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Abstract

An operator system can be described as a self-adjoint subspace of a unital
C™-algebra containing the unit of this C'*-algebra. A celebrated result of Choi
and Effros shows that equivalently we can consider an operator system as an
Archimedean matrix ordered *-vector space. The tensor product of two operator
systems can also be equipped with suitable matrix orderings, making it an opera-
tor system. In the first part of the present paper we examine three of these matrix
orderings. In the second part we study the connection between tensor products
of operator systems and several classes of non-signalling correlations.

We will now briefly describe the contents of each Chapter.

In the first Chapter we give the definition of a matrix ordering and review some
basic results regarding matrix ordered spaces such as order units, positivity, du-
ality and the Archimedeanization process.

In Chapter 2 we introduce the notion of an operator system structure on the
tensor product of two operator systems. A tensor product of operator systems
equipped with such a structure is once again an operator system. The main focus
of this chapter will be the study of the minimal, maximal and commuting operator
system tensor products. We will see that in order to determine the states on the
minimal tensor product we require the maximal tensor product and vice-versa.

In the following two Chapters (3 and 4) we define and examine the quotient
operator system and we describe the co-product of operator systems using this
concept.

In Chapter 5 we define some classes consisting of non-signalling correla-
tions with the use of Positive Operator Valued Measures (POVM’s), namely the
local, quantum, approximately quantum and quantum commuting classes. The
geometrical properties of the sets of these correlation classes are studied and it
is shown that they satisfy a chain of inclusions. Moreover, we establish bijec-
tive correspondences between the correlations belonging to each of these classes
and the states on the tensor products of certain operator systems. More specifi-
cally these operator systems will be co-products of copies of the operator system
I7° :=C @ --- @ C while the tensor products in question are the aforementioned
ones (Chapter 2).

In Chapter 6 some distinctions between the various correlation sets are proven.
This is achieved with the help of non-local game theory and through methods of
operator system theory. To be more precise we will see that the set of all local
correlations differs from that of all quantum correlations and that the set of all
quantum commuting correlations differs from that of all non-signalling correla-
tions. We should also note that there was a long standing debate on whether
the set of all approximately quantum correlations coincides with that of all quan-
tum commuting correlations, referred to as the weak Tsirelson’s problem. This
was answered in the negative by Slofstra in [21]. Another long-standing question,
known as the strong Tsirelson’s problem, was whether or not the set of all approx-
imately quantum correlations coincides with that of all quantum correlations. In
a recent paper [10] it was shown that the answer to the strong Tsirelson’s prob-
lem is also negative. We will not examine these two separations as their proofs,
found in the papers given above, use techniques beyond the scope of this paper.

In the literature, the various correlation classes we discussed are sometimes
defined using Projection Valued Measures (PVM’s) instead of Positive Operator
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Valued Measures. In the last Chapter it is shown that in both cases the same
correlation classes are obtained.
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Hepinyn

‘Evot 60OTNHO TEAECTMOV PITOPEL VAL TTEPLYPOPEL 0OG £VaLG tLTOGLLLYNG LITOY -
pog prag povadiaiog C*-dlyeppag o omoiog mepiéyet Tnv povada awtig tng C™-
aryePpag. Zoppwva pe éva Oepedtnddeg amotéAeopa Twv Choi ko Effros propoo-
pe 10odvvoapa vor BewprioovpE £Vt GOGTIHO TEAEGTMOV OaV £Vay *-SLaVUGHATIKO
xopo pe Apypndewx dita€n mvdkwv. To tavuotikd ywopevo dvo cvotnpd-
TV TeEAeSTOV dOvartal emiong vo epodiacTel pe pioe kKatdAANAN Siatakn mvé-
KWV 00TOG OOTE v YiVEL KoL aUTO vt CUOTNHO TEAECTOV. XTO TPOTO HEPOG
g mapovoag epyaciog eEetdlovpe Tpelg amd autég Tig Sratdéelg mvdkwy. Eto
devTepo pépog peletovpe TV oxéon petakd oplopévewv non-signalling kAdoewv
GUGYETICEWV KOl KATIOLWV TOVUGTLKGDV YLVOHEVOV CUOTIHAT®OV TEAECTMV.

AxolovBel pior cOVTOUN TEPLYpaPT] TWV TTEPLEXOPEVWV Kae ke@adaiov.

2to pwto kepahawo diveton 0 optopdg g diatalkng mvakwv kabng ko pio
AVAALOT] TV PACIKOV ATTOTEAECUATOV TTOL APOPODY TOLG XWPOUG pe dLiTakn
VKWV OTIWG eivan ot povadeg Sita€ng, 1 BetikdTn TR, 0 SUIoHOG KO 1) ApYLn-
domoinon.

>to SeVtepo Ke@AALO €LGAYOLHE TNV évvola TNG SOPAG CUCTIHATOG TEAE-
GTMOV 6TO TAVUGTIKO YLvOpevo 800 cuoTNpdtwy TelecTtdV. Eva TovuoTikd yi-
VOpEVO 800 CUOTNUATWOV TEAEGTAOV eQodlacpévo pe TéTolx Sopr) eival kat avtd
éva ovoTnpo TeEAeSTOV. ESQ emikevIpvOpaoTe oTnv HeAETN TOL EAXXLOTIKOD
(minimal), Tov peylotikod (maximal) kot Tov commuting TAVUGTIKOV YLVOPEVOV
GUGTNHATOV TEAECTOV. Oa SOVHE TWG TPOKEEVOL VOL TTEPLYPAPOUHE TLG KOTOL-
otdoelg (states) TOL EAOYLOTIKOD TAVUGTIKOD YIVOUEVOL YPELAlOHAOTE TO HEYL-
OTIKO TOVUGTIKO YIVOHEVO KOL AVTLOTPOPRG.

Sta dvo emopeva kepahona (3 kot 4) opllovpe kKot peAETOVHE TO GOOTNHO TE-
Aeotodv mnAiko ko Pacldpevol oty évvola awtr] epLyp&@oupe to co-product
GUGTNHHATWV TEAEOTOV. Oa SOVHE WG TO co-product GLOTHHATWY TEAEGTOV pItO-
pel vaL KATOOKEVAOTEL G COOTNHA TEAEGTMOV TTNALKO.

>to mépnto Kepdhowo B opicouvpe Sidpopeg kA&oelg amote A oOpeVES artd
non-signalling cvoyetiocelg xprnoponotdvtag pETpa pe TYéG BeTikovg TeAeoTéG
(POVM’s), o ovykekpytéva Tig kAdoelg twv tomkdv (local), kPavtikdv (quantum),
TPOGCEYYLOTIKG KPavTikodv (approximately quantum) kot quantum commuting
ovoytioewv. AkoAoOBwg eEeTAloVTaL OL YEWHETPLKEG LOLOTNTEG TWV CLUVOAWVY QD-
TOV TV GLOYETICEWMV KoL TodelkVOETAL OTL TOL GUVOAX QLUTG LKOVOTTOLOVVY pio
oelpd od eykAelopong.

EmnpocBétwg, 0o amodeifovpe Tnv dmap€n op@LOVOCTIHOVTOV AVTLOTOLXLOV Ot
VOPECO OTIG GUOYETIOELS TTOV AVIKOLV GTLG TTOPATTAVE® KAXCELS KOl OTLG KOTOL-
OTAOELG OTO TUVUOTLIKA YLIVOHEVO OPLOPHEVWV CUOTNHAT®OV TEAEGTAOV.
Ewdikotepa, ta {ntovpeva cuoThipato TeAEGTOV gival co-products avtypaewv
oL cvoThpatog TehesTdV I (= C @ - - - @ C evdd T £V AOY® TAVUGTIKE YLVO-
peva eivon ta tpoavagpepOévra (Kepdlaio 2). Ztnv ovoia Ba dodpe otu:

1. Ymapyer pia éva pog éva ko emti avtioToyiot peta€ld Tov cuvoAov OAwV

TV non-signalling cuoyeTicEW®V KO TOL GLVOLOL TWV KATAGTAGEWY
(states) Tov xdopov S(n, k) @maz S(m, 1), n, k,m,l € N.

2. Yrdpyet pio éva mtpog éva kat i avtiotoryio petafd Tov GuvOloL OAwWV
TV quantum commuting GUGYETIGEWY KL TOL GUVOAOL TOV KATAGTACEWDY
(states) Tov ydpov S(n, k) ®c S(m,1), n,k,m,l € N.
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3. Ymdpyer pio éva tpog éva kan enti avtiotoryio petad Tov GuvoLlov OAWV
TV approximately quantum cuoyeticewv koL TOL GUVOAOL TWV KATAGTA-
cewv (states) Tov xopov S(n, k) @min S(m, 1), n, k,m,l € N.

omov S(n, k) ewou To co-product n avTLypa@mv TOL XOPOUL I5° Ko HE Rmaz, Qe
KO @min oLHBOAILOL}E TO HEYLOTIKO, TO commuting KoL TO EAXYLOTIKO TAVUGTL-
KO YLVOHEVO GUOTNHATOV TEAEGTOV OVTIOTOLY L.

>to Kepahowo 6 deiyvoupe mwg ot eykAelopol petafd Twv cLUVOA®Y TwV oL-
OXETIoEWV TTOVL OpiCalE TPOTYOUVHEVKG elva yvoloL. AUTO ETLTUYYAVETOL [LE TNV
Bonbeiax tng pn-tomikrig Bewpiog maryviov cAA& kot pe TNV xpron pedddwv g
Bewpiog TAVUGTIKGOV YIVOUEVWY CUOTNUATWOV TEAEGTAOV. Oa EGTLRCOVHE TLG TPO-
onaBeteg pog otnv anddelén twv dvo akdOAovOWV LEYXLPLEHOV:

1. To cOvoro O Awv TV tomikdV (local) cvoxeticewv eivat yvijolo vtocOvolo
TOU GLVOAOL OAWV TV KPavTik®dY (quantum) cvoyeticewy.

2. To cbvolo OAwV Twv quantum commuting cuoyeticewv eivat yviiolo vio-
o0volo Tov cUVOLOL OAWV TwV non-signalling cuoxeticewy.

Yto onpeio avtd w@eilovpe va avapépoupe g dev Bo peleTricovpE TO AV TO
oVVoAo OAwV TpoooeyyLoTIKA KPavTikdV (approximately quantum) cvoyetioe-
v tavtietal pe To oOVoro OAwV TV KPavTikdv (quantum) cvoyeticewv. Avto
TO EPOTNHA, YVOOTO Kol G Loy upod pofAnpa tov Tsirelson, amavthOnke apvnti-
k& otnv epyacio [10]. Emonpaivouvpe axdpa mwg o0Te 1 atdvtnot oto abevég
poPAnpa Tov Tsirelson, av dniadr) to cVvoro OAwV TpocoEYYLOTIKA KPavTL-
K&V (approximately quantum) cvoyeticewv TautileTor pe 0 6OVOAO OAWV TwV
quantum commuting cvoyeticewv, avaideTor otnv napovoa epyacio. H amd-
vtnomn oto acBevég mpoTANpa givon ko ot apvntiky Omwg £deke o Slofstra
oto [21]. EmAé€ape va pnv aoyorelBolpe (tapd pdvov emdeppid) pe ta dvo
autd {nThpato Kabdg yia TNV atocelr] Toug aTaLTODVTOL TEXVIKEG OL OTOLeg
dev mapovoialovton oTnV apodoa epyacio.

Sty Biproypagio eivan cOvnBeg ot Stpopeg kKAGOELG CLUOYXETICEWY TTOL TTe-
prypéyope vo opilovtor pe Tnv xprion pétpwv pe Tipég mpoPoréc (PVM’s) avti
TV pétpwv pe Tég Betikovg tedeotég (POVM’s). Eto tehevtaio kepaiono Oo
Solpe TG Kot 0TI SVO TEPLTTOELG TALPVOUE TLG iSleG KAATELG CLUOXETIOEWV.



Evyapiotieg

H amonepatwon tng mopodoag SITAOHATIKNG EPYATLG - 1) 0TToio EKTTOVHONKE pe TPL-
peAn emtpom toug k.x. Aptoteidn KataPoro, Miyan Avotor kot Ipav Tovropoe -
onNpaTodoTel TNV OAOKA POOT) TWV GITOVSMV POV YLK TNV 0UTOKTIOT) TOL AUTADUOTOG
Metamtuytok®dv Zrovdov pe edikevor ota Oewpntikd Mabnuatikd mov asovépetal
amd to Turipo Mabnuatikev tov Havennotnpiov ABnvov.

Oa 110eda vo EVXOPLOTHOW TNV TPYEAT] ETLTPOT GTO GOVOAO TNG YL TNV GUK-
petoxn tng oe oty tnv mpoomdbeia. Idiontépwg, evyaploTd Tov emPAémovra NG
duthwpatikng k. Apioteidn Katdforo yix to evdiapépov ko tnv Porfeiax mov pov
napeiye o k&Be Pripa tng Sradikaoiog avtrig wov cuvEBarav kKabBopLloTikd TNV CLY-
YPOuPT Kol OAOKAPWOT) TNG £PYRGLNG.

TéNog eMBUU® VO ELXAPLOTIOW TOVG YOVELG OV KO TOV adEPPO OV YL TNV OTT)-
pLEN kot TG GVPPOLAEG TOVG KaTd TNV SLdpkela Twv 6TTovdGOV pov. Ertiong, evxoplotod
TOUG PIAOVG OV YLOL TNV CUUTTAPAGTACT] TOUG,.



1 Introduction

We will assume that the reader has some familiarity with basic C*-algebraic theory
such as the Gelfand-Naimark Theorem and the tensor product construction in the C*-
algebra category.

For a thorough review of these topics the reader is advised to see [13].

1.1 Matrix Ordered Spaces

If V is a complex vector space, we denote the space of n X m matrices whose entries
are elements of V by M, ,,(V'), which is also a vector space in a natural way. We set
My (V) = M, (V) and My, 1, := My (C).

The space M,, ,,, has the canonical basis {E” :1<i<n,1<j<m}where E;;is
the n X m matrix with 1 in the (7, j) entry and 0 everywhere else. If m = n we will
write My, , = M,,.

A *-vector space is a complex vector space together with a conjugate linear map

*: V — V which is involutive ( that is (v*)* = v). We say that an element v is her-

mitian (self-adjoint) if v* = v and we let V}, denote the real subspace of V' containing

all such elements. Note that if we have a v € V then there exists a decomposition of

v into self adjoint elements v = z + iy where z = (v +v*) and y = & (v — v*) s0:
V=V, + iV, Vi, NiVy, = {0}

If V is a *-vector space, then we define a *-operation on M, (V') by letting [v;;]* =
[(v}4)*], with this operation M,, (V) becomes a *-vector space. We let M,,(V);, denote
the set of all hermitian elements of M,, (V).

We call a subset K of a real vector-space V a cone if it satisfies the following proper-
ties:

1. v € K, forevery A € Rt = [0,00) andv € K

2. v1 +vg € K, for every v1,v9 € K

An ordered *-vector space is a pair (V, V1) satisfying:
1. VT isaconein V},

2. VTN (=V)* =0(.e, VT is proper)

If V is an ordered *-vector space we may define a partial order < on V}, by declaring
w < vifand only if v — w € V'. Then v € VT if and only if 0 < v, for this reason
V+ is called the cone of positive elements of V. Note that w < v implies that:

l.w+ax<v+4zforanyxr eV

2. Aw < A for any A € [0, 00)



Remark: We used the cone V' to define a partial ordering, however we could have
done the opposite: If < is a partial order on V}, satisfying (1) and (2) as above and we
set V*={v € V : 0 < v} then one can easily check that the pair (V, V1) is an ordered
vector space.

Let H be a Hilbert space we let B(H ) denote the space of all bounded linear operators
on H and H" the direct sum of n-copies of H. We will denote an element h € H™

by,
hy

h=| | =(hi,...,hy)"
b,
Throughout this Chapter ¢ will denote the transpose.
The inner product on H™ is defined by
hi k1 n

S = (hiki)y

ha)  \kn i=1

Hﬂ,
with this inner product H" is a Hilbert space and for an element of H" its norm is
given by
ha

= Il + el + -+ [hal%

h n Hn

Moreover B(H) with the usual *-operation and positive cone that of the positive
operators is an ordered vector space. (An operator T is called positive if (T'h,h) > 0
for every h € H).

We also have the identification M,,(B(H)) = B(H™).
Let [ov;;] € M,,(B(H)) we define an operator A : H" — H" via the rule:

h1 h1 Z?:l ajh;
Al =lol| | = z
hn b, Z?:l Qnj hj

Then [a;;] € B(H™). Indeed, A is clearly well-defined, linear and for
h = (hi,...,hy,)" € H" we have that

AR = flfeig 01 = 1Y anghgll + -+ 1D anshyl|?
i i
< Qo Nan ) Magl?) 4=+ 4+ QO llewns 1) ly1%)
j j j j

= Nl 1)1
,J



so||All < (32721 llevij |2)7 < oo because for each 4, j we have that a; is a bounded
operator.

On the other hand, every operator A € B(H™) can be written in the above form.
To see this, forevery j = 1,...,n,let V; : H — H" be the map that sendsan h € H
to the element (&1, ..., &,)" of H™ where §; = 0 for i # j and £; = h. The adjoint of
thismap V" : H — H" is the projection on the j-th coordinate, i.e.,

Vo ((hrs . b)) = hy
Set a;; = V;* AV then for h, k € H" we have that

(Ah, k) = (AVihy + - - + Viohy), Viki + - - + Vi ky))

= Y (AV;hy,Viki) = > (Vi AVjhy, k)
ij=1 1,5=1
= ([aijlh, k)

Thus, A = [ay;].

Now we claim that the map ® : M, (B(H)) — B(H") : [a;;] — Ais an *-
isomorphism.

Indeed, let [a;;], [3;;] € My, (B(H)) then

i Big) (s - b))t = (i)Y Brjhgs o> Bushy)’
=1 =
= (Z aqy Zﬂljhj, ce Zanl Zﬂljhj)t
=1 j=1 =1 j=1
= (Z aufizhg, ... Z aniBijh;)t

1j=1 1j=1

=D auBil(ha, ... hy)’
I

so O([ay;])®([Bi5]) = ([evif][Bi5]), in addition we see that for every h, k € H"

(®([eig)) s k) = (B, (i DE) =D | hin y_ighy | = Y (@b ky) =
i—1 j=1 ij—1
i (Vi A" Vihi k) = z": (A*Vihi, Vik;) = (A"h, k) = (®([aiz]*)h, k)

hence our claim was true.



Now we know that B(H"™) with the operator norm is a C*-algebra so if we transfer
this norm to M,,(B(H)) by setting

Ievis)ll = 1@ ([evis D e
then M,,(B(H)) becomes a C*-algebra.
Example 1: In this way we may identify M,, = M,,(C) with B(C").

Example 2: Let A be a C*-algebra and take the universal representation
p: A— B(H). We use it to define the following injective *-homomorphism
U M,(A) = B(H") : [oj] = U([aj]) where

hy =1 planj)h;
U(laig) | | = :
hn Z?:l p(anj)hj

Then we can define a C*-norm on M, (A) via the rule

evisll = 19 (i DIl ey

Some other identifications we will use frequently include :
(CH™ =C™ and M, (M, (V) = M, (V), for any V *-vector space
Note that the map:

((xla'"axn)a-">(yla-'-ayn)>_>(xlw-wxnv"-7y17'-'ayn)

is an isometry from (C™)™ onto C™™, where C™™ has the euclidean norm || - || and

(@1, zn)y s WLy Un)) l(omym =

Izl 4 - un) 3

Similarly for any *-vector space V' we can identify M,,(M,,(V)) with M, (V) via
the map:

r11 11 In In 7
Qg1 A1, 17 Oy
11 11 1n 1n
(6 et (6 e Q- Xm
All Aln
. —
Anl Ann ;11 7.7,1 nn nn
aqq . a1y, Qqq (O 20
nl nl nn nn
1 &1 - [0 2t . (& et Xy |




Where each Ay = [aff]; j € My, (V), for every k,l € {1,...,n}.

If V is a (unital) C*-algebra it is easy to see that the above identification preserves
the multiplication and the *-operation, i.e., it defines a *-isomorphism.
It follows that by removing the inner brackets we obtain the following isomorphisms:

My (M (V) 2 Mym(V)) = M (M (V)
Another way to see the latter identification with the use of tensor products:

Mym (V) =M, @V and My, ,, (V) =V ® M, ,, via the maps,

[Uij] — Z Ei,j ® Vij and ['Uij} — Z Vij X Ei,j
i,j=1 1,5=1
Indeed, define 7 : M, (V) — M, ® V to be the map given by

n,m

w(fvigl) = Y Eij® v

ij=1
then it is clearly linear. We will show that 7 is a *-isomorphism.

7 is injective : Assume that [v;;] € kerm then )" E; j @v;; = 7([vy5]) = 0. Since
the elements F;; are linearly independent forall 1 <i <nand1 < j < m, we have

that v;; =0forall1 <i<mnand1l < j <m. Thus [v;;] = 0.

T is surjective : Let v € V ® M, then v can be written as v = E:ljzl E;; ®vy; =
7([vi]), for some v;; € V.
 is #-preserving : Let [v;;] € My, ., (V') then
n,m n,m n,m
(o)) = m(Wfi) = Y Bigovy = Y Ef0v) = () Eiovg)* = ()
i,j=1 i,j=1 i,j=1

In the case in which V is a C'*-algebra we have seen that there exists a norm on
M,, (V) making it a C*-algebra. Moreover, 7 as defined above is a *-homomorphism
between M, (V') and M,, ® V. Thus M,, ® V is a C*-algebra with respect to the norm
it inherits from M, (V).



To see this, let [v;5], [w;;] € M, (V) then:

m([vigllwig]) = 7([D_ vikwrs]) = > Eij @ (O vikw:)

2 ij=1 k
n
= Z EiwEBr; ® (Z VikWhi) = Z E, vEs; @ (vigwiy)
ij=1 k ikl
n n
= ( Z Ei j @ wji)( Z E; ; ® wij)
ij=1 ij=1

= 7([vij]) 7 ([wiz])

Since every C*-algebra admits a unique complete C'*-norm we have proved the fol-
lowing proposition :

Proposition 1.1 For every C*-algebra A and for every n € N there exists a unique
C*-norm on the algebraic tensor product M,, ® A, i.e., M, is a nuclear C*-algebra.

If V and W are vector spaces then V' ® W is the linear span of the set {v @ w : v €
Viw € W} Thus, M,(V @ W) = M, ® (V ® W) is the linear span of the set
{Eij@(v@w):1<14,j<n,veV,we W} Hence, the map

E;®vew) = (E,;v)w

extends to a linear isomorphism between the spaces M,, ® (V @ W) and
(M, ® V)@ W, so M,(V ® W) is linearly isomorphic to M, (V) @ W.

For v € My, (V) and u € My, (V') we use the notation

v 0
vOw= |:O w:| S Mn+k,m+l(v)

for the direct sum of v and w.

Definition 1.2 If (V, V1) is an ordered *-vector space, an element e € V}, is called an
order unit for V' if for all v € V), there exists a real positive number r such that —re <
v < re. Equivalently such an e is called an order unit if and only if U[— e, Ae] =V},
for all real A > 0.

Lemma 1.3 ([16]) If (V, V) is an ordered *-vector space with order unit e, then:
lLeeV™t

2. Ifv € V and a real number r > 0 is chosen so that re > v, then
se >, foralls > r.

3.V, =VT —=V* (V7 isa full cone of V},)



4 Ifvy,...,vn €Vtandvi +---+v, =0, thenvy =---=v, =0

5. Ifvi,...,v, € VT and there are real numbers 0 < a, for 0 < i < n such that
Q101 + -+ - + apv, = 0 then eitherv; = 0 or a; = 0, for every 0 < i < n.

Definition 1.4 If (V, V1) is an ordered *-vector space with order unit e, we say that e
is an Archimedean order unit if wheneverv € V with 0 < re + v, for every r > 0 then
v € V*. Equivalently, if N[—\e, Ae] = {0}.

In this case the triple (V, VT e) is called Archimedean ordered *-vector space, AOU for
short.

Definition 1.5 Let V' be a *-vector space.
The family {C,}52_, where C,, C M, (V') for every n, is called a matrix ordering on
Vif

(1) C,, is cone in My, (V'),, for everyn.

(2) C,, N (=C,,) =40}, for every n (C,, is a proper cone, Vn)

(3) for everyn, m € N and for every X € M,, p, : X*C, X C C,,
Condition (3) is often referred to as the compatibility of the family {C}, }° ;.
We call the pair (V,{C,}52,) a matrix ordered *-vector space.

Note: It follows from the properties (1) and (2) of the above definition that (M,,(V'), C,,)
is an ordered *-vector space for every n € N. If A, B € M,,(V)}, we write A < B
when B— A € C,,.

Definition 1.6 Let (V,{C),,}>2 ) be a matrix ordered *-vector space. For an element
e € V3, we set e, to be the corresponding diagonal matrix in M, (V'), with entries: e in
the main diagonal and 0 everywhere else:

en = =1, ®e

where I,, denotes the identity matrix of M,,.

We say that e is a matrix order unit for (V, V1) if for every n € N we have that e,, is
an order unit for (M,,(V'), Cy,). Furthermore, e is called an Archimedean matrix order
unit when e,, is an Archimedean order unit for (M,,(V),C,,).



1.2 Positive maps on Matrix ordered spaces

In this subsection we will briefly examine positive and completely positive maps on
matrix ordered spaces. Positive and completely positive maps are essential to the
study of operator systems.

Definition 1.7 Let (V, V') and (W, W) be ordered *-vector spaces with order units
ey and eq respectively, then a linear map ¢ : V. — W is called:

1. unital if p(e1) = es.
2. positive if (V) C WT.

3. order isomorphism if it is an isomorphism of vector spaces and both @, o1 are

positive, in this case we have: v € VT <= ¢(v) € W,

Let V and W be vector spaces and suppose that ¢ : V' — W is a linear map then for
every n € N the map ¢ induces a linear map ¢" : M,, (V') — M,,(W) given by

" ([vizlig) = [P(vij)]i

Definition 1.8 If (V,{C,}52 ) and (W, {D,,}22,) are matrix ordered *-vector spaces,
a linear map ¢ : V. — W is called:

(i) completely positive (c.p. or CP for short) if o (Cy,) C Dy, for alln € N, that is
to say the induced map " : M, (V) — M, (W) is positive.
(ii) order isomorphism if it is bijective and both o, ¢~ are positive.

(iii) complete order isomorphism if it is bijective and both @, !

positive.

are completely

(iv) complete order embedding if it is an injective completely positive map and
whenever ¢™ ([v;5];,;) € Dy, then [v;;]; 5 € Ch,.

Given matrix ordered spaces V and W we let £(V, W) denote the space of all linear
maps from V' to W. The cone of completely positive maps provides a partial ordering
of L(V,W).

Definition 1.9 Let (V, V™) be an ordered *-vector space with order unit e, a linear map
@ : V' — C that is positive and unital is called a state. We denote the set of all states on
V by S(V).

Let V be a *-vector space and ¢ : V' — M, a linear map then we associate to ¢ a
linear functional s, : M, (V) — C via the formula:

n

solA) = 3 (plag)es.e0), A= lags] € My (V)

i,j=1



where {e;}}'_, denotes the standard basis of C".

1 2

Alternatively, if we let z = 761 ®---Pe,eC” =C"@....D0 C™ we have that
n

for each A = [ay;] in M, (V):

so(A) = (¢"(A)zo, z0) = (p([aij])zo, z0)
where the inner product is that of cr’.

If ¢ is unital then so is s, and the map ® : £(V, M, (C)) — L(M,(V),C) which
takes ¢ to s, is linear.

Conversely, if s : M, (V') — C is a linear functional, we define the map ¢ : V —
M, via:

(ps(a)ej,e;) =ns(a® Eyj), a €V

where a ® Ej; is the element of M,, (V) = V ® M,, which has « in the (4, j) - entry
and 0 everywhere else and (¢s(a)e;, €;) = [0s()]( ;) is the (4, j)-entry of the
complex matrix [ps(a)];;.

Let p € L(V,M,,),s € LIM,(V),C) and A = [a;;] € M, (V). Then,

n

. 1
Z (¢s( az] 61761 = o Z TLS(CLij ®E¢j) = s(A)

ij=1

56, (A

:\*—‘

Now, let v € V then

(¢s¢( )€J7 ) = ’I’LS¢(U ® Eij) = (¢(v)ej7€i)

so we have that ¢ = ¢, and s = s,,_, hence the maps s — ¢ and  — s, are mutual
inverses.

Theorem 1.10 Let (V,{C,,}22 ;) be a matrix ordered *-vector space.
Ifs: M, (V) — C is a linear functional and ¢ = ¢, : V — M, is the associated linear
map. Then the following are equivalent:

1 s(Cp) C M,F

2. ¢V — M, isn-positive.

3. ¢ : V. — M, is completely positive.
Proof: Obviously (3) implies (2).

(2) = (1): Fix an € N and assume that ¢ is n-positive, so for the map ¢™ : M, (V)
— M, (M,) = M,> we have that ¢"*(C,) C M:z Let A = [a;;] be in C),, we will
show that s(A) € M,. We have that

©"(A) = [p(aij] € MY, therefore (¢"(A)h,h) >0 forevery h e c



1
Applying this to the vector z¢ = 761 @ -+ ® e, which is in C"” and we obtain:
n

(using the fact that s = s, and ¢ = @)
s(A) = 5,(A4) = (¢" (A)z0, 0) = (p([evij]) w0, 20) = 0,
as required.

(1) = (3): Assume that s(A) > Oforall A in C,,. We want to show that ¢ is completely
positive or equivalently that for every m the map ¢™ : M, (V) — M,,(M,) is
positive. Let X = [v;;] € Cyy, := (M,,,(V)) ", we want:

" ([vig]) = [(vij)] € Min(My)*

Since [¢(v;;)] acts on C™" we need to show that ([¢(vi;)]h, h) > 0, for every h €
cmn,
hi
hy
We write h as m-column vector h = | | | where for every i € {1,...,m} each h;
Bt
is a row vector in C" and the superscript ¢ denotes the transpose. Now [¢(v;;)] is a
m x m block matrix (with the blocks being n x n matrices) so:

m

([p(viy)] Z (vij)ht, hY)

(the first inner product is on C™" the second on C")

Remark: Given row vectors h = [hy ... h,] and k = [k ... k,] of scalars since ¢ (v)
€ B(C") for any v € V, we have that:

(¢(v)h', k") Z hiki (p(v)es, ) en =

Z (@(Evhj)ej,ei)C,L = ns([k;vh;]) = ns(k*vh)

i,j=1
k1
ko
where k* = | . | (Remember that ¢ = ;)
kn

so k*vh € M, (V) is the matrix product whose (4, j) entry is [k;vh;].

