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Abstract

Football is one of the most popular sports in the world. In recent
years, more and more companies have been associated with football
depending economically on it. This led to a huge statistical interest in
the sport. This thesis constitutes a review on football modeling.

Initially, theory behind bivariate analysis is developed along
with properties and extensions of the bivariate distribution. Special
attention is paid to the bivariate Poisson distribution which is widely
used in football modeling. Regression models constitute another
subject of study as they provide functions that describe the
relationship between random variables. In that part, count data
models are presented such as Poisson regression model and the
inflated models which deal with problems with excessive outcomes.
As for the parameters estimation, the EM algorithm is considered to
be a rational way to find the maximum likelihood estimate when the
latter cannot be calculated in straightforward way.

After presenting the theoretical framework on with football
modeling is based, several bivariate predictive models are presented
in terms of four main categories: naive models, models with
dependence parameter, inflated models, dynamic models.

Finally, analysis of the Greek Superleague is carried out through
four bivariate models. After the comparison of the models’ fitting,
prediction in a playoff match takes place.
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Chapter 1

Bivariate Discrete Distribution

In this chapter, we will present the bivariate discrete distributions as
well as their properties. We consider the joint distribution of two
random discrete variables X and Y. They are assumed to have the
probability mass function fy y(x, y) at the point (x, y) with (x,y) € T,
where T is a subset of the Cartesian product of the set of nonnegative
integers on the real line. In this case the pair (X,Y) is said to have
bivariate discrete distribution over T with the probability function

fxy (%, ).

1.1. Joint distributions

Definition (Joint cumulative distribution function) Let X and Y be
two random variables defined on the same probability space
(2, A, P[.]) where (2 is the set of all possible outcomes and A is a set of
events. Then the (X,Y) is called a two-dimensional random variable.
The joint cumulative distribution function or joint distribution function
of X andY, denoted by Fy y(x,y), is defined as

Fyy(x,y) =P[X<x,Y <y] ,x,y€ER

Properties:
1. If x; < x, and y; <y, then

P[x1<X<x2,y1<Y<y2] =
= F(x,,y,) = F(x3,¥1) — F(xy,¥2) + F(x,y,) =0



2. (i)F(—o,y) = lim F(x,y) =0 Vy€eR
X—>—00
(ii) F(x,—») = lim F(x,y) =0 Vx€R
y——00
(iii) F (o0, 0) =1

3. F(x,y) is right continuous for each argument:

hll)r(r)lJrF(x+h,y) =hll)r(r)1+F(x,y+h) =F(x,y)

Definition (Joint discrete density function) Let X and Y two random
discrete variables. The joint discrete density function of X and Y is
defined as

fxy(x,y) =P[X=x,Y=y], (x,y) €T

where T is a subset of the Cartesian product of the set of the
nonnegative integers on the real line.

1.2. Marginal distributions

When studying bivariate models, it may also be of interest to observe
the behavior of the variables independently of each other. Taking the
probability function of X and Y as fyxy(x,y), the marginal

probabilities for X and Y are respectively:

) =) fry(y)
y

and

fr) = Z fxy ()



It is remarkable that if X and Y are independent then,

fX,Y(X» V) =fx(x) - fy(y) =P[X =x]-P[Y =y]

Concerning the conditional discrete density functions, they are
expressed as follows:

fxy(x,y) _ PIX=xY=y]
fx () P[X=x]

 frix(lx) = if fx(x) >0

fxy(x,y) _ PIX=xY=y]
fr») P[Y=y]

o fxy(xly) = if fr(y) >0

Definition (Marginal cumulative distribution function) If Fy y(x,y)
is the joint cumulative distribution function of two random variables X

and Y, then the Fx(x,y) and Fy(x,y), which are called marginal
distribution functions of X and Y respectively, are defined as

Fx(x) =P[X <x] =P[X <x,Y < oo] = lim Fyy(x,y) = Fxy(x, o)
y—00
and

Fo(y) =P[Y <y]=P[X <o,Y <y] = ;l_r){)lo Fyy(x,y) = Fxy(,y)

1.3. Generating functions

When studying random variables, there is a variety of generating
functions which helps us to point out the properties of the random
variables. In this section we will introduce these functions.



1.3.1. Probability generating function

The probability generating function (PGF) Il y(ty, t;) of the pair of
random variables (X,Y) with probability function fxy(x,y)is the
E[tXt)Y]. So PGF is defined as :

My y(ty,t,) = E[t{tS] = z tft%] fxy(x,y)

(x,y)eT

The marginal PGF’s are

Iy (t) = z fx(Ot* = Z t* z fxy (e, y) =y y(t, 1)
X X y

Iy (t) = ny()’)ty = z tyzfx,y(x;)’) = Ilxy(1,¢)
y x

y

1.3.2. Moment generating functions

The moment generating function (MGF) My y(t,,t,) of the pair of
random variables (X,Y) with probability function fyy(x,y) is the
E[et1X*t2Y], So MGF is defined us:

My y(ty,t;) = E[et¥+0Y] = Z el Xty fo o (x, y)
(x,y)ET

By recalling the exponential series,

(tX)?  (tX)3
T TR

e =1+tX+

in the univariate case we have:

My (t) = Z e fx(x) = Z(fx(x) + tX fir(x) + 2 X2 fx () + ) =

X
t2 t3

=1ttt or s+



with u, = E[X*1 k =1,2,3 ...

So in the bivariate case MGF becomes:

My y(ty,t;) = [efaX*taY] zz bty £ y(x,y) =

X)2 Y)?
=ZZ( (tz!) ---><1+tY+(t2!) +--->fx,y(x,y)
’ s
=2r's'#r5

7,8

with the coefficients ,u;,s = E[X"Y®].
The marginal MGF's are

Me(O) = ) e fy(x) = D e ) fiy(x,y) = Myy(t,0)
y

X X

My(©) =) ¥ i) = ) ¥ ) fyy(x,y) = Mgy (0,6)
y x

y

1.3.3. Cumulants generating functions

The cumulants generating function (CGF) K(ty,t,) of the pair of
random variables (X,Y) with probability function f(x,y) is the log of
MGF. So CGF is defined as:

t1 tz

Kxy(ty, tz) = logMyxy(ty, t;) = ZZ 0 s'

where k. ; is called the cumulant of order (r,s).



1.4. Trivariate reduction

Suppose that we have X, X,, X3 which are three independent and
maybe identically distributed random variables. We can construct
the random variables X and Y as:

X=X +X;
Y =X, + X5

Thus by using convolutions of three independent random variables,
bivariate distributions can be generated, where a pair of
observations from fy y(x, y) is obtained by

x=x1+X3
Yy =Xy + X3

The method above is termed the trivariate reduction and it allows for
dependence between the random variables of our study.

Now by taking under consideration the generating functions of
X;, =123 thejoint PGF and MGF of (X, Y) are respectively:

Iy y (1, t5) = Iy, (&) 1y, (E) 1Ty, (E1t7)
and
My y (t1,t2) = My, (t) My, (£2) My, (¢4 + t3)
Proof: LetX =X, +X; and Y = X, + X5 ,

My y(ty, t;) = E[tft)] = E[t] 627 ] = E[t] t°62t5°]
= [E[tflté(z(tltz))@] = Iy (t), (t) 1y, (t1t7)

My y(ty,t,) = E[ef1¥+t2Y] = E[etl(X1+X3)+tz(Xz+X3)]

_ E[et1X1+t2X2+(t1+tz)X3] = My, (t;)My, (t;)Mx (t; +t;)

10



1.5. The bivariate binomial distribution

It is widely known that the binomial distribution is the extension of
the Bernoulli distribution and counts how many times an event X
has occurred in a specific number of trials. Now we will examine the
bivariate case of the binomial distribution. To start with, one
bivariate Bernoulli trial measures two random variables (I,]), both
with outcomes 0 and 1. As a result, each trial has four possible
outcomes: (0,0), (0,1), (1,0), (1,1). The probabilities of the outcomes
are constant over the trials and the trials are independent. We define

Papr = P(I = a,] = D) a=01 ,b=0,1

Similarly with the univariate case, considering a sequence of n
bivariate Bernoulli trials leads to a bivariate binomial distribution. It
is defined

>
I
M=

_.
Il
-

and

h<
I
(INgE
=

...
Il
-

The pair (X, Y) is said to have bivariate binomial distribution.

The PGF of (X,Y) is:

n
My y(ty,ty) = E[tft)] = {E[t{tzj]}
= (Poo + t1P10 + t2P01 + titap1)"

So, the marginal PGF’s are respectively
My (t) = Hxy(t, 1) = {(p11 + P10)t + (Po1 + Poo)}"
and

Iy (t) = llyy(1,t) = {(p11 + Do)t + (P10 + Poo)}"

11



Reminding that the PGF of the binomial distribution with parameters
(n,p) is

Iy(t) = (pt + q)" forallt e R
we notice that,
X~Bin(n,pyq + DP1o)

Y~Bin(n,py11 + Po1)

The bivariate binomial distribution is just an extension of the
binomial distribution. In the univariate case we are counting the
successes of a fact whereas in the bivariate case we are interested in
how many times the events X and Y have occurred.

1.6. The bivariate Poisson distribution

The bivariate Poisson distribution can be defined by taking the limit
(n — o0) of the bivariate binomial distribution which has PGF

Iy y(t1,t3) = (Poo + t1P10 + t2Po1 + titap11)™
={(1+ (p11 + P10)(t1 — 1) + (P11 + Po1)(t, — 1)
+p11(ty — D(t, — DI

We assume that

+ _h
P11 p1o—n

+ _%
P11 Po1—n

P11 = n

where A4, 4, and A5 are positive constants independent of n.

12



Now, by substituting into the equation of the PGF of the bivariate
binomial distribution it is:

ALt —1) N A(t; — 1) N A3(ty — (¢t — 1)>n
n n '

Hn(tlJ tZ) = (1 +

n
Taking into consideration the widely known limit lim (1 + %) = e’ it
n—oo

is:
Tlli_r)rc}o I, (ty, ty) = exp{A;(t; — 1) + A,(t; — 1) + A3 (¢, — 1) (¢, — 1)}

So we have
HX,Y(tll tz) == eXp{/ll(tl - 1) + Az(tz - 1) + A3(t1 - 1)(t2 - 1)}
If weset A; = 44 + 43 and A, = A, + A5 the equation above becomes:

HX,Y(t]J tz) == eXp{Al(tl - 1) + AZ (tz - 1) + A3 (tltz - 1)}

Looking at the PGF of the univariate Poisson distribution which is
given by I1y(t) = exp(A(t — 1)), it is noticeable that this is the PGF
of the bivariate Poisson distribution with parameters 1,1, and 15 for
two random variables X and Y.

Probability function

By expanding the joint PGF above we have,

Myy(ty, t;) = exp(A1(t; — 1) + A, (t, — 1) + A3(t5 8, — 1))

i Ji & qk
B e—(/11+/12+/13)zﬂ tlz/l 25 A t1t2

r—i3s—i3i
:e_(11+12+13)zz /1 & /1 tTts
— (r — Dl (s — Dt
s i

13



As aresult, we end up with the mass function,

min(x,y)

k
— o~ i+2p+25) [ 21 72 (Y (A3>
fxy(x,y) = e 142 ™s x! y! z (k) (k)k! Ay

which is the density of the bivariate Poisson distribution BP (14, 1,, 43).

Marginal distributions
The marginal PGF of X is
Iy (t) = Iy y(t, 1) = exp{(4; + 13)( — 1)}
and the marginal PGF of Y is
Iy(t) = My y(1,t) = exp{(4; + 13)(t — D}
So, respectively
X~Poisson(A; + A3)

Y~Poisson(A, + A3)

1.7. Bivariate correlation

In bivariate analysis, two variables that follow a joint distribution
usually interact with each other. This can be described by the
correlation coefficient which measures the strength of association
between the two variables X,Y and describe the type of their
relationship. This coefficient takes values in the interval [—1,1]. If the
coefficient takes the value +1 or the value —1 then there will be a
perfect degree of association between the variables whereas when
the coefficient takes the value 0, it implies no dependence between
the two variables. The sign indicates the direction of the relationship.
If we have sign + then there will be positive relationship and if we
have sign - then there will be negative relationship between the
variables. Two basic types of correlation are Pearson correlation and
Kendall correlation each of which adjusts to different occasions.

14



1.7.1. Pearson correlation coefficient

In statistics, the Pearson correlation coefficient, also known as
Pearson’s r (or p), is a measure of linear correlation between two
sets of data. It is retrieved when the covariance of two variables X,Y
is divided with the product of their standard deviations. That is,

_covx,y) ny"xy — Xt X"y

Txy = |
o \/nZ"xiZ - (Z"xi)z\/"Z"yiz -y’

It is essentially a normalized measurement of the covariance.

1.7.2. Kendall rank correlation coefficient

In statistics, the Kendall rank correlation coefficient, also known as
Kendall’s 7, is a measure of the ordinal association between two
quantities. Ordinal data is a statistical data type where the variables
have natural, ordered categories and the distances between these
categories are unknown.

Let (X1,V1), .., (Xp, ¥n) be a set of observations of the joint random
variables X,Y, such that all the value of x; and y; ,i=1,..,n are
unique. Any pair of the observations (x;,y;) and (x;,y;), where i < j,
will be said to be concordant if the sort order of (x;,%;) and (y;,y;) is
the same. That is, when both x; > x; and y; > y; happen or both x; <
x; and y; < y; happen. On the other hand, if the sort order is opposite

the observations will be said to be discordant. In the specific case
where x; = x; or y; = y;, then the pair of observations are said to be

tied.

15



Definition (Kendall’s T coefficient) Let us denote n. the number of
concordant pairs and ng; the number of discordant pairs of n
observations of the pair (X,Y) of the random variables X,Y. The
Kendall’s T coefficient is defined as

ne —Ng
)

is the number of pairings between X, Y.

T =

nn-1)
2

where (121) =

It is reasonable that if all the pairings between X and Y are
concordant then the 7 coefficient will be equal to 1. On the other side,
if all the pairings between X and Y are discordant then the value of t
will be equal to —1.

Actually, the total number of pairings between X and Y is equal to
ng+ng +ny = (72‘) where n.,n, is the numbers of the concordant

and the discordant pairs respectively, and n, is the number of tied
pairs. However, as we can distinguish in the definition above, the tied
pairs are not taken into consideration for the calculation of Kendall’s
T coefficient.

1.8. Bivariate Copulas

When we have two dependent on each other discrete random
variables, we can find their joint cumulative distribution function by
using a two-dimensional copula. Copulas are linking functions which
link univariate marginal distributions together allowing for
dependence between the random variables with a dependence
parameter 6. These functions enable us to isolate the dependency
structure in a multivariate distribution. So it is easy for us to
separate the marginal distributions from the dependence structure
of a given multivariate distribution.

16



1.8.1. Copula

Definition (Copula) A d-dimensional copula, C:[0,1]% - [0,1] is a
cumulative distribution function (CDF) with uniform marginals. For a
generic copula we write

C(u) = C(uyq, ..., ug) = P(U; S uy, ..., Uz < uy).

Properties:
1. C(uy, ..., uy) is non-decreasing for each component u;.

2. The marginal distribution of the i™ component is obtained by
setting u;, = 1 for k # i in C(u).

3.C(uq, ..., uj_1,0,U; 41, ..., ug) = 0 if any one of the components is 0.

We now recall the definition of generalized inverse for a CDF, F.

Definition (generalized inverse) Let F a cumulative distribution
function (CDF). Then, the generalized inverse F~1, is defined as

F1(x) = inf{u : F(u) > x}.
Proposition If U~U[0,1]and Fy is a CDF, then

P(FY(U) < x) = Fx(x)

In the case of a continuous CDF, then Fyx(X)~U[0,1]

17



Theorem (Sklar’s Theorem) Consider a d-dimensional CDF, F, with
marginals Fy, ..., F,4. Then there exists a copula C, such that

F(xq,..,xq) = C(Fl(xl), ) Fd(xd))

forall x; € [—o0,+00]landi =1, ...,d.

In the bivariate case, a copula function can be expressed as follows:
C(uq,uyl0) = P(U; < uq,U, <uy)

In this expression, we have two independent and identically
distributed standard uniform variables U;, U, and 6 is a dependence
parameter.

Let X; with a continuous CDF F;, then the transform F;(X; ) must be
uniformly distributed. As a result the joint bivariate CDF with
marginal CDF’s F; and F, can be written as follows:

F(xy,%3) = P(Xy < x4, X7 < %)
= P(F1(X1) < Fi(x1), F(Xy) < Fz(xz))

= P(Uy < Fy(x1), Up < Fy(xy))

= C(F1(x1), F2(x2)|6)

1.8.2. Types of bivariate discrete copulas

Now we will assume that X; has a discrete CDF and not a continuous
one like the occasion above. In the case of discrete distributions like
the Poisson or the negative binomial distribution, the marginal
cumulative distribution functions are step functions with jumps at
integer values. This results to not having unique F; . For that cases
there are several types of copula which have different domains of
the dependence parameter 9:

18



e Frank Copula

A basic type of copula for discrete occasions is the Frank copula type
where 0 € (—o0,+00) — {0} = R — {0}. The Frank copula is expressed
as follows:

C(Fx (), Fy () = %h)g (1 | ((exp(0Fx(x)) — D(exp(6Fy () — 1))

exp(6) — 1

where Fy, Fy are the marginal discrete cumulative distribution
functions.

e Gumbel Copula

A second type of copula is the Gumbel copula where 6 € [1,+0c0). Itis
expressed as follows:

Q=

C(Fx (o), Fy () = ellm 1080+ [-1og(5r )]}

e Joe Copula

Joe copula is also a type of copula with 8 € [1,+0) and which is
expressed as :

1
C(Fx (0, Fr ) = 1= [(1- @) + (1= F»)" - (1 - ) (1 - F,)°|°

e (Clayton Copula

Another type of copula is Clayton copula, where 8 € (0, 4+) and it is
expressed as follows:

C(Fe GO, Fy ) = [(Fx () " + (Fr) ™ 1178

19



The types of copulas that were mentioned, are some basic bivariate
copulas. There are also other types of bivariate copulas such as the
Normal copula, Student’s copula etc.

The proper choice of copula depends a lot on the domain of 8 which is
connected with the type of the dependence that our variables have
each other.

20



Chapter 2

Regression Models

As it is known, the components of the regression models with i
observations are: the dependent variable which is observed and
denoted as the observation Y;, the independent variables which are
also observed and denoted as the vector X;, the unknown parameters
(coefficients) which are often denoted as the vector f and the error
terms ¢;. The general form of a regression model is:

Yi=fX,B) +¢

The aim of the researchers is to choose the function f that closely fits
the data. Several choices of the function f lead to different types of
regression.

2.1. Generalized linear models (GLM)

2.1.1. Structure

The basic regression model is the linear regression model which is
based on the normal probability function and is expressed as

Y:B0+BX+8

However, linearity cannot deal with a variety of practical situations
such as counts (they will be explained in the next paragraph).

The generalized linear model (GLM) is a generalization of the
ordinary linear model as it extends the concept of the linear
regression model. It generalizes the linear regression by allowing the
linear model to be related to the response variable via a link function.

21



Definition (Link Function) We assume the regression model with i
observations. For the i — th observation, let y; = f(x;, B), where x| =
(Xi1, -, Xip) IS a vector of p explanatory variables and BT =
(B1, -, Bp) s a vector of coefficients. Additionally let g be a
differentiable function of f(x;, B) such that g(f(x;,B) = x] B. Then
the function g is called link function.

2.1.2. Deviance goodness-of-fit

When a Generalized Linear Model (GLM) is fitted, then a deviance
goodness-of-fit test is used to show the explanatory power of the
model. In this procedure, the actual model is compared with the
saturated model. The saturated model has achieved a perfect fit as
the number of the parameters is equal to the number of observations.
However, the saturated model isn’t actually an excellent choice as it
doesn’t smooth the data. As a result, a simpler model which uses only
a few predictors may have more advantages. Nevertheless, the
saturated model is useful for testing the fit of other models. So by
denoting as L(1; y) the maximized log-likelihood for the model being
tested and as L(y;y) the maximized log-likelihood in the saturated
case, we have the following test statistic:

D(y;A) = —2[L(4;y) - Ly p)]

where 1 is a vector of predictors of the observation y.
The expression D(y; /T) is called deviance and we have that
D(y; /T) ~X,21_p where n is the number of parameters in the saturated

model and p is the number of parameters in the model being tested.
If the deviance is small then the model will be a good fit for the data.
This occurs because the observed values are close to the predicted
ones given by the model.

22



2.1.3. Over-dispersion in GLM

We consider n-dimensional vector of observations Y = (Y3, ...,Y,)
and a theoretical model that describes Y. Over-dispersion occurs
when the observed variance of the data is higher than it would be
expected. In other words, it occurs when the variance of the
observations is greater the variance of theoretical model. Some
distributions do not have a specific parameter to fit the variation of
the observations. A typical example is the Poisson distribution where
the mean is described equally to the variance by a parameter A. In,
this case, for an expected value of Y, E[Y] = 10, we expect that the
variance of the observed data points is also 10. In contrast, the
Normal distribution describes separately the variance through the
parameter 2.

Let us give an example of over-dispersion. Imagine the number of
seedlings in a forest plot. Depending on the distance to the source
tree, there may be many hundreds or none. Such data would be over-
dispersed for a Poisson distribution.

