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Περίληψη

Ανάμεσα στα πολλά σπουδαία μαθηματικά επιτεύγματα του H. Furstenberg,

ένα από τα πλέον αναγνωρισμένα είναι η θεωρία συνόρων του. Η θεωρία αυτή

μπορεί να μελετηθεί σε δύο επίπεδα: το μετρήσιμο και το τοπολογικό. Για

τουλάχιστον τέσσερις δεκαετίες, το ενδιαφέρον σχεδόν μονοπωλούνταν από το

πρώτο. Ωστόσο, τα έργα των Kalantar και Kennedy, και Breuillard, Kalantar,

Kennedy και Ozawa το 2014 έφεραν τα τοπολογικά σύνορα στο προσκήνιο

τόσο του κόσμου των τοπολογικών δυναμικών συστημάτων, όσο και αυτού των

αλγεβρών τελεστών.

Ακρογωνιαίος λίθος αυτής της αναζωπύρωσης ενδιαφέροντος είναι η ταύτι-

ση του καθολικού τοπολογικού συνόρου μιας διακριτής ομάδας Γ , γνωστό ως

(τοπολογικό) σύνορο του Furstenberg, με το σύνορο του Hamana, έναν τοπο-

λογικό χώρο που προκύπτει στη θεωρία των Γ -εμφυτευτικών καλυμμάτων συ-

στημάτων τελεστών που ανέπτυξε ο M. Hamana. Η διττή φύση (δυναμική και

C∗-αλγεβρική) του συνόρου αυτού, που θα το συμβολίζουμε με ∂FHΓ , επιτρέπει

τον χαρακτηρισμό ιδιοτήτων της ανηγμένης C∗-άλγεβρας C∗r(Γ) μέσω του τρόπου

που η Γ δρα στο ∂FHΓ .

Συγκεκριμένα, το πρώτο μεγάλο επίτευγμα της θεωρίας αυτής είναι ο χαρα-

κτηρισμός των ακόλουθων τριών ιδιοτήτων της Γ

1. C∗-απλότητα (απλότητα της C∗r(Γ)).

2. Ιδιότητα μοναδικού ίχνους (η C∗r(Γ) δεν έχει άλλο ίχνος πέραν του κανονι-

κού).

3. Τετριμμένο amenable ριζικό (η μοναδική amenable κανονική υποομάδα

της Γ είναι η τετριμμένη).

και η αποσαφήνιση της μεταξύ τους σχέσης, πρόβλημα που παρέμενε ανοικτό

από το 1975 και τη δουλειά του Powers. Επιπλέον, δόθηκε ένας νέος χαρακτη-

ρισμός της ακρίβειας της Γ , δηλαδή της ακρίβειας της C∗r(Γ) ως C∗-άλγεβρας, σε

γραμμές παρόμοιες με αυτές των σχετικών έργων των Anantharaman-Delaroche

και Renault, Ozawa, και Anantharaman-Delaroche μεταξύ 1998 και 2002.

Στην παρούσα εργασία μελετώνται οι χαρακτηρισμοί αυτοί, καθώς και μερικοί

ακόμη που ακολούθησαν και βασίστηκαν σε αυτούς.
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Abstract

Among the many important mathematical contributions of H. Fursten-

berg, one of the most recognised is his boundary theory. This theory can

be studied on two levels: the measurable and the topological. For at least

four decades, interest was almost monopolised by the former. However, the

works of Kalantar and Kennedy, and Breuillard, Kalantar, Kennedy and

Ozawa in 2014 brought topological boundaries on the spotlight of the world

of topological dynamical systems, as well as that of operator algebras.

The cornerstone of this resurgence is the identification between the

universal topological boundary of a discrete group Γ , known as the (topo-

logical) Furstenberg boundary, and the Hamana boundary, a topological

space introduced in M. Hamana’s theory of Γ -injective envelopes of operator

systems. The dual nature (dynamical and C∗-algebraic) of this boundary,

which will be denoted by ∂FHΓ , allows the characterisation of properties of

the reduced C∗-algebra C∗r(Γ) via the action of Γ on ∂FHΓ .

In particular, the first great achievement of this theory is the character-

isation of the following three properties of Γ

1. C∗-simplicity (simplicity of C∗r(Γ)).

2. The unique trace property (C∗r(Γ) admits no traces other than the

canonical one).

3. Triviality of the amenable radical (the only amenable normal subgroup

of Γ is the trivial one).

and the disambiguation of their relationship, a problem that stood since

1975 and the work of Powers. Furthermore, exactness of Γ , i.e. the exactness

of C∗r(Γ) as a C∗-algebra, was also given a new characterisation, in the

spirit of the work done on amenable actions by Anantharaman-Delaroche

and Renault, Ozawa, and Anantharaman-Delaroche between 1998 and 2002.

In this work we will study those characterisations, as well as some later

results that relied on them.
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Chapter 1

Preliminaries

In this chapter we develop the basic tools that will be used throughout this

work. If the reader is unfamiliar with the fundamentals of C∗-algebras, a

concise summary is given in the Appendix.

1.1 Notational Conventions

Throughout this chapter, and throughout this whole work, Γ will denote a

discrete group. Its identity element will be denoted by e. No assumption on

the cardinality of Γ is made.

1.2 Unitary Representations

The theory of unitary representations is a rich one. It serves both as an

extension and an analytic analogue of classical representation theory, and

it is similarly both an invaluable tool and an independent field of research.

In this section we will only present the (relatively few) elements required

later on. The interested reader can refer to Part II of [BHV08] for more

(from the general viewpoint of topological groups).

Definition 1.2.1. A unitary representation (π,H) of Γ in a Hilbert space H is

a group homomorphism π : Γ → U(H), where U(H) ⊆ B(H) is the group of

unitaries.

Example 1.2.2. We define the unit or trivial representation 1Γ : Γ → C of Γ

by mapping all elements to 1. Similarly, for any Hilbert space H we can

define the trivial representation 1H : Γ → B(H) by mapping all elements to

the identity operator.

Example 1.2.3. We define the left regular representation λΓ : Γ → B(`2(Γ)) by

λΓ (s)δt = δst

1



1.2. UNITARY REPRESENTATIONS 2

for all s, t ∈ Γ (it can easily be verified that this extends to a unitary, since

it is obviously isometric and λΓ (s)
∗ = λΓ (s

−1)). We oftentimes write λ(s) or

λs, instead of λΓ (s). Similarly, we define the right regular representation

ρΓ : Γ → B(`2(Γ)) by

ρΓ (s)δt = δts−1

for all s, t ∈ Γ .

Example 1.2.4. Let Λ 6 Γ be a subgroup. We define the (left) quasi-regular

representation λΓ/Λ : Γ → B(`2(Γ/Λ)) of Γ associated to Λ by

λΓ/Λ(s)δtΛ = δstΛ

for all s, t ∈ Γ (again, the reader can check that the above truly defines a

unitary).

Definition 1.2.5. Two unitary representations (π,H), (σ,K) of Γ are called

equivalent (denoted by π ' σ) iff there exists an isometric linear isomorphism

T : H→ K that intertwines them, i.e.

Tπ(s) = σ(s)T

for all s ∈ Γ .

Definition 1.2.6. Let (πi,Hi) be a family of unitary representations of Γ and

H =
⊕

Hi be the Hilbert direct sum of the Hi’s. We define the direct sum

of the representations πi to be the unitary representation (π,H) defined by

π(s)(⊕ξi) = ⊕πi(s)ξi

for all s ∈ Γ and ⊕ξi ∈ H. We denote the direct sum ⊕Iπ of copies of a

representation π by |I|π.

Proposition 1.2.7. Let (π,H) be a unitary representation of Γ and K ⊆ H be

a Γ -invariant subspace. Then K⊥ is also Γ -invariant.

Proof. We have

〈π(s)ξ,η〉 = 〈ξ,π(s)∗η〉 =
〈
ξ,π(s−1)η

〉
= 0

for all ξ ∈ K⊥,η ∈ K and s ∈ Γ . �

Definition 1.2.8. For a unitary representation (π,H) of Γ and a closed Γ -

invariant subspace K ⊆ H, we will denote by πK
the representation s 7→

π(s)|K : K→ K. We will call πK
a subrepresentation of π.

Corollary 1.2.9. With the above notation, we have π = πK ⊕ πK⊥
.
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Proposition 1.2.10. Let (π,H1) and (σ,H2) be unitary representations of Γ and

T ∈ B(H1,H2) be an intertwining operator between them. Then K1 = (ker T)⊥

and K2 = im T are Γ -invariant and πK1 ' σK2 .

Proof. Γ -invariance is immediate from the intertwining relation and Propo-

sition 1.2.7. Since T intertwines π and σ, T∗ intertwines σ and π. Thus,

because |T | is a limit of polynomials in T∗T , we have that |T | intertwines π

with itself. Let T = U|T | be the polar decomposition of T . We know that U

restricts to an isometric isomorphism between K1 and K2, so it only remains

to show U intertwines πK1 and σK2 . Indeed, we have

σ(s)U|T |ξ = σ(s)Tξ = Tπ(s)ξ = U|T |π(s)ξ = Uπ(s)|T |ξ

for all s ∈ Γ and ξ ∈ H1, i.e. σ(s)U = Uπ(s) for all η ∈ im |T |. Since im |T | = K1,

we are done. �

Definition 1.2.11. A unitary representation (π,H) of Γ is called cyclic iff

there exists ξ ∈ H such that span{π(Γ)ξ} = H. Then, we say that ξ is a cyclic

vector for π.

Proposition 1.2.12. Every unitary representation (π,H) of Γ can be decom-

posed as a direct sum of cyclic ones.

Proof. Let X be the set of all families of mutually orthogonal closed Γ -

invariant subspaces of H, partially ordered by inclusion. By Zorn’s lemma,

X contains a maximal family (Hi). If
⊕

Hi ( H, then there exists a non-zero

ξ ∈ H which is orthogonal to all Hi’s. But then, the family (Hi)∪ {K}, where

K = span{π(Γ)ξ}, is contained in X, contradicting maximality. Therefore,

H =
⊕

Hi and π = ⊕πHi . �

Forming the direct sum of all (up to unitary equivalence) cyclic represen-

tations of Γ gives us the universal representation πu (the observant reader

might realise that it is not completely trivial that this sum is well-defined,

but it is not that hard to convince themselves, since the cardinality of any

Hilbert space on which Γ is cyclically represented is bounded).

Definition 1.2.13. Let (π,H), (σ,K) be unitary representations of Γ . The

tensor product π⊗ σ of π and σ is the unitary representation of Γ on H ⊗K

defined by

(π⊗ σ)(s)(ξ⊗ η) = π(s)ξ⊗ σ(s)η

for all s ∈ Γ , ξ ∈ H and η ∈ K (as usual, we extend linearly to H �K and

then by density to H ⊗K).

Theorem 1.2.14 (Fell’s absorption principle). Let (π,H) be a unitary represen-

tation of Γ . Then λΓ ⊗ π is unitarily equivalent to λΓ ⊗ 1H.
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Proof. Consider the unitary U ∈ B(`2(Γ)⊗H) defined by

U(δt ⊗ ξ) = δt ⊗ π(t)ξ

for all t ∈ Γ and ξ ∈ H. Then, we have

U∗(λΓ ⊗ π)(s)U(δt ⊗ ξ) = U∗(λΓ ⊗ π)(s)(δt ⊗ π(t)ξ)
= U∗(δst ⊗ π(s)π(t)ξ)
= δst ⊗ ξ
= (λΓ ⊗ 1H)(s)(δt ⊗ ξ)

for all s, t ∈ Γ and ξ ∈ H. �

Consider now a subgroup Λ 6 Γ and a unitary representation (π,H) of Λ.

Let

HΓ = {ξ : Γ → H :
∑

sΛ∈Γ/Λ

‖ξ(s)‖2 <∞ and ξ(st) = π(t−1)ξ(s) ∀s ∈ Γ , t ∈ Λ},

where the second condition guarantees that the sum in the first one is

well-defined. We can equip HΓ with an inner product defined by

〈ξ,η〉 =
∑

sΛ∈Γ/Λ

〈ξ(s),η(s)〉

for all ξ,η ∈ HΓ , which turns it into a Hilbert space (it is just l2(Γ/Λ,H) in

disguise, as every element in HΓ is uniquely determined by its values on a

fixed set of representatives of Γ/Λ).

Definition 1.2.15. With the above notation, we define the representation

indΓΛ π : Γ → B(HΓ ) by

(indΓΛ π(s)ξ)(t) = ξ(s
−1t)

for all s, t ∈ Γ and ξ ∈ HΓ . indΓΛ π is called the representation of Γ induced

by π.

Example 1.2.16. indΓΛ λΛ = λΓ .

Example 1.2.17. indΓΛ 1Λ = λΓ/Λ.

Definition 1.2.18. For a unitary representation (π,H) of Γ , we call the func-

tions 〈π(.)ξ,η〉, for ξ,η ∈ H, the matrix coefficients of π. We call the diagonal

matrix coefficients (i.e. those of the form 〈π(.)ξ, ξ〉) the functions of positive

type associated with π.

Definition 1.2.19. Let (π,H), (σ,K) be unitary representations of Γ . We say

that π is weakly contained in σ (and write π ≺ σ) iff every function of

positive type associated with π can be approximated uniformly on finite

subsets of Γ by finite sums of functions of positive type associated with σ.

We say that π and σ are weakly equivalent (and write π ∼ σ) iff π ≺ σ and

σ ≺ π.
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Remark. The reader can easily check that weak containment is transitive

and depends only on the equivalence class of the representations involved.

Furthermore, it does not take multiplicities into account, i.e. for unitary

representations π,σ and cardinal numbers α,β we have απ ≺ βσ ⇐⇒ π ≺ σ.

It is immediate thet we can restrict the functions of positive type that

need to be checked to those of the form 〈π(.)ξ, ξ〉 where ξ is a unit vector (we

call those normalised). Moreover, such a function is approximated as in the

definition iff it is approximated by convex combinations of normalised ones

(this is not immediate, but it is reasonably easy). However, a more useful

and less trivial restriction can be achieved using the following lemma.

Lemma 1.2.20. Let (π,H) and (σ,K) be unitary representations of Γ and

V ⊆ H be such that π(Γ)V is total in H. Then π ≺ σ iff every function of

positive type of the form 〈π(.)ξ, ξ〉 , ξ ∈ V can be approximated uniformly

on finite subsets of Γ by finite sums of functions of positive type associated

with σ.

Proof. Let X be the set of all vectors ξ ∈ H such that the corresponding

functions of positive type 〈π(.)ξ, ξ〉 can be approximated as described above.

We have to show that X = H.

First of all, X is closed. Indeed, let ξ ∈ X and notice that

| 〈π(s)ξ, ξ〉− 〈π(s)ξ ′, ξ ′〉 | 6 (‖ξ‖+ ‖ξ ′‖) ‖ξ− ξ ′‖

for all s ∈ Γ and ξ ′ ∈ X. The right-hand side can be made ε-small for any

ε, so any ε-approximation for 〈π(.)ξ ′, ξ ′〉 is a 2ε-approximation for 〈π(.)ξ, ξ〉
and thus ξ ∈ X.

Next, for s1, s2 ∈ Γ , z1, z2 ∈ C and ξ ∈ X, let ξ ′ = z1π(s1)ξ + z2π(s2)ξ and

ϕ(.) = 〈π(.)ξ, ξ〉. We have

〈π(s)ξ ′, ξ ′〉 = |z1|
2ϕ(s−1

1 ss1) + |z2|
2ϕ(s−1

2 ss2) + z1z̄2ϕ(s
−1
2 ss1) + z2z̄1ϕ(s

−1
1 ss2)

for all s ∈ Γ . Therefore, for any finite set F, uniformly approximating ϕ

on (s−1
1 Fs1) ∪ (s−1

2 Fs2) ∪ (s−1
2 Fs1) ∪ (s−1

1 Fs2) (which is still finite) allows us to

uniformly approximate 〈π(.)ξ ′, ξ ′〉. Thus, if ξ ∈ X, then X also contains the

closed Γ -invariant subspace generated by ξ in H.

Finally, we can show that X is closed under addition (and since it contains

V, we will be done). To that end, consider ξ1, ξ2 ∈ X and let H1,H2 be the

respective Γ -invariant subspaces they generate in H. Denote by K the

closure of H1 +H2 in H, which is also Γ -invariant. Let P be the orthogonal

projection from H2 to the orthogonal complement H⊥1 of H1 in K. Notice

now that P(H2) is dense in H⊥1 , and P intertwines πH2 and πH⊥1 . Hence, by

Proposition 1.2.10, π(kerP)⊥ ' πH⊥1 . In particular, since (kerP)⊥) ⊆ H2 ⊆ X, we

also have H⊥1 ⊆ X. Writing now ξ = ξ1 + ξ2 as ξ ′1 + ξ
′
2 with ξ ′1 = P(ξ) ∈ H⊥1
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and ξ ′2 = ξ− P(ξ) ∈ H1, we have

〈π(s)ξ, ξ〉 = 〈π(s)ξ ′1, ξ ′1〉+ 〈π(s)ξ ′2, ξ ′2〉

for all σ ∈ Γ . Therefore ξ ∈ X. �

Theorem 1.2.21 (continuity of induction). Let (π,H) and (σ,K) be unitary

representations of a subgroup Λ 6 Γ . Then, π ≺ σ implies indΓΛ π ≺ indΓΛ σ.

Proof. For simplicity, we will denote indΓΛ π and indΓΛ σ by (π ′,H ′) and (σ ′,K ′),

respectively. Let Σ be a transversal of the left coset space Γ/Λ containing e.

Notice that the set π(Γ)V, where

V = {ξ ∈ H ′ : supp(ξ) ⊆ Λ},

is total in H ′. Therefore, from the previous lemma, we can restrict our

attention to functions of positive type of the form 〈π ′(.)ξ, ξ〉 for ξ ∈ V. But

for such ξ we have

〈π ′(s)ξ ′, ξ ′〉 =
∑
t∈Σ

〈
ξ(s−1t), ξ(t)

〉
=
〈
ξ(s−1), ξ(e)

〉
=

〈ξ(s−1), ξ(e)〉 , s ∈ Λ
0, otherwise

=

〈π(s)ξ(e), ξ(e)〉 , s ∈ Λ0, otherwise

,

where we have used the definition of H ′ and V. Similar calculations show

that for any η ∈ K and s ∈ Λ,

〈σ(s)η,η〉 = 〈σ ′(s)η ′,η ′〉 ,

where η ′ ∈ K ′ is the function that maps e to η and all other elements of Σ

to 0. Thus, since we can approximate 〈π(.)ξ(e), ξ(e)〉 by sums of 〈σ(.)η,η〉’s,
and 0 by 0’s, we can also approximate 〈π ′(.)ξ, ξ〉 by sums of 〈σ ′(.)η ′,η ′〉’s. �

1.3 Group C∗-Algebras

In this section we will introduce the C∗-algebras associated with unitary

representations of Γ . Naturally, we will focus on the properties of the

reduced C∗-algebra, C∗r(Γ), and the full C∗-algebra, C∗(Γ). The former is

especially important in this work, as all the main results have to do with

its properties.
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Let as begin by considering the group algebra C[Γ ], which is essentially

Cc(Γ ,C) equipped with the convolution product. We can endow C[Γ ] with an

involution by declaring s∗ = s−1
and extending antilinearly.

