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Abstract

In the present work we study two types of the Hardy-Sobolev inequality, the one
involving distance to the origin and the other involving distance to the bound-
ary. For the Hardy-Sobolev inequality involving distance to the origin, we also
obtain the sharp constant. We relate this inequality to a limiting Caffarelli-Kohn-
Nirenberg inequality and we prove that they are equivalent. Particularly in three
dimensions the sharp constant coincides with the best Sobolev constant. Similarly,
for the Hardy-Sobolev inequality involving distance to the boundary we prove that
the sharp constant of the inequality on the upper half space R? is given by the
Sobolev constant.

In both cases we added a Sobolev term with the best constant on the Hardy in-
equality which has already a best constant.

Hepiinyn

Yty mapovoa epyacia Bo peretnBovdv dvo avicotnteg Hardy-Sobolev, pia mwov
aQopd amdoTacn omd oNUEio Kot po Tov apopd andcTacn ond cvvopo. ['a v
avicotnta Hardy-Sobolev mov apopa andotacn amo onpeio Ppickovpe BEATIO
otabepd. Tnv cvoyetilovpe pe o oplokn tepintmon g avicodtntog Caffarelli-
Kohn-Nirenberg inequality Kot amwodeikviovpe 0Tt £ivol IGOOVVOES. ZVYKEKPLLE-
va 611G Tpeic daotdoelc | fEATIOT oTabepd TawTiletan pe TV BEATIOT oTOOEPA
Sobolev. Opoua, yio v avicotnta Hardy-Sobolev mov apopd andstacmn ond cv-
Vopo, 0modetkvooupie ot BERTIoTN 6Tabepd otov Betucd nuixwpo R3. Sivetar omd
Vv otabepd Sobolev.

Kot o115 800 mepuntdoeig mpootifetan £vag 0pog Sobolev pe Bértiot otabepd o€
wa avicotnta Hardy mov €yet nn PéATIoT oT0bepd.
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1 Introduction

1.1 Weak derivatives

Let €2 € R" be open f : {2 — R.Then we start with the following notation.
Notation. Let C'2°(€2) denote the space of infinitely differentiable and compactly
supported functions ¢ : 2 — R. We will call a function ¢ belonging to C>°(2) a
test function.
We start with the motivation for definition of weak derivatives. Let {2 € R" be
open, u € C1(Q) and ¢ € C>°(). Integration by parts gives,

0¢ ou

U—dr = —

dx
o O; Q a%‘¢

There is no boundary term, since ¢ has a compact support in {2 and thus vanishes
near O0f).
Letthenu € C*(Q) k =1,2,... andleta = (a1, aq,...,a,) € N*N {0} be
a multi-index such that the order of multi-index |a| = a; + - - - + a,, is at most k.
We denote,

olaly o o
Dz . 9zan 9z Dzan
The order of a multi-index tells the total number of differentiation. Integration by
parts gives,

D%y =

/uDaqﬁ dr = (—1)ll / D%u¢ dx

Q Q

We notice that the left-hand side makes sense even under the assumption u €
Lioe ().

Definition 1.1. Assume that v € L} (Q) and let a € N" N {0} be a multi-

loc
index.Then v € L} (Q) is the a-th weak partial derivative u, written D = v,

lf loc
/uDaqbda:— (—1)'“/v¢d:c (1)
Q Q

then
Du = (Dyu, Dou, ..., Dyu)

is the weak gradient of u. Here,



(the j-th component is 1)

In other words, if we are given u and if there happens to exist a function v
which verifies () for all ¢, we say that D*u = v in the weak sense. If there does
not exist such a function v, then u does not have a weak a-th partial derivative. We
observe that changing the function on set of measure zero does not affect its weak
derivatives.

Lemma 1.1. If f € L. (Q) satisfies

loc
/qus dz =0

Sfor every ¢ € C°(Q) then f = 0 almost everywhere in )

Corollary 1. (Uniqueness of weak derivatives). A weak a-th partial derivative of
u, if it exists, is uniquely defined up to a set of measure zero.

Proof. Assume that v, v € L () satisfy

loc

/QuDangdx: (—1)a/ﬂv¢d;¢: (—1)“/ij¢>dm

for every ¢ € C2°(2). This implies that,

/Q(v—@)gzﬁdxzo

for every ¢ € C2°(2).

1.2 Sobolev Spaces

Fix 1 < p < oo and let k£ be an non-negative integer. We define certain function
spaces, whose elements have weak derivatives of various orders lying in various
LP spaces.

Definition 1.2. Assume that Q) is an open subset of R". The Sobolev space W ({2)
consists of functions u € LP(Q)) such that for every multi-index a with |a| < k the
weak derivative D"u exists and D*u € LP(SY). Thus,

WkP(Q) = {u € LP(Q) : D € LP(Q), |a| < k}
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If u € WFP(Q), we define its norm
ullwrr) = (Z / | D%ul|? dw)% 1<p<oo
la| <k * St

and
][ yrh.oo () = Z ess sup | Dul

la|<k

Notice that D%u = D0y = . Assume that € is an open subset of 2.
We say that ' is compactly contained in €2, denoted €2’ CC €, if ' is a compact
subset of 2. A function u € W;"?(Q), if u € W*? () for every ¥ cC Q.

loc
Remark 1. Ifp = 2, we usually write
HMQ) =WF(Q), k=0,1...
The letter H is used, since H*(Q)) is a Hilbert space. Note that, H°(Q)) = L?().

Definition 1.3. 1. Let {u,,}>°_,, u € WkP(Q). We say that u,, converges
to w in WHP(Q), written

U —u in WHP(Q)

provided
hm Hum — UHWIc,p(Q) = 0
m—00
2. We write
Up —u in WEP(Q)
fo mean

Uy —u in WHP(U)
foreach U CC (2

Theorem 1.2. The Sobolev space W*P(Q)) 1 < p < oo k = 1,2,... isa
Banach space.

Proof. 1. Let us first of all check that ||u||y.»(q) is an norm. Clearly,
||| wrry <+ u = 0 almost everywhere. It is easy to see that ||ul| ) =



0 implies that ||u|| z»(q) = 0, which implies that u = 0 almost everywhere.
Conversely, u = 0 almost everywhere in () implies,

/ Du¢dx = (—1)l! / uD¢dxr =0
Q Q

for all ¢ € C2°(2). This implies that u = 0 almost everywhere in €2 for all
a,la] <k.

It is obvious that, ||Aullwer) = |Al[Jullwrr), A € R Next assume
u,v € WkP(Q). Then if 1 < p < oo Minkowski’s inequality implies,

1
ot vllwesy = (D 10"+ Delly )7
la|<k
1

< (S U0 ulray + 100

|a|<k

< (D Il + (3 1D )

lal <k ol <k

=

= [Jullwrr) + V]wrr@)

2. It remains to show that W*?(QQ) is complete. So assume {u,,}>°_, is a
Cauchy sequence in W*?(Q). Then for each |a| < k, {D%,,}>_, isa
Cauchy sequence in LP((2). Since LP(f)) is complete, there exist functions
uq € LP(Q2) such that,

D%y, — u, in  LP(Q)
for each |a| < k. In particular,

,,,,,

3. We now claim,

we WP (Q), Dw=u, o<k 2)



To verify this assertion, fix ¢ € C2°(£2). Then,

/ uD¢dr = lim [ u,D%dx
)

m—00 QO

= lim (-1)l [ D*u,,¢d
im (—1) /Q Uy @ dx
= (=Dl [ wupd

0 [ woda

On the second line we used the definition of the weak derivative. Next we
show how to conclude the first and last equalities above.
For1 < p < 0. Let ¢ € C2°(2). By Holder’s inequality we have,

|/QumD“¢d:U—/QuDa¢dx] = \/Q(um—u)Daqﬁdx\

< Jum — UHLP(Q)HD(I¢HLP’(Q)
— 0

and consequently we obtain the first inequality above. The last inequality
follows in the same way since,

| [ Db~ [ wddel < 10"~ ey 6] ey = 0
Q Q

For p = 1, p = oo we argue in a similar way as above. This means that the
weak derivative D%u exist and D®u = u,, |a| < k. As we also know that,
DUy, — uq = D%, |a| < k, we conclude that ||, — ullwrsq) — 0.
Thus u,, — uin WP(Q).

[

Smooth functions are dense in Sobolev spaces. Thus, every Sobolev function

can be approximated with a smooth function in the Sobolev norm. The next result
shows that.

Theorem 1.3. (Meyers-Serrin Theorem)

Assume that Q) is bounded, and suppose as well that u € WHP(Q) for some 1 <
p < oo.

Then there exist functions u,, € C*°(Q) N WkP(Q) such that

U —  in WHP(Q)

10



The Meyers-Serrin theorem gives the following characterization for the Sobolev
spaces WFP(Q),1 < p < oo : u € WHkP(Q) if and only if there exist functions
u; € C*NWHP(Q),i=1,2,...,suchthatu; — uin W*P(Q) as i — oco.In
other words, W*?(Q) is the completion of C°°((2) in the Sobolev norm.

