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ABSTRACT

One of the most important aspects of native graph-database systems is their index-free
adjacency property that enforces the nodes to have direct physical RAM addresses and
physically point to other adjacent nodes. The index-free adjacency property accelerates
query answering for queries that are bound to one (or more) specific nodes within the
graph, namely anchor nodes. The corresponding anchor node is used as the starting point
for answering the query by examining its adjacent nodes instead of the whole graph.
Nevertheless, non-anchored-node queries are much harder to answer since the query
planner should examine a large portion of the graph in order to answer the corresponding
query. In this work we study view and index selection techniques in order to accelerate the
aforementioned class of queries. We analyze different index and view selection strategies
for query answering and show that, depending on the characteristics of the query, the
graph database, and the corresponding answer set, a different strategy may be optimal
among the indexing and view materialization alternatives. Before selecting the views and
indices, our system employs pattern mining techniques in order to guess the
characteristics of future queries. Thus, the initial query workload is represented by a much
smaller summary of the query patterns that are most likely to appear in future queries,
each pattern having a corresponding expected number of appearances. Our selection
strategy is based on a greedy view & index selection strategy that at each step of its
execution tries to maximize the ratio of the benefit of materializing a view/index, to the
corresponding cost of storing it. Our selection algorithm is inspired by the corresponding
greedy algorithm for “Maximizing a Nondecreasing Submodular Set Function Subject to a
Knapsack Constraint”. Our experimental evaluation shows that all the steps of the index
selection process are completed in a few seconds, while the corresponding rewritings
accelerate 15.44% of the queries in the DbPedia query workload. Those queries are
executed in 1.63% of their initial time on average.

SUBJECT AREA: View Materialization

KEYWORDS: graph databases, query optimization, view selection, view materialization,

knowledge graphs



NEPIAHWYH

Mia atmmd TIGC OnNUAVTIKOTEPEG TITUXEG TWV PACewv OedOUEVWV YPOAPNUATWY ME EYYEVA
eTmeCEPYATia ypagwy gival n 1010TNTA yerrviaons xwpic supernpio (index-free-adjacency),
Baon TG otroiag OAol oI KOuPoI Tou ypdgou €xouv dueon @uolkni dicuBuvon RAM kai
OeikTEG 0€ AAAOUG YEITOVIKOUG KOPPBOoUG. H 1810TNTa YEITViaong XwpPig EUPETAPIO ETTITAXUVEI
TNV ammdvTnon €pWTNUATWY YIa €PWTAMATA TTOU cuvdéovTal PE évav () TTEPICOOTEPOUG)
OUYKEKPIMEVOUG KOPPBOUG €vTOG TOU ypa@riuatog, onAadr) Toug KOPBoug aykupwong
(anchor nodes). O avTioToixog KOPPBOG ayKUpwong XPENOIMOTIOIEITAl WG ONUEI0 EKKivNoNg
yla TNV amrdvTnon OTOo €PpWTNPA €EETACOVTOC TOUG TTAPOKEIUEVOUSG KOUPBOUG Tou avTi yia
OAOKANPO 1O ypdenua. MapoAa autd, Ta epwTtiuata Tou Oev apxifouv atrd KOPBouUg
aykUpwoNnG oTravtwvtal TOAU TTo dUOKOAQ, KaBwg o oxedlaoTng epwTnudtwv(query
planner) Ba TpétTel va €¢eTdoel Eva HEYAAO YEPOG TOU YPOQPUATOS VIO VA ATTAVTAOEI OTO
QVTIOTOIXO E€PWTNMA. 2€ AUTA TNV €pyaoia MEAETAUE TEXVIKEG €TTIAOYNG OWEWV Kal
EUPETNPIWY TTPOKEIMEVOU VA ETTITAXUVOUUE TNV TTPOAvVA@PEPBEIca KATNyOoPIia EpWTNNATWY.
AvaAUoupe dIAQOPETIKEG OTPATNYIKEG ETTIAOYAG OWEWV KAl EUPETNPIWV YI TNV ATTavinon
EPWTNMATWY Kal Ogixvouue OTI, avAAoya UE T XOPAKTNPIOTIKA TOU £pWTAUATOG, TN Bdon
OeQONEVWV  YPOPNUATWY KAl TO QVTIOTOIXO OUVOAO ATTAVTACEWY, MIa  OIAQOPETIK)
OTPATNYIKA MTTOPEl va gival BEATIOTN PETAEU TWV EVOAANOKTIKWY AUCEWV €UPETNPIAONG Kal
uAotroinong TTPoBoAnG. Mpiv atrd TNV €TMIAOYH TWV OWEWV Kal TWV EUPETNPIWY, TO cUCTNUA
MOG XPNOIUOTIOIET TEXVIKEG €COPUENG TTPOTUTTWV YIA VA PAVTEWEl TA XOPAKTNPIOTIKA TWV
MEANOVTIKWV epwTnuatwy. ‘ETol, 0 apxikdG @OpTOC €pyaciag Tou EPWTANATOS
QVTITTPOCWTTEVETAI ATTO MIa TTOAU HIKPOTEPN CUVOWN TwV MOTIBWY £pWTNUATWY TTOU Egival
mo Oave va eu@avioTouv o0 PEANOVTIKA e€pwTAuaTa, PE KABE poTiBo va €xel Tov
QVTIOTOIXO QVAUEVOUEVO apIBUO ep@avicewy. H oTpatnyikh €AoY pag Paciletal o€ pia
oTPATNYIKA ETTIAOYAG ATTANCTNG OWewWV & EUPETNPIWYV TTOU O€ KABE Bripa TNG EKTEAECAG TNG
TIPOOTIABEl va PEYIOTOTTOINCEl TNV avaAoyia Tou o@éAoug atmmd Tnv UAoTToinon MIaG/evog
OWewg/eupeTNPiou, TTPOG TO AVTIOTOIXO KOOTOG aTToBrKeuong Toug. O aAyopiBuog 1TIAOYAG
MOG €ival EUTTVEUOPEVOG aTTd TOV AVTIOTOIXO ATTANCTO aAyopIBuo yia Tn «MeyioTotroinon
MIOG un €AATTOUMEVNG OUVAPTNONG UTTOOOPOOTOIXEIWTOU OUVOAOU TIOU UTTOKEITAI O€
TTEPIOPIOPO oakidiou». H Treipapatikry pgag aglohdynon Oeixvel 611 6Aa Ta BAPaTa NG
dl0dIKaciag  €TMAOYNG  €upeTnpiou OAOKANpwvovTal o€ Aiya O€UTEPOAETITA, E€vw Ol
QVTIOTOIXEG ETTAVEYYPAPES ETTITAXUVOUV TO 15,44% TwV £PWTNPATWY OTOV POPTO EPYATIAG
Twv epwTtnudtwy TG DbPedia. Autd 10 gpwtrpaTa ekTeAoUvTal 010 1,63% TOU QpPYIKOU
TOUG XPOVOU KaTd HECO OPO.

