
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Language Models for Ancient Greek

Andreas I. Spanopoulos

Supervisor: Manolis Koubarakis, Professor

ATHENS

MARCH 2022

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Γλωσσικά μοντέλα για τα Αρχαία Ελληνικά

Ανδρέας Η. Σπανόπουλος

Επιβλέπων: Μανόλης Κουμπαράκης, Καθηγητής

ΑΘΗΝΑ

ΜΆΡΤΙΟΣ 2022

BSc THESIS

Language Models for Ancient Greek

Andreas I. Spanopoulos
S.N.: 1115201700146

SUPERVISOR: Manolis Koubarakis, Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Γλωσσικά μοντέλα για τα Αρχαία Ελληνικά

Ανδρέας Η. Σπανόπουλος
Α.Μ.: 1115201700146

ΕΠΙΒΛΕΠΩΝ: Μανόλης Κουμπαράκης, Καθηγητής

ABSTRACT

BERT is a pre-trained Language Model introduced by Google AI Language in 2018, that
manages to achieve state-of-the-art results on many downstream tasks. It is a revolution-
ary model that can be used to tackle almost any NLP task. It has also been successfully
applied to other languages apart from English, such as French, Spanish and even Greek
and Latin.

The goal of this thesis was to create a Language Model for the Ancient Greek language
based on a BERT-like architecture, and then fine-tune it to some downstream task, spe-
cifically Part-of-Speech tagging. There were two main steps that needed to be taken in
order to develop the model. First, there was the data collection part, and then training a
language model with the data acquired.

Regarding the data collection part, a lot of research was done in order to find publicly
available sources with plain-text data, but not much was found. In total, the amount of
data that we were able to collect was a bit less than 450 MB. This was a major problem,
as most BERT-like models had been trained on corpora in the scale of 30-50 GB.

Regarding the training part, the RoBERTa pre-training and model were chosen as a frame-
work for the Ancient Greek Language Model, since it had demonstrated better perform-
ance than other variants. The training objective was that of Masked Language Modelling
with dynamic masking.

Unexpectedly, the results were two-fold. One the one hand, the Language Model kept
underfitting due to the fact that it wasn’t seeing enough data. Many ideas were tried such
as reducing the model size and tuning the hyperparameters with bayesian optimization,
but none yielded good results. On the other hand, when fine-tuning for PoS Tagging,
the results were reasonably good, which suggests that the Language Model has learnt
important aspects of the Ancient Greek language.

By taking a look at the training curves, we can see that the model is definitely learning
something as the loss keeps decreasing, up until a point where it converges. We strongly
believe that this underfitting effect is due to the lack of a much larger corpora. If more data
is made available in the future, it would be definitely worth trying out again this approach.
That’s why the code for downloading the data and training a model is made available at
https://github.com/AndrewSpano/BSc-Thesis.

SUBJECT AREA: Natural Language Processing

KEYWORDS: Artificial Intelligence, Machine Learning, Natural Language Processing,
Deep Learning, Transformers, BERT

https://github.com/AndrewSpano/BSc-Thesis

ΠΕΡΙΛΗΨΗ

Το BERT είναι ένα προ-εκπαιδευμένο Γλωσσικό Μοντέλο το οποίο αναπτύχθηκε από την
ομάδα της Google AI Language το 2018, που πετυχαίνει κορυφαίες επιδόσεις σε πολλά
προβλήματα Επεξερασίας Φυσικής Γλώσσας. Είναι ένα επαναστατικό μοντέλο που μπο-
ρεί να χρησιμοποιηθεί για την επίλυση σχεδόν οποιουδήποτε προβλήματος απατεί διαχεί-
ριση φυσικής γλώσσας. Ήδη, έχει εφαρμοσθεί με επιτυχία σε πληθώρα γλωσσών πέρα
από τα Αγγλικά, όπως Γαλλικά, Ισπανικά, αλλά ακόμη και σε Ελληνικά και Λατινικά.

Ο στόχος αυτής της πτυχιακής ήταν η δημιουργία ενός Γλωσσικού Μοντέλου για την Αρ-
χαία Ελληνική γλώσσα βασισμένο σε μια αρχιτεκτονική τύπου BERT, και στη συνέχεια η
εφαρμογή του σε κάποιο πρόβλημα, συγκεκριμένα στην αναγώριση ετικετών μέρους του
λόγου. Υπήρχαν δύο βασικά βήματα που έπρεπε να πραγματοποιηθούν για να αναπτυ-
χθεί το μοντέλο. Αρχικά, υπήρξε το κομμάτι της συλλογής δεδομένων, και στη συνέχεια η
εκπαίδευση ενός γλωσσικού μοντέλου με τα δεδομένα που αποκτήθηκαν.

Όσον αφορά το κομμάτι της συλλογής δεδομένων, πραγματοποιήθηκε αρκετή έρευνα
προκειμένου να βρεθούν διαθέσιμες στο κοινό πηγές με δεδομένα απλού κειμένου, αλλά
δεν βρέθηκαν πολλά. Συνολικά, ο όγκος των δεδομένων που μπορέσαμε να συλλέξουμε
ήταν λίγο μικρότερος από 450 MB. Αυτό ήταν ένα σημαντικό πρόβλημα, καθώς τα πε-
ρισσότερα μοντέλα που βασίζονται σε αρχιτεκτονική BERT είχαν εκπαιδευτεί με όγκους
δεδομένων της κλίμακας των 30-50 GB.

Όσον αφορά το κομμάτι της εκπαίδευσης, η προ-εκπαίδευση και το μοντέλο RoBERTa
επιλέχθηκαν ως πλαίσιο για το Μοντέλο της Αρχαίας Ελληνικής Γλώσσας, αφού έχουν
επιδείξει καλύτερες επιδόσεις από άλλες παραλλαγές του BERT. Ο στόχος εκπαίδευσης
ήταν αυτός του Masked Language Modeling με δυναμική μάσκα.

Απροσδόκητα, τα αποτελέσματα είχαν δύο πλευρές. Από την μία πλευρά, το Γλωσσικό
Μοντέλο αδυνατούσε να μάθει εις βάθος την Αρχαία Ελληνική Γλώσσα διότι δεν εκπαι-
δευόταν με αρκετά δεδομένα. Δοκιμάστηκαν πολλές ιδέες, όπως η μείωση του μεγέθους
του μοντέλου και ο συντονισμός των υπερπαραμέτρων με μπαεσιανή βελτιστοποίηση,
αλλά καμία δεν έδωσε καλά αποτελέσματα. Από την άλλη πλευρά, όταν το εφαρμόσαμε
στο πρόβλημα αναγνώρισης ετικετών μέρους του λόγου, τα αποτέσματα είναι αρκετά καλά,
κάτι το οποίο συνιστά πως το μοντέλο είχε όντως κατανοήσει ορισμένες πτυχές της Αρ-
χαίας Ελληνικής Γλώσσας.

Ρίχνοντας μια ματιά στις καμπύλες εκπαίδευσης, μπορούμε να δούμε ότι το μοντέλο σί-
γουρα μαθαίνει κάτι, καθώς η αντικειμενική συνάρτηση συνεχίζει να μειώνεται, μέχρι ένα
σημείο στο οποίο συγκλίνει. Πιστεύουμε ότι αυτή η συμπεριφορά οφείλεται στην έλλειψη
ενός πολύ μεγαλύτερου σώματος δεδομένων. Εάν διατεθούν περισσότερα δεδομένα στο
μέλλον, σίγουρα θα άξιζε να δοκιμαστεί ξανά αυτή η προσέγγιση. Γι' αυτό τον λόγο, ο
κώδικας για τη λήψη των δεδομένων και την εκπαίδευση ενός μοντέλου διατίθεται στη
ηλεκτρονική διεύθυνση https://github.com/AndrewSpano/BSc-Thesis.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Επεξεργασία Φυσικής Γλώσσας

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Τεχνητή Νοημοσύνη, Μηχανική Μάθηση, Επεξεργασία Φυσικής
Γλώσσας, Βαθειά Μάθηση, Μετασχηματιστές, Μοντέλο BERT

https://github.com/AndrewSpano/BSc-Thesis

In dedication to my parents, who have always supported me. I wouldn’t have
accomplished anything if it wasn’t for you. Thank you, from the bottom of my heart.

ACKNOWLEDGEMENTS

I would like to thank my supervisor Professor Manolis Koumbarakis, for the support and
the valuable guidance that he offered me throughout this journey. I would also like to
thank Professor Ioannis Panagakis for his valuable contribution to its completion, as well
as Michalis Nikolaou for the access he gave us to the HPCF Cyclone in Cyprus, which
allowed us to do all our experiments using its resources.

