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Abstract

Longitudinal data and survival data frequently arise together in practice and

are associated in many ways. A common objective in longitudinal studies is to

characterize the relationship between a longitudinal response process and a time-

to-event since separate analyses of longitudinal data and survival data may lead to

inefficient or biased results. Joint models for longitudinal and survival data aim to

incorporate all information simultaneously and provide valid and efficient inferences

by connecting one or more longitudinal trajectories to the risk for an event. This

class of models opens the door of personalized inference in modern biostatistics,

something invaluable in the pursuit of personalized medicine. Personalized medicine

allows us to tailor a drug or medication specificaly for the needs of the patient on

their predicted response or risk of disease or an event. What follows is a presentation

of the standard Joint model for Longitudinal and Survival data, which is the building

block of this rich class of models, along with extensions that prove usefull in certain

situations. Diagnostics are thoroughly presented as the procendure deviates from the

standard diagnostics procendure in statistics. As a final step predictions are being

discussed along with their assessment tool. All required knowledge is presented in

the first two chapters.
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Chapter 1

Analysis of Longitudinal Data

In longitudinal studies we perform multiple measurements on the same individ-

uals aiming to study within-individual change through time, as well as the factors

that influence this change. In longitudinal studies measurements of the same subject

are correlated and this correlation must be taken into account.

There are two broad classes of models for longitudinal data proposed in the liter-

ature: Linear Mixed Effects Models and Marginal Models, with the former focusing

on individualised inference and the later on population wide inference.

As Joint Modeling for Longitudinal and Survival data focuses on individualised in-

ference Linear Mixed Effects Models are used for the longitudinal submodel .

1.1 Formulation of a Mixed Effects Model

The motivation behind a Linear Mixed Effects Model in the context of biostatis-

tics is the construction of a model that not only does the job of a regression model

but distinguishes between patients as well. The defining feature of this class of mod-
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els is that some of the regression parameters can vary randomly from one individual

to another, thereby accounting for sources of natural heterogeneity in the popula-

tion. As a result individuals in the population are assumed to have their own subject

specific mean response trajectories over time, something more natural when it comes

modeling participants in a clinical trial. This is achieved through the introduction of

random effects in the Standard Regression model which account for the uniqueness

of each subject. In Linear Mixed Effects models the mean response is modeled as a

combination of population characteristics, β (fixed effects) that are assumed to be

shared by all individuals and the subject specific effects that are unique to a partic-

ular individual (random effects).

The model is formulated as follows :

yi = Xiβ + Zibi + ei

ei ∼ N (0, σ2In)

In principle any multivariate distribution can be assumed for bi but in practice ,

bi is assumed to have multivariate normal distribution. Where :

ni: The number of longitudinal measurements for patient i.

yi: The ni × 1 longitudinal responce vector for patient i.

Xi: The ni × p design matrix for the fixed effects for patient i.

Zi: The ni × q design matrix for the random effects for patient i.

β : The q × 1 vector of fixed effects.

bi : The q × 1 vector of random effects for patient i.

θb = vech(D) (for later use).

Fixed effects are being interpreted exactly as in standard linear regression. The

interpretation of bi ,i = 1, . . . , p is the impact in the longitudinal response of the ith
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patient for a unit change in one element of Zi with all others held constant.

Random effects bi account for the correlation between the longitudinal re-

sponses for the ith subject. Aditionally they are assumed independent of the error

terms so that Cov(ei, bi) = 0. When bi cannot capture the correlation between the

longitundinal responses of the ith subject, a change in the ei’s covariance matrix

structure need’s to be done. This can be due to use of few random effects or mis-

specification of their covariace matrix. Standard options are: σ2In (non-correlated),

AR ,or completely unspecified.

The longitudinal responses of the ith subject are independent conditionally on the

random effects bi :

Pr(yi | bi, θ) =
n∏
j=1

Pr(yij | bi; θ).

10



1.2 Estimation of a Linear Mixed Effects Model

Estimation of a Mixed Effects Model is based on Maximum Likelihood princi-

ples. The marginal density of the ith subject is:

Pr(yi) =

∫
Pr(yi | bi) Pr(bi)dbi,

with : yi | bi ∼ N (Xiβ, Vi) where Vi = ZiDZiT + σ2Ini .

Assuming intersubject independence log-likelihood takes the form :

`(θ) =
n∑
i=1

log(Pr(yi; θ)) =
n∑
i=1

log(

∫
Pr(yi | bi; β, σ2) Pr(bi; β, σ

2)dbi,

with :

Pr(yi; θ) = (2π)−ni/2|Vi|−1/2 exp (−1

2
(Yi −Xiβ)TV −1

i (Yi −Xiβ)).

Where θ denotes the full parameter vector so that θT = (βT , σ2, θTb ), with θb=vech(D).

If Vi is known Pr(yi; θ) has a closed form and β̂ = (
∑n

i=1X
T
i V

−1
i Xi)

−1
∑n

i=1X
T
i V

−1
i Yi

which is the GLS estimator.

If Vi is unknown it is replaced by V̂i and Maximum Likelihood estimation is

being applied with Vi being asymptotically unbiased.

For small samples the ML estimator : σ̂2 =
∑n
i=1(Yi−XT

i β̂)2

n
is biased as in simple

linear regression. We can instread use σ̂2 =
∑n
i=1(Yi−XT

i β̂)2

n−p the REML (Restricted

Maximum Likelihood) estimator which is unbiased.
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The main idea behind REML estimation is to separate the data in two parts, the

data used for the estimation of Vi and the data used for the estimation of β. So, in

practice, for the estimation of Vi we need to express the likelihood in therms of Vi.

We then proceed maximizing the modified log-likelihood function :

`(θb;σ
2) = −n− p

2
log (2π) +

1

2
log |

n∑
i=1

XT
i Xi| −

1

2
log |

n∑
i=1

XT
i V

−1
i Xi|−

−1

2

n∑
i=1

[log |Vi|+ (Yi −Xiβ̂)
T
V −1
i (Yi −Xiβ̂)] ∝

∝ −1

2

n∑
i=1

log |Vi| −
1

2

n∑
i=1

[(Yi −Xiβ̂)TV −1
i (Yi −Xiβ̂)− 1

2
log |

n∑
i=1

XT
i ViXi|,

with : β̂ = (
∑n

i=1 X
T
i V

−1
i Xi)

−1
∑n

i=1(XT
i V

−1
i Yi) .

To get the REML estimate V̂i we maximize the above function with the use of

EM or Newton-Rhapson algorithm .

Standard errors for the fixed-effects regression coefficients can be directly obtained

by calculating the variance of the generalized least squares estimator.

V̂ar(β̂) = (
n∑
i=1

XT
i Q̂iXi)

−1(
n∑
i=1

XT
i Q̂iV̂ar(Yi)QiXi)(

n∑
i=1

XT
i QiXi)

−1 =

= (
n∑
i=1

XT
i Q̂iXi)

−1

with Q̂i = ˆV −1
i .
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It is always preferable for the model to be correctly specified, but in prac-

tice we cannot be sure about a possible misspecification of the model. This makes

us want to built models and choose estimators that are robust to misspecification.

Such an estimator is Var(yi) = (yi −Xiβ̂)(yi −Xiβ̂)T which is based on the famous

so called sandwich estimator. If the standard error structure is correctly specified

the model is always more efficient with standard error of the unique parameters in Vi :

Var( ˆθb,σ) = [E(−
n∑
i=1

∂2`i(θ)

∂θTb,σ∂θb,σ
|θb,σ=θ̂b,σ

)]−1.
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1.3 Generalized Linear Mixed Effects models

The models for longitudinal data discussed above can only handle continuous

responses. There are cases though that we want to incorporate a binary longitund-

inal responce ,or a longitudinal responce for counts in our joint model. To be able

to incorporate such longitundinal responses in our joint models, Generalized Linear

Mixed effects Models (GLMM) are used to handle the longitudinal part of the joint

model. There are two main reasons for the widespread applicability of GLMMs, first

GLMMs are a straightforward extension of the Generalized Linear Models to multi-

variate data, and it is currently possible to fit this type of models in a wide range of

software packages.

Generalized linear mixed effects models, as Generalized linear models require

a three part formulation :

Step 1 We assume that the conditional distribution of each of the Yijs given the

random effects ,belongs to the exponential family of distributions with

Var(Yij|bi) = u{E(Yij|bi)}φ, where u(·) is a known variance function of the condi-

tional mean. Given the random effects the longitudital responses are independent of

one another.

Step 2 We proceed to specify the conditional mean of Yij. It is assumed to depend

upon fixed and random effects through :

g{E(Yij|bi)} = nij = X
′

ijβ + Z
′

ijbi,

where g(·) is the link function.

14



Step 3 We assume a distribution over the random effects bi. Any multivariate

distribution can be assumed with most common choice being the normal with zero

mean and a q×q covariance matrix G. The random effects are assumed independent

of the covariates Xi.

In the joint modeling setting, two main Generalized Linear Mixed Effects models

are used, GLME for counts and GLME for a Binary responce. These models are

presented below.

Generalized Linear Mixed Effects Models for Counts

Generalized Linear Mixed Effects Models for Counts are used in Joint models

when our aim is to quantify the contribution to the risk for an event of a marker that

takes only integer values. For example if we want to quantify the contribution to the

risk for an event of the number of seasures a patient has experienced, a Generalized

Linear Mixed Effects Models for Counts would be an appropriate choice to handle

the longitudinal submodel of the joint model .

Suppose that Yij is a count. We proceed in the usual three part specification :

Step 1 The Yij|bi are independent and have a Poisson distribution.

Hence : E(Yij|bi) = Var(Yij|bi) .

Step 2 The conditional mean of the longitundinal responce depends upon fixed

and random effects. It has the form :

log{E(Yij|Bi)} = nij = X
′

ijβ + Z
′

ijbi,

where X
′
ij = Z

′
ij = (1, tij), or any other suitable form.

We usually choose the log-link function since it is the canonical link for the Poisson

15



distribution.

Step 3 The random effects are assumed to have a bivariate or multivariate normal

distribution.

Generalized Linear Mixed Effects Models for a Binary responce

Suppose we want to quantify the change in the risk for an event of a patient

in the presence or not of a desease say rheumatoid arthritis in a joint model having

the information provided by Xi.

We would introduce a binary logitundinal response Yi which would take the

value 1 in the presence of the desease and 0 otherwise . For this purpose we would

construct a Generalized Linear Mixed Effects Models for a Binary responce to handle

the logitudinal part of the joint model in which Yij = 1 when the patient suffers from

rheumatoid arthritis and Yij = 0 otherwise.

We proceed in the three part specification :

Suppose Yij ,a binary responce with values 0 or 1.

Step 1 Conditional on the random effects Yijs are independent and have a Bernouli

distribution.

Step 2 The Conditional mean depends on fixed and random effects and is defined

as :

log{Pr(Yij = 1|bi)
Pr(Yij = 0|bi)

} = nij = X
′

ijβ + Zijbi,
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where Zij = (1, tij), or any other suitable form.

We choose the logit-link function since it is the canonical link for the Bernoulli

distribution.

Step 3 Every random effect is assumed to have a normal distribution.

1.4 Modeling the mean

1.4.1 Parametric Curves

In the sections above, formulation and estimation of the Linear Mixed Effects

Model was discussed, Generalized Linear Mixed Effects Models have also been briefly

presented. One major advantage of the Linear Mixed Effects Model is it’s flexibility

in the specification of the mean structure . The mean response over time can often

be discribed by parametric or semi-parametric curves when the data allow for it.

Options for this specification will be explored in this section.

Linear Trends The simplest and most used parametric curve. If the plot of the

mean response over time is a straight line the Linear Trends option is the appropriate

one. Suppose in a two-group study that we have two groups, 0 and 1 whose mean

responses diverge in a straight line fashion with different intercept and slope. We

can fit the parametric curve :

E(Yij) = β0 + β1tij + β2Gi + β3(tij ×Gi).

where tij denotes the jth measurent of the ith individual and Gi is 0 if the ith

individual belongs to group 0 and else is 1. This model for the mean gives distinct

17



intercepts and slopes to the two groups with :

E(Yij) = β0 + β1tij.

for group 0 and :

E(Yij) = β0 + β2 + (β2 + β3)tij.

for group 1.

A major advantage of the linear model for the mean is it’s interpretability.

Quadratic Trends Changes in the mean will not always be linear. When not ,

different order polynomials can be considered. Suppose in a two group study, when

plotted, the change in the mean response of the two groups are curves. Assuming

that the changes in the mean response can be approximated by quadradic trends we

have :

E(Yij) = β0 + β1tij + β2t
2
ij + β3Gi + β4(tij ×Gi) + β5(t2ij ×Gi),

with tij, Gi same as above. The mean response over time for the subjects in group 0

is :

E(Yij) = β0 + β1tij + β2t
2
ij.

and the mean response over time for the subjects in group 1 is :

E(Yij) = β0 + β3 + (β1 + β4)tij + (β2 + β5)t2ij.

It is important to note that if we are going to fit a 2nd degree polynomial we

need to include the 1st degree terms in the model too and possible interactions. This

way the model remains invariant under linear tranformation, a very usefull property

in the joint modeling setting.
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Linear Splines

In some cases mean response over time cannot be characterized by first or

second degree polynomials. In some cases we have a linear trend that changes at

some point in time or we have multiple points in time where the intercept and slope

changes.

The idea behind a linear spline is the following: We divide the time axis into

segments and build a linear model in every one of these segments that join together

at the timepoints in which division happened (knots).

Suppose we have a two group study as before with the mean response of the groups

changing slope at time t∗. We fit a linear spline with one knot at t∗ as follows :

E(Yij) = β0 + β1tij + β2(tij − t∗)+ + β3Gi + β4[tij ×Gi] + β5[(tij − t∗)+ ×Gi].

where tij, Gi as above. In this model for the mean and slope changes happen at time

t∗ for both groups.

So the model for subjects in group 0 becomes :

E(Yij) = β0 + β1tij for tij ≤ t∗

E(Yij) = β0 + β1tij + β2(tij − t∗) for tij ≥ t∗.

E(Yij) = β0 − β2t
∗ + (β1 + β2)tij for tij ≥ t∗.

And for subjects in group 1 :

E(Yij) = β0 + β3 + (β1 + β4)tij for tij ≤ t∗

E(Yij) = β0 + β3 + (β1 + β4)tij + (β2 + β5)(tij − t∗) for tij ≥ t∗.

E(Yij) = β0 + β3 + (β1 + β4 + β2 + β5)tij − (β2 + β5)t∗ for tij ≥ t∗.
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Linear splines are a very useful and flexible way to accommodate non-linear trends

when polynomials fail to do so adequatelly. Another attribute of Linear Splines is

their interpretability as they are linear models afterall.

Highed Order Polynomial Splines Spline models can become more complicated

by using piece-wise quadratic or cubic models instead. There are two parameters that

characterize spline models ,the order of the piece-wise polynomial on each interval

and the number of knots. If a spline is of the k th-order,then for each knot there is

a covariate that allows the coeficient of the kth-order term tKij to change. When we

choose to fit a k-th order spline we need to include all the terms up to that degree.

So, the number of parameters in a higher order polynomial spline is equal to the

degree of the polynomial plus the number of knots plus one. This makes us want to

use as parsimonous structures as possible in terms of knots and degree.
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1.5 Modeling Covariance

When we have missing data, a common situation in longitudinal studies, the

model is not robust to misspecification of the Covariance matrix, so Covariance must

be handled with care. Mean and Covariance are interdependent based on the fact

that the Covariance of any pair depends on the model of the mean. As a result, we

model the Covariance matrix based on the model selected for the mean.

The most common choices for the Covariance model follow :

Unstructured In the Unstructured setting we fit a symmetric positive definite

matrix to the Covariance. This choice is considered reasonable when all subjects are

measured at the same timepoints and the number of occasions is relatively small.

One major advantage of this approach is that we give no structure to the Covariance

matrix. However leaving the Covariance matrix unspecified creates a lot of parame-

ters to be estimated (n(n+1)
2

) and the approach does not work when we have mistimed

measurements :

Cov(Yi) =


σ11 σ12 . . . σ1n

σ21 σ22 . . . σ2n

. . . . . . . . . . . .

σn1 σn2 . . . σnn



Compound Symmetry We assume constant Variance and Covariance between

any pair of Yijs so that Cov(Yij, Yik) = λ. In this setting we have only two parameters

to estimate but the assumptions are somewhat unrealistic.
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Cov(Yi) = σ2


1 λ . . . λ

λ 1 . . . λ

. . . . . . . . . . . .

λ λ . . . 1



Toeplitz This model for the Covariance is appropriate when measurements are per-

formed at approximately equal intervals. We assume that equally separated in time

measurements have the same Covariance and Variance is constant. The parameters

for estimation are n.

Cov(Yi) = σ2


1 λ1 . . . λn−1

λ1 1 . . . λn−2

. . . . . . . . . . . .

λn−1 λn−2 . . . 1


Autoregressive In this setting we assume the Variance is constant and Covariance

decays over time at a rate to be estimated. A very appealing assumption as is usually

the case in longitudinal studies. Another appealing feature is that the parameters

to be estimated are only two.

Cov(Yi) = σ2


1 λ . . . λn−1

λ 1 . . . λn−2

. . . . . . . . . . . .

λn−1 λn−2 . . . 1
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Banded The Covariance is assumed to be zero after a specific period of time has

passed from the measurement. A very strong assumption to be made but gives

flexibility over the number of the parameters.

Exponential We can generalize the Autoregressive model for the case in which

the measurement are not fixed or equally placed, something very common in clinical

studies as subjects often show up late for measurement.

We assume:

Cov(Yij, Yik) = λ|tij−tik|,

with λ > 0.
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1.6 Missing Data

Missing data arises in almost all real life statistical analyses. Especially in

longitudinal studies where the longitudinal marker of a subject is being collected at

a set of a prespecified follow-up times, it is very common for a subject not to show

up (missing value) or even to drop-out completely from the study for personal or

health reasons. Handling missing values is no easy task and if improperly handled

missing values can lead to misleading inferences .

Missing data can be monotone or non-monotone. Monotone missing data is

the result of attrition ,drop-out or late entry. Non-monotone missing data arise when

the subject misses one or more measurements and show’s up for a later measurement.

The forms of missingness take different types, with different impacts on the

validity of conclusions from research: Missing completely at random, missing at

random, and missing not at random.

At first we introduce the missing data indicator to distinguish the longitudinal

responses collected from the ones not collected:

rij =

1 if yij is observed

0 otherwise

So we separate Yi into two subvectors:

Y a
i : the observed data.
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Y m
i : the missing data.

The ri = (ri1, ri2, . . . , rini) and the generating process ri are refered as the missing

data process.

1.6.1 Missing Completely at Random

In the Missing Completely at Random (MCAR) setting the probability that the

responses are missing is assumed unrelated to the specific values that would have

beed obtained and to the observed resposes. As a result ri is independent of Y o
i and

Y m
i . Hence Pr(ri|Y o

i , Y
m
i ; θr) = Pr(ri; θr).

