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Abstract

In certain spaces of analytic functions, the error term of a quadrature formula is a bounded linear
functional. The purpose of this thesis is to provide the methods used in order to compute explicitly
the norm of the error functional, which subsequently can be used in order to derive estimates
for the error term. In the first chapter, an introduction is made to orthogonal polynomials,
presenting some of their most important properties and making a special reference to Chebyshev
polynomials. The second chapter deals with quadrature formulae, focusing, mainly, on Gauss
quadrature formulae, along with some crucial properties, which indicate their superiority compared
to other quadrature formulae. This chapter concludes with the computation of the nodes and
weights of the Gauss-Chebyshev quadrature formula of any of the four kinds. The third chapter
is dedicated to estimating the error in Gauss quadrature formulae for analytic functions, which is
done by Hilbert space methods or contour integration techniques. Finally, in the fourth chapter,
some numerical experiments are carried out, which demonstrate the effectiveness of the bounds

obtained in the previous chapter.



Chapter 1

Orthogonal Polynomials

The main aim of this chapter is to present, briefly, a review of orthogonal polynomials, along
with their properties. For a comprehensive study, one can look at Gautschi (2004) (cf. [3]) and
Szego (1975) (cf. [9)).

1.1 Definition and basic theory

Let A(f) be an non-decreasing function on the real line R having finite limits as ¢ — £o0, and

assume that the induced positive measure d\ has finite moments of all orders,

fr = pr(dX) == / t"dA(t), r=0,1,2,..., (1.1)
R

with pg > 0.
Let P be the space of real polynomials and P; C P the space of polynomials of degree < d. For

any u, v in P, the inner product can be defined as
(u,v) = / u(t)v(t)dA(t). (1.2)
R

If (u,v) =0, then u is said to be orthogonal to v. If u = v, then

lull = /) = ( / u2<t>dA<t>)1/2 (13)

is called the norm of u. We write (u,v)gy and |Jul|gy, if we want to point out the measure dA.
Obviously, |lu|| > 0 for all w € P, and ||u|| = 0 only for u = 0, since d\ is a positive measure.

Schwarz’s inequality states that
|(u, 0)| < Jlullllv]] (1.4)

8
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Definition 1.1. The monic real polynomials 7y (t) = th + ..., k=0,1,2,..., are called monic
orthogonal polynomials, with respect to the measure d\, and will be denoted by 7(-) = 7 (+; dA),
if

(Tky Tm)ax =0, k#m, k,m=0,1,2,..., (1.5)

and
|mx]| >0, E=0,1,2,.... (1.6)

Remark 1.2. If the index set £ = 0, 1,2, ... is unbounded then there are infinitely many orthogonal
polynomials. In the same sense, there are finitely many orthogonal polynomials, if the index set

is bounded.

uy?
[l

Definition 1.3. The normalization 73, = k=0,1,2..., yields the orthonormal polynomi-
als. They satisfy
~ ~ O’ kj % m7
(Tks T )dx = Ok, := (1.7)
1, k=m,

and will be denoted by 7% () = g (+; dN).

1.2 Properties of orthogonal polynomials

1.2.1 General properties

Lemma 1.4. (, Lemma 1.4) Let m;, k& = 0,1,2,...,n, be monic orthogonal polynomials. If
q € P, satisfies (¢, 7;) =0 for k=0,1,2,...,n, then ¢ = 0.

Proof. The polynomial ¢ can be written as q(t) = ant™ +a,_1t" ! +-- -+ a1t +ag. Then, one has

0= (q, ) =(ant" + an_1t"" 4 - + a1t + ag, 7,)

:an(tna 7Tn) + an—l(tn_la 7Tn) + -+ al(ta 7Tn) + a()(l, 7Tn)

:an(tn, 7Tn) = a/n(ﬂ-na 7rn)>

by orthogonality of 7, to polynomials of lower degree. Since (7, m,) > 0, this yields that a, = 0.

Similarly, one can show that a,_1 = a,—2 =--- =ap = 0. Hence, ¢ = 0. O

Lemma 1.5. ( , Lemma 1.5) A set m, 71, ..., T, of monic orthogonal polynomials is linearly

independent. Furthermore, any polynomial ¢ € P,, can be uniquely represented in the form

n

q= chﬂk, (1.8)

k=0
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for ¢, € R. The set g, 7y, ..., m, forms a basis in P,,.

Proof. Assuming that

n

chﬂ'k = O,

k=0
and taking the inner product of both sides with m;, 7 = 0,1,2,...,n, one has that

n n
(chﬂk,WZ‘) =0 < ch(ﬂk,ﬂi) =0,

k=0 k=0

from which there follows, by orthogonality,
¢i(mi, mi) =0,
that is,
=0, 1=01,2,... n.

This proves linear independence. Now, writing ¢ in the form (1.8)) and taking the inner product
of both sides with 7;, gives, by orthogonality,

(q,m) = (Zn:%m,m) — (q,m) = Cz‘(m’,m‘),

k=0

which yields

U5, S S

(Wia ﬂ—i)

With the coefficients ¢; so defined, ¢ — ZZ:O ¢ is orthogonal to mg, 7y, ..., 7T, since
n n
(q - chﬂk,m> =(q, i) — (Z Ckﬁk,m)
k=0 k=0

:(q, 7TZ') - Ci(ﬂ'iﬂm) = 0, 1= O, 1, 2, oo,

hence, by Lemma [1.4] identically zero. O

1.2.2 Symmetry

Definition 1.6. An absolutely continuous measure d\(t) = w(t)dt is symmetric if its support

interval is [—a,al, 0 < a < oo, and w(—t) = w(t) for all t € R.
Theorem 1.7. ([3], Theorem 1.17) If dX is symmetric, then
T(—=t;dN) = (=1 Fmg(t; dN). (1.9)

Hence, 7. is an even or odd polynomial, depending on the parity of k.
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Proof. Define 7, (t) = (—1)¥m,(—t;d\). All 7}, are monic, and

(e = [ () (1) (A

—a

I / (O (D)),

Set —t = u. Then, w(t) = w(—u) = w(u), since dA is symmetric, and
() <=8 [ m(ma(wu((~do

:(—1)k+m/_ T (W) T (w)w (u)du

=(=1)" ™ (7, mn)axn = 0, k #m.

By the uniqueness of monic orthogonal polynomials, 7 (t) = 7 (t; d\), which proves (1.9). O

1.2.3 Three-term recurrence relation

The three-term recurrence relation satisfied by orthogonal polynomials is, by far, the most impor-
tant property for the constructive and computational use of orthogonal polynomials. The reason

why there exists a three-term recurrence relation is the shift property
(tu7 U)d/\ = (u7 tU)d)\, (110)

for all u,v € P, obviously enjoyed by the inner product ([1.2)). The shift property (1.10) shall be

used in the proof of the following theorem.

Theorem 1.8. (3], Theorem 1.27) Let mi(-) = mx(;dA), k =0,1,2,..., be the monic orthogonal

polynomials with respect to the measure dA. Then,

Tra1(t) =(t — ap)mp(t) — Bpmp—1(t), k=0,1,2,...,

(1.11)
7T_1(t> =0, 7T0(t) =1,
where
g = TR g (1.12)
(T, T ) dn
B= TRkl g, (1.13)

(Th—1s Th—1)d\
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Proof. Since mj, are monic, 71 — tmy is a polynomial of degree < k. By Lemma [1.5] it can be

written as

k—2
Tt () — trg(t) = —apmp(t) — Beme—y (8) + Y cimi(t), (1.14)
=0

where ay, Ok, c; are certain constants, m_1(¢f) = 0 and m(t) = 1. Taking the inner product of

both sides with 7, we have

k—2
(M1 — tg, T) = <_ak7rk — Brmp—1 + E Ckﬂiﬁk)

i=0
k—2
— (Wk+1a7Tk> - (tﬂ'kaﬂk) = ak(ﬂkyﬂk) - /3k(7Tk—177Tk) + Cki(ﬂi,ﬂk),
i=0
that is, by orthogonality,
—(tﬂk,ﬁk) = —ak(ﬂk,ﬂk) = ap = %, k=0,1,2...,

which proves ([1.12)). Similarly, taking the inner product of both sides in ((1.14)) with 7;_1, we have

— (tm, 1) = =B (Th—1, Th—1). (1.15)
Now, by ,
(t7g, mh—1) = (g, tmp—1), (1.16)

and writing tm,_1 = 7 + pr_1, where pi_1 is a polynomial of degree < k — 1, we get, by

orthogonality,
(7hs tmp—1) = (mh, T+ Pr—1) = (T k) + (7h, Pr—1) = (7Th, 7).

This, together with ((1.15]) and ([1.16]), yields ([1.13)). Finally, taking the inner product of both sides
in (T14) with 7;, i = 0,1,2, ...,k — 2, gives

—(tm, mi) = cgi (i, ™).
Again, we use that
(tﬂ'k,ﬂ'i> = (ﬂ'k,tﬂ'i) = O,
as tm; is a polynomial of degree < k — 1. Hence, ¢;; =0 for i =0,1,2,..., k — 2. O

Remark 1.9. Relations (1.12]) and (1.13]) are well defined as the inner product (-,-)gy is positive
definite.
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The coefficients in the three-term recurrence relation (1.11) will be denoted by ax(d\) and
Br(dX). Although Sy can be arbitrary, since it multiplies 7_; = 0, it is convenient to define

Bo = (71'0,7‘(’0) = /Rd)\(t). (1.17)

From ((1.13)), all 5, are positive, and the combination of (1.13]) and (1.17)) gives

(Tno ) (M1, m—1)  (m1,71)

(0, ) :(Wn—1,7rn—1) (o mna) " (ro o) (70, m0)
=Bnbn-1-..P1fo, n=0,1,2....
Hence,
|7nll* = BuBn-1-..B1Bo, n=0,1,2.... (1.18)

Theorem 1.10. ([3], Theorem 1.29) Let 74(-) = 7x(;dA), & = 0,1,2,..., be the orthonormal

polynomials with respect to the measure dA. Then

V BT () =(t — ap) T (t) — / Befp-1(t), k=0,1,2,..,

) ) 1 (1.19)
7_1(t) =0, 7o(t) = T
where ay and [y are given by (1.12), (1.13) and (1.17).
Proof. By Definition [I.3] we have
mi(t) = ||kl 7 (2). (1.20)
Obviously, 7—1(t) = 0 and, from (1.18)),
5 7o (t) 1
mo(t) = Tl ~ Vo

Inserting ((1.20)) into the three-term recurrence relation (1.11]), we get

Tt | Trg1 (t) = (8 = ap)||mpl| T () — Brllmr—1l|Tr—1(t),

and, dividing by ||7g41||, we obtain

. oo mellme @) el TR ()
Tr1(t) =(t — ag)
[7h 1] [yl
Tl - Tl 7l -
=(t — ag) Il Wk(t)—ﬁku |l Tr-1(t),
[ sy Imell (71l
which, by (1.13)), gives
T (1) By

(t)-

T (t) = (t —a

T

k:) - Tk—1
VOBet1 BibBrit

Finally, multiplying both sides by +/8k11, yields 1} O
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Definition 1.11. The Jacobi matrix associated with the measure d\ is the n x n symmetric,

tridiagonal matrix

Jn = Jn(dN) = | " | : : : (1.21)

Let
() = [Fo(t), F1(8), .., Fna (B)] (1.22)

Theorem 1.12. (, Theorem 1.31) The zeros " of (-3 dA) (or 7p(+;dN)) are the eigenvalues
(n)

of the n x n Jacobi matrix J,, and 7 (Ty > are the corresponding eigenvectors.
Proof. The three-term recurrence relation (1.19)) can, equivalently, be written as
tik(t) = / BeTr—1(t) + apmr(t) + / Ber1Try1(t), k=0,1,2,...,n—1. (1.23)

Then, in view of ((1.22), (1.23]) can be expressed in matrix form as

t7(t) = Jn7(t) + v/ Bufon(t)en,

where e, = [0,0,...,1]7. Now, put t = 7" and note that 7 <7'1£n)> # 0, as 7o <Tz£n)) v/

VBo©
Thus, we get
InT (T,En)) = T,En)ﬁ' (T,En)> ,
which proves our assertion. O]

An important consequence of the three-term recurrence relation (1.19)) is the Christoffel-Darboux

formula.