CONTENTS

1. INTRODUCTION 14

2. BACKGROUND AND RELATED WORK 16

2.1 Machine Learning . 16

2.2 Neural Networks . 17

2.3 Perceptron and Multi-Layer Perceptron . 18

2.4 Recurrent Neural Networks . 19
2.4.1 Vanilla RNN . 19
2.4.2 Long Short-Term Memory . 20
2.4.3 Gated Recurrent Unit . 21
2.4.4 Bi-directionality of RNNs . 22

2.5 Encoder Decoder Architecture . 22

2.6 The Attention Mechanism . 23
2.6.1 The need for a better model . 23
2.6.2 Attention: An elegant solution . 23

2.7 Transformers . 24

2.8 BERT . 26
2.8.1 Masked Language Modelling . 26
2.8.2 Next Sentence Prediction . 26
2.8.3 Leveraging the BERT Language Model . 27

2.9 BERT Variants . 27
2.9.1 RoBERTa . 27
2.9.2 DistilBERT . 28
2.9.3 ALBERT . 29

3. Development of Ancient Greek Language Model 30

3.1 Data . 30
3.1.1 Gathering the data . 30
3.1.2 Pre-processing the data . 31
3.1.3 Training a tokenizer . 32

3.2 Model . 32
3.2.1 Setup . 33

4. Experiments and Results 34

4.1 Impact of Hidden encoder layers . 34

4.2 Impact of Attention heads . 35

4.3 Impact of Learning rate . 36

4.4 Bayesian Optimization . 37

4.5 Error Analysis . 38

4.6 PoS Tagging . 38

4.7 Discussion . 40

5. Conclusion and Future Work 41

ABBREVIATIONS - ACRONYMS 42

REFERENCES 45

LIST OF FIGURES

2.1 Types and examples of Machine Learning algorithms 17
2.2 Perceptron and Multi-Layer Perceptron visualization 18
2.3 Different types of RNN architectures . 19
2.4 Illustration of the Vanishing Gradient problem 20
2.5 LSTM and GRU cells . 21
2.6 Bi-directional LSTM architecture . 22
2.7 Encoder-Decoder architecture with separate RNNs 22
2.8 Attention Mechanism + Seq2Seq LSTM for Machine Translation 24
2.9 Multi-head self-attention mechanism . 24
2.10 Transformers Architecture . 25
2.11 BERT Pre-Training Auxiliary Tasks . 27

3.1 Raw and pre-processed Ancient Greek text 30
3.2 A sample of data from PHI inscriptions . 31

4.1 Number of hidden encoder layers experiment 35
4.2 Number of Attention heads and hidden encoder layers experiment 36
4.3 Learning rate with/without scheduling experiment 37
4.4 Confusion Matrix for the Diorisis PoS test set. 39
4.5 PoS Tags for randomly sampled sentence from the test set. 39

LIST OF TABLES

3.1 Statistics on pre-training corpora for the Ancient Greek LM 30
3.2 Statistics on the Diorsis Corpora POS data 31
3.3 Hyperparameters of the tokenization process 32
3.4 Hyperparameters for the RoBERTa LM . 33
3.5 Hyperparameters for the training process of the RoBERTa LM 33

4.1 Default values for the hyperparameters. 34
4.2 Results for different number of Encoder Layers. 34
4.3 Results for different number of Attention Heads and Encoder Layers. 35
4.4 Results for different values of Learning rate and scheduling 36
4.5 Bayesian Optimization Search Space. 37
4.6 Unseen test set results for the PoS Tagging fine-tuned model. 38

PREFACE

This thesis was written as a part of the BSc program of studies at the Department of
Informatics and Telecommunications of the National and Kapodistrian University of Athens.

Language Models for Ancient Greek

1. INTRODUCTION

The fields of Artificial Intelligence (AI) and Machine Learning (ML) have witnessed expo-
nential growth in the 21st century [2]. Many everyday tasks such as person identification,
customer assistance, question answering and many more, have been successfully auto-
mated thanks to ML algorithms and models. The majority of these tasks are non-trivial
to solve and thus require some level of intelligence in order to tackle them. A significant
subset of those tasks deals with interactions between computers and human language.
This subset falls within the category of Natural Language Processing.

Natural Language Processing (NLP) [20] is a subfield of Linguistics, Computer Science
and Artificial Intelligence and an active area of research and application that explores how
computers can be used to understand and manipulate natural language text or speech to
do useful things. It has a wide variety of applications ranging from text summarization to
chatbots and question answering models [13, 28, 39].

Most, if not all, of the recent NLPmodels that achieve state-of-the-art (SOTA) results, have
been developed using a technique called Transfer Learning (TL). A high-level description
of this method is “applying knowledge attained from solving a specific problem, to a differ-
ent problem”. In NLP, Transfer Learning is usually achieved with the usage of pre-trained
LanguageModels (LMs), which are models that have been trained on huge corpora (5-150
GB) to learn universal language representations [31]. Examples of suchmodels are ELMo,
BERT and GPT [30, 21, 17]. Combining a pre-trained model with a smaller network and
then fine-tuning it, is likely to significantly improve the performance on downstream tasks,
by reducing overfitting and achieving more generalization [31]. Thus, it can be argued
that it is of paramount importance to achieve good results when pre-training Language
Models.

The main target of this τhesis is to pre-train a LM for Ancient Greek, and then test out the
performance on the downstream task of PoS Tagging, which is the process of marking up
a word in a text as corresponding to a particular part of speech, based on both its definition
and its context [6]. The publicly available data which we were able to leverage, was from
Perseus, First1kGreek Project, Portal and the Diorisis Ancient Greek Corpus [7, 3, 9, 1].
Unfortunately, all the combined data consisted of approximately 450 MB, which is a few
order of magnitude less than was was used for other languages, such as Latin andModern
Greek [16, 25].

For the choice of a pre-trained model architecture, BERT-like architectures are preferred
due to the strong performance they have achieved in previous publications, as well as the
fact their number of trainable parameters is one order of magnitude less than GPT-like
architectures [21, 17], which allows for much faster experimenting. Small adjustments to
the overall architecture will be tried during hyperparameter tuning, to see if better results
are achieved.

To our knowledge, the only publicly available pre-trained Ancient Greek Language Models
has been developed by Brennan Nicholson and Pranyadeep et al. [12, 37]. The former
is a bit hard to fine-tune on downstream tasks, as it’s a character-level model, and thus
the only application that it’s well-suited for is Masked Language Modelling. The latter is a
BERT-based model that makes use of the more efficient word embeddings.

A. Spanopoulos 14

Language Models for Ancient Greek

Our documentation is mainly comprised of the four chapters that are listed below.

Chapter 2 will build up the knowledge required to understand the structural components
of the state-of-the-art Language Models, as well as for some of their most popular vari-
ations. We will talk about Machine Learning in General, Multi Layer Perceptrons, vanilla
Recurrent Neural Networks, the attention mechanism and eventually we will build up to
the transformers architecture and BERT.

In Chapter 3, we will discuss the setup for developing a pre-trained Ancient Greek LM,
the data used for it, the preprocessing steps that were taken, as well as some other
implementation-specific details.

In Chapter 4 we will take a look at the results, both for the pre-training of the LM, as well
as for Part of Speech Tagging. We will also define some metrics that will help us assess
the performance of our model.

In Chapter 5 we will elaborate on the results and discuss future work on this subject.

A. Spanopoulos 15

Language Models for Ancient Greek

2. BACKGROUND AND RELATED WORK

Recent advances in attention-based architectures for LMs, have shown that transformer-
based architectures are far superior [38] than previous Recurrent Neural Network (RNNs)
approaches, such as LSTM and GRU [23, 19]. This sudden increase in performance
caused a revolution in the field of NLP, as more and more variations of the transformer
framework that crashed the previous benchmarks were being published. Nowadays, this
architecture has become the default choice for researchers when experimenting with new
methods or models. This also holds for industry-level applications, as most companies
have now switched to BERT-like or GPT-like models for their NLP tasks.

Regarding NLP for Ancient languages, BERT has already been successfully applied to
Ancient Greek, Modern Greek and Latin [37, 25, 16]. The first and the latter achieve pretty
decent results. The Greek-BERT achieved SOTA results in many downstream tasks.

The goal of this chapter is present the foundations of BERT-like architectures. We will
briefly explain the building blocks of the transformer architectures, the models that were
used prior to BERT-like models, and we will conclude the chapter with a small study on
some of the most popular variants of BERT.

