define an operator space structure

on CB(X,Y ) by a direct application of Ruan’s theorem.

1.1.1 Dual operator spaces

In the special case when Y = C, for any operator space X, we obtain
an operator space structure on X∗ = CB(X,C). The latter space equals
B(X,C) isometrically since any continuous functional φ on an operator space
X is completely bounded with ‖φ‖ = ‖φ‖cb (see e.g. [7, 1.2.6]). We call X∗,
viewed as an operator space in this way, the operator space dual of X. By
(1.2) we have

Mn(X∗) ' CB(X,Mn)

completely isometrically.
An operator space Y is said to be a dual operator space if Y is completely

isometrically isomorphic to the operator space dual X∗ of an operator space
X. We also say that X is an operator space predual of Y and we write X as
Y∗.

If H is a Hilbert space then the space T (H) of trace class operators on
H, i.e. the space of all T ∈ B(H) satisfying

‖T‖1 := tr|T | <∞

is a Banach space with respect to the trace class norm ‖·‖1. The trace tr is a
contractive functional on T (H), and via the dual pairing (S, T ) 7→ tr(ST ) it
is well-known that T (H)∗ ' B(H) isometrically. In fact, regarding T (H) as
an operator space with the operator space structure it inherits as a subspace
of B(H)∗, the latter isomorphism is completely isometric.

From the above it is clear that the product on B(H) is separately w*-
continuous. That is, if Si −→ S in the w*-topology on B(H), then SiT −→
ST and TSi −→ TS in the w*-topology too. The w*-topology on B(H) is
also called the σ-weak topology or the ultraweak topology . A linear functional
on B(H) is σ-weakly continuous if and only if it is of the form

T 7→
∞∑
k=1

〈Tξk|ηk〉
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for ξk, ηk ∈ H with
∑∞

k=1 ‖ξk‖2 and
∑∞

k=1 ‖ηk‖2 finite.

So, we can identify B(H)∗ with the σ -weakly continuous functionals on
B(H).

The class of w*-closed subspaces of B(H) for a Hilbert space H coincides
essentially with the class of dual operator spaces. More precisely we have

Proposition 1.1.2. Every w*-closed linear subspace of B(H) is a dual op-
erator space. Conversely, any dual operator space is completely isometrically
isomorphic, via a w*-w*-homeomorphism, to a w*-closed subspace of B(H),
for some Hilbert space H.

For this reason, in the sequel, the term ‘dual operator space’ will refer to
a w*-closed subspace of B(H) for some Hilbert space H since the properties
that we are mainly interested in are independent of the choice of the Hilbert
space H.

Also, for a w*-closed subspace X of B(H) an operator space predual X∗
(not necessarily unique) is the space of all σ-weakly continuous functionals
on X.

Remark 1.1.3. By appealing to the Krein-Smulian theorem, one may see
that if u : X → Y is a w*-continuous isometry between dual Banach spaces
X and Y , then u has w*-closed range and it is a w*-w*-homeomorphism
from X onto u(X).

Therefore, if X and Y are in addition dual operator spaces and u : X →
Y is a w*-continuous complete isometry, then u(X) is a dual operator space
(completely isometrically isomorphic and w*-w*-homeomorphic to X).

1.1.2 Von Neumann algebras

Let H be a Hilbert space. For a subset M of B(H) we denote by M ′ the
commutant of M , that is the set

M ′ := {T ∈ B(H) : TS = ST ∀S ∈M}.

We also denote by M ′′ the commutant (M ′)′ of M ′. It is clear from the
definition that M ⊆M ′′.

Moreover, one can see that M ′ is always a subalgebra of B(H) which
contains the identity operator 1H . Furthermore, from the fact that the
multiplication is separately w*-continuous it follows that M ′ is also a w*-
closed subalgebra of B(H).

If M is, in addition, selfadjoint, i.e. T ∗ ∈M whenever T ∈M , then M ′

is selfadjoint too.

A unital selfadjoint subalgebra M of B(H), for a Hilbert space H, is
called a von Neumann algebra (acting on H) if M = M ′′.
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Since commutants are w*-closed, any von Neumann algebra is w*-closed
and thus a dual operator space. The converse is also true for a unital self-
adjoint subalgebra of B(H); that is the well known von Neumann’s double
commutant theorem.

Theorem 1.1.4 (von Neumann). If M is a selfadjoint unital subalgebra of
B(H) for a Hilbert space H, then

M ′′ = M
w∗
.

Thus the following conditions are equivalent:

(i) M is a von Neumann algebra, i.e. M = M ′′;

(ii) M is w*-closed in B(H).

1.2 Tensor products

In this section we discuss about the Fubini and spatial tensor product of
(dual) operator spaces as well as tensor product maps. These are necessary
tools in order to study crossed products of group actions on operator spaces.

For more details and the proofs of the results stated below, the reader
is referred to [7, 14, 19, 20, 30, 31, 52, 55].

For any Hilbert spaces H and K, there exists a unique inner product
〈·|·〉 on the algebraic tensor product H �K of H and K, such that for all
ξ1, ξ2 ∈ H and η1, η2 ∈ K we have

〈ξ1 ⊗ η1|ξ2 ⊗ η2〉 = 〈ξ1|ξ2〉〈η1|η2〉.

We denote by H ⊗K the Hilbert space tensor product of H and K, that is
the completion of the algebraic tensor product H �K with respect to the
above inner product.

Also, for any operators T1 ∈ B(H) and T2 ∈ B(K) there is a unique
bounded operator T0 ∈ B(H ⊗K), such that

(T0)(ξ ⊗ η) = (T1ξ)⊗ (T2η), ξ ∈ H, η ∈ K.

We denote the operator T0 by T1 ⊗ T2.
Let X and Y be respectively w*-closed subspaces of B(H) and B(K).

The spatial tensor product of X and Y denoted by X⊗Y is defined as the
w*-closed subspace of B(H ⊗K) spanned by the operators x⊗ y for x ∈ X
and y ∈ Y , that is

X⊗Y := spanw∗{x⊗ y : x ∈ X, y ∈ Y } ⊆ B(H ⊗K).

In the special case when X = B(H) and Y = B(K), we have

B(H)⊗B(K) = B(H ⊗K).
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This follows from von Neumann’s double commutant theorem and Tomita’s
commutation theorem for tensor products of von Neumann algebras; see for
example [52, Chapter IV, Proposition 1.6 and Theorem 5.9].

Theorem 1.2.1 (Tomita). For any von Neumann algebras M and N we
have

(M⊗N)′ = M ′⊗N ′.

For ultraweakly continuous functionals φ ∈ B(H)∗ and ψ ∈ B(K)∗ the
linear mappings

φ⊗ idB(K) : B(H)⊗B(K)→ B(K) : a⊗ b 7→ φ(a)b

and
idB(H) ⊗ ψ : B(H)⊗B(K)→ B(H) : a⊗ b 7→ ψ(b)a

have unique ultraweakly continuous extensions to B(H ⊗K) (see e.g. [14,
Lemma 7.2.2]) which we denote also by φ⊗ idB(K) and idB(H)⊗ψ. Following
Tomiyama [55], we call φ⊗ idB(K) the right slice mapping induced by φ and
idB(H) ⊗ ψ the left slice mapping induced by ψ.

We denote by φ ⊗ ψ each of the compositions φ ◦ (idB(H) ⊗ ψ) and
ψ ◦ (φ ⊗ idB(K)) since they clearly coincide (because they coincide on the
elements of the form a⊗ b whose linear span is w*-dense in B(H ⊗K)).

The Fubini tensor product of X and Y is defined by

X⊗FY := {T ∈ B(H ⊗K) : (idB(H) ⊗ ψ)(T ) ∈ X,
(φ⊗ idB(K))(T ) ∈ Y, ∀ψ ∈ B(K)∗, ∀φ ∈ B(H)∗}.

It is obvious from the definitions that, for any dual operator spaces X
and Y , we have

X⊗Y ⊆ X⊗FY,

but the equality X⊗Y = X⊗FY is not always valid. For example, if H is an
infinite dimensional Hilbert space, then there exists a dual operator space
X such that X⊗B(H)∗∗ 6= X⊗FB(H)∗∗ [31].

However, it was proved by Tomiyama [55, Theorem 2.1] that for any von
Neumann algebras M and N we have

M⊗N = M⊗FN.

This is in fact equivalent to Tomita’s commutation theorem.
Recall that a von Neumann algebra M ⊆ B(H) is injective if there exists

a norm one projection from B(H) onto M (see e.g. [54, Chapter XV, §1,
Definition 1.2, Corollary 1.3]). It was shown by Kraus [30, Theorem 1.9]
that if M is an injective von Neumann algebra, in particular, if M = B(K)
for a Hilbert space K or M is abelian, then X⊗M = X⊗FM for any dual
operator space X.
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Note also that from the definition of Fubini tensor product it follows
easily that for w*-closed subspaces Xi ⊆ B(H) and Yi ⊆ B(K), i = 1, 2, we
have

(X1⊗FY1) ∩ (X2⊗FY2) = (X1 ∩X2)⊗F (Y1 ∩ Y2).

Thus, combining this with Kraus’ theorem above, it follows that for dual
operator spaces X ⊆ B(H) and Y ⊆ B(K) we have

X⊗FY = (X⊗B(K)) ∩ (B(H)⊗Y ). (1.3)

Let V and W be two operator spaces. For a positive integer n and an
element u ∈Mn(V ⊗W ) one can define

‖u‖∧,n = inf{‖α‖‖v‖‖w‖‖β‖ : u = α(v ⊗ w)β},

where the infimum is taken over all possible decompositions u = α(v ⊗w)β
with v ∈ Mm(V ), w ∈ Mk(W ), α ∈ Mn,mk and β ∈ Mmk,n for arbitrary
m, k ∈ N.

The sequence {‖u‖∧,n}n≥1 defines an operator space structure on the
tensor product V ⊗W . The completion V ⊗̂W of (V ⊗W, ‖ · ‖∧,1) is called
the projective operator space tensor product of V and W .

If X and Y are dual operator spaces with preduals X∗ and Y∗ re-
spectively, then there exist w*-homeomorphic completely isometric isomor-
phisms

X⊗FY ' (X∗⊗̂Y∗)∗ ' CB(X∗, Y ) ' CB(Y∗, X). (1.4)

See, for example, [14, Corollary 7.1.5, Theorem 7.2.3].
For i = 1, 2, let Xi ⊆ B(Hi) and Yi ⊆ B(Ki) be dual operator spaces

and let Φ: X1 → X2 and Ψ: Y1 → Y2 be completely bounded w*-continuous
linear maps. Then, using (1.4) and the fact that X⊗B(H) = X⊗FB(H)
for any dual operator space X and Hilbert space H, one can define w*-
continuous completely bounded maps

Φ⊗ idB(Ki) : X1⊗B(Ki)→ X2⊗B(Ki),

idB(Hi) ⊗Ψ: B(Hi)⊗Y1 → B(Hi)⊗Y2,

which are respectively the unique w*-continuous extensions of the linear
maps a ⊗ b 7→ Φ(a) ⊗ b and c ⊗ d 7→ c ⊗ Ψ(d). Namely, for x ∈ X1⊗B(Ki)
and y ∈ B(Hi)⊗Y1, the elements (Φ⊗ idB(Ki))(x) and (idB(Hj) ⊗Ψ)(y) are
respectively uniquely determined by

〈(Φ⊗ idB(Ki))(x), f ⊗ g〉 = 〈((f ◦ Φ)⊗ idB(Ki))(x), g〉,

for f ∈ X2∗, g ∈ B(Ki)∗ and

〈(idB(Hj) ⊗Ψ)(y), h⊗ k〉 = 〈(idB(Hj) ⊗ (k ◦Ψ))(y), h〉,
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for h ∈ B(Hj)∗, k ∈ Y2∗.
Also, one can see that the compositions (Φ ⊗ idB(K2)) ◦ (idB(H1) ⊗ Ψ)

and (idB(H2) ⊗ Ψ) ◦ (Φ ⊗ idB(K1)) coincide on X1⊗FY1 = (X1⊗B(K1)) ∩
(B(H1)⊗Y1) (recall (1.3)) and define a w*-continuous completely bounded
map into X2⊗FY2, which is the unique w*-continuous extension of the map
x1 ⊗ x2 7→ Φ(x1)⊗Ψ(x2) for x1 ∈ X1, x2 ∈ X2. We denote this map by

Φ⊗Ψ: X1⊗FY1 → X2⊗FY2.

Furthermore, if Φ and Ψ are completely isometric (respectively surjective
or completely contractive), then so is Φ⊗Ψ.

1.3 The stable point w*-topology

Let M be a von Neumann algebra and denote by CBσ(M) the w*-continuous
completely bounded maps on M . Also, let K be a separable infinite dimen-
sional Hilbert space. Following [13], we say that a net {Tj} in CBσ(M)
converges in the stable point-w*-topology to T ∈ CBσ(M) if

(idB(K) ⊗ Tj)(x) −→ (idB(K) ⊗ T )(x) σ-weakly for all x ∈ B(K)⊗M.

The following result [22, Proposition 1.7] states that the above conver-
gence is independent of the choice of the Hilbert space K. The proof is
based on an argument similar to that used in the proof of [32, Proposition
2.3]. For the convenience of the reader we have included this proof below.

Proposition 1.3.1 ([22], Proposition 1.7). Let M ⊆ B(H) be a von Neu-
mann algebra. A net {Tj} in CBσ(M) converges in the stable point-w*-
topology to T ∈ CBσ(M) if and only if, for any von Neumann algebra N ,
(idN ⊗ Tj)(x) −→ (idN ⊗ T )(x) σ-weakly for all x ∈ N⊗M .

Proof. Let Tj , T ∈ CBσ(M) and suppose that, for some separable infinite
dimensional Hilbert space K1, we have that

(idB(K1) ⊗ Tj)(x) −→ (idB(K1) ⊗ T )(x) σ-weakly ∀x ∈ B(K1)⊗M. (1.5)

In order to show that the same is true for any von Neumann algebra N in
place of B(K1), it suffices to prove it for N = B(K), where K is an arbitrary
Hilbert space.

If K is finite dimensional, then it is unitarily equivalent to a closed
subspace of K1 and thus the desired conclusion follows since we may consider
B(K) as a subspace of B(K1). Therefore, it remains to show the desired
convergence for infinite dimensional K.

So, let K be an infinite dimensional Hilbert space and ω ∈ (B(K)⊗M)∗.
Then, since ω is a countable sum of vector functionals and each vector inK⊗
H is in the closed linear span of a countable number of basis vectors, there
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exists a projection p in B(K) with at most countably infinite dimensional
range, such that

〈(p⊗ 1)x(p⊗ 1), ω〉 = 〈x, ω〉 for all x ∈ B(K)⊗M. (1.6)

Let K0 denote the range of p and let ω0 denote the restriction of ω to
B(K0)⊗M . It follows from (1.6) that, for any x ∈ B(K)⊗M ,

〈(idB(K) ⊗ Tj)(x), ω〉 = 〈(p⊗ 1)(idB(K) ⊗ Tj)(x)(p⊗ 1), ω0〉
= 〈(idB(K0) ⊗ Tj)((p⊗ 1)x(p⊗ 1)), ω0〉

and the last quantity converges to 〈(idB(K0)⊗T )((p⊗1)x(p⊗1)), ω0〉 which
by (1.6) is equal to 〈(idB(K)⊗ T )(x), ω〉. This follows from (1.5) since K0 is
unitarily equivalent to a closed subspace of K1.

1.4 Group algebras

In this section we present the von Neumann algebras usually associated with
a locally compact group and their basic properties. For the proofs of the
results stated in this section the reader is referred to [15], [16] [23], [46], [47].

Let G be a locally compact Hausdorff group. It is well known that
there exists a unique (up to multiplication by positive constant) non trivial
positive regular Borel meausure µ on G, such that for any s ∈ G and any
Borel subset A ⊆ G we have

µ(sA) = µ(A).

This is called a left Haar measure on G.

Also, there exists a continuous group homomorphism ∆G : G→ (0,+∞)
satisfying

µ(As) = ∆G(s)µ(A)

for any s ∈ G and any Borel A ⊆ G. This is called the modular function of
G.

Let us denote dµ(s) by ds. Then, we have the following properties for
integration with respect to the Haar measure

d(ts) = ds,

d(st) = ∆G(t)ds ∀t ∈ G,

ds−1 = ∆G(s)−1ds.

From now on, G will denote always a locally compact Hausdorff group
with a fixed left Haar measure ds and modular function ∆G.
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The space L1(G) of equivalence classes up to almost everywhere equality
of integrable complex functions on G is an involutive Banach algebra with
respect to the norm

‖f‖1 =

∫
G
|f(s)|ds, f ∈ L1(G)

and product (convolution) and involution respectively defined by

(f ∗ g)(s) =

∫
G
f(t)g(t−1s)dt

f∗(s) = ∆G(s)−1f(s−1).

A locally null set is a Borel subset A of G such that, for any compact
subset K of G, the intersection A∩K is of Haar measure zero. We say that
a property holds locally almost everywhere if it holds for any s ∈ G exept
for a locally null subset of G.

For a measurable function f : G→ C let

‖f‖∞ := inf{M > 0 : {s ∈ G : |f(s)| > M} is locally null}

be the essential supremum of f . If ‖f‖∞ < ∞, then f is called essentially
bounded . Also, let L∞(G) be the space of equivalence classes up to locally
almost everywhere equality of essentially bounded measurable functions.

With respect to the norm ‖ · ‖∞ and equipped with the pointwise mul-
tiplication

(fg)(s) = f(s)g(s) s ∈ G

and the involution given by complex conjugation

f∗(s) = f(s) s ∈ G,

L∞(G) is a unital C*-algebra (the unit given by the constant function 1).
This means that L∞(G) is an involutive Banach algebra with the additional
property (the C*-property)

‖ff∗‖∞ = ‖f‖2∞ f ∈ L∞(G).

Moreover, (L∞(G), ‖·‖∞) is isometrically isomorphic to the dual Banach
space of (L1(G), ‖ · ‖1) via the isometric isomorphism

T : L∞(G)→ L1(G)∗

T (φ)(f) =

∫
G
f(s)φ(s)ds, φ ∈ L∞(G), f ∈ L1(G).
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Recall that the space L2(G) of equivalence classes of square-integrable
functions, i.e. those functions ξ : G→ C such that

‖ξ‖2 :=

∫
G
|ξ(s)|2ds <∞,

is a Hilbert space with respect to the inner product 〈·|·〉 given by

〈ξ|η〉 =

∫
G
ξ(s)η(s)ds ξ, η ∈ L2(G).

The linear map M : L∞(G)→ B(L2(G)) defined by

(Mφξ)(s) = φ(s)ξ(s) φ ∈ L∞(G), ξ ∈ L2(G), s ∈ G

is an isometric *-homomorphism, which is a homeomorphism with respect
to the σ(L∞(G), L1(G))-topology and the ultraweak topology on B(L2(G)).

Because of the above, we will always identify L∞(G) with the von Neu-
mann subalgebra of B(L2(G)) consisting of all multiplication operatorsMφ

with φ ∈ L∞(G). Furthermore, in the following we supress the mapM using
the same symbol for an element of L∞(G) and the repsective multiplicaton
operator.

Another important von Neumann algebra associated with the group G
is the left von Neumann algebra of G, that is the von Neumann algebra

L(G) := λ(G)′′ ⊆ B(L2(G))

generated by the left regular representation

λ : G→ B(L2(G))

λsξ(t) = ξ(s−1t), ξ ∈ L2(G), s, t ∈ G.

Note that λ is a unitary representation, i.e. λ is a strongly continuous
(the map s 7→ λsξ is continuous for all ξ ∈ L2(G)) group homomorphism
into the group of unitary operators on L2(G).

As usual, for f ∈ L1(G) we denote by

λ(f) =

∫
G
f(t)λt dt

the unique (convolution) operator in B(L2(G)) satisfying

〈λ(f)ξ|η〉 =

∫
G
f(t)〈λtξ|η〉 dt, ξ, η ∈ L2(G).

Such an operator exists since the map (ξ, η) 7→
∫
G f(t)〈λtξ|η〉 dt is clearly

a bounded sesquilinear form on L2(G) × L2(G). Moreover, λ(f) ∈ L(G),
because if x ∈ L(G)′, then λ(f)x = xλ(f) and thus λ(f) ∈ λ(G)′′ = L(G).
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Following Eymard [15] we denote by A(G) the space of those continuous
bounded functions u : G→ C of the form

u(s) = 〈λsξ|η〉, s ∈ G

for some ξ, η ∈ L2(G). The set A(G) equipped with the pointwise multipli-
cation of functions and the norm

‖u‖ = inf{‖ξ‖‖η‖ : ξ, η ∈ L2(G), u(s) = 〈λsξ|η〉 ∀s ∈ G}

is a Banach algebra (this is due to Eymard; see [15, Proposition (3.4)]),
called the Fourier algebra of G.

The following theorem also proved by Eymard [15, Théorème (3.10)]
states that the predual of L(G) can be identified with the Fourier algebra
A(G).

Theorem 1.4.1 (Eymard). For any operator T ∈ L(G) there exists a unique
bounded functional φT ∈ A(G)∗, such that, if u ∈ A(G) and u(s) = 〈λsξ|η〉
for ξ, η ∈ L2(G), then we have

〈u, φT 〉 = 〈Tξ|η〉.

The map T 7→ φT is an isometric isomorphism from L(G) onto A(G)∗

which is a homeomorphism with respect to the ultraweak topology on L(G)
and the σ(A(G)∗, A(G))-topology; the ultraweakly continuous fuctionals on
L(G) (i.e. the elements of the predual L(G)∗ of L(G)) are exactly those of
the form T 7→ 〈u, φT 〉 for u ∈ A(G).

Apart from the left regular representation λ one may define the so called
right regular representation of G, that is the unitary representation

ρ : G→ B(L2(G))

given by

(ρsξ)(t) = ∆G(s)1/2ξ(ts) s, t ∈ G, ξ ∈ L2(G).

The von Neumann algebra R(G) := ρ(G)′′ generated by the unitaries
ρs, s ∈ G, is called the right von Neumann algebra of G.

Using respectively the fact that L∞(G) is abelian and that for any s, t ∈
G we have λsρt = ρtλs, one can directly verify the relations L∞(G) ⊆
L∞(G)′ and R(G) ⊆ L(G)′. In fact, these inclusions are actually equalities,
that is

L∞(G)′ = L∞(G), (1.7)

and

L(G)′ = R(G). (1.8)
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The commutation relations (1.7) and (1.8) above follow from the com-
mutation theorem for left Hilbert algebras (see [47, 10.1] for the definition
of a left Hilbert algebra) according to which the left and right von Neumann
algebras associated to a left Hilbert algebra are commutant to each other;
see [47, 10.4 (2)].

Indeed, (1.7) follows from the commutation theorem [47, 10.4 (2)] since
L∞(G) ∩ L2(G) with the operations of pointwise multiplication and com-
plex conjugation is a Hilbert algebra and the associated left and right von
Neumann algebras both coincide with L∞(G).

Similarly, the space Cc(G) of compactly supported continuous complex
functions on G is a left Hilbert algebra with the operations of convolution
and involution

(ξ ∗ η)(s) =

∫
G
ξ(t)η(t−1s)dt, ξ∗(s) = ∆G(s)−1ξ(s−1),

for ξ, η ∈ Cc(G) and s ∈ G. In this case, the associated left and right
von Neumann algebras are L(G) and R(G) respectively. Hence (1.8) follows
again from [47, 10.4 (2)].

Note that for any s ∈ G and φ ∈ L∞(G) (regarded as a multiplication
operator) we have

λsφλ
∗
s = lsφ, ρsφρ

∗
s = rsφ, (1.9)

where (lsφ)(t) := φ(s−1t) and (rsφ)(t) = φ(ts) for t ∈ G.
Hence, if the multiplication operator associated with φ ∈ L∞(G) com-

mutes with L(G) (repsectively with R(G)), then φ is left (respectively right)
translation invariant and thus φ is (locally almost everywhere) a constant.
Therefore, using (1.7) and (1.8), we get

B(L2(G)) = (L∞(G) ∪ L(G))′′ = (L∞(G) ∪R(G))′′. (1.10)

Moreover, from von Neumann’s double commutant theorem and (1.9) it
follows that (1.10) can be rewritten as

B(L2(G)) = spanw∗{L∞(G)L(G)} = spanw∗{L∞(G)R(G)}.1 (1.11)

1We denote by AB the set {ab : a ∈ A, b ∈ B}, for any subsets A, B of some algebra.



14 CHAPTER 1. PRELIMINARIES



Chapter 2

General theory of comodules

2.1 Hopf-von Neumann algebras and comodules

Hopf-von Neumann algebras and the associated comodules generalize locally
compact groups and the associated dynamical systems (see e.g. Propositions
2.3.3 and 2.3.4) providing a natural framework for the development of a nice
duality theory for group actions on operator spaces even in the case where
the acting group is non abelian (see Section 3.3).

Here we list the basic definitions and properties regarding Hopf-von Neu-
mann algebras and comodules in the dual operator space setting. Our ter-
minology is based on that of [19] with the difference that we only consider
comodules in the category of dual operator spaces with w*-continuous com-
pletely contractive linear maps as morphisms.

Definition 2.1.1. A Hopf-von Neumann algebra is a pair (M,∆), where M
is a von Neumann algebra and ∆: M → M⊗M is a w*-continuous unital
*-monomorphism, which is coassociative, i.e. it holds that

(∆⊗ idM ) ◦∆ = (idM ⊗∆) ◦∆.

Equivalently, the following diagram commutes

M M⊗M

M⊗M M⊗M⊗M

∆

∆ ∆⊗idM

idM⊗∆

The map ∆ is called the comultiplication of M .

Definition 2.1.2. Let (M,∆) be a Hopf-von Neumann algebra. An M -
comodule is a pair (X,α) consisting of a dual operator space X and a w*-
continuous complete isometry α : X → X⊗FM which is coassociative over
∆, i.e. it holds that

(α⊗ idM ) ◦ α = (idX ⊗∆) ◦ α.

15
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In other words, we have the commuting diagram

X X⊗FM

X⊗FM X⊗FM⊗FM

α

α α⊗idM

idX⊗∆

In this case, we say that α is an action of M on X or an M -action on X.
A w*-closed subspace Y of X is called an M -subcomodule of X if α(Y ) ⊆

Y⊗FM . In this case we write Y ≤ X and Y is indeed an M -comodule for
the action α|Y .

An M -comodule morphism between two M -comodules (X,α) and (Y, β)
is a w*-w*-continuous complete contraction φ : X → Y , such that

β ◦ φ = (φ⊗ idM ) ◦ α.

An M -comodule morphism is called an M -comodule monomorphism (re-
spectively isomorphism) if it is a complete isometry (resp. surjective com-
plete isometry) and we write X ' Y for isomorphic M -comodules.

If N is a von Neumann algebra, then an M -action π : N → N⊗M on N
that is additionally a w*-continuous unital *-monomorphism will be called
a W*-M -action on N (or a W*-action of M on N) and (N, π) will be
called a W*-M -comodule. The terms W*-M -subcomodule, W*-M -comodule
morphism etc, are defined analogously.

If Y is any dual operator space, then the Fubini tensor product Y⊗FM
becomes an M -comodule, called a canonical M -comodule, with the action

idY ⊗∆: Y⊗FM → Y⊗FM⊗FM.

More generally, for any dual operator space Y and any M -comodule
(X,α), the map idY ⊗ α defines an M -action on the Fubini tensor product
Y⊗FX. Similarly, the map (idX ⊗ σ) ◦ (α⊗ idY ) is an M -action on X⊗FY
(where σ : M⊗FY → Y⊗FM is the flip isomorphism).