10



Using the above remark we have that:

([e(vi)lh, h)cnz = > ([e(vij)Ihh, L) .,

1,j=1
m
= Z S(hzvijhj)
1,5=1
m
=5 Z hivijh;)
3,7=1
h1 h1
Let A € My, denote the matrix A= | : :
hyw oo hm,
whose m - rows are the vectors h, ..., h,, € C" then Zznjzl hivijh; is just the ma-

trix product A* X A. We assumed that X € C,,, and the family {C,, }72_, is compatible
so we have that A*X A € C,,, and therefore s(A* X A) is positive.

From the above theorem we obtain that the maps s — ¢, and its inverse are pos-
itive (they take completely positive maps to completely positive maps).

11



1.3 Dual of matrix ordered space
We will say that the real or complex vector spaces V' and V; are in duality if there
exists a bi-linear map (v, f) — v - f from V' x V; to the scalars such that
(@)veVisOifandonlyifv - f =0forall f € V}
(b) fe ViisOifand only ifv - f =0forallv € V.

If V and V; are in duality, each defines the weak topology on the other. We refer to
the weak topology on V as the o(V, V1) topology (i.e., v; — 0 means that v; - f — 0
in C for all f € V7).

Theorem 1.11 The map G : Vi — VO : f — ¢y, where ¢p(v) = v - f, (v € V) isan
isomorphism.

Proof: Notice that for each f € V; the functional ¢ : V — C'is weakly continuous
by definition of the weak topology o(V, V1), so ¢ € V°.

G is linear and 1-1: Let f1, fo € V; and v € V then
G(fi+ Af)v] = dpap(v) =v - (fi+Af2) =

v fitv-Afo =05 (0) + 205, (v) = G(f1) + AG(f2)

Let f € V; such that G(f) = 0, that is ¢¢(v) = 0 for every v € V which means that
v - f =0 for every v € V. Thus from the properties of duality we have that f must
be the zero mapping, so ker(G) = {0} hence G is injective.

G is onto: Let ¢ € V?, s0 ¢ is weakly continuous. We will show that ¢ = G(f) = ¢

for some f € V3. Since o(V, V1) is the weakest topology on V making each ¢

continuous, given € there exist a ¢ > 0 and a finite set { f1, ..., f,} C V4 such that:
|fi(v)] <6, Vi =1,...,n which implies that |¢(v)| < €

In particular, if | f;(v)| =0, Vi =1,...,n, then for all m € N we have that:

|fi(mv)] =0, Vi=1,... nand, hence |¢p(mv)| < €

Thus |¢(v)| < ¢, for all m in N and so ¢(v) = 0. This shows that if
|fi(mv)] =0, Vi=1,...,nthen ¢(v) = 0. It follows that:

n
ﬂ ker ¢5, C ker ¢
i=1
This condition implies that the linear map ¢ is a linear combination of the maps ¢,
so there exist scalars ¢; such that ¢ = >~ ;.
Letting f := ., ¢; fi € V1 we have ¢ = ¢ as claimed.

Applying the above theorem to the space V° we have that: (V°)? =V

12



If V and V¢ are complex spaces in duality then M,, (V) and M,,(V?) are in duality
under the bi-linear function

i) - [fis] = 22, 5 fig (vij)-
Let [v;;] € M,,(V') such that:
[vij] - [fij] = 0, for every [fi;] € Mu(V°) (*)

Condition () is equivalent to saying that: 3, ; f;;(vi;) = 0 for every f;; € VO, i,j
e{1,...,n}.

Condition () is satisfied by every [f;;] € M, (V?) so all the matrices that have only
the (4, j) - entry non zero satisfy (*) and from this we obtain that: f;;(v;;) = 0 for
every i,j € {1,...,n}. Since (x) is valid for any [f;;] € V° we have that for all i
and j, fi; can be any element of V° so from the duality of V and V? we obtain that

v;; =0, for every i, j € {1,...,n} therefore [v;;] is the zero matrix of M,, (V).
Conversely,
0O ... 0
if [vij] = |+ . | € My (V) then obviously:
0O ... 0

[vi] - [fig] := 205 fij (vig) = 0, for every [fi;] € M (V°).

The fact that [f;;] = 0 if and only if [v;;] - [f;;] = 0 for all [v;;] in M,, (V') is proven in
a similar fashion.

So, M,,(V)? = M,,(V?%) and we can consider an element [f;;] € M,,(V?) asa
weakly continuous linear map F' : M,, (V) — C.

Note: Let S C B(H) be an operator system and s = [s;;] € M,,(S)* then for any
arbitrary n X m matrix A = [a;] of complex numbers we have that:
n
A*sA = [Z @Tijajl]kl S ]\4m(5)+

i,j=1

Indeed, we have that s is positive in M,,(S), so it can be written as s = b*b, b €
M, (S). Therefore, A*sA = (bA)*bA which is positive.

Lemma 1.12 Let (V,{C, }5% ;) be a matrix ordered space, and v = [v;;] € M, (V') and
A = [ay;] € M, We define ®(v) : My, — V by : ®(v)(A) = 37, cijuij, then the
map ® : M, (V) = L(M,,V) is an order isomorphism.

Proof: It is clear that ® is linear and it is easy to see that it is injective.

13



P is surjective: Assume that f € L(M,, V) with f(E; ;) = v;j, 1 < 14,5 < n. Letting
v = [v;;] € My (V) we have that

Z 6k261j Vgl = Vij = f(E’hj)

k=1
where E; ; = [0ki01;]k,1. It follows that f = ®(v) ergo P is surjective.
Now we check the positivity of ® and its inverse.
Let v = [v;;] € M, (V') be such that ®(v) is completely positive, that means: ®(v)"

M, (M,,) — M, (V) is positive, for every n € N.
Consider the element

El,l El,n E171 ELn
0 0
E = [E'L',j] S Mn(Mn) then £ = .
0 0 0 0

so E € M,,(M,)" Thus,
v = [v] = [@(v)(Ei )iy = 2(v)"(E) 20

(Eij = [ekl] is then n x n matrix with (4, j) - entry 1 and 0 everywhere else and

@(s)(E i, Zk =1 ELIVEL = ’Uz] )
On the other hand suppose that v € C),. Let m > 1, we will show that if A €
M, (M,,)", then ®(v)™(A) > 0. If a matrix A € M,,,(M,,) = M,,,, is positive semi-

definite, i.e., A € M, | then from the spectral theorem it admits a representation

Zk:l BBy for B, € C™", k € {1, ..., N} where N denotes the rank of the matrix.
Let B = (Bry» - -+ Br,, ) where for each 1 < j < m: 3, € C".

Then 3.5 = [Br, sz]%zl where every f, 3; is an x n complex positive matrix
and for each 1 <4 < m we have that 8;, = (Bk,,5 - - -, Bk, )-

We let B = [B;,],1 < i < m,1 <t < nthen Bisam x n complex matrix.
Moreover,

Bkﬁk [ﬁk /Bkt ] i,j=1 — Hﬁkltﬂk} ] t,p= 1] i,7=1

and

Q(v)™ (BeBr) = [®(v )[ﬁknﬁk ] t,p= i i,j=1 = [Z 5ku”tpﬂsz]glj=1 = BvB* € Cp,

t,p=1

from the compatibility of the family {C,,}52 . Since the sum of positive elements
remains positive it follows that

B(v)™(4) > 0

Since every operator system is a matrix ordered space we also have that if S is an
operator system then the map ® of Lemma 1.12 is an order isomorphism from M,,(S)
to L(M,,S).

14



Dual cone: Let (V,{C,, := M, (V)*}) be a matrix ordered space and let V° be the
dual of V, we partially order V' by the dual cone: (V?)* = VO (V4)T where
V@ .= L(V,C) = {linear functions from V to C}. We regard M,,(V°) as the dual of
M, (V),ie, M,(V®) := M, (V)° and we partially order it for each n € N with the
cone (M (V)?)* = Mo (V)* (M (V)" *.

Lemma 1.13 IfV is a matrix ordered space with matrix order unit e and with dual
V®, then the above structure is a matrix ordering on V°.

Proof: We need to check that the conditions (1),(2),(3) of Definition 1.5 are satisfied.
Let F € (M,,(V))* N —(M,(V)®)* and v € M,, (V)7 then

F(v) = Fy(v) = —Fy(v) for some Fy, Fy € M, (V)"

therefore F'(v) must be equal to zero.

Since V has an order unit we have that V;, = VT -Vt soV = (VT -V 1) 4¢(V T —
V) hence we have that F(v) = 0 for every v in M, (V).

Thus F' is the zero function on M, (V).

For (3): Assume that F = [f;;] € M,,(V?)* and X is an x m complex matrix, and let
v =[vps] € My, (V)T then:

E3
v X"FX = [v,4] E TirZjsfijlis=1 = E E ZirTjs [i5 (Vij)

i,j=1 r,s=114,5=1

n m
Z Z T‘r_]bfl_] Uz] Z xl'f'xjé’UTb 7 [fzj] :( ) UXt - F
i,j=17s=1

r,s=1

where X' denotes the transpose of X. Since V is matrix ordered we have that:
A*(M,(V)T)A C (M, (V) ™) for any complex n x m matrix A so in our case:
(XH)*vXt € M,(V)*. Since F € M, (V°)* it follows that ((X*)*vX*) - F > 0.

We proved that when F' € M,,(V?)*, then X*F X takes any positive element of
M, (V) to [0, +00). Consequently X*FX € M,,(Vo)*, so

X M, (VOYX € My (V).
which proves that condition (3) is satisfied.

If V is a matrix ordered space with a matrix order unit, then we will call the matrix

ordered space (V0 {(M,(V)%)*}22, the matrix ordered dual of V.

If V and W are vector spaces with duals V0 and W respectively, then each weakly
continuous linear map ¢ : V — W induces the adjoint map ¢° : W% — V?° via the
formula:

¢5(f)[v] .= f(¢(v)), forevery feW?® and veV

15



Lemma 1.14 The map 6 : B,(V,W) — B,(W?° V?) : ¢ — ¢° is a linear surjective
isomorphism.

Proof: It is clearly linear and injective.

Surjective: Let 1) € B, (W?,V?), thatis 1) : W — V?° linear and weakly continuous.
For v € V consider the functional av, : W — C with o, (f) = ¥(f)[v]. Then o, is
weakly continuous, so v, € B, (W?, C) := W% (=WW).

From this fact we obtain that there exists w € W such that a,,(f) = f(w), for every
f e W?. We set ¢(v) = wthen ¢ : V — W is well defined (since the dual separates
the points of the space). Now f(¢(v)) = f(w) for every f € W?, therefore ¢°(f)[v]

= ¢(f)[v]. Hence ¢ = 4.
Remark: For every ¢ € B, (V, W) we have that:
(6") = (¢")" and (67)" = (¢)",

If the above Remark is true, then it follows that in the case in which V', W are matrix
ordered *-vector spaces we have that a linear map ¢ : V' — W is completely positive
if and only if #° : W? — V? is completely positive.

Indeed, let n > 1, [v;;] € M,,(V) and [f;;] € M,,(W?)*. Then

(@) ([fis)) - i) = (™) ([fis) - [v3s) = [fis] - 0" [(viz)] = O

whenever [v;;] is positive, since ¢ is completely positive.
Therefore, we conclude that indeed ¢5 is CP.

Conversely, if ¢° : V° — W9 is CP since (V°)° = V and (W?)° = W we have
that (¢?)° = ¢ and using the above argument we have that ¢ = (¢°)° is completely
positive.

We conclude that the map ¢ in Lemma 1.14 is an order isomorphism, where the posi-
tive cone of B, (V, W) is the space of all completely positive weakly continuous linear
maps from V to W.

Proof of the Remark: If ¢ € B, (V, W) then (¢°)™ is a map from M,,(W?°) to M, (V?).
Let [fZJ] S Mn(W(S) and [’Uij] S Mn(V) Then,

n

()" ([£3])) (vi]) = [ (fi)] - [vi) = D fij(d(viz))

ij=1
= [fiz] - [#(vij)] = [fi;] - (" ([vi]))
= ((@")°(Lf])) ([vig)
The other part follows from the way we defined the dual map and the *-operation.

Let V, V° be matrix ordered *-vector spaces in duality. Given v = [v;;] € M,,(V) we
define U(v) : VO — M,, by: U(v)[f] = [f(vi;)]-

16



We will show that ¥(v) = ®(v)® where @ is the map defined in Lemma 1.12.

Indeed, let f € V% and A = [ai;] € M, then,

F@)A]) = f( Y aijuij)

= Z Oéijf(vij)
= [aij] ’ [f(vij)]
= A-9()[f]

Now the following hold true:

1. ®: M, (V)= By(M,,V)and§ : B,(M,,V) — B,(V°, M,), both of which
are order isomorphisms.

2.0 : M,(V) = B,(V° M,),and ¥ = § o ®. Since it is a composition of

surjective linear order isomorphisms V¥ too is an order isomorphism.
So we obtain:

Lemma 1.15 IfV is a matrix ordered *- vector space with an order unit and V° is its
matrix ordered dual, then the map ¥ : M,,(V) — B, (V°, M,,) is an order isomorphism.

1.4 Archimedeanization of a matrix ordered *-vector space with a
matrix order unit

Given an ordered *-vector space (V, VT, e) there exists a process, introduced in [16],
called Archimedeanization that allows us to obtain an Archimedean ordered *-vector
space. In [18] it was shown that if (V, {C,,}5°_,, e) is a matrix ordered *- vector space
then by applying the Archimedeanization process to each level (M, (V), C,,, e,,) we
obtain an Archimedean matrix ordered *-vector. space. In this subsection we will
review the procedures described above. For more information on this subject the
reader is instructed to see [18].

Firstly, we will consider real vector spaces. Suppose that (V, V) is a matrix ordered
real vector space with an order unit e. Let

D={veV:ire+veVT' Vvr>0}

and set
N:=Dn(-D)

It is easy to see that D is a cone with V™ C D and that N is a real subspace of V.
The following proposition proven in [16] gives us another useful characterization of
N.
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Proposition 1.16 [16, Proposition 2.34.] Let (V,V ™) be an ordered real vector space
with an order unit e and define N as above. Then,

N = ﬂ ker f

fes(v)

Theorem 1.17 Let (V, V) be an ordered real vector space with an order unit e, and
define N and D as in the paragraph at the start of this subsection. Set

(V/NY' =D+ N ={d+ N :d e D}

Then (V /N, (V /N)™T) is an ordered vector space with e + N as an Archimedean order
unit.

Proof: The fact that (V' /N)™ is a cone follows readily from the fact that D is a cone.
Next we show that it is a proper cone, let v + N € (V/N)* (| —(V/N)T we shall
show thatv + N =0+ N.

We have that v + N = d+ N andv + N = —d’ + N for some d,d’ € D. Thus,
we obtain that v —d € N C Dandv +d € N C —D. However, D is a cone
and d,d’ € D it follows that v € D andv € —D, ie,v € D(\(-D) := N so
v+ N =0+ N.

e + N is an order unit: Since e is an order unit for (V, V1) there exists 7 > 0 such
thatre4+v € VT foranyv € V. Letv+ N € V /N then there exists » > 0 such that
rle+N)+(v+N)=(re+v)+ NeVT+NCD+N=(V/N)*.

e+ N is an Archimedean order unit: Assume thatv+N € V /N withr(e+N)+(v+
N) e (V/N)+ vr > 0. Then, (re+v)+ N € D+ Nandre+v € Dforallr > 0.
Choose r! > 0, then % e+veD. By the definition of D we have that % etveVT

s0 Ze+ (Le+v) € VT It follows that 7'e +v € V* for all 7/ > 0. Once again by
the deﬁnltlon of D we have that v € D. Therefore,v + N € D+ N = (V/N)*.
The proof is now complete.

Definition 1.18 Let (V, V™) be an ordered real vector space with an order unit e. Let
D:={veV:re+tveVT Vr>0}

and set
N:=Dn(-D)

We define Va,ch to be the Archimedean ordered vector space (V /N, (V /N)T, e+ N).
We call Vgycn, the Archimedeanization of V.

We now turn our attention towards *-vector spaces.
Let (V, V) be an ordered *-vector space with order unit e € V.
For u,v € Vj, we define: [u,v] = {x € V}, : u < & < v}. Consider the set

Ei=[-ee]={veVhi—e<v<el

and the Minkowski functional of that set which is:
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pE: E =R, pep(z):=inf{A\>0:x€\E}, zeV,.
This defines a semi norm on V},.
Moreover, notice that e is an Archimedean order unit if and only if pg is a norm
on V.

Remark: Let (V, V1) be an ordered *-vector space with order unit ¢ and (W, W) be
an ordered *-vector space. If ¢ : V' — W is a positive linear map, then p(v*) = p(v)*
for every v € V.

Proof: Since e is an order unit we have that V;, = V't — V' and ¢ is positive so
©(V},) € W), Let v € V then v can be written as v = x + iy where z,y are in Vj,,
thus

p(v*) = p(z —iy) = p(z) —ip(y) = (p(x) +ipy))" = ez +iy)" = p(v)"

Using the above remark one can see that if (V, V) is an ordered *-vector space with
an order unit and f : V' — C is a positive C-linear functional then f(v)* = f(v) for
everyv € V.

Definition 1.19 Let (V, V1) be an ordered *-vector space and f : Vi, — R linear map,
then we define f : V. — C by f(v) := f(Re(v)) + i f(Im(v)).

The proofs of the following propositions can be found in [16]

Proposition 1.20 Let (V, V") be an ordered *-vector space. If f : Vj, — R is R-linear,
then f : V' — C is C-linear. Moreover, [ is positive if and only if f is positive and f is
state if and only if f is a state.

Proposition 1.21 Let (V, V1) be an ordered *-vector space with an order unit e.
If f : V. — C is C linear then f is positive if and only if: f = g for some linear and
positive map g : Vi, = R.

Lemma 1.22 Let (V, V™) be a ordered *-vector space with order unit e.
Given u € V}, let

a:=sup{reR:re <u} and f:=inf{s e R:u < se}
Then,
(@) [, B] = {f(u): feS(V)}.
(b) p(u) = max{|al, |B]} = sup{[f(u)| : f € S(V)}.

Proof: We shall show that f(u) € [«, 8] for every state f : V — C. If re < u < se
then a < r < s < 3, hence

o <r=rf(e) < fu) <sf(e) =5 < B
Therefore, {f(u) : f € S(V)} C [o, B].
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For the reverse containment, we will show that for every v € [«, 3] there exist a state
fy 1V — C such that f,(u) = 7. Consider the following R-linear subspace of V;,:

W= {re+tu:r,t R}
and the R-linear functional
gy W = R:re+tu—r+ty

Notice that g, (u) = 7 and g, (e) = 1. We claim that g, is positive.

Indeed, suppose that re + tu € V. It is obvious that G (re+tu) > 0fort =0.

For t > 0 the relation re + tu > 0 gives —%e < u and so —% < a < v which means
that » + ty > 0. Similarly when ¢ < 0 we have that —% > ¢ and hence —% >pB>7
so once again r + ty > 0.
Now we use the usual Zorn’s Lemma argument for the family of all pairs of (W, J)
where W are sub-spaces of V}, containing W and § are positive linear functionals
form W to R extending g, this allows us to extend g to a positive linear form on the
whole of V},, which we will call ¢’. This extension will satisfy ¢’(e¢) = 1 and ¢’ (u) = 7.
Now define £, : V — C by f, = ¢’ this proves part (a).

For part (b) notice that if —re < u < re then r must be non-negative.
Furthermore, in this case we have that:

—r > o and r > f and so r > max{|«a/, |G|}

Consequently, pg(u) > max{|«af, |8]}.

On the other hand, if t > max{|«/|, |5|} then —t < awand ¢t > (. Thus, —te <
u < te and therefore pp(u) < t. Since t was arbitrary we obtain that pp(u) <
max{|c|,|B|}. We conclude that

pi(u) = max{al, 8]} £ sup{|f(u)|: € S(V)}
and the proof is complete.

Proposition 1.23 Let Let (V, V1) be an ordered *-vector space with an order unit e.
Then e is an Archimedean order unit if and only if for every v € V the following holds:

f(v) =0, forevery f e S(V) < v =0

Proof: Let E := [—e,e] and pg : V;, = R be the Minkowski functional of E. The
states separate the points of V' so they separate the points of V},. Thus from the equal-
ity: pp(v) = max{|al,|5|} = sup{|f(v)| : f € S(V)}, for every v in V}, we have
that pg is a norm on V}, and so e is an Archimedean order unit.

Conversely, if e is an Archimedean order unit and forav € V we have that f(v) =
0,V f € S(V). Then f(Re(v)) = f(Im(v)) = 0, forall f € S(V). Hence from Lemma
1.22: pg(Re(v)) = pg(Im(v)) = 0 which implies that Im(v) = Re(v) = 0.

Thus, v = 0.
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Proposition 1.24 Let (V, V™, ¢) be an Archimedean ordered *-vector space. Then for
an element v € V we have that:

veEVT = f(v) >0, foreverystate f : V — C

Proof: If v € V' then clearly f(v) > 0.

Conversely, if f(v) > 0 for every state f then f(v) € Rso f(v*) = f(v)* = f(v).
Hence, since v — v* € V), this element is annihilated by every state and thus by
Proposition 1.23 we have that v — v* = 0, ie,, v € V}. Using Lemma 2.3 we see
that there exists a state f, such that f,(v) = sup{r € R : re < v}. Now from our
hypothesis f,(v) > 0, and so sup{r € R : re < v} > 0. It follows that for every
r < 0: re < v or equivalently that v + (—r)e € V. Since e is Archimedean and
—r > 0 we have that v € V',

Let (V, V1) be an ordered *-vector space with order unit e, then we can produce an
Archimedean ordered *-vector space in the following way: We define the sets

D:={veV,:re+v>0foreveryr € R"} and Ng = DN (-D)

Then Ny is a real subspace of V}, and by Proposition 1.16 we have that:
Ng = ﬂf:Vh_HR_’fsmte ker(f). Now we define

N = ﬂ{ker(f) fesSOV)}

It follows from Proposition 1.21 that N = Ny @ i/Vg.
Moreover, N is a complex subspace of V' closed under the *-operation (of V'), so the
quotient V' /N with the well defined *-operation: (v* + N) = v* + N is a *-vector
space and
(V/N)h = {U+N NS Vh}

(ifv+ N € (V/N)ythenv+ N = v* + N and so v = £ + N € V3, /N).
We define (V/N)* ={v+ N :v € D} and Vayep, := (V/N,(V/N)*, e+ N).
We claim that the spaces (V' /N)p, (V/N)*) and (V},/Ngr, D + Ng) are order iso-
morphic via the map v + N — v + Ng.

Indeed, it is straightforward to see that this map is an isomorphism between vector
spaces. Moreover, if v + N € (V/N)t thenv € D andsov + Ng € D + Ng.
Conversely, if v + Ng € D + Ng thenv € Dandsov+ N € (V/N)*.

Now by Theorem 1.17 we have that the space V4. is an Archimedean ordered
*-vector space. We call V..., the Archimedeanization of the *-vector space V.

Lemma 1.25 Let (V,{C,}°2) be a matrix ordered *-vector space with matrix order
unit e and N as described above. For each n € N, we define

Ny = {ker(f) : f € S(M,(V))}

Then N, = M, (N), for everyn € N.
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Proof: Let n € Nand A = [ag] € N, then f(A) = 0 for every f € S(M,(V)) by
the definition of IV,,, which implies that g(A) = 0 for every positive linear functional
g: M,(V) = C.Ifs € S(V)and P = [p;;] € M, then the map sp : M, (V) —
C given by sp([z;;]) = ZZJ‘:1 s(pijxij) is a linear functional on M, (V). We will
show that s, is positive.

Let P be a rank one positive matrix in M, then P = u*u for some v € M ,, (P has
only one non zero eigenvalue ), take an eigenvector u with ||u|| = v/). Since {C,,}
is a matrix ordering we have that u*Xu € C4 for any X = [z;;] € C,,. Therefore,

n

sp([wg]) = Y i) = Y wiwijiy = s(u*Xu) >0 (*)

ij=1 ij=1

Every positive matrix has a decomposition into a sum of rank-one matrices so if we
take P to be any arbitrary positive n X n-complex matrix of rank r, then we have that
P = "7 ufu;, so from (x) and the linearity of sp it follows that sp(X) > 0, for all
Pe M X eC,.

It follows that sp(A) = >, ._; s(ay;pi;) = 0 for any s € S(V) and any matrix
P € M. If we choose 1 < k < n and let D be the diagonal n x n matrix with 1 in
the (k, k) entry and zeroes elsewhere, then D € M, so we have that sp(A) = 0 for
every state s € S(V). Hence,

s(agg) =0, for every s € S(V) 0]

Now choose 1 < k,I < n and let u € M; , be the row vector with entry 1 in the
k-th and [-th positions and 0 elsewhere and set P := u*u then P € M. Since P has
entries: 1in the (k, k), (k,1), (I, k), and (I, 1) positions and 0 elsewhere, we have that
sp(A) = s(agk) +s(akr) + s(aur) + s(ay) = 0. Combining this with (I) we see that

s(akr) + s(ar) =0 (In)

Similarly if let b € M, be the vector with 1 in the k-th position, and ¢ in the I-
th position, and zeroes elsewhere. Then @) := b*b € M.’ and has 1 in (k, k) and
(1,1) entries, 7 in the (k,) entry, —i in the (I, k) entry, and zeroes elsewhere. Then,
sg(A) = 0so s(axk) + s(ay) + is(ak) — is(ag) = 0. Thus by (II) we have that:

is(ag) —is(ag) = 0= —s(ax) + s(ag) =0 (II)

It follows from (II) and (1) that forany [, k € {1,...,n}andany s € S(V) : s(ay,) =
0. Therefore g,y € N ie., A € M, (N).

Conversely, we assume that A = [ag;] € M,,(N) and s : M, (V) — Cis a state on
M, (V). For1 < k,l <n we define sg; : V — C via: s3;(v) := s(Eg; @v).

The sy, ; are linear functionals and for every s € S(V), s(A) = szlzl spi(agr).
Choose k in {1,...,n}, then for any v € C; = VT the diagonal matrix D, with v in the
(k, k) - entry and 0 elsewhere is positive because:

diag(0,...,0,v,0,...,0) = diag(0,...,0,1,0,...,0)"v-diag(0,...,0,1,0,...,0)
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which is in C,,. Hence, sgx(v) = s(D,) > 0. Thus sg; : V — C is a positive linear
functional, therefore

spe(z) =0, Vo € N (a)
Letve VT = Cyand 1 < k,I < n. We consider the matrix P € M, (V) which has
vin the (k, k), (k,1), (I, k), (1,1) - entries and 0 elsewhere, then P € C, and we have
that sgr(v) + sg (V) + sie(v) + su(v) = s(P) > 0.
Thus Sk + Sk + Sik + S5 : V. — Cis a positive linear functional, so sgx (2) + s (z) +
sik(z) + sy (x) = 0 for all z in N. Using (a) we obtain:

spi(x) + si(z) =0, Ve € N (b)
In a similar fashion if we set Q@ € M, (V) to be the matrix with v in the (k, k), ({,1) -
entries, iv in the (k, [) - entry and —iv in the (I, k) - entry then @ € C,,. We have that
Skk(’U) —|—i$kl(V) — iSlk(U) +S”(’U) = S(P) > 0. Thus s +iSg; — S +5sy: V — C

is a positive linear functional. As a result, sg () + isgi () — isik(x) 4+ sy (x) = 0 for
all z in N, by (a) we have:

isgi(x) —isip(z) =0, Vo € N = —sp(z) + sip(x) =0, Ve € N (c)
It follows from (b) and (c) that sg;(z) = 0 for all z in N. Consequently, since A = [o;;]
€ M, (N) we have that s(A) = " ,_; spi(ak) = 0,50 A € N,

Let V' be a matrix ordered *-vector space with an order unit e and /N the *-subspace
of V we defined before. Identifying M,,(V /N) = M,,(V)/ M, (N) we see that (A +
M, (N))* = A* + M, (N) and (M,,(V)/M,(N))p, = {A+ M,(N): A*=A, A€
M, (V)}. Moreover, (e + N),, = e, + M, (N).

Definition 1.26 Let (V,{C,,}5°,,e) be a matrix ordered *-vector space with matrix
order unit e. We set:

CaAreh = {A+ Mp(N) € My (V)/My(N) :(reg + A) + Mn(N) € Cp + My (N),
Vr > 0}

and let,
VAT = (V/NAC " o1, e + N) .

Proposition 1.27 Let (V,{C,}52,, e) be a matrix ordered *-vector space with matrix
order unit e. Then Va,ep, := (V/N,{CA7h1>0 | ‘e + N) is an Archimedean matrix
ordered *-vector space with e + N being the Archimedean matrix order unit.

Proof: Under the identification M, (V' /N) = M,,(V')/M,,(N) and using Lemma 1.25
we see that for any n € N:

(M, (V/N), Cr?mha e+ My (N)) = (Mp(V)/Nnp, C;:‘mh7 e+ Ny)

Hence, (M,,(V/N),CA™" ‘e + M, (N)) is the Archimedeanization of
(Mp(V),Ch,en).

The Archimedeanization is always an AOU space so C\"" is a proper cone and
en + M, (N) is an Archimedean order unit.
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It remains to show the compatibility of the family {C/7"}2 | Let A € CA7h and
X € M, . Then X*e, X € M,, (V) and e is a matrix order unit, so there exists
some 79 > 0 such that rge,, — X*e, X € C,,. Since A € C;fmh we have that
(ren, + A) + M, (N) € C,, + M,(N), for all » > 0. Thus for all r > 0:

(rien + A) + M,(N) € Cy, + M, (N)
0

We also have that X*C,, X C C,,, and X*M,,(N)X C M,,(N).

