

To my family, my professors
and my partner

Abstract
The rapid advancement of the telecommunications domain highlights its shortcomings in terms of
adaptability, flexibility and new technology adoption in fixed and wireless systems. A shift in infra-
structure paradigm to meet the growing demands of different industries and consumers seems man-
datory and is already taking place in the network layer. As the need for more frequency bands, higher
throughput systems and lower latency applications increases, the infrastructure required must be able
to follow the same pace. Software Defined Radio can provide the necessary resilience and its adoption
should be expedited.

The goal of the work herein is to develop and implement an adaptive modulation technique as part
of a signal processing chain for a wireless telecommunication system, through the use of Software
Defined Radio. This is achieved through the use of SDR software and hardware, specifically GNURadio
and the Universal Software Radio Peripherals respectively. The overarching signal processing theory is
presented, followed by a more analytical view of the modulation techniques used. The tools employed
are discussed in detail as well as the processing chain that was created. The adaptive modulation algo-
rithm is constructed in the Python programming language, and the system is tested both in simulation
and via an experimental testbed. Test cases and results are discussed, along with issues encountered
and potential improvements that can be incorporated.

Περίληψη
Η αλματώδης εξέλιξη του κλάδου των τηλεπικοινωνιών έχει καταστήσει εμφανή τα ελλειμματικά
του σημεία. Η προσαρμοστικότητα, η ελαστικότητα και η υιοθέτηση νέων τεχνολογιών τόσο στην
ενσύρματη όσο και στην ασύρματη υπόδομή είναι πλέον επιτακτικά ζητούμενα. Η ανάγκη για μια
τέτοια μεταβολή του κυρίαρχου παραδείγματος είναι απαραίτητη προκειμένου να ικανοποιηθούν
τα θέλω και οι ανάγκες ποικίλων βιομηχανιών αλλά και των τελικών χρηστών. Η μετάβαση αυτή έχει
ήδη εδραιωθεί στα υψηλότερα επίπεδα του δικτύου, μέσω αρχιτεκτονικών δικτύου ορισμένων στο
λογισμικό. Αντίστοιχα, η υιοθέτηση αρχιτεκτονικών πομποδεκτών ορισμένων στο λογισμικό είναι σε
θέση να επιλύσει τα συνήθη ζητήματα των ασύρματων υποδομών, όπως είναι η απελευθέρωση,
επαναχρησιμοποίηση και ανακατανομή των χρησιμοποιούμενων συχνοτικών ζωνών, η ενσωμάτωση
καινοτόμων τεχνολογιών και η δυναμικότητα.

Ο στόχος της παρούσης εργασίας αφορά την ανάπτυξη και την εφαρμογή ενός προσαρμοστικού
σχήματος διαμόρφωσης, ως κομμάτι μιας αλυσίδας επεξεργασίας σήματος για ένα ασύρματο
τηλεπικοινωνιακό σύστημα, μέσω της χρήσης πομποδεκτών ορισμένων στο λογισμικό. Το πρόγραμμα
GNURadio χρησιμοποιείται για την ανάπτυξη του συστήματος από πλευράς λογισμικού, και
υλοποιείται στο φυσικό επίπεδο μέσω των SDR πομποδεκτών USRP. Κατά την διάρκεια της εργασίας
παρουσιάζεται η υπερκείμενη θεωρία επεξεργασίας σήματος, με αναλυτικότερη αναφορά στις
μεθόδους διαμόρφωσης που χρησιμοποιήθηκαν, της οποίας έπεται η ενδελεχής παρουσίαση των
εργαλείων που επέτρεψαν την ανάπτυξη του συστήματος. Εν συνεχεία, περιγράφεται η κατασκευή
του συστήματος, η ανάπτυξη του αλγορίθμου προσαρμοστικής διαμόρφωσης μέσω της γλώσσας
προγραμματισμού Python, και υλοποιούνται έλεγχοι τόσο σε επίπεδο προσομοίωσης, όσο και σε
πειραματικό επίπεδο. Εξετάζεται η πειραματική διαδικασία και τα αποτελέσματά της, όπως και τα
ζητήματα που προέκυψαν κατά το σχεδιασμό αλλά και πιθανές βελτιώσεις.

Key words: SDR, Signal Processing, Modulation, GNU Radio, USRP

Λέξεις Κλειδιά: SDR, Επεξεργασία Σήματος, Διαμόρφωση, GNU Radio,
USRP

Acknowledgements
I would like to sincerely thank my supervisor, Professor Anna Tzanakaki for granting me the oppor-
tunity to work on such a project, providing guidance and a great infrastructure to experiment upon,
while having to deal with all the hurdles imposed by the pandemic. I would also like to thank the
colleagues in the Telecommunication lab of the Department of Physics, and especially PhD Candidate
Petros Georgiades, for maintaining an excellent Telecommunications lab and providing support for the
experiments conducted.

Lastly, I would like to express my gratitude to my family for unconditionally backing my academic pur-
suits.

– VIII –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

Contents
Chapter 1
Scope and Structure ���1

Chapter 2
Digital Signal Processing & Modulation �������������������������������3

2.1 Introduction �� 3

2.2 Digital Signal Processing and Modulation ������������������������������������ 4
2.2.1 Signal Processing Chain Overview ��4

2.2.2 Efficiency ���5
Power efficiency ��� 5
Spectral or Bandwidth Efficiency �� 6
System Complexity ��� 6

2.2.3 Channel Models ��6
Discrete Memoryless Channel �� 6
Fading Channel ��� 8
Additive White Gaussian Noise Channel (AWGN) ��� 9

2.3 Digital Modulation Methods �� 9
2.3.1 Line coding and Pulse Amplitude Modulation ������������������������������������9

2.3.2 Phase Shift Keying ���11
Binary Phase Shift Keying (BPSK) �� 11
Quadrature Phase Shift Keying (QPSK or 4-PSK) ��� 14
8-Phase Shift Keying (8-PSK) �� 16

2.4 Adaptive Modulation and Coding �� 18
2.4.1 Variable rate techniques ��18

2.4.2 Variable Power Techniques ���19

2.4.3 Variable Coding Techniques ���19

– IX –

Contents

Chapter 3
Software Defined Radio ���21

3.1 Software Defined Radio (SDR) Overview ���������������������������������� 21

3.2 Ideal SDR Architecture and Hardware �� 22

3.3 GNURadio – The free and open-source software radio ecosys-
tem �� 23

GNURadio Structure �� 23

3.4 Universal Software Radio Peripherals ���26
USRP B210 ��� 27

Chapter 4
Design and Implementation ���31

4.1 Flowgraph design �� 31

4.2 Adaptive Modulation Block �� 36

4.3 USRP Implementation �� 39

4.4 Test cases �� 41

4.5 Results discussion �� 45

4.6 Potential improvements �� 46

Chapter 5
Conclusion ���49

Appendix A
Installing GNURadio �� 51

Linux Installation ���51

– X –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

Appendix B
UHD – Installation and commands �� 57

References ���61

– XI –

Contents

– XII –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

List of Figures
Figure 2.1 - Simple signal processing chain block diagram� 3
Figure 2.2 - M-PAM baseband waveform� 4
Figure 2.3 – The binary channel model� 7
Figure 2.4 – Discrete Memoryless Channel Model� 8
Figure 2.5 – AWGN channel model � 9
Figure 2.6 – Line codes � 10
Figure 2.7 – M-PAM Constellation for (a) M=2 (b) M=4 and (c) M=8 	 11
Figure 2.8 – BPSK constellation � 12
Figure 2.9 – BPSK modulation � 12
Figure 2.10 – QPSK signal constellation	 15
Figure 2.11 - QPSK (a)modulator, (b) demodulator block diagrams, parallel pulse streams,
signal components and transmitted signal waveforms � 15
Figure 2.12 – 8-PSK signal constellation� 16
Figure 2.13 – MPSK (a) modulator and (b) demodulator block diagrams� 17
Figure 3.1 - SpeakEasy functional block diagram� 22
Figure 3.2 – Ideal SDR architecture� 22
Figure 3.3 – GNURadio Logo� 23
Figure 3.4 – GNURadio Companion flowgraph � 24
Figure 3.5 – Universal Software Radio Peripherals. From left to right i) Embedded E312 ii)
Networked N320 iii) X310 � 26
Figure 3.6 – USRP B210 (i) Board only (ii) Complete with enclosure and antennas, used in lab
� 27
Figure 3.7 – Block diagram for B200 and B210 USRPs� 28
Figure 4.1 – Simulation Flowgraph in GNURadio � 32
Figure 4.2 Constellation diagram for (i) 8PSK (ii) QPSK � 33
Figure 4.3 – QPSK Modulator output � 33
Figure 4.4 – QT GUI Constellation Sink display at CMA Equalizer and Costas Loop outputs.
Slight frequency offset and noise are applied. � 34
Figure 4.5 – Console displaying SNR estimates produced by probe � 36
Figure 4.6 – Time Sinks, Constellation Sinks and Frequency Sink outputs at (i) SNR > 6.0 (ii)
SNR < 6.0 under simulated AWGN conditions. � 38
Figure 4.7 – USRP Transmitter implementation � 41
Figure 4.8 – USRP Receiver implementation � 41
Figure 4.9 – Lab layout for first test case � 42
Figure 4.10 – SNR estimations over time for minimum and maximum Tx-Rx distance � 42
Figure 4.11 – (i) Transmitted and (ii) received constellations � 43
Figure 4.12 – Panoramic view of test layout. Highlighted area indicates metal obstacles. � 43
Figure 4.13 – SNR estimations over time for static transmitter � 44
Figure 4.14 – SNR estimations over time for moving transmitter � 44
Figure 4.15 – Third test case layout � 44
Figure 4.16 – SNR estimations over time in outdoor conditions � 45
Figure 4.17 – Bit-error probability Pb vs SNR per bit Eb/N0 in AWGN conditions � 46

– XIII –

List of Figures

– 1 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

Chapter 1
Scope and Structure

The goal of this work is developing, simulating and implementing a signal processing chain for
a wireless link, that takes advantage of an adaptive modulation technique, through the use of
Open-Source Software Defined Radio (SDR) software and the corresponding SDR hardware. The

software used for the above purpose, is GNU Radio, “a free & open-source software development
toolkit that provides signal processing blocks to implement software radios”. [1] The platform itself, the
tools that are offered, as well as limitations and capabilities of the software are discussed in detail in
the following chapters. Hardware-wise, the Universal Software Radio Peripherals (USRP) are used, de-
vices developed and designed to specifically cater to SDR development by Ettus Research, and which
consist of a multitude of signal processing blocks – such as Field-Programmable Gate Arrays (FPGAs),
Analog to Digital Converters (ADCs), Digital to Analog Converters (DACs) and relevant subsystems.
Specifics regarding the USRPs themselves, capabilities, limitations and models that are used, will be
discussed later on.

The central aim of the thesis, is providing a working concept of an Adaptive Modulation and Coding
(AMC) scheme utilizing the available SDR tools at the time of writing. Such functionality is not pres-
ent in the “out-of-the-box” installation of GNU Radio, and requires an algorithmic approach. This is
achieved through programming, and more specifically through a Python script that applies the needed
conditional flow. Two different modulation methods are implemented with the deciding modulation
variable being the estimated Signal to Noise Ratio (SNR) at the receiver. The structure of the modula-
tion/demodulation chain are presented in depth later in Chapter 4.

Results are obtained through the verification of the functionality of the signal processing chain and
the AMC script, and measurements are made by distance and obstructions. SNR estimation curves are
created and discussed, as well as the theoretical bit-error probability versus SNR per bit of the modu-
lation schemes utilized.

As the telecommunication industry moves forward, there is a growing tendency towards moving away
from proprietary software and platforms that are the current standard in all network layers. This is
more prominent in network infrastructure. Specifically, Software Defined Networking (SDN) and Net-
work Function Virtualization (NFV) – both of which share common principles with Software Defined
Radio - have been a great topic of interest in the past decade, with many providers going forward
with the adoption of such elements in their core network infrastructure. This tendency is presumed
to become well established in the near future, and possibly expanded to cover most of the necessary
telecommunication framework. Therein lies the importance of this thesis, exploring, implementing
and furthering the currently provided functionalities of wireless communications through Software
Defined Radio.

The general structure of this work follows the order of theory, experimentation and result discussion.
Initially, Chapter 2 presents a theory overview regarding signal modulation and processing, with em-
phasis on the implemented modulation schemes, namely MPSK modulations. This is followed by an
in-depth look into SDR software and hardware, i.e., GNURadio and USRPs. In Chapter 4 the actual
development of signal processing chain and the algorithm is described, as well as issues that had to be
surpassed both software-wise and hardware-wise. Finally, results and test cases are discussed, along
with potential improvements upon this work, followed by conclusive remarks in Chapter 5.

– 2 –

Scope and Structure

– 3 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

Chapter 2

Digital Signal Processing & Modulation

2.1 Introduction

Signal processing can be broadly determined as the sum of the operations required to properly
transmit and receive information via a physical channel. This extends, but is not limited, to the
matching of the original information to a different form, the sampling of the information that

has to occur in different parts of the processing chain, the ways that are used to mitigate the effects
of the physical channel, the distance over which the information may be received, its correct recov-
ery at the receiving end as well as error correction that may be required in order to reconstruct the
original information. One of the simpler and oldest types of telecommunication and signal processing
are smoke signals. The message that has to be transmitted is the information, which is mapped to
different sequences of smoke clouds, air is the channel, which can have different effects on the signal
depending on its state, the sampling rate is the rate at which the human oscillates the fabric and so on.
Digital signal processing consists of the same fundamental elements, however, the various operations
are implemented via computer systems. Specialized devices, called Digital Signal Processors (DSP) in
conjunction with a multitude of subsystems, such as Field Programmable Gate Arrays (FPGA), ADCs
and DACs, perform all of the work needed to transmit and receive information.

Digital signal processing can be broken down in several important sections, that are often depicted
in the form of a block diagram with the blocks corresponding to the different operations required to
transmit and receive the signal. The input of these diagrams represents the original information that
has to be transmitted and received, and can be either analog waveforms – as in the case of voice -, or
a stream of bits, more generally known as a discrete source. Analog input resides beyond the scope of
the thesis and will not be discussed in the following chapters. A relatively abstract block diagram for a
digital communication system is depicted in Figure 2.1.

All of the operations that need to be performed in the chain have to be taken into consideration as
they affect every aspect of the communication link. Through the years, a lot of different technologies
and approaches have been studied and implemented, bringing various advantages and disadvantages
to the table. Since most aspects of a telecommunication link are defined in a “trade-off” basis, – for in-
stance maximizing throughput1 generally needs more complex and costly devices to actualize – careful
consideration has to be given regarding the application of each system.

In this chapter, coding, sampling, channel models, modulation methods, symbols and constellations,
detection, error correction as well as techniques such as adaptive modulation will be discussed. Em-
1	 Throughput is defined as the data rate that a telecommunication link can support. It is dependent on many factors,
ranging from system design to channel state.

Figure 2.1 - Simple signal processing chain block diagram [2]

– 4 –

Digital Signal Processing & Modulation

phasis will be given to the parts that are incorporated in the SDR implementation, and mathematical
formulation is provided.

2.2 Digital Signal Processing and Modulation
2.2.1 Signal Processing Chain Overview
The foremost step in the processing chain consists of the mapping of the binary digits to real or complex
signals, with the intention of modulating the waveform of the carrier wave, that has to be transmitted
via the channel. For instance, a 0 bit could be mapped to a real -1 value and a 1 bit could be mapped to
+1 real value. Multiple bits can be mapped together to different values in the complex space, providing
at the same time a higher processing rate as bigger groups of bits are bundled together. Generally, a bit
stream can be segmented into b-tuples of binary signals – known as symbols – creating a set of 2b pos-
sible n-tuples, known as a constellation. [2] The form of the signal constellation is dependent upon the
modulation that is chosen for each telecommunication system, and its symbols – or signals - can differ
in amplitude or phase, but are always represented as complex points2 in one or more dimensions.

