NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

INTERDISCIPLINARY MASTERS PROGRAM IN MICROELECTRONICS

MSc THESIS

Design and Implementation in FPGA Technology of a
High-Performance Block Scan and Map to Symbols
Module for CCSDS-122 Image Data Compression

Maria K. Taipliadou

Supervisors: Antonios Paschalis,Professor
Nektarios Kranitis, Assistant Professor

ATHENS

JANUARY 2022

EONIKO KAI KAIMOAIZTPIAKO MNMANENIZTHMIO AOGHNQN

ZXOAH OETIKQN EMIZTHMON
TMHMA NMAHPO®OPIKHZ KAI THAEMIKOINQNIQN

AIATMHMATIKO NMPOrPAMMA METANTYXIAKQN ZMOYAQN 2TH
MIKPOHAEKTPONIKH

AINAQMATIKH EPTrAzIA

2xediaon kal YAotroinon og TexvoAoyia FPGA piag
Movadag BSMS YynAng Amédoong cuppwva JE To
AlaoTnuiké Mpdétutro CCSDS-122 upTtrieong Asdopévwy
Eikévag

Moapia K. TaitrAiadou

EmiBAémovreg: Avtwvng MaoxdAng, Kabnyntng
Nektdpilog Kpavitng, AvatrAnpwTtig Kadnyntrig

AOHNA

IANOYAPIOZ 2022

MSc THESIS

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

Maria K. Taipliadou
S.N.: MM305

SUPERVISORS: Antonios Paschalis,Professor
Nektarios Kranitis, Assistant Professor

January 2022

AINAQMATIKH EPTAZIA

2xediaon kai YAotroinon o€ Texvohoyia FPGA
piag Movdadag BSMS YwnArg Amédoong
oUpwva pe 1o Alaotnuiké Mpotutmo CCSDS-122
2upuTrieong Aedopévwyv Eikovag

Moapia K. TaitrAiddou
A.M.: MM305

EMIBAEMONTEZ: Avtwvng NMaoxdaAng, Kabnyntig
Nektdpilog Kpavitng, AvatrAnpwtig Kadnyntrig

lavoudplog 2022

ABSTRACT

Remote sensing is recognized as a cornerstone monitoring technology. The
latest high resolution and high-speed space-borne imagers provide an explosive
growth in data volume and instrument data rates in the range of several Gbps.
This competes with the limited on-board storage resources and downlink
bandwidth, making image data compression a mission-critical on-board
processing task.

The Consultative Committee for Space Data Systems (CCSDS) issued in 2005 a
recommended standard for Image Data Compression (IDC) (CCSDS-122.0-B-1)
which defines a transform-based 2D image data compression algorithm designed
specifically for use on-board in a space platform or a payload. An extension of
this standard, CCSDS-122.0-B-2, was issued in 2017 to define all necessary
modifications to support a recommended standard for Spectral Preprocessing
Transform for Multispectral and Hyperspectral Image Compression. The new
issue supports images of higher dynamic range and for larger word sizes.
Another recommended standard, CCSDS-122.1-B-1, was issued concurrently in
2017 to define the dedicated spectral preprocessing transforms.

In this master thesis is introduced a new high-performance architecture and
implementation in FPGA technology for a key-part of the CCSDS-IDC algorithm,
the submodule of the Bit Plane Encoder which implements the Block Scan and
Map to Symbols process, hereafter termed BSMS, is described. The proposed
architecture implementation is based on the standard’s existing parallelism, while
at the same time introduces new attributes of speed, since it can process one
data sample per one clock cycle and thus outperforms previous implementations
that required more clock cycles.

SUBJECT AREA: Digital Design, FPGA hardware accelerators

KEYWORDS: Hardware Accelerator, FPGA, VHDL, Image Data Compression,
CCSDS, Bit Plane Encoder

NEPIAHWH

H tnAemokdmmon atmoTeAei akpoywviaio AiBo Twv oUyXpovwyv TEXVOAOYIWV
TTapaTthpnong. Ta ouyxpova dIaoTNUIKA OTITIKA Opyava aTtreikéviong uwnAng
avadAuong kal uwnAAg TaxutnTag odnyouv OE EKPNKTIKA au¢non Tou OyKou
oedopévwy Kal eTIRAGAouUV puBuoug dedopévwyv TNG TAENG Twv apkeTwyv Gbps.
AuTO €pxeTal o€ avTiBEOn ME TOUG TTEPIOPICUEVOUG TTOPOUG QATTOBNKEUONG
OedOUEVWYV €V TITAOEI KAl TO TTEPIOPIOPEVO €UPOG CWvng KaTepXOPevng Ceuéng,
KaBIoTWVTAG TNV OUUTTiEON O&dOUEVWY €IKOVOG MIO BACIKA UTTOOTNPIKTIKA
TEXVOAOyia eTTeEEpyaTiag DEDOUEVWV €V TITHOEL.

H ZupBouleutiky EmTpot yia ZuoTthpara Alaotnuikwy Aedouévwy (CCSDS)
e€édwoe 10 2005 £va OUVIOTWHPEVO TTPOTUTTO YIA TN CUUTTIEON OEOOPEVWV EIKOVOG
(Image Data Compression — IDC) (CCSDS-122.0-B-1), to otoio opilel €vav
aAyop1Buo oupTrieong dedopévwy 2D gikOvag TTou BacideTal O€ JETAOXNMATIOUO,
oXedlaopévo €IBIKA yIa XPAOoN €V TITHOEI 0€ OIACTNUIKA TTAATQOPHA | WPEAINO
@optio. Mia emékTaon autou Tou TTpoTuTTou, CCSDS-122.0-B-2, €kd6OnKe TO
2017 yia va opioTOUV OAEC OI ATTAPQITNTEG TPOTTOTTOINCEIG VIO TNV UTTOOTHPIEN
€EVOG OUVIOTWHEVOU TIPOTUTTOU YIO TOV UETAOYXNMOTIONO QACHATIKAG
TIPOETTECEPYQTIAC YIa TTOAUQOCHATIKA KOl UTTEPQACUATIKI) CUuTTieon €ikovag. H
0euTepn €kdOON UTTOOTNPICEl EIKOVEG UWNASTEPOU BUVAMIKOU €UPOUG Kal yid
MEYaAUTEPa peyEBN Aé€ewv. 'Eva dAAo ouvioTwuevo TpdTuTTo, To CCSDS-122.1-
B-1, €kdb6Onke Tautdxpova 10 2017 yia TOV KABOPIOPO TwV ATTOKAEIOTIKWV
QACUATIKWY UJETATYXNMUATIOPWY TTPOETTECEPYQTIAC.

2TNV TTapoucda OITTAWMATIKI €PYOOia, €I0AYETAI HIO VEQ QPXITEKTOVIKI) UWNANG
ammodoong Kal N avriotolxn UAotroinor, Tng o€ TexvoAoyia FPGA piag
uttopovadag kAeidi Tou aAyopibuou CCSDS-IDC, tng utropovadag Ttou Bit Plane
Encoder trou rpayparotrolei Tn diadikacia Block Scan and Map to Symbols, tTou
oTnv ouvéxela 6a ovopdalouue povada BSMS. H véa uhotroinon Baagietal €Triong
oTnNV €KPETAAAEUON TnNG TTapaAAnAiag Tou TTPOTEIVOPEVOU OAyopiBuou, evw
TAUTOXPOVA ETTITUYXAVEI TNV ETTECEPYQTia VOGS BeiyuaTog OEQOUEVWV VA KUKAO.

OEMATIKH NMEPIOXH: Wnoiakn Zxediaon, EmiTaxuvtég uhikou oe FPGA

AEZEIZ KAEIAIA: Emrtaxuviig uAikou, FPGA, VHDL, ocuptrieon €ikévag,
CCSDS, Bit Plane Encoder

Agiepwuévn arov marépa pou Kwvaravrivo TaimAiadn

TTOU XWPIC EKEivoV deV Ba Nouv 6w ONuEPQ.

