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ABSTRACT

The study of the metabolism of hyperthermophilic microorganisms is of great industrial im­
portance since these organisms’ enzymes catalyze reactions at elevated temperatures.
Various hyperthermophiles of archaea (e.g., Thermococcus, Pyrococcus, etc.) and bac­
teria (e.g., Caldicellulosiruptor, Thermotoga, etc.) are established as laboratory models;
their metabolic pathways undergo genetic engineering aiming at optimal production of
fuels and chemicals at elevated temperatures in industrial scale.

This thesis aims to ease the literature study of the biological processes (and related meta­
bolites) of microorganisms of interest. The key contribution of the thesis is a framework to
(a) identify mentions of chemical entities (metabolites, substrates, enzyme cofactors, etc.)
in paper abstracts, and (b) retrieve co­occurrence associations between microorganisms
and chemical entities, and among chemical entities.

First, a chemical Named Entity Recogniser (NER), built upon the spaCy [50] (https:
//spacy.io/) library and trained on the CHEMDNER corpus [36], was developed in order
to extract mentions of chemicals. A set of 9 hyperthermophile species (Thermococcus
kodakarensis, Pyrococcus furiosus, Metallosphaera sedula, Thermotoga maritima, Caldi­
cellulosiruptor bescii, Sulfolobus solfataricus, Thermus thermophilus, Thermoanaerobac­
ter mathranii, Caldicellulosiruptor hydrothermalis) were used to demonstrate the chemical
NER’s functionality and applicability using literature (i.e PubMed abstracts) retrieved via
the ORGANISMS web application (http://organisms.jensenlab.org).

Then, the chemical entities extracted from the aforementioned literature were further ana­
lysed for the appearance of frequent patterns and the co­occurrences among them by
generating association rules between frequent itemsets (association rule mining).

As a result of our work, the association of carbohydrates to C. bescii and of copper and T
.thermophilus to heme were suggested from this study. Manual curation of the literature
showed that indeed Carbohydrate metabolism has been extensively studied in C. bescii
for the production of ethanol from lignocellulosic biomass. Similarly, extensive studies of
T. thermophilus report that the heme–copper oxygen reductases are able to catalyze the
reduction of nitric oxide to nitrous oxide under reducing anaerobic conditions.

Beyond the hyperthermophilic microorganisms study, the presented methods could be
applied to any microorganism specific abstract collection. The chemical NER facilitates
the identification of chemical entities in text. Furthermore, association rule mining provides
co­occurrence associations between microorganisms and chemical entities and between
chemical entities in a selected abstract collection.

SUBJECT AREA: Text mining

KEYWORDS: extremely thermophilic microorganisms, chemical named entity recog­
nition, association rule mining, microbial metabolic processes

https://spacy.io
https://spacy.io
http://organisms.jensenlab.org


ΠΕΡΙΛΗΨΗ

Η μελέτη του μεταβολισμού των υπερθερμόφιλων μικροοργανισμών έχει μεγάλη σημασία
για τη βιομηχανία διότι τα ένζυμα αυτών των μικροοργανισμών καταλύουν αντιδράσεις
σε υψηλές θερμοκρασίες. Διάφορα είδη υπερθερμόφιλων μικροοργανισμών από γένη αρ­
χαίων (π.χ., Thermococcus, Pyrococcus, κλπ.) και βακτηρίων (π.χ., Caldicellulosiruptor,
Thermotoga, κλπ.) αποτελούν εργαστηριακά μοντέλα, των οποίων τα μεταβολικά μονοπά­
τια έχουν τροποποιηθεί γενετικά με στόχο την παραγωγή καυσίμων και χημικών σε υψηλές
θερμοκρασίες σε βιομηχανική κλίμακα.

Η παρούσα εργασία έχει ως στόχο να διευκολύνει μελέτη των βιολογικών διεργασιών (και
των μεταβολιτών που σχετίζονται με αυτές) των υπερθερμόφιλων μικροοργανισμών. Η
πορεία που ακολουθήθηκε ήταν να ανιχνευτούν χημικά σε περιλήψεις από επιστημονικά
άρθρα που αναφέρουν τους μικροοργανισμούς που μας ενδιαφέρουν και στη συνέχεια
να μελετηθούν οι συσχετίσεις συναναφορας μεταξύ των μικροοργανισμών αυτών και των
χημικών στοιχείων, καθώς επίσης και οι συσχετίσεις συνύπαρξης μεταξύ των χημικών.

Δημιουργήσαμε ένα εργαλείο αναγνώρισης χημικών οντοτήτων με τη χρήση του πακέτου
spaCy (https://spacy.io/) της Python, το οποίο εκπαιδεύσαμε με τη χρήση της συλλογής
CHEMDNER, ώστε να εντοπίζει αναφορές ονομάτων μικρών χημικών μορίων σε επιστη­
μονικά κείμενα. Επιλέξαμε να μελετήσουμε εννέα είδη υπερθερμόφιλων μικροοργανισμών
(Thermococcus kodakarensis, Pyrococcus furiosus, Metallosphaera sedula, Thermotoga
maritima, Caldicellulosiruptor bescii, Sulfolobus solfataricus, Thermus thermophilus,
Thermoanaerobacter mathranii, Caldicellulosiruptor hydrothermalis). Τα επιστημονικά κεί­
μενα (περιλήψεις άρθρων) πάνω στα οποία έγινε η ανίχνευση χημικών με το μοντέλο που
δημιουργήσαμε προήλθαν με τη βοήθεια της εφαρμογής ORGANISMS (http://organisms.
jensenlab.org). Τα χημικά στοιχεία που εντοπίστηκαν να αναφέρονται, αναλύθηκαν περε­
ταίρω για την παρουσία συχνών μοτίβων και για την παρουσία ταυτόχρονης συνύπαρξης
των μοτίβων αυτών με στόχο να εντοπιστούν οι κανόνες συσχετίσεων μεταξύ των συχνών
μοτίβων (εξόρυξη κανόνων συσχετίσεων).

Η συσχέτιση των υδατανθράκων με το είδος C. bescii και το χαλκό και η συσχέτιση του
είδους T .thermophilus με την αίμη προτάθηκε από αυτή τη μελέτη. Περαιτέρω μελέτη της
βιβλιογραφίας έδειξε ότι πράγματι ο μεταβολισμός των υδατανθράκων έχει μελετηθεί εκτε­
νώς στο είδος C. bescii με στόχο την παραγωγή αιθανόλης από λιγνοκυτταρινική βιομάζα.
Ομοίως, πολυάριθμα άρθρα για το είδος T. thermophilus αναφέρουν ότι οι αναγωγάσες
οξέος ­χαλκού οξυγόνου καταλύουν τη αναγωγή του οξειδίου του αζώτου σε οξείδιο του
αζώτου υπό μειωμένες αναερόβιες συνθήκες.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Εξαγωγή δεδομένων από κείμενο

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: υπερθερμόφιλοι μικροοργανισμοί, αναγνώριση ονομασίας χημικής
οντότητας, εξόριξη κανόνων σύνδεσης, μεταβολικές διεργασίες

https://spacy.io/
http://organisms.jensenlab.org
http://organisms.jensenlab.org
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1. EXTENDED SYNOPSIS

Extremely thermophilic microorganisms are organisms highly adapted to high temperat­
ures considered as “extreme” by human perception. These conditions are the norm under
which these organisms are able to metabolically and biochemically operate. The study
of the metabolism of hyperthermophilic microorganisms is of great industrial importance
since these organisms’ enzymes are able to catalyze reactions at elevated temperatures.
Species from various extreme thermophilic genera of archaea (e.g., Thermococcus, Pyro­
coccus, etc.) and bacteria (e.g., Caldicellulosiruptor, Thermotoga, etc.) are established
as laboratory models. These models’ metabolic pathways undergo genetic modifications
using genetic engineering techniques aiming at optimal production of fuels and chemicals
at elevated temperatures in industrial scale.

This thesis aims to ease and accelerate the literature study of the biological processes and
related metabolites of the hyperthermophilic microorganisms of industrial interest. A first
challenge here is to identify the mentions of chemical entities (metabolites, substrates,
enzyme cofactors, etc.) in a collection of abstracts that refer to the hyperthermophilic
microorganisms of interest. A second challenge is to apply association rule mining tech­
niques in order to retrieve co­occurrence associations between thesemicroorganismmen­
tions and the chemical entities identified in the abstracts and also to retrieve co­occurrence
associations between the identified chemical entities. The retrieved associations from the
selected abstracts give an overview indicating the most studied subjects referring to chem­
icals regarding the selected hypertherophilic microorganisms.

Named entity recognition (NER) refers to identifying mentions of entities of specific types
in natural language texts. The main focus of NER in biomedical text, until recently, was
placed on the identification of gene and protein names in scientific text. The interest in
other types of entities including chemicals and drugs is actively developed. In this project
the main focus is small chemical molecule NER (”chemical NER” in brief). Various sys­
tems addressing chemical NER have already been developed. The available tools follow
various approaches such as using dictionaries or rules or machine­learning methods or a
combination of the above, in order to identify chemical mentions in scientific text.

The chemical NER task had to tackle various problems. Until recently, the main step­
ping stone for the development of chemical NER tools was the limited number of available
training resources and the lack of homogeneity of resources for training and evaluatiοn
systems. Therefore the BioCreative IV CHEMDNER task was organized with the aim of
evaluating the effectiveness of using automated tools for the identification of mentions of
chemical compounds and drugs in scientific documents, while at the same time promoting
the development of such tools. During the BioCreative IV CHEMDNER task a newly an­
notated corpus (CHEMDNER corpus) was created, composed of ten thousand abstracts
from journals in different sub­fields of chemistry, and containing over 84 thousand entity
mentions organized in seven different classes ­ systematic, trivial, abbreviation, family,
identifiers, formula and multiple ­ plus a small number of unclassified annotations.

In this project the first step was to develop a novel chemical Named Entity Recogniser. The
chemical Named Entity Recogniser was built upon the spaCy (https://spacy.io/) library.
spaCy and scispaCy (https://spacy.io/universe/project/scispacy) are state­of­the­
art python packages that offer various features for biomedical NLP. spaCy is an open­
source Python library designed for building applications for advanced Natural Language
Processing (NLP) and scispaCy is a specialized NLP Python package for processing bio­
medical text that uses as its basis the spaCy library. spaCy is an easy to deploy system
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that now starts to gain popularity among the biomedical domain. The chemical NER tool
was trained using the training and development datasets of the CHEMDNER corpus. The
evaluation was performed on the evaluation set of the CHEMDNER corpus and the per­
formance was compared to the 2016 Biocreative task about chemical NER. The developed
chemical NER scored the 10th position, with performance scores (precision: 84.71%, re­
call 77.07%, f1­score: 80.71%) close to the best scoring tools (precision: 89.09%, recall
85.75%, f1­score: 87.39%).

The developed chemical Named Entity Recogniser was applied on a selection of ab­
stracts specific to a group of hyperthermophilic microorganisms. Τhe literature of the
following microorganisms that have been extensively studied for applications in indus­
trial scale: Thermococcus kodakarensis, Pyrococcus furiosus, Metallosphaera sedula,
Thermotoga maritima, Caldicellulosiruptor bescii, Sulfolobus solfataricus, Thermus ther­
mophilus, Thermoanaerobacter mathranii and Caldicellulosiruptor hydrothermalis was re­
trieved via the ORGANISMS http://organisms.jensenlab.org) web source. The novel
chemical Named Entity Recogniser was used in order to identify mentions of chemicals in
these abstracts.

The chemical entities found to be mentioned in the abstracts were further analysed for
the appearance of patterns that appear frequently (frequent pattern mining) in the dataset
and their co­occurrences. First the frequent itemsets were detected and then strong as­
sociation rules were generated from the frequent itemsets using the fpmax algorithm. 320
frequent itemsets were identified and in total 432 association rules were generated. The
association rules whose lift value is more than 5 were selected for further investigation in
the literature.

More specifically in the case study of the selected hyperthermophilic species two examples
of interesting associations in the examined literature are: the association of carbohydrates
to C. bescii and the association of copper and T .thermophilus to heme. Further study of
the available literature reveals that carbohydrate metabolism has been extensively studied
in C. bescii for the production of ethanol from lignocellulosic biomass. Extensive studies
of T. thermophilus show that the heme–copper oxygen reductases are able to catalyze the
reduction of nitric oxide to nitrous oxide under reducing anaerobic conditions.

Beyond the hyperthermophilic microorganisms case study, the presented method could
be applied to any microorganism specific abstract collection as a starting point in check­
ing out the most studied subjects referring to the selected dataset of microorganisms and
chemical entities. Furthermore it can assist in the retrieval of co­occurrence associations
between microorganisms and chemical entities and between chemical entities in the se­
lected abstract collection.

The main contributions of this work can be summarized as follows:

• We present a detailed survey of state­of­the­art approaches in chemical NER, to­
gether with related benchmarks and data collections.

• We have designed and developed a chemical NER tool with performance close to
state­of­the­art that can be easily used for identifying chemicals in scientific text.

• We have used the spaCy library, a user friendly open source software library that
offers prebuilt statistical neural network models to create models for part­of­speech
tagging, dependency parsing, text categorization and named entity recognition (NER).

• We have adopted association rule mining techniques to microbiology that can help
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in retrieving co­occurrence associations between microorganisms and chemical en­
tities and between chemical entities in a selection of organism specific abstracts.

• We further investigated the association rules that were generated from the frequent
itemsets that were detected in the literature about the selected hyperthermophilic
species. Interesting association rules are:

– the association of carbohydrates to C. bescii
– and the association of copper and T. thermophilus to heme.

Manual curation of the literature showed that indeed Carbohydrate metabolism has
been extensively studied inC. bescii for the production of ethanol from lignocellulosic
biomass. Similarly, extensive studies of T. thermophilus report that the heme–copper
oxygen reductases are able to catalyze the reduction of nitric oxide to nitrous oxide
under reducing anaerobic conditions.

Outline. In the following Chapter, we present the requisite background and related work.
In Chapter 3, we present in detail the available databases about chemichals and the
available corpora with chemical entities, emphasising on the annotation principles of the
CHEMDNER corpus. In Chapter 4, we present the development of the chemical NER
using the spaCy package and its use on an abstract collection about nine selected spe­
cies of hyperthermophilic microorganisms, in order to identify mentions of chemicals in the
abstracts. In Chapter 5, we discuss the association rules that merged from the aforemen­
tioned abstract collection. In Chapter 6, we discuss our results.

O. Theologi 18



Chemical text and association rule mining to facilitate the study of metabolic processes in hyperthermophilic microorganisms.

2. BACKGROUND AND RELATED WORK

2.1 Text mining

Marti A. Hearst defined text mining as “the discovery by computer of new, previously
unknown information, by automatically extracting information from different written re­
sources” [20]. He questioned the use of the term “mining” since it refers to “extracting
precious nuggets of (or from) otherwise worthless rock”. In practice, data mining applica­
tions can be used to derive new information or make novel hypotheses from the data and
discover trends and patterns across very large data sets in an (semi)automated way, usu­
ally for the purposes of decision making. The general idea behind text mining applications
is to use text for discovery in a more direct manner.

The possibility of finding useful links between information in related literature (literature­
based knowledge discovery) was first demonstrated by Swanson [26]. Swanson intro­
duced the ABC­principle, which proposes that notion A and notion C might be indirectly
related (A leads to C) since they are related to notion B (A leads to B and B leads to C),
even though they are never mentioned together in the same publication. Swanson ap­
plied the ABC­principle through the semi­automated two­node search tool: “Arrowsmith”.
“Arrowsmith” is a “closed” framework in which the user provides the hypothesis (notion
A is related to notion C). Any articles where both A and C are mentioned together are
removed so that the analysis would consider only indirect linkages between the two sets
of articles. The hypothesis is then tested by a computational search for shared, related
words (B) that could support the hypothesis [63]. Swanson inferred hypothetical relation­
ships within the medical literature such as the helpful impact of fish­oil on patients suf­
fering from Raynaud’s disease [66] , the connection between magnesium deficiency and
migraines [67] , the consumption of arginine affects the levels of somatomedin C in the
blood [68] and the possible links between oestrogen and Alzheimer disease [62]. How­
ever it is important to experimentally verify these hypotheses. The first two hypotheses
have been experimentally supported.

The first step in text­mining is the retrieval of textual resources relevant to a given scientific
domain. This process is referred to as information retrieval (IR) [14]. IR techniques nar­
row down the search space from the entire document collection to the ones that belong
to the area of interest [23]. PubMed is a popular biomedical IR system that is designed
specifically to query databases of biomedical publications (MEDLINE and PubMed Cent­
ral) and facilitates researchers to find publications relevant to their area of interest [26]. It
uses:

• the Booleanmodel: that facilitates the retrieval of publications that contain a selected
combination of terms by using logical operations

• and the vector model: that facilitates the query of terms since it represents each
document by a term vector and each term has a frequency based value.

The document vectors can be compared to a query vector or compared to each other to
calculate document similarity. Enhanced IR methods expand the queries by using syn­
onyms and alternative terms based on a vocabulary [14].

Entity recognition (ER) is the identification of entities (for example biological terms such
as species, genes, proteins, chemicals) in scientific literature. ER is a process that fa­
cilitates information extraction (IE). ER is divided into a first task which is the recognition
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of words that refer to entities and a second task which is the unique identification of the
entities (for example the accession number in a database). ER systems based on diction­
aries use dictionary matching algorithms that allow variation in how the names are written.
Controlled keyword vocabularies group together entities that belong to the same subject
or category for keyword matching in documents. Ontologies are formally defined concepts
that include relationships and rules that specify the dependencies between concepts. On­
tologies are used to formally structure and categorize domain specific information. The
BioPortal for Biomedical Ontologies contains a selection of dedicated ontologies. Machine
Learning approaches in ER use algorithms such as: hidden Markov models (HMM), max­
imum entropy Markov models (MEMM) , conditional random fields (CRF), and support
vector machines (SVM) that need to be trained on a carefully annotated training data sets
[26, 14] (corpora) where entities of interest have been tagged [14]. Many ER systems
combine dictionary matching with rule­based or statistical methods. The main challenge
in ER is that biological entities have ambiguous names [26].

Information Extraction (IE) is the inference of new relations pulled out from scientific
papers. The simplest approach followed in IE is the identification of entities that co­occur
within abstracts, under the assumption that entities that often co­occur might be function­
ally related. The drawbacks of this approach are that entities might be mentioned together
without being related and that directional relationships cannot be inferred. A more soph­
isticated approach is based on Natural Language Processing (NLP) methodologies that
combine the analysis of syntax and semantics and can extract relationships based on
the syntax tree and the semantic labels. The text is “tokenised”, part­of­speech tags are
assigned to the tokens and a syntactic tree is obtained for each sentence [26].

Figure 2.1 presents the schematic presentation of a text mining workflow. The presented
text mining workflow starts with information retrieval (IR) in order to get documents relevant
to a subject of interest. Not all articles in PubMed Central (PMC) are available for text
mining and other reuse. License terms vary. The license statement in each article states
specific terms of use. The retrieved documents that will be used in the text mining workflow
must be under license for text and data mining. Using named entity recognition (NER)
these documents will be analyzed for the occurrence of specific keywords. Information
extraction (IE) is about detecting links between the found keywords. During knowledge
discovery (ND) keywords that could be used to infer new relations are linked together.

Text mining tools in biomedical literature can facilitate the work of researchers by providing
a structured overview of their scientific area of interest and of recent developments made
in scientific areas related to their work. The literature database PubMed gives access to
more than 32 million scientific literature citations from MEDLINE, life science journals, and
online books. The number of articles that are added to PubMed each year is growing fast.
More specifically as shown in figure 2.2, in November 2017, over 100,000 new PubMed
records were added to the database [55].