Definition 1.4. Let 1 < p < oo. The Sobolev space with zero boundary values
W,y (Q) is the completion of C°(2) with respect to the Sobolev norm. Thus u €
W,y (Q) if and only if there exist functions u; € C(Q),i = 1,2, ..., such that
w — u in WW(Q) as i — oo. The space W, () is endowed with the
norm of W1»(Q).

The difference compared to W'?(€) is that functions in W, () can be ap-
proximated by C'2°(2) functions instead of C'* functions, that is

WhP(Q) = C>(Q) and W,P(Q) = Cx(Q)

where the completions are taken with respect to the Sobolev norm. A function in
W,y (Q) has zero boundary values in Sobolev’s sense. We may say that u,v €
WhP(Q) have the same boundary values in Sobolev’s sense, if u — v € W, 7(Q).
Notation. We write,

HE(Q) = Wy*(Q)

Remark 2. W, () is a closed subspace of W'?(Q) and thus complete.

Lemma 1.4.
WhP(R™) = Wy P(R™)  with 1< p< oo



1.3 The Classical Hardy Inequality

The standard Hardy inequality involving the distance to the origin asserts that if
n > 3and u € CX(R™) one has

_ 2 2
|vu\2dxz(”—2) / U i 3)
Rn R

2 n |x)?

The constant ("772)2 is the best possible constant. So we would present the theorem
for the Hardy Inequality and its proof.

Theorem 1.5. Let Q@ C R",n > 3. Forall u € C°(N?), the Hardy Inequality

holds, ,
—2\?2 U
/Q|Vu\ x_( 5 ) Tl x 4)

Proof. In order to prove the Hardy inequality it is enough to to show that,

2

_9\2
/ |Vu|? do — (n ) Ll >0 (5)
Q

2 q |z

1. At first we consider functions v € C°(€2\{0}) which vanish near zero. We
define,

v(z) = u(z)e|T & ulz) = —i

Vv|x|n772—;v|1:|n2 x
Vu =

_ Volz|"z — 2=20)z| "2 2

So,

(Vole|*2” — 2520a] "2 )
|24

[Vul* =

VP (= 2)Veeavfe T (= 2) 0] e

- |$‘n72’x‘n72 |$‘n’x|n74 4 |x’2n74

1 )2 (n=2)Vu-z (n —2)? v?
= ez V) T T TEPD

12



It is easily observed,

u? v? v? v?

o~ (o PRl TRl

Returning to (§) we have,
2
) g

/qu]qu:— Tl
_ /[Vv) (n—Q)Vv w  (n=2P 0  (n—-2)° vQ]d:p

"2 [ 4 ar 4 ar

B /(Vv)2 dx—/ (n—2)Vu~xvdm
o lz|"? o |

For the first term, it is obvious that

[E2
q lz["2

Now we shall prove that the second term is zero. Indeed, we know thatv = 0
in an area near zero, so the function that we integrate is a C'* function and
we can use Green’s identity. Here n is the outward pointing unit normal
vector on 02

:1/ 2= fzdS—l/ 2d1V( )dx
2 Joq x| 2 Jq |z|"

We notice that the the first term is equal to zero because v € C'°(Q\{0}).
For the second term,

1
div(%) — dive— + xV( )
2] |z|" |z|™

1
= nW + z(—n|z|" " Dz)
n |z|? n n
= — N et — =
N e o N

Thus we proved the Hardy inequality when u € C2°(Q\{0})

13



2. Now we continue by proving the general case of the Hardy inequality, where
we consider functions in C2°(£2). We suppose that ¢p(z) € C°(R") is a
function with the following property,

0, |z|] <1
¢(x) =

L, |z| >2.

Thus we have that |Vo(z)| <
of functions ¢, where ¢,,,(x) =

c. Using ¢(x) we consider the sequence
¢(xm). Hence,

0, [of <5
1, |z] > 2.
Consequently, |V, (z)| = m|Vo(mz)| < em.

We now define the sequence of functions u,,(x) = u(x)dm,(x).

We then have,

0, x| < &

(%) = u(@)pm(r) =

u(z), |z| >

2
ot

Therefore, we have that u,, € C°(Q\{0}). From (i) for every m > 1

we have that
—9\2 ml?
/ |Vt |? do > (n > Ju 2| dx
0 2 o |7l
In order to prove the Hardy inequality in this case, it is enough to prove that

as m — 00
/|Vum|2dx—>/|Vu]2dx
Q Q

—92\2 2 —9\2 2
(n_> U g (n_) /u_dx
2 o |zf? 2 q |z

Thus, we have to prove that, | Vu,, — Vu|ls — 0 and

and

14



First we have that,
/ |V, — Vul? do = / Vi, — Vu|* do
Q |z|<%

§2/ \VumIde—i-Q/ Vul? da
|z|< 2

2
|| <=

From Lebesgue’s Dominated Convergence Theorem, the second term tends
to zero. Moreover,

u/ |VumFdx:1/ |pm V' + uV | da
o< 2 o< 2
gz/ﬁ |Vufdr+2/m [ul?| V| dv

|z <% |z <%

The first term tends to zero, as m — oco. Then we prove that the second
term tends to zero. Let M > 0 such that, |u| < M in 2. Finally, we have
that,

c
[u|?|V|? dz < M?c*m? dr < M*m*— — 0 asm — oo
jal <2 jal<2 m

Now the proof is complete.

]

Remark 3. Brezis and Vazquez improved the classical Hardy inequality on bounded
domains by establishing that for u € C°(B),

— 9\ 2 2
\Vul? do > (n ) / u—zdx—i—ul/ u? dx (6)
By 2 B || B

where the constant Ji, is the first eigenvalue of the Laplacian of the unit disk in R?.
We note that 11, is the best constant in the inequality independent of the dimension
n > 3.

When taking distance to the boundary , the following Hardy inequality where the
constant }l is optimal, is also well known for n > 2 and u € C°(By),

1 u?
Vu2dx2—/ ——dx (7)
o Vg Tl

15



Similarly, Brezis and Marcus established an improved Hardy inequality for a con-
vex bounded domain in R",

1 u?
Vu2dx2—/ —dx—i—bn/ u? dw (8)
fvere>g [ i

for some positive constant b,,. This time the best constant b,, depends on the space
dimension with b, > py when n > 4 but in the n = 3 case, one has that b,, = 1.

1.4 Sobolev Inequality

We shall prove the Sobolev inequality without the sharp constant.

Definition 1.5. If'1 < p < n the Sobolev conjugate of p is

* np
p =
n—p
Note that,
L1 1
P p n

The foregoing scaling analysis show the estimate,
[l aeny < cl| V| e @n) )

for certain constants ¢ > 0, 1 < ¢ < oo and all functions u € C°(R™). This can
only be true for ¢ = p*

Remark 4. 1. We consider an inequality of the form,

(/ |u\qu)‘11 §c</ \W\W)’l’
. o

Jor every u € C°(R"), where constant 0 < ¢ < 0o and exponent 1 < q <
oo are independent of u. Letu # 0, 1 < p < n and consider uy(zr) = u(\x)
with A > 0. Since u € C°(R") it follows that the inequality above holds
for every uy with c and q independent of \. Thus,

(f i) <e( [ o)’

16



for every X > 0. We change the variables y = Az, dx = /\Lndy, we can see
that,

1
un@)*ds = [ fuolrde = [ Juty)y; dy
Rn Rn

R
1
-5 | s

/ Vup (& )|pdx—/ N|Vu(re)P de

/!Vu \pdy——/ |Vu(z)P de
1

([l de) < 2V do)?

and

So,

‘U\:

q

for every A > 0 and equivalently
lullzoqeey < X2 1Vl o)
Since, the inequality has to hold for every X\ > 0 we have,

n on n
l-—+—-=0&¢q= b
p q n—p

This is the only possible exponent for which the inequality may hold true.

2. The classical Sobolev inequality

n—2

Vul? de > Sn< M= dx) " (10)

R" R

is valid for any uw € C°(R"™) where S,, = mn(n — 2)(?(2)))% is the best
constant.

The generalized Holder’s inequality will be useful in order to prove the Sobolev
inequality.

17



Lemma 1.6. Let 1 < pi...p, < 0o with o~ + - + - = 1 and assume f; €
LPi(Q), 1 =1,...k. Then,

k
/Q|f1...fk|dxsAgr\fir|Lpi<ﬂ> (1)

Proof. To prove the generalized Holder’s inequality we will use induction and
Holder’s inequality.

The classical Holder’s inequality states that for 1 < p < oo, }D + é = 1, and
uwe LP(Q), veLiQ),thenuv € L' and

/Q|u(x)v(fc)|dw < [lullpllvll,

When k£ = 2 we are given pip, > 0 with il + p% = 1. In particular we have,
pip2 > 1 and so (L)) is reduced to the classical Hélder’s inequality. Now, we
suppose that ([L1]) holds for some k& > 2. We claim that it holds for & + 1. So let
D1 Peg1 > OwithpilerJr}ﬁ =1ladletf, € L”,i=1,...,k+ 1. Note
that, p; > 1 forv=1,...,k + 1. In particular, we have
1 1

>0, —+4+
p—1 F A R——

p1 >0

By the classical Holder’s inequality we have.

k+1 m~+1

/ngf@-\daszfgung fi d
k41 - P;;l

=ik | [ (I115)" " o]
k+1 p1-1

A1l [ / ]I dx]

Furthermore, since

i(p1— 1 .
M>O for 1=,...,k+1

n
k+1 k+1
i 1 nm +l: 2 (1_l):1
—~ pip=h) o —14~p;  p—1 D1
1=2 p1 1=2

18



By the induction hypothesis we have,

k+1 k+1 b1 pilpr—
J T < Ul IT( [ 11785
Q=2 i=2 /O

k+1

1Al TT( [ 1

and so the assertion follows

1
. Py
pi dl.)