EYXAPIZTIEZ

©a nBeAa va euxapioTiow 1oV K. Avtwvn MNaoxdaAn, kadnyntr you oto MeTaTrTu-
XI0KO Kal PETETTEITA ETTIBAETTOVTA KAONYNTH You oTnv AITTAWMPATIKA £pyacia, TTou
MOu €0WOE TNV EUKAIPIA VO CUPUETAOXW O€ €va €PEUVNTIKO project Kal e
EUTTIOTEUTNKE PE €VA KPIOIUO KOUMATI auTou. AKOpa, BEAW va EUXOPIOTACW TOV
oUVTPOQO Jou lMNavvn TTOU PE TNV OTACT TOU Kal TIG TTOAUTINEG CUNPBOUAEG TOU poU
£€dwoe TN OTRPIEN TTOU XPEIACOUOUV WOTE VA OAOKANPWOW TNV TTAPOUCa OOUAEIA.
TéNOG BEAW va guxapioTACOwW Toug dUO TTUAWVEG TNG (WG POU, TOUG YOVEIG JoU
KwvaoTavtivo kai MepioTépa, TTOU PJOU ETTETPEWPAV VA AVOIEw Ta GTEPA PJOU Kal VO
TETALW, TAvTa €AeUBepn va opiw Tnv KATeUuBuvon Kal TTIPOCPEPOVTAG
TTapAAANAa atrAdxepa Tn OoTAPIEN TOug o€ OAO TO DUOKOAO auTdv dpdpuo.

CONTENTS

O 23
1. INTRODUCTION......ccoi o iiiiiiieeeciress e s s s s s s s s s s s s s ss s s s s s s s s s ss s s s s s s s s s s s s s s s s s s e s nnnnnnnns 25
2. CCSDS STANDARD OVERVIEW AND RELATED WORK...........ccccvvviieenn. 27
2.1 COMPIESSOTF OVEIVIEWcooieeiiiiiiiiiiiie e et e ettt et e e e e e se bt ee e e e e e e e e sitaraeeeaeeessanrsseeeeaeeeeaansrsneees 27

2.1.1 Bit Plane ENCOUEr OVEIVIEW.........cciiiiiiiiiiiiii et 28

2.1.1.1 Block Scan and Map to SYmMDbOIS.........c.cueeeiiiiiiiiiieee e 32

2.1.1.1.1 AC coefficient words coding stages 1-3cccooiiiiiiiiiiiiieeee e, 33

2.1.1.1.2 Mapping WOrds tO SYMDOIScuuiiiiiiiiiiiiiiiiirieiireseeeeeeesesreseeeeeeeeeseeressrarararan——. 35
2.2 Related WOTKo 38
3. PROPOSED ARCHITECTURE.........ooiitecciinirrrrrrsesssss s s s s 39
3.1 Architecture of the BSMS ... e 39
3.2 Pipeline arChiteCtUreoiiiiiiie e 42
3.3 BIOCK SCAN @XAMPIEooooiiiiiiiiiiiiiieeeceeeeeee ettt et e eeeeaeeeesaeeeeesaaesaaeseseaasssnreraressrnnnrnrnres 45
4. BSMS VERIFICATION AND VALIDATION STRATEGYccccevvvvviiiiirennnne 57
5. EXPERIMENTAL RESULTS.....cccveueeeereeneesresssssesssssssssssssssssassassassassassassasens 58

CONCLUSIONSooiietrr s s s ann e e 59

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:

LIST OF FIGURES

Block Diagram of the Compressor for 3D Images.............cccceeeeee. 27
Block Diagram of the Compressor for 2D Images..........ccevveeevvvnnnnnn. 28
Schematic of Wavelet-Transformed Image...........cccccoeeeeieiiiiiiinnnnnnnn. 28
Overview of the Structure of a Coded Segment...............cccoeevrnnnnnnnn. 31
Coded Bit Plane Structure for a Coded Segmentceevvnnnnnnnn. 32
Block and ports of the BSMS module ..., 42
Block Diagram of BSMS design without pipeline (1/2)...................... 43
Block Diagram of BSMS design without pipeline (2/2)..................... 43
Block Diagram of BSMS design with pipeline (1/2)...............c..c.o. 44
Block Diagram of BSMS design with pipeline (2/2)........................... 44

LIST OF TABLES

Table 2.1: Within-Subband Coordinates for Coefficients in a Single Family 29
Table 2.2: Subband of Origin for AC Coefficientscccoeeei 29
Table 2.3: Summary of Maximum Word Lengths and Impossible Word Values .36
Table 2.4: Integer Mapping for Two-Bit Wordsceiiiiiiiiiiiiei e, 36
Table 2.5: Integer Mapping for Three-Bit Words.............cccoooiiiiiiiiiiiiiiieeeeee, 37
Table 2.6: Integer Mapping for Four-Bit Words.............cccoiiiiiiiiiiiiici e, 37
Table 3.1: Ports’ name and function for the BSMS modulec..oooooeeeee. 41
Table 3.2: Coefficient values for block example.............cccoooiiiiiiiiiiiiee 45
Table 3.3: Coefficient and bitplane values for Parents and Children................... 46
Table 3.4: Coefficient and bitplane values for Grandchildren (1/3) 46
Table 3.5: Coefficient and bitplane values for Grandchildren (2/3) 47
Table 3.6: Coefficient and bitplane values for Grandchildren (3/3) 47
Table 5.4.1: Implementation statistics targeting XC7Z045 FPGA. 58

Table 5.4.2: Comparisons with the existing implementation targeting the same
XCTZOAS FPGA .ottt e e e et e e e e e e e e e eeeeaana e e e e eeeeeeeenes 58

PREFACE

This thesis was conducted at the Digital Systems and Computer Architecture
Laboratory (DSCAL) of the Department of Informatics and Telecommunications,
of the National and Kapodistrian University of Athens (NKUA). It was carried out
within the Space Technology Group in the context of the research project
SISYFOS.

This research has been co-financed by the European Union and Greek national
funds through the Operational Program Competitiveness, Entrepreneurship and
Innovation, under the call RESEARCH — CREATE — INNOVATE (project code:
T1EDK-04298).

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

1. INTRODUCTION

The huge amounts of data generated from latest and future high-resolution, high-
speed imagers in Earth Observation (EO) satellite missions, make image data
compression one of the most challenging on-board payload data processing
tasks [1]. On-board data compression is the key to overcome the telemetry rates
bottleneck and hardware implementation of on-board data compression is the
key to address the data-rate challenges of today’s and future remote sensing
payloads. On-board processing of payload data is a challenging task since data-
rates and data volumes produced by remote sensing payloads increase while the
available downlink bandwidth is comparatively stable [2].

Source coding for data compression is a method utilized in data systems to
reduce the volume of digital data to achieve benefits in areas including, but not
limited to,

a) reduction of transmission channel bandwidth
b) reduction of the buffering and storage requirement
c) reduction of data-transmission time at a given rate.

In 2005, the Consultative Committee for Space Data Systems (CCSDS) issued
the Image Data Compression (IDC) standard CCSDS 122.0-B.1 [3]. CCSDS-IDC
defines a particular transform-based image data compression algorithm
applicable to many types of spaceborne instrument payloads. The recommended
standard provides both lossless and lossy (both rate and quality limited)
compression, suitable for monoband two-dimensional (2D) images.

This Recommended Standard addresses image data compression, which is
applicable to a wide range of space-borne digital data, where the requirement is
for a scalable data reduction, including the option to use lossy compression,
which allows some loss of fidelity in the process of data compression and
decompression and provides a compression method that ensures that the
distortion in the reconstructed image does not exceed user-specified limits.

This Recommended Standard applies to data compression applications of space
missions anticipating packetized telemetry cross support. In addition, it serves as
a guideline for the development of compatible CCSDS Agency standards in this
field, based on good engineering practice.

The purpose of this Thesis is to go one step further than the existing
implementation of the established Recommended Standard for the image data
compression algorithm. The submodule that was implemented for this project can
be applied for either two-dimensional digital spatial image or and digital three-
dimensional image data from payload instruments, such as multispectral and
hyperspectral imagers.

M. Taipliadou 25

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

This thesis is organized as follows: In Chapter 2, a brief description of the
CCSDSIDC algorithm is presented along with the focus of this thesis, the Bit
Plane Encoder. Related work is also presented. In Chapter 3, the proposed
architecture for the BSMS is introduced. The verification and validation strategy
of the BSMS design is described in Chapter 4. Experimental implementation
results and comparisons are provided in Chapter 5, while Chapter 6 concludes
the thesis.

M. Taipliadou 26

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

2. CCSDS STANDARD OVERVIEW AND RELATED WORK

2.1 Compressor overview

This work is an implementation of the CCSDS 122.0-B-2 standard for Image
Data Compression [4]. This standard proposes the Bit Plane Encoder as the
encoder that precedes the Entropy encoding process. The Bit Plane Encoder can
be used for both simple (2D) and Multispectral/Hyperspectral (3D) image
compression.

The standard for Multispectral/Hyperspectral (3D) image compression extends
the (two-dimensional) CCSDS Image Data Compression standard by providing
an effective method of encoding three-dimensional image data. The input to the
compressor is a three-dimensional image that has signed or unsigned integer
sample values [5]. The compressed image output from the compressor is an
encoded bitstream from which an exact or approximate reconstruction of the
input image can be recovered.

