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The current dissertation analyzes the Bayesian unit root tests in autoregressive pro-
cesses as an alternate to the classical autoregressive unit root tests. The Bayesian ap-
proach to unit root testing was mainly motivated by the power and size distortions
of the classical tests under the Dickey-Fuller distribution. Initially, basic principles
and theory concerning time series and Bayesian analysis are introduced which are
then followed by the structure of the classical autoregressive tests and the Dickey-
Fuller distribution. The subsequent chapter is devoted to the methods applied in
the Bayesian unit root testing. Simulation results and conclusions based on two
Bayesian methods are finally reported.
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Chapter 1

Time Series - Basic Concepts

1.1 Time Series as a stochastic process

A time series is a collection of random variables {Xt} recorded in chronological or-
der. Such a collection is called a stochastic process. If the collection of the random
variables is continuous, the time series is said to be continuous. If the collection is
discrete, the time series is said to be discrete.

The distributional properties of a time series are completely described by the
joint distribution function, F(Xt1 , Xt2 , ..., Xtn), for any positive integer n and for any
subset (t1, t2, ..., tn) of T, where T is an infinite set of time.

1.2 Stationarity

The stationarity of a time series arises from the similar statistical properties of {Xt, t =
0,±1,±2, ...} and {Xt+h, t = 0,±1,±2, ...}.

Definition 1.2.1. (Strict stationarity) A {Xt} process is said to be strictly stationary
if

FXt1 ,Xt2 ,...,Xtn
(xt1 , xt2 , ..., xtn) = FXt1+h,Xt2+h,...,Xtn+h(xt1 , xt2 , ..., xtn)

for any (xt1 , xt2 , ..., xtn) in the range of Xt and for all possible subsets of indices
t1, t2, ..., tn and t1 + h, t2 + h, ..., tn + h, where h integer.

Due to the fact that for a normal stationary process second-order stationarity is
equivalent to strict stationarity, the concept of stationarity in time series is predom-
inantly based on the first- and second- order moments of Xt. In addition, there is
intrisic difficulty in defining exactly the joint distribution of a strictly stationary pro-
cess. The following definitions make the above claims precise.

Definition 1.2.2. Let Xt be a time series with E[X2] < ∞. The mean function of Xt is

µX(t) = E(Xt)

The covariance function of {Xt} is

γX(r, s) = Cov(Xr, Xs) = E[(Xr − µX(r))(Xs − µX(s))],

for all integers r and s.

Definition 1.2.3. (Weak stationary process) A {Xt} process is said to be weakly sta-
tionary if

(i) µX(t) is independent of t
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and

(ii) γX(t + h, t) is independent of t for each h.

Weak stationarity implies finite moments and hence the time series is covariance
stationary, which is not necessarily guaranteed in the case of a strictly stationary time
series. In terms of time series analysis, weak stationarity is called simply stationarity.

1.3 Autocovariance and autocorrelation

The stationarity assumption implies that the joint distribution of the time series is
the same for every t1, t2, .., tn no matter how distant they are. The autocovariance is
the covariance of the time series with itself at constant intervals of time, denoted by
lags.

Under the stationarity assumption, the covariance between Xt and Xt+h sepa-
rated by h intervals must be the same for any t. Due to the dependence by the units
of measurement, the autocovariance function may not analyze accurately the basic
properties of a time series. To this end, the autocorrelation function is commonly
preferred, which is precisely defined below.

Definition 1.3.1. Let {Xt} be a stationary time series. The autocovariance function
(ACVF) at lag h is

γX(h) = Cov(Xt+h, Xt)

Definition 1.3.2. The autocorrelation function (ACF) of {Xt} at lag h is

ρX(h) = Corr(Xt+h, Xt) =
E[(Xt+h − µX(t + h))(Xt − µX(t))]

E[(Xt − µX(t))2]
=

γX(h)
γX(0)

,

where, γX(0) = Cov(Xt, Xt) = E[(Xt − µX(t))2] = σ2 for all values of t.

Some basic properties of the γ(·) are:

(i) γX(0) ≥ 0,

(ii) |γX(h)| ≤ γX(0) for all h,

(iii) γX(−h) = γX(h) for all h.

Since the analysis of the time series properties is based on observed data, the fol-
lowing definitions portray the mean, the acv f and ac f of a sample.

Definition 1.3.3. Let x1, x2, ..., xn be observations of a time series. The sample mean
of x1, x2, ..., xn is

x̄ =
1
n

n

∑
i=1

xi

The sample autocovariance function is

ˆγ(h) =
1
n

n−|h|

∑
i=1

(xt+|h|−x̄)(xt − x̄), −n < h < n
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1.4 Stationary Models

1.4.1 White noise

The basic building block of time series analysis is a sequence of uncorrelated and
identically distributed random variables, {εt}∞

t=−∞, denoted white noise process. The
mean and the variance of εt are E(εt) = 0 and Var(εt) = σ2

ε , respectively. A realisa-
tion of a stationary white noise process is shown in the following figure

0 10 20 30 40 50 60 70 80 90 100

-3

-2

-1

0

1

2

3

FIGURE 1.1: White noise

The acvf of this second-order stationary process is

γX(h) = cov(Xt, Xt+h) = E(XtXt+h) = 0,

for h 6= 0 and the acf is

ρX(h) =
{

1, h = 0
0, h 6= 0
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FIGURE 1.2: (a) ACF plot (b) Partial ACF plot

In the special case of independent εts the above process is an iid noise which is
identical to white noise only when the random variables are normally distributed.
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1.4.2 Moving average process

MA(1) process

Let εt be a white noise as defined above. The process

Xt = µ + εt + θεt−1,

where µ and θ could be any constants, is called a first-order moving average process,
denoted MA(1). The mean and the variance of the process are

E(Xt) = E(µ + εt + θεt−1) = µ + E(εt) + θE(εt−1) = µ,

γ(0) = Var(Xt) = E(Xt − µ)2 = E(εt + θεt−1)
2

= E(ε2
t ) + 2θE(εtεt−1) + θ2E(ε2

t−1)

= (1 + θ2)σ2
ε ,

since E(εt) = 0 for all t and E(εtεs) = 0 for t 6= s. The first order autocovariance
of the process is

γ(1) = Cov(Xt, Xt−1) = E(Xt − µ)(Xt−1 − µ)

= E(εt + θεt−1)(εt−1 + θεt−2)

= E(εtεt−1) + θE(εtεt−2) + θE(ε2
t−1) + θ2E(εt−1εt−2)

= θσ2
ε

Higher than first-order autocovariances are all equal to zero:

γX(h) = Cov(Xt, Xt−h) = E(Xt − µ)(Xt−h − µ)

= E(εt + θεt−1)(εt−h + θεt−h−1)

= 0

for all h > 1. Thus, the mean and the autocovariances of the process are independent
of time, which implies that MA(1) is second-order stationary regardless of the values
of θ. The first autocorrelation is

ρX(1) =
γX(1)
γX(0)

=
θσ2

ε

(1 + θ2)σ2
ε

.

It can be inferred that positive values of θ imply positive autocorrelation between
Xt, Xt−1.

MA(q) process

Inductively, the qth order moving average model is

Xt = µ + εt + θ1εt−1 + θ2εt−2 + ... + θqεt−q,

where {εt} is a white noise and ~θ = (θ1, θ2, ..., θq) is a vector of real numbers.
The mean and the variance of the process are E(Xt) = µ and γX(0) = Var(Xt) =
(1 + θ1 + θ2 + θq)σ2, respectively. The acvf is:
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γX(h) = Cov(Xt, Xt−h) =

{
σ2 ∑

g−h
i=0 θiθi+h, h = 0, 1, 2, ..., q,

0, h > q,

and the acf can be obtained by dividing γX(h) by γX(0) for h < q.

MA(∞) process

It is worth mentioning, that the model which occurs as q→ ∞,

Xt = µ +
∞

∑
i=0

θiεt−i = µ + θ0εt + θ1εt−1 + ... (1.1)

is described as a MA(∞) process. The equation 1.1 represents a well defined,
weak stationary process only if

∞

∑
i=0

θ2
i < ∞. (1.2)

However, a slightly stronger condition than 1.2 is preferred:

∞

∑
i=0
|θi| < ∞. (1.3)

The mean, variance and autocovariance of this model are a generalization of
those of the MA(q) model. More precisely,

E(Xt) = lim
T→∞

E(µ + θ0ε0 + θ1ε1 + ... + θTεt−T) = µ

γX(0) = Var(Xt) = E(Xt − µ)2 = lim
T→∞

E(θ0ε0 + θ1ε1 + ... + θTεt−T)

= lim
T→∞

(θ0ε0 + θ1ε1 + ... + θTεt−T)σ
2
ε

γX(h) = E(Xt − µ)(Xt−h − µ)

= σ2
ε (θhθ0 + θh+1θt + θh+2θ2 + θh+3θ3 + ..)

1.4.2.1 Invertibility of MA models

A time series is said to be invertible if the white noise part can be represented as a
linear function of current and past observations of the process. The conditions for
the invertibility of the MA(1) and MA(q) process are demonstrated below.

Invertibility of MA(1) process

Let Xt = µ + ε + θεt−1 be a first order MA process, which can be written as

Xt − µ = (1 + θL)εt (1.4)

in terms of the lag operator L. By multiplying 1.4 by (1 + θL)−1, the above equation
is expressed as

(1 + θL)−1(Xt − µ) = εt ⇒

π(L)(Xt − µ) = εt, (1.5)

where, π(L) = ∑t
i=0(−θ)iLi = 1− θL + θ2L2 − θ3L3 + ...). The convergence of the

sum depends on the values of θ. If |θ| < 1, then the process is invertible, otherwise
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1.5 would not be well defined. Equivalently, the root of the 1 + θL = 0 has to lie
outside the unit circle.

Hence, the MA(1) process can be expressed as a linear function of present and
past observations simply by inverting the moving average operator (1+ θL) (Hamil-
ton, 1994).

Invertibility of MA(q) process

In the general case of a MA(q) process,

Xt = µ + εt + θεt−1 + ... + θqεt−q ⇒ (1.6)

Xt = µ + (1 + θL + θ2L2 + ... + θqLq)εt ⇒ (1.7)

Xt − µ = Θ(L)εt (1.8)

the invertibility condition for 1.8 is that, all the roots of the equation Θ(L) = 0 ⇒
1+ θz + θ2z2 + ...+ θqzq = 0 have to lie outside the unit circle. By multiplying 1.6 by
Θ−1(L), arises the following equation:

εt = Θ−1(L)(Xt − µ) (1.9)

Hence, 1.6 is an invertible process.

1.4.3 Autoregressive process

The current subsection demonstrates some basic autoregressive processes. The charac-
teristic of these models is that the present value is expressed as a linear aggregate of
past observations and a white noise process,{εt}. Since the model is regressed on its
own past values, it is called autoregressive.

1.4.3.1 AR(1) process with constant

A process which satisfies the following difference equation,

Xt = δ + φXt−1 + εt (1.10)

is called first-order autoregressive model, denoted by AR(1).
An AR(1) process can be represented as a MA(∞) process as follows:

Xt = δ + φXt−1 + εt

= δ + φ(δ + φXt−2 + εt−1) + εt

= ... = δ
k

∑
i=0

φi +
k

∑
i=0

φiεt−i + φk+1Xt−k−1,

The asymptotic behaviour of the time series as k → ∞ depends on the values of
φ. Specifically, if |φ| > 1 the series is explosive whereas the MA(∞) representation is
achieved only for |φ| < 1. Then, φk+1 → 0 and ∑k

i=0 φi = 1
1−φ as k → ∞. Hence, the

AR(1) model can be described by the equation
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Xt =
δ

1− φ
+

∞

∑
i=0

φiεt−i. (1.11)

Let X0 be zero. By taking expectations of the 1.11, the mean of AR(1) process is
µ = E(Xt) =

δ
1−φ , under the assumption of |φ| < 1. The variance of the model 1.10

is

γX(0) = Var(Xt) = σ2(1 + φ2 + φ4 + φ6 + ...)

=
σ2

ε

1− φ2 ,

while the hth autocovariance is

γX(h) = Cov(Xt, Xt−h) = E(Xt − µ)(Xt−h − µ)

= (εt + φεt−1 + φ2εt−2 + ...)(εt−h + φεt−h−1 + φ2εt−h−2 + ...)

= σ2
ε φh(1 + φ2 + φ4 + ...)

=
φh

1− φ2 σ2
ε .

The hth autocorrelation function derives from

ρX(h) =
γX(h)
γX(0)

= φh. (1.12)

The acf decays geometrically as h increases. Hence, the ac f of the AR(1) model is
different from zero and the sign of it cycles infinitely between positive and negative,
depending on the value of h. The following figures demonstrate the acf and pacf
plots of an AR(1) process with d = 5 and φ = 0.6 for 100 realisations of the process.
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FIGURE 1.3: (a) ACF plot (b) Partial ACF plot

Consequently, AR(1) is a covariance-stationary process under the assumption
of |φ| < 1, since the mean and the autocovariances are independent of time. The
stationarity of the AR(1) model can also be proved in terms of the lag operator L,
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which is defined as LiXt = Xt−i for all i. Thus, 1.10 becomes

Xt = δ + φXt−1 + εt (1.13)
⇒ (1− φL)(Xt − δ) = εt (1.14)
⇒ Φ(L)(Xt − δ) = εt, (1.15)

where Φ(L) = 1− φ1L is the characteristic polynomial of the AR(1) process. If φ(L)
converges, 1.15 will be

Xt − δ = [Φ(L)]−1εt. (1.16)

Let Ψ(L) = [Φ(L)]−1. Hence,

Ψ(L) = (1− φL)−1 =
∞

∑
i=0

φi
1Li. (1.17)

Ψ(L) converges if and only if |φ| < 1 and |L| < 1. Therefore, the root, z = 1
φ of the

equation Φ(z) = 0⇒ 1− φz = 0 must lie outside the unit circle. That is,

|z| > 1⇔ | 1
φ
| > 1⇔ |φ| < 1.

The constant δ is considered for facilitation zero.

1.4.3.2 AR(1) process without constant

The AR(1) model without constant is described by the equation

Xt = φXt−1 + εt (1.18)

where, εt is a white noise process. The above process comprises a subcase of the
general AR(1) process with constant, simply by substituting δ = 0. Therefore, the
representation of it as a MA(∞) process is

Xt =
∞

∑
i=0

φiεt−i, (1.19)

and implies that the process is stationary only if |φ| < 1. The following figure illus-
trates an AR(1) model with δ = 5 opposed to a process without constant regarding
a zero initial value.

The first and second-order moments are:

E(Xt) = 0

γX(0) = Var(Xt) =
σ2

ε

1− φ2

γX(h) = Cov(Xt, Xt−h) = φh σ2
ε

1− φ2
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FIGURE 1.4: AR(1) model with and without constant

1.4.3.3 AR(p) process

The pth-order autoregressive model, denoted AR(p) satisfies

Xt = δ + φ1Xt−1 + φ2Xt−2 + ... + φpXt−p + εt (1.20)

where, ~φ = (φ1, φ2, ..., φp) any real number and εt a white noise. The use of the lag
operator L facilitates the notation of the 1.20. Hence, the AR(p) can be described by

Xt = δ + φ1Xt−1 + φ2Xt−2 + ... + φpXt−p + εt (1.21)

⇒ (1− φ1L− φ2L2 − ...− φpLp)Xt = εt + δ (1.22)
⇒ Φ(L)Xt = εt + δ. (1.23)

The Φ(L) = 1− φ1L− φ2L2− ...− φpLp is called characteristic polynomial of AR(p)
model. If Φ(L) converges, 1.23 takes the form of a stable difference equation

Xt = φ(L)−1εt + φ(L)−1δ

The convergence of Φ(L) can be achieved only when the roots of the equation

Φ(z) = 0⇒ 1− φ1z− φ2z2 − ...− φpzp = 0

lie outside the unit circle. Essentially, the stationarity of an AR(p) model depends
on the value of ~φ = (φ1, φ2, ..., φp), while MA models do not need any restrictions on
~θ = (θ1, θ2, ..., θq) to achieve stationarity. Under the assumption of stationarity the
mean of the process is a constant µ = E(Xt) = E(Xt−1) = E(Xt−2) = ..., where,

µ = δ + φ1µ + φ2µ + ... + φpµ⇒

µ =
δ

1− φ1 − φ2 − ...− φp
.

The equation 1.20 via 1.23 takes the form:

Xt − µ = φ1(Xt−1 − µ) + φ2(Xt−2 − µ) + ... + φp(Xt−p − µ) + εt (1.24)
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Multiplying 1.24 with (Xt−j− µ) and taking expectations, the autocovariances of
AR(p) process are

γj = φ1γ1 + φ2γ2 + ... + φpγp + σ2
ε , f or j = 0 (1.25)

and

γX(j) = φ1γX(j− 1) + φ2γX(j− 2) + ... + φpγX(j− p), f or j = 1, 2, .. (1.26)

The autocorrelations of the process are produced by dividing 1.26 by γX(0)

ρX(j) = φ1ρj−1 + φ2ρj−2 + ... + φpρj−p f or j = 1, 2, ... (1.27)

The above equations are known as Yule-Walker equations. The solution of these
equations with respect to φ1, φ2, .., produce the partial autocorrelations for every value
of order p.

Definition 1.4.1. The partial autocorrelation function (PACF) of a stationary process
is the function α(·) defined by the equations

α(0) = 1, f or h = 0

and
α(h) = φhh, f or h ≥ 1

where, φhh is the last component of φh = Γ−1
h , Γh is the autocovariance matrix and γh

is the variance vector of the process.