P1
dx) Pi(p1—1) ] P1

p1—

1

]

Sobolev proved the following theorem in the case p > 1 and Nirenberg and

Gagliardo in the case p = 1.

Theorem 1.7. Assume that 1 < p < n. There exists a constant c, depending only

on p an n, such that,
HUHLP*(R") < c[|[Vull 2o ey

Sorall uw € C°(R™)

(12)

We really do need u to have compact support for ([12) to hold, as the example
u = 1 shows. But remarkably the constant here does not depend at all upon the

size of the support of w.

Proof. We start by proving the estimate for u € C°(R")

First assume p = 1.

Since u has compact support, for eachi = 1,...n and z € R" we have,

T

u(x):/ U, (T1, ooy Yiy Tig1s - - -

—0o0

and so,

o0

Consequently,

Ju(z)[7=1 < (/ |Vu(x1,...,yi,...,xn)|alyi>ﬁ
=1

19
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We integrate the inequality with respect to z;

/_Z!u\ﬂldmg/ / |Du]dyl dy
= ( _rvelan)™ /H(/ Vuldy) ™ e,
< ([ vuldn)” H 1/ Vo )

the last inequality resulting from the general Holder’s inequality. We now
integrate with respect to x, for for,

]1:/ (Vuldyy, Ii:/ / |\Vuldeydy; 1=3,...,n
/ / |u|n Tdry dre < / / |Vu| dzy d:zcg) / H_]n Ydxsy
5

i#

Applying once more the extended Holder’s inequality, we find

/OO /OO u|7T day day < </°° /OO |Vu|d:171dy2)n11
n o) [e'e) [e'e) 1
H </ / / |Vu|dx dxg dyi) n

3 —o00 J —00 J —oc0

We continue by integrating with respect to z3 . . ., x,, to finally find that,

u#dxg (/ / Vudx...di...dmn)ﬁ
/R“| | Zl_Il - 7OO| | 1 Y (13)

n

= ( - |Vu| d:v) "

This is estimate (22)) for p = 1

20



2. Consider now the case that 1 < p < n. We apply estimate ([L3) to v = |ul",
where v > 1 is to be selected. Then,

n—1

( \u|l%dx)" < | |V|u]|dx
Rn Rn

=~ [ |u"HVu|dr
R"L
p

< 7</n |u|(vp_711)p d:v)pl </Rn |VulP da:)zl’

We choose 7 so that,

n p
1= 00
That is we set
_pln=1)
n—p
In which case,
m p np *
n—1 :w_l)p—l :n—p:p

in view of (f)) the estimate above becomes,

( s M dx)pl* < ( Rn\vu\%)’l’

Assume that then u € W P(R"). We have that W'?(R") = W, (R"). Thus

there existu; € C2°(R"),7 =1,2,... suchthat ||u; —u||y1»(R") - 0 as i —
co. In particular ||u; — u||»(R®) as i — oco. Thus there exists a subsequence
(u;) such that u; — u almost everywhere in R™ and u; — w in LP(R").

Claim: (u;) is a Cauchy sequence in LP" (R™).

Reason: Since u; — u; € C°(R™), we use the Sobolev inequality for compactly
supported smooth functions and Minkowski’s inequality to conclude

[wi = will o @ny < el Vi — Vg || o @n)
< c([Vus = Vg o@ey + [|[Vu = Vg 2o@n))

Since LP" (R™) is complete there exists v € LP" (R") such thatu; — v € LP (R")

21
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Since u; — u almost everywhere in R" and u; — v in LP (R") we have u = v
almost everywhere in R™. This implies that u; — wu in L? (R") and that u €
LP" (R").

Now we can apply Minkowski’s inequality and the Sobolev inequality for com-
pactly supported smooth functions to conclude that,

Jull o @ny < llu = wil o gy + [0l Lo (mn)
< lu = will o gy + €l Vg

Lr(R™)
= |lu = will o gy + c(IVui = Vul[po @) + | Vul o @n))
— CHVUHLP(Rn)

since u; — win LP" (R") and Vu; — Vu in LP(R") O

1.5 Elements of Operator Theory

Let V, W be Hilbert spaces. A linear operator A : Dom(A) C V — W is called
bounded, if there exists some C' > 0 such that for all v € Dom(A)

| Aullw < Cllully

A densely defined operator is a linear operator that is defined on a dense linear
subspace Dom(A) of V and takes values in W,Dom(A) = V.
We now define an operator as closed, if the graph

G(A) = {(u,Au) ue Dom(A)} CVXW

is closed as a subspace of V' x W.
Let V be a Hilbert space and A : Dom(A) C V — V a densely defined operator.
A is called symmetric if for every u, v € Dom(A)

(Au,v) = (v, Au)
A :Dom(A) C V — W isadensely defined operator if we define a linear operator
A* : Dom(A*) C W* — V*
Dom(A*) ={f e W| g+~ (Ag,f) isbounded}
and
(Ag, [) = (9, A°f)
this holds for every g € Dom(A), f € Dom(A*).

The operator A* is called adjoint of A. If A = A*, (so V' = W), then A is called
self-adjoint.
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1.6 Functional Calculus

Theorem 1.8. Let A be a self adjoint operator on a Hilbert space H. Then there
is a unique map ¢ from the continuous functions on R into L(H) so that

1. qg is an algebraic x-homomorphism.
2. Ifh is bounded, $(h) is a norm continuous, that is ol 2y < Ao

3. Let h,(x) be a sequence of a bounded continuous functions with h,, () —, e
x for each x and |h,(z)| < |z| for all x and n. Then for any ¢ € D(A),
lim,, o0 ¢<hn)w = Ay

4. If h,(x) — h(z) pointwise and if the sequence ||h,||~ is bounded, then

~

&(hyn) — ¢(h) strongly.
In addition

5. If A = X, p(h)yp = h(A\)
6. Ifh >0, then p(h) >0

It is often convenient to allow our functions to take the values 0o on small
sets in which case we require f~![+00] to be continuous. The functional calculus
is very useful in order to define the exponential ¢*4 and prove easily many of
its properties as a function. In the case where A is bounded we do not need the
functional calculus to define the exponential since we can define €4 by the power
series which converges norm.

1.7 Quadratic forms

Quadratic forms will help us define the Laplace operator and more generally Schrodinger
operators. Let a linear subspace, Dom(Q)), of a real Hilbert space /. A bilinear
form on Dom(Q), is a mapping @) : Dom(Q) x Dom(Q) — R such that,

1. Qau + Bv,w) = aQ(u,w) + LQ(v,w)
2. Q(w,au+ fv) = aQ(w,u) + Q(w,v)
3. Q(u,v) = Q(v,u)
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for every u, w, w € Dom(Q) and a, 5 € R. We note that (2) is a consequence of
(1) and (3). Using ) we define the following quadratic form,

Of) = {Q(u,u) if f € Dom(Q)

+00 else
A non-negative quadratic form () is closed if and only if

(u,) € Dom(Q) and
U, > u €H and
Q(up — upm) =0

it implies that u € Dom(Q) and Q(u,, — u) — 0.

Theorem 1.9. Let () a non-negative quadratic form, then there exists a unique
1
non-negative self-adjoint operator H such that Dom(H2) = Dom(Q)) and

(Hu,v) = Q(u,v), Yu € Dom(H),v € Dom(Q)

1.8 The Laplace Operator

We define the Laplace operator(with Dirichlet boundary conditions) H : L*(Q) —
L?(2) as the non-negative self-adjoint operator and according to the previous the-
orem is equivalent to the quadratic form @ with Dom(Q) = H}((]) and,

Q(u) = /Q |Vul?dr, € Hi ()
So,
Dom(H) = {u € HN(Q):3f € L*(Q) suchthat Q(u,) = /Qfgbdx,w € C?(Q)}
and if u € Dom(H), then f is unique and we define Hu = f.

A direct consequence of the definition and Green’s identity is the following re-
mark.

Remark 5. If 02 € H then for every u € C*(Q) N C(Q) such that u|pq = 0 €
Dom(H) and Hu = —Au
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1.9 Heat Kernel and Green Function

By using Fourier transforms one sees that
e f =K, «f
forallt > 0 and f € L*(R") where
Ky(x) = (47Tt)_%€_% dt

Using the formula
(H+ )\ = / e Hte™ dt
0

one deduces that if ReA > 0 one has
(H+A) ' =Gixf

where -
Gi(z) = / (4mt)"2e e M dt
0

The kernel G, is strictly positive and becomes infinite as x —. It is dominated
pointwise by the kernel G, of the unbounded operator Q! which is given by

Go(x) —/ (47Tt)_%6_%dt
0

— On|l'|_(n_2)

provided n > 2.