It is apparent that unitary representations of Γ correspond exactly to

∗
-representations of C[Γ ]. For that reason, whenever we have a unitary

representation (π,H) of Γ , the corresponding
∗
-representation will also be

denoted by π. For any such representation, we will denote by C∗π(Γ) the

‖.‖-closure of π(C[Γ ]) inside B(H).

Definition 1.3.1. We call C∗λΓ (Γ) the reduced C∗ algebra of Γ , and denote it

by C∗r(Γ).

Definition 1.3.2. We call C∗πu the full or universal C∗-algebra of Γ , and denote

it by C∗(Γ).

Using Proposition 1.2.12, it is clear that C∗(Γ) has the following universal

property.

Proposition 1.3.3. For every
∗
-representation π of C[Γ ], there exists a surjective

∗
-homomorphism C∗(Γ) → C∗π(Γ) such that πu(s) 7→ π(s) for all s ∈ Γ . We

denote the kernel of this
∗
-homomorphism by C∗ kerπ.

We give now a useful characterisation of weak containment.

Proposition 1.3.4. Let (π,H) and (σ,K) be unitary representations of Γ . Then

the following are equivalent:

1. π ≺ σ.

2. C∗ kerπ ⊇ C∗ kerσ.

Proof. First of all, note that condition (2) is equivalent to ‖π(a)‖ 6 ‖σ(a)‖
for all a ∈ C[Γ ]+, as both simply state that the

∗
-homomorphism

C∗σ(Γ) = C
∗(Γ)/C∗ kerσ→ C∗(Γ)/C∗ kerπ = C∗π(Γ)

σ(a) 7→ π(a)

is well-defined.

With that in mind, assume π ≺ σ and let a =
∑
s∈Γ ass ∈ C[Γ ]+, F =

supp(a), and ξ ∈ H be a unit vector. Consider now unit vectors η1, . . . ,ηn ∈ K

and real numbers numbers c1, . . . , cn > 0 such that c1+ · · ·+ cn = 1. We have∣∣∣∣∣〈π(a)ξ, ξ〉−
n∑
j=1

cj 〈σ(a)ηj,ηj〉

∣∣∣∣∣ 6∑
s∈F

|as|

∣∣∣∣∣〈π(s)ξ, ξ〉−
n∑
j=1

cj 〈σ(s)ηj,ηj〉

∣∣∣∣∣ .
Since we can approximate ‖π(a)‖ from below by 〈π(a)ξ, ξ〉’s due to posi-

tivity, and 〈π(.)ξ, ξ〉’s by (
∑n
j=1 cj 〈σ(.)ηj,ηj〉)’s uniformly on F due to weak

containment, we immediately get ‖π(a)‖ 6 ‖σ(a)‖.



1.3. GROUP C∗-ALGEBRAS 8

For the converse, let ξ ∈ H be a unit vector. We can extend 〈π(.)ξ, ξ〉
to a state on C∗π(Γ). Composing it with the

∗
-homomorphism C∗σ(Γ)→ C∗π(Γ)

provided by condition (2), we get a state ϕ on C∗σ(Γ), which restricted to Γ is

still 〈π(.)ξ, ξ〉. It suffices to prove that ϕ is contained in the weak-
∗
-closed

convex hull K of states on C∗σ(Γ) coming from normalised functions of

positive type associated with σ.

Assume ϕ is not contained in K. By the Hahn-Banach separation theorem,

there exists an element a ∈ C∗σ(Γ)sa and c ∈ R such that

ϕ(a) < c 6 ψ(a)

for all ψ ∈ K. In particular, 〈aη,η〉 > c for all unit vectors η ∈ K. Replacing

a with a − c1C∗σ(Γ), we can assume c = 0, and thus a is positive. But then

ϕ(a) > c = 0, a contradiction. �

Notice that, by its universal property, C∗(Γ) always has a character

(coming from 1Γ ), and thus a trace. However, much more important is the

existence of a trace in the reduced case.

Proposition 1.3.5. The vector state

τ0 : C
∗
r(Γ)→ C : a 7→ 〈aδe, δe〉

is tracial and faithful. This map is called the canonical trace.

Proof. Since

〈λsλtδe, δe〉 = 〈δst, δe〉 = 〈δts, δe〉 = 〈λtλsδe, δe〉

for all s, t ∈ Γ , we immediately have that τ0 is a trace.

Now, notice that λs and ρt commute for all s, t ∈ Γ , and thus ρt commutes

with all elements in C∗r(Γ). Therefore, if a ∈ C∗r(Γ) is such that aδe = 0, then

aδs = aρs−1δe = ρs−1aδe = 0

for all s ∈ Γ , and hence a = 0. With that in mind, for a ∈ C∗r(Γ) we have

τ0(a
∗a) = ‖aδe‖2 ,

which is 0 iff a = 0 iff a∗a = 0, proving faithfulness. �

We close this section by taking a look at how C∗r(Γ) relates to C∗r(Λ) for

a subgroup Λ 6 Γ .

Proposition 1.3.6. If Λ 6 Γ , then C∗r(Λ) ⊆ C∗r(Γ) canonically.
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Proof. It suffices to note that

`2(Γ) =
⊕
s∈Σ

`2(Λs)

where Σ is a transversal of the right coset space Γ \Λ. This implies that the

restriction of λΓ to Λ is a multiple of λΛ, and thus the mapping λΛ(s) 7→ λΓ (s)

extends to the desired isometric
∗
-homomorphism. �

Proposition 1.3.7. If Λ 6 Γ , then there exists a canonical conditional expecta-

tion EΛ : C∗r(Γ)→ C∗r(Λ).

Proof. It suffices to show that the
∗
-homomorphism EΛ : C[Γ ] ⊆ C∗r(Γ)→ C∗r(Λ)

defined by λs 7→ 1Λ(s)λs is contractive, and then use Tomiyama’s theorem to

conclude that its extension on C∗r(Γ) (denoted also by EΛ) is a conditional

expectation (since it is obviously a projection).

To that end, let ξ ∈ `2(Λ) ⊆ `2(Γ) and a =
∑
s∈Γ asλs. We have

‖aξ‖2 =

∥∥∥∥∥∑
s∈Λ

asλsξ+
∑
s∈Λc

asλsξ

∥∥∥∥∥
2

=

∥∥∥∥∥∑
s∈Λ

asλsξ

∥∥∥∥∥
2

+

∥∥∥∥∥∑
s∈Λc

asλsξ

∥∥∥∥∥
2

>

∥∥∥∥∥∑
s∈Λ

asλsξ

∥∥∥∥∥
2

= ‖EΛ(a)ξ‖2

and thus

‖EΛ(a)‖ = sup{‖EΛ(a)ξ‖ : ξ ∈ `2(Λ), ‖ξ‖ = 1}

6 sup{‖aξ‖ : ξ ∈ `2(Λ), ‖ξ‖ = 1}

6 sup{‖aξ‖ : ξ ∈ `2(Γ), ‖ξ‖ = 1}

= ‖a‖ ,

as required. �

1.4 Amenability

Amenability as a notion has its roots in measure theory and the Banach-

Tarski paradox, but its significance has spread to many areas of mathe-

matics, including geometric group theory, dynamics, ergodic theory, and

(of course!) operator algebras. Introduced by von Neumann in the 1920’s,

amenable groups have since been characterised in a wide variety of wildly

different ways. So wide in fact, that it has become somewhat of a running
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joke among the initiated. We, however, will take a very modest approach,

presenting only the few equivalent definitions that will be useful in this

work. We will also explore some of the properties of the class of amenable

groups.

Definition 1.4.1. Γ is called amenable iff there exists a state ω on `∞(Γ) which

is invariant under the left translation action of Γ , i.e.

ω(sf) = ω(f)

for all f ∈ `∞ and s ∈ Γ , where (sf)(t) = f(s−1t). Such a state ω is called an

invariant mean.

We will denote by P(Γ) the space of probability measures on Γ , i.e. the

positive part of the unit sphere of `1(Γ). Note that P(Γ) is invariant under

the left translation action defined above on `∞(Γ).

Definition 1.4.2. We say that Γ has an approximate invariant mean iff for

any finite subset F ⊆ Γ and ε > 0, there exists µ ∈ P(Γ) such that

sup
s∈F
‖sµ− µ‖1 < ε.

Definition 1.4.3. We say that Γ satisfies the Følner condition iff for any finite

subset E ⊆ Γ and ε > 0, there exists a finite subset F ⊆ Γ such that

sup
s∈F

|sF4F|
|F|

< ε.

A net of finite subsets Fi ⊆ Γ such that

|sFi4Fi|
|Fi|

→ 0

for all s ∈ Γ is called a Følner net (obviously Γ satisfies the Følner condition

iff it has a Følner net).

Theorem 1.4.4. The following are equivalent:

1. Γ is amenable.

2. Γ has an approximate invariant mean.

3. Γ satisfies the Følner condition.

4. There exist unit vectors (ξi) in `2(Γ) such that ‖λsξi − ξi‖ → 0 for all

s ∈ Γ .

5. 1Γ ≺ λΓ .

6. C∗r(Γ) has a character.
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Proof. (1 =⇒ 2) Let ω ∈ `∞(Γ)∗ be an invariant mean. Since `1(Γ) is the

predual of `∞(Γ), it is weak-*-dense in `∞(Γ)∗. Therefore, we can find a net

(µi) in P(Γ) such that µi
w∗−→ ω, which implies that sµi−µi

w−→ 0 for all s ∈ Γ .
Hence, for any finite subset F ⊆ Γ , the weak closure of

⊕
s∈F{sµ−µ : µ ∈ P(Γ)}

contains 0. But this set is convex in
⊕
s∈F `

1(Γ), so norm and weak closures

coincide.

(2 =⇒ 3) Let E ⊆ Γ be finite and ε > 0. Choose µ ∈ P(Γ) such that∑
s∈E

‖sµ− µ‖1 < ε.

For each r > 0 and f ∈ `1(Γ)+, define F(f, r) = {s ∈ Γ : f(s) > r}. We have

‖sµ− µ‖1 =
∑
t∈Γ

|sµ(t) − µ(t)|

=
∑
t∈Γ

∫ 1

0

|1F(sµ,r)(t) − 1F(µ,r)(t)|dr

=

∫ 1

0

|F(sµ, r)4F(µ, r)|dr

=

∫ 1

0

|sF(µ, r)4F(µ, r)|dr,

and therefore ∫ 1

0

∑
s∈E

|sF(µ, r)4F(µ, r)|dr < ε = ε

∫ 1

0

|F(µ, r)|dr.

Hence, for some r we must have∑
s∈E

|sF(µ, r)4F(µ, r)| < ε|F(µ, r)|

and thus the Følner condition is satisfied (since F(µ, r) is finite for any r > 0).

(3 =⇒ 4) Let (Fi) be a Følner net. Then the ξi’s defined by ξi = |Fi|
−1/2

1Fi

do the job.

(4 =⇒ 5) The only normalised function of positive type associated with

1Γ is the constant function 1. For (ξi) in `2(Γ) satisfying condition (4), we

have

| 〈λsξi, ξi〉− 1| = | 〈λsξi − ξi, ξi〉 | 6 ‖λsξi − ξi‖ → 0

for all s ∈ Γ . Thus 1Γ ≺ λΓ .
(5 =⇒ 6) Proposition 1.3.4 implies the existence of a

∗
-homomorphism

C∗r(Γ) = C
∗
λΓ
(Γ)→ C∗1Γ (Γ) = C,

i.e. a character.
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(6 =⇒ 1) Consider a character C∗r(Γ)→ C and extend it to a state ω on

B(`2(Γ)), which restricts to a state on `∞(Γ). Now, for s ∈ Γ and f ∈ `∞(Γ) we

have

ω(sf) = ω(λsfλ
∗
s) = ω(λs)ω(f)ω(λ∗s) = ω(f),

where we have used that the Γ -action on `∞(Γ) is spatially implemented

(as a very simple calculation shows), and that C∗r(Γ) is contained in the

multiplicative domain of ω (which is completely positive because C is

abelian). Thus, Γ is amenable. �

Condition (5) and continuity of induction imply the following, which will

be used later on.

Corollary 1.4.5. If a subgroup Λ 6 Γ is amenable, then λΓ/Λ ≺ λΓ .

Theorem 1.4.6 (Day’s fixed point). The following are equivalent:

1. Γ is amenable.

2. Every Γ -action on a compact convex subset K of a locally convex space

X has a fixed point.

Proof. (2 =⇒ 1) Immediate, since the state space of `∞(Γ) is a weak-
∗
-

compact convex subset of `∞(Γ)∗.

(1 =⇒ 2) Fix x0 ∈ K and consider an invariant mean ω ∈ `∞(Γ)∗. Let

A(K) be the set of continuous affine maps K→ C. For each ϕ ∈ A(K), define
fϕ : Γ → C : s 7→ ϕ(sx0) and notice that fϕ ∈ `∞(Γ). We want to show that

there exists xΓ ∈ K such that ω(fϕ) = ϕ(xΓ ) for all ϕ ∈ A(K), which will

turn out to be the desired fixed point.

To that end, let ωi be a net of finitely supported positive elements of

norm 1 in `1(Γ) ⊆ `∞(Γ)∗ such that ωi
w∗−→ ω. Notice that for such an element

ωi =
∑n
k=1 ci,kδsk , ci,k > 0,

∑n
k=1 cci,k = 1 and for all ϕ ∈ A(K) we have

ωi(fϕ) =

n∑
k=1

ci,kϕ(skx0) = ϕ(

n∑
k=1

ci,kskx0),

i.e. for each i there exists a point xi ∈ K such that ωi(fϕ) = ϕ(xi). By

compactness, we can assume (xi) converges to some xΓ ∈ K. But then

ω(fϕ) = lim
i
ωi(fϕ) = lim

i
ϕ(xi) = ϕ(xΓ )

for all ϕ ∈ A(K).
Now, because the Γ -action is affine, we have that the map ϕs,ψ : K→ C :

x 7→ ψ(sx) belongs to A(K) for all s ∈ Γ and ψ ∈ X∗. Furthermore, we have

fϕs,ψ(t) = ϕs,ψ(tx0) = ψ(stx0) = (s−1fϕe,ψ)(t),
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and thus

ψ(sxΓ ) = ϕs,ψ(xΓ ) = ω(fϕs,ψ) = ω(s−1fϕe,ψ)

= ω(fϕe,ψ) = ϕe,ψ(xΓ ) = ψ(xΓ )

for all s ∈ Γ and ψ ∈ X∗. Since X∗ separates points in X, xΓ is indeed fixed

by Γ . �

Let us now take a look at how amenability behaves under standard group

theoretic operations.

Proposition 1.4.7. Amenability is closed under taking subgroups.

Proof. If Λ 6 Γ , then C∗r(Λ) ⊆ C∗r(Γ) canonically. Thus, any character on

C∗r(Γ) restricts to a character on C∗(Λ). �

Proposition 1.4.8. Amenability is closed under taking quotients.

Proof. Let Γ be amenable, Λ E Γ , and ω ∈ `∞(Γ)∗ be an invariant mean. If

π : Γ → Γ/Λ is the canonical projection, we can define a state ω̃ on `∞(Γ/Λ)
by

f 7→ ω(f ◦ π).

We have

((sΛf) ◦ π)(t) = f(s−1tΛ) = (f ◦ π)(s−1t) = (s(f ◦ π))(t)

and thus

ω̃(sΛf) = ω((sΛf) ◦ π) = ω(s(f ◦ π)) = ω(f ◦ π) = ω̃(f)

for all f ∈ `∞(Γ/Λ) and sΛ ∈ Γ/Λ. �

Proposition 1.4.9. Amenability is closed under extensions.

Proof. Let Λ E Γ and Γ/Λ be amenable, and ωΛ ∈ `∞(Λ)∗, ωΓ/Λ ∈ `∞(Γ/Λ)∗

be invariant means. For f ∈ `∞(Γ) define f̃ ∈ `∞(Γ/Λ) by f̃(sΛ) = ωΛ((s−1f)|Λ),

which is well-defined due to the Λ-invariance of ωΛ. Define now ωΓ ∈ `∞(Γ)∗

by

f 7→ ωΓ/Λ(f̃),

which is obviously a state. Now we have

s̃f(tΛ) = ωΛ((t
−1sf)|Λ) = f̃(s

−1tΛ) = (sΛf̃)(t)

and thus

ωΓ (sf) = ωΓ/Λ(s̃f) = ωΓ/Λ(sΛf̃) = ωΓ/Λ(f̃) = ωΓ (f)

for all f ∈ `∞(Γ) and s ∈ Γ . �
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Proposition 1.4.10. Amenability is closed under direct unions.

Proof. Let (Γi) be a direct system of amenable groups, ε > 0 and E ⊆ Γ := ∪iΓi
be a finite set. Then there exists i such that E ⊆ Γi. Thus, there exists a

finite F ⊆ Γi 6 Γ such that

sup
s∈F

|sF4F|
|F|

< ε,

meaning that Γ satisfies the Følner condition. �

We will now use the above to establish the following fact, which will

come into play later on.

Proposition 1.4.11. There exists a normal amenable subgroup Λ0 6 Γ which

contains all other normal amenable subgroups of Γ . We call this the amenable

radical of Γ and denote it by Ra(Γ).

Proof. Let {Λi} be the family of normal amenable subgroups of Γ . Since this

family is closed under direct unions, we can invoke Zorn’s lemma to obtain

a maximal element Λ0 of {Λi}. Assume that Λi * Λ0 for some i. Then Λ0

is normal in Λ0Λi and Λ0Λi/Λ0 ' Λi/(Λi ∩Λ0). Thus, since amenability is

closed under extensions, Λ0Λi is amenable and normal (since Λ0,Λi are),

contradicting maximality of Λ0. �

1.5 Crossed Products

Crossed products sit in the heart of the interplay between dynamics and

operator theory, so their usefulness in this work should be quite unsurprising.

The context in which they arise is that of C∗-dynamical systems, and it is

an effective way of encoding them. This section serves as an introduction

to the topic, presenting the constructions as well as some key properties.

Definition 1.5.1. A C∗-dynamical system is a triplet (A,α, Γ), where A is a

(unital in this work) C∗-algebra and α is a Γ -action on A by
∗
-automorphisms.

We will call such an A a Γ -C∗-algebra.

For the rest of the section, unless otherwise specified, (A,α, Γ) will denote

a C∗-dynamical system, the notation covering the individual parts of the

triplet, too (e.g. A will denote a Γ -C∗-algebra, even on its own).

We want to construct a single C∗-algebra which minimally contains A

and Γ (i.e. it is generated by them) in a way that makes α inner (a property

reminiscent, uncoincidentally, of the semidirect product of groups), so that

we will be able to recover from it information about (A,α, Γ), and vice versa.

