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Abstract 

          Football is one of the most popular sports in the world. In recent 

years, more and more companies have been associated with football 

depending economically on it. This led to a huge statistical interest in 

the sport. This thesis constitutes a review on football modeling. 

          Initially, theory behind bivariate analysis is developed along 

with properties and extensions of the bivariate distribution. Special 

attention is paid to the bivariate Poisson distribution which is widely 

used in football modeling. Regression models constitute another 

subject of study as they provide functions that describe the 

relationship between random variables. In that part, count data 

models are presented such as Poisson regression model and the 

inflated models which deal with problems with excessive outcomes. 

As for the parameters estimation, the EM algorithm is considered to 

be a rational way to find the maximum likelihood estimate when the 

latter cannot be calculated in straightforward way.  

          After presenting the theoretical framework on with football 

modeling is based, several bivariate predictive models are presented 

in terms of four main categories: naïve models, models with 

dependence parameter, inflated models, dynamic models.  

          Finally, analysis of the Greek Superleague is carried out through 

four bivariate models. After the comparison of the models’ fitting, 

prediction in a playoff match takes place. 
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Chapter 1 

Bivariate Discrete Distribution  
 

In this chapter, we will present the bivariate discrete distributions as 

well as their properties. We consider the joint distribution of two 

random discrete variables 𝑋 and 𝑌. They are assumed to have the 

probability mass function 𝑓𝑋,𝑌(𝑥, 𝑦) at the point (𝑥, 𝑦) with (𝑥, 𝑦) ∈  𝑇, 

where 𝑇 is a subset of the Cartesian product of the set of nonnegative 

integers on the real line. In this case the pair (𝑋, 𝑌) is said to have 

bivariate discrete distribution over T with the probability function 

𝑓𝑋,𝑌(𝑥, 𝑦). 

1.1. Joint distributions 

Definition (Joint cumulative distribution function) Let 𝑋 and 𝑌 be 

two random variables defined on the same probability space 

(𝛺,𝒜, 𝑃[. ]) where 𝛺 is the set of all possible outcomes and 𝒜 is a set of 

events. Then the (𝑋, 𝑌) is called a two-dimensional random variable. 

The joint cumulative distribution function or joint distribution function 

of 𝑋 and 𝑌, denoted by 𝐹𝑋,𝑌(𝑥, 𝑦), is defined as  

𝐹𝑋,𝑌(𝑥, 𝑦) = 𝑃[𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦]  , 𝑥, 𝑦 ∈ ℝ 

Properties: 

1. If  𝑥1 < 𝑥2 and  𝑦1 < 𝑦2 then 

𝑃[𝑥1 < 𝑋 < 𝑥2 , 𝑦1 < 𝑌 < 𝑦2] =

= 𝐹(𝑥2, 𝑦2) − 𝐹(𝑥2, 𝑦1) − 𝐹(𝑥1, 𝑦2) + 𝐹(𝑥1, 𝑦1) ≥ 0 
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2.  (i) 𝐹(−∞, 𝑦) = lim
𝑥→−∞

𝐹(𝑥, 𝑦) = 0   ∀𝑦 ∈ ℝ 

    (ii) 𝐹(𝑥,−∞) = lim
𝑦→−∞

𝐹(𝑥, 𝑦) = 0   ∀𝑥 ∈ ℝ 

   (iii) 𝐹(∞,∞) = 1 

3.  𝐹(𝑥, 𝑦) 𝑖𝑠 𝑟𝑖𝑔ℎ𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡: 

lim
ℎ→0+

𝐹(𝑥 + ℎ, 𝑦) = lim
ℎ→0+

𝐹(𝑥, 𝑦 + ℎ) = 𝐹(𝑥, 𝑦) 

Definition (Joint discrete density function) Let 𝑋 and 𝑌 two random 

discrete variables. The joint discrete density function of 𝑋 and 𝑌 is 

defined as  

𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑃[𝑋 = 𝑥, 𝑌 = 𝑦],   (𝑥, 𝑦) ∈ 𝑇 

where 𝑇 is a subset of the Cartesian product of the set of the 

nonnegative integers on the real line. 

1.2. Marginal distributions 

When studying bivariate models, it may also be of interest to observe 

the behavior of the variables independently of each other. Taking the 

probability function of 𝑋 and 𝑌 as 𝑓𝑋,𝑌(𝑥, 𝑦), the marginal 

probabilities for 𝑋 and 𝑌 are respectively: 

 

𝑓𝑋(𝑥) = ∑𝑓𝑋,𝑌(𝑥, 𝑦)

𝑦

 

and 

𝑓𝑌(𝑦) = ∑𝑓𝑋,𝑌(𝑥, 𝑦)

𝑥
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It is remarkable that if 𝑋 and 𝑌 are independent then, 

𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑓𝑋(𝑥) ∙ 𝑓𝑌(𝑦) = 𝑃[𝑋 = 𝑥] ∙ 𝑃[𝑌 = 𝑦] 

Concerning the conditional discrete density functions, they are 

expressed as follows: 

 𝑓𝑌|𝑋(𝑦|𝑥) =
𝑓𝑋,𝑌(𝑥,𝑦)

𝑓𝑋(𝑥)
=

𝑃[𝑋=𝑥,𝑌=𝑦]

𝑃[𝑋=𝑥]
   𝑖𝑓 𝑓𝑋(𝑥) > 0 

 

 𝑓𝑋|𝑌(𝑥|𝑦) =
𝑓𝑋,𝑌(𝑥,𝑦)

𝑓𝑌(𝑦)
=

𝑃[𝑋=𝑥,𝑌=𝑦]

𝑃[𝑌=𝑦]
   𝑖𝑓 𝑓𝑌(𝑦) > 0 

Definition (Marginal cumulative distribution function) If 𝐹𝑋,𝑌(𝑥, 𝑦) 

is the joint cumulative distribution function of two random variables 𝑋 

and 𝑌, then the 𝐹𝑋(𝑥, 𝑦) and 𝐹𝑌(𝑥, 𝑦), which are called marginal 

distribution functions of  𝑋 and 𝑌 respectively, are defined as  

𝐹𝑋(𝑥) = 𝑃[𝑋 ≤ 𝑥] = 𝑃[𝑋 ≤ 𝑥, 𝑌 < ∞] = lim
𝑦→∞

𝐹𝑋,𝑌(𝑥, 𝑦) = 𝐹𝑋,𝑌(𝑥,∞) 

and  

𝐹𝑌(𝑦) = 𝑃[𝑌 ≤ 𝑦] = 𝑃[𝑋 < ∞, 𝑌 ≤ 𝑦] = lim
𝑥→∞

𝐹𝑋,𝑌(𝑥, 𝑦) = 𝐹𝑋,𝑌(∞, 𝑦) 

 

1.3. Generating functions 

When studying random variables, there is a variety of generating 

functions which helps us to point out the properties of the random 

variables. In this section we will introduce these functions. 
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1.3.1. Probability generating function 

      The probability generating function (PGF) 𝛱𝑋,𝑌(𝑡1, 𝑡2) of the pair of 

random variables (𝑋, 𝑌) with probability function 𝑓𝑋,𝑌(𝑥, 𝑦) is the 

𝔼[𝑡1
𝑋𝑡2

𝑌]. So PGF is defined as :   

𝛱𝑋,𝑌(𝑡1, 𝑡2) = 𝔼[𝑡1
𝑋𝑡2

𝑌] = ∑ 𝑡1
𝑥𝑡2
𝑦

(𝑥,𝑦)∈𝑇

𝑓𝑋,𝑌(𝑥, 𝑦) 

The marginal PGF΄s are  

𝛱𝑋(𝑡) = ∑𝑓𝑋(𝑥)𝑡
𝑥 =∑𝑡𝑥∑𝑓𝑋,𝑌(𝑥, 𝑦) = 𝛱𝑋,𝑌(𝑡, 1)

𝑦𝑥𝑥

 

𝛱𝑌(𝑡) = ∑𝑓𝑌(𝑦)𝑡
𝑦 =∑𝑡𝑦∑𝑓𝑋,𝑌(𝑥, 𝑦) = 𝛱𝑋,𝑌(1, 𝑡)

𝑥𝑦𝑦

 

 

1.3.2. Moment generating functions  

       The moment generating function (MGF) 𝛭𝑋,𝑌(𝑡1, 𝑡2) of the pair of 

random variables (𝑋, 𝑌) with probability function 𝑓𝑋,𝑌(𝑥, 𝑦) is the 

𝔼[𝑒𝑡1𝑋+𝑡2𝑌]. So MGF is defined us:  

𝑀𝑋,𝑌(𝑡1, 𝑡2) = 𝔼[𝑒
𝑡1𝑋+𝑡2𝑌] = ∑ 𝑒𝑡1𝑥+𝑡2𝑦 𝑓𝑋,𝑌(𝑥, 𝑦)

(𝑥,𝑦)∈𝑇

 

 

By recalling the exponential series,  

𝑒𝑡𝑋 = 1 + 𝑡𝑋 +
(𝑡𝑋)2

2!
+
(𝑡𝑋)3

3!
+ ⋯ 

in the univariate case we have: 

𝑀𝑋(𝑡) = ∑𝑒𝑡𝑋𝑓𝑋(𝑥) =∑(𝑓𝑋(𝑥) + 𝑡𝑋𝑓𝑋(𝑥) + 𝑡
2𝑋2𝑓𝑋(𝑥) + ⋯ ) =   

𝑥𝑥

=1 + 𝜇1𝑡 + 𝜇2
𝑡2

2!
+ 𝜇3

𝑡3

3!
+ ⋯ 
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with 𝜇𝑘 = 𝔼[𝑋𝑘] 𝑘 = 1,2,3… 

So in the bivariate case MGF becomes: 

𝑀𝑋,𝑌(𝑡1, 𝑡2) = 𝔼[𝑒𝑡1𝑋+𝑡2𝑌] = ∑∑𝑒𝑡1𝑥+𝑡2𝑦 𝑓𝑋,𝑌(𝑥, 𝑦) =

𝑦𝑥

 

=∑∑(1 + 𝑡𝑋 +
(𝑡𝑋)2

2!
+ ⋯)

𝑦

(1 + 𝑡𝑌 +
(𝑡𝑌)2

2!
+ ⋯)𝑓𝑋,𝑌(𝑥, 𝑦)  

𝑥

=∑
𝑡1
𝑟

𝑟!

𝑡2
𝑠

𝑠!
𝑟,𝑠

𝜇𝑟,𝑠
′  

with the coefficients  𝜇𝑟,𝑠
′ = 𝔼[𝑋𝑟𝑌𝑠] . 

The marginal MGF΄s are  

𝑀𝑋(𝑡) = ∑𝑒𝑡𝑥

𝑥

𝑓𝑋(𝑥) =∑𝑒𝑡𝑥∑𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑀𝑋,𝑌(𝑡, 0)

𝑦𝑥

 

𝑀𝑌(𝑡) = ∑𝑒𝑡𝑦

𝑦

𝑓𝑌(𝑦) =∑𝑒𝑡𝑦∑𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑀𝑋,𝑌(0, 𝑡)

𝑥𝑦

 

 

1.3.3. Cumulants generating functions 

      The cumulants generating function (CGF) 𝐾(𝑡1, 𝑡2) of the pair of 

random variables (𝑋, 𝑌) with probability function 𝑓(𝑥, 𝑦) is the log of 

MGF. So CGF is defined as: 

𝐾𝑋,𝑌(𝑡1, 𝑡2) = 𝑙𝑜𝑔𝑀𝑋,𝑌(𝑡1, 𝑡2) = ∑∑
𝑡1
𝑟

𝑟!

𝑡2
𝑠

𝑠!
𝑘𝑟,𝑠

𝑠𝑟

 

where 𝑘𝑟,𝑠  is called the cumulant of order (𝑟, 𝑠). 
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1.4. Trivariate reduction 

Suppose that we have 𝑋1, 𝑋2, 𝑋3 which are three independent and 

maybe identically distributed random variables. We can construct 

the random variables 𝑋 and 𝑌 as: 

𝑋 = 𝑋1 + 𝑋3 

𝑌 = 𝑋2 + 𝑋3 

Thus by using convolutions of three independent random variables, 

bivariate distributions can be generated, where a pair of 

observations from 𝑓𝑋,𝑌(𝑥, 𝑦) is obtained by  

𝑥 = 𝑥1 + 𝑥3 

𝑦 = 𝑥2 + 𝑥3 

The method above is termed the trivariate reduction and it allows for 

dependence between the random variables of our study. 

Now by taking under consideration the generating functions of 

𝑋𝑖  ,     𝑖 = 1,2,3 the joint PGF and MGF of (𝑋, 𝑌) are respectively: 

𝛱𝑋,𝑌(𝑡1, 𝑡2) = 𝛱𝛸1(𝑡1)𝛱𝑋2(𝑡2)𝛱𝛸3(𝑡1𝑡2) 

and  

    𝑀𝑋,𝑌(𝑡1, 𝑡2) = 𝑀𝛸1
(𝑡1)𝑀𝑋2(𝑡2)𝑀𝛸3(𝑡1 + 𝑡2) 

Proof:    Let 𝑋 = 𝑋1 + 𝑋3   and   𝑌 = 𝑋2 + 𝑋3  , 

𝛱𝑋,𝑌(𝑡1, 𝑡2) = 𝔼[𝑡1
𝑋𝑡2

𝑌] = 𝔼[𝑡1
𝑋1+𝑋3𝑡2

𝑋2+𝑋3] = 𝔼[𝑡1
𝑋1𝑡1

𝑋3𝑡2
𝑋2𝑡2

𝑋3]

= 𝔼[𝑡1
𝑋1𝑡2

𝑋2(𝑡1𝑡2)
𝑋3] = 𝛱𝛸1(𝑡1)𝛱𝑋2(𝑡2)𝛱𝛸3(𝑡1𝑡2) 

 𝑀𝑋,𝑌(𝑡1, 𝑡2) = 𝔼[𝑒𝑡1𝑋+𝑡2𝑌] = 𝔼[𝑒𝑡1(𝑋1+𝑋3)+𝑡2(𝑋2+𝑋3)]       

= 𝔼[𝑒𝑡1𝑋1+𝑡2𝑋2+(𝑡1+𝑡2)𝑋3] = 𝑀𝛸1
(𝑡1)𝑀𝑋2(𝑡2)𝑀𝛸3(𝑡1 + 𝑡2) 
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1.5. The bivariate binomial distribution 

It is widely known that the binomial distribution is the extension of 

the Bernoulli distribution and counts how many times an event 𝑋 

has occurred in a specific number of trials. Now we will examine the 

bivariate case of the binomial distribution. To start with, one 

bivariate Bernoulli trial measures two random variables (𝐼, 𝐽), both 

with outcomes 0 and 1. As a result, each trial has four possible 

outcomes: (0,0), (0,1), (1,0), (1,1). The probabilities of the outcomes 

are constant over the trials and the trials are independent. We define 

𝑝𝑎𝑏 = 𝑃(𝐼 = 𝑎, 𝐽 = 𝑏)                     𝑎 = 0,1   , 𝑏 = 0,1 

Similarly with the univariate case, considering a sequence of n 

bivariate Bernoulli trials leads to a bivariate binomial distribution. It 

is defined 

𝑋 =∑𝐼𝑖

𝑛

𝑖=1

 

and  

𝑌 =∑𝐽𝑖

𝑛

𝑖=1

 

The pair (𝑋, 𝑌) is said to have bivariate binomial distribution. 

The PGF of (𝑋, 𝑌) is:  

𝛱𝑋,𝑌(𝑡1, 𝑡2) = 𝔼[𝑡1
𝑋𝑡2

𝑌] = {𝔼[𝑡1
𝐼𝑡2
𝐽]}

𝑛

= (𝑝00 + 𝑡1𝑝10 + 𝑡2𝑝01 + 𝑡1𝑡2𝑝11)
𝑛 

So, the marginal PGF’s are respectively  

𝛱𝑋(𝑡) = 𝛱𝑋,𝑌(𝑡, 1) = {(𝑝11 + 𝑝10)𝑡 + (𝑝01 + 𝑝00)}
𝑛 

and  

𝛱𝑌(𝑡) = 𝛱𝑋,𝑌(1, 𝑡) = {(𝑝11 + 𝑝01)𝑡 + (𝑝10 + 𝑝00)}
𝑛 
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Reminding that the PGF of the binomial distribution with parameters 

(n,p) is 

𝛱𝑋(𝑡) = (𝑝𝑡 + 𝑞)𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℝ 

we notice that,  

𝑋~𝐵𝑖𝑛(𝑛, 𝑝11 + 𝑝10) 

𝑌~𝐵𝑖𝑛(𝑛, 𝑝11 + 𝑝01) 

 

The bivariate binomial distribution is just an extension of the 

binomial distribution. In the univariate case we are counting the 

successes of a fact whereas in the bivariate case we are interested in 

how many times the events 𝑋 and 𝑌 have occurred. 

 

1.6. The bivariate Poisson distribution 

The bivariate Poisson distribution can be defined by taking the limit 

(𝑛 → ∞) of the bivariate binomial distribution which has PGF  

𝛱𝑋,𝑌(𝑡1, 𝑡2) = (𝑝00 + 𝑡1𝑝10 + 𝑡2𝑝01 + 𝑡1𝑡2𝑝11)
𝑛

= {(1 + (𝑝11 + 𝑝10)(𝑡1 − 1) + (𝑝11 + 𝑝01)(𝑡2 − 1)

+ 𝑝11(𝑡1 − 1)(𝑡2 − 1)}
𝑛 

 

We assume that 

𝑝11 + 𝑝10 =
𝜆1
𝑛

 

𝑝11 + 𝑝01 =
𝜆2
𝑛

 

 𝑝11 =
𝜆3
𝑛

 

where 𝜆1, 𝜆2 and 𝜆3 are positive constants independent of n. 
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Now, by substituting into the equation of the PGF of the bivariate 

binomial distribution it is: 

𝛱𝑛(𝑡1, 𝑡2) = (1 +
𝜆1(𝑡1 − 1)

𝑛
+
𝜆2(𝑡2 − 1)

𝑛
+
𝜆3(𝑡1 − 1)(𝑡2 − 1)

𝑛
)

𝑛

. 

 

Taking into consideration the widely known limit lim
𝑛→∞

(1 +
𝜆

𝑛
)
𝑛
= 𝑒𝜆 it 

is :  

lim
𝑛→∞

𝛱𝑛(𝑡1, 𝑡2) = exp {𝜆1(𝑡1 − 1) + 𝜆2(𝑡2 − 1) + 𝜆3 (𝑡1 − 1)(𝑡2 − 1)} 

So we have  

         𝛱𝑋,𝑌(𝑡1, 𝑡2) =  exp {𝜆1(𝑡1 − 1) + 𝜆2(𝑡2 − 1) + 𝜆3(𝑡1 − 1)(𝑡2 − 1)} 

If we set 𝜆1 = 𝜆1 + 𝜆3  and 𝜆2 = 𝜆2 + 𝜆3 the equation above becomes: 

𝛱𝑋,𝑌(𝑡1, 𝑡2) =  exp {𝜆1(𝑡1 − 1) + 𝜆2(𝑡2 − 1) + 𝜆3(𝑡1𝑡2 − 1)} 

 

Looking at the PGF of the univariate Poisson distribution which is 

given by 𝛱𝛸(𝑡) = exp (𝜆(𝑡 − 1)) , it is noticeable that this is the PGF  

of the bivariate Poisson distribution with parameters 𝜆1, 𝜆2 and 𝜆3 for 

two random variables 𝑋 and 𝑌. 

Probability function 

By expanding the joint PGF above we have, 

𝛱𝑋,𝑌(𝑡1, 𝑡2) = exp(𝜆1(𝑡1 − 1) + 𝜆2(𝑡2 − 1) + 𝜆3(𝑡1𝑡2 − 1))

= 𝑒−(𝜆1+𝜆2+𝜆3)∑
𝜆1
𝑖 𝑡1
𝑖

𝑖!
∑

𝜆2
𝑗
𝑡2
𝑗

𝑗!

∞

𝑗=0

∞

𝑖=0

 ∑
𝜆3
𝑘𝑡1
𝑘𝑡2
𝑘

𝑘!

∞

𝑘=0

=𝑒−(𝜆1+𝜆2+𝜆3)∑∑
𝜆1
𝑟−𝑖𝜆2

𝑠−𝑖𝜆3
𝑖

(𝑟 − 𝑖)! (𝑠 − 𝑖)! 𝑖!
 𝑡1
𝑟𝑡2
𝑠

𝑖𝑟,𝑠
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As a result, we end up with the mass function, 

𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑒
−(𝜆1+𝜆2+𝜆3) ∙

𝜆1
𝑥

𝑥!
∙
𝜆2
𝑦

𝑦!
∙ ∑ (

𝑥
𝑘
) (
𝑦
𝑘
) 𝑘!

min(𝑥,𝑦)

𝑘=0

(
𝜆3
𝜆1𝜆2

)

𝑘

  

which is the density of the bivariate Poisson distribution 𝐵𝑃(𝜆1, 𝜆2, 𝜆3). 

Marginal distributions 

The marginal PGF of 𝑋 is  

𝛱𝑋(𝑡) = 𝛱𝑋,𝑌(𝑡, 1) = exp{(𝜆1 + 𝜆3)(𝑡 − 1)} 

and the marginal PGF of 𝑌 is 

𝛱𝑌(𝑡) = 𝛱𝑋,𝑌(1, 𝑡) = exp {(𝜆2 + 𝜆3)(𝑡 − 1)} 

So, respectively 

                                           𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆1 + 𝜆3)   

                                           𝛶~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆2 + 𝜆3) 

 

1.7. Bivariate correlation 

In bivariate analysis, two variables that follow a joint distribution 

usually interact with each other. This can be described by the 

correlation coefficient which measures the strength of association 

between the two variables 𝑋, 𝑌 and describe the type of their 

relationship. This coefficient takes values in the interval [−1,1]. If the 

coefficient takes the value +1 or the value −1 then there will be a 

perfect degree of association between the variables whereas when 

the coefficient takes the value 0, it implies no dependence between 

the two variables. The sign indicates the direction of the relationship. 

If we have sign + then there will be positive relationship and if we 

have sign – then there will be negative relationship between the 

variables. Two basic types of correlation are Pearson correlation and 

Kendall correlation each of which adjusts to different occasions. 
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1.7.1. Pearson correlation coefficient 

In statistics, the Pearson correlation coefficient, also known as 

Pearson’s 𝑟 (𝑜𝑟 𝜌), is a measure of linear correlation between two 

sets of data. It is retrieved when the covariance of two variables 𝑋, 𝑌 

is divided with the product of their standard deviations. That is, 

 

𝑟𝑋,𝑌 =
𝐶𝑂𝑉(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
=

𝑛∑ 𝑥𝑖𝑦𝑖 − ∑ 𝑥𝑖 ∑ 𝑦𝑖
𝑛𝑛𝑛

√𝑛∑ 𝑥𝑖
2 − (∑ 𝑥𝑖)

𝑛 2𝑛 √𝑛∑ 𝑦𝑖
2 − (∑ 𝑦𝑖)

𝑛 2𝑛

 . 

It is essentially a normalized measurement of the covariance. 

 

1.7.2. Kendall rank correlation coefficient 

In statistics, the Kendall rank correlation coefficient, also known as 

Kendall’s 𝜏, is a measure of the ordinal association between two 

quantities. Ordinal data is a statistical data type where the variables 

have natural, ordered categories and the distances between these 

categories are unknown. 

Let (x1, y1),… , (xn, yn) be a set of observations of the joint random 

variables X, Y, such that all the value of xi and yi ,i = 1, … , n are 

unique. Any pair of the observations (xi, yi) and (xj, yj), where i < 𝑗, 

will be said to be concordant if the sort order of (xi, xj) and (yi, yj) is 

the same. That is, when both  xi > xj and yi > yj happen or both xi <

xj and  yi < yj happen. On the other hand, if the sort order is opposite 

the observations will be said to be discordant. In the specific case 

where 𝑥𝑖 = 𝑥𝑗  or 𝑦𝑖 = 𝑦𝑗 , then the pair of observations are said to be 

tied. 
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Definition (Kendall’s τ coefficient)  Let us denote 𝑛𝑐 the number of 

concordant pairs and 𝑛𝑑  the number of discordant pairs of 𝑛 

observations of the pair (𝑋, 𝑌) of the random variables 𝑋, 𝑌. The 

Kendall’s 𝜏 coefficient is defined as  

𝜏 =
𝑛𝑐 − 𝑛𝑑

(𝑛
2
)

 

where (𝑛
2
) =

𝑛(𝑛−1)

2
 is the number of pairings between 𝑋, 𝑌.  

It is reasonable that if all the pairings between 𝑋 and 𝑌 are 

concordant then the 𝜏 coefficient will be equal to 1. On the other side, 

if all the pairings between 𝑋 and 𝑌 are discordant then the value of 𝜏 

will be equal to −1. 

Actually, the total number of pairings between 𝑋 and 𝑌 is equal to 

𝑛𝑐 + 𝑛𝑑 + 𝑛0 = (𝑛
2
) where 𝑛𝑐 , 𝑛𝑑  is the numbers of the concordant 

and the discordant pairs respectively, and 𝑛0 is the number of tied 

pairs. However, as we can distinguish in the definition above, the tied 

pairs are not taken into consideration for the calculation of Kendall’s 

𝜏 coefficient. 

 

1.8. Bivariate Copulas 

When we have two dependent on each other discrete random 

variables, we can find their joint cumulative distribution function by 

using a two-dimensional copula. Copulas are linking functions which 

link univariate marginal distributions together allowing for 

dependence between the random variables with a dependence 

parameter 𝜃. These functions enable us to isolate the dependency 

structure in a multivariate distribution. So it is easy for us to 

separate the marginal distributions from the dependence structure 

of a given multivariate distribution. 
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1.8.1. Copula 

Definition (Copula) A d-dimensional copula, 𝐶: [0,1]𝑑 → [0,1] is a 

cumulative distribution function (CDF) with uniform marginals. For a 

generic copula we write  

𝐶(𝑢) = 𝐶(𝑢1, … , 𝑢𝑑) = 𝑃(𝑈1 ≤ 𝑢1, … , 𝑈𝑑 ≤ 𝑢𝑑). 

 Properties:  

1. 𝐶(𝑢1, … , 𝑢𝑑) is non-decreasing for each component 𝑢𝑖 . 

2. The marginal distribution of the 𝑖𝑡ℎ component is obtained by 

setting 𝑢𝑘 = 1 for 𝑘 ≠ 𝑖 in 𝐶(𝑢). 

3.𝐶(𝑢1, … , 𝑢𝑖−1, 0, 𝑢𝑖+1, … , 𝑢𝑑) = 0 if any one of the components is 0. 

We now recall the definition of generalized inverse for a CDF, F.  

 

Definition (generalized inverse) Let 𝐹 a cumulative distribution 

function (CDF). Then, the generalized inverse 𝐹−1, is defined as  

𝐹−1(𝑥) ≔ inf{𝑢 ∶ 𝐹(𝑢) ≥ 𝑥}. 

 

Proposition If 𝑈~𝑈[0,1]𝑎𝑛𝑑 𝐹𝑋 is a CDF, then 

𝑃(𝐹−1(𝑈) ≤ 𝑥) = 𝐹𝑋(𝑥) 

In the case of a continuous CDF, then 𝐹𝑋(𝑋)~𝑈[0,1]  
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Theorem (Sklar’s Theorem) Consider a d-dimensional CDF, 𝐹, with 

marginals 𝐹1, … , 𝐹𝑑. Then there exists a copula 𝐶, such that  

𝐹(𝑥1, … , 𝑥𝑑) = 𝐶(𝐹1(𝑥1), … , 𝐹𝑑(𝑥𝑑)) 

for all 𝑥𝑖 ∈ [−∞,+∞] and 𝑖 = 1,… , 𝑑. 

In the bivariate case, a copula function can be expressed as follows: 

𝐶(𝑢1, 𝑢2|𝜃) = 𝑃(𝑈1 ≤ 𝑢1, 𝑈2 ≤ 𝑢2) 

In this expression, we have two independent and identically 

distributed  standard uniform variables 𝑈1, 𝑈2 and 𝜃 is a dependence 

parameter. 