Text mining in biomedical literature is challenging for various reasons. The writing style
is formal and complex, different types of documents (journal papers, patents or clinical
reports) are written in different styles and also there is ambiguity in the terms that can be
used, referring to genes, species, procedures, and techniques and also within each spe­
cific term, it is common to have multiple spellings, abbreviations and database identifiers
[23].
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Figure 2.1: Schematic presentation of a Text Mining workflow [14].

Figure 2.2: New PubMed records added by year (by 10,000s) between 2000 and 2017 [55].

2.2 Chemical Named Entity Recognition

2.2.1 Chemical Named Entity Recognition approaches

Chemical Named Entity Recognition (chemical NER) is the identification of chemical com­
pounds and drugs from the rapidly growing scientific literature [13]. Chemical entities are
important for chemistry, but also for other research areas such as life sciences, pharma­
cology, medicine, material sciences or physics. Natural language processing (NLP) and
text mining technologies for the chemical domain (ChemNLP or chemical text mining) can
be used to improve the integration of information from unstructured data such as patents
or the scientific literature [35].

Chemical NER is a challenging task mainly due to the variability of the terms referring to
chemicals that can be found in the literature [36]. Chemistry has various sub­disciplines

O. Theologi 21



Chemical text and association rule mining to facilitate the study of metabolic processes in hyperthermophilic microorganisms.

and is also studied in publications from other disciplines such as medicine, biology and
pharmacology. Thus giving a strict definition to “what a chemical entity is?” across all the
aforementioned disciplines is not possible. This can explain the variability of language ex­
pressions that refer to chemical molecules that is found in the literature. The International
Union of Pure and Applied Chemistry (IUPAC) has defined a set of rules for the chem­
ical nomenclature, but those naming standards are not strictly followed in the scientific
literature. Furthermore chemical compounds and drugs often have many synonyms or
aliases (e.g. systematic names, trivial names and abbreviations referring to the same en­
tity). For example the anti­diabetic and anti­inflammatory drug ‘troglitazone’ can also be
found in the literature with its brand name ‘Rezulin’ and its systematic (IUPAC) name is
‘(RS)−5−(4−[(6−hydroxy−2,5,7,8−tetramethylchroman−2−yl)methoxy]benzyl)thiazolidine
−2,4−dione’. IUPAC naming (hyphens, brackets, spacing, etc.) complicates the identifica­
tion of the entity boundaries (the tokenization component of an NLP pipeline). Also the use
of acronyms, abbreviations, short chemical formulas and trivial names used in the literat­
ure complicates more the recognition of chemicals from NER systems and the likelihood
of mapping all the alternative mentions of a chemical to its unique chemical structure. It
should also be mentioned that new chemical compounds, with novel chemical names are
discovered and described in new publications every day.

Over the past decades, many automatic chemical NER systems have been developed.
These systems can be categorised into four groups according to the NLP approach that
they follow. These systems might be dictionary­based, rule­based and machine learning­
based, as well as hybrid chemical NER systems. A general overview of the steps followed
in order to develop a chemical NER system [13] can be given by the following steps:

• Step 1: Preprocessing, the determination of the boundaries of the entities by splitting
the text and tokenizing.

• Step 2: Feature processing, the linguistic analysis of the text, such as assigning
parts­of­speech and features to words and phrases.

• Step 3: Name recognition, the recognition of the entity and its assignment to an
entity type or class.

• Step 4: Normalization, the mapping of entities to their canonical names and their
association with unique representations or identifiers in a database.

Dictionary­based NER systems [13] use lists of terms in dictionaries to identify whether
a word or a phrase in the text matches any of the entries in the dictionary. These sys­
tems identify the chemical entity occurrences in text by implementing string­matching al­
gorithms. Exact matching approaches make an exact string­match search against the
text to a given list of terms. Flexible or approximate matching approaches perform “fuzzy”
matching and are more popular in chemical NER than exact matching approaches. An
example of dictionary­based systems that are used to extract drug and small molecules
names and molecules via string matching methods is the method developed based on
the dictionary built by Hettne et al.,[22] that combines information from the following data­
bases: UMLS, MeSH, ChEBI, DrugBank, KEGG, HMDB and ChemIDplus.

Rule­based NER systems [13] use a set of hand­made rules to identify the names of
entities in text. Usually the models consist of grammatical and syntactic rules that are
sometimes combined with dictionaries as well. The two types of rules that are used in the

O. Theologi 22



Chemical text and association rule mining to facilitate the study of metabolic processes in hyperthermophilic microorganisms.

rule­based systems are the Pattern­based rules that depend on the orthographic or mor­
phological patterns of the words and the Context­based rules that depend on the context
of the words in the text.

Machine learning (ML)­based NER systems [13] use statistical models for recognising
entities. The ML algorithms used in NER systems are divided into two categories: su­
pervised learning algorithms and unsupervised learning algorithms. Supervised learning
algorithms learn a classification system on a labeled training corpus. Examples of super­
vised learning models are CRFs, Hidden Markov Models (HMMs) and Maximum Entropy
Markov Models (MEMMs), Naïve Bayes and Support Vector Machines (SVMs). Whereas
the goal of unsupervised learning algorithms is to build representations from data whose
labels are not known during training. Semi­supervised algorithms use both labelled and
unlabelled data.

2.2.2 Tools for chemical Named Entity Recognition

A number of chemical NER tools have been developed. These tools follow a wide spec­
trum of approaches. In recently developed ones, it is observed authors build and deploy
neural network architectures. A brief description is following about the most recent and
popular chemical NER tools.

• Multi­Task Learning for Chemical Named Entity Recognition with Chemical Com­
pound Paraphrasing tool [73]: This method uses multi­task learning by jointly train­
ing a chemical NER model and a chemical compound paraphrase model. The Long
short­termmemory (LSTM) network of the NERmodel captures chemical compound
paraphrases by sharing the parameters of the LSTM and character embeddings
between the two models.

• ChemListem [11]: This approach deploys two NER systems. The first system, sim­
ilarly to traditional CRF­based systems, assigns tags to a sequence of tokens, each
token bearing features from a rich feature set. It uses a bidirectional LSTM network.
It does not include information about neighbouring tokens in the feature set, instead
it relies on the neural network structure to carry the information from neighbouring
tokens to the right place. The second system labels a sequence of characters, rather
than words (i.e. it does not use a tokeniser), and does not use a rich feature set.
It instead uses character embeddings and multiple LSTM layers in order to induce
the equivalent of a feature set internally. The two systems can be used independ­
ently or as an ensemble (https://bitbucket.org/rscapplications/chemlistem/
src/master/).

• deep CNN­RNN architecture for chemical named entity recognition with no hand­
crafted rules [34]: A combination of convolutional and stateful recurrent neural net­
works with attention­like loops and hybrid word­and­character­level embeddings.

• Attention­based BiLSTM­CRF tool [47]: This approach uses an attention­based bid­
irectional Long Short­Term Memory Neural Network with a conditional random field
layer (Att­BiLSTM­CRF) (https://github.com/lingluodlut/Att-ChemdNER).

• LeadMine [46]: It a hybrid system that combines dictionary and rule­based lookup.
In order to increase the chance of recognising the trivial names slightly outside the
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coverage of the dictionary it uses the following approaches: spelling correction, mer­
ging of adjacent entities and entity extension. It is a commercially licensed tool
(https://www.nextmovesoftware.com/leadmine.html).

• OSCAR [27]: OSCAR4 employs a naïve Bayesianmodel to identify “chemical” tokens
in text and offers a choice of two methods for the identification of multi­token named
entities:

– The PatternRecogniser uses predetermined regular­expression style heurist­
ics.

– The MEMMRecogniser employs machine learning in the form of a Maximum
Entropy Markov Model (MEMM).

OSCAR4 uses these methods to identify four classes of named entities (Chemical,
Reaction, Chemical Adjective and Enzyme) as well as dictionary lookup to identify a
predetermined set of ontology terms. (https://sourceforge.net/projects/oscar3-chem/
, https://github.com/BlueObelisk/oscar4)

• CheNER [71, 70]: A hybrid system that applies a CRFs tagger and a Regular Expres­
sion tagger (which include dictionary and regular expression approaches) to identify
formulae and identifier name types.

• ChER [4, 5]: A CRF­based method whose performance was optimised by:

– (a) the selection of best­suited pre­processing components,
– (b) the incorporation of CRF features capturing chemistry­specific information,
and

– (c) the application of post­processing heuristics.

It is available as a workflow in the Argo text mining workbench Users may select one
of chemical, drug or metabolite, as the model that will be used for the recognition.

• ChemSpot [61] A chemical NER tool for identifying mentions of chemical entities
(trivial names, drugs, abbreviations, molecular formulas and IUPAC) in text. It imple­
ments a hybrid approach that combines a CRF model for identifying IUPAC entities
with a dictionary built from ChemIDplus for extracting drugs, abbreviations, molecu­
lar formulas and trivial names (https://github.com/rockt/ChemSpot).

• Yeast MetaboliNER [54] Tool based on a CRF model that utilised the Chemical En­
tities of Biological Interest (ChEBI) and Human Metabolome (HMDB) databases as
dictionaries (http://nactem7.mib.man.ac.uk/metaboliner/).

• ChemicalTagger [19]: ChemicalTagger uses a combination of OSCAR, domain­
specific regex and English taggers to identify parts­of­speech. The ANTLR grammar
is used to structure this into tree­based phrases.

2.3 spaCy

spaCy [50] (https://spacy.io/) is a free, open­source Python library designed to be
used in building a wide variety of different applications for advanced Natural Language

O. Theologi 24

https://www.nextmovesoftware.com/leadmine.html
https://sourceforge.net/projects/oscar3-chem/
https://github.com/BlueObelisk/oscar4
 https://github.com/rockt/ChemSpot
 http://nactem7.mib.man.ac.uk/metaboliner/
https://spacy.io/


Chemical text and association rule mining to facilitate the study of metabolic processes in hyperthermophilic microorganisms.

Processing (NLP). According to the designers and developers of spaCy, it is an opinion­
ated and easy to deploy system that is designed to offer to the user a limited amount of
the state­of­the­art algorithms which have equivalent functionality in order to deliver good
performance, while being as user friendly as possible. spaCy is designed to offer a good
developer experience through its detailed documentation, consistent naming and good
error handling.

2.3.1 Computational linguistic features and machine learning.

When analyzing text, the syntactic structure of the sentences is important. For example
there is a difference whether a noun is the subject or the object of a sentence. spaCy
provides a variety of linguistic annotations like “word types” (distinct words), “parts of
speech”, and how the words are syntactically related to each other, in order to give insights
into a text’s grammatical structure. spaCy’s text processing capabilities in attributing lin­
guistic features to the words of a text combined with its machine learning functionalities
can be used in various applications of NLP. spaCy is designed to return a Doc object
with a variety of annotations having as input raw text. In this section a brief description
of spaCy’s features and capabilities is given. Some of them refer to linguistic concepts,
while others are related to more general machine learning functionality.

• Tokenization: Segmenting text into words, punctuation marks etc. This is done by
applying rules specific to each language.

• Part­of­speech (POS) Tagging: Assigning word types to tokens, like “verb” or “noun”.

• Dependency Parsing: Assigning syntactic dependency labels, describing the rela­
tions between individual tokens, like subject or object.

• Lemmatization: Assigning the base forms of words. For example, the lemma of
“was” is “be”, and the lemma of “phenols” is “phenol”.

• Sentence Boundary Detection (SBD): Finding and segmenting individual sentences.

• Named Entity Recognition (NER): Labelling named “real­world” objects, like per­
sons, companies or locations.

• Entity Linking (EL): Disambiguating textual entities to unique identifiers in a know­
ledge base.

• Similarity: Comparing words, text spans and documents and how similar they are to
each other.

• Text Classification: Assigning categories or labels to a whole document, or parts of
a document.

• Rule­based Matching: Finding sequences of tokens based on their texts and lin­
guistic annotations, similar to regular expressions.

• Training: Updating and improving a statistical model’s predictions.

• Serialization: Saving objects to files or byte strings.
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spaCy offers the nlp function that first tokenizes the input raw text and returns a Doc object.
The Doc object is then processed through a processing pipeline whose steps can include:
Part­of­speech (POS) Tagging, Lemmatization, Dependency Parsing and Named Entity
Recognition (NER). Each pipeline component returns a processed Doc object, which is
then passed on to the next component. The final Doc object includes a variety of linguistic
annotations. The capabilities of a processing pipeline depend on the components, their
models and how they were trained. For example, a pipeline for named entity recognition
needs to include a trained named entity recognizer component with a statistical model
and weights that enable it to make predictions of entity labels. Figure 2.3 presents an
example of a processing pipeline that includes a tagger, a lemmatizer, a parser and an
entity recognizer. The nlp function tokenizes the text to produce a Doc object. The Doc is
then processed in several different steps. Each pipeline component returns the processed
Doc, which is then passed on to the next component.

Figure 2.3: spaCY processing pipeline that includes a tagger, a lemmatizer, a parser and an entity
recognizer.

spaCy offers already trained pipelines for various languages, which can be installed as
individual Python modules. A trained pipeline consists of multiple components that use a
statistical model trained on labeled data. spaCy’s pipeline packages typically include bin­
ary weights for the part­of­speech tagger, the dependency parser and the named entity
recognizer, lexical entries in the vocabulary (words and their context­independent attrib­
utes like the shape or spelling), data files with lemmatization rules and lookup tables, word
vectors (multi­dimensional meaning representations of words) and configuration options,
like the language and processing pipeline settings and model implementations to use.

2.3.1.1 Tokenizer

During pipeline processing, the first step is the tokenization of the raw text. The text is
segmented into words and punctuation marks. This is done by applying rules specific to
each language. For example, punctuation at the end of a sentence should be split off
whereas in the example of the word “U.K.” should remain one token. At the end of the
tokenization component of the pipeline the Doc object consists of individual tokens that
can be iterated over.

2.3.1.2 Part­of­speech (POS) Tagger and Dependency Parser

Part­of­Speech(POS) Tagging is the process of assigning different labels known as POS
tags to the words in a sentence that tell us about the part­of­speech of the word. Depend­
ency parsing is the process of analyzing the grammatical structure of a sentence based
on the dependencies between the words in a sentence. To use this functionality spaCy
needs a trained pipeline that supports the pipeline component: parser. After tokenization,
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spaCy can parse and tag a given Doc object. spaCy’s trained pipeline component: parser
and its statistical models enable spaCy to predict which tag and label most likely applies
to each token in the context of each sentence.

Figure 2.4: Part of an example sentence: “ Pyrococcus furiosus is a remarkable archaeon able to
grow at temperatures around 100 °C.” and its dependencies visualised using spaCy’s built­in

displaCy visualizer.

In figure 2.4, the syntactic dependencies between the words of part of the sentence: “
Pyrococcus furiosus is a remarkable archaeon able to grow at temperatures around 100
°C.” are visualised sing spaCy’s built­in displaCy visualizer. The arrows represent the
dependency between two words in which the word at the arrowhead is the child, and the
word at the end of the arrow is head. The root word can act as the head of multiple words
in a sentence but is not a child of any other word. The root word of a sentence has multiple
outgoing arrows but none incoming.

2.3.1.3 Named Entity Recognizer (NER)

To use this functionality spaCy needs a trained pipeline that supports the pipeline com­
ponent: ”ner”. “A Named Entity (NE) is a proper noun, serving as a name for something
or someone” [42]. NEs are generally divided into two categories: generic NEs (e.g., a
person, a location, a product or a book title) and domain­specific NEs (e.g. in the bio­
medical domain: proteins, small chemical molecules, and genes). The ner component
of a pretrained model can predict various types of NEs in a Doc object according to the
annotated dataset it was trained on. Pre­Trained statistical models strongly rely on the
examples that they were trained on so the ner component of a pipeline usually needs fine
tuning, depending on the application.

An example of the function of scispaCy’s pretrained models for processing biomedical text
is given in figure 2.5. In figure 2.5 are visualised the Named Entities identified by the ner
component of the pipeline of the en_ner_bc5cdr_md model from the scispacy package.
The ner component of the aforementioned pipeline is trained on the BC5CDR corpus that
has annotated chemicals, diseases and chemical­diseases interactions.

2.3.1.4 Word embeddings and semantic similarity

To use this functionality spaCy needs a trained pipeline that supports the pipeline compon­
ent: ”tok2vec”. spaCy provides pre­trained word vectors for various languages. Similarity
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Figure 2.5: The Named Entities identified by the ner component of the pipeline of the
en_ner_bc5cdr_md model from the scispacy package.

is determined by comparing word embeddings or word vectors (multi­dimensional mean­
ing representations of a word). Word vectors can be generated using an algorithm like
Word2vec or GloVe. In spaCy’s pipeline packages (packages whose names end in “_md”
and “_lg”) individual tokens have vectors. Pipeline packages whose names end in “_lg”
include a larger number of unique vectors than whose names end in “_md” and should be
preferred if an application would benefit more from a larger vocabulary with more vectors.

2.3.1.5 Training

spaCy’s ”tagger”, ”parser”, ”text categorizer” and many other components are powered by
statistical models. Every “decision” these components make – for example, which part­
of­speech tag to assign, or whether a word is a named entity – is a prediction based on
the model’s current weight values. The weight values are estimated based on examples
the model has seen during training. To train a model, the user first needs training data
– examples of text, and the labels that the model will “learn” to predict. This could be a
part­of­speech tag, a named entity or any other information.

Training is an iterative process in which the model’s predictions are compared against
the reference annotations in order to estimate the gradient of the loss. The gradient of
the loss is then used to calculate the gradient of the weights through back­propagation.
The gradients indicate how the weight values should be changed so that the model’s
predictions become more similar to the reference labels over time.

Figure 2.6: Visual representation of the training process of a spaCy model.

When training a model, it is important that the model generalizes well across unseen data.
For example when training a model to identify company names in texts, we don’t just want
the model to learn that this one instance of “Amazon” right here is a company – we want
it to learn that “Amazon”, in contexts like this, is most likely a company. That is why the
training data should always be representative of the data we want to process. A model
trained on Wikipedia, where sentences in the first person are extremely rare, will likely
perform badly on Twitter. Similarly, a model trained on novels will likely perform badly on
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scientific text. In order to test the performance of the model and how well it generalizes
an extra set of unseen examples is needed the evaluation dataset.

The spacy v3 release introduced the “spacy train” command that is used with the Com­
mand Line Interface (CLI). In Spacy v3, there has been a shift towards training model
pipelines using the “spacy train” command on the CLI instead of writing a training loop in
Python. This is recommended by the authors of the package because it is faster in training
a model and helps with the model validation process (evaluating a trained model on a test
dataset) while training. During training the user must provide the training dataset and a
testing dataset (optional) that can be used for validation (in spaCy’s binary format). The
trained model will be evaluated periodically during training and the scores (e.g precision,
recall, f1­score while training the “ner” component of the pipeline) will be printed. The
model is trained on the training data and the evaluation data is not used for training, it is
used for scoring during the training process.

The number of times that the learning algorithmwill work through the entire training dataset
is the hyperparameter: number of epochs. One epoch means that each sample in the
training dataset has had an opportunity to update the internal model parameters. An
epoch consists of one or more batches. Furthermore, the “spacy train” command comes
with early stopping logic built in. The training will stop once the model performance stops
improving on a hold out validation dataset.

