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1 Introduction

In this work we present several results concerning mostly applications of Baire’s
Category theorem in Complex Analysis in one and in several complex variables. An
important problem in complex analysis is whether there exists a holomorphic function

f, in a given open set Q in C", which is singular at every boundary point of Q in

the sense that whenever U and V are open subsets of C", with U being connected
and =V cUnNQ=U, then there is no holomorphic function F in U which

extends f|v, I.e.,, F(z)=f(z) for zeV . See for example [2], [7], [10], [11], [14],

[16] and [20]. Also the problem of constructing singular functions with specific
properties — for example satisfying certain growth conditions near the boundary or
having certain smoothness upto the boundary — has been studied in various directions.
See for example [7], [8], [10], and [11]. In this work we will show — under certain

restrictions on the open set Q — that the set of the OLP (holomorphic and LP with

respect to Lebesgue measure) and H P (B) (holomorphic and H P with respect to the
Euclidean surface area measure on the sphere dB), 1< p <o, functions in Q and

B={zeC": |z|<1}, which are totally unbounded, is dense and Gy in the space

OLP(Q)and H P(B) respectively. In fact we work mostly with the spaces [OLP ()
p<q
-see chapter 3- and N H P(Q) -see chapter 4-, q e (1,+) endowed with its natural
1<p<q

topology.

The second chapter is an introduction for the chapters 3 and 4. Here we present the
definitions of concepts which appear in this thesis, propositions and theorems which
we apply in order to prove the theorems presented in the chapters 3 and 4.

In the third chapter we consider Bergman spaces OLP (Q) and variations of them on

domains Q in one or several complex variables. For certain domains Q we show that
the generic function in these spaces is totaly unbounded in Q and hence non-
extendable. We also show that generically these functions do not belong — not even
locally — in Bergman spaces of higher order. Finally, in certain domains Q, we give
examples of bounded non-extendable holomorphic functions — a generic result in the

spaces A®(©2) of holomorphic functions in Q whose derivatives of order <s extend
continuously to Q (0<s<w).

In the fourth chapter we study some Hardy type spaces (H P(€) and we prove that
1<p<q

the set of the holomorphic functions which are totally unbounded in certain domains is
dense and s in these spaces. These totally unbounded functions are non-extendable,

despite the fact that they have non-tangential limits at the boundary of the domain.
Similarly we show that the set of the holomorphic functions in these spaces which are
non-extendable is dense and Gs in these spaces. Following a suggestion of Nestoridis,

we also consider local Hardy spaces H P (B,G), for open subsets G of the sphere &B

5



(the precise definition is given in the subsection 4.3.) as another way of measuring
how singular a holomorphic function is near a boundary point. In this chapter we show

that the set of the functions in the space H P (B) which do not belong to any local
1<p<q

HY —space is dense and Gg (Theorem 4.3.2.). We first work in the case of the unit
ball of C" where the calculations are easier and the results are somehow better, and
then we extend them to the case of strictly pseudoconvex domains. In sections 4.4.and
4.6., we will extend these results from the ball to the case of strictly pseudoconvex

domains. In this more general case we have to modify the definition of local Hardy
spaces which we give in the case of the ball. Thus if Q is a strictly pseudoconvex

domain in C", we consider the space H P (Q,U), where U is an open subset of C"
so that U n (0QQ) = < (For the precise definition, see section 4.5.). In the last section of

this chapter we extend the results for strictly pseudoconvex domains in C"to the case

of harmonic functions in domains of R".

Last it remains an open question if the results presented in chapters 3 and 4 could be
extended in other spaces as Nevanlinna or in convex sets respectively.



2 Preliminaries

2.1. Basic Theorems and Definitions

We will use the following theorems to prove the main results of this work.

Definition 2.1.1. A function f : QQ — C, defined on an open subset Q< C",n>1, is
said to be holomorphic in Q if feC(Q) and is holomorphic in each variable

separately. The classes of all holomorphic functions in Q will be denoted by O().

Definition 2.1.2. The hermitian inner product is defined by
(z,W) :szv_v,-, z,weC"
j=1

and the associated norm is: |z|=(z,2)"?, zeC".

Definition 2.1.3. Let X be a topological space. A G5 set in X is a countable

intersection of open sets in X . Furthermore, a subset E of X is called dense if
intersects every nonempty open subset of X .

Theorem 2.1.4. (Baire’s Theorem, [23, Theorem 5.6]) Any countable family of open
and dense sets in acomplete metric space has a non-empty and in fact dense
intersection.

Theorem 2.1.5. (Taylor’s Theorem, [7, Problem 25]) Let Q< C" be an open set, and
p areal valued C"— function in Q. Then, forall { €Q and for z - {,

p(2)=p(2)+ 528N () 2) -, () +

1 2n 62 (é/)
+5j,k:1ﬁ(xi(Z)‘Xj(4))(Xk(2)—xk(§))+...+

L& ()
m!j 53,=10%, 0%, .0

(%, (2)=%, ()%, (2) =%, (£))-(x;, (2) =, (g))+°(|§_ Z|m)v

where X; =X; () are the real coordinates of ¢ e C" such that ¢, = X, () +iX;,, ()

j+n

, J=1...,n.

Theorem 2.1.6. (Holder's inequality, [28, Proposition 3.3.2]) Let (X,.4,u) be a
. 1 1

measure space and let p,ge[l,+o) with 6+a:1. If fel®(X,A4,u) and

gel?(X,A4,u) then fg belongsto L'(X,.4,u) and satisfies
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[Ifaldu<]t],]al,

Theorem 2.1.7. (Fatou’s Lemma, [6, Theorem 1.17]) Let f, : X —[0,00]be u—
measurable functions for k=1,.... Then

[ Jim , du <liminf [ f, du

Theorem 2.1.8. (Monotone convergence Theorem, [6, Theorem 1.18]) Let
f, : X —[0,00] be u—measurable functions (k=1,...), with

f<.<f <f <..
Then
Jim [ fche= fim .

Theorem 2.1.9. (Fubini’s theorem, [6, Theorem 1.22]) Let x be a measure on X and
V be a measure on Y. If f is (uxv)-integrable and f is o - finite with respect to

uxv  (in particular, if f is (,uxv)- summable), then the mapping
yHJ' f(x,y)du(x) is v- integrable, the mapping Xij(x,y)dv(y) is u-
X Y

integrable, and

XjXY f d(,uxv)=JUf(X,y)du(x)} dv(y)=)J;uf(x,y)dv(y)} du(x).

Theorem 2.1.10. (Inverse Function Theorem, [18, Theorem 8.3], [10, Theorem
1.1.18]) Let F:Q—R", where Q is an open set in R", be of class C! and p a
point in Q such that JF (p) is invertible. Then, there exist an open set X containing

p, an open set Y containing F(p), and a function G:Y — X of class C! that
satisfies FG(y)=y, for allyin Y, and GF(x)=x, for x in X. Moreover,
JG(y)=JF(G(y)) ", forall yinY .

Theorem 2.1.11. (Montel’s Theorem, [18, Theorem 5.2]) Let # be a bounded family

of holomorphic functions on an open set Q < C". Then, each sequence of functions in
F has a subsequence which converges uniformly on compact subsets.

Theorem 2.1.12. ([25, Proposition 5.2]) Let V be a topological vector space over C,
X a non-empty set, and let C* denote the vector space of all complex-valued

functions on X . Suppose T Y —>C*is a linear (or sublinear) operator with the
property that, for every XxeX, the functional T,:V—>C, defined by

T, (f)=T(f)(x), for f €V, iscontinuous. Let



E={f eV:T(f) is unbounded on X}.
Then either £= or £ isdense and Gy set in the space V.

Proof. That £ is a Gs set follows from the fact that

£= UL eV:T(H)|>m}

m=1xeX
and the continuity of f —T(f)(x).
Next we show that £ is dense in the space V, if itis not empty. Letge £, 1.e.,,geV
and T(g) isunbounded on X ,and let f €V — &. Then T(f) is bounded on X, let

us say by x,. Also for fixed n>1, the function T(f+1g) is unbounded onX .

Indeed, suppose that it is bounded on X by a positive number ;. Then, if xe X, by
the linearity of T , we would have

T(@)X)|=nTEQ))|=n[T(f+1g)x)-T(f)(x)
< n(‘T(f+%g)(x)‘+|T(f)(x)|) <K+ N Ko,
which contradicts the fact that T (g) is unbounded on X .
In the more general case in which T is sublinear (not necessarily linear), i.e.,
T(f+0)|<[T(f)]+[T(g)| and [T(Af)|=|A|T(f)|, for f,geV and 1eC,
we would have
T (@) =[TE QO <[T(fF+29)0)|+[T(=H))| =[T (f+19) ()| +[T(F)(X)],
and this would give again the contradiction that T (g) is bounded on X by n(x;+x>).
Therefore T(f+%g) is unbounded on X, i, f+ige& for every nx1, and

f +%g converges to f, in V, as n—o. Since f was an arbitrary function in
Y -£&, it follows that £isindeed densein) . o

Remark 2.1.13. One can prove more general versions of the above theorem. For
example the operator T may be assumed to satisfy the weaker condition:

TA(F+@)| < |2 [T(F)" + |4/ [T (9)|”, for some a, 3 >0.
The following Theorem was proved by Nestoridis. (See [19, Theorem 3.3].)

Theorem 2.1.14. Let Q = C" be an open set and let V' be a vector subspace of O(Q).

Suppose that in V there is defined a complete metric whose topology makes V a
topological vector space and such that convergence in V implies pointwise
convergence in O(Q) . If for every pair of balls (B,b) with bcc BnQ =B, there

exists g,y €V such that the restriction f(B,b)|b (of the function fg,) to b) does

not have any bounded holomorphic extention to B, then the set of the functions
g € V which are non-extendable is dense and Gg in V.



Proof. Let A={f €V: f is non—extendable}. In order to prove that A is dense and
Gs in V), it suffices to show that its complement 1V — A is a countable union of closed
subsets of 1V with empty interior.

For this purpose we consider the set ) of the couples (B,b) of open Euclidean balls

so that b cc BN Q= B with the centers of B and b belonging to (Q +iQ)" and the
radii of B,b belonging to (0,+0) "Q, where Q denotes the set of rational numbers.
It is clear that this set ) is countable. Also it is easy to see that

V-A= |J UT(B,b,M)
(B,b)eY M eN

where we have set
T(B,b,M)={f €V:3F € O(B), bounded by M, so that F|, = f| }.

Since the set {T(B,b,M):(B,b) e Y and M €N} is countable, it remains to show
that, for fixed (B,b)e) and M e N,
T(B,b,M) isclosed (in V) and int[T(B,b,M)]=9.

Let us consider a sequence f eT (B,b, M) such that f, — f in the topology of V
(with f € V). For each n=1,2_3,..., there exists a holomorphic function F, on B,
bounded by M, such that F,|b= f,|b. By Montel’s theorem (see Theorem 2.1.11.),
there exists a subsequence F,_of F, which converges uniformly on compact subsets
of B towards a function F which is holomorphic on B and bounded by M .

Since the convergence f — f in the topology of V implies pointwise convergence in
Q by our assumption, it follows that f|b=fim f,|b=1im fkn\b=|inm Fkn‘b=F‘b.
Since f €V and F is holomorphic on B and bounded by M, f €T (B,b,M). This
proves that T (B,b,M) is closed in V.

Finally, to prove that the interior of T (B,b,M) in V is empty, let us assume, in order
to reach a contradiction, that there exists an f eint[T(B,b,M)]. By our assumption
there exists a function fz},) €V such that its restriction to b does not have any

(8.5) — f in the topology of V

and f is in the interior of T(B,b,M), it follows that for some ne{L23,...} the

bounded holomorphic extention to B. Since f+1f
n

function f + = f 5.5 0€lONgs to T(B,b,M). The same holds also for the function f .
n (&

and f, restricted to b, admit holomorphic

Thus, both functions f+1f
n (BD)

extensions to B which are bounded by M . Thus, their difference 1 fig.p), restricted
n G

to b, admits a holomorphic extension on B bounded by 2M . It follows that the

function f, restricted to b admits a holomorphic extension on B bounded by
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2nM. This contradicts the fact that f(B’b)|b does not admit any bounded holomorphic
extension on B . Thus int[T(B,b,M)] = and the proof is complete. o

2.2. Totally unbounded Holomorphic functions

Let QcC" be an open set. We will say that a holomorphic function f:Q—C is

totally unbounded in Q, if for every weoQ, every >0, and every connected
component E of the set

B(wW,8)nQ={zeQ:|z-W <5},

the function f|E is unbounded, i.e., sup|f(z)|=oo. Notice that such a function is
zeE

singular at every point of 0Q .

More precisely the following proposition holds.

Proposition 2.2.1. Let Q<= C" be an open set and let f :Q— C be a totally unbounded

holomorphic function. Then for every open sets U,V < C", with U being connected and
D#V cUNQ=U, there does not exist a holomorphic function F on U which extends
f|V y |e, F|V = f|V .

Proof. Suppose — to reach a contradiction — that for some pair of sets U and V , there exists
a function F, which extends f in the way described above. Let E; be the connected

component of U nQ which contains V . Then F‘El = f‘El and E; noQ =@, so that we

may take a point weE noQ, and a ball B(w,5) with B(w,5)cU. Then
B(w,0)nE; #J, and if ¢ e B(w,d) N E; then for the connected component E of the set

B(w,5) NQ, which contains the point ¢, we have sup|f (z)| = (since f is assumed to be
zeE

totally unbounded). But this contradicts the equation F|g = f|g, which follows from the

principle of unique analytic continuation, applied to the connected open set E and the fact
that open set ENE; # . This completes the proof.o

Remark 2.2.2. In the above proof we used the fact that E; moQ=@. To justify this
elementary topological fact, let us observe that, since U nQ =, UN(C-Q) =< and
U is connected, it follows that U noQ = . Let aeV and beU ndoQ, and let T" be a
curve which lies in U and connects the points a and b. If C is the connected component
of U mnQ which contains a, then C isopen, acCnI and bg C I Since the set " is
connected, we must have T'oC = . Then for a point zeI"noC , we will have 7 € 6Q

11



and 7eC, and therefore C noQ = . Finally, since E; oC, we obtain that, indeed,
El NoQ =,

2.3. Integrals over level sets

Lemma 2.3.1. (Integration in polar coordinates, [28, Lemma 1.8]) Let dv denote the
volume measure on B={zeC": |z|<1}, normalized so that v(B)=1 and do is the

Euclidean surface area measure on the sphere dB=.5, O‘(S) =1.Then the measures v and

o are related by the formula
1

[ f@av(z)=2n[r"dr [ f(r$)do(S)
B S

0

Proposition 2.3.2. ([22, Proposition 1.4.10]) For z € B, ¢ real, t > 1 define
da({)
l.(Z2)=| ———=
C( ) LJ;“l_<Z’4,>‘n+C
and
(l—|W|2)dV(W)

J.i(2)=
C,t( ) B‘l_<z1w>‘n+1+t+c

When ¢ <0, then | and J., are bounded in B.
When ¢ >0, then

I (Z) z(]'_|z|2)7C ~Jet (Z)

Finally,

1
1o(2)~Tog— ~ Jq  (2).
r

Theorem 2.3.3. (Integration over level sets, [6, Theorem 3.13]) Assume f:R" >R
is Lipschitz continuous.

Q) Then

+00
[ |Dfjdx= [ 3" ({f =t})dt,
RN —0
where H" is the n-dimensional Hausdorff measure on R" — H" =L" on R" -,
(i)  Assume also essinf |Df|>0, and suppose g:R" - R is L"-summable

i.e,|f| hasafinite integral. Then

12



g dx:T[ J' ﬁdﬂ{“]ds,

(f>t) t\ {f=s
where essinf f =sup{beR: u({x: f <b})=0}.
(iii)  In particular,
d _ g n-1 1
— gadx |=- ——dH", for L'ae. t,
at {fJ;t} {f'[:t}|Df|

where the expression a.e., means almost everywhere with respect the space L' .

2.4. Convex sets

Definition 2.4.1. A set U cR" is convex if the line segment between any two points
in Uliesin U, ie. if for any x,yeU and any te R with 0<t<1, we have

tX+(1-t)yeU.

Definition 2.4.2. A setC c R" is affine if the line through any distinct points in C
liesin C,i.e.,ifforany x,yeC and teRR ,we have tx+(1-t)yeC.

In other words, C contains the linear combination of any two points in C , provided
the coefficients in the linear combination sum to one.

Definition 2.4.3. A function f :R" — R"is affine if it is a sum of linear function and
a constant, i.e., if it has the form f (x)= Ax+b, where AcR™™ and be R™.

Remark 2.4.4. Suppose S < R" is convex and f:R" —R™ is affine function. Then
the image of S under f, f (S)={f(x):xeS} is convex.

Definition 2.4.5. A hyperplane H is a set of the form H (a,b) ={xeR":(x,a) =b},

where acR",a=0 and beR.

Remarks 2.4.6.

(i) Geometrically, the hyperplane can be interpreted as the set of points with a
constant inner product to a given vector a.

13



figure 2.4.6.1. {x,a}=b

The figure 2.4.6.1. illustrates the hyperplane in R? with normal vector a and a point
X, in the hyperplane. For any point x in the hyperplane, x—x, (shown as the darker

arrow) is orthogonal to a.