To that end, we start with the α-twisted group algebra A[Γ ;α] (= Cc(Γ ,A)

as linear spaces), i.e. the usual group algebra, equipped instead with the
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α-twisted convolution product defined by

(
∑
s∈Γ

ass) ∗α (
∑
t∈Γ

btt) =
∑
s,t∈Γ

asαs(bt)st.

We also define an involution on A[Γ ;α] by

(
∑
s∈Γ

ass)
∗ =

∑
s∈Γ

αs−1(a∗s)s
−1,

which turns it into a
∗
-algebra that seems to be doing exactly what we want.

It remains to find a suitable completion.

Definition 1.5.2. A covariant representation (π,u,H) of A consists of a uni-

tary representation u : Γ → B(H) and a
∗
-representation π : A → B(H)

such that the Γ -action on A is spatially implemented inside B(H), i.e.

π(αs(a)) = usπ(a)u
∗
s for all s ∈ Γ and a ∈ A.

It is clear that covariant representations of A correspond exactly to

∗
-representations of A[Γ ;α]. For a covariant representation (π,u,H), we will

denote the corresponding
∗
-representation by π× u.

We can construct an abundance of covariant representations in the

following way. Consider any
∗
-representation (π,H) of A. This induces a

∗
-representation (π̃,H ⊗ `2(Γ)) of A defined by

π̃(a)(ξ⊗ δs) = (π(αs−1(a))ξ)⊗ δs

for all a ∈ A, s ∈ Γ and ξ ∈ H. Then, (π̃, 1H ⊗ λΓ ,H ⊗ `2(Γ)) is a covariant

representation. Notice that π̃ × (1H ⊗ λΓ ) is faithful whenever π is. In

particular, the universal norm defined below is, indeed, a norm.

Definition 1.5.3. The full or universal crossed product of (A,α, Γ), denoted

by Aoα Γ (or simply Ao Γ ), is the completion of A[Γ ;α] with respect to the

norm defined by

‖x‖u = sup{‖π(x)‖ : π is a
∗
-representation of A[Γ ;α]}

for all x ∈ A[Γ ;α].

Notice that if A = C and α is the trivial action, then A[Γ ;a] = C[Γ ] and
Coα Γ = C∗(Γ). Similarly to C∗(Γ), the full crossed product satisfies (and is

characterised by) the following universal property.

Proposition 1.5.4. For every covariant representation (π,u,H) of A, there

exists a
∗
-representation (πo u,H) of Aoα Γ such that

πo u(
∑
s∈Γ

ass) =
∑
s∈Γ

π(as)us

for all
∑
s∈Γ ass ∈ A[Γ ;α] ⊆ AoαΓ (in other words,

∗
-representations of A[Γ ;α]

extend to
∗
-representations of Aoα Γ ).
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Definition 1.5.5. The reduced crossed product of (A,α, Γ), denoted by Aoα,r
Γ (or simply A or Γ ), is the ‖.‖-closure of (π̃ × (1H ⊗ λΓ ))(A[Γ ;α]) inside

B(H⊗ `2(Γ)) for some faithful representation (π,H) of A (using the notation

introduced right before defining the full crossed product).

For now, the above definition seems a bit shaky, but the next proposition

should remedy that.

Proposition 1.5.6. The reduced crossed product Aoα,r Γ does not depend on

the choice of faithful representation π : A→ B(H).

Proof. Consider a finite F ⊆ Γ and let P ∈ B(`2(Γ)) be the orthogonal pro-

jection onto span{δs : s ∈ F}. We would like to show that the norm of any

x ∈ A[Γ ;α] ⊆ B(H⊗ `2(Γ)) is independent of π. It suffices to show that this

holds for the compression of x by 1B(H) ⊗ P, and take the limit over F.

To that end, let {es,t}s,t∈Γ denote the matrix units inside B(`2(Γ)), a ∈ A,

and s ∈ Γ . Notice that

π̃(a) =
∑
t∈Γ

π(α−1
t (a))⊗ et,t,

where the convergence is in the strong operator topology (i.e. the topology

of pointwise convergence). Therefore, π̃(a) commutes with 1B(H) ⊗ P.
Thus, we have

(1B(H) ⊗ P)π̃(a)(1B(H) ⊗ λs)(1B(H) ⊗ P)

= (
∑
t∈Γ

π(α−1
t (a))⊗ et,t)(1B(H) ⊗ PλsP)

= (
∑
t∈Γ

π(α−1
t (a))⊗ et,t)(

∑
t∈F∩sF

1B(H) ⊗ et,s−1t)

=
∑
t∈F∩sF

π(α−1
t (a))⊗ et,s−1t

which lives inside MF(A) ↪−→ B(H ⊗ `2(Γ)). Hence,

(1B(H) ⊗ P)(π̃o (1H × λΓ ))(A[Γ ;α])(1B(H) ⊗ P) ↪−→MF(A),

which admits a unique C∗-norm. �

Notationally, we will henceforth completely forget about π and the

fact that we amplified λΓ , and denote the image of a typical element

x =
∑
s∈Γ ass ∈ A[Γ ;α] inside Aoα,r Γ by

∑
s∈Γ asλs.

Unsurprisingly, if A = C and α is the trivial action, then the associated

reduced crossed product is just C∗r(Γ).

Proposition 1.5.7 (Fell’s absorption principle - C∗-dynamical version). Let

(π,u,H) be a covariant representation. Then π̃ × (1H ⊗ λΓ ) is unitarily
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equivalent to (π⊗ 1B(`2(Γ)))⊗ (u⊗ λΓ ) (where we have abused notation for the

∗-representation a 7→ π(a)⊗ 1B(`2(Γ)) of A). In particular,

Aoα,r Γ ' C∗(π(A)⊗ 1B(`2(Γ)), (u⊗ λΓ )(Γ)) ⊆ B(H)⊗ C∗r(Γ)

whenever π is faithful.

Proof. Consider the unitary U defined in the proof of Fell’s absorption

property (Theorem 1.2.14), which, as we already know, intertwines 1H ⊗ λΓ
and u⊗ λΓ . Using covarience, we also have

U∗(π⊗ 1B(`2(Γ)))U(ξ⊗ δt) = (u∗tπ(a)utξ)⊗ δt
= (π(αt−1(a))ξ)⊗ δt
= π̃(a)(ξ⊗ δt)

for all ξ ∈ H, t ∈ Γ , and a ∈ A. The result is now immediate. �

We will close this section (and this chapter) with the introduction of a

very useful tool. But first, the following lemma is required.

Lemma 1.5.8. Let A,B be C∗-algebras and ϕ be a faithful state on B. Then

idA⊗ϕ;A⊗B→ A is faithful.

Proof. Assume A ⊆ B(H) and B ⊆ B(K), and thus A⊗B ↪−→ B(H ⊗K). Since

vector states corresponding to elementary tensors separate operators in

B(H⊗K), we have that elementary tensors of states in A∗�B∗ separate the

points of A⊗B (because the aforementioned vector states are elementary

tensors of vector states in B(H)∗ � B(K)∗).

Therefore, for x ∈ (A ⊗ B)+, there exists a state ψ on A such that

(ψ⊗ idB)(x) > 0. Since ϕ is faithful, we have that

ψ((idA⊗ϕ)(x)) = ϕ((ψ⊗ idB)(x)) > 0,

which implies (idA⊗ϕ)(x) 6= 0. �

Proposition 1.5.9. There exists a faithful conditional expectation E : Aoα,rΓ →
A such that E(λs) = 1Aδe(s) for all s ∈ Γ .

Proof. By Fell’s absorption property, Aoα,r Γ can be seen as a C∗-subalgebra

of B(H) ⊗ C∗r(Γ). Restricting idB(H)⊗ τ0 to A oα,r Γ gives us E, which is

faithful by the previous lemma. �
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Chapter 2

The Furstenberg-Hamana Boundary

In the second half of the 1970’s and the first half of the 1980’s, Masamichi

Hamana published a series of papers introducing the notion of an injec-

tive envelope for several categories of operator algebraic interest [Ham78;

Ham79a; Ham79b; Ham85]. The concept was by no means new or ground-

breaking for analysts, as, for example, Cohen had already done the same for

Banach spaces [Coh64]; and even before that, the idea existed in the alge-

braic realm of modules under the cloak of injective hulls [ES53]. Hamana’s

work, however, has seen a lot of use in the last decade, as an observation

he had already made was rediscovered and subsequently exploited to make

a connection between the dynamical and the C∗-algebraic properties of

discrete groups.

In this chapter we briefly go over Hamana’s theory of Γ -injective en-

velopes, in order to introduce the Hamana boundary of Γ and study its

properties. As we shall see – and this is the cornerstone of this whole work

– this boundary, albeit C∗-algebraic in nature, can be identified with the

Furstenberg boundary of the group, which was defined in dynamical terms

by Hillel (Harry) Furstenberg.

2.1 Injective Envelopes of Γ -Operator Systems

We begin this section by introducing the main categorical concept behind

it.

Definition 2.1.1. An object I in a category C is called injective iff every

morphism X→ I factors through every monomorphism X→ Y.

Well-known examples of injective objects in analysis include C in the

category of Banach spaces (Hahn-Banach theorem), c0 in the category of

separable Banach spaces (Sobczyk’s theorem) and B(H) in the category

G defined below (Arveson’s extension theorem) and in the category of

operator spaces with completely contractive maps as morphisms (Wittstock’s

19
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extension theorem).

Let us now focus on the categories we are interested in. In the rest of

the chapter, S will denote an operator system, unless otherwise specified.

Definition 2.1.2. We call S a Γ -operator system (or Γ -module) iff Γ acts on it

by unital complete order isomorphisms. A unital completely positive (u.c.p.)

Γ -equivariant map between Γ -operator systems will be simply called a Γ -map

or a Γ -homomorphism.

With that in mind, we define ΓG1 to be the category consisting of Γ -

operator systems as objects and Γ -maps as morphisms. We also define the

categories G and G1 of operator systems with completely positive (c.p.) and

u.c.p. maps as morphisms, respectively.

Definition 2.1.3. S is called Γ -injective iff it is injective in ΓG1.

Example 2.1.4. `∞(Γ) equipped with the action

(sf)(t) = f(s−1t), s ∈ Γ , f ∈ `∞(Γ)

is Γ -injective.

More generally, we have the following.

Lemma 2.1.5. If S is injective in G, then `∞(Γ , S) equipped with the action

(sf)(t) = f(s−1t), s ∈ Γ , f ∈ `∞(Γ , S)

is Γ -injective.

Proof. Let ϕ : T → `∞(Γ , S) be a Γ -map and ι : T ↪−→ U a Γ -monomorphism.

Consider the u.c.p. map ψ = eve ◦ϕ : T → S, where eve is the evaluation at

the identity element e of Γ . Since S is injective, there exists a u.c.p. map

ψ̂ : U → S which extends ψ, i.e. ψ̂ ◦ ι = ψ. Then the map ϕ̂ : U → `∞(Γ , S) :

x 7→ (ψ̂(s−1x))s∈Γ is a Γ -map extending ϕ.

U

T `∞(Γ , S) S

ψ̂

ϕ̂
ι

ϕ

ψ

eve

�

We want now to shift our attention to a more specific kind of Γ -injectivity.

We require a few more definitions.
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Definition 2.1.6. A Γ -extension of S is a pair (T, ι), where T is a Γ -operator

system and ι : S→ T is a completely isometric Γ -equivariant map.

Definition 2.1.7. A Γ -extension (T, ι) is called:

• Γ -injective iff T is Γ -injective.

• Γ -essential iff for every Γ -map ϕ : T → U, ϕ is completely isometric

whenever ϕ ◦ ι is.

• Γ -rigid iff for every Γ -map ϕ : T → T, ϕ is the identity on T whenever

ϕ ◦ ι = ι.

Definition 2.1.8. A Γ -extension of S that is both Γ -injective and Γ -essential is

called a Γ -injective envelope of S.

A couple of remarks are now in order. Firstly, every Γ -operator system

S ⊆ B(H) has a Γ -injective extension. To see this, we simply notice that

the map j : S → `∞(Γ ,B(H)) : x 7→ (s−1x)s∈Γ is a Γ -monomorphism. Since

`∞(Γ ,B(H)) is Γ -injective (by Lemma 2.1.5), it is a Γ -injective extension .

Secondly, if S is Γ -injective, then idS factors through j, producing a Γ -map

ϕ : `∞(Γ , S) → S such that ϕ ◦ j = idS. Furthermore, if ψ : T → S is a c.p.

map and i : T → U is a complete isometry, then ψ factors through i as seen

in the commutative diagram below. Thus, S is also injective in G (as is

`∞(Γ ,B(H)); an easy consequence of Arveson’s theorem).

U

T S `∞(Γ ,B(H)) S

ψ̂◦j

ψ̂

i

ψ

ψ

j ϕ

Conversely, if S is injective in G and there exists a Γ -map ϕ extending

idS as above, then S is Γ -injective (using practically the same diagram).

From now on we will freely assume S ⊆ `∞(G, S), forgetting the Γ -

monomorphism involved (thus the map ϕ defined above will be regarded as

a projection).

As we shall see next, every Γ -operator system also has a Γ -injective

envelope - and a unique one at that.

Let us fix operator systems S ⊆ T ⊆ B(H) such that T is Γ -injective and S

is a Γ -operator subsystem of T.

Definition 2.1.9. An S-map on T is a Γ -map ϕ : T → T that fixes S pointwise.

An S-seminorm on T is a seminorm p on T such that p(.) = ‖ϕ(.)‖ for some

S-map ϕ on T. An S-map is called an S-projection iff it is idempotent.
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Lemma 2.1.10. There exists a minimal S-seminorm on T.

Proof. We first note that the unit ball, call it B1, of B(T, `∞(Γ ,B(H))), the

space of bounded linear maps from T into `∞(Γ ,B(H)), is compact in the point-

σ-topology, i.e. the topology of pointwise convergence where `∞(Γ ,B(H)) is

endowed with the σ-weak topology.

Indeed, it is a closed subset of the topological space∏
x∈T

{y ∈ `∞(Γ ,B(H)) : ‖y‖ 6 ‖x‖},

which is compact by Tikhonov’s theorem and the Banach-Alaoglu theorem.

Now we would like to invoke Zorn’s lemma, so let (pi) be a decreasing

net of S-seminorms on T and ϕi : T → T be corresponding S-projections.

Regarding (ϕi) as a net in B1, there exists a subnet (ϕj) and a ϕ0 ∈ B1

such that ϕj(x) → ϕ0(x) σ-weakly for all x ∈ T. It is immediate that ϕ0

is completely positive (because the positive cone is closed in the σ-weak

topology), ϕ0|S = idS (because S is fixed pointwise by every ϕi), and Γ -

equivariant (because Γ acts by unital complete order isomorphisms, which

are continuous). However, ϕ0 need not be a Γ -projection, since its image is

not necessarily contained in T!

This is easily cured of course, because T is Γ injective and so there is a

Γ -equivariant u.c.p. projection ψ from `∞(Γ ,B(H)) onto it, hence now ψ ◦ϕ0

is a bona fide S-projection on T. Moreover, for all x ∈ T we have

p0(x) := ‖ψ ◦ϕ0(x)‖ 6 ‖ϕ0(x)‖ 6 lim sup ‖ϕj(x)‖ = limpi(x) 6 pi(x) ∀i,

since pi is decreasing.

Thus, Zorn’s lemma can indeed be invoked and we are done. �

Lemma 2.1.11. If ϕ : `∞(Γ ,B(H)) → `∞(Γ ,B(H)) is an S-map corresponding

to a minimal S-seminorm, then ϕ is an S-projection and T = ϕ(`∞(Γ ,B(H)))

is Γ -injective.

Proof. To show that ϕ is an S projection, notice that ϕ ◦ ϕ is also an S-

map and ‖(ϕ ◦ϕ)(x)‖ 6 ‖ϕ(x)‖ for all x ∈ `∞(Γ ,B(H)). By minimality, we

get equality and inductively
∥∥ϕ(n)(x)

∥∥ = ‖ϕ(x)‖ for all x and all n. By

setting ψn = (ϕ + · · · + ϕ(n))/n and using the same argument, we get

‖ψn(x)‖ = ‖ϕ(x)‖ for all x and all n. Thus,

‖ϕ(x) − (ϕ ◦ϕ)(x)‖ = ‖ϕ(x−ϕ(x))‖ = ‖ψn(x−ϕ(x))‖

=

∥∥∥∥ϕ(x) + · · ·+ϕ(n)(x)

n
−
ϕ(2)(x) + · · ·+ϕ(n+1)(x)

n

∥∥∥∥
6

2 ‖ϕ(x)‖
n

→ 0.

Hence, ‖ϕ(x) − (ϕ ◦ϕ)(x)‖ = 0 for all x, i.e. ϕ is an S-projection.

Now Γ -injectivity is immediate, since `∞(Γ ,B(H)) is Γ -injective. �
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Lemma 2.1.12. Using the notation of the previous lemma, (T, ι) is a Γ -rigid

extension of S (ι is simply the inclusion map).

Proof. Let ψ : T → T be a Γ -map such that ψ|S = idS. Since ‖(ψ ◦ϕ)(x)‖ 6
‖ϕ(x)‖ for all x ∈ `∞(Γ ,B(H)), we have ‖ψ(ϕ(x))‖ = ‖ϕ(x)‖ by minimality.

Thus ψ is an isometry. Furthermore, by the previous lemma, ψ ◦ ϕ is a

projection, so ψ ◦ϕ = ψ ◦ϕ ◦ψ ◦ϕ = ψ ◦ψ ◦ϕ (since ϕ is the identity on T).

Therefore, ψ(ϕ−ψ ◦ϕ) = 0. Now since ψ is an isometry, we get ψ ◦ϕ = ϕ,

i.e. ψ = idT. �

Lemma 2.1.13. If (T, ι) is a Γ -extension of S that is both Γ -injective and

Γ -rigid, then it is also Γ -essential.

Proof. Let ϕ : T → U be a Γ -map such that ϕ ◦ ι is completely isometric.

Consider the Γ -map ι◦(ϕ◦ ι)−1 : (ϕ◦ ι)(S)→ T. By Γ -injectivity, it extends to a

Γ -map ψ : U→ T. But then the Γ -map ω = ψ◦ϕ : T → T satisfies ω◦ ι = ι and
so ω = idT by Γ -rigidity. Thus, ϕ is completely isometric and Γ -essentiality

is proven. �

We now have all the ingredients needed for the main theorem of this

section.

Theorem 2.1.14. Every Γ -operator system S ⊂ B(H) has a Γ -injective envelope

which is unique in the sense that if (T1, ι1) and (T2, ι2) are two Γ -injective

envelopes of S, then there exists a Γ -isomorphism ω : T1 → T2 such that

ω ◦ ι1 = ι2.

Proof. Let ϕ : `∞(Γ ,B(H)) → `∞(Γ ,B(H)) be an S-map inducing a minimal

S-seminorm on `∞(Γ ,B(H)). By Lemma 2.1.11, T := ϕ(`∞(Γ ,B(H)) is a Γ -

injective extension of S. By Lemmas 2.1.12 and 2.1.13, it is also Γ -rigid and

thus Γ -essential. We have shown existence.