Let 𝑋𝑖  with a continuous CDF 𝐹𝑖 , then the transform 𝐹𝑖(𝑋𝑖  ) must be 

uniformly distributed. As a result the joint bivariate CDF with 

marginal CDF’s 𝐹1 and 𝐹2 can be written as follows: 

𝐹(𝑥1, 𝑥2) = 𝑃(𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2) 

                                                   = 𝑃(𝐹1(𝑋1) ≤ 𝐹1(𝑥1), 𝐹2(𝑋2) ≤ 𝐹2(𝑥2)) 

                                   = 𝑃(𝑈1 ≤ 𝐹1(𝑥1), 𝑈2 ≤ 𝐹2(𝑥2)) 

                 = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2)|𝜃) 

 

1.8.2. Types of bivariate discrete copulas 

Now we will assume that 𝑋𝑖  has a discrete CDF and not a continuous 

one like the occasion above. In the case of discrete distributions like 

the Poisson or the negative binomial distribution, the marginal 

cumulative distribution functions are step functions with jumps at 

integer values. This results to not having unique 𝐹𝑖
−1. For that cases 

there are several types of copula which have different domains of 

the dependence parameter 𝜃: 
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 Frank Copula 

A basic type of copula for discrete occasions is the Frank copula type 

where 𝜃 ∈ (−∞,+∞) − {0} = ℝ − {0}. The Frank copula is expressed 

as follows: 

𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) =
1

𝜃
log (1 +

((𝑒𝑥𝑝 (𝜃𝐹𝑋(𝑥)) − 1)(𝑒𝑥𝑝(𝜃𝐹𝑌(𝑦)) − 1)

𝑒𝑥𝑝(𝜃) − 1
) 

where 𝐹𝑋, 𝐹𝑌 are the marginal discrete cumulative distribution 

functions. 

 Gumbel Copula 

A second type of copula is the Gumbel copula where 𝜃 ∈ [1,+∞). It is 

expressed as follows: 

𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) = 𝑒
{[− log(𝐹𝑋(𝑥))]

𝜃
+[−log(𝐹𝑌(𝑦))]

𝜃
}

1
𝜃

 

 Joe Copula 

Joe copula is also a type of copula with 𝜃 ∈ [1, +∞) and which is 

expressed as : 

𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) = 1 − [(1 − 𝐹𝑋(𝑥))
𝜃
+ (1 − 𝐹𝑌(𝑦))

𝜃
− (1 − 𝐹𝑋(𝑥))

𝜃
(1 − 𝐹𝑌(𝑦))

𝜃
]

1
𝜃

 

 

 Clayton Copula 

Another type of copula is Clayton copula, where 𝜃 ∈ (0, +∞) and it is 

expressed as follows: 

𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) = [(𝐹𝑋(𝑥))
−𝜃
+ (𝐹𝑌(𝑦))

−𝜃
− 1]−

1
𝜃 
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The types of copulas that were mentioned, are some basic bivariate 

copulas. There are also other types of bivariate copulas such as the 

Normal copula, Student’s copula etc.  

The proper choice of copula depends a lot on the domain of 𝜃 which is 

connected with the type of the dependence that our variables have 

each other.     
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Chapter 2 

Regression  Models 
 

As it is known, the components of the regression models with 𝑖 

observations are: the dependent variable which is observed and 

denoted as the observation 𝑌𝑖 , the independent variables which are 

also observed and denoted as the vector 𝑋𝑖 , the unknown parameters 

(coefficients) which are often denoted as the vector 𝜷 and the error 

terms 𝜀𝑖 . The general form of a regression model is: 

𝑌𝑖 = 𝑓(𝑋𝑖 , 𝛽) + 𝜀𝑖  

The aim of the researchers is to choose the function 𝑓 that closely fits 

the data. Several choices of the function 𝑓 lead to different types of 

regression. 

 

2.1. Generalized linear models (GLM) 

 

2.1.1. Structure 

The basic regression model is the linear regression model which is 

based on the normal probability function and is expressed as 

𝛶 = 𝜷0 + 𝜷𝛸 + 𝜀 

 

However, linearity cannot deal with a variety of practical situations 

such as counts (they will be explained in the next paragraph). 

The generalized linear model (GLM) is a generalization of the 

ordinary linear model as it extends the concept of the linear 

regression model. It generalizes the linear regression by allowing the 

linear model to be related to the response variable via a link function. 
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Definition (Link Function) We assume the regression model with 𝑖 

observations. For the 𝑖 − 𝑡ℎ observation, let  𝑦𝑖 = 𝑓(𝑥𝑖 , 𝜷), where 𝑥𝑖
𝑇 =

(𝑥𝑖1, … , 𝑥𝑖𝑝) is a vector of 𝑝 explanatory variables and 𝜷𝑻 =

(𝜷𝟏, … , 𝜷𝒑) is a vector of coefficients. Additionally let  𝑔 be a 

differentiable function of 𝑓(𝑥𝑖 , 𝜷) such that  𝑔(𝑓(𝑥𝑖 , 𝜷) = 𝑥𝑖
𝑇𝜷. Then 

the function 𝑔 is called link function. 

 

2.1.2. Deviance goodness-of-fit 

When a Generalized Linear Model (GLM) is fitted, then a deviance 

goodness-of-fit test is used to show the explanatory power of the 

model. In this procedure, the actual model is compared with the 

saturated model. The saturated model has achieved a perfect fit as 

the number of the parameters is equal to the number of observations. 

However, the saturated model isn’t actually an excellent choice as it 

doesn’t smooth the data. As a result, a simpler model which uses only 

a few predictors may have more advantages. Nevertheless, the 

saturated model is useful for testing the fit of other models. So by 

denoting as 𝐿(�̂�; 𝒚) the maximized log-likelihood for the model being 

tested and as 𝐿(𝒚; 𝒚) the maximized log-likelihood in the saturated 

case, we have the following test statistic: 

  𝐷(𝒚; �̂�) = −2[𝐿(�̂�; 𝒚) − 𝐿(𝒚; 𝒚)] 

where �̂� is a vector of predictors of the observation y. 

The expression 𝐷(𝒚; �̂�) is called deviance and we have that 

𝐷(𝒚; �̂�)~𝑋𝑛−𝑝
2  where 𝑛 is the number of parameters in the saturated 

model and 𝑝 is the number of parameters in the model being tested. 

If the deviance is small then the model will be a good fit for the data. 

This occurs because the observed values are close to the predicted 

ones given by the model. 
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2.1.3. Over-dispersion in GLM 

We consider 𝑛-dimensional vector of observations 𝑌 = (𝑌1, … , 𝑌𝑛) 

and a theoretical model that describes 𝑌. Over-dispersion occurs 

when the observed variance of the data is higher than it would be 

expected. In other words, it occurs when the variance of the 

observations is greater the variance of theoretical model. Some 

distributions do not have a specific parameter to fit the variation of 

the observations. A typical example is the Poisson distribution where 

the mean is described equally to the variance by a parameter 𝜆. In, 

this case, for an expected value of  𝑌, 𝔼[𝑌] = 10, we expect that the 

variance of the observed data points is also 10. In contrast, the 

Normal distribution describes separately the variance through the 

parameter 𝜎2.  

Let us give an example of over-dispersion. Imagine the number of 

seedlings in a forest plot. Depending on the distance to the source 

tree, there may be many hundreds or none. Such data would be over-

dispersed for a Poisson distribution. 

In statistics, dispersion parameter 𝜑 is a parameter which is 

associated to whether the observed variance of the data is greater 

than the variance of the theoretical model or not (over-dispersion or 

under-dispersion). 

If the distribution of a variable 𝑌 belongs to the exponential family, 

then its density function can be written as, 

                             𝑓(𝑦; 𝜃, 𝜑) = exp (
𝑦𝜃−𝑏(𝜃)

𝑎(𝜑)
+ 𝑐(𝑦, 𝜑)) 

where 𝜃 is the parameter of interest and 𝜑 is the dispersion 

parameter. In this form the expected value and the variance of  𝑌 are 

expressed, 

𝔼[𝑌] = 𝑏′(𝜃) 

𝑉𝑎𝑟[𝑌] = 𝑏′′(𝜃)𝑎(𝜑) 
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For instance, in the case of the exponential family form of the Normal 

distribution we have: 

𝑓(𝑦; 𝜇, 𝜎2) = exp {−
𝑦𝜇 −

1
2
𝜇2

𝜎2
+ (−

𝑦2

2𝜎2
+ log(𝜎√2𝜋))}  

where 𝜃 = 𝜇, 𝑏(𝜃) =
1

2
𝜇2, 𝑎(𝜑) = 𝜎2, 𝔼[𝑌] = 𝜇, 𝑉𝑎𝑟[𝑌] = 𝜎2 

In order to assess whether there is over-dispersion in a model or not, 

we can evaluate the ratio of the residual deviance divided by the 

degrees of freedom so that 𝜑 is estimated, 

�̂� =
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒

𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚
=
𝐷(𝒚, �̂�)

𝑛 − 𝑝
 

where 𝑛 − 𝑝 is the difference between the number of the parameters 

of the saturated model and the model being tested. 

In a Poisson GLM, the estimated variance can be expressed as 

𝑉𝑎𝑟[𝑌] = 𝜑𝔼[𝑌]. So, the Poisson assumption indicates 𝜑 = 1 which 

yields that the variance is equal to the expectation. If �̂� > 1 there is 

over-dispersion in the model, and if  �̂� < 1, there is under-estimation. 

So, it is remarkable that if �̂� > 1, the Poisson assumption is not 

correct. 
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2.2. Count data models 

 

When discussing about modeling count data, it’s important to clarify 

the meaning of count data. Generally, count data refer to 

observations made about events or items that are enumerated. In 

statistics, count data refer to observations that have only 

nonnegative integer values ranging from zero to some undetermined 

value. Theoretically, counts can range from zero to infinity. However, 

they are always limited to a distinct maximum value. There are many 

count data examples such as the number of children that a couple 

has, the number of someone’s doctor visits, the number of goals 

achieved by a football team etc. 

 

2.2.1. Poisson regression 

Poisson regression model is the basic model which a variety of count 

models are based on. It is derived by the Poisson probability mass 

function, which can be expressed as 

𝑓(𝑦𝑖; 𝜆𝑖) =
𝑒−𝜆𝑖𝑡𝑖(𝜆𝑖𝑡𝑖)

𝑦𝑖

𝑦𝑖 !
  , 𝑦𝑖 = 0,1,2, … 

where 𝑦𝑖  is the 𝑖-th observation-count response, 𝜆𝑖  is the mean 

number of events in a time period of length 𝑡𝑖 . When 𝜆𝑖  is 

understood as applying to individual counts without consideration 

of size or time, then 𝑡𝑖 = 1. The mean number of the evens 𝜆𝑖  is 

modeled as follows: 

𝜆𝑖 = 𝑡𝑖𝑓(𝑥𝑖 , 𝜷)     , 𝑖 = 1, … , 𝑛 

where 𝑥𝑖
𝑇 = (𝑥𝑖1, … , 𝑥𝑖𝑝) is a vector o 𝑝 explanatory variables, 𝜷𝑻 =

(𝛽1, … , 𝛽𝑝) is a vector of coefficients and 𝑓 is the rate function. 
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The distributions of the exponential family have corresponding link 

functions that are called canonical links. In the case of Poisson 

regression, we have a log-link function. Moreover, since the Poisson 

distribution values are nonnegative, using a link function whose 

inverse function takes only nonnegative numbers is purposeful.  

By using the log-link function, we have, 

𝑙𝑜𝑔(𝜆𝑖) = 𝑙𝑜𝑔(𝑡𝑖) + 𝑥𝑖
𝑇𝛽 , 𝑖 = 1,… , 𝑛 

where the log (𝑡𝑖) can be transferred to the left side of the equation 

above. This will finally lead to the consideration of the log (
𝜆𝑖

𝑡𝑖
) as the 

response variable.  

 

2.2.2. Inflated Models 

Many times, when modeling the outcomes of a variable we notice 

underestimation over a specific outcome. Quite often, this specific 

outcome is zero. Count data with many zeros are common in a wide 

variety of experiments. In order to manage this occurrence, it is often 

useful to use a mixture of models in order to correct this 

underestimation. A specific kind of mixture distribution is the 

inflated model, which inflates the probability of this underestimated 

outcome in our study. 

Random variables are usually considered as a sample from a 

distribution. However, there are random variables that cannot be 

described from one single distribution alone. Most of real-life 

random variables are generated from a mixture of distributions. 

Definition (Mixture Distribution) Let us consider k distributions 

{𝑔1(𝑥; 𝜃1),… , 𝑔𝑘(𝑥; 𝜃𝑘)} and k coefficients {𝑤1, … , 𝑤𝑘}. Then the 

mixture distribution f of the densities 𝑔𝑖  with the weights 𝑤𝑖  for 𝑖 =

1, … , 𝑘 is defined as: 

𝑓(𝑥; 𝜃1, … , 𝜃𝑘) = ∑𝑤𝑖𝑔𝑖(𝑥; 𝜃𝑖)

𝑘

𝑖=1

, 
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subject to ∑ 𝑤𝑖 = 1.
𝑘
𝑖=1  

The densities 𝑔𝑖  from the definition above are not necessarily from 

the same family. However, this makes the problem sometimes 

complex. 

 Zero-Inflated models 

In many real life statistical experiments we often observe many 

zeros. This is something that cannot be modeled using standard 

modeling approaches for count data. Let us give a simple example: 

We consider 200 people in a large boat and we want to see their 

success in fishing. We take observations about how many fishes each 

one caught and so we have the following graph of  frequency: 

   FREQUENCY 

 
                                                                      NUMBER OF FISHES CAUGHT 

                       

In the graph above we can distinguish a large amount of zeros in 

which some are real and some excess. Real zeros are connected with 

people who fish but did not manage to catch any fish. Excess zeros 

are associated with people that may not even fish, for instance some 

women or little children. However, all 200 people of this boat are 

included in our study so it is necessary to deal with this. 
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Zero-inflated models take into account excess zeros data. They 

estimate two equations: a count model and a model for the excess 

number of zeros.  

Definition (Zero-Inflated Model)  Assume the state 𝑋0 which is 0 with 

probability 1 and the state 𝑋1 which is a random variable taking 

nonnegative integers with probability  function 𝑃(𝑋1 = 𝑥) = 𝑔(𝑥, 𝜆) 

for 𝑥 = 0,1,…, where 𝜆 = (𝜆1, … , 𝜆𝑠)
𝑇 is an unknown parameter vector 

in an open subset 𝐷 of s-dimensional space ℝ𝑠 . Now consider the 

mixture of 𝑋0 and 𝑋1 with the Bernoulli(p) where 0 ≤ 𝑝 < 1. Zero-

inflated model is defined as 

𝑓𝑍𝐼𝑀(𝑥, 𝜽) = {
𝑝 + (1 − 𝑝)𝑔(0, 𝜆) , 𝑓𝑜𝑟 𝑥 = 0

    (1 − 𝑝)𝑔(𝑥, 𝜆) , 𝑓𝑜𝑟 𝑥 = 1,2, …
 

where 𝜽 = (
𝑝
𝜆
) ∈ 𝜣 = (0,1] × 𝐷. The mixture above is denoted as 

𝑋~𝑍𝐼𝑀(𝜽, 𝑔) or simply 𝑋~𝑍𝐼𝑀(𝜽).   

The mean of  the zero-inflated count data model is:  

𝔼(𝑋) = ∑(1 − 𝑝)𝑔(𝑘, 𝜆)

+∞

𝑘=0

= (1 − 𝑝)𝔼𝑔(𝑋) 

where 𝔼𝑔(𝑋) denotes the mean of g. 

A common type of zero-inflated model is the Poisson zero-inflated 

regression model. 

 Zero-Inflated Poisson regression 

When the Poisson regression model is applied to the count outcome 

data in real world, it is not rare to see the poor model fit indicated by 

a deviance. Most of the real data violate the assumption of the 

standard Poisson model, which is called equidispersion (the variance 

of the count outcome is equal to the mean). In most of the real data 

over-dispersion is observed (Sun Y. Jeon 2013). Ignoring over-

dispersion and applying the standard Poisson regression for this data 

can cause underestimation of standard errors and p-values.  
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The zero-inflated Poisson (ZIP) is an alternative that can be 

considered in this case. This model allows for over-dispersion 

assuming that there are two types of individuals in the data (Sun Y. 

Jeon 2013):  

1) those who have a zero count with probability of 1 (“always 0 

group”)  

2) those who have counts predicted by the standard Poisson. 

(“not always 0 group”) 

Observed zero could be either from the zero count or the standard 

Poisson.  

The observation 𝑖 is in “always 0 group” with probability 𝑝𝑖  and the 

latter can be predicted by a logit or probit model (these models will 

be presented in the paragraph 2.3.). The probability that observation 

𝑖 is in “not always 0 group” becomes 1 − 𝑝𝑖 . For observations in the 

second group, their positive count outcome is predicted by the 

standard Poisson (𝜆𝑖). The overall model is a mixture of the 

probabilities from the two groups above. As a result, for the 𝑖-th 

observation: 

𝑓𝑍𝐼𝑃(𝑦𝑖) = {

𝑝𝑖 + (1 − 𝑝𝑖)𝑒
−𝜆𝑖 ,       𝑖𝑓 𝑦𝑖 = 0

(1 − 𝑝𝑖)
𝑒−𝜆𝑖𝜆𝑖

𝑦𝑖

𝑦𝑖!
, 𝑖𝑓 𝑦𝑖 > 0

 

where 𝑓𝑍𝐼𝑃 the density of the zero-inflated Poisson model. 

The mean and the variance of the model above are, 

𝔼[𝑌𝑖] = 0 ∙ 𝑝𝑖 + 𝜆𝑖 ∙ (1 − 𝑝𝑖) = 𝜆𝑖 ∙ (1 − 𝑝𝑖) 

and 

𝑉𝑎𝑟[𝑌𝑖] = 𝜆𝑖(1 − 𝑝𝑖)(1 + 𝑝𝑖𝜆𝑖) 

 

respectively. 
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2.3. Logit and probit models 

The logistic models (logit models) and the probit models are the 

statistical models that model the probability 𝜇 (expected value) of 

one event taking place out of two alternatives. They are among the 

most widely used members of the family of GLM models in the case of 

binary dependent variables. 

Let 𝜂 = 𝑥𝜷 a linear model where 𝜂 is a response variable, x is vector 

of explanatory variables and 𝜷 is a vector of coefficients. 

In the logit models the link function relating the linear predictor 𝜂 =

𝑥𝜷 to the expected value 𝜇 is the logit transform, 

log (
𝜇

1 − 𝜇
) = 𝜂 = 𝑥𝜷 

 

Solving 𝜇 in the equation above results to the logistic function, 

 

𝜇(𝑥) =
𝑒𝑥𝜷

1 + 𝑒𝑥𝜷
=

1

1 + 𝑒−𝑥𝜷
 

 

 

In the probit models the link function that relates the linear 

predictor 𝜂 = 𝑥𝜷 to the expected value 𝜇 is the inverse normal 

cumulative distribution function, 

 

𝛷−1(𝜇) = 𝜂 = 𝑥𝜷 

 

 

Suppose a response variable 𝑌 is binary (1 or 0) and we consider a 

vector of regressors 𝑋 that influence the outcome 𝑌. The model takes 

the form, 

 

𝑃[𝑌 = 1|𝑋] = 𝛷(𝛸𝛵𝜷) 
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where 𝛷 is the cumulative distribution function of the standard 

normal distribution. 

Considering a latent variable 𝑌∗ = 𝑋𝑇𝜷 + 𝜀 where 𝜀~𝛮(0,1), the 

probit model above may transformed to the model, 

 

𝑌 = {
 1,              𝑌∗ > 0 
0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

As a result, 

 𝑃[𝑌 = 1|𝑋] = 𝑃[𝑌∗ > 0] 

                                    = 𝑃[𝑋𝑇𝜷 + 𝜀 > 0] 

                                = 𝑃[𝜀 > −𝑋𝑇𝜷] 

                             = 𝑃[𝜀 < 𝑋𝑇𝜷] 

                                                                    = 𝛷(𝑋𝑇𝜷)  

 

 

2.4. Ordinal regression models 

In statistics, ordinal regression, also called ordinal classification, is a 

type of regression analysis used for the prediction of an ordinal 

variable. The value of an ordinal variable exists on an arbitrary scale 

where only the relative ordering between different values is 

significant. A typical example of ordinal regression is ordered probit. 

 Ordered Probit Model 

Let 𝑌𝑖  be individual 𝑖’s response variable and assume that this can 

take an integer value on the set [0, 𝐽]. Let 𝑦𝑖
∗ be the underlying latent 

variable representing 𝑖’s tendency to agree with the statement 

advanced. The ordered probit model is based on the assumption that 

𝑦𝑖
∗ depends linearly on 𝑥𝑖: 

𝑦𝑖
∗ = 𝑥𝑖𝛽 + 𝑒𝑖  , 𝑖 = 1, … , 𝑛 

 

where 𝑒𝑖~𝑁(0,1) and 𝛽 is a vector coefficients not containing an 

intercept.  
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The relationship between 𝑦∗ and the observed variable 𝑌 is 

expressed as follows: 

    𝑌 = 1   𝑖𝑓 − ∞ < 𝑦∗ < 𝜅1 

𝑌 = 2   𝑖𝑓   𝜅1 < 𝑦∗ < 𝜅2 

𝑌 = 3   𝑖𝑓   𝜅2 < 𝑦∗ < 𝜅3 

.                                           

.                                           

  𝑌 = 𝐽   𝑖𝑓   𝜅𝐽−1 < 𝑦∗ < ∞ 

The parameters 𝜅𝑗 = 1,… , 𝐽 − 1 are known as cut points or threshold 

parameters. 

As a result, the probability of each ordinal outcome is expressed, 

𝑃[𝑌𝑖 = 𝑗] = 𝑃[𝜅𝑗−1 < 𝑦𝑖
∗ < 𝜅𝑗] = 𝑃[𝜅𝑗−1 < 𝑥𝑖𝛽 + 𝑒𝑖 < 𝜅𝑗]

= 𝑃[𝜅𝑗−1 − 𝑥𝑖𝛽 < 𝑒𝑖 < 𝜅𝑗 − 𝑥𝑖𝛽]

= 𝛷(𝜅𝑗 − 𝑥𝑖𝛽) − 𝛷(𝜅𝑗−1 − 𝑥𝑖𝛽) 

 

The figure below depicts the density function of 𝑦∗for the case of 𝐽 =

4 (Anne R. Daykin , Peter G. Moffatt).  
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The absence of the intercept parameter is a consequence of the 𝐽 − 1 

cut points all being free parameters; they are not predefined by the 

model but they can be chosen or estimated experimentally or 

theoretically. If one of the cut points were normalized to zero, then 

the intercept parameter would become identified and would appear 

in the model. 

 

2.5. Auto-regressive processes 

The most common model for correlated data is a class of time series 

models which are called auto-regressive processes. These processes 

are used a lot in the football dynamic models where the abilities of 

the teams change over time. These models will be presented in 

Chapter 4 (paragraph 4.4.).  

Definition (Time series process) A time series process is stochastic 

process {𝑋𝑡|𝑡 ∈ 𝑇}, which is a collection of random variables ordered 

in time. The set 𝑇 is called index set and it determines the set  of times 

at which the process is defined and observations are made. 

There are two sets of conditions under which the theory is built: 

 Stationary process (the mean and the variance don’t change 

over time) 

 Ergodic process (the statistical properties of the process can 

be deduced from a single, sufficiently long, random sample of 

the process) 

Definition ( Auto-regressive process) Let 𝑍𝑡  be a random process 

with mean 0 and variance 𝜎𝑧
2 where each 𝑍𝑡  is independent. An auto-

regressive process of order 𝑝, denoted 𝐴𝑅(𝑝), is given by  

𝑋𝑡 = 𝑎1𝑋𝑡−1 +⋯+ 𝑎𝑝𝑋𝑡−𝑝 + 𝑍𝑡  

where 𝑋0 = 𝑋−1 = ⋯ = 𝑋1−𝑝 = 0 
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In the expression above, correlation is introduced between the 

random variables by the regression of 𝑋𝑡  on past values 𝑋𝑡−1, … , 𝑋𝑡−𝑝. 

The parameters 𝛼1, … , 𝛼𝑝 are the coefficients of the auto-regressive 

process where 𝑎𝑖  is called the lag 𝑖 coefficient. 

The 𝑨𝑹(𝟏) process 

An 𝐴𝑅(1) process is given by 

𝑋𝑡 = 𝑎𝑋𝑡−1 + 𝑍𝑡 

In order to calculate the mean and variance of the process: 

𝑋𝑡 = 𝑎𝑋𝑡−1 + 𝑍𝑡 = 𝑎(𝑎𝑋𝑡−2 + 𝑍𝑡−1) + 𝑍𝑡 = ⋯ =∑𝑎𝑗𝑍𝑡−𝑗

∞

𝑗=0

 

As a result, 

𝔼[𝑋𝑡] = 𝔼 [∑𝑎𝑗𝑍𝑡−𝑗

∞

𝑗=0

] =∑𝑎𝑗𝔼[𝑍𝑡−𝑗] = ∑𝑎𝑗 ∙ 0 = 0

∞

𝑗=0

∞

𝑗=0

 

and 

𝑉𝑎𝑟[𝑋𝑡] = 𝑉𝑎𝑟 [∑𝑎𝑗𝑍𝑡−𝑗

∞

𝑗=0

] = ∑𝑉𝑎𝑟[𝑎𝑗𝑍𝑡−𝑗] = ∑𝑎2𝑗 ∙ 𝜎𝑧
2

∞

𝑗=0

∞

𝑗=0

 

 

The variance is comprised of an infinite sum, so its value depends on 

𝑎. 

 If |𝑎| ≥ 1 (non-stationary) then 𝑉𝑎𝑟[𝑋𝑡] = ∞ 

 if |𝑎| < 1  (stationary) then it is known for a geometric series: 

∑𝑎2𝑗 = 1 + 𝑎2 + 𝑎4 +⋯ =
1

1 − 𝑎2
 

∞

𝑗=0
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As a result, 

𝑉𝑎𝑟[𝑋𝑡] = 𝜎𝑍
2∑𝑎2𝑗 =

𝜎𝑍
2

1 − 𝑎2

∞

𝑗=0

 

 

2.6.  Model selection criteria 

In many statistical problems, obtaining the optimal model is the main 

good. For this purpose, some selection model criteria have been 

developed, which are based on the maximum likelihood of the model 

and the number of the parameters estimated. All these criteria are 

based on the Kullback-Leibler divergence. 

Definition (Kullback-Leibler divergence) Let us consider the 

probability measures 𝑃, 𝑄 defined in the same space (𝒳,𝒜) where 𝒳 is 

the set of all possible outcomes, 𝒜 is a set of events and 𝑃 is absolutely 

continuous on 𝑄  (𝑄(𝐴) = 0 ⇒ 𝑃(𝐴) = 0 , ∀𝐴 ∈ 𝒜). The Kullback-

Leibler divergence (or relative entropy) from 𝑄 to 𝑃 is defined to be 

𝐷𝐾𝐿(𝑃||𝑄) = ∫ log (
𝑑𝑃

𝑑𝑄
) 𝑑𝑃.

𝒳

 

For discrete cases the 𝐾𝐿-distance is expressed as, 

∑𝑃(𝑥) log (
𝑃(𝑥)

𝑄(𝑥)
) = 𝔼𝑃[𝑙𝑜𝑔𝑃(𝑥)]

𝑥∈𝒳

− 𝔼𝑃[𝑙𝑜𝑔𝑄(𝑥)]. 

In an actual problem, we have a sample of observations from the 

unknown mass function 𝑃 which is modeled by the mass function       

𝑄(∙ |𝜃).  If we want to compare different models with respective mass 

functions 𝑄𝑖(∙ |𝜃𝑖), this can take place through an equivalent 

comparison of the divergences 𝐷𝐾𝐿(𝑃||𝑄𝑖), where the best model is 

that with the shortest divergence from the actual mass function 𝑃. 

From the equation above, it is clear that the best model is that with 

the largest 𝔼𝑃[𝑙𝑜𝑔𝑄(𝑥|𝜃)] = 𝔼𝑃[𝑙(𝜃)]. 
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The theory above leads to the following definitions of model selection 

criteria. 

Definition (AIC and BIC) Let us consider a sample of observations, a 

model with vector of parameters 𝜃 ∈ 𝛩 ⊆ ℝ𝑘 and the maximum 

likelihood estimator �̂�. The Aikake Information Criterion and the 

Bayesian Information Criterion are defined to be 

               𝐴𝐼𝐶 = −2𝑙𝑜𝑔𝐿(�̂�) + 2𝑘     and     𝐵𝐼𝐶 = −2𝑙𝑜𝑔𝐿(�̂�) + 𝑘𝑙𝑜𝑔𝑛 

respectively. 

These criteria contain a “penalty” for the number of the model 

parameters. The BIC has greater “penalty” for the parameters than 

AIC, which also increases according to the sample size.  
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Chapter 3 

The EM algorithm 

The Expectation-Maximization (EM) algorithm is a broadly applicable 

type of iterative computation of maximum likelihood (ML) estimates. 

It is mainly used in incomplete-data problems. Its basic idea is to 

solve a succession of simpler problems which occur when we 

augment the observed variables (incomplete data) with a set of 

additional variables (missing data) that are unobservable or 

unavailable.  