(i) A hyperplane divides R" into two half spaces. (see figure 2.4.6.2.) A (closed)
halfspace is a set of the form {x e R":(x,a) <b},where a+0.

figure 2.4.6.2.
(iii) Halfspaces are convex but not affine.

Theorem 2.4.7. (Separating hyperplane Theorem, [3, Theorem 2.5.1]) Let C and D
are two convex sets that do not intersect, i.e., CND = . Then there exist a= 0 and

b such that (x,a)<b forall xeCand (x,a)>b forall xe D. In other words, the

affine function <x,a>—b is nonpositive on C and nonnegative on D. This is
illustrated in figure 2.4.7.1..

{x,a)Zb// (x,a)ﬁb

D /

figure 2.4.7.1.
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Theorem 2.4.8. (Strong Separating Hyperplane Theorem ([3]) Let C and D are two
disjoint nonempty convex subsets of R". Suppose C is compact and D is closed.
Then there exist a nonzero a<R" that strongly separates C and D, i.e., there exist
b such that (x,a) <b forall xeCand (x,a)>b forall xeD.

Theorem 2.4.9. (Supporting Hyperplane Theorem, [3, Theorem 2.5.2]) Let C c R"
be a nonempty convex set and X, is a point in its boundary. Then there exist

aeR", a=O0satisfies (x,a) <(x,,a) forall xeC.- see figure 2.4.9.1.-

figure 2.4.9.1.

Definition 2.4.10. (Boundary of cX class) Letk e (0,0]. An open set Qc R" has a
cX —boundary, if for every yeoQ there exists a neighborhood U of Yy and a
function peC*(U)such that dp(x)=0 for every xeU and such that
QU ={xeU:p(x)<0}.

Remark 2.4.11. A function p defined as in the above definition is called CK “local
defining function for €2.

Theorem 2.4.12. Let QcR" be an open, convex and bounded set with ck-

boundary, and p Cl—defining function for Q - see definition 2.7.1.-. Then for x € 6Q2
and y e Q we have that:

- Op(x)
22 (x, —y,)>0.
JZ_;, x| (x; = Y;)

Theorem 2.4.13. Let QcR" be an open, convex and bounded set with c?-
boundary, and p c2- defining function for Q. Then for x € 6Q we have that:

2 n 2
> 0 p(x)tjtk >0 for every te R" with Zap—(x)tj =0.

1<jken OX;OXy = OX;

15



Definition 2.4.14. A bounded domain QcR" s called strictly convex if there exist

a Cz—defining function for Q, p , such that for all x € 6Q2 we have that:

2
> ap(x)tt >0 forevery teR", t =0 with Zap(x)t =0,
1< jk<n OX; an ) axj

2.5. Harmonic, Subharmonic and Plurisubharmonic functions

Let recall that the Laplace operator A in C is defined by A= —+—=4 ,
ox“ oy oLz

where z= x+1y. Then we have the following definition in one complex variable.

Definition 2.5.1. A C2— function u on a region Q< C is called harmonic if
Au=0o0n Q.

We state some of well- known elementary properties of harmonic functions.

(2.5.1.1.) A real valued function u is harmonic if and only if u is locally the real part
of a holomorphic function. In particular, harmonic functions are C*

(2.5.1.2.) The mean value property. If u is harmonic on Q < C, then

2z —
u(a)=2iju(a+ re)de , forevery disk D(a,r)={z:[z—a|]<r}cQ.
%

(2.5.1.3.) The maximum principle. If u is a real valued and harmonic on Q c C,
then we have the following:

(1) (Strong version) If u has a local maximum at the point a2, then u is
constant in a neighborhood of a (and hence on the connected component of Q
which contains a).

(i) (Weak version) If Q == C and u extends continuously to Q, then

u(z) < EQ%U(Z) for zeQ.

(2.5.1.4.) The Dirichlet Problem. If D(a,r)={z:]z—a|<r} and geC(dD(a,r)),
then there is a unique continuous function u on D(a,r) which is harmonic in D(a,r),
such that u(z)=g(z) for zeaD(a,r). This harmonic extention u is given explicitly

by the Poisson integral of g, i.e., u(a+¢) = j ‘ - |§|‘2 g(a+re?)de, for |¢]|<r.
re" —

16



Definition 2.5.2. LetQ be an open set of C a function u:Q — Ru{—oo} is called

subharmonic if u is upper semicontinuous and if for every compact set K < Q and
for every function h e C(K) which is harmonic on the interior of K and satisfies

u<h on oK it followsthat u<h on K.

Recall that u is upper semicontinuous onQ if limsupu(z)<u(a) for acQ,
Z—a

or equivalently, {zeQ:u(z)<c} is open for every ceR.

Remark 2.5.3. From the weak version of maximum principle (2.5.1.3. (ii)) one can see that
harmonic functions are subharmonic.

Next we will mention some properties of the subharmonic functions.

Lemma 2.5.4. LetQ < C be open.
(i) If u issubharmonicon Q,sois cu for c>0.

(i) If {uél ‘ae A} is a locally upper bounded family of subharmonic functions on Q such
that u =supu, is upper semicontinuous, then u is subharmonic.
(iii) If {u;:j=1,2,...} is a decreasing sequence of subharmonic functions on Q, then

u = lim u. is subharmonic.
Jooo

The following corollary is an application of the previous Lemma

Corollary 2.5.5. For every open setQ in C the function u(z)=-logdist(z,0Q) is
subharmonic on Q.

Proof. If Q=C, then u(z)=-, and there is nothing to prove. If Q= C, then

u(z) is continuous. Indeed, fix zeQ and & >0 Suppose weQ and |z—w|<e. We
have

log dist (z,0Q) = Zienan|z —{< Zienafg(|w—c_,“| +z=¢]-[w-¢]) <

éjgafg(|w—f|+|z—w|)£ éjengg(|w—g”|+g)£ Jnf [w—C|+ & = dist (w,0Q) + &

The same argument shows that dist (w,oQ) < dist(z,0Q)+ ¢ . We have shown that
|z—w| < e implies that |dist (w,0Q)—dist (z,6Q)| <& ,so dist(.,0Q) is continuous
on Q. Since for zeQ one has u(z) =—logdist (z,00Q) =sup{-log|z—{]:{ € 60} .
The function —log|z—¢]isharmonic since is the real part of the holomorphic function

—Iog|z —C| , and hence subharmonic (see Remark 2.5.3.). By lemma 2.5.4. (ii) the
proof is complete.o
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Next we discuss some other characterizations of subharmonic functions which show
that the subharmonicity is a local property.

Theorem 2.5.6. (Submean value property) Let @ be open in C. A continuous

function u:Q — R is subharmonic if and only if for every disc D(a,r) cQ,
2z
u(a) <1 I u(a+re?)de.
2

0

Proof. Suppose U is subharmonic and D(a,r) =Q. Since P! =%Tu(a+ re)do
0
is continuous on D(a,r) and harmonic on D(a,r) and since Py =U onéD(a,r), it
follows form the definition of subharmonicity u|D <PJ.
Conversely, let K be a compact set, K < D(a,r) = Q and suppose U|, <PJ then
for every function h eC(m) which is harmonic on D(a,r) and satisfies u<h on
oD(a,r) it suffices to show that u<h on D(a,r). Since Py =U on aD(a,r) then
P, =u<h on éD(a,r). By the maximum principle for harmonic functions, Py <h

on D(a,r) Hence, ulz <Py <h|- andso u<h on D(a,r).o

2.5.1. Examples of subharmonic functions

Example 2.5.7. If f is holomorphic on an open set Q of C,then u=|f[",a>0is
subharmonic.

Example 2.5.8. Every convex function u is subharmonic.
Indeed, let u be a convex function at a neighborhood of the closed unite disk

D(0,1) = C, then u(0) s%[u(eig)Jru(ei“’*”))] , for 6 €[0,27] and therefore we have
u(0) <i£7[u(e”)+u(e‘(9+’”))] dezizfu(e“g) do. By theorem 2.5.6. U is

a 27 2 5 2T 0
subharmonic.

The following proposition gives a simple computational test for subharmonicity.

Proposition 2.5.9. Let Q be open in C. A real valued function ueC?(Q) is

2

subharmonic on Q if and only if Au=4 >0 on Q.

0207

The local equivalence between harmonic functions and real parts of holomorphic
functions does not hold in more than one complex variable - see example 2.5.10. - .

18



Moreover, the class of subharmonic functions in 2nreal variables on an open subset

of C" is not invariant under biholomorphic maps except for n=1. A generalization
of harmonic and subharmonic in several complex variables is pluriharmonic and
plusrisubharmonic respectively and are those functions whose restrictions to complex
lines are harmonic or subharmonic — see definitions 2.5.11. and 2.5.13.-.

Example 25.10. If z, =x,+iy,, j=12 the function u(x,y;,%,,Y,)=%"+%" is
harmonic butisnot the real part of any holomorphic function- not even locally -.
Indeed, suppose there were locally a holomorphic function f(zl,zz) such that

f =u+iv. Then, for fixed z,, the function f(z,)= f(z,z,) would be holomorphic

and hence the real part u,(x,y;)=x’—-X," would be harmonic in (x,y,) which is
not.

A complex line in C" is a set of the form (={z:z=a+b,AeC}, where aandb

are fixed points in C", with b=0. Let us say that ¢ is the complex line through a in
the “direction” b . Let e,,...,e, be the standard basis of C". Thus, the coordinates of
e; are given by the Kronecker delta 6). The complex line through a in the direction
of e, is called the complex line through a in the direction of the j -th coordinate.

Definition 2.5.11. A real- valued function u defined in an open set Q of C" is said
to be pluriharmonicin Q if ueC?(Q) and the restriction of u to £~ Q is harmonic

for each complex line ¢.

Remark 2.5.12. Unlike the holomorphic situation, this is not equivalent to being
harmonic in each coordinate direction.

Definition 2.5.13. Let Q be an open setin C". A function u:Q — RuU{—o} is said

to be plurisubharmonic on Q if uis upper semicontinuous, and if for every ze Q
and weC" the function Ar>u(z+Aw) is subharmonic on the region

{AeC:z+AweQ}. The class of plurisubharmonic functions on Q is denoted by
psh(Q).

The following proposition gives a characterization for plurisubharmonic functions of
C*(Q)class.

Proposition 2.5.14. Let Q be an opensetin C" and ueC?(Q)is a real valued.

Then u e psh(Q) if and only if the complex Hessian of u,
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n 2
L (z.t)=>, ou (z)t;%, is positive semi-definite on C" at every point z € Q
{721 02,07,

and teC".
n 2

In the case that L, (z,t) is positive definite, i.e., L, (z,t)= ) ou (z)t,§ >0,
{71 02,07,

forevery zeQ and te C" —{0} u is strictly plurisubharmonic. The class of strictly

plurisubharmonic functions on Q is denoted by s.psh(2).

Remarks 2.5.15.
0

2u (
0z;0Z,

(i) The complex Hessian of u, L, (z,t)=>_ z)t,%, is called Levi form of
jk=1

u at z.

(i) For u strictly plurisubharmonic at p we have that y = min {Lu (z.2): |t| =1} is

positive, and hence L, (z,t)27/|t|2 for teC".andall zeU, where U issome
neighborhood of p,i.e., p isstrictly plurisubharmonic at all points near p as well.

2.5.2. Examples of plurisubharmonic functions

Example 2.5.16. Every convex function is plurisubharmonic.

Example 2.5.17. If f is holomorphic on an open set @ of C",then |f[*,a>1is

plurisubharmonic, since s® is a convex function.

Example 2.5.18. If f is holomorphic on an open set Q of C", then log|f| is
plurisubharmonic.

Example 2.5.19. In Q=C?\{0} the function u(z) = log|z| is not plurisubharmonic.

To see this, we show that the restriction of uto complex line = {(1 z,):2,€ (C} is
not subharmonic, because it does not satisfy the mean value inequality at the point
a=(10). Consider the disc D={z=(1z,)e(:|z,|=1}.

For zedD, |z| =1*+|z,| =2. Thus, |z|>a], since [a|=1 and

u(a)=-logla|>log|z|=u(z).
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Therefore, u(a) is than its average on the boundary of the disc D and so does not

satisfy the mean value inequality at a. Thus, u |£ is not subharmonic and
consequently u is not plurisubharmonic in Q.

2.5.3. Properties of plurisubharmonic functions

The plurisubharmonicity is a local property of the function.

Suppose Q< C" and D < C" are open. Then the following properties hold.
(i) If u,ve psh(Q) then the sum u+v is also a plurisubharmonic function on Q,

and so is the max {u,v}.
(ii) If ue psh(Q) and 4 >0 then Au e psh(Q).

(iii) Let 2/ be a locally upper bounded family of plurisubharmonic functions on Q,
then the function u” =sup{u:u e 2/} is also plurisubharmonic on Q.

@iv) If {uj}j , is a family of plurisubharmonic functions on Q and supu; is
€ jed

continuous in Q, then supu; € psh(Q).
jed

(v) If u; is a sequence of plurisubharmonic functions on © and u; — u converges
uniformly to u on the compact subsets of Q, then u e psh(Q).
(vi) Let F: D — Q aholomorphic function then the compositionu - F € psh(D), for

every u e psh(Q).

Theorem 2.5.20. (Submean value property ([21 Lemma 4.11.]) Let © be open in C"
and u:Q — R is plurisubharmonic then for every polydisc P(a,r) cQ,

1
u@<——
vol(P(a,1)) pan
Proof. By applying the submean value property-see Theorem 2.5.6.- in each

coordinate separately, one obtains
2r 27w

(271[)” [..[u@+pe)de,...de,,
0 0

forall p=(p,,... p,) with 0< p<r, where pe" =(p1ei91,...pnei0”). After

u(z)dv(z).

ua) <

multiplying by p,...0,dp;..dp, and integrating in p;, fromOto r;, 1< j<n, it
follows that

u(a) < L

< MP(a,r)U(Z)dV(Z).
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2.6. Domains of Holomorphy and Pseudoconvexity

Definition 2.6.1. An open set Qc C" is called a domain of holomorphy if there exists a
holomorphic function f :Q — C satisfying the following condition: For every two open

sets U,V < C" such that @#V cU nQ=U and U being connected, it is not possible to

find a holomorphic function f : U — C with f =f inV.
In figure 2.6.1.1, we illustrate the sets in the definition.

D)

Figure 2.6.1.1

Definition 2.6.2. Let Qc C" be open setand f : Q3 — C a holomorphic function. Then f

is called extendable if there exist two open sets U,V < C" such that @=V cU nQ=U ,

and U connected and a holomorphic function f : U — C with f =f in V. Otherwise f is
called non-extendable.

Remark 2.6.3. It easy to see that an open set Q — C" is a domain of holomorphy if there
exist f :QQ — C which is non-extendable.

Definition 2.6.4. For a compact subset K of an open setQcC" , its holomorphically
convex hull Ky, in Q is defined by

Ko = {z e Q:|f(2)] <sup|f(&)| forall f e 0(9)} .
feK

KO(Q) is also called the @(Q2) - hull of K and K c Q is called @(Q) - convex if Kg(m =K.

The following theorem of Cartan-Thullen gives equivalent definitions of domains of
holomorphy.

Theorem 2.6.5. ([10, Theorem 1.3.7) For an open set Qc C", the following
conditions are equivalent:

(i) Q isadomain of holomorphy.
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(i) For every couple of open sets U,V < C" suchthat @#V cU nQ=U and U
connected, there exist a holomorphic function f :Q — C so that it is not possible

to find a holomorphic function f: U — C with f =f in V.
(iii) For every compact subset K —— Q, dist(K,8Q) = dist(Kg(Q),ﬁQ) ,
where dist(K,0Q) = inf {lw-z|:we K,z €Q}.
(iv) For every compact subset K = Q, K@(n) cc Q.

(v) For every infinite set X < Q, which is discrete in Q, there exists a holomorphic
function which is unbounded on X.

Remark 2.6.6. An open set Q < C" is called a weak domain of holomorphy if it satisfies
the condition (ii) of the above theorem.

2.6.1. Examples of domains of Holomorphy

Example 2.6.7. In the case n =1, every open set is a domain of holomorphy. To see
this, let U V< C be two open sets such that &=V cU nQ=U and U connected.
Let {edQnU and define f,:Q—>C, f(2)=1/(z-¢), zeQ. Then we see that

f is holomorphic on © and cannot be extended to a holomorphic function on U .

For n> 2, this is no longer true, as it follows from Hartogs's Theorem.

Theorem 2.6.8. (Hartogs’s extension phenomenon, [16, Theorem 1.2.6]) Let

QcC", n>1, be an open set and K a compact subset of Q such that Q — K is
connected. Then each holomorphic function f:Q - K — C can be extended to a

holomorphic function F: Q — C.

Example 2.6.9. The unit ball Q={zeC": |z|<1} is a domain of holomorphy.
Indeed for ¢ € 6Q, we consider the holomorphic function
@)=
—(z,¢) 1—21':14/]'2]'
It is easy to see that f, issingular at & so the assertion follows from condition (ii) of
Theorem 2.6.5.

zeQ.

Example 2.6.10. Every convex set Q< C" is a domain of holomorphy.

Indeed, let U,V < C" be two open sets such that @=V cUQ=U and U
connected. For £ €0Q nU by the separation theorem of convex sets and points
there exist a;,b;,A eR, j=12,..,n, so that >[a;x;(z) +b;y;(z)] <A for every
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zeQ while 2Ja;x;(¢)+b;y;()]=4. (Here we are using the notation
X;(z) =Rez; and y,(z) = Imz;.) But
2[a;x;(z) +b;y;(2)] = Re(Xc;z;) where c; =a; —ib;.