OEMATIKH MEPIOXH: YAotoinon dwewv

AEZ=EIZ KAEIAIA: Baoeig dedOPEVWV YPAPNPATWY, BEATIOTOTIOINCN EPWTNNATWY, ETTIAOYN

OWewv, uAoTToiNoN OYWEWYV, YPAPANATA YVWONG
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View & Index Selection on Graph Databases

1. INTRODUCTION

In the past decade, and especially the last few years, a rapid increase was observed in
both scientific and industrial interest for graph-database management systems. Partly
responsible for this, is the changing focus of many industrial titans, namely Facebook,
Twitter, Google, e.t.c.[1][2][3] from generic relational databases to graph-database systems
and analytics to represent and explain the relationships and interactions of their user
bases. The Facebook graph contains billions of users, corresponding to the vertices of the
graph and ftrillion of edges representing their corresponding relationships [1][2]. Similarly,
Twitter represents its thousands of million of users as nodes within its graph, and follow
relationships as its directed edges [3]. In its simplest form, a social network contains
individuals as vertices and edges as relationships between vertices [4]. This abstract view
of human relationships, while certainly limited, has been very useful for characterizing
social relationships, with structural measures of this network abstraction finding active
application to the study of everything from bargaining power [5] to psychological health [6].

Alongside the aforementioned use in social networking, graph databases provide industrial
solutions for various information systems. In the modeling of supply chains systems,
graphs are used to prevent harm and complications along the supply line, which was
highlighted with the graph database management system TigerGraph during the
COVID-19 pandemic [7]. In the modeling of chemical compounds, the PubChem [8] is a
dataset that contains more than half a million graphs, while ChEBI contains more than half
a million graphs [9]. Further applications extend to software development and debugging
[10] similarity searching in medical datasets [11], as well as recommender systems [12].
Another prominent application, where graph-databases thrive are Knowledge Graphs, i.e.,
collections of interconnected and annotated entities. KGs are now widely used in both
academia and industry where prominent KGs such as DBpedia [13], Yago [14], Google's
KG [15], and Microsoft's Satori [16] have already reached tremendous scale. Indeed,
DBpedia alone currently consists of more than 1 billion triples. Hence, the demand for high
performance graph-database systems that are used both in industry and academia is on
the constant rise.

1.1  Graph-Database Management Systems

As a result, a large number of graph-database management systems have emerged,
either general purpose systems, e.g., Neo4j [17], InfiniteGraph [18], Amazon Neptune [19],
Dgraph [20], e.t.c., in-house systems designed by big data companies for their own
purposes, e.g., Google's Pregel [21], Twitter's FlockDB [22], or while general purpose
big-data frameworks provide extensions for graph processing, e.g. GraphX and
GraphFrames for Spark [23][24].

1.2 Non-Anchored-Node Queries

One of the most important aspects of graph-database systems is their index-free
adjacency property. The index-free adjacency property enforces the nodes to have direct
physical RAM addresses and physically point to other adjacent nodes, resulting in a fast
retrieval. Thus, query answering w.r.t. a specific node within a query, namely anchor node,
is performed very effectively for a native graph-database system since there is no need to
move through any other type of data structures to find the links to the corresponding node
and its neighborhood. Nonetheless, in the case of non-anchored-node queries, the query
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planner should consider every possible node or edge alternative, before taking advantage
of the index-free adjacency property.

Example 1.1 For example, a query that asks for the couple(s) that have starred together in
the movie “Eyes Wide Shut”:

MATCH (nl: Person) — [: MARRIED] — (n2: Person),

(n1) — [: ACTED_IN] —> (m: Movie {title: "Eyes Wide Shut"}), (1)
(n2) — [: ACTED_IN] —> (m)

RETURN n1,n2

can be very effectively answered since the query planner will first visit the corresponding
movie, and then explore for every actor/actress in it if its corresponding couple has also
starred in the same movie.

A more general query that asks for couples who have starred in films together is much
more difficult to answer:

MATCH (nl: Person) — [: MARRIED] — (n2: Person),
(n1) — [:ACTED_IN] —> (m) <— [:ACTED_IN] — (n2) (2)
RETURN n1,n2

The query planner should first consider every possible movie or every possible couple of
actors and then take advantage of the free adjacency property. The corresponding query
asks for triangle relations involving two actors and a movie. It may appear by itself or as
part of a more complex (possibly analytical) query. It should be noted that this is a difficult
query to answer that has been extensively analyzed in the bibliography, e.g., [25]
investigate efficient algorithms to update this query's corresponding answer. In order to
answer the corresponding query, we have to perform many searches in order to reveal the
answers that satisfy it. In fact, if |G| is the size of our graph database, the corresponding

problem has a data complexity of |G|7 [26][27].

If we assume that a small proportion of the nodes within the graph satisfy the
corresponding query, by building an index on these nodes we would avoid much of the
aforementioned overhead.

1.3 Index & View Selection in Graph Databases

A prominent approach to enhance query answering is View Materialization, ie., given a
database D and a query workload Q materialize an appropriate set of computations to
improve query performance. The problem of View Selection, the selection of the
appropriate views to materialize, is achieved by finding commonalities across queries in Q
the precomputation of which minimizes the execution of existing or future queries w.r.t. to a
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cost function (e.g., query evaluation, storage, and subexpression maintenance costs),
under a set of constraints (e.g.,space budget). Views as a concept are absent from native
graph-database systems since data is not stored into tables, but modeled as vertices and
edges between them and therefore tubular stored queries are typically not implemented.
However, we may introduce “views” by adding edges within our graph G, while the Index
Selection presented in our work uses a lot of the same principles present in View Selection
and the materialization of the selected indices can be implemented by various tools
provided by a given graph DBMS.

1.4 Contributions

In this paper, we describe a system that takes as input a graph database G, a
corresponding query workload @ and builds the appropriate views and indices that will
improve execution of future queries. Our system tries to “guess” the characteristics of
future queries by finding the patterns that have the highest probability of appearing, and
then select the appropriate indices and views for the corresponding queries. Our main
contributions, regarding index and view selection for graph databases are the following:

e Index & View Strategies: We analyze different index and view strategies for query
answering and show that, depending on the characteristics of the query, the graph
database, and the corresponding answer set, a different strategy may be optimal
among the indexing/view materialization alternatives.

e Graph Summary: We reformulate the traditional view selection multiquery
optimization problem by, instead of considering the initial query workload of Q, we
instead reformulate our problems in terms of the patterns that are most likely to
appear within future queries. This is achieved by creating a summary ExpQ, of the

initial workload, that corresponds to the most likely patterns that are expected to
appear in future queries. Though our current implementation for discovering EprT

is based on traditional subgraph-pattern mining techniques, our work can be
extended, with state-of-the-art mining algorithms [28], that take into account the
temporal evolution of the query-characteristics within Q.

e View/Index Selection & Materialization : We employ a greedy index selection
strategy, that, at each index-selection step of the algorithm tries to maximize the
benefit of creating the corresponding view, compared to the cost of storing it.
Additionally, we show the correspondence between the view/index selection
process and the problem of “Maximizing a Nondecreasing Submodular Set Function
Subject to a Knapsack Constraint” problem and discuss possible guarantees.
Additionally, we suggest a lazy materialization strategy that incorporates all index &
view related information into our corresponding graph on query-execution time.
Thus an index/view is materialized only when we need to answer to a query that will
be employing the corresponding index/view. This strategy allows to incorporate the
materialization step into the execution step.