2 Hardy-Sobolev Inequality Involving Distance to the
origin
Maz’ya combined both the Hardy and the Sobolev term in one inequality, valid in

the upper half space. After a conformal transformation, it leads to the following
Hardy-Sobolev-Maz’ya inequality,

1 u2 2n nTQ
Vquxz—/ —— dx + B, uln2dx (14)
Va2 g [ e+ Bl ] )

valid forany v € C°(B,). Clearly B,, < S,, and it was shown that B,, < S,, where
n > 4. Again the case n = 3 it turns out to be special. It has been established that
B3 = S5. To state the result we first define

Xi(a,8) =(a—Ins)™", a>0, 0<s<l1
Our main concern is to prove the following theorem

Theorem 2.1. Let n > 3. The best constant in C,(a) in

n — 2\ 2 u? 2(n—1) . n=2
Vo> (7)) [ ac@( [ 0 el )
B B:

B1 1 |a7|2
(15)
is given by:
—2(n—1)
(n—2)"n Sy, a>-5
Ch(a) =

2(n—1)
a~ = Sy, 0<a< ﬁ

when restricted to radial functions, the best constant in ([19) is given by

2(n—1)

Cn,radial(a) = (TZ - 2)_ n Sn fOl" all a >0
In all cases there is no H}(By) minimizer.

Remark 6. One easily checks that C,,(a) < S, when n > 4. We observe that in
the n = 3 case one has that C3(a) = S3 = 3(7—5)% = Bs forall a > 1, that is the
classical Sobolev inequality, the Hardy-Sobolev-Maz 'ya and ([L3) share the same
best constant.
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We define the following space W (By; |2|~("~?)) as the completion of C2°(B;)
1
under the norm (fBl |z|~ ("2 | Vl? d:c) "

Theorem 2.2. Letn > 3. The best constant C,,(a) in the limiting Caffarelli-Kohn-
Nirenberg inequality

2(n—1) n nTﬁ
2|~ V| dz > C’n(a)< 27" X, "7 (a, |z])]v = da:) v € CX(B)
Bi B
(16)

is given

(n—2)7% Sy a>
Chnla) =

a@Sn, O<a< ﬁ

When restricted to radial functions the best constant in (L) is given by

2(n—1)

Cn,radial(a) = (n - 2)_ n Sn fOl" all a>0
In all cases, there is no Wy*(By, x|~ ")) minimizer

Remark 7. Estimate ([16) is a limiting case of a Caffarelli-Kohn-Nirenberg in-
equality. Indeed, for any —”T’Q < b < oo, the following inequality holds:

n—2
2bn

2 #5o] dz) T v e CERT) (17)

2| Vol dz > S(b. n)(/

Rn

Moreover, for b = —”7_2 estimate ([L7) fails. Clearly, estimate ([16) is the lim-
iting case of ([L7) for b = —52. Thus we have:

We note that that the nonexistence of a W, "*(By, |z|~(*~?)) minimizer of Theorem
p.2 is stronger than the nonexistence of an H} ( B;) minimizer of Theorem R.1. This
is due to the fact that the existence of an H}(B;) minimizer for (13) would imply
the existence of a W, *(By, |z|~"=?) for (16).

Lemma 2.3.
1. Ifu € H}(Q) then |x|"772u c 1/1/0172(97 ||~ (=2,
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2. Ifw € W(Q), |z|~2) then |z|~*w € HLQ) for all a < 2.
0 0 P

1
3. (fﬂ 2|~ ("2 | Vw|? dx) * is an equivalent norm for the space Wy (Q, ||~ (=),

Proof. 1. Letu € H}(Q). A simple calculation shows that.

n— - 2 n— n—
J e e R e e R e
Q Q

n—2\2 [ u? )
52( > ) | dr 2 | [VuPdr < clullgye < oo

where in the last line we used the classical Hardy inequality.

2. Concerning the second statement let w € C2°(€2). If v = |x|~%w then,
/ |Vo|? do < 2a2/ || 22w dw + 2/ |z| 2| Vw|? d (18)
Q Q Q
The classical Hardy inequality, when applied to v = |z|~®w yields,

T — Vw|z|* — aw|z|* 'z
|24

(Vw|z|* — aw|x|*x)?

2
Vu]? = 2
| VwP e — 2aVw - zw|z* 7! + a?w?|x[** 2|z ]?
- ‘37’4“
|Vw)* 2aVw-zw  dPw?
- |z |20 o |2[20H1 |22
Furthermore,
v? wia —a-2, 2
P

Returning to the classical Hardy inequality we have,

/ (|Vw|2 _ 2aVw - zw N aw?  (n— 2)2102) i
0

|x|2a |x’2a+1 |x’2a o |I’—a—2
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As we proved earlier, the second term is zero. So we conclude that,

N 2)\2 —2a-2, 2 —2a 2
a || widr < [ |z|7*|Vw| dx (19)
2 Q 0

from ([1§) and (1) we get for some constant C, depending only on a:
HUH%,&(Q) < C'a/Q 2| 72| Vw]? dz < Ca/Q 2|~ "2 | Vw|? dz < 400

The result then follows by a standard density argument.

3. This easily follows from ([19) with a = ”7’2 — 1.

]
Proof. : At first we will show that,
2(n—1)
Cpla)=(n—-2)» S, wh >
(a) = (n—2) when a2 ——
We have that,
x| 2|Vl dx
Cola) = _inf Jo [ T 20)

veCe (B = n=2

1) n = 2n
(fp, l2l7 X, "2 (a, |a])|o] = da) =
We change variables by (r = |z|)

1 T
T X (ar) a—lInr,

v(z) = y(7.0),

This change of variables maps the unit ball B; = {z : |z| < 1} to the complement
of the ball of radius a, that is

BS={(1,0):a <7< +00,0 € S"'}.

29



2
Noticing that X (a,r) = M = — 2 we also have,

Vo2 = o? + |V(9v|2

=2 (%)2 + %WG?JF

dr \ 2 1
=2 - — —|Vayl?
yT( rdr) + 7“2| Y|

1 1
= ﬁyf + T—leeyl2

1
= ﬁ(yi + |Veyl)?

= X7 (y2 + |Voy|)*.

A straightforward calculation shows that for y € C*([a, 00) x S™!) under the
Dirichlet boundary condition on 7 = a we have,

Therefore

x| "2 | Vol? dx
Cula) = mf Jp, 1272Vl _

UEC 2(n—1) on =
P Ll X, (o el de)

Jo Jgno e T2 (2 + |Vy|?))en T dt dS

= inf 2

a,0)=0 n
O[5 fgun mnirar S |y Ezentro) dr dS)

We conclude that,

Cula) = it I Jonar (Y7 + [ Voyl?) dSdr
" 2(n—1)

v(ed <f fsan n2]y|n2d5'd7')

21

n—2

30



In the sequel we will relate C), (a) with the best Sobolev constant .S,,. It is well
known that for any R with 0 < R < oo

Vul? dx
S, = inf I, [V — (22)

C>(B n n

We also know that \S;, = S, ;qqia: the latter being the infimum when taken over
radial functions. Changing variables by:

x
u(x) = 2(t,0), t=|z|7 ", §= Tl
x
We compute the following,
2—n P
t=r —r =t2n
(2=n)
dr = et = t o dt = =r
2—n —-n -n
Py = it dt = £
2—n 2—n

1 dt 1
2 .2 2 __ .2 2 2
Vul? =+ 5 |Voul = (57 + IVou

= (2 — )220 4 17 Vg2

=(n— 2)2t2g:21)zt2 ttns V2|2

Taking (22) and applying the change of variables we finally get that:

31



fBR |Vul|? dx

Sn = C’l { ) n—=2
ueC(Br 2n_ o
(fBR |u|n-2 dx)
00 2(n—1) 2 =2(
_ inf Sz Jonal(n —2)% =225 4t |V€Z|2]L

-2

(fR (n-2) fsn el At dtdS)

f;w—z) Jonal(n — +ts |V9Z| ] 5 dtdS
(n—2)7"% f;::n_m fsm |22t dedS)*

= inf
2(R—(n=2) 0)=0

= inf S fs” il(n = 2% + 5 2t2|v02| ]dtdS
Z(R_(H—Q),e)zo (n— D fR (n—2) fS" 1 |Z|n 2 )
B O < A R
AR 9)=0 (n — 2)" " [ oo o 2 =
) (n ) (fR*("*Q) fSn—l ’Z|n72t n—2 dt dS)
i (n . 2) 2(n—1) lnf f;(nfﬂ fSnfl th + #t%’vezp)
- z(R—(n=2) g)= B 72
(fR (n—2) fSn 1 |Z|" S e > dtdS>

It follows that for any R € (0, 0o,

—2(n—1) . fgi(n—m fsn—l(zf + ﬁ%ﬂveﬂ )

=2 = = (23)
2(R—(n=2) 6)=0 B
(fR (n—2) fSn 1 ‘2|" Qt n— 2 dtdS)

We note that a function u is radial in x if and only if the function z is a function
of t only. Comparing (1)) and (23) we have that,

72(n 1) —2(n—1)

Sn,radial < (n - 2) " Sn (24)

Cn(a) < Cpradiai(a) = (n —2)

On the other hand, assuming that, a > ﬁ and observing (23),(24) let us take
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R = 4”72 so that a — R~(=2) Then, (; L < 1lsincet > a >

n—2)2 2
2(n—1)

therefore C,,(a) > (-5) " = Sh.