Remark 2.1.3. Let (M,∆) be a Hopf-von Neumann algebra. Every M -
comodule (X,α) is isomorphic to an M -subcomodule of a canonical M -
comodule, which may be taken to be of the form (B(H)⊗M, idB(H)⊗∆) for
some Hilbert space H.

Indeed, the image α(X) of X under the action α is an M -subcomodule
of the canonical M -comodule X⊗FM , since we have:

(idX ⊗∆) ◦ α(X) = (α⊗ idM ) ◦ α(X) ⊆ α(X)⊗FM

and α is an M -comodule isomorphism from X onto α(X) and thus

X ' α(X) ≤ X⊗FM.

Furthermore, we may suppose that X is a w*-closed subspace of B(H) for
some Hilbert space H and thus X⊗FM ≤ B(H)⊗M .
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Remark 2.1.4. For any Hopf-von Neumann algebra (M,∆), the predual
M∗ of M with its Banach space structure and product defined by

ωϕ = (ω ⊗ ϕ) ◦∆, ω, ϕ ∈M∗

becomes a Banach algebra. Indeed, using the coassociativity of ∆, for any
ω, φ, ψ ∈M∗ we have

(ωφ)ψ = ((ωφ)⊗ ψ) ◦∆

= [((ω ⊗ φ) ◦∆)⊗ ψ] ◦∆

= (ω ⊗ φ⊗ ψ) ◦ (∆⊗ idM ) ◦∆

= (ω ⊗ φ⊗ ψ) ◦ (idM ⊗∆) ◦∆

= [ω ⊗ ((φ⊗ ψ) ◦∆)] ◦∆

= ω(φψ)

thus the above product is associative. Also, the norm on M∗ is submulti-
plicative, i.e.

‖ωφ‖ ≤ ‖ω‖‖φ‖, ω, φ ∈M∗
since ∆ is an isometry and ‖ω ⊗ φ‖ ≤ ‖ω‖‖φ‖ for any ω, φ ∈ M∗ (see for
example [14, Theorems 7.1.1 and 7.2.4]).

Similarly, an M -comodule (X,α) with the module operation defined by

ω · x = (idX ⊗ ω) ◦ α(x), ω ∈M∗, x ∈ X

becomes an M∗-Banach module (see [19, Lemma 2.3 (i)] for the details).
In fact, the M -subcomodules of X are exactly the M∗-submodules of X

with respect to the above M∗-module action (see [19, Lemma 2.3 (ii)]).
Also, a w*-continuous complete contraction φ : X → Y between two M -

comodules X and Y is an M -comodule morphism if and only if φ is an
M∗-module morphism (see [19, Proposition 2.2 and Lemma 2.3 (iii)]).

The notion of fixed points is of great importance in the study of comod-
ules of Hopf-von Neumann algebras and in the study of crossed products as
we will see in the next sections.

Definition 2.1.5. Let (X,α) be an M -comodule over a Hopf-von Neumann
algebra (M,∆). The fixed point subspace of X is the operator space

Xα = {x ∈ X : α(x) = x⊗ 1M}.

Note that Xα is obviously an M -subcomodule of X.
A very useful observation is the following: for an M -comodule (X,α)

and a dual operator space Y , the fixed point spaces of the M -comodules
(Y⊗FX, idY ⊗ α) and (X⊗FY, (idX ⊗ σ) ◦ (α⊗ idY )) are given by

(Y⊗FX)idY ⊗α = Y⊗FXα
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and

(X⊗FY )(idX⊗σ)◦(α⊗idY ) = Xα⊗FY.

Furthermore, any M -comodule isomorphism φ : X → Y between two
M -comodules (X,α) and (Y, β) maps Xα onto Y β.

Indeed, since β ◦ φ = (φ⊗ id) ◦ α, for any x ∈ Xα we get

β(φ(x)) = (φ⊗ id)(α(x))

= (φ⊗ id)(x⊗ 1)

= φ(x)⊗ 1

that is φ(x) ∈ Y β and thus φ(Xα) ⊆ Y β.

Conversely, if y ∈ Y β, then since φ is onto there exists an x ∈ X such
that φ(x) = y. Therefore, we have

(φ⊗ id)(α(x)) = β(φ(x))

= β(y)

= y ⊗ 1

= φ(x)⊗ 1

= (φ⊗ id)(x⊗ 1)

and therefore α(x) = x ⊗ 1, because φ ⊗ id is an isometry (since φ is an
isometry too). This shows the inclusion Y β ⊆ φ(Xα).

Another important notion concerning actions of Hopf-von Neumann al-
gebras is commutativity of actions:

Definition 2.1.6. Let (M1,∆1) and (M2,∆2) be two Hopf-von Neumann
algebras and α1, α2 be actions of M1 and M2 respectively on the same
operator space X. We say that α1 and α2 commute if

(α1 ⊗ idM2) ◦ α2 = (idX ⊗ σ) ◦ (α2 ⊗ idM1) ◦ α1,

where σ : M2⊗M1 →M1⊗M2 : x⊗ y 7→ y ⊗ x is the flip isomorphism.

The next lemma due to Hamana states that the fixed point space Xα

of a given comodule (X,α) becomes a comodule with respect to any other
action on X that commutes with α.

Lemma 2.1.7 ([19], Lemma 5.2). If α1 and α2 are respectively commuting
actions on the same operator space X (Definition 2.1.6) of two Hopf-von
Neumann algebras M1 and M2, then the fixed point subspace Xα1 is an M2-
subcomodule of (X,α2), i.e. the restriction α2|Xα1 is an action of M2 on
Xα1.
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2.2 Saturated and non-degenerate comodules

In this section we examine the notions of non-degeneracy and saturation for
general M -comodules for a Hopf-von Neumann algebra M . As we will see
in Section 3.3 these two notions are equivalent forms of Takesaki-duality for
the crossed products of comodules over L∞(G) and L(G).

For the use of these two notions in the classical duality theory of crossed
products of von Neumann algebras the reader is referred to [35], [37], [38],
[48], [49], [50], [51] and [57].

The term saturation was introduced in [48] for W*-comodules, while the
term non-degeneracy was probably first used in [34, page 256].

Definition 2.2.1. Let (M,∆) be a Hopf-von Neumann algebra acting on
a Hilbert space K and (X,α) be an M -comodule with X being a w*-
closed subspace of B(H) for a Hilbert space H. Then, (X,α) is called
non-degenerate if

X⊗B(K) = spanw∗{(1H ⊗ b)α(x) : x ∈ X, b ∈ B(K)}.

Remark 2.2.2. Suppose that (M,∆) and (X,α) are as in Definition 2.2.1
and let (Y, β) be an M -comodule with Y being a w*-closed subspace of B(L)
for some Hilbert space L. If φ : X → Y is an M -comodule isomorphism and
X is non-degenerate, then Y is non-degenerate too.

Indeed, since φ : X → Y is a w*-bicontinuous completely isometric iso-
morphism, so is the map ψ := φ⊗ id : X⊗B(K)→ Y⊗B(K) and clearly ψ
satisfies the following:

ψ((1H ⊗ b)z) = (1L ⊗ b)ψ(z), for any z ∈ X⊗B(K) and b ∈ B(K).

Also, since β◦φ = (φ⊗id)◦α and φ(X) = Y it follows that ψ(α(X)) = β(Y ).
Thus if X is non-degenerate, then so is Y .

In particular, the non-degeneracy of (X,α) does not depend on the
Hilbert space H on which X is represented.

Proposition 2.2.3. If (M,∆) is a Hopf-von Neumann algebra acting on a
Hilbert space K and (X,α) is a non-degenerate M -comodule, then

X = spanw∗{M∗ ·X}.

Proof. Let φ ∈ X∗, such that φ(ω ·x) = 0, for all ω ∈M∗ and x ∈ X. Then,
we have:

φ ◦ (idX ⊗ ω) ◦ α(x) = 0, ∀ω ∈M∗, ∀x ∈ X
=⇒ ω ◦ (φ⊗ idB(K)) ◦ α(x) = 0, ∀ω ∈M∗, ∀x ∈ X
=⇒ (φ⊗ idB(K)) ◦ α(x) = 0, ∀x ∈ X
=⇒ b(φ⊗ idB(K)) ◦ α(x) = 0, ∀b ∈ B(K), ∀x ∈ X
=⇒ (φ⊗ idB(K)) ((1H ⊗ b)α(x)) = 0, ∀b ∈ B(K), ∀x ∈ X.
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Since (X,α) is non-degenerate, the last condition implies that

(φ⊗ idB(K))(y) = 0 for any y ∈ X⊗B(K),

thus φ(x)1 = (φ ⊗ idB(K))(x ⊗ 1) = 0 for any x ∈ X and hence φ = 0. So
the desired conclusion follows from the Hahn-Banach theorem.

We do not know whether the converse of Proposition 2.2.3 above holds
for general Hopf-von Neumann algebras. However, it is true at least when
the Hopf-von Neumann algebra under discussion is either (L∞(G), αG) or
(L(G), δG) for a locally compact group G (see Section 2.3 for the definitions);
this follows from Lemma 2.3.5 and Corollary 2.3.8.

Definition 2.2.4. Let (M,∆) be a Hopf-von Neumann algebra and (X,α)
be an M -comodule. The saturation space of (X,α) is the space

Sat(X,α) := {y ∈ X⊗FM : (idX ⊗∆)(y) = (α⊗ idM )(y)}.

Obviously, α(X) ⊆ Sat(X,α). We say that (X,α) is saturated if α(X) =
Sat(X,α).

Proposition 2.2.5. Let (M,∆) be a Hopf-von Neumann algebra and (X,α)
be an M -comodule. Then the following hold:

(i) The saturation space Sat(X,α) is an M -subcomodule of the canonical
M -comodule (X⊗FM, idX ⊗∆);

(ii) For the M∗-module action on Sat(X,α) defined by the canonical M -
action idX ⊗∆, we have M∗ · Sat(X,α) ⊆ α(X);

(iii) The M -comodule (Sat(X,α), idX ⊗∆) is non-degenerate if and only if
(X,α) is non-degenerate and saturated.

Proof. (i) Let y ∈ Sat(X,α). Then, (idX ⊗ ∆)(y) = (α ⊗ idM )(y) ∈
α(X)⊗FM ⊆ Sat(X,α)⊗FM . Thus, Sat(X,α) is an M -subcomodule of
(X⊗FM, idX ⊗∆).

(ii) Let ω ∈M∗ and y ∈ Sat(X,α). Since Sat(X,α) ⊆ X⊗FM , we have
that (idX ⊗ ω)(y) ∈ X. Therefore, we get:

ω · y = (idX ⊗ idM ⊗ ω) ◦ (idX ⊗∆)(y)

= (idX ⊗ idM ⊗ ω) ◦ (α⊗ idM )(y)

= α ◦ (idX ⊗ ω)(y) ∈ α(X),

thus M∗ · Sat(X,α) ⊆ α(X).
(iii) Suppose that (Sat(X,α), idX ⊗ ∆) is non-degenerate. Then, by

Proposition 2.2.3 and Proposition 2.2.5 (ii), it follows immediately that

Sat(X,α) = spanw∗{M∗ · Sat(X,α)} ⊆ α(X),
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therefore Sat(X,α) = α(X), i.e. (X,α) is saturated. On the other hand,
(X,α) is isomorphic to (α(X), idX ⊗ ∆), which is non-degenerate since
Sat(X,α) = α(X). Thus, (X,α) is non-degenerate.

Conversely, suppose that (X,α) is non-degenerate and saturated. Then,
since (X,α) ' (α(X), idX ⊗ ∆) = (Sat(X,α), idX ⊗ ∆), it follows that
(Sat(X,α), idX ⊗∆) is non-degenerate.

Remark 2.2.6. Let (M,∆) be a Hopf-von Neumann algebra and let (Yi, δi)
for i = 1, 2 be two M -comodules. Also, let φ : Y1 → Y2 be an M -comodule
isomorphism. Then, the map φ ⊗ idM : Y1⊗FM → Y2⊗FM is an M -
comodule isomorphism for the canonical actions idYi ⊗ ∆, i = 1, 2. Fur-
thermore, φ⊗ idM maps Sat(Y1, δ1) onto Sat(Y2, δ2). Therefore, saturation
is preserved by comodule isomorphisms.

Indeed, for any x ∈ Y1⊗FM , we have:

(φ⊗ idM )(x) ∈ Sat(Y2, δ2)

⇐⇒ (δ2 ⊗ idM ) ◦ (φ⊗ idM )(x) = (idY2 ⊗∆) ◦ (φ⊗ idM )(x)

⇐⇒ ((δ2 ◦ φ)⊗ idM )(x) = (φ⊗ idM ⊗ idM ) ◦ (idY1 ⊗∆)(x)

⇐⇒ [((φ⊗ idM ) ◦ δ1)⊗ idM ] (x) = (φ⊗ idM ⊗ idM ) ◦ (idY1 ⊗∆)(x)

⇐⇒ (φ⊗ idM ⊗ idM ) ◦ (δ1 ⊗ idM )(x) =

(φ⊗ idM ⊗ idM ) ◦ (idY1 ⊗∆)(x)

⇐⇒ (δ1 ⊗ idM )(x) = (idY1 ⊗∆)(x)

⇐⇒ x ∈ Sat(Y1, δ1).

Since φ ⊗ idM is onto Y2⊗FM , the above equivalences show that it maps
Sat(Y1, δ1) onto Sat(Y2, δ2).

The following corollary follows immediately from Proposition 2.2.5 (iii).

Corollary 2.2.7. Let (M,∆) be a Hopf-von Neumann algebra. If every
M -comodule is non-degenerate, then every M -comodule is saturated.

Remark 2.2.8. Note that it does not follow from Corollary 2.2.7 or its proof
that any non-degenerate M -comodule is necessarily saturated and indeed
this is not true in general. For example, if G is a locally compact group,
then the group von Neumann algebra L(G) admits a comultiplication δG (see
Section 2.3 below). If in addition G fails the approximation property in the
sense of Haagerup-Kraus, then there exist non-degenerate L(G)-comodules
which are not saturated as well as saturated L(G)-comodules which are not
non-degenerate (see Proposition 2.3.14). More precisely, such examples arise
as crossed products of groups without the approximation property acting on
dual operator spaces (see Corollary 3.1.9 and Theorems 3.3.8 and 3.3.10).

The next result states that, for a Hopf-von Neumann algebra (M,∆),
the condition that every M -comodule is saturated (which is an algebraic
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condition by definition) is equivalent to the existence of a (not necessarily
norm bounded) net {ωi} in M∗, such that, for any M -comodule (X,α), any
element x ∈ X is the w*-limit of the net {ωi · x}, where the M∗-module
operation on X is given by

(ω, x) 7→ ω · x = (idX ⊗ ω)(α(x))

(Proposition 2.2.9). In particular, it follows that the net {ωi} above is a weak
approximate unit for M∗ regarded as a Banach algebra with the product

(ω, φ) 7→ ωφ = (ω ⊗ φ) ◦∆.

Proposition 2.2.9. For a Hopf-von Neumann algebra (M,∆) the following
conditions are equivalent:

(a) Every M -comodule is saturated;

(b) For any M -comodule (X,α), any M -subcomodule Z of X and any
x ∈ X, the following implication holds:

α(x) ∈ Z⊗FM =⇒ x ∈ Z;

(c) For any M -comodule (X,α) and any x ∈ X, we have x ∈M∗ · x
w∗

;

(d) There exists a net {ωi} ⊆M∗, such that ωi ·x −→ x in the w*-topology
for any M -comodule X and any x ∈ X;

(e) There exists a net {ωi} ⊆ M∗, such that the net {(idM ⊗ ωi) ◦ ∆} ⊆
CBσ(M) converges in the stable point-w*-topology to the identity map
idM .

Moreover, if any of the above conditions is satisfied, then M∗ regarded
as a Banach algebra with the product induced by ∆ has a (right) weak ap-
proximate unit. That is, there exists a net {ωi} ⊆M∗, such that

〈x, ωωi〉 −→ 〈x, ω〉 for all ω ∈M∗ and x ∈M.

Therefore, for any ω ∈M∗, it holds that ω ∈ ωM∗
‖·‖
.

Proof. (a) =⇒ (b): Suppose that every M -comodule is saturated. Let
(X,α) be an M -comodule, Z an M -subcomodule of X and x ∈ X such
that α(x) ∈ Z⊗FM . By assumption, α restricts to an M -action on Z and
since α(x) ∈ Z⊗FM and (α ⊗ id)(α(x)) = (id ⊗ ∆)(α(x)) it follows that
α(x) ∈ Sat(Z,α|Z). But (Z,α|Z) is saturated by hypothesis and therefore
α(x) ∈ α(Z). Thus, x ∈ Z, because α is an isometry.

(b) =⇒ (c): Let (X,α) be an M -comodule and x ∈ X and put Z :=

M∗ · x
w*

. Then, by Remark 2.1.4, it follows that Z is an M -subcomodule
of X since it is an M∗-module by definition.
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Also, we have that α(x) ∈ Z⊗FM . Indeed, by the definition of the
Fubini tensor product, the condition α(x) ∈ Z⊗FM is equivalent to the
following

ω · x = (id⊗ ω)(α(x)) ∈ Z, ∀ω ∈M∗,

which is true by the definition of Z. Therefore, the assumption that (b)

holds implies that x ∈ Z, that is x ∈M∗ · x
w*

.
(c) =⇒ (a): Suppose that (c) is true and take an M -comodule (Y, β).

Consider the M -comodule (X,α) with X := Sat(Y, β) and α = idY ⊗ ∆.

Then, by (c), it follows that z ∈ M∗ · z
w* ⊆ M∗ · Sat(Y, β)

w*
, for all z ∈

Sat(Y, β). But from Proposition 2.2.5 (ii), we have that M∗ · Sat(Y, β) ⊆
β(Y ) and therefore z ∈ β(Y ), for all z ∈ Sat(Y, β), that is (Y, β) is saturated.

(d) =⇒ (c): This is clearly obvious.
(e) =⇒ (d): Let (X,α) be an M -comodule with X being a w*-closed

subspace of B(H) for some Hilbert space H. First, observe that, for any
ω ∈M∗, we have the following:

(idX ⊗ Φω) ◦ α = α ◦ (idX ⊗ ω) ◦ α, (2.1)

where Φω := (idM ⊗ ω) ◦∆.
Indeed, since

α ◦ (idX ⊗ ω) = (idX ⊗ idM ⊗ ω) ◦ (α⊗ idM ),

and
(α⊗ idM ) ◦ α = (idX ⊗∆) ◦ α,

we get:

α ◦ (idX ⊗ ω) ◦ α = (idX ⊗ idM ⊗ ω) ◦ (α⊗ idM ) ◦ α
= (idX ⊗ idM ⊗ ω) ◦ (idX ⊗∆) ◦ α
= [idX ⊗ ((idM ⊗ ω) ◦∆)] ◦ α
= (idX ⊗ Φω) ◦ α.

From Proposition 1.3.1 and the assumption that (e) holds it follows that,
for any x ∈ X we have:

(idX ⊗ Φωi)(α(x)) −→ α(x) ultraweakly,

because α(X) ⊆ X⊗FM ⊆ B(H)⊗M . Thus, (2.1) implies that

α ◦ (idX ⊗ ωi) ◦ α(x) −→ α(x) ultraweakly.

On the other hand, α is a w*-continuous isometry, therefore it is a w*-w*-
homeomorphism from X onto α(X) (recall 1.1.3) and thus

ωi · x = (idX ⊗ ωi) ◦ α(x) −→ x ultraweakly.
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(c) =⇒ (e): Assume that, for any M -comodule (X,α) and any x ∈ X,

we have that x ∈ M∗ · x
w*

. Let H be a Hilbert space. Thus taking X =
B(H)⊗M and α = idB(H) ⊗ ∆ yields that, for any x ∈ B(H)⊗M , there
exists a net {ωi} in M∗ which may depend on the choice of x, such that

(idB(H) ⊗ idM ⊗ ωi) ◦ (idB(H) ⊗∆)(x) −→ x ultraweakly.

Therefore, since

(idB(H) ⊗ idM ⊗ ωi) ◦ (idB(H) ⊗∆) = idB(H) ⊗ ((idM ⊗ ωi) ◦∆)

= idB(H) ⊗ Φωi ,

where Φω := (idM ⊗ ωi) ◦ ∆ for ω ∈ M∗, it follows that for any Hilbert
space H and any x ∈ B(H)⊗M there exists a net {ωi} in M∗, such that
(idB(H) ⊗ Φωi)(x) −→ x ultraweakly.

Now, consider a separable infinite dimensional Hilbert space K and let
F = {x1, . . . , xn} be a finite subset of B(K)⊗M . Then, x = x1⊕· · ·⊕xn may
be viewed as an element of B(K(n))⊗M , where K(n) is the direct sum of n
copies of K. Hence, applying the above argument for K(n) in place of H, we
get that there exists a net {ωi} in M∗, such that (idB(K(n)) ⊗Φωi)(x) −→ x
ultraweakly and thus it follows that (idB(K) ⊗ Φωi)(y) −→ y ultraweakly
for all y ∈ F . Therefore, if F is a finite subset of B(K)⊗M and N is an
ultraweak neighborhood of 0, then there is an element ω(F,N) ∈ M∗, such
that

(idB(K) ⊗ Φω(F,N)
)(y) ∈ y + N, ∀y ∈ F.

So, the set of all pairs (F,N) becomes a directed set with the partial order
defined by (F1,N1) ≤ (F2,N2) if F1 ⊆ F2 and N2 ⊆ N1 and it is clear that

(idB(K) ⊗ Φω(F,N)
)(y) −→ y ultraweakly for all y ∈ B(K)⊗M,

that is the net {Φω(F,N)
} converges in the stable point-w*-topology to idM .

For the last statement of the proposition, note that if, for example,
condition (e) holds, then for any x ∈M and ω ∈M∗ we have

〈x, ωωi〉 = 〈∆(x), ω ⊗ ωi〉 = 〈(idM ⊗ ωi)(∆(x)), ω〉 −→ 〈x, ω〉.

Thus, since ωM∗ is a linear subspace of M∗ (and hence convex), from the

Hahn-Banach theorem it follows that ω ∈ ωM∗
‖·‖

.

The next two lemmas describe two basic ways of constructing new sat-
urated comodules.

Lemma 2.2.10. Let (M,∆) be a Hopf-von Neumann algebra and (Y, β) be a
saturated M -comodule. Then, (X⊗FY, idX ⊗ β) is a saturated M -comodule
for any dual operator space X.
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Proof. Let X be a dual operator space. First we have to check that
(X⊗FY, idX ⊗ β) is an M -comodule. Indeed, we have:

(idX ⊗ β ⊗ idM ) ◦ (idX ⊗ β) = idX ⊗ [(β ⊗ idM ) ◦ β]

= idX ⊗ [(idY ⊗∆) ◦ β]

= (idX ⊗ idY ⊗∆) ◦ (idX ⊗ β).

Now, take z ∈ Sat(X⊗FY, idX ⊗ β). We have to prove that

z ∈ (idX ⊗ β)(X⊗FY ) = X⊗Fβ(Y ).

Indeed, since z ∈ Sat(X⊗FY, idX ⊗ β) we have:

(idX ⊗ idY ⊗∆)(z) = (idX ⊗ β ⊗ idM )(z).

Therefore, for any ω ∈ X∗, we get:

(ω⊗idY⊗FM⊗FM )◦(idX⊗idY⊗∆)(z) = (ω⊗idY⊗FM⊗FM )◦(idX⊗β⊗idM )(z)

that is

(idY ⊗∆) ◦ (ω ⊗ idY⊗FM )(z) = (β ⊗ idM ) ◦ (ω ⊗ idY⊗FM )(z).

Thus (ω ⊗ idY⊗FM )(z) ∈ Sat(Y, β) = β(Y ) for all ω ∈ X∗ and hence z ∈
X⊗Fβ(Y ).

Lemma 2.2.11. Let M1 and M2 be two Hopf-von Neumann algebras and let
α1 and α2 be actions of M1 and M2 respectively on the same dual operator
space X. Suppose that (X,α2) is a saturated M2-comodule and that α1 and
α2 commute, i.e.

(α1 ⊗ idM2) ◦ α2 = (idX ⊗ σ) ◦ (α2 ⊗ idM1) ◦ α1,

where σ : M2⊗M1 → M1⊗M2 : x ⊗ y 7→ y ⊗ x is the flip isomorphism.
Then, the fixed point space (Xα1 , α2|Xα1 ) is a saturated M2-comodule.

Proof. Since the actions α1 and α2 commute, Xα1 is an M2-subcomodule of
(X,α2) by Lemma 2.1.7. Also, since (X,α2) is saturated, i.e. Sat(X,α2) =
α2(X), we get

Sat(Xα1 , α2|Xα1 ) = (Xα1⊗FM) ∩ Sat(X,α2)

= (Xα1⊗FM) ∩ α2(X).

Thus it suffices to show that (Xα1⊗FM2) ∩ α2(X) ⊆ α2(Xα1).
Take y ∈ (Xα1⊗FM2) ∩ α2(X). Then y = α2(x) for some x ∈ X and

so we only need to prove that x ∈ Xα1 , i.e. α1(x) = x ⊗ 1. Indeed, since
y ∈ Xα1⊗FM2 it follows that

(idX ⊗ σ) ◦ (α1 ⊗ idM2)(y) = y ⊗ 1
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and therefore

(α2 ⊗ idM1)(x⊗ 1) = α2(x)⊗ 1

= y ⊗ 1

= (idX ⊗ σ) ◦ (α1 ⊗ idM2)(y)

= (idX ⊗ σ) ◦ (α1 ⊗ idM2)(α2(x))

= (α2 ⊗ idM1)(α1(x)),

where the last equality follows from the commutativity of the actions α1 and
α2. Since α2 ⊗ idM1 is an isometry it follows that α1(x) = x ⊗ 1 and the
proof is complete.

2.3 Group Hopf-von Neumann algebras

2.3.1 Notation and basic properties

Let G be a locally compact (Hausdorff) group with left Haar measure ds
and modular function ∆G.

For any ξ, η ∈ L2(G), we identify ξ ⊗ η ∈ L2(G × G) with the func-
tion (s, t) 7→ ξ(s)η(t), s, t ∈ G. This identification yields an isomorphism
between the Hilbert spaces L2(G)⊗ L2(G) and L2(G×G).

Thus one also obtains a canonical (unital w*-continuous) *-isomorphism

B(L2(G))⊗B(L2(G)) = B(L2(G)⊗ L2(G)) ' B(L2(G×G)),

which restricts to a *-isomorphism L∞(G)⊗L∞(G) ' L∞(G×G). That is,
for any f, g ∈ L∞(G) the above isomorphism identifies f ⊗g with the multi-
plication operator on L2(G×G) given by the function (s, t) 7→ f(s)g(t), s, t ∈
G.

Consider the (fundamental) unitary operators on L2(G×G) defined by
the formulas

VGξ(s, t) = ξ(t−1s, t),

WGξ(s, t) = ξ(s, st),

UGξ(s, t) = ∆G(t)1/2ξ(st, t),

for ξ ∈ L2(G×G) and s, t ∈ G.

The fact that VG, WG and UG are unitaries (equivalently that they pre-
serve inner products) follows directly from the Fubini theorem (see [9, The-
orem 7.6.7, Lemma 9.4.2]) and the fact that the Haar measure satisfies
d(ts) = ds and d(st) = ∆G(t)−1ds. For example, for ξ, η ∈ L2(G × G), we
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have

〈VGξ|VGη〉 =

∫∫
VGξ(s, t)VGη(s, t) ds dt

=

∫∫
ξ(t−1s, t)η(t−1s, t) ds dt

=

∫∫
ξ(s, t)η(s, t) ds dt (d(t−1s) = ds)

= 〈ξ|η〉.