Combining the above facts we obtain:

X*(Tien + A)X + My (N) € C + My (N)
0

or equivalently

(—X*enX + X*AX) + My (N) € Cypy + My (N)

To

Now the element B := re,,, — %X*enX = %(Toem —X*e, X) € Cpy

So B+ (LX*enX + X*AX) 4+ My (N) € Cy + M (N), ie.,

v
(rem + X*AX) 4+ M, (N) € Cy, + M,,,(N)

The above relation holds for all » > 0 so we have that X*AX + M,,(N) € CAreh,
Consequently X*CAeh X C CAreh thus {CAT}2 | is indeed a compatible family.

m

Remark: In particular we are interested in the case when (V, {C,,}52,, €) is a matrix
ordered *-vector space with matrix order unit e and (V, Cy, e) is an Archimedean
ordered *-vector space. Since e is an Archimedean order unit for (V,Cy := V1) we
have from the above proposition that,

N = ({ker(f) : f € SV)} = {0}

Thus, in this case: V /N =V and C{*"" = C.

In addition, since N = {0}, for n > 2 we have that:
CAreh — LA € M, (V) :re, + A€ Cp,Vr >0}

We conclude that in this case C/A" is obtained by enlarging C,,.
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1.5 Operator Systems

An abstract operator system is a triple (V, {C, }°2_;, €) where V is a complex *-vector
space, {C), }52_, is a matrix ordering on V and e € V}, is an Archimedean matrix order
unit.

Definition 1.28 A (concrete) operator system S is a subspace of B(H) such that the
identity operator I € S and if s € S, then s* € S.

If S C B(H) is a concrete operator system then it is a *-vector space with respect to
the adjoint operation of B(H) and it inherits an order structure form B(H ) that is,

ShZSﬁB(H)h and ST ZSOB(H)+

Furthermore, S C B(H), so M, (S) C M, (B(H)) = B(H™), hence M,,(S) inherits
an involution and order structure from B(H") and has the diagonal n x n matrix
diag(I, .., I) as an Archimedean order unit.
Thus we may regard (S, M,,(S)" = M,,(S) N B(H™)™",e) as an abstract operator
system.

The converse is also true as shown by the following theorem of Choi and Efrros

(see [4]):

Theorem 1.29 If (V,{C,,}22,,¢e) is an Archimedean matrix ordered *-vector space,
then there exist a Hilbert space H, an operator system S C B(H) and a unital com-
plete order isomorphism ® : V — S.

Using the above theorem we may identify abstract and concrete operator systems and
refer to them as operator systems.

We will denote the order unit of an operator system S as e and will use the symbol
M,,(S)* for the cone of positive elements of M,,(S), n € N. Notice that any unital
C*-algebra is also an operator system in a canonical way.

If § is an operator system then any unital and self-adjoint subspace Sy of S with
the induced matrix order structure is again an operator system. We say that Sy is an
operator subsystem of S. Observe that in this case the inclusion Sy < S is a unital
complete order embedding.

Every matrix ordered space with an Archimedean order unit may be equipped with a
norm:

Proposition 1.30 [15, Proposition 13.3] Let (V, {C}5_ 1, €) be an Archimedean matrix
ordered space, for everyv € M, (V) set

. Cren v
|[v]|, = inf{r e R : L}* ren} € Capn’
Then || - || is a norm on M, (V'). Moreover, with respect to this norm C,, is a closed

subspace of M,,(V'), for everyn € N.
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Proof: We will prove the case n = 1. The other cases can be proven in a similar
fashion.

. . 1
Positive definiteness: Let [Zf :e} € (5 and set X = [

0
0 _1] € M>. Then,

[ re* _U] =X* {Zi ;}e} X € Cy ({Ch}52, is compatible)

—v re

Therefore,

v

2rdiag(e, e) = [;i e

re — .
] + [_U* re] € (5 (Csis acone)
Since Cs is a proper cone and diag(e, €) € C; it follows that r > 0.
Thus, ||v]|; > 0 for every v € V.

Furthermore, if ||v]|; = 0, then from the compatibility of the family {C}, }°2 ; we have
that for every t € C:

Cia(1 %) Ei U} (1>re+tv*+tv+ttre

re
=7r(1+|t*))e+ (tv)* +tv

v

h

Since e is an Archimedean order unit we obtain that (tv)* 4+ tv € Cy, Vt € C. Now
setting t = 1, —1 gives v + v* = 0 while setting t = ¢, —i gives (iv)* + iv = 0. Thus,
v = 0. It is straightforward to see that when v = 0 then ||v||; = 0.

Homogeneity: Let A # 0 and notice that

7l D b

re v . L ||Alre v
L}* re} € (' if and only if [)\v* |/\re} e Cy D

Therefore,

(because {C,,}52, is compatible).
Thus,

. re v
inf{r e R: [()\v)* Te] € Cs}

[Av]ly

. A tre v
=inf{r eR: P |U* |)\1r6] € Cy}  from (D)
/
= inf{|]Alr' € R: {:}f rq’}e} €Cy} (= N""'r)

RY
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llv|lx = ||v*]|1: It follows from the compatibility of C and the fact that for

A[O 1}: A*{Tf ’U:|A|:T€ v*}
1 0 v* re v ore

Triangle inequality: Let v1,v2 € V and consider 1 € {r € R: {:}f Zj € (3} and
1
re v
ro € {’I’ eR: |:U§ 7“6:| € CQ}
Then,m +ro € {r e R: |:(’U1 _7;61}2)* V1 :;Uz} € Cy} and so

re U1 + V2

inf{r e R: {(01 +va)* e

] € Co} <ry+re, forall suchry,ro

It follows that:

. ) re Avi + v
lvr + ve|l1 = inf{r e R: [(Ul +ug)* e } € Ca}

re

. 3 U1 . . re
<inf{r eR: [UT re] € Cy} +inf{reR: L}s

V2
re

:| S CQ}
= |lv1l1 + [[vz2]l1

For the second part, let (v, ), be a sequence of elements of Cy with v, M v. We
shall show that v € C}. Since Cy C V}, we have that v, = v}, ¥n € N which implies

that v = v*. Given any r > 0 we can find some n; € N such that ||z, — z|; < 7.

Now from the definition of the norm || - ||; we have that
re v—v
5 "] <
V= Up, re

Set X = B] , then

re UV — Up,

2re +2v — 2vu,, = X~ [
V= Up, re

:|X€C1

Since v,, € C; and (' is a cone, it follows that re + v € C} and in turn since e is
Archimedean it follows that v € C. The proof is now complete.

Remark: Using Lemma 1.3 we can see that if S is an operator system then
Sp = 8T — 8. For another way to see this observe that any s € S, can be written

as
_eslsli+s _esllslli—s

2 2
It is straightforward to generalize this result for M,,(S).

(es denotes the unit of S)

27



Given operator systems S and 7 we will use the notations CP(S, T') and
UCP(S, T) for the cones of all completely positive maps and unital and completely
positive maps from S to T respectively.

The following theorems will be used frequently throughout this paper, their proofs
can be found in ([15, Theorem’s 7.5., 3.9., 3.11.]):

Theorem 1.31 (Arveson’s extension theorem).Let A be a C*-algebra, S C A an
operator system and ¢ : S — C a a completely positive map. Then there exists a
completely positive map ¢ : A — C which extends .

Theorem 1.32 Let ¢ : A — B be a linear map between unital C*-algebras.

If A or B is commutative then ¢ is positive if and only if it is completely positive. This
statement remains true in the case in which A is an operator system and B is a commu-
tative unital C*-algebra.

Lemma 1.33 Let (V,{C,,}22 1, €) be a matrix ordered *-vector space with matrix order
unit e and such that (V,C1, e) is an AOU space. Suppose that T is an operator system
and : V. — T is a linear map. Then,

e (C4ehy € M, (T ifand only if " (Cy) € M, (T)T, foreach n € N

Proof: Since C,, C C7" for each n € N when ¢"(CA7") C M,,(T)* we have that
©"(Cpn) € My (T)*.

On the other hand, let D € C;fmh then D + re,, € C,,Vr > 0 and we have
that (D + re,) € ¢*(Cp) € M, (T)™,Vr > 0. Since ¢ is linear and M, (7T)7 is
closed:

©"(D) 4+ r¢"(en) € My (T)T,¥r >0
and by letting r — 0 we obtain, " (D) € M,,(T)*.

Lemma 1.34 LetS,T be operator systems with underlying vector space V.
If UCP(S,B(H)) = UCP(T,B(H)), for every Hilbert space H, then S is completely

order isomorphic to T .

Proof: Suppose that S C B(H;) for some Hilbert space H; as a concrete operator
system. The identity map id; : S — B(H}) is a unital completely positive map so by
our hypothesis it will be unital and completely positive when consider as a map from
T to B(Hy) and thus M, (T)* C M, (S)".

Reversing the roles of S and T in the above argument we can see that M,,(S)* C
M, (T)T. Consequently, we have that M,,(S)™ = M,,(T)*. The requested complete
order isomorphism will be the identity map on V.

The following Lemma will be instrumental in proving many a result in the chapters
that follow.

Lemma 1.35 Let S be an operator system. Then for a P € M,,(S) we have that:
P e M,(S)t < ¢"(P) e M}, Yo € UCP(S, M) ,V k> 1
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Proof: Assume that S C B(H) for some Hilbert space H and that for P = [p;;] €
M, (S)*, ¢"(P) € M}, for all $ € UCP(S, My),k € N. Let h = (hq,...,hy)" €
H" (where t denotes the transpose and H" the direct sum of n - copies of H) and let
Y : & — M,, be the map given by ¢(s) = [(sh;, h;)]i j,s € S.

Then 1) is completely positive:

Let [spq]}, ,—1 € M;(S)" and consider the following elements of M,

Yoq = [(8pghjs hi)li

If we show that the matrix Y := [Y},] = [¥([spq])] € Mi(M,,) is positive we are
done.

)\Tl )‘1
)\7"2 - )\2
Let\, = | . | €C forr € {l,...,l}, thensetting \ = | . | € C'",
)\rn )\l
hy

- - ha
hy =>"  Arihiand h = | || we have that:

hy
l l n
(YX,X) =Y Graeo M) Z > ((spahs 1) Aggs Apa)
p,q=1 =1 4,5
Z Z Spahs i) AgjApi
P,q=1 i,j
Z SququhJ’Z)‘mhl
q=1 j=1 =1
l ~ ~
= (Spqhqvhp)
p,q=1
= ([Spq]ﬁa B)
which is > 0 because [spq]!, ,—; € M;(S)7.

This proves that ¢ is CP. Hence ¢"(P) > 0.
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€2
Nowletd = | . | € C"" where {e1, ..., ey} is the standard basis of C™, then
€n
(Ph.h) = (pihj hi) = D (0" (pig)ej. er) = (0" (P)0,60) > 0
i i,j=1

so P € M,(B(H))*. Thus P € M,,(B(H))* N M,(S) = M,(S)™".

The other direction is straightforward.

Lemma 1.36 LetV be an operator system (matrix ordered space with Archimedean order
unit) then both V ® M,, and M,,(V') are Archimedean ordered x-vector spaces. Further-
more, the x-isomorphism w : M, (V) — M, ® V we defined in section 1.1 is now an
order isomorphism.

Proof: Remember that for a [v;;] € M, (V), 7([vi;]) = 327 ; Eij @ vij.

Suppose that 7([v;;]) € (M, ® V)T we will show that [v;;] € M,,(V)™, in order
to achieve this we will appeal to Lemma 1.35.
Letk € Nandlet ® : V' — M, be a unital completely positive map, then (id,, ® @) €
UCP(M, ®V, M,;) and

" ([v3;]) = (idn @ ®)( D Eyj ®vy5) >0

4,j=1

so by Lemma 1.35 we have that [v;;] € M, (V).

For the other part, assume that V' C B(H) for some Hilbert space H and consider
7 as a map whose domain is B(H ), notice that in this case 7 is a x-homomorphism.
Let [v;;] € M, (V)" = M, (V) M,(B(H))" then [v;;] = [w;;][w;;]* for some
[wij] € M,,(B(H)). Thus,

m([vij]) = 7([wijl[wi;]*) = 7([wiz]) 7 ([wis]*) = 7 ([wis]) 7 ([wig])* >0
so the proof is complete.

Let S be an operator system and S* denote its Banach space dual. We define a *-
operation on §* by: f*(s) = f(s*) for every f € §*. This operation turns S* into
a *-vector space and the cone of positive linear functionals defines a partial order on
S* (because their image is in C: positive <= completely positive). We declare an
element [f;;] € M, (S*) to be positive if and only if the map F' : S — M,, given by
F(s) := [fi;(s)] is completely positive. From Lemmas 1.15 and 1.14, and the fact that
every operator system is a matrix ordered *- vector space with a unit we have the
following:

The family {C, }72, where C), = {[fi;] € M,,(§*) | F : § — M,, is CP}is a
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matrix ordering on S*. We will write S? for the arising matrix ordered *-vector space.
That is,
d
ST = (8" {Cn}nt1)

In the case where S is a finite dimensional operator systems we have a stronger result,
the matrix ordered space S? is in fact an operator system as shown in Corollary 4.5

of [4].
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2 Tensor Products Of Operator Systems

In this Chapter we review the theory of tensor products in the category of operator
systems as established in [12].

Consider two operator systems (S, e1) and (7, e2), we wish to endow the vector space
tensor product S ® 7 with a matrix ordering (see Definition 1.5)

{Cr, CM,(S®T) :n € N} suchthat (S®T,{Cp}32,, e1 ®ez) will be an operator
system.

Definition 2.1 Suppose that (S, {P,}521,e1) and (T,{Qn}52 1, e2) are operator sys-
tems, then an operator system structure on S ® T is a family of cones 7 = {C, }72 4,

where C,, C M,,(S® T), V¥n, such that:
1L (ST, {Ch}22,,e1 ® ea) is an operator system, denoted S @, T
2. Pn b2 Q’m C Cn'rru Vn,m S N’ Le., lfP = [pz]] S Pn andQ = [Qk;[] S QnL then

P®Q :=[pij ®qu] € Com
3. If ¢ € UCP(S, M,,) and ) € UCP(T, M,,) then p @ » € UCP(S @ T, Mym,)

We may write C,, := M,,(S ® T)*. Suppose that 71 and 7 are two operator system
structures we say that 7 is greater than 7 if the identity map on S® 7 from S ®,1 7T
to S ®,, T is completely positive that means M,,(S ®,, T)T C M,,(S ®., T)*.

In other words the operator system structure with the smaller cones is the bigger one,
this is parallel to the fact that for two norms on a complex vector space the bigger
one is the one with the smaller unit ball. Looking at Proposition 1.30, one can also
see that smaller cones give bigger norms.

Let O denote the category which has operator systems as objects and unital CP
maps as morphisms. By an operator system tensor product we meanamap 7 : O x O
— O, such that 7(S, T) is an operator system structure on S ® T for every pair of
operator systems S, 7. We denote it by S @, T.

Definition 2.2 We call an operator system tensor product T:

1. functorial if for any ¢ € UCP(S1, S2) and v € UCP(T1,Tz) where S;, i = 1,2,
andT;, j = 1,2, are operator systems we have that pQ1) € UCP(S1®.T1,S2®~
T2)

2. associative if for any three operator systems S;,i = 1,2, 3 the operator system
tensor products (S1®,S2) ®+S3 and S1 ®, (S2®, S3) are canonically completely
order isomorphic.

3. symmetric if for any two operator systems S, T the flipmap0 : S@T = T®S
extends to a unital complete order isomorphism fromS @, T toT ®; S.

We say that a functorial operator system product ® is injective if for all operator
systems §; C Sy and 71 C 73 the embedding §; ®, T1 C S; ®; T3 is a complete
order isomorphism onto its range, i.e.,

M, (81 @, T1) N M, (So @, T2)t = M, (S, @, T1)t, Vn e N.

32



2.1 Minimal Tensor Product
Let (S, e1) and (T, e2) be two operator systems. For each n € N, we set
Oyt = C(S,T) = {lpij] € Mu(S®T) : [(6 ® ¥)(pis)] € My
V¢ € UCP(S, My), v € UCP(T, M,,), ¥k, m € N}
Lemma 2.3 LetS,T be operator systems and P € M, (S)® T. If
(p"@y)(P) >0, Vo € D {f:S—> M, : fUCP},¢ € G {f: T — My, : fUCP},

m=1 m=1

then (® ® )(P) > 0,V® € U _,{f : M (S) = M,, : f UCP}.

Proof: Fixm € Nand¢ € {f : T — M,, : f UCP}.
For every functional w : M,,, — Clet g, : M,,(S) ® T — M,,(S) be the map given

by g (X ®@y) := w(¥(y))X.

If v1,v2 € C™ we let wy, 4, : M,, — C be the functional given by wy, ., (z) =
(zv1,v2). Let vy, ..., v, € C™ and k € N, we define the following map:

[vat,vs]s,t : Mnkm - nk & Mm — Mnk:r A — [qut,vs (A)]S7t

with [L, (A1 ® Ag)]s,t = [A1wy, v, (A2)]s,1, and we extend it linearly.

Wug,vs

Claim: The map [L,,, ,_|s,+ is positive.

Indeed, let A € M, = (M,r ® M,,)" then there exist B = Y Ni® M; €

nkm

M1, ® M,, such that A = B*B. Thus for any £ = (&;,...,&,) € (C™*):
([vat,ug( stg 5 “)vt ,,g B B stf g)

( oy e ZN*N ® M; M;)]s0)€, 5)
Z Les,, .. ZN N; ® M; M)ﬁt,fs)

= Z(wvuﬂs(Mi*Mj)Ni*Njgta65)
,J

r

= Y0 (M7 Myvy,00) NYNG&LE) D> (M Mjwg,vg) (N7 N;ér, &)
i

sit=1 i,j

((N N ®M M)§t®vt7£s®vs>

= ((B*B)§t®vt7§s®vs) ZO
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and so the Claim is proved.

Now suppose that (¢" ® 1)(P) € M, for any UCP map ¢: S — My, k € N. We
know that the map [L,, , st : Mokm — Mugr+ A = [Ly,, , (A)]s, 1 < s, <7,
is positive so

(Lo, o, (8" @ ) (P))]s € My,
Now we shall show that ¢"" ([gw,, .. (P)]st) > 0, Y¢ € UCP(S, My,).
It suffices to verify this on elementary tensors of the form P = X ® y.
For all ¢ € UCP(S, My,),

" ([9w0, 0o (Plst) = " ([900,, 0, (X @ Y)]st) = ([6" (wo, 0, (¥(y)) X)]s.1)
= [wo, v, (DY) " (X5t = [Lao, 0, (9" (X) @ D(Y))]s,0 2 0

Applying Lemma 1.35 we obtain [g,,, , (P)] € Mp.(S)".
Hence, ®"([gw,, ,. (P)]) > 0, for all ® € CP(M,,(S), M},), for every k € N.

Now fix such a @ then, [L,,, , ((® ® ¢)(P))]s; > 0. Thusif hy, ..., h, € C* then,

((‘I) DY) (P)D_he@wi), Y he ®Us> =

T T

D (@X)h @p(y)v, hs @ vs) = Y (B(X)he, hy) (Y(y)vr, vs) =
D (@orw, W@)R(X)hi, he) = D (L, ., (2 @9)(P))ht, hs) =

(Lo, ., (2 @) (P))]slhr .. by [hy .. hy]T) >0
It follows that (® ® ¢)(P) is indeed positive.

Lemma 2.4 If ¢ € UCP(S, My) and ¢ € UCP(T,M,,), for operator systems S, T .
Then (¢ @ )™ = ¢" @ 1.

Proof: We will prove the result for elementary tensors of the form P = X ® y, where
X = [z;;] € My,(S) and y € T, then the general case follows by linearity.
Let P be as described above then,

(@" @9)(P) = ¢"([zy]) @ P(y) = 6" ([z55]) ® ¥ (y)

and

(@ ¥)"(P) =[(¢@¢Y)(xi; @ y)lij = [d(zi5) @Y (W)i,; = [d(2i5))i,; @ P (y)

The result follows.

34



Theorem 2.5 Let (S, e1) and (T, e2) be two operator systems, and letis : S — B(H)
and it : T — B(K) be embeddings that are complete order isomorphisms onto their
ranges. The family {C™"}20 | = {C™"(S,T)} is an operator system structure on
S ® T arising from the embedding is @ i1 : S ® T — B(H ® K).

Proof: Let P € C™™" and set Q = (is ® iT)"(P).

We will show that Q@ € B((H ® K)")*. Assume that Q@ = > | X, ® y,, for
X, € Mp(is(S)) and y € i7(T), 1< r < m. Let{; € H" and s, € K for
1<s<kandset( = Zle &s @ ns. We define the mappings ® : M, (is(S)) —

My by ®(X) = [(X&,&:)|sr and ¢ 2 i (T) — My by ¢(y) = [(yne,7)]s- In
a similar way as in the Lemma 1.35 it can be shown that ® and 1) are completely
positive. Since Q € C™"(S,T) we have from the definition of C"™" and Lemma

2.4 that (65 @ 10)(Q) = (0 ® ¥0)"(Q) € M., Vo, € UCP(is(S), My) (65 :
M, (is(S)) — Mj, is positive) and Vipg € UCP(i7(7T ), My). Now, from Lemma 2.3,

(@®Y)(Q) € M}..
€1
e
Let0=| . | € CF* where {e1,...,ex} is the standard basis of CF Then,

€k

(QC7 C) = Z:ll lec,tzl (X’l"é-fnfs) (lﬂ?tﬂ?s) = 27;1 (((I)(XT) ® w(yr»@,@) =
((® @ ¥)(Q)6,6) > 0, because (P @ ¢)(Q) € M.

Consequently, Q@ € B((H ® K)™)*. Thus if D,, C M, (S ® T) is the cone arising
from the inclusion of i5(S) ® i7(T) into B(H ® K), in other words

Dy, ={Ae€ M, (S®T): (is ®ir)"(A) € B(H ® K)")"} =

[(is @ i7)"] " (B((H @ K)")*)

then C™"(S,T) C D,, (Remember that M,,(S ® T) is identified with M, (S) ® T
and (is ® i7)" = i% ® i7).

For the inverse inclusion, let ¢ € UCP(S, M,,,) and ¢ € UCP(T, M},). We identify
S withis(S) C B(H ) and by applying Arveson’s extension Theorem, we find a UCP
map ¢ : B(H) — M,, such that ¢ [s= ¢. In the same way we find a UCP map
7,/; : B(K) — Mj, that extends . Now, the minimal C* tensor product @+ of
the C* algebras B(H ), B(K) satisfies the following ([15, Chapter 12])

B(H) ®cmin B(K) € B(H ® K)

Furthermore, there exists a UCP map bR B(H)®¢*min B(K) = M,,i. We once
again apply Arveson’s extension theorem and obtain a UCP map ¥ : B(H ® K) —

Mg, Wwith ¥ [ B(H)@ i B(E)= @ © V.
Therefore, if A = [a;] € D,, € B((H ® K)")* = M, (B(H ® K))*, then

(¢ ® ) ()] = [(6 ® V) (aij)] = [T(ay;)] € M,
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Hence, D,, = C™"(S,T).
It follows that C*""(S,T) is an operator system structure on the vector space
S ® T (see Definition 2.1) with e; ® e as Archimedean matrix order unit.

Definition 2.6 We call the operator system (S @ T,{C™"(S,T)} 1, e1 @ e3) the
minimal tensor product of S and T and denote it by S Qpmin T -

The next corollary is immediate:

Corollary 2.7 For A and B unital C*-algebras denote their C*-algebraic minimal ten-
sor product as A @cxmin B. Then A @« _min B is completely order isomorphic to the
image of A ® B inside A @ pmin B.

Theorem 2.8 The operator system tensor product Q.,,;y, is functorial, injective , associa-
tive and symmetric. Moreover, if S and T are operator systems then Q. is the smallest
operator system structure on S ® T. This means that, if T is any other operator system
structure on S @ T then CT C C™Mi" n > 1.

Proof: The fact that ®,,;,, is functorial and injective follows from Theorem 2.5. Next,
suppose that Sy, Sz, Ss are operator system and i; : S; — B(H;) is a complete order
embedding which is a complete order isomorphism onto its range, j = 1, 2, 3. From
the associativity of the Hilbert space tensor product we have that (H; ® Hs) ® Hz =
H, ® (Hy ® Hs).

It follows that (S1 ®min S2) @min Ss and 81 Qmin (S2 @min S3) are completely order
isomorphic.
The symmetry follows in a similar way.

Lastly, if 7 is an operator system structure on S ® 7 then by property 3 of the
Definition 2.1 we indeed have that C7 C C™", n > 1.

Lemma 2.9 Let S be an operator system, then
Mn ®mzn S gc‘o.i. Mn(S)

Proof: Consider S as an operator subsystem of a unital C*-algebra A. Since the
minimal operator system tensor product is injective we have that

(Mp, @min S)* = My @min S N (My, @pmin A)*
For the C*-algebra A we also have that
My, @min A Ze.0i. My @cs—min A and My, @cx—min A = My, (A)
It follows that

Let V' and W be vector spaces (V' finite dimensional) then we can identify each
element of the space V ® W with a linear function from V¢ to W via the map
Ly : V% — W givenby L,(f) = >, f(si)ti,foru=3 8,0t e V W.
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Proposition 2.10 Let S and T be operator systems and let u = [u;;] € M, (S ® T).
The following are equivalent:

2. The map Ly, : 8 — My (T) : f = [Lu,, (f)];,;, where

[L’Ltij (f)] [L25 ;j@t Z f tl]
4,J
is completely positive.

Proof: Using the identification M,,(S ®min T) = S Qmin M, (T) it suffices to show
this forn = 1.

Letu =Y ,8®t € (S ®min T)" and let f,s] € My(S?)* for some k € N,
then map F' : § — M, given by F'(v) = [frs(v)], Vv € S will be CP.

We will show that (L, )*([fs]) € Mk(T)", to do this we will appeal to Lemma 1.35.

Let ¢ € UCP(T, M,,). Then for each 1 < p, ¢ < m there exists a (unique) ¢,, € T¢
such that ¢(t) = [¢pq(t)], for every t € T. Hence,

¢k((Lu)k([me) = [¢ o Lu(fm)]r,s = Hd’pq °© Lu(frs)]p»q}r,s =

[[#pq Z frs(8:)ti)]p,qlr [[frs(z $iPpq(ti)]p,alr,s

[(frs)m[z $iPpq(ti)]p.alr,s = T(Fm([z 8iPpqg(ti)lp,q))
where 7 : M,,, ® M), — M} ® M, is the canonical flip isomorphism.

Now since ®p, is functorial (see Definition 2.2) and id € UCP(S, S) we have that
id®¢: S Qmin T — M, (S) is UCP, and

0< (id®¢)(u) = id(s;) @ ¢(t:) = [>_ 5ibpq(ti)lp.g

i

Thus, ¢*((Ly)*([f-s]) > 0 and our objective follows from Lemma 1.35.

For the opposite direction, suppose that for u = > ¢S¢ @ tc €S @min T the map
L, : 8% — T is completely positive. Let ¢ € UCP(S, M},) and ¢) € UCP(T, M,y,), for
k,m > 1. We will show that (¢ ® ¥)(u) € M,:m. For1<i,j<kandl<p,gq<m
there exist ¢;; € S% and ,, € T% such that ¢(s) = [¢;;(s)] and Y (t) = [thpq(t)],
Vs € S,t € T. Since, the maps ¢ and ¢) are UCP we have that [¢;;] € My(T?)* and
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[wpq] € Mm(sd)+~ Thus,

(6@ v)(u Z¢> (s¢) ®P(te) = Z% (5¢)Upa(t)p.glicg
= [[¥pq Z% st palii = [Wpa(Lu(di)p.alis

= W((Lu(@j))]i,j = V*([(Lu($i5)]ig)

=" o (L) ([645]:.5)
which is in M,! since both ¢ and L,, are completely positive and [¢;;] € Mj,(S%)T.
Hence, u € (S ®@pin T)T.
2.2 Maximal Tensor Product

Let (S, e1) and (T, e2) be two operator systems. For each n € N, we set
Dypas = Dpes(s, T) =

{(X(PRQ)X*: P e M(S)",Q € My,(T)*,X € My, km,k,m € N}

Lemma 2.11 Let (S,e1) and (T, e3) be two operator systems and { D, }°_; be a com-
patible family of cones, with D,, C M,,(S ® T), satisfying property 2 of Definition 2.1.
Then D'** C D,, for everyn € N.

Proof: Let P € M;(S)" and Q € M,,(T)" then by property 2, P ® Q € Dip,.
Since {D,, }, is compatible it follows that X (P ® Q)X* € D,,,YX € M, km. Thus
Dt C D,,.

Lemma 2.12 Let (S, e1) and (T, e2) be two operator systems, P = [P,;]; ; € My, (M, (S))"
and Q) = [qij]i,j S Mk(T)+ Then Zi,j:l Pij R qij € Dguzz.

Proof: Let I, be the identity matrix in M, and X = [X; ... X}2] € M, 42, where
X, € M,,, 1 < m < k2, such that

X1 = Xp2=Xog3 == Xp2 = I,
and X,,, = 0,Ym & {1,k + 2,2k + 3,...,k?}. Then,
i Py ®ai = X(P®Q)X* € Do,

Proposition 2.13 Let (S,e1) and (T, e2) be two operator systems. Then S® T together
with the family { D7"**(S,T)}52, = {D* 152, is a matrix ordered space with ma-
trix order unit e; ® es.
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Proof: Letn € N, X; € M, j,m,;. P € My, (S)" and Q; € M,,,(T)", fori =1,2.
Then X1 (P ® Q1) X7, X2(P2 ® Q2) X3 € D**. Moreover,

X1(Pr®@ Q1) X7 + Xo(P2 @ Q2) X5 =

PL®Q; 0 0 0 X

0 P ® Qs 0 0 01 _

[¥1 0 0 X 0 0 P, ®Q 0 o |
0 0 0 P, ® Q2 X3

(X1 0 0 Xo](PLeP)®(@eQ))[X1 0 0 Xp| €Dy

where [Xl 0 0 X2] S Mn,k1m1+k1m2+k2m1+k2m2 and
(PieP)@(@idQ)=Pio@1)d(PieQ2)®(PoQ1)a (P®Q2)

Clearly D;"** is closed under scalar multiplication, so from the above we have that
{Djree1oe | isafamily of cones. The fact that this family is compatible is obvious from
the way we defined its elements. Now we know that {C"}°° | is a compatible fam-
ily of proper cones and by Lemma 2.11, D™ C C™" hence D™ (\(—Dma®) C
cmin (\(—Cminy = {0}, so DM is a proper cone for every n € N. Furthermore
since e; ® ey is a matrix order unit for {C7*"}, it follows that it will be a matrix order
unit for { D]***}. We conclude from all the above that {D"**} is a matrix ordering
with matrix order unit ¢; ® es.

