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Abstract 

In this study, AI is critically analyzed through the lens of the black box metaphor, a 

useful methodological tool within the field of science and technology studies. 

Beginning with an overview of the secondary literature and some philosophical issues 

related to AI and the black box concept, this thesis proceeds to an analysis of primary 

data taken from the scientific journals Nature and Scientific American. The main 

purpose of this work is to show how the black box of AI is constructed, to present the 

nuances related to it, how to unpack it and, in general, to present the full extent to which 

one can use the black box metaphor in order to reflect on AI. Attempting to answer 

basic research questions about AI’s black box, its construction through a co-production 

of technoscientific and social factors is revealed along with ways to pry open its black 

box. Understanding the construction of the black box is the first step in order to start 

opening it. Its implications for society lead to the mandate for transparency in order to 

mitigate the adverse effects stemming from blackboxing procedures. Contingent on the 

black box of AI and the transparency mandate is trust in AI. Increasing trust in AI 

presents a difficult but necessary task as AI is, ultimately, a technosocial phenomenon 

that both shapes and is shaped by society. Finally, in this thesis the relationship between 

the biological and the mechanical domain by means of the black box metaphor and AI 

research is evaluated.       
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1. Introduction  

The purpose of this thesis is to present the black box of artificial intelligence (AI) and 

the nuances thereof. Starting with an overview of the literature regarding AI, the 

proliferation of books and articles on the subject is approached mainly through the lens 

of science and technology studies (STS). A philosophical definition of AI is mentioned 

in order to set the appropriate boundaries within which the discussion should take place. 

A brief historical analysis of AI and its main constituents does not attempt to describe 

an accurate periodicity of it, as this is a controversial issue within the circles of the 

history of science. It attempts to set the schema in order to see how the discussion 

around AI has progressed and to set the frame for understanding its current boom. In 

other words, the first part of this thesis, the secondary literature review regarding AI 

and its black box, does not present an extensive review of past and current literature but 

an overview that provides the tools to process writings on AI. 

Key issues regarding the “black box” concept are also presented in the first part 

through an analysis of STS literature regarding the black box metaphor. Beginning with 

the roots of the metaphor, one proceeds to understand its utilization as a methodological 

tool to analyze AI concepts, such as big data, machine and deep learning. The second 

part of the thesis covers the presentation and analysis of primary data. More 

specifically, articles on the theme of AI and its black box are collected from the journals 

Nature and Scientific American. Through a textual analysis of these, one can interpret 

how the co-production of AI’s black box is depicted, how the methods of its unpacking 

are perceived and what are the implications of the black box metaphor for society and 

technoscience. After presenting these articles, an interpretation of them through an STS 

prism follows.  

In reference to machine blackboxing, Latour has pointed out that “…the more 

science and technology succeed, the more opaque and obscure they become” (Latour, 

1999, p. 304). Following a review of relevant historical, philosophical and STS 

literature on the black box of AI, we will endeavor to apply Latour’s thesis on AI 

machines. Undoubtedly, deep learning instances are very complex and opaque. 

Modeled, however loosely, on the brain, the archetypal black box, they present the 

pinnacle of technoscientific progress in AI. Questioning the idea—i.e., the linearity—

of progress may not be appropriate here. Suffice it to say that the idea of linear progress 
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in technoscience is appealing but very problematic. For example, computational power 

increases exponentially, but, on the one hand, its limits seem to be within sight already, 

requiring different ways to solve problems apart from brute force (Pacheco, 2011; 

Hwang, 2018). On the other hand, simply mentioning quantifiable measures of progress 

does not actually exhaust the definition of the term. To be precise, when Latour talks 

about success, he appears to have the idea of progress in mind. Scientific progress is 

measured by its successes (Latour, 1999, p. 304).  

Consider the case of a deep learning algorithm used to predict the 

epidemiological load of the current SARS-Cov-2 pandemic. If the results are correct, 

i.e., the answers the machine gives seem to help achieve our end result, which is none 

other than holding the diffusion of the virus at bay, the implementation of such an 

algorithm is successful. If the results were wrong or perceived as such, corrective 

actions would take place, such as finding and analyzing what went wrong or even 

abandoning its use. When a technoscientific device is perceived as successful, no one 

feels the need to inquire about the processes involved in the production of results. Its 

creators are content, along with policy makers and, eventually, society. It seems that 

perceived success leads to the co-production of the algorithmic black box. The more 

successful it is perceived to be, the more robust its black box becomes. This is exactly 

what Latour means when he says that technoscientific success makes the black box 

opaquer. On the contrary, failure or perceived failure brings to light the need to pry 

open the machine’s black box.  

However, as we tried to point out, success and progress in science are 

controversial concepts and, largely, a matter of perception. They are co-produced by 

the interplay of technoscience, society and politics as an attempt to assign positive value 

to scientific practice. But perceived success or even “actual” success does not guarantee 

future success, and progress should not be seen as a straight ascending line towards 

better results. A “whatever works” attitude may seem plausible in many cases, but it is 

bound to create an unequal distribution of perceived successes by generalizing from 

previous ones while turning a blind eye on the social and ethical implications of 

technoscientific “success”. Explaining scientific process, thus fostering transparency, 

could be a first step to open the black box instead of letting it take over technoscience 

and society. Having this critique in mind, one can now understand why elucidating the 
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black box problem, critically reflecting on it and, finally, attempting to resolve it by 

opening the black box is of paramount importance in the digital era.        

2.Introduction to Secondary Literature and Philosophical Issues Concerning AI  

2.1 Literature on AI  

In order to provide a comprehensive review on AI, we will attempt to set the appropriate 

framework within which we propose to analyze the vast amount of literature existing 

today. It starts with a philosophical definition that points to the actual implementation 

of AI nowadays. There is probably too much attention drawn to the prospect of an AI 

that could equal or even exceed human intelligence. However, this type of AI, i.e., 

strong or general AI, is currently science fiction material and is bound to remain so in 

the near future, as will become evident from the discussion that follows. Even if modern 

computing capacity is exceeding expectations (Hao, 2019) and big data is growing at 

unprecedented rates, it seems that there is a lot more to be done before reaching strong 

AI.  

Scientists have long fantasized about reaching the point of singularity, when AI 

becomes virtually indistinguishable from human intelligence. One instance of this 

science fiction can be seen in the TV series Star Trek: The Next Generation, where 

Data, a humanlike android that is fully capable of performing human tasks while 

outperforming humans in computational tasks, joins the crew. However, even in this 

case Data struggles with issues that are supposed to be uniquely human, such as 

emotions or, more significantly for our purposes, conscience (Hanley, 1997). To define 

conscience philosophically is an unfathomably difficult task and, of course, a pervasive 

problem that would take too much space even to schematically present it. However, it 

is important to note that strong AI should have to replicate conscience if it were to reach 

the point of singularity.     

Apart from the existential issues raised in Data’s case, there is another science 

fiction character that can bring us closer to modern AI and the black box issues related 

to it. This is none other than HAL 9000 from Arthur Clark’s 2001: A Space Odyssey, 

adapted for the big screen by Stanley Kubrick. HAL (Heuristically programmed 

Algorithmic Computer) is the epitome of AI as it is capable of performing virtually any 

task given to it, along with understanding and expressing human emotions. Again, the 

sensing and expression of emotions is what makes AI actually intelligent in the eyes of 
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these pioneering thinkers. However, this is not the point here. HAL represents an AI 

that is fully capable of making decisions that profoundly affect humans. For instance, 

it is even responsible for the spaceship’s life support systems. HAL’s capabilities, 

which far exceed modern AI applications, bring fear to its human counterparts and the 

whole movie reaches its climax with the conflict between the two antagonists. From 

our point of view, two basic issues arise from HAL’s depiction here, which are closely 

related. On the one hand, it involves the role of AI machines in society and what tasks 

would people be willing to let the machine perform (Raymond et al., 2017, pp. 250-

254). On the other hand, HAL’s black box and the difficulty to pry it open instills fear 

and distrust to AI. Many of HAL’s capabilities would characterize it as a very advanced 

weak AI (such as advanced computer vision and the like). The prospect of such an AI 

machine seems much more plausible than reaching singularity, and this is why it can 

be used as a popular science fiction case to demonstrate societal issues regarding AI’s 

black box.      

In STS literature, the critique of the “smartness mandate” has gained 

momentum. The reason for its inclusion here has to do with its inextricable link to AI. 

Loosely put, the smartness mandate refers to the algorithmic transformation of society. 

In order to find a solution to the problems societies face today (environmental, 

economic and so on), being smart promises solutions built on resilience and the constant 

optimization of society. As stated by its critics: 

[I]nsofar as smartness separates critique from conscious, collective, human 

reflection—that is, insofar as smartness seeks to steer communities algorithmically, 

in registers operating below consciousness and human discourse—critiquing 

smartness will in part be a matter of excavating and rethinking each of its central 

concepts and practices (zones, populations, optimization, and resilience), as well as 

the temporal logic that emerges from the particular way in which smartness 

combines these concepts and practices. (Halpern et al., 2017, p. 125) 

In other words, the mandate to be smart and to use AI for the optimization of society 

calls for a broader critique, which should include many relevant actors and not just rely 

on the partial truths derived from the promises of smartness.  
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2.1.1 AI from a Philosophical Perspective 

Defining AI is a notoriously difficult task, in which we will delve into briefly and with 

caution. Starting with John Searle’s distinction between strong and weak AI, we will 

be able to set the appropriate frame in which to talk about AI and data ethics. According 

to the philosopher, for “weak AI, the principal value of the computer in the study of the 

mind is that it gives us a very powerful tool” (Searle, 1980, p. 417). He goes on to 

mention that “for example, it enables us to formulate and test hypotheses in a more 

rigorous and precise fashion” (Searle, 1980, p. 417). In other words, AI is a tool we 

have in our hands and a very powerful one for that matter. We construct the algorithms 

and the neural networks, we feed them data and they provide us with outputs, which 

can vary according to its abilities to learn and adapt to new problems. It is quite obvious, 

that this type of AI is closer to machine and deep learning instances. However, strong 

AI is on a whole separate level. As Searle puts it:  

[A]ccording to strong AI, the computer is not merely a tool in the study of the mind; 

rather, the appropriately programmed computer really is a mind, in the sense that 

computers given the right programs can be literally said to understand and have other 

cognitive states. (Searle, 1980, p. 417)  

He continues: “in strong AI, because the programmed computer has cognitive states, 

the programs are not mere tools that enable us to test psychological explanations; rather, 

the programs are themselves the explanations” (Searle, 1980, p. 417). To rephrase, the 

states of strong AI equal the “mental” states of the mind—i.e., strong AI equals 

conscience. Of course, conscience is a huge philosophical issue, and there is no room 

in this thesis for such a digression. However, the main point here is that strong AI is 

unattainable up to now, and it seems that it will remain so for the near future, to say the 

least. However, weak AI already exists, it has many applications in our daily lives, and 

it is bound to expand in the near future. Also, it is important to mention that weak AI 

applications and machine/deep learning instances need data; big data. This is why a 

separate section is devoted to Big Data, the building block of modern AI.   

From a philosophical perspective, approaching AI solely through Searle’s 

distinction between weak and strong AI, we would like to stress and problematize his 

assertion that in strong AI the machine states are themselves the explanations. Given 

that the machine states equal mental states, his conclusion seems perfectly plausible in 

the domain of philosophy of mind and identity theory (Smart, 2017). A mental state 
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cannot and, probably, should not be explained by virtue of another one. The mental 

state is in itself the psychological explanation. Undoubtedly, it is a huge leap and by no 

means intended by the philosopher, but what if we link this statement to the black box 

metaphor within the STS framework? What are the repercussions of such a definition 

of strong AI for AI’s black box? Simply and somewhat naively put, it seems that the 

opaquer the machine state becomes, or alternatively the harder its black box becomes, 

the closer we get to strong AI. Blurring again the boundaries between philosophy and 

STS by means of the black box metaphor, consider Nagel’s article “What Is It Like to 

Be a Bat?” (Nagel, 1974). Setting aside the main purpose of the article, which is to 

discuss the mind-body problem, consider the limitations of physicalism in the 

explanation of mental states and raising the problem of objective and subjective 

experience, among others, the mental state of the bat, as any mental state, is in itself a 

black box. Its subjective nature prevents it from being explainable. At least up to now, 

it is only self-explanatory. Projecting this view of mental states, i.e., the black box that 

explains itself by virtue of itself, to machine states is quite problematic from our point 

of view and should not be a criterion for strong AI. For instance, suppose there is a deep 

learning machine state so complex that it defies explanation. We are incognizant of how 

it was reached, and we do not have the means to analytically represent it. The easy way 

out would be to consider it self-explanatory. This way, we ascribe subjectivity to the 

machine and, given that subjectivity is closely linked to human intelligence, we think 

we have reached singularity. However, it is not certain that our current lack of means 

to pry open the machine’s black box, as the mental state one, will be the case in 

perpetuity. Here we argue that black boxes are to be cracked however hard they might 

appear and that reaching strong AI should not be through a process of elimination. In 

this light, we consider any AI black box, even deep learning ones that seem too hard to 

crack, within the boundaries of weak AI.         