 

3.1.    Theoretical Framework 

Maximum likelihood estimation (MLE) is a widely known method of 

estimating the parameters of a probability function, given some 

observed data. In this procedure, the aim is to obtain the point of the 

parameter space that maximizes the likelihood function so that the 

observed data is most probable. This point is called maximum 

likelihood estimate. Specifically, our objective is to maximize the 

likelihood 𝐿(𝜃) = 𝑔(𝑥; 𝜃) as a function of 𝜃, after assuming the 

observed data 𝑥 with probability density function 𝑔(𝑥; 𝜃), and with 𝜃 

being a vector of unknown parameters in the parameter space. In 

order to maximize the likelihood, 

𝜕𝐿(𝜃)

𝜕𝜃
= 0 

or equivalently, 

𝜕𝑙𝑜𝑔𝐿(𝜃)

𝜕𝜃
= 0 
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However, in many statistical problems where the likelihood or log-

likelihood is not quadratic, due to missing data, dependence or non-

normal errors, the maximum likelihood estimate cannot be obtained 

by solving a simple equation or a linear system. In these situations, 

ML estimate is obtained by using numerical iterative methods of 

solution of equations such as Newton-Raphson approach. In the next 

paragraph, we will present an additional iterative method, the EM 

algorithm, which offers an attractive alternative in a variety of 

settings. 

The EM algorithm is an iterative method which deals with estimating 

parameters in problems where the likelihood is complicated in 

structure resulting in difficult-to-compute maximization problems. A 

typical case is that of missing data problems. In such problems we 

can formulate an associated statistical problem with augmented data 

from which it is possible to work out the MLE. The augmented data is 

often called ‘complete’ data and the available data is called 

‘incomplete’ data, and the corresponding likelihoods are the 

‘complete-data likelihood’ and the ‘incomplete-data’ likelihood 

respectively. The EM algorithm is a generic method that computes 

the MLE of the incomplete-data problem by formulating a complete 

data problem. Basically it takes advantage of the simplicity of the 

MLE of the complete-data problem and it finally computes the MLE of 

the incomplete-data problem.  

Let us give an example (Maya R. Gupta, Yihua Chen 2010).  

“Consider the temperature outside your window for each of the 24 

hours of a day, represented by 𝑥 ∈ ℝ24, and say that this temperature 

depends on the season 𝜃 ∈ {𝑠𝑢𝑚𝑚𝑒𝑟, 𝑎𝑢𝑡𝑢𝑚𝑛,𝑤𝑖𝑛𝑡𝑒𝑟, 𝑠𝑝𝑟𝑖𝑛𝑔}, and 

that you know the seasonal temperature distribution 𝑝(𝑥|𝜃). But what 

if you could only measure the average temperature 𝑦 = �̅� for some day, 

and you would like to estimate what season 𝜃 it is. In particular, you 

might seek the maximum likelihood estimate of θ, that is the value �̂� 

that maximizes 𝑝(𝑦|𝜃).” 

The EM algorithm is a suitable technique that can deal with the 

problem above.  
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3.2. The EM Method 

In order to use EM, we have to be given some observed data 𝑦, a 

parametric density function 𝑓(𝑦|𝜽), a description of some complete 

data 𝑥 that we don’t have. We assume that the complete data can be 

modeled as continuous random vector 𝑋 with density 𝑓𝑐(𝑥; 𝜽) where 

𝜽 ∈ 𝛺 for some set 𝛺.  

Definition (complete-data log-likelihood) We let 𝑓𝑐(𝑥; 𝜽) denote the 

probability density function of the random vector 𝑋 which corresponds 

to the complete-data vector 𝑥, with 𝜽 ∈ 𝛺 where 𝛺 a parameter space. 

Then the complete-data log-likelihood function is given by 

𝑙𝑜𝑔𝐿𝑐(𝜽) = log 𝑓𝑐(𝑥; 𝜽) 

The EM algorithm deals with the problem of solving the incomplete-

data likelihood equation indirectly via iterative calculations of 

𝑙𝑜𝑔𝐿𝑐(𝜽). As it is unobservable, it is replaced by its conditional 

expectation given observable data 𝑦 every time.  

The procedure is described as follows: 

 

 Firstly, let 𝑘 = 0 and make an initial estimate 𝜽(𝑘) for 𝜽. 

 Given the observed data 𝑦 and pretending for the moment that 

our current guess  𝜽(𝑘) is correct, we formulate the conditional 

probability distribution 𝑓𝑐(𝑥|𝑦, 𝜽
(𝑘)) for the complete data 𝑥. 

 Using the probability distribution 𝑓𝑐(𝑥|𝑦, 𝜽
(𝑘)), we form the 

conditional expected log-likelihood, which is called 𝑄-function: 

𝑄(𝜽; 𝜽(𝑘)) = 𝔼𝜃(𝑘){𝑙𝑜𝑔𝐿𝑐(𝜽)|𝑦}  

 We find the value of θ that maximizes the 𝑄-function, 𝜽(𝑘+1). 

This is the new estimate. 

 Let 𝑘 ≔ 𝑘 + 1 and we go back to the second “bullet”. 
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The traditional description of the EM algorithm consists of two main 

steps.  

On the (𝑘 + 1)-th iteration, the steps are, the Expectation Step            

(E-Step) and the Maximization Step (M-Step). 

E-STEP: Compute the expected value of 𝑙𝑜𝑔𝐿𝑐(𝜽) given the observed 

data y, and the current parameter estimate 𝜽(𝑘). It is defined, 

                                     𝑄(𝜽; 𝜽(𝑘)) = 𝔼𝜃(𝑘){𝑙𝑜𝑔𝐿𝑐(𝜽)|𝑦}  

M-STEP: Choose 𝜽(𝑘+1)to be any value of 𝜽 ∈ 𝛺 so that: 

𝑄(𝜽(𝑘+1); 𝜽(𝑘)) ≥ 𝑄(𝜽; 𝜽(𝑘))      ∀𝜽 ∈ 𝛺  

In other words, the M-Step consists of maximizing over 𝜃 the 

expectation computed in the E-Step. 

The E-steps and the M-steps are alternated repeatedly until the 

procedure stops due to convergence. 

Let us give an example from Maya R. Gupta and Yihua Chen (2010) to 

illustrate the use of the method above. 

Let us consider 𝑛 kids which choose one toy out of four choices. Let 

𝑦 = (𝑦1, 𝑦2, 𝑦3, 𝑦4)
𝑇 denote the histogram of their 𝑛 choices, where 𝑦𝑖  

the number of kids that chose toy 𝑖,  for 𝑖 = 1,2,3,4. We can model this 

random histogram 𝑦 as being multinomially distributed. In this case, 

the multinomial density function is expressed as, 

𝑓(𝑦|𝑝) =
𝑛!

𝑦1! 𝑦2! 𝑦3! 𝑦4!
𝑝1
𝑦1𝑝2

𝑦2𝑝3
𝑦3𝑝4

𝑦4, 

 

where 𝑛 is the  number of kids asked, that is 𝑛 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 

and 𝑝 = (𝑝1, 𝑝2, 𝑝3, 𝑝4) is vector of probabilities with 𝑝𝑖  being the 

probability that toy 𝑖 is chosen, 𝑖 = 1,2,3,4. 
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By assuming that the probability 𝑝 of choosing each of the toys is 

parameterized by some value 𝜽 ∈ (0,1) we have, 

 

𝑝𝜃 = (𝑝1, 𝑝2, 𝑝3, 𝑝4)
𝑇 = [

1

2
+
1

4
𝜽,
1

4
(1 − 𝜽),

1

4
(1 − 𝜽),

1

4
𝜽]

𝑇

 

 

The estimation problem is to guess the value of 𝜃 that maximizes the 

probability of the observed histogram 𝑦. According to the 

parameterization above the multinomial function in our case 

becomes, 

𝑓(𝑦|𝑝) =
𝑛!

𝑦1! 𝑦2! 𝑦3! 𝑦4!
(
1

2
+
1

4
𝜽)

𝑦1

(
1 − 𝜽

4
 )
𝑦2

(
1 − 𝜽

4
 )
𝑦3

(
𝜽

4
)
𝑦4

. 

 

For this simple example, the MLE can be easily found but we will 

instead illustrate how to use the EM algorithm to find the MLE of 𝜽. 

To illustrate the EM algorithm, we represent 𝑦 as incomplete data 

from a five-category multinomial distribution (complete data) where 

the cell probabilities are, 

 

𝑞𝜃 = [
1

2
,
1

4
𝜽,
1

4
(1 − 𝜽),

1

4
(1 − 𝜽),

1

4
𝜽]

𝑇

, 𝜽 ∈ (0,1). 

 

The idea is to split the first of the original four categories into two 

categories. Thus, the complete data is 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) where 

𝑦1 = 𝑥1 + 𝑥2,    𝑦2 = 𝑥3 ,     𝑦3 = 𝑥4 ,      𝑦4 = 𝑥5  and the complete data 

density function is, 

 

𝑓𝑐(𝑥|𝜃) =
𝑛!

𝑥1! 𝑥2! 𝑥3! 𝑥4! 𝑥5!
(
1

2
)
𝑥1

(
𝜃

4
)
𝑥2

(
1 − 𝜃

4
 )

𝑥3

(
1 − 𝜃

4
 )
𝑥4

(
𝜃

4
)
𝑥5
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Our aim is to maximize the 𝑄-function, that is to find 𝜽(𝜅+1) so that,                              

 𝜽(𝜅+1) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄(𝜽; 𝜽(𝑘)) = 𝑎𝑟𝑔𝑚𝑎𝑥𝔼𝑋|𝑦,𝜽(𝒌){𝑙𝑜𝑔𝑓𝑐(𝑥|𝜽)} . 

As stated above, two steps are required. 

Expectation Step: The E-Step estimates the sufficient statistics of the 

complete data 𝑥, given the observed data y. In our case, (𝑥3, 𝑥4, 𝑥5) 

are known to be (𝑦2, 𝑦3, 𝑦4). The only sufficient statistics that need to 

be estimated are 𝑥1 and 𝑥2 where 𝑥1 + 𝑥2 = 𝑦1. After all, despite the 

fact that the value of 𝑦1is known, 𝑥1 and 𝑥2 remain unknown.  

Estimating 𝑥1 and 𝑥2 using the current estimate of 𝜽 leads to, 

 

𝑥1
(𝑘)

= 𝑦1 ∙

1
2

1
2
+
1
4
𝜽(𝒌)

=
2

2 + 𝜽(𝒌)
𝑦1 

and 

 

𝑥2
(𝑘) = 𝑦1 ∙

1
4
𝜽(𝒌)

1
2
+
1
4
𝜽(𝒌)

=
𝜽(𝒌)

2 + 𝜽(𝒌)
𝑦1 

 

As a result, 

                   𝑥|𝑦 = (𝑥1
(𝑘), 𝑥2

(𝑘) , 𝑥3, 𝑥4, 𝑥5) = (
2

2+𝜽(𝒌)
𝑦1,

𝜽(𝒌)

2+𝜽(𝒌)
𝑦1 , 𝑦2 , 𝑦3 , 𝑦4) 

and  

𝑄(𝜽; 𝜽(𝑘)) = (
𝜽(𝒌)

2 + 𝜽(𝒌)
𝑦1 + 𝑦4) 𝑙𝑜𝑔𝜃 + (𝑦2 + 𝑦3)log (1 − 𝜽) 
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Maximization Step: The M-Step becomes: 

 

          𝜽(𝑘+1) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜽∈(0,1)𝑄(𝜽; 𝜽
(𝑘))

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜽∈(0,1) [(
𝜽(𝒌)

2 + 𝜽(𝒌)
𝑦1 + 𝑦4) 𝑙𝑜𝑔𝜽 + (𝑦2 + 𝑦3) log(1 − 𝜽)]

=

𝜽(𝑘)

2 + 𝜽(𝒌)
𝑦1 + 𝑦4

𝜽(𝑘)

2 + 𝜽(𝑘)
𝑦1 + 𝑦2 + 𝑦3 + 𝑦4

 

  

The procedure above is repeated till the convergence of 𝜽 to a 𝜽∗ 

which is considered to be the MLE of  θ. 

 

3.3. Convergence of the EM algorithm 

While the EM algorithm is in progress, the (𝑘 + 1)th guess 𝜽(𝑘+1) is 

never found to be less than the 𝑘th guess 𝜽(𝑘). This property is called 

monotonicity of the EM algorithm (Maya R. Gupta, Yihua Chen 2010). 

The monotonicity of the EM algorithm guarantees that while the EM 

algorithm is in progress the guesses-values of 𝜽  won’t get any worse 

in terms of their likelihood, but it cannot guarantee the convergence 

of the sequence {𝜽(𝑘)}. Actually, there is no general convergence 

theorem for the EM algorithm; the convergence of the sequence 

{𝜽(𝑘)} depends on the characteristics of the log-likelihood and 

𝑄(𝜽; 𝜽(𝑘)). 

 The convergence of the EM algorithm is determined by using a 

suitable stopping rule like,  

|𝜽(𝑘+1) − 𝜽(𝑘)| < 𝜀  

for some 𝜀 > 0. 
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So when the rule above happens then the procedure stops with 𝜽∗ =

𝜽(𝑘+1) being the result-estimate of the incomplete-data problem. 

Theorem (EM algorithm inequality) If the observable likelihood 

𝐿(𝜽|𝑦) is bounded, then the value of 𝜽∗to which the algorithm 

converges, is a local maximum of 𝐿(𝜽|𝑦). 

Proof: Initially, we have that 

𝐿(𝜃|𝑦, 𝑥) = 𝑓𝜃(𝑥, 𝑦) = 𝑓𝜃(𝑦)𝑓𝜃(𝑥|𝑦) = 𝐿(𝜃|𝑦)𝑓𝜃(𝑥|𝑦) 

and with logarithm in the equation above it is  

ℓ(𝜃|𝑦, 𝑥) = ℓ(𝜃|𝑦) + 𝑙𝑜𝑔𝑓𝜃(𝑥|𝑦) 

If 𝑋 is an absolutely continuous random variable, by multiplying the 

equality members with the density 𝑓𝜃(0)(𝑥|𝑦) and by integrating by 𝑥: 

∫ℓ(𝜃|𝑦, 𝑥) 𝑓𝜃(0)(𝑥|𝑦)𝑑𝑥 = ∫ℓ(𝜃|𝑦)𝑓𝜃(0)(𝑥|𝑦)𝑑𝑥 + ∫ 𝑙𝑜𝑔𝑓𝜃(𝑥|𝑦)𝑓𝜃(0)(𝑥|𝑦)𝑑𝑐 

Respectively, if 𝑋 were a discrete random variable, we would multiply 

with the probability ℙ𝜃(0)(𝑋 = 𝑥|𝑦) and we would take the sum by x 

instead of integrating.  

We observe that: 

∫ℓ(𝜃|𝑦, 𝑥) 𝑓𝜃(0)(𝑥|𝑦)𝑑𝑥 = 𝔼[ ℓ(𝜃|𝑦, 𝑋)|𝑦] = 𝑄𝜃(0)(𝜃) 

∫ℓ(𝜃|𝑦) 𝑓𝜃(0)(𝑥|𝑦)𝑑𝑥 = ℓ(𝜃|𝑦)∫𝑓𝜃(0)(𝑥|𝑦)𝑑𝑥 = ℓ(𝜃|𝑦) 

Now, we set, 

ℋ𝜃(0)
(𝜃) = −∫ 𝑙𝑜𝑔𝑓𝜃(𝑥|𝑦)𝑓𝜃(0)(𝑥|𝑦)𝑑𝑥 = −𝔼𝜃(0)[ 𝑙𝑜𝑔𝑓𝜃(𝛸|𝑦)|𝑦]. 

So the observable likelihood is analytically written as: 

ℓ(𝜃|𝑦) = 𝑄𝜃(0)(𝜃) + ℋ𝜃(0)
(𝜃). 
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Now by using Jensen inequality we have: 

ℋ𝜃(0)(𝜃
(1)) −ℋ𝜃(0)(𝜃

(0))

= −𝔼𝜃(0)[𝑙𝑜𝑔𝑓𝜃(1)(𝛸|𝑦)|𝑦] + 𝔼𝜃(0)[𝑙𝑜𝑔𝑓𝜃(0)(𝛸|𝑦)|𝑦]

= −𝔼𝜃(0) [
𝑙𝑜𝑔𝑓𝜃(1)(𝛸|𝑦)

𝑙𝑜𝑔𝑓𝜃(0)(𝛸|𝑦)
|𝑦]

≥ −𝑙𝑜𝑔𝔼𝜃(0) [
𝑙𝑜𝑔𝑓𝜃(1)(𝛸|𝑦)

𝑙𝑜𝑔𝑓𝜃(0)(𝛸|𝑦)
|𝑦]

= −𝑙𝑜𝑔∫
𝑙𝑜𝑔𝑓𝜃(1)(𝑥|𝑦)

𝑙𝑜𝑔𝑓𝜃(0)(𝑥|𝑦)
𝑙𝑜𝑔𝑓𝜃(0)(𝑥|𝑦)𝑑𝑥

= −𝑙𝑜𝑔∫ 𝑙𝑜𝑔𝑓𝜃(1)(𝑥|𝑦) = −𝑙𝑜𝑔1 = 0 

This inequality is known as the fundamental inequality of EM 

algorithm. If 𝜃(0) is the current estimate of 𝜃, then this inequality 

shows us that for any value of our next estimate 𝜃(1), the function 

ℋ𝜃(0)(∙) will not be smaller than the current value ℋ𝜃(0)(𝜃
(0)). As the 

function ℋis increased in every step of the EM algorithm, we can 

ignore ℋand focus on the function 𝑄. 

If we select any value 𝜃(1) that increases the value of the function 

𝑄𝜃(0)(∙) , that is  𝑄𝜃(0)(𝜃
(1)) > 𝑄𝜃(0)(𝜃

(0)) , then we will have 

ℓ(𝜃(1)|𝑦, 𝑥) > 𝑙(𝜃(0)|𝑦, 𝑥). By repeating this procedure, we produce a 

sequence of estimates which increases the value of the observable 

likelihood in every step of the algorithm and finally converges to a 

local maximum. 

It is clear that, if we select precisely the value that maximizes the 

function 𝑄𝜃(0)(∙) as 𝜃(1), that is 𝜃(1) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑄𝜃(0)(𝜃), then the 

algorithm will have the maximum speed of convergence. This is the 

aim of the EM algorithm. However, even if the analytical maximization 

of the function 𝑄𝜃(0)(∙)  is not feasible, the algorithm will anyway 

converge to a local maximum of the observable likelihood if we select 

in every step a new estimate that increases, even a little, the current 

value of the function 𝑄.  
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Chapter 4 

Football Modeling 
 

It is true that football is probably the most popular sport in the 

world. Football’s history began in England in 1863 where people 

were kicking a leather ball filled with feathers and hair in their 

neighborhoods and, after a continuous evolution, it became an 

international attraction. In recent years, more and more companies 

have been associated with football depending economically on it and 

more and more staff has been working on it. Moreover, the sport has 

become extremely competitive and complicated. These facts have led 

to a huge statistical interest in the sport. Visualizations, performance 

analytics, outcome prediction etc, came to improve players and teams 

making their performance more effective. 

Football is a low-score sport with a lot of surprises and changes 

during a match which make it hard to predict the final outcome. A lot 

of statistical modeling has been developed in order to assist 

professionals of all kinds to improve their influence on the sport. In 

this chapter we will show different types of statistical models like 

win-draw-loss models and score models which are used in predicting 

the outcome of football matches. 

 

4.1.      Naive Models  

In this paragraph we will present some basic and easy-to-use 

statistical models with their characteristics that can be used in 

predicting football outcomes. Although these models do not have 

specific properties that are essential in football modeling, they are an 

obvious initial approach. 
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4.1.1.   The Bradley-Terry ordinal model 

 

The Bradley-Terry model is a preliminary simplistic model which can 

predict the outcome of a paired comparison. Given a pair of 

individuals 𝑖 and 𝑗 drawn from some population with 𝑋𝑖 , 𝑋𝑗  being 

variables relating to 𝑖 and 𝑗 respectively, it estimates the probability 

that the pairwise comparison 𝑋𝑖 > 𝑋𝑗  turns out true, as 

𝑃(𝑋𝑖 > 𝑋𝑗) = 𝑃(𝑌𝑖𝑗 = 1) =
𝑝𝑖

𝑝𝑖 + 𝑝𝑗
 

where 𝑝𝑖  is a positive real-valued score assigned to individual 𝑖 and 

𝑌𝑖𝑗  is a binary variable; if 𝑌𝑖𝑗 = 1 then 𝑋𝑖 > 𝑋𝑗  and if 𝑌𝑖𝑗 = 0 then 𝑋𝑖 <

𝑋𝑗 . In the case of a football game, 𝑖 is the home team, 𝑗 is the away 

team, 𝑋𝑖  denotes the goals that team 𝑖 achieved in the match and 𝑝𝑖  

represents the ability of team 𝑖. Actually, 𝑃(𝑋𝑖 > 𝑋𝑗) is the probability 

of team 𝑖 prevailing over team 𝑗.The Bradley-Terry model uses 

exponential score functions 𝑝𝑖 = 𝑒𝛾𝑖 so it can be written as   

𝑃(𝑋𝑖 > 𝑋𝑗) = 𝑃(𝑌𝑖𝑗 = 1) =
𝑒𝛾𝑖

𝑒𝛾𝑖 + 𝑒𝛾𝑗
=

𝑒𝛾𝑖−𝛾𝑗

1 + 𝑒𝛾𝑖−𝛾𝑗
 

 

where the parameters 𝛾𝑖  are associated with the ability of the teams 

and need to be estimated. For example, 𝛾𝑖  could have information 

about the rate of chances that team 𝑖 generally creates during a 

match. It is clear that the outcome of the game is determined by the 

difference  𝛾𝑖 − 𝛾𝑗 . For identifiability, a sum-to-zero constraint to the 

parameters is needed, ∑ 𝛾𝑖 = 0𝑖 . 
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We can notice that the model above has only two outcomes (win or 

lose) and that is the reason that the Bradley-Terry model can be 

preferably used in basketball games rather than football games, 

where one of the two teams win in the end. For football matches we 

have to extend the model above by taking into consideration the case 

of a draw. An early approach on such modeling was the Rao-Kupper 

model (1967) which consists of two types of models:  

 Model A: 

𝑃(𝑋𝑖 > 𝑋𝑗) =
𝑝𝑖

𝑝𝑖 + 𝜃𝑝𝑗
 

𝑃(𝑋𝑖 < 𝑋𝑗) =
𝑝𝑗

𝑝𝑗 + 𝜃𝑝𝑖
 

            𝑃(𝑋𝑖 = 𝑋𝑗) =
𝑝𝑖𝑝𝑗(𝜃

2 − 1)

(𝑝𝑖 + 𝜃𝑝𝑗)(𝑝𝑗 + 𝜃𝑝𝑖)
 

 

 

 Model B: 

𝑃(𝑋𝑖 > 𝑋𝑗) =
𝑝𝑖

𝑝𝑖 + 𝑝𝑗 + 𝜈√𝑝𝑖𝑝𝑗  
 

𝑃(𝑋𝑖 < 𝑋𝑗) =
𝑝𝑗

𝑝𝑗 + 𝑝𝑖 + 𝜈√𝑝𝑖𝑝𝑗
 

 

 𝑃(𝑋𝑖 = 𝑋𝑗) =
𝜈√𝑝𝑖𝑝𝑗

𝑝𝑖 + 𝑝𝑗 + 𝜈√𝑝𝑖𝑝𝑗
 

 

For 𝜃 = 1 and 𝜈 = 0 respectively we get no draws. 
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By extending the binary Bradley-Terry model to a model with three 

categories; the variable 𝑌𝑖𝑗  is coded as 2 if the home team wins, 1 in 

the case of draw and 0 in the case of victory of the visiting team, we 

lead to the cumulative probabilities in the form 

 

𝑃(𝑌𝑖𝑗 ≤ 𝑘) =
exp (𝜇𝑘 + 𝛾𝑖 − 𝛾𝑗)

1 + exp (𝜇𝑘 + 𝛾𝑖 − 𝛾𝑗)
 , 𝑘 ∈ {0,1,2} 

 

where 𝜇0 < 𝜇1 < 𝜇2 are unknown cut-point parameters-thresholds 

which determine the preference for each specific category. 

The probability for a single response category can be derived as 

follows, 

                          𝑃(𝑌𝑖𝑗 = 𝑘) = 𝑃(𝑌𝑖𝑗 ≤ 𝑘) − 𝑃(𝑌𝑖𝑗 ≤ 𝑘 − 1)  

 

By slight abuse of notation, in the pursuit of completeness we define 

the threshold of the last category 𝜇2 = +∞ so that 𝑃(𝑌𝑖𝑗 ≤ 2) = 1.  

The model is over-parameterized in the sense that it is exactly the 

same even if we add a fixed constant 𝛼 to all values 𝛾𝑖  because the 

differences 𝛾𝑖 − 𝛾𝑗  remain unchanged. The constant 𝑎 may denote the 

home advantage. Therefore,  

 

𝑃(𝑌𝑖𝑗 ≤ 𝑘) =
exp (𝜇𝑘 + 𝛼 + 𝛾𝑖 − 𝛾𝑗)

1 + exp (𝜇𝑘 + 𝛼 + 𝛾𝑖 − 𝛾𝑗)
 , 𝑘 ∈ {0,1,2} 

 

The constant parameter 𝛼 can be replaced by 𝛼𝑖 so that home effects 

are team-specific instead of being equal for all teams. Concerning the 

ability 𝛾𝑖  of team 𝑖, it is given by  

 

𝛾𝑖 = 𝛽𝑖𝑧𝑖 

 

where 𝑧𝑖 is a vector of covariates and 𝛽𝑖  is vector of coefficients. 
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By assuming the latent linear predictor of the ordered model, 

 

𝑌𝑖𝑗
∗ = 𝛼𝑖 + 𝛽𝑖𝑧𝑖 − 𝛽𝑗𝑧𝑗 + 𝜀 

 

where 𝜀~𝑁(0,1) represents the error term, the ordinal categories re 

 

      𝑌𝑖𝑗 = 0 ,         ∞ < 𝑌𝑖𝑗
∗ ≤ 𝜇0 

       𝑌𝑖𝑗 = 1 , 𝜇0 < 𝑌𝑖𝑗
∗ ≤ 𝜇1 

       𝑌𝑖𝑗 = 2 , 𝜇1 < 𝑌𝑖𝑗
∗ < ∞ 

 

 

Estimation 

Maximum likelihood estimation is applied to estimate the value for 

the parameters 𝛽𝑖 , 𝛽𝑗  and the thresholds 𝜇𝑘 , 𝑘 = 0,1. The log-

likelihood function 𝑙𝑛𝐿 of the model is, 

 

𝑙𝑛𝐿 = ∑ (𝑙𝑛𝐹𝑖𝑗0) + ∑ (𝑙𝑛𝐹𝑖𝑗1 − 𝑙𝑛𝐹𝑖𝑗0) + ∑ (−𝑙𝑛𝐹𝑖𝑗1)

𝑖,𝑗,𝑌𝑖𝑗=2𝑖,𝑗,𝑌𝑖𝑗=1𝑖,𝑗,𝑌𝑖𝑗=0

 

 

where 𝐹𝑖𝑗𝑘 , 𝑘 = 0,1 are the cumulative probabilities of the model. 

By maximizing the equation of the log-likelihood for each parameter, 

the estimates for the parameters are obtained. 
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4.1.2.    The Double Poisson model 
 

The Poisson distribution has been widely accepted as a simple 

modeling approach for the distribution of the number of goals in 

sports involving two competing teams. 

We assume for the 𝑖-th match, 𝑖 = 1, … , 𝑛 that (𝑋1, 𝑋2), which denote 

the achieved goals by the two opponents, are modeled as two 

conditionally independent Poisson, 

 

𝑋1𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆1𝑖) 

 

𝑋2𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆2𝑖) 

 

with joint density function the Double Poisson probability function 

𝑓𝐷𝑃, 

 

𝑓𝐷𝑃(𝑥1, 𝑥2) = 𝑒
−𝜆1

𝜆1
𝑥1

𝑥1!
∙ 𝑒−𝜆2

𝜆1
𝑥2

𝑥2!
 

 

The parameters 𝜆1𝑖 , 𝜆2𝑖  represent the scoring rates, that is the 

expected number of goals for the home and the away team 

respectively in the 𝑖-th observation-game.  

Starting with the probability Poisson mass function in order to obtain 

the exponential dispersion form and indentify the link function for 

the parameters estimation we have the following steps: 

 

𝑓(𝑥𝑖; 𝜆) =
𝑒−𝜆𝑖𝜆𝑥𝑖

𝑥𝑖!
= exp(𝑥𝑖𝑙𝑜𝑔(𝜆𝑖) − 𝜆𝑖 − 𝑙𝑜𝑔(𝑥𝑖!)) ⇒ 

 

         𝑎(𝜑) = 1,         𝜃𝑖 = log(𝜆𝑖) ⇔ 𝜆𝑖 = 𝑒𝜃𝑖 ,         𝑏(𝜃𝑖) = 𝜆𝑖 = 𝑒
𝜃𝑖 ,        

 

          𝑐(𝑥𝑖 , 𝜑) = log (
1

𝑥𝑖!
)  
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In the exponential dispersion family, 𝜃𝑖 is the canonical parameter 

which depends on a model of linear predictors. Therefore, the log of 

the expectation, log (𝜆𝑖) can be modeled by Poisson regression as,  

 

𝑔(𝜆𝑖) = 𝜃𝑖 = log(𝜆𝑖) = 𝜷𝑥 

 

where 𝑥 is a vector of explanatory variables and 𝜷 is a vector of 

coefficients. 