Therefore the function

1 B 1
2¢z; -4 2¢(z;-¢)
is holomorphic for ze Q and cannot be extended as a holomorphic function to any
neighborhood of the point ¢£.

f(2) =

Example 2.6.11. Let Q <= C" be a domain of holomorphy and h e @¥(Q). Then the set
G=Q-Z,,where Z, isthe zerosetof h in Q, is also a domain of holomorphy.
Indeed, this can be proved by Theorem 2.6.5 (ii). It is easy to see that if  €0G—oQ
then h(£) =0 and the function 1/h e @(G) is singular at £ .

Example 2.6.12. Let Q< C" be an open set, F:Q— C™ a holomorphic mapping
and Gc C™ a domain of holomorphy. Then the set F*(G) is a domain of

holomorphy if at least one of the following conditions holds:
(1) Q is a domain of holomorphy.

) FYG)ccQ.

Indeed, let ¢ be a point of the boundary of F™(G). If F1(G)ccQ then e
and therefore there is defined the point F({)edG. Since G is domain of
holomorphy, there is a function h e O(G) which is singular at the point F(<). But
then the function ho F e O(F *(G)) and is singular at £.

Now in the case (2) does not hold, a point ¢ of the boundary F~(G) may not belong
to Q in which case { €0Q. But since Q is a domain of holomorphy, there exists a

function f € O(Q2) which is singular at £, and clearly f cO(F1G)).

Example 2.6.13. Each analytic polyhedron is a domain of holomorphy. Firstly, a
bounded open set Ac C" is called an analytic polyhedron if there is an open
neighborhood U of A and functions fy,..., fy € O(U) such that

A={zeU: [fi(z)| <1 ...[fx (D)<}
That an analytic polyhedron is domain of holomorphy follows from the previous
example since A=F*(G) where

F=(f,., fy)and G={weC":|w|<1, ..., |wy|<1}.
(Itis clear of course that AccU.)

Example 2.6.14. Let QcC" be a domain of holomorphy and
F=(f,fy,..., fy) :Q— C" be a holomorphic mapping. Then the set

D={zeQ: [f,(2) +| (@) ++|fu(@] <1
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is a domain of holomorphy. This follows from the example 2.6.12, case (1). Indeed, it
suffices to notice that D = F‘l(G) where G is the open unit ball of C".

Example 2.6.15. Let n>2. In this example we consider a region Q in C" = CxC"*
defined as follows. Let #' < 7 be open sets in C"™" with % connected and let
reR,, and ReR_, satisfy r <R. Define

Q:{(zo,zl)e(Cx(C"’l 17, € Dl(O,R)\E(O,r),zl e}[}
u{(zo,zl)e(Cx(C“‘l :z,e D'(0,R),z, e][’}

A set defined in this manner is called a Hartogs figure. -see figure 2.6.15.1.-

(Cnfl

C
Figure 2.6.15.1. A depiction of a set that is not a domain of holomorphy

The shaded region is how one can think of Q. We will now show that Q is not a
domain of holomorphy. To do this, we consider.
In figure 2.6.15.1 the hatched region depicts V. Let

W={(zo,zl)e<Cx(C”’l:zoeDl(O,R),zle}['},
feO(Q), (z,,2,)eV and peR_, be such that max{|z,|,r} < p <R.

We consider the holomorphic function f :V — C defined as follows

f(z,,2 1j f(g’zl)dg.

02) =5 b =7

By Cauchy Integral Formula, f |W = f |W. Therefore, since Q is connected,

f|Q: f. Thus f is an extension of f to ) and this prohibits Q from being a
domain of holomorphy.

Theorem 2.6.16. Let Q = C" be a domain of holomorphy. Then the set
A={f eO(Q): f is non-extendable}
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is a dense and Gg subset of the space O(Q?).

Proof. We will apply theorem 2.1.14 with V=0(Q). For this purpose, let us
consider a pair of balls (B,b) with bccBnQ=B. Then BnQ=J,

BN (C"-Q)=@, and, since B is connected, BMoQ = . Let us consider a point
oceBndQ= and a sequence z, in BN Q which converges to o . SinceQ is a

domain of holomorphy, there exists a function f, holomorphic in Q, such that
sup| f (z¢)|=c. Then feV=0(Q) and the restriction f|,, of f to b, has no
k

bounded holomorphic extension to B . Therefore, from Theorem 2.1.14, the set A is
dense and Gy in the space V =0(Q) .o

2.6.2. Pseudoconvex sets

If Q is an open set of C" then it is clear that the function z — dist(z, &) is
continuous and positive in Q. Consequently the function —logdist(z,6Q) is a
continuous real-valued function in Q. Sometimes the function —logdist(z,8Q) is
not plurisubharmonic, even though in one dimension it always is, as we saw in
Corollary 2.5.5. Let us consider an example of this. We let Q=C" —{0}, with n>2,
and let us take z=¢e, and w=e,, with (e,,e,,...,e,) denoting the standard basis. We
then have
—logdist(z+¢w,0Q) =—logdist (e, +¢e,,00Q) =—log 1+|§|2.

Note that the function ¢+ —log 1+|§|2
therefore it is not subharmonic.

has a strict maximum at { = 0 and

In order to give the definition of pseudoconvex sets we need to introduce the notion of
exhaustion functions.

Definition 2.6.17. Let Q < C" be an open set. A function u:Q— R is called an
exhaustion function of Q if {zeQ:u(z) <a} is relatively compact in Q forall acR.

Definition 2.6.18. An open set Q of C" is said to be pseudoconvex if and only if Q
has a continuous plurisubharmonic exhaustion function.

Example 2.6.19. C" is pseudoconvex set. Indeed, the function u defined by

n —
u(z) = sz z; is a plurisubharmonic function, since
j=L
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Also it is clear that u is an exhaustion function for C".

Example 2.6.20. Let Q< C" bounded and define the boundary distance function as
in the single variable case 6,: Q—>R,, , ,(2) = dist(z,(C” \Q). We have that &,

is continuous —see Corollary 2.5.5. — . Since Q is bounded, then —logd, is an

exhaustion function since (~log s, )" ((—o0,a)) has bounded closure.

Remark 2.6.21. For general ©, —log o, may not be an exhaustion function. For
example, if Q={zeC:Im(z)>0} isthe upper half-plane, then, for aecR_,,

(~logs,) " (—e,a)={zeQ:Im(z) <e™*} which is not relatively compact.

As we showed, —logd,, is not an exhaustion function when Q is unbounded, it is
easy to modify it so as to produce an exhaustion function. Indeed, the function

u:U— R defined by is easy to verify that u(z) = max{||z||2 ,—log 59} , Where

||z||2 = anl Z, Z is a continuous exhaustion function.
j=

In order to give a characterization of pseudoconvex sets we need the following
definitions.

Definition 2.6.22. Let Q= C" be an open set and K a compact subset K of Q.
Then the plurisubharmonic convex hull Kf;(g) in Q is defined to be the set

Koy = {Z eQ:fu(?)| < 22E|u(g)| forallue psh(Q)}_

K5, is also called the () - hull of K. If K}, =K then K c Q is called () -

convex.

It is clear that that the 2(Q) - hull of K is contained in the @(Q) - hull of K.

Definition 2.6.23. An analytic disc A in Q is a continuous function ¢:{|2|<1} - Q
which is holomorphic in {|4|<1}. Then we may write A:go({|/1|£1}) and
or=o({|4|=1}).

Theorem 2.6.24. (Characterizations of pseudoconvex sets ([18, Proposition 14.1],

[24]) If Q< C" is an open set then the following conditions are equivalent:
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(i) Q is pseudoconvex.
(ii) —log dist(z,@Q) is plurisubharmonic in Q.
(i) Kf oy c= Q if K cc Q.
(iv) For every analytic disc A < Q, dist(A,0Q) = dist(0A,0Q).
(v) For every family of analytic disc {Aj}jeJ in Q, (JoA, ccQ we have
jed
UAJ. cc Q.

jed

Proposition 2.6.25. (Basic properties of pseudoconvex sets ([11, Theorem 2.6.9])
The following statements hold:

(i) If DcC" and G < C™ are pseudoconvex open sets, then DxG < C"™ is
pseudoconvex.

(i) If {Qj }J_ , is a family of pseudoconvex open sets in C", then the interior of

()Q; is pseudoconvex.

jed
(iii) If Q; is a sequence of pseudoconvex open sets in C" for which Q, cQ, ,, jeN

then | JQ; is also pseudoconvex.

jed
Proof. (i) Let ue psh(D)nC(D), ve psh(G)nC(G) be exhaustion functions. Let
U:DxG —>R and V:DxG — R be defined by
U(z,w)=u(z), ¥(z,w)=v(w).

Both G, v are plurisubharmonic -see 2.5.3. (vi)-, since U=uozx,, and V=vor,,
where 7,:DxG—>D, zx,:DxG—>G are the projection maps, which are

holomorphic.
We define

o(z,w)= max{lj(z,w),v(z,w)}.
The function o is obviously continuous and plurisubharmonic -see 2.5.3. (iv)-.
Since o ((—,a)) cu™((—o0,a))xVv*((—oo,a)) it follows that o is also an
exhaustion function, and that completes the proof.
(i) Let A be an analytic disc in Q= int[ﬂij then dist(A,80Q;) = dist (0,00, ).
jed
Hence dist(8A,0Q) =inf dist(dA,6Q; ) =inf dist (A, 0Q; ) = dist (A, 6Q).
J J

(iii) This follows from the theorem 2.6.24.(v). ©

Remark 2.6.26. If Q C" is a domain of holomorphy, then it is also pseudoconvex.
Indeed, it is easy to see that K}, = K, since if f € O(Q) then u=|f|e psh(<).
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The following theorem shows that pseudoconvexity is a local property of the
boundary. The condition in this theorem is only a restriction on the boundary.

Theorem 2.6.27. ([11, Theorem 2.6.10]) Let Q< C" be an open set, then Q is
pseudoconvex if and only if for every point £ edQ there exists an open

neighborhood U, of ¢ such that QU is pseudoconvex.

Proof. One direction is trivial, since if Q is pseudoconvex and consider U, a convex
set then QNU, is pseudoconvex.-see Proposition 2.6.25.(ii) and Remark 2.6.26.-

For the converse we will first prove it for bounded sets and after for unbounded. Let
Q be bounded pseudoconvex set. Since plurisubharmonicity is a local property then
if —log dist(z,a(Qmug)) are plurisubharmonic in each QNU,, JedQ, the
function —logdist(z,0Q) will be plurisubharmonic in a set of the form QW

where W is a neighborhood of the boundary of Q.
Since Q-W cc Q -Q is bounded- then we have that

A=sup{-logdist(z,0Q):zeQ-W} <.
Now we consider the function u(z)=max{—logdist(z,@Q),|z|2+A+1} which is a

continuous plurisubharmonic exhaustion function for Q, and hence Q is
pseudoconvex.
For the case where Q is undounded we have that if the boundary of Q is locally

pseudoconvex then the same applies for the sets Q; =Qn B(0,j), jeN. Since the
sets Q; are bounded, by the previous case, they are pseudoconvex. Hence the set

Q= U Q; is pseudoconvex -see Proposition 2.6.25.(iii)-. O

jeN

2.7. Stein Lemma

Definition 2.7.1. Let Q< C" be a bounded open set with c? boundary. Let p be a
real valued function defined in a neighborhood of Q so that p:C" >R isa c?

function, Q={p <0}, AQ={p=0}, C"-Q={p>0} and Vp =0 at the points of
0Q . A function p of the above type will be called defining function for Q.

Remark 2.7.2. There are infinitely many such characterizing functions. Each
characterizing function determines a family of approximating subdomains %) as

follows: ), ={p <—¢}. Their boundaries 0%, are then the level surfaces {p = —¢},

and for ¢ sufficiently small and positive p + ¢ is a defining function for %) .
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Proposition 2.7.3. Let Q be an open subset of R" with smooth boundary. Let W be
a neighbourhood of 6Q and p:W —R a C” function so that QW ={p <0},

oQNW ={p =0}, (R” —S_E)mW ={p>0} and Vp =0 at the points of 0Q. If p;,p,

two defining functions for Q then there exist h a C* function in a neighbourhood of
oQ, h(x)>0 (vx) sothat. p,=hp,

Proof. Let &={xeW :p,(x)<0},Vp,(x)#0 xe& then p,(x)=0 for xe&
(Vp,(x)#0, VxedQ) and therefore, there exist a function h, h:W - R, h>0

so that p,=hp,. Also, it is obvious that dp,(x)="h(x)dp,(x), xeoQ, thus the
proof is complete. O

Lemma Stein 2.7.4. ([26, Lemma 3]) Let ® be a bounded smooth domain in R". Let
p1. P, two defining functions for D, and 0D, ={p;=—¢}, i=12. Then for each p,

p >1and each harmonic function uin 2 the two conditions

sup [ Ju(x)do, (x)<e0, i=12, (2.7.4.1)
&>0 a@gi
are equivalent.

Proof. It suffices to show that the condition (2.7.4.1.) for i=21implies the same
condition for i=2.

Now there exist positive constants x, x; and x, (independent of &) so that if
X e {pz (x)= —e} (i.e. p,(x)=—¢)then
B(x,xke) c A, ={xeR": —x,6 < p,(x) <—K,&}.

(The positive parameter ¢ is assumed to be sufficiently small so that the various
assertions in this proof hold true.) By the mean value property,

Ju(x)|" g% I 1. (6, ) u(y)| dy for Xe{pz(x):—g}1

weR"
where y, (x,y)=1 for yeB(x,xe) and y, (x,y)=0 for ye R"—B(X,«e).
In what follows, xj, j=34,5,6, are appropriate constants independent of . Then

[ e do?(<=2 | ( [ x.g(x,y)daf(x)}|u(y>|pdy,

09,2 ¢ yern| 09,2
where we used Fubini’s theorem (See Theorem 2.1.9.) and the measurability of the
function y, (x, y) for (x,y) € 087 xR" with respect to the product measure do?(x)xdy

Since B(x,xe) = A, for xe 82)?.
Then

j x,(x,1)do?(x)=0 if yeR"—A_ and
09,2
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I 2. (x,v)do’ (x) <k, e for yeA,.
00,2
It follows that

K€

[ WOl do? () <=2 [ u@) do? () <™ | [ |u()|” doj(v) |dn.
oD, ¢ A € e 5®'11

(The existence of the constant xg follows from the coarea formula (see Theorem
2.3.3.) Thus

sup [ [u()|” do? (x) <, (e, —1e,)sup [ [u(x)|” do(x),
>0 6962 >0 a/Dl

and this implies sup I u(x)|” do’ (x) <o, since the condition (2.7.4.1.) holds for
6,2
i=1. o

Definition 2.7.5. Let B :{x eR":|x| <1} be the unit ball of R". The Poisson kernel

for the unit ball has the following form

1 1—|x|2

P(X’y):— n o’
Wp_g |X_ Y|

o, ; isthe surface area of the unit (n-1) -sphere.

(X <Lly[=1),

Definition 2.7.6. Let B={zeC":|z|<1} be the unit ball of C".n>1. The
(invariant) Poisson kernel for the ball has the following form

(22 )
P(z,0)=——5-(z€B,{ €S).
(20) o) ( )

For n=1 the Poisson kernel for the unit ball of the complex plane C ~R? has the
following form

V4

P(2)= 1 1-|¢

= 2, eC,
W4 |2 —C|2n (

<1)¢]=1),

,, 4 is the surface area of the unit (2n-1)-sphere.

Definition 2.7.7. (The Green’s Function) LetQQ < R" be a bounded domain with c?
boundary. A function G :(Qx Q) \ {diagonal} — R is the Green’s function on Q if:

1. G is C%on (Q2xQ)\{diagonal} and, for any small &> 0, is C%* upto
(Qxﬁ)\{diagonal};
2. AG(xy)=0 for x=y,yeQ;
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3. For each fixed x € Q the function G(x,y)+T, (y-Xx),
-1 .
2 log|X fn=2, . ) .
I,(x)=T(x)= (2m) _fg‘ | 1 is harmonic as a function of
(2-n) "ol (X2 if n>2.
y € Q) (even at the point X), o, , denotes the ¢ measure of the(n —1)

dimensional unit sphere in R";
4. G(x, y)‘yEaQ =0 for each fixed x e Q.

Proposition 2.7.8. LetQ < R" be a bounded domain with c? boundary. Then Q has
a Green’s function.

Theorem 2.7.9. (Poisson Integral Formula ([16, Theorem 1.3.12]) LetQcR" be a

bounded domain with C2 boundary. Let vrepresent the unit outward normal vector
field on 0Q. Let the Poisson kernel on Q be the function

P(x,y):—vyG(x,y).
If ue c(g_z) is harmonic on Q, then

u(x)=6£P(x,y)u(y)da(y) forall xeQ.

Corollary 2.7.10. For each fixed y €aQ, P(x,y) is harmonic in x.

