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Overview
and Preliminaries

This thesis was born out of the author’s recent fascination with directed
polytopes and polytopal digraphs, so it is only appropriate to start it by defining
these objects:
Definition 1. A directed polytope is a pair (P, f) where P is a polytope in Rd

and f : Rd → R is a linear functional which is generic over the vertices of P .

Definition 2. The digraph ω(P, f) of a directed polytope (P, f) is obtained
by applying the orientation induced by f on the graph of P , i.e. every edge of
ω(P, f) is directed from the end with the lower f -value to the end with the higher
f -value. If a digraph is isomorphic to the digraph of some directed polytope, then
it is called polytopal.

These pretty things have resided in the collective consciousness of mathe-
maticians for three quarters of a century, emerging once in a while to provide
crucial insight about undirected polytopes, as in the strengthening of Balinski’s
Theorem by Holt and Klee [11], or in Kalai’s cunning proof of the Blind-Mani-
Levitska Theorem [13]. And yet, although directed polytopes and polytopal
digraphs have occasionally proven to be useful tools, they have rarely been the
object of study. Rather, they have mostly been treated as a setting for the
simplex algorithm.

The purpose of this thesis is triple.

• Firstly, to lay some foundations for this topic. This is a twofold matter.

– For one, we need a language for directed polytopes. For example,
what does it mean for a directed polytope to be “unique” in satisfying
a property? We can only make such statements if we have a notion
of equivalence over directed polytopes. We will provide such notions,
along with a wider vocabulary of definitions.

– For another, we wish to gather all the low-hanging fruit concerning
directed polytopes and their digraphs.

• Secondly, to collect some of the mathematical work which has been done
on directed polytopes in one document.
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• Thirdly, to compare results concerning polytopes and their graphs to re-
sults concerning directed polytopes and their digraphs.

Two topics appear to be particularly relevant to directed polytopes, in the
sense that some work can be done (and has been done) on them. One is recon-
struction; determining polytopal digraphs, deducing whether there is a unique
directed polytope associated with each of them, and providing a (preferably
polynomial-time) algorithm for reconstructing said polytope. The other is enu-
meration; counting various structures which are encountered on directed poly-
topes. This thesis is split between these two topics.

This work is organised as follows.
The rest of the introduction sets the necessary foundations for working with

directed polytopes. In 0.1, we settle our definitions and provide some relevant
theorems and observations. One particularly important theorem is the one
bearing Balinski’s name; in 0.2, we present the proof of Balinski’s Theorem
provided by Holt and Klee. For reasons that we will explain, it makes for a
great introductory result.

In the first half of the thesis, we will be preoccupied with reconstruction re-
sults: propositions which identify certain polytopal (di)graphs, answer whether
their corresponding (directed) polytopes are unique, and provide an effective
way to compute such (directed) polytopes.

In Chapter 1, we will focus on 3-polytopes, of both the directed and undi-
rected varieties. Steinitz’s Theorem is presented in 1.1, whereas its directed
analogue, the Mihalisin-Klee Theorem, follows in 1.2.

Chapter 2 is devoted to simple polytopes. In 2.1, Kalai’s Theorem easily
resolves both the directed and undirected cases, proves the uniqueness of the
reconstruction, and yields an exponential algorithm for performing it. In 2.2,
we show how the reconstruction can be done in polynomial time instead, using
Friedman’s algorithm.

In Chapter 3, we conclude the reconstruction part by mentioning a few
additional classes of reconstructible directed polytopes.

The second half of the thesis is about enumeration results: counting certain
structures which appear in directed polytopes.

In Chapter 4, we review results from a recent paper ([3]) of Athanasiadis,
De Loera, and Zhang, which contains several enumeration theorems related to
arborescences and monotone paths on directed polytopes.

In Chapter 5, we tackle Conjecture 4.6 appearing in [3], which states that
the maximum number of monotone paths in a simple directed 3-polytope on 2n
vertices is Fn+2+1, where Fn is the nth Fibonacci number. We prove that this is
true provided that no directed 3-polytope (P, f) on 2n vertices with maximum
number of monotone paths has a non-extremal triangle, i.e. a triangular face
which contains neither the top nor the bottom vertex of (P, f).

Finally, in Chapter 6, we pose and partially answer the problem of construct-
ing directed polytopes with a given set of different outdegrees. We show that,
for every d ≥ 3 and every finite sequence 0 < 1 < D1 < ... < Dk of natural
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numbers with each Di being large enough, there exists a directed d-polytope
(P, f) such that the different outdegrees of the vertices of the digraph ω(P, f)
are exactly the numbers of the given sequence. In particular, in every dimension
d ≥ 3 there exists a d-polytope with only three different outdegrees. We also
discuss other relevant results.

0.1 Definitions and Known Results
We begin with the basic definitions. Note that, in this thesis, all graphs are

simple and all polytopes are convex.

Graphs:

Given a (di)graph G, a vertex deletion consists of removing a vertex from
V (G) and all of its incident edges from E(G). An edge deletion consists of
removing a single edge from E(G). A vertex smoothing consists of deleting a
vertex of degree 2 and adding its neighbourhood to E(G) (so that the outdegrees
of the remaining vertices do not change).

A graph H is called a subgraph of a graph G if it can be obtained from G by
applying vertex and edge deletions. In particular, it is called an induced sub-
graph of G if it can be obtained through vertex deletions alone, and a spanning
subgraph of G if it can be obtained through edge deletions alone. Moreover,
H is called a topological minor of G if it can be obtained from G by applying
vertex and edge deletions and vertex smoothings.

A graph isomorphism between two graphs G and H is a function which
maps the vertices of G bijectively to the vertices of H, and the edges of G
bijectively to the edges of H, so that the ends of an edge are always mapped
to the ends of its image. A digraph isomorphism between two digraphs G and
H is a graph isomorphism between the underlying graphs which also preserves
orientation. If there exists an isomorphism between to (di)graphs, then we call
them isomorphic.

The topological realisation of a graph is the 1-complex whose 0-cells are
bijectively labelled by the vertices of the graph, its 1-cells are bijectively labelled
by the edges of the graph, and the two 0-cells which form the boundary of an 1-
cell are labelled by the ends of the edge which labels the 1-cell. By an embedding
of a graph H into a graph G we mean a topological embedding of the topological
realisation of H into the topological realisation of G. A graph H is embeddable
in a graph G if and only if it is a topological minor of G.

A (di)graph is k-connected if any deletion of k − 1 or fewer vertices yields a
connected sub(di)graph.

A digraph is weakly connected if there exists a directed path between any
two of its vertices, and it is strongly connected if, for every directed pair of its
vertices, there exists a directed path from the first vertex to the second vertex.
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Polytopes:

A (convex) d-polytope is the convex hull of a finite set of points in Rd.
An intersection of a d-polytope with any of its supporting hyperplanes is

called a face. In particular, a face whose affine hull is a k-dimensional affine
space is a k-face (∅ is conventionally considered to have dimension −1).

The set of faces of a polytope P ordered by inclusion is called the face
lattice of P (because it is a lattice), and is denoted F(P ). A maximal chain
of F(P ) is called a flag. The number of k-faces of P is denoted fk, and the
vector (f−1, ..., fd) is called the f -vector of P . We also define, for 0 ≤ k ≤ d,
hk := Σk

i=0(−1)k−i
(

d−i
k−i

)
fi−1. The vector (h0, ..., hd) is called the h-vector of P ,

and its relevance to our particular topic will be made clear in chapter 5.
The (d−1)-faces of a polytope are commonly called facets. The affine hull of

a facet F divides Rd into two half-spaces. The points which lie in the half-space
which does not intersect P are said to be beyond F , whereas the points which
lie in the half-space which does intersect P are said to be beneath F .

The 0-faces of a polytope are commonly called vertices, and its 1-faces are
commonly called edges. The graph G(P ) of a d-polytope P is the graph whose
vertices are the vertices of the polytope and whose edges are the edges of the
polytope. A d-polytope is called simple if its graph is d-regular.

A linear functional f : Rd → R is generic over a d-polytope P if, for every
pair of vertices u, v of P , f(u) ̸= f(v).

A directed polytope is an ordered pair (P, f), where P is a polytope and f is
a generic linear functional over P . Each directed polytope (P, f) determines a
digraph ω(P, f) as follows: the underlying graph of ω(P, f) is the graph of P ,
and each edge {u, v} with f(u) < f(v) is oriented from u to v. If an orientation
over the graph of a polytope can be obtained in this manner, it is called LP-
admissible.

A unique sink orientation over a plane graph is an orientation in which every
face has a unique sink, and the graph as a whole also has a unique sink.

It is a well-known folklore theorem (e.g. see []) that every LP-admissible
orientation is an acyclic unique sink orientation. The sink of ω(P, f) is the top
vertex. The sink of ω(P,−f), i.e. the source of ω(P, f), is the bottom vertex.

In general, it is convenient to use the notation vk to denote the vertex of P
with the kth lowest f -value, and the notation dk to mean the out-degree of vk

in ω(P, f). For example, if (P, f) has n vertices, we will write v1 to denote its
bottom vertex, and vn to denote its top vertex.

Occasionally, we will refer to the vertices of (P, f) using terminology from
order theory. By default, such terms should be understood to concern not the
linear order of the vertices by f -value, but rather the order induced by ω(P, f).
For instance, when we say that a vertex v is less than a vertex u, and write
v <(P,f) u, we do not simply mean that f(v) < f(u), but also that there is a
directed path from v to u in ω(P, f). When we only wish to communicate that
f(v) < f(u), we will say that v is lower than u.

A (di)graph is d-polytopal if it is isomorphic to the (di)graph of a (directed)
d-polytope.
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Reconstruction:

Now, we will define the notion of reconstruction, which will be our topic
throughout the first part.

We say that a class of (directed) polytopes C is a reconstruction class up
to an equivalence relation R, or, equivalently, that C is R-reconstructible, if
every two (directed) polytopes in C with the same (di)graph are R-equivalent.
Informally, C is a reconstruction class if, when given the graph G of a polytope
P and the knowledge that P ∈ C, we can always determine P up to R. Here is
an example:

Example 1. The class of all polytopes is a reconstruction class up to quasi-
isometry.

This is not a particularly interesting example. With the possible exception
of geometric group theorists, few mathematicians will gaze upon the multi-
tude of polytopes and declare that they are all the same simply because they
are bounded. Intuitively, an R-reconstructible class is interesting if R is some
“natural” equivalence between (directed) polytopes. For instance, it comes very
naturally to a combinatorialist to equate polytopes with the same combinatorial
structure. The corresponding equivalence relation is well known:

Definition 3. Two polytopes P , P ′ are combinatorially equivalent if their face
lattices are order isomorphic.

We will not make extensive use of any other equivalence relation between
undirected polytopes: combinatorial equivalence is well-established as the most
interesting one. Our challenge is rather to invent an equally natural equivalence
relation for directed polytopes. Unfortunately, we can come up with two.

Definition 4. Two directed polytopes (P, f), (P ′, f ′) are orientation equiva-
lent if there exists an order isomorphism ϕ : F(P ) → F(P ′) between their face
lattices which, when restricted to the digraph of (P, f), yields a digraph isomor-
phism.

Definition 5. Two directed polytopes (P, f), (P ′, f ′) are order equivalent if
there exists an order isomorphism ϕ : F(P )→ F(P ′) between their face lattices
such that, for any two vertices u, v of P , f(u) < f(v)⇔ f ′(ϕ(u)) < f ′(ϕ(v)).

We will work with both of these relations. The reader may have noticed that
order equivalence implies orientation equivalence, since fixing the linear order
of vertices by f -value also fixes the directions of the edges; Figure 1 shows that
the reverse implication is false.

That said, the following theorem holds:

Theorem 1. If a class of directed polytopes is a reconstruction class up to orien-
tation equivalence and the digraphs of its directed polytopes are weakly connected,
then it is also a reconstruction class up to order equivalence.
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Figure 1: The depicted triangular prisms are orientation equivalent, but not
order equivalent.

Proof. Let (P, f), (Q, g) be two orientation equivalent directed polytopes whose
(isomorphic) digraphs are weakly connected. Since ω(P, f) is weakly connected,
it induces a linear order in its vertices, with u <(P,f) v ⇔ f(u) < f(v). The
same is true for ω(Q, g). Hence, an orientation equivalence between (P, f) and
(Q, g) is also an order equivalence.