Training config files include all settings and hyperparameters for training the pipeline. Un­
der the hood, the training config uses the configuration system provided by the machine
learning library Thinc (https://thinc.ai/). Training config files include the definition of
the nlp object, its tokenizer and processing pipeline component names, the pipeline com­
ponents models, settings and controls for the training and evaluation process.

2.4 scispaCy

scispaCy [52] is a specialized NLP Python library for processing biomedical text, using as
its basis the spaCy library. scispaCy contains pretrained models for processing scientific
text: biomedical or clinical text. The Allenai Institute of Artificial Intelligence developed
several model pipelines for natural language processing tasks focused on biomedical text
in order to be used in new applications in biomedical information extraction.

The POS tagger and dependency parser of the models distributed by the scispaCy pro­
ject are a joint component in the models’ pipeline that have been developed based on the
arc­eager transition­based parser described by Goldberg and Nivre (2012) [16], trained
with a dynamic oracle. In transition­based dependency parsing, a parser processes an in­
put sentence and predicts a sequence of parsing actions in a left­to­right manner. During
the training of the transition­based dependency parsers, a static oracle, which predicts
an optimal transition sequence for a sentence and its gold parse tree, is used. Gold­
berg and Nivre (2012) developed an improved dynamic oracle for the arc­eager transition
system that gives a set of optimal transitions for every valid parser configuration, includ­
ing configurations from which the gold tree is not reachable. In such cases, the oracle
provides transitions that will lead to the best reachable tree from the given configuration.
The dynamic oracle was used to train a deterministic left­to­right dependency parser. The
advantages of using a dynamic oracle in training a parser are that it is not restricted to a
particular canonical order of transitions and that it is less sensitive to the effect of error
propagation because it can handle configurations that are not part of any gold sequence.
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The architecture of the feature function for the underlying statistical model in parsing
design is an important challenge. Typically state­of­the­art parsers rely on linear mod­
els over hand­crafted feature functions. The feature functions look at core elements of
the transition­based dependency parsing framework (for example “word on top of stack”,
“leftmost child of the second­to­top word on the stack”, “distance between the head and
the modifier words”) and consist of several templates, where each template represents a
binary indicator function over a conjunction of core elements (resulting in features of the
form “word on top of stack is X and leftmost child is Y and . . . ”). Kiperwasser and Gold­
berg (2016) proposed to replace the hand­crafted feature functions with simpler feature
functions which make use of automatically learned Bidirectional LSTM representations.

Kiperwasser and Goldberg (2016) [32] presented a scheme for dependency parsing using
techniques from the neural­networks literature. Their scheme is based on bidirectional­
LSTMs (BiLSTMs). They demonstrated the effectiveness of their approach by using the
BiLSTM feature extractor in a transition­based parsing architecture, as well as in a graph­
based. They used the greedy transition­based parser according to the standard tech­
niques described in the literature: margin­based objective, dynamic oracle training, error
exploration, MLP­based non­linear scoring function, but also introduced the idea of rep­
resenting a few important items on the stack and the buffer using BiLSTMs and training
the BiLSTM encoder together with the rest of the network. BiLSTMs (an extension of Re­
current neural networks (RNNs), composed of two RNNs one reading the sequence in its
regular order: RNN F and the other in reverse: RNN R) are very good at displaying ele­
ments (for example words) in a sequence together with their contexts, taking into account
the elements in its surrounding contexts. In Kiperwasser and Goldberg’s approach each
word is represented by its BiLSTM encoding. A small set of these BiLSTM encodings
is used as the feature function which is then scored using a non­linear scoring function
(multi­layer perceptron ­ MLP) with one hidden layer. The scoring function has access to
the words and POS­tags of the BiLSTM vectors and to the words and POS­tags of the
words in an infinite window surrounding them, thus it is plausible that the scoring function
can be sensitive also to the distance between the BiLSTM vectors. In the proposed archi­
tecture the BiLSTM is trained with the rest of the parser in order to learn a good feature
representation for the parsing problem.

In the architecture of the arc­eager transition parsing system proposed by Kiperwasser
and Goldberg (2016), at each stage in the training process, the parser assigns scores
with an MLP to all the possible transitions, selects a transition, applies it, and moves to
the next step. The highest scoring transition is followed and error­exploration training is
performed using the dynamic­oracle [16].

Figure presents an Illustration of the neural model scheme of the transition­based parser
when calculating the scores of the possible transitions in a given configuration. Each
transition is scored using an MLP that is fed the BiLSTM encodings of the first word in the
buffer and the three words at the top of the stack (the colors of the words correspond to
colors of the MLP inputs above), and a transition is picked greedily. Each xi is a concaten­
ation of a word and a POS vector, and possibly an additional external embedding vector
for the word. The figure depicts only one single­layer BiLSTM. When parsing a sentence,
the scores for all possible transitions are computed iteratively and then the best scoring
action is applied until the final configuration is reached [32].

scispaCymodels’ components of the pipelines are trained on data from a variety of sources.
The dependency parser and part of speech tagger are jointly trained on the GENIA 1.0
Treebank of McClosky and Charniak [48], which was created by self­training (a method of
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Figure 2.7: Illustration of the neural model scheme of the transition­based parser when calculating
the scores of the possible transitions in a given configuration. The configuration (stack and buffer)

is depicted on the top[32].

using an existing parser for parsing extra data and then creating a second parser by treat­
ing the extra data as further training data) the standard Charniak/Johnson Penn­Treebank
parser using biomedical abstracts from the Genia 1.0 corpus [29]. The treebank was con­
verted to basic Universal Dependencies using the Stanford Dependency Converter35. In
order to further increase the robustness of the dependency parser and part of speech tag­
ger to generic text, during their training the POS and dependency parsing annotations of
the OntoNotes 5.0 corpus were additionally used30. The OntoNotes [74] corpus derived
from a project where various types of text: news, conversational telephone speech, web­
logs, usenet newsgroups, broadcast, talk shows in three languages: English, Chinese,
and Arabic were annotated with structural information (syntax and predicate argument
structure) and shallow semantics (word sense linked to an ontology and coreference).

scispaCy contains three core released packages: en_core_sci_sm, en_core_sci_md and
en_core_sci_lg. They are full pipelines for the processing of biomedical data. The pipelines
in the en_core_sci_md and en_core_sci_lg packages have a larger vocabularies and in­
cludeword vectors (50k and 600kword vectors respectively), while those in the en_core_sci
_sm package have a smaller vocabulary and do not include word vectors.

The Named Entity Recogniser (NER) content in spaCy pipeline is a transition­based sys­
tem based on the chunking model introduced by Lample et al. (2016) [39]. Lample et
al., explored a new architecture that chunks and labels a sequence of inputs using an
algorithm similar to transition­based dependency parsing. This model is referred to as the
Stack­LSTM model. Long Short­term Memory Networks (LSTMs) are artificial Recurrent
neural networks (RNNs) designed to learn long­range dependencies from an input se­
quence of vectors. A common LSTM unit is composed of a cell, an input gate, an output
gate and a forget gate. Several gates control the proportion of the input to give to the
memory cell, and the proportion from the previous state to forget, in order not to be biased
towards the most recent inputs and to capture long­range dependencies. While sequen­
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tial LSTMs model sequences from left to right, LSTMs augmented with a “stack pointer
(Stack­LSTMs) permit embedding of a stack of objects that are both added to (using a push
operation) and removed from (using a pop operation). This allows the Stack­LSTM to work
like a stack that maintains a “summary embedding” of its contents. This model architec­
ture can directly construct representations of multi­token names; for example, a people’s
names and last names are directly composed into a single representation. Tokens are
represented as hashed, embedded representations of the prefix, suffix, shape and lem­
matized features of individual words.

The main NERmodel in the released packages in scispaCy is trained on the MedMentions
Entity Linking dataset [51], so it recognises a wide variety of entity types but does not
predict the entity type.

Four additional packages whose ner component of the pipeline was trained on the entities
of available corpuses were released: en_core_craft|jnlpba|bc5cdr|bionlp13cg_md. The
models’ ner component of the pipeline were trained on the CRAFT corpus [3]: 67 full­text
biomedical journal articles from PubMed with approximately 100,000 concept annotations
to 7 different biomedical ontologies/terminologies (Chemical Entities of Biological Interest,
Cell Ontology, Entrez Gene, Gene Ontology: biological process, cellular component, and
molecular function, NCBI Taxonomy, Protein Ontology, Sequence Ontology), the JNLPBA
corpus [24, 30]: it contains entity types including protein, DNA, RNA, cell line and cell type,
85000 entity mentions, 25000 entity mentions with database identifiers and 5000 attribute
tags, the BC5CDR corpus [41]: 1500 PubMed articles with 4409 annotated chemicals,
5818 diseases and 3116 chemical­disease interactions, the BioNLP13CG corpus [59]:
annotates 16 entity types in 600 PubMed abstracts relevant to the field of cancer genetics,
250 of which are part of the multi­level event extraction (MLEE) corpus and the other 350
abstracts were selected by querying PubMed for MeSH terms that relate to hallmarks of
cancer, such as apoptosis and metastasis.

2.5 Association Rules

2.5.1 Association Rule mining basic concepts

Association rule learning is a rule­based machine learning method used in discovering re­
lations between variables in large databases. The method’s purpose is to identify strong
rules discovered in databases using some predefined measures (thresholds). In this sec­
tion the basic concepts of association rule mining are described based on the book of
J. Han and M. Kamber, Data Mining: Concepts and Techniques (The Morgan Kaufmann
Series in Data Management Systems)[18].

Frequent patterns are itemsets and substructures (such as subgraphs, subtrees) that ap­
pear frequently in a data set. Identifying frequent patterns (frequent pattern mining) is
an important task in mining relationships among data (such as associations, correlations)
and it helps in data mining tasks (such as in data classification and clustering). In general,
association rule mining can be viewed as a two­step process:

1. Detecting all the frequent itemsets: The frequent itemsets will occur at least as fre­
quently as a predetermined minimum support count. This is a challenging step since
a huge number of itemsets might be generated, when setting a lowminimum support
threshold.
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2. Generating strong association rules from the frequent itemsets: The association
rules must satisfy a predetermined minimum support and minimum confidence. As­
sociation rules can help in showing the probability of relationships between data
items.

In order to select interesting rules from the set of all possible rules, constraints on various
measures of significance and interest are used. The best­known constraints are minimum
thresholds on support and confidence. In simple words support is an indication of how
frequently the itemset appears in the dataset, confidence is an indication of how often the
rule has been found to be true and lift considers both the support of the rule and the overall
data set.

D is the task­relevant data. I = {I1, I2, ..., Im} is an itemset. T is a nonempty itemset
subset of T , T ⊆ I. A is a set of items subset of T, A ⊆ T . An association rule is an
implication of the form A ⇒ B, where A ⊂ I, B ⊂ I, A ̸= ∅, B ̸= ∅, and A ∩ B = ∅.
The rule A ⇒ B holds in the set D with support s, where s is the percentage of itemsets
in D that contain A ∪ B (the union of sets A and B). This is the probability, P (A ∪B).
The rule A ⇒ B has confidence c in the set D, where c is the percentage of itemsets in D
containing A that also contain B. This is the conditional probability, P (B|A).

support (A ⇒ B) = P (A ∪B)

confidence (A ⇒ B) = P (B|A)

Rules that satisfy both a minimum support threshold and a minimum confidence threshold
are called strong.

A set of items is an itemset for example an itemset that contains k items is a K­itemset.
The occurrence frequency (or or count of the itemset) of an itemset is the number of sets
that contain the itemset. If the value of the relative support of an itemset I is higher than a
prespecified minimum support threshold then I is a frequent itemset.

confidence (A ⇒ B) = P (B|A) = supportcount(A ∪B)

supportcount(A)

2.5.2 Frequent Itemset Mining Methods

A milestone in frequent itemset discovery is the development of an Apriori­based, level­
wise mining method for associations, which has encouraged the development of various
kinds of association mining algorithms and frequent itemset mining techniques. The Apri­
ori algorithm is the basic algorithm for finding frequent itemsets. It is based on the obser­
vation that all nonempty subsets of a frequent itemset must also be frequent.The name
of the algorithm is based on the fact that the algorithm uses prior knowledge of frequent
itemset properties. First, the dataset is scanned to collect the count for each item and
to gather those items that satisfy minimum support (the set of frequent 1­itemsets). This
set is used to find the set of frequent 2­itemsets, which is used to find the set of frequent
3­itemsets etc, until no more frequent k­itemsets can be found. The finding of each fre­
quent k­itemsets requires one full scan of the database. Once the frequent itemsets have
been found, strong association rules are generated by satisfying both a predefined min­
imum support and minimum confidence threshold. Many variations of the Apriori algorithm

O. Theologi 33



Chemical text and association rule mining to facilitate the study of metabolic processes in hyperthermophilic microorganisms.

have been proposed that focus on improving the efficiency and scalability of the original al­
gorithm (for example by using hashed based techniques, reducing the number of itemsets
scanned, partitioning the data, mining subsets of the given data).

Frequent pattern­growthmethods formining frequent itemsets follow a divide­and­conquer
strategy that decreases the search space to only the data sets containing the current fre­
quent itemsets. The algorithm first compresses the database representing frequent items
into a frequent pattern tree, (FP­tree), which retains the itemset association information. It
then divides the compressed database into a set of conditional databases (a special kind
of projected database), each associated with one frequent item or “pattern fragment,” and
mines each database separately. For each “pattern fragment,” only its associated data
sets need to be examined. Therefore, this approach may substantially reduce the size of
the data sets to be searched, along with the “growth” of patterns being examined.

Traditional frequent pattern analysis focuses on binary transaction data, such as the data
that accumulate when customers purchase items, for example in a supermarket. These
market basket data can be represented as a collection of transactions, where each trans­
action corresponds to the items purchased by a specific customer. In terms of a frequent
pattern analysis and association rule mining this dataset is represented as a binary matrix,
where there is one row for each transaction and one column for each item. In this matrix
if a transaction contains an item (the customer has purchased the item) the entry in the
cell of the matrix is 1 and if a transaction does not contain an item (the customer has not
purchased the item) the entry in the cell of the matrix is 0, indicating whether or not an
item was purchased by a particular customer. Given such a binary matrix representation,
a key task in association analysis is to find frequent itemsets in this matrix, which are
sets of items that frequently occur together in a transaction. The strength of an itemset is
measured by its support, which is the number of transactions in the data set in which all
items of the itemset appear together. The interesting patterns in these data sets are the
frequent itemsets (sets of items that are frequently purchased together) and the associ­
ation rules (rules that capture the fact that the purchase of one item or itemset possibly
implies the purchase of a second set of items or itemsets). This example shows the po­
tential economic benefits of pattern discovery with association analysis. Several efficient
algorithms, such as Apriori and FPGrowth have been designed for discovering frequent
itemsets in a given binary data matrix.

An example of an association rule is given in the figure 2.8. An association rule consists
of an antecedent and a consequent, both of which are an item or an itemset (list of items).
The inferred relation here is co­occurrence. Here is an association rule example:

(KidneyBeans,Onion) ⇒ (Eggs)

This association rule is a representation of finding eggs on the basket which has kidney
beans and onion in it. It implies that the purchase of kidney beans and onions possibly
implies the purchase of eggs. The directed graph in figure 2.8 is built for this rule (co­
occurrence relationship). Arrows are drawn in blue. The node labeled R0 refers to this
rule, and it has incoming and out coming edges. Incoming edge(s) represent antecedents
and outgoing edge(s) represent consequentes.

2.5.3 Pattern Evaluation Methods

A major bottleneck for successful applications of association rule mining is evaluating the
importance of the generated association rules and collecting the most “interesting” as­
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Figure 2.8: Visualization of the association rule: (Kidney Beans, Onion) ==> (Eggs)

sociation rules. Most applications employ a minimum support threshold and a minimum
confidence threshold in order to exclude a good number of “uninteresting” rules and still
many of the rules generated are still not “interesting” to the users. Of course labeling an
association rule as “interesting” is a subjective accession and often even strong associ­
ation rules can be “uninteresting”. Whether or not a rule is interesting can be judged only
by the user according to the used dataset and the addressed questions.

In this section additional pattern evaluation measures for the discovery of only interest­
ing rules, are going to be presented (except employing a minimum support threshold and
a minimum confidence threshold, since they are insufficient at filtering out uninteresting
association rules). A correlation rule does not give significance only to the support and
confidence but also to the correlation between itemsets A and B. A few correlation meas­
ures for mining large data sets are presented:

• Lift: The lift between the occurrence of A and B assesses the degree to which the
occurrence of one “lifts” the occurrence of the other. The occurrence of itemset A
is independent of the occurrence of itemset B if P (A ∪B) = P (A)P (B); otherwise,
itemsets A and B are dependent and correlated as events.

lift(A,B) = P (A ∪B)/P (A)P (B)

If the resulting value of lift is less than 1, then the occurrence of A is negatively
correlated with the occurrence of B, meaning that the occurrence of one likely leads
to the absence of the other one. If the resulting value is greater than 1, then A and B
are positively correlated, meaning that the occurrence of one implies the occurrence
of the other. If the resulting value is equal to 1, then A and B are independent and
there is no correlation between them.

• x2 measure: The x2 value is the squared difference between the observed and ex­
pected value for a pair A and B (slot in the contingency table), divided by the expec­
ted value. This amount is summed for all slots of the contingency table.

So instead of just using the simple support–confidence framework to evaluate frequent
patterns, other measures, such as lift and x2 should also be taken into consideration since
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they might reveal more fundamental pattern relationships. Researchers have studied
more alternative pattern evaluation measures: all_confidence, max_confidence, Kulczyn­
ski, cosine (which can be viewed as a harmonized lift measure) and other measures that
have been studied in the literature.

Overall, the use of only support and confidence measures to mine associations may gen­
erate a large number of rules, many of which can be uninteresting to users. It is recom­
mended that the support–confidence framework should be followed by a pattern interest­
ingness measure (lift, x2, all_confidence, max_confidence, Kulczynski, cosine, etc) that
will contribute in focusing the mining toward rules with strong pattern relationships. The
added interestingness measure usually considerably reduces the number of rules gener­
ated and leads to the discovery of more meaningful rules.

2.5.4 Association Rule Mining Techniques in Bioinformatics

As it has been previously described, the area of data mining known as association analysis
seeks to find relationships among a set of objects. The most studied example of data sets
analyzed by the group of techniques of association analysis is the market basket data.
The group of techniques of association rule mining is not widely used in the domain of
bioinformatics and computational biology [2].

The majority of studies that implement association rule mining methodologies in the field
of biomedicine are applied to Healthcare. The increasing amount of medical and research
clinical data accumulated in medical databases offers a wide reservoir of data where as­
sociation rule mining is essential for identifying new, unexpected and interesting patterns
in medical databases. In Healthcare, association rules mined from medical databases,
are considered to be useful as they can play an important role in the possibility to con­
duct intelligent diagnosis and extract valuable information and build important knowledge
bases in an automated way.