When data is MCAR the distribution of the observed data does not differ

from the distribution of the complete data since the data are missing completely at

random. As a result we can obtain valid inferences by analysing just the observed

data.

1.6.2 Missing at Random

In the Missing at Random (MAR) setting the probability of missingness is

assumed to depend on the observed data but not on the outcomes that would have

been obtained (missing data). Hence: Pr(ri|Y o
i , Y

m
i ; θr) = Pr(ri |Y o

i ; θr),

which is equivalent to:

Pr(Y m
i |Y o

i , ri; θr) =
Pr(Y m

i , Y
o
i , ri; θr)

Pr(Y o
i , ri; θr)

=
Pr(ri|Y o

i , Y
m
i ; θr) Pr(Y o

i , Y
m
i ; θy)

Pr(ri|Y o
i ; θr) Pr(Y o

i ; θy)
=

=
Pr(Y o

i , Y
m
i ; θy)

Pr(Y o
i ; θy)

= Pr(Y m
i |Y o

i ; θy),
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where:

θ : the parameter vector of the joint distribution of the measurements and missing

process.

θy : the parameter vector of the measurement model .

When data is MAR, the distribution of the observed data is not the same as the

distribution of the complete data due to the fact that the probability of missingness

depends on the set of observed responses. The estimation is being carried out based

on observed data and can provide valid inferences even if we ignore the contribution

of ri provided that the measurement process is correctly specified.

The likelihood takes the form:

Li(θ) =

∫
Ω

Pr(Yi, ri; θ)dY
m
i =

∫
Ω

Pr(ri|Y o
i , Y

m
i ; θr) Pr(Y o

i , Y
m
i ; θy)dY

m
i =

=

∫
Ω

Pr(ri|Y o
i ; θr) Pr(Y o

i , Y
m
i ; θy)dY

m
i = Pr(Y o

i ; θy) Pr(ri|Y o
i , θr) = Li(θy)× Li(θr),

where :

Ω is the parameter space of Y m
i .

If θy,θr are disjoint θ = (θTy , θ
T
r )T equalts to the product of the parameter spaces

θy and θr. Inference on θy can be based on Pr(Y o
i ; θy) ignoring the likelihood of the

misssingness process.

Although MCAR and MAR data arise in real life problems , in clinical trials

we usually have Missing Not at Random data. MNAR data needs greater care since

it can contain information that if ignored can produce bias in the analysis.
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1.6.3 Missing Not at Random

In the Missing Not at Random (MNAR) setting the probability that longitu-

dinal responses are missing depends on a subset of the responses that would have

been observed.

In particular the distribution of ri depends on atleast some elements of Y m
i .

Missing Not at Random model families

The most complicated type of missing data and the one nearest to real life

problems is Missing Not at Random (MNAR). There are three main families of

models used to handle this type of missing data ,Selection Models ,Pattern Mixture

Models ,Shared Parameter Models. In practice what distinguishes the following

families of models is what do we condition the joint distribution of the complete

data and the missing mechanism on.

Selection Models

Pr(Y o
i , Y

m
i , ri; θy) = Pr(Y o

i , Y
m
i ; θy) Pr(ri|Y o

i , Y
m
i ; θr),

where Pr(Y o
i , Y

m
i ; θy) being the marginal density for the measurement process and

Pr(ri|Y o
i , Y

m
i ; θr) being the density of the missingness process conditioned on the

longitudinal responses.

Pattern Mixture Models

Pr(Y o
i , Y

m
i , ri; θy) = Pr(Y o

i , Y
m
i |ri; θy) Pr(ri; θr),

where Pr(Y o
i , Y

m
i |ri; θy) is the conditional density given the missingness process and

Pr(ri; θr) the marginal distribution for the missingness process.
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Shared Parameter Models

Pr(Y o
i , Y

m
i , ri; θy) =

∫
Ω

Pr(Y o
i , Y

m
i |bi; θy) Pr(ri, bi; θr) Pr(bi; θb)dbi.

Here we integrate out the random effects. Given the random effects missingness and

measurement processes are independent.
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1.7 Imputation

There are some ways to draw inference from missing data proposed in the

literature. In joint models we use imputation, a very popular technique since we have

the power to choose between simplicity and preciseness of the imputation algorithm.

In this approach we construct the full dataset by filling the missing data with

values according to some prespecified rule. A variety of rules have been proposed,

from simple rules that are easy to implement, to complex rules that are compution-

ally intensive. When choosing the ”rule” it is advised to be aware of the tradeoff

between richfulness and applicability.

It is important to note that imputation is a tool used by modern statisticians to

overcome issues presented by missing data and nothing more, there are imputation

approaches in which data are imputed in ways that are not mathematically solid

for the sake convinience and numerical stability. Some imputation approaches are

presented below. For simplicity fixed times of observation are assumed, something

not realistic in the longitudinal setting that will be loosened up later.

Mean Imputation The simplest approach is to replace each missing value with

the mean of the observed values for that variable. This approach usually produces

distorted measures and hence not advised.

Last value carried forward In this approach we replace the missing value with

the last observed measurement for that variable or even a pre-treatment measure-

ment. This approach is considered conservative or anticonservative depending on the

nature of the illness we study.
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Using information from related observations In this approach we replace the

missing value with the estimate of the measurement of someone close to the subject.

For example if we have missing data regarding the income of the fathers of children in

a school, we can fill the missing value with the mothers report of the fathers income.

Indicator variables for missingness When dealing with missing unordered

categorical predictors ,a simple and often usefull way to impute the data is to add

an extra category for the variable indicating missingness.

Imputation based on logical rules Sometimes we impute the data based on

logical rules. If in a company survey for example,all the observed emploees have had

22 days off work in the previous year, it is safe to assume that this is the policy of

the company and as a result the missing observations for the days off work will be

22 too.

Random Imputation

The techniques presented above although easy to implement are rarely close to reality

since they make strong assumpionts about the missing data. A more formal way to

impute data is Random Imputation. There are many ways that we can randomly

impute missing data, some of them are presented below in a way that leads the

reader to understand the imputation scheme used in the Imputation in Joint Models

section.

Simple Random Imputation The simplest approach is to impute missing values

of a variable based on the observed data for this variable. In this approach if in a
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survey for example height value is missing from a subject, we draw a height value from

the observed heights and impute it. This approach ignores the usefull information

from any other measurement for the same patient (sex,weight,etc).

Using regression predictors A simple and general imputation technique which

uses the observed information to perform regression predictions for the missing val-

ues. The predicted values are then imputed. Imputation can be deterministic or

random, by ignoring or not the random term of the prediction. For example we want

to study the income of college graduates across Europe. We observe income, age,

sex and region for 1000 subjects. If income is missing for some subjects, we can

perform this technique to impute the missing values. It is important to note that

in order to improve the predictive power of the model usually extremely high values

are top-coded to some relatively managable number. For example if a graduate in

Switzerland somehow makes 10 million per year, this will affect the model tremen-

dously, so we would top-code the value to 200.000 in order for his effect to the model

to become managable.

Predictors used in the imputation model One question that arises when using

regression is which of the predictors will be used in the regression. Imputation is

no different although some standard regression rules can be violated. For example

if we fit a regression model of earnings on sex, ethnicity, nationality, education, the

number of months worked in the previous year, hours worked per week and indicators

for whether the respondent’s family receives any forms of income support. Generally

it is not valid to use income support to predict income since income support depends

on income, but for the purposes of imputation it is considered acceptable.
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Matching Another way to impute data is to impute the missing value with the

observed value of a subject that has the same (or nearly the same) predictors.

Routine multivariate imputation This approach is used when several variables

are missing. We allow the outcome Y as well as the predictors X to be vectors and

we fit a multivariate model to all the variables that have missingness.

Iterative Regression imputation A way to generalize imputation using regres-

sion predictors is to apply the method iteratively. Assume that we have Y1, Y5, Y12

missing and a complete vector X. To use Iterative regression imputation we first

impute the missing data using the approach presented above and then we reimpute

Y1 given the observed and the imputed data. This procendure is repeated until

convergence of the imputed data.

1.7.1 Model-based imputation

Another approach, the one that will be used for imputation in Joint models is to fully

specify the distribution of the missing values. The idea has its roots on Bayesian

grounds.

We draw sample from the posterior distribution of the missing data given the

observed data. This is relatively hard to do in a straightforward fashion so an

iterative scheme is needed. Technical information on the scheme are presented in the

Imputation in Joint Models section.
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1.7.2 Multiple imputation

In order to reduce the uncertainty produced by a single random imputed value

for every missing data value, we can produce multiply imputed data values for every

missing value. These values are used to recreate the complete dataset and standard

analysis tools can be then applied. Inferences are then combined to draw an overall

conclusion.

For example, suppose we want to draw inference about a regression coefficient

β, but we have some missing values Yi. As a first step we multiply impute every

missing value with M values using any of the techniques presented above and obtain

estimates β̂m in each of the M datasets as well as standard errors, s1, ..., sM . As

a second step we obtain an overall point estimate by simply averaging over the

estimates from the separate imputed datasets, thus β̂ = 1
m

∑M
m=1 β̂m. As a last

step we obtain the variance estimate Vβ that reflects variation within and between

imputations:

Vβ = W + (1 +
1

m
)B,

where W = 1
m

∑M
m=1 s

2
m and B = 1

m−1

∑M
m=1(β̂m − β̂)2.
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Chapter 2

Time to Event Data Analysis

The first feature that must be taken into account when it comes to analysis of

failure times is the shape of their distribution. Event times must be positive and

usually have skewed distribution, hence statistical methods based on normality are

not direclty applicable. We can overcome this problem though, through the use of

suitable transformations.

The most important characteristic that distinguishes the analysis of time to

event data from other areas in statistics is censoring. The defining feature of censored

data is that the event of interest is not observed on all study subjects. Implications

that arise when we use standard tools in censored data :

� Standard tools such as sample average, standard dev., t-test, linear regression

cannot be used as they assume complete data and therefore will produce biased

estimates for the distribution of event times and related quantities.

� Inferences can be more sensitive to missespification of survival times compared

to complete data.
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2.1 Censoring

There are three types of censoring based on when did the censoring happen :

� Right Cesoring: For a subset of the subjects under study the event of interest

in only known to occur after a certain point in time.

� Left Cesoring: For a subset of the subjects under study the event of interest

in only known to occur before a certain point in time.

� Interval Cesoring: For a subset of the subjects under study the event of

interest in only known to occur between two points in time.

A second classification of censoring has to do with whether or not the probability

of a subject being censored depends on the failure process. Two types arise :

� Informative Censoring: Censoring occurs for reasons directrly related to the

study.A censoring mechanism is informative if at any time t, the failure rates

that apply to the subject still in the study are different from those that apply

to subjects who have dropped out of the study

� Non-Informative Censoring: Censoring occurs for reasons not related to

prognosis or the study in general.

Depending on censoring type differend inferencial approaches should be consid-

ered. The majority of the literature has focused on methods that can handle right

censored data because these are the most frequently encountered. When we have

informative censoring little can be done because the data do not contain enough
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information to account for the informativeness so external information should be

sought.

There are three main categories of tools for analysis based on the distributional

assumptions made :

� Non-parametric: No distributional assumptions on any component of the

model.

� Semi-parametric: Distributional assumptions on some components of the

model.

� Parametric: Full distributional specification of the model.

2.2 Basic Functions in Survival Analysis

Let T ? denote the random variable of failure times. If the time event is death,

the survival funtion expresses the probability of survival beyong time t.

Assuming T ? is continuous, the survival function is defined as:

Pr(T ? > t) =

∫ ∞
t

f(s)ds,

where p(s) denotes the coresponding density function. The survival function must

be non-increasing as t increases and S(t = 0) = 1 .

Another building block of survival analysis is the hazard function :

h(t) = lim
dt→ 0

Pr(t ≤ T ? < t+ dt|T ? > t)

dt
,

for t ≥ 0. This is the risk of an event occuring in the interval [t, t+ dt] as dt→ 0.
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A related quantity is the integrated or cumulative hazard function:

H(t) =

∫ t

0

h(s)ds.

H(·) describes the accumulated risk until time t.

The survival function can also be expresed in terms of risk as :

S(t) = exp(−H(t)) = exp(−
∫ t

0

h(s)ds).

When estimating any characteristic of the event time distribution, censoring

must be taken into to account or inferences will be biased.

Let Ti be the observed event time for the ith subject defined as the minimum of

the real event time and the censoring time ci. Let δi = 1(T ? ≤ ci) be an indicator

function which takes the value 1 if the observed event time corresponds to a true

event and 0 otherwise. We will be using (Ti,δi) to estimate characteristics for the

distribution of T ?.

2.3 Estimators

2.3.1 The Kaplan and Meyer estimator

The Kaplan–Meier (KM) estimator ,also known as the product limit estimator

is the most well known and used survival funtion estimator. A non-parametric esti-

mator which makes no assumption on the underlying distribution of the failure times.

The probability of surviving beyong any given timepoint t can be written (To-

tal probability Theotem) :
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Pr(T ? > t) = Pr(T ? > t|T ? > t− 1) Pr(T ? > t|T ? > t− 2) . . .

The above expression is used to estimate survival probabilities and leads to the

estimator: ̂SKM(t) =
∏
i:ti≤t

ri − di
ri

,

where ri denotes the number of subjects at risk at the unique timepoint ti and di

denotes the number of events at ti.

The estimator’s variance can be calculated using Greenwood’s formula(See end

of the section). Using asymptotic normality, a confidence interval for Si can be con-

structed. A better approach though would be to derive an asymmetric confidence

interval for St based on a symmetric confidence interval for log(H(t)). This ensures

that the boundaries of the confidence interval won’t cross the boundaries of [0, 1].

The variance of log( ̂HKM(t)) is derived using similar arguments as in Green-

wood’s formula for ̂SKM(t):

V̂ar(log( ̂HKM(t))) =

∑
i:ti≤t

di
ri(ri−di)

(
∑

i:ti≤t log( ri−di
ri

))2
.

The Kaplan-Meyer estimate for the cumulative hazard function is derived using

the estimation SKM(t) and the fact that ̂HKM(t) = − log( ̂SKM(t)).
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2.3.2 The Nelson-Aalen estimator

Another similar estimator for the cumulative hazard function is the Nelson–Aalen

(NA) estimator. The Nelson–Aalen (NA) estimator is a non-parametric estimator of

the cumulative hazard function used in the case of censored or incomplete data :

HNA(t) =
∑
i:ti≤t

di
ri
,

with di,ri the same as noted above.

Breslow estimator

Based on the NA estimator we can derive the following estimator for the sur-

vival function known as the Brieslow estimator:

ŜB(t) = exp[−H(t)NA(t)] =
∏
i:ti≤t

(−di
ri

).

To derive a confidence interval for S(t) based on this estimator we estimate the

variance of log ĤNA(t) using a formula similar to Greenwood’s formula for log(ĤKM(t)).

The Breslow estimator has uniformly lower variance than the Kaplan-Meyer

but is biased upward. For small samples we have ŜKM(t) ≤ ŜB(t) but the two

estimators are asymptoticaly equivalent.
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Greenwood’s formula In the presence of censoring, Greenwood suggested the

following estimate for the variance of the Kaplan-Meier estimate:

V̂ (t) = Var(Ŝ(t)) ≈ Ŝ(t)2
∑
t(i)≤t

di
ri(ri − di)

,

This leads to standard error :

s.e{Ŝ(t)} ≈ Ŝ(t){
∑
t(i)≤t

di
ri(ri − di)

}1/2.
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2.4 Likelihood for Censored data

When survival data is assumed to be of a specific form, estimation of the param-

eters is often based on Maximum Likelihood. Let [Ti, δi], i = 1, 2, . . . , n the survival

information in a random sample from a distribution function P , parametrized by θ

with probability density function Pr(t; θ).

In the Likelihood construction we need to account for censoring .A subject i

for whom an event is observed at timepoint Ti contributes Pr(t; θ) to the likelihood.

A subject who is censored at time Ti contributes Si(Ti; θ), since all we know about

him is that he survived timepoint t.

Thus the log-likelihood takes the form:

`(θ) =
n∑
i=1

δi log(PrTi; θ) + (1− δi) log(Si(Ti; θ),

with h(t) = Pr(t)
S(t)

and S(t) = exp(−H(t)). Hence:

`(θ) =
n∑
i=1

δi log(hiTi; θ)−
∫ Ti

0

hi(s; θ)ds.

All subjects contribute an amount equal to the negative of the cumulative

hazard function to the log-likelihood evaluated at their corresponding event time.

Subjects who exprerienced an event contribute more than subjects whose events are

being censored. Once the log-likelihood has been formulated iterative optimization

procendures can be used to obtain the θ̂ estimate such as EM algorithm or Newton-

Rhapson.

So far non-parametric estimators and the Likelihood construction in the pres-

ence of censoring have been presented .Usually survival data comes with supplemen-
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tary information though. Information recorded throughout the study such as age,

sex, smoking status, alcohol abuse history or treatment group. Our primary interest

is to explore the relationship of those markers with the risk for death of the subject.

To do so Cox proposed a class of models, the Relative Risk Models.
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2.5 Relative Risk Models

Relative Risk Models are semi-parametric models and the idea behind them is

that the risk for death for the group of people that is on a standard treatment (S) is

proportional to the risk for death of the group that is on a new treatment (N).

The model in it’s simplest form is expressed as:

hN(t) = ψhS(t),

with t non-negative ,ψ constant and hS(t), unspecified. The assumption that ψ is

constant is an oversimplification which we will loosen up next.

If ψ < 1 ,then the hazard of death of a patient on the new treatment is smaller

than the hazard of death of a patient on the normal treatment according to the

model and vice versa. The value of ψ which is the hazard ratio between standard

and new treatment will always be possitive so a natural reparametrization would be

to express it as ψ = exp(β). Hence β = log(ψ) is the log-hazard ratio.

Let x1, x2, . . . , xp be the values of the explanatory variables,X1, X2, . . . , Xp

recorded at the time the study starts. A natural extension would be to form a

model that captures the impact of those measurements in the risk for death of a

patient. Let xi = (x1i, x2i, x3i, . . . , xpi)
′ be the vector of measurements of the ith

subject and β = (β1, β2, β3, . . . , βp) the vector of coefficients of the explanatory vari-

ables x1i, x2i, x3i, . . . , xpi .

We denote: ηi = β1x1i + β2x2i + β3x3i + · · · + βpxpi or ηi = β′xi in matrix

notation, the linear component of the model for the ith individual(prognostic score).

43



This class of models assume that covariates have a multiplicative effect on the hazard

for an event. Then the model is formulated as :

hi(t) = h0(t) exp(ηi) ⇒

⇒ log(
hi(t)

h0(t)
) = ηi ⇒

⇒ log(
hi(t)

h0(t)
) = β1x1i + β2x2i + β3x3i + · · ·+ βpxpi.