K. Plas 13
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2. PRELIMINARIES

Initially, we will present some preliminary definitions to formalize the view selection

problem on a graph-database.

21 The Property Graph Data Model

For a set S, we denote with P(S) its corresponding powerset and with P(S)\ @ its

corresponding powerset without the empty set.

Definition 2.1 The Property Graph Data Model. Assume that L is a finite set of vertex and
edge labels; P is a finite set of property names; V is an infinite set of atomic values; a
property graph is a tuple ¢ = (N, E, p, A, o) such that:

1) N is afinite set of vertices;

2) E is a finite set of directed edges disjoint with N;

3) p: E- N’ is a total function that associates each edge in E with a pair of vertices in
N;

4) A: (NUE) - P(S)\Q is a partial function that associates each vertex/edge with its
corresponding set of labels from L;

5) 6:(NUE) X P-V is a partial function that associates vertices/edges with
properties, and for each property it assigns a value from V.

Given two vertices n,n, €N and an edge (nr nz) € E, we will say that n, is the source
vertex and n, the target vertex of the edge. Note that our definition supports multiple labels
for vertices and edges, and a single value for a property on a vertex/edge.

Definition 2.2 Basic & Join Graph Pattern. Given a set of variables X disjoint from the
previous sets, a basic graph pattern (BGP) is an expression of the form :

(wt) - [v: tv] —> (w:t ) (3)

where u, w € X are variables referencing vertices; v € X is a variable referencing an edge;
and t,t,t are labels. The expression (u: tu) is also a valid BGP which allows to obtain

the vertices in the graph. Also expressions with one or more of the labels t,t,t missing
are also acceptable. A set of BGPs is called a join graph pattern.

Note : for simplicity, we have ignored BGPs that also query the properties of a node or an
edge.
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View & Index Selection on Graph Databases

Definition 2.3 A join graph-pattern query is of the form :

SELECT X ., X, (4)

MATCH ] ()

where ] is a join-graph pattern and X X are variables appearing in J, X e X € Vars(]).

Definition 2.4 Query Answering. A solution to the query in Formula 4 is a mapping
m: Vars(J) - N U E from the variables in the join graph-pattern of the query to the
vertices and edges of the graph G such that for every BGP in the form of Formula 3,
appearing in J, it applies that: m(uw),m(v) € N, m(v) € E, p(m(v)) = (m(w), m(v)),
t € A(m(w)), t € A(m(v)), t € A(m(w)) . The substitutions of variables appearing in the

SELECT clause constitute the answers to the query.

2.2 Graph Databases Management System

Following the definition of a Property Graph, we will provide definitions for Graph

Database Management Systems and their internal structures.

2.2.1 Graph Database Management System

A Graph Database Management System (GDMS) is a database management system with
Create, Read, Update, and Delete methods that expose a graph data model. The
Graph-Database Management System under consideration is based on Neo4j,

nevertheless most of the described properties are common in most native GDMSs.

2.2.2 Native Graph Processing

A graph database management system is characterized as having native graph
processing capabilities, regardless of its architecture and the way the graph is encoded
and represented in the database engine’s main memory, when it exhibits a property called
index-free adjacency. A GDMS utilizes the aforementioned property when each vertex
maintains direct references to its adjacent vertices. This results in two facts: (i) Each vertex
acts as a micro-index, which is much cheaper than global indices.(ii) Query times are
independent of the total size of the graph, they are proportional to the amount of graph

searched.A nonnative graph database engine, in contrast, uses (global) indices to link
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vertices together. These indices add a layer of indirection to each traversal, thereby

incurring greater computational cost.

2.3 Indexing Alternatives in Neo4j

The underlying GDMS Neo4j provides various index alternatives. An index is a data
structure that improves the speed of data retrieval operations on the cost of additional
writes and storage space to maintain the index data structure. Neo4j allows indices on
vertex/edge labels, on a single property for a given label, or on multiple properties for a
given label. The indexing options available in Neo4j are B-tree indices, Text Indices,
Full-text indices, and Token lookup Indices. Token lookup indices, as the name suggests,
are used to look up vertices or edges with a specific label. A token lookup index is always
created over all labels and hence there can only be a maximum of two token lookup

indices in a database - one for vertex labels and one for edge-labels.

2.4 View Selection

2.4.1 Materialized View

A view is a stored query, while a materialized view is the result set of the stored query on a
specific database instance. In the case of native graph-databases, views can only be
represented in terms of vertices and edges within the data graph. Therefore in Section 4

we study different index and view candidates for representing a query.

2.4.2 Query Rewriting

Two queries are equivalent if they have the same answer set for every possible database.

A query Q' is a rewriting of Q that uses the views V = {Vr"" Vz} if @ and Q' are equivalent

and Q' contains one or more occurrences of materialized views in V. A rewriting function
Rwrt(Q,V) takes as input the query Q and rewrites it to an equivalent query

Q' = Rwrt(Q,V) using views from V. A rewriting function Rwrt is optimal when there

exists no other rewriting Q" of Q such that Cost (Q"") < Cost'(Q), with Cost" being the

function that maps a query to its estimated execution cost.

K. Plas 16
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3. SYSTEM ARCHITECTURE
Figure 1 displays the overall architecture of our system for answering queries using views.

(i) View Selector is responsible for choosing the appropriate views for materialization. (ii) It
employs the Graph Pattern Miner that discovers frequent-query patterns within a query
workload, i.e., query patterns that have a high possibility of reappearing.(iii) The Query

Containment Engine given a query Q and a set of materialized views I, finds the views
that contain Q, i.e., every V € I, such that T, (Q)E T, (W). The query containment engine

employs the mv-index structure that has been presented in [29].(iv) The View-Based
Rewriter engine takes the views as input and rewrites them in an optimal way regarding a
cost estimation function that uses graph-database related statistics.(v) Finally, the Query
Optimizer and the Query-Evaluation Engine are integral to every database system and are
responsible for deciding the execution plan of a query and its actual execution on the

underlying database.

In our system we have made the following assumption: the view based rewriter is not
depended on the query optimizer. This allows our system to operate on top of an arbitrary
underlying graph database. In the following we present the cost model used by the view

selector and the view-based rewriter.

Graph-Pattern

View
Selection

View Selector . MV-Index
Miner
(@)]
> < Query .
| & -
v g Containment VEW Bised Metadata
S 3 Engine ewriter
[~
)
© C
=
o £ Query Evaluation ,. Graph
< o . . . 00110 100101
o Optimizer Engine oG 1112
© c “loo1 o10%
©
Os=s

Figure 1: Frequent Graph Pattern Mining Template Databases
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3.1 Cost Model

Since there is no way to find the exact cost of executing a query apart from executing it,

we need to identify a function Cost(-) that approximates the time needed to execute a

certain query. Our cost model is based on the Neo4j cost model.