2.1.2 AI History: A Brief Overview 

Outlined below, there are several definitions that give a fairly coherent picture of the 

basic features of AI. One of them is the definition given by John McCarthy, according 

to which AI is the science of “making intelligent machines, especially intelligent 

computer programs" (McCarthy, 2007, p. 2). However, he adds that artificial 

intelligence does not have to be limited to methods that are "biologically observable" 

(McCarthy, 2007, p. 2). Another definition is that of the well-known researcher in the 
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field of AI, Patrick Henry Winston. According to him, AI lies in the ability of computers 

or robots to perform tasks that humans normally do (Winston, 1993, pp. 5-12). Its 

meaning may also include the development of computer systems that perform 

intelligent processes. In other words, machines perform reasonable tasks intelligently 

(Winston, 1993, pp. 5-12). At this point, it is worth mentioning that AI can be divided 

into strong and weak or limited AI. The first does not even exist yet and may be 

exceedingly ambitious as its goal is to reach human intelligence. On the other hand, 

limited AI is the form of AI that prevails today. 

Through this brief list of definitions there seem to be some common ground as 

well as differences. For this reason, a broader definition would be better. In particular, 

McCarthy defines intelligence as the computational part of reasoning that is oriented 

towards achieving certain goals (McCarthy, 2007, p. 9). There are admittedly a variety 

of types and degrees of intelligence that exist in both humans and animals, and even in 

some machines. However, he believes that there is no definition of intelligence that is 

not based on a comparison with human intelligence. Similarly, Arthur R. Jensen, a 

leading researcher in human intelligence, proposes as a working hypothesis that all 

normal people have the same mental mechanisms and that differences in intelligence 

lie in quantitative, biochemical and physiological circumstances (Jensen, 1980, pp. 103-

110). Jensen detects them in speed, short-term memory and the ability to form accurate 

and recoverable long-term memories (Jensen, 1980, pp. 103-110; Rushton & Jensen, 

2010, pp. 9-12). 

Even if Jensen is right about human intelligence, what we learn from AI points 

to the opposite conclusion. Computer programs have high speeds as well as a large 

amount of memory. However, their capabilities are limited to the mental mechanisms 

that the designers of these programs understand well enough to translate into a program 

(McCarthy, 2007, p. 4-5). According to Winston, the issue is further complicated by 

the fact that the cognitive sciences have not yet been able to determine exactly what 

human mental abilities are (Winston, 1993, pp. 33-37). It is possible that the 

organization of mental mechanisms in AI has some utility different from that of human 

intelligence. However, when developers try to emulate human intelligence and fail, it 

shows that they cannot understand it well enough yet. Winston believes that artificial 

intelligence rarely tries to simulate human intelligence, which is indeed the case with 

the limited AI mentioned above (Winston, 1993, p. 8). AI researchers are free to use 
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methods that are not observed in humans or that involve far more calculations than 

humans can perform (Winston, 1993, pp. 8-12). All of the above show that the term AI 

is very broad, and the field of AI should be approached as open-ended. However, for 

the purposes of this thesis it is more interesting to present a brief history of this area. 

The conventional beginning of AI can be found in the Dartmouth working group 

conference that took place in 1956. The organizers, John McCarthy and Marvin 

Minsky, drafted their proposal for a program in AI that would involve ten researchers 

and would last about two months (McCarthy, 1955, pp. 1-5). There was presented what 

is considered by many as the first AI program, Herbert Simon’s "Logic Theorist" 

(Russel & Norvig, 1995, p. 17). However, the origins of the idea of artificial intelligence 

can be traced back to Alan Turing's landmark article "Computing machinery and 

intelligence" from 1950. In this article, this leading mathematician first posed the 

question of whether and in what terms machines can think, while he also set the 

conditions for his answer (Turing, 1950). The famous Turing test is a key criterion for 

concluding whether or not a machine has intelligence. To date, attempts by a machine 

to pass this test have either failed or yielded controversial results. Of course, the test 

has changed considerably since its original formulation, but the theoretical background 

remains more or less the same. However, if someone wants to speak according to the 

terms already mentioned, this test is an obstacle only for strong AI. 

Regardless of the Dartmouth working group’s achievements, one cannot 

downplay the contribution of this event to the history of AI. Later on, from 1957 to 

1974, AI flourished. Mechanical algorithms have evolved considerably. The 

contribution of programs such as Newell and Simon's General Problem Solver to 

problem solving and Joseph Weizenbaum's ELIZA (1923-2008) to natural language 

processing has been remarkable (Weizenbaum, 1966, p. 36). These developments have 

sparked interest from various sponsors, including government agencies such as the 

Defense Advanced Research Projects Agency (DARPA) in the United States. With a 

slight pause, AI flourished again from 1980 onwards, as algorithms and sponsorship 

opportunities expanded. Computers such as Deep Blue, which defeated Gary Kasparov 

in chess in 1997 (Pandolfini, 1997, pp. 65-66), and Alpha Go, which defeated in the 

Chinese Go the professional Ke Jie, have begun to show how fast the evolution of 

artificial intelligence can go (Chen, 2016, para. 1). The main reason why these 

computers were victorious is not so much their ingenious algorithms as their ability to 
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accumulate huge amounts of data and process them with, admittedly, astonishing speed. 

The question, then, is how these computers managed to accumulate so much 

information. The answer is, of course, simple. It is provided by the human agent. 

2.1.3 Big Data 

To begin with, big data can be defined, according to SAS1, as: 

[A] term that describes the large volume of data – both structured and unstructured 

– that inundates a business on a day-to-day basis. But it’s not the amount of data 

that’s important. It’s what organizations do with the data that matters. Big data can 

be analyzed for insights that lead to better decisions and strategic business moves. 

(“Big Data: What it is and why it matters?”, 2021, para. 1)  

In addition, Oracle’s2 definition is as follows:  

[B]ig data is larger, more complex data sets, especially from new data sources. These 

data sets are so voluminous that traditional data processing software just can’t 

manage them. But these massive volumes of data can be used to address business 

problems you wouldn’t have been able to tackle before. (“What Is Big Data?”, 2021, 

para. 1)  

One uptake from these definitions is, of course, that big data consists of huge amounts 

of data that can be collected and analyzed in unprecedented levels using modern 

technology. The importance of big data in AI applications can be stressed more by 

recalling the words of Peter Norvig, one of Google’s directors, who said “We don’t 

have better algorithms. We just have more data” (Sanders, 2014, pp. 3-18). In other 

words, data expansion is crucial to machine and deep learning.   

 

1 SAS is a leading organization in analytics, artificial intelligence and data management. For reference: 

https://www.sas.com/en_us/home.html.  
2 Oracle is an American multinational computer technology corporation. For reference: 

https://www.oracle.com/index.html.  

https://www.sas.com/en_us/home.html
https://www.oracle.com/index.html
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Figure 1: Google Ngram for the term “big data”. 

Following a brief discussion of big data, machine learning should follow in the schema 

of dividing AI into its constituents. However, as machine learning is an umbrella term 

that includes deep learning, we proceed to our discussion of the latter. After all, it can 

be seen as the most sophisticated form of machine learning, a technology capable of 

making AI’s black box opaquer and, of course, the main target of our analysis.   

2.1.4 Deep Learning 

What's in a name? That which we call a rose 

By any other name would smell as sweet  

William Shakespeare, Romeo and Juliet, ca. 1600 

Nowadays, “deep learning” is a term that refers to cutting-edge machine learning 

technology. Geoffrey Hinton is considered to be the father of deep learning as he, along 

with some colleagues, presented a paper in 2006, titled “A Fast Learning Algorithm for 

Deep Belief Nets”. In this paper they articulated the basics for a fast-learning algorithm 

that can be used to create deep learning neural networks, which they named “Deep 

Belief Nets” (Hinton et al., 2006, p. 1527). Without going into the details of this 

algorithm, it is important to mention that it is akin to the stochastic gradient descent 

used in modern day deep neural networks in order to increase learning speed. More 

specifically, stochastic gradient descent is used to optimize gradient descent as it 

samples a subset of summand functions, thus facilitating large-scale machine learning 

(Bottou, 2010, pp. 177-183). Therefore, instead of descending from each point of the 

function, which would imply a huge number of iterations for big data, using samples 

stochastic gradient descent minimizes the number of iterations and is relatively 

unaffected by any changes in the amount of data (Bottou, 2010, pp. 177-184). However, 

the birth of the term “deep learning” should be traced further back to 1986, when Rina 
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Dechter introduced the term to machine learning (Dechter, 1986, 178-182). Moreover, 

in 2000, Aizenberg and his colleagues introduced the term to Artificial Neural 

Networks or ANNs (Aizenberg et al., 2000, pp. 9-24). One could now be tricked into 

believing that deep learning is something entirely new, a 21st century invention with 

roots that go back to 1986. The Ngram below can make this argument even stronger as 

one can see that the usage of the term begins around 2009 and then it spikes.  

 

 

Figure 2: Google Ngram for the term “deep learning”.  

However, we will illustrate below that this is actually not the case. The idea along with 

the model can be traced further back. After this genealogy of deep learning, we will 

proceed to an analysis of the black boxing procedures related to it and how to unpack 

them, should such a thing be possible.  

 One has to go back to the 1940s in order to trace the origins of deep learning, 

i.e., neural networks. This is the decade of cybernetics as it will be exemplified in 

Norbert Weiner’s book Cybernetics: Or Control and Communication in the Animal and 

the Machine, which came out in 1948 to establish the term (Wiener, 2000). However, 

the work of McCulloch and Pitts back in 1943 is crucial for our exercise here. In their 

paper, neural activity was treated for the first time as something that can be analyzed 

with the application of propositional logic. Undoubtedly working within the frame of 

logical positivism, they created the foundations for a linear algorithm, a simple neural 

network (Nilsson, 2010, pp. 34-43). Later, in 1950, Rosenblatt would coin the term 

“perceptron”, a slightly more complicated algorithm, a neural network that can assign 

(that is, learn) the weights automatically. Needless to say that perceptrons form the 

basis of modern-day neural networks and, of course, deep learning. A multi-layer 

perceptron is probably the most common application in deep learning. Using logistical 
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regression, back propagation and stochastic gradient descent, to oversimplify a complex 

procedure, deep learning neural networks can achieve fascinating results. However, 

their roots are reaching back to the 1940s and 1950s, the beginning of AI (Nilsson, 

2010, pp. 92-102).  

 However, the early neural networks of McCulloch and Pitts did not actually 

learn. It is after Rosenblatt and some shallow attempts at supervised and unsupervised 

learning that we reach the predecessors of deep learning, i.e., the first feedforward 

multilayer perceptrons. Ivakhnenko and Lapa back in 1965 published the first general, 

working algorithm for supervised learning. In 1971, Ivakhnenko’s deep network 

included eight layers trained by the ‘Group Method of Data Handling’ (Ivakhnenko, 

1971, pp. 364-370), which remains popular in the new millennium since it learned to 

create representations of incoming data—for example, syntactic pattern recognition 

methods (Fukushima, 1979, pp. 658-663). Another milestone in training deep learning 

models that should be mentioned is Seppo Linnainmaa’s 1970 master’s thesis 

(Linnainmaa, 1970), which included a FORTRAN code for back propagation (the use 

of errors in training deep learning models), though this was not applied in neural 

networks until 1985. This was when Rumelhart, Williams, and Hinton demonstrated 

back propagation in a neural network could provide “interesting” distribution 

representations (Rumelhart et al., 1986, pp. 318-332). Nonetheless, following its 

promising birth, AI supposedly experienced its first winter around 1974 as it appeared 

impossible to live up to its promises. This could be also seen as the end of cybernetics, 

but that is a separate discussion. Winter came but did not last long. In 1979, Kunikho 

Fukushima developed an artificial neural network, called Neocognitron, with multiple 

pooling and convolutional layers, which used a hierarchical, multilayered design. 

Fukushima’s design allowed the model to recognize visual patterns as well as important 

features to be adjusted manually in order to increase the ‘weight’ of certain connections 

(Fukushima, 1979, pp. 658-662).  

 The years between 1980 and 1987 are known as the period of the classicists. It 

was back then that artificial neural networks were actually introduced, and many 

modern-day techniques were applied, such as distributed representation and feedback, 

back propagation, and long short-term memory (LSTM). The latter is especially 

significant for deep learning as it uses feedback connections instead of just feedforward 

ones. It is considered to be the spearhead of contemporary deep learning. Obviously, 
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its roots can be traced 40 years back in time. However dubious this historical 

periodization might be, an AI boom is followed by an AI winter and that came during 

the 1990s. But, at the end of this decade and the beginningof the 21st century AI has 

seen explosive growth (Nilsson, 2010, pp. 507-531, 656-657).  

2.1.5 Trust in AI 

Empirical research on the three types of AI representations sets out specific criteria that 

can promote human trust. These include tangibility and transparency so that the users 

are able to perceive how AI works, making its basic rules of operation obvious (Glikson 

& Woolley, 2020, pp. 11-12). Also, they include reliability, i.e., showing a steady 

behavior over time, as well as immediacy of behavior and finally the characteristics of 

AI tasks, whether they are of technical nature or require social skills (Glikson & 

Woolley, 2020, pp. 11-12).  

Beginning with robotic AI, the physical presence of a robot has a positive effect 

on human cognitive trust (Glikson & Woolley, 2020, pp. 14-16). The more human it is, 

the more it is believed by users that it will make ethical decisions, but this does not 

mean that it is considered to be smarter (Glikson & Woolley, 2020, pp. 14-16). 

Transparency can increase trust, but the empirical research on the specific subject is 

scarce. The research has been done on robots that operate in remote areas (Glikson & 

Woolley, 2020, pp. 14-18). There is a general positive correlation between the constant 

flow of information from the robot and trust (Glikson & Woolley, 2020, pp. 20-21). 

The more they know about its functions, the more people trust it. In matters of 

reliability, when the robot is considered to have high intelligence, humans tend to trust 

even a defective robot. Studies have shown that in high-risk situations, participants lost 

confidence in the advice of a robot that made a mistake (Glikson & Woolley, 2020, pp. 