Theorem 1.13. (3], Theorem 1.32) Let 7 (-) = 7x(-;d)) be the orthonormal polynomials with

respect to the measure d\. Then,

D wn(@)F(t) = v 5n+1ﬁn+1(x)ﬁn(t) ~ (@) Tna (1) (1.24)
k=0

Tx—t

and

S 0] = VBur [Foa (Fnlt) — 70041 (1)]. (1.25)
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Proof. Writing the first relation of as
(t — ap)fr(t) = v/ BrraFaera () + v/ B (8),

and multiplying both sides with 7% (z) gives

(t — ar) T (O)Fk(2) = / Brar Trsr (OF k() + / Brp—1 () Fx(2). (1.26)
Interchange z and ¢ in in order to get

(2 — ar)Tr (@) Tk () = v/ Brrars (©)7(8) + / Brip—1 (2)7(1). (1.27)
Subtracting from , we have
(@ = (@) 7% (t) = /Bt [Frr1 (@) Fu () — 7(@)Fas1 (8)] — v/ Be[Fr(@)ro1 (£) — Fpmr ()70 (1))

Dividing both sides by x — ¢, summing from k = 0 to k = n, and observing that 7_1(¢t) = 0, we
get

n

Br+1 [ﬁn—i—l(x)ﬁ-n(t) — () Tn+1 t)} — Vb [ﬁ'n(l’)ﬁ-n—l(t) - 7’%n—l(x Nn(t)}}

_ Gt @)a(t) = (@) ()

which proves ([1.24)). Now, writing

Zm ) Sy @) = T 1)

r—1

=V Bnt1 Tt ()Tn(t) - ﬁnﬂ(t)ﬁn(tg)ytjnﬂ(t)ﬁ”@) — Tn (@) Tn41(¢)
=/ Bt [WH 1(@)Tn(t) = Tt (OTn(t) | Fns1 (O)7Tn(?) —ﬁn(z)frmrl(t)]

r—t r—t

/B [ﬁnﬂ(ﬂfi : fnﬂ(t)ﬁn(t) _ ﬁn(ﬂiz : fn(t) ﬁn—l—l@)] 7

and taking the limit as x — ¢, yields ([1.25)). O
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1.2.4 Zeros

Theorem 1.14. (3], Theorem 1.19) All zeros of 7, (-) = mp(+;dA\), n > 1, are real, simple and

located in the interior of the support interval [a, b] of dA.

Proof. Let 11,72, ...,7, be the zeros of 7,. At least one of them must exist in the interior of [a, b].

Assume that this is not the case. Then, 7, keeps constant sign in (a, b), so,

b
/Wn(t)d)\(t) :/ T (8)mo(t)dA(t) # 0,
R a
which contradicts the orthogonality of m, to polynomials of lower degree.

If we assume that there is a double zero 7; and define

Tn
=" _cP,_,

then

7.‘.2

b
(. ) = /R mOpaON0) = [ ﬁdw) -0,

which contradicts the orthogonality of m, to polynomials of lower degree.

Now, assume that there are k zeros of 7, in (a,b), k < n, and define
pp=0C—1){t—T2)...(t — 1) € Py.

Hence,

b
(Tn, PE) = /Rﬂn(t)pk(t)d)\(t) = / (t — 7'1)2(75 — 7'2)2 (= Tk)Q(t — Tga1) - - (= T)dA(t) # 0,

since m,px has constant sign in [a, b]. Again, it contradicts the orthogonality of m,, to polynomials

of lower degree. Thus, it must be k = n. [

Theorem 1.15. (]3], Theorem 1.20) The zeros of m,4; alternate with those of m,, that is,

7721“;1) <7 o ) Tr@l <o < Tl(") < Tl(”H), (1.28)
(n+1) (n) . . .
where 7, and T are the zeros, in descending order, of m, 1 and m,, respectively.

Proof. From ([1.25)), we have

1 (O7n(t) — 7 () g (t) > 0. (1.29)
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Let Tl-(nﬂ) and Ti(ffl) be two consecutive zeros of Tp4+1. Since Tpq1 = Tpg1/||Tn+1]ls Ti(nﬂ) and
TZ-(_ZILD are two consecutive zeros of m,11 as well. From Theorem [1.14}] Ti(nH) and Ti(j_lii—l) are real
and simple, so 7, (TZ-(RH)) and 7, (Tfﬁi”) have opposite signs. Equivalently,

~ n+1)\ ~ (n+1

Tl (Ti( )) Tt (Ti+1 )> <0. (1.30)

Setting t = TZ.("H) and t = 7" i (1.29 , we get

i+1
7~T§L+1 (Ti(nﬂ)) T <Ti(n+1)) >0

and

- DY =~ 1

Tt (Ti(ﬁr )> T (Ti(j:;r )) >0,
respectively. Multiplying these two relations,

and noting (1.30]), we obtain
n () 7 (1) <0

1 1 ) - . - . .
Hence, between Ti(n+ ) and TZ-(ZT ) there is one zero of 7,. Since 7,+1 has n pairs of consecutive
zeros, the result follows. n

1.3 Classical orthogonal polynomials

Orthogonal polynomials’ contribution in Computational Analysis and Approximation Theory is
indisputable. In this section, we shall introduce the Chebyshev and Legendre polynomials, provid-
ing their three-term recurrence relation, the corresponding weight function and some important
formulas and properties. Also, in Table one can find the recurrence coefficients, weight func-
tions and support intervals of some of the most widely used orthogonal polynomials. To begin
with, classical orthogonal polynomials, are neither monic nor orthonormal. We identify the leading

coefficients k,, and squared norms h,,, that is,

pn(t) = kntn+---a (1.31)
ha = ||pnll?, (1.32)

where p, is the respective orthogonal polynomial of degree n.
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1.3.1 Chebyshev polynomials

There is almost no area of numerical analysis where Chebyshev polynomials do not drop in like
surprise visitors, and indeed there are now a number of subjects in which these polynomials take
a significant position in modern developments, including orthogonal polynomials and numerical
integration. Here, we make a brief introduction to Chebyshev polynomials, along with some of

their properties. For the relevant theory, Mason and Handscomb (2002) (cf. [7]) is the best source.

Definition 1.16. The Chebyshev polynomials 7},(t) of the first kind is a polynomial in ¢ of degree
n, defined by the relation

T, (t) = cosnf when t = cos0, (1.33)
so that T,(1) = 1.

Obviously, if the range of the variable ¢ is the interval [—1, 1], then the range of the corresponding
variable # can be taken as [0, 7].

Note that
cos00 =1, cos10 = cosf, cos20 =2cos’0 — 1, cos30 =4cos®0 — 3cosh, ...,

hence, we get

To(t) =1, Ti(t) =t, To(t) =2t> — 1, Ty(t) =4t> —3t,....

So, one has that kg = 1, k, = 2" 1, n > 1, while hg = 7, hy, = %7‘(‘, n > 1. Indeed, assuming that
n > 1 and writing d\(t) = (1 — t2)/* dt, the Chebyshev measure of the first kind (Table [1.1)),

we get
1
h = | Thll* = / T2(t) (1 - t2)‘1/2 dt.
-1

Setting t = cos 6, gives

/ cos®nb 1—COS 0) 1/2 sin 8d6

O

1 ™
/ cos® nfdh = / (cos2nf + 1) db
0 2 0

1 [ sin2n6 1
== +0| =—m.
2 2n 0 2
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If n = 0, working similarly as in the case of n > 1, yields

1
—1/2
ho = || To||* = /ng(t) (1—1¢%) 2 4t

1 T
:/ (1—t2)_1/2dt:/ 16
-1 0

=Tr.

The zeros of T),(t), for ¢ in [—1, 1], must correspond to the zeros of cosnf, for 6 in [0, 7] , that
is,
2k -1
2

nf =

m, k=1,2,...,n.
Hence, the zeros of T),(t) are

(1) 2k —1

7.7/ = cos
k 2n

m, k=1,2,...,n. (1.34)

The importance of the Chebyshev polynomials 7;, in Approximation Theory stems from the

extremal property in the uniform norm

Julloe = _max Ju(t)]

satisfied by the monic Chebyshev polynomial T? = 2'="T,,, n > 1, Ty = To,
Pllso > |1 T2 |00 = 247" for all p € P2, (1.35)

where P is the class of monic polynomials of degree n. Equality in (1.35)) holds if and only if
p="1T,.

Definition 1.17. The Chebyshev polynomials U, (t) of the second kind is a polynomial in ¢ of

degree n, defined by the relation

_ sin(n +1)0
B sin 6

Un(t) when t = cos 6, (1.36)
so that U, (1) =n + 1.

The ranges of t and 6 are the same as those in the case of T}, (t).

Note that
sin 10 = sin#, sin20 = 2sinfcosf, sin30 = sinf(4cos?d — 1), ...

hence, we get

Up(t) =1, Ui(t) =2t, Us(t) =4t —1,....
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So, one has that k,, = 2", while h,, = %7?. Indeed, writing dA(t) = (1 — t2) 1/2 dt, the Chebyshev
measure of the second kind (Table [1.1)), we get

1
ho = |Unl? = /1 U2(1) (1—12)"* dt.

Setting ¢ = cos 6, gives

T 2
hn :/ w (1 — cos? (9) 12 sin 0df
0 sin” 6
:/ sin?(n + 1)0df = %/ [1 —cos2(n+1)0]do
0 0
_1l9 sm202+1W}ﬂ 1
= -

o(n+1) |, 2

0

The zeros of Uy(t), for ¢ in [—1, 1], must correspond to the zeros of sin(n + 1)6, for 6 in [0, 7],
that is,
(mn+1)0=km, k=1,2,....,n.

Hence, the zeros of U, (t) are

2 _

Tk — COS

k
k=1,2,...,n. 1.37
N1 et (1.37)

The monic polynomial U, = 27"U,, n > 0, also satisfies an extremal property, but this time

1
fualy = / (i) dt,

-1

in the L{-norm

which is,

Pl = [[Upll1 for all p € P, (1.38)
Equality in (1.38]) holds if and only if p = Uy

Definition 1.18. The Chebyshev polynomials V;,(t) and W,(t) of the third and fourth kind,

respectively, are polynomials in ¢ of degree n, defined by

cos (n—i— %) 0

Valt) = cos 10
2

(1.39)

and .
i +5)0
Wy = St 2) (1.40)
sin 59

where t = cos 6, so that V,,(1) =1 and Wy, (1) = 2n + 1.
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The ranges of t and 6 are the same as those in the case of T}, (¢).

Similarly, as in the cases of T},(t) and Uy (t), we can show that
Volt) =1, Vi(t) =2t —1, Va(t) =4t> —2t —1,...

and

Wolt) =1, Wi(t) =2t +1, Wo(t) =4t> +2t+1,....

