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Abstract
The main objective of this study is to present different statistical models
and discuss their contribution to data fit. The first model that is anal-
ysed is the Generalised Linear Model(GLM) which is a generalisation of
the linear model assuming for the distribution of the response variable to
be a member of the exponential family of distributions. The nature of
the data determines to a great extent the form of the generalised linear
model that will be applied, through the choice of the link function of the
model. The iterative methods which allow for the practical implementation
of each particular model and the respective statistical inference procedures
are discussed, as well.

The assumption of the exponential family distribution for the response
holds in the Generalised Additive Model(GAM). A distribution that be-
longs in the exponential family of distributions is assumed for the depen-
dent variable, with the introduction of smoothing functions that blend the
inherent properties of the GLM with the additive models. The response
variable depends linearly on unknown smooth functions of some predictor
variables, and the inference is focused on these smoothers.

A general class of statistical models for a univariate response variable
is presented, which is called the Generalized Additive Model for Location,
Scale and Shape (GAMLSS). The choice of the distribution for the response
variable in GAMLSS is made from a very general family of distributions
including highly skewed or kurtotic continuous and discrete distributions.
The GAMLSS systematic part is expanded to permit modelling of the mean
(or location) and other distributional parameters of the response, as para-
metric and/or additive non-parametric (smooth) functions of explanatory
variables and/or random-effects terms.
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Chapter 1

The Generalised Linear Model

The generalised linear model (GLM) extends the linear regression model as
to achieve a better fit of the data whenever it is not feasible due to certain
circumstances under which linear model is no longer efficient. Major issues
that generalised linear models deal are non normal response distributions
and the heteroscedasticity problem. The main structure of the generalised
linear models is summarised in three model components; a random compo-
nent, a systematic component and a link function. The random component
identifies the response variable Y and its respective probability distribu-
tion, the systematic component of the generalised linear models clarifies
the explanatory variables that consist the linear predictor functions, as for
the link function it elaborates the function of average Y that the model is
equal to the linear combination of the explanatory variables.

1.1 Parts of the Generalised Linear Model
In this section, a thorough look into the model components is taken. The
random component of a generalised linear model is related with the prob-
ability distribution of the response variable Y . Let Y be the response
variable with independent observations (y1, . . . , yN) from a distribution in
the natural exponential family of the form

f(yi; θi, φ) = exp((yiθi − b(θi))/α(φ) + c(yi, φ)). (1.1)

This is called the exponential dispersion family (Agresti, 2015).
The parameter θi is called the natural parameter, and φ is the dispersion

parameter. If α(φ) = 1, c(yi, φ) = c(yi), the natural exponential family is
derived

f(yi; θi) = α(θi)b(yi)exp(yiQ(θi)). (1.2)

Otherwise, usually α(φ) is of the form α(φ) = φ, or α(φ) = φ/ωi for φ > 0
and ωi known weight quantity. The mean and variance of yi are expressed
via the equation (1). Let Li = logf(yi; θi, φ) and L = ∑

i Li.

Li = (yiθi − b(θi))/α(φ) + c(yi, φ)⇒ ∂Li
∂θi

= yi − b′(θi)
α(φ) ,

∂2Li
∂θ2

i

= −b
′′(θi)
α(φ)

1



2 CHAPTER 1. THE GENERALISED LINEAR MODEL

E
(
∂L

∂θ

)
= 0 and − E

(
∂2L

∂θ2

)
= E

(
∂L

∂θ

)2
.

From the first formula

E
[yi − b′(θi)

α(φ)
]

= 0⇒ µi = E(yi) = b′(θi).

From the second formula

b′′(θi)
α(φ) = E

[
yi − b′(θi)
α(φ)

]2

= var(yi)
α(φ)2 ⇒ var(yi) = b′′(θi)α(φ).

The systematic component involves a vector (η1, . . . , ηn) that is related
to the linear combination of the explanatory variables; a linear model. Each
component of the vector is given by the formula

ηi =
∑
j

βjxij, i = 1, . . . , N.

This is the linear predictor of the generalised linear model.
As for the link function, this third component of the GLM breaches

the systematic component with the random component. To elaborate, let
µi = E(Yi), i = 1, . . . , N and ηi, i = 1, . . . , N be the linear predictor, the
GLM links µi to ηi by g(µi) = ηi, where g() is the link function; monotonic
and differentiable. Therefore,

g(µi) =
∑
j

βjxij, i = 1, . . . , N.

When g(µ) = µ the link function is called the identity link function and
it leads in the linear regression model with normally distributed response
variable. Furthermore, the link function that turns the mean to the natural
parameter θ is called the canonical link

Q(θi) = g(µi) =
∑
j

βjxij.

1.1.1 The Likelihood function of the GLM
In order to obtain maximum likelihood estimates for the model parameters
it is necessary to derive general expressions for the likelihood function of
the GLM. For N independent observations the log likelihood is given by

L(β) =
∑
i

Li =
∑
i

logf(yi; θi, φ) =
∑
i

yiθi − b(θi))
α(φ) +

∑
i

c(yi;φ). (1.3)

The parameter vector β comprises the model parameters of the GLM.
So, ηi = ∑

j βjxij = g(µi) with link function g and likelihood equations
that are given by

∂L(β)
∂βj

=
N∑
i=1

∂Li
∂βj

= 0, for all j.
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The log likelihood is differentiated using the chain rule of differentiation
∂Li
∂βj

= ∂Li
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

. (1.4)

On the grounds that, ∂Li
∂θi

= yi−µi
α(φ)

α(φ)
var(yi

∂µi
∂ηi
xij = (yi−µi)xij

var(yi
∂µi
∂ηi
.

The Likelihood equations over the N observations for a GLM are given
by the formula:

∂L(β)
∂βj

=
N∑
i=1

(yi − µi)xij
var(yi)

∂µi
∂ηi

= 0, j = 1, . . . , N. (1.5)

As for the matrix form of the likelihood equations of the GLM, let V
denote a diagonal matrix of variances and D denote a diagonal matrix with
elements the partial derivatives ∂µi

∂ηi
. For the generalised linear model with

η = Xβ with a model matrix X, these are the likelihood equations:

XTDV −1(y − µ) = 0. (1.6)

1.1.2 Normal Distribution of the GLM Parameter
Estimators

For large samples, the maximum likelihood estimator show a foundational
property, under standard regulatory conditions; the Maximum Likelihood
estimator β̂ of β is efficient and approximately normally distributed. It is
necessary to calculate the covariance matrix of that distribution which is
derived from the inverse of the information matrix J .

E

(
− ∂2Li
∂βi∂βj

)
= E

[(
∂Li
∂βi

∂Li
∂βj

)]
.

Substituting the equation (4) the result is

E

(
− ∂2Li
∂βh∂βj

)
= E

[
(yi − µi)xih
var(yi)

∂µi
∂ηi

(yi − µi)xij
var(yi)

∂µi
∂ηi

]
= xijxih
var(yi)

(
∂µi
∂ηi

)2

⇒ E

(
− ∂2L(β)
∂βh∂βj

)
=

N∑
i=1

xijxih
var(yi)

(
∂µi
∂ηi

)2

.

Let W be a diagonal matrix with elements

wi =
(∂µi
∂ηi

)2

var(yi)
.

Then the information matrix J can be transformed, with the model
matrix X, to:

J = XTWX. (1.7)
The link function g impacts directly the form ofW and J as g′(µi) = ∂µi

∂ηi
Therefore, it is concluded explicitly that

β ∼ N(β, (XTWX)−1) approximately, (1.8)

where W is a diagonal matrix with wi =
( ∂µi
∂ηi

)2

var(yi) .
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1.1.3 Methods of Inference for GLM Parameters

The hypothesis test that is conducted for the coefficient of every GLM
parameter is

H0 : β = β0 vs H1 : β = β0.

There are three different ways by which the statistical test for the signifi-
cance of the model parameter (coefficient) is conducted.

Likelihood-Ratio Test

The first approach utilises the ratio of the likelihood function evaluated at
β0; l0, over all β values permitting H0 or H1 to be true. The ratio create,
Λ = l0/l1, scores values less or equal to zero due to the fact that l0 is derived
from maximisation at β0. The likelihood-ratio test statistic is

−2logΛ = −2log(l0/l1) = −2(L0 − L1),

where L0 and L1 denote the maximised log-likelihood functions.
Under regularity conditions, it has an approximate null chi squared

distribution as N → ∞ with df = 1. The likelihood-ratio test extends to
multiple parameters. To elaborate, for β = (β0, β1) the null hypothesis
is H0 : β0 = 0. Then l1 is the likelihood function evaluated at β and l0
is the likelihood function evaluated at β1 value for which the data would
have been most likely when β0 = 0. The chi-squared test holds for the
multiple parameters test with df equal to the difference in the dimensions
of the parameter spaces under H0 ∪H1 and under H0 : Λβ = 0 (Agresti,
2015).

Wald Tests

The Wald Test comes next taking into account the standard errors obtained
from the inverse of the information matrix. The estimated standard error
is obtained by substituting with the unrestricted ML estimator of β̂. The
null hypothesis is H0 : β = β0 and the test statistic used is

z = β̂ − β0

SE
,

which is called a Wald statistic.
Its approximate distribution is the standard normal under the null hy-

pothesis. When it comes to multiple parameters testing β = (β0, β) of
the null hypothesis H0 : β0 = 0 the Wald chi-squared test statistic comes
below

β̂0
T
[v̂ar(β̂0)]−1β̂0,

where β0 is the unrestricted ML estimate of β0 and v̂ar(β0) is the unre-
stricted estimated covariance matrix of β̂.
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Score Tests

A third alternative inferential technique uses the score statistic. The score
test takes advantage of the score function of the slope and the expected
curvature of the log-likelihood function evaluated at β0. The score test has
the following chi-squared formulation

−

[
∂L(β)/∂β0

]2
E
[
∂2L(β)/∂β2

0

] ∼ χ2,

where the notation reflects derivatives with respect to β that are evaluated
at β0. From the multiparameter perspective, the score test statistic is of
a quadratic form relying upon the vector of partial derivatives of the log-
likelihood as well as the inverse information matrix, under H0.

1.1.4 Deviance of the Generalised Linear Model
Let y = (y1, . . . , yn) be the observations of the response variable and let
L(µ;y) be the log likelihood, under the GLM. For all possible models the
maximum value of the log likelihood is L(µ̂ = y;y) and is calculated for a
model that has one parameter for each and every single observation; model
is called saturated. This model is overparameterised and its predominant
use is in model comparison. Due to its overfitting to the data, the satu-
rated model is incompetent in describing the data with the least needed
explanatory variables. The estimate of the mean is µ̂ = y. The deviance
is given by the formula

−2[L(µ̂;y)− L(y;y)].

Comparison of Chosen Model to the Saturated

Let θ̂i be the ML estimate of each natural parameter θi for any chosen
model, with corresponding µ̂i = yi, and θ̃i be the estimate of each θi for
the saturated model, with corresponding µ̃i = yi. For maximised log-
likelihoods L(µ̂; y) for the chosen model and L(y; y) for the saturated.
Hence,

−2log
[
maximum likelihood for chosen model

maximum likelihood for saturated model

]
(1.9)

is the statistic that tests whether there is strong evidence against the
chosen model H0 over a more complex H1. Therefore it points to the lack
of fit of the chosen model against the saturated-overfitted. From (1.3) it
follows

−2[L(µ̂; y)− L(y; y) = 2
∑
i

[yiθ̃i − b(θ̃i)]/α(φ)− 2
∑
i

[yiθ̂i − b(θ̂i)]/α(φ).

By substituting α(φ) = φ/ωi,

2
∑
i

ωi[yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)]/φ = D(y; µ̂)/φ.
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D(y; µ̂)/φ is called the scaled deviance and D(y; µ̂) is called deviance.
The greater the deviance the greater the lack of fit. For particu-

lar GLMs, for example the binomial and Poisson, under small dispersion
asymptotics in which the number of observations is fixed and the individual
observations converge to normality, the scaled deviance has a chi-squared
distribution with degrees of freedom equal to the difference between the
number of parameters in the saturated and the chosen model, (Agresti,
2015). The scaled deviance is preferred for model checking when φ is known.

Deviance Difference in LR

When φ = 1, particularly in Poisson and binomial models, the deviance
equals

D(y; µ̂) = −2[L(µ̂;y)− L(y;y)].

Consider two nested models, M0 with p0 parameters and fitted values
µ̂0, andM1 with p1 parameters and fitted values µ̂1 and letM0 be a special
case ofM1. The parameter space ofM0 is contained in the parameter space
of M1, (Agresti, 2015), henceforth

L(µ̂0; y) ≤ L(µ̂1; y)⇒ D(y; µ̂1) ≤ D(y; µ̂0).

It is assumed that modelM0 is more preferable overM1. The log-likelihood
ratio test statistic

−2[L(µ̂0;y)−L(µ̂1;y)] = −[L(µ̂0;y)−L(y; y)]−{−2[L(µ̂1;y)−L(y; y)]}

= D(y; µ̂0)−D(y; µ̂1)

when φ = 1.
The test statistic is large when the proposed model M0 fits poorly the

data compared to M1.
The difference of Deviances can also be written as

D(y; µ̂0)−D(y; µ̂1) = 2
∑
i

ωi[yi(θ̃1i − θ̂0i)− b(θ̃1i) + b(θ̂0i)].

1.1.5 Fitting a Generalised Linear Model

The likelihood equations (1.5) are non linear in β̂ so it is necessary to use
iterative procedures to find the ML estimates.

Newton-Raphson Method

The Newton-Raphson method is used as a manner to solve non-linear equa-
tions iteratively in order to determine the value at which the function takes
its maximum value. It initiates with an initial approximation of the solu-
tion. After that, it derives a second approximation by approximating the
function of interest in a relatively close neighbourhood of the first approx-
imation by a second degree polynomial and then by finding its maximum
value. By repeating these steps it generates a sequence of approximations
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that will ultimately converge to the location of the maximum as long as
the function has good geometric properties and the initial values are quite
good.

Let

u =
(
∂L(β
∂β1

,
∂L(β
∂β2

, . . . ,
∂L(β
∂βp

)T
.

Let H be the Hessian matrix with elements hab = ∂2L(β)/∂βa∂βb. Let
u(t) and H(t) be u and H evaluated at β(t), approximation t for β̂. Step t
in the iterative process (t = 0, 1, . . . ) approximates L(β) near β(t) by the
terms up to the second order in its Taylor series expansion:

L(β) ≈ L(β(t)) + u(t)T (β − β(t)) +
1
2

(β − β(t))TH(t)(β − β(t)).

Solving
∂L(β)
∂β

≈ u(t)T (β − β(t)) = 0

for β returns the next approximation,

β(t+1) = β(t) − (H(t))−1u(t) (1.10)

for H(t) being non singular. The iterations continue until the changes in
the values of L(β(t)) between successive cycles are sufficiently small. The
limit of β(t) is the ML estimator. A problem with the NR method is that
if the approximated function has multiple local maxima the limit is hard
to find. This is the reason why a good initial approximation is essential for
convergence.

Fisher Scoring Method

Fisher scoring is an alternative to Newton Raphson for solving likelihood
equations. Fisher scoring uses the expected Hessian matrix or the expected
information, instead of the Hessian matrix itself that is used in Newton-
Raphosn (Agresti, 2015). Let J (t) be the sequence of approximation for
the ML estimate of the expected information matrix. J (t) has elements
−E(∂

2L(β)
∂βαβb

), evaluated at β(t). The Fisher scoring formula is

β(t+1) = β(t) + (J (t))−1u(t) ⇒ J (t)β(t+1) = J (t)β(t) + u(t). (1.11)

It is easy to turn (1.11) to the matrix form J = XTWX, whereW is diag-
onal with elements wi = (∂µi

∂ηi
)2/var(yi). By the same token, J (t) = XTW (t)X,

where W (t) is W evaluated at β(t). The estimated asymptotic covariance
matrix J−1 of β̂ occurs as a by-product of the algorithm as (J (t))−1 for
the value of which convergence is adequate. For GLMs with a canonical
link function, the observed and the expected information are the same; as
will be shown in following section.

An easy manner to start both iterative processes takes as initial estimate
of µ the data y, which is smoothed to exclude boundary values. This makes
the initial estimate of the weight matrix W and subsequently the initial
approximation for β̂.
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Iteratively Reweighted Least Squares

There is a relation between the Fisher scoring iterative process to obtain the
maximum likelihood estimations and the weighted least squares approach
to estimation. The general linear model is

z = Xβ + ε.

When the covariance matrix of ε is V the generalised least squares estimator
of β is proved to be

(XTV −1X)−1XTV −1z

When V is diagonal this is called the weighted least squares estimator.
From (1.6) the score vector for a GLM is XTDV −1(y − µ). Take into
account that D = diag ∂µi

∂ηi
andW = diag[(∂µi

∂ηi
)2/var(yi)], it turns out that

DV −1 = WD−1 and the score function can be written as

u = XTWD−1(y − µ).

Since J = XTWX, it entails that the Fisher scoring formula

β(t) + (J (t))−1u(t) = (XTW (t)X)β(t) +XTW (t)(D(t))−1(y − µ(t))

= XTW (t)
[
Xβ(t) + (D(t))−1(y − µ(t))

]
= XTW (t)z(t)

where z(t) has elements

z
(t)
j =

∑
j

xijβ
(t)
j + (yi − µ(t)

i )∂η
(t)
i

∂µ
(t)
i

= η
(t)
i + (yi − µ(t)

i )∂η
(t)
i

∂µ
(t)
i

The Fisher scoring equations are of the form

(XTW (t)X)β(t+1) = XTW (t)z(t).

These are the normal equations for using weighted least squares to fit a
linear model for a response variable z(t), when the model matrix is X
and the inverse of the covariance matrix is W (t). The equations have the
solution

β(t+1) = (XTW (t)X)−1XTW (t)z(t).

The vector z(t) in this formulation is an estimated linearised form of
the link function g, evaluated at y,

g(yi) ≈ g(µ(t)
i ) + (yi − µ(t)

i )g′(µ(t)
i ) = η

(t)
i + (yi − µ(t)

i )∂η
(t)
i

∂µ
(t)
i

= z
(t)
j . (1.12)

The adjusted response variable z has each element i which is approxi-
mated by z(t)

i for the t cycle of the iterative process. That particular scheme
regresses z(t) on X with weight (i.e. inverse covariance) W (t) to obtain
a new approximation β(t+1). This estimate returns a new linear predictor
value η(t+1) = Xβ(t+1) and a new approximation z(t+1) which will be used
to the adjusted response for the next cycle. The ML estimator stems from
the repetitive use of the weighted least squares, in which the weight matrix



1.1. PARTS OF THE GENERALISED LINEAR MODEL 9

updates at each turn. The process is called iteratively reweighted least
squares (IRLS). The weight matrix W used in var(β̂) ≈ (XTWX)−1,
and in Fisher scoring is the inverse covariance matrix of the linearised form
z = Xβ +D−1(y − µ) of g(y). At convergence,

β̂ = (XTŴX)−1XTŴ ẑ

for the estimated adjusted response ẑ = Xβ̂ + D̂−1(y − µ̂).

Simplifications for Canonical Link Functions

For the GLMs which use canonical link functions there exist certain sim-
plifications. For this,

ηi = θi =
p∑
i=1

βjxij

and
∂µi
∂ηi

= ∂µi
∂θi

= ∂b′(θi
∂θi

= b′′(θi).