3.2 Execution Plans and Neo4j Cost Model

In order to execute a query the Neo4j engine decomposes it into a number of operators.
When combined, the operators form a tree-like structure called an execution plan. The
operators represent nodes on the tree and take zero or more rows as input and produce
zero or more rows in return. An example of an execution plan generated with the EXPLAIN

command is shown in figure 2.

Operators that we examine in our work are the following:

e Directed Relationship Type Scan: defined as the DirectedRelationship TypeScan
operator, which fetches all relationships and their start and end nodes with a
specific type from the relationship type index.

e Produce Results: defined as the ProduceResults operator, which prepares the
result so that it is consumable by the user, such as transforming internal values to
user values. It is present in every single query that returns data to the user, and has

little bearing on performance optimization.

The evaluation of an execution plan begins at leaf nodes. Leaf nodes have no input and
are generally scan or seek operators. Leaf nodes obtain rows directly from the storage
engine causing database hits. Any rows produced by leaf nodes are then piped into their
parent nodes, which in turn pipe their output rows to their parent nodes and so on, all the
way up to the root node. The root node produces the final results of the query. Each
operator maybe be annotated with the following statistic as defined in the Neo4j Cypher

manual :

e Rows: The number of rows the operator produced. Rows are generated only when
using the PROFILE Cypher call.

e EstimatedRows: This is the estimated number of rows that is expected to be
produced by the operator. The estimate is an approximate number based on the

available statistical information. The compiler uses this estimate to choose a
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suitable execution plan. EstimatedRows is a statistic that we heavily used on the
view selection process.

e DbHits: Each operator will send a request to the storage engine to do work such as
retrieving or updating data. A database hit is an abstract unit of this storage engine
work.

e Time: Time is only shown for some operators when using the pipelined runtime.

The number shown is the time in milliseconds it took to execute the given operator.

The execution plans and the operation statistics are presented to the user when queries
are executed on the database with either the PROFILE or EXPLAIN Cypher statements.
The EXPLAIN option provides the execution plan for a given query without executing it.
PROFILE on the other hand runs the query and keeps track of how many rows pass
through each operator, and how much each operator needs to interact with the storage
layer to retrieve the necessary data. An example of a Neo4j query plan is depicted in
Figure 2.

% DirectedRelationshipTrpeScan @neodj ‘

amon 1, x =

(®)-[enon_1:"hitp:'dbpedia org |
Properry artst” ]-={z}

= anon_ 2 oanon 1 k=

(=)-[2mon_2:" hiip: /' dbpedia ors
praperty/genre’ |->{k)

x anon 2 v, anon 0 anon 1 k =

(=)p-[enon_ 0" hitp:'dbpediz org
proparty/name’]->(v)

W ProduceResultsi@necd)
= anon_2 v, ancn 0, anom_ 1 k. =

=v,rk

Rezulf

Figure 2: Query plan provided by EXPLAIN call
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4. INDEX & VIEW STRATEGIES

In this section we will focus on the candidate indices and views for view materialization.
l.e., given a graph database G, what are the materialization alternatives that we should
consider (Section 4.1). Then, for each materialization alternative, we will investigate how
our initial query will be rewritten, and decide on the materialization alternative that is the

most beneficial for our underlying system (Section 4.2).

4.1 Index & View Candidates

Given a query pattern P of a high frequency within the query workload of Q and a graph
database G, we want to examine all the index and view alternatives that can be derived

from the corresponding query pattern.

In retrospect (Section 2), a database index is a data structure that improves the speed of
data retrieval operations at the cost of additional writes and storage space to maintain the
index data structure. Traditional graph databases allow token lookup indices based on
node and edge labeling: node indices allow to efficiently locate all the nodes of a specific
label; edge indices allow to efficiently locate all the edges of a specific label.
Graph-databases also provide other types of indices, e.g., single-property indices on

nodes or edges, which do not fit the purposes of our materialization strategy.

For traditional relational databases, a view is a stored query, while a materialized view is
the result set of the stored query on a specific database instance. It should be noted that

for graph databases materialized views can only be represented by the addition of edges.

In the rest of the paper, we will use the term index materialization for the case of creating a
new label to identify the nodes or edges within our graph G that are of specific interest. We
will use the term view/index materialization for the case that we additionally need to create
new nodes or edges in order to efficiently locate the parts of the graph G that we are

interested in.
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4.1.1 Index & View Alternative

We will now examine alternative indexing and view-materialization strategies w.r.t. the

graph-database setting. We assume (i) an expected join graph-pattern P, (i) its

corresponding query representation namely QP: SELECT x MATCH P with x variables that

also appear in P: Vars(a_c) c Vars(P), (iii) a graph database G. To recall, the join-graph

pattern P corresponds to a set of BGPs P = {BGPL,}f_1 with the i BGP being on the form:

(ui: tui) - [vi: tm,] -> (Wj: twj) (6)

where U v, W, € X are variables, while t ot twj are node or edge labels.

A. A candidate strategy would be to create one or more indices on the nodes that are

part of a solution to the query of QP. To be more specific, for the node-variable u,
appearing in P we should consider the label lui and built a corresponding index
upon it. If the mapping m is a solution for the join graph-pattern of P, the node m(ui)
will be labeled with lul_ and indexed in lw_.

B. Another strategy would be to create one or more indices on the edges that are part

of a solution for the join graph-pattern P. Thus, for the i BGP within the pattern P,

we may create a new label lBGP and the corresponding index on ZBGP that identifies

L

the edges that satisfy the BGP and are also part of an answer. If the mapping m is a

solution for the join graph-pattern of P, the edge m(vi) will be labeled with lBGP and

i

indexed in lBGP ;

i

We will now examine view materialization strategies, i.e., strategies that create additional

nodes or edges to the existing graph database G.

C. A materialized view that introduces a new node for each solution/answer to the

query of QP. The fresh node is connected to the constant nodes of the

solution/answer it represents via fresh edges. If the mapping m is a solution for the

join graph-pattern of P, we create a fresh node n_ within the graph, corresponding
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to the solution of m. For the i ™ node variable u, appearing in P we could create a
new edge e, that connects n_ with m(ui): p(ei) = (nm, m(ui)). The specific edge will
be labeled with the label of lsi and indexed accordingly. The corresponding strategy

is called reification in the Semantic-Web [30].
D. A materialized view that introduces new edges and labels between pairs of answer

constants.

We provide an example that illustrates the different materialization alternatives.