Proposition 2.7.11. The Poisson Kernel for B = {x eR":|X <1} — R" has the

following properties:

1. P(xy)=0.
2. IP(x,y)da(y):l,aII Xe B.
B
3. Forany ¢6>0 ,any fixed {, € 0B,
)(Ii_)ré]0 -y P(x,y)ds(y)=0.
Xe

Remark 2.7.12. LetQ = R" be a bounded domain with C?2 boundary. It follows
from the maximum principle that G (x, y) > 0. Hence by the Hopf lemma- see

Lemma 2.7.14. -, we conclude that P (X, y) > 0. Therefore, for each xeQ the
argument in the previous proposition shows that HP(X’y)HLl(aQ do) =1.Thus for

¢ €C(Q), the functional
pr> [ P(xy)g(y)do(y)

30
is bounded.
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From this, Theorem (Poisson Integral Formula), and the maximum principle, we have
the next result.

Proposition 2.7.13. The Poisson kernel for a C?domain Q is uniquely determined
by the property that it is positive and solves the Dirichlet problem.

Lemma 2.7.14. (Hopf ([16, Exc. 1.6.22) LetQ < R" be a bounded domain with c?

boundary. Let f: Q — R be harmonic and nonconstant on Q clon Q. Suppose
that f assumes a (not necessarily strict) maximum at PeoQ. If v=v, is the unit

outward normal to 0Q at P, then (aév)(':’)ﬂ)-

Proposition 2.7.15. ([16], Proposition 8.2.1. and [25]) Let Q< R" be a domain with
C2 boundary. Let P=P, : Qx8Q — R be its Poisson Kernel. Then for each x € Q,

there is a positive constant C, such that

C C
0<C, <P(xy)< <
«<P(xy) |x-y|n dist(x,&Q)n

2.8. Strictly Pseudoconvex sets and the Levi polynomial

Definition 2.8.1. Let O be a bounded open set. Q is called strictly pseudoconvex if there
exists a strictly plurisubharmonic C®—function p in some neighborhood U of the

boundary of Q such that QU ={zeU:p(z)<0}. If moreover p is smooth of class

c* (k= 2,3,...) , then Q is said to be a C* strictly pseudoconvex open set.

Remark 2.8.2. The boundary of a strictly pseudoconvex open set QQ —< C" need not be
smooth. For example, Q ={z =x+iye C:2x*~y*+y* <0} - see figure 2.8.2.1.- is a strictly

pseudoconvex open set with no smooth boundary.

Figure 2.8.2.1.
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Indeed, if the boundary of Q is C?, then dp=0 at the boundary of Q, where
p(z)=2x"-y*+y* z=x+iy, x,yeR is the strictly plurisubharmonic ~ C*-
function for €2, and hence is a defining function for €. Since the boundary of Q is
C? then there exists 1 a C?—function in a neighborhood V < U of the boundary of
Q such that QnV ={1<0}, 6Q={1=0} and dA=0 at the boundary of Q. We

have that ¢=§ is Ctin V and dp(¢)=¢(£)dA(<), for ¢ eoQ. So, we need to

show that ¢ = 0 at every boundary point of Q. Suppose ¢(§1)=0 for some ¢, € 0Q
then since ¢ >0 we have that d¢ =0. Hence all the second degree derivatives at the
point &, will equal to zero, which contradicts with the fact that o is a strictly
plurisubharmonic.

Moreover, the strictly pseudoconvex sets may consist of infinitely many components.

Remark 2.8.3. Every strictly pseudoconvex set is pseudoconvex. Indeed, since Q is
strictly pseudoconvex there exists a strictly plurisubharmonic C?—function p in

some neighborhood U of the boundary of Q such that QU :{z eU :p(z)<0}.
Let £ €oQ and B, ccU asmall open ball centered at ¢ -see figure 2.8.3.1.- .
We consider the function u=-1/p which is plurisubharmonic for all we QN B,,

since for zedQNB,, u(z)—>w. For zeQNaB, we have 1/(r2—|z|2)—>oo, hence

QN B, is pseudoconvex and therefore by Theorem 2.6.27 €2 is pseudoconvex.

Figure 2.8.3.1

Examples 2.8.4.
(i) Theset Q={z=x+iyeC:x*+y* <1} is strictly pseudoconvex.

(i) Let Q:{z =(z,..,2,)eC": Imz, >|zl|2 +"'+|Zn—l|2} . Every boundary point is a

is a strictly speudoconvex point.
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(i) Let @={zC": |1,(2)f +|f,(2)f .+|1,[ <1} where f,0(Q). Then @ s

pseudoconvex. If peoQ and det{%(p)}to then p is a point of strict
Zk

pseudoconvexity.

Theorem 2.8.5. (Solution of 8- equation ([12, Theorem 6.16], [10, Lemma 2.4.1])

Let Qcc C" be a strictly pseudoconvex open set with c? boundary and a smooth
(p,q)—form f with bounded coefficients in Q with &f =0. Then there is a

bounded C* (p,q—1)—form u in Q such that éu = f.

The Levi polynomial plays an important role for strictly plurisubharmonic functions.

2.8.1. The Levi polynomial.

Definition 2.8.6. Let p:U — R be a strictly plurisubharmonic C? —function in some
neighborhood U of the boundary of Q such that

QNU ={zeU:p(z)<0}.
The Levi polynomial of the function p is the following second degree polynomial of z

&), °p(&) () gy
F(Z’é/) Z aé,J (Z ) jgj%(:gnaé/jaé/k (ZJ CJ)(Zk é/k) , 2,6 Q).

Remark 2.8.7. The Levi polynomial is only continuous in . At the Henkin’s
op(<)
Y5k

sufficiently close C'— functions. The obtained modification of F(z,¢) is denoted by

construction-see Section 2.9.- the continuous derivatives

are replaced by

Q(z,¢), and it is called the modified Levi polynomial.
The following lemma describes the connection between the Levi polynomial and the
Levi form-see Remark 2.5.15.(i)-.

Lemma 2.8.8. Let Q< C" be an open set, and p be a real valued C*— function in
Q.Then, forall {eQ and z—> ¢,

p(z):p(g)—ReF(z,§)+jil%§g(zj —gj)(Z—g_K)+o(|§—z|2), (2.8.8.1)
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where ReF (z,¢) is the real part of F(z,¢).
Proof. LetX; =X, (¢) be the real coordinates of ¢ e C" such that
¢ =%, (¢)+ix;,, (<), j=1..,n.Then a computation gives

ia’g—ff)(xj (z)-x, (g“)): 2Re{j§a’;(j§)(zj -¢, )}

and

[EEN

13- 22U (4 (2)-x,(€)(x (2)-%.(¢)) -

21 OX;0%,

N

N—"

2 0°p (< (Zj_gj)(g_g_k)me[zn‘,azp(g)(zj—é)(zk—?k)}'

04,04, £ 04,06,
Consequently, (2.8.8.1.) is the Taylor expansion of o at £ . -see Taylor Theorem
215- o

Proposition 2.8.9. ([21, Proposition 2.16]) Let Q = C" be an open set, and o be a

strictly plurisubharmonic real valued C2—function in Q. Given U —c Q, there are
constants ¢ >0 and & > 0, such that the function F(z,¢) defined on QxC" by

0, 3p(¢) 1 0°p(()
F(z,0)= z.—(.)—— z. =)z =,
(2,0) ,Z % (z;=¢;) Zlgj%acjag(, )z -4

satisfies the estimate
2ReF(2,0) 2 p()=-p(2)+c|c —2[ for CeUand|¢ 2| <e. (2.8.9.1)

Proof. From Proposition 2.5.14 and Lemma 2.8.8, we see that the Taylor expansion
of p(z) at ¢ is given by

p(2)=p(C)-2ReF(z,0)+ L, ({2 =¢)+o(|c =) (2.8.9.2)
If UcQis compact, then by Remark 2.5.15.(ii) there is c¢>0,such that

Lp(g,z—g)220|(—z|2 for {eUand zeC". Taylor Theorem and the uniform
continuity on U of the derivatives of o up to order 2 imply that the error term in

(2.8.9.2.) is uniform in { €U, that is & >0, so that o(|§—z|2)‘ <clg -7 for (eU

and |C—z| <¢. Equation (2.8.9.1.) now follows by using these estimates in (2.8.9.2.)

and rearranging.O
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2.9. Henkin’s Construction

Locally the Levi polynomial — see definition 2.8.6 — can be used as the support
function ®(z,<) . To obtain d(z,¢) globally, we have to solve some 0 — equation

which depends continuously differentiable on a parameter. This can be done by using
the following lemma 2.9.1. and certain arguments which follow from Banach’s open
mapping theorem. First we give some notations.

Notation. If Y < C"is a measurable setand f eC(Y), 0<a<1 wedenote by

\f(z)—f(é)\
;-2

Set Ha(Y)::{f EC(Y):”f”a,Y <oo} ,H® (Y)endowed with the norm ””aY forms

||f||aY the a— Holder norm,

a Banach space, which is called the space of a-— Holder continuous functions( Holder
space).

H a
The notations H(p‘q)(Y), Cipg ),

differential forms of bidegree (p,q) and with coefficients in H(ap‘q) (Y), C(

C(d;, 9 (Y") will be used for the spaces of

p‘q) (Y) '

C(d;,q) (Y'), respectively.
IfQ = C" be an open set, then we denote by C® (€)) the Fréchet space of all

complex- valued C* — functions in Q endowed with the topology of uniform
convergence on compact sets together with all derivatives. By Z 7 (Q) will be

(01)
denoted the Fréchet space (endowed with the same topology) of all C(Cg 3” forms f

in Q suchthat 6f =0 in Q.

Lemma 2.9.1. ([10, Lemma 2.3.4.]) Let Q cc C" be a strictly pseudoconvex open
set, and let f be a continuous (0,q)— form in some neighbourhoodU of Q such

that of =0 in Uz , 1<q<n.Then there existsa ue (0,0-0)

Q.

(_) such that du = f in

Lemma 2.9.2. ([10, Lemma 2.4.1.]) Let Q cc C" be a strictly pseudoconvex open
set and let Uﬁ be a neighbourhood of Q. Then there exists a continuous linear

operator T : Z(OS;L) ( Uﬁ) — C*(Q) C*— function such that

OoTf =f in Q forall f eZ(OJ)(UQ).
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Lemma 2.9.3. (Henkin’s contruction ([10, Lemma 2.4.2.]) Let us consider an open
set ® ccC" and a C? strictly plurisubharmonic function p in a neighbourhood of

®. If we set

1 ®p) v 7. B r e with 4l
ﬂ_smln{g%&gn 0006, $id: ¢ €@, £eCwith |¢]=1

then >0 and there exist C* functions aji in a neighbourhood of @ such that
2
Gé/Jﬁé/k n
Let £ >0 be sufficiently small so that

-

where x; = x;(&) are the real coordinates of & e C" such that Ej =X (&) +ixjn($).

jk(g)

2 2
ple) 0 p(2)|: {,2€@ with |[¢ -z <e <£2 for j,k=12,...2n,
OXjOXy  OXjOXy ‘ 2n

For z,£ € ® we consider the modified Levi polynomial

Qz.0)= {za”@)(z e+ T, gj)(zk—m}

=1 8@' j 1<j,k<n
Then we have the estimate

ReQ(z,$) 2 p(¢)—p(2)+ B¢ 2 for 2,4 €® with | —7|<z.  (29.3.1)
Proof. The proof follows from Lemma 2.8.8. and Taylor Theorem 2.1.5. 0O

Theorem 2.9.4. (Henkin’s construction ([10, Theorem 2.4.3.]) Let QccC" be a
strictly pseudoconvex open set, let ® be an open neighbourhood of 0Q2, and let p be

a C? strictly plurisubharmonic function in a neighbourhood of ® such that
QNO={z€0O: p(z) <0}.

Let us choose ¢, B, and Q(z,{), as above, and let us make the positive number ¢
smaller so that
{zeC": | -2|<2e}c O forevery ¢ Q. (2.9.4.1)
Then there exists a function ®(z,¢) defined for £ in some open neighbourhood
Uspoc® of aQ and zeUg=QuU,,, which is C' in (z,¢)eUgxUs,
holomorphic in zeUg, and such that ®(z,{)#0 for (z,d)eUgxUy, with
¢ —2|> ¢, and

D(z,£)=Q(2,£)C(z,¢) for (z,{)eUg xUzq with [ —2|<e,
for some C!—function C(z,{) defined for (z,5)eUgxUsqn and #0 when

& -7]<e
Proof. It follows from (2.9.3.1) that
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ReQ(z.() 2 p()-p(z)+ fe? for(z,0)e® with e<|( —z|<2e.  (2.9.4.2)

Since p =0 on oQand by (2.9.4.1.), we can choose a neighbourhood V;, < © of 0Q
ﬂ 2

so small that |p|£% on V., and, for every{ eV,,, the ball |{—z|<2¢ is

contained in®. Set V6 . QUV,, . Then, for every (z,()e VﬁxVaQ, both ¢ and z

belong to ® and it follows from (2.9.4.2.) that ReQ(z,{) z%z for all z eVﬁ and
C eV, With &<|(—z|<2e. Therefore, we can define InQ(z,) for zeV5 and
{ eV, With & <|{—z| < 2¢. Choose a C”— function z:C" - R such that x(¢)=1
for |¢|<e+e/4 and x(&)=0 for |¢]>2e—c/4.

For z eVﬁ and ¢ eV, we define

f(2,¢) {gzl(g_z)an(Z,C) if e<|C—z|<2e

= otherwise.

Then the map V,, 3¢ - f(..{) is continuously differentiable with values in the
Fréchet space z(‘gl)(vﬁ). Now we choose a neighbourhood U, <V, such that

U?2 =QuUU,, s strictly pseudoconvex.
Then by Lemma 29.2., there is a continuous linear operator
T :z(ﬁl)(vﬁ)acw(uﬁ) such that 6T = ¢ on U forall (peZ("Sl)(Vﬁ).
For z eUaand { eU,, We define
u(z.0)=(77(.¢))(z), C(z.¢)=exp(-u(z.¢)) and
_]Q(z.¢)C(=¢) if |C—Z|Zg,
D(z,¢) = .
(2.¢) {exp)((g“—z)lnQ(z,{)—u(z,[) if|c— 2| <

This completes the proof. o
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3 Bergman type spaces

3.1. The Bergman spaces OLP(Q)

Definition 3.1.1. Let Q< C" be a bounded open set. We recall that for p>1, the

Bergman space OLP(Q) is defined to be the set of holomorphic functions f :Q — C
such that

1/p
£, = [£|f(z)|pdv(z)J <40,
where dv is the Lebesgue measure in C" . Then the quantity ||||p is a norm, and with
this norm, OLP(Q) is a Banach space.

Theorem 3.1.2. ([11], Theorem 1.2.4) Let Q — C" be a bounded open set. For every
compact set K — Q there are constants ¢(«, K) such that

Sup|a”‘f
K ‘az“

where c(a, K) is a constant depending on K and the multi-index o .

<c(a,K)| ], for feOL(Q),

Remarks 3.1.3. We also recall that if a sequence f, OLY(Q) convergesto f , in the

Ll(Q)—norm, then the convergence is uniform on compact subsets of €2. Indeed,
this follows from the inequality of Theorem 3.1.2.

In particular, OL}(Q) is closed subspace of L}(Q), and, more generally, OLP(Q) is
closed subspace of LP(Q), for p>1. Since we assume Q to be bounded,

OLY(Q) c OLP(Q) when q > p. Similarly we define the space OL*(Q), of bounded
holomorphic functions f :Q — C, which becomes a Banach space with the norm

[ ], =suplf @)
2eQ

For a fixed q>1, we will also consider the spaces
NOLP(©)
p<q

endowed with the metric

- lf-dl,

d(f,g)=Y—=——1_ f,ge OL°(Q),
Zorii—gl, " 0C 1)

where p; is asequence with 1< py < p, <---<pj<---<qgand pj —>q (as j— o).

Then ﬂOLIO (€2) becomes a complete metric space, its topology being independent
p<q
of the choice of the sequence pj. In fact, a sequence fi, convergesto f, in the space
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NOLP(Q), if and only if |f, — f||IO —0 for every p<q. Thus, Baire’s theorem
p<q

holds in ﬂ(’)Lp(Q): A countable intersection of open and dense subsets of

p<q

ﬂOLp(Q) is dense and Gy in this space. Moreover, we point out that the space
p<q

ﬂ(’)Lp (€2) , with the above topology, is also a topological vector space. In particular,
p<q

if f,fe[OLP(Q) with d(f,,f)—>0 (k—>o),and 4, 2eC with 3 — 4, then
d (A fk,ﬂfp)<q—>0.

Finally, we observe that all the above hold in the case q=oo too, defining the space

ﬂOLp (€2), and that this space contains the space of bounded holomorphic functions

p<oo
in Q:
ﬂ(f)Lp (Q) > 0L (QY).

pP<oo

3.2. The case of totally unbounded functions in OLP (Q)

We will show that under certain assumptions on Q, the set of the functions in the

space ﬂOLp (€©2), which are totally unbounded in Q, is dense and Gs (in this space).
p<q

We will also give examples of specific domains in which this Gs— density conclusion

holds.

Theorem 3.2.1. Let Q< C" be a bounded open set and qeR, q>1. Suppose that
for every point &' 0Q, there exists a function f, such that

fr e NOLP(Q) and ZI[)ng fr(z2)=c0.
p<q
2eQ)
Then the set of the functions g in the space ﬂOLp(Q) , Which are totally unbounded
p<q
in Q, is dense and Gy in this space. In particular, the set of the functions h in the

space ﬂOLp(Q) , Which are singular at every boundary point of Q is dense and Gs
p<q
in this space.