18-20). In particular, trust decreased more when the mistake was made in the beginning 

than in later stages of the interaction (Glikson & Woolley, 2020, pp. 18-20). In cases of 

interaction with low-reliability robots, there was an increase in trust even though the 

robot made persistent mistakes. Ultimately, reliability could play a less important role 

in human confidence than expected (Glikson & Woolley, 2020, pp. 18-20). Concerning 

task characteristics, trust is increased in technical tasks rather than in jobs that require 

social intelligence (Glikson & Woolley, 2020, pp. 20-22). Once again, the human 

behavior of the robot tends to increase user confidence. Responsiveness, adaptability 
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and social behaviors are the main factors that increase trust in immediacy behaviors 

(Glikson & Woolley, 2020, pp. 22-24). The incorporation of higher levels of 

intelligence into machines allowed robots to react to human presence and speech, 

creating social robots that can serve a social role (Glikson & Woolley, 2020, pp. 42-

44). It has been observed that humans prefer a robot that acts on its own to one that 

works only when asked (Glikson & Woolley, 2020, pp. 42-44). Also, when human 

movements and gestures are developed, this has a positive impact on human perception 

of a robot’s anthropomorphism (Glikson & Woolley, 2020, p. 53). 

In virtual AI where there is no physical presence of the machine, the research 

focuses mainly on chatbots or avatars. In general, unlike robotic AI, the confidence 

trajectory suggests that high initial confidence decreases after each interaction. 

However, there are some indications of a relatively low initial confidence that increases 

upon interaction (Glikson & Woolley, 2020, pp. 24-26). Concerning tangibility, 

visualization and anthropomorphism in a virtual agent who has been given high 

intelligence can increase the levels of trust (Glikson & Woolley, 2020, pp. 26-27). 

Transparency can contribute in building trust by explaining to users how the system 

they interact with works and why the specific algorithm is used, but only when they are 

informed from the beginning about its level of reliability (Glikson & Woolley, 2020, 

pp. 27-28). On the other hand, low reliability mainly reduces trust in laboratory studies 

where initial confidence was very high (Glikson & Woolley, 2020, pp. 28-29). The 

results of the research showed that direct experience greatly reduces trust, inconsistency 

in reliability reduces trust more than low reliability, while the research tends to focus 

more on synchronization between user expectations and AI capabilities (Glikson & 

Woolley, 2020, pp. 28-29). When focusing on the characteristics of the tasks in virtual 

AI, it is noted that in technical tasks that require data analysis, trust in AI is even higher 

than in humans (Glikson & Woolley, 2020, pp. 29-30). When examining the immediacy 

of behavior, personalization tactics (such as personal questions to the user and the use 

of persuasion) increase trust (Glikson & Woolley, 2020, pp. 30-31).  

Embedded AI does not have any visual representation. It is found in applications 

such as search engines or GPS. Many laboratory studies have shown that high initial 

trust tends to decrease as a result of AI malfunction, and that the trust recovery process 

requires a long time (Glikson & Woolley, 2020, pp. 31-33). In matters of tangibility, 

the research is limited since the awareness of the use of AI in this case is not clear. Its 
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built-in nature suggests that people are not always aware they are using an application 

that uses an algorithm (Glikson & Woolley, 2020, p. 33). Although the transparency of 

how algorithms work generally seems to increase trust, there are studies that prove the 

opposite (Glikson & Woolley, 2020, pp. 33-35). It is important to note that this type of 

AI creates controversy and questions among users, thus undermining trust. Reliability 

plays an important role in embedded AI, while low reliability significantly reduces 

trust. Regaining it is a difficult and time-consuming process (Glikson & Woolley, 2020, 

pp. 35-36). Concerning task characteristics that require social intelligence, trust in 

people is higher than in AI. Here the research findings show that the subjective value 

of human self-confidence plays an important role in trust, as people who consider 

themselves more capable than a machine rely less on technology (Glikson & Woolley, 

2020, p. 36). Finally, focusing on the immediacy behaviors of embedded AI, one can 

either highlight its ability of constantly monitoring users that leads to a decrease of trust 

or point to its personalization that increases trust (Glikson & Woolley, 2020, pp. 37-

38). 

2.2 Literature on the Black Box 

The term black box dates back to the 17th century, but its current meaning and use can 

be traced back to the cyberneticians of the 1950s and 1960s. In the 17th century, the 

black box was allegedly used to refer to coffins, denoting the mystery surrounding their 

inner space; the mystery surrounding death. Additionally, when it was used in 19th 

century deep-sea science or, later, in the case of airplanes3, the black box (actually an 

orange box as far as airplanes are concerned) preserved the aura of mystery as inputs 

and outputs were the only visible effects of it, whereas its construction and inner 

workings remained mysterious (Alaniz, 2020, pp. 596-602). Cyberneticians drew upon 

this metaphor in order to describe complex systems, the inner workings of which were 

largely under a veil of mystery (Petrick, 2020, pp. 575-582). Their work laid the 

foundations for the current use of this metaphor in STS and, especially, in critical 

studies of AI.  

 

3 The “black box” of airplanes was characterized as such because it initially worked like a camera 

obscura, i.e., it should be dark within in order to store the necessary information. Engber, D. (2014). 

Who Made That Black Box? The New York Times. 
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Figure 3: Google Ngram for the term “black box”. 

The above Ngram shows the use of the word “black box” evolved based on data 

collected from Google Books results of the term. Around the 1940s, the use of the term 

began to increase at a very high rate. From the previous Ngrams, one can see that the 

use of the terms “deep learning” and “big data” is starting to increase at a very high 

pace, as the increase in the use of the term “black box" stabilizes. In other words, this 

constant increase in the usage of all of those terms, around 2009-2011, could reveal a 

connection between the black box rhetoric and AI.     

Latour borrowed the term black box from the cyberneticians and broadened its 

use in order to construct his technoscientific critique. In Science in Action, he mentions 

that cyberneticians use the term “whenever a piece of machinery or a set of commands 

is too complex. In its place they draw a little box about which they need to know nothing 

but its input and output” (Latour, 1987, pp. 2-4). In Pandora's Hope: Essays on the 

Reality of Science Studies Latour uses the definition we presented in the introduction 

of the paper, “…the more science and technology succeed, the more opaque and 

obscure they become” (Latour, 1999, p. 304). His solution to the black box problem is 

to trace the work of the scientists in the laboratory (Latour & Woolgar, 1986, pp. 242-

244). Backpropagating to the initial circumstances in which the black box was created, 

one may be able to open it and understand the black boxing procedures taking place. 

However, this is not the only way to open the black box. Marcheselli in her article “The 

Shadow Biosphere Hypothesis: Non-knowledge in Emerging Disciplines” challenges 

Latour’s schema, looking only to the present and past of scientific practice, attempting 

to add a third dimension, the future. Imagining a future in which the black box is fully 

opened could be another approach to opening Pandora’s box. Her case in point comes 
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from challenging the very definition of life in an astrobiological setting (Marcheselli, 

2020, The Shadow Biosphere: Thinking Outside the (Black) Box section). 

Additionally, Caitlin Wylie’s paper “Glass-boxing Science: Laboratory Work on 

Display in Museums” shows how the black box can actually be hidden in plain sight 

(Wylie, 2019). Using a glass wall to make laboratories appear transparent to the public 

does not open the black box of science in any essential way. The scientific artifacts and 

procedures remain elusive (Wylie, 2019, Seeing without Understanding section).   

By searching on JSTOR’s database, one can see the proliferation of works 

around the term black box. From around 600 articles in 2014 in the discipline “History 

of Science & Technology” (Shindell, 2020, pp. 567-572), in 2021 it yields 4,818 results 

and 2,576 in “Science & Technology Studies”. In this brief literature review, a selection 

of very few writings on the black box was made in order to outline its historical 

development and consider the use of the metaphor in the case of AI.    

 Pasquale in his book The Black Box Society: the Secret Algorithms that Control 

Money and Information elaborated on this metaphor by creating a holistic view of 

society that becomes black boxed based on the mystery revolving around algorithms 

and AI systems integrated in it (Pasquale, 2015). Through a complex network of 

relations and a co-construction process, the black box of AI is constituted in a reciprocal 

relationship with society’s black box. In an article about deep-sea science and its black 

box, different kinds of black boxes are described in order to analyze how scientists deal 

with uncertainty (Pasquale, 2015). In a similar vein, AI’s black box has a great deal to 

do with uncertainty and how to interpret it. Even if one supposes that uncertainty cannot 

be completely eliminated, the elucidation of the black box that is AI is important in 

dealing with it. In principle, an attempt to open the black box should be made in order 

to foster transparency, facilitate scientific practice and ensure scientific integrity.  

However, dealing with uncertainty is by itself an important part of modern-day 

science. In the article “What good is a black box?”, the uncertainty of the black box can 

be advantageous especially when it includes “low-risk, high-reward situations, when 

the cost of a wrong answer is trivial relative to the value of a right answer or when the 

black box objectively outperforms all other means of data analysis, even the judgment 

of a trained human” (Fahrenkamp-Uppenbrink, 2019, pp. 16-40). Moreover, black box 

“algorithms can also reveal new connections within datasets that are not intuitive from 
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first principles” (Fahrenkamp-Uppenbrink, 2019, pp. 16-40). It concludes that although 

“they must be used with care, black boxes have a clear role in advancing science and 

engineering” (Fahrenkamp-Uppenbrink, 2019, pp. 16-40). Essentially, it is stated that 

the benefits of using the black box in some situations, without even trying to pry it open, 

outweigh the costs of the uncertainty embedded in it. However, these only include low-

risk situations. But AI applications can be high-risk, as in the case of self-driving cars. 

It is not intuitive how the black box’s usefulness can outweigh the risks posed by its 

opaqueness in this case, to say the least.     

 Finally, there is some critique upon the very black box of STS. One 

manifestation of it comes from the article “White Space and Dark Matter: Prying Open 

the Black Box of STS”, where it is stated that white space, white-dominated 

technoscience, forms the foundations upon which the black box of STS is built 

(Mascarenhas, 2018, The White Space section). Black people are usually excluded from 

these studies as they constitute marginalized groups in the technoscientific paradigm. 

Undoubtedly, the application of the black box metaphor within STS should also be a 

point of self-critique for this diverse discipline.   

2.3 STS Literature and Issues Regarding the AI-Black Box Relationship 

STS literature has actually considered in detail the broad range of the black box concept 

in AI and has critically reflected on how the increase in opaqueness is positively 

correlated with an increase in technoscientific complexity. Latour’s definition of the 

black box points exactly to this attribute (Latour, 1999, p. 304). For our purposes, deep 

learning constitutes the primary case as it represents a cutting-edge technology in AI, 

where the complexity of the system reaches its peak. In the following short review, we 

will present some of the basic tenants of STS literature as far as the relationship between 

AI and blackboxing is concerned, along with the connection between black box and 

white box, as it can be very helpful in unpacking AI’s black box.         

2.3.1 Big Data Black Box 

Let us assume that the biases that occur during the collection of data are mostly related 

to unstructured data. When it comes to structured data sets, these may be masked, 

making it very difficult to actually understand their existence and impact. One could 

see this process as a kind of blackboxing. To elaborate a bit, through data extraction, 

unstructured data is transformed into a structured one. Schematically presented, this 
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occurs through segmentation (i.e., finding “the starting and ending boundaries of the 

text snippets that will fill a database field) classification, i.e., determining “which 

database field is the correct destination for each text segment”, association which 

“determines which fields belong together in the same record”, normalization, i.e., 

putting “information in a standard format in which it can be reliably compared” and 

deduplication which “collapses redundant information so you don’t get duplicate 

records in your database” (McCallum, 2005, pp. 48-55). Thus, the structured data set 

appears neat and tidy. Various gender, race and other biases that were probably 

embedded in unstructured data seem to be eliminated. But is this so? Apparently not. 

Structuring data does not actually eliminate biases. It masks them through a process of 

blackboxing. For instance, data collected through a racial prism now appears to be 

normalized so as to be reliably compared with other data. 

Data coming from social media users can be utilized to create personalized 

marketing content, to segment the market according to certain characteristics, to 

optimize research results and so on. Knowing that the above biases are embedded in 

the very process of creating this type of data and that they actually affect usage is 

important in order to unpack the black box of creating data in this case. But how is it a 

black box? Having a very high number of users, social media are perceived as 

instruments of democratization as they can give voice, accessibly and cheaply, to every 

person in the world. However, political, economic and social factors actually hinder 

such an aspiration. Many countries and, of course, a large number of people do not have 

access to the technological means necessary to use social media. Additionally, some 

countries have policies that ban its citizens from social media. Even among social media 

users, many are banned due to censorship or due to not conforming with the rules of 

conduct. From those left, only a few have a disproportionate contribution to the creation 

of content. In this sense, the blackboxing of media content creation emerges by 

omission—i.e., despite social media aspirations for openness and inclusion, many 

people are left out of its operations (Pasquale, 2015, pp. 72–96). 

Furthermore, we can see how the black box of big data can emerge through a 

racial bias against black people, which was and still is largely embedded in US society 

and has been reflected on police arrests (Leslie, 2020, pp. 12-23). Of course, 

discrimination against black people has affected their economic and social status. Thus, 

more black people were likely to occupy poor households. Generally, crime and, 
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namely, petty criminal offenses are also related to economic status. Thus, police arrests 

in the US were disproportionately more for black people. Amazon’s Rekognition used 

police databases to feed its deep learning machine (Leslie, 2020, pp. 12-23). As most 

criminal investigators know, one of the best, if not the sole reliable factor for predicting 

future criminal offences, is past offenses (Leslie, 2020, pp. 12-23). Here we have a 

racial bias, which was embedded in the data feeding the machine and followingly biased 

usage of this data as its results confirmed the expectation of prejudiced, even 

subconsciously, policing. Social upheaval made the opening of this black box a 

necessity and, finally, a reality.  