Jung et al. (2013), searched for risk factors that are associated with complications of
cerebral infarction in patients with atrial fibrillation (AF) and for association rules among
these factors. They identified four independent risk factors (age, hypertension, initial elec­
trocardiographic rhythm, and initial echocardiographic left atrial dimension) as strong pre­
dictors for complications of cerebral infarction in patients with AF and four rules to identify
complications of cerebral infarction, based on medical record data [28]. The authors point
out that for the assession of the reliability of these risk factors and association rules further
clinical research is required. Cheng et al. (2013), investigated the associations between
developing cognitive impairment and emotional abnormality and neurobehavioral and mo­
tor disorders from a clinical database of pediatric subjects diagnosed with CP [8]. Li et al.
(2017), “mined” for meaningful association rules between the high risk factors of stroke,
based on the apriori algorithm [43]. For the association analysis they used a dataset of
information (inducing factors: hypertension, atrial fibrillation, dyslipidemia, diabetes mel­
litus, smoking, exercise, overweight and family history of stroke) about 985,325 Chinese
adults aged 40 years and over, 1.65% of whom were stroke patients and 98.35% without
stroke. Based on the threshold they set for the Apriori algorithm they found eight mean­
ingful association rules between stroke and its high risk factors and between high risk
factors they found 25 meaningful association rules. Their results were supported by a
large number of medical studies. Parente et al., (2018) proposed a method of associ­
ation rule analysis (AR) that can be used as a clinical tool for assessing a patient’s with
Acquired Brain Injury ability to organize [57]. Nishtala et al. (2018), applied association
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rules analysis to discover medication combinations that contribute to the risk of fractures
in older adults [53]. Their analysis pointed out that psychotropic medications and codeine
are frequently associated with fractures and they propose this methodology to be applied
to big data as a tool for figuring out medication combinations associated with adverse drug
events.

Examples of data types massively produced in biomedicine laboratories are genomics
data, transcriptomics data (bulk RNA sequencing, single cell RNA sequencing), data on
genetic variations (e.g., single nucleotide polymorphism (SNP) data, copy number vari­
ation (CNV) data), proteomics data. The use of clustering and classification techniques
is common for the analysis of these biological data sets, whereas techniques from as­
sociation analysis are rarely employed. Few bioinformatics pipelines find and assess
the association rules across large amounts of multi­omics experiments datasets. The
R­package OmicsARules [7] identifies the concerted changes among genes under as­
sociation rules mining framework. OmicsARules searches for concurrent patterns among
frequently altered genes and can be used in exploring single or multiple omics data across
sequencing platforms.

2.5.5 Hyperthermophilic microorganisms

Extremely thermophilic microorganisms are organisms highly adapted to high temperat­
ures considered as “extreme” by human perception. These conditions are the norm under
which these organisms are able to metabolically and biochemically operate. The highest
documented temperature that microbial life can survive is 130 ◦ C (Geogemma barossii)
and the highest documented temperature that microbial life can be metabolically active is
122 ◦ C (Methanopyrus kandleri)[49] . The identification, isolation and culture under con­
trolled laboratory conditions of extremophiles has led to numerous advances in molecular
biology, biotechnology and medicine. Also the study of the metabolism of thermophilic mi­
croorganisms is of great industrial importance since these organisms’ enzymes are able
to catalyze reactions of industrial significance at elevated temperatures [76].

Examples of the use of thermophilic microorganisms are: the thermostable DNA poly­
merases used in the polymerase chain reaction (PCR), various enzymes used in the pro­
cess of making biofuels, organisms used in biomining­biotechnologies (or bioleaching) for
extracting metals and carotenoids used in the food and cosmetic industries. In addition to
that, other potential applications include making lactose­free milk, the production of antibi­
otics, anticancer, and antifungal drugs[9]. Given the usefulness of thermostable enzymes
they are considered as powerful assets in industrial catalysis and great effort is being
made into incorporating genetically improved thermostable enzymes of thermophiles in
the bioprocessing industry. The current status in the use of hyperthermophiles in bio­
technology is that their enzymes of interest are routinely produced in recombinant meso­
philic hosts to be used as biocatalysts, but in recent years the use of hyperthermophiles
as metabolic engineering platforms has also become possible. Various archaea species
(e.g., Sulfolobus, Thermococcus, Pyrococcus etc.) and bacteria species (e.g., Caldicel­
lulosiruptor, Thermotoga etc.) are established as laboratory models and their metabolic
pathways have been altered or engineered so that the production of fuels and chemicals
at elevated temperatures has become possible[76]. Genomic and metagenomic studies
of hyperthermophiles provide useful information for putative biocatalysts.

The list of extremely thermophilic microorganisms that can be cultured and sustained in
artificial conditions in the laboratory has been expanded over the past decades, but only a
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small subset among them has been studied in detail in terms of genetics and physiology.
These organisms are studied with the effort to develop molecular genetics tools that can
open up opportunities for metabolic engineering [76]. A list of such microorganisms is
presented below.

• Thermococcus kodakarensis: is a species of thermophilic archaea and a well es­
tablished source of thermophilic proteins. It has been used to produce recombinant
versions of proteins from other thermophiles and shows promise as a bio­hydrogen
production platform.

• Pyrococcus furiosus: is a species of thermophilic archaea and the greatest success
story so far in metabolic engineering of extreme thermophiles that allows production
of non­native product such as lactate, 3­hydroxypropionate (3HP) and butanol.

• Sulfolobus species (S. acidocaldarius, S. solfataricus, and S. islandicus): are spe­
cies of thermophilic and acidophilic archaea. They have been used extensively in
the study of transcription in archaea, as a model host for archaeal viruses, and as a
source of crystallized thermophilic proteins.

• Thermus thermophilus: is a species of thermophilic bacteria that has been used to
overexpress some of its own proteins and as a source of crystallized thermophilic
proteins. It has been metabolically engineered to grow anaerobically by denitrifica­
tion.

• Metallosphaera sedula: is a species of thermophilic and acidophilic archaea with
a high tolerance to metal ions. It is a promising candidate for the production of
electrofuels and bioleaching operations in high­temperature.

• Thermoanaerobacter mathranii: is a species of thermophilic bacteria that is a prom­
ising candidate for biofuel production.

• Caldicellulosiruptor bescii: is a species of thermophilic bacteria. Genetically engin­
eered strains can produce ethanol and increased quantities of hydrogen. Moreover,
a heterologous gene encoding an archaeal tungsten­containing enzyme was suc­
cessfully expressed in C. bescii, so that the organism could assimilate tungsten, a
metal rarely used in biological systems.

• Thermotoga species (T. maritima and T. neapolitana): are species of thermophilic
bacteria. Strains have been metabolically engineered to express cellulases from
Caldicellulosiruptor saccharolyticus giving them cellulolytic activity. Also it can be
transformed with an E. coli shuttle vector giving kanamycin resistance.

These organisms exhibit unusual and potentially useful native metabolic capabilities, in­
cluding cellulose degradation, metal solubilization, and RuBisCO­free carbon fixation [76].
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3. DATA COLLECTION SURVEY

3.1 Databases about chemicals

In this section we present various publicly available databases about chemicals. These
databases include information about chemical structures, physicochemical properties, bio­
logical functions. We also present in more detail the STITCH database. The STITCH
database includes information about known interactions between chemicals and proteins
using text­mining methodologies and aggregating information from other databases. The
STITCH database also includes information about predicted interactions between chemic­
als and proteins (computational prediction, knowledge transfer between organisms). The
interactions include direct (physical) and indirect (functional) associations.

• Chemical Entities of Biological Interest (ChEBI) ­ EMBL­EBI[12] : is a freely available
dictionary of ‘small’ chemical compounds, but genome­encoded macromolecules
(nucleic acids, proteins and peptides derived from proteins by cleavage) are not
included. ChEBI contains groups (parts of molecular entities) and classes of entities.
ChEBI includes the relationships between molecular entities or classes of entities
and their parents and/or children (ontological classification).

• PubChem[72]: is a public repository for biological properties of small molecules.
PubChemorganizes its data into three databases: Substance, Compound and BioAs­
say. In the Substance database depositor­provided chemical data are stored. In the
Compound database unique chemical structures are stored. In the BioAssay data­
base biological assay descriptions and test results are stored. PubChem is used as
a ‘big data’ source in machine learning and data science studies for virtual screen­
ing, drug repurposing, chemical toxicity prediction, drug side effect prediction and
metabolite identification.

• TheUMLSMetathesaurus (https://www.nlm.nih.gov/research/umls/knowledge_
sources/metathesaurus/index.html) contains information about biomedical and
health­related concepts, their various names and the relationships among them.
UMLS includes:

– the Chemical Biology and Drug Development Vocabulary (https://www.nlm.
nih.gov/research/umls/sourcereleasedocs/current/NCI_CBDD/index.html)

– and the Alcohol andOther Drug Thesaurus (https://www.nlm.nih.gov/research/
umls/sourcereleasedocs/current/AOD/index.html).

• DrugBank (http://www.drugbank.ca/) combines detailed drug data with drug target
information.

• KEGG drug (http://www.genome.jp/kegg/drug/) is a chemical structure based in­
formation resource for all approved drugs in the US and Japan.

• Metabolic substances KEGG compound (http://www.genome.jp/kegg/compound/)
is a database for metabolic compounds and other chemical substances that are
relevant to biological systems.

• HMDB (http://www.hmdb.ca/) contains detailed information about small molecule
metabolites found in the human body.
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• STITCH [37, 38, 69]: integrates information about interactions of chemicals and
interactions of chemicals with proteins from experimental information (crystal struc­
tures, binding experiments, high­throughput screens), manually curated databases
(biological actions of chemicals, protein binding constants for compounds, meta­
bolic pathways, drug–target relationships) and text­mining. Text mining of MED­
LINE and OMIM abstracts, as well as PubMed Central open­access full­text articles
(for articles that are available for text mining reuse), is performed with a simple co­
occurrence scheme and a more complex natural language processing (NLP) ap­
proach. A full­text search is available for identifiers and common names of chem­
icals and proteins. In order to increase the coverage of the text­mining approach,
groups of proteins that are described in MeSH terms are also used as entities during
text mining. STITCH creates a united single group of chemicals from PubChem by
merging stereo isomers and salt forms of the same molecule into one compound.
The interaction types ­ links between the nodes (chemicals and proteins) are de­
rived (as “actions”) from natural language processing (NLP), pathway and interac­
tion databases. Chemical structures may be entered as SMILES strings to search
for similar chemicals that are stored in the database. Chemical structure similarity
is used to predict relations between chemicals, so chemical–protein interactions are
transferred between species based on the sequence similarity of the proteins.

3.2 Corpora with chemical mentions

In this section we present the various corpora with manually labeled chemical entities that
are publicly available in this day:

• CRAFT corpus[3] : consists of 67 full­text biomedical journal articles from PubMed
with approximately 100,000 concept annotations to 7 different biomedical ontolo­
gies/terminologies (Chemical Entities of Biological Interest, Cell Ontology, Entrez
Gene, Gene Ontology: biological process, cellular component, and molecular func­
tion, NCBI Taxonomy, Protein Ontology, Sequence Ontology.

• GENIA corpus[29] : consists of 2000 MEDLINE abstracts with more than 400 000
words and almost 100 000 annotations for biological terms belonging to 47 biologic­
ally relevant nominal categories.

• PennBioIE CYP 1.0 [44] : consists of 1100 PubMed abstracts on the inhibition of
cytochrome P450 enzymes, comprising approximately 274,000 words of biomedical
text, tokenized and annotated for paragraph, sentence, part of speech, and five types
of biomedical named entities.

• ADE corpus[17] : The Adverse Drug Effect (ADE) Corpus consists of 3 different data­
sets: DRUG­AE.rel provides relations between drugs and adverse effects, DRUG­
DOSE.rel provides relations between drugs and dosages and ADE­NEG.txt provides
all sentences in the ADE corpus that do not contain any drug­related adverse effects.

• NLM­Chem corpus[25]: contains 150 full­text journal articles selected both to be rich
in chemical mentions.

• BC5CDR corpus [41]: consists of 1500 PubMed articles with 4409 annotated chem­
icals, 5818 diseases and 3116 chemical­disease interactions.
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• DDI corpus [21]: consists of 1025 Documents from two different sources: DrugBank
database and MedLine and has been manually annotated with drugs and pharma­
cokinetics and pharmacodynamics interactions.

• EDGAR corpus [60]: contains annotations for genes, drugs and cells, including bin­
ary relationships between genes and drugs, genes and cells, and drugs and cells.

• Metabolites and Enzymes corpus [54]: consists of 296MEDLINE abstracts that have
been manually annotated about metabolites.

• ChEBI Patent Gold Standard corpus [1]: consists of a full set with 400,125 annota­
tions and a harmonized set with 36,537 annotations. Annotation guidelines were
developed and 200 full patents from the World Intellectual Property Organization,
United States Patent and Trademark Office, and European Patent Office were se­
lected to be annotated.The patents were pre­annotated automatically and made
available to four independent annotator groups each consisting of two to ten an­
notators. The annotators marked chemicals in different subclasses, diseases, tar­
gets, and modes of action. A subset of 47 patents was annotated by at least three
annotator groups, from which harmonized annotations and inter­annotator agree­
ment scores were derived. All patents and annotated entities are publicly available
(www.biosemantics.org).

• Chem EVAL corpus (SCAI corpus) [33]: consists of of 100 abstracts (with 1206
chemical mentions) annotated with chemical entities

• CHEMDNER corpus will be described in detail in the following section.

The aforementioned datasets consist of a relatively small number of abstracts that contain
a small number of chemical mentions. The majority of them are not specific for the field
of chemical NER since they include more annotations of other biological entities such as
genes, proteins, diseases than of chemical entities. Also some are specified to drugs and
drug­diseases relations. The disadvantages of the existing corpuses, in combination with
the difficulties in giving a specific definition of what a chemical is in the various scientific
fields where chemistry is studied and the polymorphism in which the chemical entities are
written in text have lead to the creation of the CHEMNDNER dataset.

3.3 CHEMDNER corpus

The CHEMDNER corpus[36] consists of an assembly of 10,000 PubMed abstracts that
contain a total of 84,355 chemical entity mentions, corresponding to 19,805 unique strings
of chemical names. The chemical entities were manually annotated by expert chemistry
literature curators, who followed annotation guidelines specifically defined by experts on
the field for this task. The CHEMDNER corpus is designed to be a useful resource not
only for chemical named entity recognition but also for the development of chemical text
processing software (chemistry­tuned tokenizationmethods optimized for the correct iden­
tification of chemical entities) and of text categorization systems for the selection of doc­
uments that contain chemical mentions.

The selection of the 10,000 PubMed abstracts of the CHEMDNER corpus was based
on representing all the major chemical disciplines. The chemical entity mentions were
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manually labeled and were manually classified to one of the seven predefined structure­
associated chemical entity mention (SACEM) classes: Abbreviation (short form of chem­
ical names including abbreviations and acronyms), Family (chemical families with a defined
structure), Formula (molecular formulas), Identifier (chemical database identifiers), Mul­
tiple (non­continuousmentions of chemicals in text), Systematic (IUPAC names of chemic­
als) and Trivial (common names of chemicals and trademark names). Examples of Struc­
ture Associated Chemical Entity Mentions (SACEMs) which are annotated in the CHEM­
DNER corpus are the following: ‘nitric oxide’ (Systematic), ‘Aspirin’ (Trivial), ‘GABA’ (Ab­
breviation), whereas general chemical concepts like ‘inactivator’ or pigment’, molecules
with biological roles like ‘hormone’, ‘antibiotic’ or ‘metabolite’ and molecules with reactivity
roles like ‘nucleophile’ or ‘chelator’ do not qualify as SACEMs and are not annotated in the
CHEMDNER corpus. In Figure 3.1 the seven structure­associated chemical entity men­
tion (SACEM) classes introduced are being presented together with a short description
and example cases.

Figure 3.1: CHEMDNER chemical entity mention classification chart (ABBREVIATION,
IDENTIFIERS, FORMULA, SYSTEMATIC, MULTIPLE, TRIVIAL, FAMILY) with examples[36].

The abstracts for the CHEMDNER corpus were selected based on their subject category
in order for the major chemical disciplines: Biochemistry Molecular Biology, Applied
Chemistry, Medicinal Chemistry, Multidisciplinary Chemistry, Organic Chemistry, Physic­
alChemistry, Endocrinology Metabolism, Chemical Engineering, Polymer Science, Phar­
macology Pharmacy and Toxicology, to be represented in the corpus. The selected ab­
stracts come from the top 100 journals (that had at least 100 articles) from each discipline
based on the journals’ impact factor. The selected articles were published in 2013 in
English in order for the corpus to be representative of modern chemical language, and
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their full text is accessible in the PubMed database. The final corpus consists of 10,000
abstracts that belong to the aforementioned subject categories which were randomly se­
lected. The final selection of abstracts was split into three datasets: 3500 (training set),
3500 (development set) and 3000 (evaluation set) abstracts.

The guidelines for the annotation of chemicals and their classification to the SACEM
classes were prepared by chemists with a Ph.D., who received feedback from trained
literature curators also with a Ph.D. in chemistry. The detailed annotation guidelines are
distributed together with the corpora. This is critical for possible future extension of the
corpora and to deal with potential future causes of inconsistencies and annotation errors.
The annotators had to have a background in chemistry in order to guarantee that the an­
notations are correct. The annotaters worked on the AnnotateIt tool. Nested annotations
were not allowed and distinct entity mentions could not overlap.

In order to make sure that during the annotation process the number of missed chemical
mentions and wrong annotations was as low as possible, a second group of additional
curators also annotated the test set abstracts. The conflicting annotations between the
two curator teams were collected and presented to the main curation group for a second
round of manual revision. At the end of the harmonization process 1,185 annotations were
added to the original 24, 671 test set annotations (4.08%) and 505 (2.05%) were removed,
leading to the final harmonized test set that consists of 25,351 annotations.

The CHEMDNER corpus’ PubMed abstracts are distributed in a tab­separated text format,
with the following three columns: article identifier (PMID, PubMed identifier), title of the
article, and abstract of the article. The annotation file has a tab­separated format with
columns corresponding to the article identifier, the part of the document processed (T:
title, A: abstract), the start and end characters offsets of the chemical, the text string of the
chemical entity mention and the corresponding chemical entity mention class.

Figure 3.2 provides an overview of the CHEMDNER corpus in terms of the number of
manually revised abstracts (Abstracts) with their total sizes as number of characters and
tokens, the number of abstracts containing at least one chemical entity mention (Abstracts
with CEM), the number of annotated mentions of chemical entities, the number of unique
chemicals annotated (the non­redundant list of mentions) and the number of correspond­
ing journals for the annotated abstracts. The number of mentions for each CHEMDNER
entity class (see Figure 1) is provided for each set and the entire corpus in the lower half
of the table.

Figure 3.3 provides an overview of the number of abstracts associated with each chemical
discipline in the CHEMDNER corpus (Abstracts column). The total number of chemical en­
tity mentions in the abstracts of each chemical discipline (Mentions column). The percent­
age of chemical entity mentions of each SACEM class AB: ABBREVIATION, FA: FAMILY,
FO: FORMULA, ID: IDENTIFIER, MU: MULTIPLE, NO: NO CLASS, SY: SYSTEMATIC,
TR: TRIVIAL.

The gradual release of the CHEMDNER corpus datasets was combined with the drugs
and chemical names extraction challenge[35] that consisted of two tasks: the indexing of
documents with chemicals (chemical document indexing ­ CDI task), and the identification
of exact mentions of chemicals in text (chemical entity mention recognition ­ CEM task).
The CEM task was evaluating the ability to specifically locate within a document every
chemical entity mention, by exactly locating their start and end character indices. The
participating systems were evaluated on the evaluation set of the CHEMDNER corpus
that had 25,351 chemical entity mentions (7,563 unique chemical names). The evaluation
metrics for comparing the performance of the systems that participated in the challenge
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Figure 3.2: CHEMDNER corpus overview[36].