In statistics, dispersion parameter ¢ is a parameter which is
associated to whether the observed variance of the data is greater
than the variance of the theoretical model or not (over-dispersion or
under-dispersion).

If the distribution of a variable Y belongs to the exponential family,
then its density function can be written as,

y6—b(0)

f(;6,0) = exp (— +c(y, <p)>

a(p)

where 6 is the parameter of interest and ¢ is the dispersion
parameter. In this form the expected value and the variance of Y are
expressed,

E[Y] = b'(6)

Var[Y] = b"(8)a(yp)
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For instance, in the case of the exponential family form of the Normal
distribution we have:

— =2 2
YU U y
fy;u0%) =exp —0—22 + (— 252 + log(oV 2n)>

where 8 = u, b(0) = %,uz, a(p) = o2, E[Y] = u, Var[Y] = o2
In order to assess whether there is over-dispersion in a model or not,
we can evaluate the ratio of the residual deviance divided by the

degrees of freedom so that ¢ is estimated,

Residual deviance D(y, /T)

v= Degrees of freedom n—p

where n — p is the difference between the number of the parameters
of the saturated model and the model being tested.

In a Poisson GLM, the estimated variance can be expressed as
Var[Y] = @E[Y]. So, the Poisson assumption indicates ¢ = 1 which
yields that the variance is equal to the expectation. If ¢ > 1 there is
over-dispersion in the model, and if ¢ < 1, there is under-estimation.

So, it is remarkable that if ¢ > 1, the Poisson assumption is not
correct.
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2.2. Count data models

When discussing about modeling count data, it’s important to clarify
the meaning of count data. Generally, count data refer to
observations made about events or items that are enumerated. In
statistics, count data refer to observations that have only
nonnegative integer values ranging from zero to some undetermined
value. Theoretically, counts can range from zero to infinity. However,
they are always limited to a distinct maximum value. There are many
count data examples such as the number of children that a couple
has, the number of someone’s doctor visits, the number of goals
achieved by a football team etc.

2.2.1. Poisson regression

Poisson regression model is the basic model which a variety of count
models are based on. It is derived by the Poisson probability mass
function, which can be expressed as

e Mti(At)Y

f(Yi;/li) = ,vi = 0,1,2, ...

N
i+

where y; is the i-th observation-count response, A; is the mean
number of events in a time period of length t;. When A; is
understood as applying to individual counts without consideration
of size or time, then t; = 1. The mean number of the evens A; is
modeled as follows:

/1i=tl-f(xl-,ﬁ) ,i=1,...,7’l

where x] = (xil, ...,xl-p) is a vector o p explanatory variables, g7 =
(B4, .-, Bp) is a vector of coefficients and f is the rate function.
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The distributions of the exponential family have corresponding link
functions that are called canonical links. In the case of Poisson
regression, we have a log-link function. Moreover, since the Poisson
distribution values are nonnegative, using a link function whose
inverse function takes only nonnegative numbers is purposeful.

By using the log-link function, we have,
log(;) = log(t) +x/ B, i=1,..,n

where the log(t;) can be transferred to the left side of the equation

above. This will finally lead to the consideration of the log (%) as the

response variable.

2.2.2. Inflated Models

Many times, when modeling the outcomes of a variable we notice
underestimation over a specific outcome. Quite often, this specific
outcome is zero. Count data with many zeros are common in a wide
variety of experiments. In order to manage this occurrence, it is often
useful to use a mixture of models in order to correct this
underestimation. A specific kind of mixture distribution is the
inflated model, which inflates the probability of this underestimated
outcome in our study.

Random variables are usually considered as a sample from a
distribution. However, there are random variables that cannot be
described from one single distribution alone. Most of real-life
random variables are generated from a mixture of distributions.

Definition (Mixture Distribution) Let us consider k distributions
{g1(x;01), ..., 9x(x; 0,)} and k coefficients {wy,...,wy}. Then the
mixture distribution f of the densities g; with the weights w; for i =
1, ..., k is defined as:

k
FO6 0y, .., 0;) = Z w:g; (; 6,),
i=1
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subjectto Y¥_, w; = 1.

The densities g; from the definition above are not necessarily from
the same family. However, this makes the problem sometimes
complex.

Zero-Inflated models

In many real life statistical experiments we often observe many
zeros. This is something that cannot be modeled using standard
modeling approaches for count data. Let us give a simple example:

We consider 200 people in a large boat and we want to see their
success in fishing. We take observations about how many fishes each
one caught and so we have the following graph of frequency:

FREQUENCY

180

160

140 +—

120 +—

100 +— Excess Observations

80 +— B Real Observations

60 -

40 -

20 - I

0 - . I- |
0

1to5 6tol10 11tol5 16to20 20to25 more

NUMBER OF FISHES CAUGHT

In the graph above we can distinguish a large amount of zeros in
which some are real and some excess. Real zeros are connected with
people who fish but did not manage to catch any fish. Excess zeros
are associated with people that may not even fish, for instance some
women or little children. However, all 200 people of this boat are
included in our study so it is necessary to deal with this.
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Zero-inflated models take into account excess zeros data. They
estimate two equations: a count model and a model for the excess
number of zeros.

Definition (Zero-Inflated Model) Assume the state X, which is 0 with
probability 1 and the state X; which is a random variable taking
nonnegative integers with probability function P(X; = x) = g(x, 1)
forx =0,1, .., where A = (A4, ..., A,)T is an unknown parameter vector
in an open subset D of s-dimensional space R®. Now consider the
mixture of X, and X, with the Bernoulli(p) where 0 < p < 1. Zero-
inflated model is defined as

_(r+(1-p)g(0,21), forx =20
faim (%, 0) = { (1-p)glx, 1), forx=1.2,..
where 0 = (g) € 0@ = (0,1] x D. The mixture above is denoted as

X~ZIM (8, g) or simply X~ZIM ().

The mean of the zero-inflated count data model is:

E(X) = ) (1-p)gle, ) = (1 — p)Ey(X)
k=0

where E/ (X) denotes the mean of g.

A common type of zero-inflated model is the Poisson zero-inflated
regression model.

e Zero-Inflated Poisson regression

When the Poisson regression model is applied to the count outcome
data in real world, it is not rare to see the poor model fit indicated by
a deviance. Most of the real data violate the assumption of the
standard Poisson model, which is called equidispersion (the variance
of the count outcome is equal to the mean). In most of the real data
over-dispersion is observed (Sun Y. Jeon 2013). Ignoring over-
dispersion and applying the standard Poisson regression for this data
can cause underestimation of standard errors and p-values.
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The zero-inflated Poisson (ZIP) is an alternative that can be
considered in this case. This model allows for over-dispersion
assuming that there are two types of individuals in the data (Sun Y.
Jeon 2013):

1) those who have a zero count with probability of 1 (“always 0
group”)

2) those who have counts predicted by the standard Poisson.
(“not always 0 group”)

Observed zero could be either from the zero count or the standard
Poisson.

The observation i is in “always 0 group” with probability p; and the
latter can be predicted by a logit or probit model (these models will
be presented in the paragraph 2.3.). The probability that observation
[ is in “not always 0 group” becomes 1 — p;. For observations in the
second group, their positive count outcome is predicted by the
standard Poisson (4;). The overall model is a mixture of the
probabilities from the two groups above. As a result, for the i-th
observation:

pi+(1—ple, ify;=0

fzir(yi) = e iy .
l (1-p) y,l; if yi >0

i+

where f;;p the density of the zero-inflated Poisson model.

The mean and the variance of the model above are,

EYil=0-p;+2;-(1—p)=4-1—p)
and

VarlY;] = 2;,(1 —p) (1 + piAy)

respectively.
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2.3. Logit and probit models

The logistic models (logit models) and the probit models are the
statistical models that model the probability u (expected value) of
one event taking place out of two alternatives. They are among the
most widely used members of the family of GLM models in the case of
binary dependent variables.

Let n = xf a linear model where 7 is a response variable, x is vector
of explanatory variables and f is a vector of coefficients.

In the logit models the link function relating the linear predictor n =
xP to the expected value u is the logit transform,

log (1ﬁ_u) =n=xf

Solving u in the equation above results to the logistic function,

In the probit models the link function that relates the linear
predictor n = xf# to the expected value u is the inverse normal
cumulative distribution function,

o~ t(w) =n=xp

Suppose a response variable Y is binary (1 or 0) and we consider a
vector of regressors X that influence the outcome Y. The model takes
the form,

PlYy =1|X] = o(X"p)
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where @ is the cumulative distribution function of the standard
normal distribution.

Considering a latent variable Y* = X7 + ¢ where ~N(0,1), the
probit model above may transformed to the model,

v { 1, Y >0
(0, otherwise

As a result,

2.4. Ordinal regression models

In statistics, ordinal regression, also called ordinal classification, is a
type of regression analysis used for the prediction of an ordinal
variable. The value of an ordinal variable exists on an arbitrary scale
where only the relative ordering between different values is
significant. A typical example of ordinal regression is ordered probit.

Ordered Probit Model

Let Y; be individual i’s response variable and assume that this can
take an integer value on the set [0, /]. Let y;” be the underlying latent
variable representing i’s tendency to agree with the statement

advanced. The ordered probit model is based on the assumption that
y; depends linearly on x;:

yi =x8+e;, i=1..,n

where e;~N(0,1) and S is a vector coefficients not containing an
intercept.
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The relationship between y* and the observed variable Y is
expressed as follows:

Y=1if —o<y* <Ky
Y=2if <y <k,

Y=3 if Kk, <y" <Ky

The parameters x; = 1, ...,/ — 1 are known as cut points or threshold
parameters.
As a result, the probability of each ordinal outcome is expressed,

PlY;, =j] = P[Kj_l <y’ < Kj] = P[Kj_l <x;f+e< Kj]
= P[Kj_l - xi,[)’ <e < K] - xlﬁ]
= CD(KJ- — xlﬁ) — ®(Kj—1 — x;iB)

The figure below depicts the density function of y*for the case of | =
4 (Anne R. Daykin, Peter G. Moffatt).
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The absence of the intercept parameter is a consequence of the ] — 1
cut points all being free parameters; they are not predefined by the
model but they can be chosen or estimated experimentally or
theoretically. If one of the cut points were normalized to zero, then
the intercept parameter would become identified and would appear
in the model.

2.5. Auto-regressive processes

The most common model for correlated data is a class of time series
models which are called auto-regressive processes. These processes
are used a lot in the football dynamic models where the abilities of
the teams change over time. These models will be presented in
Chapter 4 (paragraph 4.4.).

Definition (Time series process) A time series process is stochastic
process {X¢|t € T}, which is a collection of random variables ordered
in time. The set T is called index set and it determines the set of times
at which the process is defined and observations are made.

There are two sets of conditions under which the theory is built:

e Stationary process (the mean and the variance don’t change
over time)

e Ergodic process (the statistical properties of the process can
be deduced from a single, sufficiently long, random sample of
the process)

Definition ( Auto-regressive process) Let Z, be a random process
with mean 0 and variance o2 where each Z, is independent. An auto-
regressive process of order p, denoted AR (p), is given by

Xt = alXt_l + -+ apXt_p + Zt

WhereXO = X_1 = e = Xl—p =0
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In the expression above, correlation is introduced between the
random variables by the regression of X; on past values X;_, ..., X;_,,.

The parameters ay, ..., @, are the coefficients of the auto-regressive

process where q; is called the lag i coefficient.

The AR(1) process
An AR (1) process is given by
Xt = aXt_l + Zt

In order to calculate the mean and variance of the process:

00

Xt = aXt_l + Zt = a(aXt_Z + Zt—l) + Zt = = z ath_j
Jj=0
As a result,
o0 (o] o0
EX] = E|) oz, | = ) B[z, ] = Z =
j:O ]:O =
and

o0
Var[X,] = z a’Z,_ —j ZVar a’Z,_ —j =Z

The variance is comprised of an infinite sum, so its value depends on
a.

e If|a| = 1 (non-stationary) then Var|[X,;] = o

e if|a] <1 (stationary) then it is known for a geometric series:
00

Z a=1+a*+a*+- !
T 1-a?

j=0
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As aresult,

2.6. Model selection criteria

In many statistical problems, obtaining the optimal model is the main
good. For this purpose, some selection model criteria have been
developed, which are based on the maximum likelihood of the model
and the number of the parameters estimated. All these criteria are
based on the Kullback-Leibler divergence.

Definition (Kullback-Leibler divergence) Let us consider the
probability measures P, Q defined in the same space (X,A) where X is
the set of all possible outcomes, A is a set of events and P is absolutely
continuous on Q (Q(A)=0= P(A)=0,VA € A). The Kullback-
Leibler divergence (or relative entropy) from Q to P is defined to be

Dalle) = | 1og(55) a.

For discrete cases the KL-distance is expressed as,
P(x)
> P@log( 5 ) = EpllogP(0)] - Epllog@ (o)l
xeX Q(x)

In an actual problem, we have a sample of observations from the
unknown mass function P which is modeled by the mass function
Q(- |0). If we want to compare different models with respective mass
functions Q;(-|6;), this can take place through an equivalent
comparison of the divergences Dg;(P]||Q;), where the best model is
that with the shortest divergence from the actual mass function P.

From the equation above, it is clear that the best model is that with
the largest Ep[logQ(x|0)] = Ep[1(6)].
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The theory above leads to the following definitions of model selection
criteria.

Definition (AIC and BIC) Let us consider a sample of observations, a
model with vector of parameters 6 € @ € R* and the maximum
likelihood estimator . The Aikake Information Criterion and the
Bayesian Information Criterion are defined to be

AlC = —ZlogL(é) + 2k and BIC = —2logL(9) + klogn
respectively.

These criteria contain a “penalty” for the number of the model
parameters. The BIC has greater “penalty” for the parameters than
AIC, which also increases according to the sample size.
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Chapter 3

The EM algorithm

The Expectation-Maximization (EM) algorithm is a broadly applicable
type of iterative computation of maximum likelihood (ML) estimates.
[t is mainly used in incomplete-data problems. Its basic idea is to
solve a succession of simpler problems which occur when we
augment the observed variables (incomplete data) with a set of
additional variables (missing data) that are unobservable or
unavailable.

3.1. Theoretical Framework

Maximum likelihood estimation (MLE) is a widely known method of
estimating the parameters of a probability function, given some
observed data. In this procedure, the aim is to obtain the point of the
parameter space that maximizes the likelihood function so that the
observed data is most probable. This point is called maximum
likelihood estimate. Specifically, our objective is to maximize the
likelihood L(0) = g(x;60) as a function of 6, after assuming the
observed data x with probability density function g(x; 8), and with 6
being a vector of unknown parameters in the parameter space. In
order to maximize the likelihood,

aL(e)
0
or equivalently,
dlogL(0) 0
0
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However, in many statistical problems where the likelihood or log-
likelihood is not quadratic, due to missing data, dependence or non-
normal errors, the maximum likelihood estimate cannot be obtained
by solving a simple equation or a linear system. In these situations,
ML estimate is obtained by using numerical iterative methods of
solution of equations such as Newton-Raphson approach. In the next
paragraph, we will present an additional iterative method, the EM
algorithm, which offers an attractive alternative in a variety of
settings.

The EM algorithm is an iterative method which deals with estimating
parameters in problems where the likelihood is complicated in
structure resulting in difficult-to-compute maximization problems. A
typical case is that of missing data problems. In such problems we
can formulate an associated statistical problem with augmented data
from which it is possible to work out the MLE. The augmented data is
often called ‘complete’ data and the available data is called
‘incomplete’ data, and the corresponding likelihoods are the
‘complete-data likelihood” and the ‘incomplete-data’ likelihood
respectively. The EM algorithm is a generic method that computes
the MLE of the incomplete-data problem by formulating a complete
data problem. Basically it takes advantage of the simplicity of the
MLE of the complete-data problem and it finally computes the MLE of
the incomplete-data problem.

Let us give an example (Maya R. Gupta, Yihua Chen 2010).

“Consider the temperature outside your window for each of the 24
hours of a day, represented by x € R?*, and say that this temperature
depends on the season 6 € {summer, autumn,winter, spring}, and
that you know the seasonal temperature distribution p(x|8). But what
if you could only measure the average temperature y = X for some day,
and you would like to estimate what season 0 it is. In particular, you
might seek the maximum likelihood estimate of 6, that is the value ]
that maximizes p(y|0).”

The EM algorithm is a suitable technique that can deal with the
problem above.
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3.2. The EM Method

In order to use EM, we have to be given some observed data y, a
parametric density function f(y|@), a description of some complete
data x that we don’t have. We assume that the complete data can be
modeled as continuous random vector X with density f.(x; @) where
0 € () for some set ().

Definition (complete-data log-likelihood) We let f.(x; 8) denote the
probability density function of the random vector X which corresponds
to the complete-data vector x, with @ € () where () a parameter space.
Then the complete-data log-likelihood function is given by

logL.(@) = log f.(x; 8)

The EM algorithm deals with the problem of solving the incomplete-
data likelihood equation indirectly via iterative calculations of
logL.(@). As it is unobservable, it is replaced by its conditional
expectation given observable data y every time.

The procedure is described as follows:

e Firstly, let k = 0 and make an initial estimate 0™ for @.

e Given the observed data y and pretending for the moment that
our current guess 0" is correct, we formulate the conditional
probability distribution £.(x|y, 8%) for the complete data x.

e Using the probability distribution f.(x|y,8%)), we form the
conditional expected log-likelihood, which is called Q-function:

Q(6;6%)) = Eguo{logLc(8)|y}

e We find the value of @ that maximizes the Q-function, gk+1),
This is the new estimate.

o Letk :=k + 1and we go back to the second “bullet”.
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The traditional description of the EM algorithm consists of two main
steps.

On the (k + 1)-th iteration, the steps are, the Expectation Step
(E-Step) and the Maximization Step (M-Step).

E-STEP: Compute the expected value of logL.(0) given the observed
data y, and the current parameter estimate 0% It is defined,

Q(6;0™) = Egu{logL:(8)]y}
M-STEP: Choose 8%*Vto be any value of @ € 2 so that:
Q(8%+D;0W) > (0;0W) vOEN

In other words, the M-Step consists of maximizing over 6 the
expectation computed in the E-Step.

The E-steps and the M-steps are alternated repeatedly until the
procedure stops due to convergence.

Let us give an example from Maya R. Gupta and Yihua Chen (2010) to
illustrate the use of the method above.

Let us consider n kids which choose one toy out of four choices. Let
y = (¥1, V2, V3, ¥4)T denote the histogram of their n choices, where y;
the number of kids that chose toy i, fori = 1,2,3,4. We can model this
random histogram y as being multinomially distributed. In this case,
the multinomial density function is expressed as,

ni
fiylp) = yl!yz!yg!y4!pivlp'ﬁvzpfpf‘*,

where n is the number of kids asked, thatisn=y; +y, + y3 + y,
and p = (pq,p,, P3,P4) is vector of probabilities with p; being the
probability that toy i is chosen, i = 1,2,3,4.
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By assuming that the probability p of choosing each of the toys is
parameterized by some value 8 € (0,1) we have,

T

1 1 1 1 1
= (p,0,,0:,0.) = |=4+-0,-(1-0),-(1—06),-0
Pe = (P1, P2, P3, Pa) >t 4( )4( )4

The estimation problem is to guess the value of  that maximizes the
probability of the observed histogram y. According to the
parameterization above the multinomial function in our case
becomes,

() = n! (1+10)3’1(1—0)3’2(1—0)3’3(0)3’4
FoP) =z g 4 4 4)

For this simple example, the MLE can be easily found but we will
instead illustrate how to use the EM algorithm to find the MLE of 6.

To illustrate the EM algorithm, we represent y as incomplete data
from a five-category multinomial distribution (complete data) where
the cell probabilities are,

—1191(1 9)1(1 9)10T0€(01)
q9_214 14 r4 ;4 ’ 1)

The idea is to split the first of the original four categories into two
categories. Thus, the complete data is x = (xq, x,, X3, X4, X5) where
YVi=X1+X3, Y,=X3, Y3=2X4, Ys=xs and the complete data
density function is,

X1

fe(x10) =x1!x2!;3!!x4!x5!(%) (%) 2(1;9) 3<1;9> 4(%)

X5
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Our aim is to maximize the Q-function, that is to find 0+ g0 that,
0"*Y = argmax Q(8; 0W)) = argmaxEy,, gu{logf.(x|6)}.

As stated above, two steps are required.

Expectation Step: The E-Step estimates the sufficient statistics of the
complete data x, given the observed data y. In our case, (x3, x4, X5)
are known to be (y,, ¥3,¥4). The only sufficient statistics that need to
be estimated are x; and x, where x; + x, = y;. After all, despite the
fact that the value of y;is known, x; and x, remain unknown.
Estimating x; and x, using the current estimate of 0 leads to,

: 2
(k) 2
X1 =V1'7 1 = o Y1
1otgm 246
2 +79
and
@ EPI0 G
X2 =0T 1 = 0 Y1
2olgm 240
2T 79
As a result,
k) _(k 2 PG
xly = (x](_ ), xé ),x31 x4; xS) = (2+0(k) y]_; 2+0(k) yl'y2'y3ly4)
and

109
Q(8;0®) = (m)ﬁ + y4> logf + (y; + y3)log(1 — 6)
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Maximization Step: The M-Step becomes:

0%*D = argmaxgeo1)Q(6; 0%)
2109
= argmaxge(o,1) Km}ﬁ + y4> logh + (y; + y3) log(1 - 6)
[+109,
PETICRANEG

[21¢9)
Sy Y1t Y2t Yty

The procedure above is repeated till the convergence of 8 to a 8"
which is considered to be the MLE of 0.