Let (S,e1) and (T, e2) be operator systems. Then (S ® T,{D%*}>2 |, e1 ® e2)
is a matrix ordered space. However there exist examples where e; ® e5 fails to be
Archimedean. For this reason we consider the Archimedeanization of { D}"** }, which
we denote by {C"**(S,T)} := {Cr**}.

In general for a matrix ordered *-vector space (V,{C),}.,e) we have seen that for
eachn € N, C;;‘”h is the set:

{A+ My(N) € My(V)/Mp(N) : (ren + A) + My (N) € Cy + My (N), ¥r > 0}

where N = ({ker f : f € S(V)}.

In our case we have that V =S ® T, C,, = D;’**, n € N and the matrix order unit
ise; ® es.

Notice that (this will be proven in Theorem 2.15): if we endow the space S @ T with
the cones D]"** then whenever ¢; € UCP(S,C) and p3 € UCP(T, C) we have that
©1 ® 2 € UCP(S ® T,C). Thus if 1, ¢ are states on S and 7 respectively then
©1 ® 2 will be a state on (S ® T, {DI"**}).

Now suppose that N # {0}, this would imply that we could find an non-zero element
of S ® T which would be annihilated by every state on (S ® T, {D***}). We call

n
that element v and we write vasv = ) ; 5: ®t; where the ¢; are chosen to be linearly
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independent. Now our hypothesis implies that for every (; state on S and every @9
state on 7,

(1 @ 2)(v) =0

(p1® wz)(z s;i@t;) =0

hence

Z P1(8:) ® pa(ti) =0
since for each 4, ¢1(s;), ¢2(t;) € C the above is equivalent to
Z p1(si)pa(ti) =0
and o is C-linear so the above gives

@2(2 p1(si)ti) =0

Since 7 is an operator system it has an Archimedean order unit, it follows from Propo-
sition 1.23 that
> st =0
i

and from the fact that the ¢;’s are linearly independent we have that
©1(s;) = 0 for every i

Jie, for every state ¢ on S and for every i: ¢;(s;) = 0 which, again by Proposition
1.23, would give that
s; = 0, for every 4

which leads to a contradiction (v = 0).

Definition 2.14 We call the operator system (SQT , {CI"* 152, e1 ®eq) the maximal

n=1»

operator system tensor product of S and T and denote it by S Qa2 T

Theorem 2.15 The mappingmaz : OXO — O : (8,T) = S®maz T is a symmetric,
associative and functorial operator system tensor product. Moreover, ® 4 is the largest
operator system tensor structure on SQT in the sense that if T is another operator system
structure on S @ T with cones {C] } ,en then C* C C7 Vn € N.

Proof: Let S and 7 be operator systems. We need to check if the family {C/"**},
satisfies the properties 1, 2 and 3 of Definition 2.1. We have shown 1, and 2 follows
from the definition of {C™*},, Furthermore, since C™%* C C™™ it follows that it
satisfies property 3, because {C™"},, does.
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Assume that ¢ € UCP(S;,S2) and ¢ € UCP(Ty,7T3), and let P € My (S1)™,
Q € M,,(T1)* and X € M,, . Then ¢*(P) € My(S2)T and v™(Q) € M, (T2)*.
Thus,

(0 ®¥)"(X(P®Q)X") = X(¢"(P) © v"™(Q))X" € D;*(52,Ta)

So (¢p@y)"(DI**(Sy,7T1)) € Di**(Sa, T2), and by Lemma 1.33 we have that ®yy,q4
is functorial.

Now, suppose that P € M(S)" and Q € M,,(7)". Consider the map 6 :
ST ->T®S:s®t—t®s. Then, after conjugation with a permutation matrix
U: 0% (P ® Q) =U(Q ® P)U*. Thus, for all X € M, i

0"(X(P®Q)X*) = X0*™ (PoQ)X* = XU(QeP)U*X* = (XU)(Q ® P)(XU)*

eDrar(S,T) €D (T,S)

Hence, 0 : S ®Qmaz T — T ®@maz S is a complete order isomorphism, i.e., max
is symmetric. Lemma 2.11 implies that max is the largest operator system tensor
product (it has the smallest cones). In particular let {C,,} be any matrix ordering on
S ® T for which e; ® ez is an Archimedean matrix order unit. If P € C)"*** then for
everyr > 0, P+r(e; ® ea),, € D**C, 1,C,. Since e; ® ey is Archimedean matrix
order unit for C,, we have that P € C,,.

We omit the proof of the associativity.

Let (S, e) be an operator system we call an element s € S strictly positive if there
exists a real number 6 > 0 such that s > Je.

Lemma 2.16 Let (S,e1) and (T, ez2) be operator systems. If u € S @pan T is strictly
positive, then there existsn € N, A = [a;;] € M, (S)* and B = [b;;] € M, (T)" such

that
n
u = Z aij ® bU

i,j=1

Proof: Since u is strictly positive we have that there exists some § > 0 such that
u—d(er ®ez) € (S ®maz T)T = C7***(S,T). By the definition of C]*** and
D% there exist P = [p;;] € M,(S)" and Q = [qu] € My (T)" and X =
[Ill Tim T21 - Tom - Tn1 - xnm] € Ml,nm forn,m €N
such that

u=(u—d(e1®ez))+dler®ex) = X(PRQ)X™ = Z Z ZTikDij @ QriTji
ij=1k,i=1

For each pair (i, j) we seta;; = p;j,thus A = P € M,,(S)" and b;; = ZZLl Tik QR Tl
Then B = [b;;] = (X')*Q(X") where ¢ denotes the transpose, so B € M,,(T)". The
result follows.

If V,W and U are vector spaces and ¢ : V x W — U is a bi-linear map, then for
n,m € Nwelet o™ : M, (V) x M,,,(W) — M, (U) to be the bi-linear map given
by ¢ ([vili 5, [wralk.1) = [B(vig, wr)] ik, (G0)
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Definition 2.17 Let S and T be operator systems. We call a bi-linear map ¢ : S x
T — B(H) jointly completely positive if ¢ (P, Q) € M,,,(B(H))*, for every
P e M,(S)" and everyQ € M,,,(T)™.

Theorem 2.18 Let S and T be operator systems. Then

1. If ¢ : S x T — B(H) is jointly c.p. map, then its linearization ¢, : S Q@ T —
B(H), which is given by ¢1,(s®t) = ¢(s,t), is completely positive on S @z T -

2. IfY 1 S @max T — B(H) is completely positive, then the map ¢ : S x T —
B(H) given by ¢(x,y) = Y(x @ y), x € S andy € T, is jointly completely
positive.

3. Let T be an operator system structure on S ® T such that the linearization of
every UCP map ¢ : S x T — B(H) is completely positive on S &, T, then
S®TT:S®mazT

4. Foreveryn € N, set
K, :={P e M,(S®T):¢L(P) >0 for every jointly completely positive
¢: S8 x T — B(H) and every H : Hilbert space}
Then, the following holds:
cr(S, T)=K,, YneN
Proof: Fix S and T operator systems, P € M(S)" and Q € M,,(T)*.
For 1: Let ¢ : S x T — B(H) be a jointly completely positive map, then
(Lkm)(P@’Q) = [0 (Pij ®rs)|(i,r), () = [8(Pigs @)l (i), (Gs) = ¢(k’m)(PaQ) 20
Thus, if X € M, pm then
SLX(P® QX" = X(¢™ (P©Q)X" >0

so ¢"(Dje®) € M, (B(H))™.
Thus, from Lemma 1.33 ¢, is completely positive.

For 2: As above ¢(*™) (P, Q) = ¢v*™)(P®Q) > 0, because 1) is completely positive.

For 3: We know that the cones of the maximal tensor product are the smallest possible,
so every UCP map from S ®, T to B(H) is a UCP map from S ®y,q, 7 to B(H). By
the hypothesis of 3 combined with 1,2 we have that the converse is also true. Hence,
UCP(S®,T,B(H))=UCP(S @mas T, B(H)). By Lemma 1.34 we have that S®, T
=S Omax T
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For 4: One can check that { K, }5°; is an operator system structure on S ® 7 and
denote it by 7. Then 7 satisfies property 3 by definition, so we have the desired result.

Given a bounded bilinear map ¢ : S x T — C we define L(¢) : S — T¢ : s —
L(9)(s) (resp, R(9) : T — S by L(¢)(s5)(t) = é(s, ) (resp. R(¢)(t)(s) = ¢(s. 1)).

Lemma 2.19 Let S and T be operator systems and let ¢ : S x T — C be a bilinear
map. The following are equivalent

1. ¢ is jointly completely positive.
2. L(¢) : S — T is completely positive.
3. R(¢) : T — S is completely positive.

Proof: We will show the equivalence 1 <= 2. With a similar argument one can
show the equivalence 1 <= 3.
The map £(¢) is CP if and only if: for every v = [v;;] € My(S)" we have that

L(9)*([viz]) = [L(d)(vij)] € Mp(T?)*T or equivalently that the map L(gb)A(Uij) :
T — My, : t — [L£(¢)(vs5)(¢)] is CP. That is to say, for all w = [w,] € M, (T)*

~ m

0< £(¢)(Uij) ([wrs]) = [[L(QS)(Uij)(wTS)]i,j]ns =
[£(0) (Vi) (Wrs) (i), (5) = [0(Vigs Wrs) 5.0y, (515) = SF™ (0, )
Hence, we have the equivalence of 1 and 2.

Lemma 2.20 Let (S, e1) be a finite dimensional operator system. The canonical isomor-
phism”: S — (SN : x — &, where 2(f) = f(z),Vf € S%, is a complete order
isomorphism.

Proof: It suffices to show the following:
M () 3 [255] =[] € Ma((S9))*

Remember that for any operator system R an element [f;;] € M,,(R?)* if and only if
the map F' : R — M,, given by F(r) = [f;;(r)] is CP. Assume that [z;;] € M,,(S)*.
We will show that the map ® : S¢ — M,, given by

O(f) = [2%(Niy = [f(zij))igs feS?
is completely positive. This implies that [27,] € M, ((S)%)T.

Suppose that [gip] € M,,(S%) T or equivalently that the map S > s — [gkp(8)]k,p €
M,,, is CP. Then,

(I)m([gkp]kyp) = [(I)<gkp)]k,p =

[lgkp (i), = [gkp([Tig)ii)]kp > 0
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because [z;;] € M,,(S)" and the mapping S > s — [gkp($)]k,p € My, is CP.
It follows that ® is completely positive.

For the opposite direction, we suppose that [x;;] € M,(S) is such that [z},] €
M, ((5%)4)* we shall show that [z;;] € M,,(S)". Let k € Nand ¢ € UCP(S, M)
then for each 1 < p,q < k there exist a unique ¢,, € S? such that ¢(s) = [¢p,(s)]
and since ¢ is UCP we have that [¢,,] € My (S?)*. Now, letting ® : S — M,, be
the map given as in the previous part then ® is CP and

¢"([xijli5) = [#(@i5)]i = [[Dpg(@i5)]p.ali
= ([ (dpa)lp.alii = T(2" ([dpq))) = 0
where 7 is the canonical *-isomorphism M,, ® M} = M}, ® M,,. By Lemma 1.35 we
obtain that [z;;] € M,,(S)*.
Lemma 2.21 Let S be an operator system, then
My, @min S Ze.0i. Mn(S) Ze.o.i. Mn @maz S

Proof: The first identification is Lemma 2.9. For the other one, suppose that P €
My, (M, (8))", then we could write:

P=X(I,®P)X*, where X := [Ik 0 --- 0],

and I, € My is the identity matrix.
Therefore we have that X € My, ., I, € M,5 and P € My(M,(S))" so P =
X(I, ® P)X* € D@ (M,,S).

Thus, My (M, (S))" C D**(M,,,S) C (Mi(My, ®maxz S))T := C* (M, S).
Now we know that Cj"**(M,,,S) C C*"(M,,S),Vk € N and C[*"(M,,,S) =
My, (M,,(S))™ hence we conclude that

(Mk(Mn Qmaz 8))+ = Mk(Mn(S))+, ke N

Theorem 2.22 Let S and T be finite dimensional operator systems.
Then (S @maz T)? is completely order isomorphic to S @i, T and (S @pin T)? is
completely order isomorphic to S D max T

Proof: From Proposition 2.10 we have that (S ®,,:, T)* = CP(S¢, T). Furthermore,
from Theorem 2.18 and Lemma 2.19 we have that amap f : S @ T — Cis
completely positive if and only if ¢5 : S x T — C, given by ¢s(x,y) := f(z @ y)
is jointly completely positive and this is equivalent with £(¢;) : S — T being
completely positive. Hence,

(S @maz T = CP(S, T
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for all operator systems S, T, so this is true if we put S¢ and 7 in the place of S
and 7T respectively. Thus, from the above and the fact that 7 and (7%)¢ are complete
order isomorphic (Lemma 2.20) we obtain

((Sd ®ma:c Td)d)+ = CP(Sd7 T) = (8 ®min T)+ (I)

Thus far we have shown that there is a bijective correspondence between positive
linear functionals on S¢ ®,,4, T¢ and positive elements of S ®,,;,, 7. Hence, there
exists a bijective linear map from S ®.;n, T to (Sd Rmaz Td)d which is an order
isomorphism. We need to show that it is a complete order isomorphism.

We identify M, (S)@pmin T with M, (S®,:n T ). Since max is associative we have
that (M,, ® 8) @maz T = My, @ (S @pmax T?). Moreover, for any R operator
system we have the identification M,,(R?) = M, (R)?. In particular we have that
M, (RY) > [fij] = ¢ € L(R, M,,) where ¢(r) = [f;;(r)] and then from the section
about positive maps we have that

L(R,M,) > ¢ — s4 € LIM,(R),C) = M, (R)* where s4([ri;]) = Z fij(rij)

i,j=1
Thus,
(M,(8Y) @maz THY = (M (S? @maz T))? = My, ((S? @maz THY) (1)

Now replacing S by M,,(S), from the relation (I) we have that
(M, (8 @mae THY = (Mp(S) @min T)T = M (S @min T)T and combining
this with (I) we obtain

(Mn((sd Omaz Td>d))+ = M, (S @min 7-)+
Hence we conclude that
(8 Dpmae T and S @,,in T are completely order isomorphic (1)

Remember that for any operator system R we have that it is completely order iso-
morphic with (R%)?. Now replacing S — S? and 7 — T in (Ill) we have that
(S ®max T)d is completely order isomorphic to S ®,,,;,, T%. By taking duals in (III)
we have that (S ®min T)d is completely order isomorphic to S% @4, T

For the remainder of this subsection whenever A, 3 are C*-algebras we will use the
following notation: A ® I for their C*-algebraic tensor product and A @ = qq B for
their maximal C*-algebraic tensor product. We will see that ®,,,4, gives an extension
of the maximal C*-algebraic tensor product from the category of C*-algebras to the
category of operator systems.
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We will need the following [2, theorem 3.5.3] :

Proposition 2.23 Let Ay, Az, Ajz, Ay be C*-algebras and p : Ay — As and ¢ :
Az — Ay be completely positive maps then the algebraic tensor product map ¢ © v :
A1 @ A3 — Ay ® Ay extends to a completely positive map from Ay ®crmas Az —
-AQ ®C*mam -A4-

Theorem 2.24 Let A and B be unital C* -algebras. Then the operator system A Q4. B
is completely order isomorphic to the image of A ® B inside A @c+max B.

Proof: Let C := A Qc+maz B.
Claim: The faithful inclusion A ® B C A @¢c*mas B endows A ® B with an operator
system structure.
For this claim to be true we need to check whether the conditions of Definition 2.1
are satisfied. Indeed, 1 and 2 are clearly true as for 3 it follows from proposition 2.23.
We denote the arising operator system by A ®, B.
For everyn € N,let D,, = M,,(A®,; B)* = M,,(A® B)( M,(C)™". Since maz is
the largest operator system structure on .4 ® B, i.e. it has the smallest cones, we see
that C)** (A, B) C D,,.

Now we will show that the Archimedean ordered *-vector spaces
(M, (A® B),Cr**(A,B)) and (M,,(A® B), D,,) have the same state space.
For the above to be true it suffices to show that whenever we have a linear map f :
M, (A®B) — Cwith f(C**(A,B)) C RT then f(D,,) C R*, because the inverse
follows form the inclusion C"**(A, B) C D,,.
To this end fix a linear map f : M, (A ® B) — C such that f(C}**(A,B)) C R*.
Suppose that X = Ele a; ® B;, where a; € M,(A) and 8; € B. Notice that
P = o]l =) € Mp(Mn(A)T and Q = [8i5;]5 =1 € My(B)". Thus, from
Lemma 2.12 we have that

k
XX =Y aal © Bif] € O (A, B)

ij=1

So f(XX*) > 0.

On the other hand, we know from C*-algebraic theory that the C"*-algebraic ten-
sor product is associative and that M,, is a nuclear C*-algebra. Hence we have the
natural identification M,,(C) = M,,(A) ®¢c*maz B-

By the definition of states on the C*-algebraic tensor product (see [7] p.7-9) we have
that the state space of M,,(C) = M,,(A) ®c*maz B denoted S(M,, (A) @cmaz B) is
the following set of linear functionals

{g: M, (A) ® B— C: g unital and g(yy*) > 0, Vy € M, (A) ® B}
Since X € M,,(A) ® B we observe that the linear map

FiMu(A®B) = Mu(A) @B —C
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is an element of the above set, i.e., f € S(M,,(C)). Consequently, f(M,(C)") C RT
and thus f(D,) C RT.

Finally, let A € D,, and f : M, (A ®maz B) — C be a positive map, that is,
f(Cmaz(A B)) C RT. By the above discussion : f(A) > 0 and by Proposition 1.24
A € C**( A, B) which completes the proof.
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2.3 The Commuting Tensor Product

Let(S,e1) and (T, e2) be operator systems. We set,
uep(S,T) = {(¢,¢) : H is aHilbert space, ¢ : S — B(H) and ¢ : T — B(H)

are unital completely positive maps with commuting ranges}

We call a pair (¢, 1)) as above commuting and welet ¢ - ¢ : S® T — B(H) be the

map given on elementary tensors by (¢ - ¥)(u @ v) = ¢(u)(v) = Y(v)Pp(u), u € S
andv € T.

For eachn € N, let

Crom = Crrm™(8,T) = {u = [uy] € Mo (S®T) : (¢9)" (u) = [(¢¥) (uiy)] € B(H")™,

for all (¢, ) € uep(S,T)}

Proposition 2.25 The collection {CS°™}22 | is a matrix ordering on SQT with Archimedean
matrix order unit e; ® es.
In other words, (S @ T,{CS°™}>2 |, e1 @ ez) is an operator system.

Proof: The fact that CS°™ is a cone follows from the linearity of (¢ - ¢)) which in turn
follows from the linearity of ¢ and ).

In order to prove compatibility let u = [ug] € C7™ and X = [z] € M,
then,

(¢ ' 1/}) (XUX Z I'Lk‘uk‘lz_]l j -1
k,l=1

m

= [(¢- ¥)( Z Tk Uk T50)]i =1

k,l=1

m
Z ik (@ - ) (uk)T5l7 =1
=1

= X(¢- )" (u)X

and X (¢- )™ (u)X* € B(H™)", so XuX* € C52™. Hence the family {CS°™}22
is compatible.

~ Let ¢ € UCP(S, M},) and ¥ € UCP(T, M,,) we define ¢ : S — M, @ I,,, and
Y : 8 = I, ® My, by ¢(u) = ¢(u) ® I,, and ¢(v) = I @ ¥(v). Notice that if
[vi;] € M,,(S)" then

()" ([vi]) = [$(vij)] = [B(vij) ® Im] = [$(v3j)] @ L = ¢"™([v35]) @ I

which is positive because ¢ is completely positive. In the same way we see that
()™ ([ui;]) > 0 for any [u;;] € M, (T)+. Hence (¢,v¢) € ucp(S,T). Let P =
[pij] € CLo™ where pj; = >, sufy ® ’U”, ug; € S and vfj € T, then
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a,B
D (@(ufy) @ Ln) (I @ (0] = [ d(ugy)db(vyy)] =
a,f a,
(6 D) ugs @v))] = [(6- D) (piy)] = (6~ $)"(P) > 0

Now remembering the definition of the cones C™" (see subsection 2.1), we see that

P € ™, Thus Co™ C C™™ for every n € N.

Since C™" ((—C™") = {0} and e; ® ey is a matrix order unit for {C7"}%° | we

have that: C<°™ ((—C5°™) = {0} and e; ® e5 is a matrix order unit for {CS°™}22 ;.
Finally, suppose that u € M,,(S ® T) is such that r(e; ® e2),, +u € C5™ for all

r > 0. Then for all (¢, 1) € ucp(S,T),
0<(¢-Y)"(r(er®ex)n+u)=r(Ig)n+ (¢-19)"(u), ¥r >0

Since Iy is an Archimedean matrix order unit for B(H) we have that
(¢- ) (u) >0, forall (¢,1) € uep(S,T). It follows that u € C2°™. Thus, e; ® ey
is an Archimedean matrix order unit.

Definition 2.26 We call the operator system (S @ T,{C°™}5% 1, e1 ® e2) the com-
muting tensor product of S and T and we denote it by S ®. T.

Theorem 2.27 The mappingc: O x O — O : (§,T) = S®. T is a symmetric and

functorial operator system tensor product.

Proof: We need to check that it satisfies properties 1,2 and 3 of Definition 2.1. From
the previous proposition we have that this is true for 1 and 3.

For 2: Suppose that P = [p;;] € M,(S)" and Q = [gu] € M, (7)™, and let
(¢,9) € ucp(S, T). We shall show that P ® Q € C9". Indeed,

(@ )" (P& Q)= (¢ )"y ® qul) =

[(P-YV)p11®@aq1) -+ (- Y)P11Qqm) - (¢-9)(P1n q11)
@ Dou Sam) - (G DU S tmm) - (D D)P1n ® )
((ZS . ¢)(pn1 & q11) (¢ ' d))(pv;l oy q1m) (QS . ¢)(p;m & q11)
(6 )t G amt) - (6 8)Pot @ rom) -+ (6 1) Pam D Gont)
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(@ V) (P1n @ q1m) |

(¢ : ¢) (pl'n @ Q'mm)

(¢ : w)(pnn @ L]m)




[ ¢(p11)¥(q11) é(p11)Y(q1m) d(p1n)¥(qi1) (p1n)(qim) |
(b(pll);//(le) ¢(p11)¢(varL) QS(pln);ﬂ(le) ¢(p1n)¢(%nm)
S(pn1 ) (an1) &P (1) H(pnn) ¥ (a11) O (P ) (q1m)

() V(@mt) - SPa) ) o SPun)lam) o SPun)(dmm)]

[ [o(p11) (p1n)
YPm(Q) P"(Q)
o(p11) ¢(Pin)
¢(pn1) ¢(pnn)
P™(Q) P"(Q)
¢(pn1) ¢(pnn)

[(P(pij) @ Im)Y™(Q))i; = [((pij) @ Im)]ij(In @ ™ (Q)) >0

The last term is positive because [(¢(pi;) ® Im)]i; = ¢"(P) & I, which is positive
since ¢ is CP and P € M,,(S)" and it commutes with (I,, ® 9" (Q)) which in turn
is positive since 1) is completely positive and Q € M, (7). Thus P ® Q € Co™
and property 3 is satisfied.

Functoriality: Let p : &1 — Sz and  : 71 — 73 be unital completely positive
maps, and let v € M,,(S1 ®. T1) be positive. If (¢, 1)) € uep(Sa, T2) we have that
(¢pop,ipon) € ucp(Sy,T1). Moreover,

(@) ((p@n)"(v)) = (dop)(¥on)™(v) =0

Hence (p ® 7)™ (v) € M,(S2 ®. T2)T and the functoriality follows.
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Symmetric: Consider the map 0 : S® T — T ® S : u ® v — v ® u, we shall show
that it extends to a unital complete order isomorphism from & ®. 7 onto 7 ®. S.

Firstly notice that (¢, ) € ucp(S,T) if and only if (v, ¢) € ucp(T,S).

Nowletv =73 s, ®t, € S®T and (¢,7) € ucp(S, T). Then,
(@-)(v) = D dsp)v(ty) = Y b(tp)d(sp)
=(¥- ¢))(th ®sp) = (Y- ¢)(9(Z sp @ 1p))

= (¥-0)(0(v))

Hence for av € M, (S ®.T) we have that v € M,,(S ®. T )" if and only if (6(v)) €
M, (S ®. T)*. It follows that the commuting tensor product is symmetric.

Theorem 2.28 Let A and B be unital C*-algebras, then A @. B = A Quma B

Proof: By theorem 2.15 we have that C!"** (A, B) C C°™ (A, B).

Conversely, suppose that u € C5%°™ (A, B). From theorem 2.24 we have that
A @maz B is completely order isomorphic to the image of A ® B inside the maxi-
mal C*-algebraic tensor product A @c+maz B. Let tg4 : A = A @cmaz B given by
tala) =a®lgand ip : B - AQ®c+maz B given by t5(b) = 14 ® b. Obviously,
these maps are completely positive and their ranges commute. Moreover, Theorem
2.24 implies that u € C"**( A, B) ifand only if (1 4 - t5)™(u) > 0. However the latter
is true by the definition of the commuting tensor product. Thus the proof is complete.

We have shown that the cones of the maximal tensor product are the smallest possible
and those of the minimal tensor product are the largest. Thus, we have the following
inclusions
gmar C crecom szn
n — n — n

as well as the following completely positive maps

id id
S Qmaz T — S Qe T — S Qmin T

It turns out that the above inclusions are in fact strict as we will see in later Chapters.
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3 The Quotient

In this Chapter we recall some fundamental results regarding operator system quo-
tients introduced in [19] are examined. In the following Chapter we will use the
quotient theory in order to construct the coproduct of operator systems.

Let (S,e1) and (7, e2) be operator systems, and ¢ : S — 7 be a non-zero (unital)
completely positive map. Note that the kernel, ker ¢, of ¢ is a closed (because ¢ is
continuous/bounded) *-subspace of S and does not contain e; (obviously). Further-
more, it is an order ideal of S, that means:

Ifxr €kerpand 0 <y < xtheny € kerp

However the reverse of the above arguments, in general, is not true. (for example:

span{E1 1} C M,,).

Let (S, e1) be an operator system and 7 a closed *-subspace of S which does not
contain e;. On the algebraic quotient S/J we let ¢ : S — S§/J be the canonical
quotient map. The vector space S/J has a natural involution induced by ¢, (s+J7)* =
q(s)* = q(s*) = s* + J, which turns it into a *-vector space. For each n € N we set,

D”(S/j) = {[Si]‘—Fj]i,j S Mn(S/j) = kL] € J such that [Sij—Fkij] S Mn(S)Jr}

The family {D,(S/J)}22, is a matrix ordering on §/J with e; + J as a matrix

n=1
order unit. Unfortunately, it is not Archimedean.

Definition 3.1 We call a subspace J of an operator system S a kernel if there exist
some operator system T and a (unital) completely positive map ¢ : S — T such that
J = ker p.

Remark: Let S be an operator system and J a kernel in S. Then the following holds
{[sij + T : [si] € Mn(8)"} = Dn(S/J)

Proof: The proof for the general case is no different than that for the case in which
n=1.
Call the set on the left hand side B. If s+ 7 € B,thens € ST andsofork=0¢€ J
we have that s + k = s + 0 = s € S*. It follows that B C D;(S/J).

Conversely, if s + J € D1(S/J) then there exist some k € 7 such that s + k €
S*t.Hence, (s+k)+J €{x+J :2 €S} Hence, D;(§/J) C B and the result
follows.

Let (S, e1) be an operator system and 7 C S a kernel. Consider the family of cones
{Cn(8/T)}22,, where for each n € N:

Co(S/T) ={[sij + T € Mp,(S/T) : Ve > 0 there exist k;; € J such that

e(e1)n + [zij + kij] € M, (S)"}
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= {[sij + Tl € Mn(S/T) : Ye >0, eler + T)n + [si5 + T) € Da(S/T)}

It was shown in [19, Proposition 3.4] that if we endow S/ with this family of cones,
then the quotient §/J becomes a matrix ordered *-vector space with Archimedean
matrix order unit e; + 7 and the quotient map ¢ : S — §/J is completely positive.

Definition 3.2 [19, Definition 3.5] The operator system (S /T, {Crn(S/ T} 1, e1+T)
arising from the above construction is called the quotient operator system.

Definition 3.3 Let S be an operator system and J a kernel in S. We call the ker-
nel J order proximinal if D1(S/J) = C1(S/J) and completely order proximinal
ifD(S/T) = Cu(S/T), ¥n € N.

The quotient operator system satisfies an operator system version of the First Isomor-
phism Theorem (see [19, Proposition 3.6.]):

Proposition 3.4 Let S be an operator system and J a kernel in S.

Whenever R is an operator system and ¢ : & — R is a unital completely positive
map with J C ker ¢. Then the induced map ¢ : S/J — R given by ¢(s+T) = ¢(s),
that is ¢ o ¢ = ¢, is also unital and completely positive.

Conversely, if ) : S/J — R is a UCP map between operator systems then there
exists a UCP map ¢ : S — R with, necessarily J C ker ¢ such that ¢ = q o 1.

Note: The above proposition remains true if we drop the condition on the unitality of

both sides.

A completely positive surjective linear map between operator systems ¢ : & — T
is called complete quotient map if the induced map ¢ : S/ ker ¢ — T is a complete
order isomorphism.

Lemma 3.5 Let (S,e1) and (T ,ez2) be operator systems, and ¢ : S — T a complete
quotient map. Then for everyn € N and every strictly positivey € M, (T) there exists
a strictly positive v € M, (S) such that ¢ () = y.

Proof: We will prove it for n = 1 the proof for the general case is similar.