Similarly we get that WG and UG are unitaries too.

Furthermore, using the commutation relations L∞(G)′ = L∞(G) and
L(G)′ = R(G) (recall (1.7), (1.8)) one may see that

VG ∈ L(G)⊗L∞(G), WG ∈ L∞(G)⊗L(G), UG ∈ L∞(G)⊗R(G),

viewing VG, WG and UG as elements of B(L2(G))⊗B(L2(G)).

The map αG : L∞(G)→ L∞(G)⊗L∞(G) defined by

αG(f) = V ∗G(f ⊗ 1)VG, f ∈ L∞(G),

is a comultiplication on L∞(G). Note that αG(f) is the multiplication op-
erator on L2(G×G) given by the function

αG(f)(s, t) = f(ts), s, t ∈ G.

Also, one can check that αG is indeed a comultiplication by observing that
the co-associativity rule

(αG ⊗ id) ◦ αG = (id⊗ αG) ◦ αG

is actually equivalent to the associativity of the multiplication on G (i.e.
(st)r = s(tr) for any s, t, r ∈ G).

In addition, for any h, k ∈ L1(G) and f ∈ L∞(G), we have

〈αG(f), h⊗ k〉 = 〈f, k ∗ h〉,

where

(k ∗ h)(t) =

∫
G
k(s)h(s−1t) ds, t ∈ G,

is the usual convolution on L1(G).

Therefore the product defined by the comultiplication αG on the predual
L1(G) ' L∞(G)∗, i.e. hk = (h ⊗ k) ◦ αG for h, k ∈ L∞(G)∗ (see Remark
2.1.4) coincides with the (opposite) convolution on L1(G)

hk = k ∗ h, ∀h, k ∈ L1(G).
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If σ : B(L2(G))⊗B(L2(G)) → B(L2(G))⊗B(L2(G)) : x ⊗ y 7→ y ⊗ x is
the flip isomorphism, then we have

α′G(f) := σ ◦ αG(f) = UG(f ⊗ 1)U∗G, f ∈ L∞(G).

Equivalently, α′G(f) is the multiplication operator on L2(G×G) given by the
function (s, t) 7→ f(st) for s, t ∈ G. Moreover, the above map α′G := σ ◦ αG
is another comultiplication on L∞(G) (called the opposite of αG).

Comment 2.3.1. There is no essential difference in working with either αG
or α′G on L∞(G). For instance, every (right) action α : X → X⊗L∞(G) of
(L∞(G), αG) on X is determined uniquely by the left action β := σ◦α : X →
L∞(G)⊗X of (L∞(G), α′G) on X. By the term left action we mean that β
satisfies the condition (α′G⊗ id)◦β = (id⊗β)◦β, which is clearly equivalent
to (id⊗ αG) ◦ α = (α⊗ id) ◦ α using β = σ ◦ α and the definition of the flip
map σ.

Similarly, the group von Neumann algebra L(G) is also a Hopf-von Neu-
mann algebra with comultiplication δG : L(G)→ L(G)⊗L(G) defined by

δG(x) = W ∗G(x⊗ 1)WG, x ∈ L(G).

This is indeed a comultiplication since, for any s ∈ G, we have

δG(λs) = λs ⊗ λs

and thus the composites (δG ⊗ id) ◦ δG and (id ⊗ δG) ◦ δG both map λs to
λs ⊗ λs ⊗ λs. Therefore (δG ⊗ id) ◦ δG = (id ⊗ δG) ◦ δG because L(G) =
spanw∗{λ(G)}.

The pointwise product on A(G) coincides with that induced on the pre-
dual L(G)∗ by the comultiplication δG of L(G) (see Remark 2.1.4), because:

〈λs, uv〉 = u(s)v(s) = 〈λs, u〉〈λs, v〉 = 〈λs ⊗ λs, u⊗ v〉 = 〈δG(λs), u⊗ v〉.

The definitions of αG and δG can be extended respectively to W*-
actions of the Hopf-von Neumann algebras (L∞(G), αG) and (L(G), δG) on
B(L2(G)) still denoted by

αG : B(L2(G))→ B(L2(G))⊗L∞(G)

and
δG : B(L2(G))→ B(L2(G))⊗L(G),

namely
αG(x) = V ∗G(x⊗ 1)VG, x ∈ B(L2(G))

and
δG(x) = W ∗G(x⊗ 1)WG, x ∈ B(L2(G)).
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We also have a W*-action of (L∞(G), αG) on B(L2(G)) induced by the
unitary UG, namely

βG : B(L2(G))→ B(L2(G))⊗L∞(G),

βG(x) = U∗G(x⊗ 1)UG, x ∈ B(L2(G)).

Since L∞(G)′ = L∞(G) and L(G)′ = R(G) one can easily verify the
following

B(L2(G))αG = R(G),

B(L2(G))δG = L∞(G),

B(L2(G))βG = L(G).

Let us prove, for example, the relation B(L2(G))αG = R(G). First,
since VG ∈ L(G)⊗L∞(G) = (R(G)⊗L∞(G))′ it follows that V ∗G(ρt⊗ 1)VG =
V ∗GVG(ρt⊗ 1) = ρt⊗ 1 and thus we have the inclusion R(G) ⊆ B(L2(G))αG .

We show now that B(L2(G))αG ⊆ R(G). Suppose that x ∈ B(L2(G))αG ,
that is VG(x⊗ 1) = (x⊗ 1)VG. For any ξ, η, φ, ψ ∈ Cc(G), we have

〈VG(x⊗ 1)(ξ ⊗ η)|φ⊗ ψ〉 = 〈(x⊗ 1)VG(ξ ⊗ η)|φ⊗ ψ〉
⇒〈(x⊗ 1)(ξ ⊗ η)|V ∗G(φ⊗ ψ)〉 = 〈VG(ξ ⊗ η)|(x∗φ)⊗ ψ〉

⇒
∫∫

(xξ)(s)η(t)φ(ts)ψ(t) ds dt =

∫∫
ξ(t−1s)η(t)(x∗φ)(s)ψ(t) ds dt

⇒
∫ (∫

(xξ)(t−1s)φ(s) ds

)
η(t)ψ(t) dt =

=

∫ (∫
ξ(t−1s)(x∗φ)(s) ds

)
η(t)ψ(t) dt

⇒
∫
〈λt(xξ)|φ〉η(t)ψ(t) dt =

∫
〈λtξ|x∗φ〉η(t)ψ(t) dt.

Therefore we get

〈λt(xξ)|φ〉 = 〈xλtξ|φ〉 ∀ξ, φ ∈ Cc(G), ∀t ∈ G

and since Cc(G) is dense in L2(G) it follows that xλt = λtx for all t ∈ G.
Thus x ∈ L(G)′ = R(G).

The relations B(L2(G))δG = L∞(G) and B(L2(G))βG = L(G) can be
proved similarly.

In the following, L∞(G) and L(G) will always be considered as Hopf-von
Neumann algebras with respect to αG and δG respectively.
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2.3.2 L∞(G)-comodules

In this section we present two very interesting properties of the Hopf-von
Neumann algebra (L∞(G), αG), which both generalize well known facts
about W*-dynamical systems.

The first is that the class of dynamical systems given by actions of G on
dual operator spaces by w*-continuous completely isometric automorphisms
coincides with the class of L∞(G)-comodules. Therefore, the notion of a
Hopf-von Neumann algebra and the associated comodules provide a natural
framework for the study of dynamical systems.

Secondly, we show that every L∞(G)-comodule is non-degenerate and
saturated (see Lemma 2.3.5 below). This is the key ingredient in the proofs
of some of our main results appearing in the following (see e.g. Proposition
3.2.9, Theorem 3.2.10 and Propositions 3.3.2 and 3.3.5).

Let us begin with some terminology. A G-dynamical system is a triple
(X,G, γ) where X is a dual operator space and γ : G → Aut(X) is a G-
action on X. That is γ is a group homomorphism from G into the group
Aut(X) of w*-continuous completely isometric automorphisms of X, i.e.

γs ◦ γt = γst ∀ s, t ∈ G

and for any ω ∈ X∗ and any x ∈ X the function

s 7→ 〈γs(x), ω〉, s ∈ G,

is continuous. A w*-closed subspace Y of X is called G-invariant if γs(Y ) ⊆
Y for all s ∈ G.

In the case where X is a von Neumann algebra, we will assume that, for
any s ∈ G, the automorphism γs is additionally a unital *-homomorphism.
Then, (X,G, γ) is called a W*-dynamical system and γ is called a W*-G-
action on X.

The proofs of the next three results, i.e. Lemma 2.3.2 and Propositions
2.3.3 and 2.3.4, are more or less standard at least in the context of W*-
dynamical systems (see for instance [46, Lemma 1/§13.1, §18.6]). However,
we have included these proofs (with some changes) for the reader’s conve-
nience and in order to make it clear that the validity of the statements does
not rely on the von Neumann algebra structure.

The following is needed for the proof of Proposition 2.3.3.

Lemma 2.3.2. If X is a dual operator space and F : G → X is a w*-
continuous and norm-bounded function, then there exists a unique element
T ∈ X⊗L∞(G), such that

〈T, ω ⊗ h〉 =

∫
G
〈F (s), ω〉h(s) ds, ∀ω ∈ X∗, ∀h ∈ L1(G).
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Proof. Since L∞(G) is abelian we have

X⊗L∞(G) = X⊗FL∞(G) ' (X∗⊗̂L1(G))∗ ' CB(X∗, L
∞(G)).

Consider the linear map Φ: X∗ → L∞(G) defined by

Φ(ω) = ω ◦ F, ω ∈ X∗

and observe that Φ is completely bounded since F is norm-bounded. Hence,
since the isomorphism ϕ : (X∗⊗̂L1(G))∗ → CB(X∗, L

∞(G)) is given by

〈ϕ(u)(ω), h〉 = 〈u, ω ⊗ h〉, ω ∈ X∗, h ∈ L1(G), u ∈ (X∗⊗̂L1(G))∗,

it follows that there exists a unique element T ∈ X⊗L∞(G) ' (X∗⊗̂L1(G))∗

such that, for any ω ∈ X∗ and h ∈ L1(G), we have

〈T, ω ⊗ h〉 = 〈Φ(ω), h〉 = 〈ω ◦ F, h〉 =

∫
G
〈F (s), ω〉h(s) ds.

Proposition 2.3.3. Let (X,G, γ) be a dynamical system. For every x ∈ X
there is a unique element πγ(x) ∈ X⊗L∞(G) such that

〈πγ(x), ω ⊗ h〉 =

∫
G
〈γ−1
s (x), ω〉h(s) ds, ∀ω ∈ X∗, ∀h ∈ L1(G). (2.2)

The map πγ : X → X⊗L∞(G) is an L∞(G)-action on X, i.e. πγ is a w*-
continuous complete isometry and satisfies

(πγ ⊗ idL∞(G)) ◦ πγ = (idX ⊗ αG) ◦ πγ . (2.3)

Also, we have
Xπγ = {x ∈ X : γs(x) = x, ∀s ∈ G} (2.4)

and the L∞(G)-subcomodules of X are exactly the G-invariant w*-closed
subspaces of X. Moreover, if X is a w*-closed subspace of B(H), then πγ
satisfies the so called covariance relations, i.e.

πγ(γs(x)) = (1H ⊗ λs)πγ(x)(1H ⊗ λ−1
s ), s ∈ G, x ∈ X. (2.5)

Finally, if (X,G, γ) is a W*-dynamical system, then (X,πγ) is a W*-L∞(G)
-comodule.

Proof. For any x ∈ X, the function s 7→ γs−1(x) is w*-continuous and
bounded by ‖x‖ and thus from Lemma 2.3.2 it follows that there is a unique
πγ(x) ∈ X⊗L∞(G) satisfying (2.2).

Using the definition of πγ , i.e. (2.2), it follows easily that πγ is w*-
continuous and completely isometric and if X is, in addition, a von Neumann
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algebra and each γs is a *-automorphism of X, then πγ is moreover a unital
*-homomorphism.

We now show that (2.3) holds. Indeed, for x ∈ X, ω ∈ X∗ and k, h ∈
L1(G), we have

〈(πγ ⊗ idL∞(G))(πγ(x)), ω ⊗ h⊗ k〉 = 〈πγ(x), ((ω ⊗ h) ◦ πγ)⊗ k〉

=

∫
〈πγ(γ−1

t (x)), ω ⊗ h〉k(t) dt

=

∫∫
〈γ−1
s (γ−1

t (x)), ω〉h(s)k(t) ds dt

=

∫∫
〈γ−1
ts (x), ω〉h(s)k(t) ds dt

=

∫∫
〈γ−1
s (x), ω〉h(t−1s)k(t) ds dt

and

〈(idX ⊗ αG)(πγ(x)), ω ⊗ h⊗ k〉 = 〈πγ(x), ω ⊗ (h⊗ k) ◦ αG〉
= 〈πγ(x), ω ⊗ (hk)〉
= 〈πγ(x), ω ⊗ (k ∗ h)〉

=

∫
〈γ−1
s (x), ω〉(k ∗ h)(s) ds

=

∫∫
〈γ−1
s (x), ω〉k(t)h(t−1s) dt ds

and the last two integrals are equal by Fubini’s theorem.
Next we prove (2.4), i.e. that for x ∈ X we have

πγ(x) = x⊗ 1 ⇐⇒ γs(x) = x ∀s ∈ G.

Indeed, if γs(x) = x ∀s ∈ G, then for any ω ∈ X∗ and h ∈ L1(G) we have

〈πγ(x), ω ⊗ h〉 =

∫
〈x, ω〉h(s) ds = 〈x, ω〉〈1, h〉 = 〈x⊗ 1, ω ⊗ h〉

and thus πγ(x) = x⊗ 1. Conversely, if πγ(x) = x⊗ 1, then for any ω ∈ X∗
and h ∈ L1(G) we have∫

〈γ−1
s (x), ω〉h(s) ds =

∫
〈x, ω〉h(s) ds

and hence the continuous and bounded function s 7→ 〈γ−1
s (x), ω〉 is almost

everywhere equal to the constant 〈x, ω〉. Therefore, 〈γ−1
s (x), ω〉 = 〈x, ω〉 for

all s ∈ G and ω ∈ X∗, that is γs(x) = x for all s ∈ G.
To prove (2.5), first note that, for h ∈ L∞(G)∗ ' L1(G), the element

h ◦Adλs ∈ L∞(G)∗ regarded as an element of L1(G) can be written

(h ◦Adλs)(t) = h(st), t ∈ G
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and thus, for ω ∈ X∗ and h ∈ L1(G), we have

〈(1H ⊗ λs)πγ(x)(1H ⊗ λ−1
s ), ω ⊗ h〉 = 〈πγ(x), ω ⊗ (h ◦Adλs)〉

=

∫
G
〈γ−1
t (x), ω〉h(st) dt

=

∫
G
〈γt−1s(x), ω〉h(t) dt

=

∫
G
〈γ−1
t (γs(x)), ω〉h(t) dt

= 〈πγ(γs(x)), ω ⊗ h〉.

Finally, if Y is a G-invariant (w*-closed) subspace of X, then it is clear
from the definition of πγ that πγ(Y ) ⊆ Y⊗L∞(G). Conversely, if Y is
an L∞(G)-subcomodule of (X,πγ), then L1(G) · Y ⊆ Y , where h · y =
(id ⊗ h) ◦ πγ(y) for h ∈ L1(G), y ∈ Y . Now, for y ∈ Y , h ∈ L1(G) and
s ∈ G, from (2.5) it follows

γs(h · y) = γs((id⊗ h) ◦ πγ(y)) = (id⊗ h) ◦ γs ◦ πγ(y)

= (id⊗ h)
(
(1⊗ λs)πγ(y)(1⊗ λ−1

s )
)

= (id⊗ (∆G(s)rsh)) ◦ πγ(y)

= ∆G(s)((rsh) · y) ∈ L1(G) · Y ⊆ Y,

where rsh(t) := h(ts). Thus γs(L
1(G) · y) ⊆ Y and since y ∈ L1(G) · yw∗

(see Lemma 2.3.5 below), it follows that γs(y) ∈ Y for any s ∈ G. Hence Y
is G-invariant.

Proposition 2.3.4. For any L∞(G)-action α : X → X⊗L∞(G) on a dual
operator space X there exists a unique G-action γ : G→ Aut(X), such that
α = πγ. In particular, γs = α−1 ◦ (idX ⊗Adλs) ◦ α for s ∈ G.

Proof. Suppose that X is a w*-closed subspace of B(H) for some Hilbert
space H.

First observe that the L∞(G)-action

αG : B(L2(G))→ B(L2(G))⊗L∞(G)

coincides with πAdλ, where

Adλ : G→ Aut(B(L2(G))),

Adλs(T ) = λsTλ
−1
s .

Indeed, for x ∈ R(G) we have αG(x) = x⊗1 = πAdλ(x). Also, for f ∈ L∞(G)
and k, h ∈ L1(G), by the definitions of πAdλ and αG, we have:

〈πAdλ(f), k ⊗ h〉 =

∫
G
〈λ−1
t fλt, k〉h(t) dt
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=

∫
G

(∫
G
f(ts)k(s) ds

)
h(t) dt = 〈αG(f), k ⊗ h〉.

Thus we get that the L∞(G)-action

idX ⊗ αG : X⊗B(L2(G))→ X⊗B(L2(G))⊗L∞(G)

is equal to πidX⊗Adλ, where (idX ⊗ Adλ)s(T ) = (1H ⊗ λs)T (1H ⊗ λ−1
s ) for

s ∈ G and T ∈ X⊗B(L2(G)).
Secondly, if an L∞(G)-comodule (Y, β) is isomorphic to an L∞(G)-

comodule of the form (Z, πγ), then β will be also of the form πγ′ . Indeed, if
φ : Y → Z is an isomorphism for the comodules (Y, β) and (Z, πγ), one can
take γ′s := φ−1 ◦ γs ◦ φ for s ∈ G.

Finally, since (X,α) is isomorphic to (α(X), id⊗αG) (see Remark 2.1.3)
which is an L∞(G)-subcomodule of (X⊗B(L2(G)), id ⊗ αG) and since any
L∞(G)-subcomodule is G-invariant (by Proposition 2.3.3), it follows from
all of the above, that α = πγ , where γ is the G-action on X given by
γs = α−1 ◦ (idX ⊗Adλs) ◦ α, s ∈ G.

For the uniqueness part note that if γ and γ′ are two G-actions on X
with πγ = πγ′ , then using (2.5), for any x ∈ X and s ∈ G, we have:

πγ(γs(x)) = (1H ⊗ λs)πγ(x)(1H ⊗ λ−1
s ) = (1H ⊗ λs)πγ′(x)(1H ⊗ λ−1

s )

= πγ′(γ
′
s(x)) = πγ(γ′s(x))

and thus γs(x) = γ′s(x) since πγ is injective. Therefore γ = γ′.

Lemma 2.3.5. Every L∞(G)-comodule is non-degenerate and saturated.
In particular, for any L∞(G)-comodule X and any x ∈ X, we have that

x ∈ L1(G) · xw∗
.

Proof. Let (X,α) be an L∞(G)-comodule with X a w*-closed subspace of
B(H) for some Hilbert space H.

By Remark 2.1.3, we have that α(X) is an L∞(G)-subcomodule of the
W*-L∞(G)-comodule (N, β) with N = B(H)⊗L∞(G) and β = idB(H)⊗αG.

Consider the w*-continuous *-injections π1, π2 : N → N⊗L∞(G) given
by:

〈π1(y), ω ⊗ f〉 =

∫
G
〈Ad(1H ⊗ λ−1

s )(y), ω〉f(s) ds,

〈π2(y), ω ⊗ f〉 =

∫
G
〈Ad(1H ⊗ λs)(y), ω〉f(s) ds,

for y ∈ N , ω ∈ N∗ and f ∈ L1(G). It is easy to verify that for any y ∈ N
we have:

π1(y) = (1H ⊗ V ∗G)(y ⊗ 1)(1H ⊗ VG) = β(y);

π2(y) = (1H ⊗ VG)(y ⊗ 1)(1H ⊗ V ∗G).
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Therefore, since π1(α(X)) = β(α(X)) ⊆ α(X)⊗L∞(G), it follows that for
any s ∈ G we have

Ad(1H ⊗ λ−1
s )(α(X)) = α(X),

that is

Ad(1H ⊗ λt)(α(X)) = α(X), for all t ∈ G

and thus

π2(α(X)) ⊆ α(X)⊗L∞(G).

Hence, since 1H ⊗ VG ∈ C1H⊗L(G)⊗L∞(G) and L∞(G)′ = L∞(G), it
follows that both Ad(1H ⊗ V ∗G) and Ad(1H ⊗ VG) map α(X)⊗L∞(G) into
α(X)⊗L∞(G) and so the restriction of Ad(1H ⊗ V ∗G) to α(X)⊗L∞(G) is a
completely isometric automorphism of α(X)⊗L∞(G).

It follows from the above that the map θ : X⊗L∞(G) → X⊗L∞(G)
defined by

θ = (α−1 ⊗ idL∞(G)) ◦Ad(1H ⊗ V ∗G) ◦ (α⊗ idL∞(G))

is a well defined w*-continuous completely isometric automorphism of
X⊗L∞(G). Also, using the definition of θ, we get that

θ(x⊗ 1) = α(x), x ∈ X

and

θ((1H ⊗ f)y) = (1H ⊗ f)θ(y), f ∈ L∞(G), y ∈ X⊗L∞(G).

Therefore, it follows that

X⊗L∞(G) = spanw∗{(1H ⊗ f)α(x) : x ∈ X, f ∈ L∞(G)},

which using (1.11) implies that

X⊗B(L2(G)) = spanw∗{(1H ⊗ b)α(x) : x ∈ X, b ∈ B(L2(G))},

that is (X,α) is non-degenerate.

So, we have proved that every L∞(G)-comodule is non-degenerate. Thus
it follows (from Corollary 2.2.7) that every L∞(G)-comodule is saturated
and non-degenerate.

Now, since every L∞(G)-comodule X is saturated it follows (from Propo-

sition 2.2.9) that x ∈ L1(G) · xw*
for all x ∈ X.
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2.3.3 L(G)-comodules and the approximation property

In this section we study the class of L(G)-comodules with respect to the
notions of non-degeneracy and saturation.

First, we show that an L(G)-comodule (Y, δ) is non-degenerate if and
only if Y is the w*-closed linear span of A(G) · Y , i.e. the converse of
Proposition 2.2.3 is true for the Hopf-von Neumann algebra (L(G), δG).

Using the above result, it follows that every L(G)-comodule is saturated
if and only if every L(G)-comodule is non-degenerate, that is the converse
of Corollary 2.2.7 is valid for (L(G), δG).

For a Hopf-von Neumann algebra (M,∆), recall that if any M -comodule
is saturated, then M∗ has a weak approximate unit (Proposition 2.2.9). We
prove here that the existence of an a priori stronger notion of approximate
unit in the Fourier algebra A(G) introduced by Haagerup and Kraus [22]
(see Definition 2.3.11) is necessary and sufficient in order to have that every
L(G)-comodule is saturated.

The next two results, that is Lemma 2.3.6 and Corollary 2.3.7, were
originally proved in [50] for W*-L(G)-comodules (see Lemma II.1.4 and
Corollary II.1.5 in [50]). However, exactly the same arguments as in the
proofs of Lemma II.1.4 and Corollary II.1.5 in [50] work for the case of
L(G)-comodules which are not necessarily von Neumann algebras. We have
included the proofs both for the sake of completeness and in order to make
it apparent for the reader that the von Neumann algebra structure is redun-
dant.

Lemma 2.3.6. Let δ : Y → Y⊗FL(G) be an L(G)-action on a w*-closed
subspace Y of B(H) for some Hilbert space H. For any y ∈ Y and any
f, k ∈ A(G) with compact support, we have

∫
G

∆G(s)−1(1H ⊗ λs)δ((fsk) · y) ds = (k · y)⊗ λ(∆−1
G f), (2.6)

where fs(t) = f(st) and the integral is understood in the w*-topology of
Y⊗FL(G) ' (Y∗⊗̂A(G))∗.

Proof. First, observe that the function

G 3 s 7→ ∆G(s)−1(1H ⊗ λs)δ((fsk) · y) ∈ Y⊗FL(G)

is w*-continuous and has compact support because the function fsk is zero
outside the set (supp(f))(supp(k))−1 which is compact. Therefore, the inte-
gral in (2.6) is well defined and represents a (unique) element of Y⊗FL(G).
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Also, for any φ ∈ Y∗ and any h ∈ A(G), we have:〈∫
G

∆G(s)−1(1H ⊗ λs)δ((fsk) · y) ds, φ⊗ h
〉

=

=

∫
G
〈(1H ⊗ λs)δ((fsk) · y), φ⊗ h〉∆G(s)−1 ds

=

∫
G
〈δ((fsk) · y), φ⊗ hs〉∆G(s)−1 ds

=

∫
G
〈hs · ((fsk) · y), φ〉∆G(s)−1 ds

=

∫
G
〈(hsfsk) · y), φ〉∆G(s)−1 ds

=

∫
G
〈δ(y), φ⊗ (hf)sk〉∆G(s)−1 ds

=

〈
δ(y), φ⊗

∫
G

(hf)sk∆G(s)−1 ds

〉
.

The integral
∫
G(hf)sk∆G(s)−1 ds is understood in the σ(A(G), L(G))-

topology and defines a unique element b ∈ A(G). For any t ∈ G, we have:

b(t) = 〈λt, b〉 =

〈
λt,

∫
G

(hf)sk∆G(s)−1 ds

〉
=

∫
G
〈λt, (hf)sk〉∆G(s)−1 ds

=

∫
G
h(st)f(st)k(t)∆G(s)−1 ds

=

(∫
G
h(s)f(s)∆G(s)−1 ds

)
k(t)

= 〈λ(f∆−1
G ), h〉k(t),

thus b = 〈λ(f∆−1
G ), h〉k and the first chain of equalities may be continued

as follows

〈δ(y), φ⊗ k〉〈λ(∆−1
G f), h〉 = 〈k · y, φ〉〈λ(∆−1

G f), h〉
= 〈(k · y)⊗ λ(∆−1

G f), φ⊗ h〉

and the proof is complete.

Corollary 2.3.7. If δ : Y → Y⊗FL(G) is an L(G)-action on a w*-closed
subspace Y of B(H) for some Hilbert space H, then for any y ∈ Y and any
k ∈ A(G), we have:

(k · y)⊗ 1L2(G) ∈ spanw∗{(1H ⊗ λs)δ((hk) · y) : s ∈ G, h ∈ A(G)}, (2.7)

where k · y = (idY ⊗ k)(δ(y)), for k ∈ A(G) and y ∈ Y .



38 CHAPTER 2. GENERAL THEORY OF COMODULES

Proof. From Lemma 2.3.6 it follows that

(k · y)⊗ λ(∆−1
G f) ∈ spanw∗{(1H ⊗ λs)δ((hk) · x) : s ∈ G, h ∈ A(G)} (2.8)

for any y ∈ Y and any k, f ∈ A(G) both with compact support. By [15,
Lemme (3.2)], we have that L1(G) contains a bounded approximate identity
of the form {∆−1

G fi}i∈I , where fi ∈ A(G) are functions of compact support.
Therefore, λ(∆−1

G fi) −→ 1L2(G) ultraweakly and thus using (2.8), we get
(2.7) for k ∈ A(G) with compact support. Since the functions in A(G) with
compact support are norm dense in A(G) (by [15, Proposition (3.26)]), we
get (2.7) for all k ∈ A(G).