2.1 Machine Learning

Over the years, there have been many definitions of Machine Learning, by various re-
searchers. One of first definitions, states that:

“Machine Learning is the field of study that gives computers the ability to learn without
being explicitly programmed” - Arthur Samuel, 1959.

This definition is quite simple, and it successfully manages to capture the true essence of
this field. Yet, there is a recent definition that seems even more appropriate:

“A computer program is said to learn from experience E with respect to some task T and
some performance measure P, if its performance on T, as measured by P, improves with

experience E” - Tom Mitchell, 1997

Indeed, the latter portrays perfectly the scope of ML. But how does learning occur, and
what is being learnt? The word “learning” by itself is vague, as it can be interpreted in
many ways. That’s why ML can be distinguished in three different sub-fields, where each
one deals with a different kind of learning.

The first sub-field is called Supervised Learning, and it deals with problems where the
task is to learn a function (mapping) that maps a given input X, to a given output y. This
function, can be any type of function f : A → B, where A and B are any 2 sets. The
output y can either be a continuous or a discrete value. If it’s continuous, we say that we
are dealing with a Regression problem, and if it’s discrete then it’s called a Classification
problem. In this framework, the task T is to learn f , the experience E is the data X, y
which is provided by external sources and the performance P is some metric (defined by
humans) to assess the performance of f .

A. Spanopoulos 16

Language Models for Ancient Greek

The second sub-field is called Unsupervised Learning, and it deals with finding patterns
in given data. As in Supervised Learning, in Unsupervised Learning we are given some
data X but without labels y, and the main goal is to find structure inside the given data.
Some examples of such algorithms could be to Cluster the data, i.e. find groups of data
that exhibit similar features, or reducing the dimensionality of data, by checking which
features contribute less. In this framework, the task T is to learn the underlying structure
of the given data, the experience E is the data X which is provided by external sources
and the performance P is again some metric defined by humans in order to assess the
quality of the structure found.

The third sub-field is Reinforcement Learning, and it deals with a more abstract family
of problems, where there is an intelligent agent that interacts with an environment, and
it’s task is to maximize the notion of cumulative reward received from the environment.
Therefore, it deals mainly with control and optimization problems. In this framework, the
task T is to learn to act intelligently in the given environment in order to maximize the
cumulative reward, the experience E is the environment-specifics which are usually pre-
defined and the performance P is usually the maximization of the cumulative reward.

Most problems in NLP (including pre-training a LM) fall withinSupervised Learning. Hence,
from now on we will solely focus in this category. A visual representation of ML and its
sub-fields and be seen in fig. 2.1.

Figure 2.1: Types and examples of Machine Learning algorithms

2.2 Neural Networks

Before diving deep into the theory of ML models, we must present the Artificial Neural
Network (ANN), also known as Neural Network (NN). An ANN is a computing system
inspired by the biological neural network that constitutes the brain of an animal. An ANN
is based on a collection of connected units or nodes called artificial neurons, which loosely
model the neurons in a biological brain. The connections have a similar functionality to
the synapses of a biological brain; they transmit signals between neurons. The “signal”

A. Spanopoulos 17

Language Models for Ancient Greek

is a real number, and the output of each neuron is computed by some function of the
its inputs. These connections are usually referred to as weights, and they are adjusted
during training. The weight determines the impact of a signal. An increase or a decrease
on the weight will determine the strength of the signal. Typically, neurons are aggregated
into layers. Different layers may perform different transformations on their inputs. Signals
travel from the first layer (the input layer), to the last layer (the output layer), possibly after
traversing the layers multiple times.

2.3 Perceptron and Multi-Layer Perceptron

The first Neural Network is a binary classifier called “Perceptron” that was introduced by
F. Rosenblatt [32] in 1958. It’s the simplest Neural Network; It consists of an input layer,
followed by the output layer which is a single neuron. The value of the output neuron can
be computed as f(x) = wx + b, where w ∈ R1×n is the weight vector (signals), x ∈ Rn×1

is the input vector and b ∈ R is the bias. The classifier will then pick a class according to
the sign of the output neuron. Namely:

ŷ =

{
0 if wx+ b < 0

1 if wx+ b ≥ 0

Using the labels y, and the output logits ŷ, we can assess the performance of the model
using some loss function, for example the Negative Log Likelihood (NLL) loss. Theweights
w can then be updated by gradient descent. Their gradient with respect to the loss function
is computed with the chain rule. The latter process is also known as backpropagation [33].

Of course, this model will not performwell for complicated tasks, since it only learns a linear
decision boundary. In order to learn more complex decision boundaries, for classification,
or more complex values for regression, we need to increase the size of our model. For
this, we can add more layers between the input and output layers, followed by a non-linear
activation function in order to learn more complex representations of the input data. These
new layers will be called “hidden” layers. These new types of models are called “Multi-
Layer Perceptrons” (MLPs). The number of layers to add and their respective size is an
architectural choice. Theory has shown that MLPs, also known as Feed Forward Neural
Networks (FFNNs), are universal function approximators [24], i.e. by increasing enough
their size, then they can approximate any function.

(a) Perceptron (b) Multi-Layer Perceptron

Figure 2.2: A visualization of (a) the Perceptron model and (b) the Multi-Layer Perceptron model

A. Spanopoulos 18

Language Models for Ancient Greek

2.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs), are a class of neural networks that allow previous
outputs to be used as inputs while having hidden states. In other words, they are a gen-
eralization of the MLP, that also has an internal memory. Connections between neurons
form a directed graph along a temporal sequence, allowing the exhibition of temporal dy-
namic behavior and the processing of variable-length sequences.

2.4.1 Vanilla RNN

The simplest type of RNN is the one that preserves a single hidden state a<t−1>, and
uses it when computing the hidden state a<t> for the next input x<t>. Mathematically, this
can be expressed in the following way: a<t> = fW (a<t−1>, x<t>), where t is the current
index of the sequence (aka timestep). The model will need 5 weight matrices in total: 3
Weight matrices to compute a<t> and 2 to compute ŷ<t>, which is the output of the model
at timestep t. The respective equations are:

a<t> = tanh
(
Whha

<t−1> +Wxhx
<t> + bh

)
ŷ<t> = Whya

<t> + b<t>

a<0> is usually initialized to be the ones matrix. There are four main types of RNN archi-
tectures, where the input and output are modelled in different ways. Each usually targets
different kind of problems. Those variations can be seen in fig. 2.3.

(a) One-to-Many (b) Many-to-One

(c) Many-to-Many where Tx = Ty (d) Many-to-Many where Tx ̸= Ty

Figure 2.3: Different types of RNN architectures. (a) is usually used in text/music generation. (b) is
usually used classification/regression problems. (c) is usually used in Multi-Label

Classfication/Regression problems, such as Named Entity Recognition or Part-of-Speech Tagging.
(d) is usually used in Machine Translation.

A. Spanopoulos 19

Language Models for Ancient Greek

Even though the Vanilla RNN architecture is itself a Universal Function Approximator [35],
it suffers from 2main problems, those of ExplodingGradients andVanishingGradients.
The former refers to the problem where the gradients computed during backpropagation
diverge to very high values, thus rendering them useless. This problem can be easily
fixed by clipping the gradients to some threshold upper bound. The latter refers to the
problem where the gradients of earlier timesteps converge to really small values, thus
causing the model to stop learning. This happens because gradients are computed using
the chain rule, which is a multiplication of 2 values. If both values are smaller than 1, then
the gradients shrink in each timestep, reaching values close to 0 as the backpropagation
goes deeper.

The VanishingGradients problem is the biggest issuewith Vanilla RNN architectures, since
this is what stops them from capturing long-term dependencies. This issue is illustrated in
fig. 2.4, where we can see that in the sentence “What time is it?”, the contribution of the
word “What” to the hidden state of the word “?” is minimal.

Figure 2.4: Illustration of the Vanishing Gradient problem

In order to fix the Vanishing Gradient problem, researchers have developed new, stronger
methods which we will explain in the next paragraphs.

2.4.2 Long Short-Term Memory

The Long Short-Term Memory (LSTM), was introduced by Jürgen Schmidhuber et al. in
1997 [23] as a solution to the vanishing gradient problem. It’s a modified version of the
Vanilla RNN, that can capture long-term dependencies. Its internal mechanisms that are
called gates that can control the flow of information. These gates can learn which data in
the sequence is important to keep or throw away. By doing that, it learns to use relevant
information to make predictions.