So, one has that k,, = 2", while h,, = 7 for both V,, and W,,.
Furthermore, the zeros of V,,(t) and W,,(t) are given by

2k — 1
T1§3) = CoS T, k=12 ...n, (1.41)
2n+1
and
2k
T1§4) = cos T, k=1,2,...,n, (1.42)
2n +1
respectively.

From the evenness/oddness of U, (t) for n even/odd, we may immediately deduce that

Wh(t) =Vp(—t)  (n even);
Wi(t) = — Vu(=t) (n odd),

that is,
Wat) = (~1)"Va (). (1.43)

This means that the third and fourth kind polynomials essentially transform into each other if the
range [—1,1] of ¢ is reversed, and it is therefore sufficient for us to study only one of these kinds
of polynomials.

All four Chebyshev polynomials satisfy the same three-term recurrence relation

Yk+1 :2tyk_y/€—l7 k= 172a"'7 (144)
where
(¢ for T),(t),
2t for Upy(t),
yo=1 and yi1 = < (1.45)

2t — 1 for Vi,(¢t),

(2t + 1 for Wy(t).
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Multiplying both sides of (1.44) with 2=+ for Uy, Vi1 and Wy, or with 2% for T}, one

has that Up, V;? and W} satisfy the same three-term recurrence relation

o o 1 o
yk+1 = tyk - Zyk—b k= 172a ceey (146)

while T}, satisfy (1.46)) for k > 2 and (1.46]) with 1/2 in the place of 1/4 for k = 1. Furthermore

t for T2 (1),
)

. . t for U (1),
yo =1 and y] = (1.47)
t—3 for Vo(t),

i+ % for Wy (t).

Due to their significance, one can collect all of the above information, along with the corre-

sponding weight functions, in the following table.

Kind g Y1 kn, ha w(t)
T, 1 ¢t 2" 7(n=0) (1—2)"*
57 (n>1)
U, 1 2t 20 1n (1—12)"*
Vo, 1 20—1 2» ™ (1—t)" Y21 +1)1/?
W, 1 2t+1 2 ™ (1 —t)Y2(1 4 )71/2

Table 1.1: Chebyshev polynomials

1.3.2 Legendre polynomials

Legendre polynomials arise from the orthogonalisation (Gram-Schmidt) process for polynomials
with the weight function w(t) = 1 on [—1,1]. The usual notation for the nth-degree Legendre

polynomial is P, and corresponds to the normalization P,(1) = 1.

Remark 1.19. Consider the Jacobi polynomials, which are denoted by P,Sa’ﬁ ) and normalized by

P,(f"ﬂ )(1) = (":a), and the Gegenbauer polynomials which are defined in terms of the Jacobi
polynomials P,ﬁf‘ﬁ ) by

FA+3) T+2) 0-3a-3)

(N )
P (1) = T T

(t), A0, (1.48)
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where I' is the Gamma function

[e.9]
F(x):/ t" et
0

The Legendre polynomials are special case of the Jacobi polynomials with a = 8 = 0 . They are,

also, special case of the Gegenbauer polynomials with A = 1/2, that is,
Put) = PO t) = PP ).

The first few Legendre polynomials are

Po(t) =1,

Pi(t) =t,

Plt) = 5 (36>~ 1),

Py(t) = %(5:&3 — 3t),

Py(t) = %(35154 — 302 + 3),

One has that

2n)!
o= 2001
27 (n!)
and
1
hy, = T
7’L+§

The Legendre polynomials P, satisfy the three-term recurrence relation

(k + 1) Py (t) = (2k + D)tPu(t) — kPyo_y(t), k=1,2,...

Py(t) =1, Pi(t) =t

Remark 1.20. Each P, is bounded by 1 on [—1,1].

(1.49)

(1.50)

(1.51)

Y

(1.52)



Chapter 2
Quadrature Formulae

2.1 Introduction

Let d\ be a measure with bounded or unbounded support, which shall be considered to be positive.

An n-point quadrature formula for the measure dX is a formula of the type

[ #0ax0 = S0 )+ Ruth), 2.1)
v=1

where the sum on the right provides an approximation for the integral on the left and R, is
the respective error. The 7, assumed distinct, are called the nodes, and A\, the weights of the

quadrature formula.

Definition 2.1. The quadrature formula (2.1)) is said to have degree of exactness d if
R,(p) = 0 for p € Py. (2.2)

It is said to have precise degree of exactness d, if it has degree of exactness d but not d + 1, that
is, if (2.2)) holds, but R, (p) # 0 for some p € Py;.

2.2 Interpolatory quadrature formulae

Consider the Lagrange interpolation formula

F&) =" F@)b () +raa(fit), (2.3)
v=1

24
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where ¢, are the Lagrange polynomials, defined by

n

00 = T =2 (2.4)

pFV
Note that
L, p=v,
gl/(Tu) = 51/u = (25)
0, p#v.

Multiplying both sides of with the measure dA(t) and integrating gives
/f t)dA(t / [Zf ) +rn1(f;t)] dA(t)
= 7,0, (t)dA rn—1(f;t)dA
/Zf( O + [ ria ()
= n— dA(t).
=3[ [ o] s+ [ ratsinae

Hence, setting

-

Ay = Eaxt), v=1,2,...,n, 2.6

[ et /HTV_TN y=1.2....n (2.6
u#v

and
Ru(f) = /R ra 1 (F:1)AN(), 2.7)

we obtain ({2.1]), which in this case is called interpolatory as it was obtained by interpolation. Such
a formula has degree of exactness (at least) d =n — 1, as if p € P,_1, then r,—1(p;t) = 0, which
gives R, (p) = 0.

Given a set of n distinct points 7, one can construct an interpolatory formula having as nodes
the 7,. The following theorem provides conditions on the 7, such that an interpolatory formula

has degree of exactness greater than n — 1. First, we introduce the node polynomial

n

wa(t) = [J(t = 7). (2.8)

v=1

Theorem 2.2. ([4], Theorem 3.2.1) Given an integer k£ with 0 < k < n, the quadrature formula
(2.1) has degree of exactness d = n — 1 + k if and only if both of the following conditions are
satisfied:
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(a) Formula (2.1)) is interpolatory.
(b) The node polynomial ([2.8)) satisfies

/ wn(t)p(t)dA(t) = 0 for all p € Py_1.
R

Proof. Assume that the formula has degree o exactness n — 1+ k. Asn—1+4+k >n — 1, it has
degree of exactness at least n — 1, so formula ({2.1)) is interpolatory, which proves (a).
Now, let p € Py_1. Then wyp € P, 14k, as wy, € P,. Therefore,

léwdﬂﬂﬂ@ﬁ):EZAwmhﬁmn):Q
v=1

since the formula has degree of exactness d = n — 1+ k and wy,(7,) = 0. This proves the necessity
of (b).

Conversely, if (a) and (b) hold, one must show that under these conditions formula has
degree of exactness n — 1+ k, that is, R,(p) = 0 for any p € P,_1,. Let p € P,_1.; and dividing

p by wy,, we have

P = qwn +T7 q €< ]Pk—h re ]P)’rl—lv

S0,

/ p()dN (1) = / [q(t)wn(t) + ()] dA(?)
R R
:/ﬂm%@@@+/}@m@.
R

R

Since, ¢ € Pr_1 and w,, € Py, because of (b), the first integral on the right equals to zero. For the

second integral, we have, as r € P,,_1, by virtue of (a),

/ r(t)d\(t) = Z Ar(Ty).
R v=1

Note that
r(1) = p(1) — ¢(1v)wn(1) = p(10),
as wp(7,) = 0. Finally,

[ p0are =3~ (),
R v=1

that is Ry (p) = 0. O
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Condition (b) requires w;, to be orthogonal to polynomials of degree k—1 relative to the measure
d\. Since d\ is a positive measure, choosing k£ = n in Theorem is optimal; indeed, the choice
k =mn+ 1 would require w,, to be orthogonal to all polynomials of degree at most n, in particular,
orthogonal to itself, which is obviously impossible.

The optimal quadrature formula with & = n, having degree of exactness 2n — 1, is
called the Gauss quadrature formula, with respect to the measure d\. Condition (b) in Theorem
shows that w, is the nth-degree orthogonal polynomial relative to the measure d\, that is,
wn(t) = mp(t; dX). Hence, the nodes 7, of the Gauss quadrature formula are the zeros of m,, while

the weights A\, can be computed by (2.6)).

2.3 Gauss quadrature formulae

The n-point Gauss quadrature formula will be written in the form

/R FanE) = 3 AGF (€) + RG(f), (2.9)
v=1

with
RS (Poy—1) = 0. (2.10)

2.3.1 Properties of the (Gauss quadrature formulae

The Gauss formula (2.9)), apart from being optimal as to the degree of exactness, has a number of
other remarkable properties, which shall be presented in the following theorems (cf. and )

Theorem 2.3. All nodes 1, = TVG are distinct and contained in the interior of the support interval
[a, b] of dA.

Proof. This is a property of orthogonal polynomials and follows from Theorem since T, are
the zeros of m, (+;d\) .
O

Theorem 2.4. All weights A\, = A& are positive.

Proof. Set f = Ei in 1} with £, given by 1} and note that

/Ei(t)d/\(t) > 0. (2.11)
R
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As 63 € Py C Pyy,—1, formula 1} is exact, that is, R, (EZ) =0, u=1,2,...,n. Hence,

n
4€Z(t)dk(t)=zku€i(7y ZA 02, =Ny p=1,2,...,n. (2.12)
v=1
Combining ([2.11)) and ({2.12]), proves our assertion. O

Theorem 2.5. If [a, b] is a finite interval, then formula (2.9)) converges for any continuous function

[ in [a, b], that is, R,(f) — 0 as n — 0.

Proof. Let f be a continuous function in [a,b] and po,—1(f;-) be the polynomial of degree 2n — 1
that approximates f best on [a, b] from Pg,_;. By the Weierstrass Approximation Theorem, there
holds

Tim (1) = Panca () e = 0. (2.13)

Since pap—1 € Pap—1, formula (2.9) is exact, so Ry, (pan—1) = 0. As the measure d\ is positive and
Ay, >0,v=1,2,...,n, one has that

‘Rn(f)’ = ’Rn(f) - Rn(ﬁ?n—l)‘ = ’R (f _]5211—1)‘
b

[£(t) = Pan—1(f;1)] dA(t ZA — pon-1(f;7)]

b
S/ |f(t) - ﬁ2n71<f; t>| d)‘(t) + Z Av ’f(TI/> - ﬁanl(f; Ty)|

b n
<) = Don—-1(f5 ) |loo [/ dA(t) + Z)‘V] )
a v=1

Note that 1 =t € Py, so formula (2.9) is again exact, that is,

/abd)\(t):/abl dA(t ZA 1—ZA,,,

/abd)\(t) = 1o.

|Rn(f)] < 20l f(-) = Pon—1(f;)|loo = 0 as n — oo.

and, by virtue of (1.1),

Hence, from ([2.13]),
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Theorem 2.6. The nodes of the (n + 1)-point formula (2.9)) alternate with those of the n-point
formula (2.9)), that is,

) W) o ) ) o) ) (2.14)
(n+1) (n) . . . ;
where T and T, are the nodes in descending order of the (n + 1)-point and the n-point

formula (2.9)), respectively.

