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Operator algebras associated with C"*-dynamical systems and

C*-correspondences

National & Kapodistrian University of Athens

Department of Mathematics

Ioannis-Apollon Paraskevas

Abstract

The aim of the present thesis is to describe certain operator algebras associated with C*-
dynamical systems and C*-correspondences. We introduce the notion of the crossed prod-
uct of a C*-algebra by a discrete group and we study in detail the case of the integers. We
give necessary and sufficient conditions, when the C*-algebra is the algebra of continuous
functions on a compact Hausdorff topological space, for the crossed product to be simple.
Furthermore, we introduce the notion of the semi-crossed product and we give alternative
descriptions of its norm when the C*-dynamical system is induced by a *-automorphism. In
addition, we study C*-correspondences and their representations and we prove the Gauge-
Invariance Uniqueness theorem. Finally, we use results and tools that we have developed so
far, in order to identify the C*-envelope of the semi-crossed product and the C*-envelope

of the tensor algebra of a C*-correspondence.



AMlyePpeg tedecTOdOV TTOL oXETICOVTON pPEe C*-Suvopuik

cvoTNuata kot C*-aviieTolyieg

EOviko & Kamodiotprako Iavemotrpio ABnvov

Tunpo Mabnpoticov

Iwavvng-AnoAlov [apackevag

IepiAnym

H napotoa Simhwpatikn epyosio amookonel 6To va meptypafel cUykekpLuéves ahyePpeg
Teheo TV TTOL oxeTilovron pe C*-Suvapikd cvothpata kot C*-avtiotolyieg. Elodyoupe tnv
£VVOLXt TOV OTALPWTOV yvopévou pag C*-ahyePpoag pe puo drokpitr) opdda ko mepLypd-
(QOLE OVOALTIKG TNV edLKT| TepinTwoT ov 1 Swokpitr) opdda eivan ot acéparot. Aivoupe
LKaVEG Kol avarykaieg ouvOrikeg otny mepintwon omov 1) C*-dhyePpa eivon 1 dhyefpa ov-
vexav ocuvvaptnoewy evog oupmayotvg Hausdorft tomoAoyikod xwpov, dote To oTavpwto
ywopevo va eivar anAn) C*-alyeBpa. EmurAéov, elcdyoupe Tnv €vvola TOU NUL-CTAUPWTOD
YLVOHEVOU Kol SiVOUpE EVOAAOKTLKEG TTEPLYPAPEG TNG VOPHOS TOV GTHV TEPLITTWOT] TTOL TO
C*-duvvapkd cbotnpa emdyetal oatd *-ovtopop@Llopd. Emiong, eiodyovpe tnv évvola tng
C*-avTIoToLY oG KOl TV OVOTTOPAGTACEWY TNG kot amodetkvooupe To Gauge-Invariance
Uniqueness Theorem. Té\og, yprnoipomolotpe omoteAéopota Ko epyaheion Tov £XOUpE avor-
ntO€el oTa Tponyopeva kepaAala doTe v arodeifoupe 6TL To C*-envelope Tov nui-cTow-
POTOV YLVOREVOUL ElvaL TO GTALPOTO YLIVOpEVO, TNV mepintwot C*-duvapikod cuoThpa-
TOG TOU ETMAYETAL KITO *-LTOHOPPLOPO Kkat 0Tl To C*-envelope tng Tensor algebra piog

C*-avtiotoiyiag eivan  Cuntz-Pimsner algebra.

ii



Evyapiortieg

H ovykekpipévn epyocio ammotelel éva Tpoidy NG TPocwITKNG TPoomdfelog aAA& akopa
ONHOVTIKOTEPQ TNG YVOOTG, TNG EUmvevong ko tng kabodrynong mov édafo arnd kabn-
yNTég xar eilovg, ov yvoploa kot acAAnAenidpaca kot v mepiodo @oitnong Hov 6Tto

Mobnpotikd Tpipe.

Apxkd, Bo 10eda va evyaplotriow Beppd tov k. Aproteidn KatdPoro o omoiog atoté-
Aece pLot TOAD GHAVTIKT YT EUITVELGNG QUTO TIG QTAPXEG TNG HEXPL TOPO HOONHATIKNG
pov mopeiag. IapakorovBodvtag apketd amd ta pabrpota tov, 1 ddackaiio Tov Stoapdp-
PWoE TA HoONpATIKA POV evaLaPEPOVTA KoL 0 XPOVOG oL a@lépwae Kot 1) Porbeta Tov,
Emou€av KATaALTIKO pOAO GTNV EKTTOVNOT TNG oLYKEKPLUEVNG epyacing. Extdg amd 6o Tar
Toportave, Bo nBeda v Tov evyaplotion yia Tnv onpavtikotaty Porbeix Tov yia TV

HETETMELTOL TTOPELL TWV GTTOLSDV HOV.

Ba 1Peha emmAéov va gvyaplotow Tov k. Amoéctoro Iavvomovio, o omoldg fTav o
TPAOTOG KaBnyntrg mov mapakorovdnoo ota apglBéatpa ToL PHABNHATIKOD KL OV €TL-
BePfaiwoe mwg n emAoyr] pov va aoxoAnBG pe o padnpatikd Tov 1 cwotr. Evxaplotd
eniong tov kahd pov @ido Ilavo Avdpéov yio tnv moAbtiun Porjbeia Tov otnv expddnon
™G xpnong tov meptpdirovrog KIEX.

Télog, Ba Beda va evyaplotiion Toug k.k. [lavvomovio, Avovon ko Katdfolro, yua
GUHHETOYT] TOUG GTNV TPLLEAT] ETLTPOTTY KOL PUOLKK TNV OLKOYEVELX OV YLO TNV VITOGTH PLEN

TOUG OACL AVTA TOL X POVLAL.

AmoAAvag
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Chapter 1

Introduction

In [24], Pimsner introduced a way to construct a C*-algebra O x associated to a C*-corres-
pondence (X, 7). This class of C*-algebras turned out to be very rich and includes a lot of
well-known examples of C'*-algebras such as crossed-products by Z, Cuntz-Krieger alge-
bras and more. The flexible language of C*-correspondences also encodes non-selfadjoint
operator algebras such as semi-crossed products. The second chapter of this thesis covers
very important preliminaries of the work that follows, in particular, we prove the Wold
decomposition theorem which is essential in order to connect the semi-crossed product in-
duced by #-automorphisms with the corresponding crossed-product by Z. We also give
a detailed description of Hilbert C*-modules, which are significantly important in under-
standing our work on C*-correspondences. For example the interior tensor product of
Hilbert C*-modules provides an example of an injective Toeplitz representation of a given
C*-correspondence, namely the Fock representation. In chapter 3 we introduce the notion
of the crossed-product of a C*-algebra o7 by a discrete group G, which is a C*-algebra that
contains information about &7 itself, the group G and the action of G on 7. We focus in
the case of the discrete group Z and we describe two possible multiplications that turn out
to describe the same object, up to isometrical *-isomorphism. Before this chapter comes to
an end, we prove that in the case of a topological dynamical system (C(X), o), where X is
a compact Hausdorff topological space and ¢ : X — X is a homeomorphism, two purely
topological properties, namely, topological freeness and minimality of the action induced

by o are equivalent to the simplicity of the crossed product C(X) x, Z.

Chapter 4 introduces the semi-crossed product, which is an operator algebra associated
to a C*-algebra ./ and a *-endomorphism « of 7. These are non-selfadjoint norm closed
algebras of operators on a Hilbert space. They include certain non-selfadjoint subalgebras of
C*-crossed products in the case that « is a x-automorphism, and in particular they include
the class of operator algebras considered by Arveson and Josephson in [2]. We prove some
basic properties of the semi-crossed product and when « is a *-automorphism we prove

that the semi-crossed product is completely isometric with a non-selfadjoint subalgebra of
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the corresponding crossed product 7 X, Z. Following [13], we use this fact to identify
the C*-envelope of the semi-crossed product. This is also implied by the main theorem of

chapter 6, although we give an independent proof in the first section of the same chapter.

In chapter 5, we construct the version of Ox developed in Katsura’s paper [17], which
is a generalization of the C'*-algebra Ox introduced by Pimsner; in particular, when the
C*-correspondence is injective, the two versions coincide. The idea of this construction is
motivated by the construction of graph algebras with sinks in [10], by topological graphs
in [18] and crossed products by Hilbert C*-bimodules in [1] and in fact generalizes all of
them. We study Toeplitz and Katsura covariant representations and we prove one of the
main theorems of this thesis, the gauge-invariance uniqueness theorem which we will use in
the final chapter to identify the C*-envelope of the Tensor algebra of a C*-correspondence.
Fowler, Muhly and Raeburn characterized the C*-envelope of the tensor algebra T; of a
faithful and strict C*-correspondence X in [6] . Following the work of Katsoulis and Kribs
in [15], in chapter 6 we give a proof of the fact that for an arbitrary C*-correspondence
X the C*-envelope of the tensor algebra 7'y is the Cuntz-Pimsner algebra Ox, as defined
by Katsura. In order to do so, we use a method of Muhly and Tomforde to add tails to a
C*-correspondence described in [21]. This method was inspired by a technique from the
theory of graph C*-algebras, where one can often reduce to the sinkless case by the process
of “adding tails to sinks”. Adding tails to a C*-correspondence enables us to view a given
C*-correspondence as a sub-correspondence of an injective one. Finally, the proof that the
C*-envelope of the tensor algebra T; is the Cuntz-Pimsner algebra Ox, is modelled on the
proof of a result of the same authors in [16] that identifies the C*-envelope of the tensor

algebra of a directed graph.



Chapter 2

Preliminaries

In this chapter we are going to give some important definitions and tools that we will use

in the chapters that follow.

2.1 Basic definitions and theorems

In this section we state some basic propositions, theorems and definitions from the theory

of C'*-algebras. We follow [22] and [4].

Definition 2.1.1. Let <7 be a C*-algebra. We say that {e) : A € A} C &/ is an approximate
identity for &7 if it is an increasing net of positive elements in the closed unit ball of .27 such

that a = lim) aey, for all a € 7.

Proposition 2.1.1. Let &/ be a C*-algebra. Then </ admits an approximate unit {e)}xca
where ey > 0 and ||e)||< 1.

In this thesis when we consider an approximate unit of a C*-algebra we will always

consider one with the properties of the preceding proposition.

Proposition 2.1.2. Let I C &/ be a closed ideal of a C*-algebra /. Then I is self-adjoint. In

particular, I is a C*-algebra.

Definition 2.1.2. Let .o/ be a Banach algebra with an involution. We say that .o# is a Banach

x-algebra if for each a € o/ we have ||a||= [|a*||.

Proposition 2.1.3. Let </ be a Banach x-algebra, 8 a C*-algebra and ¢ : &7/ — P a -
homomorphism. Then ¢ is a contraction. In addition, if ¢ is injective and <7 is a C*-algebra

then ¢ is an isometry.

Definition 2.1.3. Let .o/ be a C*-algebra, .7 a Hilbert space and 7 : &/ — B(J¢) a *-
representation. We say that 7 is non-degenerate if w(.¢7).7¢ is dense in JZ.
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We should note that the above definition is equivalent to
T(ly) =1

where [ is the identity operator on 7 and 1, is the unit of &7 and in the case that .o/ is
non-unital, if {e) }, is an approximate unit for <7, m(e)) converges strongly to I.
Indeed, if 7(a)x €  we have that

[m(ex)m(a)e — m(a)z|= [[w(exa = a)z||< [|m(exa — a)ll[||= 0,

therefore (e ) converges strongly to I on a dense subset of 7 and by continuity converges

strongly on 7.

Definition 2.1.4. Let o/ be a C*-algebra. We say that p : &/ — C is a state of o7 if itisa

positive linear functional of norm 1.

Proposition 2.1.4. Let a be a normal element in a C*-algebra of . Then there exists a state p

such that |p(a)|= ||a]|.

Theorem 2.1.1. (Gelfand-Naimark) Let </ be a C*-algebra. Then there exists a Hilbert space
A and an injective x-representation m : of — B(J). In particular, < is isometrically

x-isomorphic with a self-adjoint operator algebra.

Definition 2.1.5. Let &/ be a C*-algebra. We say that .o is simple if there are no proper

non-zero closed ideals of 7.

Proposition 2.1.5. (Corollary 1.5.6 in [4]) Let J be a closed ideal of a C*-algebra of and % a
C*-subalgebra of o/ . Then B + J is a C*-subalgebra of </ and the map

7 (B+J))J— BIBNT, b+j+Jsb+BNJ

is a x-isomorphism.

Lemma 2.1.1. (Lemma IIL.4.1 in [4]) Let J be a closed ideal of a C*-algebra o/ = UN21 N
where {</n : N > 0} is an increasing sequence of C*-subalgebras of <7. Then

J=Jnan).
N>1

Proof. From the preceding proposition we have that for each N > 1 we have a *-isomorphism
7wy (I + J))J — dn/N N J in particular 7y is an isometry which implies that for
a € 9N

dist(a, J) = dist(a, J N x)

Now let j be an element in J and € > 0, for a large enough N we have that there exists

a € &y such that ||a — j||< €/2 and thus there is an element ;' € J N &y such that
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la — j'||< €/2. It is now evident that ||j — j'||< € and since € was arbitrary we have that

j € Un>1(J N &) which completes the proof. O

Proposition 2.1.6. Let o/ be a C*-algebra and a > 0. There exists a state T of &/ such that

[7(a)|= lla]-

Remark 1. Let o7 be a x-algebra, then we denote by M,,(.27) the algebra of n x n matrices
with entries in &7 where the operations are defined just as for scalar matrices. Then M,, ()

is a *-algebra where the involution is given by (a;;);; = (aj;)ij. £ ¢ : @ — HBisax

homomorphism between *-algebras then the n-th inflation of ¢ is the the x-homomorphism
denoted by ¢(™ such that
") 2 My () = Mp(B)  (aij)ig — ($asg))ij-

Now, let 7Z be a Hilbert space and let 57" be the orthogonal sum of n copies of 7. If
u € M, (B()), we define ¢(u) € B(") by setting

d(u)(x1, oy ) = (Z U1 (X5),5 ey Z um(:vl)>
i=1 i=1

for all (z1, ..., zy) € H". Then the map
¢ : My (B(A)) = B(A™), u— d(u)
is a *-isomorphism. We define a norm on M,,(B(.%’)) making it a C*-algebra by
[ul|:= [|¢(u)]-

If o/ is a C*-algebra, we denote by (77, ¢) the universal representation of «7. If ¢(n) :
M, (/) — M,(B(4)) is the n-th inflation of ¢, then ¢(™ is injective. Therefore, we
define a unique norm on M, (/) that is making it a C*-algebra by ||a||:= ||¢ (a)|
a € M, (o).

for

Definition 2.1.6. Let o7, % be C*-algebras and p : &/ — 9. We say that p is completely
positive if for every n. > 1 the map p(™ : M,,(«/) — M, (%) such that

p™ ((aij)ig) = (plaij))ij)  for (aij)ij € My ()

is positive.

Proposition 2.1.7. Let o7, % be C*-algebras and ¢ : &/ — 9 a x-homomorphism. Then ¢ is

completely positive.

Definition 2.1.7. Let .o/, 8 be C*-algebras. We say that p : &/ — % is completely isometric

if p(™ is isometric for each n > 1.
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Definition 2.1.8. Let o/ be a C*-algebra. We say that &7 is a nuclear C*-algebra if for every
C*-algebra A, the *-algebra tensor product .7 ® Z admits only one complete C*-norm.

Proposition 2.1.8. Let .o/ be a C*-algebra and consider the x-algebra tensor product M,,(C)®
</ . Then the map ¢ : M,,(C) ® o/ — M, (<) such that for (\i;)ij € My(C) anda € o/

P((Nij)ij ® a) = (Nija)ij,

is a x-isomorphism. In particular, M,,(C) is nuclear.

2.2 Wold Decomposition

In this brief section we follow [7] and [8] in order to prove some basic properties of shift

operators and we prove the Wold decomposition theorem for isometries.

Definition 2.2.1. Let 57 be a Hilbert space and T' € B(#’) and L a closed linear subspace
of . We say that L is T-invariant, if T'(L) C L. If L is also T™*-invariant, we say that L

is reducing to 7.

Definition 2.2.2. Let L be a closed subspace of a Hilbert space . and A € B(J¢) an
isometry. We say that L is A-wandering, if the subspaces L, A(L), A?(L), ... are pairwise

orthogonal.

For such an A-wandering subspace we can form the orthogonal direct sum

SPRNCY
n=0
and denote it by M (L). Then M (L) consists of elements £ such that:

§=> & where & €AML) and > [&)*< o
n>0 n>0
We should note that
L = My(L) N A(M (L))"

Indeed, observe that L C M (L) and A(M4(L)) = @,,~; A™"(L) and that for each n >
1 the subspaces A™(L) are orthogonal to L and therefor_e L is also orthogonal to their
orthogonal direct sum A(M, (L)). Hence, L C M (L).

For the reverse inclusion suppose that ¢ = Zkzo AFzy, € M, (L) is orthogonal to
A(M4(L)). Note that for each k& > 0 we have that z;; € L and also that ¢ is orthogo-
nal A"H(L) for every n > 0. Therefore, for ( € L and n > 0, using the fact that A is an
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isometry we have

0= (€ A1) = S (AFay, ATIC) = (A g, AC) = (2040, C).
k>0

Since ¢ was an arbitrary element in L we conclude that x,, .1 = 0 for each n > 0 and hence
E=2x9€ L.

Definition 2.2.3. Let S € B(J¢) be an isometry. We call S a (unilateral) shift if there exists
a closed subspace L C .77, that is S-wandering and M, (L) = 7.
We say that dim(L) is the multiplicity of the shift S.

In this case from our observations above we conclude that
L=N8(H)" =ker(S¥)

and therefore dim(L) is uniquely defined.

Remark 2. If S; is a shift in B(J%) and L; is S;-wandering such that M (L;) = 5 for
= 1,2 with dim(L;,) = dim(Ls), then Sj, Sy are unitarily equivalent. Indeed, since
dim(L;) = dim(L2) we may pick a unitary operator U : L; — Lo.
We define
V.4 — 5 - ZS{L@"” — ZSSan
n n

and

Wty — H6 0 Y Sgyn— Y SPU 'y,

We note that if £ € J# then & =) STz, where x,, € L; for each n > 0 and therefore

- W (Z S;U:cn> = SPUTUz, =Y Siay,

and also if ( € J% then ¢ = ) S5y, where for each n > 0 we have y,, € L and thus

=V (Z S?Ulyn> = SPUU yn = S3yn.

The above implies that V is invertible and W = V1. We also have that V' is an isometry,
since if n # m we have that S]*(L;) LS/ (L;) for i = 1,2 and so

V(= ZSQan ZZIISSU%HQ:ZH%HQ:ZHSlan? Zslxn —H&HZ-

We are now going to prove two easy lemmas that we will use in the proof of the Wold

decomposition theorem.
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Lemma 2.2.1. Let % be a Hilbert space and A, P € B(J¢) be an isometry and a projection,
respectively. Then AP A* is the projection onto AP(.70).

Proof. Note that AP A* is obviously a projection. If ¢ = A(C) where ¢ € P(.%#), then
APA*(€) = APATA(C) = AP(C) = A(Q) = €.
If L AP() and x € #, then
(APA*n, z) = (n, APA*z) = 0,

using the fact that APA*(z) € AP(¢) and nL AP(¢). Thus, since x was arbitrary we
have APA*(n) = 0 and the proof is complete. O

Lemma 2.2.2. Let A be an isometry and L = ker(A*) = A(J)*. If P(L) is the projection
onto L, then P(L) = 1 — AA*.

Proof. Set U = I — AA* andletz € L+ and y € L. Since A is an isometry, A(%) is closed
and so A(#)+ = A(J#), thus there exists z € J# such that A(z) = z. Now observe
that U* = U and that U? = U and so U is indeed a projection and also

Ux) =U(A(z)) = A(z) — AA™A(z) = A(z) — A(2) =0
and

Uly) =y — AA™(y) = y.

O

Theorem 2.2.1. Let A € B(5¢) be an isometry on the Hilbert space 7€ . Then there is a unique
decomposition of 7 = ¢, & H,, into A-reducing subspaces and if Ay is the restriction of A
to ¢ and A, the restriction of A to ¢, then A, is unitary and A is a shift. In particular,
L = ker(A*) is an A-wandering subspace and we have that

M =M (L) =@ A"(L)={z e : A2 -0} and K, =[)A"(H).

n>0 n>0

Proof. At first we are going to prove that for n > m we have A"(L) LA™ (L) and so L is
indeed an A-wandering subspace. Set K = n — m > 0 and suppose that z,y € L, then

(A" (2), A" (y)) = (A" (2)AM(2), A" (y)) = (A*(2),y) =0,

where we used the fact that A, A™ are isometries and that y € A(H)> .
Now let 775 = My (L) = D,,5¢ A" (L), we will show that /7 = {z € " : A"z — 0}.
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Let P(L) be the projection onto L and P(A™(L)) the projection onto A™(L). Using the

preceding lemmas we obtain that
P(L)y=1-AA* and P(A"(L))=A"P(L)A™ = A™(I — AA")A™"

Thus for x € 7 we have

N
rEMH = x=> PA"(L)z= lim Y A"(I-AA*)A"(z) ==z lim ANA*N(z)
n=0

N—oo N—oo
n>0

and since

lim ANA*N(2)=0 < lim ANz =0,
N—o0 N—o0

we have that

ze M — lim AN (z)=0.
N—o0

To show that #4" = .7, observe

T et —= ze AV L), Yn>0
= 0= P(A™(L))x = AN — AA)A™, Yn >0

= A"A™(z) = AVTLA (2), Wn > 0.

Thus, z = A"A™*(x), Vn > 0 but using the fact that A™ is an isometry and lemma 2.2.2
we have that A" A"* = P(A"(4¢)) and therefore

v €M = e ANH), Vn>0 < zc[|ANK)=H.
n>0
Now let P = P(4#,),P, = A"A™ = P(A"(J¢)) and x € . Since {P,, : n > 1}
is a decreasing sequence of projections, it converges pointwise to the projection onto the

intersection of A"(.%¢), so Px = lim,, A" A™*(x). Therefore,
P(A(H,))x = APA*z = lim A" Ay = Py

and thus P(A(.,)) = APA* = P,hence PA = APA*A = AP, which proves that A4, is
unitary (onto and isometry) and /%, is reducing to A, which also implies that its orthogonal
complement J7; is reducing to A.

To complete the proof it remains to show the uniqueness of this decomposition. In order to
do so, suppose that /7 = K, ® K,, where A|, is a shift and A|x, is a unitary. Since A|x,
is a shift, the space L' = K, N Al (K,)" = K, N A(K,)" is A|k.-wandering and thus,

A-wandering. So it suffices to prove that L = L/, because in this case

Ky =M (L) = My (L) = A,
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and therefore their orthogonal complements will also be equal.
Letx € L= (K, ® Ks;)NA(K, @ KS)J‘, then x = z, + z,, with z, € K, 2z, € K,
and also x 1 A(K, @ Kj). Notice that

A(Ku S Ks) = A(Ku) D A(Ks) =K, ® A(Ks)

since A(K,) = Ky, (A|k, is a unitary).

Thus, 21 K, <= € K; < x=xsandalsorlA(K,) < z € A(KS)L
Therefore, z € K, N A(KS)L =L'andso L C L.

The exact same argument, if we use the decomposition J# = J%, & 7, shows that L' C
L. O

Remark 3. We define the Hilbert space ¢*(Z", L) to be the vector space of all sequences
(n)o such that z,, € L foralln > 0 and Zn20||xn||%< 00, where the inner-product is
given by

((Tn)ns (Yn)n) = Z (Tn, Yn)p, -

n>0

We should note that if we define

Us: @AL) > (27, L)+ Y A™(xn) — (w0, 21,32, ),

n>0 n>0

then U is invertible and also a unitary since

2
oAz =D oIIAM@) =) llzal®.

n>0 n>0 n>0
Therefore, if S : ¢2(ZF, L) — ¢?(Z*, L) is the Shift operator given by
S(xzo,x1, 2, ) = (0,20, 21,22, - +),
then it evident that we have the following

Ua™SUx = Al .

2.3 Integration on Banach spaces

This section is based on the notes of the graduate course Banach algebras [25].
Let X be a Banach space and f : [a,b] — X a continuous function.

Let Z = {a =1ty < t1 < ... < ty, = b} be a partition of [a, b] and let

|2]|= max (t; —ti—1).

i=1,...m
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We define

=3 F(te)(te — tr-).

k=1
Consider the net {S(f, &) : & partition of [a,b]} where &2 < P iff & is a refinement

of 5. We will show that this net converges in norm and we will denote the limit by

[P f(t)at

Indeed, by the uniform continuity of f, Ve > 0 there exists 6 > 0 such that:

€

if |t—s|<d then Hf(t)—f(s)|\<b

If P, is a partition of [a, b] with |ty — t5—1|< d for all k and & is a refinement of # then
foralli =1,....,m

ng

[ti —ti1] = U -1, i1,

j=1

where &2 = {CL = l070 < lO,l < ... < lomo < ll,O <. < lnmm = b}

We have
IS(f, 2) = S(f, Po)ll= || D (t: — ti-1) /( ZZ ig — lij-1)f(liz)
=1 =1 j=1
SN iy — i) f( ZZ iy — lij—1)f (L)
i=1 j=1 i=1 j=1
<3Sl Ly — Fpll< —— (=) =
=1 j=1

Therefore, if 21, %5 are refinements of & then
1S(f, 21) = S(f, 2N (IS(f, P1) = S(f, ZPo)l[+IS(f, Po) — S(f, Z2)[|< 2¢

and so its a Cauchy net. Since X is a Banach space, it is convergent.

Proposition 2.3.1. Let X be a Banach space and f : [a,b] — X a continuous function. Then,

/ab f(t)dtH < /ab||f(t)||dt < (b= a)|f]loo-

Proof. First of all, note that the map

[a,0] = R: &= £

is continuous and hence integrable and so

b
[
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is well-defined.
Let {Z, : n € N} be a sequence of partitions such that || Z2,||— 0. Then, by the definition
of the integral we have that

lim S(f, 2 / 1)

and also since ||.|| is continuous we have

liml|S(f, Zn)ll=

[ros}

Notice that, if we fix an index n € N and
P ={a=ty<t; <..<ty,=">}

then

1S(f, Zn)ll=

Z f(ti)(x; — xi—1)
i=1

< D IFEIs = zima) = SISl ),
i=1

and since || f|| is Riemann-Integrable in the classical sense, we have that

H/abf(t)dtH ﬁ/abllf(t)ydt_

Since f is continuous on a compact set we have

[fllsc="sup [[f(2)]

te(a,b)

is well-defined and therefore

b
/ 1F®) 1t < [1Fllso(b - a).

Now if x* € X*, then
b m b
o ([ s0a) = ims(r,2) =tim Y- o (G0 0~ tir) = [ ()
a E k=1 a

Denote by C([a, b], X) the linear space of the continuous functions from [a, b] to X, with

point-wise addition and scalar multiplication, then the map

b
C([a,b], X) = X f—>/ Ft)dt
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is linear and bounded.
If X is also a Banach algebra, from the continuity of multiplication we get that for ¢, ¢’ € X,

f :[a,b] = X and a partition of [a, b]

P ={a=ty <ty <..<ty=D>0}

S(efd, 2 i (ti —ti_1) = c(éf(ti)(ti —ti_l))c’

and by taking limits, we have that

/ab cf(t)ddt = c(/ab f(t)dt> d

Now, suppose that f : [a, b] — Cisacontinuous function and X is unital. Letg : [a,b] — X
be the function such that

For # = {a =ty < t1 < ... < t;, = b} a partition of [a, b] we have that,

S(g, 2) = Em:f(ti)ld( ti —ti-1) (Zf —ti1)> 1, (/abf(t)dt> L.

=1
2.4 Hilbert C*-modules

This section is fundamental for our understanding of C*-correspondences and therefore we

are going to give complete proofs. We are going to follow [20].

Definition 2.4.1. Let &/ be a C*-algebra. An inner-product right .«/-module is a pair of
a linear space X that is a right /-module and a map (.,.) : X x X — & such that
Va € o/, VY, n,( € Xand VA, ueC:

(1) (€& AC + pm) = A& Q) + (€, m),
(12) (n, &) = (& m)",
(
(

i) (& na) = (§,ma,
i) (£,€) >0 and (£, &) =0 < £=0.

One can easily deduce, from ), i) of the preceding definition, that the map we defined

above is sesquilinear and also we can easily see that

(€a,m) = (n,€a)" = ((n,§)a)" = a™(§,n).
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We also define ||.|x : X — RT,for £ € X by

1€l x= (1€, €)1 22

To prove that ||.|| x is actually a norm, we are going to need the next easy result.