After the conversion of the input bit stream to symbols, the baseband signal or waveform is created,
which is essentially the sequence of the symbol stream. There are many forms that the baseband
signal can take, but more often than not, pulse shaping is used. Figure 2.2 depicts one of the simpler
baseband waveforms for an M-Pulse Amplitude Modulation, where the different levels of the pulses
correspond to different amplitudes and represent the different 2M symbols.

More complex systems require additional steps in the transmitter chain, such as pilot symbol insertion
that serves the purpose of synchronizing the stream at the receiver, breaking the input stream into
multiple substreams so that multiple carrier waves can be utilized for better link performance (see
Orthogonal Frequency Division Multiplexing, OFDM), register shifting on the bit stream to implement
Cyclic Redundancy Checks (CRC), Multiple Access Control (MAC) techniques and more. Generally, im-
proving link performance in the transmit and receive chain leads to increased costs, more complex
devices and higher energy requirements, all of which factor in on the feasibility of a project.

At the end of the transmitter side, the conversion of the baseband signal to passband takes place. The
baseband signal, which exists in the lower frequencies, gets up-converted to the passband signal via
bandpass filters, which sequentially modulates the carrier wave that is used for transmission through
the channel. This process is necessary for almost all wireless telecommunications systems and for a
number of reasons. Antenna size is one of them, since the size of the antenna needs to be of the same
order of magnitude as the wavelength of the carrier wave, so higher frequencies mean smaller an-
tennas. Another important factor are the propagation characteristics of the channel. Carrier waves at
different frequencies exhibit different behaviors when traversing the atmosphere. As a rule of thumb,
propagation distance decreases as the frequency increases, but higher carrier frequencies also offer a
larger bandwidth, meaning a higher throughput and better utilization of the available spectrum. All of
the above are inherent properties, but can be mitigated to an extent. For instance, a higher propaga-
tion distance can be achieved if the gain of the transmitter is increased, but if it is increased too much,
2	 Constellation points can also be purely real, but real numbers can be viewed as a specific case of complex numbers,
namely complex numbers that have a zero imaginary part (a + 0i).

Figure 2.2 - M-PAM baseband waveform [3]

– 5 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

waveform clipping might occur on the receiver side, making proper detection difficult or impossible.

Between the end of the transmitter chain and the beginning of the receiver chain resides the channel,
the actual medium that the signal will have to traverse. The channel is one of the most important parts
in modelling a telecommunication system. Its characteristics and effects on the signal can only be es-
timated due to its intrinsic probabilistic nature. Since it is impossible to know beforehand exactly how
a channel will affect the signal, several mathematical models have been constructed to help with this
task. Additive White Gaussian Noise, Rayleigh fading, multipath, frequency selective and many more,
are channel models that partially estimate the impact of the environment on the transmitted signal.
Often, multiple models are used together to better predict the status of the signal at the receiver. This
process is important not only for estimating system behavior, but also because it helps determine how
the transmit and receive chain will be built, to better combat the detrimental effects of the channel.
Urban environments consist of multiple and moving obstacles, thus requiring a multipath scattering
model to better describe it, which in turn led to the development of techniques that mitigate the ef-
fect of the multipath phenomenon in some modulation schemes (Guard Intervals for OFDM) or that
even take advantage of it (Multiple Input/Multiple Output (MIMO) antennas). Adaptive modulation
and coding schemes may also take into account the estimated channel state, that is known to both the
receiver and the transmitter via a feedback loop, in order to choose modulation method that is more
robust against some given conditions.

On the receiver side, the inverse operations will have to take place in order to reconstruct the original
information stream. After the carrier wave is received, the passband signal is extracted – often with
the help of a local oscillator with the purpose of comparing the local waveform with the received one
-, which is then down-converted back to baseband. The now noisy symbols are evaluated in regards to
their value and the receiver decides (or decodes) which one was sent. This process can happen either
with a comparison to threshold values for each symbol of the alphabet, generally referred to as hard
decoding, or through more complex decision-making systems known as soft decoding. Following sym-
bol recovery, error correction attempts to identify if the bit sequences that were received are correct.
In most cases, error correction is only possible if additional redundant information was added to the
information stream prior to transmission, which means a trade-off between Bit Error Rate (BER) and
throughput. Almost all telecommunication systems use Error Correction Codes (ECC) which can either
be very simple or very complex depending on the desired reliability. As with the receiver, additional
steps in the demodulation process may be required, such as demultiplexing if multiple streams were
used, or user access control if such functionality was implemented. Finally, the original information
stream is attained at the end of the signal processing sequence and the cycle begins anew.

2.2.2 Efficiency
When designing a telecommunications system, careful consideration should be given to an array of
factors, that do not necessarily revolve around maximizing link throughput or capacity, in order to
make a proposal feasible for implementation. This is quantitively expressed in terms of efficiencies.
Most of these indicators are heavily dependent on the chosen modulation techniques, as well as on
any added functionalities that are required for each application.

Power efficiency

Power efficiency in terms of modulation and signal processing is defined as the power required in
order to achieve a specific Signal to Noise Ratio (SNR) or Bit Error Rate (BER), expressed in terms of
probability. [4] Naturally, power efficiency is a recurring indicator in any system, mechanical, electri-
cal, biological or otherwise, since it defines how well the committed resources are being utilized. This
issue becomes even more prominent if portable devices are considered, as is often the case in Radio
Frequency (RF) telecommunications. Frequently, power amplifiers – especially linear amplifiers - have
a major impact on the power efficiency of a system, which should be mitigated by proper adjustments
on the modulation techniques. Pulse shaping, Peak to Average Power Ratio (PAPR), signal envelope
affect modulation efficiency and can help increase amplifier efficiency. [5] Since every aspect of a
telecommunications system is on a trade-off basis, as has already been noted, maximizing power effi-
ciency can have a negative influence on several parameters including, but not limited to, bandwidth,
bandwidth efficiency and system complexity. Mathematical formulation depends on the chosen mod-
ulation method, since power allocation can be dramatically different from method to method, and also
on the channel model under investigation.

– 6 –

Digital Signal Processing & Modulation

Spectral or Bandwidth Efficiency

Bandwidth, or more commonly, spectral efficiency is defined as the number of bits per second that can
be transmitted in one Hertz of system bandwidth. [4] Just as important as power efficiency, spectral
efficiency signifies how well the available system bandwidth is utilized. It is expressed as bits per sec-
ond per Hertz and is calculated by,

r R
W
bits s Hz= / / (1)

where r stands for spectral bit rate or bandwidth efficiency, R expresses bit rate and W the available
system bandwidth. [3] Increased demand in wireless telecommunications has led to extensive satu-
ration of the usable frequencies and thus needs to be utilized as efficiently as possible without con-
stricting the quality of offered services. The better the bandwidth is utilized (i.e. the frequency range
that the carrier wave occupies), more bands are left available for different service providers as there
is no overlap of transmitted frequencies. Bandwidth efficiency also serves the purposes of comparing
different modulation schemes, when paired with the other system efficiency indicators. Again, spec-
tral efficiency can be improved upon for a certain modulation scheme, at the cost of decreased power
efficiency and increased complexity.

System Complexity

System complexity is another major indicator in terms of system design, although relatively arbitrary
compared to the previous two. In general, newer and more sophisticated modulation schemes require
additional and more complex devices in the transceiver chain in order for them to be implemented.
For example, in OFDM, which makes use of multiple carriers, serial to parallel converters are required
in order for the bit stream to be encoded and allocated to different carriers. Coherent detection which
vastly improves error rate, requires a local oscillator at each transceiver so that the carrier wave can
be compared to a reference wave. More advanced DSPs are also required to increase sampling rates
for higher throughput applications.

However, this is also an area that is being constantly improved upon. More efficient implementations
of needed algorithms, leaps in processing power of newer processors, usage of more power efficient
components can both reduce system complexity and limit production costs. These improvements can
only go so far, and the improvement of offered services indicate that more and more complex systems
will be required as we move forward. Complexity becomes less of an issue for specialized applications,
since mass production is not required, but for the purposes of the industry, it remains a major consid-
eration point.

2.2.3 Channel Models
As has already been discussed, channel models are a mathematical formulation of how the environ-
ment affects the link state, and the propagation of the carrier wave. There are different types of mod-
els depending on the case study. Most of them revolve around the statistical and probabilistic analysis
of what symbol was transmitted and which was received – like the memoryless channel – and others
around the actual propagation of the carrier wave – like the fading/multipath channel. The frequency
selective channel is another case of channel analysis, where specific channel attributes and how they
affect the transmission for particular frequency ranges is studied. Below, a summary of the most com-
monly encountered channel models takes place, with an emphasis on the Additive White Gaussian
Noise (AWGN) channel, since noise measurements and noise estimation affect the Adaptive Modula-
tion implementation that resides within the scope of the thesis.

Discrete Memoryless Channel

One of the basic channel models, the discrete memoryless channel studies the probability of receiving
a symbol Y at the receiver when a symbol X was sent by the transmitter. Discrete refers to the fact that
there is a set dictionary of symbols for the input and output of the channel, or, in other words, that the
signals are discrete in time and amplitude. The channel is also called memoryless, since prior symbols
do not affect the probability of receiving a certain symbol currently.

– 7 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

It is important to go over a special case of a discrete memoryless channel, the binary channel. The

binary channel takes into account a dictionary of two symbols, a rather constricted dictionary, which is
encountered however in some modulation types like the binary Pulse Amplitude Modulation.

The binary channel has Nx=Ny=2, where Nx and Ny is the dictionary of transmitted and received symbols
respectively. [6] The average error probability is given by (2) and can be calculated from (3):

P e P x y P x y() (,) (,)

1 2 2 1
+ (2)

P e P x P y x P x P y x P x p P x p() () (|) () (|) () ()� � � �
1 2 1 2 1 2 1 12 2 21 (3)

In the case of equiprobable transitions, the channel is called binary symmetric channel and since
p12=p21 the above equation becomes:

P e p P x P x p() [() ()]� � �
1 2 (4)

In the more general case, the usual probabilistic constraints are encountered. Each transition proba-
bility must reside between 0 and 1, and the sum of all transition probabilities for each symbol should
be equal to 1:

0 1≤ ≤pi j (5)

p i Ni j x
j

Ny

�
� � �
1

1 1 2, , , , (6)

The average error probability for Nx=Ny=N can then be calculated via the following equations, by ex-
tension of (2):

P e p x y P x pi i i ii
j
j i

N

i

N

i

N

() (,) ()()� …� � �
�
�

� �
�� �
11 1

1 (7)

Subsequently, the probability of a correct symbol being received is given by:

P c P e() ()1− (8)

Figure 2.3 – The binary channel model [6]

– 8 –

Digital Signal Processing & Modulation

Fading Channel

Fading is the attenuation that a signal experiences while traversing the channel, due to a multitude of
factors, mainly environmental. Logically, several versions of the same signal are picked up by a receiver,
since there are different ways that it can reach its destination. Scattering, reflection, diffraction caused
by obstacles or terrain, causes the signal to lose power and increases travelling time making detection
at the receiver difficult, because the picked-up signals can vary greatly in amplitude and phase. These
are more generally known as multipath signals (and subsequently the phenomenon is called multipath
fading or multipath propagation). Fading can also refer to attenuation experienced because of weather
conditions, such as rain, hail or snow, or by the frequency selectivity3 that a channel can present.

There are many different types of fading channels that study each type of fading separately. A few
parameters are encountered in all of them, namely Delay Spread, the excess delay experienced at
the receiver for the ith signal component when compared to the delay of first arriving component,
Coherence Bandwidth, the range of frequencies over which the channel is considered to have a flat
response4, Doppler Spread, the broadening of the occupied signal spectrum due to the relative move-
ment of the two transceivers, and Coherence Time, which indicates a time frame over which the chan-
nel is considered flat. [4]

The main types of fading channels are as follows:

•	 Flat Fading

Flat fading studies the attenuation of a signal due to multipath, but without a frequency selective
response. Signal components are affected linearly in terms of phase and constantly in terms of gain.
One of the more common study cases, the Coherence Bandwidth is always greater than the signal
bandwidth in this model.

•	 Frequency Selective Fading

As already discussed, frequency selective fading occurs when the Coherence Bandwidth is smaller
than the signal bandwidth. The signal suffers time dispersion, and is attenuated to different degrees,
since the different frequency components of the signal experience different gains and phase changes.
This introduces Inter Symbol Interference at the receiving end which needs to be compensated for.

•	 Fast and Slow Fading

3	 If a channel has a linear phase response and constant gain over a bandwidth smaller than the signal bandwidth,
frequency selective fading is experienced, which translates to ISI at the receiver. [4]
4	 A channel is considered flat over a range of frequencies when every signal component within that range is affected
identically in phase and amplitude (as opposed to frequency selective).

Figure 2.4 – Discrete Memoryless Channel Model [6]

– 9 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

Respectively to the flat and frequency selective fading models, fast and slow fading models take into
account the Coherence Time that the channel exhibits. If the impulse response of a channel changes
during a symbol period, or in other words, if the Coherence Time is shorter than the symbol period,
we consider the channel to be fast fading. Equivalently, if the impulse response of the channel remains
static during a symbol period we consider the channel to be slow fading. Fast and slow fading models
are not contradictory with flat of frequency selective channel models, and are often paired to better
describe how the channel will affect the transmission.

It is important to note that mathematical formulation for channel models is heavily dependent on the
modulation scheme under study. [4]

Additive White Gaussian Noise Channel (AWGN)

The Additive White Gaussian Noise channel model is one of the simplest and most studied cases for
signal processing. The only effect that is applied upon the signal, is the addition of a white Gaussian
noise process.

r t s t n tm() () ()� � (9)

With r(t) being the received signal, sm(t) the sent signal (of the possible M signals that can be sent) and
n(t) being a zero-mean sample waveform of white Gaussian noise. [3]

Although it might seem that this is an oversimplification for studying a channel, the model’s purpose
is twofold. Every channel, wireless or otherwise, adds noise to the signal, thus it can translate to real
world applications to a degree. Secondly, system performance studied under the effects of the AWGN
channel can be viewed as an upper bound of the expected system performance, and by extension to
link capacity. Logically, this performance will never, or momentarily, be experienced in applied sys-
tems, with the exception of deep space communications.

The AWGN channel has an infinite coherence bandwidth, and therefore has a flat frequency response
over all of the spectrum. It also presents a linear phase response, constant gain and spectral density,
and as the name implies, Gaussian distribution of amplitude. There are more complex versions of the
AWGN channel model, such as bandlimited AWGN or the more generalized linear Gaussian channel
where a linear filtering with an impulse response of h(t) is applied on the transmitted signal before
adding the noise, which can also be extended by making the impulse response of the linear filter
time-variant, all of which serve the purpose of better approximating the channel behavior. [2]

2.3 Digital Modulation Methods
In the following section, a few digital modulation techniques will be discussed, starting with the binary
Pulse Amplitude Modulation (2-PAM) or On-Off Keying (OOK), one of the simpler modulation schemes
which will provide an introduction to modulation, followed by a more extensive overview of Phase
Shift Keying (PSK) – which is part of the SDR implementation.

2.3.1 Line coding and Pulse Amplitude Modulation
Line Coding, or baseband modulation, refers to the process of converting the original bit stream to
a series of pulses. There are several ways that the bit stream can be coded, with different pulse am-
plitudes corresponding to 0s or 1s. They exhibit different characteristics in terms of Power Spectral

Figure 2.5 – AWGN channel model [3]

– 10 –

Digital Signal Processing & Modulation

Density, power requirements, error rate and duration. Most of them can be categorized as nonre-
turn-to-zero (NRZ) and return-to-zero (RZ), but there are line codes that use two discrete phases in
order to perform mapping, called biphase codes. Line codes can be further divided to bipolar and
unipolar depending on the polarity of the pulses’ voltages.

The most common line codes are displayed in Figure 2.6. Nonreturn-to-zero line codes consist of two
different pulses, one for bit 0 and one for bit 1, and the pulse occupies the whole bit period Tb. NRZ
line codes can be either unipolar, where there are solely positive or solely negative pulses for one of
the two bits, and absence of pulse for the other bit, or bipolar, where one bit is mapped to a positive
pulse amplitude and the other to an equal but negative amplitude. Return-to-zero line codes include a
transition to zero voltage for half a bit period, making it a more power efficient baseband modulation
scheme at the cost of double the bandwidth requirement. Bipolar RZ retains the pulse absence for
one of the two bits, but the other bit is coded to both a positive and a negative amplitude, alternating
between the two.

