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Abstract

This thesis investigates at a multilateral level the performance of different fully
convolutional neural networks on the task of cloud semantic segmentation for ground-
based sky images. Specifically, the networks are evaluated on the Singapore Whole
Sky Image Segmentation dataset via the metrics: F1 score, Intersection over Union,
Precision, Recall, Specificity and Accuracy. Initially, five novel variations of the Unet
architecture are proposed and benchmarked on five disparate training/validation/test
set ratios to determine both the networks’ competence and the finest ratio.
Subsequently, further research is conducted to define the optimal optimization
algorithm and loss function for relatively small networks like Unets. Finally, the
technique of transfer learning is examined on cloud segmentation through networks

pretrained on the ImageNet dataset.

Keywords: Deep Learning, Cloud Segmentation, SWIMSEG Dataset, Transfer

Learning, Fully Convolutional Neural Networks



[TepiAnyn

H mopovca simhopatikn epyacio £xel oG 6TOYX0 TN UEAETN KOl GUYKPLoT SlopOpmv
TANPOG GLUVEMKTIKMOV VEVPOVIKAOV SIKTH®V TOL TPoopilovTal yio avayvmpion VEQ®Y
omd EKOVEG OVPAVOD CE EMIMEDO EIKOVOKVLTTAPOV. XVYKEKPIUEVA, TO. OTKTLA OVTA
aloloyovvton oe ewkdveg vepav amd T Pdon dedopévov SWIMSEG g
Zykamovpng péow tov petpikav: Fl oscore, Intersection over Union, Precision,
Recall, Specificity kot Accuracy. Apyukd, Topovctdlovtal TEVTE VEEG TAPOAANYES TNG
apyrtektovikn)g  Unet, ot omoieg ovykpivovtar o 7méEVIE OGOVOAL  EKOVODV
npondvnong/emPePaimonc/tect daPopeTIKNg avaroyiag, e okomd TNV €EETACT TNG
emidoong tovg Kot tov Kabopiopd g PéATIoTG avaroying eikdOvev. Akolovmg, N
€peuva. EMEKTEIVETOL GTNV €VPECT TOV KOTAAANAOTEPOL aAyopiBupov PeAticTtomoinong
KOl TNG €LVOTKOTEPNG OLVAPTNONG KOOTOVG. TEAOG, OlEpevLVATOL M TEYVIKN TNG
LETAPOPAS YVAOTG Y10 OVOLYVOPLOT) VEQ®V amd diKTud 101 TPOTOVNUEVH GTO GUVOAO

dedopévov ImageNet.
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II



Table of Contents

I INErOAUCTION. ...ttt e e e ee s 1
1.1 Motivation and Background.............cccocceiriiiiiiiiiiiiiieee e 1
1.2 Pros and Cons of Ground-Based & Satellite Images..........ccccceevveeiieniieieeennne. 2
1.3 Overview of the Different Types of Cloud Segmentation..............cccceevveeennnee. 2
1.4 Cloud Segmentation Methodologies.........c..ceouieeriieeiiieeieecieeeee e 3
1.5 ThesiS ODBJECTIVE. ...ccuuiiiiieeiieiieeie ettt ettt ettt ettt e et e e e eeeseaeeas 3
1.6 ThesisS OUINE. .....c.eiiiriiiiiiicieeee ettt 4

2 Approaches to cloud Segmentation..........ccceeeeeeuiereeniiiieeeiiiieeeeeee e e 5
2.1 Traditional Threasholding Algorithms............cccccviiiiiiieiiiieiiieeeee e, 5
2.2 Clustering AIZOTTthmS. .......co.viiiiiiiiiiiiiiieceeeee e 6
2.3 Deep Learning AlgOrithms...........cocuieiiiiiiiiiiieiienie e 6

3 Fully convolutional neural networks..........c.cceoeveiiiiiiniiiiiiieeee, 8
Bl UIEES ettt sttt et e e et eeeas 9
3.2 TMAZEINELS. ..coiiiieiiie ettt ettt e sttt et e e e e e 17
3.3 OPLIMIZETS. ..uvieeiieiiieeiieeiie ettt ettt e eae et e e taeeseesabeebeeesseenseesnsaeseeenseesnesnseas 30
3.4 L0SS FUNCHONS. ...c..eiiiiiiiieiieiieeite ettt e e e 32
3.5 IMBITICS ettt ettt ettt et et et e b e ettt e e enbeeeeaee 34

4 EXperiments & reSUILS........cccviiiiiiieiiiee ettt e e e ereee e e e 36
4.1 DAASEL...eueeneteeiieei ettt e e e 36

4101 TTAININE SEL..ieeiieiieeiie ettt ettt s ettt et e et e et e snteesnteenaeeeeas 37
4.1.2 Validation Set......cooiiiiiiiiiieiiie ittt ettt 40
FU1.3 TESE SOttt ettt et e et e e st e e 43
4.2 Optimization algOTithms.........cccciiieiiiieiieceeee e e e e 46
4.3 L0SS FUNCHONS. ...coutiiiiiiiiieieeie ettt ettt e e e s 49
4.4 TMNAZEINELS....eeeiiieiiieeeiie ettt ee et ee ettt e sttt e st e e st e e sbteesnbeeesnbeeesnsbaeeeeenanns 53
A4.T VGGt et 54
441,17 TTAINING S@L..einiiiiiiiieiieteee ettt ettt ettt ebe et e st et e e s e ennaee 54
4.4.1.2 Validation Sel.........cceiieiiiieiieiee ettt ettt et e 55
O I T N AT AU 56

442 RESINEL...ceetieeiee ettt ettt et ettt et et e e et e e e nbeeee s 57
4.4.2.1 TTAININGZ S@L..eeniiiiiiiieiietieieet ettt ettt ettt et et e bt ebe et ese et e e s e e nnee 57

III



4.4.2.2 ValIAAtION SET.....oiiuviiiiiiie et e e eae e e eaaareeeeeeeeens 58

A4.2.3 TESE SELuiiiiiiiiietee e e 59
O B 1 TeTS) o1 o) USSP 60
4.4.3.1 TTAINING SCL..oeuviiieiieieetieieeieeie et ettt e et et e sse e steeaesseesesseenseesaenseeseenseeseesseeenseennnes 60
4.4.3.2 Validation Sel......ccovveuiriiiriiiiiiieiiieteeetee ettt 61
4.4.3.3 TESE SELuiiiiiiiiieec e 62
444 XCOPLIOM...eeeuiieiiieeieeeiieestteetteeteesbeessbeesete e seeesseeesseeesseessseessseassseanseesnsaessseessseens 63
444,17 TTAININGZ SL...eniiiiiiiieiieitieieet ettt ettt ettt sttt ettt ebe et ese et e e neeenneee 63
4.4.4.2 Validation Sel.......ccocoieiiiiiiiiiiiiiietisereeeee ettt e 63
A4.4.3 TESE SEluitiiiiiiitet ettt e 64
A4S INASNEL. ..ttt et ettt ettt et e et e e et e e e e as 64
4.4.5.1 TTAININGZ SL...cueiiiiiiieiietieiee ettt ettt ettt ettt ettt ebe et ese et e e s e enneee 64
4.4.5.2 Validation Sel.......ccoeoieiiiiiiiiiiiiieteereet ettt e 65
A4.5.3 TESE SEluititiiititeteee ettt e en 65
4.4.6 MODIIENEL. ..ottt ettt e e e 66
4.4.6.1 TTAIMNINE SEL.....eiuiiiriiitiitirtertetet ettt ettt sttt sttt ettt e b enaees 66
4.4.6.2 Validation Sel......c.oouiuiiiiiiiiiiiiieiiiei et 67
A.4.60.3 TESE SCl...vuiiieteiiietetetetet ettt 68
447 DENSENET.....oouiiiiiiiiiiiiii e 69
4.4.7.1 TIAININE SEL....iiuiiiiiiiitiitiiterteetet ettt sttt sttt et ebeenaees 69
4.4.7.2 Validation Sel......c.oouiiiiiiiiiiiiiieiiietieete et 70
AA7T.3 TSt Sl e 70
4.4.8 EAFICIENINGL. ..ottt ettt st 72
4.4.8.1 TIAINING SCL..eeviiuiiitieiiitieieeteete ettt ettt et e ste et e steeaesreesseeseesseeseesseesaeseessesseeesseensnes 72
4.4.8.2 Valldation Sel......c.ovviuiriiiiiiiiiiietiietee ettt ettt 73
A4.8.3 TESE SEluiiiiiiiiietet e ettt et 74
4.4.9 Highest Performance ATChiteCtUIEs.......c.ucevviiiiieiiiiciieciie et 75
4.4.9.1 TIAINING SCL..eeviiiiitieiiitieieeteete ettt ettt e et e ste et e ste e s e steesbesteesseeseesseeseeseeseesseeesseennnes 75
4.4.9.2 Validation Sel......covveuiriiiriiiiiiietiteteeterett ettt 75
A.4.9.3 TESE SEluniiiiiietiteet ettt e 76
4.5 Sample of segmented IMages.........ccccvreeiiiieeiiieeiiie e 76
4.5.1T RGB IMAZES. .cceuitteiiiiitiiite ettt ettt sttt st e e 76
4.5.2 Ground Truth TMages........ccceviuiiiiiieiiieiie ettt 76
4.5.3 UNCL..iitiitteitett ettt sttt ettt et st 77
.54 A TURNCL. ..ottt e e e 77
4.5.5 DU . ettt ettt e 77
.50 W _URCL. ...ttt ettt sttt ettt e e 77



.57 RUUDEL. ..o s ee s ee s se e s see e 77

4.5.8 VGGI9 HNKEA....ciiiiiiiiiieiie ettt 78

4.5.9 ResNet152V2 TNKed......cceioiiiiiiiiiiiiieieceteee e 78
4.5.10 InceptionV3 INKEd.......cuoiiiiiiiiiiie et 78
4.5.11 Xception HNKEd.........ooiiiiiiiieiieeiie ettt 78
4.5.12 MoDbileNetV2 INKed.......cccceeiiiieiiiiiiiiieeeieeeee et e 78
4.5.13 DenseNetl21 INKed.......ccoooiiiiiiiiiiiieecie e e 79
4.5.14 DenseNetl69 INKed......cceeeiiiiiiiiiiieiiieciee et e e 79
4.5.15 NASNetMobile TNKed........coccoiiiiiiiiiiiieieee e 79
4.5.16 EfficientNetB1l 1NKed.........cccciiiiiiiiiiiiieiiecie e e 79

5 CONCIUSIONS. ...ttt ettt e et e et e e e e e eee s 80
5.1 Specific CONCIUSIONS.......cccuviieiiieeiieeeiie et e e e e e e e e e saaaeaeeeas 80
5.2 CONLIIDULIONS. .....eiuiiiieiieitertt ettt ettt st e st e 81
5.3 FULUIE TESCATCH. ...ceutiiiiiiiieeiieteete et 81

6 BibliOGIaphy.....c.cviiiiiiiiiieeie e e 82
T APPCNAIX...eiiiiiiieieeiiie ettt e e e e e e e e e e et taaaraaaaaaaees 86
7.1 Experimental TeSULLS........ccueiiiiiiiiiiieiieeieeie e 86
71,1 Dataset TESULLS. ..ccuuiiiiiiiiiitie et ettt e e e 86
7.1.2 OPtIMIZET TESUILS. ... eeeiiiiiieeiie et ettt eeee e eesreesae e st e etaeesbaesssaessbeessesseeeans 88

7.1.3 L0SS fUNCHON TESUILS....cotiiiiiiiiiieiiiieiie ettt e e 89

7.1.4 Results of Imagenets with preprocessed inputs having pretrained & not trainable
1101 (<) O PP PRSP RPPRPRPRN 90
7.1.5 Results of Imagenets without preprocessed inputs having pretrained & trainable
130 1eT 014 1< USSR 94

7.1.6 Results of Imagenets without preprocessed inputs having pretrained & not
TrAINADIE ENCOAET. .. ..ottt ettt ettt et e st e e eaeeeen 97
7.1.7 Results of Imagenets without preprocessed inputs having untrained & trainable
130 1eT 014 1< PP P PSPPSR 101

T2 SOUICE COUC... i 104



Index of Tables

Table 1: Unet architeCture..........coo.eeiiiiiiiiiiiiiee e 10
Table 2: Spatial attention GAte...........ccccuveriiiieiiireeiie ettt e e e e e e e e saaeeeeeeas 11
Table 3: Channel attention Gate...........ccceeruieiiiiiiieiieeie ettt e e 11
Table 4: Attention MEChANISII......c...evuiiiiiriiiieieiiee et 11
Table 5: A UNet archit@CtUIE.....ccuviieiiieeiie et e st e e e e e 12
Table 6: D Unet module..........coocuiiiiiiiiiiiicie e 13
Table 7: D_Unet archite@CtUre.........ccuieiuieiiieiieiie ettt 14
Table 8: W_Unet MOAUIC.........cooiiiiieiieiieieeieee ettt s 14
Table 9: W_Unet archit@CtUIC.........eevuiieeiieeeiie ettt eaee e seeeesaee e e 15
Table 10: R Unet Module........c..oooouiiiiiiiiiiicceeeee e 16
Table 11: R_Unet architeCture...........ooeiieeiiniiiiieiieieeetceceee e 17
Table 12: VGG archit@Ctures........coueevirieriieiieiierieeieetesitete ettt e s 18
Table 13: ResNet architeCtures..........ooveiiiiiiiiiiiiiieieieee e 19
Table 14: Inception MOAUIC.........cccuiieiiiieiieeieeeee e 19
Table 15: Inception MOdULE L.......ccoooiiiiiiiiiiiiie e 20
Table 16: Inception MOAUIE 2..........cooiieiiiiiiiiieeiieeee et eree e 20
Table 17: Inception MOAUIE 3......ccoiiiiiiiiiiecieeeeeee e 21
Table 18: INCeption A BLOCK........ccovuiiieiiieciiiece e 21
Table 19: Inception B BlOCK........cc.ooiiiiiiiiiiiiieee e 22
Table 20: Inception C BlOCK........cc.eeviieiiiiiieiieie e e 22
Table 21: Reduction A BlOCK........ccuoiiiiiiiiiiie e 22
Table 22: Reduction B DIOCK..........coouiiiiiiieiiieeeeeeee e 22
Table 23: Inception archit@Ctures. ..........cooiiiiiirieiiierie e 23
Table 24: Xception DIOCK L.......ccoiiiiiiiiiiiieiiecie ettt 24
Table 25: Xception BIOCK 2......ccuiiiiiiieiie et 24
Table 26: Xception archit@CtUIC. .......ueieiuiieeiieeciee ettt e e e e e e eaeeeaaeeeneeeas 24
Table 27: MobileNet archit@Ctures. ........c.uevvieriieriieiierie e e 26
Table 28: DensNet MOAULE..........ccouiriiriiiiiieeeeee e 26
Table 29: DenseNet architeCtures..........covveiuieiiiriieiieiieeeeeee e e 27
Table 30: NasNet Normal Cell........c.cooviiiiiiiiiiiieeieeeeee e 28

VI



Table 31: NasNet RedUCtion Cell..... oo 28

Table 32: NaSNEt arChItECTUTES. ....coovviiiiiiiiieeeieeeeeeeeeeeeeee e 28
Table 33: EfficientNet MOAUIE......coooviiieeeeeee e 29
Table 34: EffICIENtINEt ArChITECTUTES. .. .eeeeeeeeeeeeee e e e e e e e eeee e e eeaaeees 30

VII



Table of Figures

Figure 1: Comparison of the F1 score on the training set for the different dataset ratios

Figure 2: Comparison of the IoU on the training set for the different dataset ratios...37
Figure 3: Comparison of the Precision on the training set for the different dataset
TATIOS. e+ttt ettt ettt ettt et sttt h bt e sttt et b e e aa e et ete e e s 38

Figure 4: Comparison of the Recall on the training set for the different dataset ratios

...................................................................................................................................... 38
Figure 5: Comparison of the Specificity on the training set for the different dataset
TATIOS. ¢+t ee ettt ettt ettt ettt et b ettt et a bt et st a et h e et ae e e ebe e e s 39
Figure 6: Comparison of the Accuracy on the training set for the different dataset
TATIOS. ¢+ttt ettt ettt ettt ettt h e bttt e h e bttt b e bt it nh e h et e h e bttt he e ettt ebeeebae s 39
Figure 7: Comparison of the F1 score on the validation set for the different dataset
TATIOS. e+ttt ettt ettt ettt et sttt h bt e sttt et b e e aa e et ete e e s 40

Figure 8: Comparison of the IoU on the validation set for the different dataset ratios40
Figure 9: Comparison of the Precision on the validation set for the different dataset
TATIOS ..ttt ettt ettt ettt ettt e bt h e bttt bt et b e bttt et b bt ae e 41

Figure 10: Comparison of the Recall on the validation set for the different dataset

Figure 11: Comparison of the Specificity on the validation set for the different dataset
TALTIOS ..ttt ettt ettt et ettt h bt h e bttt h bt et b e a e ae et b bt nae e 42

Figure 12: Comparison of the Accuracy on the validation set for the different dataset

Figure 13: Comparison of the F1 score on the test set for the different dataset ratios. 43
Figure 14: Comparison of the IoU on the test set for the different dataset ratios........ 43
Figure 15: Comparison of the Precision on the test set for the different dataset ratios44
Figure 16: Comparison of the Recall on the test set for the different dataset ratios....44

Figure 17: Comparison of the Specificity on the test set for the different dataset ratios

VIII



Figure 19: Comparison of the F1 score on the training/validation/test sets for the
QITETENT OPLMIZETS. ....eeeiiieeiiieiie ettt ettt ettt e et essaeeseenneeas 46
Figure 20: Comparison of the IoU on the training/validation/test sets for the different
18] 013100V V4<) ¢TSS 47
Figure 21: Comparison of the Precision on the training/validation/test sets for the
QITETENT OPLMIZETS. ....eeeiiieeiiieiie ettt sttt e et essaeeseennee s 47
Figure 22: Comparison of the Recall on the training/validation/test sets for the
QITRIENT OPLMIZETS.....iiiiiie ittt et et e et e e et eeeaaeesaeeensaeeensaeesnseeeas 48
Figure 23: Comparison of the Specificity on the training/validation/test sets for the
QITETENT OPLMIZETS. ... ittt ettt ettt et e et esaaeeseenneeas 48
Figure 24: Comparison of the Accuracy on the training/validation/test sets for the
QITRIENT OPLMIZETS.....iiiiiie ettt e et e et eetaeeesaeeensaeeensneeenseeeas 49
Figure 25: Comparison of the F1 score on the training/validation/test sets for the
different 10Ss fUNCHIONS. ......coouiiiiiiiiiiiiieece e 50
Figure 26: Comparison of the IoU on the training/validation/test sets for the different
10SS FUNCLIONS. ...ttt st 50
Figure 27: Comparison of the Precision on the training/validation/test sets for the
different 10Ss fUNCHIONS. ......coouiiiiiiiiiiieieee e 51
Figure 28: Comparison of the Recall on the training/validation/test sets for the
different 10SS fUNCHIONS. .......eiiiiiiieie e e 51
Figure 29: Comparison of the Specificity on the training/validation/test sets for the
different 10Ss fUNCHIONS. ......coouiiiiiiiiiiieiee et e 52
Figure 30: Comparison of the Accuracy on the training/validation/test sets for the
different 10SS fUNCHIONS. .......oiiiiiiieii e 52
Figure 31: Comparison of the VGG architectures on the training set for all different
COMAITIONS. c..cveiteitett ettt sttt ettt s eaee s 54
Figure 32: Comparison of the VGG architectures on the training set for the most
favourable CONAITIONS. ........cocviiiiiiiiiiiicie et 54
Figure 33: Comparison of the VGG architectures on the validation set for all different
COMAITIONS. c..cveiteitett ettt sttt ettt s eaee s 55
Figure 34: Comparison of the VGG architectures on the validation set for the most

TAVOUTADIE CONAITIONS. ...ttt e e e e e e e e e e e e e e e e eaeaees 55

IX



Figure 35: Comparison of the VGG architectures on the test set for all different
COMAITIONS. ..ottt ettt sttt ettt s s e s 56
Figure 36: Comparison of the VGG architectures on the test set for the most
favourable CONAITIONS. ........cocviiiiiiiiiiricie ettt 56
Figure 37: Comparison of the ResNet architectures on the training set for all different
COMAITIONS. ...ttt ettt sttt ettt s s s e s 57
Figure 38: Comparison of the ResNet architectures on the training set for the most
favourable CONAITIONS. ........cooviiiiiiiiiiiiciee e e 57
Figure 39: Comparison of the ResNet architectures on the validation set for all
different CONAItIONS.........coiiiiiiiiiiiiiieee e 58
Figure 40: Comparison of the ResNet architectures on the validation set for the most
favourable CONAITIONS. ........cocviiiiiiiiiiiicie et 58
Figure 41: Comparison of the ResNet architectures on the test set for all different
COMAITIONS. ...ttt ettt sttt ettt et s s s eae e s 59
Figure 42: Comparison of the ResNet architectures on the test set for the most
favourable CONAITIONS. ........cocviiiiriiiiiiicie et 59
Figure 43: Comparison of the Inception architectures on the training set for all
different CONAItIONS. .......coiiiiiiiiiiiiiee e 60
Figure 44: Comparison of the Inception architectures on the training set for the most
favourable CONAITIONS. ........cocviiiiiiiiiiiicie et 60
Figure 45: Comparison of the Inception architectures on the validation set for all
different CONAItIONS. .......coiiiiiiiiiiiiieee e 61
Figure 46: Comparison of the Inception architectures on the validation set for the
most favourable CONAIIONS.......c..cocuiriiriiiiiiiiiie s 61
Figure 47: Comparison of the Inception architectures on the test set for all different
COMAITIONS. c..cveiteitett ettt sttt ettt s eaee s 62
Figure 48: Comparison of the Inception architectures on the test set for the most
favourable CONAITIONS. ........cocviiiiiiiiiiiicie et 62
Figure 49: Comparison of the Xception architectures on the training set for all
different CONAItIONS. .......coiiuiiiiiiiiiiiee e 63
Figure 50: Comparison of the Xception architectures on the validation set for all

