NATIONAL AND KAPODESTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSC THESIS

WinnER: A Winner-Take-All Hashing-Based Unsupervised
Model for Entity Resolution Problems

Konstantinos A. Nikoletos

Supervisors: Alexios Delis, Professor NKUA
Vassilios Verykios, Professor Hellenic Open University

ATHENS
MARCH 2022

EONIKO KAMOAIZTPIAKO NMANEMIZTHMIO AOGHNQN

2XOAH OETIKQN ENIZTHMQN
TMHMA NAHPO®OPIKHZ KAI THAEMIKOINQNIQN

NTYXIAKH

WinnER: A Winner-Take-All Hashing-Based Unsupervised
Model for Entity Resolution Problems

KwvoTtavTivog A. NikoAéTog

EmiBAémrovreg: AAéSIog AgAng, Kabnyntig EKIA
BaoiAiog BepUkiog, KaBnyntr g EAAnvikS AvoixTé MavetioTruio

AOHNA
MAPTIOZ 2022

BSC THESIS

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution
Problems

Konstantinos A. Nikoletos
S.N.: 1115201700104

SUPERVISORS: Alexios Delis, Professor NKUA
Vassilios Verykios, Professor Hellenic Open University

NTYXIAKH

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution
Problems

KwvoTtavTivog A. NiIKkoAéTog
A.M.: 1115201700104

ENIBAENONTEZ: AAé&Siog AgeAg, KaBnyntrig EKIMA
BacoiAiog BepUkiog, KaBnyntric EAANvIKS AvoixTé MNMavemmoThpio

ABSTRACT

In this study, we propose an end-to-end unsupervised learning model that can be used for
Entity Resolution problems on string data sets. An innovative prototype selection algorithm
is utilized in order to create arich euclidean, and at the same time, dissimilarity space. Part
of this work, is a fine presentation of the theoretical benefits of a euclidean and dissimilarity
space. Following we present an embedding scheme based on rank-ordered vectors, that
circumvents the Curse of Dimensionality problem. The core of our framework is a locality
hashing algorithm named Winner-Take-All, which accelerates our models run time while
also maintaining great scores in the similarity checking phase. For the similarity checking
phase, we adopt Kendall Tau rank correlation coefficient, a metric for comparing rankings.
Finally, we use two state-of-the-art frameworks in order to make a consistent evaluation
of our methodology among a famous Entity Resolution data set.

SUBJECT AREA: Pattern Recognition and Machine Learning

KEY WORDS: unsupervised-learning, clustering, entity-resolution, wta-hashing,
prototype-selection

NEPIAHWYH

2.€ AUTH TN JEAETN, TTPOTEIVOUUE PIA OAOKANPWHEVN 1I0€a VIO VA HOVTENO [N ETTIBAETTOMEVNG
MNXAVIKAG MABNoNG, TO OTToi0 PTTOPEl va XpnoiyoTroinBei o€ TTpoBAfuaTa avelupeong o6-
MOIWV OVTOTATWY O€ £€va 0UVOAO OUUPBOAOCEIPWYV, Ol OTTOIEG TTEPIYPAPOUV TO idI0 PUOIKO
QVTIKEIPEVO, VW) Ddla@épouv oav ouuBoAoaclpés. ZTnv peBodoAoyia auTh, XPNOIUOTIOIEITAI
€Vag KaIVOTOUOG aAyOpIBuOg TTIAOYNG TTPWTOTUTTWY TTPOKEINEVOU va dnpioupynBei évag
EUKAEIDEIOG KOl TAOUTOXPOVA AVOUOIOUOPPOG XWPOoGS. MEpOg auTAG TNG MEAETNG, €ival pia
TTARPNG TTAPOUCIaCT TWV BEWPNTIKWY TTAEOVEKTANATWY €VOG EUKAEIDEIOU Kal TAUTOXpOVA
QVOMOIOYEVOUG XWPEOU. 2TN CUVEXEIQ, TTapouaiadouue pia uéBodo diavuopuaTotroinong Tou
apxIkoU ouvoAou dedopévwy, N otroia BaagileTal oTn JETATPOTTH TwV dlavUoUATwY o€ Bab-
MWTA dlavuopaTta, YIa TEXVIKN N OTToid avTIMETWTTICEI TO YVWwOoTo TTPoRANPa TnG Mnxavikng
MdaBnong, To TTPORBANKA TWV HEYAAWYV dIOCTACEWV. TO KEVTPIKO KAl TTIO KABOPIOTIKO KOPPATI
auTAG TNG MEBodOAoYIaG, eival N Xprion vog aAyopiBuou KATOKEPUATIOKOU, O OTTOI0G OVO-
paZetal Winner-Take-All. Me autév Tov aAyopiBuo pelwvETal KABOPIOTIKA O XPOVOG EKTE-
Aeong TG peBodoAOYIaG Hag eV TAUTOXPOVA TTAPEXEI ECAIPETIKA ATTOTEAETUATA KATA TNV
@Aon eAEyxou opoIOTNTAG METAGU TwV ovToTATWYV. lNa TN @daon eAEyXou ouoIdTNTAG, UIoBE-
TOUME TOV OUVTEAEOTH cUOXETIONG KaTaTagng Kendall Tau, pia eupéwg atrodekTr) uETpnon
yla TN oUyKpIon Twv BaBpwTwyv diavuopdtwy. TEAOG XpNOoIOoTTOIoUNE U0 OUYXPOVA OVTE-
AQ TTPOKEINEVOU VA KAVOUNE pIa OAOKANpwEvVn agloAdynon TnG peBodoloyiag pag, o€ éva
OIGONUO CUVOAO OEDOUEVWY, OTOXEUMEVO VIO AVEUPEDH OUOIWY OVTOTATWV.

OEMATIKH MEPIOXH: Avayvwpion TTpotuTtwyv Kal Mnxavikrp Maénon

AEZEIZ KAEIAIA: un-emBAeTOueVN-PAbNON, KatnyopIotroinon, €Upeon-OuoIWV-
OVTOTATWY, KATAKEPUATIOPOG, ETTIAOYN-TTPOTUTTWV

ACKNOWLEDGEMENTS

| would like to express my heartfelt appreciation to my supervisors, Pr. Alex Delis for his
excellent mentoring and Pr. Vassilios Verykios for providing me with the unique chance to
work on his proposal while also engaging in several fruitful discussions. Both have rein-
forced my desire to become a member of the research community. | also want to express
my gratitude to Dr. Dimitris Karapiperis and Dr. George Papadakis for their assistance

when needed.

CONTENTS

M. INTRODUCTIONt et e 1
2. SPACE CONSTRUCTION it e e e e e e e e e e e e e e e e 13
2.1 Dissimilarity Space i i e 13
P.1.1 Editor Levenshtein Distance o i e e e e e e 13
P.1.2 JaccardDistancd e, 15
P.1.3 Euclidean-Jaccard Distancdo 16
P.1.4 Text transformation for Jaccard Distancd 16

R.2 String Clustering & Prototype Selection + v v 4 & & & & v v s o v v n & = o s 17
P.2.1 String Clustering Phasd 17
P.2.2 Prototype Selection e 20

R.3 Optimization & . & s i e 23
2.4 Evaluation of Prototype Selection &+ & v & v & v i e e e e e e e e e e e e 23
B. VANTAGE EMBEDDINGS o i et e e e e e e e e e e e e e e e 24
B.1 __ Prototypes as the Vantage Objects v v &t i v v v v e e e e 24
B.2 Selection of embedding distancedt . e e e e e e e e e e e e 25
B.2.1 Predefineddistanced 25
B.2.2 Distances Normd, 25

B.3 CurseofDimensionality i i i i e e e e e e e e e e e e e e 26
4. WINNER-TAKE-ALL HASHING ALGORITHM 27
A Functionalityl - . « - & & . h e 27
B.2 Hashingmorethanonce i i i i i i it e e e e e e e e e e e e 29
5. SIMILARITY CHECKING it it e e e e e e e e e e e e e e e e 30
B Similarity Metrics « & v v v st e 30
B.1.1 Spearman’s rank correlation coefficiend 30
B.1.2 Kendall Tau rank correlation coefficien] 31

B2 Optimization . . . « & v v vt ot e 32
B21 BloomFiltel e 32
Bb.2.2 Concurrent Similarity Checking with Threadd 32

B. EVALUATION ottt et e e e e e e e e e e e e e e e 33
6.1 EvaluationbasedonCORAdatasef o o it v v v v v v v uuuonn 33
B.1.1 Aftribute Analysis e, 33
B.1.2 Selectionof stingmetrid e e e e e e e e e e e e e e e 35
B.1.3 Hyper-parameter tuning using Optund 38
B.14 CORADEStSCOreS v v v o e e e e e e e e e 39

B.1.5 Prototype selectiod e 46

6.2 Comparison with other ER models usingJedAl« ...

7. CONCLUSION e e e e e e e e e e e e

TERMINOLOGY TABLEttt

ABBREVIATIONS, ACRONYMS ittt e e e

REFERENCES

FIGURES LIST

Figure 1: WinnERWorkflow 12
Figure 2: Visualizing strings of Table 1 in a Euclidean Spacg 14
Figure 3: Triangle formed fromA,B,C 18
Figure 4: Visualization example of String Clustering Propertieg 19
Figure 5: 2-Dimension example of Projections Calculation 21
Figure 6: Embeddingprocesy i 24
Figure 7: Rank-Ordering an Embedding examplel 26
Figure 8: Permutation of vector Xwith§ 28
Figure 9: WTAExamplg 28
Figure 10: Strings length plot- CORAdataset 34
Figure 11: Missing ratio- CORAdatasef 35
Figure 12: Edit Distanceon CORAsubset 36
Figure 13: Jaccard with Euclidean-Jaccard comparison on CORA subsetf . . . 37
Figure 14: Optuna Optimization History Plof 40
Figure 15: Hyper-parameters values on CORAsubset 41
Figure 16: Hyper-parameters in comparison with F-Measure on CORA subset 42
Figure 17: Importance of hyper-parameters for Recall and Execution timg . . . 43
Figure 18: Importance of prototype selection hyper-parameters 44
Figure 19: WTA Hashing hyper-parameters evaluation. 45
Figure 20: Successful comparisons evaluation 45
Figure 21: 2-Dimension Prototype Selection with PCAand MDS 47
Figure 22: 3-Dimension Prototype Selection with PCAand MDS 48
Figure 23: Dissimilarity between Prototypesg 49
Figure 24: Performance of JedAl workflows compared with WinnER 51

TABLES LIST

Table 1: Edit Distance between four strings 14
Table 2: Jaccard Distance using Bigramms 15
[Table 3: Euclidean-Jaccard Distance using Bigrams 16
Table 4: Word Tokenization examplgl 17
Table 5: Char Tokenizationexamplg 17
Table 6: CORAdatasetattributes 33
Table 7: CORA data set attribute columns 34
Table 8: Optuna hyper-parameterintervalg 42
Table 9: Bestscoreson CORA 46
Table 10: JedAlresultsto CORA 50

ALGORITHMS LIST

i

String Clustering and Prototype Selection Algorithm

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

1. INTRODUCTION

Entity resolution, often known as de-duplication, is a popular study topic nowadays. Entity
resolution (ER), is the process of identifying when two references to the same real-world
entities are equivalent. This procedure may appear to be simple, but when it comes to Big
Data problems, it becomes really challenging. Many recent research efforts in generating
models for ER problems, are based on Deep Learning, which employs Neural Networks
with multiple layers. In order to train and finally be ready to function, these approaches
need a significant amount of time and computational resources. Consider as an example
DeepER [23], which is one of the deep learning frameworks designed for ER.

In this study, we are attempting to develop an unsupervised Machine Learning (ML)
model that is both very efficient, much simple, and it relies on principal ideas of Pattern
Recognition. Most research is done for Supervised Learning, as it is a lot safer technique
to get solid findings. However, most data sets are unlabeled. Meta’s Al Chief Yann Le-
Cun famously said at NIPS 2016 that “if intelligence was a cake, unsupervised learning
would be the cake, supervised learning would be the icing on the cake, and reinforcement
learning would be the cherry on the cake”. We took up the challenge and created an un-
supervised framework since we believe unsupervised learning has a great promise. Our
goal is to develop a robust model that can be used to a variety of ER problems.