Combining this with (24) we conclude our claim that,

_2(n—1)

Cp(a)=(n—2)""n S, whena >

n—2
Our next step is to prove the following. For any a > 0 we have that,

2(n—1)

Cnla) <a = S,.

n

1
-2

and

To this end let 0 # xy € B; and consider the minimizing sequence of functions,

n—2

" ds(|x — o)

Ue(x) = (e + |z — w0l

where ¢5(t) is a C2° cutoff function which is zero for ¢ > § and equal to one
for t < £ is small enough so that |zo| + & < 1 and therefore, U, € C2°(Bs(x)) C

C(Bi)

Then it is well known that,

[, IVU|? dz

n—2

S, = lim =
= dx) "

— 0 (fBl ‘UE

From

x|~ "2 |Vl dx
Cp(a) = inf fBl 2 Vol

C> (B 2(n-1) n=2
Iy bl X, (o) o]

we have that for any € > 0 small enough,
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~(n=2)|Vol? 4
i X
Cp(a) = inf Jo, I

veCe(B1) ) 20\
V(i el X () o) de) T

fBé(a;O) |ZE|7(”72)|VUE|2 dz
- 2(n—1) on n—2
—n n—2 1 n
(fB&(wo) |.Z‘| X (a’ ‘(L‘|)|U€|n 2 dl’)

< <|I0| +5>n_2 1 S5y VUL da
X

2(n—1) n—2

v (@laol =0) ( [y, UdEdr)

where we used the fact that X (a, s) is an increasing function of s. Taking the
limit e — 0 we conclude:

ot < ([l +5)”_2 o
n — _ 2(n—1)
ol =0/ x5 (4, | — )

This is true for any 6 > 0 small enough therefore,

2(n—1)

Cn(a) <Xy ™ (a, |zo])Sn

Since x is arbitary and X (a, s) is an increasing function of s, we end up with

_2(n=1) 2(n—1)
Cola) <Xy " (a,1)Sy=a = S, (25)
and this proves our claim that,
1 2(n—1)
Cula) > s,
() > (—)

To complete the calculation of C,(a) we will finally show that,

2(n—1)

Cpnla) >a =S, when 0<a<

n —

To prove this we will relate the infimum C,(a) to a Caffarelli-Kohn-Nirenberg
inequality. We will need the following result.
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Proposition 1. Let b > 0 and,

2bv 2d
S,y = inf - JelalTIVuldr (26)

(i ol ) 7

Then S, (b) = S, and this constant is not achieved in the appropriate function
space. This is proved in Theorem 1.1 of F. Catrina, Z.-Q Wang, On the Caffarelli-
Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence) and
symmetry of extremal functions.

Caffarelli, Kohn and Nirenberg established the following inequalities: For all
u € CE(RYN) :

(/ |z|_bp|u|pda:>5 < Ca,b/ 2| 2| Vul*dz, N >3
RN RN

N -2 2n

,—o0o < a ,a<b<a+l,p N_2+20—a)

We change variables in (26)

T
u(z) = 2(t,0), t=|z| "D p=_
|z
As before we compute,
t = 7"_(”_2)_217 - r = tm
1 1
dr = —— 7wt
2—n—2b
1 1 2-n—2b 1 1—(2—n—2b)
= — {2 m-2 2-n-2b(tft = —— ¢t 2-m—2b
2—n—2b 2—n—2b
1 n—1+2b
= —{t2-—n—-2b
2—n—2b
T'n_l = t#_—lm)
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1 n—142b n—1 1 n—142b4+n—1

nlge — _ — yhinrnemdt — - T ratm g —
A Ty T T 2 n—2b
_ 1 22n n2 +22bb dt
2—n— Qb

dt 1
Vul* = +—\V uf? = (5) T—2|VeUI2

(n—2)—2b— 1
= 2/ ((=(n = 2) = 2)r= =22 4 S| Vguf?

1
= 22(2 —n — 2b)%20n2) 4 ﬁ’V@U‘Q

22— — 202t T S |Vgz|?

2
t2—n—2b

A straightforward calculation shows that for any R’:

2n—242b

R fsnfltﬁi%[#@—n—%) = +- —|Voz |yt > dtdS
n = z(Rl'I,le)=o [f;/o s t%mﬁmt?:ﬁ;; &t ds}”f
o [ Jon[22( n—2—i—21))2t2 W e —i— A \ng| ] = 2+2b)t22n S5 dt dS
ARO=0 [fR, Jgna = oy T e z?frib_(n e |z| n dtdsr’f
_ g I e[ 24207 I 4t | Vgz || Lt B dt dS
z(R',0)=0 2bn+(n—2)(2n—2+2b) 2

(n — 2+ 20b) **[fR, Jouon 2|72t o= dtdS]
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S Jeil =24 ob)2:21 R t%*gf%gﬁbweﬂ Gy dtdS
= 1n n=2

Z(R’70):0 (n_ 2+2b n—2 2 |:le fSn ) |Z|_ o 2 dtdS] n

2(—2b—n+2)
e Jw Jelln = 2420 4 4BV 2 i dt S
N n—2

I 2 TR S el dtas] 7

— inf (n—2+42b) f;} fsnﬂ(zf + mt2|VQZ| ) dtdS

z(R',0)= e o on _2(n—1) nT_2
( ) 0 (n - 2 + 2b)7T2 |:le fsn—l ‘Z|n72t (n—2) dtds]
Sy = (n—2+20)"% e Ju S (2 + m%ﬂvazw dtdS
z R/,Q = 2(n—1) n—2
o (fR/ Jons |2|75t™ 0 dtds)
(n—2+ 2b)’MS = inf Jw s (e (n— 2+2b e | Voz[?) dtdS
" (R9)=0 =

(S fsu |22 55 dras) ™

Therefore we conclude that,

e > fonr (2 + s ng|2)dtd5
(n—2+2b)" 58, = inf S Jor G2 Gz — (27

z(R',0)= (fR' fsn . |Z|” ot ((n 2) dtdS)

Condition 1 > for t > a is satisfied if we choose b € (0, c0) such

(n 2+2b 2¢2
that,
1
- >a=Mn—-2+2b)"">0
Taking R’ = a and comparing (27) and (1)) we have that if,
1> L for t>
a
~ (n—2420)%? -
Then B
Cn(a) > (n—242b)" = 5,
For such b it follows from C,,(a) > (n — 2 + Qb) S that,

2(n—1)

Cpla)>a = S,
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And this proves our claim that,

2(n—1)

Cpla)>a = S, when 0<a<

n —

We finally establish the nonexistence of a minimizer. We will argue by con-
tradiction. Suppose that & € W, "*(By; [z|~™?)) is a minimizer of

—(n=2)| |2 d
T v|“dx
Cy(a) = C}nf(‘ fBl’ | Vol

veCee (B

2(n—1)

n—2

1) —n (n_z 2n_ n—2
(Jp, l2I X" (a, [z])|v]»=2 dz) ™=

Through the change of variables we did the quotient in (R1]) also admits a mini-
mizer .

Consider first the case a > ﬁ Comparing (21)) with (23)) with R = a‘ﬁ,
we conclude that § is a radial minimizer of (23) as well. It follows that (22) ad-
mits a radial H}(Bg) minimizer @(r) = §(t), t = r~("=2), which contradicts the

fact that the Sobolev inequality (22)) has no H} minimizers.

In case when 0 < a < ﬁ we use a similar argument comparing (21)) and (27) to
conclude the existence of a radial minimizer to (27) with b such that ﬁ >a =
(n — 2+ 2b)~! > 0. This contradicts the nonexistence of minimizer for (26).The
proof of Theorem 2.2 is now complete. [

We can now prove TheoremP.1| by the change of variables in ([[3) and using
the change of variables,

u(@) = |z~ v(z)

we have that,

B Volz|"z — ”T’Qv]x\%(jx

\%
u |x|n72
So,
O e a0
| u| - ‘x|2n74
Vol2jz[*2 (0 —2)Vu-ao|z| T (n— 2)2 02|z 6|z ?
- [ 2|z [z 4 |20
_ 1 (’VU|2)_(n—2)VU-x (n —2)? v?
|2 [ 4 zfn
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The second term, as in the proof of the classical Hardy inequality, is zero. Fur-

thermore,

u? v? v? v?

