EONIKO KAI KAMOAIZTPIAKO NMANEMIZTHMIO AOGHNQN

2XOAH OETIKQN ENIZTHMQN
TMHMA NMAHPO®OPIKHZ KAI THAENIKOINQNIQN

NTYXIAKH EPTAZIA

AZloAdynon Tng Akpipeiag Kal Twv ETId6ocewv MovTéAwyv
EmegepyaoTwy o€ EmiTredo Metagopdg Karaxwpntwyv
Kol MiIKpoapXITEKTOVIKO ETritTredo

Mewpylog-Mapiog K. ®paykoUAng
Oduootag A. Xar{érouAog

EMIBAENQN: AnuAtpiog MkigémrouAog, Kabnyntng

AOHNA

2EMTEMBPIOZ 2021

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Evaluation of the Accuracy and the Performance of
Register Transfer Level and Microarchitecture Level CPU
Models

Odysseas D. Chatzopoulos
George-Marios K. Fragkoulis

SUPERVISOR: Dimitris Gizopoulos, Professor

ATHENS

SEPTEMBER 2021

NTYXIAKH EPTAZIA

AloAoynon tTng AkpiBeiag kal Twv Emddoewv Movtéhwyv ETreepyaoTwyv oe ETiTredo
Metagopag Kartaxwpntwyv kal MikpoapXITEKTOVIKO ETTiTTed0

Mewpylog-Mdpiog K. ®paykoUAng
A.M.: 1115201700179

Oduootag A. Xar{érouAog
A.M.: 1115201700191

EMIBAENQN: Anunitpiog MkigémrouAog, Kabnyntng

BSc THESIS

Evaluation of the Accuracy and the Performance of Register Transfer Level and
Microarchitecture Level CPU Models

Odysseas D. Chatzopoulos
S.N.: 1115201700191

George-Marios K. Fragkoulis
S.N.: 1115201700179

SUPERVISOR: Dimitris Gizopoulos, Professor

NEPIAHWH

2TNV OUYKEKPIPEVN epyaaia ouykpivouue Tnv RTL TTpocopoiwon Pe TNV TTPOCOoU0oiwon
O€ MIKPOOPXITEKTOVIKO ETTITTEDO, E€TMIONUAivOVTag TO 100CUYI0 attddoong Kal akpiBelag
METOEU auTWV Twv BUO0. 2TNV TTPOCTTIABEId Pag va eKUETAAAEUTOUUE TRV TaXUTNTA Kal
TNV TTPOCAPHPOCTIKOTATA TOU MIKPOOPXITEKTOVIKOU ETTITTEOOU, XWPEIG va TTapapePiCoOUUE
TNV ETTTITWON OTNV OKPIREIA, SIAUOPPUVOUNE TO HOVTEAO HIKPOOAPXITEKTOVIKOU ETTITTEDOU
oe oxéon Pe 10 poviéNo RTL. H PEAETN pag eTTIKEVTPWONKE 0€ évav UTTEPRABUWTO,
€KTOG O€Ipdg TTuprva, o otroiog xpnolipotrolei RISC-V apxITEKTOVIKA) GUVOAOU EVTOAWV.
H trpootdbeia avtioToiXiong Twv dU0 POVTEAWYV, N oTroia €mMITEUXONKE PEow €pEucng
TNG TIUAG CUMAVTIKWY HIKPOOPXITEKTOVIKWY TTAPAUETPWY KAl EKTEAECEWV OTOXEUUEVWV
TTpoypauudaTwy, odAynoe o€ o@daAua mmpooopoiwong 15.35%. KAEvovtag, oto pEAAoV
oXedIAoUPE va aVOKAAUWOUHE ETTITTAEOV TIUEG APXITEKTOVIKWYV TTAPAUETPWY KOl Va
BeATiILwOOUPE TNV aKpiBeld TNG TTPOCOMOIWONG MAG XPNOIUOTTOIWVTOG €EEAIYUEVOUG
emmegepyaoTég Kal full system povtéAa.

OEMATIKH MEPIOXH: ApxiTekToviKr YTTOAOYIOTWV

AEZEIZ KAEIAIA: apxitekTovikr) uttoAoyioTwy, Trpocopoiwon RTL, mTpoocopoiwon o€
MIKPOOPXITEKTOVIKO €TTITTEDO, ETTIKUPpWON PovTEAou, RSD, gem5

ABSTRACT

In this work we compare RTL with microarchitecture-level simulation highlighting the per-
formance vs accuracy trade-off between the two. In an effort to benefit from the higher
speeds and flexibility of microarchitecture-level simulation while not significantly affecting
simulation accuracy we strive to fine-tune the microarchitectural model to closely match
the RTL one. Throughout this work we make use of the RISC-V ISA targeting a superscalar
out-of-order open-source core. After going through our matching process which includes
microarchitectural parameter discovery and matching followed by thorough benchmarking
we achieve a 15.35% simulation error. In future work we plan to streamline the microar-
chitectural parameter discovery and improve simulation accuracy while also use more
advanced processor and full system models.

SUBJECT AREA: Computer Architecture

KEYWORDS: computer architecture, RTL simulation, microarchitecture-level simulation,
model validation, RSD, gem5

ACKNOWLEDGEMENTS

We would like to thank our families with all our hearts since they have supported us un-

codintionally for the longest amount of time making personal sacrifices so that we could
pursue our dreams.

We would also like to extend our deepest gratitude to our thesis advisor Professor Dimitris
Gizopoulos for his continued guidance and invaluable support.

Finally we would like to convey our thanks to Professor Ryota Shioya at the University of
Tokyo for his availability and promptness to help with matters concerning RSD.

CONTENTS

1 INTRODUCTION

1.1 Computer Architecture Primero
1.2 A Brief History of Microprocessors
1.3 Microprocessor SimulationLevels
14 ThesisGoal e
1.5 RISC-V Instruction Set Architecture
1.6 Simulation Tools and MicroprocessorModels

2 TOOLS AND MODELS FULL SUMMARY

21 RSD e e e e e
2.2 Verilator e e e e e e e
23 Konata. e e e
24 gemb . . L e e e e e e

3 EXPERIMENTAL METHODOLOGY
4 RESULTS AND ANALYSIS

5 FUTURE WORK
ABBREVIATIONS - ACRONYMS
REFERENCES

19
19
20
24
26
27
32

35
35
38
39
39

43
49
55
57
61

R G QY
abLwON -

1.6

2.1
2.2
2.3
2.4
2.5

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

LIST OF FIGURES

Computer Architect view of the Computer System Stack 21
Processor Performance Evolution[28] 22
AMD Zen Architecture IPC Improvements [21] 23
Apple M1 Performancevs Power [1] 23
Simulation Speed vs. Accuracy 25
Formats [28],[8] 30
RSD Block Diagram [33]o 37
Verilator Flow [41] 38
Konata Sample Trace File Visualization 40
Speed vs Accuracy ingem5[17] 41
gem5 Block Diagram [31] 42
Committed Instructions Ratio gem5: RSD 43
RSD (left) - gem5 (right) Pipeline Matching 44
Simulation Speedupgem5vs RSD " 50
Cycles Ratio gemb : RSD e 51
Memory Accesses per Kilo-Instructions vs Cycles Ratio gem5: RSD 51
Memory Reads per Kilo-Instructions vs Cycles Ratio gem5: RSD 52
Memory Writes per Kilo-Instructions vs Cycles Ratio gemb5: RSD 52

Branch Prediction Misses per Kilo-Instructions vs Cycles Ratio gem5 : RSD 53
D$ Misses per Kilo-Instructions vs Cycles Ratio gem5 : RSD 53

-
WN -

3.1
3.2

LIST OF TABLES

Simulation ThroughputinHz 26
RV321/641 user-visible registers [28],[8] 29
Instructions in RISC-V 32 and 64 bit version [28],[14] 31
Main Microarchitectural Parametersof RSD 37
gem5 Modified Parameters L. 47

Micro-architectural Units Stressed by Each Benchmark [11] 48

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

1. INTRODUCTION

1.1 Computer Architecture Primer

In the last few decades the field of computing has seen major improvement and has trans-
formed the way that people consume their entertainment, communicate with each other
and work. Aside from affecting the daily lives of billions of people, computers are critical in
solving some of the most important problems humanity has to face such as finding novel
ways to fight disease, predicting and controlling the effects of climate change and under-
standing the hidden secrets of the universe. One of the main drivers behind the rapid
growth of computing is the continued improvement of computer hardware that enables
more complex and sophisticated software to be developed, tested and executed.

Computer architecture is the field of computer science and engineering that encompasses
the design of computer systems balancing performance and energy efficiency according
to expected user demands while staying within cost, power, area and reliability constraints.
A computer architect must be well versed in the design of the instruction set architecture
(ISA), computer organization (microarchitecture), digital design and physical implemen-
tation topics such as integrated circuit design, packaging and power management tech-
niques [28], [35]. Nowadays computer systems are very complex and contain a mix of
microprocessors (central processing units - CPUs), graphics processing units (GPUs),
domain specific accelerators and high speed peripherals often in one system on a chip
(SoC). Computer architects are expected to combine these components to create a com-
puter system that meets the user’s requirements in terms of power, performance and re-
liability. The microprocessor (CPU) is the central component of such system. It executes
the bulk of program code while also coordinating the rest of the system components.

When designing a microprocessor the architect must first design a new instruction set
architecture (ISA) or utilize an existing one. The ISA is the interface between the hardware
and software layers of a computer system. It specifies the behavior of machine code
instructions. According to [28], there are seven main aspects of an ISA.

i. Class of ISA. The vast majority of ISAs used nowadays are general-purpose regis-
ter architectures. They use registers and memory addresses as operands for their
instructions. Most modern ISAs belong to a subgroup of the aforementioned class
called Load-Store ISAs where memory operands are only used in load and store in-
structions and not in arithmetic or logic operations.

ii. Memory addressing. Almost all recent desktop and server class ISAs employ byte
addressing to access the memory system. Some of them require that memory objects
be aligned' whereas others allow unaligned accesses usually at a reduced speed due
to multiple memory accesses required for unaligned operands.

"The requirement that the address of an object is always a multiple of its size in bytes

19 G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

iii. Addressing modes. Addressing modes determine the way that operands are de-
fined in machine code instructions. This includes registers, constants and memory
addresses.

iv. Types and sizes of operands. Most ISAs support a range of operand sizes. Common
operand sizes are 8-bits (ASCII character), 16-bits (Unicode character or half word),
32-bits (integer, single precision floating point or word) and 64-bits (long integer, dou-
ble precision floating point or double word).

v. Operations. ISAs usually include a variety of arithmetic, logical, data transfer, con-
trol and floating point operations. More complex and special-purpose instructions are
often included to accelerate certain workloads.

vi. Control flow instructions. Effectively all ISAs support control flow instructions like con-
ditional and unconditional branches, routine calls and returns. For such instructions
PC-relative addressing is most commonly used.

vii. Encoding an ISA. There are two main approaches to encoding instructions. Fixed-
length and variable-length encoding. The main trade-off between these two is code
size and complexity of the decode hardware. Using fixed-length encoding can reduce
the size of the decode unit but usually results in larger compiled code size.