AIETETENT CONAITIONS. e eeveeeeee ettt e e et e e e e e e e e e e e e e eeeeeeeeeaaaaaeaee 63



Figure 51: Comparison of the Xception architectures on the test set for all different
COMAITIONS. ..ottt ettt sttt ettt s s e s 64
Figure 52: Comparison of the NASNet architectures on the training set for all
different CONAItIONS. .......couiiiiiiiiiiiiiei et 64
Figure 53: Comparison of the NASNet architectures on the validation set for all
different CONAItIONS. .......couiiiiiiiiiiiiee e 65
Figure 54: Comparison of the NASNet architectures on the test set for all different
CONAILIONS. ..ttt ettt et et ettt et sabeesaneeeateeebeeens 65
Figure 55: Comparison of the MobileNet architectures on the training set for all
different CONAItIONS.........coiiiiiiiiiiiiiieee e 66
Figure 56: Comparison of the MobileNet architectures on the training set for the most
favourable CONAITIONS. ........cocviiiiiiiiiiiicie et 66
Figure 57: Comparison of the MobileNet architectures on the validation set for all
different CONAItIONS. .......coiiiiiiiiiiiiieee e 67
Figure 58: Comparison of the MobileNet architectures on the validation set for the
most favourable CONAIIONS.......c..cocuiriiriiiiiiiiiie s 67
Figure 59: Comparison of the MobileNet architectures on the test set for all different
COMAITIONS. ..ottt ettt sttt ettt s s e s 68
Figure 60: Comparison of the MobileNet architectures on the test set for the most
favourable CONAITIONS. ........cocviiiiiiiiiiiicie et 68
Figure 61: Comparison of the DenseNet architectures on the training set for all
different CONAItIONS. .......coiiiiiiiiiiiiieee e 69
Figure 62: Comparison of the DenseNet architectures on the training set for the most
favourable CONAITIONS. ........cocviiiiriiiiiiicie et 69
Figure 63: Comparison of the DenseNet architectures on the validation set for all
different CONAItIONS. .......coiiuiiiiiiiiiiiee e 70
Figure 64: Comparison of the DenseNet architectures on the validation set for the
most favourable CONAIIONS.......c..cocuiriiiiiiiiiieiee e 70
Figure 65: Comparison of the DenseNet architectures on the test set for all different
COMAITIONS. c..cveiteitett ettt sttt ettt s eaee s 71
Figure 66: Comparison of the DenseNet architectures on the test set for the most

TAVOUTADIE CONAITIONS. ...ttt e e e e e e e e e e e e e e e e eaeaees 71

XI



Figure 67: Comparison of the EfficientNet architectures on the training set for all
different CONAItIONS. .......coiiiiiiiiiiiiieeee et 72
Figure 68: Comparison of the EfficientNet architectures on the training set for the
most favourable CONAIIONS.......c..cocuiriiiiiiiiiieiie e 72
Figure 69: Comparison of the EfficientNet architectures on the validation set for all
different CONAItIONS. .......couiiiiiiiiiiiiee e 73
Figure 70: Comparison of the EfficientNet architectures on the validation set for the
most favourable CONAIIONS.......c..cocuiriiriiiiiiiiiie s 73
Figure 71: Comparison of the EfficientNet architectures on the test set for all different
COMAITIONS. ...ttt ettt sttt ettt s sane e 74
Figure 72: Comparison of the EfficientNet architectures on the test set for the most
favourable CONAITIONS. ........cocviiiiiiiiiiiicie et 74
Figure 73: Comparison of the best architectures on the training set for their most
favourable CONAItIONS.........cc.ccuiviiiiiiiiiii e 75
Figure 74: Comparison of the best architectures on the validation set for their most
favourable CONAITIONS. ........cocviiiiriiiiiiicie et 75

Figure 75: Comparison of the best architectures on the test set for their most

favourable CONAIIONS. .....cueiiirtiiiieiterieee ettt 76
Figure 76: Sample of RGB images from the SWIMSEG dataset..........c.ccccocveevueennnen. 76
Figure 77: Ground truth images for the sample of RGB ones...........cccceviniiincnneen. 76

Figure 78: Segmented images by the Unet architecture for the sample of RGB ones. 77
Figure 79: Segmented images by the A_Unet architecture for the sample of RGB ones

...................................................................................................................................... 77
Figure 80: Segmented images by the D _Unet architecture for the sample of RGB ones
...................................................................................................................................... 77
Figure 81: Segmented images by the W_Unet architecture for the sample of RGB

OT1CS. .ttt ettt eatt e ettt e ettt e ettt e bttt ettt ettt e bt e bt s et e e it e ea bt e e ub et e bt e e e bt e e e bt e e e baeeeaneeeeaan 77

Figure 83: Segmented images by the VGG19 _linked architecture for the sample of
RGB ONES....ciiiiiiiiiiiieie s 78

XII



Figure 84: Segmented images by the ResNet152V2 linked architecture for the sample

OF RGB OMNIES.....niiiiiiiic e e 78
Figure 85: Segmented images by the InceptionV3_linked architecture for the sample
OF RGB ONES....uiiiiiiiiice e e 78
Figure 86: Segmented images by the Xception_linked architecture for the sample of
RGB ONES....coiiiiiiiiiiici s 78
Figure 87: Segmented images by the MobileNetV2_linked architecture for the sample
OF RGB ONES....oiiiiiiiiice et 78
Figure 88: Segmented images by the DenseNet121 linked architecture for the sample
OF RGB OMNIES.....niiiiiiiic e 79
Figure 89: Segmented images by the DenseNet169 architecture for the sample of
RGB ONES....iiiiiee e 79
Figure 90: Segmented images by the NASNetMobile linked architecture for the
SAMPIE OF RGB ONES....cuuiiiiiiiiiiiiicece et 79

Figure 91: Segmented images by the EfficientNetB1 linked architecture for the
SAMPIE OF RGB ONES....c.eviiiiiiiiiiie et 79

XIII



Chapter 1

1 Introduction

Chapter 1 outlines the motivation and background for the study of cloud segmentation as part of
cloud analysis on photovoltaic systems. In addition, the pros and cons of ground-based and satellite
images in cloud analysis are presented. Moreover, an overview of the different types of cloud
segmentation is delivered. Furthermore, a brief analysis of the main categories of cloud

segmentation methodologies is provided. Finally, thesis objectives and the written outline are stated.

1.1 Motivation and Background

Concerned by the thought of climate change'?, nowadays more and more countries are shifting

3% in order to reduce the environmental

away their dependence on conventional power plants
impact of fossil fuel. However, green energy from renewable sources is not currently enough to
meet the global demand, albeit rivaling coal generated electricity and even outstripping it
sometimes™. Particularly, about 26 percent of the global electricity produced comes from

renewables’.

Although solar photovoltaic systems generate only 2.4 percent of the global electricity, they
account for more than 50 percent of the renewable power capacity installed worldwide.
Consequently, knowledge of the cloud coverage over areas with photovoltaic power systems plays a
crucial role both in their proper operation and their maintenance. In more detail, by estimating the
irradiance that reaches the surface of the solar panels it is possible to predict the power generated by
the system ahead of time. Thus, grid operators can utilize this information to balance the energy

load, monitor the system’s efficiency and make decisions based on the energy market. This is quite

1https://www.epa.gov/climate-indicators
2https://ec.europa.eu/clima/climate-change/climate-change-consequences en
3https://ec.europa.eu/clima/eu-action/european-green-deal/2030-climate-target-plan_en
4https://www.gov.uk/government/news/uk-enshrines-new-target-in-law-to-slash-emissions-by-78 -by-2035
Shttps://www.nature.com/articles/d41586-021-03044-x
6https://www.nature.com/articles/d41586-020-02927-9
dhttps://www.eia.gov/todayinenergy/detail.php?id=39992
8https://europeansting.com/2019/08/28/5-charts-that-show-renewable-energys-latest-milestone/
9https://www.ren21.net/gsr-2019/chapters/chapter 01/chapter 01/
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important, because overpowering or underpowering the grid system can be catastrophic for the

devices connected to it.

Miscalculation of the predicted irradiance can occur on cloudy days, particularly on systems with
high temporal resolution [1], due to cloud shadows and sunlight reflected by clouds. As a result,
large ramp rates and high peaks increase power fluctuations which require ancillary services, like
battery systems and fuel based power generators. To face these challenges short temporal
resolutions and cloud analysis methods have been introduced aiming to minimize the error

assesment.

1.2 Pros and Cons of Ground-Based & Satellite Images

Cloud analysis studies have been done either via geo-stationary satellite images or ground-based
ones. While satellite images suffer from low spatial and temporal resolution and added complexity
due to the background scenery, ground-based images can provide higher spatial and temporal
resolution with lower complexity. On the other hand ground based images are limited to local areas
whereas those from satellites provide a global coverage. Even though both types of images provide
enough information for cloud-free and cloud-covered skies to algorithmic cloud analysis methods,
in case of broken clouds ground-based images yield better results than the ones from geo-stationary

satellites [2].

These ground-based images are captured at regular intervals by special cameras with a fish-eye
lens, defined as Whole Sky Imagers, providing a wide field of view. One drawback of those
cameras is the fact that the images get geometrically distorted. As a result, all depicted objects
appear deformed. To alleviate this problem rectification methods that depend on lens design
specification, calibration patterns or machine learning algorithms must be applied, though they
induce noise. To make matters worse, the combination of the sky’s dynamic luminance range with
the fact that clouds cannot be defined by their structure or contour, neither their shape nor size,

renders their detection a quite challenging task.

1.3 Overview of the Different Types of Cloud Segmentation

Typically, cloud detection methodologies refer to cloud image classification. The classification
process can be applied either on the whole image or on each pixel of the image separately. The first

method aims to identify and label the picture, based on its characteristics and according to specific
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criteria, with a single category from a well defined set. The second method is usually called image
segmentation and intends on assigning each pixel to a specific class from an established set, thus

generating a pixel-wise map of classifications.

There are three types of image segmentation, based on the way depicted objects are grouped. The
first and most popular technique is defined as semantic segmentation, because objects of the same
class are grouped together as one entity. Conversely, the second one is called instance segmentation
for every distinguishable object of interest is treated as a discrete instance of the general class. The
third method 1is specified as panoptic segmentation and combines both semantic and instance

segmentation processes.

1.4 Cloud Segmentation Methodologies

In the literature various methods of cloud semantic segmentation have been studied, addressing
different classification problems [3]. These include both binary prediction of cloud/no cloud images
and categorical detection of thin cloud/thick cloud/no cloud [4], cloud/cloud shadow/neither cloud

nor shadow [5] and cloud/snow/neither cloud nor snow [6].

As far as the techniques of cloud segmentation are concerned, the most prevalent ones can fall
into three main categories: threshold, clustering and deep learning. Threshold based methods utilize
fixed or adaptive thresholds on handcrafted formulas to generate ratios which intensify the
differences between the classes of interest. Consequently, their performance depends on the
dexterity of the data analysts to fabricate formulas that can differentiate efficiently cloud pixels
from non cloud ones. Clustering techniques also use formulas to highlight the discrepancies of the
classes, but the segmentation of the image is conducted by clustering algorithms. Deep learning
approaches employ self-supervised sophisticated architectures of fully convolutional neural
networks. The term self-supervised refers to the learning method that these networks are subjected
to. Specifically, they are trained on colored images and get evaluated on their respective ground
truth maps. Although, neural networks don’t require handcrafted formulas to operate, their

performance depends on the quality and quantity of the training images.

1.5 Thesis Objective

The present thesis is concerned with comparing different architectures of fully convolutional

neural networks on ground-based sky images for cloud semantic segmentation of cloud/no cloud
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ones. The objectives of this thesis are multiple. First, the optimal ratio for the training, validation
and test set on a small benchmark dataset called SWIMSEG will be explored. Second, the finest
optimization algorithm as well as the most appropriate loss function, out of a collection available on
the Keras API, the tensorflow _addons library and custom implemented, will be determined. Third,
investigation of tranfer learning for cloud semantic segmentation utilizing pretrained networks on
the ImageNet dataset will be carried on. Last, comparison between all implemented architectures

based on their performance on the SWIMSEG dataset will be performed.

1.6 Thesis Outline

The rest of this thesis is structured into four parts, with each part constituting a discrete chapter:

Chapter 2 provides a literature review, where relevant approaches will be presented and
elaborated. All of the presented studies have been conducted with ground-based images utilizing

different methodologies.

Chapter 3 elaborates on the fully convolutional neural networks. It describes in great detail the
architectures of the networks that have been implemented. Furthermore, it delves into the collection
of the optimization algorithms and the set of loss functions destined for investigation. Moreover, it
introduces the commonly used, in image segmentation, evaluation metrics for the comparison of the

results.

Chapter 4 presents the conducted experiments as well as the training, validation, and test results

on the SWIMSEG dataset of the implemented networks.

Chapter 5 concludes the study discussing the contributions of this work as well as suggesting

future research.



Chapter 2

2 Approaches to cloud segmentation

2.1 Traditional Threasholding Algorithms

Over the years several techniques have been developed for semantic segmentation of ground-
based sky images to cloud/no cloud ones. The first notable attempts were carried out utilizing

sophisticated thresholding algorithms.

The hybrid thresholding algorithm proposed by Q. Li et al [7] is one of them and employs a
combination of fixed and adaptive thresholding methods. Specifically, by transforming the color
images into normalized red/blue channel ratio ones, they can be distinguished more easily by their
standard deviations as unimodal or bimodal, containing practically either sky or clouds or exhibiting
both clouds and sky respectively. Unimodal images are segmented with a fixed value because cloud
and sky ratios are totally different, whereas minimum cross entropy is applied between the original

and segmented bimodal ones so as to search for the best threshold value.

A similar algorithm based on traditional threshold analysis, called hybrid entropy threshold
method, has been developed recently by R. Shen et al [8]. Images are again transformed into
normalized red/blue channel ratio ones and are segmented via a combination of a fixed threshold
method, a maximum information entropy threshold and a minimum cross entropy threshold. Based
on the variance of the normalized red/blue ratio image, it is classified either as sunny/overcast or
cloudy. A fixed value is applied on the sunny/overcast images for segmentation, while cloudy ones
are segmented by the quarter point closer to the minimum cross entropy threshold, in the interval
formed by the values of the maximum information entropy threshold and the minimum cross

entropy threshold.

Another threshold algorithm designed recently by X. Li et al [9], which performs better than the
hybrid thresholding algorithm, aims at reducing the sunlight interference in the image by
introducing an adjustable red green difference. The image is divided into four circumsolar regions
and based on the absence or presence of solar interference different cloud detection criteria are

applied to the regions. Solar interference is determined by two factors, the solar intensity calculated
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as the average intensity of the pixel block taken from the center of the solar disk and the saturation
difference calculated by subtracting the average saturation of the first layer from that of the entire
image. The threshold for the four regions is calculated by multiplying the red channel values with a
weight k and subtracting from it the green channel values. The k weight is set to the same constant
value for all regions in the presense of sunlight interference, while different fixed values are

assigned to them in its absence.

2.2 Clustering Algorithms

Cloud segmentation techniques were simplified, as far as the repeated testing for fine tuning the
hyperparameters is concerned, with the incorporation of machine learning algorithms. Great
examples are the works of S. Dev et al [10] [11], which don’t rely on manually determined
thresholds. In their first work they use manually defined ground truth maps and apply the partial
least squares regression method to provide a probabilistic indication of each pixel’s identity. The
important color components for the images are determined via a Principal Component Analysis and
the Receiver Operating Characteristics curve by checking the degree of correlation on 16 color
channels. In order to generate binary maps from the probabilistic ones, a fixed threshold is applied
to them. In their second work they measure Pearson’s Bimodality Index to determine quantitatively
the color channels which exhibit the most bimodal distributions, based on the assumption that they
yield better results in binary segmentation. Furthermore, they extend their research by conducting a
Principal Component Analysis to determine the most significant individual and pairs of color
channels for cloud detection. Finally, by applying fuzzy clustering on the best individual and pair of

color channels, they achieve similar performance with the hybrid thresholding algorithm.

Another remarkable work on the field of machine learning is that of G. Terren-Serrano et al [12]
which compares several techniques, in infrared ground-based images, based on the J-Statistic
metric. These techniques involve the supervised methods of Gaussian Discriminant Analysis and
Naive Bayes Classifier, as well as the unsupervised ones of Gaussian Mixture Model, k-means and
Markov Random Fields. Additionally, they included some discriminative algorithms such as Ridge
Regression, Primal solution for Support Vector Machines and Primal solution for Gaussian
Processes. The results of the study show that the Markov Random Fields is the best performing

technique among both the unsupervised and the supervised implemented techniques.
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2.3 Deep Learning Algorithms

Deep learning algorithms has brought forth a revolution in machine vision, and particularly in the
image classification field, by automating the process of data analysis. Furthermore, their superior
performance against conventional methods, combined with their ability to adapt efficiently on
different classification problems, has rendered them the most preferable choice for both scientific
and industrial applications. In image segmentation deep learning has prevailed through fully
convolutional networks which have demonstrated remarkable success, outperforming alternative

network architectures.

A recent study on cloud semantic segmentation provided by M. Hasenbalg et al [13] has shown
that fully convolutional networks deliver the best overall accuracy against conventional cloud
segmentation techniques, including the hybrid thresholding algorithm and an improved version of it,
defined as hybrid thresholding algorithm plus, a Clear Sky Library based approach, a region
growing algorithm and a color-channel fixed threshold based algorithm. The network is based on
the work of J. Long et al [14] and contains two parts, an encoder and a decoder. The encoder
integrates the VGG16 [15] architecture without the final layers of the classifier, containing only
convolutions and max pooling operations. Furthermore, the decoder is comprised by three
upsampling operations whose outputs are added together with outputs of the same size from the

encoder.

More recent approaches, however, utilize different variations of an improved fully convolutional
network, called U-Net [16], which employs a decoder symmetric to the encoder as far as the filters
and input dimensions are concerned. Specifically, S. Dev et al [17] proposed a light-weight
convolutional network, called CloudSegNet, which is shown to outperform the fully convolutional
network described above. CloudSegNet is a symmetric encoder-decoder architecture without skip
connections, producing a probability map of pixel-wise cloud predictions. This probability map is
transformed into a binary one by applying a fixed thresholding process, the value of which is

determined by a Receiver Operating Curve.

In a similar manner Q. Song et al [18] has designed another convolutional network, where again
there are no skip connections in the architecture. In more detail, the encoder integrates the ResNet
[19] architecture without the final layers of the classifier while the decoder uses several special

networks to generate a probability map of pixel-wise cloud predictions.

Finally, in the work of W. Xie et al [20], a deep convolutional network named SegCloud is

proposed. This architecture follows likewise the symmetric encoder-decoder design pattern
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described above, albeit producing a three channel probability map. Furthermore, it introduces some
skip connections, aimed for the concatenation of the encoder outputs with the ones of the same size
produced by the decoder, in order to have the features of the output in each upsampling stage

accurately restored.



Chapter 3

3 Fully convolutional neural networks

Fully convolutional neural networks intended for semantic segmentation can be generally
considered as an encoder-decoder architecture. As its name implies, the encoder captures and stores
context information from the input image, relative to the classes of interest via feature extraction,
producing a high dimensional feature vector often referred as code. Conversely, the decoder utilizes
the features provided by the code to build a pixel-wise map of the classes of interest with the same
size as the input image. In addition, some architectures called Unets introduce skip connections
from the encoder outputs to the decoder inputs so as to achieve a more precise localization.
Furthermore, transfer learning has been a common practice in fully convolutional neural networks
by incorporating in the encoder part various architectures pretrained on other datasets. However, the
fully connected layers of their classifier are omitted. As a result, their operation purpose is redefined
but the knowledge gained from the previous task, through the learned features, is intact and is

employed to improve generalization on other tasks.

In this study five modified Unet architectures along with other 50, which use as backbone
popular architectures from ImageNet Large Scale Visual Recognition Competition, have been
implemented in order to be conducted a comparative analysis on their use for cloud image
segmentation. Furthermore, the study extends to comparing different optimization algorithms and
loss functions in order to determine the most suitable for the cloud segmentation task from the

implemented collection.

The five Unets have the codename Unet, A Unet, D Unet, W_Unet and R _Unet. In all Unet
implementations downsampling is handled exclusively by convolutions and upsampling by
transposed ones. Additionally, instead of employing the common ReLU activation function, an
improved version called GELU [21] is utilized. Another difference of these variants is that all
convolutions except those dedicated for resampling are atrous [22] ones. A Unet, additionally,
utilizes an attention mechanism guiding it to focus more on the regions of interest. D_Unet employs
parallel atrous convolutions of different dilation rates to capture different features. In a similar way,
W_Unet utilizes parallel atrous convolutions of different kernel size. Finally, R Unet integrates a

modified inverted residual block with skip connections to improve the information flow.
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As far as the networks exploiting architectures from ImageNet Large Scale Visual Recognition
Competition are concerned, two variations have been implemented for each available architecture,
except NasNetLarge, on the Keras API'. The first one is a simple encoder-decoder architecture
while the second introduces skip connections. The decoder part of the networks albeit the simplest
possible, it is adjusted to the downsampling stages of the encoder rendering the expansion process

symmetric to the contraction one.