The compressor consists of two main functional parts, depicted in figure 2.1: a
spectral transform, and a set of 2D encoders.

20 Encoder
Upshift Downshift
Sta_ge it_a_ge 2D Encoder
// N Spectral f \- -
—= | 5| Interleaving

AN | Transform AN —>| 20 Encoder l—"' '

1 - 1 1 — 1 1

1 1 1 1 1

i | : : [] :

1 1 1 1 1

! ! ! ! 2D Encoder !

1 1 1 1 1
Input ' Transformed ' Compressed
Image i Image i Image

. Downshifted
Upshifted
IantSIr:waege Transformed
Image

Figure 2.1: Block Diagram of the Compressor for 3D Images

The purpose of the spectral transform is to exploit the similarities between the
spectral bands of an image, creating a transformed image that it is more
efficiently compressed by the 2D encoders. Each transformed band is
independently compressed by a 2D encoder. In practice, an implementation of
the 2D encoder may be reused multiple times to accomplish this task. Two
additional minor functional stages are also included, named upshift stage and
downshift stage, with the purpose of adapting the bit depth before each of the
two main functional parts.

The compressed image, consists of a header that encodes image and
compression parameters followed by a body that is produced by an entropy
coder, which losslessly encodes the mapped quantizer indices.

M. Taipliadou 27

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

A standard specifically for multispectral and hyperspectral (three-dimensional)
lossless image compression has not been developed. Rather than developing a
new standard, an existing two-dimensional image compression standard is used.
Candidates include the wavelet-based image compression standards JPEG2000
and CCSDS 122.0-B-2, and the predictive-based JPEG-LS standard, all of which
are capable of providing lossless image compression. For this project the
CCSDS 122.0-B-2 standard was used.

Image
Data

Encoded
Data

Figure 2.2: Block Diagram of the Compressor for 2D Images

The CCSDS 122.0-B-2 Image Data Compression (CCSDS-IDC) algorithm
consists of two functional parts: a) a Discrete Wavelet Transform (DWT) that
performs decorrelation and b) a Bit Plane Encoder (BPE) which encodes the
decorrelated data [4].

2.1.1 Bit Plane Encoder overview

Following the DWT, the Bit Plane Encoder (BPE) processes wavelet coefficients
in groups of 64 coefficients referred to as blocks. An example of a block is
illustrated in Figure 2.3 as comprised of shaded pixels. A block loosely
corresponds to a localized region in the original image.

parent p;
DC component] E """""" ch|ld[en o HEREnS
T [Eﬂ _________________ grandchildren &g
o, [or] e o
LHP HE P2 [HE e [HoslHos
.: 4 E family F
L Ciy Gl
LH;‘ “‘, HHQ‘.". “‘.‘. HLI
G, s
Hiol i Hoft ;
it =0 family
N Hsf™aq -
""" Family F,
LH;, HH,

Figure 2.3: Schematic of Wavelet-Transformed Image

M. Taipliadou 28

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

Information pertaining to a block of coefficients is jointly encoded by the BPE. A
block consists of a single coefficient from the LL3 subband, referred to as the DC
coefficient, and 63 AC coefficients. The AC coefficients in a block are arranged
into three families,Fo,F1 and F2. Figure 2.3 illustrates a single block of coefficients
and the family structure.

Each family Fiin the block has one parent coefficient, pi, a set Ciof four children
coefficients, and a set Gi of sixteen grandchildren coefficients. The grandchildren
in family Fiare further partitioned into groups numbered j=0,1,2,3, denoted Hij, as
illustrated in Figure 2.3. This structure is used for jointly encoding information
pertaining to groups of coefficients in the block.

A wavelet coefficient is identified by its coordinates within its subband. Thus
coordinates (r, ¢) indicate the wavelet coefficient in row r, column ¢ within the
subband, with the upper left pixel in a subband having coordinates (0,0).

The DC coefficient for each block is a single coefficient from the LL3 subband.
The coordinates for the other coefficients in the block can be determined from the
coordinates of the DC coefficient. For a block with DC coefficient with
coordinates (r, ¢) within the LL3 subband, Table 2-1 lists the coordinates for the
AC coefficients, within their respective subbands of origin.

Table 2.1: Within-Subband Coordinates for Coefficients in a Single Family

Coefﬁcient_ Gr‘oup in Coordinates
Family i
Parent, p; (r,c)
] (2r, 2c), (2r, 2c+1),
Children group, C; (2r+1, 2¢), (2r+1, 2¢+1)
. (4r, 4c), (4r, 4c+1),
Grandchildren group, Hg (4r+1, 4¢), (4r+1, 4c+1)
_ (4r, 4c+2), (4r, 4c+3),
Grandchildren group, Hi (4r+1, 4c+2), (4r+1, 4c+3)
_ (4r+2, 4c), (4r+2, 4c+1),
Grandchildren group, Hi (4r+3, 4¢), (4r+3, 4¢c+1)
_ (4r+2, 4c+2), (4r+2, 4c+3),
Grandchildren group, Hx (4r+3, 40+2), (4r+3, 4c+3)

Table 2.2: Subband of Origin for AC Coefficients

Family 0 Family 1 Family 2
Parent HL; LH, HH,
Children HL- LH- HH-
Grandchildren HL, LH. HH,

M. Taipliadou 29

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

Blocks shall be processed by the Bit Plane Encoder consecutively in the raster
scan in the order in which their corresponding DC coefficients occur in LL3: row
by row, each row being processed from left to right.

A segment is defined as a group of S consecutive blocks. Coding of DWT
coefficients proceeds segment-by-segment and each segment is coded
independently of the others.

A segment of blocks is further partitioned into gaggles. Each gaggle consists of
16 blocks, except for possibly the last gaggle in a segment, which contains S
mod 16 blocks when Sis not a multiple of 16.

An AC coefficient is represented using the binary representation of the
magnitude of the coefficient, along with a bit indicating the sign when the
coefficient is nonzero.

BitDepthAC_Blockm denotes the maximum number of bits needed to specify the
magnitude of any AC coefficient in the m block. For each segment, the BPE
computes BitDepthAC, which denotes the maximum value of BitDepthAC_Blockm
for the segment.

The BPE successively encodes bit planes of coefficient magnitudes in a
segment, inserting AC coefficient sign values at appropriate points in the coded
segment data stream. Bit plane b consists of the bth bit of the two’s-complement
integer representation of each DC coefficient, and the bt bit of the binary integer
representation of the magnitude of each AC coefficient. Here, bit plane index b=0
corresponds to the least significant bit. The BPE proceeds from most-significant
bit to least significant bit, thus b decreases from one bit plane to the next,
beginning with b= BitDepthAC-1, and ending with b=0.

The structure of a coded segment is shown in Figure 2.4(a). Within a coded
segment, header information is encoded. Then quantized DC coefficients from
the blocks are encoded. Then AC bit depths are encoded. Then DWT coefficient
blocks are encoded, one bit plane at a time, proceeding from the most significant
to the least significant bit plane. The coding of a single bit plane is performed in
several stages, and the resulting order of encoded data is illustrated in Figure
2.4(b). E.g., parent coefficients are coded in stage 1 for all blocks of the segment
before encoding child coefficients in stage 2. The resulting encoded bit stream
constitutes an embedded data format that provides progressive transmission.

M. Taipliadou 30

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

(a) With All Bit Planes

Segment Header (see 4.2)

Initial coding of DC coefficients (see 4.3)
Coded AC coetficient bit depths (see 4.4)
Coded bit plane b = BitDepthAC-1 (see 4.5)
Coded bit plane b = BitDepthAC-2 (see 4.5)

Coded bit plane b =0 (see 4.5)

(b) Within One Bit Plane
Block 0 Block 1 Block S-1

stage 0 || stage 0 p» ----—» stage 0 |—

- stage 1 | stage 1 | --—-—*| stage 1 [

-»| stage 2 || stage 2 | ----=—s| stage 2 |

| stage 3 | stage 3 | --=-—*{ stage 3

| stage 4 | stage4 > --—-—> stage 4 [—

Figure 2.4: Overview of the Structure of a Coded Segment

The Bit Plane Encoder, for the AC coefficients coding, mainly consists of three
processes. First the scan of a block takes place which results in a sequence of
words. The words are generated from the bitplane bits, starting with bitplane
band proceeds per bitplane until bitplane 0 is reached. Afterwards, these words
are mapped to variable length binary words, called symbols, according to length.
Next, a subset of these words is further entropy coded using variable-length
binary codes, again according to length. The first two processes form the BSMS
(Block Scan and Map to Symbols).