Figure 3.3: CHEMDNER abstracts, split into chemical disciplines[36].

were:

• Recall: the percentage of correctly labeled positive results over all positive cases (a
measure of a systems ability to identify positive cases.

r =
TP

TP + FN

• Precision: the percentage of correctly labeled positive results over all positive labeled
results (a measure of a classifier’s reproducibility of the positive results).

p =
TP

TP + FP

• The balanced F­measure: a parameter for the relative importance of precision over
recall.

f1− score =
2× p× r

p+ r

False negative (FN) results correspond to incorrect negative predictions (cases that
were part of the CHEMDNER annotations, but missed by the automated systems),
False positive (FP) results correspond to incorrect positive predictions (wrong results
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predicted by the systems that had no corresponding annotation in the CHEMDNER
annotations) and True positive (TP) results correspond to correct positive predictions
(correct predictions matching exactly with the CHEMDNER annotations).

The results of the top performing teams in the CEM task are presented in figure 3.4. Top
scoring team of the CEM task obtained an F­score of 87.39%. They developed a hybrid
strategy that integrated a machine learning based approach based on CRF models, a
dictionary based approach to find special types of mentions such as chemical formula
and sequences of amino acids and an abbreviation detection method.

Figure 3.4: Chemical Entity Mention recognition (CEM) task evaluation results[35].
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4. CHEMICAL NAMED ENTITY RECOGNITION

In this chapter, we present a novel NER tool with the capability to identify mentions of
chemical entities in biomedical text. The Named Entity Recognition tool is developed
using spaCy [50] (https://spacy.io/). spaCy is a Python library for advanced Natural
Language Processing. spaCy provides a variety of user friendly and practical tools to build
information extraction or natural language understanding systems, including pre­trained
Neural Network (NN) models for part­of­speech tagging, dependency parsing, named en­
tity recognition, etc. and it makes it easy to train existing pipelines or create new NLP
pipelines. In the development of the chemical Named Entity Recogniser, pipeline pack­
ages from scispaCy [52] were also deployed. scispaCy (https://allenai.github.io/
scispacy/) is a specialized NLP Python library for processing biomedical text with in­
creasing popularity among scientists in the biomedical domain.

Various corpora with mentions of chemical entities are available (CRAFT corpus [3] ,
GENIA corpus [29], PennBioIE CYP 1.0[44], ADE corpus[17] , NLM­Chem corpus[25],
BC5CDR corpus [41], DDI corpus[21], EDGAR corpus [60], Metabolites and Enzymes
corpus[54], ChEBI Patent Gold Standard corpus[1], Chem EVAL corpus (SCAI corpus)
[33], CHEMDNER corpus [36]). In this task the selected corpus for training the neural
network developed using the spaCy library, is the CHEMDNER corpus. The CHEMD­
NER corpus is the largest manually annotated, publicly available, easy to use corpus,
with millions of annotated chemical entities (and only chemical entities) on recent papers
on various domains of Chemistry (it is representative of modern chemical language). The
corpus is divided into a training, a development and a evaluation set. Each subset is
publicly available in the form of two text files:

• One text file lists:

– the PubMed IDs,
– the abstracts of the selected publications (of various scientific domains of Chem­
istry),

– and the publications’ titles.

• and the other text file includes the annotated chemical entities in each abstract.
More specifically it includes the following information about each manually tagged
chemical entity:

– the article’s Pubmed ID where each chemical entity is manually tagged,
– whether it is located in the title or in the abstract of the article,
– the start and end position of the entity in the text,
– the annotated chemical entity,
– and the class that it has been assigned to: Abbreviation (short form of chemical
names including abbreviations and acronyms), Family (chemical families with a
defined structure), Formula (molecular formulas), Identifier (chemical database
identifiers), Multiple (non­continuous mentions of chemicals in text), System­
atic (IUPAC names of chemicals) or Trivial (common names of chemicals and
trademark names).

The supplementary files of the CHEMDNER corpus also include the following information
about each publication’s abstract:
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• to which chemical discipline (or chemical disciplines) each abstract belongs to. The
selected articles were classified to one (or more) of the following chemical discip­
lines: Biochemistry, Applied Chemistry, Medicinal Chemistry, Multidisciplinary Chem­
istry, Organic Chemistry, Physical Chemistry, Chemical Endocrinology Engineering,
Pharmacology, Polymer Science, Toxicology.

• whether each abstract includes or not chemical entities (if it belongs to the true neg­
ative dataset or not).

The BioCreative IV community challenge [35] focused on promoting the development of
systems for the automatic recognition of chemical entities in text. Two tasks were organ­
ised during the challenge: the chemical document indexing ­ CDI task and the chemical
entity mention recognition ­ CEM task. The performance of the participating teams in the
CEM task provides a measure for comparing the performance of the chemical Named
Entity Recogniser that is developed in this project. The comparison with the state­of­the­
art chemical Named Entity Recognising tools will be based on their performance on the
evaluation set of the CHEMDNER corpus (based on their precision, recall and f1­score).

4.1 Development of the chemical Named Entity Recogniser

4.1.1 Training/Test Dataset Configuration

The CHEMDNER corpus contains 7000 PubMed abstracts categorised as training (3500
abstracts) and development set (3500 abstracts). In total, the abstract have 17,197 men­
tions of unique chemicals (59,004 mentions in total taking into account multiple mentions
of several chemicals). In the dataset of the 7000 PubMed abstracts, a small portion (1,177
abstracts) does not have any mention of chemical entities at all (true negative dataset).
The CHEMDNER corpus also contains 3000 PubMed abstracts categorised as evaluation
set.

First, we attempted to choose the best proportion of the CHEMDNER’s training and de­
velopment datasets that should be used as the training and the test set while training the
spaCy model. In order to do so we performed three sets of experiments:

• CHEMDNER’s training (3500 abstracts) and development set (3500 abstracts) were
used for training and testing the scispaCy pipelines. The performance of trained
model was then evaluated using the

• The 7000 PubMed abstracts from CHEMDNER corpus’ training and development
datasets were randomized and split into 80% for training and 20% for testing.

• The 7000 PubMed abstracts from CHEMDNER corpus’ training and development
datasets were randomized and split into 90% for training and 10% for testing.

The three models: en_core_sci_md, en_core_sci_lg and en_core_sci_scibert were se­
lected for training using the CHEMDNER corpus. With the three models trainings were
performed:

• one with the development and training set as provided by the CHEMDNER corpus,
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• one with the 7000 training and development abstracts of the CHEMDNER corpus
randomly divided in 80% of the abstracts for training and 20% for testing, and

• one with the 7000 training and development abstracts of the CHEMDNER corpus
randomly divided in 90% of the abstracts for training and 10% for testing.

The processing pipeline of the en_core_sci_md model and the en_core_sci_lg model con­
sist of a tokenizer and an entity recogniser (figure 4.1). The entity recogniser component
was trained on the CHEMDNER corpus.

Figure 4.1: The processing pipeline of the en_core_sci_md/lg models that consist of a tokenizer
and an entity recogniser.

4.1.1.1 Results using the en_core_sci_md model.

The first set of experiments was performed using the en_core_sci_md model. First the ner
component of the pipeline was trained on the training set as provided by the CHEMDNER
corpus. While training the development set (as provided by the CHEMDNER corpus) was
used for testing themodel’s performance. The precision, recall and f1­score are measured
on the test set (development set) while training for 8 epochs with batch size 128 and are
visualised in figure 4.2. The loss value count on the test set (development set) while
training is visualised in figure 4.3. When the training was done, the performance of the
model was evaluated using the evaluation set of the CHEMDNER corpus. The results of
the performance of the model on identifying each entity and correctly assigning it to each
SACHEM class, are given in the table 4.1. The results of the overall performance of the
model are presented in table 4.2.

Figure 4.2: % values of p, r and f1­score while
training the ner of the en_core_sci_md model
on the CHEMDNER corpus. Training lasted for

8 epochs (batch size 128).

Figure 4.3: The loss values while training the
ner component of the en_core_sci_md model on

the CHEMDNER corpus. Training lasted 8
epochs with batch size 128.

O. Theologi 48



Chemical text and association rule mining to facilitate the study of metabolic processes in hyperthermophilic microorganisms.

Table 4.1: Precision, recall and f1 ­score on each chemical entity class of the en_core_sci_md
model trained on the CHEMDNER training set.

Chemical Entities categories PRECISION(%) RECALL (%) F1­SCORE (%)

SYSTEMATIC 46.00 74.35 56.84
FAMILY 62.31 57.59 59.86
TRIVIAL 76.66 77.12 76.38
FORMULA 5.27 76.97 9.87
MULTIPLE 0.65 10.52 1.22

ABBREVIATION 46.02 76.87 57.57
IDENTIFIER 87.50 70.00 77.77

Table 4.2: The overall precision, recall and f1 ­score of the en_core_sci_md model trained on the
CHEMDNER training set.

NER PRECISION (%) NER RECALL (%) NER F1­SCORE (%)

30.49 71.14 42.68

Then the 7000 training and development abstracts of the CHEMDNER corpus were ran­
domly divided in 80% of them for training and 20% of them for testing the model’s perform­
ance while training. The precision, recall and f1­score are measured on the test set while
training for 8 epochs with batch size 128 and are visualised in figure 4.4. The loss value
count on the test set (development set) while training is visualised in figure 4.5. When the
training was done, the performance of the model was evaluated using the evaluation set
of the CHEMDNER corpus. The results of the performance of the model on identifying
each entity and correctly assigning it to each SACHEM class, are given in the table 4.3.
The results of the overall performance of the model are presented in table 4.4.

Figure 4.4: % values of p, r, f1­score while
training the ner of the en_core_sci_md model
on the CHEMDNER corpus (80% training set ­
20% test set). Training lasted for 8 epochs

(batch size 128).

Figure 4.5: The loss values while training the ner
component of the en_core_sci_md model on the
CHEMDNER corpus (80% training set ­ 20% test
set). Training took place for 8 epochs with batch

size 128.

Τhen, the 7000 training and development abstracts of the CHEMDNER corpus were ran­
domly divided in 90% of them for training and 10% of them for testing the model’s perform­
ance while training. The precision, recall and f1­score are measured on the test set while
training for 4 epochs with batch size 128 and are visualised in figure 4.6. The loss value
count on the test set (development set) while training is visualised in figure 4.11. When
the training was done, the performance of the model was evaluated using the evaluation
set of the CHEMDNER corpus. The results of the performance of the model on identifying
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Table 4.3: Precision, recall and f1 ­score on each chemical entity class of the en_core_sci_md
model trained on the CHEMDNER corpus (80% training set ­ 20% test set).

Chemical Entities categories PRECISION(%) RECALL (%) F1­SCORE (%)

SYSTEMATIC 59.33 81.55 68.69
FAMILY 72.55 66.34 69.31
TRIVIAL 82.96 76.35 79.52
FORMULA 70.39 76.36 73.26
MULTIPLE 8.82 31.58 13.79

ABBREVIATION 89.68 65.32 75.59
IDENTIFIER 81.25 65.00 72.22

Table 4.4: The overall precision, recall and f1 ­score of the en_core_sci_md model trained on the
CHEMDNER corpus (80% training set ­ 20% test set).

NER PRECISION (%) NER RECALL (%) NER F1­SCORE (%)

70.47 73.85 72.12

each entity and correctly assigning it to each SACHEM class, are given in the table 4.5.
The results of the overall performance of the model are presented in table 4.6.

Figure 4.6: % values of p, r, f1­score while
training the ner of the en_core_sci_md model
on the CHEMDNER corpus (90% training set ­
10% test set). Training lasted for 4 epochs

(batch size 128).

Figure 4.7: The loss values while training the ner
component of the en_core_sci_md model on the
CHEMDNER corpus (90% training set ­ 10% test
set). Training took place for 4 epochs with batch

size 128.

Table 4.5: Precision, recall and f1 ­score on each chemical entity class of the en_core_sci_md
model trained on the CHEMDNER corpus (90% training set ­ 10% test set).

Chemical Entities categories PRECISION(%) RECALL (%) F1­SCORE (%)

SYSTEMATIC 54.74 75.65 63.52
FAMILY 58.58 64.40 61.35
TRIVIAL 70.37 79.05 74.46
FORMULA 57.14 75.15 64.92
MULTIPLE 50.00 42.11 45.71

ABBREVIATION 81.25 75.14 78.08
IDENTIFIER 80.00 40.00 53.33
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Table 4.6: The overall precision, recall and f1 ­score of the en_core_sci_md model trained on the
CHEMDNER corpus (90% training set ­ 10% test set).

NER PRECISION (%) NER RECALL (%) NER F1­SCORE (%)

62.76 73.44 67.68

4.1.1.2 Results using the en_core_sci_lg model.

The second set of experiments was performed using the en_core_sci_lg model. The
en_core_sci_lg model has a larger vocabulary and 600k word vectors, therefore needs
a larger training dataset for training. First the 7000 training and development abstracts
of the CHEMDNER corpus were randomly divided in 80% of them for training and 20%
of them for testing the model’s performance while training. The precision, recall and f1­
score are measured on the test set while training for 5 epochs with batch size 128 and
are visualised in figure 4.8. The loss value count on the test set (development set) while
training is visualised in figure 4.9. When the training was done, the performance of the
model was evaluated using the evaluation set of the CHEMDNER corpus. The results of
the performance of the model on identifying each entity and correctly assigning it to each
SACHEM class, are given in the table 4.7. The results of the overall performance of the
model are presented in table 4.8.

Figure 4.8: % values of p, r, f1­score while
training the ner of the en_core_sci_lg model
on the CHEMDNER corpus (80% training set ­
20% test set). Training lasted for 5 epochs

(batch size 128).

Figure 4.9: The loss values while training the ner
component of the en_core_sci_lg model on the
CHEMDNER corpus (80% training set ­ 20% test
set). Training took place for 5 epochs with batch

size 128.

Table 4.7: Precision, recall and f1 ­score on each chemical entity class of the en_core_sci_md
model trained on the CHEMDNER corpus (80% training set ­ 20% test set).

Chemical Entities categories PRECISION(%) RECALL (%) F1­SCORE (%)

SYSTEMATIC 54.27 79.70 64.57
FAMILY 72.57 63.81 67.91
TRIVIAL 65.35 82.65 72.99
FORMULA 9.96 80.61 17.73
MULTIPLE 26.32 26.32 26.32

ABBREVIATION 81.61 82.08 81.84
IDENTIFIER 75.00 75.00 75.00

And then the 7000 training and development abstracts of the CHEMDNER corpus were
randomly divided in 90% of them for training and 10% of them for testing the model’s
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Table 4.8: The overall precision, recall and f1 ­score of the en_core_sci_md model trained on the
CHEMDNER corpus (80% training set ­ 20% test set).

NER PRECISION (%) NER RECALL (%) NER F1­SCORE (%)

57.62 60.25 58.91

performance while training. The precision, recall and f1­score are measured on the test
set while training for 5 epochs with batch size 128 and are visualised in figure 4.6. The
loss value count on the test set (development set) while training is visualised in figure
4.11. When the training was done, the performance of the model was evaluated using the
evaluation set of the CHEMDNER corpus. The results of the performance of the model
on identifying each entity and correctly assigning it to each SACHEM class, are given in
the table 4.5. The results of the overall performance of the model are presented in table
4.6.

Figure 4.10: % values of p, r, f1­score while
training the ner of the en_core_sci_md model
on the CHEMDNER corpus (90% training set ­
10% test set). Training lasted for 5 epochs

(batch size 128).

Figure 4.11: The loss values while training the
ner component of the en_core_sci_md model
on the CHEMDNER corpus (90% training set ­
10% test set). Training took place for 5 epochs

with batch size 128.

Table 4.9: Precision, recall and f1 ­score on each chemical entity class of the en_core_sci_lg model
trained on the CHEMDNER corpus (90% training set ­ 10% test set).

Chemical Entities categories PRECISION(%) RECALL (%) F1­SCORE (%)

SYSTEMATIC 54.85 82.47 65.88
FAMILY 48.18 66.93 56.03
TRIVIAL 69.49 75.84 72.53
FORMULA 75.48 70.91 73.12
MULTIPLE 14.29 26.32 18.52

ABBREVIATION 82.69 74.57 78.42
IDENTIFIER 69.57 80.00 74.42

Table 4.10: The overall precision, recall and f1 ­score of the en_core_sci_lg model trained on the
CHEMDNER corpus (90% training set ­ 10% test set).

NER PRECISION (%) NER RECALL (%) NER F1­SCORE (%)

59.99 74.44 66.44
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4.1.1.3 Results using the en_core_sci_scibert model.

The last set of experiments in this section was performed using the en_core_sci_scibert
model. The processing pipeline of the en_core_sci_scibert model consists of a trans­
former and an entity recogniser (figure 4.12). The entity recogniser component was trained
on the CHEMDNER corpus.

Figure 4.12: The processing pipeline of the en_core_sci_scibert model that consist of a
ttransformer and an entity recogniser.

First the ner component of the pipeline was trained on the training set as provided by the
CHEMDNER corpus. While training the development set (as provided by the CHEMDNER
corpus) was used for testing the model’s performance. The precision, recall and f1­score
are measured on the test set (development set) while training for 9 epochs with batch size
128 and are visualised in figure 4.13. The loss value count on the test set (development
set) while training is visualised in figure 4.14. When the training was done, the perform­
ance of the model was evaluated using the evaluation set of the CHEMDNER corpus. The
results of the performance of the model on identifying each entity and correctly assigning it
to each SACHEM class, are given in the table 4.11. The results of the overall performance
of the model are presented in table 4.12.

Figure 4.13: % values of p, r, f1­score while
training the ner of the en_core_sci_md model
on the CHEMDNER corpus. Training lasted for

9 epochs (batch size 128).

Figure 4.14: The loss values while training the
ner component of the en_core_sci_md model on
the CHEMDNER corpus. Training took place for

9 epochs with batch size 128.

Then the 7000 training and development abstracts of the CHEMDNER corpus were ran­
domly divided in 80% of them for training and 20% of them for testing the model’s perform­
ance while training. The precision, recall and f1­score are measured on the test set while
training for 5 epochs with batch size 128 and are visualised in figure 4.15. The loss value
count on the test set (development set) while training is visualised in figure 4.16. When
the training was done, the performance of the model was evaluated using the evaluation
set of the CHEMDNER corpus. The results of the performance of the model on identifying
each entity and correctly assigning it to each SACHEM class, are given in the table 4.13.
The results of the overall performance of the model are presented in table 4.14.
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Table 4.11: Precision, recall and f1 ­score on each chemical entity class of the en_core_sci_scibert
model trained on the CHEMDNER training set.

Chemical Entities categories PRECISION(%) RECALL (%) F1­SCORE (%)

SYSTEMATIC 43.00 65.68 51.97
FAMILY 69.01 51.56 59.02
TRIVIAL 64.22 59.51 61.77
FORMULA 57.21 74.55 64.74
MULTIPLE 0 0 0

ABBREVIATION 76.67 66.47 71.21
IDENTIFIER 75.00 60.00 66.67

Table 4.12: The overall precision, recall and f1 ­score of the en_core_sci_scibert model trained on
the CHEMDNER training set.

NER PRECISION (%) NER RECALL (%) NER F1­SCORE (%)

57.62 60.25 58.91

Table 4.13: Precision, recall and f1 ­score on each chemical entity class of the en_core_sci_scibert
model trained on the CHEMDNER corpus (80% training set ­ 20% test set).