This work builds on the paper Entity Resolution in Dissimilarity Spaces [29] by Vassilios
Verykios and Dimitris Karapiperis, architects of this model corpus. They created an efficient
and really robust model, that makes unsupervised learning into string ER data sets, with
great space and time complexity. Our work, focuses mainly on experiment and finally im-
prove certain parts of the initial idea. Within that approach, we used the theoretical proofs
from the paper [[16] to convert the initial Dissimilarity space into a Euclidean-Dissimilarity
space. In addition, we performed some optimizations to the prototype selection algorithm
(Algorithm 1), where we discovered and resolved a vulnerability. In comparison to similar
ER clustering frameworks, the key distinctive feature of this model, is the use of a hashing
schema in combination with the rank-ordered transformation of the initial data. Moreover,
in this study, we offer a detailed presentation of the framework described in the initial pa-
per, as well as our modifications and the results we managed to achieve. This framework
is an open-source project, as we also developed an end-to-end model, using Python.

WinnER, the name of this unsupervised model, consists of four logical parts. Figure
depicts the components and workflow of this model. The first part of WinnER (Section 2)
introduces a Euclidean-Dissimilarity space and a String Clustering and Prototype Selec-
tion algorithm. The inspiration for this algorithm was the "Vantage Objects Approach” from
the paper Efficient image retrieval through vantage objects [15]. The next part (Section 3),
is consequently a phase of embeddings construction, based on the "Vantage Objects” se-
lected in the previous phase. The third part (Section 4), is one of the most significant ideas
of this model, and it's about a hashing algorithm named Winner-Takes-All. It was firstly, de-
veloped and published by Jay Yagnik, in the paper The Power of Comparative Reasoning
[17]. This addition, made a huge impact on the time complexity of this methodology. The
fourth part of the model (Section 5), is a parallelized algorithm for similarity checking be-
tween the objects that fell in the buckets, formed from the hashing step. We will provide
a detailed analysis (Section 6) on this model’s behavior over the CORA data set. Finally,
we compare our work to other ER models, generated with a framework called JedAl [13]
and show that it challenges and outperforms other cutting-edge models.

K. Nikoletos "

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

K. Nikoletos

-
. N Tokenization
o LU - of the strings
?_
v
. P String Clustering
Prototype Selection « Algorithm
—
» Embeddings Creation
-
Winner-Take-All " -
Hashing N
—
'
» Similarity Checking -
4

Evaluation

Figure 1: WinnER Workflow

WinnER - Part 1

(Section 2)

WinnER - Part 2

(Section 3)

WinnER - Part 3

(Section 4)

WinnER - Part 4

(Section 5)

Section 6

12

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

2. SPACE CONSTRUCTION

This is the first part of this model. Input string data, must now be converted into a space of
objects. There are plenty of algorithms for prototype selection, however, many of them are
sensitive to data variability and so they cannot perform equally well in diverse data sets.
In order to circumvent this situation, a Dissimilarity Space Of Objects [25] will be build.

We examine and compare prominent string metrics, like Edit and Jaccard distance and
from this research, we present a novel distance stemming from the study in papers [16, 30].
These studies demonstrate that a metric can be both euclidean and dissimilarity at the
same time. Nevertheless, from a more theoretical and detailed perspective, a euclidean
distance that yields a dissimilarity score has a lot of potential. We should emphasize at
this point that we will conduct a deep study of the string distance selection because it is
at the heart of our model’s prototype selection phase. We call this hybrid string distance
Euclidean-Jaccard, and we will present how it works both theoretically and experimentally.

Additionally, we give a brief description of the "tokenization” approach that this metric re-
quires in order to work properly, as a metric in the Jaccard family. As a result, the Euclidean-
Jaccard distance requires sets, thus the strings must first be converted into sets of char-
acters or words. This transformation may be accomplished in a variety of methods, but we
will concentrate on the n-grams method.

We next present the prototype selection part of this framework, where we use the algo-
rithm described in the initial paper [29], which is derived from the Vantage Objects schema
in the paper [15]. We will go through the clustering and prototype selection algorithms we
utilize, as well as the theoretical properties that support this schema. We will also describe
our tweaks and optimizations to this algorithm in order to better integrate it into our frame-
work. Finally, we evaluate the performance of the prototype selection technique using the
Maximum Mean Discrepancy (MMD) [2], a statistic measure between two data distribu-
tions. Measuring the MMD between the two distributions formed, one of the prototypes
and the other of the initial data set, is one method to accomplish the evaluation.

2.1 Dissimilarity Space

In order to construct a Dissimilarity Space, it is needed to define a metric that will calculate
how dissimilar two objects are (strings in our case). For calculating dissimilarity between
two strings, there are two well-known metrics, Edit Distance [8] and Jaccard Distance [28],
both of which are examined in this study. However, in this study, we will use a hybrid
Euclidean-Jaccard dissimilarity metric [16] as it has the most potential and outperforms
standard distance measures such as Jaccard and Edit distance. We will begin by describ-
ing some of the most important aspects of the Edit and Jaccard distances, and following
we will make an extended report of the dissimilarity we adopt. At this time, it is also worth
noting that one of the most significant parts of this project is the space construction, de-
scribed in this chapter. Our study starts by defining the most famous dissimilarity distance,
which is Edit or Levenshtein distance.

211 Edit or Levenshtein Distance

Edit Distance [8] is a metric of quantifying how dissimilar two strings are by measuring the
number of operations required to turn one string into the other. Edit Distance is a distance
metric, as it satisfies all the requirements of a distance metric, which are the following for
three random elements ey, e,, €3:

K. Nikoletos 13

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

d(e1,e2) >0 (non-negativity)
d(e1,e) =0iffe; =e; (identity rule)

d(er, e2) = d(ez, e1) (symmetry)
d(eq,e3) < d(eq,e) + d(ey, e3) (triangle inequality)

At this point, we should note that Edit Distance is not a Euclidean metric. Neither the space
created with Edit Distance is. We can prove that Edit Distance is not a Euclidean distance
in a the following proof. Take as an example Table [i].

Table 1: Edit Distance between four strings

| strings || ab | abc | abd | abcd |

ab 0 |1 1 2
abc 1 0 1 1
abd 1 1 0 1
abcd 2 |1 1 0

In the above table, we see four simple strings and the Edit Distance between them. Now,
observe the following equalities.

deir("ab”, "abcd”) =141 =2 (Distance of "ab” and “abcd”)
— edit<”ab”, nabcn) + dedit(”abcﬂ, nabdn) — 2 (1)
= degit("ab”, "abd”) + degit("abc”, “abd”) = 2 (2)

Assume that the space that will be created is a Euclidean Geometric space. Hence, from
Equation [1] strings ab, abc and abcd must be points of the same straight line. Moreover,
from the Equation [strings ab, abd, and abcd must also be points of the same straight line.
We also know from the Euclidean Geometry, that from two points only one line passes. As
a result, all four strings must be points of the same straight line. This implies, however that
strings abc and abd should coincide. This means that d.4t("abc”, "abd”) = 0, which is false
from the previous Tablefl. The bellow figure makes clear this example in a 2-dimension
space.

abcd 1 abcd
1 1
abc abd

ab ab

Figure 2: Visualizing strings of Table 1 in a Euclidean Space

Itis highly important to make a brief reference here, to Euclidean Spaces. Euclidean Space

K. Nikoletos 14

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

is a property-rich space that has shown to be one of the most effective in the creation of em-
beddings. Embeddings are vectors that "describe” each string. It will be much explained in
the next section, section 3. One significant distinction is that one Euclidean metric provides
linearity, whereas Edit Distance does not.

Edit Distance is a popular string metric, used in many applications. However it is not suit-
able for all problems. As a distance, it has a number of flaws, and it frequently fails to gen-
erate distances that show the difference between two strings. As an example, consider
the two strings "paper” and "paapeer”. These strings are semantically same but have Edit
Distance equal to four. We will see that some metrics, such as Jaccard, can measure the
distance between them as zero, implying that they are same.

Another disadvantage of edit distance is its high complexity of ©(mn), where m,n are the
lengths of the strings. Therefore large strings, will make the whole process computation-
ally expensive. Edit Distance, on the other hand, is a more simpler metric that takes into
consideration the string’s ordering and was one of the metrics that we thoroughly tested
for suitability in our model. Although, in some cases, a Jaccard-like distance appears to
perform better than the Edit distance, this is why the Edit distance was not used in the
space construction.

2.1.2 Jaccard Distance

Jaccard Distance [28] is a dissimilarity metric between sample sets. It is complementary
to the Jaccard coefficient and is obtained by subtracting the Jaccard coefficient from 1, or,
equivalently, by dividing the difference of the sizes of the union and the intersection of two
sets by the size of the union. Let A, B be two sets (set of words or chars in our case) and
d jaccard distance:

AUB|—-|ANB
djaccard(AaB) = | |A|U|B| |

where djaccara € [0, 1].

Same as Edit Distance, Jaccard distance is a distance metric as it satisfies the require-
ments of a distance metric. Let's now take the Table [1| and apply to the four strings, the
Jaccard Distance. For this example we will tokenize the four strings into "bigrams”. The
definitions of tokenization and "bigrams” will be explored in detail in a next subsection. So,
Table i becomes:

Table 2: Jaccard Distance using Bigramms

| strings [ab | abc | abd | abcd |

ab 00 |05 |05 |0.66
abc 05 |00 |0.66]|0.33
abd 05 |0.66|0.0 |0.75
abcd 0.66 | 0.33 | 0.75 | 0.0

We can see how Jaccard distance works in the table above. Consider the difference be-
tween "abd” and "abcd”. The difference between these two strings is 0.75, or 75%. This
dissimilarity can be easily transformed to similarity distance. In the same example, "abd”
and "abcd” are similar by 1-0.75=0.25 or 25% (Jaccard Index).

K. Nikoletos 15

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

2.1.3 Euclidean-Jaccard Distance

We have shown, so far that both Jaccard and Edit distance do not match Euclidean criteria.
However, the scenario where a distance is at the same time a dissimilarity distance and ful-
fills the Euclidean criteria, appears to be rather promising. This is conceivable, and it stems
from Gower and Legendre’s paper titled Metric and Euclidean properties of dissimilarity
coefficients [16], in which they established a number of conditions for a family of coeffi-
cients. Various metrics and characteristics of dissimilarity coefficients have been defined.
They devised a formula from which these characteristics are derived:

a

To= a+6(b+c)

3)

where a, b, ¢ represent the number of binary asymmetric variables in a pair of binary vec-
tors that happen to have two one’s, an 1 and a 0 or a 0 and an 1 value correspondingly. If
we replace 6 with non-negative values then some fairly well-known coefficients will occur
from the above equation [§. Furthermore, in [16] it is shown that the distance measure
V1 — Ty for 8 > 1 is a Euclidean Distance. As a consequence:

\/1 - TQ = \/ 1— djaccard_similarity = \/ djaccard_distance

So the squared root of Jaccard Distance is a Euclidean metric. The table of the four strings
comparison will be:

Table 3: Euclidean-Jaccard Distance using Bigrams

| strings [ab | abc | abd | abcd |

ab 0.0 |0.7 |0.7 |0.81
abc 0.7 | 0.0 |0.81|0.57
abd 0.7 /0.81|0.0 |0.86
abcd 0.81 | 0.57 | 0.86 | 0.0

The dissimilarity used in this framework is the Euclidean-Jaccard distance. There are a
variety of advantages to this distance. To begin with, it is a Euclidean distance, as we men-
tioned before, which means it satisfies all of the criteria of a Euclidean space. Furthermore,
it is a dissimilarity distance that fits our dissimilarity measure criterion. Euclidean-Jaccard,
also, does not require a great time or memory complexity, as it only requires the same
as Jaccard. For all of these reasons, Euclidean-Jaccard was chosen as the dissimilarity
distance for our model’s space construction.

2.1.4 Text transformation for Jaccard Distance

When using Jaccard Distance (same as Euclidean-Jaccard), the format of the two sets
(A, B) is essential. To utilize this measure, every string must firstly converted into a set
of words or characters. This can be accomplished in a variety of ways. In this model, a
tokenizer is used to break down the initial text. The first step is to split the initial string into
a list of words. Afterwards it's needed to create the sets (tokens are unique). This can be
made by transforming the list created, into a set.

Nevertheless, the information about the order of words will be lost in this method. For this
reason, it is necessary to generate sets made up of n-grams. N-grams are N consecutive

K. Nikoletos 16

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

tokens. If N=1 are called "unigrams”, if N=2, then are called "bigrams” and if N=3 are called
"trigrams”. Consider the string transformation below as an example.

Table 4: Word Tokenization example

Initial String "entity resolution model”
Tokenization into words | "entity”, "resolution”, "model”
Unigrams "entity”, "resolution”, "model”
Bigrams "entity resolution”, "resolution model”
Trigrams "entity resolution model”

This process can also be applied in character level. Instead of tokenization in words, will
perform character tokenization.