After deciding on an ISA, the architect must begin implementing it. Nowadays, with ISAs
being quite similar and new ISA design rare, the bulk of the design effort is put into the
implementation [28] to maximize performance or other parameters. There are two main
parts that go into implementing an ISA, organization and hardware implementation. Or-
ganization or otherwise known as microarchitecture refers to the high-level design of the
memory system, the memory interconnect and the microprocessor core where the func-
tional and control units of the microprocessor reside. The hardware implementation in-
cludes the complete logic design, integrated circuit design, fabrication and packaging of
the microprocessor or SoC.

Figure 1.1 depicts the abstraction layers of a computer system that computer architects
mostly deal with. The two middle layers i.e the ISA and the Microarchitecture are the main
focus of computer architecture but the two layers above and the two layers below them
are very important to keep in mind to achieve optimal performance and stay within power,
cost and area constraints.

1.2 A Brief History of Microprocessors

The term microprocessor refers to a computer processor where the datapath and control
digital logic are included in a single integrated circuit. The microprocessor accepts binary
data as input and processes it according to stored instructions. The integration of the en-
tire processor into a single chip reduces power consumption and cost and contributes to
increased performance when compared to a discrete processor design. Microprocessors

O. Chatzopoulos-G. Fragkoulis 20

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

Application
Algorithm
Programming Language
Operating System
Instruction Set Architecture (ISA)
Microarchitecture
Register Transfer Level (RTL)
Circuits
Devices
Physics

Figure 1.1: Computer Architect view of the Computer System Stack

are also more reliable than their discrete counterparts. The Intel 4004 is considered to
be the first commercial microprocessor design, having used 2300 integrated transistors
in 10um technology, being released in 1971 [24]. From that point of time onwards mi-
croprocessors have become increasingly complex in order to continually provide better
performance and power efficiency. There are two main driving forces behind this gen-
erational improvement: advancement of semiconductor technology and architectural and
microarchitectural innovation.

Figure 1.2 plots performance of microprocessors over time. Yearly improvement varies
between time periods. During the first years of microprocessors, performance increased
at a steady pace of 25% every year. This growth was mainly driven by improvements in
semiconductor technology. After 1986 performance improvement jumped to 52% yearly
which is mainly ascribed to more advanced architectures and microarchitectures associ-
ated with RISC designs. After 2003 which signified the end of Dennard scaling? and the
available instruction-level parallelism (ILP), improvements dropped back again to 23% an-
nually. In the 2011 to 2015 period performance improvement dropped again to 12% mainly
due to the inherent limitations of parallel computing as described by Amdahl’s law®. Finally,
from 2015 to 2018, with the end of Moore’s law* improvement was just 3.5% per year. In
the last few years though, due to a more aggressive push towards newer manufactur-
ing processes and microarchitectures from companies like AMD and Apple, generational
performance improvements have somewhat increased as shown in Figures 1.3, 1.4.

To achieve maximum performance in the post Moore’s law era microarchitectures usually

2Scaling law stating that as transistors get smaller their power density stays constant making the power use proportional to the
circuit area

3A formula which gives the maximum theoretical speedup of a fixed workload upon the improvement of one part of the system
that executes it

4The observation that roughly every two years the number of transistors in dense ICs doubles

21 G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

implement the following common design features [25].

Performance (vs. VAX-11/780)

1 00,000 Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)

10,000 - AMD Athlon 64, 2.8 GHz

Pipelining. Pipelining divides the execution of instructions into different stages allow-
ing several instructions in different phases to be processed simultaneously (partial
overlapping of instructions execution). This technique increases instruction level
parallelism. Virtually all mobile, desktop and server class microprocessors nowa-
days implement pipelining due to it's inexpensive implementation and significant
contribution to performance.

Out-of-Order Execution. Out-of-Order (OoO) microprocessors don’t necessarily ex-
ecute instructions in program order but execute them in an order based upon the
availability of the instruction operands and the execution units. OoO execution or
otherwise known as Dynamic Scheduling increases the amount of instruction level
parallelism by reducing avoidable stall cycles.

Superscalar Execution. Superscalar microprocessors can execute more than 1 in-
struction simultaneously in all pipeline stages (full overlapping of instructions exe-
cution). This means that a throughput higher than 1 instruction per cycle can be
achieved (depending on the code being executed).

Vector Extensions. Most microprocessors nowadays support vector instructions.
These instructions are also known as SIMD instructions (Single Instruction Multiple
Data). Vector instructions increase data level parallelism.

Multiple Cores. Microprocessors nhowadays have more than one core. A core is a
standalone entity that can execute a stream of instructions called a thread. Multicore

Intel Core i7 4 cores 4.2 GHz (Boost to 4.5 GHz)
Intel Core i7 4 cores 4.0 GHz (Boost to 4.2 GHz)

Intel Core i7 4 cores 4.0 GHz (Boost to 4.2 GHz)

Intel Xeon 4 cores 3.7 GHz (Boost to 4.1 GHz)

Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)
Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
Intel Core Duo Extreme 2 cores, 3.0 GHz
Intel Core 2 Extreme 2 cores, 2.9 GHz

--<=33 567 19.484

D Athlon, 2.6 GHz - ®°177865

AMI
Intel Xeon EE 3.2 GHz S 881 7,108
Intel DB50EMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology) 6,043 :
IBM Powerd, 1.3 GHz @~ 4,195
2* 3,016
1,779

Professional Workstation XP1000, 667 MHz 21264A T o657

1000 Digital AlphaServer 8400 6/575, 575 MHz 21264

23%lyear 12%l/year 3.5%lyear]

100

IBM RS6000/540, 30 MHz, g/
MIPS M2000, 25 MHz g*
MIPS M/120, 16.7 MHz g

Sun-4/260, 16.7 MHz g
VAX 8700, 22 MHz 5
AX-11/780, 5 MHz

25%/year
1 T

T T T T T T T T T T T T T T T T T T
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Figure 1.2: Processor Performance Evolution [28]

O. Chatzopoulos-G. Fragkoulis 22

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

AMD IPC Performance

P 1 1 1 .
Zen3 141%

Zen2 118%

Zen+ 103

Zen 100%

Excavator

Figure 1.3: AMD Zen Architecture IPC Improvements [21]

CPU performance vs. power

, M1 Pro/ @M1 Max
1.7x

4-core PC
laptop chip

150

8-core PC
laptop chip

100

Relative performance

30w

0 10 20 40 50 60 70

Power consumption (watts)

Figure 1.4: Apple M1 Performance vs Power [1]

23 G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

processors can execute multiple threads simultaneously using separate hardware
resources. Synchronization and communication among threads is provided.

* Multithreading. Multithreading allows a single core of a microprocessor to exe-
cute multiple instructions simultaneously. The key difference between multicore and
multithreaded processors is that simultaneously executed instructions use separate
hardware in multicore processors whereas in multithreaded processors they utilize
mostly the same hardware. Multithreading is often implemented for each core in a
multicore microprocessor.

As mentioned above, design complexity has increased exponentially since the advent of
the first microprocessor 50 years ago. Nowadays, some top of the line chips contain
almost 40 billion transistors in 7nm technology. This increase in complexity requires a
layered approach to design in order to create microprocessors within reasonable time
frames that not only are high performance but also present high reliability. One crucial
part of this multi-layered design effort is simulation. Simulation is widely used for design-
space exploration, debugging and power and performance estimation. Without simulation
frameworks companies would have to spend millions in hardware prototypes that would
be shortly discarded. Aside from cost the time to design microprocessors would be highly
affected since foundries that manufacture chips using cutting edge fabrication nodes are
few and have extremely tight schedules especially for low volume orders. In the next
section we will discuss about different levels of microprocessor simulation and present
the key differences between them.

1.3 Microprocessor Simulation Levels

Simulating a microprocessor is a multifaceted endeavour and thus there are many differ-
ent approaches that suit different use cases. There exist many different simulation levels
that differ in simulation speed, accuracy, degree of customization and level of abstraction.
The four main simulation levels that are widely used in both academia and industry are
Application Binary Interface Simulation, Instruction Set Architecture Simulation, Microar-
chitecture Simulation and Register Transfer Level Simulation [30].

Application Binary Interface (ABI) simulation is at the highest level of abstraction. The
ABI specifies an interface for program interaction, usually between a user program and
a library or operating system. The specification determines procedure call conventions,
data types and system calls. ABI simulation entails implementing an ABI of one system
on another system using the latter system’s primitive constructs. An example of such
simulation is the Windows Subsystem for Linux (Version 1) [30].

Instruction Set Architecture (ISA) simulation is one step below ABI simulation in the ab-
straction ladder. At this level the result of executed instructions is simulated without taking
into account the digital logic that a real processor implementation entails including the no-
tion of power and timing [30]. This type of simulation is also known as functional simulation

O. Chatzopoulos-G. Fragkoulis 24

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

and can be found in various commercial and open-source projects such as Vmware Work-
station, QEMU and Spike. When using this simulation method the user can run binaries
that are compiled for the target system without modification.

When in need of a more detailed simulation platform (i.e one that more faithfully resembles
the hardware) the next logical step is Microarchitecture Simulation. Microarchitectural sim-
ulators use software to emulate the different microprocessor hardware components such
as the fetch unit, the decode unit, the execution units, the memory system and scheduling
block. Such simulators are often used at some point of the design of a microprocessor to
perform design-space exploration. Some examples of microarchitectural simulators are
Simics [32], PTLsim [44], SimpleScalar [15], OVPsim [4], Spike [6], MARSSx86 [3], Sniper
[7] and gemb5 [2] [18].

Register Transfer Level (RTL) simulation is the most detailed simulation one can run while
still being able to practically simulate an entire microprocessor (running gate level or tran-
sistor level simulations is highly impractical for such large scale designs). RTL models
directly describe hardware using a hardware description language like (System)Verilog or
VHDL. These models are inherently cycle-accurate since virtually the same RTL code is
used to synthesize the actual hardware. RTL simulation can be run on different stages
of the design process namely before synthesis which is called behavioral RTL simula-
tion or after synthesis and technology mapping which is called post-implementation RTL
simulation. The latter does not only provide the cycle count and verification of functional
correctness but also includes timing, power and area data [39].