Since var(yi) = b′′(θi)α(φ),the contribution to likelihood equations from
the equation

∂Li
∂θi

= (yi − µi)xij
var(yi

∂µi
∂ηi

for βj simplifies to

∂Li
∂βj

= (yi − µi)
var(yi)

b′′(θi)xij = (yi − µi)xij
var(yi)

(1.13)

Often α(φ) is identical for all observations, to exemplify α(φ) = 1 for
binomial and Poisson GLMs. Then the likelihood equations are

N∑
i=1

xijyi =
N∑
i=1

xijµi, j = 1, . . . , p. (1.14)

The ∑N
i=1 xijyi are the sufficient statistics for the parameters βj, so for

the GLMs with canonical link function, the likelihood equations equate
the sufficient statistics for the model parameters to their expected values
(Agresti, 2015).

From the expression (1.13) for ∂Li
∂βj

with the canonical link function the
second partial derivatives of the log likelihood are

∂2Li
∂βhβj

= − xij
α(φ)

∂µi
∂βh

.

This does not dependent on yi, so

∂2Li
∂βhβj

= E

[
∂2Li
∂βhβj

]
.

Hence, H = −J , the Newton-Raphson and Fisher Scoring algorithms
are identical for GLMs that use the canonical link function, Nelder and
Wedderburn (1972).
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1.1.6 Model Selection
GLM model selection deals with the same issues as for the ordinary linear
regression. The more explanatory variables added to the model the more
complex it becomes. Nonetheless, a more complex model tends to explain
better the data and provide a deeper insight taking into account the possible
effects and interactions that emerge the more variables are added. However,
a balance must be found between using a model with too many variables; in
other words an overfitted model, and modelling the data with less predictors
than needed.

Most research studies are designed to answer certain questions. Those
questions lead to the choice of model terms. To elaborate, in a confirmatory
analysis, a study hypothesis about an effect may be tested by comparing
models with and without that effect. For exploratory research, a search
among possible models may provide clues about the structure of effects and
raise questions for future research. It is highly recommended to study the
effects of each predictor in the response variable using descriptive statistics
to get a feel of the effects and then go on with statistical modelling.

Forward and Backward Variable Selection

For p explanatory variables, the number of possible models is 2p as each
variable is included or not in the model. The best selection of explanatory
variables identifies the model that scores best for a chosen criterion; as, for
example, for the maximisation of the adjusted R2 value. When the number
of available explanatory variables is large then the whole procedure becomes
computationally cumbersome.

The approach of forward variable selection adds terms in the model
successively. At each turn it opts for the term that provides the model
with the best fit. There is a point at which the more variables added in
the model do not provide anything to the data fit, and the value of the R2

adjusted reduces on the grounds that the variables already included explain
the new ones. The process stops once the variables added do not provide
any improvement to the model fit. A stepwise alteration of this method
rechecks at each level whether the added terms at previous stages are still
needed.

When it comes to backward elimination, the approach initiates with
a fully complex model and removes terms step by step. The variables
removed are those with the least devastating effect on the model; in other
words the least important for the model. The independent variables with
the highest p-values are deducted first up to the point that the leftovers
are the statistical significant variables.

Both approaches have different initiations but ultimately they should
both yield the same result as both procedures are considered to be equiv-
alent. Whichever is chosen, an interaction term should not be in a model
without its component main effects. On further notice, for qualitative pre-
dictors with more than two categories the process should take into account
the variable as whole not sporadic indicators, at any stage. The qualitative
variable should be dropped as a whole not only parts of it.
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For any method used, the statistical significance should not be the only
criterion by which a variable is added or excluded from the model; there are
still practical significance criteria based on the research theoretical back-
ground. It is of supreme importance including a variable of great interest
in the particular study in the statistical model and report its estimated
effect even if it may not be of statistical significance. In case the variable is
a potential confounder, including it in the model may help to reduce bias
in estimating relevant effects of key explanatory variables.

The bias-variance tradeoff

Any model is a simplification of reality, as a matter of fact the scientist that
believes that by choosing a model he/she has identified the ’correct’ one
among a set of candidates is badly mistaken. The more complex models do
not guarantee a better fit to the data. In fact, a simple model with adequate
fit has the advantage of parsimony, including a tendency to provide more
accurate estimates of the quantity of interest. It needs to be balanced
how complex the chosen model should be over the variance of an estimator
and its bias. The bias occurs when the true values E(yi) differ from the
values µMi corresponding to fitting model M to the population. Choosing
a simple model results in an increase in the bias; the difference between
the model-based means and the true means tends to be higher. However,
it is downplayed by the decreased variance that stems from the decreased
number of parameters.

Many models can be consistent with the data. As a matter of fact, it
is logically inconsistent to select a model that best fits the data and act as
if the model was set up before the data analysed. Despite of the fact that
this is common practice, it underestimate uncertainty and exaggerates the
significance of the model and the model variables themselves.

Akaike’s Information Criterion

The Akaike information criterion (AIC) judges how close a model fit is
expected to be the true model. In the population, even though a simple
model is farthest from the true relationship than is a more complex model,
for a sample it may tend to provide a closer fit because of the advantages
of parsimony. In a set of candidate models, the best is the one that tends
to have sample fit closest to the true model fit.

A measure of ’closeness’ is the Kullback-Leibler divergence of a model
M from the unknown true model. Let p(y) denote the density of the data
under the true model, and let pM(y;βM ) be the density under model M
with parameters βM . For a given value of the ML estimator β̂M of βM and
for a future sample y∗ from p(), the Kullback-Leibler divergence between
the true and fitted distribution is

KL[p, pM ](β̂M) = E

[
log

p(y∗)
pM(y∗; ˆβM

]
,

where the expectation is taken relative to the true distribution p(). The
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objective of AIC is to choose the model that minimises E[KL[p, pM(β̂M)]]
for a set of potential models, where this expectation is taken relative to
p(), with β̂M as the random variable. To do this it is sufficient to minimise
E[−Elog[pM(y∗; β̂M )] over the set of models. The true distribution to eval-
uate this expectation is unknown, but the expectation can be estimated.
Akaike showed that whenM is reasonably close to the true model, the max-
imised log likelihood for M is a biased estimator of E[−Elog[pM(y∗; β̂M )],
and for large sample sizes the bias is reduced by subtracting the number
of model parameters. Therefore, the optimal model minimises

AIC = −2[L(β̂M)− number of parameters in M ].

In essence, the AIC penalises a model for having many parameters.
Out of a set of candidate models, the one with the minimum of variables is
identified as the optimal or the most parsimonious. The candidate models
need not to be nested or even based on the same family of distributions for
the random component (Agresti, 2015).

The Bayesian information criterion (BIC) comes as an alternative to
AIC, by penalising more severely for the number of model parameters. It
substitutes 2 by log(n) as its multiple. BIC is based on a bayesian argument
which of a set of models has highest posterior probability (Schwarz, 1978).

1.1.7 The Generalised Linear Model outperforms data
transformation

There is wide controversy whether the GLM describe better the data than
transforming data themselves. For instance, let g denote the model’s link
function in the paradigm of the GLM or a transformation function from
the perspective of data transformation. The benefit of the GLM is that the
model coefficients apply their effect directly on the E(Y ) after the inverse
link function has been applied on it, while in the data transformation case
the model coefficient effects impact the average of the transformed response
E(g(Y )). In essence, the GLM is a linear model for the transformed mean
of the response variable, which probability distribution is in the exponential
family.

1.2 Models for Binary Data
For binary responses, statisticians most often assume a binomial distribu-
tion for the random component of the GLM. The binomial natural param-
eter is the log odds. The canonical link function for binomial data is the
logit, and the respective GLM is named after it as logistic regression. The
use of logistic regression in different industries has soared rapidly over the
last decades. Logistic regression was firstly applied to biostudies, in partic-
ular for modelling the effects of smoking, cholesterol and blood pressure on
the presence or absence of coronary disease. Social sciences followed using
logistic regression for modelling opinions and behaviours.
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1.2.1 Link functions for Binary Data
It is useful to distinguish between two sample size measures: a measure
ni for the number of Bernoulli trials that constitute a particular binomial
observation, and a measure N for the number of binomial observations. Let
y1, . . . , yN be independent binomial proportions, with niyi ∼ bin(ni, πi),
with yi being the proportion of successes out of ni independent Bernoulli
trials, and E(yi) = πi not depending on ni. Let n = (n1, . . . , nN) denote the
binomial sample sizes. The overall number of observations is n = ∑N

i=1 ni.

Binary Response; Grouped or Ungrouped

For binary data the outcome is 0 or 1 so the data format for the ungrouped
data becomes a vector with elements 0 or 1 depending on the outcome. As
N →∞ large-sample methods for statistical inference apply.

For grouped data, each observation is valued the same for the explana-
tory variable. ni refers to the number of observations at the i setting of
the explanatory variable with i = 1, . . . , N . For grouped data, the number
N of combinations of the categorical predictors is fixed, and large sample
statistical inference methods apply as ni →∞. The grouped data are quite
useful for checking model fit, while ungrouped data can easily be turned to
grouped for subjects that share the same values for explanatory variables.

The Latent Variable Threshold Model

When it comes to the Latent Variable Threshold model, ungrouped data
are utilised in order to be studied. It is assumed that y∗i is an unobserved
continuous response for subject i such as y∗i = ∑

j βjxij + εi, where εi are
independent from a distribution with mean 0 and cdf F , and there is a
threshold τ such that

y∗i = 0 if y∗i ≤ τ and y∗i = 1 if y∗i > τ.

Then

P (yi = 1) = P (y∗i > τ) = P (
∑
j

βjxij + εi > τ) =

1− P (εi ≤ τ −
∑
j

βjxij) = 1− F (τ −
∑
j

βjxij).
(1.15)

Without loss of generality let τ = 0, then

P (yi = 1) = F (
∑
j

βjxij), and

F−1[P (yi = 1)] =
∑
j

βjxij.
(1.16)

Therefore, models for binary data naturally take the link function to be
the inverse of the standard cdf for a family of continuous distributions for
a latent variable (Agresti, 2015).
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Probit, Logistic and Linear Probability Models

When F is the standard normal cdf, the link function F−1 is called the
probit link and the GLM; as in (1.16) is called the probit model.

A logistic regression model has a link function of the form

F (z) = ez

1 + ez
. (1.17)

The logisitc distribution is well shaped like the standard normal and is
defined over the real line, with F−1 being its link function.

When an identity link function is applied; F−1 is a uniform cdf. The
model for the binomial parameter πi for observation i is,

πi =
∑
j

βjxij.

This is called the linear probability model. This model must have linear
predictor that falls between 0 and 1 so as to generate probability values
in the range [0, 1]. On top of that, an S-shaped curve for which πi very
gradually approaches 0 and 1 is more plausible. That is the reason why
linear probability models are not widely used.

1.2.2 Logistic Regression
Logistic Regression has been embraced from the social sciences research due
to its competency in modelling opinions and mindsets in financial statistics,
as it is extremely beneficial in making assumptions in the context of credit
scoring. Credit scoring deals with determining whether an individual has
high probability of paying his/her bill on time given his/her annual income,
the number of past overdue bills, and the debt liabilities.

In this section, properties and interpretation for the model parameters
of logistic regression are presented. Given the logistic regression model,

πi =
exp

(∑
j βjxij

)
1 + exp

(∑
j βjxij

)
logit(πi) = log

(
πi

1− πi

)
=
∑
j

βjxij.

(1.18)

For a single quantitative x with positive coefficient, the curve of the
πi has the shape of the cdf of a logistic distribution. As xi changes πi
approaches 1 at the same rate it approaches 0 , due to logistic density
symmetry. With multiple explanatory variables πi is monotone in each
explanatory variable according to its coefficient sign, because of 1 − πi =[
1+exp

(∑
j βjxij

)]−1

. The absolute value of its coefficient determines the

rate of climb. It is of supreme significance to determine the magnitude of
β. For a quantitative explanatory variable, the tangent to the curve at that
particular point is drawn to describe the instantaneous rate of change in πi
at that point. That is,
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∂πi
∂xij

= βj
exp

(∑
j βjxij

)
1 + exp

(∑
j βjxij

) = βjπi(1− πi).

The models slope is steepest at the point for which πi = 1/2 and the
slope decreases near 0 and 1. It is of interest to interpret the βj for a
quantitative variable. The model logit(πi) = β0 + β1xi is for a single
explanatory variable. Then,

logit[P (y = 1|x = 1)−logit[P (y = 1|x = 0) = [β0+β1(1)]−[β0+β1(0)] = β1.

Then eβ1 is the odds ratio

eβ1 =

P (y=1|x=1)[
1−P (y=1|x=1)

]
P (y=1|x=0)[

1−P (y=1|x=0)
] .

By exponentiating both sides of the equation, in the multiple variables,
the odds πi

1−πi turn to be an exponential function of xj. The odds multiply
by eβj per unit increase in xj, adjusting for the rest explanatory variables.

Let Y be a binary response variable and an explanatory variable X, and
the probability of the response variable turning true over different values
of the explanatory variable π(x) be

π(x) = P (Y = 1|X = x) = 1− P (Y = 0|X = x).

The logistic regression that models the probability π(x) is

π(x) = exp(α + βx)
1 + exp(α + βx)

which is equivalent to the transformation

logit[π(x)] = log
π(x)

1− π(x) = α + βx.

1.2.3 Normal Explanatory Variables lead to Logistic
Model

Despite of the sampling mechanism, let the explanatory variables come
from a normal distribution and be continuous for each response outcome.
Given y suppose x has a N(µy,V ) distribution with y = 0, 1. By applying
Bayes Theorem, P (y = 1|x) yields β = V −1(µ1 − µ0).

1.2.4 Inference for Logistic Regression
These are the likelihood equations for a GLM

N∑
i=1

(yi − µi)xij
var(yi)

∂µi
∂ηi

= 0, j = 1, . . . , p (1.19)
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since var(yi) = πi(1 − πi)/ni is the binomial proportion, the likelihood
equations become

N∑
i=1

(yi − µi)xij
var(yi)

f(ηi) = 0, j = 1, . . . , p (1.20)

As far as β is concerned,

N∑
i=1

ni[yi − F (∑j βjxij)]xijf(∑j βjxij)
F (∑j βjxij(1− F (∑j βjxij))− 0 , j = 1, . . . , p. (1.21)

1.2.5 Likelihood Equations for Logistic GLM
The binary data with

F (z) = ez

1 + ez
, f(z) = ez

(1 + ez)2 = F (z)[1− F (z)] (1.22)

have the likelihood equations

N∑
i=1

ni(yi − πi)xij = 0, j = 1, . . . , p. (1.23)

Let X denote the design matrix and s denote the binomial vector of
’success’ totals with elements si = niyi. The matrix form of the likelihood
equations is

XTs = XTE(s). (1.24)

1.2.6 Logistic Regression Parameters; Covariance Ma-
trix

The ML estimator β̂ has an asymptotic normal distribution with covariance
matrix to be equal of the inverse information matrix. The information
matrix of a GLM is J = XTWX from (1.7), where W is the diagonal
matrix with elements

wi =
(∂µi
∂ηi

)2

var(yi)
.

When it comes to binomial observations, µi = πi and var(yi) = πi(1−
πi)/ni, the logistic model has ηi = log[πi/(1− πi)] thus ∂ηi

∂πi
= 1/πi(1− πi).

Therefore, wi = ηiπi(1− πi) and when the sample is quite large

v̂ar(β̂) = [XTŴX]−1 = [XTDiag[n̂iπ̂i(1− π̂i)]X]−1, (1.25)

where Ŵ = Diag[n̂iπ̂i(1 − π̂i)] is the N × N diagonal matrix with
diagonal elements n̂iπ̂i(1 − π̂i). For ungrouped data large sample stands
for a large number of Bernoulli trials; N and for grouped data it demands
large n = ∑

i ni in each case with fixed value of p. The estimated standard
errors of β̂ is calculated as the squared root of the main diagonal elements
of the equation (1.25).
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1.2.7 Wald Approach is not Optimal
When it comes to the inference of logistic regression parameters, the Wald;
likelihood ratio test or score method can be handy. To test H0 : βj = 0 the
Wald chi-squared test(df=1) uses (β̂j/SEj)2, whereas the likelihood-ratio
chi-squared test uses the difference between the deviances of the simpler
and the complex model.

Both methods, yield similar results for large samples. Nonetheless, the
Wald method has two drawbacks. First and foremost, its outcomes depend
on the model parameterisation. Consider the null hypothesis H0 : β0 =
0 (i.e.π = 0) when ny has a bin(n, π) distribution with the null model be
logit(π) = β0. The Wald chi-squared test statistic, which uses the ML
estimate of the asymptotic variance is (β0/SE)2 = [logit(y)]2[ny(1 − y)].
The Wald test statistic is (y− 0.5)2/[y(1− y)/n]. Evaluating both at logit
and proportion scale it is concluded that the logit scale statistic is too
conservative while the proportion is too liberal. A second pitfall is that
when a true effect of the response variable of a logistic GLM is quite large,
then the Wald test is less stable.

1.2.8 Model Fitting; Newton-Raphson and Fisher-
Scoring

The ML equations are solved by using iterative methods; Newton-Raphon
and Fisher-Scoring. The Newton-Raphson method is equivalent to the
Fisher-Scoring approach on the grounds that the logit link is the canonical
link. From the equations (1.4) and the inverse of (1.25), with respect to
binomial ’success’ counts si = niyi, let

u
(t)
j = ∂L(β)

∂βj
(β(t)) =

∑
i

(si − niπ(t)
i xij) (1.26)

h
(t)
ab = ∂2L(β)

∂βa∂βb
(β(t)) = −

∑
i

xiaxibniπ
(t)
i (1− π(t)

i ). (1.27)

Here π(t), is derived from β(t) through

π
(t)
i =

exp(∑p
i=1 β

(t)
j xij)

1 + exp(∑p
i=1 β

(t)
j xij)

(1.28)

From the equation (1.10) the u(t) and H(t) are used to obtain the next
value approximation β(t+1). Then,

β(t+1) = β(t) +
{
XTDiag[ηiπ(t)

i (1− π(t)
i )]X

}−1
XT (s− µ(t)),

(1.29)
where µ(t)

i = niπ
(t)
i and it returns π(t+1) and so on.

Let β(0) be an initial value, then the (1.28) returns π(0) and for t > 0
the iterations are calculated according to (1.29) and (1.28). Asymptotically,
π(t) and β(t) converge to the ML estimates π̂ and β̂. The H(t) matrices
converge to Ĥ = −XTDiag[niπ̂i(1 − π̂i)]X. By (1.25), the estimated
asymptotic covariance matrix of β̂ is a by product of the model fit; −Ĥ−1.
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From the section of the Iteratively Reweighted Least Squares, β(t+1)

has the IRLS form (XTV −1
t X)−1XTV −1

t z, where z(t) is calculated from

z
(t)
i = log

π
(t)
i

1− π(t)
i

+ si − niπ(t)
i

niπ
(t)
i (1− π(t)

i )

where V t is diagonal with elements 1/[niπ(t)
i (1− π(t)

i )]. The z(t) is the
linearised form of the link function of the logistic regression; logit, evaluated
at π(t). According to Agresti (2015) the V t, the limit of V̂ , has diagonal
elements that estimate the variances of the asymptotic normal distributions
of the sample logits for large {ni}.

