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Abstract
In the present work we study two types of the Hardy­Sobolev inequality, the one
involving distance to the origin and the other involving distance to the bound­
ary. For the Hardy­Sobolev inequality involving distance to the origin, we also
obtain the sharp constant. We relate this inequality to a limiting Caffarelli­Kohn­
Nirenberg inequality and we prove that they are equivalent. Particularly in three
dimensions the sharp constant coincides with the best Sobolev constant. Similarly,
for the Hardy­Sobolev inequality involving distance to the boundary we prove that
the sharp constant of the inequality on the upper half space R3

+ is given by the
Sobolev constant.
In both cases we added a Sobolev term with the best constant on the Hardy in­
equality which has already a best constant.

Περίληψη
Στην παρούσα εργασία θα μελετηθούν δύο ανισότητες Hardy­Sobolev, μια που
αφορά απόσταση από σημείο και μια που αφορά απόσταση από σύνορο. Για την
ανισότητα Hardy­Sobolev που αφόρα απόσταση απο σημείο βρίσκουμε βέλτιστη
σταθερά. Την συσχετίζουμε με μια οριακή περίπτωση της ανισότητας Caffarelli­
Kohn­Nirenberg inequality και αποδεικνύουμε ότι είναι ισοδύναμες. Συγκεκριμέ­
να στις τρείς διαστάσεις η βέλτιστη σταθερά ταυτίζεται με την βέλτιστη σταθερά
Sobolev. Όμοια, για την ανισότητα Hardy­Sobolev που αφορά απόσταση από σύ­
νορο, αποδεικνύουμε οτι η βέλτιστη σταθερά στον θετικό ημίχωροR3

+ δίνεται από
την σταθερά Sobolev.
Και στις δύο περιπτώσεις προστίθεται ένας όρος Sobolev με βέλτιστη σταθερά σε
μια ανισότητα Hardy που έχει ήδη βέλτιστη σταθερά.
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1 Introduction

1.1 Weak derivatives
Let Ω ∈ Rn be open f : Ω → R.Then we start with the following notation.
Notation. Let C∞

c (Ω) denote the space of infinitely differentiable and compactly
supported functions ϕ : Ω → R. We will call a function ϕ belonging to C∞

c (Ω) a
test function.
We start with the motivation for definition of weak derivatives. Let Ω ∈ Rn be
open, u ∈ C1(Ω) and ϕ ∈ C∞

c (Ω). Integration by parts gives,∫
Ω

u
∂ϕ

∂xj
dx = −

∫
Ω

∂u

∂xj
ϕ dx

There is no boundary term, since ϕ has a compact support in Ω and thus vanishes
near ∂Ω.
Let then u ∈ Ck(Ω) k = 1, 2, . . . and let a = (a1, a2, . . . , an) ∈ Nn ∩ {0} be
a multi­index such that the order of multi­index |a| = a1 + · · · + an is at most k.
We denote,

Dau =
∂|a|u

∂xa11 . . . ∂xann
=

∂a1

∂xa11
. . .

∂an

∂xann
u

The order of a multi­index tells the total number of differentiation. Integration by
parts gives, ∫

Ω

uDaϕ dx = (−1)|a|
∫
Ω

Dauϕ dx

We notice that the left­hand side makes sense even under the assumption u ∈
L1
loc(Ω).

Definition 1.1. Assume that u ∈ L1
loc(Ω) and let a ∈ Nn ∩ {0} be a multi­

index.Then v ∈ L1
loc(Ω) is the a­th weak partial derivative u, written Dau = v,

if ∫
Ω

uDaϕ dx = (−1)|a|
∫
Ω

vϕ dx (1)

for every test function ϕ ∈ C∞
c (Ω). We denote, D0u = D(0,...,0) = u. If |a| = 1,

then
Du = (D1u,D2u, . . . , Dnu)

is the weak gradient of u. Here,

Dju =
∂u

∂xj
= D(0,...,1...,0)u, j = 1, . . . , n
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(the j­th component is 1)

In other words, if we are given u and if there happens to exist a function v
which verifies (1) for all ϕ, we say that Dau = v in the weak sense. If there does
not exist such a function v, then u does not have a weak a­th partial derivative. We
observe that changing the function on set of measure zero does not affect its weak
derivatives.

Lemma 1.1. If f ∈ L1
loc(Ω) satisfies∫

Ω

fϕ dx = 0

for every ϕ ∈ C∞
c (Ω) then f = 0 almost everywhere in Ω

Corollary 1. (Uniqueness of weak derivatives). A weak a­th partial derivative of
u, if it exists, is uniquely defined up to a set of measure zero.

Proof. Assume that v, ṽ ∈ L1
loc(Ω) satisfy∫

Ω

uDaϕ dx = (−1)a
∫
Ω

vϕ dx = (−1)a
∫
Ω

ṽϕ dx

for every ϕ ∈ C∞
c (Ω). This implies that,∫

Ω

(v − ṽ)ϕ dx = 0

for every ϕ ∈ C∞
c (Ω).

1.2 Sobolev Spaces
Fix 1 ≤ p ≤ ∞ and let k be an non­negative integer. We define certain function
spaces, whose elements have weak derivatives of various orders lying in various
Lp spaces.

Definition 1.2. Assume thatΩ is an open subset ofRn. The Sobolev spaceW k,p(Ω)
consists of functions u ∈ Lp(Ω) such that for every multi­index a with |a| ≤ k the
weak derivative Dau exists and Dau ∈ Lp(Ω). Thus,

W k,p(Ω) = {u ∈ Lp(Ω) : Dau ∈ Lp(Ω), |a| ≤ k}
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If u ∈ W k,p(Ω), we define its norm

‖u‖Wk,p(Ω) = (
∑
|a|≤k

∫
Ω

|Dau|p dx)
1
p 1 ≤ p <∞

and
‖u‖Wk,∞(Ω) =

∑
|a|≤k

ess sup
Ω

|Dau|

Notice that D0u = D(0,...,0)u = u. Assume that Ω′ is an open subset of Ω.
We say that Ω′ is compactly contained in Ω, denoted Ω′ ⊂⊂ Ω, if Ω′ is a compact
subset of Ω. A function u ∈ W k,p

loc (Ω), if u ∈ W k,p(Ω′) for every Ω′ ⊂⊂ Ω.

