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Evyooiotieg

Katd wio évvoia, 1 mapovca epyacio elvolr TO amdGTOYUWO TNG WEYEL TOQEO
axadnuoixig wov Topelag. Qg ex TovTOV, Yo UToEOVGL Vo YROP® wio, dEVTEQET
€QYOGI0 PLEQWUEVT] GTNY TANET ATOS06T TOV ATOQAITNTOYV EVYOLGTIOV. EAAE(-
PeL YOEOV %0l (EOVOV, 0PEIA® Vo, apxEGT® 6T £ENG. EvyaoleTo:

1. Tovg %.%x. A0d0, Avovon xow KataBoAo, yior TN GUUUETOY T TOVG GTNY TELWEAT
ETLTQOTTN].

1.1. Tovg %.%x. Avovor xar KatdBoAlo, yior Tig GUUBOVAEG %ol TNV %aBOdNYT|-
61l TOVG %OTA TNV EXTOVNGY] TNG TOQOVGAG EQYAGLOG.

I.1.1. Tov x. KatdBolo, yioo TOV xaB0QL6TI%0 EOAO TOV EToEe 6T OLoi-
WOEPOGT TOV UODNUATIXOV OV EVILOPEQOVTOV.

2. Tovg yoveig %o To adéAPLo, LoV, YLOL TNV CYAITN TOVG.

3. Tovg @idovg wov, xOVTLVOUG X0l W1, YO TO YEOWR %ol TN {OVTAVLO, TOV
dlvouv 6Ty, xoTd BAGY|, LOVVTY| TEOYUOTLXOTNTO.

4. Tn Ne@él, yioo 6600 pov €xel TEOGPEQEL TO, TEAEVTLOL XEOVLO.

[Idve amwd OAo duwg, BEAD vo EexwEIcO TEELG TEOYUWATIXG GTLAVLIOVE AVDE®ITOVG,
%o ax0un 6TovdTeQovg @ihovg. Néotwp, ‘OMya, LTéQave, 6og v oLeTO Yepud.
T OAa.

Yavpog IleTpdixog
MdpTrog 2022



egidnpm

Avdpeco 6to TOANG 6rovdaio podnuatixd emitevyuato tov H. Furstenberg,
éva amd o, TALOV ovayvoplouéva elvar 1 Yewplio 6uvopwy Tov. H deoplo avti
urwopel va, ueAetnVel 6e 000 eTimeda: TO UETENGLUWO %Ol TO TOTOAOYLXO. I'io
TOVAGYLGTOV TEGGEQLG OEXOETIEG, TO EVOLOPEQOY GYEBOV UOVOTOAOVVTAY QIO TO
TEOTO. Q6Td60, To épya Twv Kalantar xar Kennedy, xar Breuillard, Kalantar,
Kennedy xow Ozawa to 2014 é@epav To TOTOAOYL%D GUVOQO GTO TEOGAIVLO
TOGO TOV %0GUOV TOV TOTOAOYLXWY SVVOULAOY GUGTNUATOV, 0G0 X0l GLTOV TOV
aAYEBEWY TEAEGTWV.

Axpoyoviaiog Adog avThg TNG avaloTOE®oNg eEVILAPLQOVTOG elvar N ToUTL-
61 TOU %xOVOALXOV TOTOAOYLXO0V GLVOEOV wag dloxELtig ouddog I', Yve6Td og
(tomoAoYxd) 6Vvopo tov Furstenberg, wue to 6Ovopo tov Hamana, évav towo-
AOYLXO Y®EO TOV TEOXVTTEL 6T VEWEIOL TOV T-eUPUTEVTIXOY XAAVUUATOV GU-
GTNUATOV TeAeGTOV oV avémtvEe o M. Hamana. H Sttt ¢pvon (duvawxi xou
C*-alyeBoixi) Tov GVVOEOL AVTOV, TOV Va TO GLVUBOAILovue we OFnl, emTEETEL
TOV XAEAXTNELGUS WBLOTNTOV TN avnywévng C*-dAyeBoag Ck(T) wéco tov TOHTOU
wov N I" 8pa 6T0 OFpl.

ZUYREXRQLUEVD, TO TEWTO WEYAAO ETiTevywa TNG Vewplog avTNg elval 0 yopa-
ATNELGUOG TOV axOAOVLTOY TELOV WBLOTATOY TNg I

1. C*-amAdtnTo (aswAoTnte Tng Ci(T)).

2. IdwtnTa wovadixot iyvovg (n Cr(T) dev €xer GAAO (VoG TEQOY TOV %0VOVL-
%00).

3. Tetoippévo amenable pulixd (n wovadixi amenable xovovixi vwoouddo
g I' elvar n TetoLpwuévn).

%OL T OTOGOPNVLGT TNG UETOED TOVG G6YE6NG, TEOBANUO TOV TOQEUEVE GVOLXTO
axd to 1975 xar T dovAed Tov Powers. EmiwAéov, 80Dnxe évag vEOG YoQoxT1-
ow6uog TG axpiBetag tng I', dnAadn tng axpiBetag Tng Ci(IN) og C*-aAyeBooag, e
YOOUUEG TAEOWOLEG UE OTEG TOV GYETLX®Y £0YOV TOY Anantharaman-Delaroche
xow Renault, Ozawa, xow Anantharaman-Delaroche uyeta&0 1998 xow 2002.

LTV TOEOVGH EQYOGI0 UWEAETOVTOL OL YOQOXTNELGUOL QUTOL, %0DWG %0 UEQLXOL
axOUT] TOV axOAOVINGOY o BaciGTNXOY 68 OVTOVG.
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Abstract

Among the many important mathematical contributions of H. Fursten-
berg, one of the most recognised is his boundary theory. This theory can
be studied on two levels: the measurable and the topological. For at least
four decades, interest was almost monopolised by the former. However, the
works of Kalantar and Kennedy, and Breuillard, Kalantar, Kennedy and
Ozawa in 2014 brought topological boundaries on the spotlight of the world
of topological dynamical systems, as well as that of operator algebras.

The cornerstone of this resurgence is the identification between the
universal topological boundary of a discrete group I', known as the (topo-
logical) Furstenberg boundary, and the Hamana boundary, a topological
space introduced in M. Hamana’s theory of I'-injective envelopes of operator
systems. The dual nature (dynamical and C*-algebraic) of this boundary,
which will be denoted by 9ryl’, allows the characterisation of properties of
the reduced C*-algebra C¥(I') via the action of I on Oyl

In particular, the first great achievement of this theory is the character-
isation of the following three properties of I’

1. C*-simplicity (simplicity of Ci(T)).

2. The unique trace property (C:(I') admits no traces other than the
canonical one).

3. Triviality of the amenable radical (the only amenable normal subgroup
of T" is the trivial one).

and the disambiguation of their relationship, a problem that stood since
1975 and the work of Powers. Furthermore, exactness of T, i.e. the exactness
of Ci(I') as a C*-algebra, was also given a new characterisation, in the
spirit of the work done on amenable actions by Anantharaman-Delaroche
and Renault, Ozawa, and Anantharaman-Delaroche between 1998 and 2002.

In this work we will study those characterisations, as well as some later
results that relied on them.
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Chapter 1

Preliminaries

In this chapter we develop the basic tools that will be used throughout this
work. If the reader is unfamiliar with the fundamentals of C*-algebras, a
concise summary is given in the Appendix.

1.1 Notational Conventions

Throughout this chapter, and throughout this whole work, I' will denote a
discrete group. Its identity element will be denoted by e. No assumption on
the cardinality of I" is made.

1.2 Unitary Representations

The theory of unitary representations is a rich one. It serves both as an
extension and an analytic analogue of classical representation theory, and
it is similarly both an invaluable tool and an independent field of research.
In this section we will only present the (relatively few) elements required
later on. The interested reader can refer to Part II of [ ] for more
(from the general viewpoint of topological groups).

Definition 1.2.1. A unitary representation (1, H) of T in a Hilbert space H is
a group homomorphism 7 : ' — U(H), where U(H) C B(H) is the group of
unitaries.

Example 1.2.2. We define the unit or trivial representation 1p : ' — C of T
by mapping all elements to 1. Similarly, for any Hilbert space H{ we can
define the trivial representation 15¢: " — B(H) by mapping all elements to
the identity operator.

Example 1.2.3. We define the left regular representation Ar : T — B(£*(T")) by
7\r(3)5t = 63t

1



1.2. UNITARY REPRESENTATIONS 2

for all s,t € I" (it can easily be verified that this extends to a unitary, since
it is obviously isometric and Ar(s)* = Ar(s™!)). We oftentimes write A(s) or
As, instead of Ap(s). Similarly, we define the right regular representation
pr:T — B(¢*(I") by

Pr(s)dr = 8¢5

for all s,t €T.

Example 1.2.4. Let A <T be a subgroup. We define the (left) quasi-regular
representation Ar/a : T — B(£3(T/A)) of T associated to A by

Ar/a(8)0in = Ostn

for all s,t € T (again, the reader can check that the above truly defines a
unitary).

Definition 1.2.5. Two unitary representations (7, H), (0,X) of T are called
equivalent (denoted by 7 ~ o) iff there exists an isometric linear isomorphism
T:H — X that intertwines them, i.e.

for all s €T.

Definition 1.2.6. Let (7;, H;) be a family of unitary representations of I and
H = @ H; be the Hilbert direct sum of the H;’s. We define the direct sum
of the representations 7; to be the unitary representation (7, H) defined by

mi(s)(DE&) = Dmi(s)&s

for all s € I' and ®&; € H. We denote the direct sum @7t of copies of a
representation 7 by |I|m.

Proposition 1.2.7. Let (7, H) be a unitary representation of I' and X C H be
a T-invariant subspace. Then K+ is also T-invariant.

Proof. We have
(n(s)&,m) = (&, m(s)*n) = (E, (s ) =0
for all £€ K+t neX andseT. [ ]

Definition 1.2.8. For a unitary representation (7, ) of I and a closed T-
invariant subspace X C H, we will denote by n* the representation s
7t(s)|sc : K — K. We will call n* a subrepresentation of .

Corollary 1.2.9. With the above notation, we have m=n* & 7"
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Proposition 1.2.10. Let (7t, H;) and (o, H,) be unitary representations of T and
T € B(H,,Hs) be an intertwining operator between them. Then K; = (ker T)*
and Ky =im T are Tinvariant and 7t ~ %2,

Proof. T-invariance is immediate from the intertwining relation and Propo-
sition 1.2.7. Since T intertwines 7 and o, T* intertwines o and 7. Thus,
because |T| is a limit of polynomials in T*T, we have that [T| intertwines 7
with itself. Let T = U|T| be the polar decomposition of T. We know that U
restricts to an isometric isomorphism between X; and K, so it only remains
to show U intertwines > and o*2. Indeed, we have

o(sJUITIE = o(s)TE = Tr(s)€ = UIT|n(s)& = Un(s)[TIE

forall s € Tand & € Hy, i.e. o(s)U = Umn(s) for alln € im|T|. Since im |T| = K4,
we are done. n

Definition 1.2.11. A unitary representation (7, H) of T is called cyclic iff
there exists & € H such that span{nt(I")&} = H. Then, we say that & is a cyclic
vector for .

Proposition 1.2.12. Fvery unitary representation (m,H) of T' can be decom-
posed as a direct sum of cyclic ones.

Proof. Let X be the set of all families of mutually orthogonal closed I'-
invariant subspaces of H, partially ordered by inclusion. By Zorn’s lemma,
X contains a maximal family (H;). If @ H; C H, then there exists a non-zero
&, € H which is orthogonal to all H;’s. But then, the family (H;) U{X}, where
X = m, is contained in X, contradicting maximality. Therefore,
H =P H; and = dn’t. |

Forming the direct sum of all (up to unitary equivalence) cyclic represen-
tations of I' gives us the universal representation m, (the observant reader
might realise that it is not completely trivial that this sum is well-defined,
but it is not that hard to convince themselves, since the cardinality of any
Hilbert space on which T is cyclically represented is bounded).

Definition 1.2.13. Let (71, H), (0,X) be unitary representations of I'. The
tensor product m® o of 7w and o is the unitary representation of I' on H ® X
defined by

(M® 0)(s)(E®n) =n(s)E® als)n

forall seTl, £ € H and n € KX (as usual, we extend linearly to H{ ® K and
then by density to H ® X).

Theorem 1.2.14 (Fell’s absorption principle). Let (7, H) be a unitary represen-
tation of T. Then Ar ® 7 is unitarily equivalent to Ar ® 1g.
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Proof. Consider the unitary U € B({*(T") ® ) defined by
U0 ® &) = dy @ m(t)E
for all t e I" and & € H. Then, we have

W (Ar @ m)(s)U(8: ® &) = U (Ar @ 7)(s) (0 @ T(t)E)
= U (8s¢ @ m(s)m(t)E)
=0t ®
= (Ar ® 15¢)(s) (8¢ ® &)

for all s,t €Tl and & € H. [ |

Consider now a subgroup A < I and a unitary representation (7, H) of A.
Let

Hrp={&:T—=H: > [&(s)|* < oo and &(st) =n(t ")E(s) Vs €T, t € A},
SAET/A
where the second condition guarantees that the sum in the first one is
well-defined. We can equip Hr with an inner product defined by

Emy= > (&(s),n(s))
sAET/A
for all &1 € Hr, which turns it into a Hilbert space (it is just 1*(I'/A, H) in
disguise, as every element in Hr is uniquely determined by its values on a
fixed set of representatives of I'/A).

Definition 1.2.15. With the above notation, we define the representation
ind)\ 7: T — B(Hr) by
(indj, 7e(s)E)(t) = &(s™'t)

for all s,t € T and & € Hr. ind, 7 is called the representation of ' induced
by Tt.

Example 1.2.16. ind’, Ax = Ar.
Example 1.2.17. ind} 1o = Ar/a.

Definition 1.2.18. For a unitary representation (7t, H) of I, we call the func-
tions (7t(.)&,n), for &, 1 € H, the matrix coefficients of . We call the diagonal
matrix coefficients (i.e. those of the form (7(.)&, &)) the functions of positive
type associated with 7.

Definition 1.2.19. Let (7, H), (0, X) be unitary representations of I'. We say
that 7 is weakly contained in o (and write m < o) iff every function of
positive type associated with 7 can be approximated uniformly on finite
subsets of I" by finite sums of functions of positive type associated with o.
We say that m and o are weakly equivalent (and write m~ o) iff m < o and
o< T
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Remark. The reader can easily check that weak containment is transitive
and depends only on the equivalence class of the representations involved.
Furthermore, it does not take multiplicities into account, i.e. for unitary
representations 7, 0 and cardinal numbers «, 3 we have amt < fo < m < 0.

It is immediate thet we can restrict the functions of positive type that
need to be checked to those of the form (7t(.)&, &) where & is a unit vector (we
call those normalised). Moreover, such a function is approximated as in the
definition iff it is approximated by convex combinations of normalised ones
(this is not immediate, but it is reasonably easy). However, a more useful
and less trivial restriction can be achieved using the following lemma.

Lemma 1.2.20. Let (7, H) and (0,X) be unitary representations of I and
V C H be such that ©(I")V is total in H. Then m < o iff every function of
positive type of the form (m(.)&, &), & € V can be approximated uniformly
on finite subsets of T" by finile sums of funclions of posilive type associated
with o.