Microarchitecture and RTL simulation are the most useful in microprocessor design. The

Ideal

Target j i
Microarchitecture @

Behavioral RTL

)
%

Post-Implementation RTL

&
"
0 4

Speed
>

>

Accuracy

Figure 1.5: Simulation Speed vs. Accuracy

25 G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

main trade-off between the two is accuracy versus speed as can be seen in Figure 1.5.
Microarchitecture simulation, depending on the level of detail of the software emulating the
microprocessor components, can be moderately to very fast whereas RTL simulation even
when it is just behavioral is relatively slow. The advantage of RTL simulation is accuracy
of the hardware modeling, making cycle-accurate simulation almost always guaranteed.
Moving to a post-implementation model also provides us with timing, power and area
information. One key advantage of microarchitectural simulation is that it is a powerful
design-space exploration tool as software models are easy to modify and there exists
a large library of off-the-shelf components to choose from. In recent years significant
efforts have been made to design configurable RTL models and also create libraries of
hardware components that can be used interchangeably [16], [12]. In our opinion such
projects along with hardware accelerated RTL simulation may be the future of hardware
design yet the maturity of the provided frameworks is currently not on par with widely used
microarchitectural simulators.

1.4 Thesis Goal

In this work we focus on the tradeoffs between cycle-accurate microarchitecture simulation
vs. cycle-accurate behavioral RTL simulation for performance analysis. Cycle-accurate
models utilize detailed component descriptions with many parameters thus creating haz-
ards for simulation error to occur when comparing two such models. These errors can
occur due to parameter mismatch or inherent differences in the component implementa-
tion.

We aim to fine-tune the parameters of a fast microarchitectural model in a widely used mi-
croarchitectural simulator to match a detailed behavioral RTL microprocessor model. We
intend to fully benefit from the higher throughput, easily modifiable and mature microarchi-
tecture simulation framework while minimizing the simulation error as much as possible,
leveraging our knowledge of key hardware details of the RTL model. The key metric of
simulation accuracy used is the cycles ratio of the two models. In cases of high simulation
discrepancy the main sources of error will be explored.

After an extensive literature review we have identified very few publications that tried to
achieve similar goals [10], [23], [19], [18]. What differentiates our work from previous
efforts is the use of a RISC-V Out-of-Order RTL microprocessor model which to the best

Table 1.1: Simulation Throughput in Hz

Simulation Levels Throughput Rate in Hz
Application Binary Interface ~ 10°
Instruction Set Architecture ~ 10°

Microarchitecture ~ 10°
Register Transfer Level ~ 103

O. Chatzopoulos-G. Fragkoulis 26

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

of the authors’ knowledge has not been attempted before. Most studies focus on ARM and
x86 ISAs whereas RISC-V based works use In-Order cores and FPGA based simulation.

1.5 RISC-V Instruction Set Architecture

RISC-V is a state-of-the-art, license-free, royalty-free, open-standard ISA specification
that was originally designed at UC Berkeley [5]. Nowadays RISC-V is maintained by RISC-
V International a non-profit organization based in Switzerland to avoid conflicts due to US
trade regulations. Before delving into the basics of RISC-V one needs to understand why
an open ISA specification is needed.

According to [14] there are no good technical reasons why current popular ISAs are propri-
etary. The decision to make an ISA proprietary is usually profit driven. Companies patent
specific peculiarities of their designs and then sell licenses that can cost somewhere in the
range of $1M - $10M and can even restrict implementation of the ISA to a few company-
created and approved designs. This decision is certainly sound in a business sense but
contributes to the creation of monopolies and the suppression of competition and innova-
tion. Furthermore, the notion that only big companies can design an ISA is incorrect, nor
are commercial ISAs pinnacles of elegant and streamlined design as they often include
obscure instructions for backwards compatibility and patent purposes. Finally, the free
and open-source distribution of a processor designed using a licensed proprietary ISA is
impossible since modification or use of the design in a commercial product would result
in a patent violation. It is thus clear that a free open-source ISA would greatly benefit the
industry as it would facilitate a truly open market of processor designs. As observed in
the software world this would enable innovation, decrease the cost of SoCs and provide
businesses and researchers with open processor designs which they can customize and
use for their own purposes.

Since the need for an open ISA is now apparent we will explore why RISC-V is well suited
to fit the role of the leading open ISA.

* RISC-V as the name implies is a Reduced Instruction Set Computer (RISC) ISA.
The number five refers to the number of generations of RISC architecture that were
developed at the University of California, Berkeley. All commercial ISAs nowadays
are RISC ISAs or translate their instructions to RISC microoperations [40]. The
benefits of RISC ISAs have been extensively discussed in Computer Architecture
books and publications but the aforementioned fact should convince even the most
skeptical readers.

* RISC-V is designed to support all classes of computers, from the tiniest Internet of
Things (loT) devices to the largest Warehouse-Scale Computers (WSCs). This is
achieved by meeting four important requirements [14].

i. Be a Base + Extension ISA. This allows the ISA to have a small core set of
instructions that compilers and operating systems can use while also providing

27 G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

standard extensions such as floating point or bit operations for specific applica-
tions. There is also space for custom instructions to control application-specific
accelerators present in the SoC. Application specific accelerators are already
widely used in practice and are according to prominent computer architects a
way to counter the slowing of Moore’s Law [29].

ii. Compact Code Size. This allows area and cost constrained devices such as
embedded microcontrollers to utilize their limited memory more efficiently.

iii. Quadruple Precision Floating Point Support alongside Single and Double Pre-
cision Floating Point. Large simulations and scientific computations that run
on WSCs require extreme floating point accuracy and support for very large
numbers.

iv. 128-bit Addressing alongside 32-bit and 64-bit Addressing. This ensures that
computers from the tiniest loT devices to the largest WSCs will have the ap-
propriate address size even after many decades have passed.

* RISC-V has seen wide community adoption and is being used extensively in industry
and academia. This momentum has in our opinion already made RISC-V the de
facto standard open ISA.

RISC-V as its Berkeley designed RISC predecessors is a simple load-store instruction set
designed for efficient compiler targeting and pipelining by maintaining a fixed instruction
set encoding. The ISA is organized as four base instruction sets: RV32l, RV32E, RV64I
and RV128l. RV32l is the base 32-bit integer instruction set with 32 general purpose reg-
isters. RV32E is a variation of RV32| with only 16 registers to make implementing low
end embedded processors easier. RV64l and RV128| are the base 64-bit and 128-bit
integer instruction sets which again have 32 64-bit and 128-bit general purpose registers
respectively. There also exist many optional extensions for various use cases like the F
and D extensions that add single and double precision floating point support, the M ex-
tension which adds multiplication and division capabilities, the A extension which adds
atomic instructions for parallel programming and others [28], [8].

In this thesis we focus on the RV32IM and RV64IM ISAs since they are supported by
our tools. RV64IM is a superset of RV32IM. Both ISASs’ registers are shown in Table 1.1.
The x0 register has a constant value of zero to enable the synthesis of more complex
instructions from simpler ones by the compiler. There also exist some special purpose
registers that contain status and configuration bits. The integer data types supported by
RISC-V are 8-bit bytes, 16-bit half-words, 32-bit words and 64-bit double words. RV32I can
handle operations up to 32-bits whereas RV64| can handle operations up to 64-bits. Data
types that do not completely fill the architectural registers are either zero or sign-extended
depending on the signedness of the data. RISC-V supports only two data addressing
modes namely immediate and displacement addressing. However through clever use of
zeros the register indirect and limited absolute addressing modes can be implemented
[28].

O. Chatzopoulos-G. Fragkoulis 28

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

Table 1.2: RV32l/64l user-visible registers [28], [8]

Register | Name Use
x0 zero Constant value 0
x1 ra Return address
X2 Sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5-x7 t0-t2 Temporaries
x8 s0/fp Saved register/Frame pointer
x9 s1 Saved register
x10-x11 | a0-al | Function arguments/return values
x12-x17 | a2-a7 Function arguments
x18-27 | s2-s11 Saved registers
x28-x31 | t3-t6 Temporaries

RISC-V instructions are encoded using a 32-bit fixed length encoding scheme making
pipelining easier. The 6 possible instruction encodings can be seen in Figure 1.6. The
opcode specifies the general type of instruction while the funct fields determine the spe-
cific operation. A 12-bit constant field is provided for displacement addressing, immediate
constants or PC-relative addressing. The majority of RV32| and RV64l instructions can be
seen in Table 1.2. Following the RISC paradigm instructions are simple and orthogonal to
each other providing an efficient compiler target and relatively straight-forward hardware

implementation.

29

G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

R funct? rs2 rsi funct3 rd opcode
31 2524 2019 1514 1211 76

I imm[11:0] rsi funct3 rd opcode
31 2019 1514 1211 76

S imm[11:5] rs2 rsi funct3| imm[4:0] opcode
31 2524 2019 1514 1211 76

SB imm[12]10:5] rs2 rsi funct3imm[4:0]11] opcode
3130 2524 2019 1514 1211 876

U imm[31:12] rd opcode
31 1211 76

uJ imm[20]10:1]11]19:12] rd opcode
3130 212019 1211 76

Figure 1.6: Formats [28], [8]

O. Chatzopoulos-G. Fragkoulis 30

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

Table 1.3: Instructions in RISC-V 32 and 64 bit version [28], [14]

Category Functionality Instruction Format | Version
Load byte 1b rd, imm[11:0](rs1) | RV32I

Load byte unsigned lbu rd, imm[11:0] (rsl) | RV32I

Load half 1h rd, imm[11:0] (rs1) | RV32I

Load half unsigned lhu rd, imm[11:0] (rs1) | RV32I

Load word 1w rd, imm[11:0] (rs1) | RV32I

Data Transfer Load word unsigned lwu rd, imm[11:0] (rs1) | RV64I
Load double word 1d rd, imm[11:0] (rs1) | RV64I

Store byte sb rs2, imm[11:0] (rs1) S RV32I

Store half sh rs2, imm[11:0] (rs1) S RV32I

Store word sw rs2, imm[11:0] (rs1) S RV32I

Store double word sd rs2, imm[11:0] (rs1) S RV64|

Add add rd, rsil, rs2 R RV32I

Add 32 bits addw rd, rsi, rs2 R RV64I

Sub sub rd, rsi, rs2 R RV32I

Sub 32 bits subw rd, rsl, rs2 R RV64I

Shift left logical sll rd, rsl, rs2 R RV32I

Shift left logical 32 bits sllw rd, rsl, rs2 R RV64I

Shift right logical srl rd, rsl, rs2 R RV32I

Shift right logical 32 bits srlw rd, rsl, rs2 R RV64I

Shift right arithmetic sra rd, rsl, rs2 R RV32I

Shift right arithmetic 32 bits sraw rd, rsl, rs2 R RV64l|

And and rd, rsi, rs2 R RV32I

Or or rd, rsl, rs2 R RV32I

Xor xor rd, rsl, rs2 R RV32I

Set if less than slt rd, rsl, rs2 R RV32I
Arithmetic/Logical Set if Ies§ than u.nsigned sltu rd, rsl, rs2 R RV32|
Add immediate addi rd, rsl, rs2 | RV32I

