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ABSTRACT

One of the most important aspects of native graph-database systems is their index-free
adjacency property that enforces the nodes to have direct physical RAM addresses and
physically point to other adjacent nodes. The index-free adjacency property accelerates
query answering for queries that are bound to one (or more) specific nodes within the
graph, namely anchor nodes. The corresponding anchor node is used as the starting point
for answering the query by examining its adjacent nodes instead of the whole graph.
Nevertheless, non-anchored-node queries are much harder to answer since the query
planner should examine a large portion of the graph in order to answer the corresponding
query. In this work we study view and index selection techniques in order to accelerate the
aforementioned class of queries. We analyze different index and view selection strategies
for query answering and show that, depending on the characteristics of the query, the
graph database, and the corresponding answer set, a different strategy may be optimal
among the indexing and view materialization alternatives. Before selecting the views and
indices, our system employs pattern mining techniques in order to guess the
characteristics of future queries. Thus, the initial query workload is represented by a much
smaller summary of the query patterns that are most likely to appear in future queries,
each pattern having a corresponding expected number of appearances. Our selection
strategy is based on a greedy view & index selection strategy that at each step of its
execution tries to maximize the ratio of the benefit of materializing a view/index, to the
corresponding cost of storing it. Our selection algorithm is inspired by the corresponding
greedy algorithm for “Maximizing a Nondecreasing Submodular Set Function Subject to a
Knapsack Constraint”. Our experimental evaluation shows that all the steps of the index
selection process are completed in a few seconds, while the corresponding rewritings
accelerate 15.44% of the queries in the DbPedia query workload. Those queries are
executed in 1.63% of their initial time on average.

SUBJECT AREA: View Materialization

KEYWORDS: graph databases, query optimization, view selection, view materialization,

knowledge graphs



ΠΕΡΙΛΗΨΗ

Μια από τις σημαντικότερες πτυχές των βάσεων δεδομένων γραφημάτων με εγγενή
επεξεργασία γράφων είναι η ιδιότητα γειτνίασης χωρίς ευρετήριο (index-free-adjacency),
βάση της οποίας όλοι οι κόμβοι του γράφου έχουν άμεση φυσική διεύθυνση RAM και
δείκτες σε άλλους γειτονικούς κόμβους. Η ιδιότητα γειτνίασης χωρίς ευρετήριο επιταχύνει
την απάντηση ερωτημάτων για ερωτήματα που συνδέονται με έναν (ή περισσότερους)
συγκεκριμένους κόμβους εντός του γραφήματος, δηλαδή τους κόμβους αγκύρωσης
(anchor nodes). Ο αντίστοιχος κόμβος αγκύρωσης χρησιμοποιείται ως σημείο εκκίνησης
για την απάντηση στο ερώτημα εξετάζοντας τους παρακείμενους κόμβους του αντί για
ολόκληρο το γράφημα. Παρόλα αυτά, τα ερωτήματα που δεν αρχίζουν από κόμβους
αγκύρωσης απαντώνται πολύ πιο δύσκολα, καθώς ο σχεδιαστής ερωτημάτων(query
planner) θα πρέπει να εξετάσει ένα μεγάλο μέρος του γραφήματος για να απαντήσει στο
αντίστοιχο ερώτημα. Σε αυτή την εργασία μελετάμε τεχνικές επιλογής όψεων και
ευρετηρίων προκειμένου να επιταχύνουμε την προαναφερθείσα κατηγορία ερωτημάτων.
Αναλύουμε διαφορετικές στρατηγικές επιλογής όψεων και ευρετηρίων για την απάντηση
ερωτημάτων και δείχνουμε ότι, ανάλογα με τα χαρακτηριστικά του ερωτήματος, τη βάση
δεδομένων γραφημάτων και το αντίστοιχο σύνολο απαντήσεων, μια διαφορετική
στρατηγική μπορεί να είναι βέλτιστη μεταξύ των εναλλακτικών λύσεων ευρετηρίασης και
υλοποίησης προβολής. Πριν από την επιλογή των όψεων και των ευρετηρίων, το σύστημά
μας χρησιμοποιεί τεχνικές εξόρυξης προτύπων για να μαντέψει τα χαρακτηριστικά των
μελλοντικών ερωτημάτων. Έτσι, ο αρχικός φόρτος εργασίας του ερωτήματος
αντιπροσωπεύεται από μια πολύ μικρότερη σύνοψη των μοτίβων ερωτημάτων που είναι
πιο πιθανό να εμφανιστούν σε μελλοντικά ερωτήματα, με κάθε μοτίβο να έχει τον
αντίστοιχο αναμενόμενο αριθμό εμφανίσεων. Η στρατηγική επιλογής μας βασίζεται σε μια
στρατηγική επιλογής άπληστης όψεων & ευρετηρίων που σε κάθε βήμα της εκτέλεσής της
προσπαθεί να μεγιστοποιήσει την αναλογία του οφέλους από την υλοποίηση μιας/ενός
όψεως/ευρετηρίου, προς το αντίστοιχο κόστος αποθήκευσής τους. Ο αλγόριθμος επιλογής
μας είναι εμπνευσμένος από τον αντίστοιχο άπληστο αλγόριθμο για τη «Μεγιστοποίηση
μιας μη ελαττούμενης συνάρτησης υποδομοστοιχειωτού συνόλου που υπόκειται σε
περιορισμό σακιδίου». Η πειραματική μας αξιολόγηση δείχνει ότι όλα τα βήματα της
διαδικασίας επιλογής ευρετηρίου ολοκληρώνονται σε λίγα δευτερόλεπτα, ενώ οι
αντίστοιχες επανεγγραφές επιταχύνουν το 15,44% των ερωτημάτων στον φόρτο εργασίας
των ερωτημάτων της DbPedia. Αυτά τα ερωτήματα εκτελούνται στο 1,63% του αρχικού
τους χρόνου κατά μέσο όρο.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Υλοποίηση όψεων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: βάσεις δεδομένων γραφημάτων, βελτιστοποίηση ερωτημάτων, επιλογή

όψεων, υλοποίηση όψεων, γραφήματα γνώσης
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View & Index Selection on Graph Databases

1. INTRODUCTION

In the past decade, and especially the last few years, a rapid increase was observed in
both scientific and industrial interest for graph-database management systems. Partly
responsible for this, is the changing focus of many industrial titans, namely Facebook,
Twitter, Google, e.t.c.[1][2][3] from generic relational databases to graph-database systems
and analytics to represent and explain the relationships and interactions of their user
bases. The Facebook graph contains billions of users, corresponding to the vertices of the
graph and trillion of edges representing their corresponding relationships [1][2]. Similarly,
Twitter represents its thousands of million of users as nodes within its graph, and follow
relationships as its directed edges [3]. In its simplest form, a social network contains
individuals as vertices and edges as relationships between vertices [4]. This abstract view
of human relationships, while certainly limited, has been very useful for characterizing
social relationships, with structural measures of this network abstraction finding active
application to the study of everything from bargaining power [5] to psychological health [6].

Alongside the aforementioned use in social networking, graph databases provide industrial
solutions for various information systems. In the modeling of supply chains systems,
graphs are used to prevent harm and complications along the supply line, which was
highlighted with the graph database management system TigerGraph during the
COVID-19 pandemic [7]. In the modeling of chemical compounds, the PubChem [8] is a
dataset that contains more than half a million graphs, while ChEBI contains more than half
a million graphs [9]. Further applications extend to software development and debugging
[10] similarity searching in medical datasets [11], as well as recommender systems [12].
Another prominent application, where graph-databases thrive are Knowledge Graphs, i.e.,
collections of interconnected and annotated entities. KGs are now widely used in both
academia and industry where prominent KGs such as DBpedia [13], Yago [14], Google's
KG [15], and Microsoft's Satori [16] have already reached tremendous scale. Indeed,
DBpedia alone currently consists of more than 1 billion triples. Hence, the demand for high
performance graph-database systems that are used both in industry and academia is on
the constant rise.

1.1 Graph-Database Management Systems
As a result, a large number of graph-database management systems have emerged,
either general purpose systems, e.g., Neo4j [17], InfiniteGraph [18], Amazon Neptune [19],
Dgraph [20], e.t.c., in-house systems designed by big data companies for their own
purposes, e.g., Google's Pregel [21], Twitter's FlockDB [22], or while general purpose
big-data frameworks provide extensions for graph processing, e.g. GraphX and
GraphFrames for Spark [23][24].