M. Taipliadou 31

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

2.1.1.1 Block Scan and Map to Symbols

Coding of a bit plane is performed in stages numbered 0-4. The coded bits
produced at the stages for each block are interleaved, as illustrated in Figure
2.4(b) and Figure 2.5. Thus, a coded bit plane first consists of all the stage 0 bits
(if any) in the segment, then all of the coded stage 1 bits in the segment, and so
on, finishing with all of the encoded stage 4 bits in the segment. This produces
an embedded bit string with information from the highest bit plane of all S blocks
in the first part of the output bit string followed by information from lower bit
planes, and allows progressive decoding of the coded string. This improves
image reconstruction quality when the coded bit sequence is truncated.

Stage 0 bits from each block in the segment (if
any)

Coded stage 1 from block 0, 1, ..., S-1

Coded stage 2 from block 0, 1, ..., $-1

Coded stage 3 from block 0, 1, ..., S-1

Coded stage 4 from block 0, 1, ..., S-1

Figure 2.5: Coded Bit Plane Structure for a Coded Segment

Stage 0 for a block consists of at most a single bit, which is simply the bt most
significant bit of the two’s-complement representation of the DC coefficient.

The remaining stages (1-4) encode AC coefficient bits. The stage in which bits
from AC coefficients in a bit plane are coded depends on the type of the AC
coefficient at the bit plane, which we now define. At bit plane b, the type of an AC
coefficient x, denoted t»(x), has one of the following values:

—to(x) = 0 if |x] < 2, (x is not due for selection at this bit plane);
—to(x) = 1 if 26< |x| < 2b+1, (x is due for selection at this bit plane);
—to(x) = 2 if 2p+1< |x|, (x has already been selected at a previous bit plane);

—to(x) = -1 if b< BitShift(l"), (x must be zero at this bit plane due to subband
scaling).

Here, I denotes the subband containing x. Thus, during bit-plane encoding, each
AC coefficient typically proceeds from type 0 to 1, to 2, to -1. For a set of
coefficients W, we define tmax(W¥) as the maximum of the coefficient types in V.

An AC coefficient x is said to be selected at bit plane b if t(x) = 1. l.e., the
‘selection’ of a coefficient marks the first bit plane where a non-zero magnitude
bit is encoded for the coefficient. Note that fs(x) = 1 if the bth most significant
magnitude bit of x is equal to ‘1’ and all more significant magnitude bits of x are
equal to ‘0.

The type of a coefficient determines the stage when coding of a coefficient bit
takes place. When an AC coefficient x is of type 0 or 1 (implying tv+1(x)=0), the btn

M. Taipliadou 32

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

most significant magnitude bit of x is coded in stages 1-3. Otherwise, the bit is
included, uncompressed, in stage 4 if x is of type 2, or not encoded at all when x
is of type -1.

In stages 1-3 of BPE encoding bit plane b, the bt magnitude bit of each AC
coefficient x such that t»+1(x)=0 is encoded. The bt magnitude bits of the parent
coefficients are coded in stage 1, the children in stage 2, and the grandchildren in
stage 3. Each of these stages also includes coded bits indicating the sign of each
coefficient x for which ts(x)=1. The coding in stages 1-3 makes use of the family
structure to group together AC coefficients for entropy coding.

The coding performed in stages 1-3 for a block consists of two parts. First, a
sequence of variable length binary words are defined which completely describe
the bits to be encoded in these stages. Next, a subset of these words are further
entropy coded.

Stage 4 of coding consists of the bt magnitude bit of each AC coefficient x with
tv(x)=2. These bits are included in the coded data stream uncompressed.

2.1.1.1.1 AC coefficient words coding stages 1-3

The bits encoded in stages 1-3 for a block can be determined by a sequence of
words, as described below.

In addition to the sets Ci, Gi, Hj, P is defined as the list of parents in the block:
P ={po, p1, p2}.
The list of descendants in family i, denoted D;, is defined as
Di = {Ci, Gi}.
The list of descendants in a block, denoted B, is defined as
B = {Do,D1,D2}.
{A, B} denotes the concatenation of the lists A and B.

A shorthand notation for certain binary words that describe information about bit
plane b for a list of coefficients W is defined as follows:

—let typesp[W] denote the binary word consisting of the bth magnitude bit of each
coefficient x in ¥ such that t»(x) equals 0 or 1.

—let signsbs(W) denote the binary word consisting of the sign bit of each coefficient
x in W such that t»(x) = 1, with a sign bit of ‘1’ for negative coefficients and ‘0’ for
nonnegative coefficients.

—given a list of type values A={Ao,A1,A2, ..., A}, let tword[/\] denote the binary word
consisting of the sequence of type values Aiin A that are equal to 0 or 1.

Any of these words can be null (i.e., have length zero).

M. Taipliadou 33

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

The list P shall be ordered P = {po,p1,p2}, while the ordering on the lists Ciand Hj
shall be determined by the order in which their member coefficients’ coordinates
are listed in Table 2.1.

The bth magnitude bits for all AC coefficients that are type 0 at bit plane b+1 (i.e.,
not selected before the current bit plane) shall be communicated to the decoder
by joining them to form binary words associated with each data type (parent,
child, grandchild):

—typeso[P]
—typesp[Ci] for i= 0, 1, 2; and
—typeso[Hij] fori= 0,1, 2,j=0,1, 2, 3.

At early bit planes, many sets of coefficients in a block tend to all be of type 0,
and thus many of these words are initially all zeros. To effectively encode in this
situation, the BPE shall make use of the following transition words to indicate
when groups of coefficients at a lower depth are all Type O:

—trans = null, if trane= 1 at any more significant bit plane, tword[{tmax(B)}],
otherwise.

—trano = tword[{tmax(Di) : i=0,1,2, such that tmax(Di)#1 in all more significant bit
planes}].

—tranc = tword[{tmax(Gi) : i=0, 1, 2, such that fmax(Di)>0 in current or any more
significant bit planes }].

—tranni = tword[{tmax(Hio),fmax(Hi1),tmax(Hi2),tmax(Hi3)}] for i= 0,1,2.

At bit plane b, the BPE shall use the following sequence of words, generated in
three stages, to update all of the AC coefficients in the block that were Type 0 at
the previous bit plane:

a)Stage 1 (parents):

typess[P],signso[P].

b)Stage 2 (children):

1)trans

2)trano, if trans+0 and tmax(B)#-1

3)typess[Ci] and signss[Ci] for each i such that tmax(Di)>0 in current or any more
significant bit planes.

c)Stage 3 (grandchildren):

If trans = 0 or tmax(B) = -1, then stage 3 is unnecessary and shall be omitted.
Otherwise stage 3 consists of:

1)tranc

2)tranni, for each i such that tmax(Gi)#0, -1

M. Taipliadou 34

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

3)typesn[Hj] and signss[Hj] for each i such that tmax(Gi)#0, -1 and each j such that
tmax(Hij)#0, -1.

All of the words generated in the above stages are variable length (including the
null word).

Words typess|[P], typesb[Ci], typess[Hi], tranp, tranc, tranti shall be entropy coded,
i.e., each shall be replaced with a corresponding variable-length codeword,
whenever such a word has a length of at least 2 bits.

The sign bit words are not coded further, because AC coefficients are generally
positive and negative with about equal probability. The trans word is always, at
most, one bit in length and is never entropy coded.

Stage 4 Coding

In stage 4 of coding, the bth magnitude bit of each AC coefficient x with type
tv(x)=2 shall be included in the output bit stream.

For each block, the output bit string shall consist of the bt magnitude bit of type 2
coefficients, in the following order:

—pi, for each /= 0,1,2

—members of Cj, for each /= 0,1,2

—members of Hj, for each /= 0,1,2, and each j= 0,1,2,3.

Members of the sets Ciand Hijjshall be processed in the order listed in Table 2.1.
No bits shall be coded in stage 4 for AC coefficients x not of type 2 (t»(x) # 2).

The resulting strings for all blocks in the segment shall be concatenated to
produce the entire stage 4 output string for the coded segment.

2.1.1.1.2 Mapping words to symbols

The entropy coding procedure used to encode the words typess[P], typess[Ci],
typess[Hij], tranp, tranc, transi shall be accomplished through the use of variable-
length codes. Words having a length of one bit, and sign-bit words, shall be
included in the compressed data stream without further coding. Words of length
greater than one bit shall be coded in the sequence in which they occur within
each stage with entropy coding.

Certain bit sequences cannot appear as values for certain words and this fact is
taken into account in the entropy coding process. For example, tranp can never
equal 000, because this condition would be inferred from the fact that trans=0.
Table 2.3 summarizes the maximum word lengths and impossible values for
each word that is entropy coded.

