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Abstract

In the present thesis, we study one of the most famous problems in Numerical
Analysis: the growth problem for Hadamard matrices. It concerns the determi-
nation of the growth factor of Hadamard matrices, a quantity associated with
the stability of the Gaussian elimination algorithm, and it is a very challeng-
ing problem; it has only been solved for matrices of small orders and pertinent
research is ongoing.

We begin with a brief presentation of the definition and basic properties
of determinants of matrices in Chapter 1. Determinants play a major role in
solving linear systems of equations and they are also of great importance in our
study for the evaluation of the growth factor.

In Chapter 2, we present Gaussian elimination, the most useful numerical
method for evaluating determinants and solving linear systems. It consists of
a sequence of elementary row and column operations that transform a given
matrix to an equivalent upper triangular one. From a numerical point of view,
Gaussian elimination is an efficient algorithm, however, if implemented in its
original form, it can be unstable. To overcome this issue, we use a technique
called pivoting. There are two types of pivoting: partial and complete. In the
last section of the chapter , we examine in more detail the stability of Gaussian
elimination, with and without pivoting, in terms of backward error analysis and
we present the notion of growth factor, a quantity with which the stability is
closely associated.

In Chapter 3, we present a special category of matrices called Hadamard
matrices. These are characterized by unique properties, one of which being that
they seem to be the only matrices that attain growth factor equal to their size.
Their special structure allows us to find formulae and values for their minors,
a generally very difficult task. We conclude with a brief presentation of some
special cases and generalizations of Hadamard matrices and an overview of their
applications in a variety of fields.

In Chapter 4, we restrict our attention to the growth factor of Hadamard ma-
trices, associated with Gaussian elimination with complete pivoting. Its deter-
mination is one of the most famous and challenging open problems in Numerical
Analysis; it has been achieved only for orders 1 to 16 and a lot of investigation
concerning it is ongoing. A key element in the study of the growth factor of a
matrix is the evaluation of its pivots and its minors, thus we focus on deriving
useful formulae for their computation and extensively examining the possible
values that they can take. In the last section of the chapter, we proceed to
the computation of the growth factor of Hadamard matrices of orders 1 to 12.
We also introduce a new lower bound for pivots that emerged in our study and
employ it to rediscover the computation for case 12. We give a brief overview



ii

of the, significantly more complicated, proof for order 16 and finally, we display
some more results obtained from further research on the growth problem.



[Tepiinyn

Ymv mopovoo epyacio, HEAETAUE évo amd TO To Stdonue TpoPfARpata  Tng
ApBuntikng Avdivong: 1o TpofAna Tov cLVTELESTH HeYEBUVONG Yol TOVG TivaKeES
Hadamard, piog mocottag mov oyetiletor pe v evotdbeio tov odyopibuov g
arorolpng tov Gauss. To TpoPAnpa avtd givar TOAD amortnTkd: Exet Avbel povo yu
LKPA Ley£Bn Tvakv Ko 1 Epevva ToL YIVETOL GTO GYETIKO TEGI0 elval pLeydAn.

Hexwape pe pio odvroun mopovsioon Tov Opiopol Kot TV PAcIKOV 810THTOV
optlovomv mvakov oto Kepdiato 1. Ot opilovoeg mailovv peydio poro oty enidvon
YPOLUK®OV GUOTNHATOV eEloMCEMV Kat lvat emiong TOAD ONUAVTIKES Yo TNV HEAETN
TOV VTOAOYIGLLOV TOL GLUVTEAESTN peyéBuvong.

Y10 Kepdhowo 2, mapovoidlovpe v amorowpr; Gauss, v wo St0dedopévn
aplOun Tk péBodo vIoAoyiopuoy optlovodV Kol ETIAVGNG YPOUUIKDY GLOTNUATOV.
Amoteleitor omd pio ol GTOWYEIOOV TPAEED®V YPOUUDY KOl OTNADV, Ol OTOiEg
HETATPETOVY £VOL SOGUEVO THVOKO GE VOV 1IGOSVVOLO AVE TPLYOVIKS. ATO aptOUnTIKNG
amoyng, m omoroipn Gauss eivar €vog OmOTEAEGUHOTIKOS 0AyOplOuoc, Ou®c av
epapuootel otV KAOOGCIK TOL €kdoyr, Mmopel vo eivor oaotadng. o va
OVTILETOTIGOVHE QVTO TO {NTNLO, YPTOYOTOOVLE Lia TEYVIKN ToL AEyETOL 0dNyNON.
Yrapyovv dvo &idn odNynong: n HEPIKN Kot 1] OAKN. TNV TEAEVLTAIN TAPAYPUPO TOV
keparaiov, e&etalovpe o AemTopepdg TV gvotdBetln TG anaAiowpng Gauss, pe Kot
xopig odnynon, pe dpovg g backwards aviilvong cedApaTog Kot mapovsidlovps v
évvole Tov ovvtereotn peyéBuvong, og mocodtnTag pe TV omoia 1 gvotdfein
GUVOEETOL GTEVAL.

Yto Kepdhawo 3, mapovoidlovpe pio €dkn katnyopia mvlkwov mov Aéyoviot
nivaxeg Hadamard. Avtol yapoxtmmpilovtor and povadikés d0ttee, pio amd Tig
omoiec eivar OTL Qoivetal vo OmOTEAOVY TOVG MUOVOLG TIVOKEG TMOV Omoimv O
cvvteheog peyébuvong eivarl icog pe to péyeBoc tovc. H €0k dour tovg pag
eMLTPENEL Vo Bpovpe PaBnHoTkong TOTOVG Kot TIHEG Yo TIg VIToopiloveég Tovg, KATL TO
omoio eivar yevikd moAv dOokoro va yivel. To kepdhoto olokAnpovetor pe pio
GUVTOUN TOPOVCINCT] KATOI®V EOIKMV TEPITTOCEDMY KOl YEVIKEDCEMV TOV TIVOK®OV
Hadamard xot puo okioypdenorn tov epaproydv Toug o€ £vo TAN00C EMGTNHOVIKOV
mediV.

Y10 Kepdhao 4, eotidlovpe v mPocoyn HOG OTOV GLVIEAESTN peyEéBuvomng
mvakov Hadamard mov agopd tnv anaroipr] Gauss pe ohkn 0d1ynon. O kabopiopdg
Tov etvar éva amd TO MO OSACUO KOl OMOLTNTIKA OVOIKTA TPOoPANUaTe GTNV
ApBuntucy Avdivon: €xet emreuyfel pdévo yw tig thEeic 1 mg 16 kot 1 oyeTikn
é€pguva mov yiveton givorl peydin. ‘Eva otoyelo — kAedl otnv HLeAéTn TOL CLVTEAESTN
peyébuvong evog mivaka €ival 0 VTOAOYIGHOG TV 0dNY®V OTOWEIOV KOl TOV
Vo0p1LoVCOV TOV, CUVETMG OIVOLUE EUPACT] OTNV €VPECT] YPHO®OV HAONUOTIKOY
TOnOV Yo Tov Kaboptopud tovg Kot oty Aemtouept| e€étacn TV Tihavay TGV TOV
UTOpoOV Vo, TAPOVY. LTV TEAEVTOIO TOPAYPOPO TOL KEPUANIOV, TPOYWPAUE CTOV
kaBopiopd tov cvvrereoth| peyébuvong mvakmv Hadamard té&ewv 1 émg 12. Emiong
mapovoldlovpe évo véo KAT® QpAayua Yo, 0dNY& oTolyeio TO 0moio TPoEKLYE GTNV

iii
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€pELVA LOG KOL TO YPNOUYLOTOLOVUE YO VO dDGOVLUE £vav VEO TPOTO LTOAOYIGHOV TOL
ovvteheotn peyéBovong ya v mepintoon 12. Kdvovpe pio cOvioun meptypar| g, apKeTd
7o TOAOTAOKNG, amddene vy v 4N 16 kot téhog mopovctdlovpe Kamowo emmALOV
OTTOTEAEGLOITO, TTOV EYOVV TPOKVYEL Oltd TNV TEPULTEP® EPEVVA TAV® GE 0WTO TO TEDTO.
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Chapter 1

Determinants

In the first chapter, we make a brief presentation of the basic properties of
determinants. Determinants play an important part in the determination of the
solutions of linear systems. We will later see that they are of crucial importance
in our study, since they give insightful information about the growth factor of
a matrix. The chapter is largely based on paragraphs 3.4 and 6.3 of [39].

1.1 Definition and properties

In the following, F = R or C.

Definition 1.1.1. A function D : F*"*™ — F, from the set of n X n matrices
over Fin € N, to F, is called a determinant function if it satisfies the following
1
properties for every A= | : | € F"*" p; e F1X0:
T
Dy: Ifry =7 +1" for somei € {1,...,n}, r,7" € F1X"  then

T1 1 1 1

D3: If A has two identical rows, i.e. there existi,j € {1,...,n} so thatr; =r;j,
then D(A) =0
Dy: If A=1,, then D(A) =1
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Remark From properties D; and Dy follows by induction that

1
1
m ' m .
D Z )\sps = Z )\SD Ps
s=1 s=1 .
Tn
Tn

Also from property Ds follows that if r; = 0 for some i € {1,...,n}, then

1 1 T1
D 0 =D O-TZ‘ =0D T =0.

T'n Tn T'n

Elementary row operations and determinants
There are three types of elementary row operations:

- row multiplication (multiplication of all elements of a row by a non-zero scalar)

- row addition (replacement of a row by the sum of that row and a multiple of
another row)

- row switching (interchange of two rows)

Property D5 describes how a determinant function behaves under row mul-
tiplication. The following proposition describes the behavior of determinant
functions under row addition and row switching.

Proposition 1.1.2. Assume that D is a determinant function and A € F"*™
18 an n X n matrizx.

(i) If B is the matrixz that results when we apply row addition to A, then D(B) =
D(A).

(i) If C is the matriz that results when we apply row switching on A, then
D(C)=—-D(A).

Corollary 1.1.3. Assume that D is a determinant function and A, B € F"*"
are two row-equivalent n X n matrices (i.e. one can be obtained from the other

by applying a sequence of elementary row operations). Then D(A) = 0 if and
only if D(B) = 0.

Definition 1.1.4. A square matriz A € F**™ 4s invertible or non singular if
there exists a square matriz B € F"*™ of the same order that satisfies AB =
BA =1. In that case, B is called the inverse of A and is denoted B = A™!.