The following question remains:

Question 1. Are there digraphs which are not weakly connected yet determine
a directed polytope up to order equivalence?

It would be interesting to answer this question within various contexts, such
as for 3-polytopes or simple polytopes.

Enumeration:

Finally, we define the directed polytopes which we shall use and the struc-
tures which we shall enumerate in the second part of the thesis.

A polytope is called k-neighbourly if every k of its vertices form a face.
In particular, a polytope is called 2-neighbourly if its graph is complete. A
[ d

2 ]-neighbourly polytope is also simply called neighbourly. When discussing
directed neighbourly polytopes, we will not provide specifications about their
direction, since, evidently, this does not affect their directed graph, which is the
unique directed, acyclic, complete graph on the required number of vertices.

A polytope is called stacked if it can be obtained from a simplex by re-
peatedly gluing other simplices of the same dimension along common facets,
preserving convexity at each step. A useful class of directed stacked 3-polytopes
are those produced by gluing, for each k ∈ {1, ..., n− 4}, the kth tetrahedron on
the face of the (k − 1)th tetrahedron which is not incident to its lowest vertex,
in such a manner that the unique new vertex is the top vertex of the kth tetra-
hedron. A polytope on n vertices thus constructed will be denoted X(n). An
example is shown in Figure 2.

A k-fold inverted pyramid over a directed d-polytope (P, f) is a directed (d+
k)-polytope (Q, g) which is constructed by adding to (P, f) k apices a1, ..., ak,
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Figure 2: This is X(7). For a different, artistically competent example, see [3].

such that ai /∈ aff(P ∪{a1, ..., ai−1}) ∀i ∈ {1, ..., k}, and such that g|aff(P ) = f
and each apex is lower than all the vertices of P and all the apices with smaller
indices.

A prism is a 3-polytope which is the convex hull of two polygons (its bases)
which lie in parallel planes. A prism is orthogonal if all of its quadrilateral facets,
except perhaps for its bases, are rectangles. The digraph of a directed prism
(P, f) does not depend upon the particular choice of f , which will therefore be
omitted.

A wedge over a vertex is a 3-polytope which is produced by contracting
exactly one non-base edge of a prism. A wedge is othogonal if it originated from
an orthogonal prism.

A spindle is a polytope which has a pair of vertices {u, v} such that every
facet contains exactly one of the vertices u, v. An alternative definition can
be obtained from [2], in which a simplex Σ is called special for a polytope P if
its vertices are vertices of P and each facet of P contains all the vertices of Σ
but one. In that sense, a spindle is simply a polytope which admits a special
1-simplex.

A partial monotone path of (P, f) is a directed path in ω(P, f) which begins
at v1. The number of partial monotone paths in (P, f) which end at vk is
denoted µk(P, f), or µvk (P, f). A partial monotone path in (P,−f) is also
called a partial antitone path in (P, f).

A monotone path of (P, f) is a partial monotone path which ends at the top
vertex. The number of monotone paths in (P, f) is denoted µ(P, f).

An arborescence of (P, f) is a directed tree which contains exactly one out-
going edge for each vertex of ω(P, f).

Theorems:

Having finished the presentation of the basic definitions, we proceed to
present some useful theorems.

The first theorem that we list is a directed version of Menger’s Theorem ([8],
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Theorem 11.6):

Theorem 2. Let x and y be two vertices of a digraph D, such that x is not
joined to y. Then the number of pairwise vertex-disjoint directed (x, y)-paths
in D is equal to the minimum number of vertices (other than x and y) whose
deletion destroys all directed (x, y)-paths in D.

We continue with Whitney’s Theorem, a classic:

Theorem 3. Every 3-connected graph has a unique embedding in S2 up to
composition with homeomorphisms of S2.

We will require the Inductive Construction Theorem:

Theorem 4. Given a polytope P and a point v, the faces of conv(P ∪ {v}) are
exactly the following:

• every face F of P incident to a facet F ′ of P such that v is beyond F ′,

• every set conv(F ∪ {v}), where F is incident to two facets F ′, F ′′ such
that v is beyond F ′ and beneath F ′′.

And we finish with Balinski’s Theorem, which we will discuss in detail im-
mediately:

Theorem 5. Every d-polytopal graph is d-connected.

0.2 Balinski’s Theorem
In 1961, Balinski proved in his doctoral thesis that every d-polytope has a

d-connected graph. His proof famously employs the simplex algorithm. Thirty-
seven years later, Holt and Klee reproduced this result, albeit with a single-page
proof. In fact, Holt and Klee proved the following stronger result:

Theorem 6. There are d vertex-disjoint monotone paths joining the top and
bottom vertices of any directed d-polytope.

Let us see why Theorem 6 implies Balinski’s Theorem. Given any d-polytope
P and its vertices x, y, there exists a directed d-polytope (Q, f) such that Q
is combinatorially equivalent to P , x is the bottom vertex, and y is the top
vertex; simply choose two hyperplanes Hx, Hy such that Hx ∩ P = {x} and
Hy ∩ P = {y}, then perform a perturbation on P as in [5] to make Hx and
Hy parallel, and finally choose f to be perpendicular to the two hyperplanes.
Consequently, from the Holt-Klee Theorem we obtain Balinski’s Theorem.

In brief, Holt and Klee used directed polytopes to obtain a result about
directed polytopes, which by the way implied a famous result about undirected
polytopes, the latter having been previously obtained in a much more arduous
manner. This is excellent motivation for us to examine the proof of the Holt-
Klee Theorem, and in fact we shall do so immediately as a warm-up.
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The proof is done by induction: in dimension 2, the assertion is obvious.
Suppose that it also holds for all dimensions less than d, and let us examine
what happens for dimension d. Let (P, f) be a directed d-polytope, and let x and
y be its bottom and top vertices, respectively. Without loss of generality, we can
identify x with the origin. Let Φ denote the projection to the d− 1 coordinates
perpendicular to f , so that any point q ∈ Rd can be written as q = Φ(q)+f(q)e1.
Again, without loss of generality, we can assume that Φ(y) = x.

Next, we recall the directed version of Menger’s Theorem; to prove the Holt-
Klee Theorem, it is sufficient to show that for every vertex set S of cardinality
d− 1 there exists a monotone path in (P, f) which does not intersect S.

Let H be the hyperplane at which f(q) = 0 (i.e. the first coordinate is zero).
Let J be the hyperplane at which the second coordinate is zero, J+ the half-
space in which it is positive, and J− the half-space in which it is negative. The
projection Φ(S) of the vertex set S is contained in a (d− 2)-dimensional affine
space G within H. With the aid of an appropriate isometry (a rotation around
the e1 axis and perhaps a reflection along J), we may assume that S ⊂ J ∪ J−.
We now distinguish cases.

• If the e1 axis does not skewer P , then we have S ⊂ J− and P ∩ J+ = ∅.
Then P ∩ J is a face of P incident to both x and y and does not intersect
S. By the induction hypothesis, there is a monotone path in (P ∩ J, f)
from x to y missing S.

• If the e1 axis skewers P , then we have S ⊂ J ∪J− and P ∩J+ ̸= ∅. Let Π
be the projection to the first two coordinates. Then (Π(P ), f) is a directed
polygon which has a monotone path from x to y whose internal vertices
lie in J+. This path can be lifted to a monotone path in (P, f). Indeed,
each edge of Π(P ) is the projection of a face of P , and its vertices are the
projections of the top and bottom vertices of the face. Hence, each edge
of the monotone path from x to y in (Π(P ) ∩ J+, f) can be lifted to a
monotone path on the boundary of a face of (P, f). Concatenating these
paths yields a monotone path from x to y in (P, f) which misses S.

By the directed Menger’s Theorem, the proof is now complete.
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Part I: Reconstruction
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Chapter 1

3-polytopes

The theory of reconstruction of polytopes from their graphs has been most
successful in dimension three; indeed, the matter is mostly settled for both
undirected and directed 3-polytopal graphs. As for most great advances on
3-polytopes, this was greatly facilitated by the use of planar graphs, common
spatial intuition, and humankind’s cultural familiarity with the topic. As we
will see in later chapters, relatively little has been achieved in higher dimensions,
where we do not have the aforementioned advantages and, most importantly,
interesting classes are rarely reconstructible.

The first theorem that we present in this chapter is arguably the most im-
portant theorem in 3-polytopes: Steinitz’s Theorem ([10]).
Theorem 7. A graph is 3-polytopal if and only if it is planar and 3-connected.

The counterpart of Steinitz’s Theorem in content and importance for di-
graphs is the Mihalisin-Klee Theorem [15]:
Theorem 8. A digraph is 3-polytopal if and only if it is acyclic, has a unique
source and a unique sink, has three vertex-independent directed paths connecting
its source to its sink, and its underlying graph is 3-polytopal.

Both of these theorems are indeed constructive, in that they provide a
method to produce a (directed) polytope from a polytopal (di)graph. That
the obtained (directed) polytope is unique is a consequence of Whitney’s The-
orem. Indeed, an embedding f : G(P ) → S2 of a polytopal graph determines
P up to combinatorial equivalence, as it determines all the incidences of edges
with faces. Homeomorphisms of S2 preserve these incidences. Hence, all the
planar embeddings of G(P ), being of the form h ◦ f , h ∈ Hom(S2), determine
the same polytope P up to combinatorial equivalence. For digraphs in partic-
ular, any isomorphism between the digraphs of two directed 3-polytopes can
be extended in this manner to a combinatorial equivalence. These observations
yield the following corollaries:
Corollary 1. 3-polytopes are a reconstruction class up to combinatorial equiv-
alence.
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Corollary 2. Directed 3-polytopes are a reconstruction class up to orientation
equivalence.

Corollary 3. Directed 3-polytopes with weakly connected digraphs are a recon-
struction class up to order equivalence.

Finally, Figure 1 establishes that directed 3-polytopes are not a reconstruc-
tion class up to order equivalence. There is only one question remaining:

Question 2. Are there digraphs which are not weakly connected but determine
a 3-polytope up to order equivalence?

1.1 Steinitz’s Theorem
Steinitz’s Theorem, being Steinitz’s Theorem, has been proven in a variety

of ways since its conception. Some of the most famous proofs are those found
in [4], [16] and of course [10], which we presently follow.

That the graph of a 3-polytope is planar is obvious. That it is 3-connected is
a special case of Balinski’s Theorem. Hence, we will focus on proving the inverse
implication, namely that every 3-connected planar graph G is polytopal.

The proof comes in four distinct steps:

• Step 1: We consider G as a plane graph. By Whitney’s Theorem, this
can be achieved in a unique way.

• Step 2: We prove that G either has a vertex of degree 3, or it has a
triangular face.

• Step 3: We show that G can be reduced by a finite sequence of Y −∆ and
∆ − Y transforms to a plane graph G′ with fewer edges such that, if we
have a 3-polytope P ′ with G(P ′) ∼= G′, then we can obtain a 3-polytope
P with G(P ) ∼= G.

• Step 4: We apply induction on the number of edges of G.

So, consider G as a plane graph, and let nk be the number of vertices with
degree k and pk be the number of k-sided faces. Then Σk≥3knk = 2f1 =
Σk≥3kpk. Hence, by Euler’s formula, Σk≥3k(nk + pk) = 4f0 + 4f2 − 8 ⇒
n3 + p3 = 8 + Σk≥5(k − 4)(nk + pk) ≥ 8, which certainly implies that f(G) has
either a vertex of degree 3 or a triangular face.

A Y −∆ transform over a plane graph consists of deleting a vertex of degree
3 and connecting with edges its non-adjacent neighbours. A ∆ − Y transform
consists of introducing a new vertex inside a triangular face, connecting it with
the vertices of the face, deleting the edges of the face, and smoothing out any
vertices of degree 2. Examples are seen in Figure 1.1 and Figure 1.2.

Applying a Y −∆ or ∆ − Y transform over G produces a plane graph G′.
Observe that G′ is also 3-connected, as seen by applying Menger’s Theorem;
for any three vertex-independent paths between two vertices of G, only one can
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Figure 1.1: A Y −∆ transform.