The scoring rate of the 𝑘th team in the 𝑖th match 𝜆𝑘𝑖  depends on the 

attacking ability of the team 𝑘 as well as on the defensive ability of 

the opponent (Joel Liden 2016). As a result, 

 

                log(𝜆1𝑖) = 𝜇 + ℎ𝑜𝑚𝑒 + 𝑎𝑡𝑡ℎ𝑖 + 𝑑𝑒𝑓𝑎𝑖 , 

 

log(𝜆2𝑖) = 𝜇 + 𝑎𝑡𝑡𝑎𝑖 + 𝑑𝑒𝑓ℎ𝑖 , 

 

where 𝑎𝑡𝑡𝑘 and 𝑑𝑒𝑓𝑘 are the attack and defense parameters of the 

team 𝑘 respectively, ℎ𝑖  and 𝑎𝑖  are the home and the away team in the 

𝑖-th match, ℎ𝑜𝑚𝑒 represents the home advantage and 𝜇 represents 

the constant intercept. 

In order to achieve identifiability, we use sum-to-zero constraints for 

attacking and defensive abilities, 

 

∑𝑎𝑡𝑡𝑘 = 0 

𝑛

𝑘=1

 

 

∑𝑑𝑒𝑓k = 0

𝑛

𝑘=1

 

 

 

 

 

 

 

 

 



53 
 

Estimation 

Considering the Poisson regression form, 

 

log(𝜆1𝑖) = 𝜷1 
𝑇𝑤1𝑖  

log(𝜆2𝑖) = 𝜷2 
𝑇𝑤2𝑖  

 

where 𝜆1𝑖 , 𝜆2𝑖  are the scoring rates of the home and away team 

respectively in the 𝑖th match and 𝑤1𝑖, 𝑤2𝑖 ∈ ℝ
𝑑  the respective vectors 

of covariates with 𝛽1 
𝛵, 𝛽2 

𝛵 ∈ ℝ𝑑 coefficients, the log-likelihood 

function is: 

 

𝑙𝑜𝑔𝐿 =∑[−𝜆1 − 𝜆2 + 𝑥1𝑖log (𝜆1𝑖) + 𝑥2𝑖log (𝜆2𝑖) − log(𝑥𝑖1!) − log (𝑥2𝑖!)] 

𝑛

𝑖=1

 

       =∑[−𝑒𝛽1
𝛵𝑤1𝑖 − 𝑒𝛽2

𝛵𝑤2𝑖 + 𝑥1𝑖𝛽1
𝛵𝑤1𝑖 + 𝑥2𝑖𝛽2

𝛵𝑤2𝑖 − log(𝑥𝑖1!) − log (𝑥2𝑖!)] 

𝑛

𝑖=1

 

 

The maximum likelihood estimation for parameters 𝑤1𝑘 and 𝑤2𝑘 ,    

𝑘 = 1, … , 𝑑 is carried out through the following equations: 

 
𝜕𝑙𝑜𝑔𝐿

𝜕𝛽1𝑘
= 0, 𝑓𝑜𝑟 𝑘 = 1, … , 𝑑 

 
𝜕𝑙𝑜𝑔𝐿

𝜕𝛽2𝑘
= 0, 𝑓𝑜𝑟 𝑘 = 1, … , 𝑑 

 

For the solution of these equations the Newton-Raphson method is 

suggested which is presented in the Appendix. For this method , the 

matrix of second derivatives is needed. 
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4.1.3.   The Negative Binomial model 

 
Just like the Poisson case, a negative binomial model can be used for 

count data such as the number of goals for two opponents. In the 

world of football, empirical evidence has shown over the years that 

there is over-dispersion in the number of teams’ goals in most 

leagues. An important characteristic of negative binomial distribution 

is that allows for over-dispersion as it has larger variance than the 

mean, something that can be seen as a disadvantage in Poisson 

distribution, where the mean is equal to the variance,. 

The negative binomial distribution is a discrete probability 

distribution that models the number of successes in a sequence of 

independent and identically distributed Bernoulli trials before a 

specified number of failures (denoted r) occurs. Thus, the negative 

binomial mass function is derived as, 

 

𝑓(𝑘; 𝑟, 𝑝) = 𝑃(𝑋 = 𝑘) = (
𝑘 + 𝑟 − 1

𝑟 − 1
) (1 − 𝑝)𝑘𝑝𝑟   , 𝑘 = 0,1,2,… 

 

In our case, we have  

 

𝑓(𝑦𝑖) =
𝛤(𝑦𝑖 + 𝑟)

𝛤(𝑟)𝛤(𝑦𝑖 + 1)
(

𝑟

𝜆𝑖 + 𝑟
)
𝑟

(
𝜆𝑖

𝜆𝑖 + 𝑟
)

𝑦𝜄

 

 

where 𝛤 is the gamma distribution, 𝜆𝑖  denotes the scoring rate of 

team 𝑖. 

By obtaining the exponential dispersion form, 

 

𝑓(𝑦𝑖; 𝜃𝑖; 𝜑) == exp (𝑙𝑜𝑔 ((
𝑟

𝜆𝑖 + 𝑟
)
𝑟

) + 𝑦𝑖 𝑙𝑜𝑔 (
𝜆𝑖

𝜆𝑖 + 𝑟
) + 𝑙𝑜𝑔 (

𝛤(𝑦𝑖 + 𝑟)

𝛤(𝑟)𝛤(𝑦𝑖 + 1)
)) ⇒ 

 

𝑎(𝜑) = 1, 𝜃𝑖 = log (
𝜆𝑖

𝜆𝑖 + 𝑟
) , 𝑏(𝜃𝑖) = −𝑟𝑙𝑜𝑔 (

𝑟

𝜆𝑖 + 𝑟
) ,   

 

     𝑐(𝑦𝑖 , 𝜑) = log (
𝛤(𝑦𝑖 + 𝑟)

𝛤(𝑟)𝛤(𝑦𝑖 + 1)
) 
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As a result, the expected value and the variance in the negative 

binomial case can be retrieved by the following procedure: 

𝜃𝑖 = log (
𝜆𝑖

𝜆𝑖 + 𝑟
) ⇔

𝜆𝑖
𝜆𝑖 + 𝑟

= 𝑒𝜃𝑖 ⇒ 𝜆𝑖 =
𝑟𝑒𝜃𝑖

1 − 𝑒𝜃𝑖
  

 

𝑏(𝜃𝑖) = −𝑟𝑙𝑜𝑔 (
𝑟

𝑟 + 𝜆𝑖
) = −𝑟𝑙𝑜𝑔(1 − 𝑒𝜃𝑖) 

So it is, 

 

𝔼[𝑌𝑖] = 𝑏′(𝜃𝑖) =
𝑟𝑒𝜃𝑖

1 − 𝑒𝜃𝑖
= 𝜆𝑖  

 

𝑉𝑎𝑟[𝑌𝑖] = 𝑏′′(𝜃𝑖)𝑎(𝜑) =
𝑟𝑒𝜃𝑖

(1 − 𝑒𝜃𝑖)2
= 𝜆𝑖 +

1

𝑟
𝜆𝑖
2 

 

 

For 𝑟 → ∞ we can see that we get a Poisson model.  As for the link 

function in the negative binomial case we have 𝑔(𝜆𝑖) = 𝜃𝑖 =

log (
𝜆𝑖

𝜆𝑖+𝑟
) = 𝑥𝑖𝛽.  

Since 𝜆𝑖 > 0 the image of 𝑔(𝜆𝑖) ∈ (−∞, 0). Therefore, the canonical 

link function is not a good choice. On the other side a log-link 

function (similarly to the case of Poisson model) is a better choice as 

it allows for positive values.  

So, similarly to the Double Poisson model we have: 

 

𝑙𝑜𝑔(𝜆1,𝑖) = 𝛼 + 𝛽1𝑎𝑡𝑡ℎ,𝑖 + 𝛽2𝑑𝑒𝑓𝑔,𝑖 

 

𝑙𝑜𝑔(𝜆2,𝑖) = 𝛼 + 𝛽1𝑎𝑡𝑡𝑔,𝑖 + 𝛽2𝑑𝑒𝑓ℎ,𝑖 

 

where 𝑎𝑡𝑡 and 𝑑𝑒𝑓 are the attack and defense parameters, ℎ and 𝑔 

are the indicators of the home and the guest team respectively, 𝑖 is 

the number of our observation-game and 𝑎 is a constant parameter. 

The estimation of the parameters is similar to the Double Poisson 

model (paragraph 4.1.2.). 
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The models that were presented above are simple and easy-to-use. 

However they do not have some important properties that we need 

in studying football results. Dependence between the opponents, 

excess of some specific outcomes and dynamic abilities are some 

specifications that need to be taken into consideration as they play an 

important role in the quality of our model we use.  

 

 

 

4.2.   Models with dependence parameter  
 

We saw some simple approaches in studying football results which 

do  not contain dependence between the random variables. However, 

several researchers have shown the existence of a correlation 

between the numbers of goals scored by the two opponents. In team 

sports, such us football, it is reasonable to consider that the two 

random variables are correlated (either positively or negatively) as 

the two teams interact during the game. For example, if a team loses 

during a game, then it will try to score as soon as possible which 

affects the speed of the game as well as the rate of the chances of the 

opponent too. On the other hand, when a team has a totally offensive 

style of playing making many chances, this may affect negatively the 

net scoring of the opponent team which may only defend during the 

game. In this paragraph we will present models that contain 

dependence between the outcome variables. 

 

 

 

 

 

 

 

 

 

 

 

 



57 
 

 

4.2.1.     Two-dimensional copula model  

 
Copulas are very fashionable multivariate distributions contributing 

in application to many disciplines, like biostatistics, finance etc. Thus, 

one way to study football outcomes and insert a correlation between 

the two opponents is a two-dimensional copula. Two-dimensional 

copulas can produce flexible bivariate distributions with flexible 

marginal distributions and flexible dependence structure. 

In our case, we want to predict the outcome in football games with 

the goal scoring of each team being a discrete random variable. As it 

is mentioned in Chapter 1, there are specific types of copulas dealing 

with discrete cases.  

Provided that between the two opponents in a football match there is 

not only positive but also negative correlation, the Frank copula is a 

reasonable choice as 𝜃 ∈ (−∞,+∞) ∖ {0}. So it is, 

 

𝐶(𝑢1, 𝑢2|𝜃) =
1

𝜃
log {1 +

(𝑒−𝜃𝑢1 − 1)(𝑒−𝜃𝑢2 − 1)

𝑒−𝜃 − 1
 ,     𝜃 ∈ ℝ ∖ {0} 

 

If we consider 𝐹𝑋(𝑥), 𝐹𝑌(𝑦) the cumulative distribution functions for 

the number of goals of the home and the away team respectively, our 

copula is expressed as follows: 

 

𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)|𝜃) =
1

𝜃
log {1 +

(𝑒−𝜃𝐹𝑋(𝑥) − 1)(𝑒−𝜃𝐹𝑌(𝑦) − 1)

𝑒−𝜃 − 1
  

 

with 𝜃 ∈ ℝ ∖ {0}. 
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 In the Poisson case, we have, 

 

𝑢1 = 𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∑
𝜆1
𝑘𝑒−𝜆1𝑥

𝑘!

𝑥

𝑘=0

 

 

𝑢2 = 𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) = ∑
𝜆2
𝑘𝑒−𝜆2𝑦

𝑘!

𝑦

𝑘=0

 

 

where 𝜆1, 𝜆2 denote the rate of scoring of the home and the away 

team respectively. 

 

 In the negative binomial case, 

 

𝑢1 = 𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∑
𝛤(𝑘 + 𝑟)

𝛤(𝑟)𝛤(𝑘 + 1)

𝑥

𝑘=0

(
𝑟

𝜆1 + 𝑟
)
𝑟

(
𝜆1

𝜆1 + 𝑟
)

𝑘

 

 

𝑢2 = 𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) = ∑
𝛤(𝑘 + 𝑟)

𝛤(𝑟)𝛤(𝑘 + 1)

𝑦

𝑘=0

(
𝑟

𝜆2 + 𝑟
)
𝑟

(
𝜆2

𝜆2 + 𝑟
)

𝑘

 

 

where 𝜆1, 𝜆2 denote the rate of scoring of the home and the away 

team respectively. 

Since the copula function is actually the cumulative distribution 

function (cdf) and not the joint probability mass function (pmf), the 

probabilities of specific outcomes can be retrieved as follows: 

 

 𝑃(𝑋 = 0, 𝑌 = 0) = 𝐶(𝐹𝑋(0), 𝐹𝑌(0)) 

 𝑃(𝑋 = 𝑥, 𝑌 = 0) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(0)) − 𝐶(𝐹𝑋(𝑥 − 1), 𝐹𝑌(0)) , 𝑥 = 1,2, … 

 𝑃(𝑋 = 0, 𝑌 = 𝑦) = 𝐶(𝐹𝑋(0), 𝐹𝑌(𝑦)) − 𝐶(𝐹𝑋(0), 𝐹𝑌(𝑦 − 1)) , 𝑦 = 1,2, … 

 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) − 𝐶(𝐹𝑋(𝑥 − 1), 𝐹𝑌(𝑦)) −

                                  (𝐹𝑋(𝑥), 𝐹𝑌(𝑦 − 1)) + 𝐶(𝐹𝑋(𝑥 − 1), 𝐹𝑌(𝑦 − 1))  , 

                                                                                                             𝑥, 𝑦 = 1,2,… 
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Dependence parameter 𝜽 

 

As it is mentioned, the dependence parameter 𝜃 in the Frank copula 

allows for negative correlation between the home goals and the away 

goals which is appropriate, since historic data suggests this. 

Moreover, in our case, the dependence parameter is not the Pearson 

type of correlation in which the interval of 𝜃 would be [−1,1]. 

Kendall’s 𝜏 is a measure of correlation-concordance that works in our 

case. For the Frank copula, Kendall’s 𝜏 can be expressed as follows: 

 

𝜏 = 𝑓(𝜃) = 1 +
4

𝜃
[∫

𝛼

𝜃(𝑒𝛼 − 1)

𝜃

0

𝑑𝛼 − 1] 

 

Since the function 𝑓 is invertible, 𝜃 can be easily estimated using an 

estimate of Kendall’s 𝜏. So it is 

  

𝜏 = 𝑓(𝜃) ⇔ 𝜃 = 𝑓−1(𝜏) 

 

where 𝜏  is a Kendall’s estimate. It is noticeable that 𝜃 can be 

estimated through 𝜏. 

 

 

Estimation 

Assume that we have a set of 𝑛 observed match results, 

 

(𝑥11, 𝑥21), (𝑥12, 𝑥22), … , (𝑥1𝑛, 𝑥2𝑛) 

 

where 𝑥1𝑖  and 𝑥2𝑖  are the number of goals scored by the home and 

the away team respectively in the 𝑖th match, and that we also have 

corresponding explanatory varialbles-vectors 𝑤1𝑖 , 𝑤2𝑖  for each match.  
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The log-likelihood of the model is, 

 

ℓ(𝜷, 𝜃) =∑log [ℎ𝜃(𝑥1𝑖,

𝑛

𝑖=1

𝑥2𝑖)]. 

 

where β is a vector of coefficients. Concerning the function ℎ𝜃: 

 

  ℎ𝜃(𝑥1𝑖 , 𝑥2𝑖) = 𝐶𝜃(𝐹1(𝑥1𝑖), 𝐹2(𝑥2𝑖)) − 𝐶𝜃(𝐹1(𝑥1𝑖 − 1), 𝐹2(𝑥2𝑖)) −

                                     𝐶𝜃(𝐹1(𝑥1𝑖), 𝐹2(𝑥2𝑖 − 1)) + 𝐶𝜃(𝐹1(𝑥1𝑖 − 1), 𝐹2(𝑥2𝑖 − 1)), 

                                                                                                    𝑥1𝑖, 𝑥2𝑖 = 1,2,… 

 

where 𝐹1, 𝐹2 the marginal cumulative functions of the goals achieved 

by the home and the away team respectively. 

The parameter estimates  �̂� and  �̂� can be found by the maximum 

likelihood estimation as �̂�, �̂� = 𝑎𝑟𝑔𝑚𝑎𝑥𝜷,𝜃ℓ(𝜷, 𝜃). 

In practice, the numerical computations required to find the 

maximum are very heavy. Instead we use inference for the margins 

to estimate the marginal parameters and copula parameters 

separately. 

 

 

4.2.2.   The bivariate Poisson model 
 

In the paragraph 4.1.2 we presented the double Poisson approach on 

football modeling which is a simple approach consisting of two 

independent and Poisson distributed random variables. In this 

paragraph we will show the bivariate Poisson distribution which is 

an advanced Poisson-model version allowing also for dependence 

between the random variables. After all, as it is mentioned, in team 

sports like football, there is correlation between the two opponents 

during the game. 
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The bivariate Poisson distribution 

Consider three random variables 𝑋1, 𝑋2, 𝑋3 which follow independent 

Poisson distributions with parameters 𝜆1, 𝜆2, 𝜆3 respectively. As we 

want to construct a bivariate model we will apply trivariate reduction. 

We create 𝑋, 𝑌 such as,  

 

𝑋 = 𝑋1 + 𝑋3 

𝑌 = 𝑋2 + 𝑋3 

 

The random variables 𝑋, 𝑌 follow jointly the bivariate Poisson 

distribution 𝐵𝑃(𝜆1, 𝜆2, 𝜆3) with joint probability function 𝑓𝐵𝑃 , 

 

 

𝑓𝐵𝑃(𝑥, 𝑦) = exp{−(𝜆1 + 𝜆2 + 𝜆3)}
𝜆1
𝑥

𝑥!

𝜆2
𝑦

𝑦!
 ∑ (

𝑥

𝑘
) (
𝑦

𝑘
) 𝑘! (

𝜆3
𝜆1𝜆2

)

𝑘

.

min(𝑥,𝑦)

𝑘=0

  

 

 

This bivariate distribution allows for dependence between the 

random variables. As for the marginal distributions, it is obvious that: 

 

𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆1 + 𝜆3)    𝑤𝑖𝑡ℎ   𝔼[𝑋] = 𝜆1 + 𝜆3 

𝑌~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆2 + 𝜆3)    𝑤𝑖𝑡ℎ   𝔼[𝑌] = 𝜆2 + 𝜆3 

 

Moreover, 𝐶𝑜𝑣(𝑋, 𝑌) = 𝜆3 which leads to the consideration that 𝜆3 is 

a measure of dependence between the two random variables. If 𝜆3 =

0, then the two random variables are independent and the bivariate 

Poisson distribution reduces to the product of two independent 

Poisson distributions which is the double Poisson distribution that 

we presented in 4.1.2.  

When using this bivariate Poisson distribution to model football 

outcomes, it is obvious that 𝑋1 and 𝑋2 denote the goals of the home 

and the away team respectively, with 𝜆1 and 𝜆2 reflecting the scoring 

rates of the two teams. The variable 𝑋3 denotes the goals from 

common cause, so 𝜆3 reflects game conditions such as the stadium, 

the weather, the speed of the game etc. 
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Estimation 

In football modeling, we have to use realistic models where the 

parameters are expressed through covariates. In the case of the 

bivariate Poisson model, we have the regression form as follows: 

 

(𝑋𝑖 , 𝑌𝑖)~𝐵𝑃(𝜆1, 𝜆2, 𝜆3), 

log(𝜆1𝑖) = 𝑤1𝑖𝜷1, 

log(𝜆2𝑖) = 𝑤2𝑖𝜷2, 

log(𝜆3𝑖) = 𝑤3𝑖𝜷3, 

 

where 𝑖 = 1, … , 𝑛 denotes 𝑖-th observation-match, 𝑤𝑘𝑖  is a vector of 

explanatory variables for the 𝑖-th match used to model 𝜆𝑘𝑖  and 𝜷𝑘 are 

the regression coefficients, 𝑘 = 1,2,3.  

It is clear that the explanatory variables that are used to model each 

parameter 𝜆𝑘𝑖  , 𝑘 = 1,2,3, 𝑖 = 1,… , 𝑛, are different as each parameter 

may be influenced by different characteristics and variables. For that 

reason the estimation of the parameters cannot be accomplished 

straightforwardly. Thus, in order to obtain maximum likelihood 

estimates, we make use of the EM algorithm. To construct the EM 

algorithm for the bivariate Poisson regression model, we make use of 

the trivariate reduction. Suppose that for the 𝑖-th observation, 

𝑋1𝑖 , 𝑋2𝑖 , 𝑋3𝑖  represent the unobserved data, whereas 𝑋𝑖 = 𝑋1𝑖 + 𝑋3𝑖  

and 𝑌𝑖 = 𝑋2𝑖 + 𝑋3𝑖  are the observe data. Initially, we need to estimate 

the unobserved data through their conditional expectations and then 

fit the Poisson regression models to the pseudo-values obtained by 

the E- step. The complete data log-likelihood is given by 

𝐿(𝜑) = −∑∑𝜆𝑘𝑖 +∑∑𝑥𝑘𝑖log (𝜆𝑘𝑖) −∑∑log (𝑥𝑘𝑖!)

3

𝑘=1

𝑛

𝑖=1

3

𝑘=1

𝑛

𝑖=1

3

𝑘=1

𝑛

𝑖=1

, 

 

where 𝜑 = (𝜷1
′ , 𝜷2

′ , 𝜷3
′ ). 
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The EM algorithm for the bivariate Poisson model is: 

E-step: We calculate the conditional expected values of 𝑋3𝑖 , 𝑖 =

1, … , 𝑛 by using the current parameter values of 𝑘 iteration 

(𝜑(𝑘), 𝜆1𝑖
(𝑘)
, 𝜆2𝑖
(𝑘)
, 𝜆3𝑖
(𝑘)
): 

𝑠𝑖 = 𝔼[𝑋3𝑖|𝑋𝑖 , 𝑌𝑖 , 𝜑
(𝑘)) =

{
 

 
𝜆3𝑖
(𝑘)
∙
𝑓𝐵𝑃 (𝑥𝑖 − 1, 𝑦𝑖 − 1|𝜆1𝑖

(𝑘) , 𝜆2𝑖
(𝑘), 𝜆3𝑖

(𝑘))

𝑓𝐵𝑃 (𝑥𝑖, 𝑦𝑖|𝜆1𝑖
(𝑘)
, 𝜆2𝑖
(𝑘)
, 𝜆3𝑖
(𝑘)
)

,min(𝑥𝑖 , 𝑦𝑖) > 0

0                                                                       ,min(𝑥𝑖 , 𝑦𝑖) = 0

 

 

where 𝑓𝐵𝑃  the mass function of the bivariate Poisson distribution. 

M-step:  We update the estimates: 

𝛽1
(𝑘+1) = �̂�(𝑥 − 𝑠,𝑊1), 

𝛽2
(𝑘+1)

= �̂�(𝑦 − 𝑠,𝑊2), 

𝛽3
(𝑘+1)

= �̂�(𝑠,𝑊3), 

𝜆𝑘𝑖
(𝑘+1)

= exp (𝑊𝑘𝑖
𝑇  �̂�𝑘

(𝑘+1)
) , 𝑘 = 1,2,3 

where 𝑠 = (𝑠1, … , 𝑠𝑛)
𝑇 is the 𝑛 × 1 vector calculated in the E-step and 

�̂�(𝑥,𝑊) are the maximum likelihood estimates of a Poisson model 

with response vector 𝑥 and W data matrix. 

 

Model specification 

A simple regression form of the model above is : 

 

(𝑋𝑖 , 𝑌𝑖)~𝐵𝑃(𝜆1, 𝜆2, 𝜆3) 

log(𝜆1𝑖) = 𝜇 + ℎ𝑜𝑚𝑒 + 𝑎𝑡𝑡ℎ𝑖 + 𝑑𝑒𝑓𝑎𝑖  

log(𝜆2𝑖) = 𝜇 + 𝑎𝑡𝑡𝑎𝑖 + 𝑑𝑒𝑓ℎ𝑖  

 

For ease of interpretation we choose sum-to-zero constraints on the 

explanatory variables. 
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For the covariance parameter 𝜆3𝑖  we may assume the general form: 

 

log(𝜆3𝑖) = 𝛽0 + 𝛾1𝛽ℎ𝑖
ℎ𝑜𝑚𝑒 + 𝛾2𝛽𝑎𝑖

𝑎𝑤𝑎𝑦
+ 𝛾𝜷𝑤𝑖 

 

where 𝛽0 is a constant parameter, 𝛽ℎ𝑖
ℎ𝑜𝑚𝑒 and  𝛽𝑎𝑖

𝑎𝑤𝑎𝑦
 are the 

parameters that depend on the home and the away team 

respectively, 𝑤𝑖  is a vector of covariates for the 𝑖-th match and 𝜷 a 

vector of coefficients. The parameters 𝛾1 and 𝛾2 are dummy binary 

indicators taking values 0 or 1 as well as 𝛾 is a parameter-vector that 

that takes also values 0 or 1. These values of parameters 𝛾1, 𝛾2 and 𝛾  

depend on the model that we consider. Usually, we consider models 

with constant 𝜆3, that is 𝛾1 = 𝛾2 = 0 𝑎𝑛𝑑 𝛾 = 0 which makes the 

models easier to use. However, using covariates on 𝜆3 helps us to 

have more insight on the influence of 𝜆3𝑖  in each observation 𝑖. 

 

The effect of 𝝀𝟑 in draws 

 

 
  

The figure above is an output presented by Karlis and Ntzoufras 

(2003) which shows the relative change in the probability of a draw 

for different values of the parameter 𝜆3 (0.05, 0.10, 0.15, 0.20) when 

the two competing teams have marginal means equal to 𝜆1 = 1 and 

𝜆2 ∈ [0.1,2] respectively. 
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4.2.3.   The bivariate Conway-Maxwell Poisson model 

 
The bivariate Poisson distribution is widely used for modeling 

bivariate count data. However, its marginal equi-dispersion may 

prove limiting in some cases such us football outcomes where, as it is 

mentioned, there is over-dispersion. 

The bivariate Conway-Maxwell Poisson (COM-Poisson) distribution 

includes three bivariate discrete distributions: bivariate Poisson, 

bivariate Bernoulli, bivariate geometric. It also contains an added 

dispersion parameter and as a result, the bivariare COM-Poisson 

distribution deals with bivariate count data in the presence of data 

dispersion (over-dispersion or under-dispersion).    

 Before presenting the bivariate Conway-Maxwell Poisson 

distribution and its properties we will show the univariate case. 

 

Conway-Maxwell Poisson distribution 

The COM-Poisson distribution was introduced by Conway and Maxwell 

and its mass function is, 

 

𝑓(𝑥; 𝜆, 𝜈) = 𝑃(𝑋 = 𝑥|𝜆, 𝜈) =
𝜆𝑥

(𝑥!)𝜈
1

𝛧(𝜆, 𝜈)
   ,     𝑥 ∈ ℕ, 𝜆 > 0, 𝜈 ≥ 0  

 

where 𝑍(𝜆, 𝜈) = ∑
𝜆𝑘

(𝑘!)𝜈
∞
𝑘=0  is the normalizing constant and 𝜆 = 𝔼[𝑋𝜈].  

 

The expected value and the variance of the COM-Poisson distribution 

are (Kimberly F. Sellers 2011) : 

 

𝔼𝜆[𝑋] = 𝜆
𝜕𝑙𝑛𝑍(𝜆, 𝜈)

𝜕𝜆
=
𝜕𝑙𝑛𝑍(𝜆, 𝜈)

𝜕𝑙𝑛𝜆
≈ 𝜆

1
𝜈 −

𝜈 − 1

2𝜈
 

 

𝑉𝑎𝑟[𝑋] =
𝜕𝔼𝜆[𝑋]

𝜕𝑙𝑛𝜆
≈
1

𝜈
𝜆
1
𝜈 

 

After all, 
𝜕

𝜕𝜆
=

𝜕𝑙𝑛𝜆

𝜕𝜆

𝜕

𝜕𝑙𝑛𝜆
=

1

𝜆

𝜕

𝜕𝑙𝑛𝜆
  and 𝜆

𝜕

𝜕𝜆
=

𝜕

𝜕𝑙𝑛𝜆
 . 
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It is clear that ν ≥ 0 is a dispersion parameter such that v = 1 

denotes equi-dispersion, ν > 1 denotes under-dispersion and ν < 1 

denotes overdispersion. 