Proposition 1.1.5. Assume that A € F*"*" is an n X n matriz. Then A is
invertible if and only if det(A) # 0.
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Examples 1.1.6. (i) Forn =1,

D:F>' - F
D(la11]) = an
s a determinant function.
(i) Forn =2,
D:F*? 5 F

D air a2 _
= a11G22 — G12021
a1 Aa22

s a determinant function.
(iii) Assume that D : Fr=0x(=1) | s o determinant function from the set
of all (n — 1) x (n — 1) matrices and A is an n X n matriz. Then for every
Jj€{l,...,n}, the function

fj FP ST

n
fi(A) = Z(_l)lJrjaijD(Aij)v
i=1
where A;j is the (n — 1) x (n — 1) matriz that results by removing the i-th row
and the j-th column from A, is a determinant function froom the set of alln xn
matrices.

From the examples above, one can prove by induction the following propo-
sition

Proposition 1.1.7. For every n > 1, there exists at least one determinant
function from the set of all n x n matrices over F that satisfies the properties of
Definition 1.1.1.

Proposition 1.1.8. If D, D’ : F"*" — F are determinant functions from the
set of all n X n matrices, then D = D’.

The previous propositions lead us to the following theorem

Theorem 1.1.9. For every n > 1, there exists a unique determinant function
from the set of all n x n matrices over F.

Definition 1.1.10. If A € F™"*"™ is an n xn matriz over F and D is the uniquely
defined determinant function from the set of all n X n matrices, then we define
the determinant of A, we denote det(A), to be the image of A under D, i.e.
det(A) = D(A).

Remark Let A € F"*™ be an n x n matrix over F and f; : F**" — F,j =
1,...,n be the determinant functions defined in Example 1.1.6 (iii). From The-
orem 1.1.9 and Definition 1.1.10 follows that f;(A) = det(A),Vj. Expression
fj(A) is called the Laplace expansion along the j-th column. Similarly, we can
define the Laplace expansion along the i-th row and prove that it satisfies all
the properties of a determinant function. The uniqueness of the determinant
function guarantees that for every i, 7, all the above expressions are equivalent,
hence we can calculate the determinant of a matrix by expanding along any row
or column.
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Proposition 1.1.11. The determinant of an n x n triangular matriz is the
product of its diagonal elements.

Proof. By induction. For upper triangular matrices: For n = 1 the statement is
true. For the induction step, we assume that the statement is true for n—1,n >

2. Let A = (ai;) be an upper triangular n x n matrix. Using the Laplace
n

expansion along the first column, we get det(A) = Z(fl)”laﬂdet(Aﬂ) and
i=1

since a;; = 0,4 > 1, det(A) = anrdet(A11). Ajp isan (n — 1) x (n — 1) upper

triangular matrix with diagonal elements asa,...,any,, therefore det(Aq1) =

a22 . . . Gpy. In conclusion det(A) = a11a99 . . . Gnn.

For lower triangular matrices: we work similarly, using the Laplace expansion

along the first row. O

Theorem 1.1.12. For every A, B € F"*" det(AB) = det(A)det(A).

1
Corollary 1.1.13. If A is invertible, det(A™') = det(A)’
e

Theorem 1.1.14. For every A € F"*" det(A) = det(AT).

Geometric interpretation of determinants

For real matrices, the determinant represents the volume of the parallelepiped
defined by the rows (or columns) of the matrix. More specifically, if A =
[a1...a,], a; € R™ 1 is an n x n real matrix, then the n-parallelepiped de-
fined by the n-dimensional vectors aq,...,a, (the columns of A) is

P=A{cia1 + ...+ cpan|0 < ¢ <1,Vi}.

The absolute value of the determinant of A can be proven to be the n-dimensional
volume of P, i.e. |det(A)| = vol(P). The parallelepiped defined by the rows
of A is a different parallelepiped in general, but it has the same volume. That
follows from the fact that this parallelepiped will be the parallelepiped defined
by the columns of AT, hence its volume will be |det(AT)| and from Theorem
1.1.14, that is equal to |det(A)].

Determinants and linear systems of equations

Determinants can be used to express explicitly the solutions of linear sys-
tems. A linear system of n equations in n variables z1,...,x,

a1121 + ...+ a1z, = b1

Ap1T1 + ...+ ApnTn = by,
can be expressed in the matrix form

A-x =0,
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where A = (a;5)i j=1,..n, £ = [T1. c.xp)T and b= [by...b,]T. The system has
a unique solution if and only if A is invertible, i.e. det(A) # 0, and in that case
it is given by

n

L S it N
Y17 det(A) D (=1)Hbjdet(A), i=1,...,n.

Jj=1

This formula is known as Cramer’s rule.

Computational Complexity

Computational complexity concerns the amount of operations in floating-
point arithmetic that are required for the evaluation of a quantity by a com-
puter. The study of the computational complexity is of great importance in
Numerical Analysis and algorithm design, since it provides information about
the performance of an algorithm. A floating-point operation (flop) is a calcula-
tion of the general form d < a + b - ¢, where a, b, c and d are machine numbers
and < denotes the assignment operation.

We are now going to evaluate the number of operations required for the

computation of a determinant using the Laplace expansion. For an n X n matrix
A

)

det(A) = z": arp(—1) Fdet(Ayy).
k=1

This expression requires n multiplications and each one of them requires the
evaluation of the determinant of an (n — 1) x (n — 1) matrix. Using again the
Laplace expansion, we will see that each determinant evaluation includes (n—1)
multiplications that require the evaluation of an (n — 2) x (n — 2) determinant.
Following this procedure, we can calculate the total number of operations to be

nn—1)...1=nl
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Chapter 2

Gaussian Elimination

In this chapter, we will present the method of Gaussian Elimination. It is
the most useful numerical method for solving linear systems and computing
determinants of matrices. The chapter is mostly based on paragraph 3.2 of [1]
and Chapter 3 of [25].

2.1 Gaussian elimination without pivoting

As we have seen in Chapter 1, the evaluation of the determinant of an n x
n matrix requires n! operations. When n is large, the number of operations
increases drastically, making the computation impossible. Naturally, we are
looking for a more efficient method of evaluating determinants.

From Proposition 1.1.11, we see that when a matrix is triangular, the eval-
uation of its determinant is significantly simpler, since it is the product of the
diagonal entries. This observation leads us to the search for a method that tri-
angularizes a given matrix while maintaining its determinant. Such a method is
Gaussian elimination (GE), which consists of a sequence of elementary row op-
erations that transform a matrix into an upper triangular one that is equivalent
to the original.

We will present the method for the case of square invertible matrices. How-
ever, the algorithm can be extended to include non invertible as much as non
square matrices.

The method

Consider A = (a;;);,; to be an n x n matrix with det(A) # 0.
1st step: We assume that a1 is non-zero (otherwise, by interchanging rows,
we can get a non-zero element in the upper left corner of the matrix, since
det(A) # 0). We define the multipliers m;1,i = 2,...,n as follows:
mi1 = %,’L’ZQ,...,W,.

ai
We then multiply, for every ¢ = 2,...,n, the first row of A by —m;; and add it
to the i-th row.
This procedure results in the equivalent matrix:

7
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an a(12) .- a(ln) af{) agg) e aﬁ)

1 1 i 1

A0 O a2.2 . a2.n _ 0 agz) e aén)

0 GSQ) e a’$1172 0 aSQ) ... a7(1172
where 'Y = a;; — miray;,i,j =2 We also denote a;; = a'¥
ij ij i1015,1, ] ,...,n. We also denote a;; = a;;’.

2nd step: We continue by following the same procedure for the (n—1) x (n—1)
lower right submatrix of A, If the upper left element of the submatrix is 0,
we can find a non-zero element in the first column of the submatrix, since
its determinant is non-zero (which is implied by the invertibility of A), and

(1)
a;
interchange rows. We define the multipliers m;s := %,i =3,...,n and for
o2
each i = 3,...,n we multiply the first row of the submatrix (the second row of

AM) by —myo and add it to the (i-1)-th row of the submatrix (the i-th row of
AW) resulting in the matrix

0 L0 L0 O

ety e
R T
A® =] 0 0 as3 ... as,
0o o0 af ... d)

r-th step: In this step we begin with matrix

ol ) el el )
0 o) e . dy ay
0 0 af af !
A=Y : : '
0 0 o0 ali~V (=1
0 0 0 AV oG

Again, like before, we can have a non-zero element in the upper left corner of

(r—1)
the submatrix (al(;_l))m:nm,n. We define the multipliers my, = %,i =

r+1,...,n and for each i = +1,...,n we multiply the r-th row of A~V by
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—m; and we add it to the i-th row. Hence we get matrix

r (o 0 0 0 0 0) 7
R
0 ay a%% e a%é,) a%g )+1 o a%;)
0 0 asy ... as, as,’ 1 ... Gz,
A — :
0 0 0 ali agrrlll) aln
0 0 0 0 ar7217‘+1 aﬁ_ﬁ)
00 0 ... 0 o) el

(n-1)-th step: in the last step, after following the above procedure, we end up
with the upper triangular matrix

r 0 0 0 0 0) 7
I
A5y a%g) .. G%QT) a%g)Jrl e a%g)

0 0 a3y ... oag, as,’ 1 ... Az,

A1) _ :

0 0 0 aly™ ay;ll) aln

T r—1

0 0 0 0 a£+)1r+1 a£+173

0o 0 o0 0 0 al

Elements agf;_l) of the diagonal of A~1) are called pivots. As we observe
in the implementation of the method, these elements are the denominators of

the multipliers defined in every step.

Computational Complexity

We will first calculate the number of operations required in each step. In
step r the number of operations needed for the evaluation of the multipliers is
n —r. For the evaluation of the lower right (n —r) X (n — r) submatrix we need
(n —r)? operations (one for each element of the submatrix). Hence, in the r-th
step we need (n — r)? + (n — r) operations.

The total number of operations that are required for all (n — 1) steps of
Gaussian Elimination is

The row operations that take place during Gaussian elimination do not affect
the determinant of the matrix, except for row switching which changes the sign
of the determinant. Hence, if k is the number of the row permutations that took
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place, det(A) = (—l)kag(i)aglz) ...a'7Y. The number of operations required to
evaluate this expression is n—1, therefore computing the deteminant of a matrix
using Gaussian elimination requires

TL3777J

3

+(n-1)

operations. We observe that the amount of computations required is signifi-
cantly less, compared to the n! computations needed when we use the Lagrange
expansion formula. This is why, in almost all cases, GE is the most efficient
method for the evaluation of determinants.