2.3.2 Deep Learning Black Box 

After this brief overview of deep learning, we will proceed into the processes that 

constitute its black box. It should be apparent by now that the discussion is not about 

something entirely new but about elaborate algorithms with multiple layers and 

interconnections that create the deep learning neural networks we know today. When 

applying actor-network theory to deep learning applications, we should distinguish at a 

high level between the programmer or the developer and the end user. What is peculiar 

with blackboxing procedures concerning deep learning lies in the uncertainties that 

expand its opaqueness further, reaching even its very developer. We will illustrate this 

point as we proceed through this chapter. Needless to say, deep learning’s black box is 

notoriously difficult to crack open. An actor that plays a critical role in the unpacking 

process is the end user, i.e., society. However counterintuitive this might be prima facie, 

we will make our case by explaining the ethical but, also, sociotechnical mandate of 

expanding inclusivity. Citizen science is very important in this case.  

 Starting from the latter, opening the algorithm to more users is feasible with 

today’s technology and would require simple training, along with making deep learning 

networks more user-friendly. As mentioned by Eric Siegel, it is relatively easy to 

provide end users with the means to experiment with the algorithm and explore various 

outcomes leading probably to pinpointing any biases or mistakes related to it (Siegel, 

2016). This way, one can view the constitution of the deep learning black box from its 

endpoint. However, there are also other ways to understand the construction of this 

black box; from a technical analysis of each node to the creation of other neural 

networks that could work as white boxes providing access to the obscure procedures of 
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deep learning neural networks. Moreover, the black boxing procedures taking place in 

deep learning are not only technoscientific but, also, social and political. Understanding 

the decisions that lead to the selection of a certain algorithm and its goal can reveal the 

black box’s constitution. Moreover, one could follow Latour’s way of probing into the 

scientific laboratory by means of learning how to program or taking advantage of 

already existing scientific controversies.  

2.3.3 Deep Learning White Box 

A quite amazing use, yet reasonable from a mechanistic point of view, of artificial 

neural networks or ANNs is related to improving our understanding of biological neural 

processes. To put it into context, deep learning neural networks can be used as white 

boxes in order to mirror the black box of the brain, the most elusive of them all. Despite 

our presentation of deep learning as a black box and the explanation of the difficulties 

one faces when she attempts to open it, the even opaquer neural processes that take 

place in the brain make it appear transparent. In this section, we will briefly explore the 

importance of using ANNs as white boxes and its implication not only for biology but, 

also, for our understanding of the workings of these very networks. However, the STS 

literature on the matter up to now is scarce.  

Using deep learning “machines” to explain organic processes is another instance 

of a tradition that dates back to Descartes and the mechanistic point of view. Given that 

the brain is a machine and the most complex one for that matter, is still pervasive in 

modern scientific thought. However, there are many philosophers who have challenged 

this idea. Approaching biological phenomena from a mechanistic point of view requires 

a reduction of the former to the physicochemical domain. Arguably, the mechanical 

domain is more accessible to science and the prospect of using it in order to enter the 

biological one is still appealing. But this mindset may have serious limitations.  

For instance, Canguilhem points to the fact that our point of departure should 

be the biological, being logically and chronologically prior to the mechanical 

(Canguilhem, 2008, p. 85). However, the implementation of this may seem quite 

difficult on a practical level. One should change one’s mindset in order to overcome 

any limitations the mechanistic view may hold. Nonetheless, there are instances where 

our understanding of biological procedures can in concreto illuminate mechanical 

procedures. In the case of deep learning, for instance, adopting a behavioristic approach 
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(from psychology and biology) can be used to elucidate the workings of machine 

learning. Although this is not an example of a completely transparent white box coming 

from the biological domain to open the mechanical black box, it could help understand 

the blackboxing procedures that construct the black box of the machine.  

2.4 Issues- Research Questions from 2.2 

The main research questions that constitute the frame of analysis for the primary data 

collected are listed below. We will attempt to answer these by reviewing the relevant 

literature related to the connection between AI (that is, machine learning, deep learning 

and Big Data) as presented in the chosen scientific journals. What are the processes 

through which the black box of AI is constructed and is it possible to unpack it? Should 

we try to open the black box of AI? Building trust in AI: what are the societal and 

ethical implications of opening AI’s black box? Black boxes and white boxes: how does 

the black box metaphor penetrate biological and mechanical fields?    

 

3.Theoretical Framework  

3.1 STS: A Brief Introduction  

This chapter offers a brief introduction to science and technology studies. First, it is 

important to mention that STS is a broad field of study. At its core, one can find the 

theory of social construction of technology and the related concept of co-production. 

Another basic STS framework is actor-network theory (ANT). Additionally, the 

multilevel perspective is another significant part of STS’s methodology. One could also 

argue that the citizen science perspective is a crucial part of STS and an expansion to 

the social constructivism approach to science. Of course, there are many other 

frameworks that are used in STS and, for our purposes, we will use the theoretical 

perspective of the black box concept in order to analyze AI technologies and their 

impact to society, science and technology (Felt, 2017, pp. 41-49). Before delving into 

the nuances of this concept, the black box metaphor, though, we will present the 

development of STS. Despite its relatively short history and the newly drawn attention 

to it, an overview of its historical development can be very instructive. By doing so, the 

various frameworks of STS are going to come into view. 

 The field of STS is a relatively new field of study that is based on 

interdisciplinarity. It emerged through the growing interest regarding the interplay 
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between science, technology and society. The so-called sociology of scientific 

knowledge or SSK, which, was developed alongside STS was also trying to analyze the 

sociological point of view regarding science and technology. The sociology of scientific 

knowledge, whether one talks about the more theoretical strong programme of the 

school of Edinburgh or the more empirical studies of the school of Bath, is based on 

symmetry and the avoidance of a sociology of error. Scientific controversies and their 

resolutions are not seen through a prism of right-versus-wrong visions of science but as 

points in scientific history where scientific practice becomes transparent or enters a 

black box phase (Pinch, 2015, pp. 281-286). STS, with key proponents such as Latour, 

Woolgar, Knorr-Cetina, and Lynch, among others, calls for a more localized analysis 

of the interplay between science, technology and society (Mukerji, 2001, pp. 13687–

13691). Moreover, it focuses on how technoscientific artifacts are co-constructed or co-

produced through a sociotechnical process.  

 Based on the influential work of Thomas Kuhn, The structure of scientific 

revolutions, STS tried to exploit this historicist turn in the philosophy of science in 

order to analyze scientific practice within a certain paradigm. Focusing on a specific 

point of view of Kuhn’s work, STS scholars, Latour among others, pointed to the 

scientific controversies that disrupt normal science, which helped the latter formulate 

his theory of the black box concept along with actor-network theory (Felt, 2017, pp. 

266-272). Schematically presented, the black box of science is opaque during the 

normal science period, but scientific controversies can be utilized to elucidate this black 

box. Following scientists at the laboratory is one of Latour’s propositions in order to 

open the black box of science by tracing its origins, the moment of construction, or 

using loosely Kuhn’s terminology, the moment when scientific practice becomes 

normalized (Felt, 2017, pp. 266-272).  

 Starting with actor-network theory (ANT), Latour wanted to point out how 

scientific practice is developed within a large network of actors that are closely related 

to each other. Every actor within the network is shaped by her relations to other actors 

or points in the network. Being essentially relational, ANT draws from the post-

structuralist tradition to describe the fluidity of the network. In this framework, the 

micro and macro levels of analysis are not distinct but emerge through a relational 

network of various actors. The similarities or differences of the actors do not predate 

the network but are products of the relations built within it. ANT is a very useful 
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conceptual tool to analyze the heterogeneous relations that emerge within a scientific, 

sociotechnical network (Felt, 2017, pp. 41-49).  

 The social construction of technology (SCOT) is a key approach for STS. With 

terms such as co-production and co-construction, one can understand how this 

interdisciplinary field views technology and science within society. More specifically, 

the sociotechnical co-production reveals the reciprocal relationship between 

technoscience and society. It shows how technology shapes and is shaped by various 

social groups, along with the variety in significance assigned to it by different groups. 

By analyzing the relevant groups and the construction of technoscience in a social 

setting, SCOT provides us with an interpretation of how the black box of technoscience 

is constructed (Bijker, 2015, pp. 135-140). However, this is also a point of criticism. 

Bringing to light the construction of this black box may leave aside its implications for 

society after this construction. It may also avoid making any axiological statement, fail 

to account for alternatives that did not make it or present the whole picture of the 

sociocultural factors that come into play in this co-production (Felt, 2017, pp. 41-49). 

Nonetheless, in response to such criticism, STS scholars point to the fact that adopting 

a social-constructivist approach actually reveals the ethical and social implications of 

this blackboxing process. It would help to understand the ethics embedded in the 

technological design and attempt to increase transparency by opening the black box in 

its initial stages.  

 Additionally, STS adopts a multi-level perspective, which refers to analyzing a 

sociotechnical artifact in many different levels, from the scientific practice to its cultural 

significance, relevant social groups and so on. One can understand this approach by 

implementing the relational ontology framework when talking about an ontological 

multiplicity. In other words, a technoscientific artifact can have many ontologies, many 

lives one could say, arising from its relations with other artifacts, social groups or actors 

within the broader sociotechnical network. The multi-level perspective can also be 

implemented to gain the broader picture by shifting perspectives from bottom-up to 

top-down. For instance, on the one hand, one can use it to analyze grassroots 

innovations and talk about policy and top-down governance of innovation on the other 

(Felt, 2017, pp. 41-49).  
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 Another aspect of STS worth mentioning (but probably controversial within the 

field) is citizen science. STS scholarship raises the mandate for increasing inclusivity 

and transparency in the co-production of sociotechnical artifacts. Citizen science, 

becoming possible by today’s technologies to disseminate information, can be seen as 

an approach within STS that aims to fulfill some of its mandates for instance, to increase 

inclusivity and, thus, accountability (Kimura & Kinchy, 2016, pp. 331-345). For our 

purposes, citizen science can help open the black box of AI by focusing on the end user, 

starting from the endpoint to follow it back to the construction of the black box. This is 

quite the opposite of what Latour wanted to do. Let us illustrate our point. Suppose one 

has a deep learning algorithm that can provide too many results, which make it virtually 

impossible to test the various combinations and account for any biases or misgivings. 

However, making it user-friendly and providing people with a basic education will 

make the use of this algorithm possible for more people, who can test various 

combinations and get very different results. Increasing inclusivity in this way may help 

increase accountability as more people will have access to the algorithm and will 

probably be able to pinpoint any biases or flaws in it.  

 To conclude, STS is a diverse, interdisciplinary field with various 

methodological approaches at its disposal. In this brief presentation, one could mention 

only a few, albeit the most prominent ones and those relevant to the purposes of the 

thesis (Felt, 2017, pp. 41-49). In the next section, the black box metaphor, the main 

STS methodological tool used in this thesis, will be presented.     

3.2 Black Box  

For the purposes of this thesis, the black box metaphor is considered to be the 

appropriate methodological tool to analyze AI and its black box from an STS 

perspective. Undoubtedly, this metaphor cuts through several STS theoretical 

frameworks, such as the multi-level perspective, ANT, and SCOT to mention a few 

(Felt, 2017, pp. 41-49). Having already talked about the origins of the metaphor, within 

STS, Latour was the first to turn the black box metaphor into a methodological approach 

that can be used to interpret scientific practices. Understanding the black box of science, 

the necessity to pry it open and the ways in which it is possible to unpack it are very 

important for the STS critique. All the more so when it comes to AI and its pervasive 

black box.  
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 The main issues regarding the black box metaphor and its use in STS have 

already been discussed. Next, we turn to the application of this metaphor as a 

methodological tool to describe and analyze technoscientific and societal problems. 

Again, understanding the co-construction of AI’s black box, the necessity to open it and 

ways in which it can be opened could be very enlightening. Creating or using 

transparent white boxes to open black ones creates a framework of understanding, 

which, apart from making a description of the fact, provides critical tools to improve 

the situation. The critique to the co-construction of the black box and to the very concept 

of it dates back to 1993 in Winner’s article “Upon Opening the Black Box and Finding 

It Empty: Social Constructivism and the Philosophy of Technology”, where he argues 

that the black box of social constructivism is filled with vague, abstract notions 

(Winner, 1993, pp. 362-375). Instead, he proposed a more technical, specialized 

approach to the problem (Winner, 1993, pp. 362-375). However, the responses of STS 

scholars were many and, generally speaking, the view of extreme specialization in a 

field is somewhat contrary to the modern-day mandate for interdisciplinarity. The 

purpose is to facilitate discourse between experts and not to isolate them. One of those 

responses, directly pointing to this article but not exactly a one-on-one response, comes 

from Steen’s article “Upon Opening the Black Box and Finding It Full: Exploring the 

Ethics in Design Practices”, where it is argued that the ethics, along with the 

sociopolitical issues involved, are of paramount importance for the analysis of 

technoscientific discourse (Steen, 2015, pp. 389-412).      

4. Methodology  

4.1 Secondary Literature  

The secondary literature includes various historical and philosophical writings on AI. 