Proof. Let us fix a pair (B,b), where B is a «small» open ball whose center lies on
0Q and b is a «smaller» open ball with bccBnQ, and let E(B,b) be the
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connected component of B ~Q which contains b, i.e., E(B,b) >b. We are going to

apply Theorem 2.1.12. with V= (OLP(Q) and X =E(B,b). For this purpose we
p<q
consider the linear operator
T: NOLP(Q) —» CEBD)  T(f)(z2)= f(2) for ze E(B,b).
p<q
For each fixed z € E(B,b), the functional
T, : (OLP(Q) — C, defined by T,(f)=T(f)(z)=f(z), for f € (OLP(QY),

p<q p<q

is continuous. (This follows from the fact that convergence in the space ﬂOLp(Q)
p<q

implies pointwise convergence.) We also observe that, in this case, the set
S={f €V:T(f) is unbounded on X} isequal to

S(B,b):{f e (OLP(Q): sup |f(z)|:+oo}.

p<q zeE(B,b)
We claim that S(B,b) = &. Indeed, since the set E(B,b) meets the boundary of Q,
there exists a point ¢ e E(B,b) noQ. (See the Remark 2.2.2.) By the hypotheses,
there is a function f, e (NOLP(Q) such that z@g fr(z2)=o, and, therefore

P<q 2eQ)
f €S(B,b). It follows from Theorem 2.1.12 that S(B,b) is dense and Gs in
OLP(Q).
p<q

To complete the proof of the theorem, we consider a countable dense subset
{wy, Wy, ws,... }of 0Q, and the set B={B(wj,7): 7eQ", j=123,.}.

For each Be B, let I’z be the countable set of the balls b with centers in (Q+iQ)"
and rational radii, so that b c— B Q. By Baire’s theorem, the set

1 (1S(B,b)

BeBbel

is dense and Gg in ﬂOLp(Q). Notice that if f belongs to this set then f is totally
p<q
unbounded in Q.
Indeed suppose that weoQ, £>0, and E is a connected component of the set
B(w,&) N Q. Let b be a ball with «rational» center and rational radius, and b cc E..
Then we may choose a ball BeB so that B< B(w,&) and bccB. Then the
connected component E(B,b) of B~ Q which contains b, is contained in E, i.e.,
E(B,b) cE.Since sup |f(z)|=+o, it follows that sup|f (z)|=-+o.
zeE(B,b) zeE
To prove the last assertion of the theorem, we will use Theorem 2.1.14. For this
purpose let us consider a pair of balls (B,b) with bcc BnQ= B, and as before, let

E(B,b) be the connected component of B ~Q which containsh .

42



Then by the Remark 2.2.2, EB,b)noQnB=J. If (€ E(Bb)noQLN B then the

function f, ( of the hypothesis of the theorem) belongs to V= [OL"(Q) and its
p<q
restriction fC‘b (to b) does not have any bounded holomorphic extension to B.

Hence Theorem 2.1.14 gives the required conclusion. O

Remarks 3.2.2.

(i) By examining the above proof we see that if the sets B ~Q are connected (for
those B ’s having sufficiently small radius — depending on the center of the
each B) then the theorem holds under the weaker hypothesis of the existence
of the functions f., not necessarily for all & eoQ, but only for ¢ in a

countable dense subset of 06Q. This is the case — for example — in which the
boundary of Q is ct.

(i) Let us point out that the above theorem holds also in the case «q=o0». The
proof in this case is essentially the same. Although the case «q=o» is, in

some sense, the most interesting one, it does not imply the case «q <oo».

Notices that changing the value of g in ﬂOLp(Q), changes not only the
p<q
space but also the topology.

(iii) We can also prove an analogous theorem in the case of the spaces OLP(Q)
for each fixed p (1< p<o). In this case we do not need to assume Q to be

bounded. Thus if Q< C" is an open set and for every point ¢ €dQ, there

exists a function f, such that f, e OLP(Q) and  lim fo(z) =00, then the
2eQ), 72—¢

set of functions g in the space OLP(Q), which are totally unbounded in ©, is
dense and Gs in this space.

3.3. Functions in [OLP(Q) which do not belong to &L% ()
p<q
In this section we will prove — under certain assumptions on the open set Q — that

generically the functions in ﬂOLp(Q) do not belong to the space @?LY(Q), not even
p<q
‘locally’. More precisely we will prove the following theorem.

Theorem 3.3.1. Let Q< C" be a bounded open set and qeR, q>1. Suppose that
for every point » € 9Q and ¢ >0, there exists a function f, . such that
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f,e € NOLP(Q) and f, ¢ OLY(B(n,e)nQ) forevery £>0.
p<q
Then the set

S(Q,q):{g e OLP(Q): g2 OLY(B(L,) Q) for every ¢ edQ and every g>0}
p<q
is dense and Gs in the space ﬂOLp(Q) :
p<q

Proof. Let us fix a point weoQ and & >0. We are going to apply Theorem 2.1.12

with V= OLP(Q) and X being the set of all compact subsets K of the
p<q
intersection B(w,&) Q. For this purpose we consider the sublinear operator

1/q
T:(OLP(Q)—»C*, T(f)(K):=[I|f|qdv] for K e X .
p<q K
For every K e X, the functional
Tk 1 (JOLP(Q) > C, T (f)=T(f)(K),
p<q
is continuous. Indeed, if f,, k=123,..., is a sequence which converges to f, in

ﬂOLp(Q),then fi, convergesto f, uniformly on K, and therefore
p<q
[t dv— [|f|"dv, as k —>oo.
K K
We also observe that, in this case, the set S={f €V: T(f) is unbounded on X} is

equal to

S(W,g)—{feﬂOLp(Q): j|f|qdv—+oo}.

p<q B(w,&)nQ
This follows from the fact that
[|f|*dv=sup [|f|"dv.
B(w,&)nQ KeX k
Also S(w,&) =, since f,, € S(w,g) . Therefore, from Theorem 2.1.12,S(w,¢) is

dense and Gs in the space ﬂOLp(Q).
p<q

Next let us observe that if u; is a sequence of points in 6Q which converges to a

point uedQ, and f e (OLP(Q), then

p<q
[Iflldv=40 (Vj) =  [|f['dv=-.
B(uj,e)nQ B(u,2e)nQ

This follows from the fact that if ‘ujo—u‘<g (for some jy) then

B(u,2¢) o B(ujo,g), which implies that
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[l[%dv=" [|f|dv.
B(u,2&)nQ B(ujo,e)mQ
To complete the proof of the theorem we consider a countable dense subset
{w;,wy,ws,...} of 0Q and a decreasing sequence &, of positive numbers, with

& — 0. By the first part of the proof and Baire’s theorem, the set

ﬁﬁS(Wj,gs)

j=1s=1
is dense and Gy in (JOLP(Q). Notice that if f belongs to this set, and ¢ €6Q, and
p<q

w; is a subsequence of w; which converges to ¢, then j|f|qdv=+oo, and
B(ij,{;‘s)ﬁQ

therefore j|f|qdv:+oo. Since this holds for every £ edQ, and the sequence
B(¢,285)NQ2

g — 0, this implies that f € S(€2,q) . This completes the proof of the theorem. O

Remarks 3.3.2.

(i) By examining the above proof, we see that this theorem holds under the

weaker hypothesis of the existence of the functions f, ., not necessarily

for all # € 0, but only fory in a countable dense subset of 0Q.

(ii) The following version of the above theorem can be proved in a similar
manner. Let Q< C" be a bounded open set and q,d R with § >q>1
. Suppose that for every point £ aQ, there exists a function f, such
that
fp e NOLP(Q) and f, ¢ OLY(B({,5)nQ) forevery £>0.
p<q
Then the set

p<q
is dense and Gj in the space (OLP(Q).
p<q
(iii) If the boundary of Q is ¢! and a function g e OLY(B(S,e)NQ), for
every £ eoQ and every ¢>0, then g is singular at every point of

oQL
Indeed, this follows from the fact that for sufficiently small &£>0
(depending on each point £ € 0Q), the sets B(S,&) nQ are connected.

S(Q,q,’q”)={g e NOLP(Q): g ¢ OLY(B(&, ) Q) V¢ €Q and Vg>0}

(iv) In the above theorem if the sets B(¢,&e)nQ are connected (for those
B's having sufficiently small radius — depending on the center of each B )
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then the set of the functions h in the space ﬂOLp(Q) which are
p<q

singular at every boundary point of is dense and Gs in this space. This

follows from the Theorem 2.1.14.

Theorem 3.3.3. Let QC" be a bounded open set and 1< q<oo. Suppose that for
every point & e oQ, there exists a function f, such that
fre NOLP(Q), f,eOLY(B((,6)nQ) forevery £>0,and lim f,(z)=o0.
p<q e
Then the set
{g e NOLP(Q): g is totally unboundedin Q
p<q

and ge OLY(B(S,e) N Q), V¢ edoQ and Ve > 0}

is dense and Gs in the space ﬂOLp(Q) :
p<q

Proof. The conclusion follows from Theorems 3.2.1 and 3.3.1. Indeed, it suffices to

notice that the set in this theorem is the intersection of the corresponding sets of the
Theorems 3.2.1 and 3.3.1, and that the intersection of two dense and Gs sets in the

complete metric space ﬂOLp(Q) is again dense and Gy, by Baire’s theorem. O
p<q

3.4. Applications

3.4.1. Examples in the case n=1.

(i) Let Q< C be a bounded open set with ct boundary. For a fixed point £ €0Q, let
us consider the holomorphic function

f,:Q>C, f(2)= ,2eQ.
I ;( ) 1—¢ €
Then f, e (OLP(©) but fre OL%(Q) . Indeed, for «small» & >0,
p<2
] M) _ 1o when p <2, while w2 _ .,

zeB(g,5)|Z—§|p ZGB(é,é)ﬂQ|Z_§|2 )

To prove the last equation, it suffices to notice that, since 0 is assumed to be ct,
there is a small angular region A with vertex at £ such that AnB(¢,0) = Q, and,
that the integral
dv(z)
1eANB(C0) |2 — §|2
as we can easily see if we integrate in polar coordinates with center at ¢ .

400
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Next, continuing to consider the point ¢ eoQ fixed, let acC—-Q be a point,
sufficiently close to the point £, so that the line segment [£,a], which connects a

and ¢, is contained in C—C. (Such a point exists since we assume that 0Q is Cl.)

Z—a

Then, in the set Q, there exists a holomorphic branch of Iog[ j .e., there exists

a holomorphic function g.(z), zeQ, such that exp(g{;(z))zz;? Indeed, the
Z_
Mobius transformation (z—a)/(z—¢) maps the point a to 0, ¢ to oo, and the line

segment [a, ] to a half line in the complex plane, starting at 0. We may also choose
g, so that ‘Im gg(z)‘ < for zeQ. Then, for this function g, the integral

mga (Z)‘ P dv(z) < +o0 for every p<w, (3.4.1.1)
z2eB(£,0)nQ
while  Iim gg(z) =00, To prove (3.4.1.1), it suffices to notice that

2eQ), 7-¢
(log x)P < (k1)P’*xP’% for every x>1, p>1and keN,
and that if logw = log|w| +i6, then

llogw " =[(log|w})? + 6%]"'2, for HeR.

Indeed, since g, (z)=log

2;2 +i60 (with |6|< ), it follows that, for z e Q@ which
Z_

are sufficiently close to the point ¢,
2 p/2
Z—aJ +92] j(k|)p/kz;a -

p— ]
-2 _[('Og 2—¢ 2-¢ 2-¢

Then (3.4.1.1) follows by an appropriate choice of ke N. Finally (3.4.1.1) implies
that g, e [OLP(Q), while g, ¢ OL"(Q).

p<oo

/ /k
p 1p

k
< (k1)P'X

(if) With notation as in the previous example, and for 1<qg<oo, let us consider the
function

hy,c(2) = expE gg(z)} ,2eQ).

Then hy - € (OLP(Q), while hy » ¢ OLY(Q).
P<q

(iii) For « e R, ¢ >1, let us consider the domain
Q, ={z=x+iyeC:0<x<land 0<y<x“}.

Then

1. NOLP(Q,) and % e OLNQ,),

p<a+1

47



logze (OLP(Q,) and logz ¢ OL*(Q,), and

p<oo

L € ﬂOLp(Q ) and

S zOLI(Q,) for geR, q>0.

1
( +1)/q

(iv) Let Q={z=x+iyeC: 0<x<1 and 0<y <exp(-1/x?)}. Then

ie (OLP(Q) and —e(’)L (Q), forevery NeN.
zN

p<oo

Theorem 3.4.1. (i) Let Q< C be an arbitrary bounded open set. Then the set of the

functions g e ﬂ(’)Lp(Q) which are totally unbounded in Q is dense and Gs in the
p<2

space (OLP(Q).
p<2
(if) Suppose that Q < C is a bounded open set such that for every point ¢ € 0Q2,
the connected component C,- of C - Q which contains ¢, contains at least one more
point, i.e., C, —{{}=# . Then, for each fixed g with 1<q<oo, the set of the
functions g e ﬂ(’)Lp(Q) which are totally unbounded in Q is dense and Gy in the
p<q
space [OLP(QY).
p<q
(iii) Suppose that Q= C is a bounded open set with C* boundary and 1<g<oo.
Then the set

{g e NOLP(Q): g is totally unboundedin Q
p<q
and g ¢ OL%(B({,£) NQ), V¢ a0 and Ve >0
is dense and Gs in the space (OLP(Q).
p<q

Proof. Having in mind the example (i) of Section 3.4.1, we easily obtain part (i), from
Theorem 3.2.1., applied with the functions {f.:JedQ} where f,:Q—C,

f-(2)=1(z-¢), zeQ. Part (iii) follows from Theorem 3.3.3, applied with the
functions g, of example (i) of Section 3.4.1 in the case q=o0, and the functions
hy,c of example (ii) of Section 3.4.1 in the case 1< q<oo. It remains to prove part
(ii). For this purpose let us take a point ae C,, a = ¢, and a compact curve K in C,

joining the points £ and a. Then the Mobius transformation (z—a)/(z—¢) maps
the point a to 0, £ to oo, and the curve K to a connected set I" joining the points 0
and oo. Then in the open set C—T", there is a holomorphic branch of the logarithm,
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and, therefore, there is a function ¢, (z), holomorphic in ze€, such that

explo (2)]=(z-a)/(z-¢).
Also the function

ve@)= expEco;(z)}

is holomorphic in Q and

P 2p zZ—-a 2pla
ye(2) = exp{— Reg (Z)} =l—
Therefore v € [(OLP(Q), and, since  lim () =0, part (ii) follows from

p<q ¢, 2eQ

Theorem 3.2.1. O

3.4.2. The case of the unit ball of C"

Let us consider the unitball Q={zeC": |z| <1}. For fixed £ €0, we consider the
function

fr(2)= 1 nl —,2eQ.
1-(z,¢) 1—21':1(]2]
Then
fre NOLP(Q) and f, ¢ OL"H(Q).
p<n+l
Indeed, if p<n-+1 then the integral
J dv(z)
ofl=

as a function of n, remains bounded for neQ (see [22], Proposition 2.3.2), and,
therefore, letting n — ¢,
dv(z)

j%)p: lim Lz)psnminf S < oo
ofl—(z.O)"  arif—(z.n) =4 Qfl—(z,n)|
Next we show that

[ L)M = +00. (3.4.2.1)
Q|1_<Z!é/>|
Indeed, for r <1 (sufficiently close to 1),
f dv(z)
oll-ro™ et

where A is a positive constant independent of r (see [22], Proposition 2.3.2).
Since

I dv(z) =I dv(z) =ij dv(z)
all- o™ G-z, 0"t P - o

49



(where rQ={zeC": |z| < r}), it follows that
| _ @) > ar¥Mlog——

1-r?
Letting r -1, we obtain (3.4.2.1).
Observing that Re(l-(z,5))>0, for zeQ, we see that Ref,(z)>0, and

therefore log f(z) is defined and holomorphic for z e &, where log is the principal
branch of the logarithm with [arg|< 7. Also ‘Im[log fg(Z)]‘Sﬂ/Z. It follows, as in

example (i) of Section 3.4.1, that
log f, € (OLP(Q), while log f, ¢ OL*(Q).

pP<oo

Also the function (fg)(”ﬂ)/q :exp{nTJrl log fg} satisfies

(f,)™D18 e NOLP(Q) and (f,)™D/9 ¢ OLI(Q) for geR, q>0.
p<q

Theorem 3.4.2. Let 1<q<oco. If Q is the unit ball of C", then the set

{g e NOLP(Q): gis totally unboundedin Q
p<q

and g ¢ OLY(B(¢,&) nQ), V¢ €0Q and v5>0}

is dense and Gs in the space ﬂOLp(Q) :
p<q

Proof It suffices to apply Theorem 3.3.3, with appropriate choices from the set of the
functions which were constructed in Section 3.4.2. O

3.4.3. The case of convex sets.

(i) Let Q= C" be a bounded open and convex set with C* boundary and let us fix a

point {edQ. By the convexity of Q, there exist real numbers o =a;(¢),

Bj=pj(), 1=12,..,n,such that ZDaJ—‘Z +‘ﬂj‘2}¢0 and

n

S {a[x;(2) = x; (O1+ By (2) - y; (]} 0 forevery zeQ,

j=1
where  xj(z)=Rezj, Yy;j(2)=Imz;, x;(¢)=Redj, Yyj¢)=Img;. Setting

Cj =aj —iBj, we obtain
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n
Re{ZcJ—(zj —cjj)}>0 forevery ze Q.
j=1

Then the conclusions of example (i) hold for the function fe where

f(2) =n;, 7¢Q. (3.4.3.1)
2.¢i(z; =&y
j=1

satisfies
fr e NOLP(Q), while f, ¢ OL*(Q), and (3.4.3.2)
p<2

log fr € (YOLP(Q), while log f, & OL*(Q). (3.4.3.3)

p<oo

To prove (3.4.3.2), we will show that for p<2,

[[£:(2)]" dv(z) < +00, for «small» 5>0. (3.4.3.4)
B(¢,0)nQ
Assuming, without loss of generality, that c; #0, let us consider the C-affine
transformation

W (2) = ilcj(fj —2j), Wo(2) =G =23, oo, Wn(2) =En— 2.
i=

Using this transformation we see that (3.4.3.2) follows from the fact that

dv(vg) <+ (for 5>0).
wi<s W4l
To justify (3.4.3.3), let us recall that since

n
Re{ZcJ—(zj —gj)}o forevery zeQ,
j=1

the function log f is well defined and holomorphic in Q.
Then, using (3.4.3.2) as in example (i) of Section 3.4.1, we see that, for «small»
0>0,

Hlog fé«(z)‘pdv(z) <+, forevery p<o,
B(¢.8)nQ

and this implies (3.4.3.4).