Remark 1. Ιf p = 2, we usually write

Hk(Ω) = W k,2(Ω), k = 0, 1 . . .

The letter H is used, since Hk(Ω) is a Hilbert space. Note that, H0(Ω) = L2(Ω).

Definition 1.3. 1. Let {um}∞m=1, u ∈ W k,p(Ω). We say that um converges
to u inW k,p(Ω), written

um → u in W k,p(Ω)

provided
lim

m→∞
‖um − u‖Wk,p(Ω) = 0

2. We write
um → u in W k,p

loc (Ω)

to mean
um → u in W k,p(U)

for each U ⊂⊂ Ω

Theorem 1.2. The Sobolev space W k,p(Ω) 1 ≤ p ≤ ∞ k = 1, 2, . . . is a
Banach space.

Proof. 1. Let us first of all check that ‖u‖Wk,p(Ω) is an norm. Clearly,
‖u‖Wk,p(Ω) ↔ u = 0 almost everywhere. It is easy to see that ‖u‖Wk,p(Ω) =
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0 implies that ‖u‖Lp(Ω) = 0, which implies that u = 0 almost everywhere.
Conversely, u = 0 almost everywhere in Ω implies,∫

Ω

Dauϕ dx = (−1)|a|
∫
Ω

uDaϕ dx = 0

for all ϕ ∈ C∞
c (Ω). This implies that u = 0 almost everywhere in Ω for all

a, |a| ≤ k.
It is obvious that, ‖λu‖Wk,p(Ω) = |λ|‖u‖Wk,p(Ω), λ ∈ R Next assume
u, v ∈ W k,p(Ω). Then if 1 ≤ p ≤ ∞Minkowski’s inequality implies,

‖u+ v‖Wk,p(Ω) =
( ∑

|a|≤k

‖Dau+Dav‖pLp(Ω)

) 1
p

≤
( ∑

|a|≤k

(‖Dau‖Lp(Ω) + ‖Dav‖Lp(Ω))
p
) 1

p

≤
( ∑

|a|≤k

‖Dau‖pLp(Ω))
1
p + (

∑
|a|≤k

‖Dav‖pLp(Ω)

) 1
p

= ‖u‖Wk,p(Ω) + ‖v‖Wk,p(Ω)

2. It remains to show that W k,p(Ω) is complete. So assume {um}∞m=1 is a
Cauchy sequence in W k,p(Ω). Then for each |a| ≤ k, {Daum}∞m=1 is a
Cauchy sequence in Lp(Ω). Since Lp(Ω) is complete, there exist functions
ua ∈ Lp(Ω) such that,

Daum → ua in Lp(Ω)

for each |a| ≤ k. In particular,

um → u(0,...,0) = u in Lp(Ω)

3. We now claim,

u ∈ W k,p(Ω), Dau = ua |a| ≤ k (2)
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To verify this assertion, fix ϕ ∈ C∞
c (Ω). Then,∫

Ω

uDaϕ dx = lim
m→∞

∫
Ω

umD
aϕ dx

= lim
m→∞

(−1)|a|
∫
Ω

Daumϕ dx

= (−1)|a|
∫
Ω

uaϕ dx

On the second line we used the definition of the weak derivative. Next we
show how to conclude the first and last equalities above.
For 1 < p <∞. Let ϕ ∈ C∞

c (Ω). By Hölder’s inequality we have,

|
∫
Ω

umD
aϕ dx−

∫
Ω

uDaϕ dx| = |
∫
Ω

(um − u)Daϕ dx|

≤ ‖um − u‖Lp(Ω)‖Daϕ‖Lp′ (Ω)

→ 0

and consequently we obtain the first inequality above. The last inequality
follows in the same way since,

|
∫
Ω

Daumϕ dx−
∫
Ω

uaϕ dx| ≤ ‖Daum − ua‖Lp(Ω)‖ϕ‖Lp′ (Ω) → 0

For p = 1, p = ∞ we argue in a similar way as above. This means that the
weak derivativeDau exist andDau = ua, |a| ≤ k. As we also know that,
Daum → ua = Dau, |a| ≤ k, we conclude that ‖um − u‖Wk,p(Ω) → 0.
Thus um → u inW k,p(Ω).

Smooth functions are dense in Sobolev spaces. Thus, every Sobolev function
can be approximated with a smooth function in the Sobolev norm. The next result
shows that.

Theorem 1.3. (Meyers­Serrin Theorem)
Assume that Ω is bounded, and suppose as well that u ∈ W k,p(Ω) for some 1 ≤
p <∞.
Then there exist functions um ∈ C∞(Ω) ∩W k,p(Ω) such that

um → in W k,p(Ω)
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TheMeyers­Serrin theorem gives the following characterization for the Sobolev
spaces W k,p(Ω), 1 ≤ p < ∞ : u ∈ W k,p(Ω) if and only if there exist functions
ui ∈ C∞ ∩W k,p(Ω), i = 1, 2, . . . , such that ui → u inW k,p(Ω) as i→ ∞. In
other words,W k,p(Ω) is the completion of C∞(Ω) in the Sobolev norm.

Definition 1.4. Let 1 ≤ p < ∞. The Sobolev space with zero boundary values
W 1,p

0 (Ω) is the completion of C∞
c (Ω) with respect to the Sobolev norm. Thus u ∈

W 1,p
0 (Ω) if and only if there exist functions ui ∈ C∞

c (Ω), i = 1, 2, . . . , such that
ui → u in W 1,p(Ω) as i → ∞. The space W 1,p

0 (Ω) is endowed with the
norm ofW 1,p(Ω).

The difference compared to W 1,p(Ω) is that functions in W 1,p
0 (Ω) can be ap­

proximated by C∞
c (Ω) functions instead of C∞ functions, that is

W 1,p(Ω) = C∞(Ω) and W 1,p
0 (Ω) = C∞

c (Ω)

where the completions are taken with respect to the Sobolev norm. A function in
W 1,p

0 (Ω) has zero boundary values in Sobolev’s sense. We may say that u, v ∈
W 1,p(Ω) have the same boundary values in Sobolev’s sense, if u− v ∈ W 1,p

0 (Ω).
Notation. We write,

Hk
0 (Ω) = W k,2

0 (Ω)

Remark 2. W 1,p
0 (Ω) is a closed subspace ofW 1,p(Ω) and thus complete.