To prove uniqueness, let (T1, ι1) be another Γ -injective envelope of S. By

Γ -injectivity of T1, there exists a Γ -map ψ : T → T1 extending ι1. Similarly,

there exists a Γ -map ω : T1 → T such that ω ◦ ι1 = idS. Then ω ◦ ψ fixes S

pointwise, so by Γ -rigidity of T, ω ◦ψ = idT. On the other hand, ψ ◦ω ◦ ι1 = ι1
and, by Γ -essentiality of T1, ψ ◦ω is completely isometric. Hence, ω is a

Γ -isomorphism which, by definition, satisfies the condition we wanted.

T1 T

S

ω

ψ
ι1

�
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Remark. A by-product of the above is that Γ -essentiality can be replaced by

Γ -rigidity in the definition of the Γ -injective envelope. That, however, is

not the only meaningful way the definition can be altered. The interested

reader can refer to Paulsen’s book [Pau03, Theorem 15.8] for more details.

We will denote the Γ -injective envelope of S by IΓ (S), omitting the Γ -

monomorphism involved (since uniqueness renders it practically redundant

in our line of study) and identifying S with its image inside IΓ (S).

Having established existence and uniqueness, we continue by proving

that every Γ -injective envelope is, in a way, a C∗-algebra. More generally,

Choi and Effros proved in [CE77] the following.

Theorem 2.1.15. Let S be injective in G and let ϕ : A→ S be a u.c.p. projection

from a C∗-algebra A ⊇ S onto S (just extend idS by injectivity). Then the

operation x ◦ y = ϕ(xy) defines a multiplication on S which, along with the

original involution, turns it into a C∗-algebra.

Proof. Clearly, ◦ is well-defined, distributive and has an identity (the same

as the original). It remains to show associativity.

We will achieve this by showing that ϕ(ϕ(a)x) = ϕ(ax) and ϕ(xϕ(a)) =

ϕ(xa) for any a ∈ A and x ∈ S.

To that end, consider the matrix A =

[
x∗ a

0 0

]
. Using the Schwarz

inequality for 2-positive maps on ϕ(2) and A, we obtain[
ϕ(xx∗) ϕ(xa)

ϕ(a∗x∗) ϕ(a∗a)

]
−

[
xx∗ xϕ(a)

ϕ(a∗)x∗ ϕ(a)∗ϕ(a)

]
> 0.

and applying ϕ(2) yields[
0 ϕ(xa) −ϕ(xϕ(a))

ϕ(a∗x∗) −ϕ(ϕ(a)x∗) ϕ(a∗a) −ϕ(ϕ(a)∗ϕ(a))

]
> 0.

Thus, ϕ(xa) −ϕ(xϕ(a)) = 0 = ϕ(a∗x∗) −ϕ(ϕ(a∗)x∗).

It remains to verify the C∗-condition. One direction is clear, since

‖x∗ ◦ x‖ = ‖ϕ(x∗x)‖ 6 ‖x∗x‖ = ‖x‖2. The other is not that hard either, since

by the Schwarz inequality we have ϕ(x∗x) > ϕ(x∗)ϕ(x) = x∗x and therefore

‖ϕ(x∗x)‖ > ‖x∗x‖ = ‖x‖2. �

The multiplication defined in the above theorem will be henceforth

referred to as the Choi-Effros product.

2.2 The Hamana Boundary

2.2.1 Definition and Universality

With the tools developed in the previous section at our disposal, we turn

our attention to a particular case. Consider C equipped with the trivial
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Γ -action. Then, as we saw, there is a u.c.p. projection `∞(Γ)→ IΓ (C). Thus,

IΓ (C) equipped with the corresponding Choi-Effros product is turned into a

commutative (since `∞(Γ) is commutative) C∗-algebra.

Definition 2.2.1. We define the Hamana boundary of Γ , denoted by ∂HΓ , to

be the Gelfand spectrum of IΓ (C).

Remark. The action of Γ on IΓ (C) induces an action on P(∂HΓ), the space of

probability measures on ∂HΓ , by∫
f d(sµ) =

∫
s−1f dµ, s ∈ Γ , f ∈ IΓ (C),µ ∈ P(∂HΓ).

The restriction of this action to the Dirac measures is, by the usual identifi-

cation, a Γ -action on ∂HΓ .

Definition 2.2.2. A locally compact Hausdorff space X is called a Γ -space iff

Γ acts on it by homeomorphisms.

Hence the previous remark tells us that ∂HΓ is a compact Γ -space, as is

P(∂HΓ) endowed with the weak-
∗
topology. We will see that the former is of

a very special kind.

Before proceeding, notice that ∂HΓ already has an immediate use; it

detects amenability. Indeed, amenability is equivalent to the existence of a

Γ -map `∞(Γ)→ C which in turn is equivalent to IΓ (C) = C, i.e. ∂HΓ being a

singleton.

We want now to introduce the notion of Γ -boundaries in the sense of

Furstenberg [Fur73], in order to show that the Hamana boundary is properly

titled in that context.

Definition 2.2.3. Let X be a compact Γ -space. The Γ -action on X is called:

• minimal iff Γx = X for all x ∈ X.

• proximal iff for every pair of points x,y ∈ X there exists a net (si) in

Γ such that lim six = lim siy.

• strongly proximal iff the induced Γ -action on P(X) is proximal iff for

every µ ∈ P(X) there exist a Dirac measure in Γµ
w∗

.

Definition 2.2.4. A compact Γ -space X is called a Γ -boundary iff the Γ -action

on X is minimal and strongly proximal.

Proposition 2.2.5. The Γ -action on ∂HΓ is minimal.

Proof. Let x ∈ ∂HΓ and consider the restriction map r : C(∂HΓ) → C(Γx).

Then r is a Γ -map which is completely isometric on C. By the Γ -essentiality

of C(∂HΓ), r is completely isometric. That forces Γx = ∂HΓ , because otherwise

Urysohn’s lemma guarantees ker r is non-empty. �
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Remark. The above proof showcased a very nice property of C(∂HΓ). Every

Γ -map with C(∂HΓ) as its domain is automatically completely isometric,

since it is always completely isometric on C.

Proposition 2.2.6. The Γ -action on ∂HΓ is strongly proximal.

Proof. Let µ ∈ P(∂HΓ), x ∈ ∂HΓ and K = conv{Γµ}
w∗

. We will show that δx ∈ K.
Indeed, if not, then by the Hahn-Banach separation theorem we can find

a positive f0 ∈ C(∂HΓ) and ε > 0 such that∫
f0 d(sµ) 6

∫
f0 dδx − ε 6 ‖f0‖− ε, ∀s ∈ Γ .

This implies that the so-called Poisson map Pµ : C(∂HΓ)→ `∞(Γ), defined by

Pµ(f)(s) =

∫
f d(sµ), f ∈ C(∂HΓ), s ∈ Γ ,

satisfies ‖Pµ(f0)‖ 6 ‖f0‖ − ε. But Pµ is a Γ -map and thus isometric by the

above remark, a contradiction. Hence δx ∈ K.
We just proved that K contains the extreme points of P(∂HΓ), so K =

P(∂HΓ). Therefore, the Dirac measures are contained in Γµ
w∗

by Milman’s

partial converse to the Krein-Milman theorem. �

Corollary 2.2.7. The Hamana boundary ∂HΓ is a Γ -boundary.

Furstenberg proved the existence and uniqueness of a universal object

among Γ -boundaries, in the sense that every Γ -boundary is a continuous

Γ -equivariant image of it, introducing what came to be known as the

Furstenberg boundary ∂FΓ of Γ . In the remainder of this section we will prove,

by completely different techniques, that ∂HΓ also satisfies this condition

and thus the Hamana boundary and the Furstenberg boundary of a discrete

group are one and the same. This identification was observed by Hamana

himself in [Ham78, Remark 4] but was left unnoticed until Kalantar and

Kennedy gave a formal proof in [KK17].

Lemma 2.2.8. If M is a minimal compact Γ -space and X is a Γ -boundary,

then any continuous Γ -equivariant map M→ P(X) has X as its range (i.e. the

Dirac measures). Moreover, there exists at most one continuous Γ -equivariant

map M→ X.

Proof. Let α : M → P(X) be a continuous Γ -equivariant map. α(M) ⊆ P(X)

is compact, therefore closed, and Γ -invariant. Thus, since X is a boundary,

X ⊆ α(M). In particular, we can choose m ∈ M such that α(m) ∈ X.

By Γ -equivariance and minimality of M, α(M) = α(Γm) ⊆ Γα(m) = X, so

α(M) = X.

Now if β1,β2 : M → X are continuous Γ -equivariant maps, then α :

M → P(X) : m 7→ 1
2
(δβ1(m) + δβ2(m)) also is. Since α(M) = X and the Dirac

measures are extreme points in P(X), we have β1 = β2. �



27 CHAPTER 2. THE FURSTENBERG-HAMANA BOUNDARY

Corollary 2.2.9. Let M and X be as in the previous lemma. There is at

most one Γ -map C(X) → C(M). If such a map exists, then it is a unital

∗
-homomorphism.

Proof. Let ϕ : C(X)→ C(M) be a Γ -map. Then the adjoint map ϕ∗ restricts

to a continuous Γ -equivariant map α : M → P(X), which, by the previous

lemma, is unique and has X as its image. But α induces an injective

∗
-homomorphism C(X)→ C(M) by f 7→ f ◦α, which is actually the map ϕ we

started with, since

(f ◦ a)(m) := (ϕ∗(δm))(f) = δm(ϕ(f)) = ϕ(f(m)), f ∈ C(X),m ∈M.

�

Theorem 2.2.10. Let X be a Γ -boundary. Then there exists a continuous

Γ -equivariant map ∂HΓ � X. Hence ∂HΓ and ∂FΓ can be identified.

Proof. Fix any point x ∈ X and consider the continuous Γ -equivariant map

αx : s 7→ sx, s ∈ Γ . By the universal property of the Stone-Čech compactifi-

cation βΓ of Γ , we can extend this map to a continuous Γ -equivariant map

α̂x : βΓ → X. Since α̂x(βΓ) is compact and Γ -invariant, α̂x is surjective.

Now α̂x induces a unital isometric G-equivariant ∗-homomorphism i :

C(X)→ C(βΓ) = `∞(Γ) by f 7→ f ◦ α̂x. Composing i with the idempotent u.c.p.

Γ -equivariant projection `∞(Γ)� C(∂HΓ) produces a Γ -map C(X)→ C(∂HΓ),

which, as in the proof of the previous corollary, induces a continuous

Γ -equivariant map ∂HΓ � X. �

Henceforth, we will use the unifying ∂FHΓ to denote the Furstenberg-

Hamana boundary of Γ .

2.2.2 Further Properties

Definition 2.2.11. A topological space is called extremally disconnected or

Stonean iff the closure of every open set is open.

Proposition 2.2.12. The Furstenberg-Hamana boundary of Γ is extremally

disconnected.

Proof. Let U be an open subset of ∂FHΓ and let K = (U× {0})∪ (Uc× {1}). Pick

x0 ∈ ∂FHΓ and define α : Γ → K by

α(s) =

(sx0, 0), if sx0 ∈ U
(sx0, 1), otherwise.

K is compact in ∂FHΓ × {0, 1}, so we can extend α to a continuous map

α̂ : βΓ → K.



2.2. THE HAMANA BOUNDARY 28

We know there is a u.c.p. Γ equivariant projection C(βΓ) = `∞(Γ) →
C(∂FHΓ), which induces a continuous Γ -equivariant β : ∂FHΓ → P(βΓ). Con-

sider the composition γ := π∗ ◦ α̂∗ ◦ β : ∂FHΓ → P(∂FHΓ) where π : K → ∂FHΓ

is the projection on the first coordinate (we are using the standard push-

forward notation). Since π ◦ α : s 7→ sx0 is Γ -equivariant, so is π ◦ α̂ by

continuity. Thus, γ is a continuous Γ -equivariant map ∂FHΓ → P(∂FHΓ). By

Lemma 2.2.8, γ maps elements in ∂FHΓ to the corresponding Dirac measures

and therefore µx := α̂∗ ◦b(x) is supported on {x}× {0, 1} for any x ∈ ∂FHΓ . This

immediately gives us that µx(U
c × {1}) = 0 if x ∈ U, and µx(Uc × {1}) = 1 if

x /∈ U. By the continuity of both the map x 7→ µx and the indicator function

1Uc×{1}, we get that the map x 7→ µx(U
c × {1}) is also continuous and hence

forced to be the indicator function 1Uc . This implies that Uc is clopen. �

This property is, in a sense, quite discouraging, as extremally discon-

nected spaces are topologically not easy to grasp or pinpoint. It also

eliminates any hope to generalize anything discussed in this work to the

non-discrete case. The reason is that, although the Hamana boundary is al-

ways extremally disconnected, as the spectrum of an injective commutative

C∗-algebra [Gle58, Theorem 5.1], the Furstenberg boundary can be much

nicer (e.g. metrizable) when the group is not discrete (e.g. a semisimple Lie

group) [Gla76]. Thus, we cannot, in general, make the crucial identification

of the two.

Lemma 2.2.13. For every x ∈ ∂FHΓ , the point stabilizer Γx = {s ∈ Γ : sx = x} is

amenable.

Proof. Let x ∈ ∂FHΓ and consider the u.c.p. Γ -equivariant projection ϕ :

`∞(Γ)→ C(∂FHΓ). The composition evx ◦ϕ : `∞(Γ)→ C is a Γx-invariant state,

since

(s(evx ◦ϕ))(f) = evx(s−1ϕ(f)) = (s−1ϕ(f))(x)

= ϕ(f)(sx) = ϕ(f)(x)

= (evx ◦ϕ)(f),

for all s ∈ Γx and f ∈ `∞(Γ).
Now, let (si) be a transversal of the right coset space Γ \ Γx. Define a map

ψ : `∞(Γx)→ `∞(Γ) by ψ(f)(s) = f(t), where t ∈ Γx satisfies s = tsi for some i.

Then ψ is a Γx-equivariant unital
∗
-homomorphism and thus the composition

evx ◦ϕ ◦ψ is a Γx invariant state on `∞(Γx), witnessing amenability. �

Proposition 2.2.14. The kernel of the action of Γ on ∂FHΓ coincides with the

amenable radical Ra(Γ) of Γ .

Proof. Being amenable, Ra(Γ) fixes a probability measure µ on ∂FHΓ . Since

it is also a normal subgroup, it fixes every measure in Γµ
w∗

. By strong
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proximality, Γµ contains a Dirac measure and thus, by minimality, all of

them. Therefore, Ra(Γ) fixes all of ∂FHΓ , i.e. it is contained in the kernel of

the action.

Conversely, the kernel of the action is the intersection of the point

stabilizers, which is amenable by the previous lemma and thus contained

in Ra(Γ). �
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Chapter 3

The Reduced Group C∗-Algebra

In 1967, at a conference held in Baton Rouge, Dixmier posed the question

of whether every simple C∗-algebra is generated by its projections. At

some point in 1968, Kadison, who already had conversations of a similar

nature with Kaplansky back in 1949, suggested to Powers that the reduced

C∗-algebra of F2, the free group on two generators, should prove to be

simple, yet projectionless. The latter managed to prove the first half of this

statement, establishing C∗-simplicity of F2, within a week. Powers, however,

did not really care to publish this result, as he failed to prove the rest. In

fact, it took him seven years to publish [Pow75], and only after a request by

Akemann, who wanted to use it.

Nevertheless, Powers’ work proved to be quite important. Powers’ averag-

ing property (the main ingredient in his proof) became, modulo variants

and modifications of it, essentially the only tool to prove C∗-simplicity, for

decades. Spearheaded by de la Harpe’s efforts, the list of C∗-simple groups

grew slowly but steadily using this kind of combinatorial methods and,

along with it, new questions concerning the reduced C∗-algebras of discrete

groups quickly arose.

One main problem was to clarify the precise relationship between C∗-

simplicity and the unique trace property, as both implied triviality of the

amenable radical, but no other direct connection between them had been

found.

In this chapter, we will present dynamical characterisations of both

properties, leading to a complete solution of the above problem, as well as a

characterisation of exactness that fits nicely in our framework.

31
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3.1 C∗-Simplicity

3.1.1 The Main Theorem

The purpose of this subsection is to prove the following theorem, established

in [KK17] and [BKKO17].

Theorem 3.1.1. The following are equivalent:

1. Γ is C∗-simple.

2. The reduced crossed product C(∂FHΓ)or Γ is simple.

3. The reduced crossed product C(X)or Γ is simple for some Γ -boundary X.

4. The Γ -action on ∂FHΓ is (topologically) free.

5. The Γ -action on some Γ -boundary is (topologically) free.

Before we proceed with this task, we have to give the necessary defini-

tions.

Definition 3.1.2. Γ is called C∗-simple iff the reduced C∗-algebra C∗r(Γ) is

simple (i.e. it has no non-trivial closed ideals).

This definition, albeit completely natural, is not always the most useful.

We will need the following characterisation, given as a definition for

example in [Har07].

Proposition 3.1.3. Γ is C∗-simple iff, for every unitary representation π of Γ ,

the conditions π ≺ λΓ and π ∼ λΓ are equivalent.

Proof. The proof is a simple application of Proposition 1.3.4. Assume Γ is C∗-

simple and let π ≺ λΓ . Then, C∗ kerπ ⊇ C∗ ker λΓ . Therefore, C∗ kerπ/C∗ ker λΓ
is a closed ideal of C∗(Γ)/C∗ ker λΓ ∼= C∗r(Γ) and thus C∗ kerπ = C∗ ker λΓ .

Hence, π ∼ λΓ .

Conversely, assume Γ is not C∗-simple and let I be a non-trivial closed

ideal of C∗r(Γ). Seeing C∗r(Γ) as the quotient C∗(Γ)/C∗ ker λΓ , I is of the form

J/C∗ ker λΓ for some closed ideal J ) C∗ ker λΓ of C∗(Γ). But J, being a closed

ideal of C∗(Γ), is of the form C∗ kerπ for some unitary representation π of Γ .

Thus, we have π ≺ λΓ and π � λΓ . �

Definition 3.1.4. Let X be a Γ -space. The Γ -action on X is called topologically

free iff Xs := {x ∈ X : sx = x} has empty interior for all s ∈ Γ \ {e}.

We will split the proof of the theorem in several steps.

Lemma 3.1.5. Let X be an extremally disconnected Hausdorff space and

suppose f : X→ X is a homeomorphism. Then the set F of fixed points of f is

clopen.
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Proof. Call an open set U ⊆ X f-simple iff f(U)∩U = ∅. f-simplicity is closed

under increasing unions and, thus, there exists a maximal f-simple set U0.

By extremal disconnectedness, U0 is also open and f(U0)∩U0 ⊆ f(U0)∩U0 = ∅.
Hence f(U0) ∩U0 = ∅, i.e. U0 is f-simple and so U0 is clopen by maximality.