Figure 1.2: A ∆− Y transform.

pass from any vertex of degree 3 or triangular face, and it can be transformed
to fit the obtained graph.

Now we proceed to step 3; let P ′ be a polytope with G(P ′) ∼= G′. Suppose
that G′ has been obtained from G through a ∆ − Y transform producing a
vertex v. Consider the plane which contains the neighbours of v and take the
intersection of P ′ with the half-space of this plane which does not contain v.
For the resulting polytope P we have G(P ) ∼= G. On the other hand, if G′ has
been obtained from G through a Y −∆ transform producing a triangular face F
from a vertex u, then we modify P ′ as follows: if 1, 2, or 3 pairs of neighbours
of u are connected in G, then we select a point p in P ′ which rests in the affine
hulls of 1, 2 or 3 of the faces surrounding F , respectively. We also take care to
pick p so that it is beyond the affine hull of F . This is straightforward in the
first two cases, but in the third case p is fully determined as the unique point
of the intersection of the affine hulls of the three faces surrounding F ; hence,
we might need to perform an appropriate projective transformation on P ′ to
ensure that this condition is fulfilled (such a transformation exists as long as P ′

is not the tetrahedron). Having selected p, we take P := conv(P ′ ∪ {p}), and
again we have that G(P ) ∼= G. Thus, in all cases, if G′ is 3-polytopal, then G
is 3-polytopal.

Conceptually speaking, the proof is near completion. We would now like
to continue with step 4, saying something akin to: “every Y − ∆ and ∆ − Y
transform reduces the total number of edges, so, if we apply enough of those
to G, we will obtain a sequence G → G′ → G′′ → ... → G(k−1) → G(k) = K4,
since K4 is the planar 3-connected graph with the minimum number of edges.
However, K4 is 3-polytopal, being the graph of the tetrahedron, so the same is
true for G(k−1), G(k−2), etc. up to G, completing the proof”.

However, the beginning of the above argument is not quite accurate. A
Y − ∆ transform on a vertex with pairwise non-adjacent neighbours does not
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Figure 1.3: A non-lens, decomposable lens, and indecomposable lens, in that
order.

decrease the number of edges. A ∆ − Y transform on a face without vertices
of degree 3 does not decrease the number of edges, either. That is, in order
for a planar 3-connected graph G to have a Y −∆ or ∆ − Y transform which
produces a graph G′ with fewer edges, G must have a triangular face incident
to a vertex of degree 3. We will now show that, even if this is not true for G,
it is true for some graph H which can be obtained from G through Y −∆ and
∆ − Y transforms. This will conclude the proof. Firstly, we need to establish
some useful properties of 4-regular graphs.

Let J be a 4-regular, 3-connected plane graph. An edge {x, y} of J has a
direct extension {y, z} if the path xyz separates the other two edges of y. If
every edge in a path (resp. cycle) is a direct extension of the edges of the path
(resp. cycle) which are adjacent to it, then the path (resp. cycle) is called a
geodesic (resp. closed geodesic) of J (this is unrelated to the metric geodesic).

A subgraph L of J is called a lens if:

• L consists of a cycle C composed of two geodesics A and B, and of all
the vertices and edges contained in one of the connected components of
S2 \ C, called the inner vertices and edges, and

• no inner edge of L is incident to either of the two points of C where the
geodesics which make up C intersect (these points are called the poles of
L)

A lens L of J is indecomposable if no lens of J is a proper subgraph of
L. At least one indecomposable lens is contained in J ; if we consider the set
S of subgraphs of J which comprise of a cycle C consisting of at most two
geodesics and all the vertices and edges in one of the connected components of
S2 \ C, then S ̸= ∅, as we can simply pick a geodesic starting from a point and
follow it until it intersects itself. Indecomposable lenses are exactly the minimal
elements of S ordered by inclusion. For examples and non-examples of lenses
and indecomposable lenses, view Figure 1.3.

The following statements hold for an indecomposable lens L:

• Each point a in the boundary geodesic A that is not a pole is the end of
exactly one maximal geodesic contained in the interior of L. We call this
geodesic the cut of a and denote it C(a).
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• For every a ∈ A, C(a) ∩ A = ∅, since otherwise C(a) and a part of A
would bound a lens properly contained in L, a contradiction. Hence, the
other end of C(a) is some b ∈ B. In particular, the two geodesics which
bound an indecomposable lens have the same length.

• Any two cuts intersect at one point at most, otherwise the intervals be-
tween the intersection points would again bound a lens properly contained
in L.

• Every inner edge of L belongs to exactly one cut. Every inner vertex
belongs to exactly two cuts.

Now we prove the following useful lemma:
Lemma 1. Every indecomposable lens L contains a triangular face incident to
the boundary C of L.
Proof. If L has no inner vertices, then its faces which are incident to the poles
are triangular. Otherwise, let v1, ..., vn be the inner vertices which are adjacent
to vertices a1, ..., an on the boundary geodesic A. Let h(vi) be the number of
faces contained in the triangular region determined by the cuts C(ai), C(ai)
which meet at vi and the interval of A between ai and ai. Then the inner vertex
vi with the smallest h(vi) defines a triangular face aivia

i.

Let us now apply these observations to the proof of Steinitz’s Theorem.
For our 3-connected plane graph G, we define the graph I(G) such that the
vertices of I(G) are the edges of G, and two vertices are connected in I(G) if
the corresponding edges of G are incident and also belong to the same face.
Note that I(G) is a 4-regular plane graph. Additionally, since G is 3-connected,
it is also 3-edge-connected, which implies that I(G) is 3-connected. Hence, all
of our previous notes concerning lenses are true for I(G).

Each face of I(G) corresponds to exactly one vertex or face ofG, so f2(I(G)) =
f2(G) + f0(G). In particular, the number of sides of a face of I(G) equals the
degree of the corresponding vertex. Thus, in order to show that G contains a
vertex of degree 3 incident to a triangular face, it suffices to show that I(G)
contains adjacent triangular faces, i.e. K−

4 ⊆ I(G).
Let g(G) be the minimum number of faces in any indecomposable lens in

I(G). If g(G) = 2, then observe that the only indecomposable lens with two
faces is K−

4 , so we are done. If g(G) > 2, then let L be the indecomposable lens
with g(G) faces, and let T be a triangular face of L incident to the boundary of
L; such exists from Lemma 1.

Figure 1.4 illustrates how to perform an appropriate Y −∆ or ∆− Y trans-
form on G to obtain a graph G′ with g(G′) < g(G): if T as a face of I(G)
corresponds to a face of G, then the ∆−Y transform (a) diminishes the number
of faces in L, whereas for T corresponding to a vertex of G, the Y −∆ transform
(b) has the same effect.

Consequently, a finite number of Y − ∆ and ∆ − Y transforms suffices to
transform G into a graph H which has a vertex of degree 3 incident to a trian-
gular face. The proof is complete.
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Figure 1.4: Heavy edges denote G, light edges denote I(G).

Time Complexity: We seek to calculate the number of steps (Y − ∆ or
∆ − Y transforms) required to reach the polytope determined by G starting
from the tetrahedron. That is, we want to find the length of the sequence
G→ G′ → G′′ → ...→ G(k−1) → G(k) = K4.

Denote |V (G)| by n. Since G is a plane graph, |E(G)| = O(n), hence I(G)
has O(n) vertices. Since I(G) is a plane graph, it also has O(n) faces. An
indecomposable lens of I(G) has at most as many faces as I(G) itself, i.e. O(n).
Consequently, applying Y −∆ or ∆− Y transforms to reach a graph G(i) with
g(G(i)) = 2 starting from G requires O(n) steps. At that point, we can perform
an additional Y −∆ or ∆ − Y transform to obtain a graph G(i+1) with fewer
edges than G. Since E(G) = O(n), to reach the tetrahedron, we must repeat
this process O(n) times.

Note that all the graphs I(G(i)) also have O(n) faces, and so g(G(i)) = O(n)
∀i ∈ [n − 1]; indeed, the graphs G(i) have at most E(G) edges, so the graphs
I(G(i)) have at most E(G) vertices, hence at most E(G) + 1 = O(n) vertices,
since they are connected, hence O(n) faces, since they are plane graphs.

We deduce that the number of steps required to transition from the tetra-
hedron to the polytope determined by G is O(n) ·O(n) = O(n2).

This is the best currently known upper bound for the time complexity of
reconstructing a 3-polytope from its graph. In a recent paper ([9]), Chang,
Cossarini, and Erickson proved that Ω(n 3

2 ) steps are necessary in certain cases.

1.2 The Mihalisin-Klee Theorem
Both this result and its proof have many parallels to Steinitz’s Theorem.

Again, one direction is straightforward: for a 3-polytopal digraph ω(P, f), it is
evident that the underlying graph of G is 3-polytopal, G is acyclic, and G has
a unique source and a unique sink. Finally, by the Holt-Klee Theorem, G must
also contain three vertex-independent directed paths connecting its source to its
sink.

For the converse, let G be a digraph which is acyclic, has a unique source
and a unique sink, has three vertex-independent directed paths connecting its
source to its sink, and has a 3-polytopal underlying graph. For brevity’s sake,
we will call G and other digraphs with all of the above properties 3-monotone.
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Figure 1.5: B′ is noted in blue and P \ P ′ is noted in red.

Additionally, as we did in Steinitz’s Theorem, we consider G as a plane graph
in the unique possible way.

Our first observation is that G contains the digraph T of the tetrahedron
as a topological minor, and indeed T can be obtained from G without deleting
either the source x or the sink y of G.

To see this, let Q be the set of quadruples (A,B,C, P ), where:

• A, B, C are directed paths in G connecting x to y,

• P is a path in G (not necessarily directed) connecting an interior point of
A to an interior point of B,

• A, B, C, P are vertex-independent.

Since G is 3-monotone, it contains three directed paths A, B, C connecting
x and y. Since G is simple, two of these, say A and B, must contain interior
vertices, say u and v. Since G is 3-connected, it contains a path P which
connects u and v and avoids x and y. Let u′ ∈ A, v′ ∈ B be two consecutive
points of P ∩ (A ∪ B) in P , and let R be the subpath of P between u′ and v′.
Then (A,B,C,R) ∈ Q. This proves that Q ≠ ∅.

Now let (A,B,C, P ) ∈ Q such that P is of minimum length. Suppose that
P connects u ∈ A to b ∈ B. Let p be the other endpoint of the longest directed
subpath of P containing b, say P ′.

If P ′ is directed from b to p, then let S be a path leading from p to y. S meets
A or B before meeting C. Observe that S meets A before y. Were it otherwise,
(A,B,C, P ) would not be a quadruple with its last element being of minimum
length in Q, since (A,B′, C, P \P ′) ∈ Q, where B′ coincides with B from x to b,
and then coincides with P ′ and S (see Figure 1.5). Let S′ be the initial segment
of S up to the vertex where it intersects A for the first time. Then (A,B,C, S′)
is a subdivision of the digraph T of the tetrahedron, as required.

The process is quite similar if P leads from p to b; in this case we consider
a path S leading from x to p, and proceed as above.

The next step of the proof is to notice that there is a sequence
(J0 := T, f0), ..., (Jk−1, fk−1), (Jk := G, fk) of 3-monotone topological minors of
G and their embeddings in G such that:
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• each Ji is obtained from Ji+1 by deleting an edge and smoothing out its
end vertices,

• f0(J0) contains the source x and sink y of G,

• fi|V (Ji−1) = fi−1|V (Ji−1) ∀i ∈ {1, ..., k},

• each fi, when possible, maps the edges of Ji to paths of length ≥ 2 in G.

Indeed, we have already shown that T is a 3-monotone topological minor
of G, and that it can be embedded in G so that the source and the sink of G
are contained in the image of the embedding. Additionally, if Ji ̸= G, then
there exists a monotone path in G which is not intersected internally by fi(Ji);
for instance, one can concatenate a directed path leading from x to a vertex
v ∈ G \ fi(Ji) and another leading from v to y, then take a subpath of the
resulting path which is not internally intersected by fi(Ji). If such a vertex v
does not exist, then the required path is an edge of G.