1.2 Non-Anchored-Node Queries
One of the most important aspects of graph-database systems is their index-free
adjacency property. The index-free adjacency property enforces the nodes to have direct
physical RAM addresses and physically point to other adjacent nodes, resulting in a fast
retrieval. Thus, query answering w.r.t. a specific node within a query, namely anchor node,
is performed very effectively for a native graph-database system since there is no need to
move through any other type of data structures to find the links to the corresponding node
and its neighborhood. Nonetheless, in the case of non-anchored-node queries, the query
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View & Index Selection on Graph Databases

planner should consider every possible node or edge alternative, before taking advantage
of the index-free adjacency property.

Example 1.1 For example, a query that asks for the couple(s) that have starred together in
the movie “Eyes Wide Shut”:

𝑀𝐴𝑇𝐶𝐻 (𝑛1: 𝑃𝑒𝑟𝑠𝑜𝑛) − [: 𝑀𝐴𝑅𝑅𝐼𝐸𝐷] − (𝑛2: 𝑃𝑒𝑟𝑠𝑜𝑛),

_ (1)(𝑛1) − [: 𝐴𝐶𝑇𝐸𝐷 𝐼𝑁] −> (𝑚: 𝑀𝑜𝑣𝑖𝑒  {𝑡𝑖𝑡𝑙𝑒: "𝐸𝑦𝑒𝑠 𝑊𝑖𝑑𝑒 𝑆ℎ𝑢𝑡"}),                     

_(𝑛2) − [: 𝐴𝐶𝑇𝐸𝐷 𝐼𝑁] −> (𝑚)

𝑅𝐸𝑇𝑈𝑅𝑁 𝑛1, 𝑛2 

can be very effectively answered since the query planner will first visit the corresponding
movie, and then explore for every actor/actress in it if its corresponding couple has also
starred in the same movie.

A more general query that asks for couples who have starred in films together is much
more difficult to answer:

𝑀𝐴𝑇𝐶𝐻 (𝑛1: 𝑃𝑒𝑟𝑠𝑜𝑛) − [: 𝑀𝐴𝑅𝑅𝐼𝐸𝐷] − (𝑛2: 𝑃𝑒𝑟𝑠𝑜𝑛),

_ (2)(𝑛1) − [: 𝐴𝐶𝑇𝐸𝐷 𝐼𝑁] −> (𝑚) <− [: 𝐴𝐶𝑇𝐸𝐷_𝐼𝑁] − (𝑛2)           

𝑅𝐸𝑇𝑈𝑅𝑁 𝑛1, 𝑛2 

The query planner should first consider every possible movie or every possible couple of
actors and then take advantage of the free adjacency property. The corresponding query
asks for triangle relations involving two actors and a movie. It may appear by itself or as
part of a more complex (possibly analytical) query. It should be noted that this is a difficult
query to answer that has been extensively analyzed in the bibliography, e.g., [25]
investigate efficient algorithms to update this query's corresponding answer. In order to
answer the corresponding query, we have to perform many searches in order to reveal the
answers that satisfy it. In fact, if is the size of our graph database, the corresponding|𝐺|

problem has a data complexity of [26][27].|𝐺|
3
2

If we assume that a small proportion of the nodes within the graph satisfy the
corresponding query, by building an index on these nodes we would avoid much of the
aforementioned overhead.

1.3 Index & View Selection in Graph Databases
A prominent approach to enhance query answering is View Materialization, ie., given a
database and a query workload materialize an appropriate set of computations to𝐷 𝑄
improve query performance. The problem of View Selection, the selection of the
appropriate views to materialize, is achieved by finding commonalities across queries in 𝑄
the precomputation of which minimizes the execution of existing or future queries w.r.t. to a

K. Plas 12
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cost function (e.g., query evaluation, storage, and subexpression maintenance costs),
under a set of constraints (e.g.,space budget). Views as a concept are absent from native
graph-database systems since data is not stored into tables, but modeled as vertices and
edges between them and therefore tubular stored queries are typically not implemented.
However, we may introduce “views” by adding edges within our graph , while the Index𝐺
Selection presented in our work uses a lot of the same principles present in View Selection
and the materialization of the selected indices can be implemented by various tools
provided by a given graph DBMS.

1.4 Contributions
In this paper, we describe a system that takes as input a graph database , a𝐺
corresponding query workload and builds the appropriate views and indices that will𝑄
improve execution of future queries. Our system tries to “guess” the characteristics of
future queries by finding the patterns that have the highest probability of appearing, and
then select the appropriate indices and views for the corresponding queries. Our main
contributions, regarding index and view selection for graph databases are the following:

● Index & View Strategies: We analyze different index and view strategies for query
answering and show that, depending on the characteristics of the query, the graph
database, and the corresponding answer set, a different strategy may be optimal
among the indexing/view materialization alternatives.

● Graph Summary: We reformulate the traditional view selection multiquery
optimization problem by, instead of considering the initial query workload of , we𝑄
instead reformulate our problems in terms of the patterns that are most likely to
appear within future queries. This is achieved by creating a summary of the𝐸𝑥𝑝𝑄

𝑇
initial workload, that corresponds to the most likely patterns that are expected to
appear in future queries. Though our current implementation for discovering 𝐸𝑥𝑝𝑄

𝑇
is based on traditional subgraph-pattern mining techniques, our work can be
extended, with state-of-the-art mining algorithms [28], that take into account the
temporal evolution of the query-characteristics within .𝑄

● View/Index Selection & Materialization : We employ a greedy index selection
strategy, that, at each index-selection step of the algorithm tries to maximize the
benefit of creating the corresponding view, compared to the cost of storing it.
Additionally, we show the correspondence between the view/index selection
process and the problem of “Maximizing a Nondecreasing Submodular Set Function
Subject to a Knapsack Constraint” problem and discuss possible guarantees.
Additionally, we suggest a lazy materialization strategy that incorporates all index &
view related information into our corresponding graph on query-execution time.
Thus an index/view is materialized only when we need to answer to a query that will
be employing the corresponding index/view. This strategy allows to incorporate the
materialization step into the execution step.

K. Plas 13
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2. PRELIMINARIES

Initially, we will present some preliminary definitions to formalize the view selection

problem on a graph-database.

2.1 The Property Graph Data Model

For a set , we denote with its corresponding powerset and with its𝑆 𝑃(𝑆) 𝑃(𝑆) \ Ø

corresponding powerset without the empty set.

Definition 2.1 The Property Graph Data Model. Assume that L is a finite set of vertex and
edge labels; P is a finite set of property names; V is an infinite set of atomic values; a
property graph is a tuple such that:𝐺 = (𝑁, 𝐸, ρ, λ, σ)

1) is a finite set of vertices;𝑁

2) is a finite set of directed edges disjoint with ;𝐸 𝑁

3) is a total function that associates each edge in with a pair of vertices inρ :  𝐸 → 𝑁2 𝐸
;𝑁

4) is a partial function that associates each vertex/edge with itsλ :  (𝑁 ∪ 𝐸) → 𝑃(𝑆)\∅
corresponding set of labels from L;

5) P V is a partial function that associates vertices/edges withσ : (𝑁 ∪ 𝐸) ✕  → 
properties, and for each property it assigns a value from V.

Given two vertices and an edge , we will say that is the source𝑛
1
, 𝑛

2
 ∈ 𝑁 (𝑛

1
, 𝑛

2
) ∈ 𝐸 𝑛

1
vertex and the target vertex of the edge. Note that our definition supports multiple labels𝑛

2
for vertices and edges, and a single value for a property on a vertex/edge.

Definition 2.2 Basic & Join Graph Pattern. Given a set of variables disjoint from the𝑋
previous sets, a basic graph pattern (BGP) is an expression of the form :

(3)(𝑢: 𝑡
𝑢
) − [𝑣: 𝑡

𝑣
] −> (𝑤: 𝑡

𝑤
)

where are variables referencing vertices; is a variable referencing an edge;𝑢, 𝑤 ∈ 𝑋 𝑣 ∈ 𝑋
and are labels. The expression is also a valid BGP which allows to obtain𝑡

𝑢
, 𝑡

𝑣
, 𝑡

𝑤
(𝑢: 𝑡

𝑢
)

the vertices in the graph. Also expressions with one or more of the labels missing𝑡
𝑢
, 𝑡

𝑣
, 𝑡

𝑤
are also acceptable.  A set of BGPs is called a join graph pattern.