We point out that in general the conclusion f, e ﬂOLp (€2) cannot be improved in
p<2

the sense that in some cases

2
[|f2 (@) dv(z) =+
B(£,8)NQ
(see the example (ii) below).

(i) Let us consider the convex domain
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D={z=(z,....2,) eC": |z]<1 and Rez >0}

and, as local defining function for D-see Remark 2.4.11- near its boundary point
=0 (0edD), p(z)=—(zy+7;)/2. Then the function (3.4.3.1) becomes
f-(2)=1/7,. In this case

H fg(z)‘zdv(z) = izdv(z) =+, for every 6 >0.
B(£,8)ND B(0,6)nD |41
A similar computation can be done for every point £ in the part of the boundary of

oD where Re¢ =0 (and |[¢|<1). Of course at the points ¢ €D where Re¢ >0,

the corresponding function f, satisfies f, e ((OLP(D)and f, ¢ oLt

p<n+1

(D), as we

proved in Section 3.4.2.
(iii) Similarly to the previous example, if

R={z=(z,...2,)eC": 0<Rez;<land 0<Imz; <1, j=12,..,n},
then for every point &' e 6R (where R is smooth), the function f, satisfies
fre ﬂz(’)Lp(R) and f, ¢ OL’(R).
p<
Similar conclusions hold for «most» points in the boundary of the polydisk

P={z=(z,..,2,)eC": ‘zj‘<1, j=12,...,n}.

Theorem 3.4.3. Let Q< C" be any bounded open and convex set and 1<q<o.

Then the set of the functions g in ﬂOLp(Q) such that g is totally unbounded in
p<q
Q, is dense and Gj in the space [OLP(Q).
p<q
Proof. It follows from Theorem 3.2.1 applied with the functions log f of the above

example (1). O

3.5. The case of strictly pseudoconvex domains

In this section we will show that some functions which are defined in terms of
Henkin’s support function belong to certain Bergman spaces. We describe the
Henkin’s support function ®(z,¢) — as constructed in [10] — in Section 2.9.

First we will prove the following proposition. We use a set of coordinates — the Levi
coordinates — which are appropriate when we are dealing with integrals involving the
function ®(z,¢) (for more details see [6], [10], [21]). As a matter of fact we will use

a slight modification of the Levi coordinates.
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Proposition 3.5.1. If, in addition, 2Q is C, then, for each fixed ¢ <aQ and for
every 0 >0,

Lz)p<+oo when p<n+1, and LZ)ZH=
2eB(C,5)n0|P(Z,€))| 2eB(C,5)n0 | P(2,4)|
Therefore e NOLP(Q) and L g OL2"(Q).
. p<n+1 (-, <)
Furthermore, the functions are Clin ¢ .

Proof. Since we assume 6Q to be C?, Vp =0 at the points of 0Q2. Having fixed
¢ € 0Q, we consider a coordinate system

t=(t,t,13,..,t0n) = (4.(2),12(2),13(2),.., 120 (2))

of real C!—functions, for points zeC" =R?", which are sufficiently close to the
point £, as follows: We set

t(2) =—p(2) and t5(2) =ImQ(z,£).
Then dZQ(z,cj)‘ 1=¢ =—2iaap—(§)dzj
i1 9¢) ¢

d 1 (2)| =g = d,[IM Q2. )] ,—¢ =i6p($)— ()]
On the other hand,
d14(2)|1=¢ = d,[-p(D)]] ¢ =—T0p(&) +3p(L)].

=-20p(&) and, therefore,

It follows that
(04(2)] 1 )A 10,2 (D) o= )= —2i00(¢) A Bp(&) % 0.
Now the existence of C! —functions t3(2),...,t5,(z) such that the mapping
2 (4(2), t(2), t3(2),---+tn (2))
is a Cl—diffeomorphism, from an open neighbourhood of the point £ to an open
neighbourhood of 0eC" =R?" (with t(£)=0), follows from the inverse function
theorem-see Theorem 2.1.10. Also let us point out that, for z sufficiently close to ¢,
zeQ ifandonly if t; =—p(z) >0.
We will show that, for every 6 >0,
dv(z)
1e8(2.5)~a|®(Z,&)|°
For points z € Q which are sufficiently close to ¢,
2
[@(z,)| ~|Q(z, )| = |ReQ(z,£)|+[IMQ(z, {)| 2 —p(2) + B¢ ~ 2| +[ImQ(z,{)

and

<+oo for p<n+1. (3.5.1.1)

|g“—z|2 S TN L C .
(When we write A =B, we mean that AB < A < B, for some positive constants A4
and x which are independent of z.)
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Therefore (for z € Q and sufficiently close to ¢)
@(z,0) R o R +1to] -

(When we write A > B, we mean that A > AB, for some positive constant 4 which
is independent of z.) Therefore (3.5.1.1) follows from

dt
<
2,22 2
tl>0(t1+|t2|+t1 +15 +t5 4o+ t5,)P

—+00

or equivalently from
dt

7 2
o0 (o[ + 5+ + 1) P

<40 (p<n+1).

(In the above integrals dt=dtdt,---dt,, and t is restricted in a «small»

neighbourhood of 0 C" =R2n, ie., |t| is «small».)
We will also show that, for every 6 >0,
), @512
2¢8(¢,0)n0|P(Z,4)
This time we will use the fact that, for points z € Q which are sufficiently close to ¢,
[©(2,) ~[Q(, O < |6 — 2| = (t +15 +1F +--- +83,)"'2.
Therefore (3.5.1.2) follows from
I dv(z) 3

YIRY. R
>0 (i +13 +13 4+ +13)

This completes the proof of the proposition. O

Theorem 3.5.2. Let Q< C" be a strictly pseudoconvex open set with c2-
boundary, and 1< g <. Then the following hold:

(i) For every point ¢ e dC2, there exists a function f, such that
f OLP(Q) and lim f,(z2)=0.
¢ € ﬂ (©) il ;( )

p<eo 2eQ)

(i) For every point ¢ e 0Q, there exists a function h, such that

hy e NOLP(Q) and h, ¢ OL2M"D(B(£,5) Q) for every 6> 0, and

p<q
lim h(z) =co.
¢
2eQ)
(iii) The set

{g e (OLP(Q): g is totally unboundedin Q }

p<eco

is dense and Gs in the space [OLP(Q).

p<oo
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(iv) The set

{g e NOLP(Q): g is totally unboundedin Q
p<q

and g ¢ OLZWD(B(£,5) N Q) V¢ 00 and V5> 0}
is dense and Gg in the space [JOLP(Q).
p<q
Proof. Let p be a c? strictly plurisubharmonic defining function of Q, defined in
an open neighbourhood of Q. Let us also fix a point £ <aQ. Then, as it follows
from Taylor’s theorem and the strict plurisubharmonicity of p (See Proposition 2.8.9
and for more details [21] Proposition 2.16 page 60), the Levi polynomial of o

o), . 0°p({) e _
F(z,8)= %551 (z; §1)+K§<n5§j5§k(21 &)z —<k)

satisfies the inequality
ReF(2,£) 2 p(¢) - p(2)+ B¢ -2 for zeC" with | -7 <,
for some «small» positive constants ¢ and . In particular,
ReF(z,£)>0 for zeB(£,e)nQ—{¢}.
It follows that the function log[l/F(z,{)] is defined and holomorphic for
zeB({,e)nQ, and that  lim glog[l/F(z,{)]:oo. (Here log is the principal

2eQ), 72—

branch of the logarithm with |arg|37z .) Also we can prove, as in the proof of the
Proposition 3.5.1,, that if q<n+1,
dv(z)
e8¢ snalF @0
Then, using (3.5.2.1) (with q =1, for example) as in example (i) of Section 3.4.1., we

Next we consider a C* —function y:C" >R, 0< y(z)<1, with compact
support contained in B(<,2¢/3), and such that y(z)=1 when zeB({,&/3). Now
the function

<+oo forevery 6>0. (3.5.2.1)

p

J

B(¢,2£/3)NQ

dv(z) <+, forevery p<oo. (3.5.2.2)

1
x(2) log{ }
F(z,.4)
is extended to a C” —function in Q, by defining it to be 0 in Q—B(¢,2¢/3). Then

the (0,1) —form
~ 1
=0 I
u(z) {1(2) OQ{F(Z,J)}

is defined and is C* in a open neighbourhood Q, it is zero for ze B(¢,£/3) N Q,

and, in particular, it has bounded coefficients in Q. In fact u(z) extends to a C*
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(0,))—form for z in an open neighbourhood of Q, since the function Iog{

oo

is  holomorphic in an open neighbourhood of the compact set
[B(¢,26/3)—B(,e/3)] Q2. It follows that there exists a bounded C* — function

w :Q — C which solves the equation dw =u in Q. (see Theorem 2.8.5. and for
more details [12] Theorem 16.3.4). Then the function

£(2)= 2(2) Iog[F (21 g)}w(z)

satisfies the requirements of (i) ) (as it follows from (3.5.2.2).
A function h, which satisfies the requirements of (ii) is

N+l (n+1)/q
hy(2) = eXP{T fe (Z)} = exp{z(z) Iog{ Fi g)} w(z)} :

Indeed, we have

dv(z)

2

2¢8(¢,5)na |F (2, $) !
(this is proved in the same manner as the analogous result of Proposition 3.5.1) which
implies that

=+oo (forevery 6>0)

dv(z) B
2nq/(n+1)

2eB(£,8)NQ ‘hg (z)‘
Notice that the behaviour of the above integral is not affected by the functions y or v,
since y=1 near ¢ and y is bounded in Q (so that exp(—y) is both bounded and

bounded away from zero in Q).
Finally assertions (iii) and (iv) follow from (i) and (ii), in combination with
Theorems 3.2.1 and 3.3.1 (see also the Remark 3.3.2). o

Remark 3.5.3. It follows from the above theorem, in combination with Theorem

2.1.14. that the set of the functions h in the space [OLP(Q2) which are singular at
p<q
every boundary point of 0Q is dense and Gs in this space, for 1<q <. (Similar

conclusions are reached also in the case of the convex domains, following Theorem
3.4.3. and certain — more general — domains in C, following Theorem 3.4.1.)

3.6. Extensions of results in the case 0< p<1

Let Q= C" be a bounded open set. Recall that if 0< p <1, we can define again the
space OLP(Q) as the set of holomorphic functions f:Q—C such that

[1f(2)|° dv(2) <+, and that with the metric
Q
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dp(f,9):= j|f(z)—g(z)|pdv(z),for f,geOLP(Q),
0

OLP(Q) becomes a complete metric space. (This follows from the fact that

convergence in the space LP(Q) implies uniform convergence on compact subsets of

Q, as we justify below.)
For a fixed g, with 0<qg <1, we may also define the spaces

NOL* (@)
p<q

L3 d, (f,9)
L Rt ge Mo,
j=12J 1+dpj(f’g) p<q

where p; is a sequence with 0< p; < p, <---<pj<---<qgand p;—>q (as j—> ).

endowed with the metric

d(f,g)=

Then ﬂ(’)Lp (€2) becomes a complete metric space, its topology being independent
<
of the (F:thoice of the sequence pj. In fact, a sequence fi convergesto f, in the space
OLP(Q), if and only if d,(f,,f)—>0 for every p<gq. In particular Baire’s
p<q
theorem -see Theorem 2.1.4.- holds in ﬂOLp(Q). Moreover we point out that the
p<q

space ﬂ(’)Lp (€2) , with the above topology, is also a topological vector space.

Letp<q us recall also that if P(a,r) is a polydisk,

P(a,r)={ZEC”:‘zj—aj‘<rJ—, 1=12,...,n}, and f eO(P(a,r)), then — by the

submean value property for the function |f|p (see Theorem 2.5.20 and for more

details see [21]) we have
1

P P
| (a)| SvoI(P(a, 5 P(£,|r];(2)| dv(z) (p>0).
Thus if feOLP(Q) and K is a compact subset of Q, then choosing & >0,
sufficiently small — depending on K, such that
P ={zeC": ‘zj —aj‘<5, j=12,..n}ccQ, forevery aeK,
we obtain

HAE

1
vol (Py) P{‘J e s vol (Py) g{| f(2)"dv(2), for every acK.

This gives the well-known inequality

f(a)” <— > f(z)|° .
2“@' @ <voI(P05)§j2| @) @)

In particular we see that convergence in the space OLP(Q) implies uniform
convergence on compact subsets of Q.
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The following conclusions can be reached for the case «0< p <1» in the same
manner as in the case « p>1».

Conclusions. Theorems 3.2.1., 3.3.1,, 3.3.3,, 3.4.1,, 3.4.2.,, 3.4.3., 3.5.2., and Remark
3.5.3., hold also in the case 0<q<1, and Remark 3.2.2. (iii) holds for the case

0< p<1,too.

3.7. The spaces A®(Q)

As we pointed out in Section 2.2, a totally unbounded holomorphic function in an
open set Q, is singular at every point of 6Q . On the other hand it is well-known that
the converse of this is far from being correct. In fact, under some assumptions on the

set Q, there are holomorphic functions in Q which are C* up to the boundary of Q
and at the same time they are singular at every point of 6Q . For deep results in this
direction we refer to [14] and the bibliography given there. In this section we will use
Theorem 2.1.14. in order to give a simple proof of the fact that in some pseudoconvex

open sets there exist functions in A%(Q), se{0,1,2,...}u{oc}, which do not extend
holomorphically beyond any boundary point of Q. In fact we show, at the same time,
that such functions form a dense and G set in the space A®(Q) (in the natural
topology of this space). To make this precise, we consider, for a bounded open set Q

in C" and se{0,1,2,...}, the set A®(Q) of all holomorphic functions f in Q, whose
derivatives

a‘a‘f _ oot tan ¢

a Ao a
oz ozt -+ Ozy"

extend continuously to Q, for every mult-index a=(a,....a;)eN" with

la| =g+ -+, <s. The topology in A®(Q) is defined by the norm
o] ¢

0
Il - p{ =

and with this norm, A®(Q) is complete.

(2)):

7€Q, |a|<s} feAS(Q),

Similaly A”(Q) is the set of holomorphic functions f in Q, whose derivatives
8‘“‘f /6z% extend continuously to Q, for every multi-index a=(o,....a,)eN".
The topology in A*(Q) is defined by the metric
= 1 [If-dl,
u(f0)=2 -

fLgeA”(©Q),
o2V 1o gl
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and, with this metric, A”(Q) is complete. Furthermore, with the corresponding
topology, A™(Q2) becomes a topological vector space. Thus, in particular, if
f.,f e A”(Q) with u(f,f)—>0 (k—>x), and 4,4€C with 4 — A1, then
uA f, Af)—>0.

The following theorem follows easily from Theorem 2.1.14. See also [2], [8] and
[14] for related results.

Theorem 3.7.1. Let Q— C" be a pseudoconvex open set such that its closure Q has
a neighbourhood basis of pseudoconvex open sets, and int(Q) = Q.

If se{0,1,2,...}u{oc}, then the set Z°(Q) of the functions in A®(Q2) which are not
extendable, as holomorphic functions, beyond any point of the boundary o€, is dense
and Gs in the space A®(QY).

In particular the conclusion holds if Q is strictly pseudoconvex open set (not
necessarily with smooth boundary) and int(Q) = Q.

Proof. We will apply Theorem 2.1.14. with V= A®(Q). For this purpose let us
consider a pair (B,b) of open balls with bccBnQ=#B. We claim that
BN (C"-Q)=T. For if BN(C"-Q)=C then B Q which would imply that
Bcint(QQ), i.e., B< Q (since we assume int(Q)=Q), and this contradicts the fact
that BN Q= B. Let £ e BN (C" - Q). Since we assume that Q has a neighborhood
basis of pseudoconvex open sets, there exists a pseudoconvex open set G such that
GoQand £ e¢G. Then BNnG=d, BN (C"-G)=T, and B is connected, and
therefore BMoG = . Let us consider a point o€ BMNoG and a sequence zy in
B G which converges to o . Since G is pseudoconvex, there exists a function f,

holomorphic in G, such that sup|f (z,)| = (see [15]). Then f eV =A®(Q) and the
k

restriction f|,, of f to b, has no bounded holomorphic extension to B .
Therefore, from Theorem 2.1.14, the set =°(Q) is dense and Gs in the space

V=A%Q).