Suppose that y € 7T is strictly positive. Then by definition, 36 > 0 such that:
y > Jes. Hence, y' = y — dex € T and consequently z = ¢’ + Se, € T+, Notice
thaty = ¢/ + dex = 2 + geg. From the hypothesis we have that b : S/ker¢p —» T
is a complete order isomorphism, in particular it is surjective, so there exists h =
h+ ker ¢ € S/ker ¢ such that z = ¢(h). The positive elements of the quotient are
those in the cone

C1(S/ker¢) = {(s+ker¢): Ye>0, 3k € ker¢suchthatee; +s+k € ST}

Take € = 2 then 3 k € ker¢ such that, e; + h+k € S*. Set = ey +h+k =
gel—l—(gel—kh—kk). Since %eﬁ—h—i—k > O we have that § > gel,this meansthat 3 € S
is strictly positive. Moreover, ¢(3) = ¢() = %62 + %el + ¢(h) +0 = %62 +z=y
and the proof is complete.
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Theorem 3.6 Let S and T be operator systems and ¢ : S — T be a complete quotient
map. Then the dual map ¢% : T¢ — S¢ is a complete order embedding.

Proof: ¢¢ is completely positive: Fix a n € N then for any G = [g;;] € M, (T9)*,
which we identify with the CP map G : T — M,, : t — [g;; ()] we have that

(6)"(G) = [¢(gi)] = lgij 0 ¢] +— G o ¢
and Gogisa composition of CP maps thus it is CP.

¢? is injective: It suffices to show that ker ¢ = {0}. To thatend let f : T — C be a
linear map with f € ker¢? then ¢?(f)(s) = 0 or equivalently f(¢(s)) = 0 for every
s € S.Since ¢ : S — T issurjective V¢t € T, 3 s € S such that ¢(s) = t. Thus we
have that f(t) = 0 for every ¢ € T and the desired result follows.

¢? is a complete order embedding: We will show that if G = [g;;] € M,,(T?) is such
that (¢4)"(G) € M,,(S%)7 then necessarily G € M,,(T?)* or equivalently that the
mapping G : T — M,, : t — [g;;(t)] is completely positive.

Let k € Nand [t;,] € Mu(T)*. Then G*([tim]) = [[9i;(tim)]ijlim. For any
€ > 0 we set [t5,,] = [tim] + €(e2)r € My(T), where ey denotes the unit of 7. This
element is strictly positive so from Lemma 3.5 we have that there exists a (strictly)
positive [sf, € My (S) such that [£F,,] = 0" ([s5,,]) = [6(s{,,)}- Thus,

(935t = 1963 (3(85 )i ]tm = [G(D(sf)tim = (G 0 &)F ([8fim)

Now the map G o ¢ : S — M, corresponds to the positive element ¢?(G) of
M, (8% so it is completely positive. Since [s,,] is a positive element of My (S)
we see that [g;;(t],,)]s,;]1,m is positive in M}, (M, ). Considering that ¢ was arbitrary
and t§, — t;,,, we conclude that [[g;; (tim)]i j]i,m € Mi(M,)*. This implies that

e—0

G is indeed CP.

Lemma 3.7 Let (S, e1) be an operator system and y a self-adjoint element of S which
is neither positive nor negative. Then the set span {y} = {\y : A € C} is a proximinal
kernelin S.

Proof: Firstly, we will show that it is a kernel. Assume that S = A is a unital C*-
algebra and let 7 = span {y}. We equip .A/J with the cone D; = Dy(A/J) =
{a+J : a € A"} and observe that Dy [\(—D;) = {0}. Indeed, assume that
de Di(\(=D;) thend = 1 + J = —x2 + J, where x; € A", i = 1,2. Thus
there exists some j € J such that 1 = —x9 + j which means that j = 1 + 25 > 0.
However j is neither positive nor negative, hence ;1 = 29 = 0andd = 0+ J =
0.4/7. Now we shall show that e; 4 J is an Archimedean order unit for (A/J7, Dy).
Letx + J € A/J be such that

eler+J)+x+J €Dy, Ve>0 (%)
We will prove that x + J € D; and it suffices do this for a self-adjoint 2. Condition
() is equivalent to the following: (ee; + )+ J € Dy, Ve > 0. Thus for every € > 0
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there exists some o € C such that ee; + 2 + oy € AT Since eey +x + .y € AT
it is self-adjoint, which implies that a. € R.

Consider the set P. = {« € R : ee; + x + ay € A"} this is a closed subset
of R (because AT is closed in A) and for every § > ¢, P. C Pj. Take the Jordan
decomposition, y = y1 — y2, y; € AT with y192 = y2y1 = 0, of y (remember that
A isa C* — algebra). For ¢ = 1 we have that e; + x + ay > 0 and by multiplying
left and right by y; we obtain:

Y +yizyr + ayiyyr >0

Y + 1oy + a(yiyr — yiye)yr > 0
oyt > —yi — yiay )

Since y; is non-zero, (I) gives us a lower bound for «. In particular, consider A as a
C*-subalgebra of B(H) for some Hilbert space H. Then since y; is non-zero and
positive there exists some h € H such that (yih,h),; > 0. Therefore from (I):
(—yi—y1zy1)h,h)

(yfh,h) H
we obtain an upper bound for a. We conclude that P; is bounded. Hence, (P:)o<e<1
is a decreasing e-net of closed and bounded subsets of R, i.e., compact, thus they
have a non-empty intersection. It follows that there exists some oy € () P, then
ee1+r+oay € AT, VO <e< 1 and letting ¢ — 0, we have = + apy > 0. This
implies that x + J € D;.

It is clear from the above points that (S/7, D1,e1 + J) is an Archimedean or-
dered *-vector space, so we can equip it with the minimal operator system structure
OMIN(A/J) (for more details we refer the reader to [18, definition 3.1]). The quo-
tient map ¢ : A — A/J is UCP and has J as a kernel, so from [18, Theorem 3.4] it
will be UCP from A to OMIN(A/J), and J remains its kernel. This proves that
is a kernel of a UCP map from A to an operator system and thus it is a kernel in A.

For the general case, suppose that A is a unital C*-algebra which contains S. We
have shown that there exist an operator system R and a UCP map ¢ : A — R with
kernel span {y}. Consider the restriction of ¢ on S, this remains a UCP map between
operator systems with kernel span {y}. This completes the first part of the proof.

az(

4L = B € R. Correspondingly multiplying both sides by yo

Now we will work towards proving the proximinality of span {y} which we will once
more denote by J. As before we start by examining the case in which § = A is a
unital C'*-algebra.

Let  + J be element in (A/J)t = C1(A/J) = C;. We can assume that z is
self-adjoint. By the definition of C; for every € > 0 there exists a.y € J such that
T + ee1 + a.y € AT. As in the previous case we have that a. € R. Set I, = {a €
R:z+ ay+ee; € AT}, then (Il )o<c<1 is a decreasing e-net of compact subsets
of R. Thus, () Il is a non-empty set, which means that there exists oy € R such that
x+agy+ee; € AT, VO < e <1 Hence,z + gy € A+, ie, 3 j € J such
thatx +j € At sox + J € D1(A/J). This shows that C1(A/J) C D1(A/J)
and since the other inclusion is always true we conclude that C; (A/J) = D1(A/J).
Now assume that y is an element in an operator system S. Consider S as an operator
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subsystem of a unital C*-algebra A. Theny € A so from the above we have that J is a
proximinal kernel in A. Let ¢ : A — A/J be the quotient map, this map is UCP with
kernel J. If qo : S — A/ J is the restriction of ¢ on S, then ¢q is UCP with kernel 7.
Therefore from theorem 3.4 we have that the induced map ¢ : S/J — A/J is UCP.
Lets+J € (S/J)" =C1(S/J),thens+ T € (A/J)" = C1(A/T) = D:1(A/T)
so there exists an element o« € AT such that s + J = o + J and since 7 C S,
must be in S. Hence, « € SNAT = ST ands+J = a+ J € Di1(S/J). The
result follows.

Let S be an operator system. A finite dimensional *-closed subspace J of S, which
contains no other positive element of S except from 0 is called a null subspace of S.

An example of a one dimensional null subspace of an operator system is the set
span {y} of the previous proposition.

Lemma 3.8 Let V be a vector space and vy, ...,v, € V.
Set J = span{vi,...,v,} and let Jy = span{vy,...,vx} C J . Then for J; =
span {37,105 + Jo} S V/ 0,

V/T= (/TN

In the case in which V is an operator system and Jy, J1 are proximinal kernels in V
and V' | Jy respectively then we have that,

1. There exists an order isomorphism between the matrix ordered spaces
(V. D1(V/Jo)) and ((V/To)/ T, D1((V//To)/T1))

2. There exists an order isomorphism between the Archimedean matrix ordered spaces
(V,C1(V/To)) and ((V/T0)/ T, C2L{(V/T0)/Tn))

Proof: Consider themap T : V/Jy — V /T defined by T (v + Jp) = v+ T, v €
V. It is easy to see that T" is well-defined, linear and surjective. We will show that
kerT = 7.

ket T'={v+TJo€V/Jo:T(v+ To) =0v,7}
={v+TeV/J:v+T=0+7T}
={v+ D eV/Ih:ve T}

Let v € J then there exist \;, 1 < i < n+ 1, such that v = Z?:l A;v;. Hence,

n k n n
U+Jo=ZAivi+Jo=ZAivi+ Z Aivi + Jo = Z Aivi +Jo € h
i1

i=1 i=k+1 i=k+1

Thus, ker 7" C 77 and the other inclusion is trivial. So we have that T : V /7y —
V' /J is a surjective linear map with kerT" = J;. Hence it induces a well-defined
isomorphism G : (V/Jo)/J1 — V /T givenby G((v+ Jo) + J1) = T (v + Jo).
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Now for the case in which V is an operator system.

Firstly we recall the following:
Ci(V)T)={v+T € V/J : Ve > 0 there exist k. € J such that ee; +v+k € VT}

and

Di(V)J)={v+TeV/T:veVT}

Furthermore,
Ci(V/To)={(v+To) €V/To:Ve>0, 1. € Jost.ees +v+T1. €V}

this is the positive cone of the operator system quotient V /7 and because Jp is
proximinal it is equal to

Di(V/To) ={v+ToeV/Tp:veVT}
Moreover,
Ci(V/To)/ ) ={(v+T)+ T € (V/To)T :
Ve > 0, Hké € Ji s.t. 6(61 + jo) + ((U + jo) + ké) € Ol(V/jo)}

Now we prove 1: Let (v + J,) + J1 € D1((V/To)/ 1) thenv + Ty € C1(V /o).
However, since Jp is proximinal in V, C1(V /7)) = D1(V /Jo) and so we have that
that v € V. Thus,

G+ T)+ ) =T+ J,) =v+J, withve V7

soG((v+To) + ) € Di(V/T).

Conversely, we will show that whenever G((v + J,) + J1) € D1(V/J) then
necessarily (v + J,) + J1 € D1((V/J0)/ ).
Indeed, G((v + J,) + J1) € D1(V/J) means that T(v + Jp) € D1(V/J) but
T(v+ Jo) = v + J which implies that v € V. Thus,

v+Jo € D1(V/To)

so (v+Jo) + T € Di((V/To)/Th))-

For 2: Let (v+ J,) + 71 € C1((V/Jo)/T1), since Ty is a proximinal kernel in V /7
this is equivalent to (v + J,) + J1 € D1((V/Jo)/J1) which from 1 means that
G(v+To)+ ) € D1(V/T), however G(v+ To) + T1) =T(v+ To) =v+ T
so we have that v € V1. Hence, for every ¢ > 0: ee; +v € V. Thus, letting
ke =0 € J for every € > 0, we have that

6€1+k6+’UEV+
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which implies that G((v+ Jo) + J) € C1(V /T).

On the other hand, suppose that G((v + J,) + J1) € C1(V/J) we shall show that
then necessarily (v + J,) + 71 € C1((V/J0)/T1)-

Indeed, G((v + Jp) + J1) € C1(V/JT) means that T(v + Jp) € C1(V /T ) however
Tw+TJ)=v+J.

It follows from the above that Ve there exists k. € J suchthatee; +v+k. ;=2 € VT,
Hence, Ve there exist \; . such that (ee1+v+> 1| A cv;)+To = 2+To € D1(V/To)
so

k n
(1 +v+ > Nevi+ > Nev)+Jo=z+J, z€VF, Ve>0
1=1 i=k+1
———
€Jo

or equivalently,

eler + Jo) + (v + Jo) + ( Z XieVi +Jo) =2+ To € D1(V/TF), Ye>0
i=k+1

[SVA

meaning that for every e > 0 there exist k. = Z?:kﬂ Ai,ei + Jo € J1 such that
eler +Jo) + (v + Jo) + ki € D1(V /o)
This is equivalent to (v + 7,) + J1 € C1((V/To)/ Th).

Proposition 3.9 Let S be an operator system and J a null subspace of S. Then J is a
completely proximinal kernel.

Proof: Firstly we will show that J is a proximinal kernel in S. This will be done
by induction. If J = span{y}, where y is a self-adjoint element of S then Lemma
3.7 proves the point. Suppose that the statement holds for every null-subspace of &
generated by n self-adjoint elements of S and let J be a null-subspace of S gener-
ated by n + 1 self-adjoint elements. Then J = span {y1, ..., Yn, Yn+1 Where every
yi, 1 < i < n+ 1, is self-adjoint. Set Jy = span{yi,...,y,} then Jp is a n-
dimensional null-subspace of S so from the induction hypothesis it is a proximinal
kernel in S.

Claim 1: The element y, 1 + Jy of S/Jp is self-adjoint and is neither positive nor
negative.

Proof of Claim 1: It is obviously self-adjoint (from the way we defined the involution
on the quotient). Now assume that it is positive, i.e, yp+1 + Jo € C1(S/T) =
Di(S/J0) ={s+ Jo : s € ST} (Jo is proximinal). Thus there exists z € St such
that yp+1 + Jo = « + Jo. Hence, 2 — yp11 € Jo = span{y1,...,Yn}, so I\; €
C, 1<i<nsuchthatx —y,4+1 = Z?:l Aiy;. It follows that z € 7, which means
that we have found a positive element in 7, however J contains no other positive
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element except from zero. Consequently, © = 0. Therefore y,,+1 + Jo = 0+ Jo, so
Yn+1 € Jo which is a contradiction. The fact that y,, 1 cannot be negative is proven
in a similar way.

It follows from the above claim that span {y,+1 + Jo} is the linear span of a self-
adjoint element of S/ Jy which in neither positive nor negative and thus from Lemma
3.7 we have that it is a proximinal kernel in S/ 7.

We set K := span {y,+1 + Jo} and consider the following quotient maps:
S8/ 15 (8/T) /K
For the map ¢ := ¢; o gy we have that:

kerg={s€S:(q10q)(s) =0s/7)/x}={5€S (s +To) =0s/7, + K}
Z{SES:(S-i—jo)-‘rK:O—l—jo—i-K}2{868:8+j0GK}ZJ

Since Jp is a proximinal kernel in S and K is a proximinal kernel in S/ 7, using
Lemma 3.8 we have that

Di(S/T) = Di((S/J0)/ K) = C1((8/J0)/ K) = C1(S/T)

We conclude that 7 is indeed a proximinal kernel in S.
In order to show that 7 is completely order proximinal we will use the identification

M (8/T) = Mn(S)/ My (T).
Claim 2: M,,(7) is a null-subspace of M, (S).

Proof of the Claim 2: M,,(J) is clearly a x-closed subspace of M,,(S). Suppose that
there exist non-zero positive elements in M,, (7 )and let [j;] be one of them. Then for
every unital (completely) positive map ¢ : S — C we would have that ¢"([jx]) =
[6(jri)] € M.}, ie., the matrix [¢(j;)] would be positive semi-definite. Thus, all of
its diagonal entries would be positive or zero. In the scenario where all the diagonal
entries are zero then the matrix would be the zero-matrix which in turn would imply
that [ji;] = 0 in M,,(J) which contradicts our hypothesis. We conclude that for
every state ¢ on S the matrix [¢(jx;)] must have some positive (non-zero) diagonal
entry. More specifically, there would be some k; € {1,...,n} such that for every
¢ : S — C completely positive, ¢(jk,k,) > 0 and it would be non-zero for at least
one of these ¢. Since S is an operator system (it has an Arch. order unit) this would
mean that jg, r, is a non-zero positive element of 7 which is a contradiction.

Finally, from the first part of the proof and claim 2 it is immediate that J is a
completely order proximinal kernel in S.
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4 The Coproduct

In category theory the coproduct of two objects O; and Os in a category is: another
object (in the same category) denoted O; * Os together with morphisms of this cate-
gory t1 : O1 — O % Og and 12 : Oz — O; x Oy, satisfying the following universal
property:

If fi : O1 — Oand fa : Oz — O are morphisms then there exists a unique mor-
phism F' : O1 * O3 — O such that F o1 = f1 and F' o 15 = f5. In other words we
have the following commuting diagram,

@
Fl
|

Olﬁ-ol*OQTOQ

In the category of operator systems the morhpisms are the UCP maps.

Given two operator systems S and 7 their coproduct denoted by S&; 7 is an operator
system together with UCP maps ¢t1 : § - S®1 T and 12 : S — S @1 T satisfying
the following: If R is an operator system and, ¢ : S — R and ¢ : T — R are UCP
maps then there exists a unique UCP map ® : S®; 7 — R such that P o¢; = p and
do lg = ¢, i.e.,

R
P A P
oI

|
is a commuting diagram.

We will construct this object with the help of operator system quotients.
The construction shown below is presented in Section 8 of [11], for a different con-
struction see Section 3 of [9].

Let (S,e1) and (T, e2) be two operator systems. Consider their direct sum

S@T C B(Hy) ® B(Hz), for some Hilbert spaces Hy, Ha, this is an operator
system in a canonical way with unit e; @ e5. The element (e1, —ez) := e; & (—e3)
is self-adjoint and neither positive nor negative. It follows from Lemma 3.7 that J =
span{(e1,—e2)} = {A(ex @ (—e2)) : A € C} is a proximinal kernel in S & 7.
In particular it is a null-subspace of S, so using Proposition 3.9 we see that it is a
completely order proximinal kernel. Thus we obtain the quotient operator system
S & T /J. We shall show that this quotient equipped with the maps ¢; : § — S ¢
T/T:s—(25,0)+Tandey : T - S®T/T :t — (0,2t) + J satisfies the
universal property of the coproduct.

Note: If Hy, Ho are Hilbert spaces and 71 T € (B(H,)®B(Hs))", then Ty &7,
(A® B)(A@® B)*, forsome A € B(Hy) and B € B(Hs). Thus, T1 & Tp =
AA* ® BB*andso T} = AA* € B(H,)" and T, = BB* € B(H»)".
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Firstly, we will show that ¢; and ¢5 are complete order isomorphisms.

Indeed, ¢; is unital since ¢1(e1) = (2e1,0) + J = (e1,e2) + J where the last
equality stems from the fact that (—eq, e3) € J. Furthermore, it is completely pos-
itive because it can be written as a composition of CP maps, specifically t; = g o f
where ¢ : S®T — S ® T /J denotes the quotient map and f : S - S ® T is the
map given by f(s) = (2s,0). It remains to show that ¢; * is CP. For this it suffices to
show that whenever we have [s;;] € M, (S) such that t7([s;;]) = [(25,5,0) + J]isa
positive element of M,,(S & 7 /J) then necessarily [s;;] is positive.

If [(2s:,0) + J] € M,,(S® T/J)™" from the way the positivity in the quotient
is defined we have that there exist scalars a;; € C such that

[(28@‘, 0)—|—Oéij (61, —62)}17' € Mn(SEBT)+, ie., [(2Sij+aij€17 —Oéij€2)]ij S Mn(S@T)J'_

From this and the previous Note we obtain that [—a;;es] € M, (7T)" and conse-
quently [—a;;e1] € M, (8)™ (a; are scalars). Hence, since M,,(S)™ is a cone

[sij] = [sij + aujer] + [—ajer] € M (S)™

It follows that ¢; is a complete order isomorphism and in a similar way one can show
that this is also true for ¢s.

We conclude from the above thatboth ¢ : S = S&T /T and s : T = S&T /T
are complete order isomorphisms.
Now assume that (R, e ) is an operator systemand ¢ : S — R, ¢ : T — R are UCP
maps. Consider the map ® : S ® 7/J — R given by the formula ®((s,t) + J) =

M, it will be CP because ¢ and ¢ are CP. Moreover, notice that

(@) ®((e1,e2) +J) = Llerfilea) — enten — op
(ii) (Do 11)(s) = B((25,0) + J) = LRI = 2200 — (), Ys € S
(iii) as above (P ow2)(t) = 9(t), Vt €T

Thus, ¢ is a UCP map with ® o ;1 = ¢ and ® o 13 = @ which implies that S &
T /span{(e1, —e2)} satisfies the universal property of the coproduct.
Subsequently, we have that

S®T/span{(e1,—e2)} =S P11 T.

Note: For operator systems (S, e1) and (7T, e3) we have that in the coproduct S &1 T
their units coincide. Indeed,

(2e1,0) + J = (e1,e2) + (e1,—ea) + T = (e1,e2) + T =

(e1,€2) + (—er,e2) + T = (0,2e2) + J
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Remark (i): The category with objects unital C*-algebras and morphisms the
*x-homomorphisms also admits a coproduct, the free product amalgamated over the
unit. If 4, Aj are unital C*-algebras their free product amalgamated over the unit,
denoted A; 1 Ajg, is a C*-algebra equipped with inclusions

leAj-).Al*l.Ag, ]21, 2
satisfying the following: If r; : A; — B(H), ¢ = 1, 2 are *-homomorphisms then
there exists a (unique) *-homomorphism 7 : Ay %1 Ay — B(H) withmot; =7, j =
1, 2.

Remark (ii): The coproduct of operator systems (respectively C*-algebras) can be ex-
tended in the obvious way to the case in which we have more than two terms.
In that case we would take for kernel

J ={(e,—e,0,...,0),(e,0,—¢,0,...,0),...,(e,0,...,0,—€)}
(here e denotes the unit of the corresponding operator system)
In order to prove some of our next results we will invoke the following theorem found
in [1] (for another proof see [5]).

Theorem 4.1 Let Ay, ..., A, be unital C*-algebras and p; : A; — B(H) be unital
completely positive maps, 1 < i < n. Then there exists a unital completely positive map
@Ay %1 -+ - %1 A, — B(H) whose restriction to each A; is ;.

Theorem 4.2 Letn € N and S; be an operator subsystem of a C*-algebra A; for 1 <
1 < n. Set

S=span{s;+ - +8,:8 €S8, 1 <i<n} C A %% A,

Then the canonical map S1 @1 - - - ®1 Sp — Ay *1 - - - %1 A, arising from the inclusions
i : Sp — Ak, k= 1,...,n is a unital complete order embedding with image S.

Proof: We will show that S satisfies the universal property of the coproduct.

Suppose that 7 C B(H) is an operator system and ¢, : S;,, — 7 is a UCP map,
form=1,...,n. Let g, : A, — B(H) be a unital completely positive extension of
(©m (obtained by Arveson’s theorem), using theorem 4.1 we obtain a unital completely
positive map ¢ : A %1 -+ %1 A, — B(H) such that ¢ [4, = @, Let s € S then,
s = 2?21 Ais; for some \; € Cand s; € S; so

o(s) = Z Aip(si) = Z Xi@i(si) = Z Xipi(s;) €T

Now it follows that for the map ® := ¢ [s: & — T we have that, ® [s = ¢n,, e,
S satisfies the desired universal property.

Remark: Using theorem 4.2 we see that if A;, 1 < ¢ < n, are unital C*-algebras then
the operator subsystem

A1+ + A, CTA %% A,
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is complete order isomorphic to the free product A; @1 - - - D1 A,.

Proposition 4.3 Let (S1,¢€1), (S2,€2), ..., (Sn, en) be finite dimensional operator sys-
tems. Then up to a (canonical) complete order isomorphism:

(51@152@1...@15’")d = {(pl@...@son c Sii@...@sg . @1(61) — ... = @n(en)}

Moreover, (S; ©1 So @1 -+ @1 S,)? is completely order isomorphic to a subspace of
(S188a &S,

Proof: Firstly, notice that the quotient map
G:S51DS D BS, >S1P1 S D1 - D1 Sy

is clearly a complete quotient map between operator systems, i.e., the induced map ¢
is a complete order isomorphism. Thus from theorem 3.6 the dual map

qd:(51@182@1"'@1$n)d—>(51@82@...@6‘”)(1

is a complete order embedding. This proves the second part.

Moreover, since (S; @S @ -+ B S, =SB S{ @ - - d SY, by identifying (S; ©1
Sy @1 - - @1 S,)? with its image under ¢? we have that

($1@18@1 - @18 C(S108d---08,) =SlesSie - oS8!

For the proof of first part we will discuss the case in which we have two operator
systems (S1, e1) and (Sz, e2) the general case can be proved in a similar way.

Set 7 = {A(e1 ® (—e2)) : A € C}, then §; &1 So = §1 @ S3/J and let
T ={pe(Sia8&): ¢ ls=0}

Suppose that ¢ € J°. Since (S1 @ S2)? = S @ SY, ¢ can be written as ¢ = ¢ ® 2
where ¢; € S;, i =1,2.

Furthermore, ¢ o j; = ¢1 and ¢ o jo = ¢o where j; : S1 = S1 B S : 51 — (51,0)
and jo : Sy = 81 B Sy 1 s — (0, s2) are the natural embeddings. Observe that
¢ [ 7= 0 means that:

o(Me1 @ (—e2))) =0€ S; @ Sa, VA EC
= p(e1®(—e2)) =0
— pe1®0+0D (—e2)) =0
<~ p(e1®0)+ (0D (—e2)) =0
= p(e1®90) = (0D ez)
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Thus,
p1(e1) = (¢ o j1)(e1) = d(e1,0) = $(0,e2) = (¢ 0 j2)(e2) = P2(e2)
Consequently,
T’ ={p1 @02 € ST B SF : pi(er) = pale2)}
Now we will show that the map L : J° — (S ® S2/7)* with L(f) = f, where

f((s1,82) +T) = f((s1,82)), is a complete order isomorphism.

Firstly, we see that f is well-defined because whenever (s}, s}) + J = (s1,52) +
J then (s}, s5) — (s1,82) € J so f((s},s5) — (s1,82)) = 0, which implies that

F((s1:85) + T) = f((s1.82) + T)- )
Moreover notice that for every f € J°, ker f C J and f o ¢ = f, so it follows from
Proposition 3.4 that L is a complete order isomorphism.

L is injective: It can be easily checked that ker L = {0}

L is surjective: Let ¢ € (S @1 S2)? = (S1 @ S2/J)? then ¢¢(v) € (S ® S2)? and
q%(1) 7= 0. Thus ¢%(¢0) € J and for every (s1,s2) + J € S1 @ Sa/J we have
that

L)) (1, 52) + ) = () (1, 82)) = $(a((s1, 52))) = $((s1,52) + T)
Hence L(¢*(1))) = ¥

We conclude that

(S18182)" = {p1 B2 € ST BST 1 p1(e1) = pa(e2)}

Remark: Suppose that S and 7 are operator systems and Sy C S and Ty C T are
operator subsystems, then the identity map

id:So®cTo = S®: T
is a completely positive.
Indeed, let (¢,%) € uep(S,T) and v € M, (Sy ®. To)*. If ¢pg = ¢ |5, and ¥y =
¥ |7, then (¢, o) € ucp(S,, To) and
(¢-¥)"(v) = (do - ¥0)" (v) € Mn((B(H))™.

This map can sometimes be a complete order embedding as shown in Lemma 2.6 of
[17]:

Theorem 4.4 [17] Let A;,© = 1,...,n,and B;, j = 1,...,m be unital C*-algebras.
Set S = A1 D1 - D1 A, T = BL®1 - D1 B, A = Ay %1 -+ %1 A, and
B = By %1 - - - %1 Bp,. Then, the inclusion of S ®. T into A @y B is a complete order
isomorphism onto its range, i.e.:

S Re T gao.i. -A Omaz B
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5 Quantum Correlations

Quantum mechanics is a mathematical framework used for the development of physi-
cal theories that attempt to describe the universe in a subatomic scale. In what follows
we state some of the basic postulates of quantum mechanics. For more information
on the topic of quantum mechanics the reader is advised to see [14].

Postulate I : To each isolated physical system, there corresponds a (complex) Hilbert
space H, called the state space. Every unit vector in H represents a possible state,
called state vector or pure state. The system is completely described by its state
vector.

The first Postulate tells us that the state space of a quantum system is described by a
(complex) Hilbert space. However, it neither tells us which Hilbert space corresponds
to a given physical system nor what the state vector of the system is. More often than
not figuring out these facts is quite difficult.

We will focus on the study of quantum systems which are not closed (they interact
with the environment). In particular in our scenarios there will be “observers” con-
ducting measurements on the systems. The next Postulate tells us in what way these
measurements affect the system.

Postulate II : Quantum measurements are always described by a class of operators
{M,}icj, where J is the set of all possible outcomes.

The probability that we observe outcome ¢, when the system is in a state y is given
bg\} pi = ||M;y||? and if we observe outcome i then the system changes to the state
The measurement operators satisfy the so called completeness equation :

> icy M M; = I, where I denotes the identity operator of the state space.

The completeness equation expresses the fact that the sum of all the probabilities of
all possible outcomes must be 1 (3, ; p; = 1).

Remark : The completeness equation need not necessarily be included in Postulate II
as it can be derived from the fact that the sum of all the probabilities of all possible
outcomes must be 1.

Indeed, let m € N and consider a quantum experiment with at most m possible out-
comes and let H denote the state space of the system. Now let {1;}7" ;| be a family
of operators where, M; € B(H),Vi € {1, ..., m}. Suppose that before the measure-
ment the system is at a state y, where y is a unit vector in H. Then,

m m m m m
L= "pi=> IMyl* =Y (Miy, Myy) =Y (M; Myy,y) = (Z Mi*Miyay>
=1

i=1 i=1 i=1 =1

Since the above equality holds for every unit vector y € Hy, it follows that:
S MM =1
i=1
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The following Definition stems form the above Postulate.

Definition 5.1 Let H; and Hs be finite dimensional Hilbert spaces. A finite family of
operators { M, : 1 < i < k}, with M; : H; — Hj is called a measurement system if
SF L MM =1

If Hy = H then we call {M;}; a measurement system on H;.

In one hand, Postulate II gives us a rule which determines the respective probabilities
of the different possible measurement outcomes. On the other hand, it also describes
the state of the system after the measurement. However, here we are mostly interested
in the former, i.e. in the probabilities of the respective outcomes. A mathematical tool
which is extremely useful in such instances is the Positive Operator Valued Measures
(POVM'’s for short).