3.3. Convergence of the EM algorithm

While the EM algorithm is in progress, the (k + 1)th guess 8%*1) is
never found to be less than the kth guess 8. This property is called
monotonicity of the EM algorithm (Maya R. Gupta, Yihua Chen 2010).
The monotonicity of the EM algorithm guarantees that while the EM
algorithm is in progress the guesses-values of 8 won't get any worse
in terms of their likelihood, but it cannot guarantee the convergence
of the sequence {0(")}. Actually, there is no general convergence
theorem for the EM algorithm; the convergence of the sequence
{6%)} depends on the characteristics of the log-likelihood and
Q(6;0%).

The convergence of the EM algorithm is determined by using a
suitable stopping rule like,

|0k+D — 9| < ¢

for some € > 0.
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So when the rule above happens then the procedure stops with 8* =
0*+D being the result-estimate of the incomplete-data problem.

Theorem (EM algorithm inequality) If the observable likelihood
L(O|y) is bounded, then the value of O*to which the algorithm
converges, is a local maximum of L(0|y).

Proof: Initially, we have that

L@y, x) = fo(x,y) = foW) fo(xly) = L(Bly)fo(x|y)

and with logarithm in the equation above it is

£(0ly, x) = £(0ly) + logfo(x|y)

If X is an absolutely continuous random variable, by multiplying the
equality members with the density f 5 (x|y) and by integrating by x:

f 281y, %) f o0 (xly)dx = f 201 f g0 (xly)dx + f l0gfs XY f g0 (xly)de

Respectively, if X were a discrete random variable, we would multiply
with the probability P ,0)(X = x|y) and we would take the sum by x

instead of integrating.

We observe that:

j 2(81y,%) f oo (xly)dx = E[£(8y, X)Iy] = Qpt0(6)

Ji’(ﬁly) fox|y)dx = €(9|y)ff9<o> (x|y)dx =£(61]y)
Now, we set,
Hy(0) = — j logfo(x|y)f g (x|y)dx = —Egw[logfe(X|y)|yl.

So the observable likelihood is analytically written as:

£(01y) = Q0 (8) + H o (6).
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Now by using Jensen inequality we have:

How (6W) = Hyw (6©)
= —Egw[logf e XYyl + Eyw[logfem X|y)|y]
- _E [logf9<n(le)|
0 Tlogf oo Xy I”
lngg(n (le) ]
> — E
= ~logEqw [logfean(le) Y
logfew(x]y)

= —lo lo x|y)dx

= —tog [ 10gf g (xly) = ~log1 = 0

This inequality is known as the fundamental inequality of EM
algorithm. If 8 is the current estimate of 6, then this inequality
shows us that for any value of our next estimate 81, the function
H o () will not be smaller than the current value 40 (0?). As the

function His increased in every step of the EM algorithm, we can
ignore H and focus on the function Q.

If we select any value 6 that increases the value of the function
Qe () , that is Qe(o)(e(l)) >Q9(o)(9(0)) , then we will have
{’(9(1)|y, x) > 1(9(°)|y, x) By repeating this procedure, we produce a
sequence of estimates which increases the value of the observable

likelihood in every step of the algorithm and finally converges to a
local maximum.

It is clear that, if we select precisely the value that maximizes the
function Qg (") as 8W, that is 8V = argmaxy Qg (8), then the
algorithm will have the maximum speed of convergence. This is the
aim of the EM algorithm. However, even if the analytical maximization
of the function Qu(*) Iis not feasible, the algorithm will anyway
converge to a local maximum of the observable likelihood if we select
in every step a new estimate that increases, even a little, the current
value of the function Q.
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Chapter 4

Football Modeling

It is true that football is probably the most popular sport in the
world. Football’s history began in England in 1863 where people
were kicking a leather ball filled with feathers and hair in their
neighborhoods and, after a continuous evolution, it became an
international attraction. In recent years, more and more companies
have been associated with football depending economically on it and
more and more staff has been working on it. Moreover, the sport has
become extremely competitive and complicated. These facts have led
to a huge statistical interest in the sport. Visualizations, performance
analytics, outcome prediction etc, came to improve players and teams
making their performance more effective.

Football is a low-score sport with a lot of surprises and changes
during a match which make it hard to predict the final outcome. A lot
of statistical modeling has been developed in order to assist
professionals of all kinds to improve their influence on the sport. In
this chapter we will show different types of statistical models like
win-draw-loss models and score models which are used in predicting
the outcome of football matches.

4.1. Naive Models

In this paragraph we will present some basic and easy-to-use
statistical models with their characteristics that can be used in
predicting football outcomes. Although these models do not have
specific properties that are essential in football modeling, they are an
obvious initial approach.
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4.1.1. The Bradley-Terry ordinal model

The Bradley-Terry model is a preliminary simplistic model which can
predict the outcome of a paired comparison. Given a pair of
individuals i and j drawn from some population with X;, X; being
variables relating to i and j respectively, it estimates the probability
that the pairwise comparison X; > X; turns out true, as

b

P(X;>X;)=P(YV;=1) = ——

where p; is a positive real-valued score assigned to individual i and
Y;j is a binary variable; if Y;; = 1 then X; > X; and if ¥;; = 0 then X; <
X;. In the case of a football game, i is the home team, j is the away
team, X; denotes the goals that team i achieved in the match and p;
represents the ability of team i. Actually, P(Xi > X j) is the probability
of team i prevailing over team j.The Bradley-Terry model uses
exponential score functions p; = e!i so it can be written as

eli eVi7Vj

P(Xi>Xj)=P(Yij:1)=eyi+e)/j:1+e)/i—)/j

where the parameters y; are associated with the ability of the teams
and need to be estimated. For example, y; could have information
about the rate of chances that team i generally creates during a
match. It is clear that the outcome of the game is determined by the
difference y; — y;. For identifiability, a sum-to-zero constraint to the

parameters is needed, };; ¥; = 0.
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We can notice that the model above has only two outcomes (win or
lose) and that is the reason that the Bradley-Terry model can be
preferably used in basketball games rather than football games,
where one of the two teams win in the end. For football matches we
have to extend the model above by taking into consideration the case
of a draw. An early approach on such modeling was the Rao-Kupper
model (1967) which consists of two types of models:

e Model A:
_ bi
P(X; >X;) = ———
ex)=_ P
P(X; <X;) = ———
P(X; =X, = pip;(0° — 1)
T (pi+ 0p;) (ps + ;)
e Model B:
Pi
P(X; > X;) =
( l ]) p; + pj +v/Pipj
pPj
PlX; <X;)=
(<) p; +pi +vpip;
P(Xl- _ Xj) _ V\/DiDj

p; +p; +v/pip)

For 8 = 1 and v = 0 respectively we get no draws.
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By extending the binary Bradley-Terry model to a model with three
categories; the variable Y;; is coded as 2 if the home team wins, 1 in

the case of draw and O in the case of victory of the visiting team, we
lead to the cumulative probabilities in the form

o exp(ux +vi —v))
1+ exp(ug +vi —v))

P(Y;; <k) k € {0,1,2}

where py < py < p, are unknown cut-point parameters-thresholds
which determine the preference for each specific category.
The probability for a single response category can be derived as
follows,

P(Y;=k)=P(Y;; <k)—-P(Y;j<k—-1)
By slight abuse of notation, in the pursuit of completeness we define
the threshold of the last category u, = +o0 so that P(Yij < 2) = 1.
The model is over-parameterized in the sense that it is exactly the
same even if we add a fixed constant a to all values y; because the
differences y; — y; remain unchanged. The constant a may denote the

home advantage. Therefore,

_exp(ugtatyi—v;)
1+exp(ur +a+y; —v;)

P(Y;; < k) ,k €{0,1,2}

The constant parameter a can be replaced by «; so that home effects
are team-specific instead of being equal for all teams. Concerning the
ability y; of team i, it is given by

Yi = Biz;

where z; is a vector of covariates and f; is vector of coefficients.
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By assuming the latent linear predictor of the ordered model,
Yji=ai+pizi— Bjzj+¢
where e~N(0,1) represents the error term, the ordinal categories re

Y;;=0, o <Y< g
Yij=1, #0<Yij‘S#1
Yij=21 :u1<Yi>’]<'<OO

Estimation
Maximum likelihood estimation is applied to estimate the value for
the parameters B;,5; and the thresholds uj,k =0,1. The log-

likelihood function [nL of the model is,

InL = z (lnFijO) + z (lnFijl - lnFijO) + z (_lnFijl)

i,j,Yij=0 i,j,Yij=1 i,j,Yij=2

where Fjj , k = 0,1 are the cumulative probabilities of the model.

By maximizing the equation of the log-likelihood for each parameter,
the estimates for the parameters are obtained.
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4.1.2. The Double Poisson model

The Poisson distribution has been widely accepted as a simple
modeling approach for the distribution of the number of goals in
sports involving two competing teams.

We assume for the i-th match, i = 1, ..., n that (X;, X,), which denote
the achieved goals by the two opponents, are modeled as two
conditionally independent Poisson,

X1;~Poisson(A4;)
X,;~Poisson(A,;)

with joint density function the Double Poisson probability function

fDPJ

A 72

M M

for(xy, x2) = ™M € & !
X1! x5!

The parameters A,;,4,; represent the scoring rates, that is the
expected number of goals for the home and the away team
respectively in the i-th observation-game.

Starting with the probability Poisson mass function in order to obtain
the exponential dispersion form and indentify the link function for
the parameters estimation we have the following steps:

—Ai )X

fxi;A) = ra exp(x;log(A;) — 4; — log(x;1)) =

alp) =1, 6;=log(A) & 4; =€,  b(6;) =2; = e,

) = log (2)

xi!
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In the exponential dispersion family, 6; is the canonical parameter
which depends on a model of linear predictors. Therefore, the log of
the expectation, log(4;) can be modeled by Poisson regression as,

g4;) = 0; =log(4;) = Bx

where x is a vector of explanatory variables and B is a vector of
coefficients.

The scoring rate of the kth team in the ith match 4;; depends on the
attacking ability of the team k as well as on the defensive ability of
the opponent (Joel Liden 2016). As a result,

log(14;) = u + home + atty, + defy,,,
log(A2;) = u + att,, + defy,,

where att;, and def, are the attack and defense parameters of the
team k respectively, h; and a; are the home and the away team in the
i-th match, home represents the home advantage and u represents
the constant intercept.

In order to achieve identifiability, we use sum-to-zero constraints for
attacking and defensive abilities,
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Estimation
Considering the Poisson regression form,

log(11;) = B, TW1i
log(1,;) = B; TWzt

where A;;,1,; are the scoring rates of the home and away team
respectively in the ith match and w,;, w,; € R? the respective vectors

of covariates with B; 7,5, T € R% coefficients, the log-likelihood
function is:

n

logl = ) [~2y = A + 1,108 (A7) + Xyil0g(Rar) — logles!) — log(xzih)]

i=1

n
T ) T .
= Z [—eﬁl Wit — eP2Wai oy BTy + xp 83 Wy — log(xyy!) — log(xZi!)]
i=1

The maximum likelihood estimation for parameters w;, and wyy,
k =1,...,d is carried out through the following equations:

dlogL 0 fork=1,...d
=0, ork=1,..,

0B1k

dlogL 0 fork=1,...d
=0, ork=1,..,

0B

For the solution of these equations the Newton-Raphson method is
suggested which is presented in the Appendix. For this method , the
matrix of second derivatives is needed.
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4.1.3. The Negative Binomial model

Just like the Poisson case, a negative binomial model can be used for
count data such as the number of goals for two opponents. In the
world of football, empirical evidence has shown over the years that
there is over-dispersion in the number of teams’ goals in most
leagues. An important characteristic of negative binomial distribution
is that allows for over-dispersion as it has larger variance than the
mean, something that can be seen as a disadvantage in Poisson
distribution, where the mean is equal to the variance,.

The negative binomial distribution is a discrete probability
distribution that models the number of successes in a sequence of
independent and identically distributed Bernoulli trials before a
specified number of failures (denoted r) occurs. Thus, the negative
binomial mass function is derived as,

k+r—1

flsrp =P = =(" """

) 1-p)kp” ,k=012,..

In our case, we have

r'(y; +r) ( r )r( A )y‘

f(yi)zf(r)F(yi+1) Ai+r) \A +1

where I' is the gamma distribution, A; denotes the scoring rate of
team .
By obtaining the exponential dispersion form,

f(yi; 055 90) == exp (log (( Py : T)T) *+yilog (Ai/l-li— r) +log <r(:)(13ji(; :)1)>> -

A r
ap)=1, O =log(s—),  b(O) = —rlog(——),
l l

+r

rty; +7) >

<00 = 108G
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As a result, the expected value and the variance in the negative
binomial case can be retrieved by the following procedure:

6; =1 (Ai) - _9'=>A—r69i
i =08 Ai+7" Ai+7'_e i_l—eei

b(6;) = —rlog (r . ) = —rlog(1 — e%)

+ A;
Soitis,
, ref
E[Y;] = b (6;) = 1—691: i
” rebi 1 5
Varltil = b (0ale) = oz = i + 74

For r — o0 we can see that we get a Poisson model. As for the link
function in the negative binomial case we have g(4;) =6; =

Ai
log (m) = x;f.
Since A; > 0 the image of g(4;) € (—,0). Therefore, the canonical
link function is not a good choice. On the other side a log-link
function (similarly to the case of Poisson model) is a better choice as

it allows for positive values.
So, similarly to the Double Poisson model we have:

log(11;) = a + pyatty; + Brdefy,

log(Ay;) = a + Patty; + Brdefy;
where att and def are the attack and defense parameters, h and g
are the indicators of the home and the guest team respectively, i is
the number of our observation-game and a is a constant parameter.

The estimation of the parameters is similar to the Double Poisson
model (paragraph 4.1.2.).
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The models that were presented above are simple and easy-to-use.
However they do not have some important properties that we need
in studying football results. Dependence between the opponents,
excess of some specific outcomes and dynamic abilities are some
specifications that need to be taken into consideration as they play an
important role in the quality of our model we use.

4.2. Models with dependence parameter

We saw some simple approaches in studying football results which
do not contain dependence between the random variables. However,
several researchers have shown the existence of a correlation
between the numbers of goals scored by the two opponents. In team
sports, such us football, it is reasonable to consider that the two
random variables are correlated (either positively or negatively) as
the two teams interact during the game. For example, if a team loses
during a game, then it will try to score as soon as possible which
affects the speed of the game as well as the rate of the chances of the
opponent too. On the other hand, when a team has a totally offensive
style of playing making many chances, this may affect negatively the
net scoring of the opponent team which may only defend during the
game. In this paragraph we will present models that contain
dependence between the outcome variables.
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4.2.1. Two-dimensional copula model

Copulas are very fashionable multivariate distributions contributing
in application to many disciplines, like biostatistics, finance etc. Thus,
one way to study football outcomes and insert a correlation between
the two opponents is a two-dimensional copula. Two-dimensional
copulas can produce flexible bivariate distributions with flexible
marginal distributions and flexible dependence structure.

In our case, we want to predict the outcome in football games with
the goal scoring of each team being a discrete random variable. As it
is mentioned in Chapter 1, there are specific types of copulas dealing
with discrete cases.

Provided that between the two opponents in a football match there is
not only positive but also negative correlation, the Frank copula is a
reasonable choice as 8 € (—o0, +00) \ {0}. So it is,

(e~ — 1)(e~%% — 1)
e ? -1 ’

1
C(uq,u;y10) =510g{1+ 6 e R\ {0}

If we consider Fy(x), Fy(y) the cumulative distribution functions for
the number of goals of the home and the away team respectively, our
copula is expressed as follows:

(e—QFx(x) — 1)(3—9Fy(y) — 1)
e ¥ -1

1
C(Fx(x), Fy(¥)|6) = 5108{1 +

with 8 € R\ {O}.
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e In the Poisson case, we have,

X

Ake—llx
ulex(x)=P(XSx)=Z =
k=0 '
y
Ake=A2y
u; = Fy(y) = P(Y <) :Z o
k=0 '

where 44,4, denote the rate of scoring of the home and the away
team respectively.

e In the negative binomial case,

X k

B - B rtk+r) " \"( A
u, =Fx)=PX <x) = k=0p(r)p(k +1) ()11 + r) (/11 + r)

'k +r) r \"/ A, k
w =K =P¥ <y = LTI+ D (/12 n r) (,12 +r)
where 44,4, denote the rate of scoring of the home and the away
team respectively.

Since the copula function is actually the cumulative distribution
function (cdf) and not the joint probability mass function (pmf), the
probabilities of specific outcomes can be retrieved as follows:

e P(X=0,Y=0)=C(Fx(0),F(0))
o PX=xY=0)=C(Fs(x),F(0) — C(Fy(x — 1),Fy(0),x =12, ...
o P(X=0Y=y)=C(F(0),F()) - C(Fx(0), Fr(y — 1)),y = 1.2, ..
e PX=xY=y)= C(FX(X),FY(}’)) - C(Fx(x - 1);FY(3’)) -

(FX(X),FY(}’ - 1)) + C(FX(X —1),Fy(y — 1)) ,
x,y=12,..
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Dependence parameter 0

As it is mentioned, the dependence parameter 6 in the Frank copula
allows for negative correlation between the home goals and the away
goals which is appropriate, since historic data suggests this.
Moreover, in our case, the dependence parameter is not the Pearson
type of correlation in which the interval of 8 would be [—1,1].
Kendall’s 7 is a measure of correlation-concordance that works in our
case. For the Frank copula, Kendall’s T can be expressed as follows:

0 a

T:f(9)=1+fU ———da—1
ol), 6(e*—1)

Since the function f is invertible, 8 can be easily estimated using an
estimate of Kendall’s 7. So it is

T=f(0)=0=Ff"1(1)
where 7 is a Kendall’'s estimate. It is noticeable that 6 can be

estimated through 7.

Estimation
Assume that we have a set of n observed match results,

(11, %21), (%12, X22), v, (X170 X2)
where x;; and x,; are the number of goals scored by the home and

the away team respectively in the ith match, and that we also have
corresponding explanatory varialbles-vectors wy;, w,; for each match.
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The log-likelihood of the model is,

£(8,0) = ) loglhg (rrp %20)]
i=1

where @ is a vector of coefficients. Concerning the function hy:

ho (x4, X2;) = CB(F1(x1i):Fz(x2i)) — Cy (Fl(xli - 1),F, (le')) -
CG(F1(x1i):F2 (21 — 1)) + Co (F1(x1i — 1), Fy(xg; — 1)):
xll’, le’ = 1,2,

where F;, F, the marginal cumulative functions of the goals achieved
by the home and the away team respectively.

The parameter estimates B and @ can be found by the maximum
likelihood estimation as 8,0 = argmaxggt(B,0).

In practice, the numerical computations required to find the
maximum are very heavy. Instead we use inference for the margins
to estimate the marginal parameters and copula parameters
separately.

4.2.2. The bivariate Poisson model

In the paragraph 4.1.2 we presented the double Poisson approach on
football modeling which is a simple approach consisting of two
independent and Poisson distributed random variables. In this
paragraph we will show the bivariate Poisson distribution which is
an advanced Poisson-model version allowing also for dependence
between the random variables. After all, as it is mentioned, in team
sports like football, there is correlation between the two opponents
during the game.
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The bivariate Poisson distribution

Consider three random variables X, X,, X3 which follow independent
Poisson distributions with parameters A, A,, A; respectively. As we
want to construct a bivariate model we will apply trivariate reduction.
We create X,Y such as,

X=X +X;
Y =X, + X3

The random variables X,Y follow jointly the bivariate Poisson
distribution BP (A4, A5, A3) with joint probability function fgp,

15 3 min(x,y) X Y 2a 2K
e e E >
fep(x,y) = exp{—=(1; + 1, + 13) x! y! (k) (k) k! (,11/12) '
k=0

This bivariate distribution allows for dependence between the
random variables. As for the marginal distributions, it is obvious that:

X~Poisson(Ay + A3) with E[X] =21, + A5
Y~Poisson(1, + 13) with E[Y] =21, + A5

Moreover, Cov(X,Y) = A; which leads to the consideration that A5 is
a measure of dependence between the two random variables. If 1; =
0, then the two random variables are independent and the bivariate
Poisson distribution reduces to the product of two independent
Poisson distributions which is the double Poisson distribution that
we presented in 4.1.2.

When using this bivariate Poisson distribution to model football
outcomes, it is obvious that X; and X, denote the goals of the home
and the away team respectively, with A; and A, reflecting the scoring
rates of the two teams. The variable X; denotes the goals from
common cause, so Az reflects game conditions such as the stadium,
the weather, the speed of the game etc.
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Estimation

In football modeling, we have to use realistic models where the
parameters are expressed through covariates. In the case of the
bivariate Poisson model, we have the regression form as follows:

(Xi: Yi)’VBP(AL /12:13),
log(417) = wy;B1,
log(A2;) = wyi By,
log(43;) = w3;B3,

where i = 1, ...,n denotes i-th observation-match, wy; is a vector of
explanatory variables for the i-th match used to model A;; and B are
the regression coefficients, k = 1,2,3.