There is no constant term in the linear component of the model, if there was

one, say β0, it would be absorbed by the baseline hazard function. We observe that

a regression coefficient βi for the predictor xi denotes the change in the log hazard

ratio at any fixed timepoint for a unit increase in xi while all other predictors are

held constant. Hence, the hazard ratio change is exp(βi) for a unit increase in xi

while all other predictors are held constant.

The Relative Risk model is an extremely flexible model so that we can include

variates, factors, random effects and Stochastic processes in the linear component.

The flexibility and broad applicability of the Relative Risk model makes it a com-

plelling choice among the models for event time data. It must be used with caution

though since it is not always the appropriate choice for the analysis. Preliminary

analysis is advised to check if the model is appropriate. As a rule of thumb:When

plotting the survival curves of the two groups if the survival curves are parallel to

each other or they cross then the Relative Risk model is not appropriate choice for

analysis.
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2.5.1 Estimation in a Relative Risk model

Our aim fitting a Relative Risk Model is to estimate the coefficients in the

linear component β1, β2, β3, . . . , βp and in some cases the baseline survival function.

At first we estimate the β′is and then we use these estimates to estimate the baseline

hazard function. We can estimate β′is with standard full likelihood approach, Cox

in 1972 proposed a way easier method through the Partial likelihood function though.

Suppose that we have a study with n individuals participating, r distinct deaths

and n − r censored survival times. Assuming that only one individual dies at each

death time we can order the death times so that :

t(1) < t(2) < t(3) < · · · < t(r).

R(t(j)): the number of individuals at risk at time t(j)(Risk set).

Let :

δi =

1 if event of i is observed

0 otherwise

Partial likelihood function for the Relative Risk model is :

L(β) =
n∏
j=1

(
exp β′x(j)∑

l∈R(t(j))
exp (β′xl)

)δi

,

with x(j) : the vector of covariates for the subject that dies at t(j). Individuals for

whom the survival times are censored do not contribute to the numerator but they

contribute to the denominator. The partial likelihood only takes under consideration

the order in which the subjects experiece the event.
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Log-likelihood takes the form :

`(β) =
n∑
i=1

δi(β
′xi − log(

∑
l∈R(t(j))

exp (β′xl)).

In clinical studies events are observed or censored in discrete timepoints, so

ties in the event order are rather usual. We will extend the likelihood function so

that it takes into consideretion this usual feature.

Let sj be the vector of sums of each of the covariates of the individuals who die

at the jth event time t(j) , j = 1, 2, 3, . . . , r. Suppose there are dj events at timepoint

t(j) the hth element of sj is shj =
∑dj

k=1 xhjk where xhjk is the hth explanatory

variable, h = 1, 2, 3, . . . , p for the kth subject who dies at t(j).

An approximation to the likelihood function often used (Breslow 1974) :

r∏
j=1

exp β′s(j)

(
∑

l∈R(t(j))
exp (β′xl))δj

,

with dj being the deaths at timepoint t(j) (considered distinct). We maximize log

likelihood with Newton-Rhapson approach.

After we have maximazed the log-likelihood function and have derived the

estimates of the β’s, the β̂i’s with i = 1, 2, 3, . . . , p we are ready to estimate the

baseline hazard function.

The estimated hazard function for the ith individual is:

ĥi(t) = exp(β̂′xi)ĥ0(t).

Let dj , nj be the deaths and the number of individuals at risk at time t(j). The

estimated baseline hazard function at t(j) is:

ĥ0(t(j)) = 1− ξ̂j (4.1.1.1),
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where ξ̂j being the solution of the equation:∑
l∈D(t(j))

exp (β′xl)

1− ξ̂exp (β′xl)
j

=
∑

l∈R(t(j))

exp(β̂′xl),

with D(t(j)),j = 1, 2, 3, . . . , r, the set of individuals who died in the timepoint t(j).

When there are tied death times this equation doesn’t have a solution in explicit

form and an iterative scheme is required. Assuming that the hazard of death is

constant between event timepoints we can estimate the baseline hazard function by

dividing (4.1.1.1) by the time interval.

Hence :

ĥ0(t(j)) =
1− ξ̂j

t(j+1) − t(j)
,

for t(j) ≤ t < t(j+1),j = 1, 2, 3, . . . , r − 1 and ĥ0(t) = 0 for t < t(1).

Given that we have estimated the baseline hazard funtion we can proceed with

the estimation of numerous important functions in survival analysis using the known

relationship between them such as:

The baseline survivor function : S(0)(t) =
∏k

j=1 ξ̂j.

The baseline cumulative hazard function: H(0)(t) =
∑k

=1 log(ξ̂j).

In the model formulation of the Relative Risk model the baseline hazard func-

tion is completely unspecified. That means that it can be modeled by a scarar

function, spline or any distribution that models failure times. That gives the model

tremendous flexibity, something very usefull in the joint modeling setting.

47



2.5.2 Semi Parametric Specification of the baseline Hazard

function.

One simple yet satisfactory in practice option would be the piecewise-constant

model.

The baseline hazard function takes the form:

h0(t) =

Q∑
q=1

ξqI(uq−1 < t < uq),

where 0 = u0 < u1 < u2 < · · · < uQ is a split of the timescale with uQ being larger

that the largest time observed and ξq is the value of the baseline hazard function

in the interval (uq−1, uq). Increase in the number of knots will lead to increase in

flexibility and better fit but also an increase in parameter count. In the special case

that every interval contains only one event the models is equivalent to the completely

unspecified model.

Another choice proposed in the literature is the regression spline. For the re-

gression spline model, the log-baseline function is expanded to:log(h0)(t) = k0 +∑m
d=1 kdBd(t, q) with kT = (k0, k1, . . . , km) are the spline coefficients, q the degree of

the B-spline’s basis function B· and m = m′ + q − 1 denoting the number of knots.

Again, increasing the number of knots increases flexibility and the number of param-

eters that need estimation.
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2.5.3 Parametric Specification of the baseline Hazard func-

tion.

Non-parametric and semi-parametric techniques are used in order to avoid full

specification of the baseline hazard function. Sometimes though, when past research

or diagnostics suggest a specific form for the baseline hazard function then fully

specifying the baseline hazard function is preferable since inference will be more

precise. Below are the two most frequently used models for the baseline hazard

function in Relative Risk models and their corresponding quantities of interest :

� Exponential : The hazard of death for the subject has the memoryless

property. Under this model the baseline hazard function is : h0(t) = λ for

0 ≤ t <∞.

Probability density function of the survival times: f(t) = λe−λt.

Survival function: S(t) = exp[−
∫ t

0
λdu] = e−λt with λ a parameter that needs

estimation.

� Weibull : A more general hazard function: h0(t) = λγtγ−1, for 0 ≤ t <∞ with

survivor function S(t) = exp[−
∫ t

0
λγuγ−1du] = e−λt

γ
and probability density

function f(t) = λγtγ−1 exp(−λtγ). With λ > 0 and γ > 0 scale and shape

parameter to be estimated.

2.5.4 Estimation in parametric and semi parametric models

On the downside, in parametric and semi-parametric models we can’t use par-

tial likelihood and full likelihood approach is needed.

Assume that on n subjects we observe r events and n − r events are censored. Let

t1, t2, t3, . . . , tr be the event times and t?1, t
?
2, t

?
3, . . . , t

?
n−r be the censoring times (right).
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The death times contribution to the likelihood is:
∏r

j=1 f(tj).

For the censored individuals the only thing we know is that they survived timepoint

t?, so their contribution to the likelihood will be :
∏n−r

l=1 S(t?j).

Let δi be an indicator as specified above. We can consider the data as pairs of

(ti, δi) with i = 1, 2, 3, . . . , n. Again the likelihood function can be written as :

L(β) =
r∏
i=1

[f(ti)]
δi [S(ti)]

(1−δi) =

=
r∏
i=1

[h(ti)S(ti)]
δi [S(ti)]

(1−δi) =

=
r∏
i=1

[h(ti)
δiS(ti)].

Hence the log-likelihood is :

`(β) =
n∑
i=1

δi log{h(ti)}+
n∑
i=1

log{S(ti)} =

=
n∑
i=1

δi log{h(ti)} −
n∑
i=1

H(ti),

where H(·) is the cumulative hazard function. This function should then be max-

imised with respect to the unknown parameters.

2.5.5 Time-Dependent Covariates

In the Relative Risk setting introduced above we assumed that the covariates

in the linear component of the model are constant throughout the study. However

usually there is interest on whether or not, time-dependent covariates such as clinical

parameters or longitudinal markers are associated with the risk for an event. There
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are two categories of time-dependent covariates:Exogenous and endogenous.

Exogenous is a covariate that is associated with the rate of failures over time,

but its future path is not affected by failure at time t. In a sense when a covariate is

exogenous it affects the risk for an event, but the occurence of an event does not affect

the covariate, something that is not the case with endogenous covariates.Endogenous

is a covariate that is associated with the risk for an event and the occurence of an

event affects the covariate back. For example the weather of a clinical trial’s location

is likely to affect the risk for death of the patients involved in the study. This would

be an exogenous covariate as death of a subject will not affect the locations weather.

On the other hand, consider the blood pressure of a subject in a clinical trial, certain

levels of blood pressure affect the risk for death of the subject and death of a subject

drops its pressure to zero, so pressure is an endogenous covariate. It is important to

distinguish the two types since different models are appropriate for every type. Ex-

ogenous covariates can be handled with extending the standard Cox model whereas

Endogenous covariates are handled with Joint Models for Longitundinal and Survival

data .
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2.6 Residuals

We will proceed to the formulation of the Martingale residuals for the Cox model

as Martingale residuals will be used in the diagnostics of the joint model.

Suppose we have n subjects with events observed for the r of them and censored

for the n − r. Suppose we fit a Cox regression model to the survival times with p

explanatory variables. The fitted hazard function for the ith subject is:

ĥi(t) = ĥ0(t)exp(β̂′xi),

with β̂′xi being the estimated linear component and ĥ0(t) the estimated hazard

function.

2.6.1 Cox-Snell residuals

Cox-Snell residuals are the most widely used residuals. They are not used in

the joint modeling setting but are used to formulate the Martingale residuals. The

Cox-Snell residual for the ith subject is:

rCi = Ĥ0(ti) exp(β̂′xi)

with i = 1, 2, 3, . . . , n and Ĥ0(ti) being the estimate of the cumulative hazard func-

tion. Usually the Nelson-Aalen estimate is being used.

Furthermore we have :

rCi = Ĥi(ti) = − log Ŝi(ti).

If the model is correctly specified the Cox-Snell residuals will have a unit ex-

ponential distribution. If a survival time is censored the residual corresponding to

the observation will also be censored .
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2.6.2 Martingale residuals

The Martingale residual for the ith subject is defined as :

rMi
= δi − rCi .

With δi being an indicator of whether the event was observed or censored

and rCi being the Cox-Snell residual. Martingale residuals take values between −∞

and one, with the residuals of the censored observations being negative. Martingale

residuals have similar properties with the residuals encountered in linear regression

with expected value of zero and non-correlation.
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2.7 Accelerated Failure Time models

The proportional hazards model is widely used due to it’s extendability and

simplicity. This simplicity as it is a major advantage sometimes becomes a big dis-

advantage. The distributions that are used in the estimation of the baseline function

of a relative risk model are easy to handle but restrictive. The Accelerated Failure

Time models offer greater flexibility since more distributions can be used. Some

options are:

� Gamma distribution : The gamma distribution with parameters λ and κ

has a survivor function : S(t) = 1− Ik(λt) with Ik(t) =
∫ x
0 λκ−1e−xdx

Γ(k)
.

The is no closed formula for the survival hazard functions but can be computed

numerically . The gamma distribution can be reparametrized in terms of the

distribution of log-time. By a simple change of variables it can be shown that

: T ∼ Γ(λ, κ)⇔ log(T ) = α +W .

With fW (w) = eκw−e
w

Γ(κ)
theGeneralized Extreme value distribution.

� Generalized Gamma: Generalized Gamma adds a scale parameter in the

expression for log(T ) above, making it extremely flexible as it includes the

distributions Gamma(p = 1),Weibull(k = 1) and exponential(p = k = 1).

So we have : log(T ) = α+ σW ,with W having the Generalized Extreme value

distribution with probability density function : fW (w) = λp(λt)pκ−1e(λt)
p

Γ(κ)
with

p = 1/σ

� Log-Normal : The hazard function of the log-normal distribution starts from

0 reaches a maximum and then descends to 0 again as t→∞. That is a very

usefull feature in clinical studies as often discribes the recovery mechanism of
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the body after an invasive therapy. The probability distribution for T is :

fT (t) =
1

σ
√

2π
t−1exp(

−(log(t)− µ)2

2σ2
),

with 0 ≤ t <∞, σ > 0. Survival function is given by :

S(t) = 1− Φ(
log(t)− µ

σ
).

� Log-logistic : Another distribution with a mode that is non monotonic is the

log-logistic. With hazard function

h(t) =
eθκtκ−1

1 + eθtκ
,

where 0 ≤ t <∞, κ > 0, survival function :

S(t) = (1 + eθtκ)−1

and probability density function :

f(t) =
eθκtκ−1

(1 + eθtκ)2
.

Standard options of the Cox model are also available.

In the Accelerated Failure Time model setting predictors act multiplicatively

on failure time. The idea is that predictors alter the time rate at which the subject

proceeds along the time axis. This means that the model can be interpreted in terms

of the speed of progression of a disease. An interpretation very appealing in the

biostatistics context .

For example, let there be a group of people assigned to a standard treatment

(S) and a group of people assigned to a new treatment (N). In the Accelerated Failure
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Time setting a subject assigned the new treatment will survive time multiple to the

time a subject assigned the standard treatment. Hence the probability that a subject

on the new treatment survives timepoint t is the propability that a subject on the

standard treatment survives timepoint t
φ

with φ a positive constant to be estimated .

Let SS(t) and SN(t) be the survival functions of the subjects in the standard

and new treatment respectively. Then:

SN(t) = SS(
t

φ
).

The interpretation of φ is the effect of the new treatment in the timescale. How

much it ”slows” or ”speeds up” time for a subject on the new treatment so if φ < 1

we need to avoid the new treatment since it ”speeds up” time .

From the relasonship between the hazard, survivor and probability density functions

we get that :

fN(t) = φ−1fS(
t

φ
).

and

hN(t) = φ−1hS(
t

φ
),

with φ > 0. A natural generalisation would be to write the parameter φ in the same

way done in the Relative Risk setting :

φ = eni

with

ni = α1x1i + α2x2i + · · ·+ αpxpi

the linear component of the model.
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So the model is naturally generalised to handle richer data and becomes:

hN(t) = e−nihS(
t

eni
),

with xij: the value of the ith explanatory variable Xi for the jth individual. Baseline

hazard function is handled as in Relative Risk models with the only difference being

that we have more options if we choose the parametric path.

Writing the model in the log-linear scale:

log(Ti) = µ+ α1x1i + · · ·+ αpxpi + σep

where µ, σ, ei a location parameter, a scale parameter and a random variable of a

particular distribution used to model the deviation of log(Ti) from the linear part of

the model.

Consider the survival time of the ith subject:

Si(t) = Pr(Ti ≥ t) = Pr(exp(µ+ α′xi + σei) ≥ t),

with α′xi = α1x1i + α2x2i + · · ·+ αpxpi the linear component of the ith subject.

Hence:

Si(t) = Pr(Ti ≥ t) = Pr(exp(µ+ σei) ≥
t

exp(α′xi)
)

and the baseline survival function(x = 0) is :

S0(t) = Pr(exp(µ+ σei) ≥ t) ⇒

⇒ Si(t) = S0(
t

exp(α′xi)
),

which is the survivor function for the ith subject with acceleration factor exp(α′xi).
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Using the log-linear formulation of the model in the survival function for the

ith subject we obtain :

Si(t) = Pr(Ti ≥ t) = Pr(log(Ti) ≥ log(t)) = Pr(µ+α1x1i+· · ·+αpxpi+σep ≥ log(t)) =

= Pr(ei ≥
log(t)− (µ+ α1x1i + · · ·+ αpxpi)

σ
) = Sei(

log(t)− (µ+ α1x1i + · · ·+ αpxpi)

σ
)?.

Using the relationship of the survivor and hazard function :

hi(t) =
1

σt
hei(

log(t)− (µ+ α1x1i + · · ·+ αpxpi)

σ
).

Usefull results that will be used in the estimation process .

Estimation of Accelerated Failure Time models

Baseline hazard function is handled as in Relative Risk models with the only differ-

ence being that we have more options if we choose the parametric path.

Accelerated Failure Time models are fitted using full likelihood approach

with the same way parametric Relative Risk models do.Baseline hazard function is

handled as in Relative Risk models with the only difference being that we have more

options if we choose the parametric path.

Let t1, t2, . . . , tn be the n observed survival times.The likelihood function is :

L(α, µ, σ) =
n∏
i=1

[fi(ti)]
δi [Si(ti)]

1−δi ,

where fi, Si and δi the same as in the Relative Risk model.

From ? we have :

Si(ti) = Sei(
log(t)− (µ+ α1x1i + · · ·+ αpxpi)

σ
)
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and differentiating with respect to t we obtain :

fi(ti) =
1

σti
fei(

log(t)− (µ+ α1x1i + · · ·+ αpxpi)

σ
).

Let zi =
log(t)−(µ+α1x1i+···+αpxpi)

σ
.

The likelihood function then becomes :

L(α, µ, σ) =
n∏
i=1

(σti)
−δi [fei(zi)]

δi [Sei(zi)]
1−δi .

And the log-likelihood :

`(α, µ, σ) =
n∑
i=1

[−δi log(σti) + δi log(fei(zi)) + (1− δi) log(Sei(zi)].

Maximum likelihood estimates of the parameters µ, σ, α1 . . . and αp are obtained

using Newton-Rhapson procedure.

2.7.1 Residuals

Assume an acceletated failure time model for Ti in the log-scale :

log Ti = µ+ α1x1i + · · ·+ αpxpi + σei.

with µ, σ, ei, αi, Ti, i = 1, 2, 3 . . . , p unknown parameters as above. If the survival

time is censored the corresponding residual is also censored.

We will proceed in the formulation of the martingale residuals, since martingale

residuals are used in the diagnostics of the joint models :

Standardised residual The standardised residual is defined as :

rSi =
log ti − µ̂− α̂1x1i − · · · − α̂pxpi

σ̂
,
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with ti the observed survival time of the ith individual and µ̂, α̂i, σ̂ j = 1, 2, . . . , n

the estimated parameters.

If the model is correct, the estimated survivor function of the residuals would

be similar to the survivor function of ei,Sei(e).

Hence if the model is correct, − logSei(rSi) will have a unit exponential distribution

since − logSei(e) has the unit exponential distribution.