Gaussian elimination and LU factorization

LU factorization (or LU decomposition) factors an n x n matrix as a product
of a lower triangular matrix L and an upper triangular matrix U.

Definition 2.1.1. Let A be an m X n matriz. The determinant of any k X k
submatriz of A is called a k x k minor of A.

We have the following theorem

Theorem 2.1.2 (LU factorization). Let A be an n x n matriz whose leading
principal minors are non zero. Then A admits a unique LU factorization

A=1L.T,

where L is a lower triangular matrix with diagonal entries 1 and U is an upper
triangular matriz.

One can prove that

1 0 e 0 0
mo1 1 NN 0 0

U= A(n—l) and L = |31 m32 ... 0 0 ,
Mp1 Mp2  oo. Mpn—1 1

i.e. U is the upper triangular matrix of the final step of Gaussian Elimination,
while L is the lower triangular matrix whose diagonal elements are 1 and whose
entries below the diagonal are the multipliers defined in the GE method.

The hypothesis concerning the leading principal minors guarantees that in
every step r of GE, pivot element agfl) will be non zero, hence no row per-
mutations will be required. In the more general case of an invertible matrix A
whose leading principal minors are not necessarily non zero, row permutations
will be needed. These can be applied by left-multiplying A with a permutation
matrix P. In that case, matrix PA represents matrix A when all row switches
have been done in advance and will have non zero leading principal minors.
Thus, from Theorem 2.1.2, PA = LU.

LU factorization can also be attained for non invertible matrices. In that
case, some of the diagonal elements of U will be zero.



2.2. STABILITY 11

2.2 Stability
As we mentioned before, pivot elements al(;_l) of the diagonal are the denomi-
nators of the multipliers defined in every step of GE. In case a pivot is too small
(i.e. its magnitude is small), the magnitudes of the corresponding multipliers
will be too large. In the evaluation of the lower right submatrix, we will prob-
ably have to add large numbers to relatively small numbers. When working
with machine numbers, this often leads to large rounding errors, since there are
limitations on the amount of digits used to represent numbers.

In order to avoid such errors, we have to replace these elements with others
whose magnitudes are bigger. This process is called pivoting. There are two
pivoting techniques:

- Partial Pivoting

- Complete Pivoting

2.2.1 Gaussian elimination with pivoting

Gaussian elimination with Partial Pivoting (GEPP)
In each step r of Gaussian elimination with partial pivoting, we chose the
pivot to be the element with the maximum absolute value from the first column

of the lower right (n —r + 1) X (n — r 4+ 1) submatrix:

r-th step: we begin with matrix

r 0 0 0 0) 7

O A
0 Q59 Q35 ... asy .. as,,
0 0 ag? . a:(ﬁ,) . aéi)

Alr=1) — :

0O 0 0 ali Y S

i 0 0 0o ... agffl) o ag[l)_

From all elements {ag«_l), .. ,ag}_l)}, we chose the one that has the largest

magnitude and we apply row switching so that it is placed in the upper left cor-
ner of the lower (n—r+1) X (n—7r+1) submatrix. We then continue by defining
the multipliers and applying the appropriate row operations as described in the
previous section.

Gaussian Elimination with Complete Pivoting (GECP)

In each step r of Gaussian elimination with complete pivoting, we chose the
pivot to be the element with the maximum absolute value from all entries of
the lower right (n — r+ 1) x (n — r + 1) submatrix:



12 CHAPTER 2. GAUSSIAN ELIMINATION

r-th step: we begin with matrix

0 0 0 0 0) 7
F I B U BN
0 a(212) a(Q? o aélr) .. a&)
0 0 ag? o agi) o agi)
A= — | : : . : : :
o 0 0 .. a£Z v a% 2
o 0 0 .. e

From all elements of the lower right (n—r-+1) x (n—r+1) submatrix, we chose the
one with the largest magnitude and we apply row and column switching so that it
is placed in the upper left corner of the submatrix. We then continue by defining
the multipliers and applying the appropriate row operations as described in the
previous section.

2.2.2 Backward Error Analysis - Growth factor

In this segment, we will examine the stability of the GE algorithm in terms of
backward error analysis. Backward error analysis is used to estimate the nu-
merical stability of an algorithm and is based on the concept that the calculated
result, generally incorrect due to rounding errors, will be the exact solution to
a nearby problem with slightly perturbed data.

As we previously mentioned, GE provides the LU factorization of a square
n X n matrix A. When implementing the GE algorithm to compute matrices
L and U, rounding errors may appear, hence we will get matrices L and U,
probably different from L,U. The computed matrices will satisfy

LU =A+E,

where E is a matrix with small entries (in magnitude), i.e. L and U will be the
exact LU factorization of a slightly perturbed matrix. Backward error analysis
obtains an upper bound for E:

max|a( )|

1]l < nz%umnm, (%)

where

- |l|co is the infinity norm defined as || A||o = max Z la;j| (the maximum

absolute row sum) and

- u is the unit round off (machine epsilon) that represents the precision of
the machine.

We observe that upper bound (*) depends on quantity
max |a |

g(n, A) = 227

max|a |
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which is called the growth factor of matrix A. If we want to examine the sta-
bility of GE, we must investigate the possible values that the growth factor can
take.

Growth factor in GE with complete pivoting

In 1961, James H. Wilkinson proved that when applying GE with complete
pivoting, the growth factor is bounded as follows

g(n,A) < {n2131/241/3.”nl/(nfl)}l/Q

([36]). The right hand of the inequality is a function that slowly grows. Further-
more, in practice, g(n, A) never attains that value. However, it is very difficult
to obtain a better bound.

The growth factor associated with GECP is almost always less than n and
thus it was conjectured by Wilkinson in 1965 that it is bounded by the size
of the matrix. In 1991, Gould constructed a 13 x 13 matrix whose growth
factor when applying GE with complete pivoting was 13.0205 ([9]), thus proving
the conjecture false. Gould also constructed matrices of orders 14, 15 and 16,
whose growth factor exceeded their size. We note, though, that such matrices
are extremely rare (Gould used sophisticated optimization methods in order to
construct them) and, in practice, they never appear in applications. In fact,
in almost all cases, the growth factor is significantly smaller than the matrix’s
size. Indicatively, for the purposes of this thesis we have evaluated the growth
factors of some random matrices of various sizes with elements in the interval
(0,1). We display the results in the following table

n max g(n, A) that appeared | average g(n, A) (approx.)
10 1.1083... 1.034445

100 3.2195... 2.788235

1000 12.085... 10.224195

We observe that in all cases g(n, A) is much smaller than n.
Even though the aforementioned bound does not guarantee stability, GE
with complete pivoting is considered a stable algorithm.

Remark From the definition of the growth factor, for the case of GECP we
have ) 1,0 (n—1)
ne
max{la;y |, ass |-, lann [}
(0)

laiy’|
i.e. the growth factor is the ratio of the largest pivot to the first pivot (in mag-
nitude).

g(n’ A) =

Growth factor in GE with partial pivoting

Wilkinson showed that when applying GE with partial pivoting, the growth
factor is bounded by
g(n, A) <271

Matrices that attain growth factor equal to 2"~! when GE with partial piv-
oting is applied, can be easily constructed ([37], p.212). However, GE with
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partial pivoting is considered stable in practice, but without a theoretical con-
firmation.

Growth factor in GE without pivoting

When applying GE without pivoting, the growth factor can take large val-
ues. As we mentioned before, in GE without pivoting, large rounding errors
often appear, thus the algorithm is considered unstable.

Remark We note that, while a small growth factor leads to a decrease of
the upper bound (x) for ||E|| and, thus, improves the stability of GE, a large
growth factor does not necessarily imply that the algorithm is unstable. In GE
with pivoting, experience shows that when ||F||o is large, it is not due to the
large growth factor of A but due to the large condition number of A, which is
defined as cond(A) = ||A||oo|| A7 |oo-



Chapter 3

Hadamard Matrices

In this chapter, we present a special category of square matrices, called Hadamard
matrices. These matrices appear in a lot of applications and they are character-
ized by beautiful mathematical properties. Especially in the field of numerical
analysis, they are of great interest, since they seem to be the only matrices
whose growth factor is equal to their size.

3.1 Definition and basic properties

Definition 3.1.1. A Hadamard matrix of order n is an n X n matriz H whose
entries are =1 and satisfies HHT = HTH = nl,.

Equivalently, a Hadamard matriz of order n is a matriz whose entries are £1
and whose rows (and columns) are mutually orthogonal.

Remark HH7T = nl, implies that H is non singular and its inverse is n ! H” .Hence
we get HTH = nl,

Hadamard’s maximal determinant problem

In 1893, Jacques Hadamard presented the following bound concerning the
determinants of complex matrices

Theorem 3.1.2 (Hadamard’s inequality, [10]). If M = (m;;) is an n x n
complex matrix, then

det(M)] < [121 ( g )] 1/2

In the special case where M is a real matrix whose elements satisfy |m;;| < 1,
we obtain the following result

Theorem 3.1.3 (Hadamard’s Inequality). If M = (m;;) is an nxn real matric
and |m;j;| <1,V i,j, then

n n 1/2
|det(M)| < [H ( m?j)] <n"?
j=1

i=1

and equality holds if and only if M is a Hadamard matriz.

15
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Proof. One can give a geometrical proof of Hadamard’s inequality, since det(M)
is the n-volume of the parallelepiped in R", spanned by the row vectors of M.
Such a volume is maximized when the vectors are mutually orthogonal and every
entry is +1, i.e when M is a Hadamard matrix . O

Existence and Construction of Hadamard matrices

Proposition 3.1.4 ([30],[31]). If H is a Hadamard matriz of order n, then
n=1,2 or4t,t € N.

Proof. For n = 1,2, Hadamard matrices can be easily constructed (Examples
3.1.6). For n > 2, since every two rows of a Hadamard matrix have £1 entries
and they are orthogonal (their inner product is zero), n must be an even number.
Knowing that these two rows must also be orthogonal to a third row, n must
be a multiple of 4. [

While it is necessary that the order of a Hadamard matrix be 1,2 or a
multiple of 4, it is still an open problem whether Hadamard matrices exist for
every order 4¢, t € N. The smallest order for which the problem is still unsolved
is 668.

Definition 3.1.5 (H-equivalence). We call two Hadamard matrices Hadamard
eqivalent or H-equivalent if one can be obtained from the other by a sequence
of the operations:

1. interchange any pair of rows and/or columns

2. multiply any row and/or column through by -1.