Binary Pulse Amplitude Modulation, or On-Off Keying, is the simplest form of M-PAM modulation,
and is essentially the line coding that is applied to the information stream. It is considered a baseband
modulation method since there is no subsequent conversion of the initial pulses to different symbols.
Every symbol is a bit in this modulation, since the symbol dictionary consists of only two symbols. The
pulses are then used to modulate the carrier wave that is transmitted.

Pulse amplitude modulation can, of course, be extended to include multiple symbols, thus increasing
the system bit rate, since more bits can be sent per symbol, and the different symbols are mapped to

Figure 2.6 – Line codes

– 11 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

different pulse amplitudes. The M in M-PAM signifies the number of different symbols in the chosen
modulation scheme and satisfies M=2b, where b is the number of bits in each symbol. The symbol set
can then be written as A={a1, a2, …, aM} which are all real numbers in this case. [2] Typical signal con-
stellations for the 2-PAM, 4-PAM and 8-PAM are displayed in Figure 2.7.

Demodulation for PAM in its simplest form, involves properly filtering the received waveform so as to
avoid ISI, and then sampling the waveform at T-spaced intervals that at least satisfy the Nyquist crite-
rion. There is no need to delve deeper in this modulation scheme, as it is one of the simpler methods
and serves merely as an introduction to modulation.

2.3.2 Phase Shift Keying
One of the more popular modulation techniques, Phase Shift Keying (PSK) works by modulating the
phase of the carrier wave in order to convey information. Used in quite a few modern telecommu-
nications standards, such as IEEE’s 802.11b/g, Bluetooth and DVB-S2, PSK can be found in multiple
variants, and specifically Binary PSK (BPSK), 4 or Quaternary PSK (QPSK), 8-PSK and their differential
modulation versions, which indicate the symbol dictionary size utilized in each case. In the following
chapters, mathematical formulation will be provided for these PSK schemes, modulation and demod-
ulation chain overview, as well as error probability analysis. QPSK and 8PSK are used in the SDR imple-
mentation.

Binary Phase Shift Keying (BPSK)

Binary Phase Shift Keying is the simplest form of PSK modulation, with a symbol dictionary consisting
only of two symbols – as indicated by the name – that correspond to bits 1 and 0. The phases used for
the two signals that are produced, are often chosen to be 0 and π since this minimizes error probability
at the receiver. Typically, the two signals are: [4]

s t A f t t T forc b1
2 0 1() cos , ,� � �� (10)

s t A f t t T forc b2
2 0 0() cos , ,� � � �� (11)

Almost all basic modulation schemes have signal constellations that can be represented in two dimen-
sions and BPSK is no different. Figure 2.8 depicts the constellation for BPSK, with E being the signal
energy which is given by: [4]

Figure 2.7 – M-PAM Constellation for (a) M=2 (b) M=4 and (c) M=8 [3]

– 12 –

Digital Signal Processing & Modulation

E A Tb=
2

2
(12)

A is the signal amplitude and Tb is the bit period.

The symbols in BPSK are transmitted in carrier bursts. The waveform has a constant envelope, constant
frequency and constant phase except for the bit boundaries where the phase transitions occur. This
is evident in Figure 2.9. Given that the carrier frequency fc is an integer multiple of the data rate Rb,
in other words, the initial phase at bit boundaries will either be 0 or π. This condition is necessary in
order to minimize bit error probability. In the special case of fc >> Rb, the impact on error performance
can be considered negligible. [4]

Figure 2.8 – BPSK constellation [4]

Figure 2.9 – BPSK modulation [7]

– 13 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

Modulator operations for BPSK are rather simple. Given a bipolar NRZ baseband modulation as dis-
played in (13), the resulting signal for a sinusoidal carrier can be written as (14).

a t a p t kTk
k

() ()� �
���

�

� (13)

s t Aa t f t tc() () cos ,� �� � � �2� (14)

With { 1, 1}ka ∈ + − and p(t) being the rectangular pulse. Coherent demodulation is implemented with
the use of a correlator, which compares the received signal with a local reference signal. The reference
signal is identical to (14) but with double the amplitude. Frequency and phase synchronization is nec-
essary for proper demodulation. Considering an amplitude of A=1, at t=(k+1)Tb we receive a correlator
output of: [4]

r t f t dt

a f t dt

a

c

k c

kT

k T

kT

k T
b

b

b

b

() cos()

cos ()

()

()

2

2

1

2

1

1

2

�

�

�

�

�

��

� kk c

b
k

k

c
c b

kT

k T

f t dt

T a a
f

f k T

b

b

[cos()]

[sin ()

()

1 4

2 8
4 1

1

�

� � � �

�

� �

�
� ssin]4� f kTc b

Considering a noiseless transmission and fc=mRb, the second term is null and we achieve perfect signal
recovery. Bit error probability for binary modulation schemes is given by (15) and specifically for BPSK,
with ρ12=-1 and E1=E2=Eb, by (16): [4]

P Q
E E E E

Nb �
� �

()
1 2 12 2 1

0

2

2

�
(15)

P Q E
Nb
b= ()

2

2
0

(16)

ρ12 is the correlation coefficient of the two signals s1(t) and s2(t), Q is the Q function5, Eb is the energy
per bit and No is the noise power spectral density.

Differential BPSK

Differential encoding and decoding revolve around the mapping of bits or symbols to the baseband
waveform or the carrier – depending on whether it used in baseband or passband modulation – in
relation to the previously encoded bit or symbol. Differential coding makes the system more robust
against ambiguity and bit flipping at the receiver and may also eliminate the need for coherent detec-
tion, as in the case of DBPSK, which decreases system complexity. Such schemes are called differential
due to the fact that – in the general case – only the difference between the current and previous sym-
bol is transmitted.

There is always a need for a reference bit, so that the following ones can be appropriately modulated.

5	 The Q function Q(x) is defined as the probability of a Gaussian random variable will obtain a value greater than x.

– 14 –

Digital Signal Processing & Modulation

For DBPSK the encoding rule is the XOR product of the currently sent bit and the previous one. It is
often used partially in conjunction with regular BPSK in order to resolve phase ambiguity. [8] Further
analysis for differentially encoded modulation schemes will be provided for Quadrature PSK since it is
utilized in the SDR implementation.

Quadrature Phase Shift Keying (QPSK or 4-PSK)

Quadrature PSK is a special case of M-PSK, specifically when M=4, with a quadratic constellation as
the name implies. A very common modulation technique, QPSK is often chosen due to the fact that
increasing the bandwidth efficiency of the system does not come at the cost of increased error prob-
ability. When compared to BPSK, it can provide the same data-rate with half the bandwidth require-
ments, or double the data-rate for the same bandwidth while retaining the exact same BER. QPSK can
be found in several current age protocols such as DVB-2 and 3G.

The signals in QPSK can be written as: [4]

s t A f t t T ic i b() cos(), , , , ,� � � � �2 0 1 2 3 4� � (17)

With θi indicating the phase
(2 1)

4i
i πθ −

= .

In QPSK there are four different symbols, each consisting of two bits or one dibit. Typically, when map-
ping the bits to the symbols, Gray coding6 is utilized in order to minimize bit error probability. This is
evident in Figure 2.10 which displays the constellation used in QPSK. The initial phases are π/4, 3π/4,
5π/4 and 7π/4. The carrier frequency is chosen to be an integer multiple of the symbol rate, ensuring
that in any symbol interval [kTb, (k+1)Tb], the initial signal phase corresponds to one of the four phases.
The expression in (17) can be written as seen below in (18), essentially a linear combination of the two
orthonormal basis functions φ1(t) and φ2(t). [4]

s t A f t A f t
s t s t

i i c i c

i i

() cos cos sin sin

() ()

� �
� �

� � � �
� �

2 2

1 1 2 2

(18)

These two functions define the two-dimensional coordinate system known as a constellation and are
given by the equations (19) and (20). si1, si2 and θi can then be written as seen in (21), (22) and (23)
respectively. [4]

� �
1

2
2 0() cos ,t

T
f t t T

b
c b� � � (19)

� �
2

2
2 0() sin ,t

T
f t t T

b
c b� � � � (20)

s Ei i1
� cos� (21)

s Ei i2
� sin� (22)

6	 Gray coding in digital signal modulation dictates that adjacent symbols differ in only one of their mapped bits. If
there is ambiguity in the received symbols – which often occurs between adjacent symbols -, and they are incorrectly decoded,
Gray coding ensures that only one of b bits is wrong, thus reducing the BER.

– 15 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

�i
i

i

s
s

� �
tan

1 2

1

(23)

Symbol energy is provided by 2 / 2bE A T= .

Modulator and demodulator design for QPSK is quite simple. As seen in Figure 2.11, considering Polar
NRZ line coding, the pulse stream is initially split by a serial to parallel converter, producing the I(t) and
Q(t) streams, and the two signal components, si1 and si2 are created by multiplication of each pulse
stream with the local oscillator. The two signal components are then added together by a summer to
produce the transmitted wave. The demodulator is simpler than the general case MPSK demodulator.
Since the two signal components are orthogonal and there is a one-to-one bit to signal component
mapping (since a split dibit results in a single bit), the received signal can be demodulated as two sep-
arate BPSK signals. The I(t), Q(t) and produced waveforms are also included in Figure 2.11.

Figure 2.10 – QPSK signal constellation [4]

Figure 2.11 - QPSK (a)modulator, (b) demodulator block diagrams, parallel pulse streams,
signal components and transmitted signal waveforms [4]

– 16 –

Digital Signal Processing & Modulation

Since demodulation is performed on two BPSK signals, the error probability for each demodulation
stream is given by expression (16). The output of the demodulator is the multiplexed version of the
two streams, and thus has the same error probability. Symbol error rate, however, is different, since a
symbol error occurs if one of the two bits is incorrect: [4]

P

Q E
N

Q E
N

s

o o

� �

� �

1

2
2

Pr

() [()]
(24)

8-Phase Shift Keying (8-PSK)

A specific iteration of the general M-PSK modulation technique, 8-PSK uses a symbol dictionary of 8.
It is considered the highest order modulation of Phase Shift Keying since higher order PSK exhibits a
non-viable error rate because symbol phases are too adjacent to properly detect at the receiver. The
main advantage of 8-PSK is higher bandwidth efficiency which results in improved throughput. The
signal set for 8-PSK is defined by the following equation:

s t A f t it Ti c i b() cos(, , , ,),� � �� �2 1 2 80� �  (25)

As with QPSK, the carrier frequency should be chosen as an integer multiple of the symbol rate, so
that initial signal phase coincides with the 8 chosen phases. The signal can be described with the same

equations (18) – (23), and symbol energy is given by 21/ 2 bE A T= .

The Gray coded constellation of 8-PSK is presented in Figure 2.12. This is only one of the possible
symbol-to-phase mappings. Modulator design is fairly similar to the one for QPSK, with the main dif-
ference being the Serial-to-parallel conversion block. Since symbols are composed of 3 bits, the S/P
block is replaced by a level generator, which accepts bit triplets and divides them between the I and
Q channels. Demodulator design is equally simple, requiring only two correlators to perform proper
detection. Symbol decision making - in coherent demodulation - is based on the deviation of measured
phase with the reference symbol phases. The reference symbol with the smallest deviation is chosen
as the most likely received symbol. Figure 2.13 shows modulator and demodulator block diagrams for
the general MPSK scheme. [4]

Symbol error probability estimation is more complex when compared to the previous modulation
schemes due to the absence of orthogonality between the symbols. Assuming that si(t) is transmit-

ted or, equivalently, hypothesis Hi is correct, the received symbol is a vector 1

2

r
rr  =  



that resides on

Figure 2.12 – 8-PSK signal constellation [4]

– 17 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

the constellation space. Its probability density function is two-dimensional, bell-shaped, centered at

1

2

i

i

s
i ss  =   and is provided below. When r resides outside of the region Zi as depicted in Figure 2.12,

an error occurs and therefore the error probability can be expressed as in (27). [4]

p r H
N N

r E r Ei
o o

i i(/) exp{ [(cos) (sin)]}


� � � � �
1 1

1

2

2

2

�
� � (26)

P p r H drs i
zi

� � �1 (/)
 

(27)

The symbol vector along with the above expressions can be transformed to polar coordinates, which
are better suited for error analysis.

r
1
� � �cos (28)

r
2
� � �sin (29)

� � �r r
1

2

2

2 (30)

�  tan�1 2

1

r
r (31)

And thus (26) and by extension (27) can be written as:

P
N N

E E d d

p H

s
o o

i
Z

Z

i

i

� � � � � �

� �

�

�

1
1 1

2

1

2

�
� � � � � � �

� �

exp{ [cos()]}

(, / ii d d) � �
(32)

p H
N N

E Ei
o o

i(, /) exp{ [cos()]}� �
�

�
� � � �� � � � �

1
2

2 (33)

The expression in (33) is the joint probability density of ρ and θ, and by substituting the phase devia-

Figure 2.13 – MPSK (a) modulator and (b) demodulator block diagrams [4]

– 18 –

Digital Signal Processing & Modulation

tion with φ, that is ˆ
iϕ θ θ= − , (33) becomes symbol index i independent and can be written as:

p H e E
N

e erf E
Ni

o o

E
N E

N
o

o(/) cos (cos
cos

�
�

�
� �

�

� � �
�

�
�

�

�
�

�
�
�

��

�

2
1 1

2 ��
�
�

��
� p()� (34)

Therefore, symbol error probability becomes:

P p ds
M

M� �
��1 ()� ��

�

(35)

Bit error rate can be derived from the symbol error probability as follows: [4]

P P
Mb
s≈

log
2

(36)

Further simplifications can be performed in the above expression under certain conditions, specifically
for high SNR values.

2.4 Adaptive Modulation and Coding
Adaptive Modulation and Coding (AMC) can be loosely defined as a set of techniques or methods that,
when applied to a telecommunications system, can dynamically alter the modulation scheme, the or-
der of the modulation, the coding scheme, the error correction technique, the coding rate and so on,
based on the channel state. Subsequently, both transmitter and receiver (or both transceivers) need
to be aware of the channel state; that is how the current conditions of the channel affect transmission
and reception of the signal. Such methods can serve multiple purposes depending on the system in
question. They can be utilized to maximize throughput when conditions allow, or they can assure link
stability in adverse situations.

AMC schemes have been studied since the mid-20th century [10] but have only recently been popular-
ized in major protocols, such as 3G, GSM and Wi-Fi, offering improved performance and robustness.
In traditional telecommunications systems that do not implement adaptive modulation and coding
schemes, the characteristics of the system were chosen by considering the worst channel state so as
to maximize service availability, wasting bandwidth, throughput and capacity, rendering such imple-
mentations inefficient. Late adoption of AMC was a byproduct of inadequate hardware and underde-
veloped channel estimation methods, both of which have evolved in recent years.

As already mentioned, common knowledge of the channel state at both ends of the link is necessary
so that both systems are aligned regarding the modulation scheme currently in use. This is achieved
via a feedback loop between the two. Channel state estimation takes places at the receiving end, and
revolves – more often than not – around BER and/or SNR calculation, as well as delay estimation (fre-
quently caused by multipath phenomena). This information is retained at the receiver and transmitted
at the transmitting end either via the same wireless channel, or through other means. It is important to
note that channel state estimation might not always be possible, depending on the conditions. Signal
attenuation can happen very rapidly or there might be a high variance in the received signal rendering
correct channel estimation impossible. Further limitations might be imposed by system complexity
and hardware capabilities, such as the speed of transition between elected modulation schemes, or
the transition to/from different coding rates. In the following sections, a brief review of well-estab-
lished adaptive techniques takes place, that rely on power, coding and rate variance.