Let us denote such a path Pi. We construct HPi by adding an appropriately
oriented edge e to Ji connecting the points of f−1

i (fi(Ji) ∩ Pi), and we define
the embedding hPi

which satisfies hPi
|Ji

:= fi and hPi
(e) := Pi. Let us call

this pair (HPi
, hPi

) the canonical extension of (Ji, fi) through Pi. A cursory
look suggests that we can simply define (Ji+1, fi+1) to be a canonical extension
of (Ji, fi). After all, it is trivial to see that any HPi is indeed 3-monotone.
However, there is a reasonable concern that HPi might not be simple. We must
take care to counter this possibility. We distinguish two cases:

• Suppose that fi(E(Ji)) ⊂ E(G). Then the ends of Pi are non-adjacent
vertices of Ji, so HPi is simple.

• Suppose that some edge e of Ji is mapped to a path of length ≥ 2 in G. Let
P be a path connecting a vertex u ∈ fi(e) and a vertex v ∈ fi(Ji) \ fi(e)
and avoiding the ends of fi(e). We connect each relative source or sink
sj of P to a vertex in fi(Ji) through directed paths pj which are not
internally intersected by fi(Ji); in particular, if sl ∈ fi(Ji), we set pl to
be the trivial path. Let sr be the relative source or sink of P nearest to
u such that the other end of pr, say b, is not in fi(e), but rather in the
image fi(e′) of some other edge of Ji. If the other end, say a, of pr−1
is not in fi(e′), then let M be the subgraph of G which is obtained by
concatenating pr−1, the path between sr−1 and sr, and pr, and set Pi to
be a path from a to b in M (see Figure 1.6).
Then HPi

is simple. On the other hand, if a ∈ fi(e′), then a ∈ fi(e)∩fi(e′),
so a is the image of a vertex of Ji which is an end of both e and e′. In
that case, we do not take (Ji+1, fi+1) to be the canonical extension of
(Ji, fi); instead, Ji+1 is constructed and embedded as in Figure 1.7. It is
straightforward to see that Ji+1 is 3-monotone and simple.

Now that we have constructed the sequence (Ji, fi)n
i=0, we enter the final

stage of the proof of the Mihalisin-Klee Theorem. By Steinitz’s Theorem, all the
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Figure 1.6: The local change in the embedding in the case a /∈ f(e′). The
edge-embedding f(e) is noted in blue, whereas the new edge-embedding corre-
sponding to the path M is noted in red.

Figure 1.7: The local change in the embedding (noted in blue) in the case
a ∈ f(e) ∩ f(e′).
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underlying graphs of the Ji are 3-polytopal; specifically, each defines a unique
3-polytope up to combinatorial equivalence. Consider a linear extension L of the
poset induced by G, and embed the tetrahedron in R3 so that the z-coordinate
of each vertex v of its 1-skeleton J0 equals the rank of f0(v) in L. For each
subsequent Ji, we produce a 3-polytope which has Ji as its digraph by slightly
“bending” a face of the 3-polytope corresponding to Ji−1 to obtain the extra
edge; this is always geometrically feasible with a slight perturbation of the
vertices, as proven in [?] At each such step, we take care that the z-coordinate
of any newly introduced vertex is determined by its corresponding rank in L.
In this manner we obtain a directed 3-polytope Jn which has G as its digraph.
The proof is complete.

Time Complexity: Denote V (G) by n. Each pair (Ji, fi) requires O(n2)
steps to be constructed from (Ji−1, fi−1), and there are E(G)− 6 = O(n) such
pairs, yielding a total execution time of O(n3).
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Chapter 2

Simple Polytopes

During the 1980’s, Perles conjectured in various occasions, most notably in
two separate Oberwolfach meetings on convex bodies (’84, ’86), that simple
polytopes can be determined by their graphs. This was eventually proven in
1987 by Blind and Mani-Levitska ([7]).

Theorem 9. Simple polytopes are a reconstruction class up to combinatorial
equivalence.

Soon after, Gil Kalai provided a proof in a mere page ([13]); it is this proof
that we present here. Apart from brevity, Kalai’s proof has two other major
advantages. For one, it uses directed polytopes (generally, ”good” orientations),
and in that manner showcases directed polytopes as a natural and useful math-
ematical object. For another, it can be manipulated to produce an analogue of
the Blind-Mani-Levitska Theorem for directed polytopes:

Corollary 4. Directed simple polytopes are a reconstruction class up to orien-
tation equivalence.

Corollary 5. Directed simple polytopes with weakly connected digraphs are a
reconstruction class up to order equivalence.

Once again, Figure 1 gives a counterexample to an analogue for order recon-
struction of simple polytopes in general. Additionally, let us ask:

Question 3. Are there simple digraphs which are not weakly connected but
determine a simple polytope up to order equivalence?

Despite its merits, Kalai’s work does not provide a good algorithm for recon-
structing a (directed) polytope from its (di)graph; considering all the possible
orientations of (the underlying graph) G, determining the good ones, and ap-
plying Kalai’s criterion to find the faces of the reconstructed polytope requires
exponential time. Devising an algorithm which achieves combinatorial recon-
struction for simple polytopes in polynomial time is far from trivial.
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Of course, this problem stirred a lot of interest among combinatorialists. In
2002, Joswig, Kaibel, and Körner provided polynomial certificates, and soon
after Friedman published a polynomial algorithm for reconstructing a simple
polytope from its graph. We review Friedman’s algorithm in this chapter.

2.1 Kalai’s Theorem
Let G be the graph of a simple polytope P . To begin, note that G must be

d-regular, and that dimP = d.
For an acyclic orientation O of G we say that O is good if every non-empty

face of P is incident to exactly one sink of GO. There exist, of course, good
orientations of G (e.g. LP-admissible orientations). Let hO

k be the number of
vertices with in-degree k of O. Define fO := Σd

i=02ihO
i .

If x is a vertex of P with in-degree k, then it is the sink of 2k different faces
(since P is simple, each set of edges incident to x defines a face that contains
it). Hence, if O is a good orientation, fO = f , since fO enumerates pairs of
faces and their sinks. Otherwise, fO > f .

Now, the faces of P can be determined uniquely; they are defined exactly
by the induced, connected, regular subgraphs of G the vertex sets of which are
ideals of posets induced by good orientations of G. Indeed, every face F of P
matches this description - simply embed P in Rd and derive O from a linear
functional which obtains its lowest values at the vertices of F .

For the converse, let H be an induced, connected, regular subgraph of G and
let O be a good orientation such that V (H) is an ideal of the poset induced by
O. Let x be the sink of H with respect to O. There are k edges incident to and
oriented towards x, therefore x is incident to a k-face F which contains these k
edges. Since O is a good orientation, x is the unique sink of G incident to F ,
therefore the vertices of F lie in ↓ x in the poset induced by O. This implies
that V (F ) ⊆ V (H). Since both H and G(F ) are k-regular and connected,
V (H) = V (F ), thus H ∼= G(F ). The proof is complete.

Remark 1. If we label the vertices of G(P ), we observe that Kalai’s criterion
uniquely determines the faces of P , i.e. any automorphism of G(P ) can be ex-
tended to a combinatorial equivalence ϕ : P → P . Hence, any two directed sim-
ple polytopes with the same digraph are orientation equivalent, proving Corollary
5.

2.2 Friedman’s Algorithm
LetG be the graph of a simple polytope P , and letO be an acyclic orientation

of G with source a specific vertex v ∈ V (G). A 2-frame is a pair of incident
edges, and its centre is the vertex at the intersection of the edges. A 2-frame is
called a sink if both of its edges are oriented toward their common vertex. Let
h(O) be the number of 2-frames which are sinks under O. A 2-system is a set
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of cycles of G such that every 2-frame is contained in a unique such cycle. Let
S be a 2-system of G. The following lemma can be found in [12]:

Lemma 2. |S| ≤ f2 ≤ h(O), with f2 = h(O) if and only if O is good.

Proof. Since O is acyclic, every cycle must contain a sink, including those which
bound 2-faces; hence, f2 ≤ h(O), with equality if and only if O is good. Since
S is a 2-system, |S| ≤ h(O). Hence, for a good orientation O′ we have |S| ≤
h(O′) = f2. Putting together these inequalities proves the required result.

Moreover, we use the above lemma to define a pseudopolytopal multigraph as
the 1-skeleton of a 2-complex for which Lemma 2 holds. An important obser-
vation is that performing a 2-face contraction on a simple polytope transforms
its graph to a pseudopolytopal multigraph.

We now present the main part of the proof. Let W be the set of cycles of G
and let T be the set of 2-frames of G. We introduce the following optimisation
problems:

• IP-S: max Σw∈Wxw s.t. ∀t ∈ T Σw⊃txw = 1, xw ∈ {0, 1},

• LP-S: max Σw∈Wxw s.t. ∀t ∈ T Σw⊃txw ≤ 1, xw ≥ 1,

• LP-SD: min Σt∈T vt s.t. ∀w ∈W Σt⊂wvt ≥ 1, vt ≥ 0.

By Lemma 2, a solution to IP-S is a 2-system of size f2. Since LP-S is a
relaxation of IP-S, we have for their optimal objective values that Opt(IP−S) ≤
Opt(LP − S). Since LP-SD is the dual problem of LP-S, Opt(LP − S) =
Opt(LP − SD).

Now we prove that LP-S can be solved in polynomial time using the ellip-
soid algorithm. This is because the dual, LP-SD, has a polynomial number
of variables and all constraints have polynomially bounded size (since all the
coefficients are 0 or 1). Then, because of the equivalence of separation and op-
timization (see Corollary 14.1g in [17]) it remains to show is that there exists a
polynomial separation algorithm for LP-SD.

We construct the directed graph H. The vertices of H are the labelled by
the ordered 2-frames of G (i.e. if t := (e, e′) ∈ T then u(e,e′) and u(e′,e) are both
vertices of H). Additionally, there is an edge from u(a,a′) to u(b,b′) if a′ = b and
the centres of (a, a′) and (b, b′) differ. For any two 2-frames t, t′ we define the
cost of an edge of H from ut to ut′ to be vt+vt′

2 . Every cycle in H corresponds
in a natural way to a cycle w of G with cost Σt⊂wvt. Hence, solving LP-SD
is equivalent to finding the cycle of minimum cost in H, which can be done in
polynomial time trough linear programming. We have shown that an optimal
solution for LP-SD, and hence its dual LP-S, can be found in polynomial time.

Furthermore, the optimal solution is unique. Indeed, suppose that there
are two distinct optimal solutions x and x′ for LP-S. Then there exists some
w ∈W such that xw = 1 and x′

w = 0, otherwise (1 + ϵ)x− ϵx′ would also be an
optimal solution, implying that x′ is not an extreme point, a contradiction. By
contracting the 2-face implied by x′

w we obtain a pseudopolytopal multigraph
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G′. The optimal solution of IP-S for G′ must have objective value f2 − 1.
However, the projection of x onto G′ is feasible for LP-S but has objective value
f2, which is a contradiction. Hence, LP − S has a unique optimal solution.

We have shown that the 2-skeleton of P can be reconstructed in polynomial
time. However, it is straightforward to reconstruct a simple polytope from its 2-
skeleton (in [13], Kalai credits Perles as the first to have made this observation).

First, we reconstruct the facets. To produce a facet, start with any (d− 1)-
frame centered at u and let u′ be the unique vertex adjacent to u which is not
in that frame. Consider any other vertex, u′′, in the frame. Clearly there exists
another frame in the same facet as the first (d − 1)-frame which is centered at
u′′. Now consider the vertex ũ adjacent to u′′ which is contained in the 2-face
that contains the 2-frame (u, u′, u′′). It is shown in [?]hat the (d − 1)-frame
centered at u′′ in that facet contains all the vertices except ũ. We can use this
procedure to find all the facets in polynomial time.

We note that the face lattice may contain exponentially many faces, so ex-
plicitly presenting it may require exponential time. However, one can compute
the face lattice in polynomial time, since the faces of P are exactly the inter-
sections of its facets.
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Chapter 3

Other Cases

There is no dearth of reconstruction classes up to our chosen equivalence
relationships, but a few of them are particularly interesting. Up to this point,
we have examined two important reconstruction classes of (directed) polytopes:
3-polytopal and simple. In this brief chapter, we mention a few more. Let us
begin with some definitions.

The cyclic polytope C(n, d) is the convex hull of n distinct points on the
moment curve γ = (t, t2, ..., td).