Examples 3.1.6. The unique (up to H-equivalence) Hadamard matrices of or-
ders 1,2 and 4 are:

11 1 1

11 -1 1 -1 1
Hl_m’H?_L —1}’H4 11 -1 -1
-1 1 1 -1

Such matrices were first constructed and studied by James Joseph Sylvester
in 1867 ([31]). Sylvester observed that if H is a Hadamard matrix then

H H
H —-H
is also a Hadamard matrix. Beginning with H; = [1] and using Sylvester’s
construction we get the following sequence of Hadamard matrices:
Hy = [1]
1 1
m-li ]

lHadamard matrices were named after this property: they are the +1 matrices that make
Hadamard’s inequality sharp
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H, =

—= =
—
\
—_
\
—_

_ sz—l H2k—1
sz o |:H2k—1 —Hzlc—1:|

that are also called Sylvester-Hadamard matrices.
Hence, we have the following lemma

Lemma 3.1.7 (Sylvester, 1867). There ezists a Hadamard matriz of order 2*
for allt € N.

Definition 3.1.8 (Kronecker product). If A is an m xn matriz and B is a pX q
matriz, the Kronecker product of A and B, denoted AQ B, is the mpxnq matriz:

anB alnB
A®B = :

amiB ... amnB

The Kronecker product of k copies of A, A®...® A, which is well defined since
the Kronecker product is associative, will be denoted @FA.

For Sylvester-Hadamard matrices, Hox = Hy @ Hor-1 = ... = ®*H,. The
following lemma generalizes the construction presented above:

Lemma 3.1.9 (Sylvester). Let Hy, and Hp, be Hadamard matrices of orders
hi and hy. The Kronecker product Hy, ® Hp, is a Hadamard matriz of order
hihs.

There exist several other techniques for constructing Hadamard matrices
([8],[11],[29]). Some of them are of great importance since they lead to large
families of H-inequivalent Hadamard matrices.

Construction techniques along with further investigation on the subject have
proven the existence of Hadamard matrices of special orders. The following
proposition summarizes these results.

Proposition 3.1.10 ([2]). Hadamard matrices exist at the following orders
(i) 2t, t € N.

(i) p* + 1, where p is prime and p* = 3mod4.

(iii) 2(p* + 1), where p is prime and p® = lmod4.

(i) p(p+2) + 1, where p and p+ 2 are twin primes.

(v) 4p*, where p is prime and t > 1.

(vi) 4t, for all values of t < 250 except for t € {167,179,223}.

(vii) n = ab/2 or n = abed/16, where a, b, ¢,d are orders of Hadamard matrices.
(viii) If t is an odd integer, then there exist constants a and b such that there
exists a Hadamard matriz of order 2/9t010g2(1)1¢
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3.2 Minors of Hadamard matrices

In general, the evaluation of the minors of a matrix is a very difficult task.
Hadamard matrices, however, have a special structure that allows us to es-
tablish values for their minors as well as formulae that reveal the connections
between their submatrices.

Notation For a matrix A, A(k) denotes the upper left k X k minor of A, while
A[k] denotes the lower right k x k minor of A.

M;, B
c M,y
of order n, where My, is the k x k leading principal submatriz of H,,. Then

Theorem 3.2.1 ([5],[24],[32]). Let H,, = [ } be a Hadamard matriz
det(M,_j) = +n? *det(My)
or, using the above notation,
Hn — k] = +n2"H(k).
Proof. from the definition of a Hadamard matrix follows that
H,(n 'Hl) =1, <

=Ll Lo s )

C M, _y n~'BT TLilMZlk 0 I,k

Thus, M,CT + BMT , =0
Consider that

{Mk B ] . [n_lM,;f n-tCT } _ { I 0 }
0 I,k n BT np7 M, | T |In7'BT nTIMI |
By taking determinants, we have
det(My)det(I,_p)det(n *HL) = det(I},)det(n ML _,) =
det(My)n""det(H,) = n~""Fdet(M,_})
and since det(H,) = +n?

det(M,_) = +n2 ~"det(My).

Values of minors

Proposition 3.2.2 ([4]). Let A be a an n X n matriz whose elements are £1.
Then

(i) det(A) is an integer and 2"~ divides det(A).

(ii) When n < 6, the only possible values for |det(A)| are these and they do all
occur:

n 1] 2| 3| 4 | 5 | 6
det(A)] [ 1]0,2]0,4]0,8,16 | 0,16,32,48 | 0,32,64,96, 128,160
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Proof. (i) By doing one step of Gaussian elimination on A we obtain matrix
AM that has £1 entries in the first row and 0 or +2 in the rows 2 through n

+1 (1% (n—1)

AQ) —
On—1)x1 B

(n—1)x (n—1) matrix B has entries 0 and £2 and thus can be written as 2"~ 1C,
where C' is a matrix with entries 0 and +1. Therefore det(A) = +1det(B) =
(£1)2""1det(C) and since det(C) is an integer, we conclude that 2"~! divides
det(A).

(ii) The values listed above, are the multiples of 27! less than or equal to n
(the upper bound by Hadamard’s inequality). For n = 6, value 192 is excluded,
since it doesn’t occur. O

n/2

The authors in [21] extended the above results for the 7 x 7 case

Proposition 3.2.3. If A is a 7 X 7 matrix with elements +1, then the possible
values of |det(A)| are the following and they do all occur:

0,64, 128,192, 256, 320, 384, 448, 512, 576

Theorem 3.2.4 ([15],[30]). For a Hadamard matriz of order n:
(i) All the (n — 1) x (n — 1) minors are +n% 1.

(ii) All the (n — 2) x (n — 2) minors are 0 or +2n> 2.

(iii) All the (n — 3) x (n — 3) minors are 0 or £4n> 3

(iv) All the (n —4) x (n — 4) minors are 0,48n2~* or £16n% 4

Proof. Without loss of generality we assume that the (n — i) x (n — i) minors
occur in the lower right corner of the matrix. If not, by using row and column
interchanges, we can place the minor in the lower right corner. From Theorem
3.2.1, using the values listed in Proposition 3.2.2, we obtain the listed possible
values:
(i) Hin—1] = n2 1H( ) =4n?"1 since H(1) = £1.
(i) Hjn — 2] =n?"2H(2) = 0 or +2n% 2, since H(2) = 0 or +2.
(iii) Hn — 3] = nf_gH(3) =0 or +4n2 3 since H(3) =0 or +4.
(iv)H[n — 4] = n2~4H(4) = 0,4£8n2* or £16n2 %, since H(4) = 0,48 or
+16.

O

Similarly, we can prove the following theorem

Theorem 3.2.5 ([14]). For a Hadamard matriz of order n:

(i) All the (n — 5) x (n — 5) minors are 0, £16n% ~°, £32n2 ~> or £48n% 5
(i) All the (n — 6) x (n — 6) minors are 0, i32n5_6, i64n2_6, +96n2 6
+128n2 6 or £160n2 6.

(i3) All the (n — 7) x (n —7) minors are 0, :|:64n2 7 1280377, £192n3 77,
+256n2 7, 432003 ~7, £384n3 7, £448n3 7 :i:512n" 7 or j:576n2*7

We note that all the possible values displayed in Theorems 3.2.4 and 3.2.5
occur.

Definition 3.2.6 (D-optimal design). A n x n, £1 matriz with mazimum pos-
sible determinant (in magnitude) is called a D-optimal design of order n and is
denoted D,,. We also denote dy, = |det(Dy,)|.
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Remark A Hadamard matrix of order n is a D-optimal design.

Lemma 3.2.7 ([5]). Forn=2,...,7, if an n X n matriz is Dy, then a Dy,
must be embedded in it.

Remark This is not true for n = 8, since all 7x 7 minors of a Dg have magnitude
512.

Theorem 3.2.8 ([24]). For a Hadamard matriz H, of order n, if 7
n—k

nk_%, then Dy, is not embedded in H,,.

Proof. If a Dy, is embedded in H,,, then by applying row and column permu-
tations appropriately, we can place Dy in the upper left corner of H,. From
Theorem 3.2.1 and the definition of a D-optimal design, we have

n n d n
dy = |det(Dy)| = n* 2 |Hn — k)| < n*3d,_j, <= —— <nh3
n—k
O
Lemma 3.2.7 and Theorem 3.2.8 lead us to the following corollary
Corollary 3.2.9. D5, Dg and D7 are not embedded in Hg.
ds 48 . .

Proof. Since A 12 > 8% Dy is not embedded in Hs. If Dg was

3
embedded in Hg, then from Lemma 3.2.7, D5 would also be embedded in Hg
and that leads to a contradiction. Hence, Dg is not embedded in Hg . Using
the same argument we conclude that D7 is not embedded in Hg either. O

More about embedded D-optimal designs in Hadamard matrices can be
found in [26].

3.3 Special cases and generalizations of Hadamard
matrices

In this section, we briefly present some special cases and generalizations of
Hadamard matrices. Many of them, appear very often in applications.

3.3.1 Special cases

Skew Hadamard matrices

Definition 3.3.1. A skew Hadamard matrix is a Hadamard matriz H that can
be written as H = I + ST, where ST = —8S.

Walsh matrices

Definition 3.3.2. A Walsh matrix is a &1 square matriz of order 2t,t € N,
whose rows and columns are orthogonal and whose each row corresponds to a
Walsh function.
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Sylvester-Hadamard matrices are Walsh matrices.

Regular Hadamard matrices

Definition 3.3.3. A regular Hadamard matrix is a Hadamard matriz whose
row and column sums are all equal.

The order of a regular Hadamard matrix must be a perfect square ([45]).

Circulant Hadamard matrices

Definition 3.3.4. A circulant matrix is a square matriz in which all row vectors
are composed of the same elements and each row vector is rotated one element
to the right compared to the preceding row vector.

Definition 3.3.5. A circulant Hadamard matrix is a Hadamard matriz that is
also circulant.

A circulant matrix is regular, hence a circulant Hadamard matrix is a regular
Hadamard matrix and its order must be a perfect square. Moreover, if there
exists a circulant Hadamard matrix of order n > 1, then n = 4u?, where u is
an odd number ([34]). It is conjectured that, apart from the known 1 x 1 and
4 x 4 examples, no such matrices exist.

Definition 3.3.6. A generalized circulant Hadamard matrix with diagonal d
s a circulant matriz whose off-diagonal entries are +1, the diagonal entries are
d € R and whose rows are mutually orthogonal.