Using the above we can prove that the converse of Proposition 2.2.3 is
true for the Hopf-von Neumann algebra (L(G), δG).

Corollary 2.3.8. Let (Y, δ) be an L(G)-comodule where Y is a w*-closed
subspace of B(H) for some Hilbert space H. Then, the following are equiv-
alent:

(i) Y = spanw∗{h · y : h ∈ A(G), y ∈ Y };

(ii) (Y, δ) is non-degenerate;

(iii) Y⊗B(L2(G)) = spanw∗{(1H⊗b)δ(y)(1H⊗c) : y ∈ Y, b, c ∈ B(L2(G))},

where h · y = (idY ⊗ h)(δ(y)), for h ∈ A(G) and y ∈ Y .

Proof. (iii) =⇒ (i): Let φ ∈ Y∗, such that φ(h · y) = 0, for all h ∈ A(G) and
y ∈ Y . Then, we have:

φ ◦ (idY ⊗ h) ◦ δ(x) = 0, ∀h ∈ A(G), ∀y ∈ Y
=⇒ 〈(φ⊗ idB(K)) ◦ δ(x), h〉 = 0, ∀h ∈ A(G), ∀y ∈ Y
=⇒ (φ⊗ idB(K)) ◦ δ(x) = 0, ∀y ∈ Y
=⇒ b(φ⊗ idB(K))(δ(x))c = 0, ∀b, c ∈ B(K), ∀y ∈ Y
=⇒ (φ⊗ idB(K)) ((1H ⊗ b)δ(x)(1H ⊗ c)) = 0, ∀b, c ∈ B(K), ∀y ∈ Y.

Since (iii) holds, the last condition implies that

(φ⊗ idB(L2(G)))(z) = 0, ∀z ∈ Y⊗B(L2(G)),

thus φ(y)1 = (φ ⊗ idB(L2(G)))(y ⊗ 1) = 0 for any y ∈ Y and hence φ = 0.
Thus the desired conclusion, i.e. condition (i), follows from the Hahn-Banach
theorem.

(ii) =⇒ (iii): This follows from the obvious inclusion

{(1H ⊗ b)δ(y) : y ∈ Y, b ∈ B(L2(G))} ⊆
⊆ {(1H ⊗ b)δ(y)(1H ⊗ c) : y ∈ Y, b, c ∈ B(L2(G))}.
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(i) =⇒ (ii): Suppose that Y = spanw∗{h · y : h ∈ A(G), y ∈ Y }. From
Corollary 2.3.7 above it follows that, for any z ∈ Y , we have

z ⊗ 1L2(G) ∈ spanw∗{(1H ⊗ b)δ(y) : b ∈ B(L2(G)), y ∈ Y }.

Therefore, for any z ∈ Y and c ∈ B(L2(G)), we get that

z⊗c = (1H⊗c)(z⊗1L2(G)) ∈ spanw∗{(1H⊗b)δ(y) : b ∈ B(L2(G)), y ∈ Y },

because the multiplication in B(H)⊗B(L2(G)) is separately w*-continuous.
Thus, we have that

Y⊗B(L2(G)) ⊆ spanw∗{(1H ⊗ b)δ(y) : b ∈ B(L2(G)), y ∈ Y }

and thus we get that Y is non-degenerate since the reverse inclusion is
trivial.

Comment 2.3.9. Note that, for an L(G)-comodule (Y, δ), the subspace

Z := spanw∗{A(G) · Y } ⊆ Y

is the largest non-degenerate L(G)-subcomodule of Y .
Indeed, Z is clearly an L(G)-subcomodule of Y because it is an A(G)-

submodule of Y . Also, Z is non-degenerate by Corollary 2.3.7 (using a
similar argument as in the proof of the implication (i) =⇒ (ii) in Corollary
2.3.8). Finally, if Z0 is a non-degenerate L(G)-subcomodule of Y , then
Z0 = spanw∗{A(G) · Z0} (by Proposition 2.2.3) and thus we have that

Z0 = spanw∗{A(G) · Z0} ⊆ spanw∗{A(G) · Y } = Z.

Following [8], [11] and [22], we have the following definitions.

Definition 2.3.10. A complex-valued function u : G→ C is called a multi-
plier for the Fourier algebra A(G) if the linear map mu(v) = uv maps A(G)
into A(G). In this case, a straightforward application of the closed graph
theorem shows that mu is a bounded operator. For a multiplier u we denote
by Mu : L(G) → L(G) the adjoint map m∗u of mu. The function u is called
a completely bounded multiplier if Mu is completely bounded. The space of
all completely bounded multipliers is denoted by McbA(G).

It is known (see e.g. [8]) that McbA(G) is a Banach algebra with the
norm ||u||Mcb

= ||Mu||cb and pointwise multiplication. Moreover, A(G) ⊆
McbA(G) (see [8]) and McbA(G) is the dual Banach space of the Banach
space Q(G), which is defined to be the completion of L1(G) with respect to
the norm

‖f‖Q = sup

{∣∣∣∣∫
G
f(s)u(s)ds

∣∣∣∣ : u ∈McbA(G), ‖u‖Mcb
≤ 1

}
.
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Definition 2.3.11 (Haagerup-Kraus, [22]). We say that a locally compact
group G has the approximation property (or the AP) if there is a net {ui}i∈I
in A(G), such that ui → 1 in the σ(McbA(G), Q(G))-topology.

Note that the approximation property is a weaker notion than amenabil-
ity since amenability means exactly that the Fourier algebra A(G) has a
(norm) bounded approximate identity (see [36]).

For more details on completely bounded multipliers and the approxima-
tion property see for example [8], [11] and [22].

We will need the following theorem due to Haagerup and Kraus (see [22,
Theorem 1.9]).

Theorem 2.3.12 (Haagerup-Kraus). For a locally compact group G, the
following conditions are equivalent:

(i) G has the AP;

(ii) There is a net {ui} ⊆ A(G), such that the net {Mui} ⊆ CBσ(L(G))
converges in the stable point-w*-topology to idL(G).

Remark 2.3.13. Observe that for any u, h ∈ A(G) and y ∈ L(G) we have:

〈Mu(y), h〉 = 〈y,mu(h)〉
= 〈y, hu〉
= 〈δG(y), h⊗ u〉
= 〈(idL(G) ⊗ u) ◦ δG(y), h〉,

therefore

Mu = (idL(G) ⊗ u) ◦ δG, for all u ∈ A(G). (2.9)

Proposition 2.3.14. For a locally compact group G the following conditions
are equivalent:

(a) G has the AP;

(b) Every L(G)-comodule is saturated;

(c) For any L(G)-comodule (Y, δ), any L(G)-subcomodule Z of Y and any
y ∈ Y , we have that δ(y) ∈ Z⊗FL(G) implies y ∈ Z;

(d) For any L(G)-comodule (Y, δ) and any y ∈ Y , we have y ∈ A(G) · yw*;

(e) There exists a net {ui}i∈I in A(G) such that for any L(G)-comodule
(Y, δ) and any y ∈ Y we have that ui · y −→ y ultraweakly;

(f) Every L(G)-comodule is non-degenerate.
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Proof. The equivalence of conditions (a) to (e) follows immediately from
Proposition 2.2.9, Theorem 2.3.12 and the relation (2.9). The implication
(f) =⇒ (b) follows from Corollary 2.2.7 whereas the implication (d) =⇒ (f)
follows from Corollary 2.3.8.

Remark 2.3.15. According to Proposition 2.3.14, if G has the AP, then
every L(G)-comodule is saturated and non-degenerate.

On the other hand, if G does not have the AP, then Proposition 2.3.14
guarantees the existence of L(G)-comodules which are not saturated and
the existence of L(G)-comodules that are not non-degenerate. However, the
author does not know of any example of a group G (necessarily without
the AP), such that there exists a single L(G)-comodule which is neither
saturated nor non-degenerate.
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Chapter 3

Crossed products

3.1 Crossed products of L∞(G)-comodules

Before we proceed to the study of crossed products of L∞(G)-comodules,
let us recall some known results from the theory of crossed products of von
Neumann algebras.

Let M be a von Neumann algebra and let γ : G → Aut(M) be a W*-
G-action on M , i.e. a group homomorphism from G to the group of unital
w*-continuous *-automorphisms of M , such that the function

G 3 s 7→ γs(x) ∈M

is w*-continuous for any x ∈ M . Then, by Proposition 2.3.3, we have a
W*-L∞(G)-action α : M →M⊗L∞(G) given by

〈α(x), ω ⊗ f〉 =

∫
G
〈γs−1(x), ω〉f(s) ds, x ∈M, ω ∈M∗, f ∈ L1(G).

Recall that the fixed points of the action γ are exactly the fixed point
subspace Mα, that is an x ∈M satisfies α(x) = x⊗1 if and only if γs(x) = x
for all s ∈ G (see Proposition 2.3.3).

The (usual) crossed product M oα G (or M oγ G) is defined as the von
Neumann subalgebra of M⊗B(L2(G)) generated by α(M) and C1⊗L(G),
which by von Neumann’s double commutant theorem is given by

M oα G = (α(M) ∪ (C1⊗L(G)))′′ .

According to the Digernes-Takesaki theorem (see for example [53, Chap-
ter X, Corollary 1.22]) we have thatMoαG is equal to the fixed point algebra
of the W*-G-action β on M⊗B(L2(G)) defined by

βs = γs ⊗Adρs, s ∈ G.

43
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Moreover, (see also [38] page 9) the W*-L∞(G)-action corresponding to
the G-action β = γ ⊗Adρ, which we denote by α̃, is given directly by α via
the formula:

α̃ = (idM ⊗AdU∗G) ◦ (idM ⊗ σ) ◦ (α⊗ idB(L2(G)))

where σ is the flip isomorphism on B(L2(G))⊗B(L2(G)), i.e. σ(x ⊗ y) =
y ⊗ x. Therefore, the Digernes-Takesaki theorem may be rephrased as

M oα G =
(
M⊗B(L2(G))

)α̃
.

Taking into consideration all of the above, Hamana [19] suggested Def-
initions 3.1.1 and 3.1.3 below. However, for the sake of consistency, our
terminology and symbols are slightly different from Hamana’s (see Remark
3.1.5).

Definition 3.1.1. For an L∞(G)-comodule (X,α), we define the map

α̃ : X⊗B(L2(G))→ X⊗B(L2(G))⊗L∞(G)

by

α̃ = (idX ⊗AdU∗G) ◦ (idX ⊗ σ) ◦ (α⊗ idB(L2(G))),

where σ is the flip isomorphism on B(L2(G))⊗B(L2(G)).

X⊗B(L2(G)) X⊗L∞(G)⊗B(L2(G))

X⊗B(L2(G))⊗L∞(G)

X⊗B(L2(G))⊗L∞(G)

α⊗idB(L2(G))

α̃

idX⊗σ

idX⊗AdU∗G

The next result is essentially the same as [19, Lemma 5.3 (i)] with the
appropriate modifications since Hamana considers on L∞(G) the (opposite)
comultiplication σ◦αG and uses the right group von Neumann algebra R(G)
instead of L(G) as the dual object of L∞(G).

Proposition 3.1.2 (Hamana [19]). If (X,α) is an L∞(G)-comodule, then α̃
is an L∞(G)-action on X⊗B(L2(G)) which commutes with the L(G)-action
idX ⊗ δG on X⊗B(L2(G)).

Proof. By Remark 2.1.3 we may suppose that X is a w*-closed subspace
of a von Neumann algebra N of the form N = B(H)⊗L∞(G) for some
Hilbert space H and α = ε|X , where ε = idB(H) ⊗ αG. Then obviously
α̃ = ε̃|X⊗B(L2(G)) and ε̃ is a W*-L∞(G)-action on N⊗B(L2(G)). Since ε̃ is
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a w*-continuous *-monomorphism, the latter fact can be easily verified by
checking the relation

(ε̃⊗ idL∞(G)) ◦ ε̃ = (idN ⊗ idB(L2(G)) ⊗ αG) ◦ ε̃

on the generators of N⊗B(L2(G)), that is on the elements of the form z⊗1,
1⊗1⊗f and 1⊗1⊗λs for z ∈ N , f ∈ L∞(G) and s ∈ G, because B(L2(G))
is generated by L(G) and L∞(G).

Thus, in order to prove that α̃ is an L∞(G)-action on X⊗B(L2(G)), we
only need to show that ε̃(X⊗B(L2(G))) ⊆ X⊗B(L2(G))⊗L∞(G). Indeed,
we have

(ε⊗ idB(L2(G)))(X⊗B(L2(G))) ⊆ X⊗L∞(G)⊗B(L2(G))

and thus

(idX ⊗ σ) ◦ (ε⊗ idB(L2(G)))(X⊗B(L2(G))) ⊆ X⊗B(L2(G))⊗L∞(G).

Since UG ∈ R(G)⊗L∞(G) and X⊗B(L2(G))⊗L∞(G) is a
C1H⊗B(L2(G))⊗L∞(G)-bimodule, we get:

(idX ⊗AdU∗G) ◦ (idX ⊗ σ) ◦ (ε⊗ idB(L2(G)))(X⊗B(L2(G)))

⊆ X⊗B(L2(G))⊗L∞(G).

On the other hand, in order to prove that α̃ and idX ⊗ δG commute,
it suffices to verify that idB(H) ⊗ idL∞(G) ⊗ δG and ε̃ commute, where ε =
idB(H)⊗αG. Because ε̃ and idB(H)⊗ idL∞(G)⊗δG act identically on the first
factor B(H), we only need to prove that idL∞(G) ⊗ δG and α̃G commute,
that is:

(α̃G ⊗ idL(G)) ◦ (idL∞(G) ⊗ δG) = (3.1)

=(idL∞(G) ⊗ idB(L2(G)) ⊗ σ) ◦ (idL∞(G) ⊗ δG ⊗ idL∞(G)) ◦ α̃G

Let S denote the unitary on L2(G) ⊗ L2(G) with S(ξ ⊗ η) = η ⊗ ξ. Thus,
the flip isomorphism σ on B(L2(G))⊗B(L2(G)) is written as σ = AdS. If
a ∈ L∞(G) and b ∈ B(L2(G)), then by applying the left and right hand
sides of (3.1) on a⊗ b, we get respectively:

(α̃G ⊗ idL(G)) ◦ (idL∞(G) ⊗ δG)(a⊗ b) =

Ad[(1⊗ U∗G ⊗ 1)(1⊗ S ⊗ 1)(V ∗G ⊗ 1⊗ 1)(1⊗ S ⊗ 1)(1⊗ 1⊗ S) (3.2)

(1⊗W ∗G ⊗ 1)](a⊗ b⊗ 1⊗ 1)

and

(idL∞(G) ⊗ idB(L2(G)) ⊗ σ) ◦ (idL∞(G) ⊗ δG ⊗ idL∞(G)) ◦ α̃G(a⊗ b) =

Ad[(1⊗ 1⊗ S)(1⊗W ∗G ⊗ 1)(1⊗ 1⊗ S)(1⊗ U∗G ⊗ 1)(1⊗ S ⊗ 1) (3.3)

(V ∗G ⊗ 1⊗ 1)(1⊗ S ⊗ 1)](a⊗ b⊗ 1⊗ 1)
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Consider the unitaries in the square brackets in (3.2) and (3.3):

A = (1⊗U∗G ⊗ 1)(1⊗ S ⊗ 1)(V ∗G ⊗ 1⊗ 1)(1⊗ S ⊗ 1)(1⊗ 1⊗ S)(1⊗W ∗G ⊗ 1)

and

B = (1⊗1⊗S)(1⊗W ∗G⊗1)(1⊗1⊗S)(1⊗U∗G⊗1)(1⊗S⊗1)(V ∗G⊗1⊗1)(1⊗S⊗1).

Then, (3.1) is equivalent to

A(a⊗b⊗1⊗1)A∗ = B(a⊗b⊗1⊗1)B∗, for all a ∈ L∞(G) and b ∈ B(L2(G)),

which in turn is equivalent to the condition:

A∗B ∈ L∞(G)⊗C1⊗B(L2(G))⊗B(L2(G)).

The last condition is verified by computing

A∗B = 1⊗ 1⊗ VGS ∈ C1⊗C1⊗B(L2(G))⊗B(L2(G)).

Definition 3.1.3. Let (X,α) be an L∞(G)-comodule. The Fubini crossed
product of X by α is defined to be the L(G)-comodule (X oFα G, α̂), where

X oFα G := (X⊗B(L2(G)))α̃

and
α̂ := (idX ⊗ δG)|XoFαG.

The L(G)-action α̂ : X oFα G→ (X oFα G)⊗FL(G) is called the dual action
of α.

By Proposition 3.1.2 and Lemma 2.1.7 we get that (XoFα G, α̂) is indeed
an L(G)-subcomodule of (X⊗B(L2(G)), idX ⊗ δG).

Definition 3.1.4. Let (X,α) be an L∞(G)-comodule and suppose that X
is a w*-closed subspace of B(H) for some Hilbert space H. The spatial
crossed product of X by α is defined to be the space

XoαG := spanw∗{(1H ⊗ λs)α(x)(1H ⊗ λt) : s, t ∈ G, x ∈ X}
⊆ B(H)⊗B(L2(G)).

Note that Definition 3.1.4 is naturally dictated by the fact that if M
is a von Neumann algebra, γ is a G-action on M and α is the W*-L∞(G)-
action on M corresponding to γ as above, then the crossed product MoαG is
equal to the w*-closed C1⊗L(G)-bimodule generated by α(M). This follows
immediately from the well known covariance relations (recall (2.5)):

α(γs(x)) = (1⊗ λs)α(x)(1⊗ λ−1
s ), s ∈ G, x ∈M.
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Remark 3.1.5. From the discussion above, it follows that if (M,α) is a
W*-L∞(G)-comodule, then MoFα G = MoαG = MoαG, where MoαG =
(α(M) ∪ (C1⊗L(G)))′′ is the usual von Neumann algebra crossed product.
Interestingly, we will prove later that this is not true in general for arbitrary
L∞(G)-comodules unless G has the approximation property of Haagerup
and Kraus (see Theorem 3.3.10).

Note that if (X,α) is an L∞(G)-comodule with α trivial, that is α(x) =
x⊗ 1 for all x ∈ X, then for x ∈ X and b ∈ B(L2(G)) we have

α̃(x⊗ b) = (idX ⊗AdU∗G) ◦ (idX ⊗ σ) ◦ (α⊗ idB(L2(G)))(x⊗ b)
= (idX ⊗AdU∗G) ◦ (idX ⊗ σ)(x⊗ 1⊗ b)
= (idX ⊗AdU∗G)(x⊗ b⊗ 1)

= (idX ⊗ βG)(x⊗ b)

and thus α̃ = idX ⊗ βG. Since B(L2(G))βG = L(G) it follows that

X oFα G = (X⊗B(L2(G)))α̃

= (X⊗B(L2(G)))idX⊗βG

= X⊗F (B(L2(G)))βG

= X⊗FL(G).

This actually explains the term ‘Fubini crossed product’ which was first used
in [56]. We should note here that Hamana had already considered the notion
of Fubini crossed products in [19] but he did not use the same term.

On the other hand, it is obvious that XoαG = X⊗L(G) when α is
trivial and thus the term ’spatial crossed product’ is similarly justified.

Also, for a locally compact group (even in the discrete case) it is not
necessarily true that X⊗L(G) = X⊗FL(G) for any dual operator space X.
Indeed, if we take G to be any discrete group failing the approximation prop-
erty (for example G = SL(3,Z), see [33]), then, by [22, Theorem 2.1], it fol-
lows that there is a dual operator space X such that X⊗L(G) 6= X⊗FL(G).
Therefore, in this case, the equality X oFα G = XoαG is not valid for
all L∞(G)-comodules (X,α) in contrast to the von Neumann algebra case.
Thus the distinction between Fubini and spatial crossed products seems to
be necessary in the setting of general dual operator spaces.

It was shown by Crann and Neufang [12] that if G is a locally compact
group with the AP, then XoFα G = XoαG for any L∞(G)-comodule (X,α)
[12, Corollary 4.8]. We warn the reader that Crann and Neufang consider
G-invariant subspaces of von Neumann algebras instead of general L∞(G)-
comodules, but this is not restrictive at all. Indeed, every L∞(G)-comodule
is isomorphic to a subcomodule of a W*-L∞(G)-comodule (see Remark 2.1.3
and Proposition 3.1.8), that is, a G-invariant subspace of a von Neumann



48 CHAPTER 3. CROSSED PRODUCTS

algebra, since every W*-L∞(G)-action comes from a pointwise G-action as
pointed out above.

Also, in [12] Crann and Neufang define the Fubini crossed product of a
G-invariant subspace X of a von Neumann algebra M using an appropriate
operator valued weight (see [12, Definition 3.1]). However, their definition
is equivalent to Definition 3.1.3. Indeed, from [12, Proposition 3.2] it follows
that the Fubini crossed product of X in the sense of Crann-Neufang is the
intersection

(M oα G) ∩ (X⊗B(L2(G))).

Since M oα G = (M⊗B(L2(G)))α̃ (by the Digernes-Takesaki theorem), it
follows that the above intersection is equal to (X⊗B(L2(G)))α̃ that is the
Fubini crossed product X oFα G according to Definition 3.1.3.

Later, using a generalized version of Takesaki-duality and its relation
with the AP, we will give an alternative proof of the aforementioned result
of Crann and Neufang (i.e. [12, Corollary 4.8]), avoiding the use of operator
valued weights. Moreover, we are going to prove that its converse is also
true (see Theorem 3.3.10).

Remark 3.1.6. Let H, K be Hilbert spaces, X ⊆ B(H) be a w*-closed
subspace and b, c ∈ B(K). Then, we have

(1H ⊗ b)(X⊗B(K))(1H ⊗ c) ⊆ X⊗B(K).

As a consequence, if (X,α) is an L∞(G)-comodule, then

XoαG ⊆ X⊗B(L2(G)),

because α(X) ⊆ X⊗L∞(G) ⊆ X⊗B(L2(G)).

Also, if in addition Y is a w*-closed subspace of B(L) for some Hilbert
space L and φ : X → Y is a w*-continuous completely bounded map, then
φ⊗ idB(K) : X⊗B(K)→ Y⊗B(K) is a w*-continuous B(K)-bimodule map
in the sense that

(φ⊗ idB(K))((1H ⊗ a)x(1H ⊗ b)) = (1L ⊗ a)(φ⊗ idB(K))(x)(1L ⊗ b),

for all a, b ∈ B(K) and x ∈ X⊗B(K).

Proposition 3.1.7. Let (X,α) be an L∞(G)-comodule and suppose that X
is a w*-closed subspace of B(H) for some Hilbert space H. Then, X oFα G
is an L(G)-bimodule, i.e.

(1H ⊗ λs)y(1H ⊗ λt) ∈ X oFα G, s, t ∈ G, y ∈ X oFα G

and

α(X) ⊆ X oFα G.
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Therefore, we have:
XoαG ⊆ X oFα G.

Furthermore, α̂(XoαG) ⊆ (XoαG)⊗FL(G), that is XoαG is an L(G)-
subcomodule of (X oFα G, α̂).

Proof. Let s ∈ G and y ∈ X oFα G. Then, by Remark 3.1.6 we have that
(1H ⊗ λs)y ∈ X⊗B(L2(G)) and α̃(y) = y ⊗ 1, by Definition 3.1.3. Also, by
Remark 3.1.6, we have that

(α⊗ idB(L2(G)))((1H ⊗ λs)y) = (1H ⊗ 1L2(G) ⊗ λs)(α⊗ idB(L2(G)))(y).

Thus, we have:

α̃((1H ⊗ λs)y) =

= (idX ⊗AdU∗G) ◦ (idX ⊗ σ) ◦ (α⊗ idB(L2(G)))((1H ⊗ λs)y)

= (idX ⊗AdU∗G) ◦ (idX ⊗ σ)
(
(1H ⊗ 1L2(G) ⊗ λs)(α⊗ idB(L2(G)))(y)

)
=
[
(idB(H) ⊗AdU∗G) ◦ (idB(H) ⊗ σ)((1H ⊗ 1L2(G) ⊗ λs))

]
α̃(y)

=
[
(1H ⊗ U∗G)(1H ⊗ λs ⊗ 1L2(G))(1H ⊗ UG)

]
(y ⊗ 1L2(G))

= (1H ⊗ λs)y ⊗ 1L2(G),

where the third equality above follows from the fact that (idB(H)⊗AdU∗G) ◦
(idB(H) ⊗ σ) is a *-homomorphism and thus multiplicative, while the last
equality is because UG ∈ R(G)⊗L∞(G) and R(G) = L(G)′. Therefore,
(1H ⊗ λs)y ∈ X oFα G. Similarly, we get y(1H ⊗ λt) ∈ X oFα G for all t ∈ G
and y ∈ X oFα G.
On the other hand, if x ∈ X, then:

α̃(α(x)) = (idX ⊗AdU∗G) ◦ (idX ⊗ σ) ◦ (α⊗ idB(L2(G)))(α(x))

= (idX ⊗AdU∗G) ◦ (idX ⊗ σ) ◦ (idX ⊗ αG)(α(x))

= (idX ⊗AdU∗G) ◦ (idX ⊗ α′G)(α(x))

= (1H ⊗ U∗G)(1H ⊗ UG)(α(x)⊗ 1L2(G))(1H ⊗ U∗G)(1H ⊗ UG)

= α(x)⊗ 1L2(G),

because α′G = σ ◦ αG and α′G(f) = UG(f ⊗ 1)U∗G, for all f ∈ L∞(G) (see
subsection 2.3.1). Hence, α(X) ⊆ X oFα G.
Finally, for x ∈ X and s ∈ G, we have:

α̂((1H ⊗ λs)α(x)) = (idB(H) ⊗ δG)((1H ⊗ λs)α(x))

= (idB(H) ⊗ δG)(1H ⊗ λs))(idB(H) ⊗ δG)(α(x))

= (1H ⊗ δG(λs))(1H ⊗W ∗G)(α(x)⊗ 1L2(G))(1H ⊗WG)

= (1H ⊗ λs ⊗ λs)(α(x)⊗ 1L2(G)),
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because 1H ⊗WG ∈ C1H⊗L∞(G)⊗L(G) commutes with α(x) ⊗ 1L2(G) ∈
B(H)⊗ L∞(G)⊗C1L2(G). Therefore, we get:

α̂((1H ⊗ λs)α(x)) = ((1H ⊗ λs)α(x))⊗ λs

and it follows that α̂(XoαG) ⊆ (XoαG)⊗FL(G).

The next result proves that, for any L∞(G)-comodule X, both the Fubini
crossed product and the spatial crossed product are unique up to comodule
isomorphisms and thus independent of the Hilbert space on which X is
represented.

Proposition 3.1.8 (Uniqueness of crossed product). Let (X,α) and (Y, β)
be two L∞(G)-comodules and suppose that X and Y are w*-closed subspaces
of B(H) and B(K) respectively. Let Φ: X → Y be an L∞(G)-comodule
isomorphism.

Then the map Ψ := Φ⊗ idB(L2(G)) : X⊗B(L2(G))→ Y⊗B(L2(G)) is an
L∞(G)-comodule isomorphism from (X⊗B(L2(G)), α̃) onto
(Y⊗B(L2(G)), β̃), which maps XoFαG onto YoFβ G and XoαG onto YoβG.

Also, Ψ|XoFαG is an L(G)-comodule isomorphism from (X oFα G, α̂) onto

(Y oFβ G, β̂) and Ψ|XoαG is an L(G)-comodule isomorphism from (XoαG, α̂)

onto (YoβG, β̂).
Furthermore, Ψ is an L(G)-bimodule map, i.e. Ψ((1H⊗λs)x(1H⊗λt)) =

(1K ⊗ λs)Ψ(x)(1K ⊗ λt), for all s, t ∈ G and x ∈ X⊗B(L2(G)).