Proposition 2.4.1. Let (X, <7, (.,.)) be an inner-product right <7 -module.

VEme X (§,mm,8) < Imm (&, 8)-

Proof. Without loss of generality, suppose that £, € X such that ||(n,n)||= 1. Then for

each a € &/ we have

0 < <77a - fana - §> = a*<77777>a’ - <€7 7]>a - a*<7]7£> + <§7§>
< da'a—(&ma—a’(§n) + (&),

where at the last inequality we use the fact that if c € &/ then Va € &
a*ca < ||c|la*a.
We set a = (1, §), then

0< <§777> <777§> - <§777> <777§> - <§7n> <777§> + <§7£> hence <€7 77> <777€> < <€7§>”<77777>H
O

Remark 4. The preceding proposition also implies that:

146, Mo < 1I€]l]x 1]l x -

Indeed, we have that for a,b € &/ ifa <b = |a||< 0]

&mn, &) < [ln,m{€, &) = & I [[{n,mIE Ol =
K&, mIP< g, O mll= X% = 1€ Ml < I€llxInllx

Now, one can easily prove the triangle inequality for ||.||x and so, it is indeed a norm on

the linear space X: If £, € X then

1€+ nllx= 1€ + 0, € + M= 146, €) + (10, €) + (&) + (mym) ]| 22

< (lEl+2lnllxlIElx+nl%) 2 = (IEllx+Inllx)*)? = 1€lx+nllx

Definition 2.4.2. Let (X, <7, (., .)) be an inner-product right </-module. We call it a Hilbert
o/-module if the pair (X, ||.||x) is a Banach space.



15 2.4. Hilbert C*-modules

From now on we will not use the subscript X for the norm, if it is not necessary.

We can easily see that for x € X

lz]l= sup{[[{z, y)[|: v € X, [lyll< 1}

Indeed, we have that
[z, 1< llzllllyll= ||z

T

and also for y = El

Iz, )= |-

For z € X we denote |z|:= <:c,:n>1/2 € o and also for a € o/ we denote |a|= (a*a)'/?,

then we have the following inequality
|zal < [|]|al.

Indeed,

(va, z0) = a* (z,5) 0 < |a]|%a*a
and by taking square roots the result follows. This also implies that
zal| < [[z[l[|al-

Remark 5. Let X be a Hilbert «&/-module. Then X .&/=X, where X/ is the closed linear
span of elements of the form {za : = € X, a € &/} and also if we denote by (X, X) the
linear span of elements {(x,y) : x,y € X}, then X (X, X) is dense in X.

Indeed, let {e;} be an approximate unit for <7 and z € X, then

(x —ze,x —xe;) = (x,2) — ez, x) — (T,7)e; + ei{z,x)e; — 0. (%)
If 7 is unital with an analogous computation we can see that for z € X we have
xly, = .

In the case that 47 is not unital, we denote by .27 its unitization, then X becomes a Hilbert
</1-module if we define 21, = x.

If we denote the closure of (X, X') by B, then B is a closed two-sided ideal of <7, since for
z,y € Xanda € o

(z,y)a = (r,ya) and a(z,y) = (va”,y)

Thus, using proposition 2.1.2, B is self-adjoint and so there exists an approximate unit {u; }

for B and thus using (%) for B we obtain that zu; % zforall z € X. Therefore, X (X, X)
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is dense in X.

We will now give some basic examples of Hilbert .o7-modules.

Example 2.4.1. Let </ be a C*-algebra. We define for a,b € o/
(a,b) = a™b.

Then <7 is a Hilbert .27 -module. If [ is closed right ideal of <7 then by restricting (., .) to I,
we get that [ is a Hilbert 27-module.

Example 2.4.2. Let 77 be a Hilbert space and X a compact Hausdorff space. For each
t € X, let 77 be a closed subspace of 7. Denote by E the C-vector space of all continuous
functions £ from X to J# such that for t € X, £(t) € . Then E has the structure of
C(X)-module if we define for { € E and f € C(X), £f to be the function

t—= &) f(1).

For &, n € E define (£, n) to be the function

t— (&), n(t)) e

Then (E,C(X), (., .)) is a Hilbert C'(X )-module.
Indeed, the fact that (E, C(X), (.,.)) is an inner-product right C'(X )-module is immediate.

To see the completeness of the norm, note that
I€]I%= supl(£(2), £(t)).z 1= supll€ ()5
teX teX

Suppose that (&), is a ||.||g-Cauchy sequence, then since ||.||» is complete we obtain
that the set of .J#-valued continuous functions defined on X is a Banach space. Using
the equality above (), is Cauchy in the norm of the right-hand side and therefore (&),
converges to a continuous .7’-valued function £ and using once more the equality of the

norms, (&), converges to & in ||.||g.

Now with the second example in mind we can prove that for a Hilbert .«7-module (X, <7, (., .)),
the closure of (X, X) is not always equal with /. So let & = C(X) and E the Hilbert
C(X)-module described above. Let Y be a non-empty closed subspace of X and % = {0}
fort € Y then

(X, X) C{f€0X) : f(Y) =0} S O(X).
Example 2.4.3. Let (X,,)"_, be Hilbert &/-modules. Then X = " | X, is a Hilbert .o7-
module if we set (£1,&2, ..., &m) - a = (§1a,&2a, ..., {ma) for (&1, &2, ...,&m) € X and a € &

and

<(£1>§27 ---,fm), (771’7]% ) 77m)> = Z <£n777n>

n=1
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for (m1,m2, ..., Mm) € X. We denote by Y™ the direct sum of n copies of a Hilbert <7-module
Y.

Example 2.4.4. Let (X,,)32, be Hilbert «/-modules. We define X = @, , X,, to be the

set of all sequences © = (x,,)5%, with 2, € X,,, such that >~ >° | (2, z,,) converges in <.

For x = (z,,)0%, and y = (yp)22 in X, we define
[e.e]
(z,y) = Z (T Yn)
n=1

and x - a = (214, x2a, ...). First of all, we prove the linear space structure:

Suppose that ()5, (Yn)n € X, we will show that (x,, + yn ), € X. We set

an =Y (Teak), b= Wkuk), o= Y (Tk+ Uk Tk + k).

k<n k<n k<n

Note that for each n > 1 and z, w € X,, we have
0<(z4+w,z4+w) <(z+w,z4+w) +(z—w,z—w) =2(z,2) + 2 (w, w)
Since, for n > m the differences ¢,, — ¢,, are finite sums of such terms we obtain
0<ecn—cm<2an—am)+2(b, —bn)

and therefore

llen — emll< 2[lan — am||+2]1bn — b |-

The fact that (z,)n, (Yn)n € X implies that both (a,,) and (b,,) converge and hence (cy,) is
a Cauchy sequence in .27 and therefore convergent.

The module action is well-defined:

For a € 7, the equality

n n n

D (wwa,zra) = Y a (wpap)a = a* (Y (xxa))a

k:m k::m

bl

=m

proves that when >, (xj, z1) converges in <7, so does Y, (zia, x,a).
The o7 -valued product is well-defined:

By polarisation we have

4 e k) =D @k +y+ ok +ye) = Y Tk — Yr Tk — k)
P p K

+iz (xp + iyk, Tk + 1Yk) —iz (T — WYk, Tk — TYk) 5
k k

which proves that the series on the left hand-side converges in .27 since the four series on
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the right hand-side converge in 7. Note that if v = (x,,)22; € X, then for each k € N we
have that

lzx*= || (@x, 2) = ||z, z) 1%

00
§ mnaxn

To see that X is complete suppose that (l’n)neN is a Cauchy sequence in X, where each
Tp, = (Tn(1),2,(2),...) for 2, (k) € Xj. Note that for each fixed ¥ € Nand n,m € N we
have that

1z (k) = 2m(k)*< 20 — 2

therefore the sequence (z,,(k))nen is Cauchy in X}, and so it converges to some y(k) € Xj.
Set y = (y(k))kren, we will prove that y € X and that x,, — y. To prove that y € X since
o7 is complete it suffices to show that given € > 0 there exists P such that form > n > P
we have |37 (y(k),y(k))|| < €2. Since (z,,) is Cauchy, given ¢ > 0 there exists N € N
such that

E>1>N = |lzx — x1]|< €/3.

Since xy € X we can choose P > N such that

1/2
< €/3.

[e.e]

S faw (i), en(@)

i=P

For each k € N we have y(k) = limy; x/(k) in Xy, that is

tin |y (k) — war(k), (k) — 2as (R)) = 0.

Therefore for m > n we have

D (k) = er (1), y(k) = ear R < DIy (R) = 2ar (), (k) = 2ar ()] == 0.
k=n k=n

Thus, we may choose M depending on m, n such that

1/2
< €/3.

m

> (yk) = zar(k), y(k) — 2 (k)

k=n
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Therefore, if m > n > P we have

m 1/2 m 1/2
S k) y®)| <D wlk) — 2ar(k), y(k) -z (k)
k:nm k=n " i "
Z ) —an(k),an (k) —an(®)|  + (D (v k), an (k)
; 1/2 o = 1/2
Z ) —xa(k), y(k) — za(k)) Z ) —an(k), zp (k) —zn(k))
o 12 .
+ 1D (an(k),an(k)| <e/3+e/3+e/3=¢
k=P
where we used the fact that
D (am(k) —an(k), zp(k) — oy (k) <D (@um(k) — an(k), za (k) — 2y (k)
k=n k=1
and also . -
> (an(k),an(k) <Y (n(k),an (k)
k=n k=P
as elements in ./ and therefore
> (wn(k) — an(k), war(k) — zn(k Z ) —an(k), zpm (k) — 2N (k))
k=n k=
and . .
> (en(k), Z
k=n =

The above proves that y € X.

Now to see that lim,, ||y — z,||= 0, given € > 0 we can pick ng such that
n>m>ny = |z, — Tml<e

For each N € N, if n > m > ng we have that

N
Z (@0 (k) = 2m(k), 20 (k) — zm(K))|| < €.
k=1
Letting m — oo we obtain
N
D (wn(k) = y(k), 2n(k) — y(k)) || < €
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for all n > nyg. Since, x,, — y € X we get that the series

> (wn(k) — y(k), zn(k) — y(k))

k=1
converges in .27/ .
N 00
Ifwesetay = k; (xn(k) —y(k), zn(k) —y(k)) anda = k; (n(k) —y(k), zn(k) — y(k))

we have that ||a||= limy||ax|| and since ||ay||< €2, it follows that ||a||< €2. The above im-

plies that ||z, — y||< € for all n > ny, as required.

Definition 2.4.3. Let (X, <7, (.,.)) be aHilbert .7 -module. We say that X is full, if (X, X') =
i

Let E, F' be Hilbert .«7-modules for a C*-algebra .o7. We denote by .Z(E, F) the set of
all the maps t : E — F' for which there exists a map t* : ' — E which satisfies

(tx,y) = (z,t*y) for x € E,y € F.

We call such a map an adjointable operator.

Ifte Z(E,F),A€C,a€ o, z,w € Eandy € F we have that
Oz +w),y) = Dz +w,t*(y)) = Ma, t*y) + (w, t*y) = Mtz + tw,y)

and also

(t(ra),y) = (xa,t"y) = a*(tz,y) = (H(z)a,y).

Thus, from iv) of definition 2.4.1 we have that ¢ is .7 -linear i.e.
t(Az + w) = Mtz + tw

and

t(za) = t(z)a.

Note that ¢ is also bounded.
Indeed, let {z,, : n € N} be a sequence in F such that z,, - = € E and tz,, — y € F.
Then for each z € F' we have

[t2n, 2) = {y, 2)|< [[t2n = ylll|2]|— 0

and since

[(zn, t*2) = (@, 7 2) | < [lzn — || [[t"2]|= O,
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we have that
(y, z) = lim(ta,, z) = lim(x,, t*2) = (x,t"z) = (tz, 2).
n n

Thus, tx = y and using the closed graph theorem ¢ is bounded.
If E = F = X we denote the set of adjointable operators by £ (X).

Proposition 2.4.2. Lett, s be elements of £ (X) and A € C. Then
(i) (t+s)" =t"+s*
(i) (At)* = At*
(iii) (ts)* = s*t*.

In particular, £ (X) is a C*-algebra where the product is composition and the norm is the

operator norm.

Proof. Let z,y,w € X, then

(, (t+35)"(y) = (t+s)(2),y) = (tz,y) + (sz,y) = (2, t"y) + (z,5"y) = (2, "y + 5"y)

and
(2, (M)*y) = (M)(2),9) = (M, ) = Mty y) = Mo t'9) = (o, My

and
(z, (ts)"y) = ((ts)(x), y) = (Us(x)),y) = (sz,t"y) = (x,s"(t"(y))) = (z, (s"t")(v)).

The above proves (i), (i1), (7).
Firstly, we show the C*-property of the norm. It is obvious that

[E7¢]]< [lE"[|[]2]]-
Now, observe that

[#*tl= sup [[t"¢(z)]|= sup sup [[(t"¢(x), y)[|= sup [|(t*E(z), )]

[lx[|<1 llzl[<1lyll<1 [lzf|<1
= sup ||(tz, tz)||= sup [tz]*= ||t
|| <1 <1

Combining the two inequalities, it follows that
1< 11",

since

(t"z,y) = (y,t"(x))" = (ty,z)" = (z,ty),
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we have that (t*)* = t and thus
[[£]l= 11" -

We conclude that
¥t = [|¢]].

Now in order to show that .Z(X) is complete, let {¢,, : n € N} be a Cauchy sequence in
Z(X). The space of bounded linear operators B(X) is complete since X is, and thus there
exists a bounded linear operator ¢, such that ¢,, — ¢. It suffices to show that ¢ is adjointable.

Since for n,m € N

”t:; - t:;,H: H(tn - tm)*H: ”tn - tm”

the sequence {t! : n € N} is also Cauchy, hence there exists a bounded linear operator ¢

such that t — 7. We have

(tr,y) = lim(t,z,y) = lim(z, t;y) = (z,ty).
n n

This proves that ¢ is adjointable and t* = . O

We will now introduce a very important class of adjointable maps analogous to the finite-
rank operators on a Hilbert space.

Let I, I be Hilbert .o7-modules, x € E/'and y € ', we define 0, , : ' — E such that
0ry(2) =2(y,2) for zeF.
Note thatfor z € Flw € E
{02y (2), w) = (2(y, 2), w) = (z,y)(x, w) = (z,y({z, w)) = (2,0, 2(w))
and so 0, , € Z(F, F) and in particular
07y = Oy

Proposition 2.4.3. Let E, F, G be Hilbert o/ -modules,u € F, v € G, x € F,
yeF te X(FE,G)ands € Z(E,G). Then we have that:

ez,ygu,v = ‘933<y,u),v = 62,v<u,y>
105y = Otz y

93;71/3 = gx,s*y-
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Proof. Let w € G and f € F, then

e%yeuﬂ)(w) = 91,y(“<v>w>) = z(y, u(v,w)) = (Y, u)(u,v) = Hm(y,u),v(w) =
z((w,v)(u,y))" = z((w, v(w, y)))" = z(v{u,y), w) = Oy p(uy) (W)

t0:y(f) = t(x(y, ) = tx(y, f) = Orzy(f)
and
Ory(sw) = 2y, sw) = 2(s"y, w) = Oy 5ry ().
O

We denote the closure of the linear span of the set {6,, : « € E,y € F} by # (F,E)
and in the case that £ = F' = X by J# (X). From the preceding proposition we have that
(X)) is a closed ideal of .Z(X).

Proposition 2.4.4. Ift € £ (E,F) and x € E where E, F are Hilbert o/ -modules, then

|| < [[2]]]].

Proof. Let p be a state of &7. By repeatedly using the Cauchy-Schwarz inequality for the

semi-inner product p({.,.)), we obtain

p(t*tz,2)) < pl{tta, "tx)) 2 p((x, 2)) /2

(02, 2)) 2 p(faf) 2
(02, (%)) pfaf) /2411

P
p

IN A

IN

P 0, ) plla )
(

< (Il “etlplz?) =

As n — oo we obtain p((tx,tx)) < ||t|?p(]z|?) and since this holds for every state we get

[tz|?< ||t||?|z|? and by taking square roots the proof is complete. O

Remark 6. Let o7 be a C*-algebra, consider the Hilbert ©7-module described in example
2.4.1, we will prove that % (&) = .
Let

¢ :span{,p :a,be A} — o

be the map such that
¢(9a,b + chd) = ab* + cd*.

Note that ¢ is injective. Indeed,

®(lap) =0=ab" =0
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and so for every c € &7
Oap(c) =ab'c=0

and thus 0, = 0.
We also have that

$(050) = P(0b,0) = ba™ = (ab*)" = $(0ap)"

and
¢(9a,bec,d) = ¢(9ab*c,d) =ab"cd" = ¢(0a,b)¢(96,d)'

Therefore ¢ is a x-homomorphism between C*-algebras and thus an isometry, so it can be
extended to an isometry, which we will still denote by ¢, from % (<) to &/ and there-
fore ¢(# (7)) is a C*-subalgebra of o/ as an image of a *-homomorphism between C*-
algebras.

Now if {e; : i € I} is an approximate identity in <7 then for each a € &/ and eachi € T
P(ae;) = ae; € O(H (),

and since ae; -+ a we obtain that O(H () = o and ¢ is surjective. So ¢ is a *-
isomorphism.

In the case that .o/ is unital we also have that £ (A) = J# (A).

Indeed, lett € £ (A) anda € &7

t(a) = t(lya) = t(le)a = On, 1, (a)-

2.5 Interior tensor products

In this section we are going to introduce the interior tensor product of Hilbert C*-modules,
which we will need in order to describe the Fock space of a C*-correspondence in chapter

5. We will need a few more tools in order to do so.

Lemma 2.5.1. Let X be a Hilbert o/ -module and let t be a bounded <7 -linear operator on X.

The following are equivalent:
(i) t is a positive element of £ (X),
(ii) (x,tx) >0 forallz € X.

Proof. Suppose that ¢t > 0, then (z, tx) = <t1/2x,t1/2x> > 0.
For the converse implication, if (z,tx) > 0 for all z € X, it follows from polarisation
that ¢ is self-adjoint and in particular adjointable. Therefore, there exist positive elements

s,7 € Z(X) such thatt =r — sand rs = 0. For x € X we have

—(z, 83$> = (sz,rsz) — (s, 52x> = (sx,t(sz)) >0
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which implies that — <:U, 33m> > (. Since s > 0 we have s> > 0 and thus <ac, s3x> > 0. So,
<$, 33x> = 0 for each € X and therefore s3> = 0. Thus s = 0 and hence t = r > 0 and

we are done. O

Let X, Y be Hilbert .«7-modules, then we can identify JZ (X™, Y") with the set of m x n
matrices over % (X,Y). If

x1 Y1
Z2 Y2
x = eXx™ y= eyY”n,
[m ] | Yn ]

0y corresponds to the matrix (6., ,, )ij- We also identify £ (X™, Y™) with the set of m x n
matrices over .Z(X,Y). If p; is the projection of X™ onto the 1 < ¢ < m coordinate and
g; the projection onto the 1 < j < n coordinate, given t € .Z(X,Y’) we associate with ¢

the m x n matrix with the (4, j)-entry g;tp; where p; is the inclusion map from X to X™.

Lemma 2.5.2. Let X be a Hilbert o/ -module. If x1,...,x, € X then X > 0 in M, (<)
where X is the matrix with (i, j)-entry (x;, x;j). Also, if t € £(X) and W is the matrix with
(i,7)-entry (tz;, tx;), then W < ||t X.

Proof. We identify M, (<) with ¢ (A") since &/ = ¢ (A) and we have that for all a =
(a1, ...,ap) in ",

(a,Xa) E a; avz,:):J a; = <§ xzal,g mzaz> >

and so X > 0 by the preceding lemma.
We also have that

(a, Wa) Za tacz,txj aj = <Ztmlal,2t:ﬂ]a3>
< IIt\2<vazaz,Zt%%> = [|t[*(a, Xa),

=1

using the inequality from proposition 2.4.4. O

Lemma 2.5.3. Let X be a Hilbert o -module, v € X and(0 < a < 1. Then there is an element
w of X such that x = w|xz|®.
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Proof. For any continuous function on the spectrum of |z|, we have

lf(2Dli= 11£ ()" (2, 2) £(l2)]?
= [llz[f([z))[[= sup{AF(N)|: A € sp(la])}

For n > 1 we define

n® ifA<1/n
gn(A) =
AT A>1/n

Note that g,, is continuous on C and therefore using the above norm estimate we obtain
that the sequence (2¢y,(|x|))nen is Cauchy and so it converges to an element w. Adjoining

an identity to 7 if necessary and using the fact that #1,, = x, we have

[zgn (||| =2|= [l2(gn(l])]z]* = 1)

n—o0

— sup{|A(ga (WA — D] X € sp(fe])} 225 0.

Thus, w|z|*= x and the proof is complete. O

Remark 7. Let X be a Hilbert «7-module, then X™ can be regarded as a Hilbert M,, (<7 )-
module: If v = (21,22, ..., 2p), ¥y = (Y1, Y2, ..., Yn) € X" and a = (a;;);; then we define

n n
ra = E LiQg1y «eey E TiQin
i=1 =1

and the inner-product
(z,y) = ((zi,95))is-

Then, from the final example of chapter 5 in [20] we obtain
Lt () (X") = Ly (XT) = Mo (Z(X)) 2 ZL(X) © My (C)

and in particularif z = (71, T2, ..., Tn), ¥ = (Y1,Y2, -, Yn) € X" then by, € Hpyp, (or)(X")
is identified with Y ;" | 0, ., ® I,, where I, is the unit in M, (C). Therefore, from the nu-
clearity of M,,(C), the norm of £ (X) ® M,,(C) is the spatial norm and so we have

n

> e

=1

Hnll=

n
z : ewi:yi

=1

||9:6,y||:

The following is lemma 2.1 in [11].
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Lemma 2.5.4. Let X be a Hilbert o/ -module. For x1, ..., Tn, Y1, ..., Yyn € X we have

. 1 2
Zemi,yi :H(<$Za%>) (Yiyj) /H
i=1
In particular, if X = <o then
- * 2 1/2
inyi = H x; 'CC] 1/ yl J zj/ H
i=1
Proof. Let x, y be elements in X. Then,
O e O [ N o T
=2 ) = o

Ifz= (xlaan "'7xn)>y = (y17y2a "'7yn)7z € X" we set

Ozy(2) =z (y, Z>M,L(d)
and we have

i |

e R DR

= ||l G )

Ti,Yq

We are now in position to define the interior tensor product of Hilbert C* —modules. Let
X be aHilbert .&7-module, Y a Hilbert #-module and ¢ : &/ — Z(Y') a *-homomorphism.
We form the vector space tensor product X ®,, Y. Let N be the subspace of X ®,, ¥

generated by elements of the form
fa@n—E®dla)y e X,neYaed

and form the quotient (X ®,, Y)/N.
For §,&1,&2 € X,n,m,m2 € Y and b € % we set

(E@n)b:=E® (nb)

and for simple tensors

(E1®@m & @n2) = (m, d((§1,82))m2)-
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The above formula extends by linearity to a sesquilinear form and we will prove that

() (X @ug Y)/N — B

n

is a #-valued inner-product. First of all,if z = ) /", 2; ® y; € X ®a15 ¥ we have that

<Zmz®yz7zxz®y]> Z<yi,¢(<$i;1’j>)yj>

7.7

= <y o )(X)y>y :

n

where y = (y1,...,yn) € Y" and X is the element in M,, (o) with matrix entries (x;,x;)
and (., .)yn is the #-valued inner-product defined in example 2.4.4. By lemma 2.5.2 we have
that X > 0 and using the complete positivity of the *x-homomorphism ¢, the identification
of M,,(Z(Y)) with Z(Y") and lemma 2.5.1, we conclude that (z,z) > 0. It remains to
show that N = {2z € X ®,, Y : (2,2) = 0}.

Suppose that z = za @y — z ® ¢(a)y forz € X, € Y and a € o7, then

(z,2) =(xa @y —z R P(a)y,za @y — x @ ¢(a)y)
=(ra®@y,ra@y) — (xa®@y,z @ ¢(a)y) — (z @ ¢a)y,za ® y) + (z @ dp(a)y, = © ¢(a)y)
= (v, ¢((za, za))y) — (y, o((za, z))p(a)y) — (d(a)y, ¢((z, xa))y) + (d(a)y, ¢((z, x))d(a)y >
= (y, ¢(a” (x,7) a)y) — (y,¢(a” (z,z) a)y) — (P(a)y, ¢((z, ) a)y) + (#(a)y, o((z, x) a)y) =

For the reverse inclusion, suppose that z = >~ | 2;®y; € X ®,,Y is such that (2, z) = 0.
From our calculations above and using the same notation we have that

<y, ¢(”)(X)y> =0.

Yyn
We set T = ¢(™)(X), then T > 0 as an element of M, (Z(Y)) = Z(Y™) and we also have

that
<T1/2y, T1/29>Yn = (y,Ty)yn = 0.

Since

T1/4 T1/4> :< T1/2> —0
< y1T%y) = WwT "), =0

it follows that T%/%y = 0. If we think of X" as a Hilbert M, (</)-module and set 2 =
(21, ...,z,) we have that |z|y»= X'/2. Using lemma 2.5.3, we obtain an element w =
(w1, ..., wn) € X such that wX/2 = z. If X'/* = (c;;);; then since TV/* = ¢ (X1/4),
we have that T'/4 = (¢(ci;))i;. Therefore, for each 1 < j < n we have z; = Y1, w;cij
and Y ;" | ¢(cij)y; = 0. It follows that

z = Za:j RY; = Z(wicij RY; —w; @ ¢(Cij)yj)-

7.7
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We denote by X ®, Y the completion of X ®¢4 Y/N with respect to the norm induced
by the %-valued inner-product described above and call it the interior tensor product of X
and Y. We will often omit the index ¢ unless it is necessary and we will also denote by
r®@ytheelementz @y + N € X ®y4 Y.

If X,Y and ¢ are as above and t € .Z(X ), then we define a map on simple tensors by

TRY —>trQy.

This map extends to a linear map, denoted by ¢ ® Iy, on X ®,j, Y.
For} " z;®@y €X ®Ralg Y we have

thz X Yi

Ztmz ®yZ,thj ®y]

= Z (i, o((ti, t))ys) || < N1t Z (i, o((zi, 7)) y;)
i,j=1 i,j=1

n 2
me X Y;
i=1

= 1)

)

where we have used lemma 2.5.2 and the complete positivity of ¢. Therefore, t ® Iy is a
well-defined, bounded map which extends by continuity to X ®, Y. We also denote the
extension by ¢t @ Iy.

We now prove that t ® Iy € (X ®4 Y). For £1,& € X and 11,72 € Y we have that

(t@Iy) (&1 @m), & @ne) = (t(&1) @n1, & @) = (1, d((H(€1), §2))m2)
= (1, o((§1, t7(&2)))m2) = (E1 @ 1, t°(&2) @ m2) = (&1 @ 1, (T @ Iy ) (&2 ® 1m2)),

and since the linear span of simple tensors is dense in X ®4Y", we are done. Thus, (t®1y)* =

t* ® Iy. It is evident now that the map
t—=t® Iy

is a unital *-homomorphism from .Z (X)) into £ (X ®4 Y).



Chapter 3

Crossed products

In this chapter we are going to introduce the notion of the crossed product of a C*-algebra
by a discrete group. The operations of the crossed product encodes, in a way, information
about the action of the discrete group. In particular, in the last section of this chapter we will
give an elegant result that characterizes topological properties of a topological dynamical
system via algebraic properties of the crossed product that arises from this action. In the
first section we follow mostly [4], in section 2 we follow both [4] and [13] and the last
section follows the notes of E.G. Katsoulis of this year’s seminar of functional analysis and

operator algebras.

3.1 Crossed products by discrete groups

Let &7 be a Banach space and G be a set. We define the Banach space /7 (G, <7) to be the <7 -
valued functions on G such that >~ || £ (¢)|[P< oo with the norm || f||,= (3, |l f(9)|IP) /P
and pointwise addition. In particular, if 27 is a Hilbert space, for p = 2, the Banach space

?%(G, o) is a Hilbert space with the inner-product defined by

(f,9) =Y {f(5),9(5))ur-
seG
Definition 3.1.1. Let & be a discrete group and .7#” a Hilbert space. A unitary representation
of G is a homomorphism of G into the unitary group of ¢, which we denote by U (7).

Example 3.1.1. If G is a discrete group, we define the left regular representation of GG on
2(G, ) by
A(s)g(t) = gs(t) = g(s7't) where g € *(G, 7). (3.1.1)

Note that A(s) is isometric and invertible (onto) and therefore it is a unitary operator of
B(2(G,#)).
We denote by Aut(./) the group of *-automorphisms of <7, where the operation is convo-

lution.