The main component of the LSTM architecture is the cell state. The cell state is the
“memory” of the network. It connects the the different layers of the model by allowing
the flow of important information through it. The ability to add/remove any information is

A. Spanopoulos 20

Language Models for Ancient Greek

achieved with the usage of 3 gates. The first is the Input gate, which decides how much
information from the input unit is added to the hidden state. The second is the Output
gate, which decides how much information from the current cell makes it to the output.
The third is the Forget gate, which decides the amount of the past information that the
model shall keep in memory. Fig. 2.5a shows the structure of an LSTM cell.

(a) LSTM cell (b) GRU cell

Figure 2.5: A visualization of (a) the LSTM cell and (b) the GRU cell

The outputs at timestep t of: the input gate it, the output gate ot, the forget gate ft, pseudo
cell state C̃t, cell state Ct and hidden state ht, can be computed as:

it = sigmoid (xtWxi + at−1Whi)

ot = sigmoid (xtWxo + at−1Who)

ft = sigmoid (xtWxf + at−1Whf)

C̃t = tanh (xtWxg + at−1Whg)

Ct = sigmoid
(
ft ∗ Ct−1 + it ∗ C̃t

)
at = tanh (Ct) ∗ ot

where Wxi,Whi,Wxo,Who,Wxf ,Whf ,Wxg,Whg are the weights of the model.

2.4.3 Gated Recurrent Unit

The Gated Recurrent Unit (GRU), was introduced in 2014 by Kyunghyun Cho et al. [19]
as an alternative to the LSTM model. Even though at that time the LSTM was SOTA, it
had a major drawback; it was really slow during training. This was a result of the number
of gates. The GRU aimed to deal with this issue by reducing the number of gates from
3 to 2. The 2 gates are now named Update gate and Reset gate, and are denoted by
zt and rt (at timestep t) respectively. Fig. 2.5b shows the structure of a GRU cell. The
equations for the GRU model are:

zt = sigmoid (Wz ∗ [ht−1, xt])

rt = sigmoid (Wr ∗ [ht−1, xt])

h̃t = tanh (W ∗ [rt ∗ ht−1, xt])

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

where Wz,Wr,W are the weights of the model.

A. Spanopoulos 21

Language Models for Ancient Greek

2.4.4 Bi-directionality of RNNs

LSTMs and GRUs are useful because they can store information from the beginning of
a sequence and transmit it successfully until the end. But what happens in the opposite
scenario, where the end of a sequence contains information that could be used by the
output of the first timesteps? The current models as we described them, form directed
graphs that propagate information only in one way. This idea can be generalized in order
to gain information in the opposite direction. This can be achieved by using a second
model that scans and processes the sequence from end to beginning. The outputs of
both models can be concatenated together to form a single bi-directional representation
of any layer. A bi-directional LSTM (Bi-LSTM) is illustrated in fig. 2.6.

Figure 2.6: Bi-directional LSTM architecture

2.5 Encoder Decoder Architecture

The Encoder-Decoder architecture is a NN framework based on the Sequence to Se-
quence (Seq2Seq) modelling technique. It’s basically the 4th type of RNN that was dis-
cussed earlier in figure 2.3d, where an input sequence x of fixed-length Tx gets mapped
to an output sequence ŷ of fixed-length Ty. Here, the Encoder refers to the first part of
the RNN that computes the hidden states and the Decoder refers to the second part that
takes these hidden states and starts generating the output sequence ŷ. This model can
be generalized so that the Encoder and Decoder are separate NNs, as shown in fig. 2.7.

Figure 2.7: Encoder-Decoder architecture with separate RNNs

A. Spanopoulos 22

Language Models for Ancient Greek

2.6 The Attention Mechanism

Even though LSTMs, GRUs and Seq2Seq models were performing extremely well for a
variety of tasks, they were still far away from achieving, let alone surpassing, human-like
performance in most tasks. They had some serious drawbacks that needed to be fixed in
order for harder NLP problems to be solved.

2.6.1 The need for a better model

The previous approaches had 2 major disadvantages. First, they couldn’t be parallel-
ized. In order to compute the hidden state ht at timestep t, the previous hidden state
ht−1 had to be computed. The time complexity of a forward pass scaled linearly with the
length of the sequence. Since many NLP tasks dealt with longer sequences (i.e. longer
than 500 tokens), this was a major slowdown during training, especially when training with
huge text corpora. Second, there wasn’t a way to make any token attend explicitly to
any other token. For example, consider the input sentence “John and Nick were play-
ing table tennis against Maria and Sophia respectively.” and the question “Who were the
opponent pairs in the table tennis matches?”. Ideally, the model should be able to match
John with Maria and Nick with Sophia. A name in one pair should be able to attend to the
other name in the pair. Since we have 2 pairs, we will have 2 different signals. But how
will those 2 different signals be encoded in 1 hidden state? This might be possible for only
2 different signals, but how is this going to work for larger sequences with more than 300
tokens, where there are many different relations that need to be encoded?

2.6.2 Attention: An elegant solution

The idea to overcome these disadvantages is very simple and elegant; Match every token
in a sequence with every other token. This mechanism is called Attention, because prac-
tically every token attends to every other token. This allows the model to retain and utilize
all the hidden states of the of the input sequence during the decoding process. It creates
a unique mapping between each timestep of the decoder output to all the encoder hidden
states, providing the decoder with access to the entire sequence, and the capability to
pick out specific elements from that sequence in a discriminating way, for every output it
makes towards the final product.

Initially, attention was used in combination with RNNs (specifically, LSTMs) in order to
tackle the problem of attending all the tokens of a sequence with all the other tokens. The
hidden states would all be combined with a parameterized weighted sum into the context
vector, which is what would then be fed in the decoder section of the model. The para-
meters for the weighted sum are the parameters (weights) of the attention mechanism.
This is illustrated in fig. 2.8.

The aforementioned architecture managed to improve drastically the quality of RNNs,
but training was still extremely slow. A new architecture had to be invented, in order to
overcome the high complexity of the forward pass of RNNs, which would also allow for
parallelization. Even though progress seemed to have stagnated for a bit, researchers
were not done yet.

A. Spanopoulos 23

Language Models for Ancient Greek

Figure 2.8: Attention Mechanism + Seq2Seq LSTM for Machine Translation

2.7 Transformers

Attention is All you Need is a paper published by A. Vaswani et al. in 2017 [38] that
revolutionized the field of NLP. It’s arguably one of the most impactful papers that have
been published, as it presents the Transformer model, a model which shatters all previous
baselines, and sets out to become the default architectural choice for LMs. As its name
suggests, it gets rid of the RNNs and instead it uses only the attention mechanism.

The Transformer model is an alternative to RNNs, that is designed to handle sequential
data. Although it borrows the encoder-decoder framework from seq2seq models, it differs
from RNNs because it allows for data to be processed in parallel. It also introduces a new
variant of the attention mechanism, called self-attention.

Figure 2.9: Multi-head
self-attention mechanism

The self-attention module works by comparing every
token in the sequence to every other token in the se-
quence, including itself, and re-weighing the embeddings
of each token to include contextual relevance. It takes in
n embeddings without context and returns n embeddings
with contextual information. For example, in the phrase,
“Bank of the river”, Bank would be compared with Bank,
of, the, and river, and as Bank is compared with those four
words, its word embedding would be re-weighted to in-
clude the relevance of the words to its own meaning in the
sentence accordingly. This module can be generalized to
theMulti-head Attention, where many self-attention blocks
run in parallel. Fig. 2.9 illustrates this mechanism.

A. Spanopoulos 24

Language Models for Ancient Greek

The Scaled Dot-Product Attention is computed as

A(Q,K, V) = softmax
(
QKT

dk

)
V (2.1)

where Q stands for Query, K stands for Key and V stands for Value. Those vectors are
the representations (embeddings) of the tokens.

The Multi-head self-attention module is the backbone of the Transformer architecture. The
Transformer is made up of stacks of Encoder and Decoder blocks. The Encoder block con-
sists of a Multi-head self-attention module followed by an MLP with a skip connection and
layer normalization [15]. The Decoder block is the same, but it also consists of a Masked
Multi-head self-attention (for prediction) module before the Multi-head self-attention. An
illustration of this architecture can be found in fig. 2.10.

Figure 2.10: Transformers Architecture: (left) Encoder and (right) Decoder

A. Spanopoulos 25

Language Models for Ancient Greek

2.8 BERT

BERT, which stands for Bidirectional Encoder Representations from Transformers, is a
Language Model that was introduced by the Google AI Language team in 2018 [21]. At
the time of its release, it outperformed all previous LMs on various tasks. It also showed
the importance of pre-training when fine-tuning models on downstream tasks.