Add immediate 32 bits addiw rd, rsl, rs2 | RV64I

Shift left logical by immediate slli rd, rsl, rs2 | RV32|

Shift left logical by immediate 32 bits slliw rd, rsl, rs2 | RV641
Shift right logical by immediate srli rd, rsl, rs2 | RV32I
Shift right logical by immediate 32 bits srliv rd, rsl, rs2 | RV64|
Shift right arithmetic by immediate srai rd, rsl, rs2 | RV32I
Shift right arithmetic by immediate 32 bits sraiw rd, rsl, rs2 | RV64|
And immediate andi rd, rsi, rs2 | RV32I

Or immediate ori rd, rsi, rs2 | RV32I

Xor immediate xori rd, rsi, rs2 | RV32I

Set if less than immediate slti rd, rsl, rs2 | RV32I

Set if less than immediate unsigned sliu rd, rsl, rs2 | RV32I
Load upper immediate lui rd, imm[31:12] U RV32I

Add upper immediate to pc auipc rd, imm[31:12] U RV32I
Branch if equal beq rsl, rs2, imm[12:1] SB RV32I

Branch if not equal bne rsl, rs2, imm[12:1] SB RV32I

Branch if less than blt rsl, rs2, imm[12:1] SB RV32I

Control Branch if less than unsigned bltu rsl, rs2, imm[12:1] SB RV32I
Branch if greater or equal bge rsi, rs2, imm[12:1] SB RV32I
Branch if greater or equal unsigned bgeu rsi, rs2, imm[12:1] SB RV32I
Jump and link jal rd, imm([20:1] uJ RV32I

Jump and link register jalr rd, rsl, imm[11:0] | RV32|

31 G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

1.6 Simulation Tools and Microprocessor Models

Simulation nowadays is used in all phases of hardware design and academic research,
thus there exists a variety of simulation frameworks to choose from. Some widely used
simulators are Simics, PTLsim, SimpleScalar, OVPsim, Spike, MARSSx86, Sniper and
gem5 [18].

» Simics is a functional simulator that supports Alpha, ARM, MIPS, PowerPC,
MSP430, SPARC and x86 architectures. It is often used to run production binaries
meant for real hardware without modification [9].

* PTLsim is a cycle-accurate simulator designed for x86 microprocessors. More
specifically, it targets a superscalar x86-64 OoO processor at varying levels of detail
[44].

* OVPsim is a functional simulator that supports ARM, MIPS, PowerPC, x86 and
RISC-V architectures including less known embedded ISAs [37].

» Spike is a functional simulator designed as a golden model for the RISC-V ISA. It
comes packaged with RISC-V toolchain builds [8].

* MARSSx86 is a cycle-accurate full-system simulator that supports multicore x86-64
systems. It also contains detailed models for coherent caches and on-chip intercon-
nects [34].

» Sniper is a next-generation parallel x86-64 multicore simulator that uses the tech-
nique of interval simulation to achieve high throughput [27].

* gemb is a cycle-accurate simulator that supports the Alpha, ARM, PowerPC, x86,
SPARC, MIPS and RISC-V ISAs. It is widely used in both academia and industry
and provides a rich library of component models.

In our work we decided to use gem5 as it supports RISC-V and provides a cycle-accurate
000 microprocessor model. Furthermore, gem5 is the state-of-the-art simulator due to
a wide and active community support, good documentation and mature code base while
being stable, flexible and configurable [17].

When it comes to RTL microprocessor models, the RISC-V open ISA has enabled the de-
velopment of open-source microprocessors that can be modified and used free of charge.
This is beneficial to both academic research and commercial product development. Some
prominent RISC-V microprocessor projects are Rocket, BOOM, CVA6 and RSD.

* Rocket is a 5-stage, in-order, scalar microprocessor that has OS support, a non-
blocking data cache and front-end branch prediction. It implements the RV32G and
RV64G ISAs where G symbolizes the base integer instruction set along with the M,
A, F and D extensions [13].

O. Chatzopoulos-G. Fragkoulis 32

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

 BOOM is an out-of-order, superscalar microprocessor with OS support that imple-
ments the RV64G ISA. It is considerably faster than Rocket even though it utilizes
some components that where built for it. BOOM has an advanced branch predic-
tor and uses aggressive out-of-order and superscalar techniques to achieve high
performance [45], [13].

» CVAG, formerly known as Ariane, is a 6-stage, in-order, scalar microprocessor with
OS support and front-end branch prediction. It implements the RV64IMAC ISA [22].

* RSD is an open-source out-of-order, superscalar processor optimized for FPGA use.
It implements aggressive out-of-order and speculative execution features to elevate
performance. Even with this advanced feature set it manages to keep area down
especially when implemented on FPGAs. RSD implements the RV32IM ISA and
doesn’t have OS support [33].

After comparing the available microprocessors we decided on RSD. Our choice was
mainly based on the fact that RSD had a more compact code base than other choices
while supporting OoO execution. Being a size optimized design simulation is faster on
RSD than most other choices thus making experimentation easier. Furthermore, Profes-
sor Ryota Shioya, a main contributor to the RSD project, was always available for support
during our research thus saving a lot of troubleshooting time.

33 G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

O. Chatzopoulos-G. Fragkoulis 34

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

2. TOOLS AND MODELS FULL SUMMARY

21 RSD

Out-of-order execution, otherwise known as dynamic scheduling, increases the amount
of instruction level parallelism by reducing avoidable stall cycles. RSD implements OoO
execution in combination with speculative scheduling to increase performance. Studies
have shown that speculative scheduling can increase the Instructions per Cycle (IPC)
of SPECint2006 by 26.8% [33]. The RSD processor also supports OoO load and store
execution and disambiguation, a memory dependence predictor and a non-blocking data
cache. In combination with these features, RSD is highly optimized for FPGA synthesis by
using native FPGA resources whenever possible thus more efficiently utilizing the FPGA
fabric. In this section we will take a deep dive into the RSD microarchitecture and finally
present the exact RSD configuration that was used for the purposes of this study.

We can divide RSD into three logical blocks. The Front-End Block, the Scheduling Block
and the Execution Block.

» The Front-End Block fetches and decodes instructions from the level 1 instruction
cache in program order. The gshare branch predictor is used to predict the direction
of branches by combining the global branch history and the location of the executed
branch thus increasing prediction accuracy [26].

» The Scheduling Block is responsible for maximizing instruction level parallelism (ILP)
for instructions sent from the front-end block. To do this it issues instructions to the
execution block out of the program order. The main components of the scheduling
block are the rename unit, the dispatch unit, the issue queue (IQ) and the reorder
buffer (ROB)

— The Rename Unit removes false dependencies between instructions by renam-
ing the architectural registers corresponding to destination operands to regis-
ters in the physical register file. This is achieved through the use of a register
map table (RMT).

— The Dispatch Unit reserves an entry for renamed instructions in components
like the ROB, the load queue (LDQ) and the store queue (STQ), of course
depending on the type of instruction. If any of the aforementioned units is full
and thus an entry can’t be allocated for an instruction the dispatch unit stalls
until an entry is freed up.

— The Issue Queue issues instructions to the execution block when the source
operands of the instruction are available. It is comprised of the wakeup logic,
the select logic and the instruction payload RAM. The wakeup logic determines
the readiness of each in-flight instruction enabling the select logic to issue ready
instructions to the execution block. The instruction payload RAM stores data
required for executing the instruction like the instruction’s type. Going into a bit

35 G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

more detail, the wakeup logic uses a matrix based approach where asserted
matrix bits signify that the instruction corresponding to the matrix row depends
on the instruction corresponding to the matrix column. The select signal clears
an instructions column bits when it is selected and issued. The select logic con-
siders an instruction ready when all bits of the corresponding row are cleared.

— The Reorder Buffer stores the state of dispatched instruction and commits an
instruction when it finishes executing and becomes the oldest instruction in the
processor. This ensures that the programmer perceives the execution of in-
structions as in-order maintaining program correctness. If an instruction is ex-
ecuted erroneously due to mis-speculation then the instruction and its succes-
sors are flushed or replayed.

» The Execution Block executes the instructions it receives from the scheduling block.
Its main components are the physical register file (PRF), the load-store unit (LSU)
and the functional units themselves.

— The Physical Register File stores operand physical register data. Instructions
once at the PREF first receive their source operand data from it or directly from
the execution units through a bypass network. The appropriate execution unit
then executes the instruction and writes the result to the PRF and the bypass
network.

— The Load Store Unit handles memory instructions and acts as a bridge to
the DRAM system by sending a cache fill request when a memory instruction
misses in the level 1 cache. RSD’s LSU allows loads and stores to be executed
out-of-order speculatively significantly reducing the memory bottle-neck. The
correctness of memory instructions is guaranteed by performing dynamic mem-
ory disambiguation through the use of load and store queues. These queues
are content addressable memory (CAM) structures that are filled with loads and
stores respectively. Dynamic memory disambiguation is performed by having
loads search for older stores to the same address in the store queue and using
the youngest saved data. Stores on the other hand search for younger com-
pleted loads from the same address in the load queue and force instruction
replays for them and their dependents. In an effort to minimize replays due to
memory ordering violations, RSD uses a memory dependence predictor (MDP)
which forces dependence predicted loads to wait in the 1Q for all older stores
to complete.

As mentioned above, RSD supports speculative scheduling. This means that instructions
that depend on other instructions of variable execution time, such as loads, are issued on
the assumption that the latter instruction will complete with the minimum possible latency.
In the case of loads this can significantly decrease the load-to-use latency, contributing
to better performance. The instruction replay mechanism is used when an erroneous
scheduling decision is made meaning that the source operand data has not yet been
produced by the variable latency instruction. RSD uses an instruction queue based replay

O. Chatzopoulos-G. Fragkoulis 36

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

design where speculatively scheduled instructions are kept in the 1Q and the I1Q replay logic

interacts with the wakeup logic to replay instructions when necessary.