3.3.2 (Generalizations

Weighing matrices

Definition 3.3.7. An n x n (0,1, —1) matric W = W(n,k) that satisfies
WWT7T = kI, is called a weighing matrix of order n and weight k.

A W(n,n), n = 0mod4, is a Hadamard matrix of order n.

Complex Hadamard matrices

Definition 3.3.8. A complex Hadamard matrix H is a square n X n matriz
with unimodular entries, i.e. |h;j| = 1Y 4,j, that satisfies HH* = nl,, where
H* 1is the conjugate transpose.

As opposed to the real case, complex Hadamard matrices exist for every
order n € N.

3.4 Applications

Hadamard matrices and their generalizations appear in a wide variety of ap-
plications in many fields. Apart from their evident connection to maximal de-
terminant problems ([11],[28]), they can be transformed to other mathematical
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objects and be used in Design theory, Statistics, Telecommunications, Infor-
mation technology, Signal processing, Harmonic Analysis, Operator theory and
Combinatorics. Here we have made a brief list of examples. A more detailed
presentation of these and other applications can be found in the cited references.

Design Theory and Statistics

- Balanced Incomplete Block designs, Group divisible designs and Youden
designs ([11])

- Optimal fractional factorial designs ([11])

- Optimal weighing designs ([6],[11],[29])

- Orthogonal arrays ([11])

- Orthogonal F-square designs ([6],[11])

- Balanced repeated replication (technique used to estimate the variance of a
statistical estimator) ([40])

- Robust parameter design (for investigating noise factor impacts on responses)
(146])

- Plackett-Burman design (for investigating the dependence of some measured
quantity on a number of independent variables)([44])

Telecommunications, Information technology and Signal processing

- Error control codes (error correcting capabilities of codes derived from Hadamard
matrices)([11],[29])

- Walsh functions (defined from Sylvester-Hadamard matrices)([6],[29])

- Direct sequence spread spectrum CDMA systems ([6],[29])

- Hadamard transform spectrometry ([11])

- Boolean functions ([6])

- Barker sequences ([11])

- Quantum information technology (Quantum Hadamard gate and Hadamard
transform) ([43],[47])

Operator theory, Harmonic Analysis and Combinatorics
- Spectral sets ([12],[33])

- Constructions of bases of unitaries ([35])

- Construction of mutually unbiased bases of Hilbert spaces ([38])



Chapter 4

CP Hadamard matrices and
the growth problem

In the final chapter of this thesis, we restrict our attention to the properties of
Hadamard matrices related to the growth factor associated with GECP.
The growth factor of a matrix when GECP is applied is

0 1 n—1
max{|ai?|, gy, . ot U} _ maa{lpil,. . pal}

lai}| [p1]

g(n, A) =

i

where p; denotes the i-th pivot of A. We therefore observe that in order to
evaluate the growth factor of a matrix, we must compute the values of its pivots.

4.1 Definition and properties

Definition 4.1.1. A matriz A is called Completely Pivoted (CP) if during
Gaussian elimination with complete pivoting no row or column interchanges are
required.

A CP matrix can be viewed as a matrix on which all row and column permu-
tations have been applied in advance, so that when GE with complete pivoting
is applied, no row or column interchanges will be needed. Every matrix can be
transformed to a CP one, such that when we apply GE on it and GECP on the
original matrix, the resulting pivots are the same. This is why, in our theoret-
ical approach, we will assume without loss of generality that all matrices are CP.

Notation If A is an m x n matrix, A(i1...4p[J1 ... Jp) denotes the determinant
of the p x p submatrix of A obtained from the intersection of rows i1, ..., i, with
columns ji,...,jp. When the two set of indices are the same, the abbreviation
Aty ... ip) will be used.

Proposition 4.1.2 ([4],[7]). Let A be a non singular CP matriz on which GECP
is applied. Then, after r steps, 1 <r <mn, the (i,j) entry of A fori,j >r is

() A(l...ri|l... 1))
YT AL )

23
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Proof. Knowing that matrix A is non singular and CP, i.e. no row or column
interchanges will be done during GECP, and since the determinant is invariant
under row addition, we have that the leading principal minors of A and A(")
are the same and they are non zero. Hence, A(1...7) = agq)a(z;) Ly,
Now we adjoin r + 1 entries of row i and column 7, to get the submatrix of A
whose determinant is A(1...7i|l...7j). Since A is CP and ¢,j > r, the subma-
trix will also be CP and if we apply GECP, we will get that A(1...ri|l...7j) =

agq)aélz) .. agffl)az(-;). Evaluating the quotient, we have

A i) o el Vel

= =a;; .
Al...7) ag(i)...ag;_l) !

O

Lemma 4.1.3 ([3],[4]). Let A be a non singular CP matriz, and let A(i) denote
its i X i leading principal minor.
(i) The value of the i-th pivot p;, appearing after application of GE on A, is
given by
__A@)

Pi= 4G 1)
(i) The mazimum (in magnitude) i x i leading principal minor of A when the
first i — 1 rows and columns are fized, is A(1).

i=1,...,n, A(0)=1.

Proof. (i) Follows from Proposition 4.1.2:

i = az(:,l) _ A(l...7) _ A1)

AL, (i—-1)  Al-1)

(ii) Since the first ¢ — 1 rows and columns are fixed, if there was an i X ¢
submatrix of A with magnitude greater than A(7), from (i) we would get that
after applying ¢ — 1 steps of GE on A there is an element in the lower right
(n—(i—1)) x (n— (¢ — 1)) submatrix with magnitude greater than p; and that
leads to a contradiction, since A is CP. O

Lemma 4.1.4 ([5]). If H is a CP Hadamard matriz of order n, then the k-th

Hk -1
pivot from the end s ppy1—k = nl[q[k]]
Proof. 1t follows from Theorem 3.2.1 and Lemma 4.1.3. O

Corollary 4.1.5 ([5]). If H is a CP Hadamard matriz of order n and k < n,
then, for all (k —1) x (k — 1) minors My_1 of the k x k lower right submatriz
of H, we have |H[k — 1]| > |My_1].

Proof. This follows from Lemma 4.1.4 and the CP property of H, for otherwise
we could permute rows and columns of the lower right k& x k submatrix of H to
obtain a larger magnitude for p,, 1. O

For the next proposition, we will need the following lemma

Lemma 4.1.6 ([4]). If g(n) := sup{g(n, A)|A is an n x n matriz }, then
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Proposition 4.1.7 ([4]). Let H, = (h;;) be a CP Hadamard matriz of order
n. The magnitudes of the first four pivots after applying GE on H,, are 1,2,2
and 4.

Proof. p1 = hy1 = £1. After 1 step of GE, every entry of the (n — 1) x (n — 1)
lower right submatrix of Hf,l) is 0 or £2. Thus ps = hélz) = 42, since H,, is CP.
After 2 steps of GE, every entry of the lower right (n — 2) x (n — 2) submatrix
of H must be 0, £2 or +4. Since 9(3) < 4 from Lemma 4.1.6, there cannot
be any +4’s, so p3 = hé? = +2. After 3 steps of GE, every entry of the lower

right (n—3) x (n— 3) submatrix of HE must be 0,42 or +4. We will show that

there is an entry +4, thus, from the CP property, we will have that hﬁ) = 4.

We know that the size of H,, is n = 4t. Without destroying the CP property of
H,,, we can multiply rows and columns by —1, so that all entries of the first row
and the first column are 1. Then each column of H, has one of the following
four sign patterns in its first three entries:

I II I IV
+ + + o+
+ -+ -
+ o+ - -

The mutual orthogonality of the first three rows implies that there are exactly
t columns of each type!. Since H,(3) # 0, the first three columns must be of
three different types.

We choose any column j of the type not represented among columns 1,2 and 3
(there is at least one). For the purpose of finding a row 4 so that A(123i[1235) =
+16, it does not matter if columns 2,3 and j are rearranged, thus we may assume
that H,, has the pattern presented above in its first three rows and the four
columns 1,2,3,5. Like columns, rows can be divided into the same four types of
groups and each one of them has ¢ rows. Thus, there are ¢ rows having pattern
+ — — in the first three entries and all these lie below the first three rows. At
least one of these rows must have h;; = 1, for otherwise column j has more than
t negative entries, which contradicts its being orthogonal to column 1. Thus
A(123¢]123j) is the determinant of the following matrix:

1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1
A(123i[1235 16
and that is 16. Then from Proposition 4.1.2, h{}) = W =+ =
+4. O

For ease of reference, since we are focusing on magnitudes of pivots, from
now on whenever a minor or a pivot is mentioned, we will mean its absolute
value.

Corollary 4.1.8. If H is a CP Hadamard matriz, then
-H(1) =1

IThis result is also known as the distribution lemma ([15])
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H(2) =2
H(3) =4
“H(4) = 16

Proposition 4.1.9 ([22]). For every pivot p;, i = 2,...n of a CP Hadamard
matriz H, of order n, it holds p; > 1. Furthermore, the leading principal minors
form an increasing sequence, namely H(i) > H(i—1),i=1,...,n.

Proof. Suppose pr4+1 < 1 for some 1 < k < n. Then the matrix after the k-th

GE step will be
A X
0 B’

where the diagonal entries of A are pi,...,pr and B is the square submatrix
of order n — k, which has pyy1 as its upper left entry. Since the matrix is CP,
Pr+1 -lying on the pivoting position- is the maximum, in magnitude, entry of
B. From the hypothesis py+1 < 1, we get that B has entries with magnitudes
< 1 and we can state Hadamard’s inequality for B:

n—k

\det(B)| < (n— k)*%".

(1)
It holds

H(1) H(2) H (k)
H)H(1) "Hk-1)

|det(A)| = pip2. ..ok = = H(k)
because of Lemma 4.1.3. But since |det(A)| equals the k x k leading principal
minor of H,, with entries +1, we can apply Hadamard’s inequality for H (k) and
get:

det(A)] = H(k) < k*. (2)
Since the determinant of a matrix is invariant under GE, we have

|det(A)det(B)| = |det(H,)| =n®.
Multiplying (1) and (2), we get n? < (n — k)"T_kkg, or, after squaring it,
n™ < (n— k)" FEF.