Table 5: Char Tokenization example

Initial String "entity resolution model”

Tokenization into chars | ”e”, "n”, ", ™", ", 7y”, 7 7, 'r”, "e”, ’s”, ...

Set of tokens "e”, "n”, "t", " y S

Unigrams "e”,"n”, "t B A VAT Y S

Bigrams "en”, "nt”, "ti”, "it”, "ty”, ”y ", "re”, "es”, "so”, .

Trigrams “ent”, "nti”, "ti t” ity”, 'ty 7,y r” "re”, "res’, ”eso” ’sol”, ...

Both of these transformations have benefits and drawbacks. The first example’s sets
(word-tokenization) include fewer elements, which may result in faster transformation but
lower accuracy when comparing two strings. The second strategy, char-tokenization, will,
on the other hand, be more accurate. Both of these approaches will be tested on an actual
data set, and the results will reveal which is the superior of the two.

2.2 String Clustering & Prototype Selection

Aim of this part of the model is to choose a set of strings, that will be our Prototypes. This
process is consisted of two logical parts. The first one is the String Clustering phase, in
which clusters of strings will be produced. The second one is the Prototype Selection, that
will take the string clusters and will generate a set of Prototypes. These Prototypes will
be the points of the embedding process. This part of the framework we propose is a com-
bination of the works Efficient image retrieval through vantage objects by Jules Vleugels
and Remco C. Veltkamp [15] and Representation and Recognition in Vision by S. Edel-
man [26]. In the first paper, it is firstly defined an approach called Vantage Objects for
embedding the dissimilarity space of the initial objects (not necessarily strings) into a re-
duced dimensionality metric space. This approach in combination with a prototype selec-
tion schema, described in the second paper and very accurately named The Chorus of
Prototypes, is the schema adopted in the paper [26] and also in this study. It will become
obvious the superiority among other prototype selection algorithms, both in theoretical and
experimental aspects.

2.21 String Clustering Phase

The String Clustering technique is not complicated at all, which is why it is both fast and
efficient. When this procedure is finished, it will generate a finite number of clusters (which
can be fine-tuned) and two strings for each cluster. With these two representative strings,
we can generate an inner product space. More specifically, the first string will serve as the

K. Nikoletos 17

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

origin and the second as the endpoint of a vector, from which all of the other strings will
be projected. If the strings projected by this vector meet certain criteria, they will become
members of this cluster.

This algorithm begins by traversing the string set. For every string, iterates the number of
clusters generated up to this point. And here’s the gist of it. Let’s begin with the first string
in the initial data set. If the first representative has not yet been set, this string will become
the first (left) representative, and the algorithm will proceed to the next string. Because
the first representative of this cluster has been set in the first loop, a dissimilarity distance
will be calculated between the current string and the first representative. If this distance is
less than d, where d is the maximum distance threshold, this string becomes the second
(right) representative. Now that both representatives have been initialized, the condition
that must be met when a new string s is examined for membership in this cluster is:

distance(s, left_representative) + distance(s, right_representative) < d

Where d is a dissimilarity distance, like Edit, Jaccard or Euclidean-Jaccard distance. If this
condition is satisfied, then this string will become member of this cluster. This is briefly the
method adopted for the String Clustering phase.

Let A, B, C, D, E and F are strings in the original set. Also assume that, A and B are the
first strings that this algorithm process, and have a distance less that d. As aresult Aand B
will be this cluster representatives. Now we need to check C for membership to the cluster,
A and B, represent. This experiment is depicted in the figure below.

C
o
b ¢
; <d
[@
C
A B

Figure 3: Triangle formed from A, B, C

C, will be tested for membership. Consider that a + b is less than d and thus C becomes
a member of this cluster. Since A and B are the representatives, we get:

dac=b<d dgc=a<d
a+b<d c<d

Now we need to check the rest of the strings D, E and F. So we have the situation shown
in the bellow figure:

K. Nikoletos 18

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

D
dcd = 0O
C __—_____,_,__—-—_"":-;_-—- i
Q(;;‘...________T. _/' -ded
ce E‘
0 ®
‘ <d
A B
o
F

Figure 4: Visualization example of String Clustering Properties

D and E now must be checked for membership to this cluster. D and E will only join if the
sum of their distances from A and B (representatives) is less that d. Assume that this is
satisfied and D and E join the cluster. We want to see, if that would be enough, to compare
every string in the data set to only two strings, meaning to the representatives, in order to
enter to that cluster. So we must now examine what occurs between C, D, and E. Based
on our assumptions, we get:

dac +dgc < d dag + dge < d dap +dep < d (4)

Please remember that all of the distances, used in this model are metrics, as they sat-
isfy the three requirements. We refer you to Section 2.1 where we mention them. One of
the requirements is Triangle Inequality. Thus we can apply the Triangle Inequality to the

A A
triangles ACE and CEB and we get:
dce < dae + dac dce < dpe + dpc (5)
If we sum the above inequalities (§) we get:

2dce < dag + dac + dee + dgc =
< (dag + dge) + (dac + dsc) @>

<d+d
< 2d

K. Nikoletos 19

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

Hence,

dee < d

E and F strings can be demonstrated in the same way that the distance, from each of
the items within the cluster, is less than or equal to d . This proof revealed that all of the
elements in this cluster have a distance less than d, between them, which is possible by
simply comparing a string to the cluster representatives. This makes the entire process
incredibly efficient. The complexity of this approach is O(nk), where n is the number of
strings in the initial data set and k is the maximum number of clusters. Keep in mind that
k and d are hyper-parameters that can be modified.

This approach has a minor flaw in that it is somewhat dependent on the relative ordering
of the input strings. Some clusters may contain elements with similar characteristics. This
is the consequence of the representatives’ initialization procedure. It will be detailed in
further depth in the following part, where we will apply an optimization to get around this
issue.

2.2.2 Prototype Selection

The next part of the prototype selection algorithm is to find the most distinct strings from
each cluster created in the previous step. We will use the same technique described in Al-
gorithm 1 of the first publication [29], but with an optimization as we spotted a vulnerability
that will have a separate reference. Our aim in this part is to produce a set of objects, that
will serve as the prototypes for the embedding phase. The string clustering step yielded
a number of clusters, each with two representative strings. As the Prototype, we might
choose one of the two representatives from each cluster. However, this would result in a
low-quality set of prototypes. Instead, we will use a different approach to locate an indica-
tive string in each cluster, which will become one of the prototypes.

The basic idea, is to find one distinguishing string from every cluster. One that will repre-
sent the strings of this cluster while also being distinct from the others chosen from the
other clusters. This will assist us in creating a rich Dissimilarity space and, as a result, em-
beddings that will represent each string in great detail. Shortly, embeddings are vectors,
one for every string, and are consisted by the distances of each string from all the proto-
types. We provide an extensive analysis for the embeddings in Section 3. If the prototype
selection method is successful, the final prediction and the scores will be high.

This part of the algorithm, starts as follows. Firstly, for each cluster, calculates the projec-
tions of every string, with the leftmost representative of this cluster. This projection distance
helps us create a string ranking. Keep in mind that we need a distinct string. These pro-
jections can be produced quickly and without great complexity, as we will take advantage
of all the distances calculated and saved from the string clustering phase. After these pro-
jections are calculated, they will be sorted and the median value of these distances, will
be selected. This distance, we remind you, is the distance between one cluster string and
one representative. As a consequence, the string whose distance has been chosen will
become the Prototype string. It is extremely helpful to visualize a two dimension example
in order to better grasp this strategy. This approach, nevertheless, can be extended to N
dimensions. Figure § depicts the basic concept.

K. Nikoletos 20

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

Figure 5: 2-Dimension example of Projections Calculation

Let A, B, C, D and E nodes represent strings, same as the previous graphics. A and B are
the representatives and C, D and E are strings that belong to this cluster. Also assume
that the left representative is A. Based on the process described previously, we need to
calculate all projections of C,D and E from A. The (orthogonal) projection of a point to a
line, for example C from line x'x, is the point of x'x at which the normal line of x'x passing
through C, intersects with x'x. Lets now calculate the projection of C to A, dca, projected in
the line formed by A and B. Please note that we assume that A and B are already projected,
which means that we do not have to do anything about these two strings.

VAN
CA?=CC?+ CA%? = (Pythagorean Theorem on CC'A)
CA’=CC?*+d%, = (C'A=dca)
A
CA%? = CB? — (dca + AB)? + %, = (C'CB: CC? + C'B* = CB?)

CA? = CB? — %, — AB?> —2-dca- AB+ d2, < (Algebraic identity)
CA? = CB? —~ AB?> —2.dcp-AB
2. dca-AB = CB? — AB?> — CA?

therefore,

CB? — AB? — CA?

2-AB
With the same method we can prove this approximated projection distance for all the
strings into the cluster. After this process has finished we store all these distances in an
array and then we sort them. Finally we peak the median value of this array and the string
whose projection distance is the median value, becomes one of the Prototypes.

dca =

All of the above information may now be summed up in the Algorithm [. It's the same
approach as in the paper [29], but with more detail and a final optimization where we
included a check between the final set of prototypes. This is the optimization is described
in the following section.

K. Nikoletos 21

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

Algorithm 1 String Clustering and Prototype Selection Algorithm

1: S: Array of strings (dataset)
2: d: Max distance threshold
3: k: Max number of clusters

4
5. procedure PrototypeSelection(S, k, d)
6: i+~ 0 > Variable initialization
7 y+ 0
8: C < array(0 : size(S)) > C: Cluster array
o: r < array([2, K]) > r: 2-dimension Representatives array

10:

11: for i < size(S), i<+ i+ 1do > String clustering phase

12: while j < kdo > iteration through clusters

13: if ro(j) = 0 then > case empty first representative for cluster j

14: ro(j) < SJi]

15: Clil+j > store in C that i-string belongs to cluster j

16: break

17: else if ry(j) # 0 and distance(S]i], rp(j)) < d then

18: ri(j) < Sli

19: Cli]+j

20: break

21: else if ro(j) # 0 and rq(j) # 0 > triangle inequality check

22: and (distance(S][i], ro(j)) + distance(S][i], ro(j))) < d then

23: Cli] +J

24: break

25: else

26: j—j+1

27: end if

28: end while

29: end for

30:

31: Projections < emptyList() > Prototype selection phase

32: Prototypes < emptyList()
33: SortedProjections + emptyList()
34: finaINumOfClusters + k

35: j«< 0

36: forj< k,j< j+jdo

37 aprxDistances < AprxProjectionDistancesOfCluster(r4[j], ro|j], Cluster(j))

38: if aprxDistances = () then > no prototype from this cluster
39: finaINumOfClusters < finaINumOfClusters—1

40: continue

41: end if

42: Projections(j) < aprxDistances

43: SortedProjections(j) «— Sort(Projections(j))

44: Prototypes(j) «+— median(SortedProjections(j))

45: end for

46: OptimizeClusterSelection(Prototypes, finaINumOfClusters)
47:

48: return Prototypes, finalNumOfClusters

49: end procedure

K. Nikoletos 22

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

2.3 Optimization

During the testing of this prototype selection procedure, an issue arose. The problem was
that many of the prototypes chosen were very similar. This occurred as a result of the
vulnerability discussed during the Clustering phase. The relative order of strings in the
data set makes this approach susceptible. This created some complications during the
embedding phase, when the space was being built. Many strings with distinct semantics
had remarkable similar embeddings and hence were predicted as the same. As a result,
at the end of the process, we included a sanity check function that performs a basic task.
It calculates the distances between all of the chosen prototypes and checks if they are
less than a certain threshold of similarity. If a pair of prototypes fails to meet this criterion,
one of the prototypes is removed from the set.

2.4 Evaluation of Prototype Selection

After the development the prototype selection part, it is essential to evaluate it in a variety
of ways. The first one is a metric we used, called Maximum Mean Discrepancy (MMD)
and was firstly referenced in the paper [2]. MMD, measures the discrepancy between two
distributions. The selection of prototypes creates a density distribution of prototypes. We
want to see if the distribution of prototypes differs from the data distribution. The maximum
mean discrepancy estimates the difference between two distributions and is the supremum
over a function space of expectancies discrepancies between the two distributions. The
squared MMD (MMD?) measure can be calculated using the formula below.