 

The COM-Poisson distribution is a generalization of well-known 

distributions: 

1. If 𝜈 = 1 then 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) 

2. If 𝜈 = 0 and 0 < 𝜆 < 1, then 𝑋~𝐺𝑒𝑜𝑚(1 − 𝜆) 

3. If 𝜈 → ∞ then 𝑋~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(
𝜆

1+𝜆
)  

   

The bivariate Conway-Maxwell Poisson distribution 

Let us consider two random variables 𝑋and 𝑌 denoting the goals 

achieved by the home and the away team in a football game, which 

follow univariate COM-Poisson distribution of mass functions, 

 

𝑃(𝑋 = 𝑥)|𝜆1, 𝜈1) =
𝜆1
𝑥

(𝑥!)𝜈1

1

𝛧(𝜆1, 𝜈1)
,    𝑥 ∈ ℕ,   𝜈1 ∈ ℝ+,   𝜆1 ∈ ℝ+

∗ , 

 

𝑃(𝑌 = 𝑦)|𝜆2, 𝜈2) =
𝜆2
𝑦

(𝑦!)𝜈2

1

𝛧(𝜆2, 𝜈2)
,    𝑥 ∈ ℕ,   𝜈2 ∈ ℝ+,   𝜆2 ∈ ℝ+

∗  

 

where 𝜆1,𝜆2 the respective scoring rates of the two teams. 

The couple (𝑋, 𝑌) follows the bivariate COM-Poisson distribution if and 

only if its mass function is, 

 

𝑃(𝑋 = 𝑥, 𝑌 = 𝑦|𝜆1, 𝜈1, 𝜆2, 𝜈2) =
𝜆1
𝑥

(𝑥!)𝜈1

𝜆2
𝑦

(𝑦!)𝜈2

1

𝛧(𝜆1, 𝜈1)

1

𝛧(𝜆2, 𝜈2)
  , 

 

where 𝑥, 𝑦 ∈ ℕ,   𝜈1, 𝜈2 ∈ ℝ+,   𝜆1, 𝜆2 ∈ ℝ+
∗   under the conditions  

 

𝑙𝑜𝑔𝜆1 = 𝜷𝟏𝑤 

 

          𝑙𝑜𝑔𝜆2 = 𝜷𝟐𝑤 + 𝜼𝑥  
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where 𝑤 ∈ ℝ𝑝 is the vector of explanatory variables and 𝜷𝟏, 𝜷𝟐 ∈ ℝ
𝑝 

are the vectors of coefficients.  

From the last condition above, we notice that 

            

                                     𝑃(𝑌 = 𝑦|𝜆2, 𝜈2) =  𝑃(𝑌 = 𝑦|𝑋 = 𝑥).  

 

As a result, it is, 

 

𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)|𝜆1, 𝜈1, 𝜆2, 𝜈2) = 𝑃(𝑋 = 𝑥|𝜆1, 𝜈1) ∙ 𝑃(𝑌 = 𝑦|𝑋 = 𝑥) 

 

It is clear that 𝜼 is a measure of dependence between the two random 

variables, which is actually introduced through the dependence of the 

model parameters. When 𝜼 = 0 the variables 𝑋 and 𝑌 are 

independent. After all, the covariance of 𝑋 and 𝑌 in the bivariate 

COM-Poisson model is expressed as, 

 

𝐶𝑂𝑉(𝑋, 𝑌) = 𝔼𝜆1[𝛸]𝔼𝜆2[𝑌](𝑒
𝜼 − 1) 

 

Estimation 

The estimation of the parameters 𝛽1, 𝛽2, 𝜂 takes place through the 

maximum likelihood estimation. The log-likelihood of the bivariate 

COM-Poisson distribution is expressed as, 

 

ℓ =∑{𝑥𝑖𝑙𝑜𝑔𝜆1 + 𝑦𝑖𝑙𝑜𝑔𝜆2 − 𝜈1̂ log(𝑥𝑖!) − 𝜈2̂ log(𝑦𝑖!) − 𝑙𝑜𝑔∑ [
𝜆1
𝑥𝑖

(𝑥𝑖!)
𝜈1̂
]

∞

𝑥=0

𝑛

𝑖=1

− 𝑙𝑜𝑔∑ [
𝜆1
𝑦𝑖

(𝑦𝑖!)
𝜈2̂
]} =

∞

𝑦=0

 

    

∑{𝑥𝜷𝟏𝑤 + 𝑦(𝜷𝟏𝑤 + 𝜂𝑥) − 𝜈1̂ log(𝑥!) − 𝜈2̂ log(𝑦!) − 𝑙𝑜𝑔∑[
𝑒𝑥𝜷𝟏𝑤

(𝑥!)𝜈1̂
]

∞

𝑥=0

𝑛

𝑖=1

− 𝑙𝑜𝑔∑ [
𝑒𝒚𝜷𝟏𝑤+𝜂𝑥𝑦

(𝑦!)𝜈2̂
]

∞

𝑦=0

} 
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4.3.   Models with inflation 

 
Many statistical models that are used to predict football outcomes 

often underestimate some particular scores such as 0-0, 1-1 etc. In 

order to deal with this underestimation, it is necessary to inflate the 

probability of these scores. Inflated models are a good choice to deal 

with this problem. 

 

4.3.1.   Diagonal inflated bivariate Poisson model 

 
The bivariate Poisson model (2.2.2) can explain quite properly a 

football game and its probable results. However, there is an 

underestimation in the “draw” results such as 0-0, 1-1, 2-2, 3-3, 4-4 

etc. As a remedy to this occurrence, we may consider the diagonal 

inflated bivariate Poisson model. The latter is an extension of the 

simple zero-inflated model which allows for an excess only in (0,0) 

cell.  

Considering that the starting model is the bivariate Poisson model, a 

diagonal inflated model is expressed as, 

 

𝑓𝐼𝐵𝑃(𝑥, 𝑦) = {
(1 − 𝑝)𝑓𝐵𝑃(𝑥, 𝑦|𝜆1, 𝜆2, 𝜆3)   ,                              𝑥 ≠ 𝑦
(1 − 𝑝)𝑓𝐵𝑃(𝑥, 𝑦|𝜆1, 𝜆2, 𝜆3) + 𝑝𝑓𝐷(𝑥; 𝜃) , 𝑥 = 𝑦

 

 

where 𝐷 is a discrete distribution defined on the set {0,1,2, , … } with 

parameter 𝜃 and 𝑝 ∈ (0,1). 

 

We notice that if 𝑝 = 0 we have the simple bivariate Poisson model. 

 

 

 

 

 

 

 

 



69 
 

 

The distribution 𝑫(𝒙; 𝜽) 

The distribution 𝐷 that we mentioned above could be Poisson, 

geometric or other simple discrete distributions denoted by 𝐷(𝑚). As 

𝐷(𝑚) we consider the distribution with the following probability 

function: 

 

𝑓(𝑥|𝜃,𝑚) = {
 𝜃𝑥, 𝑥 = 0,1, … ,𝑚
0,           𝑥 ≠ 0,1, … ,𝑚

 

 

where ∑ 𝜃𝑥 = 1.𝑚
𝑥=0   

We notice that if m = 0 we have a zero-inflated model that inflates 

only the 0-0 score. The geometric distribution might be of great 

interest as it decays quickly. After all, in football the most frequent 

draw results are 0-0 and 1-1 and, additionally, the more goals a draw 

outcome has, the less probable it is.  

 

The marginal distributions 

The marginal distributions of 𝑋 and 𝑌 of the diagonal inflated bivariate 

Poisson model are not Poisson distributions, but mixtures of 

distributions: 

 

𝑓𝐼𝐵𝑃(𝑥) = (1 − 𝑝)𝑓𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑥|𝜆1 + 𝜆3) + 𝑝𝑓𝐷(𝑥|𝜃) 

 

𝑓𝐼𝐵𝑃(𝑦) = (1 − 𝑝)𝑓𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑦|𝜆2 + 𝜆3) + 𝑝𝑓𝐷(𝑦|𝜃) 

 

 As a result, the marginal means are: 

 

𝔼[𝑋] = (1 − 𝑝)(𝜆1 + 𝜆3) + 𝑝𝔼𝐷[𝑋] 

and  

 

𝔼[𝑌] = (1 − 𝑝)(𝜆2 + 𝜆3) + 𝑝𝔼𝐷[𝑌] 

 

where 𝔼𝐷[𝑋] denotes the expected value of the distribution 𝐷. 
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As for the variance, we have: 

 

𝑉𝑎𝑟[𝑋] = (1 − 𝑝){(𝜆1 + 𝜆3)
2 + (𝜆1 + 𝜆3)} + 𝑝𝔼𝐷[𝑋

2]

− {(1 − 𝑝)(𝜆1 + 𝜆3) + 𝑝𝐸𝐷[𝑋]}
2 

and 

 

𝑉𝑎𝑟[𝑌] = (1 − 𝑝){(𝜆2 + 𝜆3)
2 + (𝜆2 + 𝜆3)} + 𝑝𝔼𝐷[𝑌

2]

− {(1 − 𝑝)(𝜆2 + 𝜆3) + 𝑝𝐸𝐷[𝑌]}
2 

  

Since the marginal distributions are not Poisson distributions, they 

can be either under-dispersed or over-dispersed. It depends on the 

distribution 𝐷. 

 

Correlation 

In general, in the simple bivariate Poisson model, it is 𝔼𝐵𝑃[𝑋𝑌] = 𝜆3 +

(𝜆1 + 𝜆3)(𝜆2 + 𝜆3). So, in the case of the respective inflated model we 

have, 

 

𝐶𝑂𝑉𝐼𝐵𝑃(𝑋, 𝑌)

= (1 − 𝑝){𝜆3 + (𝜆1 + 𝜆3)(𝜆2 + 𝜆3)} + 𝑝𝔼𝐷(𝑋
2)    

− (1 − 𝑝)2(𝜆1 + 𝜆3)(𝜆2 + 𝜆3)

− (1 − 𝑝)𝑝𝔼𝐷(𝑋)(𝜆1 + 𝜆2 + 2𝜆3) − 𝑝
2{𝔼𝐷[𝑋]}

2 

 

 

We note that the covariance can either positive or negative 

depending on the choice of distribution 𝐷. 

 

We conclude that, except for inflating the draw results, the diagonal 

inflated bivariate Poisson model also allows for over-dispersion as 

well as negative correlation in contrast with the simple bivariate 

Poisson model. These characteristics are necessary when modeling 

football results. However, the inflated model may sometimes be more 

difficult in computations than the simple Poisson model.   
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Estimation 

Similarly to the simple bivariate Poisson distribution the estimation 

of the parameters will take place through the EM algorithm. In the 

diagonal inflated case of the bivariate Poisson model, the complete 

data log-likelihood takes the form,  

𝐿(𝜑, 𝑝, 𝜃) = ∑𝑢𝑖{log(𝑝) + 𝑙𝑜𝑔𝑓𝐷(𝑥𝑖; 𝜃)}

𝑛

𝑖=1

+∑(1 − 𝑢𝑖){log(1 − 𝑝)

𝑛

𝑖=1

−∑∑𝜆𝑘𝑖 +∑∑𝑥𝑘𝑖log (𝜆𝑘𝑖) −∑∑log (𝑥𝑘𝑖!)},

3

𝑘=1

𝑛

𝑖=1

3

𝑘=1

𝑛

𝑖=1

3

𝑘=1

𝑛

𝑖=1

 

 

where 𝑢𝑖  take values 1 or 0 depending on whether the observation 

comes from the inflation or the basic component. At the E-step 𝑢𝑖  

have to be estimated through their conditional expectations. 

The EM algorithm for the diagonal inflated model is expressed as 

follows: 

E-step: (a) We calculate the conditional expected values of the latent 

binary variable 𝑉𝑖 , 𝑖 = 1, … , 𝑛 by using the current parameter values 

of 𝑘 iteration (𝜑(𝑘) , 𝜆1𝑖
(𝑘)
, 𝜆2𝑖
(𝑘)
, 𝜆3𝑖
(𝑘), 𝑝(𝑘), 𝜃(𝑘)): 

𝑢𝑖 = 𝔼[𝑉𝑖|𝑋 = 𝑋𝑖 , 𝑌 = 𝑌𝑖 , 𝜑
(𝑘) , 𝑝(𝑘) , 𝜃(𝑘))

= {

𝑝(𝑘)𝑓𝐷(𝑥𝑖|𝜃
(𝑘))

𝑝(𝑘)𝑓𝐷(𝑥𝑖|𝜃
(𝑘)) + (1 − 𝑝(𝑘))𝑓𝐵𝑃(𝑥𝑖, 𝑦𝑖|𝜆1𝑖

(𝑘) , 𝜆2𝑖
(𝑘), 𝜆3𝑖

(𝑘))
   , 𝑥𝑖 = 𝑦𝑖

0                                                                                                   , 𝑥𝑖 ≠ yi

 

 

where 𝑓𝐷 the mass function of the inflation distribution with 

parameter vecror 𝜃. 
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(b)  Similarly to the occasion of the simple bivariate Poisson model, 

for 𝑖 = 1, … , 𝑛 we calculate 𝑠𝑖. 

 

M-step:  We update the estimates: 

𝑝(𝑘+1) =
1

𝑛
∑𝑢𝑖 ,

𝑛

𝑖=1

 

𝛽1
(𝑘+1)

= �̂��̃�(𝑥 − 𝑠,𝑊1), 

𝛽2
(𝑘+1)

= �̂��̃�(𝑦 − 𝑠,𝑊2), 

𝛽3
(𝑘+1)

= �̂��̃�(𝑠,𝑊3), 

𝜃(𝑘+1) = �̂�𝑢,𝐷, 

𝜆𝑘𝑖
(𝑘+1) = exp (𝑊𝑘𝑖

𝑇  �̂�𝑘
(𝑘+1)) , 𝑘 = 1,2,3 

where 𝑥, 𝑦, 𝑠, 𝑢, �̃� = 1 − 𝑢 are 𝑛 × 1 vectors, �̂�𝑢(𝑥,𝑊) are the 

weighted maximum likelihood estimates 𝛽 of a Poisson regression 

model with response 𝑥 and data matrix 𝑊, and  �̂�𝑢,𝐷(𝑥,𝑊) are the 

weighted maximum likelihood estimates of  𝜃 for the distribution 

𝐷(𝑥; 𝜃). 

For specific choices of the inflation distribution that are used in the 

application of this dissertation : 

 Geometric distribution 

The parameter 𝜃 is updated by, 

𝜃(𝑘+1) =
∑ 𝑢𝑖
𝑛
𝑖=1

∑ 𝑢𝑖𝑥𝑖
𝑛
𝑖=1 + ∑ 𝑢𝑖

𝑛
𝑖=1
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 Discrete distribution with 𝑗 = 𝐽 

The model parameters of the general occasion are given by, 

𝜃𝑗 = (∑𝑢𝑖

𝑛

𝑖=1

)

−1

∑𝐼(𝑋𝑖 = 𝑌𝑖 = 𝑗)𝑢𝑖   , 𝑗 = 1,… , 𝐽

𝑛

𝑖=1

 

𝜃0 = 1 −∑𝜃𝑗

𝐽

𝑗=1

 

where 𝐼(𝑥) indicator function. In the case of the inflation in the up to 

(1,1) cell we put 𝐽 = 1. 

 

4.3.2.   Dixon and Coles model 

Dixon and Coles model is another type of inflated model. In contrast 

with the case of the diagonal inflated bivariate Poisson model which 

inflates the probability of the draw results, the Dixon and Coles 

model accounts for the excessive number of particular scores. In 

other words, there is inflation on the probability of the specific 

outcomes 0-0, 1-0, 0-1, 1-1 which are frequent football results. 

Considering 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆1) and 𝑌~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆2) the Dixon and Coles 

mass function of 𝑋, 𝑌 is expressed as, 

 

𝑓𝐷𝐶(𝑥, 𝑦) = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) = 𝜏𝜆1𝜆2(𝑥, 𝑦)
𝜆1
𝑥exp (−𝜆1)

𝑥!

𝜆2
𝑦
exp (−𝜆2)

𝑦!
  

 

where 𝜆1, 𝜆2 are the scoring rates of the home and the away team 

respectively and 𝜏 is a function that moves the probability of certain 

scores as follows: 
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𝜏𝜆1𝜆2(𝑥, 𝑦) =

{
 
 

 
 
 1 − 𝜆1𝜆2𝜌,   𝑖𝑓 𝑥 = 𝑦 = 0

  1 + 𝜆1𝜌,     𝑖𝑓 𝑥 = 0, 𝑦 = 1
 1 + 𝜆2𝜌,    𝑖𝑓 𝑥 = 1, 𝑦 = 0
1 − 𝜌,           𝑖𝑓 𝑥 = 𝑦 = 1
1,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

where 𝜌 is a dependence parameter which satisfies the constraint: 

max (−
1

𝜆1
, −

1

𝜆2
) ≤ 𝜌 ≤ min (

1

𝜆1𝜆2
, 1) 

If 𝜌 = 0 then the two random variables 𝑋, 𝑌 are independent to each 

other.  

The Dixon and Coles marginal distributions of 𝑋 and 𝑌 are still 

Poisson with parameters 𝜆1 and 𝜆2 respectively.   

Model Inference 

Considering that we have 𝑛 teams with attack parameters {𝑎1, … , 𝑎𝑛} 

and defense parameters {𝑑1, … , 𝑑𝑛} as well as a home parameter ℎ, 

we want to estimate 𝜆1, 𝜆2 of the home and the away team. To 

prevent the model from being over-parameterized we have the 

following constraints, 

𝑛−1∑𝑎𝑖 = 1   

𝑛

𝑖=1

𝑎𝑛𝑑   𝑛−1∑𝑑𝑖 = 1   

𝑛

𝑖=1

 

The basic tool of inference is the likelihood function. For 𝑁 matches 

and score (𝑥𝑘 , 𝑦𝑘) in the 𝑘th match , 𝑘 = 1, … ,𝑁, the likelihood is 

expressed as, 

𝐿(𝛼𝑖, 𝑑𝑖, 𝜌, 𝛾; 𝑖 = 1, … , 𝑛)

=∏𝜏𝜆1𝑘𝜆2𝑘(𝑥𝑘 , 𝑦𝑘)
𝜆1
𝑥𝑘exp (−𝜆1𝑘)

𝑥𝑘!

𝜆2
𝑦𝑘exp (−𝜆2𝑘)

𝑦𝑘!

𝑁

𝑘=1
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where 

𝜆1𝑘 = 𝑎𝑖(𝑘)𝑑𝑗(𝑘)ℎ, 

𝜆2𝑘 = 𝑎𝑗(𝑘)𝑑𝑖(𝑘) 

 

and 𝑖(𝑘) and 𝑗(𝑘) denote respectively the indices of the home and the 

away team playing in the 𝑘th match.  

Despite the high dimensionality of the model, the maximization of the 

likelihood can be carried out straightforwardly through direct 

numerical computations. 

 

  

4.4.    Dynamic Models 

All the models that we mentioned in the previous paragraphs are 

quite easy to use and they assume static team parameters. In other 

words, a team’s performance determined by attack and defense 

abilities, remains unchanged across time. Although this makes our 

modeling and estimation easy, it sometimes contradicts the reality. 

That is a team’s performance tends to be dynamic and changes across 

years, months or even weeks. Many factors may affect this 

performance such as roster changing, injuries, coaching staff 

changing, economic situations etc. For example, if an excellent scorer 

leaves a team, the offensive strength will certainly decrease. In the 

next paragraphs we will present dynamic extensions of some 

bivariate models that are already mentioned in the previous 

paragraphs. 
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4.4.1.   Dixon and Coles dynamic model 

We have already presented the Dixon and Coles bivariate model in 

paragraph 4.3.2, for which we have the likelihood, 

𝐿(𝑎𝑖 , 𝑑𝑖 , 𝜌, ℎ; 𝑖 = 1, … , 𝑛) =

=∏𝜏𝜆1𝑘𝜆2𝑘(𝑥𝑘 , 𝑦𝑘)exp (−𝜆1𝑘)

𝑁

𝑘=1

𝜆1𝑘
𝑥𝑘 exp(−𝜆2𝑘) 𝜆2𝑘

𝑦𝑘   

 

where 𝑁 the number of matches, 𝜆1𝑘, 𝜆2𝑘  the scoring rates of the two 

opponents in the 𝑘𝑡ℎ match and 𝜌 the dependence parameter. The 

parameters 𝜆1𝑘 , 𝜆2𝑘  depend on 𝑎𝑖 , 𝑑𝑖,ℎ which are the attack 

parameters of the 𝑖𝑡ℎ  team, the defense parameters of the 𝑖𝑡ℎ team 

and the home effect parameter respectively. 

Since the parameters 𝑎𝑖 , 𝑑𝑖  remain static over time, the model written 

above can be enhanced by introducing a ‘pseudo-likelihood’ for each 

time point 𝑡. So it is,  

𝐿(𝑎𝑖 , 𝑑𝑖, 𝜌, ℎ; 𝑖 = 1,… , 𝑛) =

= ∏{𝜏𝜆1𝑘𝜆2𝑘(𝑥𝑘 , 𝑦𝑘)exp (−𝜆1𝑘)𝜆1𝑘
𝑥𝑘 exp(−𝜆2𝑘) 𝜆2𝑘

𝑦𝑘}𝜑(𝑡−𝑡𝑘)

𝑘∈𝐴𝑡

 

 

where 𝑡𝑘 is the time that match 𝑘 occurs, 𝐴𝑡 = {𝑘: 𝑡𝑘 < 𝑡} and 𝜑 is a 

non-increasing function of time. As for 𝜆1𝑘 , 𝜆2𝑘 we have (similarly to 

the non-dynamic model),  

𝜆1𝑘 = 𝑎𝑖(𝑘)𝑑𝑗(𝑘)ℎ, 

𝜆2𝑘 = 𝑎𝑗(𝑘)𝑑𝑖(𝑘) 
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It is clear that the parameters 𝑎𝑖 , 𝑑𝑖, 𝜌, ℎ are themselves time-

dependent. Maximizing the equation above at time 𝑡, we estimate the 

parameters only up to time 𝑡 and that is how the model reflects on 

changes in teams’ performance. 

 

Weighting function 𝝋   

The choice of the function 𝜑 depends on the way we want the weight 

of the historical data to decrease over time. One choice is, 

𝜑(𝑡) = {
1      , 𝑡 ≤ 𝑡0
0      , 𝑡 > 𝑡0

 

where all the results within the last time units since  𝑡0 will be given 

equal weight in the inference whereas the results before 𝑡0 won’t be 

taken into consideration. 

Another choice of the function 𝜑 could be, 

𝜑(𝑡) = exp(−𝜉𝑡), 

where the effect of all the previous results decreases exponentially 

over time according to the nonnegative parameter 𝜉. It is clear that if 

𝜉 = 0 then we end up with the initial static form. On the other hand, if 

𝜉 take large values, then there will be more weight to the most recent 

results. This last choice is the one that Dixon and Coles dynamic 

model uses. 
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Quite often, our basic aim is to predict the winner of a football match 

and not the exact score. It is remarkable that the probability of a 

home win, an away win and a draw in the 𝑘𝑡ℎ match are respectively 

estimated as, 

𝑝𝑘
𝐻 =∑𝑃(𝑋 = 𝑖, 𝑌 = 𝑗)

𝑖>𝑗

 

 

𝑝𝑘
𝐴 =∑𝑃(𝑋 = 𝑖, 𝑌 = 𝑗)

𝑖<𝑗

 

 

𝑝𝑘
𝐷 =∑𝑃(𝑋 = 𝑖, 𝑌 = 𝑗)

𝑖=𝑗

 

Now we define, 

𝑆(𝜉) = ∑(𝛿𝑘
𝐻𝑙𝑜𝑔

𝑁

𝑘=1

𝑝𝑘
𝐻 + 𝛿𝑘

𝐴𝑙𝑜𝑔𝑝𝑘
𝐴 + 𝛿𝑘

𝐷𝑙𝑜𝑔𝑝𝑘
𝐷) 

where 𝛿𝑘
𝐻 , 𝛿𝑘

𝐴, 𝛿𝑘
𝐷  take values 0 or 1 depending on the outcome we 

had in the 𝑘𝑡ℎ game. For instance, if the home team wins, then  𝛿𝑘
𝐻 =

1 , 𝛿𝑘
𝐴 = 0 and 𝛿𝑘

𝐷 = 0. The probabilities 𝑝𝑘
𝐻, 𝑝𝑘

𝐴, 𝑝𝑘
𝐷 are the maximum 

likelihood estimates of 𝐿(𝑎𝑖 , 𝑑𝑖, 𝜌, ℎ, 𝜉; 𝑖 = 1,… , 𝑛) and 𝜉 is a 

weighting parameter. The parameter 𝜉 plays an important role in the 

predictive capability of our model. Before defining the function 𝑆, the 

optimal choice of 𝜉 wasn’t feasible since the equation of our ‘pseudo-

likelihood’ contained a sequence of dependent likelihoods. Therefore, 

our aim is to find the value of 𝜉 that maximizes the function 𝑆. 
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4.4.2.    Koopman and Lit model 

 

All the statistic models that are used to predict football outcomes can 

be extended to dynamic. Koopman and Lit model is an extension with 

dynamic approach of the bivariate Poisson model that we presented 

in 4.2.2 paragraph. In this model the result of the outcome of the 𝑖𝑡ℎ 

football match is taken as the pair (𝑋, 𝑌) with probability density 

function 

𝑓𝐵𝑃(𝑥, 𝑦; 𝜆1, 𝜆2, 𝜆3) =

= exp{−(𝜆1 + 𝜆2 + 𝜆3)}
𝜆1
𝑥

𝑥!

𝜆2
𝑦

𝑦!
 ∑ (

𝑥

𝑘
) (
𝑦

𝑘
) 𝑘! (

𝜆3
𝜆1𝜆2

)

𝑘

 

min(𝑥,𝑦)

𝑘=0

 

with 

                                          𝔼[𝑋] = 𝑉𝑎𝑟[𝑋] = 𝜆1 + 𝜆3,  

𝔼[𝑌] = 𝑉𝑎𝑟[𝑌] = 𝜆2 + 𝜆3 

𝐶𝑂𝑉(𝑋, 𝑌) = 𝜆3 

Dynamic specification 

The scoring rate of the two opponent teams in a football match is 

determined by 𝜆1, 𝜆2, 𝜆3. Each team in a championship has its own 

scoring rate. In the dynamic case, we consider these rates to change 

over time since the performance of teams will change over time. 

The scoring intensity of the team 𝑖 when playing against the team 𝑗 is 

considered to depend on the attack ability of the team 𝑖 and the 

defense ability of team 𝑗. The home advantage is also included in our 

model, so considering that 𝑖 is the home team and 𝑗 the away team in 

week 𝑡 we have for 𝑖, 𝑗 = 1,… ,𝑁 , 𝑖 ≠ 𝑗, 

𝜆1(𝑖,𝑗)𝑡 = exp (ℎ𝑜𝑚𝑒 + 𝑎𝑡𝑡𝑖𝑡 + 𝑑𝑒𝑓𝑗𝑡) 

𝜆2(𝑖,𝑗)𝑡 = exp (𝑎𝑡𝑡𝑗𝑡 + 𝑑𝑒𝑓𝑖𝑡) 
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The attack and defense strengths of the teams in a championship 

change over time since the teams’ compositions and performances 

are not the same over time. As a result, we consider the attack and 

defense parameters to be auto-regressive processes. We have, 

𝑎𝑡𝑡𝑖,𝑡 = 𝜇𝑎𝑡𝑡,𝑖 + 𝜑𝑎𝑡𝑡,𝑖𝑎𝑡𝑡𝑖,𝑡−1 + 𝜂𝑎𝑡𝑡,𝑖𝑡 

𝑑𝑒𝑓𝑖,𝑡 = 𝜇𝑑𝑒𝑓,𝑖 + 𝜑𝑑𝑒𝑓,𝑖𝑑𝑒𝑓𝑖,𝑡−1 + 𝜂𝑑𝑒𝑓,𝑖𝑡 

where 𝜇𝑎𝑡𝑡,𝑖 and 𝜇𝑑𝑒𝑓,𝑖 are unknown constants, 𝜑𝑎𝑡𝑡,𝑖 and 𝜑𝑑𝑒𝑓,𝑖 are 

auto-regressive coefficients and 𝜂𝑎𝑡𝑡,𝑖𝑡 and 𝜂𝑑𝑒𝑓,𝑖𝑡 are normally 

distributed error terms which are independent of each other for all 

𝑖 = 1,… , 𝑁 and 𝑡 = 1,… , 𝑛. 