More analytically, the Yule-Walker equation for the AR(1) model i.e. p = 1, is
ρ1 = φ1. Thus, the partial autocorrelation will be α(1) = φ1 = ρ1, different from
zero, while α(h) = 0 for higher order lags. Similarly, the Yule-Walker equations for
an AR(2) process are

ρ1 = φ1 + φ2ρ1

ρ2 = φ1ρ1 + φ2

the solution of which, gives the non-zero partial autocorrelation at lag 2

α(2) = φ2 =
ρ̂2 − ρ̂2

1

1− ρ̂2
1

and α(h) = 0 for h > 2.

Intuitively, the partial autocorrelation at lag h denotes the autocorrelation be-
tween Xt and Xt+h, with the effect of correlation at shorter lag terms removed.

A notable inference about ac f and pac f is that in an AR(p) model all autocorrela-
tions are different from zero, while the partials autocorrelations are all zero for lags
higher than p.
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1.4.4 ARMA process

The model which contains p autoregressive and q moving-average terms is called
autoregressive moving-average process, denoted by ARMA(p,q), and satisfies the equa-
tion

Xt = φ1Xt−1 + φ2Xt−2 + ... + φpXt−p + εt + θ1εt−1 + ... + θqεt−q, (1.28)

where {εt} is a white noise. In terms of the lag operator L, the 1.28 can be expressed
as

Xt = φ1Xt−1 + φ2Xt−2 + ... + φpXt−p + εt + θ1εt−1 + ... + θqεt−q (1.29)
⇒Xt − φ1Xt−1 − ...− φpXt−p = εt + θ1Xt−1 + ... + θpXt−p (1.30)

⇒(1− φ1L− φ2L2 − ...− φpLp)Xt = (1 + θ1L + θ2L2 + ... + θqLq)εt (1.31)
⇒Φ(L)Xt = Θ(L)εt, (1.32)

where Φ(L) and Θ(L) are the characteristic polynomials of order p and q respec-
tively. The equation 1.32 is stationary only if the roots of Φ(L) lie outside the unit
circle, as in the AR(p) model. For the stationarity of the MA component no restric-
tions are needed. The invertibility of the MA component requires, however, that the
roots of Θ(L) lie outside the unit circle.

The calculations of acv f and ac f for an ARMA(p,q) model are more complicated
than those of an AR(R) or MA(q) model, however they are based on the same theory.

1.5 Non-Stationary Models

1.5.1 Introduction

Up to this point, the models presented satisfied the stationarity assumption since
their mean, variance and autocovariance were all independent of time. The scope of
this section is to outline some basic cases where weak stationarity is violated.

The interest is predominantly focused on the case where the mean of the time
series does not vary about a constant value but presents a trend. A trend in a process
exhibits the sustained and systematic variations over time and can be hardly or pre-
cisely predictable. In the first case, the trend is called deterministic and in the second
stochastic.

The current section presents the models with trend and demonstrates how they
could be transformed in order to achieve stationarity. The transformed models are
divided into trend stationary and difference stationary models, depending on the kind
of trend, deterministic or stochastic.

1.5.2 Stochastic trends

Let
Φ(L)Xt = Θ(L)εt (1.33)

be an ARMA(p,q) process where Φ(L) and Θ(L) are the characteristic polynomials
of order p and q respectively. The stationarity condition for an ARMA(p,q) model is
that all the roots of the AR polynomial lie outside the unit circle. If at least one root
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of the polynomial does not lie outside the unit circle then the series will be explosive
and the polynomial has at least one unit root.

Let the polynomial Φ(L) have one unit root, that is, Φ(L) can be factorized as
Φ(L) = Φ∗(L)(1− L). Hence, the equation 1.33 becomes

Φ∗(L)(1− L)Xt = Θ(L)εt ⇒

Φ∗(L)∆Xt = Θ(L)εt (1.34)

where Φ∗(L) is a polynomial of order p− 1 and ∆ = 1− L is the first order difference
operator. If Φ∗(L) does not have any more unit roots, the 1.34 expresses a stationary
process. In the case of more than one, say d, unit roots the AR polynomial will be
factorized as

Φ(L) = Φ∗(L)(1− L)d, (1.35)

where Φ∗(L) is a p − d order polynomial. Hence, the initial equation 1.33 will be
expressed as

Φ∗(L)∆dXt = Θ(L)εt, (1.36)

where ∆d(L) is the dth order lag operator.
In short, 1.33 exhibits a non-stationary process with a stochastic trend, which

implies permanent shocks on the time series, while the dth difference of it, d ≥ 1
follows a stationary and invertible ARMA(p,d,q) model. When a non-stationary
process needs to be d times differenced in order to achieve stationarity, the series is
said to be integrated of order d, denoted I(d). An I(0) process is a stationary process.

An ARMA(p,q) model which has been differenced d times is called autoregressive
integrated moving average model, denoted ARIMA(p,d,q).

Two fundamental ARIMA processes are: the random walk without drift and the
random walk with drift.

1.5.2.1 Random walk model without drift

Let Xt = φXt−1 + εt be an AR(1) model without drift, where εt is a white noise
process. It has been proved that the AR(1) model is stationary only if |φ| < 1.

In the case of |φ| > 1 the series is explosive, which means that the shocks to the
system are not only persistent over time, but they have an extremely large impact
on the behaviour of the series. If φ = 1, the process

Xt = Xt−1 + εt, (1.37)

is called random walk model or AR(1) model with a unit root. A simulated random walk
process without drift and iid normally generated innovations is illustrated in figure
1.5.

The equation 1.37 is a non-stationary process since the mean and variance of the
process is time dependent. By repeated substitution 1.37 yields

Xt =
t−1

∑
i=0

εt−j, (1.38)
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FIGURE 1.5: AR(1) and Random walk processes

where the initial observation, x0, is fixed at zero. The first and second moments of
1.38 are thus

E(Xt) = E(
t−1

∑
i=0

εt−j) = 0, (1.39)

γX(0) = Var(Xt) = Var(
t−1

∑
i=0

εt−j) = tσ2
ε (1.40)

and

γX(h) = Cov(Xt, Xt−h) = E(ε1 + ... + εt)(ε1 + ... + εt−h) = (t− h)σ2
ε . (1.41)

From the autocorrelation function,

ρX(h) =
γX(h)
γX(0)

=
(t− h)σ2

ε

tσ2
ε

, (1.42)

it can be easily inferred that as the sample size tends to infinity the ac f of the process
approaches one, which is a sign for a non-stationary process.

Generally, although the process has a constant mean of zero, the autocovariances
and autocorrelation depend on time t, which proves the existence of a unit root.

Hence, the statistical properties of the random walk cannot be analyzed by using
the conventional asymptotic theory, since all the asymptotic theorems require weak
stationarity.

The process of differencing transforms the model in 1.37 into a stationary process,
as follows:

Xt = Xt−1 + εt,

(1− L)Xt = εt,

∆Xt = εt, (1.43)

and therefore,
E(Xt) = E(εt) = 0



14 Chapter 1. Time Series - Basic Concepts

γX(0) = Var(Xt) = Var(εt) = σ2
ε

γX(h) = Cov(Xt, Xt−h) = E(εtεt−h) = 0

Hence, the model in 1.37 is a difference stationary I(1) process.

1.5.2.2 Random walk with drift model

The random walk model with drift is essentially an AR(1) model with drift and
φ = 1,

Xt = δ + Xt−1 + εt. (1.44)

The drift imposes a direction to the random walk, as shown in figure 1.6(a), which
illustrates 10 random walks with drift, δ, equal to 0.5. For the calculation of the
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FIGURE 1.6: (a) Random walk with drift δ = 0.5 (b) Random walk
without drift

mean, variance and autocovariance of the process it is convenient to express 1.44 as
a linear function of the εts, as follows:

Xt = X0 + δt +
t

∑
i=1

εi. (1.45)

For simplicity, the initial observation X0 is taken to be zero. Hence,

E(Xt) = E(δt +
t

∑
i=1

εi),= δt

Var(Xt) = Var(δt +
t

∑
i=1

εi) = tσ2

and

γX(h) = Cov(Xt, Xt−h) = E(Xt − δt)(Xt−h − (t− h)δ)

= E(
t

∑
i=1

εi)(
t−h

∑
i=1

εi)

= (t− h)σ2.
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Since the first- and second-order moments are functions of time, the process is non-
stationary. By using the lag operator L, the above process is expressed as

(1− L)Xt = δ + εt ⇒,

∆Xt = δ + εt (1.46)

It can be easily proved that the mean and autocovariances of the differenced process
resemble those of a stationary time series. Thus, the 1.46 is a difference stationary I(1)
process.

1.5.3 Deterministic trends

A simple model with a deterministic trend has the form

Xt = µt + εt, (1.47)

where εt follows a white noise process and µt is a deterministic function of time.
This function may have a linear form, for instance

µt = α + βt,

where, α denotes the intercept and β the slope of the deterministic trend, or a nonlin-
ear form, such as a polynomial time trend,

µt =
k

∑
i=0

βiti.

A short analysis on the statistic behaviour of

Xt = α + βt + εt (1.48)

portrays that the mean of the process is a function of time, whereas the variance
remains stable over time.

E(Xt) = E(α + βt + εt) = α + βt,

Var(Xt) = Var(α + βt + εt) = σ2.

A process with these properties is called a trend-stationary process. Forecasts can be
precisely calculated, provided that the values of α, β and t are known and the sub-
traction of α + βt from Xt produces a stationary process. Hence, a kind of trend-
stationarity is implied.

The choice of εt is not restrictive. In the place of it there may be any other sta-
tionary process, such as an ARMA(p,q) process. The following figure illustrates 50
paths of length 200 of an ARMA(1,1) trend stationary process with α = 0, β = 0.5,
φ = 0.9 and θ = 0.4. The innovations εt are considered to be normally distributed
with zero mean and variance σ2 = 9.

It can be inferred that the sample paths fluctuate around the theoretical trend line
with constant variance and the simulation mean is quite close to the true trend line.

It is worth mentioning that the process of differencing the mean α + βt could
not be applied in a unit root process, as in 1.45, since the linear time-trend may be
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FIGURE 1.7: A trend-stationary process

subtracted, whereas the variance grows over time. Thus, the process would not be
stationary.

1.6 Unit root tests

A non-stationary time series can be transformed into a stationary time series either
by de-trending, that is, by subtracting the time trend, or by differencing. In the
first case, the process is trend-stationary, while in the second the process is difference-
stationary. The question lies on the kind of non-stationarity of the process.

If the time series is trend-stationary and a dth-difference is applied, then the series
would be overdifferenced. On the other hand, if the time series is difference-stationary
and a de-trending method is used, then the series will be underdifferenced.

The majority of the series in economics or finance are mainly described by stochas-
tic non-stationary models, i.e. models with stochastic trends, rather than models
with deterministic non-stationarity. Hence, the detection of a unit root in an autore-
gressive process determines whether the trending data should be first differenced or
regressed on a function of time in order to achieve stationarity.

A unit root test tests the hypothesis of φ = 1 against the one-sided alternative
|φ| < 1 in the extended time series model:

Xt = α + βt + zt,
zt = φzt−1 + εt,

where εt follows a white noise process. If |φ| < 1, then Xt presents a trend-stationary
process. Conversely, under the hypothesis of |φ| = 1, Xt contains a stochastic trend
and therefore, has to be differenced, as follows:

Xt − Xt−1 = α + βt + zt − α− β(t− 1)− zt−1

= β + εt,

since zt = zt−1 + εt. Hence, under the null hypothesis Xt is an I(1) with drift process.
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With regards to the nature of the test, none of the conventional tests, such as the
t-test, can be applied under the hypothesis that |φ| = 1, since Xt does not follow an
asymptotic normal distribution. Thus, the t-statistic for the unit root test arises form
a relevant asymptotic distribution based on the Wiener process (Maddala Kim, 1998).

A detailed description of the unit root tests and specifically, of the autoregressive
unit root tests will be presented in next chapter.
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Chapter 2

Bayesian Theory

2.1 Basics of Bayesian theory

The process of observing and analyzing past experience in order to predict unob-
served phenomena comprises the cornerstone of the inductive theory. Based on
the above claim, the Bayesian approach quantifies the uncertainty included in an
experiment, using probability theory, which, in combination with observed data,
contributes to making both inferences about the parameter of interest and reliable
predictions.

The purpose of the current chapter is to outline some basic principles and char-
acteristics of the Bayesian theory and subsequently focus on the model comparison
via different methods.

Bayes’ theorem is based on conditional probabilities and takes the following form
for continuous random variables.

Theorem 1. (Bayes’ Theorem) Let f (x, θ) denote the joint probability density function
(pdf) for a random observation vector x and a random parameter vector θ. Then,

f (x, θ) = f (x|θ) f (θ)
= f (θ|x) f (x)

and thus,

f (θ|x) = f (x|θ) f (θ)
f (x)

, (2.1)

where f (x) =
∫

f (x|θ) f (θ)dθ is the normalizing constant for the pdf in 2.1.

The conditional probability f (θ|x) is the posterior pdf for the parameter vector θ,
while f (θ) represents the a priori knowledge about θ, denoted prior pdf. Furthermore,
if the conditional probability f (x|θ) is viewed as a function of θ, it will yield the
likelihood function, L(θ|x), of the observation vector x. All the information about θ in
the data can be derived from the likelihood function.

The posterior distribution f (θ|x) is a genuine distribution, since f (x) plays the
role of a normalizing constant, which depends only on x. Hence, the relationship in
2.1 could be expressed as:

f (θ|x) = c f (x|θ) f (θ) (2.2)

and thus,
f (θ|x) ∝ f (x|θ) f (θ) (2.3)

which implies that the posterior distribution is proportional to the likelihood times
the prior.
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2.2 Specifying the prior

Prior beliefs about parameter θ are reflected on the posterior inference. More specifi-
cally, the rational choice of the prior is not an objective issue, since it depends on the
subjective beliefs of the analyst, which thus renders the Bayesian approach a subjec-
tive analysis. The influence of the prior, though, would be quite eliminated, as more
data is available.

Even in the case of ignorance regarding a priori knowledge about θ, the choice
of the prior distribution should reflect this ignorance. Hence, the process of prior
elicitation should be based on how informative the prior is.

2.2.1 Conjugate priors

In the case of an informative prior, all the information included in the likelihood-prior
blend is reflected on the posterior distribution. Nevertheless, a precise calculation of
a numerical value of f (θ|x) may be quite difficult, mostly due to the complexity of
integrals or the dimension of the parameter space.

These inherent difficulties do not comprise any huge drawback in the Bayesian
inference, since a specific selection of priors are conjugate to the likelihood, f (x|θ),
and permit the posterior distribution to rise without complicated integral computa-
tions. In essence, conjugate priors belong to the same probability distributional family
as the posterior distributions.

The only case where the prior and the posterior are conjugate distributions, is
when the data originates from models within the exponential family.

2.2.2 Non-informative priors

If a priori knowledge concerning θ is not available and the choice of one value of θ
would not be favoured over another, then the use of a non-informative prior would be
advisable. According to Kass and Wasserman (1996), non-informative priors could
formally represent the ignorance about the parameter. However, the choice of them is
neither objective nor unique and are chosen by public agreement much like units of length
and weight.

Hence, the process of eliciting an appropriate non-informative prior distribution,
is focused on the comparison of different priors, since the choice is not unique. A
non-informative prior may be more efficient than another one, but it cannot be said
that some priors are less informative than others (Robert,2007).

Two major drawbacks concerning non-informative priors are the invariance under
re-parameterisations and the emergence of improper priors.

Improper priors

While bounded parameter spaces could generate genuine non-informative pri-
ors, unbounded parameter spaces mostly lead to improper priors or flat priors. More
analytically, the form of the prior in the latter case is

f (θ) = c, (2.4)

for any c > 0. Hence, ∫
f (θ)dθ = ∞ (2.5)
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that is, the distribution does not integrate to one and consequently does not comprise
a proper distribution.

Priors not invariant to transformations

Some non-informative priors are not invariant under re-parameterisation. If that
is the case, the insufficient knowledge about θ, implies no information about any
transformation of θ, g(θ). The corresponding prior density for a one-to-one function
φ = g(θ) is given by the following transformation formula:

fΦ(φ) = f (θ)×
∣∣∣∣ dθ

dφ

∣∣∣∣ . (2.6)

As an application of the above statement let the prior be a uniform distribution over
(0, 1) that is f (θ) = 1. If the prior is non-informative about θ, it emerges that there
would not be any information about φ = 1/θ. By using the relationship 2.6, the
distribution for φ is

fΦ(φ) =
1
φ2 . (2.7)

It can be easily inferred that a uniform prior for θ does not corresponds to a uniform
distribution for 1/θ.

Jeffreys’ prior

A prior which satisfies the requirement of invariant monotone transformations
of the parameter is Jeffreys’ prior, which is based on the Fisher information I(θ) given
by

IΘ(θ) = E
(

∂log f (x|θ)
∂θ

)2

= −E
(

∂2log f (x|θ)
∂θ2

)
, (2.8)

I(θ) indicates the amount of information which resides in the model and thus the
values which are more likely for the prior distribution are these, which enlarge
Fisher’s information. Hence, the influence of the prior is minimized and the prior becomes
as non-informative as possible. (Robert, p.130, 2007)

Jeffreys’ prior is defined as

π(θ) ∝ |IΘ(θ)|1/2 (2.9)

and is invariant under one-to-one re-parameterisation of θ. By using the transforma-
tion φ = g(θ) and the chain rule of difference, it emerges that

πΦ(φ) = πΘ(g−1(φ))×
∣∣∣∣dg−1(φ)

dφ

∣∣∣∣ = πΘ(θ)×
∣∣∣∣dθ

dφ

∣∣∣∣ . (2.10)

In the vast majority of cases, Jeffreys’ prior is improper, which is not a drawback for
Bayesian inference since it could be handled by using proper mathematical devices.
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2.3 Bayesian Inference

2.3.1 Decision Theory

The vast majority of statistical studies aim to provide analysts with decisions, accord-
ing to which a specific action would be favoured over another one. Ideally, the deci-
sion could be made according to a utility function which would optimize a specific
choice.