MMD? = L i k(z;, z) — 2 g k(zi, x;) + 1 i k(x;, x;)

where,
* k is the distance metric
* m is the number of prototypes
* n is the number of data points x in our original dataset
 z are the prototypes

The goal of MMD-critic is to minimize MMD?. The closer MMD? is to zero, the better the
distribution of the prototypes fits the data. The key to bringing MMD? down to zero is the
term in the middle, which calculates the average proximity between the prototypes and
all other data points (multiplied by 2). If this term adds up to the first term (the average
proximity of the prototypes to each other) plus the last term (the average proximity of the
data points to each other), then the prototypes explain the data perfectly.

Another method of evaluating the prototype selection is to perform dimensionality reduc-
tion into the embeddings, that will be created. We can get a quick glimpse of the data
distribution using the Principal Component Analysis (PCA) algorithm or the Multidimen-
sional Scaling (MDS) algorithm. Keep in mind that these methods are not ideal, as a multi-
dimensional problem is reduced to a two- or three-dimensional problem in order to be
visualized. Some information may be lost as a result of the reduction in dimensions. We
shall, however, use these methods because they can provide us a view of the prototype
selection process. This will be explained more in the next sections.

K. Nikoletos 23

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

3. VANTAGE EMBEDDINGS

This is the second part of our model. At this point we have created a schema that gen-
erates a set of prototypes from a given data set. It is now needed to transform the initial
strings into numerical arrays. In Pattern Recognition, this method is called vectorization
and the vectors are also called embeddings. Embeddings are a number of vectors, one
for each string, that describes it, in a unique way. In our case we want to produce a vector
(imagine it like a list of numbers) for every string. In this model we will adopt an embedding
technique based on the Vantage Objects. The basic idea of the Vantage Objects comes
from the paper, Efficient image retrieval through vantage objects [15], by J. Vleugels and
R. C. Veltkamp. They first mentioned and used a method called Vantage Objects in order
to create an efficient object indexing. The Prototypes generated in the previous step of the
model will be the Vantage Objects in our study.

3.1 Prototypes as the Vantage Objects

In the previous section, we demonstrated one algorithm that processes a big set of strings
and finally collects the most distinctive strings into a set. This is the set of Prototypes,
as we have mentioned before. Let this set called P and P = {p4, p2, ..., px}, are some of
the strings s of the initial data set S, where k is the number of prototypes. We shall now
construct a Vantage-Dissimilarity Space based on them. Each string will be "transformed”
into a list of numbers. These numbers, are going to be the distances from each prototype.
The process of Vectorization, starts by iterating all strings. For every string, it iterates the
set of Prototypes P and calculates the distance between string s and prototype p. This
distance can be the same distance we used in the previous part, meaning a Jaccard
distance. If we use the same distance metric as before, we will avoid many calculations,
as these distances have already been calculated and saved. Returning to the process of
embeddings, after we’ve calculated the distance we save it into a vector. So in the end of
this process we will produce a vector of distances from all the prototypes, for all strings.
And this will be the embedding of each string.

Bellow we provide a visualization of this technique in order to be better explained. Assume
we have strings s1, Sy, S3, ..., Sp € S where n is the number of strings in the initial data set.
Also, assume that p4,p2,...,px € P are the prototype strings, selected at the clustering
phase and d the dissimilarity distance used in the Clustering phase. The graphic below
displays the embeddings in a concise manner.

S — [d(s1,P1), d(s1,P2), - » (51, Pk)]
Sy — [A(52,P1), d(s2,P2)s - » A(S2,Pk)]
S3 - [d(83,P1), d(S3,P2), - » A(S3,Pk)]

Sy — [A(5, 1), A(SnsP2)r o s A(SprPE)]

Figure 6: Embedding process

K. Nikoletos 24

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

3.2 Selection of embedding distance

Maybe the most important algorithmic decision, in the embedding phase, is the selection
of the distance metric that will be used. Euclidean-Jaccard is the distance, that will serve in
this framework as the embedding metric. Another option, is to use a norm of the Euclidean-
Jaccard distance. We shall give a short definition of the statistical term norm and we will
explain why we did not finally adopt a norm in the embedding procedure.

3.2.1 Predefined distances

Aim of the embedding schema is to create embeddings that best "describe” each string.
Euclidean-Jaccard is the distance used as the embedding metric, for a number of reasons.
Firstly, we take advantage of all the distances calculated in the prototype selection phase,
by utilizing the Euclidean-Jaccard distance. This is both simple and time efficient as the
majority of the distances needed for the embeddings, have been already calculated and
saved. Furthermore, using the distance that the space was built is also a reliable and
widely used strategy.

Though, using a distance metric like Euclidean-Jaccard, may be problematic some times.
In Pattern Recognition, there is a well known phenomenon called Curse of Dimensionality
[4]. This is caused when we face high-dimension problems. It will be thoroughly explained
in the following section. Keep in mind that by smoothing and normalizing the data, we can
tackle the issues that arise from this situation. This is accomplished by employing distance
norms rather than just distances.

3.2.2 Distances Norms

Vector norms are widely used not only in Pattern Recognition and Machine Learning, but
also in a wide range of Mathematical disciplines. The size of a vector is frequently calcu-
lated using norms. To begin, we will define what is a norm. In linear algebra, the size of a
vector v is called the norm of v. For example lets consider vector v of ordered numbers.

V= (vq,Va,...,Vp) (vie Cfori =1,2,....,n)

Ly —norm, L, — norm and L., — norm are some of the widely used norms. In this work we
examine the L., — norm. L., — norm is the infinity norm (also known as the co-norm, max
norm, or uniform norm) of a vector v is defined as the maximum of the absolute values of
its components:

|Villoo = max{|vi|:i=1,2,...,n}

Norms are not metrics as they do not calculate distances. However we can use norms to
vectors consisted of distances. This way, we perform a small normalization when creating
the embeddings. This is not always the best technique. For example, in the next step of our
model, we apply a hashing algorithm, and this smoothness may have the opposite impact
than expected. In this study we examined the L., — norm as this norm seem to fit the most
with the hashing approach selected in the next section. Although, using the Euclidean-
Jaccard distance without a norm came out to be the best solution. This algorithmic decision
occurred after an experimental study on this model, in which we tested both L., — norm
and the Euclidean-Jaccard distance without a norm. The experiments showed us that
L., —norm had no impact on increasing the performance of the model. On the other hand,
the infinity norm, needed a noticeable time of execution in comparison of just using the
distance itself.

K. Nikoletos 25

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

3.3 Curse of Dimensionality

The curse of dimensionality [4], is a well-known problem in Machine Learning and occurs
when we have high-dimension data. Although the curse of dimensionality poses significant
challenges for pattern recognition algorithms, it does not preclude us from developing suc-
cessful algorithms for high-dimensional environments. There are two explanations for this.
First, real data is frequently limited to a region of the space with lower effective dimen-
sionality, particularly in the directions where significant fluctuations in the target variables
occur. Second, real data usually have some smoothness properties, which means that
small changes in the input variables will produce small changes in the target variables for
the most part, and we can use local interpolation-like techniques to make target variable
predictions for new input variable values.

In our study, the issue that arises from the high-dimension data will be tackled in simple but
efficient way. The embeddings created in this phase will be rank-ordered. We shall give
a small definition of this technique. Figure [7] depicts how one embedding is rank-ordered
(i.e using Jaccard distance as embedding distance). Rank-ordering a vector, means that
we create a new vector where the values are the rankings of the initial sorted vector. For
example, 0.3 is the fourth element in the ranking that would emerged if we sorted the initial
vector from the minimum 0.01, to the maximum value which is the number 0.89.

Embedding [0.3, 04, 0.1, 0.6, 0.21, 0.5, 0.89, 0.33, 0.01, 0.4]

Trans formation

Rank — Ordered

Embedding [4, 6, 2,9, 3 810, 5 1, 6]

Figure 7: Rank-Ordering an Embedding example

Rank-ordering the embeddings gives a number of advantages. As previously stated, is an
effective technique to address the issues that arise as a result of the high dimensionality
of ER problems. At the same time, these rank-ordered embeddings will be compared for
similarity, with metrics mainly being used to compare full or partial rankings. Finally, rank-
ordering the embeddings enables us to utilize the WTA hashing as it is developed for rank-
ordered data. WTA hashing is a significant part of our framework and thus rank-ordering
is essential.

K. Nikoletos 26

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

4. WINNER-TAKE-ALL HASHING ALGORITHM

Hashing is the third and possibly the most important part of the model. In terms of time
and memory complexity, entity resolution problems are quite demanding. This is due to the
fact that numerous comparisons must be perfromed in order to determine which objects
are similar and which are not. Consider a problem using a data set of 1,000 strings, which
is considered extremely small nowadays. If we want to find which strings are the same as
real-world entities, in a brute force way, we would compare each string with all the others.
This means we would have to do 1,000,000 comparisons only to complete this task. This
method would take a long time to complete and would require a lot of computing resources.
As a result, a hashing method is utilized in this work, which can minimize the number
of comparisons to 10% in many cases. Following the previous example, this model can
produce predictions with 100,000 comparisons and fairly good scores.

This strategy is also called blocking and is a technique for splitting sets of records into
smaller subsets using a criteria function (i.e. a hashing method), with only records belong-
ing to the same block being checked for matches. All records with the same blocking key
are placed into the same block in standard blocking, where they are compared pairwise.
In Entity Resolution problems, blocking is a common strategy. It may be used to solve
ER issues in a single set or to link records from different sets. Furthermore, blocking is a
strategy used in cutting-edge frameworks with a proven performance boost, as evidenced
by the papers [5, 9, 110, 11, 12].

Jay Yagnik’s Locality Sensitive Hashing (LSH) Approach, called Winner-Take-All (WTA)
Hashing, is used in this study in order to embed a blocking schema. Firstly mentioned
in the work The Power of Comparative Reasoning [17], Yagnik presented a very efficient
Hashing algorithm, which can create groups of objects from the initial data set that share
common properties with a very low computational cost. WTA schema has a fairly basic
function, but it is also one of the fastest hashing techniques available. This algorithm takes
rank-ordered vectors as input and generates a hash for each one. This hash is utilized as
an indicator in our model to generate groups or buckets of seemingly similar embeddings.
This phase is extremely important in our model because it drastically minimizes the amount
of time required to perform flawlessly.

4.1 Functionality

Hashing approaches, are used in various ML applications. MinHash [1] is one of the most
famous algorithms for hashing and it is used in many state-of-the-art projects. In the origi-
nal paper of WTA, itis proven that it is a generalization of MinHash. It is essential to provide
a sample of WTA functioning at this time. Assume X is a collection of embeddings. The
initial stage in this schema is to permute all the input vectors (embeddings). Permutation
is a mathematical technique for rearranging a list of elements. WTA permutations are per-
formed in a random sequence. The permutations that will be conducted in our case must
be consistent for all samples. As a result, we will need a predefined random sequence, let
us call it 6, to reorder all of the embedding vectors. For each of these embeddings, WTA
algorithm will keep, the first K elements. From these elements, the maximum value will be
selected. The index of this maximum value will become the hash code, that will indicate
the bucket that this string belongs.

K. Nikoletos 27

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

Permutation vector 0 [0 61 6, 65 B4 65] [142503]

Example vector X [x0 x1 X2 X3 x4 X5] [1052 6 12 3]

PermutEd X’ [exo exl ex2 ex3 8x4 exs] [5 12 2 3 10 6]
Figure 8: Permutation of vector X with 6

To better grasp this method, lets illustrate it. We used an example from Yagnik’s original
paper. Vectors a, b, c and d are the input (X) of the algorithm. Consider them as the vectors
that will be produced after the embedding phase. WTA starts by generating the random
sequence 6, as shown in Figure g.

Winner-Take-All Hashing Example

Permutation vector & = [1, 4, 2, 5,0, 3]

(@) (b) (©) ()

X 110, 5,2, 6,12, 3| [4,5 10, 2,3, 1][22, 12, 6, 14, 26, 8] [11, 4, 3, 7, 13, 2|

Permutation

by ©
(
X [512,2,3 10, 6| [53 10, 1, 4, 2|[12, 26 6 8 22, 14| (4133217
Isolating the first
K = 4 values

/
5 12, 2, 5 3 10, 1 12, 26, 6, 8 4,13, 3, 2
1 2 0 1 2 3 2

0 3

Index with max
value is the
hash code

/

Hash codes (1)) ™ ©)

Figure 9: WTA Example

Figure @ presents the flow of WTA hashing. Starts by taking as input the rank-ordered
vectors. After that, permutes each vector, based on theta and then from the first K elements
of each vector finds the maximum value and returns its index. To better grasp this hashing

K. Nikoletos 28

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

schema, consider Figure B:(a) as an example. Firstly, (a) is permuted with 6, then on
the first K elements, the maximum value is peeked. In case of (a), the maximum value
is 12. The index of this value is 1. So 1 is the hash code of (a). Keep in mind that this
procedure, iterates first for (a) after for (b), etc. WTA hashing provides a hash code for
each embedding, in O(n) time, where n is the number of embeddings. This is one of the
most essential aspects of WTA hashing.