30
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Definition 3.1.2. Let &7 be a C*-algebra, GG a discrete group and o a homomorphism of the
group G into Aut(e?). We call (¢7, G, ) a C*-dynamical system.

We will always denote by a4 the automorphism a(s) for s € G.

Definition 3.1.3. Let (<7, G, ) be a C*-dynamical system, a right covariant representation
of the given dynamical system is a pair (7, U ), where 7 is a representation of ./ on a Hilbert
space 7 and the map s — Uj is a unitary representation of G on the same Hilbert that
satisfy the relation
Ust(b)U; = m(as(b)) Ybe o,s €.

Remark 8. Suppose that .27 is unital. Without loss of generality we can assume that 7 is
non-degenerate, whenever (7, V') a covariant representation of (<7, G, «).

Indeed, suppose that 7 is degenerate and set K = m(1,).7. Note that 7(1,/) is an
orthogonal projection of .7# and hence K is a Hilbert space. For y € 7, s € G and
x =7m(1ly)y € K we have that

Ust = Ustt(1)y = m(as(1y))Usy = (1) Usy € K,

therefore Us(K) C K and by setting s = s~ we obtain that U*(K) C K.
Hence, s — Us| is unitary representation of G which we denote by U|x and (7|x, U|k)

is a covariant representation of (<7, G, &) and 7|k is non-degenerate.

For a discrete group G, consider the vector space tensor product &7 ® C.(G), where
C.(G) is the set of continuous functions from G to C with compact (finite) support, which

is the vector space with elements of the form

f=>Y b@d,

teG

where b; € 7, §; is the Kronecker delta function at ¢ and the set {t € G : b; # 0} is finite.

We define a norm ||.||; on this space by

1= "> l1bell

teG

and we also define a multiplication and an involution that makes &7 ® C.(G) a normed
x-algebra which we will denote by &7 ®,, C.(G).
If « ® §; and b ® I are simple tensors then

(a®6:)(b®ds) = aay(b) @ by
and we extend linearly. We also define the adjoint by

(b®8s)* = a; 1 (b*) @ 6,-1.
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Let f =Y, cqa®d and g =) . bs ® d, then

1£glh= DD acu(b1y) @ 6| <D llas(b-1,)|
teG seG 1 teG seG
<Y adllibergll= D llacld loe-rsli= D lael D lbull= 11119l
teG seG teG seG teG ueG
and also
£ =D er(ai-) @ 6| =Y llewai-o)ll=Y _llai-ill=" _llaell= | fIh
teG 1 teG teG teG

Remark 9. We should note that from our calculations above the completion of the normed
x-algebra &/ ®, C.(G) with respect to ||.||1 is a Banach %-algebra which we will denote by
Mo, G, Q).

Proposition 3.1.1. Let (m,U) be a covariant representation of (<7, G, o), this covariant rep-
resentation yields a ||.||1-contractive x-representation of &7 @, C¢(G), which we will denote

by x U, such that for f =3, bt ® 04,

(rx U)(f) =Y _w(b)Us. (3.1.2)

teG

Conversely, a ||.||1-contractive non-degenerate x-representation of of ®, C.(G) yields a co-

variant representation of (<7, G, o).

Proof.

(rx U)(f) = O no)U)* = Uin(b)* = Upan(b; ) UiUp-1 =

teG teG teG

= S Uit )V, U = Y wlan(bi ) = (% U)(f)

seG seEG

Note also that for the product we have that

(mx )N (T x U)g) =D > wb)Usm(ca)Uu =3 > w(b) (U (c)U; YU, =

teG ueG teG ued
= Z Z bt Oét Cu Utu = Z(Z W(btat(ctfls))Us = (7T X U)(fg)
teG ueG seG teG

and

[(m < U)()ll=

Z W(bt)Ut

teG

<> lx @IV Y lbell= 11 £ 11

teG teG

because 7 is a *-homomorphism between C*-algebras and so it is norm-decreasing.

Now let o be a ||.||1-contractive *-representation of &7 ®,, C.(G) on a Hilbert space 7. At
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first, we suppose that &7 is unital. Then by defining
b)) =0(b®3d) and Us=0(ly ®ds), Vbe . VseQG,
we can easily see that 7 is a x-representation of .. For every s € G, note that
0(1ly ®65)0(ly ®5-1) = 0(ly ®0e) = 1)
and therefore s — Us is unitary representation of GG. We have

Ust(b)Ug = 0(1yy @ 65)0(b® 6e)o (1 @ 65)*
=0((Ly ®65) (b ®de) (Ly ® 65-1)) = 0(as(b) ® de) = m(as(b))

and so the covariance relation holds and for f = ZteG b ® Oy

(mx U)(f) =D _wlb)Us = > o(by @ 5e)o(1ley @ 0)

teG teG

:Za(bt®5t) =0 (th®5t> =o(f)

teG teG
If o/ is non-unital, then let {e) : A € A} be an approximate unit for &/ and define

Ush = li{na(e)\ ®ds)h, heH.

We prove that for each s € G this limit actually exists.
Note that for s € G and £ € J7

olex ®ds)(o(a® §)E) = o(exas(a) @ ds)& 2 olas(a) ® 0s)€
and that {o(e) ® d5) : A} is uniformly bounded, since for each A we have
lo(ex @ o)< llellllexllios[[< lloll-

Therefore, since {o(a ® §:)¢ : a € &t € G, € A} is dense in 7 we obtain that for
every h € J, lim) o(e) ® 05)h exists.

We prove that for each s € G the operator Uy is unitary.
Firstly, we prove that for s € G the operator Us is invertible and U, is its inverse.
Indeed, observe that {(ey ® d¢) : A € A} is an approximate unit for &7 ®, C.(G) since for
a® 0 € A Ry Ce(G) we have

|(ex ® 6e)(a ® ) —a ® 0el|1= ||(exa @ 0r) — a @ 0¢]|1= ||exa — al|.
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For n1,1m0 € € and s € G we have

(UsUg—1m1,m2) = <1i§n ligl o(ex ®ds)o(ey @ 6g-1)m, n2>

= <li/r\n liﬁn o(exas(ey) ® de)ni, 772>

= <li§n lim o (as(og-1(ex)en) ® de)ni, 7l2>
o

= <li§na(e>\ ® 55)7717772> = (1,M2)

where we used the fact that ¢ is continuous and non-degenerate and that

lars(erss(en)ep) @ 8 — ex @ Belli= lavs(ars1 (en)e, — ay1(ex)) @ bely

= [las (g1 (ex)en — ag-1(e) 1< llag-1(ex)en — ag-1(en) | = 0.

Therefore, Uy is invertible.

For each s € (G the operator Us is isometric.

Indeed, for s € GG and h € J# we have that
[Ush|[< [lo|l[[R< (Al

and also

1P]l= 1Us=1Ush || < [|Ush]|< |[R]]

Hence, Us is onto and isometric, therefore unitary.

We prove the covariance relation: For 1,1y € ¢ we have

(Uan (YU 1,12} = <Us limo(b® d)ol(ex © 531)771,772>

<Usa hmbe,\ ® 0g—1)M1, 772>
= (Usa(b® S5-1)m1,m2)

<h mo((ey ® ds) (b®551)771,772>

o l1me)\as ) ® 0 )771,772>
= (o(as(b) ® b¢)m1, m2)
= (m(as(b ))n1,772>

Note that we used the fact that o is continuous and that if {e) : A € A} is an approximate
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unit for <7, then for all s € G and all b € &/ we have that
liin(e,\b ®ds) = liin(b@\ ®ds) = b® Js.
Indeed, we can easily see that:
[bex @ 8y = b ® b, l1= [[(bex — b) @ &[l1= [[bex — bll.y= 0.

It remains to prove that o = 7 x U. Suppose that f = >, _~b; ® J; is an element of
o Rq Co(G) and n1,my € H, then

((m < U)(f)m,m2) = <Z 7T(bt)U1t7717772> = <Zli§10((5t ® be)(ex ®5t))771,772>

teG teG
= <ZU <h/1\nbt€)\ ® 5t> 7717772> = <Z o (b @ o¢)m1, 772>
teG teG
= <U (th ®5t> 771,?72> = (a(f)mn2) -
teG
O

We define a norm on &/ ®, C.(G) by

1f[|= suplle(f)]] (3.13)

where o runs over all continuous *-representations of &7 ®,, C.(G). This is well-defined be-
cause if o is a continuous representation of &7 ®,C.(G), then it extends to a *-homomorphism
between the Banach *-algebra ¢! (G, <7, a),, and a C*-algebra and thus using proposition

2.1.3 it is norm-decreasing and

lo (I 1 f 11

We should also prove that this family of representations is not empty and that there is a
faithful representation of .&# ® C.(G) in order to actually obtain a norm and not a semi-
norm.

First of all, we can easily see that:

If £lI= supllo(f)o(f)* = suplo(H)]*= | f1*
and so it satisfies C*-property.

Remark 10. From theorem 2.1.1 there exists a faithful representation 7 of &7 on a Hilbert

space ¢, we define a covariant representation (7, A) where A is the left regular represen-
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tation of GG by

(7 (b)) (s) = (e (b)) (x(s)), (3.1.4)
(Agz)(s) = z(t™'s), Vbe o, Vo € 13(G, 7). (3.1.5)

Note that

(7(be)z)(s) = m(ag (be)(a(s)) = m(ag (B)m(ag () (x(s)) = (F(D)T(c)x)(s)

and

7(b)a(s) = m(og " (0))(a(s) = m(ag " ()" (a(s)) = 7()"x(s)

and also that A; is invertible and isometric and therefore unitary.

Finally,

A (b)Afz(s) = 7#(D)Afz(t™ts) = W(a;lls(b)(At—l.iU(t_lS)) =
= m(ag tar(b))(2(s)) = (aw(b))a(s).

Thus (7, A) yields a continuous representation 7 X A of & ®, C.(G).
In order to see that 7 x A is faithful, pick x, y € 7 andt € G and suppose that (7 xA)(f) =
0 for some f =} . bs ® §s € & ®q G. For each t € G denote by x1, x; the elements of

(%(G, ) such that
x, ifs=e
1(s) =

0, ifs#e
and
£a(s) = {y, ifs:t'
0, ifs#t
Then,

0= ((7 x A)(f)a1, 2eheeige) = O _(7(bs)As(T1), 20)e2(G ) =

seqG
=YY AFOIA) @1)(k), (k) = Y (7 (bs)As) (1) (1), y)orr =
s€G keG seG
=Y (#® ) @) (s y)r = D (m(ap15(bs)) (@i (s 1), y)r =
seG seG

= (m(b)w, y) v

Thus we get that 7(b;) = 0 and therefore b, = 0 since 7 is faithful, for every t € G, and
finally f = 0 which implies that 7 x A is faithful.

Definition 3.1.4. Let G be a discrete group and (<7, G, o) a C*-dynamical system, the
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crossed product 7 x,, G is the completion of &7 ®,, C.(G) with the norm defined in 3.1.3.

We should make a few observations about the crossed product.
Consider

a— a® e

where o € o and e is the unit of G. Then this map is an injective *-homomorphism
between C*-algebras and hence we are embedding ./ into ./ X, G isometrically. If .o/ is
unital we can also see that &7 X, (G contains a unitary subgroup isomorphic to G by the
isomorphism

s — 1y ® 0.

Finally, the crossed product enjoys the following universal property:
Suppose that (7, U) is a covariant representation of (.7, G, ). We can obtain a *-homomorphism

o of & xq G into C*(m(),U(Q))

o(f)=> wb)Us forf=> b®0d € @Ce(G).

seG seG

It is immediate that o is a continuous *-homomorphism with respect to the norm defined
in 3.1.3 and so it can be extended to a *-homomorphism of &7 X, G into C*(7 (<), U(G)).

If o7 is unital o is a x-epimorphism, since for s € G
U(].{Qf & (55) = Us.

Definition 3.1.5. Let G be a discrete group and (&7, G,«) a C*-dynamical system, the
reduced crossed product &7 X, G is the C*-algebra generated by &/ ® C.(G) with the

norm:

LFlI= 11 < Al

where 7 x A is the representation of &7 ® C.(G) described in remark 10.

3.2 Crossed products by Z

In the case where G = Z, for applications to the semi-crossed product Z* x, o/ we are

going to need an isomorphic version of .2/ X, Z, which we call the left crossed product.

Remark 11. In the case that the discrete group G is Z, if

n— U,
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is a unitary representation on some Hilbert space and
a:Z — Aut()
is a group homomorphism, then for each n > 1 we have that
U, =U0"
where U = U; and also
an(z) =a"(x), Yne€Z\Vred

where o« = .
Conversely, if a : &/ — &/ is a x-automorphism then it induces a C*-dynamical system

which we will denote by (<7, Z, o), where

is the homomorphism from Z into Aut(<7).

We define (1 (<7,Z, o), where </ is a C*-algebra and «v a x-automorphism of <7, to be

the Banach x-algebra consisting of elements of the form

Zén®am

where a,, € & and §,, is the Dirac function on n, such that

D 6 ®an| =) llanll< oo

ne” 1 ne”

The product is given by the rule
(0, @ @) (0 @ b) = Oy @ @™ (a)b
and the involution
(bp®a)" =d_p,@a "(a)

We are making the exact same observations as we did above remark 9, to show that for
f7g € gl(dvzva)l
gl < [If]l1llgllx

and

1= 1l £llx
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and thus ¢! (<7, Z, ), is indeed a Banach x-algebra.

Definition 3.2.1. Let & be a C*-algebra and a : &/ — &7 a *-automorphism, let 7 be a *-
representation of .27 on a Hilbert space 7 and U a unitary in B(.7). We say that the pair
(m,U) is a left covariant representation of the C*-dynamical system (<7, Z, «v) if it satisfies
the relation

Ulr(a™(b) U™ =7(b), Vbe A, neZl

which is equivalent to

Un(a(b)) =n(b)U, Vbe .

For such a pair denote by U x 7 the *-representation of ¢1(.<7, Z, ), such that

Uxm (Z On ®an> = ZU”ﬁ(an).

ne” ne”

Just as in 3.1.1 we can prove that there is a bijective correspondence between continuous

*-representations of /(.7 Z, a); and left covariant representations of (&7, Z, a).

Remark 12. We should note thatif (7, U) is a left covariant representation of (<7, Z, «v) then
(m,U*) is a covariant representation of (<7, Z, «). Indeed, let (m,U) be a left covariant
representation of (7,7, a), then Vo € o/ we have 7(a(z))*U* = U*n(z)* and hence
m(a(z*))U* = U*n(2*) and since 7(.«7) is selfadjoint we have that

m(a(z))U* =U*n(z), Ve d.

Example 3.2.1. Let </ be a C*-algebra, let « : &/ — </ be a *-automorphism and let
7 : o/ — B(J) be the universal representation of 7.

Set # = (*(Z, ) and
7o = B(X),

such that for z € &7 and (---,z_1, 20,21, T2, ) € # we have
fr(x)( ©yL—1, 20, X1, X2, " ) - ( o ,7((6(71(1’))513_1, TF(CL').%'(), 71'(04(.%'))(.%'1), 77(042(3:))3;2, e )

and also

S 022, ) — (X(Z, ),
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where
0 0 0O 0 0
- 1, 0 0O 0 0
S = d
0 1, 0 0 O
0 0 1, 0 0

Then for x € & it evident that

and that S is a unitary and therefore (7, S) is a left covariant representation of (<7, Z, at).
Now in order to show that S x 7 is faithful, suppose that for f = Y onezOn ® Tn €
(N, 7, ),

S x #(f)=0.

Pick z,y € 5 ,n € Z and &1,&, € # such that

x, ifk=0
&i(k) =
0, ifk#0
and
y, ifk=n
fn(k) =
0, ifk#n
Note that

then if we set ) = (S x 7)(f)€1 € # we have that 7(n) = 7 ().

Hence,

0= ((S x 7)(f)é1,n)or = (0, n)r =

Thus, we have that for each n € Z, 7(z,,) = 0 and since 7 is faithful, z,, = 0 and so f = 0.

Now that we showed that there exists a faithful representation S x 7 of £! (7, Z, o);, for
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f €Y, Z,a); we define
[fll= sup [|[U x = ()] (3.2.1)

T,

where (7, U) is a left covariant representation. It is a well-defined norm on ¢! (<7, Z, a);

and it is easily seen to be a C*-norm.

Definition 3.2.2. Let (<7, Z, o) be a C*-dynamical system, the C*-algebra left crossed prod-
uct Z x o &, is the completion of ¢! (.7, Z, a); with respect to the norm defined in 3.2.1.

To avoid confusion we will denote by ||.||, the norm of the crossed product and by ||.||;

the norm of the left crossed product.

Theorem 3.2.1. The left crossed product is x-isomorphic to the crossed product.

Proof. We define
U N 2, 0) = 1A, L, )y,

such that for f = > . 6, ® z,, we have
\I/(Zén®$n> Za (Tn) ® 0—p.
nez neL

Then W is a well-defined linear ||.||1, ||.||1-isometrical isomorphism between Banach spaces

because

(=Y a @) @) =D lla"(@n)
neL nez
=Y lleall= || bn@za|| =171
neZ nel

and it is also surjective since for g = >, - yn ® 0, € {*(4/, Z, o), we have that

(Z bp®a” n)) =g.

ne”

We show that ¥ is multiplicative on simple tensors and since it is linear and continuous, ¥

is multiplicative:

V(00 © 2) (0 © 1)) = Vnam © a™(@)y) = 0~ (0™ (2)y) © 5 (i
= 0™ (@)™ (4) © 3_ (i

V(6 ® ) V(B ©y) = (0" () @ 6_) (0™ (y) © 0_ym) =

™" (2)a " () © 5

Thus,
U((0n @ 2)(0m @ y)) = ¥(6n @ 2)¥(6m @ y)
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and also
U((d,@x)")=V(_p,@a "(z¥) =2" ® oy

U6, @x) =(a ™) @I_p)" =2 @0,

Finally, we show that ¥ extends to a *-isomorphism between the left crossed product and

the crossed product. In order to do so let (m,U) be a left covariant representation, then

ﬂ(am(x_m))U*m
meZ

= [[(U x ) (H)]-

(m,U*) is a covariant representation and we have the following :
If f= ZnEZ On @z, € El(%,Z, )y,

(m x U*) (Za o) _n>

ne”

(m x U*) (Za (T—m) ® 6 )H

meZ
Z U™ (x—m Z U ()
nez

me”Z

[ < UH) (W (NI= ||(

Therefore, by taking supremum over all left covariant (respectively , covariant) representa-

tions we have that

A= 1 £ 1l

Thus, U is ||.||;, ||.||--isometric and so we can extend it to the desired *-isomorphism. [

Definition 3.2.3. Let (<7, Z,«); be a C*-dynamical system, we define the reduced left
crossed product Z X o, <7 to be the completion of /! (.7, Z, a); with respect to the norm

1F1=11(S < ®) (I,

where (7, S) is the left covariant representation defined in example 3.2.1.
This is the C*-subalgebra of B(.#") generated by the set {7(a) : a € &/} U {S}.

Now we are going to prove a very important result that helps us understand crossed
products by Z: The left crossed product by Z is *-isomorphic with the reduced left crossed
product by Z. The proof that the crossed product by Z is *-isomorphic with the reduced

crossed product by Z is essentially the same.

Remark 13. Using the same notation as in example 3.2.1 for z € T we define U, € B(.¢")
by

Ue(eoymo1,[20 ] 21, 0) = (...,z_lx_l,, zr1,...), where (..,z_1,[z0}21,...) €L,

then U, is a unitary and U} = Uz and so it induces a x-automorphism /3, of B(.#") , where
forT'e B(%')
B.(T) =U,TU;.
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Note that for ¢ € & and (...,x_l,,xl, ...) € & we have that

B (7(a))(...,x—1, (0], 21, ) =Um(a)UL (. x 1, (20, 21, )
= U.(, 7 'l @)z 1, w(a)wo | Zr(a(a))z, ) = (@) (s 21, [F0) 71, )

and also

ﬂz(gm)<...,l’_1, ,.1'1, ) = Uz§m<...,§7l$_1,,§l‘1, )
= UZ(, Zm+1l'_m_1,, zm_ll'_m_H, )
= (...,zmx_m_l,, 2T gy )

= zmgm(...,l',l, ,l‘l, )

Therefore, we obtain

B:(7(a)) = 7(a) and B(S™)= =TS

and thus we can restrict /3, to a x-automorphism of Z X, 7.

Now, we are going to show that for ' € Z X, .o/ the map
T—=ZXor o2 z— B,(F)

is norm-continuous. Let {z, : n € N} C T be a sequence such that

n—oo
2 2% L €T,

then from our calculations above for an element of the form 5”7 (a) we have that

liTan B..(S™7(a)) = lién 2MS7(a) = 2mS™7(a) = B.(S™7(a)).

noo_
By linearity we have that for an element of the form F = Y S¥#(ay),

k=—n
hénﬂzn(F) = Bz(F)

and so the map

[0, 1] L Xar 1 t— Be2wit<F)

is continuous.
Now if F' is an arbitrary element of Z X, o/, ¢ > 0 and ¢t € [0, 1], then we can pick
X =37, SF#(ay,) such that
€
X —F|< -.
X~ Fll< &
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There exists 6 > 0 such that:
€
[t — w|< § = || Bozmit (X) — Bezminw (X)||< 3
and so if |t — w|< §

[|Bezmit (F) = Bezniw (F)]|
< ||Bezrit (F) = Beamit (X) |4 Bezmit (X) = Bezmin (X) ||+ | Bezmin (F) — Beamin (X

€ € € €
< Bl X = Fll+5 + [Barsel | X — Fll< £+ 5+ 5 =

Finally, the map
t — Beorit (F)

is continuous for ' € Z X o .

Definition 3.2.4. Let &/ be a C*-algebra and % a C*-subalgebra of 7. A conditional ex-

pectation of &7 onto 4 is a contractive, positive and surjective linear map
E:d - B

such that:
(i) &(b) =bforallb e A,

(i) &(braby) = b1&(a)be forall a € &7 and by, by € B.

We say that a conditional expectation & is faithful if for every positive non-zero element

a € </ we have that &(a) is also non-zero.

Theorem 3.2.2. Let (<, Z,«) be a C*-dynamical system where </ and « are unital. Then
there is a faithful conditional expectation & of 7. X 2/ onto o7 . (Here we identify of with
i(of) CZ X o, wherei : of — 7 X, & is the map such that fora € o7, i(a) = dp ® a).

Proof. We can consider Z X, o/ as a C*-subalgebra of B(.7¢), where .7 is a Hilbert space.
Set
i 9 - L xqd CB(H)

to be the *-representation of . such that for a € &
i(a) =9 ®a

and set
U=06®1,.
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For z € T we have that

i(a)(zU) = 2(00 ® a) (61 ® 17) = 201 @ a(a)
— (61 ® L) (50 ® a(a)) = (D)ia(a))

Therefore, (i, zU) is a left unitary covariant representation of (.27, Z, ) and by the universal
property of the left crossed product we obtain a *-endomorphism v, of Z x, /. We can

easily see that the C*-algebra generated by {0p ® a : a € o/} and 2U is Z X, </ and since
v:(do ®a) = ®a

and

v(U) = zU

7, is a x-automorphism of Z X, .o/ and vz is its inverse.

Fort € [0,1] and F' € Z X, o set

fr(t) = yemit (F),

then fr is norm continuous.

Indeed, if ' = >} 0; ® ay, then

—n

fF(t) _ Z eQTrk:itdk ® ay,

k=—n

and scalar multiplication is norm continuous.
Now if F' is an arbitrary element of Z X, <7, ¢ > 0 and t € [0, 1], there exists X =
> ke Ok ® ag, such that
€
X —-F|< =.
1%~ Fll< £

Since fx is continuous there exists § > 0 such that:

€

[t — w|< § = [|Ye2mit (X) — Yezmin (X)]|< 3

and so if [t — w|< ¢

|Ve2mit (F) — Yezmiw (F)]|
< lyezmie (F7) = Yezmie (X) [+ |7ezmie (X) = vezmin (X) [+ [ Fezmin (F) = Fezrin (X)]

€ € € €
< arallI1X = Fll+5 + e llX = Fll< § + 54 £ =

Now, we can define

E L X A T Xy A
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by )
S(F) = / it (F) L.
0

The linearity of the integral implies that & is linear and also contractive since,
1 1
6= | [ ann ()] < [ Tnane®)de s su lhaneE)l< 171
0 0 te[0,1]
Moreover, we have that for a € &/
1
(52((50 X a) = / Ye2rit (50 & a)dt =d®a
0

and this shows that restricting & to the copy of &7 we get the identity map.
In order to show that & is positive let F' € Z x,, 7 then

1
5(FF) = / it (F)*ypamse (F)dt
0

which is a norm-limit of positive elements.

Indeed, if Z = {0 =ty < t; < --- <t = 1} is a partition of [0, 1],

S(eznit (F*F), P) =Y omity (F*F) (5 — 1)
Jj=1

is a positive element of Z X, </ and
1
lim (e (F*F), ) = / o amity (F*F)dt.
7 0

See section 2.3
To show that & is faithful, suppose that F*F € ker &.
Notice that for a state 7 of Z X, &7

0=7(E(F"F)) = T(/Ol’vew(F)*%wt(F)dt> = /01 T (Yezmit (F)*Yezmie (F) ) dt.
Suppose that there exists tg € [0, 1] such that the positive element
Vezmito (F7) Yezmity (F) # 0,
then we can pick a state 7 such that
[Vezmit (F) " Yezmitg (F)[|= [T (ezmito (F) yezmito (F))|= 6 > 0.

Since
t — T(Yezrit (F) Ypamit (F))
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is a continuous map we can find an interval I C [0, 1] containing ¢ such that for t € I

T(Yezrnit (F) yezmie (F)) >

N| >

Hence,

1
5
0= / (i (F) e (F))dt > Sm(1) > 0
0

where m(I) is the length of I and so we get a contradiction.
Therefore, V¢ € [0, 1] we have that

Ye2rwit (F*F) =0

and since 7,2~ is injective we conclude that F*F' = 0 and & is injective.
Now leta,b € &7,k # 0and F € Z X, </ then,

1
(60 ® a)F (30 @ b)) = /0 it (80 © a) F(J0 @ b)) dt
1
= ((50 ® a) /0 Ve2rit (F)dt ((50 (9 b) = (50 (9 a)éa(F)(éo X b)
and

1 1 1
EU*) = /0 Nozmit (UF)dt = /0 2Rtk = Uk /0 Ll P

1
= U’f( / e2mktdt> =0.
0

Thus, for a finite sum of the form

n

> (619 1) (60 ® a),

k=—n
we have that

& ( > (61 910) (G0 ak)> = ) E((51® 1) (60 @ ax)) = 6o @ ap.

k=—n k=—n

Note that since
dm®a=(0,®1y)(0o®a) and 6&n®1y = (61 ®1y)",

the algebra generated by elements of the form

n

D (61 ®1)" (00 @ ar)

k=—n
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is the same as the algebra generated by finite sums > ;_  (dx ® a), which is dense in the
left crossed product and since & is continuous and the images of these elements lie in o7,

the range of & lies in &7 and so & is a faithful conditional expectation onto .27 O]

Theorem 3.2.3. Let &/ be a unital C*-algebra, and o a unital x-automorphism of </ then

there is x-isomorphism between 7 X o o/ and Z X o o .

Proof. Let (m, ) be a faithful representation of </ and let (7, S) be the left covariant
representation as in 3.2.1. From the universal property of the left crossed product we obtain
a x-epimorphism

D7 X A =L Xy A,

such that

@(Z 5k®ak) = Z gkﬁ'(ak).

k=—n k=—n

Recall that there is copy of &7 in Z X, <7 and since for a € o7
®(5p ® a) = 7(a),

we get that the restriction of ® to .27 is 7, which is faithful.
n
Observe that for f = > 0 ® a; and z € T we have

k=—n

[0} Ofyz(f) =®don, ( Z ((514 X 1,Q¢)((5() X ak)> = ( Z Zk(5k &® 1%)((50 X ak)>

k=—n

= ( Z Zk(gk ®ak> = Z Zk(I’((5k ® ay) = Z zkgkfr(ak)

k=—n k=—n k=—n

k=—n

= > B(SM)B.(7(ar)) = B. ( > Skﬁ(a@) = B. 0 ®(f)

k=—n k=—n

and since elements in the form of f are dense in Z x,, &/ and both ® o v, and 5, o ® are

x-homomorphisms, in particular continuous, we obtain that for F' € Z x f
Do, (F)=p,0P(F).