Lemma 1.4.
W 1,p(Rn) = W 1,p

0 (Rn) with 1 ≤ p <∞



1.3 The Classical Hardy Inequality
The standard Hardy inequality involving the distance to the origin asserts that if
n ≥ 3 and u ∈ C∞

c (Rn) one has∫
Rn

|∇u|2 dx ≥
(n− 2

2

)2
∫
Rn

u2

|x|2
dx (3)

The constant (n−2
2
)2 is the best possible constant. So wewould present the theorem

for the Hardy Inequality and its proof.

Theorem 1.5. Let Ω ⊂ Rn, n ≥ 3. For all u ∈ C∞
c (Ω), the Hardy Inequality

holds, ∫
Ω

|∇u|2 dx ≥
(n− 2

2

)2
∫
Ω

u2

|x|2
dx (4)

Proof. In order to prove the Hardy inequality it is enough to to show that,∫
Ω

|∇u|2 dx−
(n− 2

2

)2
∫
Ω

u2

|x|2
dx ≥ 0 (5)

1. At first we consider functions u ∈ C∞
c (Ω\{0}) which vanish near zero. We

define,

v(x) = u(x)|x|
n−2
2 ⇔ u(x) =

v(x)

|x|n−2
2

∇u =
∇v|x|n−2

2 − n−2
2
v|x|n−2

2
−2x

|x|n−2

=
∇v|x|n−2

2 − n−2
2
v|x|n−6

2 x

|x|n−2

So,

|∇u|2 =
(∇v|x|n−2

2 − n−2
2
v|x|n−6

2 x)2

|x|2n−4

=
|∇v|2|x|n−2

|x|n−2|x|n−2
− (n− 2)∇v · xv|x|

2(n−4)
2

|x|n|x|n−4
+

(n− 2)2

4

v2|x|n−6|x|2

|x|2n−4

=
1

|x|n−2
((∇v)2)− (n− 2)∇v · x

|x|n
+

(n− 2)2

4

v2

|x|n
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It is easily observed,

u2

|x|2
=

v2

(|x|n−2
2 )2|x|2

=
v2

|x|n−2|x|2
=

v2

|x|n

Returning to (5) we have,∫
Ω

|∇u|2 dx−
(n− 2

2

)2
∫
Ω

u2

|x|2
dx

=

∫
Ω

[(∇v)2
|x|n−2

− (n− 2)∇v · xv
|x|n

+
(n− 2)2

4

v2

|x|n
− (n− 2)2

4

v2

|x|n
]
dx

=

∫
Ω

(∇v)2

|x|n−2
dx−

∫
Ω

(n− 2)∇v · xv
|x|n

dx

For the first term, it is obvious that∫
Ω

(∇v)2

|x|n−2
≥ 0

Nowwe shall prove that the second term is zero. Indeed, we know that v = 0
in an area near zero, so the function that we integrate is a C∞ function and
we can use Green’s identity. Here n̂ is the outward pointing unit normal
vector on ∂Ω ∫

Ω

∇v · xv
|x|n

dx =
1

2

∫
Ω

x

|x|n
∇v2 dx

=
1

2

∫
∂Ω

v2
x

|x|n
n̂ dS − 1

2

∫
Ω

v2div
( x

|x|n
)
dx

We notice that the the first term is equal to zero because v ∈ C∞
c (Ω\{0}).

For the second term,

div
(

x
|x|n

)
= divx

1

|x|n
+ x∇

( 1

|x|n
)

= n
1

|x|n
+ x(−n|x|−(n−2)x)

=
n

|x|n
− n

|x|2

|x|n+2
=

n

|x|n
− n

|x|n
= 0

Thus we proved the Hardy inequality when u ∈ C∞
c (Ω\{0})
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2. Nowwe continue by proving the general case of the Hardy inequality, where
we consider functions in C∞

c (Ω). We suppose that ϕ(x) ∈ C∞(Rn) is a
function with the following property,

ϕ(x) =


0, |x| < 1

1, |x| > 2.

Thus we have that |∇ϕ(x)| ≤ c. Using ϕ(x) we consider the sequence
of functions ϕm where ϕm(x) = ϕ(xm). Hence,

ϕm(x) =


0, |x| < 1

m

1, |x| > 2
m
.

Consequently, |∇ϕm(x)| = m|∇ϕ(mx)| ≤ cm.
We now define the sequence of functions um(x) = u(x)ϕm(x).
We then have,

um(x) = u(x)ϕm(x) =


0, |x| < 1

m

u(x), |x| > 2
m
.

Therefore, we have that um ∈ C∞
c (Ω\{0}). From (i) for every m ≥ 1

we have that ∫
Ω

|∇um|2 dx ≥
(n− 2

2

)2
∫
Ω

|um|2

|x|2
dx

In order to prove the Hardy inequality in this case, it is enough to prove that
asm→ ∞ ∫

Ω

|∇um|2 dx→
∫
Ω

|∇u|2 dx

and (n− 2

2

)2
∫
Ω

u2m
|x|2

dx→
(n− 2

2

)2
∫
Ω

u2

|x|2
dx

Thus, we have to prove that, ‖∇um −∇u‖2 → 0 and∫
Ω

|um − u|2

|x|2
dx→ 0

14



First we have that,∫
Ω

|∇um −∇u|2 dx =

∫
|x|< 2

m

|∇um −∇u|2 dx

≤ 2

∫
|x|< 2

m

|∇um|2 dx+ 2

∫
|x|< 2

m

|∇u|2 dx

From Lebesgue’s Dominated Convergence Theorem, the second term tends
to zero. Moreover,∫

|x|< 2
m

|∇um|2 dx =

∫
|x|< 2

m

|ϕm∇u+ u∇ϕm|2 dx

≤ 2

∫
|x|< 2

m

|∇u|2 dx+ 2

∫
|x|< 2

m

|u|2|∇ϕm|2 dx

The first term tends to zero, as m → ∞. Then we prove that the second
term tends to zero. LetM ≥ 0 such that, |u| ≤ M in Ω. Finally, we have
that,∫
|x|< 2

m

|u|2|∇ϕm|2 dx ≤M2c2m2

∫
|x|< 2

m

dx ≤M2m2 c

mn
→ 0 asm→ ∞

Now the proof is complete.