Clearly, F ∩ U0 = ∅ and therefore F ∩ f(U0) = F ∩ f−1(U0) = ∅. Let V =

U0 ∪ f(U0) ∪ f−1(U0) ⊆ Fc. We claim that equality holds, which would finish

the proof. If not, let x ∈ Vc be such that f(x) 6= x. Since X is Hausdorff

and V is closed, there exists an open neighbourhood W of x such that

W ∩ f(W) =W ∩ V = ∅. In particular, W ∪U0 ) U0 is f-simple, contradicting

maximality of U0. �

Corollary 3.1.6. The Γ -action on ∂FHΓ is free iff it is topologically free.

Proof. By Proposition 2.2.12, ∂FHΓ is extremally disconnected. By the previ-

ous lemma, the set (∂FHΓ)
s
is open for all s ∈ Γ , and thus it is empty iff it

has empty interior. �

Lemma 3.1.7. If the Γ -action on some Γ -boundary is topologically free, then

so is the Γ -action on ∂FHΓ .

Proof. Let X be a Γ -boundary on which Γ acts topologically freely and

assume that there exists an s ∈ Γ such that F := (∂FHΓ)
s
has non-empty

interior. Consider the Γ -map π : ∂FHΓ � X provided by universality. Notice

that π(F) is compact (in particular closed) and has empty interior, as it is

contained in Xs.

Let U ⊆ F be open and non-empty. By minimality, we have ΓU = ∂FHΓ .

By compactness, there exist s1, s2, . . . , sn ∈ Γ such that ∪ni=1siU = ∂FHΓ , and

therefore ∪ni=1siπ(U) = X. A fortiori, ∪ni=1siπ(F) = X, a contradiction. �

We have proved (4) ⇐⇒ (5) of the theorem. Now we want to throw

condition (1) into the mix.

Lemma 3.1.8. Let X be a non-trivial Γ -boundary. Then X is infinite and

contains no isolated points.

Proof. If X were finite, then the uniform probability measure on it would

be fixed by Γ , contradicting strong proximality. Now, if we assume x ∈ X
is an isolated point (i.e. {x} is open), minimality implies that Γx = X and

thus, by compactness, Fx = X for some finite F ⊆ Γ . Therefore X is finite, a

contradiction. �

Lemma 3.1.9. Let X be a Γ -boundary. For every non-empty open set U ⊆ X and

every ε > 0, there exists a finite set F ⊆ Γ \ {e} such that for every µ ∈ P(∂FHΓ),

there exists an s ∈ F such that µ(sU) > 1 − ε.
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Proof. If X is trivial (i.e. a singleton) there is nothing to prove, so we will

assume otherwise. To that end, fix x ∈ U and let µ ∈ P(X).

If µ = δx, let y ∈ U \ {x} (such y exists by the previous lemma) and let V

be an open neighbourhood of y separating it from x. By minimality, there

exists an sδx ∈ Γ such that s−1
δx
x ∈ U ∩ V and since x /∈ V , sδx is not the

identity. Then of course δx(sδxU) = δs−1
δx
x(U) = 1 > 1 − ε.

If µ 6= δx, by strong proximality and minimality there exists a net (si)

in Γ such that siµ → δx and we can freely assume no si is the identity

(by removing terms). By Urysohn’s lemma, there exists f ∈ C(X) such that

f(x) = 1 and 0 6 f 6 1U. By definition, siµ → δx implies (siµ)(f) → f(x) = 1,

thus we can pick an sµ ∈ Γ such that µ(sµU) = (sµµ)(U) = (sµµ)(1U) >

(sµµ)(f) > 1 − ε.

In any case, µ(sµU) > 1 − ε. Now, let f ∈ C(X) be such that 0 6 f 6 1sµU

and µ(f) > 1 − ε. By continuity of the evaluation on f, there exists a weak-
∗
-

open neighbourhood Vµ of µ such that ν(sµU) > ν(f) > 1 − ε for all ν ∈ Vµ.
By compactness, there are Vµ1

,Vµ2
, . . . ,Vµn that cover P(X), for some n ∈ N,

so we can pick F = {sµ1
, sµ2

. . . , sµn}. �

Proposition 3.1.10. Let X be a Γ -boundary. If the Γ -action on X is not topo-

logically free, then the left regular representation λΓ is not weakly contained

in the quasi-regular representation λΓ/Γx corresponding to Γx, for any x ∈ X.

Proof. Let s ∈ Γ \ {e} be such that Xs has non-empty interior U. Fix ε = 1/3

and let F ⊆ Γ be as in the previous lemma.

Assuming λΓ ≺ λΓ/Γx , there exist finitely many unit vectors ξ1, ξ2, . . . , ξn ∈
`2(Γ/Γx) such that∣∣∣∣∣〈λΓ (tst−1)δe, δe

〉
−

1

n

n∑
i=1

〈
λΓ/Γx(tst

−1)ξi, ξi
〉∣∣∣∣∣ < 1

3
(1)

for all t ∈ F.
Consider the probability measures on X defined by

µi =
∑
y∈Γx

|ξi(y)|
2δy, µ =

1

n

n∑
i=1

µi,

where we have used the natural identification between Γx and Γ/Γx. By

definition, there exists tµ ∈ F such that µ(tµU
c) < ε, i.e.

1

n

n∑
i=1

∑
y∈Γx

|ξi(y)|
2δy(tµU

c) =
1

n

n∑
i=1

∑
y∈Uc∩Γx

|ξi(t
−1
µ y)|

2 <
1

3
(2)

Moreover, denoting λΓ/Γx(t
−1
µ )ξi by vi for each i, we obtain〈

λΓ/Γx(s)vi, vi
〉
=

∑
y∈Γx

vi(s
−1y)vi(y)
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=
∑

y∈U∩Γx

|vi(y)|
2 +

∑
y∈Uc∩Γx

vi(s
−1y)vi(y)

and thus, using the Cauchy-Schwarz inequality, we have∣∣1 −
〈
λΓ/Γx(tµst

−1
µ )ξi, ξi

〉∣∣ = ∣∣1 −
〈
λΓ/Γx(s)vi, vi

〉∣∣
=

∣∣∣∣∣1 −
∑

y∈U∩Γx

|vi(y)|
2 −

∑
y∈Uc∩Γx

vi(s
−1y)vi(y)

∣∣∣∣∣
=

∣∣∣∣∣ ∑
y∈Uc∩Γx

|vi(y)|
2 −

∑
y∈Uc∩Γx

vi(s
−1y)vi(y)

∣∣∣∣∣
6 2

∑
y∈Uc∩Γx

|vi(y)|
2

= 2
∑

y∈Uc∩Γx

|ξi(t
−1
µ y)|

2.

Averaging over i and using (2) we obtain

1 −

∣∣∣∣∣ 1n
n∑
i=1

〈
λΓ/Γx(tµst

−1
µ )ξi, ξi

〉∣∣∣∣∣ < 2

3
,

which contradicts (1) (just notice that the term 〈λΓ (tst−1)δe, δe〉 always

vanishes). �

Corollary 3.1.11. If Γ is C∗-simple, then the Γ -action on ∂FHΓ is topologically

free.

Proof. Assuming otherwise, by the previous proposition we get that λΓ ⊀
λΓ/Γx for all x ∈ ∂FHΓ . But, by Lemma 2.2.13, every Γx is amenable, and thus

we have λΓ/Γx ≺ λΓ . That contradicts Proposition 3.1.3. �

Proposition 3.1.12. If the Γ -action on ∂FHΓ is free, then Γ is C∗-simple.

Proof. Let π : C∗r(Γ)→ B(H) be a non-trivial unital
∗
-representation of C∗r(Γ).

We need to show that π is injective. Since C∗r(Γ) = C or Γ sits naturally

inside C(∂FHΓ)or Γ , we can extend π to a u.c.p. map ϕ : C(∂FHΓ)or Γ → B(H)

by Arveson’s extension theorem. We will show that ϕ is faithful, which is

enough since C∗r(Γ) is contained in the multiplicative domain of ϕ.

First, notice that ϕ is a Γ -map (with respect to the natural Γ -actions

by conjugation). Indeed, ϕ(sa) = ϕ(λsaλs) = π(λs)ϕ(a)π(λs) = sϕ(a). By

the remark following Proposition 2.2.5, the restriction of ϕ to C(∂FHΓ) is

completely isometric. Thus, we can consider the inverse Γ -map ϕ|−1
C(∂FHΓ)

:

ϕ(C(∂FHΓ))→ C(∂FHΓ) and extend it by Γ -injectivity to a Γ -map ψ : im(ϕ)→
C(∂FHΓ).

Now, the composition ω = ψ◦ϕ : C(∂FHΓ)orΓ → C(∂FHΓ) is a Γ -map which

is the identity on C(∂FHΓ) by Γ -rigidity. We will show that ω(λs) = 0 for
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all s ∈ Γ \ {e}, implying ω is actually the canonical conditional expectation

E : C(∂FHΓ) or Γ → C(∂FHΓ), which of course is faithful. To that end, let

s ∈ Γ {e} and x ∈ ∂FHΓ . Since the Γ -action on ∂FHΓ is free, there exists

f ∈ C(∂FHΓ) such that f(x) 6= 0 = f(s−1x) = (sf)(x). Observe also that C(∂FHΓ)

is contained in the multiplicative domain of ω and thus

ω(λs)f = ω(λsf) = ω((sf)λs) = (sf)ω(λs),

from which we obtain ω(λs)(x) = 0. �

Notice that we now get the following characterisation essentially for

free.

Theorem 3.1.13. Γ is C∗-simple iff for every amenable subgroup Λ 6 Γ we

have λΓ/Λ ∼ λΓ .

Proof. Since λΓ/Λ ≺ λΓ by amenability, the alternative definition of C∗-

simplicity gives us the "only if". Now, if Γ is not C∗-simple, then the Γ -action

on ∂FHΓ is not free, thus λΓ ⊀ λΓ/Γx for all x ∈ ∂FHΓ . But the stabilizers Γx

are amenable, so we are done. �

It remains to prove the equivalence (1) ⇐⇒ (2) ⇐⇒ (3). To do so, we

will follow the arguments used in [AS94], in conjunction with the following

(easy) lemma.

Lemma 3.1.14. Let X be a Γ -boundary and I be a closed ideal of C(X) or Γ .
If I is proper, then I ∩ C(X) = {0}.

Proof. Notice first that J = I ∩ C(X) is a proper Γ -invariant closed ideal of

C(X). Hence, it is contained in a maximal ideal M of C(X). M is necessarily

of the form {f ∈ C(X) : f(x0) = 0} for some x0 ∈ X, so every element in J

vanishes on x0. By the Γ -invariance of J, elements of J vanish on the orbit

of x0, which is dense by minimality. Thus, they vanish everywhere, i.e.

J = {0}. �

Theorem 3.1.15. Let X be a Γ -boundary. The Γ -action on X is topologically

free iff C(X)or Γ is simple.

Proof. Let Γ act topologically freely on X and I be a proper closed ideal of

C(X) or Γ . It suffices to show E(I) = {0} where E : C(X) or Γ → C(X) is the

canonical faithful conditional expectation.

If not, there exists a ∈ I such that E(a) 6= 0. Let b =
∑
s∈Γ fsλs ∈ C(X)[Γ ]

be such that ‖a− b‖ < ‖E(a)‖ /2. Consider also the set Y = ∩s∈F\{e}{x ∈ X :

sx 6= x} where F := {s ∈ Γ : fs 6= 0} is finite. By topological freeness, Y is dense

in X.

For any y ∈ Y, let πy denote the composition

C(X) + I→ (C(X) + I)/I ∼= C(X)/(C(X) ∩ I) ∼= C(X)
δy−→ C,
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where the second isomorphism exists by the previous lemma. By the Hahn-

Banach theorem, we can extend πy to a u.c.p. map ϕy : C(X)or Γ → C. We

claim that ϕy(b) = ϕy(fe) = ϕy(E(b)).

Indeed, let s ∈ F \ {e}. Since y ∈ Y, there exists g ∈ C(X) such that

1 = g(y) 6= g(sy) = 0 and we have

ϕy(fsλs) = g(y)ϕy(fsλs) = ϕy(g)ϕy(fsλs)

= ϕy(gfsλs) = ϕy(fsgλs)

= ϕy(fsλs(s
−1g)) = ϕy(fsλs)ϕy(s

−1g)

= ϕy(fsλs)g(sy) = 0,

where we have used the fact that C(X) is contained in the multiplicative

domain of ϕy.

It follows that

‖E(b)(y)‖ = ‖ϕy(E(b))‖ = ‖ϕy(b)‖ = ‖ϕy(b− a)‖ 6 ‖a− b‖

for all y ∈ Y. By density, we have ‖E(b)‖ 6 ‖a− b‖, from which we obtain

the contradiction

‖E(a)‖ 6 ‖E(a− b)‖+ ‖E(b)‖ 6 2 ‖a− b‖ < ‖E(a)‖ .

For the converse, assume Xs has non-empty interior for some s ∈ Γ . Then

there exists a non-zero f ∈ C(X) such that supp(f) ⊆ Xs.
For x ∈ X define a representation πx of the (full) crossed product C(X)o Γ

on `2(Γx) by the formulas

πx(f)δtx = f(tx)δtx, f ∈ C(X),
πx(λs)δtx = δstx, s ∈ Γ ,

which are covariant (and thus truly define a representation of C(X) o Γ ).
Let I = ∩x∈X kerπx. By minimality, it is clear that C(X) ∩ I = {0}, thus I is

proper and so by the hypothesis the corresponding ideal in the reduced

crossed product is trivial. In particular, Ẽ(I) = {0}, where Ẽ is the canonical

conditional expectation on the full crossed product.

We will show that πx(f − fus) = 0 for all x ∈ X, which implies f =

Ẽ(f− fus) = 0, a contradiction. Indeed, if tx ∈ supp(f) then tx = stx and so

πx(f− fus)δtx = f(tx)δtx − f(stx)δstx = 0.

If tx /∈ supp(f) then stx /∈ supp(f) and πx(f− fus)δtx = 0 trivially. �

This concludes the proof of Theorem 3.1.1, which is probably the most im-

portant theorem presented in this work, as it inspired many generalisations

and the usage of similar techniques in different contexts.
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Before we move on, let us close this subsection with an application. We

first remind the reader that a Tarski monster group or, in particular, a Tarski

p-group is an infinite group, such that every non-trivial subgroup of it is of

order a fixed prime p. Such groups exist by results of Olshanskii and are

non-amenable (at least those constructed by him).

Proposition 3.1.16. Olshanskii’s Tarski monster groups are C∗-simple.

Proof. Let Γ be a Tarski monster group. We will show that the Γ -action on

∂FHΓ is topologically free. If not, let s0 ∈ Γ \ {e} be such that (∂FHΓ)
s0 has

non-empty interior and ∅ 6= U ⊆ (∂FHΓ)
s0 be an open set. We claim that U is

finite.

Assuming otherwise, let us fix x ∈ U. By minimality, there exists s1 ∈
Γ \{s0, e} such that s1x ∈ U\{x}. But then s0 ∈ Γs1x and thus Γx = Γs1x = s1Γxs

−1
1

(since both subgroups are of the same prime order and both contain s0, which

generates them), i.e. s1 ∈ NΓ (Γx), the normalizer of Γx. The definition of

Tarski monster groups forces NΓ (Γx) = Γx, so s1 ∈ Γx. If U is infinite, we

can repeat the same arguments and get an infinite set {si, i ∈ I} ⊆ Γx, a
contradiction since Γx is proper, and thus finite.

Now, since U is non-empty, finite and open, ∂FHΓ must contain isolated

points, a contradiction by Lemma 3.1.8. �

3.1.2 Further Characterisations

In this subsection we will present a few more characterisations of C∗-

simplicity which heavily rely on Theorem 3.1.1. We start with the following

theorem, appearing in [Haa16].

Theorem 3.1.17. Let τ0 denote the canonical trace on C∗r(Γ). Then the following

are equivalent:

1. Γ is C∗-simple.

2. τ0 ∈ {sϕ : s ∈ Γ }
w∗

, for every state ϕ on C∗r(Γ).

3. τ0 ∈ convw
∗
{sϕ : s ∈ Γ }, for every state ϕ on C∗r(Γ).

4. ω(1)τ0 ∈ convw
∗
{sω : s ∈ Γ }, for every bounded linear functional ω on

C∗(Γ).

5. For all t1, t2, . . . , tm ∈ Γ \ {e},

0 ∈ conv{λs(λt1 + λt2 + · · ·+ λtm)λ∗s : s ∈ Γ }.

6. For all t1, t2, . . . , tm ∈ Γ \ {e} and all ε > 0, there exist s1, s2, . . . , sn ∈ Γ
such that ∥∥∥∥∥

n∑
k=1

1

n
λsktjs−1

k

∥∥∥∥∥ < ε
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for j = 1, 2, . . . ,m.

As usual, we will need some lemmas, the first of which is reminiscent of

techniques we have already used.

Lemma 3.1.18. Let Γ act on a compact Hausdorff space X, x ∈ X, and ϕ be a

state on C(X)or Γ whose restriction to C(X) is the evaluation at x, δx. Then

ϕ(λt) = 0, for each t ∈ Γ \ Γx.

Proof. By the assumption, C(X) is contained in the multiplicative domain of

ϕ, so

ϕ(λt)f(x) = ϕ(λtf) = ϕ((tf)λt) = f(t
−1x)ϕ(λt)

for all f ∈ C(X) and t ∈ Γ . Whenever tx 6= x, we also have t−1x 6= x, so by

choosing an f such that f(x) 6= f(t−1x) (by Urysohn’s lemma) we are done. �

Lemma 3.1.19. Let x,y ∈ R+[Γ ] ⊆ C∗r(Γ). Then ‖x+ y‖ > ‖x‖.

Proof. Notice that every element z ∈ R+[Γ ] satisfies | 〈zξ,η〉 | 6 〈z|ξ|, |η|〉 for
all ξ,η ∈ `2(Γ). Thus

‖x‖ = sup{〈xξ,η〉 : ξ,η ∈ `2(Γ), ‖ξ‖ = ‖η‖ = 1}

= sup{〈xξ,η〉 : ξ,η ∈ `2(Γ)+, ‖ξ‖ = ‖η‖ = 1}

6 sup{〈xξ,η〉+ 〈yξ,η〉 : ξ,η ∈ `2(Γ)+, ‖ξ‖ = ‖η‖ = 1}

= sup{〈(x+ y)ξ,η〉 : ξ,η ∈ `2(Γ)+, ‖ξ‖ = ‖η‖ = 1}

= ‖x+ y‖ .

�

Proof of Theorem 3.1.17. (1 =⇒ 2) Let ϕ be a state on C∗r(Γ). By Theorem

3.1.1, there is a free boundary action Γ y X. Let x ∈ X. Extend ϕ to a state

ψ on C(X)or G (by the Hahn-Banach theorem) and let ρ be the restriction

of ψ to C(X). By strong proximality and minimality, there exists a net (si)

in Γ such that siρ
w∗−→ δx. Upon possibly passing to a subnet, we can assume

by compactness that siψ converges to some state ψ ′ on C(X)or Γ .
Now, the restriction of ψ ′ to C(X) is δx, so by Lemma 3.1.18 and the

freeness of the Γ -action on X, we get ψ ′(λt) = 0 for all t ∈ Γ \ {e}. This forces

the restriction of ψ ′ to C∗r(Γ) to be τ0, i.e. siϕ→ τ0.