The architecture of the BERT model makes use of the Transformer NN. Specifically, as its
name suggests, BERT consists of a stack of many Encoders of the Transformer Architec-
ture. The Encoders are used in order to learn useful language representations (embed-
dings) for each token in the input sequence. Since the Encoder architecture leverages the
self-attention mechanism, context is taken into account. This means that the model might,
and actually will, produce different representations for the same token, it it has different
context, i.e. it’s in a different sentence.

The BERTBASE model has 12 encoder layers stacked on top of each other, which sums
up to 110M parameters, whereas BERTLARGE has 24 layers of encoders stacked on top
of each other, which sums up to 340M parameters. Needless to say, these models are
huge, and this is one of the reason for why they perform so well.

One thing that is quite important though and that played a big role in BERT achieving great
results, is the procedure with which it was trained. Before BERT, most LMs were trained
on the auxiliary task of Next Token Prediction. That is, they were given an incomplete
sequence as input and they had to guess the next word in the sequence. For example, if
the input sequence was “The quick brown fox jumps over the lazy”, then the label would
be “dog”, and so the model could train in a supervised fashion to correctly predict the label.
In BERT, the authors used 2 novel auxiliary tasks, called Masked Language Modelling
and Next Sentence Prediction.

2.8.1 Masked Language Modelling

Masked Language Modelling (MLM) refers to the auxiliary task when tokens from a se-
quence are masked out, and the model is train to predict which are those tokens. This
helps themodel understand context, as it needs to take into account the other non-masked
tokens in order to understand which token is missing. The output of the last encoder of
BERT is fed to a small MLP classifier that has an output dimension equal to the vocabulary
size. The model assigns a probability to each token in the vocabulary, and it’s trained to
minimize the cross entropy loss for the masked-out tokens. Fig. 2.11a shows this method.

2.8.2 Next Sentence Prediction

Next Sentence Prediction (NSP) refers to the auxiliary task of classifying whether 2 se-
quences are logically entailed. BERT uses some special tokens in its vocabulary in order
to distinguish certain parts of text. It uses [CLS] in the beginning of the sequence, [SEP] at
the end of a sequence, [PAD] for padding tokens, [UNK] for unknown tokens and [MASK]
for masked-out tokens. In NSP, 2 sentences are fed into the model, and it has to classify
whether they are entailed. This helps the model learn long-term dependencies and also
capture the meaning of whole sequences. Fig. 2.11b shows this method.

A. Spanopoulos 26

Language Models for Ancient Greek

(a) Masked Language Modelling (b) Next Sentence Prediction

Figure 2.11: A visualization of the auxiliary tasks and methods used to pre-train the BERT model:
(a) MLM and (b) NSP

2.8.3 Leveraging the BERT Language Model

After pre-training, BERT can successfully represent almost any sentence as a concatena-
tion of embeddings, one for every token of the input sentence. This latent representation
can then be used in order to perform some downstream task, for example Question An-
swering. That is, a new MLP head can be added on top of the last Encoder of BERT that
will learn to answer a given question, based on the embeddings produced by the BERT
model. The LM will remain frozen (its parameters won’t be updated) during this fine-tuning
phase. This method has shown great results in the BERT paper [21].

2.9 BERT Variants

The BERT model was revolutionary. But research didn’t stop there. There was still a lot of
room left for improvement. First, BERTwas extremely slow to train due to the huge number
of parameters it had. Second, even though it achieved amazing results, they could still
improve. That’s why many variants of BERT that aim to deal with these drawbacks have
been released. Some of the most notable ones will be introduced in the next subsections.

2.9.1 RoBERTa

RoBERTa (Robustly Optimized BERT Pretraining Approach) was introduced by Y. Liu et
al. in 2019 [27] as an alternative to BERT. In this paper, the authors chose to stick with
the previous model architecture (stacked encoders), and proposed three new ideas for
the pre-training phase.

First, they get rid of Next Sentence Prediction. Even though the authors of BERT argue
that the NSP task improves performance, further experiments in combination with the

A. Spanopoulos 27

Language Models for Ancient Greek

second idea of RoBERTa show that it actually decreases performance in downstream
tasks. Therefore, they only keep the MLM task for pre-training.

Second, they propose dynamic masking for MLM. In the original BERT paper, static
masking was used, where words in specific sentences would be masked and stay that
way throughout the whole training process. Dynamic masking refers to masking the MLM
inputs on the fly, when sampling batches. This showed an increase in performance for
two downstream tasks.

Third, they experiment with many different ideas on how to model the MLM input. In
the original BERT paper, the input was sampled as a pair of segments from the same doc-
ument, where each segment could contain multiple sentences. The authors of RoBERTa
tried three new methods of modelling the input. First, they tried to sample just two sen-
tences instead of two segments. They keep NSP for this method. Second, they tried to
sample as many sentences from a document that could fit in a single batch. If a sentence
doesn’t fit, they pad to maximum length. If the document finishes before the maximum
length is achieved, they would add a separator token and start sampling sentences from
the next document. Third, like in the second approach, they sample as many sentences as
they could fit in a single batch, but this time they pad the rest of the batch with pad-tokens
instead of sampling sentences from a new document, when a document finishes. These
approaches are also known as SENTENCE-PAIR + NSP, FULL-SENTENCES, and DOC-
SENTENCES. The latter approach seems to perform best on most downstream tasks,
but the authors chose to use the second approach because it’s easier to implement, more
data goes through the model with every forward pass and the decrease in performance
(compared to the last approach) is marginal.

2.9.2 DistilBERT

DistilBERT (a Distilled version of BERT) was introduced by V. Sanh et al. [34] as a lighter
version of BERT. The idea is to create amodel that achieves almost the same performance
as BERTbase, but is much smaller and faster.

As the name suggests, the authors use Knowledge Distillation [18, 22], a compression
technique in which a compact model -the student- is trained to reproduce the behaviour of
a larger model -the teacher- or an ensemble of models. In supervised learning, a classific-
ation model is generally trained to predict an instance class by maximizing the estimated
probability of gold labels. A standard training objective thus involves minimizing the cross-
entropy between the model’s predicted distribution and the one-hot empirical distribution
of training labels [34]. Having this in mind, we can define the training objective of Distil-
BERT with 3 individual losses. First, BERT is distilled. That is, the outputs of BERTbase
are used as golden labels for DistilBERT. Second, it’s trained in the MLM objective. And
third, a cosine embedding loss is used because it helps in aligning the directions of the
student and teacher hidden states vectors.

The results are very promising, as DistilBERT, which has half the number of encoders
that BERTbase has, shows that it is possible to reduce the size of BERTbase by 40%, while
retaining 97% of its language understanding capabilities and being 60% faster.

A. Spanopoulos 28

Language Models for Ancient Greek

2.9.3 ALBERT

ALBERT (A Lite BERT) was introduced by Z. Lan et al. [26] as an alternative to the pre-
training steps of BERT. It uses novel methods for pre-training LMs and it surpasses the
previous benchmarks set by BERT.

The contributions that the paper proposes are mainly 3-fold: Factorized embedding para-
meterization, cross-layer parameter sharing, and intern-sentence coherence loss. The
first two address the issue of model size and memory consumption in BERT; the third
corresponds to a new auxiliary task in pre-train, Sentence Order Prediction, replacing the
NSP task in BERT.

The first contribution, Factorized embedding parameterization, refers to the technique
of decomposing theWordPiece embeddings into two smaller matrices. Quoting the paper:
“Instead of projecting the one-hot vectors directly into the hidden space of size H (hidden
layer size), they are projected into a lower dimensional embedding space of size E (Word-
Piece Embedding size), and then projected it to the hidden space. By using this decom-
position, the embedding parameters are reduced from O(V ×H) to O(V × E + E ×H),
where V is the vocabulary size. This parameter reduction is significant when H ≫ E,
which is the case in ALBERT.”

The second contribution, Cross-layer parameter sharing, refers to sharing all all para-
meters of the network across all layers. Even though there are many ways to share para-
meters inside a NN (e.g., only sharing feed-forward network (FFN) parameters across lay-
ers or only sharing attention parameters), the parameter efficiency improves when para-
meters are shared in all layers.

The third contribution, Sentence Order Prediction (SOP), refers to a new auxiliary task in
pre-training, where the model receives as input two consecutive segments, either normally
(positive examples) or swapped (negative examples), and has to classify which type they
are. That is, the difference with NSP is that in negative examples, NSP samples two
sentences randomly, which is way easy for the model to distinguish. SOP forces the
model to learn finer-grained distinctions about discourse-level coherence properties, thus
improving the overall performance of the model.

ALBERT, like other BERT variants, introduces novel ideas and manages to improve per-
formance, while reducing drastically the model size. It has a few drawbacks, with one
of the most important ones being speed. The more “powerful” models, ALBERTxlarge and
ALBERTxxlarge, record a 0.6× and 0.3× slowdown compared to BERTLARGE.