[t is clear that the explanatory variables that are used to model each
parameter A;; , k = 1,2,3, i =1, ..., n, are different as each parameter
may be influenced by different characteristics and variables. For that
reason the estimation of the parameters cannot be accomplished
straightforwardly. Thus, in order to obtain maximum likelihood
estimates, we make use of the EM algorithm. To construct the EM
algorithm for the bivariate Poisson regression model, we make use of
the trivariate reduction. Suppose that for the i-th observation,
X1i, X5i, X3; represent the unobserved data, whereas X; = X;; + X3;
and Y; = X,; + X3; are the observe data. Initially, we need to estimate
the unobserved data through their conditional expectations and then
fit the Poisson regression models to the pseudo-values obtained by
the E- step. The complete data log-likelihood is given by

L(p) = i 23: ki + zn: 23: X1ei108(Agi) Zn: i log(xx;!),

i=1k=1 i=1k=1 i=1 k=1
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The EM algorithm for the bivariate Poisson model is:

E-step: We calculate the conditional expected values of X3;, i =

1,..,n by using the current parameter values of k iteration

k) AU () 4K
((P( )’Ali r2L 31 )

k k k
oo for (%= Ly = 1|28, 25,25)

200 .
s = E[Xa|X,, Y, %)) = { 3 fop (20 v 280,290, 200)

1i 2720’
0 ,min(x;,y;) =0

,min(x;, y;) > 0

where fpp the mass function of the bivariate Poisson distribution.

M-step: We update the estimates:
(k+1) ,B(x _s, W1)
(k+1) ,3()/ _s, Wz)
k
BE +1) = ﬁ(s’ WB);
AW = expWik BEV) k= 1,23

where s = (sy, ...,s,)T is the n X 1 vector calculated in the E-step and
B(x,W) are the maximum likelihood estimates of a Poisson model
with response vector x and W data matrix.

Model specification
A simple regression form of the model above is :

(Xi, Yi)~BP (44, 42, 43)
log(14;) = u + home + atty, + def,,
log(Ay;) = u + atty, + defy,

For ease of interpretation we choose sum-to-zero constraints on the
explanatory variables.
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For the covariance parameter A;; we may assume the general form:

log(A3;) = Bo + V1B +V2Ba, > +¥BW;

. awa
where B, is a constant parameter, B,’{i"me and Y are the

parameters that depend on the home and the away team
respectively, w; is a vector of covariates for the i-th match and B a
vector of coefficients. The parameters y; and y, are dummy binary
indicators taking values 0 or 1 as well as y is a parameter-vector that
that takes also values 0 or 1. These values of parameters y;,y, and y
depend on the model that we consider. Usually, we consider models
with constant A3, that is y; =y, = 0and y = 0 which makes the
models easier to use. However, using covariates on A; helps us to
have more insight on the influence of 15; in each observation i.

The effect of A3 in draws

0.25 —
20
o 020
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S 015
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=
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L
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0.00 —L_ ] [
0 1 2

lambda_2

The figure above is an output presented by Karlis and Ntzoufras
(2003) which shows the relative change in the probability of a draw
for different values of the parameter A5 (0.05,0.10,0.15,0.20) when
the two competing teams have marginal means equal to 4; = 1 and
A, € [0.1,2] respectively.
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4.2.3. The bivariate Conway-Maxwell Poisson model

The bivariate Poisson distribution is widely used for modeling
bivariate count data. However, its marginal equi-dispersion may
prove limiting in some cases such us football outcomes where, as it is
mentioned, there is over-dispersion.

The bivariate Conway-Maxwell Poisson (COM-Poisson) distribution
includes three bivariate discrete distributions: bivariate Poisson,
bivariate Bernoulli, bivariate geometric. It also contains an added
dispersion parameter and as a result, the bivariare COM-Poisson
distribution deals with bivariate count data in the presence of data
dispersion (over-dispersion or under-dispersion).

Before presenting the bivariate Conway-Maxwell Poisson
distribution and its properties we will show the univariate case.

Conway-Maxwell Poisson distribution
The COM-Poisson distribution was introduced by Conway and Maxwell
and its mass function is,

Ax
hvza,v)

fl; ,v) =PX =x|Av) = x€NA>0,v=>0

k
where Z(A,v) = Z%LO(:W is the normalizing constant and 1 = E[X"].

The expected value and the variance of the COM-Poisson distribution
are (Kimberly F. Sellers 2011) :

olnZ(A,v) B dlnZ(A,v) 1 v—1

E2lX] = o1 o M T
IE,[X] 1 1
VarlX] ==~ &
1) dlnA 0 1 0 0 d
After all, 91 94 dlnA _ 19InA and Aﬁ ~ A’
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It is clear that v> 0 is a dispersion parameter such that v=1
denotes equi-dispersion, v > 1 denotes under-dispersion and v < 1
denotes overdispersion.

The COM-Poisson distribution is a generalization of well-known
distributions:

1. If v =1 then X~Poisson(A)

2. fv=0and 0 < A1 < 1, then X~Geom(1 — 1)

3. Ifv » oo then X~Bern0ulli(1%)

The bivariate Conway-Maxwell Poisson distribution

Let us consider two random variables Xand Y denoting the goals
achieved by the home and the away team in a football game, which
follow univariate COM-Poisson distribution of mass functions,

M

(xDV1 Z(Aq,v1)’

P(X = x)|/11,1/1) = X € N, V1 € R+, /11 € IR*_H

y

A 1
P(Y = )2z, vy) = (ySVZ Z0ovy FEN MER,L LER

where A4,A4, the respective scoring rates of the two teams.
The couple (X,Y) follows the bivariate COM-Poisson distribution if and

only if its mass function is,

E 4 1 1
(xDVr (yDV2 Z(A1,v1) Z(A3,v3) '

P(X = x,Y = y|/11,V1,)lZ,V2) =

wherex,y €N, v;,v, € R,, A;,1, € Ry under the conditions

loghy = B1w

logh, = Bow + nx
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where w € RP is the vector of explanatory variables and 1, B, € R?
are the vectors of coefficients.
From the last condition above, we notice that

P(Y = y|A,,v,) = P(Y = y|X = x).
As aresult, it is,
P(X =x,Y =y)|A1,v1,45,v) = P(X = x|A,v) - P(Y = y|X =x)

[t is clear that i is a measure of dependence between the two random
variables, which is actually introduced through the dependence of the
model parameters. When n =0 the variables X and Y are
independent. After all, the covariance of X and Y in the bivariate
COM-Poisson model is expressed as,

COV(X,Y) = E, [X]E,, [Y](e" — 1)

Estimation

The estimation of the parameters f;, 5., takes place through the
maximum likelihood estimation. The log-likelihood of the bivariate
COM-Poisson distribution is expressed as,

t = z{x logd; + yilog, — vilog(x;!) — v; log(y;!) — log Z [ ]
i=1

G
Ayl
— log [ 1 17\]} =
yz:;) (riDVv2

xﬁlwl

Z{xﬁlw +Y(Baw +1x) = 73 log(x)) - 7; log(y!) — log Z [( G

eYB1w+nxy
logz[ ]
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4.3. Models with inflation

Many statistical models that are used to predict football outcomes
often underestimate some particular scores such as 0-0, 1-1 etc. In
order to deal with this underestimation, it is necessary to inflate the
probability of these scores. Inflated models are a good choice to deal
with this problem.

4.3.1. Diagonal inflated bivariate Poisson model

The bivariate Poisson model (2.2.2) can explain quite properly a
football game and its probable results. However, there is an
underestimation in the “draw” results such as 0-0, 1-1, 2-2, 3-3, 4-4
etc. As a remedy to this occurrence, we may consider the diagonal
inflated bivariate Poisson model. The latter is an extension of the
simple zero-inflated model which allows for an excess only in (0,0)
cell.

Considering that the starting model is the bivariate Poisson model, a
diagonal inflated model is expressed as,

(1 =) fep(x,ylA1, 45, 43) XF+Yy

figp(x,y) = {(1 —0)fep(x, A1, 45, A3) + pfp(x;0), X=Yy

where D is a discrete distribution defined on the set {0,1,2,, ...} with
parameter 8 and p € (0,1).

We notice that if p = 0 we have the simple bivariate Poisson model.
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The distribution D(x; 0)

The distribution D that we mentioned above could be Poisson,
geometric or other simple discrete distributions denoted by D(m). As
D(m) we consider the distribution with the following probability
function:

(8, x=0,1,..,m
f(x|6,m) = {0, x#01,...m

where 372, 0, = 1.

We notice that if m = 0 we have a zero-inflated model that inflates
only the 0-0 score. The geometric distribution might be of great
interest as it decays quickly. After all, in football the most frequent
draw results are 0-0 and 1-1 and, additionally, the more goals a draw
outcome has, the less probable it is.

The marginal distributions

The marginal distributions of X and Y of the diagonal inflated bivariate
Poisson model are not Poisson distributions, but mixtures of

distributions:
fiep(X) = (1 = D) froisson (X141 + 43) + pfp(x|0)
fier(¥) = (1 = P)fpoisson V142 + A3) + pfp (¥16)
As a result, the marginal means are:

E[X] = (1 —p)(41 + 43) + pEp[X]
and

ElY] = (1 —p)(A2 + 13) + pEp[Y]

where Ep [X] denotes the expected value of the distribution D.
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As for the variance, we have:

Var[X] = (1 = p){(A; + 23)* + (A1 + A3)} + pEp[X?]

—{(1 = p)(A1 + 23) + pEp[X]}?
and

Var[Y] = (1 = p){(A2 + 43)? + (A2 + 13)} + pEp[V?]
—{(1 = p)(A2 + A3) + PEL[Y]}?

Since the marginal distributions are not Poisson distributions, they
can be either under-dispersed or over-dispersed. It depends on the
distribution D.

Correlation

In general, in the simple bivariate Poisson model, it is Egp[XY] = A5 +
(A1 + A3) (A, + 13). So, in the case of the respective inflated model we
have,

COVigp(X,Y)
=1 -p{a3+ A1 +23)(4; + 23)} + pEp(X?)
—(1=p)*(A +23)(A; + 23)
— (1= ppEp(X) (A1 + A, + 243) — p*{Ep[X]}?

We note that the covariance can either positive or negative
depending on the choice of distribution D.

We conclude that, except for inflating the draw results, the diagonal
inflated bivariate Poisson model also allows for over-dispersion as
well as negative correlation in contrast with the simple bivariate
Poisson model. These characteristics are necessary when modeling
football results. However, the inflated model may sometimes be more
difficult in computations than the simple Poisson model.
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Estimation

Similarly to the simple bivariate Poisson distribution the estimation
of the parameters will take place through the EM algorithm. In the
diagonal inflated case of the bivariate Poisson model, the complete
data log-likelihood takes the form,

n

L(p,p,0) = z u;{log(p) + logfp(x;; 6)}

i=1

+ > (1= u){log(1 ~ p)

i=1

- i i M + i i Xeilog (M) Zn: i log(xk; D},
i=1 k=1

i=1k=1 i=1k=1

where u; take values 1 or 0 depending on whether the observation
comes from the inflation or the basic component. At the E-step u;
have to be estimated through their conditional expectations.

The EM algorithm for the diagonal inflated model is expressed as
follows:

E-step: (a) We calculate the conditional expected values of the latent
binary variable V;, i = 1, ...,n by using the current parameter values

of k iteration (¢, /15’:), /‘lg’f), /‘1(1 ,pt0, gy,

= E[V;|X = X;,Y =Y, ®,p®, ()
p® fp(x:16%)
=100 (x:[09) + (1 — p®) fp (o, i1 ALY, 459, 257)

221 T30
0 Ixi:'tYi

Xi =Yi

where f;, the mass function of the inflation distribution with
parameter vecror 6.
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(b) Similarly to the occasion of the simple bivariate Poisson model,
fori =1,...,n we calculate s;.

M-step: We update the estimates:

n

1
(k+1) — — .
p n E Ui,

i=1
KD = fr(x — s, W),
“‘*” = Paly — s, Wy),
K = Bu(s, W),
9(k+1) — Qu,Dr

A = expWl; D)k =1,2,3
where x,y,s,u,i=1—u are nX1 vectors, ﬁu(x, W) are the
weighted maximum likelihood estimates f of a Poisson regression

model with response x and data matrix W, and 9u,D(x, W) are the

weighted maximum likelihood estimates of 6 for the distribution
D(x;0).

For specific choices of the inflation distribution that are used in the
application of this dissertation :

e (Geometric distribution

The parameter 6 is updated by,

n
9(k+1) . Z =1 U
Zn 1 UiX; +Zl 1 U
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e Discrete distribution with j =]

The model parameters of the general occasion are given by,

n -1 n
6 = (Z“i) Y=Y =Pu =1,
i i=1
0y = 1—29]-

=1
j=1

where I(x) indicator function. In the case of the inflation in the up to
(1,1) cell we putJ = 1.

4.3.2. Dixon and Coles model

Dixon and Coles model is another type of inflated model. In contrast
with the case of the diagonal inflated bivariate Poisson model which
inflates the probability of the draw results, the Dixon and Coles
model accounts for the excessive number of particular scores. In
other words, there is inflation on the probability of the specific
outcomes 0-0, 1-0, 0-1, 1-1 which are frequent football results.

Considering X~Poisson(A;) and Y~Poisson(A,) the Dixon and Coles
mass function of X, Y is expressed as,

Texp(=41) Ayexp(—4,)
x! y!

fDC(xiy) = P(X = X,Y = y) = T)ll)lz(xiy)

where 44,4, are the scoring rates of the home and the away team
respectively and 7 is a function that moves the probability of certain
scores as follows:
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1—-M4Ap, ifx=y=0

1+ A4p, ifx=0y=1

T,2,00y) =1 1+4p, ifx=1y=0
1—p, ifx=y=1

kl, otherwise

where p is a dependence parameter which satisfies the constraint:

(~5-5) <p < min(551)
max|——,—— ) < p < min ,
PRI ks Ak

If p = 0 then the two random variables X,Y are independent to each
other.

The Dixon and Coles marginal distributions of X and Y are still
Poisson with parameters 1; and 4, respectively.

Model Inference

Considering that we have n teams with attack parameters {a, ..., a,,}
and defense parameters {d, ...,d,} as well as a home parameter h,
we want to estimate A;,4, of the home and the away team. To
prevent the model from being over-parameterized we have the
following constraints,

n n

n_lzai =1 and n‘lzdi =1

The basic tool of inference is the likelihood function. For N matches
and score (X, Y;) in the kth match , k = 1, ..., N, the likelihood is
expressed as,

L(a;, d;,p,y;i=1,..,n)

N
B A1*exp(—A1x) A% exp(—Az)
- Tllklzk(xk’ yk)

X! Vi!

k=1
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where
A1k = a;(k)d;(k)h,

Ay = aj(k)d;(k)

and i(k) and j(k) denote respectively the indices of the home and the
away team playing in the kth match.

Despite the high dimensionality of the model, the maximization of the
likelihood can be carried out straightforwardly through direct
numerical computations.

4.4. Dynamic Models

All the models that we mentioned in the previous paragraphs are
quite easy to use and they assume static team parameters. In other
words, a team’s performance determined by attack and defense
abilities, remains unchanged across time. Although this makes our
modeling and estimation easy, it sometimes contradicts the reality.
That is a team’s performance tends to be dynamic and changes across
years, months or even weeks. Many factors may affect this
performance such as roster changing, injuries, coaching staff
changing, economic situations etc. For example, if an excellent scorer
leaves a team, the offensive strength will certainly decrease. In the
next paragraphs we will present dynamic extensions of some
bivariate models that are already mentioned in the previous
paragraphs.
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4.4.1. Dixon and Coles dynamic model

We have already presented the Dixon and Coles bivariate model in
paragraph 4.3.2, for which we have the likelihood,

L(ai, di,p, h,l = 1, ...,n) =
N

= | [t vioexn (=00 235 exp(-220) 23
k=1

where N the number of matches, 4, 1,5 the scoring rates of the two
opponents in the k™ match and p the dependence parameter. The
parameters A;y,4y;, depend on a;d;h which are the attack

parameters of the it" team, the defense parameters of the ith team
and the home effect parameter respectively.

Since the parameters q;, d; remain static over time, the model written
above can be enhanced by introducing a ‘pseudo-likelihood’ for each
time point t. So it is,

L(a;, d;,p,hi=1,..,n) =
- H{Tlﬂclzk(xk’ yk)exp(_/lﬂ()/lf;é exp(—2A,x) A%/I’z}ﬁo(t_tk)

keA,

where tj, is the time that match k occurs, A; = {k:t, <t} and ¢ is a
non-increasing function of time. As for A4, 1,; we have (similarly to
the non-dynamic model),

Ak = a;(k)d;(k)h,

Aoi = a;(k)d;(k)
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It is clear that the parameters a;,d;, p,h are themselves time-
dependent. Maximizing the equation above at time t, we estimate the
parameters only up to time t and that is how the model reflects on
changes in teams’ performance.

Weighting function ¢

The choice of the function ¢ depends on the way we want the weight
of the historical data to decrease over time. One choice is,

(1 <t
‘P(t)_{o t>t,

where all the results within the last time units since t, will be given
equal weight in the inference whereas the results before t, won’t be
taken into consideration.

Another choice of the function ¢ could be,

@(t) = exp(—¢t),

where the effect of all the previous results decreases exponentially
over time according to the nonnegative parameter €. It is clear that if
¢ = 0 then we end up with the initial static form. On the other hand, if
¢ take large values, then there will be more weight to the most recent
results. This last choice is the one that Dixon and Coles dynamic
model uses.
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Quite often, our basic aim is to predict the winner of a football match
and not the exact score. It is remarkable that the probability of a
home win, an away win and a draw in the k" match are respectively
estimated as,

P =) P =iV =)

i>)

pi=) PX=0iY=))

i<j

P = E PX=iY =))
i=j
Now we define,

N
S = Z(&i’log pi + Silogpit + 67 logpy)
k=1

where 8}, 6#,5P take values 0 or 1 depending on the outcome we
had in the k" game. For instance, if the home team wins, then 5,? =
1,682 = 0 and 8P = 0. The probabilities pi, pi, pY are the maximum
likelihood estimates of L(a; d;,p,h&i=1,..,n) and ¢ is a
weighting parameter. The parameter ¢ plays an important role in the
predictive capability of our model. Before defining the function S, the
optimal choice of ¢ wasn’t feasible since the equation of our ‘pseudo-
likelihood’ contained a sequence of dependent likelihoods. Therefore,
our aim is to find the value of ¢ that maximizes the function S.
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4.4.2. Koopman and Lit model

All the statistic models that are used to predict football outcomes can
be extended to dynamic. Koopman and Lit model is an extension with
dynamic approach of the bivariate Poisson model that we presented
in 4.2.2 paragraph. In this model the result of the outcome of the i*"
football match is taken as the pair (X,Y) with probability density
function

fBP(xJ Y, Al: AZJ 2'3) =

52 ey oy (s
= expl(~(h + & + A} 8 kzo () () ke (/11/12)
with
E[X] = Var[X] =1, + 15,
E[Y] =Var[Y] = A, + A3
COV(X,Y) = A3
Dynamic specification

The scoring rate of the two opponent teams in a football match is
determined by A4,4,,15. Each team in a championship has its own
scoring rate. In the dynamic case, we consider these rates to change
over time since the performance of teams will change over time.

The scoring intensity of the team i when playing against the team j is
considered to depend on the attack ability of the team i and the
defense ability of team j. The home advantage is also included in our
model, so considering that i is the home team and j the away team in
week t we have fori,j =1,..,N,i # ],

A1 je = exp(home + att;; + defj.)

Ay pye = exp(att;, + defir)

79



The attack and defense strengths of the teams in a championship
change over time since the teams’ compositions and performances
are not the same over time. As a result, we consider the attack and
defense parameters to be auto-regressive processes. We have,

atti+ = Uatt,i T Pate,iqttit—1 + Nace,it
defit = Haefi T Paefidefit—1 + Naey,it

where pg:; and pger; are unknown constants, @, ; and @ger,; are
auto-regressive coefficients and 74t and 7ger;; are normally

distributed error terms which are independent of each other for all
i=1..,Nandt=1,...,n.

The dynamic processes are considered to be stationary, so |g0att,i| <
land |@ger,i| < 1fori =1,..,N. We also have that,

Natt,ic~NID (0, Ugtt,i)

Naef,it~NID (0, Oﬁef,i)

where NID(a,b) is normal independent distribution with mean a
and variance b.

The initial conditions for the auto-regressive processes att;., def;,

are based on means and variances of their unconditional
distributions which are given by,

2

Uate,i Qatti
Elatt; .| = : WV tic) = |
ot =3 = Vel = s
and
2
Udefi Odef,i
Eldefie] = 1— — ,Var|defi| =
[ efl,t] 1— Qaer ar[ efl't] (1 - (Pdef,i)z
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Estimation

Considering | teams, we have J/2 match results for each week t. A
specific match result is denoted by (X, Y;;) with i #j and i,j €
{1, ...,J}. The numbers of goals scored by all teams in week t are
collected in the J X 1 observation vector y;. We also assume the state
vector z; which contains the strengths of attack and defense of all J

T
teams at time ¢, (attlt, o, atty, defig, ..., def]t) with,
Zy =+ Pz g+,

where u is a constant 2] X 1 vector, @ is the auto-regressive 2] X 2]
coefficient matrix and n,~N(0, H) is the 2] X 1 disturbance vector.
Let ¢ = diag® and h = diagH. The observation density of y; for a

given realization of z; is given by
J

2
POtz 0, home, 23) = | | for Qe R 20)
k=1

where fgp the density of the bivariate Poisson distribution, index k
represents the kth match between home team i and visiting team j
and A; ;. = expthome + w;;z;}, Azj¢ = exp{wjizt},i # j. The
vector w;; selects the appropriate a;;, §; elements from z,.