2 (222 R

It is easily observed that,

2(n—21) on WT*Q
Cul@)( [ X0 (a Jo)Jul 2 do)

By

2(n—1) n—2

— (o) /B X, (el o| 2 da)

2(n—-1) 2 m om on anz
= Cala)( / X, "2 (a]al)lal 772 0|2 de)
By
2(n—1) n—2

(7 2n n
= Cul@)( [ 11X a falof s o)

Returning to ([15),

—2)2 2 —9)2 32
/ (|x|f(n72)‘vv|2+ (n ) v )da: > (n ) v
B 4 fal 4 fal
n—2

2(n—1) om —
+Co@)( [ el X, (ol fof % d)
B

1

So ([19) is equivalent to

2(n—1) on "T*Q
2l Vo de > Cala) ([ 10l X " (@ 2o da) T v e CE(BY)
Bl Bl
(28)
Corollary 2. Let n > 3. For any u € C°(BY), there holds,
—92\2 2 2(n—1 1 . n=2
|Vul? dx > <n ) / u—2dx+Cn(a)(/ X (a, —> |u]% d:c>
B¢ 2 B§ x| B ks
(29)

where the best constant C,,(a) is the same as in Theorem

We also cover the case of a general bounded domain €2 containing the origin.
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Theorem 2.4. Let n > 3 and ) C R" be a bounded domain containing origin.
Set D = sup,q, |z|. For any u € C°(R2) there holds,
2

_9\2
/\Vu\QdJJZ (n ) U—Qda:
Q 2 o ||

2(n—1) ‘x| n—2

+Cn(a)< X (a, 5l 2 d:p) ’

where the best constant C,,(a) is independent of ) and is given by

(30)

—2(n—1)

(n—2)"n S, a>-1
Chla) =

o Sh, 0<a< ﬁ
It follows easily from Theorem 2.2 that there are no minimizers for (29) and (B0)
in H} (Q).
Proof. : The lower bound on the best constant follows from Theorem P.1], the fact
that if € C2°(Q2) then € C°(Bp), since §2 C Bp and a simple scaling argument.
To establish the upper bound in the case where 0 < a < ﬁ we argue exactly as
in the proof of Theorem 1.2 using test functions.
Let 0 # x( € B and consider the sequence of functions,

Ud(x) = (e + |z — 202)™ ds(|z — 20)

where ¢5(t) is a C2° cutoff function which is zero for ¢ > ¢ and equal to one for
t < % is small enough so that |zo| + § < 1 and therefore, U, € C°(B;(z0)) C
C(Bi)

The sequence U, concentrates near a point of the boundary (2, that realizes the
max,eq |z|. Let as now consider the case where @ > —. Fora > 0and 0 < p <
1, we set

2 n—=2\2 u?
Cu(a,p) = inf fB" [Vl dv - (57) fB’J ik Cji

ueC(B,) 2n-1) n_ o
(S, X0 ()l da)

A simple scaling argument and Theorem 1.1 shows that,

Cu(a,p) = Cp(a —Inp).

Thus, for p small enough we have that

Cola, p) = (n —2)~ 58,
Since for p small, B, C €) the upper bound follows easily as well. ]
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2.1 The k-improved Hardy-Sobolev Inequality

We next consider the k-improved inequality. Let k be a fixed positive integer. For
X, as in (f]) we define for s € (0, 1)

Xit1(a,s) = Xi(a, X;(a,s)),i=1,2,...,k

Noticing that X;(a, s) is a decreasing function of a we easily check that there exist
unique positive constant 0 < a5 < 3, < 1 such that:

1. The X;(ag, s) are well defined foralli = 1,2,..., k+ 1 andall s € (0,1)
and Xy.1(ax, 1) = oo. In other words, a; is the minimum value of the
constant a so that the X;’s,7 = 1,2,...,k + 1 are well defined in (0,1).

2' Xl(/Bn,k” I)XQ(BW/J{;, 1) e Xk?“rl(ﬁ’!hk) 1) =n — 2
For n > 3, k a fixed positive integer and u € C'2°(B;) there holds

— 212 2 1< X2 X2
|VU|2dl’Z (77, ) / u—dw—i——z 1(&, |$|) z(a> ’xDUQdI'
B

B 2 |zl 4 1 /B |z [?

n—2

2(n—1) 2n -
_I_Cn,k(a)(/B (Xl(a, |$|)Xk-+1(a,”x|) n—2 |u|n_2 d.iE)
(31

In our next result we calculate the best constant C,, ;(a) in (B1))

Theorem 2.5. Let n > 3 and k = 1,2,... be a fixed positive integer. The best
constant C,, i.(a) in

k

2 n—2\2 U2 1 X12(a7 |$|)X12(a7 ’l") 2
|Vul|” dx > ( 5 ) /B WMJ“ZZ ; BE u” dx
1 i=1 1

By

n—2

2(n—1) 2n Py
+Cn7k<a)</; (Xl(a, |.1")Xk+1(a”x‘) n—2 |u‘n_2 dx>
(32)
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satisfies:

2(n 1)

(TL - 2) Sn7 a Z 571,1@
Cnla) =
(T Xi(a, 1) S, ap < a < B
When restricted to radial functions, the best constant of (B1) is given by,

2(n 1)

On,k,'radial(a> = (TL - 2)

Again we notice that C,, ;,(a) < S, for all a > B3 .

Sp forall a> ay

Proof. To simplify the representation we will write X;(|z|) instead of X;(a, |z|).
Let k be a fixed positive integer.
We first consider the case a > f3, ;. We change variables in (B1)) by,

(@) = [T X 2 (Ja]) - Xy 2 (|])o(a)

2
1 and X = Xi(r)
1—Inr r

We know that
X 1 =

also

X1 = X0 (Xi(r))

oR
1
X (r) = ;Xl o X1 () XE(r)

Xi—i—l(a? "ID = Xl(a7 Xi(a’v |l’|)) - XI(CL?X’L'(Q?T))

In general,it is easily proven by induction that

Lxe=2X,(r) .. Xt (1) X (1)

Furthermore,
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|Vul? dx

By

= |pVv + vV | dx

By

= ¢2\Vv|2dx+/ Vo|*v?dx +2 [ ¢vVuVudr
B

By By

= [ @|VuPdz+ | |Vé[*v*dr+ | ¢Vo(Vv)?

B1 B B

= ¢2\vv|2dx+/ |V¢\2v2d:c—/ v2div(¢V o) dx
B1 B

By

= [ ¢*Vo]*dx + |V¢|2v2d:c—/ u2|v¢\2—/ v’ 9A¢ dx
1 By

B1 B1 B
= ¢2|VU|2dx—/ UQ%CZ:B
Bl Bl ¢

Lemma 2.6. For every m € N we have that,

Aoy, + Vi, = 0

where, . .
Om(r) =1 " X 2(r) ... X, 2 (r)
n—2\21 L 2 12 22 2
Vm(r>:( 9 )ﬁ+@(X1+X1X2++X1X2Xm>

nm(r):X1+X1X2+—|—X1X2Xm

Proof- We can prove this lemma using induction. It is easy to see that for m = 1
the equality holds. We assume that it is true for m = k and we will prove it for
m =k + 1. So,

Agpyr = A <¢ka_+%1>

— (AG)X A +2VaV X + o (AXCE )
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First we compute,

¢/() — n2 T_a(X12X22.. Xk2>+
n—2 1 .1 _1 _1 1 1 1 1
P [—Z)(fx2 X = XX X,j}
_2 n _1 1 1
M2 () ()
PR XXX - XTXG  X
n -2 1 11 1 1 1
- [—”2 Xi? o Xi=G = 5 Xi o Xy — e = DXL X
n—2 1
= 20k — - her(r)
So,
V(r) kfl
= o(r) (X )
1 1 .
= [- 2500 - panrm)] [ - XX Xe X
n—2 a2 1 1 1 a2 .1 1
=52 Xp sz+1+4_rgr 2 X7 X k()
Moreover,

RN 1 ,
<Xk+21> - [_ §X1X2 Xka+1

1 5 1 1 1 1
= ﬁxlxz XP - 2 XX X2 — 2 —X7X5 . X2,
1 1
= 2—102X2 Xk:Xk2+1 4_7”2X Xka+1
1 1 1
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Finally, we have

A1 + Vip10r11

X?...X?
— A+ (i) +

n—2 no2_ 1 1 1 1

1 1 2 1
k+1 ﬁXlz o X ae(r)

42

Hence, it is true for m = k£ + 1 and so it holds for m = k.

Using Lemma .6 we observe that,

—/B UQ%dx:/B V2V (r) do

o X (r)

1 1 1
—— X7 X o(r) + Ve X A+ S X7 X0k X

2

9\ 2 2 k X2 L X?
([ ety [ Sk el
B

2l 4 |z

i=1 Y B1
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Thus, continuing with the change of variables

n—2

Coal@)( [ (el T X (ol) o X, QDI 5 (s . X5 ) ™

n72
_n=2 2n_ —12n (n—1) o
= Corl@)( [ RN ()X () (K fal) - X)o7 ) T

B

n72

= Copl@) ([ el X ) X (DX () K (o) 5 ol da)

By

n n— +2 7n71+
= Cos( [ el )
By

n—2 2(n—1) n—2

= Cuala@)( [ 1ol X (ol) oo X (o)X (ol )

277,7 2(n—1) n—2

“(lel) - Xy (2ol do) 7

2(n—1) n—2

= Cop@)( [ Xa(lel).. Xa(le) X, 7 (o] do) 7

By

Finally we obtain,

/B 2]~ DX N (a]) . X ()| Vol da

2(n—1) "*2

> Copl@)( [ lal™Xallal) . Xe(le) X, 177 (l2Dlel ™2 dz) ™ v € C2(By)

By
We further change variables by,

v(z) = y(7,0), T:ﬁw 9:%’ (r = [x)

This change of variables maps the unit ball B; = {z : |z| < 1} to the complement
of the ball of radius r, = X, (1) that is,
BS ={(1,0) : X; L (r) <7 < 00,0 € S"}.