Proof. First, since Φ is a comodule morphism we have that β◦Φ = (Φ⊗id)◦α
and hence:

β̃ ◦Ψ = (id⊗AdU∗G) ◦ (id⊗ σ) ◦ (β ⊗ id) ◦ (Φ⊗ id)

= (id⊗AdU∗G) ◦ (id⊗ σ) ◦ ((β ◦ Φ)⊗ id)

= (id⊗AdU∗G) ◦ (id⊗ σ) ◦ [((Φ⊗ id) ◦ α)⊗ id]

= (id⊗AdU∗G) ◦ (id⊗ σ) ◦ (Φ⊗ id⊗ id) ◦ (α⊗ id)

= (Φ⊗ id⊗ id) ◦ (id⊗AdU∗G) ◦ (id⊗ σ) ◦ (α⊗ id)

= (Ψ⊗ id) ◦ α̃.

Thus Ψ is an L∞(G)-comodule isomorphism from (X⊗B(L2(G)), α̃) onto
(Y⊗B(L2(G)), β̃). This implies that Ψ maps the fixed point subspace XoFα
G of α̃ onto the fixed point subspace Y oFβ G of β̃. On the other hand, the
relation β ◦ Φ = (Φ⊗ id) ◦ α yields that

Ψ(α(X)) = (Φ⊗ id)(α(X)) = β(Φ(X)) = β(Y )

and since Ψ is an L(G)-bimodule map (see Remark 3.1.6) it follows that Ψ
maps XoαG onto YoβG. It remains to show that

β̂ ◦Ψ = (Ψ⊗ id) ◦ α̂.
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Indeed:

β̂ ◦Ψ = (idY ⊗ δG) ◦ (Φ⊗ idB(L2(G)))

= (Φ⊗ idB(L2(G)) ⊗ idL(G)) ◦ (idX ⊗ δG)

= (Ψ⊗ idL(G)) ◦ α̂.

Corollary 3.1.9. For any L∞(G)-comodule (X,α) the Fubini crossed prod-
uct (XoFαG, α̂) is a saturated L(G)-comodule and the spatial crossed product
(XoαG, α̂) is a non-degenerate L(G)-comodule.

Proof. Suppose that X is a w*-closed subspace of B(H) for some Hilbert
space H and let K := H ⊗ L2(G).

First we show that (XoαG, α̂) is a non-degenerate L(G)-comodule. We
have that (XoαG)⊗B(L2(G)) is a C1K⊗B(L2(G))-bimodule. Thus, since
α̂(XoαG) ⊆ (XoαG)⊗FL(G) ⊆ (XoαG)⊗B(L2(G)), we have the inclu-
sion

(XoαG)⊗B(L2(G)) ⊇ spanw∗{(1K ⊗ b)α̂(y) : b ∈ B(L2(G)), y ∈ XoαG}.

For the reverse inclusion, observe that for any s, t ∈ G, x ∈ X and
b ∈ B(L2(G)), we have

((1H ⊗ λs)α(x)(1H ⊗ λt))⊗ b =

= (1H ⊗ 1L2(G) ⊗ bλ−1
t λ−1

s )(((1H ⊗ λs)α(x)(1H ⊗ λt))⊗ λst)

= (1H ⊗ 1L2(G) ⊗ bλ−1
st )(1H ⊗ λs ⊗ λs)(α(x)⊗ 1L2(G))(1H ⊗ λt ⊗ λt)

= (1H ⊗ 1L2(G) ⊗ bλ−1
st )(idB(H) ⊗ δG)((1H ⊗ λs)α(x)(1H ⊗ λt))

= (1H ⊗ 1L2(G) ⊗ bλ−1
st )α̂((1H ⊗ λs)α(x)(1H ⊗ λt)),

since

(idB(H)⊗ δG)(1H ⊗ λs) = 1H ⊗ λs⊗ λs and (idB(H)⊗ δG)(α(x)) = α(x)⊗ 1.

Therefore, we get

((1H ⊗ λs)α(x)(1H ⊗ λt))⊗ b ∈

∈ spanw∗{(1K ⊗ c)α̂(y) : c ∈ B(L2(G)), y ∈ XoαG}.

Since (XoαG)⊗B(L2(G)) is in the w*-closed linear span of the elements
of the form ((1H ⊗ λs)α(x)(1H ⊗ λt)) ⊗ b, we obtain the desired inclusion
and so (XoαG, α̂) is non-degenerate.

For the Fubini crossed product, note that by Lemma 2.2.10 the L(G)-
comodule (X⊗B(L2(G)), idX ⊗ δG) is saturated, because (B(L2(G)), δG)
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is saturated (see Remark 3.3.4). Also, the actions α̃ and idX ⊗ δG on
X⊗B(L2(G)) commute by Proposition 3.1.2. Thus, it follows from Lemma

2.2.11 that (X oFα G, α̂) is saturated, because X oFα G =
(
X⊗B(L2(G))

)α̃
and α̂ = (idX ⊗ δG)|XoFαG by definition.

Proposition 3.1.10. For any L∞(G)-comodule (X,α), we have

(X oFα G)α̂ = (XoαG)α̂ = α(X) = Sat(X,α) = (X⊗L∞(G))α̃.

Proof. We prove first that Sat(X,α) = (X⊗L∞(G))α̃. Indeed, for any x ∈
X⊗L∞(G), we have:

x ∈ (X⊗L∞(G))α̃ ⇐⇒ α̃(x) = x⊗ 1

⇐⇒ (idX ⊗AdU∗G) ◦ (idX ⊗ σ) ◦ (α⊗ idB(L2(G)))(x) = x⊗ 1

⇐⇒ (α⊗ idL∞(G))(x) = (idX ⊗ σ) ((1H ⊗ UG)(x⊗ 1)(1H ⊗ U∗G))

⇐⇒ (α⊗ idL∞(G))(x) = (idX ⊗ αG)(x)

⇐⇒ x ∈ Sat(X,α).

For the fourth equivalence above we used the fact that

σ ◦ αG(f) = UG(f ⊗ 1)U∗G

for any f ∈ L∞(G).

Now, we prove that
(
X oFα G

)α̂
= (X⊗L∞(G))α̃. Indeed, since the

actions idX ⊗ δG and α̃ commute (see Proposition 3.1.2) and α̂ = (idX ⊗
δG)|XoFαG it follows:(

X oFα G
)α̂

=
((
X⊗B(L2(G))

)α̃)idX⊗δG

=
((
X⊗B(L2(G))

)idX⊗δG)α̃
=
(
X⊗F

(
B(L2(G))

)δG)α̃
= (X⊗L∞(G))α̃ .

The last equality follows from the fact that B(L2(G))δG = L∞(G).
By Lemma 2.3.5 we have that Sat(X,α) = α(X) and thus we get

(X oFα G)α̂ = α(X) = Sat(X,α) = (X⊗L∞(G))α̃.

So it remains to show that (XoαG)α̂ = α(X). Indeed, since (XoαG, α̂)
is an L(G)-subcomodule of (X oFα G, α̂) it follows that

(XoαG)α̂ = (X oFα G)α̂ ∩ (XoαG)

= α(X) ∩ (XoαG)

= α(X),

since α(X) ⊆ XoαG.
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3.2 Crossed products of L(G)-comodules

Here we consider the analogues of the Fubini and the spatial crossed products
in the category of L(G)-comodules.

The main and most interesting difference between L∞(G)-comodules and
L(G)-comodules is that for any L(G)-comodule (Y, δ) the associated Fubini
and spatial crossed products are equal without any further assumption on
the group G or the space Y (Theorem 3.2.10). The reason behind this is
that the Fubini and the spatial crossed product of an L(G)-comodule admit a
natural L∞(G)-comodule structure and thus they are always non-degenerate
and saturated by Lemma 2.3.5. This will be clear from the use of Lemma
2.3.5 in the proof of Proposition 3.2.9 below, from which Theorem 3.2.10
follows.

The Definitions 3.2.1 and 3.1.3 below follow [19] with slight changes in
terminology and symbols for the sake of consistency.

Definition 3.2.1. For an L(G)-comodule (Y, δ), we define the map

δ̃ : Y⊗B(L2(G))→ Y⊗FB(L2(G))⊗FL(G)

by

δ̃ = (idY ⊗AdWG) ◦ (idY ⊗ σ) ◦ (δ ⊗ idB(L2(G))),

where σ is the flip isomorphism on B(L2(G))⊗B(L2(G)).

Y⊗B(L2(G)) Y⊗F (L(G)⊗B(L2(G)))

Y⊗F (B(L2(G))⊗L(G))

X⊗F (B(L2(G))⊗L(G))

δ⊗idB(L2(G))

δ̃

idY ⊗σ

idY ⊗AdWG

The next proposition, essentially the same as [19, Lemma 5.3 (ii)], is the
analogue of Proposition 3.1.2 for L(G)-comodules. Note that the proof is
the same as that of Proposition 3.1.2 with the appropriate modifications.

Proposition 3.2.2 (Hamana [19]). For an L(G)-comodule (Y, δ), the map
δ̃ is an L(G)-action on Y⊗B(L2(G)) commuting with the L∞(G)-action
idY ⊗ βG on Y⊗B(L2(G)).

Proof. By Remark 2.1.3 we may suppose that Y is a w*-closed subspace
of a von Neumann algebra N of the form N = B(H)⊗L(G) for some
Hilbert space H and δ = ε|Y , where ε = idB(H) ⊗ δG. Then obviously

δ̃ = ε̃|Y⊗B(L2(G)) and ε̃ is a W*-L(G)-action on N⊗B(L2(G)). Since ε̃ is
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a w*-continuous *-monomorphism, the latter fact can be easily verified by
checking the relation

(ε̃⊗ idL(G)) ◦ ε̃ = (idN ⊗ idB(L2(G)) ⊗ δG) ◦ ε̃

on the generators of N⊗B(L2(G)), that is on the elements of the form z⊗1,
1⊗1⊗f and 1⊗1⊗ρs for z ∈ N , f ∈ L∞(G) and s ∈ G, because B(L2(G))
is generated by R(G) and L∞(G).

Thus, in order to prove that δ̃ is an L(G)-action on Y⊗B(L2(G)) =
Y⊗FB(L2(G)), we only need to show that

ε̃(Y⊗FB(L2(G))) ⊆ Y⊗FB(L2(G))⊗FL(G).

Indeed, we have

(ε⊗ idB(L2(G)))(Y⊗FB(L2(G))) ⊆ Y⊗FL(G)⊗FB(L2(G))

and thus

(idY ⊗ σ) ◦ (ε⊗ idB(L2(G)))(Y⊗FB(L2(G))) ⊆ Y⊗FB(L2(G))⊗FL(G).

Since WG ∈ L∞(G)⊗L(G) and Y⊗FB(L2(G))⊗FL(G) is a
C1H⊗B(L2(G))⊗L(G)-bimodule, it follows that

(idY ⊗AdWG) ◦ (idY ⊗ σ) ◦ (ε⊗ idB(L2(G)))(Y⊗FB(L2(G)))

⊆ Y⊗FB(L2(G))⊗FL(G).

On the other hand, in order to prove that δ̃ and idY ⊗ βG commute,
it suffices to verify that idB(H) ⊗ idL(G) ⊗ βG and ε̃ commute, where ε =
idB(H) ⊗ δG. Because ε̃ and idB(H) ⊗ idL(G) ⊗ βG act identically on the first

factor B(H), we only need to prove that idL(G)⊗ βG and δ̃G commute, that
is:

(δ̃G ⊗ idL∞(G)) ◦ (idL(G) ⊗ βG) = (3.4)

=(idL(G) ⊗ idB(L2(G)) ⊗ σ) ◦ (idL(G) ⊗ βG ⊗ idL(G)) ◦ δ̃G

Let S denote the unitary on L2(G) ⊗ L2(G) with S(ξ ⊗ η) = η ⊗ ξ. Thus,
the flip isomorphism σ on B(L2(G))⊗B(L2(G)) is written as σ = AdS. If
a ∈ L(G) and b ∈ B(L2(G)), then by applying the left and right hand sides
of (3.4) on a⊗ b, we get respectively:

(δ̃G ⊗ idL∞(G)) ◦ (idL(G) ⊗ βG)(a⊗ b) =

Ad[(1⊗WG ⊗ 1)(1⊗ S ⊗ 1)(W ∗G ⊗ 1⊗ 1)(1⊗ S ⊗ 1)(1⊗ 1⊗ S) (3.5)

(1⊗ U∗G ⊗ 1)](a⊗ b⊗ 1⊗ 1)
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and

(idL(G) ⊗ idB(L2(G)) ⊗ σ) ◦ (idL(G) ⊗ βG ⊗ idL(G)) ◦ δ̃G(a⊗ b) =

Ad[(1⊗ 1⊗ S)(1⊗ U∗G ⊗ 1)(1⊗ 1⊗ S)(1⊗WG ⊗ 1)(1⊗ S ⊗ 1) (3.6)

(W ∗G ⊗ 1⊗ 1)(1⊗ S ⊗ 1)](a⊗ b⊗ 1⊗ 1)

Consider the unitaries in the square brackets in (3.5) and (3.6):

A = (1⊗WG⊗ 1)(1⊗S ⊗ 1)(W ∗G⊗ 1⊗ 1)(1⊗S ⊗ 1)(1⊗ 1⊗S)(1⊗U∗G⊗ 1)

and

B = (1⊗1⊗S)(1⊗U∗G⊗1)(1⊗1⊗S)(1⊗WG⊗1)(1⊗S⊗1)(W ∗G⊗1⊗1)(1⊗S⊗1)

Then, (3.4) is equivalent to

A(a⊗b⊗1⊗1)A∗ = B(a⊗b⊗1⊗1)B∗, for all a ∈ L(G) and b ∈ B(L2(G))

and this is equivalent to the following condition:

A∗B ∈ R(G)⊗C1⊗B(L2(G))⊗B(L2(G)),

which is true since a computation shows that A∗B acts identically on the
first two variables, i.e.

A∗B ∈ C1⊗C1⊗B(L2(G))⊗B(L2(G)).

Definition 3.2.3. Let (Y, δ) be an L(G)-comodule. The Fubini crossed
product of Y by δ is defined to be the L∞(G)-comodule (Y nFδ G, δ̂), where

Y nFδ G := (Y⊗B(L2(G)))δ̃

and
δ̂ := (idX ⊗ βG)|Y nFδ G

.

The L∞(G)-action δ̂ : Y nFδ G→ (Y nFδ G)⊗L∞(G) is called the dual action
of δ.

By Proposition 3.2.2 and Lemma 2.1.7, (Y nFδ G, δ̂) is indeed an L∞(G)-
subcomodule of (Y⊗B(L2(G)), idY ⊗ βG).

Definition 3.2.4. Let (Y, δ) be an L(G)-comodule and suppose that Y is
w*-closed in B(K) for some Hilbert space K. The spatial crossed product
of Y by δ is defined to be the space

YnδG := spanw∗{(1K ⊗ f)δ(y)(1K ⊗ g) : f, g ∈ L∞(G), y ∈ Y }
⊆ B(K)⊗B(L2(G)).
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Proposition 3.2.5. Let (Y, δ) be an L(G)-comodule and suppose that Y is
a w*-closed subspace of B(K) for some Hilbert space K. Then, Y nFδ G is
an L∞(G)-bimodule, i.e.

(1K ⊗ f)y(1K ⊗ g) ∈ Y nFδ G, f, g ∈ L∞(G), y ∈ Y nFδ G

and δ(Y ) ⊆ Y nFδ G. Therefore, we have:

YnδG ⊆ Y nFδ G.

In addition, δ̂(YnδG) ⊆ (YnδG)⊗L∞(G), that is YnδG is an L∞(G)-
subcomodule of (Y nFδ G, δ̂).

Proof. Let f ∈ L∞(G) and y ∈ Y nFδ G. Then, by Remark 3.1.6 we have

that (1K ⊗ f)y ∈ Y⊗B(L2(G)) and δ̃(y) = y ⊗ 1, by Definition 3.2.3. Also,
by Remark 3.1.6, we have that

(δ ⊗ idB(L2(G)))((1K ⊗ f)y) = (1K ⊗ 1L2(G) ⊗ f)(δ ⊗ idB(L2(G)))(y).

Thus, it follows:

δ̃((1H ⊗ f)y) = (idY ⊗AdWG) ◦ (idY ⊗ σ) ◦ (δ ⊗ idB(L2(G)))((1K ⊗ f)y)

= (idY ⊗AdWG) ◦ (idY ⊗ σ)
(
(1K ⊗ 1L2(G) ⊗ f)(δ ⊗ idB(L2(G)))(y)

)
=
[
(idB(K) ⊗AdWG) ◦ (idB(K) ⊗ σ)((1K ⊗ 1L2(G) ⊗ f))

]
δ̃(y)

=
[
(1K ⊗WG)(1K ⊗ f ⊗ 1L2(G))(1K ⊗W ∗G)

]
(y ⊗ 1L2(G))

= (1K ⊗ f)y ⊗ 1L2(G),

where the third equality above holds since (idB(K) ⊗AdWG) ◦ (idB(K) ⊗ σ)
is a *-homomorphism and thus multiplicative, while the last equality is true
because WG ∈ L∞(G)⊗L(G) and thus WG(f ⊗ 1)W ∗G = f ⊗ 1. The fourth

equality follows from the assumption δ̃(y) = y ⊗ 1. Therefore,

(1K ⊗ f)y ∈ Y nFδ G.

Similarly, we get y(1K ⊗ g) ∈ Y nFδ G for all g ∈ L∞(G) and y ∈ Y nFδ G.
On the other hand, if x ∈ Y , then:

δ̃(δ(x)) = (idY ⊗AdWG) ◦ (idY ⊗ σ) ◦ (δ ⊗ idB(L2(G)))(δ(x))

= (idY ⊗AdWG) ◦ (idY ⊗ σ) ◦ (idY ⊗ δG)(δ(x))

= (idY ⊗AdWG) ◦ (idY ⊗ δG)(δ(x))

= (1K ⊗WG)(1K ⊗W ∗G)(δ(x)⊗ 1L2(G))(1K ⊗WG)(1K ⊗W ∗G)

= δ(x)⊗ 1L2(G),

where the third equality holds because σ ◦ δG = δG. Hence, δ(Y ) ⊆ Y nFδ G.
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Let x ∈ Y and f ∈ L∞(G). Since βG(z) = z ⊗ 1 for any z ∈ L(G) and
δ(x) ∈ Y⊗FL(G), it follows that (idB(K) ⊗ βG)(δ(x)) = δ(x) ⊗ 1. Thus we
get:

δ̂((1K ⊗ f)δ(x)) = (idB(K) ⊗ βG)((1K ⊗ f)δ(x))

= (1K ⊗ βG(f))(idB(K) ⊗ βG)(δ(x))

= (1K ⊗ βG(f))(δ(x)⊗ 1) ∈ (YnδG)⊗L∞(G),

because βG(f) ∈ L∞(G)⊗L∞(G) and δ(x) ∈ YnδG. Therefore (YnδG, δ̂)
is an L∞(G)-subcomodule of (Y nFδ G, δ̂).

Proposition 3.2.6 (Uniqueness of crossed product). Let (Y, δ) and (Z, ε)
be two L(G)-comodules and suppose that Y and Z are w*-closed subspaces
of B(H) and B(K) respectively. Let Φ: Y → Z be an L(G)-comodule iso-
morphism.

Then the map Ψ := Φ⊗ idB(L2(G)) : Y⊗B(L2(G))→ Z⊗B(L2(G)) is an

L(G)-comodule isomorphism from (Y⊗B(L2(G)), δ̃) onto
(Z⊗B(L2(G)), ε̃), which maps Y nFδ G onto ZnFε G and YnδG onto ZoεG.

Also, Ψ|Y nFδ G
is an L∞(G)-comodule isomorphism from (Y nFδ G, δ̂) onto

(ZnFε G, ε̂) and Ψ|Y nδG is an L∞(G)-comodule isomorphism from (ZnδG, δ̂)
onto (ZnεG, ε̂).

Moreover, Ψ is an L∞(G)-bimodule map, i.e. Ψ((1H ⊗ f)x(1H ⊗ g)) =
(1K ⊗ f)Ψ(x)(1K ⊗ g), for all f, g ∈ L∞(G) and x ∈ Y⊗B(L2(G)).

Proof. First, since Φ is a comodule morphism we have that ε◦Φ = (Φ⊗id)◦δ
and hence:

ε̃ ◦Ψ = (id⊗AdWG) ◦ (id⊗ σ) ◦ (ε⊗ id) ◦ (Φ⊗ id)

= (id⊗AdWG) ◦ (id⊗ σ) ◦ ((ε ◦ Φ)⊗ id)

= (id⊗AdWG) ◦ (id⊗ σ) ◦ [((Φ⊗ id) ◦ δ)⊗ id]

= (id⊗AdWG) ◦ (id⊗ σ) ◦ (Φ⊗ id⊗ id) ◦ (δ ⊗ id)

= (Φ⊗ id⊗ id) ◦ (id⊗AdWG) ◦ (id⊗ σ) ◦ (δ ⊗ id)

= (Ψ⊗ id) ◦ δ̃

and thus Ψ is an L(G)-comodule isomorphism from (Y⊗B(L2(G)), δ̃) onto
(Z⊗B(L2(G)), ε̃). This implies that Ψ maps the fixed point subspace Y nFδ G
of δ̃ onto the fixed point subspace Z nFε G of ε̃.

On the other hand, the relation ε ◦ Φ = (Φ⊗ id) ◦ δ yields that

Ψ(δ(Y )) = (Φ⊗ id)(δ(Y )) = ε(Φ(Y )) = ε(Z)

and since Ψ is an L∞(G)-bimodule isomorphism (see Remark 3.1.6) it follows
that Ψ maps YnδG onto ZnεG.
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Finally, we have

ε̂ ◦Ψ = (idZ ⊗ βG) ◦ (Φ⊗ idB(L2(G)))

= (Φ⊗ idB(L2(G)) ⊗ idL∞(G)) ◦ (idY ⊗ βG)

= (Ψ⊗ idL∞(G)) ◦ δ̂.

Note that until now everything seems to work in complete analogy to the
case of L∞(G)-comodules. However, from now on the differences between
L∞(G)-comodules and L(G)-comodules will start to become apparent.

Proposition 3.2.7. For any L(G)-comodule (Y, δ) we have:

δ(Y ) ⊆
(
Y nFδ G

)δ̂
= Sat(Y, δ) = (Y⊗FL(G))δ̃ .

Proof. Since δ(Y ) ⊆ Sat(Y, δ) is obvious (see Definition 2.2.4) we only have

to show the equalities
(
Y nFδ G

)δ̂
= Sat(Y, δ) = (Y⊗FL(G))δ̃. Suppose that

Y is a w*-closed subspace of B(H) for some Hilbert space H.

We prove first that Sat(Y, δ) = (Y⊗FL(G))δ̃. Indeed, for any x ∈
Y⊗FL(G), we have:

x ∈ (Y⊗FL(G))δ̃ ⇐⇒ δ̃(x) = x⊗ 1

⇐⇒ (idY ⊗AdWG) ◦ (idY ⊗ σ) ◦ (δ ⊗ idB(L2(G)))(x) = x⊗ 1

⇐⇒ (δ ⊗ idL(G))(x) = (idY ⊗ σ) ((1H ⊗W ∗G)(x⊗ 1)(1H ⊗WG))

⇐⇒ (δ ⊗ idL(G))(x) = (idY ⊗ σ) ◦ (idY ⊗ δG)(x)

⇐⇒ (δ ⊗ idL(G))(x) = (idY ⊗ δG)(x)

⇐⇒ x ∈ Sat(Y, δ),

where for the fourth equivalence above we used the fact that σ ◦ δG = δG
since δG(λs) = λs ⊗ λs for all s ∈ G.

It remains to prove that
(
Y nFδ G

)δ̂
= (Y⊗FL(G))δ̃. Indeed, since the

actions idY ⊗ βG and δ̃ commute (see Proposition 3.2.2) and δ̂ = (idY ⊗
βG)|Y nFδ G

it follows that:

(
Y nFδ G

)δ̂
=

((
Y⊗B(L2(G))

)δ̃)idY ⊗βG

=
((
Y⊗B(L2(G))

)idY ⊗βG)δ̃
=
(
Y⊗F

(
B(L2(G))

)βG)δ̃
= (Y⊗FL(G))δ̃ .

The last equality follows from the fact that B(L2(G))βG = L(G).
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Remark 3.2.8. We denote by Λ the operator Λ ∈ B(L2(G)) given by

Λξ(s) = ∆G(s)−1/2ξ(s−1), s ∈ G, ξ ∈ L2(G).

One can see that Λ is clearly a selfadjoint unitary, such that ΛR(G)Λ = L(G)
and more precisely, we have:

ΛρtΛ = λt, t ∈ G.

Indeed, for any s, t ∈ G and ξ ∈ L2(G), we have:

(ΛρtΛξ)(s) = ∆G(s)−1/2(ρtΛξ)(s
−1)

= ∆G(s)−1/2∆G(t)1/2(Λξ)(s−1t)

= ∆G(s−1t)1/2∆G(s−1t)−1/2ξ(t−1s) = λtξ(s).

Also, we put

WΛ := (1⊗ Λ)WG,

that is

WΛξ(s, t) = ∆G(t)−1/2ξ(s, st−1) s, t ∈ G, ξ ∈ L2(G×G).

Note that WΛ ∈ L∞(G)⊗B(L2(G)), because WG ∈ L∞(G)⊗L(G) and WΛ

satisfies

UGWΛS = WG,

where Sξ(s, t) = ξ(t, s) is the flip operator on L2(G×G).

Indeed, for ξ ∈ L2(G×G), we have

(UGWΛSξ)(s, t) = ∆G(t)1/2(WΛSξ)(st, t)

= ∆G(t)1/2∆G(t)−1/2(Sξ)(st, stt−1)

= Sξ(st, t) = ξ(s, st) = WGξ(s, t).

Proposition 3.2.9. Let (Y, δ) be an L(G)-comodule and suppose that Y is
a w*-closed subspace of B(H) for some Hilbert space H. Then we have:

Y nFδ G = spanw∗
{

(C1H⊗L∞(G))
(
Y nFδ G

)δ̂}
.

Proof. First put K := H ⊗ L2(G) and X := Y nFδ G. Then (X, δ̂) is
an L∞(G)-subcomodule of (B(K), α), where α := idB(H) ⊗ βG : B(K) →
B(K)⊗L∞(G).

Consider the L∞(G)-actions

α̃, ᾱ : B(K)⊗B(L2(G))→ B(K)⊗B(L2(G))⊗L∞(G)
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defined by

α̃ = (idB(K) ⊗AdU∗G) ◦ (idB(K) ⊗ σ) ◦ (α⊗ idB(L2(G)))

and
ᾱ = (idB(K) ⊗ σ) ◦ (α⊗ idB(L2(G))).

Recall the unitary WΛ with WΛξ(s, t) = ∆G(t)−1/2ξ(s, st−1) and put

W := 1H ⊗WΛ.

Since WΛ ∈ L∞(G)⊗B(L2(G)), it follows that

W ∈ C1H⊗L∞(G)⊗B(L2(G)) ⊆ B(K)⊗B(L2(G)).