Now, suppose that F' € Z X, & and F' € ker ®, then F*F is also in ker @, from the C*-
property it suffices to show that F*F' = 0.
We have

O(E(F*F)) = © ( /0 l%m(F*F)dt> = /O 1 B (Y emit (F*F))dt

_ / ' Bamie (B(F*F))dt = 0.
0
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Therefore, since &(F™*F') is an element in </ and
O(E(F*F))=n(&E(F'F)) =0

we get that &(F*F') = 0 and since & is faithful, we have that F*F' = 0. We conclude that
ker ® = {0} and ® is a *-isomorphism. O

3.3 Simplicity of C(X) x, Z

Let X be a compact Hausdorff space and suppose that ¢ : X — X is a homeomorphism.
We set « : Z — Aut(C(X)) to be the homomorphism such that

an(f):=foo™™
We have a well-defined action of Z on X where
n-x=o"(x)

Definition 3.3.1. Let (X, o) be as above. We say that:

(i) Z acts topologically freely on X if for every n # 0 the set
{reX:o"(z) =12}

has empty interior.

(ii) The action of Z on X is minimal if for every z € X the set
{o"(x) :n € Z}

is a dense subset of X.

Lemma 3.3.1. Let X be a compact Hausdorff space and o : X — X be a homeomorphism.
Suppose that Z acts topologically freely on X and letni, no, ... ny be integers such thatn; # 0
fori =1,...,k. Then for every open set U C X there exists a non-empty open set V.C U
such that

a"(V)NnV =0, for i=1,... k.

Proof. We claim that we can pick y € ﬂle{x €eX:ni-x#z}NU.SinceVi =1,...,k
the set {z € X : n; -z = x} is closed and has empty interior, {x € X : n; - & # x} is open
and dense and therefore (\*_ {z € X :n; -z #x}NU # (. Fori =1,...,k since X is a
Hausdorff space there exist disjoint open sets W;, G; C X such that

yeW; and n;-y € G;.
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For each i, from the continuity of ™ there exists an open set U; C X that contains y, such
that o™ (U;) C G;. We set V; = W; N U;, then V; is open and

a""(Vi))nv; =0.

Finally, by setting V' = ﬂle Vi MU, we have that V' is an open subset of U that contains
1, in particular it is not empty and has the desired property

a"(V)NV =0 for i=1,... k.
O

Lemma 3.3.2. Let (X,0) andny,na,...,ng beasabove, f € C(X) andm € N. There exists
g € C(X) such that:

(i) 0 < g(x) < 1,Vz e X,
(i) [ fall> 1 fl-%
(iii) (goo™)g=0,Yi=1,...,k
Proof. Set
v ={sex: 1@l 1715 }.

from the preceding lemma there exists an open set V' C U such thatforv=1,... k
a"(V)NnVv =0.

Pick y € V, since X is a compact Hausdorff space, X is normal and therefore by Urysohn’s
lemma there exists ¢ € C(X) such that g(x) = Oforallz ¢ V and g(y) = 1. Itis

immediate that g satisfies (4), for (i7) note that

sup|(fg)(z)|= sup|f(z)g(x)|> |f(y)g(y)|> HfH—i
reX zeU m

and for (i7i), Vi =1,...,k

goai(r)g(x) =0
since for z € V, o™ (x) ¢ V and thus g(c™ (z)) = 0 and if z ¢ V then g(z) = 0. O
Definition 3.3.2. Let X be a compact Hausdorff space and ¢ : X — X a homeomorphism.
We say that a set ' C X is o—invariant if 0(F") C F.

Lemma 3.3.3. Let X be a compact Hausdorff space and o : X — X a homeomorphism. If a
proper closed F' C X is o-invariant then the ideal I = {f € C(X) : f|I' = 0} generates a
proper ideal Jp of C(X) X4 Z.
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Proof. Set J% = {3F_, 9, ® 6, : k € N, g, € I}. Then J% is an ideal.
Indeed, for f ® 6, € C(X) Xq Zand ), gn @ 6y, € J% we have that

(Zgn®5n> (f®5k Zgn foo™ ®5n+k€JF

and
(f @ dK) (Zgnm) ngnoa ) @ bnyk € TP,

since Vn € Z, if x € F' using the fact that F' is o-invariant

gn(x)f(0e™"(x)) = 0.

and

f(@)gn(o™" (@) = 0.

Hence by linearity of the multiplication and the density of C(X) ®q co0(Z) in C(X) x4 Z
we get that J% is an ideal of C(X) X4 Z and thus Jp = E is a closed ideal. If & is the
canonical faithful expectation of C'(X) X, Z onto C(X) it is evident that &(J%) = I and

since & is continuous and I is closed we have & (Jr) = 1.

By Urysohn’s lemma one can find a continuous function which is not 0 on F, so I is a
proper ideal of C'(X) and from the fact that &(C'(X) x4 Z) = C(X), we deduce that Jp

must also be proper, otherwise & would not be surjective. O

Theorem 3.3.1 (Intersection property). Let X be a compact Hausdor{f space ando : X — X
a homeomorphism. Suppose that 7 acts topologically freely on X and that J C C(X) X4 Z
is a closed ideal such that J N C(X) = {0}. Then J = {0}.

Proof. Suppose that J # {0}, recall that J is a C*-algebra and so we can pick a positive
element ¢ # 0 in J. Then if we denote by

T:CO(X) X0 Z = C(X) xaZ]J
the canonical *-epimorphism such that for f € C(X) x, Z
m(f)=f+J,

we have that ¢ € ker .

By restricting 7 to C'(X) we get an injective *-homomorphism between C*-algebras since
kermNC(X) = {0}

and therefore an isometry.
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Set fo = &(c) where & is the canonical faithful expectation of C'(X) x4 Z onto C'(X), then
by the faithfulness of &, fy # 0.

For n € N we can pick ¢, = Z f ™ & € C(X) X Z such that [|c, — ¢||< % and
i=—kn

since ¢ # 0, eventually ¢,, # 0.
From lemma 3.3.2 for f(gn) and —ky,, —k,_1,...,k, we can pick g, € C(X) such that
0<g,<1land

n n 1 w
1A gmll> 15871~ ()
n
and also for m = —k,,...,kyandm # 0
(gn oo ")gn = 0.
Note that if m # 0

(92 00) (£ @ bm) (952 @ 00) = (F P am(gk/ )Y/ @ 6 ) =0

and therefore, using that 7(c) = 0,

|7 (92 @ 00 (56" & 809/ @ 80)) | = | (1932 @ 0)en(gh* @ 00)) |

= [ (¥ © o) en — )6k @ 60)) | < llgulllen — el <

Since 7|¢(x) is an isometry it follows that

S

1457 9all= || (922 @ 80) (15" @ d0) ga/ ® b0) | <

and so from ()
()« 2
1771< 2 0.

Now, we have that ¢,, — c and
E(en) =M = &(c) = fo=0.

This is a contradiction. O

Theorem 3.3.2. Let X be a compact Hausdorff space and o : X — X a homeomorphism.
Then, Z is acting on X topologically freely and minimally if and only if C(X) X o, Z is simple.

Proof. Assume that 7 acts freely and minimally and suppose that J C C(X) X, Z is a
non-trivial closed ideal. Then C'(X) N J is a closed ideal in C'(X) and thus

CX)NJ={f®db:feC(X) and fig =0},

where K is a closed (compact) subset of X since there is a bijective correspondence between
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closed subsets of X and closed ideals of C'(X).

The ideal J is assumed to be nontrivial and therefore by the intersection property it must

meet C'(X) and so we have that K # X. Note that for f ® §p € C(X)NJandalln € Z,
(Lox) ®6n)" (f®0)(Lox)®0n) = (Lox)y @6-n)(f®0n) = (foo™)®d € C(X)NJ,

which implies that (f o 0™)|x= 0.

We will prove that 0" (K) = K for alln € Z.

Indeed, X is normal and Hausdorff and so if there exists x = ¢"(y) € ¢"(K) such that
x ¢ K then by Urysohn’s lemma we can pick » € C'(X) such that hjx = 0 and h(z) = 1.
It is immediate now that h ® 69 € C(X) N J and (hoo™) ® 09 ¢ C(X) N J since
h o o™(y) # 0. Therefore, K C o™(K) for every n € Z and thus we also have that
o "(K) C o "(0"(K)) = K for every n € Z. Hence 0" (K) = K, Vn € Z and the fact
that the action is minimal implies that K = (). Therefore we have that C'(X) N J = C(X)

and since J is an ideal that contains the unit, J = C'(X) X, Z and simplicity follows.

For the converse, if C'(X) X, Z is simple, lemma 3.3 implies that Z has to act minimally.

In order to prove that Z acts topologically freely suppose, by way of contradiction, that
there is a ng € Z and an open non-empty set U C X consisting of fixed points for ™°; by

Urysohn’s lemma, there is a nonzero h € C'(X) with h(X \ U) = {0}.

Fix v € X, set O, = {0™(z) : n € Z} and 5 = ¢(*(O,). 1t is clear that the set
{€ok(z)  k € Z} is an orthonormal basis of 7.

We define 7, : C'(X) — B(J¢) by

T (f)egh(z) = f(ak(x))eak(x).

It is evident that 7, is a *-representation of C'(X ). Let U be the unitary operator in B(.7¢)
given by

Uegk(z)y = €gkt1(g)-
We prove that (7, U) is a unitary covariant representation of the C*-dynamical system
(C(X),Z, ).
Indeed, for each k € Z we have

Uﬂ'ac(f)eok(x) = U(f(o-k(x))eok(x)) = f(o-k(x))eok"‘l(x)
= f(o'il(akJrl(x)))eak"'l(x) = Fx(f o 071)60’“'1(:1:) = ﬂ-ﬂ»‘(a(f))Ueak(x)?

therefore

Ury(f) = mu(a(f)U.
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From the universal property of the crossed-product we obtain a *-representation
e X U 1 C(X) Xq Z — C*(7,,U) C B(J),

such that for 3, <., fn ® 0n € C(X) X Z

(me X U) | D Fa®0n | eqry = D mlfa)U

|n|<m [n|<m

Note that ker(m, x U) is a closed ideal of C'(X) X, Z. By the simplicity of C(X) X, Z
it is implied that 7, x U has to be faithful.

We will prove that
(h® d0) — (h ® 6py) = 0.

Assuming this for the moment, if & is the canonical faithful expectation of C'(X) X, Z onto
C(X), then
h®dy=Eh®6—h®by,) =0

and so h = 0, which implies that U = (), contradicting our hypothesis. This will complete
the proof that Z acts topologically freely on X.

So it remains to prove that
(h® o) — (h® dpy) =0
or, since m, X U is faithful, that
(e x U)((h® dp) — (h ® 6p,)) = 0.
Since {e,x(y) : k € Z} is an orthonormal basis of 7’ it suffices to prove that
(72 X U)(h @ 0o — h @ bng)epn(yy =0

for every k € Z.
If 0¥ (2) € X is a fixed point for 0™ then

(7 X U)(h © ) — h & Spg)eon(a)
= h(0"(2))eor(z) — (e x U)(h ® 60) (e X U)(Lo(x) ® Ong) ok (z)
= h(0"(2))eph(zy — (Mo X U)(h & §o)e itz

= h(o"(2))epr(zy — (0™ (2))e, k‘”’O(;L’)

= h(o"(2))eor(z) — h(0" () epn (s
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If o%(z) is not a fixed point for 0™ then o*(z) ¢ U and also o**"0(z) ¢ U for if
ok+m0(z) € U then
o0 (@) = 5~ (@) = 0¥ (x)

and so 0¥ (x) would be a fixed point.
Therefore, using the fact that (X \ U) = {0} we have that

(T2 X U)(h @ g — h @ ngy)eqn(m) = h(ak(a:))egk(ﬁ) — h(gktmo ())esktno(z) = 0.

Thus in all cases,
(7Tx X U)(h & (50 —h® 5n0)60k(z) =0

and this proves the claim that (h ® dp) — (h ® dy,) = 0 and concludes the proof. O



Chapter 4

Semi-crossed products

4.1 Definition of the semi-crossed product

In chapter 3 we managed to construct a C*-algebra that is related to a particular C*-
dynamical system. A basic ingredient for this construction was the x-algebra

o @4 Cc(G). Note that in a lot of situations we used the fact that o« was a homomorphism
into the group of automorphisms of .7’ and so one could use the fact that as had an inverse,
for example this fact was used to define the adjoint of & ®, C.(G). In this chapter we
will start with a C*-algebra &7 and a *-endomorphism « and we will construct a Banach

algebra related to this pair. In general, we are going to follow [23].

Definition 4.1.1. Let « be a (unital) *-endomorphism of a (unital) C*-algebra 7, 7 a rep-
resentation of .7 on a Hilbert space .7 and V an isometry of .7°. We say that (7, V') is an

isometric covariant representation of (&7, o) if it satisfies the relation:
Vr(a(x)) =n(z)V, for z€ .. (4.1.1)

Suppose that o7 and « are unital. Without loss of generality we can assume that 7 is

non-degenerate, whenever (7, V') an isometric covariant representation.

Indeed, suppose that 7 is degenerate and set X' = m(1,).7. Note that (1) is an
orthogonal projection of 7 and hence K is a Hilbert space. Fory € 5 andx = 7w(1,)y €
K we have that

Ve=Vr(ly)y=Vr(a(ly))y=7(ly)y € K,

therefore V(K) C K and so (7|, V| i) is an isometric covariant representation of (<7, o)

and 7| is non-degenerate.

Remark 14. We denote the semigroup of non-negative integers by Z* and we define the

Banach space /(27,7 a) to be the completion with respect to ||.||; of the vector space

56
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tensor product coo(Z1) ® o7, where

We define a multiplication on simple tensors by the rule :
(50 © 2)(0m ® ) = Gnim © ™ (z)y (412)

and we extend it linearly. We prove the sub-multiplicative property and thus this multipli-
cation extends to /! (<7, Z", ) and we get a Banach algebra.
Solet f = Zﬁlzo On ® Ty and g = Zfi:o Om & Ym Where k1, ko € N, then we have

\\(iwwn) <iém®ym>H:

ki ko ki k2

n=0 m=0 n=0m=0

k1 ko
Z Z 6n+m & am@:n)ym

n=0 m=0

m @ Ym

Proposition 4.1.1. If (7, V') is an isometric covariant representation of (<7, ), it yields a

continuous representation o of (' (<, 2", a) given on coo(Z1) ® </ by
Z o ®@xy | = Z V' (xy).
n>0 n>0

We will denote this representation by (V X 7).

Proof. By its definition, o is a well defined linear map, so it suffices to prove that it is
continuous (and therefore also well-defined) and multiplicative on simple tensors.
Indeed, suppose that f =}, -0, ® zp, € (Yo, 77", ), then

= {[D_Vir(za) || < DIV I(@a)lI< D llzall= [1£1l

n>0 n>0 n>0

?

and
(0 ® )0 (0m @ y) = V"'r(2)V" 1 (y) =

— VY™ (@) (y) = V(o (2)y) =
= 6(Gnm ® A" (2)y) = 0((30 ® 2)(0 © 1)).

O]

Before we give the definition of the semi-crossed product we need to establish the fact that

the set of representations V' x 7 of £}(.«7, Z*, a) is not empty and that there is a faithful
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representation of /! (<7, Z*, «). In order to do so, we will start with a faithful representation
of (7, ) and that will yield a faithful representation of ¢!(.e7, Z*, o) from the preceding
proposition.

Choose any faithful x-representation 7 of .2 on a Hilbert space s and let % = (*(ZT, 7)
denote the Hilbert space of all sequences {&,, },,>0 such that &, is an element in .77 for each
n>0and Y - ollénl?< oc.

Define a representation 7 of ./ on ¥~ by
ﬁ'(.%')(fo, 517 €27 ) = (ﬂ—(x)f(b 71'(()5(1'))617 7T(052<I'))§2, )
Now if Uy is the unilateral shift on %" i.e.

U+(£05§17£27 ) = (0)507515 )7

then U, is of course an isometry and it is evident that
Usn(a(z)) = 7(z)Us.

The above relation implies that (7, U ) is an isometric covariant representation and so it
yields our desired representation U, x 7 of £!(/,Z*, a). [19] To check that U, x 7 is
faithful, suppose that f = Y, - 0, ® x, is an element of ¢! (o7, ZT, a) such that

Uy x7)(f)(&) =0, forevery &€ 7.

Pick x,y € 2 ,n € Z" and &1, &, € # where

x, ifk=0
(k) =
0, ifk#0
and
y, ifk=n
En(k> = .
0, ifk#n
Note that

(Us x 7())(&) = Y Ukw(ar)(€) = ) Uf(n(ay)z,0,...)

k>0 k>0

and therefore if we set n = (U3 x 7(f))(&1), then n(n) = 7(x,). We have

0= <(U+ X ﬁ(f))(£1)75n>l = <"7a€n>% =
=Y (0(8),6n(9))r = (), v} = (w(wn) T, Y) 1 -

s>0
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Thus, we have that: Vn € Z* , 7(z,,) = 0 and since 7 is faithful, x,, = 0 and so f = 0.

We are now ready for the definition of the semi-crossed product:

Definition 4.1.2. We define a norm
|| fll= sup{||V x 7(f)]|: (7, V) isometric covariant representation of (<7, )}

on (' (e/,Z*F, o). We will denote the completion of /! (o7, Z*, o) with respect to this norm

by Z* x o </ and we will call this Banach algebra the semi-crossed product of .« with a.

The semi-crossed product enjoys the following Universal property: Suppose that (7, V)
is an isometric covariant representation of (.2, «). We denote by alg(w(<7), V') the Banach

algebra generated by the elements V| 7(a) for a € <7, then
p N, T, 0) > alg(n(e), V), D Sn®@an— Y V'r(an)
k=0 k=0
is a bounded homomorphism, since

Z Vir(an)

= [V xm(f)l < sup[[(V xm)(f)l
k=0 Vxm

and therefore it extends to Z* x,, 7 and in the case that .27 is unital it is also surjective,
since

(V X 7T)((51 X 1%) = Vﬂ'(lﬂ) =V.

Note that &7 can be embedded isometrically into ¢! (<7, Z T, ) by

T — Jg Q.

4.2 Embedding Z" X, & inZ X, o/

Definition 4.2.1. Let « be a x-endomorphism of a C*-algebra o7, let  be a *-representation
of o/ on a Hilbert space 7 and U € B() a unitary. We say that (7, U) is a unitary

covariant representation of (<7, «) if the following relation is satisfied
Un(a(x)) = n(x)U.

Remark 15. Note that every unitary covariant representation is an isometric covariant rep-
resentation, for the pair (<7, «). So if we define for f € (! (o/,Z", a)
| fllun= sup{||U x =(f)| : where (m,U) is unitary covariant representation of (<, a)},

then it is immediate that

1f lun< [1£1]
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where ||.|| is the norm defined in definition 4.1.2. Actually, by using the Wold decomposition
theorem in the case where « is a *-automorphism, we are going to prove that they are equal
and thus ||.||4n is also a norm, so the completion of ¢! (.27, Z", o) with respect to this norm
would be Z* x, &. To avoid confusion, from now on we will denote by ||.||;s the norm

defined in 4.1.2.

Let a be a unital *-endomorphism of a unital C*-algebra .7 and (7, V') an isometric
covariant representation on a Hilbert space 7 and let L = ker V'*,
Vi =Vimowy Vu = V’M+(L)L as in theorem 2.2.1 and Uy, as in remark 3.
First, we note that M, (L) is a reducing subspace for 7(<7).
Indeed, since
m(x)V =Vr(a(z)) Vre o,

we have that V' (.%7) is invariant for 7 (<), which is a selfadjoint sub-algebra of B(.7#) and
thus for © € &/ we have that 7(z)V () C V(5€) and also that w(z)*V () C V(57),
which implies that V' (J7) is reducing to w(<7). Now let x € o/, n > 1 and [ € L. Then,

m(@)V(1) = Vr(a(@)V* U = = V(™ ()l € V(L)
and so
m(/)VML) C VML), n>0
= () ERV”(L) C @)vn(L)

= (/)M (L) C My (L).

Therefore, we can split the covariant representation, and by split we mean that if z € &/
and h = hy + hy € # where hy € M (L) and hy € M, (L)" then

7(@2)(h) = (@) |y (1) (1) + (@) g, 1y (ho)

and
V(h) = Vs(h1) + Viu(ha).

If we denote by 7|y, (1) the representation of .7 M (L), where for a € &/
Tl (@) = m(a)|ar, (1)
and by 7| . ()~ the representation of .7 in M (L)*, where

Thar, (- (@) = 7(@) 57, (1)1
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then we have that (7|7, (), Vs) is an isometric covariant representation and (| Mo (D)5 Vi)
is unitary covariant representation. We should also denote by 7 the restriction of 7 to L
(ie. forx € o, mo(x) = 7(x)|L).

One can see that for x € &7 and (z¢, z1, 72, ...) € (*(Z*, L)

Uvrlar. ) (@) Uy (20, 21, 22, -..) = Uy m|ar, (1) () Z V™ (xn)

n>0
=Uv Y wlar, o) (@)Va"(2n) = Uy Y Va7 lar (1) (@"())zn
n>0 n>0
=Uy Z Viro(a”(z))zn = (o ()0, m0 ()1, mo (@ ()22, ...
n>0
and as a matrix
mo(x) 0 0
. 0 mo(a(x)) 0
Uvmlar () (@)Uv™ =

Theorem 4.2.1. Let o be a *-automorphism of a C*-algebra /. If f € (*(o/, 7%, ), then
sup{||U x w(f)|| : where (m,U) is a unitary covariant representation of (<7, ) }=
sup{ ||V x p(f)||: where (p, V') is an isometric covariant representation of (<7, «)}.

Proof- Let f =3 <60 ®yn € Mo/, 7", ), we have already noted that

So, let (7, V') be an isometric covariant representation of (%7, «) on a Hilbert space JZ.

From our analysis above and using the same notation, we have that

(ﬂ-’ V) = (7T|M+(L)l7 Vu) S (7T|M+(L)7 ‘/8)

We define
7o — B(X(Z,H))

where for x € &7 and (..., x_1, %0, 71, 22...) € (2(Z, H)
(@) (s 21, 20, T1, T2...) = (e (o H(@))z_1, m(2) 30, T(0(2)) 21, T(QP(2)) 22, ...

and also

S 022, ) — (XL, )
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where
0 0 0O 0 0
~ 1, 0 0O 0 0
S = d
0 1, 0 0 O
0 0 1, 0 0

Then for x € &7 it is evident that

and S is unitary:.

So, (7, S) is a unitary covariant representation of (.7, o). We can regard ¢%(Z*, L) as the
closed subspace of ¢?(Z, ), consisting of the elements of the form (..., 0, 0, 2o, 21, T2, ...)
where {z,, : n € Z*} C L.

Notice that since 7(.«7)(L) C L we have that 7(27)(¢2(Z*, L)) C £*(Z*, L).

Now, let 7|2(z+ 1) be the representation of <7 in (*(Z*, L) given by:

if (v, z1,72,...) € {*(Z*,L) and a € &

T+, (a)(wo, v1, 22, ...) = (7(a)z0, T(a(a))r1, m(a?(a))za, ...).

Then (7|g2(z+ 1), Sle2(z+,1)) satisfies the covariance relation and so it is an isometric co-

variant representation and

5] e2(z+,1) X Flez(z+y (D= || S"le2z+,0)7 (Wn)le2(z+ 1
n>0
=111 D 5" 7 (yn) < D05 ()| = 18 x #(f)
n>0 02(Z+,L) n>0

Furthermore,

fr\g2(z+7L): UVW‘M+(L)UV* and Uv‘/;UV* = S”g2(z+7L)
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and thus,

(Ve x mlary (ny) Z&z Qun | = ZVan|M+(L)(yn) =

n>0 n>0
> Uy S ) Uv Uvlegs 1) (yn) Uy
n>0
=Uy ZSn’e?(ZtL)ff\z?(ZJr,L)(Z’Jn) Uv*
n>0
= Uy (Sle(z+ 1) ¥l .n) (£ UV
= [|(Vs x 7lar, ) (D= 1(Slee@+ ) X7 le2z+ 1)) (]I

Finally,

1V % 2l 1V g, 2yt %lag, 292 & (Vlag, 0y <7l i) (Dl =
= maX{H(V|M+(L)l XW‘MJr(L)i)(f)Hv H(V|M+(L) X7r|M+(L))(f)H}
< max{||(Vy, oyt Xl ar, oy )OI NS < DT < 1 lan

and by taking supremum over all isometric covariant representations we get the desired

[ f[lis < 1f llun, and thus || fl[is= [|f{|un- =

Remark 16. The result we just proved enable us to embed completely isometrically Z* x .,/
into Z X, <7, in the case where « is a *-automorphism.

At first we should note that if f =3 -, ® zp, € (Yo, 7", ), then we can identify f
with the element of /' (<7, Z, a);, f = > nez On ® T, Where for every n < 0, 2, = 0 and
so we can see {1 (.7, Z"  a) as a closed sub-algebra of /! (o7, Z, a);.

Now, (7, U) is a left covariant representation of (<7, Z, «) iff (7,U) is also a unitary co-
variant representation of (&, Z7", ).

Thus,

[ 1l1= 11 [um

where ||.||; is the norm of the left crossed product Z x, <. In particular, the exact same
arguments work also for n x n matrices in M, (/' (<, Z", a)) and therefore Z* x, <7 is

completely isometric with a closed subalgebra of Z x, o7

We define for f € (1(ZF, o, )),
Il f1ls= sup{|[(S x 7)(f)||: (7, S) isometric covariant representation of(.</, a), S shift}

Proposition 4.2.1. Let o be a x-automorphism of a C*-algebra </ and suppose that [ €
(N2, o ). Then || flis= [|f]s-
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Proof. Let (m, U) be a unitary covariant representation of (&, Z", ),
since || fllun="|f]||is, it suffices to show that for every € > 0 there exists an isometric

covariant representation (o, S) where S is a shift, such that

[ x m)(HII< 1S x ) ()l +e.

As in remark 16, we can embed isometrically the semi-crossed product Z* x, .27 into the
left crossed product Z x,, 2/ and by theorem 3.2.3 the left crossed product by Z coincides
with the left reduced crossed product by Z.

Thus,

1A= 11V > p) (]

where p : &/ — B(J) is a faithful *-representation of &/ and j : & — B({%(Z, ) is a
*-representation such that for z € &7 and (..., x_1, 2, x1, ...) € £*(Z, 7#) we have

px) (s x1, 20,21, ...) = (s pla (@) z_1, p() 20, p(r()) 21, ...)

and V is the bilateral shift. Since (U, 7) is a left unitary covariant representation of (<7, Z, c)

we have that

1T x @) (A=< 1V < p)(H)]-

Foreveryn > 0let (2, (Z, ) be the subspace of ¢?(Z, 5#), which consists of the elements
&= (&1,%,&1,...) such that § = 0 for k < —n.

We can easily see that for all n the subspace (2 ,(Z, 5) is invariant under V and j(z) for
all 7 € o/ and it is evident that |, - (2.,(Z, #) is a dense subspace of (*(Z, ).

Therefore, for € > 0 we can pick n such that

IV < D) (N2, @,e) |12 [V X D))l =€ = [[fll—e = [[(U x 7) ()] —e.

Indeed, for € > 0 and 1 > 0, there exists w € ¢?(Z, #) such that ||w|= 1 and

1V p)(F)(@)[> (V< ) (F) ] =n-

Now since (J,,>q (%, (Z, #) is dense in (*(Z, 7’), we can pick z € Unso 0%, (Z, #) such

that ||z||= 1 and
€

Iz —w||< =———.
2|V x g

Thus,

IV X p(H) )=V < p(H NNV x pf)(w) =V x p(f)(2)]I< 5
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which implies that

HVXﬂﬂ@N>HVXMﬁ@MF§

There exists n such that z € (2 (Z, #’) and so

IV x 8Dl @12 IV x B
> [V p() (W)l =5 > IV x5 —5 = n.

Since 7 is arbitrary we conclude that
HVXﬁUWLmﬁﬂZHVXﬁUN—§>HVXﬁUW—6
Now if we denote by 7 @, (2) the representation of .’ such that for x € &/
Ple @) (@) = p@)le2 | (2.0);

then (p| @ (2. V] 2, o)) 1s an isometric covariant representation where V| 3, (2,)

is a shift operator and
||(V\e2+n(z,%)Xﬁ\ein(z,%))(f)uz (V' x ﬁ)(f)’ein(z,jf)\|~
Thus, if we set 0 = ﬁ‘gi z.w)and S = V|€i (z,) We have that

[T x m)(HII< NS < ) (f)ll+e,

which yields the desired result. O






Chapter 5
C'*-correspondences

In this chapter we are going to introduce C*-correspondences and operator algebras asso-
ciated with their representations. We will see that the Cuntz-Pimsner algebra is in a way, a
generalization of the crossed product and the tensor algebra, a generalization of the semi-
crossed product, since they arise from a particular example of a C*-correspondence. The
main theorem of this chapter is the gauge-invariance uniqueness theorem for which we are

going to present a proof from [12]. In general, we are going to follow [17].