Definition 5.2 Let H be a Hilbert space and k € N, a family { P,}| of operators on
H is called a (K -outcome) positive operator-valued measure or POVM for short if:

1. foreachi, P; is a positive operator ((P;h,h) > 0, Vh € H)
2. Zfil P; = Iy, where Iy is the identity operator on H.

Remark : Whenever we have a measurement system {; }; on some Hilbert space H
which is a state space of some system, then there exists a POVM {P;}; on H such
that

pi = (Py,y)

where as before p; is the probability to observe outcome ¢ when the system is in a
state y.
To see this, set P; = M M, for every 1.

When H = C" is finite dimensional, we identify the operators acting on H with the
elements of the algebra M,, of n x n-matrices, via the following process:

Let {e;}_; be an orthogonal basis for H we define for each T' € L(H) a n x n-matrix
A given by A= [(Tej, ei)]i’j.

Thus we can consider the POVM’s { P;}?_, acting on H = C" as a subset of M,,.

Definition 5.3 Let H be a Hilbert space, a family {R;}X | of orthogonal projections
(ie, R; = R? = R}, Vi) on H is called a (K -outcome) projection-valued measure

or PVM for short if: ZZK:1 R, =1Iy.

Clearly every PVM is a POVM. As we will see in the discussion that follows it is also
true that every POVM dilates to a PVM.

Theorem 5.4 Let {P,}X | be a POVM on a Hilbert space H. Then there exist a PVM

{R;}E | on H ® CX and an isometryV : H — H ® CX such that P, = V*R;V, for
alll < i< K.
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Proof: We identify H @ CX with the direct sum of K-copies of H, H®---® H = HY
(via the identification Zfil h;®e; «— (h1,...,hy,), where {e;} is the standard basis
of CK).

Let E; j be the K x K matrix with 1 in the (¢, j) position and zeroes elsewhere and
set R; = Iy ® E;, this will be a K x K matrix with Iy on the (i, 7)-position and
zeroes elsewhere. Thus,

0
hi
hay 0
R; . = |h;
: 0
I
. 0 -

That is, each R; : H ® CX — H ® CX is the projection on the i-th copy of H in
H ® CKX = HE. Obviously, R; = R} = R? and ZfilRi =Ig®Ix = Iggex.
Hence, {R;}X | isaPVMon H ® CX. Now, defineamap V : H — H @ CKX by
1
1 P (h)
V(h) =) Pr(h)®e; =

i=1

This map is linear and an isometry. Indeed,

IV(I)I? = (V(R),V(h) goex =

K K
1 1 P,=pP;
S (PEM).PEM) (enedox = Y (hPh) = (hh) = ||h]?
i=1 i=1
Finally, notice that for every 1 < j < K:
01 o
Pg(h)
1
PZh 0 :
(V*Rth7 h)H = Rj 1 ,Vh — Pfh , Pfh
0 .
Pih oo || 0| ]
: Pz(h
| Lol
b, pi
- (Pj h, P; h)
= (Pjha h)H

which implies that P; = V*R;V.
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Remark: We have shown that for h € H if we set h = Vh then,

(P 1) = (V' RV, B) gy = (Ri(VR), VA) yere = (Rih,h)

and since V is an isometry ||h| = ||
So, to sum up, whenever we are given a POVM {P;}?_; on a Hilbert space H and
h € H, we can always dilate the POVM to a PVM {R;}; via an isometry V : H —
HeC™

The elements of a POVM are not necessarily orthogonal projections, so the num-
ber of operators in a POVM can be larger than the dimension of the Hilbert space they
act on. However, since a PVM consist of projections summing up to the identity their
ranges are pairwise orthogonal, that is, R;R; = 0 = R;R;, for i # j.
(actually for the above claim to be true it suffices to have that their sum is less than
the identity)

Indeed, suppose that >*

R,, < I and fix i, j such that ¢ # j then

m=1
k
Y Rn<I-R
m#i
Therefore,
k
0 < RR;R; < Ri(Y>  Ry)R;
m#i

Ri(I -R)R;=R; — R?=0
Thus, R; R; R; = 0. But, then

*
Ri
2

=Ri . s *
0=RR’R; '=" R{RIR;R; = (R;R;)*R;R;

which implies that R; R; = 0.

Theorem 5.4 gives a way to obtain a PVM from a POVM in the case where we have
one measurement system when we have several measurement systems an analogous
result is given by the following.

Theorem 5.5 Let {P,;}, be a family of POVM’s on a Hilbert H, indexed byt € T
where |T| = n < co. Then there exist a Hilbert space K and a family of PVM’s{ Ry ;}1™,
acting on K fort € T and an isometryV : H — K such that V*R,;V = P, ;, Vt,i.
Moreover, if H is finite dimensional so is K.

Proof: We will prove it by induction to number of elements of 7. The case for n =1
is Theorem 5.2. Assume that it is true for |T| = n. Now suppose that |T'| = n+ 1. By
the induction hypothesis we know that there exist a Hilbert space K, an isometry
Vi : H — K, and a family of PVM’s {R, ;}/; for 1 <t < n such that V{*P, ;V; =
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Ry, ¥ie{l,...,m}andVt € {1,...,n}. Atfirst,let P, 1; = ViP,1 V"
Then P11, > 0 and

D Poiii = Vi) Papr)Vi = MV (*)
i=1 i=1

which is a projection (V; is an isometry). We want {]5”+17i}f’;1 tobe aPOVM on K
(the elements must sum up to the identity), so we adjust P, 41 1 by setting P, 1, =
V1Pn+1,1‘/1* + ([ - Vl*‘/l) }

Now on K7, we have PVM’s {R, ;}/, and a POVM {P,, 11 ,}7*, = (K1)™. Let
K = K; ® C™, and define amap V5 : K; — K by:

(PnJrl,l)%k
Vak =

(Pn-l-l,m)%k

Notice that:

(PnJrl,l)%k (P’I’L+1,1)%k
[Vakl||* = :

(Pn—i-l,m)%k' (P7L+1,m)%k

k, (Pnﬂ,i)%k)

Nl=

I

s
Il
-

<(15n+1,i)

M-

(ﬁnﬂﬂ»k, k:)
1

.
Il

3
3
3

(Tk, k) = [|%]*

=1

-
Il

Set Ryy1,i = Ik, ® Eii, 1 < ¢ < m, where Ej; is the m x m matrix with 1 in the
(4,)-entry and 0 elsewhere. Then {R,, 1 ;}", is a PVM and,

0 - 0] [(Pag11)2k (Puy11)2k
(V2 Bny1iVok, k) = (Ro1iVak, Vak) = | |2 : ; :
0 0 (anrl,m)%k (]Sn+1,m)%k
= ((Pas1) 2, (Pasi) )
— (Pnﬂ,lk,k)

which implies that V3'"R,, 1 Vo = ﬁn+1,1~
Forall 1 <t < n we set:

Qi = Vol ;V5', 2 < j<mand Qi1 = VaR 1 V5 + (1 - VoV5)
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Notice that V5'Q¢ ;Va = Ry j, thus Q¢ ; = VaR, ;V5 . For1 <t < n, {Qt’j}}”:l
are POVM’s, we need to show that they are PVM’s. We have that for t = n + 1,
{Ry+1,:}~, is a PVM. For the other ones, note that for j > 2

. o Vo Va=I « Bi =R x
Q}; = (VaRe;V3)(VaRy;Vs) ° 2 VaRy R Vs =" VaRy Vs = Qu,

Finally,
Q2 = (VeReaVs + (I = VaVi) (VaRea Vi + (1 = Vi)
— VaRi1Vs + (1= VaVy)
= Q4,1

It follows that (), j, j > 1 are projections. Hence {Qm};”:l are PVM’s, for all 1 <
t < n and there exists an isometry V' : H — K such that V*Q; ;V = P, ;, where
V =1V.

A system which can be thought of as being comprised by different parts is called a
composite system. We will study composite systems that are made out of two dis-
tinct physical systems. The following Postulate gives us an axiomatic mathematical
description of such a system.

Postulate III : The state space of a composite physical system is the tensor product of
the respective state spaces of the components of the total system. Furthermore, if we
have physical systems numbered 1 through n and each of them is in a state y; then
the joint state of the total systemis: y; ® - -+ ® Y.

For example : If we have two systems modelled by Hilbert spaces H; and Hs which
are in states hj and hg respectively. Then the total system is modelled by the space
H{ ® Hy and is in a state hy ® hs.

Non-local Games: Consider a two-person game which is played between two players,
Alice and Bob, and arbitrated by a referee R. Let I 4, I, O 4, Op be finite non-empty
sets. The sets I 4, I g are the sets of questions (or inputs) and the sets O 4, Op are the
sets of answers (or outputs) for Alice and Bob respectively. Since this is a game it will
have some rules, which are described by a function A : T4 x Ip x O4 x Op — {0,1}
where,
{1, means that this answer is correct
/\(.13, Y, a, b) = . .
0, means that this answer is wrong
the players and the referee are all aware of the rules (the function \).
Alice and Bob are playing the game cooperatively against the referee and they are not
allowed to communicate during the game. However, they may agree on a strategy
beforehand. We denote a game with input sets I, J, output sets A, B and rule function
AbyG=(I,J,A B,\).
For a one-round game the referee gives Alice a question z € I4 and Bob a ques-
tion y € Ip and the players do not know what question the other was given. Then
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each of the players independently (without communicating) produces outputs (an-
swers) a € Oy and b € Op. They win the game if A\(z,y,a,b) = 1 and lose if
Mz, y,a,b) = 0.

A two-person non-local game is a game G = (14, Ip,O4,Op, A) together with
a probability distribution w : I4 x I — [0,1]. In a single round of the game the
referee selects a pair of questions (z,y) € I, x Ip according to the probability distri-
bution 7 and communicates x to Alice and y to Bob, then they return answers a and
b respectively. The tandem Alice-Bob wins the round whenever A(z,y, a,b) = 1 and
loses the round otherwise. Moreover, each of them knows neither the question the
other was given nor his/her answer. We will concern ourselves only with non-local
games that involve two players, so we will drop the term “two person” and will refer
to them as “non-local games” or “games”.

Obviously, the probability distribution 7 acquires significance only when the game
is played multiple times. When we are concerned with winning every round of the
game independently of the chosen pair (z,y) of questions then 7 can be omitted all
together, in these cases by game we mean the quintuple G = (I4,15,04,0p, A).

We mentioned that Alice and Bob, although not allowed to communicate during
the game, can come up with some strategy beforehand in order to win the game. A
strategy can be either deterministic or probabilistic (they win the game with a certain
probability).

Definition 5.6 A deterministic strategy for a non-local game
G =(1a,Ip,04,0p,\) is a pair of functions (f,g) with f : [4 = Qs andg: Ig —
Op.

We interpret a deterministic strategy as follows, we view the pair (f(x), g(y)) as the
answers that are given by Alice and Bob to the questions (z,y).

A deterministic strategy is called perfect if it yields a win for the players independently
of the choice of an input pair, that is, if

Maz,y, f(x),9(y)) =1, Ve € Iy and Vy € Ip

Notice that when following deterministic strategies, given a fixed (z,y) € I X Ip
that appears as an input pair in two different rounds of the game, the players have to
respond with the same output pair, namely (f(x), g(y)).

As we will see probabilistic strategies offer a significant advantage to the players
compared to deterministic ones.

We say that Alice and Bob follow a probabilistic strategy when they generate out-
puts according to some probability distribution. Formally, a probabilistic strategy is
defined as follows:

Definition 5.7 A probabilistic strategy for a non-local game G = (14,1p,04,0p, )
is a family of probability distributions:

p={(p(a,bz,9))(apcorx0s : (2,y) € I4 x I}
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Ifp = {(p(a,b | 2,9))ap)cosxos : (x,y) € Ia x Ip} is a probabilistic strategy
for a non-local game G = (I4,15,04,0p, ), we interpret the value p(a,b | z,y)
as the joint conditional probability that the players will answer with the pair (a, b), if
they are given an input/questions (x, y).

Therefore it is clear that for any probabilistic strategy p:

pla,b| z,y) >0 and Z pla,b|z,y) =1, Ve €1y, yelp
(a,b)EOAXOB

Henceforth any tuple ((p(a,b | 2,y))acoa,beOr zelaycis satisfying these condi-
tions will be called a correlation and we shall use the terms correlation and strategy
interchangeably.
Notice that any correlation ((p(a,b | 2,Y))ac04,beOp aerayely can be viewed as a
vector in R™ with non-negative coordinates, where N = |14||I5||04||Op|.

In the scenario in which the players follow a probabilistic strategy they are in a
position to vary their answers for the same pair of questions, this flexibility is what
gives them the aforementioned advantage (compared to a deterministic strategy).

Definition 5.8 A probabilistic strategy

p=1{((a,b|z,9)@pcoxop : (x,y) € Ia x Ip}

for a non-local game G = (I4,Ip,04,Op, \) is called a non-signalling (or NS) corre-
lation if for allx € I4 andy € Ip it satisfies the following:

L Zb’e(’)B p(aab/ | x,y’) = Zb/eoB p(a7b/ | xvyll)v y/ay// € IBaa € OA
2. Za'eoA pla’,b ]2, y) = Za'eoA p(a,b | 2", y), o', 2" € 14, b € Op.

If we have a non-signalling correlation p we let p(a | x) (resp. (p(b | y)) denote
the values obtained from the sums in 1 (resp. 2) of definition 5.8. The conditions
required for a probabilistic strategy to be non-signalling are formal incarnations of the
requirement that Alice and Bob do not communicate during the game. Indeed, they
ensure that the conditional probability distributions p(x, * | x,y) have well-defined
(the sums in 1 and 2 do not depend on a and b, respectively) marginal distributions,
namely p(x | z) and p(* | y). Thus, there is a well-defined probability p(a | ) that
Alice responds with an answer a given a question z, independently of what Bob’s
question and answer is (and similarly for Bob 3 p(b | y)).

We denote the set of all non-signalling correlations by C,,s.
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Remark: C,; is a convex set.

Indeed, let p1,p2 € Cns and A € [0, 1]. Then for p = Ap; + (1 — A)p2 we have that
forallz € I4, y',y" € Ip,a € Oyt

> opab [zy)= Y Opila,b [2,y) + (1= A)pa(a,b | 2,9))
beOp b'eOp

=A Z pl(a’b/|x’y/)+(1_)‘) Z pQ(aabllxvyl)

beOp beOp
=\ Z pi(a,b |z, y")+ (1= N) Z pala, b | z,y")
beOp beOp
- Z ()‘pl(a” v | €L, y/,) + (1 - )‘)pQ(aa v | I?ZJN))
veOp
> pad |2y
veOp

where the third equality stems from the fact that p;, pa € Cps.
Similarly Y, c0, P00 | ©,9) = Sueo, pla.b | 2”,y), a'a” € La, j €
Ig,be Op.
Definition 5.9 The probabilistic strategy of definition 5.8 is called perfect if
whenever \(x,y,a,b) =0, then p(a,b|x,y) =0

Clearly, if the players follow a perfect strategy they win every round of the game, in
that case we say they win the game with probability one.

If (f, g) is a deterministic strategy (see 5.6) then it gives rise to the probabilistic strat-
egy py,q defined by,

1, ifa= f(x)and b= g(y)
0, otherwise

prglab|z,y) = {
Another way to see this is that py 4(a,b | z,y) = ps(a | x)pe(b | y), where

pf(a|x):{l, ifa = f(z) nd pg(by):{l, ifb = g(y)

0, otherwise 0, otherwise

It is easy to see that such a strategy is non-signalling.

A more general class of probabilistic strategies consists of the convex combinations
of strategies of the form py 4.
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Definition 5.10 A non-signalling correlation
p={(p(a,b| x7y))(a,b)eOA><OB ‘(z,y) € Ia x Ip}
is called local if there exists families of probability distributions
i) ={(p (@ | 2)acon i 7 € La} andp® = {07 (b | y))veos  y € In}

as well as non-negative scalars A\, k = 1,..., m such that
p(a,b | z,y) = Z)\kpk (a| z)p, (b|y) x€la,yelp, ac Oy, beOp

as a convex combination.
We denote the set of all local correlations by Co..
Remark (i): Viewing a non-signalling correlation p as a vector in RY, where N =

, and by appealing to Caratheodory’s Theorem, one can show that
the set Cj,.. is a closed subset of R (that is, it is closed in the product topology).

Indeed, let (p,,)nen be a sequence in Cj,. such that p,, — p in the product topology
of RY. We have to prove that p lies in the convex set Cj,...

Since p,, € Cjoc, V1 € N, every p,, can be written as Z:ll )\i,,bp%’n ® pf)n where
Pin:lax 0 —[0,1]and p?,, : Ip x Op — [0, 1] are functions, that s,

prla,b | x,y) = ZAlnpzna|'r (b|y)

Now, by Caratheodory’s Theorem each p,, is a convex combination of at most IV + 1
elements of the form pl ® p2, ie, foreveryn € N

N+1
2
Pn= Atnbio @i

Notice that these sequences live in bounded sets of finite dimensional spaces, and that
there are finitely many of them (N + 1 at most which is a fixed number), so we may
pass to subsequences in order to ensure that there are scalars \; € [0, 1] as well as
functions p} € [0,1]74%94 and p? € [0,1]72%95,1 <t < N + 1 such that

lim Ay, = Ar, limpy , (| @) = p;(a| x) and limp; , (b | y) = pi(b|y)

forall (z,y,a,b) € [y x Ip Xx Oy x Ogandt =1,...,N + 1. It follows that

N+1
. 1 2
p=limp, = > App” ©pf”
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which lies in the convex set Cjc.

Remark (ii): The extreme points of Cj, are the strategies of the form py ,.

Proof: Let p € Ci,. and suppose that p is not an extreme point then there would be
1,02 € Cioe with p; # po and A € (0,1) such that p = Ap; + (1 — A\)pe. Thus, we
would have that forallz € 14,y € Ig,a € O4,b € Op:

pla,b|z,y) = Ap1(a,b | z,y) + (1 — N)pa(a,b | z,y)

Fix (z,y) € I4 x Ip, since py # ps we would also have that for some (a1,b1) €
OA X OB:
pi(a1, by | ,y) # pa(ar, by | 2,y)

Assume that p; (a1,b1 | ,y) > p2(a1,b1 | z,y) then,

plar, b1 [ 2,y) = Ap1(ar, b1 | 2,y) + (1 = N)p2(a1, b1 | 2,y)
> Apa(a1, by | z,y) + (1 — N)p2(ar, by | x,y)
=pa2(a1,b1 [ z,y) >0
and
plar, by | z,y) = Api(ar, b [ 2,y) + (1 — A)p2(a1, by | 2,y)
< Ap1(a1,by | z,y) + (1 — Np1(ar, b1 | z,9)
=pi(ar, b [ z,y) <1

Thus we see that 0 < p(a1,b; | 2,y) < 1 so p does not arise from a deterministic
strategy.

We will now show that if p € Cj,. arises from a deterministic strategy then it is an
extreme point. Consider a correlation p in Cj,. arising from a deterministic strategy.
Then p is of the form p¢ , for some functions f : Iy = Ogand f : I — Op.
Suppose that p was not an extreme point then there would exist p1,p2 € Cjo With
p1 # p2 and A € (0,1) such that p = Ap; + (1 — A\)pa. Therefore, we would have
thatforallz € I4,y € Ig,a € O4,b € Op:

p(a,b | z,y) = Ap1(a,b| z,y) + (1 = N)p2(a,b | z,y)

Since p; # p2 we also have that p;(a,b | z,y) # p2(a,b | x,y) for (at least) one
quadruple (z,y,a,b) € Iy x Ig x O4 x Op. Let (x1,y1,a1, b1) be that quadruple.
Then,

pla1,b1 | z1,y1) = Ap1(ar, b1 | z1,91) + (1 — N)p2(ar, b1 | 21,91)

Ifp(a1,b1 | x1,y1) = 0thenpi(ai, by | ©1,y1),p2(a1, b1 | 1,y1) must both be equal
to zero which is a contradiction. On the other hand if p(a;, b1 | 1, y1) = 1 then since
pi(a1, b1 | z,y) # pa(a1,b1 | x,y) they cannot both be 1 which means that one of

75



them is strictly less than 1, let pa (a1, by | x,y) be that one. However, in this case we
would have that

1 =plai,b1 | z,y) = Ap1(a1, by | z,y) + (1 = N)p2(ay, by | 2,y)
<A 1+(1-N)-1=1

which once again is a contradiction.

We will now define some additional classes of NS-correlations, this will be done using
POVM’s.

Definition 5.11 A non-signalling correlation

p= {(p(a7b | xvy))(a,b)eOAx(’)B C(zyy) € T4 % IB}
is called

1. quantum: if there exist a finite dimensional Hilbert spaces H o (Alice’s state
space) and Hp (Bob’s state space), a unit vector { € Ha @ Hp and for each
x € Iy aPOVMA{E; }aco, on Hy and foreachy € Ip {Fyp}oco, on Hp
such that

pla,b | z,y) = (Ere ® Fyp€,6), forallx € Iy, yeIp, a€ O, be Op

2. approximately quantum: if there exists a sequence (p,, )nen of quantum corre-
lations such that p,, —n_s00 P

3. quantum commuting: if there exist a (possibly infinite-dimensional) Hilbert
space H (shared state space), a unit vector ¢ € H as well as POVM’s on H
{Ez,a}aco, for each x € I4 and {Fy}vco, for each y € Ip, such that:
EroFyp = FypFyq forallz,y,a,band

pla,b| x,y) = (Ep,aFyp)s,E), forallx € I4, y€ Ip, a€ 04, be Op

The set of all correlations (p(a,b | x,y)) as in 1 arising from all choices of finite-
dimensional Hilbert spaces H4, Hp, all POVM’s on H 4, Hp and all unit vectors in
H 4 ® Hp is called the set of quantum correlations and is denoted by C,.

Similarly the set of all correlations (p(a,b | ,y)) as in 3 arising from all choices of
the Hilbert space H, all POVM’s on H and all unit vectors is called the set of quantum
commuting correlations and will be denoted by Cye.

The set of all approximately quantum correlations will be denoted by Cy,.

Proposition 5.12 For the correlation sets defined, we have the following inclusions:

Cloc c Cq - an C ch - Cns
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Proof: For the first inclusion: Suppose that p = >, )\Zpgl) ® p( ) ie, p(a,b |

?

T,y) =y Ang (a| l‘)pl (b | y) is a convex combination, where
pt:Oxx Iy —[0,1]and p? : Op x Iz — [0, 1]

are probability distributions. Thus p is an element of Cj,..

Now, for each (a x) € O x 14 letting e, 1) (i) = vVAip; (a | ) we obtain a function
: {1,...,m} — [0,1], that is, an element of the Abelian finite dimensional

Von-Neumann algebra [°°([m]). Similarly letting f(; (i) = v/A;p?(b | y) we obtain

a function f, ,) € 1°°([m]). Moreover, if we set E(, ,) and F{, ) to be the diagonal

operators diag(e(q,z)(4)) and diag(f(,,) (7)) respectively, and denote the standard

basis of [?([m]) by {d;} then

pla,b | z,y) Ze(a 2) () fo,) (7 Z (Ez,0)Fy.0))0i,0:) = Tr(Eep.a)Fly.p))
i=1

Now, write E(r,a) = F,a) ® I, and F(y,b) = I, @ Fiy ) these are operators
acting on ?([m]) ® [2([m]), and let £ = \/% o, 6; ® 6; (this is a unit vector on
12([m]) @ ?([m])) then:

plab|,y) = (Bea ® Flyn)E:€)

it follows that p € C,,.
In particular, we have shown that every local correlation can be written in the form of
a quantum correlation as in Definition 5.11 with the added condition that the families
of POVM’s commute.

The second inclusion is obvious.

For the third inclusion: We will make use of a fact that will be proven later on, which
is that the set Cy. is closed. Since it is closed it will contain the closure of any of its
subsets. Thus, it suffices to show that C; C Cye.

To this end, suppose that we have a correlation p such that forall x € 14, y €
Ig, a € OA, be Op:

pla;b ]z, y) = (Era @ Fyp)E,€)

where foreachx € I 4, {E; 4 }aco, are POVM’s on a finite dimensional Hilbert space
H, and for each y € I, {Fy}bco, are POVM’s on a finite dimensional Hilbert
space Hp, and £ € H, ® Hp is a unit vector. Then by letting E’(w’a) = Fg,a) @1
and F(y’b) = I ® Fiy ) we see that for z € 14,y € Ip: {E(z’a)}a and {F(yﬁb)}b
are commuting families of POVM’s acting on the Hilbert space H := Hy ® Hp.
Furthermore,

pla.b|z.y) = ((BeaFyt.€)

which proves the desired inclusion.
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For the fourth inclusion we work as follows, assume that p € C;., then by Definition
5.11 there exist a Hilbert space H, a unit vector { € H and POVM’s {E, , }4c0, and
{Fy 1 }veo, acting on H whose elements commute, such that

pla,b| x,y) = (Eg,aFyp)§,§), forallz € Iy, y € Ip, a € Oy, be Op

The aforementioned commutativity implies that Er aF wh = =F 3 Eg? a

(If the positive operators A, B commute then B commutes w1th with f(A) for all
polynomials f, and since Az is the limit of g(A) for some polynomials g it follows
that B and A2 commute. The same reasoning gives us the commutativity between
Az and B %)

Now using the above it follows that
11 11
plab | w,y) = ((BiaFy,)6 (BZaFy,)6) = 0
Since, {Ey.q }aco, and {Fy b }peo, are POVM’s and £ is a unit vector we have that

Z p(a,b ‘ x,y) = Z ((Em,aFy,b)g,g) =

a€0,be€Op a€0,4,b€0p
<ZFyb£72Eﬁfa£> gf)—l
beOp acOy
and
doplab|zy) =Y (BraFyp)é €)= ( Eral Y F,b§> Eraé,€) >0
beOp beOp beOp

Similarly it is shown that }° ., p(a,b | z,y) = (F,§,€) > 0. Notice that
(Ez4€,€) and (F, p€, §) are independent of y and x respectively.
Thus, p satisfies the non-signalling condition, i.e., p € Cps.

Proposition 5.13 The set C, of all quantum correlations is convex.
Proof: Let H 4 ;j and Hp ; be Hilbert spaces, j = 1, 2. Suppose that £; are unit vectors

on Hy; ® Hp j, and for each z,y: {EJ ,}a, {Fy,y}» are POVM’s acting on H 4 j and
Hp ; respectively. Then

pl(a7 b | Ji,y) = ((Ei,a ® Fyl,b)glagl) and p2(a7 b | Ji,y) = ((Ef,a ® FyQ,b)§Qa§2)

are elements of C,. Let A € [0, 1], we shall show that the probability distribution
Ap1 + (1 — A)p2 also belongs to Cy, i.e., it can be written as in 3 of definition 5.11.

Consider the following operators

E:c,a = E;-,a S3] Ei,a and Fy7b = Fyl,b ® FyQ,b
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acting on the direct sums Hy 1 @ Hy 2 and Hp 1 ® Hp o.
Now,

(Haa®Ha2)®(Hp1®Hpo) = (Ha1®@Hp1)®(Ha1QHp2)B(Ha2@Hp1)®(Ha2®Hp 2)

Thus in this Hilbert space the vector £ = VA&, @ 0@ 0@ /1 — A& is a unit vector.

Moreover,

((Em,a ® Fy,b)fvg) =

(Bzo ® Fyp) @ (By o @ Fyy) ® (B; . @ Fyy) @ (B, @ Fyy))E,€) =
((Ei,a RF )V @080 (B2, @ F2)V1 - M, VA @080 VI - Agg) =

((BLa @ FL)VAGLVAG) + (B2, @ F2)VT =&, V1= 26 ) =

AN(Ey,® Fyl,b)fhﬁl) +(1-N((E2,® Fy2,b)§2>§2) =

/\pl(avb | x,y) + (1 - A)pQ(avb | x7y)

and the result follows.
Proposition 5.14 The set Cy, of all approximately quantum correlations is convex.

Proof: Suppose that p, g € Cyq and let X € [0, 1]. There exist sequences (py, ), (gn)n
of quantum correlations such that p,, —, o p and ¢, —n 00 P. Since Cj,. We
have that for every n € N, Ap,, + (1 — A\)¢,, € Cjoe. Moreover,

The result is immediate.

It is also true that C,. is convex, a fact that will be shown in the sequel (see Subsection
5.1.3). It was shown in [6] that the set C, is not closed.

5.1 Characterizations of the sets of correlations

We will try to interpret the definitions of the various correlations classes we have seen
in terms of the theory of tensor products of operator systems.

Throughout this chapter we will make use of the notation [n] = {1,...,n} for a
n € N.
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Let k € N, then C* with component-wise multiplication and component-wise com-
plex conjugation is an Abelian C*-algebra. The canonical basis of C* will be denoted

by {e; }§:1~

Notice that C* is (canonically) *-isomorphic to the Abelian C* algebra A}, of
the £ x k diagonal matrices with complex entries which in turn is (canonically) *-
isomorphic to the C* algebra of functions on k isolated points. To see this check that
the map defined by sending a matrix diag{v1,...,v,} to the function f : [k] — C:
i — v; is indeed a *-isomorphism. Furthermore, observe that the set {J;}7_; where
for each 4, §; : [k] — C is given by

. 1, ifi=j
5i(]):{ !

0, otherwise

is a set of orthogonal projections and it spans the aforementioned C*-algebra.

We will denote this Abelian C*-algebra by £°, i.e.,
3 :w:{()‘i)le ‘NEC1<i<k}=CF

k- times

If S is an operator system we write

kS =8 ®S

k- times

5.1.1 Local Correlations

Let
D=0® -4
—_———
n-times
notice that we have the following isomorphisms
D=C'o ..gC'=CF
—_——
n-times
so D is x-isomorphic to the space of all (continuous) functions on k™-points. In addi-

tion, for 1 < v < n we write e;’i for the i-th standard basis vector e; of /7° occurring
in the v-th term of the tensor product, that means

62,i=1®"'®1®€i®1®"'®1

n-terms

Definition 5.15 Let A be a C*-algebra, a state of A is called pure if it is an extreme
point of the state space of A.