2.4.1 Variable rate techniques
As implied, variable rate techniques revolve around increasing or decreasing the data rate Rb based

– 19 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

on channel conditions, or more specifically channel gain. This can be achieved by either maintaining a
fixed symbol rate and varying modulation schemes or constellation size, or by maintaining the modula-
tion scheme and varying the symbol rate. The former is the most common variance technique utilized
due to the ease of implementation, in comparison with symbol rate variance which induces signal
bandwidth variance. [9]

A prime example, and one of the first standards that used variable rate techniques, is IEEE 802.11a, or
more commonly the first Wi-Fi iteration. This standard utilizes multiple modulation schemes, specif-
ically BPSK, QPSK, 16-QAM and 64-QAM along with OFDM, and interchanges between them offering
data rates of 48, 36, 24, 18, 12, 9 and 6 Mbits/s based on the minimum input sensitivity at the receiving
antenna (–65 dBm for 54 Mbit/s). [11] Other early standards such as CDMA IS-95 Rev. B and cdma2000
also adopted variable rate techniques, such as providing supplemental code channels for the MAC7
layer and estimating channel state by pilot strength or power control bits. [10] Transitions between
modulations schemes or constellation sizes are dictated by threshold values of channel gain estima-
tions and thus they have to mapped accordingly in order to maintain the BER below a certain value.

2.4.2 Variable Power Techniques
Dynamically tuning the transmission power serves the purpose of improving the SNR, or equivalently,
maintaining a desired error probability. Severe SNR fluctuations are often induced in fading channels,
and the goal of this technique is to revert the fading effect of the channel so that it approximates

AWGN conditions as closely as possible. Channel inversion is given by () / /P Pγ σ γ= , where σ is
the constant received SNR that needs to be maintained, γ is the received SNR, P(γ) is the transmit
power and P is the average power constraint. It is shown (but omitted here) that solving for σ, pro-
duces 1/ [1/]σ γ= Ε 8, which in turn indicates that if a value of σ greater than 1/ [1/]E γ is required
to attain the target BER, then it is impossible to do so. Rayleigh fading channels where [1/]E γ = ∞
are impossible to invert. Channel inversion can also be done selectively for certain threshold values of
SNR. [9]

2.4.3 Variable Coding Techniques
Implementing multiple error correction coding methods and applying them depending on SNR is an-
other form of AMC. There are many different types of error correction codes that are currently in use,
which vary on correction capability, amount of extra, non-useful information required to be added to
the transmission and required system complexity. Since codes generally limit the achievable data rates
by some degree, it is useful to dynamically choose the coding used to maximize throughput when
the channel state permits it via code multiplexing. More aggressive coding can be utilized in adverse
SNR conditions, providing robustness when the telecommunication link suffers. Variable coding also
permits the use of a single modulation scheme, when such a constraint is necessary for a given tele-
communication system.

Apart from code multiplexing, there are codes specifically designed to dynamically adjust their coding
rate. One such example are rate-compatible punctured convolutional codes (RCPC), where the er-
ror-correction capability can be altered by not transmitting some of the coded bits, often referred to
as code puncturing. [9]

7	 Medium Access Control layer: Data link layer in telecommunications systems that defines how devices gain access
to the communication channel.
8	 E[X|Y] in probability theory is the conditional expectation operator which provides the expected value of a random
variable over multiple occurrences under a certain condition.

– 20 –

Digital Signal Processing & Modulation

– 21 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

Chapter 3
Software Defined Radio

3.1 Software Defined Radio (SDR) Overview

Traditional radio systems are comprised of either analog or digital components that perform all
the necessary, exclusive to each component, functions, in order to make a telecommunications
system viable. These components, as is already evident, can be filters, Analog to Digital con-

verters and Digital to Analog converters, baseband and wideband modulators, DSPs, error correction
codes, mixers, detectors, gain controllers and so on. All these functions require dedicated hardware,
often vendor-locked and with minimal margin for in-depth configuration, and most important of all,
hardware built with a singular purpose in mind. Software Defined Radio replaces most of this hardcod-
ed logic, with the operations being orchestrated and described in software.

General purpose computers are used to implement the logic and mathematical operations required
for proper signal processing, providing virtually limitless possibilities as to the characteristics of the
telecommunication system. SDR can be easily understood in terms of operation when compared to
the more widely adopted Software Defined Networking and Network Function Virtualization concepts.
Proprietary “black boxes” provided by industry vendors as-is are replaced by “white boxes” that con-
tain basic logic, ready to work as defined by a programmer. This enables on-the-fly network upgrades,
dynamic routing, rapid response in case of node failure, easy network expansion while decreasing
inter-dependability between industry parties, lowering operating costs and enabling in-house exper-
imentation and implementation. Respectively, SDR enables multi-purpose telecommunications sys-
tems, that have a hard dependency only on the capability of the hardware and on antenna dimensions.

As the industry moves forward, newer protocols and standards are produced while older ones become
obsolete and gradually reach the end of their lifespan. Base stations need to be refitted with new ded-
icated hardware while having to dispose of the older one, bandwidth and channel allocation needs
to be planned by centralized authorities and very early in a project’s lifetime, newer standards and
protocols elicit a heavy cost of adoption and a highly time-consuming process. These issues compose
a multitude of hurdles in the way of advancement. By using SDR, all these problems can be surpassed
with ease.

The telecommunications industry is not the sole beneficiary from SDR. It is also a powerful tool for
the academic community, providing hardware, platforms and programs – often open-source – where
experimentation, fast prototyping and theory testing can be performed. SDR works as a gateway for
radio amateurs as well, since inexpensive SDR dongles exist in the market, making the world of RF
communications accessible which in turn breeds innovation. Online communities structured around
SDR also serve the same purpose by exchanging both technical and theoretical knowledge in the field,
and at the same time expanding the functionalities provided by the overlying software.

The first SDR iteration is considered to be the SpeakEasy project of the US military. The aim of the proj-
ect was to use programmable signal processing in order to communicate with more than 10 different
types of military radio. This enabled not only inter-operability of pre-existing military standards imple-
mented through a single transceiver, but also dynamic encryption methods and counter-intelligence
tactics while also eliminating the logistic chain costs and planning of maintaining several different radio
types at the same time. [12] The functional block diagram of the SpeakEasy Multiband Multimode
Radio (MBMMR) is depicted in Figure 3.1.

In the next sections, a review of GNURadio, the SDR development platform used for the purposes
of the thesis takes place, along with the review of Universal Software Radio Peripherals by Ettus Re-

– 22 –

Software Defined Radio

search, the actual hardware platforms utilized.

3.2 Ideal SDR Architecture and Hardware
The ideal SDR block diagram is
depicted in Figure 3.2 with the
assumption that the DAC and
ADC contain a built-in recon-
struction and anti-alias filter,
respectively.

On the left part of Figure 3.2
the programmable part of the
architecture is presented. The
DSP, programmable in soft-
ware, handles the main oper-
ations of the signal processing
chain, namely the modulation
method, equalization, proto-
col and coding. The DSP is a
combination of different sub-
parts, for example FPGAs, and
can even be fully replaced by
a general-purpose CPU or an
RFSoC (Radio Frequency Sys-
tem-on-a-Chip) as in the case
of Universal Software Radio
Peripherals. Considerations regarding the DSP design have to do with power consumption – a major
issue for handheld User Equipment or rural off-grid base stations that rely on renewable energy -
and processing power. Adequately high sampling rates, of at least 4.4 GHz at Nyquist sampling and
practically a lot more, at the ADC and DAC allow for easy implementation of the required filters with
good anti-aliasing roll-off factors. If the system allows proper transmission when undersampling, the
required sampling rates drop heavily. [13] However, the best ADCs or DACs available currently feature
sampling rates of a few GSPS, which also has to be divided by the number of channels in use, thus
requiring more converters to be used in practice.

The ideal circulator serves the purpose of separating the transmit and receive signals, and is consid-

Figure 3.1 - SpeakEasy functional block diagram [12]

Figure 3.2 – Ideal SDR architecture [13]

– 23 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

ered perfectly matched, in terms of impedance, with the amplifier and the antenna. Since perfect
matching is almost impossible in practice, the ideal circulator can be replaced by a diplexer, a device
that performs frequency-domain multiplexing. The main takeaway of diplexers is that they function in
a fixed-frequency, making them a non-viable alternative for SDR since operation over a wide frequency
range is required. Prior to the circulator, the linear or linearized amplifier provides the power required
to the signal with no adjacent channel saturation in the ideal scenario. There are several amplifiers
that meet the requirements for an SDR platform. Finally, the ideal antenna has to function in a range
of 5 octaves, which translates to a higher cutoff frequency of 32 times the lowest cutoff frequency,
and 0dBi gain. [13] These specifications are practically very hard to achieve, and thus multiple or inter-
changeable antenna designs have to be considered.

3.3 GNURadio – The free and open-source software radio eco-
system
GNURadio (GR) is one of the most complete software development toolkits for Software Defined Ra-
dio. It is free and open-source, backed by a strong community of academics, developers, radio enthu-
siasts and hobbyists. First created in 2001, GR has been constantly in development for more than a
decade, always extending functionality and implementing ready to use modules making SDR develop-
ment more accessible. It can be used both for simulation, and real-world transmission, through the
use of either inexpensive SDR hardware, such as the RTL-SDR, and the most advanced platforms like
the USRPs.

GNURadio can be installed in a few different ways (see Appendix A) and comes
with an optional Graphic User Interface (GUI), called GNURadio Companion
(GRC). GR performs all of the signal processing operations required, with a lot
of the most common building blocks, such as filters, gain controllers, modu-
lators etc, being pre-coded into it. It can function in both Linux and Windows
operating systems, but using a Linux distribution is heavily recommended. GR
incorporates several programming languages in order to function properly.
The underlying mathematical operations, and especially those that are perfor-
mance-critical, are all implemented in C++, with the less complex parts (such as
block connections) being handled by Python. Block descriptions and parameters
for the GRC are written on top of Python and C++ through XML and YAML.

Software support is provided through a multitude of channels, both from official
members of the project as well as enthusiasts and SDR veterans. The official wiki

provides descriptions for the building blocks as well as tutorials to better understand how the program
functions. Alternatively, there is a mailing list and a chat server that anyone can subscribe to in order
to ask or answer relevant queries. The GR project also features an annual conference called GRCon rich
in presentations and lectures on the topic of SDR.

In the following sections, GNURadio’s structure and flow will be discussed, along with the capabilities
offered by the software.

GNURadio Structure

Signal processing operations in GR come in the form of blocks. These blocks are essentially a script that
works on data by altering it in a desired way. There are different classes of blocks depending on how
the data is handled. Note that all blocks, custom or pre-built, fall into one of these categories as they
inherit certain properties from their parent class (C++ or Python classes): [14]

•	 Synchronous Blocks

These types of blocks produce and consume the same amount of data (or items). Most pre-built py-
thon blocks are synchronous blocks. If a sync block does not have an input port it is considered a
source, and if it has no output ports it is a sink.

Figure 3.3 – GNU-
Radio Logo [14]

– 24 –

Software Defined Radio

•	 Decimation Blocks

Decimation blocks produce only a fraction of the input data. The decimation factor is a variable and
can be adjusted. The Decimating FIR (Finite Impulse Response) Filter used to reduce the sampling fre-
quency of a signal (downsampling) is a typical example of a decimation block.

•	 Interpolation Blocks

Being the inverse of decimation blocks, interpolation blocks produce a multiple of the input items.
Accordingly, the interpolation factor is a variable. The FIR Filter also comes in the interpolation flavor.

•	 Basic Blocks

Basic blocks do not have a fixed behavior regarding input and output items, and all of the former
blocks are special cases of the basic block. Basic block code structure is useful when the intended op-
eration does not fit one of the former categories.

•	 Hierarchical Blocks

Hierarchical blocks are an assortment of other blocks. They are useful in packing multiple signal pro-
cessing operations together and can even contain other hierarchical blocks. They also provide a level
of abstraction and modularity since the simpler blocks that comprise a hierarchical block are omitted.

GNURadio utilizes some of the primitive C++ datatypes, and they have to be specifically declared for
each processing block. The data type is color coded in GRC, and displayed on the ports for easy iden-
tification.

o	 Byte (Purple)
o	 Complex (Blue)
o	 Short (Yellow)
o	 Integer (Green)
o	 Float (Orange)

Apart from the above, support has been extended with the use of Polymorphic Types (PMTs), data car-
riers that can function as a number of different data types. They are mostly used for message passing
blocks (ie. strings) or stream tags which are used to tag samples in the signal processing chain.

Data in GR is handled by a flowgraph structure. The items are passed from block to the next connected
block(s) in a continuous stream, and have to be terminated at sink block. Circular flow is not support-
ed, and the items move only in one direction and a source block is always required to produce the
items. A GR program must always create the top_block class which handles the basic functions of the
program like start/stop/wait.

Connecting the blocks is straightforward in code and in GRC, but the data types of the one block’s out-
put port have to be matched with the data type of the next block’s input port. Some blocks transform
the type of data, for example a Constellation Modulator block which applies a chosen modulation
scheme upon the data stream has to receive bytes as input, since integers or floats cannot be used for
digital modulation, but produces complex items, which correspond to the constellation points of the
chosen scheme. Certain blocks do not require to be connected in the flowgraph. These types of blocks
generally work in the form of declarations, or in other words, they can be global variables, objects

Figure 3.4 – GNURadio Companion flowgraph

– 25 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

called by other blocks, they can dictate how graphs are plotted or even change variables at runtime.
Finally, there are some special block categories, like the ZMQ Interfaces which provide network func-
tionality, which will be specifically explained in the next chapter.

One very important family of blocks is QT GUI. These are typically sink blocks (they have no output
ports), and are used to create graphical plots of input data. One or more of these blocks must almost
always be included in the program in order to ascertain proper operation. The most commonly used
QT GUI sinks are as follows:

o	 QT GUI Time Sink

Plots amplitude by time. Only accepts complex or float values.

o	 QT GUI Frequency Sink

Plots the Power Spectral Density of the signal (frequency by magnitude). Only accepts complex or float
values.

o	 QT GUI Constellation Sink

Plots the constellation of the signal, often connected to the output of the modulator, this sink only
accepts complex data.

When creating a flowgraph in the companion application, before running the program, it has to be
generated. Generating the flowgraph constructs a Python file (.py) that contains the block classes used
– imported from the gnuradio module -, the connections between the blocks, the data types used and
the defined variables for each block, and the global variables. Proper syntax for block variables when
not using the GUI, can be found in the GNURadio Doxygen documentation, the C++ API Reference1.
When a specific functionality is required, that is not covered by the built-in blocks – for example if
statements or state machines -, there are a few ways to go about it:

o	 Modifying the generated Python file

The generated Python file contains all the modules required for proper program execution and is neat-
ly structured with three distinct sections, global variables, blocks along with their parameters, and
connections. Implementing the required functionality involves determining the part of the code that
needs to be modified, for example the output of a particular block, and writing the desired code.
However, it is important to check for cross-references as well as the order of declarations, since some
blocks might be instantiated after calls have been issued. [17]

o	 Embedded Python Block

The companion application contains the Embedded Python Block, a generic block that performs no
inherent operations upon the item stream. By accessing the block, a code editor of the programmer’s
choice is opened, with a few pre-populated properties that can be modified at will. The code needs
to adhere to certain guidelines to conform with GR’s modus operandi. For example, the work function
which dictates the operation of the block does not need to be called within the block’s code as would
be the case in a typical python script. The Embedded Python Block is used in the design of the adaptive
modulation scheme and will be analyzed further in the next chapter.

o	 Out-of-tree Modules (OOT)

The OOT modules can either be a custom block or a set of custom blocks that implement functional-
ity outside of GR’s source tree. They allow for custom code maintenance and easy reusability of the
code in different flowgraphs, since it is attached to the installation of GR. There is a lengthy repository
of already built OOT projects which are hosted in the Comprehensive GNU Radio Archive Network2
(CGRAN) and can be easily installed via PyBOMBS or manually (see appendix A). Making an own OOT
module involves a lot of tedious work, and so GR offers certain tools to streamline the process, spe-
cifically gr_modtool, which helps with code templates and makefiles, and developer resources on the
wiki.