The joint density (y, z) is expressed as,
p(y,z; @, h,home, 13) = p(y|z; @, h, home, A3) - p(z; @, h, home, A3)
where
p(z; @, h, home, 13) = p(zy; @, h, home, 13) [1’=, p(2¢|24, ..., Zt—1; @, h, home, A3)

Therefore the likelihood function of y is,

1) = p(y; ¥) = f 2(y,2; P)dz = f p(ylz: ¥)p(z; ) dz

with Y = (@, h, home, 13)

An analytical solution to evaluate this integral is not feasible, so the
maximum likelihood estimation is carried out through numerical
evaluation methods.
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Chapter 5

Application

In this chapter, four models will be used in terms of an application
over football analysis and prediction. Initially, the aim of the
application will be presented along with the data. Subsequently, the
models’ fitting will take place along with comparison of the models.
At the end, prediction on a playoff match will be carried out. The R-
code of the procedure as well as the whole dataset will be given in
the Appendix.

5.1. Analyzing the Greek Superleague

The application that follows, concerns the Greek Superleague. Our
basic aim is to analyze the teams’ performance by estimating the
“expected goals” for each team in every match of the season 2019-
2020 and the regular season 2020-2021. The analysis will take place
through four models: the bivariate Poisson model, the bivariate
Poisson model with geometric diagonal inflation, the bivariate
Poisson model with inflation at scores 0 — 0 and 1 —1, and the
diagonal inflated Double Poisson model.

5.1.1. Model specification

The basic aim of a statistician when using a model, is the estimation
of the parameters of the model.
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The bivariate Poisson models that were presented in Chapter 4, are
said to use the number of goals that a team succeeds or concedes as
covariates for the estimation of the model parameters. However, as it
is pointed out by Wheatcroft (2020), the match statistics such as
shots and corner kicks might be more informative than goals in terms
of making match predictions.

Covariates for scoring rates 14, 1,

In our application, the predictors that will be used for the scoring
rates of the two opponents are:

1) Overall Rating: The overall team rating is a reasonable choice-
predictor for the model as it depicts completely the quality of a
team’s performance in a football game (Hongyou Liu, 2015).
The football performance analysts evaluate the performance of
each player in a single match every 5 minutes. If a player makes
a successful pass or cross or a good penetration in the
opponent’s area then the player will gain points. On the other
hand, if a player makes a mistake then he will lose points. As a
result, every 5-minutes, a total rating for each player is
computed, which is positive or negative depending on whether
the good actions are more than the bad ones or not. Table 1
below shows the evaluation points for the match Asteras
Tripolis vs Panathinaikos in the season 2020-2021. At the end
of the match, each player has his total evaluation points and by
calculating the sum of all players’ points the team total
evaluation points are obtained.
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Table 1: Evaluation Index from the analyst of Asteras Tripolis for the match: Asteras Tripolis vs
Panathinaikos (Greek Superleague 2020-2021)

2) Shots in the penalty and the goal box area: The number
shots made by a team play a crucial role in the scoring rate,
especially when they are attempted at close range from the
rival goalpost. These shots consist of the shots inside the
penalty area and the shots inside the goal-box area. Table 2
below presents these attempts from the same match.
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Table 2: Attemts made from the two opponents for the match: Asteras Tripolis vs
Panathinaikos (Greek Superleague 2020-2021)

3) Corner Kicks: The number of the corner kicks gained during
game shows a lot about the offensive strategy of the team. For
instance, if a team usually attacks from the sides, then it will
gain more corner kicks than a team which attacks through the
central axis of the field. It is also worth mentioning that the
number of the corner kicks describe in a way the dominance of
a team against the opponent as it shows in a way how much
time a team spends in the opponent’s area.
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Covariates for the dependence parameter A3

As it is mentioned, the parameter A; concerns the level of interaction
of the two opponents in a football game. The two teams interact with
each other during the match which means that the scoring rate of the
teams is affected a lot by the game conditions, such as the speed of the
game. Using covariates on A; helps us to have more insight regarding
the type of influence. In the following application the dependence
parameter A; will be considered to be constant, which is the simplest
approach.

5.1.2. Data

The data of the following application were provided by the sports
analyst of Asteras Tripolis, Thodoris Tsilimigras. In every match, the
final score (g1,g2), the overall ratings of the two opponents
(ratl,rat2), the shots from the penalty area (penbox1,penbox?2), the
shots from the goal box (goalbox1, goalbox2) as well as the corner
kicks (cornerl, corner?2) constitute the dataset.

1 teaml team?2 gl g2 ratl rat2 penboxl penbox2 goalboxl goalbox2 cornerl  corner2

2 Ask Xanthi 1 2 82 50 1 3 1 a 3 3
3 Aris Ofi 1 1 89 70 g 2 1 a 7 1
4 Atromitos Larisa 1 1 144 155 4 4 1 2 7 2
5 Olympiake Tripoli 1 0 167 g2 8 3 1 0 4 1
6 Panichios Volos 1 2 133 131 3 7 0 9] 7 2
7 Paok Panetolike 2 1 173 92 3 3 1 0 6 2
8 Lamia Panathinai 1 1 92 142 1 1 1 0 6 5
9 Larisa Olympiakc 0 1 60 89 0 2 1 1 1 Q
10 Tripoli Ack 2 3 99 226 3 g 0 1 3 7
11 Volos Aris 1 0 89 110 4 2 0 3 1 8
12 Panathinai Ofi 1 3 84 114 3 8 0 0 1 1
13 Panetolikc Xanthi 1 2 118 111 2 4 0 0 5 0
14 Paok Panionios 2 1 123 55 4 1 1 0 9 2
15 Lamia Atromitos 2 2 136 178 3 4 0 0 5 5]
16 Aek Lamia 2 0 142 51 5] 1 0 a 10 1
17 Xanthi Tripoli 2 1 119 92 2 4 1 a 3 4
18 Aris Panathinai 4 0 202 11% 5 2 5 1 3 3
19 Atromitos Pack 2 3 133 160 2 2 1 1 2 5
20 Olympiake Yolos 5 0 253 34 g 2 2 0 5 3
21 Ofi Panetolike 3 1 241 134 g 1 0 a 2 4
22 Panionics Larisa 1 0 133 121 4 2 a 0 3 5]
23 Larisa Xanthi E] 0 201 87 2 1 0 a 7 a
24 Tripoli Atromitos 2 1 217 184 8 1 0 0 6 5]
25 Volos Ofi 1 0 135 156 7 4 0 1 3 10
26 Panathinai Olympiakc 1 1 69 124 3 2 1 0 2 5
27 Lamia Panicnios 1 1 155 117 4 1 0 0 4 1
28 Panetolike Ack a 1 88 165 a 7 0 1 2 3
29 Paok Aris 2 2 135 102 4 P 0 a 8 3
30 Aek Pack 2 2 136 137 2 B 1 2 3 4
31 Xanti Volos E] 1 260 150 g 4 0 a 4 3

Table 3: Part of the data set: Scores and match statistics for the games of Greek
Superleague 2019-20 regular season
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The teams that take part in this application are:

> sl=read.csv("data/sl.csv",stringsAsFactors=T)
> Llevels(sl[,2])

[1] "Aek"™ "Apollon™ "Aris"™ "Atromitos"™
[5] "Giannena™ "Lamia™ "Larizsa™ Tofim

[9] "Clympiakos" "Panathinaikos" "Panetolikos"™ "Panionios"™
[13] "Paok" "Tripoli™ "Wolos"™ "Xanthi"™

Table 4: The teams-factors of the data in an alphabetical order

The quality of the selected predictors that are used in the application
are evaluated through the R-output below:

> sign=glm(g2~rat2+penbox2+goalbox2+corner2,family="poisson",
data=sl) ; summary(sign)

Deviance Residuals:
Min 10 Median 30 Max
-2.2023 -1.045E& -0.1455 0.4514 2.2553

Coefficients:
Eztimate Std. Error z walue Pri>|z|)

(Intexrcept) -1.520710 0.1790%0 -8.491 <« Ze-lg =%*
ratz 0.008484 0.001442 5.8382 4.06e-09 ==w
penboxs 0.036295 0.024767 3.484 0.000453 *=#=*
goalbox2 0.15286%5 0.062014 3.110 0.001870 *=*
cornerz -0.047022 0.020301 -2.31e 0.020548 *

Signif. codes: O Y**f 0,001 *w#*f Q.01 »wf Q.05 " 0.1 v+ *r 1

(Dispersion parameter for poisson family taken to be 1)
Hull dewviance: 524.42 on 421 degrees of freedom
REesidual deviance: 365.05 on 417 degrees of freedom

Table 5: Summary of gim
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The output presents the level of significance of the predictors in
relation to the response variable g2 which denotes the goals achieved
by a team during match. It is clear that the intercept as well as the
overall rating and the attempts from the penalty area are highly
significant. The lowest significance is obtained by the corner kicks
that a team gains in a match. It is also worth mentioning that the
corner kicks are negatively correlated with the goals scored by a
team. This may lead to the conclusion that in the Greek Superleague,
the attacking strategy shouldn’t be based on gaining corner kicks.

In order to check the dependence between the selected covariates, a
correlation matrix is obtained:

Rating PenaltvBox FoalBox Corner
Eating 1.0000000 0.,59599163 0.33921532 0.3753011
PenaltyBox 0.59%%163 1.0000000 0.11219%% 0.2818752
GoalBox 0.33%1532 0.1121%%9S% 1.0000000 0.2288355
Corner 0.3793011 0.2918752 0.22883585 1.0000000

Table 6: Correlation matrix

The level of correlation between any pair of the explanatory
variables above is quite small in general terms, which implies that
each of the variables can independently predict the value of the
dependent variable.
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5.1.3. Fitting the models

The analysis of the Greek Superleague 2019-20 and 2020-21 will take
place through functions in R. The package that contains these functions is
made by Karlis and Ntzoufras and it is available at http://www.stat-

athens.aueb.gr/~jbn/papers/paperl4.htm. It contains the EM algorithm

for fitting the bivariate Poisson model and the diagonal inflated bivariate
Poisson model, as well as some extra functions that the algorithm uses.
The R-code is given in the Appendix.

o Fitting the bivariate Poisson model

The function Im.bp applies the EM algorithm for fitting the bivariate
Poisson model of the form (x;,y;)~BP(Ay;, A5, A3;) for i =1,...,n with
ly = wy By, k =1,2,3 where [, = logAy. Its syntax is:

Im.bp(11,12,1112 = NULL, 13 = ~1,data, common. intercept
= FALSE, zerolL3 = FALSE, maxit = 300,pres = 1e — 8)

The input components l1, I2 and 13 are of the form “x~x; + --- + x.”,
“y~y1 +--+y,” and “z~z; + -+ z,” respectively, concerning the
parameters of logA,, logA, and logA;. The component 1112 concerns
the common parameters of logA; and logA, (whether they exist) and
the component data is the data frame which contains the variables.
There are also two logical arguments: common.intercept and
zeroL3. The first one refers to whether a common intercept on logA,
and logA, is used and the second one refers to whether A; is set equal
to zero. Finally, the component maxit is associated with the
maximum number of the EM steps that will take place and the
argument pres is the precision that is used to terminate the EM
algorithm. If the relative log-likelihood difference is lower than the
value of the precision then the EM algorithm will terminate.
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> biv=1lm.bp(gl~ratl+penboxl+goalboxl+cornerl,g2~rat2+
penbox2+goalbox2+corner2,1112=NULL,data=s1)
> biv$coefficients

{11} : (Intercept)
-1.281071082

(11} :ratl

0.008T715546
(12) :penbox2
0.08T70185910

> biv$parameters

[1] 11

> biv$iterations

[1] 56

> biv$lambdal

1
0.5867651

]

0.5024232
15
0.8171303
22
1 2cAL?aT

654587

[V BT T ]

-

]
s
]
&

8]
=]

5]
[
(X4
(X4
5]
o bkd oo = o

=T LI T B

u]
kil
(%]

-1
n

> biv$lambda2

423
0.3225354
430
0.3846402
437
0.3015857
aaa

8]

. 7465120
438

d44cC

{11} :cormerl
-0.030432260
(12} : (Intercept)
-1.705548672

(12) :xat2
0,0059189555

o8]
-]
[T
[5+]
[}
~]
n
[fal

0 S974r7497

425
1.4401005
432
0.7274970
438
0.68792754
a4

]

4

.4153326%5

11

6028145

1.

- -1
[ [ay]
] Lo
L 4]
[ay] =

= 0

i8]
(A4}
[}
[1:
[y
oow o Baowon

Ly N = O

M4Fz2974

427

0087857
434
.T136002
441
2552321

A48

{11) :goalboxl
0.10023411¢

(12) icorner?
-0.048838609
(13): (Intercept)
-2.709568924

58]

[l

(11) :penboxl
0,024295455
(12) igoalkbox2
0,.197741080

0.5585054

A4G0

i

429
0.5724637
436
0.98553445
443
0.48903645

AL

After estimating the parameters 1;, 4, and 43, the fitted values for the

two responses x and y (which denote the goals achieved by the two
teams) are obtained. The fitted values can be estimated as,

2=+ A
=:22 +‘A3

A~

y
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The fitted values x,, ¥, denote the number of goals that each of the two
teams deserved to have achieved in the i-th match (expected goals).
These values arise by taking into account their performance in the i-

th match (Table 6).

x 'y
1 0.6533306 0.3891049
2  0.7211334 0.4583354
3 1.0258335 1.5066660
4 1.4818924 0.5897132
5  0.8360844 1.0763512
& 1.3093003 0.5647772
7  0.6509079 0.6390292
8 0.5689887 0.4512057
o 0.7127935 2.8130774
10 ©0.7115027 0.7940625
11 ©0.66591800 1.0555850
12 0.7669261 0.T7801657
13 0.8182157 0.3645298
14 0.9060415 1.0515100
15 0.8836958 0.3681512
16 ©0.85965524 0.5594553
17 2.8146414 0.T7458409
18 1.0332435 0.9645216
1% 3.3570314 0.3217976
20 2.6599685 0.6250749

-

k]

k]

e

Table 6: Expected goals obtained by the bivariate Poisson model

In many matches, a deviation is observed between the goals that a
team achieved and the goals that should have succeeded. For
instance, in the 16-th match of the regular season 2019-20 (Xanthi vs
Asteras Tripolis) where the final score was 2 — 1, the expected goals
of Xanthi based on the match performance were 0.8965524. This
leads to the remark that Xanthi was either lucky or too effective due
to the fact that it took only few attempts to achieve goal. However, the
final result was victory of the home team which is in accordance with
the expectation X4 > V16-
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Expected Goals

Away Team

Haome Team

Graph: Plot of the home and away expected goals

The plot above depicts the relationship between the home expected
goals and the away expected goals in the Greek Superleague 2019-20
and the regular season 2020-21. As it appears, in most games the
performance of the two opponents is interwoven with about 1 goal
for each team. After all, it is observed that in most matches, the levels
of performance of the two opponents are similar. This may imply the
existence of high competitiveness in the Greek Superleague.

e Fitting the diagonal inflated bivariate Poisson models

The function Im.dibp contains the EM algorithm for fitting the
diagonal inflated bivariate Poisson model of the form:

(xl-,yi)~DIBP(Ali,AZi,A3i,,p,D(9)) fori=1,..,n

with lk = Wkﬁk , k = 1,2,3 where lk = logﬂk.
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[ts syntax in R is:

Im.dibp(l1,12,1112 = NULL, 13 = ~1,data, common. intercept
= FALSE,zerolL3 = FALSE,distribution
= "discrete",jmax=2, maxit = 300,pres = 1le — 8)

The syntax of the diagonal inflated model above contains an extra input
component compared with the bivariate Poisson model. That is the
component distribution which refers to the discrete distribution that
provokes inflation. The choices could be “poisson”, “geometric” or
“discrete”. In the case of the last choice, the argument jmax is required,
which shows up to which draw outcome there will be probability
inflation.

A diagonal inflated model with geometric inflation and an inflated model
with inflation in the outcomes 0 —0 and 1—1 will be used for our
application. After these attempts, the occasion where A; = 0 will also be
shown which lead to an inflated double Poisson model.

e For the model with geometric inflation:
> infg=1m.dibp(gl~ratl+penboxl+goalboxl+cornerl,g2~rat2+penbox2+
goalbox2+corner2,1112=NULL,data=sl,distribution=

“geometric”)

> infg$coefficients

(11} : (Intercept) (11) :cornerl (11) :goalboxl (11) :penboxl

-1.279176e400 -3.040164e-02 1.002587e-01 2.433551e-02

{11} :ratl (12): ({Intercept) {12) :cormer2 (12) : goalbox2

§.707181e-03 -1.703233e+00 -4.882711le-02 1.976890e-01

(12) ipenbox2 (12) irat2 (13): (Intercept) o

8.701068e-02 9.181056e-03 =-2.721915e+00 1.680058e-07
theta

5.588838e-01
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The fitted values of the responses x, y are expressed as,

=0-pA+43) andy =1 —-p)A,+13) ,x#Yy
X=0-p)(A; +13) + pEp[x] and y = (1 —p)(4; + A3) + pEp[x] ,x =y

X 'y
1 0.6532962 0.3885015
2 0.7214134 0.4581913
3 1.0260070 1.5071227
4 1.4823479 0.5896923
5 0.8360864 1.076713%9
& 1.3093623 0.5647241
7 0.6508729 0.6388756
& 0.5688879 0.4510025
o 0.7127779 2.8132190
10 ©0.7115284 0.7941918
11 0.6691527 1.0564574
12 0.7668757 0.T7803050
13 0.8183594 0.3642685
14 0.9060445 1.0519200
15 0.8838574 0.3675034
16 0.8966062 0.5594414

Table 7: Expected goals obtained by the bivariate Poisson with geometric inflation

For the model with the discrete inflation with j = 1 :

> infl=1m.dibp(gl~ratl+penboxl+goalboxl+cornerl, g2~rat2+
penbox2+goalbox2+corner2,1112=NULL,data=
sl,jmax=1)

> infl$coefficients

(11) : (Intercept)
-1.2796688377

{11} :ratl

(11) :cormerl
-0.0304057762
(12) : (Intercept)

(11) :goalkoxl
0.1002380657
(12) :corner?

(11) :penboxl
0,.0243202935
(12) :goalbox2

0.00870878058
(12) :penbox2
0.08702590428

thetal
1.0000000000

-1.70387245582
(12) :rat2
0.0091329050

-0.0488136144 0.157721035%4
(13) : (Intercept) .
-2.T715288631¢6 0.0001305155
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¢ Finally, the inflated double Poisson model will be obtained by
putting A3 = 0 in the last model. After all, as it is mentioned, the
dependence between the two opponents can be expressed by
the inflated model even if 1; = 0.

> infdp=1m.dibp(gl~ratl+penboxl+goalboxl+cornerl,g2~rat2+

penbox2+goalbox2+corner2,1112=NULL,data=
zerolL3=TRUE, jmax=1)

The fitted values X and y in the inflated double-Poisson occasion are:

X=0-p)ly andy=A-p)A, ,x#*y
¥=0-pA +pEplx]and y = (1 —p)A, + pEplx] ,x =y

5.1.4. Model comparison

Four bivariate models were used for analyzing the Greek Superleague
2020-19 and 2020-21. The following matrix depicts a summary of this
analysis.

Parameters BIC BIC Mix.Frop(p)
Bivariate Poisson 11 2081.151 2133.271 0,0000000
Inflated with Discrete(l) 13 2085.153 2146.749 0.0130500
Inflated with Geometric 13 2085.151 214&.747 0.00001e8
Inflated Double-Poisson 12 2084.952 2141.810 0.0460200

Table 8: Comparison of the fitted-models

A considerable remark is that the bivariate Poisson model seems to
be a preferable option due to the fact that the AIC and BIC values of
this model are smaller than the others. Although the inflated bivariate
Poisson models are generally considered to be better options when
analyzing football matches, in the case of Greek Superleague there
was no excess in draw outcomes. This makes the simple bivariate
Poisson model a better fit to our data.
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Finally, let us compare the bivariate Poisson model above (which uses
match statistics as covariates) with the bivariate Poisson model
whose explanatory variables are the goals that teams have succeeded
and conceded so far. After all, many authors suggest the latter.

Loglikelihood AIC BIC
Bivariate Poisson -1025.576e 2081.151 2133.271
Bivariate Poizzon (goals as cov) -10598.000 2269.030 2444, 342

Table 9: Comparison of the fitted-bivariate Poisson model and the bivariate Poisson
model that uses goals as covariates

[t is clear that the model that uses the game ratings and statistics as
covariates is proved to be a better option according to the table
above. As a result, the model that will be used for the prediction that
follows is the bivariate Poisson model which uses the match ratings
and statistics as covariates.
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5.2. Prediction

5.2.1. Predicting a playoff match

In a football game, the scoring rates of the two opponents 1,1, are
estimated through their game statistics and ratings. However, the
match statistics are unknown before a match starts. As a result, in
order to predict the outcome of an upcoming football match, the
statistics of this match must be firstly estimated (Edward Wheatcroft
2020).