Proof. Let X be the set of all vectors & € H such that the corresponding
functions of positive type (7t(.)&, &) can be approximated as described above.
We have to show that X = .

First of all, X is closed. Indeed, let & € X and notice that

[(ni(s)E, &) — (m(s)&", &) [ < ([[E + N1EN 1€ — &

for all s € ' and &’ € X. The right-hand side can be made e-small for any
€, so any e-approximation for (m(.)&',&’) is a 2e-approximation for (7m(.)§, &)
and thus & € X.

Next, for si1,80 €T, z1,z0 € C and & € X, let & = z;7t(s1)& + zom(s9)E and
@(.) = (n(.)&, E). We have

(m(s)&, &) = |z1PP@(sy'ss1) + |zal @ (55 '882) + 21200 (55 '881) + 2221 @ (5 ' 882)

for all s € I'. Therefore, for any finite set F, uniformly approximating ¢
on (s;'Fs;) U (sy'Fsy) U (sy'Fsy) U (s7'Fsy) (which is still finite) allows us to
uniformly approximate (7t(.)&’, &’). Thus, if & € X, then X also contains the
closed I'-invariant subspace generated by & in J.

Finally, we can show that X is closed under addition (and since it contains
V, we will be done). To that end, consider &;,& € X and let Hy, Hs be the
respective I'-invariant subspaces they generate in J{. Denote by X the
closure of H; 4+ Hy in I, which is also I'-invariant. Let P be the orthogonal
projection from H, to the orthogonal complement Hi- of 3, in K. Notice
now that P(H,) is dense in H;, and P intertwines 7’ and 7?4 . Hence, by
Proposition 1.2.10, w®erP)* ~ 774 In particular, since (ker P)£) C H, C X, we
also have H{ C X. Writing now & = & + &, as & + &) with & =P(§) € H;



1.3. GROUP C*-ALGEBRAS 6

and &), =& —P(§) € H;, we have

(m(s)E, &) = (m(s)&y, &) + (m(s)&y, &7)
for all o € T'. Therefore & ¢ X. [ |

Theorem 1.2.21 (continuity of induction). Let (m, H) and (0,X) be unitary
representations of a subgroup A <T. Then, ™ < o implies ind', m < ind', o.

Proof. For simplicity, we will denote ind', 7 and ind), o by (7/, H’) and (o”, K’),
respectively. Let £ be a transversal of the left coset space I'/A containing e.
Notice that the set 7(I")V, where

V={§ e H :supp(&) C Al

is total in H’. Therefore, from the previous lemma, we can restrict our
attention to functions of positive type of the form (n/(.)&, &) for & € V. But
for such & we have

(m'(s)&/, &) =) (E(s™'t),E(1))

teX
= (&(s71), &(e))
(E(s71). &(e)), s€ A

0, otherwise

(m(s)&(e), &(e)), se A

0, otherwise

where we have used the definition of I’ and V. Similar calculations show
that for any n € X and s € A,

(o(sin,m) = (o’(s)n’,n’),

where ' € X’ is the function that maps e to n and all other elements of X
to 0. Thus, since we can approximate (7t(.)&(e), &(e)) by sums of (o(.)n,n)’s,
and 0 by 0’s, we can also approximate (7t'(.)&, &) by sums of (o’(.)n',n')’s. B

1.3 Group C*-Algebras

In this section we will introduce the C*-algebras associated with unitary
representations of I'. Naturally, we will focus on the properties of the
reduced C*-algebra, C:(I'), and the full C*-algebra, C*(I'). The former is
especially important in this work, as all the main results have to do with
its properties.
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Let as begin by considering the group algebra C[I'], which is essentially
C.(T',C) equipped with the convolution product. We can endow C[I'] with an
involution by declaring s* = s~! and extending antilinearly.

It is apparent that unitary representations of I' correspond exactly to
*-representations of C[I']. For that reason, whenever we have a unitary
representation (7, }) of ', the corresponding *-representation will also be
denoted by 7. For any such representation, we will denote by C%(I') the
||.||-closure of 7t(C[I']) inside B(¥).

Definition 1.3.1. We call C}*\F(F) the reduced C* algebra of T, and denote it
by Cx(T).

Definition 1.3.2. We call C7  the full or universal C*-algebra of T', and denote
it by C*(I').

Using Proposition 1.2.12, it is clear that C*(I") has the following universal
property.

Proposition 1.3.3. For every *-representation 1 of C[I'], there exists a surjeclive
*-homomorphism C*(I') — CL(T') such that m,(s) — 7(s) for all s € T. We
denote the kernel of this *-homomorphism by C* ker .

We give now a useful characterisation of weak containment.

Proposition 1.3.4. Let (7, H) and (0,X) be unitary representations of T'. Then
the following are equivalent:

1. m<o.
2. C*kert O C*kero.

Proof. First of all, note that condition (2) is equivalent to ||7(a)| < ||o(a)]|
for all a € C[I'],, as both simply state that the *-homomorphism

Cx(T) = C*(I")/C*ker ¢ — C*(I')/C* kermt = C%(T)

o(a) — m(a)

is well-defined.

With that in mind, assume 7 < o and let a = ) rass € C[I, F =
supp(a), and ¢ € H be a unit vector. Consider now unit vectors ny,...,N, € X
and real numbers numbers cq,...,c, = 0 such that ¢c;+---+c¢,, = 1. We have

n n
Z ﬂ],ﬂ) <Z’as’ <7T Z ﬂpﬂ]

seF
Since we can approximate |7t(a)|| from below by (m(a)é,&)’s due to posi-

tivity, and (7t(.)&, &)’s by (Z?Zl ¢; (o(.)nj,m;))’s uniformly on F due to weak
containment, we immediately get ||7(a)| < |o(a)].
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For the converse, let £ € H be a unit vector. We can extend (7m(.)§, &)
to a state on C:(I"). Composing it with the *-homomorphism C%(T") — C%(T")
provided by condition (2), we get a state ¢ on C%(T'), which restricted to I is
still (7t(.)&, &). Tt suffices to prove that ¢ is contained in the weak-*-closed
convex hull K of states on Ci(I') coming from normalised functions of
positive type associated with o.

Assume ¢ is not contained in K. By the Hahn-Banach separation theorem,
there exists an element a € C% ('), and c € R such that

¢(a) <c<P(a)

for all P € K. In particular, (an,n) > ¢ for all unit vectors n € X. Replacing
a with a —clc:(r), we can assume ¢ = 0, and thus a is positive. But then
@(a) > ¢ =0, a contradiction. [ |

Notice that, by its universal property, C*(I') always has a character
(coming from 1r), and thus a trace. However, much more important is the
existence of a trace in the reduced case.

Proposition 1.3.5. The vector state
To: Ci(T") — C:aw— (ade, de)
1s tracial and faithful. This map s called the canonical trace.
Proof. Since
<7\s7\t5e, 5e> = <65t766> = <5ts, 5e> = <7\t7\s5e, 5e>

for all s,t € I', we immediately have that T, is a trace.
Now, notice that A; and p; commute for all s,t € I', and thus p; commutes
with all elements in C;(T"). Therefore, if a € C;(I') is such that ad. =0, then

ads = aps-10. = psg-1ad. =0
for all s € I', and hence a = 0. With that in mind, for a € C:(I") we have
To(a*a) = [|ad.|”,
which is 0 iff a =0 iff a*a =0, proving faithfulness. |

We close this section by taking a look at how C:(T") relates to C:(A) for
a subgroup A < T.

Proposition 1.3.6. If A < T, then C:(A) C Ci(T") canonically.
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Proof. It suffices to note that

e(T) = P (As)
sexr
where X is a transversal of the right coset space I'\ A. This implies that the
restriction of Ar to A is a multiple of Ax, and thus the mapping Ax(s) — Ar(s)
extends to the desired isometric *-homomorphism. |

Proposition 1.3.7. If A < T, then there exists a canonical conditional expecta-
tion Ep : CE(T") — CE(A).

Proof. 1t suffices to show that the *-homomorphism E, : C[I'] C C:(T') — C:(A)
defined by A — 1 (s)As is contractive, and then use Tomiyama’s theorem to
conclude that its extension on Ci(I') (denoted also by E,) is a conditional
expectation (since it is obviously a projection).

To that end, let & € €*(A) C€*(T") and a =) .. asA;. We have

lagl = > ad&+ Y aé

2

SEA seENC
2 2
- Z as7\s£ + Z 057\55,
SEA SENC
2
> ) aE
SEN
= [EA(a)E]’
and thus
|Ea(a)|| =sup{||EA(a)€] : & € *(A), |IE]] =1}
< sup{||a&| : & € (A), [|E]| =1}
< sup{|[ag| : & € (1), ||&]| =1}
= [lalf,
as required. |

1.4 Amenability

Amenability as a notion has its roots in measure theory and the Banach-
Tarski paradox, but its significance has spread to many areas of mathe-
madtics, including geometric group theory, dynamics, ergodic theory, and
(of course!) operator algebras. Introduced by von Neumann in the 1920’s,
amenable groups have since been characterised in a wide variety of wildly
different ways. So wide in fact, that it has become somewhat of a running
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joke among the initiated. We, however, will take a very modest approach,
presenting only the few equivalent definitions that will be useful in this
work. We will also explore some of the properties of the class of amenable
groups.

Definition 1.4.1. T is called amenable iff there exists a state w on £*°(I") which
is invariant under the left translation action of T, i.e.

w(sf) = w(f)

for all f € {® and s € T, where (sf)(t) = f(s~'t). Such a state w is called an
tnvariant mean.

We will denote by P(T') the space of probability measures on T, i.e. the
positive part of the unit sphere of ¢!(I'). Note that P(I') is invariant under
the left translation action defined above on £*(I').

Definition 1.4.2. We say that I' has an approximate invariant mean iff for
any finite subset F C T and ¢ > 0, there exists u € P(I') such that

sup [lsp—pff; <e.
seF

Definition 1.4.3. We say that I" satisfies the Folner condition iff for any finite
subset E C I" and ¢ > 0, there exists a finite subset F C I" such that

|SFAF|
sup

seF |F|

< E.

A net of finite subsets F; C I" such that

|SF1AF1’
[Fil

for all s € I" is called a Folner net (obviously I' satisfies the Fglner condition
iff it has a Folner net).

Theorem 1.4.4. The following are equivalent:
1. T is amenable.
2. T has an approximate invariant mean.
3. T satisfies the Folner condition.

4. There exist unit vectors (&) in €*(T') such that |[As&; — &l — 0 for all
sel.

5. 1r < Ar.

6. Ci(T') has a character.
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Proof. (1 = 2) Let w € {*®(T")* be an invariant mean. Since {!(T') is the
predual of (*(T'), it is weak-*-dense in {*(I')*. Therefore, we can find a net
(ui) in P(T') such that p; W w, which implies that sp; — p; — 0 for all s € T.
Hence, for any finite subset F C T, the weak closure of @  {su—p:p e P(I)}

contains 0. But this set is convex in @ ¢ ¢*(I'), so norm and weak closures

seF
coincide.

(2 = 3) Let E C T be finite and ¢ > 0. Choose u € P(I') such that

> sl <e.

se€k

For each r > 0 and f € ¢}(T"), define F(f,r) ={s € I': f(s) > r}. We have

s —plly = D lsu(t)

tel

-y j [T (syur) (1) = T (£)] dr

terl

1
ZJ;WBHJJAFUhrNdr

1
zjngunﬂAFU%TNdn

and therefore

L > IsF(, 1) AF(p,r)[dr < & = sL IF(g,7)| dr.

seE

Hence, for some r we must have

D IsF(u, T AF(, 1)l < elF(, 1)

sek

and thus the Fglner condition is satisfied (since F(u, 1) is finite for any r > 0).
(3 = 4) Let (F;) be a Fglner net. Then the &;’s defined by &; = [F;|7*/21,
do the job.
(4 = 5) The only normalised function of positive type associated with
1r is the constant function 1. For (&;) in €3(T") satisfying condition (4), we
have

| A&, &) — U = (A& — &, &) | < A& — &l = 0

for all s € I'. Thus 1r < Ar.
(5 = 6) Proposition 1.3.4 implies the existence of a *~-homomorphism

Ci(I) = C;, (N = C;, (N =C

i.e. a character.
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(6 = 1) Consider a character C¥(I') — C and extend it to a state w on
B(£2(T")), which restricts to a state on {*(T"). Now, for s € I" and f € £>°(T") we
have

w(sf) = w(AsTA]) = w(As)w(flw (A7) = w(f),

where we have used that the I'-action on {*(I') is spatially implemented
(as a very simple calculation shows), and that C*(I') is contained in the
multiplicative domain of w (which is completely positive because C is
abelian). Thus, I' is amenable. [ |

Condition (5) and continuity of induction imply the following, which will
be used later on.

Corollary 1.4.5. If a subgroup A < T is amenable, then Ar/n < Ar.
Theorem 1.4.6 (Day’s fixed point). The following are equivalent:
1. T" is amenable.

2. Fvery I'action on a compact convex subset K of a locally convex space
X has a fixed point.

Proof. (2 = 1) Immediate, since the state space of {*(I') is a weak-*-
compact convex subset of (*(T")*.

(1 = 2) Fix xo € K and consider an invariant mean w € {*(I")*. Let
A(K) be the set of continuous affine maps K — C. For each ¢ € A(K), define

o : I = C:s— @(sxg) and notice that f, € {°(I'). We want to show that

there exists xr € K such that w(f,) = @(xr) for all ¢ € A(K), which will
turn out to be the desired fixed point.

To that end, let w; be a net of finitely supported positive elements of
norm 1 in ¢(T") C €*°(T")* such that w; W w. Notice that for such an element

=3 1 1Cixds, Cik >0, > 1 ccx=1and for all ¢ € A(K) we have

E Clk(p SkXo) E ClkSkXO

i.e. for each i there exists a point x; € K such that w;(f,) = @(xi). By
compactness, we can assume (x;) converges to some xr € K. But then

w(fy) = h{nwi(f(p) = li{n @(xi) = @(xr)

for all @ € A(K).
Now, because the '-action is affine, we have that the map @5 : K —=C:
x — P (sx) belongs to A(K) for all s € ' and ¢ € X*. Furthermore, we have

fo.o (1) = @5y (txo) = V(stxo) = (s 'fy,, ) (1),
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and thus

B(sxr) = @syp(xr) = w(fe, ) =w(s 'fy,,)

= w(fp,,) = @ep(xr) =P(xr)

for all s € ' and P € X*. Since X* separates points in X, xr is indeed fixed
by T. |

Let us now take a look at how amenability behaves under standard group
theoretic operations.

Proposition 1.4.7. Amenability is closed under taking subgroups.

Proof. If A < T, then Ci(A) C C¥(I') canonically. Thus, any character on
C:(T) restricts to a character on C*(A). |

Proposition 1.4.8. Amenability is closed under taking quotients.

Proof. Let ' be amenable, A < T, and w € {*(I")* be an invariant mean. If
m: T — I'/A is the canonical projection, we can define a state w on {*(I'/A)

by
£ w(f o).
We have
((sAf) om)(t) = f(sT'tA) = (form)(s't) = (s(fomm))(t)
and thus
D(sAF) = w((sAF) o) = w(s(fom)) = w(fom) = d(F)
for all f € £=°(T'/A) and sA € T/A, m

Proposition 1.4.9. Amenability is closed under extensions.