M. Taipliadou 35

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

Table 2.3: Summary of Maximum Word Lengths and Impossible Word Values

Word Mammum Length Impossible Value
(bits)
typesy[F] 3 -
types,[C] 4 -
typess[Hjl 4 0000
tranp 3 000
trang 3 -
trany; 4 0000

The process of variable-length coding of these words shall follow a two-step
process:

—first, the word values shall be mapped to integer values referred to as symbols
and then

—each integer shall be encoded using a variable-length binary codeword.

Under the mapping, two-bit, three-bit, and four-bit words shall be mapped to
symbols using table 2.4, 2.5, or 2.6, respectively.

The mapping process takes into account the fact that certain words can never be
assigned certain bit sequences, as tabulated in table 2.3 and this is reflected in
tables 2.5 and 2.6.

The entropy encoding, which is the second step, follows the outputs of the BSMS
design, since the BSMS concludes with the mapping to symbols process.

Table 2.4: Integer Mapping for Two-Bit Words

Word | Symbol
00 0
01 2
10 1
11 3

M. Taipliadou 36

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

Table 2.5: Integer Mapping for Three-Bit Words

Symbol Symbol
Word | (typess[P], typess[C], typesi[H;], (trano)
trang, trany;)

000 1 -
001 4 3
010 0 0
011 5 4
100 2 1
101 6 5
110 3 2
111 7 6

Table 2.6: Integer Mapping for Four-Bit Words

Symbol
Symbol)
Mot | opesicy | Vil
0000 10 -
0001 1 1
0010 3 3
0011 6 6
0100 2 2
0101 5 5
0110 9 9
0111 12 11
1000 0 0
1001 8 8
1010 7 7
1011 13 12
1100 4 4
1101 14 13
1110 11 10
1111 15 14

The mappings are intended to produce symbol values in order of decreasing
frequency. (l.e., the most frequently occurring word is mapped to symbol value 0,
the next most frequent to 1, etc.) This makes effective coding possible through
the entropy encoding procedure that follows, because the codewords are
arranged in order of increasing length.

M. Taipliadou 37

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

2.2 Related work

A Reconfigurable FPGA Implementation of CCSDS 122.0-B-1 Image Data
Compression took place at Digital Systems & Computer Architecture Laboratory
(DSCAL) on 2014. When the existing implementation took place, the goal was to
implement the CCSDS’s proposed algorithm for Image Data Compression, with a
Hardware Description Language, in this case VHDL. Functionality was the main
requirement and as a result the design was slow in terms of clock frequency.

The previous implementation was based on an FSMD design. That is a finite-
state machine, which controls the program flow along with the datapath inside
each state, while performing bitplane processing operations. FSMDs are
essentially sequential programs in which statements have been scheduled into
states, thus resulting in more complex state diagrams and more complex design
altogether.

In addition to the low clock frequency, the FSMD of this implementation was
configured in such a way that for each input sample or for each output the design
needed two clock cycles, thus resulting to a very slow data flow. So a need for a
faster design occurred. For this thesis a new architecture was developed that
achieves both clock frequency increase and also the need for just one clock
cycle for each sample.

This work was published at the On-Board Payload Data Compression Workshop
(OBPDC 2014) [1].

M. Taipliadou 38

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

3. PROPOSED ARCHITECTURE

3.1 Architecture of the BSMS

The implementation of the CCSDS 122.0-B-2 proposed algorithm for lossless
image data compression, that took place in this project is based on a three-
process architecture. There’s one synchronous process, where all the registers
are defined and two asynchronous processes, one that consists of the word
generation logic and one for the control signals.

The components of the BSMS design are a DRAM used as a history table, two
encoding-mapping modules and one component for the IDs assignment for each
symbol generated.

The BSMS module receives its inputs from the Segment Bitplane Buffer. The
Segment Bitplane Buffer unit implements a transformation of the block-oriented
data organization of DWT coefficients to a bit plane-oriented data organization
and provides BPE with a high-performance access to all the bitplanes of a
segment. The BSMS module fetches an already formatted bitplane for all the S
blocks of the segment concurrently from the SBB unit in one BRAM access.

As it is proposed in the standard, there are two different indicators for the number
of bitplanes that need to be processed. The BitDepthAC and the
BitDepthAC_blockm. The first refers to the maximum number of bitplanes for the
whole segment and the second to the maximum number of bitplanes for each
block. The BSMS module processes one bitplane at a time starting with
b=BitDepthAC and ending with b=1. It begins with the b=BitDepthAC bitplane for
the first block of the segment, then moves to the b=BitDepthAC bitplane for the
second block and continues until the b=BitDepthAC bitplane for the last (S) block
in the segment. Afterwards it moves on to the next biplane (b=BitDepthAC-1),
again for all the blocks in the segment, and the procedure ends at bitplane b=1
and block=S. For every bitplane processed, when the current bitplane b is larger
than BitDepthAC_blockm, the word generation procedure is omitted, as there is
nothing to be encoded for the current block.

Once the bitplane, signs and BitDepthAC_blockm have been obtained from the
segment buffer, there’s one last thing needed so that the generation of the binary
words can begin. Due to the sequence described above, in which the bitplanes
have to be processed, and because of the dependencies that occur from a
bitplane to the next in the same block, a memory is introduced into the design.
This memory is necessary so that every time the BSMS moves on to the next
bitplane, it can have access to all the needed information from the previous
bitplane for the encoding of the current bitplane for the same block.

The proposed description for the types and transition words generation is
translated into gate logic with a mask-based implementation. Next, the words and
signs along with their corresponding masks go through the encoding and
mapping components. There is one component for three-bit words (tranD, tranG,
P) and one for four-bit words (tranHO, tranH1, tranH2, CO, C1, C2, H0O0, HO1, ...,
H23). First a decision is made, according to the corresponding masks, about

M. Taipliadou 39

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

which bits are useful in the incoming words and then the useful bits are left
shifted, as most significant bits. This procedure, along with the derivation of the
word length, again according to mask, is the first step for the encoding process
with second being the mapping into symbols. The outputs of these components,
symbols, signs and their lengths, compose accordingly each output stage.

The length values of the transition and type words are then used as inputs for the
IDs generation component. There is one component instantiation for two bit
words, one for three and one for four. The outputs of these components go
through some combinatorial logic, from which another output of the BSMS is
derived (QTD_out) every time the end of a gaggle is reached. QTD_out exits the
BSMS module along with the stages outputs.

The control part of the design is implemented with a Finite State Machine. The
need for an FSM design occurred when additional cases where introduced in the
design to ensure a valid execution. The encoding part of the algorithm is done in
one state and additional states are used, before and after the encoding, to check
if the encoding can begin, to catch up with the arrival of valid data at the
beginning and to insert some needed flags between output data, to denote when
a whole bitplane has been processed for all the blocks in a segment, in the
output FIFOs and lastly a state for when the encoding is finished.

M. Taipliadou 40

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

The submodule of BSMS was developed to be integrated into the existing 2D
encoder as a Plug-and-Play module. So the original block’s ports are used. The
ports’ name and their function are presented in Table 3.1 and the block of the
BSMS is depicted in Figure 3.1.

Table 3.1: Ports’ name and function for the BSMS module

Port Name Port Function
Inputs

clk Clock signal
reset Asynchronous reset
srst Synchronous reset
en_AC Enable signal to start encoding
double_buf Address indicator for Segment buffer
seg_id Segment ID
S Number of blocks in current segment
BitDepthAC Max number of bitplanes in current

segment

AC_Bit depth_out ram

Max number of bitplanes in current
block

bp_seg buff dout

Bitplane data from Segment buffer

signs_seg_buff_dout

Signs data from Segment buffer

stage1_full, stage2_full,
stage3_full, stage4_full, QTD_full

FIFO is full signals from the output
FIFOs

Out

puts

bp_seg buff addr_bpe

Bitplane address for the Segment
buffer

signs_seg_buff_addr_bpe

Signs address for the Segment buffer

addr_p_bpe

BitDepthAC_Blockm address for the
Segment Buffer

stage1out, stage2out,
stage3out, stagedout, QTD_out

BSMS outputs

stage1_we, stage2_we,
stage3 we, stage4 we, QTD_we

Write in FIFO signals for the output
FIFOs

M. Taipliadou

Design and Implementation in FPGA Technology

of a High-Performance Block Scan and Map to Symbols Module

for CCSDS-122 Image Data Compression

clk

reset

srst

en AC

bp seg buff addr bpe[12:0]

double_buf

seg id[12:0]

signs_seg buff addr bpe[7:0]

addr_p_bpe[7:0]

5[7:0]

BitDepthAC[4:0]

stagel we

stagelout[34:0]

AC Bit depth out ram[4:0]

bp seg buff dout[62:0]

stageZ_we

stageZ2out[82:0]

signs seg buff dout[62:0] stage3 we
stagel full stage3out[248:0]
stage2_full staged _we
stage3 full stagedout[132:0]
staged full QTD we
QTD full QTD _out[47:0]

Figure 3.1: Block and ports of the BSMS module

3.2 Pipeline architecture

The first requirement for the new implementation was that the processing of each
bitplane should be completed in one clock cycle, unlike the existing
implementation in which the same procedure was done in two clock cycles. That
was taken into consideration from the beginning of the design development.