4.2 Hashing more than once

This hashing process can be repeated multiple times in order to improve the model’s
scores. A WinnER hyper-parameter is the number of WTA hashings that will be executed.
A hyper-parameter is a model variable that is provided as input and can be fine-tuned.
This is not the only hyper-parameter of the model, as has been mentioned before. Hyper-
parameters enable ML algorithms to fit a wide range of data sets and data types. At the
same time, a large number of these factors can make the model difficult to employ be-
cause it will take a long time to fine-tune and produce sufficient results. As a result, all
hyper-parameters in this work are rigorously tested for usability, and their number is kept
to a minimum.

We perform the hashing multiple times in order to increase the possibility of comparing
same objects and thus the number of successful comparisons. This method has both
pluses and minuses. To begin, several buckets will end up containing same objects. This
means that some pairs of object will be compared several times. However, some items
that are similar but have not hashed to the same hash code, in the first hashing, may hash
in the next hashing as WTA contains a randomization. The more hashing is performed,
the more pairs will be compared, and hence the more similar pairs will be successfully
predicted. On the other hand, this procedure will increase the model’s overall execution
time.

Following our research, we discovered that the number of hashings should be between 2
and 5, and that anything above these limitations produces a marginally better result while
increasing significantly the execution time, causing the hashing to lose its purpose. These
limits were discovered in many data sets as a result of our experiments. When utilizing
hashing algorithms, multiple hashings is a frequent strategy. However, there is a trade-
off between execution time and increased similarity checking results. For this reason, the
number of hashings is hyper-parameter. The number of hashings required to achieve the
best results in the shortest amount of time will be determined by the experimental findings
and the hyper-parameter tuning.

K. Nikoletos 29

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

5. SIMILARITY CHECKING

This is the final part of our model. WTA hashing has produced a number of buckets. Now
it is time to check all of the string embeddings inside each bucket for thorough similarity.
The technique of determining if two objects are similar is known as similarity checking. A
similarity metric can be used to accomplish this. This metric, in general, takes two vec-
tors (in our instance, embeddings) as input and generates a prediction. This prediction
is @ number between a fraction of numbers and most commonly, between zero and one.
The closer the prediction is to one, the more similar they are. To perform, we must first
establish a similarity threshold. We will assume that these two objects are similar if the
similarity measure gives a value greater than this threshold. If the prediction falls below
that threshold, however, these items should be considered as different.

5.1 Similarity Metrics

In this schema, we have rank-ordered embeddings. Only a few metrics for comparing rank-
ordered vectors have been developed. Some of them are built for full rankings exclusively,
while others are only used for partial rankings. In statistics, these metrics are found as
rank correlation coefficients. A rank correlation coefficient measures the degree of simi-
larity between two rankings. Some of the more popular rank correlation statistics include
Spearman’s p [31], Kendall’s T [20], Goodman and Kruskal’s y [19], Somers’ D [24] among
others. In this work we will mainly focus on the Spearman’s p and Kendall's 1. Both these
metrics are rank correlation coefficients and produce a value inside the interval [-1, 1]
where is:

» 1 if the agreement between the two rankings is perfect; the two rankings are the
same.

* 0 if the rankings are completely independent.

« -1 if the disagreement between the two rankings is perfect; one ranking is the re-
verse of the other

Spearman’s p and Kendall’s T were the two similarity metrics, that stood out as we have
rank ordered embeddings. For this reason we shall present both metrics and explain why
Kendall’s T was the one selected to be the similarity metric in our model.

5.1.1 Spearman’s rank correlation coefficient

Spearman’s rank-order correlation [31] is the non-parametric version of the Pearson cor-
relation [18]. Spearman’s correlation coefficient, (p, also signified by rs) measures the
strength and direction of association between two ranked variables.

The Spearman correlation between two variables is equal to the Pearson correlation be-
tween the rank values of those two variables. Spearman’s correlation determines the
strength and direction of the monotonic relationship between your two variables rather
than the strength and direction of the linear relationship between your two variables, which
is what Pearson’s correlation determines. A monotonic relationship is a relationship that
does one of the following:

- as the value of one variable increases, so does the value of the other variable
- as the value of one variable increases, the other variable value decreases.

Spearman’s correlation measures the strength and direction of monotonic association be-
tween two variables. Monotonicity is "less restrictive” than that of a linear relationship.

There are two methods to calculate Spearman’s correlation depending on whether vari-

K. Nikoletos 30

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

ables have not tied ranks or the opposite. Let X and Y be two variables and n the size of
pairs. The formula for when there are no tied ranks is:

63 of

SN

where d; = |x; — yi| the difference between the pair ranks i and n number of pairs. The
formula of Spearmans rank correlation in case that we have ties is:

S =X (i~)
szx, X2 S04 (i — V)2

where:

a3

3|A

o

BIA

5.1.2 Kendall Tau rank correlation coefficient

Kendall Tau is a measure of rank correlation [20] that calculates the similarity of the or-
derings of the data when ranked by each of the quantities. Kendall Tau metric, is the
difference of the number of concordant pairs to the number of discordant, divided by the
number of the possible pairs. Concordant and discordant pairings are calculated by com-
paring the classifications of two variables (i.e X and Y) on the same two items. The pairs
are concordant if the classifications are in the same direction. The pair is discordant if the
classification direction is not the same. More specifically for a pair of observations (Xj, Y))
and (X, Y)):

» Concordant pair if (X; > X;and Y; > Y;) or (X; < X;and Y; < Y))
* Discordant pair if (X; > Xjand Y; < Y;) or (X; < X;jand Y; > Y))

Let C be the number of concordant pairs, D the number of discordant pairs and n the
number of pairs. The Kendall 1 coefficient is defined as:

cC-D

()

where (’2’) = @ is the binomial coefficient for the number of ways to choose two items
from n items. The denominator is the total number of pair combinations, so 7 € [-1,1].
We can remark that if X and Y are totally the same then 1 = 1 and on the opposite if X
and Y are totally different, 7= —1. If r= 0, then X and Y are independent. Kendall’s rank
coefficient can also be calculated as:

T =

K. Nikoletos 31

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

- ﬁ > sgn(x; — x;)sgn(y; — y))

i<j

where sgn(x) is the sign of x. Also, it is really important to notice that we have not mentio-
ned anything about the case where x; = x; or y; = y;. This is the situation of a tie. In this
model, the Kendall’s Tau coefficient used, does not take into consideration the ties.

In this model Kendall’s rank coefficient is the similarity checking metric, for a number of
reasons. The Spearman’s coefficient is a metric that is mostly used and has impact on data
sets that show linearity [22]. Also Andrew Gilpin notes in the paper "Table for conversion
of Kendall’'s Tau to Spearman’s Rho within the context measures of magnitude of effect
for meta-analysis” [7], that Kendall’s p approaches a normal distribution more rapidly than
Spearman’s, in cases where N, the data set size tends to be large. Our model is designed
to be used in big data problems, so this is a crucial factor. Finally, we conducted many
experiments, checking both of these metrics and Kendall’s rank coefficient outperformed
in most of the cases Spearman’s coefficient.

5.2 Optimization

Similarity checking is a time-consuming process, which is why a hashing schema is re-
quired. In order to speed up this component of the model, we added a a Bloom Filter for
avoiding redundant comparisons and a thread pool for parallel similarity checking between
the buckets.

5.2.1 Bloom Filter

Bloom filter, is a probabilistic data structure and generally it is used to test whether an
element is a member of a set. It is employed in our model to prevent performing redundant
comparisons. Remember that we hash with the WTA algorithm more than once, thus we
may compare the same pair of items multiple times. To avoid this, we included a bloom
filter that saves all the pairs that have been compared for similarity. Briefly, before every
similarity check between a pair of objects, we search to the bloom filter if these objects
have already been compared. If this is true, this check is avoided and it proceeds to the
next pairs comparison. On the other hand, if this query returns false, the pair is compared,
and the bloom filter for this pair is updated.

Keep in mind though, that bloom filter is a probabilistic data structure. False positive
matches are possible, but false negatives are not. In other words, a query returns either
"possibly in set” or "definitely not in set”. However, we use this structure because it is
exceptionally quick, with a search time of O(1), and it does not require a lot of memory.

5.2.2 Concurrent Similarity Checking with Threads

Every bucket undergoes its own set of checks for similarity. As a result, we may do this
check for each bucket in parallel. We decided to use a number of threads for parallelization,
with a maximum of 16. Every thread has some shared data structures, such as the table
where we save if a pair is similar. Locks were employed to prevent race conditions and
errors when updating these data structures. The time spent on the similarity checking
phase was greatly reduced, by almost 30%, as a result of this addition. Remember that
this is the most time-consuming stage in our unsupervised learning model.

K. Nikoletos 32

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

6. EVALUATION

In this section, we will make a detailed presentation of the model scores to the CORA data
set and present its superiority among other applications in the same data set. Our criteria
are the four scores Recall, Precision, F1 and Accuracy as well as the time needed in order
to make these predictions.

Starting, by evaluating this model upon the CORA data set. We will not only present the
results from this data set, but we will also give a quick evaluation of each component of
the model separately. We will examine the prototype selection, display the embeddings,
observe WTA acceleration, and finally remark on the results and see how the similarity
metrics we suggested worked. Keep in mind that in order for our model to work, it must
be fine-tuned. The fine-tuning will be done with the help of Optuna [27], a cutting-edge
framework. We will go over how we used it and why it is so crucial in our work in a few
words. Finally, we will examine the performance of various different ER models and com-
pare them to ours. These models will be created using JedAl [13], another state-of-the-art
framework.

6.1 Evaluation based on CORA data set

In all ML applications, at the stage of the development, some data sets are selected for
evaluation. All aspects of the model development are rigorously tested using these data
sets. CORA data set was one of the data sets that met the requirements of the aims we set
in this project. More specifically, this model should evaluate a single data collection (dirty
or clean) containing strings and determine which of these strings are identical quickly and
accurately. As a result, we will conduct a more thorough analysis of this data set.

CORA is a well known Dirty ER data set, consisted of real-world entity profiles with bibli-
ographical information for scientific papers. In a nutshell, the CORA data collection com-
prises records with citation information on published articles, including titles, authors, year
of publication, and other details. The data set has a respective "gold” data set that provides
information on which records are a match based on the id.

6.1.1 Attribute Analysis

One of the most important steps in unsupervised learning problems is to understand and
point out, data sets attributes. For this reason, we gathered all the needed information in
the bellow table B.

Table 6: CORA data set attributes

Attributes #Count
Data set size 1295 papers
Papers without any duplicates 19 papers
Papers with at least one duplicate | 1276 papers
Mean size of a cluster 13 papers
Average string size 164 chars
Minimum string size 38 chars
Maximum string size 366 chars
Median string size 164 chars

K. Nikoletos 33

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

Shortly, CORA data set consists of 1295 papers/strings, of which 1276 have at least one
other that refer to the same physical paper and 19 of them have no other one same and

are unique.

Table 7: CORA data set attribute columns

CORA data set attribute columns

Attribute | Details

id Unique identifier for every paper
address | Place of paper creation

author Author/s in full name or in abbreviation
editor Papers editor

institution | University or research Center

month Month published

note Small part of abstract

pages Number of pages

publisher | Symposium, book, etc

title Paper tiltle

venue Scientific area

volume Volume identifier if it's part of a book
year Year published

All of the lengths of the strings are visualized in the diagram 10 below. We should point out
that CORA is a dirty ER data set, and as a result, we had to clean the text. This cleaning

procedure includes removing punctuation and converting all strings to lowercase.

=

i

g

-
th
]

0

String size (# chars)
[

=]

0

K. Nikoletos

CORA Data set string length bar plot

RTTTIT

Record index

Figure 10: Strings length plot - CORA data set

34

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

Another important factor to consider is the features of the data set that will be used to at-
tain the best results. We visualized (Figure [11) the missing ratio per attribute to determine
which attributes will be utilized. We found that not all characteristics have all of the infor-
mation needed for all of the papers, therefore these columns might be misleading. We can
now effortlessly notice that more than six attributes have missing ratio greater than 50%.
As a result, only the attributes title and author will be used in our experiments because
they are the only ones that have no missing data.