Dopaeh Issue Queue SDA LM(LII-nSillom
1Q
Free List | | Payload STQ
e e e L PPy == e
T T Ready- IRL | [Read [1 unit [] Write
Des}&g/l{ion md ROB PRF
T
Front-End Block Scheduling Block Execution Block
Figure 2.1: RSD Block Diagram [33]
Table 2.1: Main Microarchitectural Parameters of RSD
Parameter Value
Pipeline 000
Fetch/Decode/Rename Width 2
Branch Predictor gshare (2048 History Table)
Branch Target Buffer Entries 1024
Return Address Stack Entries 4
Issue Width 5
Writeback Width 5
Commit Width 2
Physical Register File 64 Registers
Instruction Queue Entries 16
Reorder Buffer 64
L1 Data/lnstruction Cache 4kB/4kB (2-way)
Cache Line Size 8 bytes
Replacement Policy Tree-PLRU
L1 Hit Latency 1 clock cycle
L1 Miss Latency 100 clock cycles
MSHR Entries 2
Load/Store Queue Entries 16

Figure 2.1 shows the block diagram of RSD. The flow of instructions through the three main
RSD blocks can clearly be seen. The advanced features that RSD supports in combination
with the good documentation, compact code base and excellent support from Professor

37 G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

Shioya make RSD the best choice for our study. We hope that our current observations
and feedback can help the RSD team improve their design even more as they have already
done based on previous suggestions.

Table 1.3 presents the main microarchitectural parameters of RSD. We can see that RSD
is a 2-way fetch superscalar core with an issue width of five to account for the five available
execution units i.e two integer units which handle simple integer and logical instructions
as well as branches, a complex integer unit which handles multiplication and division, a
load unit and a store unit. The physical register file contains 64 registers and the ROB
can hold 64 entries. The instruction queue can hold 16 instructions at a time and the load
and store queues can hold 16 entries each. The branch predictor used is gshare with a
PHT of 2048 entries and a BTB of 1024 addresses. The L1 instruction and data caches
are 2-way set associative with a size of 4kB and 2 MSHRs®.

2.2 \Verilator

= . . « Super Fast
D SIUCIEUCUNN - License Free
wsualc; ZCRUERER . Runs Anywhere
SystemVerilog L9 « Buildable into apps

CLANG 100% C++ code

RTL design —
module ff [>

output logic q);

alwaYS_Y' @(posedge clk) VERILATOR .
snd:nsalg' [> I_I nt

XML User
tools

Figure 2.2: Verilator Flow [41]

There exist many HDL simulators that one can use when performing behavioral RTL sim-
ulation. The most widely used commercial simulators are Mentor Graphics ModelSim,
Synopsys VCS and the Cadence Incisive Enterprise Simulator. These all support both
VHDL and (System)Verilog and have been adopted by many IC design and testing com-
panies. Some well known open-source simulators are Icarus Verilog, Verilator and GHDL.
As their names imply Icarus Verilog and Verilator support Verilog whereas GHDL supports
VHDL. Open-source simulators are generally used for smaller projects but with the rise
of the open-hardware movement they are being utilized in larger and larger endeavours
[42], [43], [41].

In order to perform behavioral RTL simulation of the RSD processor Verilator is used.
Verilator is an open-source, high throughput, widely used (System)Verilog simulator. It
accepts synthesizable Verilog or SystemVerilog code and after performing lint code-quality

5MSHRs keep track of outstanding cache misses and pending load/store accesses that refer the missing cache line

O. Chatzopoulos-G. Fragkoulis 38

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

checks it compiles it into multithreaded C++ code as can be seen in Figure 2.2. According
to [41] Verilator outperforms many commercial simulators while supporting both single and
multi-threaded output models. Verilator is widely used in both academia and industry and
has out-of-the-box support for ARM and RISC-V vendor IP.

Once Verilator has created an optimized C++ model from the supplied RTL code the user
writes a C++ wrapper that instantiates said model of the top level module. The C++ files
are then compiled using a conventional C++ compiler like GCC or Clang. The produced
executable performs the simulation. Due to the high level of code optimization the Verilator
model is about 100x faster than interpreted Verilog and by making use of multithreading
this speedup can be extended to 200x up to 1000x. The fact that Verilator is free and open-
source while being able to compete with and often surpass the performance of commercial
simulators makes it the best choice value-wise for our academic endeavour.

2.3 Konata

In this thesis except from traditional debugging techniques such as microarchitectural
counter comparison and step-by-step execution we utilized Konata, a free and open-
source pipeline visualizer developed by Professor Ryota Shioya. Konata enables the
visualization of O3PipeView compatible trace files in an easy to navigate graphical user in-
terface. Features such as side by side comparison of trace files and aggregated statistics
information are very useful when trying to match the pipeline behavior of two different mod-
els. The ability to graphically represent the execution flow of different workloads makes
finding flushes or cache misses much easier and is a quick way to compare performance
[38]. Figure 2.3 shows a sample trace file being visualized in Konata.

24 gem5

gem> is an open-source simulation tool widely used in computer architecture research.
It offers stability and flexibility that enable computer engineers to execute applications in
multiple architectures and evaluate hardware at the cycle level. gem5 is known for its
extensive and supportive community and its frequent updates that consistently add new
features and improve already existing ones. The gem5 simulator supports a variety of
ISAs including RISC-V, it has two types of execution modes and contains multiple CPU
models and advanced protocols for caches and interconnection networks [31], [17].

The flexibility that gem5 provides is in part owed to the modular architecture of component
definitions. Developers represent each component with two classes, one in Python and
the other in C++. The Python class contains all the component parameters which can
easily be modified by the end user whereas the C++ class determines the component’s
functionality. As a result of this, all gem5 components, e.g CPU and memory models have
familiar structure and initialization flow.

39 G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

0\3*?—.1.‘—. - O o

File Window View Help
GEM5.log x

Flpc 1 2 3
[Fpc 1 2
[F[pc 1
[F|bc 1

| F [pe

| F [
| F [
| F | e

BB | w]|BB] e N |w
GIEe
Qllkrlin
N E| D

==

Flleln|nw|w

GGG

NN N][R~
W ld (N W e

=
=

=
I

(=]

=

=
wn
[
¥}
(=]
2

MW w
&
BRI E R R e R e

=
Flrle|e W w

o
]
[
M
(=]
=2

3
3
2
2
1

Dc

Dc
F
F

-
=1

-
Bl n|w
I-\I-\MMU-IUJH
o)
g

1

=
=1
*]

R T T = A T

lrlim|inw||w
B |||

Figure 2.3: Konata Sample Trace File Visualization

While selecting the execution mode, CPU model and cache protocol, the researcher must
consider the trade-off between accuracy and speed, as shown in Figure 2.4. gem5 has
two system modes, System-call Emulation (SE) mode and Full-System (FS) mode. In
System-call Emulation mode, gem5 doesn’t load an operating system and as a result the
system calls are emulated through the host OS. On the other hand, in Full System mode,
gemb5 creates a bare-metal environment configured to run an OS which includes support
for interrupts, exceptions, privilege levels and 1/O devices. In this mode gem5 executes
(simulates) both user and kernel-level instructions without deferring to the host machine
support.

The choice of CPU model also plays an important role in simulation accuracy and speed.
According to [31], gem5 supports four main CPU models:

i. Simple CPU (Atomic and Timing) are non-pipelined models that can be used for mem-
ory system studies and studies that do not require high execution fidelity. These mod-
els fetch, decode, execute and commit a single instruction every cycle. Simulation
throughput is high due to the simplicity of these models.

ii. The In-order CPU model simulates an in-order pipelined machine with a configurable
number of pipeline stages and other parameters such as issue width. Instruction exe-
cution takes place exclusively in the execution stage after all dependencies have been
resolved (“execute-in-execute” model) [17].

iii. The O3 model simulates an out-of-order pipelined CPU. It includes parameterizable

O. Chatzopoulos-G. Fragkoulis 40

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

functional units such as load and store queues and a reorder buffer making super-
scalar execution feasible. It is also an “execute-in-execute” model.

iv. The Kernel Virtual Machine (KVM) CPU is based on the KVM API in Linux and allows
gemb5 to utilize the host’s processor in order to execute programs. It requires the same
ISA to be used in gem5 and the host machine.

Furthermore, gem5 supports a variety of cache configurations. Classic cache configura-
tions include two level, three level and non-coherent cache hierarchies with write-through
and write-back policies and Ruby Cache Models include MOESI Two Level and MESI
Three Level coherent caches. The Ruby memory system is easily modifiable and can
simulate advanced cache hierarchies with many replacement policies.

Processor Memory System
CPU Model Execution Mode Classic Ruby

Atomic SE Speed

Simple ES

Timing SE

Simple ES
SE

In-order
FS
SE
Out-of-order

FS Accuracy

Figure 2.4: Speed vs Accuracy in gem>5 [17]

In our work we chose the SE execution mode and O3 CPU model in order to approach
RSD'’s features and characteristics. The choice of the SE execution mode is most logical
since OS support is missing from the current RSD implementation. The O3 pipeline stages
in gem5 are five: fetch, decode, rename, issue/execute/writeback (IEW) and commit [2].

i. Fetch. Fetches instructions and performs branch prediction.

ii. Decode. Decodes instructions each cycle and handles unconditional control flow in-

structions.

G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

iii. Rename. Renames instructions’ architectural registers to physical registers and stalls
if there are not enough registers to rename to.

iv. IEW. Removes an instruction from the issue queue, executing it and writes back the
result.

v. Commit. Commits instructions each cycle and handles any faults/exceptions that the
instructions may have caused.

The O3 pipeline has configurable widths and inter-stage delays. Further system cus-
tomization can be achieved by choosing a custom branch predictor and changing the
memory system that is used.

JMIPS
JPOWER
SPARC

§ KVM
| Simple
In-order

x86
LA

CPU Models
ISA-specific Decoder Interrupts DMA

models
External APIs
Out-of-Order
Memo Memo
D [£] >
b =
/\ K }@ GPU compute

] model
HSAIL @
Port Interface Memo
f I GPU ISA

| Wide-10
| HMC

I/O Devices

SystemC
IsstT

Non-coherent
[Three level
| Two level

"Classic" caches

®

Ruby Cache Models @
E

[MoEST Two Leve il i
Network
maodel

Protocols

pDR4

RAM Models

®

Figure 2.5: gem5 Block Diagram [31]

In summary, gem5 offers a variety of CPU models, two execution modes and different
memory system models and cache hierarchies to choose from. These features make it a
very useful and flexible tool for computer architecture research. The level of customization
that gem5 provides us with enabled us to make fine adjustments to each component in
our effort to match gem5’s performance to that of the RSD. In this study we utilize the
out-of-order CPU model running in the SE mode which provides very good accuracy as
seen in Figure 2.4 while maintaining a solid speed advantage over RTL simulation.

O. Chatzopoulos-G. Fragkoulis 42

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

3. EXPERIMENTAL METHODOLOGY

In this chapter we present the steps that we followed in our effort to match gem5’s to
RSD'’s performance. We aim to benefit from the high simulation throughput of gem5 while
maintaining relatively high accuracy when compared to RTL simulation. To do this our
approach is to fine-tune the gem5 O3 CPU model and memory system in order to closely
match RSD. We will commence with tool installation and continue with microarchitectural
parameter discovery, microbenchmarking and finally present all the modifications made
to gems.