Note : for simplicity, we have ignored BGPs that also query the properties of a node or an
edge.

K. Plas 14
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Definition 2.3 A join graph-pattern query is of the form :

(4)𝑆𝐸𝐿𝐸𝐶𝑇 𝑥
1
,..., 𝑥

𝑛

(5)𝑀𝐴𝑇𝐶𝐻 𝐽

where is a join-graph pattern and are variables appearing in , .𝐽 𝑥
1
,..., 𝑥

𝑛
𝐽 𝑥

1
,..., 𝑥

𝑛
∈  𝑉𝑎𝑟𝑠(𝐽)

Definition 2.4 Query Answering. A solution to the query in Formula 4 is a mapping
from the variables in the join graph-pattern of the query to the𝑚 :  𝑉𝑎𝑟𝑠(𝐽) →  𝑁 ∪ 𝐸

vertices and edges of the graph such that for every BGP in the form of Formula 3,𝐺
appearing in , it applies that: , , ,𝐽 𝑚(𝑢), 𝑚(𝑣) ∈  𝑁 𝑚(𝑣) ∈ 𝐸 ρ(𝑚(𝑣)) = (𝑚(𝑢), 𝑚(𝑣))

, , . The substitutions of variables appearing in the𝑡
𝑢

∈ λ(𝑚(𝑢)) 𝑡
𝑣

∈ λ(𝑚(𝑣)) 𝑡
𝑤

∈ λ(𝑚(𝑤))
SELECT clause constitute the answers to the query.

2.2 Graph Databases Management System

Following the definition of a Property Graph, we will provide definitions for Graph

Database Management Systems and their internal structures.

2.2.1 Graph Database Management System

A Graph Database Management System (GDMS) is a database management system with

Create, Read, Update, and Delete methods that expose a graph data model. The

Graph-Database Management System under consideration is based on Neo4j,

nevertheless most of the described properties are common in most native GDMSs.

2.2.2 Native Graph Processing

A graph database management system is characterized as having native graph

processing capabilities, regardless of its architecture and the way the graph is encoded

and represented in the database engine’s main memory, when it exhibits a property called

index-free adjacency. A GDMS utilizes the aforementioned property when each vertex

maintains direct references to its adjacent vertices. This results in two facts: (i) Each vertex

acts as a micro-index, which is much cheaper than global indices.(ii) Query times are

independent of the total size of the graph, they are proportional to the amount of graph

searched.A nonnative graph database engine, in contrast, uses (global) indices to link

K. Plas 15
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vertices together. These indices add a layer of indirection to each traversal, thereby

incurring greater computational cost.

2.3 Indexing Alternatives in Neo4j

The underlying GDMS Neo4j provides various index alternatives. An index is a data

structure that improves the speed of data retrieval operations on the cost of additional

writes and storage space to maintain the index data structure. Neo4j allows indices on

vertex/edge labels, on a single property for a given label, or on multiple properties for a

given label. The indexing options available in Neo4j are B-tree indices, Text Indices,

Full-text indices, and Token lookup Indices. Token lookup indices, as the name suggests,

are used to look up vertices or edges with a specific label. A token lookup index is always

created over all labels and hence there can only be a maximum of two token lookup

indices in a database - one for vertex labels and one for edge-labels.

2.4 View Selection

2.4.1 Materialized View

A view is a stored query, while a materialized view is the result set of the stored query on a

specific database instance. In the case of native graph-databases, views can only be

represented in terms of vertices and edges within the data graph. Therefore in Section 4

we study different index and view candidates for representing a query.

2.4.2 Query Rewriting

Two queries are equivalent if they have the same answer set for every possible database.

A query is a rewriting of that uses the views if and are equivalent𝑄' 𝑄 𝓥 = {𝑉
1
,..., 𝑉

2
} 𝑄 𝑄'

and contains one or more occurrences of materialized views in . A rewriting function𝑄' 𝓥

takes as input the query and rewrites it to an equivalent query𝑅𝑤𝑟𝑡(𝑄, 𝓥) 𝑄

using views from . A rewriting function is optimal when there𝑄' = 𝑅𝑤𝑟𝑡(𝑄, 𝓥) 𝓥 𝑅𝑤𝑟𝑡

exists no other rewriting of such that , with being the𝑄'' 𝑄 𝐶𝑜𝑠𝑡ϵ(𝑄'') < 𝐶𝑜𝑠𝑡ϵ(𝑄) 𝐶𝑜𝑠𝑡ϵ

function that maps a query to its estimated  execution cost.
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3. SYSTEM ARCHITECTURE

Figure 1 displays the overall architecture of our system for answering queries using views.

(i) View Selector is responsible for choosing the appropriate views for materialization. (ii) It

employs the Graph Pattern Miner that discovers frequent-query patterns within a query

workload, i.e., query patterns that have a high possibility of reappearing.(iii) The Query

Containment Engine given a query and a set of materialized views , finds the views𝑄 𝐼
𝐶

that contain , i.e., every such that . The query containment engine𝑄 𝑉 ∈  𝐼
𝐶

π
∅ 

(𝑄)⊑ π
∅ 

(𝑊)

employs the mv-index structure that has been presented in [29].(iv) The View-Based

Rewriter engine takes the views as input and rewrites them in an optimal way regarding a

cost estimation function that uses graph-database related statistics.(v) Finally, the Query

Optimizer and the Query-Evaluation Engine are integral to every database system and are

responsible for deciding the execution plan of a query and its actual execution on the

underlying database.

In our system we have made the following assumption: the view based rewriter is not

depended on the query optimizer. This allows our system to operate on top of an arbitrary

underlying graph database. In the following we present the cost model used by the view

selector and the view-based rewriter.

Figure 1: Frequent Graph Pattern Mining Template Databases
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3.1 Cost Model

Since there is no way to find the exact cost of executing a query apart from executing it,

we need to identify a function that approximates the time needed to execute a𝐶𝑜𝑠𝑡ϵ(·)

certain query. Our cost model is based on the Neo4j cost model.

3.2 Execution Plans and Neo4j Cost Model

In order to execute a query the Neo4j engine decomposes it into a number of operators.

When combined, the operators form a tree-like structure called an execution plan. The

operators represent nodes on the tree and take zero or more rows as input and produce

zero or more rows in return. An example of an execution plan generated with the EXPLAIN

command is shown in figure 2.

Operators that we examine in our work are the following:

● Directed Relationship Type Scan: defined as the DirectedRelationshipTypeScan

operator, which fetches all relationships and their start and end nodes with a

specific type from the relationship type index.

● Produce Results: defined as the ProduceResults operator, which prepares the

result so that it is consumable by the user, such as transforming internal values to

user values. It is present in every single query that returns data to the user, and has

little bearing on performance optimization.

The evaluation of an execution plan begins at leaf nodes. Leaf nodes have no input and

are generally scan or seek operators. Leaf nodes obtain rows directly from the storage

engine causing database hits. Any rows produced by leaf nodes are then piped into their

parent nodes, which in turn pipe their output rows to their parent nodes and so on, all the

way up to the root node. The root node produces the final results of the query. Each

operator maybe be annotated with the following statistic as defined in the Neo4j Cypher

manual :

● Rows: The number of rows the operator produced. Rows are generated only when

using the PROFILE Cypher call.

● EstimatedRows: This is the estimated number of rows that is expected to be

produced by the operator. The estimate is an approximate number based on the

available statistical information. The compiler uses this estimate to choose a
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suitable execution plan. EstimatedRows is a statistic that we heavily used on the

view selection process.

● DbHits: Each operator will send a request to the storage engine to do work such as

retrieving or updating data. A database hit is an abstract unit of this storage engine

work.

● Time: Time is only shown for some operators when using the pipelined runtime.

The number shown is the time in milliseconds it took to execute the given operator.

The execution plans and the operation statistics are presented to the user when queries

are executed on the database with either the PROFILE or EXPLAIN Cypher statements.

The EXPLAIN option provides the execution plan for a given query without executing it.