5.1 ("-correspondences and their representations

Definition 5.1.1. We say that (X, o7, ¢) is a C*-correspondence if X is Hilbert .</-module,
where o7 is a unital C*-algebra and ¢ : &/ — £ (X) is a *-homomorphism (left action).

We say that (X, o7, ¢) is injective, if ¢ is injective and that it is non-degenerate if ¢(.o7 ) X

is dense in X.

Example 5.1.1. [14, example 3.4] Let ./ be a unital C*-algebra and o : &/ — & a *-
endomorphism. The space ¢ is a Hilbert .c/-module. We define the left action for a, x € &7
to be

¢(a)r = afa)z.

Then (7, o/, ¢) is a C*-correspondence which we will denote by «7,. We should note that
by using remark 6 we identify .7 with % (/) C £ (/) and therefore the range of ¢ lies
in Z().

Example 5.1.2. Let o/ be a unital C*-algebra and ¢ a Hilbert space such that &/ C B(J¢)

and X C B(J7) a closed 47-bimodule that satisfies X*X C .
The space X is a right «/-module and if we define (.,.) : X x X — &/ to be the .o/ -valued

inner product given by

(z,y) = 2"y

67
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for z,y € X, then since X*X C .o/ we have that X is a Hilbert .2/-module.
For a € & set

¢(a) = M,

where M, : X — X is the map such that for x € X, M,(z) = ax.
Note that M, is adjointable

(Mo(z),y) = (az,y) = 2"a"y = 2" My (y) = (v, Max ())-

Therefore, ¢ is a *-homomorphism and (X, <7, ¢) is a C*-correspondence. We call C*-
correspondences of this form, concrete C*-correspondences. We will prove that every C*-

correspondence is a concrete C*-correspondence.

Definition 5.1.2. Let (X, <7, ¢) be a C*-correspondence where ¢/ is unital and let # be
a C*-algebra. We say that a pair (7, t) is a Toeplitz representation of (X, <7, ¢), where
m: o — A isa*x-homomorphism and ¢t : X — A a linear map, if for each a € o/ and
each £, 7 € X the following relations hold:

(i) m(a)t(§) = t(p(a)f),
(i) t(€)*t(n) = 7({§;m))-

We say that (7, t) is injective iff 7 is injective.
We denote by C*(, t) the C*-algebra generated by the images of 7, ¢ in % and we say that
(m,t) is surjective if C*(m,t) = A.

Condition (i7) implies that

Indeed,

[t(€)m(a) — t(€a)|*= [((t(€)m(a))* — t(ga)*)(t(€)(a) — t(€a)]
(@)"t(&)*t(E)m(a) — w(a) t(§)"H(Ea) — t(Ea)"t(§)m(a) + t(Ea)"t(Ea)]
= [Im(a)* 7 ((§, §))m(a) — w(a*)m((§, £a)) — w({a, &) (a) + m({La, L)) |
= [[m(a*(¢, €)a) — w(a™ (€, Ea)) — m(a™ (€, §))m(a) + 7((€a, Ea))[|= 0.

= ||7(a

{
(

3

Note also that

L= [1E€)"tE)lI= (&, NNI< I, O)ll= llEN%

and so in the case that 7 is injective, we have that ||7((¢,&))||= ||(¢,&)|| and thus ¢ is an
isometry.
The arguments that appear in the proof of the following proposition are based on the proof

of Proposition 2.4.2 in [3].
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Proposition 5.1.1. Let (X, o7, ¢) be a C*-correspondence. There exists a Toeplitz representa-
tion (7y,ty) of (X, o7, @) that satisfies the following condition:

If (7, t) is a Toeplitz representation of (X, o7 , ¢), then there exists a (unique) x-epimorphism
p: C*(Fy, ty) — C*(m,t) such that

p(7u(a)) = m(a) and p(tu(§)) = t(E),

foralla € o and ¢ € X.
We call (7, t,,) the universal Toeplitz representation of (X,.o , §).

Proof. Suppose that |.&7 x X|< [ where f3 is a cardinal that we choose such that %0 = 3.
We set .Z to be the set of all Toeplitz representations (,t, #{ ) of (X, o, ¢) where
H{ryy = (*(J) is such that |.J|< § and H = D (x.t)c. 7 Hn 1) We define

fu=0{n:(mt) € F} and t,=@{t: (n,t) € .F},

then it is immediate that 7, : &/ — B(%Z) is a *-representation and #,, : X — B(%Z) i
linear. Note that for each { € X and x = Z(ﬂ e T(nt) € A where the sum converges

in the norm of 7 , we have that

Eu(©zlP= Y 1t z@nlP< IE1* D lzmnl®= 1€,

(mt)eF (mt)esF
where we used the fact that each pair (7, t) is a Toeplitz representation of (X, <7, ¢). It is

now implied that for each £ € X we have that ,(£) € B(2).

The pair (7, t,) is a Toeplitz representation of (X, o7, ¢).
Indeed, if z = Z(w,t)eﬁ? T(rp) € H,a € o and £,n € X then we have

(mt)esF
= HOT( @Dy = D tHE)T(ry = tu(Sa)a
(mt)eF (mt)es
and
tu (&) tu(n)z = tu(€)" L)@ (1)
(mt)es
= L&) M () = T((& M) T () = Tul((Es M)
(mt)eF (mt)eZF

Suppose that (7, ¢, .7) is a Toeplitz representation of (X, o7, ¢).

We assume first that dim .7 < (. Then there exists a unitary operator in B(.7) such
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that (7/,¢') € % where 7’ = U*rU and t' = U*tU. We define p/ : C*(7y,t.) —
B(H (1)) given by

ﬁ/(x) = P(ﬂ-/7t/)x|jf<ﬂ_,’t,), x 6 C*(ﬁ-uvfu)a

where P, 1) is the projection of A ontoits (', t')-th coordinate. Then /' is a *-homomor-

phism and for each a € & and £ € X we have

ﬁ/(ﬁu(a)) = P(ﬁ’,t’)ﬁu(a)‘éf’(,r/yt/): 7T/(CL)

and

7 (E4(9)) = Pl (Ol ey, = 1(6).

If we define p : C*(7y,t,) — B(J#) to be the x-homomorphism where for each z in
C*(Tu, tu)

then

and

p(tu(€)) = Up' (tu (U™ = U (U™ =1(¢).

Note that the above implies that the range of 5 is C*(r, t) and hence (7, t,,) has the desired
universal property in the case that dim(.727) < .

Assume now that .77 is of arbitrary dimension. Let .Jy be a set whose cardinality is equal
to dim (7). Let ¢ be the set of pairs (J, {Kj};jcs), where J C Jy, the K;’s are mutually
orthogonal non-zero subspaces of 7 and each K; has dimension at most /3 and is reducing
for m(<7) and t(X). We set (J, { K }jej) (J',{K}}jesr) if J C J' and for each j € J
we have K; = K. Suppose that {(J@, {Kj )}jeJO) ) }ier is a chain in ¢, then it is evident

that
(Uﬂ { ZGIJEJ(’)}) cy

el

and for each ¢ € I we have

(J9{K; L = (UJ(” {KJ(-i)iiGLjEJ(i)})
el
Using Zorn’s lemma we obtain a maximal element (J, {K}jcs) of 4.
We claim that € . e K = J. Indeed, suppose that x € JZ is orthogonal to K for all
jin Jandpicki € Jy \ J. Set K; = {Tz : T € C*(m,t)}, we prove that K is reducing to
7(47) and t(X) and K; is orthogonal to each Kj.

Let y be an element in K, then there exists a sequence {7}, : n € N} of elements in C*(, t)
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such that T,,x — y. For each a € &/ we have
m(a)y = lirrln m(a)Thx € K;
and since (%) is self-adjoint we obtain that K is reducing to 7(/). For { € X we have
&)y = liTILnt(QTnx €K, and t(§)'y= lién t(&) Thr € K;

and therefore K; is reducing to ¢(X).
Let a be an element in &7, { € X, j € Jand y € K;. We have

(r(a)z,y) = (z,7(a”)y) =0

and
{t(&)z,y) = (z,1()"y) =0,
since (/) K; C Kjand t(X)*K; C Kj and z L K.

Using the fact that |.&/ x X|< $ and % = S we also obtain that dim K; < (3 and
therefore (J,{Kj}jes) < (J U {i}, {Kj;}jesuqi), which contradicts the maximality of
(S K }je)-

Hence, 7 = ;. ; K; and we may write 7 = &;¢ ), where m;(-) = 7(-)|k; and
t = @jestj, where tj(-) = t(-)|k;. Note the for each j € J the pair (7;,t;) is a Toeplitz
representation of (X, %7, ¢) on a Hilbert space K; with dim K; < . From the universal
property of (7, t,,) for Hilbert spaces with dimension less than or equal to 3 we obtain for
each j € J a x-epimorphism p; : C*(, t,) — C*(m,t) where for eacha € & and £ € X
we have

pj(Tu(a)) = mj(a) and ﬁJ(EU(g)) = t;(&).

Let j : C*(7u,ty) — B(S#) be the direct sum of *-homomorphisms
p = @jeipj,
then p is a *-homomorphism and for each a € &7
p(Tu(a)) = ©jespj(Fu(a)) = ©jesmj(a) = m(a)
and for each £ € X
p(tu(€)) = Bjcspi(tu(§)) = Bjeat; (€) = t(§).

Finally, note that our work above implies that the range of p is C*(,t). We conclude that

(7w, ty,) satisfies the universal property. O
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Definition 5.1.3. The tensor algebra T; is the norm-closed subalgebra of T'x generated by
the elements of the form 7 (a), ,(£) fora € o7 and € € X.

Definition 5.1.4. The Toeplitz-Cuntz-Pimsner C*-algebra of a C*-correspondence (X, <7, ¢)
is the C*-algebra Ty generated by all element of the form 7,(a),#,(¢) for a € </ and
e X.

Note that if two Toeplitz representations (71, ¢1) and (2, t2) satisfy the universal prop-
erty, it is immediate that C* (7, 1) is *-isomorphic to C*(mg, t2) and also the norm closed
algebras generated by {m1(a),t1(£) : a € &/, £ € X} and {ma(a),t2(§) : a € &, € X}

are completely isometrically isomorphic.

Example 5.1.3. Let .27, be the C*-correspondence described in example 5.1.1 and suppose
that (7, t) is a Toeplitz representation of .27, on a Hilbert space 7. Without loss of gener-
ality assume that 7 is non-degenerate. If 7 is degenerate we can restrict to 7(1.)(.7). We

have that
1) = m(ly) = 1((ly, 1)) = t(1e) (1)

and so t(1,) is an isometry.

We also have that

m(@)t(ley) = H(d(a)ly) = t(a(a)) = t(lyala)) = t(1y)m(afa)).

Thus, (,t(1,/)) is an isometric covariant representation of (&7, Z ", ).
Conversely, suppose that (7, V') is an isometric covariant representation of (<7, Z™, ). We
will show that if we set

L&) =Vr(§), VEe

then (7, t) is a Toeplitz representation of the C*-correspondence 47,.
We already have that 7 is a x-homomorphism and ¢ is linear and so we only need to show
the relations (), (i7) of definition 5.1.2. In order to do so let a, &, n) be elements in <7, then

we have

m(a)t(§) = m(a)Vm(§) = Vr(a(a)f) = t(d(a)s)

and

t(€)"t(n) = m(&)"V*Vr(n) = n(&n) = w((&;n))-

We prove now that T, = Z* x, /.

Let (7, ,) be the universal Toeplitz representation of the C*-correspondence .7, and let
(m, V') be an isometric covariant representation of (<, ). As we have already seen, (7, t)
where ¢ is the linear map given by ¢(§) = V() for € € o7, is a Toeplitz representation of
oy, Therefore, there exists a *-epimorphism p : T,y — C*(m,t) such that

p(u(a) = m(a) and H((E) = H(), &ae .
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The pair (7y,ty(1.)) is an isometric covariant representation of (&7, ) and for each a

in &/ we have p(7,(a)) = m(a) and also p(ty(ly)) = t(1y) = Vr(ly) = V, hence
(7w, tu(1,)) satisfies the universal property of the semi-crossed product and therefore
alg(7y, tu(1ly)) = ZF x o . Tt is evident that alg(7,, t,(1.)) C alg(7y, t,) and since for
each ¢ € o7 we have

we obtain alg (7., t, (1)) = alg(Fy, t,) = Z1 x4 .

We are now going to show that for a C*-correspondence (X, <7, ¢) there exists an injec-
tive Toeplitz representation called the Fock representation of (X, <7, ¢). Let (X, <7, ¢) be
a C*-correspondence and consider the interior tensor product X ®4 X, which is a Hilbert
/-module. From now on we will denote X ®, X by X ® X or X®2. We can see that if we

set

$2(a) := ¢(a) ® Ix,

then ¢3 is a *-homomorphism from &7 into .Z( X ®?) and therefore (X ® X, <7, ¢3) becomes
a C"*"-correspondence.

Inductively, for n > 2 we define
X®n =X Qb1 X®(n_1)

and set X®0 := o and X®! := X.
Thus, for n € N we have that X®" is a C*-correspondence over &/ with the .o/-valued

inner-product defined on simple tensors by

(E1R&® .04, MAOMNE...QN,) = (L2208 0...0&y, dn—1((&1, M) (2@M R ...0n,)),

and

Pn(a)(§1 0L ® .. 06) =0(0) L0 ... Q&

ie. ¢pn(a) = ¢(a) ® I,_1, where I,,,_1 is the identity map of X®("~1) and

(£1®6®.06) a= 0L 1 ...0 (§a).

Remark 17. Note that for each m > 1 we have that that X®™, X O pm_1 X®(m_1),
X (@m-1) ®¢ X are naturally isomorphic and so we can view X®™ with either the first

or the second description.

Definition 5.1.5. Let us take £ € X®"™ where n € N. For each m € N we define an operator
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TR (E) € L (XOn, XBtm)) by
T(E) s XO™ — XOMtm) oy @,

Note that for a € X®° = &7 we have that 70, (a) = ¢,,(a) for every m € N.
We prove now that 7% (£) € L(X®m, x@ntm)),
Let
Y, span{(1 ®@ (2 : 1 € X", € XFM} — XOm

be the linear map given by

Tﬁg@(gl & CQ) = ¢m(<€;<l>)<27 Cl € X®n7§2 S X®m-

We prove that ), is continuous. For Zle Cfi) ® Céi) we have

Z¢m (€.¢) ¢ fj (te:¢ )cé”>

ii< () 0, & )
=1 j=1

ii (69 6m ((6.¢1M) & 0 ¢)

_ f;f;@m(@,d%) Lo ((6:67) &) =

(Oge @ Ixom) (Cf) ® Cg)) (Ve Céj)>

- ijzkj@@,cf)}@c el =

Il
E
|'Eﬂ\»

k k
(ot (S o) o o)
=1

k 2

Y ed

i=1

2
<[|6ecl <[> ¢ @ ¢

where we used the fact that the map
Z (X —» & (X®(m+”)) it =t ® Ixem

is a *-homomorphism between C*-algebras and that ||6,, ||< ||z||||y]|.

Since span{(; ® (2 : (1 € X®" ¢, € X®™} is a dense subspace of X®("™) we can
extend 1), to a unique bounded linear operator defined on X ®(ntm),

We will prove that

(O (G RG)=vn(G®&), GeX®(eX®,
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and therefore 7, (§)* = 7.

Indeed, if n € X®™ and ¢ = (1 ® (2 we have that

(0, T (€)"(€)) = (T (E)n, 1 ® G2) = (€ @, (1 ® (2)
= <777 ¢M(<£7 C1>)42> = <777¢?n(<1 ® <2)> )

since 7 was arbitrary we are done.

Lemma 5.1.1. Ifni,ny,m € Nand & € X®™, & € X2 then
Ty (E1)Th2 (&2) = T2 (& @ &2).
Proof. Pick ¢ € X®™, then

Toarm (§)TH2(€2)(€) = Trrym (§1)(§2 ® C)
=4 Q& =T (6 ® &) ().

Lemma 5.1.2. Forn,m € Nand&,n € X®" and a € o/ we have that:
i) 77, (n)" = bgy @ I,
(i) 75 (E) 1 (1) = dm({§, M),
(ii1) 77, (&) Pm(a) = 77, (Sa),
(v) Gntm(a)min(§) = 7 (n(a)f).

Proof. (i) It suffices to show the equality on vectors of the form ¢ = {; ® ¢, € X®+m)
where ¢; € X®" and (, € X®™,
We have

T (§) T (1) (€1 ® C2) = 7 () (dm ({0, C1)) G2 = § @ i ((n, C1))C2
=&, C1) @G = (Ocy @ L) (C1 @ C2).

(i) IfC € X®™ then
T (&) T (M) = 77,(6)" (1 © €) = dm (&, m))C.
(i17) If ¢ € X®™ we have that

T (§)Pm(a)(C) = & @ ¢m(a) = a © ¢ = 777, (€a)(C).
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(iv) If ¢ € X®™ then

Gtm (@) T (§)(C) = dnim(a)(€§ ® C) = (dn(a)) ® ¢ = 77 (dn(a)€)(C).

The Fock space Fx is the direct sum of Hilbert 2/-modules
oo oo
X x® g X% = {x = (k) € H X%k . Z<l‘k,l’k>x®k converges ind} :
k=0 k=0
The space F'x is a Hilbert «/-module where for (a, z1, 22, ...), (b, y1, ¥2, ...) € Fx,
o
(@, 21,22, ...), (b, Y1, Y2, o)) = (@, D) or + (i, i) xos
i=1

We define the left creation operator
too : X — g(Fx)
to be the map such that for £ € X and (a, (1,2, ...) € Fx

tOO(g)(aa Clv CZa ) = (0,5&,5@ Clag & CQa )

We prove that ¢, is well-defined.
Indeed,

o0

ltoo (€)(a, C1, Co, ) IP= (10, €0, € @ C1,€ @ Go, ) IP= H<§a,§a>x + ) {E®CE® G xmirn

=1

) H<§a7§a)x + 3 (60X il 06y

i=1

H(@%f@x + Z (Giy #i((€,6) x)Gi) xi

i=1

<

¢i(<§7€>¥2)H2 (Gis Gi) x i

<

612 a0, + | el + 3 i€ 0% (.60
=1 i=1

[e.e]

(@) + D (G Gi) xoi
=1

< llglf? = (€17l (a, G G, - 1%,

where we used the fact that for positive elements c, d of a C*-algebra with ¢ < d we have
that ||c||< ||d|| and proposition 2.4.4.

It remains to prove that for each £ € F'x the operator ¢, () is adjointable.

Let £ be an element in X and let (a, 21, 22, ...), (b, Y1, Y2, ...) be elements in Fx such that

Tp = 2n @ Wy, where z, € X and w,, € X®1 for each n > 2.
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Then, we have

<(a,x1,x2, "')atoo(g)(b>y17y27 "')>FX
= <(CL, x1,T2, )7 (ngbag b2y ylaé- ® Y2, )>FX

= (z1,8b)x + Z(xi+17§ ® Yi) xo(i+1)

i=1

[e.e]
= (21, ) xb+ D (£ @ Ui, 241 ® Wit1) ey

=1

=(z1,&)xb+ Z(ym ®i((€, zit1) X )Wit1) xoi
i=1

= (&, z1)xb +Z<¢i(<£’ Zit1) X )Wit1, Yi) x i
i=1

= <(<§7 m1>Xa ¢1(<§7 Z2>X)w27 ¢2(<§a z3>X)w37 )a (b7 Y1,Y2,Ys, )>FX

Suppose that v = (b, Y1, Y2, ...) is an element in F'x such that ||v||< 1. If we denote the ele-
ment (a, z1, T2, ...) of the above form by uwand ((£, 1) x, ¢1({&, z2) x )wa, p2({&, 23) x )ws, ...)

by w,, then from our calculation above we have

<u7 tOO(&)”) = <ww U>‘

Therefore using the Cauchy-Schwarz inequality for Hilbert modules we obtain that for each

v € Fx such that ||v||< 1,
[[{wu, v)[|= [[{u, too (E)0)|< [Julltos (E)olI< [l N ]|
and by taking supremum over all ||v||< 1 we have
[wu[< [I€]llull-

This proves that the map

(a,z1,22,...) = ((§; 1) x, P1({€, 22) x )wa, P2({§, 23) x )ws, -..)

is continuous on the linear span of elements (a, z1, 2, ...) of the above form and and using
density, we may extend it to a unique continuous operator on F'x, which coincides with

too(€)*. We also define for a € o

Too(a) (b, 1, T2, ...) = (ab, ¢1(a)z1, p2(a)xa,...), (b,x1,x2,...) € Fy.

We prove that it is well-defined and continuous.
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Indeed,

I7oc (@) (b, 1, 22, .. ) [IP= [|((ab, $1(a)a, d2(a)zz, ...)||* =

vatab+ 3 (Gaen a)an) o | < ol 0,0 + 100 P o)

=1

+ E xuxz X ®i

= [lal?[|(b, z1,z2, ...)|1%,

where we used proposition 2.4.4.

For (b, x1, 2, ...), (¢, y1,Y2,...) € Fx we have

((b,z1, 2, ...), "o (@) (¢, Y1, Y2, -..) ) by = ((b, z1, 22, ...), (ac, d1(a)y1, p2(a)y2, ...)) Fy
= (b,ac)os + Z<$i,¢i(a)yi>x®i = (a*b,c) + Z bi(a) @i, yi) xoi
i=1

= (Too(a™) (b, z1, 2, ...), (¢, Y1, Y2, ...)) Py

Thus, 7o (a) € £ (Fx) and it is immediate that 7, : & — Z(Fx) is a x*-homomorphism
since for ¢ > 1, the map ¢; is linear and multiplicative.

Now, suppose that a is an element in .o/ such that 7o (a) = 0. If (b, 21, x2, ...) € F, then

Too(a)(b, x1, T2, ...) = (ab, p1(a)z1, p2(a)ze, ...) = (0,0,...) = ab=0

If we pick b = a* we get that ||a*a||= 0 and so a = 0. Thus, 7 is injective.

Finally, to show that (7o, ) is a Toepitz representation of (X, <7, ¢) it remains to show
the relations (), (i7) of definition 5.1.2.

For that purpose suppose that £, 7) are elements in X, a € o/ and (b, z1, 22, ...) € Fx, then

we have

(a)too(&) (b, 1, Ta, ...) = Too(a)(0,£b, € ® x1,€ ® x2, ...)

(0, #1(a)(€D), p2(a)(§ ® x1), P3(a)(§ @ x2), ...)

= (0,9(a)éb, p(a)é ® w1, p(a)é ® w2, ...)

(0, (¢(a)§)b, (¢(a)) ® 1, (P(a)§) ® @2, ...) = tec(P(a)§) (b, 21, T2, ...),

Too

hence 7o (a)too(§) = too(P(a)§) and

too (1) oo (€) (b, 21, T2, ...) = too(1)*(0,£b,£ @ 31, @ T2, ...)
= (7, &) xb, d1((n, &) x )1, P2 ({0, &) x) 22, ...) = Too ({1, &) x ) (b, 21, T2, ...),

hence too (1) too (&) = Too ({1, €) x)-

Therefore, (oo, to) is an injective Toeplitz representation of (X, <7, ¢). This also implies
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that the universal Toeplitz representation (7, t,,) is injective.
Indeed, if a € kerm, and p : Tx — C*(7oo,too) is the x-epimorphism induced from

universality, then we have that
0 = plFu(a)) = 7oola)

and therefore ¢ = 0.

Remark 18. Suppose that (X, o7, ¢) isa C*-correspondence and (7, t) is an injective Toeplitz
representation of (X, .27, ¢) into a C*-algebra #. We can think of & as a C*-subalgebra of

B(.7¢) for a Hilbert space 7. Then since 7, t are isometries ¢(X) is a closed subspace of

B(#) and (/) is a C*-subalgebra of B(J7).

We will show that ¢(X) is a 7(.<)-bimodule such that ¢(X)*t(X) C (<) and thus by

identifying .7 with m(/) and X with ¢(X) we can see that (X, <7, ¢) is a concrete C*-

correspondence (example 5.1.2). Indeed, for £(£),t(n) € t(X) and 7(a) € 7(%/) we have

t&)m(a) = t(8a) € H(X)

and

and also

O]

Let (X, o7, ¢) be a C*-correspondence and (7, t) a Toeplitz representation of (X, .27, ¢).
We set
Tx = ¢~ (H (X)) N (ker ),

where (ker )+ = {c € @ : cb =0, forallb € ker ¢}. It is easy to see that .Jy is a closed
ideal as an intersection of closed ideals. We call Jx the Katsura ideal.
We define ¢, : # (X) — C*(m,t), where for z,y € X

te(bz,y) = t(x)t(y)".

We prove that ¢, is well-defined and continuous on J# (X).

Using lemma 2.5.4 and the fact that 7 is a x-homomorphism and therefore completely pos-
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itive, we have

TiyYi

(i, 20l i yi)) 202 (i )i (i )AL

Z (z Z)t(y,)* te (Z 9$i7yi> H
1=1

i=1
The above implies that ¢, is contractive on a dense subset of % (X) and therefore it extends

= (It (i) ta) L () "ty )il =

to a contractive map defined on J# (X '). We will prove that ¢, is a x-homomorphism.
Indeed, since (0,)* = 6,4, from linearity and continuity of ¢, and density of the linear

span of rank one operators, it is immediate that

To prove that ¢, is multiplicative, it suffices to prove it on rank one operators.

For z,y,u,w € X we have

t*(eﬂmygu,w) = tx (‘9$<y7u),w) = t(ZC <y7 u>)t(w)*
= t(z)m((y, u))t(w)” = t(x)t(y) " tH(w)t(w)” = s (Ory)tx(Ouw)-

Note that

tH(02,y(2)) = t(2(y, 2)) = t(@)7((y, 2)) = H(x)t(y)*t(2) = tx(0ry)t(2)

and soif k € (X)) we get
t(k(2)) = te(k)t(2).

Note also that
m(a)t(02,y) = m(a)t(z)t(y)" = t(P(a)2)t(y)" = ti(Op(a)ey) = ts(P(a)bzy)

and therefore

m(@)t. (k) = t(d(a)k). (5.1.1)

In the case that 7 is injective we get that 7 is completely isometric and therefore ¢, is an

isometry. We also claim that

p((tu)«(k)) = (too)«(F),

where p : Tx — C*(m,t) is the induced *-homomorphism from the universal property of

(s u) In order to see this is true recall that the linear span of elements in the form 6, ,
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is dense in % (X) and therefore we may assume that k = 6, , for z,y € X and thus

() (k) = p((Eu)s(0ay)) = p(Eu(@)Tu(y)") = t(2)t(y)" = tu(k).

Definition 5.1.6. Let (X, o/, ¢) be a C*-correspondence. We say that a Toeplitz represen-
tation (7, t) of (X, <7, ¢) is Katsura covariant if for each a € Jx we have that

7(a) = t.(¢(a)).

We prove now that there exists a "universal” Katsura covariant Toeplitz representation.
Let (X, o7, ¢) be a C*-correspondence and (7, t) a Katsura covariant Toeplitz representa-
tion of (X, 7, ¢) and (7, t,,) the universal Toeplitz representation of (X, o7, ¢). We define
J to be the closed ideal of T'x generated by the set

{(tw)+(6(a)) = Tula) s a € Jx},
and we denote by o : T'x — T'x/J the canonical quotient *-epimorphism. We set
Ty =007, and t,=co0t,

and we prove that (m,, t,) is a Katsura covariant Toeplitz representation of (X, <7, ¢).
Note that for a € Jx we have that (7, (a) — (£,)«(¢(a))) = 0. Fora € o and £, € X

we have

(0 0tu(8))(o 0 Tu(a)) = o(tu(€)Tu(a)) = 0 o tu(éa)

and

g omu((&,m) = a(t,(E)tu(n) = (0 0 tu(€)) (a0 tu(n)).
Note also that

(0 0tu)i(bgy) = (0 0tu(§) (o 0 tu(n)” = o(tu(©)E; () = 0 0 (tu)(Oe.y)

and since the linear span of elements in the form 0 , is dense in % (X ) we get that

(0 oty)e =00 (ty)x

Therefore, for a € Jx we have

o(Fu(a) = (tu)«(#(a))) =0 = o(7u(a)) = o((tu)«(¢(a)))

= ooy(a) = (0oty)(o(a)).