3.1 Unets

Unet [16]: This architecture was named after its symmetric u-shaped encoder-decoder structure.
There are two building blocks that constitute this encoder-decoder structure. The first block utilized
in the encoder consists of two convolutions of kernel size 3x3, which are followed by a convolution
of kernel size 2x2 with stride 2. The second block is employed in the decoder and is comprised by a
transposed convolution of kernel size 2x2 with stride 2, followed by two convolutions of kernel size
3x3. These blocks are repeated four times in the encoder and the decoder respectively. In each stage
the number of filters in the convolutions is doubled in the encoder while in the decoder it is halved.
Additionally, all decoder blocks take as input the output of the previous stage concatenated with the
output of the encoder block that has the same number of filters as the decoder block. Furthermore,
two convolutions of kernel size 3%3 are placed between the encoder and the decoder while another
one of kernel size 1x1 is placed at the end. Finally, all convolutions are followed by batch-

normalization and a GeLU activation function except for the last which is followed by a sigmoid.

Unet
Input

conv|3 x 3,16, dilations=3
conv|3 x 3,16, dilations=3|
conv |2 x 2,16, strides=2|

conv |3 x 3,32, dilations= 3]
conv |3 x 3,32, dilations= 3]
conV[Z x 2,32, strides:2]

conv|3 x 3,64, dilations=3
conv |3 x 3,64, dilations=3]
conv|2 x 2,64, strides=2|

10 https://keras.io/api/applications/
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conv|3 x 3,128, dilations= 3|
conv|3 x 3,128, dilations= 3|
conv|2 x 2,128, strides= 2]

conv|3 x 3,256, dilations= 3]
conv|3 x 3,256, dilations= 3]

concatenation of encoder output [128] & conv|256]
transposed conv |2 x 2,128, strides=2]|
conv|3 x 3,128, dilations=3|
conv|3 x 3,128, dilations=3|

concatenation of encoder output 64| & decoder output|128]
transposed conv|2 x 2,64, strides=2 |
conv|3 x 3,64, dilations=3|
conv|3 x 3,64, dilations=3|

concatenation of encoder output|32| & decoder output [64]
transposed conv |2 x 2,32, strides=2]
conv|3 x 3,32, dilations=3|
conv|3 x 3,32, dilations=3|

transposed conv |2 x 2,16, strides=2]
conv|3 x 3,16, dilations= 3]
conv|3 x 3,16, dilations=3]

conv[l X 1,1}

Table 3.1: Unet architecture

A _Unet : Heavily inspired by the work of [23] and [24] this architecture integrates a spatial-
channel attention mechanism to the Unet model described above. This mechanism contains two
gates, a spatial attention gate and a channel attention gate. Both gates take as input an output from
the encoder and an output from the decoder. The output of the decoder is half the size (width,height)
of the encoder output but it has the double number of filters. The spatial attention gate consists of
three convolutions, one addition and one multiplication operation. In more detail, the encoder
output passes through a convolution of kernel size 3x3 with stride 2 and 1 filter while the decoder
output is filtered by a convolution of kernel size 3x3 with stride 2, dilation 3 and 1 filter. Afterwards
an addition operation takes place and is followed by a convolution of kernel size 1x1 and 1 filter
and a transposed convolution of kernel size 3x3, strides 2 and 1 filter. All convolutions in the spatial
gate are followed by batch-normalization. Additionally the first two convolutions are followed by a
GeLU activation function and the last one by a sigmoid. The channel attention gate is comprised by
2 global max pooling operations, 2 global average pooling operations, 4 reshape operations, 2

concatenations and 2 convolutions. More specifically, a global max pooling and a global average

11
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pooling operation is applied to each input. Afterwards, the outputs have their dimensions reshaped
and the global average pooling output gets concatenated with the global max pooling one. Each
output is then filtered by a convolution of kernel size 2x1 with the same number of filters as the
input of the encoder. Finally, their outputs are concatenated and then filtered by a convolution of
kernel size 1 with the same number of filters as the previous one followed by a sigmoid activation
function. The outputs of the two gates are multiplied and a convolution of kernel size 1x1 with the
same number of filters as the other two takes place. This last convolution is followed by batch-

normalization and a GeLU activation function.

Decoder Input Encoder Input

conv|3 x 3, dilations=3, filters=1] conv |3 x 3,strides=2, filters=1]
Addition

conv|1 x 1, filters=1]

transposed conv |3 x 3, strides=2,, filters=1

Sigmoid Activation Function

Table 3.2: Spatial attention gate

Decoder Input Decoder Input Encoder Input Encoder Input

global average pooling | global max pooling | global average pooling | global max pooling

Reshape Reshape Reshape Reshape

Concatenation Concatenation

conv |2 x 1, strides=2| conv |2 x 1, strides=2|

Concatenation

conv|1 x1]

Sigmoid Activation Function

Table 3.3: Channel attention gate

Decoder Input Encoder Input Decoder Input Encoder Input

Spatial Attention Gate Channel Attention Gate

Multiplication

conv{l ><1}

Table 3.4: Attention mechanism
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A_Unet

Input

conv|3 x 3,16, dilations=3|
conv|3 x 3,16, dilations=3|
conv|2 x 2,16, strides=2]|

conv |3 x 3,32, dilations= 3
conv |3 x 3,32, dilations= 3]
conv|2 x 2,32, strides=2|

conv|3 x 3,64, dilations=3|
conv|3 x 3,64, dilations=3]
conv|2 x 2,64, strides= 2|

conv|3 x 3,128, dilations= 3|
conv|3 x 3,128, dilations= 3|
conv [2 x 2,128, strides= 2]

conv|3 x 3,256, dilations= 3]
conv|3 x 3,256, dilations=3|

spatial-channel attention gate
concatenation of spatial-channel attention gate & conv |256]
transposed conv/|2 x 2,128, strides=2]
conv|3 x 3,128, dilations=3]
conv|3 x 3,128, dilations=3]

spatial-channel attention gate
concatenation of spatial-channel attention gate & decoder output [128]
transposed conv|2 x 2,64, strides=2 |
conv|3 x 3,64, dilations=3|
conv|3x 3,64, dilations= 3]

spatial-channel attention gate
concatenation of spatial-channel attention gate & decoder output| 64/
transposed conv|2 x 2,32, strides=2|
conv|3 x 3,32, dilations= 3|
conv|3 x 3,32, dilations=3|

spatial-channel attention gate
concatenation of spatial-channel attention gate & decoder output [32)]
transposed conv|2 x 2,16, strides=2|
conv|3x 3,16, dilations=3|
conv|3x 3,16, dilations=3|

conv|1x1,1]

Table 3.5: A Unet architecture
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D Unet : Inspired by the work of [25], this architecture utilizes a block of dilated convolutions in

the encoder. The block consists of three branches, each one containing two consecutive

convolutions of the same kernel size and dilation rate. The first group of two convolutions adopts a

kernel size 3%3 with dilation rate 1, the second group a kernel size 3x3 with dilation rate 3 and the

third a kernel size 3x3 with dilation rate 5. Additionally, these groups of convolutions operate in

parallel with each other and their outputs are then concatenated. The different dilation rates used by

these convolutions aim at increasing the variety of features extracted from the input. Contrary to

using convolutions of kernel sizes 1x1, 3x3 and 5x5, dilated convolutions can be executed in less

time, as no bottleneck occurs, and with less computations than bigger kernels. Furthermore, all three

convolutions are followed by batch-normalization and a GeLU activation function. Finally, as far as

the decoder is concerned, it utilizes only one convolution with a dilation rate of 1.

Input

conv|3 x 3, dilations=1]
conv|3 x 3, dilations=1]

conv|3 x 3, dilations=3]
conv|3 x 3, dilations=3]

conv|3 x 3, dilations=5]
conv|3 x 3, dilations=5]

Concatenation

Table 3.6: D Unet module

D_Unet

Input

block of dilated convolutions|filters= 16
COHV[Z x2,16, strides=2}

block of dilated convolutions| filters= 232
conV[Z x 2,16, strides= 2]

block of dilated convolutions|filters= 64|
conv [ 2 %216, strides= 2}

block of dilated convolutions|filters=128]
conv[2 x 2,16, strides= 2]

block of dilated convolutions|filters= 256 |

concatenation of encoder output|128] & conv 256
transposed conv |2 x 2,128, strides=2]
conv|3 x 3,128, dilations=3|
conv|3 x 3,128, dilations=3|

14
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concatenation of encoder output|64| & decoder output|128]
transposed conv|2 x 2,64, strides=2 |
conv|3 x 3,64, dilations=3|
conv|3 x 3,64, dilations= 3]

concatenation of encoder output|32] & decoder output [64]
transposed conv |2 x 2,32 , strides=2]
conv|3 x 3,32, dilations=3|
conv|3 x 3,32, dilations=3]

transposed conv 2 x 2,16, strides=2]
conv|3 x 3,16, dilations= 3]
conv|3 x 3,16, dilations= 3]

conv[l X 1,1}

Table 3.7: D Unet architecture

W_Unet : Inspired by the Inception modules this architecture employs a block of convolutions
with different kernel sizes in the encoder. In greater detail, the block starts with two convolutions of
kernel size 1x1 and is separated to two branches. The first branch is comprised by two convolutions
of kernel size 3x3 and dilation rate of 3. The second branch consists of four convolutions, with the
first two having a kernel size of 1x3 and a dilation rate of 3 and the last two a kernel size of 3x1 and
a dilation rate of 3. The outputs of the two branches are then concatenated. All convolutions in the
block are followed by batch-normalization and a GeLU activation function. Finally, everything else

remains the same as in the Unet model described above.

Input

conv |1 x 1, dilations=1]
conv|1 x 1, dilations=1]

conv|3 x 3, dilations=3| conv|1 x 3, dilations= 3]
conv |3 x 3, dilations=3] conv|1 x 3, dilations=3]
conv|3 x 1, dilations=3]
conv |3 x 1, dilations= 3]

Concatenation

Table 3.8: W _Unet module
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W_Unet

Input

block of convolutions| filters=16]
conV[Z x2,16, strides:2}

block of convolutions|filters= 32
conv[2 x 2,32, strides= 2]

block of convolutions| filters= 64
conv [ 2 x 2,64, strides= 2}

block of convolutions|filters=128|
conv{Z x 2,128, strides=2}

block of convolutions|filters= 256

concatenation of encoder output|128] & conv 256
transposed conv |2 x 2,128, strides=2]|
conv|3 x 3,128, dilations=3|
conv|3 x 3,128, dilations=3|

concatenation of encoder output|64| & decoder output|128]
transposed conv|2 x 2,64, strides=2]|
conv|3 x 3,64, dilations=3|
conv|3 x 3,64, dilations= 3]

concatenation of encoder output|32| & decoder output [64]
transposed conv |2 x 2,32, strides=2]
conv|3 x 3,32, dilations=3|
conv|3 x 3,32, dilations=3]

transposed conv 2 x 2,16, strides=2]
conv|3 x 3,16, dilations= 3]
conv|3 x 3,16, dilations= 3]

conv|1x1,1]

Table 3.9: W _Unet architecture

R Unet : This architecture integrates techniques from the ResNet [19], the MobileNetV2 [33],
the DenseNet [34] model and the work of [26] into a more complicated bottleneck inverted residual
block. This block starts and ends with a convolution of kernel size 1x1, thus creating a bottleneck
block like ResNet. Between them are deployed three convolutions of kernel size 3x3 whose outputs
are concatenated sequentially with their input like in the DenseNet architecture. Additionally, the
outputs of the first convolution and the last are added together. Furthermore, the number of filters in
the convolutions of kernel size 3x3 are double than those of kernel size 1x1 in a similar fashion to

the MobileNetV2 inverted block structure. All convolutions in the block are followed by batch-
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normalization and a GeLU activation function. Finally, this block is utilized only by the encoder

while everything else remains the same as in the Unet model described above.

Input

conv |1 x1,filters=f|

conv|3 x 3, dilations=3, filters=2 |

Concatenation

conv|3 x 3, dilations=3, filters=2 |

Concatenation

conv|3 x 3, dilations=3, filters=2 |

Concatenation

conv |1 x1,filters=f|

Addition

Table 3.10: R_Unet module

R _Unet

Input

complicated block | filters= 16
COIlV[Z x 2,16, strides:Z}

complicated block | filters= 32|
conv[2 x 2,32 ,strides= 2}

complicated block [filters= 64|
conv[2 x2.64, strides=2}

complicated block | filters=128|
conv[2 x 2,128, strides= 2}

block of convolutions|filters= 256

concatenation of encoder output [128] & conv 256
transposed conv |2 x 2,128 , strides=2]
conv |3 x 3,128, dilations=3|
conv [3 x 3,128, dilations= 3]

concatenation of encoder output|64| & decoder output|128]
transposed conv|2 x 2,64, strides=2 |
conv|3 x 3,64, dilations=3]
conv [ 3 % 3,64, dilations= 3}
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concatenation of encoder output|32] & decoder output [64]
transposed conv|2 x 2,32, strides=2|
conv|3 x 3,32, dilations=3|
conv|3 x 3,32, dilations=3]

transposed conv |2 x 2,16, strides=2]|
conv|3 x 3,16, dilations= 3]
conv|3 x 3,16, dilations= 3]

conv|1x1,1]

Table 3.11: R_Unet architecture

3.2 ImageNets

VGG [15]: Convolutional layers with filters of small receptive field and max-pooling layers are
the key components of this architecture. Particularly, VGG-16 and VGG-19 consist of 13 and 16
convolutional layers respectively. Additionally, four max-pooling layers are interconnected with
those, forming batches of two and three and of two and four respectively. All the convolutions are
conducted using a 3x3 kernel size, preserving the spatial resolution of the input and are also
followed by a ReLU activation function. The number of their filters is initialized at 64 and is
doubled after each batch until it reaches the limit of 512. All the max-pooling operations are

computed using a 2x2 kernel size and a 2x2 stride.

VGG-16 VGG-19
Input Input
conv|3 x 3,64] conv|3 x 3,64
conv|3 x 3,64] conv|3 x 3,64
maxpool |2 x 2 stride=2] maxpool [2 x 2 stride=2]
conv|[3 x 3,128] conv|3 x 3,128]
conv|3 x 3,128] conv|[3 x 3,128]
maxpool 2 x 2, stride=2)] maxpool 2 x 2, stride=2]
conv[3 X 3,256] conv|3 x 3,256
conv|3 x 3,256 conv|3 x 3,256
conv|3 x 3,256 conv|3 x 3,256
conv (3 x 3,256
maxpool |2 x 2 stride=2] maxpool [2 x 2 stride=2]
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conv |3 x 3,512] conv|3 x 3,512
conv [3 X 3,512] conv|[3 x 3,512
conv|3 x 3,512| conv|3 x 3,512
conv|3 x 3,512

|
|
|
|

maxpool |2 x 2 stride=2] maxpool [2 x 2 stride=2]
conv |3 x 3,512] conv|[3 x 3,512]
conv|3 x 3,512 conv |3 x 3,512]
conv |3 x 3,512] conv |3 x 3,512]
| |

conv|3 % 3,512

Table 3.12: VGG architectures

ResNet [19]: The novelty of this architecture are the shortcut connections which add the input of
the first convolution to the output of the third convolution after every three convolutions creating
pairs which are called residual blocks. This method tackles the degradation problem, thus making it
possible to create models like ResNet50, ResNet101 and ResNet152 which consist of 49, 100 and
151 convolutional layers respectively. In all three variations what really differs is not the
composition of the main building blocks but the number of times each one is applied. The first
block consists of a convolution of 64 kernels of size 7x7 with a 2x2 stride, followed by a max-
pooling layer of kernel size 3x3 with stride 2x2 and a batch of three convolutions which is applied
three times in all variations. The batch consists of a convolution of 64 kernels of size 1x1, followed
by a second of 64 kernels of size 3x3 and a third of 256 kernels of size 1x1. The second block
consists of the same convolutional batch as before but doubled the kernels and is applied four times
in the first two variations and eight times in the last one. The third block consists of the same
convolutional batch as before but doubled the kernels again and is applied six times in ResNet50,
twenty three times in ResNet101 and thirty six times in ResNet152. The last block consists of the
same convolutional batch as before but doubled the kernels once more and is applied three times in
all variations. In the second, third and fourth block only the first convolution uses a stride of size
2x2 in order to reduce the dimension of the feature maps to half (marked with an asterisk on the
following table) while all the others use a stride of size 1x1, preserving at the same time the spatial
resolution of the input. Furthermore all convolutions are followed by batch-normalization and a
ReLU activation function. Interestingly, there is also a second version of these models where the
addition of the inputs in each residual block takes place after they pass through the activation

function [27].

19


https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1512.03385

ResNet50 ResNet101 ResNet152
Input Input Input
conv|’ * 7,64, conv|’ * 7,64, conv|’ * 7,64,
stride= 2 stride=2 stride= 2
maxpool 3'>< 3, maxpool B.X 3, maxpool 3.X 3,
stride=2 stride=2 stride=2
conv|1x1,64] conv|1x1,64] conv|1x1,64]

conv|3x3,64] |*3
conv|1x1,256]

conv|3x3,64] |*3
conv|1x1,256]

conv|3x3,64| X3
conv|1x1,256]

[ conv|1x1,128]]
conv[3x3,128] |x4
\conv|1x1,512]

conv|1x1,128]x
conv[3x3,128] |*4
conv|1x1,512]

conv|1x1,128]x*
conv[3x3,128] |*8
conv|1x1,512]

[ conv|1x1,256]%]
conv|3x3,256] [*6
[conv|1x1,1024] |

conv|1x1,256
conv|3x3,256] |*23
conv|1x1,1024]

conv|[1x 1,256
conv|3x3,256] [*36
conv|1x1,1024]

.conv[1><1,512}*.
conv[3x3,512] |*3
\conv[1x1,2048] |

conv|1x1,512]
conv[3x3,512] |*3
conv|1x1,2048]

conv|1x1,512]
conv[3x3,512] |*3
conv|1x1,2048]

Table 3.13: ResNet architectures

Inception [28]: The most distinctive features in this architecture are the inception modules,
which are comprised of a max-pooling operation and three convolutions of kernel size 1x1, 3x3 and
5x5. All of these operations are conducted on the same input and their outputs are then concatenated
to be passed on to the next module. Furthermore, because the convolutions of kernel size 3x3 and
5x5 are computationally expensive, two more convolutions of kernel size 1x1 are employed before
them so as to reduce the number of feature maps. As a result these modules have the potential to

capture information that is distributed both locally and globally on the input.

Input
conv |1 x1] maxpool |3 x 3] conv |1 x1] conv |1 x1]
conv[l X 1} conv[?) X 3} ConV[S X 5}
Concatenation

Table 3.14: Inception module
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Several improvements on this module have led to the creation of InceptionV3 [29] model.
Specifically, three new blocks were introduced in the InceptionV3 architecture which substituted
the original inception module in order to reduce both the representational bottleneck and the
computational complexity. The first block had the same structure as the original module except that
the convolution of kernel size 5x5 has been substituted with two others of kernel size 3x3, so as to
reduce the number of parameters and thus the chances of overfitting and accelerate the learning
process at the same time. In the second block the 3x3 convolutions have been factorized to two
consecutive convolutions of kernel size 1x3 and 3x1, in order to reduce even further the
computational cost. At last, in the third block the consecutive convolutions of kernel size 1x3 and
3%1 have been separated and put in parallel with the same input, thus expanding the number of its
filters but at the same time speeding up the training process. InceptionV3 consists of 94
convolutional layers and 10 pooling layers. In all blocks the max-pooling operation has been
substituted by an average-pooling one. Furthermore all convolutions are followed by batch-

normalization and a ReLU activation function.

Input
conv|1x1,64] avgpool |3 3> conv |1 x 1,48 conv|1x1,64]
192 conv |3 x 3,64 conv|3 x 3,96
conv|1x1,32] conv|3 x 3,96
Concatenation

Table 3.15: Inception module 1

Input

conv|1x1,192]

avgpool

3x3,
768
conv|1x1,192]

conv|1x1,160)]
conv|1 x3,160)]
conv|3 x1,192]

conv|1x1,160)]
conv |1 x 3,160
conv|3 x 1,160]
conv|1x3,160)]
conv|3 x 1,192]

Concatenation

Table 3.16: Inception module 2

Input

conv|1x1,320)]

conv|1x1,384]

conv|1 x1,448)]

avgpool

3 x 3,}
2048 conv |3 x 3,384]

conv(1x1,192] | ;v (1 x3,384] | conv|3 x 1,384] | conv |1 x 3,384 conv 3 x 1,384]
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Concatenation

Table 3.17: Inception module 3

Further improvements on these modules combined with the introduction of residual connections
have resulted in the creation of InceptionResNetV2 [30] model. The three blocks which were
utilized in the InceptionV3 architecture have been modified and being given the code names of
Inception-A block, Inception-B block and Inception-C block. Although, the structure of Inception-A
block has been kept intact, the Inception-B block and Inception-C block have been mildly modified.
In more detail, kernel size of 1x7 and 7x1 have been employed in Inception-B block instead of
1x3 and 3x1. Additionally, in Inception-C block the 3x3 convolution has been factorized to two
consecutive convolutions of kernel sizes 1x3 and 3x1. Furthermore, two reduction modules have
been introduced in this architecture with code names Reduction-A block and Reduction-B block.
The Reduction-A block is comprised of three branches. The first branch is a max-pooling operation
of kernel size 3%3 and stride 2. The second branch is a convolution of kernel size 3x3 and stride 2.
The last branch contains a convolution of kernel size 1x1, followed by a convolution of kernel size
3x3 and another one of the same kernel size but with stride 2. The Reduction-B block is comprised
of four branches. The first branch is a max-pooling operation of kernel size 3x3 and stride 2. The
second and third branch contain a convolution of kernel size 1x1, followed by a convolution of
kernel size 3%3 and stride 2 but with different number of filters. The fourth branch contains a
convolution of kernel size 1x1, followed by a convolution of kernel size 3x3 and another one of the
same kernel size but with stride 2. InceptionResNetV2 consists of 196 convolutional layers and 24

pooling layers. Finally, all convolutions are followed by batch-normalization and a ReLU function.