(2 =⇒ 3) Trivial.

(3 =⇒ 4) Fix states ϕ1,ϕ2, . . . ,ϕm on C∗r(Γ). Consider the set

S = convw
∗
{(sϕ1, sϕ2, . . . , sϕm) : s ∈ Γ }

in the space of m-tuples of states on C∗r(Γ). By the assumption, there exists

a net (ψi) in S such that pr1(ψi)→ τ0. By compactness, we can assume that

prj(ψi) converges for j = 1, 2, . . .m. Since τ0 is Γ -invariant, we can repeat
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this process for each of the coordinates to show that (τ0, τ0, . . . , τ0) ∈ S. Thus,

for every finite F ⊆ C∗r(Γ) and ε > 0, there exist s1, s2, . . . , sn ∈ Γ such that∣∣∣∣∣ 1n
n∑
k=1

skϕj(a) − τ0(a)

∣∣∣∣∣ < ε
for all a ∈ C∗r(Γ) and j = 1, 2, . . .m. Since every bounded linear functional is

a linear combination of four states, we deduce that (4) holds.

(4 =⇒ 5) Suppose (5) does not hold, so that there are t1, t2, . . . , tm ∈ Γ \{e}
such that

0 /∈ conv{λs(λt1 + λt2 + · · ·+ λtm)λ∗s : s ∈ Γ }.

Βy the Hahn-Banach separation theorem, there exists a bounded functional

ω on C∗r(Γ) and c > 0 such that

Reω(

m∑
j=1

λstjs−1) > c

for all s ∈ Γ , i.e.

Re

(
(sω)(

m∑
j=1

λtj)

)
> c > 0

for all s ∈ Γ . Since τ0(
∑m
j=1 λtj) = 0, we deduce that

ω(1)τ0 /∈ convw
∗
{sω : s ∈ Γ },

contradicting (4).

(5 =⇒ 6) Let t1, t2, . . . , tm ∈ Γ \ {e} and ε > 0. By the assumption, there

exist s1, s2, . . . , sn ∈ Γ , with repetitions allowed, such that∥∥∥∥∥ 1

n

n∑
k=1

(λsk(

m∑
j=1

λtj)λ
∗
sk
)

∥∥∥∥∥ < ε.
Using Lemma 3.1.19, we get (6).

(6 =⇒ 1) Let I be a non-trivial closed ideal of C∗r(Γ), a ∈ I \ {0} be a

positive element, and ε > 0. By definition of C∗r(Γ) and of τ0, there exist

t1, t2, . . . tm ∈ Γ \ {e} and z1, z2, . . . zm ∈ C∗ such that∥∥∥∥∥
m∑
j=1

zjλtj + τ0(a)λe − a

∥∥∥∥∥ < ε

2
. (1)

Using (6), we can find s1, s2, . . . sn ∈ Γ such that∥∥∥∥∥ 1

n

n∑
k=1

λskλtjλ
∗
sk

∥∥∥∥∥ < ε

2mmax{|zl| : l = 1, 2, . . . ,m}
(2)
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for j = 1, 2, . . . ,m. Using (1), (2) and the triangle inequality, we deduce that∥∥∥∥∥ 1

n

n∑
k=1

λskaλ
∗
sk

− τ0(a)λe

∥∥∥∥∥ < ε, (3)

which implies that

τ0(a)λe ∈ conv{λsaλ
∗
s : s ∈ Γ } ⊆ I.

Since τ0 is faithful, we get λe ∈ I, i.e. I = C∗r(Γ), and hence (1) holds. �

Before we proceed, let us make an important remark. Γ is said to have

Powers’ averaging property iff equation (3) is satisfied for every a ∈ C∗r(Γ).
As we already pointed out in the introduction of this chapter, it was well-

known that this property implied C∗-simplicity. However, a by-product of

the above proof is that the two properties are actually equivalent, attesting

to Powers’ incredible insight (or luck). This equivalence was also proved

independently by Kennedy in [Ken20], alongside the next and final result

on C∗-simplicity presented in this work.

Consider the space sub(Γ) of subgroups of Γ , equipped with the so-called

Chabauty topology, which in the discrete case (the only case we are in-

terested in) coincides with the subspace topology induced by the product

topology on {0, 1}Γ (for the general case of locally compact groups, a nice

introduction is [Har08]). This space is compact, as a closed subspace of

{0, 1}Γ , and it is a Γ -space with respect to the Γ -action by conjugation.

Let suba(Γ) be the Γ -invariant subspace of amenable subgroups of Γ . The

general case of the following proposition is [Sch71, Corollary 1], but we will

give a simpler proof (discreteness of Γ allows it).

Proposition 3.1.20. suba(Γ) is closed (and therefore compact) in the Chabauty

topology.

Proof. Let (Λi) be a net in suba(Γ) converging to Λ ∈ sub(Γ). We can

assume Λi 6 Λ, because the map sub(Γ)→ sub(Γ) : ∗ 7→ ∗ ∩Λ is continuous

and amenability is preserved by subgroups (thus we can swap Λi with

Λi ∩Λ). Let ϕi : `
∞(Λi)→ C be Λi-invariant states witnessing amenability.

Consider the net ((ϕi(f|Λi))f) in the space
∏
f∈`∞(Λ)Df, where Df is the

closed unit disc of radius ‖f‖ in C. By compactness, we can assume this net

is convergent. Hence, we can define ϕ : `∞(Λ) → C by ϕ(f) = limϕi(f|Λi),

which is clearly a state. Furthermore, for s ∈ Λ, we have

ϕ(sf) = lim
i
ϕi((sf)|Λi) = lim

i
ϕi(s(f|Λi)) = lim

i
ϕi(f|Λi) = ϕ(f),

where the third equality holds because s eventually belongs to Λi. Thus, ϕ

is Λ-invariant and Λ is also amenable. �
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Definition 3.1.21. A compact Γ -subspace X ⊆ sub(Γ) is called a uniformly

recurrent subgroup (URS) of Γ iff it is minimal. Such an X is called non-

trivial iff X 6= {{e}}, and amenable iff X ⊆ suba(Γ).

We are now ready to close this section, with a more intrinsic characteri-

sation of C∗-simplicity.

Theorem 3.1.22. Γ is C∗-simple iff it has no non-trivial amenable uniformly

recurrent subgroups.

Proof. Suppose that Γ is not C∗-simple. Let X = {Γx : x ∈ ∂FHΓ } and consider

the map ∂FHΓ � X : x 7→ Γx, which is clearly Γ -equivariant. Let (xi) be a

net in ∂FHΓ converging to some point x ∈ ∂FHΓ . We want to show that Γxi
converges to Γx, and thus that the map is also continuous. Indeed, if s ∈ Γx
(resp. s /∈ Γx), then x ∈ (∂FHΓ)

s
(resp. x ∈ ((∂FHΓ)

s)c), which is clopen by

Lemma 3.1.5 and Proposition 2.2.12, hence xi ∈ (∂FH)
s
(resp. xi ∈ ((∂FHΓ)

s)c)

eventually, or equivalently s ∈ Γxi (resp. s /∈ Γxi) eventually, i.e. Γxi → Γx.

Now, since ∂FHΓ is compact and minimal, so is X as a continuous Γ -

equivariant image of it, i.e. it is a URS. Finally, it is amenable by Lemma

2.2.13 and non-trivial by Theorem 3.1.1, since the Γ -action on ∂FHΓ is not

free.

Conversely, suppose Γ has a non-trivial amenable URS X. Fix Λ ∈ X and

x ∈ ∂FHΓ . By the amenability of Λ, there exists a probability measure µ on

∂FHΓ fixed by Λ. By strong proximality there exists a net (si) in Γ such that

siµ→ δx.

By compactness, we can assume that siΛs
−1
i converges to a Λ ′ ∈ X. X is

non-trivial, so minimality forces Λ ′ 6= {e}. Let t ∈ Λ ′ \ {e}. By the definition

of the Chabauty topology, t eventually belongs to siΛs
−1
i , and thus we can

assume t ∈ ∩isiΛs−1
i . Therefore, we have tsiµ = siµ for all i. Taking the

limit gives tδx = δx, i.e. tx = x, from which we deduce that Γ does not act

freely on ∂FHΓ . Hence, by Theorem 3.1.1, Γ is not C∗-simple. �

Remark. In the above proof we actually showed that C∗-simplicity is equiv-

alent to the triviality of X = {Γx : x ∈ ∂FHΓ }. That is why this particu-

lar amenable uniformly recurrent subgroup has been suitably named the

Furstenberg URS of Γ (see for example [LBMB18; Rau20]).

3.2 The Unique Trace Property

This section is dedicated to another property of interest of the reduced C∗-

algebra of Γ , the unique trace property. We will present characterisations of

this property, similar to those given for C∗-simplicity, and we will completely

clarify how the two are related.
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Definition 3.2.1. Γ is said to have the unique trace property iff its reduced

C∗-algebra has a unique tracial state, i.e. the canonical trace τ0 is the only

Γ -equivariant state on C∗r(Γ).

The following theorem first appeared in [BKKO17]. A proof can also be

found in [Haa16].

Theorem 3.2.2. Let s ∈ Γ . Then, τ(λs) = 0 for all tracial states τ on C∗r(Γ) iff

s /∈ Ra(Γ). In particular, Γ has the unique trace property iff Ra(Γ) = {e}.

We require the following lemma.

Lemma 3.2.3. Let τ be a tracial state on C∗r(Γ), X be a Γ -boundary and

x ∈ X. Then τ extends to a state on C(X)or Γ whose restriction to C(X) is the

evaluation δx at the point x.

Proof. Extend τ (by the Hahn-Banach theorem) to any state ϕ on C(X)or Γ ,
and let ρ be the restriction of ϕ to C(X). By strong proximality, there exists

a net (si) in Γ such that siρ→ δx in the weak-
∗
topology. By compactness

we can assume that siϕ converges to some state ψ on C(X) or Γ , whose

restriction on C(X) is forced to be δx. Now, since the restriction of ϕ to

C∗r(Γ) is the tracial state τ, and thus Γ -invariant, we have that ψ = τ on

C∗r(Γ) and we are done. �

Proof of Theorem 3.2.2. Let s /∈ Ra(Γ) and τ be a tracial state on C∗r(Γ). By

Proposition 2.2.14, there exists x ∈ ∂FHΓ such that sx 6= x. By Lemma 3.2.3, τ

extends to a state on C(∂FHΓ)or Γ whose restriction to C(∂FHΓ) is the point

evaluation δx. By Lemma 3.1.18, we have ϕ(λs) = τ(λs) = 0.

Now, since Ra(Γ) is amenable by definition, C∗r(Ra(Γ)) has a character,

which of course is also a trace. Composing this character with the canonical

conditional expectation C∗r(Γ)→ C∗r(Ra(Γ)) produces a trace τ on C∗r(Γ) such

that τ(λs) = 1 for all s ∈ Ra(Γ).
The final assertion of the theorem follows from the fact that the canonical

trace is the unique tracial state on C∗r(Γ) vanishing on λt for all t ∈ Γ \{e}. �

In view of Proposition 2.2.14, the above theorem can be rephrased to

better suit the spirit of Theorem 3.1.1.

Theorem 3.2.4. The following are equivalent:

1. Γ has the unique trace property.

2. The Γ -action on ∂FHΓ is faithful.

3. The Γ -action on some Γ -boundary is faithful.

Proof. The first equivalence is essentially Theorem 3.2.2. The second one is

immediate from the fact that any Γ -boundary is a Γ -equivariant image of

∂FHΓ . �
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The following and final characterisation of the unique trace property

appears in [Haa16] and is similar in flavour to Theorem 3.1.17.

Theorem 3.2.5. Let t ∈ Γ . Then t /∈ Ra(Γ) iff

0 ∈ conv{λsts−1 : s ∈ Γ }. (1)

In particular, Γ has the unique trace property iff (1) holds for all t ∈ Γ \ e.

Proof. If (1) holds, then of course τ(λt) = 0 for all tracial states τ on C∗r(Γ).

Hence, by Theorem 3.2.2, we have t /∈ Ra(Γ).
Conversely, suppose (1) does not hold. Assume also, for the sake of

contradiction, that t /∈ Ra(Γ), so that we can find (by Proposition 2.2.14)

x ∈ ∂FHΓ such that tx 6= x.
By the Hahn-Banach separation theorem, there exists a self-adjoint linear

functional ω of norm 1 on C∗r(Γ) and a constant c > 0 such that

Reω(λsts−1) > c (2)

for all s ∈ Γ . Let ω = ω+ −ω− be the Jordan decomposition of ω. Notice

that

1 = ‖ω+‖+ ‖ω−‖ = ω+(1) +ω−(1) 6 ‖ω+ +ω−‖ 6 ‖ω+‖+ ‖ω−‖ = 1,

thus ω+ +ω− is a state.

Now, extend ω± to positive linear functionals ψ± on C(∂FHΓ) or Γ . We

then have a state ψ+ + ψ− extending ω+ + ω− and a self-adjoint linear

functional ψ+ −ψ− extending ω.

Let ρ be the restriction of ψ+ + ψ− to C(∂FHΓ). By strong proximality

and minimality, there exists a net (si) in Γ such that siρ
w∗−→ δx. By

compactness, we can assume siψ± converge to positive linear functionals

ϕ± on C(∂FHΓ)or Γ . The restriction of ϕ+ +ϕ− to C(∂FHΓ) is δx, which is a

pure state on C(X), thus the restrictions of ϕ± on C(∂FHΓ) are forced to be

‖ϕ±‖ δx. Therefore, by Lemma 3.1.18, we have ϕ±(λt) = 0. Hence, we get

0 = ϕ+(λt) −ϕ−(λt) = lim
i
(siψ+(λt) − siψ−(λt))

= lim
i
(siω+(λt) − siω−(λt)) = lim

i
siω(λt)

= lim
i
ω(λsits−1

i
),

contradicting (2). �

Now, seeing as the above characterisations of the unique trace property

are easily comparable to those of C∗-simplicity (e.g. faithfulness vs freeness

of the Γ -action on ∂FHΓ ), one would expect the distinction between the two

to be relatively easy. However, that is not the case. Examples of groups
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which have trivial amenable radical, yet are not C∗-simple, have indeed

been constructed by Le Boudec [LB17], but the methods used were non-trivial

and are not within the spirit of the present work (familiarity with ideas

from geometric group theory is required). Thus, C∗-simplicity is strictly

stronger than the unique trace property, and the long-standing problem of

clarifying their relationship is completely solved.

3.3 Exactness

In this section we briefly explore the concept of exactness. Although

inherently operator algebraic in nature, exactness has (in contrast to C∗-

simplicity or the unique trace property) been linked to dynamical properties

for more than twenty years now [Oza00]. Our goal, however, is to present a

characterisation of exactness of Γ based on its action on ∂FHΓ . Of course,

we will need some preparation to get there.

Definition 3.3.1. A unital linear map θ : A→ B between C∗-algebras is called

nuclear iff there exists a net of u.c.p. maps ϕi : A→Mk(i) and ψi :Mk(i) → B

such that ψi ◦ϕi → θ pointwise.

It is worth noting that the general definition involves contractive com-

pletely positive (c.c.p.) maps instead of u.c.p. ones. Nevertheless, we are

only interested in the unital case. More details on this, and everything else

preceding the final characterisation, can be found in [BO08].

Definition 3.3.2. A C∗-algebra A is called:

• nuclear iff the identity map idA : A→ A is nuclear.

• exact iff it admits a nuclear faithful representation.

Notice that the above definition of exactness seems to depend on the faith-

ful representation, making it rather shaky. Arveson’s extension theorem,

however, might convince you otherwise.

Furthermore, these definitions are not the original ones, which we give

below, as both notions have multiple characterisations (nuclearity is to

C∗-algebras what amenability is to groups, in more than one ways). One

might easily notice that, in the case of exactness, the original definition is

much more fitting to the term.

Definition 3.3.3. A C∗-algebra A is called:

• nuclear iff A⊗ B = A⊗max B, for all C∗-algebras B (i.e. every tensor

product of A has a unique C∗-norm).

• exact iff the functor (A ⊗ −) is exact (in the categorical sense, i.e.

preserves short exact sequences).
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It is clear from the first definition that nuclearity implies exactness.

This is equally clear from the second one, if one knows that the functor

(A⊗max −) is always exact.

The equivalence of the definitions is highly technical and is due to Choi

and Effros [CE78] (for nuclearity), and Kirchberg and Wassermann [Kir95;

Was90] (for exactness).

A useful by-product of the proof given, for example, in [BO08] is the

following lemma.

Lemma 3.3.4. Let A ⊆ B(H) be an exact C∗-algebra and S ⊆ A be a finite-

dimensional operator system. If (ui)i∈I is an orthonormal basis of H, then

for every ε > 0 there exists a finite F0 ⊆ I such that for each finite F ⊆ I

containing F0 there exists a u.c.p. map ψF : PFB(H)PF → B(H), where PF

denotes the orthogonal projection onto the linear span of {ui : i ∈ F}, such
that ψF(PFSPF) ⊆ A and

‖x−ψF(PFxPF)‖ 6 ε ‖x‖

for all x ∈ S. Furthermore, A is nuclear iff we can force ψF to take values in

A.

Examples of nuclear C∗-algebras include all finite dimensional, abelian,

AF, and AH ones (we omit the definitions of the latter two; we will not need

them).

Definition 3.3.5. Γ is called exact iff its reduced C∗-algebra C∗r(Γ) is exact.

We turn now to dynamics, introducing a key concept that will concern

us for the remainder of this chapter, that of amenable actions.

Definition 3.3.6. A compact Γ -space X is called amenable iff there exists a

net of continuous maps mi : X→ P(Γ) such that

lim
i
(sup
x∈X
‖smxi −msxi ‖1) = 0

for all s ∈ Γ . Such a net is called an approximate invariant continuous

mean (a.i.c.m.). The Γ -action on such a space is also called amenable.

Remember that the 1-norm in the above definition comes from `1(Γ), since

P(Γ) is just the positive part of the unit sphere of `1(Γ).

We will replace this traditional definition of amenable actions with

one that incorporates actions on C∗-algebras, in such a way that in the

commutative case the induced action on the spectrum will be amenable in

the above sense.

To that end, let A denote a unital Γ -C∗-algebra and α : Γ → Aut(A)

be the Γ -action on it. Consider the α-twisted convolution algebra Cc(Γ ,A)
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(remember the construction of the crossed product) and equip it with an

A-valued inner product defined by

〈S, T〉 =
∑
s∈Γ

S(g)∗T(g), S, T ∈ Cc(Γ ,A)

and a new norm defined by

‖S‖2 = ‖〈S,S〉‖
1
2 , S ∈ Cc(Γ ,A).

The informed reader will immediately recognise the structure of a (pre-)

Hilbert C∗-module, but we have no reason to introduce the term. The only

piece of Hilbert C∗-module theory we will need is the fact that the inner

product satisfies the appropriate analogue of the Cauchy-Schwarz inequality,

i.e.