PROFILE on the other hand runs the query and keeps track of how many rows pass

through each operator, and how much each operator needs to interact with the storage

layer to retrieve the necessary data. An example of a Neo4j query plan is depicted in

Figure 2.

Figure 2: Query plan provided by EXPLAIN call
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4. INDEX & VIEW STRATEGIES

In this section we will focus on the candidate indices and views for view materialization.

I.e., given a graph database , what are the materialization alternatives that we should𝐺

consider (Section 4.1). Then, for each materialization alternative, we will investigate how

our initial query will be rewritten, and decide on the materialization alternative that is the

most beneficial for our underlying system (Section 4.2).

4.1 Index & View Candidates

Given a query pattern of a high frequency within the query workload of and a graph𝑃 𝑄

database , we want to examine all the index and view alternatives that can be derived𝐺

from the corresponding query pattern.

In retrospect (Section 2), a database index is a data structure that improves the speed of

data retrieval operations at the cost of additional writes and storage space to maintain the

index data structure. Traditional graph databases allow token lookup indices based on

node and edge labeling: node indices allow to efficiently locate all the nodes of a specific

label; edge indices allow to efficiently locate all the edges of a specific label.

Graph-databases also provide other types of indices, e.g., single-property indices on

nodes or edges, which do not fit the purposes of our materialization strategy.

For traditional relational databases, a view is a stored query, while a materialized view is

the result set of the stored query on a specific database instance. It should be noted that

for graph databases materialized views can only be represented by the addition of edges.

In the rest of the paper, we will use the term index materialization for the case of creating a

new label to identify the nodes or edges within our graph that are of specific interest. We𝐺

will use the term view/index materialization for the case that we additionally need to create

new nodes or edges in order to efficiently locate the parts of the graph that we are𝐺

interested in.
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4.1.1 Index & View Alternative

We will now examine alternative indexing and view-materialization strategies w.r.t. the

graph-database setting. We assume (i) an expected join graph-pattern , (ii) its𝑃

corresponding query representation namely with variables that𝑄
𝑃
:  𝑆𝐸𝐿𝐸𝐶𝑇 𝑥 𝑀𝐴𝑇𝐶𝐻 𝑃 𝑥

also appear in : , (iii) a graph database . To recall, the join-graph𝑃 𝑉𝑎𝑟𝑠(𝑥) ⊆  𝑉𝑎𝑟𝑠(𝑃) 𝐺

pattern corresponds to a set of BGPs with the BGP being on the form:𝑃 𝑃 = {𝐵𝐺𝑃
𝑖
}

𝑖−1
𝑘 𝑖𝑡ℎ

(6)(𝑢
𝑖
: 𝑡

𝑢𝑖
) − [𝑣

𝑖
: 𝑡

𝑣𝑖
] −> (𝑤

𝑗
: 𝑡

𝑤𝑗
)

where are variables, while are node or edge labels.𝑢
𝑖
, 𝑣

𝑖
, 𝑤

𝑗
 ∈  𝑋 𝑡

𝑢𝑖
, 𝑡

𝑣𝑖
, 𝑡

𝑤𝑗

A. A candidate strategy would be to create one or more indices on the nodes that are

part of a solution to the query of . To be more specific, for the node-variable𝑄
𝑃

𝑢
𝑖

appearing in we should consider the label and built a corresponding index𝑃 𝑙
𝑢𝑖

upon it. If the mapping is a solution for the join graph-pattern of , the node𝑚 𝑃 𝑚(𝑢
𝑖
)

will be labeled with and indexed in .𝑙
𝑢𝑖

𝑙
𝑢𝑖

B. Another strategy would be to create one or more indices on the edges that are part

of a solution for the join graph-pattern . Thus, for the BGP within the pattern ,𝑃 𝑖𝑡ℎ 𝑃

we may create a new label and the corresponding index on that identifies𝑙
𝐵𝐺𝑃

𝑖

𝑙
𝐵𝐺𝑃

𝑖

the edges that satisfy the BGP and are also part of an answer. If the mapping is a𝑚

solution for the join graph-pattern of , the edge will be labeled with and𝑃 𝑚(𝑣
𝑖
) 𝑙

𝐵𝐺𝑃
𝑖

indexed in .𝑙
𝐵𝐺𝑃

𝑖

We will now examine view materialization strategies, i.e., strategies that create additional

nodes or edges to the existing graph database .𝐺

C. A materialized view that introduces a new node for each solution/answer to the

query of . The fresh node is connected to the constant nodes of the𝑄
𝑃

solution/answer it represents via fresh edges. If the mapping is a solution for the𝑚

join graph-pattern of , we create a fresh node within the graph, corresponding𝑃 𝑛
𝑚
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to the solution of . For the node variable appearing in we could create a𝑚 𝑖 𝑡ℎ 𝑢
𝑖

𝑃

new edge that connects with . The specific edge will𝑒
𝑖

𝑛
𝑚

𝑚(𝑢
𝑖
):  ρ(𝑒

𝑖
) = (𝑛

𝑚
, 𝑚(𝑢

𝑖
))

be labeled with the label of and indexed accordingly. The corresponding strategy𝑙𝑠
𝑖

is called reification in the Semantic-Web [30].

D. A materialized view that introduces new edges and labels between pairs of answer

constants.

We provide an example that illustrates the different materialization alternatives.

Example 4.1 Let being the join pattern in Formula 7a and the pattern query in𝐽 𝑄
𝑃

Formula 7b:

(7a)(𝑥) − [𝑒
1
: 𝑟

1
] −> (𝑦), (𝑦) − [𝑒

2
: 𝑟

2
] −> (𝑧), (𝑦) − [𝑒

3
: 𝑟

3
] −> (𝑤)

(7b)𝑆𝐸𝐿𝐸𝐶𝑇 𝑥, 𝑦, 𝑧, 𝑤 𝑀𝑎𝑡𝑐ℎ 𝐽

The corresponding query is depicted in Figure 3a and is applied to the graph database in

Figure 3b. Based on the aforementioned indexing and view-materialization strategies we

have the following alternative structures:

A paradigm of Strategy A in Figure 3c will create two node indices, represented via light

green and light blue colors, corresponding to the labels and , to identify the nodes𝑙
𝑔𝑟𝑒𝑒𝑛

𝑙
𝑏𝑢𝑒

of that satisfy the following two queries:𝐺

𝐶𝑟𝑒𝑎𝑡𝑒 (𝑥: 𝑙
𝑔𝑟𝑒𝑒𝑛

) 𝑀𝑎𝑡𝑐ℎ 𝐽

(8)𝐶𝑟𝑒𝑎𝑡𝑒 (𝑦: 𝑙
𝑏𝑙𝑢𝑒

) 𝑀𝑎𝑡𝑐ℎ 𝐽

A paradigm of Strategy B in Figure 3d will create three edge indices, represented via blue,

green, red colors, the labeled edges satisfy the corresponding query results:
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𝐶𝑟𝑒𝑎𝑡𝑒 (𝑒
1
: 𝑙

𝑏𝑙𝑢𝑒
) 𝑀𝑎𝑡𝑐ℎ 𝐽

𝐶𝑟𝑒𝑎𝑡𝑒 (𝑒
2
: 𝑙

𝑔𝑟𝑒𝑒𝑛
) 𝑀𝑎𝑡𝑐ℎ 𝐽

(9)𝐶𝑟𝑒𝑎𝑡𝑒 (𝑒
3
: 𝑙

𝑟𝑒𝑑
) 𝑀𝑎𝑡𝑐ℎ 𝐽

A paradigm of Strategy C in Figure 3e will represent each answer of the query-pattern by

adding an additional node and the corresponding edges between the new node and the

parts of the graph database that constitute the answer. Let's assume that is a function𝑓

that maps each set of constants to a fresh node, the corresponding view can be described

via the following structures:

(10a)𝐶𝑟𝑒𝑎𝑡𝑒 (𝑓(𝑥, 𝑦, 𝑧, 𝑤)) 𝑀𝑎𝑡𝑐ℎ 𝐽

(10b)𝐶𝑟𝑒𝑎𝑡𝑒 (𝑓(𝑥, 𝑦, 𝑧, 𝑤)) − [: ε
1
] −> (𝑥) 𝑀𝑎𝑡𝑐ℎ 𝐽

(10c)𝐶𝑟𝑒𝑎𝑡𝑒 (𝑓(𝑥, 𝑦, 𝑧, 𝑤)) − [: ε
2
] −> (𝑦) 𝑀𝑎𝑡𝑐ℎ 𝐽

. . .