Input
conv [1 X 1,96] avgpool[3 X 3} conv [1 X 1,64} conv[l X 1,64}
conv|1 x1,96] conv|3 x 3,96 conv|3 x 3,96
conv [3 X 3,96]
Concatenation

Table 3.18: Inception A block
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Input

conv |1 x1,384]

avgpool |3 x 3]

conv|1x1,192]
conv|1 x3,224|

conv|1x1,128|

conv[3 X 1,256}

conv|1x1,192]
conv|1x3,192|
conv |3 x 1,224|
conv|1x3,224|
conv|3 x 1,256

Concatenation

Table 3.19: Inception B block

Input

conv|1 x 1,256

avgpool |3 x 3]
conv|1 x1,256]

conv|1x1,384|

conv|1x1,384]
conv|1 x 3,448)]
conv 3 x 1,512]

conv|1 x 3,256

conv|3 x 1,256

conv |3 x 1,256

conv |3 x 1,256|

Concatenation

Table 3.20: Inception C block

Input
maxpool | 3 3:384, conv| 3 *3:384, conv|1 x 1,256
stride=2 stride=2 conv|3 x 3,256
conv|3 3,384,
stride=2
Concatenation
Table 3.21: Reduction A block
Input
maxpool | 3* 5,,3824,] conv|[1x1,256] |conv|[1x1,256] convﬁ x 1,;56}
= X
stride conv|3> 3,2_88,} conv|3 53,3184,} conv|1 x 3,288
stride=2 stride=2 conv 3x1,320,
stride=2
Concatenation

Table 3.22: Reduction B block
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InceptionV3 InceptionResNetV2
Input Input
conv|3%3:32, conv |3 x 3,32, stride=2]|
stride=2 conv |3 x 3,32]
conv|3 x 3,32 conv |3 x 3,64
3x 3,64 3% 3,96
maxpool T conv o
conv (3 x 3,64] PO tride=2 stride=2 }
Concatenation
maxpool St:igészg’ conv| 1% 1 ,] conv|1x1,64]
conv[3 3,80 conv|7 x 1,64]
conv 3><3,} conv |1 x7,64]
conv [3 x 3,192 conv |3 x 3,96
Concatenation
maxpool 3 x 3,192 ,} conv|[3 x 3,192 maxpool |stride=2]|
stride=2 Concatenation

Inception block 1 x 3

Inception-A block x 5

Reduction block A

Inception block 2 x 5

Inception-B block x 10

Reduction block B

Inception block 3 x 2

Inception-C block x 5

Xception [31]: This architecture integrates techniques from both the Inception and the ResNet
models. Although its structure is similar to that of the InceptionV3, it utilizes different modules
based on the assumption that cross-channel features can be extracted separately from spatial ones.
The main components of these modules are depthwise separable convolutions and residual
connections. The first module contains two branches whose outputs are added together at the end.
The first branch consists of a convolution of kernel size 1x1 with stride 2, whereas the second
branch is comprised of two depthwise separable convolutions of kernel size 3x3, followed by a
max-pooling operation of kernel size 3x3 with stride 2. The second module is a residual block of
three depthwise separable convolutions of kernel size 3%3. In these two modules only the depthwise

separable convolutions are preceded by a ReLU activation function. Xception contains 40

Table 3.23: Inception architectures

convolutions and 4 max-pooling operations, which are all followed by batch-normalization.

24



https://arxiv.org/abs/1610.02357

Input

conv| 3%3 } depthwise separable conv [3 x 3]
stride=2 depthwise separable conv [3 x 3]
maxpool [3 x 3, stride=2]
Addition
Table 3.24: Xception block 1
Input

x1 depthwise separable conv |3 x 3]
depthwise separable conv [3 x 3]
depthwise separable conv |3 x 3]

Addition

Table 3.25: Xception block 2

Xception

Input

conv|3 x 3,32, stride=2]

conv |3 x 3,64

Xception-1 block | filters =128]

Xception-1 block | filters =256

Xception-1 block | filters =728

Xception-2 block | filters =728 x 8

Xception-1 block | filters =728]

depthwise separable conv (3 x 3,1536]

depthwise separable conv |3 x 3,2048]

Table 3.26: Xception architecture

MobileNet [32]: The most characteristic things in this architecture are its lightweight structure

and its efficiency on computer vision applications. Apart from the first layer, which is a regular

convolution, all other convolutions adopted by the network are separable depthwise convolutions.

However, instead of utilizing the standard depthwise separable convolution, it employs separately a

depthwise spatial convolution and a pointwise convolution which execute the same operation. The
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reason behind this is to have their outputs filtered by a batch-normalization operation and a ReLU
activation function. Additionally, downsampling is managed exclusively by strided depthwise
convolutions. MobileNet contains 27 convolutions which are all followed by batch-normalization
and a ReLU activation function. Furthermore, there is a second version of this model which utilizes
an inverted residual block with linear bottleneck, called mobile inverted bottleneck. In more detail
this block uses more filters in the intermediate convolutions than the ones with residual
connections. Additionally, the final pointwise convolution is followed by a linear activation (marked
with an asterisk on the following table). Again, all downsampling is managed exclusively by the
first depthwise convolution of the block (marked with a dagger on the following table) with stride 2.
MobileNetV2 [33] contains 53 convolutions which are all followed by batch-normalization and a
ReLU activation function, except for the final pointwise convolution in each block which is

followed only by batch-normalization.

MobileNet MobileNetV2
Input Input
conv |3 x 3,32, stride=2] conv |3 x 3,32, stride=2]
depthwise conv [3 x 3,32 conv|1x 1,32]
conv|1 x1,64] depthwise conv [3 x 3,32
conv|1x1,16]
depthwise conv| 3 * 364, conv[1x1,96]
stride=2 depthwise conv|3 x 3,96, stride=2|+| * 2
conv|1x1,128] conv|1 x 1,24 ]*
depthwise conv (3 x 3,128 [ conv |1 x1,144]
conv|[1x1,128] depthwise conv|3 x 3,144, stride=2|1| * 3
conv |1 x1,32]*
depthwise conv 3 * 3’128’} conv |1 x1,192]
stride=2 depthwise conv|3 x 3,192, stride=2|1| * 4
conv|1x 1,256] conv|1x1,64]*
depthwise conv [3 x 3,256 conv|1x1,384]
conv|1 x 1,256] depthwise conv|3 x3,384|| * 3
conv|1x1,96]*
depthwise conv |3 * 3,226 ’} conv|1x1,576]
stride=2 depthwise conv|3 x 3,576, stride=2| 1| * 3
conv[1x 1,512 conv |1 x1,160]*
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depthwise conv|3 x 3,512
conv|1x1,512]

X

5

conv|1x1,960]
depthwise conv|3 x 3,960
conv [1%1,320]*

depthwise conv |~ "
stride=2

conv|1x 1,1024]

3x3,512,}

33,1024,
stride=2
conv|1x 1,1024]

depthwise conv

|

conv|1 x1,1280]

Table 3.27: MobileNet architectures

DenseNet [34]: As its name suggests, this architecture consists of Dense blocks which have all
their layers connected directly with each other. This results in surpassing the vanishing gradient
problem and boosting both feature propagation and feature reuse. Each Dense block is comprised
by a stack of Dense layers whose outputs are concatenated before passing on to the next dense layer.
The Dense layer consists of a pointwise convolution followed by another convolution of kernel size
3x3. Additionally, a Transition layer is placed after each dense block in order to reduce both the
number of feature maps and the dimensions of its output. The Transition layer contains a pointwise
convolution followed by an average-pooling operation of kernel size 2x2. All convolutions in both
the Transition and the Dense layer are preceded by batch-normalization and a ReLU activation
function. DenseNet-121 contains 120 convolutions, DenseNet-169 contains 168 convolutions,

DenseNet-201 contains 200 convolutions and all of them utilize 4 pooling operations.

Input

Dense Layer 1

Dense Layer 2

Concatenation of 1 & 2

Dense Layer 3

Concatenationof 1 & 2 & 3

Dense Layer N

Concatenationof 1 & 2 & 3 & ... & N

Table 3.28: DensNet module
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DenseNet-121 DenseNet-169 DenseNet-201
Input Input Input
conv [7 X 7,64, stride=2] conv [7 x 7,64, stride= 2} conv [7 x 7,64, stride= 2}

maxpool 3 x 3,64 ,stride=2] maxpool [3 x 3,64 ,stride=2] maxpool [3 x 3,64 ,stride=2]

conv[1x1,128]] , ¢ conv|1x1,128|| conv[1x1,128]| , ¢
conv|3 x3,32] conv|3 x3,32] conv|3 x3,32]
conv|1x 1,128 conv|1x 1,128 conv|1x 1,128
avgpool [3x 3,128 ,stride=2| | avgpool|3x 3,128, stride=2| | avgpool|3x 3,128,stride=2]
conv[1x1,128]| , 1, conv[1x1,128]] , 1, conv[1x1,128]| , 15
conv|3 x3,32] conv|3 x3,32] conv|3 x3,32]
conv|1x 1,256 conv|1x 1,256 conv|1x 1,256]
avgpool |3 x 3,256, stride=2| avgpool |3 x 3,256, stride=2| avgpool |3 x 3,256, stride=2|
conv[1x1,128]| | 5, conv[1x1,128]] | 45 conv[1x1,128]| , 4q
COHVB X 3,32} Conv[3 X 3,32} conV[S X 3,32}
conv|1x 1,896 conv|1x 1,896 conv|1x 1,896

avgpool |3 x 3,896, stride=2| avgpool |3 x 3,896, stride=2| avgpool |3 x 3,896, stride=2|

conv|1x 1,128 conv|1 x1,128]
conv|3 % 3,32] conv|3 x 3,32]

conv[1x1,128]| 16 x 32 x 32
conv|3 x 3,32]

Table 3.29: DenseNet architectures

NASNet [35]: This novel architecture was generated by the Neural Architecture Search
framework [36] using CIFAR-10 as the validation dataset. In more detail, the research was
conducted on two modules, the Normal Cell which preserves the dimensions of the input and the
Reduction Cell which reduces them by a factor of two. Additionally, each of those cells was
determined to be comprised by five smaller blocks whose outputs are either added or concatenated.
These blocks contain two operations that take an input either from the last or its previous layer and
have their outputs added together. The candidate operations to be employed in those blocks were
based on the prevalent operations utilized by the state of the art models. The best Normal Cell
consists of 3 depthwise separable convolutions of kernel size 3x3, 2 depthwise separable
convolutions of kernel size 5x5, 3 average-pooling operations of kernel size 3x3 and 2 identity
operations. On the other hand the best Reduction Cell is comprised of 2 depthwise separable
convolutions of kernel size 7x7, 2 depthwise separable convolutions of kernel size 5x5, 1 depthwise
separable convolution of kernel size 3x3, 2 average-pooling operations of kernel size 3x3, 2 max-
pooling operations of kernel size 3x3 and 1 identity operation. NASNetMobile contains 81

depthewise separable convolutions and 52 pooling operations while NASNetLarge contains 111
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depthewise separable convolutions and 70 pooling operations. Finally, all convolutions are followed

by batch-normalization and a ReLU activation function.

1 1 i-1 i i i-1 i-1 i-1 i-1 i-1
sepconv| x1 |sepconv|sep conv | avgpool x 1 | avgpool | avgpool |sep conv |sep conv
3% 3] 3x3] | [5x5] | [3x3] 3x3] | [3x3] | [5x5] | [3x3]
Addition Addition Addition Addition Addition
Concatenation
Table 3.30: NasNet Normal Cell
i i-1 1 1 i-1 i i-1
maxpool sep conv sep conv maxpool sep conv avgpool sep conv
3x3] 7% 7] 5% 5] 3 %3] 7% 7] 13x3] 5% 5]

Addition Addition Addition
sep conv avgpool x 1
3 %3] 13 %3]
Addition Addition
Concatenation
Table 3.31: NasNet Reduction Cell
NASNetMobile NASNetLarge
Input Input

conv |3 x 3,32, stride=2]|

conv |3 x 3,96, stride=2]

Reduction Cell | filters =11

Reduction Cellfilters =42]

Reduction Cell filters =22

Reduction Cell | filters =84|

Normal Cell[filters =44| x 4

Normal Cell [ filters =168] x 6

Reduction Cellfilters =88]

Reduction Cellfilters =336

Normal Cell [ filters =88] x 4

Normal Cell [filters =336] x 6

Reduction Cell [filters =176

Reduction Cell | filters =672

Normal Cell [filters =176] x 4

Normal Cell [filters =672] x 6

Table 3.32: NasNet architectures

EfficientNet [37]: This is a state of the art architecture that was generated by the Neural

Architecture Search framework [38], utilizing the same search space as [n]. Its key component is a
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convolutional block which was also used by MnasNet. Specifically, it integrates the mobile inverted
bottleneck technique of MobileNetV2 and the squeeze and excitation technique of SENet [39]. The
block starts with a regular convolution followed by a depthwise separable one and continues in two
branches. The first branch contains a global average pooling followed by a reshape operation and
two regular convolutions whose number of filters preserve a ratio of 24 for the squeeze and
excitation technique. The second branch is an identity operation so that the two outputs can be
multiplied together and preserve the initial dimensions. Finally, after the multiplication a regular
convolution takes place. In this block only the first two convolutions are followed by batch-
normalization and a ReLU activation function, while the last is followed by batch-normalization
only. Depending on the variation of the model and its stage this block is repeated from 1 to 13
times in the stage. Additionally, the blocks are added together with residual connections.
Furthermore, a dropout operation takes place after the last convolution of each block of the stage
except for the first one. Finally, there are eight variations of the EfficientNet model and their

number of convolutions vary from 80 (EfficientNetB0) to 275 (EfficientNetB7).

conv|1x1,6-f]
depthwise separable conv|[nxn,6- f]
global average pooling x 1
reshape
conv|nxn,(6-f/24]]
conv|nxn,6-f]
Multiplication
conv|nx n
Table 3.33: EfficientNet module
EfficientNet
BO Bl B2 B3 B4 B5 B6 B7
block x1 | block x2 | block x2 | block x2 | block x2 | block x3 | block X3 | block x4
13x3,32] | [3x3,32] | [3x3,32] | [3x3,40] | [3x3,48] | [3x3,48] | [3x3,56] | [3x3,64]
block x2 | block x3 | block x3 | block x3 | block x4 | block x5 | block X6 | block x7
[3x3,16] | [3x3,16] | [3x3,16] | [3x3,24] | [3x3,24] | [3x3,24] | [3x3,32] | [3x3,32]
block x2 | block x3 | block x3 | block x3 | block x4 | block x5 | block X6 | block x7
5x5,24] | [5x5,24] | [5x5,24] | [5x5,32] | [5x5,32] | [5x5,40] | [5x5,40] | [5x5,48]
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block x3 | block x4 | block x4 | block x5 | block x6 | block x7 | block x8 | block x10
13x3,40] | [3x3,40] | [3x3,48] | [3x3,48] | [3x3,56] | [3x3,64] | [3x3,72] | [3x3,80
block x3 | block x4 | block x4 | block x5 | block x6 |block x7 |blockx8 |block x10
5%5,80] | [5%5,80] | [5%x5,88] | [5x5,96] |[5%5,112]|[5%5,128]|[5%5,144]|[5x5,160]
block x4 | block x5 | block x5 |block x6 |block x8 |block x9 |block x11 | block x13
(5x5,112] | [5x5,112]|[5x5,120] | [5x5,136] | [5x5,160] | [5x5,176] | [5x5,200] | [5x5,224]
block x1 | block x2 |block x2 |blockx2 |blockx2 |blockx3 |blockx3 |blockx4

13x3,192] [3x3,192]|[3%3,208] [3x3,232]|[3x3,272]|[3x3,304]|[3x3,344]|[3x3,384]

Table 3.34: EfficientNet architectures

3.3 Optimizers

SGD [40]: The Stochastic Gradient Descent algorithm aims at minimizing the loss function
which is related to the error rate in the predictions of the network. In more detail, by tweaking the

function’s parameters a local minimum is pursuit in order to minimize the error rate.

RMSprop [40]: The Root Mean Squared Propagation method is an adaptive learning rate method
that divides the gradient by the root of a moving average of the squared gradients. Furthermore, it
utilizes only the sign of the gradient, adjusting the step size separately in order to determine a single

global learning rate.

Adagrad [41]: This optimization method relies on the dynamic adaptation of the proximal
function, regulating the gradient steps of the algorithm, over time in a data driven way. That means
the learning rates depend on the frequency that parameters get updated, affecting them less with

each update.

Adadelta [42]: This is a per-dimension learning rate method for stochastic gradient descent,
derived from the Adagrad optimization algorithm. It introduces an adaptive learning rate so as to
avoid its continual decay, resulting in becoming infinitesimally small after a certain number of
epochs, and the need of manually selecting a global one. Specifically, the learning rate adapts
dynamically over time based on a moving window of gradient updates, aiming at continuous

learning throughout the training.

Adam [43]: This optimization algorithm was named after its adaptive moment estimation and
integrates the ability of the Adagrad method to cope with sparse arrays along with the ability of the
RMSprop method to handle non-stationary objectives. Based on the first and second orders of the
gradient Adam adaptively computes individual learning rates for different parameters. Thus,

succeeding in optimizing the stochastic objective functions.
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Adamax [43]: This is a variant of the Adam optimization algorithm which differs in the update
rule. In more detail, instead of scaling the gradients of individual weights inversely proportional to

an L? norm it is generalized to an L? norm where p is close to infinity.

Ftrl [44]: This optimization’s algorithm full name is Follow The Regularized Leader and was
developed to predict ad click-through rates for sponsored search advertising. Ftrl combines both the
sparsity produced by the Regularized Dual Averaging method and the gradient-descent style of

Online gradient Descent method which provides improved accuracy.

Nadam [45]: This optimization algorithm introduces a modified version of Nesterov’s
Accelerated Gradient technique to the Adam optimization method. By utilizing a decaying sum of
the previous gradients into a momentum vector instead of the true gradient, it can regulate the
learning rate more efficiently. Specifically, gradient descent learning is accelerated during training

steps on stable dimensions and is decelerated on inconsistent ones avoiding oscillation.

AdamW [46]: This is a variant of the Adam optimization algorithm which improves its
regularization by decoupling the weight decay from the gradient-based update. Thus, reducing the

impact of the learning rate on the optimal choice of the weight decay factor.

SGDW [46]: This is a variant of the Stochastic Gradient Descent optimization algorithm which
improves its regularization by decoupling the weight decay from the gradient-based update. Thus,

reducing the impact of the learning rate on the optimal choice of the weight decay factor.

ConditionalGradient [47]: This optimization algorithm is based on the Frank-Wolfe
optimization method. It is an iterative method which employs a linear approximation of the
objective function in order to find a local minimum. Furthermore, several modifications have been

introduced to the algorithm so as to handle computationally the various constraints incorporated.

LAMB [48]: Inspired by the LARS [49] method, LAMB is a large batch stochastic optimization
method. Specifically, it utilizes an adaptive elementwise updating as well as a layerwise adaptive
learning rate technique in order to accelerate the training of deep neural network on large mini-
batches. Furthermore, it can also be used as a general purpose optimizer supporting both small and

large batches.

LazyAdam ' This is another variant of the Adam optimizer that differs from the original in the
handling of the sparse updates. Particularly, it only updates the moving-average accumulators that

appear in the current batch, omitting the rest.

1https://www.tensorflow.org/addons/tutorials/optimizers_lazyadam
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ProximalAdagrad [50]: This method is designed for optimization of convex problems. In more
detail, after executing an unconstrained gradient descent step, it considers and solves an
optimization problem which aims to minimize a regularization term while maintaining close

proximity to the result produced from the first phase.

RectifiedAdam [51]: This is a variant of the Adam optimizer that introduces a new term to
rectify the variance of the adaptive learning rate. This helps the variance to become more consistent
avoiding convergence to bad local optima due to large variance of the learning rate in the early

stage of the training caused by the limited amount of samples.

Yogi [52]: This is an additive adaptive stochastic optimization method addressing non convex
problems. It employs a controlled increase of effective learning rate achieving convergence even

with increasing minibatch size.