Cox-Snell Residuals The estimated survivor function for the ith subject in an

accelerated failure time model is given by the equation:

Ŝi(t) = Ŝei(
log ti − µ̂− α̂1x1i − · · · − α̂pxpi

σ̂
),

with Sei(e), µ̂, σ̂ and α̂i for i = 1, 2, 3, . . . , p defined as above.

The Cox-Snell residuals are difined as :

rCi = Ĥi(ti) = − log Ŝi(ti),

with Ĥi(ti) the estimated hazard fuction for the ith subject and Ŝi(ti) at ti the esti-

mated survivor function at ti.

These residuals have a unit exponential distribution when the model is correctly

specified. Cox-Snell residuals are closely related to standardised residuals since :

rCi = − logSei(rSi).

Martingale residuals Martingale residuals measure the difference between the

observed number of deaths and the predicted by the model number of deaths in any
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given interval (0, ti) for the ith subject. Observations with large martingale residuals

are not well fitted by the model. Martingale residuals are defined as :

rMi
= δi − rCi ,

with δi being the event indicator for the ith subject as defined above. Techniques of

handling martingale residuals will be discussed in the Residuals section of the joint

model.

2.8 Competing Risks Model

In the past section standard models of survival analysis have been presented.

These models are used to quantify the contribution to the risk for an event of exoge-

nous covariates. In all of the above models, subjects are considered to be at risk of

a certain event. What if a subject is at risk of more than one types of events?

That is when a Competing Risks model is appropriate.The defining feature of

a Competing Risks model is that it can handle more than one type of events which

are mutually exclusive. For example a patient is at risk of death from more than one

different causes. The basic idea behind a Competing Risks model is to run k different

Proportional Hazards models for the ith patient given that he is alive at timepointt.

These generate the so called Cause Specific hazard fuction for every type of event :

hk(t) = lim
δt→0
{Pr(t ≤ T < t+ δt,K = k|T ≥ t)

δt
},

Hence the Cause Specific survival function is :

Sk(t) = exp(−
∫ t

0

hk(u)du).
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Although Cause specific quantities are easily interpretable the corresponding quan-

tities are difficult to describe as a probability.

At this point basic knowledge required to formulate a Joint model for Longi-

tudinal and Survival is covered and it is time to proceed in the formulaton of this

broad class of models.

In the next chapter we proceed in a step by step formulation of a Joint model

as well as presenting some of the extensions proposed in the literature along with

their respective attributes and drawbacks.
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Chapter 3

Joint Models for Longitudinal and

Survival data

The Extended Cox model is only appropriate for handling exogenous time de-

pendent covariates. When primary interest rests in the association between endoge-

nous time dependent covariates and the risk for an event a Joint Model for Longitu-

dinal and Survival data would be the appropriate model choice.

The idea behind these models is to couple the survival model with a suitable

model for the repeated measurements of the endogenous covariate that will account

for its special features. Our aim in the formulation of a Joint model is to measure

the association of a longitudinal marker which is our endogenous covariate and the

risk for an event.

A natural way to proceed is to make a two part model with a longitudinal and

a survival submodel in which the longitudinal submodel will be plugged in the sur-
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vival submodel. That way the correlation between the longitudinal responses will be

carried inside the survival model. As a result, risk for an event will be personalized

to every patient and so will confidence intervals or predictions.

Joint models can vary, from really simple to very complicated and compution-

ally expensive. At first a standard simple Joint model will be presented, then we will

work our way to more rich and sophisticated Joint models by presenting extensions

in a step by step fashion.

There are two main classes of Joint models, the first distinguishes every subject

from the rest by including random effects in the hazard function, the second not

only distinguishes subjects from one another but induces dynamic in the way every

subject behaves in time. This is achieved through the use of a Gaussian process

on top of the random effects in the hazard fuction. Although a lot richer, a model

with a Gaussian process in its survival function becomes extremely computionally

demanding and difficult to interpret. The tradeoff between richness and complexity

is common in every statistical model and Joint models are no exception.
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3.1 Notation

We begin by denoting the standard quantities used in the formulation of a

Joint model:

Ti : observed event time.

T ∗i : true event time.

Ci : minimum of the potential censoring time.

δi : event indicator as denoted earlier.

yi(t) : the observed value of the longitudinal marker of the ith patient at time-

point t. Observations are taken at prespecified specific time occasions tij.

mi(t) : The true unobserved value of the longitundinal marker for the ith sub-

ject at timepoint t.

Mi(t) = {mi(s), 0 ≤ s < t} : The history of the true unobserved longitudinal

process up to timepoint t.
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3.2 The Survival Submodel

We assume that the true value of the longitudinal marker mi(t) is never ob-

served. What we observe is a measurement of the true value which is contaminated

by measurement error yi(t). Association between mi(t) and the risk for an event is

being quantified by a relative risk model of the form :

hi(t|Mi(t), wi) = lim
dt→0

Pr(t ≤ T ∗i < t+ dt|T ∗i ,Mi(t), wi)/dt =

= h0(t) exp(γTwi + αmi(t)), t > 0,

where h0(·) denotes the baseline risk function and wi is a vector of baseline co-

variates with γ the corresponding vector of regression coeficients. Parameter α is

the strength of the association of the longitudinal outcomes to the risk for an event,

hence exp(α) denotes the relative increase in the risk for an event for one unit in-

crease in mi(t) at time t. As in the Relative Risk model exp(γi) is the change in

ratio of hazards for one unit change in wij at timepoint t.

The model assumes that the risk for an event at time t depends only on the

current true value of the longitudinal marker mi(t), something that does not hold

for the Survival function.

Using the known relation between hazard and survival fuctions we have :

Si(t|Mi(t), wi) = Pr(T ∗i > t|Mi(t), wi) = exp(−
∫ t

0

h0(s) exp(γTwi + αmi(s))ds).

which implies that the survival function depends on the whole history of the true

longitudinal marker Mi(t).
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As a final step in the formulation of the survival submodel we need to choose

the formulation of the baseline risk function. One choice is to leave h0(t) completely

unspecified in order to avoid misspecification. Such an approach will lead to un-

derestimation of the standard errors of the parameters of the joint model (Hsieh et

al., 2006), an issue that will be addressed later. Another option is to assume strict

parametric form and to use one of the appropriate distributions pressented in the

Analysis of Time to Event data section. A third and more preferable option would

be to use parametric but flexible specification for the baseline hazard function. Such

options are step-functions , linear splines, quadratic trends, higher order polynomial

splines or regression splines as in the standard Relative risk Model.

Choosing the third path will usually improve model fit significantly but will give

rise to new parameters to be estimated. This can cause a very standard phenomenon

in statistical analysis called overfitting. Overfitting is the production of an analysis

that corresponds too closely or exactly to a particular dataset and may therefore

fail to fit additional data or predict future observations reliably and occurs when

we use more parameters in our model than the data justify. We should always keep

balance between bias and variance in order to avoid overfitting. As a rule of thumb

we keep the total number of parameters in the linear predictor and in the baseline

risk function combined between 1/10 and 1/20 of the total number of events (Harrell,

2001, Section 4.4). After the number of knots has been decided their location is based

on the precentiles of the observed times or only the true event times.
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3.3 The Longitudinal Submodel

The aim of the longitudinal submodel in the Joint modeling setting is to suc-

cessfully estimate the true longitudinal responses of the subjects and to reconstruct

their complete true longitudinal history.

To achieve this we postulate a suitable Mixed-Effects model to describe the

subject specific features and the correlation between the measurements of the same

subject.

Assuming normally distributed outcomes, the longitudinal submodel takes the form:

yi(t) = mi(t) + ei(t)

mi(t) = xTi (t)β + zi(t)
T bi

bi ∼ N(0, D), ei ∼ N(0, σ2)

where:

xi : the fixed effects covariates (β).

zi : the random effects covariates (bi).

We assume that error terms are independent of each other, independent of the

random effects and normally distributed with mean zero and variance σ2 as in the

Linear Mixed Effects model. The mixed model accounts for the measurement error

through the random error term.

The time structure of xi(t), zi(t) allows us to account for subject individuality

and reconstruct each subjects complete longitudinal history, something needed for

the survival function. The idea behind the model is as said above to associate the
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true level of the longitudinal marker with the risk for an event.

The survival function depends on the whole history of the true longitudinal

marker, so for a good estimation of Si(t) we need to obtain a good estimate of Mi(t).

This requires a correct enough specification of the time structure in xi(t), zi(t) and

the possible interactions between baseline covariates and the time structure specified.

In applications that show highly non-linear longitudinal trajectories, flexible

structures of xi(t), zi(t) should be considered as high order splines, polynomials.

Splines generally are considered the better choice due to better numerical and natural

properties.

3.4 Estimation of Joint Models

In joint models two main strategies have been proposed for the estimation of

the parameters. First is the two stage approach (Self and Pawitan 1992), in which

the baseline risk function is left unspecified and the random effects are estimated first

using the least squares method. These estimates are then used to impute appropriate

values of mi(t) in the partial likelihood of the Cox model. This approach although

relatively easy to implement found to produce biased results in many instances due

to the existence of random terms (Dafni and Tsiatis 1998, Tsiatis and Davidian 2001,

Ye et al. 2008, and Sweeting and Thompson 2011).

The second approach, the one that we will be using, is semiparametric max-

imum likelihood which was first proposed by Wulfsohn and Tsiatis in 1997. Most
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modern Joint models adopt this approach although it makes the estimation process

more computionally demanding. Athough more computionally demanding we still

use semiparametric likelihood because estimators keep the asymptotic properties of

maximum likelihood, something really usefull for the construction of confidence in-

tervals and hypothesis testing.

We proceed in the formulation of the likelihood function. Let :

{Ti, δi, yi} : be the observed outcomes.

bi = (bi1, bi2, . . . , bip) : be the vector of the time-independent random effects.

We assume that the vector of the time-independent random effects underlies

both the longitudinal and the survival processes, hence accounts for both the associa-

tion between the longitudinal measurements and event outcomes ,and the correlation

between the repeated measurements.

We have :

Pr(Ti, δi, yi|bi; θ) = Pr(Ti, δi|bi, θ) Pr(yi|bi; θ),

where : Pr(yi|bi; θ) =
∏

j Pr(yi(tij)|bi; θ).

with θ = {θTt , θTy θTb }, the full parameter vector and

θt : parameters for the event time outcomes.

θy : parameters for the longitundinal outcomes.

θb : parameters for the random effects covariance matrix.
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We assume that given the observed history, the censoring mechanism and the

visiting process are independent of the true event times and the future longitudinal

measurements. Both assumptions are violated if either of the processes depend on

the random effects. In plain english these assumptions imply that subjects decide

to appear for a longitudinal measurement (or not) based only their observed his-

tory and not on prognosis (non-informateveness). Evaluating the plausibility of this

assumption (non-informativeness) for the visiting and censoring processes requires

external information since the data do not contain information that can challenge

this hypothesis.

Under these assumptions the log-likelihood for the ith subject is :

`(θ) = log(Pr(Ti, δi, yi; θ)) = log{
∫

Pr(Ti, δi, yi, bi; θ)dbi} =

= log{
∫
Pr(Ti, δi|bi; θt, β)[

∏
j

Pr(yi(tij)|bi; θy)] Pr(bi; θb)}dbi?,

with the conditional density for the survival part being :

Pr(Ti, δi|bi; θt, β) = hi(Ti|Mi(Ti); θt, β)δiSi(Ti|Mi(Ti); θt, β) =

= [h0(Ti) exp{γTwi + αmi(Ti)}]δi exp{−
∫ Ti

0

h0(s) exp{γTwi + αmi(s)}ds},

where h0 is specified with one of the approaches discussed above.

The second part inside the integral in ? is :

Pr(yi|bi; θy) Pr(bi; θ) =
∏
j

Pr(yi(tij)|bi; θy) Pr(bi; θb) =

= (2πσ2)−ni/2 exp{−||yi−Xiβ−Zibi||2/2σ2}×(2π)−qb/2 det(D)−1/2 exp{−bTi D−1bi/2},
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where qb : the dimensionality of the random vector and || · || the Euclidean norm.

The global maximum of `(θ) with respect to θ is achieved using Expectation-

Maximization, Newton-Rhapson or hybrid algorithms. An efficient algorithm that is

used consists of one or two steps of E-M and Newton-Rhapson until convergence. We

use a hybrid algorithm because E-M has exceptional performance in it’s first steps

but very poor performance near the global maximum. More on the exact scheme

used later (Appendix).

Rizopoulos in 2009 has noted that the key function in either approach is the

score vector which can be rewritten in the form :

S(θ) =
∑
i

∂

∂θT
log{

∫
Pr(Ti, δi|bi; θ) Pr(yi|bi; θ) Pr(bi; θ)dbi} =

=
∑
i

Pr(Ti, δi, yi; θ)
−1 ∂

∂θT

∫
{Pr(Ti, δi|bi; θ) Pr(yi|bi; θ) Pr(bi; θ)}dbi =

=
∑
i

Pr(Ti, δi, yi; θ)
−1

∫
∂

∂θT
{Pr(Ti, δi|bi; θ) Pr(yi|bi; θ) Pr(bi; θ)}dbi =

=
∑
i

∫
[
∂

∂θT
log{Pr(Ti, δi|bi; θ) Pr(yi|bi; θ) Pr(bi; θ)}]×

×Pr(Ti, δi|bi; θ) Pr(yi|bi; θ) Pr(bi; θ)

Pr(Ti, δi, bi; θ)−1
dbi =

=
∑
i

∫
A(θ, bi) Pr(bi|Ti, δi, yi; θ)dbi,

with A(θ, bi) = ∂{log(Pr(Ti, δi|bi; θ))+log(yi|bi; θ)+log(bi; θ)}/∂θT the complete data

score vector. The observed data score vector is the expected value of the complete

data score with respect to the posterior distribution of the random effects.
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If the score equations are solved with respect to θ and Pr(bi|Ti, δi, yi; θ) is fixed

at the value of θ of the previous iteration, this corresponds to a step of the E-M

algorithm. Whereas if the score equations are solved with respect to θ considering

Pr(bi|Ti, δi, yi; θ) as a function of θ this corresponds to direct maximization of `(θ).

This can be used to a straight forward calculation of the standard errors.

To do so, can directly use the observed data vector to calculate the Hessian

matrix and the standard errors using the observed information matrix.

We can rewrite the Hessian matrix as follows:

∂Si(θ)

∂θ
=

∂

∂θ

∫
A(θ, bi) Pr(bi|Ti, δi, yi; θ)dbi =

=

∫
∂A(θ, bi)

∂θ
Pr(bi|Ti, δi, yi; θ)dbi+

+

∫
A(θ, bi)

∂ Pr(bi|Ti, δi, yi; θ)
∂θ

dbi,

where : ∫
A(θ, bi)

∂ Pr(bi|Ti, δi, yi; θ)
∂θ

dbi =

=

∫
A(θ, bi)[

∂ logPr(bi|Ti, δi, yi; θ)
∂θ

]T Pr(bi|Ti, δi, yi; θ)dbi =

=

∫
A(θ, bi)[

∂{logPr(δi, Ti, |bi; θ) + logPr(yi|bi; θ) + logPr(bi; θ)}
∂θ

−

−∂ logPr(Ti, δi, bi; θ)

∂θ
]T Pr(bi|Ti, δi, yi; θ)dbi =

=

∫
A(θ; bi){A(θ, bi)− Si(θ)}T Pr(bi|Ti, δi, yi; θ)dbi.

However, in practice it is easier to use a numerical derivative routine such as

forward or central difference approximation n (Press et al., 2007) and calculate the
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Hessian matrix using the function that computes the score vector. After I(θ) is es-

timated, standard errors can be computed: Var(θ) = {I(θ̂)}−1.

where : I(θ̂) = −
∑n

i=1
∂Si
∂θ
|θ=θ̂.

The observed information matrix is preferable to the expected one due to

dropout that is caused from the occurence of an event though.

3.4.1 Standard errors with unspecified baseline risk function

In Cox models, partial likelihood can be used even when h0(t) is left completely

unspecified. On the other hand, in the Joint modeling framework the random effects

force us to use the full likelihood approach. When full likelihood approach is used

it is preferable to choose a parametric form for h0(t), or a flexible semi paramet-

ric form as discussed in earlier chapters. That is because, when we define a Joint

model with an unspecified risk function, the calculation of the likelihood is based on

non-parametric likelihood arguments under which the unspecified cumulative base-

line hazard function H0(t) =
∫ t

0
h0(s)ds is replaced by a step function with a jump

at every event timepoint (van der Vaart, 1998). That makes the parameter vector θ

of really high dimensionality, something that implicates the inversion of the Hessian

matrix.

If plots strongly suggest that h0(t) needs to be left completely unspecified

though,we use the following estimator from the M-step of the EM algorithm :

h0(t) =
n∑
i=1

δiI(Ti = t)∑n
i=1 I(Ti = t)

∫
exp{γ̂Twj + α̂mj(t, b)}Pr(bi|Ti, δi, yi; θ̂)dbi

,
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where Pr(bi|Ti, δi, yi; θ̂) the posterior distribution of the random effects. This estima-

tor is a function of h0(t) (through Pr(bi|Ti, δi, yi; θ̂)) for this reason standard errors

for the remaining parameters that are based on the profile score vector

S(β, σ, γ, α, ˆS0(t)) =
∂

∂θT−h
`p(β, σ, γ, α, ˆS0(t)),

where `(·) is the profile likelihood and will be underestimated. Bootstrapping can

be used to overcome this issue (Hsieh et al. 2006), but the computional cost usually

outweights the benefits .

3.4.2 Computional Issues

The main reason Joint models are not yet widely used, is the two integrals that

arise in their likelihood. Usually these integrals don’t have analytical solutions and

as a result require numerical approximation. First, the integral with respect to time

in the definition of the survival function :

∫ t

0

h0(s) exp{γTwi + αmi(s)}ds.

This is the least demanding of the two, since it is always unidimentional. It

can be efficiently approximated using the 7 or 15 point Gauss-Kronrod rule (Press

et al 2007).

The second integral is the integral with respect to the random effects in the

specification of the score vector :

∫
∂{log Pr(Ti, δi|bi; θ) + log Pr(yi|bi; θ) + log Pr(bi; θ)}/∂θT Pr(bi|Ti, δi, yi; θ)dbi.

This integral is multidimensional, when the number of random effects in the

Joint model is small, it can be approximated using Gaussian quadrature rules and
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Monte Carlo sampling. When random effects increase in number though its dimen-

sionality increases and approximation becomes extremely challenging (Wulfsohn and

Tsiatis, 1997; Henderson et al., 2000; Song et al., 2002)(Appendix).

Rizopoulos in 2012 proposed an approach that significantly decreases the com-

putional burden of the approximation and is based on the adaptive Gauss-Hermit

rule(Appendix) by exploiting the properties of the posterior distribution of the ran-

dom effects.We first need to determine the mode b̂i and second order derivative matrix

Ĥi. To do so , we first write the density in the log-scale and we have :

log Pr(bi|Ti, δi, yi; θ) ∝
ni∑
j=1

log Pr{yi(tij)|bi; θy}+ log Pr(bi; θb) + log Pr(Ti, δi|bi; θt, β).