Proposition 5.16 A correlation (p(i,j | v,w)) is in Cio. if and only if there exists a
state s on the tensor product D @ D such that

p(i,j | v,w) = s(€v,i ® ew j) (*)
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Proof: Formula (x) is equivalent to saying that p}.(i | v) = s (e, ;) for some state
st D — Cand pi(j | w) = s2(ew,;) for a state s : D — C. As we have seen an
element of C;,. can be written as:

m
pli, g [v,w) = Xepp(i | v)pi(j | w)
k=1
so it becomes

m m
p(i,j | v,w) = Z Aisi(€,)si(€w ) = Z Aiesi @ st (€v,i @ €uw,j)
k=1 k=1

so it is a convex combination of product states. We shall show that such combinations
yield all states on D ® D.
Recall that :

DD=C{L,....,k" ) @C{1,...,k"}) =C{1,...,k"} x{1,...,k"})
For the last equality in particular we have that :
C([k"]) @ C([k"]) = span{f @ g : f € C([k"]),g € C(K"])} = C([K"] x [¥"])

where for f € C([k"]) and g € C([k"]), f ® g € C([k"] x [k"]) is the function given
by (f ®g>(l>]) = f(z)g(J)a Vi, j € [kn]

In general, given a compact (Hausdorff) space K it is known that the pure states of
C(K) are the evaluations at the points of K, so the pure states of D ® D are the
evaluations at the points of {1,...,k"} x {1,...,k"}.

Let (¢,7) € {1,...,k™} x {1,...,k™}, we will denote the evaluation at the point
(i,5) by (i, J)- -

Let p be a pure state of D ® D then p = (i, j) for some i € [k"],j € [k™]. Moreover,
if f=3%, fu ®gr € D®D then,

N =GN frog) = fe@a)id) =Y fiuli)ani)
k k

k

=N ifien) = (e N fr @ o)
k

k

Thus, every pure state p of D ® D can be written as p = 1 j

Since D ® D is a unital C*-algebra its state space is the closed convex hull of the pure
states ([13, Corollary 5.1.9]).

Let w be a state on D ® D then there exists a sequence w,,, whose every term is a
convex combination of pure states, such that w,, — w. Thus, for every n € N:

n
1 2
Wn = E :/\iansi,n ® Sin

i=1
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now using Caratheodory’s theorem we obtain the desired result.

The remaining correlation classes will be described with the help of the following
coproduct of operator systems
S(n, k) =07 @1+ D1 L7, n,keN
—_——
n-times

In particular we will see that correlations belonging to the aforementioned classes can
be realized as states on the tensor products of spaces of the above form (co-products
of I2°, ¢ € N). We will see that each class of correlations corresponds to a different
tensor product.

For the next subsections we will write (e;,4)*_; for the canonical basis of the z-th
copy of £¢° in the coproduct S(n, k). Thus,

((exa)imt)icr = (era)hmy © -+ @ (ena)iy
Another space that we shall find to be useful is :
A(n, k) = 050 #q -+ #q £
to be more specific the usefulness of the last space lies in the fact that
S(n, k) Ceoi. A(n, k) (see Theorem 4.2)

For a Hilbert space H, the following Lemma and Proposition reveal to us an inter-
esting correspondence between unital completely positive maps from £5° to B(H)

and POVM’s on H, and respectively between unital completely positive maps from
S(n, k) to B(H) and families of POVM’s on H.

Lemma 5.17 Suppose that @ : {5° — B(H) is a unital completely positive map then
{o(ej)}1<j<k is a POVM on H. Conversely, if { E;}1<;<k is a POVM then the linear
map ¢ : £5° — B(H) defined by ¢(e;) = E; is unital and completely positive.

Proof: In order to prove the forward implication notice that e; is a positive element
of £7°, for all j € [k] and

dej=(1,...,1) =15
JE[K]

Thus p(e;) € B(H)", Vj € [k] and >_jers ¥(€j) = In which proves the forward
part.

For the converse, assume that P = [p,s],s € M,({;°)" and define the map ¢ :
03° — B(H) via ¢(e;) = E;. Since {e; } is a basis for the vector space £7°, ¢ extends
uniquely to all of £2°. Moreover

o(lee) = <P(z ej) = Z E; =1y

JEk] J€[k]
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so this extension is unital. Now taking into consideration that C is a commutative
C*-algebra, for the complete positivity of ¢ it suffices to show that it is a positive
map. To this end let @ € (£7°)", then @ = 37, ;) Aje; where all the coefficients \;

are in R™. Consequently,

Z/\e] Z)\jgoe] Z/\EEB H)*

JElk] JE[K] JE[K]

which completes the proof.

Remark : The above theorem remains true if we replace unital completely positive
maps with unital *-homomorphisms and POVM’s with PVM’s.

A sketch of the proof of this result using the terminology established in the proof of
the Lemma:
In the case that ¢ : 7° — B(H) is a *-homomorphism we have that

(p(e)? = @(ef) = p(e))

and
(ples)” = p(ej) = wle;)
On the other hand when { £} ; isaPVM on H we have that forana = 3, Aje; €

0,
=) NE =Y XNE=¢(> Nej) =

Jelk] JE[K] JE[K]

Proposition 5.18 If ¢ : S(n,k) — B(H) is a unital completely positive map then
{p(ex,a)1<a<k} is a POVM on H for every x € {1,...,n}. Conversely, if for every
ze{l,...,n}, (Fy.a)1<a<k is a POVM acting on H then there exists a (unique) unital
completelyposztwe map ¢ : S(n, k) — B(H) such that:

Vleg,a) = Eyq foralla € {1,... k}.

Proof: Let £7°,, 1 < z < n denote the z-th copy of /¢° in the coproduct S(n, k)
then as operator systems (;°, C S (n, k). Thus the restrlctlon of ¢ on £7°, is a unital
completely positive map and by applying Lemma 5.17 we have that {<p(e v.a)1<a<k }
isaPOVM on H forevery 1 < x < n.
For the converse, suppose that (Ey 4)1<a<k, 1 <z < nis a family of POVM’s acting
on H. Once again we apply Lemma 5.17 and for each z € [n] we find a UCP map ¢, :
2%, — B(H) such that 9, (€s,a) = Ey,q, forall a € [k]. By the universal property of
the coproduct, there exists a (unique) unital completely positive map ¢ : S(n, k) —
B(H) such that ¢ [ £3°, = ¢, (remember that S(n, k) = 7° &1 - @1 £)7).

| A .

n—times

The proof is now complete.

Consider the set
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k
{{M,a)ar--»(Ana)a) s XNia €C, Vie [n],a € [k]and I c e Csit. Z Xia =, Vi}

a=1

= {((M.a)as- s Ana)a) : Nia)a € £°,Vi € [n] and mefz& o, Vi, i’}

as an operator subsystem of £, this means that V(n, k) is seen as an operator system
with the operator system structure it inherits from £75..

Proposition 5.19 The dual of S(n, k) is completely order isomorphic to V(n, k).

Proof: We have that S(n, k) is the coproduct £3° @1 - - - @1 £;° and the coproduct was
| .

n—times

deﬁnedasﬂi‘”@'~~®€,§°/‘7:Ck®~'~®Ck/J,where
J = span{(e, —e¢,0,...,0),(e,0,—e,0,...,0),...,(e,0,...,0,—e)}

is a kernel/ null subspace in C* @ --- @ C* = C™ (here e denotes the unit of C*).
Moreover, by Proposition 4.3 we have the following complete order isomorphism

(L@ 1) 2o {118+ O fn € ()@ B(2) 1 fr(e) =+ = fale)}
={fi®Dfac @)D D) : file) = fr(e), Vi,i' € [n]}

Recall that we let {e, }*_; denote the standard basis of £5° = C*. We will make the
following identification between the spaces £3° and (£3°)?

For the aforementioned basis let {e} }X_, denote the dual basis (ej(ei) = dij, 1,7 €
[K]).

Then for linear functional f : £7° — C we obtain the correspondence :

k
Z €a)en —>Zfea

e, (59)% 3 f < (flea))k_, € £3°, with respect to the basis {e, }F_,

Note that f is completely positive if and only if f(e,) > 0 so the identification we used
is a complete order isomorphism. To see this, let ¥ : (£;°)% — ££° be the map given
by U(f) = (f(ea))k_, then ¥ is unital and positive and since £5° is a commutative
C*-algebra it will be completely positive. Now the inverse of ¥ is the positive map

T o () (M), — 22:1 o€y, Since £7° is a finite dimensional
operator system its dual is also an operator system and as such it will be a subspace
of B(H) for some Hilbert space H. Therefore we can consider the map ¥~ as a map
from ¢3° which is a commutative C*-algebra to B(H) which is a C*-algebra in this
case U1 remains positive. Now a theorem of Stinespring (see [15, Theorem 3.11])
allows us to obtain that ¥~! is completely positive.

. k .
Since e = Ea:l e, the condition

file) = firle), Vi,i" € [n]
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takes the following form

or equivalently

then by combining the observations we made above we see that for a f € S(n, k)¢
we have the following identification (up to a complete order isomorphism) :

f — (/\{,oz)]gz:l ©---® (/\fL,oz)]cct:l

where

k k
A Eoy €6 and YoM, =" ¥i,i' € [n]
a=1

a=1

so every f € S(n, k)? can be written as :

k k
F=( ko), where > "N =D "\ | i, € [n]
a=1

a=1

Thus
S(n, k)% is order isomorphic to a subspace of V(n, k)

Conversely, let

A= (/\l,a)oz D---D ()\npc)a S V(n7 k) gc.o.i. ezo D---D Ezo
—_—————

n—times

for every i € {1,...,n} we have that (\; o), defines a linear functional f; on (£°)¢
via the rule

k k
<)\i7a)a = Z )\i7aea > Z )\i,aez = fi
a=1 a=1

Furthermore for each ¢, it is easy to see that f; is positive if and only if (A; o )q is a
positive element of £3° so the identification above is an order isomorphism and since

k k
> Nia = Aina, Vi, i € [n]
a=1

a=1
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it follows that for every 1 < 4,7’ < n

k k

k k k k
fie) =Y XiachD ) =Y A=Y Aira =Y Aiach(d_e) = fule)
a=1 a=1 a=1 «

b=1 =1 b=1

Set f = f1 @ -+ @ f, then it is not hard to verify that f € S(n, k)% (and that f is
positive if and only if each f; is positive) which implies that

V(n, k) is order isomorphic to a subspace of S(n, k)¢

Thus far we have shown that the spaces S(n, k)¢ and V(n, k) are order isomorphic.
Now we will show that they are completely order isomorphic.

Firstly, note that there exist an order isomorphism
©:Sn, k) = V(n,k): f =\

Now if we consider the map ¢ as a map from S(n, k) to £33, then it remains positive
and its range is a subset of a commutative C*-algebra, so it will be completely positive.
Moreover, the map
¥ V(n, k) = S(n, k)?

k k k k
A= Maarr 3 Anata) = o= Machi D Anach)
a=1 a=1 a=1 a=1

is the inverse of ¢, which once again is a positive map. Consider 1) as a map from
V(nk)to () @ @ (I2)" Zeoi 7@ - @ L = C™ then as before ¢ is
—_——
n—times n—times
a positive map whose range is a subset of a commutative C'*-algebra so it will be
completely positive.

Indeed, let A = ((M,a)as---» (Ana)a) € V(n, k)T then for every i we have that
(A1,a)a is positive in £¢° and

YA =fH DD fa

where f; = 2221 Aiael, Vi€ {1,...,n}. Since every \; , is positive it follows that
every f; is positive which implies that f; & --- @ f,, is positive.

Looking at the proof of the above theorem we see that the duality between the spaces
S(n, k) and V(n, k) is given via the following formula :

Let v= Zmi,aeia € S(n,k) and f=((Mia)f_)m, € V(n, k)

[N

then f(v) = Zmi,a)\i,a
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5.1.2 Non-Signalling Correlations

Letn,k,m,l € Nand A, B, X,Y be finite sets with |A| = &, |B| =1, | X| =n,|Y]| =
m. Recall that the canonical generators of S(n, k) are denoted e, , forz € X, a € A.
Similarly let f, ; denote the canonical generators of S(m, ).

Ifs:S(n, k) ® S(m,l) — Cis alinear functional we let p; : A x B x X x Y be the
map given by

ps(a,b|z,y) = s(ez,a ® fyp), forac A,be Bjzxe X,yeY
Notice that the collection
{ps(a,b|z,y) :a€ A,be Bz e X,yeY}
is non-signalling.

Indeed, for every z, 2’ € X if we let 1., 1,/ denote the units of the z-th and 2'-th
copies of £¢° in the co-product S(n, k), then we have that:

k

k k
Zps(a,b | x,y) = Zs(eﬂma ® fy,b) = S(Z €pa ® fy,b)
a=1

a=1 a=1

=5(1a @ fyp) = (1o @ fyp)

k
Zex a®fyb :ZS exa®fyb
a=1

k
Z (a,b ]2 y)

because in the co-product 1, is identified with 1,/ for all z, 2’ € X.
Similarly

l l
D polab|zy) =) pla,b|z,y),Vy,y €Y
b=1 b=1

On the other hand, the formula
Sp(6m7a ®fy7b) :p(a’ab ‘ :an)a ac Aab € B,:L' S va € Y

defines a unique linear functional on S(n, k) ® S(m,!) when {p(a,b | z,y) : a €
A,be B,z € X,y € Y} is a non-signalling correlation, because (€3 o ® fy.b)a.b,z,y
is a basis of S(n, k) ® S(m, ).

The argument presented above shows that the map s — p; is a bijective correspon-
dence between the space (S(n, k) ® S(m, 1)) and the set of non-signalling correla-
tionson A X B x X x Y where |A| = k,|B|=1,|X|=n,|Y|=m.

In this chapter we will introduce another way to view the class C,,s.
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Theorem 5.20 The map s — ps is an (affine) isomorphism between the state space of
S, k) @maz S(m, 1) and Cps.

Proof: Suppose that we have a linear functional s : S(n, k) ®mas S(m, 1) — C then
foralla€ A,be Bz e X,y €Y

ps(a, b ‘ xvy) = 3(€x,a Y fy,b)
We shall show that if s is a state then p; € C,,s and vice-versa.

Since ey 4, fy» are positive in S(n, k) and S(m, [) respectively it follows that e, , ®
fy.b is positive in S(n, k) @upaz S(m, 1). Consequently,

ps(a,b\x,y) :S(Bm,a®fy,b) >0, VaEA,bEB,:EGX,yEY

Furthermore,
!
Z €ra ® fyp = Zem Q_fup)=1@1
ab=1 b=1
Thus
k,l k,l
D (e ® fyp) =5(D €ra® fyp) =s(l@1)=1
a,b=1 a,b=1
S0
k.l
Z ps(a,b|z,y) =1
a,b=1

For the non-signalling conditions observe that in S(n, k) the following holds

k k
Zez,a =1= Zem/’a, forall z,z2' € X
a=1 a=1

Now tensoring with f, ; we obtain :

k k
D era®@fup=1®fup = €wa® fyp forallz,a’ € X

a=1 a=1

and by applying s we get

k k
Zs(ex@ ® fyp) =s(1® fyp) = Zs €wa® fyp), forallz,a’ € X
a=1 T a=1

Zpsab\xy Zpsab\x y), forallz,2’ € X
a=1



In a similar way (summing the f, ;’s and tensoring with e, ) one can show that

l l

> palab|zy) = pala,b|z,y), forally,y’ €Y
b=1 b=1

Hence p; satisfies conditions 1 and 2 of definition 5.8.

On the other hand, assume that p; = {(ps(a,b | Z,¥))ab,z,y} € Cns. Notice that in
this case

k1l k,l
s1@1) =Y s(exa® fya) = Y pslab|z,y) =1
a,b=1 a,b=1

s0 s is unital.
So far we have that s : S(n, k) ®maz S(m,1) — C is a unital linear functional, i.e.,
5 € (S(n, k) @maz S(m,1))%, by Theorem 2.22 we have the identification

(S(n7 k) Omaz S(m, l))d S0 S(“v k)d Qmin S(m, l)d

identifying s with its image under the above complete order isomorphism it can be
viewed as an element of

S(n7 k)d ®mzn S(m; l)d gc.o.i. V(TL, k) ®mzn V(m7 l) gc.o.i. g:,(])q ®mzn e;jl

(The complete order embedding above being the tensor product of identities.)
Remembering the way the duality between S(n, k) and V(n, k) is achieved, we see
that there must be some elements s, 1 € S(n, k:)d and si 2 € S(m, 1)¢ such that

s = Zﬂksk’l ® Sk,2 € V(n, k) Qmin V(?ﬂ7 l) - fzok Rmin f;’fjl
k=1

where for every k € {1,...,m}

sk,1 = ((Az,a)a)z = ((8k,1(ex,a))a)z and sk2 = ((py,6)6)y = ((Sk,2(fy,))b)y

If we consider s as an element of £25, ®,i, (22, and recall that (£23, ®in £22,)" is the
set:

{zelfoly : (p@vY)(2) 20, Vo e UCP((35,C), V¢ € UCP(Ly;,C)}

ml»

then is can be seen that s is positive if and only if every one of its coordinates in

eS) __ poo 0 i _ :
0551 = €05, ® £5°, is non-negative.
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Now,

m m

s= Brsk1 @sk2 =Y Be((sk1(era))a)e @ ((s£.2(fy.0))0)y
k=1

k=1

(sk,1(e1,a))a (sk,2(f1,6))b

= Z B : ® :
k=1 (sk,1(€nsa))a (sk,2(fm.p))b
Sk,1(€1,1) Sk,Q(f1,1)
m Sk,l(.el,k) 3k,2(.f1,l)
= Z Br : ® :
k=1 Sk,l(en,l) Sk,Q(fm,l)
Sk,l(.en,k) sk,Q(:fm,l)

Deleting the inner brackets yields a complete order isomorphism, which implies that
in order to obtain that s is a state we need to ensure that for all a, b, z, y

Z Brsk,1(€x,a)sk,2(fyp) >0

k=1
ie.,

m
Z(ﬁksk,l ® Sk,2)(€z,a @ fyp) >0
k=1
or equivalently

S(Qw,a ® fy,b) >0

but for every a,b, z,y we have that s(e; o ® fy) = ps(a,b | z,y) and the latter,
being probabilities, are always positive.

5.1.3 Quantum Commuting Correlations

Remark: For the next Theorem we will require the following useful fact:
Given unital C*-algebras A;, A, then for any *-homomorphism 7 : 4; ® Ay —
B(H) there exists a pair of (contractive) *-homomorphisms 7; : A; — B(H), j =
1,2 with commuting ranges such that such that:

7T(Ck1 (24 Ckg) = 7r1(a1)7r2(a2), VOéj S Aj, ] = 1,2

Indeed, for every a; € A;, j = 1,2 just set m (1) = m(aq ® 1 4,) and ma(a2) =
(14, ® az). Then

m(a1®14,) = T((1@14,)(1a, @2)) = m(a1@14,)7(1a, ©g) = 1 (1) w2 (az)
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On the other hand, every such pair of *-homomorphisms 7; : A; = B(H),j=1,2
with commuting ranges determines uniquely a *-homomorphism 7 on A; ® A by
setting (a1 ® o) = 71 () ma(s).

Theorem 5.21 The following are equivalent for an element p € Cy:
1. p €Cqe

2. There exists a state s of S(n, k) ®. S(m, 1) such that p = ps, where p is defined
as in subsection 5.1.2.

3. There exist a Hilbert space H (possibly infinite-dimensional), a unit vector £ € H
as well as PVM’s {E o }aca and {Fy p}pep on H, forx € X andy € Y, such
that: By o Fyp = Fyp By o, forallz,y,a,b and

pla,b | z,y) = (EpaFyp)E,§), forallxe X, yeY, ac A, be B

The map s — ps is an (affine) isomorphism between the state space of
S(n, k) ®. S(m,1) and Cye.

Proof: 1 — 2: Let H be a Hilbert space and { £ 4 }oc4 and {F), ; }»c p be commuting
POVM’s on H, for all x € X and all y € Y respectively, such that

pla,b|z,y) = (Ep,aFyp)E,§), forallze X, yeY, ac A, be B

Suppose that we have the following maps ¢ : S(n, k) — B(H) and ¢ : S(m,l) —
B(H) with p(ez,q) = Eyq and ¥(fyp) = Fyp,forz € X, y €Y, a€ A, b€
B by Proposition 5.18 these maps are unital and completely positive. Furthermore,
since our POVM’s commute these maps will have commuting ranges, i.e., (¢, %) €
uep(S(n, k), S(m,1)). Now let s : S(n, k) @ S(m,l) — C be the linear functional
given by:

s(eg,a @ fyp) =pla,b|z,y), forac A,be Bixe X,yeY

)
s(eza ® fyp) = ((EzaFyp)E,§), forac Albe Bre X,yeY

hence

s(ez,a ® fyp) = ((p(€z,0)V(fyp))E, &), forac Abe Bjxe X,yeY

Thus for u € S(n, k) and v € S(m, [) we have that

s(u®v) = (p(u)y(v)§,€) = ((¢ - P)(u©v)E,§)

(recall that e, 4, fy 1 are the generators of S(n, k), S(m, ) respectively and both s
and the inner product are linear.) Notice that:

s(lel) = (¢ =1
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and remembering the definition (see section 2.3) of the positive cones of the commut-
ing tensor product of operator systems we see that

s ®@wv2) = | (p-¥) (01 @v2) &€ | 20, Vi @ vz € (S(n, k) @ S(m,1))*
eB(H)+

(since s has range a subset of C positivity implies complete positivity).
We conclude that s is indeed a state on S(n, k) ®. S(m, ).
Lastly,forx € X, y€ Y, a€ A, be B:

p(a,b | x7y) = S(em,a ® fy,b) = ps(aab | x,y)
SO P = Ps.

2 — 3: Let s be a state on S(n, k) ®.S(m, 1) then by Theorem 4.4 s can be extended to
a state § on A(n, k) @max A(m, ). Now the GNS representation of § yields a Hilbert
space H, a unit vector £ € H and a x-representation 7 : A(n, k) Qmaz A(m,l) —
B(H) such that

S(u®v) = (rlu®v)s,§), ue Aln,k),v e A(m,l)

As in the Remark at the start of this subsection we may assume that 7 = w7 for
some *-homomorphisms 7; : A; — B(H), j = 1,2 with commuting ranges. Hence,
we have that

S(u®v) = (m(u)me(v)E,€), ue Aln, k),v € A(m,l)

By Proposition 5.18 and from the fact that 71, m9 have commuting ranges we have that
(m1(€ez,0))aca and (m2(fy5))vep are commuting families of POVM’s. Since for a €
AbeBreX,yeyY

p(a7 b | €, y) = ps(a7 b | €, y) = S(ex,a®fy,b) = g(em,a®fy,b) = (Wl(ex,a)WQ(fy,b)€7§)
we conclude that p € Cye.

In particular (71(€z,4))aca and (m2(fys))sen are PVM’s because e, o and f, ; are
projections in A(n, k) and A(m, ) respectively.

3 — 1: Every PVM is a POVM, so this is straightforward.

Corollary 5.22 The set Cy. is a closed convex set.

Proof: Let T be the map s — p; defined in Theorem 5.21. This is an affine map
between the state space of S(n, k) ®. S(m, 1) and Cy.. To see this let A € [0, 1] and
81, $2 be states on S(n, k) ®. S(m, ). Then, (1 — X)s1 + Asg is a state on S(n, k) @,
S(m, 1) (the state space of an operator system is convex) and

T((1 = N)s1+ A82) = Pa—rysssass = (1= A)s1+ As2)(€x.a @ fy0)
= (L= N)si(ex,a) + As2(fyp)
= (1 = A)ps, + Aps,
= (1= NT(s1) + \T'(s2)
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The state space of S(n, k) ®. S(m,[) is convex and compact when equipped with
the weak-* topology. In this case, it is easy to see that 7" is also a homeomorphism.
Consequently Cy. too is convex and compact, and therefore closed.

5.1.4 Approximately Quantum Correlations

In this subsection we will give an alternative description of the correlations of the
class Cyq. To this end we will make use of the following Lemma.

Lemma 5.23 Assume that H be a Hilbert space and A C B(H) is a unital C*-algebra.
Let M = {we : £ € H,|[¢|| = 1} denote the vector state space of A (where we : A —
C:a— (ag,)) and S(A) denote the state space of A. Then the convex hull of M is
weak x-dense in S(A).

Proof: Obviously, M C S(.A) and since A is unital the weak-x limit of states is a
state, so the weak-* convex hull of M denoted M is contained in S(A). Suppose

that there exists a state s in S(.A) such that s ¢ M. By the Hahn-Banach separation
theorem there exist a weak-* continuous functional ¢ : A? — C and a real number
B € R such that: .

Re((0)) < B < Re(s(s)), Vo € M )

Now using the fact that weak-* continuous functionals on .A¢ are given by evaluation
at some element of A we have that: ¢ = &, for some o € A (where a(f) = f(«), f €
Ad). Moreover, we know that o can be written as « = a1 + o, for a1, a9 € Ay,

hence for every f € (AD)*, o(f) = a(f) = f(a) = (a1 +iaz) — flen) +if(a2).
Thus, Re(p(f) = fla1),Vf € (A?)* and relation (I) becomes:

olay) < B < s(ay), Vo € M
Subsequently, we have that
(1&,8) < B = (B-1dg&,€), for every unit vector € in H
Now, let 7 be an arbitrary vector in H, then W € H will be a unit vector so

1 1
e (a1n,n) < Tl (BIdmn,n)

ie,
(04177777) < (B : IdHna T])

which means that in .4 we have that oy < - Idy (inequality involving operators).
However, since s is a state then s(a1) < s(8 - Idg) = Bs(la) = B, which is a
contradiction.
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Theorem 5.24 Let p € C,; the following are equivalent:
1 p€Cyq
2. There exists a state s of S(n, k) Qmin S(m, 1) such that p = p;

The map s — ps is an (affine) isomorphism between the state space of
S(n, k) Qmin S(m, 1) and Cyq.

Proof: 2 — 1 We know that the minimal operator system tensor product is injective
and that S(n, k) C A(n, k), S(m,l) C A(m,l) so the embedding S(n, k) Qmin
S(m,1) C A(n, k)®minA(m, 1) is a complete order isomorphism onto its range. Thus
s which is a state of S(n, k) ®min S(m, 1) can be extended to a state § of A(n, k) @pin
A(m,1). Now let 1 : A(n, k) — B(Hy) and 73 : A(m, 1) — B(H}) be faithful (one
to one) x-representations, then the representation

T QT & A(n,k) Rmin A(m,l) — B(Hl ® Hé) rop ®ag — 7T1(Oél) 29 7T2(C¥2)

is also faithful. Set B := (71 ® m2)(A(n, k) @min A(m,1)).
Let B, , = mi(ez,a), ¢ € X,a € Aand F?:’b = ma(fys), vy € Y,b € B, then
by Lemma 5.18 we have that for every x € X, {E; q}aca is a PVM on H; and
respectively for every y € Y, {F), » }»cp is a PVM on Hj,.

Consider a state s satisfying condition 2 and take € > 0 arbitrary. Call § the state
s, when considered as a state on 3. Lemma 5.23 tells us that § belongs to the weak*
closure of the convex hull of the set of all vector states of 5. Thus there exist unit
vectors §; € Hy ® Hj, j =1,...,r and positive scalars \; with Z;zl A; = 1such
that

|§(ew,a®fy,b)—z Aj ((Exa ® Fé,b)gj,gj) | <e forallace A,be Bire X,yeY

j=1

(Notice that ((Exa ® F;,b)fj,fj) = ((m @ m2)(ez,a ® fy))&;,&;) which is a vec-
tor state of B)

Let Hy = Hy @ C"and § = 377_, \/A;§; @ e; (where {e;} is the standard basis of
C"), clearly £ is a unit vector in Hy. Furthermore, let Fy, , = Fé,b ®IL,yeY,beB
then {F} ; }sep isa PVM on Hy for every y € Y. Indeed,

Fyz,b = (Fy, @ L) (F,, ®1I) = ( g;,b)Q ® (I,)* = b @ I = Fyp

and
;’b:< l/l,b)*®l: :Fz/l,b®lr:F.,b

and
beB beB

Moreover, we now have

|3(€z,0 ® fyp) = (Bra ® Fyp)§,8) | <e¢ foralla€ A,be Byre X,yeY (I)
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Hence if we prove the following claim we will complete our proof:

CLAIM: Let H; and H; be two Hilbert spaces (not necessarily finite dimensional),
& € H = Hy ® Hy a unit vector and {E, ,}qca (respectively {F), ,},cp) a POVM
on Hj (resp. Hy) for every z € X (resp. y € Y). Then the correlation p defined by

pla,b|z,y) = (Ep,a @ Fyp.&), forallze X, yecY, ac A, be B
is an element of Cy,.

Proof of Claim: Assume that { P, };c; and {Q;};cs be nets of finite dimensional pro-
jections that converge in the strong operator topology to the identity operators on
H; and Hy, respectively (by relabelling the index sets of the nets, we can assume that
these sets coincide). Now set E;’a = PE,, | PiH; and F;b = QiF,p | QiHo,
then and

Eia is a positive operator on P;H; for alla in A

and
> E.,=> PE..|PH =Plpy, | PH =Ipn,
a€cA a€A
so{ E; o }aca isaPOVM on the Hilbert space P; H; which is finite dimensional. Sim-
ilarly { F. y7 » 1ve B is aPOVM on the finite dimensional Hilbert space @; Hs. In addition
if (for each ¢) we call p; the quantum non-signalling correlation arising from the above
POVM'’s and the unit vector &; = Hllz%gléll as in 2 of Definition 5.11 then
pi = ((PiEza ® QiFy )&, &)
1
= ((PiE,0 ® QiFyp) (P ® Q)& (P ® Q)¢
[P aoer W (B8 QS (1B Q)
1

= m ((PiEz,a-PL ® Qszle)& (Pz ® Qz)ﬁ)

(I Boalr, ® Iy Fyulim, )6, (I, © I, )E)
= ((Eza & Fy,b)fa f) =p

since the net (P; ® ;) converges strongly to the identity and is uniformly bounded.
Hence p is a limit of elements of Cg, i.e., p € Cyq.

1 — 2: Since the state space of an operator system is weak star compact (Banach-
Alaoglu) we can assume that p € C, (then by taking limits we obtain the result for
correlations in Cyq).