Since node will be connected to the constants via the labeled𝑓(𝑎, 𝑏, 𝑐, 𝑑) =  𝑎
1

𝑎
1

𝑎, 𝑏, 𝑐, 𝑑

edges indicating that the tuple satisfies the pattern in Formula 7b.ε
1
, ε

2
, ε

3
, ε

4
(𝑎, 𝑏, 𝑐, 𝑑)

The same applies for the node that indicates that the tuple also satisfies the𝑎
2

(𝑒, 𝑓, 𝑑, 𝑧)

query.

Figure 3f illustrates a paradigm of Strategy D where an edge between the nodes illustrates

that they are part of the same answer. The view in Figure 3fcorresponds to the following

query:

(11)𝐶𝑟𝑒𝑎𝑡𝑒 (𝑥) − [: 𝑟
𝑥,𝑧

] −> (𝑧) 𝑀𝑎𝑡𝑐ℎ 𝐽
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3a: Frequent Query Pattern                 3b: Graph Database G                         3c: Index on Node labels

3d: Index on Node labels                3e: Materializing Answer Set            3f: Materializing Partial Answer

Figure 3: A frequent pattern on a graph database 𝐺 and its corresponding index and
view-materialization alternatives

4.2 Query Rewriting

We will now examine, depending on the available indices and materialized views, the

different rewriting strategies that can be applied. For set semantics, in order to rewrite a

query based on a view or index, there needs to exist a containment mapping from the

view to the conjunctive query. For multiset semantics, a sufficient condition is to have a

subgraph isomorphism from the view or index to the corresponding query.

Example 4.2 We illustrate the available rewritings based on our view and index

alternatives, assuming we have a query that is an extension of the pattern appearing in 7b,

e.g.:
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(12)𝑆𝐸𝐿𝐸𝐶𝑇 𝑥, 𝑦, 𝑧, 𝑤 𝑀𝑎𝑡𝑐ℎ 𝐽, (𝑥) − [𝑒
4
: 𝑠] −> (𝑧)

The latter query is rewritten as follows based on the various indices and views in Formulas

8,9,10,11:

𝑆𝑒𝑙𝑒𝑐𝑡 𝑥, 𝑦, 𝑧, 𝑤 𝑀𝑎𝑡𝑐ℎ

(𝑥: 𝑙
𝑔𝑟𝑒𝑒𝑛

) − [𝑒
1
: 𝑟

1
] −> (𝑦: 𝑙

𝑏𝑙𝑢𝑒
), (𝑦) − [𝑒

2
: 𝑟

2
] −> (𝑧),

(13a)(𝑦) − [𝑒
3
: 𝑟

3
] −> (𝑤), (𝑥) − [𝑒

4
: 𝑠] −> (𝑧)

𝑆𝑒𝑙𝑒𝑐𝑡 𝑥, 𝑦, 𝑧, 𝑤 𝑀𝑎𝑡𝑐ℎ

(𝑥) − [𝑒
1
: 𝑙

𝑔𝑟𝑒𝑒𝑛
] −> (𝑦: 𝑙

𝑏𝑙𝑢𝑒
), (𝑦) − [𝑒

2
: 𝑙

𝑏𝑙𝑢𝑒
] −> (𝑧),

(13b)(𝑦) − [𝑒
3
: 𝑙

𝑟𝑒𝑑
] −> (𝑤), (𝑥) − [𝑒

4
: 𝑠] −> (𝑧)

𝑆𝑒𝑙𝑒𝑐𝑡 𝑥, 𝑦, 𝑧, 𝑤 𝑀𝑎𝑡𝑐ℎ

(χ) − [𝑒
1
: ϵ

1
] −> (𝑥), (χ) − [𝑒

2
: ϵ

2
] −> (𝑦),

(χ) − [𝑒
3
: ϵ

3
] −> (𝑧), (χ) − [𝑒

3
: ϵ

4
] −> (𝑤),

(13c)(𝑥) − [𝑒
4
: 𝑠] −> (𝑧)

𝑆𝑒𝑙𝑒𝑐𝑡 𝑥, 𝑦, 𝑧, 𝑤 𝑀𝑎𝑡𝑐ℎ 𝐽, (𝑥) − [𝑒
4
: 𝑠] −> (𝑧),  

(13d)(𝑥) − [𝑒
5
: 𝑟

𝑥,𝑧
] −> (𝑧) 

It should be noted, that depending on the characteristics of the query pattern and the

graph database, a different type of views would be the most beneficial. For query patterns

that a single node, Strategy A would be the most beneficial. For tree-query𝑆𝐸𝐿𝐸𝐶𝑇

patterns, Strategy B outperforms all the other strategies since it allows to label the edges

that are part of the answer with the minimum overhead compared to Strategy C. The

reification Strategy C becomes worst-case optimal when we need to build views for cyclic

queries. A smarter strategy that we have not examined would be to represent cycles within

the pattern using Strategy C and the rest of the pattern using Strategy B.
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5. CANDIDATES FOR INDEXING

In Section 4 we studied indexing and view-materialization alternatives. This Section

focuses on given a query workload , how to choose the appropriate query patterns upon𝑄

which the indexing structure will be built on. The process for selecting the appropriate

views is resolved into the following tasks: (i) forecasting the characteristics of future

queries based on the up-till-now query workload ; (ii) defining the appropriate set of𝑄

candidate indexes for materialization based on our forecasting; (iii) selecting the indices𝐼
𝐶
 

that will be materialized. Of primary importance through the selection process is the𝐼 ⊆  𝐼
𝐶

patterns under consideration to have a high probability of appearing in future queries.

For a query pattern and a time period of , e.g., within the next hours, we denote𝑄
𝑃

𝑇 24

with the number of appearances of the query pattern during and its𝑋
𝑄

𝑃
,𝑇

𝑄
𝑃

𝑇 𝐸(𝑋
𝑄

𝑃

, 𝑇)

corresponding expected value.

Example 5.1 Suppose that we have the patterns and appearing in our query𝑄
𝑃1

𝑄
𝑃2

workload and we want to create the appropriate views for the next hours. Now, let's𝑄 24

assume that building an index on will have a benefit of (reads), while building an𝑄
𝑃1

10

index on will have a benefit of (reads). If the two patterns have the same expected𝑄
𝑃2

8

number of appearances within T=” next hours”, the choice of which pattern to index is24

straightforward. On the contrary, if we assume that, given our query workload, the

expected number of appearance of pattern within is much lesser than of that of𝑄
𝑃1

𝑇

pattern , e.g., while , we would go for the second𝑄
𝑃2

𝐸(𝑋
𝑄

𝑃1

, 𝑇) = 1 𝐸(𝑋
𝑄

𝑃2

, 𝑇) = 100

choice. Thus, we assume that our system can safely ignore patterns with a low

expectancy of appearing.

This section is structured as follows: Paragraph 5.1 describes our methodology for finding

the patterns of interest within future queries. Paragraph 5.2 describes how to construct a

summarization of based on the frequent subgraph patterns.𝑄
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5.1 Finding Query Patterns of a High Expected Number of Appearances

Given a query workload, our goal is to find the patterns with the highest expected number

of appearances in future queries within a certain period. Intuitively, a query pattern that𝑄
𝑃

is expected to appear times within the next time period, can be used for the rewriting1000

of at most queries appearing during the corresponding period. To reduce our search1000

space in order to achieve our goals, we consider only the patterns whose expected

number of appearances is above a certain threshold.