Claim: The w*-continuous *-automorphism

AdW : B(K)⊗B(L2(G))→ B(K)⊗B(L2(G))

is an L∞(G)-comodule isomorphism from (B(K)⊗B(L2(G)), α̃) onto
(B(K)⊗B(L2(G)), ᾱ), that is:

ᾱ ◦AdW = (AdW ⊗ idL∞(G)) ◦ α̃. (3.7)

Proof of the Claim: In order to prove (3.7) we show first the following

ᾱ(W ) = (W ⊗ 1L2(G))(1K ⊗ U∗G). (3.8)

Let S ∈ B(L2(G))⊗B(L2(G)) denote the flip operator, i.e. S(ξ⊗ η) = η⊗ ξ
and thus AdS = σ. For any a ∈ B(H) and b, c ∈ B(L2(G)) we have:

ᾱ(a⊗ b⊗ c) = (idB(K) ⊗ σ)(α(a⊗ b)⊗ c)

= (idB(K) ⊗ σ)(a⊗ βG(b)⊗ c) = (idB(K) ⊗ σ)(a⊗ (U∗G(b⊗ 1)UG)⊗ c)

= (1⊗ 1⊗ S)(1⊗ U∗G ⊗ 1)(a⊗ b⊗ 1⊗ c)(1⊗ UG ⊗ 1)(1⊗ 1⊗ S) =

(1⊗1⊗S)(1⊗U∗G⊗1)(1⊗1⊗S)(a⊗b⊗c⊗1)(1⊗1⊗S)(1⊗UG⊗1)(1⊗1⊗S)

therefore we get

ᾱ(W ) = (1⊗1⊗S)(1⊗U∗G⊗1)(1⊗1⊗S)(W⊗1)(1⊗1⊗S)(1⊗UG⊗1)(1⊗1⊗S)

= (1⊗1⊗S)(1⊗U∗G⊗1)(1⊗1⊗S)(1⊗WΛ⊗1)(1⊗1⊗S)(1⊗UG⊗1)(1⊗1⊗S)

and thus (3.8) is equivalent to the following

(1⊗S)(U∗G⊗ 1)(1⊗S)(WΛ⊗ 1)(1⊗S)(UG⊗ 1)(1⊗S) = (WΛ⊗ 1)(1⊗U∗G),

which can be easily checked by computation. Thus (3.8) is proved.
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Now (3.7) follows from (3.8) since, for any T ∈ B(K)⊗B(L2(G)), we
have

(ᾱ ◦AdW )(T ) = ᾱ(W )ᾱ(T )ᾱ(W )∗

= (W ⊗ 1)(1⊗ U∗G)ᾱ(T )(1⊗ UG)(W ∗ ⊗ 1)

= (AdW ⊗ idL∞(G)) ◦ (idB(K) ⊗AdU∗G) ◦ ᾱ(T )

= (AdW ⊗ idL∞(G)) ◦ α̃(T ).

Thus the Claim is proved.
By Corollary 2.3.5, (X,α) is non-degenerate, that is:

X⊗B(L2(G)) = spanw∗{(C1K⊗B(L2(G)))α(X)}

and therefore we get:

X⊗B(L2(G)) ⊆ spanw∗{(C1K⊗L∞(G))(C1K⊗L(G))α(X)}
⊆ spanw∗{(C1K⊗L∞(G))(X oFα G)},

since B(L2(G)) = spanw∗{L∞(G)L(G)} and (C1K⊗L(G))α(X) ⊆ XoαG
⊆ X oFα G.

Since W ∈ C1H⊗L∞(G)⊗B(L2(G)) and X is a C1H⊗L∞(G)-module,
we have that AdW maps X⊗B(L2(G)) onto itself and therefore we get:

X⊗B(L2(G)) = W (X⊗B(L2(G)))W ∗

⊆ spanw∗{W (C1K⊗L∞(G))W ∗W (X oFα G)W ∗}.

Also, X⊗B(L2(G)) is an L∞(G)-subcomodule of both (B(K)⊗B(L2(G)), α̃)
and (B(K)⊗B(L2(G)), ᾱ) and thus it follows from (3.7) and the Claim that
the restriction of AdW to X⊗B(L2(G)) is an L∞(G)-comodule isomorphism
from (X⊗B(L2(G)), α̃) onto (X⊗B(L2(G)), ᾱ). Therefore, it maps the
fixed point subspace X oFα G = (X⊗B(L2(G)))α̃ onto (X⊗B(L2(G)))ᾱ =
Xα⊗B(L2(G)).

On the other hand, we have

W (C1K⊗L∞(G))W ∗ ⊆ C1H⊗L∞(G)⊗B(L2(G)),

since W ∈ C1H⊗L∞(G) ⊗B(L2(G)). Therefore, it follows that:

X⊗B(L2(G)) ⊆ spanw∗{(C1H⊗L∞(G)⊗B(L2(G)))(Xα⊗B(L2(G)))}

⊆
(

spanw∗{(C1H⊗L∞(G))Xα}
)
⊗B(L2(G)).

Since the reverse inclusion is obvious we get that

X⊗B(L2(G)) =
(

spanw∗{(C1H⊗L∞(G))Xα}
)
⊗B(L2(G))
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and therefore X = spanw∗{(C1H⊗L∞(G))Xα}, that is:

Y nFδ G = spanw∗
{

(C1H⊗L∞(G))
(
Y nFδ G

)δ̂}
.

Now, we are able to prove the following important theorem.

Theorem 3.2.10. For every L(G)-comodule (Y, δ) we have:

Y nFδ G = YnδG.

Proof. Since YnδG ⊆ Y nFδ G it suffices to prove that Y nFδ G ⊆ YnδG.
Suppose that Y is a w*-closed subspace of B(H) for some Hilbert space H
and consider the following W*-L(G)-action on B(H)⊗B(L2(G)):

ε := idB(H) ⊗ δG : B(H)⊗B(L2(G))→ B(H)⊗B(L2(G))⊗L(G)

that is

ε(x) = (1H ⊗W ∗G)(x⊗ 1)(1H ⊗WG), x ∈ B(H)⊗B(L2(G))

For any x ∈ Sat(Y, δ) and f ∈ L∞(G) we have:

ε((1H ⊗ f)x) = (idB(H) ⊗ δG)((1H ⊗ f)x)

= (1H ⊗ f ⊗ 1L2(G))(idB(H) ⊗ δG)(x)

= (1H ⊗ f ⊗ 1L2(G))(δ ⊗ idL(G))(x),

where the last equality is obtained by the definition of Sat(Y, δ).
Since Sat(Y, δ) ⊆ Y⊗FL(G), it follows that

(δ ⊗ idL(G))(x) ∈ δ(Y )⊗FL(G) ⊆ (YnδG)⊗FL(G)

and thus (1H ⊗ f ⊗ 1L2(G))(δ ⊗ idL(G))(x) ∈ (YnδG)⊗FL(G), because
(YnδG)⊗FL(G) is a C1H⊗L∞(G)⊗L(G)-bimodule since YnδG is in turn
a C1H⊗L∞(G)-bimodule.

Thus we have proved that ε maps spanw∗{(C1H⊗L∞(G))Sat(Y, δ)} into
the Fubini tensor product (YnδG)⊗FL(G) and so Proposition 3.2.9 and
Proposition 3.2.7 imply that

ε
(
Y nFδ G

)
⊆ (YnδG)⊗FL(G)

that is (
Y nFδ G

)
⊗C1 ⊆ (1H ⊗WG) ((YnδG)⊗FL(G)) (1H ⊗W ∗G).

Now, note that 1H ⊗WG ∈ C1H⊗L∞(G)⊗L(G) and (YnδG)⊗FL(G) is
a C1H⊗L∞(G)⊗L(G)-bimodule. Therefore we get that(

Y nFδ G
)
⊗C1 ⊆ (YnδG)⊗FL(G)

and thus Y nFδ G ⊆ YnδG.
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Theorem 3.2.10 allows us to simplify our notation:

Definition 3.2.11. For an L(G)-comodule (Y, δ), we will write Y nδ G
instead of Y nFδ G or YnδG (since they coincide).

3.3 Duality theory and applications

The following theorem was first proved by Takesaki for abelian groups [51].
The general case (i.e. for arbitrary locally compact group) was later proved
independently in [35], [37], [49] and [50].

Theorem 3.3.1 (Takesaki-duality). Let (M,α) be a W*-L∞(G)-comodule
and (N, δ) be a W*-L(G)-comodule. The map (idM⊗AdVG)◦(α⊗idB(L2(G)))
defines a W*-L∞(G)-comodule isomorphism

(M⊗B(L2(G)), α̃) '
(

(M oα G) nα̂ G, ̂̂α)
and the map (idN ⊗ AdWΛ) ◦ (δ ⊗ idB(L2(G))) defines a W*-L(G)-comodule
isomorphism

(N⊗B(L2(G)), δ̃) '
(

(N nδ G) o
δ̂
G,
̂̂
δ

)
.

Recall that an L∞(G)-comodule (X,α) is non-degenerate and saturated
(by Lemma 2.3.5). Using the non-degeneracy we will obtain the Takesaki-
duality for the spatial crossed product, i.e.

(XoαG) nα̂ G ' X⊗B(L2(G)),

whereas the saturation of (X,α) yields the corresponding result for the Fu-
bini crossed product, that is(

X oFα G
)
nα̂ G ' X⊗B(L2(G))

(see Propositions 3.3.2 and 3.3.5 below).
The same ideas can be used to show that an L(G)-comodule (Y, δ) is

non-degenerate if and only if

(Y nδ G)o
δ̂
G ' Y⊗B(L2(G)),

whereas (Y, δ) is saturated if and only if

(Y nδ G) oF
δ̂
G ' Y⊗B(L2(G))

(see Propositions 3.3.3 and 3.3.6).
As a consequence we get two of the main results of this chapter. The

first one (Theorem 3.3.8) states that for a fixed L∞(G)-comodule (X,α)
the equality X oFα G = XoαG holds if and only if (X oFα G, α̂) is non-
degenerate if and only if (XoαG, α̂) is saturated. The second one (Theorem
3.3.10) states that the locally compact group G has the AP if and only if
X oFα G = XoαG holds for any L∞(G)-comodule (X,α).
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3.3.1 Duality for spatial crossed products

Here we show that Theorem 3.3.1 can be directly generalized for double
spatial crossed products of L∞(G)-comodules and non-degenerate L(G)-
comodules (non-degeneracy is necessary) using similar arguments as in the
case of crossed products of von Neumann algebras. Compare, for example,
the proof of Theorem 3.3.1 presented in [38, Chapter I, Theorems 2.5 and
2.7].

Proposition 3.3.2. Let (X,α) be an L∞(G)-comodule and consider the
map

π : X⊗B(L2(G))→ X⊗B(L2(G))⊗B(L2(G)),

defined by π := (idX ⊗ AdVG) ◦ (α ⊗ idB(L2(G))). Then, π is an L∞(G)-

comodule isomorphism from (X⊗B(L2(G)), α̃) onto ((XoαG) nδ G, δ̂),
where δ = α̂ = (idX ⊗ δG)|XoαG. In addition, π satisfies

π(XoαG) = δ(XoαG).

Proof. Suppose that X is a w*-closed subspace of B(H) for some Hilbert
space H and let K := H⊗L2(G). Since (X,α) is non-degenerate (by Lemma
2.3.5) and

B(L2(G)) = spanw∗{L∞(G)L(G)} = spanw∗{L(G)L∞(G)}

we have:

X⊗B(L2(G)) = spanw∗{(C1H⊗L∞(G))(C1H⊗L(G))α(X)(C1H⊗L(G))

(C1H⊗L∞(G))}
= spanw∗{(C1H⊗L∞(G))(XoαG)(C1H⊗L∞(G))}. (3.9)

On the other hand, by the definition of the crossed product, we have:

(XoαG) nδ G = spanw∗{(C1K⊗L∞(G))δ(XoαG)(C1K⊗L∞(G)} (3.10)

Since the map π is clearly a w*-continuous complete isometry, by the equal-
ities (3.9) and (3.10), in order to prove that π is an L∞(G)-comodule iso-
morphism onto (XoαG) nδ G, it suffices to verify the following conditions:

π(XoαG) = δ(XoαG), (3.11)

π((1⊗ f)y) = (1⊗ 1⊗ f)π(y), for f ∈ L∞(G) and y ∈ X⊗B(L2(G)),
(3.12)

and
δ̂ ◦ π = (π ⊗ id) ◦ α̃ (3.13)

For any x ∈ X and s, t ∈ G we have:

π((1⊗ λs)α(x)(1⊗ λt)) = (id⊗AdVG)((α⊗ id)((1⊗ λs)α(x)(1⊗ λt)))
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= (id⊗AdVG)((1⊗ 1⊗ λs)(α⊗ id)(α(x))(1⊗ 1⊗ λt))

= (id⊗AdVG)((1⊗ 1⊗ λs)(id⊗ αG)(α(x))(1⊗ 1⊗ λt))

= (1⊗ VG)(1⊗ 1⊗ λs)(id⊗ αG)(α(x))(1⊗ 1⊗ λt)(1⊗ V ∗G)

= (1⊗ VG)(1⊗ 1⊗ λs)(1⊗ V ∗G)(α(x)⊗ 1)(1⊗ VG)(1⊗ 1⊗ λt)(1⊗ V ∗G) =

(1⊗SW ∗GS)(1⊗1⊗λs)(1⊗SWGS)(α(x)⊗1)(1⊗SW ∗GS)(1⊗1⊗λt)(1⊗SWGS)

= (1⊗SW ∗G)(1⊗λs⊗1)(1⊗WGS)(α(x)⊗1)(1⊗SW ∗G)(1⊗λt⊗1)(1⊗WGS)

= (1⊗ S)(1⊗ λs ⊗ λs)(1⊗ S)(α(x)⊗ 1)(1⊗ S)(1⊗ λt ⊗ λt)(1⊗ S)

= (1⊗ λs ⊗ λs)(α(x)⊗ 1)(1⊗ λt ⊗ λt)

= (id⊗ δG)((1⊗ λs)α(x)(1⊗ λt))

and thus the equality (3.11) is proved.
On the other hand, for any f, g ∈ L∞(G) and y ∈ X⊗B(L2(G)), we

have:

π((1⊗ f)y(1⊗ g)) = (id⊗AdVG) ◦ (α⊗ id)((1⊗ f)y(1⊗ g))

= (id⊗AdVG)((1⊗ 1⊗ f)(α⊗ id)(y)(1⊗ 1⊗ g))

= (1⊗ VG)(1⊗ 1⊗ f)(1⊗ V ∗G)π(y)(1⊗ VG)(1⊗ 1⊗ g)(1⊗ V ∗G)

= (1⊗ 1⊗ f)π(y)(1⊗ 1⊗ g),

because VG ∈ L(G)⊗L∞(G) and therefore it commutes with 1⊗f and 1⊗g.
Hence we have proved (3.12).

Since (X,α) is non-degenerate, we have

X⊗B(L2(G)) = spanw∗{(C1H⊗L∞(G))(C1H⊗L(G))α(X)}.

Thus it remains verify (3.13) for elements of the form y = (1⊗f)(1⊗λs)α(x),
where f ∈ L∞(G), s ∈ G and x ∈ X. Indeed, we have

α̃((1⊗ f)(1⊗ λs)α(x)) = (id⊗AdU∗G) ◦ (id⊗ σ) [(α⊗ id)((1⊗ fλs)α(x))]

= (id⊗AdU∗G) ◦ (id⊗ σ) [(1⊗ 1⊗ fλs)(id⊗ αG)(α(x))]

= (id⊗AdU∗G) [(1⊗ fλs ⊗ 1)(id⊗AdUG)(α(x)⊗ 1)]

= (id⊗AdU∗G)(1⊗ f ⊗ 1)(id⊗AdU∗G)(1⊗ λs ⊗ 1)(α(x)⊗ 1)

= (1⊗ βG(f))(1⊗ λs ⊗ 1)(α(x)⊗ 1)

and therefore we get

(π ⊗ id) ◦ α̃((1⊗ f)(1⊗ λs)α(x)) =

= (π ⊗ id)((1⊗ βG(f))(1⊗ λs ⊗ 1)(α(x)⊗ 1))
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= (1⊗ 1⊗ βG(f)) (π((1⊗ λs)α(x))⊗ 1)

= (1⊗ 1⊗ βG(f))(δ((1⊗ λs)α(x))⊗ 1)

= (1⊗ 1⊗ βG(f))δ̂(δ((1⊗ λs)α(x)))

= (id⊗ id⊗ βG)((1⊗ 1⊗ f)δ((1⊗ λs)α(x)))

= (id⊗ id⊗ βG)((1⊗ 1⊗ f)π((1⊗ λs)α(x)))

= δ̂ ◦ π((1⊗ f)(1⊗ λs)α(x)).

Proposition 3.3.3. Let (Y, δ) be an L(G)-comodule and consider the map

π : Y⊗B(L2(G))→ Y⊗B(L2(G))⊗B(L2(G)),

given by π := (idY ⊗AdWΛ) ◦ (δ ⊗ idB(L2(G))). Then, π satisfies

π(Y nδ G) = δ̂(Y nδ G)

and the following conditions are equivalent:

(i) (Y, δ) is non-degenerate;

(ii) The map π is an L(G)-comodule isomorphism from (Y⊗B(L2(G)), δ̃)
onto the double spatial crossed product ((Y nδ G)oαG, α̂), where α =
δ̂ = (idY ⊗ βG)|Y nδG.

Proof. Suppose that Y is a w*-closed subspace of B(H) for some Hilbert
space H and put X := Y nδ G.

We claim that, for any s, t ∈ G, f, g ∈ L∞(G) and y ∈ Y , we have:

π((1⊗ ρtf)δ(y)(1⊗ gρs)) = (1⊗ 1⊗ λt)α((1⊗ f)δ(y)(1⊗ g))(1⊗ 1⊗ λs).
(3.14)

In order to prove (3.14), first observe the following:

WΛ(1⊗ ρtf)W ∗Λ = WΛ(1⊗ ρt)W ∗ΛWΛ(1⊗ f)W ∗Λ

= (1⊗ Λ)WG(1⊗ ρt)W ∗G(1⊗ Λ)WΛS(f ⊗ 1)SW ∗Λ

= (1⊗ Λ)(1⊗ ρt)WGW
∗
G(1⊗ Λ)WΛSδG(f)SW ∗Λ

= (1⊗ Λ)(1⊗ ρt)(1⊗ Λ)WΛSW
∗
G(f ⊗ 1)WGSW

∗
Λ

= (1⊗ λt)U∗G(f ⊗ 1)UG

= (1⊗ λt)βG(f)

and similarly WΛ(1⊗ gρs)W ∗Λ = βG(g)(1⊗ λs). Also, we have

α(δ(y)) = (id⊗ βG)(δ(y)) = δ(y)⊗ 1.
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Thus we get:
π((1⊗ ρtf)δ(y)(1⊗ gρs)) =

= (1⊗WΛ)(δ ⊗ id)((1⊗ ρtf)δ(y)(1⊗ gρs))(1⊗WΛ∗)
= (1⊗WΛ)(1⊗ 1⊗ ρtf)(δ ⊗ id)(δ(y))(1⊗ gρs)(1⊗W ∗Λ)

= (1⊗WΛ)(1⊗ 1⊗ ρtf)(id⊗ δG)(δ(y))(1⊗ 1⊗ gρs)(1⊗W ∗Λ)

= (1⊗WΛ)(1⊗ 1⊗ ρtf)(1⊗W ∗G)(δ(y)⊗ 1)(1⊗WG)(1⊗ 1⊗ gρs)(1⊗W ∗Λ)

= (1⊗WΛ)(1⊗ 1⊗ ρtf)(1⊗W ∗G)(1⊗ 1⊗ Λ)(δ(y)⊗ 1)(1⊗ 1⊗ Λ)(1⊗WG)

(1⊗ 1⊗ gρs)(1⊗W ∗Λ)

= (1⊗WΛ)(1⊗ 1⊗ ρtf)(1⊗W ∗Λ)(δ(y)⊗ 1)(1⊗WΛ)(1⊗ 1⊗ gρs)(1⊗W ∗Λ)

= (1⊗ 1⊗ λt) [(id⊗ βG)((1⊗ f)δ(y)(1⊗ g))] (1⊗ 1⊗ λs)
= (1⊗ 1⊗ λt)α((1⊗ f)δ(y)(1⊗ g))(1⊗ 1⊗ λs)

and hence (3.14) is proved. The equality π(X) = α(X) follows easily from
(3.14).

(i) =⇒ (ii): Suppose that (Y, δ) is non-degenerate. Since

B(L2(G)) = spanw∗{R(G)L∞(G)} = spanw∗{L∞(G)R(G)},

we have

Y⊗B(L2(G)) = spanw∗
{(

C1H⊗B(L2(G))
)
δ(Y )

(
C1H⊗B(L2(G))

)}
= spanw∗ {(1⊗ ρtf)δ(y)(1⊗ gρs)) : s, t ∈ G, f, g ∈ L∞(G), y ∈ Y } .

(3.15)
Clearly, the equality π(Y⊗B(L2(G))) = XoαG follows from (3.14) and

(3.15). It remains to prove that π is an L(G)-comodule isomorphism from
(Y⊗B(L2(G)), δ̃) onto (XoαG, α̂) . Since π is completely isometric and
onto XoαG, it suffices to prove that

α̂ ◦ π(x) = (π ⊗ id) ◦ δ̃(x), ∀x ∈ Y⊗B(L2(G)). (3.16)

Since (Y, δ) is non-degenerate, we have

Y⊗B(L2(G)) = spanw∗
{(

C1H⊗B(L2(G))
)
δ(Y )

}
and thus we only have to verify (3.16) for x = (1⊗ρtf)δ(y), where t ∈ G, f ∈
L∞(G) and y ∈ Y . Indeed, this follows immediately from the calculations
below:

α̂ ◦ π((1⊗ ρtf)δ(y)) = α̂((1⊗ 1⊗ λt)α((1⊗ f)δ(y)))

= [(1⊗ 1⊗ λt)α((1⊗ f)δ(y))]⊗ λt
= [(1⊗ 1⊗ λt)π((1⊗ f)δ(y))]⊗ λt
= π((1⊗ ρtf)δ(y))⊗ λt
= (π ⊗ id)([(1⊗ ρtf)δ(y)]⊗ λt)
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and on the other hand we have

δ̃((1⊗ ρtf)δ(y)) =(id⊗AdWG ◦ σ) ◦ (δ ⊗ id)((1⊗ ρtf)δ(y))

=(id⊗AdWG ◦ σ)((1⊗ 1⊗ ρtf)(id⊗ δG)(δ(y)))

=(id⊗AdWG)(1⊗ ρtf ⊗ 1) [δ(y)⊗ 1]

=(1⊗WG(ρt ⊗ 1)W ∗G)(1⊗WG(f ⊗ 1)W ∗G)(δ(y)⊗ 1)

=(1⊗ ρt ⊗ λt)(1⊗ f ⊗ 1)(δ(y)⊗ 1)

=[(1⊗ ρtf)δ(y)]⊗ λt.

(ii) =⇒ (i): Recall that (XoαG, α̂) is non-degenerate for any L∞(G)-
comodule (X,α) by Corollary 3.1.9. Therefore, ((YnδG)oαG, α̂) is always
non-degenerate and since it is isomorphic to (Y⊗B(L2(G)), δ̃) (by assump-
tion), it follows that (Y⊗B(L2(G)), δ̃) is non-degenerate too. That is:

Y⊗B(L2(G))⊗B(L2(G)) = spanw∗{Nδ̃(Y⊗B(L2(G)))N},

where N := C1H⊗C1L2(G)⊗B(L2(G)). Also put M := C1H⊗B(L2(G))
⊗B(L2(G)). Thus, we get:

Y⊗B(L2(G))⊗B(L2(G)) =

= spanw∗{N(1H ⊗WGS)(δ ⊗ idB(L2(G)))(Y⊗B(L2(G)))(1H ⊗ SW ∗G)N}

⊆ spanw∗{M(δ(Y )⊗B(L2(G)))M}

⊆
(

spanw∗{(C1H⊗B(L2(G)))δ(Y )(C1H⊗B(L2(G)))}
)
⊗B(L2(G))

and therefore

Y⊗B(L2(G)) = spanw∗{(C1H⊗B(L2(G)))δ(Y )(C1H⊗B(L2(G)))},

which means that (Y, δ) is non-degenerate (by Corollary 2.3.8).

3.3.2 Duality for Fubini crossed products

As already mentioned, Fubini crossed products were first considered by
Hamana [19, Definition 5.4] for comodule actions of L∞(G) on complete op-
erator spaces (not necessarily dual operator spaces). That is, in Hamana’s
context an L∞(G)-comodule is a norm closed subspace of B(H) for some
Hilbert space H with a complete isometry α : X → X⊗FL∞(G) satisfying

(α⊗ id) ◦ α = (id⊗ αG) ◦ α.

Since at least one factor is w*-closed, Fubini tensor products and tensor
product maps are still well behaved in this context (see [19, Section 1]).
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Moreover, Hamana proved (see [19, Proposition 5.7]) that, for a pair
(X,α) as above, (X oFα G)nFα̂ G is canonically completely isometrically iso-
morphic to X⊗FB(L2(G)) if and only if X is G-complete (see [19, Definition
5.5]).

On the other hand, it is not hard to see that an L∞(G)-comodule is
G-complete in the sense of Hamana ([19, Definition 5.5]) if and only if X
is saturated. In our context, all L∞(G)-comodules are assumed to be dual
operator spaces with w*-continuous comodule actions and thus they are
saturated (i.e. G-complete) by Lemma 2.3.5. Therefore, Proposition 3.3.5
below is an immediate consequence of [19, Proposition 5.7] and Lemma 2.3.5.
However, we have included a full proof of Proposition 3.3.5 for the sake of
completeness.

Also, using the same idea in the case of L(G)-comodules, we get Propo-
sition 3.3.6.

Remark 3.3.4. Let (M,∆) be a Hopf-von Neumann algebra with M acting
on a Hilbert space K. If Z0 is an M -subcomodule of an M -comodule (Z, β),
then clearly we have

Sat(Z0, β|Z0) = (Z0⊗FM) ∩ Sat(Z, β) = (Z0⊗B(K)) ∩ Sat(Z, β).

The first equality follows from Definition 2.2.4 and the fact that Z0 is a
subcomodule of Z, whereas the second one holds since Sat(Z, β) ⊆ Z⊗FM
and Z0⊗FM = (Z0⊗B(K)) ∩ (Z⊗FM).

If, in addition, Z is saturated, then Z0 will be saturated if and only if
β(Z0) = (Z0⊗FM) ∩ β(Z) or, equivalently, β(Z0) = (Z0⊗B(K)) ∩ β(Z).

Hence, for any L∞(G)-subcomodule X0 of an L∞(G)-comodule (X,α),
we have

α(X0) = (X0⊗B(L2(G))) ∩ α(X),

because all L∞(G)-comodules are saturated (see Lemma 2.3.5).

On the other hand, an L(G)-comodule may fail to be saturated, e.g. if
G fails the AP (see Proposition 2.3.14). However, it is known that every
W*-L(G)-comodule is saturated (see e.g. [50, Proposition II.1.1]). Thus, if
Y is an L(G)-subcomodule of a W*-L(G)-comodule (N, δ), then Y will be
saturated if and only if

δ(Y ) = (Y⊗FL(G)) ∩ δ(N)

or, equivalently,

δ(Y ) = (Y⊗B(L2(G))) ∩ δ(N).

Proposition 3.3.5 (Hamana [19]). Let (X,α) be an L∞(G)-comodule and
let

π : X⊗B(L2(G))→ X⊗B(L2(G))⊗B(L2(G))
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be the map π := (idX ⊗ AdVG) ◦ (α ⊗ idB(L2(G))). Then, π is an L∞(G)-

comodule isomorphism from (X⊗B(L2(G)), α̃) onto ((X oFα G) nδ G, δ̂),
where δ = α̂ = (idX ⊗ δG)|XoFαG. In addition, π satisfies

π
(
X oFα G

)
= δ

(
X oFα G

)
.