Proof. The result follows from Theorem [1.15| since TZ-(R_H) and Tj(n) are the zeros in descending

order of 7,41 and m,, respectively. O

In Chapter 1, we proved that if m(-) = m(-;dN\), k£ = 0,1,2,..., is the monic orthogonal
polynomial with respect to the measure d\, then ((1.11)) holds,

7Tk—|—1(t) :(t - ak)ﬂk(t> - Bkﬂk—l(t)7 k=0,1,2,...,
m_1(t) =0, m(t) =1,

where a; and (5}, are given by ((1.12)) and (1.13]), and Sy was defined, conventionally, in (1.17)) as

%zéww

Also, we defined the n x n Jacobi matrix ([1.21]), which is given by

ap VB1 0 0
\/E al \/E 0

0 - 0 ﬁnfl Qn—1

In Theorem [1.12| we proved that the zeros T,gn) of m,(+;d\) (or 7,(+;dN)), i.e., the nodes of the
Gauss formula (2.9)), are the eigenvalues of the Jacobi matrix J,,, and 7 (Tlgn)) are the correspond-

ing eigenvectors, where
~ ~ ~ ~ T
w(t) = [Fo(t), M1(t), -, Tno1(t)]

Dividing 7 (T ,in)> by H7~T (T’gn)) ‘

. yields the normalized eigenvector vy, that is,

) )
N (2 o))

where || - ||2 is the euclidean norm on R™.

v = H (2.15)
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Corollary 2.7. The weights A, of the Gauss formula (2.9)) can be expressed in terms of the first

component v 1 of the corresponding normalized eigenvectors vy, by

e =Bovey, k=1,2,....n. (2.16)
Proof. Writing ([2.15)) in vector form
i T [ - () |
Vk,1 7o Tkn
~ (n)
k2 | 1 T\ Ty
: B 2\ 1/2 : ’
(= [ ()]) )
7o ()
and comparing the first components of both sides, gives
an) <T]§n)>
Vg1 = 12 (2.17)
(s [ (O))
Since 7o(t) = \/167), squaring both sides of (2.17)), we get
1
(2.18)

2 = .
50%,1 Z?gol [ﬁz‘ (Tlgn)>]2

Noting that 7;7; € Pop_9 C Poy—1, 4,5 = 0,1,...,n — 1, the Gauss formula (2.9) must be exact,

that is,

n
/ () (AN = S M <T,§”)) 7; (T,E")) L ij=0,1,...,n—1. (2.19)
R k=1
Since 7; and 7; are orthonormal with respect to the measure d\, there holds, by (1.7)),
/ ﬁi(t)ﬁ'j(t)d)\(t) = 51']', i,j = O, 1, oo — 1. (2.20)
R
Combining (2.19) and ([2.20]), we obtain
n
Z )\kﬁi (Tlgn)) 7~Tj (T,gn)> = dij, i,j = 0, 1, e, — 1, (2.21)
k=1
which can be written in matrix form as
(2.22)

ITAIL = 1,
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where ~ _
o 71( ) T Tl(n) Tn—1 Tl(n)
~ (n) ~ (n) (n)
o | T T | T Tp—1 | T
m— 0\79 1 .2 1 2
o (T,(ln) ) T (7'7(;1)) . Tn—1 (7'7(1”)>
and _ .
A O 0
A— 0 )\'2 0
0 0 An

Theorem states that all weights A\ are positive, so A is invertible. By virtue of (2.22)), we have
det (ITTATT) = det (I) =1,

which is equivalent to
det (TI7) det (A) det (TI) = 1.

Hence, IT and II7 are also invertible, so by l}
1

Al = (")
that is,
A= (f) "ot = (mmf)
Therefore,
At =17,
where _ .
1
x 0 0
1
Afl — 0 A2 0
1
I 0 0 * |
from which there follows that
1 n—1 (n) 9
~ n
o ()]
i=0
that is,
1
A = (2.23)

_ .
Z;:ol [ﬁi (Tén))}
Now, ([2.23)), together with (2.18]), proves our assertion. H
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Theorem 2.8. (3], Theorem 1.48) Given the Hermite interpolation polynomial pa,_1(f;-) of
degree 2n — 1, which satisfies

Pon—1 (f,TVG) =f (TVG) . Dhn_1 (f, TVG) = f (7‘19) , v=12...,n, (2.24)

there holds "
[ peatinan® = 358 (55). (2.25)

R v=1

Proof. From properties of the Hermite interpolation polynomials, writing 7, = T,/G , one has

n

pon—1(f;t) = Z [a,,(t)f(ﬂ,) + 5V(t)f/(71/)} ) (2.26)

v=1

where

ay(t) (1 —2(t — TV)E;/(TV)) E:%(t)7
Bu(t) = (t = )G (8),
and ¢, are the Lagrange polynomials satisfying (2.4)) and (2.5). Multiplying both sides of (2.26)

with the measure dA(t) and then integrating, gives

(2.27)

n

/R P (J: )AN(E) = /R {Z [au(0) () + B (1)1 (7,)] } aA(1)

v=1

:U%; [ atwno] s+ ] [ mow] re}

Formula ([2.9) shall be exact, since ay,, 8, € Pa,_1, so,

n

/R a, (t)dA(t) = Z Mt (1) =D [N (1= 2(7 = 1)L, (7)) €2 (7,)]
— o=

_Z (1 =2(7u = 1), (1)) 00,] = Mo

and

hence, our assertion follows. O]
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Corollary 2.9. If f € C?"[a,b], then the remainder Rg (f) in formula (2.9) can be expressed as

()
(2n)!

RO(f) = /R [ma(t: N2 AA(E), € € (a,D). (2.28)

Proof. For functions f € C?"[a, b], it is well known from the Hermite interpolation theory that
f(t) = pan-1(f:t) + ron—-1(f3 1), (2.29)

where

Fon_1(f;t) = f H (t—7)% € (a,b). (2.30)

Multiplying both sides of m with the measure d)\( ) and then integrating, gives
[ 5000 = [ raa(i0)+ raa (0] are)
= [ a0 + [ ranea 000,
R R
hence, from ([2.25)),

/ F(t)dAt ZAGf / Fan 1 (3 )AA(E). (2.31)

Now, comparing ([2.31]) with the Gauss formula (2.9)), yields that

RY(f) = /rznlftcu /f 1_1

By the Mean Value Theorem of integration, there exists a £ € ( b) such that

n
/ e H 7)) 2dA(t)
v=1
Noting that 7, = TVG, S0,
n n
[[e-n) =]]¢-75) (t: d))
v=1 v=1
we finally obtain ([2.28)). O

2.3.2 Gauss-Chebyshev quadrature formulae

Consider the Gauss formula 1) with dA(t) = (1 — t2)_1/ th, the Chebyshev measure of the first

kind (Table [A.1). The nodes 1, = Tlﬁl) are the zeros of the Chebyshev polynomial T;,, given by

2v—1
2n

m, v=12...,n. (2.32)

T, = cosb,, 0, =
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The weights \, = )\,(,1) can be computed by |)

1
)\l,:/ f,,(t)(l—tQ)_l/th, v=1,2,...,n,
-1

where £, (t) can be written as
n

o) =1] i’

pFV
Noting that
“ “ 1 T, (1)
[Lt=n) =107 = = 7 (2:33)
p=1 p=1
pwFEY
and letting t — 7, as Tp,(1,) =0, v =1,2,...,n, gives
n
[[# =7 =T,5). (2.34)
pu=1
HFV

Now, (2.33)), together with ([2.34]), implies that

T (t)
)= ——mrt——,
0= =)
hence,
1 by _
Ay = - / n(t) (1 —_ t2) 1/2dt, v=12...,n. (2‘35)
Tn(Tl/) aqt—7

In order to compute the T/ (7,), we use the trigonometric representation for 7;, and the formula

for the zeros. Indeed, as T}, (cos#) = cosnf, there holds

, __sinnd
T, (cosf) =n e
which leads to .
sin nf (—1)v*
T (1) = ~ = =1,2,...,n. 2.
n(T) nSil’ley n sin Qv y V ) <y y TV ( 36)

For the computation of the integral in (2.35), we use the Christoffel-Darboux formula ((1.24)).
Noting that T}, = Ty,/||Ty||, where || T},||*> = hy, (Table and 3,41 is the recurrence coefficient
which can be computed by ((1.13), yields

n

L1 () Tn (1) = Tn(#) Tny1 (1) _ Ty (t) Ty (10)
+1 ﬂ-(t — TV) +1 _ Z k h: :

k=0
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which, since T, (7,) =0, v = 1,2,...,n, takes the form

n

BT(n) _ 5~ TOT()

ﬂ-(t - Tl/) =0 hy,
So,
T,(t) T [T 2
_ =N T Ti(m
t—1, Tht1(m0) m o Pt k(O Tk(m)

T 1 2«
—— |2+ 2Y T
Tot1(m) 7r+7rk:1 k() Tk(7v)

Y

and integrating both sides with respect to the measure (1 — t2)_1/ th, gives

/1 T (t) (1 _ t2)_1/2 dt

1t_7—y

1

1 n
= _#(T,,) [%/_1 (1—tz)_l/thJr%ZTk(Tu)/_lTk(t) (1—t2>_1/2dt] :

k=1

Note that the first integral on the right-hand side equals to 7w, while the second integral vanishes,
due to the orthogonality of the Chebyshev polynomial T}, hence,

1
T, (t -
/ ) () _py g T (2.37)
i t=7 Thnt1(m))
Now, one can compute that
2v—1
Thi1(1y) =cos(n + 1) V2n T
= cosn——0 mcost, —sinn msind,
n n
= — (=1)""sing,.
The latter, combined with (2.35)), (2.36) and (2.37)), yields
=2 v=1,2,....n, (2.38)
n

thus, the Gauss-Chebyshev quadrature formula with the Chebyshev measure of the first kind, or
the so-called Gauss-Chebyshev quadrature formula of the first kind, is

1 n
fe)(1— t2)_1/2dt = gzlf (cos 2V

17r) + RY(f). (2.39)

-1
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One can, also, get (2.38) and subsequently (2.39), by noting that (2.9) must be exact for
f(t) =Tr(t), k=0,1,...,n—1, since (2.9) is interpolatory and has degree of exactness d = n— 1.

As 1, = cos 8, one has

1 n
/ To(t) (1) Pat =S N Ti(n), k=0,1,...,n—1,

-1 v=1

that is,
n
7T5k0:Z)\Vcosk9V, k=0,1,...,n—1, (2.40)
v=1

due to the orthogonality of the Chebyshev polynomial T;,.

Lemma 2.10. With 6, and 6,, given by (2.32)), there holds
nfll 1
Z cos k), cos k), = 5715,,#, v,u=1,2....n, (2.41)
k=0

where the prime means that the first term (for £ = 0) is to be halved.