The dynamic processes are considered to be stationary, so |𝜑𝑎𝑡𝑡,𝑖| <

1 and |𝜑𝑑𝑒𝑓,𝑖| < 1 for 𝑖 = 1,… , 𝑁. We also have that, 

𝜂𝑎𝑡𝑡,𝑖𝑡~𝑁𝐼𝐷(0, 𝜎𝑎𝑡𝑡,𝑖
2 ) 

𝜂𝑑𝑒𝑓,𝑖𝑡~𝑁𝐼𝐷(0, 𝜎𝑑𝑒𝑓,𝑖
2 ) 

where 𝑁𝐼𝐷(𝑎, 𝑏) is normal independent distribution with mean 𝑎 

and variance 𝑏. 

The initial conditions for the auto-regressive processes 𝑎𝑡𝑡𝑖,𝑡, 𝑑𝑒𝑓𝑖,𝑡  

are based on means and variances of their unconditional 

distributions which are given by, 

𝔼[𝑎𝑡𝑡𝑖,𝑡] =
𝜇𝑎𝑡𝑡,𝑖

1 − 𝜑𝑎𝑡𝑡,𝑖
  , 𝑉𝑎𝑟[𝑎𝑡𝑡𝑖,𝑡] =

𝜎𝑎𝑡𝑡,𝑖
2

(1 − 𝜑𝑎𝑡𝑡,𝑖)
2 

and 

𝔼[𝑑𝑒𝑓𝑖,𝑡] =
𝜇𝑑𝑒𝑓,𝑖

1 − 𝜑𝑑𝑒𝑓,𝑖
  , 𝑉𝑎𝑟[𝑑𝑒𝑓𝑖,𝑡] =

𝜎𝑑𝑒𝑓,𝑖
2

(1 − 𝜑𝑑𝑒𝑓,𝑖)
2 
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Estimation 

Considering 𝐽 teams, we have J/2 match results for each week 𝑡. A 

specific match result is denoted by (𝑋𝑖𝑡 , 𝑌𝑗𝑡) with 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈

{1, … , 𝐽}. The numbers of goals scored by all teams in week 𝑡 are 

collected in the 𝐽 × 1 observation vector 𝑦𝑡 . We also assume the state 

vector 𝑧𝑡 which contains the strengths of attack and defense of all 𝐽 

teams at time 𝑡, (𝑎𝑡𝑡1𝑡 , … , 𝑎𝑡𝑡𝐽𝑡, 𝑑𝑒𝑓1𝑡, … , 𝑑𝑒𝑓𝐽𝑡)
T

with, 

                                                  𝑧𝑡 = 𝜇 + 𝛷𝑧𝑡−1 + 𝜂𝑡  

where 𝜇 is a constant 2𝐽 × 1 vector, 𝛷 is the auto-regressive 2𝐽 × 2𝐽 

coefficient matrix and 𝜂𝑡~𝑁(0, 𝐻) is the 2𝐽 × 1  disturbance vector. 

Let 𝜑 = 𝑑𝑖𝑎𝑔𝛷 and ℎ = 𝑑𝑖𝑎𝑔𝐻. The observation density of 𝑦𝑡  for a 

given realization of 𝑧𝑡 is given by  

𝑝(𝑦𝑡|𝑧𝑡; 𝜑, ℎ, ℎ𝑜𝑚𝑒, 𝜆3) =∏𝑓𝐵𝑃(𝜆1,𝑖,𝑗,𝑡,

𝐽
2

𝑘=1

𝜆2,𝑖,𝑗,𝑡, 𝜆3) 

where 𝑓𝐵𝑃  the density of the bivariate Poisson distribution, index 𝑘 

represents the 𝑘th match between home team 𝑖 and visiting team 𝑗 

and 𝜆1,𝑖,𝑗,𝑡 = exp {ℎ𝑜𝑚𝑒 + 𝑤𝑖𝑗𝑧𝑡}, 𝜆2,𝑖,𝑗,𝑡 = exp{𝑤𝑗𝑖𝑧𝑡} , 𝑖 ≠ 𝑗. The 

vector 𝑤𝑖𝑗 selects the appropriate 𝑎𝑖𝑡, 𝛽𝑗𝑡 elements from 𝑧𝑡. 

The joint density (𝑦, 𝑧) is expressed as, 

𝑝(𝑦, 𝑧; 𝜑, ℎ, ℎ𝑜𝑚𝑒, 𝜆3) = 𝑝(𝑦|𝑧; 𝜑, ℎ, ℎ𝑜𝑚𝑒, 𝜆3) ∙ 𝑝(𝑧; 𝜑, ℎ, ℎ𝑜𝑚𝑒, 𝜆3) 

where 

 𝑝(𝑧; 𝜑, ℎ, ℎ𝑜𝑚𝑒, 𝜆3) = 𝑝(𝑧1; 𝜑, ℎ, ℎ𝑜𝑚𝑒, 𝜆3)∏ 𝑝(𝑧𝑡|𝑧1, … , 𝑧𝑡−1; 𝜑, ℎ, ℎ𝑜𝑚𝑒, 𝜆3)
𝑛
𝑡=2  

Therefore the likelihood function of 𝑦 is, 

𝑙(𝜓) = 𝑝(𝑦; 𝜓) = ∫𝑝(𝑦, 𝑧; 𝜓)𝑑𝑧 = ∫𝑝(𝑦|𝑧; 𝜓)𝑝(𝑧; 𝜓)𝑑𝑧 

with 𝜓 = (𝜑, ℎ, ℎ𝑜𝑚𝑒, 𝜆3) 

An analytical solution to evaluate this integral is not feasible, so the 

maximum likelihood estimation is carried out through numerical 

evaluation methods. 
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Chapter 5 

 

Application 
 

 

In this chapter, four models will be used in terms of an application 

over football analysis and prediction. Initially, the aim of the 

application will be presented along with the data. Subsequently, the 

models’ fitting will take place along with comparison of the models. 

At the end, prediction on a playoff match will be carried out. The R-

code of the procedure as well as the whole dataset will be given in 

the Appendix. 

 

5.1.      Analyzing the Greek Superleague 
 

The application that follows, concerns the Greek Superleague. Our 

basic aim is to analyze the teams’ performance by estimating the 

“expected goals” for each team in every match of the season 2019-

2020 and the regular season 2020-2021. The analysis will take place 

through four models: the bivariate Poisson model, the bivariate 

Poisson model with geometric diagonal inflation, the bivariate 

Poisson model with inflation at scores 0 − 0 and 1 − 1, and the 

diagonal inflated Double Poisson model.  

 

5.1.1.   Model specification 

The basic aim of a statistician when using a model, is the estimation 

of the parameters of the model. 
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The bivariate Poisson models that were presented in Chapter 4, are 

said to use the number of goals that a team succeeds or concedes as 

covariates for the estimation of the model parameters. However, as it 

is pointed out by Wheatcroft (2020), the match statistics such as 

shots and corner kicks might be more informative than goals in terms 

of making match predictions. 

 

Covariates for scoring rates 𝝀𝟏, 𝝀𝟐 

In our application, the predictors that will be used for the scoring 

rates of the two opponents are: 

 

1) Overall Rating: The overall team rating is a reasonable choice-

predictor for the model as it depicts completely the quality of a 

team’s performance in a football game (Hongyou Liu, 2015). 

The football performance analysts evaluate the performance of 

each player in a single match every 5 minutes. If a player makes 

a successful pass or cross or a good penetration in the 

opponent’s area then the player will gain points. On the other 

hand, if a player makes a mistake then he will lose points. As a 

result, every 5-minutes, a total rating for each player is 

computed, which is positive or negative depending on whether 

the good actions are more than the bad ones or not. Table 1 

below shows the evaluation points for the match Asteras 

Tripolis vs Panathinaikos in the season 2020-2021. At the end 

of the match, each player has his total evaluation points and by 

calculating the sum of all players’ points the team total 

evaluation points are obtained. 
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  Table 1: Evaluation Index from the analyst of Asteras Tripolis for the match: Asteras Tripolis vs   

Panathinaikos (Greek Superleague 2020-2021)  

 

 

2) Shots in the penalty and the goal box area: The number 

shots made by a team play a crucial role in the scoring rate, 

especially when they are attempted at close range from the 

rival goalpost. These shots consist of the shots inside the 

penalty area and the shots inside the goal-box area. Table 2 

below presents these attempts from the same match.    
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Table 2: Attemts made from the two opponents for the match: Asteras Tripolis vs   

Panathinaikos (Greek Superleague 2020-2021) 

 

3) Corner Kicks: The number of the corner kicks gained during 

game shows a lot about the offensive strategy of the team. For 

instance, if a team usually attacks from the sides, then it will 

gain more corner kicks than a team which attacks through the 

central axis of the field. It is also worth mentioning that the 

number of the corner kicks describe in a way the dominance of 

a team against the opponent as it shows in a way how much 

time a team spends in the opponent’s area. 
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Covariates for the dependence parameter 𝝀𝟑 

As it is mentioned, the parameter 𝜆3 concerns the level of interaction  

of the two opponents in a football game. The two teams interact with 

each other during the match which means that the scoring rate of the 

teams is affected a lot by the game conditions, such as the speed of the 

game. Using covariates on 𝜆3 helps us to have more insight regarding 

the type of influence. In the following application the dependence 

parameter 𝜆3 will be considered to be constant, which is the simplest 

approach. 

5.1.2.        Data 

The data of the following application were provided by the sports 

analyst of Asteras Tripolis, Thodoris Tsilimigras. In every match, the 

final score (𝑔1, 𝑔2), the overall ratings of the two opponents 

(𝑟𝑎𝑡1, 𝑟𝑎𝑡2), the shots from the penalty area (𝑝𝑒𝑛𝑏𝑜𝑥1, 𝑝𝑒𝑛𝑏𝑜𝑥2), the 

shots from the goal box (𝑔𝑜𝑎𝑙𝑏𝑜𝑥1, 𝑔𝑜𝑎𝑙𝑏𝑜𝑥2) as well as the corner 

kicks (𝑐𝑜𝑟𝑛𝑒𝑟1, 𝑐𝑜𝑟𝑛𝑒𝑟2) constitute the dataset. 

 

 

Table 3: Part of the data set: Scores and match statistics for the games of Greek 

Superleague 2019-20 regular season 
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The teams that take part in this application are: 

> sl=read.csv("data/sl.csv",stringsAsFactors=T) 

> levels(sl[,2]) 

 

 
Table 4: The teams-factors of the data in an alphabetical order 

 

 

The quality of the selected predictors that are used in the application 

are evaluated through the R-output below:  

 
 > sign=glm(g2~rat2+penbox2+goalbox2+corner2,family="poisson", 
        data=sl) ; summary(sign) 

 

 

 

  Table 5: Summary of glm  
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The output presents the level of significance of the predictors in 

relation to the response variable 𝑔2 which denotes the goals achieved 

by a team during match. It is clear that the intercept as well as the 

overall rating and the attempts from the penalty area are highly 

significant. The lowest significance is obtained by the corner kicks 

that a team gains in a match. It is also worth mentioning that the 

corner kicks are negatively correlated with the goals scored by a 

team. This may lead to the conclusion that in the Greek Superleague, 

the attacking strategy shouldn’t be based on gaining corner kicks. 

In order to check the dependence between the selected covariates, a 

correlation matrix is obtained: 

 

 

   

  Table 6: Correlation matrix 

 

The level of correlation between any pair of the explanatory 

variables above is quite small in general terms, which implies that 

each of the variables can independently predict the value of the 

dependent variable. 
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5.1.3.   Fitting the models 

The analysis of the Greek Superleague 2019-20 and 2020-21 will take 

place through functions in R. The package that contains these functions is 

made by Karlis and Ntzoufras and it is available at http://www.stat-

athens.aueb.gr/~jbn/papers/paper14.htm. It contains the EM algorithm 

for fitting the bivariate Poisson model and the diagonal inflated bivariate 

Poisson model, as well as some extra functions that the algorithm uses. 

The R-code is given in the Appendix. 

 

 Fitting the bivariate Poisson model  

 The function lm.bp applies the EM algorithm for fitting the bivariate 

Poisson model of the form (𝑥𝑖 , 𝑦𝑖)~𝐵𝑃(𝜆1𝑖, 𝜆2𝑖, 𝜆3𝑖) for 𝑖 = 1, … , 𝑛 with 

𝑙𝑘 = 𝑤𝑘𝛽𝑘  , 𝑘 = 1,2,3 where 𝑙𝑘 = 𝑙𝑜𝑔𝜆𝑘. Its syntax is:  

 

𝒍𝒎. 𝒃𝒑(𝒍𝟏, 𝒍𝟐, 𝒍𝟏𝒍𝟐 = 𝑵𝑼𝑳𝑳, 𝒍𝟑 = ~𝟏,𝒅𝒂𝒕𝒂, 𝒄𝒐𝒎𝒎𝒐𝒏. 𝒊𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕

= 𝑭𝑨𝑳𝑺𝑬, 𝒛𝒆𝒓𝒐𝑳𝟑 = 𝑭𝑨𝑳𝑺𝑬,𝒎𝒂𝒙𝒊𝒕 = 𝟑𝟎𝟎, 𝒑𝒓𝒆𝒔 = 𝟏𝒆 − 𝟖) 

The input components 𝒍𝟏, 𝒍𝟐 and 𝒍𝟑 are of the form “𝑥~𝑥1 +⋯+ 𝑥𝑘”, 

“𝑦~𝑦1 +⋯+ 𝑦𝑘”  and “𝑧~𝑧1 +⋯+ 𝑧𝑝”  respectively, concerning the 

parameters of 𝑙𝑜𝑔𝜆1, 𝑙𝑜𝑔𝜆2 and 𝑙𝑜𝑔𝜆3. The component 𝒍𝟏𝒍𝟐 concerns 

the common parameters of 𝑙𝑜𝑔𝜆1 and 𝑙𝑜𝑔𝜆2 (whether they exist) and 

the component data is the data frame which contains the variables. 

There are also two logical arguments: common.intercept and 

zeroL3. The first one refers to whether a common intercept on 𝑙𝑜𝑔𝜆1 

and 𝑙𝑜𝑔𝜆2 is used and the second one refers to whether 𝜆3 is set equal 

to zero. Finally, the component maxit is associated with the 

maximum number of the EM steps that will take place and the 

argument pres is the precision that is used to terminate the EM 

algorithm. If the relative log-likelihood difference is lower than the 

value of the precision then the EM algorithm will terminate. 

 

 

 
 

 

http://www.stat-athens.aueb.gr/~jbn/papers/paper14.htm
http://www.stat-athens.aueb.gr/~jbn/papers/paper14.htm
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> biv=lm.bp(g1~rat1+penbox1+goalbox1+corner1,g2~rat2+ 

            penbox2+goalbox2+corner2,l1l2=NULL,data=sl) 

> biv$coefficients 

 

 
 

> biv$parameters 

  [1] 11 

 

> biv$iterations 

  [1] 56 

 
 

> biv$lambda1 

 

 

 
> biv$lambda2 

 

 
 

After estimating the parameters 𝜆1, 𝜆2 and 𝜆3, the fitted values for the 

two responses 𝑥 and 𝑦 (which denote the goals achieved by the two 

teams) are obtained. The fitted values can be estimated as, 

�̂� = 𝜆1 + 𝜆3 

�̂� = 𝜆2 + 𝜆3 
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The fitted values 𝑥�̂�, 𝑦�̂� denote the number of goals that each of the two 

teams deserved to have achieved in the 𝑖-th match (expected goals). 

These values arise by taking into account their performance in the 𝑖-

th match (Table 6). 
 

 

 

  Table 6: Expected goals obtained by the bivariate Poisson model 

 

In many matches, a deviation is observed between the goals that a 

team achieved and the goals that should have succeeded. For 

instance, in the 16-th match of the regular season 2019-20 (Xanthi vs 

Asteras Tripolis) where the final score was 2 − 1, the expected goals 

of Xanthi based on the match performance were 0.8965524. This 

leads to the remark that Xanthi was either lucky or too effective due 

to the fact that it took only few attempts to achieve goal. However, the 

final result was victory of the home team which is in accordance with 

the expectation  �̂�16 > �̂�16. 
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      Graph: Plot of the home and away expected goals 

 

The plot above depicts the relationship between the home expected 

goals and the away expected goals in the Greek Superleague 2019-20 

and the regular season 2020-21. As it appears, in most games the 

performance of the two opponents is interwoven with about 1 goal 

for each team. After all, it is observed that in most matches, the levels 

of performance of the two opponents are similar. This may imply the 

existence of high competitiveness in the Greek Superleague. 

 

 Fitting the diagonal inflated bivariate Poisson models 

The function lm.dibp contains the EM algorithm for fitting the 

diagonal inflated bivariate Poisson model of the form: 

 

                       (𝑥𝑖 , 𝑦𝑖)~𝐷𝐼𝐵𝑃(𝜆1𝑖, 𝜆2𝑖 , 𝜆3𝑖,, 𝑝, 𝐷(𝜃)) for 𝑖 = 1,… , 𝑛  

 

with 𝑙𝑘 = 𝑤𝑘𝛽𝑘  , 𝑘 = 1,2,3 where 𝑙𝑘 = 𝑙𝑜𝑔𝜆𝑘.  
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Its syntax in R is: 

 

𝑙𝑚. 𝑑𝑖𝑏𝑝(𝑙1, 𝑙2, 𝑙1𝑙2 = 𝑁𝑈𝐿𝐿, 𝑙3 = ~1, 𝑑𝑎𝑡𝑎, 𝑐𝑜𝑚𝑚𝑜𝑛. 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

= 𝐹𝐴𝐿𝑆𝐸, 𝑧𝑒𝑟𝑜𝐿3 = 𝐹𝐴𝐿𝑆𝐸, 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

= "discrete",jmax=2,𝑚𝑎𝑥𝑖𝑡 = 300, 𝑝𝑟𝑒𝑠 = 1𝑒 − 8) 

 

The syntax of the diagonal inflated model above contains an extra input 

component compared with the bivariate Poisson model. That is the 

component distribution which refers to the discrete distribution that 

provokes inflation. The choices could be “poisson”, “geometric” or 

“discrete”. In the case of the last choice, the argument jmax is required, 

which shows up to which draw outcome there will be probability 

inflation.  

A diagonal inflated model with geometric inflation and an inflated model 

with inflation in the outcomes 0 − 0 and 1 − 1 will be used for our 

application. After these attempts, the occasion where 𝜆3 = 0 will also be 

shown which lead to an inflated double Poisson model. 

 

 For the model with geometric inflation: 

 

> infg=lm.dibp(g1~rat1+penbox1+goalbox1+corner1,g2~rat2+penbox2+ 

               goalbox2+corner2,l1l2=NULL,data=sl,distribution= 

               “geometric”) 

 

> infg$coefficients 
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The fitted values of the responses 𝑥, 𝑦 are expressed as, 

 

�̂� = (1 − 𝑝)(𝜆1 + 𝜆3)   𝑎𝑛𝑑 �̂� = (1 − 𝑝)(𝜆2 + 𝜆3)       , 𝑥 ≠ 𝑦 

�̂� = (1 − 𝑝)(𝜆1 + 𝜆3) + 𝑝𝔼𝐷[𝑥] 𝑎𝑛𝑑 �̂� = (1 − 𝑝)(𝜆2 + 𝜆3) + 𝑝𝔼𝐷[𝑥]   , 𝑥 = 𝑦 

 

  
  Table 7: Expected goals obtained by the bivariate Poisson with geometric inflation 

 

 For the model with the discrete inflation with 𝒋 = 𝟏 : 

 
> inf1=lm.dibp(g1~rat1+penbox1+goalbox1+corner1,g2~rat2+ 

               penbox2+goalbox2+corner2,l1l2=NULL,data= 

               sl,jmax=1) 

 

 

> inf1$coefficients 
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 Finally, the inflated double Poisson model will be obtained by 

putting 𝜆3 = 0 in the last model. After all, as it is mentioned, the 

dependence between the two opponents can be expressed by 

the inflated model even if 𝜆3 = 0.  
 

> infdp=lm.dibp(g1~rat1+penbox1+goalbox1+corner1,g2~rat2+ 

                penbox2+goalbox2+corner2,l1l2=NULL,data= 

                zeroL3=TRUE,jmax=1) 

 

 

The fitted values �̂� and �̂� in the inflated double-Poisson occasion are: 

 

�̂� = (1 − 𝑝)𝜆1   𝑎𝑛𝑑 �̂� = (1 − 𝑝)𝜆2     , 𝑥 ≠ 𝑦 

�̂� = (1 − 𝑝)𝜆1 + 𝑝𝔼𝐷[𝑥] 𝑎𝑛𝑑 �̂� = (1 − 𝑝)𝜆2 + 𝑝𝔼𝐷[𝑥]   , 𝑥 = 𝑦 
 

 

5.1.4.     Model comparison 

Four bivariate models were used for analyzing the Greek Superleague 

2020-19 and 2020-21. The following matrix depicts a summary of this 

analysis. 

 

 

 

   Table 8: Comparison of the fitted-models 

 

 

A considerable remark is that the bivariate Poisson model seems to 

be a preferable option due to the fact that the AIC and BIC values of 

this model are smaller than the others. Although the inflated bivariate 

Poisson models are generally considered to be better options when 

analyzing football matches, in the case of Greek Superleague there 

was no excess in draw outcomes. This makes the simple bivariate 

Poisson model a better fit to our data.  
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Finally, let us compare the bivariate Poisson model above (which uses 

match statistics as covariates) with the bivariate Poisson model 

whose explanatory variables are the goals that teams have succeeded 

and conceded so far. After all, many authors suggest the latter. 

 

 

 

 

Table 9: Comparison of the fitted-bivariate Poisson model and the bivariate Poisson 

model that uses goals as covariates 

 

 

It is clear that the model that uses the game ratings and statistics as 

covariates is proved to be a better option according to the table 

above. As a result, the model that will be used for the prediction that 

follows is the bivariate Poisson model which uses the match ratings 

and statistics as covariates. 
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5.2.      Prediction 
 

5.2.1.     Predicting a playoff match 
 

In a football game, the scoring rates of the two opponents 𝜆1, 𝜆2 are 

estimated through their game statistics and ratings. However, the 

match statistics are unknown before a match starts. As a result, in 

order to predict the outcome of an upcoming football match, the 

statistics of this match must be firstly estimated (Edward Wheatcroft 

2020). 

After analyzing the seasons 2019-20 and 2020-21 of the Greek 

Championship we will make a prediction for the first playoff match of 

the season 2020-21. The prediction will take place through the 

function bivpois.table (Karlis and Ntzoufras). Its syntax in R is: 

 

𝑏𝑖𝑣𝑝𝑜𝑖𝑠. 𝑡𝑎𝑏𝑙𝑒(𝑥, 𝑦, 𝑙𝑎𝑚𝑏𝑑𝑎 = 𝑐(1,1,1)) 

 

This function returns a probability matrix (with (𝑥 + 1) × (𝑦 + 1) 

dimension) of the bivariate Poisson distribution using recursive 

relations. The components 𝒙 and 𝒚 show the values that will be 

evaluated. The cell 𝑖𝑗 in the matrix contains the probability 

𝑃(𝑋 = 𝑖 − 1, 𝑌 = 𝑗 − 1). It is reasonable that 𝑥 and 𝑦 must be at least 

1. The component 𝒍𝒂𝒎𝒃𝒅𝒂 is a vector that contains the values of the 

parameters 𝜆1, 𝜆2, 𝜆3. 

The first match of the playoff period of the season 2020-21 was 

Asteras Tripolis vs Panathinaikos. By calculating the expected 

statistics of the two teams before the match, the scoring rates 𝜆1 and 

𝜆2 can be obtained. The dependence parameter 𝜆3 is constant and 

equal to 0.00665655. 
 

> l1=exp(-1.281071082+0.008715946*ratA+0.024295455*penboxA+ 

         0.100234116*goalboxA-0.030432260*cornerA);l1 

 

[1] 1.163891 

 

> l2=exp(-1.705548672+0.009189555*ratP+0.087018910*penboxP+ 

         0.197741080*goalboxP-0.048838609*97orner);l2 
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[1] 0.8765884 

 

> l3=0.00665655;l3 

 

By calling the function 𝑏𝑖𝑣𝑝𝑜𝑖𝑠. 𝑡𝑎𝑏𝑙𝑒(8,8, 𝑙𝑎𝑚𝑏𝑑𝑎(𝑙1, 𝑙2, 𝑙3) the 

probabilities of all the outcomes up to 8 − 8 are obtained. 

 

 
Table 10: Probability matrix for the scores of the playoff match: Asteras Tripolis vs    

Panathinaikos 

 

By taking the sum of the elements of the matrix diagonal as well as 

the sum of the elements above and below the diagonal, the following 

probabilities are obtained: 

 

𝐴𝑠𝑡𝑒𝑟𝑎𝑠 𝑇𝑟𝑖𝑝𝑜𝑙𝑖𝑠 𝑤𝑖𝑛:  42,4% 

𝐷𝑟𝑎𝑤: 30% 

𝑃𝑎𝑛𝑎𝑡ℎ𝑖𝑛𝑎𝑖𝑘𝑜𝑠 𝑤𝑖𝑛: 27,6% 

 

 

The actual final result in this match was 2 − 2. 
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5.2.2.   Betting odds 

 
In betting companies, the bookmakers use betting odds to describe an 

upcoming match. By inversing the win-draw-lose probabilities of the 

match Asteras Tripolis vs Panathinaikos above, the following betting 

values-odds arise: 

 

𝐴𝑠𝑡𝑒𝑟𝑎𝑠 𝑇𝑟𝑖𝑝𝑜𝑙𝑖𝑠 𝑤𝑖𝑛: 2,35 

𝐷𝑟𝑎𝑤: 3,33 

𝑃𝑎𝑛𝑎𝑡ℎ𝑖𝑛𝑎𝑖𝑘𝑜𝑠 𝑤𝑖𝑛: 3,62 
 

 

Certainly, the betting odds of many other characteristics of the game 

(such as how many goals are going to be achieved in general) can also 

be obtained by inversing of the respective probabilities from the 

matrix above. 

These betting odds above are usually reduced by bookmakers so that 

there is a gain for the companies. Actually, the relation between the 

betting odds 𝑜𝑖  and the probabilities 𝑝𝑖  of an event 𝑖 is expressed as , 

 

𝑝𝑖 =
1

𝑜𝑖 + 𝑔
 

 

where g is the gain of the bookmaker. 

As a result, it easy to notice that the odds in practice also contain the 

market value information.   
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Conclusion 

            Sports analytics constitute a sector of statistics which is 

continually evolving while making the predictions of many sport 

events more and more effective. In the case of football, there have 

been many predictive models so far, each of which has its own 

specifications and properties. It is worth mentioning that sometimes, 

considering models with simpler structure than others may be 

preferable. Concerning the information which predictive models use, 

the in-game statistics and ratings are more informative than the goals 

that teams have been succeeded so far. These facts could be of great 

interest, as the companies associated with football, such as betting 

companies, can improve their approach on modeling and prediction, 

which will lead to increase of profits. More importantly, the teams 

themselves could assess various characteristics and make decisions 

in order to increase their chances for a successful outcome. 
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APPENDIX 
 

 

A1.   Data Set 
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A2.  R-Code 
 

Function bivpois.table 
"bivpois.table" <- 

function(x, y, lambda = c(1, 1, 1)) 

{ 

 

 j<-0 

 n <- length(x) 

 maxy <- c(max(x), max(y)) #Set initial values for 

parameters 

 lambda1 <- lambda[1] 

 lambda2 <- lambda[2] 

 lambda3 <- lambda[3] 

 if((x == 0) | (y == 0)) { 

  prob <- matrix(NA, nrow = maxy[1] + 1, ncol = 

maxy[2]+1, byrow = T) 

  prob[maxy[1] + 1, maxy[2] + 1] <- exp( - lambda3) *  

   dpois(x[j], lambda1[j]) * dpois(y[j], 

lambda2[j]) 
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} 

 else { 

  prob <- matrix(NA, nrow = maxy[1] + 1, ncol = 

maxy[2]+1, byrow = T) 

  k <- 1 

  m <- 1 

  prob[k, m] <- exp( - lambda1 - lambda2 - lambda3) 

  for(i in 2:(maxy[1] + 1)) { 

   prob[i, 1] <- (prob[i - 1, 1] * lambda1)/(i - 

1) 

  } 

  for(j in 2:(maxy[2] + 1)) { 

   prob[1, j] <- (prob[1, j - 1] * lambda2)/(j - 

1) 

  } 

  for(j in 2:(maxy[2] + 1)) { 

   for(i in 2:(maxy[1] + 1)) { 

    prob[i, j] <- (lambda1 * prob[i - 1, j] +  

      lambda3 * prob[i - 1, j - 1])/(i - 1) 

   } 

  } 

 } 

 result <- prob 

 result 

} 

 

Function lm.bp 
"lm.bp" <- 

function( l1, l2, l1l2=NULL, l3=~1, data, 

common.intercept=FALSE, zeroL3=FALSE, maxit=300, pres=1e-8, 

verbose=getOption('verbose') ) 

# 

{ 

options(warn=-1) 

# 

# definition of function call  

templist<-list( l1=l1, l2=l2, l1l2=l1l2, l3=l3, 

data=substitute(data), common.intercept=common.intercept, 

zeroL3=zeroL3, maxit=maxit, pres=pres, verbose=verbose) 

tempcall<-as.call( c(expression(lm.bp), templist)) 

rm(templist) 
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# l1           : formula for the first  

linear predictor (of lambda1) 

# l2           : formula for the second 

linear predictor (of lambda2) 

# l1l2         : formula for common variables 

on both lambda1 and lambda2 

# l3           : formula for the third first 

linear predictor/covariance parameter (lambda3) 

# common.intercept: logical argument defining whether common 

intercept should be used for lamdba1,lambda2 

# 

# data     : data.frame which contains data {required 

arguement} 

# zeroL3   : Logical argument controlling whether lambda3 is 

zero (DblPoisson) or not 

# maxit    : maximum number of iterations  

# pres     : precision of the relative likelihood difference 

after which EM stops 

# verbose  : Logical argument controlling whether beta 

parameters will we  

#                printed while EM runs. Default value is taken 

options()$verbose value.  