A. Spanopoulos 29

Language Models for Ancient Greek

3. DEVELOPMENT OF ANCIENT GREEK LANGUAGE MODEL

In this chapter, we will discuss the process of finding and gathering plain-text data, the
training setup, the hyperparameters of the model and some other implementation specific
details.

3.1 Data

There are threemain steps regarding data that need to be taken in order to start developing
a LM: Gathering, pre-processing and training a tokenizer.

3.1.1 Gathering the data

Finding data in the form of Ancient Greek plain-text was definitely one of the most chal-
lenging parts of this journey. Simply because there isn’t enough publicly available data.
Most BERT-like LMs have been trained on corpora containing at least 15-20GB of text.
The publicly available data which we were able to leverage is roughly 440MB, and it came
from Perseus, First1kGreek Project, Portal and text from the Diorisis Ancient Greek Cor-
pus [7, 3, 9, 1]. The relevant statistics can be seen in table 3.1.

Table 3.1: Statistics on pre-training corpora for the Ancient Greek LM

Corpus Size (MB) Number of sentences
Perseus 114.2 410K

First1kGreek 230 928K
Portal 3.5 9.9K
Diorisis 89.7 323K
Total 437.4 1672K

Thesaurus Linguae Graecae (TLG) [10] is a website that contains texts from over 2750
authors. Sadly, it is mentioned in their website that the data can’t be downloaded. When
they were asked to provide us with access to their database for research purposes, they
kindly refused. Thus, we had to work with data downloaded from the aforementioned
sources. In fig. 3.1a we can see a sample of how the data from these sources looks like.

(a) A sample of Ancient Greek text

(b) The same sample, but pre-processed

Figure 3.1: Raw Ancient Greek text (a) and its pre-processed version (b).

A. Spanopoulos 30

Language Models for Ancient Greek

Furthermore, there is data of Ancient Greek inscriptions made available by the Packard
Humanities Institute (PHI) [8]. This data was used in Deepminds model called Ithaca [14],
which was trained to restore missing text from inscriptions. Unfortunately, as can be seen
in fig. 3.2, the data is not in a form that could be useful to train a LM, due to the stray letters
that is has and the amount of text that is missing. Therefore, we chose not to include it in
our training corpora.

Figure 3.2: A sample of data from PHI inscriptions

Apart from the MLM data, there is also the Part-of-Speech (POS) Tagging data. This was
taken from the Diorisis dataset. There is a lot of noise in this data, that’s why a big fraction
of the dataset has been filtered out. Still, some outliers remain, but they are so few and
therefore it shouldn’t affect training. The available POS tags are adjective, adverb, article,
conjunction, interjection, noun, numeral, particle, preposition, pronoun, proper, verb and
punct. Table 3.2 shows the amount of labels per class (PoS tag).

Table 3.2: Statistics on the Diorsis Corpora POS data

PoS Tag Train Validation Test Total
adjective 989K 12K 3K 100K
adverb 451K 6K 2K 459K
article 961K 10K 3K 976K

conjunction 684K 9K 2K 695K
interjection 19K 499 224 20K

noun 1021K 12K 3K 1038K
numeral 767 0 0 767
particle 667K 8K 2K 678K

preposition 477K 5K 2K 484K
pronoun 622K 8K 3K 634K
proper 273K 2K 1K 277K
verb 1514K 20K 6K 1542K
punct 1037K 13K 5K 1056K

3.1.2 Pre-processing the data

Before talking about pre-processing, it is worth mentioning that the raw downloaded data
needs to be cleaned, as it has quite some noise (stray hyphens, stanza indices, names of
people participating in dialogues, etc..). This process is carried automatically after down-
loading the data.

A. Spanopoulos 31

Language Models for Ancient Greek

Ancient Greek characters have many variations due to the existence of accents. The
accents do not contribute to the semantic meaning of the corresponding word or sentence,
as they are mainly used in speech. Therefore, they can be removed. Also, the case of the
letters does not affect the semantics. Therefore, all letters can be converted to lowercase.
A sample python code for the implementation of these pre-processing steps can be found
in the snippet below.

import unicodedata

def clean_text(text: str) -> str:
"""Cleans the given text by stripping accents and lowercasing."""
non_accent_characters = [

char for char in unicodedata.normalize('NFD', text)
if unicodedata.category(char) != 'Mn'

]
str.lower() works for unicode characters
return ''.join(non_accent_characters).lower()

The effect of this method can be seen in fig. 3.1b, which is a pre-processed version of
3.1a.

3.1.3 Training a tokenizer

This step is pretty straightforward thanks for the Huggingface community [4] that has
already build a library for this task, called tokenizers [11]. Specifically, the tokenizer “Byte-
LevelBPETokenizer” was used, which makes use of Byte-Pair Encoding (BPE) [36], a
technique while relies on a pre-tokenizer that splits the training data into words. In table
3.3, the hyperparameters (along with what they represent) of the tokenization process can
be found.

Table 3.3: Hyperparameters of the tokenization process

Hyperparameter Explanation

vocab_size The maximum size of the vocabulary.

min_freq The minimum frequency a token must have in order to be
added to the vocabulary.

3.2 Model

All the BERT-like architectures that were discussed in the previous chapter, have more
or less the same potential. Their difference in performance is noticeable, yet marginal.
This means that if one model “works”, then so should the other models, and vice-versa.
Due to this reason, and after some experimentation, we decided to use RoBERTa, with
the DOC-SENTENCES formatting of the input. A detailed list of hyperparameters for the
pre-training and the architecture of RoBERTa can be found in table 3.4.

A. Spanopoulos 32

Language Models for Ancient Greek

Table 3.4: Hyperparameters for the RoBERTa LM

Hyperparameter Explanation
max_length The maximum length of a single sequence.

mask_prob The probability that each token of a sequence is
masked in the mini-batch (dynamic masking).

num_hidden_layers Number of hidden layers in the Transformer
encoder.

num_attention_heads Number of attention heads for each attention layer
in the Transformer encoder.

hidden_size Dimensionality of the encoder layers and the
pooler layer.

intermediate_size Dimensionality of the “intermediate” (feed-forward)
layer in the Transformer encoder.

hidden_act The non-linear activation function in the encoder
and pooler.

hidden_dropout_prob The dropout probability for all fully connected
layers in the embeddings, encoder, and pooler.

attention_probs_dropout_prob The dropout ratio for the attention probabilities.

max_position_embeddings The maximum sequence length that this model
might ever be used with.

layer_norm_eps The epsilon used by the layer normalization layers.
classifier_dropout The dropout ratio for the classification head.

It’s also important to take a look at the hyperparameters of the training process, as they
are more crucial for the performance of the model. They can be seen in table 3.5.

Table 3.5: Hyperparameters for the training process of the RoBERTa LM

Hyperparameter Explanation
batch_size Mini-batch size during training.
learning_rate The learning rate of the Adam optimizer.
weight_decay L2 regularization strength.

scheduler_factor The factor by which to reduce the learning rate when the
training loss starts plateauing.

scheduler_patience Number of steps (updated) with no progress to wait in
order to apply the reduction in the learning rate.

train_epochs Number of epochs (passes through all the data) to train
the model for.

3.2.1 Setup

The python programming language was used. The models were developed with the PyT-
orch Deep Learning framework. The models were trained on 4 Nvidia Tesla V100 GPUs.
The training time per epoch was roughly 20 minutes for larger models.

A. Spanopoulos 33

Language Models for Ancient Greek

4. EXPERIMENTS AND RESULTS

There are way too many hyperparameters in the end-to-end process. In order to reduce
the search space, we decided to fix some that don’t affect performance that much, and
some where good values have been found empirically. The default values for all the hy-
perparameters are provided in table 4.1. Wherever a specific value of a hyperparameter
is not mentioned in an experiment, then the default value from this table is being used.

Table 4.1: Default values for the hyperparameters.

Hyperparameter Default value
vocab_size 30522

min_freq 2

max_length 512

mask_prob 0.15

num_hidden_layers 6

num_attention_heads 12

hidden_size 768

intermediate_size 3072

hidden_act GELU
hidden_dropout_prob 0.1

attention_probs_dropout_prob 0.1

max_position_embeddings 512

layer_norm_eps 10−12

classifier_dropout 0

batch_size 32

learning_rate 10−4

weight_decay 0.01

scheduler_factor 0.1

scheduler_patience 10

train_epochs 3

4.1 Impact of Hidden encoder layers

Since the amount of data is extremely limited, it could be possible that a smaller architec-
ture is needed for the model to not under-perform. Various experiments were held with
different number of hidden encoder layers. The results for some of them can be seen in
table 4.2 and fig. 4.1.