The purpose was to present an overview of the framework through which one should 

view AI and the modern debate around it. More specifically, when it came to literature 

regarding the black box and the relationship between the black box metaphor and AI, 

the research focused on STS journals, books and articles. From Latour’s and Pasquale’s 

books on the black box concept to STS journals such as Social Studies of Science, 

Science & Technology Studies: Journal of the European Association for the Study of 

Science and Technology, and, mostly, Science, Technology & Human Values in order 

to find the relevant articles for this thesis. The keywords for our research included the 
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terms: “black box”,” Big Data black box”, “Deep learning black box”, “AI black box”, 

and “machine learning black box”.  

4.2 Primary Literature 

Researching the scientific journals Scientific American and Nature for articles relevant 

to our research questions, we used the following keywords: “AI black box”, “machine 

learning black box”, “deep learning black box”, “big data black box” and “black box”. 

We also tried different combinations of the terms “black box”, “deep learning”, 

“machine learning” and “big data”, but the above keywords were the ones yielding 

optimal results. Apparently, the research engine in these journals was somewhat case 

sensitive. However, in most cases, the results did not change when the words were 

capitalized, with the exception of big data.  

 Going through the results, we used some criteria to help us collect the necessary 

articles for this thesis. Firstly, sometimes the research engine brought back many pages 

of results, but one could see that the relevance of the titles to our research questions 

was almost zero after a certain point. That point was often reached somewhere after 

page ten of the results. Thus, in none of these searches did we reach beyond the 

twentieth page. Within these results, very few of the articles’ titles contained our basic 

keywords, whereas in some cases these keywords, such as “black box”, had a 

completely different meaning. More specifically, we searched for the term “black box” 

as a metaphor, a methodological tool to understand AI and its applications. However, 

in some articles, the term “black box” referred to the black box of an airplane. Despite 

the fact that there is some loose connection to the airplane’s black box and our use of 

the term, these articles were completely irrelevant yet easy to rule out from their very 

title.  

 Secondly, the articles collected were published within the last decade. We aimed 

to avoid articles that were too old to offer insights into modern views of AI but, at the 

same time, to gain an overview of AI’s recent boom and its critique. Of course, the 

discussion around AI’s black box is not very new, but its intensity has risen 

exponentially in the last decade, and it seems to continue at the same pace. Moreover, 

some of the articles do not explicitly mention the terms in question but they were chosen 

because of their thematic relevance to our research questions. Arguably, the articles 

about trust in AI or, more generally, those within the field of ethics, even if they seem 
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to go beyond the STS domain, strictly defined, addressed issues, such as transparency, 

directly related to the black box of AI and the mandate to open it. For these reasons, 

diverse articles were selected and interpreted with the appropriate caution, always 

within the framework of the black box metaphor.     

Given the use of the aforementioned keywords and their combinations, the exact 

replication of the study may be hindered by the implication of our relevance criterion. 

This is why it is imperative that we analyze how the collection by relevance took place. 

First, the titles of the articles were considered in order to find words related to the black 

box concept, such as opaqueness, interpretability and the like. Moreover, ethical 

problems and issues regarding transparency are closely linked to AI’s black box. More 

general concepts related to AI, machine learning, deep learning and Big Data were also 

researched in the titles and the content of the articles via the prism of providing us with 

a discussion about the historical development of AI and the basic questions relevant to 

its capabilities and problems. The reason for this has to do with creating a better 

understanding of how AI’s promises, whether it actually stood up to them or not, 

improve our realistic insights about AI and the procedures related to it. The purpose 

was to find papers that critically reflect on our current understanding of AI and its 

potential. Thus, many articles revolve around both current and future applications of 

AI.   

Finally, we chose to limit our research to Scientific American and Nature 

because, on the one hand, they provided us with the necessary popular science articles 

for our thesis and, on the other, expanding our study to more journals would make it 

more difficult to process. Additionally, access issues contributed to the selection of the 

above journals. Time restrictions also played a role in the decision to involve only two 

scientific journals in our study. However, we believe that the main themes related to 

the discussion around AI and its black box are illustrated in detail in the articles 

collected from these journals. The inclusion of more articles would probably not have 

a core but a peripheral effect on the expansion of the thesis.  

5. Primary Data Presentation  

In this section, we present the primary data collected. Through the discussion of articles 

from Nature and Scientific American we create a comprehensive overview of how the 

content that is relevant to our research questions is depicted in these journals. We begin 
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with Nature’s articles followed by those of Scientific American. Starting by 

Castelvecchi’s article, which appears in both, the foundations are built in order to 

process the rest of the articles about the relationship between the black box and AI and 

some issues related to various perspectives on AI. Ethical issues regarding AI are also 

presented as they are of great concern nowadays and they interact with the black box 

concept, at the crossroads of transparency for instance. Trust in AI is closely related to 

transparency and, of course, the black box problem.   

In his article, back in 2016, Davide Castelvecchi straightforwardly addresses 

the big question: “Can we open the black box of AI?” (Castelvecchi, 2016). 

Undoubtedly, this article is very important for the purposes of this thesis. Starting from 

the conclusion, we will then endeavor to tackle the issues presented in the main body 

of the article, which are, arguably, much more poignant. Castelvecchi concludes with 

Pierre Baldi’s comment, currently a distinguished professor at the Department of 

Computer Science of UCI, that scientists should proceed with their work without being 

“too anal” about the black box (Castelvecchi, 2016, p. 23). They actually carry one in 

their heads all the time, the hardest to crack of them all. Of course, this comment about 

the brain is Baldi’s final assertion towards the practical significance of opening the 

black box. It seems that on balance, trying to pry open the black box of AI can be 

cumbersome and even hinder scientific practice. It goes without saying that scientific 

practice should proceed without any hindrances. Nonetheless, scientists can never be 

too analytical about AI’s black box as it presents a very good opportunity to critically 

reflect on their practice, analyze its consequences and understand its limitations. The 

analogy between the brain and AI machines is very interesting and actually 

encompasses the whole article. But now it is more relevant to present an overview of 

the main points from Castelvecchi’s article related to AI’s black box.  

The article starts with Dean Pomerleau’s initial encounter with AI’s black box. 

A robotics graduate student at Carnegie Mellon University in Pittsburgh, Pennsylvania, 

back then, Pomerleau trained a Humvee military vehicle to drive itself. When the 

vehicle encountered a bridge, Pomerleau had to quickly grab the wheel in order to avoid 

the crash. The obvious question he had to ask is “what went wrong?” In doing so, he 

understood that the neural network he created constituted a black box. At the time of 

Castelvecchi’s article, twenty-five years have passed since Pomerleau’s first attempt to 

understand and analyze the black box of AI within the confines of a system with limited 
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capacity. Modern advancements in technology, such as deep learning neural networks, 

have largely exacerbated the situation, making the black box problem “all the more 

acute” (Castelvecchi, 2016, p. 22). Without a doubt, this situation still stands and even 

more so today, five years after Castelvecchi’s article.   

Some of the questions raised by the situation above include: “how exactly does 

an AI application, for instance a deep learning one, reach a specific result?”, “how can 

anyone be sure the results are correct?” and “how far should one go to trust AI?” 

(Castelvecchi, 2016, pp. 21-23). Scientists nowadays proceed just as Pomerleau did in 

the case of the self-driven vehicle; they try to open the black box of AI. Just like a 

neuroscientist, they try to analyze neural networks in order to find the specific 

connections that lead to the resulting answer given by the machine. Distinguishing 

between different answers is not enough for a scientist who wants to know the exact 

characteristics of this difference. As indicated in the deep learning section above, the 

first neural networks were created in order to simulate the “neurons” of the brain 

(Castelvecchi, 2016, pp. 21-23). These “digital synapses” start from the bottom layer, 

where simple correlations between the synapse and the object are manifested, and they 

reach the top layers through multiple processes, where certain results are reached, such 

as the classification of objects (Castelvecchi, 2016, pp. 21-23). In order to penetrate 

these processes and open the black box of deep learning in the process, scientists have 

used techniques like “Deep Dream”, where a specific characteristic is manifested at a 

disproportionally higher frequency than others (Castelvecchi, 2016, p. 22). This way, 

they can understand how important the specific characteristic is for the neural network.  

A brief passage from Castelvecchi’s article summarizes how machine learning 

and, especially deep learning instances, work. As the author says: 

The power of such networks stems from their ability to learn. Given a training set of 

data accompanied by the right answers, they can progressively improve their 

performance by tweaking the strength of each connection until their top-level 

outputs are also correct. This process, which simulates how the brain learns by 

strengthening or weakening synapses, eventually produces a network that can 

successfully classify new data that were not part of its training set. (Castelvecchi, 

2016, p. 22) 

Again, the pervasive analogy from the biological to the mechanical is manifested.  
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 Deep learning networks need big data —i.e., huge amounts of information that 

they can process in order to reach a specific result. Given that humans are not capable 

of processing this volume of information, the black box of AI thickens. One example 

mentioned in the article has to do with the hypothetical scenario in which a machine 

trained by a large number of old mammograms identifies an apparently healthy woman 

as cancer-stricken (Castelvecchi, 2016, pp. 22-23). The work of the physician actually 

becomes more difficult as they cannot pinpoint the reasons for this result. If the machine 

cannot explain itself and the human interpreter has no access to its black box, then 

scientific practice is hindered. As Michael Tyka, a biophysicist and programmer at 

Google in Seattle, Washington, put it: “The problem is that the knowledge gets baked 

into the network, rather than into us…” (Castelvecchi, 2016, p. 23). He goes on to say: 

“Have we really understood anything? Not really—the network has” (Castelvecchi, 

2016, p. 23). Obviously, glimpsing at how the black box is constructed is not enough 

and the mandate to open it becomes more urgent than ever, especially in the case of 

biomedicine.  

 One attempt at opening the black box of AI is reverse-engineering the machine’s 

workings. Andrea Vedaldi, a computer scientist at the University of Oxford, UK, and 

his group tried to do so by taking the algorithms that Geoffrey Hinton, a machine-

learning specialist at the University of Toronto in Canada, had developed in order to 

improve neural network training and running them in reverse (Castelvecchi, 2016, pp. 

22-23). They tried to reconstruct the images that were represented by the neural 

network. Following this process, one can reach an understanding of the importance 

assigned by the machine to various features. Deep Dream works in the same way 

(Castelvecchi, 2016, pp. 21-22). Moreover, its online distribution gives access to many 

end users, who are given the opportunity to explore ways in which an AI application 

can be reverse-engineered.   

 Being notoriously difficult, opening deep learning’s black box has led some 

scientists and scholars to believe that deep learning is not the answer to many world 

problems and that simpler solutions should be adopted in order to increase transparency 

in the scientific process (Castelvecchi, 2016, pp. 22-23). Although increasing 

transparency comes hand in hand with opening AI’s black box, the mandate for the 

former is not to be at the expense of the latter. Simpler, more transparent models should 

not act as substitutes for complex deep learning applications, but they should 
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supplement them as the world is full of complex problems that may not be susceptible 

to reductive solutions. In other words, increasing transparency is a valid aspiration and 

a motive to open the black box of AI, but reducing complexity in order to do so may 

simply transpose the problem rather than actually solve it. This is why, as articulated 

by Castelvecchi, reductive models should be complementary to complex deep learning 

ones (Castelvecchi, 2016, pp. 22-23). However, transparency remains critical for 

scientific practice and this is why the black box problem should be continuously 

addressed.   

 The article by Castelvecchi, as presented above, forms the basis for our 

discussion of Nature and Scientific American articles, as it appears in both when one 

searches for the relationship between AI and the “black box” concept. More articles 

from Nature address issues related to the black box theme and trust-in-AI issues related 

to it. For example, in “Learning from the machine”, Haiman points to the fact that the 

deep learning black box in cosmological applications may not be a concern for big 

companies, but it is an issue when it comes to trust-in-AI results (Haiman, 2019, pp. 

18-19). Statistics from cosmological datasets using deep learning techniques have 

proven to be more effective than human statistical analyses. Yet, being able to 

“understand the physical origin of the information” is a crucial element in building trust 

in AI systems, and this is why the black box problem should be also addressed 

thoroughly in this case (Haiman, 2019, pp. 18-19). In “Illuminating the dark side of 

machine learning”, it is stated that “one major challenge is that the machine-learned 

relationships often remain enigmatic in the model; this ‘black-box’ nature hinders the 

elucidation of the actual biological mechanisms determining the output phenotypes”, 

which raises the black box problem and the relevant transparency issues in the field of 

genome sequencing and its biomedical applications (Burgess, 2019, pp. 374-375). 

 Addressing the issue of trust in AI can have a very wide range, but in the next 

article one aspect of it comes into focus. Specifically, in the manufacturing industry, 

where AI can use big data in a factory to improve the efficiency of the production 

process, reduce the energy consumption or even predict failure of devices, trust in AI 

can be seen as an important factor that impacts implementation. As mentioned in the 

article, a typical AI-based predictive maintenance can reduce annual maintenance costs 

by 10%, unplanned downtime by 25% and inspection costs by 25% (Li et al., 2021, p. 

13564). Despite the benefits that can be provided by AI in the specific industry, a recent 
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survey shows that 42% of people lack basic trust in AI and 49% cannot even name an 

AI product they can trust (Li et al., 2021, p. 13564).  

A black box can be, as already mentioned, a deep learning system that is 

comprised of complex neural networks modelled on the human brain. The result is that 

the black box is impenetrable to humans, while there is a great need to explain the 

relevant AI processes, especially in fields like healthcare or transportation, where lives 

may be at stake. In contrast to this situation, as explained in the article, wide learning 

works on a simple principle: that is, “evaluate every combination of data item in a 

system to find important combinations, called knowledge chunks” (“Building natural 

trust in artificial intelligence”, 2021). Using this approach “can generate accurate 

predictions even with a small volume of training data” (“Building natural trust in 

artificial intelligence”, 2021). 