Proof. In view of , writing
1
cos kb, cos k0, =3 (cosk(0, —0,,) + cosk(6, +0,))

1 — —1
=— (cosk;y 'uﬂ—i-coskl
2 n n

7T>, vopu=1,2...,n,

and using Euler’s formula for the cosine, we get

and
cos kX 17r _1 (eikwﬁ_%r + e_ikwrz_l”)
n 2
So,
nfll 1 nfll
Z cos kb, cos k‘@u :ZZ |:€zk7*‘w + —ik=tr _}_eik%ﬂfln + —ik%w]
k=0 k=0
n—1
1 / [( ZV l’fﬂ-)k ( _ZVll«ﬂ.)k cv4p—1 k _svtp—1 k
:—Z e n —I— e n _I_ <€Z n 7T> _|_ (e 2777, 7(')
4 k=0
n—1 n—1 n—1
:i[ /<ezunnw>k i ’<eiunuﬂ> n /<eiu+517r>k
k=0 k=0 k=0
n—1
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Note that
n—1 n—1
'< m>’“ Z( w>’“ 1
en pnd e’'n _ =
k=0 k=0
1)t (2.42)
B 2

where r =v—p, p—v,v+pu—lorl—v—pu v,u=12 ... ,n Now,let v =p, so, v—pu=0,
p—v=0v+p—1=2u—1land 1 —v — pu=1—2u. By the first equation of (2.42)),

n—1 n—1

() e () e ]
(A n [ n g —_ - R
k=0 k=0 e (2.43)
and given that e!Z#=D7 = cog(2) — 1) = —1, we get
iy vu—1 \ K iy RN I ISP C Tt L B IR D L |
1—— T 11— T — _ R
Z (6 n ) + (6 n ) — o= + —
2 2
= — 1 (2.44)
1l—e"" w7 1l—et"™n 7
-1—2p - 2pn—1
4:__ 2 1 n m™ 2 1 n T
= 6~1—2,u ?;p—l 1 = 1'
2 _ 67/ n ™ elTTf
The combination of (2.43)) and ([2.44)), yields
n—1
/ 1 n
Z cos kb, cos k6, = 2 2n—1+4+1) = 5 V=R (2.45)
k=0

If v # u, suppose that v — p is odd. Then, p — v is also odd, while, v+ — 1 and 1 — v — 4 are
both even. This implies that e!V=M7 = ilh=)m — _1 an(d eilvtu—Dr — gill-=v=m7 — 1 G§o in

view of ([2.42)),
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If v — p is even, it is immediate that

n—l/ i n—l/
() 4 3 () =,
k=0 k=0
and n—1 n—1
/ (e e 1”>k + / (elly#”)k =1
k=0 k=0
Hence,
n—1
Z/ cos kb, coskt, =0, v # pu,
k=0
which, together with , proves our assertion. O

Now, multiplying both sides of (2.40|) by cos k6, and then summing over k as in (2.41)), in view

of Lemma [2.10} gives

~

n—l/ n—1 n
[m0g0 cos kb, [Z Ay cos kB, cos kO ]

k=0 fe= v=1
n 1/
— — = Ay [cos k0, cos k6]
v=1 k=0
e T_1 Z )
9 2o
v=1
<:>)\yzz, v=12...,n.
n

Remark 2.11. Note that for each n = 1,2,..., the n-point Gauss-Chebyshev formula (2.39)) has

equal weights. Posse (1875) proved that this is the only Gauss formula that has this property.

Consider the Gauss formula (2.9) with dA(t) = (1 — ¢2)"/?

second kind (Table |[A.1). The nodes 7, = 7',52) are the zeros of the Chebyshev polynomial U,

dt, the Chebyshev measure of the

given by
iz

n+1’

=1,2,....n (2.46)

Y )

T, = cosb,, 0, =

The weights \, = )\l(,Q) can be computed by 1)
1
Ay = / 60— Pat, v=1,2. . n,
~1
where £,,(t) can be written similarly, as in the case of the Chebyshev measure of the fist kind, as

Un(t)
(t = 1)U} (10)’

0, (t) =
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hence,
1 L UL 2\1/2
Ay = 1—1 dt, v=1,2,... n. 2.47
UL / t—T1, ( ) g " ( )
In order to compute the U),(7,,), we use the trigonometric representation for U, and the formula

for the zeros. Indeed, as U, (cosf) = sin(n + 1)0/sin 0, there holds
cosfsin(n + 1)0 — (n+ 1) cos(n + 1)fsin

sin> 6

Ul (cosf) =

)

which leads to .
cos(n + 1)25m — 1) (—1)”
sin?0, 1—712

Using the Christoffel-Darboux formula ((1.24) and similar arguments, as in the case of the Cheby-

Up(m) = —(n+1) (2.48)

shev measure of the first kind, we obtain

Un(t) T 2
= T |2t §U 1)U
t—1, Un+1(m) K 0(t)Uo(7) K k()
r J2 9
= T 2 IS U |
T | W;_; ATIALY

. . . 1/2 .
and integrating both parts with respect to the measure (1 — t2) / dt, gives

/1 Unll) (1 _ py 12y,

_lt_Ty
1

_m 2t e 2NN g
= Un+1(Ty)[7T/—1(1 t%) dt—f—W;Uk(y)/_lUk(t)(l t%) dt]-

Note that the first integral of the right-hand side equals to 7 /2, while the second integral vanishes,
due to the orthogonality of the Chebyshev polynomial Uy, so,

1
Un(t
/ Ol _py g o™ (2.49)
-1 t—1T1y Un+1<7—1/>
Now, one can compute that
sin(n + 2)6,
U v) —
n1 () sin 4,
sin(n + 1);57mcos 0, + cos(n + 1)t msin g,
N sind,
=(—-1)".
The latter, combined with (2.47)), (2.48) and ({2.49)), yields
A= ——(1-72), v=1,2,....n, (2.50)

n+1
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thus, the Gauss-Chebyshev quadrature formula with the Chebyshev measure of the second kind,

or the so-called Gauss-Chebyshev quadrature formula of the second kind, is

/ 00— ) _nilgu—ﬁ)f(cosnyj:l)+R§j(f). (2.51)

Letting dA(t) be the Chebyshev measure of the third or fourth kind (Table |A.1), one can
similarly obtain the weights AP and )\,(,4), respectively (see \| Theorem 8.4). Indeed, if dA(t) =
1-t)"Y2(1+ )2 at, then

AB) = j: <1+T£)),y:1,2,...,n, (2.52)
n

while, if dA(t) = (1 — t)Y/2(1 +¢)~V2dt,

@_ T (@Y
Al _n+%<1 7§ ) v=1,2,... n (2.53)

In the following table, we have collected the nodes and weights of the Gauss-Chebyshev quadra-

ture formulae of any one of the four kinds.

Table 2.1: Gauss-Chebyshev quadrature formulae.

Kind d\(t) Ty Av
#1 Chebyshev  (1—#2) %at  cos2=lx T
#2 Chebyshev (1 )1/2 cos g m 5 (1 — 73)
#3 Chebyshev (1 — )~ Y2(1 +t)/2dt cos §Z+%7r nj;% (14 7,)
#4 Chebyshev (1 —t)1/2(1+)"1/2dt cos 23J”rl7r é(l — 7))




Chapter 3

The Error Norm of Gauss Formulae for

Analytic Functions

The most common method for estimating the error of a quadrature formula is by means of a
high-order derivative of the function involved. Corollary provides such an estimate. In this
chapter, we shall present derivative-free error estimates that can be obtained by contour integration

techniques or Hilbert space methods.

3.1 The norm of the error functional

Definition 3.1. A complex-valued function of one or more complex variables that is, at every

point of its domain, complex differentiable in a neighborhood of the point, is called holomorphic.

Remark 3.2. The term analytic function is often used interchangeably with holomorphic function.
The word “analytic” is defined in a broader sense to denote any function that can be written
as a convergent power series in a neighborhood of each point in its domain. The fact that all
holomorphic functions are complex analytic functions, and vice versa, is a major theorem in
complex analysis.

Writing the measure d\ in as d\(t) = w(t)dt, where w is a non-negative weight function,

assumed to be integrable over [—1, 1], yields the quadrature formula

1 n
[ 10wt =3 wsen) + Rulh) (3.1
- v=1

where the 7, are certain distinct nodes in [—1, 1], ordered decreasingly, and the w, are the corre-

sponding weights.

41
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Let f be a holomorphic function in C, = {z € C: |z| <r}, r > 1. Then f can be written as

oo
f(z) = Zakzk, z € C,. (3.2)
k=0
Define
|f]r = sup {|ak|7’k : ke Ny and Rn(tk) # O} : (3.3)
Then, |- |, is a seminorm in the space
X, ={f : f holomorphic in C} and |f]|, < co}. (3.4)

In view of (3.1), as f € C[—1, 1], one has that

= ‘/ f(t) dt—Zwym

‘/ f t'-l—
g/_1| (0)]wt dt+Z|wu||fTul

1
SHfHoo'/l\w(t)!dtJrHfHoo-leuL
- v=1

that is,
n
| Rn(f)] < (IIWI|1 +> |wy|) 1/ lloo (3.5)
v=1
where || - ||; and || - ||co denote the L; and Lo, norm of a function, respectively. Hence, R, is a
bounded and, equivalently, continuous linear functional on (C[—1,1], || - ||). The continuity of

R,,, combined with the uniform convergence of the series in (3.2)) on [—1, 1], yields

o0

Ru(f) =) arRa(t"). (3.6)

k=0
Taking absolute values on both sides in (3.6|), gives

S S IR )I
ZakR <Z]ak\‘R tk ‘ :Z ak]rk ,
k=0

k=0
and by virtue of (3.3]), we obtain

| Bn(f)] =

[ Bn(f)]

IN

i M] | flr- (3.7)
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Setting f = t* in , one has
[Ra(t9)] < <|w||1+z|wy|> 1] - |w|rl+z|wy|, (3.5)
as HtkHOO =1on [-1,1]. Now, together with , gives

fl< [Z el 2 '“’”'] 1l
k=0

from which we get that the series in 1) converges, as ZZO:O ri’“ converges. Therefore, R, is a

bounded linear functional on (X;, |- |,), with norm ||R,||, that is,

[Bn ()] < 1Ralllf]rs (3.9)
where, from ,
2R, (tF
IRl < Z—‘ T(,f 1] (3.10)
k=0

In order to get the equality in (3.10)), let

o(z2) = Zsign (Rn (ﬂf)) 5
k=0
and note that
sign (Rn (tk))

In view of (3.6)), one can get

[e.e]

Z

i sign (R (tk))

7’

[,

k=0 k=0

Thus,
> | R, (¢
HRnsz—| 7,<k )|- (3.11)
k=0

The computation of the seminorm |f|, requires the knowledge of the coefficients ay, k > 0,

which are not always available, so | f|, often has to be estimated.
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Definition 3.3. The space

|2|=r

Hy = {f . f holomorphic in C, and / 1£(2)]|dz| < oo} (3.12)

is called the Hardy space Hs and the number

1/2
I = ( [ wer |dz|> , .13

is the corresponding Hy norm.

Lemma 3.4. The polynomials
k

2) = ——,
pk() Tk\/ﬁ

form a complete orthonormal system in Hs.

k=0,1,2,..., (3.14)

Proof. Taking the inner product of p,, pm, n,m =0,1,2,...,

Z’I’L =m

(PrsPm)Hy = /: Pn(2) pm(2) |dz| = /|: /2 rma/2mr

and setting z = re¥, gives

2m onit o —mit y
(pmpm)Hg :/ — |T‘Z.€l dt|
0

\2Tr 2T

/27T e(n—m)it
= rdt
0 2mr

2 —

21 Jo 0, n#m.

|dz|,

This proves that the system in question is orthonormal. For completing the proof, it suffices to

show that for an arbitrary f € Hy there holds

F=>_(f.o1)pr
k=0

Since f € Hy, f is holomorphic and ({3.2)) holds, so,

o o
(fapk): Zajzj7p/€ Za] Zjvpk
=0 =0
m .
= Z a;r’V2mr (pj, pr)
=0

o0
= Z a;rIV2mrdy, = aprt2mr. (3.15)
=0
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Hence,
o o0
> (foow) pk—Z(akT ) Pk
k=0 k=0
o
Z e
o0
k=
which proves our assertion. O
The fact that the polynomials p;, £ = 0,1,2,..., form a complete orthonormal system in Hs,

allows us to use Parseval’s identity in order to compute the norm || f||2,, that is,

IF113, =Y 10 pe)l?
k=0

Now, in view of (3.15]), one has

oo

>

k=

=27r Z lag]? r?,
k=0

Clk’f’

thus,
00 1/2
[fll2 = V2mr (Z |ak|2r2k> . (3.16)
k=0
Note that
o
Z |ag|?r > sup {|a;€]2r2k c ke Ng}
k=0
> sup {|ak]2r2k . ke Npand Rn(tk) £ 0} = |f‘%7
that is,
o0
> larlPr?t > | f12. (3.17)
k=0
Combining (3.16) and (3.17)), we get
flr £ ——= (3.18)
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Furthermore, from the definition of || f||2, there holds

I/

b= )Pl
o= e

< (gl'g;rf(zﬂ)z / s

—orr <max | f(z)|) B

|2|=r

Taking the square root of both sides and inserting the latter into (3.18]), yields

[l < max |f(z)] (3.19)

|2|=r

Although formula (3.11)) is useful for obtaining an estimate for ||R,||, it cannot be used for
computing || R, | explicitly. A practical representation for ||R,| can be derived if we have some
information on the sign of Rn(tk), k > 0. In addition, the representation becomes particularly

useful if formula (3.1]) is interpolatory.