As ni increases the leading term is the logarithm of the density of the linear

mixed model, log Pr(yi|bi; θy) =
∑

j log Pr{yi(tij)}, which is quadratic in bi. Using a

variant of the Bayesian central limit theorem and under certain regularity conditions

we have:

Pr(bi|Ti, δi, yi; θ)
p→ N(b̃i, H̃

−1
i ),

where b̃i is the mode of log Pr(yi|b; θy) with re spect to b and H̃i = −∂2 log Pr(yi|b; θy)/∂b∂bT |b=b̃i .

This suggests that as ni increases, it is sifficient to re-center and re-scale the integrand

for each subject by utilizing only the information that comes from the mixed-effects

model for the longitudinal outcome.

In practice we first fit the linear mixed effects model for the longitudinal out-

come and extract b̃i, H̃−1. Then instead of the tranformation used in the adaptive

Gauss Hermit rule we recenter the integrand using the quantities extracted above.

Hence:
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E{A(θ, bi)|Ti, δi, yi; θ} =

∫
A(θ, bi) Pr(bi|Ti, δi, yi; θ)dbi ≈

≈ 2qb/2|B̃t|−1
∑
t1,..,tq

πtA(θ, r̃t) Pr(r̃t|Ti, δi, yi; θ) exp(||bt||2),

where r̃t = b̃i +
√

2B̃tbt with B̃i denote the Choleski factor of H̃i and θ̃y are the

maximum likelihood estimates of the linear mixed effects model. This relocation

procendure is implemented only once, hence the computional burden generated by

the relocation procendure of the adaptive Gauss Hermite rule is completely dropped.

This procendure also requires fewer quadrature points.
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3.5 Inference in Joint Models

3.5.1 Hypothesis Testing

Since Maximum likelihood approach has been implemented, the standard asymp-

totic tests such as Likelihood ratio test, Score test and Wald test are all directly

applicable for the test : H0 : θ = θ0 vs H1 : θ 6= θ0.

In particular :

Likelihood Ratio Test : Let θ̂0, θ̂ be the maximum likelihood estimates under

the null and the alternative hypothesis respectively. The test statistic is:

LRT = −2[`(θ̂0)− `(θ̂)].

Score Test : Let S(·) be the score function and I(·) be the information matrix

under the alternative hypothesis. The test statistic is:

U = S(θ̂0)T{I(θ̂0)}−1S(θ̂0).

Wald Test : Let θ̂0, θ̂ defined as above. The test statistic is:

W = (θ̂ − θ0)T{I(θ̂)}(θ̂ − θ0).

Under H0 the asymptotic distribution of all three tests is X2
p with p the pa-

rameters being tested. Likelihood ratio test is the most reliable although the most
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computionaly expensive. On the other hand the Wald test is the least compution-

ally demanding but the least reliable too. The Score test sits in the middle in both

computional intensity and reliability. These tests are viable only when the models

compared are nested. For non nested models information criteria are used as usual

(AIC,BIC).

If we want to check whether a random effect should be included in the model

or not, we set it’s value and all of the related quantities to its parameters in the

Covariance matrix to zero. The problem with that is that a diagonal element of the

Covariance matrix becomes zero,which is the boundary of it’s parameter space. In

this case none of the tests discussed above follow the X2
p distribution. As a practical

guideline, use of higher type I error is advised.

3.5.2 Confidence Intervals

Asymptotic Confidence intervals can be based on the Wald statistic :

[θ̂ ± 1.96ŝe(θ̂)].

Similarly Confidence intervals for the fitted values can be based on the asymp-

totic normal distribution of the Maximum Likelihood estimator. For example, for the

average longitudinal evolutions µ = Xβ in the longitudinal process we can construct

a Confidence Interval :

µ̂± 1, 96ŝe(µ̂)⇒

⇒ Xβ̂ ± 1, 96[diag{X ˆV ar(β̂)XT}].

X denotes the design matrix of interest and ˆV ar(β̂) the block of the Hessian matrix
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corresponding to β̂.

3.5.3 Estimation of Random Effects

In most ocassions we build a joint model to draw subject specific inference.

To achieve this, estimation of random effects is required. We will use a Bayesian

approach to estimate the random effects. At first we will compute their posterior

distribution and then we will derive an estimation using standard Bayesian procen-

dures.

Let Pr(bi; θ) denote the prior distribution of the random effects and Pr(Ti, δi|bi; θ) Pr(yi|bi; θ)

denote the conditional likelihood.

The posterior distribution takes the form:

Pr(bi|Ti, δiyi; θ) ∝
Pr(bi; θ) Pr(Ti, δi|bi; θ) Pr(yi|bi; θ)

Pr(Ti, δi, yi; θ)
∝

∝ Pr(bi; θ) Pr(Ti, δi|bi; θ) Pr(yi|bi; θ).

Which is not a multivariate normal distribution and has to be numerically computed.

As ni increases however, it converges to normal.

To describe the posterior distribution summary measures will be used. Namely

location measures that will be used are :

bi =

∫
bi Pr(bi|Ti, δi, yi; θ)dbi : posterior mean.

b̂i = argmaxb{log(bi|Ti, δi, yi; θ)} : posterior mode.
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Scale measures :

Var(bi) =

∫
(bi − bi)2 Pr(bi|Ti, δi, yi; θ)dbi : posterior variance.

Hi = {−∂
2 log(bi|Ti, δi, yi; θ)

∂bT∂b
|b=b̂i}

−1 : the posterior inverted Hessian matrix.

Estimation of the above is made with Empirical Bayes approach replacing θ with θ̂.

3.6 Missing Data

If the longitudinal outcome is of primary interest, the occurence of an event

usually corresponds to discontinuation of the longitudinal process. For example, a

subject dies, after the occurence of the event his longitudunal measurements cannot

be collected. Thus we can draw a connection between missing data and the longitu-

dinal process.

We first split the longitudinal data vector in two parts, the observed part, which

is the part until droppout : yoi = {yi(tij) : tij < T ∗, j = 1, 2, . . . , ni} and the missing

part, which is the part after droppout : ymi = {yi(tij) : tij > T ∗, j = 1, 2, . . . , n′i}.

The observed part cosinsts of measurements documented by the physician. The

missing part consists of measurements that would have been collected until the end

of the study had the event not occured. A grey arrea here forms when the event is

death. It may not seem reasonable to consider the values of the longitudinal outcome

after the event time. The Joint model though implicitly makes assumptions for the

complete longitudinal response vector, including observations that would have been

collected after the event or censoring. When this occurs, great caution is advised in

the interpretation of the results.
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We proceed to the formulation dropout process :

Pr(T ∗i |yoi , ymi ; θ) =

∫
Pr(T ∗i , bi|yoi , ymi ; θ)dbi =

=

∫
Pr(T ∗i |bi, yoi , ymi ; θ) Pr(bi|yoi , ymi ; θ)dbi =

=

∫
Pr(T ∗i |bi; θ) Pr(bi|yoi , ymi ; θ)dbi.

The third to fourth equality holds due to the conditional independence assumption.

The time to dropout depends on ymi through the posterior distribution of bi. This

corresponds to a Missing Not At Random mechanism. Under the simple random ef-

fects structure this missing mechanism implies that subjects that show steep changes

in their longitudinal trajectory may have different probability to dropout from the

subjects that do not. With α = 0 , if we condition the process upon the available

covariates we get that the dropout process does not depend on neither the missing

process not the observed longitudinal process. This coresponds to the Missing Com-

pletely At Random mechanism.

Under α = 0 there is no longer association between the two submodels. The

joint probability of the dropout and longitudinal processes can be factorized as:

Pr(Ti, δi, yi; θ) = Pr(Ti, δi; θt) Pr(yi; θy, θb) =

= Pr(Ti, δi; θt)

∫
Pr(yi|bi; θy) Pr(bi; θb)dbi.

Hence the parameters of the two submodels can be separately estimated. The param-

eters estimated under this setting are valid under the Missing At Random setting too.

Discontinuation also occurs due to censoring. We have assumed that the cen-

soring mechanism may depend on the observed history of the longitudinal responses
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but is independent of future responses. Hence censoring corresponds to MAR mech-

anism.

Additionally this class of models can handle intermittent missingness and at-

trition.To see this we need the log-likelihood of the observed data under the complete

data model. To derive this log-likelihood we integrate ymi out of the likelihood of the

complete data under the complete data model. The log-likelihood of the observed

data under the complete data model is :

`(θ) =
n∑
i=1

log

∫
Pr(Ti, δi, y

o
i , y

m
i ; θ)dymi =

=
n∑
i=1

log

∫∫
Pr(Ti, δi, y

o
i , y

m
i |bi; θ) Pr(bi; θ)dbidy

m
i =

=
n∑
i=1

log

∫
Pr(Ti, δi|bi; θ){

∫
Pr(yoi , y

m
i |bi; θ)dymi }Pr(bi; θ)dbi =

=
n∑
i=1

log

∫
Pr(Ti, δi|bi; θ) Pr(yoi |bi; θ) Pr(bi; θ)dbi.

Due to the assumption : Pr(Ti, δi, yi|bi; θ) = Pr(Ti, δi|bi; θ) Pr(yi|bi; θ), the miss-

ing longitudinal responses are only involved in the density of the longitudinal sub-

model.

Due to the assumption Pr(yi|bi; θ) =
∏

j Pr(yi(tij)|bi; θ), the longitudinal re-

sponses are conditionally independent on each other. Hence the integral on the

missing values can be dropped.

In this Section the standard Joint model was presented. Standard in the sense

that we use the standard option for the Survival submodel which is the Relative
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Risk model and the Linear Mixed Effects model for the Longitudinal submodel. As

said previously, a standard Joint model is appropriate when we want to explore

the association of the current true level of a longitudinal marker of a subject with

the risk for an event. This enables us to draw personalized inference and make

personalized predictions for every subject in a study. Although powerfull the Joint

model presented above makes very strong assumptions regarding the association

between the Longitudinal and the Survival process. The next section tackles some

of these assumptions by presenting ways to Extend the model.
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Chapter 4

Extensions of the Joint Model

The biggest advantage of the full likelihood approach in Joint modeling is it’s

extendability. When full likelihood approach is implemented the Joint model can

be extended to fit numerous occasions according to the problem and still have the

so desired asymptotic properties as they come with the use of the full likelihood

approach. In this section extensions of the standard Joint model presented above

are being presented.

There are two steps in the process of extending a Joint model. The first step

is to extend the Joint model in the sense that it handles the same type of data more

efficiently and the second is to extend it to handle richer data.

For example, we want to formulate a Joint model that is able to handle ex-

ogenous covariates in a study that has two types of hazard. As a first step we need

to extend our standard Joint model to handle exogenous covariates, then proceed to

extend the new model to handle multiple types of hazard.
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4.1 Extensions of the Standard Joint Model

In this section extensions of the standard Joint Model will be presented. As a

Standard Joint Model we define the Joint model presented in the previous section.

4.1.1 Reparametrization

The assosiation between the current level of the longitudinal marker and the risk

for an event is captured by parameter a. This can be very limiting in occasions and

a more general approach can be implemented. We first denote the vectors wi1, wi2.

These are vectors of the covariates, they can contain all or some of the covariates

and they can have some covariates in common.

We denote the risk for an event as :

hi(t) = h0(t) exp{γTwi1 + f(mi(t− c), bi, wi2;α)},

where : f(·) is a function of the true level of the longitudinal marker, the random

effects and extra covariates wi2.

Under this formulation α can denote a vector of association parameters instead of a

simple scalar

4.1.2 Including Factors

Sometimes the current risk for an event is dependent on a past value of the true

longitudinal marker. For example the smoking status of a patient 10 or 5 years

ago would be a more appropriate covariate to include in a lung cancer study than

the current smoking status. In this case the standard approach should not be able
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to come to logical conclusions. Lagged terms can be used to take account for this

feature.

The model becomes :

hi(t) = h0(t) exp{γTwi + αmi{max(t− c, 0)}}.

The model above takes the value of the longitudinal marker lagged by c time

units. We can further generalize the above model adding the slope of the longitudinal

marker in the survival submodel (Ye et al. (2008b)). This generilization is really

usefull in clinical trials since usually the risk for an event is often assosiated with

the speed at which a desease progresses. When for example a patient has a severe

worsening in his health condition, his longitudinal responses will usually reflect that,

the biggest the change in his condition, the biggest usually is the change in his

longitudinal marker levels. Hence a generalization like this will be really usefull in

this context.

The extended model is then formulated :

hi(t) = h0(t) exp{γTwi + α1mi(t) + α2m
′
i(t)}.

where : mi(t)
′ = d

dt
mi(t) = d

dt
{xTi β + αzTi bi}.

In the extensions disscused above, the effect of the true longitudinal marker, cur-

rent or lagged and the that of the slope is the same for all subgroups. This assumption

might be untrue as different subgroups might have features which interact differently

with their longitudinal marker. For example in a heart desease study suppose we

have some diabetic patients, we would probably want to include the interaction of

the longitudinal marker with diabetes as usually diabetic patients behave differently

than non-diabetic patients.
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To overcome this we can introduce interactions in the linear predictor. The model

becomes :

hi(t) = h0(t) exp{γTwi1 + αT{wi2 ×mi(t)}},

where : wi1 are the direct effects of the baseline covariates to the risk for an event

and wi2 are the interaction effects .

In the standard approach the risk for an event is associated with the current

true level of the longitudinal marker. We added lagged effects, interactions and the

effect of the slope of the longitudinal marker to the risk for an event. In practice

even a model with all these extensions can be restricting since in most deseases the

risk for an event depends on the history of the longitudinal response Mi(t).

As a first step towards this direction (Sylvestre and Abrahamowicz, 2009; Haupt-

mann et al., 2000; Vacek, 1997) proposed models that allow risk to depend on a

function of the longitudinal marker history.

One approach is to include in the linear predictor of the relative risk submodel

the integral of the longitudinal trajectory, representing the cumulative effect of the

longitudinal outcome up to time point t :

hi(t) = h0(t) exp{γTwi+ α

∫ t

0

mi(s)ds}.

As a step further we can adjust the integrand and multiply mi(t) with a chosen

weight function. There are several weight functions used but in practice any weight

function with good numerical properties can be used. A logical thing to consider

would be to use a function that places high weights to recent values and low weights

in longitudinal values further in the past. These integrals often do not have a closed

form, and need to be computed numarically.
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4.1.3 Exogenous Time-Dependent Covariates

The Standard Joint model approach accounts for endogeneiety as discussed

above. Exogeneiety is often an issue to be investigated too. Suppose we have a

multinational study on melanoma patients, we will need to take into account the

climate of the country every patients lives in as sunshine greatly affects the desease.

This can be in the form of, days with sunshine per year, town temperature or even a

dummy variable denoting the country the patient lives in. We can extend the relative

risk submodel to handle these situations just by including exogenous covariates in

an augmented term m∗i which takes the place of the longitudinal trajectory (endoge-

nous).

The new model is formulated :

hi(t) = h0(t) exp{γTwi+ αm∗i (t)},

where m∗i (t) includes endogenous and exogenous time-dependent covariates.

We proceed to the estimation process as usual and all the extensions presented

above can be applied. The only difference occurs in the calculation of the integral in

the definition of the hazard function. For computional reasons we expand as:

Si(t|Mi(t), wi) = exp{−
∫ t

0

hi(s)ds} =

= exp{−
Q∑
q=1

∫
Ωiq

h0(s) exp{γTwiq(s) + αmi(s)}ds}.

where {Ωiq, q = 1, 2, . . . , Qi} denote the time intervals during which the exogenous

time-dependent covariates wi(t) are assumed constant.
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4.1.4 Stochastic Process Models

There are situations where serial correlation between the longitudinal measure-

ments of a subject cannot be captured by the random effects. Our first action would

be to change the Covariance matrix of the errors. If serial correlation persists we can

add a Zero-mean Gaussian Process V (·) to capture the remaining serial correlation

(Henderson, Diggle, Dobson 2000).

The longitudinal submodel becomes:

yi(t) = mi(t) + V (t) + ei(t),

where V (t) is a stationary Gaussian process independent of bi that are used to

capture local deviations.

We denote that V (t) ∼ N(0, σ2
u) with Corr(V (t), V (t− u)) = exp(−|u|v/φ),where v

is fixed and φ is to be estimated.

This extension can be implemented along with any of the extensions presented

above and is incredibly powerfull when it comes to capturing serial correlation. This

is a very usefull feature and its biggest drawback, since the comptutional complexity

becomes too demanding at times.

In the standard approach the trajectory followed by each subject is dictated by

time-indepentent random effects alone. The intuitive interpretation is that the char-

acteristics of each subject are inherited and do not change over time. In applications

that show highly non-linear longitudinal trajectories or serial correlation that cannot

be captured by bi’s alone we can allow the random effects to vary over time with

the introduction of this Gaussian zero mean process . The features that distinguish

subjects from each other are now time dependent and hence are not inherited. This
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although a more rich and natural approach as subjects change through time is more

computionally demanding as the parameter space increases in dimensionality and

difficult to interpret.

The parameter space for each subject becomes (b0, b1, ..., bk, V1, ..., Vni) where

ni is the number of measurements taken from the ith subject. As the number of

measurements per subject increases the parameter space’s dimensionality increases

rapidly making it imposible to implement.

4.1.5 Accelerated Failure Time

When the proportionality assumption fails we can consider the use of the Accel-

erated Failure Time model. As presented in the first chapter, in Accelerated Failure

Time models predictors act multiplicatively on the failure time. In a sense predictors,

accelerate or decelerate time for the subject and hence the time for a event. There

are situations that an Accelerated Failure Time model is more appropriate than a

Relative Risk model. The same happens in the Joint modelling setting, there are

situations where the true level of the longitudinal marker alters the flow of time for

a patient. That is when we want to use an Accelerated Failure Time model as our

Survival submodel (Tseng et al. 2005).

In Accelerated Failure Time models we have log T ∗i = γTwi + σteTi , with σt a

scale parameter, γj the change expected in log failure time for one unit change in

the covariate wij and eit the error terms with standard options for the distribution

being the Normal,t or Extreme value.
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In order to incorporate time dependent covariates in this setting we let :

S0 ∼
∫ T ∗

0

exp{γTw + αm(s)}ds,

the baseline survival function be absolutely continuous.

The risk function for the ith subject takes the form :

hi(t|Mi(t), wi) = h0(Vi(t)) exp{γTw + αm(s)}?,

where Vi(t) =
∫ t

0
exp{γTw + αm(t)}ds. As we can see, the subject specific hazard is

assumed to be influenced by the entire covariate history, as h0(·) is evaluated at Vi(t).