Additionally, a problem with AI systems is that their accuracy can deteriorate 

significantly over time. For instance, a financial system built on training data that has 

become outdated due to new market conditions will not produce accurate results 

(“Building natural trust in artificial intelligence”, 2021). This is where high durability 

learning comes into play. It is the world’s first technology that “can automatically 

estimate the accuracy of an AI system and, if necessary, update so its predictions remain 

valid” (“Building natural trust in artificial intelligence”, 2021). This type of learning 

works by comparing “the distribution of data from when an AI system was trained and 

the distribution changes of data from actual operations” (“Building natural trust in 

artificial intelligence”, 2021). By analyzing differences in those datasets, it can 

quantitatively estimate the system’s accuracy. Also, high durability learning can 

“automatically adapt an AI system to new input data, maintaining accuracy without 

expensive retraining” (“Building natural trust in artificial intelligence”, 2021). The 

effects of high durability training on the black box of AI have to do with the processes 

involved in maintaining system accuracy. Given that accuracy is measured by the 

results the AI system provides, this type of training is bound to interfere with interior 

processes in ways that are not known in advance at their entirety.  

Ethical concerns regarding AI are a huge issue that is presented in many articles 

nowadays. It is closely linked to the black box concept as AI systems may be used to 

“amplify discrimination and biases, such as gender or racial discrimination, because 
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those are present in the data the technology is trained on, reflecting people’s behaviour” 

(Castelvecchi, 2019). This passage reflects big data’s black box, which presents a 

problem that raises ethical concerns. Ultimately, AI ethics are a projection of human 

ethics to the machine. As explained by Lo Piano, “the set of decision rules underpinning 

the AI algorithm derives from human-made assumptions, such as, where to define the 

boundary between action and no action, between different possible choices” (Lo Piano, 

2020, p. 5). Of course, “this can only take place at the human/non-human interface: the 

response of the algorithm is driven by these human-made assumptions and selection 

rules” (Lo Piano, 2020, p. 5). Concerning big data’s black box, it is argued that even 

“the data on which an algorithm is trained on are not an objective truth, they are 

dependent upon the context in which they have been produced” (Lo Piano, 2020, p. 5). 

In the same article, the construction of machine learning instances as black boxes is 

also addressed and issues regarding transparency, accountability and fairness are raised 

and analyzed critically via case studies taken from the application of machine learning 

in the judicial system and autonomous cars (Lo Piano, 2020, pp. 1-6). The constant and 

rapid evolution of machine learning models, which learn and improve constantly, 

presents urgent ethical issues as the more they learn, the harder it is to understand them; 

the opaquer their black box gets (Lo Piano, 2020, pp. 5-6).  

After establishing the link between transparency and the black box framework 

through a brief description of the above articles, one can now attend to another article 

that presents the case of a deep learning algorithm for glaucoma. As stated in the article, 

this algorithm is a black box, and in order to understand how it reaches diagnosis one 

has to peer into it (Xu et al., 2021, pp. 1-10). One way to do so, as it is argued, is to 

implement a hierarchical approach to deep learning in order to increase transparency 

and interpretability. The researchers built a hierarchical deep learning model for a small 

portion of the sample, which models the thinking of experts as much as possible (Xu et 

al., 2021, pp. 1-10). This model could separate the variables that had a causal effect to 

the resulting diagnosis, thus improving the efficiency of the system by ameliorating 

human–machine interaction (Xu et al., 2021, pp. 1-10). In this case, one can see that 

expert human thinking was used as a white box in order to mirror and, eventually, pry 

open the black box of deep learning.  

Another article pointing to AI used in interpreting medical images states that, 

on one hand, explainability would be desirable as it would increase trust in AI, but, on 
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the other, complex deep learning algorithmic explanations may not be readily accepted 

by expert physicians (“All eyes are on AI”, 2018). However, these algorithms work 

within the confinements of appropriate medical practice, and they do nothing but help 

physicians in their work. After all, as stated, providing better care is “an ill-defined, 

subjective task” (“All eyes are on AI”, 2018). However, such a conclusion that would 

lead to the acceptance of the black box instead of trying to open it relies on a rather 

dubious presupposition that these algorithms can “only” help the physician and not 

hinder her work. But, being ignorant of their explanations, physicians may be led to 

contradictory or even uncalled-for diagnoses. Thus, the black box bounces back as a 

problem that needs to be addressed  

At the intersection of the biological and the mechanical comes the black box of 

reprogramming stem cells. This notoriously impenetrable black box is derived from the 

fact that scientists have an accurate understanding of the input (differentiated cells) and 

the output (pluripotent cells), but they are completely ignorant of the mechanics 

involved in the process of reprogramming (Cyranoski, 2014, pp. 162-164). As 

mentioned in the article, they think that reprogramming involves deterministic (that is, 

a specific event has to be followed by another specific one) and stochastic (an event 

described by probabilistic distribution) processes (Cyranoski, 2014, pp. 162-164). 

However, there are scientists that think such a distinction has no value as probability 

can be assigned to all steps of the process. Moreover, using a stochastic model has 

proven that the randomness of the reprogramming process “can be controlled or even 

eliminated” (Cyranoski, 2014, pp. 162-164).  

Cynthia Rudin’s article is opposing the mandate to explain the black box, yet 

addressing the same issues. According to her, a black box machine learning model 

could be either a function too complicated for any human to comprehend or a function 

that is proprietary (Rudin, 2019, pp. 206-214). In both cases, an explanation is required, 

which would consist of a separate model trying to replicate most of the behaviour of a 

black box. The writer notes that the term ‘explanation’ here refers to an understanding 

of how a model works, as opposed to an explanation of how the world works (Rudin, 

2019, pp. 206-214). The latter adds to her concern that the field of interpretability, 

explainability, comprehensibility and transparency in machine learning has strayed 

away from the needs of real problems. This field dates at least back to the early 1990s, 

and there are a huge number of papers on interpretable machine learning in various 
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fields, though they often do not have the word ‘interpretable’ or ‘explainable’ in the 

title, as recent papers do (Rudin, 2019, pp. 206-214). Recent work on the explainability 

of black boxes—rather than the interpretability of models—contains and perpetuates 

critical misconceptions that have generally gone unnoticed, but that can have a lasting 

negative impact on the widespread use of machine learning models in society (Rudin, 

2019, pp. 206-214). It is very important to have in mind that a machine learning method 

cannot provide a completely faithful explanation of the process that the original model 

computes; otherwise there would be no need of the original model in the first place. 

This fact can be dangerous since the explanation model can lead to an inaccurate and 

possibly misleading representation of the original model (Rudin, 2019, pp. 206-214).  

Another fact mentioned in the article is that a black box can have the 

characteristic of uncovering “hidden patterns” (Rudin, 2019, pp. 206-214). The data 

that a black box is gathering and the way they are processed can uncover hidden patterns 

that the user was not previously aware of. The writer argues that the creation of an 

interpretable model of that black box can locate these patterns and use them (Rudin, 

2019, pp. 206-214). However, this interpretable model must be transparent and flexible 

enough to fit the data accurately, which is another difficulty that the construction of 

interpretable models is faced with. Despite the aforementioned issues that the 

interpretable models are facing, Rudin strongly encourages efforts that should be made 

so as to be able to create interpretable and explainable machine learning processes in 

order to restrict the use of black boxes in various situations where their use could lead 

to safety issues or poor decision making (Rudin, 2019, pp. 206-214).  

These issues are also raised by Yoshua Bengio, a Turing Award winner for his 

work on deep learning, who has significantly contributed to the establishment of 

international guidelines for the ethical use of AI (Castelvecchi, 2019). Those were 

established, initially through the Montreal declaration in December 2018, where the 

ethical principles of the use of AI were increased from seven to ten, and, secondarily, 

through the efforts of creating an organization in Montreal, the International 

Observatory on the Societal Impacts of Artificial Intelligence and Digital Technologies 

(Castelvecchi, 2019). This organization aims at bringing together all the relevant actors: 

governments, because they are the ones who are going to take action; civil-society 

experts, which means both experts in AI technology and in the social sciences, health 

care and political science; and companies that are building these products. “Self-
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regulation is not going to work” he argues, adding that organizations should pledge to 

follow specific guidelines, set carefully, since some might push things in a direction 

that favours their bottom line (Castelvecchi, 2019). 

Concerning once again the black box of big data, the article “Big Data: Stealth 

control” draws on Pasquale’s “black box society” in order to present the case of the 

algorithmic black boxing of data in modern society (Aftergood, 2015, pp. 435-436). 

Nowadays, the proliferation of digital devices has increased inclusivity, but, at the same 

time, it has led to an increase in data that has to be analysed via machine learning 

instances. Human processing of such vast amounts of data would be too slow or even 

impossible in many situations. However, the black box of algorithms creates this black 

box society that Pasquale is talking about by raising the issues of data privacy, 

governance and many more societal and ethical ones. It creates a “society in which 

basic functions are performed in deliberate obscurity through the collection and 

algorithmic manipulation of personal data” (Aftergood, 2015, pp. 435-436). 

Overdependence on search engines, the use of machine learning software for marketing 

purposes, credit score algorithms and, in general, AI applications assign value to data 

in ways that remain obscure for the majority of the users, yet profoundly affecting 

everyday life in society. Pasquale is worried that “they can be used to shape what we 

know, how we are perceived and what opportunities we will be afforded” (Aftergood, 

2015, pp. 435-436). Pasquale is optimistic that even the opaquer institutions can be held 

accountable. Thus, moving from the black box society to its opposite, the intelligible 

society, is possible (Aftergood, 2015, pp. 435-436). However, as indicated by the 

article, “elucidating the problem is a first step” (Aftergood, 2015, pp. 435-436).  

 Another article from Nature points to the fact that one should turn to 

explanatory models in order to open the black box of deep learning. Deep neural 

networks have become more and more useful as well as successful in a wide range of 

areas in real world applications. In the article, there is an issue raised, which concerns 

the fact that various studies have shown that these learning machines can also result to 

Clever-Hans-like moments—that is, human-undesired strategies where the machine 

exploits artifacts in the dataset (Schramowski, 2020, pp. 476-485). The writers 

introduce XIL (explanatory interactive learning), which is a model that adds into the 

training process a scientist who interacts with the machine learning process by 

providing feedback on its explanations. XIL relies on two assumptions: firstly, that 
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faithful explanations can be computed and, secondly, that the user feedback is faithful 

too (Schramowski, 2020, pp. 476-485). Both of those assumptions are open-ended 

issues and are subject to further research, though the experimental use of XIL on 

phenotyping, as presented in the article, demonstrates a set of positive results as well 

as limitations (Schramowski, 2020, pp. 476-485). Overall, XIL can help us avoid 

Clever-Hans-like moments in machine learning and promotes the scientific discoveries 

that can be produced through the interaction of humans and machines, though it is still 

an open-ended field with many variables that require further research (Schramowski, 

2020, pp. 476-485). 

Regarding the above Clever-Hans analogy taken from the animal kingdom and 

its nuances one can find another article in which there is reference to a trial-and-error 

algorithm that can help damaged robots find the necessary behavior to compensate for 

the damage (Possati, 2020, pp. 2-3). In other words, they can adapt to change, much 

like animals. However, as demonstrated by the notorious Clever Hans case, without 

being cognizant of the cues taken in order to adapt to new behaviors, this adaptation 

remains largely a black box. The main purpose of the article, though, is to integrate 

Lacan’s thinking into a rereading of Latour in order to speak about the AI unconscious. 

The study of “AI systems that process big data only from a mathematical and statistical 

point of view significantly undermines our understanding of the complexity of their 

functioning, hindering us from grasping the real issues that they imply” (Possati, 2020, 

p. 2). AI systems are constructed as black boxes that “can produce injustices, 

inequalities, and misunderstandings, feed prejudices and forms of discrimination, 

aggravate critical situations, or even create new ones” (Possati, 2020, p. 2). Two 

explanations are given here for the black box of AI. On one hand, “for legal and political 

reasons, their functioning is often not made accessible by the companies that create and 

use them” (Possati, 2020, p. 2). On the other, “the computation speed makes it 

impossible to understand not only the overall dynamics of the calculation but also the 

decisions that the systems make” (Possati, 2020, 2). Thus, “engineers struggle to 

explain why a certain algorithm has taken that action or how it will behave in another 

situation” (Possati, 2020, pp. 2-3). 

As implied in Possati’s article, Woolgar and Latour claim that to “open” a fact 

means to “continue discussing about it”, whereas to “close” a fact means “to stop 

discussing” about it (Possati, 2020, p. 11). Controversy is essential for these thinkers 
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and especially for Latour. Topics that are important and attract the attention of the 

researchers are continuously discussed, whereas others retreat into obscurity. The latter 

solidify into black boxes, but the former are reopened and analyzed. Among the facts, 

there is a relationship of “gravitational attraction”; a re-opened fact “attracts” other facts 

and forces the researchers either to reopen or to close them (Possati, 2020, pp. 11-12). 