Example 4.1 Let J being the join pattern in Formula 7a and QP the pattern query in

Formula 7b:
@ — [egr,] => 00 = [e;r,] —> @, 0) = [esr] —> W) (7a)
SELECT x,y,z,w Match ] (7b)

The corresponding query is depicted in Figure 3a and is applied to the graph database in
Figure 3b. Based on the aforementioned indexing and view-materialization strategies we

have the following alternative structures:

A paradigm of Strategy A in Figure 3c will create two node indices, represented via light

green and light blue colors, corresponding to the labels lgmn and L, 1o identify the nodes

of G that satisfy the following two queries:

Create (x: lgreen) Match ]

Create (y: lblue) Match | (8)

A paradigm of Strategy B in Figure 3d will create three edge indices, represented via blue,

green, red colors, the labeled edges satisfy the corresponding query results:
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Create (el: lblue) Match ]
Create (ez: lgreen) Match ]

Create (e,:l ) Match] (9)

A paradigm of Strategy C in Figure 3e will represent each answer of the query-pattern by
adding an additional node and the corresponding edges between the new node and the
parts of the graph database that constitute the answer. Let's assume that f is a function
that maps each set of constants to a fresh node, the corresponding view can be described

via the following structures:

Create (f(x,y,z,w)) Match ] (10a)
Create (f(x,y,z,w)) — [: 81] —> (x) Match ] (10b)
Create (f(x,y,z,w)) — [: sz] —> (y) Match ] (10c)

Since f(a, b, c,d) = a, node a, will be connected to the constants a, b, ¢, d via the labeled
edges € EHELE, indicating that the tuple (a, b, ¢, d) satisfies the pattern in Formula 7b.

The same applies for the node a, that indicates that the tuple (e, f, d, z) also satisfies the

query.

Figure 3f illustrates a paradigm of Strategy D where an edge between the nodes illustrates

that they are part of the same answer. The view in Figure 3fcorresponds to the following

query:

Create (x) — [:r_ ]| —> (2) Match] (11)

X,z
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3a: Frequent Query Pattern 3b: Graph Database G 3c: Index on Node labels

EN A

3d: Index on Node labels 3e: Materializing Answer Set 3f: Materializing Partial Answer

Figure 3: A frequent pattern on a graph database G and its corresponding index and

view-materialization alternatives

4.2 Query Rewriting

We will now examine, depending on the available indices and materialized views, the
different rewriting strategies that can be applied. For set semantics, in order to rewrite a
query based on a view or index, there needs to exist a containment mapping from the
view to the conjunctive query. For multiset semantics, a sufficient condition is to have a

subgraph isomorphism from the view or index to the corresponding query.

Example 4.2 We illustrate the available rewritings based on our view and index
alternatives, assuming we have a query that is an extension of the pattern appearing in 7b,
e.g.:
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SELECT x,y,z,w Match ], (x) — [e4: s] —> (2) (12)

The latter query is rewritten as follows based on the various indices and views in Formulas
8,9,10,11:

Select x,y,z,w Match

(x: 1 ) — [el: rl] —> (y: lblue), (y) — [ez:rz] —> (2),

green
) — legr,] —> W), (@) — [e,:5] => (2) (13a)
Select x,y,z,w Match

@ = le:l 1=> @l ,0) — [egl, | —> @),

green blue

) = legil 0 => W), (x) = [e,:s] => (2) (13b)

red

Select x,y, z,w Match
00 —le;e] => (), ) — [e, €] => (),
00 — legie] => (@, 00 — [eje,] => (W),
() — [e,;:s] => (2) (13c)

Select x,y,z,w Match ], (x) — [e4: s] —> (2),

(x) — [eS:rx‘Z] —> (2) (13d)

It should be noted, that depending on the characteristics of the query pattern and the
graph database, a different type of views would be the most beneficial. For query patterns
that SELECT a single node, Strategy A would be the most beneficial. For tree-query
patterns, Strategy B outperforms all the other strategies since it allows to label the edges
that are part of the answer with the minimum overhead compared to Strategy C. The
reification Strategy C becomes worst-case optimal when we need to build views for cyclic
queries. A smarter strategy that we have not examined would be to represent cycles within

the pattern using Strategy C and the rest of the pattern using Strategy B.
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5. CANDIDATES FOR INDEXING

In Section 4 we studied indexing and view-materialization alternatives. This Section
focuses on given a query workload Q, how to choose the appropriate query patterns upon
which the indexing structure will be built on. The process for selecting the appropriate
views is resolved into the following tasks: (i) forecasting the characteristics of future
queries based on the up-till-now query workload Q; (i) defining the appropriate set of

candidate indexes for materialization I based on our forecasting; (iii) selecting the indices
I < ICthat will be materialized. Of primary importance through the selection process is the

patterns under consideration to have a high probability of appearing in future queries.

For a query pattern QP and a time period of T, e.g., within the next 24 hours, we denote

with XQ r the number of appearances of the query pattern QP during T and E(XQ ,T) its

P

corresponding expected value.

Example 5.1 Suppose that we have the patterns QP1 and sz appearing in our query

workload Q and we want to create the appropriate views for the next 24 hours. Now, let's

assume that building an index on Qp, will have a benefit of 10 (reads), while building an
index on sz will have a benefit of 8 (reads). If the two patterns have the same expected

number of appearances within T="24 next hours”, the choice of which pattern to index is
straightforward. On the contrary, if we assume that, given our query workload, the

expected number of appearance of pattern QP1 within T is much lesser than of that of

pattern Q,,. e.g., E(XQ ,T7) =1 while E(XQ ,T) = 100, we would go for the second

P1 P2
choice. Thus, we assume that our system can safely ignore patterns with a low

expectancy of appearing.

This section is structured as follows: Paragraph 5.1 describes our methodology for finding
the patterns of interest within future queries. Paragraph 5.2 describes how to construct a

summarization of Q based on the frequent subgraph patterns.
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5.1 Finding Query Patterns of a High Expected Number of Appearances

Given a query workload, our goal is to find the patterns with the highest expected number

of appearances in future queries within a certain period. Intuitively, a query pattern QP that

is expected to appear 1000 times within the next time period, can be used for the rewriting
of at most 1000 queries appearing during the corresponding period. To reduce our search
space in order to achieve our goals, we consider only the patterns whose expected

number of appearances is above a certain threshold.

Problem 1 Given a time period of T, a query workload of Q and a threshold n of

appearances, we want to find all the patterns Qp such that E(XQ ,T) = n.

P

Example 5.2 We assume that we need to materialize the views for the next 24 hours, i.e.,
T = [now, now + 24 hours] and we are only interested in patterns that are expected to

appear at least 2 times, i.e., E(XQ ,T) = 2.