Due to the difficulty in specifying such a function, the interest focuses on an
evaluation criterion which depends on the parameters of the model and the conse-
quences this decision may cause. The process of comparing and eliminating unrea-
sonable decisions, using an evaluation criterion, comprises the main scope of the
Bayesian theory.

This criterion is called loss function, denoted by L(θ, α), where α is the action
adopted from an action space A and θ is the true state of nature of the parameter,
which originates from a parameter space Θ. It represents the loss incurred when the
action α is adopted.

Having observed data x, the posterior expected value of the loss function, called
posterior expected loss or posterior risk is defined as:

ρ(α, x) = Eθ|X [L(θ, α)|x] =
∫

Θ
L(θ, α) f (θ|x)dθ. (2.11)

In contrast to the frequentist approach, which imposes integration over the space
X, as x is known, the Bayesian method integrates over the parameter space Θ , as θ
is unknown, based on the posterior distribution.

The Expected loss principle advocates the selection of the action, α∗(x), with the
minimum posterior expected loss, after data x has been observed. The action with
this property is called Bayes’ estimator or Bayes’ action and the decision rule δ(x) =
α∗(x) is called Bayesian decision rule.

Some of the most frequently used loss function forms are:

0-1 Loss function

The zero-one loss function assigns uniform unit loss to an incorrect decision and
zero loss to a correct one, as follows:

Ł(θ, α) =

{
1, θ = α,
0, θ 6= α.

This nonquantitative type of loss is widely used in the common frequentist hy-
pothesis testing. The penalty is the same for every estimator that does correspond
to the the true parameter and none otherwise, despite the distance between them.

The above loss function is minimized when α is identical to the maximum a poste-
riori probability.

The quadratic loss

The quadratic loss or squared error loss is given by

L(θ, α) = (θ − α)2 (2.12)
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and is one of the most commonly used loss functions. Unlike the zero-one loss func-
tion, the quadratic loss indicates the difference between the estimation α and the real
parameter θ. This type of function is more appropriate in the case of a continuous
parameter space, where the distance of the values of θ and α is well-defined.

A drawback of this evaluation criterion is that, due to the quadratically increase,
errors are not generally penalized.

The minimization of 2.12 is achieved for the expectation of the posterior distribution,
that is α = E[ f (θ|x)].

Absolute error loss

An alternative, equally popular type of loss function is the absolute error loss func-
tion,

L(θ, α) = |θ − α| . (2.13)

The optimization of the above function implies that the Bayes’ estimator of θ is the
median of the posterior distribution.

In frequentist usage, the expectation of the loss function over data x, with the
parameter θ regarded as a constant, is defined as frequentist risk and is a function of
θ. The frequentist risk function of a decision rule δ(x) is

R(θ, δ) = EX|θ [L(θ, δ(x)] =
∫

X
L(θ, δ(x)) f (x|θ)dx. (2.14)

On the contrary, the Bayesian risk is the expected loss integrated over both θ and
x and produces a single number. That is,

r(θ, δ) = Eθ [R(θ, δ(x)] =
∫

Θ
R(θ, δ(x) f (θ)dθ. (2.15)

Bayesian risk can also be expressed as,

r(θ, δ) = EX[ρ(θ, δ)] =
∫

X
ρ(θ, δ(x)) f (x)dx. (2.16)

Consequently, the estimator of the parameter θ, θ̂, which minimizes the Bayes risk
among all estimators is a Bayes estimator.

The updated inference about the parameter θ is summarized in the posterior
distribution. The interpretation and handling of the posterior density (or cumulative
distribution) may, however, provide more information than usually required.

Hence, the information derived from the posterior distribution could be summa-
rized via point estimation, credible sets or hypothesis testing, the analogues of the
common frequentist estimation techniques.

2.3.2 Point Estimation

The process of point estimation incorporates sample data and statistical methods in
order to produce an approximation of the unknown parameter θ of the population.
The Bayesian point estimation includes summary features of the posterior distribu-
tion, such as the posterior mean, the posterior mode, the posterior median and the
posterior variance.
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The posterior mode or maximum a posteriori estimator (MAP) is derived quite easily
by calculating the numerator of 2.1, that is the non-standardized posterior distri-
bution. Asymptotically, the MAP estimators coincide with the classical maximum
likelihood estimators, since the information contained in large samples dominate
the fixed knowledge provided by the prior. In the case of a flat prior, the posterior
mode identifies with the maximum likelihood estimator (MLE) of θ.

As aforementioned, the posterior risk for the absolute error loss is minimized
by the posterior median. Additionally, the posterior mean identifies with the Bayes’
estimator which minimizes the squared loss function and thus the Bayesian risk.

It can be proved that the posterior mean minimizes the posterior variance over
all possible estimators θ̂. Let µ = µ(x) be the posterior mean Eθ|x(θ). Therefore,

Varθ|x(x) = Eθ|x(θ − θ̂)2 = Eθ|x(θ − µ + µ− θ̂)2

= Varθ|x(θ) + (µ− θ̂)2.

Hence, Varθ|x is minimized only when θ̂ = µ.
The approximation of the point estimators is achieved through several compu-

tation techniques which are relevant to Bayesian approach, such as Markov Chain
Monte Carlo (MCMC) algorithms.

2.3.3 Interval estimation

Another inferential procedure in classical statistics is the confidence interval (CI). Un-
der the Bayesian approach to inference, the analogue to the classical confidence in-
terval is the credible set and it is defined as follows:

Definition 2.3.1. A 100× (1− α)% credible set for θ is a subset C of the parameter
space Θ such that

1− α ≤ P(C|x) =
∫

C
P(θ|x)dθ (2.17)

where integration is replaced by summation for discrete components of θ.

The interpretation of the credible set differs starkly from that of the frequentist
confidence interval. In the latter case, the meaning of the CI would be:

If the CI could be recalculated many times, then in (1− α)× 100% cases the true
parameter θ would be contained in the interval.

On the contrary, the credible set could be interpreted as follows:
The probability that the parameter θ lies within the interval given the data x is at

least 1− α.
The Bayesian analogue of the CI can be undoubtedly viewed as a probabilistic

statement, since it is based only on the prior knowledge about θ and the observed
data.

In opposition to the probabilistic standpoint, the CI requires a great amount of
repetitions of the experiment in order to be precise, which is practically impossible.
Since only one data set is available, the fact that θ lies in or out of the interval consti-
tutes just an indication for this type of estimation and the accuracy of the procedure.

Nevertheless, not every set C with probability equal or greater than 1− α is le-
gitimate, as the definition 2.3.1 implies. Due to the fact that the credible set is not
uniquely defined, that is, any set C with probability 1− α would satisfy the defini-
tion, there exists the possibility that regions with ’plausible’ values of θ are excluded
from the interval.



2.3. Bayesian Inference 25

Therefore, a preciser estimation and at the same time a tighter credible set could
be derived by using as a region the highest posterior density (HPD), defined as:

C = {θ ∈ Θ : f (θ|x) ≥ l(α)} (2.18)

where, l is the largest constant such that P(C|x) ≥ 1− α.

2.3.4 Hypothesis testing

A principal method of statistical inference is hypothesis testing. Classical hypothesis
testing examines whether the null hypothesis H0 can be rejected or not against an
alternative hypothesis, H1,

H0 : θ ∈ Θ0

H1 : θ ∈ Θ1

where, Θ0 and Θ1 are subspaces of the parameter space Θ. In the case wherein Θ0
and Θ1 consist of a single point, the hypothesis test becomes,

H0 : θ = θ0

H1 : θ = θ1

The probabilistic nature of Bayesian hypothesis testing implies that the inference is
based on the posterior probability of θ under hypotheses H0 and H1.

A substantial advantage of the Bayesian approach is that more than one hypothe-
ses can be tested at the same time and they are not bounded to be nested one within
the other, unlike with the frequentist approach. Thus, the alternative hypotheses
are better described by the term ’models’ Mi, i = 1, .., m, which, as detailed below,
demonstrate a fundamental role in the Bayesian hypothesis testing.

To facilitate the notation, let the subspaces Θ0 and Θ1 contain a single point. A
common frequentist way to compare the statistical models portrayed by the null and
the alternative hypothesis is to evaluate the likelihood ratio,

L =
f (x|θ0)

f (x|θ1)
.

Large values of the above ratio favor the choice of θ1 against θ0. The Bayesian ana-
logue of this quantity is called posterior odds and is defined as follows,

LB =
f (θ0|x)
f (θ1|x)

.

The posterior distributions for both hypotheses are,

f (θ1|x) =
f (x|θ1)

f (x)
=

f (θ1) f (x|θ1)

f (xθ0)π(x|θ0) + π(θ1) f (|θ1)

f (θ0|x) = 1− f (θ1|x)

The plausibility of the null and the alternative hypothesis is assessed by a quantity
which involves the prior knowledge and the observed data termed as Bayes’ factor.
Essentially, it is the ratio of the posterior odds over the prior odds in favor of H1.
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Definition 2.3.2. (Bayes’ factor) The Bayes’ factor is the ratio of the posterior proba-
bility of the null and the alternative hypothesis over the ratio of the prior probabili-
ties of the null and the alternative hypothesis.

BF =
f (x|θ0)

f (x|θ1)
=

f (θ0|x)
f (θ1|x)

/
π(θ0)

π(θ1)
. (2.19)

In words,

posterior odds = Bayes factor × prior odds

In the general case, when the hypotheses to be tested are not simple ones, the Bayes’
factor can be expressed as,

BF =
f (x|θ ∈ Θ0)

f (x|θ ∈ Θ1)

/
π(θ ∈ Θ0)

π(θ ∈ Θ1)
. (2.20)

The quantity f (x|θ ∈ Θi) is the marginal probability of the data under each hypothesis
Hi, i = 0, 1 which arises by integrating over the corresponding parameter space Θi,
i = 0, 1. Thus,

f (x|Hi) =
∫

Θi

f (x|θi, Hi)π(θi|Hi). dθ (2.21)

If the a priori probabilities for H0 and H1 are equal, that is, π(θ ∈ Θ0) = π(θ ∈
Θ1) = .5, then the Bayes factor is identical to the posterior odds of H1.

Jeffreys proposed a scale according to which, the null hypothesis is accepted or
not. For computational convenience, the logarithmic version of the Bayes’ factor is
commonly used. Hence, the evidence in favor of H0 is:

• poor, if log10BF varies between 0 and 0.5.

• substantial, if it varies between 0.5 and 1.

• strong, if it is between 1 and 2.

• decisive, if the value of the logarithm is greater than 2.

Bayesian hypothesis testing differs from frequentist testing in terms of the compar-
ative nature of the first and the fact that at least two models can be involved. Ad-
ditionally, the evidence is weighed not only in favor the null hypothesis but also against
it.

2.4 Bayesian Model Comparison

2.4.1 Basic information and motives

In the general case, model comparison can be applied to numerous statistical prob-
lems, such as variable selection in a regression model, the choice of the parametric
family or the determination of the number of components in a mixture model.

Bayesian model comparison will not determinate whether a model is true or not,
however it can assign preference to a particular model, including all the information
in the data and the prior.
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Model choice is the process of identifying the index i ∈ {1, 2, .., k} which corre-
sponds to the most appropriate model for the data among M1, .., Mk, where,

Mi : x ∼ fi(x|θi), θi ∈ Θi, i ∈ I. (2.22)

In the case that the index set I is finite and a small number of models are compared,
the process is quite facilitated. Hence, model comparison simulates better a point
estimation process rather than hypothesis testing.

The complexity of the structures involved in the model comparison makes the
computation of the unknown quantities quite difficult. Therefore, advanced theoret-
ical and computational tools such as the Bayes’ factor, the posterior distributions of
the models and the MCMC methods are used for the model comparison.

2.4.2 Motivation for Bayesian model comparison

There is significant distinction between the classical and the Bayesian approach to
model comparison. A few indicative reasons which favor the choice of Bayesian
model comparison are demonstrated below.

• Consistency of the Bayesian model selection. The selection of a model un-
der the Bayesian framework is a consistent process. Specifically, if the model
that ’fits’ the data is one of the entertained models, then the Bayesian method,
under conditions and if enough data is provided, will conclude to this model.
Classical inference could not guarantee the selection of the true model, even if
statistical tools such as p-value and AIC support this claim.

• Direct and intuitive mathematical structures. The main statistical tools in
the Bayesian perspective are the Bayes’ factor and the posterior model proba-
bilities. The inference is based on these intuitive and readily understandable
quantities, unlike with frequentist statistic quantities, such as p-value, which
are not always interpreted directly.

• Parsimony. The Bayesian model comparison leads to parsimonious models,
that is, models which are simple and not over-parameterized. The principle of
parsimony is directly linked with the principle of Occam’s razor, which favors
the simple models against complex ones. In this context, the difficulty that
lurks within the construction of a model, is that over-parameterized and im-
plausibly detailed models have usually better ’fit’ than simpler ones, compris-
ing thus a significant goodness of fit measure. A balance between parsimony
and goodness of fit should be essential.

In classical statistics, the problem of overfitting is handled by adding a penalty
term, for example in some model selection criterion, such as AIC, whose value
increases if the complexity of the model increases. Bayesian model comparison
automatically and quantitatively embodies, since it acts like an Occam’s ra-
zor and over-parameterized models are automatically penalized by the Bayes’
rule.

• Bayesian model selection is unaffected by the number of models. Contrarily,
the classical approach advocates that, when only two models are involved,
the model choice is identified by a hypothesis testing. In the challenging case
of more than two models, the framework differs from hypothesis testing and
other statistical tools are required to handle model comparison.
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• The entertained models do not have to be nested. A substantial motive for
choosing the Bayesian model comparison is the ability to compare models
which, unlike with the classical framework, do not satisfy any initial assump-
tions, such as the nested models or standardized distributions.

• The uncertainty of a model is taken into account. In the classical approach,
the estimations of the model parameters may be biased due to the fact that
the model is based on the data and the same data (or part of it) is then used
for the estimation of the parameters. It thus arises, that, under the assump-
tion of the correctness of the model, the estimates and their interpretations are
implausibly optimistic.

Under the Bayesian approach, a mechanism named Bayesian model averaging
is accounting for the model uncertainty, since the parameter estimates (or the
predictions) are obtained by using the weighted average of the parameters (or
the predictions) for each model. The weights for each model are determined
from the posterior probabilities of each model. Hence, not only the uncertainty
concerning a parameter given a particular model is taken into consideration,
but also the uncertainty across all models is combined.

2.4.3 Standard framework and modelling

Let k denote the number of different models for the data x involved, where

Mi ∼ fi(x|θi), i = 1, .., k. (2.23)

Under the ith model the domain of the parameter θ is the subspace Θi of Θ. Then,
the prior associated with each model is f (θ|Mi) and reflects the knowledge about
the model parameter under the hypothesis of the ith model. Inference under model
uncertainty is divided into two levels.

1. Model fitting. Initially, a model Mi is selected to ’fit’ the data x. The model’s
parameters are given by the posterior probability of θ,

f (θ|x, Mi) =
f (x|θ, Mi) f (θ|Mi)

f (x|Mi)
, (2.24)

where f (x|Mi) is the marginal or predictive density of x, namely,

f (x|Mi) =
∫

Θi

f (x|θi, Mi) f (θi|Mi), dθi (2.25)

As shown later, the normalizing constant f (x|Mi) is called evidence and indi-
cates the preference for a model, since it represents the probability that the data
originate from model M.

The most probable values of θ can be obtained by finding the maximum a
posteriori value (MAP).

2. Model comparison. The next level of inference after the construction of the
models is the detection of the true model, which actually ’fits’ the data. There-
fore, each model needs an a priori knowledge before the involvement of the
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data, which is denoted be f (Mi). The posterior probability of the model Mi is

f (Mi|x) ∝ f (x|Mi) f (Mi). (2.26)

The denominator of the right member of the equation is the evidence of all in-
corporating models and is given by,

f (x) =
k

∑
i=1

f (Mi)
∫

Θi

f (x|θi, Mi) f (θi|Mi)dθi. (2.27)

The omission of the denominator in the above quantity would not induce any
significant difficulty, since the process of looking for new models is persistent
and thus, the hypothesis space does not need to be completely defined.

In the case where the prior probabilities f (Mi) are close, the posterior proba-
bilities of the models are mainly based on the evidence of Mi.

Prior choice

In Bayesian analysis, the question whether a prior for a model is correct or not
is not of great importance. Different priors correspond to different posteriors. How-
ever, if the priors do not differ significantly, then the relationship in 2.26 implies that
the inference for the posterior model probability is mainly based on the evidence.

In the specific but common case of equal prior model probabilities for i = 1, ..k,
that is f (Mi) =

1
k , the posterior model probability is given by,

f (Mi|x) =
f (x|Mi) f (Mi)

f (x)
=

f (x|Mi)

∑k
i=1
∫

Θi
f (x|θi, Mi) f (θi|Mi)dθi

,

and are the same as the renormalized probabilities (Berger Pericchi, 2001).