‖〈S, T〉‖ 6 ‖S‖2 ‖T‖2

for all S, T ∈ Cc(Γ ,A). This is a general fact (and an easy one at that), but

in the commutative case (which is the one we are interested in) it is simply

a consequence of the classical Cauchy-Schwarz inequality.

Definition 3.3.7. The Γ -action α on A is called amenable iff there exists a

net (Ti) in Cc(Γ ,A) such that:

1. 0 6 Ti(s) ∈ Z(A) for all i and s ∈ Γ .

2. 〈Ti, Ti〉 = 1A.

3. ‖s ∗α Ti − Ti‖2 → 0 for all s ∈ Γ (here s ∈ Cc(Γ ,A) denotes the function

mapping s to 1A and all other elements to 0).

Now, as promised, we have the following.

Proposition 3.3.8. A compact Γ -space X is amenable iff the induced Γ -action

α on C(X) is amenable.

Proof. Assume first that X is amenable and fix an a.i.c.m. mi : X → P(Γ).

Define Ti : Γ → C(X) by

Ti(s)(x) =
√
mxi (s)

and notice that ∑
s∈Γ

(Ti(s)(x))
2 =

∑
s∈Γ

mxi (s) = 1

for all x ∈ X. Therefore ∑
s∈Γ

Ti(s)
2 = 1C(X),

where the convergence is uniform because everything is positive.
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Note also that

(s ∗α Ti)(t)(x) = αs(Ti(t−1s))(x) = Ti(t
−1s)(s−1x) =

√
sms

−1x
i (t)

for all x ∈ X. Thus,

‖s ∗α Ti − Ti‖22 = sup
x∈X

(∑
t∈Γ

|

√
sms

−1x
i (t) −

√
mxi (t)|

2

)

6 sup
x∈X

(∑
t∈Γ

|sms
−1x
i (t) −mxi (t)|

)

= sup
y∈X

(∑
t∈Γ

|smyi (t) −m
sy
i (t)|

)
= sup
y∈Y
‖smyi −m

sy
i ‖1 → 0.

Of course we are not quite done yet, as the maps Ti are not necessarily

finitely supported. We can remedy that in the following way.

Assume we have a positive function T : Γ → C(X) such that∑
s∈Γ

T(s)2 = 1C(X),

just like our Ti’s. Uniform convergence of the above sum implies the

existence of a finite set F0 ⊆ Γ such that∑
s∈F

T(s)2 > 0

for all finite sets F ⊆ Γ containing F0. The family F of all such sets is

naturally directed by inclusion and thus we can define a net of maps (TF)F∈F
by

TF(s) =


√

1∑
t∈F T(t)

2T(s), s ∈ F

0, otherwise

,

which are positive, satisfy 〈TF, TF〉 = 1C(X), and are finitely supported. Fur-

thermore, they satisfy

‖s ∗α TF − TF‖2 → ‖s ∗α T − T‖2

by construction.

Hence, we can replace the Ti’s with the associated net (Ti,Fi)Fi∈Fi and

combine them to form a net directed by (i, Fi) � (j, Fj) ⇐⇒ (i � j∧ Fi ⊆ Fj),
which witnesses amenability of α.

The converse is quite a bit easier, as one simply needs to define mxi (g) =

Ti(g)
2(x) and use similar calculations, without worrying about supports. �
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Remark. The above proof is somewhat simpler if we assume Γ to be countable

(a restriction that is considered quite light), as nets can be replaced with

sequences which are easier to handle. The reader may find it instructive to

check the arguments in the countable case, especially if they are not used

to working with nets.

As the two definitions of amenability are now interchangeable, we will

turn our attention to some general results before returning to the abelian

case. As above, A will be a unital Γ -C∗-algebra and α will be the associated

Γ -action.

Lemma 3.3.9. If T ∈ Cc(Γ ,A) is such that 0 6 T(s) ∈ Z(A) for all s ∈ Γ and

〈T , T〉 = 1A, then

1. T ∗α T∗(s) =
∑
t∈F∩sF T(t)αs(T(s

−1t)), where F is the support of T , and

2. ‖1A − T ∗α T∗(s)‖ 6 ‖s ∗α T − T‖2,

for all s ∈ Γ .

Proof. The first assertion follows by the following calculation

T ∗a T∗(s) =
∑
t∈Γ

T(t)αt(T
∗(t−1s))

=
∑
t∈Γ

T(t)αt(αt−1s(T(s
−1t)∗))

=
∑
t∈Γ

T(t)αs(T(s
−1t)∗)

=
∑
t∈Γ

T(t)αs(T(s
−1t))

=
∑
t∈F∩sF

T(t)αs(T(s
−1t))

where we have simply used the definitions, plus the positivity of T in the

fourth equality.

For the second one, we have

‖1A − T ∗α T∗(s)‖ =

∥∥∥∥∥〈T , T〉−
∑
t∈Γ

T(t)αs(T(s
−1t))

∥∥∥∥∥
=

∥∥∥∥∥〈T , T〉−
∑
t∈Γ

T(t)(s ∗α T)(t)

∥∥∥∥∥
= ‖〈T , T〉− 〈T , s ∗α T〉‖
= ‖〈T , T − s ∗α T〉‖
6 ‖T‖2 ‖T − s ∗α T‖2
= ‖T − s ∗α T‖2

where we have used the fact that s ∗α T(t) = αs(T(s−1t)), the properties of T ,

and the Cauchy-Schwarz inequality. �
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Lemma 3.3.10. Let T be as in the previous lemma. Then, there exist u.c.p.

maps ϕ : Aor Γ → A⊗MF(C) and ψ : A⊗MF(C)→ Aor Γ (where, again, F

is the support of T ) such that

ψ ◦ϕ(aλs) = (T ∗α T∗(s))aλs

for all a ∈ A and s ∈ Γ .

Proof. In proving that the reduced crossed product Aor Γ does not depend

on the choice of the faithful representation A ⊆ B(H) (Proposition 1.5.6), we

constructed a u.c.p. map ϕ : Aor Γ → A⊗MF(C) such that

ϕ(aλs) =
∑
t∈F∩sF

α−1
t (a)⊗ et,s−1t

for all a ∈ A and s ∈ Γ .
Let

X =
∑
t∈F

α−1
t (T(t))⊗ et,t ∈ A⊗MF(C)

and note that X = X∗, thus compression by X is a c.p. map ψ1.

Consider also the map

ψ2 : A⊗MF(C)→ Aor Γ : a⊗ ex,y 7→ αx(a)λxy−1 ,

which is completely positive as well. To see this, notice first that every

positive element in A ⊗MF(C) can be written as a sum of |F| matrices of

the form [a∗sat]s,t∈F, each of which is mapped to∑
s,t∈F

αs(a
∗
sat)λst−1 =

(∑
s∈F

asλs−1

)∗(∑
s∈F

asλs−1

)
,

and observe that amplifications of ψ2 are actually of the same form.

Now, define ψ to be the composition ψ2 ◦ψ1. We have

ψ(1) = ψ2(X
2) = ψ2

(∑
t∈F

α−1
t ((T(t))2)⊗ et,t

)
= 〈T , T〉 λe = 1Aλe = 1

and thus ψ is actually a u.c.p. map.

Using the fact that T(s) ∈ Z(A) for all s ∈ Γ and the previous lemma, we

get

ψ ◦ϕ(aλs) = ψ

( ∑
t∈F∩sF

α−1
t (a)⊗ et,s−1t

)

= ψ2

( ∑
t∈F∩sF

α−1
t (T(t))α−1

t (a)α−1
s−1t(T(s

−1t))⊗ et,s−1t

)
=

∑
t∈F∩sF

T(t)aαs(T(s
−1t))λs
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=
∑
t∈F∩sF

T(t)αs(T(s
−1t))aλs

= (T ∗α T∗(s))aλs.

�

Theorem 3.3.11. If the Γ -action α on A is amenable, then:

1. Ao Γ = Aor Γ .

2. A is nuclear iff Ao Γ is.

Proof. We would like to prove that the canonical quotient map π : Ao Γ →
A or Γ is injective. It suffices to find u.c.p. maps ωi : A or Γ → A o Γ that

act as an approximate left inverse of π, i.e. ‖x−ωi ◦ π(x)‖ → 0 for all

x ∈ Cc(Γ ,A) ⊆ Ao Γ .
Luckily, we already have those u.c.p. maps at our disposal. Let Ti : Γ → A

be the maps witnessing amenability of α and ϕi,ψi be the associated u.c.p.

maps provided by Lemma 3.3.10. The key observation is that the ψi’s remain

u.c.p. if seen as taking values in A o Γ (which is possible because their

image is contained in Cc(Γ ,A)), therefore we can define ωi = ψi ◦ϕi. Using

Lemma 3.3.9, we have

‖x−ωi(π(x))‖ =

∥∥∥∥∥∑
s∈Γ

(1 − Ti ∗α T∗i (s))asλs

∥∥∥∥∥
6

∑
s∈Γ

‖1 − Ti ∗α T∗i (s)‖ ‖asλs‖

6
∑
s∈Γ

‖s ∗α Ti − Ti‖2 ‖asλs‖ → 0

for all x =
∑
s∈Γ asλs ∈ Cc(Γ ,A).

Moving on to the second assertion, lets first assume that Ao Γ is nuclear.

Then the identity map idA can be decomposed as

A ↪→ Ao Γ idAoΓ−−−→ Ao Γ E−→ A,

where E is the canonical conditional expectation. Since idAoΓ is nuclear,

we get that idA is as well.

Conversely, if A is nuclear, then so is A ⊗MF(C) for any finite set F.

Hence, using the same technique, the ωi’s we defined above are nuclear.

Since they converge pointwise to the identity, we obtain nuclearity of the

crossed product. �

We return now to the abelian case, so let X be a compact Γ -space and

α be the induced Γ -action on C(X). Instead of Cc(Γ ,C(X)), we will work

with Cc(X × Γ) (the reader can easily convince themselves the two are

interchangeable).
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Definition 3.3.12. We call Γ amenable at infinity iff it acts amenably on some

compact Γ -space.

Since C(X) is always nuclear, we have the following corollary of the

above theorem.

Corollary 3.3.13. If Γ is amenable at infinity, then it is exact.

What is important is that the converse also holds, as we shall see. But

we still have some way to get there.

Definition 3.3.14. A function h : X × Γ → C is of positive type iff for any

finite sequence s1, . . . , sn ∈ Γ and x ∈ X, the matrix [h(six, sis
−1
j ]i,j ∈ Mn(C)

is positive.

The observant reader may notice that an element in Cc(X × Γ) is of

positive type iff the corresponding element in Cc(Γ ,C(X)) ⊆ C(X) or Γ is

positive. Regardless, we have the following important theorem.

Theorem 3.3.15. Τhe following are equivalent:

1. X is amenable.

2. C(X)or Γ is nuclear.

3. For any finite F ⊆ Γ and ε > 0, there exists a function h ∈ Cc(X× Γ) of

positive type such that

max
s∈F

sup
x∈X

|h(x, s) − 1| < ε.

Proof. (1 =⇒ 2) This is an immediate consequence of Proposition 3.3.8 and

the previous theorem.

(2 =⇒ 3) Let F ⊆ Γ be a finite set and ε > 0. By nuclearity, using Lemma

3.3.4, we can find u.c.p. maps ϕ : C(X) or Γ → Mn(C) (compression by a

suitable projection) and ψ :Mn(C)→ C(X)or Γ such that ω = ψ ◦ϕ satisfies

‖ω(λs) − λs‖ < ε

for all s ∈ F. Define h : X× Γ → C by

h(x, s) = hs(x) = E(ω(λs)λ
∗
s)(x),

where E is the canonical conditional expectation, and notice that h has

compact support because ω(λs) = 0 for s outside some finite F ′ ⊂ Γ (that is

why it is crucial to use the lemma to choose ϕ). Furthermore, we have∥∥1C(X) − hs
∥∥ = ‖E((λs −ω(λs))λ

∗
s)‖ 6 ‖λs −ω(λs)‖ < ε
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for all s ∈ F. It remains to show that h is of positive type. To that end, we

calculate

[αs−1
i
(hsis−1

j
)]i,j =

[
αs−1

i

(
E(ω(λsis−1

j
)λsjs−1

i

)]
i,j

=
[
E(λ∗siω(λsis−1

j
)λsj

]
i,j

= E
(

diag(λs1 , . . . , λsn)
∗ω([λsiλ

∗
sj
]i,j) diag(λs1 , . . . , λsn)

)
for all s1, . . . , sn ∈ Γ , and, thus, complete positivity of E and ω gets us what

we need (we have abused notation for the amplifications, but the meaning

should be clear enough).

(3 =⇒ 1) Let F ⊆ Γ be a finite set containing e and let h be the associated

function provided by condition (3) for a fixed ε > 0. Since h is positive in

C(X)or Γ , there exists g ∈ Cc(Γ ,C(X)) such that g∗ ∗αg ≈ h in C(X)or Γ . That

implies E(g∗ ∗α g) ≈ E(h) ≈ 1C(X) (because e ∈ F). Thus, we can normalise g

so that E(g∗ ∗α g) = 1C(X). We define now T : Γ → C(X) by

T(t)(x) = |g(t−1)(t−1x)| = |g∗(t)(x)|

and calculate

〈T , s ∗α T〉 (x) =
(∑
t∈Γ

T(t)αs(T(s
−1t))

)
(x)

=
∑
t∈Γ

|g∗(t)(x)||g∗(s−1t)(s−1x)|

=
∑
t∈Γ

|g∗(t)(x)||g(t−1s)(t−1x)|

>
∣∣∑
t∈Γ

g∗(t)(x)g(t−1s)(t−1x)
∣∣

= |(g∗ ∗α g)(s)(x)|

where equality holds if s = e. Thus, 〈T , T〉 = E(g∗ ∗α g) = 1C(X) and

〈s ∗α T , s ∗α T〉 = αs(〈T , T〉) = 1C(X). Now we have

‖s ∗α T − T‖22 =
∥∥2 · 1C(X) − 〈T , s ∗α T〉− 〈s ∗α T , T〉

∥∥ 6 2
∥∥1C(X) − |g∗ ∗α g(s)|

∥∥
which is close to zero for all s ∈ F. But all s ∈ Γ belong eventually to some

F, therefore we can construct the net required to witness amenability of α

(with careful selection of approximations). �

Definition 3.3.16. A bounded function k : Γ × Γ → C is called a positive

definite kernel iff the matrix [k(s, t)]s,t∈F is positive for any finite set F ⊆ Γ .

Definition 3.3.17. A tube is a set of the form

{(s, t) ∈ Γ × Γ : st−1 ∈ F}

for some finite set F ⊆ Γ . We call F the width of the tube, which we denote

by tube(F).
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Definition 3.3.18. Consider the left translation action of Γ on `∞(Γ). We call

the associated reduced crossed product `∞(Γ)or Γ the uniform Roe algebra

of Γ and denote it by C∗u(Γ).

It is important to note that C∗u(Γ) is just the C∗-subalgebra of B(`2(Γ))

generated by C∗r(Γ) and `∞(Γ).
Observe, thus, that (positive definite) kernels supported in tubes, which

correspond exactly to (positive) elements belonging to the
∗
-algebra gen-

erated by C∗r(Γ) and `∞(Γ) inside B(`2(Γ)), can be identified with elements

inside C∗u(Γ).

Theorem 3.3.19. The following are equivalent:

1. Γ is exact.

2. For any finite set E ⊆ Γ and ε > 0, there exists a positive definite kernel

k : Γ × Γ → C whose support is contained in a tube, such that k(s, s) = 1

for all s ∈ Γ and

sup{|k(s, t) − 1| : (s, t) ∈ tube(E)} < ε.

3. For any finite set E ⊆ Γ and ε > 0, there exist a finite set F ⊆ Γ and

ζ : Γ → `2(Γ) such that ‖ζs‖ = 1 and supp(ζs) ⊆ Fs for all s ∈ Γ , and

sup{‖ζs − ζt‖ : (s, t) ∈ tube(E)} < ε.

4. For any finite set E ⊆ Γ and ε > 0, there exist a finite set F ⊆ Γ and

µ : Γ → P(Γ) such that supp(µs) ⊆ Fs for all s ∈ Γ and

sup{‖µs − µt‖1 : (s, t) ∈ tube(E)} < ε.

5. The left translation Γ -action on `∞(Γ) is amenable.

In particular, Γ is exact iff it is amenable at infinity iff it acts amenably on

its Stone-Čech compactification βΓ .

Proof. (1 =⇒ 2) Let E ⊆ Γ be a finite set and ε > 0. Using Lemma 3.3.4, we

can find u.c.p. maps ϕ : C∗r(Γ)→ B(`2(F)) (compression by the projection onto

`2(F) for some finite F ⊆ Γ ) and ψ : B(`2(F)) → B(`2(Γ)) such that ω = ψ ◦ ϕ
satisfies

‖ω(λs) − λs‖ < ε

for all s ∈ E. We define a kernel k : Γ × Γ → C by

k(s, t) = 〈ω(λst−1)δt, δs〉 ,
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which is supported on a subset of tube(FF−1) (by the definition of ω). Fur-

thermore, for s1, s2, . . . , sn ∈ Γ and z1, z2, . . . , zn ∈ C, we calculate∑
i,j

k(si, sj)z̄izj =
∑
i,j

〈
ω(λsis−1

j
)zjδsj , ziδsi

〉

=

〈
ω
(
[λsis−1

j
]i,j
) z1δs1...

znδsn

 ,

 z1δs1...

znδsn

〉

> 0

since ω is c.p. and [λsis−1
j
]i,j is positive in Mn(C∗r(Γ)). Thus k is positive

definite. Finally, we have

|k(s, t) − 1| = | 〈ω(λst−1)δt, δs〉− 1|

= | 〈(ω(λst−1) − λst−1)δt, δs〉 |
6 ‖ω(λst−1) − λst−1‖
< ε

for all (s, t) ∈ tube(E).

(2 =⇒ 3) Let E ⊆ Γ be a finite set, ε > 0, and k be a positive definite

kernel satisfying (2). Let a be the element in C∗u(Γ) corresponding to k.

There exists a finite set F ⊆ Γ and a kernel supported in tube(F) such that

for the corresponding element b ∈ C∗u(Γ) we have ‖a− b∗b‖ ≈ 0. For s ∈ Γ ,
set ηs = bδs ∈ `2(Γ) and observe that ‖ηs‖ ≈ 1 since

〈ηs,ηt〉 = 〈bδs,bδt〉 = 〈b∗bδs, δt〉 ≈ 〈aδs, δt〉 = k(s, t),

while supp(ηs) ⊆ Fs. Hence, for ζs = ηs/ ‖ηs‖ we have ‖ζs‖ = 1 and ζs ≈ ηs.
Therefore

‖ζs − ζt‖2 6 2|1 − 〈ζs, ζt〉 | ≈ 2|1 − 〈ηs,ηt〉 | ≈ 2|1 − k(s, t)| < 2ε

for (s, t) ∈ tube(E), which gives us what we want after appropriate adjust-

ment of the ε’s.

(3 =⇒ 4) Trivial, using the map `2(Γ)→ `1(Γ)+ : (ζs) 7→ (|ζs|
2).