After analyzing the seasons 2019-20 and 2020-21 of the Greek
Championship we will make a prediction for the first playoff match of
the season 2020-21. The prediction will take place through the
function bivpois.table (Karlis and Ntzoufras). Its syntax in R is:

bivpois.table(x,y,lambda = c(1,1,1))

This function returns a probability matrix (with (x + 1) X (y +1)
dimension) of the bivariate Poisson distribution using recursive
relations. The components x and y show the values that will be
evaluated. The cell ij in the matrix contains the probability
P(X=i—1,Y =j—1). Itis reasonable that x and y must be at least
1. The component lambda is a vector that contains the values of the
parameters A4, 1,, A3.

The first match of the playoff period of the season 2020-21 was
Asteras Tripolis vs Panathinaikos. By calculating the expected
statistics of the two teams before the match, the scoring rates 4, and
A, can be obtained. The dependence parameter A; is constant and
equal to 0.00665655.

> 1l=exp(-1.281071082+0.008715946*ratA+0.024295455*penboxA+
0.100234116*goalboxA-0.030432260*cornerA);11

[1] 1.163891

> 12=exp(-1.705548672+0.009189555*ratP+0.087018910*penboxP+
0.197741080*goalboxP-0.048838609*970rner) ;12
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[1] ©.8765884

> 13=0.00665655;13

By calling the function bivpois.table(8,8,lambda(ll,12,13) the

probabilities of all the outcomes up to 8 — 8 are obtained.

(1,1
(2,1
[3,1]
[4,1]
[5,1]
(6,1
[7,1
[5,1
(2,1

[1,1]
(2,1
[3,1]
(4,1
[5,1
(&1
(7,1
(8,1
(2,1

Ld = 00 L = Lo hodn

= o s B L O =

[,1]

L215586Te-01
»415254e-01
L236008e-02
L185273e-02
L.2973782-03

01554905

[, E]

.244682e-04
.095568e-04
.1724562-04
.101910e-04
.156731e-04
.4166032-05
.3315032-06
.726282e-06
.104232e-07
Table 10: Probability

Panathinaikos

| [ Sl I T % T C R U T« Ry S S

o = om k3N e

[.21]
L085903e-01
.321536e-01
-leleede-02
.349173e-02
.027692e-02
.51e021e-03
.120731e-04
513472e-05
.354871e-05

[, 7]
LEE23T7092-05
.2490933e-04
.5915982e-05
.216618e-05
.03405%4=-05
.274897e-08
586263206
-446382e-07
-.450403e-08

= N = s s

[y T o TV LR I S S Y 4]

[

[,3]

LET1T80e-02
.146979e-02
.017052e-02
.738566e-02
.6189013e-03
-344802e-03
.0B1788e-04
611043e-05
50459659 e-06

[, 5]

.558536le-06
.6268462-05
.3589753e-05
.475555e-06
.043301e-06
L T82153e-07
.5585653e-07
.833741e-08
.135493e-08

L B2 = kon = =

Wk Wk

=

[r4]

.3650T3e-02

.859784e-02
.310159e-02
.874287e-03
.027837e-03
.468430e-04
.221066e-04
L323328e-05
.547004e-06

[, 2]

.051398e-06
.862433e-06
.625294e-06
.32263%9e-07
LSEEeT0e-07
.326184e-07
.6585924e-08
.55199%e-09
.729607e-09

e R L T R X

.2

[,5]

LH581531e-03
.3590488e-03
LA1873262-03
.527272e-03
.438147=-04
.535850e-04
.585853e-05
.123527e-06
2

9653e-06

matrix for the scores of the playoff match: Asteras Tripolis vs

By taking the sum of the elements of the matrix diagonal as well as

the sum of the elements above and below the diagonal, the following
probabilities are obtained:

Asteras Tripolis win: 42,4%
Draw:30%
Panathinaikos win: 27,6%

The actual final result in this match was 2 — 2.
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5.2.2. Betting odds

In betting companies, the bookmakers use betting odds to describe an
upcoming match. By inversing the win-draw-lose probabilities of the
match Asteras Tripolis vs Panathinaikos above, the following betting
values-odds arise:

Asteras Tripolis win: 2,35
Draw: 3,33
Panathinaikos win: 3,62

Certainly, the betting odds of many other characteristics of the game
(such as how many goals are going to be achieved in general) can also
be obtained by inversing of the respective probabilities from the
matrix above.

These betting odds above are usually reduced by bookmakers so that
there is a gain for the companies. Actually, the relation between the
betting odds o; and the probabilities p; of an event i is expressed as,

_ 1
oty

pi

where g is the gain of the bookmaker.
As a result, it easy to notice that the odds in practice also contain the
market value information.
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Conclusion

Sports analytics constitute a sector of statistics which is
continually evolving while making the predictions of many sport
events more and more effective. In the case of football, there have
been many predictive models so far, each of which has its own
specifications and properties. It is worth mentioning that sometimes,
considering models with simpler structure than others may be
preferable. Concerning the information which predictive models use,
the in-game statistics and ratings are more informative than the goals
that teams have been succeeded so far. These facts could be of great
interest, as the companies associated with football, such as betting
companies, can improve their approach on modeling and prediction,
which will lead to increase of profits. More importantly, the teams
themselves could assess various characteristics and make decisions
in order to increase their chances for a successful outcome.
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157 Tripoli Aris

158 Atromitos Olympiake
159 Panetolikc Volos

160 Panicnios Xanthi
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215 Aris Ask
216 Ofi Pack
217 Panathinai Clympiake
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277 Giannena Aek

278 Larisa Aris

279 Apollon  Lamia
280 Tripeli Ofi

281 Atromitos Panetolikc
282 Panathinai Volos

283 Paok Olympiake
284 Ack Ofi
285 Aris Tripoli

286 Atromitos Giannena
287 Volos
288 Olympiake Apcllon
289 Panetolikc Pack

290 Lamia
291 Giannena Panetolikc

Larisa

Panathinai
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326 Ask
327 Giannena Tripoli

Volos
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330 Ofi Aris
331 Panetolikc Apollen
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332 Pack
333 Giannena Apollon
334 Larisa Paok

335 Volos Atromitos
336 Olympiake Ack

337 Panathinai Tripcli
338 Panetolike Ofi

339 Lamia Aris

Panathinai

340 Ack Panetolike
341 Larisa Giannena
342 Apollon  Panathinai
343 Aris Volos

344 Tripcli Olympiake
345 Atromitos Paok

346 Ofi Lamia
347 Giannena Aris

348 Apollon  Tripeli

349 Atromitos Ofi

350 Panathinai Larisa
351 Panetolike Clympiake
352 Pack Volos

353 Lamia Ask

354 Aek Atromitos
355 Lariza Apcllon
356 Aris Panathinai
357 Tripcli Panetolike
358 Volos Lamia

359 Olympiake Giannena
360 Ofi Paok
361 Giannena Volos

362 Apollon  Aris
363 Tripoli
364 Atromitos Olympiake
365 Panathinai Ofi

366 Panetolike Lamia

367 Pack Ack

Larisa

368 Aek Giannena
369 Aris Larisa
370 Volos Panathinai

371 Olympiake Pack

372 Ofi Tripoli
373 Panetolike Atromitos
374 Lamia
375 Giannena Atromitos
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377 Apollon  Olympiake
378 Tripoli Aris

Apollon

Volos
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380 Panathinai Lamia
381 Pack Panetolike
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383 Atromitos Panathinai
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385 Olympiake Ofi
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387 Pack
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Atremitos
Panetolike

O kb O R=R W O N OO O N O QORKRR O WO = ONNODNN O =D Lo R e R L s T e T e T S i S e R T S = T S e R e R O = R o o

WD RO R R eeeRE N D ORDOONROROOOROOD R W -

O o R NN O W R DO N R WO R D RO N DN DO RO -

217
128
123
164
145
111
122
142
160
155
164
223

98
128
175

152
124
178
121
228
104
166
132
306
234
193
209
106
138

111
169
133
172
131
175
137

162
213
155
147
163
126
119

96
174
110
155
230
135
197
130
287
142
233
127
123
144
156
162

144
144
210
141
109
111
151
113

23
117
121
119

170

g4
131
110
162
154
150
155
178

78
139
154
111
191
115

97

180

87
198
173
142
183
120
121
118
143
104
132

86
134
150
2509
170
153
141

94
175
153
147
114
134
160
108
209
239
187
120

111

-
O oW RN W N R W W R

RS IN o+ EER VI S I SR ]

= =
Bokow o o

P WO D =R = D RS W M R R WO WR WO Wd R

—_
(=]

[T LI B S )

=
[T VI 8

MNOWOMN G R R W e R D RN O R WO O R WR O R B W R

L = T L R N B N Y R L T R T

= OO O NRRLDODROORRREDQDNREDODOCONDDNDGDGODODR O N O O M O O - 0ORNO RO RO OO0 RO OO N OO W

ON RO RO OO ONWDODORM2MWwoDoOoDODOOoOOoOD oo woooow DODNOPSOROORRPRRPERPRROO0ORRS2O0RO0O0ORRPRO0O0CNPSN

W NN W Rk WG SN G R R R NN REDNWERE NP WO W0 RS R W RS

#uwm#bmw»—-»—-wmbm#»—-;

Juny
w

=R MW

jury
L R

o R R B R B R R oW W M SN W RS ;NN WWNA R W R RN W W RN W W W

=
(o]

L S L =T = L I I o B W w BN BN &



393 Tripoli Lamia 0 0 202 149 3
394 Ofi Volos 1 2 113 150 4
395 Panathinai Clympiake 2 1 177 262 1
396 Ask Tripoli 2 2 253 188 10
397 Giannena Ofi 1 0 173 118 2
398 Atromitos Larisa 1 1 224 158 3
399 Volos Apcllon 2 0 190 147 8
400 Olympiake Aris 1 1 182 186 2
401 Panetoelike Panathinai 1 0 115 162 2
402 Pack Lamia 4 0 312 a5 10
403 Larisa Panetolike 1 0 162 148 1
404 Apollon  Ofi 2 1 201 201 E]
405 Aris Atromitos 3 0 216 142 5
4306 Tripeli Paok 2 1 174 157 5
407 Volos Clympiake 1 2 138 163 1
408 Panathinai Ack 1 1 149 161 2
409 Lamia Giannena 0 0 127 105 2
410 Ask Apcllon 2 0 206 =15 5]
411 Giannena Panathinai 1 0 156 127 3
412 Atromitos Tripoli 1 1 148 152 0
413 Olympiake Lamia 3 0 237 107 4
414 Ofi Larisa 2 3 137 140 2
415 Panetoelike Volos 1 0 145 149 1
416 Pack Aris 2 2 202 186 6
417 Lariza Olympiake 1 3 186 228 4
418 Apollon  Panetolike 1 0 157 145 2
419 Aris Ofi 1 0 182 120 5
420 Tripcli Giannena 0 1 106 118 3
421 Volos Ack 1 0 120 106 3
422 Panathinai Pack 2 1 163 215 2
423 Lamia Atromitos 0 0 138 146 2
A2. R-Code
Function bivpois.table
"bivpois.table" <-
function(x, y, lambda = c(1, 1, 1))

j<-0

n <- length(x)

maxy <- c(max(x), max(y)) #Set
parameters

lambdal <- lambda[1]

lambda2 <- lambda[2]

lambda3 <- lambda[3]

if((x == 0) | (y == 0)) {

prob <- matrix(NA, nrow

maxy[2]+1, byrow = T)

lambda2[j])
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for

1, ncol =

prob[maxy[1] + 1, maxy[2] + 1] <- exp( - lambda3) *

dpois(x[J],
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else {
prob <- matrix(NA, nrow = maxy[1l] + 1, ncol =
maxy[2]+1, byrow = T)
k <- 1
m<-1

prob[k, m] <- exp( - lambdal - lambda2 - lambda3)
for(i in 2:(maxy[1] + 1)) {
prob[i, 1] <- (prob[i - 1, 1] * lambdal)/(i

1)
¥
for(j in 2:(maxy[2] + 1)) {
prob[1, j] <- (prob[l, j - 1] * lambda2)/(j -
1)
¥
for(j in 2:(maxy[2] + 1)) {
for(i in 2:(maxy[1] + 1)) {
prob[i, j] <- (lambdal * prob[i - 1, j] +
lambda3 * prob[i - 1, j - 1])/(i - 1)
}
}
}
result <- prob
result
}
Function Im.bp
"Im.bp" <-
function( 11, 12, 1112=NULL, 13=~1, data,

common.intercept=FALSE, zerolL3=FALSE, maxit=300, pres=1e-8,
verbose=getOption('verbose') )

#

{

options(warn=-1)

#

# definition of function call

templist<-list( 11=11, 12=12, 1112=1112, 13=13,
data=substitute(data), common.intercept=common.intercept,

zerolL3=zerolL3, maxit=maxit, pres=pres, verbose=verbose)
tempcall<-as.call( c(expression(lm.bp), templist))
rm(templist)
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# 11 : formula for the first
linear predictor (of lambdal)

# 12 :  formula for the second
linear predictor (of lambda2)

# 1112 : formula for common variables
on both lambdal and lambda2

# 13 : formula for the third first

linear predictor/covariance parameter (lambda3)
# common.intercept: logical argument defining whether common
intercept should be used for lamdbal,lambda2

#

# data : data.frame which contains data {required
arguement}

# zerol3 : Logical argument controlling whether lambda3 is
zero (DblPoisson) or not

# maxit : maximum number of iterations

# pres : precision of the relative 1likelihood difference
after which EM stops

# verbose :  Logical argument controlling whether beta
parameters will we

# printed while EM runs. Default value is taken
options()$verbose value.
3
#

#

#

# set common or noncommon intercept
if (common.intercept){ formulal.terms<-'1"' }
else {formulal.terms<-'internal.datal$noncommon' }
#
#
namex<-as.character(1l1[2])
namey<-as.character(12[2])
x<-data[,names(data)==namex]
y<-data[,names(data)==namey]
#
# Data length
n<-length(x)
lengthpvec<-1
#
#
#
# initial values
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s<-rep(@,n)

like<-1:n*0

zero<- ( x==0 )|( y==0 )

if (zeroL3) { lambda3<-rep(Q,n) }

else { lambda3<-rep(  max(0.1,
cov(x,y,use="complete.obs"')), n) }

#

#

# form dataframes used

# datal includes modelling on lambdal and lambda2
# data2 includes modelling on lambda3

# internal.datal and internal.data2 are data frames used for
additional internal variables

#

internal.datal<-data.frame( yly2=c( x, y) )
internal.data2<-data.frame( y3 = rep(0, n ) )

#

p<-length(as.data.frame(data))

datal<-rbind(data, data)

names (datal)<-names(data)

#

# removing x and y

datal<-datal[ , names(datal)!=namex]
datal<-datal[ , names(datal)!=namey]

#

#

# define full model

if (as.character(11[3])==".") { 11<-formula( paste(

as.character(1l1[2]), paste( names(datal),'',collapse="+"',sep=""

), sep="~") )}
if (as.character(12[3])==".") { 12<-formula( paste(
as.character(12[2]), paste( names(datal),'',collapse='+',sep=""

), sep="~") ) '}

if (as.character(1l3[2])==".") { 13<-formula( paste( '', paste(
names(datal),'',collapse="+"',sep="" ) , sep="~"') ) }

#

# define the formula used for covariance term

formula2<-

formula(paste('internal.data2$y3~"',as.character(13[2]),sep=""))
#
internal.datal$noncommon<- as.factor(c(1:n*0,1:n*0+1))
contrasts(internal.datal$noncommon)<-contr.treatment(2, base=1)
internal.datal$indctl<-c(1:n*0+1,1:n*0 )
internal.datal$indct2<-c(1:n*@ ,1:n*0+1)
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#
#
if (!zeroL3){
data2<-datal[1:n, ]
names (data2)<-names(datal)

}
#
HHHHH
#
# add the common terms
#
if ( !is.null(1112) ) {
formulal.terms<-paste( formulal.terms,
as.character(1112[2]),sep="+")
}
#
# add the special common terms (if any)
#
#
#

# in this section we identify non-common parameters
# if a variable X is common in all formulas the we use term
x*noncommon to include x+x:noncommon terms
# otherwise use I(internal.datal$indctl*x) to add sepererate
parameter on lambdal
#
templl<- labels(terms(11))
#
# run this only if there are terms in 11 formula
if (length( templl )>0){
for ( k1 in 1:length( templl ) ){

if ( lis.null(1112) ) { checkvarl<-
sum(labels(terms(1112))==templli[k1l] )==1 }

else{ checkvarl<-FALSE }

checkvar2<-sum(labels(terms(12))==templl[kl] )==

if (checkvarl&checkvar2) {formulal.terms<-
paste(formulal.terms,
paste('internal.datal$noncommon*',templi[kl],sep=""), sep="+")

}
else{
formulal.terms<-paste(formulal.terms,

paste('+I(internal.datal$indctl*',templi[kl],sep=""), sep="")
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formulal.terms<-paste(formulal.terms,

# if a variable X is not common st
# otherwise use I(internal.datal$indctl*x) to add sepererate
parameter on lambdal
#
templ2<- labels(terms(12))
#
# run this only if there are terms in 11 formula
if (length( templ2 )>0){
for ( k1 in 1l:length( templ2 ) ){

if ( lis.null(1112) ) {checkvaril<-
(sum(labels(terms(1112))==templ2[k1]
)+sum(labels(terms(1l1l))==templ2[k1] ))!=2 }

else{ checkvarl<-TRUE }
if ( checkvarl ) {
formulal.terms<-paste(formulal.terms,
paste('+I(internal.datal$indct2*',templ2[kl],sep=""), sep="")
formulal.terms<-paste(formulal.terms,
)", sep="")

}
#

rm(templl)
rm(templ2)
rm(Checkvarl)
rm(Checkvar2)

H ¥ H H H

#

# This bit creates labels for special terms of type c(x1,x2)

used in 1112

#

#

formulal<-

formula(paste('internal.datal$yly2~',formulal.terms,sep=""))
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tmpforml<-as.character(formulal[3])
newformula<-formulal
while( regexpr('c\\(',tmpforml) != -1)

{

tempposl<-regexpr('c\\(',tmpforml)[1]

tempfor <-substring( tmpforml, first = tempposl+ 2 )

temppos2<-regexpr('\\)"' , tempfor)[1]
tempvar <-substring( tempfor , first = 1,

temppos2-1 )

temppos3<-regexpr("', , tempvar)[1]
tempnamel<-substring(tempfor , first = 1,

temppos3-1 )
tempname2<-substring(tempfor , first = temppos3+2,
last=temppos2-1)

tempname2<-sub( "\\)',"'', tempname2 )
tempvarl<-data[, names(data)==tempnamel]
tempvar2<-data[, names(data)==tempname2]
datal$newvarl<-c(tempvarl, tempvar2)

if( is.factor(tempvarl)& is.factor(tempvar2) ){
datal$newvarl<-as.factor(datal$newvarl)
if (all(levels(tempvarl)==levels(tempvar2))){
attributes(datal$newvarl)<-

attributes(tempvarl)}

}

tempvar<-sub( ', , '..', tempvar )
names(datal)[names(datal)=="newvarl' ]J<-tempvar
newformula<-sub( 'c\\(',"'', tmpforml )
newformula<-sub( "\\)','', newformula )
newformula<-sub( ', ', '..', newformula )
tmpforml<-newformula

formulal<-

formula(paste('internal.datal$yly2~',newformula,sep=""))

}
HHHEH

rm(tempposl)
rm(temppos2)
rm(temppos3)
rm(tmpforml)
rm(tempfor)
rm(tempvar)
rm(tempvarl)
rm(tempvar2)
rm(tempnamel)
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rm(tempname2)
#
#
# Initial values for lambda
#
lambda<-glm(formulal,family=poisson, data=datal)$fitted
#
lambdal<-lambda[1:n]
lambda2<-lambda[ (n+1):(2*n)]
#
difllike<-100.0
loglike0<-1000.0
ic-0
#
# fitting the Double Poisson Model
if (zeroL3) {
#
# fit the double Poisson model
y@<-C(X,y)
m<-glm( formulal, family=poisson, data=datal )
p3<-length(m$coef)
beta<-m$coef

1 T T T T L T TR
# creating names for parameters
#
names (beta)<-newnamesbeta( beta )
#

# end of name creations (11, 12, 12-11, blank)

betaparameters<-splitbeta( beta )

#
lambda<-fitted(m)
lambdal<-lambda[1:n]
lambda2<-lambda[ (n+1):(2*n)]
like<-dpois(x, lambdal) * dpois( y, lambda2 )
loglike<-sum(log(like))
#
# calculation of BIC and AIC for bivpoisson model
noparams<- m$rank
AIC<- -2*loglike + noparams * 2
BIC<- -2*loglike + noparams * log(2*n)
#
#