Evaluating the evidence

The marginal likelihood or evidence of model Mi denotes the preference shown to
this model and as detailed below, is inextricably bounded up with the concept of
Occam’s razor. It is calculated by marginalizing over the parameters, as follows

f (x|Mi) =
∫

Θi

f (x|θi, Mi) f (θi|Mi). dθi (2.28)

The posterior distribution of the parameter θ, f (θ|x, Mi), is maximized, as aforemen-
tioned, at the posterior mode, denoted by θPM. Then the evidence could be approxi-
mated by the maximum value of f (x|θ, Mi) f (θ|Mi) times the width ∆θ. Hence,

f (x|Mi) ∝ f (x|θPM, Mi)︸ ︷︷ ︸ f (θPM|Hi)∆θPM︸ ︷︷ ︸ . (2.29)

In words,

Evidence ∝ Likelihood’s maximum × Occam’s factor

The Occam’s factor is a less than one quantity which automatically penalizes the
model Mi for having the parameter θ. It emerges that, the Occam’s factor penal-
izes model complexity and thus, the evidence becomes a measure of plausibility of
the model.
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Bayes’ factor

After the construction of the models and the selection of the priors, the inference
concerning the testing of the models is provided by the Bayes’ factor, which quantifies
the preference for one model over another.

As aforementioned, the Bayes’ factor is the ratio of the posterior odds over the
prior odds for the null and the alternative hypotheses. In terms of models, the Bayes’
factor could be interpreted as the odds provided by the data for model Mi versus model
Mj and is defined as,

BFij =
f (x|Mi)

f (x|Mj)
=

f (Mi|x)
f (Mj|x)

/
f (Mi)

f (Mj)
. (2.30)

Hence,

BFij =

∫
Θi

f (x|θi, Mi) f (θi|Mi)d`i∫
Θj

f (x|θi, Mi) f (θi|Mi)dθi
. (2.31)

After the evaluation of the evidences for each model, the preference for model Mi is
indicated by the value classification in subsection 2.3.4.

Schwartz’s criterion

Another criterion that can be used for model selection is the Bayesian Information
Criterion (BIC), proposed by Schwartz (1978) and Akaike (1977, 1978). In the case of
a large number of parameters, the criterion adds a penalty term on the number of
parameters and favours parsimonious models over complex, overfitted models.

The mathematical formula for BIC under the hypothesis of model Mi is,

BIC = −2logLi(θ̂i) + pilog n (2.32)

where, Li(θ̂i) is the maximum likelihood of the data, pi denotes the number of the
unknown parameters and n the size of the data.

The maths behind the formula do not require any Bayesian method, although
the name of the criterion is Bayesian. The procedure is briefly described below.

As already mentioned, the posterior probability of the model Mi is,

f (Mi|x) =
f (x|Mi) f (Mi)

∑k
i=1 f (Mi) f (x|Mi)

. (2.33)

The maximazation of the above relationship is equivalent to the maximization of

f (Mi) f (x|Mi) = f (Mi)
∫

Θi

f (x|θi, Mi) · f (θi|Mi)dθi. (2.34)

The evidence f (x|Mi) can be expressed as,

f (x|Mi) =
∫

Θi

exp{n ·mi(θi|x, Mi)}dθi, (2.35)

where
mi(θi|x, Mi) = n−1{log f (x|θi, Mi) + log f (θi|Mi)}.

Under regularity conditions the Laplace approximation can be applied to 2.35. By sub-
stituting the Laplace approximation to 2.34 and taking the logarithm of the resulted
formula, the Schwartz’s criterion is derived.
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If errors are identically, independently and normally distributed and the deriva-
tive of the log-likelihood with respect to the true variance is zero, the criterion under
the hypothesis of model Mi becomes

BIC = logσ̂2
i − pi

logn
n

,

where σ̂2 is the error variance, pi is the number of parameters and n the sample size.
The Bayesian Information Criterion penalizes more heavily the over-parameterized

models compared to Akaike’s Information Criterion (AIC), since it contains the pa-
rameter pi which resembles the number of unknown parameters and thus increases
the goodness of fit of the model.

The selection criterion when comparing models is denoted by the value of BIC.
The preference is assigned to the model with the lowest value, since it indicates lower
penalty terms.

Bayesian deviance criterion

The Deviance Information Criterion (DIC) was proposed by Spiegelhalter (2002)
and could be interpreted as a generalization of the AIC and BIC criteria. It explicitly
balances model complexity and goodness-of-fit, based on the deviance,

D(θ) = −2log f (x|θ). (2.36)

Since the deviance cannot merely discriminate models due to its bias in favour of
over-parameterized models, a penalty term is introduced and the criterion becomes

DIC = E [D(θ|x)] + qD, (2.37)

where qD = {E [D(θ|x)]− D(E [θ|x]).
The above criterion is the Bayesian alternative of AIC and BIC and is motivated

mainly by the fact that is accounting for the priors (even when they are improper)
and the simple and direct calculation from a sample generated by a MCMC simula-
tion. In contrast to other criteria where the evaluation of the maximum likelihood
value of the evidence is essential, the deviance criterion is automatically derived
from the data.

With regards to the selection criterion, models with low value should be pre-
ferred to those with larger value.
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Chapter 3

Autoregressive unit root tests

3.1 Introduction

The trending behavior or the non-stationary mean appear to be dominant charac-
teristics of the time series and are usually detected in financial autoregressive time
series. An irrational handling of the non-stationarity of an asset price or a GDP time
series would render the statistical analysis misleading and unreliable.

The type of non-stationarity in a time series can be detected via the autoregres-
sive unit root tests, which are thoroughly described below. That is, I(1) time series
require first differencing and trend-stationary processes need a time-trend regres-
sion in order to remove the polynomial time of the long-run component and achieve
stationarity.

The subject of the current chapter is to outline the theory and formulas behind
the standard autoregressive unit root tests, which were first introduced by Dickey-
Fuller and Phillips-Perron and perform these tests to the non-stationary autoregres-
sive models mentioned in the first chapter, that is, models with drift, linear trend
etc.

As a tailpiece to this chapter, some issues concerning the standard unit root test-
ing are discussed, such as size distortion and low power of the tests.

3.2 Basic concepts for unit root tests

A trend-stationary process can be written as

Xt = DTt + εt, (3.1)

where DTt = α + βt is a time trend and εt is a stationary ARMA process. A first-
difference process, on the other hand, can be expressed as,

Xt = α + Xt−1 + εt, (3.2)

where εt is a stationary ARMA process. The above equations can be condensed into
the following expression,

Xt = α + βt + zt,
zt = φzt−1 + εt,
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where εt denotes a stationary process. With |φ| < 1, zt is stationary which implies
that Xt is a trend stationary process.

A time series is said to have a unit root if φ = 1. The non-stationarity can be
removed by taking first differences on the above set of equations. Then, the process
is said to be I(1). Tests using I(1) as the null hypotheses are the autoregressive unit
root tests and comprise the main theme of the current chapter.

Conversely, if yt is a trend stationary process,

yt = α + βt + zt (3.3)

and first difference of yt is applied, the process becomes overdifferenced, as follows,

∆yt = α + βt− (α + β(t− 1)) + zt − zt−1 (3.4)
= β + zt − zt−1. (3.5)

It emerges that the differenced process has a moving average unit root. Tests using I(0)
as the null hypothesis are hereunto not an object of interest.

The hypothesis test for the unit root testing is

H0 : φ = 1,
H1 : |φ| < 1.

The LSE (Least Squares Estimator) estimator of φ is

φ̂ =
∑T

t=1 Xt−1Xt

∑T
t=1 X2

t−1

(3.6)

and can be equally expressed as,

φ̂ = φ +
∑T

t=1 Xt−1εt

∑T
t=1 X2

t−1

. (3.7)

The variance of the LSE φ̂ is

Var(φ̂) =
1
T
(
1− φ2) . (3.8)

The proof follows from the fact that E(Xt) = 0, Var(Xt) =
∑T

t=1 X2t
n and Xt−1 is inde-

pendent of εt. Hence,

V(φ̂) = V

(
φ +

∑T
t=1 Xt−1εt

∑T
t=1 X2

t−1

)
= V

(
∑T

t=1 Xt−1εt/T

∑T
t=1 X2

t−1/T

)

=

(
1− φ2

σε

)2 1
T

V(Xt−1εt) =

(
1− φ2

σε

)2 1
T

E(X2
t−1ε2

t ) =

=

(
1− φ2

σ2
ε

)2 1
T

(σ2
ε )

2

1− φ2 =
1
T
(1− φ2).

If |φ| < 1, it can be shown (Hamilton, 1994, p. 216), that the distribution of the
estimator φ̂ is, √

T(φ̂− φ)
d−→ N(0, 1− φ2), (3.9)
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which can be expressed as,

φ̂ ∼ N(φ,
1
T
(1− φ2)). (3.10)

Under the hypothesis of φ = 1, the distribution of φ̂ becomes

φ̂ ∼ N(1, 0), (3.11)

which does not really make any sense. The test statistic under the non-stationarity
hypothesis, φ = 1, is based on the Wiener process, as elaborated below.

3.3 Wiener processes

3.3.1 From random walk to Wiener process

The notion of the Wiener process arises from the limiting properties and behaviour of
the random walk process. It is used in physics, denoted as Brownian motion, to de-
scribe the motion of a particle that is subject to a large number of molecular shocks
(Patterson, 2011).

In concrete terms, the random walk attains limiting properties, as the length of it
is divided into arbitrarily small time steps, the width of which tends to zero.

Let Xt be a random walk process of length T,

Xt = Xt−1 + εt, t = 0, 1, .., T, (3.12)

where εt is white noise process. In the case when T is fixed, the equation 3.12 re-
sembles a discrete time process with independent increments. By dividing the fixed
time space T into smaller and smaller parts, the random walk is converted into a
continuous time process, denoted Wiener process.

Let Xt be a random walk of fixed length T, as in 3.12. The limiting process is
obtained by dividing the length T into M small time steps and letting M increase.
The width of each step is,

∆t =
T
M

, t = 0, 1, .., T. (3.13)

Without loss of generality, T is set equal to one. Hence,

∆t =
1
M

, t = 0, 1, .., T. (3.14)

Thus, the width of each time step, ∆t, is ’shrunk’ to zero, as M increases. The random
walk is then defined at I=[0,1], as follows,

I = [t0 = 0, t1, .., tM−1, tM = 1] , where, ti =
i

M
.

The time steps are, thus, described by the equation

ti = ti−1 + ∆t. (3.15)
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With regards to the size of each step, it is taken to be

∆Xt = (
√

∆t)εt, (3.16)

with Var(∆Xt) = ∆tσ2
ε . Under the hypotheses that ∆t = 1 and that εt’s are iden-

tically and normally distributed with E(εt) = 0 and σ2
ε = Var(εt) = 1, i.e. εt ∼

iid(0, σ2
ε ), the difference between every step, ∆Xt, becomes εt, which denotes the

size step of the standard random walk.
Taking the above scaling from zero to unity into account, the random walk takes

the form,
Xti = Xti−1 + (

√
∆t)εt (3.17)

and with backward substitution,

Xti = Xt0 +
i

∑
j=1

(
√

∆t)εt. (3.18)

The unconditional variance of Xtj is,

V(Xti) = V(Xt0 +
i

∑
j=1

(
√

∆t)εt) =
i

∑
j=1

V
[
(
√

∆t)εt

]
= i∆tσ2

ε =
j

N
σ2

ε = tiσ
2
ε .

The limiting result of the process is obtained by taking a scaled version of Xti ,

Yti =
Xti

σε

√
M

. (3.19)

By the Central Limit Theorem (CLT), it can be proved that, as M→ ∞ and T is fixed,
Yti converges asymptotically to a normal distribution, as follows,

Xti ∼ N(0, ti)

and hence,
Yti ∼

√
tiN(0, 1). (3.20)

Thus, by dividing 3.20 by
√

ti it emerges that,

Zti =
Xti

σε

√
M
√

ti

has a limiting standard normal distribution,

Zti ∼ N(0, 1).

3.3.2 Definition of the Wiener process

Definition 3.3.1. (Wiener Process) The Wiener process, denoted W(t), is a continuous-
time stochastic process defined as

∆W(t) = ε
√

∆t,
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where ∆W(t) is the change of W(t) over the interval ∆t and ε ∼ N(0, σ2
ε ). The

process satisfies the following conditions:

1. W(0) = 0

2. W(t) has stationary and independent increments over time,

3. W(t) ∼ N(0, tσ2
ε )

If εt ∼ N(0, 1), the process is named a standard or Gaussian Wiener process, which
implies that W(t) ∼ N(0, t), 0 ≤ t ≤ 1. Consequently, the Wiener process reflects a
continuous random walk defined on [0, 1].

The second condition in definition 3.3.1 implies, that for any two different time
intervals the value of ∆W is independent and normally distributed. In fact, for given
times t and k, with 0 < k ≤ t,

W(t)−W(k) = ε
√
(t− k) (3.21)

that is,

W(t)−W(k) ∼ N(0, t− k) ≡
√
(t− k)N(0, 1). (3.22)

Hence, for a small interval ∆t, 3.22 becomes,

W(t + ∆t)−W(t) ∼
√

∆tN(0, 1). (3.23)

The connection between relationships 3.18 and 3.23 could now be more obvious.
By comparing both equations, the first one is defined in discrete time and the as-
sumption of the εt’s is not necessary for the asymptotic normality of Xti , whereas
the second is specified in continuous time and the Wiener process, W(t), is normally
distributed.

Notwithstanding, these differences are asymptotically eliminated, as ∆t → 0,
which indicates that as the time steps approach infinity the random walk simulates
a Wiener process. This intuitive result can be proved by using the functional central
limit theorem (FCLT).

3.3.3 The Functional Central Limit Theorem (FCLT)

The functional central limit theorem, also known as Donsker’s theorem, is the analogue
of the central limit theorem and is applied to stochastic processes rather than random
variables.

Let Xt be a standard random walk process with X0 = 0 and εt ∼ N(0, 1). The Xt
process can be written as Xt = ∑T

t=1 εt for t = 0, 1, .., T.
The FCLT is mapping the interval from 0 to T to a fixed interval [0,1] (Mad-

dala,1998). The division of [0,1] into T + 1 parts is exactly as described in the previ-
ous subsection. Hence, if 0 ≤ k ≤ 1,

k =
i
T

, i = 0, 1, .., T. (3.24)

The Xt process is now converted to a function of k, which is denoted as step function

YT(k) ≡
XT(k)√

T
, (3.25)
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where

XT(k) =
[kT]

∑
t=1

εt. (3.26)

The notation [kT] refers to the integer part of kT. For instance, if T = 100 and
k = 0.543, then [kT] = 54.

In the limit, as T → ∞, the step function YT(k) becomes increasingly dense on [0, 1]
and converges weakly to the standard Wiener process (Maddala,1998). Hence, the FCLT
implies that

YT(k)⇒W(k). (3.27)

Figure 3.1 illustrates an approximation of the random walk process by the step func-
tion YT(k) for T = 10, T = 50 and T = 250.
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FIGURE 3.1: Simulation for (a) T=10 (b) T=50 and (c) T=250

3.3.4 The Continuous Mapping Theorem (CMT)

An essential theorem for test statistics in unit roots is the Continuous mapping theorem,
which is usually used in combination with the FCLT. The CMT states that

if Xt ⇒ X and P(X ∈ A) = 0, then f (Xt)⇒ f (X),

where f (·) is a continuous function and A denotes the set of discontinuity points of
f . The CMT could be used as a consequence of FCLT, for a continuous function f (·)
defined on [0, 1].Then, the relationship 3.27 becomes

f (YT(k))⇒ f (W(k)). (3.28)
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3.3.5 Basic results of the Wiener process

Let Xt be a random walk process, Xt = Xt−1 + εt, with εt ∼ N(0, 1) and Xt = ∑T
t−1 εt.

Thus, Xt ∼ N(0, T) and

YT(1) ≡
XT√

T
∼ N(0, 1). (3.29)

From the FCLT it arises that
YT(1)⇒W(1). (3.30)

Some very useful results for the unit root test statistic distribution derive from the
following two lemmas. Both lemmas are expressed the assumption of independent
εt’s, εt ∼ N(0, 1) and X0 = 0.

The first one, which is cited without proof, portrays the transition from the step
function to the Wiener process, under the FCLT and the CMT.

Lemma 2. (i) T−3/2 ∑T
t=0 Xt ⇒

∫ 1
0 W(k)dk

(ii) T−2 ∑T
t=1 X2

t ⇒
∫ 1

0 [W(k)]2 dk

(iii) T−
5
2 ∑T

t=1 tXt ⇒
∫ 1

0 rW(k)dk

(iv) T−
3
2 ∑T

t=1 tεt ⇒
∫ 1

0 rdW(k)

(v) T−1 ∑T
t=2 Xt−1εt ⇒

∫ 1
0 W(k)dW(k)

The following lemma demonstrates the connection between the Wiener process
and the normal distribution.

Lemma 3. (i) XT√
T
≡W(1) ∼ N(0, 1)

(ii)
∫ 1

0 W(k)dk ∼ N(0, 1
3 )

(iii)
∫ 1

0 kdW(k) ∼ N(0, 1
3 )

(iv)
∫ 1

0 W(k)dW(k) = 1
2

[
W(1)2 − 1

]
∼ 1

2

[
X 2(1)− 1

]
Proof. (i) The FCLT states that the step function converges weakly to the Wiener

process; that is,
XT(k)√

T
⇒W(k). (3.31)

Evaluated at k = 1, XT(1)√
T

is the sample mean, ∑T
t=1 εt, which divided by

√
T

follows a normal distribution,

XT(1)√
T

=
XT√

T
∼ N(0, 1).

(ii) The sum of Xt, ∑T
t=1 Xt can be expressed as,

T

∑
t=1

Xt = Tε1 + (T − 1)ε2 + .. + εT, (3.32)
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since Xt = ε1 + ε2 + ... + εT. Since εt are identically and normally distributed,
εt ∼ N(0, 1), it emerges that

Var

(
T

∑
t=0

Xt

)
= T2 + (T − 1)2 + ... + 12 =

T

∑
t=1

t2.