Remark 3. Brezis and Vazquez improved the classical Hardy inequality on bounded
domains by establishing that for u ∈ C∞

c (B1),∫
B1

|∇u|2 dx ≥
(n− 2

2

)2
∫
B1

u2

|x|2
dx+ µ1

∫
B1

u2 dx (6)

where the constant µ1 is the first eigenvalue of the Laplacian of the unit disk inR2.
We note that µ1 is the best constant in the inequality independent of the dimension
n ≥ 3.
When taking distance to the boundary , the following Hardy inequality where the
constant 1

4
is optimal, is also well known for n ≥ 2 and u ∈ C∞

c (B1),∫
B1

|∇u|2 dx ≥ 1

4

∫
B1

u2

(1− |x|)2
dx (7)
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Similarly, Brezis and Marcus established an improved Hardy inequality for a con­
vex bounded domain in Rn,∫

B1

|∇u|2 dx ≥ 1

4

∫
B1

u2

(1− |x|)2
dx+ bn

∫
B1

u2 dx (8)

for some positive constant bn. This time the best constant bn depends on the space
dimension with bn ≥ µ1 when n ≥ 4 but in the n = 3 case, one has that bn = µ1.

1.4 Sobolev Inequality
We shall prove the Sobolev inequality without the sharp constant.

Definition 1.5. If 1 ≤ p < n the Sobolev conjugate of p is

p∗ =
np

n− p

Note that,
1

p∗
=

1

p
− 1

n

The foregoing scaling analysis show the estimate,

‖u‖Lq(Rn) ≤ c‖∇u‖Lp(Rn) (9)

for certain constants c > 0, 1 ≤ q < ∞ and all functions u ∈ C∞
c (Rn). This can

only be true for q = p∗

Remark 4. 1. We consider an inequality of the form,(∫
Rn

|u|q dx
) 1

q ≤ c
(∫

Rn

|∇u|p dx
) 1

p

for every u ∈ C∞
c (Rn), where constant 0 < c < ∞ and exponent 1 ≤ q <

∞ are independent of u. Let u 6= 0, 1 ≤ p < n and consider uλ(x) = u(λx)
with λ > 0. Since u ∈ C∞

c (Rn) it follows that the inequality above holds
for every uλ with c and q independent of λ. Thus,(∫

Rn

|uλ|q dx
) 1

q ≤ c
(∫

Rn

|∇uλ|p
) 1

p

16



for every λ > 0. We change the variables y = λx, dx = 1
λndy, we can see

that, ∫
Rn

|uλ(x)|q dx =

∫
Rn

|u(λx)|q dx =

∫
Rn

|u(y)|q 1

λn
dy

=
1

λn

∫
Rn

|u(x)|q dx

and ∫
Rn

|∇uλ(x)|p dx =

∫
Rn

λp|∇u(λx)|p dx

=
λp

λn

∫
Rn

|∇u(y)|p dy =
λp

λn

∫
Rn

|∇u(x)|p dx

So,
1

λ
n
q

(∫
Rn

|u|q dx
) 1

q ≤ λ

λ
n
p

(|∇u|p dx)
1
p

for every λ > 0 and equivalently

‖u‖Lq(Rn) ≤ cλ1−
n
p
+n

q ‖∇u‖Lp(Rn)

Since, the inequality has to hold for every λ > 0 we have,

1− n

p
+
n

q
= 0 ⇔ q =

np

n− p

This is the only possible exponent for which the inequality may hold true.

2. The classical Sobolev inequality∫
Rn

|∇u|2 dx ≥ Sn

(∫
Rn

|u|
2n
n−2 dx

)n−2
n (10)

is valid for any u ∈ C∞
c (Rn) where Sn = πn(n − 2)(

Γ(n
2
)

Γ(n)
)

2
n is the best

constant.

The generalizedHölder’s inequalitywill be useful in order to prove the Sobolev
inequality.
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Lemma 1.6. Let 1 ≤ p1 . . . pk < ∞ with 1
p1

+ · · · + 1
pk

= 1 and assume fi ∈
Lpi(Ω), i = 1, . . . k. Then,∫

Ω

|f1 . . . fk| dx ≤
∫
Ω

k∏
i=1

‖fi‖Lpi (Ω) (11)

Proof. To prove the generalized Hölder’s inequality we will use induction and
Hölder’s inequality.
The classical Hölder’s inequality states that for 1 < p < ∞, 1

p
+ 1

q
= 1, and

u ∈ Lp(Ω), v ∈ Lq(Ω), then uv ∈ L1 and∫
Ω

|u(x)v(x)| dx ≤ ‖u‖p‖v‖p

When k = 2 we are given p1p2 > 0 with 1
p1

+ 1
p2

= 1. In particular we have,
p1p2 > 1 and so (11) is reduced to the classical Hölder’s inequality. Now, we
suppose that (11) holds for some k ≥ 2. We claim that it holds for k + 1. So let
p1 . . . pk+1 > 0 with 1

p1
+ · · · + 1

pk+1
= 1 ad let fi ∈ Lpi , i = 1, . . . , k + 1. Note

that, pi > 1 for i = 1, . . . , k + 1. In particular, we have

p1 > 0
1

p1 − 1
> 0,

1

p1
+

1
p1

p1−1

= 1

By the classical Hölder’s inequality we have.∫
Ω

k+1∏
i=1

|fi| dx =

∫
Ω

|f1|
m+1∏
i=2

|fi| dx

= ‖f1‖p1
[ ∫

Ω

( k+1∏
i=2

|fi|
) p1

p1−1
dx

] p1−1
p1

= ‖f1‖p1
[ ∫

Ω

k+1∏
i=2

|fi|
p1

p1−1 dx

] p1−1
p1

Furthermore, since

pi(p1 − 1)

p1
> 0 for i =, . . . , k + 1

k+1∑
i=2

1
pi(p1−1)

p1

=
p1

p1 − 1

k+1∑
i=2

1

pi
=

p1
p1 − 1

(
1− 1

p1

)
= 1

18



By the induction hypothesis we have,∫
Ω

k+1∏
i=2

|fi| dx ≤ ‖f1‖p1
[ k+1∏

i=2

(∫
Ω

|fi|
p1

p1−1
· pi(p1−1)

p1 dx
) p1

pi(p1−1)

] p1−1
p1

= ‖f1‖p1
k+1∏
i=2

(∫
Ω

|fi|pi dx
) 1

pi

and so the assertion follows

Sobolev proved the following theorem in the case p > 1 and Nirenberg and
Gagliardo in the case p = 1.