# Calculation of BIC, AIC of Poisson saturated model
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X.Mmean<-x

X.mean[x==0]<-1le-12

y.mean<-y

y.mean[y==0]<-1e-12

AIC.sat <- sum(log( dpois( x , x.mean ) ) + log( dpois(
y , y.mean ) ))

BIC.sat <- -2 * AIC.sat + (2*n)* log(2*n)

AIC.sat <- -2 * AIC.sat + (2*n)* 2

#
#
AICtotal<-c(AIC.sat, AIC);
BICtotal<-c(BIC.sat, BIC );
names (AICtotal)<-c('Saturated', 'DblPois’)
names (BICtotal)<-c('Saturated’', 'DblPois’)

#

# putting all betas in one vector
allbeta<-c(betaparameters$betal,betaparameters$beta2)
names (allbeta)<-c( paste( "(11): ',

names (betaparameters$betal), sep="" ),paste('(12):"',

names (betaparameters$beta2), sep=""' ) )

result<-list(coefficients=allbeta,
fitted.values=data.frame(x=m$fitted[1:n],y=m$fitted[ (n+1):(2*n)
]).’
residuals=data.frame(x=x-m$fitted[1:n],y=y-
m$fitted[ (n+1):(2*n)]),
betal=betaparameters$betal, beta2=betaparameters$beta2,
lambdal=m$fitted[1:n], lambda2=m$fitted[(n+1):(2*n)],
lambda3=0, loglikelihood=1loglike, iterations=1,
parameters=noparams, AIC=AICtotal, BIC=BICtotal, call=tempcall)
}
else {
loglike<-rep(@,maxit)
while ( (difllike>pres) && (i <= maxit) ) {
ic-i+1
HHHHH E step ###H##
for (j in 1:n) {
if (zero[]]) {
s[j]«-90.0;
like[j]«- log(dpois(x[j],
lambdal[j]))+log(dpois(y[j],1lambda2[j])) -
lambda3[j];
}
else {
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lbpl<-pbivpois(x[j]-1, y[jl-
1,lambda=c(lambdal[j],lambda2[j],lambda3[j]), log=TRUE);
1bp2<-pbivpois(x[]] y[3]
,lambda=c(lambdal[j], lambda2[j],lambda3[j]), log= TRUE),
#
s[jl<-exp(log(lambda3[j])+1bpl-1bp2);
like[j]<-1bp2;

}
#it### end of E step #Hit####

X1<-x-s
X2<-y-5S

x1[ (x1<0)&(x1>-1.0e-8)]<-0.00
x2[ (x2<0)&(x2>-1.0e-8)]<-0.00

loglike[i]<-sum(1like)

difllike<-abs( (loglike@-loglike[i])/loglike® )
loglike@<-loglike[i]

#

#

HHHHH M step #H##H#H#

#

# fit model on lambda3

internal.data2$y3<-s

mo<-glm( formula2, family=poisson, data=data2 )
beta3<-mo$coef

lambda3<-me$fitted

#

# fit model on lambdal & lambda2
internal.datal$yly2<-c(x1,x2)

m<-glm( formulal, family=poisson, data=datal )
p3<-length(m$coef)
beta<-m$coef
# creating names for parameters
names (beta)<-newnamesbeta( beta )

lambda<-fitted(m)
lambdal<-lambda[1:n]
lambda2<-lambda[ (n+1):(2*n)]
#i####  end of M step #H#H#H#H#
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+

# detailed or compressed printing during the EM iterations
if (verbose) {
printvector<-c( i, beta, beta3,loglike[i], difllike

)
names (printvector)<-c( "iter', names (beta),
paste('(13):',names(beta3),sep=""), 'loglike",
'Rel.Dif.loglike")}
else {
printvector<-c( i, loglike[i], difllike )
names (printvector)<-c( "iter', 'loglike",
'Rel.Dif.loglike")}
#
lengthpvec<-length(printvector)
print.default( printvector, digits=4 )
}
#
# calculation of BIC and AIC for bivpoisson model
noparams<- m$rank + me@$rank
AIC<- -2*loglike[i] + noparams * 2
BIC<- -2*loglike[i] + noparams * log(2*n)
#
#
# Calculation of BIC, AIC of Poisson saturated model
X.Mmean<-x
X.mean[x==0]<-1le-12
y.mean<-y

y.mean[y==0]<-1e-12

AIC.sat <- sum(log( dpois( x , x.mean ) ) + log( dpois(
y , y.mean ) ))

BIC.sat <- -2 * AIC.sat + (2*n)* log(2*n)

AIC.sat <- -2 * AIC.sat + (2*n)* 2

#

#
AICtotal<-c(AIC.sat, AIC);
BICtotal<-c(BIC.sat, BIC );
names (AICtotal)<-c('Saturated', 'BivPois')
names (BICtotal)<-c('Saturated', 'BivPois')

#

# spliting parameter vector
betaparameters<-splitbeta( beta )

#

# putting all betas in one vector
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allbeta<-c(betaparameters$betal,betaparameters$beta2,

beta3)

names(allbeta)<-c( paste( "(11): ',
names (betaparameters$betal), sep="" ),paste('(12):"',
names (betaparameters$beta2), sep="" ),paste('(13):",
names(beta3), sep="") )
#

# Calculation of output
result<-list(coefficients=allbeta,
fitted.values=data.frame(x=m$fitted[1l:n]+lambda3,y=m$fitted[ (n+
1):(2*n)]+lambda3),
residuals=data.frame(x=x-m$fitted[1:n]-lambda3,y=y-
m$fitted[ (n+1):(2*n)]-1lambda3),
betal=betaparameters$betal, beta2=betaparameters$beta2,
beta3=beta3, lambdal=m$fitted[1:n],
lambda2=m$fitted[ (n+1):(2*n)], lambda3=1ambda3,
loglikelihood=1loglike[1:1], parameters=noparams, AIC=AICtotal,
BIC=BICtotal,iterations=i, call=tempcall )
#
#
} # end of elseif
options(warn=0)
#
class(result)<-c('lm.bp', "1m")

result
#
#

}

Function pbivpois
"pbivpois" <-
function(x, y=NULL, lambda = c(1, 1, 1), log=FALSE) {

if ( is.matrix(x) ) {
varl<-x[,1]
var2<-x[,2]
}
else if (is.vector(x)&is.vector(y)){
if (length(x)==1length(y)){
varl<-x
var2<-y
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}

else{
stop('lengths of x and y are not equal')

}
}
else{

stop('x is not a matrix or x and y are not vectors"')
}

n <- length(varl)
logbp<-vector(length=n)

#
for (k in 1:n){
x0<-varl[k]
yo<-var2[k]
xymin<-min( x@,y0 )
lambdaratio<-lambda[3]/(lambda[1]*1ambda[2])
#

i<-0:xymin

sums< - -lgamma(varl[k]-i+1)-1gamma(i+1)-
lgamma(var2[k]-i+1)+i*log(lambdaratio)

maxsums <- max(sums)

Sums<- sums - maxsums

logsummation<- log( sum(exp(sums)) ) + maxsums

logbp[k]<- -sum(lambda) + varl[k] * log( lambda[1l] )
+ var2[k] * log( lambda[2] ) + logsummation

}
if (log) { result<- logbp }
else { result<-exp(logbp) 1}
result
# end of function bivpois
}
Function Im.dibp
"Im.dibp" <-
function
( 11, 12, 1112=NULL, 13=~1, data, common.intercept=FALSE,
zerolL3=FALSE, distribution="'discrete’, jmax=2,maxit=300,
pres=1e-8, verbose=getOption('verbose') )
{
options(warn=-1)
#

# definition of function call
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templist<-1list( 11=11, 12=12, 1112=1112, 13=13,
data=substitute(data), common. intercept=common.intercept,
zerolL3=zerolL3, distribution=distribution, jmax=jmax,
maxit=maxit, pres=pres, verbose=verbose)

tempcall<-as.call( c(expression(lm.dibp), templist))

rm(templist)

#

# PARAMETERS COMMON WITH 1m.bp

# 11 : formula for the first
linear predictor (of lambdal)

# 12 : formula for the second
linear predictor (of lambda2)

# 1112 : formula for common variables
on both lambdal and lambda2

# 13 : formula for the third first

linear predictor/covariance parameter (lambda3)
# common.intercept: logical argument defining whether common
intercept should be used for lamdbal,lambda2

#

# data : data.frame which contains data {required
arguement}

# zerol3 : Logical argument controlling whether lambda3 1is
zero (DblPoisson) or not

# maxit : maximum number of iterations

# pres : precision of the relative 1likelihood difference
after which EM stops

# verbose :  Logical argument controlling whether beta
parameters will we

# printed while EM runs. Default value is taken
options()$verbose value.

#

# PARAMETERS ADDITIONAL TO 1m.bp
# distribution : Selection of diagonal inflation distribution.

# Three choices are available:

# ="'discrete' : Discrete, jmax is the number of
diagonal elements [0,1,...,]

# ='poisson' : Poisson with mean theta.

# ="'geometrics': Geometric with success
probability theta.

# Default is DISCRETE(2). theta[1] and theta[2]
stand for theta_1, theta_2

# while theta 0=1-

theta[1l]-theta[2].

125



# jmax : Used only for DISCRETE diagonal distribution
(distribution="discrete').

# Indicates the number of parameters of the
DISCRETE distribution.

# set common or noncommon intercept
if (common.intercept){ formulal.terms<-'1"' }
else {formulal.terms<-'internal.datal$noncommon"' }
#
#
namex<-as.character(11[2])
namey<-as.character(12[2])
x<-data[,names(data)==namex]
y<-data[,names(data)==namey]
#
#
# Data length
n<-length(x)
lengthprintvec<-1
#
#
#
# definition of diagonal inflated distribution
maxy<-max(c(x,y))
#
# changing distribution to codes 1,2,3
dist<-distribution
if ( charmatch( dist, 'poisson' , nomatch=0) ==1 )
{distribution<-2}
else if ( charmatch( dist, 'geometric', nomatch=0) ==1 )
{distribution<-3}
else if ( charmatch( dist, 'discrete' , nomatch=0) ==1 )
{distribution<-1}
if ( distribution==1 ){
dilabel<-paste('Inflation Distribution:
Discrete with J=",jmax)
if (jmax==0) {theta<-0}
else { theta<-1:jmax*0+1/(jmax+1) }
di.f<-function (x, theta){
IJMAX<-1length(theta)

if (x>IMAX) { res<-0 }

else if (x==0) { res<-1-sum(theta) }
else { res<-theta[x] }

res

126



}
else if ( distribution==2 ){
dilabel<-'Inflation Distribution: Poisson'
theta<-1.0;
di.f<-function (x, theta){
if (theta»d) { res<-
dpois( x, theta ) }
else {
if (x==0) { res<-1}
else {res<-1e-12}

}
else if ( distribution==3 ){
dilabel<-'Inflation Distribution: Geometric'
theta<-0.5;
di.f<-function (x, theta){
if (theta>»0) {
if(theta==1)
{theta<-0.9999999}

res<-dgeom( X,
theta ) }
else if (theta==1){
if (x==0) { res<-1}
else {res<-1e-12}
}
else {res<-1e-12}
}
}
else {

stop(paste(distribution, 'Not known distribution.’,

# -
# setting up data frames, vectors and data
#

# form dataframes used
# datal includes modelling on lambdal and lambda2
# data2 includes modelling on lambda3
# internal.datal and internal.data2 are data frames used for
additional internal variables
#
internal.datal<-data.frame( yly2=c( x, y) )
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internal.data2<-data.frame( y3 = rep(@, n ) )
#

p<-length(as.data.frame(data))
datal<-rbind(data, data)

names (datal)<-names(data)

#

# removing x and y

datal<-datal[ , names(datal)!=namex]
datal<-datal[ , names(datal)!=namey]

#

#

#

# define full model

if (as.character(11[3])==".") { 1l1i<-formula( paste(

as.character(11[2]), paste( names(datal),'',collapse='+',sep=""
), sep="~") ) }

if (as.character(12[3])==".") { 12<-formula( paste(
as.character(12[2]), paste( names(datal),'',collapse='+',sep=""

), sep="~") ) }

if (as.character(13[2])==".") { 13<-formula( paste( '', paste(
names(datal), '',collapse="+",sep="") , sep="~") ) }

#

# define the formula used for covariance term

formula2<-

formula(paste('internal.data2$y3~"',as.character(13[2]),sep=""))
#
internal.datal$noncommon<- as.factor(c(1:n*0,1:n*0+1))
contrasts(internal.datal$noncommon)<-contr.treatment(2, base=1)
internal.datal$indctl<-c(1:n*0+1,1:n*0 )
internal.datal$indct2<-c(1:n*@ ,1:n*0+1)
#
#
if (!zerolL3){

data2<-datal[1:n, ]

names (data2)<-names(datal)

}
HitHHH#
#
# add the common terms
#
if ( !is.null(1112) ) {

formulal.terms<-paste( formulal.terms,
as.character(1112[2]),sep="+")
}
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#
# add the special common terms (if any)
# in this section we identify non-common parameters
# if a variable X is common in all formulas the we use term
x*noncommon to include x+x:noncommon terms
# otherwise use I(internal.datal$indctl*x) to add sepererate
parameter on lambdal
#
templl<- labels(terms(11))
#
# run this only if there are terms in 11 formula
if (length( templl )>0){
for ( k1 in 1:length( templl ) ){

if ( lis.null(1112) ) { checkvarl<-
sum(labels(terms(1112))==templi[kl] )==1 }

else{ checkvarl<-FALSE }

checkvar2<-sum(labels(terms(12))==templ1i[kl] )==

if (checkvaril&checkvar2) {formulal.terms<-
paste(formulal.terms,
paste('internal.datal$noncommon*',templi[kl],sep=""), sep="+")

}
else{
formulal.terms<-paste(formulal.terms,

paste('+I(internal.datal$indctl*',templi[kl],sep=""), sep="")

formulal.terms<-paste(formulal.terms,
')',Sep:ll)

}
#

# if a variable X is not common st
# otherwise use I(internal.datal$indctl*x) to add sepererate
parameter on lambdal
#
templ2<- labels(terms(12))
#
# run this only if there are terms in 11 formula
if (length( templ2 )>0){
for ( k1 in 1:length( templ2 ) ){

if ( lis.null(1112) ) {checkvarl<-
(sum(labels(terms(1112))==templ2[k1]
)+sum(labels(terms(1l1l))==templ2[k1l] ))!=2 }

else{ checkvarl<-TRUE }
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if ( checkvarl ) {
formulal.terms<-paste(formulal.terms,
paste('+I(internal.datal$indct2*',templ2[kl],sep=""), sep="")
formulal.terms<-paste(formulal.terms,
)", sep="")

}
#

rm(templl)
rm(templ2)
rm(Checkvarl)
rm(Checkvar2)
#
# This bit creates labels for special terms of type c(x1,x2)
used in 1112
#
#
formulal<-
formula(paste('internal.datal$yly2~',formulal.terms,sep=""))
tmpforml<-as.character(formulal[3])
newformula<-formulal
while( regexpr('c\\(',tmpforml) != -1)
{
tempposl<-regexpr('c\\(',tmpforml)[1]
tempfor <-substring( tmpforml, first = tempposl+ 2 )
temppos2<-regexpr('\\)"' , tempfor)[1]
tempvar <-substring( tempfor , first = 1, last
temppos2-1 )
temppos3<-regexpr("',

, tempvar)[1]

tempnamel<-substring(tempfor , first = 1, last =
temppos3-1 )
tempname2<-substring(tempfor , first = temppos3+2,

last=temppos2-1)
tempname2<-sub( '\\)',"'', tempname2 )
tempvarl<-data[, names(data)==tempnamel]
tempvar2<-data[, names(data)==tempname2]
datal$newvarl<-c(tempvarl, tempvar2)

if( is.factor(tempvarl)& is.factor(tempvar2) ){
datal$newvaril<-as.factor(datal$newvarl)
if (all(levels(tempvarl)==levels(tempvar2))){
attributes(datal$newvarl)<-
attributes(tempvarl)}
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}
tempvar<-sub( *, ", '..', tempvar )
names (datal)[names(datal)=="newvarl']<-tempvar
newformula<-sub( 'c\\(','', tmpforml )
newformula<-sub( "\\)','', newformula )
newformula<-sub( ', ', '..', newformula )
tmpforml<-newformula
formulal<-

formula(paste('internal.datal$yly2~"',newformula,sep=""))

}

HHHHH

rm(tempposl)

rm(temppos2)

rm(temppos3)

rm(tmpforml)

rm(tempfor)

rm(tempvar)

rm(tempvarl)

rm(tempvar2)

rm(tempnamel)

rm(tempname2)

# initial values for parameters
prob<-0.20

s<-rep(0@,n)

vi<-1:n*0

vl<-1-c(vi,vi)

like<-1:n*0

zero<- ( x==0 )|( y==0 )

if  (zerolL3) { lambda3<-rep(O,n) }
else { lambda3<-rep( max (0.1,
cov(x,y,use="complete.obs"')), n) }
#

#

#

#

# Initial values for lambda

internal.datal$vi<-1-c(vi,vi);

lambda<-glm( formulal, family=poisson, data=datal,
weights=internal.datal$vl, maxit=100)$fitted
#

lambdal<-lambda[1:n]
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lambda2<-lambda[(n+1):(2*n)]
#

difllike<-100.0
loglike0<-1000.0

i<-0

ii<-0

if (zeroL3) {
#
# fit double poisson diagonal inflated model
loglike<-rep(0, maxit)
lambda3<-1:n*0
while ( (difllike>pres) && (i <= maxit) ) {
ic-i+l
HHHHH E step #H#####
for (j in 1:n) {
if (zero[j]) {
s[j1<-@;
# calculation of log-likelihood
if (x[J1==y[J]) {
density.di<-di.f( 0.0, theta )
like[j]<-1log( (1-prob)*exp(-
lambdal[j]-lambda2[j])+prob*density.di );
vi[j]<-prob*density.di*exp(-
like[J]) }
else{
like[j]<-log(1-
prob)+log(dpois(x[j],lambdal[j]))+log(dpois(y[j],lambda2[j]));
vi[j]<-0.0 ;}
}
else {
if (x[J]1==y[3]) {
density.di<-di.f( x[j],theta );
like[j]<-1log( (1-prob)*dpois(
x[j1,lambdal[j] )*dpois( y[j],lambda2[j] ) + prob*density.di );
vi[j] <- prob*density.di*exp( -
like[j] ) }
else {
vi[j]«-9.0;
like[j]<-1log(1-prob)+log(
dpois(x[j],lambdal[j])*dpois(y[j],1lambda2[j]) )}
}

}
#### end of E-step #HitH###H#AH
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X1<-X;
X2<-Y;
loglike[i]<-sum( like ) ;
difllike<-abs( (loglike@-loglike[i])/loglike® )
loglike@<-loglike[i]
#
#
#i#HaHHHA’ M-step #H#HHAHSHHHH
# estimate mixing proportion
prob<-sum(vi)/n
#
# maximization of each theta parameter
if ( distribution == 1 ) {
# calculation of theta_j, j=1,...,jmax ; theta_0=1-

sum(theta)
if (jmax==0) { theta<-0 }
else {
for (ii in 1:jmax) {
temp<-as.numeric(( (x==ii) & (y==ii) ));
theta[ii]<-sum(temp*vi)/sum(vi)
}
}
}

else if (distribution==2){
# calculation of theta for poisson diagonal
inflation
theta<- sum(vi*x)/sum(vi) }
else if (distribution==3){
# calculation of theta for geometric diagonal

inflation
theta<- sum(vi)/( sum(vi*x)+sum(vi) ) }
#
# fit model on lambdal & lambda2
#

internal.datal$vi<- 1-c(vi,vi);

internal.datal$vi|[
(internal.datal$vi<0)&(internal.datal$vi>-1.0e-10) ]<-0.0
#

x1[ (x1<0)&(x1>-1.0e-10)]<-0.0

x2[ (x2<0)&(x2>-1.0e-10)]<-0.0

internal.datal$yly2<-c(x1,x2)

m<-glm( formulal, family=poisson, data=datal,
weights=internal.datal$vl , maxit=100)

133



p3<-length(m$coef)
beta<-m$coef

# ____________________________________________________
# creating names for parameters

names (beta)<-newnamesbeta( beta )
#

# end of name creations (11, 12, 12-11, blank)

betaparameters<-splitbeta( beta )

#
lambda<-fitted(m)
lambdal<-lambda[1:n]
lambda2<-lambda[ (n+1):(2*n)]
#
#####  end of M step #H#####
#

# printing also beta
if (verbose) {
printvec<- c( i,beta,100.0*prob, theta, loglike[i],
difllike );

names (printvec)<-c( "iter', names (beta),
"Mix.p(%) ", paste( "theta', 1:length(theta),sep="" )>
"loglike', 'Rel.Dif.loglike")
}
# limited print out
else {

printvec<- c¢( i, 100.0*prob, theta, loglike[i],
difllike );

names (printvec)<-c( "iter', 'Mix.p(%)"', paste(
‘theta’, 1:1length(theta),sep="" ) 'loglike’,
'Rel.Dif.loglike")

}
lengthprintvec<-length(printvec)

print.default( printvec, digits=4 )
}

+

# calculation of BIC and AIC for double poisson model
if ( (distribution==1)&&(jmax==0) ){noparams<- m$rank +1}
else {noparams<- m$rank +
length( theta ) +1}
AIC<- -2*loglike[i] + noparams * 2
BIC<- -2*loglike[i] + noparams * log(2*n)
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+