Since, (7, t) is a Toeplitz representation there exists a *-epimorphism p : Tx — C*(m,t)
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such that fora € & and{ € X

p(7u(a)) =m(a) and p(tu(€)) = t(€)-

Suppose that a € Jx, then using the fact that (7, t) is Katsura covariant we have

p((tw)(6(a)) — Fu(a)) = tu(¢(a)) — m(a) =0,

which implies that J C ker p and thus the *-homomorphism p : T /J — C*(m,t) given
by
ple+J) = plx), xeTx,

is well-defined. Note that for each a € o/ and £ € X we have

and

and using the fact that p is continuous and that C*(7, t) is generated by the set
{m(a), () ra € ,§ € X},

we obtain that p is a x-epimorphism.

We summarize in the following:

Proposition 5.1.2. Let (X, .97, ¢) be a C*-correspondence. There exists a universal Katsura
covariant Toeplitz representation (my, t,,) of (X, <7, ¢) that satisfies the following:

If (m,t) is a Katsura covariant Toeplitz representation then there exists a (unique) x-epimorphism
p:O0x — C*(m,t),

such that
p(mu(a)) =m(a) and p(tu(§)) =1t(§), Vae o Ve X

Definition 5.1.7. We define the Cuntz-Pimsner algebra of (X, o7, ¢) to be the C* -algebra

Ox = C*(my, ty), where (7, t,,) is the universal Katsura covariant Toeplitz representation.

Note that if two Katsura covariant Toeplitz representations (71, ¢1) and (7, t2) satisfy

the universal property, it is immediate that C* (71, ¢1) is *-isomorphic to C*(ma, t2).

Example 5.1.4. Let a be a x-automorphism of a unital C*-algebra ./ and let .7, be the C"*-
correspondence described in example 5.1.1. Using remark 6 we identify ¢ (o) with <.
Let (7, t) be a Katsura covariant Toeplitz representation of .«7,. Without loss of generality

we assume that 7 is non-degenerate. We have already proven in example 5.1.3 that the pair
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(m,t(1)) satisfies the left covariance relation and that ¢(1 /) is isometric, in this case we
claim that £(1 /) is unitary.
Indeed,

t(lﬂ)t(lﬂ)* = t*(ldlfy) = t*(lﬂ)
=t(¢(1y)) = (1) = 1B

proves our claim.

Conversely, suppose that (7, U) is a left covariant representation of (<7, Z, o). We have
already proven in example 5.1.3 that the pair (m,t), where ¢ is the linear map given by
t(§) = Un(€), is a Toeplitz representation of .27,. We will prove that (7,¢) is a Katsura
covariant Toeplitz representation of .o7,. Note that since « is a *-automorphism 27, is an
injective C*-correspondence and J,, = # (/) N (kera)t = # () = .

For each a € &/ we have
¢(a) = a(a) = ala)l}, € H ()
and therefore

t:(¢(a)) = tu(a(a)1y) = t(a(a))i(1,) = Un(a(a))r(1,)U
=Un(a(a))U* = n(a).

Hence, (7, t) is a Katsura covariant Toeplitz representation of .¢7, .

We prove now that O, = 7Z X <.
Let (7, t,,) be the universal Katsura covariant Toeplitz representation of the C*-correspon-
dence <7, and let (7,U) be a left covariant representation of (<, ). We have that (7, t)
where ¢ is the linear map given by ¢(§) = U (&) for £ € <7, is a Katsura covariant Toeplitz
representation of <7,. Therefore, there exists a *-epimorphism p : O, — C*(7,t) such
that

p(mu(@) = 7(a) and p(HE) = ), Ea€ .

The pair (7y, t, (1)) is a left covariant representation of (.27, ) and for each a in &7 we
have p(my,(a)) = m(a) and also p(ty(1y)) = t(1y) = Un(ly) = U, hence (my, ty (1))

satisfies the universal property of the crossed product and therefore
Oy = C*(Tru, tu(ley)) =72 X .

We are now going to introduce an example of an injective Katsura covariant Toeplitz
representation of a given C*-correspondence, in order to do so we are going to need a few

more results.
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Lemma 5.1.3. Let (X, %7, ¢) be a C*-correspondence and J C of a closed ideal. If k €
(X)), then the following are equivalent:

(i) ke #(XJ):=span{beay:&{,ne X, a € J}
(i) (k&m) e J, YEneX

Proof. We denote by I the set of k € J#(X) satisfying (i7). It is easy to see that I is an
ideal, since for k € [ and s € .Z(X) we have that

(ks€,m) = (k(s§),m) € J
and
(sk&,m) = (k&, s™n) € J.

Note that since (., .) is continuous I is a closed ideal and hence it is linearly spanned from
its positive elements. Now we prove that .# (X J) is a closed ideal. It suffices to check for
§,n € X and a € J that s0¢, ,, and Og, s are in 2 (X J).
Indeed,

5Ogan = Os(a)n = Os(@an € H (XJ)

and

957773 = 9&1:5*7] S t%/(XJ)

Now, suppose that

Mn
k= hrrtnz 05?’77? el

=1

is a positive element. Then

k3 — 1171;11 (Z 057’77:1) k Z 95?’,’7;1 = ll}Ll'lZ 9£;L<n;ﬂ’k£;L>’n‘;L € :%/(XJ)
i=1 j=1 i3

and so k* € # (X J)and k = (kY212 ¢ /(X J).
Conversely, if §,n,z,y € X, a € Jand k = O¢, 4,

(kz,y) = (Ea(n, x),y) = (x,m)a*(§,y) € J.

Lemma 5.1.4. Let (X, .o7) and (Y, .o/, ¢) be C*-correspondences and
09 23(X)—>$<X®¢Y):S—)S®Iy

Ifk € # (X) then k € ker ¢, if and only if k € & (X ker ¢).
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Proof. Let k € 2 (X). Then,

ke #(Xker¢) <= (kx,y) € kerp, Vr,ye X
0

<k®fy(:v®77),y®£>:0, Va,y,§n € X
k®ly =0 < k € ker ¢,.

— ¢((kx,y)) =0, Vr,yeX

— o((kz,y)){ =0, Va,y,{e€X

= (n,0((kz,y))§) =0, Va,y,§,ne X
= (kr@nye¢) = Ve,y,&,me X
=

=

O

We apply the above lemma in the case where X = X®("~1 and Y = X and we get the

following:

Proposition 5.1.3. Let (X, o7, ¢) be a C*-correspondence and n € N. The map
H(XEOVI) = 2 (X5 k= k@ I
is isometric.

Proof. Suppose that k € # (X®(”_1)) is in the kernel of the map described above. From
the preceding lemma k € 2 (X ®(n=1) ker gb) and therefore

(kx,y) € kerp, Y,y e X®n1),
since k € (X®(n_1)Jx) we also have that
(kx,y) € Jx C (ker¢)t, Va,ye X®0~D

and so k = 0. ]

Denote by (Tso, o) the Fock representation of a C*-correspodence (X, .o/, ¢). Suppose
that (a,x1,x2,...) is an element in Fy where for n > 2 we have z,, = z, ® w, where

2z, € X and wy, € X®"~1) Then for each &, € X we have that

(too)x(One)(a, x1, @2, ...) = toc(M)teo ()™ (a, 1, 2, ..)
= too(M) (& 1), $1((§; 22))w2, P2((§, 23))ws, ...)
= (0,m(&, 21),n ® ¢((§, 22)) w2, ® $2((§, 23) )ws, -..)
= (0,n(&; 1), n{§, 22) ® w2, M(&, 23) ® w3, ...)
= (0,0,.6(21), O © Ix(22), Oye © Lo (a3), ..).
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By linearity and continuity of (f~ )+, the density of the linear span of simple tensors and
the density of the linear span of elements (a, x1, x2, ...) of the above form, we get that if

ke #(X) and (a, 1, 2,...) € Fx, then
(too)«(k)(a, 1, x2,...) = (0,kx1,k @ Ix(x2), k @ Ixe2(x3),...).
Therefore, if a € Jx we obtain the following

(WOO(G) - (t00>*(¢(a)))(b7 Ty, x2,T3, )
= (ab, ¢1(a)z1, p2(a)wa, ¢3(a)zs, ...) — (0, p(a)z1, p(a) ® Ix(72), p(a) ® Ixe2(r3),...)
= (ab,0,0,...)

since ¢, (a) = ¢(a) ® Ixem-1)(a).
Note that

Too(a) = (too)(0(a))) = Ozap € H (FxJx),

where x = (1,/,0,0,...)) € Fx.

Proposition 5.1.4. Let (X, <7, ¢) be a C*-correspondence and (7,t) an injective Toeplitz rep-
resentation of (X, </, ¢). Ifa € o satisfies w(a) € t.(H# (X)), then we have a € Jx and

m(a) = tu(¢(a)).

Proof. Let a € < such that w(a) € t.(# (X)), then there exists k € % (X) such that
t«(k) = m(a). For £ € X, we have that

The injectivity of ¢ implies that
P(a)f =kE, VEEX <= ¢(a) =k

Therefore,

Suppose that b € ker ¢, we will show that ab = 0.

Indeed, using the relation 5.1.1 and we have that

m(ab) = m(a)m(b) = t.(d(a))m(b) = (w(b")t-(d(a”))"
— £ (6(b)6(a")" = £ (6(a)o (b)) = 0.
Since 7 is injective it is implied that ab = 0. Thus, a € Jx and the proof is complete. ~ [J

Corollary 5.1.1. Let (X, .o/, ¢) be a C*-correspondence and a € </ such that mo(a) €
(too)«(H (X)), thena = 0.
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Proof. From the preceding proposition we get that a € Jx and 7(a) = (txo)«(¢(a)). Let
(b,&1,&2,...) € Fx, then since

Too(a) = (too)x(0(a)))(b, &1, &2, ...) = (ab, 0,0, ...),
we get that ab = 0 for all b € o/. Hence a = 0. O

Remark 19. Let (7, 1) be a Toeplitz representation of a C*-correspondence (X, <7, ¢). We
set (0 = 7 t() = ¢t and for n > 2 we will define a linear map (") : X®" — C*(x,t) such
that

t (€ @n) = 1€ (),

where ¢ € X andny € X®—1),

We will prove by induction that ¥n > 2 these maps are well-defined and that (7, t(”)) are
Toeplitz representations of (X®" <7, ¢,).

Suppose that t(*~1) is well-defined and that (7, ("~ 1) is a Toeplitz representation of the
C*-correspondence (X®("~1 o7 ¢, ). Then,

£ (€ @ m)[P= (€)™ () lIP= 116D () ¢(€) (€)™ ()
= [tV () (€, TV )= 1D () 1D (G (€. E)m)|
= [Iw((n, 1 (€ VM N, b1 (&, ENMI= 1€ @1, € @ m)|= II€ @ ]|,

Thus, t(") is contractive on simple tensors, which implies that it is contractive on X®" and
therefore also well-defined. We should note that that in the case that 7 is injective, (") s
an isometry.

To see that (, (™) is a Toeplitz representation note that

™) (& @ n1) "t (& @ n2) = 7D (1) ¢(€) "t (&)t (n2)
= 10D () 7 (€1, ) (n2) = "D (1) H( b1 (61, £2))112)
= ({1, Pn—1((€1,62))m2)) = 7({&1 ® M1, &2 @ M2))

and

m(a)t™ (€ @) = n(a)t()t" D (n) = t(p(a)€)t" D (1)
=t ((¢(a)€) @ 1) =t (gu(a) (€ ©n)).
We will need the following:

Lemma 5.1.5. Let (X, .o, ¢) be a C*-correspondence and Fx the Fock Space. If we set K =
span{0.quw : a € Jx,z € X®™ andw € X", wheren, m € N}, then K = J# (Fx Jx).

Proof.
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It suffices to show that 0., € K where a is an element in Jy and z = (29, 21, T2, ...),y =
(Y0, Y1, Y2, ...) € Fx. To begin with, if z = (20, 21, 22, ..., Zm, 0, ...) € Fx then we can pick
w = (Y0, Y1, -, Yn, 0, ...) such that

€
lw —yll< 7
lallll=]
and thus for £ = (&, &1, ...) € Fx

1020,5(€) = Oza,w ()= [|2a(y, &) — za(w, < |[z]ll|alllly — wlllI€]l< €ll£]-

Since

Hza,w - ezoa,w + gzla,w + ...+ Hzma,w
= (029000 + -+ Oz0a,90) + - + (Ozppayo + - + Ozrnayn) € K,

we have that elements of the form 6., , where z = (20, 21, ...2m, 0, ...) and ) € Fx are in

K. Pick z = (w0, 21, ...Tm, 0, ...) such that

€
lallllyll”

Iz —zl<

then

1020,y (€) = Oza(E)|= [I(z = 2)a(y, ) < [lyllllallllz — =[[[|€]l< ell£]l-
O

Proposition 5.1.5. Let (X, .o/, ¢) be a C*-correspondence, then # (Fx Jx) C C*(Tso, too)-

Proof. From the preceding lemma it suffices to show that 6,,, € C*(7x,tx) for z =
11Q.Qx, €EX® y=y1 ® ... QYp € X¥™ and a € Jx.
We will prove that

Oray = t8(x)(La,0,0,..)t 0 (y)*
= t0)(2) (7o (@) — (too)s (B(a)))EL) (1)* € C* (oo, too).

Indeed, we may suppose that (29, 21, 22, ...) € Fx and z; = ) 21(2

: ) ®...02" e X®,

%
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Vi > 2. Then

tgg)(l')(La,0,0, "')tggl)(y)*(zmzlyz% )
= too (1) too(Tn) (La, 0,0, .. )t oo (Ym) - too(y1) " (20, 21, 22, ---)
= too (1) too(#n) (La, 0,0, . ) (4, 2m), d((y ® 280, @ 280 | @ @ 2 )20 )
= too (1) .too(zn) (a(y, 2m),0,0,...) = (0,0,...,0,21 ® ... ® (zpaly, 2m)),0, ...)

€eX®n

=(0,0,...,0, (21 ® ... ® xp)aly, 2m), 0, ...) = Ozay(20, 21, 22, ...).

O]

For n > 0 we define P, : Fx — F to be the projection onto the direct summand X®".

Since for (z1, z2, ...), (y1,Y2,...) € Fx

(Po(x1,29,...), (Y1, Y2, -..)) = ((0,0, .., 20,0, ...), (Y1, Y2, ...)) = ((x1, 22, ...), Pnly1, y2,...)),

we have that P, € £ (Fx).
Note thatif x,y € F'x and a € Jx,

Pp0yayPr(z) = Pobyay(Prnz) = Py(zaly, Pnz))
= Pn(x)a<ya Pnz> = Pn(fr)a <Pny7 Z> = ePn:L‘a,Pny(Z)

and thus P, (FxJx)P, C # (X®"Jx).
Conversely, if 0,4, € £ (X®"Jx) from the calculation above we have that

gma,y = anx,Pny = Pnea:a,ypn

and equality follows.

Lemma 5.1.6. Ifa € o/ and mo(a) € # (Fx) then lim,||¢,(a)||= 0.

Proof. For n > 0 we have that
¢n(a) = Pymoo(a) Py,
and therefore it suffices to show that
li£n||Pnk:Pn||: 0

where k € ¢ (Fx). From lemma 5.1.5 we can assume that k = 6, with ¢ € X®* and
n € X®™ for k,m > 0. Now it is evident that if n > max{k, m} then

Poben Py = 0.
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O]

Theorem 5.1.1. Let (X, <7, ¢) be a C*-correspondence, then there exists an injective Katsura
covariant Toeplitz representation (m,t) of (X, <, ¢).

Proof. Let o : £(Fx) — £ (Fx)/# (FxJx) be the canonical quotient *-epimorphism.
We set

MT=00Tys and t=00fs.

Recall that for a € Jx we have that
Too(@) — (too)+(P(a)) € H (Fx Jx)

and s0 0(7eo(a) — (teo)«(¢(a))) = 0. We will prove that (0 o T, 0 0 ts) is a Katsura
covariant Toeplitz representation of (X, <7, ¢).

Indeed, for a € o7 and £, € X we have

(00100 (£))(0 © Tao(@)) = 0(too(§) Moo (@) = 0 0 too(Ea)

and

00 Moo ((€,m)) = 0(t5,(§)tec (1)) = (00 1o ()" (0 © oo (n))-

Note also that

(00 to0)x(0gn) = (0010 (§))(0 0 too(1))” = (oo (§)tec (1)) = 0 0 (too)(0en)
and since the linear span of elements in the form ¢ ,, is dense in JZ (X) we get that
(0 0tec)s =00 (too)s

Therefore, for a € Jx we have

(oo (@) = (teo)+(¢(a))) = 0 = 0(Too(a)) = ((toc)«(d(a)))

— 0 0Ta(a) = (00 toc)u(9(a)).

Now, suppose that a € & such that m(a) = 0 and so 7 (a) € H# (FxJx), we will show
that a = 0.
For n > 0 we have that

bn(a) = Pymioo(a) P, € Pyt (FxJx )Py = (X% Jx).

If we pick n = 0 we have that ¢g(a) = L, € # (/' Jx).
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Note that if 0, , € % (47 Jx) then

Oxb,y(]-{cz{) = fL‘by*a

which belongs in Jx. Since L, is a norm limit of finite sums of rank one operators and

L,(1.) = a we get that a € Jx. Recall that ¢; = ¢ is injective on Jy and thus

lall= ll¢(a)ll-

From proposition 5.1.3 for every n > 2

[én-1(a)[I= llén—1(a) ® Ix||= l|¢n(a)|
and so
laf|=lim|| ¢, (a)||= 0.
O

We should note that the existence of the injective Katsura covariant Toeplitz representation
(m,t), implies that the universal Katsura covariant Toeplitz representation (7, t,,) is also
injective. Indeed, if a € ker 7, and p : Ox — C*(,t) is the *-epimorphism induced from
universality, we have that

0 = p(mu(a) = m(a).

Since 7 is injective, a = 0.

5.2 Gauge actions

Definition 5.2.1. Let (7, ¢) be a Toeplitz representation of a C*-correspondence (X, o7, ¢).
We say that (7,t) admits a gauge action if for each z € T there exists a *-homomorphism

B, : C*(m,t) — C*(m,t) such that

B.(m(a)) =w(a) and B:(i(S)) = 2t(§)
foralla € o and £ € X.

It is immediate that 8,1 is an inverse of 5, for all z € T and therefore 5, is a *-
automorphism and also from continuity of 3, and from the fact that elements {7 (a),¢(§) :
a € of and{ € X} generate C*(7, t), it is unique.

Let {2, : n € N} such that 2, = 2 € T. For a € .« and £ € X we have that

Bz, (m(a)) = 7(a) = B:(7(a))
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and

/an (t(f)) = Znt(g) - Zt(&) = /Bz(t(é))

Since {m(a),t(§) : a € &/ and& € X} generates C*(m,t) and Vz € T we have ||5,||< 1

the above calculation implies that
Bz, (k) = Bo(k) Yk € C*(m,t)

and therefore

z— B,

is point norm continuous.
We will show that both the universal Katsura covariant Toeplitz representation (7, t,,) and

the universal Toeplitz representation (7, t,,) admit gauge actions.

Let z € T and consider the linear map
2ty X — Tx x— zt(x).

Then the pair (7, 2t,) is a Toeplitz representation since

and

Fu(a) (28, (€)) = 27, ()t (€) = 2ty (d(a)€).

Therefore, from the universal property of T’x for every z € T since C* (7, zt,) = T there

exists a x-homomorphism 7, : T'x — T'x such that
:Yz(ﬁu(a)) = fru(a) and :Yz(fu(g)) = Zgu(£)7 Va € JZf,Vf e X.

Hence,
Z =Y

is a gauge action for (7, ty,).
It is also immediate that the universal Katsura covariant Toeplitz representation (7, %)

admits a gauge action since for all z € T if we define the linear map
2ty : O X — O X,

where for £ € X
(Ztu)(f) = Ztu(€)7

then the pair (m,, zt,,) is a Katsura covariant Toeplitz representation for the correspondence

(X, 4, 9).



93 5.2. Gauge actions

Indeed, if 6, , € J# (X)) we have that
(2tu)«(02,y) = 2tu(2)(2tu ()" = tu(@)tu(y)” = (tu)«(0z,y)

and therefore from linearity and continuity

(ztu)« (k) = (tu)«(k), VEke Z(X).
If a € Jx we have that ¢(a) € # (X) and so

(2tu)+(¢(a)) = (tu)«(d(a)) = mu(a).
By universality, for z € T there exists a *-homomorphism

Yz : Ox = Ox
such that
72(mu(a)) = mula) and  (tu(€)) = 2tu(§), Vac o, VEE X,
Note that if (7, ¢) is a Toeplitz representation admitting a gauge action /3 and
p:Tx — C*(m,t)
is the *-epimorphism obtained by the universality of T’x then
B,0p=poA,, foreachzeT.

Respectively, if (,t) is a Katsura covariant Toeplitz representation that admits a gauge
action (5 and
p:O0x — C*(m,t)

is the x-epimorphism obtained by the universality of Ox then
Bzop=po~,, foreachzeT.
Note that for each n > 1 and £ € X®" we have that
B.(t™(€)) = 2"t (€).
Indeed, we may assume that £ = £ ® ... ® &, and therefore

Bt (€)) = B2 (t(&1)-1(&)) = 2"t (€).
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In this section we are going to prove the gauge-invariance uniqueness theorem. A con-
sequence of this theorem is that the C*-algebras Ox and T’x are *-isomorphic with the
C*-algebras generated by the injective Katsura covariant Toeplitz representation we con-
structed in the previous section and the Fock representation, respectively. In order to prove
the gauge-invariance uniqueness theorem, we are going to investigate the core of a C*-

algebra C*(m, t) generated by a Toeplitz representation (7, t).

Definition 5.2.2. Let (7, ¢) be a Toeplitz representation of a C*-correspondence (X, o7, ¢).
For each n € N, set B,, = (t(),(# (X®")) C C*(,1).

Recall that t(9) = 7 and that for every n € N if 7 is injective then (¢("), is an isometry
and therefore in that case B,, & ¢ (X®").

Lemma 5.2.1. Forn,m € N wheren > 1, we have that
span(t™ (X®™) B,,t™ (X®™)*) = Byim
and ) (X% B, 4t ™ (X®") C B,,.

Proof. First of all if n > 1 we have that (t()), is a *-homomorphism and that % (X ®") is
a C*-algebra and therefore B,, = (t("), (¢ (X®")) is a C*-subalgebra of C*(r,t). Note
that if 7,y € X®" and &, € X®™ we have that

£ (@) (1) (B )t ™ ()" = ¢ (@)™ ()™ ()"t (y)* =
M (@ @ T (y @ n)* = (™) (Bawg yen)-

Since elements of the form (t(™)), (6 ,,) generate B,, and the linear span of elements z ® ¢
is dense in X ®("*tM) <ve are done.

For the second implication, let £, € X®(+™) and z,y € X®". We may suppose that
E=6 ®&andn =n @ny for £, € X and &9, 1m0 € X®™. We have

1) )" (). (B ) () = 1) ()" (€ )7 440) ()
=t )"t (€™ ()™ () H () ¢ ()
= (@ €)™ Oae) (11, 9) = () (D (2, €0))Bes o (01:9)).

which is an element of By, since # (X ®™) is an ideal of .2 (X®™). Elements of the form

(t(+™)), (8¢ ,,) generate By, and so we are done. O
Lemma 5.2.2. Ifn,m € N such thatm < n, £ € X®" andn € X®™ we have

£(m) (n)*t(n) (&) = t(n—m)(o where ¢ =™ (n)*¢ € x®(n-m)
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Proof. If m = 0 then ) € &7 and t(*) = 7 therefore we have

()t (€) = ™ (G (n)*€) = " (7(0)*€).

If m > 0 we can assume that £ = 1’ ® ¢/ where n € X®™ and ¢/ € X®~™) gince the

linear span of these elements is dense in X ™.

£ ()"t (€) = ) ()t ()Y = (D))
=t (G (0, 1))¢) =t () (o @ () = £ (L (0)°6).

As a consequence of the preceding lemma it is easy to prove the following:

Proposition 5.2.1. For a Toeplitz representation (m,t) of X we have
C*(m,t) = span{t™ ()t (n)* : € € X®" € X®™  and n,m € N}.

Proof. 1t is immediate that the right-hand side is a closed and self-adjoint linear subspace
of C*(m,t) and from the lemma above it is also closed under multiplication and therefore a
C*-algebra. For a € o/ if we pick n,m = 0, € = a and ) = 1, since t(*) = 7 we get that
7(a) is an element of the right-hand side. If we pick n = 1, m = 0 and n = 1, we can see

that for each £ € X the element ¢(¢) is in the right-hand side and we are done. O
Definition 5.2.3. For m,n € N with m < n we define
B[m,n] = By + Bmt1 + ... + By,

We have that By, ,; = Bp. Note that By, ;,] is obviously linear and self-adjoint and by
proving the next lemma we can see that By, ,, are closed under multiplication and that if

k <m < nthen B, ;] is an ideal of By, ,,|.

Lemma 5.2.3. Form,n € N withm <n, k € # (X®"™) and k' € ' (X®") we have
() (k) (™) (k) = () ((k © Lo amm K-
Proof. Firstly, we show that for k € # (X®™) and £ € X®" we have

() (k)" (€) = 1 ((k © Ixorm-m )(€).

Indeed, if m = 0 the above becomes

m(k)t™ (&) = " (g(a)¢)



Chapter 5. C'*-correspondences 96

which is true since (, t(")) is a Toeplitz representation. Suppose that m > 0, we may

assume that k = 6 ,, for ¢, 7 € X®™ and by using lemmas 5.1.2 and 5.2.2 we can see that

(tU) (k)™ (€) = £ ()™ ()t (€) = £ (Ot (7, (1)€)

= 1@ (1 ()*€)) =t (T (O (1) €) =t (k@ s amm) ).
In order to prove that for k' € J# (X®"),
(t)u(R) (E™)o (K) = (7). ((k @ Txsamm) K.
we may assume that &’ = 6, for 2,y € X®" and so

() () (E) 2 (B2y) = (™) ()t ()¢ (1))
=t ((k ® Iyam-m)z)t™ (y)* = (t("))*(9(k®fx®<n,m>)z,y)

= (t")((k ® Iyom-m )bay).
O

Remark 20. It remains to prove that for m < n the set Bj,, , is closed in order to prove
that it is a C*-algebra. We already noted that By, is closed for each £ > 0 and so from the

preceding lemma By, 11 is a closed ideal of By, ;,41] and therefore also a closed ideal of

m. Let q : Bppnm+1) = Bm,m+1]/Bm+1 be the usual quotient *-epimorphism.
We have that
Bimm+1] = Bm + Bmi1 = ¢ (¢(Bn))
which is closed since q is a *-homomorphism between C'*-algebras.
Indeed, if # € ¢ !(g¢(By)) then q(x) € q(Bn) and so there exists y € By, such that
q(y) = q(x), therefore x — y € kerq = By,41 andsox =y + (x — y) € By, + Bimt1-

For the converse inclusion if x + y € B,,, + By,+1 then since
¢z +y) =z +y+ But1 =2+ Bn1 = q(z),

we have that x + y € q_l({q(x)}) c q_l(q(Bm))-

Inductively, since By, 1,41) is a closed ideal of By, ;,, 2], we get that B, ,,) is closed.

Definition 5.2.4. For each m € N we define a C*-subalgebra of C*(m,t) by B, o] =
Unzm Bimn)-

Remark 21. Let (7, ) be a Toeplitz representation of a C*-correspondence (X, <7, ¢) that
admits a gauge action 5. We define & : C*(m,t) — C*(m,t) such that for x € C*(m,t)

1
&) = /0 Bomn () dt.
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Since we have shown that for z € T the map z — (,(x) is continuous & is well-defined. It

is also easy to see that & is contractive since

1 1
H/ Bezmt(ﬂc)dtH §/ || Bezmit (x)]|dt < |||
0 0
We denote by C* (7, t)? the C*-algebra

(z € C*(mt): Bo(z) = a}

zeT

and call it the fixed-point algebra. In particular, C*(7,t)? coincides with the image of &.
Indeed, if z € C*(7,t)” then there exists y € C*(,t) such that &(y) = z and therefore
for each ¢y € [0, 1] we have that

1 1 1
Barto(0) = Bonts ([ Branelt) = [ Birmioun )t = [ Bana )it = .

Conversely, if z € (), .p{z € C*(m,t) : B.(x) = x} then

1 1
E(x) = / Bezrit (x)dt = / xdt = x.
0 0
Proposition 5.2.2. If (7, t) admits a gauge action 3, then By o) = C*(, t)8.