1.2.9 Goodness of Fit
The model fitted to the data; either grouped or ungrouped, needs to be
tested with respect to the degree of fit. Likelihood ratio test is used to
compare any proposed model with a more complex one in regards of lack
of fit. A measure that can be used is the deviance statistic.

Deviance and Pearson statistics

For Generalised Linear Model the deviance is the likelihood ratio statis-
tic which compares any proposed model to the saturated. The saturated
alternative fits the data perfectly π̃i = yi. The likelihood ratio statistic is

−2log


 N∏
i=1

π̂niyii (1− π̂i)ni−niyi
/
 N∏
i=1

π̃niyii (1− π̃i)ni−niyi
 =

2
∑
i

niyilog
niyi
niπ̂i

+ 2
∑
i

(ni − niyi)log
ni − niyi
ni − niπ̂i

.

At the ith setting of the explanatory variables, niyi is the number of
successes and ni − niyi is the number of failures, i = 1, . . . , N .Therefore,
the deviance is calculated as the sum over the 2N success and failure total
of sums, which have the form

D(y; µ̂) = 2
∑

observed× log(observed/fitted).

When it comes to grouped data, a Pearson statistic is necessary to be
calculated that summarises the goodness of fit.

X2 =
∑ (observed− fitted)2

fitted
=

N∑
i=1

(niyi − niπ̂i)2

niπ̂i
+

N∑
i=1

[(ni − niyi)− (ni − niπ̂i)]2
ni(1− π̂i)

=

N∑
i=1

(niyi − niπ̂i)2

niπ̂i(1− π̂i)
=

N∑
i=1

(yi − π̂i)2

π̂i(1− π̂i)/ni
.
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Chi Squared Test

For grouped data both the Deviance and the Pearson statistic are used as
goodness of fit tests for testing the null hypothesis that the model holds.
Under the null hypothesis, the tests have limiting chi squared distributions
as the sample size becomes larger and larger. The number of parameters for
grouped data is fixed due to the fixed number of settings N . So, the degrees
of freedom for the chi-squared distribution is calculated as the difference
between the number of parameters of the saturated and the chosen model;
df = N − p. For large samples, the X2 statistic converges to chi-squared
faster than the Deviance.

The chi-squared limiting distribution is not present for ungrouped data.
In fact, the deviance and the Pearson statistic can be uninformative about
lack of fit (Agresti, 2015). Poor chi-squared distribution is assumed with
grouped data having a large N with few observations at every setting.
Nonetheless, a large value of the test statistics is an indicator of lack of
fit but does not provide any information about its nature. The compari-
son between two models is essential on the grounds that the lack of fit is
attributed to including or excluding particular predictors from the fitted
model.

The deviance is not useful for testing model fit for the ungrouped. It is
good to know that the difference of deviances can be used for grouped or
ungrouped data. Let M0 have p0 parameters and the more complex model
M1 have p1 > p0 parameters. The difference of deviances is the likelihood
ratio statistic for comparing the simple with the complex model. Under the
null hypothesis, the difference has an approximate chi-squared distribution
with degrees of freedom df = p1 − p0.

1.2.10 The Probit and Complementary Log-Log Mod-
els

There is an alternative to the link function used for logistic regression. The
normal distribution and a skewed distribution can be used as an alternative
to using the logistic distribution for the cdf inverted to obtain the link
function.

Probit Models

When the link function of a binary response model is the inverse of the
standard normal cdf Φ is called the probit model. It is

Φ−1(πi) =
p∑
j=1

βjxij ⇔ πi = Φ
( p∑
i=1

βjxij

)
.

The likelihood equations for a probit model replace Φ and φ in the
general equations for GLM of binary data. The estimated large-sample
covariance matrix of β̂ has the form

v̂ar(β̂) = (XTŴX)−1
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where Ŵ is the diagonal matrix with estimates of wi = (∂µi/∂ηi)2/var(yi).
It is substituted µi = πi = Φ(ηi) = Φ(∑j βjxij)

ŵi = ni

Φ
 p∑
j=1

β̂jxij

/Φ
 p∑
j=1

β̂jxij

1− Φ
 p∑
j=1

β̂jxij

.
The equations are solved with the use of iterative methods of Fisher

Scoring and Newton-Raphson. Both methods yield the ML estimates,
nonetheless the Newton-Raphson returns slightly different standard errors
on the grounds that it inverts the observed information matrix as to approx-
imate the covariance matrix in contrast to Fisher Scoring that takes into
account the expected information. Once the link functions are anything
but the canonical link the former methods differ.

Log-Log and Complementary Log-Log Models

The logit and probit links are symmetric around 0.50 on the grounds that

link(πi) = −link(1− πi).

We have that

logit(πi) = log
πi

1− πi
= −log1− πi

πi
= −logit(1− πi).

This means that the response curve for πi is symmetric around πi = 0.5.
Both logit and probit models are inappropriate when this does not hold.
The shape of the response curve is given by the model,

πi = 1− exp
− exp

 p∑
j=1

βjxij

. (1.30)

In that particular model the response curve is asymmetric; πi is ap-
proaching 0 slowly but it is approaching 1 quite fast. For that model,

log[−log(1− πi)] =
p∑
j=1

βjxij.

This model’s link function is called the complementary log-log link, due
to the fact that the log-log link applies to the complement of the πi.

A relative model to (1.30) is

πi = exp

− exp
− p∑

j=1
βjxij


The log-log link function is applied to the GLM

−log[−log(πi)] =
p∑
j=1

βjxij.
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Then, πi approaches 0 quite fast but it approaches 1 quite slowly. As a
matter of fact, when the log-log model holds for the probability of success,
the complementary log-log model is applied on the probability of failure
but with the opposite sign of the model coefficients.

The log-log link function is a special case of the inverse cdf link that
uses the cdf of Type I extreme-value distribution; known as the Gumbel
distribution. The cumulative distribution function is

F (x) = exp{−exp{−(x− a)/b}} for b > 0, −∞ < a <∞.

The mode of this distribution is a, the mean is a+ 0.577b and the stan-
dard deviation is 1.283b. The distribution is highly skewed to the right.The
asymptotic distribution of the maximum of a sequence of independent and
identically distributed continuous variables is epitomised to the term ex-
treme value.

Fisher Scoring can turn out to be quite effective in fitting GLMs for
binary data with log-log link function. Consider the model in (1.30) with
a single explanatory variable x. As x increases the curve is monotone
increasing for b > 0. The complement probability at x + 1 equals the
complement probability at x raised to the exponentiated coefficient power;
exp(β).

A way to tell between different models of different link functions is the
value of the Akaike’s information criterion for the model. The one that
scores the lowest is chosen among the others.

1.3 Count Data Models
A plethora of variables have counts as their potential outcome. For exam-
ple, the number of times a person logs into a website and the number of
visits a bank customer have made to his/hers local bank are cases of count
data. The Poisson distribution is commonly assumed to model the distribu-
tion of count data. The link function to connect the systematic component
with the mean is the log, thus the linear model created as a result of its
application is called the loglinear model. It is feasible to adjust the model
for rate when the count is based on a particular index, particularly space
or time.

1.3.1 Poisson GLMs
The most common distribution assumed to model count data is the Poisson
distribution on the grounds that it places its mass on the set of non negative
integers. The parameter of the distribution defines the mean and variance
of the data.

When yi has a Poisson distribution, the probability mass function is

f(yi;µi) = e−µiµyii
yi!

= exp[yilogµi − µi − log(yi!)]

= exp[yiθi − exp(θi)− log(yi!)], yi = 0, 1, . . . .
(1.31)
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It can be seen that the Poisson distribution belongs to the exponential
family of distributions with E(y) = var(y) = µ, which is unimodal with
the mode being equal to the integer part of µ. As for its skewness it is
calculated by E(y− µ)3/σ3 = 1/√µ, when the mean increases the Poisson
distribution is less skewed and approaches the normal distribution.

The Poisson distribution is widely used for counts of events that happen
at random through time or space at a certain rate. The Poisson distribution
is an approximation for the binomial distribution when the number of trials
is large and the probability of success is quite small. So, if n → ∞ and
pi→ 0 such that nπ = µ is fixed, then the binomial distribution converges
to Poisson.

1.3.2 Variance Stabilisation
Let y1, . . . , yn denote independent observations from the Poisson distribu-
tion, with µi = E(yi). It is useful to transform the count data so that
the variance is constant and the ordinary least squares method can be ap-
plied. Applying the delta method g(y)− g(µ) ≈ (y − µ)g′(µ) implies that
var(g(y)) ≈ [g′(µ)]2var(y). If the response variable has a Poisson distribu-
tion then √y has a variance of the form

var(√y) ≈
( 1

2√µ

)2
, µ = 4.

The variance approximation is more stable when the mean becomes
large, in which case √y tends to be linear in a neighbourhood around the
mean µ.

On the grounds that the √y has approximately constant variance, mod-
elling √y

i
, i = 1, . . . , n, can be easily performed using the linear regres-

sion models. Thus, the model will be linear for the E(√y
i
), not for E(yi)

or E(log(yi)). Using a GLM will model the mean of the data using the
appropriate link function instead of modelling the mean of the function of
the response.

1.3.3 Loglinear Models
The Generalised Linear Model implemented for Poisson response data is
presented. The likelihood equations (1.5) for var(yi) = µi and n inde-
pendent observations lead a Poisson response with linear predictor ηi =
g(µi) = ∑

j βjxij and link function g to

n∑
i=1

(yi − µi)xij
var(yi

(
∂µi
∂ηi

)
= 0.

The GLM for count response takes as link function the logarithm. Thus,
the log of the mean can be any real value. From (1.31) it is profound that
the log mean is the natural parameter for the Poisson distribution hence
the log link is the canonical link for a Poisson GLM, at the same time.

The loglinear model is
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logµi =
p∑
j=1

βjxij ⇒ logµ = Xβ

in the analytic form and the model matrix form, respectively. It is ηi =
logµi and ∂µi/∂ηi = µi therefore the likelihood equations are∑

i

(yi − µi)xij = 0 (1.32)

For the Poisson GLM, the mean is given by

µi = exp

( p∑
i=1

βjxij

)
= (eβ1)xi1 . . . (eβp)xip .

One unit increase in xij has a multiplicative impact of eβj ; the mean
increased by 1 is equal to the mean xij multiplied by eβj , adjusted for every
variables.

1.3.4 Goodness of Fit
The likelihood equations do not have closed form solution in general. The
log-likelihood function is concave and the iterative Newton-Raphson pro-
cess; as well as the Fisher-Scoring method, return fitted values and esti-
mates of the parameters. As shown in section (1.1.1) the estimated covari-
ance matrix is

v̂arβ̂ = XTŴX
−1
,

whereW is a diagonal matrix with elements wi = (∂µi/∂ηi)2/var(yi) =
µi. For Poisson GLMs

θ̂i = logµ̂i, b(θ̂i) = exp(θ̂i) = µ̂i.

For the saturated model,

θ̃i = logyi, b(θ̃i) = yi, a(φ) = 1.
The Deviance of a Poisson GLM is

D(y, µ̂) = 2
n∑
i=1

yilog
yi
µ̂i

− yi + µ̂i

. (1.33)

When a Poisson model includes intercept, its likelihood equation entails∑
i µ̂i = ∑

i yi hence D(y, µ̂) = 2∑i[yilog(yi/µ̂i)]. Its Pearson statistic is

X2 =
n∑
i=1

(yi − µ̂i)2

µ̂i
.

The aforementioned statistics can be used to test the goodness of fit of
the Poisson GLM of interest. When the number of Poisson observations,n,
is fixed and their means increase constantly the asymptotic chi-squared
distributions can be assumed as distributions for the test statistics. The
best approach to estimating the model that fits best the data is to compare
a proposed model with a more complex and examine the extent of lack of
fit.
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1.3.5 Modelling Rates
In some cases, the expected value of a response count is proportional to ti.
To exemplify, the index ti could be either the size of a population or the
amount of time; in modeling crime rates for different cities, or a spatial area
in modeling counts of plant species or the spread of an infectious disease.
Then the sample rate is yi/ti with expected value µi/ti. The loglinear
model for the expected rate is of the form

log(µi/ti) =
p∑
i=1

βjxij.

Taking into account that log(µi/ti) = logµi−logti, the models makes the
adjustment−logti to the logarithmised mean. The term of adjustment,−logti,
is called offset. When the model is fitted, the term logti is used as an ex-
planatory variable in the systematic part of logµi, making its coefficient
equal to 1.

The expected response count takes the form

µi = tiexp

 p∑
j=1

βjxij

.
The mean response is proportionate to ti with a constant which depends

on the explanatory variables.

1.3.6 Negative Binomial GLMs
Using a Poisson distribution to model count data, it is assumed that the
variance equals the mean. In other words, the mean and the variance be-
have in the same manner which some times is not valid when looking at real
data. The real data may exhibit variability exceeding that predicted by the
assumed Poisson distribution, leading to a phenomenon called overdisper-
sion.

Overdispersion

Heterogeneity is quite common in overdispersion problems. The mean
varies according to different values of unobserved variables at fixed lev-
els of the predictors. The heterogeneity introduces an overall distribution
for the response with variance greater than that of the Poisson distribution.
In the case that the variance equals the mean for every explanatory vari-
able, it exceeds the mean when some are included. A serious drawback is
that because the variance of the response must equal the mean, for certain
mean values the variance cannot decrease as extra independent variables
are included.

When normality is assumed, in particular in ordinary linear regression,
the distribution has a separate parameter for the variance to describe vari-
ability averting overdispersion. Nonetheless, for binomial or Poisson data
the variance is a function of the mean, thus it is quite common in count
data. Consider the model for the mean has the appropriate link function
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and linear predictor but the variability of the response distribution is higher
than that of the Poisson distribution. This results in the ML estimators
of model parameters for Poisson distribution being still consistent but the
standard errors being too small. This is the reason why an additional
parameter to account for overdispersion is needed.

Negative Binomial: Poisson mixture

One simple way to account for overdispersion is a mixture model. For a
fixed number of explanatory variables, given the mean λ and the distribu-
tion of the response being the Poisson, distribution with parameter varying
according to covariates. Consider µ = E(λ) and

E(y) = E(E(y|λ)) = E(λ) = µ

var(y) = E(var(y|λ)) + var(E(y|λ)) = E(λ) + var(λ) = µ+ var(λ) > µ

Given λ, y has a Poisson(λ) distribution and the parameter λ has the
Gamma distribution. It is E(λ) = µ and var(λ) = µ2/k for a shape param-
eter k > 0 so the standard deviation becomes proportional to the mean.
The negative binomial distribution comes from the gamma mixture of the
Poisson distributions for the response y with probability mass function

p(y;µ, k) = Γ(y + k)
Γ(k)Γ(y + 1)

(
µ

µ+ k

)y(
k

µ+ k

)k
, y = 0, 1, . . . . (1.34)

With k fixed, it is proved that it is a member of the exponential dis-
persion family appropriate for discrete variables with natural parameter
log[µ/(µ+ k)] (Agresti, 2015).

If γ = 1/k then

E(y) = µ, var(y) = µ+ γµ2.

The γ > 0 is a dispersion parameter; the greater the value of γ the
greater the overdispersion relative to the Poisson. When γ → 0, var(y)→
µ and the negative binomial distribution converges to the Poisson distri-
bution.

The negative binomial distribution is more flexible than the Poisson.
The mode of the Poisson distribution is the integer part of the mean and
equals to 0 when µ < 1. However, the negative binomial distribution is
unimodal with the mode equal to 0 when γ ≥ 1 otherwise it is the integer
part of µ(1− γ). The mode can be 0 for any µ.

Negative Binomial GLMs

It is quite common to use the log link in negative binomial GLMs rather
than the canonical link. Let the dispersion parameter γ be the same for all
observations and consider it to be unknown. The coefficient of variation in
the Gamma distribution is

√
var(λ)/E(λ) = √γ.
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From (1.34) the log likelihood function with n independent observations
is

L(β, γ;y) =
n∑
i=1

logΓ
(
yi + 1

γ

)
− logΓ

(
1
γ

)
− logΓ(yi + 1)


+

n∑
i=1

yilog
(

γµi
1 + γµi

)
−
(

1
γ

)
log(1 + γµi)

.
(1.35)

The likelihood equations derived from differentiating the log likelihood
with respect to β are

n∑
i=1

(yi − µi)xij
var(yi)

(∂µi
∂ηi

) =
∑
i

(yi − µi)xij
(µi + γµi)2

(
∂µi
∂ηi

)
= 0, j = 1, 2, . . . , p.

The equation

∂2L(β, γ;y)
∂βj∂γ

= −
∑
i

(yi − µi)xij
(µi + γµi)2

(
∂µi
∂ηi

)

provides the Hessian matrix elements.

E(∂2L/∂βj∂γ) = 0, for each j and β and γ.

Thus, β̂ and γ̂ are asymptotically independent and the large sample
standard error for β̂j is the same regardless of the fact that γ is known or
not.

The IRLS for Fisher Scoring is applied for the maximum likelihood
model fitting. The estimated covariance matrix of β̂ is

v̂ar(β̂) = (XTŴX)−1

where, with log link,W is the diagonal matrix with wi = (∂µi/∂ηi)2/var(yi) =
µi/(1 + γµi). The deviance of a negative binomial model is

D(y, µ̂) = 2
∑
i

[
yilog

(
yi
µ̂i

)
−
(
yi + 1

γ̂

)
log

(
1 + γ̂yi
1 + γ̂µi

)]
.

The negative binomial deviance is close to the Poisson GLM deviance when
γ̂ is close to 0.

Poisson-Negative Binomial Comparison

It is open to debate whether a Poisson GLM provides a better fit over a
negative binomial GLM with the same explanatory variables. The choice
is based on the output of the test of significance H0 : γ = 0, on the grounds
that the Poisson distribution is the special case of the negative binomial as
γ → 0.
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Reparametarised Negative Binomial

By replacing the shape parameter of the gamma distribution with kµ the
density distribution becomes

f(λ; k, µ) = kkµ

Γ(kµ)exp(−kλ)λkµ−1, λ ≥ 0.

Hence, the mean and variance are E(λ) = µ and var(λ) = µ/k, respec-
tively. For that particular parametarisation the gamma mixture of Poisson
distributions returns a negative binomial distribution with

E(y) = µ var(y) = µ(1 + k)/k.

The variance becomes linear in µ and corresponds to an inflated Poisson
variance that converges to it as k →∞.
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Chapter 2

GAM Introduction

The generalisation of the GLM studied in the previous chapter is the Gen-
eralised Additive Model (GAM) with a linear predictor including a sum of
smooth functions of covariates. The new more flexible model allows for the
more flexible specification of the dependece between the response and the
covariates, instead the model is specified in terms of the ’smooth functions’.
It is now mandatory to depict the smooth functions and the degree of their
smoothness.

2.1 Introduction
The generalised additive model has the structure of the form

g(µi) = Aiθ + f1(x1i) + f2(x2i) + f3(x3i, x4i) + . . . (2.1)

where µi = E(Yi) and Yi ∼ EF (µi, φ), Yi is a response variable,
EF (µi, φ) denotes the exponential family of distributions with mean µi
and scale parameter φ, Ai is a row of the model matrix for the paramet-
ric model components, θ is the parametric vector of the respective model
components and the fj are the smooth functions of the covariates.