Theorem 1.7. Assume that 1 ≤ p < n. There exists a constant c, depending only
on p an n, such that,

‖u‖Lp∗ (Rn) ≤ c‖∇u‖Lp(Rn) (12)

for all u ∈ C∞
c (Rn)

We really do need u to have compact support for (12) to hold, as the example
u ≡ 1 shows. But remarkably the constant here does not depend at all upon the
size of the support of u.

Proof. We start by proving the estimate for u ∈ C∞
c (Rn)

First assume p = 1.
Since u has compact support, for each i = 1, . . . n and x ∈ Rn we have,

u(x) =

∫ xi

−∞
uxi

(x1, . . . , yi, xi+1, . . . , xn) dyi

and so,

|u(x)| ≤
∫ ∞

−∞
|∇u(x1, . . . , yi, . . . , xn)| dyi i = 1, . . . , n

Consequently,

|u(x)|
n

n−1 ≤
n∏

i=1

(∫ ∞

−∞
|∇u(x1, . . . , yi, . . . , xn)| dyi

) 1
n−1
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We integrate the inequality with respect to x1∫ ∞

−∞
|u|

n
n−1 dx1 ≤

∫ ∞

−∞

n∏
i=1

(∫ ∞

−∞
|Du| dyi

) 1
n−1

dx1

=
(∫ ∞

−∞
|∇u| dy1

) 1
n−1

∫ ∞

−∞

n∏
i=2

(∫ ∞

−∞
|∇u| dyi

) 1
n−1

dx1

≤
(∫ ∞

−∞
|∇u| dy1

) 1
n−1

( n∏
i=2

∫ ∞

−∞

∫ ∞

−∞
|∇u| dx1 dyi

) 1
n−1

the last inequality resulting from the general Hölder’s inequality. We now
integrate with respect to x2, for for,

I1 =

∫ ∞

−∞
|∇u| dy1, Ii =

∫ ∞

−∞

∫ ∞

−∞
|∇u| dx1 dyi i = 3, . . . , n

∫ ∞

−∞

∫ ∞

−∞
|u|

n
n−1 dx1 dx2 ≤

(∫ ∞

−∞

∫ ∞

−∞
|∇u| dx1 dx2

) 1
n−1

∫ ∞

−∞

n∏
i=1
i ̸=2

I
1

n−1

i dx2

Applying once more the extended Hölder’s inequality, we find

∫ ∞

−∞

∫ ∞

−∞
|u|

n
n−1 dx1 dx2 ≤

(∫ ∞

−∞

∫ ∞

−∞
|∇u| dx1 dy2

) 1
n−1

n∏
i=3

(∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|∇u| dx1 dx2 dyi

) 1
n−1

We continue by integrating with respect to x3 . . . , xn to finally find that,

∫
Rn

|u|
n

n−1 dx ≤
n∏

i=1

(∫ ∞

−∞
· · ·

∫ ∞

−∞
|∇u| dx1 . . . dyi . . . dxn

) 1
n−1

=
(∫

Rn

|∇u| dx
) n

n−1

(13)

This is estimate (22) for p = 1
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1.2. Consider now the case that 1 < p < n. We apply estimate (13) to v = |u|γ ,
where γ > 1 is to be selected. Then,(∫

Rn

|u|
γn
n− dx

)n−1
n ≤

∫
Rn

|∇|u|γ| dx

= γ

∫
Rn

|u|γ−1|∇u| dx

≤ γ
(∫

Rn

|u|
(γ−1)p
p−1 dx

) p−1
p
(∫

Rn

|∇u|p dx
) 1

p

We choose γ so that,
γn

n− 1
= (γ − 1)

p

p− 1

That is we set
γ =

p(n− 1)

n− p
> 1

In which case,
γn

n− 1
= (γ − 1)

p

p− 1
=

np

n− p
= p∗

in view of (9) the estimate above becomes,(∫
Rn

|u|p∗ dx
) 1

p∗ ≤
(∫

Rn

|∇u|p dx
) 1

p

Assume that then u ∈ W 1,p(Rn). We have thatW 1,p(Rn) = W 1,p
0 (Rn). Thus

there exist ui ∈ C∞
c (Rn), i = 1, 2, . . . such that ‖ui−u‖W 1,p(Rn) → 0 as i→

∞. In particular ‖ui − u‖Lp(Rn) as i → ∞. Thus there exists a subsequence
(ui) such that ui → u almost everywhere in Rn and ui → u in Lp(Rn).

Claim: (ui) is a Cauchy sequence in Lp∗(Rn).

Reason: Since ui − uj ∈ C∞
c (Rn), we use the Sobolev inequality for compactly

supported smooth functions and Minkowski’s inequality to conclude

‖ui − uj‖Lp∗ (Rn) ≤ c‖∇ui −∇uj‖Lp(Rn)

≤ c(‖∇ui −∇uj‖Lp(Rn) + ‖∇u−∇uj‖Lp(Rn))

SinceLp∗(Rn) is complete there exists v ∈ Lp∗(Rn) such thatui → v ∈ Lp∗(Rn) as i→
∞.
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Since ui → u almost everywhere in Rn and ui → v in Lp∗(Rn) we have u = v
almost everywhere in Rn. This implies that ui → u in Lp∗(Rn) and that u ∈
Lp∗(Rn).
Now we can apply Minkowski’s inequality and the Sobolev inequality for com­
pactly supported smooth functions to conclude that,

‖u‖Lp∗ (Rn) ≤ ‖u− ui‖Lp∗ (Rn) + ‖ui‖Lp∗ (Rn)

≤ ‖u− ui‖Lp∗ (Rn) + c‖∇ui‖Lp(Rn)

= ‖u− ui‖Lp∗ (Rn) + c(‖∇ui −∇u‖Lp(Rn) + ‖∇u‖Lp(Rn))

→ c‖∇u‖Lp(Rn)

since ui → u in Lp∗(Rn) and∇ui → ∇u in Lp(Rn)

1.5 Elements of Operator Theory
Let V,W be Hilbert spaces. A linear operator A : Dom(A) ⊂ V → W is called
bounded, if there exists some C > 0 such that for all u ∈ Dom(A)