Related to the psychoanalytical black box, Lacan distinguishes between two of them in 

the mirror stage. The first black box “coincides with the imago itself, which hides the 

mirror and the rest of the surrounding world” (Possati, 2020, pp. 5-7). This “imago 

produces the auto-recognition and the identification that are abstractions from the 

technical and material conditions that constitute them” (Possati, 2020, pp. 5-7). The 

image constituting “the child’s identification is also what blinds the child” and makes 

her “incapable of grasping the imaginary nature” of her identification (Possati, 2020, 

pp. 5-7). This first black box is weak “because it closes and reopens many times” 

(Possati, 2020, pp. 5-7). However, the second black box is much more stable and 

“coincides with the transition from the imaginary to the symbolic, therefore with the 

Oedipus complex” (Possati, 2020, pp. 5-7). The symbolic “closes” the mirror stage, 

turning it into a black box. According to Lacan, the symbolic removes the imaginary, 

making it a “symbolized imaginary” (Possati, 2020, pp. 5-7). Reducing it to a black 

box, “the imaginary can be limited, removed” (Possati, 2020, pp. 5-7). This procedure 

“is the origin both of the distinction between conscious and unconscious, and of a new 

form of unconscious” (Possati, 2020, pp. 5-7). The article goes on to uncover how this 

unconscious is hybridized in the digital era. AI’s black box is supposed to expand the 

human unconscious, creating a new, hybrid form of it.   

Turning now to the Scientific American articles in order to answer our research 

questions, we begin with an article addressing the black box problem directly. In 

“Demystifying the Black Box That Is AI”, issues regarding trust in AI are linked with 

the blackboxing processes related to it (Bleicher, 2017). As indicated, the pinnacle of 

AI applications, deep learning, “allows neural nets to create AI models that are too 

complicated or too tedious to code by hand” (Bleicher, 2017, Fine-Tuning section). 

These systems may be “mind-bogglingly complex, with the largest nearing one trillion 

parameters (knobs)” (Bleicher, 2017, Fine-Tuning section). Feeding huge amounts of 

data into a deep learning machine produces results that if wrong, can be tweaked 

towards the right ones through a feedback process. What is interesting in these lies in 
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their ability to learn and evolve without constant human involvement. However, the 

problem has to do with their arising complexity, which increases opaqueness. The vast 

number of parameters involved in the deep learning process (i.e., vectors and synapses) 

makes it impossible for the human agent to gain a complete oversight of it. Being unable 

to understand the reasons behind the results produced by the machine decreases trust in 

the machine. As stated in the article, small amounts of trust in AI may not be a problem 

in the case of Google’s AlphaGo neural net, which when “played go champion Lee 

Sedol last year in Seoul” “… [it] made a move that flummoxed everyone watching, 

even Sedol” (Bleicher, 2017, Digital Subconscious section). But in the case of a self-

driving car, an unexpected “move” by the machine can be fatal. Thus, trust in AI could 

form the basis to address safety issues related to it. Elucidating and opening the black 

box of AI is crucial for building trust.  

Peering under the hood of AlphaGo, for instance, and finding the exact knob 

could be possible in order to assign the specific numerical values to the move produced. 

However, this process would be redundant. In this article, it is stressed once again that 

the information, the “meaning” of the move, is not stored in a specific node but diffused 

throughout the network, much like how the brain works (Bleicher, 2017, Unmasking 

AI section). Evidently, researchers have to find ways to pry open the black box of AI. 

In Bleicher’s article, two approaches are proposed. One is called the “observer” 

approach and the other “surgical”. The former could be likened to a behaviourist 

approach to AI. Understanding that the AI system is a black box, one experiments with 

it and tries to infer its behaviour. Model induction is another name for it, as one attempts 

to understand the processes involved by analysing the end behaviour of the machine. 

The “surgical” approach “lets us actually look into the brain of the AI system,” as Alan 

Fern puts it, a professor of electrical engineering and computer science at Oregon State 

University (Bleicher, 2017, Unmasking AI section). According to Fern, getting into the 

neural network and exerting an “honest-to-goodness explanation” would involve 

tracing “every single firing of every node in the network” (Bleicher, 2017, Unmasking 

AI section). This way, “a long, convoluted audit trail that is completely uninterpretable 

to a human” would be created (Bleicher, 2017, Unmasking AI section). Fern’s team 

proposes to use another neural network to probe the target one. This explanation neural 

network would be a way to find meaning in the processes involved. Even if this 

procedure would not be as exact as analysing every single firing of a neuron in the net, 
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it would be a much more plausible and faster way to find meaning in the processes of 

a deep learning neural network.  

The quest for building trust in AI by opening or elucidating its black box can 

involve different approaches. Bonsai, “a start-up developing a new programming 

language called Inkling to help businesses train their own deep-learning systems to 

solve organizational problems” wants to change how deep neural networks learn in 

order to increase transparency and foster trust in the system (Bleicher, 2017, 

Unmasking AI section). Learning through trial and error may be the only way deep 

neural networks learn up to now, but Bonsai would like to model human teaching 

methods in order to train the machine. Joel Dudley, director of Biomedical Informatics 

at the Icahn School of Medicine at Mount Sinai in New York City, is not very concerned 

with the black box nature of Deep Patient, a deep learning neural network by his team, 

but he wants to demonstrate its safety “during clinical trials” (Bleicher, 2017, 

Unmasking AI section). Whatever the approach, the black box and trust in AI represent 

two closely connected problems. At the end of the article, an important issue about 

transparency is raised. The very nature of transparency is multifaceted as it is contingent 

on the agent. It may vary depending on the actor on the network, the stakeholder so to 

speak. For instance, transparency of an AI system is perceived very differently by a 

programmer in contrast to a lawyer or a layperson (Bleicher, 2017, Show and Tell 

section). However, as stated at the end, “being able to explain things gives you a kind 

of power” that is of paramount importance here (Bleicher, 2017, Show and Tell 

section). Doing so for an AI system would validate the power of the human over the 

machine, eliminate fear and instil trust in the system.    

In the article “The Misleading Power of Internet Metaphors”, the use of terms 

such as “cloud”, “internet of things (IoT)”, “smart” and “free” comes under scrutiny 

(Frischmann, 2018). Starting with the latter, the term “free” can be misleading as it 

refers solely to the monetary aspect of internet services. If one replaces “‘free’ with 

‘paid for with data’ and ‘possibly paid for with attention, labor, trust and even your 

mind’”, the hidden content of the black box of the term begins to come to light 

(Frischmann, 2018, Free section). Transparency can also be increased if one attempts 

to pry into the opaqueness of the other terms mentioned. “Cloud” begins to make more 

sense when one talks about storing data in a complex network of various computers. 

However, using this term “served as an epistemological black box within which 
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complexity was dumped and hidden” (Frischmann, 2018, Cloud section). In other 

words, the very use of the “cloud” metaphor creates a black box that makes the actual 

implementation of the internet cloud appear opaque to the naked eye. But, as already 

mentioned, “cloud” and “IoT” alike refer to an advanced use of already existing internet 

infrastructure. Nowadays, technology has increased interconnectivity at a global scale, 

giving the opportunity for new possibilities to arise. Using these terms creates a black 

box that obscures the actual processes involved. The same applies to the term “smart”, 

a metaphor that builds on AI’s black box. As stated, the term “appeals to our inclination 

to anthropomorphize tech” (Frischmann, 2018, Smart section). However, “the type of 

AI, how it works (or doesn’t), who owns or controls it and many other details that vary 

tremendously across examples are hidden inside an epistemological black box” 

(Frischmann, 2018, Cloud section).  

Additionally, the smartness mandate is radically criticized in the article. First, 

the term “conflates different forms of intelligence and makes it harder to evaluate 

differences in degree and kind” (Frischmann, 2018, Smart section). Despite the fact that 

“smart” can be very different depending on the technology, “smart seems unabashedly 

good, certainly better than dumb” (Frischmann, 2018 Smart section). But appearances 

can be deceiving. Sometimes, dumb technologies (such as cash) are very useful. Being 

“smart” is always contingent on the technology, the people involved and the context. 

Thus, the smart/dumb “dichotomy is itself pretty dumb” (Frischmann, 2018, Smart 

section). In short, the mandate to be “smart” may go hand in hand with AI’s potential, 

but it is controversial, to say the least.   

Another article from Scientific American deals with the issue of algorithmic bias 

(Young, 2020, p. 215). Namely, it deals with using the wrong algorithm to reach a 

specific conclusion. For instance, an algorithm created to assess the costs of healthcare 

may be used to infer the severity of an illness, thus providing wrong results (Young, 

2020). Again, the issue of trust in AI comes into the forefront. It is proposed that 

opening the algorithm to more users by increasing inclusivity and transparency could 

be one of the solutions, along with constant testing of the algorithm for bias and 

discrimination against specific users or groups (Young, 2020, p. 215). In a similar vein, 

talking about AI accountability brings to light various and urgent societal problems, 

especially in the case of self-driving cars and the use of AI in courts of law. The article 

“Intelligent to a Fault: When AI Screws Up, You Might Still Be to Blame” specifically 
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mentions these issues, raising the problem of opaqueness related to certain actors, such 

as the judge who is supposed to reach a decision based on an algorithm the workings 

of which are utterly covered in a veil of mystery (Greenemeier, 2018). Moreover, 

according to the article, depending on how society perceives AI and its usefulness (or, 

one should say, depending on how the ethics of AI are constructed) policy and 

governance are going to be shaped accordingly (Greenemeier, 2018). This conclusion 

points to the sociotechnical co-construction of AI in reference to its opaqueness and the 

transparency mandate. An article from 2016 points to the human biases that permeate 

AI applications (Emspak, 2016). As in humans so in AI machines, biases cannot be 

eliminated, and considering a machine neutral only increases the opaqueness of its 

black box (Emspak, 2016). Being cognizant of the biases that are embedded in data 

gathering and the design of AI machines is crucial to increase accountability and trust. 

In the article “The Machine That Would Predict the Future”, the proposition of 

dropping all of the world’s data into a black box in order to extrapolate predictions from 

it is analyzed (Weinberger, 2011). There are many problems related to such an idea, 

starting from the complexity of social phenomena to the unpredictability of individual 

behavior. There are no concrete laws to follow in order to reach specific results. The 

author goes on to talk about the lack of trust in such a black box and the absence of 

understanding related to its outputs, which would make it impossible to use them to 

inform policy and governance (Weinberger, 2011).   

6. Primary Data Analysis  

The above presentation of Nature and Scientific American articles has been produced 

in reference to the main theme of the thesis, black box and AI. In this section, we will 

address the research questions more concretely in order to analyze these articles through 

the prism of the black box metaphor. We begin with the first set of questions, which 

include how the black box is produced, how it can be unpacked and whether we should 

try to do so or not. In reference to these questions, another one should be addressed, 

which is “how can we build trust in AI and what is its connection to the black box 

problem?” Moreover, the interplay between the biological and the mechanical by means 

of the black box metaphor will be presented, along with the white box metaphor—that 

is, a more transparent box, which can be used to mirror black box procedures.   
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 Using the chosen STS framework—that is, the black box metaphor—one can 

go on to analyze the articles presented above. Whether explicitly or not, the construction 

of AI’s black box is mentioned in many of these articles. Beginning with those from 

Nature, the construction of the black box can have many manifestations. The many 

layers in a deep learning instance create a black box as the information is diffused, 

modeling the procedures of the brain. Additionally, huge amounts of data, as in the case 

of big data, that humans are unable to process are left to the computational power of 

the machine. Given the biases embedded in the data, a black box is constituted in the 

initial stages of the process and is exacerbated during the processes to reach a certain 

output. Thus, the human interpreter has not actually understood anything about the 

results; only the machine has (Castelvecchi, 2016, pp. 21-23). Moreover, the 

constitution of the black box is propelled through certain mindsets that promote a 

positive axiological approach to machine workings, such as the belief that AI 

algorithms are used only to help physicians in their work (“All eyes are on AI”, 2018). 

However, they can actually hinder scientific practice.  

Drawing on Pasquale’s work regarding the reciprocal relationship between 

algorithms and society in the digital age, the co-production of the black box is evident. 

In this case, the black box of AI, primarily a technological black box, is reconstructed 

as a technoscientific black box within which society shapes the usage of technology 

and at the same time it is shaped by it. Even the political process (governance of AI, for 

instance) becomes itself a black box as it is based on obscure procedures. There is 

certainly a lot to be done in order to open the black box of society, a technosocially 

constructed one with various factors contributing to its robustness (Aftergood, 2015, 

pp. 435-436). One has to analyze the various actors contributing to its construction, 

along with the various parameters that come into play.  

To put the construction of the black box into context, we should point to 

Woolgar and Latour’s discussion of the “facts” and how their reception either opens or 

closes the black box of science. As pointed out in Possati’s article, when a scientific 

“fact” is still open for discussion. In other words, Latour’s thinking about scientific 

controversies, the black box of science is open and its procedures can be accounted for. 

On the contrary, when discussion ceases, the black box closes and the scientific fact is 

no longer accessible to scrutiny (Possati, 2020, pp. 11-12). In the case of artificial 

intelligence, it is evident that, when talking about an algorithm that is helpful or one too 
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complex to infer its procedures but useful with meaningful results, the discussion about 

its inner workings is closed. Mostly, this happens because the perceived costs of 

opening this black box seemingly outweigh the benefits of such an endeavor. Again, 

the black box of AI is co-produced through a multitude of factors, including axiological 

beliefs.  

Turning to the question of whether we should unpack the black box of AI, one 

could point to the urgency of the mandate to open it in biomedicine. Pointing to 

Castelvecchi’s article, among others, relying on an AI algorithm in order to provide an 

accurate diagnosis may be cumbersome or even dangerous when experts are ignorant 

of the exact procedures that lead to the specific diagnosis. In the same article, another 

important aspect of the black box problem came from Clune’s team in 2014, which 

used techniques “that could maximize the response of any neuron, not just the top-level 

ones” (Castelvecchi, 2016, p. 23). They found that the black box problem “might be 

worse than expected” (Castelvecchi, 2016, p. 23). More specifically, “neural networks 

are surprisingly easy to fool with images that to people look like random noise, or 

abstract geometric patterns” (Castelvecchi, 2016, p. 23). Addressing the “fooling” 

problem is urgent, yet difficult. No proposed solution has reached universal acceptance 

(Castelvecchi, 2016, p. 23). In the case of a self-driving car, for instance, the fooling 

problem could have devastating results. This makes it even more important to actually 

try to pry open the black box of AI.   