Hence,

T

∑
t=1

Xt ∼ N

(
0,

T

∑
t=1

t2

)
⇒

T−
3
2

T

∑
t=1

Xt ∼ N

(
0, T−3

T

∑
t=1

t2

)
.

By using the sum ∑T
t=1 t2 = T(T+1)(2T+1)

6 , it can be easily proved that T−3 ∑T
t=1 t2 ≈

1
3 . Thus,

T−
3
2

T

∑
t=1

Xt ∼ N
(

0,
1
3

)
.

Combining the above relationship with lemma 2, it emerges that∫ 1

0
W(k)dk ∼ N(0,

1
3
).

(iii) The proof is based on (i). The variance of the sum ∑T
t=1 tεt is

Var

(
T

∑
t=1

tεt

)
=

T

∑
t=1

t2Var(εt) =
T

∑
t=1

t2.

Hence,

T−
3
2

T

∑
t=1

tεt ∼ N

(
0, T−3

T

∑
t=1

t2

)
.

The approximation of the variance is, as described above, equal to 1
3 . Provided

that T−
3
2 ∑T

t=1 tεt ⇒
∫ 1

0 rdW(k), it emerges that

∫ 1

0
kdW(k) ∼ N

(
0,

1
3

)
.

(iv) The proof is based on the relationship (v) of lemma 2. The product Xt−1εt is
obtained by

X2
t = (Xt−1 + εt)

2 = X2
t−1 + 2Xt−1εt + ε2

t ⇒

Xt−1εt =
1
2
(
X2

t − X2
t−1 − ε2

t
)

.

Hence,

T−1
T

∑
t=0

Xt−1εt =
T−1

2

T

∑
t=1

(
X2

t − X2
t−1
)
− T−1

2

T

∑
t=1

ε2
t . (3.33)
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The term ∑T
t=1
(
X2

t − X2
t−1

)
is equal to X2

T
T . It is already known that XT√

T
⇒

W(1) ≡ N(0, 1). Consequently, by use of the CMT, it arises that,

X2
T

T
⇒ [N(0, 1)]2 ≡ X 2

1 .

Moreover,
∑t=1 ε2

t
T

⇒ Var(εt) = 1.

Thus,

T−1
T

∑
t=0

Xt−1εt ⇒
1
2
[
X 2

1 − 1
]

.

Taking into consideration the above result and the relationship (v) of lemma 2
it is proved, that,∫ 1

0
W(k)dW(k) =

1
2
[
W(1)2 − 1

]
∼ 1

2
[
X 2(1)− 1

]
. (3.34)

3.4 Unit root tests based on the Dickey-Fuller distribution

The most common autoregressive unit root tests are considered to be the Dickey-
Fuller unit root test, denoted as DF and the Augmented Dickey-Fuller unit root test,
denoted as ADF. The latter is a semi-parametric test which is mostly used for higher
order AR or ARMA models.

For the simple DF test, Dickey (1976) and Dickey and Fuller (1979) derived the
the test statistic distribution of the unit root test in three cases:

• AR(1) model without drift or deterministic trend

• AR(1) model with drift

• AR(1) model with a linear trend

The distribution tables and critical values are not the same for each case and have
been evaluated by Dickey and Fuller.

3.4.1 Random walk model without drift and trend

In the case of estimating an AR(1) process without trend or drift

Xt = φXt−1 + εt, εt ∼ iid(0, σ2
ε ), (3.35)

the null hypothesis is
Xt = Xt−1 + εt (3.36)
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Defined on an interval of length T, the LSE of the parameter φ of an AR(1) model is,

φ̂ =
∑T

t=1 Xt−1Xt

∑T
t=1 X2

t−1

. (3.37)

Under the assumption of |φ| < 1 and independent and identically distributed errors,
the standardised LSE follows a standard normal distribution, as initially proved by
Mann and Wild (1943), √

T
(
φ̂− φ

)√
1− φ2

⇒ N(0, 1). (3.38)

Under the assumption of |φ| = 1, on the contrary, the limiting distribution of φ̂ could
not be easily evaluated. Phillips (1987) derived the standardised distribution of the
quantity,

T
(
φ̂− φ

)
, (3.39)

which, led Fuller (1976) and Dickey and Fuller (1979) to derive the limiting distri-
bution of 3.39, under the assumptions of X0 = 0 and independent and identical
distributed errors.

The Dickey-Fuller distribution

Under the assumption of the null hypothesis, H0 : φ = 1, the test statistic is,

T
(
φ̂− 1

)
= T

(
∑T

t=1 Xt−1Xt

∑T
t=1 X2

t−1

− 1

)
=

T ∑T
t=1 Xt−1εt

∑T
t=1 X2

t−1

. (3.40)

The above relationship could be expressed as,

T
(
φ̂− 1

)
=

T−1 ∑T
t=1 Xt−1εt

T−2 ∑T
t=1 X2

t−1

. (3.41)

By using CMT and relationships (ii) and (v) of lemma 2, it emerges that the quantity
T
(
φ̂− 1

)
has a distribution related to the Wiener process, which is the Dickey-Fuller

distribution.

T
(
φ̂− 1

)
⇒
∫ 1

0 W(k)dW(k)∫ 1
0 [W(k)]2 dk

(3.42)

The above relationship combined with (iv) of lemma 3 produces that,

T
(
φ̂− 1

)
⇒

[
W2(1)− 1

]
2
∫ 1

0 [W(k)]2 dk
. (3.43)

It can be noticed that the convergence of
(
φ̂− 1

)
is of order T, whereas, under the

assumption of |φ| < 1 it is of order T1/2.
The tables for the DF distribution are evaluated by Dickey and Fuller using

Monte Carlo simulation. Obviously, the critical values of the distribution differ from
those of a simple t−test or a F−test.

There are two different versions to the DF unit root test. The test statistic for the
first one is,

T
(
φ̂− 1

)
(3.44)

and the critical values origin from the tables of the distribution in 3.43. The other



3.4. Unit root tests based on the Dickey-Fuller distribution 43

approach involves the standard deviation of φ̂ and is denoted as DF t−test, since the
quantity T

(
φ̂− 1

)
is divided by σ̂φ̂ and the test becomes a t−type test; that is,

tφ̂ =
φ̂− 1

σ̂φ̂

, (3.45)

where σ̂φ̂ denotes the standard error of φ̂. The distribution tφ̂ has tables and critical
values which are totally different from those of Student distribution.

As shown above, σ̂2
φ̂
= 1

T (1− φ2). Hence, the test statistic tT in 3.45 becomes

tφ̂ =

√
T(φ̂− 1)√

1− φ̂2
=

T(φ̂− 1)√
T(1− φ̂2)

. (3.46)

Given the above two lemmas and relationship 3.43, the distribution of tT is a DF
distribution as follows,

T(φ̂− 1)√
T(1− φ̂2)

⇒
∫ 1

0 W(k)dW(k)/
∫ 1

0 [W(k)]2 dk

1/
(∫ 1

0 [W(k)]2 dk
)1/2 =

∫ 1
0 W(k)dW(k)(∫ 1

0 [W(k)]2 dk
)1/2 . (3.47)

Hence, tφ̂ converges weakly to the DF t−distribution,

T(φ̂− 1)√
T(1− φ̂2)

⇒ W2(1)− 1

2
(∫ 1

0 [W(k)]2 dk
)1/2 . (3.48)

DF distribution and rejection of H0

In both approaches the critical values, under the hypothesis of φ = 1, are not
those of the Student-t distribution. The DF distribution is skewed to the left, since the
probability that X 2(1) is less than one in the numerator, is 0.68, which implies that
the quantity T(φ̂− 1) is negative with probability 0.68. Hence, the DF distribution is
asymmetric and the use of the critical values of the symmetric Student-t distribution
could lead to overrejection of the null hypothesis.

The null hypothesis H0 in a DF unit root test is rejected, if the value of the test
statistic is less than the critical value in the corresponding table, since the test is one-
sided. Typically, the null hypothesis is rejected at 5% significance level if the value
of tφ̂ is less than −1.992.

Dickey and Fuller have provided different tables with critical values for each ran-
dom walk cases presented below (with constant, with trend).

3.4.2 Models with drift

In the second case the estimated AR(1) process includes drift

Xt = β + φXt−1 + εt, εt ∼ iid(0, σ2
ε ). (3.49)

There are two cases for the null-hypothesis: the random walk without drift and the
random walk with drift.
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Case 1: Random walk without drift

The null hypothesis is
Xt = Xt−1 + εt. (3.50)

The estimated model under which, the limiting distribution for the null and the
alternative hypotheses are derived, includes a drift. Hence, the null hypothesis for
this case is

H0: β = 0 and φ = 1.

If the mean of the process, µ = E(Xt) = β
1−φ , is subtracted from both sides of 3.49

the process becomes,
Xt − µ = φ(Xt−1 − µ) + εt. (3.51)

The ’demeaned’ process is denoted as X?
t and the previous equation can be ex-

pressed as
X?

t = φX?
t−1 + εt. (3.52)

Based on the theory presented in 3.4.1 it emerges that

T
(
φ̂− 1

)
=

T−1 ∑T
t=1 X?

t−1εt

T−2 ∑T
t=1
(
X?

t−1

)2 . (3.53)

The limiting distribution of T(φ̂− 1) is then

T
(
φ̂− 1

)
⇒

∫ 1
0 W?(k)dW(k)∫ 1

0

(
W?

t−1(k)
)2 dk

. (3.54)

where W?(k) = W(k)−
∫ 1

0 W(k)dk is the ’demeaned’ Wiener process. Correspond-
ingly, the limiting distribution of the t−test becomes

tφ̂ ⇒
∫ 1

0 W?(k)dW(k)[∫ 1
0

(
W?

t−1(k)
)2 dk

]1/2 . (3.55)

The test statistic for the drift, tβ̂, is proved to be also a function of the Wiener pro-
cess. The critical values for this distribution differ from those of the standard DF
distribution and are derived by Dickey and Fuller.

Case 2: Random walk with drift

If the null hypothesis is assumed to be a random walk with drift

Xt = β + Xt−1 + εt, (3.56)

then,

H0: β 6= 0 and φ = 1.

By sequential backward substitution, the process Xt = β + Xt−1 + εt can be ex-
pressed as

Xt = βt +
t

∑
i=0

εi
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with the initial value X0 set to zero. In the limit, the deterministic trend βt tends to
dominate the process and renders the distribution of the LSE to be asymptotically
normal. The exact proof for this intuitive result is based on the asymptotic distribu-
tions of LSE of β and φ.

By using the asymptotic results of lemmas 2 and 3, it emerges that[
T1/2 (β̂− β

)
T3/2 (φ̂− 1

)]⇒ N
(

0, σ2
ε Q−1

)
,

where

Q =

[
1 β/2

β/2 β2/3

]
.

Hence, under the null hypothesis H0 : φ = 1, the DF test statistic has the following
distribution:

T3/2 (φ̂− 1
)
⇒ N

(
0,

12σ2
ε

β2

)
(3.57)

which is rational result only if β 6= 0.

3.4.3 Models with linear trend

In the general case of estimating an AR(1) model with linear trend,

Xt = β + γt + φXt−1 + εt, εt ∼ iid(0, σ2
ε ) (3.58)

there are two alternative models under the null-hypothesis of non-stationarity: ran-
dom walk only with drift and random walk with linear trend.

Case 1: Random walk with drift only

In the first case the null-hypothesis is described by the process

Xt = β + Xt−1 + εt (3.59)

The asymptotic distribution of φ̂ is invariant to the value of β which renders the null
hypothesis of the unit root test as follows:

H0: β 6= 0, γ = 0 and φ = 1.

The asymptotic distribution of φ̂ and the corresponding t−test are proved to be
(Maddala, 1998):

T
(
φ̂− 1

)
⇒
∫ 1

0 W(k)dW(k) + C
A

(3.60)

and

tφ̂ ⇒
∫ 1

0 W(k)dW(k) + C
A1/2 , (3.61)
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where

A =
∫ 1

0
(W(k))2 dk− 12

(∫ 1

0
kW(k)dk

)2

+ 12
∫ 1

0
W(k)dk

∫ 1

0
kW(k)dk− 4

(∫ 1

0
W(k)dk

)2

and

C = 12
[∫ 1

0
kW(k)dk− 1

2

∫ 1

0
W(k)dk

]
×
[∫ 1

0
W(k)dk− 1

2
W(1)

]
−W(1)

∫ 1

0
W(k)dk.

The asymptotic distributions of the LSE β̂ and γ̂ are also functional forms of the
Wiener process.

Case 2: Random walk with linear trend

For the case of the random walk with trend,

Xt = β + γt + Xt−1 + εt, (3.62)

the null hypothesis of the unit root testing is

H0: β 6= 0, γ 6= 0 and φ = 1

It can be shown (Maddala, 1998) that the LSE φ̂ follows an asymptotic normal distri-
bution.

3.5 Other unit root tests

The results of the aforementioned unit root tests are based on the independent and
identically distributed errors with mean zero and constant variance, εt ∼ iid(0, σ2).
The strong assumption of no auto-correlation in errors, though, hardly responds to
real data.

In addition, there exists inherent difficulty in performing unit root tests to higher
order AR models or more complex ARMA models. The fact that the standard Dickey
- Fuller test can only be applied to a simple random walk model with iid errors gave
birth to a number of different unit root tests. Some common tests are, the augmented
Dickey - Fuller test, the Phillips - Perron test, the Sargan-Bhargava and Bhargava test and
others. Only the first two tests are discussed below.

3.5.1 The Augmented Dickey Fuller test

In many time series the errors are not identically and independently distributed and
thus, are not comprising a white noise process. Since the standard Dickey - Fuller
tests are based on iid errors with σ = σ2

ε , they could not capture the autocorrelation
and other complexities.
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A solution to such difficulties is proposed by Dickey and Fuller (1979) and Said
and Dickey (1984), who augmented the basic unit root tests in order to respond to a
wide class of series, such as AR(p) or ARMA(p,q) with unknown orders, and take the
issue of auto-correlation into consideration. The tests derived are named Augmented
Dickey Fuller tests, or abbreviated, ADF.

The AR(p) process

Xt = φ0 + φ1Xt−1 + φ2Xt−2 + ... + φpXt−p + εt, (3.63)

under the assumption of φ0 = 0 and εt ∼ iid(0, σ2
ε ), can be expressed as

A(L)Xt = εt, (3.64)

where A(L) = 1− φ1L− φ2L2− ...− φpLp is the lag-polynomial or order p. If Xt has
a unit root, then A(1) = 0 and

1−
p

∑
i=0

φiLi = 0⇒
p

∑
i=0

φi = 1

Hence, the equation 3.64 can be written as

(1− L)A?(L)Xt = εt

where A?(L) = ∑
p−1
i=1 αiLi. The model can be, thus, rewrited as

∆Xt = B(L)−1εt, (3.65)

where B(L) = (1− L)A?(L). By expressing the regression in this way, the autocor-
relation among the errors could be now evident.

The ADF test is based on finding the LSE of the model

∆Xt = β + φXt−1 +
p

∑
i=1

αi∆Xt−i + εt. (3.66)

sketch of the proof could be given by the following illustrative example.
Let Xt = φ1Xt−1 + φ2Xt−2 + φ3Xt−3 + εt be an AR(3) model with φ0 = 0. By

taking first differences on the model it emerges that

∆Xt = (φ1 − 1)Xt−1 + φ2Xt−2 + φ3Xt−3 + εt (3.67)

Then, by adding and subtracting firstly the term φ3Xt−2 and consequently the term
(φ2 + φ3)t−1 the equation becomes

∆Xt = (φ1 − 1)Xt−1 + (φ2 + φ3)Xt−2 − φ3(Xt−2 − Xt−3) + εt

= (φ1 + φ2 + φ3 − 1)Xt−1 − (φ2 + φ3)(Xt−1 − Xt−2)

− φ3(Xt−2 − Xt−3) + εt.

Hence, the equation takes the form

∆Xt = φXt−1 +
2

∑
i=1

αi∆Xt−1 + εt (3.68)
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where φ = φ1 + φ2 + φ3, α1 = −(φ2 + φ3) and α2 = −φ3, Inductively, the regression
3.68 is generalised to the augmented Dickey-Fuller regression

∆Xt = φXt−1 +
p−1

∑
i=1

αi∆Xt−i + εt. (3.69)

Under the null hypothesis H0 : φ = 1, the distribution of the LSE α̂i, for i = 1, .., p− 1,
is the normal distribution and the distribution of φ̂ is the DF distribution as in 3.45.

If constant and trend are added to the model, the ADF regression becomes re-
spectively,

∆Xt = β + φXt−1 +
p−1

∑
i=1

αi∆Xt−i + εt,

∆Xt = β + γt + φXt−1 +
p−1

∑
i=1

αi∆Xt−i + εt.

The tables of the critical values for these cases are the same as in the cases with
constant and trend mentioned above.

Lag selection

The size and the power of the ADF tests are affected by the number of lags, p,
contained in the estimating regression. Specifically, if the number of lags is small,
then the remaining auto-correlation in the errors will bias the test and the size of
it will grow. On the other hand, a very large number of lags would diminish the
power of the test. In general, the number of lags included in the regression usually
increases with the size of the data.

Ng and Perron (1995) proposed a rule for selecting the number of lags, which
would preserve the size stable and maximize the power of the test. That is, the number of
lags is set to have an upper bound, denoted as pmax. The ADF regression is estimated
with p = pmax and if the absolute value of the test statistic for the lagged difference
is greater than 1.6, then the ADF test is normally performed. Otherwise, the number
of lags is reduced by one and the process is repeated.