Missing values in CORA data set atiributes

fitle EE Missing Ratio %
author

Enity 1d
vanues I
vear NN
pages I
puibli=:
wolum: I —
address |
rrcent |
note I —
it |
= it |

a 20 40 a0 B 00
Raftio of missing values

CORA Attnbutes

Figure 11: Missing ratio - CORA data set

6.1.2 Selection of string metric

The first step in our process is to choose one of the metrics discussed in Section 2.1. To
accomplish so, we examined the first 30 strings of the CORA data set to evaluate how
Edit distance, Jaccard, and Euclidean-Jaccard performed. We know that identical papers
exist in this selection because of the "gold” data set and form the groups:

* Group 1: {0, 1, 2, 3,4, 5, 6, 7}, (red)
Group 2: {11, 12, 13}, (green)

Group 3: {16, 17, 15}, (blue)

Group 4: {18, 19, 20, 21, 22}, (yellow)
Group 5: {26, 27, 28} (orange)

We created heatmaps based on the distances generated by these metrics. More specif-
ically, we illustrated every distance between all the papers-strings (30x30). A matrix is
formed by these distances. This matrix was visualized a heatmap, as shown in Figure [12.

K. Nikoletos 35

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

Edit Distance HeatMap

=]
~ 160
-
140
L=
m - 120
=)
]
o] 100
]
T
RN
@ NEN Il &
1]
@
1] HEN a0
g T T
L[] EEECEE
H u an
% L[] EENCEEN
8 1] EENCEEN BN 2
T EENCHEN =N B
8 1] EENCHEN =N W
0
02 4 6 & 10121416 18 20 22 24 25 28

Figure 12: Edit Distance on CORA subset

We made the heatmap lower triangular for visualization purposes as it is symmetric. The
goal of this visualization technique is to determine which distance measure and tokeniza-
tion method are the most effective. The color diversity and intensity are the criterion. We
want the same objects to have intense coloring, which implies a significant similarity. The
previously specified groups are represented by the heatmap boxes with a colorized con-
tour. Each group corresponds to a distinct color.

At this point, we should evaluate the Edit distance heatmap shown in Figure 12. The first
criterion is to study the groups and the distances that have developed between them.
We observe a dark coloring between the strings in the groups in almost all the cases.
Remember that the distances we are looking at, are all dissimilarity distances, thus the
darker colors are mapped to values near to zero. Similar strings are indicated by an edit
distance of zero or near to zero. The comparison of pairs 19, 20, 21, and 22 is also one of
our criterion, as this is a tough comparison between true identical strings that Edit distance
can not correctly distinguish, as shown by the heatmap.

Another requirement is the color distinction, between similar and different objects. This
requirement is not totally met. For example, we can see a minor color variation between
the green group’s (dark blue color) strings and the strings 10 to 12, which are similarly
relatively dark colored, indicating a high degree of similarity. This observation is a flaw of
the edit distance, in this experiment.

The color variation between the strings is the last requirement. The string distance must
offer as precise distances as possible, as well as distances that cover the entire spectrum.
We want a distance that not only discovers the most similar strings, but also one that is
sensitive to little variations in the strings. Edit distance appears to fulfill this criteria. We
can see that the strings have several scores, demonstrating that edit distance takes into
account even minor modifications.

K. Nikoletos 36

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

We next examine the Jaccard and Euclidean-Jaccard distances. In order to test these dis-
tances, we must first convert the strings into sets of tokens. As a result, we experimented
with the variations between trigrams and bigrams, as well as the tokenization level, which
refers to the character or word level. We remind you that these terms were discussed
extensively in Section 2.

Words 2-gramms Words 3-gramms Chars 2-gramms Chars 3-gramms
(1] =I

"
A i 08
EEEEEER NEEEEER L1

N 06

04

Jaccard distance

a2

BHMENE 1614120 B 6 420
BHMEAE 1614120 B 6 4 2 0
BHEMIBIRIGI4I1I210 86 420

BXHMI2 01816141210 B 6 4 2 0

036 912151821427 036 012151821457 036 012151821427 0 4 B 1216202423
(a))] (c))]

h 08
n (L5

I 04

Euclid-Jaccard distance

EE%ZEBEMEWB&ifG
BHATZNBIE412108E 64 20
BHMZNBIG412108 64 20
BHMZN1IBIG1412108 64 2 0

036 912151821457 036 012151821457 036 012151821427 04 812160242
te) {f) (@ (h)

Figure 13: Jaccard with Euclidean-Jaccard comparison on CORA subset

Figure (13 can be used to generate some quite useful comments. At this point we examine,
if the first requirement is met, namely, whether the distances between identical strings can
be distinguished. We can see that this condition holds true in almost all cases of n-grams,
tokenization, and the two metrics. This is due to the dark blue color in all comparisons
between strings that belong to the same group. Following, the distances between the
strings 19, 20, 21, and 22 are also wick as it can be seen from the color intensity in all the
cases except from the plots Figure [13:(e), (f), (g) and (h). These plots have been made
using the Euclidean-Jaccard distance, an indication that proves our selection on using this
metric as the dissimilarity metric of this framework.

In terms of color difference between similar and dissimilar objects, it is fulfilled in all cases
and with higher precision than Edit distance. Figures [13:(a), (b), (e) and (f), depict a sig-
nificant color difference between the group distances and the strings that do not belong to
them, which is a good sign that this criteria is being met.. This big difference in distances,
however, is a flaw for the next requirement.

The third requirement, namely the color variance between the strings, is also met, in the
plots Figure [13:(c), (d), (g) and (h) made with char-tokenization and the same time fails
in the rest plots. We can also observe that the contrast between word-tokenization and
char-tokenization is even greater, as the colors between the different strings are nearly

K. Nikoletos 37

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

white, whereas the colors between similar objects are very dark.

This analysis and visualizations (Figure 13 and [13), sheds a lot more clarity on the string
metric selection procedure. We see that Edit Distance does not show the distances be-
tween the 30 first strings as evident as Jaccard or Euclidean-Jaccard. Furthermore, char-
tokenization seems to perform better, as we can see that the color difference between
identical objects is dark while the distances between all the strings have a wide spectrum.
To summarize, char-tokenization appears to be more accurate, particularly in Euclidean-
Jaccard with 2-grams, which has also resulted in a great separation between strings 19,
20, 21, and 22, which have a difficult comparison, although they refer to the same paper.

For these reasons, we concentrated our CORA data set experiments on 2- and 3-grams
and char-tokenization. At the same time, this analysis confirmed our previous assumptions
and claims about the Euclidean-Jaccard metric. In this simple example, it became clear
that this metric outperforms the other metrics for this task. Remember that the metric
used to create the space in the initial idea [29] is Edit distance. This is a major difference
between our framework and the one presented in the initial paper.

6.1.3 Hyper-parameter tuning using Optuna
Our model (WinnER) has the bellow five hyper-parameters:

* Max number of clusters: Number of maximum clusters that will be created in Pro-
totype Selection phase. We remind you that it is an upper bound and the real number
of clusters that will be formed will be less than this parameter.

* Max dissimilarity distance: The maximum distance between two strings that can
join a cluster. The conditions are met if the distances between the strings being
compared are smaller than this threshold.

* Window size or K: This is the WTA hashing hyper-parameter. After the permutation,
K is the number of elements that will be selected.

* Number of hashings: Number of WTA-hashing executions.

« Similarity threshold: Threshold of similarity checking phase. If the similarity metric
between two rank-ordered vectors is greater than this threshold then these elements
are considered same.

One of the most critical steps for a machine learning model to offer high performance
is hyper-parameter optimization. Optuna [27] is a well-known Python library for hyper-
parameter optimization that is simple to use and well-designed. It supports a wide range
of optimization techniques. The internal implementations of Optuna are described in this
article, with a focus on the software components.

Optuna operates in a straightforward yet effective manner. It takes an interval for each
hyper-parameter and generates a random number within that interval. It also requires one
or more scores, as well as whether they should be maximized or minimized. It starts the
pruning after a number of trials, according to the official documentation, in order to acquire
the best result for the target score.

K. Nikoletos 38

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

6.1.4 CORA best scores

There are four scores to determine if the predictions are correct or incorrect. But first, we
shall define certain terms related to predictions. The list below displays every possible
combination of a successful or unsuccessful prediction.

* True Negative (TN): the case was negative and predicted negative
» True Positive (TP): the case was positive and predicted positive

* False Negative (FN): the case was positive but predicted negative
» False Positive (FP): the case was negative but predicted positive

By utilizing these four measurements, we can use the scores Accuracy, Precision, Recall
and F1-score. Accuracy is the fraction of predictions our model got right.

Accuracy = TP+ TN
Y= TP FP TN+ FN

Precision (accuracy of positive predictions) refers to a classifier’s ability to avoid labeling
a negative occurrence as positive. It is calculated as the ratio of true positives to the sum
of true positives and false positives for each class.

TP

Precision = w

The capacity of a classifier to detect all positive cases is known as Recall (fraction of
positives properly identified). The ratio of true positives to the sum of true positives and
false negatives is the definition for each class.

TP

Reca" - m—I:N

The F1-score is a weighted harmonic mean of precision and recall, with 1.0 being the high-
est and 0.0 being the lowest. F1 scores are lower than accuracy measurements because
they factor on precision and recall.

2*(Recall * Precision)

F1 — score = —
Recall + Precision

In order to find the best scores, we did an "optuna search”. Apart from running our model,
Optuna also provides us with a number of plots illustrating the impact of hyper-parameter
tuning. We execute each combination of tokenization, ngrams, and metric a hundred times
(Jaccard distance and Euclidean-Jaccard distance). Using Euclidean-Jaccard distance
with 3-grams (or 2-grams) and character tokenization has the best results so far. This
optuna study’s goal is to maximize the F1-score. Remember F1-score or F-Measure, is
the score that evaluates both the positives and negatives that predicted true or false, in
contrast with Recall or Precision. Having a high-score on F1-score in CORA data set is
difficult. This happens due to the fact that the number of comparisons between similar
strings is significantly lower than the number of comparisons between different strings.
Hence, Recall is also a score that is really important in our experiments. Remember that
recall refers to a classifier’s ability to discover positive cases, or similar strings in our situ-
ation. F1-score is referenced as the Objective Value in the plots below. We can examine

K. Nikoletos 39

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

how the Optuna framework evaluated our model in each trial on F1-score in the Figure

Optimization History Plot

® Objective Value
——— Best Value

Objective Value
F

#Trials

Figure 14: Optuna Optimization History Plot

It is obvious that the maximum is close to 80% and that most of the trials finished with a
score greater than 70%. Aim of the "optuna search”, is to achieve the highest F-Measure
by fine-tuning our models five hyper-parameters, as shown in the following plots of Figure
and [16, respectively. The darker color denotes higher F1-score.

Figure can be used to drown a number of remarks. These visualizations were really
helpful in the fine-tuning phase of the model. To begin, we can see that Optuna’s search
is incredibly effective, as seen by the color in the scatter plots, which demonstrate that
as the trials progressed, the Objective value (F-Measure) increased. At this stage, we will
examine at each hyper-parameter separately, using Figure 15 as a guide. Starting with the
number of permutations (i.e. number of hashings), we see that with just one permutation,
we can acquire an F-Measure of more than 70%. Though, as predicted, the best results
were obtained with three or more hashings.

Following, the similarity threshold, seems to perform the best around 0.7 and 0.75. This
is evident from the fact that most trials used values from this range to achieve the best
result. The maximum dissimilarity distance and the maximum number of clusters are two
measures that are completely dependent on the nature of the data set. Both of these
parameters require fine-tuning through experimentation in order to achieve the optimum
results. Finally, for values between 5 and 10, the window size (i.e. K in WTA hashing)
yields the best results. This is also something that should be expected, as it is stated in
the WTA original publication [[17] that this hashing algorithm works best for window sizes
smaller than 10.

K. Nikoletos 40

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

Slice Plot

80

70

60

50

40

Objective Walue

30

20

10

1 2 3 4

number_of_permutations

Slice Plot

80

70

60

50

40

30

Objective Walue

20

10

K. Nikoletos

0.5 1

max_dissimilarity_distance

Figure 15:

. .
. .
'] L]
. .
.
5 0.5 0.6 0.7

similarity_threshold

L ®
L] L]
- .
»]
. L] .
L] L]
200 400 600 0 50 100
max_num_of_clusters window_size

Hyper-parameters values on CORA subset

#Trials
100

80

60

40

20

#Trials
100

80

60

40

20

41

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

Parallel Coordinate Plot

Objective Value

Figure 16: Hyper-parameters in comparison with F-Measure on CORA subset

In order for Optuna to perform this fine-tuning, we set specific boundaries for each hyper-
parameter, as shown in Table 8. Optuna tested our model in multiple random values be-
tween the minimum and the maximum value that we defined. In the figures 15 and 16, we
can see which of these values found to increase the objective score. Figure [16, is a great
visualization since it shows the overall fine-tuning as well as how each hyper-parameter
affects the others and the final score. From this figure, we can note that by increasing
the number of permutations (i.e number of hashings) we get better F1-scores and that is
expected as increasing the number of hashing increases also the number of comparisons
and hence the probability of finding more similar strings. Furthermore, we can see that with
a similarity threshold near to 0.7, we receive greater F1-scores. It would also be beneficial
to utilize the recall score instead of the F1 as the Objective value, as identifying similar
pairs in this data set is difficult. However, boosting the recall score lowers the accuracy
and precision, making our model less accurate in these aspects. For this reason, we de-
cided to use F1 score as the target score, because F1-score is the score that takes into
consideration both precision and recall.