The last conclusion of the theorem follows from the well-known fact that the closure
of a strictly pseudoconvex open set has a neighbourhood basis of pseudoconvex open
sets (for more details see [10]). mi
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4 Hardy type spaces

4.1. Hardy type spaces in the unit ball of C"

Definition 4.1.1. Let B={zeC": |7|<1}. We recall that the Hardy space H " (B),
1< p <o, is defined to be the set of holomorphic functions f :B — C such that

Vp
||f||p=sup[ j |f(r§)|pda(§)] <400,
r<l CEoB

where do is the Euclidean surface area measure on the sphere JB.
The space H P (B) endowed with the norm I ”p is a Banach space.

Theorem 4.1.2. ([22], Theorem 7.2.5) Suppose n>1,0< p<w. If f eHP(B) then

[f@ =2 P f] @)™
and
lim (1-|2)" " |f (2)|=0 (z e B).

|z—>1

Remarks 4.1.3. We also recall that if a sequence f, € HP(B) convergesto f, in the
above norm, then f,, convergesto f also uniformly on compact subsets of B .
Indeed this follows from the inequality

su||2| f@)|<C(p.K)|f]
e

with K being a compact subset of B and C(p,K) is a constant depending on p and
K — see Theorem 4.1.2.
Also, H”(B) is the Banach space of bounded holomorphic functions f :B— C,
with the norm | f | =sup|f(2)|.

zeB
For each g >1, we also consider the space M\ H P (B), which becomes a complete

1<p<q
metric space with the metric

f-gf
» 1 If-dl,
d(f,0) =Y,
2 47l
where 1< pp<p;<---<pj<---<q and p; —>q (j—> o). Although this metric
depends on the sequence p;, the topology induced by this metric in the space

(H P () is independent of the choice of the sequence p;. As a matter of fact, a
1<p<q

sequence fi convergesto f in HP(B) if and only if |fx — f[ ) —0, for every
1<p<q
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p <q. Indeed, if the sequence f, converges to f ,i.e., d(f,, f)— 0, then clearly
[ — 1=||ID >0 forevery j=1,23,.... Butif p<qg, we may choose a j, so that
j

P<pj, <d. Then |f - f||pj0 —0 and therefore |fy — f[| —0. Conversely, we

will show that if | fy — f[| —0, for every p<q, then d(f,, f) >0.Let £>0.We
choose N=N(¢g)eN sothat Y L1 % Since Ifx =], —0 for 1< j<N,
j=N+121 2 P
we may choose ky(g)eN so that ||fk—f||p_ <% for k>kg(g)and 1< j<N.
J
Then it is easy to check that d(f,, f)<e for k>ky(g). This shows that
d(fe, f)—=0.

Similarly, a sequence f, in HP(B) is Cauchy with respect to the metric d , i.e.,
1<p<q

d(fi, f)) >0 (kI o) ifand only if f, - ;]| | —0 forevery p<q.
Therefore the completeness of the metric space ( (H p(]B%),d] follows from the
1<p<q

fact that each H P (B) is complete.

4.2. The case of the unit ball of C"

In this section we will first prove the following theorem.

Theorem 4.2.1. Let g € (1+%]. Then the set of the functions in the space (H P (B)
1<p<q

which are totally unbounded in B is dense and Gy in this space.

The proof of this theorem will be based on the following lemma and theorem 2.1.12.

Lemma 4.2.2. For each point £ €S =B, we consider the functions

1 1
1-(z,¢) 1—2?:15j2j
defined for ze B . Then

fr(2)= , hy(2) =log f(2) and cﬂq,g(z)=6XDBh¢(Z)}

(i) fr e NHP(B) and fgeéH”(IB%),

1<p<n
(i) hy e NHP(B) and hy ¢ H*(B),
1<p<oo
(iii) @ c € NHP(B) and ¢y, 2 HY(B) for 1<q<oo,
1<p<q
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Proof. By Proposition 2.3.2, if p <n, the integral
do(w)

wes[L—(z,w)|"
as a function of z , remains bounded for z B , and therefore since r{ B for r <1,

do(z do(z
sup '”fg(rz)‘ do(z)=sup | #p— sup | #p<oo
O<r<l s 0<r<lyes [1—(rz, &))" o<r<tes[1-(r ¢, 7))
Thus fre NHP(B).
1<p<n
Next we show that
do(z
sup Hfg(rz)‘ do(z)=sup | _do() _
0<r<lzes O<r<1Z€S|1 (rz, §’>|
Indeed, by Proposition 2.3.2, the integral
_do(@) behaves as log 5 for weB,
zes [1—(W, 2)| 1-|w
and therefore
do(2) = su ﬂ: sup log =00,

0<r<1Z€S|l—<rZ,é/>|n O<r<1ZEg|l—<ré’,Z>|n ocraa 1-r?
This proves (i). Next, observing that Re(1—(z,{))>0, for zeB, we see that
Re f,(z)>0 and therefore we may define h-(z)=log f-(z) using the principal

branch of the logarithm with —z <arg<xz. Then ‘Im[log fg(z)]‘<7z/2, i.e.,
h,(2) = log|f, (2)|+i6(z) with |6(2)] < 7/2. It follows that if the point rzeB and is

sufficiently close to ¢,
p/2

p 2
1 1 2 Ik 1
= o kP — — .,
e H og‘ Qj + (rz)] = (k) ML

where we used the inequality (logx)P < (k)P’*xP’% which holds for x>1, p=>1
and keN . (We also used the fact that, since [1—(rz,{)/>0 for rzeB away from

the point ¢, the quantity [logfl—(rz,&)| is bounded.) Fixinga p <o and choosing

+i6(rz)

‘hg(rz)‘ Iog

k>p/n, we see (using also (i)) that h;er(IBB) whence we obtain

lim h-(z)=o0, (ii) follows. Finally observing

h HP(B). Si i
€ (YH "(B) . Since obviously L

1I<p<xo

that |y ¢|=| 1", we easily obtain (ii). o

Proof of Theorem 4.2.1. Let us consider a ball b, with sufficiently small radius,

whose center lies on B, and let us set X =bNB and V= [HP(B). We define
1<p<q

the linear operator
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T:VC* with T(f)(2)=f(2) for ze X and feV .
For each fixed z € X , the functional T, :V — C defined by T,(f)=1(z), f eV, is
continuous. It is easy to see that the set £={f €V: T(f) is unbounded on X} in
this case is equal to
Eb)=1fe NHPB): sup |f(z)|=00.
1<p<q zebnB
Also, by Lemma 4.1.5 (ii), £(b) #J, since h, € E(b) for £ ebNIB .
Therefore, by Theorem 2.1.12, £(b) is dense and G5 set in the space NH P(B).
1<p<q

In order to complete the proof, we consider a countable dense subset
{wy, Wy, ws,...} of JB, a decreasing sequence &g, s=123,..., of positive numbers
with &, — 0, and the balls b(Wj ,Es), centered at w; and with radii &5 . By the first
part of the proof, each of the sets £(b(wj,&)) is dense and G setin  (HP(B). It

1<p<q

follows from Baire’s theorem that the set

Y= ﬁ ﬁé’(b(wj,ss)) is dense and G in the space NH P (B).

j=ls=1 1<p<q
We claim that the set ) is exactly the set of the functions f € NHP(B) which are
1<p<q

totally unbounded in B . Indeed, if f €) and U is an open set with U NéB =,
we may choose a point W; €U NJdB and an &5 so that b(wjo,gSO)cU . Since

sup{|f (2)]: zeb(wj &5 ) NB}=00, it follows that sup{f(z): zeU nB}=o0.

Conversely, if f € MHP(B) and is totally unbounded then it is obvious that f €.
1<p<q

This completes the proof. o

Next we define Hardy type spaces associated to open subsets of the sphere
S=0B. These are local versions of the usual Hardy spaces and the main result is that,

in general, the functionsin  (H P (B) do not belong to Hardy spaces of higher order,
1<p<q

not even locally.

4.3. Local Hardy spaces in the unit ball of C"

Definition 4.3.1. Let G<S be a non-empty open set (open in S) and 1< p<oo. A
holomorphic function f :B — C is said to belong to the space H " (B,G) if

sup [|f(rz)|Pdo(z) <oo.

r<l ;eG
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Now we can state the following theorem.

Theorem 4.3.2. Let q € (1,+ ) . Then the set

Aq ={ge NHPB): g HYB,SNb(S,&)) for any £ S and any g>0}
1<p<q

is dense and Gs in the space (H P(B).
1<p<q

For the proof we will need the following lemma.

Lemma 4.3.3. If & €G then for the functions f, and ¢ -, defined in Lemma 4.2.2,
we have:

(i) freH"(B,G),

(i) @q, 2 HY(B,G) for 1<q<co.

Proof. Writing

n n n
([t ()] do(z) = [|f (r2) do(2)+ [|f,(r2)| do(2) for r<1,
zeS 2eG 2eS-G
and taking into consideration the fact that

sup H fr (rz)‘n do(z) =0,
r<l ;cs
we see that it suffices to show that

sup H fé(rz)‘nda(z) <o,
r<l ;es-G
For this, let us notice that

L—(rz,{)|21-Re((rz,£)) =1-r(z-¢).
(z-¢ =Re(z,¢) is the inner product in R*"=C") Thus if z-£ <0 then
L—(rz,{)|>1, and therefore

[[t:(2) do(2) <o (S) .
2e(S-G){z-¢ <0}

On the other hand if z-¢ >0 then [1-(rz,{)|21-z-¢ . But

1-2-£>0 for ze(S—-G)n{z-¢ >0},
since £ €G and ze(S—-G){z-¢ =0} imply that z cannot be equal to A4 for any
A>0, and therefore z-{<[z¢|=1. By the compactness of the set
S-G)n{z-¢ >0}

a=inf{l-z-:z2e(S-G)n{z-{>0}}>0,

whence
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Hfg(rz)‘nda(z)sif) for every r <1.

2eS-G a

/
This proves (i). Now (i) follows from (i), if we notice that |pg, .| =| fg\” AT

Proof of Theorem 4.3.2. Let us fix a point WeS and 6 >0. With X ={r: 0<r<L}

and V= NHP(B), we consider the sublinear operator T:V—>C* defined as
I<p<q

follows:

1/q
T(f)(r)= [lt(r)*do(z)| for feV andreX .
2eSNB(w,0)

Then, for each fixed r e X, the functional T,:V—>C, T,(f)=T(f)(r), feV,is
continuous. Indeed, if f,,eV and f, —> f (in V) then f, converges to f

uniformly on compact subsets of B, as we pointed out in 4.1. Since r <1, it follows
that

[|[fn@r2) do(z) > [|f(rz)"do(z), m—>eo,
2eSNB(w,5) 2eSNB(w,5)
ie, T, (f) =T (f).
On the other hand, by Lemma 4.3.3.(ii), the set
EW,8)={f eV:sup{T(f)(r): reX}=co}=D.
Therefore, by Theorem 2.1.12, the set £(w,d) is dense and Gs in the space

NHP(B).

1<p<q

In order to complete the proof, we consider a countable dense subset {w, w,,ws,...}
of dB and a decreasing sequence J, sS=123,..., of positive numbers with 5§, — 0.
By the first part of the proof and Baire’s theorem, the set

Y= ﬁ ﬁS(wj,és) is dense and G5 inthe space H P(B).

j=1s=1 1<p<q
We claim that Y=A;. Indeed if fe), {edB and £>0, we may choose
wj, € B(¢,¢) and J5 sothat B(w; ,ds ) = B(£, ), and since
sup fIf (r)['do(z) =0,
O<r<lzesmB(wj, .55, )
it follows that

sup  [[f(rz)'do(2) =0,
0<r<lzeSNB(¢¢)

ie., TeHYB,SNB(S,¢)). Thus Y < Ay, and since it is obvious that .4, =, the
proofis complete. O
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4.4. Hardy type spaces on bounded open sets with smooth boundary

First let us recall the definition of Hardy spaces in the case of bounded open sets with
smooth boundary.

Definition 4.4.1. Let Q = C" be a bounded open set with c? boundary and let o be
a defining function for this set, i.e., p:C"5>R s a C? function so that
Q={p<0}, Q={p=0}, C"-Q={p>0} and Vp=0 at the points of oQ . For
p >1, the Hardy space H " (Q) is defined as follows:

1/p
HP(Q)={f:Q—C, f holomorphic ianothatHprpzzsup _ﬂf(z)\pda‘f(z) <ot
T o0y

where do? is the Euclidean surface area measure of the hypersurface

{zeC": p(z) =—¢} (with £ >0 and sufficiently small).

Remarks 4.4.2.
(i) H P (Q) is independent of the defining function o .
In fact if 4 is another defining function for @, the norms | f[,  and

| ], are equivalent. This follows from the proof of Stein Lemma 2.7.4.

(i) Let us also observe that for compact subsets K of Q
sup| f (z)| < A(K,p)||f||p o feHP(Q), (4.4.21)
zeK '

for some constant A(K, p). To prove this inequality we may use the
representation
f(2)= [T(OP.(£. DAoL (L), €K,
oQ,

where P.({,z) is the Poisson kernel of Q,:={p<-¢} and £€>0
and sufficiently small. (Once chosen, ¢ is fixed.) Since
P.(¢,z) <[dist(z,6Q,)] 7", Holder’s inequality (see Theorem
2.1.6) gives

1/ p 1/p
|f(z)|<( j|f(;)|pdog<;)] ( J|Pg(¢,z)|"dag(:>J

£edQ, £edQ,
B LV L[
~[dist(z,60,)1?" " [dist(z,0)]*"

(with the point z restricted to the compact set K ) and the inequality
(4.4.2.1) follows, if p>1. (For details concerning the Poisson

kernel, see [16, 26] and Section 2.7) The case p =1 is simpler.
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(iii)  HP(Q) becomes a Banach space with the norm ||f||pp. This follows

from (4.4.2.1) as in the case of the unit ball. (See also [28, Corollary
4.19].) From the same inequality also follows the fact that convergence in

H P (Q) implies uniform convergence on compact subsets of Q. As in the

case of the unit ball, we define a metric in the space NHP(Q), for a
1<p<q

fixed g >1, as follows. We consider a sequence

1<p <pp<---<pj<---<qwith pj >q,
and we define the metric
o lf-dl,,,

d(f,g)=) —i—"—.
Lo,

Then the topology of this metric induced on the space NHP(Q) does not depend
1<p<q

on the choice of the sequence p; or on the choice of the defining function o . Indeed,

a sequence f, convergesto f,in HP(B), if and only if |f, — f||pp —0, for
1<p<q '

every p<d.

4.5. Local Hardy spaces

With Q and p being as above, we consider an open set UcC" with

UnoQ= and we define the space H},’(Q,U) to be the set of holomorphic
functions f :Q2— C so that

sup  [|f(2)dof (2) <.
e>04p=—s}U

The space H}(©,U) may depend on o . However we have the following lemma.
Lemma 4.5.1. Let p and A be two defining functions for Q. If U and V are two
open subsets of C" with UNoQ =T and V naQ =D, and if V U then

HP@QU)cHP@QV).

Proof. The following proof is essentially the proof of Stein Lemma 2.7.4 with some
minor modifications. There exist positive constants «, x; and x5 (independent of ¢)
so that if ze{1=—¢} (i.e. A(z) =—¢) then

B(z,ke) c A, ={weC": —re < p(W) < —Ky¢}.
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(The positive parameter ¢ is assumed to be sufficiently small so that the various
assertions in this proof hold true.) By the submean value property, if f H/E(Q,U) ,
f @) <2 [ 22w f W) dw for ze{a=—¢},
& n
weC
where y,(z,w)=1 for we B(z,x¢) and y,(z,w)=0 for we C" —B(z,x¢). In what
follows, xj, j=34,5,6, are appropriate constants independent of ¢ . Then

{A=—&}V weC" \{A=—¢}V

j|f(z)|pdaj(z)s% [ { j;(g(z,w)daj(z)J|f(w)|pdw,
&

where we used Fubini’s theorem (see Theorem 2.1.9) and the measurability of the
function y,.(z,w) for (z,w)e{l=-}xC" with respect to the product measure

daﬁ(z)xdw. Since V ccU | making ¢ smaller — if necessary — we may assume

that
B(z,ke) c A, NU for ze{l=—&}NV .

Then
[7:@wdol(2)=0 if weC"—(A,nU) and [z, (z,w)do}(2) <xue”™™
{A=—}V {A=—}V

for we A, NU.
It follows that

K€
[[f @) dot @< [|fw)Pdws "8 | [ [|f(w)|pda,;’(w)]dn.
{A=—&}V ¢ weA,NU & ke \{p=—n}"U

(The existence of the constant xg follows from the coarea formula — see Theorem
2.3.3.) Thus

sup  [|F@)Pdol (D) <xs(m—rr)sup  [|F(2)Pdof(2),

e>0 =g}V 1>0 {p=—n}U
and this impliesthat f eHP(QV). =@

4.6. The case of strictly pseudoconvex domains

In this section we will show that some functions which are defined in terms of
Henkin’s support function belong to certain Hardy spaces. We describe the Henkin’s
support function ®(z,¢’) — as constructed in [10] — in Section 2.9.