3.4 Loss Functions

Binary Cross-Entropy [53]: It calculates the difference between two probability distributions for

a set of events. The loss function for the true values (ys.) and the predicted ones (y,.s) by the

network is defined as:

LBCE(ytrue’ ypred) :_(ytruexlog(ypred)+<1_ytrue)><10g(1 _ypred))

Dice [54]: This loss is derived from the fl score which is used as a segmentation evaluation
metric measuring the difference between two images. The loss function for the true values (y;..) and
the predicted ones (y,rq) by the network is defined as:

zxytruexypred-l-g

.ytrue+ .ypred+ €

LDICE (ytrue )ypred): 1-

Fbeta [54]: This loss is a generalization of the fl score which is used as a segmentation

evaluation metric measuring the difference between two images. The loss function for the true

values (Vi) and the predicted ones (y,-q) by the network with weight (f) is defined as:

(1+BZ)XYIruexypred+€
]‘+Bz)thruexypred+ﬁzxytruex<]'_ypred)+< 1_ytrue)><ypred+€

LFbeta(ytrue! ypred):]_— (
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Jaccard [54]: This loss is derived from the IoU which is used as a segmentation evaluation
metric measuring the difference between two images. The loss function for the true values (y..) and
the predicted ones (,r.4) by the network is defined as:

- ytrue>< ypred+£
Yiruet Y pred — Y true X .ypred+ €

Laccarp (y true > Y pred ) =1

PowerJaccard [54]: This loss is derived from the IoU which is used as a segmentation
evaluation metric measuring the difference between two images. The loss function for the true

values (Vi) and the predicted ones (y,-.q) by the network in the power (p) is defined as:

ytruexypred+€

p P _
.YIrue+ypred ytrue>< yUred+ €

L powerJACCARD ( Yiruer Y pred) =1-

Tversky [53]: This loss emphasizes more on the tradeoff between false positive and false

negative results produced from the comparison of two images. The loss function for the true values

(Viue) and the predicted ones (y,rs) by the network with weight (5) is defined as:

=1— ytruexypred-l-g
.ytruex.ypred+B><(1_.ytrue)><ypred+(]'_ﬁ)xytruex(l_yDred)+€

LTVERSKY ( Yirues ypred)

Log Cosh Dice [53]: The Log Cosh is integrated in the Dice loss in order to make its curve

smoother. The loss function for the true values (yu..) and the predicted ones (y,.4) by the network is

defined as:

l_zxytruexypred+€
ytrue+ypred+g

cosh

LLCD ( ytrue > ypred) = ]Og

Log Cosh Jaccard: The Log Cosh is integrated in the Dice loss in order to make its curve
smoother. The loss function for the true values (y4..) and the predicted ones (y,..4) by the network is

defined as:

ytrueXyPred-l-g
ytrue+ypred_.)/true>< ypred+g

cosh|1—

LLCJ (ytrue 4 ypred): log
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Binary Cross-Entropy Dice: This is a compound loss calculating the sum of binary Cross-
Entropy and Dice loss functions. The loss function for the true values (y..) and the predicted ones

(Vprea) by the network is defined as:

Lpcepice (y trues Y pred) =Lpcp+ Lpice

Binary Cross-Entropy Log Cosh Jaccard: This is a compound loss calculating the sum of

binary Cross-Entropy and Log Cosh Jaccard loss functions. The loss function for the true values

(Virue) and the predicted ones (1) by the network is defined as:

Lpcrrcy (y true s Y pred ) =Lpcg+Lics

Fbeta powerJaccard: This is a compound loss calculating the sum of Fbeta and power Jaccard

loss functions. The loss function for the true values (y:..) and the predicted ones (),rs) by the

network is defined as:

LFpr (y true » y pred ) = LF beta+ L powerJACCARD

Tversky Fbeta: This is a compound loss calculating the sum of Fbeta and Tversky loss functions.

The loss function for the true values (yi.) and the predicted ones (y,rs) by the network is defined

as:

LTFb (ytrue > ypred ) = LFbeta + LTVERSKY

3.5 Metrics

F1 score [55]: This is interpreted as the harmonic mean of the presicion and recall. The metric

formula for the true values (y...) and the predicted ones (),r.4) by the network is defined as:

2XY e XY preat €
F1score(y, .o,V oreq) = b
e pre Yitrue + Yy pred+ €
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IoU [55]: This is a metric that measures the percentage of overlap between two targets. The

metric formula for the true values (ys.) and the predicted ones (y,.s) by the network is defined as:

Y true X ypred +E
Yiruet Y pred ™ Y true X ypred+ €

IOU(ytrue ’ ypred):

Presicion [55]: This is refered as measure of quality. The metric formula for the true values (Vi)

and the predicted ones (y,.q) by the network is defined as:

ytruexypred+£
ytruexypred+(1 _.Ytrue)x ypred+£

Presicion( ytrue’ ypred):

Recall [55]: This is refered as measure of quantity. The metric formula for the true values (Vi)

and the predicted ones (y,..s) by the network is defined as:

ytruexypred+€
ytruexypred+ ytruex(]'_ ypred)+€

Reca” (ytrue s ypred):

Specificity [55]: This is defined as the proportion of actual negative results. The metric formula

for the true values (y+.) and the predicted ones (),.s) by the network is defined as:

(1_.ytrue)><(1_ypred)+€
]-_ytrue)x(]'_ypred)+ytrue><(1_.Ypred)+€

SpQlelClly (ytrue’ ypred) = (

Accuracy [55]: This corresponds to the percentage of correct predictions. The metric formula for

the true values (y+.) and the predicted ones (1) by the network is defined as:

ytruexypred+(1_ytrue>x(1_ypred)+€
ytruexypred+< 1_ytrue>xypred+ytruex(1_ypred)+(1_ytrue)x(l_ypred)+g

Accuracy (.ytrue’ ypred) =
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Chapter 4

4  Experiments & results

4.1 Dataset

For the evaluation of the fully convolutional neural networks the Singapore Whole Sky Image
Segmentation or SWIMSEG dataset has been chosen. It was created by S. Dev et al [10] for binary
cloud segmentation and is publicly available'*. Furthermore, it consists of 1013 images of size
600x600 pixel, carefully chosen from a 2 year collection, whose ground truth maps has been
produced with the help of cloud experts from the Singapore Meteorological Services. Additionally,
the images are undistorted and the majority of them depict moderately cloud or overcast conditions.

Finally, none of the images contain a sun trace.

Because the SWIMSEG dataset is small the first experiment was conducted to determine the
optimal ratio for the training, validation and test set. The proposed ratios were 60/20/20, 65/15/20,
70/15/15/, 70/10/20 and 80/10/10 for the training, validation and test set respectively. Moreover, the
images of the dataset were not divided in a sequential manner or randomly but uniformly so as to
include as many as possible different conditions in the training set. Finally, the datasets were tested
on the five Unets for 51 epochs utilizing the Adam optimizer on a scheduled learning rate and the
Dice loss function. The implemented schedule had the value of learning rate decreased after the first
10 epochs from the initial value of 0.001 to 0.0005, after 20 epochs to 0.0001 and after 30 epochs to
0.00005. Finally the images were resized to 300%300 pixels.

The results of the experiment are presented below in three batches of six charts, corresponding to
the six metrics for the evaluation of the training, validation and test set. First is the training set,
which is followed by the validation set and the test set. In each chart representing only one metric
are compared the different dataset ratios through the scores of the five Unet variations in the

respective metric.

12 https://vintage.winklerbros.net/swimseg.html
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4.1.1 Training Set
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Figure 1: Comparison of the FI score on the training set for the different dataset ratios
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Figure 2: Comparison of the loU on the training set for the different dataset ratios
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Figure 3: Comparison of the Precision on the training set for the different dataset ratios
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Figure 4: Comparison of the Recall on the training set for the different dataset ratios
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specificity

0.92
0.91
0.9
0.89 B Unet
B A_Unet
0.88 D_Unet
0.87 B W_Unet
B R_Unet
0.86
0.85
0.84
0.83
60/20/20 65/15/20 70/10/20 70/15/15 80/10/10
Figure 5: Comparison of the Specificity on the training set for the different dataset ratios
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Figure 6: Comparison of the Accuracy on the training set for the different dataset ratios
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4.1.2 Validation Set
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Figure 7: Comparison of the F1 score on the validation set for the different dataset ratios
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Figure 8: Comparison of the loU on the validation set for the different dataset ratios
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Figure 9: Comparison of the Precision on the validation set for the different dataset ratios
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Figure 10: Comparison of the Recall on the validation set for the different dataset ratios
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Figure 11: Comparison of the Specificity on the validation set for the different dataset ratios
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Figure 12: Comparison of the Accuracy on the validation set for the different dataset ratios
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4.1.3 Test Set

fl-score
0.94
0.93
0.92 H Unet
B A_Unet
0.91 D_Unet
B W_Unet
0.9 B R_Unet
0.89
0.88
0.87
60/20/20 65/15/20 70/10/20 70/15/15 80/10/10
Figure 13: Comparison of the F1I score on the test set for the different dataset ratios
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Figure 14: Comparison of the loU on the test set for the different dataset ratios
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Figure 15: Comparison of the Precision on the test set for the different dataset ratios
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Figure 16: Comparison of the Recall on the test set for the different dataset ratios
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specificity
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Figure 17: Comparison of the Specificity on the test set for the different dataset ratios
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Figure 18: Comparison of the Accuracy on the test set for the different dataset ratios
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From the above charts it can be vaguely concluded that the best ratios are 65/15/20 and 70/10/20,
because they yield the best overall results both in the validation set and the test set. However, this is
not absolute because of the fact that the compared ratios do not include the same images in their
respective sets. As a result some images included only in certain training sets may contain
information that is more rare than in other images. This can be observed in the 80/10/10 dataset
which does not yield any significant performance in any set, although it was expected to have
higher IoU and f1 scores on the validation set, due to the fact that the training set contains more

images than all the other datasets.

4.2 Optimization algorithms

In this experiment 16 different optimization algorithms, which are all available on the
tensorflow'’ and the tensorflow addons'* libraries, have been tested. Specifically, for this test only
the A Unet was utilized because its overall accuracy was of the highest ones and its training time
was of the shortest ones. The network was trained for 31 epochs on the 60/20/20 dataset with the
dice loss function and a scheduled learning rate. Again, the value of the learning rate decreased
from 0.001 to 0.0005 after 10 epochs, to 0.0001 after 20 epochs and to 0.00005 after 30 epochs.

Finally the images were resized to 300x300 pixels.

The results of the experiment are presented below in only one batch of six charts, corresponding
to the six metrics. The training, validation and test set scores of the same metric for the respective

optimization algorithm are all included in the same chart.
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Figure 19: Comparison of the F1 score on the training/validation/test sets for the different optmizers

8 https://www.tensorflow.org/api_docs/python/tf/keras/optimizers
4 https://www.tensorflow.org/addons/api_docs/python/tfa/optimizers
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Figure 20: Comparison of the loU on the training/validation/test sets for the different optmizers
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Figure 21: Comparison of the Precision on the training/validation/test sets for the different optmizers
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Figure 22: Comparison of the Recall on the training/validation/test sets for the different optmizers
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Figure 23: Comparison of the Specificity on the training/validation/test sets for the different optmizers
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Figure 24: Comparison of the Accuracy on the training/validation/test sets for the different optmizers

From the above charts it can be concluded that the most fitted optimizers for the task of cloud
segmentation on small networks like the Unet variations implemented in this thesis are: Adam,

Adamax, Nadam, RMSprop, AdamW, LAMB, LazyAdam, RectifiedAdam and Yogi.

4.3 Loss Functions

In this experiment 12 different loss functions have been compared regarding their efficiency for
cloud segmentation tasks. In more detail, for this test the A Unet was chosen again to be trained for
31 epochs, on the 60/20/20 dataset, with the LAMB optimizer and a scheduled learning rate for
each loss function. The implemented schedule had the value of learning rate decreased after the first
10 epochs from the initial value of 0.001 to 0.0005, after 20 epochs to 0.0001 and after 30 epochs to
0.00005. Finally the images were resized to 300%300 pixels.

The results of the experiment are presented below in only one batch of six charts, corresponding
to the six metrics. The training, validation and test set scores of the same metric for the respective

loss function are all included in the same chart.
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Figure 25: Comparison of the FI score on the training/validation/test sets for the different loss functions
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Figure 26: Comparison of the loU on the training/validation/test sets for the different loss functions
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Figure 27: Comparison of the Precision on the training/validation/test sets for the different loss functions
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Figure 28: Comparison of the Recall on the training/validation/test sets for the different loss functions
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Figure 29: Comparison of the Specificity on the training/validation/test sets for the different loss functions
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Figure 30: Comparison of the Accuracy on the training/validation/test sets for the different loss functions
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From the above charts it can be inferred that the most suitable loss functions for cloud
segmentation are: Dice, Jaccard, power Jaccard, Fbeta score, Fbeta score power Jaccard,
LogCoshJaccard and LogCoshDice. Interestingly, the LogCoshDice had the best overall metric

SCOres.

4.4 ImageNets

This is the final experiment where 50 networks of different sizes and performance on the
ImageNet dataset have been compared, regarding their efficiency for cloud segmentation tasks.
Bacause the networks are of various depth, the LAMB optimization algorithm has been employed
for their training, in order to achieve an accelerated learning process on all of them. Additionally,
they were trained utilizing the LogCoshDice loss function for 31 epochs, on the 60/20/20 dataset
with a scheduled learning rate. The initial value of the learning rate was 0.001 and it decreased to
0.0005 after 10 epochs, to 0.0001 after 20 epochs and to 0.00005 after 30 epochs. Finally, the

images were resized to 224x224 pixels, which is the default size for most of the networks.

Furthermore, the networks were all trained on four different conditions to determine the most

preferable. Specifically, the types of training have been codenamed as A, B, C and D:

* A: The inputs have been preprocessed according to its network’s specific kind of
preprocessing operation. The networks’ encoder was pretrained on the ImageNet dataset.
Finally, during the training phase the networks’ encoder was frozen, meaning that its weights

did note get updated.

* B: The inputs have not been preprocessed in accordance to its networks’ preprocessing
operation. The networks’ encoder was pretrained on the ImageNet dataset. Morever, during
the training phase the networks’ encoder was allowed to be trained and have its weights

updated.

* (C: The inputs have not been preprocessed according to its networks’ preprocessing
operation. The networks’ encoder was pretrained on the ImageNet dataset. Finally, during
the training phase the networks’ encoder was frozen, meaning that its weights did note get

updated.

* D: The inputs have not been preprocessed in accordance to its networks’ preprocessing

operation. The networks’ encoder was initiated with random values on its weights. Morever,
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during the training phase the networks’ encoder was allowed to be trained and have its

weights updated.

The results of the experiment are presented below in eight batches of six charts, corresponding to

each of the eight different architecture families.

4.4.1 VGG
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Figure 31: Comparison of the VGG architectures on the training set for all different conditions
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Figure 32: Comparison of the VGG architectures on the training set for the most favourable
conditions
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4.4.1.2  Validation Set
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Figure 33: Comparison of the VGG architectures on the validation set for all different conditions
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Figure 34: Comparison of the VGG architectures on the validation set for the most favourable
conditions
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4.4.1.3  Test Set
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Figure 35: Comparison of the VGG architectures on the test set for all different conditions
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Figure 36: Comparison of the VGG architectures on the test set for the most favourable conditions
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4.4.2 ResNet

4.4.2.1 Training Set
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Figure 37: Comparison of the ResNet architectures on the training set for all different conditions
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Figure 38: Comparison of the ResNet architectures on the training set for the most favourable
conditions
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4.4.2.2  Validation Set
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Figure 39: Comparison of the ResNet architectures on the validation set for all different conditions
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Figure 40: Comparison of the ResNet architectures on the validation set for the most favourable
conditions
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4.4.2.3  Test Set
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Figure 41: Comparison of the ResNet architectures on the test set for all different conditions
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Figure 42: Comparison of the ResNet architectures on the test set for the most favourable conditions
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4.4.3 Inception

4.4.3.1 Training Set
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Figure 43: Comparison of the Inception architectures on the training set for all different conditions
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Figure 44: Comparison of the Inception architectures on the training set for the most favourable
conditions
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4.4.3.2  Validation Set
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Figure 45: Comparison of the Inception architectures on the validation set for all different

conditions
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Figure 46: Comparison of the Inception architectures on the validation set for the most favourable
conditions
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4.4.3.3  Test Set
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Figure 47: Comparison of the Inception architectures on the test set for all different conditions
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Figure 48: Comparison of the Inception architectures on the test set for the most favourable
conditions
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4.4.4 Xception

4.4.4.1 Training Set
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Figure 49: Comparison of the Xception architectures on the training set for all different conditions

4.4.4.2  Validation Set
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Figure 50: Comparison of the Xception architectures on the validation set for all different conditions

64



4.4.4.3  Test Set
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Figure 51: Comparison of the Xception architectures on the test set for all different conditions

4.4.5 NASNet
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Figure 52: Comparison of the NASNet architectures on the training set for all different conditions
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4.4.5.2  Validation Set
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Figure 53: Comparison of the NASNet architectures on the validation set for all different conditions

4.4.5.3  Test Set
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Figure 54: Comparison of the NASNet architectures on the test set for all different conditions
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4.4.6 MobileNet

4.4.6.1 Training Set
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Figure 55: Comparison of the MobileNet architectures on the training set for all different conditions
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Figure 56: Comparison of the MobileNet architectures on the training set for the most favourable
conditions
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4.4.6.2 Validation Set
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Figure 57: Comparison of the MobileNet architectures on the validation set for all different
conditions
0.9500
0.9000
0.8500
W F1 score
N oU
0.8000 precision
m recall
W specificity
0.7500 accuracy
Q Q Q
&7 &’ N &’
@QJ \\(\ %QJ \\(\
Qo S N N
> N £
.§Q) @ é@
P NG
R S
J

Figure 58: Comparison of the MobileNet architectures on the validation set for the most favourable
conditions
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4.4.6.3  Test Set
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Figure 59: Comparison of the MobileNet architectures on the test set for all different conditions
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Figure 60: Comparison of the MobileNet architectures on the test set for the most favourable
conditions
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4.4.77 DenseNet

4.4.7.1 Training Set
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Figure 61: Comparison of the DenseNet architectures on the training set for all different conditions
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Figure 62: Comparison of the DenseNet architectures on the training set for the most favourable
conditions
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4.4.7.2  Validation Set
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Figure 63: Comparison of the DenseNet architectures on the validation set for all different

conditions
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Figure 64: Comparison of the DenseNet architectures on the validation set for the most favourable
conditions

4.4.7.3  Test Set
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Figure 65: Comparison of the DenseNet architectures on the test set for all different conditions
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Figure 66: Comparison of the DenseNet architectures on the test set for the most favourable
conditions

72



4.4.8 EfficientNet

4.4.8.1 Training Set
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Figure 67: Comparison of the EfficientNet architectures on the training set for all different

conditions
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Figure 68: Comparison of the EfficientNet architectures on the training set for the most favourable
conditions
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4.4.8.2  Validation Set
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Figure 69: Comparison of the EfficientNet architectures on the validation set for all different
conditions
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Figure 70: Comparison of the EfficientNet architectures on the validation set for the most favourable
conditions
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4.4.8.3  Test Set
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Figure 71: Comparison of the EfficientNet architectures on the test set for all different conditions
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Figure 72: Comparison of the EfficientNet architectures on the test set for the most favourable
conditions
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4.4.9 Highest Performance Architectures

4.4.9.1 Training Set
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Figure 73: Comparison of the best architectures on the training set for their most favourable
conditions

4.4.9.2  Validation Set
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Figure 74: Comparison of the best architectures on the validation set for their most favourable
conditions
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4.4.9.3  Test Set
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Figure 75: Comparison of the best architectures on the test set for their most favourable conditions

4.5 Sample of segmented Images

The sample of images illustrated below were all chosen arbitrarily from the test set.

Figure 76: Sample of RGB images from the SWIMSEG dataset

4.5.1 RGB Images

4.5.2 Ground Truth Images
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Figure 77: Ground truth images for the sample of RGB ones
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4.5.3 Unet
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Figure 78: Segmented images by the Unet architecture for the sample of RGB ones
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Figure 79: Segmented images by the A Unet architecture for the sample of RGB ones
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Figure 80: Segmented images by the D _Unet architecture for the sample of RGB ones
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Figure 81: Segmented images by the W _Unet architecture for the sample of RGB ones
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Figure 82: Segmented images by the R_Unet architecture for the sample of RGB ones
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4.5.8 VGG19_linked
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Figure 83: Segmented images by the VGG19 linked architecture for the sample of RGB ones
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4.5.9 ResNet152V2 linked
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Figure 84: Segmented images by the ResNet152V2 linked architecture for the sample of RGB ones

4.5.10 InceptionV3_linked
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Figure 85: Segmented images by the InceptionV3_linked architecture for the sample of RGB ones

4.5.11 Xception_linked

VAR A i

Figure 86: Segmented images by the Xception linked architecture for the sample of RGB ones

4.5.12 MobileNetV2_linked
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Figure 87: Segmented images by the MobileNetV2 linked architecture for the sample of RGB ones
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4.5.13 DenseNet121_linked
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Figure 88: Segmented images by the DenseNet121 linked architecture for the sample of RGB ones
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Figure 89: Segmented images by the DenseNet169 architecture for the sample of RGB ones
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Figure 90: Segmented images by the NASNetMobile linked architecture for the sample of RGB ones
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Figure 91: Segmented images by the EfficientNetB1 linked architecture for the sample of RGB ones
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Chapter 5

5 Conclusions

A thorough investigation between several deep learning algorithms has been conducted in an

attempt to determine the most suitable for the task of cloud image segmentation. Although,

significant progress has been made in the field with the advent of deep learning algorithms, it still

remains an open issue for the research community. That is because cloud classification is a rather

difficult problem primarily due to its vague nature and secondly due to the lack of consistent data.

The main purpose of this study is to make things more clear by providing information through the

comparative analysis of existing algorithms as well as new variations inspired by successful

architectures.