Schwert (1989) proposed a common rule for the calculation of the upper bound.
This is,

pmax =

[
12 ·

(
T

100

)1/4
]

, (3.70)

where [·] denotes the integer part.
The lag length could be also determined by the information criteria AIC and BIC.

The corresponding functions for the model in 3.69 are

AIC = (T − p− 1)logσ̂2 + 2k,

BIC = (T − p− 1)logσ̂2 + k · log(T − p− 1),

where k denotes the number of parameters in the model. The value of p which gives
the lowest value of AIC or BIC signifies the proper number of lags in the regression.



3.5. Other unit root tests 49

3.5.2 The Phillips-Perron test

Another test which accounts for serially correlated and heteroscedastic errors is the
Phillips-Perron test (1987), denoted as PP test. The test statistic of the PP test is
based on the DF distribution and corrects for possible heteroskedasticity or serial
autocorrelation in the errors. In the case when there is no autocorrelation, the PP
test is identical to the DF test.

An advantage of the PP test is its non-parametric character; that is, the level of
serial correlation, i.e. the lags, does not need to be defined, as in the ADF test. Hence,
the autocorrelation in the errors is corrected without the specific choice of lags, p, and
the biased opinion of the researcher. However, this test is more reliable only for a
large amount of data, since it is based on asymptotic results of the DF distribution.
Another drawback of this test is the sensitivity to structural breaks.

The idea behind the PP test is that the non-augmented DF test is initially used
and if any autocorrelation in the errors is detected, it is adjusted by proper test statis-
tics.

The test statistic for the PP test includes the variance of sum of errors, denoted by
σ2 and the variance of errors, denoted by σ2

ε . Since the errors are not independent,

Var(εt) = σ2
ε , (3.71)

and more specifically,

σ2
ε = lim

T→∞
T−1

T

∑
i=1

E(ε2
j ). (3.72)

The variance of the AR(1) model without constant in the general case is

lim
T→∞

E
(

X2
T

T

)
= σ2, (3.73)

which, by backward substitution, becomes

σ2 = lim
T→∞

T−1E

( T

∑
i=1

εi

)2
 . (3.74)

Hence,
XT√

T
⇒ N(0, σ2). (3.75)

As a result,
X2

T
T
⇒ �2(1). (3.76)

The distribution of the numerator of the test statistic T(φ̂− 1) is then

T−1
T

∑
t=1

Xt−1εt ⇒
σ2

2
(
�2(1)− 1

)
+

(
σ2 − σ2

ε

2

)
. (3.77)

The distribution of the denominator is

T−2
T

∑
t=1

X2
t−1 ⇒ σ2

∫ 1

0
(W(k))2 dk.



50 Chapter 3. Autoregressive unit root tests

Consequently, if the errors are not independently distributed, the DF test statistic
T(φ̂− 1) takes the form

T(φ̂− 1)⇒
1
2

[
�2

1 − 1
]
+ µσ−2∫ 1

0 [W(k)]2 dk
,

where

µ =
σ2 − σ2

ε

2
.

In the case of uncorrelated errors, the above quantities σ2 and σ2
ε are equal.

The modified test statistic for the PP test is

Bφ̂ = T(φ̂− 1)− µ

[
T−2

T

∑
t=1

X2
t−1

]−1,

which then implies that Bφ̂ follows the Dickey-Fuller distribution.
Phillips and Perron proposed the use of the consistent estimators s2

ε and σ2 of
the parameters σ2

ε and σ2 respectively. Hence, they provided non-parametric test
statistics for each case of the unit root testing: AR(1) model without drift or trend,
AR(1) model with drift and AR(1) model with drift and trend.

The limiting distributions of the test statistics for each case identify with those of
T(φ̂− 1) and tφ̂ introduced by Dickey and Fuller, when σ2 = σ2

ε .

3.6 Issues associated with the classical unit root tests

Size distortion and low power

In general, the ADF and PP tests suffer from size distortions, which means that
the correct null hypothesis is, in most cases, rejected and hence, the stationary I(0)
series is regarded as non-stationary I(1). Hence, the conventional asymptotic critical
values for distorted tests cannot be employed. In which cases, however, the standard
DF and PP tests suffer from size distortions?

It has been argued (Schwert, 1989) that the DF distribution with a moving av-
erage (MA) component differs from the standard DF distribution mentioned previ-
ously. Especially, when the errors are negatively correlated, the size of the test is
highly affected.

If the first-differenced time series has an ARMA representation and includes a
large and negative MA or AR component, the PP test leads to overrejecting the null
hypothesis and thus, to size distortion.

The power of the unit root test is the probability of correct rejection of an invalid
null hypothesis. The ADF and PP tests have generally low power, especially when
the alternative is a highly persistent stationary process with φ close to unity or when
the series contains a time trend. Typically, the power of the PP and ADF tests against
trend-stationary alternatives fluctuates around 0.10 and 0.30 respectively. Hence, the
ADF test is more likely to be used in practice.

Discontinuity near the unit root φ = 1
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The test statistics of the classical unit root tests are continuous for |φ| ≤ 1, in the
case of finite samples. At the limit, however, the asymptotic distributions of the test
statistics change discontinuously near the unit root.

According to Cohrane (1991), any test in the form of H0 : θ = θ0 against H1 :
θ = θ0 − ε has relatively low power, especially in small samples. This drawback,
combined with the discontinuity between the null and the alternative hypothesis,
leads to arbitrarily poor power of the classical unit root tests.

Power problems and modifications to the standard unit root test

Inference based on the basic autoregressive unit root tests, ADF and PP, may be
quite fragile, mainly due to the distorted size and the low power of these tests. As
aforementioned, the presence of large negative MA components can cause size and
power problems.

A way to handle this adversity has been developed by Yap and Reinsel (1995).
They suggested the Likelihood Ratio (LR) tests which are performed on ARMA mod-
els and encompass MA components. The test statistics of LM unit root tests follow
asymptotically the Dickey-Fuller distribution, which implies that the addition of MA
terms to an AR process does not change the distribution that could be obtained by a
simple AR model.

Perron and Ng (1996) proposed some modifications to the test statistic of the
basic PP tests. The modified PP tests are proved to maintain their power and size,
when there exist negative MA components in the model. In addition, the order of
the MA component does not need to be a priori defined.

The ADF-GLS (or DF-GLS) test suggested by Elliott, Rothenberg and Stock (1996)
is a modification of the standard ADF test which is more efficient due to its large
power and diminished size distortions. In essence, the test is based on the standard
augmented DF test; however, the time series is transformed by using a generalized least
squares (GLS) regression before performing the test.

Stationarity as null hypothesis

The common unit root tests have as the null hypothesis the assumption of non-
stationary, I(1) time series, against the stationary alternative. The hypothesis test
is performed by rejecting or not the null hypothesis, providing evidence against it.
By experience, the vast majority of economic series are not very informative, and
thus, the standard unit root tests cannot reject the null hypothesis, even in the case
of a random walk series. Hence, the basic unit root tests have low power against the
relevant alternatives.

The above claim led many researchers to conduct hypothesis tests using station-
arity as the null hypothesis and unit root as the alternative. Some widely known
stationarity tests are: Tanaka (1990), KPSS (Kwiatkowski, Phillips, Schmidt and Shin,
1992), Park (1900) and others.
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Chapter 4

Bayesian unit root testing

4.1 A preface to the Bayesian unit root testing

4.1.1 Introduction

As mentioned above, the presence of a unit root in a time series leads to persistent
non-stationary models, which are in practice encountered in many economic time
series. The detection of a unit root comprises a crucial issue in the statistics literature.

The previous chapter exhibited some of the most widely used autoregressive unit
root tests which are based on the distribution of the LSE of the autoregressive param-
eter φ. In the stationarity cases, the distributions are symmetric and standardized,
unlike with the unit root case, where the distribution is non-standard and asymmet-
ric. This anomaly in the asymptotic distribution under the null hypothesis renders
the inference fragile and many times unreliable.

Bayesian methods for autoregressive processes have been a major object of in-
terest for the statisticians over the past few years. Zellner and Tiao (1964) were the
first who studied AR(1) models, giving the stimulus to Zellner (1971), Box et al.
(1976), Marriot and Smith (1992) and Monahan (1984) to analyze AR(1) models with
Bayesian methods.

Phillips (1991) provided alternative choices of priors for the evaluation of the
posterior distribution, when non-stationarity is assumed. Since then, many ana-
lysts, including Ghosh and Heo (2000), Schotman and Van Dijk (1991) and Sims and
Uhlig (1991) try noninformative priors without considering stationarity to derive the
posterior distribution of the parameters.

The Bayesian framework regards the autoregressive parameter as a random vari-
able and draws inference from the posterior distribution of it, which is evaluated by
taking the data and any prior knowledge about the parameter as fixed and known.

The posterior distribution of φ is proved to be symmetric and standard, under spe-
cific choice of priors and may lead to trustworthy conclusions and p-values, since the
posterior distribution of φ is the inference under the Bayesian approach. In multipa-
rameter problems, all the inference is summarized in the joint posterior distribution.
Inference about model indicator i is made through the marginal likelihood, which is
obtained by integrating out the other parameters.

A significant advantage of the Bayesian approach to model selection is the con-
sistency of the selected model. If there is enough data available, then, under mild
conditions, the posterior probability focuses on the real model. That is, the the pos-
terior probability of the models containing the truth approaches 1.
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The selection of the proper prior has employed a great amount of literature and
comprises a controversial issue among the statisticians. Sims and Phillips have made
significant contributions to the substantial issue of prior selection.

Sims (1989) argued that the discontinuity of the LSE distribution under the hy-
pothesis of a unit root is a serious drawback of the classical approach and could
lead to unreasonable results. He suggested the use of the simple flat prior, as a non-
informative and rational choice.

On the other hand, Phillips (1991) claims that the use of flat prior is the reason
for the divergence between the results of the classical and Bayesian methods. He
proposed the Jeffreys’ prior as a satisfactory representation of ignorance.

With regards to testing the hypothesis of a unit root, it comprises a model com-
parison with a point null hypothesis of φ = 1. An inherent difficulty in tests is that
the point null hypothesis can not be effectively checked with continuous priors due to
the continuity of the posterior, which assigns zero weight to the unit root hypothesis.

There exist tests that either are based on discontinuous priors and thus, do not
assign zero weight to the unit root hypothesis (SVD 1991, Dejong and Whiteman,
1991), or are closely related to the point null hypotheses without being actually point
null hypotheses, using continuous priors (Koop, 1994).

Hence, the inference is based either on odd ratios and Bayes factors or on model
selection criteria, such as BIC, PIC, FIC and others.

4.1.2 From Classical to Bayesian point of view

The classical approach calculates the distribution of φ̂ conditional on a particular
value of φ, φ = 1. On the contrary, the Bayesian unit root theory focuses on the
distribution of φ̂|φ for every possible value of φ and prior distribution of φ.

Skewness and Dispersion

If the distribution of φ̂|φ preserves the skewness and dispersion of φ̂|φ = 1, then
the true value of φ would be on a regular basis larger than the estimator φ̂ (Hamilton,
1994).

The values of φ affect the distribution of φ̂|φ. The skewness of φ̂|φ becomes
smaller for small values of φ. However, the dispersion increases, since the variance
of
√

T(φ̂− φ) approximates 1− φ2.
For instance, under the assumption of no skewness, a given observation φ̂ = 0.90

is more likely to origin from a distribution centered at φ = 0.85 and large dispersion,
than from a distribution centered at φ = 1 and small dispersion.

This characteristic is fading when the flat prior is used, since all values of φ will be
equally weighted and an observed value of φ̂ = 0.90 will give the same probability
to φ to be less or more than 0.90.

4.2 Posterior distribution of an AR(1) parameter using a dif-
fuse prior

Let
Xt = φXt−1 + εt (4.1)
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be an AR(1) model with drift zero and normally distributed errors, εt ∼ N(0, σ2).
For the posterior distribution of φ, the distribution of the vector parameter θ = (φ, σ)
needs first to be evaluated.

The joint likelihood of the AR(1) model can be derived either by calculating the
exact likelihood of the model, regarding the initial value as an unknown parameter, or by
evaluating the conditional likelihood; that is, the initial value X0 is taken to be known.

Based on the latter approach, if the initial observation X0 is known, then the like-
lihood can be evaluated by conditioning on this initial value. For instance, the joint
function of (X1, X2) given X0 and θ is factorized as the product of the conditional
density of X3 and the marginal likelihood of X2, as follows

f (X1, X2|X0, θ) = f (X2|X1, X0, θ) f (X1|X0, θ).

Inductively,

f (XT, XT−1, ..., X1|X0, θ) =
T

∏
t=1

f (Xt|It−1, θ),

where It−1 denotes the information available at time t− 1. Since the errors are nor-
mally distributed, the likelihood becomes

L(Xt|φ, σ, X0) =
T

∏
t=1

1√
2πσ2

exp
(
− (Xt − φXt−1)

2

2σ2

)
and thus,

L(Xt|X0, φ, σ) = (2π)−T/2σ−T exp

(
−∑T

t=1(Xt − φXt−1)
2

2σ2

)
.

A diffuse prior for the parameter vector θ = (φ, σ) is selected to represent the a priori
ignorance about the parameters. Jeffreys (1961) proposed that for location parame-
ters the prior should be taken proportional to a constant, and for scale parameters
the prior should be taken proportional to their inverses.

Hence, the parameters are uniformly and independently distributed as follows,

f (φ, σ) ∝
1
σ

, −1 < φ < 1 and σ > 0.

In the general case when the autoregressive parameter φ can be any real number,
−∞ < φ < ∞, the analysis applies to both explosive and nonexplosive cases (Zellner, 1996,
p.187).

The posterior distribution of θ can be evaluated up to a normalising constant by
using Bayes’ theorem,

f (φ, σ|Xt, X0) ∝ f (Xt|φ, σ, X0) f (φ, σ).

Hence,

f (φ, σ|Xt, X0) ∝ σ−T−1exp

(
−∑T

t=1(Xt − φXt−1)
2

2σ2

)
.
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The marginal posterior distributions of φ and σ are obtained by integrating with
respect to σ and φ, respectively. Hence,

f (φ|Xt, X0) =
∫ ∞

0
f (φ, σ|Xt, X0)dσ

∝

(
T

∑
t=1

(Xt − φXt−1)
2

)−T/2

.

and

f (σ|Xt, X0) =
∫ 1

−1
f (φ, σ|Xt, X0)dφ

∝ σ−Texp

(
−∑T

t=1(Xt − φXt−1)
2

2σ2

)

The marginal posterior of φ is a univariate, symmetric about the LSE t-distribution, while
the posterior of σ is an inverse gamma distribution with 2 degrees of freedom (Zellner,
1971).

The classical approach to unit root testing relies on the inference made from the
behaviour of the estimators in repeated samples viewing the true parameter of interest as un-
known and fixed (Maddala, Kim). On the contrary, the Bayesian framework draws in-
ference from the posterior distribution of the autoregressive parameter and regards
the data and the parameter estimator as known.

Under the presence of a unit root, the Bayesian methods facilitate the process of
inference since the posterior distribution is symmetric and standard, whereas the LSE
distribution in the classical framework is asymmetric and non-standard, as stated in
the previous section.

4.3 The "proper" model for unit root testing

A key characteristic of the processes with stochastic trend is the long run fluctua-
tions. The stochastic character of the process implies that the mean does not exist.
Consequently, there is no deterministic trend that serves as a long run anchor around which
the process would have a tendency to revert (Lubrano, 1995).

Initiated by Schotman in 1992, there are two common parameterizations of the
standard AR process: the structural parameterization and the reduced form parameteri-
zation. It can be shown that the former, compared with the latter, reflects effectively
the properties of the unit root stochastic process.

4.3.1 Schotman’s structural model parameterization

Let AR(p) be an autoregressive process of order p. The key question if the model
is difference stationary (DS) or trend stationary (TS) can be answered by unit root
tests. A more general expression of the process is

Xt = µ + δt + vt, (4.2)
Φ(L)vt = εt, (4.3)
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where εt is a White noise and Φ(L) is a lag polynomial of order p. This parameter-
ization has been mostly discussed by Schotman and Van Dijk (1991) and Schotman
(1992) for testing a unit root hypothesis. In the simple case of p = 1 the model
becomes

Xt = µ + δt + vt,
vt − φvt−1 = εt,

which produces the following equation,

Xt = φXt−1 + [(1− φ)µ + δφ] + (1− φ)δt + εt. (4.4)

There are four cases with regards to the value of φ:

• φ = 1 : The process is a DS process since there is a unit root, Xt = δ+Xt−1 + εt

• φ = 0 : The process is a pure TS process, Xt = µ + δt + εt

• φ < 1 : The process is stationary with a deterministic trend,

• |φ| > 1 : The process is explosive.

The model with the unit root has neither intercept µ nor trend. Only the drift δ re-
mains. As outlined in 1.5.2.2, the mean of the process is E(Xt) = δt which denotes
that the process does not revert to a constant, but grows over time. This is a charac-
teristic feature of the stochastic process with a unit root.

4.3.2 Phillip’s reduced form parameterization

The following parameterization was initated by Phillips in 1991 and has been used
both in classical and Bayesian framework. It is expressed as a reduced form of 4.2
and 4.3,

Xt = α0 + α1t + φXt−1 + εt, (4.5)

where, α0 = (1− φ)µ + φδ and α1 = (1− φ)δ.
Under the null hypothesis of a unit root the trend coefficient α1 does not vanish.

Hence, Xt will not be of the same order of magnitude under each hypothesis (Davidson
and Mackinnon, 1993). Specifically, Xt in 4.5 is O(T) under the alternative, φ < 1,
and O(T2) under the null hypothesis, since the presence of a unit root in the process
increases the order of Xt (Lubrano, 1995).