# Calculation of BIC, AIC of Poisson saturated model

X.Mmean<-x

X.mean[x==0]<-1le-12

y.mean<-y

y.mean[y==0]<-1e-12

AIC.sat <- sum(log( dpois( x , x.mean ) ) + log( dpois(
y , y.mean ) ))

BIC.sat <- -2 * AIC.sat + (2*n)* log(2*n)

AIC.sat <- -2 * AIC.sat + (2*n)* 2

#
#
AICtotal<-c(AIC.sat, AIC);
BICtotal<-c(BIC.sat, BIC );
names (AICtotal)<-c('Saturated’', 'DblPois’)
names (BICtotal)<-c('Saturated’', 'DblPois’)
#
allbeta<-c(betaparameters$betal,betaparameters$beta2)
names (allbeta)<-c( paste( "(11): ',
names (betaparameters$betal), sep="" ),paste('(12):",
names (betaparameters$beta2), sep="" ) )
allparameters<-c(allbeta, prob, theta)
if (distribution==1){ names(allparameters)<-c(
names(allbeta), 'p', paste('theta', 1:length(theta),sep="") ) }
else {names(allparameters)<-c( names(allbeta), ‘',
‘theta') }
#
# calculation of fitted values
# ____________________________
fittedvall<-(1-prob)*m$fitted[1:n]
fittedval2<-(1-prob)*m$fitted[ (n+1l):(2*n)]
#

meandiag<-0

if ((distribution==1)&&(jmax>0)) { meandiag<-sum(
theta[l:jmax]*1:jmax ) }

else if (distribution==2) { meandiag<-theta }

else if (distribution==3) { meandiag<- (1-theta)/theta }

fittedvall[x==y]<-prob*meandiag + fittedvall[x==y]
fittedval2[x==y]<-prob*meandiag + fittedval2[x==y]

result<-list(coefficients=allparameters,
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fitted.values=data.frame(x=fittedvall,y=fittedval2),
residuals=data.frame(x=x-fittedvall,y=y-fittedval2),
betal=betaparameters$betal,
beta2=betaparameters$beta2, p=prob, theta=theta,
diagonal.distribution=dilabel,
lambdal=m$fitted[1:n],

lambda2=m$fitted[ (n+1):(2*n)], loglikelihood=loglike[1:i],
parameters=noparams, AIC=AICtotal,
BIC=BICtotal,iterations=1i ,
call=tempcall)
#
#
# end of diagonal inflated double poisson model
}
else {
loglike<-rep(@,maxit)
while ( (difllike>pres) && (i <= maxit) ) {
ic-i+l
HHHHH E step ###H###
for (j in 1:n) {
if (zero[]j]) {
s[j1<-0;
# calculation of log-likelihood

if (x[31==y[3D {
density.di<-di.f( 0.0, theta )
like[j]<- 1log( (1-prob)*exp(-lambdal[j]-
lambda2[j]-lambda3[j])+prob*density.di );
vi[j]<-prob*density.di*exp(-like[j]) }
else{
like[j]<-log(1-prob)-lambda3[j]
+log(dpois(x[j],lambdal[j]))
+log(dpois(y[j],lambda2[j]));
vi[j]<-90.0 ;}

}
else {
1bpl<-pbivpois(x[j]-1, y[3i]-1,
lambda=c(lambdal[j],lambda2[]j],lambda3[]j]), log=TRUE );
1bp2<-pbivpois(x[7] s y[j] s

lambda=c(lambdal[j],lambda2[]j],lambda3[j]), log=TRUE );
s[j]<-exp( log(lambda3[j]) + lbpl - 1bp2 );
# like[j]<-1bp2;
if (x[3]1==y[3D) {
density.di<-di.f( x[j],theta );
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like[j]<-1log( (1-prob)*exp(lbp2) +
prob*density.di );
vi[j] <- prob*density.di*exp( -

like[j] ) }
else {
vi[]j]<-0.0;
like[j]<-1log(1-prob)+lbp2 }
}
}
##t## end of E-step #H####HH###
X1<-x-s;
X2<-y-S;

loglike[i]<-sum( like ) ;

difllike<-abs( (loglike@-loglike[i])/loglike® )

loglike@<-loglike[i]

#

#
#H#HaHGHHE] M-step #H#HHAHSHHHH

# estimate mixing proportion

prob<-sum(vi)/n

#

# maximization of each theta parameter

if ( distribution == 1 ) {

# calculation of theta_j, j=1,...,jmax ; theta_0=1-

sum(theta)

# cat (c('l:discrete, jmax=", jmax), '\n')
if (jmax==0){ theta<-0}
else{

for (ii in 1:jmax) {
temp<-as.numeric(( (x==ii) & (y==1ii) ));
theta[ii]<-sum(temp*vi)/sum(vi)
# print( c(ii, sum(temp), sum(vi),
sum(temp*vi) ) )
}

# cat( c('2:discrete, jmax=', jmax), '\n")

}
else if (distribution==2){
# calculation of theta for poisson diagonal
inflation
theta<- sum(vi*x)/sum(vi) }
else if (distribution==3){
# else {
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# calculation of theta for geometric diagonal
inflation
theta<- sum(vi)/( sum(vi*x)+sum(vi) ) }

# fit model on lambda3

internal.data2$vi<- 1-vi;

internal.data2$vi|
(internal.data2$vi<0)&(internal.data2$vli>-1.0e-10) ]<-0.0
#

internal.data2$y3<-s;

mo< -glm( formula2, family=poisson, data=data2,
weights=internal.data2$vl , maxit=100)

beta3<-mo@$coef

lambda3<-me$fitted

#

# fit model on lambdal & lambda2

internal.datal$vi<- 1-c(vi,vi);

internal.datal$vi|
(internal.datal$v1<0)&(internal.datal$vli>-1.0e-10) ]<-0.0
#

X1[ (x1<0)&(x1>-1.0e-10)]<-0.0

x2[ (x2<0)&(x2>-1.0e-10)]<-0.0

internal.datal$yly2<-c(x1,x2)

m<-glm( formulal, family=poisson, data=datal,
weights=internal.datal$vl , maxit=100)

p3<-length(m$coef)

beta<-m$coef

H _———
# creating names for parameters
names (beta)<-newnamesbeta( beta )
H _———
lambda<-fitted(m)
lambdal<-lambda[1:n]
lambda2<-lambda[ (n+1):(2*n)]
#
#i#####  end of M step #H#####
#
# print all parameters including beta
if (verbose) {
printvec<- c( i,beta,beta3,100.0*prob, theta,
loglike[i], difllike );
names (printvec)<-c( "iter',
names (beta),paste('13_',names(beta3),sep="'"), "Mix.p(%)",
paste( ‘theta’', 1:1length(theta),sep="" ) ‘loglike’,

'Rel.Dif.loglike")
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#
# limited print out
else {
printvec<- c( i, 100.0*prob, theta, loglike[i],
difllike );

names (printvec)<-c( "iter', "Mix.p(%) ', paste(
"theta’', 1:1length(theta),sep="" ) "loglike’,
'Rel.Dif.loglike")
}
#
lengthprintvec<-length(printvec)
print.default( printvec, digits=4 )
}
#
# calculation of BIC and AIC for bivpoisson model

if ( (distribution==1)&&(jmax==0) ){noparams<- m$rank +
mo@$rank + 1}

else {noparams<- m$rank +
mo@$rank + length( theta ) +1}

AIC<- -2*loglike[i] + noparams * 2

BIC<- -2*loglike[i] + noparams * log(2*n)

#

#

# Calculation of BIC, AIC of Poisson saturated model
X.mean<-x
X.mean[x==0]<-1e-12
y.mean<-y

y.mean[y==0]<-1e-12

AIC.sat <- sum(log( dpois( x , x.mean ) ) + log( dpois(
y , y.mean ) ))

BIC.sat <- -2 * AIC.sat + (2*n)* log(2*n)

AIC.sat <- -2 * AIC.sat + (2*n)* 2

#

#
AICtotal<-c(AIC.sat, AIC);
BICtotal<-c(BIC.sat, BIC );
names (AICtotal)<-c('Saturated', 'BivPois')
names (BICtotal)<-c('Saturated', 'BivPois')

# -

#

# spliting parameter vector
betaparameters<-splitbeta( beta )

#
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# putting all betas in one vector
allbeta<-c(betaparameters$betal,betaparameters$beta2,

beta3)

names(allbeta)<-c( paste( "(11): ',
names (betaparameters$betal), sep="" ),paste('(12):"',
names (betaparameters$beta2), sep="" ),paste('(13):"',

names(beta3), sep="") )
allparameters<-c(allbeta, prob, theta)

if (distribution==1){ names(allparameters)<-c(

names(allbeta), 'p', paste('theta', 1:length(theta),sep="") ) }
else {names(allparameters)<-c( names(allbeta), 'p',

"theta') }

#

# calculation of fitted values

H - - - -
fittedvall<-(1-prob)*(m$fitted[1:n] + lambda3)
fittedval2<-(1-prob)*(m$fitted[(n+1l):(2*n)] + lambda3)

#

meandiag<-0

if ((distribution==1)8&&(jmax>0)) { meandiag<-sum(
theta[1l:jmax]*1:jmax ) }

else if (distribution==2) { meandiag<-theta }

else if (distribution==3) { meandiag<- (1-theta)/theta }

#
fittedvall[x==y]<-prob*meandiag + fittedvall[x==y]
fittedval2[x==y]<-prob*meandiag + fittedval2[x==y]
#
#
# saving output

result<-list(coefficients=allparameters,
fitted.values=data.frame(x=fittedvall,y=fittedval2),
residuals=data.frame(x=x-fittedvall,y=y-fittedval2),
betal=betaparameters$betal,
beta2=betaparameters$beta2, beta3=beta3, p=prob, theta=theta,
diagonal.distribution=dilabel,
lambdal=m$fitted[1:n],

lambda2=m$fitted[ (n+1):(2*n)], lambda3=1ambda3,
loglikelihood=1loglike[1:i],
parameters=noparams, AIC=AICtotal,
BIC=BICtotal,iterations=i , call=tempcall)
#
} # end of elseif
#

options(warn=0)
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class(result)<-c('lm.dibp', '1m")
#

result

#

#

}

Function newnamesbeta

"newnamesbeta" <-

function( bvec ) {

# Internal function for renaming parameters according to
their interpretation

names(bvec)<-sub('\\)","'",names(bvec))
#remove right parenthesis

names (bvec)<-
sub("\\(Intercept', '(Intercept)',names(bvec))

# replace "(Intercept” with "(Intercept)”

names (bvec)[pmatch('internal.datal$noncommon2’',names (bvec
))]<-"(12-11): (Intercept)' # replace
"internal.datal$noncommon2' with '12-11" for intercept

names (bvec)<-sub('internal.datal\\$noncommon2:"',"(12-

11):",names(bvec)) # the same for the rest of
parameters
names (bvec)<-

sub('internal.datal\\$noncommon®:', ' (11):"',names(bvec))
# replace 'internal.datal\\$noncommon@:' by '(11)’
names (bvec)<-
sub('internal.datal\\$noncommonl:"','(12):"',names(bvec))
# replace 'internal.datal\\$noncommonl:' by '(12)'

names (bvec)<-sub(':internal.datal\\$noncommon2',"'(12-

11):',names(bvec)) # same as above with ":" in
front of expressions

names (bvec)<-
sub(':internal.datal\\$noncommon@', ' (11):',names(bvec))

names (bvec)<-

sub(':internal.datal\\$noncommonl’','(12):',names(bvec))

names (bvec)<-sub('I\\(internal.datal\\$indctl \\*
','(11):',names(bvec)) # replace
'"I(internal.datal$indctl * ' with '(11):"'
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names (bvec)<-sub('I\\(internal.datal\\$indct2 \\ ¥
', "(12):",names(bvec)) # replace
"I(internal.datal$indct2 * ' with '(12):"

names (bvec)
Function splitbeta

"splitbeta" <-
function( bvec ){

# Internal function for spliting beta parameters according
to their interpretation
#

p3<-length(bvec)

indx1<-grep(  "\\(11\\):', names(bvec) ) # identify
parameters for lambdal

indx2<-grep(  "\\(12\\):', names(bvec) ) # identify
parameters for lambda2

indx3<-grep( "\\(12-11\\):', names(bvec) ) # identify
difference parameters for lambda2

#

# create temporary labels to identify common parameters
tempnames<-sub( "\\(12-11)\\:', 'k', names(bvec) )
tempnames<-sub( "\\(12)\\:', 'k', tempnames )
tempnames<-sub( "\\(11)\\:', 'k', tempnames )

indx4<-tempnames%in%names(bvec) # common parameters are
identified as TRUE
#
betal<-c(bvec[indx4],bvec[indx1])
beta2<-c(bvec[indx4],bvec[indx3],bvec[indx2])
indexbeta2<-c( rep(@,sum(indx4)), rep(1,length(indx3)),
rep(2,length(indx2)) )

names (betal)<-sub('\\(11\\):', " ',names(betal))
names (beta2)<-sub('\\(12\\):', " ',names(beta2))
names (beta2)<-sub('\\(12-11\\): "', "' "',names(beta2))

betal<-betal[order(names(betal))]
indexbeta2<-indexbeta2[order(names(beta2))]
beta2<-beta2[order(names(beta2))]
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ii<-1:1ength(beta2)
ii<-ii[indexbeta2==0]
for (1 in ii ) {
# beta2[i]<-sum( beta2[ grep( names (beta2)[i],
names(beta2) ) ] )
beta2[i]<-sum( beta2[ names(beta2)[i]==names(beta2)

1)
}
beta2<-beta2[indexbeta2%in%c(0,2)]
btemp<-list(betal=betal,beta2=beta2)
btemp
}
Main Part
#code
sl=read.csv("data/sl.csv",stringsAsFactors=T)
levels(sl[,2])
#Evaluation of Covariates
attach(sl)

fitl=glm(gl~ratl+penboxl+goalboxl+cornerl,family="poisson",data
=s])

summary (fitl)
fit2=glm(g2~rat2+penbox2+goalbox2+corner2,family="poisson",data
=s])

summary (fit2)

corl=read.csv("data/correlationl.csv")

corl

C=cor(corl)
rownames(C)=c("Rating", "PenaltyBox", "GoalBox", "Corner")
colnames(C)=c("Rating", "PenaltyBox", "GoalBox","Corner")

C

#Fitting the bivariate Poisson model
biv=1m.bp(gl~ratl+penboxl+goalboxl+cornerl,g2~rat2+penbox2+goal
box2+corner2,1112=NULL,data=sl)

biv$coefficients

biv§parameters

biv$iterations

biv$loglikelihood

biv$lambdal
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biv$lambda2

biv$lambda3

biv$fitted.values

plot(biv$fitted.values[,1],biv$fitted.values[,2],main="Expected

Goals",xlab="Home Team",ylab="Away Team")

plot(sl[,3],s1[,4])

plot(infg$loglikelihood)

biv$AIC

biv$BIC

plot(1l:biv$iterations,biv$loglikelihood,xlab="Iterations",ylab=

"Log-Likelihood")

dbp=1m.bp(gl~ratl+penboxl+goalboxl+cornerl,g2~rat2+penbox2+goal

box2+corner2,1112=NULL,data=sl, zeroL3=TRUE)

dbp$AIC

dbp$BIC

#Fitting the Diagonal 1Inflated Bivariate Poisson model

(geometric)

infg=1m.dibp(gl~ratl+penboxl+goalboxl+cornerl,g2~rat2+penbox2+g

oalbox2+corner2,1112=NULL,data=sl,distribution="geometric")

infg$coefficients

infg$fitted.values

infg$diagonal.distribution

infg$loglikelihood

infg$AIC

infg$BIC

##Fitting the Diagonal 1Inflated Bivariate Poisson model

(Discrete)

infl=1m.dibp(gl~ratl+penboxl+goalboxl+cornerl,g2~rat2+penbox2+g

oalbox2+corner2,1112=NULL,data=s1,jmax=1)

infl$coefficients

inflg$diagonal.distribution

infl$loglikelihood

infl1$AIC

inf1$BIC

#Fitting the Inflated Double Poisson model

infdp=1m.dibp(gl~ratl+penboxl+goalboxl+cornerl,g2~rat2+penbox2+

goalbox2+corner2,1112=NULL,data=sl,zeroL3=TRUE, jmax=1)

infdp$coefficients

infdp$fitted.values

infdp$loglikelihood

infdp$AIC

infdp$BIC

sum=rbind(c(biv$parameters,-1029.576, 2081.151,2133.271

,0),c(inf1$parameters,-1029.576,2085.153 ,2146.749 , 1.305e-
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02),c(infg$parameters,-1029.576,2085.151 ,2146.747 ,1.680e-
05),c(infdp$parameters, -1030.476,2084.952 ,2141.810,4.602e-02))
rownames(sum)=c("Bivariate Poisson","Inflated with
Discrete(1)","Inflated with Geometric","Inflated Double-
Poisson™)
colnames(sum)=c("Parameters"”,"Loglikelihood","AIC","BIC","Mix.P
rop(p)")
sum
#Karlis and Ntzoufras model
slsc=read.csv("data/sl_scores.csv",stringsAsFactors=T)
slsc
forml=~c(teaml,team2)+c(team2,teaml)
bivsc=1m.bp(gl~1,g2~1,1112=forml,data=slsc)
bivsc$coefficients
bivsc$AIC
bivsc$BIC
#comparison
comp=rbind(c(-1.029576e+03, 2081.151,2133.271),c(-
1.098e+03,2269.030,2444.342))
rownames(comp)=c("Bivariate Poisson","Bivariate Poisson (goals
as cov)")
colnames(comp)=c("Loglikelihood","AIC","BIC")
comp
#PREDICTION
ratA=(141+169+146+123+237+98+234+169+174+4202+174+106+162)/13;ra
tA
penboxA=(3+1+3+4+1+6+2+4+3+1+3+5+3)/13; penboxA
goalboxA=(0+0+0+0+0+1+0+1+2+1+0+0+0)/13;goalboxA
cornerA=(1+3+5+5+4+1+3+2+4+1+11+2+5)/13;cornerA
ratP=(114+127+172+181+84+153+144+121+194+118+153+162+127)/13;ra
tP
penboxP=(0+2+4+9+1+2+2+4+4+2+1+5+0)/13; penboxP
goalboxP=(1+0+1+2+2+2+2+1+1+0+0+1+1)/13; goalboxP
cornerP=(3+4+5+9+5+2+1+3+0+2+6+8+2)/13;cornerP
ll=exp(-
1.281071082+0.008715946*ratA+0.024295455*penboxA+0.100234116*go
alboxA-0.030432260*cornerA);11
12=exp(-
1.705548672+0.009189555*ratP+0.087018910*penboxP+0.197741080*go
alboxP-0.048838609*cornerP);12
13=0.0665655;13
pred=bivpois.table(8,8,lambda=c(11,12,13));pred
sum(diag(pred))
print(sum(pred[lower.tri(pred)]))
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print(sum(pred[upper.tri(pred)]))
#VERIFICATION
X=0.3004748+0.4240807+0.2754379

X

A3. The Newton-Raphson method

The Newton-Raphson method which is named after Isaac Newton and
Joseph Raphson, is an iterative technique for finding the root in
functions when this cannot be found in a straightforward way.

Let us consider the non-linear equation,

x:f(x) =0

By starting with some value x;, the method computes a sequence of
approximations x;, x,, ... which converge to the solution x* (f(x*) =
0) of the non-linear equation.

We start from the Taylor expansion of function f around the point x,,,

(xn+1 - xn)
2

2
fns1) = ) + (g1 — %) f () + " (xy) + -

If we neglect the higher order terms, we find

f(xn+1 = f(xn) + (xn+1 - xn)f,(xn)
If we then require f(x,,1) to be equal to zero, we obtain

f ()

x‘l’l+1 = xﬂ. _f/(x )
n
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There fore,

o = e — f(xo)
T ()
Yo = 31 — f(x1)
c T fr(x)
f(xz)

TR T )

The Newton-Raphson method is generalized for the case of systems
with n equations with n unknowns. We may write the system

(f1(x1, .0, x) =0
f2(xy, %) =0

\frn (X1, 0, %) =0

We consider f: X € R" - R" defined as f(x) = f;(x), ..., f5,(x)

We want to find a vector r = (14, ..., 1,) such that f(r) = 0. To
approximate such a vector r, we may make an initial guess x, € R". If
f is differentiable, then we know that y = f(x) is approximated by

the equation
y = f(xo) + Df (o) (x — x0)

where Df (x,) is the n X n matrix of the first derivative of f.
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We set y = 0 in order to find where this approximating function is
zero. Thus, we solve the matrix equation

f(xo) + Df(x9)(x1 — x0) = 0

with x; giving a revised approximation to the root r. Evidently the
equation above is equivalent to

Df (x0)(x1 — x0) = —f (%)

To continue our argument, suppose that Df (x,) is an invertible n X n
matrix. Then we multiply the equation by [Df (x,)] ! to obtain

I, (x; — x0) = =[Df (xo) 171 f (xp).

Similarly to the one-variable case of the method of the Newton-
Raphson method, we may iterate the formula to define a sequence
{x;} of vectors by,

X = Xp—1 — [Df (xo)] 7 f (xge— 1)

148