5.1

Specific Conclusions

Comparing the dataset ratios it is impossible to reach a solid conclusion as far as the optimal
ratio is concerned for a small dataset like SWIMSEG. What should really be inferred is that
the number of images is inadequate for training very deep ones. Consequently, augmentation
of the images should be considered as a possible solution to achieve better results and

alleviate the problem of overfitting, observed in the very deep pretrained ones.

Optimizers with adaptive learning rate seem to yield better results than conventional ones

for semantic segmentation of cloud images.

Loss functions who emphasize more on precision than recall tend to achieve greater results.
This can be discerned from the scores of Fbeta (b=1.2), Dice and Tversky loss functions.
Specifically, the Fbeta loss function emphasizes more on precision than recall and achieves
higher score in all sets than Dice. On the contrary, Tversky loss function emphasizes more

on recall and performs worse than Dice in all sets.

Transfer learning on cloud segmentation, through networks pretrained on the ImageNet
dataset, is possible. Although, most of the times it can lead to greater performance, this is

not a general rule. A characteristic example is the case of EfficientNet networks, where the
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5.2

models initialized with weights from the respective pretrained ones were outperformed by

others with random initialization of weights.

Very deep networks are more prone to overfitting than smaller ones. This is quite distinct
between the VGG19 linked and ResNet152V2 linked architectures which have similar
scores on the validation and test sets but a huge discrepancy between those on the training

set.

From the two implemented versions of fully convolutional neural networks with pretrained
encoders, the one with integrated skip connections yielded better results than the other
without them for all the pretrained networks. In more detail, the difference in overall
performance was getting wider as the network’s depth increased. Furthermore, the networks
without skip connections were more susceptible to overfitting. That means skip connections
play an important role on cloud segmentation and they should be included in networks

designed for that purpose so as to enhance their performance.

Contributions

The original contributions of this thesis include:

5.3

The development of five novel Unet variations for cloud image segmentation.

Detailed evaluation for the use of pretrained models as backbones to encoder-decoder

architectures designed for cloud image segmentation.

A thorough investigation on the utilization of skip connections for cloud segmentation.

Future research

Utilization of the albumentation package [56] for the augmentation of the images and

evaluation of the networks on the new larger and more diverse dataset.

Development of a new, consistent and larger dataset containing all weather conditions for

cloud segmentation.

Evaluation of the Unet variations on more datasets including both ground-based and satellite

based ones.

Further experimentation both on the architectures of the Unet variations and on the tweaking

of the networks’ hyperparameters.
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7 Appendix

7.1 Experimental results

7.1.1 Dataset results

dataset ratio Net set fl-score IoU precision recall specifisity accuracy
60/20/20 Unet training  0.9192 0.8592 0.9200 0.9340 0.8895 0.9285
60/20/20 Unet validation 0.9114 0.8474 0.9123 0.9297 0.8517 0.9240
60/20/20 Unet test 0.9150 0.8546 0.9187 0.9305 0.8564 0.9227

60/20/20 A_Unet training 09173 0.8566 0.9291 0.9215 0.9092 0.9304
60/20/20 A _Unet validation 0.9110 0.8485 0.9203 0.9233 0.8775 0.9248
60/20/20 A_Unet test 0.9161 0.8557 0.9253 0.9247 0.8831 0.9253
60/20/20 D_Unet  training 0.9204 0.8613 0.9325 0.9236 0.9119 0.9315
60/20/20 D_Unet validation 0.9133 0.8504 0.9262 0.9190 0.8886 0.9259
60/20/20 D_Unet test 0.9158 0.8564 0.9319 0.9184 0.8945 0.9264
60/20/20 W_Unet training 0.9112 0.8475 0.9257 0.9171  0.8909 0.9238
60/20/20 W_Unet validation 0.9095 0.8453 0.9194 0.9214 0.8527 0.9222
60/20/20 W_Unet test 0.9087 0.8467 0.9230 0.9180 0.8590 0.9219
60/20/20 R_Unet  training 0.9089 0.8447 0.9260 0.9139 0.8970 0.9225
60/20/20 R _Unet validation 0.9053 0.8397 0.9184 0.9167 0.8603 0.9207
60/20/20 R_Unet test 0.9096 0.8470 0.9269 0.9145 0.8670 0.9202

65/15/20 Unet training  0.9089 0.8449 0.9180 0.9223  0.8815 0.9233
65/15/20 Unet validation 0.8982 0.8333 0.9253 0.9042 0.8690 0.9080
65/15/20 Unet test 0.9179 0.8608 0.9274 0.9305 0.8524 0.9266

65/15/20 A_Unet  training 09167 0.8557 0.9085 0.9413 0.8761 0.9296
65/15/20 A_Unet validation 0.9114 0.8505 0.9184 0.9266 0.8672 0.9165
65/15/20 A_Unet test 0.9294 0.8757 0.9234 0.9482 0.8684 0.9354
65/15/20 D_Unet training 0.9208 0.8617 0.9267 0.9299  0.9001 0.9323
65/15/20 D_Unet validation 0.9086 0.8469 0.9323 0.9102 0.8881 0.9142
65/15/20 D_Unet test 0.9261 0.8718 0.9358 0.9322 0.8781 0.9317
65/15/20 W_Unet training 0.9032 0.8358 0.9111 0.9193 0.8644 0.9179
65/15/20 W_Unet validation 0.8953 0.8282 0.9200 0.9039 0.8544 0.9065
65/15/20 W_Unet test 0.9160 0.8566 0.9220 0.9315 0.8358 0.9235
65/15/20 R_Unet  training 0.9148 0.8532 0.9310 0.9173 0.9066 0.9287
65/15/20 R Unet validation 0.8994 0.8358 0.9356 0.8954  0.8996 0.9103
65/15/20 R_Unet test 0.9189 0.8618 0.9365 0.9219 0.8808 0.9273

70/10/20 Unet training  0.9075 0.8427 0.9172 0.9209 0.8893 0.9228
70/10/20 Unet validation 0.9108 0.8482 0.9126 0.9308 0.8966 0.9241
70/10/20 Unet test 0.8957 0.8250 0.8986 0.9210 0.8593 0.9105

70/10/20 A_Unet training 0.9079 0.8445 0.9177 0.9220 0.9040 0.9259
70/10/20 A _Unet validation 0.9121 0.8499 0.9211 0.9249  0.9205 0.9269
70/10/20 A_Unet test 0.9023 0.8366 0.9126 0.9186 0.8855 0.9175
70/10/20 D_Unet  training 0.9184 0.8586 0.9315 0.9225 0.9041 0.9306
70/10/20 D_Unet validation 0.9243 0.8661 0.9288 0.9327  0.9100 0.9307
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0.9025
0.9158
0.9108
0.8998
0.9264
0.9201
0.9028
0.9225
0.9262
0.9112
0.9364
0.9123
0.8936
0.9250
0.9180
0.8995
0.9256

0.8759
0.8992
0.9048
0.8725
0.9027
0.9063
0.8726
0.9137
0.8875
0.8962
0.9132
0.8881
0.9061
0.8953
0.8630
0.8586
0.8859
0.8529
0.8510
0.9105
0.8753
0.8771
0.9081
0.8805
0.8751
0.9104
0.8940
0.8898
0.8981
0.8691
0.8552
0.8733
0.8482
0.8353
0.9099
0.8801
0.8713

0.9170
0.9245
0.9257
0.9128
0.9251
0.9252
0.9123
0.9302
0.9200
0.9232
0.9325
0.9217
0.9254
0.9280
0.9209
0.9191
0.9247
0.9172
0.9162
0.9273
0.9192
0.9197
0.9240
0.9089
0.9272
0.9299
0.9188
0.9269
0.9269
0.9117
0.9252
0.9168
0.9040
0.9192
0.9289
0.9133
0.9257



7.1.2

Optimizer
Adadelta
Adadelta
Adadelta
Adagrad
Adagrad
Adagrad

Adam
Adam
Adam
Adamax
Adamax
Adamax
Ftrl
Ftrl
Ftrl
Nadam
Nadam
Nadam

RMSprop
RMSprop
RMSprop

SGD
SGD
SGD
AdamW
AdamW
AdamW
ConditionalGradient
ConditionalGradient
ConditionalGradient
LAMB
LAMB
LAMB

LazyAdam

LazyAdam

LazyAdam

ProximalAdagrad
Proximal Adagrad
ProximalAdagrad
RectifiedAdam
RectifiedAdam
RectifiedAdam
SGDW
SGDW
SGDW
Yogi
Yogi
Yogi

Optimizer results

set
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test

f1-score

0.4891
0.4983
0.4991
0.7696
0.7715
0.7813
0.9178
0.9111
0.9142
0.9154
0.9031
0.9110
0.5020
0.5092
0.5117
0.9146
0.9061
0.9157
0.9209
0.9101
0.9215
0.6244
0.6388
0.6373
0.9110
0.9075
0.9113
0.4954
0.5024
0.5049
0.9178
0.9076
0.9177
0.9203
0.9120
0.9156
0.6645
0.6685
0.6760
0.9108
0.9045
0.9086
0.5946
0.6049
0.6079
0.9200
0.9092
0.9122

IoU precision

0.3340
0.3425
0.3422
0.6507
0.6545
0.6630
0.8573
0.8483
0.8531
0.8534
0.8365
0.8478
0.3455
0.3516
0.3529
0.8540
0.8429
0.8550
0.8631
0.8488
0.8632
0.4795
0.4969
0.4915
0.8466
0.8426
0.8483
0.3391
0.3450
0.3463
0.8574
0.8459
0.8572
0.8608
0.8494
0.8549
0.5206
0.5261
0.5314
0.8454
0.8381
0.8445
0.4415
0.4528
0.4538
0.8593
0.8437
0.8491
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0.5504
0.5646
0.5646
0.7487
0.7469
0.7551
0.9187
0.9115
0.9162
0.9181
0.9078
0.9147
0.5484
0.5621
0.5618
0.9250
0.9175
0.9222
0.9336
0.9244
0.9268
0.5835
0.5955
0.5964
0.9370
0.9304
0.9333
0.5484
0.5621
0.5618
0.9261
0.9159
0.9233
0.9287
0.9224
0.9212
0.6820
0.6861
0.6896
0.9277
0.9200
0.9262
0.5917
0.6038
0.6050
0.9215
0.9116
0.9154

recall specifisity accuracy

0.4861
0.4893
0.4858
0.8270
0.8324
0.8363
0.9329
0.9324
0.9314
0.9276
0.9214
0.9253
0.5153
0.5153
0.5153
0.9221
0.9205
0.9264
0.9237
0.9201
0.9308
0.7280
0.7396
0.7298
0.9034
0.9071
0.9078
0.5025
0.5025
0.5025
0.9266
0.9262
0.9282
0.9264
0.9223
0.9281
0.6784
0.6869
0.6893
0.9100
0.9113
0.9103
0.6506
0.6553
0.6536
0.9310
0.9264
0.9273

0.5189
0.5174
0.5207
0.6710
0.6335
0.6380
0.8942
0.8589
0.8816
0.8877
0.8554
0.8620
0.4847
0.4847
0.4847
0.9086
0.8785
0.8866
0.9120
0.8792
0.8877
0.3871
0.3707
0.3797
0.9152
0.8846
0.8896
0.4975
0.4975
0.4975
0.9077
0.8770
0.8917
0.9080
0.8832
0.8714
0.5602
0.5315
0.5347
0.9040
0.8735
0.8799
0.4770
0.4687
0.4692
0.9018
0.8745
0.8737

0.5126
0.5129
0.5133
0.8622
0.8606
0.8617
0.9306
0.9257
0.9249
0.9308
0.9201
0.9224
0.5484
0.5430
0.5388
0.9299
0.9234
0.9254
0.9333
0.9243
0.9285
0.6508
0.6484
0.6472
0.9262
0.9236
0.9226
0.5484
0.5430
0.5388
0.9297
0.9227
0.9255
0.9321
0.9248
0.9238
0.7850
0.7755
0.7798
0.9265
0.9228
0.9216
0.7109
0.7123
0.7128
0.9343
0.9243
0.9229



7.1.3

Loss function results

loss set f1-score IoU precision recall specificity accuracy
Binary Cross
Entropy training 0.8812 0.7996 0.8825 0.8955 0.8736  0.9336
Binary Cross
Entropy validation 0.8785 0.7968 0.8821 0.8954 0.8532  0.9250
Binary Cross
Entropy test 0.8787 0.7967 0.8813 0.8942 0.8518  0.9225
Dise training 0.9145 0.8528 0.9331 0.9146 0.9130  0.9264
Dise validation 0.9080 0.8454 0.9262 0.9152 0.8876  0.9224
Dise test 0.9143 0.8537 0.9327 0.9155 0.8952  0.9241
Jaccard training 0.9147 0.8525 0.9357 0.9113 0.9062  0.9254
Jaccard validation 0.9096 0.8464 0.9288 0.9136 0.8787 0.9227
Jaccard test 0.9139 0.8525 0.9320 0.9144 0.8808  0.9232
power Jaccard
(p=1.1) training 0.9175 0.8578 0.9355 0.9158 0.9178  0.9287
power Jaccard
(p=1.1) validation 0.9096 0.8480 0.9274 0.9140 0.8908  0.9229
power Jaccard
(p=1.1) test 0.9160 0.8558 0.9307 0.9182 0.8937  0.9237
Fbeta score
(b=1.2) training  0.9222 0.8652 0.9201 0.9410 0.8900  0.9319
Fbeta score
(b=1.2) validation 0.9094 0.8477 0.9125 0.9314 0.8608  0.9219
Fbeta score
(b=1.2) test 0.9174 0.8582 0.9097 0.9444 0.8604  0.9242
Tversky training 0.6756 0.5484 0.5484 1.0000 0.0000 0.5484
Tversky validation 0.6874 0.5621 0.5621 1.0000 0.0000  0.5430
Tversky test 0.6900 0.5618 0.5618 1.0000 0.0000  0.5388
logcoshDise training  0.9213 0.8624 0.9414 0.9162 0.9229  0.9300
logcoshDise validation 0.9149 0.8541 0.9346 0.9153 0.8987  0.9257
logcoshDise test 0.9164 0.8556 0.9347 0.9158 0.9123  0.9246
Cross Entropy Dise training 0.8961 0.8212 0.8909 0.9163 0.8694 0.9327
Cross Entropy Dise validation 0.8911 0.8145 0.8860 0.9160 0.8430 0.9234
Cross Entropy Dise test 0.8916 0.8150 0.8874 0.9129 0.8470 0.9244
Cross Entropy logcoshJaccard training 0.8801 0.7975 0.8858 0.8907 0.8795  0.9298
Cross Entropy logcoshJaccard validation 0.8761 0.7933 0.8815 0.8926 0.8563  0.9236
Cross Entropy logcoshJaccard test 0.8794 0.7972 0.8850 0.8913 0.8551  0.9224
Fbeta score (b=0.9)
power Jaccard (p=1.1) training 0.9196 0.8614 0.9287 0.9247 0.9124 0.9301
Fbeta score (b=0.9)
power Jaccard (p=1.1) validation 0.9107 0.8483 0.9224 0.9189 0.8850  0.9227
Fbeta score (b=0.9)
power Jaccard (p=1.1) test 0.9150 0.8545 0.9218 0.9253 0.8981  0.9239
logcoshJaccard training  0.9204 0.8613 0.9219 0.9334 0.8995  0.9289
logcoshJaccard validation 0.9130 0.8502 0.9120 0.9327 0.8720  0.9236
logcoshJaccard test 0.9138 0.8520 0.9137 0.9326 0.8706  0.9216
Fbeta score (b=1.4) Tversky  training 0.8847 0.8122 0.8369 0.9727 0.7555  0.8919
Fbeta score (b=1.4) Tversky validation 0.8795 0.8044 0.8299 0.9718 0.7116 0.8854
Fbeta score (b=1.4) Tversky test 0.8817 0.8053 0.8276 0.9742 0.7077  0.8828
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7.1.4 Results of Imagenets with preprocessed inputs having pretrained & not
trainable encoder

Network Set Flscore IoU precision recall specificity accuracy
VGG16 training  0.6757 0.5445 0.5536 0.9814  0.0445 0.5642
VGG16 validation 0.6870 0.5573 0.5671 0.9808 0.0431 0.5600
VGG16 test 0.6880 0.5555 0.5656 0.9781  0.0398 0.5528

VGG16_linked training  0.6754 0.5482 0.5482 1.0000 0.0000 0.5482
VGG16_linked validation 0.6873 0.5620 0.5620 1.0000  0.0000 0.5429
VGG16_linked test 0.6898 0.5617 0.5617 1.0000  0.0000 0.5386
VGG19 training  0.6748 0.5473 0.5481 0.9978 0.0017 0.5478
VGG19 validation 0.6866 0.5610 0.5618 0.9981 0.0011 0.5421
VGG19 test 0.6892 0.5608 0.5616 0.9977 0.0019 0.5384
VGG19_linked training  0.6754 0.5482 0.5482 1.0000  0.0000 0.5482
VGG19_linked validation 0.6873 0.5619 0.5619 1.0000 0.0000 0.5429
VGG19_linked test 0.6898 0.5617 0.5617 1.0000  0.0000 0.5386

ResNet50 training  0.6754 0.5482 0.5482 1.0000 0.0000 0.5482

ResNet50 validation 0.6873 0.5620 0.5620 1.0000  0.0000 0.5429

ResNet50 test 0.6898 0.5617 0.5617 1.0000 0.0000 0.5386

ResNet50_linked training  0.6754 0.5482 0.5482 1.0000 0.0000 0.5482
ResNet50_linked validation 0.6873 0.5620 0.5620 1.0000  0.0000 0.5429
ResNet50_linked test 0.6898 0.5617 0.5617 1.0000  0.0000 0.5386
ResNet101 training  0.6754 0.5482 0.5482 1.0000 0.0000 0.5482
ResNet101 validation 0.6873 0.5620 0.5620 1.0000  0.0000 0.5429
ResNet101 test 0.6898 0.5617 0.5617 1.0000 0.0000 0.5386
ResNet101_linked training  0.6754 0.5482 0.5482 1.0000 0.0000 0.5482
ResNet101_linked validation 0.6873 0.5620 0.5620 1.0000  0.0000 0.5429
ResNet101_linked test 0.6898 0.5617 0.5617 1.0000  0.0000 0.5386
ResNet152 training  0.6754 0.5482 0.5482 1.0000 0.0000 0.5482
ResNet152 validation 0.6873 0.5620 0.5620 1.0000  0.0000 0.5429
ResNet152 test 0.6898 0.5617 0.5617 1.0000 0.0000 0.5386
ResNet152 linked training  0.6754 0.5482 0.5482 1.0000 0.0000 0.5482
ResNet152_linked validation 0.6873 0.5620 0.5620 1.0000  0.0000 0.5429
ResNet152_linked test 0.6898 0.5617 0.5617 1.0000  0.0000 0.5386
ResNet50V2 training  0.7121 0.5828 0.6096 0.9352  0.2920 0.6661
ResNet50V2 validation 0.7174 0.5899 0.6175 0.9311 0.2724 0.6582
ResNet50V2 test 0.7206 0.5907 0.6142 0.9318 0.2559 0.6542

ResNet50V2_linked training  0.6754 0.5482 0.5482 1.0000 0.0001 0.5482
ResNet50V2_linked validation 0.6873 0.5620 0.5620 1.0000  0.0001 0.5429

ResNet50V2_linked test 0.6898 0.5617 0.5617 1.0000 0.0001 0.5387
ResNet101V2 training  0.7045 0.5736 0.6152 0.8998 0.3321 0.6673
ResNet101V?2 validation 0.7112 0.5827 0.6222 0.8973  0.3094 0.6621
ResNet101V2 test 0.7050 0.5731 0.6197 0.8793 0.3158 0.6505

ResNet101V2_linked training  0.6754 0.5482 0.5482 1.0000 0.0000 0.5482
ResNet101V2_linked validation 0.6873 0.5620 0.5620 1.0000  0.0000 0.5429

ResNet101V2_linked test 0.6898 0.5617 0.5617 1.0000  0.0000 0.5386
ResNet152V2 training  0.6832 0.5508 0.5820 0.9171 0.2164 0.6141
ResNet152V?2 validation 0.6885 0.5565 0.5914 0.9084 0.2025 0.6062
ResNet152V?2 test 0.6958 0.5621 0.5926 0.9204 0.2003 0.6034

ResNet152V2_linked training  0.6754 0.5482 0.5482 1.0000 0.0000 0.5482
ResNet152V2_linked validation 0.6873 0.5620 0.5620 1.0000  0.0000 0.5429
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ResNet152V?2_linked

InceptionV3
InceptionV3
InceptionV3

InceptionV3_linked
InceptionV3_linked
InceptionV3_linked
InceptionResNetV?2
InceptionResNetV2
InceptionResNetV?2
InceptionResNetV2_linked
InceptionResNetV2_linked
InceptionResNetV2_linked

Xception
Xception
Xception
Xception_linked
Xception_linked
Xception_linked
MobileNet
MobileNet
MobileNet
MobileNet linked
MobileNet_linked
MobileNet linked
MobileNetV?2
MobileNetV?2
MobileNetV2