The upper bound of the number of clusters has no effect on F-Measure (i.e F1-score), as
we can get good results with multiple values. We can also see that the max number of
clusters gives the best results between the interval of 400 and 650. Note here that this
number is something less than the data set size divided by two.

Table 8: Optuna hyper-parameter intervals

Hyper-Parameter Min | Max
Max number of clusters 200 | 700
Max dissimilarity distance | 0.1 | 0.9

Window size or K 5 100

Number of hashings 1 5
Similarity threshold 0.5 [0.75

K. Nikoletos 42

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

Optuna further provides us with two additional visuals that highlight the influence of each
hyper-parameter on both F1 and execution time. This is depicted in Figure 7. We can
observe that the similarity threshold has the most impact on increasing F1-score, while the
window size and maximum number of clusters have little impact. The prior parameter, on
the other hand, has no effect on the model’s execution time. The second plot of the same
figure shows how choosing the "wrong” window size can lead to a significant increase
in execution time. This is also expected as selecting the window size, affects the size of
the buckets that will be formed from the WTA hashing. A window size greater that 30,
causes less in number and greater in size buckets. As a result, having bigger buckets
leads to greater number of total comparisons and hence greater time of execution. The
same remark holds for number of permutations hyper-parameter, as an increase on the
number of permutations, increases also the number of total comparisons and results in a
considerable impact on the execution time.

Hyperparameter Importances

5in.\Iaritv_th'.ESho‘j_ N

max_dissimilarity_distance

number_of_permutations

Hyperparameter

max_num_of_clusters

window_size

IU.OB

o
=
=)
[

0.3 0.4 0.5 0.6 0.7 0.8

Importance for Objective Value

Hyperparameter Importances

window_size 0.86

number_of_permutations 0.07

max_dissimilarity_distance 0.03

Hyperparameter

max_num_of_clusters 0.02

similarity_thresholdl 0.01

=]
=]
-
e
o
=]
w

0.4 0.5 0.6 0.7 0.8 0.9

Importance for duration

Figure 17: Importance of hyper-parameters for Recall and Execution time

K. Nikoletos 43

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

From all these trials we also saved a number of measurements, in order to make a data
analysis and have a better view on the models performance. For example for each exe-
cution made by Optuna we gathered data about the number of prototypes selected, the
average bucket size, the execution time of each part and also the total number of com-
parisons, successful or not. These measurements among others helped us verify our the-
oretical assumptions, as well as made us re-design certain parts of this model. To better
grasp these measurements, we created a number of plots. Figure 1§ shows the impact
of the two hyper-parameters of the prototype selection phase, in the resulting number of
prototypes selected.

324 54,605 79.158

Recall

90

80

Figure 18: Importance of prototype selection hyper-parameters

It is obvious that a number of prototypes close to 100 results in higher scores. Keep in
mind that 100 prototypes for a data set of approximately 1200 strings means that we set
a prototype for every 12 strings. In a similar vein, we can evaluate the hashing schema.

In the Figure [19, we can observe the two hyper-parameters of the WTA hashing algorithm
in accordance with the average size of the buckets formed. All of these metrics are rep-
resented graphically, together with the F1, recall, accuracy score, and time spent on the
similarity checking phase. We need to see if the hashing boosted the similarity checking
step at all, and if so, at what values of hyper-parameters.

K. Nikoletos 44

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

54,605 55.088 73.158

Recall

90

80

70

60

50

40

30

1 12 0.03 o 75.513

Figure 19: WTA Hashing hyper-parameters evaluation

A number of observations can be drawn from the Figure [19. To begin with, the window
size (the length of the vector from which WTA obtains the hash) does not have to be high.
The best results appear to be achieved with a window size of 5 to 40. Also, increasing the
number of permutations (number of hashings) improves the scores, keeps the average
bucket size above 100, but can result in a long similarity checking time, as expected. An-
other obvious point is that by having as the Objective Value the F1-score, we increase the
recall score, while also having accuracy above 99%. Another handy plot we have created
is one that shows the number of successful comparisons (Figure R0). This is one of the
model’s most important features. The most difficult aspect of ER problems is keeping the
number of comparisons limited while maintaining high scores.

Recall

‘e
e _ o %o’
20k o dg.@l:&.u%% 80
® °s ¢ ¢ I .:.. 70

15k ¢ L]
60

50
10k

40

30

Same papers compared with success

Sk
20

3 7 [L) 100K 2 3 4 5 6 7 8

Different papers compared with success

Figure 20: Successful comparisons evaluation

K. Nikoletos 45

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

The F1-score improves as the number of comparisons increase. This is clear from the
prior plot. Even with less than 100.000 comparisons, we can achieve good results. This
is a great outcome, as we minimize the number of comparisons to around 70% while
maintaining satisfactory results. At this point we should present the best scores achieved
in CORA data set. Table g shows the best trials, not only on F-Measure but in all ways.

Table 9: Best scores on CORA

Trial id | Recall | F1 Precision | Accuracy | Total Time (m)
97 87.02 | 79.05 72.43 99.06 06:15
87 86.91 | 79.16 72.68 99.06 04:35
95 86.91 | 79.11 72.60 99.06 05:22
88 86.30 | 79.12 73.05 99.07 04:18
96 86.28 | 78.88 72.64 99.05 05:40
37 84.71 | 79.05 74.11 99.08 03:52
65 84.56 | 78.92 73.98 99.07 03:57
84 84.41 | 78.77 73.83 99.07 04:32
83 83.95 | 78.78 74.21 99.07 05:48
41 82.65 | 78.77 75.24 99.09 02:50

Lets focus on the most interesting trial, trial 37, as in this trial we get great results in about
4 minutes. We achieved a score of F-Measure near 80% and recall around 85%. For these
experiments we did not utilize a GPU or numerous cores of high performance CPUs. It
will be much interesting if we take a deeper look to the best trial.

6.1.5 Prototype selection

In this part, we should examine our models performance in the prototype selection phase
separately. Firstly, the time needed of the algorithm we used to select 87 strings from a data
set of approximately 1200 strings is around 2 seconds, which is amazingly good. However
we do not only need to have a quick selection but also a selection of prototypes with a
distribution similar to the data set. In order to examine this, we created some visualizations,
by performing some really famous dimension reduction algorithms. PCA and MDS are the
ones used as mentioned also in Section 2. We created two- and three-dimension plots in
order get a view of the selection. Figure 21| depicts the prototypes selected among all the
strings in a two-dimension space.

K. Nikoletos 46

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

2D Space Visualization with PCA - Prototype Selection

prototypes
50 . & e 1
5 5
-
- * o
100 .
J:l -
o e % .
[L] o *
£ .
[=]
- o B0 .
=) = - il
o] ., .
o i o Cy
iﬁ : . .
-50 " . 2 » .
.
. - ®
—100
—100 0 100 200
First component
2D Space Visualization with MDS - Prototype Selection
prototypes
o 1
200 * . N
d L] . . .‘ oo " (1]
L]
® ’- ARt
o 100 . o
§ L]
g e o * %
E -
8 : ® L
o Ll
g o s “ . .
o . * e .
B _100 . . 5 "
. - v .
.
. H
—200
- -
.
—200 -100 0 100 200

First component
Figure 21: 2-Dimension Prototype Selection with PCA and MDS

We can observe that in this trial, we have a really good prototype selection, as the proto-
types selected span all the string space. The above findings denote a prototype distribu-
tion, close to the one of the initial data set. Keep in mind that PCA and MDS are methods
for reducing the number of dimensions in a data set while keeping the most critical infor-
mation. This can be done, by projecting high-dimensional data linearly onto the principal
components of variation (PC). However, because to the dimension reduction, a lot of in-
formation may be lost. Doing a dimension reduction is very beneficial as it is the only way
to visualize a high-dimension space and gain a sense of the data set distribution. Further-
more, increasing the number of principal components used, results in less lost information.
As a result, we made 3-dimension plots in Figure R2, using both PCA and MDS. In all of
the figures, prototypes chosen distribution is seems very accurate, when compared to the
data set’s initial distribution.

K. Nikoletos 47

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

prototypes
3D Space Visualization with PCA - Prototype Selection o
150
) .
400 4
5 <
%' o0
+ a
Tl .
[=] - .
?]13 I} i - - -
=]
5 o
5 o
« a0) . z
A CRmp Y
N ‘op
2N 0 %
- o
[z 2
)6,’; 0 Q0°
g %o &
[+ o &
2, ‘0, &
O,) \,QQ’ &8
(S e
prototypes
3D Space Visualization with MDS - Prototype Selection o
L]
-
100 ‘ '
L]
0 a h «xTe
il "
'_‘_; [
(=3 -
e i p .
%] . =
=) : Y. (]
(=] .
2 & ’ * 5
e . y
£ . ‘
A o,
0 S
ry &
%, &
/’\O' o o 0{‘
) &
£ 5 \.(JO
O’)@ Q)Q (/) \(c,
2 <

Figure 22: 3-Dimension Prototype Selection with PCA and MDS

It is also interesting to create a heatmap out of the dissimilarity distances between the pro-
totypes chosen. In our case, the dissimilarity distance is the Euclidean-Jaccard distance.
Figure 3 illustrates this heatmap. As can be seen from the color bar, we have made a
pretty solid prototype selection. The prototypes are nearly all 90 percent different from one
another. This is critical because we require prototypes that are as unique and different as
possible. Prototype selection algorithm aims in selecting the most distinguishing strings.
If these assumptions are true, the resulting space formed, is rich and the embeddings
created will "describe” each string in a unique way. And if we have "detailed” and precise
embeddings then it is most likely to get high scores.

K. Nikoletos 48

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

MWHHANNEEADDREH DNBOLULZORRUDNBEMZ2DRBEMUROEE 420

PN TR o NI e RANIRAR NI RNV IS RN RERBUTBBRNRRRS

Figure 23: Dissimilarity between Prototypes

It is indeed critical to note at this point that the prototype selection optimization we per-
formed appears to be functioning and producing quite satisfying prototypes. We obviously
do not have prototypes that are similar. As we have mentioned in Section 2, there is a met-
ric called Maximum Mean Discrepancy (MMD), that measures the discrepancy between
two distributions. This metric provides us with an indication of the difference between the
distribution of the prototypes and the initial distribution of the data set. Remember that the
closer this metric is to zero, the closer are the distributions. This statistic yielded roughly
0.0114 in this trial. This is a great score as it is very close to zero and as we mentioned
before this is the goal.

Overall, there are also some disadvantages, the most significant of which is that this al-
gorithm must be fine-tuned in order to achieve these results. In a nutshell, the prototype
selection provided a group of unique and different prototypes in a very short time for the
best trial. K-Means, DBSCAN, and other clustering algorithms with the same design are
slower and require fine-tuning as well.

K. Nikoletos 49

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

6.2 Comparison with other ER models using JedAl

In order to evaluate the model we have developed, it is much needed to compare it with
other existing models, developed for Entity Resolution. In this study, we utilized a state-of-
the-art toolkit named JedAl. JedAl [13], is a toolkit for Entity Resolution that implements
numerous state-of-the-art, domain-independent methods, and provides an intuitive Graph-
ical User Interface that can be used for ER experiments and evaluation on data sets.

JedAl ER workflow consists of eight steps.
1. Data reading

2. Schema Clustering groups together syntactically (not semantically) similar attributes.
This can improve the performance of all workflow steps.

3. Block Building clusters entities into overlapping blocks in a lazy manner that relies
on unsupervised blocking keys: every token in an attribute value forms a key. Blocks
are then extracted, based on its equality or on its similarity with other keys.

4. Block Cleaning aims to clean a set of overlapping blocks from unnecessary com-
parisons, which can be either redundant (i.e., repeated) or superfluous (i.e., between
non-matching entities). Its methods operate on the coarse level of individual blocks
or entities.