Problem 1 Given a time period of , a query workload of and a threshold of𝑇 𝑄 𝑛

appearances, we want to find all the  patterns such that .𝑄
𝑝

𝐸(𝑋
𝑄

𝑃

, 𝑇) ≥  𝑛

Example 5.2 We assume that we need to materialize the views for the next 24 hours, i.e.,

and we are only interested in patterns that are expected to𝑇 = [𝑛𝑜𝑤,  𝑛𝑜𝑤 +  24 ℎ𝑜𝑢𝑟𝑠]

appear at least times, i.e., .2 𝐸(𝑋
𝑄

𝑃

, 𝑇) ≥  2

5.1.1 Frequent Subgraph Mining Approach

To solve the problem, we have considered a straightforward approach that takes

advantage of existing frequent subgraph mining algorithms, such that of GSpan [31]. Our

approach mines all the patterns within the query workload of that have a number of𝑄

appearance above a certain threshold within the query workload. Then it is assumed that𝑛

if a pattern appeared in more than times and the queries in span a period with a total𝑄 𝑛 𝑄

duration of , then the expected number of appearances of during is:𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑄) 𝑄
𝑃

𝑇

(14)𝐸(𝑋
𝑄

𝑃

, 𝑇) =  𝑛 · 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑇)
𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑄)

Example 5.3 Suppose that the pattern appears in and represents the queries𝑄
𝑃

1000 𝑄 𝑄

of a year. Then, the expected number of appearances for the next day is: .1000
365
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5.1.2 Graph Representation of Queries

To find frequent patterns within the query workload we employ the GSpan algorithm for𝑄

pattern-mining which is described in [31], while using the implementation available in

[32][33]. For ease of presentation, we assume that the pattern mining algorithm can also

handle directed graphs. It should be noted that a prepossessing step allows us to discover

additional information by appropriately representing our queries as GSpan compatible

graphs. In the corresponding prepossessing step we will replace a constant with a fresh𝑎

variable while also adding the edges and . The latter? 𝑥 (? 𝑥, 𝑖𝑠, 𝑎) (? 𝑥, 𝑖𝑠𝐴, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)

rewriting allows to mine patterns that are obscured by the corresponding constant values,

while at the same time keeping the information that a specific variable node was derived

from a constant. Our implementation is based on the existing work for the problem of

frequent subgraph mining assuming that a subgraph pattern that has a high frequency

within also has a high probability of appearing in future queries. Our work can be𝑄

generalized to more sophisticated methods that take into account information such as the

temporal evolution of the query workload for forecasting graph [28].𝑄

5.2 Frequent Patterns as Query Workload Summaries

Frequent query patterns play a dual role in the view selection process: they provide the

appropriate candidates for creating indexes but also allow our algorithm to represent in

compact form a query workload via a smaller multiset of expected query pattern .𝑄 𝑄
𝑃

Thus, instead of the initial workload we have an expected workload that contains𝑄 𝐸𝑥𝑝𝑄
𝑇

the patterns with a high probability of appearing in within the time period of , along𝐸𝑥𝑝𝑄
𝑇

𝑇

with a corresponding multiplicity that depicts its expected number of appearances. For

example, if for some time period we have that the query pattern appears in𝑇 𝑄
𝑃

𝐸𝑥𝑝𝑄
𝑇

with a multiplicity of 11.5, i.e., , then the pattern is expected to𝐸𝑥𝑝𝑄
𝑇
(𝑄

𝑃
) = 11. 5 𝑄

𝑃

appear times in the time period of .11. 5 𝑇

5.2.1 Adjusting Multiplicities

It should be noted that for the query patterns and such that there exists a subgraph𝑄
𝑃

𝑄
𝑃
'

isomorphism from to , there is a need to adjust their corresponding multiplicities in𝑄
𝑃

𝑄
𝑃
'
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our summary because already appears in . Thus we need to adjust the multiplicity of𝑄
𝑃

𝑄
𝑃
'

as follows . It should be noted that if𝑄
𝑃

𝐸𝑥𝑝𝑄
𝑇
(𝑄

𝑃
) : = 𝐸𝑥𝑝𝑄

𝑇
(𝑄

𝑃
) −  𝑄

𝑃
' 

, we can also remove from our summary.𝐸𝑥𝑝𝑄
𝑇
(𝑄

𝑃
) =  𝐸𝑥𝑝𝑄

𝑇
(𝑄

𝑃
') 𝑄

𝑃
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6. INDEX SELECTION

In this section we focus on efficient and tractable algorithms for selecting the views that will

be materialized. Having defined the query rewriting process in Section 4.2, we proceed to

designate the index-selection methodology (Section 6.1).

6.1 The Index Selection Algorithm

The degree of benefit of a rewriting function to a query (a set of queries 𝒬) w.r.t. to a set𝑄

of indexes , defined in Section 2.4, is𝐼

𝐵𝑛𝑓𝑡(𝑄, 𝐼) =  𝐶𝑜𝑠𝑡ϵ(𝑄) −  𝐶𝑜𝑠𝑡ϵ(𝑅𝑤𝑟𝑡(𝑄, 𝐼))

𝒬,𝐵𝑛𝑓𝑡( 𝐼) =  
𝑄∈𝒬
∑ 𝐵𝑛𝑓𝑡(𝑄, 𝐼)

A set of indexes is beneficial for a query when there exists a query execution plan𝐼 𝑄 ∈ 𝒬

such that , or equivalently, when .𝑄' =  𝑅𝑤𝑟𝑡(𝑄, 𝐼) 𝐶𝑜𝑠𝑡ϵ(𝑄') < 𝐶𝑜𝑠𝑡ϵ(𝑄) 𝐵𝑛𝑓𝑡(𝑄, 𝐼) >  0

The objective of the index selection process is to identify the indexes in that are the most𝐼

beneficial to materialize w.r.t. the query workload , i.e., that maximize . In our𝒬 𝐵𝑛𝑓𝑡(𝒬, 𝐼)

implementation, when considering the benefit of an index (set of indexes ) to a query𝐼 𝐼

workload , we employ the summarization of the query workload based on the𝒬 𝐸𝑥𝑝𝒬
𝑇

patterns expected to appear in future queries (Section 5.2). It should be noted that each

expected query pattern is stored along its corresponding query plan and estimated overall

cost (the overall cost also considers the multiplicity of the specific pattern). Each time a

new index is added, the corresponding plan and estimated cost also get updated.

Problem 2 (Index Selection Problem). Given a set of candidate views , an expected𝐼
𝐶

query workload , and a storage capacity of : which subset to materialize𝐸𝑥𝑝𝒬
𝑇

𝑏 𝐼 ⊆ 𝐼
𝐶

such that the size of is less than and the expected query workload of w.r.t. is𝐼 𝑏 𝐸𝑥𝑝𝒬
𝑇

𝐼

benefited the most.
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6.1.1 Index Selection Algorithm

Our index selection algorithm is presented in Algorithm 1 shown in picture 1 for the index

selection problem with being the candidates indices for materialization, the selected𝐼
𝐶

𝐼

indices, and the available storage. I) The first step of the algorithm is to remove the𝑏

candidate indices that do not fit in the available storage space (line2). II) If the set of

remaining indices is empty, then the set of the already selected indices is returned (line𝐼

3). III) Else, the algorithm finds the index whose addition to produces the𝐼
𝑡

∈  𝐼
𝐶

𝐼

maximum benefit to storage cost ratio (lines 6,8). IV) The corresponding index is removed

from the set of candidates and added to the set of indices that are selected for𝐼
𝐶

𝐼

materialization (lines 10). V) The algorithm is then executed for the updated and (line𝐼
𝐶

𝐼

10). For our study, we assume that the cost estimation function has a O(1)𝐶𝑜𝑠𝑡ϵ

complexity, thus the estimated cost of a query can be computed immediately.

6.1.2 Optimizations

Finding a locally optimal view is the most demanding step of Algorithm 1 (lines𝑉
𝑡
 ∈  𝒱

6,8). To prune the search space, we keep a memoization table for the benefit to storage

cost ratio. For updating the memoization table, we consider a variation of the technique

presented in [34]. The updated benefit ratio is computed only for the view that has the

optimal benefit ratio based on previous computations. If the updated ratio agrees with the

previously computed ratio, or is greater than all benefit ratios of other views, the

corresponding view will be selected. Otherwise, the view with the next highest benefit ratio

is examined

Image 1 : View Selection Algorithm

K. Plas 31



View & Index Selection on Graph Databases

6.2 Reduction to MNssfKc problem

We will now present the problem of Maximizing a Nondecreasing Submodular Set

Function Subject to a Knapsack Constraint (MNssfKc) and will showcase the reduction

from the index-selection problem to the MNssfKc problem. The corresponding reduction

offers the alternative to employ existing solvers for the MNssfKc problem in order to solve

our index-selection problem. Furthermore, if the selected -estimation function and the𝐶𝑜𝑠𝑡ϵ

query planner induce submodular function, the algorithm we presented in Algorithm 1𝐵𝑛𝑓𝑡

becomes a ( )-approximation algorithm for solving it. It should be noted that similar1 −  𝑒−1

reductions have been proposed in the existing bibliography [35][36].