MobileNetV2_linked
MobileNetV2_linked
MobileNetV2_linked

DenseNet121
DenseNet121
DenseNet121

DenseNet121 linked
DenseNet121_linked
DenseNet121 linked

DenseNet169
DenseNet169
DenseNet169

DenseNet169 linked
DenseNet169_linked
DenseNet169 linked

DenseNet201
DenseNet201
DenseNet201

DenseNet201 linked
DenseNet201_linked
DenseNet201 linked

NASNetMobile

test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training

0.6898
0.6754
0.6873
0.6898
0.5526
0.5836
0.5674
0.6754
0.6873
0.6898
0.7212
0.7271
0.7279
0.6754
0.6873
0.6898
0.6481
0.6765
0.6639
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6971
0.7074
0.7123
0.6753
0.6872
0.6897
0.6925
0.7034
0.7066
0.6755
0.6875
0.6897
0.7768
0.7864
0.7929
0.6754
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0.5617
0.5482
0.5620
0.5617
0.4424
0.4778
0.4602
0.5482
0.5620
0.5617
0.6022
0.6096
0.6062
0.5482
0.5620
0.5617
0.5360
0.5719
0.5536
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5720
0.5836
0.5868
0.5481
0.5618
0.5616
0.5664
0.5792
0.5795
0.5473
0.5612
0.5605
0.6766
0.6931
0.6949
0.5482

0.5617
0.5482
0.5620
0.5617
0.9850
0.9826
0.9860
0.5482
0.5620
0.5617
0.6053
0.6142
0.6085
0.5482
0.5620
0.5617
0.9473
0.9381
0.9494
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5809
0.5915
0.5942
0.5482
0.5620
0.5617
0.5684
0.5813
0.5810
0.5497
0.5635
0.5630
0.9252
0.9183
0.9246
0.5482

1.0000
1.0000
1.0000
1.0000
0.4516
0.4873
0.4690
1.0000
1.0000
1.0000
0.9955
0.9938
0.9941
1.0000
1.0000
1.0000
0.5729
0.6127
0.5896
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.9678
0.9704
0.9707
0.9995
0.9995
0.9995
0.9934
0.9931
0.9938
0.9950
0.9952
0.9951
0.7305
0.7527
0.7502
1.0000

0.0000
0.0000
0.0000
0.0000
0.9722
0.9694
0.9597
0.0000
0.0000
0.0000
0.1818
0.1589
0.1538
0.0000
0.0000
0.0000
0.9038
0.8835
0.8734
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.1742
0.1591
0.1675
0.0007
0.0007
0.0007
0.0968
0.0909
0.0906
0.0125
0.0125
0.0111
0.8646
0.8125
0.8213
0.0000

0.5386
0.5482
0.5429
0.5386
0.7029
0.7102
0.7045
0.5482
0.5429
0.5386
0.6390
0.6297
0.6255
0.5482
0.5429
0.5386
0.7597
0.7719
0.7594
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.6186
0.6149
0.6134
0.5482
0.5429
0.5386
0.5987
0.5937
0.5915
0.5519
0.5474
0.5430
0.8394
0.8478
0.8413
0.5482



NASNetMobile
NASNetMobile
NASNetMobile linked
NASNetMobile linked
NASNetMobile linked
EfficientNetBO
EfficientNetBO
EfficientNetBO
EfficientNetBO_linked
EfficientNetBO_linked
EfficientNetBO_linked
EfficientNetB1
EfficientNetB1
EfficientNetB1
EfficientNetB1 linked
EfficientNetB1_linked
EfficientNetB1 linked
EfficientNetB2
EfficientNetB2
EfficientNetB2
EfficientNetB2 linked
EfficientNetB2_linked
EfficientNetB2 linked
EfficientNetB3
EfficientNetB3
EfficientNetB3
EfficientNetB3_linked
EfficientNetB3_linked
EfficientNetB3_linked
EfficientNetB4
EfficientNetB4
EfficientNetB4
EfficientNetB4 linked
EfficientNetB4 _linked
EfficientNetB4 linked
EfficientNetB5
EfficientNetB5
EfficientNetB5
EfficientNetB5_linked
EfficientNetB5_linked
EfficientNetB5_linked
EfficientNetB6
EfficientNetB6
EfficientNetB6
EfficientNetB6_linked
EfficientNetB6_linked
EfficientNetB6_linked
EfficientNetB7
EfficientNetB7
EfficientNetB7

validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test

0.6873
0.6898
0.4518
0.4837
0.4611
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
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0.5620
0.5617
0.3503
0.3816
0.3620
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5619
0.5616
0.5482
0.5620
0.5617
0.5481
0.5619
0.5616
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617

0.5620
0.5617
0.9674
0.9654
0.9736
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5619
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617

1.0000
1.0000
0.3522
0.3839
0.3645
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.9999
0.9998
0.9999
1.0000
1.0000
1.0000
0.9998
0.9999
0.9998
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

0.0000
0.0000
0.9904
0.9904
0.9795
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0002
0.0002
0.0002
0.0000
0.0000
0.0000
0.0001
0.0001
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.5429
0.5386
0.6569
0.6657
0.6572
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5481
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386



EfficientNetB7_linked training  0.6754 0.5482 0.5482 1.0000 0.0000 0.5482
EfficientNetB7_linked  validation 0.6873 0.5620 0.5620 1.0000  0.0000 0.5429
EfficientNetB7_linked test 0.6898 0.5617 0.5617 1.0000 0.0000 0.5386

93



7.1.5 Results of Imagenets without preprocessed inputs having pretrained &
trainable encoder

Network Set Flscore IoU precision recall specificity accuracy
VGG16 training  0.9302 0.8755 0.9311 0.9401 0.8734 0.9333
VGG16 validation 0.8990 0.8267 0.9009 0.9154 0.7977 0.9080
VGG16 test 0.8998 0.8287 0.9016 0.9164 0.8056 0.9091

VGG16_linked training  0.9266 0.8699 0.9310 0.9346 0.8864 0.9308
VGG16_linked validation 0.9103 0.8449 0.9169 0.9210 0.8402 0.9187
VGG16_linked test 0.9105 0.8469 0.9184 0.9217 0.8425 0.9190
VGG19 training  0.9454 0.8993 0.9422 0.9535 0.8988 0.9465
VGG19 validation 0.9018 0.8306 0.9001 0.9189 0.8190 0.9125
VGG19 test 0.9046 0.8355 0.9052 0.9195 0.8223 0.9132
VGG19_linked training  0.9285 0.8728 0.9367 0.9318 0.9002 0.9332
VGG19_linked validation 0.9134 0.8500 0.9253 0.9183 0.8568 0.9226
VGG19_linked test 0.9128 0.8506 0.9249 0.9196 0.8572 0.9218

ResNet50 training  0.9680 0.9386 0.9664 0.9702 0.9342 0.9684

ResNet50 validation 0.9074 0.8403 0.9180 0.9141 0.8546 0.9171

ResNet50 test 0.9088 0.8428 0.9219 0.9121 0.8658 0.9187

ResNet50_linked training  0.9671 0.9371 0.9659 0.9693 0.9349 0.9687
ResNet50_linked validation 0.9165 0.8554 0.9250 0.9247 0.8727 0.9250
ResNet50_linked test 0.9190 0.8601 0.9313 0.9228 0.8807 0.9266
ResNet101 training  0.9675 0.9378 0.9657 0.9700 0.9339 0.9689
ResNet101 validation 0.9072 0.8397 0.9178 0.9136 0.8488 0.9178
ResNet101 test 0.9082 0.8423 0.9200 0.9127 0.8575 0.9182
ResNet101_linked training  0.9603 0.9251 0.9481 0.9747 0.9076 0.9618
ResNet101_linked validation 0.9156 0.8530 0.9108 0.9367 0.8367 0.9215
ResNet101_linked test 0.9159 0.8546 0.9158 0.9325 0.8503 0.9239
ResNet152 training  0.9336 0.8797 0.9282 0.9450 0.8646 0.9379
ResNet152 validation 0.9019 0.8318 0.9035 0.9162 0.8005 0.9092
ResNet152 test 0.9000 0.8294 0.8979 0.9213 0.7942 0.9073
ResNet152_linked training  0.9570 0.9191 0.9513 0.9649 0.9123 0.9592
ResNet152_linked validation 0.9140 0.8508 0.9200 0.9243 0.8680 0.9220
ResNet152_linked test 09172 0.8562 0.9286 0.9206 0.8794 0.9234
ResNet50V2 training  0.9651 0.9334 0.9573 0.9739 0.9204 0.9661
ResNet50V2 validation 0.9062 0.8378 0.9102 0.9182 0.8415 0.9165
ResNet50V2 test 0.9072 0.8396 0.9127 0.9172 0.8460 0.9155

ResNet50V2_linked training  0.9559 0.9177 0.9615 0.9531 0.9284 0.9608
ResNet50V2_linked validation 0.9160 0.8548 0.9311 0.9177 0.8740 0.9254

ResNet50V2_linked test 0.9154 0.8543 0.9350 0.9131 0.8834 0.9244
ResNet101V2 training  0.9682 0.9390 0.9646 0.9724 0.9341 0.9695
ResNet101V?2 validation 0.9079 0.8403 0.9140 0.9166 0.8488 0.9180
ResNet101V?2 test 0.9083 0.8422 09160 0.9161 0.8488 0.9172

ResNet101V2_linked training  0.9732 0.9483 0.9715 0.9754 0.9416 0.9742
ResNet101V2_linked validation 0.9170 0.8560 0.9299 0.9201 0.8681 0.9278

ResNet101V2_linked test 0.9171 0.8571 0.9364 0.9147 0.8804 0.9265
ResNet152V2 training  0.9684 0.9395 0.9643 0.9731 0.9351 0.9698
ResNet152V?2 validation 0.9094 0.8421 0.9111 0.9218 0.8451 0.9178
ResNet152V?2 test 0.9086 0.8424 09154 0.9177 0.8515 0.9164

ResNet152V2_linked training  0.9733 0.9485 0.9720 0.9750 0.9463 0.9746
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ResNet152V?2_linked
ResNet152V?2_linked
InceptionV3
InceptionV3
InceptionV3
InceptionV3_linked
InceptionV3_linked
InceptionV3_linked
InceptionResNetV2
InceptionResNetV?2
InceptionResNetV2

InceptionResNetV2_linked
InceptionResNetV2_linked
InceptionResNetV2_linked

Xception
Xception
Xception
Xception_linked
Xception_linked
Xception_linked
MobileNet
MobileNet
MobileNet
MobileNet_linked
MobileNet linked
MobileNet_linked
MobileNetV?2
MobileNetV?2
MobileNetV?2
MobileNetV2_linked
MobileNetV2_linked
MobileNetV2_linked
DenseNet121
DenseNet121
DenseNet121
DenseNet121_linked
DenseNet121 linked
DenseNet121_linked
DenseNet169
DenseNet169
DenseNet169
DenseNet169_linked
DenseNet169 linked
DenseNet169_linked
DenseNet201
DenseNet201
DenseNet201
DenseNet201_linked
DenseNet201 linked
DenseNet201_linked

validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test

0.9177
0.9194
0.9364
0.8898
0.8934
0.9630
0.9208
0.9197
0.9517
0.8990
0.8961
0.9548
0.9112
0.9154
0.9562
0.9065
0.9086
0.9724
0.9202
0.9246
0.9496
0.8997
0.9030
0.9653
0.9134
0.9140
0.9221
0.8886
0.8859
0.9530
0.9161
0.9183
0.9557
0.9082
0.9090
0.9671
0.9197
0.9215
0.9611
0.9074
0.9119
0.9454
0.9187
0.9213
0.9610
0.9062
0.9094
0.9474
0.9146
0.9163
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0.8571
0.8606
0.8833
0.8121
0.8174
0.9299
0.8622
0.8619
0.9096
0.8261
0.8236
0.9168
0.8486
0.8548
0.9174
0.8376
0.8422
0.9469
0.8612
0.8689
0.9058
0.8271
0.8329
0.9339
0.8499
0.8524
0.8600
0.8109
0.8079
0.9126
0.8550
0.8587
0.9164
0.8406
0.8424
0.9371
0.8609
0.8632
0.9260
0.8396
0.8470
0.8999
0.8584
0.8631
0.9259
0.8386
0.8437
0.9028
0.8522
0.8556

0.9289
0.9366
0.9277
0.8798
0.8908
0.9567
0.9297
0.9332
0.9488
0.9011
0.9028
0.9538
0.9250
0.9320
0.9372
0.8957
0.8986
0.9713
0.9276
0.9364
0.9432
0.8999
0.9022
0.9653
0.9266
0.9284
0.9563
0.9306
0.9354
0.9556
0.9251
0.9322
0.9586
0.9216
0.9233
0.9696
0.9362
0.9385
0.9520
0.9039
0.9121
0.9501
0.9293
0.9357
0.9607
0.9193
0.9254
0.9467
0.9219
0.9262

0.9223
0.9171
0.9484
0.9177
0.9132
0.9710
0.9285
0.9234
0.9561
0.9143
0.9061
0.9577
0.9142
0.9147
0.9771
0.9331
0.9350
0.9741
0.9292
0.9280
0.9582
0.9150
0.9200
0.9664
0.9160
0.9167
0.8964
0.8660
0.8587
0.9541
0.9249
0.9212
0.9540
0.9098
0.9098
0.9653
0.9198
0.9189
0.9712
0.9270
0.9262
0.9461
0.9231
0.9210
0.9621
0.9103
0.9092
0.9523
0.9249
0.9231

0.8775
0.8916
0.8708
0.7835
0.8058
0.9132
0.8637
0.8772
0.9051
0.8235
0.8379
0.9191
0.8707
0.8897
0.8932
0.8178
0.8280
0.9454
0.8682
0.8855
0.9016
0.8230
0.8249
0.9360
0.8720
0.8780
0.9293
0.8778
0.8874
0.9079
0.8585
0.8708
0.9240
0.8559
0.8644
0.9467
0.8926
0.9054
0.9141
0.8323
0.8526
0.9288
0.8888
0.9030
0.9298
0.8702
0.8750
0.9041
0.8477
0.8547

0.9274
0.9284
0.9416
0.9025
0.9017
0.9648
0.9290
0.9277
0.9551
0.9095
0.9067
0.9564
0.9169
0.9219
0.9584
0.9141
0.9162
0.9740
0.9277
0.9324
0.9525
0.9095
0.9117
0.9673
0.9225
0.9223
0.9287
0.9034
0.8999
0.9556
0.9249
0.9262
0.9577
0.9188
0.9175
0.9688
0.9284
0.9290
0.9624
0.9156
0.9191
0.9508
0.9272
0.9302
0.9625
0.9176
0.9184
0.9508
0.9245
0.9250



NASNetMobile
NASNetMobile
NASNetMobile
NASNetMobile linked
NASNetMobile linked
NASNetMobile linked
EfficientNetBO
EfficientNetBO
EfficientNetBO
EfficientNetBO_linked
EfficientNetBO_linked
EfficientNetBO_linked
EfficientNetB1
EfficientNetB1
EfficientNetB1
EfficientNetB1_linked
EfficientNetB1 linked
EfficientNetB1_linked
EfficientNetB2
EfficientNetB2
EfficientNetB2
EfficientNetB2_linked
EfficientNetB2 linked
EfficientNetB2_linked
EfficientNetB3
EfficientNetB3
EfficientNetB3
EfficientNetB3_linked
EfficientNetB3_linked
EfficientNetB3_linked
EfficientNetB4
EfficientNetB4
EfficientNetB4
EfficientNetB4 _linked
EfficientNetB4 linked
EfficientNetB4 _linked
EfficientNetB5
EfficientNetB5
EfficientNetB5

training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test

0.8861
0.8655
0.8721
0.9418
0.9166
0.9111
0.8460
0.8083
0.8237
0.8598
0.8659
0.8723
0.6754
0.6874
0.6898
0.7915
0.8000
0.8039
0.9160
0.8858
0.8780
0.8755
0.8611
0.8636
0.7485
0.7488
0.7510
0.9159
0.8965
0.8911
0.7629
0.7325
0.7493
0.8450
0.8297
0.8438
0.9435
0.9022
0.9038
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0.8068
0.7775
0.7875
0.8929
0.8550
0.8468
0.7645
0.7146
0.7343
0.7803
0.7876
0.7940
0.5482
0.5620
0.5617
0.6766
0.6882
0.6914
0.8528
0.8090
0.7990
0.7984
0.7814
0.7817
0.6241
0.6251
0.6270
0.8561
0.8248
0.8227
0.6690
0.6302
0.6450
0.7560
0.7365
0.7561
0.8962
0.8327
0.8351

0.8794
0.8717
0.8735
0.9669
0.9533
0.9454
0.9035
0.8885
0.8801
0.8661
0.8689
0.8763
0.5482
0.5621
0.5617
0.8520
0.8532
0.8557
0.8910
0.8701
0.8566
0.8605
0.8666
0.8466
0.6370
0.6396
0.6414
0.9142
0.8951
0.8905
0.9405
0.9189
0.9305
0.9594
0.9481
0.9569
0.9345
0.8943
0.8955

0.9112
0.8841
0.8933
0.9222
0.8965
0.8940
0.8468
0.8110
0.8353
0.8999
0.9044
0.9012
1.0000
0.9997
1.0000
0.7856
0.7996
0.7961
0.9559
0.9296
0.9302
0.9318
0.9063
0.9267
0.9773
0.9702
0.9691
0.9370
0.9245
0.9253
0.7104
0.6854
0.6931
0.7833
0.7736
0.7847
0.9572
0.9315
0.9313

0.8710
0.8517
0.8491
0.9503
0.9189
0.9168
0.8250
0.7972
0.7711
0.8610
0.8368
0.8438
0.0000
0.0007
0.0000
0.7869
0.7527
0.7625
0.7921
0.7402
0.7239
0.7888
0.7690
0.7357
0.2158
0.1937
0.2030
0.8454
0.7969
0.7940
0.9020
0.8850
0.8792
0.9430
0.9204
0.9319
0.8862
0.8172
0.8125

0.8968
0.8773
0.8810
0.9453
0.9251
0.9189
0.8645
0.8385
0.8457
0.8823
0.8857
0.8864
0.5482
0.5433
0.5386
0.8169
0.8209
0.8225
0.9148
0.8893
0.8772
0.8762
0.8671
0.8584
0.6816
0.6730
0.6717
0.9205
0.9010
0.8994
0.8080
0.7862
0.8018
0.8704
0.8551
0.8665
0.9482
0.9107
0.9099



7.1.6 Results of Imagenets without preprocessed inputs having pretrained &
not trainable encoder

Network Set Flscore IoU precision recall specificity accuracy
VGG16 training  0.8379 0.7339 0.8157 0.8923 0.7203 0.8412
VGG16 validation 0.8250 0.7168 0.8057 0.8749 0.6731 0.8303
VGG16 test 0.8220 0.7108 0.7965 0.8803 0.6481 0.8212

VGG16_linked training  0.9009 0.8313 0.9093 0.9170 0.8169 0.9040
VGG16_linked validation 0.8851 0.8075 0.8931 0.9072  0.7509 0.8958
VGG16_linked test 0.8865 0.8089 0.8931 0.9088 0.7521 0.8947
VGG19 training  0.8234 0.7151 0.7969 0.8903 0.6936 0.8293
VGG19 validation 0.8156 0.7059 0.7889 0.8825 0.6386 0.8180
VGG19 test 0.8197 0.7093 0.7967 0.8778  0.6520 0.8183
VGG19_linked training  0.8957 0.8243 0.9155 0.9035 0.8268 0.9015
VGG19_linked validation 0.8836 0.8056 0.9003 0.8982 0.7613 0.8949
VGG19_linked test 0.8845 0.8071 0.9039 0.8959 0.7712 0.8946

ResNet50 training  0.6754 0.5482 0.5482 1.0000 0.0000 0.5482

ResNet50 validation 0.6873 0.5620 0.5620 1.0000  0.0000 0.5429

ResNet50 test 0.6898 0.5617 0.5617 1.0000 0.0000 0.5386

ResNet50_linked training  0.6754 0.5482 0.5482 1.0000 0.0000 0.5482
ResNet50_linked validation 0.6873 0.5620 0.5620 1.0000  0.0000 0.5429
ResNet50_linked test 0.6898 0.5617 0.5617 1.0000  0.0000 0.5386
ResNet101 training  0.6754 0.5482 0.5482 1.0000 0.0000 0.5482
ResNet101 validation 0.6873 0.5620 0.5620 1.0000  0.0000 0.5429
ResNet101 test 0.6898 0.5617 0.5617 1.0000 0.0000 0.5386
ResNet101_linked training  0.6754 0.5482 0.5482 1.0000 0.0000 0.5482
ResNet101_linked validation 0.6873 0.5620 0.5620 1.0000  0.0000 0.5429
ResNet101_linked test 0.6898 0.5617 0.5617 1.0000  0.0000 0.5386
ResNet152 training  0.6754 0.5482 0.5482 1.0000 0.0000 0.5482
ResNet152 validation 0.6873 0.5620 0.5620 1.0000  0.0000 0.5429
ResNet152 test 0.6898 0.5617 0.5617 1.0000 0.0000 0.5386
ResNet152 linked training  0.6754 0.5482 0.5482 1.0000 0.0000 0.5482
ResNet152_linked validation 0.6873 0.5620 0.5620 1.0000  0.0000 0.5429
ResNet152_linked test 0.6898 0.5617 0.5617 1.0000  0.0000 0.5386
ResNet50V2 training  0.8491 0.7481 0.8092 0.9184 0.6935 0.8492
ResNet50V2 validation 0.7854 0.6633 0.7503 0.8589 0.5823 0.7869
ResNet50V2 test 0.7953 0.6752 0.7573 0.8636 0.5768 0.7896

ResNet50V2_linked training  0.9229 0.8630 0.9176 0.9420 0.8220 0.9208
ResNet50V2_linked validation 0.8777 0.7940 0.8769 0.9069  0.7243 0.8881