Chemical Entities categories PRECISION(%) RECALL (%) F1­SCORE (%)

SYSTEMATIC 62.78 73.43 67.69
FAMILY 65.56 57.78 61.43
TRIVIAL 76.96 63.11 69.35
FORMULA 71.60 70.30 70.95
MULTIPLE 33.33 21.05 25.81

ABBREVIATION 78.34 71.10 74.55
IDENTIFIER 88.24 75.00 81.08

Table 4.14: The overall precision, recall and f1 ­score of the en_core_sci_scibert model trained on
the CHEMDNER corpus (80% training set ­ 20% test set).

NER PRECISION (%) NER RECALL (%) NER F1­SCORE (%)

69.66 65.22 67.37

Transformer­based pipelines are not perfect for every use­case. Even though transformer
models have been breaking new accuracy records every month, it’s not easy to apply
them directly to most practical problems. Also transformer architectures are not designed
to operate efficiently on CPU, so it is recommended to have a GPU available for both
training and usage. In our applications training was too slow.

4.1.1.4 Initial Chemical NER Result Summary

In table 4.15 we present an overview of the experimental results in order:

• to assess which is the best scispaCy pipeline (en_core_sci_md, en_core_sci_lg,
en_core_sci_scibert) for the amount of training data available in the CHEMDNER
corpus, and

• to assess which is the best porpotion of the CHEMDNER’s training and develop­
ment set (7000 abstracts) to be used as training set and test set for thraining the
aforementioned models.
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Figure 4.15: % values of p, r, f1­score while
training the ner of the en_core_sci_scibert
model on the CHEMDNER corpus (80%

training set ­ 20% test set). Training lasted for
5 epochs (batch size 128).

Figure 4.16: The loss values while training the
ner component of the en_core_sci_scibert model
on the CHEMDNER corpus (80% training set ­
20% test set). Training took place for 5 epochs

with batch size 128.

The best f­score was obtained using the pipeline with the smaller vocabulary and 50k
word vectors (the en_core_sci_md pipeline) and using 80% of the CHEMDNER training
and development set as the training set and 20% as the test set. The pipeline with the
larger vocabulary and 600k word vectors (the en_core_sci_lg pipeline) gave better results
when trained using 90% of the CHEMDNER training and development set as the training
set and 10% as the test set, but still the f1­score was lower that the best score of the
en_core_sci_md. This model needs a larger training dataset for better performance on
the CHEMDNER’s evaluation set. The en_core_sci_scibert model when trained using
80% of the CHEMDNER training and development set as the training set and 20% as
the test set gave better results (f1­score = 67.37) than when trained using 50% of the
CHEMDNER training and development set as the training set and 50% as the test set.
The problem with the en_core_sci_scibert model was that since we trained using a CPU,
training was too slow (would last for days). Training a transformer­based model without a
GPU is too slow.

Table 4.15: Presentation of the training experiments done to evaluate the best proportions of the
training and the development datasets of the CHEMDNER corpus.

scispaCy model Percentage of the CHEMDNER corpus f1­score
for training and testing on CHEMDNER evaluation set

en_core_sci_md 50% : 50% 42.68 %
en_core_sci_md 80% : 20% 72.12%
en_core_sci_md 90% : 10% 67.68 %
en_core_sci_lg 80% : 20% 56.66 %
en_core_sci_lg 90% : 10% 66. 44 %

en_core_sci_scibert 50% : 50% 58.91 %
en_core_sci_scibert 80% : 20% 67.37 %

4.1.2 The role of dictionaries

We investigated whether we can boost the performance of the best model so far (the
en_core_sci_md model trained using 80% of the CHEMDNER training and development
set as the training set and 20% as the testing set). We combined the statistical model
approach with the usage of a dictionary of chemical molecules. The dictionary is created
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by combining the ChEBI dictionary (50085 chemicals) with the KEGGcompound dictionary
(681 chemicals that do not already exist in ChEBI). Overall the dictionary consists of 50766
chemicals.

Adding a dictionary to a spaCy’s pipeline can be done using the Entity Ruler pipeline com­
ponent (https://spacy.io/api/entityruler) for rule­based named entity recognition.
The Entity Ruler is a component that lets the user add named entities based on pattern
dictionaries, which makes it easy to combine rule­based and statistical named entity re­
cognition for even more powerful pipelines. The dictionary lists match patterns. A match
pattern includes a label that in this case we assigned as the ChEBI or the KEGG com­
pound ID and the actual pattern to be matched in the text, for example: ’label’: ’ChEBI ID:
598’, ’pattern’: ’1­alkyl­2­acylglycerol’.

The processing pipeline consists of the ”tok2vec”, the ”ner” and the ”entity_ruler” and it
is presented in figure 4.17. The ”entity_ruler” will only add new entities that match to the
patterns only if they don’t overlap with existing entities predicted by the statistical model.

Figure 4.17: Processing pipeline that consists of the following components: toc2vec, ner,
entity_ruler.

In order to asses whether adding a dictionary will boost the performance of the chemical
NER model or not, we added the dictionary to the pipeline of the model with the best
results so far. The dictionary was added to the en_core_sci_md model that was trained
on the CHEMDNER corpus (80% of CHEMDNER’s training and development set was
used for training and 20% for testing). This models results were presented in tables 4.3
and 4.4. The overall precision, recall and f1 ­score of the model after adding the dictionary
is presented in table 4.16

Table 4.16: Precision, recall and f1 ­score of the en_core_sci_md model trained on the CHEMDNER
corpus (80% for training, 20% for testing) (left) and the precision, recall and f1 ­score of the same

model after adding a dictionary to the pipeline.

Processing pipeline tok2vec,ner tok2vec,ner,entity_ruler

NER PRECISION (%) 70.47 67.81
NER RECALL (%) 73.85 73.85
NER F1­SCORE (%) 72.12 70.70

Overview of results. It is observed that precision (and F1 score) is decreased, while at the
same time the recall remains the same. This means that, in this dataset, the addition of the
“entity_ruler” component has increased the false positive entities identified by the model.
The chemical NER based only on dictionaries has the disadvantage of often identifying as
chemical entities parts of other entities. For example, enzymes that are usually phrases
might be splitted, and a part of them to be tagged as a chemical entity. In order to avoid
adding more false positives, the “entity_ruler” component will not be used.
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4.1.3 Training excluding true negative abstracts

In the spaCy guidelines for training the “ner” component of spaCy’s models it is stated that
the model should also be presented to examples that do not have the entities that the user
is interested in “teaching” the model. These examples should be included in the training
process and be annotated as training data that do not include the entity of interest. In
the CHEMDNER corpus (see section 3.3), in the dataset of the 7000 PubMed abstracts
(labeled as training and development set) a small portion (1,177 abstracts) does not have
any mention of chemical entities at all (true negative dataset). We investigated whether
including a true negative dataset in the training process improved the models’ precision
and recall or not. From the CHEMDNER training and development datasets the 1,177
abstracts that do not have any mention of chemical entities at all (true negative dataset)
are removed. The remaining 5,823 abstracts were randomly split into 90% for training and
10% for development. The “ner” component of the en_core_sci_md model was trained.

The precision, recall and f1­score are measured on the test set (development set) while
training for 5 epochs with batch size 128 are visualised in figure 4.18. The loss value
count on the test set (development set) while training is visualised in figure 4.19. When
the training was done, the performance of the model was evaluated using the evaluation
set of the CHEMDNER corpus. The results of the performance of the model on identifying
each entity and correctly assigning it to each SACHEM class, are given in the table 4.17.
The results of the overall performance of the model are presented in table 4.18.

Figure 4.18: % values of p, r, f1­score while
training the ner of the en_core_sci_md model
on the CHEMDNER corpus without the true

negative dataset. Training lasted for 5 epochs
(batch size 128).

Figure 4.19: The loss values while training the
ner component of the en_core_sci_md model on
the CHEMDNER corpus without the true negative
dataset. Training took place for 5 epochs with

batch size 128.

Table 4.17: Precision, recall and f1­score on each chemical entity class of the en_core_sci_md
model trained on the CHEMDNER corpus without using the true negative dataset.

Chemical Entities categories PRECISION(%) RECALL (%) F1­SCORE (%)

SYSTEMATIC 44.21 81.00 57.20
FAMILY 70.98 60.89 65.55
TRIVIAL 73.17 77.12 75.09
FORMULA 71.43 81.82 76.27
MULTIPLE 30.00 31.58 30.77

ABBREVIATION 80.23 82.08 81.14
IDENTIFIER 88.24 75.00 81.08
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Table 4.18: The overall precision, recall and f1 ­score of the en_core_sci_md model trained on the
CHEMDNER corpus without using the true negative dataset.

NER PRECISION (%) NER RECALL (%) NER F1­SCORE (%)

62.08 74.53 67.73

Overview of results. The results of the en_core_sci_md model trained using the true
negative subset of the CHEMDNER corpus showed better results (tables 4.4. It was ob­
served that using a true negative dataset while training indeed improved the precision of
the model and its f1­score.

4.1.4 CNN tuning

In this section, we present our investigation on how the width of the hidden layer of the
”ner” component of the model’s pipeline affects the overall performance of the model.
The default architecture of the ”ner” component of the pipeline is a Convolutional Neural
Network (CNN) with depth (the number of convolutional layers) four and with width of the
hidden layers (the number of neurons in the hidden layer) 64 neurons.

In the following experiments, we set the width of the hidden layers to 84, 100, 128, 164.
The en_core_sci_md models’ ”ner” component of the pipeline was trained on the CHEM­
DNER corpus training and development dataset (80% was used for training and 20% for
evaluation). The evaluation results of each model on the CHEMDNER corpus evaluation
set are presented in table 4.19 and visualised in figure 4.20.

Table 4.19: The overall precision, recall and f1 ­score of the en_core_sci_md model trained on the
the CHEMDNER corpus (80% training set and 20% test). Results are from different training

experiments where the width of the hidden layer of the ‘ner’ component of the pipeline was set to
64 (default value), 84, 100, 128 and 164.

number of neurons 64 84 100 128 164

NER PRECISION (%) 70.47 74.41 73.99 75.20 74.47
NER RECALL (%) 73.85 76.06 76.06 76.96 77.33
NER F1­SCORE (%) 72.12 75.23 75.01 76.07 75.87

We present the training results of the best model when the width of the hidden layer was
adjusted to 128 neurons. The precision, recall and f1­score are measured on the test
set (development set) while training for 7 epochs with batch size 128 and are visualised
in figure 4.21. The loss value count on the test set (development set) while training is
visualised in figure 4.22. When the training was done, the performance of the model
was evaluated using the evaluation set of the CHEMDNER corpus. The results of the
performance of the model on identifying each entity and correctly assigning it to each
SACHEM class, are given in the table 4.20. The results of the overall performance of the
model are presented in table 4.21.

Overview of results. The performance of the model is improved when the width of the
hidden layer is 128 neurons (precision: 75.20%, recall: 76.96%, f1­score: 76.07%).

4.1.5 Boosting NER using tagging/parsing

In the previous training experiments the used model’s processing pipeline consisted of the
”tok2vec” and the ”ner” components. In this section, we examine if adding components
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Figure 4.20: %values of p, r, f1­score of the en_core_sci_md model trained on the the CHEMDNER
corpus (80% training set and 20% test). Results from different training experiments where the
width of the hidden layer of the ‘ner’ component of the pipeline was set to 64 (default value), 84,

100, 128 and 164.

Table 4.20: Precision, recall and f1 ­score on each chemical entity class of the en_core_sci_md
model trained on the CHEMDNER corpus (80% training set and 20% testing set). Training took

place for 7 epochs with batch size 128. The width of the hidden layer is 128.

Chemical Entities categories PRECISION(%) RECALL (%) F1­SCORE (%)

SYSTEMATIC 64.64 82.29 72.40
FAMILY 84.84 67.51 75.19
TRIVIAL 79.28 82.13 80.68
FORMULA 69.32 73.94 71.55
MULTIPLE 50.00 47.37 48.65

ABBREVIATION 84.31 74.57 79.14
IDENTIFIER 85.71 60.00 70.59
MULTIPLE 50.00 47.37 48.65

Table 4.21: The overall precision, recall and f1 ­score of the en_core_sci_md model (hidden layer
width 128) trained on the CHEMDNER corpus.

NER PRECISION (%) NER RECALL (%) NER F1­SCORE (%)

74.47 77.33 75.87

that also take into account the grammatical relations between the tokens improves the
model’s performance. In this training, the pipeline consists of the following components:
”tok2vec”, ”tagger”, ”parser”, ”ner”.

• scispaCy’s standard ”tok2Vec” generates the contextual embeddings for the input
tokens.

• The ”tagger” and ”parser” process the grammatical relations between the tokens.

• The ”ner” component of the pipeline is trained on the CHEMDNER corpus.

This experiment was performed using the en_core_sci_md model. The ”ner” component
of the pipeline was trained on the CHEMDNER corpus. While training the test set was used
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Figure 4.21: % values of p, r, f1­score while
training the ner of the en_core_sci_md model
(hidden layer width 128) on the CHEMDNER
corpus (80% training set and 20% testing set).
Training lasted for 7 epochs (batch size 128).

Figure 4.22: The loss values while training the ner
component of the en_core_sci_md model (hidden
layer width 128) on the CHEMDNER corpus (80%
training set and 20% testing set). Training took

place for 7 epochs with batch size 128.

for testing the model’s performance. 80% of the CHEMDNER’s training and development
set was used for training and 20% for testing. The precision, recall and f1­score are
measured on the test set (development set) while training for 10 epochs with batch size
1000 and are visualised in Figure 4.23. The loss value count on the test set while training
is visualised in figure 4.24. When the training was done, the performance of the model
was evaluated using the evaluation set of the CHEMDNER corpus. The results of the
performance of the model on identifying each entity and correctly assigning it to each
SACHEM class, are given in the table 4.22. The results of the overall performance of the
model are presented in table 4.23.

Figure 4.23: % values of p, r, f1­score while
training the ner of the en_core_sci_md

model(processing pipeline: tok2vec, tagger,
parser, ner) on the CHEMDNER corpus (80%
train set, 20% test set). Training lasted for 10

epochs with batch size 1000.

Figure 4.24: The loss values while training the ner
component of the en_core_sci_md

model(processing pipeline: tok2vec, tagger,
parser, ner) on the CHEMDNER corpus (80% train

set, 20% test set). Training took place for 10
epochs with batch size 1000.

The next experiment was performed using the en_core_sci_lg model. The ”ner” compon­
ent of the pipeline was trained on the CHEMDNER corpus. While training the test set was
used for testing the model’s performance. 80% of the CHEMDNER’s training and devel­
opment set was used for training and 20% for testing. The precision, recall and f1­score
are measured on the test set (development set) while training for 7 epochs with batch
size 1000 and are visualised in Figure 4.25. The loss value count on the test set while
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Table 4.22: The overall precision, recall and f1 ­score of the en_core_sci_md (processing pipeline:
tok2vec, tagger, parser, ner) model trained on the CHEMDNER corpus (80% of CHEMDNER’s

training and evaluation set was used for training and 20% for evaluation).

Chemical Entities categories PRECISION(%) RECALL (%) F1­SCORE (%)

SYSTEMATIC 62.84 84.87 72.21
FAMILY 73.00 71.01 71.99
TRIVIAL 83.14 83.68 83.41
FORMULA 70.05 79.39 74.43
MULTIPLE 40.00 52.63 45.45

ABBREVIATION 84.57 79.19 81.79
IDENTIFIER 75.00 75.00 75.00

Table 4.23: The overall precision, recall and f1 ­score of the en_core_sci_md model trained on the
CHEMDNER training set.

NER PRECISION (%) NER RECALL (%) NER F1­SCORE (%)

73.43 79.96 76.53

training is visualised in figure 4.26. When the training was done, the performance of the
model was evaluated using the evaluation set of the CHEMDNER corpus. The results of
the performance of the model on identifying each entity and correctly assigning it to each
SACHEM class, are given in the table 4.24. The results of the overall performance of the
model are presented in table 4.25.

Figure 4.25: % values of p, r, f1­score while
training the ner of the en_core_sci_lg

model(processing pipeline: tok2vec, tagger,
parser, ner) on the CHEMDNER corpus (80%
train set, 20% test set). Training lasted for 7

epochs with batch size 1000.

Figure 4.26: The loss values while training the ner
component of the en_core_sci_lg

model(processing pipeline: tok2vec, tagger,
parser, ner) on the CHEMDNER corpus (80% train

set, 20% test set). Training took place for 7
epochs with batch size 1000.

We also performed an experiment using the en_core_sci_scibert model. In this exper­
iment, the processing pipeline of the en_core_sci_scibert model consists of the ”trans­
former”, the ”tagger”, the ”parser” and the ”ner”. The ”ner” component of the pipeline was
trained on the CHEMDNER corpus. While training the test set was used for testing the
model’s performance. 80% of the CHEMDNER’s training and development set was used
for training and 20% for testing. The precision, recall and f1­score are measured on the
test set (development set) while training for 5 epochs with batch size 128 and are visu­
alised in Figure 4.27. The loss value count on the test set while training is visualised in
figure 4.28. When the training was done, the performance of the model was evaluated
using the evaluation set of the CHEMDNER corpus. The results of the performance of
the model on identifying each entity and correctly assigning it to each SACHEM class, are
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Table 4.24: The overall precision, recall and f1 ­score of the en_core_sci_lg (processing pipeline:
tok2vec, tagger, parser, ner) model trained on the CHEMDNER corpus (80% of CHEMDNER’s

training and evaluation set was used for training and 20% for evaluation).

Chemical Entities categories PRECISION(%) RECALL (%) F1­SCORE (%)

SYSTEMATIC 50.22 84.69 63.05
FAMILY 73.45 73.74 73.59
TRIVIAL 85.44 84.45 84.94
FORMULA 74.16 80.00 76.97
MULTIPLE 60.00 47.37 52.94

ABBREVIATION 80.59 79.19 79.88
IDENTIFIER 77.78 70.00 73.68

Table 4.25: The overall precision, recall and f1 ­score of the en_core_sci_lg model trained on the
CHEMDNER training set.

NER PRECISION (%) NER RECALL (%) NER F1­SCORE (%)

69.26 80.71 74.55

given in the table 4.26. The results of the overall performance of the model are presented
in table 4.27.

Figure 4.27: % values of p, r, f1­score while
training the ner of the en_core_sci_lg

model(processing pipeline: tok2vec, tagger,
parser, ner) on the CHEMDNER corpus (80%
train set, 20% test set). Training lasted for 5

epochs with batch size 128.

Figure 4.28: The loss values while training the ner
component of the en_core_sci_lg

model(processing pipeline: tok2vec, tagger,
parser, ner) on the CHEMDNER corpus (80% train

set, 20% test set). Training took place for 5
epochs with batch size 128.

Table 4.26: The overall precision, recall and f1 ­score of the en_core_sci_scibert (processing
pipeline: tok2vec, tagger, parser, ner) model trained on the CHEMDNER corpus (80% of
CHEMDNER’s training and evaluation set was used for training and 20% for evaluation).

Chemical Entities categories PRECISION(%) RECALL (%) F1­SCORE (%)

SYSTEMATIC 65.21 82.66 72.90
FAMILY 79.59 68.29 73.51
TRIVIAL 77.79 81.49 79.60
FORMULA 68.09 77.58 72.52
MULTIPLE 66.67 52.63 58.82

ABBREVIATION 84.57 79.19 81.79
IDENTIFIER 94.12 80.00 86.49

When trying to train the en_core_sci_md/lg/scibert models that include in their processing
pipeline a ”tagger” and a ”parser”, there is not enough memory. Probably a machine with
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Table 4.27: The overall precision, recall and f1 ­score of the en_core_sci_scibert model trained on
the CHEMDNER training set.