Proof. Let A IT and I'/A be amenable, and wa € {*°(A)*, wr/p € £°(T/A)*
be invariant means. For f € (=(T) define f € {°(I'/A) by f(sA) = wa((s)|A),
which is well-defined due to the A-invariance of wa. Define now wr € £°(T)*

by

f = wr/a(f),

which is obviously a state. Now we have
SF(tA) = wa((t'sf)|a) = f(sTHtA) = (sAf)(t)

and thus
wr(sf) = wr/a(sf) = wr/a(SAF) = wr A (f) = wr(f)

for all f € {>°(I') and s € T. [ |
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Proposition 1.4.10. Amenability is closed under direct unions.

Proof. Let (T;) be a direct system of amenable groups, ¢ >0 and E C T := U;l}
be a finite set. Then there exists 1 such that E C I;. Thus, there exists a
finite F C I} < T such that

|sFAF| .
sup ——— :
seF |F|
meaning that I" satisfies the Fglner condition. |

We will now use the above to establish the following fact, which will
come into play later on.

Proposition 1.4.11. There exists a normal amenable subgroup Ay < I' which
contains all other normal amenable subgroups of I'. We call this the amenable
radical of T and denote it by Ry (T).

Proof. Let {Ai} be the family of normal amenable subgroups of I". Since this
family is closed under direct unions, we can invoke Zorn’s lemma to obtain
a maximal element Ay of {A;}. Assume that A; Q Ao for some 1. Then A,
is normal in AgA; and AgAi/Ag >~ Ai/(Ai N Ap). Thus, since amenability is
closed under extensions, Ag/A; is amenable and normal (since Ay, A; are),
contradicting maximality of A,. |

1.5 Crossed Products

Crossed products sit in the heart of the interplay between dynamics and
operator theory, so their usefulness in this work should be quite unsurprising.
The context in which they arise is that of C*-dynamical systems, and it is
an effective way of encoding them. This section serves as an introduction
to the topic, presenting the constructions as well as some key properties.

Definition 1.5.1. A C*-dynamical system is a triplet (A, «,T'), where A is a
(unital in this work) C*-algebra and « is a I'-action on A by *-automorphisms.
We will call such an A a I'-C*-algebra.

For the rest of the section, unless otherwise specified, (A, &, T") will denote
a C*-dynamical system, the notation covering the individual parts of the
triplet, too (e.g. A will denote a I'-C*-algebra, even on its own).

We want to construct a single C*-algebra which minimally contains A
and I' (i.e. it is generated by them) in a way that makes « inner (a property
reminiscent, uncoincidentally, of the semidirect product of groups), so that
we will be able to recover from it information about (A, «,T'), and vice versa.

To that end, we start with the «-twisted group algebra A[l; o] (= C.(T', A)
as linear spaces), i.e. the usual group algebra, equipped instead with the
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x-twisted convolution product defined by

(Z ass) o (Z btt) = Z AsXg (bt)St.

sel ter s,tel

We also define an involution on A[l"; &] by

(3 as) =Y acalal)s

sel sel’

which turns it into a *-algebra that seems to be doing exactly what we want.
It remains to find a suitable completion.

Definition 1.5.2. A covariant representation (7, u,H) of A consists of a uni-
tary representation u : I' — B(H) and a *-representation 7 : A — B(H)
such that the T-action on A is spatially implemented inside B(XH), i.e.
m(as(a)) =usm(a)ul for all s e " and a € A.

It is clear that covariant representations of A correspond exactly to
*-representations of A[l'; a]. For a covariant representation (7, u,H), we will
denote the corresponding *-representation by 7 x u.

We can construct an abundance of covariant representations in the
following way. Consider any *-representation (7, ) of A. This induces a
*-representation (71, H ® €3(T")) of A defined by

m(a)(&® &) = (m(as-1(a))E) @ &5

for all a € A, s €T and & € H. Then, (7, 15 ® Ar, H ® (3(T")) is a covariant
representation. Notice that 7@ x (13c ® Ar) is faithful whenever 7 is. In
particular, the universal norm defined below is, indeed, a norm.

Definition 1.5.3. The full or universal crossed product of (A, «,T"), denoted
by A x4 I' (or simply A x T'), is the completion of A[l'; a] with respect to the
norm defined by

Ix|l,, = sup{||7t(x)] : 7 is a *-representation of A[T; o}
for all x € A[T; «f.

Notice that if A = C and « is the trivial action, then A[l"; a] = C[I'] and
C Xy '=C*(I"). Similarly to C*(T'), the full crossed product satisfies (and is
characterised by) the following universal property.

Proposition 1.5.4. For every covariant representation (m,u,H) of A, there
exists a *-representation (7 x uw,H) of A x, ' such that

7T X u(Z ass) = Z m(ag)us
sel serl

forall ) . .rass € Al ] C AxqT (in other words, *-representations of A[l"; «
extend to *-representalions of A x4 T).
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Definition 1.5.5. The reduced crossed product of (A, «,T'), denoted by A X
' (or simply A %, T), is the ||.||-closure of (7t x (13c ® Ar))(AI[l'; o) inside
B(H ® ¢*(T)) for some faithful representation (7, H) of A (using the notation
introduced right before defining the full crossed product).

For now, the above definition seems a bit shaky, but the next proposition
should remedy that.

Proposition 1.5.6. The reduced crossed product A x4, " does not depend on
the choice of faithful representation m: A — B(H).

Proof. Consider a finite F C T and let P € B(¢*(T')) be the orthogonal pro-
jection onto span{ds : s € F}. We would like to show that the norm of any
x € All’; of € B(H ® £2(TN)) is independent of 7t. It suffices to show that this
holds for the compression of x by lgs) ® P, and take the limit over F.

To that end, let {es }ster denote the matrix units inside B(¢*(I')), a € A,
and s € I'. Notice that

la) =) mlo'(a) @ ey,

terl

where the convergence is in the strong operator topology (i.e. the topology
of pointwise convergence). Therefore, 7t(a) commutes with 1g(5) ® P.
Thus, we have

— (Y g (@) @ec)( Y T @ es)

tel teFNsF

= Z 7'[(06;1((1))®et,s*1t

teFNsF

which lives inside M(A) — B(H ® €2(T)). Hence,
(1 (z0) @ P)(70 x (1a¢ x Ap)) (AIT; o) (1 (3¢) ® P) — Mg(A),
which admits a unique C*-norm. ]

Notationally, we will henceforth completely forget about 7 and the
fact that we amplified Ar, and denote the image of a typical element
X =2 (o ass € Al o inside A Xo T by D o asAs.

Unsurprisingly, if A =C and « is the trivial action, then the associated
reduced crossed product is just C(T').

Proposition 1.5.7 (Fell’s absorption principle - C*-dynamical version). Let
(m,u, H) be a covariant representation. Then 7 x (lgc ® Ar) is unitarily
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equivalent to (T® lg2(r))) @ (W Ar) (where we have abused notation for the
x-representation a — m(a) ® lg(e2(ry) of A). In particular,

A X T C((A) @ Lge2(ryy, (W@ AR)(T)) € B(H) @ CH(T)
whenever m is faithful.

Proof. Consider the unitary U defined in the proof of Fell’s absorption
property (Theorem 1.2.14), which, as we already know, intertwines 15 ® Ar
and u ® Ar. Using covarience, we also have

U*(t® Ig(ez(ry) ) U(E ® 8¢) = (uim(a)ueE) ® O
= ({01 (a))é) ® ¢

7i(a)(& ® d)

for all £ € H,t €T, and a € A. The result is now immediate. [ |

We will close this section (and this chapter) with the introduction of a
very useful tool. But first, the following lemma is required.

Lemma 1.5.8. Let A, B be C*-algebras and ¢ be a faithful state on B. Then
idg ® @; A® B — A is faithful.

Proof. Assume A C B(H) and B C B(X), and thus A ® B — B(H ® X). Since
vector states corresponding to elementary tensors separate operators in
B(H ®X), we have that elementary tensors of states in A* ® B* separate the
points of A ® B (because the aforementioned vector states are elementary
tensors of vector states in B(H)* ® B(XK)*).

Therefore, for x € (A ® B),, there exists a state  on A such that
(U ®idg)(x) > 0. Since ¢ is faithful, we have that

Y((ida @ @)(x)) = @((b ®ids)(x)) > 0,
which implies (idg ® @)(x) # 0. |

Proposition 1.5.9. There exists a faithful conditional expectation E: Axqy " —
A such that E(As) = 140¢(s) for all s €T.

Proof. By Fell’s absorption property, A x4, [ can be seen as a C*-subalgebra
of B(H) ® C(T'). Restricting idgs)® To to A X, ' gives us E, which is
faithful by the previous lemma. |
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Chapter 2

The Furstenberg-Hamana Boundary

In the second half of the 1970’s and the first half of the 1980’s, Masamichi
Hamana published a series of papers introducing the notion of an injec-
tive envelope for several categories of operator algebraic interest [ ;

; ; ]. The concept was by no means new or ground-
breaking for analysts, as, for example, Cohen had already done the same for
Banach spaces [ ]; and even before that, the idea existed in the alge-
braic realm of modules under the cloak of injective hulls [ ]. Hamana’s
work, however, has seen a lot of use in the last decade, as an observation
he had already made was rediscovered and subsequently exploited to make
a connection between the dynamical and the C*-algebraic properties of
discrete groups.

In this chapter we briefly go over Hamana’s theory of I'-injective en-
velopes, in order to introduce the Hamana boundary of I' and study its
properties. As we shall see — and this is the cornerstone of this whole work
— this boundary, albeit C*-algebraic in nature, can be identified with the
Furstenberg boundary of the group, which was defined in dynamical terms
by Hillel (Harry) Furstenberg.

2.1 Injective Envelopes of I'-Operator Systems

We begin this section by introducing the main categorical concept behind
it.

Definition 2.1.1. An object I in a category € is called injective iff every
morphism X — I factors through every monomorphism X — Y.

Well-known examples of injective objects in analysis include C in the
category of Banach spaces (Hahn-Banach theorem), ¢y in the category of
separable Banach spaces (Sobczyk’s theorem) and B(H) in the category
® defined below (Arveson’s extension theorem) and in the category of
operator spaces with completely contractive maps as morphisms (Wittstock’s

19
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extension theorem).
Let us now focus on the categories we are interested in. In the rest of
the chapter, § will denote an operator system, unless otherwise specified.

Definition 2.1.2. We call & a l'-operator system (or I'-module) iff I acts on it
by unital complete order isomorphisms. A unital completely positive (u.c.p.)
[-equivariant map between I'-operator systems will be simply called a I'-map
or a '-homomorphism.

With that in mind, we define I'$; to be the category consisting of I'-
operator systems as objects and -maps as morphisms. We also define the
categories & and &; of operator systems with completely positive (c.p.) and
u.c.p. maps as morphisms, respectively.

Definition 2.1.3. § is called I'-injective iff it is injective in I'®;.
Example 2.1.4. {>°(T") equipped with the action
(sf)(t) =f(s™"t), seT, et
is I'-injective.
More generally, we have the following.

Lemma 2.1.5. If § is injective in &, then {*(T",8) equipped with the action
(sf)(t) =f(s™t), seT,fe>(T,8)
1s I'-injective.

Proof. Let @ : T — {>°(T',8) be a I'map and t: T — U a 'monomorphism.
Consider the u.c.p. map P =ev. o @ :T — 8§, where ev, is the evaluation at
the identity element e of I'. Since 8 is injective, there exists a u.c.p. map
11) U — 8 which extends 1, i.e. 1bo t =1. Then the map ¢ : U — (T, 8) :
X (11)( “Ix))ser is a T-map extending .

We want now to shift our attention to a more specific kind of I'-injectivity.
We require a few more definitions.
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Definition 2.1.6. A T-extension of 8 is a pair (7,t), where T is a I'-operator
system and t:8 — 7T is a completely isometric I'-equivariant map.

Definition 2.1.7. A T-extension (7,() is called:
o ['-injective iff T is I-injective.

o [-essential iff for every I'map ¢ : T — U, ¢ is completely isometric
whenever ¢ ot is.

o ['-rigid iff for every 'map ¢ : T — 7, @ is the identity on T whenever
@oL=1L

Definition 2.1.8. A T-extension of § that is both I'-injective and I'-essential is
called a I'<injective envelope of 8.

A couple of remarks are now in order. Firstly, every I'-operator system
8 C B(H) has a I'-injective extension. To see this, we simply notice that
the map j : 8§ — £°(I',B(H)) : x = (s 'x)ser is a N-monomorphism. Since
(*(T,B(H)) is I'-injective (by Lemma 2.1.5), it is a '-injective extension .

Secondly, if 8 is I'-injective, then idg factors through j, producing a I'map
@ :{*(I',8) — 8 such that ¢ oj = ids. Furthermore, if P : T — 8 is a c.p.
map and i1: T — U is a complete isometry, then 1 factors through i as seen
in the commutative diagram below. Thus, & is also injective in & (as is
(T, B(H)); an easy consequence of Arveson’s theorem).

o ¥
e

P R S
T . 8 (M B(H) —2 5 8

Conversely, if § is injective in & and there exists a I''map ¢ extending
ids as above, then § is I'-injective (using practically the same diagram).

From now on we will freely assume 8§ C {*(G,S§), forgetting the T-
monomorphism involved (thus the map ¢ defined above will be regarded as
a projection).

As we shall see next, every [-operator system also has a I'-injective
envelope - and a unique one at that.

Let us fix operator systems 8 C T C B(H) such that T is I'-injective and 8
is a I'-operator subsystem of 7.

Definition 2.1.9. An §-map on T is a 'map ¢ : T — T that fixes § pointwise.
An S-seminorm on T is a seminorm p on T such that p(.) = ||¢(.)|| for some
S-map @ on J. An 8-map is called an S-projection iff it is idempotent.
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Lemma 2.1.10. There exists a minimal 8-seminorm on 7.

Proof. We first note that the unit ball, call it By, of B(T,{>(I",B(H))), the
space of bounded linear maps from T into £>°(T", B(H)), is compact in the point-
6-topology, i.e. the topology of pointwise convergence where (*(I",B(H)) is
endowed with the o-weak topology.

Indeed, it is a closed subset of the topological space

[ [t e e BEO) =yl < Il
x€T
which is compact by Tikhonov’s theorem and the Banach-Alaoglu theorem.
Now we would like to invoke Zorn’s lemma, so let (p;) be a decreasing
net of 8-seminorms on 7 and ¢@; : T — T be corresponding 8-projections.
Regarding (¢i) as a net in By, there exists a subnet (¢;) and a ¢, € B,
such that @j(x) = @o(x) o-weakly for all x € 7. It is immediate that @,
is completely positive (because the positive cone is closed in the o-weak
topology), @ols = ids (because § is fixed pointwise by every ¢;), and T-
equivariant (because I' acts by unital complete order isomorphisms, which
are continuous). However, @, need not be a I'-projection, since its image is
not necessarily contained in TJ!
This is easily cured of course, because T is I' injective and so there is a
l-equivariant u.c.p. projection P from £>°(T", B(H)) onto it, hence now 1V o @q
is a bona fide 8-projection on J. Moreover, for all x € T we have

Po(x) = [[ W o @o(x)|| < |[@o(x)|| < limsup [|@;(x)|| = limpi(x) < pi(x) Vi,

since p; is decreasing.
Thus, Zorn’s lemma can indeed be invoked and we are done. |

Lemma 2.1.11. If @ : £°(T, B(H)) — €*(I',B(H)) is an 8-map corresponding
to a minimal §-seminorm, then @ is an S-projection and T = @({*(T",B(H)))
1s I'-injective.