Proof. For z € T, £ € X®" and np € X®™ we have
Bt (€)™ (1)) = 2 ()t ()",

Therefore, putting n = m, we see that the elements of the form t(™ (£)t() (n)* are
in C*(,t)? for every £,n € X®" and since C*(m,t)” is a C*-algebra we have B,, C
C*(m,t)P for every n > 0. This implies that Biy,oq) € C*(m, t)8.

For the converse inclusion pick € C*(r,t)®. Proposition 5.2.1 implies that there exists a
sequence {zy }ren of linear sums of elements in the form (™) (€)t(™) (1))* that converges to

2. Thus, since for each z € T the map (3, is a contraction we have

1 1
r = / /6627rit (Qi)dt = Iim/ /Bezm‘t (:Ek)dt.
0 k- Jo

For each k € N we have fol Bezmit (x)dt € U, Zg Bo,n)- Indeed, for an element of the form
()t (n)* we have that

t (M ()7, ifn=m

1
S (0))) = [ O () ) ds = |
0 0, ifn#m
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in particular &(t™ (&)t™ (n)*)) € U2, By, and from linearity we are done. We con-

clude that x € B|y ] as a norm limit of elements in By O

Definition 5.2.5. Let (7, t) be a Toeplitz representation of a C*-correspondennce (X, <7, ¢).
We define
I(Tr,t) = {a € o 7T(a) S t*(%(X))}

Remark 22. If (X, o7, ¢) is a C*-correspondence, (7, t,,) is the universal Toeplitz repre-
sentation and (7o, too) is the Fock representation we have that Iz 7 ) = {0}.

Indeed, suppose that a € Iz ;) and k € J(X) such that 7, (a) = (tu)+(k), by corollary

7~ruatu)
5.1.1 we have that [(;__ ;) = {0} and therefore since

Too,t

Too(a) = p(Fu(a)) = p((Eu)« (k) = (too)s(K),

we get thata € I(_ ;. )andsoa = 0.

Now let (7,t) be an injective Katsura covariant Toeplitz representation. The fact that
(m,t) is a Katsura covariant Toeplitz representation implies that Jx C I(, ;) and since it
is also injective, using proposition 5.1.4 we can see that I(; ;) C Jx, thus I(; ;) = Jx. In
particular, I(,, ;) = Jx where (7,,,) is the universal Katsura covariant Toeplitz repre-
sentation and also I, ;) = Jx where (7, ) is the injective Katsura covariant representation

we described in theorem 5.1.1.

Lemma 5.2.4. Let n be a positive integer and {e) : A € A} an approximate unit for # (X®").
Ifk € #/(X®HD) then
k= liin(e)\ X Ix)k‘.

Proof. Suppose that k = (k' ® Ix)k"” where k' € # (X®") and k” € 2 (X®"+1). Since

l(ex ® Ix)(K © Ix)k" — (' @ Ix)E"|= |[(exk! ® Ix )K" — (K @ Ix)k"||=
((exk! — k') @ Ix)K"[|< [lexk’ — K| || K" ]| 2> 0,

we have that k = lim) (ex ® Ix)k if k = (k' ® Ix )K", thus to prove this lemma it suffices to
show that the linear span of elements in the form k = (k' ®Ix)k” is dense in .7 (X ®(+1)),
In order to do so we prove that the linear span of elements in the form (k' ® Ix){ with
K € #(X®") and ¢ € X®(+D) is dense in X®("+1),

Indeed, we may pick k' = 0¢ ¢ and ¢ = n @1/ where £,¢',n € X®" and iy’ € X and using

lemma 5.1.2 we have that

(K @ Ix)¢ =)&) men) =€), mn)
=@ o((E,mn =€ n) 7.
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Since the linear span of elements in the form £(¢',n) with &,&',n € X®" is dense in X®"
and the linear span of the elements in the form £ ® 1’ with ¢ € X®" and ny € X is dense
in X®(+1) we get the desired result.
Finally, using the equality

(K ® Ix)0c ¢ = Ororxicc

we can see that since the linear span of elements as in the right-hand side of the equality is
dense in .7 (X®("+1)) the linear span of elements in the form (k' ® I'x)k" is also dense in
H( X®(n+1))' ]

From the preceding lemma for n = 1 and {e) : A\ € A} an approximate unit for Z (X ) we
get that
{e A®Ix:AE A}

is an approximate unit for .# (X ®?). Inductively, we get that
{6)\ &® IX®("*1) TN E A}

is an approximate unit for J# (X®™).

Proposition 5.2.3. Let (X, o7, ¢) be a C*-correspondence, (w,t) a Toeplitz representation
and {ex : A € A} an approximate unit for J# (X). Then for each n > 1 we have that
{t«(ex) : A € A} is an approximate unit for By, consequently also for By, ,,).

Proof. Let n be a positive integer. If + € B,, we may assume that z = (t(),(6;,) for
E=R.®&andn = ® ... ® Ny. Thus,

z =t O™ ()" = (1) .. t(E) () .t ()™
We have that

te(en)r = tu(ex)t(€1)--t(En)t ()t ()" = t(ex&r)--t(&n)t(mn)" - ()"

n n A "
= (t™). (0(6A®IX®<n71>)€,n> (t™)((ex @ Ixio-1)0e0) = (E")u(0ey) = =,

and
wta(en) = (t(ex)s™)* = (t((en))z™)* = (tulen)a™) 2 (7)" = x.

This proves that {t.(e)x) : A € A} is an approximate unit for B,, for every n > 1 and
since By ;) is generated by By for 1 < k < n, we also have that {t.(ey) : A € A} is an

approximate unit for By; ,,| for every n > 1. O

We denote the C*-subalgebras of T’x and Ox corresponding to B;, and B, ) by B,
and @[m,n] C Tx and by %, and Hy,;, ;) C Ox, respectively. We also denote by 7 the

gauge action of (7, t,,) and by y the gauge action of (7, t,,). Therefore, for the fixed-point
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algebras we have that Ty = ‘@[0700] and O} = Bl0,50]-

Lemma 5.2.5. Let (m,t) be a Toeplitz representation of a C*-correspondence (X, <7, ¢) such
that Iy = {0} and p : Tx — C*(7,t) the x-epimorphism such that fora € o/ and§ € X
we have p(7,(a)) = n(a) and p(t,(€)) = t(£). Then the restriction of p to the fixed-point

algebra Tj( is injective.
Proof. From lemma 2.1.1 it suffices to show that for each NV > 0 we have that
ker 5 N B vy = {0},

since

ker p N @[0700] = U (kerpN QZ[QN]).
N>0

If N = 0 we have that ) = 7,(«/). By the definition of I (r,t) it contains ker m and
therefore 7 is injective. Since p o 7, = 7 the result follows.

Suppose that N > 1 is the least positive integer such that

ker 51 Byo.n) # {0}

and let

be a non-zero element of ker p N %N’[QM where a € o7 and k,, € # (X®"). We have

N

m(a) = = 3 (™). (k).

n=1

Let {ey } A be an approximate unit for .2 (X ), then

limt,(¢(a)es) = limm(a)t. (es) th kn)te(ex) = = > (™). (kn)

where we have used the fact that for all n > 1, {¢.(ex)} is an approximate unit for B,,.
Since the net {t.(¢(a)ey)} is convergent, it is Cauchy and since 7 is injective ¢, is an
isometry, therefore {¢(a)e)} ) converges to some k € # (X). So
N
m(a) = = > (t")u(kn) = limt($(a)er) = ta (k).

n=1

which implies that a € [(; ) and therefore @ = 0. It is evident now that f € ;@7’[17 ~) and
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thus for each £, € X using lemma 5.2.1 we have that

N
Eu(n) fEu(€) = Y Tulm)* (E0)(kn)Eu(€) € ker p 0 By -

By the choice of N we obtain that £, ()* f£,(¢) = 0 and consequently if 1,71, 2,72 € X

we have that

(fu)*(efhm)f(gu)*(efz,nz) =0

which implies that (£,,). (% (X)) f (#)«(# (X)) = 0.
Since (,)«(-# (X)) contains an approximate unit for @[1, ~]» we get that f = 0, hence a

contradiction. O

Lemma 5.2.6. Let (m,t) be an injective Katsura covariant Toeplitz representation of a C*-
correspondence (X, o7, ¢) and p : Ox — C*(m,t) the x-epimorphism such that fora € o
and £ € X we have p(m,(a)) = m(a) and p(t,(§)) = t(§). Then the restriction of p to the

fixed-point algebra O is injective.

Proof. As in the proof of the previous lemma it suffices to show that for each N > 0 we

have that ker p N %y y) = {0}. By doing the exact same steps if N > 1 and
N
f=mu(a) + Y (t8)(kn) € ker p N By

we have that a € [ ;) = Jx and therefore

mu(a) = (tu)«(d(a)),

by using the covariance relation. This implies that f € |, ,,; and the result follows as

above. O

Theorem 5.2.1. (Gauge-invariance Uniqueness theorem)

(i) Let (X, </, ¢) bea C*-correspondence and (m,t) a Toeplitz representation of (X, <7 , ¢).
The induced x-epimorphism p : Tx — C*(m,t) is a *-isomorphism if and only if
Itz sy = {0} and (m,t) admits a gauge action.

(ii) Let (X, o, ¢) be a C*-correspondence and (m,t) a Katsura covariant Toeplitz repre-
sentation of (X, <, ¢). The induced *x-epimorphism p : Ox — C*(m,t) is a *-

isomorphism if and only if 7 is injective and (7, t) admits a gauge action.

Proof. i) Suppose that p : Tx — C*(m,t) is a *-isomorphism and let a be an element in
I (7 +). There exists k € % (X) such that 7(a) = t.(k) and therefore
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Since p is injective we have that 7, (a) = (%,)«(k) and the fact that I (7ud) = 10} implies
that a = 0.

To see that (7, t) admits a gauge action, for each z € T set
B.=poFs0p .

If a € o and £ € X then we have that

and

For the converse suppose that (7, t) admits a gauge action 3 and I(, ;) = {0}. Pickz € T'x
such that p(z) = 0, we have that

1 1 1
ﬁ( /0 ’yezm(x*w)dt> - /O (R ()t = /0 Boame (5 z))dt = 0.

Since fol Fezmit (x*x)dt € T; and the restriction of p to T; is injective, we get that

1
/ Hpzrmit (x*x)dt = 0,
0

which implies that z*x = 0 since an integral of a positive non-zero function is positive (see
the proof of this implication in theorem 3.2.2) and therefore p is injective.
(i) If p is a *-isomorphism since

™= p © Tu,s
it is immediate that 7 is injective. The rest of the proof is similar to the proof of (7). O

We prove now that the Fock representation and the injective Katsura covariant Toeplitz
representation described in 5.1.1 admit gauge actions.

For each z € T let u, : Fx — Fx be the adjointable map such that for £ € X®"

uz(§) = 2"¢.

Note that for (a, &1, &2, ...) € Fx we have that

lus(a, &1, &, ...) |IP=

a*a+ i <zk5k, zk§k>

k=1

and therefore u, is well-defined and bounded. We also have that u} = us.

a*a+ Y (& &) I

k=1

= ||(a,x1, 2, ...)
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Indeed, if (a, &1, &2, ...), (b, 1, M2, ...) € Fx then
(u(0, 61,2, ), (b1 ey ) = a*b+ 3 (K6
k=1

=a'h+ Y <§k7§k77k> = ((a,&1, &2, --.), uz(b,m1, M2, 1)) -

k=1

We define a gauge action B of (oo too) such that for each z € T and x € C* (7o, too)

Bx(x) = uyzu}.
Leta € &7, € X and n = (no,n1,12...) € Fx then

EZ(WOO(Q))(W) = U oo (a)uz(n) = uz?foo(a)(noim,?zm, )
= uz(¢o(a)no, Z¢1(a)n1, Z°pa(a)ma, ...) = (do(a)no, d1(a)ni, da(a)ns, ...)
= Too(a)(n)

and

BZ(tOO(f))(n) = Ustoo (§)uz(n) = Uzteo(§) (7707577175277% )
= (0,600, ZE @M1, 276 @, ...) = (0, 26m0, 2§ @ M1, 2§ @ 1, ...
= 2t (§)(n)-

Hence, {3, : z € T} is a gauge action of (Tao, Lo )-
We will now show that the injective Katsura covariant Toeplitz representation admits a
gauge action. Recall that in the proof of proposition 5.1.5 we showed that for £ € X®" n €

X®™ and a € Jx we have that

Ban = 15 (€) (oo (@) = (too)(@())t5 (1)".

Note that 3. ((ts)s(¢(a))) = (tso)x(¢(a)). To see that this implication holds we may
suppose that ¢(a) = 6, for z,y € X, since the linear span of these elements is dense in
2 (X) and so

B:((too)(Buy)) = Ba(t(2)t(y)") = 2t(x)2 H(y)* = H@)H(Y)* = (foo)«(Buy)-

Therefore,

Bz (Ogan) = 2"t () (Moo (@) = (too)«(B(a)))E ()" € H (Fx Jx)

and since these elements generate .# (FxJx ) we get that (,(J# (FxJx) C J# (FxJx).
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Thus, if o : L(Fx) — Z(Fx)/# (FxJx) is the quotient *-epimorphism and for each
z€T,B, =00 Bz then z — 3, is a gauge action of the injective Katsura covariant Toeplitz

representation (7, t).

Theorem 5.2.2. Let (X, .o/, ¢) be a C*-correspondence, then
(i) C*(Too, too) is x-isomorphic to Tx .
(ii) C*(m,t) is x-isomorphic to Ox.

Proof. This follows from theorem 5.2.1 since both (7, ¢) and (7, t~) are injective, admit

gauge actions and I(,__ ;) = {0}. O

Using the Gauge-Invariance Uniqueness theorem we will give an additional proof that the

reduced crossed product by Z is *-isomorphic to the crossed product by Z.

Corollary 5.2.1. Let .o/ be a unital C*-algebra and let o be a x-automorphism of </. Then
L X o A is x-isomorphic to 7, X o, .

Proof. We denote by (7, S) the left unitary covariant representation of (<7, Z, o) we defined
in example 3.2.1. In remark 13 we proved the existence of a family of maps {3, : z € T},
where for each z € T we have that 8, : Z X4, & — Z X4r & is a x-autmorphism such
that for each a € &7

B.(7(a)) = 7(a) and B,(S)=zS.

For each & € o we set {(£) = S7(£). In example 5.1.4, we proved that the pair (7, 1)
is a Katsura covariant representation of the C*-correspodence .7,, which is also injective.
Since, 7 is unital and 7 is non-degenerate, it is easy to see that C*(7,7) = C*(7,5) =

Z X o &/ and since for each £ € o/ we have

B:(£(€)) = B-(S7(€)) = 257 (€) = #1(€),

we obtain that {3, : z € T} is a gauge-action of (7, ). From the gauge-invariance unique-

ness theorem we have that O, is *-isomorphic to C*(7,t). Therefore, Z X, < is *-

isomorphic to Z X <7 . O
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C'*-envelopes

In this chapter we are going to introduce the notion of the C*-envelope of an operator
algebra. In the first section, our proofs are based on [13] and the proof of the main theorem

of the second section is based on [15].

6.1 The C*-envelope of the semi-crossed product

Definition 6.1.1. Let .7 be a Hilbert space and &/ C B(.%) a (unital) operator algebra.
A C*-cover of & is a pair (¢, j) where ¢ is a C*-algebra and j : &/ — % a completely

isometric (unital) map such that ¢ is the smallest C*-algebra that contains .2/, which we

denote by C*(j(«)).

Definition 6.1.2. Let <7 be a unital operator algebra. The C*-envelope (C

Cnv(d)7 Z) Of %
is the C*-cover of o/ which satisfies the following property: If (¢, j) is a C*-cover of &/

then there exists a *-epimorphism p : € — C}, (/) such that for each a € &/ we have

env

The existence and uniqueness under *-isomorphisms of such a C*-cover for a unital oper-

ator algebra was proved in [9] and [5].

Definition 6.1.3. Let &/ C C*(</) be a unital operator algebra. A boundary ideal of <7 is
an ideal I of C*(.«7) such that the restriction to .7 of the quotient map

q:C* () = CHA))I

is completely isometric. We define the Shilov ideal J of %7 to be the largest boundary ideal
of o7 i.e. if I is a boundary ideal for &7 then I C J.

We now prove that the Shilov ideal actually exists. Note that if &7 is a unital operator

algebraand j : & — C*(7) is the inclusion map, then j is completely isometric, therefore

105
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(C*(),j) is a C*-cover of 7. Therefore, there exists a *-epimorphism p : C*(«/) —
C?.., () such that for each a € &7 we have i(a) = p(j(a)). We will prove that ker p is the

Shilov ideal of .o7'.
First of all, we denote by p the induced *-isomorphism p : C* (/) /ker p — C?,

EeENv

(/) such
that = + ker p — p(x). If a € o we have

la +ker pl[= [|p(a + ker p)||= [lp((a)) = [li(a)||= llal

and since 4, j and p are completely isometric the same argument works also for matrices,
therefore ker p is a boundary ideal of 7. Suppose now that [ is another boundary ideal of
o/, we will prove that I C ker p. We denote by ¢; the natural *-epimorphism of C*(<7)
onto C*(.e7)/I. Since the restriction of ¢ to .o/ is completely isometric we obtain a *-
epimorphism

¥ CA) [T = Co ()

such that i(a) = 1(qr(a)) for each a € 7. Therefore, we have a *-epimorphism
p oy CH ) /T — C* () /[ker p
such that for each a € &/ we have

p owlat 1) = 5 o (gr(a)) = p(i(a) = 5 (p(i(a)) = j(a) + kerp = a+ kerp.

Since C* (/) is the C*-algebra generated by &/ and 5! o 1 is a x*-homomorphism we get
that for each x € C* ()
proy(z4+1I)=x+kerp

and therefore x € I implies that z € ker p.
Proposition 6.1.1. Let J be the Shilov ideal of a unital operator algebra of C C*(<). If
a:C*(d) — C*() is a x-isomorphism with oo/ ) = o then a(J) = J.

Proof. Let a, b be elements of .o/ such that «(b) = a, then

lall= lla@)lI= [Ibll= lIb+ JlI= o™ (b)) + o~ (a())]
< [la(®) + a(D= lla + a(J)[I< [la]-

The same calculation works on matrices and therefore we get that (/) is a boundary ideal
of o/ which implies that a(.J) C J. Repeating the same argument for a~! we have that
a~1(J) C J and therefore a(J) = J. O

The following theorem will be a consequence of the main result that we will prove in the
next section but here we give a proof that helps us understand how we can use the Shilov

ideal in order to identify the C*-envelope.
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Theorem 6.1.1. Let &/ be a unital C*-algebra and « a unital *-automorphism. The C*-
envelope of the semi-crossed product " x o, < is the crossed product 7. X o, o .

Proof. Recall that ZT x, ./ can be considered as a subalgebra of Z x,, <7 (Remark 16) and
note that if @ € &/ and n < 0 then

(0—p @ a™™(a))" =0, ®a"(a "(a)) =0, ® a.

This implies that the elements in the form ;" 6 ® ai for m > 0 and a;, € & are

—m
contained in C*(Z" x,, <) and since these elements are dense in Z x, < we have that
C*(Z* X o) = L x o . Therefore it suffices to show that the Shilov ideal J of Z* x, & is

zero. Let p : Z X o — CF

* o(ZF x o ) be the x-epimorphism induced from the universal

property of the C*-envelope (C%,(ZT x4 &), 4). Thus for a € o/ we have

pla® dy) =i(a® dp).

Suppose towards a contradiction that J # {0}. For each z € T we denote by =, the x-
automorphism of Z x,, &7 defined in 3.2.2. If k > 0 and a € &/ then

72((5k X a) = ’72((50 X a)(51 & 1(@7)’6) = ((5[) ® a)zk(él X 1(¢)k.

The above implies that for each z € T we have that v,(Z" x, &) = ZT x, </ and
therefore from the preceding proposition we have that -y, (J) = J which implies that .J has
non-trivial intersection with the fixed-point algebra and so <7 N J # {0}.

Indeed, if ¢ € J is a positive non-zero element then 7, (z) € J for each z € T and therefore

1
/ Yezmit(X)dt € J.
0

This integral is also in the fixed-point algebra &7 and it is non-zero as an integral of a non-
zero continuous positive function.

Pick {0} # 0o ® a € &/ N J then we have
0= [lp(60 @ a)[|= [[i(d0 @ a)[|= |60 @ all= |la],

hence a contradiction. O

6.2 The C*-envelope of the Tensor algebra

We are going to prove that for a C*-correspondence (X, o7, ¢) the C*-envelope of T; is
Ox. In order to do so we will need to "add tails” to X. Suppose that I C .o/ is a closed ideal
of o/. We define the tail determined by I to be the C*-algebra cy-direct sum 7' = ¢ (I) .
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We shall denote the elements of T" by 7 := (f1, f2,...) where each f; € I and by ﬁ =
(0,0, ...) . We define the vector space Y := X & T and the C*-algebra % := o/ ©T where
l.llz= max{||.||ez, ||-||7}. Then Y is a Hilbert 8-module where the right action is given
by

(67) @)= (. FF) ¢eXaew, [ Ger

and the inner-product

((&7) ) = (€n,. 7). ¢nex. 7. gem

We also define a left action ¢ : B — £ (Y) by

bz (a, ?) (&, 7) = (8(a) &, (agy, frg2, f293, ),
where a € &, ¢ € X, ? = (f1, f2, ), 7 = (91,92,...) € T.

We say that (Y, %, ¢») is the C*-correspondence formed by adding the tail 7" to X.

Proposition 6.2.1. Let (X, .o/, ¢) be a C*-correspondence and T' = cy(ker ¢). If (Y, B, p%)

is the C*-correspondence described above then ¢ 4 is injective.

Proof. Suppose that (a, 7) € ker ¢z, then for each £ € X we have that
— —
($(a)¢, 0) = dala, (& T) = 0.
The above implies that a € ker ¢ thus (0, (a*, f1, f2,...)) € X & T and

(0, (aa®, 1 ff, fofss ) = bsas F)(0,(a", fr, far..)) = (0, 0).

Therefore, ||a||?= ||aa*||= 0 and || f,||*= || fnf}]|= O for every n > 1 which implies that

(a, ?) = 0 and so ¢ is injective. O

We should note that since ker ¢4 = {0} we have that Jy = gb;; ((X)).

Lemma 6.2.1. Let (X, o/, ¢) be a C*-correspondence and (Y, 2, ) the C*-correspondence
formed by adding the tail T = cy(ker ¢) to X. Then (a, ?) € Jy ifand only ifa = a1 + as
foray € Jx and ay € ker ¢.
Proof. Suppose that a = a; + a3 where a; € Jx and as € ker ¢. Then,
Nn
¢(a1) = h,,ILnZ Hén,kvnn,k € ‘%/(X)

k=1

for &, 1, Mk € X. Let (€, (f1, f2,...)) be an element in Y such that ||(§, (f1, f2,...))||< 1.
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Note that

1€1%= 16, €) o |r < NEE) o s (FE 1 fi for )l 2
= (& (f1s f2r )5 (& (f1s o)) g lla= (&, (1, for - DIF< L

For n,m € N we have

N, 2

Ny,
<Z 0(57““6))7(,7"%6}) - Z e(fm,m?),(nr,,L,k,E))) (fa (f17 f2, ))
k=1 k=1

N Now 2
= Z(&n,kvﬁ)<(nn,ka_>)a flv"' > Z fm ks <77m7k76>)’(§7 (fla))>
k=1 =1
N, o Mm R 2
=Dk 00k € 0) =D (Gt (s €5 0)
k=1 k=1
N, 2
= Zefnknnk > (Zefmknmk ﬁ)
k=1
2

Ny, Np, N
Z ofn koln,k Zewa,kﬂ?m,‘k) 67 0 >
k=1

1

Ny, N, — N, N, N
( 0571,1&'7"}71,1@ - Z 0&m,k-,"]n1,k> E’ 0 ) ’ <<Z 0571,k77ln,k - Z 05m,k7nm,k> 67 0 ) > H

k=1 k=1 k=1 k=1

N, Ny N,
5n,k77]71.k - : ogm,kv"hn,k 5’ § :egn,k77]7l,k - z ognz,kﬁhn,k é.
= k=1 k=1

ng

k=1
N, 2
= <29£nknnk Zeﬁmknmk>
k=1
The above implies that
Ny N,
; 0(5n,k,6>),(77n,k,6)) - kzl 0(§m,ka6))7(77m,k76>)

Np Nm
Z Hgn,kvnn,k - Z egm,k:nm,k
k=1 k=1

' , (%)
and thus

Nrn

Z e(gn,kyﬁ))v(nn,ka?)

k=1
is also convergent. Recall that a; € (ker ¢)* and therefore we have that

#(at, 0 6? a1f17 yer))
<llm29£nk,nnk§7 ) _hmzefnk, ). (7, 0) (& 7
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and so since the point-wise limit and the norm limit should coincide, we have

dz(ar, 0 _hmZQ&k’a (o) € H (V).

Let {€X}xca be an approximate unit for T’ such that & = (e},e3,...) and an element
= (f1, f2,...) in T". We will prove that

2!

¢,5}3(a2, 7) = h/r\n 9(0,(a2,f17f2,...)),(0,(6%\,€§,63 )) € %(Y)

and therefore ¢ 4(a, 7) = ¢z(ai, 6))+¢!@(a2, ?) € # (Y), which implies that (a, ?) €
Jy.
Indeed, suppose that (£, (g1, 92,...)) € Y such that ||(&, (91, 92,--.))||< 1. For k > 1 we

have

lgrll*= llgigrll < 106, €) , (9191, 9392, - NI= (&, (91, 92, ), (€ (g1, 92, --))) I 1.

If € > 0 then there exists \g such that for each A > \g

H(a27 fla f27 ) - (a2€%\7f1€§\7f26§\7 )H <e€

Therefore for each A > \g

2
H (9(0,(112,f1,fz,m)),(O,(ei,ei,ei)) - (;533(0‘27 (fla f?v ))) (5’ (gla » 925 ))H

=[|(0, (ag, f1, f2,--))(0, (eXg1, €392, .-.)) — (0, (azg1, f1g2, f2g3,--))|I?

=10, (aze3g1, fre3g2, ---)) = (0, (azg1, f1g2, .-))|1?

=10, (aze} — az)gu, (fre3 — f1)g2, (f263 — f2)gs; )|

=[1{(0, (azex — a2)g1, (f1ex — f1)g2, ), (0, (aze) — a2)g1, (frex — f1)g2.--))) | =
=[|(0, (g7 (aze), — az)*(aze — az)gr, g5 (frex — f1)* (frex — f1)g2, )2

* * * k+1 +1
<max{||gl<a2e;—az> (a2} — a2)gn | sup {lgi 1 (Fied™™) = i) (el fk>gk+1|}}
1 2 (k+1) 2
< {0aek — an)on Posup {18 = g P}
k+1
< {laze} = aalPlon Psup {1l = fulPllin P} <

Note that the above implies that ker¢ & T C Jy.
Conversely, suppose that (a, ?) € Jy for 7 = (f1, f2, ...). We have that

Ny

ba(a, f) = ﬁ;nkzl O i

—
y nn,kvgn,k)

—
where &k, g € X and fok = (fL 240 Gnk = (G g 24 ) ETIE(E,G) €Y
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where ¢ = (g1, g2, ...) we have

Nn,
(¢(a’)§7 (agla f1927 )) = (bt%)(a’v ?)(57 7) = h};n; 6(§n,kvm)7(nn,k7m) (57 7)

n

Nn
= lién Z(‘gn,h f—n,_l:) <(77n,kyg—n,_k>)7 (57 7)>gg = hin (fn,ka f—n,_l:)<<77n,k7 5);7/ mq—n,_lz*?)

k=1 k=1
Ny, N
= lim Z(ﬁn,k s €) s FakGnd ) =
k=1
Ny,
lim Y (Enk (s €) s (P (9m i) 9" S k(9 1) 767 )
k=1
Ny,
= ﬁg}lz (O () (i i(ghn) a"s fr kg 1) g% o)) - (%)
k=1

Using the equality in (%) we have that lim,, Z,ivgl O, x.mn. €Xists and in particular the

equality above implies that
Nrn
hgl kz_l eﬁn,k,nn,k = ¢(a)'

Suppose that {e)} ca is an approximate unit in ker ¢ then for each n,m € Nand A € A

we have that
N, Nm
1 1 * 1 1 *
H (Z fn,kgn,k - Z fm,kgm,k ) ex
k=1 k=1

Ny, N
- (Z e(gn,kvm)’(nn,kagn_,k)) B ; e(gm,k»m)f(nm,hm)> (07 (e/\, 07 )) H

k=1
Np Npm,
= ; O st ) ~ kzzl O e sFori (i || 10 (€3, 052 ))
Np, N,
- Z: O T i) kzl O € T (o)

By taking the limit with respect to A we have

Np Nm,

1 1 * 1 1 *
QD Sakgnk =D Frmsdmp)
k=1 k=1
Nnp, N,

<Doo, — -0, —
- 1 (én,kvfn,k)’(nn,kvm) 1 ({'m,kvfnL,k)v(nnL,k7g7n,k)

which implies that Z,ivz"l frogh k* converges to an element in ker ¢.
Set ag = lim,, ij;‘l fi kg}I k* and a; = a—ag. We will prove that for all g € ker ¢ we have

the relation ag = agg and so it is evident that a; € (ker qb)L and consequently a; € Jx.
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Since a = a; + a9 the proof will be complete.
So, suppose that g € ker ¢ and £ € X and consider the element (¢, (g,0,...)) € Y, then

from our calculations in (**) we have that

Nn
(9(a)E, (ag,0,...)) = dur(a, F)(€.(9.0,...)) = lim Y (G, o ks (Fa kg 90, -2)

k=1
N, Ny
- (nénggnm,ks, (n,gn;f;kgz,k 0.0, ))  (8(a), (a29.0...)

which implies that ag = asg. O

Lemma 6.2.2. Let (X, o/, ¢) be a C*-correspondence and let (Y, B, ¢ ) be the C*-correspon-

dence formed by adding the tail T = co(ker ¢) to X and let (7,t) be a Katsura covariant
Toeplitz representation of (Y, %, ¢z) such that 7|, is injective. For each f € ker ¢ andi > 1

we define

Then for everyi > 1 and f € ker ¢ the equality 7(0, ¢;(f)) = 0 implies that f = 0.