When that was succeeded and the functionality was verified, the next
requirement was for the clock frequency to increase. This was achieved by
introducing some pipelining into the design.

In Figures 3.1 and 3.2 the architecture of the BSMS before the pipelining is
presented and the architecture of the BSMS after the pipelining is presented in
Figures 3.3 and 3.4.

M. Taipliadou 42

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

next_bp_history

prev_bp_history

bitplane

signs

BitDepthAC_Block

Figure 3.2: Block Diagram of BSMS design without pipeline (1/2)

tran/types
tran/types masks o Enee
signs Symbol
= mapping
signs_masks
QTD_out

= Stages_outputs

Figure 3.3: Block Diagram of BSMS design without pipeline (2/2)

» QTD
IDs
symbol length
Enc & symbol
Symbol sign length
mapping
sign
M. Taipliadou

43

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

next_bp_history

prev_bp_history tran/types

tran/types masks

> Enc &
signs Symbol
- mapping

signs_masks

bitplane

BitDepthAC_Block |

Figure 3.4: Block Diagram of BSMS design with pipeline (1/2)

QTD
IDs

QTD_out

symbol length

Enc & Symiol =F
Symbol | sign length
mapping B

sign _.

Figure 3.5: Block Diagram of BSMS design with pipeline (2/2)

= Stages_outputs

M. Taipliadou 44

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

3.3 Block scan example

The encoding that takes place in the BSMS module, concerns only the AC
coefficients. So, for the Block Scan example below, we assume that the DC
coefficients are omitted. Lets also assume that the values of the AC coefficients,
that is parents, children and grandchildren, are the following:

Table 3.2: Coefficient values for block example

P Parents » Children
-p0 = -6 -C0=1{2,5,2,0}
pl=10 C1=1{3,-5,0,0
p2=5 C2=1{-1,3,3,0

¥ Grandchildren

_Gl = {Oa _19 69 39 _29 09 0: 43 1: _39 49 19 09 09 09 '7}
-G2={0,1,-11,13,7,5,0,1,-2,9,11, 1, -4, 0,0, -8}

—_

BitDepthAC Blockm =4

The above values, if put together one by one, with their binary equivalent
vertically, they form four bitplanes as shown in tables 3.2, 3.3, 3.4, 3.5 below.
The first row of each bitplane b is the formed bitplane. In the second (yellow) row
are the previous (b+1) types, that initially are all set to zero, and in the third (red)
row is the result of the logical OR from the previous two lines, that is the current
(b) types.

The next calculations are the ones taking place in the combinational logic right
before the symbol mapping.

M. Taipliadou 45

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

Table 3.3: Coefficient and bitplane values for Parents and Children

pl | p2 fa cl c2

n
L)

1052| |2|0 |_5|o|o_l|3|3|o

1 0 0 0
0 1 1 1
2 1 0 1 0 0 1 0 0
1 0 1 0 1 1 0 1 1
2 1 2 1 1 2 0 0 1 1 0

Table 3.4: Coefficient and bitplane values for Grandchildren (1/3)

=0

2 0 2 1 1 2 0 1 0 2 0
0 0 0 1 0 1 1 0 0 0 0 0
2 0 2 2 2 2 0 0 2 0
1 1 1 1 0 0 0 1 0

M. Taipliadou

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module

for CCSDS-122 Image Data Compression

Table 3.5: Coefficient and bitplane values for Grandchildren (2/3)

(=]
o -1 & 3 -2 4 1 -3 4 o 0 -7
H10 H11 H12 H13

0 0 0 0 0 0 0 0 0 0 0 0
0 L8] L8] o 4] L8] o 4] 0 L8] 4] 0
0 L8] 1 0 0 1 0 0 1 L8] 0 1
0] 1 la] L] 1 la] L] 1] L] 1
0 0 1 1 1 0 0 1 0 0 0 1
0 0 1 1 o] 1 2 0 2

1 0] 1 0 0] 1 1 0 1
0 1 2 2 2 2 1 2 2 L8] 4] 2

Table 3.6: Coefficient and bitplane values for Grandchildren (3/3)
=2
L+ 1 -11 13 7 1 = Y 11 -4 L4 L4 -8
H20 H21 H22 H23

L8] 0 1 1 L8] L8] L8] 1 1 L8] L8] L8] 1
L8] 0 1 1 L8] L8] L8] 1 1 L8] L8] L8] 1
0 0 0 1 1 0 0 0 0 1 0 0 0
0 0 2 2 1 0 0 2 2 1 0 0 2
L8] 0 1] 1 L8] 1 0 1 L8] L8] L8] L8]

0 2 2 2 0 1 2 2

1 1 1 1 1 0 1 1 0 0
0 1 2 2 2 1 2 2 2 2 0 0 2

M. Taipliadou 47

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

Bitplane b=4

typesb = typesb+1+ bitplaneb

Stage 1
Mask based implementation of 3-bit words typesb[P] and signsb[P]

-types3[P] = 010
-signs3[P]=_0_

Initially, typesb+1[P] = 000

typesb[P] = typesb+1[P] + bitplaneb[P] = 000 + 010 = 010
types_datab[P] = typesb[P] = 010

types_maskb[P] = typesb+1[P] = 000

signs_datab[P] = signsb[P] = 100

signs_maskb[P] = types_datab[P] ¢ /types_maskb[P] =010+ 111 = 010
typesb[P] = types_datab[P] = 010

Stage 2

Mask based implementation of 1-bit tranBb& 3-bit tranDb
-tranB3= 1

Initially, tranBb+1=0

tranB_datab= (or typesb[B]) = 1

tranB_maskb= tranBb+1=0

-tranD3= 101

Initially, tranDOb+1= 0, tranD1b+1= 0, tranD2b+1= 0
tranDO_datab= (or typesb[DO0]) = 1

tranD1_datab= (or typesb[D1]) = 0

tranD2_datab= (or typesb[D2]) = 1

tranDO_maskb= tranDOb+1+ /tranB_datab=0+1=0
tranD1_maskb= tranD1b+1+ /tranB_datab=0+1=0
tranD2_maskb= tranD2b+1+ /tranB_datab=0+1=0

Mask based implementation of 4-bit words typesb[Ci] and signsb[Ci]

M. Taipliadou 48

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

-types3[C0] = 0000

-signs3[CO0] =

Initially, typesb+1[C0] = 0000

typesb[CO0] = typesb+1[CO0] + bitplaneb[C0] = 0000 + 0000 = 0000
types_datab[CO0] = typesb[CO0] = 0000

types_maskb[CO] = typesb+1[CO0] + /tranDOb+ /tranBb= 0000 + 0000 + 0000 =
0000

signs_datab[C0] = signsb[C0] = 0000
signs_maskb[CO] = types_datab[CO0] « /types_maskb[CO] = 0000 « 1111= 0000

-types3[C1]
-signs3[C1]
Initially, typesb+1[C1] = 0000

typesb[C1] = typesb+1[C1] + bitplaneb[C1] = 0000 + 0000 = 0000
types_datab[C1] = typesb[C1] = 0000

types_maskb[C1] = typesb+1[C1] + /tranD1b+ /tranBb= 0000 + 1111 + 0000 =
1111

signs_datab[C1] = signsb[C1] = 0100

signs_maskb[C1] = types_datab[C1] ¢ /types_maskb[C1] = 0000 « 0000 = 0000

-types3[C2] = 0000
-signs3[C2] =

Initially, typesb+1[C2] = 0000
typesb[C2] = typesb+1[C2] +bitplaneb[C2] = 0000 + 0000 = 0000

types_datab[C2] = typesb[C2] = 0000
types_maskb[C2] = typesb+1[C2] + /tranD2b+ /tranBb= 0000 + 0000 + 0000 =
0000

signs_datab[C2] = signsb[C2] = 1000
signs_maskb[C2] = types_datab[C2] ¢ /types_maskb[C2] = 0000 « 1111= 0000