5. Similar to Block Cleaning, Comparison Cleaning aims to clean a set of blocks from
both redundant and superfluous comparisons. Unlike Block Cleaning, its methods
operate on the finer granularity of individual comparisons.

6. Entity Matching compares pairs of entity profiles, associating every pair with a sim-
ilarity in [0,1]. Its output comprises the similarity graph, i.e., an undirected, weighted
graph where the nodes correspond to entities and the edges connect pairs of com-
pared entities.

7. Entity Clustering takes as input the similarity graph produced by Entity Matching
and partitions it into a set of equivalence clusters, with every cluster corresponding
to a distinct real-world object.

8. Evaluation

In this part, we compare our models performance to other well-known ER algorithms. All
of these models were created quickly and efficiently with JedAl, which is simple to use and
gives consistent results in order to conduct our experiments. Following table summarizes
some of the workflows.

Table 10: JedAl results to CORA

Workflow Block Block Comparison Entity Entity Recall F-Measure Precision Total Time
Building Cleaning Cleaning Matching Clustering (%) (%) (%) (s)
Standard/Token Block-Filtering
1 Blocking, Comparison-based Profile Merge-Center | 74 44 77.54 76.00 09:64
LSH SuperBit . Matcher Clustering
" Block Purging
Blocking
Standard/Token . N
B Size-based Profile Markov
3 Blocking, " - 3 74.58 65.37 58.19 00:47
LSH MinHash Block Purging Matcher Clustering
Q-Grams Comparison-based Profile Correlation .
3 Blocking Block Purging) Matcher Clustering 64.18 69.32 75.35 01:09
-) Connected
4 Standard/Token Block-Filtering Cardinality Node Profile Components | 82.89 80.33 77.93 00:11
Blocking Pruning (CNP-JS) Matcher N
Clustering
.) Connected
5 Standard/Token Block-Filtering Cardinality Node Profile | components | 81.18 85.23 91.20 00:07
Blocking Pruning (CNP-JS) Matcher Clustering

* Profile Matching done in all cases with CHARACTER_BIGRAM_GRAPHS, GRAPH_VALUE_SIMILARITY except from workflow 5 that was conducted with
TOKEN_UNIGRAMS_TF_IDF, GENERALIZED_JACCARD_SIMILARITY

K. Nikoletos 50

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

Starting from the first three workflows, we can see some popular schemes and algorithms
used in ER. F-Measure is between 65% and 75%, which is a an average score for a trivial
workflow like a Merge-Center Clustering or the Markov Clustering. These first workflows
are presented, in order to compare our model with some basic algorithms. WinnER, with
the appropriate tuning, outperforms these jedai-workflows. Workflows 1, 2, and 3 have
lower F-Measure and Recall scores than WinnERs, but they have higher Precision score.
Remember Precision is the classifiers ability to avoid labeling a negative occurrence as
positive.

Another major criterion is the time of execution of each workflow. JedAl is a framework with
great time of execution. JedAl runs as a Spring Boot application and has been optimized in
all of its parts. So comparing in detail the time of execution with our model is not accurate.
We can only compare these times roughly and note that in about 3 to 6 minutes, WinnER
gives great results as a Python program that runs in a local machine. More parallelization
can be added in our model and its part of the future work.

Models
—eo— JedAl-1
JedAl-2
- JedAl-3
—— JedAl-4
—— JedAl-5
=== WinnER

Performance (%)

Recall F-Measure Pracision
Scores

Figure 24: Performance of JedAl workflows compared with WinnER

JedAl-workflow 5 and 6 are among the best we managed to get. These scores can also
be be found in the paper Three-Dimensional Entity Resolution with JedAl [14]. Figure 4
depicts all the scores shown in the previous table in comparison with our model. WinnER
has the greatest Recall score when compared to the other models. However WinnER
receives a low Precision score at the same time as it is obvious from the above figure.
This comparison demonstrates us the ability of our model to predict with high accuracy
the similar pairs, while keeping Precision above 70%.

These results demonstrate that our methodology gives results close to or even better from
other well known methods. Without a doubt, this methodology looks promising and results
in fairly good results.

K. Nikoletos 51

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

7. CONCLUSION

In this study, we present a novel model for tackling ER problems on string data sets. To
begin, we provided a Prototype Selection scheme that, as the results show, can result
in a set of rigorously selected prototypes as well as in a rich Euclidean and Dissimilar-
ity, Embedding Space. Afterwards, a rank-ordered technique was introduced to avoid the
Curse of Dimensionality and to enjoy the advantages that rank-ordered embeddings offer.
Following that, we introduced the work’s most important component, the Winner-Take-All
hashing algorithm, which boosts in time our model while maintaining high Recall scores.
By employing this blocking strategy, we were able to reduce the number of comparisons
by around 80% and limit the similarity checking phase to only the most similar pairs. In
the last section, we presented in much detail, our models performance while also utilized
and presented, two state-of-the-art frameworks, Optuna and JedAl. With these two frame-
works we presented how our model achieves great recall score and an F-Measure that
challenges other successful ER frameworks. To conclude, we developed an end-to-end
model that can be used in string ER problems and produce high-performance and robust
scores with the less execution time.

K. Nikoletos 52

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

TERMINOLOGY TABLE
AvaAuon ovToThTwyV Entity Resolution
Mnxavikry M&Bnon Machine Learning

K. Nikoletos

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

ABBREVIATIONS, ACRONYMS

ER Entity Resolution

ML Machine Learning

VO Vantage Objects

WTA Winner Take All

PCA Principal Component Analysis
MDS Multi Dimensional Scaling
LSH Locality Sensitive Hashing
MMD Maximum Mean Discrepancy
Al Artificial Intelligence

K. Nikoletos

54

WinnER: A Winner-Take-All Hashing-Based Unsupervised Model for Entity Resolution Problems

(1]
(2]
[3]

(4]
[5]

(6]
[7]
(8]
(9]
[10]
[11]
[12]

[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]

REFERENCES

A. Z. Broder. 1997. On the resemblance and containment of documents, Compression and
Complexity of Sequences: Proceedings. 1997

A. Mlle, (1997). Integral Probability Metrics and Their Generating Classes of Functions. Advances
in Applied Probability, 29(2), 429—-443. https://doi.org/10.2307/1428011

B. Chen, A. Shrivastava: Revisiting Winner Take All (WTA) Hashing for Sparse Datasets.

Bellman R.E. Adaptive Control Processes. in: Princeton University Press, Princeton, NJ, 1961.

D. Karapiperis, A. Gkoulalas-Divanis and V. Verykios. 2021. MultiBlock: A Scalable lterative
Approach for Progressive Entity Resolution. In 2021 IEEE International Conference on Big Data
(Big Data). 10.1109.

D. Critchlow. 1985. Metric Methods for Analyzing Partially Ranked Data. Springer-Verlag.

Gilpin, A. R. (1993). Table for conversion of Kendall's Tau to Spearman’s Rho within the context
measures of magnitude of effect for meta-analysis. Educational and Psychological Measurement,
53(1), 87-92.

G. Navarro. 2001. A guided tour to approximate string matching. in: ACM Computing Surveys. 33
(1): 31-88. 2001.

G. Papadakis, D. Skoutas, E. Thanos, and Themis Palpanas. 2020. Blocking and Filtering
Techniques for Entity Resolution: A Survey. ACM Comput. Surv. 53, 2.

G. Papadakis, E. loannou, T. Palpanas, C. Niederee, W. Nejdl, A blocking framework for entity
resolution in highly heterogeneous information spaces, IEEE TKDE 25 (12) (2013) 2665-2682.
G. Papadakis, G. Papastefanatos, T. Palpanas, M. Koubarakis, Scaling entity resolution to large,
heterogeneous data with enhanced meta-blocking, in: EDBT, 2016, pp. 221-232.

G. Papadakis, E. loannou, C. Niederee, T. Palpanas, W. Nejdl, Eliminating the redundancy in
blocking-based entity resolution methods, in: JCDL, 2011, pp. 85-94.

G. Papadakis, L. Tsekouras, E. Thanos, G. Giannakopoulos, T. Palpanas and M. Koubarakis, The
return of JedAl: End-to-End Entity Resolution for Structured and Semi-Structured Data, in: VLDB,
2018

G. Papadakis, G. Mandilaras, L. Gagliardelli, G. Simonini, E. Thanos, G. Giannakopoulos, S.
Bergamaschi, T. Palpanas, M. Koubarakis, Three-Dimensional Entity Resolution with JedAl, 2020
J. Vleugels and R. C. Veltkamp. 2002. Efficient image retrieval through vantage objects. Pattern
Recognition, 35(1):69 — 80.

J. C. Gower P. Legendre: Metric and Euclidean properties of dissimilarity coefficients, Journal of
Classification volume 3, pages5—48.

J. Yagnik, D. Strelow, D. A. Ross, and R. Lin. 2011. The power of comparative reasoning. In 2011
International Conference on Computer Vision. 2431-2438.

K. Pearson. 1895. Notes on regression and inheritance in the case of two parents. in: Proceedings
of the Royal Society of London. 1895.

L. A. Goodman, Kruskal, William H. (1954). Measures of Association for Cross Classifications.
Journal of the American Statistical Association. 1954

M. Kendall, 1938. A New Measure of Rank Correlation. in: Biometrika. 1938.

M. Kendall. 1970. Rank Correlation Methods (4th ed.). Griffin, London.

M. Kendall and J.D. Gibbons, (1990) Rank Correlation Methods. 5th Edition. 1990.

M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani, and N. Tang, DeepER - Deep Entity
Resolution in CoRR, vol. abs/1710.00597, 2017.

R. H. Somers, (1962). A new asymmetric measure of association for ordinal variables. American
Sociological Review. 1962

Robert P.W. Duin and Elzbieta Pekalska. 2012. The dissimilarity space: Bridging structural and
statistical pattern recognition. in: Pattern Recognition Letters. 33(7):826-832.

S. Edelman. 1999. Representation and Recognition in Vision. MIT Press.

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. 2019. Optuna: A Next-generation
Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 2623-2631.

Tanimoto TT. 1958. An Elementary Mathematical theory of Classification and Prediction. in: Internal
IBM Technical Report. 1957.

V. Verykios and D. Karapiperis. 2021. Entity Resolution in Dissimilarity Spaces. in: 25th
Pan-Hellenic Conference on Informatics.

V. Verykios, D. Karapiperis and P. Tsompanopoulou, 2021. Embedding Strings in Euclidean Spaces
for Highly Efficient Entity Resolution, Unpublished paper

Wayne W. Daniel, (1990). Spearman rank correlation coefficient. Applied Nonparametric Statistics
(2nd ed.). 1990

K. Nikoletos 55

	1e63a302a293231f24100aa046eaa73dda7dc9ebdc4099a16cd045a16168357b.pdf
	1e63a302a293231f24100aa046eaa73dda7dc9ebdc4099a16cd045a16168357b.pdf
	1e63a302a293231f24100aa046eaa73dda7dc9ebdc4099a16cd045a16168357b.pdf
	1e63a302a293231f24100aa046eaa73dda7dc9ebdc4099a16cd045a16168357b.pdf
	1e63a302a293231f24100aa046eaa73dda7dc9ebdc4099a16cd045a16168357b.pdf
	1e63a302a293231f24100aa046eaa73dda7dc9ebdc4099a16cd045a16168357b.pdf
	1e63a302a293231f24100aa046eaa73dda7dc9ebdc4099a16cd045a16168357b.pdf
	Introduction
	Space Construction
	Dissimilarity Space
	Edit or Levenshtein Distance
	Jaccard Distance
	Euclidean-Jaccard Distance
	Text transformation for Jaccard Distance

	String Clustering & Prototype Selection
	String Clustering Phase
	Prototype Selection

	Optimization
	Evaluation of Prototype Selection

	Vantage Embeddings
	Prototypes as the Vantage Objects
	Selection of embedding distance
	Predefined distances
	Distances Norms

	Curse of Dimensionality

	Winner-Take-All Hashing Algorithm
	Functionality
	Hashing more than once

	Similarity Checking
	Similarity Metrics
	Spearman’s rank correlation coefficient
	Kendall Tau rank correlation coefficient

	Optimization
	Bloom Filter
	Concurrent Similarity Checking with Threads

	Evaluation
	Evaluation based on CORA data set
	Attribute Analysis
	Selection of string metric
	Hyper-parameter tuning using Optuna
	CORA best scores
	Prototype selection

	Comparison with other ER models using JedAI

	Conclusion
	Terminology Table
	Abbreviations, Acronyms
	References