(4 =⇒ 5) For any finite symmetric E ⊆ Γ and ε > 0, let µ : Γ → P(Γ) be

the associated map provided by (4) and define T : Γ → `∞(Γ) by

T(x)(s) =
√
µs(s−1x).

We can now work exactly as in the proof of Proposition 3.3.8 to first see that

‖s ∗ T − T‖22 6 sup
t∈Γ
‖µs−1t − µt‖1 < ε

for all s ∈ E and then obtain a net witnessing amenability of the Γ -action

on `∞(Γ).
(5 =⇒ 1) As `∞(Γ) = C(βΓ), Γ is amenable at infinity, and thus exact. �
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Lemma 3.3.20. A compact Γ -space X is amenable iff P(X) is.

Proof. One direction is immediate, since X ⊆ P(X). For the converse, fix an

a.i.c.m. mi : X→ P(Γ). Define m̃i : P(X)→ P(Γ) by

m̃i(µ)(s) =

∫
X

mxi (s)dµ

and calculate

‖sm̃µi − m̃
sµ
i ‖1 =

∑
t∈Γ

∣∣∣∣∫
X

smxi (t) −m
sx
i (t)dµ

∣∣∣∣
6 sup
x∈X
‖smxi −msxi ‖1 → 0

for all µ ∈ P(X) and s ∈ Γ . �

Finally, we can give the desired characterisation of exactness in terms

of the Γ -action on ∂FHΓ .

Theorem 3.3.21. Γ is exact iff ∂FHΓ is amenable.

Proof. If ∂FHΓ is amenable, then Γ is exact by Corollary 3.3.13.

Conversely, if Γ is exact, then βΓ is amenable by Theorem 3.3.19, and

thus P(βΓ) is (by the lemma above). By Γ -injectivity, there exists a Γ -

equivariant u.c.p. map ϕ : `∞(Γ)→ C(∂FHΓ), hence the adjoint ϕ∗ restricts to

a continuous Γ -equivariant map ∂FHΓ → P(βΓ). Composing this map with an

a.i.c.m. witnessing amenability of P(βΓ), we obtain an a.i.c.m. for ∂FHΓ . �



Appendix

Our aim is to make this work as accessible as possible, assuming only

knowledge covered by undergraduate courses on functional analysis and

operator theory. For this purpose, this appendix will be dedicated to some

fundamentals of C∗-algebras. We should mention, however, that we will

restrict ourselves to the parts of the theory that are useful for this work

(even if that means presenting them in an unconventional and condensed

way). Since no proofs will be given, we refer to [BO08; Mur90; Pau03] for

more details. Before we proceed with that task, for the sake of complete-

ness we will also mention two well-known classical results in functional

analysis that are used here and there, and that might not be covered in an

introductory course (in this form at least). Proofs of these can be found, for

example, in [Con07].

Classical Results in Functional Analysis

Theorem A.1 (Hahn-Banach separation - complex case). Let X be a complex

locally convex space and A,B be disjoint closed convex subsets of X. If B is

compact, then there exists an f ∈ X∗, an r ∈ R and an ε > 0 such that

Re f(a) 6 r < r+ ε 6 Re f(b), ∀a ∈ A,b ∈ B.

Theorem A.2 (Krein-Milman). If K is a nonempty compact convex subset of

a locally convex space X, then extK 6= ∅ and K = conv(extK), where extK

denotes the set of extreme points of K.

The Krein-Milman theorem is usually accompanied by the following

proposition, known as Milman’s partial converse to the Krein-Milman theo-

rem.

Proposition A.3. If X is a locally convex space, K is a compact convex subset

of X, and F ⊆ K such that K = conv(F), then extK ⊆ F.

C∗-Algebras

Definition A.4. A complex normed algebra (A, ‖.‖) is called a Banach algebra

iff the underlying linear space is a Banach space and ‖.‖ is submultiplicative,

57
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i.e.

‖ab‖ 6 ‖a‖ ‖b‖ , ∀a,b ∈ A.

Definition A.5. A complex algebra A is called involutive or simply a
∗
-

algebra iff it is equiped with an antilinear map
∗ : A → A that is an

antiautomorphism of order 2 on the multiplicative semigroup of A. The

image of an element under this involution is called its adjoint.

Definition A.6. A Banach
∗
-algebra (A, ‖.‖) is called a C∗-algebra iff ‖.‖ is a

C∗-norm, i.e. satisfies the C∗-identity

‖a∗a‖ = ‖a‖2

for all a ∈ A.

Proposition A.7. If (A, ‖.‖) is a C∗-algebra and ‖.‖ ′ is another C∗-norm on A,

then ‖.‖ ′ = ‖.‖.

From now on, unless otherwise specified, A will denote a C∗-algebra.

Morphisms in the category of C∗-algebras will be
∗
-homomorphisms, i.e.

algebra homomorphisms respecting the involution.

Proposition A.8. Let I be a closed ideal in A and B ⊆ A be a C∗-subalgebra.

Then

• A/I (with its natural structure) is a C∗-algebra.

• B+ I ⊆ A is a C∗-algebra.

Furthermore, B/(B ∩ I) ∼= (B+ I)/I.

Definition A.9. An element a ∈ A is called:

• normal iff a∗a = aa∗.

• self-adjoint iff a = a∗.

• unitary iff a∗a = aa∗ = 1A (in the unital case).

• positive iff a = b∗b for some b ∈ A.

Proposition A.10. The set of positive elements of A, denoted by A+, is a

‖.‖-closed salient cone inside the space Asa ⊆ A of self-adjoint elements.

Therefore, Asa is partially ordered by the relation

a 6 b ⇐⇒ b− a ∈ A+.

Proposition A.11. For each element a ∈ Asa there exist unique a+,a− ∈ A+

such that a = a+ − a− and a+a− = a−a+ = 0. Thus, every element in A can

be written as a linear combination of four elements in A+.
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Definition A.12. A linear map ϕ : A → B between C∗-algebras is called

positive iff a > 0 =⇒ ϕ(a) > 0 and faithful iff a > 0 =⇒ ϕ(a) > 0 for all

a ∈ A. A positive linear functional is called a state iff it is of norm 1. A

state τ on A is called tracial (or simply a trace) iff τ(ab) = τ(ba) for all

a,b ∈ A.

Proposition A.13. Positive linear linear maps are automatically bounded.

Proposition A.14. A linear functional ϕ on a unital C∗-algebra A is positive

iff ‖ϕ‖ = ϕ(1A).

Definition A.15. A linear functional on A is called self-adjoint iff ϕ(a∗) =

ϕ(a) for all a ∈ A.

Proposition A.16. For each self-adjoint bounded linear functional ϕ on A

there exist positive linear functionals ϕ+,ϕ− such that ϕ = ϕ+ − ϕ− and

‖ϕ‖ = ‖ϕ+‖ + ‖ϕ−‖. Thus, every bounded linear functional on A can be

written as a linear combination of four positive ones.

Theorem A.17 (Gelfand representation). Every abelian C∗-algebra A is
∗
-

isomorphic to C0(X) for some locally compact Hausdorff space X. X is called

the (Gelfand) spectrum of A.

Definition A.18. A
∗
-representation of a complex involutive algebra A is

a
∗
-homomorphism π : A → B(H) for some Hilbert space H. π is called

non-degenerate iff π(A)(H) is dense in B(H).

Theorem A.19 (Gelfand-Neimark). Every C∗-algebra has a
∗
-representation

that is faithful. Therefore, every C∗-algebra can be concretely realised as a

‖.‖-closed ∗-subalgebra of B(H) for some Hilbert space H.

Remark. Notions, such as positivity, which are typically defined in a different

fashion in the context of B(H) (through inner products or the spectrum) are

all equivalent to the above definitions given for abstract C∗-algebras.

Proposition A.20. Let H,K be Hilbert spaces. Then, their algebraic tensor

product H�K is a pre-Hilbert space, when equipped with the inner product

defined on elementary tensors by

〈h1 ⊗ k1,h2 ⊗ k2〉 = 〈h1,h2〉H 〈k1,k2〉K .

We denote its respective completion by H ⊗K.

Proposition A.21. If T ∈ B(H) and S ∈ B(K), then there exists a unique

T ⊗ S ∈ B(H ⊗K) such that

T ⊗ S(u⊗ v) = (Tu)⊗ (Sv)

for all u ∈ H and v ∈ K. Moreover, ‖T ⊗ S‖ = ‖T‖ ‖S‖.
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Consider now two C∗-algebras A,B and let A�B be their algebraic tensor

product. We can turn A�B into a
∗
-algebra, endowing it with an involution

defined on elementary tensors by

(a⊗ b)∗ = a∗ ⊗ b∗.

Definition A.22. Define ‖.‖max : A�B→ R+ by

‖x‖max = sup{‖π(x)‖ : π is a
∗
-representation of A�B}

for all x ∈ A�B. Then ‖.‖max is a C∗-norm. We call the completion of A�B

with respect to ‖.‖max the maximal tensor product of A and B, and denote it

by A⊗max B.

Definition A.23. Consider faithful
∗
-representations π : A → B(H) and ρ :

B→ B(K). Define ‖.‖min : A�B→ R+ by∥∥∥∥∥∑
i

ai ⊗ bi

∥∥∥∥∥
min

=

∥∥∥∥∥∑
i

π(ai)⊗ ρ(bi)

∥∥∥∥∥
B(H⊗K)

for all x ∈ A�B. Then ‖.‖min is a C∗-norm. We call the completion of A�B

with respect to ‖.‖min the spatial or minimal tensor product of A and B, and

denote it by A⊗B.

Remark. The spatial tensor product is independent of the choice of faithful

representations.

Proposition A.24. The maximal norm is the largest possible C∗-norm on A�B.

Theorem A.25 (Takesaki). The spatial norm is the smallest possible C∗-norm

on A�B.

Proposition A.26. For any n ∈ N, the matrix algebra Mn(A) = Mn(C) � A

can be turned into a C∗-algebra. Thus, A ⊗Mn(C) = A ⊗max Mn(C) (by the

uniqueness of C∗-norms).

Definition A.27. Let ϕ : A → B be a linear map. We call the map ϕ(n) =

ϕ⊗ idMn(C) the n-th amplification of ϕ. We will occasionally abuse notation

and omit the index of an amplification (in cases where it is clear from the

context).

Definition A.28. A linear map ϕ : A→ B is called:

• n-positive iff ϕ(n) is positive.

• completely positive iff it is n-positive for all n ∈ N.

• completely isometric iff ϕ(n) is an isometry for all n ∈ N.
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• completely bounded iff ‖ϕ‖cb := supn
∥∥ϕ(n)

∥∥ <∞.

• completely contractive iff ‖ϕ‖cb 6 1.

Proposition A.29. Positive maps which have an abelian C∗-algebra as their

domain or range are automatically completely positive.

Proposition A.30. Tensor products of completely positive maps are completely

positive.

Proposition A.31. Let ϕ : A → B be a contractive completely positive map.

Then

{a ∈ A : ϕ(a∗a) = ϕ(a)∗ϕ(a) and ϕ(aa∗) = ϕ(a)ϕ(a)∗}

is a C∗-subalgebra of A and is equal to the set

{a ∈ A : ϕ(aa ′) = ϕ(a)ϕ(a ′) and ϕ(a ′a) = ϕ(a ′)ϕ(a) for all a ′ ∈ A}.

We call this set the multiplicative domain of ϕ.

Proposition A.32 (Schwarz inequality for 2-positive maps). Let ϕ : A→ B be

a unital 2-positive map. Then

ϕ(a)∗ϕ(a) 6 ϕ(a∗a)

for all a ∈ A.

Definition A.33. Let B ⊆ A. A contractive completely positive projection

E : A→ B is called a conditional expectation iff it is a B-bimodule map.

Theorem A.34 (Tomiyama). Let B ⊆ A and E : A → B be a projection. The

following are equivalent:

1. E is a conditional expectation.

2. E is contractive completely positive.

3. E is contractive.

Definition A.35. Assume A is unital. A linear subspace S ⊆ A is called an

operator system iff it is self-adjoint and contains 1A.

Remark. Order structure (via positivity) is crucial for operator systems.

Thus, it should not come as a surprise that the appropriate morphisms in

that category are completely positive maps.

Theorem A.36 (Arveson’s extension). Let S ⊆ A be an operator system and

ϕ : S→ B(H) be a completely positive map. Then ϕ extends to a completely

positive map ϕ̃ : A→ B(H).



APPENDIX 62



Bibliography

[AS94] Archbold, R. J. and Spielberg, J. S., Topologically free actions and ideals in
discrete C*-dynamical systems, Proceedings of the Edinburgh Mathematical
Society 37.1 (1994), pp. 119–124.

[BHV08] Bekka, B., de la Harpe, P., and Valette, A., Kazhdan’s property (T), New
Mathematical Monographs 11, Cambridge University Press, 2008.

[BKKO17] Breuillard, E., Kalantar, M., Kennedy, M., and Ozawa, N., C*-simplicity and
the unique trace property for discrete groups, Publications Mathématiques
de l’IHÉS 126 (1 2017), pp. 35–71.

[BO08] Brown, N. P. and Ozawa, N., C*-algebras and finite-dimensional approxima-
tions, Graduate Studies in Mathematics 88, American Mathematical Society,
2008.

[CE77] Choi, M.-D. and Effros, E. G., Injectivity and operator spaces, Journal of
Functional Analysis 24.2 (1977), pp. 156–209.

[CE78] Choi, M.-D. and Effros, E. G., Nuclear C*-algebras and the approximation
property, American Journal of Mathematics 100.1 (1978), pp. 61–79.

[Coh64] Cohen, H. B., Injective envelopes of Banach spaces, Bulletin of the American
Mathematical Society 70.5 (1964), pp. 723–726.

[Con07] Conway, J. B., A course in functional analysis, 2nd ed., Graduate Texts in
Mathematics 96, Springer-Verlag New York, 2007.

[Har07] de la Harpe, P., On simplicity of reduced C*-algebras of groups, Bulletin of
the London Mathematical Society 39.1 (2007), pp. 1–26.

[Har08] de la Harpe, P., Spaces of closed subgroups of locally compact groups, 2008,
arXiv: 0807.2030 [math.GR].

[ES53] Eckmann, B. and Schopf, A., Über injektive Moduln, Archiv der Mathematik
4 (1953), pp. 75–78.

[Fur73] Furstenberg, H., Boundary theory and stochastic processes on homogeneous
spaces, Harmonic analysis on homogeneous spaces, Proceedings in Symposia
in Pure Mathematics XXVI, American Mathematical Society, 1973, pp. 193–
229.

[Gla76] Glasner, E. S., Proximal flows, Lecture Notes in Mathematics 517, Springer-
Verlag Berlin Heidelberg, 1976.

63

https://arxiv.org/abs/0807.2030


BIBLIOGRAPHY 64

[Gle58] Gleason, A. M., Projective topological spaces, Illinois Journal of Mathematics
2.4A (1958), pp. 482–489.

[Haa16] Haagerup, U., A new look at C*-simplicity and the unique trace property of
a group, Operator Algebras and Applications, The Abel Symposium 2015,
ed. by Carlsen, T. M., Larsen, N. S., Neshveyev, S., and Skau, C., Springer
International Publishing, 2016, pp. 167–176.

[Ham78] Hamana, M., Injective envelopes of Banach modules, Tohoku Mathematical
Journal 30.3 (1978), pp. 439–453.

[Ham79a] Hamana, M., Injective envelopes of C*-algebras, Journal of the Mathematical
Society of Japan 31.1 (1979), pp. 181–197.

[Ham79b] Hamana, M., Injective envelopes of operator systems, Publications of the
Research Institute for Mathematical Sciences 15.3 (1979), pp. 773–785.

[Ham85] Hamana, M., Injective envelopes of C*-dynamical systems, Tohoku Mathe-
matical Journal 37.4 (1985), pp. 463–487.

[KK17] Kalantar, M. and Kennedy, M., Boundaries of reduced C*-algebras of discrete
groups, Journal für die Reine und Angewandte Mathematik (Crelles Journal)
2017 (727 2017), pp. 247–267.

[KT12] Kaniuth, E. and Taylor, K. F., Induced representations of locally compact
groups, Cambridge Tracts in Mathematics 197, Cambridge University Press,
2012.

[Ken20] Kennedy, M., An intrinsic characterization of C*-simplicity, Annales Scien-
tifiques de l’ENS 53 (5 2020), pp. 1105–1119.

[Kir95] Kirchberg, E., On subalgebras of the CAR-algebra, Journal of Functional
Analysis 129.1 (1995), pp. 35–63.

[LB17] Le Boudec, A., C*-simplicity and the amenable radical, Inventiones Mathi-
maticae 209 (1 2017), pp. 159–174.

[LBMB18] Le Boudec, A. and Matte Bon, N., Subgroup dynamics and C*-simplicity of
groups of homeomorphisms, Annales Scientifiques de l’ENS 51 (3 2018),
pp. 557–602.

[Mur90] Murphy, G. J., C*-algebras and operator theory, Academic Press, 1990.

[Oza00] Ozawa, N., Amenable actions and exactness for discrete groups, Comptes
Rendus de l’Académie des Sciences - Series I - Mathematics 330.8 (2000),
pp. 691–695.

[Pau03] Paulsen, V., Completely bounded maps and operator algebras, Cambridge
Studies in Advanced Mathematics 78, Cambridge University Press, 2003.

[Pit17] Pitts, D. R., Structure for regular inclusions. I, Journal of Operator Theory
78 (2 2017), pp. 357–416.



65 BIBLIOGRAPHY

[Pow75] Powers, R. T., Simplicity of the C*-algebra associated with the free group
on two generators, Duke Mathematical Journal 42.1 (1975), pp. 151–156.

[Rau20] Raum, S., Exposé Bourbaki 1156: C*-simplicity (after Breuillard, Haagerup,
Kalantar, Kennedy and Ozawa), Astérisque 422 (2020), pp. 225–252.

[Run02] Runde, V., Lectures on amenability, Lecture Notes in Mathematics 1774,
Springer-Verlag Berlin Heidelberg, 2002.

[Sch71] Schochetman, I. E., Nets of subgroups and amenability, Proceedings of the
American Mathematical Society 29 (1971), pp. 397–403.

[Val89] Valette, A., The conjecture of idempotents: a survey of the C*-algebraic
approach, Bulletin of the Belgian Mathematical Society 41 (1989), pp. 485–
521.

[Was90] Wassermann, S., Tensor products of free-group C*-algebras, Bulletin of the
London Mathematical Society 22.4 (1990), pp. 375–380.


	Περίληψη
	Abstract
	Contents
	Preliminaries
	Notational Conventions
	Unitary Representations
	Group C*-Algebras
	Amenability
	Crossed Products

	The Furstenberg-Hamana Boundary
	Injective Envelopes of Γ-Operator Systems
	The Hamana Boundary
	Definition and Universality
	Further Properties


	The Reduced Group C*-Algebra
	C*-Simplicity
	The Main Theorem
	Further Characterisations

	The Unique Trace Property
	Exactness

	Appendix
	Bibliography