Proof. To show that ¢ is an § projection, notice that ¢ o ¢ is also an 8-
map and ||[(@ o @)(x)|| < [[@(x)|| for all x € {*(T,B(H)). By minimality, we
get equality and inductively ||@™(x)|| = ||@(x)|| for all x and all n. By
setting Pn = (@ + --- + @™)/n and using the same argument, we get
b (x)]] = |l@(x)]| for all x and all n. Thus,

lo(x) = (@o@)(X)|| = lo(x— @ ||=||1I)nx—<p(><))||
H ™) P (x) -+ oM (x)
n
< 2ol
n

Hence, ||@(x) — (@ o @)(x)|| =0 for all x, i.e. @ is an 8-projection.
Now T-injectivity is immediate, since (T, B(3)) is I'-injective. [ |
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Lemma 2.1.12. Using the notation of the previous lemma, (T,1) is a I'rigid
extension of § (L is simply the inclusion map).

Proof. Let ¥ : T — T be a I'map such that P|s = ids. Since |[(P o @)(x)| <
|o(x)|| for all x € €*(T',B(H)), we have |[W(@(x))]| = ||e(x)|| by minimality.
Thus 1V is an isometry. Furthermore, by the previous lemma, P o @ is a
projection, so oo =Ppo@oPpop =1Ppopoe (since @ is the identity on 7).
Therefore, Y(@ —1 o @) =0. Now since 1 is an isometry, we get po @ = @,
i.e. Y =idy. |

Lemma 2.1.13. If (T,1) is a T-extension of 8 that is both T-injective and
I'rigid, then it is also I'-essential.

Proof. Let @ : T — U be a 'map such that ¢ o is completely isometric.
Consider the M'map to(@ot) ™ : (@ot)(8) — T. By I'injectivity, it extends to a
I-map P : U — T. But then the 'map w =1Ppo¢ : T — T satisfies wor =t and
so w = idg by I'rigidity. Thus, ¢ is completely isometric and I'-essentiality
is proven. |

We now have all the ingredients needed for the main theorem of this
section.

Theorem 2.1.14. Every T-operator system 8§ C B(H) has a T-injective envelope
which is unique in the sense that if (T1,1) and (Js, ) are two T-injective
envelopes of 8, then there exists a I'-isomorphism w : J; — T3 such that
W O L] = Lg.

Proof. Let @ : {*(I",B(H)) — (T, B(H)) be an 8-map inducing a minimal
8-seminorm on {*(I';B(H)). By Lemma 2.1.11, T := @({>(T',B(H)) is a T-
injective extension of 8. By Lemmas 2.1.12 and 2.1.13, it is also I'-rigid and
thus I'-essential. We have shown existence.

To prove uniqueness, let (T1,1;) be another I'-injective envelope of S. By
I-injectivity of 77, there exists a I'-map 1\ : T — J; extending ;. Similarly,
there exists a 'map w : J; — T such that w o =ids. Then w o1 fixes §
pointwise, so by I'-rigidity of 7, wo1 =idy. On the other hand, powoy =1
and, by lN-essentiality of 77, { o w is completely isometric. Hence, w is a
I'-isomorphism which, by definition, satisfies the condition we wanted.
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Bemark. A by-product of the above is that I'-essentiality can be replaced by
I-rigidity in the definition of the I'-injective envelope. That, however, is
not the only meaningful way the definition can be altered. The interested
reader can refer to Paulsen’s book [ , Theorem 15.8] for more details.

We will denote the T-injective envelope of 8§ by Ir(§8), omitting the TI'-
monomorphism involved (since uniqueness renders it practically redundant
in our line of study) and identifying 8§ with its image inside Ir(8).

Having established existence and uniqueness, we continue by proving
that every l'-injective envelope is, in a way, a C*-algebra. More generally,
Choi and Effros proved in [ ] the following.

Theorem 2.1.15. Let § be injective in & and let ¢ : A — § be a u.c.p. projection
Jrom a C*-algebra A DO § onto § (just extend ids by injectivity). Then the
operation x oy = @(xy) defines a multiplication on § which, along with the
original tnvolution, turns it into a C*-algebra.

Proof. Clearly, o is well-defined, distributive and has an identity (the same
as the original). It remains to show associativity.

We will achieve this by showing that @(¢@(a)x) = ¢(ax) and ¢(xe(a)) =
@(xa) for any a € A and x € 8.

*

To that end, consider the matrix A = )B 8 . Using the Schwarz
inequality for 2-positive maps on @2) and A, we obtain
o0o)  olxa) w o xela) |
¢(a*x*) ¢(a*a) ela”)x" ¢(a)"p(a)

and applying @) yields
0 e(xa) —oxe(a)) |,
e(a*x*) — @(@(a)x") @la*a)—o(e(a)*@(a))| =

Thus, @(xa) —@(x@(a)) =0 = @(a*x*) — @(e(a*)x").

It remains to verify the C*-condition. One direction is clear, since
Ix* o x| = ||@(x*x)|| < ||x*x|| = ||x||>. The other is not that hard either, since
by the Schwarz inequality we have @(x*x) > @(x*)@(x) = x*x and therefore
lo x| = [x=x|| = [IxII*. u

The multiplication defined in the above theorem will be henceforth
referred to as the Choi-Effros product.

2.2 The Hamana Boundary

2.2.1 Definition and Universality

With the tools developed in the previous section at our disposal, we turn
our attention to a particular case. Consider C equipped with the trivial
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l-action. Then, as we saw, there is a u.c.p. projection {*°(I') — I(C). Thus,
Ir(C) equipped with the corresponding Choi-Effros product is turned into a
commutative (since {*(T') is commutative) C*-algebra.

Definition 2.2.1. We define the Hamana boundary of I', denoted by oy, to
be the Gelfand spectrum of Ir(C).

Remark. The action of T on Ir(C) induces an action on P(0yl'), the space of
probability measures on oyl’, by

de(su) = Jslfdu, sel,felr(C),ue Ployl).

The restriction of this action to the Dirac measures is, by the usual identifi-
cation, a I'-action on oyl

Definition 2.2.2. A locally compact Hausdorff space X is called a I'-space iff
" acts on it by homeomorphisms.

Hence the previous remark tells us that oyI" is a compact I'-space, as is
P(OnTl") endowed with the weak-* topology. We will see that the former is of
a very special kind.

Before proceeding, notice that oyl already has an immediate use; it
detects amenability. Indeed, amenability is equivalent to the existence of a
IMmap {*(I") — C which in turn is equivalent to Ir(C) =C, i.e. oyl being a
singleton.

We want now to introduce the notion of I'-boundaries in the sense of
Furstenberg [ ], in order to show that the Hamana boundary is properly
titled in that context.

Definition 2.2.3. Let X be a compact I'-space. The l'-action on X is called:
e minimal iff Tx = X for all x € X.

e proximal iff for every pair of points x,y € X there exists a net (s;) in
" such that lim six = lim s;y.

e strongly proximal iff the induced Tl'-action on P(X) is proximal iff for
every pu € P(X) there exist a Dirac measure in [NTRE

Definition 2.2.4. A compact I'-space X is called a I'-boundary iff the I'-action
on X is minimal and strongly proximal.

Proposition 2.2.5. The T'-action on oyl’ is minimal.

Proof. Let x € oyl and consider the restriction map v : C(dyI') — C(Tx).
Then 1 is a '-map which is completely isometric on C. By the I'-essentiality
of C(0nl), r is completely isometric. That forces 'x = 0T, because otherwise
Urysohn’s lemma guarantees kerr is non-empty. |
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Remark. The above proof showcased a very nice property of C(oyl'). Every
M-map with C(0nl") as its domain is automatically completely isometric,
since it is always completely isometric on C.

Proposition 2.2.6. The I'-action on oyl is strongly proximal.

Proof. Let € P(0nl),x € oyl and K = conv{l“u}w*. We will show that 6, € K.
Indeed, if not, then by the Hahn-Banach separation theorem we can find
a positive fy € C(oyIl") and € > 0 such that

Jfo d(sp) < Jfo dox —e < |[fol| — ¢, Vs eT.
This implies that the so-called Poisson map P, : C(0nul") — ('), defined by
P.(f)(s) = de(su), fe Coul),seT,

satisfies ||Pu(fo)|| < [|fol| — €. But P, is a I'-map and thus isometric by the
above remark, a contradiction. Hence 6, € K.
We just proved that K contains the extreme points of P(oyl’), so K =

P(0nT). Therefore, the Dirac measures are contained in WLW by Milman’s
partial converse to the Krein-Milman theorem. ]

Corollary 2.2.7. The Hamana boundary oyl is a I'-boundary.

Furstenberg proved the existence and uniqueness of a universal object
among [-boundaries, in the sense that every I'-boundary is a continuous
[-equivariant image of it, introducing what came to be known as the
Furstenberg boundary 0¢l’ of T'. In the remainder of this section we will prove,
by completely different techniques, that oyI" also satisfies this condition
and thus the Hamana boundary and the Furstenberg boundary of a discrete
group are one and the same. This identification was observed by Hamana
himself in [ , Remark 4] but was left unnoticed until Kalantar and
Kennedy gave a formal proof in [ ].

Lemma 2.2.8. If M 1s a minimal compact I'-space and X is a I'-boundary,
then any continuous T-equivariant map M — P(X) has X as its range (i.e. the
Dirac measures). Moreover, there exists at most one continuous I'-equivariant
map M — X.

Proof. Let «: M — P(X) be a continuous N-equivariant map. «(M) C P(X)
is compact, therefore closed, and l'-invariant. Thus, since X is a boundary,
X C «(M). In particular, we can choose m € M such that a(m) € X.
By T-equivariance and minimality of M, a(M) = «(T'm) C T'x(m) = X, so
a(M) =X.

Now if (31,2 : M — X are continuous [l-equivariant maps, then « :
M — P(X) :m — 1(8p,(m) + Op,(m)) also is. Since a(M) = X and the Dirac
measures are extreme points in P(X), we have [3; = 3s. [ |
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Corollary 2.2.9. Let M and X be as in the previous lemma. There is at
most one I'-map C(X) — C(M). If such a map exists, then it is a unital
*-homomorphism.

Proof. Let @ : C(X) = C(M) be a I''map. Then the adjoint map ¢* restricts
to a continuous l-equivariant map « : M — P(X), which, by the previous
lemma, is unique and has X as its image. But « induces an injective
*-homomorphism C(X) — C(M) by f — fo «, which is actually the map ¢ we
started with, since

(foa)(m):=(@"(8m))(f) = dm(@(f))

@(f(m)), fe C(X),me M.
[ |

Theorem 2.2.10. Let X be a T'-boundary. Then there exists a conlinuous
I'-equivariant map oyl — X. Hence oyl" and 0l can be identified.

Proof. Fix any point x € X and consider the continuous I'-equivariant map
&y : s+ sx,s € . By the universal property of the Stone-Cech compactifi-
cation BI' of T, we can extend this map to a continuous I'-equivariant map
o : BT — X. Since o (BI') is compact and T-invariant, &, is surjective.
Now &, induces a unital isometric G-equivariant *-homomorphism 1 :
C(X) — C(PT) =£=(T") by f+ fo a,. Composing i with the idempotent u.c.p.
I-equivariant projection £*(I") — C(0yuI') produces a I'mmap C(X) — C(onl),
which, as in the proof of the previous corollary, induces a continuous
I-equivariant map oxl" — X. |

Henceforth, we will use the unifying 0fnl" to denote the Furstenberg-
Hamana boundary of T.

2.2.2 Further Properties

Definition 2.2.11. A topological space is called extremally disconnected or
Stonean iff the closure of every open set is open.

Proposition 2.2.12. The Furstenberg-Hamana boundary of T is extremally
disconnected.

Proof. Let U be an open subset of oyl and let K = (U x {0}) U (U€ x {1}). Pick
X € Opnl” and define «: " — K by

(sx9,0), if sxp € U
x(s) =
(sxg,1), otherwise.

K is compact in 0gyl" x {0,1}, so we can extend « to a continuous map
«:pr— K.
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We know there is a u.c.p. T equivariant projection C(BI') = (*(T") —
C(0gnI), which induces a continuous I-equivariant 3 : 0gyl" — P(BT"). Con-
sider the composition y := 7, o &, o B : Ogyl" — P(0rnl") where 7: K — 0yl
is the projection on the first coordinate (we are using the standard push-
forward notation). Since 7o & : s — sxq is '-equivariant, so is mo & by
continuity. Thus, vy is a continuous lN-equivariant map 0gyl" — P(0rnl"). By
Lemma 2.2.8, vy maps elements in 0ryl" to the corresponding Dirac measures
and therefore w, := ®, ob(x) is supported on {x} x {0, 1} for any x € dgyI". This
immediately gives us that wu,(U¢ x {1}) =0 if x € U, and p, (U x {1}) =1 if
x ¢ U. By the continuity of both the map x — p, and the indicator function
Lyexq1}, we get that the map x — p, (U° x {1}) is also continuous and hence
forced to be the indicator function 1y.. This implies that U€ is clopen. W

This property is, in a sense, quite discouraging, as extremally discon-
nected spaces are topologically not easy to grasp or pinpoint. It also
eliminates any hope to generalize anything discussed in this work to the
non-discrete case. The reason is that, although the Hamana boundary is al-
ways extremally disconnected, as the spectrum of an injective commutative
Cr-algebra [ , Theorem 5.1], the Furstenberg boundary can be much
nicer (e.g. metrizable) when the group is not discrete (e.g. a semisimple Lie
group) [ ]. Thus, we cannot, in general, make the crucial identification
of the two.

Lemma 2.2.13. For every x € gyl the point stabilizer Ty ={s € T': sx =x} is
amenable.

Proof. Let x € 0pyl" and consider the u.c.p. l-equivariant projection ¢ :
€*(T) — C(0gnIl"). The composition evy, o @ : {*°(I") — C is a I'c-invariant state,
since

(s(evx 0 @))(f) = evi (s @(f)) = (s '@ (f))(x)
= @(f)(sx) = @(f)(x)
= (evyx o @)(f),

for all s € T, and f € ().

Now, let (si) be a transversal of the right coset space I'\Ty. Define a map
P L°(Ty) — £2°(T) by W(f)(s) = f(t), where t € T satisfies s = ts; for some 1i.
Then ¥ is a I'y-equivariant unital *~-homomorphism and thus the composition
evy o @ o is a Iy invariant state on {*°(Ty), witnessing amenability. [ |

Proposition 2.2.14. The kernel of the action of T' on 9ryl" coincides with the
amenable radical Rq(T') of T.

Proof. Being amenable, R, (I") fixes a probability measure p on 0ryl’. Since
it is also a normal subgroup, it fixes every measure in . By strong
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proximality, Tu contains a Dirac measure and thus, by minimality, all of
them. Therefore, Ry (I") fixes all of 0yl i.e. it is contained in the kernel of
the action.