The Kleetope PK of a polytope P is the convex hull of P and points x1, ..., xfd−1(P )
chosen so that each point xi lies beyond exactly one facet of P and, for every
two points xi, xj , the line conv(xi, xj) intersects the interior of P .

We call a polytopal graph dimensionally ambiguous if it is isomorphic to
the graphs of two polytopes of different dimensions. We call it strongly (d)-
ambiguous if it is isomorphic to the graph of two (d)-polytopes which are not
combinatorially equivalent. We call it weakly (d)-ambiguous if it is isomorphic
to the graph of a (d)-polytope P through two different graph isomorphisms ϕ
and ψ, and ϕ ◦ ψ−1 cannot be extended to a combinatorial equivalence of P
with itself.

3.1 Kleetopes of Large Cyclic Polytopes
Our first example has been sorely missing from our analysis. It is an example

of an interesting class of polytopes which is reconstructible up to combinatorial
equivalence, but its directed analogue is not reconstructible up to orientation
equivalence.

Theorem 10. The Kleetopes of cyclic polytopes are a reconstruction class up
to combinatorial equivalence.

Proof. The vertices of a cyclic polytope C(n, d) have degrees ≥ d, hence the
only vertices of C(n, d)K which have degree d are the added ones, and every
other vertex of C(n, d)K has degree strictly greater than d. Consequently, given

27



the graph of C(n, d)K , we know that d is equal to the minimum degree of the
graph, and that n is equal to the number of vertices which do not have the
minimum degree. Since C(n, d)K is a class of combinatorial equivalence, the
result follows.

Remark 2. Directed Kleetopes of cyclic polytopes are not a reconstruction class
up to orientation equivalence; any combinatorial equivalence ϕ : C(n, d)K →
C(n, d)K must map vertices of C(n, d) to vertices of C(n, d). If the second copy
of C(n, d) is a slight rotation of the first which transposes v1 and v2 and fixes
every other vertex in the f -ordering, then since the graph of C(n, d) is weakly
connected, ϕ must respect the f -ordering of the vertices of C(n, d), so it must
transpose v1 and v2 and fix every other vertex. But then, if n ≥ d + 3, there
exists a vertex in the Kleetope of the first copy which is adjacent exactly to v1 and
to the d highest vertices (because by the Gale Evenness Criterion these form a
facet), but there does not exist a vertex in the Kleetope of the second copy which
is adjacent exactly to ϕ(v1) = v2 and to the d highest vertices (because by the
Gale Evenness Criterion these do not form a facet). Hence, there does not exist
an isomorphism between the digraphs of the two copies of C(n, d)K , much less
an orientation equivalence between them.

3.2 Polytopes with Unambiguous Graphs
We finish our reconstruction analysis by noting how reconstruction interacts

with ambiguity:

• A class of polytopes (directed polytopes) with dimensionally unambiguous
graphs (underlying graphs) which contains at most one polytope of each
dimension is combinatorially (orientation) reconstructible.

• The set of (d-)polytopes with strongly (d-)unambiguous graphs is combi-
natorially reconstructible.

• The set of directed (d-)polytopes with weakly (d-)unambiguous underlying
graphs is orientation reconstructible.
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Chapter 4

Counting

Traditionally, the only quantity that is regularly counted in directed poly-
topes is the length of their longest monotone path. The purpose is, of course, to
calculate the worst-case time complexity of the simplex algorithm; each mono-
tone path of a directed polytope represents an execution of the simplex algorithm
starting from the minimum basic feasible solution, hence an upper bound on the
greatest possible length of a monotone path of a directed d-polytope on k facets
is also an upper bound on the number of steps of an execution of the simplex
algorithm for k constraints on d variables.

For this reason, the problem of bounding the directed diameter of directed
polytopes has been a very popular topic for both research and surveys, to the
extent that there is little that the author might add in this brief reckoning. A
famous survey on the matter is [1]. For some recent progress, see [6].

Here we will instead present the available results concerning the enumeration
of objects related to directed polytopes, and in particular the following two:
arborescences and monotone paths. All of these results were only discovered
too recently, in a paper by Athanasiadis, De Loera, and Zhang [3].

4.1 Arborescences
Let (P, f) be a directed polytope and let τ(P, f) be the number of its ar-

borescences. The basic result concerning arborescences is the following:

Theorem 11. The number of arborescences in (P, f) is given by the formula
τ(P, f) =

∏n−1
i=1 di. In particular, if P is simple, then we obtain the formula

τ(P, f) =
∏d

1 i
hi(P ).

Proof. An arborescence of (P, f) is exactly the union of a set of outgoing edges,
one for each vertex of ω(P, f), so the first formula is derived from the mul-
tiplication principle. For the second formula we take note of an interesting
combinatorial interpretation which the h-vector affords for simple polytopes:
hk(P ) is exactly the number of vertices of ω(P, f) with outdegree k, regardless

30



of the choice of f (see Sections 3.4 and 8.3 and Exercise 8.10 in [18]). This
observation, combined with the first formula, yields the second one.

Theorem 11 implies the following quick bounds for the number of arbores-
cences in a simple directed polytope:
Corollary 6. For m > d ≥ 4, the maximum number of arborescences over
simple directed d-polytopes with m facets is

maxτ(P, f) =
[ d

2 ]∏
i=1

i(
m−d+i−1

i )
[ d−1

2 ]∏
i=0

(d− i)(
m−d+i−1

i ),

and it is achieved by the duals of neighbourly polytopes.
For m > d ≥ 4, the minimum number of arborescences over simple directed

d-polytopes with m facets is

minτ(P, f) = d((d− 1)!)m−d,

and is achieved by the duals of stacked polytopes.
Finally, for simple 3-polytopes with m facets, τ(P, f) = 3 · 2m−3.

Proof. The case d ≥ 4 is due to the fact that neighbourly polytopes (respectively,
stacked polytopes) maximise (respectively, minimise) the entries of the h-vector.
The case d = 3 is due to the fact that h0(P ) = h3(P ) = 1 and h1(P ) = h2(P ) =
m− 3 for every simple directed 3-polytope P .

Now let us view the known bounds for general polytopes.
Theorem 12. For n > d ≥ 3, the maximum number of f-arborescences over all
d-dimensional polytopes with n vertices is achieved by the stacked polytope X(n)
for d = 3 and by any 2-neighborly polytope for d ≥ 4. This number is equal to
2 · 3n−3 and (n− 1)! in the two cases, respectively.
Proof. Since dk ≤ n− k ∀k ∈ [n], we get τ(P, f) ≤ (n− 1)!. The equality holds
for 2-neighbourly polytopes. Such polytopes exist for every n in dimensions
d ≥ 4 (e.g. the cyclic polytopes), but not in dimension 3. If (P, f) is a directed
3-polytope, then its graph is planar, so it has Σn−1

i=1 di ≤ 3n − 6 edges. Hence,∏n−1
i=1 di =

∏n−2
i=1 di ≤ 2 · 3n−3, with equality when dn−2 = 2 and di = 3 for

i ≤ n − 3. This is exactly the multiset of outdegrees of the stacked polytope
X(n).

Theorem 13. The minimum number of arborescences in directed 3-polytopes
is 2(n− 1) and is exhibited by the inverted pyramid over the (n− 1)− gon.
Proof. Let k be the number of outdegrees greater than 1, and denote these
d′, d′′, ..., d(k). Then k ≥ 2. Note that 2Σn

i=1di = Σn
i=1Di. Also, dn = 0, D1 =

d1 ≥ 3 and Di ≥ max{di + 1, 3} ∀i > 1. These considerations yield 2Σn
i=1di ≥

Σk
i=1d

(i) +k−1+3(n−k)⇒ Σk
i=1d

(i) ≥ k−1+3(n−k)− [2(n−k)−2] = n+1.
From this, it is an easy minimisation problem to obtain

∏k
i=1 d

(i) ≥ 2(n−1). It
is straightforward to see that this is achieved by the inverted pyramid over an
(n− 1)-gon.
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Unfortunately, little can be said about the outdegrees of ω(P, f) when P
is of dimension d ≥ 4 (although we will answer a couple of relevant questions
in a later chapter). Hence, the above proof cannot be generalised to higher
dimensions. As a consequence, the following question remains open:

Question 4. What is the minimum number of arborescences in a d-polytope
on n vertices? Is it 2(n− 1)...(n− d+ 2), achieved by the (d− 2)-fold inverted
pyramid over the (n− d+ 2)-gon?

4.2 Monotone Paths
Let (P, f) be a directed polytope, let µ(P, f) be the number of its monotone

paths, and let µk(P, f) be the number of its partial monotone paths ending at vk.
The basic theorem about the enumeration of monotone paths is the following:

Theorem 14. µ(P, f) = 1 + Σn−1
k=1(dk − 1)µk(P, f)

Proof. Let Vk = {v1, ..., vk} and let Ik be the ideal generated by Vk in the
poset induced by ω(P, f). Let Sk be the set of partial monotone paths which
end at successors of elements which are maximal in Ik. Then |Sk| − |Sk−1| =
(dk − 1)µk(P, f), since there are µk(P, f) partial monotone paths ending at
elements of Sk−1 \ Sk = {vk}, and dkµk(P, f) partial monotone paths ending
at elements of Sk \ Sk−1 (i.e. the dk successors of vk). So µ(P, f) = Sn−1 =
Σn−1

k=2(dk−1)µk(P, f)+|S1| = Σn−1
k=2(dk−1)µk(P, f)+(d1−1)µ1(P, f)+µ1(P, f) =

1 + Σn−1
k=1(dk − 1)µk(P, f), which proves the formula.

The above theorem can be used to deduce the maximum possible value of
µ(P, f) over all directed 3-polytopes on n vertices. Recall that the Tribonacci
sequence is defined as T1 = T2 = 1, T3 = 2, and Tn = Tn−1 + Tn−2 + Tn−3 for
n > 2.

Theorem 15. The maximum number of monotone paths for a directed 3-
polytope over n vertices is Tn. This is achieved by the stacked polytope X(n).

Proof. We proceed by induction. The claim is obviously true for n = 4. Suppose
now that the claim holds for every natural number less than n, and let (P, f)
be a simple directed polytope on n vertices. Note that every partial monotone
path ending at vk is a monotone path on the convex hull of v1, ..., vk directed
by f , so, by the induction hypothesis, µk(P, f) ≤ Tk ∀k ∈ [n − 1]. Thus, by
Theorem 14, we have µ(P, f) ≤ 1 + Σn−1

k=1(dk − 1)Tk.
To bound the right-hand side, first observe that, for any k ∈ [n−1] Σk

i=1dn−i ≤
3k − 3, since this quantity counts the number of edges of the planar subgraph
of G(P ) with vertices vn−k, ..., vn. We can use a telescopic sum and this in-
equality, along with the convention that T0 := 0, to obtain a bound as fol-
lows: Σn−1

k=1Tk = Σn−1
k=1(Σk

i=1dn−i)(Tn−k − Tn−k−1) ≤ Tn−1 − Tn−2 + (3k −
3)Σn−1

k=2(Tn−k − Tn−k−1) = Tn−1 + 2Tn−2 + ...+ 3T1 = Σn
k=2Tk.

We conclude that µ(P, f) ≤ 1+Σn−1
k=1(dk−1)Tk = 1+Σn−1

k=1dkTk−Σn
k=1Tk ≤

Tn, which concludes the induction.
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To finish the proof, it is easy to verify that the stacked polytope X(n) has
exactly Tn monotone paths.

For the minimum number of monotone paths over directed 3-polytopes on
n vertices, we have:

Theorem 16. The minimum number of monotone paths on a 3-dimensional
polytope (P, f) on n vertices is equal to [ n

2 ] + 2. This is achieved by orthogonal
prisms, when n is even, and by orthogonal wedges of polygons over a vertex,
when n is odd.

Proof. We have µ(P, f) ≥ 1 + Σn−1
k=1(dk − 1) = Σn−1

k=1dk − n + 2. Since Σn−1
k=1dk

is the number of edges of ω(P, f), which is bounded below by [ 3n
2 ], we obtain

µ(P, f) ≥ [ n
2 ] + 2. It is straightforward to prove that this is realised as asserted

in the claim.