Proof. We may assume that f > 0 because if 7(0, €;(f)) = 0, then
7(0,6(f*f)) = 7(0,€(f*)7(0,€(f)) =0

and from the C*-property if we show that f*f = 0 then f = 0. So, suppose that¢ > 1 and
f € ker ¢ satisfies f > 0 and 7(0,€;(f)) = 0.
Then,

[f0, et = [0, e 250, a2 | = |7 0.2, 0652 )|
= [#0,cry ,a(2))|| = |70, @) 0, 62|
= I7(0,ei(F)] =0,

which implies that £(0, €;(f'/2)) = 0. We should also note that

0= E(Ov ei(f1/2))t~(07 Gi(f1/2))* = t~* (0(0,&‘(fl/Q))v(O,ei(fl/Q))) )

If i = 1 for each (&, (91,92, ...)) € Y we have that

65(f, 0)(E, (91,92, ) = (S(N)E (f91,0,...)) = (0, (f1,0, ...))
= (0. (F72,0,1:)) {(0,(£12,0,..)), (& (91, 92.-)))

= 0(07(]‘1/2,07,__)),(07(]”1/2,0,__.))(57 (91,92, ),
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which implies that

_)
0= t* (0(0,(f1/2,0,...)),(0,(f1/2),0,...)> = t*(¢ﬁ(f, 0 ))

where we used the fact that ker 7" C Jy. From the injectivity of 7|, we get that f = 0.
Suppose that 7 > 1, then for each (&, ?) €Y where ¢ = (91,92, ...) we have

¢%(07 Ei—l(f)va ?) = (07 (07 '“707&707 ) = 9(0,61-(f1/2)),(0,si(f1/2))(57 (917927 ))

7

and therefore

0= E* (9(0,61'(fl/z))v(O,Ei(fl/Q))) - E*(QS@(()? Gi—l(f))) = 7}(07 €i_1(f))7

where we used the fact that Jy = (Z)Z; (A (Y)) since ¢ is injective. After (i — 1)-steps
we obtain that 7(0, €1 (f)) = 0, which implies that f = 0. O

Theorem 6.2.1. Let (X, 7, ¢) be a C*-correspondence and (Y, B, ¢ 5) be the C*-correspon-
dence formed by adding the tail T = cy(ker ¢) to X.

(i) If (m,t) is a Katsura covariant Toeplitz representation of (X, .o/, ¢) on a Hilbert space
Hx, then there exist Hilbert spaces 75 and 7 such that 76 = #x @ 1 and a

Katsura covariant Toeplitz representation (7, t) of (Y, B, ¢z) on 75 with the property

that 71|, = 7 and f|X =t.

(i) If (7, 1) is a Katsura covariant Toeplitz representation of (Y, %, ¢.3) then (7|7, 1) x) isa
Katsura covariant Toeplitz representation of (X, 7, ¢). Furthermore, if 7| is injective

then 7 is also injective.

Proof. (i) Set I = ker ¢ and ) = m(I)H#x and define 57 = ;2| H#; where J = 7
foralli > 1. We define t : Y — B(# @ #7) and 7 : B — B(5x © 57 ) such that for
acd,§€X,(f1,f2...) €T and (h,(hi, ha,...)), (k, (k1, ke, ...)) € Hx © HT

E(‘gv (fla fZa ))(ha (hlv h2’ )) = (t(‘g)h + 7T(fl)hla (W(f2)h27 W(fS)hBa ))

and

ﬁ((a’ (fh f2, ))(ha (hh ha, )) = (ﬂ-(a)h> (W(fl)hla 7T(f2)h2a ))

To see that 7,1 are well-defined it suffices to prove they are bounded. Pick an element
(h, (h1, h2,...)) in % & 7 such that ||(h, (h1, he,...))||< 1 and set fo = a and hg = h,
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then

7 ((a, (f1, fa5 ) (B (R, B, ) ||= ([((@)h, (w(f1)ha, w(f2)he, )l
= igg”ﬂ'(fi)hiug ?g%”ﬂﬂ)”ﬁ ?gg”fi”: Il ((a, (f1, f2, )],

which implies that ||7((a, (f1, f2, .- )|I< ||((a, (f1, f2,-..))||. We also have

1E(&, (f1, f2, ) (h, (R, ha, ) |I= [[(EHE) R+ w(f1) b, (x(f2)ha, 7(f3)hs, ...)) |
< max{|[t(§)h|[+[l7(f1)hal], SUPHW( i)hill}

< maX{llfHJrHﬁH?Siggllfill} < 2|[(&, (f1, fa, - )I-

We prove now that (7, ) is a Toeplitz representation of (Y, %, ¢.%).
We have

<£(§a (fla f2, ))(hv (hla ha, ))7 (kv (kla k2, ))>yfy
= <(t(€>h + ﬂ—(fl)hl ( (fQ)hQ 7T(f3)(h3) ))7 (kv (klv k27 ))>}fy

<( (f)h—l—ﬂ' fl hl + Z fl+1 z+17ki>,%

= ((t(E)h, k) s, + (T (f1)R1,K) s, +Z (fir 1) hit1, ki)

i=1

= (R, 1(&)"k) sy, + (P, m(f1)"k yfx-i-z i+1, T(fit1) ki) s

:<(h7 (hluh%"'))7(t(§)* 7( (fl)kvﬂ(fé)*klv”r(fé) 2""))>,}’fy
and thus

(&, (f1, f2 ) (hy (B, o, ) = (UE) Ry (w ()R, (w1 (f3)ha, T(f3) e, ).

€& (f1, far ) UE (fr, f2, ) (R, (R, R, .20))
= (¢, )

(f1, f2, ) WA + 7 (f1)ha, (m(f2)he, w(f3)hs, -..))
= (t(&)" ( (&)h 4 m(
(& (@(f)E)" ha, (L(S(f1)ER + w(f1 fi)ha, w(f3 f2)ha, m(f5 f3)hs
(€, ) hy (m(f1 fO)ha, w(f3 f2)ha, w(f5 f3) R, -..)
(

= 7(((&, (f1, f2,--)), (&, (f1, f2, ) )

foh), (7 (1)) + m(f1)h1, 7T(f2) (f2)h2, w(f3)m(f3)ha3, ...

)
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and if (gl,gg, ) eT

L, (f1, far )7 (a, (g1, 92, ) (R, (B1, b, ..0)

= (& (f1, fa, ) (w(a)h, (m(g1) 1, w(g2)ha, )

(t(E)m(a)h + m(f1)m(g1)h1, (7 (f2)7m(g2)he, 7(f3)7(g3)hs; -..))

(t(£a)h + w(frg1)ha, (w(f292)he, 7(f393)hs; ...))

t((€a, (figrs f2g2, ) = (&, (f1, f2, ) (a; 91, 92, ) (h, (Ba, Pg, -..)).

Now let (a, (f1, f2,...)) be an element in Jy, by lemma 6.2.1 we have that a = a1 + a2

where a1 € Jx and ao € ker ¢ and therefore

Nn

d)(al) = h?£n Z ggn,k:v"?n,k

k=1

for some &, 1, Mn k. € X and as in the proof of the above-mentioned lemma if {e_>\>} AeA 1S

an approximate unit for 7', where e_>\> = (e}\, e?\, ...), we have that

Ny,
— .
¢z(ar, 0) = lim ]; O )i ) € X )

and

Sz, (fi, f2,)) = UM O 0 (ay, 11 fo,..),(0,(e1 2 3,.) € H (V)

ExsEXIERs o

Note that for (z, (h1, he, ...)), (1, (91, 92, ...)) € Y we have

t(x, (h1, ha, . ))H(1, (91,92, )" = (H(2)t(n)" + 7(hagi), (m(h2g3), m(hsg3), -.))-

Therefore,

f<¢%«zaﬁ,h,m>»:=f<¢%an,63>+fx¢%«m,uafzu»»
_l1mz fnk, (ks ) —|—hmt( ,(az, f1, fa, - )0, (X, €3, €3,..))*

0

ﬁ?ngmw@t>H@wWwwm&mm&w»
k=1

— (t(d(@)), 0) + (w(az), (x(1), 7(f2), )
+ (w(az), (x(f1), 7(f2), ) = 7(a, (fu, fa, )

and thus (7, t) is a Katsura covariant Toeplitz representation of (Y, &, ¢%).
(ii) Let (7, 1) be a Katsura covariant Toeplitz representation of (Y, %, ¢%), then it is im-

mediate that (7|, f|x) is a Toeplitz representation of (X, <7, ¢). Now, let a be an element
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in Jx, then as above we have that

Ny,
¢(a) = 11711?(1 Z Hgn,kvnn,k
k=1

for some &, 1., n 1 € X and

Np,
— .
QS(@((Z, 0 ) - h’rl;nkz H(En,kaﬁ)v(nn,kvﬁ) 6 %(Y)
=1

and therefore

—

N, Np,
(F1x)+(6(a)) =tim Y~ lx (€ )l (1 p)” = > #(€ s, 0, 0)*
k=1 k=1

Suppose now that 7| is injective, we will prove that 7 is also injective. Let (a, (f1, f2,...))
be an element in % such that 7(a, (f1, f2,...)) = 0 and let {g) } e be an approximate unit
for ker ¢. For ¢ > 1 we have that

7(0,€i(grfi)) = 7((0, € (gn)) (@, (f1, f2,--))) = 7 (0, €i(g9x))7 (a, (f1, f2,.-.)) =0

and by taking limit with respect to A we get 7(0, ¢;(f;))) = 0. Hence, by using lemma 6.2.2
it follows that f; = 0 for all ¢ > 1 and since

Fl(a) = 7(a, 0) = 7(a, (fi, f2y ...)) = 0,

injectivity of 7|, implies that @ = 0. Thus, (a, (f1, f2,...)) = 0 and we are done. O

Lemma 6.2.3. Let X,Y be Hilbert o/ -modules of a C*-algebra </ and ¢ : o/ — L (Y) be
an injective x-homomorphism. If (&), € X™ then

1(&)i = sup{[l(& @g w)itall: w €Y, [Juf= 1},
Proof.

sup{[|(& @ w)isy | : w € Y, |lul|= 1}

= sup{[|((& ®¢ u)i1, & ®p u)iy)| s w €Y, [lul|= 1}

:sup{ :u€Y,||u||:1}
—sup{

n

D (& ®g u, & @p u)

=1

n

S, ¢((6 €)u)

i=1

:uerm%l}
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:sup{

= sup {[1(6((&: &)y % w € Y, flull= 1}

0

0 - P((&2,6)"P)

o((er, &)%) -
00 ---
o0 ---

00 ---

n

2

- o((6, &)

: ¢(<§na §n>1/2)

O((Ens €n)'?)
0
0

> iy 96 &)

where we used the fact that

= sup

0 - o((&, )P

- B((&, &)Y

C B((En, &)
o((€1,€)Y?)
0 0 - ({62

00 - ¢({En&n)'?)

>~ (06 60" (6 &) *u)

=1

0

= Hd’(Z (&, &)

=1

U1

Uz

Un,

cu ey, |ull= 1}

0 - p((EL &) ?)
0 - o({&,&)"?)

n

=1

Uy
Uz
cu; €Y and

= sup{ [ ($((6s, &) /P un)ii % un € Y where [un|< 1}

:sup{

sup {

=1

M:

=1

(s

(u, ({&i; &)

517 51 >

Hlull=

Jul< 1} — sup {|
1} .

5 (66 &) 20, ({6 602

and also that ¢ is an injective *-homomorphism and therefore isometric.

> (& &)

=1
lull= 1}

= sup{ [[(6((&, &) P )iy | w € Y, Jull= 1}

= [I(&)i

| Hlull< 1}

O]

In the proof of our next lemma we are going to need the right creation operators which we
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now define. Let (X, .«7, ¢) be a C*-correspondence, Fy to be the Fock space and £ € X ®*

then we define

Re(a, (1, Q2,) = (05,0, ((a) @ Ir—1)(€), Q1 ©€, 02 ®E, ), (a,C1,C2,) € Fx.

k

Firstly, we show that R, is well-defined and continuous.
Indeed,

HRf(aﬂCla <27 )H2 = (07 "'707 (ﬁk(@)&, Cl & 57 CQ ® &7 )

k

= <(0, ey 0, qﬁk(a)f, Cl X f, CQ X f, ), (0, ceey 0, ¢k(a)§7 Cl ® 57 CQ (9 f, )> '|
—— ——

k k
= (@r()&, () + D (G ®E G E)y,
=1

= || (6r@6,or(@))e+ 3 (6 Dul(Gn G

= <§, or(a*a+ Z (Gis Cz‘>i)§>
=1

= k
< [lEl* om({(as C1, Gos ), (@5 Gy Gas e DI NIENP (@, Gus Gy o) (a5 Gy Goy o)) |
< 1€1% I, ¢1, Go, )12

< €l l¢r(((a, €15 C2s-0), (@, C1, G2, ) )E I

We now prove that for a C*-correspondence (X, &7, ¢) and x € alg(7, to ), we have that
Rex = xR, where (7o, too) is the Fock representation of (X, .27, ¢) and by alg(mso, too)
we denote the norm closed algebra generated by the images of 7, and t. It suffices to
show that R¢ commutes with 7 (b) and to(n) for b € &7 and ) € X, since these elements

generate alg(7m, too). Let (a, (1, (2, ...) be an element in F'y, we have

ﬂ'oo(b)Rg(a, Cl, CQ, ) = Woo(b)(o, ey 0, (Z)k(a)f, Cl &® 5, CQ ® f, )

k

= (0? EREE) Oa ¢k(b)¢k(a)£a ¢k+1(b) (Cl X g)a ¢k+2(b) (CQ X g)a )
S~——

k

= (0,-,0,9x(ba)§, (¢1(b)¢1) ® &, (d2(b)C2) @&, -..)

k

= Re(ba, d(b)C1, 2(b)(2, -..) = Remoo(b)(a, (1, G2, ---)
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and

R@OO(U)(%CLC% ) = R{(Oanavn & Clﬂ? ® CZ» )
= (0>~-~,0>77a®5,77®C1 ®§Jl®<2 ®§7)
~——

k+1
= (07 ey 0777 ® ¢k(a)§777 ® Cl @ 5’77 ® CQ X 5’ )
——
k+1
= too(n)(ov teey 07 ¢k(a)€7 Cl ® 57 42 & 57 ) = tOO(U)Ré(G’?ClJ 427 )

k

Note that for each n € N if we set

R, 0 0
Rg") B 0 R, 0 |
0 O Ry

then this n x n matrix commutes with every matrix A = (4;;)i; € M, (T5).
Indeed, if §{ = (&1,...,&n) € F% then

Yo A
RV A¢ = RV :
Yoiq Ani
RU(Z?:1 Alz§z> Z?:l AlzRu&
- : - : = ARM¢.

Recall that from the gauge-invariance uniqueness theorem we may think of the C*-algebra
Tx of a given C*-correspondence (X, <7, ¢) as the the C*-algebra C*(7oo, too ), Where
(oo, too) is the Fock representation of (X, o7, ¢).

Lemma 6.2.4. Let (X, o7, ¢) be a C*-correspondence such that ¢ is injective. Then
[All=inf{[[A+ K||: K € My(A (Fx))}
forall A € M,(Ty) andn € N.

Proof. Suppose that K = (K;;)ij € M,,(# (Fx)) and A = (4;;)i; € M, (T5) and € > 0.
We pick a unit vector § = (&1,&2, ...,&,) € F¥ such that

[AE][> [ Al —e.



Chapter 6. C'*-envelopes 120

There exists k& € N such that for all unit vectors u € X®* we have || K R&n) ||< €, where

R, 0 0
RO 0 R, 0
0 0 R,

Indeed, using lemma 5.1.5 we may pick L = (L;;);; such that each L;; is a finite linear sum

of elements of the form 0, ,, where 2 € X®™ and y € X®™ and
|K — L|< e.

Since each L;; is a finite linear sum and the entries of the matrix L is finite, we can pick k

large enough such that for each unit vector u € X®* and n € Fx we have

where we used the fact that the first k coordinates of R,n are zero. Therefore we have
(n) _
LR’ = 0andso

IKRV < | KR — LR+ LRV < | K — LI RYY|I< e.

Note that for any vector u € X®* we have

n

RM (> Aijg =|[[ D 45 ou )
J=1 i=1 7=1

=1

since the left-hand side vectors are the same with the right-hand side vectors transposed by

k coordinates. From the preceding lemma we may pick a unit vector u € X®* such that
IRV AE|1= || AE| =€ > || Al —2¢
and therefore

1A+ K> (A + K)RJVEN> |ARTIE | KRV
> |AR(VE|—e = || RGVAE| € > || Al -3,

since € was arbitrary we conclude that || A + K||> || A||. It is obvious that

[A|> inf{[|A + K- K € My (A (Fx))}-
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Thus,
[All=inf{||A + KI|: K € M, (% (Fx))}

and we are done. O

Corollary 6.2.1. Let (X, .27, ¢) be a C*-correspondence such that ¢ is injective and let (1, t,,)
be the universal Katsura covariant Toeplitz representation and (7, t,) the universal Toeplitz

representation of (X, <7, ¢). Then there exists a complete isometry
TY : T;g — alg(my, ty),

such that Tx (7u(a)) = m,(a) and Tx (t,(€)) = tu(€) foreacha € o and € € X.

Proof. Recall that from the gauge-invariance uniqueness theorem we have that Ox is *-
isomorphic with C* (7, t) where (7, t) is the injective Katsura covariant Toeplitz representa-
tion we introduced in theorem 5.1.1 and T'x is *-isomorphic to C* (7w, too ) Where (Too, too)
is the Fock representation. We denote these *-isomorphisms by p and p respectively. Let ¢

be the restriction to alg(mu, tso) of the natural quotient map
C* (Toos too) = C* (Tooy too) [ H (Fx Jx).

From the preceding lemma and using the fact that # (FxJx)) C J# (Fx)) we have that
for k € Nand A € M, (T%)

[All= inf{|| A+ K|}: K € My (A (Fx))} < inf{[|A+K[: K € M, (A (FxJx))} <[l A]

and therefore ¢ is completely isometric. We set 7x = p~loqo ,6|T+, then this map is
X
completely isometric as a composition of completely isometric maps and if ¢ € o/ and

£ € X we have

rx (7u(@)) = 1 0 g0 fips (7ula) = p (maola) + H (FxJx)) = p~ ' (n(a)) = m(a)

and

Tx (ta(€)) = 7 0 g0 Pt (1u(€)) = 7t (&) + K (Fx Jx)) = p~ ' (4(€)) = tu(a).

O

By adding the tail ' = cy(ker ¢) to X we may remove the requirement of ¢ being injective

and therefore we have the following:

Lemma 6.2.5. Let (X, .o/, ¢) be a C*-correspondence and let (7 | tX) be the universal Kat-
o FX
t

sura covariant Toeplitz representation and (7 , t,

) the universal Toeplitz representation of
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(X, o, p). Then there exists a complete isometry

TX : T; — alg(wf,tux),

such that Tx (7 (a)) = 77 (a) and Tx (tX(€)) = tX (€) foreacha € o7 and ¢ € X.

u

Proof. Let (Y, %, ¢) be the injective C*-correspondence we obtain by adding the tail
T = co(ker ¢) and let (77,£)) be the universal Toeplitz representation of (Y, %, ¢5).

u v

Recall that in remark 22 we proved that

Iizz vy = {0},

"

and therefore also for the restriction (7| ,/,Y |x), which is a Toeplitz representation of
(X, ,¢), we have that [z 7| ) = {0}. By the gauge-invariance uniqueness theorem

there exists a *-isomorphism
p:Tx = C*(7 ]|y |x) € Ty
such that for each a € o/ and £ € X we have

p( (@) =7 (@) and B (€)) =& |x(€).
The preceding corollary implies that there exists a complete isometry

u);

Ty : T{f — alg(ﬂf, t,,

ﬂtY

u

such that for a € % and ¢ € Y we have 1y (77 (a)) = n7(a) and 7y (£} (€)) = tY (€).

From theorem 6.2.1 we have that (77| ./,tY|x) is an injective Katsura covariant Toeplitz

where (7 ) is the universal Katsura covariant Toeplitz representation of (Y, %, ¢»),

representation and therefore from the gauge-invariance uniqueness theorem there exists a
*-isomorphism

p:Ox — C*(ml|.ty |x)

such that for a € o7 and ¢ € X we have p(77 (a)) = 77| (a) and p(tX (€)) = t¥|x ().

1

Settx =p  oTyo ﬁ\T;, then 7x is completely isometric as a composition of completely

isometric maps and for each a € o/ and £ € X we have
7x(y (@) = p~t o1y o ﬁ’T;(ﬁf(a)) =p Loy (@ (@) = pH(m] | (a) = 7 (a)
and

x(E5(€) = p~ oy 0 plpy (B1(€) = p~ oy (i 1x)(€)) = o7 (tu [x(€)) =t (a)
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X

and therefore 7x : T — alg(m, t2

) is the desired complete isometry. O

Theorem 6.2.2. Let (X, o/, ¢) be a C*-correspondence such that T is unital. Then the C*-

envelope ofT; isOx.

Proof. Using the lemma above we identify 7% with alg(m,, t,) C Ox, where (m,, t,,) is the
universal Katsura covariant Toeplitz representation of (X, .27, ¢). We will prove that the
Shilov ideal Jyjg(r, ¢,) is trivial. Suppose that Jyjg(r, +,) 7 {0} and let v, to be the gauge
action of (,, t,). By proposition 6.1.1 for each z € T we have 7. (Jug(r, t.)) = Jatg(ra,to)
since 7, (alg(my, tu)) = alg(mu, tu). Let ¢ : Ox — Ox/Jug(r, t,) be the natural quotient
map, we will prove that (q o 7, q o t,) is a Katsura covariant Toeplitz representation of
(X, ., 6).

Indeed, for a € &7 and £, € X we have

q o tu(€)g o mu(a) = q(tu(§)mu(a)) = g otu(a)

and
qo 7Tu(<£, 77>) = Q(tu(g)*tu(n)) =qo° tu(g)*q © tu(n)'

Note also that

(qotu)s(Oen) = qotu(§)gotu(n) = q(tu(E)t;,(n) = qo (tu)«(0en)

and since the linear span of elements in the form ¢ ,, is dense in %" (X') we get that

(q © tu)* =qgo (tu)*7

which implies that for b € Jx we have

((] © tu)*(d)(b)) =4qgo (tu)*(qb(b)) =4qgo ﬂ(b)

Foreach z € T, a € o/ and § € X if we define 7. (q o my(a)) = v(7u(a)) + Jug(r, +,) and
F2(qot(§)) = Y(t(§)) + Jalg(mu ) then 7. is a well-defined gauge action of (g o 7y, g o ty).
Since Jug(r, +,) 7 10} we have that ¢ is not injective but ¢ : Ox — Ox/Jug(r, t,) is @

x-epimorphism such that

q(mu(a)) = gomu(a) and q(tu(§)) =qgotu(§), acd,fcX

and therefore by the gauge-invariance uniqueness theorem g o m,, must also not be injective,
or else ¢ would be injective. This implies that ¢ is not injective on T)Jg - Since Jyjg(rr,, t,) 15 @
boundary ideal the restriction of g to T; is completely isometric and hence injective, which

is a contradiction. O
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Corollary 6.2.2. Let </ be a unital C*-algebra and o a unital x-automorphism. The C*-
envelope of the semi-crossed product Z* x ., & is the crossed product Z X o, o .

Proof. In examples 5.1.3 and 5.1.4 we proved that for the C*-correspondence .7, we have
that T; =7Z" xo & and Oy = 7Z x,, . Since, o7 is unital we obtain that ZT x, < is

unital and the preceding theorem yields the desired result. O

Lemma 6.2.6. Let </ be a non-unital C*-algebra and denote by 7] its unitization. If J C </}
is a closed two-sided ideal such that J N o/ = {0}, then J = {0}.

Proof. We assume towards a contradiction that J # {0}. Since &/ C &/ has co-dimension
1, J is of the form J = span{A + A} for A € &/ and A\ € C. Since J is an ideal it is
self-adjoint and JJ* # {0} and therefore we may assume that A € R and A is self-adjoint.
Since J2 # {0} we may assume that

(A+ X2 = A+
and therefore
A2 LA+ NPT = A+ M <= A2+ 204+ A= (N2 - NI,

which implies that A = 1 and thus
A? = —A.

If we set P = A? we have that P € ¢/ is a projection and A = —P. For each C' € &/ we
have that
(I-P)C=(I+A)CeadnJ={0}

and so I = P is a unit in .&/. Hence, a contradiction. O

Remark 23. Let <7 be a non-unital operator algebra. Consider <7 as a subalgebra of B(#)
for a Hilbert space .77 and set ] = span{.</, I} where I is the identity operator in B(.7).
We say that o7 is a unitization of .7 Then corollary 2.1.15 in [3] proves that up to com-
pletely isometrical isomorphism, this unitization does not depend on the embedding of &7
into B(.77). Therefore, .27 is called the unitization of 7.

Definition 6.2.1. Let o7 be a non-unital operator algebra and .7 its unitization and let
(Ck..(9),1) be the C*-envelope of <7. We define the C*-envelope of .27 to be the pair
(Ck . (),1) where C . (<7) is the C*-subalgebra generated by i(.<7) into C ().

env env env

It was proved in [9] and [5] that the C*-envelope of an arbitrary operator algebra is

unique and enjoys the following (universal) property:

For each C*-cover (%, j) of o/ there exists a unique x-epimorphism p : € — C¥ ()

ENV
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such that po j = .
We will now prove that the C*-envelope of T; is Ox without the additional hypothesis
that alg (7, t,,) is unital.

Theorem 6.2.3. Let (X, o, ¢) be a C*-correspondence. Then the C*-envelope of Ty is Ox.

Proof. Once more we identify T'x with alg(m,, t,,), where (m,, t,,) is the universal Katsura
covariant Toeplitz representation. The case that alg(m,, t,,) is unital follows from theorem
6.2.2. Suppose that alg(m,, t,) is not unital and that Ox has a unit I. Set alg(m,,t,)1 =
alg(my, t,)+CI1, then for each z € T we have that v, (alg(my, t,)1) = alg(my, t,)1 and so by
repeating the arguments of the proof of theorem 6.2.2 we get that C (alg(7my, t,)1) = Ox.
The C*-subalgebra of Ox generated by alg(m, t,) is Ox and therefore C%, (alg(my, t.))
is Ox.

Suppose now that both alg (7, t,,) and Ox are not unital. We unitize Ox by joining a unit
I and set

alg(my, ty)1 = alg(my, t,) + CI C Ox + CI.

Since the Shilov ideal Jyj4(r, +,), 1S gauge-invariant we have that Jy,(r, ¢,), 1Ox C Ox is
also gauge-invariant and using again the same arguments Jyg(r, +,), N Ox = {0} or else it
would meet 7, (<7 ). From the preceding lemma we get that Jyj4(r, ¢,), = 10} and therefore
C#.o(alg(my, ty)1) = Ox + CI. The C*-subalgebra of Ox + CI generated by alg(my,, t,,)

env

is Ox and therefore C7,,,

(alg(my, ty)) = Ox, which completes the proof. O
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