The difference between the two parameterizations is not obvious in classical in-
ference, since the estimation of φ and its standard deviation would be the same.
However, the distributions of Dickey and Fuller are based on asymptotic theory,
where this distinction is crucial. Only with the second parameterization the distri-
butional results are obtained.

From the Bayesian perspective, the inference is the posterior density of the pa-
rameters. The model in 4.5 with a flat prior can be analyzed and explained with the
standard classical framework, providing results similar to those in a stationary case.

On the other hand, the structural model in 4.2 and 4.3 encompass in the joint pos-
terior density one of the major characteristic features of the stochastic process with
a unit root: the absence of the mean. Hence, the results concluded via this parameteri-
zation are similar to those obtained in the classical inference.
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4.4 Selecting the appropriate prior

extensive literature and research has been devoted to the Bayesian unit root analysis
and specifically to the composite issue of the prior selection. Sims (1989), Sims and
Uhlig (1991) and Zellner (1971) are some of the Bayesian-statisticians who support
the flat prior for the unit root tests.

4.4.1 The flat prior

According to Sims and Uhlig (1991), one-tailed unit root tests cannot usually reject
the null hypothesis of a unit root when classical theory is used, compared to the
corresponding test based on the t distribution. If the information about the pdf pa-
rameters is diffuse, then a flat prior is used, that is,

f (φ, σ) ∝
1
σ

. (4.6)

The posterior distribution of φ is a t distribution and hence, the usual t tests are used.
Commonly, the flat prior does not easily reject the null hypothesis and thus, favors
large values of φ.

Sims and Uhlig (1991) compared the classical and the Bayesian approach by eval-
uating the two following distributions. The first is the distribution of φ̂|φ = 1, which
is the distribution of the estimated parameter under the hypothesis of a unit root and
the latter is that of φ|φ̂ = 1, which is the distribution of the true parameter with the
estimated parameter as known. They argued that the Bayesian approach provides
more logical conclusions than the classical approach in the case of a flat prior, espe-
cially due to the asymmetry and non-standardness of the classical distribution.

4.4.2 Phillip’s ignorance prior

On the contrary, Phillips (1991) claimed that the flat prior does not represent prop-
erly the uninformativeness in the data. He argued that the flat prior actually is in-
formative, since it favours stationarity, which may explain the discrepancy between
the inferences obtained by the Bayesian and classical methods.

One of the basic arguments of Phillip stems from the interpretation of the au-
toregressive parameter in a AR(1) time series model Xt = φXt−1 + εt, and a linear
regression model Yt = βXt + εt. In the case that |φ| is large, the data is quite infor-
mative about the parameter. Flat priors ignore the impact of the coefficients on the
information contained in the data. Hence, a flat prior which gives equal weight to
every value of φ may downgrade higher values of φ and hence, the possibility of a
unit root.

Phillips proposed that the Jeffreys’ invariant to transformations prior should be
used, as a satisfactory representation of ignorance. The Jeffreys’ prior for the stan-
dard AR(1) model in 4.1 is

f J(φ, σ) ∝
1
σ

I1/2
φφ , (4.7)

where

Iφφ =
T

1− φ2 −
1

1− φ2
1− φ2T

1− φ2 +

(
X0

σ

)2 1− φ2T

1− φ2 , if φ 6= 1
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and

Iφφ =
T(T − 1)

2
+ T

(
X0

σ

)2

, if φ = 1.

The initial value X0 is often assumed to be zero, otherwise a prior distribution for X0
would seem a reasonable choice. In the latter case the Jeffreys’ prior depends on the
prior distribution of the initial value.

The confidence sets that emerge from the Jeffrey’s prior are tighter when the val-
ues of |φ| become larger. This prior is also invariant to transformations of the param-
eter. Another noticeable feature is the dependence of Jeffreys’ prior of the lag length
T, in comparison to the flat prior. If X0 = 0 and |φ| is large, then

f J(φ, σ) ≈
√

2
σ

φ(T−2),

which grows exponentially when T > 2.
Under the assumption of normally distributed errors, the marginal posterior distri-

bution of φ based on the observed data Xt and conditioning on the initial value X0
is,

f (φ|Xt, X0) ∝ α1/2

[
T

∑
t=1

(Xt − φXt−1)
2

]−T/2

,

where

α =

{
T

1−φ2 − 1
1−φ2

1−φ2T

1−φ2 if φ 6= 1,
T(T−1)

2 if φ = 1.

The Jeffreys’ posterior for the AR(1) Gaussian model is less susceptible to down-
weighting the unit root hypothesis than the posterior based on the flat prior.

Inference is quite sensitive to the model used in the analysis. For instance, the
conclusions made above apply only to the AR(1) model without trend or/and inter-
cept. The Jeffreys’ ignorance prior proposed by Phillips does not provide rational
results for the richer structure

Xt = β + γt + φXt−1 + εt.

It has been argued by Phillips and Schotman and van Dijk (SVD) (1991) that, com-
pared to the flat prior, the prior proposed by Phillips downweights the hypothesis of
a unit root when the model includes a trend and an intercept.

SVD have provided the Jeffreys’ prior for every AR(1) model:

• model with no constant and no trend

• model with constant only

• model with constant and trend

In the first case the prior is biased toward φ > 1. In the other two cases the prior has
zero value at φ = 1, which could explain the bias towards stationarity.
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4.4.3 Reference prior

Reference priors have been introduced by Berger and Bernando as a motivation to
overcome the sensitivity of Jeffreys’ prior in larger models. In multiparameter prob-
lems, Jeffreys’ prior may need to be modified in order to handle the arising difficul-
ties (of downweighting the unit root etc).

Reference priors, on the contrary, are able to break up the multiparameter prob-
lems into smaller conditional models with a single parameter. This approach applies
effectively under iid error assumptions. For dependent data the prior exists only for
the stationary case |φ| < 1 and does not exist for the explosive case |φ| > 1.

The non-asymptotic reference prior for a large time length T and for the AR(1)
model is

π(φ) ∝ exp

{
1
2

Eφ

[
log

T

∑
t=1

X2
t−1

]}
,

where Eφ denotes the expectation over the data (X1, .., XT) given φ. In the asymptotic
case T → ∞ there exists no reliable reference prior for the explosive case |φ| > 1.

4.4.4 The Schotman and Van Dijk prior

Schotman and Van Dijk (1991b) (SVD) developed an approach similar to that of Sims
and Uhlig with regards to the prior choice. They were based similarly on the AR(1)
model, Xt = φXt−1 + εt, and provided a non informative prior based on the following
assumptions,

(i) The initial value x0 is a constant and the likelihood is calculated conditionally
on x0.

(ii) εt is a sequence of independent and identically distributed random variables
with zero mean and unknown variance σ2.

(iii) φ ∈ {P, 1}, where, P = {φ| − 1 < α ≤ φ < 1} and α is a significance level

The priors as defined by SVD for φ are:

Pr(φ = 1) = π0 and f (φ|φ ∈ P) = 1
1−α

and for σ

f (σ) ∝ 1
σ

Namely, φ is uniformly distributed over P and gives a probability mass on φ = 1.
The quantity π0 is equal to K0

1+K0
, where K0 denotes the prior odds ratio in favor of

the hypothesis φ = 1. A flat prior is also used for σ.
SVD perform the Bayesian unit root testing by initially considering a mass point

at φ = 1 and consequently comparing the posterior odds between the null and the
alternative hypothesis.
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4.4.5 Normal-Wishart and Lubrano priors

A widely known non-flat prior choice is the Normal-Wishart prior which belongs to
the conjugate family. That is, the posterior distribution of the autoregressive pa-
rameters follows a Normal-Wishart distribution, too. This prior is quite informative
about properties of the model and gives low probability to an explosive root when
it centered around φ = 1 (Uhlig, 1994).

There are many discussions about the importance of the initial value. Lubrano
(1995) argues that, by regarding the following structural model and the initial ob-
servation as a random variable, the Bayesian unit root test provides results which
almost coordinate with the results of the classical approach. The structural model is,

Xt = α + βt + vt,
vt = φvt−1 + εt,

where εt ∼ iid(0, σ2). According to Lubrano, the distribution of the initial value, X0,
is

X0 ∼ N
(

α,
σ2

1− φ2

)
.

The distribution is valid only for |φ| < 1. In the case of |φ| > 1 the distribution is
modified as follows

X0 ∼ N
(

α,
σ2

h(1− φ2)

)
,

where

h(1− φ2) =


0, if |φ| >

√
1 + u.

(1− φ2 + u)2/4u, if
√

1− u ≤ |φ| ≤
√

1 + u,
1− φ2, if |φ| <

√
1− u,

where u is suggested to be 0.5 so that φ ∈ [−1.225, 1.225].
With regards to the prior, Lubrano uses a diffuse prior which is evaluated as the

limit of an informative prior; specifically of a Beta distribution,

π(φ|u) ∝ (
√

1 + u + φ)p−1(
√

1 + u− φ)q−1,

where p > 0 and q > 0. By setting p = 1 and q = 0, Lubrano obtains the non-
informative prior

π(φ|u) ∝
1√

1 + u− φ
.

This prior is simnilar to Jeffreys’ prior in shape, but it does not depend on the length
T. The results obtained, when real data is involved, by comparing other priors with
the ADF test are closer to the classical framework.

4.5 Bayesian methods for unit root testing

In Bayesian hypothesis testing the null and the alternative hypotheses are on equal
footing, that is, the purpose of the test in not to reject or not the null hypothesis, as it
happens with the classical tests. The Bayesian test compares the two hypotheses with
different methods.



62 Chapter 4. Bayesian unit root testing

Widespread approaches for the Bayesian unit root testing are the posterior odds
using posterior or predictive distribution and the model selection via Information
Criteria, such as PIC, BIC and others.

4.5.1 Providing the evidence

Let H0 : φ = φ0 and H1 : φ = φ1 be the null and the alternative hypotheses of a
typical hypothesis test. There exist quantities that measure the evidence and anal-
ogously can reject or not a hypothesis. A widely used one by both Bayesians and
frequentists is the p-value.

Exclusively from the Bayesian point of view the evidence is provided by the
posterior odds ratio which is based either on the posterior distribution or on the predictive
distribution and depicts which hypothesis dominates the other.

The p-value

Let t(x) be the value of the test statistic when data X = x is observed. If T(x)
is more extreme than expected under the assumption of a true H0, then the null hy-
pothesis is rejected over the alternative. Specifically, H0 is rejected if the probability
of T(X) being greater than the observed t(x) is lower than a significance level α,
when H0 is true. That is,

Pr [|T(X)| ≥ t(x)] ≤ α.

Fisher proposed a measure of evidence according to the significance level. Namely,
α = 0.99 denotes a very strong evidence against H0, 0.95 denotes strong evidence
and 0.90 implies a neutral evidence.

Posterior odds using the posterior distribution

The posterior probability of H1 (and analogously for H0) can be expressed as,

f (H1|x) =
f (x|H1) f (H1)

f (x)
,

where f (x) = f (x|H0) f (H0) + f (x|H1) f (H1).
As outlined in Section 2, the comparison between the null and the alternative

hypothesis can be performed by evaluating the posterior odds ratio based on observed
data x, which is the ratio of the posterior probabilities under H0 and H1,

L01 =
f (H0|x)
f (H1|x)

=
f (x|H0) f (H0)

f (x|H1) f (H1)
.

The posterior odds provide the evidence of the null over the alternative hypothesis
when data x is observed. If L01 > 1 or f (H0|x) ≥ 0.50 then H0 is accepted, other-
wise H1 is accepted. That is, the null and the alternative hypotheses are treated in a
symmetric way.

Similarly, the prior odds is the ratio f (H0)/ f (H1) and denotes the prior plausibil-
ity of H0 over H1 before the data has been observed.

Bayes’ factor for unit root testing
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Bayes’ factor provides evidence with regards to the degree the prior odds update
the observed data. It is defined as the ratio

BF01 =
f (x|H0)

f (x|H1)
,

or equivalently

BF01 =
f (H0|x)
f (H1|x)

/
f (H0)

f (H1)
.

In the case of setting equal prior probabilities to the hypotheses, P(H0) = P(H1) =
1/2, the Bayes’ factor coincides with the posterior odds.

Bayes’ factor can suitably replace p-value in terms of the decision rule in a hy-
pothesis test, since a large value of the first provides stronger evidence in favor of
H0 over H1 which leads to a decision. In the latter case the decision over a hypothesis
is based on the significance level α.

Bayes factor and posterior odds apply to the unit root test

H0 : φ = 1,
H1 : φ ∈ A,

for any generic AR model and alternative hypothesis. A weight π0 is assigned to the
null hypothesis and the complement 1− π0 to the alternative. In the general case,
let K = {φ, ρ}, ρ ∈ Rk−1 depict the k-dimensional parameter vector, where {K,A}∈
Rk. The evaluation of the Bayes’ factor includes a multidimensional marginalization
over the parameters of Θ. The posterior odds conditioning on the initial value x0 are
thus,

L01 =
f (φ = 1|ρ)
f (φ ∈ A|ρ) =

π0

1− π0

∫
K f (x|φ = 1, ρ, x0) f (ρ|φ = 1)dρ∫

A

∫
K f (x|φ, ρ, x0) f (ρ|φ) f (φ)dρdφ

.

The factorization of the joint prior f (φ, ρ) = f (ρ|φ) f (φ) can be applied due to the
assumed conditional indepedence of the parameters.

In the simple case of an AR(1) model, K = {φ, σ} and k = 2. Hence, the posterior
odds ratio is,

L01 =
f (φ = 1|σ)
f (φ ∈ A|σ) =

π0

1− π0

∫ ∞
0 f (x|φ = 1, σ, x0) f (σ)dσ∫

A

∫ ∞
0 f (x|φ, ρ, x0) f (σ) f (φ)dρdφ

.

Commonly, the conditional independence among the parameters is extended to un-
conditional variance, which provides that σ follows a prior distribution f (σ|φ) = f (σ).

Posterior odds using the predictive distribution

The predictive distribution is used in the Bayesian framework as an alternative
for the posterior distribution in terms of the posterior odds ratio. The predictive
density of a future observation X? is f (x?|x) and is evaluated as

f (x?|X) =
∫

f (x?|φ, X) f (φ|X)dφ,

where f (X?|φ, X) denotes the updated likelihood function and f (φ|X) is the posterior
distribution of φ.
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The predictive odds ratio of the models in the two hypotheses is

L01 =
f (H0|x?)
f (H1|x?)

=
f (H0) f (x?|x, H0)

f (H1) f (x?|x, H1)
. (4.8)

Specifically, the predictive density under the null and the alternative hypotheses is
calculated as,

f (x?|x, Hi) =
∫

f (x?|x, φi, Hi) f (φi|x, Hi)dφi, i = 0, 1

Thus, the predictive odds ratio in 4.8 becomes

L01 =
f (H0)

f (H1)

∫
f (x?|x, φ0, H0) f (φ0|x, H0)dφ0∫
f (x?|x, φ1, H1) f (φ1|x, H1)dφ1

In the posterior odds approach the selection of the noninformative priors is arbitrary.
For the predictive odds approach Maddala and Kim (1998) have stated the following:

"Initial noninformative priors of the form P(α, σ2) ∝ σ2 are applied to each model
over periods 1 to m (m <n) to produce proper posterior densities for (α, σ2) . These
are then used as priors to evaluate proper predictive densities for periods (m+1) to
n."

That is, a subsample is used to produce proper posterior distributions which are
then used as a prior for the rest of the sample.

In essence, the approach of predictive odds ratios is a complete Bayesian approach
and can provide trustworthy conclusions even in the case of a noninformative prior,
which in the posterior odds approach may cause difficulties.

4.5.2 Model selection criteria

In the field of model selection, the hypotheses should not be viewed and tested as if
they were true entities, but as potential models that probably or hopefully could fit
the data.

As discussed in Section 2 there exist several model selection methods and crite-
ria. Below there are demonstrated some further information about the model selec-
tion which mostly pertain to the unit root hypothesis testing.

The comparison of the involved models Mi, i = 1, 2, .., k requires the determi-
nation of prior model probabilities of the models f (Mi) and prior probabilities for
the parameters f (φ). The posterior density obtained is then used in criteria for the
selection of the model which is most probable to fit the data.

The PSR quasi-likelihood and PSR quasi-Bayes criteria

The vast majority of time series analysis aim eventually at the prediction of up-
coming occurrences. Therefore, apart from the fundamental question of which model
fits the observed data best, the question that, in most circumstances is of real interest is
which of the models yields the best predictions for future observations from the same process
which generated the given set of data (Geisser and Eddy, 1979).
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Geisser and Eddy (1979) have suggested two criteria based on the predictive sam-
ple reuse methods (PSR), which were first introduced by Geisser (1975). PSR is a com-
bination of two widely known approaches in data analysis, cross-validatory assess-
ment and function fitting.

Based on the above theory, the first criterion is the PSR quasi-likelihood criterion
which selects the model that maximizes the quantity

L̂k =
N

∏
i=1

f (xi|φ̂(k), Mk),

where φ̂(k) is the maximum likelihood estimator of φk if xi is not included.
The second criterion is termed as PSR quasi-Bayes and selects the model that

maximizes

Lk =
N

∏
i=1

fp(xi|x(i), Mk),

where x(i) is the data when xi is omitted and fp denotes the predictive distribution,

fp(xi|x(i), Mk) =
∫

f (xi|φk, Mk)d f (φk|x(i), Mk),

where f (φk|x(i), Mk) is the posterior distribution of φk based on data x(i) and a diffuse
prior on the parameter φk.