Matters are less simple in higher dimensions. On one hand, it is easy to
deduce the maximum number of monotone paths:

Theorem 17. The maximum number of monotone paths in a directed d-polytope
(P, f) on n vertices is equal to 2n−1. This is achieved by 2-neighbourly polytopes.

Proof. Since monotone paths can be mapped injectively to sets of vertices, they
are at most 2n−1. The map becomes surjective for 2-neighbourly polytopes.

On the other hand, the minimum number is harder to calculate. Naturally,
we can operate in the exact same manner as in Theorem and obtain a lower
bound of [ [(d−2)n]

2 ] + 2, but this bound is not expected to be optimal.

Question 5. What is the minimum number of monotone paths on a directed
d-polytope on n vertices?

We close this chapter by kicking off the next one. Athanasiadis, De Loera
and Zhang conjectured the following upper bound on µ(P, f) in terms of the
Fibonacci numbers (F1 = F2 = 1):

Conjecture 1. The least number of monotone paths encountered in a simple
directed 3-polytope on 2n vertices is Fn+2 + 1, where Fn is the nth Fibonacci
number.
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Chapter 5

Maximum Number of
Monotone Paths in Simple
3-Polytopes

5.1 Introduction
In this chapter we prove the following intermediate result towards Conjec-

ture 1. Let (P, f) be a simple directed 3-polytope. A non-extremal triangle
is a triangular face which contains neither the sink nor the source of ω(P, f).
Theorem 18 states that in order to prove Conjecture 1, it suffices to show that
simple directed 3-polytopes with maximum number of monotone paths do not
contain non-extremal triangles. We call this “the triangle condition”.

Theorem 18. For the set S(n) of simple directed 3-polytopes on 2n vertices
with the maximum number of monotone paths, exactly one of the following two
statements holds:

i) there is a member of S(n) which has a non-extremal triangle
ii)the only member of S(n), up to order equivalence, is the staircase wedge, and
it has exactly Fn+2 + 1 monotone paths.

This chapter is structured as follows. In Section 2 we provide definitions of
important concepts and we mention some useful results. In Sections 3 and 4
we proceed with the proof of Theorem 1. Specifically, we assume the triangle
condition for S(n) and prove proposition (ii). Finally, in Section 5 we examine
the event that the triangle condition does not hold for S(n), i.e. that there are
simple directed 3-polytopes with maximum number of monotone paths which
contain non-extremal triangles. We prove results about the possible structure
of these polytopes.
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5.2 Basic Definitions and Preliminaries
Let (P, f) be a directed polytope.
The number of monotone paths which contain a set of edges E is denoted

µE(P, f) (if E is a singleton, the curly bracket notation can be omitted).

Remark 3. Observe that µ(P, f) = µ(P,−f) and, in general, µE(P, f) =
µE(P,−f) for every set of edges E.

Suppose that (P, f) is a simple directed 3-polytope. We say that a vertex vi

of (P, f) is of type A (denoted vi ∈ A) if di = 2, and of type B (denoted vi ∈ B)
if di = 1. Observe that, with the exception of the top and bottom vertices,
every vertex is of one of these types.

A useful corollary of Theorem 14 for simple polytopes is the following:

Corollary 7. If (P, f) is a simple directed 3-polytope, µ(P, f) = 3+Σvk∈Aµk(P, f).

Lemma 3. Let (P, f) be a simple directed 3-polytope and let I be an ideal of
ω(P, f). Then |A ∩ I| ≥ |B ∩ I|.

Proof. If I is the vertex set of ω(P, f), the proof is simply a matter of equating
the sum of the in-degrees and the sum of the out-degrees of ω(P, f), so let us
assume that I is a proper subset of the vertex set. Consider the subgraph H
of ω(P, f) induced by I. Suppose that it contains l vertices of type A and m
vertices of type B. The sum of the in-degrees of H equals l+2m. The sum of the
out-degrees equals at most 2l+m (we have taken into account that v1 contributes
up to 3 edges, but also that, by Steinitz’s Theorem, there are at least 3 edges
between vertices of H and ω(P, f) \H). Hence, l + 2m ≤ 2l +m⇒ l ≥ m.

Corollary 8. Let Vk := {v1, ..., vk}. Then |A ∩ Vk| ≥ |B ∩ Vk|

An extremal triangle is a triangular face which contains either the top or
the bottom vertex of (P, f). A triangular face which is not extremal is called
non-extremal.

The set of directed polytopes on 2n vertices with maximum number of mono-
tone paths is denoted S(n). We say that the triangle condition holds for S(n)
if there is no simple directed 3-polytope with 2n vertices with a non-extremal
triangle which has the maximum number of monotone paths.

Let Q be a polygon with its vertices cyclically ordered (v1, ..., vn). The
wedge W of Q is obtained from the prism Q× [0, 1] of Q by collapsing the face
[v1, vn]× [0, 1] to [v1, vn]× {0}. The staircase wedge is a directed wedge (W, f)
such that:
- ∀i ∈ [n], j ∈ {0, 1}, f(v1 × {0}) ≤ f(vi × {j}) ≤ f(vn × {0}),
- f(vi × {0}) < f(vi × {1}) for every odd i, and
- f(vi × {0}) > f(vi × {1}) for every even i,
whenever the above vertices are defined.

A staircase wedge is illustrated in Figure 5.1.
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f→

Figure 5.1: A staircase wedge on eight vertices.

5.3 Forbidden Faces
To prove Theorem 18, we will require one more lemma. In Sections 3 and 4,

(P, f) is a simple directed 3-polytope on 2n vertices with the maximum number
of monotone paths, and the triangle condition is assumed to hold for S(n).

Let G be a plane digraph, e := (u1, u2), e1 := (u1, v1), e2 := (v2, u2) ∈ E(G)
distinct, F1, F2 ⊃ e distinct faces of G, e1 ⊂ F1, e2 ⊂ F2. An exchange transform
deletes e1, e2 and replaces them with (v2, u1) and (u2, v1). An example of an
exchange transform is illustrated in Figure 5.2.
Lemma 4. (P, f) does not have any forbidden faces, i.e. faces with at least four
vertices, all of which are of type A except for one, and which do not include v1
or v2n.

Proof. Let F be a high forbidden face in (P, f), i.e. there is no forbidden face
the bottom vertex of which is higher than the bottom vertex of F . We will first
prove the result in the case that the top vertex and the bottom vertex of F are
not adjacent.

We can perform an exchange transform, depicted in Figure 5.2, between the
top vertex u of F and a predecessor v of u, to obtain a 3-regular plane digraph
G. We will show that there is a choice of v (from the two available options) such
that G is a 3-polytopal digraph. Let us begin the proof by making an arbitrary
choice of v, and producing the corresponding version of G.

u
v

u
v

Figure 5.2: The exchange transform between u and v.

Evidently, G is planar, acyclic, and has a unique source and a unique sink.
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u
v

u

v

u
v

u

v

Figure 5.3: A diagram of the two changes to which the monotone path M1 may
be subject. The edges of M1 are shown in red.

Additionally, G contains three pairwise vertex-independent monotone paths.
Indeed, ω(P, f), being a 3-polytopal digraph, has three pairwise vertex-independent
monotone paths, say M1,M2,M3, and only one of them can intersect F , say M1,
because a path which intersects F must necessarily pass through the bottom
vertex of F . Moreover, M1 ∩ F is connected, because the only entry point in
F for a directed path is the bottom vertex, which therefore belongs to every
connected component of M1 ∩ F . In addition, M1 ∩ F is contained in one of
the two maximal directed paths of F . Hence, to obtain three pairwise vertex-
independent monotone paths in G, one first needs to consider three pairwise
vertex-independent monotone paths of ω(P, f), retain M1∪M2∪M3 \F , retain
M1 ∩F if it contains neither u nor v or traverses (v, u), and alter it as depicted
in Figure 5.3, otherwise.

Finally, G is 3-connected.
Truly, if we delete from G two vertices x, y /∈ {u, v}, then G \ {x, y} is

isomorphic to the graph ω(P, f) \ {x, y} after an exchange transform, if neither
of x, y is incident to an exchanged edge, or after an “edge slide”, if exactly
one of x, y is incident to an exchanged edge, or unaltered, otherwise. However,
ω(P, f) is 3-polytopal, hence 3-connected, so ω(P, f) \ {x, y} is connected, and
exchange transforms and edge slides preserve connectedness.

If we delete {u, v}, then every vertex in G \ {u, v} still connects to either
v1 or v2n through a partial monotone or partial antitone path, respectively,
and v1 connects to v2n through a monotone path (since there are three vertex-
independent monotone paths connecting v1 to v2n in G), hence G \ {u, v} is
connected.

Finally, if we delete a vertex x ∈ {u, v} and a vertex y /∈ {u, v}, then in
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G \ x every vertex connects to v2n through a partial antitone path, and every
vertex except perhaps those in ↑G x connects to v1 through a partial monotone
path. Hence, if x and y are incomparable in the order induced by G, or if
y <G x and y ̸= v1, then every vertex in G \ {x, y} connects to either v1 or v2n

through a partial monotone path or a partial antitone path, respectively, and
v1, v2n connect through a monotone path, so G \ {x, y} is connected. If y = v1,
then every vertex in G \ {x, y} connects to v2n through a partial antitone path,
so G \ {x, y} is connected. So, suppose that x <G y, and that G \ {x, y} is
disconnected.

If a minimal vertex w of (x, y)G is of type B, then it is adjacent to a vertex
outside of ↑G x, which means that the vertices in ↑G w connect to v1 through
a partial monotone path. Similarly, if a maximal vertex z of (x, y)G is of type
A, then y ̸= v2n and z is adjacent to a vertex outside ↓G y, which implies that
the vertices in ↓G z connect to v2n through a partial antitone path. There are
at most two minimal vertices and at most two maximal vertices in (x, y)G, so
(x, y)G has at most two connected components. If both of them have either
a minimal vertex of type B or a maximal vertex of type A, then every vertex
in G \ {x, y} connects to either v1 or v2n, which in turn connect through a
monotone path, so G \ {x, y} is connected, a contradiction. So, (x, y)G contains
at least one vertex of type A (in particular, one that is minimal) and at least
one vertex of type B (in particular, one that is maximal).

Next, observe that (x, y)G must be connected. Indeed, suppose otherwise.
Then (x, y)G has two minimal vertices, say w and w′. Let z be a vertex that is
minimal among vertices of type B in (x, y)G. Then z would be either in ↑G w or
in ↑G w′ (but not both, or else (x, y)G would be connected), and so each lower
bound of the predecessors of z would be greater than or equal to either w or
w′. Thus, we would obtain either a non-extremal triangle or a forbidden face in
(x, y)G, so in (x, y)P as well, since the exchange transform does not alter this
part of the graph. This contradicts our assumption that the triangle condition
holds and that F is a high forbidden face.

Next, since (x, y)G is connected, and G \ {x, y} has been assumed to be
disconnected, (x, y)G is a connected component of G\{x, y}, as otherwise (x, y)G

would connect to either v1 or v2n through a partial monotone path or a partial
antitone path, respectively, and so does every other vertex in G, and v1 and
v2n connect through a monotone path, so G \ {x, y} would be connected, a
contradiction. In particular, (x, y)G being a connected component implies that
all the minimal vertices of (x, y)G are of type A, and all its maximal vertices
are of type B.

Since {x, y} is a cut set for G producing a connected component (x, y)G,
{v, u, y} is a cut set for ω(P, f) producing a connected component (v, y)P ∪
(u, y)P . Now we utilise the freedom to make a choice for v between the two
predecessors of u. Let v′ be the predecessor of u in ω(P, f) which is not v. Then
there must be a vertex y′ >P u, v′ such that {v′, u, y′} is a cut set for ω(P, f)
producing a connected component (v′, y′)P ∪(u, y′)P - for, if not, then we simply
opt to perform an exchange transform between u and v′ in ω(P, f), rather than
between u and v, and the graph G′ that we obtain is 3-connected and otherwise
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observes all the criteria of the Mihalisin-Klee Theorem, which proves our claim.
However, y is comparable with every vertex of ↑P u, which includes y′. If y′ ≤P y
and z′ is minimal among the elements of type B in (v′, y′)P ∪ (u, y′)P , then v′

connects to z′ ∈ (u, y′)P ⊆ (u, y)P through a directed path which does not cross
v, u or y, so it connects to the subgraph (v, y)P ∪ (u, y)P in ω(P, f) \ {v, u, y},
despite not belonging to it, which contradicts the fact that (v, y)P ∪ (u, y)P is
a connected component of ω(P, f) \ {v, u, y}. Hence, y′ >P y. In an entirely
symmetric manner, we obtain y >P y′. We have reached a contradiction, and
we therefore conclude that either G or G′ (say, G without loss of generality) is
3-connected, hence a 3-polytopal digraph.