Theorem 3.5. ([8], Theorem 2.1) Consider the quadrature formula (3.1). Let 7, (t) = [[_;(t—7)
and € € {—1,1}.
(a) If €R,(t*) > 0, k > 0, then

[Bnll =7

Ry, (%) ‘ : (3.20)

If, in addition, formula (3.1)) is interpolatory, then

HRn” =T

! /_1 7T”<t>w(t)dt‘ . (3.21)

m(r) J_yr—t

(b) If e(—1)* R, (t*) > 0, k > 0, then

[Bnll =7

Ry, (TLH) ‘ (3.22)

If, in addition, formula (3.1)) is interpolatory, then

1
|Rall = r|—2 /””(t)w(t)dt’. (3.23)

mn(=r) J_yr+t
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Proof. (a) Since R,, is continuous on (C[—1,1], || - ||eo) and eR,,(t¥) > 0, k > 0, by (3.11)), one has

k=0 k=0
> eRn(tk) > eRn(tk)
- kT Z ok
k=0 k=0
2\ Ry (tF) - £\F
“Jel| Yo - Zm((;)
k=0 k=0

(S0l ()

Assume that formula (3.1)) is interpolatory and let p,_; to be the polynomial of degree at most

n — 1, interpolating the function ﬁ at the points 71,7, ..., 7,. Then, there holds
1 1—(r —t)pn-1(t)
— pn—1(t) = : 3.24
r—t po-1(t) r—t ( )
Note that the left-hand side vanishes at the interpolating points, so the 71, 7, ..., 7, must be zeros

of the numerator on the right-hand side. As this is a polynomial of degree at most n, we have

1= (r—t)pn-1(t) = cpmn(t). (3.25)
Setting ¢ = r in (3.25)), we get
1
C =
n ﬂ'n(?“) i
which, inserted into (3.25)), along with ({3.24]), gives
1 1 mp(t)
— pn—1(t) = . 3.26
r—¢ n 1®) n(r)r—t (3.26)

Finally, integrating (3.26|) with respect to the weight function w and comparing this with (3.1)),

yields
1 1 U
Ry — / T <t)w(t)dt,
r—t m(r) J_yr—t

which, inserted into (3.20)), implies (3.21]).

(b) The proof is similar to the proof of (a), but now, we use the fact that e(—1)*R,,(t*) > 0, k > 0.
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So, by (3.11)), one has

= ||| ()l

Assume that formula (3.1)) is interpolatory and let p,_; to be the polynomial of degree at most

n — 1, interpolating the function rL—Q—t at the points 71,79, ...,7,. Then, there holds

1 1—(r+t)pn-1(t
r+t r+t

(3.27)

Note that the left-hand side vanishes at the interpolating points, so the 71, 7, ..., 7, must be zeros

of the numerator on the right-hand side. As this is a polynomial of degree at most n, we have

1= (r+t)pn-1(t) = cpmn(t). (3.28)
Setting ¢t = —r in (3.28)), we get
1
Cn - ’ﬂ'n(—’r)’
which, inserted into (3.28)), along with ({3.27)), gives
1 1 m(t)
— pn—1(t) = . 3.29
rrt Pn 1(®) Tn(=1) r+t (3:29)

Finally, integrating (3.29)) with respect to the weight function w and comparing this with (3.1)),

yields
1 1 Lot
R, _ / ™)y,
r+t mn(—r) J_i r+t
which, inserted into (3.22)), implies (3.23)). O

If f is a single-valued holomorphic function in a domain D containing [—1, 1] in its interior, and

[ is a contour in D surrounding [—1, 1], then applying the error term R,, viewed as a bounded

linear functional, on Cauchy’s formula

£ = o § L&

= dz, t € |—1,1],
2m Fz—tz [ |
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we get the representation
1
n o %K 2)f(2)dz, (3.30)
where the function K, referred to as the kernel, is given by
1
Ky(2) = Ry (2 — ) (3.31)
From ((3.30)), there follows
1
i
<—max|K |maX|f |]{ |dz|,
2w zel
that is,
R < 6(1“) K 3.32
RalP)] < =5 max | K 2) max | 2), (3.32)
where K(F) denotes the length of T'.
Theorem 3.6. (]2, Theorem 4.2) For each r > 1, there holds
| K (r)] if eRy (2 )ZO, k>0
max | (2)] = (3.33)
l#1=r | Ky (—7)| if e(=1)FR, () >
Proof. Expand
11 1
z—1t z 1-— %

z—1 §
LN R (F) O Ra()
Tz nzk B Z ,:k“ ’
k=0 k=0
S0,
o~ B (1) B ()] _ S B ()]
|I£l|aX|KTL(Z)| - mi}ﬁ Z Zk+1 S gl‘i}ﬁ Z |Z|k+1 - Tk+1
k=0 k=0 k=0
If eR (tk) >0, k>0, writing
[Ba ()] _ S~ Jel[Ba ()]~ JeBa ()]
Z Tk+1 _Z TIZH - Z 7«2+1
k=0 k=0
> Ry, (tF > R (tF
~y Bl B
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and noting that eK,(r) > 0, yields

Z ‘R k+1 |€Kn(r)| = |€| ’Kn(r” = |Kn(r>’7

that is,
l|fn|aXIK n(2)] < [Kn(r)].
z
Obviously,
[ K (r)] < max | Ky (2)],
|2|=r
hence,

max [ K (2)] = [Kn(r)] -

|2|=r

Similarly, if e(—1)¥R,, (tk), k > 0, writing

Z \Rk : i (D[R ()| _ i le(—1)F Ry ()| i e(—1)F Ry (t%)
+ r

RS

o
o
Il

o
=~
Il

=)

2L (=1)2FHLR,, (tF >\ — Ry (tF
ZGZ (_)1)k+1rk§—1 ) - EZ (_r—)gﬂ) = —eKy(-r),

and noting that —eK,(—r) > 0, yields

Z‘ k(ﬂ)‘ = [—eKn(=r)| = [=¢| [Kn(=r)| = [Kn(=7)],
k=0

that is,
w16, (2)] < K1)
Obviously,
[ K (=) <‘m|aX|K n(2),
hence,
max | Kn(2)] = [Kn(=r)].
Thus, follows. O
Taking I' = 0C, = {2 € C : |z| =}, r > 1, by Theorem [3.6|and (3.11]), there holds
maX‘K | = Z ‘ Tk+1 = H]“:th (3.34)

Combining (3.32)), (3.34) and the fact that ¢ (I") = 27r, yields

[Bn ()] < 1 Bn H|H1|§X!f( 2)|- (3.35)
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3.2 The error norm of Gauss formulae

In this section, we mainly concentrate on Gauss quadrature formulae for which ||R,| can be
computed explicitly by means of (3.21)) and (3.23]).
If formula (3.1) is the Gauss formula for the weight function w on [—1,1] and 7, are the

nodes, i.e., the zeros of the nth degree monic orthogonal polynomial 7, (+; w), then there exists the

following important result of Gautschi.

Lemma 3.7. (, Lemma 4.1) Let w be a non-negative weight function, assumed to be integrable
over [—1,1].

(a) If w(t)/w(—t) is non-decreasing on (—1,1), then R,(t*) >0, k > 0.

(b) If w(t)/w(—t) is non-increasing on (—1,1), then (=1)¥R,(t*) >0, k > 0.

The proof of Lemma [3.7 makes use of an interesting result of Hunter (cf. [6]).

Remark 3.8. In case that w(t)/w(—t) is constant, then w(t)/w(—t) = 1, so w is an even function,
and, by symmetry, Ry, (tk) = 0 for all k¥ odd. Hence, both cases of Lemma hold simultaneously.

Lemma can be used in conjunction with Theorem in order to compute || R,||. First of
all, note that for the Jacobi weight function w(t) = (1 —t)*(1+t)?, a,8 > —1, =1 <t < 1, there
holds

w—t)  Q+te1—nf \1-t

wt)  (1—-t)Y1l+1)f <1+t>5—“'

, 1+t 2

So, it is immediate, that w(t)/w(—t) is increasing on (—1,1) if a <  and decreasing if a > (.
A special case of the Jacobi weight function are the Chebyshev weights of any of the four kinds

wt)=(1-2)""? —1<t<1, (3.36)
w@t)y=(1-2)"? —1<t<1, (3.37)
w® () =1 =072 +0)V2, —1<t<1, (3.38)
w () =1 =021 +0)7V2, —1<t<1 (3.39)

The first two are even functions, so, according to what was stated before, w® w® and w®

satisfy part (a) of Lemma , while w(*®) satisfies part (b). Then ||R,| can be computed by means
of (3.21)) and ([3.23)), respectively.
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Theorem 3.9. (8], Theorem 3.2) Consider the Gauss formula (3.1, and let 7 =7 — v/r2 — 1.

(a) For w = w"), we have

2mr 720
R(l) = , n>1. 3.40
H n H (1 _‘_7_2”)\/7"27_1 = ( )
(b) For w = w® we have
2 2T t2y/r2 — 1
IRN = = n2 1. (3.41)
(¢) For w = w® or w = w®, we have
2n+1
(3) _ 2mrT r+1
HRn || - 1 +T2n+1 r— 17 n Z 17 (342)

and ||R || is also given by (3.42]).