Stage 3

Mask based implementation of 3-bit tranbG
-tran3G =1_1

Initially, tranGOb+1= 0, tranG1b+1= 0, tranG2b+1= 0
tranGO0_datab= (or typesb[GO0]) = 1

tranG1_datab= (or typesb[G1]) =0

M. Taipliadou 49

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

tranG2_datab= (or typesb[G2]) = 1

tranG0_maskb= tranGOb+1+ /tranDOb+ /tranBb=0+0+0=0
tranG1_maskb= tranG1b+1+ /tranD1b+ /tranBb=0+ 1+ 0 =1
tranG2_maskb= tranG2b+1+ /tranD2b+ /tranBb=0+0+0=0

Mask based implementation of 4-bit tranb[HO0]

-tran3HO= 1111

Initially, tranHOOb+1= 0, tranHO1b+1= 0, tranH02b+1= 0, tranHO03b+1=0
tranHOO_datab= (or typesb[HOO0]) = 1

tranHO1_datab= (or typesb[HO01]) = 1

tranHO2_datab= (or typesb[H02]) = 1

tranHO3_datab= (or typesb[HO03]) = 1

tranHOO_maskb= tranHOOb+1+ /tranGOb+ /tranBb=0+0+0=0
tranHO1_maskb= tranHO1b+1+ /tranGOb+ /tranBb=0+0+0=0
tranHO2_maskb= tranHO02b+1+ /tranGOb+ /tranBb=0+0+0=0
tranHO3_maskb= tranHO3b+1+ /tranGOb+ /tranBb=0+0+0=0

Mask based implementation of 4-bit tranb[H1]
-tran3H1=__

Initially, tranH10b+1= 0, tranH11b+1= 0, tranH12b+1= 0, tranH13b+1= 0
tranH10_datab= (or typesb[H10]) =0

tranH11_datab= (or typesb[H11]) =0

tranH12_datab= (or typesb[H12]) =0

tranH13_datab= (or typesb[H13]) =0

tranH10_maskb= tranH10b+1+ /tranG1b+ /tranBb=0+ 1+ 0 =1
tranH11_maskb= tranH11b+1+ /tranG1b+ /tranBb=0+ 1+ 0 = 1
tranH12_maskb= tranH12b+1+ /tranG1b+ /tranBb=0+1+ 0 =1
tranH13_maskb= tranH13b+1+ /tranG1b+ /tranBb=0+1+ 0 =1

Mask based implementation of 4-bit tranb[H2]

-tran3H2= 1011

Initially, tranH20b+1= 0, tranH21b+1= 0, tranH22b+1= 0, tranH23b+1= 0
tranH20_datab= (or typesb[H20]) = 1

M. Taipliadou 50

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

tranH21_datab= (or typesb[H21]) =0
tranH22_datab= (or typesb[H22]) = 1
tranH23_datab= (or typesb[H23]) = 1
tranH20_maskb= tranH20b+1+ /tranG2b+ /tranBb=0+0+0=0
tranH21_maskb= tranH21b+1+ /tranG2b+ /tranBb=0+0+0=0
tranH22_maskb= tranH22b+1+ /tranG2b+ /tranBb=0+0+0=0
tranH23_maskb= tranH23b+1+ /tranG2b+ /tranBb=0+0+0=0

Mask based implementation of 4-bit words types[Hij] and signs[Hij]
-types3[HO0] = 0100

-signs3[HO00] = 0

Initially, typesb+1[H00] = 0000

typesb[HO0] = typesb+1[H00] + bitplaneb[H00] = 0000 + 0100 = 0100
types_datab[HOO] = typesb[HO0] = 0100

types_maskb[HO0] = typesb+1[HO0] + /tranHOOb+ /tranBb= 0000+ 0000 + 0000 =
0000

signs_datab[H00] = signsb[HO00] = 0000

signs_maskb[HO0] = types_datab[HO0O0] « /types_maskb[H00] = 0100+ 1111 =
0100

-types3[HO1] = 1100

-signs3[HO01] = 00__

Initially, typesb+1[HO1] = 0000

typesb[HO1] = typesb+1[HO01] + bitplaneb[H01] = 0000 + 1100 = 1100
types_datab[HO1] = typesb[HO1] = 1100

types_maskb[HO1] = typesb+1[HO1] + /tranHO1b+ /tranBb= 0000 + 0000 + 0000
= 0000

signs_datab[HO01] = signsb[H01] = 0010

signs_maskb[HO01] = types_datab[HO1] « /types_maskb[H01] = 1100 « 1111 =
1100

-types3[HO02] = 1000
-signs3[H02] =0__
Initially, typesb+1[H02] = 0000

M. Taipliadou 51

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

typesb[HO02] = typesb+1[H02] + bitplaneb[H02] = 0000 + 1000 = 1000
types_datab[H02] = typesb[H02] = 1000

types_maskb[H02] = typesb+1[HO02] + /tranHO2b+ /tranBb= 0000 + 0000 + 0000
= 0000

signs_datab[H02] = signsb[H02] = 0011

signs_maskb[HO02] = types_datab[HO02] « /types_maskb[H02] = 1000 « 1111 =
1000

-types3[HO03] = 0101

-signs3[HO03] = _0_0

Initially, typesb+1[H03] = 0000

typesb[HO3] = typesb+1[H03] + bitplaneb[H03] = 0000 + 0101 = 0101
types_datab[H03] = typesb[HO03] = 0101

types_maskb[HO3] = typesb +1[H03] + /tranHO3b+ /tranBb= 0000 + 0000 + 0000
= 0000

signs_datab[H03] = signb[H03] = 0000

signs_maskb[HO03] = types_datab[HO03] « /types_maskb[H03] = 0101 « 1111 =
0101

-types3[H10] =

-signs3[H10] =

Initially, typesb+1[H10] = 0000

typesb[H10] = typesb+1[H10] + bitplaneb[H10] = 0000 + 0000 = 0000
types_datab[H10] = typesb[H10] = 0000

types_maskb[H10] = typesb+1[H10] + /tranH10b+ /tranBb= 0000 + 1111 + 0000
=111

signs_datab[H10] = signsb[H10] = 0100

signs_maskb[H10] = types_datab[H10] ¢ /types_maskb[H10] = 0000 « 0000 =
0000

-types3[H11]=__

-signs3[H11]=__

Initially, typesb +1[H11] = 0000

typesb[H11] = typesb[H11] + bitplaneb[H11] = 0000 + 0000 = 0000
types_datab[H11] = typesb[H11] = 0000

M. Taipliadou 52

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

types_maskb[H11] = typesb+1[H11] + /tranH11b+ /tranBb= 0000 + 1111 + 0000
=111
signs_datab[H11] = signsb[H11] = 1000

signs_maskb[H11] = types_datab[H11] /types_maskb[H11] = 0000 « 0000 =
0000

-types3[H12] =

-signs3[H12] =

Initially, typesb +1[H12] = 0000

typesb[H12] = typesb +1[H12] + bitplaneb[H12] = 0000 + 0000 = 0000
types_datab[H12] = typesb[H12] = 0000

types_maskb[H12] = typesb+1[H12] + /tranH12b+ /tranBb= 0000 + 1111 + 0000
=111

signs_datab[H12] = signsb[H12] = 0100

signs_maskb[H12] =types_datab[H12] « /types_maskb[H12] = 0000 « 0000 =
0000

-types3[H13] =

-signs3[H13] =

Initially, typesb +1[H13] = 0000

typesb[H13] = typesb+1[H13] + bitplaneb[H13] = 0000 + 0000 = 0000
types_datab[H13] = typesb[H13] = 0000

types_maskb[H13] = typesb+1[H13] + /tranH13b+ /tranBb= 0000 + 1111 + 0000
=111

signs_datab[H13] = signsb[H13] = 0001

signs_maskb[H13] = types_datab[H13] ¢ /types_maskb[H13] = 0000 « 0000 =
0000

-types3[H20] = 0011

-signs3[H20] = __ 10

Initially, typesb +1[H20] = 0000

typesb[H20] = typesb+1[H20] + bitplaneb[H20] = 0000 + 0011 = 0011
types_datab[H20] = typesb[H20] = 0011

types_maskb[H20] = typesb+1[H20] + /tranH20b+ /tranBb= 0000 + 0000 + 0000
= 0000

M. Taipliadou 53

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

signs_datab[H20] = signsb[H20] = 0010

signs_maskb[H20] = types_datab[H20] ¢ /types_maskb[H20] = 0011 « 1111 =
0011

-types3[H21] =

-signs3[H21] =

Initially, typesb +1[H21] = 0000

typesb[H21] = typesb+1[H21] + bitplaneb[H21] = 0000 + 0000 = 0000
types_datab[H21] = typesb[H21] = 0000