Moreover, µ(G) ≥ µ(P, f) + µv′(P, f) > µ(P, f). Hence, there is a simple
directed 3-polytope which has a greater number of monotone paths than (P, f),
a contradiction.

We have concluded the case that the top vertex and the bottom vertex of F
are not adjacent in ω(P, f).

Now suppose instead that the top vertex and the bottom vertex of F are
adjacent in ω(P, f). If the exchange transform between u and v produces a
3-connected, hence polytopal digraph, we are done. Otherwise, we compare the
partial antitone paths of u and v. If µu(P,−f) ≤ µv(P,−f), then we simply
reverse the orientation of the edge (v, u). The resulting graph G obeys all of the
Mihalisin-Klee criteria, has at least as many monotone paths as ω(P, f), and
since v is not adjacent to the bottom vertex of F (because F has at least four
vertices) we revert to the first case and reach a contradiction.

If µu(P,−f) > µv(P,−f), then we perform the operation depicted in Figure
5.4. This again produces a digraph G which obeys the requirements of the
Mihalisin-Klee Theorem. Indeed, planarity, acyclicity, and uniqueness of source
and sink are straightforward. If one of three vertex-independent monotone paths
of ω(P, f) passes from (v, u), say M1, we can easily change its intersection with
F (Figure 5.5); there is no danger that this new monotone path will intersect
one of the other two monotone paths, since those do not intersect F . Finally,
G is 3-connected. Indeed, let {a, b} be a cut set of size 2 for G, then it is also
a cut set for H := ω(P, f) \ (v, u). Since ω(P, f) is 3-connected, v, u must be
in distinct connected components of H \ {a, b}, or ω(P, f) \ {a, b} would also
be disconnected. Since in H there are three vertex-independent paths between
the successors s and t of u and v respectively, as illustrated in Figure 5.6, at
least one of these successors belongs to {a, b}; without loss of generality, say
that a = s. Then b lies in the lower path between s and the successor of v in
Figure 5.6. The only choice of b which disconnects H \ a is the bottom vertex
of F in ω(P, f). However, this choice of the pair {a, b} does not disconnect G,
a contradiction.

This 3-polytopal, 3-regular digraph G has the same number of monotone
paths as (P, f), but it also contains a non-extremal triangle, which contradicts
the triangle condition.

We conclude that, under the triangle condition, simple directed 3-polytopes
which exhibit maximum number of monotone paths do not have forbidden faces.
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uv u

Figure 5.4: This transformation deletes the edge (v, u), smooths out v, and adds
a new edge which preserves the number of monotone paths and forms a triangle.

u
v

u

Figure 5.5: The edges of M1 are in red.
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u

z

y

s
t

Figure 5.6: The three vertex-independent paths between s and t. The upper
two paths do not intersect, otherwise ω(P, f) would have a cut set of size 2.

Remark 4. Since µ(P,−f) = µ(P, f), Lemma 4 implies more generally that,
under the triangle condition, in a simple directed 3-polytope with maximum num-
ber of monotone paths, every face contains at least two vertices from each type.

5.4 Main Proof
Now, to prove Theorem 18. By Corollary 7, we have that µ(P, f) = 3 +

Σvk∈Aµk(P, f). We seek to calculate this expression.
Each term µk(P, f) is obtained in one of two ways: it is either equal to a

previous term, if vk ∈ A, or it is the sum of two distinct previous terms, if
vk ∈ B. Thus, the finite sequence µk(P, f), 1 ≤ k ≤ 2n is composed of an initial
term 1, a final term µ(P, f), and two finite sequences ak (for type A vertices)
and bk (for type B vertices), each having n−1 terms. Additionally, by Corollary
8, the term ak always comes before the term bk.

Firstly, we prove that bk ≤ Fk+2 ∀k ∈ [n − 1]. We show this by induction.
For k = 1, we have b1 = 2 ≤ 2 = F3. Suppose that the claim is true for k ≤ m.
Then it is also true for k = m+ 1. Indeed:

i) If bm+1 := bi + bj , then i < j ≤ m, so bm+1 ≤ Fi+2 + Fj+2 ≤ Fm+3.
ii) If bm+1 := ai + bj , then suppose that j = m. Then it is impossible to

have a finite sequence ai := a′
i := a′′

i := ... := bm, because then the vertex
corresponding to the term bm would have total degree of at least 4, a con-
tradiction. Hence, ai = br for r < m or ai = 1. In either case, we have
bm+1 ≤ Fm+1 + Fm+2 = Fm+3. On the other hand, if j < m, then again we
have bm+1 ≤ Fm+2 + Fm+1 = Fm+3.
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iii) If bm+1 := ai +aj , then there do not exist finite sequences ai := ... := bm

and aj := ... := bm, since this would imply that (P, f) contains a forbidden face
or a non-extremal triangle, which is impossible by Lemma 4 and the triangle
condition. Hence, at least one of ai, aj is equal to br with r < m. But then
bm+1 ≤ Fr+2 + Fm+2 ≤ Fm+3.

iv) If one of the summants in the definition of bm+1 is the initial term 1,
then bm+1 ≤ Fm+2 + 1 ≤ Fm+3.

This concludes the induction. We have shown that, if (P, f) maximizes the
number of monotone paths among simple directed 3-polytopes on 2n vertices,
then bk ≤ Fk+2 for every k ∈ [n− 1].

By Corollary 8, we have that ak precedes bk in the finite sequence µk(P, f).
This implies that ak = br for r < k, hence ak ≤ Fr+2 ≤ Fk+1 ∀k ∈ [n−1]. Then
µ(P, f) = 2 + 1 + Σvk∈Aµk(P, f) ≤ 2 + Σn

k=1Fk = 2 + Fn+2 − 1 = Fn+2 + 1.
We have shown that, under the triangle condition, Fn+2 +1 is the maximum

number of monotone paths in a simple directed 3-polytope on 2n vertices. Ad-
ditionally, this bound can be achieved by staircase wedges. Indeed, in staircase
wedges, vertices of type A and type B alternate when ordered by f -value, and we
have a1 := 1, ak := bk−1 for k > 1, b1 := 1+a1, and bk := ak+ak−1 = bk−1+bk−2
for k > 1. From the above recursion we obtain bk = Fk+2 ∀k ∈ [n − 1] and
µ(W, f) := bn−1 + an−1 + 1 = Fn+1 + Fn + 1 = Fn+2 + 1.

It only remains to prove that staircase wedges are unique in this aspect.
Indeed, under the triangle condition, for any simple directed 3-polytope with
maximum number of monotone paths we obtain a sequence with ak = Fk+1
∀k ∈ [n − 1]. Since each term of type A is unequal to all the previous ones,
the “roots” of the defining sequences of these terms must be distinct. The first
such root is the term 1, and, by Corollary 8, it is followed by a1, which expends
the term 1 as a root for a type A term. Hence, a2 will require a new root, so
a1 must be followed by b1. Then, by Corollary 8, a2 follows b1, expending it.
By repeating this argument indefinitely, we deduce that the terms ak and bk

alternate in the sequence, and that ak := bk−1, so bk = Fk+2, ∀k ∈ [n].
As far as adjacencies for terms of type B are concerned, for k = 1, we

necessarily have b1 := 1 + a1. For greater k, there are only four two-term sums
which yield the values Fk+2 for bk. If bk := bk−1 + bk−2, then we obtain degrees
of 4 for the vertices which correspond to the terms bk−1 and bk−2, which is
absurd. The same contradiction is encountered for the sums bk−1 + ak−1 and
bk−2 + ak. Hence, bk := ak + ak−1. Finally, v2n is adjacent to the vertices
corresponding to an−1, bn−1, and the initial term 1.

We have shown that, under the triangle condition, every simple directed 3-
polytope (P, f) on 2n vertices with maximum number of monotone paths has
the same digraph as the staircase wedge on 2n vertices. However, this polytopal
digraph is weakly connected, thus, by Theorem 1, it determines a unique simple
directed polytope up to order equivalence, namely the staircase wedge.
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5.5 Considering Non-extremal Triangles
In order to prove Conjecture 1, it suffices to prove that simple directed 3-

polytopes bearing non-extremal triangles which maximize the number of mono-
tone paths do not exist. In this section, we mention some basic statements which
hold for this (possibly null) class V of “vertebrate” polytopes. These statements
have double purpose. On one hand, they provide additional peculiarities to the
objects of V . If we gather enough of those, we may spot an inconsistency which
will collapse V to nothingness. On the other hand, their contrapositives pro-
vide conditions which are useful for discerning directed simple 3-polytopes with
non-extremal triangles which do not maximise the number of monotone paths.

A bevelling around a vertex v in a 3-polytope P is performed by choosing a
planeH which separates v from the other vertices, then taking the intersection of
P with the half-space of H which does not contain v to receive a 3-polytope Q. If
P is simple, then Q is also simple. From a graph perspective, a bevelling around
a vertex v of a simple 3-polytope is equivalent to subdividing two edges incident
to v and connecting the new vertices with an edge. The inverse operation,
filling, i.e. removing the affine hull H of a triangular face from the set of planes
which bound a given 3-polytope Q, is only defined in the class of polytopes if
the intersection of the affine hulls of the surrounding faces lies beyond Q with
respect to H.

A bevelling in P around a vertex v which yields Q will be denoted P →v Q.
The inverse filling will simply be denoted Qv ← P .

If v is of type A, then the non-extremal triangle that we obtain from a
bevelling v sprouts an upward edge from its middle vertex, whereas, if v is of
type B, the resulting triangle sprouts a downward edge from its middle vertex.
We call these triangles of type A and of type B, respectively. Fillings also
preserve type.

Now, let (P, f) ∈ V . Then the following results hold.

Lemma 5. Filling is well-defined over every non-extremal triangle F of (P, f).

Proof. Let H be the affine hull of F , and let p be the intersection of the affine
hulls of the three faces surrounding F . Then p exists and lies beyond H. Indeed,
if p does not exist or lies beneath H, then P is contained within a right triangular
prism which has F as one of its bases. One of the vertices of F is the top or
bottom vertex of the triangular prism, hence of (P, f) as well. This contradicts
the assumption that F is a non-extremal triangle. Since p lies beyond H, the
filling over F is well-defined.

Lemma 6. Consider a bevelling P →p Q of a simple directed 3-polytope P
and let e = (p, q) be the edge of v which is subdivided to produce the top (if
v ∈ A) or the bottom (if v ∈ B ) vertex of the obtained triangular face F . Then
µ(Q, f) = µ(P, f) + µe(P, f).

Proof. We prove the part for p ∈ A, then apply it to (P,−f) to receive the
result for p ∈ B.
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F

Figure 5.7: The transformation for triangles of type A. The corresponding
transformation for triangles of type B can be seen by turning this figure upside-
down.

The simple directed 3-polytope (Q, f) has exactly one more edge than (P, f),
say e′. The only additional monotone paths in (Q, f) are those which pass
from the added edge e′, so µ(Q, f) = µ(P, f) + µe′(Q, f). However, there are
µp(Q, f) = µp(P, f) partial monotone paths reaching the lower end of e′ and
µq(Q,−f) = µq(P,−f) partial antitone paths reaching its higher end, hence
µe′(Q, f) = µp(P, f) · µq(P,−f) = µe(P, f).

Theorem 19. The non-extremal triangles of (P, f) all lie upon the same mono-
tone path.