P

5.1.1 Frequent Subgraph Mining Approach

To solve the problem, we have considered a straightforward approach that takes
advantage of existing frequent subgraph mining algorithms, such that of GSpan [31]. Our
approach mines all the patterns within the query workload of Q that have a number of
appearance above a certain threshold n within the query workload. Then it is assumed that
if a pattern appeared in Q more than n times and the queries in Q span a period with a total

duration of Duration(Q), then the expected number of appearances of QP during T is:

E(XQ,T) — - Duration(T) (14)

B Duration(Q)

Example 5.3 Suppose that the pattern QP appears 1000 in Q and Q represents the queries

1000

of a year. Then, the expected number of appearances for the next day is: e
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5.1.2 Graph Representation of Queries

To find frequent patterns within the query workload Q we employ the GSpan algorithm for
pattern-mining which is described in [31], while using the implementation available in
[32][33]. For ease of presentation, we assume that the pattern mining algorithm can also
handle directed graphs. It should be noted that a prepossessing step allows us to discover
additional information by appropriately representing our queries as GSpan compatible
graphs. In the corresponding prepossessing step we will replace a constant a with a fresh
variable ?x while also adding the edges (?x,is,a) and (?x,isA, constant). The latter
rewriting allows to mine patterns that are obscured by the corresponding constant values,
while at the same time keeping the information that a specific variable node was derived
from a constant. Our implementation is based on the existing work for the problem of
frequent subgraph mining assuming that a subgraph pattern that has a high frequency
within Q also has a high probability of appearing in future queries. Our work can be
generalized to more sophisticated methods that take into account information such as the

temporal evolution of the query workload Q for forecasting graph [28].

5.2 Frequent Patterns as Query Workload Summaries

Frequent query patterns play a dual role in the view selection process: they provide the
appropriate candidates for creating indexes but also allow our algorithm to represent in

compact form a query workload Q via a smaller multiset of expected query pattern QP.
Thus, instead of the initial workload Q we have an expected workload EprT that contains
the patterns with a high probability of appearing in EprT within the time period of T, along

with a corresponding multiplicity that depicts its expected number of appearances. For

example, if for some time period T we have that the query pattern QP appears in EprT
with a multiplicity of 11.5, i.e., EprT(QP) = 11.5, then the pattern QP is expected to

appear 11.5 times in the time period of T.

5.2.1 Adjusting Multiplicities
It should be noted that for the query patterns QP and QP' such that there exists a subgraph

isomorphism from QP to QP', there is a need to adjust their corresponding multiplicities in
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our summary because QP already appears in QP'. Thus we need to adjust the multiplicity of

QP as follows EprT(QP):zEprT(QP) - QP'. It should be noted that if

EprT(QP) = EprT(QP'), we can also remove QP from our summary.
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6. INDEX SELECTION

In this section we focus on efficient and tractable algorithms for selecting the views that will
be materialized. Having defined the query rewriting process in Section 4.2, we proceed to

designate the index-selection methodology (Section 6.1).

6.1 The Index Selection Algorithm

The degree of benefit of a rewriting function to a query Q (a set of queries 2) w.r.t. to a set

of indexes I, defined in Section 2.4, is

Bnft(Q,I) = Cost'(Q) — Cost (Rwrt(Q,I))

Bnft(2,]) = Y Bnft(Q,I)
QeQ

A set of indexes I is beneficial for a query Q € Q when there exists a query execution plan

Q' = Rwrt(Q,I) such that CostE(Q') < Coste(Q), or equivalently, when Bnft(Q,1) > 0.
The objective of the index selection process is to identify the indexes in I that are the most
beneficial to materialize w.r.t. the query workload 9Q, i.e., that maximize Bnft(Q,I). In our
implementation, when considering the benefit of an index I (set of indexes I) to a query

workload Q, we employ the summarization EprT of the query workload based on the

patterns expected to appear in future queries (Section 5.2). It should be noted that each
expected query pattern is stored along its corresponding query plan and estimated overall
cost (the overall cost also considers the multiplicity of the specific pattern). Each time a

new index is added, the corresponding plan and estimated cost also get updated.

Problem 2 (Index Selection Problem). Given a set of candidate views [.an expected
query workload EprT, and a storage capacity of b: which subset I < IC to materialize
such that the size of I is less than b and the expected query workload of EprT w.rt. I is

benefited the most.
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6.1.1 Index Selection Algorithm

Our index selection algorithm is presented in Algorithm 1 shown in picture 1 for the index

selection problem with IC being the candidates indices for materialization, I the selected

indices, and b the available storage. |) The first step of the algorithm is to remove the
candidate indices that do not fit in the available storage space (line2). Il) If the set of
remaining indices is empty, then the set I of the already selected indices is returned (line

3). Ill) Else, the algorithm finds the index I el whose addition to I produces the

maximum benefit to storage cost ratio (lines 6,8). IV) The corresponding index is removed

from the set IC of candidates and added to the set I of indices that are selected for

materialization (lines 10). V) The algorithm is then executed for the updated I and [ (line

10). For our study, we assume that the cost estimation function Cost™ has a O(1)

complexity, thus the estimated cost of a query can be computed immediately.

6.1.2 Optimizations
Finding a locally optimal view Vt € 7V is the most demanding step of Algorithm 1 (lines

6,8). To prune the search space, we keep a memoization table for the benefit to storage
cost ratio. For updating the memoization table, we consider a variation of the technique
presented in [34]. The updated benefit ratio is computed only for the view that has the
optimal benefit ratio based on previous computations. If the updated ratio agrees with the
previously computed ratio, or is greater than all benefit ratios of other views, the
corresponding view will be selected. Otherwise, the view with the next highest benefit ratio

is examined

Algorithm 1 View Selection

1: function VIEWSELECTION(StorageSpace b,
Candidatelndices 7, MaterializedIndices 1)

2 Ir:={I € I : CosT¢(I) < b}

3 if 7o = () then return 7

4: max ‘= 0

5 forall I € I do
0 .= BNFT(Q,TU{V})-BNFT(Q,T)

S1ZE€ (V)
7: if 6 > 6.« then
8: It =1
9: Omax = 0

10: return VIEWSELECTION(b — CosT¢(I), I \ {I; }, L U {I;})

Image 1 : View Selection Algorithm
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6.2 Reduction to MNssfKc problem

We will now present the problem of Maximizing a Nondecreasing Submodular Set
Function Subject to a Knapsack Constraint (MNssfKc) and will showcase the reduction
from the index-selection problem to the MNssfKc problem. The corresponding reduction

offers the alternative to employ existing solvers for the MNssfKc problem in order to solve

our index-selection problem. Furthermore, if the selected Cost -estimation function and the

query planner induce submodular Bnft function, the algorithm we presented in Algorithm 1

becomes a (1 — e_l)-approximation algorithm for solving it. It should be noted that similar

reductions have been proposed in the existing bibliography [35][36].

We will first present the MNssfKc problem introduced in [37] and the corresponding
reduction from the view-selection to the \knapsack problem, i.e., we will identify the

parameters of the MNssfKc problem to solve the index-selection problem.

Problem 3 (MNssfKc [37]) Let I = {1,..,n}; i € I and b be nonnegative integers; and f(-)
be a nonnegative, nondecreasing, submodular, polynomially computable set function.

Consider the following optimization problem in picture 2:

max < f(S5) : Zc; <b

SCTI :
ics

Image 2: MNssfKc problem

6.2.1 Reduction

We now identify the parameters of the reduction from Problem 2 to Problem 3 : I) For the
set I, < {Vr"" Vn} such that |IC| = n, we define an arbitrary bijection Bi: I, & [[1,n]]
and set I:=[[1,n]]. Il) For each i € [[1,n]] we define ¢ = CostE(Bi_l(i)) to be the
corresponding index's cost, depicting the cost of materializing the specific index. Ill) Each
subset S < [ is mapped via the Bi~ " function to a subset of the candidate indices V < IC
(by mapping each i € S to Bi_l(i) € V). For the specific V, we define f(S) to be the benefit
of the materialized indices in I to the query workload in EprT, i.e. ant(EprT, V). Finally,
b is the available storage space for materialization.