In our work we used version 20.1.0.4 of gem5 and the fix-branch-predictor (last update
24 March 2020) branch of RSD. The fix-branch-predictor branch was used instead of the
master branch under the direction of Professor Shioya as it fixes some bugs in the gshare
implementation. To compile test programs and (micro-)benchmarks we compiled the riscv-
gnu-toolchain repository for bare-metal RV32IM and RV64IM targets. The toolchain in-
cludes a cross-compiler and corresponding debugging software. To run the behavioral
RTL simulation of RSD version 4.106 of Verilator was used. By installing the correspond-
ing versions of the specified tools our work can easily be replicated after following the
steps outlined in this chapter.

B Committed Instructions Ratio gem5:RSD == Ideal

11

0.2
0.1
0.0

S > Q. o e
RO ~\<‘ \\\\\ = \<‘ \° 4\0 0“ v& e“ u& %x 0“ bg"’ S’"\’ o o 00
C,

o
©

o
o0

o
~

o
)]

o
9]

o
'S

o
w

Benchmark

Figure 3.1: Committed Instructions Ratio gem5 : RSD

As mentioned above we compiled the RISC-V cross-compiler to support both RV32IM
and RV64IM ISAs. The reason why we need both 32 and 64-bit support is because RSD
implements the 32-bit RISC-V ISA whereas gem5 only supports the 64-bit version. This
does not pose a major issue for the purposes of our study (i.e performance modeling) as

43 G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

RV64IM is a proper superset of RV32IM i.e it contains all instructions that are present in
RV32IM. The main difference between the two ISA variations is the width of the registers
used. RV64IM has 64-bit registers and thus natively handles 64-bit data (e.g the add
instruction calculates the sum of two 64-bit integers). When it comes to handling 32-
bit data RV64IM utilizes additional instructions whose assembly mnemonic includes a w
suffix (e.g addw). Depending on the signedness of the data the compiler may introduce
additional instructions for sign extension. In order to avoid introducing unwanted sources
of error when measuring the performance of our programs we decided to use the native
data types for each ISA. The effectiveness of this approach is portrayed in Figure 3.1
which shows that committed instructions in both simulations are virtually identical. The
absolute error is only 0.32%. The functionality and purpose of the used benchmarks will
be described in detail later in this chapter.

The first major step in fine tuning our microarchitectural model was to determine the es-
sential parameters of RSD’s microarchitecture. Since RSD is an open-source project this
process was significantly simplified as most parameters where available in SystemVerilog
code. After carefully parsing the source code we where able to uncover most of them
giving us a good picture of RSD’s design. Table 2.1 includes the most important parame-
ters of RSD’s microarchitecture. In order to match these to gem5 equivalent parameters
we also parsed the relevant gem5 source code and configuration files in conjunction with
careful reading of gem5’s documentation. A final check to confirm our choices was done
by Professor Shioya who has experience using both gem5 and RSD.

(o [pabe | fn 0s | sc 1 [Rr| x | cn]
o ¥ | Pa [oe [o sc__ts [x [l co)
[pa [be o os sc ts W X [o]
[¥ pa o w ox sc 1w x Tou) oo
[o oc wn 0x sc 1 & x [tu|cn)
[¥ o o w 0w sc 1= R x Do oo o i s e i s 3 mlo 1)
[T o ot ox sc 1= he| X Ltw| oo e i i s o 1)
[\ F e oe wn ox sc 15 W x Tl oo [o i s s s 3wl o]
[F e oe wnox sc 15 hr x Ltw| o] BTSRRI
[Fba o W ox sc 1 [x [cn FToc s > Tm s = 3wl o
[o oc W ox sc 1 e X [w cn]
[Lo [oe W o: sc 15 [x [iow cn
[e [oe o [o: sc 55 [x [o] b i > s w1z 3t o 1]
(e L | ba [oe w0 sc 15 o x [l oo | [FToc = 3w 3 = 3 &l 1]
DEECOEEECEITIE ECEEEEEICE NN
[¥ pa o wox sc 1 & x T oo
[7 Pa oc w0x sc 1 ke x twl o]
[¥ ba oe wn ox sc 1= he| x T co)
[7 o oe wnox sc 1= he| X [tw| co)
Do [F o Toel o os s o [l x il co

Figure 3.2: RSD (/eft) - gemb5 (right) Pipeline Matching

As seen in Table 2.1 RSD uses the gshare branch predictor. Gshare uses a register to
hold the branch global history i.e a string of bits that indicate whether previous branches
were taken or not taken. This history is combined with the PC through the use of a hash
function generating an index to access a table of 2-bit saturating counters. The motivation
for using gshare and in fact any correlating branch predictor is to utilize a different finite
state machine (FSM) for every combination of global history and branch address. Since
this is not possible to implement ideally in practice, some degree of aliasing will appear.

O. Chatzopoulos-G. Fragkoulis 44

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

The use of an exclusive-or operation between the lower bits of the PC and the branch
history have been shown to minimize the probability of aliasing [25]. Since gshare is not
included in the library of gem5 components we had to search for an open implementation of
gshare outside the bounds of gem5’s library. After comparing available models we decided
upon [36]. After modifying the provided code to suit our specific needs we added it into
our gemb5 local repository. The new component provided us with configurable prediction
history table entries and saturating counter widths which we adjusted according to Table
2.1.

Another major aspect of configuring the O3 CPU model in gem5 was to correctly set up
the pipeline length. At first since gem5 by default uses an idealized pipeline configuration
with 5 stages including a combined Issue-Execute-Writeback stage the difference between
the two models was vast thus resulting in significantly different performance from RSD.
In order to fix this issue we adjusted the decode-to-rename and rename-to-IEW delays
so that the total pipeline length matched that of RSD. Additionally the specific number of
pipeline stages that different execution units need to complete their calculations where
matched to those of RSD through the modification of the functional unit configuration files
in gem5. The pool of available functional units was also modified to only include the 2
integer, 1 complex integer and 2 memory load and store units of RSD. After making said
changes and running a test integer stress mark the matching pipeline behavior can be
observed in Figure 3.2. In order to get a detailed view of both pipelines the Konata pipeline
visualizer was used throughout this matching effort. After making modifications to various
delay parameters the above configuration provided the best correlation between gem5
and RSD.

In order to test the effect of the changes we made to gem5 gauging how close we could
match its O3 CPU model to RSD we utilized a variety of general purpose benchmarks and
targeted microbenchmarks. After performing a thorough literature review and also design-
ing a few custom programs we decided upon the use of the microbenchmarks described
in [11] as they feature a streamlined design and have already been used for simulator vali-
dation. In conjunction with those we also ran a few general purpose benchmarks from the
MiBench suite. The lack of more complex and extensive benchmarks is mainly attributed
to the small memory size of RSD and its lack of support for an OS. Even without running a
larger and more standardized test suite we believe that the programs we used adequately
stress the two models and are representative of real world performance.

The chosen microbenchmark suite includes four types of microbenchmarks: Control, De-
pendency, Execution and Memory [11], described briefly in the Table 3.1.

i. Control microbenchmarks stress the execution flow of the microprocessor mainly
stressing the branch predictor. More specifically

» Control Conditional includes an if-then-else statement in a loop and alternates
between taking and not taking the resulting conditional branch.

» Control Switch produces many indirect jumps via the use of a switch statement
with 10 case statements in a loop. Each case statement is taken n/10 times on

45 G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

consecutive loop iterations before moving to the next case statement (n repre-
sents the number of loop repetitions).

Control Complex combines if-else and switch constructs in order to make branch
prediction more difficult.

Control Random includes an if-then-else statement in a loop whose resulting con-
ditional branch depends on the value of a Linear Feedback Shift Register (LFSR).
Since the branch direction is decided randomly this microbenchmark aids in de-
termining the branch miss penalty.

Control Small BBL assesses the number of simultaneous in-flight branches as it
executes a single loop with only one instruction inside that increments the loop
counter.

ii. Dependency microbenchmarks stress dependency forwarding between instructions.

They evaluate chains of instructions with lengths ranging from 1 to 6. Each instruction
is dependent on the data produced by its predecessor thus evaluating the data for-
warding time. The processor component being stressed here is the physical register
file and its forwarding paths.

Execution microbenchmarks test the functional units of the CPU. In our work we uti-
lize the integer add, integer multiply and integer divide stressmarks. Each program
includes 32 independent instructions inside a loop in order to minimize the number of
memory operations, control hazards and data dependencies thus allowing for almost
ideal throughput.

iv. Memory microbenchmarks stress the cache and memory hierarchy. More specifically

» Load Dependent implements a loop that traverses a linked list having to wait for

each load to complete before starting the next. Three different linked list sizes
are used. The two smaller linked list size versions stress the L1 data cache and
the larger size version stresses the main memory.

Load Independent executes 32 parallel independent loads from an array and
sums up the resulting values inside a loop. Again three different array sizes
where used where the two smaller ones stress the L1 data cache and the larger
stresses the main memory.

Store Independent performs 32 parallel independent stores in a loop iterating
over all positions of an array. The same three array sizes as before where used
to stress both the L1 data cache and main memory.

As mentioned above in addition to the microbenchmark collection we also executed some
general purpose benchmarks from the MiBench suite. These include the StringSearch-
Large, StringSearchSmall and QSort benchmarks. For QSort we also varied the input
array length in order to test for the sensitivity of the microarchitectural model to input size
changes. StringSearchLarge and StringSearchSmall search for specified words in sen-

tences using a case insensitive comparison algorithm. QSort sorts an array of strings into

ascending order using the quick sort sorting algorithm.