We will first present the MNssfKc problem introduced in [37] and the corresponding

reduction from the view-selection to the \knapsack problem, i.e., we will identify the

parameters of the MNssfKc problem to solve the index-selection problem.

Problem 3 (MNssfKc [37]) Let ; and be nonnegative integers; and𝐼 = {1,..., 𝑛} 𝑖 ∈  𝐼 𝑏 𝑓(·)

be a nonnegative, nondecreasing, submodular, polynomially computable set function.

Consider the following optimization problem in picture 2:

Image 2: MNssfKc problem

6.2.1 Reduction

We now identify the parameters of the reduction from Problem 2 to Problem 3 : I) For the

set such that , we define an arbitrary bijection𝐼
𝐶
 ←  {𝑉

1
,..., 𝑉

𝑛
} |𝐼

𝐶
| = 𝑛 𝐵𝑖 :  𝐼

𝐶
 ↔  [[1, 𝑛]]

and set . II) For each we define to be the𝐼 : = [[1, 𝑛]] 𝑖 ∈  [[1, 𝑛]] 𝑐
𝑖
 =  𝐶𝑜𝑠𝑡ϵ(𝐵𝑖−1(𝑖))

corresponding index's cost, depicting the cost of materializing the specific index. III) Each

subset is mapped via the function to a subset of the candidate indices𝑆 ⊆ 𝐼 𝐵𝑖−1 𝒱 ⊆ 𝐼
𝐶

(by mapping each to ). For the specific , we define to be the benefit𝑖 ∈ 𝑆 𝐵𝑖−1(𝑖) ∈ 𝒱 𝒱 𝑓(𝑆)

of the materialized indices in to the query workload in , i.e. . Finally,𝐼 𝐸𝑥𝑝𝒬
𝑇

𝐵𝑛𝑓𝑡(𝐸𝑥𝑝𝒬
𝑇
, 𝒱)

is the available storage space for materialization.𝑏

It is straightforward to show that by solving the formula in picture 2 we acquire an optimal

solution for the view selection problem. Also, based on the properties of the MNssfKc
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problem there exist a ( )-approximation algorithm for maximizing formula in picture1 −  𝑒−1

2 as long as 𝒬, and consequently are nonnegative, nondecreasing,𝐵𝑛𝑓𝑡( 𝐼) 𝑓(𝑆)

polynomially computable, submodular functions [37]. The latter algorithm corresponds to

Algorithm 1.

In order for the ( )-approximation to apply, there is the need for the function1 −  𝑒−1 𝐵𝑛𝑓𝑡

to be nonnegative, nondecreasing, polynomially computable, submodular. is: I)𝐵𝑛𝑓𝑡(𝒬, 𝒱)

non-negative since every query is a valid rewriting of itself; II) non-decreasing since for𝑄

the sets of views , each rewriting of using is also a valid rewriting of using𝒱 ⊆  𝒱' 𝑄 𝒱 𝑄 𝒱'

; III) while the benefit functions for the rewriting Algorithms are linear as illustrated in

Section 4.2. Nevertheless, the submodularity property, which depends on the

cost-estimation function and the query planner, won't always apply, therefore we cannot

provide any guarantees regarding the optimality of our algorithm.

6.3 Lazy Index & View Selection

We will now describe an optimization concerning the materialization of a selected index

after its selection. Specifically, a selected candidate index needs to be inserted into the

database in the form of a query, which might prove to be a costly operation when

executing a query per index. However, this additional cost can be avoided by creating the

given index when answering a query that can be benefited from it. This lazy approach to

the index materialization fully utilizes the selected indexes, by executing queries that were

going to be ran against the database regardless of the indexing process and providing

future queries with the newly created index.

This process can be formalized in the following way: Given a selected index that can𝐼
𝑘

accelerate a set of queries that may be run against the database in𝑄
𝑘

= {𝑞
𝑘1

, 𝑞
𝑘2

,..., 𝑞
𝑘𝑛

}

random order. The index can be implemented into the database by its equivalent creation

query . To avoid the execution cost of and the redundant use of database resources (𝑐
𝑘

𝑐
𝑘

in Neo4j) we employ the following tactic: We discard the query and wait for the𝐷𝑏𝐻𝑖𝑡𝑠 𝑐
𝑘

first query in to appear. When a query is the first query of to be executed, we𝑄
𝑘

𝑞
𝑘2

∃𝑄
𝑘

𝑄
𝑘
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augment it with additional information needed to create the index . Subsequently, is𝐼
𝑘

𝐼
𝑘

materialized and all queries in can be benefited from the new index.𝑄
𝑘

K. Plas 34



View & Index Selection on Graph Databases

7. EXPERIMENTAL EVALUATION

The aim of our evaluation section is to examine the performance of the index selection

methodology as well as the quality of the indexes that get selected throughout the

index-selection process. For our testing scenarios, our application takes as input a

knowledge graph ; a query workload 𝒬, corresponding to past queries; a query workload𝐺

corresponding to future queries; and produces the indexes that will be materialized for𝒬
𝑇

𝐼

future query execution. The quality of the views in is later tested for rewritings w.r.t. to the𝐼

query workload . The basic scenario we considered regarding the storage of the𝒬
𝑇

knowledge graph into a graph database storage engine was the following: The triples𝐺

representing the knowledge graph were stored into the Neo4j system with emphasis on

maintaining their RDF form. Specifically: (entity, type, class) are stored as node labels on

the entity node, (entity, relation, entity) are stored as Neo4j relationships, namely as edges

between the two entity nodes and (entity, property, value) are stored as a relationship of

the given entity node between a node containing the given value.

7.1 Hardware and memory

We deployed our implementation on a single system of 1 11th Gen Intel(R) Core(TM)

i5-11400 CPU @2.6GHz with 12 cores/20 threads per CPU and 24GB of main memory.

The data are stored in a Neo4j Community v4.4.7 database running on the same

computer.

7.2 Implementation Setup

We have implemented our algorithm in Java 17 using the Apache Jena 4.0.0 open source

Semantic Web framework [38] to parse SPARQL query workloads and translate them to

the equivalent Cypher queries. For efficiently computing containment mappings from a set

of indexes to an examined query, we have employed the MV-index structure introduced𝐼

in our previous work [29].
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7.3 Benchmark

For benchmarking our methodology, we employed the DBpedia semantic knowledge graph

[39][40] that has 189,511,679 triples and its corresponding size on disk is 133.93 GB. The

corresponding real-world query workload [41], originating from queries on the DBpedia

knowledge graph, contains 1,287,711 queries. We have randomly partitioned the query

workload into the DBpedia training query workload 𝒬, containing 1,277,711 queries that

will be used for selecting the appropriate views for materialization and the DBpedia testing

query workload , containing 62830 ( 5% of the initial workload size) queries that will be 𝒬
𝑇

used for testing the efficiency of the selected materialized views. We proceed with each

step of the view-selection process.

7.4 Scalability of the Index Selection process

To showcase our algorithm’s capability to efficiently select the appropriate indexes to be

materialized, we study its execution time and estimated results on varying query workload

sizes. Figure 4 illustrates the various stages of our algorithm for training w.r.t.

query-workload samples ranging from 183,958 to 1,287,706 queries, while the available

storage for materialization was 25000 records. The process was broken into four parts.

The first preprocessing step converts queries into Gspan-compatible graphs. The Mining

step focuses on finding frequent patterns in our given workload. The cleaning step

transforms the mined patterns and filters out non beneficial patterns and finally the

selection step executes the view selection algorithm. It should be noted that the

materialization process is not involved in this examination, since it happens lazily as was

discussed. For the different training query workload samples, the mining algorithm

searches for patterns that appear in 0.07% of the queries in the workload. We observe that

our algorithm behaves well for augmenting workload sizes, this can be attributed to the

pattern-mining step that effectively represents each workload by a corresponding

summarization. Therefore, the index selection process depends on the size of the

summarization and not on the actual size of the query-workload.
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Figure 4 : The scalability of the index selection process for various query-workload size

7.5 Evaluation Parameters

For the test queries we used a total of 62830 queries. For the various examinations we𝒬
𝑇

considered a range of maximum storage capacity of 100, 1000, 5000, 10000, 25000,

50000. The minSup we chose was 1000, while the threshold for the benefit was 256,

meaning we only examined patterns that provided a benefit of more than 256.