It is straightforward to show that by solving the formula in picture 2 we acquire an optimal

solution for the view selection problem. Also, based on the properties of the MNssfKc
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problem there exist a (1 — e_l)-approximation algorithm for maximizing formula in picture
2 as long as Bnft(2,I) and consequently f(S) are nonnegative, nondecreasing,
polynomially computable, submodular functions [37]. The latter algorithm corresponds to
Algorithm 1.

In order for the (1 — e_l)—approximation to apply, there is the need for the Bnft function
to be nonnegative, nondecreasing, polynomially computable, submodular. Bnft(Q, V) is: I)
non-negative since every query Q is a valid rewriting of itself; Il) non-decreasing since for
the sets of views V < V', each rewriting of Q using V is also a valid rewriting of Q using V"
; 1II) while the benefit functions for the rewriting Algorithms are linear as illustrated in
Section 4.2. Nevertheless, the submodularity property, which depends on the
cost-estimation function and the query planner, won't always apply, therefore we cannot

provide any guarantees regarding the optimality of our algorithm.

6.3 Lazy Index & View Selection

We will now describe an optimization concerning the materialization of a selected index
after its selection. Specifically, a selected candidate index needs to be inserted into the
database in the form of a query, which might prove to be a costly operation when
executing a query per index. However, this additional cost can be avoided by creating the
given index when answering a query that can be benefited from it. This lazy approach to
the index materialization fully utilizes the selected indexes, by executing queries that were
going to be ran against the database regardless of the indexing process and providing

future queries with the newly created index.

This process can be formalized in the following way: Given a selected index Ik that can
accelerate a set of queries Qk = {qkl, /J— qkn} that may be run against the database in

random order. The index can be implemented into the database by its equivalent creation

query c,. To avoid the execution cost of C, and the redundant use of database resources (
DbHits in Neo4j) we employ the following tactic: We discard the query c, and wait for the

first query in Qk to appear. When a query quEIQk is the first query of Qk to be executed, we
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augment it with additional information needed to create the index . Subsequently, I is

materialized and all queries in Qk can be benefited from the new index.

K. Plas 34



View & Index Selection on Graph Databases

7. EXPERIMENTAL EVALUATION

The aim of our evaluation section is to examine the performance of the index selection
methodology as well as the quality of the indexes that get selected throughout the
index-selection process. For our testing scenarios, our application takes as input a
knowledge graph G; a query workload 2, corresponding to past queries; a query workload

QT corresponding to future queries; and produces the indexes I that will be materialized for
future query execution. The quality of the views in Iis later tested for rewritings w.r.t. to the
query workload Q. . The basic scenario we considered regarding the storage of the

knowledge graph G into a graph database storage engine was the following: The triples
representing the knowledge graph were stored into the Neo4j system with emphasis on
maintaining their RDF form. Specifically: (entity, type, class) are stored as node labels on
the entity node, (entity, relation, entity) are stored as Neo4j relationships, namely as edges
between the two entity nodes and (entity, property, value) are stored as a relationship of

the given entity node between a node containing the given value.

7.1 Hardware and memory

We deployed our implementation on a single system of 1 11th Gen Intel(R) Core(TM)
i5-11400 CPU @2.6GHz with 12 cores/20 threads per CPU and 24GB of main memory.
The data are stored in a Neod4j Community v4.4.7 database running on the same

computer.

7.2 Implementation Setup

We have implemented our algorithm in Java 17 using the Apache Jena 4.0.0 open source
Semantic Web framework [38] to parse SPARQL query workloads and translate them to
the equivalent Cypher queries. For efficiently computing containment mappings from a set
of indexes I to an examined query, we have employed the MV-index structure introduced

in our previous work [29].
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7.3 Benchmark

For benchmarking our methodology, we employed the DBpedia semantic knowledge graph
[39][40] that has 189,511,679 triples and its corresponding size on disk is 133.93 GB. The
corresponding real-world query workload [41], originating from queries on the DBpedia
knowledge graph, contains 1,287,711 queries. We have randomly partitioned the query
workload into the DBpedia training query workload 2, containing 1,277,711 queries that
will be used for selecting the appropriate views for materialization and the DBpedia testing

query workload QT, containing 62830 ( 5% of the initial workload size) queries that will be

used for testing the efficiency of the selected materialized views. We proceed with each

step of the view-selection process.

7.4 Scalability of the Index Selection process

To showcase our algorithm’s capability to efficiently select the appropriate indexes to be
materialized, we study its execution time and estimated results on varying query workload
sizes. Figure 4 illustrates the various stages of our algorithm for training w.r.t.
query-workload samples ranging from 183,958 to 1,287,706 queries, while the available
storage for materialization was 25000 records. The process was broken into four parts.
The first preprocessing step converts queries into Gspan-compatible graphs. The Mining
step focuses on finding frequent patterns in our given workload. The cleaning step
transforms the mined patterns and filters out non beneficial patterns and finally the
selection step executes the view selection algorithm. It should be noted that the
materialization process is not involved in this examination, since it happens lazily as was
discussed. For the different training query workload samples, the mining algorithm
searches for patterns that appear in 0.07% of the queries in the workload. We observe that
our algorithm behaves well for augmenting workload sizes, this can be attributed to the
pattern-mining step that effectively represents each workload by a corresponding
summarization. Therefore, the index selection process depends on the size of the

summarization and not on the actual size of the query-workload.
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Figure 4 : The scalability of the index selection process for various query-workload size

7.5 Evaluation Parameters

For the test queries QT we used a total of 62830 queries. For the various examinations we

considered a range of maximum storage capacity of 100, 1000, 5000, 10000, 25000,
50000. The minSup we chose was 1000, while the threshold for the benefit was 256,
meaning we only examined patterns that provided a benefit of more than 256.