‖Au‖W ≤ C‖u‖V
A densely defined operator is a linear operator that is defined on a dense linear
subspace Dom(A) of V and takes values inW ,Dom(A) = V .
We now define an operator as closed, if the graph

G(A) =
{
(u,Au) : u ∈ Dom(A)

}
⊂ V ×W

is closed as a subspace of V ×W .
Let V be a Hilbert space and A : Dom(A) ⊂ V → V a densely defined operator.
A is called symmetric if for every u, v ∈ Dom(A)

〈Au, v〉 = 〈 v, Au〉

A : Dom(A) ⊂ V → W is a densely defined operator if we define a linear operator
A∗ : Dom(A∗) ⊂ W∗ → V∗

Dom(A∗) = {f ∈ W | g 7→ 〈Ag, f〉 is bounded}

and
〈Ag, f〉 = 〈 g, A∗f〉

this holds for every g ∈ Dom(A), f ∈ Dom(A∗).
The operator A∗ is called adjoint of A. If A = A∗, (so V = W ), then A is called
self­adjoint.
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1.6 Functional Calculus
Theorem 1.8. Let A be a self adjoint operator on a Hilbert space H. Then there
is a unique map ϕ̂ from the continuous functions on R into L(H) so that

1. ϕ̂ is an algebraic ∗­homomorphism.

2. If h is bounded, ϕ̂(h) is a norm continuous, that is ‖ϕ‖L(H) ≤ ‖h‖∞

3. Lethn(x) be a sequence of a bounded continuous functions withhn(x) →n→∞
x for each x and |hn(x)| ≤ |x| for all x and n. Then for any ψ ∈ D(A),
limn→∞ ϕ̂(hn)ψ = Aψ.

4. If hn(x) → h(x) pointwise and if the sequence ‖hn‖∞ is bounded, then
ϕ̂(hn) → ˆϕ(h) strongly.
In addition

5. If Aψ = λψ, ϕ̂(h)ψ = h(λ)ψ

6. If h ≥ 0, then ϕ̂(h) ≥ 0

It is often convenient to allow our functions to take the values ±∞ on small
sets in which case we require f−1[±∞] to be continuous. The functional calculus
is very useful in order to define the exponential eitA and prove easily many of
its properties as a function. In the case where A is bounded we do not need the
functional calculus to define the exponential since we can define eitA by the power
series which converges norm.

1.7 Quadratic forms
Quadratic formswill help us define the Laplace operator andmore generally Schrödinger
operators. Let a linear subspace, Dom(Q), of a real Hilbert space H. A bilinear
form on Dom(Q), is a mapping Q : Dom(Q)× Dom(Q) → R such that,

1. Q(au+ βv, w) = aQ(u,w) + βQ(v, w)

2. Q(w, au+ βv) = aQ(w, u) + βQ(w, v)

3. Q(u, v) = Q(v, u)
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for every u,w,w ∈ Dom(Q) and a, β ∈ R. We note that (2) is a consequence of
(1) and (3). Using Q we define the following quadratic form,

Q(u) =

{
Q(u, u) if f ∈ Dom(Q)

+∞ else

A non­negative quadratic form Q is closed if and only if
(un) ⊆ Dom(Q) and
un → u ∈ H and
Q(un − um) → 0

it implies that u ∈ Dom(Q) and Q(um − u) → 0.

Theorem 1.9. Let Q a non­negative quadratic form, then there exists a unique
non­negative self­adjoint operator H such that Dom(H 1

2 ) = Dom(Q) and

〈Hu, v〉 = Q(u, v), ∀u ∈ Dom(H), v ∈ Dom(Q)

1.8 The Laplace Operator
We define the Laplace operator(with Dirichlet boundary conditions)H : L2(Ω) →
L2(Ω) as the non­negative self­adjoint operator and according to the previous the­
orem is equivalent to the quadratic form Q with Dom(Q) = H1

0(�) and,

Q(u) =

∫
Ω

|∇u|2 dx, u ∈ H1
0 (Ω)

So,

Dom(H) =
{
u ∈ H1

0 (Ω) : ∃f ∈ L2(Ω) such that Q(u, ϕ) =

∫
Ω

fϕ dx, ∀ϕ ∈ C∞
c (Ω)

}
and if u ∈ Dom(H), then f is unique and we define Hu = f .
A direct consequence of the definition and Green’s identity is the following re­
mark.

Remark 5. If ∂Ω ∈ H then for every u ∈ C2(Ω) ∩ C(Ω̄) such that u|∂Ω = 0 ∈
Dom(H) and Hu = −∆u
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1.9 Heat Kernel and Green Function
By using Fourier transforms one sees that

e−Htf = Kt ∗ f

for all t > 0 and f ∈ L2(Rn) where

Kt(x) = (4πt)−
n
2 e−

x2

4t dt

Using the formula

(H + λ)−1 =

∫ ∞

0

e−Hte−λt dt

one deduces that if Reλ > 0 one has

(H + λ)−1 = Gλ ∗ f

where
Gλ(x) =

∫ ∞

0

(4πt)−
n
2 e−

x2

4t e−λt dt

The kernel Gλ is strictly positive and becomes infinite as x →. It is dominated
pointwise by the kernel G0 of the unbounded operator Q−1 which is given by

G0(x) =

∫ ∞

0

(4πt)−
n
2 e−

x2

4t dt

= Cn|x|−(n−2)

provided n > 2.



2 Hardy­Sobolev Inequality InvolvingDistance to the
origin

Maz’ya combined both the Hardy and the Sobolev term in one inequality, valid in
the upper half space. After a conformal transformation, it leads to the following
Hardy­Sobolev­Maz’ya inequality,∫

B1

|∇u|2 dx ≥ 1

4

∫
B1

u2

(1− |x|)2
dx+Bn

(∫
B1

|u|
2n
n−2dx

)n−2
n (14)

valid for any u ∈ C∞
c (B1). ClearlyBn ≤ Sn and it was shown thatBn < Snwhere

n ≥ 4. Again the case n = 3 it turns out to be special. It has been established that
B3 = S3. To state the result we first define

X1(a, s) = (a− ln s)−1, a > 0, 0 < s ≤ 1

Our main concern is to prove the following theorem

Theorem 2.1. Let n ≥ 3. The best constant in Cn(a) in∫
B1

|∇u|2 dx ≥
(n− 2

2

)2
∫
B1

u2

|x|2
dx+Cn(a)

(∫
B1

X
2(n−1)
n−2

1 (a, |x|)|u|
2n
n−2 dx

)n−2
n

(15)
is given by:

Cn(a) =


(n− 2)

−2(n−1)
n Sn, a ≥ 1

n−2

a
2(n−1)

n Sn, 0 < a < 1
n−2

.

when restricted to radial functions, the best constant in (15) is given by

Cn,radial(a) = (n− 2)−
2(n−1)

n Sn for all a ≥ 0

In all cases there is no H1
0 (B1) minimizer.