Conversely, the kernel of the action is the intersection of the point
stabilizers, which is amenable by the previous lemma and thus contained
in Rq(T). |
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Chapter 3

The Reduced Group C*-Algebra

In 1967, at a conference held in Baton Rouge, Dixmier posed the question
of whether every simple C*-algebra is generated by its projections. At
some point in 1968, Kadison, who already had conversations of a similar
nature with Kaplansky back in 1949, suggested to Powers that the reduced
Cr-algebra of F,, the free group on two generators, should prove to be
simple, yet projectionless. The latter managed to prove the first half of this
statement, establishing C*-simplicity of Fy, within a week. Powers, however,
did not really care to publish this result, as he failed to prove the rest. In
fact, it took him seven years to publish [ ], and only after a request by
Akemann, who wanted to use it.

Nevertheless, Powers’ work proved to be quite important. Powers’ averag-
ing property (the main ingredient in his proof) became, modulo variants
and modifications of it, essentially the only tool to prove C*-simplicity, for
decades. Spearheaded by de la Harpe’s efforts, the list of C*-simple groups
grew slowly but steadily using this kind of combinatorial methods and,
along with it, new questions concerning the reduced C*-algebras of discrete
groups quickly arose.

One main problem was to clarify the precise relationship between C*-
simplicity and the unique trace property, as both implied triviality of the
amenable radical, but no other direct connection between them had been
found.

In this chapter, we will present dynamical characterisations of both
properties, leading to a complete solution of the above problem, as well as a
characterisation of exactness that fits nicely in our framework.

31
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3.1 C*-Simplicity

3.1.1 The Main Theorem

The purpose of this subsection is to prove the following theorem, established
in|[ ] and [ ].

Theorem 3.1.1. The following are equivalent:
1. T"is C*-simple.

2. The reduced crossed product C(0gnl") %, T is simple.
3. The reduced crossed product C(X) x, T is simple for some I'-boundary X.
4. The T'-action on 9rul’ 1s (topologically) free.

5. The T-action on some I'-boundary is (topologically) free.

Before we proceed with this task, we have to give the necessary defini-
tions.

Definition 3.1.2. T is called C*-simple iff the reduced C*-algebra C:(I') is
simple (i.e. it has no non-trivial closed ideals).

This definition, albeit completely natural, is not always the most useful.
We will need the following characterisation, given as a definition for
example in [ ].

Proposition 3.1.3. T is C*-simple iff, for every unitary representation m of T,
the conditions @ < Ar and 7~ Ar are equivalent.

Proof. The proof is a simple application of Proposition 1.3.4. Assume I' is C*-
simple and let 7t < Ar. Then, C*kert O C* ker Ar. Therefore, C* ker 7t/C* ker Ar
is a closed ideal of C*(T')/C*kerAr = Ci(I') and thus C*kermm = C*kerAr.
Hence, T~ Ar.

Conversely, assume I' is not C*-simple and let I be a non-trivial closed
ideal of C:(I'). Seeing C:(I') as the quotient C*(I')/C*ker A, I is of the form
J/C* ker Ar for some closed ideal ] O C*ker Ar of C*(T'). But ], being a closed
ideal of C*(T'), is of the form C* ker 7t for some unitary representation 7t of T.
Thus, we have m < Ar and 7 = Ar. |

Definition 3.1.4. Let X be a I'-space. The T'-action on X is called topologically
free iff X° :={x € X:sx = x} has empty interior for all s € "\ {e}.

We will split the proof of the theorem in several steps.

Lemma 3.1.5. Let X be an extremally disconnected Hausdorff space and
suppose f: X = X is a homeomorphism. Then the set F of fixed points of f is
clopen.
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Proof. Call an open set U C X f-simple iff f(U)NU = 0. f-simplicity is closed
under increasing unions and, thus, there exists a maximal f-simple set U,.
By extremal disconnectedness, U, is also open and f(Uy)NUy C mﬂuo = 0.
Hence mﬂ Uy =0, i.e. Up is f-simple and so Uy is clopen by maximality.

Clearly, FN Uy = @ and therefore FNf(Uy) = FNf1(Uy) = 0. Let V =
Uy U f(Up) U f1(Uy) C F. We claim that equality holds, which would finish
the proof. If not, let x € V¢ be such that f(x) # x. Since X is Hausdorff
and V is closed, there exists an open neighbourhood W of x such that
WNfW)=WnV =(. In particular, WU Uy D Uy is f-simple, contradicting
maximality of U,. |

Corollary 3.1.6. The I'-action on oyl s free iff it is topologically free.

Proof. By Proposition 2.2.12, 9pyI" is extremally disconnected. By the previ-
ous lemma, the set (0pyl")® is open for all s € T, and thus it is empty iff it
has empty interior. |

Lemma 3.1.7. If the I'-action on some I'-boundary is topologically free, then
so 1s the T'-action on Ofyl.

Proof. Let X be a I'-boundary on which I' acts topologically freely and
assume that there exists an s € I' such that F := (0pyI")* has non-empty
interior. Consider the I'map 7t: 9pyl" — X provided by universality. Notice
that 7t(F) is compact (in particular closed) and has empty interior, as it is
contained in X°®.

Let U C F be open and non-empty. By minimality, we have ' = 0yl
By compactness, there exist sq,83,...,5, € I' such that Ul ;s;U = 0y, and
therefore Ul ;simt(U) = X. A fortiori, U* ;s;mt(F) = X, a contradiction. |

We have proved (4) <= (5) of the theorem. Now we want to throw
condition (1) into the mix.

Lemma 3.1.8. Let X be a non-trivial T'-boundary. Then X is infinite and
contains no isolated points.

Proof. If X were finite, then the uniform probability measure on it would
be fixed by I', contradicting strong proximality. Now, if we assume x € X
is an isolated point (i.e. {x} is open), minimality implies that 'x = X and
thus, by compactness, Fx = X for some finite F C I'. Therefore X is finite, a
contradiction. [ |

Lemma 3.1.9. Let X be a I'-boundary. For every non-empty open set U C X and
every € > 0, there exists a finite set F C '\ {e} such that for every u € P(opnl),
there exists an s € F such that u(sU) > 1 —e.
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Proof. 1f X is trivial (i.e. a singleton) there is nothing to prove, so we will
assume otherwise. To that end, fix x € U and let u € P(X).

If w=20, let y € U\ {x} (such y exists by the previous lemma) and let V
be an open neighbourhood of y separating it from x. By minimality, there
exists an ss, € I' such that sgxlx € UNV and since x ¢ V, s5, is not the
identity. Then of course 6y(ss U) = ésgxlx(U) =1>1—c¢.

If p # b4, by strong proximality and minimality there exists a net (s;)
in T such that s;p — 8¢ and we can freely assume no s; is the identity
(by removing terms). By Urysohn’s lemma, there exists f € C(X) such that
f(x) =1 and 0 < f < 1y. By definition, s;jpu — &, implies (s;u)(f) — f(x) =1,
thus we can pick an s, € I' such that p(s,U) = (s,p)(U) = (sppu)(Ly) >
(sup)(f) >1—ce.

In any case, u(s,U) >1—¢. Now, let f € C(X) be such that 0 <f < 15,u
and p(f) > 1 —e¢. By continuity of the evaluation on f, there exists a weak-*-
open neighbourhood V,, of p such that v(s,U) > v(f) > 1—¢ for all ve V,.
By compactness, there are V,,,V,,,..., V., that cover P(X), for some n € N,
so we can pick F={s;,,Su, ..., Su. ) [ |

Proposition 3.1.10. Let X be a I'-boundary. If the I'-action on X is not topo-
logically free, then the left regular representation Ar is not weakly contained
in the quasi-regular representation Ar,r, corresponding to Iy, for any x € X.

Proof. Let s € '\ {e} be such that X* has non-empty interior U. Fix ¢ =1/3
and let F C T be as in the previous lemma.

Assuming Ar < Ar,r,, there exist finitely many unit vectors &;,&;,...,&n €
¢3(T'/Ty) such that

(Ar(tst )8, de) Z<7\r/r (tst™ )&, &)| < 1

oo|>—~

for all t € F.
Consider the probability measures on X defined by

Zr E(Y)IP8y, p=— Zul,
yelx

where we have used the natural identification between I'x and I'/Tx. By
definition, there exists t, € F such that p(t,U°) <, i.e.

_ZZW y (tUS) = — Z D> lElty)P 2)
i=1yelrx i=1 yeucnrx

Moreover, denoting Ar/rx(tgl)& by v; for each i, we obtain

(Aryr(s)vi,vi) = Z vi(s'y)viy)

yerx
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= Z vily)* + Z vi(sTiy)vily)

yeunrx yeucnrx

and thus, using the Cauchy-Schwarz inequality, we have
11— (Aryr (tust DEL &) | = [1— (Aryr (s)vi, vi)|

1= Y P Y wils Tyl

yeunrx yeucenrx

= Y MmE- Y vl ywily)

yeucenrx yeucenrx

<2 Z vi(y)P?

yeucenrx

=2 ) &ty

yeucnrx

Averaging over 1 and using (2) we obtain

n

1
1—|= Z <7\r/rx(tu3t;1)5u Ei>

< 2
n 4 3’
i=1

which contradicts (1) (just notice that the term (Ar(tst™1)d.,8.) always
vanishes). ]

Corollary 3.1.11. If " is C*-simple, then the T'-action on Ornl" s topologically
free.

Proof. Assuming otherwise, by the previous proposition we get that Ar 4
Ar/r, for all x € 9gyl". But, by Lemma 2.2.13, every I is amenable, and thus
we have Ar,r, < Ar. That contradicts Proposition 3.1.3. [ |

Proposition 3.1.12. If the T'-action on 9rnl" is free, then T" is C*-simple.

Proof. Let m: C:(T") — B(H) be a non-trivial unital *-representation of C}(T').
We need to show that 7t is injective. Since C¥(I') = C x, I' sits naturally
inside C(0fnl") %, T, we can extend 7 to a u.c.p. map @ : C(0gnI") x. " — B(H)
by Arveson’s extension theorem. We will show that ¢ is faithful, which is
enough since C:(I') is contained in the multiplicative domain of .

First, notice that ¢ is a I'map (with respect to the natural I'-actions
by conjugation). Indeed, @(sa) = @(AsaAs) = m(As)p(a)(As) = s@(a). By
the remark following Proposition 2.2.5, the restriction of ¢ to C(0yl') is
completely isometric. Thus, we can consider the inverse I'-map (P’E%amr) :
@(C(0uTl")) — C(0rnl") and extend it by I'-injectivity to a I'-map 1 :im(¢@) —
C(ogul).

Now, the composition w =1o@ : C(Ogul") %I — C(0rnl") is a '-map which
is the identity on C(0yl") by T'-rigidity. We will show that w(As) = 0 for
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all s € '\ {e}, implying w is actually the canonical conditional expectation
E: C(Opul) % T — C(0fnul), which of course is faithful. To that end, let
s € T'{e} and x € 0pyl". Since the TN-action on 0yl is free, there exists
f € C(0pnl) such that f(x) # 0 = f(s 'x) = (sf)(x). Observe also that C(0¢nI)
is contained in the multiplicative domain of w and thus

wo\s)f = wU\sf) = w((Sf)As) = (Sf)w()\s)a
from which we obtain w(Ag)(x) = 0. [ |

Notice that we now get the following characterisation essentially for
free.

Theorem 3.1.13. T is C*-simple iff for every amenable subgroup A < T we
have }\r//\ ~ Ar.

Proof. Since Ara < Ar by amenability, the alternative definition of C*-
simplicity gives us the "only if". Now, if I' is not C*-simple, then the '-action
on Oyl is not free, thus Ar A Ar/r, for all x € 0pnI". But the stabilizers T
are amenable, so we are done. [ |

It remains to prove the equivalence (1) < (2) < (3). To do so, we
will follow the arguments used in [ ], in conjunction with the following
(easy) lemma.

Lemma 3.1.14. Let X be a T'-boundary and 1 be a closed ideal of C(X) x, T.
If 1 is proper, then 1N C(X) = {0}.

Proof. Notice first that ] = 1N C(X) is a proper I'-invariant closed ideal of
C(X). Hence, it is contained in a maximal ideal M of C(X). M is necessarily
of the form {f € C(X) : f(xo) = 0} for some xy € X, so every element in |
vanishes on xy. By the I'-invariance of |, elements of ] vanish on the orbit
of xg, which is dense by minimality. Thus, they vanish everywhere, i.e.

J ={0} ]

Theorem 3.1.15. Let X be a I'-boundary. The T'-action on X is topologically
free iff C(X) x,. T is simple.

Proof. Let I act topologically freely on X and I be a proper closed ideal of
C(X) x, . It suffices to show E(I) = {0} where E: C(X) x.T" — C(X) is the
canonical faithful conditional expectation.

If not, there exists a € I such that E(a) #0. Let b=} . fiA; € C(X)[I]
be such that ||a —b|| < ||E(a)|| /2. Consider also the set Y = Nsep\jefx € X :
sx # x} where F:={s € I": fg # 0} is finite. By topological freeness, Y is dense
in X.

For any y €Y, let 7ty denote the composition

CX)+1— (CX)+T1)/T=CX)/(CX)NT) = C(X) 2 C,
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where the second isomorphism exists by the previous lemma. By the Hahn-
Banach theorem, we can extend 7, to a u.c.p. map @y : C(X) %, ' = C. We
claim that @y (b) = @y(fe) = @y (E(b)).

Indeed, let s € F\ {e}. Since y € Y, there exists g € C(X) such that
1 =g(y) # g(sy) =0 and we have

Py (fsAs) = gy @y (fsAs) = @y (g) @y (fsAs)
= @y(gfsAs) = @y(fsgAs)
= @y (fsAs(s7'9)) = @y (fsA) @y (s
= @y(fsAs)g(sy) =0,

—1

g)

where we have used the fact that C(X) is contained in the multiplicative
domain of @.
It follows that

IE(R) ()| = oy (BB = [loy(b)]] = [y (b = a)[| < la —b]|

for all y € Y. By density, we have ||[E(b)|| < ||a —b]|, from which we obtain
the contradiction

[E(a)]l < [[E(a—Db)|[ + [[E(B)]| < 2[la—bl| < [[E(a)].

For the converse, assume X* has non-empty interior for some s € I'. Then
there exists a non-zero f € C(X) such that supp(f) C X*.

For x € X define a representation 7, of the (full) crossed product C(X) x T
on {?(I'x) by the formulas

T[X(f)étx = f(tx)étxv f € C(X)7
7Tx()\s)5tx = 68’[7(7 s € F,

which are covariant (and thus truly define a representation of C(X) x I).
Let I = Nyex ker . By minimality, it is clear that C(X) NI = {0}, thus I is
proper and so by the hypothesis the corresponding ideal in the reduced
crossed product is trivial. In particular, E(I) = {0}, where E is the canonical
conditional expectation on the full crossed product.

We will show that 7 (f — fug) = 0 for all x € X, which implies f =
E(f — fug) = 0, a contradiction. Indeed, if tx € supp(f) then tx = stx and so

70 (f — fug )0 = f(tx)0¢x — f(stx)dsix = 0.
If tx ¢ supp(f) then stx ¢ supp(f) and 7, (f — fus)dix = 0 trivially. |

This concludes the proof of Theorem 3.1.1, which is probably the most im-
portant theorem presented in this work, as it inspired many generalisations
and the usage of similar techniques in different contexts.
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Before we move on, let us close this subsection with an application. We
first remind the reader that a Tarski monster group or, in particular, a Tarsk?
p-group is an infinite group, such that every non-trivial subgroup of it is of
order a fixed prime p. Such groups exist by results of Olshanskii and are
non-amenable (at least those constructed by him).