As already mentioned, GR provides hardware support for some popular SDR platforms. Support for
1	 https://www.gnuradio.org/doc/doxygen/
2	 https://www.cgran.org/

– 26 –

Software Defined Radio

Ettus’ USRPs comes “out-of-the-box” with blocks acting as sinks for the transmitter and as source for
the receiver. Note that UHD Hardware driver installation, the driver that allows proper communication
between the computer and the USRP, is necessary and is described in detail in Appendix B. Other pop-
ular SDR devices are supported, include the RTL-SDR, the LimeSDR and Hack RF One but require OOT
modules to be incorporated in GNURadio.

3.4 Universal Software Radio Peripherals
The Universal Software Radio Peripherals (USRPs) are a family of products, and specifically Software
Define Radio platforms, developed and manufactured by Ettus Research, a subsidiary of National In-
struments. The USRPs are the most advanced and complete platforms for SDR development currently
on the market and have been adopted by several industry research labs and universities, mainly for
research purposes.

There are several USRP product categories that vary by bandwidth, sampling rate, available interfaces
and channels. The main ones are as follows: [18] [19]

	USRP X Series

The high-end line of USRP products, X Series provides slots for two RF daughterboards. These daugh-
terboards, sold separately, function as transceivers, containing oscillators and allowing for MIMO oper-
ation when paired. They differ in bandwidth and operating frequency. The main advantage of X series,
apart from the interoperability offered by the two slots, are the interfaces which offer up to 10Gbit
ethernet connections or even PCI-Express connectivity, allowing for up to 200MSPS sampling rates at
full duplex. They are also equipped with powerful FPGAs. Note that sampling rates are generally re-
stricted by the host computer-USRP interface.

	USRP Networked Series

The main advantage of networked USRPs is just that, networking capabilities. They can be used to re-
motely control multiple devices operating over a common network and can be deployed in large scale
and distributed wireless systems. They allow for remote updates, debugging, resetting and health
monitoring over a distributed radio system. Interfaces support up to 10Gbit ethernet through SFP+
ports and they are equipped with TPM modules for encryption purposes. Equipped with RFNoCs (RF
Network on a Chip) they allow for heterogenous FPGA processing by encapsulating the IP protocol
inside the signal processing chain.

	USRP Embedded Series

This category of USRPs bring field deployment into the equation. They do not require a host computer
for operation, and feature a framework to create custom Linux distributions according to the applica-
tion’s needs. Still feature packed, supporting at least 2x2 MIMO transceivers, embedded USRPs allow
for fast prototyping and field testing.

	USRP Bus Series

The B series of USRPs, are more compact, oriented mainly for research purposes. Their main limita-
tion is USB 3.0 interface to the host computer which can provide lower sampling rates based on the
host controller. The B210 USRP is used for the research purposes of this thesis and will be discussed
in-depth in the following section.

Figure 3.5 – Universal Software Radio Peripherals. From left to right i) Embedded E312 ii)
Networked N320 iii) X310

– 27 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

USRP B210

As mentioned, the USRP B210 resides in the more compact category of USRP that feature a USB in-
terface to communicate with the host computer. This model was used for the implementation of the
Adaptive modulation scheme designed and implemented in the context of this thesis. The main fea-
tures are as follows: [20]

o	 RF coverage from 70MHz to 6GHz
o	 APIs for GNURadio, C++ and Python
o	 USB 3.0 interface with regular type B connector
o	 Flexible 12 bit ADC/DAC rate
o	 Grounded mounting holes

While the above apply to both B200 and B210 models, B210 supports coherent 2x2 MIMO operation
having two receivers and two transmitters that can function in half or full duplex. In SISO operation, it
provides an instantaneous bandwidth up to 56MHz and up to 30.72MHz in MIMO operation. The wide
RF operation range allows for most telecommunications technologies and protocols to be transmitted

or received, including FM, GSM, HSPA/3G, 4G, DVB-T, most 5G bands, Wi-Fi etc. when the USRP is
paired with appropriate antennae. Of course, some applications, such as point-to-point microwave
links which generally function in the range above 7GHz, cannot be implemented.

The main specifications for both models are detailed in the table below. [20]

Specification Typical Unit
Power

DC Input 6 Volts
Conversion Performance and Clocks

ADC Sample Rate (max) 61.44 MS/s
ADC Resolution 12 Bits
ADC Wideband SFDR3 78 dBc
DAC Sample Rate (max) 61.44 MS/s
DAC Resolution 12 Bits
Host Sample Rate (16b) 61.44 MS/s
Frequency Accuracy ±2.0 ppm

3	 Spurious-Free Dynamic Range describes the ratio of the fundamental signal (carrier) RMS value to the RMS value of
the most prominent harmonic. It is measured in dBc which is translated to dB relative to the carrier. [22]

Figure 3.6 – USRP B210 (i) Board only [21] (ii) Complete with enclosure and antennas, used
in lab

– 28 –

Software Defined Radio

RF Performance in Single Channel
SSB/LO Suppression -35/50 dBc
3.5 GHz 1.0 Deg RMS
6 GHz 1.5 Deg RMS
Power Output >10 dBm
IIP34 (@ typical NF) -20 dBm
Receive Noise Figure <8 dB

Physical
Dimensions 9.7x15.5x1.5 cm
Weight 350 g

Table 1 - B200/B210 Specifications

It is important to note that the host-USRP interface is backwards compatible with USB 2.0 protocol,
but this will greatly limit throughput. In Figure 3.7 the block diagram for B200 and B210 can be found.
The FPGAs for both devices are of the Spartan 6 series made by Xilinx. B210’s FPGA feature more logic
cells, higher memory and more DSP slices to enable MIMO operation.

4	 Third Order Intercept Point (IP3 or TOI) is a mathematical model to describe the non-linearity of certain devices, such
as amplifiers and mixers. IIP3 refers to the input intercept point (in contrast to OIP3 which refers to the output). [23]

Figure 3.7 – Block diagram for B200 and B210 USRPs [20]

– 29 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

– 30 –

Software Defined Radio

– 31 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

Chapter 4
Design and Implementation

In the following sections, the signal processing chain is constructed in GNURadio. Initially, the pro-
cess is designed and tested in a simulation environment with the goal of being applied to two USRP
B210 devices to test performance. The Adaptive Modulation scheme created, consists of switching

between two different order PSK modulations, specifically differential QPSK and 8-PSK, and is based on
the estimated SNR of the link. Estimating SNR can be a difficult process to do directly, and thus certain
algorithms have to be used. The algorithm used for SNR estimation is explained in detail further on.
GNURadio does not offer out-of-the-box functionality for adaptive modulation, and therefore required
a custom embedded python block in order to be implemented, whose code and logic is included in the
thesis. Theoretical BER to SNR curves are derived for the applied modulations. Results discussion and
further improvements can be found last sections of the chapter. It is noteworthy that for the simula-
tion and USRP Transmitter host, GNURadio version 3.8.1.0 was utilized and for the USRP Receiver host
3.7.14.0, and any flowgraph display inconsistencies are due to this difference in versions.

4.1 Flowgraph design
The figure in the next page depicts the completed flowgraph used for simulation purposes. The sim-
ulation serves the purposes of proof-of-concept and benchmarking expected behavior for the USRP
implementation. Note that almost all components/blocks are included in the USRP iteration, bar those
that simulate channel mechanics (i.e., Channel Model block), and some new ones are added to incor-
porate required functionality.

Below, block functions and flowgraph logic are explained. Block parameters are discussed sporadically.

Random Source

A type of source block, as described in section 3.3, the random source produces a constant stream of
random values, given that it is set on repeat. The smallest fraction of data that can be processed in GR
is the byte and thus a range of [0, 256) is appointed to the source, so that it can saturate all 8 bits. Two
different Random Source blocks have to be used due to GNURadio’s structure, as it cannot support a
different rate of item consumption from the same source. This is explained in greater detail later on.

Constellation Modulators and Constellation Objects

The constellation modulator maps the input items to symbols according to the chosen modulation
scheme. Samples per symbol can be set and differential encoding can be toggled on or off (active
here). The input requires bytes, and the output is of complex type. In order for the modulator to func-
tion, it requires a variable to be entered that points to another block, not attached to the flowgraph
stream and which functions as a variable block, the Constellation Object. This block provides all the
information to construct a signal constellation at will. Although the block comes with QPSK and 8PSK
already available as a setup, explicit declarations were chosen to assure proper operation. Symbol map
for both schemes is provided in the Tables 2 and 3 below, along with their constellations in Figure 4.2.

– 32 –

Design & Implementation

Va
ria

bl
e

Id:
 ta

ps
Va

lue
: 1

Va
ria

bl
e

Id:
 ar

ity
Va

lue
: 4

QT
 G

UI
 R

an
ge

Id:
 de

lay
La

be
l: D

ela
y

De
fau

lt V
alu

e:
0

St
ar

t:
0

St
op

: 2
00

St
ep

: 1

QT
 G

UI
 R

an
ge

Id:
 eq

_ga
in

La
be

l: E
qu

ali
zer

: ra
te

De
fau

lt V
alu

e:
10

m
St

ar
t:

0
St

op
: 1

00
m

St
ep

: 1
m

Va
ria

bl
e

Id:
 ex

ces
s_b

w
Va

lue
: 3

50
m

QT
 G

UI
 R

an
ge

Id:
 fre

q_o
ffs

et
La

be
l: F

req
ue

ncy
 Off

set
De

fau
lt V

alu
e:

0
St

ar
t:

-10
0m

St
op

: 1
00

m
St

ep
: 1

m

Va
ria

bl
e

Id:
 nfi

lts
Va

lue
: 3

2

QT
 G

UI
 R

an
ge

Id:
 no

ise
_vo

lt
La

be
l: N

ois
e V

olt
ag

e
De

fau
lt V

alu
e:

10
0u

St
ar

t:
0

St
op

: 1
St

ep
: 1

0m

QT
 G

UI
 R

an
ge

Id:
 ph

ase
_bw

La
be

l: P
ha

se:
 Ba

nd
wid

th
De

fau
lt V

alu
e:

62
.8m

St
ar

t:
0

St
op

: 1
St

ep
: 1

0m

Co
ns

te
lla

tio
n

Re
ct.

 O
bj

ec
t

Id:
 qp

sk
Sy

mb
ol

Ma
p:

0,
1,

2,
3

Co
ns

te
lla

tio
n P

oin
ts

: ..
.07

mj
Ro

ta
tio

na
l S

ym
me

try
: 4

Re
al

Se
cto

rs:
 2

Im
ag

ina
ry

 Se
cto

rs
: 2

W
idt

h R
ea

l S
ec

to
rs

: 1
W

idt
h I

ma
gin

ar
y S

ec
to

rs:
 1

Va
ria

bl
e

Id:
 rrc

_ta
ps

Va
lue

: fi
rde

s.r
oo

t_r
ais

ed
_...

Va
ria

bl
e

Id:
 sa

mp
_ra

te
Va

lue
: 3

2M

Va
ria

bl
e

Id:
 sp

s
Va

lue
: 2

Va
ria

bl
e

Id:
 ta

ps
Va

lue
: 1

, 2
50

m-
...-

30
0m

+2
00

mj

QT
 G

UI
 R

an
ge

Id:
 tim

e_o
ffs

et
La

be
l: T

im
ing

 Off
set

De
fau

lt V
alu

e:
1

St
ar

t:
99

9m
St

op
: 1

.00
1

St
ep

: 1
00

u

QT
 G

UI
 R

an
ge

Id:
 tim

ing
_lo

op
_bw

La
be

l: T
im

e:
BW

De
fau

lt V
alu

e:
62

.8m
St

ar
t:

0
St

op
: 2

00
m

St
ep

: 1
0m Co

ns
te

lla
tio

n
Ob

jec
t

Id:
 va

ria
ble

_co
nst

ell
ati

on
_0

Co
ns

te
lla

tio
n T

yp
e:

Va
ria

ble
 Co

nst
ell

ati
on

Sy
mb

ol
Ma

p:
1,

0,.
..,

4,
3,

2
Co

ns
te

lla
tio

n P
oin

ts
: ..

.24
mj

Ro
ta

tio
na

l S
ym

me
try

: 8
Dim

en
sio

na
lity

: 1

ou
t

Ra
nd

om
 S

ou
rce

Mi
nim

um
: 0

Ma
xim

um
: 2

56
Nu

m
Sa

mp
les

: 1
00

Re
pe

at
: Y

es

ou
t

Ra
nd

om
 S

ou
rce

Mi
nim

um
: 0

Ma
xim

um
: 2

56
Nu

m
Sa

mp
les

: 1
00

Re
pe

at
: Y

es

ou
t

in
Ch

ar
 To

 Fl
oa

t
Sc

ale
: 1

ou
t

in
Ch

ar
 To

 Fl
oa

t
Sc

ale
: 1

ou
t

in
Ch

ar
 To

 Fl
oa

t
Sc

ale
: 1

pri
nt

sto
re

pri
nt_

pd
u

Me
ss

ag
e D

eb
ug

ou
t

in
Th

ro
ttl

e
Sa

mp
le

Ra
te

: 3
2M

ou
t

in

Ch
an

ne
l M

od
el

No
ise

 Vo
lta

ge
: 1

00
u

Fr
eq

ue
nc

y O
ffs

et
: 0

Ep
sil

on
: 1

Ta
ps

: 1
, 2

50
m-

...
-30

0m
+2

00
mj

Se
ed

: 0
Blo

ck
 Ta

g P
ro

pa
ga

tio
n:

No

QT
 G

UI
 Ta

b
W

id
ge

t
Id:

 co
ntr

ols
Nu

m
Ta

bs
: 2

La
be

l 0
: C

ha
nn

el
La

be
l 1

: R
ece

ive
r

ou
t

in

CM
A

Eq
ua

liz
er

Nu
m.

 Ta
ps

: 1
5

Mo
du

lus
: 1

Ga
in:

 10
m

Sa
mp

les
 pe

r S
ym

bo
l: 2

ou
t

in
Co

ns
te

lla
tio

n
De

co
de

r
Co

ns
te

lla
tio

n O
bje

ct:
 ...

=8
)>

ou
t

in
Co

ns
te

lla
tio

n
De

co
de

r
Co

ns
te

lla
tio

n O
bje

ct:
 ...