We observe that both n — k& and k are less than n. Hence the product on
the right hand side of the inequality is less than n”~*n* = n™ and we are led
to a contradiction. Therefore the pivots ps,...p, of a CP Hadamard matrix
have magnitudes greater than 1. The second part of the proposition follows
straightforwardly considering Lemma 4.1.3. O

The fact that the principal minors of a CP Hadamard matrix appear in as-
cending order, can be utilized for demonstrating explicitly some possible values
of their their theoretically admissible minors (resp. pivots):

Corollary 4.1.10 ([22]). Let H,, be a Hadamard matriz of order n. The pos-

sible values of the leading principal minors of orders 5,6,7 and 8 are:

-H(5) = 32,48

-H(6) = 64, 96,128,160

-H(7) = 128,192,256, 320, 384,448, 512, 576

-H(8) = 256,384, 512,640, 768, 896, 1024, 1152, 1280, 1408, 1536, 1664, 1792, 1920,
2048, 2176, 2304, 2560, 3072, 4096
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Proof. Since H(4) = 16 for a CP Hadamard matrix, from Propositions 3.2.2 and
4.1.9 follows that H(5) = 32 or 48. The same reasoning leads to the evaluation
of all possible values of H(6) and H(7). For H(8), we first consider all possible
values that a determinant of a 8 x 8, +1 matrix can take. From Proposition
3.2.2, we get that H(8) = k-27 = k-128, k € N and from Theorem 3.1.3 we have
H(8) < 8 = 4096, thus H(8) € {k-128,k =1,...,32}. Value 128 is excluded
due to Proposition 4.1.9, since H(7) > 128, while it has been proved that some
of the rest of the possible values do not occur. O

From the values listed in Corollary 4.1.10, we obtain all possible values of
the 5th, 6th and 7th pivot

Proposition 4.1.11 ([4],[22]). If H is a CP Hadamard matriz, then ps = 2 or
3.

H(5 32
Proof. ps = (5) and from Corollary 4.1.10, we conclude that ps = — =2 or
H(4) 16
48
Ps =16 =3. O

Proposition 4.1.12 ([22]). If H is Hadamard matriz, then the 6th and 7th
pivot are bounded as follows:

Proof. Combining the result of Proposition 4.1.9, concerning the ascending or-
der in which the minors appear, with Corollary 4.1.10, we evaluate all possible
values for pg and p7:

48 .10

—-,2,2,3,—,4,5
p 3 3 37’

648 _1258 14 16 10 7 18 9 14 _ 16
SR 3, =, ey — 4, o, 5, 6,7,8,9
PPy 528 505325727330

It has been proved that pg and p; cannot take the values 5 and 9 respectively
([22]), hence we obtain the bounds presented above. O

Proposition 4. 1 13 ([4]). If H is a CP Hadamard matriz, then the four last
n

12 - — and n.
pZUOSCLT’€20T4 2 Qan n

Proof. Combining Lemma 4.1.3 with Theorem 3.2.4 and the fact that since H
is CP, all its leading principal submatrices are non singular, we obtain:

pn n - TL,
Hn-1) n3!
_H(n—1) n2 ! -n
Pt = Hm—2) " 2mEr 2" 2
H(n—-2) 2n:=2 n
n—2 — - [ - = d
P2 = Hn—3) "4z 2™
H(n—3) 4n373 4n3 -3 n _n 0
n-3 = = _—5— or ——, l.e. Pp_g = — or —
=3 = Hn—4) " 8ns 2 % s 2 MO Pt T g Ny
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4.2 The growth conjecture

Conjecture (Cryer’s growth conjecture, 1968, [3]) g(n, A) < n with equality if
and only if A is a CP Hadamard matriz.

Cryer’s growth conjecture is one of the most famous open problems in Nu-
merical Analysis. As we mentioned in Chapter 2, the inequality part of the
conjecture was proven false in 1991 by Gould, who constructed a 13 x 13 matrix
that had growth factor 13.0205 ([9]). The part concerning Hadamard matrices
is still unsolved and it is commonly referred as the growth problem for Hadamard
matrices. Investigation on the properties of CP Hadamard matrices has lead to
the following, more refined, conjecture ([13])

Conjecture (The growth conjecture for Hadamard matrices) Let H, be an
n x n Hadamard matriz. Reduce H,, by GE. Then
(i) g(n, Hy) = n
(ii) The four last pivots are § or %, 5, 5, n.
(iii) The fifth last pivot can take the values 5 or §
(iv) The sizth last pivot can take the values 7, 073 O 373
(v) Every pivot before the last has magnitude at most %.
(vi) The first siz pivots are 1,2,2,4,2 or 3, % 07“% or 4.

Statement (ii) of the conjecture has be proven (Proposition 4.1.13) as well
as the part of statement (vi) concerning the first five pivots (Propositions 4.1.7
and 4.1.11). Even though it appears to be easy, the determination of the growth
factor of a matrix is an extremely difficult task, thus making the proof of the
conjecture very challenging. The growth problem has only been solved for small
orders of Hadamard matrices and a lot of research is ongoing, concerning bigger
orders.

4.2.1 Proof for orders 1 to 16

H,Hy,H, and Hyg

The results concerning pivots presented in the previous section, prove easily
the conjecture for the cases of Hadamard matrices of orders 1,2,4 and 8.
Proof for cases 1,2, and 4, follows directly from Proposition 4.1.7 and the
unique pivot patterns are
1

1,2
1,2,2,4

Proof for case 8 is a combination of Propositions 4.1.7 and 4.1.13 and the
unique pivot pattern is
1,2,2,4,2,4,4,8



4.2. THE GROWTH CONJECTURE 29

Hiy

The first proof for the case of Hadamard matrices of order 12 was published
in 1995 by W. Edelman and W. Mascarenhas ([5]). In their paper, they proved
the following lemma

Lemma 4.2.1. If H is a 12 x 12 CP Hadamard matriz then H(5) = 48.
and employed it to evaluate the unique pivot pattern that occurs

Theorem 4.2.2. The unique pivot pattern of a CP 12 x 12 Hadamard matrix

is
10 18

1,2,2,4,3, 2, . 4,3,6,6,12
Proof. We know that the first four pivots are 1,2,2.4. From Lemma 4.2.1,
H(5) = 48 and thus ps = 3. From Theorem 3.2.1, we get that H[7] =
12 - H(5) = 576, which is the maximum value attained by a 7 x 7, £1 ma-
trix. Lemma 3.2.7 tells us that a 6 x 6 matrix with maximal determinant
is embedded in the 7 x 7 lower right corner and as a consequence of Corol-
lary 4.1.5, H[6] = 160. The same argument leads us to the conclusion that
H[5] = 48, H[4] = 16, H[3] = 4, H[2] = 2 and HJ[1] = 1. The last seven pivots
follow from Lemma 4.1.4. O

We observe that the pivot pattern satisfies all the conditions of the conjecture
for Hadamard matrices and the growth factor is g(n, Hi2) = max{p1,...,p1a} =
12.

The authors in [22] presented another proof of Cryer’s growth conjecture
for Hadamard matrices of order 12. Using the bounds and values for pivots
presented in the previous section, they showed that all pivots are less than or
equal to 12 and since the last pivot is 12, g(n, H12) = 12.

A new result on pivot values and a rediscovery of the proof

In the following proposition, we introduce a new result concerning values of
pivots, that emerged in our study

Proposition 4.2.3. If H is a CP Hadamard matriz of order n, then the fol-
lowing lower bound holds for every pivot p;

- n
b T
Proof. We use the following notation: for every k =1,...,n — 1, we can write

I Hy, Blx(n—k) ’

T Chmyxk My

where |det(M,,—x)| = H[n — k].
For i > 1, from Lemma 4.1.4, we have
Hin — i

i = Prtl— (n—ig 1) = N =
Pi = Pri=(n—it) = g )
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1 1Hp—i+1]

pi  n Hn—i

Evaluating H[n — i+ 1] = |det(My,—;+1)| using the Laplace expansion along the
first row [m11 . mln_,;_H] of Mn—i+17 we get

n—i+1
Hin—i+1=| 3 mu(~1)"*(det(My_is1)1,)| <
s=1
n—it+1 n—i+1

Y Imall (=)o lldet(Mp—iia)1sl = D |det(My—is)hsl,
s=1 s=1

since |mq5| = 1,Vs. Each (M,,_;41)1s is an (n—1) X (n—1) submatrix of M,,_;;1,
(which is the (n —i+1) x (n—i+1) lower right submatrix of H). Since i > 1,we
have n —i+1 < n and from Corollary 4.1.5, we get |det(M,—;y1)1s| < H[n —1]
for every s=1,...,n—i+ 1, thus
n—i+1
D ldet(My—ip1)1s] < (n— i+ 1)H[n — ).

s=1

Finally, for i > 1

l:lH[n—ifl]S(n7i+1)H[.nfi]:n7i+1 — p> n__

pi n Hn—1 nH[n — i n n—i+1

For i = 1, we observe that p; > — —1 holds. O
n—1+1

We now employ this new lower bound for pivots, to rediscover the evaluation
of the growth factor of His

Proposition 4.2.4. The growth factor of a Hadamard matriz of order 12 is
12.

Proof. Proof: We know that the first four pivots are p; = 1,ps = 2,p3 = 2 and

P4 = 4.

The fifth pivot can take the values 2 or 3, hence ps > 2.

The four last pivots are pg = 3 or 6, i.e. pg > 3, p1g = 6,p11 = 6 and p1o = 12.
H(8 H(12 -4

The eighth pivot is pg = HE% = HEl2 — 5; and from the values displayed in

Theorems 3.2.4 and 3.2.5, we get that

81264 g.126-% g.126-4 16.126-% 16.126-4 16 - 1264
= or
16-126-5732.126-57 48 . 126-57 16 - 126-57 32 . 1265 48 - 126-57

b8

12
thus ps = 2,3,4,6 or 12. From Proposition 4.2.3, pg > = > 2 hence ps = 3,4,6

or 12. 6u H( )
8126~ 124
P8 =3 = 551965 ~ F(1a 5 e po must be
6. Thus

H(12-3) 4-126073
H(12—-4) 8-126—4

1:2:2:4-2-pg-pr-3-6-6-6-12<p1...p1a = det(Hyz) = 126
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= pe - p7 < 12 =
—2-2-4-2-3-6-6-6-12
and since pg, p7 > 1 (Proposition 4.1.9), we have that pg < 12 and p; < 12.
Otherwise, pgs > 4 and we get

12

1:2:2:4-2-pg-pr-4-3-6-6-12<p1...p1a = det(Hyz) = 12°

= < 126 =
b6 PT= 99 4. 9.4.3.6-6-12

18.

12
From Proposition 4.2.3, p; > 5= 2, hence

P62 <ps-pr <18 =pg < 9.