2.2 Univariate Smoothing
To begin with, the representation and estimation of component functions
of a model is introduced best by a model containing one function of one
covariate

yi = f(xi) + εi (2.2)

where yi is the response variable, xi is a covariate, f is a smooth function
and the εi are independent random variables distributed from N(0, σ2).

2.2.1 Function Representation with basis expansion
To estimate the smoothing function f requires that the function is repre-
sented in the appropriate manner that (2.2) becomes a linear model. This

29
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can be achieved by defining a basis; the space of functions of which the
function f is an element. Choosing a basis is related to choosing some
basis functions which will be treated as known; if bj(x) is the jth such basis
function, then the function f is assumed to be represented as

f(x) =
k∑
i=1

bj(x)βj (2.3)

By substituting (2.3) into (2.2) returns a linear model.
First, take as a basis a polynomial one. Let the smoothing function be

a 4th order polynomial, in a way that the polynomial of order 4 and below
space includes f . A basis for this space is b1(x) = 1, b2(x) = x, b3(x) = x2,
b4(x) = x3 and b5(x) = x4 such that (2.3) becomes

f(x) = β1 + xβ2 + x2β3 + x3β4 + x4β5

and (2.2) becomes the model

yi = β1 + xiβ2 + x2
iβ3 + x3

iβ4 + x4
iβ5 + εi.

The polynomial bases are useful when the research interest revolves
around the properties of in the vicinity of a specified point, but the poly-
nomial bases are quite problematic once examining the function over its
whole domain. An attempt to approximate a non linear function depicts
that the polynomial interpolation oscillates severely in places so that, in
order to meet the requirements with respect to data interpolation and to
have all derivatives to be continuous over the different values of x. If the
requirement for derivatives continuity is relaxed and a piecewise linear in-
terpolant is used instead, then a better approximation is obtained (Wood,
2017). It is sensible to use bases which are good at approximating known
functions as to resemble unknown functions. By the same token, bases that
perform quite well at interpolating exact points of a function are considered
a good initial point for smoothing noisy observations of a function.

One basis for piecewise linear functions of a univariate variable is deter-
mined exclusively by the coordinates of the function’s derivative disconti-
nuities; particularly the locations at which the linear components come to-
gether. Consider the knots {x∗j : j = 1, . . . , k} and assume that x∗j > x∗j−1.
Then for j = 2, . . . , k − 1,

bj(x) =


(x− x∗j−1)/(x∗j − x∗j−1), x∗j−1 < x ≤ x∗j
(x∗i+j − x)/(x∗j+1 − x∗j), x∗j < x ≤ x∗j+1

0, otherwise

(2.4)

while

b1(x) =

(x∗2 − x)/(x∗2 − x∗1), x < x∗2
0, otherwise

(2.5)

and
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bk(x) =

(x− x∗k−1)/(x∗k − x∗k−1), x > x∗k−1

0, otherwise
(2.6)

Therefore, bj(x) is zero everywhere, but the region between the knots
next to either side of x∗j .Firstly, bj(x) increases linearly from 0 at x∗j−1 to
1 at x∗j and then decreases linearly to 0 at x∗j+1. Basis functions with the
property of being non zero only over some finite intervals have a compact
support. The shape of the bj justifies their categorisation as tent functions.

An alternative way of defining bj(x) is the linear interpolant of the data
{x∗i , δ

j
i : i = 1, . . . , k} with δji = 1 if i = j and zero everywhere else. This

makes it computationally easier for the determination of the basis.
Under the particular basis, the function f(x) is represented as the linear

model y = Xβ + ε where Xij = bj(xi).
An illustrative example follows to clarify the use of the piecewise linear

basis. The research objective is to examine to what extent the common
belief that a car engine with a larger cylinder capacity wears out faster
than a smaller capacity. Data for 19 Volvo engines are shown in Figure 2.1

The model fit appears to be quite well but the degree of smoothness
applied is arbitrary. This problem must be addressed so that theory for
modelling with unknown functions is to be developed.

2.2.2 Control smoothness
One possibility is to proceed with the choosing of degree of smoothing by
backward selection. Nonetheless. a particular approach is quite worrisome
owing to the fact that a model based on k− 1 evenly spaced knots will not
be nested within a model based on k evenly spaced knots. It is sensible
to begin with a grid of knots and simply drop knots successively as part
of the backward selection, however the resulting uneven knot spacing leads
to poor model performance. On top of that, the model fit of such models
tends to be highly dependent on the location of the chosen knots.

One alternative is to keep the basis dimension fixed at a larger size
than that believed necessary. The model’s smoothness is controlled by the
adding a ’wiggliness’ penalty to the least squares. In particular, the model
is fitted by minimising

||y −Xβ||2 + λ
k−1∑
i=1
{f(x∗j−1)− 2f(x∗j) + f(x∗j+1)}2,

instead of minimising

||y −Xβ||2.

The summation term accounts for the wiggliness as a sum of squared
second differences of the function at specific points. Once, the function f
is quite wiggly, the penalty will take high values and when the function
f is smooth, the penalty takes lower values. In case, the function f is a
straight line then the penalty becomes zero. Hence, the penalty has a null
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space of functions that do not bear any penalty. Its dimension is 2 due to
the fact that the basis for straight lines is 2-dimensional.

The parameter λ takes into account the extent at which smoothing will
take place. It consists a trade off between smoothness of the approximated
function f and the fidelity to the data. If λ → ∞ a straight line estimate
for the function is assumed, while for λ = 0 a unpenalised piecewise linear
regression estimate holds.

For the tent functions basis, the coefficients of function f are the func-
tion values at the knots; βj = f(x∗j). It becomes relatively easy to express
the penalty as a quadratic form in the basis coefficients; βXTβ.

Let 
β1 − 2β2 + β3
β2 − 2β3 + β4
β3 − 2β4 + β5

.

.

 =


1 −2 1 0 . . .
0 1 −2 1 0 . .
0 0 1 −2 1 0 .

. . . . . .

. . . . . .




β1
β2
β3
.
.

 (2.7)

so that writing the right hand side as Dβ, by definition of D matrix the
penalty is

k−1∑
j=2

(βj−1 − 2βj + βj+1)2 = βTDTDβ = βTSβ (2.8)

where S = DTD. Therefore, the penalised regression fitting problem
is to minimise the quantity

||y −Xβ||2 + λβTSβ. (2.9)
The problem of estimating the smoothness degree of the model becomes

the problem of estimating the smoothness parameter λ. It is better to
consider the estimation of β given λ before addressing the estimation of
the parameter λ. A straightforward expression for the minimiser is shown
by Wood (2017) which accounts for the penalised least squares estimator
of β,

β = (XTX + λS)−1XTy. (2.10)
By the same token, the hat matrix A can be written as

A = X(XT+λS)−1XT . (2.11)

It is µ̂ = Ay. The above expressions are not the ones to use for com-
putation, as orthogonal matrix methods provide greater stability. For com-
putation purposes,∣∣∣∣∣

∣∣∣∣∣
[
y
0

]
−
[
X√
λD

]
β

∣∣∣∣∣
∣∣∣∣∣
2

= ||y −Xβ||2 + λβTSβ.

The sum of squares term, on the left hand side is just a least squares
objective for a model in which the model matrix has been augmented with
k − 2 zeros. Provided that k is large enough so that the basis is more
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flexible than firstly anticipated, to represent the function f(x), thus the
exact choice of k and the selection of the knot locations do not influence
the model fit. The choice of λ plays a supreme role in determining the
model flexibility and the shape of f̂(x).

2.2.3 Choosing smoothing parameter
If λ is too high then the data will be over smoothed, while in case it is too
low the data will be under-smoothed. Therefore, in both cases the estimate
of the function f̂(x) will not be close enough to the true function f(x). The
best deal would be to choose the parameter λ in a fashion that f̂ is the
closest possible to the true function f . A criterion of selecting λ would
pertain the minimisation of

M = 1
n

n∑
i=1

(f̂i − fi)2,

where f̂i = f̂(xi) and fi = f(xi).
M cannot be directly used due to the fact that the function f is un-

known. Instead, an estimate of E(M) + σ2 can be derived , the expected
squared error in predicting a new variable. Let f̂ [−i] be the model fitted to
the whole data set but yi, and define the cross validation score

V0 = 1
n

n∑
i=1

(f̂ [−i]
i − yi)2.

This is derived from leaving out one datum per turn, fitting the model
to the remaining data and calculating the squared difference between the
missing datum and its predicted value. Next, the squared differences are
averaged over the rest of the data.

By substituting yi = fi + εi,

V0 = 1
n

n∑
i=1

(f̂ [−i]
i − fi − εi)2

= 1
n

n∑
i=1

(f̂ [−i]
i − fi)2 − 2(f̂ [−i]

i − fi)εi + ε2
i .

(2.12)

Because of E(εi) = 0 coupled with εi and f̂ [−i]
i which are independent

then it is

E(V0) = 1
n
E
( n∑
i=1

(f̂ [−i]
i − fi)2

)
+ σ2.

It is f̂ [−i]
i ≈ f̂ and E(V0) ≈ E(M)+σ2 with equality in the large sample

limit. Therefore, selecting λ as to minimise V0 is the best way to minimise
M . On top of that, choosing λ to minimise V0 is known as ordinary cross
validation.

Going for ordinary cross validation is a reasonable manner to opt for
even without a mean square error justification. If the best model is chosen
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based on the ability of the model to fit the data then it is obvious that the
more complex models will be selected over the simpler.

It is computationally intensive to calculate V0 by leaving one datum out
each time, refitting the model to each of the n − 1 observations resulting
data sets. It can easily be shown that

V0 = 1
n

n∑
i=1

(yi − f̂i)2/(1− Aii)2,

where f̂ is the estimate from fitting to all the data, and A is the influence
matrix. In essence Aii is often replaced by the mean, tr(A)

n
, returning the

generalised cross validation score

V0 = n
∑n
i=1(yi − f̂i)2

(n− tr(A))2

It can be shown that the computation of the GCV has a competitive
edge over the computation of the OCV, as shown in (Wahba, 1990, p.53 or
sections 6.2.2 and 6.2.3, p.258).

2.2.4 The Bayesian/mixed model approach
The smoothing penalties introduction is attributed to the assumption that
the truth is more likely to be smooth than wiggly. The formalisation of
this belief in a Bayesian way and the specification of the prior distribution
on the function wiggliness is what will be discussed in this section. The
simplest choice to make is an exponential prior

∝ exp(−λβTSβ/σ2)

which is recognisable as being equivalent to an improper multivariate nor-
mal prior β ∼ N(0,σ2S−/λ). The prior precision matrix is proportional to
S on the grounds that S is rank deficient by the dimension of the penalty
null space, the prior covariance matrix is proportional to the pseudo-inverse
S−; S− is defined in a way that let S = UΛUT and Λ is the diagonal ma-
trix of the inverse of the non-zero eigenvalues with zeros in place of the
inverse for any zero eigenvalues then S− = UΛ−1UT .

The Bayesian interpretation of the smoothing penalty provides the
model with the structure of a linear mixed model and as a consequence
the MAP estimate of β is the solution to the equations (2.9) and (2.10),
while

β|y ∼ N(β̂, (XTX + λS)
−1
σ2)

By introducing this form of structure to the model eases the estimation
of σ2 and λ by applying the marginal likelihood estimation; REML.

For computational purposes only a model reparameterisation is applied.
The model is re-written in terms of β′ = D+β where

D+ =
(
I2 0
D

)
. (2.13)
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It is Xβ = XD−1
+ β′ and βTSβ = ∑k

i=3 β
′
i
2. If the first couple of

elements of β′ are re-written as β∗ and the remainder as b, the Bayesian
smoothing prior becomes b ∼ N(0, Iσ2/λ). β∗ is unpenalised so it is
treated as a vector of fixed effects. Let X∗ be a matrix consisting of the
first 2 columns of XD−1

+ while Z is the matrix of the remaining columns.
The smooth model becomes

y = X∗β∗ +Zb+ ε, b ∼ N(0, Iσ2/λ), ε ∼ N(0, Iσ2).

2.3 Additive Models
Consider two independent variables, x and u, and a response variable y. A
simple additive model is

yi = α + f1(xi) + f2(ui) + εi (2.14)

appropriate where α is the intercept, the fj are the smooth functions and
the εi are independent N(0, σ2) random variables.

First the additive assumption effect, f1(x) + f2(u), is a quite strong
special case of the general smooth function of two variables f(x, u). On
top of that, the model now contains more than one function. As a result
an identifiability issue is to be addressed: f1 and f2 are each exclusively
estimable to within an additive constant. On that note, any constant could
be added to f1 and be subtracted from f2 without changing the predictions
of the model. It is foregone conclusion that identifiability constraints need
to be imposed before fitting.

Once the identifiability issue is over, the additive model can be repre-
sented via penalised regression splines, estimated by penalised least squares
and the degree of smoothing chosen by cross validation or (RE)ML, in the
same manner as for the simple univariate model.

2.3.1 Penalised piecewise regression representation
Every smooth function in (2.13) can be easily represented by penalised
piecewise linear basis. So,

f1(x) =
k1∑
j=1

bj(x)δj,

where δj are unknown coefficients, while the bj(x) are basis functions of
the form (2.4), defined using a sequence of knots k1, x∗j evenly spaced over
the range of x. Similarly,

f2(x) =
k2∑
j=1

Bj(u)γj,

where γj are unknown coefficients, while the Bj(x) are basis functions
of the form (2.4), defined using a sequence of knots k2, u∗j evenly spaced
over the range of u.
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Consider the vector f 1 = [f1(x), . . . , fn(x)]T . It is f 1 = X1δ, where
bj(xi) is the element i, j of X1. Similarly, f 2 = X2γ, where Bj(uj) is
the i, j element of X2. A penalty as in (2.8) is also intertwined with each
function: δTDT

1D1δ = δT S̄1δ for f1 and γTDT
2D2γ = γT S̄2γ for f2.

The identifiability issue has to be addressed. Almost any linear con-
straint that resolved the problem could be used, however most choices lead
to wider confidence intervals. The best constraints from that perspective
sum to zero

n∑
i=1

f1(xi) = 0⇐⇒ 1Tf 1 = 0,

where 1 is an n-dimensional vector of 1’s. That particular constraint
allows f1 to have the exactly same shape as before the restriction is applied;
with the same penalty. The only effect of the constraint is to vertically shift
f1 as for its mean value to be zero.

The application of the constraint requires that 1TX1δ = 0 for all δ,
which entails 1TX1 = 0. The subtraction of the column mean from each
column of X1 is necessary for the latter condition. Hence, a column cen-
tered matrix is defined

X̃1 = X1 − 11TX1/n

and set f̃1 = X̃1δ. The exclusive effect of the constraint is a shift in
the level of f 1. This is shown as:

f̃1 = X̃1δ = X1δ − 11TX1δ/n = X1δ − 1c = f 1 − c,

where c = 1TX1δ/n. Thereby, the rank of the matrix X̃1 is reduced to
k1−1 elements of the k1 vector δ can be uniquely estimated. There needs a
simple identifiability constraint that addresses this issue: a single element of
δ is set to zero, and the corresponding column of X̃1 andD is deleted. The
column centred rank reduced basis will satisfy the identifiability constraint.
From now on the tildes will be dropped, and theXj,Dj are the constrained
versions.

Having defined the constrained bases for the fj, it is easy to reshape
the formula (2.13) in the manner

y = Xβ + ε,

where X = (1, X1, X2) and βT = (α, δT , γT ). The penalties should
better be expressed as a quadratic form in the coefficient vector β, for
convenience purposes. It can be easily done by padding out Sj with zeroes,
as appropriate. In particular,

βTS1β = (α, δT , γT )

0 0 0
0 S̄1 0
0 0 0


αδ
γ

 = δT S̄1δ
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2.3.2 Fitting the additive model under penalised least
squares

The model coefficient estimates β̂ of the model (2.13) are obtained by the
minimisation of the penalised least squares

||y −Xβ||2 + λ1β
TS1β + λ2β

TS2β,

where the smoothing parameters λ1 and λ2 control the weight to be
given to f1 and f2 in order to smooth them. Consider the smoothing
parameters to be given. The single smooth case would be

β̂ = (XTX + λ1S1 + λ2S2)−1XTy

and

A = X(XTX + λ1S1 + λ2S2)−1XT .

Nonetheless, these expressions are not optimal with respect to com-
putational stability. Therefore, it is necessary to rewrite the objective as
such

||y −Xβ||2 + λ1β
TS1β + λ2β

TS2β =

∣∣∣∣∣∣
∣∣∣∣∣∣
[
y
0

]
−
[
X
B

]
β

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(2.15)

where
B =

[
0
√
λ1D1 0

0 0
√
λ2D2

]

(or any matrix of the form BTB = λ1S1 + λ2S2).
In the single smooth approach, the right hand side of (2.14) is the

unpenalised least squares objective for an augmented version of the model
and the corresponding response data. By applying stable orthogonal matrix
based methods the model can be easily fitted by a regular linear regression
model.

2.4 Generalised Additive Models
The Generalised Additive Models (GAMs) follow from the additive models,
in the same way as the generalised linear models stem from the linear mod-
els. The linear predictor explains some known smooth monotonic function
of the expected value of the response variable, the response is free to follow
any exponential family distribution, in turn, or have a known mean variance
relationship allowing the deployment of the quasi-likelihood method.

Even though the additive model was estimated by penalised least squares,
the GAM will be fitted by penalised likelihood maximisation; it will be ac-
complished in practice by penalised iterative least squares (PIRLS). For
given smoothing parameters, these steps are required if convergence is to
be achieved.
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1. For the current linear predictor estimate η̂ and corresponding esti-
mated average response vector µ̂, calculate:

ωi = 1
V (µ̂i)g′(µ̂i)2 and zi = g′(µi)(yi − µ̂i) + η̂i,

where

V ar(Yi) = V (µi)φ and g is the link function.

2. Defining W as the diagonal matrix so that Wii = ωii, minimise the
quantity ∣∣∣∣∣∣√Wz −

√
WXβ)

∣∣∣∣∣∣2 + λ1β
TS1β + λ2β

TS2β

with respect to β to derive the new estimate β̂. Henceforth, the
updated estimates are obtained η̂ = Xβ̂ and µ̂i = g−1(η̂i).

The penalised Least Squares problem at the last step is equivalent to
the problem of the simple additive model solved in (Wood, 2017, p. 148).

Given λ1 and λ2 it will be direct to obtain the estimate β̂, the selection of
the GCV score is quite significant for the model, though. It comes naturally
to opt for the GCV score for the final linear model in the PIRLS iteration.
By replacing the residual sum of squares with the Pearson statistic this
particular GCV score is equivalent to the usual GCV score.



Chapter 3

The Generalised Additive
Model

This chapter is written with the aim of developing methods that will assist
in the model building and model estimation process given the smoothing
parameters. Then smoothing parameter estimation criteria are discussed
along with the computational techniques that allow for the efficient esti-
mation of these parameters, by the criteria optimisation.

3.1 Model Set Up
The equation of a generalised additive model, as discussed in the latter
chapter, is of the form

g(µi) = Aiγ +
∑
j

fj(xji), yi ∼ EF (µi, φ),

where Ai is the i-row of the parametric model matrix, with correspond-
ing parameters γ, fj is a smooth function of xj, EF (µi, φ) stands for an
exponential family distribution with mean µi and scale parameter φ. The
response data yi are modelled as independent given the mean µi.