Proposition 3.1.16. Olshanskii ’s Tarski monster groups are C*-simple.

Proof. Let I' be a Tarski monster group. We will show that the IN-action on
ornl is topologically free. If not, let sq € '\ {e} be such that (0pyI")*° has
non-empty interior and () # U C (0gnl")®° be an open set. We claim that U is
finite.

Assuming otherwise, let us fix x € U. By minimality, there exists s; €
"\ {so, e} such that s;x € U\{x}. But then sy € T, and thus I, =T, = s;\s;*
(since both subgroups are of the same prime order and both contain sy, which
generates them), i.e. s; € Np(Iy), the normalizer of I',. The definition of
Tarski monster groups forces Np(Iy) =Ty, so s; € I. If U is infinite, we
can repeat the same arguments and get an infinite set {s;,1 € I} C T}, a
contradiction since Iy is proper, and thus finite.

Now, since U is non-empty, finite and open, dryl" must contain isolated
points, a contradiction by Lemma 3.1.8. ]

3.1.2 Further Characterisations

In this subsection we will present a few more characterisations of C*-
simplicity which heavily rely on Theorem 3.1.1. We start with the following
theorem, appearing in [ ].

Theorem 3.1.17. Let Ty denote the canonical trace on C:(TI'). Then the following
are equivalent:

1. T'is C*-simple.
2. T E{sp:s € F}W*, for every state ¢ on C:(T').
3. 1y €conv” {s@ : s € T}, for every state @ on C*(T).

4. w(1)Ty € comv™ {sw : s € T}, for every bounded linear functional w on
C*(I).

5. For all ti,te,.. ..t € r\{e},

0e COHV{)\S (7\t1 + )\t2 + -t Atm))\: s € r}

6. For all ti,ty,...,tw € T\ {e} and all € > 0, there exist sy,82,...,5, € I’

such that
=]
Z E)\Sktjsgl <E&
k=1
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forj=1,2,....m

As usual, we will need some lemmas, the first of which is reminiscent of
techniques we have already used.

Lemma 3.1.18. Let T act on a compact Hausdorff space X, x € X, and ¢ be a
state on C(X) x, I' whose restriction to C(X) is the evaluation at x, d,. Then
©(A) =0, for each t € T\ T.

Proof. By the assumption, C(X) is contained in the multiplicative domain of
@, SO

@A)F(X) = @(Af) = @((tNA) = f(t™X)@(Ar)
for all f € C(X) and t € . Whenever tx # x, we also have t 'x # x, so by
choosing an f such that f(x) # f(t 'x) (by Urysohn’s lemma) we are done. W

Lemma 3.1.19. Let x,y € R[] C C:(T"). Then ||x +yll = ||x|

Proof. Notice that every element z € R[] satisfies | (z& n)| < (zl&|, m|) for
all £ € (3(T). Thus

x| = Sup{<X£,n> gne (), el = Inll =1
= sup{(x§,n) : En € BN, [[E]l = [n] =1
Sup{<X£ m+ Y& En e BNy, &l = Inll =1}
=sup{{(x +y)&,n) : &,n € BN, 1€ = [Inll = 1)
=[x +yll-

Proof of Theorem 3.1.17. (1 = 2) Let @ be a state on C:(I'). By Theorem
3.1.1, there is a free boundary action I' ~ X. Let x € X. Extend ¢ to a state
P on C(X) x, G (by the Hahn-Banach theorem) and let p be the restriction
of P to C(X). By strong proximality and minimality, there exists a net (s;)
in I" such that s;p RAAN dx. Upon possibly passing to a subnet, we can assume
by compactness that s;1p converges to some state ' on C(X) %, T.

Now, the restriction of ¥’ to C(X) is &y, so by Lemma 3.1.18 and the
freeness of the IN-action on X, we get ’(A¢) =0 for all t € I'\{e}. This forces
the restriction of VP’ to C:(T') to be To, i.e. si@ — To.

(2 = 3) Trivial.

(3 = 4) Fix states @1, @2,..., @, on C:(I'). Consider the set

S =conv” {(s@1,5Q2,...,5@m):s €T}

in the space of m-tuples of states on C¥(I"). By the assumption, there exists
a net (P;) in S such that prl(lﬂ) — To. By compactness, we can assume that
PT; (\;) converges for j =1,2,...m. Since 1y is I-invariant, we can repeat
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this process for each of the coordinates to show that (T, Tg,...,To) € S. Thus,
for every finite F C Ci(T') and ¢ > 0, there exist sy,Ss,...,s, € ' such that

D skpila) —Tola)| < e
k=1

31—

for all a € C:(T') and j =1,2,... m. Since every bounded linear functional is
a linear combination of four states, we deduce that (4) holds.

(4 = 5) Suppose (5) does not hold, so that there are t;,ts,...,t € I'\{e}
such that

0 ¢ conviAs(Ag, + A, + -+ A, JAS ts €T

By the Hahn-Banach separation theorem, there exists a bounded functional
w on C¥(T') and ¢ > 0 such that

Rew() Asys1) >c¢
j=1

for all s €T, i.e.
m
Re ((sw)(z At].)> >c¢>0
j=1
for all s € T'. Since 1o(3}_;", Ay;) = 0, we deduce that
w(1)Ty ¢ conv™ {sw:s €T},

contradicting (4).
(5 = 6) Let ty,ts,...,t, € '\ {e} and ¢ > 0. By the assumption, there
exist s1,89,...,8, € I, with repetitions allowed, such that

SY G AN

k=1 j=1

< E.

Using Lemma 3.1.19, we get (6).

(6 = 1) Let I be a non-trivial closed ideal of C(I'), a € I\ {0} be a
positive element, and ¢ > 0. By definition of C}(TI') and of Ty, there exist
ti,to, ...t € T\ {e} and z,z,,...2z,, € C* such that

£
<3 (1)

sz?\tj + To(a)Ae —a
j=1

Using (6), we can find sy, s,...s8, € I' such that

£

(2)

1 n
— ) A AL AL
n é si/M5 Vs 2mmax{|z/:1=1,2,..., m}
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for j=1,2,...,m. Using (1), (2) and the triangle inequality, we deduce that

Z?\Sk(ﬁ\* —To(a)Ae]| < &, (3)

which implies that
To(a)Ae € CoOnv{Asal; :s € T C L
Since Ty is faithful, we get A, € I, i.e. I = C#(T'), and hence (1) holds. [ |

Before we proceed, let us make an important remark. I" is said to have
Powers ™ averaging property iff equation (3) is satisfied for every a € C¥(T).
As we already pointed out in the introduction of this chapter, it was well-
known that this property implied C*-simplicity. However, a by-product of
the above proof is that the two properties are actually equivalent, attesting
to Powers’ incredible insight (or luck). This equivalence was also proved
independently by Kennedy in [ ], alongside the next and final result
on C*-simplicity presented in this work.

Consider the space sub(I') of subgroups of T', equipped with the so-called
Chabauty topology, which in the discrete case (the only case we are in-
terested in) coincides with the subspace topology induced by the product
topology on {0,1}" (for the general case of locally compact groups, a nice
introduction is [ ]). This space is compact, as a closed subspace of
{0,1}7, and it is a I'-space with respect to the -action by conjugation.

Let subq(I") be the I'-invariant subspace of amenable subgroups of I'. The
general case of the following proposition is [ , Corollary 1], but we will
give a simpler proof (discreteness of I' allows it).

Proposition 3.1.20. sub,(T") is closed (and therefore compact) in the Chabauty
topologu.

Proof. Let (Ai) be a net in suby(I") converging to A € sub(I'). We can
assume Ay < A, because the map sub(I') — sub(I") : * — * N A is continuous
and amenability is preserved by subgroups (thus we can swap A; with
Ai NA). Let @i : €°(A;) = C be Ai-invariant states witnessing amenability.

Consider the net ((@i(fla;))f) in the space [[;cpo(n ]Df, where Dy is the
closed unit disc of radius |/f|| in C. By compactness, we can assume this net
is convergent. Hence, we can define ¢ : {*(A) — C by @(f) = lim @i(flA,),
which is clearly a state. Furthermore, for s € A, we have

@(sf) = liim @i((sf)a,) = liim Pi(s(fla)) = him @i(fla,) = @(f),

where the third equality holds because s eventually belongs to A;. Thus, ¢
is A-invariant and A is also amenable. |
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Definition 3.1.21. A compact I'-subspace X C sub(I') is called a uniformly
recurrent subgroup (URS) of I' iff it is minimal. Such an X is called non-
trivial iff X # {{e}}, and amenable iff X C sub, ().

We are now ready to close this section, with a more intrinsic characteri-
sation of C*-simplicity.

Theorem 3.1.22. T" is C*-simple iJf it has no non-trivial amenable uniformly
recurrent subgroups.

Proof. Suppose that I' is not C*-simple. Let X ={Iy : x € 0gyI'} and consider
the map 0pyl" — X : x — T, which is clearly l-equivariant. Let (x;) be a
net in dryl" converging to some point x € dgyl’. We want to show that Iy,
converges to Iy, and thus that the map is also continuous. Indeed, if s € T}
(resp. s € Iy), then x € (0ppul")® (resp. x € ((0pul")®)¢), which is clopen by
Lemma 3.1.5 and Proposition 2.2.12, hence x; € (0gn)® (resp. xi € ((0gnl)*)©)
eventually, or equivalently s € Iy, (resp. s ¢ I,) eventually, i.e. Ty, — Tk.

Now, since 0fyl" is compact and minimal, so is X as a continuous I-
equivariant image of it, i.e. it is a URS. Finally, it is amenable by Lemma
2.2.13 and non-trivial by Theorem 3.1.1, since the I'-action on 9ryl" is not
free.

Conversely, suppose I has a non-trivial amenable URS X. Fix A € X and
x € Oppul’. By the amenability of A, there exists a probability measure p on
orul fixed by A. By strong proximality there exists a net (s;) in I' such that
Silt — Ox.

! converges to a A’ € X. X is

By compactness, we can assume that s;/As;
non-trivial, so minimality forces A’ # {e}. Let t € A"\ {e}. By the definition
of the Chabauty topology, t eventually belongs to s;As; ', and thus we can
assume t € NisiAs; .

limit gives tdyx = 0y, i.e. tx = x, from which we deduce that I' does not act

Therefore, we have tsip = s;u for all i. Taking the

freely on Oryl’. Hence, by Theorem 3.1.1, T' is not C*-simple. |

Bemark. In the above proof we actually showed that C*-simplicity is equiv-
alent to the triviality of X = {I\ : x € 0pnyl'}. That is why this particu-
lar amenable uniformly recurrent subgroup has been suitably named the
Furstenberg URS of T (see for example [ ; D.

3.2 The Unique Trace Property

This section is dedicated to another property of interest of the reduced C*-
algebra of T, the unique trace property. We will present characterisations of
this property, similar to those given for C*-simplicity, and we will completely
clarify how the two are related.
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Definition 3.2.1. T" is said to have the unique trace property iff its reduced
Cr-algebra has a unique tracial state, i.e. the canonical trace T, is the only
l-equivariant state on C¥(T).

The following theorem first appeared in [ ]. A proof can also be
found in [ ].

Theorem 3.2.2. Let s € I'. Then, t(As) =0 for all tracial states T on Ci(T") iff
s € Rq(T). In particular, T has the unique trace property iff Ro(T") = {e}.

We require the following lemma.

Lemma 3.2.3. Let T be a tracial state on C:(T'), X be a T'-boundary and
x € X. Then T extends to a state on C(X) x, ' whose restriction to C(X) is the
evaluation 8 at the point x.

Proof. Extend T (by the Hahn-Banach theorem) to any state ¢ on C(X) x, T,
and let p be the restriction of @ to C(X). By strong proximality, there exists
a net (s;) in I such that sip — 8, in the weak-* topology. By compactness
we can assume that s;@ converges to some state 1 on C(X) %, T', whose
restriction on C(X) is forced to be 6,. Now, since the restriction of ¢ to
Ci(T) is the tracial state T, and thus I'-invariant, we have that { = T on
C:(T') and we are done. |

Proof of Theorem 3.2.2. Let s ¢ R,(I') and T be a tracial state on C;(I'). By
Proposition 2.2.14, there exists x € dpyl" such that sx # x. By Lemma 3.2.3, T
extends to a state on C(0gyl") X, I' whose restriction to C(0rnl") is the point
evaluation 8,. By Lemma 3.1.18, we have @(As) = t(As) = 0.

Now, since Rq(I') is amenable by definition, C:(R4(I')) has a character,
which of course is also a trace. Composing this character with the canonical
conditional expectation C}(I") — C%(R4(I")) produces a trace T on C:(I') such
that T(Ag) =1 for all s € Ry ().

The final assertion of the theorem follows from the fact that the canonical
trace is the unique tracial state on C}(I") vanishing on A; forallt € I'\{e}. W

In view of Proposition 2.2.14, the above theorem can be rephrased to
better suit the spirit of Theorem 3.1.1.

Theorem 3.2.4. The following are equivalent:

1. T has the unique trace propertuy.
2. The T'-action on 9pyl’ s faithful.

3. The I'-action on some I'-boundary is faithful.

Proof. The first equivalence is essentially Theorem 3.2.2. The second one is
immediate from the fact that any I'-boundary is a '-equivariant image of
Ornl. [
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The following and final characterisation of the unique trace property
appears in [ ] and is similar in flavour to Theorem 3.1.17.

Theorem 3.2.5. Let t € . Then t & Ry(T") iff
0 € conv{Agts1 s €Th (1)
In particular, T has the unique trace property iff (1) holds for all t € T \ e.

Proof. 1f (1) holds, then of course T(A;) =0 for all tracial states T on C}(T').
Hence, by Theorem 3.2.2, we have t ¢ Rq(T).

Conversely, suppose (1) does not hold. Assume also, for the sake of
contradiction, that t ¢ Rq(T'), so that we can find (by Proposition 2.2.14)
x € Ornl such that tx # x.

By the Hahn-Banach separation theorem, there exists a self-adjoint linear
functional w of norm 1 on C¥(T") and a constant ¢ > 0 such that

Rew(}\sts*l) = c (2)

for all s €T'. Let w = w; — w_ be the Jordan decomposition of w. Notice
that

L=l +llo-|| = wi (1) + w-(1) < [Joi + w-|| <l || + o[ =1,

thus wy + w_ is a state.

Now, extend w4y to positive linear functionals 4 on C(0pnyl") . T. We
then have a state \V, +1_ extending w, + w_ and a self-adjoint linear
functional P, —1{_ extending w.