7.6 Effectiveness of Selected Views

We now examine the quality of the selected views by rewriting the queries within the
testing-query workload containing 62830 queries. We will consider the following
parameterization for our problem: We should point out that for the index selection
methodology, we employ the linear cost model assumption and not a more complicated
cost estimation function. Figure 5 illustrates the percentage of the queries that are
benefited from the index selection process. The x-axis represents the available storage for
materialization—measured in terms of records used for materialization—, while the y-axis
the percentage of benefited queries. Figure 5 illustrates the overall performance for the

queries in the testing workload QT ; and varying capacities for materialization. The x-axis in
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Figure 6 illustrates the available storage for materialization , while the y-axis illustrates the

overall performance for the testing workload measured in DbHits .
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7.7 Effectiveness of Lazy Indexing

Finally, we examine the proposed optimization method considering the materialization of a
selected index. For this experiment we used a test set of 1000 queries selected randomly
from the 62830 queries we used as our test workload. In our experiments we compared
the index creation and query execution time of the aforementioned queries with and
without the lazy index method. This optimization method presented improved efficiency in
execution time and storage space without any significant trade-off. In Figure 7, the x-axis
represents the indices selected and materialized, while the y-axis represents the overall
elapsed time in minutes. In the Query Execution and Index Creation indicate the elapsed
time to complete the query execution and index materialization into the database,
respectively. Lazy Method represents the overall time passed for both the execution of the
queries alongside the creation of the indices as described in Section 6.3. From our
experiments we discovered that the lazy method enhances greatly the performance on
time, since indices will only be created only when needed. Additionally, storage space is

saved, since indices that are never requested in future queries will not be inserted into the

database.
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Figure 7: Lazy materialization method against simple index creation
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8. RELATED WORK

View materialization techniques have been extensively studied by the data-management

community in the context of multiple-query optimization, Semantic Web & graph data

systems, and data warehouses that are used to accelerate On-Line Analytical Processing.

K. Plas

Multiple-Query Optimization : The view-selection process for the multiple-query
optimization problem identifies the appropriate views that will be used for answering
to a given set of queries.Sellis [42] studies the problem of multiple-query
optimization providing its systematic analysis and considering global access plans
that access subqueries.Mistry et al. [34], Roy et al [43] examine algorithms for
multi-query optimization by selecting materialized views and indexes based on the
Directed-Acyclic-Graph representation of the query plan to identify common
subexpressions. Agarawal et al. [44] describe a system for view and index selection
that incorporates several heuristics for pruning the space of possible view
configurations. Zhou et al. [35] present an efficient solution for the problem of
common subexpression identification by introducing a light-weight mechanism,
called table signatures, for identifying sharable subexpressions. Chirkova et al. [45]
formalize the view selection problem and provide a lower Exp and an upper 3Exp
bound for it. Kathuria and Sudarshan [46] devised an approximation algorithm that
runs in time quadratic to the number of common subexpressions and provides
theoretical guarantees on the quality of the solution obtained. Jindal et al. [47] focus
on the problem of subexpression selection, i.e., computing the subexpressions of a
query that are most beneficial to be materialized and reduce it to the bipartite graph
labeling problem, and integrate their implementation into the Cloudviews system
[48]. A different methodology for solving the multiple-query and the view selection
problem has been presented by Bayir et al [49], Chaves et al [50] that employ
evolutionary techniques such as genetic algorithms. An overall analysis of the view
selection problem has been presented by Mami and Bellahsene [51]. Our approach
differs from previous view-materialization approaches since it allows plugging in
various subgraph mining & forecasting solutions in order to predict the
graph-patterns that will appear in future queries. It takes advantage of the
graph-nature of knowledge-graph queries that allows it to employ pattern-mining

and forecasting techniques.
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Semantic Web & Graph Data Systems: Much research effort has been invested in
the development of scalable centralized or distributed triple stores, techniques for
indexing KGs and for processing queries. Among the centralized approaches,
native triple stores like Jena [52], Sesame [53], HexaStore [54], SW-Store [55],
MonetDB-RDF[56], RDF-3X [57], and BitMat [58] have been carefully designed to
keep up pace with the growing scale of RDF collections. Systems like TriAD [59],
RDFox [60], H-RDF-3X [61], EAGRE [62] implement various optimizations for the
distributed execution of joins. View materialization techniques have recently gained
attention by the Semantic Web community and graph data systems. In [63], an
approach for the materialization of shortcuts that reduces the execution cost of path
queries is suggested. In [64], a different materialization strategy where an initial
query workload 2/ is transformed to a set of simpler views 7 along with a set of
rewritings is presented. In [65], a strategy that caches SPARQL-query results and
uses them to rewrite queries is studied. Caching strategies for graph query
processing have been studied in [66][67]. The caching algorithms in [65] and
[66][67] are based on finding subgraph-isomorphisms between incoming and
cached queries. Finally, [68] studies the creation of an indexing structure that
classifies triples based on the properties of their subjects and objects. For a detailed
analysis of Knowledge Graphs such that of DBPedia, the reader may refer to the
existing bibliography. The query workload of DBPedia is studied in [69] and an
analysis of the different operators that appear within DBPedia queries is performed.
For various workloads, the structural characteristics related to the graph
representation of queries are studied in [70], along with the evolution of queries
over time. Finally, a study of the Wikidata knowledge graph is presented in [71].

Data Warehouses: View-selection techniques have been studied for data
warehouses and problems of online analytical processing. Several early techniques
were proposed including AND/OR graphs [72], modeling the problem as a state
optimization [73], and lattices to represent data cube operations [74][75][76], while
the problem of view management has been also studied for decentralized OLAP
applications using blockchains [77]. It should be noted that the problem of view
materialization for data warehouses has different objectives targeting the

improvement of Roll-up, Drill-down, and Slicing & Dicing operations.

41



View & Index Selection on Graph Databases

9. CONCLUSIONS AND FUTURE WORK

In our work we studied the problem of indexing/view selection & materialization for
non-anchored-node queries on graph databases. Our system is built on top of the \neo
graph-database management system, but it can straightforwardly be adjusted to work on
top of other databases as well. In the core of our view selection strategy is the
query-workload summarization algorithm that, based on subpattern graph-mining, allows
us to represent the initial query workload via the query patterns that have a high probability
of appearing in the future. Our implementation considers different materialization
strategies and decides upon which to employ, depending on the characteristics of the
corresponding query pattern. Finally, we propose a selection strategy that greedily selects
at each execution stage the view/index of the highest benefit to storage-cost ration. The
latter is inspired by a variation of the knapsack problem and the corresponding algorithm
for solving it. Finally, we consider a lazy index/view materialization strategy that
materializes structures during query execution and only if the corresponding structures are
being asked for at least one time. The latter optimization allows to avoid materializing
views based on patterns of a high expected number of appearances that do never appear
in practice. Our experimental evaluation shows that all the steps of the index selection
process are completed in a few seconds, while the corresponding rewritings accelerate
15.44% of the queries in the DbPedia query workload. Those queries are executed in

1.63% of their initial time on average.

In our future work we intend to study view-selection techniques for streaming graphs [78],
focusing on stream processing for Semantic Web applications [79][80][81]; as well as
complex event processing [82]. Additionally, we intend to integrate approximate counters
[83] into our index/view-selection methodology that will be used by our cost-estimation
function and examine entropy-based techniques when computing the benefit of different
view alternatives [84]. Finally, we intend to generalize our work towards more sophisticated

pattern-mining methods for streaming-subgraph pattern mining (survey [28]).
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ABBREVIATIONS - ACRONYMS

W3C World Wide Web Consortium

NKUA National and Kapodistrian University of Athens

DBMS Database Management System

GDMS Graph Database Management System

MNssfKc Maximizing a Nonde_creasing Submodular Set Function Subject to
a Knapsack Constraint

BGP Basic Graph Pattern

EXP EXPTIME

SPARQL SPARQL Protocol and RDF Query Language

RDF Resource Description Framework
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