A generalisation of the model is

g(µi) = Aiγ +
∑
j

Lijfj(xji), yi ∼ EF (µi, φ),

where Lij is a bounded linear function of fj. One example could be that Lij
is an evaluation functional such as Lijfj(xj) = fj(xji), which returns the
GAM basis. On top of that, it could be assumed that Lijfj(xj) = zjfj(xji),
where zi is a covariate; such model terms are often known as varying coef-
ficient terms, Hastie and Tibshirani (2017), on the grounds that fj(xji) is
viewed as a regression coefficient for z which varies smoothly for the dif-
ferent values of xj. The ’signal regression’ term constitutes an illustrative
example with the corresponding term being Lijfj(xj) =

∫
fj(xj)ki(xj)dxj,

where ki is an observed function.
Smoothing bases and penalties are chosen for any model, therefore

model matrices X [j] and penalties S[j] are defined; multiple penalty matri-
ces may be defined for every fj. If bjk(xji) is the k-basis function for the

39
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functions fj, then for the basic model are the elements X [j]
ik = bjk(xji) and

X
[j]
ik = Lijbjk(xj) are in the general model.
An identifiability constraint needs to be applied to each smooth term

that contains 1 in the span of its X [j]; in case the restriction is not applied
then the smooth terms will be confounded with the intercept in matrix A.
There is an exception when it comes to smooths for which the penalty has
no null space, hence fj → 0 as the corresponding smoothing parameter(s)
tend to infinity. In the bottom line constraints need to be applied to all
smooths in the basic model form, but not to all Lijfj terms.

The identifiability restrictions of the form ∑
i fj(xji) = 0 are quite use-

fully absorbed into the basis by reparameterisation. Let χ and S∗j denote
the model and penalty matrix for fj, respectively, after the reparameter-
isation. By putting together A and χ[j]; column-wise a model matrix is
created

X = (A : χ[1] : χ[2] : . . . ).
The corresponding model coefficient vector, β, includes γ and the in-

dividual smooth term coefficient vectors in the end. A smoothing penalty
of the model is of the form

∑
j

λjβ
TSjβ,

where λj is a smoothing parameter and Sj is the matrix S∗j embedded
as a diagonal block in a matrix, otherwise it contains only 0 entries, such
as λjβTSjβ is the penalty for fj. As a matter of fact there may be more
than one Sj for each fj.

In that case the model has turned into an overparameterised GLM of
the form

g(µi) = X iβ, yi ∼ EF (µi, φ),
to be estimated by the maximisation of

lp(β) = l(β)− 1
2φ

∑
j

λjβ
TSjβ. (3.1)

The smoothing parameters, λj, control for the trade-off between the
model goodness of fit and the model smoothness.

3.1.1 Estimation of β for given λ
As it is showed in Wood (2017), the equation in (6.1) is immediately recog-
nisable as the objective in the GLMM optimisation problem with X re-
placing χ in the solution process. The (6.1) can be minimised under the
penalised iteratively re-weighted least squares (PIRLS) iteration:

1. Initiate µ̂i = yi + δi and η̂i = g(µ̂)i, where δi is usually 0, but there
may be a small constant reassuring that η̂i is finite. Iterate the next
two steps till convergence.

2. Compute pseudodata zi = g′(µ̂i)(yi − µ̂i)/α(µ̂i) + η̂i and iterative
weights wi = α(µ̂i)/{g′(µ̂i)2V (µ̂i)}
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3. Find β̂ to minimise the weighted least squares objective

||z −Xβ||2W +
∑
j

λjβ
TSjβ

and update both η̂ = Xβ̂and µ̂i = g−1(η̂i).
It is defined that ||α||2W = αTWα and V (µ) as the variance func-

tion by the exponential family distribution, while α(µi) = [1 + (yi −
µi){V ′(µi)/V (µi) + g′′(µi)/g′(µi)}]. An alternative approach would be to
make use of Fisher scoring in which the Hessian of the log-likelihood will
give its position to its expectation; setting α(µi) = 1.

3.1.2 Scale parameter estimation
The needed REML scale estimator as shown in Wood (2017, p. 251) is

φ̂ = ||z −Xβ̂||
2
W

n− τ
, (3.2)

where
τ = tr{(XTWX + Sλ)−1XTWX, (3.3)

where Sλ = ∑
j λjSj. τ is considered as the effective degrees of freedom

of the model with the function F = (XTWX + Sλ)−1XTWX taking
into account the weights. Given z, W,F is interpreted as the mapping
matrix of the unpenalised coefficient estimates to the penalised coefficient
estimates so that its trace is effectively the average shrinkage undergone
by the coefficients, multiplied by the coefficient numbers. The effective
degrees of freedom are derived by summing the Fii values corresponding to
the βi of the smooth term.

The ||z −Xβ̂||2W corresponds to the Pearson statistic such as the
REML estimate φ̂ is the Pearson estimate of the scale parameter.

An alternative definition of the effective degrees of freedom is sometimes
useful. For presentation purposes, consider the Gaussian additive model
with influence matrix is A = X(XTX + Sλ)−1XT and
F = (XTX + Sλ)−1XTX.

The expected residual sum of squares for the model is

E(||y −Ay||2) = σ2{n− 2tr(A) + tr(AA)}+ bTb, (3.4)

where b = µ−Aµ represents the smoothing bias, which can be estimated
as b̂ = µ̂−Aµ̂. This leads to the alternative scale/variance estimator

σ̂2 = ||y −Ay||2 − b̂T b̂
n− 2tr(A) + tr(AA) ,

where τ1 = n − 2tr(A) + tr(AA) = 2tr(F ) − tr(FF ) as the effective
degrees of freedom for the model. Another approach to τ1 is to proceed
with bias correction and derive the fitted values:

µ̃ = µ̂+ b̂ = 2µ̂−Aµ̂ = (2A−AA)y.

The bias corrected influence matrix is 2A−AA, which trace is τ1; the
effective degrees of freedom for the bias corrected model.
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3.2 Smoothness Selection
The estimation of coefficient β has been carried out conditioned on the
given smoothing parameters λ, which has to be estimated. As discussed in
the previous section there are two classes of method in general use: predic-
tion error methods, such as GCV and AIC, or marginal likelihood methods
based on the Bayesian/mixed model perspective of smoothing. There are
two alternative computational strategies; the smoothness selection criterion
is defined and optimised for the model itself or it is defined for the working
model in the PIRLS iteration procedure. That last strategy is predom-
inantly used in the PQL procedure; does not guarantee convergence but
can be particularly fast especially in big data.

3.2.1 UBRE: known scale parameter
When it comes to estimating smoothing parameters in the simple case of
an additive model with constant variance, an interesting approach is to
ensure that µ̂ is as close to the true mean µ = E(y). A good measure of
that particular proximity is the mean square error (MSE) which is defined
as:

M = E(||µ− β̂||2/n) = E(||y −Ay||2)/n− σ2 + 2tr(A)σ2/n. (3.5)

It is quite reasonable to select the smoothing parameters as to minimise
M ; un-biased risk estimator (Wahba, 1990, UBRE),

Vu(λ) = ||y −Ay||2/n− σ2 + 2tr(A)σ2/n, (3.6)

which is Mallows’ Cp (Mallows, 2000). The right hand side of (3.6)
relies on the smoothing parameters through A.

If σ2 is known, then estimating λ by minimising Vu works quite well,
otherwise the estimation of σ2 becomes problematic. Substituting the ap-
proximation

E(||y −Ay||2) = σ2{n− tr(A)}, (3.7)

implied by (3.2), into (3.5) yields

M = E(||µ−Xβ̂||2/n) = tr(A)
n

σ2 (3.8)

and the MSE is M̃ = tr(A)
n
σ̂2. Consider the comparison of the one-

parameter and two-parameter unpenalised models using M̂ : the two-parameter
model has to reduce σ̂2 to less than half of the one parameter σ2 estimate
before it would be judged to be a refinement. Therefore, M̃ is not an
appropriate basis as far as the model selection is concerned.

3.2.2 Cross validation: Unknown scale parameter
When the variance is unknown, the minimisation of the average square
error does not work quite well. It is recommended that the smoothing
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parameter estimation is based on the mean square prediction error: on
the average squared error in predicting a new observation y via the fitted
model. The expected mean square prediction error is

P = σ2 +M.

The direct dependence on σ2 tends to mean that criteria based on P are
more resistant to over-smoothing, than are criteria based on M .

By applying cross validation, the estimation of P becomes easier (Stone,
1974). By excluding a datum, yi from the model fitting it becomes indepen-
dent of the model fitted to the remaining data.The ordinary cross validation
estimate of P is:

V0 = 1
n

n∑
i=1

(yi − µ̂[−i]
i )2 (3.9)

where µ̂[−i]
i denotes the prediction of E(yi).

It is unnecessary to calculate V0 by performing n model fits to obtain
n terms µ̂[−i]

i . First, take into account the penalised least squares objective
which has to be minimised to derive the i-term in the OCV score:

n∑
j=1, j 6=1

(yj − µ̂[−i]
j )2 + Penalties.

Adding zero to the objective will leave the estimates that minimise it
intact; the addition of the term (µ̂[−i]

j − µ̂[−i]
j )2 to derive

n∑
j=1, j 6=1

(y∗j − µ̂
[−i]
j )2 + Penalties, (3.10)

where y∗ = y − ȳ[i] + µ̄[i] : ȳ[i] and µ̄[i] are vectors of zeroes but the
i-elements are yi and µ̂

[−i]
i , respectively. Minimising (3.10) results in an

i-prediction µ̂[−i]
i and also an influence matrix A. So,

µ̂
[−i]
i = Aiy

∗ = Aiy − Aiiyi + Aiiµ̂
[−i]
i = µ̂i − Aiiyi + Aiiµ̂

[−i]
i ,

where µ̂i is from the fit to the full data. By subtracting yi and rearranging
the equation yields

yi − µ̂[−i]
i = (yi − µ̂i)/(1− Aii) (3.11)

so the OCV becomes

V0 = 1
n

(yi − µ̂i)2

(1− Aii)2 . (3.12)

The asymptotic equivalence of the Akaike’s Information Criterion with
the OCV is shown in Stone (1974).
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Leave-several-out cross validation

This approach can be used as well, requiring a single model fit for the
computations. Assume that the goal is to build a cross validation objective
on the basis of leaving out subsets of data. Let α be the set of indices of
one such subset in a way that µ̂[−α]

α contains the predictions of the points
indexed by α, when yα has been excluded from the model fit. Define
y∗ = y − ȳ[α] + µ̄[α] then the argument is similar to the known leave-one-
out method to arrive at the identity

y∗ = µ̂[−α]
α = (I −Aαα)−1(yα − µ̂α)

from which a leave -several-out cross validation scored is computed; the
matrix Aαα is the matrix consisting of rows and columns α of A.

Issues with ordinary cross validation

A sensible way to estimating smoothing parameters in the OCV, but it
is dominated by two potential handicaps. First and foremost, it is com-
putationally expensive to minimise the additive model case; with multiple
smoothing parameters. There is also an annoying lack of invariance (Golub
et al. (1979); Wahba (1990, p. 53)).

Consider the additive model fitting objective

||y −Xβ||2 +
m∑
i=1

λiβ
TSiβ.

Given smoothing parameters, all inferences about β are made based on the
objective function minimisation which are identical to the inferences that
would be made by using the alternative objective,

||Qy −QXβ||2 +
m∑
i=1

λiβ
T
i β,

where Q is any orthogonal matrix of appropriate dimension. Nonetheless,
the two objectives give rise to different OCV scores.

3.2.3 Generalised Cross Validation
The problem with OCV emerges due to the fact that, despite parameter
estimates, effective degrees of freedom and expected prediction error being
invariant to the rotation of y − Xβ by any orthogonal matrix Q; the
elements Aii are not invariant and do not pertain in the sum (3.12). An
arbitrary choice of how the model fit is performed is quite sensitive so there
needs to be refined.

One technique would require to make rotations of y−Xβ in a manner
that provide a good ground for performing cross validation. It would not
be recommendable to use cross validation on data in which few points
have very high leverage relative to others. Thus, highly uneven Aii values
will make the cross validation score (3.12) to be dominated by a small
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proportion of the data. The selection of Q has to be done in a way that
makes Aii as even as possible.

It is possible to choose Q such as the Aii are equal. In case A is
the influence matrix for the original problem, then the rotated problem
becomes

AQ = QAQT ,

but if there is a matrix B such as BBT = A then the influence matrix
becomes:

AQ = QBBTQT .

If the orthogonal matrix Q is such that every row of QB has the same
Euclidean length, then all the elements of the diagonal matrix AQ are
equal. As a matter of fact, their value is tr(A)/n because

tr(AQ) = tr(QAQT ) = tr(AQTQ) = tr(A).

There must be examined whether the matrix Q exists. It is always
possible to produce an orthogonal matrix to be applied from the left; its
objective is to perform a rotation that affects only two rows of the targeted
matrix. Such a matrix is called Givens rotation. As long as the angle of
rotation; increases smoothly from zero, the Euclidean lengths of these two
rows vary smoothly. However, the rotation sum of their squared lengths
remains the same. Once the rotation angle reaches 90 degrees, the row
lengths are interchanges which is credited to the fact that the magnitudes
of the elements of the rows have been interchanged. Henceforth, there must
exist a critical point at which the row lengths become equal.

3.2.4 REML and Marginal Likelihood
It is quite common to take the Bayesian approach when it comes to smooth-
ing penalties selection as they correspond to a Gaussian prior on the model
coefficients. The selection of smoothing parameters based on the maximi-
sation of the Bayesian log marginal likelihood could be an alternative way.
The log of the joint density of the data and coefficients β is

Vτ (λ) = log
∫
f(y|β)f(β)dβ.

That integral can be considered as the average likelihood of draws from
the prior. Empirical Bayes is called the procedure in which the parameters
estimation is performed under the condition of the log likelihood max-
imisation. In order to evaluate the integral a Laplace approximation is
performed

Vτ (λ) ≈ l(β̂)− β̂Sλβ2φ − log|Sλ/φ|2 − log|X
TWX/φ+ Sλ/φ|

2 +M

2 log(2π),
(3.13)

where l is the log likelihood, W is the diagonal matrix of full Newton
weights at convergence of the PIRLS iteration, M is the dimension of the
null space of Sλ and |A|+ denotes the product of non-zero eigenvalues of
A.
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The frequentist marginal likelihood can also be used, in which the fixed
effects/unpenalised components of the model are not integrated out of the
likelihood. This will lead ultimately to smoother models on the grounds
that the frequentist marginal likelihood tends to underestimate variance
components and smoothing parameters can be thought of as precision pa-
rameters.

3.3 Estimation of smoothing parameters
The smoothing parameter estimation can be computationally intensive on
the grounds that the simultaneous maintenance of efficiency and stability
is quite difficult. The strategies that come into practice follow.

1. The direct optimisation of the marginal likelihood criterion. An outer
iteration to optimise the smoothing parameters will be required. Ev-
ery set of smoothing parameters tried by the outer iteration will re-
quire an inner PIRLS iteration to specify the model coefficient es-
timates for that trial. The implementation of Newton’s method for
maximum reliability of the outer iteration is a must.

2. Apply the Gaussian additive model version of the chosen smoothing
parameter selection technique to the working penalised linear model
fitted at each iteration of PIRLS of β estimation given λ. The Central
Limit Theorem is a good justification for the application of REML.

3. A simple update formula could be good; the generalised Fellner-Schall
method, to update the smoothing parameters at every step of the
PIRLS iteration. This optimises the Laplace approximate REML of
the method

3.4 The generalised Fellner-Schall method
The generalised Fellner-Schall method is the simplest to implement; simple
explicit formulae are obtained for updating the smoothing parameters in
order to increase the Laplace approximate REML score of the model. The
method’s simplicity allows for variations of it being applied to GAM. Use of
the method with smooth interaction terms was only possible using the ten-
sor product smooths as shown in Wood (2017, p. 235). These limitations
are removed by the method generalisation (Wood and Fasiolo, 2017).

The log restricted marginal likelihood of the Gaussian additive model
is

lr(λ) = −||y −Xβλ||
2 + β̂TλSλβ̂λ

2σ2 + log|Sλ/σ
2|

2 − log|X
TX/σ2 + Sλ/σ2|

2 +c,

where βλ = argmaxβfλ(y,β)for a given λ. Given that ∂(||y−Xβ||2 +
βTSλβ)/∂β|β̂λ= 0 it is

∂lr
∂λj

= tr(S−λSj)/2− tr{(XTX + Sλ)−1Sj}/2− β̂
T

λSjβ̂λ/2σ2.
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The Theorem presented in the end of the section entails that tr(S−λSj)−
tr{XTX+Sλ)−1Sj} is non-negative, while β̂

T

λSjβ̂λ is non-negative by the
positive semi-definiteness of Sj. The ∂lr

∂λj
will be negative if

tr(S−1
λ Sj)− tr{(XTX + Sλ)−1Sj} < β̂

T

λSjβ̂λ,

pointing that λj should better be decreased. If the inequality is reversed,
then ∂lr

∂λj
is positive indicating that λj should be increased. In case the

inequality becomes equality then λj should not be modified. An update
meeting the above requirements is

λ∗j = σ2 tr(S−λSj)− tr{(XTX + Sλ)−1Sj}
β̂
T

λSjβ̂λ

λj, (3.14)

with λ∗j set to some predefined upper limit if β̂TλSjβ̂λ is quite close to zero
that the limit would otherwise be exceeded.

Let B be a positive definite matrix and Sλ be a positive semi-definite
matrix parameterised by λ and with a null space that is independent of
the value of λ. Let positive semi-definite matrix Sj denote the derivative
of Sλ with respect to λj. Then tr(S−λSλ)− tr{(B + Sλ)−1Sj} > 0.

3.5 Initial smoothing parameter choices
Even though the smoothing parameter estimation methods are numerically
robust, it is of prime importance to choose a good starting point. The
effective degrees of freedom of each smooth will be between its minimum
and maximum possible values and the model coefficients will be sensitive
to small scale modifications in the log smoothing parameters. Hence, the
determination of the parameter update is based on the local derivative
information.

This can be easily accomplished by demanding the leading diagonal
elements of XTWX and Sλ to be roughly balanced. If s denotes the
non-zero elements of diag(Sj) and d denotes the elements of the matrix
diag(XTWX); the selection of λj is done in a fashion that mean(d/(d+
λjs)) ≈ 0.4. For models that can be estimated by PIRLS, the starting
estimate of W is used. In the general case, an initial estimate of the
diagonal Hessian matrix of the log likelihood is replaced by diag(XTWX).

3.6 AIC and smoothing parameters
A significant part of the model selection process is considered to be the es-
timation of the smoothing parameters. Nonetheless, smoothing parameter
selection is quite useful when it comes to comparing models that are not
nested. The AIC is broadly used in model selection, but its application
should take into account an additional care when it comes to containing
random effects and smoothers. The two approaches follow.
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1. Marginal AIC is related to the (frequentist) marginal likelihood of the
model; the likelihood obtained by treating all penalised coefficients
as random effects and integrating them out of the joint density of the
data and random effects. Then the number of coefficients to use is
the number of fixed effects and the number of variance and smoothing
parameters as well.

2. Conditional AIC is backed on the likelihood of all the coefficients
at their maximum penalised likelihood estimates. The number of
coefficients in the penalty has to be determined from the estimate
of the effective number of parameters as to take into account the
coefficient penalisation.