First we will prove the following lemma. We use a set of coordinates — the Levi
coordinates — which are appropriate when we are dealing with integrals involving the
Henkin’s support function ®(z,4) (for more details see [10], [21]). As a matter of

fact we will use a slight modification of the Levi coordinates.
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Lemma 4.6.1. For each fixed point ¢ €0,

S dL(Z)p«n when 1< p<n, (4.6.1.1)
£>0{p(2)=-2}|P(2,4)
and
su LZZ)n—l = (4.6.1.2)
>0 {p(2)—-2}|P(2,5)
Therefore e NHP(Q) and ¢ H>" Q) .
( é/) 1<p<n (D(,é/)

Proof. We consider a coordinate system
t=(t,ty,t3,.., 1) = (41(2), 12(2). 13(2),..., 120 (2))

of real C!— functions, for points zeC" =RR?", which are sufficiently close to the
point ¢, as follows: We set

t(z) =—p(2) and t,(2) =ImQ(z,¢) .

Then d,Q(z,¢)|,—¢ _—Zzap(g) dzj] =-28p(¢) and, therefore,
2=¢
dztz(z)\z:; - dz[lmQ(z, e =il0p(&)-3p(O)].
On the other hand,

d,1(2)| =g = d,[-p(2)] 1= =-10p(L) +3p()].
It follows that
(042 o )7 (A to (D)= )= 2i0p() A 3p(£) % 0.
Now the existence of C! - functions t3(2),...,to,(z) such that the mapping
2 (4(2), 1(2), 3(2),..., o (2))
is a Cl—diffeomorphism, from an open neighbourhood of the point { to an open

neighbourhood of 0eC"=R?" (with t(¢)=0), follows from the inverse function
theorem (see Theorem 2.1.10). Also let us point out that, for z sufficiently close to
¢, zeQ ifand only if t; =—p(z) >0. For points z € Q which are sufficiently close

to ¢,
[©(z,£) ~ Q2 £)| [ReQ(z, )| +[ImQ(2,0) 2 —p(2) + A -4 +[ImQ(2,{)
and
|§—z|2 ~t2 3t D
(When we write A =B, we mean that <B<A < 4B, for some positive constants x

and x which are independent of z .)
Therefore (for z € Q and sufficiently close to ¢')

D(2,8)| =ty + 2+ +1F + -+ 15, +[ty] .
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Therefore (4.6.1.1) follows from
dtz...dth
€>O{t1:g,t§+...+t§n<1}(1+| 2|+ 1ty i3+t 2I’])

or equivalently from

dt, ---dt
sup | LA <. (46.13)
g>0{tl:g’t§+...+t22n<l}(t1+|t2|+t3 +...+t2n)

But
I dt, ---dty, N dt, ---dty,

2 2\p 2 24yp
{tlzg,t§+~~~+t22n<1}(t1+|t2|+t3 + "'+t2n) {t22+t§+-~-+t22n<1}(8+|t2|+t3 + "'+t2n)

Also, by Fubini’s theorem - see Theorem 2.1.9,

dt, ---dt,,
2 2
{t§+t§+.‘.+t§n<1} (g+|t2|+t3 + "'+t2n)p
L dt
~ 2 dt3"'dt2n
2 24\p
{t32+~-+t§n<1} t,=0 (8+t2 +t3 + "'+t2n)

dty - dt,,

~
~

2 2 \p-1°
{t§++t22n<1}(8+t3 +"+t2n)p

Integrating in polar coordinates (see Lemma 2.3.1) we see that the last integral is
equal to

1 .2n-3 1

_ra derl < _[r2”‘2p‘1dr<oo.

r=0 (5 +r ) r=0

This proves (4.6.1.3) and completes the proof of (4.6.1.1).

In order to prove (4.6.1.2), let us observe that for points z € Q which are sufficiently
close to ¢,

(2, )*|Qz. )| =|¢ — 2| = (1 +15 +15 + -+ +15,)" 2,
whence
ng(Z) - dt2 "'dtzn

17 Y
=0z O T2 )@ D72

2 2
{ti=¢,t2+ - +t3, <} (t +tp +-
dt, --dty,
Ft2 )@z

= 2, 2
{t§+t§+-~-+t22n<1}(8 +h 4
By introducing polar coordinates in the last integral, we see that this integral behaves
as
1 r2n—2dr 1 r2n—2dr

oo (82 +r2)(2n—1)/2 20 (8_H.)2n—1 '

But as ¢ decreases, the function r2n-2 /(g+r)2”‘1 increases, and the monotone
convergence theorem (see Theorem 2.1.8) gives that
1 p2n-24, Lodr

lim [ ———= o,
Ho+r£0(g+r)2”—1 o T

and proves (4.6.1.2). ©
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Lemma 4.6.2. Let QccC" be a strictly pseudoconvex open set with c? boundary
and let p be a C? strictly plurisubharmonic defining function of Q defined in a

neighbourhood of Q . If 1< g <o and U cC" with U noQ =, then there exists a
function hy, so that

hyu € NHPE©) and hyy e HE" DY (Q,U).
1<p<q

Proof. Let us fix a point Let us fix a point £ €U noQ. Then, as it follows from
Taylor’s theorem and the strict plurisubharmonicity of p (see Proposition 2.8.9 and
for more details [21] Proposition 2.16 page 60), the Levi polynomial of p

o), . °p(&) ..
F(Z,é/)— 21221 aé/j (ZJ §J)+K§<n8§ja§k(21 é/j)(zk C:k)

satisfies the inequality
ReF(2,£) 2 p(¢) - p(2)+7]¢ — 7 for zeC" with |¢ —7 <5,
for some positive constants & and y . In particular,

ReF(z,&)>0 for ze B(£,8) nQ—{}.
It follows that the function log[l/F(z,£)] is defined and holomorphic for
zeB(£,0)nQ, and that gl)im glog[l/F(z,g“)]:oo. (Here log is the principal
y L

JAS

branch of the logarithm with |arg|<7.) Also we can prove, as in the proof of the
Lemma 4.6.1, that if q<n,

sup | L(Z)q <oo (4.6.2.1)
£20 p(2)=-3nB(c.0) |F (2, 4)

and
do.(z) _

= (4.6.2.2)

sup
20 {p(2)=—3nB(.8)|F (2, €))

Then, using (4.6.2.1), we obtain, as in Lemma 4.2.2,
sup |

p
Iog{ ! } do.(z)<oo forevery p<ow. (4.6.2.3)
20 {p(a)—arb.2513y  LF@E)
Next we consider a C* —function y:C" >R, 0< y(z) <1, with compact support
contained in B(<,26/3), and such that x(z)=1 when zeB({,6/3). Now the
function

5
F(z,.4)
is extended to a C™ — function in Q, by defining it to be 0 in Q—B(<£,256/3). Then
the (0,1) —form

2(2) |09{
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u(z) = 5{;{(2) Iog{ F(zl C)}

is defined and is C* in a open neighbourhood Q , it is zero for ze B(&,5/3)NQ,
and, in particular, it has bounded coefficients in Q. In fact u(z) extends to a C*

(0,)—form for z in an open neighbourhood of Q, since the function |09{F(Zl C)}

is  holomorphic in an open neighbourhood of the compact set
[B(£,26/3)—-B(&,5/3)] Q. It follows that there exists a bounded C* — function

w1 Q2 — C which solves the equation dy =u in Q. (See Lemma 2.8.5 and [21],
Theorem 16.3.4.) Then we may define the functions

fr(2) = 2(2) Iog[

1
F(z,g)}"”(z)

and

n 1 nd n
hy,c(2) = exp{a fg(z)} exp{;((z) Iog{ F(z,g‘,’)} —ay/(z)}.

Then the functions f-(z) and hy -(z) are holomorphic for z € Q. We claim that

sup J|hg.c@)|"dof (@) <o for p<q. (4.6.2.4)
¢>0{p(z)=-¢}nB({,0)
Notice that the behaviour of the above integral is not affected by the functions y or
w, since y=1 near ¢ and w is bounded in Q. Thus (4.6.2.4.) follows from

(4.6.2.3). Also

(2n-D)q/n
sup f|ho.c (@) do?(z)=o0.

e>0{p(z)=—¢}nB(¢,5)
Indeed this follows from (4.6.2.2), since y =1 near £ and exp(—y) is bounded away
from zeroin Q.

Thus setting hyy :=hy - we obtain the required function. O

Remark 4.6.3. The function f-(z) which was constructed in the proof of the
previous lemma has the following properties:

fre NHP(Q and lim  f.(z)=o0.

1<p<w 2eQ,71>¢

(The first part follows from (4.6.2.1).)

Theorem 4.6.4. Let QccC" be a strictly pseudoconvex open set with c? boundary
and g e Ruw{oo}, q>1. Then the following hold:

(i) The set of the functions in the space [HP(Q) which are totally unbounded in

1<p<q
Q is dense and Gy in this space.
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(ii) The set of the functions in the space (HP(Q) which are singular at every
<p<q

boundary point of Q is dense and Gg in this space.

Proof. Let us consider a ‘small’ ball B whose center lies on 0Q, and let us set

X=BnQand V= (HP(Q).We define the linear operator
1<p<q

T:V—>C* with T(f)(2)=f(z) for ze X and feV.

For each fixed ze X, the functional T,:V —C defined by T,(f)=f(z2),
fey, is continuous. It is easy to see that the set
E={f eV:T(f) is unbounded on X} in this case is equal to

S(B):{f e NHP(Q): sup |f(Z)|:oo}.

1<p<q zeBNQ

Now we consider the function f. which was constructed in the proof of Lemma
4.6.2. If the point £ eBNoQ then f.e&(B), and therefore £(B) =Y. (see also
Remark 4.6.3.) Therefore, by Theorem 2.1.12., £(B) is dense and Gs set in the space
V. In order to complete the proof, we consider a countable dense subset
{w, W, ws,...} of 0Q, a decreasing sequence &5, s=1,2,3,..., of positive numbers

with &5 — 0, and the balls B(wj, &), centered at w; and with radious &s. By the

first part of the proof, each of the sets £(B(wj,s)) is dense and Gy set in

N H P(Q). It follows from Baire’s theorem that the set

1<p<q
Y=NNEB(Wj,&)) isdense and Gy in the space  (H P(QY).
j=1s=1 <p<q
It is easy to see that ) is the set of the functions in the space (H P(Q) which are
I<p<q

totally unbounded in Q, and this proves (i).
Finally, the assertion (ii) follows from (i) and Theorem 2.1.14, since a totally

unbounded function in €2 is clearly singular (in €2). ©

Theorem 4.6.5. Let Q< C" be a strictly pseudoconvex open set with c? boundary
and let p be a c? strictly plurisubharmonic defining function of Q defined in a
neighbourhood of Q. If qe R, q>1, then the set

Bgf:{g e NHPQ): geHEDIMNQuU) for any open set U with U m@Q;ﬁ@}
1<p<q

is dense and Gs in the space (HP(QY).
1<p<q
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Proof. Let us fix a point we 0Q and a positive number 6. With X ={¢: 0< e <&y}

(where & is a ‘small’ positive number) and V= ((HP(Q), we consider the
1<p<q

sublinear operator T:V — C* defined as follows:

(2n-1)qg/n m
T(f)(e) = [T @7 " " do? (2) for fey and geX.
{p=—c}NB(W,5)

Then, for each fixed ¢ € X, the functional T,.:V > C, T.(f)=T(f)(¢), feV,is
continuous.

Also, by Lemma 4.6.2, the set Ew,8):={f eV:sup{T(f)(e): s X}=c0}= .
Therefore, by Lemma by Theorem 2.1.4, the set £(w, 5) is dense and Gy in the space

V.
In order to complete the proof, we consider a countable dense subset {w;, w,,ws,...}

of 0Q and a decreasing sequence J5, s=1,2,3,..., of positive numbers with 5, — 0.
By the first part of the proof and Baire’s theorem, the set
Y= NEW;,&) isdense and G5 inthe space  (HP(QY).
j=ls=1 1<p<q
Now it easy to see that ) = B, and this completes the proof. O

Combining Theorem 4.6.5 with Lemma 4.6.1, we will see that the set Bf is
independent of p . Thus we have the following theorem.

Theorem 4.6.6. Let QccC" be a strictly pseudoconvex open set with c?
boundary. If ge R, q>1, then the set

B,=1ge NHP(Q):ge H @AM U) for any open set U with U noQ =D
1<p<q

and any defining function A of Q}
is dense and Gg inthe space NHP(Q).
1I<p<q

Proof. It is clear that B, — BY. Conversely, if geBf, U is any open set with

UnoQ=#9 and A is any defining function of Q, let us consider an open set V
withV noQQ=J and V ccU . By Lemma 4.6.1,

H/(12n—l)q/n(Q’U) - HéZn—l)q/n(Q’V) .
But g € B¢ implies that g & HZ"™9'"(Q,V), and therefore g ¢ H@halnq u).
It follows that g € 3. Thus B, =B{. O
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It is easy to see that one can obtain results analogous to the ones of Theorems 4.2.1,

4.3.2,4.6.4, 4.6.6, with the spaces H P in place of the intersections (H P . Thus we
p<q
have the following theorem.

Theorem 4.6.7. (i) For 1< p < o, the set of the functions in the space H P(B) which
are totally unbounded in B is dense and Gy in this space.
(i) Fori< p<qg<oo, the set

{geHP®B): g HI(B,SNB(,¢)) for any £ €S and any ¢ >0}
is dense and G; in the space H P (B).

(iii) If QccC" is a strictly pseudoconvex open set with c? boundary and

1< p <o, the set of the functions in the space H P(Q) which are totally unbounded
in Q is dense and Gs in this space.

(iv) If QccC" is a strictly pseudoconvex open set with c? boundary, 1< p <o
and g > (2n—1)p/n, then the set

{geHP(Q):ge H/‘{'(Q,U) for any open set U with U noQ# I
and any defining function 4 of Q}
is dense and Gs in the space H P (Q).

4.7. Hardy Spaces of harmonic functions

The results of the previous sections can be extended to the case of harmonic
functions in domains of R". To describe this extension, let us consider a bounded
open set Qc R" with c? boundary. If o isa c? defining function of Q then one
can define the harmonic Hardy spaces h”(Q), p>1, (see definition 4.7.1 below and

for more details [1], [26] pages 3 and 117 respectively), the intersections (hP(Q),
p<q

and the local Hardy spaces hg(Q,U), as before. (U cR" is an open set with
UnoQ=J)

Definition 4.7.1. Let Q < C" be a bounded open set with Cc? boundary and let p be

a defining function for this set. For p=>1, the harmonic Hardy space hP(Q) is
defined as follows:
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Up
hP(Q)={u:Q— R, u harmonic in Q so that ||u||pp :=sup( '[ |u(z)|pda§(z)] <o},
T 20 i

where do? is the Euclidean surface area measure of the hypersurface

{zeC": p(z) =—&} (with & >0 and sufficiently small).
1
Lemma 4.7.2. Let N>3 and y € dQ. Then the function ¢, (X) = W (X=Y)
X=y

belongs to hP(Q) if and only if p < :—_; . In particular @, & h("D/(""2(qy).

Proof. We may assume that y =0 0€Q, in which case ¢y becomes the function

po(X) =~ = L
AR v o
We must show that
do?(x -
sup ‘Zf—_g)g@o if and only if p<—+ (4.7.2.1)
£>O{p:_g}|x| n-2

Using a local diffeomorphism — near the point 0 of 02 — we may assume that the
hypersurface 0Q, near 0, is defined by the equation X =0, and that X >0 for
XxeQ (close to 0). Then (4.7.2.1) is equivalent to

dx,...dx,

sup
2 2 2
g>0x§+...+x§<1(g +X2+"'+Xn)

Gy <o ifand only if p<:%;. (4722)

Integrating in polar coordinates (see Lemma 2.3.1) we see that the above integral
behaves as

1 r"2dr
iy (82 + r2)(n72)p/2 !
By monotone convergence theorem - see Theorem 2.1.8 ,
1 n-2 1 n-2 1 n-2
redr . f r<dr < f redr ’
r(n_z) p

sup

= lim <
>0 2o (82 + r2)(n—2) p/2 PN 2o (82 + r2)(n—2) p/2 o

and (4.7.2.2) follows. O

Lemma4.7.3. Let n 23 and y € 8. Then ¢, £ h "2 (QU) for yeU .

Proof. It follows easily from the previous lemma. O

With the above lemmas, we can prove the following theorems. Their proofs are
similar to the proofs of Theorems 4.6.4 and 4.6.6.
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n-1 . .
Theorem 4.7.4. Let 1<q£n. Then the set of the functions in the space

NhP(Q) which are totally unbounded in © is dense and Gy in this space.
1<p<q

n-1
Theorem 4.7.5. Let 1< < —2 . Then the set
n J—

A;={ge NhP©@): geh{™D'"2(QU) for any open set U with U noQ =&
1<p<q

and any defining function 1 of Q}

is dense and G5 inthe space NhP(Q).
1<p<q

Remark 4.7.6. According to Theorem 4.7.4, the functions in the space NhP(Q)
1<p<q

are generically totally unbounded in €, despite the fact that all these functions have

non-tangential limits almost everywhere at the points of the boundary of Q2 (by

Fatou’s theorem — see Theorem 2.1.7. —). Similar remarks can be made for Theorems

4.1.4and 4.6.4.
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