Proof. By Remark 2.1.3 and Remark 2.2.6 we may assume that (X,α) is
an L∞(G)-subcomodule of some W*-L∞(G)-comodule M , i.e. M is a von
Neumann algebra such that X is a w*-closed subspace of M and α extends
to a W*-L∞(G)-action on M , which we still denote by α for simplicity.
Also, the map π extends to the map (idM ⊗AdVG) ◦ (α⊗ idB(L2(G))) which

gives the L∞(G)-comodule isomorphism between
(

(M oα G) nα̂ G, ̂̂α) and

(M⊗B(L2(G)), α̃). It follows that π is an L∞(G)-comodule monomorphism
from (X⊗B(L2(G)), α̃) into (X⊗B(L2(G))⊗B(L2(G)), idX ⊗ idB(L2(G)) ⊗
βG).

Thus it suffices to show that π maps X⊗B(L2(G)) onto (XoFα G)nδG.
First observe that

X oFα G =
(
X⊗B(L2(G))

)α̃
=
(
X⊗B(L2(G))

)
∩
(
M⊗B(L2(G))

)α̃
=
(
X⊗B(L2(G))

)
∩ (M oα G)

and thus(
X oFα G

)
⊗B(L2(G)) =

[(
X⊗B(L2(G))

)
∩ (M oα G)

]
⊗B(L2(G))

=
(
X⊗B(L2(G))⊗B(L2(G))

)
∩
[
(M oα G)⊗B(L2(G))

]
.

From the above equality and since π(M⊗B(L2(G))) = (M oα G) nα̂ G (by
Theorem 3.3.1) we get:

(X oFα G) nδ G =
((
X oFα G

)
⊗B(L2(G))

)δ̃
=
(
X⊗B(L2(G))⊗B(L2(G))

)
∩
[
(M oα G)⊗B(L2(G))

](̃α̂)

=
(
X⊗B(L2(G))⊗B(L2(G))

)
∩ [(M oα G) nα̂ G]

=
(
X⊗B(L2(G))⊗B(L2(G))

)
∩ π

(
M⊗B(L2(G))

)
.

Therefore, the equality

π
(
X⊗B(L2(G))

)
= (X oFα G) nδ G

is equivalent to

π
(
X⊗B(L2(G))

)
=
(
X⊗B(L2(G))⊗B(L2(G))

)
∩ π

(
M⊗B(L2(G))

)
.

(3.17)
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Since

π
(
X⊗B(L2(G))

)
= (1⊗ VG)(α(X)⊗B(L2(G)))(1⊗ V ∗G)

and
π
(
M⊗B(L2(G))

)
= (1⊗ VG)(α(M)⊗B(L2(G)))(1⊗ V ∗G),

the equality (3.17) is equivalent to

α(X)⊗B(L2(G)) =

=
[
X⊗V ∗G

(
B(L2(G))⊗B(L2(G))

)
VG
]
∩
(
α(X)⊗B(L2(G))

)
=
(
X⊗B(L2(G))⊗B(L2(G))

)
∩
(
α(M)⊗B(L2(G))

)
=
[(
X⊗B(L2(G))

)
∩ α(M)

]
⊗B(L2(G)),

or equivalently,
α(X) =

(
X⊗B(L2(G))

)
∩ α(M),

which is true by Remark 3.3.4.
For the last statement, note that since π is a comodule isomorphism it

maps the fixed point subspace X oFα G = (X⊗B(L2(G)))α̃ onto the fixed

point subspace ((X oFα G) nδ G)δ̂ = Sat(X oFα G, α̂) = α̂(X oFα G) (recall
Proposition 3.2.7 and Corollary 3.1.9).

Proposition 3.3.6. Let (Y, δ) be an L(G)-comodule and consider the map

π : Y⊗B(L2(G))→ Y⊗B(L2(G))⊗B(L2(G))

given by π := (idY ⊗ AdWΛ) ◦ (δ ⊗ idB(L2(G))). Then, the following are
equivalent:

(i) (Y, δ) is saturated;

(ii) The map π is an L(G)-comodule isomorphism from (Y⊗B(L2(G)), δ̃)
onto the double Fubini crossed product ((Y nδ G) oFα G, α̂), where
α = δ̂ = (idY ⊗ βG)|Y nδG.

Proof. By Remark 2.1.3 and Remark 2.2.6 we may assume that (Y, δ) is an
L(G)-subcomodule of some W*-L(G)-comodule N , i.e. N is a von Neumann
algebra such that Y is a w*-closed subspace of N and δ extends to a W*-
L(G)-action on N , which we still denote by δ for simplicity. Also, the map
π extends to the map (idN ⊗AdWΛ)◦ (δ⊗ idB(L2(G))) which gives the L(G)-

comodule isomorphism between

(
(N nδ G) o

δ̂
G,
̂̂
δ

)
and (N⊗B(L2(G)), δ̃)

(see Theorem 3.3.1). It follows that π is an L(G)-comodule monomorphism
from (Y⊗B(L2(G)), δ̃) into (Y⊗B(L2(G))⊗B(L2(G)), idY ⊗ idB(L2(G)) ⊗
δG).
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Thus it suffices to show that π maps Y⊗B(L2(G)) onto (Y nδ G) oFα G
if and only if (Y, δ) is saturated.

First observe that

Y nδ G =
(
Y⊗B(L2(G))

)δ̃
=
(
Y⊗B(L2(G))

)
∩
(
N⊗B(L2(G))

)δ̃
=
(
Y⊗B(L2(G))

)
∩ (N nδ G)

and thus
(Y nδ G)⊗B(L2(G)) =

=
[(
Y⊗B(L2(G))

)
∩ (N nδ G)

]
⊗B(L2(G))

=
(
Y⊗B(L2(G))⊗B(L2(G))

)
∩
[
(N nδ G)⊗B(L2(G))

]
.

From the above equality and Theorem 3.3.1 we get:

(Y nδ G) oFα G =
(
(Y nδ G)⊗B(L2(G))

)α̃
=
(
Y⊗B(L2(G))⊗B(L2(G))

)
∩
[
(N nδ G)⊗B(L2(G))

](̃δ̂)
=
(
Y⊗B(L2(G))⊗B(L2(G))

)
∩
[
(N nδ G) o

δ̂
G
]

=
(
Y⊗B(L2(G))⊗B(L2(G))

)
∩ π

(
N⊗B(L2(G))

)
.

Therefore, the equality

π
(
Y⊗B(L2(G))

)
= (Y nδ G) oFα G

is equivalent to

π
(
Y⊗B(L2(G))

)
=
(
Y⊗B(L2(G))⊗B(L2(G))

)
∩ π

(
N⊗B(L2(G))

)
.

(3.18)
Since

π
(
Y⊗B(L2(G))

)
= (1⊗WΛ)(δ(Y )⊗B(L2(G)))(1⊗W ∗Λ)

and
π
(
N⊗B(L2(G))

)
= (1⊗WΛ)(δ(N)⊗B(L2(G)))(1⊗W ∗Λ),

the equality (3.18) is equivalent to

δ(Y )⊗B(L2(G)) =

=
[
Y⊗W ∗Λ

(
B(L2(G))⊗B(L2(G))

)
WΛ

]
∩
(
δ(N)⊗B(L2(G))

)
=
(
Y⊗B(L2(G))⊗B(L2(G))

)
∩
(
δ(N)⊗B(L2(G))

)
=
[(
Y⊗B(L2(G))

)
∩ δ(N)

]
⊗B(L2(G)),

or equivalently,
δ(Y ) =

(
Y⊗B(L2(G))

)
∩ δ(N),

which, by Remark 3.3.4, is true if and only if (Y, δ) is saturated.
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3.3.3 Applications of duality theory

The next simple corollary essentially states that, for an L∞(G)-comodule
(X,α), the saturation space of the spatial crossed product XoαG is isomor-
phic to the Fubini crossed product X oFα G.

Corollary 3.3.7. For any L∞(G)-comodule (X,α) we have:

(i) (X oFα G) nα̂ G = (XoαG) nα̂ G;

(ii) Sat(XoαG, α̂) = Sat
(
X oFα G, α̂

)
= α̂

(
X oFα G

)
;

(iii) X oFα G = {y ∈ X⊗B(L2(G)) : A(G) · y ⊆ XoαG},
where u · y = (idX⊗B(L2(G)) ⊗ u)(idX ⊗ δG)(y) for u ∈ A(G) and

y ∈ X⊗B(L2(G)).

(iv) XoαG = spanw∗{A(G) · (X oFα G)}.
Proof. Statement (i) is an obvious consequence of Propositions 3.3.2 and
3.3.5.

For statement (ii), we have

Sat(XoαG, α̂) = ((XoαG) nα̂ G)
̂̂α

=
(
(X oFα G) nα̂ G

)̂̂α
= Sat(X oFα G, α̂)

= α̂
(
X oFα G

)
,

where both the first and the third equalities follow from Proposition 3.2.7,
the second equality follows from statement (i) and the fourth equality holds
because

(
X oFα G, α̂

)
is a saturated L(G)-comodule by Corollary 3.1.9.

In order to show (iii), observe that an element y ∈ X⊗B(L2(G)) satisfies
u · y ∈ XoαG for all u ∈ A(G) if and only if

(idX⊗B(L2(G)) ⊗ u)((idX ⊗ δG)(y)) ∈ XoαG

for all u ∈ A(G). This is equivalent to

(idX ⊗ δG)(y) ∈ ((XoαG)⊗FL(G)) ∩ α̂(X⊗B(L2(G))) = Sat(XoαG, α̂) =

= α̂(X oFα G) = (idX ⊗ δG)(X oFα G),

which in turn is equivalent to y ∈ X oFα G, because idX ⊗ δG is injective.
Hence (iii) is proved.

Finally, from (iii) it follows that A(G) · (X oFα G) ⊆ XoαG and thus
spanw∗{A(G) · (X oFα G)} ⊆ XoαG. On the other hand, since XoαG is a
non-degenerate L(G)-comodule (see Corollary 3.1.9), by Proposition 2.2.3,
we get

XoαG = spanw∗{A(G) · (XoαG)} ⊆ spanw∗{A(G) · (X oFα G)}

and thus (iv) holds.
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Theorem 3.3.8. Let (X,α) be an L∞(G)-comodule. Then, XoαG is the
largest non-degenerate L(G)-subcomodule of (X oFα G, α̂). Also, X oFα G is
the smallest saturated L(G)-subcomodule of (X⊗B(L2(G)), idX ⊗ δG) con-
taining XoαG. In particular, the following conditions are equivalent:

(a) X oFα G = XoαG;

(b)
(
X oFα G, α̂

)
is a non-degenerate L(G)-comodule;

(c) (XoαG, α̂) is a saturated L(G)-comodule.

Proof. Recall that (XoαG, α̂) is non-degenerate and (X oFα G, α̂) is satu-
rated by Corollary 3.1.9.

Let Y be an L(G)-subcomodule of (X⊗B(L2(G)), idX ⊗ δG).
If Y is non-degenerate and Y ⊆ X oFα G, then by Corollaries 2.3.8 and

3.3.7 we have

Y = spanw∗{A(G) · Y } ⊆ spanw∗{A(G) · (X oFα G)} = XoαG.

On the other hand, if Y is saturated and XoαG ⊆ Y , then again Corol-
lary 3.3.7 yields that

α̂(X oFα G) = Sat(XoαG, α̂) ⊆ Sat(Y, idX ⊗ δG) = (idX ⊗ δG)(Y )

that is (idX ⊗ δG)(X oFα G) ⊆ (idX ⊗ δG)(Y ) and therefore X oFα G ⊆ Y .
Thus the first statement of the theorem is proved and so the equivalence

of conditions (a), (b) and (c) is obvious.

Lemma 3.3.9. (i) For any L(G)-comodule (Y, δ), the saturation space
(Sat(Y, δ), idY ⊗ δG) is a saturated L(G)-comodule;

(ii) If every saturated L(G)-comodule is non-degenerate, then G has the
AP.

Proof. (i) Take an L(G)-comodule (Y, δ) and suppose that Y is a w*-closed
subspace of B(K) for some Hilbert space K. Since (Y, δ) ' (δ(Y ), idY ⊗ δG)
(see Remark 2.1.3), it follows that

(Sat(Y, δ), idY ⊗ δG) '
(
Sat (δ(Y ), idY ⊗ δG) , idδ(Y ) ⊗ δG

)
(by Remark 2.2.6) and thus (again by Remark 2.2.6) it suffices to prove that(
Sat (δ(Y ), idY ⊗ δG) , idδ(Y ) ⊗ δG

)
is saturated. Indeed, by Remark 3.3.4,

we have:

Sat (δ(Y ), idY ⊗ δG) = (idB(K) ⊗ δG)(B(K)⊗L(G)) ∩ (δ(Y )⊗FL(G)).

Now, observe that (idB(K) ⊗ δG)(B(K)⊗L(G)) is a W*-L(G)-subcomodule
of (B(K)⊗L(G)⊗L(G), idB(K) ⊗ idL(G) ⊗ δG), hence it is saturated. Also,
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since (L(G), δG) is saturated (as a W*-L(G)-comodule), δ(Y )⊗FL(G) is a
saturated L(G)-subcomodule of (B(K)⊗L(G)⊗L(G), idB(K)⊗L(G) ⊗ δG) by
Lemma 2.2.10. Therefore, the desired conclusion follows from the fact that
the intersection of saturated subcomodules is clearly saturated too.

(ii) If every saturated L(G)-comodule is non-degenerate, then from (i)
it follows that, for any L(G)-comodule (Y, δ), (Sat(Y, δ), idY ⊗ δG) is non-
degenerate and thus (Y, δ) is non-degenerate by Proposition 2.2.5 (iii). Hence
every L(G)-comodule will be non-degenerate which means that G has the
AP (see Proposition 2.3.14).

We are now in position to prove the following functorial characterization
of locally compact groups with the approximation property (Theorem 3.3.10)
in terms of the crossed product functors. This result along with Proposition
2.3.14 complement recent work of Crann and Neufang [12, Theorem 4.1 and
Corollary 4.8].

Theorem 3.3.10. For a locally compact group G the following conditions
are equivalent:

(i) G has the AP;

(ii) (Y nδ G) oF
δ̂
G = (Y nδ G)o

δ̂
G, for any L(G)-comodule (Y, δ);

(iii) X oFα G = XoαG, for any L∞(G)-comodule (X,α);

(iv) ((Y nδG)oF
δ̂
G,
̂̂
δ) ' (Y⊗B(L2(G)), δ̃) for any L(G)-comodule (Y, δ);

(v) ((Y nδ G)o
δ̂
G,
̂̂
δ) ' (Y⊗B(L2(G)), δ̃) for any L(G)-comodule (Y, δ),

where the isomorphism in both (iv) and (v) is (idY ⊗AdWΛ)◦(δ⊗idB(L2(G))).

Proof. The implication (iii) =⇒ (ii) is obvious and the implication (i) =⇒
(iii) is a direct consequence of Proposition 2.3.14 and Theorem 3.3.8. Also,
the equivalences (i)⇐⇒ (iv)⇐⇒ (v) follow immediately from Propositions
2.3.14, 3.3.3 and 3.3.6. Therefore, it suffices to prove that (ii) implies (i).

Assume that condition (ii) is satisfied. Then, every saturated L(G)-
comodule is non-degenerate. Indeed, if (Y, δ) is a saturated L(G)-comodule,
then Proposition 3.3.6 yields that

(Y nδ G)o
δ̂
G = (Y nδ G) oF

δ̂
G = π(Y⊗B(L2(G))),

where π = (idY ⊗AdWΛ)◦ (δ⊗ idB(L2(G))) and thus (Y, δ) is non-degenerate
by Proposition 3.3.3.

Therefore, condition (ii) implies that all saturated L(G)-comodules are
non-degenerate and thus G has the AP by Lemma 3.3.9 (ii).
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Chapter 4

Applications to Harmonic
Analysis

In this chapter we investigate the relation between crossed products of dual
operator spaces and the jointly harmonic operators defined by Anoussis,
Katavolos and Todorov in [5, 6] as a natural generalization of the harmonic
operators introduced in [25] by Jaworski and Neufang and in [41] by Neufang
and Runde.

Let µ be a probability measure on G. A function f ∈ L∞(G) is called
µ-harmonic if it is a fixed point of the map Pµ : L∞(G)→ L∞(G) given by

(Pµf)(s) =

∫
G
f(st) dµ(t). (4.1)

That is, a function f ∈ L∞(G) is µ-harmonic if Pµf = f .

Harmonic functions have played an important role in the study of random
walks on discrete groups and in harmonic analysis of locally compact groups
(see [17]). The non commutative analogue (quantization) of this concept
can be obtained either by passing from functions to operators, i.e. from
elements of L∞(G) to elements of B(L2(G)) (see [25, 42]), or by replacing
L∞(G) with L(G) (see [10, 41]).

4.1 Representations of M(G) and McbA(G)

Before we proceed in describing (jointly) harmonic operators and their con-
nection to crossed products, it is important to understand how the action
of a measure µ on L∞(G) via the map Pµ can be extended to B(L2(G)).

Let M(G) be the measure algebra of G, that is the set of regular complex
Borel measures on G. This is a Banach algebra with respect to the product
given by the usual convolution of measures. Recall that, for µ, ν ∈ M(G),

77
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the convolution µ ∗ ν is the element in M(G) satisfying∫
G
f(x) d(µ ∗ ν)(x) =

∫
G

∫
G
f(st) dµ(s) dν(t)

for every bounded Borel function f on G. As usual, we identify L1(G) with
the ideal of M(G) consisting of all absolutely continuous measures with
respect to the Haar measure. For more details on M(G) see e.g. [9, Section
9.4].

Also, M(G) has a natural dual operator space structure since it is isomet-
rically isomorphic to C0(G)∗ (by the Riesz-Markov-Kakutani representation
theorem).

There exists a w*-w*-continuous completely isometric representation

Θ: M(G)→ CBσ(B(L2(G))),

with

Θ(ν)(T ) =

∫
G

Adρs(T ) dν(s), ν ∈M(G), T ∈ B(L2(G)),

the integral being understood in the w*-topology.

Observe that, for every µ ∈ M(G), the map Θ(µ) is a w*-continuous
L(G)-bimodule map on B(L2(G)) mapping L∞(G) onto itself (since L∞(G)
is translation invariant). In fact, for any f ∈ L∞(G), we have

Θ(µ)(f) =

∫
G
f(st) dµ(t)

and thus Θ(µ) extends the map Pµ by (4.1). For more details on the repre-
sentation Θ the reader is referred to [18], [40], [42] and [45].

On the other hand, McbA(G) has also a natural operator space structure
via the identification u ∈ McbA(G) 7→ Mu ∈ CB(L(G)) (recall Definition
2.3.10). Again, there is a w*-w*-continuous representation [42, Theorem
4.3]

Θ̂ : McbA(G)→ CBσ(B(L2(G))),

such that for any u ∈McbA(G), s ∈ G and f ∈ L∞(G) we have

Θ̂(u)(λsf) = u(s)λsf

and each Θ̂(u) is a completely bounded w*-continuous L∞(G)-bimodule map
on B(L2(G)) extending the completely bounded multiplier Mu : L(G) →
L(G).

Note that Θ̂ is the non commutative analogue of Θ since if G is an abelian
group with dual group Ĝ, then A(G) ' L1(Ĝ) and McbA(G) 'M(Ĝ).
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4.2 Harmonic operators

For µ ∈M(G) (not necessarily a probability measure) let H(µ) be the space
of µ-harmonic functions, i.e.

H(µ) := {f ∈ L∞(G) : Pµ(f) = f}.

Since Pµ is the restriction of the map Θ(µ) on L∞(G), Jaworski and
Neufang [25] defined the µ-harmonic operators as the space

H̃(µ) := {T ∈ B(L2(G)) : Θ(µ)(T ) = T}

thus extending the notion of harmonicity in a non commutative setting.
Also, Jaworski and Neufang [25, Proposition 6.3] proved that H̃(µ) can

be realized as a crossed product (generalizing work of Izumi for discrete
countable groups [24]). More precisely, they proved that if G is second count-
able and µ is a probability measure, then H̃(µ) andH(µ) admit a certain von
Neumann algebra product, generally different from that of B(L2(G)), such
that H̃(µ) is the crossed product of H(µ) by the left translation action of
G. Note that H(µ) is indeed a left translation invariant subspace of L∞(G)
since it is the set of fixed points of the w*-continuous L(G)-bimodule map
Pµ.

On the other hand, Chu and Lau [10], replacing L∞(G) with L(G)
and probability measures with normalized positive definite functions in the
Fourier-Stieltjes algebra B(G) (see [15] for more details on B(G)), intro-
duced and studied another non commutative analogue of harmonicity. In
particular, for a normalized positive definite function σ ∈ B(G) they defined
the σ-harmonic operators in L(G) as the space

Hσ := {T ∈ L(G) : σ · T = T},

where σ · T is the operator in L(G) ' A(G)∗ defined by 〈σ · T, u〉 = 〈T, uσ〉
for all u ∈ A(G) (note that A(G) is an ideal in B(G) [15] and thus A(G)σ ⊆
A(G)). They proved that Hσ is a von Neumann subalgebra of L(G) ([10,
Proposition 3.2.10]).

Note that Hσ is indeed the non commutative analogue of H(µ) since,
if G is abelian with dual group Ĝ, then there are isometric isomorphisms
L(G) ' L∞(Ĝ) and McbA(G) = B(G) ' M(Ĝ) (implemented respectively
by the Fourier and Fourier-Stieltjes transforms).

The definition of Hσ obviously makes sense for any σ ∈ McbA(G) since
A(G) is an ideal of McbA(G). Moreover, since Mσ is the adjoint of the map
u 7→ σu on A(G), for any T ∈ L(G), u ∈ A(G) and σ ∈McbA(G), we have

〈σ · T, u〉 = 〈T, uσ〉 = 〈Mσ(T ), u〉 = 〈Θ̂(σ)(T ), u〉,

i.e. σ·T = Θ̂(σ)(T ) and thus theMcbA(G)-module action on L(G) extends to
the whole of B(L2(G)) via the representation Θ̂ of McbA(G) on B(L2(G)).
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This led Neufang and Runde [41] to define the σ-harmonic operators in
B(L2(G)) by

H̃σ := {T ∈ B(L2(G)) : Θ̂(σ)(T ) = T}.

They also proved that, under certain hypotheses, H̃σ is the von Neumann
algebra generated by L∞(G) and Hσ (see [41, Theorem 4.8]). That is the
analogue of the result of Jaworski and Neufang.

It should be noted that all of the above have been extended and unified
in the locally compact quantum group setting by Junge, Neufang and Ruan
in [26] and by Kalantar, Neufang and Ruan in [27].

On the other hand, Anoussis, Katavolos and Todorov [5, 6] have also
extended the concept of harmonic operators, but towards a different direc-
tion. More precisely, instead of considering harmonic operators with respect
to a single element in M(G) or McbA(G), they studied operators which are
harmonic with respect to any element of an arbitrary subset of M(G) or
McbA(G).

For an arbitrary family Λ ⊆M(G) (not necessarily consisting of proba-
bility measures), we have the jointly Λ-harmonic functions

H(Λ) := {f ∈ L∞(G) : Θ(µ)(f) = f for all µ ∈ Λ}

and the jointly Λ-harmonic operators

H̃(Λ) := {T ∈ B(L2(G)) : Θ(µ)(T ) = T for all µ ∈ Λ}.

Similarly, for a family Σ ⊆ McbA(G), they define the jointly Σ-harmonic
functionals

HΣ := {T ∈ L(G) : Θ̂(σ)(T ) = T for all σ ∈ Σ}

and the jointly Σ-harmonic operators

H̃Σ := {T ∈ B(L2(G)) : Θ̂(σ)(T ) = T for all σ ∈ Σ}.

Note that jointly harmonic operators with respect to arbitrary subsets
of M(G) or McbA(G) may not admit a von Neumann algebra structure.

Let us fix some additional notation. For a subset U ⊆ B(L2(G)) we let

BimL∞(G)(U) := spanw∗{xTy : x, y ∈ L∞(G), T ∈ U}

and
BimL(G)(U) := spanw∗{xTy : x, y ∈ L(G), T ∈ U},

i.e. the w*-closed sub-bimodules of B(L2(G)) over respectively L∞(G) and
L(G) generated by U .

It was proved by Anoussis, Katavolos and Todorov in [5] that H̃Σ =
BimL∞(G)(HΣ) for any family Σ ⊆ McbA(G) at least in the case where G
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is a locally compact second countable group thus generalizing the result of
Neufang and Runde [41, Theorem 4.8].

Similarly, in [6], for a locally compact group G (not necessarily second
countable), the authors showed that H̃(Λ) = BimL(G)(H(Λ)) for any fam-
ily Λ ⊆ M(G), when G is either abelian or compact or weakly amenable
discrete. This was recently generalized by Crann and Neufang [12] for any
locally compact group with the AP.

In the sequel, we will prove that, for any locally compact group G and
arbitrary families Λ ⊆ M(G) and Σ ⊆ McbA(G), the spaces H̃(Λ) and H̃Σ
respectively arise as Fubini crossed products of the dual operator spaces
H(Λ) and HΣ , whereas the associated spatial crossed products of H(Λ) and
HΣ can be respectively identified with the bimodules BimL(G)(H(Λ)) and
BimL∞(G)(HΣ). This provides a more conceptual perspective of jointly har-
monic operators, which could possibly be extended to the setting of locally
compact quantum groups. The advantage of this approach is that the re-
alization of jointly harmonic operators as Fubini crossed products does not
require the use of a von Neumann algebra product (perhaps different from
that on B(L2(G))) or imposing some additional condition on the group G.

As applications, we generalize the aforementioned results of [5] and [12].
In particular, we give an alternative (less technical) proof of the equality
H̃Σ = BimL∞(G)(HΣ), removing the assumption that G is second countable.

Also, we show that the equality H̃(Λ) = BimL(G)(H(Λ)) holds for any family
Λ ⊆ M(G) at least when G satisfies a condition a priori weaker than the
AP.

Finally, we prove that, for a locally compact group G, the equality
BimL∞(G)(J

⊥) ∩ L(G) = J⊥ holds for any closed ideal J of A(G) if and
only if G has Ditkin’s property at infinity [28, Remark 5.1.8 (2)] thus an-
swering to a question raised by the authors in [4] (see [4, Question 4.8]).

4.3 Crossed products and harmonic operators

For subsets A ⊆M(G) and B ⊆McbA(G) we let

ker Θ(A) :=
⋂
{ker Θ(a) : a ∈ A}

and similarly

ker Θ̂(B) :=
⋂
{ker Θ̂(b) : b ∈ B}.

Also, for families Λ ⊆M(G) and Σ ⊆McbA(G) let

J(Λ) := span{h ∗ µ− h : h ∈ L1(G), µ ∈ Λ}‖·‖L1(G)

and

JΣ := span{uσ − u : u ∈ A(G), σ ∈ Σ}‖·‖A(G)
.
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Then, clearly, J(Λ) is a closed left ideal in L1(G) and JΣ is a closed ideal
in A(G), such that

H(Λ) = J(Λ)⊥ and HΣ = J⊥Σ ,

H̃(Λ) = ker Θ(J(Λ)) and H̃Σ = ker Θ̂(JΣ).

Therefore, the study of jointly harmonic operators leads naturally to the
study of ideals of L1(G) and A(G) and their annihilators respectively in
L∞(G) and L(G). For this reason, let us begin with a short discussion on
ideals and annihilators.