 Additionally, most of the articles presented above made explicit reference to the 

necessity to open AI’s black box in order to increase transparency and accountability 

regarding safety issues related to the use of AI algorithms. We will come back to the 

issue of trust in AI, which is obviously closely related to the mandate to open the black 

box.  

 Some ways to unpack the black box of AI are described in the aforementioned 

articles. One way could be reverse-engineering the procedures of the deep learning 

algorithms. Deep Dream tried to do so by locating the dependent variables responsible 

for the output given by the machine. Starting from the endpoint to reach the initial 

circumstances of the black box constitution, though not exactly reaching all the way 

back, we find the mandate to increase inclusivity by giving more users access to the 

algorithm. This way, people will be able to experiment with the algorithm at a high 
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level, pointing to any biases and misgivings it may have. It could be said that this is a 

citizen science approach as, with basic training, AI machine’s will be accessible to 

many people, blurring the strict boundaries between experts and lay-people. Eric 

Siegel’s approach would be relevant here, as he asks for an increase in inclusivity in 

order to increase the transparency of machine and deep learning’s algorithmic processes 

(Siegel, 2016).  

 Moreover, identifying the causal chain that leads from a specific cause to a 

specific outcome is of paramount importance in opening the black box of AI. It could 

be done by tracing the exact numbers that correspond to each knob and identifying the 

exact nexus or nexuses that create the causal chain. However, this is too demanding and 

even impossible in the case of deep learning. Moreover, the information is diffused into 

various knobs. Thus, identifying the numbers corresponding to each knob may mean 

nothing for the actual reconstruction of the information. For these reasons, experts 

proposed the use of another neural network, a more transparent one, in order to explain 

and interpret the workings of the target one. One of these is the hierarchical model 

presented in a Nature article, which works as a white box, the processes of which are 

mostly intelligible, in order to mirror AI’s black box and pry it open (Xu et al., 2021, 

pp. 1-10).  

 Related to the mandate to open the black box of AI and, in any case, relevant to 

the discussion about black box’s impact is the issue of trust in AI. Many articles point 

to the necessity to build trust and how the lack of it interferes with the actual application 

of AI. Starting from statistical analyses in which AI proved to be more accurate than 

humans, experts were hesitant to trust the results (Haiman, 2019, pp. 18-19). Again, in 

the case of biomedicine, trust in AI is a huge issue for experts and society alike 

(Burgess, 2019, pp. 374-375). In the manufacturing industry, as presented in one of the 

articles above, a way should be found to earn human trust in AI; to understand why 

people trust human experts more than AI, even if the experts are wrong (Li et al., 2021, 

p. 13564).  

The complexity of the black box of deep learning algorithms makes it hard even 

for its creators to understand how they work. However, for the user to trust AI, she must 

first be able to understand it and predict its behaviour. The complexity that arises makes 

trust in AI very difficult because people must “depend on other superficial cues to make 
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trust decisions” (Li et al., 2021, p. 13564). Trying to categorize them at the level of the 

individual, such cues “may include anthropomorphism, voice consistency, relationship 

type, and timeliness responding to AI” (Li et al., 2021, p. 13564). At an organizational 

level, trust in AI “is subject to cues from the institutional environment” (Li et al., 2021, 

p. 13564). The article points here to institutional theory, according to which 

“organizational and individual behaviour are influenced by regulative, cognitive and 

normative institutional dimensions” (Li et al., 2021, p. 13564). Since AI systems are 

usually introduced by managers and promoted by key promoters, attitudes from top 

managers, group leaders and AI promoters should have some influence on users’ trust 

in AI, which suffices, according to the authors, for the conclusion that institutional 

theory is the appropriate methodological tool to use in order to analyse trust in AI (Li 

et al., 2021, p. 13564). From an STS perspective, the multiplicity of factors related to 

trust in AI actually makes institutional theory a very important, yet not the only 

appropriate, tool to view trust in AI systems. 

As manifested in the articles presented in the previous section, trust in AI is a 

huge issue. Both those from Nature and Scientific American raise the problem of trust 

and propose ways to increase it in order to move on with the application of AI. From 

self-driving cars to the imaginary black box of science fiction, where all data could be 

stored in order to predict the future, trust in AI systems is closely linked to the 

transparency mandate. AI’s black box, as long as it remains a black box, hinders trust 

and, thus, should be opened. Drawing on the article about the machine that could predict 

the future from Scientific American, it is important to stress that even if we had the 

computational power to create a black box such as “Rehoboam” from the popular TV 

show Westworld, the actual creation would be a total black box from which 

“knowledge” might come, albeit without understanding. That would eventually call for 

a redefinition of knowledge along these lines, but such a thing is unacceptable. Even 

without considering Gettier’s counterexamples, which call into question our definition 

of knowledge, the outputs of such a machine would not even satisfy the basic definition 

of knowledge as “justified true belief” (Ichikawa & Steup, 2018). How can such 

knowledge be justified without resorting to blindingly trusting the machine? Finally, 

trust is inextricably linked to AI’s black box, its impact on society and the co-production 

of AI as a socio-technoscientific artifact.  
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Moving to the last question about the connection between the biological and the 

mechanical through the lens of the black box metaphor’s penetration into these 

domains, it is of great significance to mention that black boxes and white boxes are 

used interchangeably, jumping from one domain to the other. There is an interesting 

analogy between the brain and deep learning AI and, more broadly, between the 

biological and the mechanical, which is implied in Castelvecchi’s article. According to 

it, neural “networks are also as opaque as the brain” because they do not actually store 

“what they have learned in a neat block of digital memory”, but “they diffuse the 

information in a way that is exceedingly difficult to decipher” (Castelvecchi, 2016, p. 

21). Maybe saying that they are “as opaque as” the brain is an overstatement, yet the 

analogy with the biological archetype of the black box and the fact that the processes 

within it are opaque present an interesting view of how the black box of AI is 

constructed and how we tend to perceive it. 

Neural networks mirror brain processes, and, in doing so, they mirror the black 

box of the brain. For instance, how some synapses become stronger whereas others 

weaken represents a mystery that needs to be investigated. Information is not stored in 

a specific part of the network but, as in the case of the brain, it is largely diffused, 

making it harder to pinpoint its exact location and gain the complete picture of the 

causal chain that leads from the stimuli (or the cause) to the behavior (or the result). 

Additionally, in the case of stem cell reprogramming one encounters a situation where 

the black box of biology and ways to open it are mirrored to the black box of the 

machine: deep learning. In deep learning, stochastic gradient descent is used to 

accurately describe the probability distribution of various vectors, thus accounting for 

the randomness of the process. Using the black box metaphor to present both situations 

may not be the only way to go. For instance, the use of a stochastic model and its results 

in either domain can be utilized as a white box to penetrate the black box of the other, 

from biology to the machine or vice versa (Cyranoski, 2014, pp. 162-164).  

Finally, the presentation and the discussion of the articles through the STS 

framework of this thesis shows how our research questions are manifested in relevant 

articles from popular science. The black box metaphor and the technoscientific and 

societal co-production of AI’s black box, issues of transparency, trust in AI, and the 

mutual penetration of black box and white box models through the fields of the 

biological and the mechanical are pervasive in the contemporary literature about AI. Of 
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course, the articles analyzed in this project can only present a small fraction of the 

literature, which is bound to increase as the interest in AI applications also increases.   

7. Conclusion and Suggestions for Further Research  

In conclusion, this project aimed at presenting the machine black box in the digital era; 

in the era of AI. Starting from an overview of the relevant secondary literature and 

mainly building a schema in which AI should be viewed, some important research 

questions regarding AI’s black box were raised. The analysis of the primary data 

(articles from the scientific journals Nature and Scientific American) was done through 

the prism of these questions.  

 Using the black box metaphor as a tool to assess AI is not only relevant but 

necessary in order to understand scientific endeavor in its entirety—i.e., as 

technoscientific and social. This methodological tool from the interdisciplinary field of 

STS was chosen due to its simplicity and its theoretical, descriptive, and exegetical 

value. More specifically, viewing AI applications through the lens of the black box 

metaphor helps our understanding of how opaque some, if not all, of its procedures are 

for certain stakeholders. For example, some deep learning machines can become so 

opaque that even their creators are at a loss regarding the exact processing of an input 

that leads to a specific outcome. Without delving much into the technical details of how 

algorithms and the various layers of a deep learning neural network actually work, our 

study of articles from popular science revealed the nuances of the black box rhetoric as 

far as the opaqueness of AI applications and their impact on society are concerned.  

 Throughout the whole thesis, the construction of AI’s black box has been 

depicted as a co-production of various technoscientific and societal factors. The 

constitution of the black box is neither one-sided nor only manifested by the complexity 

of the technology embedded in it. It is a process that involves how this complexity is 

perceived along with the choices society makes in order to increase or diminish the 

opaqueness of AI. As analyzed in detail in Pasquale’s book (Pasquale, 2015), 

algorithms shape and are shaped by society in a reciprocal, co-productive process. Of 

course, some of the actors involved may carry different weights into this process. A 

highly complex deep learning instance that provides socially desirable results may be 

the main component in the co-production of the black box, as a cost–benefit analysis 
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would show that the benefits of opening this black box do not outweigh the costs of the 

process.  

However, this is where the ethics of AI come into play. STS should be more 

concerned with the literature on ethics regarding AI’s black box. The mandate to open 

the black box—i.e., the answer to our question of “why we should open the black box 

of AI?”—is closely linked to the ethics of AI or how society perceives them. In other 

words, a strict cost–benefit analysis—a narrow application of utilitarian ethics—is a 

societal choice regarding which ethical values it chooses to project on AI applications. 

In other words, we should open the black box of AI in order to deal with safety issues 

and help scientists in their work, but we should also open it to create a society where 

accountability and fairness are its basic tenants; an ethical society.  

Most of the ways to unpack the black box of AI presented in this thesis had to 

do with its technical sides: searching for every knob and its correlation to the 

information, creating white box models to open the black box or including more users 

to test the outputs and the reverse-engineering. Of course, these are of primary 

importance when it comes to the modern AI black box. However, the issue of societal 

or policy choices and their implications for AI’s black box were raised along with ways 

to understand and account for choices that obscuring instead of elucidating the black 

box. For instance, using the wrong algorithm for our goal is an issue that should be 

accounted for at a not-so-technical level. For all intents and purposes, the construction 

of AI’s black box should be first understood in its multiplicity—i.e., as a co-production 

of many technoscientific and social factors. Then, the process of unpacking should 

become feasible, yet difficult in many cases.  

Many of the articles presented in the primary data reflected on trust in AI. 

Probably, trust is an issue at the fringes of STS but a very closely linked one to the 

black box of AI and the mandate to open it. Increasing trust in AI by fostering 

procedural transparency, explainability and accountability was of paramount 

importance in the literature studied. It is proposed that, by doing so, it becomes feasible 

for the implementation of AI applications to expand in society without instilling fear 

and hesitancy to the end users. From experts to lay people, trust in AI is a critical factor 

that decides which AI application will be used or not. It goes without saying that the 

opaquer the AI black box the less trust in AI is manifested.  
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As far as the relationship between the biological and the mechanical, via the 

black box metaphor, is concerned, the present thesis found that biological and 

mechanical black boxes can be used to elucidate the procedures of each other. More 

specifically, the black box archetype, the human brain, is mirrored on deep neural 

networks, which, in turn, can be used as white boxes to get a glimpse on brain processes. 

On the other hand, biological processes, such as the reprogramming of stem cells, can 

be used as white boxes for AI machines. In this manner, AI machines present a peculiar 

type of machines as they try to mirror organic procedures. To follow Canguilhem’s way 

of thinking, probably a mechanistic approach to their processes does not provide us 

with the complete picture. The direction of our train of thought should be from the 

biological to the mechanical, thus overcoming mechanistic frameworks that may limit 

our capacity to understand. However difficult to implement, this idea is more relevant 

than ever when it comes to AI as it is the epitome of the biological domain’s expansion 

into the mechanical domain.  

From the above discussion, it is quite apparent that the black box of AI presents 

a pressing issue that should be addressed thoroughly and carefully. Adopting an STS 

perspective, as in this thesis, raises some of the main concerns regarding the black box 

and shows how complex this black box is. As an interdisciplinary field, STS has various 

methodological tools to offer in order to critically reflect on and analyze AI’s black 

box. Further studies should be made to understand it in all of its complexity and account 

for its sociotechnical impact. However, STS, stemming from a largely sociological 

tradition, tends, in the case of AI, to adopt a view focusing more on the societal aspect 

of technology. Of course, the technoscientific analysis of AI artifacts, how they are 

embedded in society and how they shape society are all very important points of focus 

for STS. But we would propose further research along two seemingly opposite sides. 

On the one hand, studies on AI and its black box should delve more into the technical 

domain of how algorithms can be designed and implemented in order to become more 

transparent, easy to use and accurate. On the other hand, these studies should meet with 

philosophy and the domain of ethics. The ethics of AI and big data represent a rapidly 

growing field, which is not that different from STS, nor should it be regarded as having 

a separate agenda. On the contrary, as mentioned in this thesis, issues of trust in AI 

(ethical issues) are at the core of the black box problem and the necessity to deal with 

it.   
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