NER PRECISION (%) NER RECALL (%) NER F1­SCORE (%)

74.15 77.87 75.96

more than 8 G RAM is needed.

Overview of results. We observed that adding a ”tagger” and a ”parser” at the processing
pipeline improved the performance of the spaCy models. The comparison of the f1­scores
of the trained models that did not have a ”tagger” and a ”parser” to those that had a ”tag­
ger” and a ”parser” in the processing pipeline is presented in Table 4.28. The model with
the highest f1­score is the en_core_sci_md model with processing pipeline that consists
of a ”tokenizer”, a ”tagger”, a ”parser” and a ”ner”. The entity recogniser component was
trained on the CHEMDNER corpus using 80% of the training and dvelopment datasets
for training and the remaining 20% for testing. It is a statistical model with weights that
enable it to make predictions of chemical entity labels: ABBREVIATION, FAMILY, FOR­
MULA, IDENTIFIER, MULTIPLE, SYSTEMATIC, TRIVIAL. Figure 4.29 presents the pro­
cessing pipeline of the trained spaCy model with the highest f1­score evaluated on the
CHEMDNER test set.

Figure 4.29: Processing pipeline that consists of the following components: toc2vec, tagger,
parser ner.

Table 4.28: Presentation of the training experiments.

scispaCy model Percentage f1­score f1­score
for training and testing on evaluation set on evaluation set

(tagger,parser)

en_core_sci_md 50% : 50% 42.68 % ­
en_core_sci_md 80% : 20% 72.12% 76.53 %
en_core_sci_md 90% : 10% 67.68 % not enough memory
en_core_sci_lg 80% : 20% 56.66 % 74.55 %
en_core_sci_lg 90% : 10% 66. 44 % not enough memory

en_core_sci_scibert 50% : 50% 58.91 % ­
en_core_sci_scibert 80% : 20% 67.37 % 75.96 %
en_core_sci_scibert 90% : 10% not enough memory not enough memory

4.1.6 Chemical Named Entity Recogniser ­ evaluation of the final model

According to the experiments that have been described and presented in this chapter the
spaCy model that gave the best results:

• was developed using the en_core_sci_md processing pipeline: a full spaCy pipeline
for biomedical data with a large vocabulary and 50k word vectors, and
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• its processing pipeline included the tok2vec, the tagger, the parser and the ner com­
ponents (figure 4.29),

• its NER component of the pipeline was trained on the training and development sets
of the CHEMDNER corpus that were randomly split into 80% for training and 20%
for testing.

The precision, recall and f1­score evaluating the performance of the spaCy model are
calculated on the evaluation set of the CHEMDNER corpus. The evaluation set of the
CHEMDNER corpus consists of 3000 abstracts (see section 3.3) of various disciplines of
Chemistry and was not used during training.

For the calculation of these scores, not only the correct identification of each chemical
entity is taken into account, but also if each chemical entity is correctly classified to one of
the seven classes: ABBREVIATION,FAMILY, FORMULA, IDENTIFIER, MULTIPLE, SYS­
TEMATIC and TRIVIAL. In the BioCreative IV community challenge [35], for the chemical
entity mention recognition ­ CEM task, the participating teams were evaluated according
to the performance of their chemical NER tool in correctly identifying the chemical entities
without taking into account the correct classification of each entity to one of the seven
classes.

We wanted to compare the performance of the the spaCy model with the best f1­score to
the tools that partipated in the CEM task of BioCreative IV community challenge. In order
to do so, we evaluated the spaCy model with the best performance according to whether
it identifies correctly the chemical entities in the evaluation set of the CHEMDNER corpus.

We then compared the precision, recall and f­score of the model to the results of the
participating teams that are presented in figure 3.4. In total 26 teams participated in the
CEM task with 106 submissions [35]. The mean of the precision, recall and f1­scores of
the participating submissions are: p = 80.27%, r = 70.94%, f1­score = 73.49% and the
medians are: p = 85.35%, r = 71.87%, f1­score = 76.62% (one of the submissions had 0
values and was not included in the calculations of the mean and the median).

The spaCy model’s precision, recall and f1­score are presented in table 4.29. Our model,
in comparison to the chemical NER tools that participated in the CEM task of the BioCre­
ative competition takes the 10th position and its overall performance is relatively close to
the scores of the winning team (precision: 89.09%, recall: 85.75%, fi­score: 87.39%).

Table 4.29: The overall precision, recall and f1 ­score of the spaCy model on correctly identifying
chemical entities in CHEMDNER’s evaluation set.

NER PRECISION (%) NER RECALL (%) NER F1­SCORE (%)

84.71 77.07 80.71

4.2 The Case of Hyperthermophile Microorganisms

4.2.1 Αbstract collection

The aim of this case study is to research all the available literature of selected species of
hyperthermophilic microorganisms (in the PubMed database) about the chemical entities
(metabolites, substrates, enzyme cofactors, etc) that are mentioned in the abstracts of the
selected publications. Then, with the help of generated association rules (see Subsection
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2.5 for background), the goal is to study the relationships between data items, such as the
relationships between the microorganisms and the chemical entities and the relationships
among the chemical entities themselves. The relations between data items that will be
identified will be verified by reading the relevant literature.

This work aims to facilitate the study of the biological processes of hyperthermophilic mi­
croorganisms by emphasising on the chemical entities that co­occur in the literature about
hyperthermophiles. The association rules that will be generated will serve as a starting
point in checking out the main focus of the research on the metabolic processes of the
organisms of interest (in this case nine selected species of hyperthermophilic microorgan­
isms).

The selected hyperthermophilic microorganisms for this task are species that have been
isolated in cultures in the laboratory for many years and have been extensively studied
for large scale applications in industry [76]: Thermococcus kodakarensis, Pyrococcus
furiosus, Metallosphaera sedula, Thermotoga maritima, Caldicellulosiruptor bescii, Sulfo­
lobus solfataricus, Thermus thermophilus, Thermoanaerobacter mathranii and Caldicel­
lulosiruptor hydrothermalis.

The ORGANISMS web resource [56] (http://organisms.jensenlab.org) was used in
order to retrieve abstracts with mentions of selected hyperthermophilic microorganisms.
The search is done according to each species TaxID, retrieved from NCBI taxonomy
(www.ncbi.nlm.nih.gov/taxonomy/). The tool ORGANISMS and SPECIES [56] takes
a dictionary­based flexible matching approach and tags species and other taxa names
(Linnaean binomial names and other synonyms) in text.

We collected 14415 unique abstracts in Medline database. In these abstract we found
mentions of:

• Thermococcus kodakarensis (899 abstracts),

• Pyrococcus furiosus (2740 abstracts),

• Metallosphaera sedula(181 abstracts),

• Thermotoga maritima(3075 abstracts),

• Caldicellulosiruptor bescii(224 abstracts),

• Sulfolobus solfataricus(3249 abstracts),

• Thermus thermophilus(5757 abstracts),

• Thermoanaerobacter mathranii (150 abstracts),

• Caldicellulosiruptor hydrothermalis (47 abstracts).

The number of abstracts retrieved for each microorganism is presented in figure 4.30
and in table 4.30. The abstracts were extracted in June 2021. Thermus thermophilus,
Sulfolobus solfataricus, Thermotoga maritima and Pyrococcus furiosus seem to be the
most studied organisms in comparison to the other species, since millions of abstracts
that mention them have been deposited in PubMed.
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Table 4.30: The number of the abstracts retrieved with ORGANISMS web source about each
hyperthermophile microorganism and the number of abstracts that the spaCy NER model

identified chemical entities in.

Microorganism TaxID # of abstracts # of abstracts with chemicals

Thermococcus kodakarensis 311400 899 737
Pyrococcus furiosus 2261 2740 2185

Metallosphaera sedula 43687 181 151
Thermotoga maritima 2336 3075 2553

Caldicellulosiruptor bescii 31899 224 195
Sulfolobus solfataricus 2287 3249 2482
Thermus thermophilus 274 5757 4718

Thermoanaerobacter mathranii 583357 150 115
Caldicellulosiruptor hydrothermalis 413888 47 33

4.2.2 Chemical NER on Abstract Collection for Hyperthermophile Microorganisms

The spaCy model was used for identifying the chemical entities in the selected abstracts.
In these 14415 abstracts that are being studied, 14 were included in the CHEMDNER
corpus (PubMed IDs: 23336064, 23429192, 23293964, 23295222­ about T.maritima,
23344974, 23303790, 23589624, 23408858, 23182463 ­ abstracts about P. furiosus,
23622866, 23361460, 23411285 ­ abstracts about S. solfataricus, 23118486, 23411229
­ abstracts about T. thermophilus) and were used during the training of the model. The
spaCy model did not identify any chemical entity in 2997 abstracts and 11418 abstracts
were found to have mentions of chemical entities according to the spaCy model. The
number of abstracts extracted from PubMed using the ORGANISMS resource about each
microorganism and the number among them that has mentions of chemical entities iden­
tified by the spaCy model are described in more detail in figure 4.30 and in table 4.30.

When the chemical ΝΕR step was finished, a dictionary was provided mentioning for each
PubMed ID (key of the dictionary) all the chemical entities that were identified by the spaCy
model in the abstract and the species names that were tagged in the abstract by the
SPECIES tagger (values of the dictionary). It was common among the identified chemicals
for one chemical to be present in various forms, for example, in singular and plural form,
with a capital first letter, etc. (for example the chemical entities: phenol, Phenol). This is
why the identified chemicals were further processed in the way that the chemical entities
(words or phrases) were reduced to their stem so that common suffixes were removed. In
total 10562 unique chemical entities were retrieved from the selected abstracts.
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Figure 4.30: The bar plot presents the number of abstracts where each of the hyperthermophile
microorganisms is tagged (blue bars) and the number of these abstracts that also have mentions

of chemicals identified by the spacy model (red bars).
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5. ASSOCIATION RULES FOR HYPERTHERMOPHILES AND
CHEMICALS

5.1 Frequent itemset generation & Association rules extraction

In the process of association rule mining between hyperthermophile microorganisms and
chemical entities or between chemical entities and chemical entities the frequent itemsets
are detected using the fpgrowth algorithm (see section 2.5.2 for more detail in frequent
itemset mining methods) with a low minimum support threshold: min_support = 0.005.
The number of frequent itemsets that were identified is 320. In Appendix B the Table B
presents the detected frequent items and itemsets and their support. Once the frequent
itemsets were found, association rules were generated by satisfying both the minimum
support and minimum confidence threshold. The threshold in both cases was 0.005 (see
section 2.5.2 for more detail about generating association rules from frequent itemsets).
In total 432 association rules were generated.

In Figures 5.1 and 5.2 the association rules between frequent items and/or itemsets are
visualized according to their support (x axis) and confidence (y axis) (see section 2.5.1 for
the definitions of support and confidence). In Figure 5.1 is also presented the length of the
itemsets between which association rules are generated. We observe that the association
rules are generated mostly between two frequent items (in purple) and between a frequent
item and a frequent itemset that consists of two items (in yellow). In Figure 5.2 is also
visualised the lift value (see section 2.5.3) of each association rule.

The selected association rules for further study and visualization were the association
rules whose lift value is more than 5 (lift > 5) (see section 2.5.3 for more detail in eval­
uating the importance of the generated association rules). 36 association rules have lift
values more than 5. These 36 association rules are presented in Appendix A in the Table
A. These 36 association rules between items and/or itemsets of hyperthermophilic mi­
croorganisms and chemical entities and among chemical entities are visualised in figure
5.3. We further investigated the available literature on the nine selected species of hyper­
thermophilic microorganisms about the co­occurrence of the itemsets between whom the
association rules were generated.

5.2 Investigation of the generated association rules

The association rules generated by the association rule analysis (Figure 5.3) require fur­
ther research. The organism specific collection of abstracts was specifically studied for
the co­occurence of these items or itemsets and about their biological significance. In this
section first the association rules with biological interest are going to be presented and
discussed and then the association rules that were expected in terms of their biological
meaning.

Biologically interesting association rules:

• Association Rules 35: (aminoacyl) ==> (T. thermophilus) & 36: (T. thermophilus,
amino acid) ==> (aminoacyl)
Aminoacylation is the attachment of an amino acid to a tRNA. It is a two­step process
catalyzed by aminoacyl­tRNA synthetases (aaRSs).
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Figure 5.1: Visualization of the generated association rules: their support (x axis) and confidence
(y axis), the length of the frequent itemsets.

Figure 5.2: Visualization of the generated association rules: their support (x axis) and confidence
(y axis), the lift value.
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Figure 5.3: Visualization of the 36 association rules (lift > 5).

– The first step, termed “activation”, is the formation of an aminoacyl­AMP (aminoacyl­
adenylate) on the enzyme through the hydrolysis of adenosine triphosphate
(ATP).

– The second step is the transfer of the activated amino acid residue from the
adenylate to a tRNA in a reaction referred to as “charging” [45].

In general, the genetic system of T. thermophilus has been used to overexpress
active tagged versions of its own proteins and a vast amount of studies have used
T. thermophilus as a source of crystallizable proteins, in order to study their func­
tions [76]. In the downloaded abstracts about T. thermophilus, the aminoacyl­tRNA
synthetases (aaRSs) of this hyperthermophile microorganism seem to have been
extensively studied mostly in crystallization studies and mechanistic studies (ex­
amples of PubMed IDs on this subject: 31869198, 31084346, 26184179, 24095058,
23536245, 19496540, 9115984). Also the aminoacyl­tRNA synthetases (aaRSs)
have been studied as targets for new therapies with antibiotics that can block the
translation of bacteria (examples of PubMed IDs on this subject: 32817463, 32631562,
32088946, 31600972).

• Association Rules 3 ­ 6 & 9, 10: copper, heme, T. thermophilus
Heme–copper oxygen reductases (HCO) [64] are transmembrane enzymes: the last
enzymatic complexes of most aerobic respiratory chains. Their catalytic role in the
respiratory chain is to reduceO2 to water in a process coupled to proton translocation
across the membrane. These enzymes couple the catalytic reaction to charge sep­
aration and charge translocation across the prokaryotic cytoplasmic or mitochondrial
membrane and help in energy conservation. In this way they contribute to synthesis
of ATP, solute/nutrient cell import and motility. In subunit I, there is an heme and
the catalytic site. The catalytic site is formed by an heme and a copper ion which is
bound to a histidine residue covalently linked to a tyrosine residue. Subunit I is com­
mon to all enzymes. A second subunit (subunit II) might be present, which may have
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Figure 5.4: Crystallographic structure of heme–copper oxygen reductase of T. thermophilus. The
catalytic subunit is shown in green and an additional subunit is presented in red. Copper ions are

represented as black spheres and the heme is shown as sticks (orange)[64].

a binuclear copper center. In Figure 5.4 is presented the crystallographic structure of
heme–copper oxygen reductase of T. thermophilus [64]. A number of studies have
focused on the mechanistic function and structure of HCOs of T. thermophilus (ex­
amples of PubMed IDs on this subject: 34022199, 33962016, 33535124, 30523412,
2375508, 22139175, 15041681). It has been shown that the HCOs of Thermus ther­
mophilus are able to catalyze the reduction of nitric oxide (NO) to nitrous oxide (N2O)
under reducing anaerobic conditions, supporting the hypothesis of the presence of
a denitrification pathway and aerobic respiration [15].

• Association Rules 25: ATP ==> (ADP, T. thermophilus) & 26 (ADP, T. thermophilus)
==> ATP
In the abstracts about T. thermophilus the role of ATP has been studied for its role in
aminoacylation, in tRNA degradation, in the production of CoenzymeA, about trans­
porters (mostly the ATP Binding Cassette ­ABC family of transporters) and enzymes
(f.ex. ATPases, kinases).

• Association Rules 17: (carbohydrate) ==> (C. bescii) & 18: (C. bescii) ==> (carbo­
hydrate)
Carbohydrate metabolism has been extensively studied inCaldicellulosiruptor bescii
for the production of ethanol from lignocellulosic biomass (biomass hydrolysis, car­
bohydrate transport and utilization, and production of ethanol) [75, 58, 31, 65, 40]. A
wide number of studies focus on engineering this bacterium for optimal conversion
of lignocellulose to commercial products.
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Figure 5.5: Visualization of the 15 association rules that indicate an interesting relationship about
hyperthermophiles and chemical compounds related to a biological process.

• Association Rules 21: (carbon) ==> (nitrogen) & 22: (nitrogen) ==> (carbon)
Carbon metabolism and Nitrogen metabolism studied together in thermophilic mi­
crobes [10].

Other association rules with more general and expected occurrences also came up:

• Association Rules 1 & 2 between itemsets: GTP, GDP

• Association Rules 27 & 28 between itemsets: ADP, ATP It has been observed in
P. furiosus that under heat shock conditions the pools of ADP and ATP increased
significantly. A similar increase has been observed for E. coli in response to a tem­
perature upshift. This probably reflects an increased demand for energy during ad­
aptation to stressful conditions78.

• Association Rules 11 & 12 between itemsets: NADH, NADPH

• Association Rules 7 & 8 between itemsets: quinone, NADH

• Association Rules 13, 14, 19, 20: ADP, ATP, amino acids

• Association Rules 31­34: glucose, sugar, carbonhydrates

• Association Rules 23 & 24 between itemsets: hydrogen, H2 There are various ap­
plications for extremophiles in the production of hydrogen through anaerobic fer­
mentation and hydrogenases [9] . The problem indicated here is that this system
can not discriminate between a chemical molecule mentioned by its name or its mo­
lecular form.

• Association Rules 15 & 16 between itemsets: iron, Fe Similarly about iron (Fe). Iron
oxidation is extensively studied in thermophilic archaea.
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6. CONCLUSIONS AND FURTHER WORK

This project focuses on creating a chemical Named Entity Recogniser (NER). The chem­
ical NER tool is created using the open source python library for NLP: spaCy and the
python package that contains spaCymodels for processing scientific biomedical text: scis­
paCy. The training and development datasets that were used for the training of the chem­
ical NER tool came from the CHEMDNER corpus: the largest, publicly available, manually
annotated corpus of chemical entities that includes 10,000 abstracts from recent public­
ations on diverse disciplines of chemistry. The chemical entity mentions of the CHEM­
DNER corpus were manually labeled and were manually classified to one of the seven
predefined structure­associated chemical entity mention (SACEM) classes: Abbreviation,
Family, Formula, Identifier, Multiple, Systematic and Trivial.

A full spaCy pipeline for biomedical data with a large vocabulary and 50k word vectors
was used. Various training experiments showed that the pipeline architecture, that gives
the best score (f1­score) on the CHEMDNER corpus’ evaluation dataset, consists of the
following components: the ”tokenizer” that generates the contextual embeddings for the
input tokens, the ”part­of­speech­tagger” (assigns part­of­speech tags) and the ”depend­
ency parser” (assigns grammatical dependency labels) that process the grammatical re­
lations between the tokens and the the ”named entity recogniser” that detects and labels
the named entities. Adding a ”tagger” and a ”parser” at the processing pipeline improved
the performance of the spaCy models, in comparison to the pipeline that consisted of
the ”tok2vec” and the ”ner” components (that doesn’t take into account the grammatical
dependencies between tokens). The results are presented in Table 4.28

The named entity recogniser component of the pipeline was trained on the CHEMDNER
corpus. The CHEMDNER corpus’ training (3,500 abstracts) and development datasets
(3,500 abstracts) consisting of in total 7,000 abstracts, were randomly splited in 80% for
training and 20% for development. The model was evaluated on the CHEMDNER corpus’
evaluation set. Training including the true negative subset of the CHEMDNER corpus
showed better results than without including it (Table 4.18). A dictionary of chemicals was
not used since experiments showed that it adds false positives to the identified chemical
entities (Table 4.16).