Note that,

X0, X)X
dr X13+1( )d " d

Let us denote by f(t) the inverse function of X (¢).We also set
fin@) = fi(fi(¥), i=1,2,...k
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Consequently r = fi.1(771). Also, X1 (r) = fi(771), Xo(r) = fra(77h),... Xp(r) =

fl(T_l).
We then find,
o|TAX T (|2)) L X () [V da
C”"“@:Uecigt@) s, 1] (=) - - 1)(\ IVl -
T (Ja el Xa(lal) - Xella) X (el d) T
(33)
We then compute,
dr 1
Vol = (02 + 5 Vool = g2 4+ o
X1 Xi(r 1
= (- M Xy Ligye
Xi(r)... Xp(r))? 1
:yi( 1(r) : k() - L
r r

_ 7%@3(){1(7«) LX) + Vayl?)

1

= m(yi(ﬁc(fl) L AETH)? + [ Veyl?)

2(n—1)

Xen([z]) = Xepa(r) = 77772

Xl X (al) = X)X ) = () - AET)

e 1))”
felr=h) - ()

Finally, we apply the change of variables in (33),
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1
(fk+1(7_1))2]

(2™ A+ VayP) g f“l;i*ﬂ dr dS

Corta) = int [ [ (a1 B )

y(rq,0=0)

72

(S Joumr G (r) 7 (felr) o fi(r)r 55y 2 e s ards)
-7 Ur ). B D) 2 ilr ) o D) 4 IVl dr d
Sn—1

(n—1) nn2
(f fsn LT n2 |y|n 2d7’ds)
/ / (2 + 1)---f1(7_ )% Voyl|*) dr dS
gn—1 e

f fSn T P drds)

We conclude that,

frio Jona W2 + (fe(r™h) o fi(771) 2| Vgyl?) dr dS

Cni(a) = inf e (34)
Y(ra,0)=0 (S forr 755 o] 2 drds)
Again we will relate this with the best constant S,,. From (23) we have that,
21 N e “|ng|)dtdS
S g MO

0 ([0 [t 2|7 dedS)
Comparing this with (@) we have that,

(n 1) _2(n-1)
Cn,k’(a) < Cn,k,radial( ) (n - 2) Snmadial = (TL - 2) " Sn (35)

On the other hand for all @ > 3;,, and 7 > r, we have that,

(T AT ST = 0 Al - S )

= (X1(a,1)... Xp(a,1) Xps1(a,1))?

(n —2)?
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Therefore,
(AETH . R 220 T >,

and consequently,
Coila) > (n—2)""7 S,

from this and (33) it follows that

2(n—1)

Chi(a)=(n—2)""n  when a>f,

The case where ap < a < (4, is quite similar to the case 0 < a < — in the
proof of Theorem R.2. That is testing in (33) the sequence

Udz) = (e+ |z —zo") "7

(2 = 2ol)

Let, O 7é xog € B; and ¢; a cutoff function which is zero for ¢ > ¢ and equal to one
for t < ¢, 6 small enough so that |z + | < 1 and therefore U, € C2°(B;s(g)) C
C °°(Bl)

- S, N2~ 2X T (2l X (2]) Vo dae
Chi(a) = vec}nfBl) B i - ~
([ [l X1 () Xa(le) X (feDlo]>= da) ™=
< fBa(xo) ‘33|_ =X Xy (’.73‘) _1(|x|)IVU ’2 dx

2(n—1) 2n_

(S, el Xa(lal) - X (o)) X 70" (leDIUS | dar) S

(m + 5')"_2 (Xa(a, 0] — 8) ... Xi(a, [zo] — 0) 25" Jiy,, VUL do
_ 2<n 1 2n_ n—2
[z =9 (Xpy1(a, || - 6)) (S, o) Ul 77 d) ™5

2(n 2(n—1)

zo+ 6\
: <:x2 - 5||> ((Xi(a, [xo] = 6) ... Xi(a, |[wo] = 6) Xpt1(a, [zo| —0))~
fBa(co) |VU€|2 d

’ 2n_ n—2
(fBé(xo) |Ue[»=2 dz) =

Taking the limite — 0

n— k+1 2(n—1)
Cn7k(a)§(|x0+6|) 2<HX \xo\—(S) (")Sn

|20 — 4|
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This is for any > 0 small enough, therefore

k+1 _2(n—1)

Cila) < (HXi(a, 0| — 5)) TS,

Since |zg| < 1 is arbitary and X is an increasing function of's, we end up with

k+1 _2(n—1)

Cuila) < (Hxi(a, 1)) s,

Finally, in the case a;, < a < 3, we obtain the opposite inequality by compraring
the infimum in (33) with the infimum in (27). This time we take R’ = r, and b > 0

1s chosen so that
k41

[[Xia1)=n—-2+2b

i=1



3 Hardy-Sobolev Inequality Involving Distance From
the Boundary in the Three Dimensional Upper Half-
Space

The main purpose of this section is to prove the following theorem

Theorem 3.1. For every f € C°(R2) the inequality,

/R |Vf(x)|2dei/R |f;g)|dx+83(4

3 3
+ i

|f(wﬂ6dw)3 (36)

3
+

holds where S3 is the sharp Sobolev constant in three dimensions, i.e,

5-a(3)

At first sight (Bd) seems to contradict the well known fact that Hardy’s inequal-

ity
J

as well as Sobolev’s inequality

Agvmm%mz&(ég

+

1
Vi@Pd > [ olf@Rd

3
+

=

@)

are sharp in the sense that in each the constant on the right side cannot be replaced
by a larger one. None of them, however, has a non-zero optimizer and the optimiz-
ing sequence in Hardy’s inequality are far from optimal for Sobolev’s inequality
and vice versa.
We denote
R ={x=(z,y):2€R" " y>0,}

3.1 The Hyperbolic space H"

In this section we study the hyperbolic space H". There are two standard models

for H", the first one is the half space model, R"}, equipped with the Riemannian

metric )
ds? — dz

2
Th
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Under this model, we have
\Vinul? = 22|Vul?, dV =z, "dx
and the hyperbolic Laplacian is given by
Apnw = 22Aw — (n — 2)zpw,,

where V and A denote the Euclidean gradient and Laplacian. The Riemannian
distance between two points = = (2/, z,,),y = (¢, yn) is given by,

|z —y|+ |z -7
) =21 ( )

where § = (i, —yn).
The second one is the unit ball model, where the unit ball B; is equipped with the

Riemannian metric )
1 — |z|“\ 2
ds® = (—| | ) dx?

2
Under this model we have,

1 — ||\ 2 1~ [a]>\n
\anuP:( 2|x| ) V|, dvz( 12 ) dz

and the distance of a point x € B; to the origin is

p:1n<

Proposition 2. (Poincaré inequality in H") Let n > 2. For any w € C*(H")

there holds,
—1\2
/ Vinw[2 dV > (” ) / w?dV (37)
Hn 2 n

2
Moreover, (%) is the best possible constant.

1+]:c\>
1 — |z|

Proof. Using the half-space model,

—1\2
/\andeV—(”Z )/uﬂdvzo
]H[n n
/
/

—1)?
22 |\Vw|?r, " dov — u/ x,"w? dx > 0
d 4 Jry
—1)?
IVw|?z2 " dr — %/ x,"w? dx > 0

n
+ +
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We now change the variables by, w = ux,> , we obtain that

n—2 -2 n—4
Vw = x,? Vu-+ (n—z)uxnz en

Then,

We now substitute,

/ Va2
R

n
+

/Ri

—92)2
-I——(n 1 ) / xi_”u2x2_4dx
R

|Vul2z2 2" 2 dx + (n — 2) / 2 "NV - e, da
R

n
+
n
+

So,

—1)?
|Vw|2dx—%/ r"w? do
R}

_9)2 _1)2 2
|Vu\2d:c+((n 42) _n )>/ u—zdx—l-(n—Q)/ EVu-endx
R R

4 n Ty n Tn

J.
:/R |

on —
:/ (Vul? do + n4 3/ u—de+(n—2)/ L Vu-e,dr
R R R

n n T n I
+ + n +

n
+
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Since u € C°(R"}) we can use Green'’s identity on the third integral,
1 1
/ iVu-endm: —/ —Vu?-e,dx
Ri Tn 2 R:L_ Tn

1 1 1 2
= —/ —(u*)x, dx = —/ u_2
2 R”fr Tn 2 Ri Ty,

Finally we conclude that,

. 2
/ |Vw|2dV—%/ w? dV
Hn n

—1)?
:/ |Vw]2mi_”dm—u/ x"w? do
R 4 R

n n
+ +

-9 2 _22 2 _12
:/R Vul2ds+ =2 u_zdﬁu/ u_dx_ufnu_

n 2 R Try 4

1 2
:/ |Vul* do — —/ u_2
R 4 Jrn w3

n
+

The sharpness of the constant "T_l follows easily from the sharpness of the Hardy

inequality
J

3.2 The Green Function

1 u?
2
|Vul|*de > Z/R — dx

n n
+ + n

From now on we shall use the following notation,
R ={x=(z,y): 2 €R" "y >0,}
Similarly we shall write
X = (2',y): 2 e Ry >0

We start with the following heat type equation on the upper half space R’} .