Proof. (a) Applying (3.21) with w = ("), from Theorem (a), in view of Lemma (a), we have

1
Wy .| 1 Tn(t) (1 2y-1/2
| R || =r 0 /_1 — (1—t%) ""dt
1
T Ta(t) 11 2y-1/2
_dhwyzir—t(l ) T, (3.43)

where T}, is the nth-degree Chebyshev polynomial of the first kind. Setting t = cos# in the integral
on the right-hand side of (3.43)), and using the trigonometric representation for 7}, we get

1 0
/ Tn(t) (1 . Z52)71/2 dt :/ M (1 — COS2 9)71/2 (— sin 9) do

1 r—t r —cosf

:/ Lnee(siné)_l sin 0d6
g T — cos

:/ cosnfd 90
o T —cosf
"

r2 —1

 n=0,12... (3.44)

(cf. [, Equation 3.613.1 with @ = —1/r). Also, using Euler’s formula, we have

(einO +e—in0>

== [(cos 0 + isin6)" + (cos(—0) + isin(—6))"]
[(cos@—l—z 1—00529)n+ (COS@—i\/l—COS28>n]
[(cos@ — \/cos? 0 — ) + (0059 + v/ cos?f — 1)? : (3.45)

cosnf =

l\DIH[\DI)—‘[\DI»—ll\DIH
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that is,

Tn(t)—%[(H \/t2—1>n+ (t- \/752—1)”], (3.46)

as t = cos 6. Replacing ¢ with r in (3.46), since 7 = r — v/r2 — 1 and (2r —7) = 1/7, we get

To(r) :% [(r+ m>n+ (- \/mﬂ
:% [(2r —7)" +7"]
1/1
===+
(=)
= =012, (3.47)

Hence, inserting (3.47)), together with (3.44)), into (3.43)), yields

(1) T ™ orrr2n
TRl — - ,
T Vr2 =1 (1472 vr2 -1

which proves ([3.40)).
(b) Applying (3.21) with w = w®, from Theorem (a), in view of Lemma (a), we have

1
@ 1 Un(t) N
| Ry || =r Un(r)/_lr—t(l )" dt
r 1 Upl(t 1/2
5 /1 T_(g (1—2)"ar, (3.48)

where U, is the nth-degree Chebyshev polynomial of the second kind. Setting t = cos# in the
integral on the right-hand side of (3.48)), and using the trigonometric representation for U,, we

get
1 0 sin(n+1)8
U, (t ~ sind
/ n(t) (1 —t2)1/2dt:/ __sing (1 _C0529)1/2 (—sinf) db
L r—t . T —cosf
T .
:/ sin(n + 1)¢ ,1 sin? 0d6
g T —cosf sinf
:/ sm(n+1)98m9d9
0 r —cosf
_ / cosnb d@—l/ cos(n—l—2)0d0
g T —cosf 2 )y 1 —cost

2 r2—1

Y

|
N~ N~

( ik e akar > 177" (1 — 72)
Vr2 —1 V2 —1



54 3.2. The error norm of Gauss formulae

by (3.44]) with n + 2 in the place of n in the second integral. Also, as (2r —7) = 1/7, there holds

1—72=2 (1—r2+7‘\/7“2—1>
1

=2(1—r7) =27(——7r)
T

=27(r —71)=27Vr? -1, (3.49)

which implies that

1

t

/ [1{"<2(1—t2)1/2dt=7r7"+1, n=0,1,2,.... (3.50)
—1 -

Now, since T},(cos #) = cosnb,
sin nf

T/ =
n(cosf) =n e

which, as t = cos 0, leads to
T (t) = nUy—1(t),

hence,
T 4()
w(t) n+1
Note that 7 depends on r, so,
r \/71 —r

(r)y=1-

from which, in view of (3.47)), there follows that

2nT2n (1) — (1 + 7'2”) nt" 1 (—1)

T (r) =
n(r) 2r2n/r2 — 1
n [(1 + 7'2") T — 27'3”}
B 272n/r2 — 1
n (1 + 72— 272”) on (1 — 72")
o221 22—
Thus,
Ty (1)
U n—l—l
n(r) = n+1
1— 7_2n+2
= n=0,1,2,..., 3.51

orntly/r2 1 ( )

and inserting (3.51)), together with (3.50)), into (3.48)), yields
H B n+l _ orrr2nt2/r2

1— 7—2n+2 T 1 — 72n+2 )

27ty /r2—1

15
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which proves (3.41)).
(¢) Applying (3.21)) with w = w(®), from Theorem (a), in view of Lemma (a), we have

1
IR =r| - /V—”(t)<1—t)1/2(1+t>1/2dt

" Vo(r) J_yr—t

T YV L a—1)2 12
 Va(r) /_1 r—t(l t)"E (1), (3.52)

where V), is the nth-degree Chebyshev polynomial of the third kind. Setting ¢ = cos# in the
integral on the right-hand side of (3.52)), and using the trigonometric representation for V;,, we get

cos(n+3)0

1 1
/ Vn(?(l — )21 4 1) 2 =/ e 5 (1= cos8)2(1+ cos6)!/? (= sinf) df
- . T —CoS
1
@ =)0 1
:/ cos(n + 5) : (1 = cos8)~2(1 + cos 0)"/% sin 6d6.
o T —cosf cos 50
Since,
0
(1—cosf)/2 = v/2sin = 9—\/— i
2 coss 9
and

1
(14 cos0)'/? = /2 cos 59,
there follows

1 T
V(1) ~1/2 1/2 / cos(n+3)0 1 2 coszf
1—t 1+t)/2dt = 2 9 0do
/_1r—t( )Y o T —cosf cosle\/_ sin 0 \/_COS sin

2 3)0 cos 50
_/ cos(n + 3)0 cos &
0

r — cosf
:/7T cosnb de_i_/ﬁcos(n+1)9d(9
o T —cosf o T —cosf
" artl
= +
s
n
1
G U ) R I (3.53)
r2—1

by (3.44]) with n + 1 in the place of n in the second integral. Also, there holds
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(ct. [7], Equation (1.17)). So, by (3.51)), in view of (3.49)), one has

Vi (r) =Un(r) — Up—1(r)

2n+2 2n

I S 1—7
S opntl/rZ 1 oy r2 1

(1—-1) (1 + TQ”H)

2rl T

(1—-1) (1 + TQ”H)
- 7 (1 —72)

1 _|_7_2n+1
P

, n=20,1,2,....

Hence, noting that
(r+1)%=2rr+2r =27(r + 1),

and inserting (3.54)), together with (3.53)), into (3.52), yields

3) r (1 +71)
IR =i
2
e V-l

arr?(r 4+ 1)2
(72n+l 4 1) v/r2 — 1
2mrr2H (r 4 1)
(72n+l 4 1)v/1r2 — 1

_27rr7'2”+1 r-+1
142l o — 17

which proves (3.42)). Finally, there holds

thus,
RV () = (—1)*RP (%), k=0,1,2,....

The latter, combined with (3.11)), implies that ||R7(f’)|| = || R,(f)“,
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Numerical Examples

In this chapter, we present some numerical experiments, in order to demonstrate the efficiency
of our error estimates of the previous chapter. All computations were performed using our own

Matlab routines.

Example 4.1. We estimate the error of the Gauss formula (3.1]) for the integral

1
/ e~ w(t)dt,
-1

where w is the Chebyshev weight of any of the four kinds (3.36)-(3.39)). The integral was evaluated
by the Gauss-Chebyshev quadrature formula of the first, second, third or fourth kind, respectively.

The function

is entire and

rk

|f|r23up{y : ke Ny and Rn(tk)%()}

2n

@, l<r<2n+1,

T2n+k

Gnrmp 2ntk<r<2n+k+1, k=12,

s0 f € Xs. Then, the bound R, (f) is estimated by means of (3.9), that is,

[ Bn()] < I Bnlll £ (4.1)

where ||R,|| can be calculated by (3.40)-(3.42)). Given that the right hand side of (4.1)) depends
on 7, one can optimize (4.1)), that is,

Ba() < it (IRIf1)- (12)

o7
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Our results for various values of n are summarized in Tables 4.4l (Numbers in parentheses
indicate decimal exponents.) The value 7* is the one for which we obtained the infinum in (4.2)).
When the number for the actual error is close to machine precision, the actual error could be larger

than the error bound. In this case we enter “m.p.” (for machine precision) in the last column.

n r* Bound (I4.2I) Error
2 5000 1.739(—2) 1.720(—2)
5 11.000 1.733(=9) 1.729(-9)
10 21.000 2.494(—24) m.p.
15 31.000 2.225(—41)  m.p.
20 41.000 7.048(—60) m.p.

Table 4.1: Error bound 1' and actual error for Example with w = w.

n r* Bound (4.2 Error
2 5000 4.260(—3) = 4.229(—3)
5 11.000 4.316(—10) 4.307(—10)
10 21.000 6.228(—25) m.p.
15 31.000 5.558(—42) m.p.
20 41.000 1.761(—60) m.p.

Table 4.2: Error bound 1' and actual error for Example with w = w®.

n r* Bound (4.2 Error
2 5000 1.054(—2)  6.964(—3)
5 11.000 9.475(—10) 7.878(—10)
10 21.000 1.307(—24) m.p.
15 31.000 1.148(—41) m.p.
20 41.000 3.610(—60) m.p.

Table 4.3: Error bound 1} and actual error for Example with w = w®.
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n r* Bound (4.2 Error
2 5000 1.054(—2)  1.038(—2)
5 11.000 9.475(—10) 9.438(—10)
10 21.000 1.307(—24) m.p.
15 31.000 1.148(—41) m.p.
20 41.000 3.610(—60) m.p.

Table 4.4: Error bound 1} and actual error for Example with w = w®.

As we can see, the bounds we have obtained are clearly sharp. However, it is interesting to see
how bound (4.2)) compares with other bounds. First, we choose a bound of the same type with
the one in consideration. In view of (3.19)), bound (4.1]) can take the form

[Rn(f)] < IIRanl'iiflf(Z)I, (4.3)

which, optimized, can be written as

Rl < int(Ialma 7)),

1<r<oco

where ||R,|| can be calculated, similarly, by (3.40))-(3.42)). Since |z| = r, there holds

z=r(cosf +isinf), 0 <0<,

S0,
|f(z)| = B_T(COS O+i Sing)‘ = @_TCOSH ’e—irsine
:efrcose <e
Given that for 0 = 7,
[f(2)] = ¢,

we obtain

max |f(z)| =e".

|z|=r
Hence,

|Rn(f)| < inf (HRnHeT) (4.4)

1<r<oo



60

The second bound we selected is a classical one. By Corollary , if f € C?"[—1,1], there
holds
FE(7)
(2n)!

a2,

Ru(f) =

for some 7 € (—1,1), thus,
70| ‘ (2n) )
< — .
[Bn(f)] < on)r T [()
Given that 7, is the Chebyshev polynomial of any of the four kinds, ||7,||> = hy,, where h, can
be found in Table [L.1], and

(2n) ):
@él‘f ()| =e,

we get

hy,
[Bn(f)] < 2 (4.5)

Our results for both bounds (4.4]) and (4.5)) are summarized in Tables 4.7 The value r* is

the one for which we obtained the infinum in (4.4)).

n r* Bound (4.4) Bound (4.5

2 4179 9.179(-2)  1.779(—1)
5 10.060 1.393(—8)  1.177(—6)
10 20.027 2.811(—23) 1.755(—18)
15 30.018 3.064(—40) 1.610(—32)
20 40.013 1.120(—58)  5.233(—48)

Table 4.5: Error bounds and for Example with w = w®.

n r* Bound (4.4) Bound (4.5

2 4122 2227(-2)  1.779(=1)
5 10.150 3.464(—9)  1.177(—6)
10 20.025 7.018(—24) 1.755(—18)
15 30.017 7.657(—41) 1.610(—32)
20 40.012  2.799(—59)  5.233(—48)

Table 4.6: Error bounds and for Example with w = w®?.
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n r* Bound (4.4) Bound (4.5
2 4377 5.743(-2) 3.558(—1)
5 10.153  7.671(—9) 2.353(—6)
10 20.076 1.476(—23) 3.510(—18)
15 30.050 1.584(—40) 3.219(—32)
20 40.038 5.741(—59)  1.047(—47)

Table 4.7: Error bounds 1} and 1} for Example with w = w® or w = w®.

We notice that bound (4.4) provides a better estimate for the actual error than bound (4.5)).
Also, one can note that Table refers to results for both w® and w®. This was expected,
since, by Theorem HRS))H = HR%)H and h,, = 7 for both V,, and W,.