O. Chatzopoulos-G. Fragkoulis 46

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

Table 3.1: gem5 Modified Parameters

RSD Parameter gemb5 Equivalent Parameter Value Explanation
Fetch Width 03CPU.py/fetchWidth 2
Decode Width 03CPU.py/decodeWidth 2
Rename Width 03CPU.py/renameWidth 2
Dispatch Width 03CPU.py/dispatchWidth 2 RSD is a 2-way fetch superscalar processor with 5
Issue Width 03CPU.py/issueWidth 5 functional units
Write-Back Width 03CPU.py/wbWidth 5
Commit Width 03CPU. py/commitWidth 2
N/A 03CPU. py/squashWidth 2
N/A PU. d deT Del 4
/ 03CPU. py/decodeToRenaneDelay Experimentally modified to match RSD’s pipeline length
N/A 03CPU. py/renameToIEWDelay 4
Reorder Buffer Entries 03CPU.py/numROBEntries 64 Match RSD
Issue Queue Entries 03CPU.py/numIQEbtries 16 Match RSD
Physical Integer Register Number 03CPU.py/numPhyIntRegs 64 Match RSD
Fetch Buffer Size 03CPU.py/fetchBufferSize 8 Equal to the cacheline size
Fetch Queue Size 03CPU.py/fetchQueueSize 2 RSD does not have a fetch queue
Branch Predictor 03CPU.py/branchPred gshare
Local Predictor Size BranchPredictor.py/localPredictorSize 2048 RSD uses gshare with a PHT of 2048 entries and a BTB of
Branch Target Buffer Entries BranchPredictor.py/BTBEntries 1024 1024 entries and tag size of 4 bits. The RAS holds 4
Branch Target Buffer Tag Size BranchPredictor.py/BTBTagSize 4 entries
Return Address Stack Entries BranchPredictor.py/RASSize 4
Load Queue Entries 03CPU. py/LQEntri 16
’ Py/LOEntries Match RSD
Store Queue Entries 03CPU.py/SQEnries 16
Integer Functional Units FuncUnitConfig.py/IntALU.count 2
Complex Integer Functional Units FuncUnitConfig.py/IntMultDiv.count 1
Divide Laten(.:y) FuncUnitConfig.py./IntMultDiv. intDiv.opLat 32 Match RSD's FU configuration
Load and Store Functional Units FuncUnitConfig.py/RdWrPort.count 2
Load Unit Latency FuncUnitConfig.py/RdWrPort.MemRead.opLat 3
Store Unit Latency FuncUnitConfig.py/RdWrPort.MemWrite.opLat 3
Cache Load Ports 03CPU. py/cacheLoadPorts 1
Cache Store Ports 03CPU.py/cacheStorePorts 1
Instruction Cache Size ——1li_size6 4kB
Instruction Cache Associativity Cashes.py/assoc 2
Data Cache Size --11d_size® 4kB
Data Cache Associativity Cashes.py/assoc 2
Cache Line Size -—cacheline_size® 8B Match RSD’s cache configuration
Cache MSHRs Cashes.py/mshrs 2
Cache Targets per MSHR Caches.py/tgts_per_mshr 1
Instruction Cache Tag Latency Cashes.py/tag_latency 1
Instruction Cache Data Latency Cashes.py/data_latency 1
Instruction Cache Response Latency Cashes.py/response_latency 1
Replacement Policy Cache.py/replacement_policy TreePLRURP
Memory Latency SimpleMemory.py/latency 100ns Match RSD’s fixed memory access time (simulation only)

6These are given as command line parameters to the se.py script after the --caches directive

47

G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

Table 3.2: Micro-architectural Units Stressed by Each Benchmark [11]

Control Dependency Execution Memory
5 2 8§ 3% 2 8§ 8 2 g
S = % £ @ -~ o~ © < [12) © 3 3 5 154 4) I g o Q g ©
° o 5 (] o c c c c c c f = = S - 5 a aQ a kel - °
5 g 2 s|&§8 8 & ® & ®|®8 &® 9&|E E E & & & £ £ =
e 6 § & E|5 6 6 6 5 6|8 8 Blz 3oz S 02 S &oeo»
8 c £ 3 E £E E|8&8 & 8 B B ¥ & 5 ¢
= = 3 a 3 S S 5 n n n
Branch Predictor v 4 v v v
2 Branch Miss Penalty 4
.‘é In-flight Branches v
2 Register File v v v v v
g Functional Units v v v
S L1 Cache v v v v v v
Memory v v v
O. Chatzopoulos-G. Fragkoulis 48

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

4. RESULTS AND ANALYSIS

In this chapter we are going to present the results of our effort to match gem5’s to RSD’s
performance. Our main error metric will be the cycles ratio between the two models which
ideally should be 1 (i.e a perfect match). We will also calculate the arithmetic, geometric
and harmonic mean of the cycles ratio of all our programs and the average absolute error

i.e
1 2 : gemb cycles
I (RSD cycles) ' (41)
where n is the total number of benchmarks.

As we can see in Figure 4.2 the cycles ratio of 20 out of 29 programs is close to 1. The
arithmetic mean is 1.01, the geometric mean is 0.95 and the harmonic mean is 0.88.
Using Equation 4.1 we calculate that the average absolute error across all benchmarks
is 21.77%. The large discrepancy observed when running ExecIntDivind is due to the
fact that gem5 uses a fixed latency divider whereas RSD uses a variable latency one.
This is not representative of real-world performance as divide instructions are not very
common. The MemStorelnd8192 microbenchmark also represents an edge case where
continuous store instructions are executed all of which result in a cache miss thus also
not being indicative of real-world performance. After removing the ExecIntDivind and the
MemStorelnd8192 microbenchmarks the absolute error drops down to 15.35% which is
inline with other validation studies [11] (geometric mean of absolute error is 10%), [23]
(mean absolute error is 7.5%). An interesting observation is the declining simulation error
seen when increasing the input data-set size of the QSort benchmark. As can be seen in
Figure 4.2 the absolute error drops from 22% to 15% and 0.5% when increasing the data-
set size from 500/1000 to 2000 and 5000 respectively. This is encouraging for running
larger and more time-consuming benchmarks.

The simulation speedup achieved in our opinion outweighs the relatively small simula-
tion error. As can be seen in Figure 4.1 the average simulation speedup is 15.19 with
a geometric mean of 8.89 and harmonic mean of 7.87. Speedup ranges from 5.43 in
MemLoadlnd2048 up to 200.95 in MemStorelnd8192. In all cases the simulation time is
significantly reduced when compared to RTL simulation.

To pin-point the main sources of error we employed more fine-grained performance mea-
surements across the two models. We utilized microarchitectural counters in RSD and
statistics counters in gem5 to measure memory accesses, cache misses, branch predic-
tion misses, committed instructions and executed cycles. After gathering this data for all
benchmarks we constructed graphs that represent the correlation of these fine-grained
measurements with simulation error thus helping us find the system components that ex-
hibit the highest mismatch. The aforementioned data can be observed in Figures 4.2
through 4.7.

After carefully analyzing the produced graphs we conclude that the memory system is the

49 G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

30.00

20.00

10.00

Simulation Speedup

S YA D> O o DD © g 8N S ..
LI LTLLELLEFFSFF IR D ESLELS S S de
SFEL NS L L LI TG L LI T IS P L LS NS

C LA R KR KRR LR Q\Vs“\& SRR N P N I SRR S S N O
RO NARARAR AR VARV N & o”b o'z’b P PP P T P P (SO o= T
St & FRF TP OS S S
ST S s XSS CE L
& C W

Benchmark

Figure 4.1: Simulation Speedup gem5 vs RSD ’

main culprit behind the performance discrepancy between the two models. As seen in
Figure 4.3 high memory accesses are correlated with simulation error. More specifically,
as evidenced by Figures 4.4 and 4.5 which split memory accesses into loads and stores,
a large quantity of loads favors RSD in speed whereas a large amount of stores favors
gem>. In both cases the cycles ratio strongly deviates from the ideal value of 1.

Another source of error is the scheduler. In ExecIntAddInd we observed a drop in IPC only
in RSD which led to 13% error between it and gem5. This is attributed to the fixed-priority
scheduling scheme used in RSD that results in the pipeline stalling as the top priority and
subsequent instructions are waiting to commit due to a lack of physical registers. The
effect of this mismatch is much less felt than the mismatch of the memory system as for
substantial error to occur all executed instructions need to have destination registers and
the integer issue port has to be full in every cycle which is rare in real-world situations.

In conclusion, the average absolute error across all benchmarks is comparable to the
results of other simulator validation studies. The main source of error is thought to be
the memory system as evidenced by the low average absolute error of Control, Depen-
dency and Execution (not including ExecIntDivind) microbenchmarks i.e 5.89%, 1.53%
and 7.47% respectively when compared to the high absolute error of Memory microbench-
marks which amounts to 36.53%.

"The simulation speedup in MemStoreInd8192 is 200.95. For scaling purposes the graph cuts off at 30

O. Chatzopoulos-G. Fragkoulis 50

Ev

aluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

B Cycles Ratio gem5:RSD == Ideal

25
20
1.5
10
05
0.0
FOEN S I I) 9 © D N e P . & & &
SR ; C & F I E I F TS S F
S LT FEFFTFT TS @\ @R R Q\'\\b\o \(\b\ob\(\b\ &S S \QOQQS‘\
F o F & €T T T E §§>§ PRI LT F T T
F T S S EF LS S S EE
e T MR @ ¢ ®° e
Figure 4.2: Cycles Ratio gem5 : RSD
B Cycles Ratiogem5:RSD @ MAKI == [deal
25 1000.00
2.0
750.00
15
500.00
10
250.00
05
0.0 0.00
Q\e*‘ & & E S USRI RN e}“b &S S b@b 5 q/ou‘b R mgv‘" & & & %Q@ ,,/o°° S
&SN RS < S FF &P L&Y L
IS S & & &S S e @ & & & & S
RGN T R AL LR LR XTI TP &&&e}@\@\%@@*&&& S
€ E €O S 00009@5#000\,\ 5‘6‘0‘}052""@
st & S S <& F TS & & & &S R R
¢ @@@@@@@”@“&"‘s“

Figure 4.3: Memory Accesses per Kilo-Instructions vs Cycles Ratio gem5 : RSD

51 G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

B Cycles Ratiogem5:RSD @ RPKI == Ideal

2.5 1000.00
2.0

750.00
1.5

500.00
1.0

250.00
0.5

0.00
P F S PP SN ES S S
LSRR S RO SR N S, S S
R LTI E LS
ST E LSS
« & > o"b P PP "« ‘@(&« (_)Q:o se,"’ o o &
o
R Ff CFFETETEE L
= ¢ R AN RN SR RO A

Figure 4.4: Memory Reads per Kilo-Instructions vs Cycles Ratio gem5 : RSD

B Cycles Ratiogem5:RSD @ WPKI == [deal

2.5 1000.00
2.0

750.00
1.5

500.00
1.0

250.00
0.5

0.00

2 o o
NN NN
o o o e

Figure 4.5: Memory Writes per Kilo-Instructions vs Cycles Ratio gem5 : RSD

O. Chatzopoulos-G. Fragkoulis 52

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

B Ocles Ratiogem5:RSD @ MPKI == Ideal

2.5 100.00

75.00

50.00

25.00

0.00

RO IR R CFLEEETF LS FF P PFI DS S S
L O & N & R N N O I I S N R AN O S A S SO M, I S
SO F TR I PR AL LTSI IFE & &L O
R LS ST ST LSS TS TSI TSI TS LS &
IR S Y QP Y ¥ o o & & O Y Y Y 0 0 o < K <& > O O &
& & @S © oo oo @9'0 A N & & FELEE
@ &L @ < & & & &S RS
) ¢ W

Figure 4.6: Branch Prediction Misses per Kilo-Instructions vs Cycles Ratio gem5 : RSD

B Cycles Ratio gem5:RSD @ DMPKIRSD @ DMPKI gem5 == [deal

2.5 1000.00

750.00
500.00
250.00
0.00
5V
& S
© &L & QT QT ¥ & 8 S oS oS @ L
& &S E S F e FITITIT L IELSESLE S
" &€ &S S < « \&z& “\e}“ & ¢ @ ®of(\ @g‘ ®z’\° & ‘-}5\0
9

Figure 4.7: D$ Misses per Kilo-Instructions vs Cycles Ratio gem5 : RSD

53 G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

O. Chatzopoulos-G. Fragkoulis 54

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

5. FUTURE WORK

As a continuation of our effort to match gem5’s to RSD’s performance we aim to implement
new features and make changes to our already existing work. Our goals in the future are
to streamline the microarchitectural parameter discovery and improve the accuracy of
performance simulation [20].