Remark 6. One easily checks that Cn(a) < Sn when n ≥ 4. We observe that in
the n = 3 case one has that C3(a) = S3 = 3(π

2
)
4
3 = B3 for all a ≥ 1, that is the

classical Sobolev inequality, the Hardy­Sobolev­Maz’ya and (15) share the same
best constant.
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Wedefine the following spaceW 1
0 (B1; |x|−(n−2)) as the completion ofC∞

c (B1)

under the norm
( ∫

B1
|x|−(n−2)|∇v|2 dx

) 1
2 .

Theorem 2.2. Let n ≥ 3. The best constantCn(a) in the limiting Caffarelli­Kohn­
Nirenberg inequality∫

B1

|x|−(n−2)|∇v|2 dx ≥ Cn(a)
(∫

B1

|x|−nX
2(n−1)
n−2

1 (a, |x|)|v|
2n
n−2 dx

)n−2
n
, v ∈ C∞

c (B1)

(16)
is given

Cn(a) =


(n− 2)

−2(n−1)
n Sn, a ≥ 1

n−2

a
2(n−1)

n Sn, 0 < a < 1
n−2

.

When restricted to radial functions the best constant in (16) is given by

Cn,radial(a) = (n− 2)−
2(n−1)

n Sn for all a ≥ 0

In all cases, there is noW 1,2
0 (B1, |x|−(n−2)) minimizer

Remark 7. Estimate (16) is a limiting case of a Caffarelli­Kohn­Nirenberg in­
equality. Indeed, for any −n−2

2
< b <∞, the following inequality holds:∫

Rn

|x|2b|∇v|2 dx ≥ S(b, n)
(∫

Rn

|x|
2bn
n−2 |v|

2n
n−2 dx

)n−2
2
, v ∈ C∞

c (Rn) (17)

Moreover, for b = −n−2
2

estimate (17) fails. Clearly, estimate (16) is the lim­
iting case of (17) for b = −n−2

2
. Thus we have:

We note that that the nonexistence of aW 1,2
0 (B1, |x|−(n−2))minimizer of Theorem

2.2 is stronger than the nonexistence of anH1
0 (B1)minimizer of Theorem 2.1.This

is due to the fact that the existence of an H1
0 (B1) minimizer for (15) would imply

the existence of aW 1,2
0 (B1, |x|−(n−2)) for (16).

Lemma 2.3.

1. If u ∈ H1
0 (Ω) then |x|

n−2
2 u ∈ W 1,2

0 (Ω, |x|−(n−2)).
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2. If w ∈ W 1,2
0 (Ω), |x|−(n−2)) then |x|−aw ∈ H1

0 (Ω) for all a < n−2
2
.

3.
( ∫

Ω
|x|−(n−2)|∇w|2 dx

) 1
2 is an equivalent norm for the spaceW 1,2

0 (Ω, |x|−(n−2)).

Proof. 1. Let u ∈ H1
0 (Ω). A simple calculation shows that.∫

Ω

|x|−(n−2)|∇(|x|
n−2
2 u)|2dx =

∫
Ω

|x|−(n−2)|n− 2

2
|x|

n−6
2 ux+ |x|

n−2
2 ∇u|2dx

≤ 2
(n− 2

2

)2
∫
Ω

u2

|x|2
, dx+ 2

∫
Ω

|∇u|2dx ≤ c‖u‖H1
0 (Ω) < +∞

where in the last line we used the classical Hardy inequality.

2. Concerning the second statement let w ∈ C∞
c (Ω). If v = |x|−aw then,∫

Ω

|∇v|2 dx ≤ 2a2
∫
Ω

|x|−2a−2w2 dx+ 2

∫
Ω

|x|−2a|∇w|2 dx (18)

The classical Hardy inequality, when applied to v = |x|−aw yields,

∇w =
∇w|x|a − aw|x|a−1x

|x|2a

|∇v|2 =
(∇w|x|a − aw|x|a−1x)2

|x|4a

=
|∇w|2|x|2a − 2a∇w · xw|x|2a−1 + a2w2|x|2a−2|x|2

|x|4a

=
|∇w|2

|x|2a
− 2a∇w · xw

|x|2a+1
+
a2w2

|x|2a

Furthermore,
v2

|x|2
=
w2|x|−2a

|x|2
= |x|−a−2w2

Returning to the classical Hardy inequality we have,∫
Ω

(
|∇w|2

|x|2a
− 2a∇w · xw

|x|2a+1
+
a2w2

|x|2a
− (n− 2)2

|x|−a−2
w2

)
dx
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As we proved earlier, the second term is zero. So we conclude that,(
a− n− 2

2

)2
∫
Ω

|x|−2a−2w2 dx ≤
∫
Ω

|x|−2a|∇w|2 dx (19)

from (18) and (19) we get for some constant Ca depending only on a:

‖v‖2H1
0 (Ω) ≤ Ca

∫
Ω

|x|−2a|∇w|2 dx ≤ Ca

∫
Ω

|x|−(n−2)|∇w|2 dx < +∞

The result then follows by a standard density argument.

3. This easily follows from (19) with a = n−2
2

− 1.