Example 4.2. We estimate the error of the Gauss formula for the integral

Lo
1 t)dt
[ gt
where w is the Chebyshev weight of any of the four kinds (3.36)-(3.39). The true value of the

integral was evaluated as in Example

The function

- k
fz) = -3 o
k=1
is holomorphic in Cy = {z € C : |z| < 2} and

k
|f]r zsup{zkk ke Ny and R, (tk) =+ 0}
T2n T2n
:22n .on - 22n+1y)’
since Ry, (tk) =0fork=0,1,...,2n—1. So f € X3 and the bound for the error functional R, (f)

is estimated by the analogous of bound (4.2)), that is,

|[Bn(DI < | Inf ([ Bnlllf]r)

7“2n
S <“Rn”m> 7 (46)
where ||Ry|| can be calculated by (3.40)-(3.42). Also, we provide a second bound, which is the
analogous of bound , that is,

Ru(f)l < inf (HR | max | (= >\> (47)

1<r<2 |2|=r
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Noting that

& Zk & |Z|k
— E — < E AR

we get

|2 =r —r

2k 2
max | f(z)] < 221% :1n2
k=1
Given that |z| = r, there holds

z=r(cosf +isinf), 0<0<m,

so, for 6 =0,
2 2
=1 =1
FE) =g =
as 1 <r < 2. Thus,
max [ f(z)] = In ,
|2|=r 2—
and bound (4.7)) takes the form
Ba(Dl < inf ([Balln (18)
nUN= S nlo ) '

Our results are shown in Tables .M. 11l The value r* is the one for which we obtained the

infima in (4.6) and (4.8)), respectively.

n r*  Bound (4.6 r*  Bound (4.8 Error
2 2000 9.302(—3) 1.864 1.424(—1)  8.076(—3)
5 2.000 1.384(—6) 1.958 6.888(—5)  1.999(—6)
10 2.000 1.320(—12) 1.982 1.538(—10) 1.132(—12)
15 2.000 1.679(—18) 1.989 3.179(—16) m.p.
20 2.000 2.403(—24) 1.992 6.395(—22) m.p.

Table 4.8: Error bounds 1“) and actual error for Example with w = w®.

The results for both bounds are quite satisfactory. One can note, that bound overestimates
the actual error by utmost two or three orders of magnitude, while bound is very close to
the actual error. Also, as expected, columns 2,3,4 and 5 of Tables [4.10] and are exactly the
same, as ||R%3)|| = HR#)H.
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n r*  Bound (4.6 r*  Bound (4.8 Error
2 2.000 2.015(—3) 1.848 3.001(—2) 1.836(—3)
5 2.000 2.981(—7) 1.956 1.472(—=5)  2.649(—7)
10 2.000 2.844(—13) 1.982 3.301(—11) 2.260(—13)
15 2.000 3.617(—19) 1.989 6.834(—17) m.p.
20 2.000 5.175(—25) 1.992 1.375(—22) m.p.

Table 4.9: Error bounds 1”} and actual error for Example with w = w®.

n r*  Bound (4.6 r*  Bound (4.8 Error
2 2.000 7.503(—3) 1.882 1.189(—1)  5.974(-3)
5 2.000 1.113(—=6) 1.960 5.594(—5)  9.272(—7)
10 2.000 1.061(—12) 1.983 1.242(—10) 6.501(—13)
15 2.000 1.350(—18) 1.989 2.563(—16) m.p.
20 2.000 1.931(—24) 1.992 5.151(—22) m.p.

Table 4.10: Error bounds 1} , 1} and actual error for Example with w = w®.

n r*  Bound (l4.6|) r*  Bound (I4.8I) Error
2.000 7.503(—3) 1.882 1.189(—1)  2.508(—3)

5 2.000 1.113(—=6) 1.960 5.594(—5)  3.432(-7)

10 2.000 1.061(—12) 1.983 1.242(—10) 4.731(—13)

15 2.000 1.350(—18) 1.989 2.563(—16) m.p.

20 2.000 1.931(—24) 1.992 5.151(—22) m.p.

Table 4.11: Error bounds 1' , 1} and actual error for Example with w = w®.

Example 4.3. We approximate the integral

1 2
t .
/ 2—t2 1—t2dt,w>0,
1 W* —

by the Gauss quadrature formula (3.1 relative to the Chebyshev weight function of the second

kind. The true value of the integral was evaluated by the Gauss-Chebyshev quadrature formula

of the second kind.
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Note that the bounds we provide can be used to estimate the error in approximating the integral

only if w > 1. Furthermore, the function

2 2
z z 1
f(Z)_WQ—ZQ_El_(£>2
X 2k+2
W’
k=0

is holomorphic in C, = {z € C: |z| < w}, w > 1. Then,

Lol o
| flr :sup{ o2k r
r2n
:ﬁ7

: keNy and R,(t?%) # 0}

as 1 <r <w. So, f € X, and the analogous of bounds (4.2) and (4.6| for this example is

R < int (RIS
r2n
= int (1l 5 ). (4.9)

1<r<w

where || Ry, || = ||R H and can be calculated by (3.41). As a result of (3.19)), one can estimate the

seminorm |f[,, 1 <r < w, by max,|—, [f(z)|. Since |z| = r, there holds
z=r(cosf +isinf), 0 <0 <m,

S0,

_EP
|f(z)|__|aﬂ _'ZQV
and noting that

|w2 - 22‘ = ‘wz —r? (00329 + 2i cos @ sin § — sin? 9)|

2 cos 20 — ir? sin 29|

)1/2

:}w2—7’
:( — 2w cos 20 + r

>(u;4 — 2wr? + T4)1/2 =w? =12,

we get
2
< .
max|f () < r
Given that for 6 = 0,
2 2
r r
&) = || = =




Chapter 4. Numerical Examples

65

as 1 < r < w, we obtain

max | f(z)]

|2|=r

w2 —

5"

Hence, the analogous of bounds (4.4) and (4.8)) for this example is

[Rn (f)] < inf

I<r<w

@

W

2
2_,2 )"

(4.10)

Our results for various values of n and w are shown in Table [4.12l The value r* is the one for
which we obtained the infima in (4.9) and (4.10)), respectively.

n r* Bound (4.9 r* Bound (4.10 Error
w=2 2.000  8.058(—3)  1.562 4.158(—2) 8.058(—3)

5 2000 2.981(—6) 1.824 4.335(—5) 2.981(—6)

10 2.000 5.688(—12) 1.913 1.719(—10) 5.602(—12)

15 2.000 1.085(—17) 1.942  4.983(—16) m.p.

20 2000 2.070(—23) 1.957  1.275(—21) m.p.
w=4 |2 4000 4.087(—4) 2912  1.740(—3)  4.087(—4)

5 4.000 1.716(—9)  3.595 2.181(—8) 1.716(-9)

10 4.000 1.876(—18) 3.802  5.018(—17) m.p.

15 4.000 2.050(—27) 3.869  8.364(—26) m.p.

20 4.000 2.241(—36) 3.902  1.229(—34) m.p.
w=8 | 2 8000 2435(—5) 5.700 9.892(—5) 2.435(—5)

5 8000 1.486(—12) 7.164  1.832(—11) 1.484(—12)

10 8.000 1.406(—24) 7.593  3.660(—23) m.p.

15 8.000 1.330(—36) 7.731  5.284(—35) m.p

20 8.000  1.258(—48) 7.799  6.721(—47) m.p
w=16| 2 16.000 1.504(—6) 11.336  6.039(—6) 1.504(—6)

5 16.000 1.409(—15) 14.315 1.724(—14) 1.036(—15)

10 16.000 1.264(—30) 15.181  3.269(—29) m.p.

15 16.000 1.133(—45) 15.459  4.476(—44) m.p.

20 16.000 1.017(—60) 15.596  5.399(—59) m.p.

Table 4.12: Error bounds (4.9)), (4.10) and actual error for Example {4.3| with w = 2,4,8 or 16.

Here, one can see that bound (4.9) is very accurate for smaller values of n and remains pretty
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close to the actual error as n increases. On the other hand, bound (4.10|) overestimates the actual

error by one or two orders of magnitude as n increases.

Example 4.4. We approximate the integral
1
cost
=V 1 —t2dt, w>0,
/1 t2 + w2
by the Gauss quadrature formula (3.1)) relative to the Chebyshev weight function of the second
kind. The true value of the integral was evaluated as in the previous example.
Both cos z and 1/(2% +w?) have Maclaurin series expansion for z € C and z € C,, respectively.

By the series multiplication theorem, as

o0 2k
1 L <
212 Z(_l) o2k+2
k=0
and
o0 ) sz
cosz=» (—1) :
2
we have
< | F 2j 2(k—j)
oS z .z z
- _1)J
f(2) 22 1 2 Z Z( 1) (Qj)l( S2(k—j)+2
=0 [ 4=0
Sy e
00 - 2 2k 2%k
N (=1)k YopY 2
_§( 1) _1+ TR (%)!1 75 7 € Cor

The bounds under consideration can be used to estimate the error in approximating the integral

only if w > 1. Also, the computation of the seminorm |f|., 1 < r < w, is quite cumbersome,

so, from (3.19), we estimate |f|, by max,_.|f(z)]. Writing z = retd

% (eiz + e‘iz), gives

, 80 |z| = r, and cosz =

e’LZ + e—lZ
22 + w?

If () =

COS 2 ’_1
2

22 + w?
eirew 4 e—irei‘9

1
2 (Tei0)2+w2

e~ Tsin 0+ir cos 6 4 ersin 0—ircos6

1
2172 cos2 0 + 2ir2 cos 0 sin 0 — 12 sin’ 6 + w2
1
2

e~ Tsin 0+1ir cos 6 - ersin 0—ircos6

(4.11)

r2 cos 20 + ir? sin 20 + w?
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As,

—ircos6

ir cos 0 e

e~ Tsin O+ir cos 6 + rsin @—ir cos 6 e

e <e T’ sin 6

+ e’ sin 6

:ersme + e—rsm@

and
r? cos 20 + ir? sin 260 + w2’ = (7’4 cos? 20 + 2r2w? cos 20 + w* + rtsin? 20) 1/2
= (7“4 + 2r2w? cos 20 + w4) 1/2

1/2
> (w4 — 2r%w? +r4) /2 _ w? — 7"2,

(4.11)) takes the form
Lersind 4 e=rsind  cosh (1sin )

< — =
o) < 55— o

Noting that the maximum of cosh (rsin @) is cosh(r), we get

< cosh(r)

< TN
max|f(2)l < T

and, given that for = /2,
~le"+e™  cosh(r)

&l =55 = S,
we finally obtain .
cosh(r
max|f(2)] = 2= s

Thus f € X, and the analogous of bounds (4.4)), (4.8)) and (4.10) for this example is

Ro(f)| < inf (uRnn C"Sh@) 7 (1.12)

1<r<w w? —r

where ||R,|| = HRg)H and can be calculated by (3.41)).
Our results for various values of n and w are shown in Table .13l The value r* is the one for
which we obtained the infinum in (4.12)).

We note that bound (4.12)) worsens as w decreases, as it overestimates the actual error up to

three orders of magnitude. This is a consequence of the large value of maxy,—, |f(2)] as r* — w.

Also, for a fixed value of w, the bound is worse for higher values of n.
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n r*  Bound (4.12 Error
w=2|2 1602 4.211(-2) 4.429(-3)
5 1.828  4.140(—5)  7.916(-7)
10 1.913  1.626(—10)  4.277(—13)
15 1.942  4.701(—16) m.p.
20 1.957  1.202(—21) m.p.
w=3|2 2201 5.743(-3) 1.060(—3)
5 2687  4.665(—T7) 2.223(—8)
10 2.850  2.258(—14)  2.470(—15)
15 2.902 7.717(—22) m.p.
20 2.927  2.309(—29) m.p.
w=4|2 2927 1.829(-3) 4.354(—4)
5 3.523  3.028(—8) 2.139(—9)
10 3.783  7.745(—17) m.p.
15 3.861 1.336(—25) m.p.
20 3.897 1.996(—34) m.p.

Table 4.13: Error bound (4.12)) and actual error for Example with w = 2,3 or 4.
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