The two approaches have a different perspective for the smooths. For
the marginal likelihood the smooth is treated as a frequentist random ef-
fect; drawn from its marginal/prior distribution on each date replication.
The smooths are quite often seen by statistical modellers as fixed effects,
instead. That latter view is well aligned with the philosophy of conditional
AIC.

An issue with the marginal AIC approach is that the frequentist marginal
likelihood underestimates the variance components. The procedure is bi-
ased towards simpler models making the AIC to reflect that bias. An
alternative would be to use the REML in the AIC computation but it is
comparable between models with the same structure of fixed effects so that
it cannot be used to compare models with or without smooths.

The conservative approach to conditional AIC which accounts for the
effective degrees of freedom from section 3.1.2 in the AIC penalty term
leads to an AIC extremely anti-conservative; in the random effects context
the AIC can select a model which includes a random effect that is not
present in the true model. Hastie and Tibshirani have shown that there
is an issue with a neglect in the smoothing parameter uncertainty in τ .
Numerous corrections have been proposed to deal with this issue (Greven
and Kneib (2010); Yu and Yau (2012); Saefken et al. (2014) ) but in this
dissertation the technique of Wood et al. (2016) is followed; general enough
to apply to a wide spectrum of models particularly the ones analysed later
on.

The main idea is to calculate a first order correction to the posterior
distribution for the model coefficients, taking into account the smoothing
parameter uncertainty. Hence, the penalty term in the AIC is expressed
from the Bayesian covariance matrix of the coefficients. By substituting
the corrected covariance matrix into the AIC penalty returns the corrected
version of τ .

3.7 Hypothesis Testing
An alternative approach to model selection is considered to be hypothesis
testing, particularly when it comes to selecting simpler models in favour
of more complex ones. The p-values for the parametric model effects can
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be easily computed in the same way as they would be for the unpenalised
model. Let the null hypothesis be H0 : βj = 0 where βj is a subvector
of β containing only fixed effects coefficients. The smooths are treated as
random effects and the frequentist covariance matrix for β̂j can be read
from the Bayesian covariance matrix for β (Wood, 2017, see sections 3.4.3
and 2.4.2, p. 151 and 80). Let V βj be the block of V β corresponding to
βj. For the more general case it is

β̂
T

j V
−1
βj
β̂j/pj ∼ Fpj ,n−p,

if there is a scale parameter estimate involved,

β̂
T

j V
−1
βj
β̂j/pj ∼ χ2

pj
,

where p and pj are the dimensions of β and βj, respectively. The
more general linear hypothesis can be tested; H0 : Cβj = d by replacing
β̂
T

j V
−1
βj
β̂j by (Cβ̂j − d)T (CVβjCT )−1(Cβ̂j − d) in the above distribu-

tional results. For the single parameter case, the test results can be re-
written as exactly equivalent tests using tn−p or N(0, 1) as the baseline
distributions.

When it comes to the penalised terms in a model, the computation
of the p-value becomes more difficult due to the effect of the penalisation
term. Test statistics can be implemented for the parametric terms, but
there are two main issues. The first issue is that the penalisation may
affect the V βj . In such a case a generalised inverse can be applied and
the reference distribution can be modified accordingly. When the V βj is
inverted then the components with low weight are up-weighted; the thing
is that many of these components are of low variance on the grounds that
they are heavily penalised and contribute almost nothing to the model. In
that way the power of the test statistic is diminished. In order to develop
more efficient procedures there are two main issues to consider distinctly;
smooth terms where the null space of the penalty is finite dimensional and
terms with no penalty null space.

3.7.1 Smooth terms and approximate p-values
Let the null hypothesis of interest be H0 : fj(x) = 0 for all x in the range of
interest. The main objective is to test whether the function fj is essentially
needed in a model or not. The good interval properties rest on considering
coverage across the whole interval. It is reasonable to create a test statistic
backing on the whole interval.

Let f j be the vector of fj(x) evaluated at the observed covariate values.
Let X̃ be such that f j = X̃β. Well calibrated confidence intervals for f j
can be obtained if the approximate result to begin with is β̂ ∼ N(β,V β),
where V βj is the Bayesian covariance matrix for β so that approximately
f̂ j ∼ N(f j,V f j), where V f j = X̃V βX̃

T . The good calibration of the
confidence interval relies on the behaviour of the smoothing bias when
averaged across the function implying that a test statistic for fj also across
the function evaluation of fj. To exemplify,
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Tr = f̂Tj V
r−
f jf̂j ,

where V r−
f j is a rank r pseudo-inverse of V f j. An emerging issue is the

selection of the rank of r. The maximum rank of V f j is pj; the number
of coefficients of fj. The rank r cannot exceed pj, but if it is set r = pj
then the power becomes poor, since the very components of fj which are
the most heavily penalised to zero are those most heavily up-weighted in
the statistic, despite being the components for which the data do not carry
enough information. A way to select r is to consider the number of coeffi-
cients required to best approximate the penalised estimate f̂ by deploying
an unpenalised estimate. A first order correction for the approximation of
the penalised estimate is considered as straightforward on the grounds that
the unpenalised estimate has no smoothing bias. Henceforth, the approxi-
mately optimal r is the τ1 version of the term-specific distribution EDF as
shown in the section 6.1.2 in Wood (2013), §2.2.

The choice of r ascertains that the most heavily penalised components
of fj are excluded from the test statistic. However, the rank might not be
integer so rounding it up would be reasonable. The issue that arises in such
a case is that by rounding down to the dimension of the penalty null space
results in significant information loss. Imagine a weakly nonlinear fj(x)
without linear trend component; modelled by a cubic regression spline. In
case the effective degrees of freedom are 1.45 we would round to r = 1, but
due to the absence of linear trend the function cannot be distinguished from
zero. An easy fix would be to round up the effective degrees of freedom.
To exemplify, rounding to r = 2 would result in a test statistic in which a
nearly zero component of fj had an utterly disproportionate influence on
the test statistic which in turn leads to poor performance.

A modification of the test statistic would be essential to avoid these
rounding issues; r can be set to the un-rounded EDF of fj, while behaving
exactly like the original test statistic for integer r and having similar prop-
erties whether r is integer or not. Under the null distribution, Tr follows
χ2 distribution, if r is integer; E(Tr) = r and V ar(Tr) = 2r.

Let k denote the integer part of r rounded down, ν = r − k and ρ =
{ν(1−ν)/2}1/2 and suppose that the columns of U contain the eigenvectors
of V f j corresponding to its non-zero eigenvalues Λi. The desired properties
of Tr are obtained by setting

V f
r−
j = U



λ−1
1

. . .
λ−1
k−2

B
0

U
T , (3.15)

where B = Λ̃B̃Λ̃,

Λ̃ =
[
λ
−1/2
k−1 0
0 λ

−1/2
k

]
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and

B̃ =
[
1 ρ
ρ ν

]
.

If ν1 = {ν + 1 + (1− ν2)1/2}/2 and ν2 = ν + 1− ν1 (the eigenvalues of
B̃), it is

Tr ∼ χ2
k−2 + ν1χ

2
1 + ν2χ

2
1, (3.16)

under H0, hence Tr ∼ χ2
r if r is integer.

The c.d.f. of the distribution in (3.16) can be calculated by the Davies
method (Davies, 1980), or approximated by using a Gamma(r/2, 2) dis-
tribution, which can be smoothed in the upper tail by employing the ap-
proximation of Liu et al. (2009). Once a scale parameter is estimated then
the p-value is calculated as p = pr(χ2

k−2 + ν1χ
2
1 + ν2χ

2
1 > trχ

2
k/k) where

k is the residual degrees of freedom used to compute the scale estimate,
and tr is the observed Tr. An approximate distribution of Tr this can be
cheaply evaluated by quadrature. The Davies method (1980) can be used
to compute exactly p = pr(χ2

k−2 + ν1χ
2
1 + ν2χ

2
1 − trχ2

k/k > 0).
There is an ambiguity in the definition of Tr, on the grounds that B is

not diagonal and eigenvectors are only unique up to a change of sign. Even
though the null distributional outcome holds for either version, their actual
arithmetic values are slightly different. An easy manner to overcome this
problem is proposed in Wood (2017), who suggested averaging them and
computing the p-values.

3.7.2 Parametric term test against a smooth alterna-
tive

It is of interest to test whether a smooth is necessary, or if the parametric
terms in the null space of the smooth suffice. To elaborate, it is investigated
whether a cubic spline is needed or a straight line is enough. A way to deal
with it is to parameterise the smooth so that the basis for functions in the
null space of the penalty is distinguished from the basis for the penalty
range space. The null space terms can be included as simple parametric
effects.

3.7.3 Approximated generalised likelihood ratio tests
It is quite common to try comparing GAMs using a generalised likelihood
ratio test. One way is to apply the frequentist marginal likelihood tak-
ing into account the number of fixed effects in addition to the number of
smoothing and variance terms as to derive the needed degrees of freedom.
Another fashion is to use the likelihood coupled with the effective degrees
of freedom. In case of random effects, none way yields a result which is
owed to the fact that in the marginal case the null is restricting the vari-
ance parameters to the edge of the feasible parameter space, and in the
conditional case the effective degrees of freedom resemble the number of
unpenalised coefficients required to approximate the penalised model.
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When it comes to smooth parameters, marginal likelihood tends to be
biased towards slightly over-smooth estimates; inflates the acceptance rate
of null models. On the contrary, the conditional manner favours the larger
alternative model unless the smoothing parameter uncertainty is accounted
for. The use of GLRT is justified with respect to approximating a pe-
nalised model by an unpenalised model, with a number of coefficients for
each smooth given by the effective degrees of freedom for every smooth. In
case that a particular approximation is considered to be a good one, the
distribution of the log likelihood of each penalised model and of their differ-
ence should be quite approximated by the equivalents for the unpenalised
approximations. Therefore, for comparing a null model with coefficients β̂0
to a larger model with coefficients β̂1, the following approximation can be
deployed under the null hypothesis

λ = 2{l(β̂1)− l(β̂0)} ∼ χ2
EDF1−EDF0 .

The penalised model approximation is the best possible one if the pe-
nalised model is bias corrected. Under the null model, the bias correc-
tions of the null and alternative models should be cancelled approximately.
To account for smoothing parameter uncertainty an EDF correction is de-
ployed. It requires that REML or ML for smoothing parameter estimation.

If the GLTR is operating quite well, then the p-values have to be uni-
formly distributed on the unit interval. There are four computation meth-
ods deployed.

1. GCV smoothing parameter selection with the effective degrees of free-
dom given by τ from 6.1.2 in Wood (2017).

2. GCV smoothing parameter selection with the effective degrees of free-
dom given by τ1 from 6.1.2 in Wood (2017).

3. REML smoothing parameter estimation and τ for the EDF.

4. REML smoothing parameter estimation and τ for the EDF with τ1
corrected for smoothing parameter uncertainty, section 6.11 in Wood
(2017).

As for comparing models with different random effect structure, the
test fails in providing a reliable model comparison. As far as other model
comparisons are concerned, the test provides a reasonable approximation
given the smoothing parameter uncertainty correction is applied; the use
of REML or ML smoothing parameter selection is essential.



Chapter 4

The GAMs for Location, Scale
and Shape

In this chapter a general class of univariate regression models; the GAM,
is developed, studied from the perspective of parameterising location, scale
and shape (GAMLSS), in which case the exponential family assumption is
loosened and replaced by a general distribution family. The systematic part
of the model is expanded to permit the mean and the model parameters of
the conditional distribution of y to be modelled as parametric and/or addi-
tive nonparametric (smooth) functions of the explanatory variables and/or
random effect terms. The GAMLSS model fitting is accomplished by either
one of two different algorithmic procedures. The RS algorithm relies on the
algorithm that was used for the fitting of the mean and dispersion additive
models as proposed in Rigby and Stasinopoulos (1996), while the second
algorithm(CG) deployed is based on the Cole and Green (1992) algorithm.

4.1 The GAM for Location, Scale and Shape

4.1.1 Model Definition

The p parameters, θT = (θ1, . . . , θp), of a population probability (density)
function f(y|θ) are modelled by deploying additive models. The model as-
sumption is, for i = 1, . . . , n, observations yi are independent conditional on
θi, with probability (density) function f(yi|θi), where θiT = (θi1, . . . , θip) is
a vector of p parameters related to the independent variables and random
effects; covariates are stochastic or the observed values depend on their
past values.

Let yT = (y1, . . . , yn) be the vector of the response variable observa-
tions. On top of that, for k = 1, 2, . . . , p let gk(·) be a known monotonic
link function connecting θk to the explanatory variables and random effects
through an additive model given by

gk(θk) = ηk = Xkβk +
Jk∑
j=1
Zjkγjk, (4.1)

where θk and ηk are vectors of length n, Xk is a known design matrix
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of order n × J ′
k, Zjk is a fixed known n × qjk design matrix and γjk; qjk-

dimensional random variable, for j = 1, 2, . . . , Jk combined into a single
vector γk with a single design matrix Zk; the (4.1) is selected because it
is suited to the backfitting algorithm (Rigby and Stasinopoulos, 2005, see
Appendix B) and makes easy the combinations of different types of random
effects terms to be included in the model.

For k = 1, 2, . . . , p, Jk = 0 then the model (4.1) takes its reduced full-
parametric form

gk(θk) = ηk = Xkβk. (4.2)
If Xjk = In and γjk = hjk = hjk(xjk) for every combination of j and

k in (4.1) this yields

gk(θk) = ηk = Xkβk +
Jk∑
j=1

hjk(xjk), (4.3)

where xjk, for j = 1, . . . , Jk, and k = 1, . . . , p are vectors of length n.
The hjk function is an unknown function of the explanatory Xjk and
hjk = hjk(xjk) is the vector which evaluates the hjk at xjk. The model
in (4.3) is called the semi-parametric GAMLSS model. The (4.3) model is
a special case of (4.1). If Zjk = In and γjk = hjk = hjk(xjk) for specific
combinations of j and k in (4.1) model, the final model includes parametric,
non-parametric and random-effect terms.

The first two population parameters θ1 and θ2 in (4.1) model are the
location and scale parameters.

For a plethora of families of population distributions a maximum of two
shape parameters ν(= θ3) and τ (= θ4) suffice, returning the model

g1(µ) = η1 = X1β1 +∑J1
j=1Zj1γj1

g2(σ) = η2 = X2β2 +∑J2
j=1Zj2γj2

g3(ν) = η3 = X3β3 +∑J3
j=1Zj3γj3

g4(τ ) = η4 = X4β4 +∑J4
j=1Zj4γj4

(4.4)

The (4.1) GAMLSS model is more general than the GLM, and GAM
due to the fact that the distribution of the response variable is expanded
over the exponential distribution family and all of the model parameters
are modelled in terms of fixed and random effects.

4.1.2 Model Estimation
Essential to the manner that additive components are fitted within the
GAMLSS perspective is the backfitting algorithm and the fact that quadratic
penalties in the likelihood stem from the normality assumption of the ran-
dom effect in the linear predictor. The estimation makes use of smoothing
matrices within a backfitting algorithm.

In model (4.1) assume that the γjk have independent normal (prior) dis-
tributions with γjk ∼ Nqjk(0,G−jk), where G−jk is the (generalised) inverse
of a qjk × qjk symmetric matrix Gjk = Gjk(λjk); it depends on a vector of
λjk, and if Gjk is singular then γjk is comprehended to have an improper
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prior density function proportional to exp(−1
2γ

T
jkGjkγjk). For annotation

simplicity, it is referred to Gjk instead of Gjk(λjk) from now on.
The posterior mode estimation (or maximum a posteriori; (MAP) esti-

mation) for the parameter vectors βk and the random effect components
γjk for j = 1, . . . , Jk and k = 1, . . . , p is shown to equal to the penalised
likelihood estimation (Rigby and Stasinopoulos, 2005). For fixed λjk the
βk and the γjk are estimated under the GAMLSS framework by maximising
a penalised likelihood estimation function lp with the formula

lp = l − 1
2

p∑
k=1

J∑
j=1

kγ
T
jkGjkγjk, (4.5)

where l = ∑n
i=1 log{(f(yi|θi)} is the log-likelihood function of the given

data θi for i = 1, . . . , n. This is equivalent to the maximisation of the
extended or hierarchical likelihood defined by

lh = lp + 1
2

p∑
k=1

J∑
j=1

k{log|Gjk − qjklog(2π)}

((Pawitan, 2001, p. 429), and Lee and Nelder (1996)).
The maximisation of lp is accomplished by the deployment of CG algo-

rithm (Rigby and Stasinopoulos, 2005, Appendix C), which in turn leads
to the shrinking (smoothing) matrix Sjk applied to partial residuals εjk to
update the estimate of the additive predictor Zjkγjk within a backfitting
algorithm, given by

Sjk = Zjk(ZT
jkW kkZjk +Gjk)−1ZjkW kk, (4.6)

for j = 1, . . . , Jk and k = 1, . . . , p, where W kk is a diagonal matrix of
iterative weights. Different forms of the matrices Zjk and Gjk correspond
to different alikes of additive terms. When it comes to random effect terms,
Gjk is a simple and/or low order matrix, while for a cubic smoothing spline
γjk = hjk, Zjk = In and Gjk = λjkKjk, whereKkk is a structured matrix.
In any case, the update of the term Zjkγjk is made easy.

The λ hyperparameters can be either fixed or estimated; four alternative
manners are suggested to avoid integrating out the random effect terms in
section 4.5.4.

4.2 The Linear Predictor

4.2.1 Parametric terms
In the model (4.1) the linear predictors ηk, k = 1, . . . , p account for the
parametric term Xkβk and for the additive components Zjkγjk, j =
1, . . . , Jk. The parametric component contains linear and interaction ef-
fect terms for the independent variables of the model and factors, polyno-
mials, fractional polynomials (Royston and Altman, 1994) and piecewise
polynomials for variables (Smith (1979), Stasinopoulos and Rigby (1992)).

The non-linear terms included in the GAMLSS (4.1) model are esti-
mated by either one of the following two methods:
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1. the profile likelihood method

2. the derivative method

In the first method, the estimation of the non-linear parameters is ac-
complished by maximising the non-linear terms profile likelihood function.
In the derivative method, the derivatives of the predictor ηk in regards of
the non-linear terms are contained in the design matrix Xk.

4.2.2 Additive Terms
The additive components Zjkγjk in (4.1) model explain a variety of terms;
random effect terms smoothing and time series terms, as well. For annota-
tion simplicity, the indices j and k in vectors and matrices where needed.

Cubic Smoothing Spline Components

It is assumed that the functions h(t) are arbitrary twice continuously differ-
entiable functions with respect to the cubic smoothing splines terms, hence
the study goes on with the maximisation of the penalised log-likelihood,
given by l subject to penalty terms of λ

∫∞
−∞ h

′′(t)2dt. From Reinsch (1967),
the functions h(t) are all natural cubic splines, therefore they can all be ex-
pressed as linear combinations of their natural cubic spline basis functions
Bi(t) for i = 1, . . . , n. Let h = h(x) be a vector which contains the values
of the function h(t) evaluated at x. LetN be an n×n non-singular matrix
with columns equal to the n-vectors of evaluations of functions Bi(t), for
i = 1, . . . , n at x. Hence, h can be written with the help of the coefficient
vector δ as a linear combination of the columns ofN by h = Nδ. Assume
Ω a n×n matrix of inner products of the second derivatives of the natural
cubic spline basis functions, with (r, s) given by

Ωrs =
∫
B′′r (t)B′′s (t)dt.