12
Similarly, pg > = hence

12 21
7'p7§p6'107§18=>p7§?-

We notice that in every case, all pivots have magnitudes less than or equal to
12 and since py2 = 12, the growth factor is g(12, Hi2) = 12. O

Hig

The growth conjecture for Hadamard matrices of order 16 was proved in
2009 by C. Kravvaritis and M. Mitrouli ([20], [23]). The proof for that case is
significantly more difficult and complicated, compared to the cases of smaller
orders.

The authors used sophisticated numerical techniques and they developed a
strategy to show that an arbitrary CP Hadamard matrix of order 16 will have
one of 34 possible pivot patterns. Here, we give a brief overview of their method.

Two algorithms have a significant role in proving the conjecture: algorithm
Ezist, that specifies the existence of given submatrices in Hadamard matrices,
and algorithm Minors, that, for a given j, computes all possible (n—j) x (n—j)
minors of Hadamard matrices.

The proof is divided in two parts:

In the first part, all possible values of the first eight pivots are evaluated. Be-
ginning with matrix

+ +

+ —

-+

A:

+++ +
L+ 1+

all probable (j + 1) x (5 + 1) extensions of the j x j, j = 4,5,6,7, matrices
that always exist in the upper left corner of a CP Hadamard matrix of order 16
are evaluated. From them only the CP ones are kept and then algorithm FEuxist
keeps only the ones that can appear. From all possible existing submatrices
that result, the first eight pivots are evaluated using Lemma 4.1.3.

In the second part, all possible values of the eight last pivots are evaluated.



32 CHAPTER 4. CP HADAMARD MATRICES

Using algorithm Minors, the (16—7)x(16—7), 7 = 4,...,7 minors of Hadamard
matrices of order 16 are computed. From Lemma 4.1.3, all possible values of
P10, P11 and pio are evaluated. With the implementation of algorithm Fxist, the
values that do not appear are excluded. The possible values of the ninth pivot
are derived from the values of the rest of the pivots.

The list of all 34 pivot patterns can be found in Appendix B.

4.2.2 Open cases and further research

The growth conjecture for Hadamard matrices of order n has been proved only
for n = 1,2,4,8,12 and 16. The next unsolved case is n = 20, for which they
have been observed at least 1128 different pivot patterns. For the purposes
of this thesis, some pivot patterns were evaluated, using MATLAB functions.
They are presented in Appendix B, along with some comments.

As one can observe, the proof of the conjecture is an extremely difficult task,
even for small orders. A lot of investigation is ongoing, concerning possible
extensions of the methods used in the existing proofs to bigger orders.

The authors in [23] suggest that the methods introduced in their paper
for the proof of case 16, can be used as a basis for calculating pivot patterns
of Hadamard matrices of higher orders. Due to the high complexity of such
problems, they point out the need for developing algorithms that implement
effectively their or other more elaborate ideas.

A more theoretical approach of the problem involves the techniques used
in the proofs for case n = 12 presented in the previous section and in [5] and
[22]. Possible extensions of these results, that could also be combined with new
techniques, are under consideration.

We notice that the examination of pivot patterns is a key element in our
study. Thus, a large part of the ongoing research is focused on them.

A theoretical classification of the pivot patterns with respect to equivalence
classes would be of great importance, since it might give insightful information
on the possible connection between the pivot values and the structure of the
matrices. While, in general, a pivot pattern may occur in matrices from different
classes, some patterns seem to appear only in matrices from a specific class. For
instance, it has been observed that value 7 as the fourth pivot from the end
only appears in matrices that are H-equivalent to Sylvester-Hadamard matrices.
It has also been noticed that some patterns appear more frequently than others.
Such detailed observations on pivot patterns can be found in [13].

An other significant remark concerns the possible values of Hadamard ma-
trices” minors (resp. pivots). It has been noticed that from all possible values of
H(7) and H(8) displayed in Proposition 4.1.10, only a few occur. More specif-
ically, in case 16, H(7) takes only values 256, 384, 512 and 576 while H(8)
takes the only values 1024, 1536, 2048, 2304, 2560, 3072 and 4096. In the still
unsolved case 20, the only values that have been observed for H(7) are 512 and
576. A lot of questions arise on why some values of minors never occur. If
answered, they might provide significant information for developing strategies
that will exclude values of minors and, respectively, pivots.

An other important remark on pivot patterns is the following proposition

Proposition 4.2.5 ([4]). Suppose A is an n x n CP matriz. Then A® Hsy is
CP and its pivots (in magnitude) are the Kronecker product of the pivots of A
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with those of Hs:
{|a11| |a512_1)|] ®[1 2]

That leads to the following corollary that proves the growth conjecture for
Sylvester-Hadamard matrices

Corollary 4.2.6 ([4]). The pivot pattern (in magnitude) of Hox = @FH, is
®F[1 2)=[1 2 2 4 2 4 4 8 ... ].

The growth conjecture can also be proved for Hadamard matrices that have
the good pivots property. This notion is introduced and extensively examined in
[22]. A good pivot pattern is of the form

n n o n
p1op2 ... pzo—— .. —  — |
bz P2 N
ie. for every ¢ = 1,...,n, pipn—i+1 = n. Hadamard matrices are the only

matrices known that lead to good pivot patterns. We have the following propo-
sition

Proposition 4.2.7 ([22]). If a CP Hadamard matriz H has good pivots, then
g(n, H) =n.

Proof. 1t is sufficient to prove that p; <n,i=2...,n—1, since p; = 1,p, =n
and g(n, H) = max{p; ...pn}.

If p; > n for some ¢, then p,—;4117 < Pp—it1Pi = N = Pp—it1 < 1, which
cannot hold because of Proposition 4.1.9. We are led to a contradiction, thus
pi < n. O

The next result follows from Proposition 4.2.5 and proves the existence of
an infinite family of Hadamard matrices with good pivots

Proposition 4.2.8 ([22]). Suppose A is an n x n CP matriz with good pivots.
Then the pivots of A ® Hy are also good.

Deriving similar results concerning other special classes of Hadamard matri-
ces, e.g. symmetric Hadamard matrices, is under consideration.

The examination of the growth problem for Hadamard matrices has also
led to the study of the growth factor of other classes of matrices, related to
Hadamard matrices. Some examples are weighting matrices ([16]), (1, —1) inci-
dence matrices of SBIBDs ([17],[18]) and circulant Hadamard matrices ([27]).
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Conclusions

The need for the determination of the growth factor of a matrix followed from
backward error analysis, when it was shown that the stability of the Gaussian
elimination algorithm is connected to it. However, experience shows that Gaus-
sian elimination with pivoting is stable in practice and hence the problem of
evaluating the growth factor has not been an issue in Numerical Analysis for
years. It is still, though, a very interesting mathematical problem.

The attention is restricted to Hadamard Matrices, for whom it is conjectured
that they are the only matrices whose growth factor equals their size. Hadamard
matrices are characterized by unique properties and their special structure al-
lows us to obtain useful formulae that can be employed for the evaluation of
their growth factor.

Despite the fact that the growth conjecture for Hadamard matrices is seem-
ingly an easy problem, the determination of their growth factor is an incredibly
difficult task and it has been achieved only for the orders 1 to 16. A lot of
investigation on this open problem is ongoing and main research is focused on
the extension of existing methods (numerical and theoretical) for the evaluation
of the growth factor and the extensive study of their pivot patterns (their clas-
sification, their possible connection to the matrices’ structure, the exclusion of
possible values etc).

35
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Appendix A

MATLAB codes

function [H,p,q,r,c] = Hequiv(H)
% Randomly performs row and column operations on square matrix H to
% produce an H-equivalent one
% input: square matrix H
% outputs: matrix H after application of row/column operations,
% vectors p and q where row and column permutations are stored,
% vectors r and c where row and column multiplications by -1 are stored
n = size(H,1);
%random row switching
h = 1:n;
p = zeros(l,n);
for i = 1:n-1
r = floor(1l + rand*x(n+1-1i));

p(i) = h(®);
h(r) = [1;
end
p(n) = h;
H = H(p,:);
%random column switching
h = 1:n;

q = zeros(1,n);
for i = 1:n-1
r = floor(1 + rand*(n+1-i));

q(1) = h(x);
h(r) = [1;
end
q(n) = h;
H = H(:,q);

%random multiplication of rows by -1
r = ones(1,n);
for i = 1:n
if rand>=0.5
H(i,:) = -1xH(i,:);
(1) = -1;
end

37
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end
%random multiplication of columns by -1
¢ = ones(1,n);
for i = 1:n
if rand>=0.5
H(:,i) = -1xH(:,1);
c(i) = -1;
end
end

function piv = GECP(A);
%Applies GE with complete pivoting on square invertible matrix A and
%returns the pivot pattern piv
[n, n] = size(h);
for k=1:n-1
%Search for the maximum element of the lower right submatrix
[maxv, r] = max(abs(A(k:n, k:n)));
Jmaxv contains the maximum element of every column of the lower right
%submatrix
%every entry of r is the index of the row (of the submatrix) the
%maximum was found
[maxv, c] = max(maxv);
%now maxv is the total maximum element of the lower right submatrix
%c is the index of the column (of the submatrix) in which that element
%was found
r = r(c); %r is the index of the row (of the submatrix) in which
%the total maximum lies
%Replacing pivot
q = r+k-1; %q is the index of the row of A in which the maximum is
%placed
%row switching
AClk ql, :) = A(lq k1, :);
q = ctk-1; %q now represents the column index of A in which the maximum
%lies
%column switching
AC:, [k ql) = AC:,[q k1)
%Evaluation of the new matrix
if Ak, k) =0
%evaluation of the multipliers (they are stored below the
%hdiagonal of A)
A(k+1:n, k) = A(k+1l:n, k)/A(k, k);
%evaluation of the new elements of A (they replace the old ones)
A(k+1:n, k+1:n) = A(k+1l:n, k+1:n) - A(k+l:n, k)*A(k, k+l:n);
end
end
%the diagonal entries of A are the pivots
piv = abs(diag(A));
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Pivot patterns

The mentioned matrices were obtained from Neil Sloane’s library of Hadamard
matrices ([48]).

Pivots of Hig

Hadamard matices of order 16 can be classified into five classes of H - equiv-
alence: LILIILIV and V (represented by matrices Hig, Hit, HIIT HEY and H{j
respectively). Class I is the Sylvester-Hadamard class. Classes IV and V are
one another’s transpose and, therefore, identical for GE with complete pivoting
(a matrix is CP if and only if its transpose is CP, in which case they give the
same pivot pattern ([4])).