=4
)>

ou
t

in

Co
ns

te
lla

tio
n

Mo
du

lat
or

Co
ns

te
lla

tio
n:

<c
on

...
(m

=8
)>

Diff
er

en
tia

l E
nc

od
ing

: Y
es

Sa
mp

les
/S

ym
bo

l: 2
Ex

ce
ss

 BW
: 3

50
m

ou
t

in

Co
ns

te
lla

tio
n

Mo
du

lat
or

Co
ns

te
lla

tio
n:

<c
on

...
(m

=4
)>

Diff
er

en
tia

l E
nc

od
ing

: Y
es

Sa
mp

les
/S

ym
bo

l: 2
Ex

ce
ss

 BW
: 3

50
m

ou
t

fre
qu

en
cy

ph
as

e

err
or

in no
ise

Co
sta

s L
oo

p
Lo

op
 B

an
dw

idt
h:

62
.8m

Or
de

r:
4

ou
t

fre
qu

en
cy

ph
as

e

err
or

in no
ise

Co
sta

s L
oo

p
Lo

op
 B

an
dw

idt
h:

62
.8m

Or
de

r:
8

ou
t

in
Di

ffe
re

nt
ial

 D
ec

od
er

Mo
du

lus
: 8

ou
t

in
Di

ffe
re

nt
ial

 D
ec

od
er

Mo
du

lus
: 4

ou
t

in
Ma

p
Ma

p:
1,

0,
7,

6,
5,

4,
3,

2

ou
t

in
Ma

p
Ma

p:
0,

1,
2,

3

ou
t err rat
e

ph
as

e

in

Po
lyp

ha
se

 C
loc

k S
yn

c
Sa

mp
les

/S
ym

bo
l: 2

Lo
op

 B
an

dw
idt

h:
62

.8m
Ta

ps
: rr

c_t
ap

s
Fil

te
r S

ize
: 3

2
Ini

tia
l P

ha
se

: 1
6

Ma
xim

um
 R

at
e D

ev
iat

ion
: 1

.5
Ou

tp
ut

 SP
S:

2

sn
r

sig
na

l

no
ise

in

MP
SK

 S
NR

 Es
tim

at
or

 P
ro

be
Ty

pe
: 2

nd
 an

d 4
th

Mo
me

nt
Sa

mp
les

 be
tw

ee
n S

NR
 m

es
sa

ge
s:

1M
Fil

te
r A

lph
a:

1mou
t

in in sn
r

AM
C

Mo
d

out

out

in

snr
AMC Demod

in

QT
 G

UI
 C

on
ste

lla
tio

n
Si

nk
Na

me
: Q

PS
K

Nu
mb

er
 of

 Po
int

s:
1.0

24
k

Au
to

sc
ale

: N
o

in

QT
 G

UI
 C

on
ste

lla
tio

n
Si

nk
Na

me
: 8

PS
K

Nu
mb

er
 of

 Po
int

s:
1.0

24
k

Au
to

sc
ale

: N
o

in

QT
 G

UI
 Ti

me
 S

in
k

Na
me

: Q
PS

K
Nu

mb
er

 of
 Po

int
s:

1.0
24

k
Sa

mp
le

Ra
te

: 3
2M

Au
to

sc
ale

: N
o

in

QT
 G

UI
 Ti

me
 S

in
k

Nu
mb

er
 of

 Po
int

s:
50

0
Sa

mp
le

Ra
te

: 3
2M

Au
to

sc
ale

: N
o

in

QT
 G

UI
 Ti

me
 S

in
k

Na
me

: S
ou

rce
Nu

mb
er

 of
 Po

int
s:

1.0
24

k
Sa

mp
le

Ra
te

: 3
2M

Au
to

sc
ale

: N
o

QT
 G

UI
 Ta

b
W

id
ge

t
Id:

 re
cei

ve
d

Nu
m

Ta
bs

: 2
La

be
l 0

: C
on

ste
lla

tio
n

La
be

l 1
: S

ym
bo

ls

Op
tio

ns
Tit

le:
 M

PS
K_

SIM
_w

_EP
Yb

lk
Au

th
or

: G
. S

oti
...u

los
 To

gia
s

Ou
tp

ut
 La

ng
ua

ge
: P

yth
on

Ge
ne

ra
te

 O
pt

ion
s:

QT
 GU

I

Fi
gu

re
 4

.1
 –

 S
im

ul
at

io
n

Fl
ow

gr
ap

h
in

 G
N

U
Ra

di
o

– 33 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

8P
SK

Integer 1 0 7 6 5 4 3 2
Bit 001 000 111 110 101 100 011 010
Coordi-
nates

0.383

+0.924j

0.924

+0.383j

0.924

-0.383j

0.383

-0.924j

-0.383

-0.924j

-0.924

-0.383j

-0.924

+0.383j

-0.383

+0.924j
Table A - 8PSK Symbol Mapping

Q
PS

K Integer 0 1 3 2
Bit 00 01 11 10
Coordinates -0.707-0.707j -0.707+0.707j 0.707+0.707j 0.707-0.707j

Table B - QPSK Symbol Mapping

For the QPSK modulator, the constellation is provided by a Constellation Rectangular Object block, a
specific iteration of the more general Constellation Object block for rectangular constellations. By set-
ting 2 samples per symbol, slight oversampling is achieved without affecting processing requirements,
while helping the incorporated in-block pulse filter produce a clearer waveform and making demodu-
lation easier.

Channel Model

In the simulation environment, the channel model block serves the purpose of creating channel con-
ditions. This iteration can emulate time-invariant channel models, including AWGN and multipath.

Figure 4.2 Constellation diagram for (i) 8PSK (ii) QPSK

Figure 4.3 – QPSK Modulator output

– 34 –

Design & Implementation

This block is paired with two other variable type blocks, specifically the taps block and a QT GUI Range
block. The taps variable block sets the value of the taps field. Taps determine an FIR filter’s coefficient
value which describes the impulse response of the filter. Larger tap values translate to better perfor-
mance: better roll-off and narrower filter. FIR filter mechanics are incorporated in the channel model
block to approximate multipath conditions. The QT GUI Range is a tool useful in runtime, since it pro-
vides sliders to change variable values. Here, it points to the Noise Voltage field of the channel model
block with the purpose of adjusting SNR at runtime and confirm proper operation of the SNR estimator
block as well as the operation of the AMC blocks.

Polyphase Clock Sync

A very important part of the processing chain, the Polyphase Clock Sync block performs timing re-
covery. It is located at the start of the demodulation chain, just after the channel effects added from
the Channel Model block. Timing recovery involves sampling of the incoming waveform at the cor-
rect points in time which results to maximizing SNR and minimizing ISI. Here, clock synchronization is
achieved without knowledge of the transmitted waveform thus removing the need for pilot symbols or
preambles, via a polyphase filter bank. Generally, timing recovery is performed by interpolation filters
before or after matched filters. Through the use of the polyphase clock sync algorithm, the interpola-
tions (upsampling) of the received waveform is performed at the matched filters, which is then fed to
a series of polyphase filters who perform timing estimation by calculating the differential of a symbol
therefore determining the best sampling point - within a margin of error, affected by the size of the
filter bank. [24]

Constant Modulus Algorithm Equalizer

The CMA equalizer assists with flattening the frequency response of the channel, evenly distributing
the signal power over the used bandwidth. It is useful for modulation schemes that have a constant
modulus, as is the case for both QPSK and 8PSK since all of the symbols are of the same amplitude and
only differ in phase.

Costas Loop

Crucial for proper demodulation, the Costas Loop block locks on the center frequency of the signal and
converts it to baseband. It is a phase-locked loop that mainly works on phase modulated signals. It pro-
vides fine phase and frequency correction. Order can be set depending on the symbol dictionary and
thus it is necessary to utilize two different loops for the two different modulations schemes. While the
equalizer can converge the received signal on the unit circle, it is unable to compensate for frequency
and phase offset, and so the Costas Loop is necessary.

Constellation Decoder, Differential Decoder and Map

Successful recovery of the carrier and conversion to baseband has been performed, however the de-
modulation chain requires knowledge of the symbol dictionary in order to properly decode the re-
ceived symbols. Two constellation decoders are required, one for QPSK and one for 8PSK. The mod-
ulation scheme and the chosen constellation are provided by the same Constellation Object blocks

Figure 4.4 – QT GUI Constellation Sink display at CMA Equalizer and Costas Loop outputs.
Slight frequency offset and noise are applied.

– 35 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

referenced by the modulation chain’s Constellation Modulators. Alternatively, a Soft Constellation
Decoder can be utilized, which performs decoding based on a look-up table that needs to be created,
and which contains decision areas in the form of floating-point tuples and precision values for a given
number of bits. [25] This is a computationally demanding process and, thus hard decision decoding
was chosen. Additionally, since differential transmission was elected, Differential Decoder blocks are
required in order to calculate the difference between the current and previous symbol. This is neces-
sary, because in differential modulation, only the difference in phase between two consecutive sym-
bols is transmitted instead of the exact phase of the symbol. One more step is required to attain the
actual value of the transmitted symbols, and that is the Map block. At this point in the demodulation
chain, the correct (assuming no error) symbols have been retrieved, but the previous blocks do not
have knowledge of the bit values mapped to each symbol. This is accomplished via the Map blocks,
two of which are necessary for the two modulation schemes.

Character to Floating Point, Time Sinks and Throttle

In order to ascertain proper operation of the signal processing, the final outputs have to be observed.
One of the ways to accomplish this, is by plotting the received values by time. The QT GUI Time Sink
cannot process bytes and requires floating point values as an input, thus Char to Float blocks have to
be used. This might seem counter-intuitive, however, as already mentioned, GR is simply a GUI for
coding, and data types have to be explicitly declared. By attaching a QT GUI Time sink on the Source,
initial and received values can be compared to confirm error free transmission. However, a Delay block
(omitted here) has to be attached to the Random Source in order to synchronize the plots. This is
necessary because processing of the information from start to finish is not instantaneous. Finally, the
Throttle block is a necessity in GNURadio when working in a simulation environment. It can be at-
tached to any part of the signal processing chain, and essentially limits the rate of the created samples.
If a Throttle block is not included, the host CPU will produce items at its maximum capacity, often ren-
dering the host machine unresponsive and making GR crash. It does not affect signal processing in any
way. Throttle blocks must never be used with hardware sources firstly because the hardware blocks
function as rate limiters, and secondly because it creates the “two-clock problem” (two rate limiters in
the same flowgraph).

MPSK SNR Estimator Probe

Attached to the output of the Channel Model block the SNR estimator contains four algorithms that
can be used to estimate the SNR of the received signal. Naturally, it is ideally used with MPSK modu-
lations. The outputs produce items of the PMT variety, most commonly used for messaging passing as
is the case here. The number of samples between SNR estimates can be set to any value by the user
(106 samples, 32 SNR estimates per second given a non-fluctuating sample rate). The SNR estimates
produced can be read and printed in the debug console via a Message Debug block. The main purpose
of the SNR estimator is to work as a control block for the Adaptive Modulation blocks. The AMC blocks,
explained in detail in the following sections, require knowledge of the SNR estimate in order to choose
the modulation scheme, therefore the SNR messages are sent to the message (or control) ports of the
AMC blocks.

After testing all four built-in algorithms, the most consistent estimates were produced by the 2nd and
4th Moment (M2M4) algorithm for complex signals. Moments are characteristics of a probability dis-
tribution, that are based on the given function’s plot. The second moment (M2) represents kurtosis
(a metric of the curvature of a graph used in probability and statistics) of the signal and the fourth
moment (M4) represents kurtosis of the noise. The main advantages of the algorithm are that it does
not require knowledge of transmitted data in order to produce an SNR estimate (it is not a Data-Aided
algorithm) and that complex noise1 is assumed. It is important to note that SNR here is perceived as a
ratio of discrete signal power to discrete noise power. Practical systems calculate M2 and M4 averages
over a given time frame as below: [26]

M
N

y
sym

n
n

Nsym

2

2

0

1
�

�
� (37)

1	 Complex noise affects both signal amplitude and phase.

– 36 –

Design & Implementation

M
N

y
sym

n
n

Nsym

4

4

0

1
�

�
� (38)

With Nsym being a block of M-ary symbols, and yn being the output of a matched filter in the demodu-
lation chain. Then, signal and noise power can be calculated as below: [26]

S
M k k k M M k k

k k
w a w a w

a w

�
� � � � � �

� �
2 2

2

4
2 4 4

4

() () ()
(39)

N M S� �2 (40)

Where ka is the signal kurtosis and kw the noise kurtosis. For MPSK signals 1ak = , 2wk = for complex

noise and 3wk = for real noise. The implemented GNURadio algorithm utilizes 2wk = for complex
noise.

4.2 Adaptive Modulation Block
As already discussed, GNURadio does not contain pre-built blocks that can handle Adaptive Modula-
tion and Coding schemes, and therefore the use of an embedded python was chosen. Different blocks
have to be used in the modulation and demodulation chains due to the structure of the flowgraph. The
logic of the modulation block’s algorithm, follows the structure below:

•	 Read SNR estimate by the MPSK SNR Estimator Probe, through the PMT control port
o	 Transform PMT to python PMT

	 Transform python PMT to floating point
•	 If SNR estimate is equal or greater than 6.0 choose input 0
•	 Else if SNR is less than 6.0 choose input 1

o	 Propagate input stream to output

The demodulation AMC block follows the exact same logic, but there is one input stream and two
output streams, plus a specific declaration that when one of the output ports returns the input items,
the other output port should be blocked. Naturally, the same structure could be used for both blocks
by connecting the modulator AMC block directly to the source, however due to GR’s programming a
single item stream cannot be consumed at different rates. Having two constellation modulators work
at different rates (3bits/symbol for 8PSK and 2bits/symbol for QPSK) renders the flowgraph inoperable.

The default python block is created with one input and one output, able to receive complex items, and
acts as a simple multiplier, multiplying the input items by a constant. Firstly, default parameters have
to be assigned in the __init__ function, however, none are needed since the block serves a simple
passthrough functionality. For the modulation chain block, one more input port is required, which is
added in the in_sig list and assigned a complex data type because the Constellation modulator produc-

Figure 4.5 – Console displaying SNR estimates produced by probe

– 37 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

es complex items. Data types are provided in python via NumPy, a python library crucial for complex
mathematical operations, often required in scientific computing. NumPy is imported in all GNURadio
programs.

Moving forward, GR’s message passing framework has to be instantiated in this block, since the probe’s
SNR estimation messages have to be read and processed here. Logically, message passing is not incor-
porated by default in a block, since most blocks do not make use of it. Message passing runs in an
asynchronous, parallel flow and does not – necessarily – interact with the data flow. The PMT library
needs to be imported, and then the message port can be created with a user-defined port tag (snr
here) and a pointer for the function of the port that describes how the messages are processed. The
def handle_msg function, performs the two operations mentioned above, transforming the message
to python-readable pmt strings, and then declaring the pmt strings as floating-point values so that
they can be compared to the threshold values residing in the work function.

Lastly, the work function is defined. The work function resides in every GR block and describes the
actual operation of the block, or in other words, how the block affects the item stream. After assigning
variable names to the I/O ports, the conditional flow is constructed. The output port is matched to an
input port based on the values of the SNR estimate messages. It is important to note, that the function
should always return the list of items outside of the conditional loop, otherwise the flow of items will
stop after being processed once. Additionally, the work function must not be explicitly called, as would
be the typical case in a python script. The calling of the function is initiated by GNURadio’s framework.
Below, the code for the modulation chain’s AMC block can be found.

– 38 –

Design & Implementation

Figure 4.6 – Time Sinks, Constellation Sinks and Frequency Sink outputs at (i) SNR > 6.0 (ii)
SNR < 6.0 under simulated AWGN conditions.

– 39 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

import numpy as np
from gnuradio import gr
import pmt

class my_blk(gr.sync_block): # other base clas-
ses are basic_block, decim_block, interp_block

 def __init__(self): # only default arguments here
 """arguments to this function show up as parameters in GRC"""
 gr.sync_block.__init__(
 self,
 name='AMC Mod',
 in_sig=[np.complex64, np.complex64],
 out_sig=[np.complex64]
)

 self.snr_fb = 10.0
 self.message_port_register_in(pmt.intern('snr'))
 self.set_msg_handler(pmt.intern('snr'), self.handle_msg)

 def handle_msg(self, msg):
 self.snr_fb = pmt.to_python(msg)
 self.snr_fb = float(self.snr_fb)

 def work(self, input_items, output_items):
 in0 = input_items[0]
 out0 = output_items[0]
 in1 = input_items[1]
 if self.snr_fb >= 6.0:
 out0[:] = in0
 return len(output_items[0])
 elif self.snr_fb < 6.0:
 out0[:] = in1
 return len(output_items[0])
 out0[:] = in0
 return len(output_items[0])

4.3 USRP Implementation
After confirming proper operation and expected results in a simulation environment, certain mod-
ifications are required to make a USRP implementation feasible. Naturally, two host computers are
required, one for the transmitter and one for the receiver. Transceiver operation is fully supported, but
was not chosen for the purposes of the thesis, and is discussed in later sections. The main hurdle in
transitioning to a USRP implementation is how to create a feedback loop in order to share the SNR es-
timations with the transmitter side, since the two parts of the processing chain now reside in different

– 40 –

Design & Implementation

flowgraphs. There are a few different ways that this can be achieved, and the use of ZeroMQ (ZMQ)
blocks was chosen.

ZMQ Blocks

ZeroMQ is an open-source networking library that can be embedded in any programming language
and provides a networking framework for an array of protocols, such as TCP and multicast. In GNURa-
dio ZMQ blocks function either as message passing blocks or regular data passing blocks, that operate
over a network. They come in the form of Source/Sink due to the fact that they either consume items
and propagate them through a network, or receive items through the network and propagate them
to the flowgraph. This method was chosen not only for its functionality, but because it also provides
redundancy in case of link disruption or very low SNR conditions, as the message passing interface
works via the LAN that the two host machines are connected to. There are three different pairs of ZMQ
blocks available in GR:

•	 PUB – SUB

The PUB Sink works as a broadcasting interface. Multiple SUB source blocks can subscribe to the
PUB(lish) block in order to receive messages (or data). If the blocks are on the same LAN, the IP address
and an available port of the PUB block’s host machine have to be specified, and the SUB blocks have
to point to that same IP and port.