{ut = Au+ #u (38)

u(x, Y, O) = uo(x, y)
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Using the change of variables, u = /g, in (B8) we have

and

Also,

e = 2 (500 30) = Ve,

1 1 g
—_— —_ — t —
4y2u 4y2(\/§g(x7y7 )) 4yg

Au = A(Vyg(z,y,t))

4y(y(Azg + gyy) +9y) — g

4y? dyg, g
= _Q(Al’g + Gyy) + ;y — 3
4y2 4y2 4y2
1 _1 g
=y2(Apg + gyy) + Y 29y — —3
492
So we obtain that,
1 1 _1 g g
y2g9: =y (Dpg + gyy) +Y 29y — 3 3
4y2 4y2
1
g =00+ Gyy + ;gy
(39)

We conclude that the function ¢ satisfies,
g = A:cg + Gyy + igy

g(w,y,0) = 20 = go(x,y)

We observe that g,,, + i gy 1s the Laplacian of a radial function in two dimensions

so the right hand side of the equation is the n + 1 dimensional Laplacian. That is,

Azg = Gyy + ggy

where y = |z|, so g = ¢(y) is a radially symmetric function.
Therefore, we can also write (B9) as,
(40)
9(x,2,0) = go(w, 2) = go(x,y) y=|z]

{gt = Agnt1g

55



Using the fundamental solution of the heat equation we get,

glw,y,t) = (4nt) T / T go(#,2) da
Rn+1
Using polar coordinates

= (7,¢) = (Feosd,Fsing), r=y, F=7

and
|z — 2| = (rcos¢ —7cos )+ (rsin¢p — 7 sin @)
=r? 47— 2r7*(cos<;ﬁcos¢~> + sin ¢ sin <;~§)
_ 22 . 7
=7+ 7 —2rfcos(¢p — @)
Hence.
z— 12 oyt cos
g(x,2,t) = (4rt) =% / e / / i) J90(%, ) d djj dg
Rn—1 J= 0 d)
Substituting g = = and go(Z, ) = £ (\xf’y), we obtain

u(z,y,t) _ (4mt) ni1 / / / _le—al? _y2L@2€ygc0sﬁf&) f(Z,9) 5 di di do
=—y dz dy do
vy FeRn—1 Jy=0 \/g

z—F|2 oy ucos
u(z,y,t) = (4nt)” nH/ {/ e e HE ¢\/ d(b] (Z,7)dz dy
i ¢
+

So, we conclude to the following formula for the solution of (3§),

where

n+1 21 -
Glx — &y, §;t) = ( 2) 7 Ve ’”If“’/ s gy (42)
0

We can see that this is a heat kernel. As we previously defined the quadratic forms
and the Laplacian operator, we notice that L is a self-adjoint operator and it is
an extension of —A — ﬁ originally defined on smooth functions with compact
support in the three dimensional upper half space. We shall continue to use the
symbol L to denote —A — 5.
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Definition 3.1. We define the operator L using Theorem 1.8 by using the following

quadratic form
1 2
/ |Vul? do — —/ U—Zd:v
R3 4 Jrs y

+

and by the Hardy inequality

1 2
Vul*de — = u—deO
2
R3 4 Jrs y

+

We define s a positive real valued number such that s — L. The following
relation holds for every s € R
1 / a2
=y t7 2 e % dt
I'(3) Jo
Also e~ a semigroup.

Since L is a self adjoint operator, we can define the fractional powers of L%, o € R.

_ 1 /OO _a=2 _ 14
L = Sran t 2 e dt
I'(3) Jo

By the heat kernel we find the kernel of the fractional powers.

S

R

N1}

L72(x;%) = e /0 t2G(x — i,y,g;t)g dt
2

Forall 0 < o < n + 1 we compute,

2 _
( / / t2 /—6 (z—%)2 4—;y +32 yfcosqﬁ%dtd(b

g 1 @@= +y?+ 5% +2ygcos ¢
e 4t
t 475 n_+1

(n+l—a)—1 cx) 1

_n Oot 1'752 2.5 Y7 cos
+1 \/_/ / n+1 _( ) +y 4+ty+2yy ¢ dgb dt
n+1

VY / (x—2)? +9y°+9° —nycosgb)

N]l)

I~

do dt

- F<%>”
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For 0 < a < n a similar expression holds for (—A)(=2) on R”. We can
compute the integral as

(~2) F (xin)
— et -2 (-
= ()W (xi%)

Now we state some pointwise properties about the kernel ®,, ,,

Lemma 3.2. Letn > 2andn — 1 < o < n we have that,
sup @, (2, y+142,9+1) = llim Doz, y+1,2,5+1) =V, o(X; %)
1 —00
In this case

(I)n,a(XQ X) = \Dn,a<x§ x)['(A)

where

<

A= Y

e -1

and F'(A) is strictly increasing towards I'("3%)

Proof. We will prove the above Lemma for n = 3 and o = 2. F is defined as

[(2tl=2) /W A

A)=—F2 d
== L. [1+24%(1 — cos ¢)] 2" ’

All the statements are an immediate consequence of the following Lemma for
ﬁ — ntl—a ]

2
In the following Lemma we collect some facts about the function

L) [~ A
F(A4) = 7/4 (15 2A%(1 — cos B))7 ¢

where = "HT_‘“ All the statements are an immediate consequence of the fol-
lowing Lemma for g = "+1=2




Lemma 3.3. For % < B <1, the function F(A) has the following asymptotics as
A — .
Then F(A) is strictly monotone increasing function and

lim F(A) = (8 — %)

A—o0
We will prove this Lemma for 3 = 1

Proof. Since,

i ="
where 4 )
)= /ﬂA (1+ 242(1 — cos (2)))7 @

To see that the statement holds for § = 1 we have to perform the ¢ integration We
change the variables,

o 1
= and du—Ad(b

So,

/ 1+ 2A2 —2A2cosudu
A

/ 1
du
1 + 2A2 — 2142 Cosu

We change the variables again,
U I 5 u
s=tan— and ds= —sec’(=)du
2 2 2
We substitute,

— % and du= ———d
5241’ 1+ 52’ an YT e
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Therefore,

*° 2
A/ y ds
o 1+ 2A% — 2A2(;§2)32+1

o 1
:2A/ — ds
oo (82 +1)(1+ 242 — 242(177))
2A/OO ! d
= S
Oo82+1+2A232+2A2—2A2+2A232
:2A/ ds
4A s2+s2+1

1
— 24
/oo (ERV DN

We finally change the variables
=V1+4+4A%s and dx =+V1+4A%ds

Since f(z) = ﬁ is an even function and the interval (—oo, 00) is sym-

metric about 0. So,
1

G4) :2‘4/_00 Erivizie "

dx

- \/1+4A2/0 22 + 1
2mA
V1 + 442

2w A
Vv1+4A2

which is obviously strictly increasing function with A. ]

Hence,

G(A) =

In the following section we shall only study the case for n = 3 and o = 2 By
the Lemmas above we conclude to the following estimate that

Corollary 3. The integral kernel of the operator L~ is less than or equal to the

integral kernel of the operator (—A) ™1

n—o
2

(pn,a(X;*) < F( )\Iln oc(x' *)
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3.3 LP-estimates for fractional powers

Theorem 3.4. Let n = 3 and o« = 2 then the operator,

1

A — — 1

is bounded from L3 (R3) to LO(R?)
Moreover,
1 , i
[avse - itz o [ 1 as) @3)
R3 L3 R3
and
1.,/2
5V

is the sharp constant.
Proof. Let f, g be functions in R?. Then, for f € Dom(L) and g € L*(R?)
(L2f,L72g)”

(L2f, L2 f)(L7%g,L %)
(Lf, fY(L7"g,9)

We extend the functions by zero in R? and by Lemma 3.3 we have
(f, 9>2 <(Lf, f)L%]Ri)( (_A)_19,9>L2(R3)

Then, we obtain a pointwise estimate of the inequality using the inequality of the
Green functions

(f.9)*

IA

(Lg,9)12ms) < ((=A)7'g9,9) 2@

Moreover, we recall the Sobolev inequality in R3

[ 1Vl o = SilolF

Equivalently,
(—Aw, w)2gsy > 53||7~UH%6(R3)
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Setting —Aw = g
(9, (=8)7g) = Ssll(=2) gl 7o)

By Hélder’s inequality with conjugate exponents 6 and ¢, we have,

1 _
I=2) " gl < g {9.(=4) 'g)
1
< 1=2) " glaoie gl g,
Therefore 1
=2) " glzsces) < -1l
Hence,

(1,90 <L DID) " glollgl g o

<Lf Plgl2g e 9 € L3RY)
(f,9> _ 1
e < (LS. f)
||9||il,(R3 S3

Finally, taking supremum on the left-hand side we have,

AL L 1
S Ty < Sl W< (L)

Therefore
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