The baseline hazard function can be specified according to the options presented

in the Accelerated Failure Time models section. An issue when introducing time-

varying covariates in AFT models is that interpretation becomes more complicated

because parameter α is involved in both terms in the right-hand side of ?. As a

general interpretation guideline we have that in the accelerated failure time models

setting the subject ages on Vi(t) acceleration compared to the baseline S0.

4.1.6 Generalized Linear Mixed Models

All the models presented until now attempt to quantify the association be-

tween a continuous longitudinal response or any of its features and the risk for an

event. Sometimes though we want to explore the association between a categorical

or a binary longitudinal response and the risk for an event. That’s when Generalized

Mixed Effects Models come in.

The idea is to formulate a Joint model by combining a Generalized Linear

Mixed Effects model with a Relative Risk model under the standard independence

assumptions. To do this we postulate two sepatare submodels as in the Linear

92



Mixed Models case with the only difference being that our longitudinal submodel is

a Generalized Linear Mixed Effects model.

The models is:

Pr(yi(t)|bi) = exp{
nj∑
j=1

[yijψij(bi)− c(ψij(bi))]/α(φ)− d(yij, φ)}

mi(t) = E(yi(t)|bi) = g−1{xTi β + ZT
i bi}

bi ∼ N(0, D)

hi(t) = h0(t) exp{γTwi1 + f(mi(t− c, bi, wi2;α))}

where h0 is the baseline hazard function, with the same options for it’s specification.

The interpretation for the vector of association parameters α under the different

parameterizations remains the same as it was explained in the previous sections. The

extensions presented in the sections above can be incorporated in the Generalized

setting.

Maximum likelihood approach is implemented for parameter estimation:

`(θ) =
n∑
i=1

∫
Pr(Ti, δi|bi; θ){

ni∏
i=1

Pr(yij|bi; θ)}Pr(bi; θ)dbi =

=
n∑
i=1

∫
[h0(Ti) exp{γwi1 + f(mi(Ti − c), bi, wi2;α)}]δi×

× exp{−
∫ Ti

0

h0(s) exp[γTwi1 + f(mi(s− c), bi, wi2;α)]ds}×

× exp{
ni∑
j=1

{yijψij(bi)− c[ψij(bi)]}/α(φ)− d(yij, φ)}×

×(2π)−qb/2det(D)−1/2 exp{−bTi D−1bi/2}dbi.
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A combination of numerical integration and maximization routines is used to find

the global maximum .

Another use of Generalized Linear Mixed Effects in Joint models is handling

non random dropout in discrete longitundinal responses (Pulkstenis et al., 1998;

Albert and Follmann, 2000; Albert et al., 2002) or investigating the association

structure between the categorical longitudinal process and the censored event time

data (Faucett et al., 1998; Rizopoulos et al., 2008; Yao, 2008; Li et al., 2010) .

4.2 Further Extending The Joint model

In the previous section extensions of the Standard Joint model have been

presented. In this section we further extend the Joint model making it able to

handle non-homogenous population, recurrent and multiple types of events. It is

worth mentioning that any of the extensions presented above can be applied to any

of the extensions that will be presented below as a part of a two step extension.

4.2.1 Stratified Relative Risk

We start with homogeneity in the population, an assumption usually not realistic.

For example, it is possible for women to be more prone to a disease than men.

We can extend the standard Joint model by altering the baseline hazard func-

tion for the different clusters of the population according to the feature we believe

makes them fall to a certain category .
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The survival submodel takes the form :

hi(t) = h0k(t) exp{γTwi + αmi(t)}.

with h0k(t) being the baseline hazard function for the kth stratum.

We can further generalize the model by altering the effect of the true level of

the longitudinal marker on the risk for an event for every stratum:

hi(t) = h0k(t) exp{γTk wi + αkmi(t)}.

in this model γk, h0k, αk all depend on the stratum of the subject.

To be able to use the Stratified Relative Risk extension we need to be able

to assign every member of the population in the study to a cluster, something not

always possible. Consider a quality that is not directly observable and has an effect

to the risk for an event. In this situation the clusters are not observable.

What can we do when the clusters are not observed? That is when a Latent

Class Model for the Survival submodel of the Joint model is appropriate.

4.2.2 Latent Class Models

Latent Class Joint Models (Proust-Lima et al., 2009; Lin et al., 2004, 2002) is

a class of models related to the Stratified Relative Risk models. This class of models

assumes that the heterogeneity of the population is latent and hence not captured

by any of the observed covariates. Assume that we have G subpopulations in our

population . Let ci = 1, ..., G be the class membership indicator of the ith subject.
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These models work under the following conditional assumptions :

Pr(Ti, δi, yi|ci = g, bi; θ) = Pr(Ti, δi|ci = g; θ) Pr(yi|ci = g, bi; θ)

Pr(yi|ci = g, bi; θ) =
∏
j

Pr(yi(tij)|ci = g, bi; θ).

In this class of models we assume that the random effects account for the

correlation between the repeated measurements and ci’s account for the association

between the longitudinal process and the survival process. This enables the use of

a more flexible association structure compared to the classical approach presented

until now.

The model is specified as:

hi(t|ci = g) = h0g(t) exp{γTg wi}

{yi(t)|ci = g} = xTi βg + Zibig + ei(t)

Pr(ci = g) =
exp{λTg ui}∑G
l=1 exp{λTl ui}

,

where : ei(t) ∼ N(0, σ2), big ∼ N(µg, σ
2
gD) and λT = (λ1, . . . , λG).

Patients are grouped up and groups are assumed to have different longitudinal

evolutions and different risks for an event. The Covariance matrix is typically as-

sumed to depend on ci only via the scalar variance parameter σ2
p.

The log-likelihood of the model is :

`(θ) =
n∑
i=1

log{
G∑
g=1

Pr(ci = g; θ)hi(Ti|ci = g; θ)δiSi(Ti|ci = g; θ)×

×
∫

[
∏
j

Pr(yi(tij)|ci = g, bi; θ)] Pr(bi|ci = g; θ)dbi} =
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=
n∑
i=1

log{
G∑
g=1

Pr(ci = g; θ)hi(Ti|ci = g; θ)δiSi(Ti|ci = g; θ) Pr(yi|ci = g; θ)}.

The integrals above can be computed in closed form. Pr(yi|ci = g, b) and

Pr(bi|ci = g) lead to a multivariate Gaussian distribution under the assumption of

normality, however `(θ) has multiple maxima which leads to the need to fit the model

many times with different number of classes, since the number of classes in not known

apriori.

4.2.3 Competing Risks

The techniques presented above try to capture the association between the true

longitudinal marker level (or history) and the risk for an event. What if we wanted to

distinguish the types of events that we anticipate happening? For example we have a

patient with one tumor in his lungs and heart desease. Chemotherapy greatly affects

the body of the patient and as a result his heart, so it would be standard to monitor

both risks for an event. We want to explore the association between a longitudinal

marker and the patients risk for death but also want to distinguish the risk induced

by cancer and heart desease. To handle such a situation we introduce the Competing

Risks model as an option for the survival submodel of the Joint model (Elashoff et

al. 2008).

Assuming k types of events, we let T ∗i1, . . . , T
∗
ik be the true occurence time

of these events for the ith subject, Ti = min{T ∗i1, . . . , T ∗ik, Ci} the observed event

time for the ith subject with Ci denoting censoring. Let δi ∈ {0, 1, . . . , K} with 0

corresponding to censoring and 1, . . . , K denoting the event type. For each of the k

cases we postulate a standard relative risk model in similar fashion to the standard
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approach so that we have:

hik(t) = h0k(t) exp{γTk wi + αkmi(t)},

with everything being the same as in the standard approach just for the kth case.

The longitudinal submodel remains unchanged so the likelihood becomes :

Pr(Ti, δi|bi; θt, β) =
K∏
k=1

[h0k(Ti) exp{γTk wi + αkmi(Ti)}]I(δi=k)×

× exp{−
K∑
k=1

∫ Ti

0

h0k(s) exp{γTk wi + αkmi(s)}ds}.

In a sense we have k different event types modeled with k different relative risk

models that only the first one to occur for every subject contributes to the likelihood

for the event occurence but all of them contribute for the time under risk.

4.2.4 Recurrent Events

Suppose that we want to quantify the association of the true level of a lon-

gitudinal marker with the risk for an event that is recurrent. Strokes for example.

Strokes are brain attacks, they occur when the blood supply to the brain becomes

blocked. A stroke is a medical emergency that needs immediate medical attention. If

we wanted to explore the association of a longitudinal marker with the risk of suffer-

ing another stroke we would use a Recurrent Events model for our survival submodel

of the Joint model ( Liu , Huang 2009). This class of models aims to capture the

association between the true level of a longitudinal marker and the risk for an event

of a recurrent event.
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We first distinguish events into two types, recurrent and terminal. Recurrent

events are events that will not kill the subject, in our example a Stroke that will

not kill the patient and terminal events are events that will kill the subject, in our

example a Stroke that will kill the subject. We then postulate two separate Relative

Risk models one of the recurrent and one for the terminal event.

Let Uik, k = 1, 2, 3, . . . , ki denote the recurrent event times for the ith subject.

dik : the indicator of the kth event for the ith subject.

Ti : the terminal event time for the ith subject with Ti = min(T ∗i , Ci) defined as

above.

where T ∗i : the true terminal event time for the ith subject.

Ci : the censoring time for the ith subject.

δi = I(T ∗i ≤ Ci) : the terminal event indicator for the ith subject.

We postulate two standard relative risk models, one for the recurrent event and

one for the terminal event :

ri(t) = r0(t) exp{γTr wri + αrmi(t) + vi}

hi(t) = h0(t) exp{γThwhi + αhmi(t) + ζvi},

where wri : the covariates affecting the risk for a recurrent event for the ith subject.

whi : the covariates affecting the risk for the terminal eventfor the ith subject.

γr : regression coefficients for a recurrent event.

γh : regression coefficients for the terminal event.

αr : the measure of strenght between the current level of the true longitudinal marker

and the risk for a recurrent event.

αr : the measure of strenght between the current level of the true longitudinal marker
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and the risk for the terminal event.

vi : a random effect that accounts for the correlation between recurrent events.

ζ : measure of strenght between recurrent and terminal event process .

The ri(t), hi(t), yi(t) are assumed independent given the {bi, vi}. Recurent event

times for subject i are assumed independent given vi. Longitudinal responses between

subjects are assumed independent given bi.

Formally :

Pr(Ti, δi, Ui, di, yi|bi, vi; θ) = Pr(Ti, δi|bi, vi; θ) Pr(Uik, dik|bi, vi; θ) Pr(yi|bi; θ),

with Pr(Ui, di|bi, vi; θ) =
∏

k Pr(Uik, dik|bi, vi; θ),

and Pr(yi|bi; θ) =
∏

j Pr(ytij |bi; θ)

where UT
1 = (Ui1, Ui2, . . . , Uik) and dT1 = (di1, di2, . . . , dik).

So the likelihood contribution of the ith subject is :

Pr(Ti, δi, yi; θ) =

∫
Pr(Ti, δi|bi, vi; θ) Pr(Uik, dik|; θ) Pr(yi|bi; θ) Pr(bi; θ)dbi

where :

Pr(Ti, δi|bi, vi, θt; β) = hi(Ti|Mi(Ti), ni; ζ, θt, β)δiSi(Ti|Mi, vi; ζ, θt, β) =

= [h0(Ti) exp{γThwi + αhmi(Ti) + ζni}]δi×

× exp{−
∫ Ti

0

h0(s) exp{γThwi + αhmi(s) + ζni}ds}.
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Pr(yi|bi; θy) Pr(bi; θb) =
∏
j

Pr(yi(tij)|bi; θy) Pr(bi; θb) =

= (2πσ2)ni/2 exp{−||yi −Xiβ − Zibi||2/2σ2}×

×(2π)−qb/2 det(D)−1/2 exp{−bTi D−1bi/2},

Pr(Uik, dik|vi; θ) =

Ki∏
k=1

[r0(Uik) exp{γTr wri + αrmi(Uik) + vi}]δik×

× exp{−
∫ Uik

0

r0(s) exp{γTr wri + αrmi(Uik) + vi}ds},

Pr(Uik, dik|; θ) =

∫
Pr(Uik, dik|vi; θ) Pr(vi; θ)dvi.

As a last step we need to specify an appropriate distribution for the nis. The

standard choice would be to assume that log(vi) ∼ Gamma with mean 1 and variance

σn. This choice leads to closed form for the marginal distribution of the event times

on the separate analysis context. The integral with respect to time becomes:∫ Uik

0

r0(s) exp{γTr wri + αTrmi(s) + vi}ds.

The integral with respect to vi doesn’t have an analytical solution and requires

numerical integration. This is a problem that we can overcome with reparametriza-

tion of the random effects :

ri(t) = r0(t) exp{γTr wri + αTr bi + vi}.

The integral with respect to time becomes :∫ Uik

0

r0(s) exp{γTr wri + αTr bi(t) + vi}ds =

= R0(Uik) exp{γTr wri + αTr bi(t) + vi},
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where R(·) is the baseline cummulative hazard funtion fot the recurrent event. This

leads to a marginal distribution of the recurrent event process specified as:

Pr(Uik, dik|ui; θ) =
Γ(di + θ)

σθvΓ(θ)

∏
k[r0(Uik) exp{γTr wri + αTr bi + vi}]dik

[θ +
∑

k R0(Uik) exp{γTr wri + αTr bi(t) + vi}]di+θ
,

with di =
∑

k dik and θ = 1
σv
.

Extensions of the Standard Joint model can be easily applied in the Recurrent

Events setting.

All the extensions presented above can be combined. This makes the Joint

model extremely versatile while holding its interpretability. It is the full likelihood

approach that enables us to do so. Although a liability at a first glance, as makes

the estimation process more complicated, full likelihood proves to be this methods

biggest attribute.
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Chapter 5

Diagnostics

As in every statistical model Analysis of residuals gives us insight on the correct-

ness of the model specification and for ways to better fit the data if some component

of the model is not correctly specified. In a Joint model every submodel has it’s own

residuals, hence we have the residuals for the longitudinal submodel and the residuals

for the survival submodel. For a Joint model to be correctly specified we need both

of these types of residuals to fulfill certain properties which will be presented bellow.

5.1 Residuals for the Longitudinal Submodel

There are two types of residuals for the longitudinal submodel, the subject

specific residuals and the marginal residuals.

Subject Specific Residuals The Subject Specific Residuals aim to validate as-

sumptions of the hierarchical version of the model :

Yi = Xiβ + Zibi + ei

103



bi ∼ N(0, D), ei ∼ N(0, σ2)

The Subject Specific Residuals are defined as:

rysi (t) = {yi(t)− xTi β̂ − ZT
i (t)b̂i},

where β̂ is the Maximum Likelihood Estimator and b̂i the empirical Bayes estimator.

The residuals are then standardised :

ryssi =
rysi (t)

σ̂

where σ̂ is the Maximum Likelihood Estimator of the Standard Error.

These residuals predict the conditional errors ei(t), and can be used for checking

the homoscedasticity and normality assumptions. White noise in the Residuals vs

Fitted plot implies correct model specification for the hierarchical version of the

model, the same does a diagonal for the Standardized Vs Theoretical Q-Q plot.

Marginal Residuals The main focus here is the Marginal model implied :

Yi = Xiβ + e?i

where e?i ∼ N(0, ZiDZ
T
i + σ2Ini). The residuals are defined as :

rymi = yi −Xiβ̂,

with the standardized version :

rysmi = V̂i
−1/2

(yi −Xiβ̂),

where V̂i = ZiD̂Z
T
i + σ2Ini is the estimated marginal Covariance matrix of yi.
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Marginal residuals predict Marginal errors (yi −Xiβ = Zibi + ei) that can be

used to check misspecification of the mean structure Xiβ and to validate the within

subject covariance matrix structure Vi. White noise in the Residuals vs Fitted plot

implies correct model specification for the mean, the same does a diagonal for the

Standardized Vs Theoretical Q-Q plot.

The marginal survival function can be derived by integrating out the random terms

bi and can be estimated using the approximation presented below:

S(t) =

∫
Si(t|bi; θ̂) Pr(bi; θ̂)dbi ≈ n−1

∑
Si(t|b̂i; θ)

and therefore the estimation for the marginal cumulative hazard function is:

H(t) = − log(S(t)).

These quantities are usually being plotted to get an overall idea about the

behaviour of the sample.

5.2 Residuals for the Survival Part

Two types of residuals from the ones that are being presented in the first chapter

will be used :

� Martingale Residuals

� Cox-Snell Residuals

Martingale Residuals for the Survival Part

The first type of residuals that is being used for the survival part is the Mar-

tingale residuals. The Martingale residual for the ith subject is:

rtMi (t) = Ni(t)−
∫ t

0

Ri(s)hi(s|M̂i(s); θ̂)ds =
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= Ni(t)−
∫ t

0

Ri(s)ĥ0(s) exp{γ̂Twi + α̂m̂i(s)}ds,

where Ri(t) is left continuous, Ri(t) = 1 if the ith subject is at risk and Ri(t) = 0

otherwise.

Ni(t) is the counting process for the ith subject.

ĥ0(t), the estimated baseline hazard function and m̂i(s) = xTi (s)β̂ + zTi (s)b̂i.

Martingale residuals rtMi (t) can be viewed as the difference between the

observed number of events and the expected by the model number of events at any

given time t. This type of residuals are mainly used for identification of excess events

and evaluation the functional form for a covariate of interest in the model.

Under certain conditions, the scatterplot of martingale residuals from a model

versus a predictor of interest can reveal it’s true functional form. Our predictor of

interest is the longitudinal outcome so we will plot the martingale residuals against

the subject specific fitted values of the longitudinal outcome. A null horizontal line

implies that the functional form chosen in the model is correct.
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5.2.1 Cox-Snell Residuals for the Survival Part

The second type of residuals that is being used for the survival part of the Joint

model is the Cox-Snell residuals. These are calculated as the value of the estimated

cumulative risk function for the ith subject evaluated at his observed event time Ti :

rtcsi (t) =

∫ Ti

0

hi(s|M̂i(s); θ̂)ds =

=

∫ Ti

0

ĥ0(s) exp{γ̂wi + α̂m̂i(s)}ds,

hence : rtcsi = Ni(Ti)− rtMi .

When the assumed Joint model fits the data well S(t) ∼ U(0, 1) ⇒ H(t) =

− log(S(t)) ∼ Exp(1).

As a result we can check for model fit by plotting rtcsi against the unit expo-

nential distribution. An issue with this approach arises when Ti is censored and as a

result the corresponding residual is censored. To overcome this issue we check good-

ness of fit by comparing the survival function of the unit exponential distribution

against the Kaplan-Meyer estimate of the survival function of the rtcsi . Deviation of

the two functions implies weak data fit .
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5.3 Residuals and Dropout

Most of the time in the Joint modeling setting a systematic trend in the resid-

uals of the Joint model is observed even if the model specification is correct. The

reason this happens is that the dropout mechanism is non random. The implica-

tion of the nonrandom nature of the dropout mechanism is that the observed data,

upon which the residuals are calculated, do not constitute a random sample of the

target population. In the process described until now we analyse only the observed

data and this usually leads to misleading diagnostics plots. To overcome this issue

we augment the data with randomly imputed data under the complete data model,

corresponding to the longitudinal outcome of the patients had they not dropped out

(Rizopoulos et al. 2010).