•	 PUSH - PULL

Here, the connection is point to point with equal peers. The two ZMQ sockets are bound, with the
PUSH sink block pushing the messages to the PULL block. IP address and port have to be specified in
the same way as the PUB – SUB blocks.

•	 REQ – REP

The REQ(uest) and REP(ly) blocks function in the same way as the PUSH – PULL blocks, but explicit
requests for messages have to be made for the REP sink to propagate them. It can be regarded as an
http protocol structure.

The most fitting ZMQ block combination for this use case is the PUSH - PULL one, because broadcast-
ing is unnecessary since only two host machines are operating, and the message stream needs to be
continuous to avoid delays created by requests. It is important to note that ZMQ message blocks in
GNURadio use PMTs and not ZMQ strings. The receiver’s host IP and private port 54000 is assigned to
both source and sink blocks.

USRP Sink/Source Blocks

These blocks provide the interoperability of GNURadio with the B210 USRPs. Various parameters can
be set in these blocks, including center frequency, gain, sample rate, clock rate, bandwidth etc. which
must also conform with the (interchangeable) antennae attached to the devices. The antennae used
with the USRPs are dual band, operating in 900MHz and 2.4GHz frequency ranges and can support a
10MHz bandwidth. Gain is initially set at 50dB, a high value, in order to establish the link, but is ad-
justable during runtime via a QT GUI Range widget. Lower gain values are necessary to avoid clipping
at the receiver. Figures 4.7 and 4.8 depict the transmitter and receiver flowgraphs respectively. The
Gaussian Noise source is added with the item stream in order to simulate SNR drops, and it is paired
with a range widget to alter noise amplitude during runtime. Simulated noise was only added during
initial operation.

– 41 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

4.4 Test cases
Three distinct transmitter/receiver setups were used to test algorithm and SNR estimation function-
ality.

1.	 Rx and Tx Indoor, direct line of sight and in close proximity
2.	 Rx and Tx Indoor, no line of sight in medium proximity with obstacles

Figure 4.7 – USRP Transmitter implementation

Figure 4.8 – USRP Receiver implementation

– 42 –

Design & Implementation

3.	 Tx Outdoor Rx indoor, no line of sight, minimal obstacles

1st Test case

The first test case layout is depicted in Figure 4.9. Both USRPs are located in the lab, in direct line of
sight with no obstacles.

Multiple positions were tested in the region highlighted with the red color, with the SNR estimations
remaining fairly stable. This is expected, since distance alone marginally affects noise impact on the
signal. SNR remained above 6, therefore 8PSK was almost exclusively used as a modulation method,
with QPSK taking over for limited amounts of time and in most cases when SNR estimations were in
error, but not excluding link disruption caused by human movement in the link’s vicinity. Figure 4.10
displays a slice of SNR estimations for the start and end USRP position.

Modulation switching displayed virtually no delays thus verifying proper operation and suggesting low
computational complexity. It must be noted, that in the case of failed or dropped SNR estimation mes-
sages, the receiver side flowgraph became unresponsive. The root cause requires further investigation.

Figure 4.9 – Lab layout for first test case

Figure 4.10 – SNR estimations over time for minimum and maximum Tx-Rx distance

– 43 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

2nd Test case

The second test iteration involves indoor transmission but the transmitter and receiver are not in direct
line of sight. Additionally, measurements were taken while the transmitter was transitioning through
the lab doorway, introducing certain obstacles and simulating link degradation similar to obstructions
encountered with moving User Equipment (UE). Figure 4.12 depicts the test layout in panoramic view.

Results indicate good transmission conditions with a static Tx, adjacent to the doorway, with the mod-
ulation remaining mainly in the 8PSK area as seen in the sample slice of Figure 4.13. When transi-
tioning the Tx further from the doorway, severe SNR fluctuations occur, evident in Figure 4.14. This
behavior has a two-fold explanation. Primarily, heavy multipath fading is induced due to the relative
Tx/Rx position. The signal must undergo a series of extra reflections and refractions for it to reach the
transmitter. This is also caused by the materials residing behind the lab walls, which are metal cup-
boards (behind the highlighted area of Figure 4.12). The metal cupboards, not only enhance multipath
fading, but also absorb a large portion of signal power since microwave frequencies exhibit strong
interactions with metal. Regardless of signal degradation, the link remained active and no disruptions
occurred in the initial transition. Moving the Tx further away from the doorway, severed the link which
is an expected result considering antennae omnidirectionality and the metal cupboards residing on
both sides of the transmitter.

Figure 4.11 – (i) Transmitted and (ii) received constellations

Figure 4.12 – Panoramic view of test layout. Highlighted area indicates metal obstacles.

– 44 –

Design & Implementation

3rd Test case

The third and final test case involves outdoor
transmission. Figure 4.15 depicts test layout.
The transmitter is placed outdoors, within –
approximately - 15 meters of the receiver,
not in direct line of sight and with minimal
obstacles.

Here, the noise floor is elevated. As evident
from the SNR graph in Figure 4.16, QPSK is
the dominant modulation scheme, with a
few instances of 8PSK momentarily taking
over. Elevated noise levels are induced by
the increased Tx-Rx distance when compared
to the two previous test cases. USRP trans-
mit power is not adequate to support longer
distance links. Adding to that, the omnidirec-
tional antennae utilized cause the transmit
power to be spread in all directions. By using
directional antennae SNR conditions could
be improved in this test iteration. It must be
noted that the SNR estimation algorithm pro-
vides a higher degree of accuracy in 1dB>
SNR conditions.

Figure 4.13 – SNR estimations over time for static transmitter

Figure 4.14 – SNR estimations over time for moving transmitter

Figure 4.15 – Third test case layout

– 45 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

4.5 Results discussion
The goal of the performed tests was threefold. Firstly, proving proper functionality and operation of
adaptive algorithm in various transmitter-receiver setups. Secondly, verifying qualitatively the SNR
estimation technique under different transmission environments. Thirdly, assessing potential improve-
ments in BER, provided by the adaptive modulation scheme. As evident from the above, the first two
goals were achieved. For the third goal, certain issues are encountered in terms of result analysis.

Ideally, SNR per bit (0/bE N) vs BER graphs must be created in order assess the improvements offered
by the algorithm. In order to calculate SNR per bit, the transmit power must be known, which can then
be used in conjunction with the bandwidth to calculate the amount of power that is allocated per
bit. However, the specification sheet for the B200 and B210 USRP devices defines the transmit power
very loosely as 10dBm> (see Table 1 in Chapter 3). Relevant research work has been performed in an
attempt to define output power of the bus series USRPs, in relation to the center frequency [27] [28],
although only the B200 USRP was investigated.

Another technique to measure the BER and plot it versus the (signal) SNR, is via GNURadio. GNURa-
dio offers a BER block, which accepts two byte-type inputs and produces a floating point value of the
calculated bit-error rate that can then be read and displayed by a QT GUI Time sink. The BER block
performs the actual comparison of the two item streams at its inputs but the streams need to be syn-
chronized. Synchronization can be achieved by utilizing a known bit sequence as a source (e.g. using a
Vector source with the same vector at both the transmitter and the receiver) and adding a delay block
at the receiver side paired with a QT GUI Range widget in order to synchronize streams at runtime.
However, this proved impossible to implement because some waveform clipping is experienced at the
receiver due to the irregular transmit power of the USRP. Naturally, to reduce or eliminate clipping,
lower gain values have to be assigned to the transmitter and receiver. As stated in [27] and [28], for
UHD gains of less than 60 and 50 respectively, the output power was found to be below 0dBm. While
testing with gain values lower than 50, the Tx-Rx link would be established either extremely sporadi-
cally or not at all. Thus, without eliminating clipping, the BER block cannot properly compare the item
stream and produce accurate BER measurements.

Since experimental BER vs SNR curves cannot be generated, theoretical curves are provided in Figure
4.17. By using the equations (16) and (36), bit error probability by Eb/N0 is calculated. The ranges over
which each modulation is active cannot be highlighted in the graph, since the quantitative relation
between SNR and Eb/N0 cannot be produced. Curves are modeled under AWGN conditions, with no im-
plemented error correction techniques. It is evident that at higher SNR values the bit-error probability
improvement of using a lower order modulation – and especially QPSK which shares the same error
probability with BPSK with higher data rates – is much larger than at lower SNR. However, increased
throughput is, in most cases, a highly desirable attribute in a telecommunications system and must be
taken into account. BER improvements can be made in various parts of the modulation/demodulation
chain by applying soft decoding, error correction codes, forward error correction etc. but improving
throughput for a given modulation can only go so far, especially when considering the tight band-

Figure 4.16 – SNR estimations over time in outdoor conditions

– 46 –

Design & Implementation

width, frequency and power limitations imposed by regulatory bodies in the microwave frequency
range. Thus, the trade-off between robustness and throughput is an issue involving multiple variables,
including but not limited to, computational complexity, operating costs, desired reliability, weather
conditions, application and must therefore be examined in a per-case basis.

4.6 Potential improvements
Exploring the current state and the potential of SDR software and hardware remains an ongoing topic
in the telecommunications industry. While the work in this thesis provides a proof-of-concept regard-
ing AMC implemented via an open-source platform on SDR hardware, it is only scratching the surface
of what is possible with these tools. To the author’s knowledge, the only research work considering
AMC implementations on SDR is found in [29], where an adaptive modulation and coding scheme is
created in GNURadio, aimed toward Mobile-WiMAX applications. It provides a more complex AMC
scheme, switching not only between different modulation techniques, but also dynamically adjusting
the coding rate according to an assessment parameter, and considers two different approaches in
terms of either target BER or maximizing throughput. However, the code for the adaptive algorithm is
not provided and thus cannot be assessed in terms of structure and performance. Furthermore, pro-
vided results are only derived in a simulation environment and no SDR hardware is used.

Regardless of the points made above, potential improvements can be derived from [29]. Expanding
the used modulation schemes is one of them. Quadrature Amplitude Modulation remains one the
most widely used modulation methods in current telecommunication standards. Offering excellent
bandwidth efficiency, and able to support modulation orders of 256, 512, 1024, and even higher in
wired channels, QAM is a prime candidate for higher throughput applications, only limited by the
channel’s noise levels. Under prime channel conditions, high order QAM can replace 8PSK providing a
much needed throughput improvement, with QPSK taking over when the link suffers and robustness
is required (as in the case of HSDPA). Furthermore, MAC layer modulation must also be considered as
it is a necessary component of most – if not all – systems.

Additionally, the AMC techniques described in Chapter 2.4 may also be considered. Dynamic power
adjustment may be implemented in the form of dynamic Tx/Rx gain. Although transmit power remains
an obscure part of the USRP devices, increasing the gain under heavy channel noise can greatly im-
prove error probability, while at the same time offering reduced consumption in good transmission
conditions. UE and battery/renewable energy base stations stand to gain more from such implemen-
tations, while reducing the energy footprint of telecommunications systems remains an ongoing goal.

Figure 4.17 – Bit-error probability Pb vs SNR per bit Eb/N0 in AWGN conditions

– 47 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

In the same spirit, dynamic coding rate techniques can be implemented as well, as in the case of [29].

In the current implementation, there are also additional features that can render the proposed sys-
tem a more feasible real-world proposal. First of all, error correction is a major component of all
telecommunication systems. GNURadio offers a comprehensive list of built-in blocks that serve this
purpose, ranging from several FEC iterations, to Low Density Parity Check coding, and even CCSDS’s
Reed Solomon encoding. All of these techniques greatly improve bit-error probability, making target
BER goals easier to achieve and allowing for more expanded AMC schemes. Another obvious enhance-
ment would be to make both ends of link function as transceivers. In GNURadio, this is achievable by
creating two modulation/demodulation chains in the same flowgraph. This process if fairly straightfor-
ward, and can provide an alternative way to create the feedback loop between the transceivers with
the goal of sharing the SNR estimations. The ZMQ feedback loop achieves this without burdening the
link’s bandwidth and provides redundancy in adverse conditions. However, having both transceivers
(or the host computers) on the same network may not be always feasible or the network connection
might malfunction for a number of reasons. Providing an alternative path for the SNR estimations is
therefore desirable.

Lastly, algorithm enhancements can be performed. The SNR estimation technique might provide ac-
ceptable values and SNR in general can serve as an “umbrella” term for link quality, basing the link
adaptation on a single parameter is not ideal. For instance, interference from other transceivers in
the proximity also degrades link quality, and is not (indirectly) depicted in SNR values. Following more
complex mathematical models such as multipath or Rayleigh channels, which may better predict the
transmitted signal’s behavior can assist in choosing threshold values for the dynamic system param-
eters. This approach can maximize the gains of switching modulations, coding rates or transmission
power while at the same time minimizing the impact on the desirable attributes of the telecommuni-
cation system.

– 48 –

Design & Implementation

– 49 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

Chapter 5
Conclusion

The telecommunications industry faces multiple challenges in the ever-growing tapestry of needs
of modern societies. The domain of digital communications, once a self-enclosed ecosystem, has
now expanded to every facet of the per-diem experience, defining and transforming how we exist

collectively and individually. Services and technologies are being continuously adopted in both menial
and important activities ranging from autonomous vehicles to setting thermostat temperatures from
a smartphone. Centralized network architectures are adding even more hurdles in the already difficult
race of meeting demands and wants. Scalability, transformation and enhancement of the already in-
place infrastructure is now considered a necessity and not a plain point of consideration.

While Layer 3 - and upwards – has seen a wide adoption of dynamic systems via SDN and NFV im-
plementations, the Physical Layer approach can be characterized as stale, especially in the wireless
domain. By shifting to a Software-Defined paradigm, the industry stands to gain a lot. Financially, it
reduces the constant need of increasing base station density in over-populated areas, eliminates the
need for specialized controllers that function on a per-protocol basis, which in turn require specialized
support and service, it greatly limits the cost and risk associated with the adoption of newer tech-
nologies and allows for much more accessible experimentation of in-house R&D. Environmentally,
Software-Defined architectures can have a significant impact on the carbon footprint of wireless infra-
structure by allowing reuse of general-purpose hardware and by minimizing the operations required to
upscale a given system. End-user experience may also be improved through assuring constant access
to the provided services by adapting to exceptional circumstances (e.g. reallocating bands to meet
increased capacity needs). In summary, SDR can provide extreme flexibility in a currently monolithic
wireless telecommunication infrastructure.

The work of this thesis serves as a contribution to what is possible with the current platforms available
in the field of signal processing, offering a mostly unresearched approach in Software Defined Radio.
Assessing and validating the ways that current technologies and systems can be implemented in a
software defined framework is necessary in order to enable broad adoption. While achieving the goals
set initially, it demonstrates the basic theoretical background required, explains the tools utilized for
the purpose at hand while at the same time highlighting the points where it can be improved as well as
the limitations experienced. Well established modulation techniques are analyzed and implemented in
SDR framework and subsequently expanded with additional functionality via programming. The scope
can be characterized as multi-disciplinary, taking from the domains of physical and computer sciences,
culminating in a functional implementation both in simulation as well as experimental context.

Finally, all of this would not be possible without the tools provided both by the academic department
and the GNURadio project and community, demonstrating time and again how open-source projects
contribute to broadening the research directions of a certain field, to making specialized tools accessi-
ble and available without financial barriers or incentives.

– 50 –

Conclusion

– 51 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

Appendix A
Installing GNURadio
There are a few different ways of installing GNURadio, depending on the platform or the user’s voli-
tion. The instructions below are based on GR’s guides found on the wiki1. Some of them were tested,
since moving to a different operating system was necessary in the course of the thesis. Initially, famil-
iarity with GR was built on a Windows 10 platform. For Windows, installing is very straightforward and
comes in the form of a regular binary installer2. Alternatively, Conda, a cross-platform package man-
ager, can be used but it is only really helpful if installation of OOT modules in a windows environment
is desirable. It is important to note that GNURadio is not officially supported for windows, and various
issues will come up, sometimes inhibiting proper operation.