Table 4.2: Results for different number of Encoder Layers.

Loss 2 Encoders 4 Encoders 8 Encoders 12 Encoders
Train 1.05 1.06 1.04 1.05

Validation 1.02 1.03 1.01 1.03

A. Spanopoulos 34

Language Models for Ancient Greek

(a) 2 Hidden Encoder Layers (b) 4 Hidden Encoder Layers

(c) 8 Hidden Encoder Layers (d) 12 Hidden Encoder Layers

Figure 4.1: Learning curves or different values of the number of hidden encoder layers.

As we can see from both the table and the figures, the number of Hidden encoder layers
does affect the performance of the model. The batch size was adjusted to the maximum
number of samples that could fit into memory. Still, no model manages to achieve a good
cross-entropy loss.

4.2 Impact of Attention heads

The number of attention heads (in the Multi-head self attention mechanism) also greatly
defines the the model size. Most models use the default value which is 12, which has
been found empirically to work well. Yet, we still make more experiments to see if better
performance is achieved by lowering this number. Table 4.3 and fig. 4.2 show the results
for those experiments.

Table 4.3: Results for different number of Attention Heads and Encoder Layers.

Configuration Train Loss Validation Loss
8 Attention Heads, 2 Encoders 1.05 1.02
16 Attention Heads, 2 Encoders 1.06 1.03
8 Attention Heads, 8 Encoders 1.04 1.01
16 Attention Heads, 8 Encoders 1.04 1.01

A. Spanopoulos 35

Language Models for Ancient Greek

(a) 8 Attention Heads, 2 Encoders (b) 16 Attention Heads, 2 Encoders

(c) 8 Attention Heads, 8 Encoders (d) 16 Attention Heads, 8 Encoders

Figure 4.2: Learning curves for different values of the number of Attention heads and the number
hidden encoder layers.

4.3 Impact of Learning rate

Arguably one of the most important hyperparameters during training is the learning rate.
Most BERT-based model have used the Adam Optimizer with a learning rate of 10−6. In
some approaches, it was initially warmed up to 10−4 and then decayed to 10−6. Also, L2
regularization was used, with a weight decay of 0.01, again for most models. We will stick
with the weight decay of 0.01 in our experiments, and try to change the learning rate and
its scheduling. Table 4.4 and fig. 4.3 show the results. Note that these results are for the
model which performed best in the previous experiments.

Table 4.4: Results for different values of Learning rate and scheduling, for the model with 8 Hidden
Encoder Layers and 8 Attention heads.

Configuration Train Loss Validation Loss

10−4 Learning rate, no scheduling 1.04 1.00
10−6 Learning rate, no scheduling 3.11 2.55
10−4 Learning rate, with scheduling 1.04 1.01
10−6 Learning rate, with scheduling 3.17 2.50

A. Spanopoulos 36

Language Models for Ancient Greek

(a) 10−4 Learning rate, no scheduling (b) 10−6 Learning rate, no scheduling

(c) 10−4 Learning rate, with scheduling (d) 10−6 Learning rate, with scheduling

Figure 4.3: Learning curves for different values of the learning rate and its scheduling.

4.4 Bayesian Optimization

Bayesian optimization was also tried in order to find better hyperparameter values. Spe-
cifically, the Hyperopt [5] python library was used. A total of 50 evaluations were performed
using the Tree of Parzen Estimators (TPE), where the objective function to be minimized
was the validation loss. Again, no significant improvements were found from the search,
so the results are omitted. The search space can be seen in table 4.5.

Table 4.5: Bayesian Optimization Search Space.

Hyperparamater Type Search space

num_hidden_layers quniform 2 - 12
num_attention_heads quniform 6 - 12

hidden_size choice [256, 512, 768, 1024]
batch_size choice [4, 8, 16, 32]
learning_rate loguniform log (10−7

)
- log (10−2

)
weight_decay loguniform log (10−3

)
- 0

A. Spanopoulos 37

Language Models for Ancient Greek

4.5 Error Analysis

The best validation loss that was achieved is that of 1.00. For Cross-Entropy, this still
remains a high value. It would be interesting though to take a look at what the model has
learnt. Tests showed that the models are skewed towards punctuation, as it appears way
more often than other tokens. Also, it is skewed towards common tokens such as “και”
and “το”. Different regularization techniques were tried in order to overcome this, such as
increasing the dropout rate in the encoders and the L2 weight decay, but none improved
significantly the results.

4.6 PoS Tagging

At this point, since no LM managed to achieve very good performance during pre-training,
it doesn’t make much sense to fine-tune a model for a downstream task. Yet, for the sake
of completeness, we used the pre-trained model with the lowest validation loss, added
a MLP head on top of the last encoder and fine-tuned it for PoS Tagging on the Diorisis
dataset. Table 4.6 shows the recall and f1 score for each class on the test set.

Table 4.6: Unseen test set results for the PoS Tagging fine-tuned model.

PoS Tag Recall F1-score
adjective 0.31 0.39
adverb 0.61 0.69
article 0.98 0.97

conjunction 0.95 0.95
interjection 0.89 0.92

noun 0.38 0.41
numeral - -
particle 0.95 0.79

preposition 0.93 0.91
pronoun 0.73 0.80
proper 0.40 0.47
verb 0.99 0.99
punct 0.70 0.58

Even though the Diorisis dataset is a bit noisy, the results are pretty decent. The model is
capable of identifying most verbs, articles, conjuctions, interjections and prepositions. Of
course, this task is not that difficult since in languages such as Ancient Greek, the suffix
of a word usually is enough to define it’s Part-of-Speech Tag. Yes, this is a solid way to
better evaluate the performance of a LM. Fig. 4.4 shows the confusion matrix for the test
set and fig. 4.5 shows the result for a sentence randomly sampled from the test set.

A. Spanopoulos 38

Language Models for Ancient Greek

Figure 4.4: Confusion Matrix for the Diorisis PoS test set.

Figure 4.5: PoS Tags for randomly sampled sentence from the test set. When creating
constructing the sentences from individual tokens, some may be split in many sub-tokens during
the process of tokenization. In this case, the label “-” is used for the previous sub-tokens and the

actual PoS tag is used for the last sub-token.

A. Spanopoulos 39

Language Models for Ancient Greek

4.7 Discussion

Surprisingly, the results for PoS Tagging are reasonably good. The LM are clearly un-
derfitting, due to the small amount of data they are seeing. The Ancient Greek language
changed a lot over the course of history. This means that there is a lot of diversity in
the language. In order for a model to capture the essence and understand in depth the
language, it has to be trained with a much larger corpora. Also, to make sure that those
results were not caused by some bug in the code, the Trainer API from Huggingface was
used, which produced similar results.

Yet, by looking at the training curves, we can see that the model is definitely learning
something. This is also backed up by the fact that the model performs decently when
fine-tuned for the downstream task of Part-of-Speech Tagging. This encourages us to
believe that a combination of a larger corpora and a better architecture and/or pre-training
methods would definitely produce better results.

A. Spanopoulos 40

Language Models for Ancient Greek

5. CONCLUSION AND FUTURE WORK

In this thesis, we attempt to develop a BERT-like Language Model for the Ancient Greek
Language, and then fine-tune it for the downstream task of Part-of-Speech tagging. Un-
fortunately, the results confirm exactly what the theory suggests: Huge Language Models
need huge corpora to achieve good results. In our case, we had a bit less than 450 MB
of plain text data at our availability, which is a few orders of magnitude below what other
Language Models have used for their corresponding languages.

An extensive hyperparameter search was performed, in order to make sure that that was
not the issue. We tried hand-tuning many values, and in the end we also tried using
bayesian optimization. The performance didn’t improve much. We also tried different
models sizes, but again it help that much.

Yet, despite the huge lack of data, we managed to fine-tune a model for the downstream
task of Part-of-Speech tagging, and the results were reasonably good. Having this in
mind and by looking at the learning curves, we can safely say that the model is learning
something. The validation loss decreases a lot but it converges to a value that is not
good enough. This is exactly what theory says: The model is underfitting due to lack
of data. This means that if more data will be gathered in the future, the same model
could potentially perform much better. That’s why the code for this thesis has been made
available at https://github.com/AndrewSpano/BSc-Thesis.

One idea that is of particular interest, is to see if the current version of the (modern) Greek-
BERT could be edited by some editing method such asMEND [29] in order to be fine-tuned
for some downstream task in Ancient Greek. Greek-BERT has been trained on a much
larger corpora and has shown good performance, which makes this idea very appealing.