Here, we have evaluated 10 pivot patterns from each class, using the MAT-
LAB functions presented in Appendix A. From every matrix Hig to Hi;, we
produced 10 H - equivalent matrices using MATLAB function Hequiv and then
we applied GE with complete pivoting using MATLAB function GECP, to obtain
the pivot patterns. The results are presented in tables B.1 through B.5.

We observe that H - equivalent matrices can lead to different pivot patterns.
We also notice that the same pivot pattern can appear in matrices of different
classes.

In Table B.6, the 34 different pivot patterns that occur when applying GE
with complete pivoting in Hadamard matrices of order 16, are displayed. From
these, 11 are good pivot patterns: the 1% 6% 90 11th 15th 17th 215t 24th
30", 33" and 34'". The 12" pivot pattern is the only one with pj3 = 1€ =
and was obtained from matrices from the Sylvester-Hadamard class.

Pivots of Hy

Hadamard matrices of order 20 can be classified into three classes of H-
equivalence: I, I and III (represented by matrices Hi,, Hil and HII! respec-
tively). It is known that there exist at least 1128 different pivot patterns. For
the purposes of this thesis, we evaluated 12 different pivot patterns from every
class using the MATLAB functions presented in Appendix A. The results are
displayed in Tables B.7 through B.9.

Again, we observe that matrices of the same class can lead to different pivot
patterns. We also note that, even though the patterns presented here are all
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different, the same pivot pattern may appear in matrices from different classes.

There have been observed at least 47 good pivot patterns in Hadamard ma-
trices of order 20. Here, 6 good pivot patterns appeared: 3 in class I (the
4t 10" and 11*"), 2 in class II (the 5** and 7*") and 1 in class III (the 2"%).
Value 22—0 = 10 has never appeared as the fourth to last pivot.

P1 P2 P3 P4 Ps Pé P Ps P9 P P11 P12 P13 P14 P15 Pie
1 2 2 4 3 % 2 4 4 8 6 Y 4 8 8 16
1 2 2 4 3 § 4 6 5§ 4 6 ¥ 4 8 8 16
1 2 2 4 2 4 4 6 % 4 4 8 4 8 8 16
1 2 2 4 2 4 4 8 2 4 4 8 4 8 8 16
1 2 2 4 2 4 4 8 2 4 4 8 4 8 8 16
1 2 2 4 3 % 4 6 § 4 6 Y 4 8 8 16
1 2 2 4 2 4 4 6 § 4 6 2 4 8 8 16
1 2 2 4 3 & 4 6 & 4 4 8 4 8 8 16
1 2 2 4 2 4 4 6 % 4 6 2 4 8 8 16
1 2 2 4 2 4 4 8 2 4 4 8 4 8 8 16

Table B.1: class of Hi;

pPr P2 P3 P4 P5 Ps Pr P8 P9 P Pir P12 P13 P14 P15 P16
1 2 2 4 2 4 4 5 ¥ 4 4 8 4 8 8 16
10 12 16 24 16
12 2 4 3 2 2 4 ¥ 5 2 LB 4 8 8 16
1 2 2 4 3 ¥ ¥ 4 4 4 6 L 4 8 8 16
1 2 2 4 3 ¥ B 4 4 4 6 L 4 8 8 16
1 2 2 4 2 4 4 6 % 4 4 8 4 8 8 16
1 2 2 4 3 2 2 4 ¥ 4 4 8 4 8 8 16
1 2 2 4 3 2 L 5 ¥ 4 4 8 4 8 8 16
10 16 16 16
1 2 2 4 3 B L 5 ¥ 4 ¢ ¥ 4 8 8 16
1 2 2 4 3 2 2 4 ¥ 4 6 ¥ 4 8 8 16
5 3 3
10 12 16 24 16
1 2 2 4 3 ¥ 2 4 ¥ 5 2 1 4 8 8 16

Table B.2: class of H{é
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Pr P2 P3 P4+ Ps P6 Pr P8 P9 Pio Pir P12 P13 P14 Pis P16
1 2 2 4 3 ¥ B 4 4 P B 4 8 8 16
1 2 2 4 3 ¥ B 4 4 P B 14 g 8 16
1 2 2 4 3 W B 4 4 H 2 1 4 5 8 16
1 2 2 4 3 4 ¥ 4 4 H 2 1 4 g 5 16
1 2 2 4 2 4 4 6 5% 4 4 8 4 8 8 16
12 2 4 2 ¥ 4 5 ¥ 4 4 8 4 8 8 16
12 2 4 3 Q¥ F 4 4 P 2B 4 5 8 16
1 2 2 4 3 W B 4 4 P 2B I 4 g 8 16
1 2 2 4 3 W B 4 4 P 2B I 4 g 8 16
1 2 2 4 3 W B 4 4 P 2B I 4 g 8 16
Table B.3: class of H{l!
Pt p2 P3 P4 Ps P6 Pr P8 P9 Pio P11t P12 P13 P14 Pis P16
1 2 2 4 2 4 5 18 ¥4 L5 4 8 8 16
1 2 2 4 2 4 6 % 6 X 4 8 8 16
1 2 2 4 2 4 4 4 4 4 8 4 8 8 16
1 2 2 4 3 W B 4 4 H 2 1 4 g 5 16
1 2 2 4 3 L B 4 4 K H# 4 5 5 16
1 2 2 4 3 B B 4 4 L 2 14 g 8 16
12 2 4 3 B B 4 4 P 2B 4 5 8 16
12 2 4 3 QW B 4 4 P 2B I 4 g 8 16
1 2 2 4 3 W B 4 4 P 2B o4 g 8 16
1 2 2 4 3 W B 4 4 P 2 I 4 g 8 16
Table B.4: class of H{Y
Pt P2 pP3 P4 Ps Pe Pr P P9 Pio Pin P12 P13 P14 P15 P16
12 2 4 3 W BB o4 4 P 2 B 4 8 8 16
12 2 4 3 2 £ 4 4 P H L 4 8 8 16
12 2 4 3 ¥ B o4 4 P H L 4 8 8 16
1 2 2 4 2 4 4 4 4 4 4 8 4 8 8 16
12 2 4 3 W BB 4 4 4 M I 4 5 8 16
1 2 2 4 2 4 4 4 4 4 6 ¥ 4 8 8 16
12 2 4 3 2 8B 4 4 P H L 4 8 8 16
12 2 4 3 ¥ B 4 4 P H L 4 8 8 16
12 2 4 3 {2 B4 o4 P 2 4 8 8 16
1 2 2 4 3 W BB 4 4 4 M I 4 5 8 16

Table B.5: class of HY(;
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Table B.6: All 34 pivot patterns for Hig
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pPr P2 pP3 P+ P5s Pé Pr P8 P9 Pio P P12 P13 P4 P15 Pie Pir P18 P19 P20
1 2 2 4 3 L B 4 4 5 U IO 4 5 LB 2 5 10 10 20
12 2 4 3 ¥ B o4 4 L W BV S 5 5 10 5 10 10 20
1 2 2 4 3 R B 4 4 5 W W 4 B ¢ Z 5 10 10 20
12 2 4 3 W B 4 4 5 4 5 5 X ¢ 2 5 10 10 20
12 2 4 3 ¥ B 4 4 4 1 N 5 N 4 B 5 10 10 20
12 2 4 3 W B M B S H 5 5 N § 2 5 10 10 20
12 2 4 3 ¥ B o4 4 5 3 IO 4 5 5 10 5 10 10 20
1 2 2 4 3 R B 4 4 4 5 W 4 5 5 10 5 10 10 20
12 2 4 3 L 1B 4 N B IO 5 4 B 4§ 2 5 10 10 20
12 2 4 3 R B 4 4 ¥ B 5 5 B 6 T 5 10 10 20
12 2 4 3 WL B 4 X 2 N g 5 N g 2 5 10 10 20
12 2 4 3 B o4 2 B 0 L D 5 5 10 5 10 10 20
Table B.7: Class of Hi,
pr P2 p3 P4 Ps Pe Pr P8 P9 P P P12 P13 P4 Pis P16 Pir P18 P19 P20
1 2 2 4 3 ¥ B8 4 3 204 B W 4 5 L D 5 10 10 20
12 2 4 3 o1 o4 o4 4 2w LKL W 5 L W 5 10 10 20
12 2 4 3 2 B8 4 % 8 W L L 5 L D 5 10 10 20
12 2 4 3 ¥ B 4 4 2 W ¢ D 5 L 2 5 10 10 20
12 2 4 3 B 4 4 5§ L 5 5 B W 5 10 10 20
12 2 4 3 ¥ B8 4 4 5 B & 5 N ¢ 2 5 10 10 20
12 2 4 3 ¥ B 4 4 5 4 5 5 % 6 2 5 10 10 20
12 2 4 3 W1 o4 3 14 6B H 5 5 5 10 5 10 10 20
12 2 4 3 W 18 3 6 365 L0 4 5 5 10 5 10 10 20
12 2 4 3 B 18 4 4 H 0 B F 5 5 10 5 10 10 20
1 2 2 4 3 W B8 4 3% I 4 g 5 5 5 10 5 10 10 20
12 2 4 3 W1 o4 8 %N L 5 4 5 5 10 5 10 10 20
Table B.8: Class of HZ,
b1 p2 pP3 P+ P5s P6 Pr P8 P9 Pio Pur P12 P13 P4 P15 Pie Pir P18 P19 P20
12 2 4 3 B LB o4 $ B/ 5 B 2 5 5 10 5 10 10 20
12 2 4 3 W B o4 4 ¥ N 5 5 N 2 5 10 10 20
12 2 4 3 ¥ B o4 4 5 BI04 5 5 10 5 10 10 20
1 2 2 4 3 B B 4 4 4 % 5 4 B ¢ L 5 10 10 20
12 2 4 3 L1 o4 M 4 IH B0 5 5 5 J0 5 10 10 20
12 2 4 3 R B 2 5 X G B 2 5 5 10 5 10 10 20
12 2 4 3 W B o4 4 LB A0 4 B 4 2 5 10 10 20
12 2 4 3 B 4 4 4 W 3 5 N 6 B 5 10 10 20
1 2 2 4 3 R B8 4 4 4 5 W 4 B ¢ Z 5 10 10 20
12 2 4 3 L B 4 4 2 &GO D 5 5 5 10 5 10 10 20
12 2 4 3 R B 4 P 5 2 O B 5 5 10 5 10 10 20
12 2 4 3 W B o4 L 5 4 L W5 5 0 5 10 10 20

Table B.9: Class of Hj,
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