The BIC and FIC criteria

According to the Bayesian Information Criterion, BIC or Schwatz’s criterion, the
model Mi that minimizes

BIC = logσ̂2
pi
− pi

logn
n

,

where σ̂2
pi

is the estimate of σ2 in a model with pi parameters, is the preferred one.
A criterion similar to the BIC was proposed by Fisher. The Fisher information

criterion (FIC) suggests that the model Mi that minimizes

FIC = nσ̂2
l + σ̂2

L ln|Al |,

where Apl = X′X and X is the design matrix for the data and σ̂2
pl

and σ2
L are the

estimates of the variances for the models with l and L parameters respectively. The
model with L parameters is the richest model.

FIC seems quite reliable in selecting the true model and is close to the behavior
of BIC.

The PIC criterion

Phillips and Ploberger suggested another model selection criterion, the posterior
information criterion (PIC). The selected model is the model that minimizes

P = cL|Al/σ̂2
L|1/2 exp

[
−(1/2σ̂L)β̂l

′
Al β̂l

]
where, cL denotes a constant which depends on L, the maximum number of explana-
tory variables, σ̂2

L is the estimate variance of the richest model, Al = X′l Xl is the data
matrix of the model with l regressors.
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The PIC is based directly on the data matrix Al , unlike with the BIC which de-
pends on the number of parameters and the variance estimator. However, the way
the PIC is formulated is not completely Bayesian due to the estimation process of the
residual variance.

Other criteria have been discussed by Phillips and Koop (1994). Phillips pro-
posed a variation of PIC, the PICF which is close to PIC and depends on the predic-
tive distributions, as they have been discussed earlier. It can be used for a sequen-
tial model choice, when a single model cannot be applied for the whole period, but
changes over time.

The criterion suggested by Koop is the Bayesian likelihood ratio criterion (BLR)
which tests the null hypothesis of a unit root against the stationary alternative.

4.6 Criticism on Bayesian unit root testing and alternatives

The Bayesian perspective in unit root testing has apparently many advantages over
the classical unit root tests, especially in terms of model comparison and selection.
However, a relatively small number of studies regarding Bayesian unit root testing
have appeared. The reasons may be the difficulty in deriving numerically the likeli-
hood function and the controversial issue of the prior selection. (Ahking, 2009)

The arbitrary selection of the priors and computational adversity renders the
Bayesian perspective in unit root testing more controversial and less ’objective’.
Phillips emphasized the subjectivity of the prior choice as a major drawback of the
Bayesian unit root testing and argued for a test which would be more objective.
Koop’s unit root test is based on the work of Zellner and Siow and represents an ’ob-
jective’ alternative in Bayesian unit root testing. This test is computationally simple
and does not require the use of improper non-informative priors, since it involves in-
formative priors. Additionally, to all hypotheses is assigned equal probability, which
diminishes the subjective character of the test.
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Simulation study

The purpose of the following study is to implement Bayesian unit root tests in Monte
Carlo simulated data from an AR(1) process without constant and for different val-
ues of the length T and the parameter φ. In particular, there are generated N = 1000
AR(1) time series of length T =

{
25, 50, 100, 500, 1000, 5000

}
and autoregressive pa-

rameter values φ =
{

0.7, 0.8, 0.9, 0.95, 0.99, 1
}

. The simulation study aims at dis-
criminating between a process with a unit root, i.e. a random walk and a stationary
process. The hypotheses examined are: H0 : φ = 1 and H1 : |φ| < 1.

Initially, the decision rule underlying the test is the posterior odds ratio criterion;
namely, the model with the highest posterior probability is chosen. The prior odds
are regarded balanced with P(H0) = P(H1) = 0.5 which means that the chosen
model is the one which is most favoured by the data,

Pr(H0|data)
Pr(H1|data)

=
f (data|H0)

f (data|H1)
,

since Pr(H0)
Pr(H1)

= 1. Hence, the posterior odds is identical to Bayes’ factor.
Subsequently, the hypotheses tests are performed according to the BIC criterion.

Diffuse prior
Initially, the diffuse, non-informative prior of Schotman and Van Dijk (SVD)

(1991b) is employed to test the null hypothesis: H0 : Xt = Xt−1 + εt against H1 :
Xt = φXt−1 + εt, where εt ∼ N(0, σ2) and σ2 unknown. The constant X0 is consid-
ered known and φ ∈ P ∪

{
1
}

, where P = {φ| − 1 < α ≤ φ < 1}. The marginal
priors for φ and σ2 are defined as

(i) Pr(φ=1)=π0

(ii) Pr(φ|φ ∈ P)= 1
1−α

(iii) f(σ) ∝ 1
σ

The probability of the random walk hypothesis is denoted by the positive mass π0.
Hence, the prior odds in favour of H0 are:

Prior odds =
Pr(H0)

Pr(H1)
=

π0

1− π0
.

The prior on σ is diffuse and the prior on φ is uniform in [α, 1) and has a probability
π0 at φ = 1. The posterior odds ratio therefore becomes,
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Posterior odds =
Pr(φ = 1|data)
Pr(φ ∈ P|data)

=

∫ ∞
0 f (x|H0, φ = 1, σ) f (φ = 1) f (σ)dσ∫ ∞

0

∫ 1
α f (x|φ, σ, H1) f (φ) f (σ)dŒœ

.

Let P0 and P1 denote the prior and posterior odds respectively. Table 5.1 demon-
strates the percentages of random walk cases for every value of φ and T. The entries of
the table designate the probability of P1 > 1 if N = 1000 time series for every value
of φ and T are generated. The value of π0 is taken to be 0.5 and the lower bound -1
is chosen for the parameter α.

TABLE 5.1: Posterior odds probabilities in favour of the random walk

φ
T

25 50 100 500 1000 5000

0.7 .380 .075 .000 .000 .000 .000
0.8 .623 .332 .028 .000 .000 .000
0.9 .833 .786 .520 .000 .000 .000
0.95 .886 .885 .892 .058 .000 .000
0.99 .922 .937 .981 .980 .914 .000

1 .948 .967 .978 .999 1.000 1.000

Table 5.1 indicates that, when the length T is equal to 25 or 50 the posterior odds
are strongly in favour of the random walk hypothesis for almost every value of φ.
Unlike with the equally balanced prior model probabilities, the probability of the
unit root hypothesis for φ = 0.8 exceeds 0.6. The results are generally biased towards
the random walk hypothesis.

It can be easily inferred that, as length T and φ increase, the probability of cor-
rectly identifying the random walk model approaches unity. Indicatively, the prob-
abilities of being in favor of H0 are almost zero when φ is 0.7, 0.8, 0.9 and 0.95 and T
exceeds 500.

Comparing the relative results derived from the ADF test with those in Table 5.1,
it can be concluded that the acceptance probabilities of H0 follow almost the same
pattern. That is, there is still great possibility of incorrectly accepting the random
walk model (0.457 for φ = 0.7 and T = 25). However, the increase in length and φ
values leads to high acceptance probabilities slightly lower than the relative ones in
Table 5.1.

According to Jeffreys’ rule outlined in subsection 2.3.4 the decision in favour of
H0 can be discriminated in poor, substantial, strong and decisive. The results for T = 25
and T = 1000 are demonstrated below.

A worth mentioned outcome from tables 5.3 and 5.4 is the difference in the de-
cisiveness of being in favor of the null hypothesis using the posterior odds. In the
case of T = 25 only 3.6% accepts strongly the nonstationary model when φ = 1. On
the other hand, the corresponding percentage for T = 100 is 85.5%.
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TABLE 5.2: Probabilities in favour of the random walk using ADF

φ
T

25 50 100 500 1000 5000

0.7 .457 .037 .000 .000 .000 .000
0.8 .675 .234 .001 .000 .000 .000
0.9 .862 .685 .203 .000 .000 .000
0.95 .903 .831 .703 .000 .000 .000
0.99 .932 .921 .939 .702 .262 .000

1 .960 .944 .949 .959 .947 .953

TABLE 5.3: Jeffreys’ rule for T = 25 in favour of the random walk

φ poor substantial strong decisive
0.7 .291 .086 .003 .000
0.8 .359 .235 .029 .000
0.9 .247 .378 .208 .000

0.95 .176 .335 .375 .000
0.99 .137 .257 .508 .020

1 .102 .269 .541 .036

TABLE 5.4: Jeffreys’ rule for T = 100 in favour of the random walk

φ poor substantial strong decisive
0.7 .000 .000 .000 .000
0.8 .000 .000 .000 .000
0.9 .000 .000 .000 .000

0.95 .000 .000 .000 .000
0.99 .126 .213 .547 .028

1 .006 .012 .127 .855

Table 5.4 depicts the posterior probabilities of φ ≥ 1|x for every value of T ≤ 500
and φ. The results when φ approaches unity are moderate. That is, the highest
posterior probability is 32,5% in the unit root case (φ = 1).

TABLE 5.5: Posterior probabilities of Pr(φ ≥ 1|x)

φ
T

25 50 100 500

0.7 .001 .000 .000 .000
0.8 .003 .000 .000 .000
0.9 .034 .002 .000 .000

0.95 .128 .033 .001 .000
0.99 .278 .207 .143 .002

1 .355 .333 .318 .325
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Table 5.6 demonstrates the probabilities in favour of the null hypothesis accord-
ing to the BIC. The formula for the BIC calculation is

BIC = (T − z− 1) · log(σ2
φ̂
) + p · log(T − z− 1),

where T is the length of the series, z is the lag length, σ2
φ̂

denotes the variance of the
model and p is the number of the estimated parameters.

The entries in Table 5.6 denote the probabilities of accepting the null hypothesis
according to BIC for all different values of φ and T. The BIC criterion has difficulty in
discriminating a random walk from a stationary process for relatively small samples
(25, 50). For instance, the exceeding value for φ = 0.8 and T = 25 is 0.621.

For moderate and large samples the BIC tends to have the same bahaviour as the
posterior odds criterion.

TABLE 5.6: BIC probabilities in favour of the random walk

φ
T

25 50 100 500 1000 5000

0.7 .378 .039 .000 .000 .000 .000
0.8 .621 .259 .011 .000 .000 .000
0.9 .844 .720 .383 .000 .000 .000
0.95 .891 .862 .791 .006 .000 .000
0.99 .918 .930 .958 .907 .731 .000

1 .916 .945 .973 .983 .988 .993

The results for a specific data set are presented below. The data generating pro-
cess is Xt = φXt−1 + εt with φ = 0.9 and εt gaussian white noise. The SVD prior is
used. After applying OLS the estimated model becomes

Xt = 0.9733Xt−1 + εt

(a) φ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

f(
φ

)

-0.5

0

0.5

1

1.5
Uniform prior distribution for φ

(b) σ

0 0.5 1 1.5 2 2.5 3

f(
σ

)

0

5

10

15

20

25
Prior distribution of σ

FIGURE 5.1: (a) Prior of φ (b) Prior of σ

The marginal posterior distributions of φ and σ are

φ|σ, x ∼ t(0.973, 0.005, 99)
σ|φ, x ∼ IG(49.5, 43.8)
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FIGURE 5.2: (a) Marginal posterior of φ (b) Marginal posterior of σ

It can be concluded from figure 5.2(a) that although the SVD prior of φ was uni-
form (diffuse), the posterior t distribution is centered about φ̂ and has a very small
variance.

Informative prior

The hypothesis of the unit root in the simple AR(1) model Xt = Xt−1 + εt, where
εt ∼ N(0, σ2) with σ2 unknown, is now tested using a subjective and informative
prior. The joint prior distribution is

f (φ, σ2) = f (φ|σ2) f (σ2),

where

φ|σ2 ∼ N(µ, σ2)

σ2 ∼ InverseGamma(α, β)

and φ, σ2 independent parameters.
After many trials the parameters for the current simulation study are µ = 0,

α = 4 and β = 0.5.
Table 5.9 includes the probabilities of selecting the random walk hypothesis ac-

cording to the Bayes Factor, which is equal to the posterior odds ratio, since the mod-
els are equally balanced with P(H0) = P(H1) = 1/2. Specifically,

Posterior odds =

∫ ∞
0 f (x|φ = 1, σ2, H0)dσ2∫ ∞

0

∫ +∞
−∞ f (x|φ, σ, H1) f (φ|σ) f (σ)dφdσ2

.

The entries in Table 5.7 indicate that the probabilities of accepting the unit root
model are progressively higher as φ approaches unity for every value of T. The
probabilities at small lengths (T=25 and T=50) imply that it is quite probable to ac-
cept a random walk hypothesis for values above 0.9. However, there is still a 25%
probability of rejecting the random walk for T = 25 when φ = 1.

In essence, the subjectivity in the prior renders the posterior odds criterion more
reliable compared to the relative results coming from the diffuse prior.

The BIC seems, on the other hand, more flexible with regards to the acceptance of
a random walk. For instance, the length T = 100 and φ = 0.8 produce an acceptance
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TABLE 5.7: Posterior odds probabilities in favour of the random walk

φ
T

25 50 100 500 1000 5000

0.7 .030 .000 .000 .000 .000 .000
0.8 .136 .053 .000 .000 .000 .000
0.9 .452 .395 .170 .000 .000 .000
0.95 .595 .672 .630 .014 .000 .000
0.99 .695 .850 .913 .919 .770 .000

1 .738 .880 .942 .986 .993 .999

probability of almost 50%. This tendency may be quite rational, since this criterion
is biased towards the simpler models.

TABLE 5.8: BIC probabilities in favour of the random walk

φ
T

25 50 100 500 1000 5000

0.7 .294 .116 .004 .000 .000 .000
0.8 .557 .469 .126 .000 .000 .000
0.9 .781 .809 .729 .000 .000 .000

0.95 .861 .930 .933 .397 .000 .000
0.99 .912 .960 .996 .994 .986 .058

1 .933 .968 .987 1.000 1.000 .999

Comparing the Bayesian methods of the Bayes factor and the BIC to the classical
ADF unit root test for the same data set, it can be concluded that for small series
length the frequentist approach is pretty unreliable due to the high probabilities in
favour of the random walk. Indicatively, for φ = 0.7 and T = 25 the relative proba-
bility is 0.427.

TABLE 5.9: Probabilities in favour of the random walk using ADF

φ
T

25 50 100 500 1000 5000

0.7 .427 .031 .000 .000 .000 .000
0.8 .684 .258 .004 .000 .000 .000
0.9 .857 .677 .230 .000 .000 .000
0.95 .918 .848 .676 .397 .000 .000
0.99 .960 .932 .927 .727 .221 .000

1 .957 .951 .954 .951 .942 .955

The decisiveness of the Bayes factor for T = 25 is generally poor, as Table 5.10
indicates. Indeed, only in 2,2% of the cases there is decisive choice in favour of the
random walk when φ = 1. However, the probability of strong evidence against the
stationary alternative reaches 0.372.

As T increases, the probabilities of strong and decisive acceptance of the random
walk hypothesis increase. Indicatively, the highest decisive acceptance probability
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derived from table 5.11 for T = 100 and φ = 1 is 65.6%. Nevertheless, the corre-
sponding percentage under the diffuse prior hypothesis reaches 85.5%.

TABLE 5.10: Jeffreys’ rule for T=25

φ
T

poor substantial strong decisive

0.7 .024 .006 .000 .000
0.8 .077 .051 .003 .000
0.9 .150 .162 .094 .001

0.95 .149 .207 .227 .011
0.99 .134 .174 .372 .013

1 .126 .191 .361 .022

TABLE 5.11: Jeffreys’ rule for T=100

φ
T

poor substantial strong decisive

0.7 .000 .000 .000 .000
0.8 .000 .001 .000 .000
0.9 .109 .056 .021 .001

0.95 .128 .156 .280 .045
0.99 .057 .077 .252 .524

1 .034 .051 .196 .656

The graphs for a specific data set are demonstrated below. The prior for φ is
the standard Normal distribution and for σ2 is the InverseGamma distribution with
shape parameter α = 4 and scale parameter β = 0.5.
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FIGURE 5.3: Normal prior distribution for φ

The real parameter of the data generating process is φ = 0.9. The implementation
of OLS method on φ produces the estimated AR(1) model:

Xt = 0.8512 Xt−1 + εt
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The posterior distributions of φ and σ are

φ|σ, x ∼ t(0.8512, 1.06, 108)
σ|φ, x ∼ IG(54, 45.7)

Figure 5.4 depicts the prior and posterior distribution for φ.
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FIGURE 5.4: Prior and marginal posterior distribution of φ

The prior and posterior distribution of σ2 are demonstrated below.
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FIGURE 5.5: Prior and marginal posterior distribution for σ2
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Chapter 6

Conclusions

The Bayesian approach in the unit root testing theory has been of great interest and
research, especially in economic fields. The controversial issue of discriminating a
random walk process from a stationary process is examined by the simulation study
in the previous chapter. The AR(1) process without drift was tested for a unit root
under the assumption of a diffuse and an informative prior.

The Bayesian inference tools employed for the study were the posterior odds, which
coincides with the Bayes factor due to the equally balanced hypotheses, and the BIC.
The probabilities in favor of the random walk process were, subsequently, compared
to those from the classical ADF test.

For relatively small values of φ the two priors for the AR(1) model yielded the
following results.

The posterior odds criterion for the SVD diffuse prior yielded that the incorrect
identification of the random walk has high probability. On the contrary, the informa-
tive prior can detect more accurately a stationary process when φ and T are small.
Hence, the probabilities on favour of the random walk process were lower.

By assigning medium to large values to φ, the behaviour of both priors does not dif-
fer significantly. The informative prior tends to detect slightly better the stationary
process when φ is less than one. The BIC probabilities in favour of the random walk
are significantly higher comparing to those coming from the posterior odds, which
yields the inference according to the Information Criterion more unreliable.

As T is getting higher the probabilities in favour of the random walk are getting
lower when φ is not equal to one. Hence, the random walk in the most cases is
correctly detected.
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