Suppose that (M,∆) is a Hopf-von Neumann algebra and recall that
its predual M∗ has a natural Banach algebra structure with respect to the
product given by the preadjoint of ∆, that is

ωφ = (ω ⊗ φ) ◦∆, ω, φ ∈M∗.

Note that a closed subspace I of M∗ is a right ideal of M∗ if and only if
its annihilator in M , i.e. the space

I⊥ = {x ∈M : 〈x, ω〉 = 0, ∀ω ∈ I},

is an M -subcomodule of (M,∆), that is ∆(I⊥) ⊆ I⊥⊗FM . Indeed, by
the definition of Fubini tensor product, the inclusion ∆(I⊥) ⊆ I⊥⊗FM is
equivalent to

(id⊗ ω)(∆(x)) ∈ I⊥ for all x ∈ I⊥, ω ∈M∗,

equivalently

〈x, φω〉 = 〈(id⊗ ω)(∆(x)), φ〉 = 0 for all x ∈ I⊥, ω ∈M∗, φ ∈ I,

which, by the Hahn-Banach theorem, is equivalent to φω ∈ I for all ω ∈M∗
and φ ∈ I.

Similarly, a w*-closed subspace X of M is an M -subcomodule of M if
and only if its preannihilator in M∗, i.e. the space

X⊥ = {ω ∈M∗ : 〈x, ω〉 = 0, ∀x ∈ X},

is a right ideal of M∗. Thus the M -subcomodules of a Hopf-von Neumann
algebra M are in a one to one correspondence with the right ideals of M∗
by taking annihilators and preannihilators.
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4.3.1 Ideals of A(G) and H̃Σ

Let J be a closed ideal of the Fourier algebra A(G) and let J⊥ be its an-
nihilator in L(G). As we already explained, J⊥ is an L(G)-subcomodule of
(L(G), δG), that is δG(J⊥) ⊆ J⊥⊗FL(G). In fact, every L(G)-subcomodule
of (L(G), δG) arises in this way by taking its preannihilator in A(G).

According to the next result (Proposition 4.3.1), for any closed ideal
J of A(G), the spaces BimL∞(G)(J

⊥) and ker Θ̂(J) coincide since they are

both canonically isomorphic to the crossed product J⊥ nδG G of the L(G)-
comodule (J⊥, δG). Thus we obtain an alternative proof of [4, Theorem 3.2]
as well as [5, Corollary 2.12], which is less technical and does not rely on
the second countability of G.

Proposition 4.3.1. The w*-continuous *-monomorphism

Φ: B(L2(G))→ B(L2(G))⊗B(L2(G))

defined by
Φ(T ) = SW ∗G(T ⊗ 1)WGS, T ∈ B(L2(G)), (4.2)

is an L∞(G)-comodule isomorphism from (B(L2(G)), βG) onto (L(G) nδG

G, δ̂G). Also, if J is a closed ideal of A(G), then

Φ(BimL∞(G)(J
⊥)) = J⊥nδGG

and
Φ(ker Θ̂(J)) = J⊥ nFδG G.

Therefore, BimL∞(G)(J
⊥) = ker Θ̂(J).

Proof. First note that

Φ(λs) = SW ∗G(λs ⊗ 1)WGS = S(λs ⊗ λs)S = λs ⊗ λs = δG(λs),

for any s ∈ G.
Also, since δG(f) = f ⊗ 1 for any f ∈ L∞(G) we get:

Φ(f) = SW ∗G(f ⊗ 1)WGS = S(f ⊗ 1)S = 1⊗ f,

for all f ∈ L∞(G).
From the above calculations it is obvious that Φ(BimL∞(G)(J

⊥)) =

J⊥nδGG. Also, Φ(B(L2(G))) = L(G) nδG G, because B(L2(G)) is the w*-
closed linear span of L∞(G)L(G).

Since B(L2(G)) = spanw∗{L∞(G)L(G)}, in order to prove that Φ is an
L∞(G)-comodule isomorphism with respect to the L∞(G)-actions βG and
idB(L2(G)) ⊗ βG it suffices to verify the equality

(idB(L2(G)) ⊗ βG) ◦ Φ(x) = (Φ⊗ idL∞(G)) ◦ βG(x)
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for x = λs, s ∈ G, and for x = f ∈ L∞(G). Indeed, for s ∈ G and
f ∈ L∞(G), we have:

(idB(L2(G)) ⊗ βG) ◦ Φ(λs) = (idB(L2(G)) ⊗ βG)(λs ⊗ λs)
= λs ⊗ λs ⊗ 1

= Φ(λs)⊗ 1

= (Φ⊗ id)(λs ⊗ 1)

= (Φ⊗ id)(βG(λs))

On the other hand, since Φ(g) = 1 ⊗ g for all g ∈ L∞(G) it follows that
(Φ⊗id)(y) = 1⊗y for any y ∈ L∞(G)⊗L∞(G). Therefore, when f ∈ L∞(G)
we get:

(idB(L2(G)) ⊗ βG) ◦ Φ(f) = (idB(L2(G)) ⊗ βG)(1⊗ f)

= 1⊗ βG(f)

= (Φ⊗ idL∞(G))(βG(f)),

because βG(f) ∈ L∞(G)⊗L∞(G).

It remains to show that Φ(ker Θ̂(J)) = J⊥ nFδG G. To this end, one first
observes the following:

Θ̂(u) = (u⊗ idB(L2(G))) ◦ Φ, for all u ∈ A(G). (4.3)

Indeed, if s ∈ G and f ∈ L∞(G), then we have:

Θ̂(u)(fλs) = u(s)fλs

= (u⊗ id)(λs ⊗ (fλs))

= (u⊗ id)((1⊗ f)(λs ⊗ λs))
= (u⊗ id)(Φ(f)Φ(λs))

= (u⊗ id)(Φ(fλs))

and hence (4.3) follows because B(L2(G)) = spanw∗{L∞(G)L(G)}.
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Next, we get:

J⊥ nFδG G =
(
J⊥⊗B(L2(G))

)δ̃G
=
(
L(G)⊗B(L2(G))

)δ̃G ∩ (J⊥⊗B(L2(G))
)

= (L(G) nδG G) ∩
(
J⊥⊗B(L2(G))

)
= Φ(B(L2(G))) ∩

(
J⊥⊗B(L2(G))

)
=
{
T ∈ Φ(B(L2(G))) : (id⊗ ω)(T ) ∈ J⊥, ∀ω ∈ B(L2(G))∗

}
=
{
T ∈ Φ(B(L2(G))) : 〈(id⊗ ω)(T ), u〉 = 0, ∀ω ∈ B(L2(G))∗, ∀u ∈ J

}
=
{
T ∈ Φ(B(L2(G))) : 〈(u⊗ id)(T ), ω〉 = 0, ∀ω ∈ B(L2(G))∗, ∀u ∈ J

}
=
{
T ∈ Φ(B(L2(G))) : (u⊗ id)(T ) = 0, ∀u ∈ J

}
= Φ(ker Θ̂(J)),

where the last equality follows from (4.3). Thus J⊥ nFδG G = Φ(ker Θ̂(J)).

Finally, since J⊥ nFδG G = J⊥oδGG (by Theorem 3.2.10), it follows that

BimL∞(G)(J
⊥) = ker Θ̂(J).

The next corollary follows immediately from Proposition 4.3.1.

Corollary 4.3.2. For any family Σ ⊆ McbA(G) we have that HΣ is an
L(G)-subcomodule of L(G) and

H̃Σ = BimL∞(G)(HΣ) ' HΣ nδG G.

Corollary 4.3.3. For any closed ideal J of A(G) the following are equiva-
lent:

(i) (J⊥, δG) is a saturated L(G)-comodule;

(ii) L(G) ∩ BimL∞(G)(J
⊥) = J⊥.

Proof. Let J be a closed ideal of A(G). By Proposition 4.3.1 we get that
(BimL∞(G)(J

⊥), βG) is an L∞(G)-comodule, which is isomorphic to the

L∞(G)-comodule (J⊥ nδG G, δ̂G) via the isomorphism Φ (4.2). Therefore,

Φ maps the fixed point subspace (BimL∞(G)(J
⊥))βG onto

(
J⊥ nδG G

)δ̂G =

Sat(J⊥, δG) (see Proposition 3.2.7 and Theorem 3.2.10). Also,

(BimL∞(G)(J
⊥))βG = B(L2(G))βG ∩ BimL∞(G)(J

⊥)

= L(G) ∩ BimL∞(G)(J
⊥)

therefore Φ(L(G) ∩ BimL∞(G)(J
⊥)) = Sat(J⊥, δG). Since J⊥ ⊆ L(G), we

have Φ(J⊥) = δG(J⊥) and thus (J⊥, δG) will be a saturated L(G)-comodule
if and only if L(G) ∩ BimL∞(G)(J

⊥) = J⊥.
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In [4] Anoussis, Katavolos and Todorov proved that if A(G) admits an
approximate unit (not necessarily bounded), then

L(G) ∩ BimL∞(G)(J
⊥) = J⊥

for any closed ideal J of A(G) [4, Lemma 4.5]. They asked whether the
same conclusion holds for an arbitrary group G. Clearly, from Corollary
4.3.3, this question is equivalent to asking whether every L(G)-subcomodule
of (L(G), δG) is saturated. Using this point of view, we prove below (Propo-
sition 4.3.5) that a condition which is a priori weaker than the existence of a
(possibly unbounded) approximate unit in A(G) is necessary and sufficient.
This improves [4, Lemma 4.5].

Definition 4.3.4. Let G be a locally compact group. Following [28, Remark
5.1.8 (2)], we say that G has Ditkin’s property at infinity (or property D∞),
if

u ∈ A(G)u
||·||
, ∀u ∈ A(G).

Also, following [15], we say that an element x ∈ L(G) satisfies condition (H)
if

x ∈ A(G) · xw*
.

Although the equivalence between statements (a) to (c) in the next result
is already known (see e.g. [15]), we have included its proof for the sake of
completeness.

Proposition 4.3.5. Let G be a locally compact group. Then, the following
conditions are equivalent:

(a) G has property D∞.

(b) Every x ∈ L(G) satisfies condition (H).

(c) For any x ∈ L(G) and h ∈ A(G), if h · x = 0, then 〈x, h〉 = 0.

(d) For any L(G)-subcomodule Y of (L(G), δG) and any x ∈ L(G) we have

δG(x) ∈ Y⊗FL(G) ⇐⇒ x ∈ Y.

(e) Every L(G)-subcomodule of (L(G), δG) is saturated.

(f) Every L(G)-subcomodule of (L(G), δG) is non-degenerate.

(g) For every closed ideal J of A(G), we have L(G)∩BimL∞(G)(J
⊥) = J⊥.

Proof. (b) =⇒ (a): Suppose that every element in L(G) satisfies condition

(H) and that there exists u ∈ A(G), such that u /∈ A(G)u
||·||

. Then, there
exists x ∈ L(G), such that 〈x, u〉 6= 0 and 〈x, vu〉 = 0, for all v ∈ A(G). This
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means that 〈v ·x, u〉 = 0, for all v ∈ A(G) and since x satisfies condition (H)
it is implied that 〈x, u〉 = 0, a contradiction.

(c) =⇒ (b): Suppose that for any x ∈ L(G) and h ∈ A(G), h · x =
0 implies that 〈x, h〉 = 0. If there exists an x ∈ L(G), such that x /∈
A(G) · xw*

, then there must be an h ∈ A(G), such that 〈x, h〉 6= 0 and
〈u ·x, h〉 = 0, for any u ∈ A(G). But 〈u ·x, h〉 = 〈x, hu〉 = 〈x, uh〉 = 〈h ·x, u〉,
therefore we get that 〈h ·x, u〉 = 0, for all u ∈ A(G) and thus h ·x = 0, which
implies that 〈x, h〉 = 0, by hypothesis. Hence, we have a contradiction.

(a) =⇒ (c): Assume that G has D∞ and there exist x ∈ L(G) and
h ∈ A(G), such that h · x = 0 and 〈x, h〉 6= 0. Then, 〈h · x, u〉 = 0, for all
u ∈ A(G), that is 〈x, uh〉 = 0, for all u ∈ A(G). But, since G has D∞,
we have that there is a net (ui) in A(G), such that uih −→ h. Therefore,
〈x, h〉 = lim〈x, uih〉 = 0, which is a contradiction.

(e) =⇒ (d): Let Y be an L(G)-subcomodule of (L(G), δG) and let x ∈
L(G), with δG(x) ∈ Y⊗FL(G). Then, by the co-associativity of δG, we have
that (δG ⊗ idL(G))(δG(x)) = (idY ⊗ δG)(δG(x)). Thus, δG(x) ∈ Sat(Y, δG) =
δG(Y ), since Y is saturated. Therefore, x ∈ Y , because δG is isometric.

(d) =⇒ (b): Take an x ∈ L(G) and put Y := A(G) · xw*
. Then, Y is

clearly a subcomodule of (L(G), δG) (because it is an A(G)-submodule) and
δG(x) ∈ Y⊗FL(G). Indeed, if not, then there must be h, u ∈ A(G), such
that 〈y, u〉 = 0, for all y ∈ Y , and 〈δG(x), u⊗h〉 6= 0. But 〈δG(x), u⊗h〉 6= 0
implies that 〈h ·x, u〉 6= 0, while u annihilates Y and h ·x ∈ Y by definition,
which is a contradiction. Therefore, δG(x) ∈ Y⊗FL(G) and (d) implies that
x ∈ Y .

(b) =⇒ (f): This follows immediately from Corollary 2.3.8.

(f) =⇒ (e): Suppose that every L(G)-subcomodule of (L(G), δG) is non-
degenerate. Let Y be an L(G)-subcomodule of L(G). If we put

Y1 := {x ∈ L(G) : A(G) · x ⊆ Y },

then clearly Y1 is an L(G)-subcomodule of L(G) which contains Y . Further-
more, it is clear by the definition of Y1 that

δG(Y1) = (Y⊗FL(G)) ∩ δG(L(G)) = Sat(Y, δG).

Since Y1 is non-degenerate by assumption, we get that

Y1 = spanw∗{A(G) · Y1} ⊆ Y

and therefore Y = Y1, that is Y is saturated because δG(Y1) = Sat(Y, δG).

(e)⇐⇒ (g): This follows from Corollary 4.3.3 since the map J 7→ J⊥ is
clearly a bijection between the set of all closed ideals of A(G) and the set of
all L(G)-subcomodules of (L(G), δG).
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Remark 4.3.6. Note that if G has the AP, then clearly G has property
D∞. However, to the author’s knowledge, whether there exist groups failing
property D∞ is still open.

Also, Proposition 4.3.5 implies that a closed ideal J of the Fourier
algebra A(G) can be recovered from BimL∞(G)(J

⊥), i.e. the map J 7→
BimL∞(G)(J

⊥) is one to one, at least when G has property D∞. It is un-
known whether the injectivity of this map follows without assuming property
D∞.

4.3.2 Ideals of L1(G) and H̃(Λ)

Suppose that J is a closed left ideal of L1(G) with annihilator J⊥ ⊆ L∞(G).
Recall that the product induced on L1(G) by the comultiplication αG of
L∞(G) is given by the opposite convolution:

kh = (k ⊗ h) ◦ αG = h ∗ k h, k ∈ L1(G)

and thus αG(J⊥) ⊆ J⊥⊗L∞(G), that is J⊥ is an L∞(G)-subcomodule of
L∞(G), since J is a right ideal with respect to the above product on L1(G).

Proposition 4.3.7. The w*-continuous *-monomorphism

Ψ: B(L2(G))→ B(L2(G))⊗B(L2(G))

given by

Ψ(T ) = V ∗GδG(T )VG = V ∗GW
∗
G(T ⊗ 1)WGVG, T ∈ B(L2(G))

is a W*-L(G)-comodule isomorphism from (B(L2(G)), δG) onto
(L∞(G) oαG G, α̂G). Also, for any closed left ideal J of L1(G), we have

Ψ(BimL(G)(J
⊥)) = J⊥oαGG

and
Ψ(ker Θ(J)) = J⊥ oFαG G.

Proof. First, one has to verify

Ψ(f) = αG(f), f ∈ L∞(G) (4.4)

and
Ψ(λs) = 1⊗ λs, s ∈ G. (4.5)

Indeed, for f ∈ L∞(G) and s ∈ G, we have respectively

Ψ(f) = V ∗GδG(f)VG = V ∗G(f ⊗ 1)VG = αG(f)

and
Ψ(λs) = V ∗G(λs ⊗ λs)VG = SWGS(λs ⊗ λs)SW ∗GS
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= SWG(λs ⊗ λs)W ∗GS = S(λs ⊗ 1)S = (1⊗ λs).
Obviously, since B(L2(G)) = spanw∗{L∞(G)L(G)}, (4.4) and (4.5) imply
that Ψ(B(L2(G))) = L∞(G) oαG G and Ψ(BimL(G)(J

⊥)) = J⊥oαGG, for
any closed left ideal J of L1(G).

Also, we have
α̂G ◦Ψ = (Ψ⊗ idL(G)) ◦ δG

since

α̂G ◦Ψ(fλs) = (id⊗ δG)(αG(f(1⊗ λs)) = (αG(f)⊗ 1)(1⊗ λs ⊗ λs)

= Ψ(fλs)⊗ λs = (Ψ⊗ id)((fλs)⊗ λs) = (Ψ⊗ id)(δG(fλs)),

for any s ∈ G and f ∈ L∞(G) and therefore, Ψ is a W*-L(G)-comodule
isomorphism from (B(L2(G)), δG) onto (L∞(G) oαG G, α̂G).

It remains to show that Ψ(ker Θ(J)) = J⊥ oFαG G. Indeed, note that

J⊥ oFαG G = (J⊥⊗B(L2(G)))α̃G

= (L∞(G)⊗B(L2(G)))α̃G ∩ (J⊥⊗B(L2(G)))

= (L∞(G) oαG G) ∩ (J⊥⊗B(L2(G))),

since (L∞(G)⊗B(L2(G)))α̃G = (L∞(G)oαGG) by the Digernes-Takesaki
theorem. Therefore if y ∈ L∞(G)oαGG, then

y ∈ J⊥ oFαG G ⇐⇒ (h⊗ idB(L2(G)))(y) = 0, ∀h ∈ J.

Since ker Θ(J) is the intersection of the kernels of the maps Θ(h) for h ∈
J and J⊥oFαGG is the intersection of the kernels of the maps (h⊗ idB(L2(G)))
restricted to the image of Ψ for h ∈ J , it suffices to prove that

Θ(h) = (h⊗ idB(L2(G))) ◦Ψ, ∀h ∈ L1(G). (4.6)

Observe that for f ∈ L∞(G) and h ∈ L1(G), we have Θ(h)(f) = fh, where
fh(t) =

∫
G h(s)f(ts)ds. Therefore, for any k ∈ L1(G),

〈Θ(h)(f), k〉 = 〈fh, k〉 =

∫
G
fh(t)k(t)dt =

∫∫
G×G

h(s)f(ts)k(t)dsdt

= 〈αG(f), h⊗ k〉 = 〈(h⊗ id)(αG(f)), k〉 = 〈(h⊗ id)(Ψ(f)), k〉
that is Θ(h)(f) = (h⊗ id)(Ψ(f)) for all f ∈ L∞(G).

Thus, since for any y ∈ L(G) we have

Θ(h)(fy) = Θ(h)(f)y

and

(h⊗ id)(Ψ(fy)) = (h⊗ id)(Ψ(f)(1⊗ y)) = (h⊗ id)(Ψ(f))y,

(4.6) follows from the w*-continuity of Θ(h) and (h ⊗ idB(L2(G))) ◦ Ψ and

the fact that B(L2(G)) = spanw∗{L∞(G)L(G)}.
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By Proposition 4.3.7 above, for any closed left ideal J of L1(G), the L(G)-
bimodules BimL(G)(J

⊥) and ker Θ(J) are, in addition, L(G)-subcomodules

of (B(L2(G)), δG) and respectively canonically isomorphic to J⊥oαGG and
J⊥ oFαG G. Therefore, we can describe the relation between BimL(G)(J

⊥)
and ker Θ(J) using Corollary 3.3.7 and Theorem 3.3.8.

First, note that the A(G)-module action on B(L2(G)) induced by δG is
given by the representation Θ̂, i.e. for any u ∈ A(G) and T ∈ B(L2(G)), we
have

Θ̂(u)(T ) = (idB(L2(G)) ⊗ u)(δG(T )) = u · T. (4.7)

Indeed, since the maps Θ̂(u) and (id ⊗ u) ◦ δG are both w*-continuous ex-
tensions of Mu : L(G) → L(G) (recall Remark 2.3.13), we only need to
show that (id ⊗ u) ◦ δG is an L∞(G)-bimodule map. This is true because
B(L2(G))δG = L∞(G) and thus we have

(id⊗ u) ◦ δG(fT ) = (id⊗ u)((f ⊗ 1)δG(T )) = f(id⊗ u)(δG(T )),

for any f ∈ L∞(G) and T ∈ B(L2(G)).

Proposition 4.3.8. For any closed left ideal J of L1(G), BimL(G)(J
⊥) is

the largest non-degenerate L(G)-subcomodule of
(B(L2(G)), δG) contained in ker Θ(J), i.e.

BimL(G)(J
⊥) = spanw∗{Θ̂(u)(T ) : u ∈ A(G), T ∈ ker Θ(J)}

and ker Θ(J) is the smallest saturated L(G)-subcomodule of (B(L2(G)), δG)
containing BimL(G)(J

⊥), i.e.

ker Θ(J) = {T ∈ B(L2(G)) : Θ̂(u)(T ) ∈ BimL(G)(J
⊥), ∀u ∈ A(G)}.

Thus, the following conditions are equivalent:

(a) BimL(G)(J
⊥) = ker Θ(J);

(b) (ker Θ(J), δG) is a non-degenerate L(G)-comodule, i.e.

ker Θ(J) = spanw∗{Θ̂(A(G))(ker Θ(J))};

(c) (BimL(G)(J
⊥), δG) is a saturated L(G)-comodule, i.e. if T ∈ B(L2(G))

satisfies Θ̂(u)(T ) ∈ BimL(G)(J
⊥) ∀u ∈ A(G), then T ∈ BimL(G)(J

⊥).

Proof. The proof follows immediately by combining Proposition 4.3.7 with
Corollary 3.3.7 and Theorem 3.3.8, since

Θ̂(u)(T ) = (idB(L2(G)) ⊗ u)(δG(T )) = u · T,

for any u ∈ A(G) and T ∈ B(L2(G)) as noted above (see (4.7)).
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Corollary 4.3.9. If every operator T ∈ B(L2(G)) satisfies

T ∈ BimL(G){Θ̂(u)(T ) : u ∈ A(G)}, (4.8)

then ker Θ(J) = BimL(G)(J
⊥) for any closed left ideal J of L1(G). In par-

ticular, if condition (4.8) is satisfied for all T ∈ B(L2(G)), then H̃(Λ) =
BimL(G)(H(Λ)) for any family Λ ⊆M(G).

Proof. Suppose that condition (4.8) is satisfied for any operator in B(L2(G))
and let J be a closed left ideal of L1(G). If T ∈ B(L2(G)) satisfies Θ̂(u)(T ) ∈
BimL(G)(J

⊥) for all u ∈ A(G), then clearly T ∈ BimL(G)(J
⊥) by (4.8). Thus

the equivalence of (a) and (c) in Proposition 4.3.8 yields that ker Θ(J) =
BimL(G)(J

⊥).
Also, if Λ ⊆ M(G) and (4.8) holds for any operator in B(L2(G)), then

we have

H̃(Λ) = ker Θ(J(Λ)) = BimL(G)(J(Λ)⊥) = BimL(G)(H(Λ)).

Remark 4.3.10. Condition (4.8) means that we can recover the operator
T ∈ B(L2(G)) from its images under the maps Θ̂(u) for u ∈ A(G) by multi-
plying with elements of L(G) and taking w*-limits and linear combinations.

Note that from Proposition 2.3.14 it follows that if G has the AP, then
there exists a net (ui)i∈I in A(G), such that

Θ̂(ui)(T ) = ui · T −→ T, ultraweakly for all T ∈ B(L2(G)).

This condition is a priori stronger than (4.8). Therefore, Corollary 4.3.9
generalizes [12, Theorem 5.5], which states that ker Θ(J) = BimL(G)(J

⊥)
for any closed left ideal J of L1(G) if G has the AP.
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[15] P. Eymard, L’ algèbre de Fourier d’ un groupe localement compact,
Bull. Soc. Math. France 92 (1964), 181-236.

[16] G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press,
2nd edition, 2016.

[17] H. Furstenberg, Boundary theory and stochastic processes on homoge-
neous spaces, Harmonic analysis on homogeneous spaces (Proc. Sym-
pos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass.,
1972), Amer. Math. Soc., Providence, R.I., 1973, 193-229.

[18] F. Ghahramani, Isometric representation of M(G) on B(H), Glasgow
Math. J. 23 (1982), 119-122.

[19] M. Hamana, Injective envelopes of dynamical systems, Toyama Math.
J., 34 (2011), 23-86.

[20] M. Hamana, Tensor products for monotone complete C*-algebras, I,
Japanese J. Math. (N.S.), 8 (1982), no. 2, 259-283.

[21] S. J. Harris, Se-Jin Kim, Crossed products of operator systems, J. Funct.
Anal. 276 (2019), 2156–2193.

[22] U. Haagerup, J. Kraus, Approximation properties for group C*-algebras
and group von Neumann algebras, Trans. Amer. Math. Soc., 344 (1994),
no. 2, 667-699.

[23] E. Hewitt, K. A. Ross, Abstract Harmonic Analysis, Volume I, Springer-
Verlag, 1963.

[24] M. Izumi, Non-commutative Poisson boundaries. In Discrete geometric
analysis, volume 347 of Contemp. Math., pages 69-81. Amer. Math.
Soc., Providence, RI, 2004.

[25] W. Jaworski, M. Neufang, The Choquet-Deny equation in a Banach
space, Canadian J. Math., 59 (2007), 795-827.



BIBLIOGRAPHY 95

[26] M. Junge, M. Neufang and Zh.-J. Ruan, A representation theorem for
locally compact quantum groups, Internat. J. Math. 20 (2009), no. 3,
377-400.

[27] M. Kalantar, M. Neufang, Z.-J. Ruan, Realization of quantum group
Poisson boundaries as crossed products, Bull. London Math. Soc., 46
(2014), 1267-1275.

[28] E. Kaniuth, A course in commutative Banach algebras, Graduate Texts
in Math. Vol. 246. (Springer-Verlag, New York, 2009).

[29] E. G. Katsoulis, C. Ramsey, Crossed Products of Operator Algebras,
Memoirs of the American Mathematical Society, Vol. 258 (2019), no.
1240, DOI: https://doi.org/10.1090/memo/1240.

[30] J. Kraus, The slice map problem for σ-weakly closed subspaces of von
Neumann algebras, Trans. Amer. Math. Soc., 279 (1983), No 1, 357-
376.

[31] J. Kraus, The tensor product problem for reflexive algebras Bull. Amer.
Math. Soc. (N.S.), 23 (1990), No 2, 455-460.

[32] J. Kraus, The slice map problem and approximation properties, J.
Funct. Anal. 102 (1991), 116-155.

[33] V. Lafforgue, M. de la Salle, Non commutative Lp spaces without the
completely bounded approximation property, Duke Math. J., 160 (2011),
no. 1, 71-116.

[34] M. Landstad, Duality theory for covariant systems, Trans. Amer. Math.
Soc., 248 (1979), no. 2, 223-267.

[35] M. Landstad, Duality for dual covariance algebras, Commun. Math.
Phys., 52 (1977), 191-202.
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