In order to streamline microarchitectural parameter discovery we seek to design a frame-
work of scripts that can stress different parts of the microprocessor and determine the
sizes of different components as well as the type and amount of functional units. Aside
from this we have considered using a machine learning model to automate the parame-
ter discovery and optimization process by providing it with fine grained measurements of
performance (i.e microarchitectural counters) of a vast array of test programs.

In the simulation accuracy front since we have pinpointed the main source of error to be the
memory system we aim to make targeted changes to it. One potential culprit seems to be
the MemoryLatencySimulator of RSD which seems to handle accesses to main memory
in a different manner than gem5. After careful analysis of RSD’s implementation we hope
to be able to modify gem5 to more closely match the behavior of RSD.

Departing from our RTL vs microarchitecture level simulation theme we also plan to use
more advanced microprocessor models such as that of BOOM in order to validate the Full
System simulation mode of gem5 this time against a hardware simulation of an RTL model
using the FireSim framework. This will give us a access to a full fledged Linux capable
system that will make benchmarking with much more advanced programs and frameworks
easier. Also simulation speed is expected to increase with the FPGA acceleration provid-
ing us with a much more competitive framework when compared to microarchitecture-level
simulators.

We look forward to addressing all the above research topics in the future and believe that
model validation of RISC-V processors and systems will be a fruitful research area for
many years as the popularity of RISC-V and open hardware design become increasingly
popular.

55 G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

O. Chatzopoulos-G. Fragkoulis 56

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

ABBREVIATIONS - ACRONYMS

SoC System on Chip

ISA Instruction Set Architecture
RISC Reduced Instruction Set Computer
IPC Instructions Per Cycle

FSM Finite State Machine

000/03 Out of Order

ABI Application Binary Interface
RTL Register Transfer Level

MIPS Million Instructions Per Second
ILP Instruction Level Parallelism

1Q Issue Queue

ROB Reorder Buffer

RMT Register Map Table

LDQ Load Queue

STQ Store Queue

PRF Physical Register File

LSU Load Store Unit

CAM Content Addressable Memory
MDP Memory Dependence Predictor
PHT Pattern History Table

BTB Branch Target Buffer

MSHR Miss Status Holding Register
SE System-call Emulation mode
FS Full System mode

IEW Issue/Execute/Writeback
LFSR Linear Feedback Shift Register

57 G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

O. Chatzopoulos-G. Fragkoulis 58

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

REFERENCES

[1] Apple Inc.

[2] The gem5 simulator.

[3] MARSSx86 - Micro-ARchitectural and System Simulator for x86-based Systems.
[4] OVPsim Simulator | Open Virtual Platforms.

[5] RISC-V International.

[6] The RISC-V ISA Simulator (Spike).

[71 The Sniper Multi-Core Simulator.

[8] Specifications - RISC-V International, Sep 2021.

[9] Daniel Aarno and Jakob Engblom. Software and System Development Using Virtual Platforms:
Full-system Simulation with Wind River Simics. Morgan Kaufmann, 2014.

[10] Ayaz Akram and Lina Sawalha. Validation of the gem5 Simulator for x86 Architectures. pages
53-58. IEEE, 2019.

[11] Marco Antonio Zanata Alves, Carlos Villavieja, Matthias Diener, Francis Birck Moreira, and
Philippe Olivier Alexandre Navaux. Sinuca: A validated micro-architecture simulator. pages
605-610. IEEE, 2015.

[12] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar, Harrison
Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton, et al. Chipyard: Integrated
Design, Simulation, and Implementation Framework for Custom SoCs, 2020.

[13] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin,
Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam lIzraelevitz, et al. The
Rocket Chip Generator. 2016.

[14] Krste Asanovi¢ and David A Patterson. Instruction sets should be free: The case for risc-v.
EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2014-146, 2014.

[15] T. Austin, E. Larson, and D. Ernst. SimpleScalar: an infrastructure for computer system
modeling. Computer, 2002.

[16] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avizie-
nis, John Wawrzynek, and Krste Asanovi¢. Chisel: Constructing Hardware in a Scala Embed-
ded Language, 2012.

[17] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava
Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey
Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5 Simulator.
page 1-7, 2011.

59 G. Fragkoulis-O. Chatzopoulos

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

[18] Anastasiia Butko, Rafael Garibotti, Luciano Ost, and Gilles Sassatelli. Accuracy Evaluation
of gemb Simulator System, 2012.

[19] Juan M Cebrian, Adrian Barredo, Helena Caminal, Miquel Moreté, Marc Casas, and Mateo
Valero. Semi-automatic validation of Cycle-accurate Simulation Infrastructures: The Case for
gemb-x86. pages 832-847, 2020.

[20] Odysseas Chatzopoulos, George-Marios Fragkoulis, George Papadimitriou, and Dimitris Gi-
zopoulos. Towards Accurate Performance Modeling of RISC-V Designs. 2021.

[21] Dr. lan Cutress and Andrei Frumusanu. AMD Zen 3 RYZEN deep Dive REVIEW: 5950X,
5900X, 56800x and 5600X Tested, 2020.

[22] Alexander Dorflinger, Mark Albers, Benedikt Kleinbeck, Yejun Guan, Harald Michalik, Raphael
Klink, Christopher Blochwitz, Anouar Nechi, and Mladen Berekovic. A Comparative Survey of
Open-Source Application-Class RISC-V Processor Implementations. page 12—20, New York,
NY, USA, 2021. Association for Computing Machinery.

[23] Fernando A Endo, Damien Couroussé, and Henri-Pierre Charles. Micro-architectural Simu-
lation of In-Order and Out-of-Order ARM Microprocessors with gem5. pages 266-273. |IEEE,
2014.

[24] Federico Faggin. Silicon: From the Invention of the Microprocessor to the New Science of
Consciousness. Waterside Productions, 2021.

[25] Antonio Gonzalez, Fernando Latorre, and Grigorios Magklis. Processor Microarchitecture:
An Implementation Perspective. Morgan & Claypool Publishers, 2010.

[26] Timothy H. Heil, Zak Smith, and J. E. Smith. Improving Branch Predictors by Correlating on
Data Values. MICRO 32, page 28-37. IEEE Computer Society, 1999.

[27] Wim Heirman, Trevor Carlson, and Lieven Eeckhout. Sniper: Scalable and accurate parallel
multi-core simulation. pages 91-94, 2012.

[28] John Hennessy and David Patterson. Computer Architecture: A Quantitative Approach. Mor-
gan Kaufmann Publishers, 2019.

[29] John L Hennessy and David A Patterson. A New Golden Age for Computer Architecture.
pages 48-60, 2019.

[30] Alexey Lesnykh. Computer Simulation: Basics, Terminology, Levels, 2020.

[31] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico Amslinger,
Matteo Andreozzi, Adria Armejach, Nils Asmussen, Brad Beckmann, Srikant Bharadwaj, et al.
The gem5 Simulator: Version 20.0+. 2020.

[32] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Lars-
son, A. Moestedt, and B. Werner. Simics: A full system simulation platform. 2002.

[33] Susumu Mashimo, Akifumi Fujita, Reoma Matsuo, Seiya Akaki, Akifumi Fukuda, Toru
Koizumi, Junichiro Kadomoto, Hidetsugu Irie, Masahiro Goshima, Koji Inoue, and Ryota Sh-
ioya. An Open Source FPGA-Optimized Out-of-Order RISC-V Soft Processor. pages 63—71,
2019.

O. Chatzopoulos-G. Fragkoulis 60

Evaluation of the Accuracy and the Performance of Register Transfer Level and Microarchitecture Level CPU Models

[34] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. MARSS: A full system simulator
for multicore x86 CPUs. pages 1050-1055, 2011.

[35] David A Patterson and John L Hennessy. Computer Organization and Design RISC-V Edition:
The Hardware Software Interface.

[36] QawsQAER. gemb gshare Branch Predictor.

[37] Sheng-bing REN, Wan-li ZHANG, Nian LU, and Zhen-yu PAN. Education Research on Multi-
core Simulation of Embedded System Based on OVPsim [J]. 2010.

[38] Ryota Shioya. Konata Pipeline Visualizer.

[39] Leena Singh and Leonard Drucker. Advanced Verification Techniques: A SystemC Based
Approach for Successful Tapeout. Springer Science & Business Media, 2007.

[40] Brian Slechta, David Crowe, N Fahs, Michael Fertig, Gregory Muthler, Justin Quek, Francesco
Spadini, Sanjay J Patel, and Steven S Lumetta. Dynamic Optimization of Micro-Operations.
pages 165-176. IEEE, 2003.

[41] Wilson Snyder. Verilator, Accelerated: Accelerating development, and case study of accel-
erating performance. 2020.

[42] Tze Sin Tan and Bakhtiar Affendi Rosdi. Verilog HDL simulator technology: a survey. pages
255-269, 2014.

[43] Stephen Williams and Michael Baxter. Icarus Verilog: Open-Source Verilog More Than A
Year Later. 2002.

[44] Matt T. Yourst. PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural Simulator.
pages 23-34, 2007.

[45] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. Sonicboom: The 3rd
generation berkeley out-of-order machine. In Fourth Workshop on Computer Architecture Re-
search with RISC-V, 2020.

61 G. Fragkoulis-O. Chatzopoulos

	CONTENTS
	INTRODUCTION
	Computer Architecture Primer
	A Brief History of Microprocessors
	Microprocessor Simulation Levels
	Thesis Goal
	RISC-V Instruction Set Architecture
	Simulation Tools and Microprocessor Models

	TOOLS AND MODELS FULL SUMMARY
	RSD
	Verilator
	Konata
	gem5

	EXPERIMENTAL METHODOLOGY
	RESULTS AND ANALYSIS
	FUTURE WORK
	ABBREVIATIONS - ACRONYMS
	REFERENCES