Let Hy, H; be Hilbert spaces, { € H; ® Hy unit vector and POVM’s {E; }qc4 on
Hy,z € X and {F, p}pep on Hy, y € Y, such that

pla,b|z,y) = (Ep,a @ Fyp8.&), forallze X, yecY, ac A, be B
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Using Proposition 5.18 we obtain unital completely positive maps
w:8(n,k) = B(H1) 1 egq — Eya

and
Y :S(m,l) = B(Hz2) : fyp — Fyp

The minimal tensor product of operator systems is functorial so the map
@1 : S(n, k)®minS(m, ) = B(H1)®min B(Hz) is unital and completely positive.
Thus, the linear functional s : S(n, k) ®min S(m, 1) — C given by

s(v1 ®@v2) = ((p(v1) © P(v2))€,8) s v1 € S(n, k), vp € S(m, 1)

is positive (and its range is a subset of a commutative C'*-algebra consequently it
is completely positive) and obviously unital, i.e., it is a state on the tensor product
S(n, k) @min S(m,1). Finally, it is clear that p = p,
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6 Distinguishing between correlation sets

In this Chapter we will demonstrate a number of separations between the correlation
sets we defined previously. Remember that for each k,n € N we have the following
sequence of inclusions

Cloc(”a k) g Cq(na k) g an(n7 k) g ch(”y k) g Cns(n7 k)

our aim is to prove that the above inclusions are strict. These separations combined
with the way we defined the various correlations sets via tensor products will in turn
allow us to obtain the following strict inclusions

S @maz T CS®cT CS ®@min T, for S, 7T operator systems

Since Cy, is the closure of C;; and we know that Cj is not closed we have that
Cq # Cya
The other inequalities, as we will see, are not so easy to obtain.

The inequality C4q # Cqc Was proved quite recently in ([10]). This inequality will not
be studied here as it requires techniques not mentioned in this paper.

Suppose that we have a finite input-output game G = (X, Y, A, B, \), let t denote one
of {loc, q,qa,qc,ns} and 7 : X x Y — [0, 1] be a probability density. We introduce
the following quantity which will help us in our attempt to separate the correlation
sets

wi(G,m) =sup{ »_ > @y, y,a,b)pla,b | ,y) p € Ci}
(z,y)EX XY (a,b)eAXB

We call w;(G, ) the t-value of the game and we set w(G) = wy(G, 1, ), where m,
denotes the uniform distribution.

The idea is to find games whose value depends on the choice of ¢ (i.e. they have
different values for different ¢).

6.1 Separation of local and quantum correlations

We will move towards proving that Cj,.(2, 2) # C4(2, 2) to do so we will consider the
CHSH game which was introduced in 1969 by the physicists Clauser, Horne, Shimony,
and Holt ([3]):

The CHSH game : Let X =Y = A= B =0, 1 and

{1, if a + b = zy(mod2)

0, otherwise
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Proposition 6.1 We have the following:
1. wo(CHSH) =2

2. wy(CHSH) > 1 +¥2
Proof: Firstly notice that the players win the game in the following scenarios:
1. If x = y = 0 and they answer identically.
2. If z = 1,y = 0 and they answer identically.
3. If x = 0,y = 1 and they answer identically.
4. If x = y = 1 and their answers differ.

Since the extreme points of the convex set Cj, are precisely the strategies of the form
pr.q Where (f, g) is a deterministic strategy for the game and

1, ifa= f(z)and b= g(y)

0, otherwise

pf,g(aab | $7y) = {

by enumerating the deterministic strategies for the CHSH game we can deduce its
local value. Now a deterministic strategy for this particular game is a pair of functions
f 40,1} — {0,1} and g : {0,1} — {0,1} which determine Alice and Bob’s
responses respectively. Since for each player there are four functions of that form
we see that the (maximum) number of all possible pairs of strategies for Alice and
Bob is sixteen, while the set of all possible pairs of questions has four elements. It is
not hard to verify that for each such strategy there exists a pair (x,y) of questions
that will make the strategy fail (for example if they choose the strategy in which they
always answer 1 then they win in every case except for the one in which x = y = 1).
This shows that for every choice of (f, g) we always have ps 4(a,b | z,y) = 0 for one
pair of questions (z,y). Consequently, we deduce that

Wioe(CHSH) = 3(1 +141)= Z

On the other hand, let H; = Hy = C? and let {eg, e1} denote the standard basis of
C?, we consider the following

1
e= E(eo +e1), fo= cos(g)eo + sin(g)el , f1= cos(g)eo - sin(%)el

and the maximally entangled vector in H; ® Ho

1
€maz = —=(e0 Q@ eg+e1 ®eq)

V2

Moreover, for each z € X and for eachy € Y, let {E; o}oca and {Fy;}ep be
POVM’s on C? arising as follows:

Ep o = epeg Ei=ee* Foo = fofs Fio=fiff
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Ep1 =1—eoe} Ei1=1—ee" Foa=1-fofy Fiao=1-Af

Here we use the notation : xy*(z) = (z,y) =.
Let p be the quantum correlation arising from this data, i.e.,

p(avb | xa?/) == ((E:E,a ®Fy,b)£maaj7£maaj>>7 T e Xay S Ka S Aab €B

We will compute the probabilities of winning for each pair of questions.

Forz =y =0:

p(oa 0 | 0, 0) = ((EO,O oy FO,O)gmazv gmar))

1
= = ((Eo,0 ® Fy)(eo ® eg) + (Fo,0 @ Foo)(e1 ®e1),eg @ e +e1 @eq)

2
1

=5 (eoeg(en) @ fofy(eo) + eoeg(er) ® fofy(er),e0 @eg+e1 Rer)
1

m
= § (60 ® cos(g)fo +0,eg®eg+e1® 61))

1 T T
=3 COS(g) (0 ® fo,e0 @ eo) + COS(g) (0 ® fo,e1 ®er)

COS(%) (eo, fo) +0

1
3 cos(g) (eo, cos(g)eo + Sin(g)q)

Il
I
o)
]
172}
o
—~

and

p(l, 1 | 070) = ((EO,I &® FO,l)gmaxafmam)

1
=5 (I —egeq) @ (I — fofy)eo®eo+e1®e1),e0 eg+e1 @ eq)
1 ™
=—(04+0+0 2=
2( +0+ +cos(8))
1
zicosz(g)

Via similar calculations one can see that:

Forx =1,y=0:

1 1 T, .
p(0,0|1,0) = el §cos(§)sm(7)

I

and similarly

1 1 T, . T
p(1,1]1,0) = Yl gcos(g)sm(g)
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Forx =0,y=1:
1
p(0,010,1) = 5 cos’(5)

and )
p(1,1]0.1) = 5 cos”(5)

Forx=y=1:
1 1 s ™
1 1H)=-+ = —)sin(=) = 1
P(LO[1,1) = § + 5 cos(Q)sin(g) = p(0,1] 1,1)

We know set
1
p(0,010,0) = p(1,1]0,0) = p(0,0 | 0,1) = p(1,1]0,1) = 5 cos*(5)
and
1 1 T, . T
p2:=p(0.01,0)=p(1,1]1,0) = (0,0 1,0) = p(1,1]0,1) = {+ cos(g) sin()

Then combining all of the above we obtain,

1
we(CHSH) > 1(41?1 + 4ps)
1 1 1 T, . T
1(2cos (8) +4(1 + §cos(§)sm(§))
1 27r 1 1 T, . T
= cos (§)+4+7cos(8)sm(§)
LI 1 1y
“i1Ter titaa
L, V2
277

Thus, we conclude that w,(CHSH) > 1 + ? > 3 = w0 (CHSH).

It follows from Proposition 6.1 that when the players follow local strategies they win
the CHSH game with probability 75% whereas if they follow a quantum one they win
with probability (at least) 85%, so indeed Cjo # Cj.

The above example also concretely demonstrates that quantum strategies offer a sig-
nificant advantage to the players in comparison to the deterministic ones. From a
physics point of view the CHSH game shows that correlations arising from quantum
entanglement cannot be explained by any non-quantum theory of physics (such as
the local hidden variable theory).
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6.2 Separation of quantum commuting and NS correlations

We will use the following result which is proved in [8, Theorem 6.3.]

Proposition 6.2 For any operator system R the following holds
R ®:8(2,2) =R Qpmin S(2,2)
Furthermore, recall that for every k,n € N we defined

V(n, k) =

k k
{(Madas - (Anada) : Nia)a € 67, Vi € [n]and Y~ Ao = 3 Airg, Vi,i'}
a=1 a=1
and we proved that V(n, k) =.,,; S(n, k)<.

The main objective of this chapter is to prove the following Theorem:

Theorem 6.3
V(Q, 2) Qmin V(2, 2) a V(Z, 2) Omaz V(2a 2)

If the aforementioned theorem holds true then combining it with Proposition 5.19 we
will obtain that

S5(2,2)% @pmin S(2,2)? # S(2,2) @pmar S(2,2)¢
which by Theorem 2.22 and Proposition 6.2 is equivalent to
(8(2,2) @maz S(2,2))4 # (S(2,2) @min S(2,2))" = (5(2,2) ® S(2,2))*

This inequality viewed in light of Propositions 5.20 and 5.21 implies that there exists
a correlation p in C,; which does not belong to C4. and thus we obtain the desired
separation.

For the proof of Theorem 6.3 several Lemma’s will be required.

Firstly recall the following Lemma we proved in Section 2.1

Lemma [2.16] Let (S, e1) and (T, e2) be operator systems. If u € S Qmaq T is strictly
positive, then there existsn € N, A = [a;;] € M, (S)* and B = [b;;] € M, (T)" such

that .
u = Z aij & bij

ij=1
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Lemma 6.4 LetS andT be finite dimensional vector spaces, in addition let s, . .., Sy €
Sandty,...,t, € T. Moreover, let [x;;] € My(S) and [y;;] € My(T) and assume
that fork = 1,...,mandl = 1,...,n there exist Ay, By € M, such that [z;;] =
S Ap @ s and [yi;] = > B @ t;. Then, we have that

p m n
Y@y =)y Tr(AB])si©t
i k=11=1
Proof: For each k = 1,...,m we have that A, = [al(f)}z j—1 Where

a;; € C,1<4,5 <p,and

Ak®8k=M$H®5k=Mg5d

SO

[247] ZM@S/C Z[ o k]z[iag@sk}

k=1 k=1

[yis] ZBl®tl Zb(l)t Zb(”t

for some B; = [bgj)] € M,. Now,
3 ~ (S0 )
S =SSl ) o ()
2 k=1
Z ait) s, @ b))

and similarly

]

<.
<.

Il
M'@
iMs P

(Z al(-;-c)bl(é-)sk ® tl)

1 4,

M:

Mz TM:
M= T

Tr(ARB})sp @t

>
I
=
~
Il
-

(the sums are all finite and the tensor product is bi-linear).

Now we will use both of the above in order to prove :
Lemma 6.5 LetS and T be finite dimensional vector spaces, with linear bases {s1, ..., Sm} C
Sand{t1,...,t,} C T and let

m

:ZZQk,lSk(g)tl €eS®T, qu eC

k=11=1

If u is strictly positive in S ® T then there exist ap € N as well as matrices U; =
Yo A ® s € My(S)T and Uy = Y1 Bi @t € M,(T)™", where for each
k=1,...,mandl =1,...,n: Ay, B; are matrices in M, such that Tr(AB}) = gy .
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Proof: Suppose thatu = Y, | >/, qr15x®t € ST isastrictly positive element
of M, (S), then by Lemma 2.16 there exist a p € N, and positive elements U; = [a;;]
and Us = [B;;] in M,(S) and M, (T) respectively such that

D
uw=Y 0y ® By
(2]

Since Mp(S) =04 M, @ S and My(T) Zco.. My ® T we are able to write Uy =
Zzl:l A ® s and Uy = Z?:l B; ®t; where Ay, By € My forallk =1,...,mand
alll = 1,...,n. Using Lemma 6.4 it is immediate that u can be written in the form
we desire.

Observe that
2 2
V(2,2) = {(()\1,1,)\1’2), ()\271,)\272)) : )\i,j € C and Z)\i’j = Z)\i/’j’ Vi,,i/,j S [2]}
j=1 j=1
={(z1,22,23,24) : 2, €C, i € [4] and 21 + 22 = 23 + 24}
Let p € N then, using the identification M,(V'(2,2)) = M, ® V(2,2) we have that

4
M,(V(2,2)) ={)_Xi®e;: X; € My, X1 + Xy = X3+ Xy, i € [4]}
i=1

Indeed, suppose that p € N and [A,,] € M,(V(2,2)) then

p

m,n=1
and for each m,n € [p] we have that A,,,, = Z?:l b"e; where b"™ + by =
b5 + b'™. Thus,
p P 4
Z Emm & >\mn = Z Em,n ® szmnei =
m,n=1 m,n=1 =1
/4 4 P 4
DD Emn®bMei= 3 > W Enn @ =
m,n=1i=1 m,n=11i=1
4 D
(3 ) e
i=1 \m,n=1
Now fori = 1,2, 3,4 set
P
Xi= > 0" Enn
m,n=1



Then [A\,] = ZZ 1 X; ®e; and it is straightforward to see that X; + Xy = X3+ X,.

Moreover, it follows from the above discussion that

4
M,(V(2,2)" ={)_Xi®ei: X1+ Xo = X3+ Xy, X; € M, Vi € [4]}

i=1

To see this suppose that (Z?Zl X, ®e;) € (M,®15°)" and let £ € CP then we have
that for every j = 1,...,4:

<Z Xi®e(®e), (E® ej)> >0

=1

and at the same time for every j = 1,...,4:

4
(ZX ®e(E®e)), (E@e)) ) D (X&) (esejre5) = (X5€,€)
=1

1=1

Thus, (X;£,£) > Oforevery j = 1,...,4 and every £ € CP which proves our point.

The other direction is trivial.

The next proposition gives us a realization of the strictly positive elements of V(2, 2)® 42

V(2,2).

Proposition 6.6 Letv = Z?j:l gijei®e; be astrictly positive element inV (2, 2) @maa
V(2,2). Then there exist a p € N and matrices X;,Y; € M,f satisfying: X1 + Xo =
X3+ X4and Y1 + Yy = Y3+ Y, = I such that

gi; =Tr(X;Y;) for 1<i,j<A4.

Proof: Using Lemma 6.5 we can findap € N, U; = Zle X ®e;, X; € My, and
=Y. Bj®e;, Bj € M, with Uy, Uz € M,(V(2,2))" such that 3 ._, g;j;®
e;j = Z?,j:l Tr(XiB})e; ® e;. Furthermore, since Uy, Uy € M,(V(2,2))" we have
that X;, B; € Mp+ and X1 + X9 = X3 + X4 and By + By = B3 + B4. Moreover,
for each i € [4] we set B; = Y then the formulas above take the following form

gij = Tr(X;(Y))") =Tr(X;Y;), Y14+Y2=Ys+Y, and Y; € M

Let E be the projection onto ker(Y; + Y5)* where * denotes the orthogonal comple-
ment.

Claim 1: There exists a positive invertible matrix P such that:

4
> Ply;pt=2E
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Proof of Claim 1: Firstly, notice that F is the orthogonal projection onto ker(Y; +
Y2)t = Im((Y1 + Y2)*) = Im(Y; + Yz)= Im\/Y; + Y. We will make use of the
following fact: If T' is a positive semi-definite operator on a finite dimensional Hilbert
space and 7 is the orthogonal projection onto Im(T') then

VT =VTr=7nVT

Proof : Let z € CP then x = hy + hy with hy € ker(T)* = Im(T*) = Im(T) and
hy € ker(T) so w(x) = hy. Thus VTr(z) = VT (h1) = VT (x) (because ker(v/T) C
ker(T')). On the other hand, since Im(T)= Imy/T we have that vVT(hy) € Im(T)
therefore 7v/T () = 7v/T(h1) = VT (h1) = VT ().

We apply the above for the operator B := (Y] + Y2) and for the projection E, so we
obtain that
VB =+vBE =EVB

which implies that

B =+BvVB=+vBVBE =VBEVB
Now consider the operator

P VBzx, x € ker(Y; + Ys)t
xTr =
x, x € ker(Y] +Y3)

then P is a positive and injective linear operator so it will be positive and invertible
and the same will hold for its matrix (which we will denote by the same letter). More-
over, we have that Y7 + Yo = PEP. Indeed, let let 2 € CP then it can be written as
& = hy + ho, for hy € ker(Y; 4 Y5)* and hy € ker(Y; + Y5), hence

(Y1 + Y2)(z) = (Y1 + Y2)(h1 + h2)
= M1 +Y2)(h) + (Y1 + Y2)(h2)
= (Y1 +Y2)() +0
= B(h1) + E(hs)
= VBEVB(h1) + E(hs)
— PEP(hy + hs)
— PEP(z)

(because E(hy) = 0). Thus, Y; +Y> = PEP or equivalently P~1(Y; +Y3)P~! = E.
Since Y7 + Y2 = Y3 + Y we also have that P~1(Y3 + Y;)P~! = E, the result now
is immediate.

Foreachi € {1,...,4}, set

Y; = P~ 'Y;P~" and X; = PX,P
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then for all ¢,j € {1,...,4} we have that Yl and Xz are positive. Indeed, since P is
positive and invertible its inverse is also positive and for A, B positive matrices we
have that ABA is also positive (ABAz, ) = (B(Ax), (Az)) > 0).

In addition, notice that
Y1+}}2:YA3+Y4:E and X1+X2:X3+X4 (I)
(since: Y1 4+ Yy = PEP so Y1 4+ Y5 := P YY1 + Y5)P~! = P'PEPP™' = )

and
Tr(X;Y;) = Tr(PX,Y,P™') = Tr(PX; PP 'Y;P™1) =

Tr(X;Y;) = Tr((EX;E)(EY;E)) (1)
The last equality stems from the following claim :
Claim 2: Y; = Y]E

Proof of Claim 2: E is the orthogonal projection onto ker(Y; + Y2)* = Im((Y; +
Y2)*) = Im(Y1 + Y3). Let € CP then it can be written as x = hy + hs, for
hi € Im(Y1 + Ys) and hy € ker(Y] + Y3) so

Yi(z) = Yi(h1) + Yi(he) = Y1E(z) + Yi(h2)

It is also true that ker(Y; + Ya) = ker(Y7) (| ker(Y2) (because Y7 and Y5 are positive
semi-definite) thus we have that hy € ker(Y7). Thus, Y;(he) = 0 and so Y7 (x) =
Y1E(z),Vz € CP. In the same way it can be shown that Y; = Y;E, j =2,3,4.

Now, once again let x € CP, we can write x = hy + ho with hy, hy defined as above.
Then

PE(z) = PE(hy + hy) = PE(h1) + PE(hs) = P(h1) + 0 = vVB(hy)

and
EP(z) = EP(hy) + EP(hy) = EVB(h1) = VB(h) = PE(x)
Thus, EP = PE. Multiplying with P! from left and right we see that P™'E =
EP~!. Finally, we obtain that for every 2 € C? and for j = 1,2, 3, 4:
Y;E(z) := P~YY; P~ E(x)

=P 'Y;EP ()

— PP ()

= Yj ()

It follows that YJ = YJE The proof of the Claim is now complete.

Furthermore, since (Y;)* = Y;, Vj € [4] and E* = E (E is an orthogonal projection
onto a closed subspace) we also have that EY; =Y; =Y, F, j =1,2,3,4. Thus,

BY,E = BY, - Y,
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So for every i,j € {1,...,4} we have that,

Notice that if we replace X, and Yj with EX; E and EYJE respectively, the equations
(I) and (II) still hold. Since E is a projection we can diagonalize it, in particular F
can be written in the form: diag{l,...,1,0,...,0} where the number of one’s is
equal to dim(Im(FE)) = dim(ker(Y; + Y5)*) while the number of zeroes is equal
to dim(ker ). This implies that we can regard the matrices EX;E and EY;FE as
matrices of smaller size (by “cutting” the matrix at the point that all its rows and
columns are zero) . Now, if we abuse the notation and denote these smaller matrices
again by EX;E and EY;E, from (I) we have that

EY\E + EY>E = EY3E + EY,E = diag(1,...,1)

Thus without loss of generality we may assume that Y1 + Y, = Y3+ Y, = I or
equivalently that 2?21 Y; = 21. The proof is now complete.

(If the original matrices do not satisfy our requirements we replace them with the
matrices EX; E and EY; E and regard them as matrices of smaller size in the way we
described, for the smaller size matrices the Lemma is true in its entirety.)

Definition 6.7 Let A = [a;;] be an x m matrix, the Frobenius norm of A is denoted
by || - ||F and is given by

1Al F = /Z |aij|? = /Tr(A*A)

Note : In the space of n X m complex matrices we can define an inner product as
follows, let A = [a;;], B = [Bi;] € My, then

(A,B)y, =Tr(B*A)

The induced norm of this inner product is the Frobenius norm. Since this is an inner
product it will satisfy the Cauchy-Schwarz inequality, i.e.,

(A4, By, < [AllrlBlr

Lemma 6.8 Letp € N and fori,j € {1,...,4} suppose that X;,Y; € M+ with
X1+ Xy = Xs+XgandYy +Ye = Y5+ Yy = I. Moreover, fori,j = 2, set
¢;; = Tr(X;Y;) and fora,c € {0, 2}, set

Sa,c(j, k' = bel’l"{l(l)l’lQ} Z \/qb—H a-+j \/qb-i-l ct+k

Then,
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Proof: We set § = Tr(X; + Xo) = Tr(X3 + X4). Since V1 + Yo =Y5+ Y, =1
and for all square matrices A, B we have that Tr(A+ B) = Tr(A) + Tr(B), we see
that for all a, b, c € {0,2} :

B="Tr

—~

(Yar1 + Yaro)(Xp1 + Xoy2)(Yeqr + Yero))

Tr(Yasj Xo+iYeirn)
1

@

&
S
i

Il Il
[ Mw

Tr((YG+JXb+1)(Xb+1Y k)

i,7,k=1
2
= Tr((Xb-HY ) (Xb+zY ))
i,7,k=1
2 2
< 3 S UK Yars IR I XE Vel
Jk=11=1

(for all a, j, b, i, Yo j, X2

4y are p.s.d. matrices so Hermitian)

Conversely, if X and Y are positive (semi-definite) matrices and Y < I, then
IX2Y |2 = Tr(X?Y2X?) < Tr(XiYX?) = | X2Y2|2

and

|X2Y2|% =Tr(X2YX3?)=Tr(XY)

Combining these results we have that

B < ||X2 ||F||Xb+zYc+kHF

b+1i a+j

(2

,_.
I
—

v WMN
M)

Tr(Xp+iYari)VITT(XptiYerr)

<.
B
I
—
-
Il
—

M-

(™)

VQb+i,a+5\/Qo+i,c+k

I8

=

1=1

Jik=

and this holds for every b € {0, 2}. Taking minimum over all b € {0,2} we obtain
the desired inequality.

Lemma 6.9 Letu = Z?j:l gijei ®ej € (V(2,2) Qmaz V(2,2))T. Fora,c € {0,2}
set

Sa,c(j, k = ben"{lén2} Z \/Qb+z a+j \/qurz c+k
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Then, for all d € {0,2} we have that
2 2
Z qd+i7d+j S n;}? Z Sa,c(]7k)
ij=1 ij=1

Proof: Given § > 0 the element

2
u+§1®1:Z(qij+5)ei®ej
i,j

is strictly positive, so by Proposition 6.6 there existap € N and matrices X;,Y; € M Zj‘
Witth —|—X2 =X3—|—X4 andY1 —|—}/2 = Y3+Y4 = I such that

gij +0=Tr(X;Y;), 1 <i,j <2

By Lemma 6.8 we obtain that,

2
Tr(X1+Xz) <min Y Sac(j,k) M

i,j=1
Moreover, observe that for d € {0, 2}

2
Tr(Xy+ Xo) = Tr((Xar1 + Xay2)(Yayr + Yago)) = E (qa+i,dvs +0)
N el
1 i,j=1

Letting 6 — 0 and using relation (I) we obtain the desired result.
We are now in a position to prove Theorem 6.3,
Proof of Theorem 6.3 : We want to show that :
V(2,2) @min V(2,2) # V(2,2) Qmaz V(2,2)
We begin by identifying ¢3° ® £3° with M, via the map
e ®e; —ee; =E;;, 1<i,j<4

Under this identification V(2, 2)®@V(2, 2) coincides with the space of all 4 x 4-matrices
such that :

1. The sum of the first two entries in each row is equal to the sum of the last two
entries

2. The sum of the first two entries in each column is equal to the sum of the last
two entries
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To see this let v € V(2,2) ® V(2,2) then it can be written as
V= Zaiei ® ﬁj@j = Zazﬂjei X e;
(2] 4]

where a1 + as = a3z + a4 and B + S2 = (3 + [B4. Using the aforementioned
identification we that v corresponds to the following element of My :

a1 a1y ai1ffs aifa
asfi afy afls @by

BiE; i =
Za Fitiis azfr aszfy aszfBs azfy
ayfi  aufr asfls  ayfs

Now it is straightforward to see that the above matrix satisfies both of the conditions
given above. Moreover, we claim that this identification is a (complete) order isomor-
phism between the operator systems (I5° ®,,, [3°) " and M4, where M is the space
of the 4 x 4 complex matrices with involution given by

([Uij]ij:l)* = [U;'kj];l,jzlﬂ [Uij];l,jzl € M,

and is equipped with the cone of the real matrices with non-negative entries (the fact
that M, is indeed an operator system is very easy to prove).

Indeed, call the aforementioned identification ®. The fact that ® is unital is trivial.
Moreover, notice that with respect to the usual involution on £3° ®p,in, £3° and the
involution we defined on My, ® is involution preserving.

Now set

K= {[b”] € My : bij >0, VZ,]}

We shall show that ® and ® ! are positive maps with respect to K.
Suppose that ®(3_; ; avie; ® Bje;) € K this means that [o; 3;] € K. Thusifk,m € N
and ¢1 € UCP ({3 ,Mk) and ¢o € UCP({3°, M,,) then

(01 ® ¢2)(§ aie; @ Biej) = E a;ifj pr(e:) ® pa(e;) € M;:rm
i i35
It follows that 3, ; aie; @ Bje; € (€3° @pmin ()7

Conversely, let E e, @ fBie; € (0 Qmin £5°)T. Notice that for all [,q €
{1,...,4} the followmg maps are unital completely positive from £3° to C

1. ¢y : £3° — C projection to the [-th coordinate
2. @q : £3° — C projection to the g-th coordinate

Thus
(61 @ ¢g) (Y cvies @ Bje;) > 0, Vi, q € [4]

2%
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Soforalll,q € {1,...,4} we have that

0< Zai¢l(ei) ® Bjgq(e;) = Zai(SiI ® Bjdjq = By

4,J (2]
This implies that the matrix [o;8;]; ; € K and completes the proof of our claim.

Since (£3° ®@pmin £5°) " is the cone of all real matrices in M, with non-negative entries,
we see that the matrix

Q = lgi;] =

_ o O =
O = = O
O = O =
e )

is an element of (/3° ®,,in £5°) " and it satisfies conditions 1 and 2 above, so

Q€ (V(2,2)@V(2,2)) N (15° @min £5°)T = (V(2,2) @min V(2,2))F
Now we will work towards proving that Q ¢ (V(2,2) ®maz V(2,2))7, a fact that will
complete the proof.

Let d € {0,2} then Zijzl Qdtid+j =1 +1=2 Nowseta =0,c =2, take b =0
and consider the quantity S, .(j, k) we defined in Lemma 6.9, we see that

2
0<802(2,1) <> Vaiay/Gis=0-1+1-0=0

i=1

and ,
0<802(1,2) <> VaGiiy/Gia=10+0-1=0
i=1
On the other hand, if b = 2 then we have that

2
0< S02(1,1) <> \/Gariny/Garis =0-1+1-0=0
=1

and

2
0 < 50,2(2,2) < Z V@tiz/@ria=1-+0-1=0
i=1

Thus in any case Z?jzl Qd+i,d+; =2 >0 =min, . Z?j:l Sa.c(J, k) which violates
Lemma 6.9.
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7 Disambiguation

The correlation classes in Definition 5.11 were defined via POVM’s however some
authors chose to use PVM’s instead of POVM’s while defining these classes of cor-
relations. The main reason for this is that since the PVM’s are pairwise orthogonal
projections the computations with a PVM are much better than the computations
with a POVM. In this chapter we shall see that in both cases we obtain the same cor-
relation sets. The correlation classes defined using POVM’s in Definition 5.11 were
the quantum and quantum commuting and we denoted their respective sets by C, and
Cyc- Hereafter we will let C;, and C;,. denote the aforementioned correlation sets when
their correlations are defined via PVM’s.

Notice that by Proposition 5.21 we already have that C;. = C;., so it remains to show
that C; = C,. The next proposition will give us this result.

Proposition 7.1
Cq = C(’Z

Proof: Since every PVM is a POVM the inclusion C(/I C C, is immediate.
We will work towards proving the reverse inclusion. Let p(a, b | z,y) € C, then there
exist finite dimensional Hilbert spaces H 4 and Hp, a unit vector { € H 4 ® Hp as well
as families of POVM’s {E, 4 }4,2 € X on Hy (foreveryz € X, E; , > 0,Va € A
and ) Fy o= 1Ig,)and {F,;}y,y €Y on Hp such thatforallz € X,y € Y,a €
AbeE B:

pla,blz,y) = ((Epa® Fy’b)& 3)

Using Theorem 5.5 for the space H4 and the family {E, .}, we can find a finite
dimensional Hilbert space Hy (H 4 is finite dimensional), a family of PVM’s { £; , }4
and an isometry V4 : Hq — H/; such that for every (z,a) € X x A we have
that £, , = VIZ{E;’QVA. Doing the same for the space Hp and the family {F} s}
we obtain a finite dimensional Hilbert space Hy, a family of PVM’s {F} , }, and an
isometry Vg : Hg — HJ; such that for every (y,b) € Y x B we have that F,;, =
V5E! V.

In the space H/, ® H;, we define the following element ¢’ = (V4 ® Vi) () and notice
that it is a unit vector. Moreover,

(B, @ F,,)¢.¢) = ((E, Y(Va @ VB)E, (Va ® V)E)
(m®% ha ®F) ) (Va® VB)EE)
= (VAE, ,Va ® V5F, ,VB)E,€)

((Er,a & Fy,b)ga 6)

:p(a‘ab ‘ l‘,y)

which shows that C ,’1 C C, and concludes the proof.
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