ResNet50V2_linked test 0.8808 0.7994 0.8777 0.9099 0.7346 0.8884
ResNet101V2 training  0.8514 0.7526 0.8192 0.9130 0.7239 0.8569
ResNet101V?2 validation 0.7827 0.6592 0.7563 0.8423 0.6151 0.7881
ResNet101V2 test 0.7822 0.6599 0.7556 0.8374 0.6169 0.7855

ResNet101V2_linked training  0.9211 0.8602 0.9095 0.9478  0.7988 0.9162
ResNet101V2_linked validation 0.8750 0.7912 0.8706 0.9103  0.7085 0.8856

ResNet101V2_linked test 0.8771 0.7933 0.8679 0.9137 0.7087 0.8840
ResNet152V2 training  0.8372 0.7300 0.7939 0.9136 0.6758 0.8348
ResNet152V?2 validation 0.7534 0.6203 0.7233 0.8288 0.5532 0.7518
ResNet152V?2 test 0.7646 0.6333 0.7309 0.8338 0.5687 0.7555

ResNet152V2_linked training  0.9031 0.8321 0.8962 0.9319 0.7716 0.9021
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ResNet152V?2_linked
ResNet152V?2_linked
InceptionV3
InceptionV3
InceptionV3
InceptionV3_linked
InceptionV3_linked
InceptionV3_linked
InceptionResNetV2
InceptionResNetV?2
InceptionResNetV2

InceptionResNetV2_linked
InceptionResNetV2_linked
InceptionResNetV2_linked

Xception
Xception
Xception
Xception_linked
Xception_linked
Xception_linked
MobileNet
MobileNet
MobileNet
MobileNet_linked
MobileNet linked
MobileNet_linked
MobileNetV?2
MobileNetV?2
MobileNetV?2
MobileNetV2_linked
MobileNetV2_linked
MobileNetV2_linked
DenseNet121
DenseNet121
DenseNet121
DenseNet121_linked
DenseNet121 linked
DenseNet121_linked
DenseNet169
DenseNet169
DenseNet169
DenseNet169_linked
DenseNet169 linked
DenseNet169_linked
DenseNet201
DenseNet201
DenseNet201
DenseNet201_linked
DenseNet201 linked
DenseNet201_linked

validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test

0.8682
0.8724
0.8793
0.7773
0.7711
0.9661
0.8929
0.8915
0.8333
0.7779
0.7729
0.9270
0.8960
0.8937
0.7615
0.7307
0.7294
0.9496
0.8943
0.8980
0.8338
0.7857
0.7855
0.9203
0.8805
0.8836
0.8151
0.7584
0.7659
0.9023
0.8409
0.8481
0.8909
0.8367
0.8447
0.9202
0.8799
0.8874
0.8910
0.8409
0.8412
0.9361
0.8851
0.8837
0.8937
0.8295
0.8317
0.9434
0.8804
0.8831
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0.7816
0.7876
0.7959
0.6541
0.6498
0.9354
0.8170
0.8172
0.7279
0.6534
0.6489
0.8698
0.8223
0.8201
0.6413
0.6025
0.5990
0.9067
0.8200
0.8251
0.7287
0.6647
0.6620
0.8593
0.7995
0.8042
0.7035
0.6286
0.6357
0.8303
0.7387
0.7477
0.8102
0.7356
0.7436
0.8590
0.8002
0.8097
0.8101
0.7400
0.7389
0.8840
0.8057
0.8046
0.8150
0.7239
0.7270
0.8965
0.8001
0.8030

0.8668
0.8693
0.8372
0.7234
0.7188
0.9632
0.8986
0.9037
0.7870
0.7361
0.7297
0.9261
0.8981
0.8987
0.6733
0.6423
0.6448
0.9437
0.8981
0.9020
0.7843
0.7368
0.7407
0.9194
0.8828
0.8868
0.7596
0.7119
0.7146
0.8927
0.8362
0.8388
0.8734
0.8322
0.8351
0.9210
0.8917
0.8959
0.8703
0.8261
0.8313
0.9348
0.8898
0.8945
0.8746
0.8197
0.8236
0.9454
0.8901
0.8984

0.9047
0.9088
0.9470
0.8761
0.8681
0.9706
0.9075
0.9022
0.9197
0.8688
0.8571
0.9401
0.9165
0.9117
0.9471
0.9131
0.9043
0.9606
0.9107
0.9122
0.9217
0.8784
0.8674
0.9360
0.9050
0.9060
0.9206
0.8566
0.8586
0.9313
0.8779
0.8847
0.9245
0.8729
0.8777
0.9343
0.8990
0.9043
0.9276
0.8820
0.8764
0.9456
0.9042
0.8970
0.9286
0.8684
0.8662
0.9482
0.8984
0.8922

0.6945
0.7056
0.7107
0.5144
0.5198
0.9237
0.8081
0.8239
0.6569
0.5498
0.5516
0.8434
0.7650
0.7759
0.4214
0.3225
0.3359
0.8904
0.7989
0.8118
0.6494
0.5571
0.5693
0.8289
0.7434
0.7543
0.6181
0.5138
0.5041
0.8257
0.7275
0.7228
0.7710
0.6833
0.6929
0.8331
0.7548
0.7639
0.7665
0.6656
0.6776
0.8696
0.7726
0.7812
0.7706
0.6669
0.6764
0.8844
0.7762
0.7925

0.8787
0.8810
0.8819
0.7689
0.7614
0.9650
0.9048
0.9018
0.8329
0.7711
0.7660
0.9263
0.9051
0.9031
0.7414
0.6907
0.6779
0.9472
0.9044
0.9056
0.8347
0.7822
0.7778
0.9187
0.8916
0.8919
0.8128
0.7487
0.7492
0.9023
0.8472
0.8500
0.8907
0.8506
0.8503
0.9195
0.8929
0.8958
0.8934
0.8514
0.8484
0.9363
0.8963
0.8960
0.8953
0.8420
0.8401
0.9424
0.8934
0.8950



NASNetMobile
NASNetMobile
NASNetMobile
NASNetMobile linked
NASNetMobile linked
NASNetMobile linked
EfficientNetBO
EfficientNetBO
EfficientNetBO
EfficientNetBO_linked
EfficientNetBO_linked
EfficientNetBO_linked
EfficientNetB1
EfficientNetB1
EfficientNetB1
EfficientNetB1_linked
EfficientNetB1 linked
EfficientNetB1_linked
EfficientNetB2
EfficientNetB2
EfficientNetB2
EfficientNetB2_linked
EfficientNetB2 linked
EfficientNetB2_linked
EfficientNetB3
EfficientNetB3
EfficientNetB3
EfficientNetB3_linked
EfficientNetB3_linked
EfficientNetB3_linked
EfficientNetB4
EfficientNetB4
EfficientNetB4
EfficientNetB4 _linked
EfficientNetB4 linked
EfficientNetB4 _linked
EfficientNetB5
EfficientNetB5
EfficientNetB5
EfficientNetB5_linked
EfficientNetB5_linked
EfficientNetB5_linked
EfficientNetB6
EfficientNetB6
EfficientNetB6
EfficientNetB6_linked
EfficientNetB6_linked
EfficientNetB6_linked
EfficientNetB7
EfficientNetB7

training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation

0.7923
0.7359
0.7371
0.9196
0.8851
0.8870
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
0.6898
0.6754
0.6873
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0.6733
0.6016
0.6007
0.8586
0.8067
0.8094
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620

0.7253
0.6839
0.6825
0.9241
0.8922
0.8975
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620
0.5617
0.5482
0.5620

0.9180
0.8438
0.8432
0.9309
0.9052
0.9015
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

0.5659
0.4849
0.4753
0.8379
0.7561
0.7772
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.7865
0.7242
0.7173
0.9181
0.8948
0.8958
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429
0.5386
0.5482
0.5429



EfficientNetB7
EfficientNetB7_linked
EfficientNetB7_linked
EfficientNetB7_linked

test
training
validation
test

0.6898
0.6754
0.6873
0.6898

100

0.5617
0.5482
0.5620
0.5617

0.5617
0.5482
0.5620
0.5617

1.0000
1.0000
1.0000
1.0000

0.0000
0.0000
0.0000
0.0000

0.5386
0.5482
0.5429
0.5386



7.1.7 Results of Imagenets without preprocessed inputs having untrained &
trainable encoder

Network Set Flscore IoU precision recall specificity accuracy
VGG16 training  0.9122 0.8461 0.9136 0.9272  0.8315 0.9125
VGG16 validation 0.8825 0.8029 0.8870 0.9050 0.7588 0.8944
VGG16 test 0.8890 0.8113 0.8917 0.9095 0.7644 0.8959

VGG16_linked training  0.8969 0.8259 0.9137 0.9064 0.8418 0.9057
VGG16_linked validation 0.8943 0.8223 0.9069 0.9098 0.7891 0.9056
VGG16_linked test 0.8925 0.8205 0.9106 0.9037 0.7958 0.9027
VGG19 training  0.9057 0.8356 0.9022 0.9275 0.8101 0.9050
VGG19 validation 0.8780 0.7956 0.8748 0.9096 0.7312 0.8866
VGG19 test 0.8817 0.8002 0.8766 0.9124 0.7387 0.8867
VGG19_linked training  0.8987 0.8289 0.9139 0.9093 0.8359 0.9071
VGG19_linked validation 0.8927 0.8211 0.9056 0.9095 0.7878 0.9047
VGG19_linked test 0.8931 0.8208 0.9082 0.9069 0.7889 0.9027

ResNet50 training  0.9315 0.8769 0.9375 0.9348 0.8873 0.9355

ResNet50 validation 0.9002 0.8293 0.9103 0.9096 0.8291 0.9131

ResNet50 test 0.9020 0.8330 0.9152 0.9091 0.8370 0.9120

ResNet50_linked training  0.9140 0.8508 0.9278 0.9182 0.8836 0.9217
ResNet50_linked validation 0.9102 0.8450 0.9255 0.9146 0.8538 0.9207
ResNet50_linked test 0.9073 0.8442 0.9242 0.9144 0.8559 0.9173
ResNet101 training  0.9304 0.8753 0.9317 0.9387 0.8727 0.9341
ResNet101 validation 0.8976 0.8254 0.9015 0.9143 0.8101 0.9097
ResNet101 test 0.8965 0.8248 0.9040 0.9112 0.8062 0.9054
ResNet101_linked training  0.8996 0.8317 0.9218 0.9050 0.8698 0.9130
ResNet101_linked validation 0.8983 0.8293 0.9146 0.9102 0.8250 0.9147
ResNet101_linked test 0.8981 0.8309 0.9169 0.9082 0.8246 0.9102
ResNet152 training  0.9138 0.8496 0.9220 0.9220 0.8504 0.9184
ResNet152 validation 0.8896 0.8139 0.8982 0.9057 0.7912 0.9026
ResNet152 test 0.8918 0.8184 0.9051 0.9036 0.8005 0.9009
ResNet152_linked training  0.9066 0.8401 0.9174 0.9177 0.8729 0.9160
ResNet152_linked validation 0.9054 0.8386 0.9147 0.9189 0.8366 0.9184
ResNet152_linked test 0.9045 0.8391 0.9163 0.9171 0.8402 0.9141
ResNet50V2 training  0.9427 0.8954 0.9455 0.9462 0.8972 0.9457
ResNet50V2 validation 0.9023 0.8326 0.9087 0.9149 0.8284 0.9153
ResNet50V2 test 0.9050 0.8381 0.9167 0.9125 0.8452 0.9135

ResNet50V2_linked training  0.9198 0.8596 0.9319 0.9233 0.8844 0.9258
ResNet50V2_linked validation 0.9092 0.8434 0.9188 0.9187 0.8424 0.9207

ResNet50V2_linked test 0.9100 0.8462 0.9266 0.9135 0.8524 0.9185
ResNet101V2 training  0.9397 0.8897 0.9410 0.9445 0.8918 0.9421
ResNet101V?2 validation 0.9038 0.8342 0.9083 0.9165 0.8300 0.9147
ResNet101V?2 test 0.9018 0.8334 0.9128 0.9107 0.8383 0.9114

ResNet101V2_linked training  0.9152 0.8528 0.9305 0.9175 0.8849 0.9233
ResNet101V2_linked validation 0.9088 0.8437 0.9223 0.9163 0.8503 0.9192

ResNet101V2_linked test 0.9090 0.8459 0.9267 0.9134 0.8611 0.9181
ResNet152V2 training  0.9339 0.8811 0.9360 0.9404  0.8855 0.9374
ResNet152V?2 validation 0.9018 0.8315 0.9058 0.9161 0.8253 0.9130
ResNet152V?2 test 0.9030 0.8342 09132 0.9117 0.8370 0.9114

ResNet152V2_linked training  0.9087 0.8430 0.9239 0.9144 0.8749 0.9174
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ResNet152V?2_linked
ResNet152V?2_linked
InceptionV3
InceptionV3
InceptionV3
InceptionV3_linked
InceptionV3_linked
InceptionV3_linked
InceptionResNetV2
InceptionResNetV?2
InceptionResNetV2

InceptionResNetV2_linked
InceptionResNetV2_linked
InceptionResNetV2_linked

Xception
Xception
Xception
Xception_linked
Xception_linked
Xception_linked
MobileNet
MobileNet
MobileNet
MobileNet_linked
MobileNet linked
MobileNet_linked
MobileNetV?2
MobileNetV?2
MobileNetV?2
MobileNetV2_linked
MobileNetV2_linked
MobileNetV2_linked
DenseNet121
DenseNet121
DenseNet121
DenseNet121_linked
DenseNet121 linked
DenseNet121_linked
DenseNet169
DenseNet169
DenseNet169
DenseNet169_linked
DenseNet169 linked
DenseNet169_linked
DenseNet201
DenseNet201
DenseNet201
DenseNet201_linked
DenseNet201 linked
DenseNet201_linked

validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test

0.9047
0.9056
0.9073
0.8769
0.8814
0.9084
0.9057
0.9052
0.9289
0.8956
0.8956
0.9212
0.9129
0.9127
0.9664
0.9060
0.9058
0.9492
0.9189
0.9180
0.8814
0.8678
0.8708
0.9056
0.8986
0.9020
0.6623
0.6739
0.6761
0.8658
0.8618
0.8673
0.9325
0.9069
0.9064
0.9297
0.9160
0.9183
0.9354
0.9054
0.9072
0.9276
0.9151
0.9163
0.9435
0.9082
0.9084
0.9269
0.9151
0.9189
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0.8374
0.8403
0.8380
0.7939
0.8001
0.8438
0.8397
0.8398
0.8730
0.8215
0.8228
0.8632
0.8507
0.8518
0.9359
0.8373
0.8383
0.9072
0.8594
0.8583
0.8009
0.7813
0.7852
0.8389
0.8286
0.8356
0.5301
0.5432
0.5428
0.7850
0.7809
0.7858
0.8780
0.8385
0.8396
0.8749
0.8541
0.8592
0.8822
0.8365
0.8407
0.8720
0.8532
0.8563
0.8958
0.8410
0.8425
0.8707
0.8531
0.8597

0.9162
0.9201
0.8985
0.8709
0.8757
0.9114
0.9065
0.9103
0.9211
0.8881
0.8924
0.9392
0.9275
0.9299
0.9659
0.9119
0.9152
0.9534
0.9272
0.9281
0.8848
0.8672
0.8706
0.9225
0.9133
0.9202
0.5477
0.5615
0.5610
0.9148
0.9054
0.9067
0.9324
0.9040
0.9101
0.9405
0.9280
0.9348
0.9402
0.9149
0.9209
0.9394
0.9278
0.9317
0.9394
0.9095
0.9118
0.9338
0.9266
0.9297

0.9164
0.9146
0.9306
0.9086
0.9088
0.9284
0.9295
0.9253
0.9467
0.9245
0.9180
0.9202
0.9191
0.9172
0.9681
0.9157
0.9127
0.9514
0.9271
0.9251
0.9057
0.9016
0.9008
0.9114
0.9101
0.9097
0.9506
0.9509
0.9500
0.8665
0.8723
0.8750
0.9407
0.9274
0.9214
0.9302
0.9203
0.9189
0.9373
0.9134
0.9116
0.9286
0.9209
0.9193
0.9523
0.9239
0.9224
0.9327
0.9213
0.9250

0.8313
0.8364
0.8184
0.7599
0.7717
0.8561
0.8102
0.8154
0.8506
0.7770
0.7919
0.8983
0.8586
0.8629
0.9390
0.8649
0.8765
0.9213
0.8789
0.8774
0.7692
0.6982
0.7192
0.8595
0.8098
0.8231
0.0473
0.0478
0.0468
0.8017
0.7399
0.7488
0.8839
0.8248
0.8351
0.9175
0.8877
0.8984
0.8933
0.8497
0.8557
0.9102
0.8742
0.8857
0.9003
0.8598
0.8568
0.9149
0.8933
0.8971

0.9175
0.9147
0.9144
0.8903
0.8898
0.9157
0.9149
0.9113
0.9341
0.9063
0.9047
0.9296
0.9227
0.9222
0.9674
0.9164
0.9142
0.9525
0.9276
0.9256
0.8883
0.8800
0.8774
0.9142
0.9122
0.9126
0.5478
0.5426
0.5383
0.8851
0.8837
0.8839
0.9367
0.9161
0.9142
0.9356
0.9254
0.9252
0.9383
0.9171
0.9151
0.9345
0.9243
0.9248
0.9462
0.9184
0.9155
0.9343
0.9244
0.9253



NASNetMobile
NASNetMobile
NASNetMobile
NASNetMobile linked
NASNetMobile linked
NASNetMobile linked
EfficientNetBO
EfficientNetBO
EfficientNetBO
EfficientNetBO_linked
EfficientNetBO_linked
EfficientNetBO_linked
EfficientNetB1
EfficientNetB1
EfficientNetB1
EfficientNetB1_linked
EfficientNetB1 linked
EfficientNetB1_linked
EfficientNetB2
EfficientNetB2
EfficientNetB2
EfficientNetB2_linked
EfficientNetB2 linked
EfficientNetB2_linked
EfficientNetB3
EfficientNetB3
EfficientNetB3
EfficientNetB3_linked
EfficientNetB3_linked
EfficientNetB3_linked
EfficientNetB4
EfficientNetB4
EfficientNetB4
EfficientNetB4 _linked
EfficientNetB4 linked
EfficientNetB4 _linked
EfficientNetB5
EfficientNetB5
EfficientNetB5

training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test
training
validation
test

0.7878
0.7878
0.7991
0.8597
0.8625
0.8649
0.9522
0.9069
0.9038
0.9466
0.9208
0.9228
0.9461
0.9069
0.9061
0.9315
0.9192
0.9239
0.9386
0.9042
0.9043
0.9228
0.9200
0.9183
0.9434
0.9046
0.9070
0.9274
0.9212
0.9216
0.9414
0.9076
0.9085
0.9242
0.9193
0.9194
0.6754
0.6873
0.6898

103

0.6839
0.6840
0.6946
0.7736
0.7777
0.7780
0.9104
0.8387
0.8351
0.9016
0.8622
0.8653
0.9001
0.8384
0.8385
0.8789
0.8595
0.8670
0.8874
0.8349
0.8358
0.8651
0.8612
0.8592
0.8954
0.8356
0.8399
0.8734
0.8630
0.8645
0.8933
0.8402
0.8422
0.8676
0.8600
0.8617
0.5482
0.5620
0.5617

0.7967
0.7882
0.7943
0.8602
0.8594
0.8615
0.9488
0.9057
0.9067
0.9437
0.9235
0.9227
0.9385
0.9001
0.9014
0.9425
0.9327
0.9400
0.9451
0.9137
0.9144
0.9415
0.9354
0.9355
0.9398
0.9051
0.9076
0.9395
0.9334
0.9336
0.9434
0.9125
0.9132
0.9297
0.9277
0.9301
0.5482
0.5620
0.5617

0.8717
0.8806
0.8863
0.8986
0.9057
0.9056
0.9580
0.9244
0.9190
0.9548
0.9340
0.9377
0.9577
0.9293
0.9277
0.9328
0.9222
0.9221
0.9374
0.9123
0.9121
0.9201
0.9218
0.9195
0.9514
0.9220
0.9227
0.9305
0.9254
0.9264
0.9461
0.9189
0.9210
0.9341
0.9286
0.9274
1.0000
1.0000
1.0000

0.5638
0.5200
0.5276
0.7346
0.6769
0.6826
0.9117
0.8497
0.8592
0.9061
0.8734
0.8739
0.8995
0.8461
0.8495
0.9233
0.9029
0.9140
0.9074
0.8599
0.8649
0.9210
0.8942
0.8973
0.8973
0.8436
0.8532
0.9045
0.8761
0.8884
0.9076
0.8558
0.8633
0.9194
0.9027
0.9078
0.0000
0.0000
0.0000

0.8086
0.8009
0.8068
0.8705
0.8709
0.8697
0.9544
0.9164
0.9116
0.9488
0.9293
0.9304
0.9486
0.9166
0.9130
0.9374
0.9285
0.9307
0.9431
0.9155
0.9129
0.9293
0.9279
0.9257
0.9459
0.9154
0.9142
0.9347
0.9297
0.9301
0.9447
0.9181
0.9167
0.9317
0.9272
0.9273
0.5482
0.5429
0.5386



7.2 Source code

The full source code for this thesis is available on GitHub".

i3 https:/github.com/ptziolos/UoA/tree/main/Master/Cloud Segmentation
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