# -------------------------------------------------------------

----------------------- 

# 

# 

# 

# set common or noncommon intercept 

if (common.intercept){ formula1.terms<-'1' } 

else {formula1.terms<-'internal.data1$noncommon' } 

# 

# 

namex<-as.character(l1[2]) 

namey<-as.character(l2[2]) 

x<-data[,names(data)==namex] 

y<-data[,names(data)==namey] 

# 

# Data length 

n<-length(x) 

lengthpvec<-1 

# 

# 

# 

# initial values 
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s<-rep(0,n) 

like<-1:n*0 

zero<- ( x==0 )|( y==0 ) 

if   (zeroL3) { lambda3<-rep(0,n) }  

else          { lambda3<-rep( max(0.1, 

cov(x,y,use='complete.obs')), n) }  

# 

# 

# form dataframes used 

# data1 includes modelling on lambda1 and lambda2 

# data2 includes modelling on lambda3  

# internal.data1 and internal.data2 are data frames used for 

additional internal variables 

# 

internal.data1<-data.frame( y1y2=c( x, y) ) 

internal.data2<-data.frame( y3 = rep(0, n ) ) 

# 

p<-length(as.data.frame(data)) 

data1<-rbind(data, data)  

names(data1)<-names(data) 

# 

# removing x and y 

data1<-data1[ , names(data1)!=namex] 

data1<-data1[ , names(data1)!=namey] 

# 

# 

# define full model 

if (as.character(l1[3])=='.') { l1<-formula( paste( 

as.character(l1[2]), paste( names(data1),'',collapse='+',sep='' 

), sep='~')  )   } 

if (as.character(l2[3])=='.') { l2<-formula( paste( 

as.character(l2[2]), paste( names(data1),'',collapse='+',sep='' 

), sep='~')  )   } 

if (as.character(l3[2])=='.') { l3<-formula( paste( '', paste( 

names(data1),'',collapse='+',sep='' ) , sep='~') )   } 

# 

# define the formula used for covariance term 

formula2<-

formula(paste('internal.data2$y3~',as.character(l3[2]),sep='')) 

# 

internal.data1$noncommon<- as.factor(c(1:n*0,1:n*0+1)) 

contrasts(internal.data1$noncommon)<-contr.treatment(2, base=1) 

internal.data1$indct1<-c(1:n*0+1,1:n*0  ) 

internal.data1$indct2<-c(1:n*0  ,1:n*0+1) 
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# 

# 

if (!zeroL3){  

  data2<-data1[1:n,] 

  names(data2)<-names(data1) 

  } 

# 

##### 

# 

# add the common terms 

# 

if ( !is.null(l1l2) ) { 

 formula1.terms<-paste( formula1.terms, 

as.character(l1l2[2]),sep='+') 

 } 

# 

# add the special common terms (if any) 

# 

# 

# 

# in this section we identify non-common parameters  

# if a variable X is common in all formulas the we use term 

x*noncommon to include x+x:noncommon terms 

# otherwise use I(internal.data1$indct1*x) to add sepererate 

parameter on lambda1 

# 

templ1<- labels(terms(l1)) 

# 

# run this only if there are terms in l1 formula 

if (length( templ1 )>0){  

 for ( k1 in 1:length( templ1 ) ){ 

  if ( !is.null(l1l2) ) { checkvar1<-

sum(labels(terms(l1l2))==templ1[k1] )==1 } 

  else{ checkvar1<-FALSE }   

  checkvar2<-sum(labels(terms(l2))==templ1[k1] )==1 

  if (checkvar1&checkvar2) {formula1.terms<-

paste(formula1.terms, 

paste('internal.data1$noncommon*',templ1[k1],sep=''), sep='+')

 } 

  else{  

   formula1.terms<-paste(formula1.terms, 

paste('+I(internal.data1$indct1*',templ1[k1],sep=''), sep='')
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   formula1.terms<-paste(formula1.terms, 

')',sep='') 

   } 

 } 

}  

# 

# if a variable X is not common st 

# otherwise use I(internal.data1$indct1*x) to add sepererate 

parameter on lambda1 

# 

templ2<- labels(terms(l2)) 

# 

# run this only if there are terms in l1 formula 

if (length( templ2 )>0){  

 for ( k1 in 1:length( templ2 ) ){ 

  if ( !is.null(l1l2) ) {checkvar1<-

(sum(labels(terms(l1l2))==templ2[k1] 

)+sum(labels(terms(l1))==templ2[k1] ))!=2  } 

  else{ checkvar1<-TRUE }   

  if ( checkvar1 ) {  

   formula1.terms<-paste(formula1.terms, 

paste('+I(internal.data1$indct2*',templ2[k1],sep=''), sep='') 

   formula1.terms<-paste(formula1.terms, 

')',sep='') 

   } 

 } 

} 

# 

rm(templ1) 

rm(templ2) 

rm(Checkvar1) 

rm(Checkvar2) 

# 

# 

# 

# 

# 

#  

# This bit creates labels for special terms of type c(x1,x2) 

used in l1l2  

# 

# 

formula1<-

formula(paste('internal.data1$y1y2~',formula1.terms,sep='')) 
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tmpform1<-as.character(formula1[3]) 

newformula<-formula1 

while( regexpr('c\\(',tmpform1) != -1) 

{  

 temppos1<-regexpr('c\\(',tmpform1)[1] 

 tempfor <-substring( tmpform1, first = temppos1+ 2 ) 

 temppos2<-regexpr('\\)' , tempfor)[1] 

 tempvar <-substring( tempfor , first = 1,  last = 

temppos2-1 ) 

 temppos3<-regexpr(', ' , tempvar)[1] 

 tempname1<-substring(tempfor    , first = 1,  last = 

temppos3-1 ) 

 tempname2<-substring(tempfor    , first = temppos3+2, 

last=temppos2-1) 

 tempname2<-sub( '\\)','', tempname2  ) 

 tempvar1<-data[, names(data)==tempname1] 

 tempvar2<-data[, names(data)==tempname2] 

 data1$newvar1<-c(tempvar1, tempvar2) 

# 

 if( is.factor(tempvar1)& is.factor(tempvar2) ){ 

  data1$newvar1<-as.factor(data1$newvar1)  

  if (all(levels(tempvar1)==levels(tempvar2))){ 

   attributes(data1$newvar1)<-

attributes(tempvar1)} 

 }    

 tempvar<-sub( ', ' , '..',  tempvar ) 

 names(data1)[names(data1)=='newvar1']<-tempvar 

 newformula<-sub( 'c\\(','', tmpform1  ) 

 newformula<-sub( '\\)','', newformula  ) 

 newformula<-sub( ', ' , '..', newformula  ) 

 tmpform1<-newformula 

 formula1<-

formula(paste('internal.data1$y1y2~',newformula,sep='')) 

} 

##### 

rm(temppos1) 

rm(temppos2) 

rm(temppos3) 

rm(tmpform1) 

rm(tempfor) 

rm(tempvar) 

rm(tempvar1) 

rm(tempvar2) 

rm(tempname1) 
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rm(tempname2) 

# 

# 

# Initial values for lambda 

# 

lambda<-glm(formula1,family=poisson, data=data1)$fitted 

# 

lambda1<-lambda[1:n] 

lambda2<-lambda[(n+1):(2*n)] 

# 

difllike<-100.0 

loglike0<-1000.0 

i<-0 

# 

# fitting the Double Poisson Model 

if (zeroL3) { 

 # 

 # fit the double Poisson model 

 y0<-c(x,y) 

 m<-glm( formula1, family=poisson, data=data1 ) 

 p3<-length(m$coef) 

 beta<-m$coef  

# ---------------------------------------------------- 

# creating names for parameters 

#  

 names(beta)<-newnamesbeta( beta ) 

# 

#  end of name creations (l1, l2, l2-l1, blank) 

#  ------------------------------------------------- 

 betaparameters<-splitbeta( beta ) 

#  

 lambda<-fitted(m) 

 lambda1<-lambda[1:n] 

 lambda2<-lambda[(n+1):(2*n)] 

 like<-dpois(x, lambda1) * dpois( y, lambda2 ) 

 loglike<-sum(log(like)) 

# 

# calculation of BIC and AIC for bivpoisson model 

 noparams<- m$rank  

 AIC<- -2*loglike + noparams * 2 

 BIC<- -2*loglike + noparams * log(2*n) 

#  

#   

# Calculation of BIC, AIC of Poisson saturated model 
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 x.mean<-x 

 x.mean[x==0]<-1e-12 

 y.mean<-y 

 y.mean[y==0]<-1e-12 

 AIC.sat <-  sum(log( dpois( x , x.mean ) ) + log( dpois( 

y , y.mean ) )) 

 BIC.sat <-  -2 * AIC.sat + (2*n)* log(2*n) 

 AIC.sat <-  -2 * AIC.sat + (2*n)* 2 

# 

# 

 AICtotal<-c(AIC.sat, AIC);  

 BICtotal<-c(BIC.sat, BIC ); 

 names(AICtotal)<-c('Saturated', 'DblPois') 

 names(BICtotal)<-c('Saturated', 'DblPois') 

# 

# putting all betas in one vector 

 allbeta<-c(betaparameters$beta1,betaparameters$beta2) 

 names(allbeta)<-c( paste( '(l1):', 

names(betaparameters$beta1), sep='' ),paste('(l2):', 

names(betaparameters$beta2), sep='' ) ) 

 

 result<-list(coefficients=allbeta, 

fitted.values=data.frame(x=m$fitted[1:n],y=m$fitted[(n+1):(2*n)

]),  

 residuals=data.frame(x=x-m$fitted[1:n],y=y-

m$fitted[(n+1):(2*n)]),  

 beta1=betaparameters$beta1, beta2=betaparameters$beta2, 

lambda1=m$fitted[1:n], lambda2=m$fitted[(n+1):(2*n)], 

lambda3=0, loglikelihood=loglike, iterations=1, 

parameters=noparams, AIC=AICtotal, BIC=BICtotal, call=tempcall) 

} 

else {  

 loglike<-rep(0,maxit) 

 while ( (difllike>pres) && (i <= maxit) ) { 

 i<-i+1 

 #####   E step  ###### 

 for (j in 1:n) { 

  if (zero[j]) { 

   s[j]<-0.0; 

   like[j]<- log(dpois(x[j], 

lambda1[j]))+log(dpois(y[j],lambda2[j]))       -

lambda3[j]; 

   } 

  else { 
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   lbp1<-pbivpois(x[j]-1, y[j]-

1,lambda=c(lambda1[j],lambda2[j],lambda3[j]), log=TRUE); 

   lbp2<-pbivpois(x[j]  , y[j]  

,lambda=c(lambda1[j],lambda2[j],lambda3[j]), log=TRUE); 

# 

   s[j]<-exp(log(lambda3[j])+lbp1-lbp2); 

   like[j]<-lbp2; 

  } 

 } 

 ##### end of E step  ###### 

 x1<-x-s 

 x2<-y-s 

  

 x1[ (x1<0)&(x1>-1.0e-8)]<-0.00 

 x2[ (x2<0)&(x2>-1.0e-8)]<-0.00 

 

 loglike[i]<-sum(like) 

 difllike<-abs( (loglike0-loglike[i])/loglike0 ) 

 loglike0<-loglike[i] 

 # 

 # 

 #####   M step  ###### 

 # 

 #  fit model on lambda3 

 internal.data2$y3<-s 

 m0<-glm( formula2, family=poisson, data=data2 ) 

 beta3<-m0$coef 

 lambda3<-m0$fitted 

 # 

 # fit model on lambda1 & lambda2 

 internal.data1$y1y2<-c(x1,x2) 

 

 m<-glm( formula1, family=poisson, data=data1 ) 

 p3<-length(m$coef) 

 beta<-m$coef 

# creating names for parameters 

 names(beta)<-newnamesbeta( beta ) 

#  

#  

 

 lambda<-fitted(m) 

 lambda1<-lambda[1:n] 

 lambda2<-lambda[(n+1):(2*n)] 

 #####   end of M step  ###### 
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# 

# detailed or compressed printing during the EM iterations 

 if (verbose) { 

  printvector<-c( i, beta, beta3,loglike[i], difllike 

) 

  names(printvector)<-c( 'iter', names(beta), 

paste('(l3):',names(beta3),sep=''), 'loglike', 

'Rel.Dif.loglike')} 

 else { 

  printvector<-c( i, loglike[i], difllike ) 

  names(printvector)<-c( 'iter', 'loglike', 

'Rel.Dif.loglike')} 

#   

 lengthpvec<-length(printvector)  

 print.default( printvector, digits=4 ) 

 } 

# 

# calculation of BIC and AIC for bivpoisson model 

 noparams<- m$rank + m0$rank 

 AIC<- -2*loglike[i] + noparams * 2 

 BIC<- -2*loglike[i] + noparams * log(2*n) 

#  

#   

# Calculation of BIC, AIC of Poisson saturated model 

 x.mean<-x 

 x.mean[x==0]<-1e-12 

 y.mean<-y 

 y.mean[y==0]<-1e-12 

 AIC.sat <-  sum(log( dpois( x , x.mean ) ) + log( dpois( 

y , y.mean ) )) 

 BIC.sat <-  -2 * AIC.sat + (2*n)* log(2*n) 

 AIC.sat <-  -2 * AIC.sat + (2*n)* 2 

# 

# 

 AICtotal<-c(AIC.sat, AIC);  

 BICtotal<-c(BIC.sat, BIC ); 

 names(AICtotal)<-c('Saturated', 'BivPois') 

 names(BICtotal)<-c('Saturated', 'BivPois') 

# 

# spliting parameter vector 

 betaparameters<-splitbeta( beta ) 

# 

# putting all betas in one vector 
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 allbeta<-c(betaparameters$beta1,betaparameters$beta2, 

beta3) 

 names(allbeta)<-c( paste( '(l1):', 

names(betaparameters$beta1), sep='' ),paste('(l2):', 

names(betaparameters$beta2), sep='' ),paste('(l3):', 

names(beta3), sep='' ) ) 

# 

#  Calculation of output  

 result<-list(coefficients=allbeta, 

fitted.values=data.frame(x=m$fitted[1:n]+lambda3,y=m$fitted[(n+

1):(2*n)]+lambda3),  

 residuals=data.frame(x=x-m$fitted[1:n]-lambda3,y=y-

m$fitted[(n+1):(2*n)]-lambda3),  

 beta1=betaparameters$beta1, beta2=betaparameters$beta2, 

beta3=beta3, lambda1=m$fitted[1:n], 

lambda2=m$fitted[(n+1):(2*n)], lambda3=lambda3, 

loglikelihood=loglike[1:i], parameters=noparams, AIC=AICtotal, 

BIC=BICtotal,iterations=i, call=tempcall ) 

# 

# 

} # end of elseif 

options(warn=0) 

# 

class(result)<-c('lm.bp', 'lm') 

 

result 

# 

# 

} 

 

Function pbivpois 
"pbivpois" <- 

function(x, y=NULL, lambda = c(1, 1, 1), log=FALSE) { 

 

  

 if ( is.matrix(x) ) { 

  var1<-x[,1] 

  var2<-x[,2] 

 } 

 else if (is.vector(x)&is.vector(y)){ 

  if (length(x)==length(y)){ 

   var1<-x 

   var2<-y 
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  } 

  else{ 

   stop('lengths of x and y are not equal') 

  }  

 } 

 else{ 

  stop('x is not a matrix or x and y are not vectors') 

 } 

 n <- length(var1) 

  logbp<-vector(length=n) 

# 

 for (k in 1:n){ 

  x0<-var1[k] 

  y0<-var2[k] 

  xymin<-min( x0,y0 ) 

  lambdaratio<-lambda[3]/(lambda[1]*lambda[2]) 

#  

  i<-0:xymin 

  sums<- -lgamma(var1[k]-i+1)-lgamma(i+1)-

lgamma(var2[k]-i+1)+i*log(lambdaratio) 

  maxsums <- max(sums) 

  sums<- sums - maxsums 

  logsummation<- log( sum(exp(sums)) ) + maxsums  

  logbp[k]<- -sum(lambda) + var1[k] * log( lambda[1] ) 

+ var2[k] * log( lambda[2] ) + logsummation  

 } 

 if (log) { result<-    logbp } 

 else     { result<-exp(logbp)  } 

 result 

# end of function bivpois 

} 

 

Function lm.dibp 
"lm.dibp" <- 

function 

( l1, l2, l1l2=NULL, l3=~1, data, common.intercept=FALSE, 

zeroL3=FALSE, distribution='discrete', jmax=2,maxit=300, 

pres=1e-8, verbose=getOption('verbose') ) 

{ 

options(warn=-1) 

# 

# definition of function call  
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templist<-list( l1=l1, l2=l2, l1l2=l1l2, l3=l3, 

data=substitute(data), common.intercept=common.intercept, 

zeroL3=zeroL3, distribution=distribution, jmax=jmax, 

maxit=maxit, pres=pres, verbose=verbose) 

tempcall<-as.call( c(expression(lm.dibp), templist)) 

rm(templist) 

# 

# PARAMETERS COMMON WITH lm.bp 

# l1           : formula for the first  

linear predictor (of lambda1) 

# l2           : formula for the second 

linear predictor (of lambda2) 

# l1l2         : formula for common variables 

on both lambda1 and lambda2 

# l3           : formula for the third first 

linear predictor/covariance parameter (lambda3) 

# common.intercept: logical argument defining whether common 

intercept should be used for lamdba1,lambda2 

# 

# data     : data.frame which contains data {required 

arguement} 

# zeroL3   : Logical argument controlling whether lambda3 is 

zero (DblPoisson) or not 

# maxit    : maximum number of iterations  

# pres     : precision of the relative likelihood difference 

after which EM stops 

# verbose  : Logical argument controlling whether beta 

parameters will we  

#                printed while EM runs. Default value is taken 

options()$verbose value.  

# 

# PARAMETERS ADDITIONAL TO lm.bp 

# distribution : Selection of diagonal inflation distribution.  

#                Three choices are available:  

#                ='discrete'  : Discrete, jmax is the number of 

diagonal elements [0,1,...,] 

#                ='poisson'   : Poisson with mean theta.   

#                ='geometrics': Geometric with success 

probability theta.  

#                Default is DISCRETE(2). theta[1] and theta[2] 

stand for theta_1, theta_2 

#                                        while theta_0=1-

theta[1]-theta[2]. 
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# jmax         : Used only for DISCRETE diagonal distribution 

(distribution='discrete'). 

#                Indicates the number of parameters of the 

DISCRETE distribution. 

# ------------------------------------------------------------- 

# set common or noncommon intercept 

if (common.intercept){ formula1.terms<-'1' } 

else {formula1.terms<-'internal.data1$noncommon' } 

# 

# 

namex<-as.character(l1[2]) 

namey<-as.character(l2[2]) 

x<-data[,names(data)==namex] 

y<-data[,names(data)==namey] 

# 

# 

# Data length 

n<-length(x) 

lengthprintvec<-1 

# 

# 

# 

# definition of diagonal inflated distribution 

 maxy<-max(c(x,y)) 

# 

#  changing distribution to codes 1,2,3  

 dist<-distribution 

 if      ( charmatch( dist, 'poisson'  , nomatch=0) ==1 ) 

{distribution<-2}  

 else if ( charmatch( dist, 'geometric', nomatch=0) ==1 ) 

{distribution<-3}  

 else if ( charmatch( dist, 'discrete' , nomatch=0) ==1 ) 

{distribution<-1} 

 if ( distribution==1 ){  

   dilabel<-paste('Inflation Distribution: 

Discrete with J=',jmax) 

   if (jmax==0) {theta<-0} 

   else         { theta<-1:jmax*0+1/(jmax+1) } 

   di.f<-function (x, theta){ 

   JMAX<-length(theta) 

   if      (x>JMAX) { res<-0 } 

   else if (x==0)   { res<-1-sum(theta) } 

   else             { res<-theta[x] }  

   res 
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   } 

 } 

 else if ( distribution==2 ){  

   dilabel<-'Inflation Distribution: Poisson' 

   theta<-1.0; 

   di.f<-function (x, theta){ 

       if (theta>0) { res<-

dpois( x, theta ) } 

       else { 

        if (x==0) { res<-1} 

        else {res<-1e-12} 

       } 

   } 

 }          

 else if ( distribution==3 ){  

   dilabel<-'Inflation Distribution: Geometric' 

   theta<-0.5; 

   di.f<-function (x, theta){ 

       if (theta>0) {  

        if(theta==1) 

{theta<-0.9999999} 

        res<-dgeom( x, 

theta ) } 

       else if (theta==1){ 

        if (x==0) { res<-1} 

        else {res<-1e-12} 

       } 

       else {res<-1e-12} 

      } 

 } 

 else { 

  stop(paste(distribution, 'Not known distribution.', 

sep=': ')) 

 } 

# ------ 

# setting up data frames, vectors and data 

# 

# form dataframes used 

# data1 includes modelling on lambda1 and lambda2 

# data2 includes modelling on lambda3  

# internal.data1 and internal.data2 are data frames used for 

additional internal variables 

# 

internal.data1<-data.frame( y1y2=c( x, y) ) 
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internal.data2<-data.frame( y3 = rep(0, n ) ) 

# 

p<-length(as.data.frame(data)) 

data1<-rbind(data, data)  

names(data1)<-names(data) 

# 

# removing x and y 

data1<-data1[ , names(data1)!=namex] 

data1<-data1[ , names(data1)!=namey] 

# 

# 

# 

# define full model 

if (as.character(l1[3])=='.') { l1<-formula( paste( 

as.character(l1[2]), paste( names(data1),'',collapse='+',sep='' 

), sep='~')  )   } 

if (as.character(l2[3])=='.') { l2<-formula( paste( 

as.character(l2[2]), paste( names(data1),'',collapse='+',sep='' 

), sep='~')  )   } 

if (as.character(l3[2])=='.') { l3<-formula( paste( '', paste( 

names(data1),'',collapse='+',sep='' ) , sep='~') )   } 

# 

# define the formula used for covariance term 

formula2<-

formula(paste('internal.data2$y3~',as.character(l3[2]),sep='')) 

# 

internal.data1$noncommon<- as.factor(c(1:n*0,1:n*0+1)) 

contrasts(internal.data1$noncommon)<-contr.treatment(2, base=1) 

internal.data1$indct1<-c(1:n*0+1,1:n*0  ) 

internal.data1$indct2<-c(1:n*0  ,1:n*0+1) 

# 

# 

if (!zeroL3){  

  data2<-data1[1:n,] 

  names(data2)<-names(data1) 

  } 

##### 

# 

# add the common terms 

# 

if ( !is.null(l1l2) ) { 

 formula1.terms<-paste( formula1.terms, 

as.character(l1l2[2]),sep='+') 

 } 
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# 

# add the special common terms (if any) 

# in this section we identify non-common parameters  

# if a variable X is common in all formulas the we use term 

x*noncommon to include x+x:noncommon terms 

# otherwise use I(internal.data1$indct1*x) to add sepererate 

parameter on lambda1 

# 

templ1<- labels(terms(l1)) 

# 

# run this only if there are terms in l1 formula 

if (length( templ1 )>0){  

 for ( k1 in 1:length( templ1 ) ){ 

  if ( !is.null(l1l2) ) { checkvar1<-

sum(labels(terms(l1l2))==templ1[k1] )==1 } 

  else{ checkvar1<-FALSE }   

  checkvar2<-sum(labels(terms(l2))==templ1[k1] )==1 

  if (checkvar1&checkvar2) {formula1.terms<-

paste(formula1.terms, 

paste('internal.data1$noncommon*',templ1[k1],sep=''), sep='+')

 } 

  else{  

   formula1.terms<-paste(formula1.terms, 

paste('+I(internal.data1$indct1*',templ1[k1],sep=''), sep='')

  

   formula1.terms<-paste(formula1.terms, 

')',sep='') 

   } 

 } 

}  

# 

# if a variable X is not common st 

# otherwise use I(internal.data1$indct1*x) to add sepererate 

parameter on lambda1 

# 

templ2<- labels(terms(l2)) 

# 

# run this only if there are terms in l1 formula 

if (length( templ2 )>0){  

 for ( k1 in 1:length( templ2 ) ){ 

  if ( !is.null(l1l2) ) {checkvar1<-

(sum(labels(terms(l1l2))==templ2[k1] 

)+sum(labels(terms(l1))==templ2[k1] ))!=2  } 

  else{ checkvar1<-TRUE }   
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  if ( checkvar1 ) {  

   formula1.terms<-paste(formula1.terms, 

paste('+I(internal.data1$indct2*',templ2[k1],sep=''), sep='') 

   formula1.terms<-paste(formula1.terms, 

')',sep='') 

   } 

 } 

} 

# 

rm(templ1) 

rm(templ2) 

rm(Checkvar1) 

rm(Checkvar2) 

# 

# This bit creates labels for special terms of type c(x1,x2) 

used in l1l2 

# 

# 

formula1<-

formula(paste('internal.data1$y1y2~',formula1.terms,sep='')) 

tmpform1<-as.character(formula1[3]) 

newformula<-formula1 

while( regexpr('c\\(',tmpform1) != -1) 

{  

 temppos1<-regexpr('c\\(',tmpform1)[1] 

 tempfor <-substring( tmpform1, first = temppos1+ 2 ) 

 temppos2<-regexpr('\\)' , tempfor)[1] 

 tempvar <-substring( tempfor , first = 1,  last = 

temppos2-1 ) 

 temppos3<-regexpr(', ' , tempvar)[1] 

 tempname1<-substring(tempfor    , first = 1,  last = 

temppos3-1 ) 

 tempname2<-substring(tempfor    , first = temppos3+2, 

last=temppos2-1) 

 tempname2<-sub( '\\)','', tempname2  ) 

 tempvar1<-data[, names(data)==tempname1] 

 tempvar2<-data[, names(data)==tempname2] 

 data1$newvar1<-c(tempvar1, tempvar2) 

# 

 if( is.factor(tempvar1)& is.factor(tempvar2) ){ 

  data1$newvar1<-as.factor(data1$newvar1)  

  if (all(levels(tempvar1)==levels(tempvar2))){ 

   attributes(data1$newvar1)<-

attributes(tempvar1)} 
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 }    

 tempvar<-sub( ', ' , '..',  tempvar ) 

 names(data1)[names(data1)=='newvar1']<-tempvar 

 newformula<-sub( 'c\\(','', tmpform1  ) 

 newformula<-sub( '\\)','', newformula  ) 

 newformula<-sub( ', ' , '..', newformula  ) 

 tmpform1<-newformula 

 formula1<-

formula(paste('internal.data1$y1y2~',newformula,sep='')) 

} 

##### 

rm(temppos1) 

rm(temppos2) 

rm(temppos3) 

rm(tmpform1) 

rm(tempfor) 

rm(tempvar) 

rm(tempvar1) 

rm(tempvar2) 

rm(tempname1) 

rm(tempname2) 

# ------ 

# initial values for parameters 

prob<-0.20 

s<-rep(0,n) 

vi<-1:n*0 

v1<-1-c(vi,vi) 

like<-1:n*0 

zero<- ( x==0 )|( y==0 ) 

if   (zeroL3) { lambda3<-rep(0,n) }  

else          { lambda3<-rep( max(0.1, 

cov(x,y,use='complete.obs')), n) }  

# 

# 

# 

# 

# Initial values for lambda 

 

internal.data1$v1<-1-c(vi,vi); 

 

lambda<-glm( formula1, family=poisson, data=data1, 

weights=internal.data1$v1, maxit=100)$fitted 

# 

lambda1<-lambda[1:n] 
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lambda2<-lambda[(n+1):(2*n)] 

# 

difllike<-100.0 

loglike0<-1000.0 

i<-0 

ii<-0 

 

if (zeroL3) { 

 # 

 # fit double poisson diagonal inflated model 

 loglike<-rep(0, maxit) 

 lambda3<-1:n*0 

 while ( (difllike>pres) && (i <= maxit) ) { 

 i<-i+1 

 #####   E step  ###### 

 for (j in 1:n) { 

  if (zero[j]) { 

   s[j]<-0;   