types_maskb[H21] = typesb+1[H21] + /tranH21b+ /tranBb= 0000 + 1111 + 0000
=111

signs_datab[H21] = signh_vb[H21] = 0000

signs_maskb[H21] = types_datab[H21] « /types_maskb[H21] = 0000 « 0000 =
0000

-types3[H22] = 0110

-signs3[H22] = _00_

Initially, typesb+1[H22] = 0000

typesb[H22] = typesb+1[H22] + bitplaneb[H22] = 0000 + 0110 = 0110
types_datab[H22] = typesb[H22] = 0110

types_maskb[H22] = typesb+1[H22] + /tranH22b+ /tranBb= 0000 + 0000 + 0000
= 0000

signs_datab[H22] = signh_vb[H22] = 1000

signs_maskb[H22] = types_datab[H22] « /types_maskb[H22] = 0110 « 1111 =
0110

-types3[H23] = 0001

-signs3[H23] = __ 1

Initially, typesb+1[H23] = 0000

typesb[H23] = typesb+1[H23] + bitplaneb[H23] = 0000 + 0001 = 0001
types_datab[H23] = typesb[H23] = 0001

types_maskb[H23] = typesb+1[H23] + /tranH23b+ /tranBb= 0000 + 0000 + 0000
= 0000

signs_datab[H23] = signh_vb[H23] =1001

M. Taipliadou 54

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

signs_maskb[H23] = types_datab[H23] « types_maskb[H23] = 0001 « 1111 =
0001

Stage 4

Refinement bits:
-Parents = {}
-Children = {}
-Grandchildren = {}

ref _datab[P] = bitplaneb[P] = 010
ref_maskb[P] = typesb+1[P] = 000

ref datab[CO] = bitplaneb[C0] = 0000
ref_maskb[CO0] = typesb+1[C0] = 0000
ref datab[C1] = bitplaneb[C1] = 0000
ref_maskb[C1] = typesb+1[C1] = 0000
ref datab[C2] = bitplaneb[C2] = 0000
ref_maskb[C2] = typesb+1[C2] = 0000
ref _datab[HOO] = bitplaneb[H00] = 0100
ref_maskb[H00] = typesb+1[H00] = 0000
ref _datab[HO01] = bitplaneb[H01] = 1100
ref_maskb[HO01] = typesb+1[H01] = 0000
ref _datab[H02] = bitplaneb[H02] = 1000
ref_maskb[H02] = typesb+1[H02] = 0000
ref _datab[HO03] = bitplaneb[H03] = 0101
ref_maskb[H03] = typesb+1[H03] = 0000
ref_datab[H10] = bitplaneb[H10] = 0000
ref_maskb[H10] = typesb+1[H10] = 0000
ref_datab[H11] = bitplaneb[H11] = 0000
ref_maskb[H11] = typesb+1[H11] = 0000
ref_datab[H12] = bitplaneb[H12] = 0000
ref_maskb[H12] = typesb+1[H12] = 0000
ref datab[H13] = bitplaneb[H13] = 0000
ref_maskb[H13] = typesb+1[H13] = 0000
ref datab[H20] = bitplaneb[H20] = 0011
ref_maskb[H20] = typesb+1[H20] = 0000

M. Taipliadou

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

ref _datab[H21] = bitplaneb[H21] = 0000
ref_maskb[H21] = typesb+1[H21] = 0000
ref _datab[H22] = bitplaneb[H22] = 0110
ref_maskb[H22] = typesb+1[H22] = 0000
ref _datab[H23] = bitplaneb[H23] = 0001
ref_maskb[H23] = typesb+1[H23] = 0000

M. Taipliadou

56

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

4. BSMS VERIFICATION AND VALIDATION STRATEGY

The BSMS VHDL design has been extensively verified by RTL simulation using
Vivado Simulation. The existing VHDL code that was developed in 2014 was
used as a golden reference model of BSMS.

On a first level the verification was accomplished with tests on the BSMS code
alone, using three memories, one with random bitplanes, one with random signs
and one with random bit depths, that simulate the segment buffer. Moreover to
verify the correct flow of data at the outputs of the BSMS module, a testbench
with random stalls was developed. That testbench triggered the FIFOs’ full
signals to rise at random times throughout encoding. With the addition of some
logic in the design it was ensured that when a FIFO is full, the design behaves
correctly saving the information to be outputted when the FIFO is ready to
receive it.

And on a second level the submodule was verified with the BSMS being
integrated into the 2D encoder design and tested with real images, using the
output bitstream of the 2D encoder with the exiting BSMS module as a golden
reference. The tests performed on the Bit plane encoder include a significant
amount of test images from the corpus of images [3] available in [6].

M. Taipliadou 57

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

5. EXPERIMENTAL RESULTS

The proposed architecture was implemented targeting the ZC706 Evaluation
Board for the Zynq-7000 XC72045 SoC FPGA.

The frequency of 280.9 MHz (period 3.56 ns) was achieved for the BSMS
module and 181.8 MHz (period 5.5 ns) for the 2D Encoder with the new BSMS
module integrated.

The proposed architecture processes 1 sample / cycle, in contrast with the
previous implementation that processes 1 sample / 2 cycles.

Moreover, experimental results are also provided for comparisons with the
previous implementation. The Xilinx Vivado Design Suite tool was used for the
implementation, analysis and simulation.

The detailed implementation statistics including FPGA resources are shown in
Table 5.1.

Table 5.4.1: Implementation statistics targeting XC72045 FPGA.

Used Available Util%
LUTs 1890 218600 0.86
BRAMs 0 545 0.00
Registers 1320 437200 0.30

Comparison in power and timing analysis with the existing work, targeting the
same XC7Z045 SoC FPGA is shown in Table 5.2.

Table 5.4.2: Comparisons with the existing implementation targeting the same XC72045 FPGA

this Thesis Theodorou

Power 0.329 W 0.262 W
Frequency 280.9 MHz 207.2 MHz
Clock Period 3.560 ns 4.825 ns
Clock cycles 2328 4641
Samples/cycle 1 0.5

The power consumption statistics were evaluated using the Xilinx Vivado power
estimator on the post Synthesis design using default environmental settings.

To compare in terms of Clock cycles, the two designs were simulated for a
segment of 128 blocks and 18 bitplanes, assuming in both that the FIFOs, where
the stages’ data are pushed in, are never full.

M. Taipliadou 58

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

6. CONCLUSIONS

In this thesis, we have introduced a high performance architecture for the BSMS
module of the Bit Plane Encoder of the CCSDS 122.0B2 Image Data
Compression (IDC) algorithm. The proposed parallel architecture achieves 1
sample/cycle while the deep pipeline enables high clock frequencies.

M. Taipliadou 59

Design and Implementation in FPGA Technology
of a High-Performance Block Scan and Map to Symbols Module
for CCSDS-122 Image Data Compression

REFFERENCES

[1]1 N. Kranitis, G. Theodorou, A. Tsigkanos, A. Paschalis and R. Vitulli, "An Over 2 Gbps
Reconfigurable FPGA Implementation of CCSDS 122.0-B-1 Image Data Compression," 2014.

[2] N. Kranitis, G. Theodorou, A. Tsiganos, A. Paschalis and R. Vitulli, "A Reconfigurable FPGA
Implementation of CCSDS 122.0-B-1 Image Data Compression for ESA PROBA-3
Coronagraph System Payload," in On-Board Payload Data Compression Workshop (OBPDC
2014), Venice, Italy.

[3] CCSDS, "Image Data Compression, 120.1-G-2, Green Book," 2005.

[4] CCSDS, "Image Data Compression, 122.0-B-2, Blue Book," 2017.

[5] CCSDS, "Spectral Preprocessing Transform for Multispectral and Hyperspectral Image
Compression, 122.1-B-1, Blue book," 2017.

[6] CCSDS, "CCSDS 122 Test Image Set," [Online]. Available: http://cwe.ccsds.org/sls/docs/.

[7]1 CCSDS, “Image Data Compression, 122.0-B-1, Blue Book,” 2005.

M. Taipliadou 60

	PREFACE
	1. INTRODUCTION
	2. CCSDS STANDARD OVERVIEW AND RELATED WORK
	2.1 Compressor overview
	2.1.1 Bit Plane Encoder overview
	2.1.1.1 Block Scan and Map to Symbols
	2.1.1.1.1 AC coefficient words coding stages 1-3
	2.1.1.1.2 Mapping words to symbols

	2.2 Related work

	3. PROPOSED ARCHITECTURE
	3.1 Architecture of the BSMS
	3.2 Pipeline architecture
	3.3 Block scan example

	4. BSMS VERIFICATION AND VALIDATION STRATEGY
	5. EXPERIMENTAL RESULTS
	6. CONCLUSIONS