Let p be the restriction of VP, +1{_ to C(d¢nl"). By strong proximality
and minimality, there exists a net (si) in ' such that sip o dx. By
compactness, we can assume s;pL converge to positive linear functionals
@+ on C(0gyl) %, I'. The restriction of @, + @_ to C(0gnl") is 8y, which is a
pure state on C(X), thus the restrictions of @4 on C(dgyl’) are forced to be
llo+| 0x. Therefore, by Lemma 3.1.18, we have @ (A;) =0. Hence, we get

0= (A)—0_(A) = him(silh(?\t) —sib_(A))
= lim(sjw; (Ay) —siw_(A¢)) = lim syw(A)

= hHl w(}\sits.*l ),

contradicting (2). [ |

Now, seeing as the above characterisations of the unique trace property
are easily comparable to those of C*-simplicity (e.g. faithfulness vs freeness
of the I'-action on 0¢yl’), one would expect the distinction between the two
to be relatively easy. However, that is not the case. Examples of groups



45 CHAPTER 3. THE REDUCED GROUP C*-ALGEBRA

which have trivial amenable radical, yet are not C*-simple, have indeed
been constructed by Le Boudec [ ], but the methods used were non-trivial
and are not within the spirit of the present work (familiarity with ideas
from geometric group theory is required). Thus, C*-simplicity is strictly
stronger than the unique trace property, and the long-standing problem of
clarifying their relationship is completely solved.

3.3 Exactness

In this section we briefly explore the concept of exactness. Although
inherently operator algebraic in nature, exactness has (in contrast to C*-
simplicity or the unique trace property) been linked to dynamical properties
for more than twenty years now [ ]. Our goal, however, is to present a
characterisation of exactness of I" based on its action on dgyl. Of course,
we will need some preparation to get there.

Definition 3.3.1. A unital linear map 0 : A — B between C*-algebras is called
nuclear iff there exists a net of u.c.p. maps @; : A = My i) and Py : Mg) — B
such that 1{; o @; — 0 pointwise.

It is worth noting that the general definition involves contractive com-
pletely positive (c.c.p.) maps instead of u.c.p. ones. Nevertheless, we are
only interested in the unital case. More details on this, and everything else
preceding the final characterisation, can be found in [ ].

Definition 3.3.2. A C*-algebra A is called:

e nuclear iff the identity map idy : A — A is nuclear.

e exact iff it admits a nuclear faithful representation.

Notice that the above definition of exactness seems to depend on the faith-
ful representation, making it rather shaky. Arveson’s extension theorem,
however, might convince you otherwise.

Furthermore, these definitions are not the original ones, which we give
below, as both notions have multiple characterisations (nuclearity is to
C*-algebras what amenability is to groups, in more than one ways). One
might easily notice that, in the case of exactness, the original definition is
much more fitting to the term.

Definition 3.3.3. A C*-algebra A is called:

o nuclear iff A ® B = A Quax B, for all C*-algebras B (i.e. every tensor
product of A has a unique C*-norm).

e exact iff the functor (A ® —) is exact (in the categorical sense, i.e.
preserves short exact sequences).
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It is clear from the first definition that nuclearity implies exactness.
This is equally clear from the second one, if one knows that the functor
(A ®max —) is always exact.

The equivalence of the definitions is highly technical and is due to Choi
and Effros [ ] (for nuclearity), and Kirchberg and Wassermann [ ;

] (for exactness).

A useful by-product of the proof given, for example, in [ ] is the

following lemma.

Lemma 3.3.4. Let A C B(H) be an exact C*-algebra and 8§ C A be a finite-
dimensional operator system. If (ui)ic1 is an orthonormal basis of H, then
for every € > 0 there exists a finite Fq C I such that for each finite F C I
containing F, there exists a u.c.p. map VP : PeB(H)Pr — B(H), where Pg
denotes the orthogonal projection onto the linear span of {u; : i € F}, such
that Pr(PeSPr) C A and

X — Wr(PexPe)[| < e [[x|

for all x € 8. Furthermore, A is nuclear iff we can force \Pr to take values in
A.

Examples of nuclear C*-algebras include all finite dimensional, abelian,
AF, and AH ones (we omit the definitions of the latter two; we will not need
them).

Definition 3.3.5. T is called exact iff its reduced C*-algebra C:(I') is exact.

We turn now to dynamics, introducing a key concept that will concern
us for the remainder of this chapter, that of amenable actions.

Definition 3.3.6. A compact I'-space X is called amenable iff there exists a
net of continuous maps m; : X — P(I') such that

lim(sup [[sm{ —m{¥|[;) =0
toxeX
for all s € I Such a net is called an approximalte invariant continuous
mean (a.i.c.m.). The I'-action on such a space is also called amenable.

Remember that the 1-norm in the above definition comes from ¢!(T"), since
P(T') is just the positive part of the unit sphere of ¢*(T).

We will replace this traditional definition of amenable actions with
one that incorporates actions on C*-algebras, in such a way that in the
commutative case the induced action on the spectrum will be amenable in
the above sense.

To that end, let A denote a unital I'-C*-algebra and « : ' — Aut(A)
be the IN-action on it. Consider the a-twisted convolution algebra C.(I', A)
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(remember the construction of the crossed product) and equip it with an
A-valued inner product defined by

(S,T) =) S(g)*T(g), S, T € Cc(I, A)

sel

and a new norm defined by
IS, = 11(S. 9[>, S € Ce(T, A).

The informed reader will immediately recognise the structure of a (pre-)
Hilbert C*-module, but we have no reason to introduce the term. The only
piece of Hilbert C*-module theory we will need is the fact that the inner
product satisfies the appropriate analogue of the Cauchy-Schwarz inequality,
i.e.

(S, T < IISIl2 [Tl

for all S, T € C.(I', A). This is a general fact (and an easy one at that), but
in the commutative case (which is the one we are interested in) it is simply
a consequence of the classical Cauchy-Schwarz inequality.

Definition 3.3.7. The lM-action o on A is called amenable iff there exists a
net (Ty) in C.(T,.A) such that:

1. 0 < Ti(s) € Z(A) for all i and s € T.
2. (T;, Ty) = 14.

3. |ls*« Ti = Ti||, = 0 for all s € T (here s € C(I', /A) denotes the function
mapping s to 14 and all other elements to 0).

Now, as promised, we have the following.

Proposition 3.3.8. A compact I'-space X is amenable iff the induced T'-action
o« on C(X) is amenable.

Proof. Assume first that X is amenable and fix an a.i.cm. m; : X — P(T').
Define T; : ' — C(X) by

and notice that

Y (Ms)x)? =) mi(s) =1

sel’ sel

for all x € X. Therefore

Z Ti(s)* = 1ex),

sel

where the convergence is uniform because everything is positive.
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Note also that
(5 o TO(E) (%) = ot (T (t715))(x) = Tu(t 1) (57 2x) = /smy "X (1)

for all x € X. Thus,

I e To=Tell2 = sup | 3 Iyfsmy (1) - \/mf(t)P)

xeX

< sup Z ISm{(lX(t) - m{‘(t)|>

xeX ter

= sup Z |sm¥ (t) — mfy (t)|>

YEX \ter
= sup [|sm{ —m;Y||, — 0.
yey
Of course we are not quite done yet, as the maps T; are not necessarily
finitely supported. We can remedy that in the following way.
Assume we have a positive function T: T — C(X) such that

D T(s)> =1cx),

selr

just like our Ti’s. Uniform convergence of the above sum implies the
existence of a finite set Fy C I" such that

D T(s)*>0

seF

for all finite sets F C I' containing F,. The family JF of all such sets is
naturally directed by inclusion and thus we can define a net of maps (Tg)res
by

———T(s), seF
TF(S) — Dter T(1)2

0, otherwise

which are positive, satisfy (T, Tr) = 1¢(x), and are finitely supported. Fur-
thermore, they satisfy

s %o Te = Telly = (I8 %o T =T,

by construction.

Hence, we can replace the Ti’s with the associated net (T, )y and
combine them to form a net directed by (i,F;) < (j,Fj) <= {1 XjAF CHF),
which witnesses amenability of «.

The converse is quite a bit easier, as one simply needs to define m}(g) =
Ti(g)%(x) and use similar calculations, without worrying about supports. W
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BRemark. The above proof is somewhat simpler if we assume I" to be countable
(a restriction that is considered quite light), as nets can be replaced with
sequences which are easier to handle. The reader may find it instructive to
check the arguments in the countable case, especially if they are not used
to working with nets.

As the two definitions of amenability are now interchangeable, we will
turn our attention to some general results before returning to the abelian
case. As above, A will be a unital I'-C*-algebra and « will be the associated
[-action.

Lemma 3.3.9. If T € C.(I',A) is such that 0 < T(s) € Z(A) for all s € T and
(T, T) =14, then

L T TH(s) = 2 ternse T(H)ots(T(s7't)), where F is the support of T, and
2. 1a =T TH(S)| < |Is ko T—T

22

forall seT.

Proof. The first assertion follows by the following calculation

T TH(s) = ) Tt (T*(ts))

tel

= Z T(t)ote (-1 (T(s71)*))

tel

=Y T(t)a(T(s 1))

terl

= 3 T (T(s 1))

terl

= Y T (T(s™'1)

teFNsF
where we have simply used the definitions, plus the positivity of T in the
fourth equality.
For the second one, we have

||1A —T o T*(S)H = <T7T> - ZT(t)o‘s(T(S_lt))H

tel

= (T, T) =D T(t)(s *a T)(t)
tel

= [T, T) = (T, s xa T) |

= (T, T—s s T)|

< Tl [IT = s %o T,

=[|T—s*a Tl

where we have used the fact that s, T(t) = o (T(s7!t)), the properties of T,
and the Cauchy-Schwarz inequality. |
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Lemma 3.3.10. Let T be as in the previous lemma. Then, there exist u.c.p.
maps @ : A x. T = ARMg(C) and P : AR Mp(C) —» A %, T (where, again, F
is the support of T) such that

P o (p(aAs) - (T *o T*(S))CO\S
Jorall ac A and s eT.

Proof. In proving that the reduced crossed product A X, I' does not depend
on the choice of the faithful representation A C B(H) (Proposition 1.5.6), we
constructed a u.c.p. map @ : A x,. ' = A ® Mg(C) such that

Z (Xt ®€ts 1¢

teFNsF
forall ae Aand seT.
Let
X=) o' (T(t)) ®err € A®ME(C)

teF
and note that X = X*, thus compression by X is a c.p. map ;.
Consider also the map

Pt AQME(C) = A X Tia®exy = oy (@)A1

which is completely positive as well. To see this, notice first that every
positive element in A ® Mg(C) can be written as a sum of |F| matrices of
the form [a}a]ster, each of which is mapped to

Z s (arae)Age—1 = (Z as?\sq)*(z (157\571),

s,teF seF seF

and observe that amplifications of 1, are actually of the same form.
Now, define 1\ to be the composition 1V o1;. We have

D(1) = $a(X°) = (Zcx ®ett>=<T,T>Ae:1AAe:1

teF

and thus 1 is actually a u.c.p. map.
Using the fact that T(s) € Z(A) for all s € T and the previous lemma, we

get

P o @(als) (Z oct ®et51t>

teFNsF

=1, ( > (T()eg @)y (T(s ') @ et,slt>

teFNsFk

T(t)aw, (T(s ')A,
2

teFNsF
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= ) T(tas(T(s't))ak

teFNsF

= (T x4 T*(s))aAs.

Theorem 3.3.11. If the I'-aclion « on A is amenable, then:

1. AxTT=Ax,T.
2. A 1s nuclear iff A x T is.

Proof. We would like to prove that the canonical quotient map m: A xTI' —
A ;. T' is injective. It suffices to find u.c.p. maps w; : A x;, ' = A x T that
act as an approximate left inverse of 7, i.e. ||x —w;om(x)|| — 0 for all
x € C(TVA) CAXT.

Luckily, we already have those u.c.p. maps at our disposal. Let T; : I' = A
be the maps witnessing amenability of « and @;,1\; be the associated u.c.p.
maps provided by Lemma 3.3.10. The key observation is that the {;’s remain
u.c.p. if seen as taking values in A x I' (which is possible because their
image is contained in C.(I',A)), therefore we can define w; =11; o @;. Using
Lemma 3.3.9, we have

Ix — wi(m(x))]| =

D (1= Tixg Ti(s)) @

sel
<D= Toso TE ()] [JasAs |
serl
< Z s %o Ty — Ti||2 |asAs|| — 0
selr

for all x =3 rasAs € Cc(T,A).
Moving on to the second assertion, lets first assume that A x T is nuclear.
Then the identity map id4 can be decomposed as

Acs AT 0 g B g

where E is the canonical conditional expectation. Since id4xr is nuclear,
we get that id4 is as well.

Conversely, if A is nuclear, then so is A ® Mg(C) for any finite set F.
Hence, using the same technique, the w;’s we defined above are nuclear.
Since they converge pointwise to the identity, we obtain nuclearity of the
crossed product. ]

We return now to the abelian case, so let X be a compact I'-space and
« be the induced T-action on C(X). Instead of C.(T,C(X)), we will work
with C.(X x T') (the reader can easily convince themselves the two are
interchangeable).
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Definition 3.3.12. We call I' amenable at infinity iff it acts amenably on some
compact [-space.

Since C(X) is always nuclear, we have the following corollary of the
above theorem.

Corollary 3.3.13. If T is amenable at infinity, then it is exact.

What is important is that the converse also holds, as we shall see. But
we still have some way to get there.

Definition 3.3.14. A function h: X x I' = C is of positive type iff for any
finite sequence s1,...,s, € I' and x € X, the matrix [h(s;x, sisj_l]m- e M, (C)
is positive.

The observant reader may notice that an element in C.(X x I') is of
positive type iff the corresponding element in C.(I',C(X)) C C(X) x, I' is
positive. Regardless, we have the following important theorem.

Theorem 3.3.15. The following are equivalent:
1. X is amenable.
2. C(X) %, T is nuclear.

3. For any finite F C T and ¢ > 0, there exists a function h € C.(X xT') of
positive type such that

max sup [h(x,s) — 1| < e.
seF xeX

Proof. (1 = 2) This is an immediate consequence of Proposition 3.3.8 and
the previous theorem.

(2 = 3) Let F C T be a finite set and ¢ > 0. By nuclearity, using Lemma
3.3.4, we can find u.c.p. maps ¢ : C(X) %, ' — M, (C) (compression by a
suitable projection) and { : M, (C) — C(X) x, I' such that w =1 o ¢ satisfies

lw(As) — Al < &
for all s € F. Define h: X xT' — C by
h(x,s) = hs(x) = E(w(As)AT) (%),

where E is the canonical conditional expectation, and notice that h has
compact support because w(As) =0 for s outside some finite F/ C I' (that is
why it is crucial to use the lemma to choose @). Furthermore, we have

HlC(X) _hSH = ||E((7\s - w(}\s)))\:)n < ||}\S - w()\S)H <éE
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for all s € F. It remains to show that h is of positive type. To that end, we

calculate
[068;1 [OL ;1 )7\3)_8;1)} g
[ }\S’} i
_E (dlag(xsl,...,x 1w ([Ag A" ]IJ)Chag(Asl,...,Asn)>
for all sq,...,sy, €T, and, thus, complete positivity of E and w gets us what

we need (we have abused notation for the amplifications, but the meaning
should be clear enough).