The penalty term is given by

Q(h) = λ
∫ ∞
−∞

h′′(t)2dt = λδTΩδ = λhTN−TΩN−1h = λhTKh,

where K = N−TΩN−1 is a known penalty matrix that relies solely on
the values of the explanatory vector x (Hastie and Tibshirani, 2017, Ch.
2).

The model can be written in the form of the random effects GAMLSS
(4.1) setting γ = h, Z = In, K = N−TΩN−1 and G = λK as to
h ∼ Nn(0, λ−1K−); an improper prior (Silverman, 1985). It results in
assuming complete prior uncertainty for higher order functions.

Parametric time series components and smoothness priors

Let an explanatory variable X have equally spaced observations xi, i =
1, . . . , n, ordered in the sequence x(1) < · · · < x(i) < · · · < x(n) defining
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an equidistant grid. Customarily, in a parametric driven time series term,
X stands for time units such as days, weeks, months or years. To begin
with, first and second order random walks; rw(1) and rw(2), are defined
respectively by h[x(i)] = h[x(i−1)]+ εi and h[x(i)] = 2h[x(i−1)]−h[x(i−2)]+ εi,
with independent errors, εi ∼ N(0, λ−1), for i > 1 and i > 2, respectively,
together with diffuse uniform priors for h[x(1)] for rw(1) and h[x(2)] for
rw(2). Let h = h(x)⇒ D1h ∼ Nn−1(0, λ−1I) and D2h ∼ Nn−2(0, λ−1I),
where D1 and D2 are first and second differences matrices, respectively.
The aforementioned terms can be easily included in the GAMLSS context
by setting Z = In and G = λK so that γ = h ∼ N(0, λ−1K−), where K
has the formK = DT

1D1 orK = DT
2D2 for rw(1) and rw(2), respectively.

Penalised Splines

In smoother functions with a number of basis functions less than the num-
ber of observations, but with their regression coefficients penalised, are
called penalised splines or P-splines. Eilers and Marx (1996) applied a set
of q B-spline basis functions in the explanatory X. They recommended
the application of a moderately large number of equally spaced knots at
which the spline segments connect to guarantee enough versatility in the
fitted curves. They imposed penalties on the B-spline basis function terms
γ to ensure ample smoothness of the fitted curves instead. On top of that,
Drγ ∼ Nn−r(0, λ−1I) was assumed with Dr be a (q− r)× q matrix giving
r-th differences of the q-dimensional vector γ. From the GAMLSS perspec-
tive, this equals to G = λK so that γ ∼ N(0, λ−1K−) whereK = DT

rDr.

Varying-coefficient components

Varying-coefficient models (Hastie and Tibshirani, 1993) permit the in-
teraction between smoothing additive terms and continuous variables or
factors. The incorporation to the GAMLSS framework can be easily per-
formed with the assistance of a smoothing matrix in the form of (4.6);
backfitting algorithm, but assuming that the values of R are distinct with
the diagonal matrix of iterative weights W multiplied by diag(r2

1, . . . , r
2
n)

and the residuals εi for i = 1, . . . , n.

Covariate random effect terms

Besag et al. (1991) and Besag and Higdon (1999) studied models for spatial
(covariate) random effects with singular multivatiate normal distributions,
while Breslow and Clayton (1993), Lee and Nelder (2001b) and Fahrmeir
and Lang (2001) entangled these covariate terms in the predictor of the
GLMMs. In model (4.1) the covariate terms can be included in the predic-
tor of one or more of the location, scale and shape parameters.

Specific random effect terms

A plethora of random effect terms in the predictors in model (4.1) can be
incorporated into, as the following:
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1. overdispersion term: let Z = In and γ ∼ Nn(0, λ−1In); provides an
overdispersion term for each observation in the predictor.

2. one-factor random effect term: in model (4.1) letZ be a design matrix
with elements zit = 1 if the i-th observation belongs to the t-th factor
level, otherwise zit = 0 with γ ∼ Nq(0, λ−1Iq); provides on one factor
random effect model

3. correlated random effect term: in (4.1) model correlated structure is
applicable to the random effects by an appropriate selection of the
matrix G due to the fact that γ ∼ N(0,G−)

4.2.3 Terms Combinations
A combination of both the parametric and additive terms can be proposed
to introduce a more complex model.

Random effects combinations

Two-level longitudinal repeated measurement design Assume a
two-level design matrix with subjects as the first level in which yij, i =
1, . . . , nj, are repeated measurements at the second level on subject j, j =
1, . . . , J . Let η be a vector of predictor values, divided into values for each
subject and Zj be an n× qj design matrix with non-zero values for the nj
rows corresponding to j subject and assume that the γj are independent
and normally distributed with distribution Nqj(0,G−1

j ), for j = 1, . . . , J .

Repeated measures with correlated random effect terms Set qj =
nj and Zj = Inj for every j. A suitable choice of the matrix Gj will enable
covariance or correlation structures for the random effects to be applied.

Random coefficient terms Set qj = q andGj = G for j = 1, . . . , J . Set
the non-zero submatrix of the design matrices Zj by using the covariate(s).
In return the specification of the random coefficient models is feasible.

Multilevel (nested) hierarchical model terms May each level of the
hierarchy be a one-factor random effect term as in section (4.2.2.6) point
(2).

Crossed random effect terms May each of the crossed factors be a
one-factor random effect term as in section (4.2.2.6) point (2).

Combinations of random effects and splines

There is a number of combinations; combining random coefficients and
cubic smoothing spline terms in the same covariate.
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Combinations of spline terms

The combination of cubic smoothing spline in different covariates returns
the additive model as introduced in Hastie and Tibshirani (2017).

4.3 Families of population distribution

4.3.1 Introduction
The population probability (density) function f(y|θ) in model (4.1) is left
general without any conditional distributional form of the response variable
y. The only restriction that the R implementation of a GAMLSS contains
for clarifying the distribution of y is that the f(y|θ) and its first derivatives
with respect to each of the parameters have to be computable. In the
following table, 4.1, a plethora of multiparametric distributions studied
are presented. The distributions mentioned above are used in a variety of
parameterisation forms. The notation shall be used

y ∼ D{g1(θ1) = t1, g2(θ2) = t2, . . . , gp(θp) = tp}

to identify uniquely a GAMLSS, where D stands for the response dis-
tribution function, (θ1, . . . , θp) are the parameters of D, (g1, . . . , gp) are the
link functions and (t1, . . . , tp) are the model formulae for the explanatory
terms and/or random effects in the predictors (η1, . . . , ηp), respectively.

z =


1
σν
{( y

µ
)ν − 1} ifν 6= 0

1
σ
log
(
y
µ

)
ifν = 0 (4.7)

The quantile residuals can be derived once the cumulative distribution
function is computed, centile estimates are accomplished given the inverse
CDF can be computed. It holds for the continuous distribution functions
in equation (4.7), which turn to simple standard distributions, while the
CDF and inverse CDF of the discrete can be numerically approximated.

In the GAMLSS framework, censoring can be easily incorporated. To
elaborate, consider that an observation is randomly right censored at value
y; its contribution is given by log{1 − F (y|θ)}, where F (y|θ) is the CDF
of y. Therefore, it is sensible to demand functions for computing F (y|θ)
and its first derivatives. By the same token, truncated distributions can be
easily embedded into the GAMLSS.

4.3.2 Specific Distributions
There are three- and four- parameter distribution families of continuous
distributions for y; defined by assuming that a transformed variable z has
a well-known distribution.

The Box-Cox normal family for y > 0, used by Cole and Green (1992);
BCN(µ, σ, ν) assumes that z ∼ N(0, 1) where
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Figure 4.1: Implemented GAMLSS distributions
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Cole and Green (1992) first modeled all three parameters of a distribu-
tion as non-parametric smooth functions of a single explanatory variable.

Lopatatzidis and Green (2000) reparameterised the generalised gamma
family for y > 0; denoted as GG(µ, σ, ν), assumes that z ∼ GA(1, σ2ν2)
where z = (y/µ)ν , ν > 0.

The power exponential family for −∞ < y <∞ used by Nelson (1991);
denoted by PE(µ, σ, ν), assumes that z ∼ GA(1, ν) where

from Nelson (1991).
The Student t-family for −∞ < y < ∞; denoted by TF (µ, σ, ν), as-

sumes that z has a standard normal t-distribution with ν degrees of free-
dom; z = y−µ

σ
.

The four parameter Box-Cox t-family for y > 0; denoted byBCT (µ, σ, ν, τ),
is defined by making the assumption that z has a standard t-distribution
with τ degrees of freedom, Rigby and Stasinopoulos (2004a).

The Box-Cox power exponential family for y > 0; denoted byBCPE(µ, σ, ν, τ),
is defined by making the assumption that z has a standard power expo-
nential distribution, Rigby and Stasinopoulos (2004b). This particular dis-
tribution can be pretty handy in modelling skewness with kurtosis in the
continuous data.

The Johnson-Su family for −∞ < y < ∞; denoted by JSU0(µ, σ, ν, τ)
(Johnson, 1949), is defined by making the assumption that z = ν+τsinh−1{(y−
µ)/σ} ∼ N(0, 1) .

4.4 The Algorithms
There are two fundamental algorithms for the maximisation of the pe-
nalised likelihood in (4.5); RS and CG (Rigby and Stasinopoulos, 2005,
Appendix B). The CG algorithm; generalisation of the Cole and Green
(1992) algorithm, uses the first, second and cross derivatives of the like-
lihood function f(y|θ) with θ parameters being information orthogonal;
the expected values of the cross-derivatives of the likelihood function are
0, for instance location and scale models and dispersion family models. In
that particular case, the RS algorithm; Rigby and Stasinopoulos (1996b),
for fitting mean and dispersion additive models is more appropriate. The
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parameters θ are fully information orthogonal explicitly for the negative-
binomial, gamma, inverse Gaussian, logistic and, normal distribution in
(4.7). On that note, the RS algorithm used has met great success in fitting
all the distributions in (4.7), even though it slowly converges occasionally.

The CG algorithm’s main objective is to maximise the penalised likeli-
hood function lp for fixed hyperparameters λ.

The major pros of these two algorithms are:

1. the modular fitting procedure; different model diagnostics for differ-
ent distributions

2. easy addition of extra distributions

3. easy addition of extra additive terms

4. easily identified initial values on the grounds that starting values for
the parameters θ are only required instead of the β parameters.

The algorithms have been shown to be stable and fast converging for
simple initial values for the θ parameters.

In essence, for a specific data set and model the penalised likelihood
can have multiple maxima. This can be easily examined by using different
initial values and has generally not been found to pose an issue in the
empirical application section mostly due to the large sample size.

4.5 Model Selection

4.5.1 Model Building
Let M = {D,G, T,λ} resemble the GAMLSS, where

1. D specifies the response distribution

2. G specifies the set of link functions (g1, . . . , gn) for parameters (θ1, . . . , θn)

3. T specifies the set of predictor terms (t1, . . . , tn) for predictors (η1, . . . , ηp)

4. λ specifies the hyperparameters set.

The GAMLSS model building process consists of comparing numerous
competing models for which a variety of components M = {D,G, T,λ}
combinations is tested.

Statistical inference about quantities of interest can be made either
conditionally on a final model or by averaging between selected models.
Inference based on a single model by conditioning is highly criticised by
Draper (1995) and Madigan and Raftery (1994) based on the argument that
it ignores model uncertainty and leads to underestimation of variables of
interest. Underestimation reduction can be reduced by averaging between
chosen models (Hjort and Claeskens, 2003).
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4.5.2 Model selection; inference and diagnostics
For parametric GAMLSS, each model M of the form (4.2) is assessed by
its global deviance; GD = −2l(θ̂) where l(θ̂) = ∑n

i=1 l(θ̂
i). Consider two

nested parametric modelsM1 andM2, with global deviances GD0 and GD1
and error degrees of freedom dfe0 and dfe1, respectively, can be compared
using the generalised likelihood ratio test statistic Λ = GD0 −GD1 which
follows an asymptotic χ2 distribution with d = dfe0 − dfe1 degrees of free-
dom, underM0. For every modelM the error degrees of freedom is defined
as dfe = n−∑p

k=1 dfθk .
As far as model comparison of non-nested GAMLSS models is con-

cerned, the generalised Akaike information criterion, GAIC, can be of use
to impose a penalty on overfitted models. It is obtained by adding to the
global deviance a penalty for each effective degree of freedom used in the
model. The model that scores the lowest GAIC is selected among the pro-
posed ones. The two widely known criteria; AIC and the Schwartz Bayesian
information criteria SBC are special cases of the GAIC. These two criteria
are asymptotically justified predicting the degree of fit in new data sets.
Applying GAIC allows for the specification of different penalties that can
be imposed based on modelling objectives.

The hyperparameters λ of GAMLSS models can be estimated with a
variety of techniques; see section 4.5.4. Random effect models can be com-
pared using their maximised profile marginal likelihood of λ (eliminating
fixed and random effects). On top of that, different fixed effects models can
be compared by using their approximate maximised marginal likelihood of
β evaluated at (β̂, γ̂) and lh conditional on chosen parameters.

In the case of testing for a specific fixed effect predictor parameter is
different from 0, a parametric χ2 test is used comparing the change in global
deviance Λ for parametric models; the change in approximate marginal
deviance (removing the random effects) for random effect models, once the
parameter is set to 0 with a χ2

1 critical value. The profile likelihood for
fixed effect model parameters is taken on the construction of confidence
intervals. Both the aforementioned test and the confidence intervals are
conditional on any hyperparameters being fixed at specific values.

An alternative manner to address this issue is to split the data set into

1. training

2. validation

3. test set

and involve them in the model fitting, selection and assessment proce-
dure respectively.

For each M , the residuals (normalised, randomised, quantile) are used
to check the adequacy of M ; the distribution component D. The resid-
uals are obtained from r̂i = Φ−1(ui), where Φ−1 is the inverse CDF of a
standard normal variate and ui = F (yi|θ̂i) if yi is an observation from a
continuous response, while ui is a random value from the uniform distribu-
tion on the interval [F (yi − 1|θ̂i), F (yi|θ̂

i)] for yi be an observation from a
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discrete integer response; F (y|θ) stands for the CDF. For a right-censored
continuous response ui is defines as random value uniformly distributed
from the interval [F (yi|θ̂

i), 1]. On that note, when randomisation is used,
several randomised sets of residuals (or a median set of them) should better
be analysed before a final decision with respect to the model M adequacy
is made. If the model is correct; quite close to the correct model, then the
residuals are normally distributed.

4.5.3 Posterior Mode Estimation for β and random
effects γ

For model (4.1) an empirical Bayesian argument is applied to derive MAP
and posterior mode estimation of βk and γjk given normal or improper
priors are assumed for random effects. It is shown that this equals to the
penalised likelihood maximisation lp. The components of a GAMLSS (4.1)
are

1. y the response vector of length n

2. X = (X1, . . . ,Xp) design matrices

3. βT = (βT1 , . . . ,βTp ) linear predictors

4. Z = (Z11, . . . ,ZJ11, . . . ,Z1p, . . . ,ZJpp) design matrices

5. γT = (γ11, . . . ,γJ11, . . . ,γ1p, . . . ,γJpp) random effects

6. λT = (λ11, . . . ,λJ11, . . . ,λ1p, . . . ,λJpp) hyperparameters

Let the joint distribution of all the components in model (4.1) be

f(y,β,γ,λ) = f(y|β,γ)f(γ|λ)f(λ)f(β), (4.8)
where f(y|β,γ) and f(γ|λ) are the conditional distributions for y and

γ and f(β) and f(λ) are appropriate priors for λ and β, respectively. X
and Z are fixed and known. Assume that the λ are fixed and consider a
constant improper prior for β, then the posterior distribution for β is

f(β, γ|y,λ) ∝ f(y|β,γ)f(γ|λ). (4.9)
Model (4.1) assumes independent yi for every i and let γjk have in-

dependent normal, possibly improper prior distribution; γjk ∼ N(0,G−jk)
therefore,

log{f(β, γ|y,λ)} = lp + c(y,λ),
where lp is given in (4.5) and c(y,λ) is a function of y and λ. Take

into account that for a GAMLSS, lp is equivalent to the h-likelihood of Lee
and Nelder (1996, 2001a,b).

Henceforth, lp is maximised over (β, γ) yielding posterior mode (or
MAP) estimation and for fixed hyperparameters λ, MAP estimation of
β,γ is equivalent to the penalised likelihood lp maximisation.
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4.5.4 Hyperparameter Estimation
The hyperparameter’s, λ, estimation can be performed within a classical
likelihood framework for random effects by maximising the marginal like-
lihood for (β,λ)

L(β, λ|γ) =
∫
f(y|β, γf(γ|λ)dγ.

The L(β, λ|γ) maximisation contains high dimensional integration so
any attempt will be computationally intensive. The maximum likelihood
estimator of β, in general, will not necessarily be the same as the respective
MAP estimator.

In restricted maximum likelihood estimation (REML) a constant prior
is assumed for β and both γ and β are integrated out of f(y, β, γ|λ) to
derive the marginal likelihood L(λ|y); maximised over λ.

From a fully Bayesian perspective, the inference for GAMLSS would be
solely derived by applying a Monte Carlo Markov Chain iterative procedure.

The following four less computationally intensive methods are consid-
ered for hyperparamters estimation of the GAMLSS model. A summation
of the methods is enclosed in the algorithm

1. Procedure 1: estimate the hyperparameters λ by one of the tech-
niques

(a) profile GAIC minimisation over λ
(b) profile generalised cross-validation criterion maximisation over

λ

(c) approximate marginal density maximisation for λ using Laplace
maximisation

(d) approximate marginal density maximisation for λ using an EM
algorithm

2. Procedure 2: deploy RS or CG algorithm for GAMLSS model to
derive the posterior mode or MAP estimates of (β, γ)

The methods are thoroughly examined below.

Profile GAIC minimisation over λ

Hastie and Tibshirani (2017) considered GAIC for hyperparameter esti-
mation in GAMs. A cubic smoothing spline h(x) is used to model the
dependence of a predictor on explanatory variable x. For a single smooth-
ing spline term, selection of λ may be accomplished by minimising GAIC.

For a model that contains p cubic smoothing splines in different ex-
planatory variables, the corresponding p smoothing hyperparameters λ =
(λ1, λ2, . . . , λp) can be jointly estimated by the minimisation of GAIC over
λ.

The GAIC criterion can be applied to estimate the hyperparameters λ
in the distribution of random effects. The degrees of freedom for random
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effect models are necessary. For a model with a single random effects term
can be calculated as the trace of random effect smoothers S; given by
equation (4.6). For smoothing terms when there are other terms in the
model ∑p

i=1 tr(S) is an approximation of the full model complexity degrees
of freedom.

Profile generalised cross-validation criterion maximisation over λ

The generalised cross-validation criterion was taken into account for hyper-
parameters estimation in GAMs. The criterion GAIC is replaced by the
generalised cross-validation criterion minimised over λ; the approximate
equivalence of generalised cross-validation and REML methods of estimat-
ing λ in smoothing spline models.

Approximate marginal density maximisation for λ using Laplace
maximisation

The dispersion component was estimated by Lee and Nelder (1996) using
a first-order approximation to the Cox and Reid (1987) profile likelihood
which in turn eliminates the nuisance parameters from the marginal likeli-
hood; adjusted profile h-likelihood.