The chemical NER tool’ performance was compared to the performance of other available
tools. In the BioCreative IV community challenge, the chemical entity mention recognition
­ CEM task evaluated the ability of chemical NER tools to specifically locate within a doc­
ument every chemical entity mention, by exactly locating their start and end character
indices. The participating systems were evaluated on the evaluation set of the CHEMD­
NER corpus that had 25,351 chemical entity mentions (7,563 unique chemical names).
The evaluation metrics for comparing the performance of the systems that participated
in the challenge were: the precision, the recall and the f1­score. The participating teams
were evaluated according to the performance of their chemical NER in correctly identifying
the chemical entities without taking into account the correct classification of each entity to
one of the seven classes that the annotators of the CHEMDNER corpus have manually
classified each chemical entity, but only by taking into account the correct identification of
the chemical entities in the test set.

The evaluation of the participating chemical NER tools was done on the more relaxed
criterion of only correctly identifying a chemical entity, without correctly classifying it to one
of the aforementioned SACEM classes. The best teams in the BioCreative IV CEM task
scored f1­scores 72% ­ 88% on the CHEMDNER corpus’ test set. The winning team’s
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scores were: precision: 89.09%, recall: 85.75%, fi­score: 87.39%. The chemical NER
tool that was developed using spaCy scored precision: 84.71%, recall: 77.07%, fi­score:
80.71% (Table 4.29).

After the chemical NER tool was developed it was used in a case study about hyper­
thermophile microorganisms. Τhe available literature of the following microorganisms:
Thermococcus kodakarensis, Pyrococcus furiosus, Metallosphaera sedula, Thermotoga
maritima, Caldicellulosiruptor bescii, Sulfolobus solfataricus, Thermus thermophilus, Ther­
moanaerobacter mathranii and Caldicellulosiruptor hydrothermalis was retrieved with the
ORGANISMS web source (http://organisms.jensenlab.org). The chemical NER tool
was used to identify mentions of chemical entities in these organism specific abstracts.
The chemical entities found to be mentioned in the hyperthermophilic microorganisms ab­
stracts were further analysed for the appearance of patterns that appear frequently in a
dataset and their co­occurrences. Association rule mining is a two­step process:

1. Detecting all the frequent itemsets that occur at least as frequently as a predeter­
mined minimum support count (min_support=0.005) using the fpgrowth algorithm,
and

2. Generating strong association rules from the frequent itemsets, that satisfy a pre­
determined minimum support and minimum confidence (in both cases 0.005). The
selected association rules for further study and visualization were the association
rules whose lift value is more than 5 (lift > 5).

This project aims to facilitate the study of the biological processes of microorganisms
of interest by first identifying the mentions of chemical entities (metabolites, substrates,
enzyme cofactors, etc.) in abstracts of publications about them and then by retrieving
co­occurrence associations between microorganisms and chemical entities and between
chemical entities. The relations pulled out from the selected papers can give an overview
indicating the most studied subjects referring to chemicals, about the selected dataset of
organisms. More specifically in the case study of hyperthermophiles examples of inter­
esting associations in the examined literature are: the association of carbohydrates to C.
bescii,the association of T .thermophilus to copper and to heme and the association of
T .thermophilus to aminoacyl. Carbohydrate metabolism has been extensively studied
in C. bescii for the production of ethanol from lignocellulosic biomass. Extensive studies
of T. thermophilus show that the heme–copper oxygen reductases are able to catalyze
the reduction of nitric oxide to nitrous oxide under reducing anaerobic conditions. The
aminoacyl­tRNA synthetases (aaRSs) of T. thermophilus seem to have been extensively
studiedmostly in crystallization studies andmechanistic studies. Also the aminoacyl­tRNA
synthetases (aaRSs) have been studied as targets for new therapies with antibiotics that
can block the translation of bacteria.

The contributions of this project are the following:

• We have created a chemical NER tool with performance close to state­of­the­art that
can be easily used for identifying chemicals in scientific text in various applications.

• We have used the spaCy library, a user friendly open source open­source software
library that offers prebuilt statistical neural network models to create convolutional
neural network models for part­of­speech tagging, dependency parsing, text cat­
egorization and named entity recognition (NER).
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• We have presented an application of association rule mining to microbiology that can
help in retrieving co­occurrence associations betweenmicroorganisms and chemical
entities is a selection of organism specific abstracts.

• We have collected and presented in detail the available literature in chemical NER:
the approaches followed over the last decade and a variety of the tools that have
been developed. As well as a detailed list of all the available corpora with mentions
of chemical entities.

Beyond the hyperthermophilic microorganisms study, the presented method could be ap­
plied to any microorganism specific abstract collection. The chemical NER tool developed
using spaCy facilitates the identification of chemical entities in scientific text. Furthermore,
the association rule mining approach introduced in this project provides co­occurrence as­
sociations between microorganisms and chemical entities and between chemical entities
in a selected abstract collection.

Process, environment, organism (PREGO) is a web resource (https://imbbc.hcmr.gr/
project/prego/) that combines large­scale text­mining, data­mining, and network ana­
lysis in order to elucidate the biogeochemical processes carried out by organisms in vari­
ous environments. The described framework could contribute in offering information about
organisms of interest and the chemical entities that are associated with them. The chem­
icals could be linked to biological processes and give information about the organism’s
metabolic pathways, homeostasis regulation, interactions between other organisms and
interactions with its environment.

The current state­of­the­art in NLP is using unsupervised pretrained transformer ­ based
pipelines such as Bidirectional Encoder Representations from Transformers (BERT). The
main use case for pretrained transformer models is transfer learning. A pretrained large
generic model (trained on a huge amount of plain text corpus) is loaded and is then trained
on a smaller labeled dataset (for example in our case on the CHEMDNER corpus which
has labeled chemical entities). The Allen AI Institute has released SCIBERT, a pretrained
language model for scientific text based on BERT [6]. SCIBERT is trained on the full
text of 1.14M biomedical and computer science papers from the Semantic Scholar corpus
(https://github.com/allenai/scibert). scispaCy includes a full spaCy pipeline for bio­
medical data with a 785k vocabulary and allenai/scibert­base as the transformer model
(the en_core_sci_scibert model).

During the training experiments we tried to fine­tune the en_core_sci_scibert model for
the chemical NER task (see results in Table 4.28). The drawback was that the model
needs much longer than the other spaCy models to be trained and is harder to deploy
on a machine with limited resources. The authors of spaCy recommend to use a GPU
for both training and usage (https://explosion.ai/blog/spacy-transformers), since
transformer architectures are not designed to operate efficiently on CPU. A next step, in
order to improve the performance of the chemical NER tool, would be to train scispaCy’s
en_core_sci_scibert model on the CHEMDNER corpus using a GPU.
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ABBREVIATIONS ­ ACRONYMS

NER Named ENtity Recognition

NLP Natural Language Processing

HMM Hidden Markov Models

MEMM Maximum Entropy Markov Models

CRF Conditional Random Fields

SVM Support Vector Machines

ER Entity Recognition

IE Information Extraction

PMC PubMed Central

NN Neural Networks

DNN Deep Neural Networks

CNN Convolutional neural network

LSTM Long short­term memory Networks

BiLSTM Bidirectional Long short­term memory Networks

RNN Recurrent neural network

POS Part­of­Speach

NE Named Entity

IUPAC International Union of Pure and Applied Chemistry

O. Theologi 76



Chemical text and association rule mining to facilitate the study of metabolic processes in hyperthermophilic microorganisms.

APPENDIX A. FIRST APPENDIX
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#
antecedents

consequents
antecedent

consequent
support

confidence
lift

leverage
conviction

length
support

support
1

gtp
gdp

0.0241
0.0139

0.0095
0.3964

28.4634
0.0092

1.6336
2

2
gdp

gtp
0.0139

0.0241
0.0095

0.6855
28.4634

0.0092
3.1034

2
3

copper,
hem

e
0.0119

0.0187
0.0056

0.4706
25.2262

0.0054
1.8537

3
t.therm

ophilus
4

hem
e

copper,
0.0187

0.0119
0.0056

0.3005
25.2262

0.0054
1.4125

3
t.therm

ophilus
5

hem
e,

copper
0.0147

0.0168
0.0056

0.3810
22.6548

0.0054
1.5882

3
t.therm

ophilus
6

copper
hem

e,
0.0168

0.0147
0.0056

0.3333
22.6548

0.0054
1.4779

3
t.therm

ophilus
7

quinone
nadh

0.0097
0.0275

0.0052
0.5315

19.3281
0.0049

2.0759
2

8
nadh

quinon
0.0275

0.0097
0.0052

0.1879
19.3281

0.0049
1.2194

2
9

copper
hem

e
0.0168

0.0187
0.0058

0.3438
18.4269

0.0055
1.4954

2
10

hem
e

copper
0.0187

0.0168
0.0058

0.3099
18.4269

0.0055
1.4246

2
11

nadph
nadh

0.0142
0.0275

0.0055
0.3889

14.1412
0.0051

1.5914
2

12
nadh

nadph)
0.0275

0.0142
0.0055

0.2006
14.1412

0.0051
1.2332

2
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#
antecedents

consequents
antecedent

consequent
support

confidence
lift

leverage
conviction

length
support

support
13

nucleotide’,atp
adp

0.0202
0.0234

0.0064
0.3160

13.5142
0.0059

1.4278
3

14
adp

nucleotide,atp
0.0234

0.0202
0.0064

0.2734
13.5142

0.0059
1.3484

3
15

fe
iron

0.0173
0.0271

0.0051
0.2944

10.8791
0.0046

1.3789
2

16
iron

fe
0.0271

0.0173
0.0051

0.1877
10.8791

0.0046
1.2098

2
17

carbohydrate
c.bescii

0.0304
0.0164

0.0053
0.1758

10.7337
0.0048

1.1934
2

18
c.bescii

carbohydr
0.0164

0.0304
0.0053

0.3262
10.7337

0.0048
1.4390

2
19

atp
adp,nucleotide

0.0921
0.0074

0.0064
0.0694

9.4323
0.0057

1.0667
3

20
adp,nucleotide

atp
0.0074

0.0921
0.0064

0.8690
9.4323

0.0057
6.9328

3
21

carbon
nitrogen

0.0441
0.0150

0.0060
0.1369

9.1414
0.0054

1.1413
2

22
nitrogen

arbon
0.0150

0.0441
0.0060

0.4035
9.1414

0.0054
1.6025

2
23

h2
hydrogen

0.0136
0.0540

0.0060
0.4387

8.1186
0.0052

1.6853
2

24
hydrogen

h2
0.0540

0.0136
0.0060

0.1102
8.1186

0.0052
1.1086

2
25

atp
adp,

0.0921
0.0087

0.0062
0.0675

7.7839
0.0054

1.0631
3

t.therm
ophilus

26
adp,

atp
0.0087

0.0921
0.0062

0.7172
7.7839

0.0054
3.2100

3
t.therm

ophilus
27

adp
atp

0.0234
0.0921

0.0155
0.6629

7.1951
0.0133

2.6933
2

28
atp

adp
0.0921

0.0234
0.0155

0.1683
7.1951

0.0133
1.1742

2
29

t.therm
ophilus,

adp
0.0392

0.0234
0.0062

0.1585
6.7773

0.0053
1.1605

3
atp

30
adp

t.therm
ophilus,

0.0234
0.0392

0.0062
0.2659

6.7773
0.0053

1.3088
3

atp
31

glucose
sugar

0.0361
0.0384

0.0089
0.2476

6.4539
0.0075

1.2780
2

32
sugar

glucose
0.0384

0.0361
0.0089

0.2329
6.4539

0.0075
1.2565

2
33

carbohydrate
sugar

0.0304
0.0384

0.0071
0.2334

6.0852
0.0059

1.2545
2

34
sugar

carbohydrate
0.0384

0.0304
0.0071

0.1849
6.0852

0.0059
1.1896

2
35

am
inoacyl

t.therm
ophilus,

0.0250
0.0730

0.0096
0.3860

5.2841
0.0078

1.5096
3

am
ino

acid
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APPENDIX B. SECOND APPENDIX

support itemsets
0.4039 t. thermophilus
0.2176 t. maritima
0.2098 s. solfataricus
0.1848 p. furiosus
0.1717 amino acid
0.1188 nucleotid
0.1079 n
0.0973 c
0.0921 atp
0.0730 amino acid, t. thermophilus
0.0622 t. kodakarensi
0.0589 nucleotid, t. thermophilus
0.0540 hydrogen
0.0441 carbon
0.0408 n, c
0.0401 n, t. thermophilus
0.0392 atp, t. thermophilus
0.0384 sugar
0.0372 t. maritima, amino acid
0.0370 c, t. thermophilus
0.0361 glucos
0.0327 amino acid, s. solfataricus
0.0316 amino acid, p. furiosus
0.0310 oxygen
0.0308 histidin
0.0308 cystein
0.0304 carbohydr
0.0288 s. solfataricus, nucleotid
0.0284 amino acid, n
0.0282 phosphat
0.0277 t. maritima, c
0.0275 nadh
0.0271 iron
0.0260 t. maritima’, ’n
0.0257 s. solfataricus, p. furiosus
0.0250 aminoacyl
0.0242 s. solfataricus, n
0.0241 gtp
0.0238 atp, t. maritima
0.0234 adp
0.0229 amino acid, nucleotid
0.0226 glutam
0.0225 sulfur
0.0218 t. thermophilus, aminoacyl
0.0214 n, p. furiosus
0.0213 lysin
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support itemsets
0.0210 zinc
0.0206 arginin
0.0202 atp, nucleotid
0.0200 t. maritima, nucleotid
0.0191 s. solfataricus, c
0.0191 t. thermophilus, hydrogen
0.0190 serin
0.0187 amino acid, c
0.0187 heme
0.0186 nucleotid, p. furiosus
0.0175 t. maritima, t. thermophilus
0.0174 t. maritima, p. furiosus
0.0173 atp, p. furiosus
0.0173 fe
0.0172 aspart
0.0168 copper
0.0165 t. thermophilus, p. furiosus
0.0164 c. bescii
0.0164 alanin
0.0164 c, p. furiosus
0.0161 atp, s. solfataricus
0.0160 iron­sulfur
0.0158 t. thermophilus, nadh
0.0155 atp’, ’adp
0.0152 n’, ’c’, ’t. thermophilus
0.0151 t. kodakarensi, p. furiosus
0.0151 tryptophan
0.0150 sds
0.0150 nitrogen
0.0148 pyruv
0.0147 heme’, ’t. thermophilus
0.0147 t. thermophilus, oxygen
0.0147 alcohol
0.0146 ethanol
0.0145 amino
0.0145 histidin, t. maritima
0.0143 t. maritima, hydrogen
0.0142 nadph
0.0139 adenin
0.0139 gdp
0.0138 hydrogen, p. furiosus
0.0138 co2
0.0137 disulfid
0.0136 h2
0.0134 prolin
0.0130 gtp, t. thermophilus
0.0130 tyrosin
0.0129 mg(2+)
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support itemsets
0.0129 m. sedula
0.0127 atp’, ’amino acid
0.0126 t. maritima, n, c
0.0124 s. solfataricus, t. thermophilus
0.0123 methionin
0.0122 purin
0.0120 glutamin
0.0120 amino acid, nucleotid, t. thermophilus
0.0119 copper, t. thermophilus
0.0118 maltos
0.0118 s. solfataricus, carbon
0.0117 t. thermophilus, lysin
0.0116 histidin, t. thermophilus
0.0116 t. kodakarensi’, ’amino acid
0.0115 t. maritima, carbohydr
0.0111 amino acid, aminoacyl
0.0111 methyl
0.0111 atp, n
0.0111 t. maritima, sugar
0.0109 t. kodakarensi, s. solfataricus
0.0107 cystein, t. thermophilus
0.0106 nucleotid, n
0.0106 leucin
0.0106 flavin
0.0106 s
0.0105 glycin
0.0105 pyrimidin
0.0102 glucos, s. solfataricus
0.0102 t. thermophilus, carbon
0.0102 iron, p. furiosus
0.0100 adenosin
0.0100 nucleosid
0.0099 t. mathranii
0.0098 nucleotid, c
0.0097 quinon
0.0096 amino acid, t. thermophilus, aminoacyl
0.0095 carboxyl
0.0095 gtp, gdp
0.0095 co
0.0095 atp, c
0.0095 urea
0.0095 sugar, p. furiosus
0.0095 t. maritima, s. solfataricus
0.0095 polyacrylamid
0.0094 amp
0.0094 amino acid, n, t. thermophilus
0.0093 s. solfataricus, sugar
0.0093 t. maritima, carbon
0.0092 ribos
0.0092 fatty acid
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support itemsets
0.0091 mg2+
0.0091 t. thermophilus, phosphat
0.0090 xylos
0.0089 glucos, sugar
0.0089 coa
0.0089 amino acid, n, c
0.0089 o2
0.0088 t. thermophilus, arginin
0.0088 nad
0.0088 threonin
0.0087 magnesium
0.0087 t. thermophilus, adp
0.0087 uracil
0.0086 atp, nucleotid, t. thermophilus
0.0086 glycerol
0.0085 glucos, t. maritima
0.0084 4fe­4
0.0084 h
0.0083 carbon, p. furiosus
0.0083 glutam, t. thermophilus
0.0082 ser
0.0082 cys
0.0082 cellobios
0.0081 acetyl­coa
0.0081 sulfur, p. furiosus
0.0081 phenylalanin
0.0081 t. maritima’, ’phosphat
0.0081 glucos, p. furiosus
0.0081 hydroxyl
0.0079 t. thermophilus, prolin
0.0079 s. solfataricus, hydrogen
0.0078 glucos, t. thermophilus
0.0078 superoxid
0.0078 aldehyd
0.0078 s. solfataricus, n, c
0.0078 guanin
0.0077 t. thermophilus, zinc
0.0077 fad
0.0076 ammonia
0.0075 t. kodakarensi, n
0.0075 iron, t. thermophilus
0.0075 t. thermophilus, aspart
0.0075 t. thermophilus, adenin
0.0074 sugar, t. thermophilus
0.0074 amino acid, cystein
0.0074 trehalos
0.0074 nucleotid, adp
0.0074 gtp, nucleotid
0.0074 t. maritima, cystein
0.0074 amino acid, c, t. thermophilus
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support itemsets
0.0073 3­isopropylmal
0.0073 t. kodakarensi, c
0.0072 3­isopropylmal, t. thermophilus
0.0072 glucos, carbon
0.0072 mn2+
0.0072 s­adenosylmethionin
0.0072 fe, p. furiosus
0.0071 carbohydr, sugar
0.0070 sulfat
0.0070 ribonucleotid
0.0070 carbohydr, p. furiosus
0.0069 sucros
0.0069 n, c, p. furiosus
0.0069 amino acid, hydrogen
0.0069 gdp, t. thermophilus
0.0068 manganes
0.0068 asparagin
0.0068 amino acid, lysin
0.0068 quinon, t. thermophilus
0.0067 asp
0.0067 amino acid, n, p. furiosus
0.0067 alanin, amino acid
0.0067 thiol
0.0067 amino, t. thermophilus
0.0067 t. thermophilus, iron­sulfur
0.0067 t. kodakarensi, s. solfataricus, p. furiosus
0.0066 lactos
0.0066 amino acid, sugar
0.0066 t. maritima’, ’adp
0.0066 amino­acid
0.0065 lactat
0.0065 amino acid, s. solfataricus, n
0.0065 polyamin
0.0065 alanin, t. thermophilus
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