The procendure is carried out as follows :

1) Missing values are filled in, M times to generate M datasets.

2) The complete datasets are being analyzed and parameters are being estimated

using standard methods for the Joint modelling setting.

3) Results from the M analyses are combined to produce a single estimation and

draw inference.

One important question that arises in the procendure described above is when

these missing measurements took place. To adress this problem we will construct

a suitable model for the visiting process and use it to generate ”visit times” after

dropout.
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5.3.1 The visiting process

We assume that all subjects visit at least once and we let uik where (k =

2, 3, . . . , n) denote the time elapsed between visit k − 1 and k for the ith subject.

Let Y ?
i be the complete longitudinal responce vector. Under the above and the

non-informativeness assumption we have:

Pr(uik|ui2, . . . , ui(k−1), Y
?
i ; θu) = Pr(uik|ui2, . . . , ui(k−1), yi(t1), . . . , yi(tk−1); θu),

where θu is the parameter vector of the visiting process and {θ, θu} have disjoint

parameter spaces,

uTi = (ui2, . . . , uini) are the times elapsed between each visit and are correlated for

each patient.

We need to fully specify Pr(uik|ui1, . . . , ui(k−1), yi(t1), . . . , yi(tk−1); θu), hence a

conditional model is appropriate.

We will use a Weibull model with a multiplicative Gamma distribution frailty term

defined as:

λ(uik|xui, wi) = λ0(uik)wi exp{xTuiγu},

where, wi ∼ Gamma(σw, σw) ,

λ(·) : the risk function conditional on the frailty term wi,

xui: the covariate vector that may or may not contain a functional form of yi(ti1), . . . , yi(ti(k−1)),

γu: the regression coefficient vector,

λ0(·) : baseline risk function (Weibull)

σ−1
w : the unknown variance of the wi’s,

tmax: the end of the study,
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We use this model because it best trades off richness for computional complex-

ity and the posterior distribution of the frailty term, given the observed data, is of

standard form . We will use the scheme above to generate times between visits in

the multiple imputation algorithm.

5.3.2 Multiple Imputation in Joint Models

Let : yo be the observed and ym the missing longitudinal responce vector.

We will be multispampling from the posterior distribution of ym given the observed

data averaged over the posterior distribution of the parameters.The density for this

distribution can be expressed as:

Pr(ymi |yoi , Ti, δi) =

∫
Pr(ymi |yoi , Ti, δi; θ) Pr(θ|yoi , Ti, δi)dθ,

with:

Pr(ymi |yoi , Ti, δi; θ) =

∫
Pr(ymi |yoi , Ti, δi, bi; θ) Pr(bi|yoi , Ti, δi; θ)dbi =

=

∫
Pr(ymi |bi; θ) Pr(bi|yoi , Ti, δi; θ)dbi,

where δu,ik is the event indicator that corresponds to uik.

For the posterior distribution of the parameters given the observed data, we

use arguments of standard asymptotic Bayesian theory and assume that the size

is again sufficiently large for {θ|yoi , Ti, δi} to be approximated by N(θ̂,Var(θ̂)) and

for {θu|yoi , Ti, δi} to be approximated by N(θ̂u,Var(θ̂u)). θ̂, θ̂u,Var(θ̂),Var(θ̂u) are the
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maximum likelihood estimators and their corresponding variances respectivelly.

The idea behind the scheme is simple and standard in Bayesian Statistics.

In Step 1 we draw the θ and θu,θ will be used to draw from the poterior dis-

tribution of the random effects and θu will be used to draw a visiting time. Their

distribution is normal so we can draw them using a standard Gibbs scheme.

In Step 2 we draw the frailty terms and the random effects. Frailty terms have

a Gamma distribution so we can again draw them using a Gibbs sampler. The distri-

bution of the random effects is not known though so a Metropolis-Hastings algorithm

needs to be implemented.

In Step 3 we draw the next visit time. Then we draw a longitudinal outcome

on that time if it is before the timepoint that the study ends .The distributions of the

ui and yis are Weibull and Normal respectively so we can again use a Gibbs sampler .

When Gibbs sampler is used, the update mechanism is straightforward. For

the Metropolis-Hastings algorithm in order to generate the b
(`)
i s, we propose from

idependent multivariate t distribution, centered at b̂i, with scale matrix : V̂ar(β̂i)

and four degrees of freedom.

The simulation scheme is :
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Step 1:

Draw : θ(`)
u ∼ N(θ̂u, V̂ar(θ̂u))

Draw : θ(`) ∼ N(θ̂, V̂ar(θ̂))

Step 2:

Draw : w
(`)
i ∼ Gamma(σ(`)

w , σ(`)
w )

If the subject visits more that once then:

Draw : w
(`)
i ∼ Gamma(A,B)

Where : A = σ`w +

ni∑
k=2

δu,ik, and B = σ(`)
w + φ(`)

ni∑
k=2

u
ψ(`)
ik exp(xTuiγ

(`)
u )

Draw : b
(`)
i ∼ {bi|yoi , Ti, δi, θ(`)}

Step 3 : Draw : u
(`)
i ∼Weibull{ψ(`), φ(`)w

(`)
i exp(xTuiγ

(`)
u )}

Set : t̃i = u
(`)
i + tini

Where tini is the last observed visit time for the ith subject.

If : t̃i > tmax then no ymi generation .

Else , set: m
(`)
i (t̃i) = xTi (tini)β̂

(`) + zTi (t̃i)β̂
(`) and

draw: y
m(`)
i (t̃i) ∼ N(m

(`)
i (t̃i), (σ̂

(`))2)

Set tini = t̃i and repeat until tini > tmax for all i.
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If Pr(uik|ui2, . . . , ui(k−1), Y
?
i ; θu) = Pr(uik|ui2, . . . , ui(k−1), yi(t1), . . . , yi(tk−1); θu),

is violated the models does not provide valid inferences.

A stronger and more plausible assumption is :

Pr(uik|ui2, . . . , ui(k−1), Y
?
i ; θu) = Pr(uik|ui2, . . . , ui(k−1), yi(tk−1); θu),

and

Pr(uik|ui2, . . . , ui(k−1), Y
?
i ; θu) = Pr(uik|yi(tk−1); θu),

which implies that the doctor decides the next visit time , based on the last mea-

surement.

5.3.3 Distribution of Random Effects

The final assumption we need to check is that of the distribution of the random

effects. The non-random dropout makes the joint model sensitive to misspecification

of the random effects. Semi-parametric techniques have been proposed in order to

make the specification more flexible and widen our choices, something that comes at

a great computional cost. It has been proven though by Rizopoulos et al. 2008 and

Huang et al. 2009 that as ni increases the effect of distributional misspecification

diminishes and hence the model becomes robust, a very usefull result as big data is

becoming common in clinical research studies.
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Chapter 6

Prediction

One of the main reasons we build a statistical model is to make predictions.

In the Joint modeling setting predictions produced are personalized and dynamic.

Dynamic in the sense that predictions for every subject are time dependent, as time

passes by and new information arise the model uses this information and updates its

prediction. Personalized in the sense that every subject has its own distinct predic-

tion for the longitudinal response and every survival quantity of interest.

Prediction in Joint models consists of two parts, Predictions for the Survival

Probabilities of the subjects and Predictions for the Longitudinal Outcomes of the

subjects. Quality of the predictions will be assesed based on Receiver Operating

Characteristic (ROC) discrimination measures which will be presented too.
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6.1 Predicting the Survival Probability

Let Dn = {Ti, δi, yi, i = 1, 2, . . . , n}, Yi(t) = {yi(s) : 0 ≤ s < t} and wi be the

baseline covariates vector for the ith patient.

As presented above yi(t) is directly related to the failure mechanism so it would

be reasonable to focus on the conditional probability of survival beyond a timepoint

u > t given survival until t. We integrade with respect to the random effects as

usual and we get (conditioning on the covariates wi is assumed but omitted from the

notation):

π(u|t) = Pr(T ?i ≥ u|T ?i > t, Yi(t), wi, Dn; θ?) =

=

∫
Pr(T ?i ≥ u|T ?i > t, Yi(t), bi; θ) Pr(bi|T ?i > t, Yi(t); θ)dbi =

=

∫
Pr(T ?i ≥ u|T ?i > t, bi; θ) Pr(bi|T ?i > t, Yi(t); θ)dbi =

=

∫
Si{u|Mi(u, bi, θ); θ}
Si{t|Mi(u, bi, θ); θ}

Pr(bi|T ?i > t, Yi(t); θ)dbi,

where Mi is the longitudinal history as estimated by the linear mixed effects model

with the Empirical Bayes estimates being used for the random effects.

θ∗ : the true parameter values.

S(·) : the Survival function.

We estimate the conditional probability of survival beyond u > t given survival

until t as:

π̂(u|t) =
Si{u|Mi(u, b̂

(t)
i , θ̂); θ̂}

Si{t|Mi(t, b̂
(t)
i , θ̂); θ̂}

+O([ni(t)]
−1),
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where θ̂ is the vector with the maximum likelihood estimations of the fixed effects,

b̂
(t)
i the mode of the posterior distribution of the bi conditioned on survival until time-

point t and ni(t) the number of the logitudinal responses by time t for the ith patient.

The estimator above works really well but implications arise when trying to

derive it’s standard error and hence the construction of confidence intervals. In order

to overcome this issue, a Markov Chain Monte Carlo algorithm can be used.

The posterior expectation of π(u|t) can be derived as :

Pr(T ?i ≥ u|T ?i > t, Yi(t), Dn) =∫
Pr(T ?i ≥ u|T ?i > t, Yi(t); θ) Pr(θ|Dn)dθ.

The fist part of the integrand as shown above is given by:

Pr(T ?i ≥ u|T ?i > t, Yi(t), Dn) =

=

∫
Si{u|Mi(u, b̂

(t)
i , θ̂); θ̂}

Si{t|Mi(t, b̂
(t)
i , θ̂); θ̂}

+O([ni(t)]
−1).

We assume that n is sufficient enough for the {θ|Dn} to be approximated by

N(θ̂,Var(θ̂)}. Using these results we can postulate simulation scheme to estimate

π(u|t) :
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Step 1:

Draw : θ(`) ∼ N(θ̂,Var(θ̂))

Step 2:

Draw : b
(`)
i ∼ {bi|T ?i > t, Yi(t); θ

(`)}

Step 3:

Compute : π
(`)
i (u|t) ∼ Si{u|Mi(u, b

(`)
i , θ

(`)); θ(`)}
Si{t|Mi(t, b

(`)
i , θ

(`)); θ(`)}

with ` = 1, 2, . . . , L. We are using b`i , θ
` to account for the Bayes estimates and

Maximum Likelihood uncertainty .

In Step 2 the bis are being drawn using a Metropolis-Hastings algorithm with

independent proposals from the Student-t distribution with four degrees of freedom

centered at the Empirical Bayes estimates b̂
(t)
i and scale matrix:

V̂ar(b̂
(t)
i ) = {−∂2 log Pr(T ?i > t, Yi(t), b; θ̂)/∂b

T∂b|b=b̂i(t)}
−1.

The point estimates used are median and mean and noted as π̃i(u|t).
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6.2 Predicting the Longitudinal outcome

Sometimes prediction of the longitudinal responce is of interest. In most cases

when the level of the longitudinal response exceeds a certain threshold a differect

treatment should be implemented or the risk for an event becomes too high. That

makes a prediction of the longitudinal responce very valuable. Such predictions can

be estimated in similar fashion as the predictions for the survival process. Predic-

tions are again dynamic and personalized.

Suppose subject i is alive at timepoint t and we want to predict the value of

his longitudinal outcome at timepoint u > t given his longitudinal history Yi(t):

wi(u|t) = E(yi(u)|T ?i > t, Yi(t), Dn; θ?)

The parameter θ? is unknown so we proceed as above:

E(yi(u)|T ?i > t, Yi(t), Dn) =

=

∫
E(yi(u)|T ?i > t, Yi(t); θ) Pr(θ|Dn)dθ,

where :

E(yi(u)|T ?i > t, Yi(t); θ) =

=

∫
E(yi(u)|T ?i > t, Yi(t), bi; θ) Pr(bi|T ?i > t, Yi(t); θ)dbi =

=

∫
E(yi(u)|bi) Pr(bi|T ?i > t, Yi(t); θ)dbi =

=

∫
(xTi (u)β + zTi (u)bi) Pr(bi|T ?i > t, Yi(t); θ)dbi = xTi (u)β + zTi (u)b̃ti,

where b̃ti =
∫

Pr(bi|T ?i > t, Yi(t); θ)dbi.
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Although the estimator of wi(u|t) is obtained by replacing θ with θ̂ and calcu-

lating the mean of the posterior distribution of the random effects the same problem

arises as above. To overcome this issue we construct an MCMC algorithm to simu-

late a sample from which we can compute point estimates and construct confidence

intervals.

Again we assume the sample sufficiently large sample in order for {θ|D} to

be approximated by a normal distribution centered at θ̂ with covariance matrix

V̂ar(θ̂) = {I(θ̂)}−1 the inverse or the observed information matrix.

The simulation scheme is :

Step 1:

Draw : θ(`) ∼ N(θ̂,Var(θ̂))

Step 2:

Draw : b
(`)
i ∼ {bi|T ?i > t, Yi(t); θ

(`)}

Step 3:

Compute : w
(`)
i = xTi β

(`) + zTi b
(`)
i

Steps 1,2 are simulated as in the algorithm used for the prediction of the

conditional probability of survival and are used to account for the variability in θ̂,b̂
(t)
i .
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Step 3 calculates the predicted value of the longitudinal outcome yi(u). Confidence

intervals can be derived using the 2.5th and 97.5th percentile of the {w(`)
i (u|t), ` =

1, 2, . . . , L}. The scheme can be modified to produce prediction intervals. To achieve

this we substitute the w
(`)
i = xTi β

(`) + zTi b
(`)
i in Step 3 with w

(`)
i ∼ N(xTi β

(`) +

zTi b
(`)
i , [σ

(`)]2). Estimations can be derived instead using the mean or the median of

the sample ganarated by the scheme.

6.3 Assessing Prediction Accuracy

Different models and parametrizations wield different predictions. The problem

that arises is: Which model do we choose for prediction assessment?

There are two factors that affect the quality of a prediction, first is the ca-

pacity of the longitudinal marker to predict future events and second the correct

formulation of the Joint model in order to reveal the true predictive performance of

the longitudinal marker. Studies have shown that although prediction for the longi-

tudinal outcome is somewhat stable as the model changes, the same is not true for

the prediction of the survival probability. Information criteria and likelihood ratio

tests are always available, these methods rank the model fit but not the predictive

potential of the model. A standard method for assessing how well the longitudi-

nal marker can discriminate between patients with high and low probability is the

Receiver Operating Characteristic (ROC).
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6.3.1 The Receiving Operating Characteristic Curve

The Receiving Operating Characteristic Curve (ROC-Curve) is used to visual-

ize the tradeoff between clinical sensitivity and specificity for every possible tresshold

set.

Let di be the desease status of patient i where di = 1 if the patient is deseased and

di = 0 otherwise.

Let yi be the longitudinal response.

We set an arbitrary thresshold c where if yi > c the subject is considered diseased.

The probability of a true positive (correct classification of a diseased patient) is:

TP (c) = Pr(yi > c)|di = 1)

with : Pr(yi > c)|di = 1) = 1− FP (c).

where : FP (c) = Pr(yi > c|di = 0).

We call TP sensitivity and 1-FP specificity.

The ROC-Curve is the plot of Sensitivity against 1- Specificity for all possible levels

of c formally defined as :

ROC(p) = TP{FP−1(p)}

where : FP−1(p) = infc{c : FP (c) ≤ p} and p ∈ [0, 1].

A summary of the predictive accuracy of the model for all the possible thressh-

old values is given by:

AUC =

∫ 1

0

ROC(p)dp

which in the area under the ROC(p) curve. AUC will be between zero and unity.

Higher levels of AUC indicate higher predictive accuracy of the model.
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6.3.2 Discrimination Measures for Survival outcomes

Following the rationale presented in the section explaining the ROC-Curve we

view the event as a time dependent binary outcome. A plethora of methodologies

have been proposed but the idea behind them is the same so one of them is presented.

Let Ni(t) = I(t ≥ T ?i ) be the counting process of the true event times.

we denote:

TPC
t (c) : Pr(yi > c|T ?i ≤ t), and

1− FPD
t (c) : Pr(yi ≤ c|T ?i > t).

At any given timepoint t the entire population is classified as either a case or a con-

trol according to their event status. Control for t < T ?i and case for t ≤ T ?i .

Sensitivity measures the fraction of diseased subjects among the patients that suf-

fered an event at time t. Specificity measures the fraction of non deseased subjects

among those who survive time t.

In order to assess the predictive capability of the model we compute TPC
t (c)

and FPD
t (c) and draw to coresponding ROC-Curve. As a last step we compute the

AUC and compare it to the AUCs of the other model candidates.

6.3.3 Discirimination Measures for the Longitudinal marker

It would be usefull for us to be able to assess the value of a prediction for the

longitundinal marker as correct prediction of the longitudinal marker can lead us to

information about the future risk for an event of a subject.
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Following the notation used above, let: PS
i (t, k, c) = {yi(s) ≥ cs; k ≤ s ≤ t} be

the instances at which the marker indicates that an event will occur (success) and

Pf
i (t, k, c) = Rr(k,t)/{yi(s) ≥ cs; k ≤ s ≤ t} be the instances at which the marker

indicates that an event will not (failure), where r(k, t) is the number of longitundinal

measurements taken in [k, t].

The rule upon which we treat an outcome or a set of outcomes as a sucess

should be based upon a phisicians suggestion. Rules are usually based upon the

behaviour of the specific desease. Rules can be simple or not.

We denote :

TP∆t
t (c) = Pr{PS

i (t, k, c)|T ?i > t, T ? ∈ (t, t+ ∆t]; θ?}

and

1− FP∆t
t (c) = Pr{Pf

i (t, k, c)|T ?i > t, T ?, Ti > t+ ∆t; θ?}.

Sucesses and failures are not only time dependent, they are also dependent

on the lenght of the interval. We proceed in the construction of the ROC-Curve as

usual:

ROC∆t
t (p) = TP∆t{[FP∆t]−1}

where [FP∆t]−1} = infc{c : [FP∆t](c) ≤ p}. Again we compute the AUC and

compare it to the AUCs of other model candidates.