Linux Installation
Basic installation via standard repositories

GR is natively built for Linux, and most distributions can easily fetch it through their default reposito-
ries. The repos should, however, be checked prior to installation in order to confirm that the latest ver-
sion of GR is being provided. Below, are the console commands for some popular Linux distributions:

Debian/Ubuntu and derivatives

 apt install gnuradio

Fedora

 dnf install gnuradio

RHEL/CentOS

 yum install gnuradio

Archlinux

 Pacman -S gnuradio

Gentoo Linux

 Emerge net-wireless/gnuradio

Any missing dependencies will be installed via the package manager.

Building from Source GR 3.9 and Master branch

Oftentimes, the repo may not be updated, or there might be issues with the binary packages, or spe-
cific requirements related to the OS may be in order. Building from source is the way to go. Important
note, if planning to use GR with a USRP, UHD must be installed prior to GR (see Appendix B for instruc-
tions). Additionally, python must be installed or setting the environment variables later on might be
required. Git is also required and can be obtained with

sudo apt install git

1.	

1	 https://wiki.gnuradio.org/index.php/InstallingGR
2	 Installer can be found on: http://www.gcndevelopment.com/gnuradio/index.htm

– 52 –

Appendices

1.	 Installing Volk

Volk must be installed first.

cd

git clone –recursive https://github.com/gnuradio/volk.git

cd volk

mkdir build

cd build

cmake -DCMAKE_BUILD_TYPE=Release -DPYTHON_EXECUTABLE=/usr/bin/python3
../

make

make test

sudo make install

sudo ldconfig

2.	 Installing GNU Radio

cd

git clone https://github.com/gnuradio/gnuradio.git

cd gnuradio

git checkout maint-3.x #use only if version requested is different than master branch

mkdir build

cd build

cmake -DCMAKE_BUILD_TYPE=Release -DPYTHON_EXECUTABLE=/usr/bin/python3
../

make -jX #X being the number of CPU cores that will be used during build

make test #if installing from scratch library test will fail (e.g. ZMQ)

sudo make install

sudo ldconfig

– 53 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

Building from Source for GNURadio 3.8 and earlier

cd

git clone https://github.com/gnuradio/gnuradio.git

cd gnuradio

git checkout maint-3.x #replace x with required version

git submodule update –-init --recursive

mkdir build

cd build

cmake -DCMAKE_BUILD_TYPE=Release -DPYTHON_EXECUTABLE=/usr/bin/python3
../

make -jX ##X being the number of CPU cores that will be used during
build

sudo make install

sudo ldconfig

– 54 –

Appendices

Installing dependencies and GR 3.8 on Ubuntu

sudo apt install git cmake g++ libboost-all-dev libgmp-dev swig py-
thon3-numpy python3-mako python3-sphinx python3-lxml doxygen libfftw3-
dev libsdl1.2-dev libgsl-dev libqwt-qt5-dev libqt5opengl5-dev py-
thon3-pyqt5 liblog4cpp5-dev libzmq3-dev python3-yaml python3-click
python3-click-plugins python3-zmq python3-scipy python3-pip py-
thon3-gi-cairo

pip3 install git+https://github.com/pyqtgraph/pyqtgraph@develop

pip3 install numpy scipy

echo ‘export PYTHONPATH=/usr/local/lib/python3/dist-packages:usr/lo-
cal/lib/python2.7/site-packages:$PYTHONPATH’ >> ~/.bashrc

echo ‘export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH’ >>
~/.bashrc

echo ‘export PYTHONPATH=/usr/local/lib/python3/dist-packages:usr/lo-
cal/lib/python2.7/site-packages:$PYTHONPATH’ >> ~/.profile

echo ‘export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH’ >>
~/.profile

cd ~/

git clone --recursive https://github.com/gnuradio/gnuradio

cd gnuradio

git checkout maint-3.8

mkdir build

cd build

git pull --recurse-submodules=on

git submodule update --init

cmake -DENABLE_GR_UHD=OFF ..

make -j $(nproc --all)

sudo make install

sudo ldconfig

Installation via PyBOMBS

PyBOMBS, the Python Bundles Overlay Managed Build System is a handy meta-package manages that
can take advantage of both package managers and build from source. It is developed by the GNURadio
project and is a hefty tool for installing OOT modules. The following commands on the Linux terminal
of an Ubuntu/Debian distribution, will install both PyBOMBS and GR 3.8. More information on Py-
BOMBS can be found on the GitHub repository3 and on the official GR website4.

3	 https://github.com/gnuradio/pybombs
4	 https://www.gnuradio.org/blog/2016-06-19-pybombs-the-what-the-how-and-the-why/

– 55 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

sudo apt-get install python3-pip

sudo pip3 install pybombs

pybombs auto-config

pybombs recipes add-defaults

pybombs prefix init ~/prefix-3.8 -R gnuradio-default

source ~/prefix-3.8/setup_env.sh

gnuradio-companion

Installing Out Of Tree modules (OOT)

As mentioned earlier, there is an extensive archive of OOT modules for GR, which have been developed
independently from the main branch by members of the GNURadio community. Although no OOT
modules were used during the thesis, the Comprehensive GNU Radio Archive Network (CGRAN)5 is a
rich source of additional functionality that can be incorporated into GR, including support for popular
protocols such as GSM, IEEE 802.11 a/g/p, Bluetooth etc. The installation of any OOT module follows
the same instructions, but certain modules may require additional dependencies to be installed, often
stated in the GitHub repository of each module.

git clone {git repo} #replace {git repo} with the OOT module repo to be in-
stalled

cd {directory} #replace {directory with the one the repo was cloned to

mkdir build

cd build

cmake ..

make

sudo make install

sudo ldconfig

5	 https://www.cgran.org/

– 56 –

Appendices

– 57 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

Appendix B
UHD – Installation and commands
UHD, the USRP Hardware Driver, is not only a device driver but an API as well, providing a working
interface between the host computer and the USRPs. In other words, it can function as a stand-alone
program (via the command line) and is not just a necessity to provide interoperability with the SDR
software residing on the host computer. The instructions listed below are based on the UHD/USRP
manual and documentation1 and on the Ettus Research Knowledge Base2.

Windows Installation

UHD is fully supported on Windows platforms, and can be installed in a straightforward manner, via
a software installer available on the documentation website. Building from source is also possible on
Windows, however there is no particular reason to compile manually in such an OS. Important note:
when using a USRP through a serial bus interface (USB) as is the case for the B series, after installing
UHD, additional UHD USB drivers have to be installed, also available on the documentation website.
After downloading and extracting the USB drivers, the steps below must be followed after the USRP is
connected to the host:

1.	 Navigating to the device manager will reveal an unrecognized USB device.
2.	 Open the unrecognized device entry, and select update/install driver.
3.	 On the following window select “Browse for driver” and navigate to the directory where the

driver was extracted.
4.	 Proceed with the next steps of the installation.
5.	 The device should now be properly recognized.

Additionally, if the Microsoft Visual C++ redistributable is missing from the OS, they will have to be
downloaded and installed from the Microsoft website3. No special actions are needed, as they come
with a software installer.

Linux Installation

As with GNURadio, so with UHD, most Linux distributions provide UHD as part of their package manag-
ers. To proceed with the installation, enter the commands below based on the distribution:

Ubuntu/Debian and derivatives

sudo apt-get install libuhd-dev libuhd003 uhd-host

Fedora

sudo yum install uhd uhd-devel

CentOS

rpm -Uvh epel-release*rpm

yum install uhd

An even better solution would be to add the Ettus Research repository, so that verified updates for
UHD can be downloaded via the package manager as soon as they are rolled out. The binary installers
provided by Ettus Research for the stable UHD releases, support at least the two latest LTS versions of
Ubuntu and Fedora. To add the repository and install UHD follow the commands below.

Ubuntu

1	 https://files.ettus.com/manual/index.html
2	 https://kb.ettus.com/Knowledge_Base
3	 https://docs.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-160

– 58 –

Appendices

sudo add-apt-repository ppa:ettusre-
search/uhd

sudo apt-get update

sudo apt-get install libuhd-dev li-
buhd003 uhd-host

Fedora

yum clean metadata all

•	 Create a file named ettus.repo under /etc/yum.repos.d/ and copy and paste into the file:

[ettus-uhd-stable-repo]

name=Ettus Research - UHD Stable $releasever-$basearchthon serial time-
out

baseurl=http://files.ettus.com/binaries/uhd/repo/uhd/fedora/$releasever/$basearch

gpgcheck=0
After saving the file run:

sudo yum --enablerepo=’ettus-uhd-stable-repo’ install uhd

PyBOMBS also supports the installation of UHD:

$ pybombs install uhd

Device discovery and initial configuration

After having installed UHD and connected the USRP to the host, it is a good idea to confirm that it has
been properly recognized. To do so, after opening the command line, type the following command:

uhd_find_devices

The command above will produce a result of the following form, with the attributes populated de-
pending on device:

--

-- UHD Device 0

--

Device Address:

 type:

 addr:

 fpga:

 name:

 serial:

 product:
If using multiple USRPs on the same host, the find device command can be extend with certain param-
eters to identify the particular USRP in question. The args parameter can contain the type of USRP, the
IP address if it supports networking, the name of the USRP (can be set by user), the serial number of
the device etc. An example can be seen below:

– 59 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

uhd_find_devices –-args=”type=usrp1”

In order for the USRPs to function, two assets are necessary, special firmware which defines how the
components operate and interact, and an FPGA image which contains the signal processing operations
that will be performed based on code. These assets are called images, and firmware images are provid-
ed by Ettus Research. In order to check if the firmware image is installed, and if it is the most updated
one, the following command must be run:

uhd_images_downloader

Depending on the USRP in use, the FPGA image may need to be loaded on an on-board storage, an SD
card, or it may be loaded when executing the SDR code as is the case for the USRP B series.

After ensuring operation, the USRP devices will have to be calibrated, especially if its their first time
use. UHD offers self-calibrating functionality, revolving around Rx and Tx IQ imbalance and Tx DC Off-
set. UHD automatically applies corrections during the calibration. To perform calibration, after remov-
ing any external hardware from the RF ports, run the following commands:

uhd_cal_rx_iq_balance --verbose --args=<optional device args>

uhd_cal_tx_iq_balance --verbose --args=<optional device args>

uhd_cal_tx_dc_offset --verbose --args=<optional device args>

For working with B series USRPs the above will more than suffice in order for them to work along with
GNURadio. However, UHD provides a lot more functionalities, such as setting gain, center frequency,
enabling RF fine-tuning and more.

– 60 –

Appendices

– 61 –

Design and Implementation of an Adaptive Signal Processing Scheme through Software Defined Radio

References
[1] GNU Radio, About GNU Radio https://www.gnuradio.org/about/ [Traversed 19 July 2021]

[2] Gallager R., Principles of digital communication, Cambridge University Press Cambridge, UK, 2008.

[3] Proakis J., Salehi M., Digital Communication, McGraw Hill Series in Electrical and Computer Engi-
neering, Singapore, 1989.

[4] Fuqin Xiong, “Digital Modulation Techniques,” Artech House, 2nd Edition, (2006).

[5] S. L. Miller and R. J. O’Dea, “Peak power and bandwidth efficient linear modulation,” in IEEE Trans-
actions on Communications, vol. 46, no. 12, pp. 1639-1648, Dec. 1998, doi: 10.1109/26.737402.

[6] S. Benedetto, E. Biglieri, “Principles of Digital Transmission: With Wireless Applications,” Kluwer
Academic Publishers, 1999.

[7] S. O. Popescu, G. Budura and A. S. Gontean, “Review of PSK and QAM — Digital modulation tech-
niques on FPGA,” 2010 International Joint Conference on Computational Cybernetics and Technical
Informatics, 2010, pp. 327-332, doi: 10.1109/ICCCYB.2010.5491254.

[8] W. Weber, “Differential Encoding for Multiple Amplitude and Phase Shift Keying Systems,” in
IEEE Transactions on Communications, vol. 26, no. 3, pp. 385-391, March 1978, doi: 10.1109/
TCOM.1978.1094074.

[9] Goldsmith, A. (2005). Wireless Communications. Cambridge: Cambridge University Press.
doi:10.1017/CBO9780511841224

[10] S. Nanda, K. Balachandran and S. Kumar, “Adaptation techniques in wireless packet data services,”
in IEEE Communications Magazine, vol. 38, no. 1, pp. 54-64, Jan. 2000, doi: 10.1109/35.815453.

[11] LAN/MAN Standards Committee of the IEEE Computer Society, IEEE Std 802.11a-1999, Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications - High-speed Phys-
ical Layer in the 5 GHz Band

[12] R. I. Lackey and D. W. Upmal, “Speakeasy: the military software radio,” in IEEE Communications
Magazine, vol. 33, no. 5, pp. 56-61, May 1995, doi: 10.1109/35.392998.

[13] P. B. Kenington. “RF and Baseband Techniques for Software Defined Radio,” Artech House, Lon-
don, 2005.

[14] GNURadio - The Free and Open Software Radio Ecosystem, Homepage, https://www.gnuradio.
org/ [Traversed 16 September]

[15] GNURadio Wiki, Types of Blocks https://wiki.gnuradio.org/index.php/Types_of_Blocks [Traversed
16 September]

[16] GNURadio Wiki, Handling Flowgraphs, https://wiki.gnuradio.org/index.php/Handling_Flowgraphs
[Traversed 16 September]

[17] GNURadio Wiki, Guided Tutorial GNU Radio in Python, https://wiki.gnuradio.org/index.php/Guid-
ed_Tutorial_GNU_Radio_in_Python [Traversed 16 September]

[18] Ettus Research, Products, https://www.ettus.com/products/ [Traversed 17 Spetember]

[19] Ettus Research, Knowledge Base, https://kb.ettus.com/Knowledge_Base [Traversed 17 Septem-
ber]

[20] Ettus Research, USRP™ B200/B210 Bus Series Datasheet

[21] Ettus Research, USRP B210 (Board Only), https://www.ettus.com/all-products/ub210-kit/ [Tra-
versed 22 September]

– 62 –

References

[22] National Instruments, Specifications Explained: Spurious-Free Dynamic Range (SFDR), https://
www.ni.com/en-us/support/documentation/supplemental/18/specifications-explained--spuri-
ous-free-dynamic-range--sfdr-.html, Updated February 4, 2020 [Traversed 22 September]

[23] Wikipedia, Third-order intercept point, https://en.wikipedia.org/wiki/Third-order_intercept_
point [Traversed 22 September]

[24] F. J. Harris and M. Rice, “Multirate digital filters for symbol timing synchronization in software
defined radios,” in IEEE Journal on Selected Areas in Communications, vol. 19, no. 12, pp. 2346-2357,
Dec. 2001, doi: 10.1109/49.974601.

[25] GNU Radio Manual and C++ API Reference, Digital Modulation, https://www.gnuradio.org/doc/
doxygen/page_digital.html [Traversed 25 September]

[26] D. R. Pauluzzi and N. C. Beaulieu, “A comparison of SNR estimation techniques for the AWGN
channel,” in IEEE Transactions on Communications, vol. 48, no. 10, pp. 1681-1691, Oct. 2000, doi:
10.1109/26.871393.

[27] Sunday Ajala et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 655 012006

[28] M. W. O’Brien, J. S. Harris, O. Popescu and D. C. Popescu, “An Experimental Study of the Trans-
mit Power for a USRP Software-Defined Radio,” 2018 International Conference on Communications
(COMM), 2018, pp. 377-380, doi: 10.1109/ICComm.2018.8484809.

[29] B. S. K. Reddy and B. Lakshmi, “Adaptive Modulation and Coding for Mobile-WiMAX using SDR
in GNU Radio,” 2014 International Conference on Circuits, Systems, Communication and Information
Technology Applications (CSCITA), 2014, pp. 173-178, doi: 10.1109/CSCITA.2014.6839255.