(3 = 1) Let F C T be a finite set containing e and let h be the associated
function provided by condition (3) for a fixed ¢ > 0. Since h is positive in
C(X) %, T, there exists g € C.(T', C(X)) such that g**, g~ h in C(X) %, T". That
implies E(g* %« g) = E(h) = 1¢(x) (because e € F). Thus, we can normalise g
so that E(g* %« g) = 1c(x). We define now T:T — C(X) by

TH)(x) = lg(t™") (t™'x)| = g"(t) ()]

and calculate

(T,s %, T) ( ZT s (T(s7't))) (x)

tel

=) lg"(X)lg (s t)(s "%

terl

=Y 1g" W )lg(ts) (£ %)

terl

>| ) g (1)glt 's)(t x|

ter
= (9" *a g)(s)(x)]

where equality holds if s = e. Thus, (T,T) = E(g" *« g) = lc(x) and
<S *o T7S *ocT> - (xs(<T7T>) == 1C(X). Now we have

s % T—T|5 = H2 Loy — (Tys#a T) — (s %« T, T>H <2 ||1C(X) — 19" *« g(s)|H

which is close to zero for all s € F. But all s € I' belong eventually to some
F, therefore we can construct the net required to witness amenability of «
(with careful selection of approximations). |

Definition 3.3.16. A bounded function k : ' x I' = C is called a positive
definite kernel iff the matrix [k(s,t)]s ter is positive for any finite set F C T.

Definition 3.3.17. A tube is a set of the form
((s,t)eTxT:st ' eF}

for some finite set F C I'. We call F the width of the tube, which we denote
by tube(F).



3.3. EXACTNESS 54

Definition 3.3.18. Consider the left translation action of T" on £*°(T"). We call
the associated reduced crossed product {*°(T") x, ' the uniform Roe algebra
of I and denote it by C; ().

It is important to note that C}(T') is just the C*-subalgebra of B({*(T))
generated by C*(T") and £*°(T).
Observe, thus, that (positive definite) kernels supported in tubes, which

*

correspond exactly to (positive) elements belonging to the *-algebra gen-
erated by C:(TI') and ¢*(T) inside B({?(T)), can be identified with elements
inside C; (T).

Theorem 3.3.19. The following are equivalent:
1. T is exact.

2. For any finite set E C T and ¢ > 0, there exists a positive definite kernel
k:T x T — C whose support is conlained in a tube, such that k(s,s) =1
Jor all s €T and

sup{/k(s,t) — 1| : (s, t) € tube(E)} < €.

3. For any finite set E C ' and ¢ > 0, there exist a finite set F C I' and
C:T — €(T) such that ||¢s]| =1 and supp(ls) C Fs for all s € T, and

sup{[|Cs — Gel| = (s, 1) € tube(E)} < e.

4. For any finite set E C T and ¢ > 0, there exist a finite set F C ' and
w: T — P(I") such that supp(us) C Fs for all s € T and

sup{||ps — mell; @ (s, t) € tube(E)} < e.

5. The left translation T'-action on (*(T") is amenable.

In particular, T' is exact iff it is amenable al infinity iff it acts amenably on
its Stone-Cech compactification BT.

Proof. (1 = 2) Let E C T be a finite set and ¢ > 0. Using Lemma 3.3.4, we
can find u.c.p. maps ¢ : C:(I") — B({*(F)) (compression by the projection onto
€2(F) for some finite F C ') and 1 : B({?*(F)) — B(¢3(T")) such that w =1 o ¢
satisfies

|lwAs) — Al < €

for all s € E. We define a kernel k:T" x "' = C by

k(s,t) = (Ww(Agg-1)04, Os) ,
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which is supported on a subset of tube(FF~1) (by the definition of w). Fur-
thermore, for sq,s9,...,8, € I and z4,2,,...,z, € C, we calculate

Z k(Si, Sj)ZiZj = Z <w()\sis;1)216$j?21651>
ij

i

Zlésl Z1651
= <w([}\sisjl]i,j) ; >

Znésn Znésn
>0
since w is c.p. and [A  -1]i; is positive in M, (C;(T')). Thus k is positive
75
definite. Finally, we have
k(s,t) — 1] = [{(W(Ast-1)8¢, 85) — 1
= [ {{w(Ast-1) — Agt-1)0¢, 85) |
< Hw(}\stfl) - }\st*1||
< €
for all (s,t) € tube(E).
(2 = 3) Let E C T be a finite set, ¢ > 0, and k be a positive definite
kernel satisfying (2). Let a be the element in C}(I') corresponding to k.
There exists a finite set F C I and a kernel supported in tube(F) such that

for the corresponding element b € C;(I') we have |[ja —b*b|| = 0. For s €T,
set ns = bds € £2(I") and observe that ||ns|| ~ 1 since

<T]S7T]t> - <b687b6t> - <b*b687 6t> ~ <(153, 5t> — k(S,t),

while supp(ns) C Fs. Hence, for (s =ns/|ns|| we have ||(s]| =1 and (s = 1.
Therefore

G = Cell* < 21— (Cs, Co) | = 21— (e, me) | = 21— K(s, t)] < 2¢

for (s,t) € tube(E), which gives us what we want after appropriate adjust-
ment of the €’s.

(3 = 4) Trivial, using the map (T) — ¢1(I"), : (L) — (1¢G]?).

(4 = 5) For any finite symmetric E C T and ¢ > 0, let u: " — P(I") be
the associated map provided by (4) and define T: T — {*(I") by

T(x)(s) = Vs (s7'x).
We can now work exactly as in the proof of Proposition 3.3.8 to first see that
Is* T —TI5 < sup g1 —pell, <e
ter

for all s € E and then obtain a net witnessing amenability of the IN-action
on £>(T).
(5 = 1) As {>(I") = C(BT), T' is amenable at infinity, and thus exact. W
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Lemma 3.3.20. A compact I'-space X is amenable iff P(X) is.

Proof. One direction is immediate, since X C P(X). For the converse, fix an
a.i.com. my : X — P(T'). Define m; : P(X) — P(T') by

and calculate

st — (|, = )

terl

[ smiw) - merto) an
X

< sup |smy —m$¥||, — 0
xeX

for all p€ P(X) and s €T. [ |

Finally, we can give the desired characterisation of exactness in terms
of the I'-action on 0fyl.

Theorem 3.3.21. T is exact iff Oryl" is amenable.

Proof. If 9pyl" is amenable, then I' is exact by Corollary 3.3.13.
Conversely, if I' is exact, then BI' is amenable by Theorem 3.3.19, and
thus P(BI) is (by the lemma above). By T-injectivity, there exists a I'-
equivariant u.c.p. map @ : {*(I") — C(9¢n "), hence the adjoint @* restricts to
a continuous lN-equivariant map 0pyl" — P(BT). Composing this map with an
a.i.c.m. witnessing amenability of P(fI'), we obtain an a.i.c.m. for OpyI. W



Appendix

Our aim is to make this work as accessible as possible, assuming only
knowledge covered by undergraduate courses on functional analysis and
operator theory. For this purpose, this appendix will be dedicated to some
fundamentals of C*-algebras. We should mention, however, that we will
restrict ourselves to the parts of the theory that are useful for this work
(even if that means presenting them in an unconventional and condensed
way). Since no proofs will be given, we refer to [ ; ; ] for
more details. Before we proceed with that task, for the sake of complete-
ness we will also mention two well-known classical results in functional
analysis that are used here and there, and that might not be covered in an
introductory course (in this form at least). Proofs of these can be found, for
example, in [ ].

Classical Results in Functional Analysis

Theorem A.1 (Hahn-Banach separation - complex case). Let X be a complex
locally convex space and A,B be disjoint closed convex subsets of X. If B 1is
compact, then there exists an f € X*, an r € R and an ¢ > 0 such that

Ref(a) <r<r+e < Ref(b), Vae A,b € B.

Theorem A.2 (Krein-Milman). If K 7s a nonempty compact convex subset of
a locally convex space X, then extK # () and K = conv(ext K), where ext K
denotes the set of extreme points of K.

The Krein-Milman theorem is usually accompanied by the following
proposition, known as Milman ’s partial converse to the Krein-Milman theo-
rem.

Proposition A.3. If X is a locally convex space, K is a compact convex subset
of X, and F C K such that K = conv(F), then ext K C F.

C*-Algebras

Definition A.4. A complex normed algebra (A, ||.||) is called a Banach algebra
iff the underlying linear space is a Banach space and ||.|| is submultiplicative,

57
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i.e.
|abl < llal [b]l, Va,b € A.

*

Definition A.5. A complex algebra A is called involutive or simply a *-
algebra iff it is equiped with an antilinear map * : A — A that is an
antiautomorphism of order 2 on the multiplicative semigroup of A. The
image of an element under this involution is called its adjoint.

Definition A.6. A Banach *-algebra (A, ||.||) is called a C*-algebra iff ||.| is a
C*-norm, i.e. satisfies the C*-identity

* 2
la*all = [lal]
for all a € A.
Proposition A.7. If (A, |.|) is @ C*-algebra and |.||" is another C*-norm on A,
then ||.||" = |.|I

From now on, unless otherwise specified, A will denote a C*-algebra.
Morphisms in the category of C*-algebras will be *-homomorphisms, i.e.
algebra homomorphisms respecting the involution.

Proposition A.8. Let I be a closed ideal in A and B C A be a C*-subalgebra.
Then

o A/ (with its natural structure) is a C*-algebra.
e B+1C A is a Calgebra.

Furthermore, B/(BNI) = (B+1)/L

Definition A.9. An element a € A is called:
e normal iff a*a = aa*.
e self-adjoint iff a = a*.
e unitary iff a*a = aa* =14 (in the unital case).
e positive iff a =b*b for some b € A.

Proposition A.10. The set of positive elements of A, denoted by A, is a
||.||-closed salient cone inside the space Asq, C A of self-adjoint elements.
Therefore, Asq 1s partially ordered by the relation

a<b < b—acA,.

Proposition A.11. For each element a € Aqq there exist unique a,,a_ € A,
such that a = a; —a_ and a,a_ = a_ay =0. Thus, every element in A can
be written as a linear combination of four elements in A,.
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Definition A.12. A linear map ¢ : A — B between C*-algebras is called
positive iff a > 0 = ¢(a) > 0 and faithful iff a >0 = ¢@(a) > 0 for all
a € A. A positive linear functional is called a state iff it is of norm 1. A
state T on A is called tracial (or simply a trace) iff T(ab) = t(ba) for all
a,be A

Proposition A.13. Positive linear linear maps are automatically bounded.

Proposition A.14. A linear functional ¢ on a unital C*-algebra A is positive
if el = e(1a).

Definition A.15. A linear functional on A is called self-adjoint iff @(a*) =

@(a) for all a € A.

Proposition A.16. For each self-adjoint bounded linear functional @ on A
there exist positive linear functionals ¢, @_ such that ¢ = @, — @_ and
lell = loill + lo_|l. Thus, every bounded linear functional on A can be
writlen as a linear combination of four positive ones.

*

Theorem A.17 (Gelfand representation). Every abelian C*-algebra A is *-
isomorphic to Co(X) for some locally compact Hausdorff space X. X is called
the (Gelfand) spectrum of A.

Definition A.18. A *-representation of a complex involutive algebra A is
a *-homomorphism 7 : A — B(H) for some Hilbert space H. 7 is called
non-degenerate iff w(A)(H) is dense in B(H).

*

Theorem A.19 (Gelfand-Neimark). Every C*-algebra has a
that is faithful. Therefore, every C*-algebra can be concretely realised as a

-representation

||.||-closed *-subalgebra of B(H) for some Hilbert space H.

Remark. Notions, such as positivity, which are typically defined in a different
fashion in the context of B(H) (through inner products or the spectrum) are
all equivalent to the above definitions given for abstract C*-algebras.

Proposition A.20. Let J{,XK be Hilbert spaces. Then, their algebraic tensor
product H © K is a pre-Hilbert space, when equipped with the inner product
defined on elementary tensors by

(h1 ®@ k1, he @ ko) = (hy, ha)ge (ki ko) o -
We denote its respective completion by H @ K.

Proposition A21. If T € B(H) and S € B(X), then there exists a unique
T®S € B(H®X) such that

ToSu®v)=(Tu)® (Sv)

for all w € H and v € X. Moreover, ||T® S| = ||T||||S|-
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Consider now two C*-algebras A, B and let A®B be their algebraic tensor
product. We can turn A® B into a *-algebra, endowing it with an involution
defined on elementary tensors by

(a®b)*=a*®b".

Definition A.22. Define ||.| .. : A®B — R, by

max

1X] e = sup{||7t(x)]| : 7t is a *-representation of A © B}

max

for all x € A® B. Then |||
with respect to ||.||
by A @max B.

is a C*-norm. We call the completion of A® B

max

the maximal tensor product of A and B, and denote it

max

Definition A.23. Consider faithful *-representations m: A — B(H) and p :
B — B(X). Define ||.| ,,: A®B = R, by

min

Zm@bi

for all x € A® B. Then |.||
with respect to |||,
denote it by A ® B.

Z m(ai) ® p(by)

min ‘ B(HRXK)

is a C*-norm. We call the completion of A® B

min

the spatial or minimal tensor product of A and B, and

Remark. The spatial tensor product is independent of the choice of faithful
representations.

Proposition A.24. The maximal norm is the largest possible C*-norm on A® B.

Theorem A.25 (Takesaki). The spatial norm is the smallest possible C*-norm
on A® B.

Proposition A.26. For any n € N, the matrix algebra M, (A) = M,,(C) © A
can be turned into a C*-algebra. Thus, A @ M, (C) = A @uax M (C) (by the
uniqueness of C*-norms).

Definition A.27. Let ¢ : A — B be a linear map. We call the map @) =
¢ ® idm, (c) the n-th amplification of ¢. We will occasionally abuse notation
and omit the index of an amplification (in cases where it is clear from the
context).

Definition A.28. A linear map ¢ : A — B is called:
e n-positive iff @) is positive.
e completely positive iff it is n-positive for all n € N.

e completely isomelric iff @) is an isometry for all n € N.
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o completely bounded iff ||@l| .y, :=sup, ||@m)|| < oo
e completely contractive iff |||, < 1.

Proposition A.29. Positive maps which have an abelian C*-algebra as their
domain or range are automaltically completely positive.

Proposition A.30. Tensor products of completely positive maps are completely
positive.

Proposition A.31. Let ¢ : A — B be a contractive completely positive map.
Then

{aceA:pla"a) =¢(a)*e(a) and ¢(aa”) = (a)p(a)’}
is a C*-subalgebra of A and is equal to the set
{aeA:plaad’) =@(a)p(a’) and @(a’a) = @(a’)e(a) for all a’ € A}.
We call this set the multiplicative domain of @.

Proposition A.32 (Schwarz inequality for 2-positive maps). Let ¢ : A — B be
a unital 2-positive map. Then

o(a)*¢(a) < @(a*a)
for all a € A.

Definition A.33. Let B C A. A contractive completely positive projection
E: A — B is called a conditional expectation iff it is a B-bimodule map.

Theorem A.34 (Tomiyama). Let B C A and E : A — B be a projection. The
Sfollowing are equivalent:

1. E is a conditional expectation.
2. E is contractive completely positive.
3. E is contractive.

Definition A.35. Assume A is unital. A linear subspace § C A is called an
operator system iff it is self-adjoint and contains 14.

Remark. Order structure (via positivity) is crucial for operator systems.
Thus, it should not come as a surprise that the appropriate morphisms in
that category are completely positive maps.

Theorem A.36 (Arveson’s extension). Let § C A be an operator system and
@ : 8 — B(H) be a completely positive map. Then ¢ extends to a completely
positive map ¢ : A — B(H).
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