From a Bayesian perspective; uniform improper priors for both β and
λ the posterior marginal of λ is given by

f(λ|y) =
∫ ∫ exp(lh)

f(y) dγdβ, (4.10)

where

lh = lh(β, γ) = log{f(y|β, γ)}+log{f(γ|λ)} = lp+
1
2

p∑
k=1

Jp∑
j=1
{log|Gjk|−qjklog(2π).

By applying a first order Laplace approximation to the integral (4.10)
it is

f(λ|y) ≈ exp(l̂h
f(y)

∣∣∣∣∣∣ D̂2π
∣∣∣∣∣∣
−1/2

, (4.11)

where l̂h = lh(β̂, γ̂)

D̂ = D(β̂, γ̂) = −
 ∂2lh
∂β∂βT

∂2lh
∂β∂γT

∂2lh
∂γ∂βT

∂2lh
∂γ∂γT

 , (4.12)

evaluated at β̂ = β̂(λ) and γ̂ = γ̂(λ). The λ estimation can be ac-
complished by maximising (4.11) over λ. Another approach would be to
consider a generalisation of REML estimation of λ, maximising an approx-
imate profile log-likelihood for λ; L(λ) obtained from replacing D(β̂, γ̂)
by the expected information Ĥ = H(β̂, γ̂),

l(λ) = l̂h −
1
2 log|Ĥ/2π|. (4.13)
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Approximate marginal density maximisation for λ using an EM
algorithm

The approximate EM algorithm is used (Fahrmeir et al. (2001, p 298-
303) and Diggle et al. (2002, p 172-175)), to maximise the marginal like-
lihood, L(λ), over λ ( or the posterior marginal distribution of λ for a
non-informative uniform prior).

During the E-step of the EM algorithm M(λ|λ̂) = E[log{f(y, β, γ|λ}]
is estimated; the expectation is over the posterior distribution of (β, γ)
given y and λ = λ̂, it is

M(λ|λ̂) = −1
2

p∑
k=1

Jk∑
j=1

(tr[Gjk{γ̂jkγ̂
T
jk + V̂ (γ̂jk)}]− log|Gjk|), (4.14)

where γ̂jk and V̂ (γ̂jk) are the posterior mode and curvature of γjk from
the MAP estimation (Rigby and Stasinopoulos, 2005, Appendix C) .

As for the M-step,M(λ|λ̂) is maximised over λ by a numerical maximi-
sation iterative procedure. If Gjk = Gk, for j = 1, . . . , Jk and k = 1, . . . , p
and the Gk are unconstrained positive definite symmetric matrices then
the equation (4.14) is maximised returning for k = 1, . . . , p,

Ĝk

−1 = 1
Jk

J∑
j=1

k{γ̂jkγ̂
T
jk + V̂ (γ̂jk)}. (4.15)
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Chapter 5

Empirical Analysis of
GAMLSS

In this chapter empirical analysis of data coming from the Fourth Dutch
Growth Study (Fredriks et al., 2000a,b), which is a cross-sectional study
that measures growth and development of the Dutch population between
the ages 0 and 21 years; height and BMI are measured among other vari-
ables for Dutch boys. The empirical study develops percentile regression
curves in the context of GAMLSS models aligned with the guidance of the
World Health Organization (Organization et al., 2006) for the percentile
values; (3,15,50,85,97). A statistical model is developed to predict and
explain the relationship between the Dutch boys age and their BMI devel-
opment.

5.1 Centile Estimation

Centile estimation is predominantly used in analysing age-related data of
human growth. The ordinary estimation of the centile curves pertains
both the response variable and the explanatory ones. The 100p centile of
a continuous random variable Y is the value yp, so that Pr(Y ≤ yp) = p
hence yp = F−1(p) and yp is the inverse cdf of Y over p. By varying values
of x, a 100p centile curve of yp(x) against x is obtained. Centile curves can
be calculated for any value of p; in this study the WHO guidance is used
(3,15,50,85,97).

On top of that, z−score is given by the values of y and x is set as
z = Φ−1[FY |x(y)], where Φ−1 stands for the inverse cdf of the standard
normal distribution. For the values of y and x used in the estimation of a
statistical model, the z-scores are the residuals of a GAMLSS fitted model.

For the creation of centile curves for the response Y against x are based
on non-parametric methods on the grounds that parametric methods; poly-
nomials or even fractional polynomials (Royston and Altman, 1994) do not
allow the needed flexibility to capture the characteristics of the data. The
smoothing degree in smoothing methods relies on the smoothing parame-
ters and differs for the data set studied each time. Several techniques have
been recommended which are classified as follows:
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• Subjective methods: the use of prior knowledge and experience cou-
pled with general guidelines to determine the smoothing degree and
create the centile curves.

• Automatic methods: in such a procedure a criterion is applied to
select the smoothing parameters; AIC or any generalisation of it.

• Diagnostics methods: diagnostics as the Buuren and Fredriks (2001)
worm plot or Q-statistics of Royston andWright (2000) can be used to
determine the amount of smoothing. Poor worm plots or Q-statistics
may indicate the need to decrease the values of the smoothing pa-
rameters (Rigby and Stasinopoulos, 2006).

In essence, a combination of the aforementioned procedures is a good
practice. The most popular methodology for centile references for individ-
uals from a population constitutes in two different models:

• the non-parametric quantile regression (Koenker, 2005; Koenker and
Bassett Jr, 1978; Koenker and Ng, 2005; Ng and Maechler, 2007).

• the parametric LMS method developed by Cole (1988); Cole and
Green (1992), and its extensions, Wright and Royston (1997); Rigby
and Stasinopoulos (2004b, 2006).

The LMS method was performed so it will be briefly presented in the
following section.

5.2 The LMS method
The LMS method by Cole (1988); Cole and Green (1992) and its exten-
sions was created with the aim of building centile curves for the response
variable Y against a single explanatory variable x. The method assumes
that the response has a specific distribution, centile curves for every p can
be obtained simultaneously. The estimation of yp(x) can be easily done
using the LMS method.

The LMS approach can be integrated into the GAMLSS perspective by
assuming a Box-Cox Cole and Green (BCCG) distribution for the response
variable; appropriate for positively or negatively skewed data with Y >
0. Let the positive random variable be defined through the transformed
random variable Z given by

Z =


1
σν

[(
Y
µ

)ν
− 1

]
, if ν 6= 0,

1
σ
log
(
Y
µ

)
, if ν = 0,

(5.1)

where µ > 0, σ > 0 , −∞ < ν < ∞ and Z ∼ truncated N(0, 1). As a
matter of fact, the condition 0 < Y < ∞ leads to − 1

σν
< Z < ∞ if ν > 0

and −∞ < Z < − 1
σν

for ν < 0 which requires the truncated standard
normal of Z.
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The extension of the LMS method was orchestrated by Rigby and
Stasinopoulos (2004b, 2006) it models the skewness in the data, by in-
troducing the Box-Cox power exponential distribution (BCPE) and the
Box-Cox t distribution (BCT) for the response variable and named the
output LMSP and LMST, respectively. The difference between the as-
sumed distributions is that BCPE assumes for the transformed variable Z
a truncated power exponential distribution, while for BCT assumes a trun-
cated t-distribution. In GAMLSS framework the BCCG, BCPE and BCT
assumptions are feasible. The GAMLSS model in the centile estimation of
Y for x is

Y ∼D(µ, σ, ν, τ)
g1(µ) = s1(u)
g2(σ) = s2(u)
g1(ν) = s3(u)
g1(τ) = s4(u)

u = xξ

(5.2)

where D stands for the BCCG, BCPE or BCT distribution, with µ,
σ, ν and τ be the approximate median, approximate coefficient of varia-
tion, skewness and kurtosis of the distribution, respectively. The functions
g(·) represent the non-parametric smoothing functions and ξ is the power
exponent of x.

The power transformation of x is needed when the response has an early
or late effect on growth. On that occasion, the power transformation can
extend the x scale, improving the fit of the smooth curve.

The link function g(·) is performed in a fashion to ensure that the
parameters are appropriately defined. The original formulation of LMS by
Cole and Green (1992) uses the identity links for every parameter of BCCG,
while the first formulation of BCCG, BCPE, and BCt distributions have an
identity link function for µ by default. The default links for σ, ν, τ are log,
identity and log, respectively. During R computation all the distributions
BCCGo, BCPEo and BCTo take identity link function for µ to ensure it
remains positive, but they remain the same for the rest of the parameters.

The non-parametric smoothing functions s(·) most often require the
specification of a smoothing parameter λ or the equivalent effective degrees
of freedom; Hastie and Tibshirani (2017); Wood (2017).

5.3 Model Selection for the LMS approach
The selection of link functions for µ, σ, ν, τ is not problematic. As a matter
of fact, the log link is preferred for σ and τ ; to ensure the parameter values
remain positive, the identity link is assumed for ν; −∞ < ν < ∞, and
for µ is opted the log link under the distribution assumption of BCCGo,
BCPEo and BCTo but the identity link would do in most cases; BCCG,
BCPE and BCT. The link function that is finally the one to be selected
is that particular link function for which the GAIC(k) is minimised, for a
specific penalty value of k.
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Given a chosen distribution in (13.2) and its chosen link functions, the
model specification comes down to determining the effective degrees of
freedom for modelling µ, σ.ν, τ and ξ in the power transformation of x.
Therefore, five hyperparameters need to be specified (dfµ, dfσ, dfν , dfτ , ξ).

The three main approaches with respect to hypereparameters estima-
tion, that have been considered in the literature are presented below.

• Method 1 : The minimisation of GAIC(k) for a specific penalty
value k over the five hyperparameters. The deployment of an auto-
matic procedure relying on arithmetic optimisation for the minimi-
sation of GAIC(k) was recommended by Rigby and Stasinopoulos
(2006). The BCT distribution was used and different fixed values of
the penalty term k; k=2(AIC) and k=log(n)(SBC). In the first ap-
proach, the model overfitted the data yielding erratic cenitle curves
in contrast to the SBC perspective which underfitted the data lead-
ing to oversmooth; biased, centile curves and unsatisfactory residual
diagnostics. In the end, k = 3 gave a decent comprise between these
and returned smooth growth curves which tuned the degree of fitting.

• Method 2 : In this method the minimisation over the five hyper-
parameters of the validation global deviance(VDEV) is the objective
(Stasinopoulos et al., 2007). The data set is split randomly into the
training set; 60% of the data, and the validation set; 40% of the data.
For each and every single set of hyperparameters the model (5.2) is
fitted to the training data and the resulting validation global deviance
V DEV = −2l̃is calculated, where l̃ is the log-likelihood of the valida-
tion set. VDEV is in turn minimised over the five hyperparameters.
That particular method was assessed to moderately fit the data.

• Method 3 : This is a two-step approach. First, in case a transfor-
mation on the x-axis is necessary then for a normal distribution model
with g(µ) = s1(xξ) and constant σ; GAIC(k) is minimised over ξ for
fixed penalty value k. Given the estimated ξ the second step involves
the model (5.2) to be fitted for the distribution D and calculate the
four degrees of freedom hyperparameters (dfµ, dfσ, dfν , dfτ ) from a lo-
cal ML procedure;see Sections 3.4 and 9.4 of Rigby and Stasinopoulos
(2014); Stasinopoulos et al. (2017). The distribution for which the
criterion GAIC(k) is minimised is the chosen. It is considered as the
fastest of the methods and returns a model with similar centiles to
the two latter methods.

5.4 The Dutch Boys BMI data
The data analysed are from the Fourth Dutch Growth Study (Fredriks
et al., 2000a,b). The BMI (y) is the variable of interest modelled by the
age (x) of the boys. The objective is to obtain smooth reference centile
curves for BMI against age.

In Figure 5.1 the BMI against age is plotted for the full data and the
training data set in (a) and (b), respectively. Taking a closer look at the
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data sets, it is shown that there are intervals of ages in which the observa-
tions are more concentrated indicating potential positive skewness of BMI
distribution, Figure 5.2, given age as well as a non-linear relationship be-
tween the location (and possibly the scale, skewness and kurtosis) of BMI
with age (Rigby and Stasinopoulos, 2005). In a former study of Cole et al.
(1998) in the Dutch girls BMI, similar problems were addressed (positive
data skewness), using the LMS method showed significant kurtosis in the
residuals after model fit drawing the conclusion that kurtosis was not ad-
equately faced. A power transformation of age to X = ageξ contributes
drastically to the model fit (Rigby and Stasinopoulos, 2004a).

Therefore, given X = x the dependent variable BMI is modelled using
a Box-Cox t-distribution; BCT(µ, σ, ν, τ). The arrival to that distribu-
tion selection comes as a result of the application of the LMS method
which accomplishes the minimisation of GAIC(3) under the BCT assump-
tion; Global Deviance(GD)=19869.23. The model parameters µ, σ, ν, τ are
modelled as non-parametric smooth functions of x; given X = xi then
yi ∼ BCT (µi, σi, νi, τi) independent for i = 1, . . . , n, where

µi = h1(xi),
log(σi) = h2(xi),

νi = h3(xi),
log(τi) = h4(xi)

(5.3)

Hence, hk(x) are smooth functions of x for k = 1, 2, 3, 4 and xi = ageiξ

for i = 1, . . . , n with ξ be a non-linear parameter in the model. The log
functions are used to ensure parameter positivity.

For the fitted model P-splines were used for each model parameter;
µ, σ, ν, τ with 12.06, 6.07, 4.33 and 2.00 be their degrees of freedom, re-
spectively. As for the coefficient of the age power transformation exponent
it is estimated to be 0.36.

The fitted models for µ, σ, ν, τ for the selected model are shown in Figure
5.10. The fitted ν indicates moderate to high skewness in BMI for all ages
(ν̂ < 1), while the fitted τ indicates leptokurtosis especially in the older
boys. In the top left and top right panel of Figure 5.6 the residuals are
plotted against the fitted values and against their index, respectively. In
the bottom left and right panel of Figure 5.6 a kernel density estimate and
a QQ-plot are provided, respectively. The residuals seem to be randomly
distributed in both cases, which is a good sign of model fit. Nonetheless,
from the QQ-plots in Figure 5.3 and the bottom right of the Figure 5.6
it can be seen that a slightly longer lower tail and one possible outlier in
the upper tail; in both cases the deviations are acceptable allowing for the
flexibility of the normal distribution.

Another diagnostic tool to examine the fitted model is the Q-statistics.
As a measure of goodness of fit it seems that all the Q-statistics are reason-
able (not statistically significant p-values). In Figure 5.8 the Z statistics
indicate an adequate model on the grounds that all the absolute values of
|Z| are less than 2; there are no squares within the circles. The next tool for
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model checking is the wormplot in Figure 5.9. The produced plot is equiv-
alent to the normal Q-Q plot in which is demonstrated how far the ordered
residuals are from their expected values; the closer to the horizontal line the
closer the distribution of the residuals is to the standard normal. There is
no significant departure from the elliptic curves (or a clear departure from
the horizontal line) all of which vindicate the model explains quite well the
data. The fitted curve to the points of the worm; cubic fit line, reflects any
inadequacies in the model fit. Here, the line remains straight for the most
of the data with slight departures in the tails suggesting a good model fit.
Multiple worm plots are produced in Figure 5.10 as a manner to highlight
failures of the model within different ranges of the explanatory. The ex-
planatory variable, age, is split into 9 equispaced intervals in which the
residuals are represented so that any problematic fit is emerged. It still
seems that the model fits the data well with the exception of the upper
middle panel; there is an outlier in the top left quartile of the plot.

After the diagnostic model checking, the study moves on with the cre-
ation of centile curves under the Box-Cox t-distribution for the fitted model,
Figure 5.7. As a matter of fact the centile fan was adjusted to meet the
WHO guidance (Organization et al., 2006) of using as percentiles the val-
ues of (3, 15, 50, 85, 97); Figure 5.12. It appears that the centile curves
resemble a particular pattern for different age intervals so it would be rec-
ommendable to split the main curve into two segments for a thorough
examination. In this case the centile reference curves are split into two
distinct age groups; 0-2 year old boys and 2-21 year old boys; Figure 5.13.
To elaborate in the first age group the centile curves of the BMI growth
increase quite steeply for the first 6 months of infancy while they plateau
until they become 2 years old. In the second age group it appears that
the BMI growth remains on average the same until their fifth year, after
that an increase is recorded; steeper in the beginning (5-14yrs) and slower
during the beginning of adulthood.
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Figure 5.1: BMI against age, Dutch boys data (a) the complete data set of
7040 observations, (b) random sample of 5000 observations.

Figure 5.2: BMI against age, Dutch boys data split into 0-2 years old (a)
and 2-21 years old (b)
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Figure 5.3: The Normal QQ-plot of sample quantiles against the theoretical
quantiles

Figure 5.4: The model residuals plotted against the fitted values
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Figure 5.5: The model residuals plotted against the index

Figure 5.6: Final model Diagnostic Residuals



78 CHAPTER 5. EMPIRICAL ANALYSIS OF GAMLSS

Figure 5.7: Centile Curves using the Box-Cox t-distribution (BCTo) dis-
tribution for the Dutch boys BMI

Figure 5.8: Plot of Q-statistics for the model fitted by LMS
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Figure 5.9: Worm plot from the BCT model

Figure 5.10: Worm plot for the fitted model by LMS
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Figure 5.11: Fitted values for (a) µ (b) σ (c) ν (d) τ , against age from a
Box-Cox t-distribution for Dutch boys BMI

Figure 5.12: Fan-chart (centile) curves using a Box-Cox t-distribution for
Dutch boys BMI
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Figure 5.13: Centile curves for the two age ranges using a Box-Cox t-
distribution for Dutch boys BMI
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Chapter 6

Conclusion

In this dissertation numerous statistical models have been discussed. First,
the generalised linear model allows for the response variable to have an
error distribution that belongs to the exponential family of distributions.
The generalised linear model connects the systematic part with the random
component via a link function. Models for binary and count have been
purposed together with estimation and inference methods.

The generalised additive model comes next, which constitutes a gener-
alisation of the generalised linear model. In essence, the generalised addi-
tive model achieves to interconnect the properties of the generalised lin-
ear model with a set of predictor smooth functions. Multiple methods of
smooth functions selection coupled with techniques to control the degree of
smoothness are proposed in this particular thesis. The generalised additive
models’ inference criteria are presented in the end.

The final model analysed is the generalised additive model for location,
scale and shape. The generalised additive model has been studied in terms
of skewness and kurtosis to accomplish more flexible modelling of the data
characteristics that both the previous models miss to capture. The model
assumes a general distribution for all the model parameters; mean, variance,
skewness and kurtosis. Its broad assumptions retain the flexibility of the
model being applied to a wide range of occasions. The iterative algorithms
that make possible the estimation of the model have been presented in this
dissertation, as well.

Finally, an empirical application with centile estimation on real data
in the framework of the generalised additive model for location, scale and
shape is performed. The iterative estimation methods are applied to find
the distribution function of the response variable that best fits the data, in
which case is the Box-Cox t distribution, taking into account the idiosyn-
cratic characteristics of the data with respect to mean, variance, skewness
and kurtosis of the data. Centile estimates based on WHO percentile guid-
ance are calculated, to describe the average bmi growth of the Dutch boys
given their age. In essence, the centile curves are estimated under the Box-
Cox t-distribution, which increase quite steeply for the first six months
after birth, while for the rest months up to two years old they stabilise.
The second stage of rapid bmi growth is the period of life between five to
fourteen years old which slows down in the early adulthood.
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