Proof. Let F , F ′ be distinct forbidden triangles in (P, f), with the top vertex of
F being lower than the top vertex of F ′. Then the top vertex of F is less than
the bottom vertex of F ′. Indeed, suppose otherwise, and consider Pp ← P ′

p′ ←
P ′′. Let e and e′ be the edges of p and p′, respectively, in (P ′′, f) which are
subdivided during this transformation to produce the top (for a type A triangle)
or the bottom (for a type B triangle) vertex of F and F ′, respectively. Note
that µ(P ′, f) = µ(P ′′, f) + µe′(P ′′, f) and µ(P, f) = µ(P ′′, f) + µe′(P ′′, f) +
µe(P ′′, f)+µ{e,e′}(P ′′, f). If the top vertex of F is not smaller than the bottom
vertex of F ′, then µ{e,e′}(P ′′, f) = 0, so µ(P, f) = µ(P ′′, f) + µe′(P ′′, f) +
µe(P ′′, f). Now, suppose that µe(P ′′, f) ≥ µe′(P ′′, f) and consider the bevelling
P ′ →p Q of Figure 5.7. We have µ(Q, f) > µ(P ′′, f) + 2µe(P ′′, f) ≥ µ(P, f),
a contradiction. A similar contradiction is obtained if µe(P ′′, f) < µe′(P ′′, f).
Thus, the top vertex of F must be smaller than the bottom vertex of F ′. Since
F and F ′ were arbitrary, we conclude that all the non-extremal triangles of
(P, f) lie upon a single monotone path.

Theorem 20. The ideal of the bottom vertex p of a non-extremal triangle in-
cludes at least two of the successors of v1, and the filter of its top vertex q
includes at least two of the predecessors of v2n.

44



F

p

vi

v1

vi

v1

Figure 5.8: A transformation that increases the number of monotone paths.
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v

p

F ′

e

Figure 5.9: Another transformation that increases the number of monotone
paths.
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Proof. We prove the first part of this result; the second is obtained by applying
the first on (P,−f).

Suppose not. Let vi ∈↓P p be the unique successor of v1 in the ideal of
p. We perform the transformation Pp ← P ′ →v1 Q as depicted in Figure 5.8.
Then µ(Q, f) = µ(P ′, f)+µ(v1,vi)(P ′, f) = µ(P, f)−µe(P, f)+µ(v1,vi)(P ′, f) >
µ(P, f), a contradiction. The last inequality is strict because there is a monotone
path which passes from (v1, vi) but not from e, namely one which passes from
an edge which has exactly one end in (vi, p)P (such an edge must exist, or {vi, p}
would be a cut set of ω(P, f)).

Theorem 21. The top vertex of every triangle of type A initiates at least as
many partial antitone paths as the middle vertex. The bottom vertex of every
triangle of type B initiates at least as many partial monotone paths as the middle
vertex.

Proof. We prove the first part of this result; the second is obtained by applying
the first on (P,−f).

If not, we can obtain a simple directed 3-polytope with more monotone paths
by reversing the orientation of the edge connecting the middle to the top vertex
through a transformation Pp ← P ′ →p Q.

Theorem 22. The vertex v directly below the bottom vertex of a non-extremal
triangle F of type A is of type B. The vertex v directly above the top vertex of
a non-extremal triangle F of type B is of type A.

Proof. We prove the part for triangles of type A, then apply it to (P,−f) to
receive the result for triangles of type B.

If v is of type A, then we perform a transformation Pp ← P ′ →v Q (Figure
5.9) and we have µ(Q, f) > µ(P, f), a contradiction.

Figure 5.10 illustrates some of these results. It is now apparent why we call
the members of V vertebrates.

f→

Figure 5.10: Vertebrate 3-polytopes have all of their non-extremal triangles
arranged in a “spine”.
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Chapter 6

Feasible Sets of Outdegrees
for Directed Polytopes

In a private communication, Athanasiadis asked whether it is possible for
the digraph ω(P, f) of a directed d-polytope to contain no vertex of outdegree
2. Such a thing is indeed possible: simply let (P, f) be a square pyramid as
pictured in Figure 6.1. Moreover, taking the (d− 3)-fold inverted pyramid over
(P, f) yields a directed d-polytope with this property for every d ≥ 4.

In general, we observe that 0 and 1 are always the outdegrees of the top and
the next-to-top vertices, so they can never be avoided. However, every other
natural number can be easily avoided by the set of outdegrees of an appropriate
directed d-polytope: to avoid k ≥ 3, simply take the (d− 2)-fold pyramid over
a (k + 1)-gon.

After establishing that every individual integer greater than or equal to 2
can be avoided as an outdegree, it is not hard to extend this result to finite
sets S not containing 0 and 1. Let m = maxS, and let (P, f) be the stacked
polytope on m + 3 vertices of Figure 6.2; here, every vertex has an outdegree
of 0, 1, m + 1, or m + 2. Hence, we obtain a directed 3-polytope which avoids
all the numbers of S as outdegrees; moreover, taking the (d − 3)-fold inverted
pyramid over (P, f) yields a directed d-polytope avoiding S for every d ≥ 4.

Figure 6.1: A 3-polytope with outdgrees 0, 1, and 3.
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Figure 6.2: A 3-polytope with outdgrees 0, 1, m, and m+ 1.

This brief exercise in “avoidable” sets whets the appetite for the real ques-
tion: which finite sets of natural numbers are sets of outdegrees for d-polytopes?
For d ≥ 3, we call a set S ⊆ N d-feasible if there exists a directed d-polytope
(P, f) such that the set of outdegrees of ω(P, f) is S. As a convenient notation,
we present the elements of a d-feasible set, i.e. the distinct outdegrees present
in a polytope, in increasing order: 0 < 1 < D1 < ... < Dk. Essentially, what
we showed above is simply that every cofinite set of natural numbers has a
d-feasible subset.

The following theorems and their proofs appear in detail in [14] (under prepa-
ration):

Theorem 23. Every subset of N containing 0, 1, and a number greater than
or equal to 3 is 3-feasible.

Proof. To construct a 3-polytope with outdegrees 0 < 1 < D1 < ... < Dk, start
with the spindle depicted in Figure 6.3, in which d1 = Dk, di = 2 for 2 ≤ i ≤ n,
di = 1 for n+ 1 ≤ i ≤ 2n− 1, and d2n = 0. Each di, 2 ≤ i ≤ n can be increased
to 3 by lifting vi beyond the unique face Fi which is incident to both vi and vn.
This does not alter any other outdegree. Then, each di can be increased further
by splitting a triangular face to which it is incident any number of times. By
the Mihalisin-Klee Theorem, this yields a 3-polytope. An example for the set
{0, 1, 2, 3, 5, 6} can be seen in Figure 6.4.

Figure 6.3: The spindle with d1 = 6.
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Figure 6.4: The edges added to the initial spindle are noted with red.

By taking a (d − 3)-fold inverted pyramid over the above construction, we
obtain:

Corollary 9. Every finite set of natural numbers is a subset of a d-feasible set.

For m ∈ N, we define the mth triangular number tm := m(m+1)
2 .

By performing an inductive construction over cyclic polytopes, we have:

Theorem 24. Assume that d > 4 and 0 < 1 < D1 < ... < Dk is a finite
sequence of positive integers. If, for every i ∈ {1, ..., k}, Di ≥ td−2 + (i− 1)(d−
1)+2 (for even d) or Di ≥ td−2 +(i−1)(d−2)+3 (for odd d), then there exists
a d-polytope with outdegrees 0 < 1 < D1 < ... < Dk.

Proof. To begin, define s : N→ N such that s(j) = min{m ∈ N| (m−1)m
2 > j}.

Consider the directed d-simplex (P, f). It exhibits all the outdegrees from
0 through d exactly once. Let F be the facet which is not incident to the top
vertex. We can introduce a new vertex v which is beyond F , within the affine
hull of every facet incident to an edge e of our choice, and higher than every
vertex of F except for vd. We choose e to be the edge between vd and vd−2. It is
an easy consequence of the Inductive Construction Theorem that v will connect
to all the vertices of F , but the edge e will disappear. Hence, all the outdegrees of
all the vertices of F will increase, except for vd−2. Additionally, the d-polytope
P ′ := conv(P ∪ {v}) has a facet F ′ formed by the vertices v, vd−1, vd−2, ..., v1,
which have outdegrees 1, 3, 3, 5, 6, ..., d+ 1. Let us call this process “splitting”.

We then split F ′ by introducing a new vertex v′, setting e′ := {v, vd−3}, and
producing a new d-polytope P ′′ := conv(P ′ ∪ {v′}) with a facet F ′′ formed by
the vertices v′, vd−1, vd−2, ..., v1, which have outdegrees 1, 4, 4, 5, 7, ..., d + 2.
We continue repeating this process, splitting every facet F (j) from F through
F (td−2−1) by introducing a new vertex v(j), setting e(j) := {v(j−1), vd−1−s(j)},
and producing a new d-polytope P (j+1) := conv(P ∪{v(j)}) with a facet F (j+1)

formed by the vertices v(j), vd−1, vd−2, ..., v1, which have outdegrees 1, 3 + j,
3 + j, ..., 3 + j, 2 + s(j)(s(j)+1)

2 , 4 + j + s(j), ..., d + j + 1. Eventually, after
all of these splits, every vertex in the resulting polytope P (td−2) has outdegree
0, 1, or td−2 + 2, and it has a simplicial facet F td−2 which is formed by the
vertices vtd−2 , vd−1, vd−2, ..., v1 with outdegrees 1, td−2 + 2, ..., td−2 + 2. To
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obtain a polytope with outdegrees 0, 1, r with r ≥ td−2 + 2, simply expand
F td−2 by stacking d-simplices on it, which will increase the outdegrees of the
vertices v1 through vd−1 for the required amount, leaving every other outdegree
fixed. Hence, every such set {0, 1, r} is d-feasible.

To expand this result to set with k elements, we consider the cyclic polytope
C(d+(k−1)(d−1), d), if d is even, or C(d+(k−1)(d−2), d), if d is odd. We use
the Gale Evenness Criterion to separate the vertices of the cyclic polytope into k
simplicial facets F1, ..., Fk, with consecutive facets Fi, Fi+1 sharing only the ver-
tex vd+(i−1)(d−1) (if d is even) or only the edge {vd−1+(i−1)(d−2), vd+(k−1)(d−2)}
(if d is odd). Then we separately treat each Fi with the splitting process de-
scribed above, until all of the vertices in each Fi have outdegree Di. The proof
is complete.

Theorem 25. Let 0 < 1 < D1 < ... < Dk be a finite sequence of positive
integers. If Di ≥ 4 + 3(i − 1) for every i ∈ {1, ..., k}, then there exists a 4-
polytope with outdegrees 0 < 1 < D1 < ... < Dk.

Proof. As above, with the additional trick that in this particular case we can
take F to be the facet of the 4-simplex which is not incident to the bottom
vertex. Then the splitting process yields a 4-polytope with eight vertices of
degrees 0, 1, 1, 1, 4, 4, 4, 4.

Corollary 10. For every d ≥ 3 and every finite set S ⊂ N, if S contains 0 and 1
and every other number in S is greater than a function f(d, |S|) = Ω(d(|S|+d)),
then S is d-feasible.

Corollary 11. The d-feasible sets with exactly three elements for d = 3 or d = 4
are exactly those of the form {0, 1, r} with r ≥ d.

As an aside, note also that, for any vertex v of a polytope P with total
degree k and for every natural number l ≤ k, there exists a linear functional
f such that degout(v) = l in ω(P, f). Indeed, it is a simple application of the
Hyperplane Separation Theorem that N(v) can be divided by a hyperplane H
into two disjoint subsets with l and k − l elements, respectively. Hence, taking
f :=< x, z > to be the appropriate z ⊥ H proves the claim. Thus, for the right
choice of f , any outdegree less than or equal to d can be present in the digraph
of a directed d-polytope (P, f).

Another intriguing question is this: for a class C of polytopes, a set S ⊂ N is
called d-feasible in relation to C if there exists a directed d-polytope (P, f) ∈ C
such that the set of outdegrees of ω(P, f) is S. It would be interesting to
search for the d-feasible sets in relation to certain important classes. Here is an
example:

Remark 5. The only d-feasible set in relation to the class of simple polytopes
is {0, ..., d}

Proof. As proven in [18], the h-vector of a directed simple polytope informs us
about the number of vertices which have each outdegree. But the h-vector of a
simple polytope only has strictly positive elements.
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One might also ask:

Question 6. Which are the d-feasible sets in relation to the class of simplicial
polytopes?
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