A. Spanopoulos 41

https://github.com/AndrewSpano/BSc-Thesis

Language Models for Ancient Greek

ABBREVIATIONS - ACRONYMS

AI Artificial Intelligence

ML Machine Learning

NLP Natural Language Processing

SOTA State-of-the-art

TL Transfer Learning

ELMo Embeddings from Language Models

BERT Bidirectional Encoder Representations from Transformers

GPT Generative Pre-trained Transformer

LM Language Model

ANN Artificial Neural Network

NN Neural Network

MLP Multi Layer Perceptron

FFNN Feed Forward Neural Network

UFA Universal Function Approximator

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

Bi-LSTM Bi-directional LSTM

GRU Gated Recurrent Unit

Seq2Seq Sequence to Sequence

MLM Masked Language Modelling

NSP Next Sentence Prediction

SOP Sentence Order Prediction

BPE Byte-Pair Encoding

POS Part of Speech

NER Named Entity Recognition

NLL Negative Log Likelihood

TLG Thesaurus Linguae Graecae

PHI Packard Humanities Institute

TPE Tree of Parzen Estimators

A. Spanopoulos 42

Language Models for Ancient Greek

A. Spanopoulos 43

Language Models for Ancient Greek

BIBLIOGRAPHY

[1] Diorisis ancient greek corpus. https://figshare.com/articles/dataset/The_Diorisis_Ancient_
Greek_Corpus_JSON_/12251468. Accessed: 2022-03-16.

[2] Exponential growth of AI research in 2020. https://www.zeta-alpha.com/post/
growth-of-ai-research-in-2020-steady-on-the-exponential-path-in-times-of-crisis.
Accessed: 2022-03-16.

[3] First1kgreek. https://github.com/OpenGreekAndLatin/First1KGreek. Accessed: 2022-03-16.

[4] Huggingface. https://huggingface.co/. Accessed: 2022-03-16.

[5] hyperopt. https://github.com/hyperopt/hyperopt. Accessed: 2022-03-16.

[6] Part-of-speech tagging. https://www.sketchengine.eu/blog/pos-tags/. Accessed: 2022-03-16.

[7] Perseus. https://github.com/PerseusDL/canonical-greekLit. Accessed: 2022-03-16.

[8] Phi. https://inscriptions.packhum.org/allregions. Accessed: 2022-03-16.

[9] Portal. https://www.greek-language.gr/greekLang/ancient_greek/tools/corpora/translation/
contents.html. Accessed: 2022-03-16.

[10] Tlg. hhttp://stephanus.tlg.uci.edu/. Accessed: 2022-03-16.

[11] Tokenizers repository. https://github.com/huggingface/tokenizers. Accessed: 2022-03-16.

[12] Ancient-greek-char-bert. https://github.com/brennannicholson/ancient-greek-char-bert,
2020. Accessed: 2022-03-16.

[13] Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta, Naman Goyal, Luke Zettlemoyer, and Sonal
Gupta. Better fine-tuning by reducing representational collapse. arXiv preprint arXiv:2008.03156, 2020.

[14] Yannis Assael*, Thea Sommerschield*, Brendan Shillingford, Mahyar Bordbar, John Pavlopoulos, Mar-
ita Chatzipanagiotou, Ion Androutsopoulos, Jonathan Prag, and Nando de Freitas. Restoring and at-
tributing ancient texts using deep neural networks. Nature, 2022.

[15] Jimmy Ba, Jamie Kiros, and Geoffrey Hinton. Layer normalization. 07 2016.

[16] David Bamman and Patrick J. Burns. Latin BERT: A contextual language model for classical philology.
CoRR, abs/2009.10053, 2020.

[17] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clem-
ens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei.
Language models are few-shot learners. 2020.

[18] Cristian Buciluundefined, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’06, page 535–541, New York, NY, USA, 2006. Association for Computing Machinery.

[19] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine
translation. CoRR, abs/1406.1078, 2014.

[20] Gobinda G. Chowdhury. Natural language processing. Annual Review of Information Science and
Technology, 37(1):51–89, January 2003.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bi-
directional transformers for language understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Techno-
logies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics.

A. Spanopoulos 44

https://figshare.com/articles/dataset/The_Diorisis_Ancient_Greek_Corpus_JSON_/12251468
https://figshare.com/articles/dataset/The_Diorisis_Ancient_Greek_Corpus_JSON_/12251468
https://www.zeta-alpha.com/post/growth-of-ai-research-in-2020-steady-on-the-exponential-path-in-times-of-crisis
https://www.zeta-alpha.com/post/growth-of-ai-research-in-2020-steady-on-the-exponential-path-in-times-of-crisis
https://github.com/OpenGreekAndLatin/First1KGreek
https://huggingface.co/
https://github.com/hyperopt/hyperopt
https://www.sketchengine.eu/blog/pos-tags/
https://github.com/PerseusDL/canonical-greekLit
https://inscriptions.packhum.org/allregions
https://www.greek-language.gr/greekLang/ancient_greek/tools/corpora/translation/contents.html
https://www.greek-language.gr/greekLang/ancient_greek/tools/corpora/translation/contents.html
hhttp://stephanus.tlg.uci.edu/
https://github.com/huggingface/tokenizers
https://github.com/brennannicholson/ancient-greek-char-bert

Language Models for Ancient Greek

[22] Geoffrey Hinton, Jeff Dean, and Oriol Vinyals. Distilling the knowledge in a neural network. pages 1–9,
03 2014.

[23] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9:1735–80,
12 1997.

[24] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366, 1989.

[25] John Koutsikakis, Ilias Chalkidis, Prodromos Malakasiotis, and Ion Androutsopoulos. Greek-bert: The
greeks visiting sesame street. 11th Hellenic Conference on Artificial Intelligence, Sep 2020.

[26] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut.
ALBERT: A lite BERT for self-supervised learning of language representations. CoRR, abs/1909.11942,
2019.

[27] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining approach.
CoRR, abs/1907.11692, 2019.

[28] A. H. Miller, W. Feng, A. Fisch, J. Lu, D. Batra, A. Bordes, D. Parikh, and J. Weston. Parlai: A dialog
research software platform. arXiv preprint arXiv:1705.06476, 2017.

[29] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
editing at scale. In International Conference on Learning Representations, 2022.

[30] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Proc. of NAACL, 2018.

[31] XiPeng Qiu, TianXiang Sun, YiGe Xu, YunFan Shao, Ning Dai, and XuanJing Huang. Pre-trained mod-
els for natural language processing: A survey. Science China Technological Sciences, 63(10):1872–
1897, Sep 2020.

[32] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the
brain. Psychological Review, 65(6):386–408, 1958.

[33] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Representations by Back-
propagating Errors. Nature, 323(6088):533–536, 1986.

[34] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019.

[35] Anton Maximilian Schäfer and Hans Georg Zimmermann. Recurrent neural networks are universal
approximators. In Stefanos D. Kollias, Andreas Stafylopatis, Włodzisław Duch, and Erkki Oja, editors,
Artificial Neural Networks – ICANN 2006, pages 632–640, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[36] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. CoRR, abs/1508.07909, 2015.

[37] Pranaydeep Singh, Gorik Rutten, and Els Lefever. A pilot study for bert language modelling and
morphological analysis for ancient and medieval greek. In The 5th Joint SIGHUM Workshop on Com-
putational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL
2021), 2021.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

[39] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V. Le.
Xlnet: Generalized autoregressive pretraining for language understanding. In NeurIPS, 2019.

A. Spanopoulos 45

	CONTENTS
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Machine Learning
	Neural Networks
	Perceptron and Multi-Layer Perceptron
	Recurrent Neural Networks
	Vanilla RNN
	Long Short-Term Memory
	Gated Recurrent Unit
	Bi-directionality of RNNs

	Encoder Decoder Architecture
	The Attention Mechanism
	The need for a better model
	Attention: An elegant solution

	Transformers
	BERT
	Masked Language Modelling
	Next Sentence Prediction
	Leveraging the BERT Language Model

	BERT Variants
	RoBERTa
	DistilBERT
	ALBERT

	Development of Ancient Greek Language Model
	Data
	Gathering the data
	Pre-processing the data
	Training a tokenizer

	Model
	Setup

	Experiments and Results
	Impact of Hidden encoder layers
	Impact of Attention heads
	Impact of Learning rate
	Bayesian Optimization
	Error Analysis
	PoS Tagging
	Discussion

	Conclusion and Future Work
	ABBREVIATIONS - ACRONYMS
	REFERENCES