6.3.4 Overall Discrimination

The measures presented above help us rank models based on their ability to

predict an event or the longitundinal outcome for a patient. The main goal of this

section is to assess a measure that helps us choose a model based on its overall
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predictive potency. The measure that will be used can be seen as an extension of

the AUC in the binary context.

For two subjects {i, j} whose true event times are ordered Ti < Tj we are interested

in : cn = Pr(yi > yj|T ?i < T ?j ).

It has been shown that cn =
∫∞

0
AUCtu(t)dt where u(t) = 2p(t)S(t) and AUCt =

Pr(yi > yj|T ?i = t, T ?j > t) .

6.3.5 Discrimination under the Joint modelling framework

As with the residuals ,censoring complicates the estimation of sensitivity, speci-

ficity and AUC in the survival setting because if we want to estimate the sensitivity

for example at time t but the subject was censored in timepoint t′ < t, we cannot

know if the subject is case or control. So the counting process cannot be carried

through.

To overcome this issue we need to estimate the distribution of {T ?i , yi} some-

thing that can be done in the joint modeling framework with the use of a MCMC

algorithm.

We denote :

Pr{PS
i (t, k, c)|T ?i > t, T ? ∈ (t, t+ ∆t]; θ?} =

=
Pr{PS

i (t, k, c), T ? ∈ (t, t+ ∆t]|T ?i > t; θ?}
1− Pr{T ?i > t, T ? ∈ (t, t+ ∆t]; θ?}

where θ? the true parameter vector. For the numerator :

Pr{PS
i (t, k, c), T ? ∈ (t, t+ ∆t]|T ?i > t; θ?} =

=

∫
Pr{PS

i (t, k, c), T ? ∈ (t, t+ ∆t]|T ?i > t, bi; θ
?}Pr{bi|T ?i > t; θ?}dbi =
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=

∫
Pr{PS

i (t, k, c)|bi; θ?} × Pr{T ? ∈ (t, t+ ∆t]|T ?i > t, bi; θ
?} × Pr{bi|T ?i > t; θ?}dbi.

where:

Pr{PS
i (t, k, c)|bi; θ?} =

t∏
s=k

Φ{cs −mi(s, bi, β
?)

σ?
}

Pr{T ? ∈ (t, t+ ∆t]|T ?i > t, bi; θ
?} = 1− Si{t+ ∆t|Mi(t+ ∆t, bi); θ

?}
Si{t|Mi(t, bi); θ?}

and for the denominator we have :

Pr{T ?i > t+∆t|T ?i > t; θ?} =

∫
Pr{T ?i > t+∆t|T ?i > t, bi; θ

?}Pr{bi|T ?i > t; θ?}dbi =

=

∫
Si{t+ ∆t|Mi(t+ ∆t, bi); θ

?}
Si{t|Mi(t, bi); θ?}

Pr{bi|T ?i > t; θ?}dbi.

So let :

ε1(bi; θ) = [
t∏

s=k

Φ{cs −mi(s, bi, β
?)

σ?
}][1− Si{t+ ∆t|Mi(t+ ∆t, bi); θ

?}
Si{t|Mi(t, bi); θ?}

]

and

ε2(bi; θ) =
Si{t+ ∆t|Mi(t+ ∆t, bi); θ

?}
Si{t|Mi(t, bi); θ?}

with respect to Pr{bi|T ?i > t; θ?}. We should note that this posterior distribution is

not the same as the one used in the derivation of the conditional survival probabili-

ties or in the predictions for the longitudinal outcome.

So if we want to construct an algorithm similar to the ones we constructed

above for prediction, first we need to express Pr{bi|T ?i > t; θ?} in terms of Pr{bi|T ?i >

t, Yi(t); θ
?}.

Pr{bi|T ?i > t; θ?} ∝ Pr{T ?i > t|bi; θ?}Pr{bi; θ?} =

=

∫
Pr{T ?i > t, Yi(t)|bi; θ?}Pr{bi; θ?}dYi(t) =
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=

∫
Pr{Yi(t)|bi; θ?}Si{t|Mi(t, bi); θ

?}Pr{bi; θ?}dYi(t).

We assume the sample sufficiently large so that {θ|Dn} is approximated by a

normal distribution centered at θ̂ with covariance matrix V̂ar(θ̂).

So the scheme is :

Step 1:

Draw : θ(`) ∼ N(θ̂,Var(θ̂))

Step 2:

Draw : Y
(`)
i (t) ∼ {N(xiβ

(`) + Zib
(`−1)
i , [σ(`)]2)

Step 3:

Draw : b
(`)
i ∼ {bi|T ?i > t, Y

(`)
i (t), θ(`)}

Step 4:

Compute : ε1(b
(`)
i ; θ(`)), ε2(b

(`)
i ; θ(`))

In Steps 1,2 and 4 distributions are known so Gibbs sampler is used .In Step 3

we again use the Metropolis-Hastings approach.

The sensitivity estimate takes the form:

P̂r{PS
i (t, k, c)|T ?i > t, T ? ∈ (t, t+ ∆t]; θ?} =

∑
` ε1(b

(`)
i ; θ(`))

L− ε2(b
(`)
i ; θ(`))

.
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With the corresponding standard error estimated using the Monte Carlo stan-

dard errors of ε1(b
(`)
i ; θ(`)) , ε2(b

(`)
i ; θ(`)) and the Delta Method:

s.e(P̂r{PS
i (t, k, c)|T ?i > t, T ? ∈ (t, t+ ∆t]; θ?}) =

= {gV gT}1/2

where:

g = L[1/{1−
∑

ε2(b
(`)
i ; θ(`))},

∑
` ε1(b

(`)
i ; θ(`))

L− ε2(b
(`)
i ; θ(`))

]

and

vech(V ) = L−1[Var{ε1(b
(`)
i ; θ(`))},Cov(ε1(b

(`)
i ; θ(`)), ε2(b

(`)
i ; θ(`))),Var{ε2(b

(`)
i ; θ(`))}].

Specificity can be estimated according to the same rationale. Having sensitiv-

ity and specificity estimated we can draw the ROC-curve and compute the AUC

without any problem.
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Chapter 7

Numerical Results

What follows is an implementation of the procendure presented in the Chapters

above in a simple simulated dataset. The aim is purely educational, for that reason

certain assumptions have been made that are not realistic in a real life scenario.

The dataset consists of two parts , the longitudinal part and the survival part.

The longitudinal part comes in twelve columns. Id is the id of the patient, y is

the longitudinal measurement at the time denoted in the time column. Intercept is

a quantity equal across all patients. Ctsxl denotes a baseline measurement for every

patient and hence is equal for rows with the same id. Binxl is binary and serves the

purpose of treatment. In the survtimel column we can find the survival time of each

patient. In the Cens column we have binary observations that denote whether the

event was censored or not and finally Event is binary and denotes whether an Event

has hapened between current and the next scheduled measurement time. Measure-

ment times are fixed and discrete.

The survival part of the data consists of the columns id, survtimel,cens and

binxl. Patients with survival time less that 0.001 have been omited for two reasons,
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first , in order to make the dataset more realistic and second, for computional stability

reasons. In Figures 7.1 and 7.2 one can find a small sample of the two parts of the

data.

Figure 7.1: Sample of the Longitudinal part of the data.

Figure 7.2: Sample of the Survival part of the data.

Our strategy will be to first fit the longitudinal and the survival part separately,

this will help us extract the starting values of the parameters in the estimation scheme
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for the Joint model. This strategy also enables us to prevent possible errors in the

Joint model selection process. For example , if an int-slope model is the appropriate

choice for the longitudinal part of the model, this will be clear when we fit the

longitudinal part of the data separately.

As a first step we choose 4 patients at random and plot their longitudinal

trajectory against time :

Figure 7.3: Y measurements of four random patients.

Looking at Figure 7.3, it is clear that the data have a linear upward trend. It

is also clear that the starting point (intercept) and the slope is differs from patient

to patient. Hence at first glance the ideal model choice seems to be a Linear Mixed

Effects model with random intercept and slope.
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In Figures 7.4 and 7.5 we plot the longitudinal trajectories of patients grouped

up according to their treatment status.

Figure 7.4: Binxl=0.

Figure 7.5: Binxl=1.

A difference in pattern between Figure 7.4 and Figure 7.5 is evident, this sug-

gests that we need to include Binxl in our longitudinal model.
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Keeping this in mind we proceed in a forward model selection. With BIC as

guide we select a Mixed effects model with Fixxed effects: time, ctsxl and binxl and

Random effects: intercept and slope. In figure 6 one can find the model output.

Figure 7.6: Binxl=1.

All selected parameters are statistically significant as p-value=0 for every pa-

rameter. The value of Binxl is 4.43 something that suggests a very strong connection

between treatment and longitudinal measurement.

We proceed with the survival submodel. We first plot the Survival Probability

for the two groups. As shown in Figure 7.7, the two curves neither do cross nor are

parallel, so a Proportional Hazards model would probably be the appropriate choice.
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Figure 7.7: Survival Probability for the two groups.

We postulate a Cox Proportional Hazards model with a Weibull baseline risk

fuction. In Figure 7.8 one can find the output of the model. We included binxl and

ctsxl, both are statistically significant with coefficients 3.83 and 3.85 respectively.

Hence the risk contribution for a patient in treatment is exp 3.83 and exp 3.85 for a

unit change in ctsxl.

Figure 7.8: Output of the survival model.
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At this point we have both, longitudunal and survival submodels well defined

and we are ready to postulate our Joint model. The Joint model will include every

parameter in the two submodels plus the association parameter α. This parameter

quantifies the contribution of the true longitudinal marker in the risk for an event.

One can find the Joint model output in Figure 7.9.

Figure 7.9: Output of the Joint Model.

As we can in Figure 9 all parameters are statistically significant. The associa-

tion parameter α is statistically significant, this implies the need of a Joint model.

If α was not statistically significant, that would mean that we do not need a Joint

model. There is a slight difference in parameter estimation between separate estima-
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tion and Joint model estimation, we expected this since binxl parameter is included

in both submodels. Estimation was achieved with the scheme presented earlier, with

5 quadrature points.

Figures 7.10,7.11 and 7.12 contain samples of the posterior mode, covariance

matrix and inverse Hessian matrix respectively.

Figure 7.10: Sample of posterior modes.

Figure 7.11: Sample of covarience matrices.
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Figure 7.12: Sample of inverse Hessian.
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We proceed with the model diagnostics. Diagnostics procendure is similar to

the diagnostics procendure in standard Survival analysis, the main diffence is that

we expect the model to produce biased results since there dataset is incomplete by

nature with the MNAR mechanism.

We start by plotting every martingale residual against its fitted value. If the

model is correctly specified we expect the lowess smoother to be a null horizontal

line. Figure 7.13 shows deviation of the lowess smoother, this is due to the omission

of some of the patients.

Figure 7.13: Martingale Residuals.

We proceed by plotting subject specific residuals against their fitted values and

subject specific residuals for the two treatment groups, again a null horizontal line
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implies correct model specification. Deviation from a null horizontal line is again

observed.

Figure 7.14: Subject specific residuals .

As a last step we plot the Kaplan-Meyer estimate of the Cox-Snell residuals. If

the Kaplan-Meyer estimate of the Cox-Snell residuals is close to the unit exponential

distribution, this implies strong model fit.

Diagnostics show that model fit is not ideal, this is due to the fact that some

observations have been ommited. In real life problems part of the data will be missing

data, this will result in diagnostics like the above even if the model specification is

correct. To overcome this issue, we multiply impute the dataset according to the
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Figure 7.15: Subject specific residuals for the two treatment groups .

imputation schemes presented in the earlier chapters.
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Figure 7.16: Kaplan-Meyer estimate for the Cox Snell Residuals .
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Further Reading

This was a brief presentation of Joint models for Longitudinal and Survival data.

In the last few years Joint models have come under the spotlight, new techniques

and procendures have been explored. Steps towards robust analysis, sensitivity anal-

ysis and numerical stability have been explored as these issues keep Joint models

from being widely applicable. The inclusion of multivariate longitudinal responses

have been made with exceptional results. Furthermore, new choices of models have

emerged as fully Bayesian models and even Deep neural Networks have beed utilized

with good results. One who wants to seek further information about Joint models is

advised to follow one of these paths.
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Appendix A

Appendix

In this section technical information about the scheme used to maximize the log

likelihood of Joint models is presented.

A.0.1 The E-M algorithm

The Expectation-Maximization (E-M) is an iterative algorithm used for maximum

likelihood estimation in incomplete data problems .The idea behind the EM algo-

rithm is that the log-likelihood corresponding to the complete data is typically much

simpler to maximize, often in close form. To take advantage of this feature, the al-

gorithm iterates between two steps: the Expectation (E) step and the Maximization

(M) step. In the E-step we fill in the missing data and we replace, in fact, the log-

likelihood of the observed data with a surrogate function which is then maximized

in the M-step. This replacement creates the need for the algorithm to be iterative

because the reconstruction of the missing data in the E-step is bound to be slightly

wrong if the parameters do not already equal to their maximum likelihood estimates.

Briefly the algorithm proceeds as follows :
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Let Y denote the complete data vector.

Let Y o denote the observed part of the data vector.

Let Y m denote the missing part of the data vector.

Our aim is to estimate the parameters θ of the complete data model, but using

only the observed information. In the E-step we compute the expected value of the

complete data log-likelihood:

Q(θ|θit) = E{log Pr(y; θ)|yo; θit} =

=

∫
log{Pr(yo, ym; θ) Pr(ym|yo; θit)dym,

and in the M-step we update the parameters by :

θ(it+1) = argmaxQ(θ|θ(it)).

At each iteration E-M leads to increase of the observed data likelihood (Dempster

et al. 1977) i.e., log{Pr(yo; θit+1) ≥ log{Pr(yo; θit+1) and avoids wildly overshooting

or undershooting the maximum of the likelihood along its current direction of search.

Another great advantage of the E-M algorithm is its numerical stability. However,

an important drawback of the EM is its slow rate of convergence in a neighborhood

of the maximum point. We will slide over this drawback by using the Newton -

Rhapson algorithm for the final iterations of our maximization.
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A.0.2 E-M for Joint models , E-step

We will illustrate the use of the EM algorithm to derive the maximum likelihood

estimates of the standard joint model, all extensions presented above can be incor-

porated.

In particular, we consider the model:

hi(t) = hi(t) exp(γTwi + α{xTi β + zTi (t)bi}),

yi(t) = xTi β + zTi bi + εi(t)

bi ∼ N(0, D), εi(t) ∼ N(0, σ2),

where θ = (θTt , θ
T
y , θ

T
b )T , with θy = (θT , σ2)T , θt = (γT , α, θTh0)

T , θh0 denoting

the parameters in the baseline risk function and θb = vech(D).

To apply EM in the Joint models we treat random effects as missing data. In

particular, our aim is to find the parameter values that maximize the observed data

log-likelihood by maximizing the expected value of the complete data log-likelihood

instead :

Q(θ|θ(it)) =
∑
i

∫
log Pr(Ti, δi, yi, bi; θ) Pr(bi|Ti, δi, yi; θ(it))dbi =

∑
i

∫
{log Pr(Ti, δi|bi; θt, β) + log Pr(yi|bi; θy)+

+log Pr(bi; θb)}Pr(bi|Ti, δi, yi; θ(it)).

the integral with respect to the random effects as well as the integral with respect

to time in the definition of the survival function involved in term Pr(Ti, δi|bi; θt, β)
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do not have closed-form solutions therefore numerical integration procedures must

be employed, such as Gaussian quadrature rules or Monte Carlo sampling.

A.0.3 E-M for Joint models , M-step

Due to the fact that the complete data log-likelihood is split into three parts,

maximization of Q(θ|θ(it)) with respect to θ involves three pieces in which the pa-

rameters on interest appear. The following expressions required in the specification

of the M-step are presented using the integrals with respect to time and the ran-

dom effects. For the actual calculation of these expressions, these integrals need to

be approximated with the methods mentioned in the Numerical Integration section.

More specifically, for the measurement error variance in the longitudinal measure-

ment model and the covariance matrix of the random effects are updated in the

M-step according to the closed-form expressions

σ̂2 = N−1
∑
i

∫
(yi −Xiβ − Zibi)T (yi −Xiβ − Zibi) Pr(bi|Ti, δi, yi; θ)dbi =

= N−1
∑
i

(yi −Xiβ)T (yi −Xiβ − 2Zib̃i) + tr(ZT
i Ziũbi) + b̃Ti Zib̃i,

D̂ = n−1
∑
i

ũbi + b̃ib̃
T
i ,

where N =
∑

i ni, b̃i = E(bi|Ti, δi, yi; θ(it)) =
∫
bi Pr(bi|Ti, δi, yi; θ(it))dbi and ũbi =

V ar(bi|Ti, δi, yi; θ(it)) =
∫

(bi−b̃2
i ) Pr(bi|Ti, δi, yi; θ(it))dbi. Under the above formulation

of the joint model, we cannot obtain closed-form solutions of the score equations for

the fixed effects β and the parameters of the survival submodel θt. Thus, for these

parameters the M-step is implemented via a one-step Newton-Raphson update :
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β̂(it+1) = β̂(it) − {∂S(β̂(it))/∂β}−1S(β̂(it)),

θ̂(it+1) = θ̂(it) − {∂S(θ̂(it))/∂θ}−1S(θ̂(it)),

where β̂(it), θ̂(it) denote the parameter values at each iteration and ∂S(β̂(it))/∂β, θ̂(it))/∂θ

denote the corresponding blocks of the Hessian matrix, evaluated at β̂(it), θ̂(it) respec-

tively. The components of the score vector corresponding to β and θt have the form

S(β) =
∑

XT
i {yi −Xiβ − Zib̃i}/σ2 + αδixi(Ti)−

− exp(γTwi)

∫ ∫ Ti

0

h0(s)αxi(s) exp[α{xTi (s)β + zTi (s)bi}]

×Pr(bi|Ti, δi, yi; θ)dsdbi,

S(γ) =
∑
i

wi[ δi − exp(γTwi)

∫ ∫ Ti

0

h0(s) exp[α{xTi (s)β + zTi (s)bi}]×

×Pr(bi|Ti, δi, yi; θ)dsdbi ],

S(α) =

∫
i

δi{xTi (Ti)β + zTi (Ti)b̃i}−

− exp(γTwi)

∫ ∫ Ti

0

h0(s) exp[α{xTi (s)β + zTi (s)bi}]×

×Pr(bi|Ti, δi, yi; θ)dsdbi,
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S(θh0) =
∑
i

δi
∂h0(Ti; θh0)

∂θTh0
−

− exp(γTwi)

∫ ∫ Ti

0

∂h0(s; θh0)

∂θTh0
exp[α{xTi (s)β + zTi (s)bi}]×

×Pr(bi|Ti, δi, yi; θ)dsdbi.

The corresponding blocks of the Hessian matrix, respectively, can be computed

using a central difference approximation (Press et al., 2007, Section 5.7).
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