7.6 Effectiveness of Selected Views

We now examine the quality of the selected views by rewriting the queries within the

testing-query workload containing 62830 queries. We will consider the following

parameterization for our problem: We should point out that for the index selection

methodology, we employ the linear cost model assumption and not a more complicated

cost estimation function. Figure 5 illustrates the percentage of the queries that are

benefited from the index selection process. The x-axis represents the available storage for

materialization–measured in terms of records used for materialization–, while the y-axis

the percentage of benefited queries. Figure 5 illustrates the overall performance for the

queries in the testing workload ; and varying capacities for materialization. The x-axis in𝒬
𝑇
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Figure 6 illustrates the available storage for materialization , while the y-axis illustrates the

overall performance for the testing workload  measured in DbHits .

Figure 5: Benefited Queries

Figure 6: Index Efficiency
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7.7 Effectiveness of Lazy Indexing

Finally, we examine the proposed optimization method considering the materialization of a

selected index. For this experiment we used a test set of 1000 queries selected randomly

from the 62830 queries we used as our test workload. In our experiments we compared

the index creation and query execution time of the aforementioned queries with and

without the lazy index method. This optimization method presented improved efficiency in

execution time and storage space without any significant trade-off. In Figure 7, the x-axis

represents the indices selected and materialized, while the y-axis represents the overall

elapsed time in minutes. In the Query Execution and Index Creation indicate the elapsed

time to complete the query execution and index materialization into the database,

respectively. Lazy Method represents the overall time passed for both the execution of the

queries alongside the creation of the indices as described in Section 6.3. From our

experiments we discovered that the lazy method enhances greatly the performance on

time, since indices will only be created only when needed. Additionally, storage space is

saved, since indices that are never requested in future queries will not be inserted into the

database.

Figure 7: Lazy materialization method against simple index creation
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8. RELATED WORK

View materialization techniques have been extensively studied by the data-management

community in the context of multiple-query optimization, Semantic Web & graph data

systems, and data warehouses that are used to accelerate On-Line Analytical Processing.

● Multiple-Query Optimization : The view-selection process for the multiple-query

optimization problem identifies the appropriate views that will be used for answering

to a given set of queries.Sellis [42] studies the problem of multiple-query

optimization providing its systematic analysis and considering global access plans

that access subqueries.Mistry et al. [34], Roy et al [43] examine algorithms for

multi-query optimization by selecting materialized views and indexes based on the

Directed-Acyclic-Graph representation of the query plan to identify common

subexpressions. Agarawal et al. [44] describe a system for view and index selection

that incorporates several heuristics for pruning the space of possible view

configurations. Zhou et al. [35] present an efficient solution for the problem of

common subexpression identification by introducing a light-weight mechanism,

called table signatures, for identifying sharable subexpressions. Chirkova et al. [45]

formalize the view selection problem and provide a lower Exp and an upper 3Exp

bound for it. Kathuria and Sudarshan [46] devised an approximation algorithm that

runs in time quadratic to the number of common subexpressions and provides

theoretical guarantees on the quality of the solution obtained. Jindal et al. [47] focus

on the problem of subexpression selection, i.e., computing the subexpressions of a

query that are most beneficial to be materialized and reduce it to the bipartite graph

labeling problem, and integrate their implementation into the Cloudviews system

[48]. A different methodology for solving the multiple-query and the view selection

problem has been presented by Bayir et al [49], Chaves et al [50] that employ

evolutionary techniques such as genetic algorithms. An overall analysis of the view

selection problem has been presented by Mami and Bellahsene [51]. Our approach

differs from previous view-materialization approaches since it allows plugging in

various subgraph mining & forecasting solutions in order to predict the

graph-patterns that will appear in future queries. It takes advantage of the

graph-nature of knowledge-graph queries that allows it to employ pattern-mining

and forecasting techniques.
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● Semantic Web & Graph Data Systems: Much research effort has been invested in

the development of scalable centralized or distributed triple stores, techniques for

indexing KGs and for processing queries. Among the centralized approaches,

native triple stores like Jena [52], Sesame [53], HexaStore [54], SW-Store [55],

MonetDB-RDF[56], RDF-3X [57], and BitMat [58] have been carefully designed to

keep up pace with the growing scale of RDF collections. Systems like TriAD [59],

RDFox [60], H-RDF-3X [61], EAGRE [62] implement various optimizations for the

distributed execution of joins. View materialization techniques have recently gained

attention by the Semantic Web community and graph data systems. In [63], an

approach for the materialization of shortcuts that reduces the execution cost of path

queries is suggested. In [64], a different materialization strategy where an initial

query workload 𝒲 is transformed to a set of simpler views 𝒱 along with a set of

rewritings is presented. In [65], a strategy that caches SPARQL-query results and

uses them to rewrite queries is studied. Caching strategies for graph query

processing have been studied in [66][67]. The caching algorithms in [65] and

[66][67] are based on finding subgraph-isomorphisms between incoming and

cached queries. Finally, [68] studies the creation of an indexing structure that

classifies triples based on the properties of their subjects and objects. For a detailed

analysis of Knowledge Graphs such that of DBPedia, the reader may refer to the

existing bibliography. The query workload of DBPedia is studied in [69] and an

analysis of the different operators that appear within DBPedia queries is performed.

For various workloads, the structural characteristics related to the graph

representation of queries are studied in [70], along with the evolution of queries

over time. Finally, a study of the Wikidata knowledge graph is presented in [71].

● Data Warehouses: View-selection techniques have been studied for data

warehouses and problems of online analytical processing. Several early techniques

were proposed including AND/OR graphs [72], modeling the problem as a state

optimization [73], and lattices to represent data cube operations [74][75][76], while

the problem of view management has been also studied for decentralized OLAP

applications using blockchains [77]. It should be noted that the problem of view

materialization for data warehouses has different objectives targeting the

improvement of Roll-up, Drill-down, and Slicing & Dicing operations.
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9. CONCLUSIONS AND FUTURE WORK

In our work we studied the problem of indexing/view selection & materialization for

non-anchored-node queries on graph databases. Our system is built on top of the \neo

graph-database management system, but it can straightforwardly be adjusted to work on

top of other databases as well. In the core of our view selection strategy is the

query-workload summarization algorithm that, based on subpattern graph-mining, allows

us to represent the initial query workload via the query patterns that have a high probability

of appearing in the future. Our implementation considers different materialization

strategies and decides upon which to employ, depending on the characteristics of the

corresponding query pattern. Finally, we propose a selection strategy that greedily selects

at each execution stage the view/index of the highest benefit to storage-cost ration. The

latter is inspired by a variation of the knapsack problem and the corresponding algorithm

for solving it. Finally, we consider a lazy index/view materialization strategy that

materializes structures during query execution and only if the corresponding structures are

being asked for at least one time. The latter optimization allows to avoid materializing

views based on patterns of a high expected number of appearances that do never appear

in practice. Our experimental evaluation shows that all the steps of the index selection

process are completed in a few seconds, while the corresponding rewritings accelerate

15.44% of the queries in the DbPedia query workload. Those queries are executed in

1.63% of their initial time on average.

In our future work we intend to study view-selection techniques for streaming graphs [78],

focusing on stream processing for Semantic Web applications [79][80][81]; as well as

complex event processing [82]. Additionally, we intend to integrate approximate counters

[83] into our index/view-selection methodology that will be used by our cost-estimation

function and examine entropy-based techniques when computing the benefit of different

view alternatives [84]. Finally, we intend to generalize our work towards more sophisticated

pattern-mining methods for streaming-subgraph pattern mining (survey [28]).
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ABBREVIATIONS - ACRONYMS

W3C World Wide Web Consortium

NKUA National and Kapodistrian University of Athens

DBMS Database Management System

GDMS Graph Database Management System

MNssfKc Maximizing a Nondecreasing Submodular Set Function Subject to
a Knapsack Constraint

BGP Basic Graph Pattern

EXP EXPTIME

SPARQL SPARQL Protocol and RDF Query Language

RDF Resource Description Framework

ΕΚΠΑ Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών
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