#   calculation of log-likelihood    

   if (x[j]==y[j]) { 

      density.di<-di.f( 0.0, theta ) 

      like[j]<-log( (1-prob)*exp(-

lambda1[j]-lambda2[j])+prob*density.di ); 

      vi[j]<-prob*density.di*exp(-

like[j]) } 

   else{ 

         like[j]<-log(1-

prob)+log(dpois(x[j],lambda1[j]))+log(dpois(y[j],lambda2[j])); 

      vi[j]<-0.0 ;} 

  }    

  else { 

   if (x[j]==y[j]) { 

     density.di<-di.f( x[j],theta ); 

     like[j]<-log( (1-prob)*dpois( 

x[j],lambda1[j] )*dpois( y[j],lambda2[j] ) + prob*density.di ); 

     vi[j]  <- prob*density.di*exp( -

like[j] ) } 

   else { 

     vi[j]<-0.0; 

     like[j]<-log(1-prob)+log( 

dpois(x[j],lambda1[j])*dpois(y[j],lambda2[j]) )} 

  } 

 } 

#### end of E-step ######### 
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 x1<-x; 

 x2<-y; 

 loglike[i]<-sum( like ) ;  

 difllike<-abs( (loglike0-loglike[i])/loglike0 ) 

 loglike0<-loglike[i] 

 # 

 # 

########### M-step ############ 

 # estimate mixing proportion 

 prob<-sum(vi)/n 

 # 

 # maximization of each theta parameter 

 if ( distribution == 1 ) { 

  # calculation of theta_j, j=1,...,jmax ; theta_0=1-

sum(theta) 

  if (jmax==0) { theta<-0 } 

  else { 

   for (ii in 1:jmax) { 

    temp<-as.numeric(( (x==ii) & (y==ii) )); 

    theta[ii]<-sum(temp*vi)/sum(vi)  

    } 

   } 

 }    

 else if (distribution==2){   

   # calculation of theta for poisson diagonal 

inflation 

   theta<- sum(vi*x)/sum(vi) } 

 else if (distribution==3){   

   # calculation of theta for geometric diagonal 

inflation 

   theta<- sum(vi)/( sum(vi*x)+sum(vi) ) } 

 # 

 # fit model on lambda1 & lambda2 

 # 

 internal.data1$v1<- 1-c(vi,vi); 

 internal.data1$v1[ 

(internal.data1$v1<0)&(internal.data1$v1>-1.0e-10) ]<-0.0 

#  

 x1[(x1<0)&(x1>-1.0e-10)]<-0.0 

 x2[(x2<0)&(x2>-1.0e-10)]<-0.0 

 internal.data1$y1y2<-c(x1,x2) 

 m<-glm( formula1, family=poisson, data=data1, 

weights=internal.data1$v1 , maxit=100) 
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 p3<-length(m$coef) 

 beta<-m$coef  

# ---------------------------------------------------- 

# creating names for parameters 

 names(beta)<-newnamesbeta( beta ) 

# 

#  end of name creations (l1, l2, l2-l1, blank) 

#  ------------------------------------------------- 

 betaparameters<-splitbeta( beta ) 

#  

 lambda<-fitted(m) 

 lambda1<-lambda[1:n] 

 lambda2<-lambda[(n+1):(2*n)] 

 # 

 #####   end of M step  ###### 

# 

#  printing also beta 

 if (verbose) { 

  printvec<- c( i,beta,100.0*prob, theta,  loglike[i], 

difllike );  

  names(printvec)<-c( 'iter', names(beta),  

'Mix.p(%)', paste( 'theta', 1:length(theta),sep='' ), 

'loglike', 'Rel.Dif.loglike') 

  } 

#  limited print out 

 else {   

  printvec<- c( i, 100.0*prob, theta,  loglike[i], 

difllike );  

  names(printvec)<-c( 'iter','Mix.p(%)', paste( 

'theta', 1:length(theta),sep='' ), 'loglike', 

'Rel.Dif.loglike') 

 } 

 lengthprintvec<-length(printvec) 

 print.default( printvec, digits=4 ) 

 } 

 

# 

# calculation of BIC and AIC for double poisson model 

 if ( (distribution==1)&&(jmax==0) ){noparams<- m$rank +1} 

 else                              {noparams<- m$rank + 

length( theta ) +1} 

 AIC<- -2*loglike[i] + noparams * 2 

 BIC<- -2*loglike[i] + noparams * log(2*n) 

#  
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#   

# Calculation of BIC, AIC of Poisson saturated model 

 x.mean<-x 

 x.mean[x==0]<-1e-12 

 y.mean<-y 

 y.mean[y==0]<-1e-12 

 AIC.sat <-  sum(log( dpois( x , x.mean ) ) + log( dpois( 

y , y.mean ) )) 

 BIC.sat <-  -2 * AIC.sat + (2*n)* log(2*n) 

 AIC.sat <-  -2 * AIC.sat + (2*n)* 2 

# 

# 

 AICtotal<-c(AIC.sat, AIC);  

 BICtotal<-c(BIC.sat, BIC ); 

 names(AICtotal)<-c('Saturated', 'DblPois') 

 names(BICtotal)<-c('Saturated', 'DblPois') 

# 

 allbeta<-c(betaparameters$beta1,betaparameters$beta2) 

 names(allbeta)<-c( paste( '(l1):', 

names(betaparameters$beta1), sep='' ),paste('(l2):', 

names(betaparameters$beta2), sep='' ) ) 

 allparameters<-c(allbeta, prob, theta) 

 if (distribution==1){ names(allparameters)<-c( 

names(allbeta), 'p', paste('theta', 1:length(theta),sep='') ) } 

 else {names(allparameters)<-c( names(allbeta), 'p', 

'theta') } 

# 

#  calculation of fitted values 

#  ---------------------------- 

 fittedval1<-(1-prob)*m$fitted[1:n] 

 fittedval2<-(1-prob)*m$fitted[(n+1):(2*n)] 

#    

 meandiag<-0 

 if ((distribution==1)&&(jmax>0)) { meandiag<-sum( 

theta[1:jmax]*1:jmax ) } 

 else if (distribution==2) { meandiag<-theta } 

 else if (distribution==3) { meandiag<- (1-theta)/theta } 

#  

 fittedval1[x==y]<-prob*meandiag + fittedval1[x==y] 

 fittedval2[x==y]<-prob*meandiag + fittedval2[x==y] 

# 

 result<-list(coefficients=allparameters,   
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 fitted.values=data.frame(x=fittedval1,y=fittedval2), 

residuals=data.frame(x=x-fittedval1,y=y-fittedval2),  

     beta1=betaparameters$beta1, 

beta2=betaparameters$beta2, p=prob, theta=theta, 

diagonal.distribution=dilabel, 

     lambda1=m$fitted[1:n], 

lambda2=m$fitted[(n+1):(2*n)], loglikelihood=loglike[1:i], 

parameters=noparams, AIC=AICtotal,   

     BIC=BICtotal,iterations=i , 

call=tempcall) 

# 

# 

# end of diagonal inflated double poisson model 

} 

else {  

 loglike<-rep(0,maxit) 

 while ( (difllike>pres) && (i <= maxit) ) { 

 i<-i+1 

 #####   E step  ###### 

 for (j in 1:n) { 

  if (zero[j]) { 

   s[j]<-0;   

#   calculation of log-likelihood    

   if (x[j]==y[j]) { 

    density.di<-di.f( 0.0, theta ) 

    like[j]<- log( (1-prob)*exp(-lambda1[j]-

lambda2[j]-lambda3[j])+prob*density.di ); 

    vi[j]<-prob*density.di*exp(-like[j]) } 

   else{ 

           like[j]<-log(1-prob)-lambda3[j] 

+log(dpois(x[j],lambda1[j]))       

   +log(dpois(y[j],lambda2[j])); 

    vi[j]<-0.0 ;} 

  }    

  else { 

   lbp1<-pbivpois(x[j]-1, y[j]-1, 

lambda=c(lambda1[j],lambda2[j],lambda3[j]),  log=TRUE ); 

   lbp2<-pbivpois(x[j]  , y[j]  , 

lambda=c(lambda1[j],lambda2[j],lambda3[j]), log=TRUE );  

   s[j]<-exp( log(lambda3[j]) + lbp1 - lbp2 ); 

#   like[j]<-lbp2; 

   if (x[j]==y[j]) { 

     density.di<-di.f( x[j],theta ); 
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     like[j]<-log( (1-prob)*exp(lbp2) + 

prob*density.di ); 

     vi[j]  <- prob*density.di*exp( -

like[j] ) } 

   else { 

     vi[j]<-0.0; 

     like[j]<-log(1-prob)+lbp2 } 

  } 

 } 

#### end of E-step ######### 

 x1<-x-s; 

 x2<-y-s; 

 loglike[i]<-sum( like ) ;  

 difllike<-abs( (loglike0-loglike[i])/loglike0 ) 

 loglike0<-loglike[i] 

 # 

 # 

########### M-step ############ 

 # estimate mixing proportion 

 prob<-sum(vi)/n 

 # 

 # maximization of each theta parameter 

 if ( distribution == 1 ) { 

  # calculation of theta_j, j=1,...,jmax ; theta_0=1-

sum(theta) 

#  cat (c('1:discrete, jmax=', jmax), '\n') 

  if (jmax==0){ theta<-0} 

  else{ 

   for (ii in 1:jmax) { 

    temp<-as.numeric(( (x==ii) & (y==ii) )); 

    theta[ii]<-sum(temp*vi)/sum(vi)  

#    print( c(ii, sum(temp), sum(vi), 

sum(temp*vi) ) ) 

    } 

#    cat( c('2:discrete, jmax=', jmax), '\n') 

   } 

 }    

 else if (distribution==2){   

   # calculation of theta for poisson diagonal 

inflation 

   theta<- sum(vi*x)/sum(vi) } 

 else if (distribution==3){   

# else {   



138 
 

   # calculation of theta for geometric diagonal 

inflation 

   theta<- sum(vi)/( sum(vi*x)+sum(vi) ) } 

 #  fit model on lambda3 

 internal.data2$v1<- 1-vi; 

 internal.data2$v1[ 

(internal.data2$v1<0)&(internal.data2$v1>-1.0e-10) ]<-0.0 

# 

 internal.data2$y3<-s; 

 m0<-glm( formula2, family=poisson, data=data2, 

weights=internal.data2$v1 , maxit=100) 

 beta3<-m0$coef 

 lambda3<-m0$fitted 

 # 

 # fit model on lambda1 & lambda2 

 internal.data1$v1<- 1-c(vi,vi); 

 internal.data1$v1[ 

(internal.data1$v1<0)&(internal.data1$v1>-1.0e-10) ]<-0.0 

# 

 x1[(x1<0)&(x1>-1.0e-10)]<-0.0 

 x2[(x2<0)&(x2>-1.0e-10)]<-0.0 

 internal.data1$y1y2<-c(x1,x2) 

 m<-glm( formula1, family=poisson, data=data1, 

weights=internal.data1$v1 , maxit=100) 

 p3<-length(m$coef) 

 beta<-m$coef 

#  ----  

# creating names for parameters 

 names(beta)<-newnamesbeta( beta ) 

#  ----  

 lambda<-fitted(m) 

 lambda1<-lambda[1:n] 

 lambda2<-lambda[(n+1):(2*n)] 

 # 

 #####   end of M step  ###### 

# 

# print all parameters including beta 

 if (verbose) { 

  printvec<- c( i,beta,beta3,100.0*prob, theta,  

loglike[i], difllike );  

  names(printvec)<-c( 'iter', 

names(beta),paste('l3_',names(beta3),sep=''), 'Mix.p(%)', 

paste( 'theta', 1:length(theta),sep='' ), 'loglike', 

'Rel.Dif.loglike') 
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  } 

# 

#  limited print out 

 else {   

  printvec<- c( i, 100.0*prob, theta,  loglike[i], 

difllike );  

  names(printvec)<-c( 'iter', 'Mix.p(%)', paste( 

'theta', 1:length(theta),sep='' ), 'loglike', 

'Rel.Dif.loglike') 

  } 

# 

 lengthprintvec<-length(printvec) 

 print.default( printvec, digits=4 ) 

 } 

# 

# calculation of BIC and AIC for bivpoisson model 

 if ( (distribution==1)&&(jmax==0) ){noparams<- m$rank + 

m0$rank + 1} 

 else                               {noparams<- m$rank + 

m0$rank + length( theta ) +1} 

 AIC<- -2*loglike[i] + noparams * 2 

 BIC<- -2*loglike[i] + noparams * log(2*n) 

#  

#   

# Calculation of BIC, AIC of Poisson saturated model 

 x.mean<-x 

 x.mean[x==0]<-1e-12 

 y.mean<-y 

 y.mean[y==0]<-1e-12 

 AIC.sat <-  sum(log( dpois( x , x.mean ) ) + log( dpois( 

y , y.mean ) )) 

 BIC.sat <-  -2 * AIC.sat + (2*n)* log(2*n) 

 AIC.sat <-  -2 * AIC.sat + (2*n)* 2 

# 

# 

 AICtotal<-c(AIC.sat, AIC);  

 BICtotal<-c(BIC.sat, BIC ); 

 names(AICtotal)<-c('Saturated', 'BivPois') 

 names(BICtotal)<-c('Saturated', 'BivPois') 

#  ------- 

# 

# spliting parameter vector 

 betaparameters<-splitbeta( beta ) 

# 
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# putting all betas in one vector 

 allbeta<-c(betaparameters$beta1,betaparameters$beta2, 

beta3) 

 names(allbeta)<-c( paste( '(l1):', 

names(betaparameters$beta1), sep='' ),paste('(l2):', 

names(betaparameters$beta2), sep='' ),paste('(l3):', 

names(beta3), sep='' ) ) 

 allparameters<-c(allbeta, prob, theta) 

 if (distribution==1){ names(allparameters)<-c( 

names(allbeta), 'p', paste('theta', 1:length(theta),sep='') ) } 

 else {names(allparameters)<-c( names(allbeta), 'p', 

'theta') } 

# 

#  calculation of fitted values 

#  ---------------------------- 

 fittedval1<-(1-prob)*(m$fitted[1:n]         + lambda3) 

 fittedval2<-(1-prob)*(m$fitted[(n+1):(2*n)] + lambda3) 

#    

 meandiag<-0 

 if ((distribution==1)&&(jmax>0)) { meandiag<-sum( 

theta[1:jmax]*1:jmax ) } 

 else if (distribution==2) { meandiag<-theta } 

 else if (distribution==3) { meandiag<- (1-theta)/theta } 

#  

 fittedval1[x==y]<-prob*meandiag + fittedval1[x==y] 

 fittedval2[x==y]<-prob*meandiag + fittedval2[x==y] 

# 

# 

# saving output 

 result<-list(coefficients=allparameters, 

fitted.values=data.frame(x=fittedval1,y=fittedval2), 

residuals=data.frame(x=x-fittedval1,y=y-fittedval2),  

   beta1=betaparameters$beta1, 

beta2=betaparameters$beta2, beta3=beta3,  p=prob, theta=theta, 

diagonal.distribution=dilabel, 

   lambda1=m$fitted[1:n], 

lambda2=m$fitted[(n+1):(2*n)], lambda3=lambda3, 

loglikelihood=loglike[1:i],  

   parameters=noparams, AIC=AICtotal, 

 BIC=BICtotal,iterations=i , call=tempcall) 

# 

} # end of elseif 

# 

options(warn=0) 
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class(result)<-c('lm.dibp', 'lm') 

# 

result 

# 

# 

} 

 

Function newnamesbeta 
"newnamesbeta" <- 

function( bvec ) { 

# Internal function for renaming parameters according to 

their interpretation 

 

 names(bvec)<-sub('\\)','',names(bvec))    

    #remove right parenthesis 

 

 names(bvec)<-

sub('\\(Intercept','(Intercept)',names(bvec))    

 # replace "(Intercept" with "(Intercept)" 

 names(bvec)[pmatch('internal.data1$noncommon2',names(bvec

))]<-'(l2-l1):(Intercept)' # replace 

'internal.data1$noncommon2' with 'l2-l1' for intercept 

 names(bvec)<-sub('internal.data1\\$noncommon2:','(l2-

l1):',names(bvec))   # the same for the rest of 

parameters 

 names(bvec)<-

sub('internal.data1\\$noncommon0:','(l1):',names(bvec)) 

  # replace 'internal.data1\\$noncommon0:' by '(l1)' 

 names(bvec)<-

sub('internal.data1\\$noncommon1:','(l2):',names(bvec)) 

  # replace 'internal.data1\\$noncommon1:' by '(l2)' 

  

 names(bvec)<-sub(':internal.data1\\$noncommon2','(l2-

l1):',names(bvec))   # same as above with ":" in 

front of expressions 

 names(bvec)<-

sub(':internal.data1\\$noncommon0','(l1):',names(bvec)) 

 names(bvec)<-

sub(':internal.data1\\$noncommon1','(l2):',names(bvec)) 

  

 names(bvec)<-sub('I\\(internal.data1\\$indct1 \\* 

','(l1):',names(bvec))  # replace 

'I(internal.data1$indct1 * ' with '(l1):' 
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 names(bvec)<-sub('I\\(internal.data1\\$indct2 \\* 

','(l2):',names(bvec))  # replace 

'I(internal.data1$indct2 * ' with '(l2):' 

  

 names(bvec) 

} 

 

Function splitbeta 
"splitbeta" <- 

function( bvec ){ 

 

# Internal function for spliting beta parameters according 

to their interpretation 

# 

 p3<-length(bvec) 

 

 indx1<-grep( '\\(l1\\):', names(bvec) ) # identify 

parameters for lambda1 

 indx2<-grep( '\\(l2\\):', names(bvec) ) # identify 

parameters for lambda2 

 indx3<-grep( '\\(l2-l1\\):', names(bvec) ) # identify 

difference parameters for lambda2 

# 

# create temporary labels to identify common parameters 

 tempnames<-sub( '\\(l2-l1)\\:', 'k', names(bvec)  ) 

 tempnames<-sub( '\\(l2)\\:', 'k', tempnames  ) 

 tempnames<-sub( '\\(l1)\\:', 'k', tempnames  ) 

 

 indx4<-tempnames%in%names(bvec) # common parameters are 

identified as TRUE 

#  

 beta1<-c(bvec[indx4],bvec[indx1]) 

 beta2<-c(bvec[indx4],bvec[indx3],bvec[indx2]) 

 indexbeta2<-c( rep(0,sum(indx4)), rep(1,length(indx3)), 

rep(2,length(indx2)) ) 

 

 names(beta1)<-sub('\\(l1\\):','',names(beta1)) 

 names(beta2)<-sub('\\(l2\\):','',names(beta2)) 

 names(beta2)<-sub('\\(l2-l1\\):','',names(beta2)) 

 

 beta1<-beta1[order(names(beta1))] 

 indexbeta2<-indexbeta2[order(names(beta2))] 

 beta2<-beta2[order(names(beta2))] 
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 ii<-1:length(beta2) 

 ii<-ii[indexbeta2==0] 

 for ( i in ii ) { 

#  beta2[i]<-sum( beta2[ grep( names(beta2)[i], 

names(beta2) ) ] ) 

  beta2[i]<-sum( beta2[ names(beta2)[i]==names(beta2) 

] ) 

 } 

 beta2<-beta2[indexbeta2%in%c(0,2)] 

 

 btemp<-list(beta1=beta1,beta2=beta2) 

 btemp 

} 

 

 

 

Main Part 
 

#code 

sl=read.csv("data/sl.csv",stringsAsFactors=T) 

levels(sl[,2]) 

#Evaluation of Covariates 

attach(sl) 

fit1=glm(g1~rat1+penbox1+goalbox1+corner1,family="poisson",data

=sl) 

summary(fit1) 

fit2=glm(g2~rat2+penbox2+goalbox2+corner2,family="poisson",data

=sl) 

summary(fit2) 

cor1=read.csv("data/correlation1.csv") 

cor1 

C=cor(cor1) 

rownames(C)=c("Rating","PenaltyBox","GoalBox","Corner") 

colnames(C)=c("Rating","PenaltyBox","GoalBox","Corner") 

C 

#Fitting the bivariate Poisson model 

biv=lm.bp(g1~rat1+penbox1+goalbox1+corner1,g2~rat2+penbox2+goal

box2+corner2,l1l2=NULL,data=sl) 

biv$coefficients 

biv$parameters 

biv$iterations 

biv$loglikelihood 

biv$lambda1 
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biv$lambda2 

biv$lambda3 

biv$fitted.values 

plot(biv$fitted.values[,1],biv$fitted.values[,2],main="Expected 

Goals",xlab="Home Team",ylab="Away Team") 

plot(sl[,3],sl[,4]) 

plot(infg$loglikelihood) 

biv$AIC 

biv$BIC 

plot(1:biv$iterations,biv$loglikelihood,xlab="Iterations",ylab=

"Log-Likelihood") 

dbp=lm.bp(g1~rat1+penbox1+goalbox1+corner1,g2~rat2+penbox2+goal

box2+corner2,l1l2=NULL,data=sl,zeroL3=TRUE) 

dbp$AIC 

dbp$BIC 

#Fitting the Diagonal Inflated Bivariate Poisson model 

(geometric) 

infg=lm.dibp(g1~rat1+penbox1+goalbox1+corner1,g2~rat2+penbox2+g

oalbox2+corner2,l1l2=NULL,data=sl,distribution="geometric") 

infg$coefficients 

infg$fitted.values 

infg$diagonal.distribution 

infg$loglikelihood 

infg$AIC 

infg$BIC 

##Fitting the Diagonal Inflated Bivariate Poisson model 

(Discrete) 

inf1=lm.dibp(g1~rat1+penbox1+goalbox1+corner1,g2~rat2+penbox2+g

oalbox2+corner2,l1l2=NULL,data=sl,jmax=1) 

inf1$coefficients 

inf1$diagonal.distribution 

inf1$loglikelihood 

inf1$AIC 

inf1$BIC 

#Fitting the Inflated Double Poisson model 

infdp=lm.dibp(g1~rat1+penbox1+goalbox1+corner1,g2~rat2+penbox2+

goalbox2+corner2,l1l2=NULL,data=sl,zeroL3=TRUE,jmax=1) 

infdp$coefficients 

infdp$fitted.values 

infdp$loglikelihood 

infdp$AIC 

infdp$BIC 

sum=rbind(c(biv$parameters,-1029.576, 2081.151,2133.271 

,0),c(inf1$parameters,-1029.576,2085.153 ,2146.749 , 1.305e-
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02),c(infg$parameters,-1029.576,2085.151 ,2146.747 ,1.680e-

05),c(infdp$parameters,-1030.476,2084.952 ,2141.810,4.602e-02)) 

rownames(sum)=c("Bivariate Poisson","Inflated with 

Discrete(1)","Inflated with Geometric","Inflated Double-

Poisson") 

colnames(sum)=c("Parameters","Loglikelihood","AIC","BIC","Mix.P

rop(p)") 

sum 

#Karlis and Ntzoufras model 

slsc=read.csv("data/sl_scores.csv",stringsAsFactors=T) 

slsc 

form1=~c(team1,team2)+c(team2,team1) 

bivsc=lm.bp(g1~1,g2~1,l1l2=form1,data=slsc) 

bivsc$coefficients 

bivsc$AIC 

bivsc$BIC 

#comparison 

comp=rbind(c(-1.029576e+03, 2081.151,2133.271),c(-

1.098e+03,2269.030,2444.342)) 

rownames(comp)=c("Bivariate Poisson","Bivariate Poisson (goals 

as cov)") 

colnames(comp)=c("Loglikelihood","AIC","BIC") 

comp 

#PREDICTION 

ratA=(141+169+146+123+237+98+234+169+174+202+174+106+162)/13;ra

tA 

penboxA=(3+1+3+4+1+6+2+4+3+1+3+5+3)/13;penboxA 

goalboxA=(0+0+0+0+0+1+0+1+2+1+0+0+0)/13;goalboxA 

cornerA=(1+3+5+5+4+1+3+2+4+1+11+2+5)/13;cornerA 

ratP=(114+127+172+181+84+153+144+121+194+118+153+162+127)/13;ra

tP 

penboxP=(0+2+4+9+1+2+2+4+4+2+1+5+0)/13;penboxP 

goalboxP=(1+0+1+2+2+2+2+1+1+0+0+1+1)/13;goalboxP 

cornerP=(3+4+5+9+5+2+1+3+0+2+6+8+2)/13;cornerP 

l1=exp(-

1.281071082+0.008715946*ratA+0.024295455*penboxA+0.100234116*go

alboxA-0.030432260*cornerA);l1 

l2=exp(-

1.705548672+0.009189555*ratP+0.087018910*penboxP+0.197741080*go

alboxP-0.048838609*cornerP);l2 

l3=0.0665655;l3 

pred=bivpois.table(8,8,lambda=c(l1,l2,l3));pred 

sum(diag(pred)) 

print(sum(pred[lower.tri(pred)])) 
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print(sum(pred[upper.tri(pred)])) 

#VERIFICATION 

x=0.3004748+0.4240807+0.2754379 

x 

 

 

 

A3.   The Newton-Raphson method  
 

The Newton-Raphson method which is named after Isaac Newton and 

Joseph Raphson, is an iterative technique for finding the root in 

functions when this cannot be found in a straightforward way. 

Let us consider the non-linear equation, 

                           

                                                        𝑥: 𝑓(𝑥) = 0  
 

By starting with some value 𝑥0, the method computes a sequence of 

approximations 𝑥1, 𝑥2, … which converge to the solution 𝑥∗ (𝑓(𝑥∗) =

0) of the non-linear equation.  

We start from the Taylor expansion of function 𝑓 around the point 𝑥𝑛 , 

 

𝑓(𝑥𝑛+1) = 𝑓(𝑥𝑛) + (𝑥𝑛+1 − 𝑥𝑛)𝑓
′(𝑥𝑛) +

(𝑥𝑛+1 − 𝑥𝑛)
2

2
𝑓′′(𝑥𝑛) + ⋯ 

 

If we neglect the higher order terms, we find 

𝑓(𝑥𝑛+1 = 𝑓(𝑥𝑛) + (𝑥𝑛+1 − 𝑥𝑛)𝑓
′(𝑥𝑛) 

If we then require 𝑓(𝑥𝑛+1) to be equal to zero, we obtain 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
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There fore, 

𝑥1 = 𝑥0 −
𝑓(𝑥0)

𝑓′(𝑥0)
 

𝑥2 = 𝑥1 −
𝑓(𝑥1)

𝑓′(𝑥1)
 

𝑥3 = 𝑥2 −
𝑓(𝑥2)

𝑓′(𝑥2)
 

                                                                  ∙ 

                                                                  ∙ 

                                                                   

The Newton-Raphson method is generalized for the case of systems 

with 𝑛 equations with 𝑛 unknowns. We may write the system  

{
 
 

 
 
𝑓1(𝑥1, … , 𝑥𝑛) = 0

𝑓2(𝑥1, … , 𝑥𝑛) = 0
.
.
.

𝑓𝑛(𝑥1, … , 𝑥𝑛) = 0

 

 

We consider 𝑓: 𝑋 ⊆ ℝ𝑛 → ℝ𝑛 defined as 𝑓(𝑥) = 𝑓1(𝑥), … , 𝑓2(𝑥) 

We want to find a vector 𝑟 = (𝑟1, … , 𝑟𝑛) such that 𝑓(𝑟) = 0. To 

approximate such a vector 𝑟, we may make an initial guess 𝑥0 ∈ ℝ
𝑛. If 

𝑓 is differentiable, then we know that 𝑦 = 𝑓(𝑥) is approximated by 

the equation 

𝑦 = 𝑓(𝑥0) + 𝐷𝑓(𝑥0)(𝑥 − 𝑥0) 

where 𝐷𝑓(𝑥0) is the 𝑛 × 𝑛  matrix of the first derivative of 𝑓. 
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We set 𝑦 = 0 in order to find where this approximating function is 

zero. Thus, we solve the matrix equation  

𝑓(𝑥0) + 𝐷𝑓(𝑥0)(𝑥1 − 𝑥0) = 0 

with 𝑥1 giving a revised approximation to the root 𝑟. Evidently the 

equation above is equivalent to  

𝐷𝑓(𝑥0)(𝑥1 − 𝑥0) = −𝑓(𝑥0) 

To continue our argument, suppose that 𝐷𝑓(𝑥0) is an invertible 𝑛 × 𝑛 

matrix. Then we multiply the equation by [𝐷𝑓(𝑥0)]
−1 to obtain 

𝐼𝑛(𝑥1 − 𝑥0) = −[𝐷𝑓(𝑥0)]
−1𝑓(𝑥0). 

Similarly to the one-variable case of the method of the Newton-

Raphson method, we may iterate the formula to define a sequence 

{𝑥𝑘} of vectors by, 

𝑥𝑘 = 𝑥𝑘−1 − [𝐷𝑓(𝑥0)]
−1𝑓(𝑥𝑘−1) 