Proof. : At first we will show that,

Cn(a) = (n− 2)
2(n−1)

n Sn when a ≥ 1

n− 2

We have that,

Cn(a) = inf
v∈C∞

c (B1)

∫
B1

|x|−n−2|∇v|2 dx

(
∫
B1

|x|−nX
2(n−1)
n−2

1 (a, |x|)|v|
2n
n−2 dx)

n−2
n

(20)

We change variables by (r = |x|)

v(x) = y(τ, θ), τ =
1

X1(a, r)
= a− ln r, θ =

x

|x|

This change of variables maps the unit ballB1 = {x : |x| < 1} to the complement
of the ball of radius a, that is

Bc
a = {(τ, θ) : a < τ < +∞, θ ∈ Sn−1}.
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Noticing that X ′
1(a, r) =

X2
1 (a,r)

r
= −dr

r
we also have,

|∇v|2 = v2r +
1

r2
|∇θv|2

= y2τ

(dτ
dr

)2

+
1

r2
|∇θy|2

= y2τ

(
− dr

rdr

)2

+
1

r2
|∇θy|2

=
1

r2
y2τ +

1

r2
|∇θy|2

=
1

r2
(y2τ + |∇θy|)2

= e2(τ−a)(y2τ + |∇θy|)2.

A straightforward calculation shows that for y ∈ C∞([a,∞) × Sn−1) under the
Dirichlet boundary condition on τ = a we have,

r = −e(τ−a)

dr = (−e(τ−a))dτ → rn−1dr = en(τ−a)dτ

Therefore

Cn(a) = inf
v∈C∞

c (B1)

∫
B1

|x|−n−2|∇v|2 dx( ∫
B1

|x|−nX
2(n−1)
n−2

1 (a, |x|)|v|
2n
n−2 dx

)n−2
n

= inf
y(a,θ)=0

∫∞
a

∫
Sn−1 e

−(n−2)(τ−a)(e2(τ−a)(y2τ + |∇θy|2))en(τ−a) dt dS( ∫∞
a

∫
Sn−1 e−n(τ−a)τ−

2(n−1)
n−2 |y|

2n
n−2 en(τ−a) dτ dS

)n−2
n

We conclude that,

Cn(a) = inf
y(a,θ)=0

∫∞
a

∫
Sn−1(y

2
τ + |∇θy|2) dSdτ( ∫∞

a

∫
Sn−1 τ

− 2(n−1)
n−2 |y|

2n
n−2 dS dτ

)n−2
n

(21)
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In the sequel we will relate Cn(a) with the best Sobolev constant Sn. It is well
known that for any R with 0 < R ≤ ∞

Sn = inf
u∈C∞

c (BR)

∫
BR

|∇u|2 dx( ∫
BR

|u|
2n
n−2 dx

)n−2
n

(22)

We also know that Sn = Sn,radial the latter being the infimum when taken over
radial functions. Changing variables by:

u(x) = z(t, θ), t = |x|−(n−2), θ =
x

|x|
We compute the following,

t = r2−n → r = t
1

2−n

dr =
1

2− n
t

1
2−n

−1dt =
1

2− n
t
1−(2−n)

2−n dt =
1

2− n
t
n−1
n−2dt

rn−1dr =
1

2− n
t
n−1
2−n t

n−1
n−2dt =

1

2− n
t
2(n−1)
2−n dt

|∇u|2 = u2r +
1

r2
|∇θu|2 = z2t (

dt

dr
)2 +

1

r2
|∇θu|2

= (2− n)2r2(1−n)z2t + t
2

n−2 |∇θz|2

= (n− 2)2t
2(n−1)
n−2 z2t + t

2
n−2 |∇θz|2

Taking (22) and applying the change of variables we finally get that:
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Sn = inf
u∈C∞

c (BR)

∫
BR

|∇u|2 dx( ∫
BR

|u|
2n
n−2 dx

)n−2
n

= inf
z(R−(n−2),θ)=0

∫∞
R−(n−2)

∫
Sn−1 [(n− 2)2t

2(n−1)
n−2 z2θ + t

2
n−2 |∇θz|2] 1

n−2
t
−2(n−1)

n−2 dt dS( ∫∞
R−(n−2)

∫
Sn−1 |z|

2n
n−2 1

n−2
t
−2(n−1)

n−2 dt dS
)n−2

n

= inf
z(R−(n−2),θ)=0

∫∞
R−(n−2)

∫
Sn−1 [(n− 2)2z2t + t

4−2n
n−2 |∇θz|2] 1

n−2
dt dS

(n− 2)−
n−2
n

∫∞
R−(n−2)

∫
Sn−1 |z|

2n
n−2 t

−2(n−1)
n−2 dt dS)

n−2
n

= inf
z(R−(n−2),θ)=0

∫∞
R−(n−2)

∫
Sn−1 [(n− 2)2z2t +

1
n−2

1
t2
|∇θz|2] dt dS

(n− 2)−
n−2
n

∫∞
R−(n−2)

∫
Sn−1 |z|

2n
n−2 t

−2(n−1)
n−2 dt dS)

n−2
n

= inf
z(R−(n−2),θ)=0

n− 2

(n− 2)−
n−2
n

∫∞
R−(n−2)

∫
Sn−1(z

2
t +

1
(n−2)2

1
t2
|∇θz|2)( ∫∞

R−(n−2)

∫
Sn−1 |z|

2n
n−2 t−

2(n−1)
n−2 dt dS

)n−2
n

= (n− 2)
2(n−1)

n inf
z(R−(n−2),θ)=0

∫∞
R−(n−2)

∫
Sn−1(z

2
t +

1
(n−2)2

1
t2
|∇θz|2)( ∫∞

R−(n−2)

∫
Sn−1 |z|

2n
n−2 t−

2(n−1)
n−2 dt dS

)n−2
n

It follows that for any R ∈ (0,∞],

(n−2)
−2(n−1)

n Sn = inf
z(R−(n−2),θ)=0

∫∞
R−(n−2)

∫
Sn−1(z

2
t +

1
(n−2)2

1
t2
|∇θz|2)( ∫∞

R−(n−2)

∫
Sn−1 |z|

2n
n−2 t−

2(n−1)
n−2 dt dS

)n−2
n

(23)

We note that a function u is radial in x if and only if the function z is a function
of t only. Comparing (21) and (23) we have that,

Cn(a) ≤ Cn,radial(a) = (n− 2)
−2(n−1)

n Sn,radial ≤ (n− 2)
−2(n−1)

n Sn (24)

On the other hand, assuming that, a ≥ 1
n−2

and observing (23),(24) let us take
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R = a−
1

n−2 so that a = R−(n−2). Then, 1
(n−2)2

1
t2

≤ 1 since t ≥ a ≥ 1
n−2

and

therefore Cn(a) ≥ ( 1
n−2

)
2(n−1)

n Sn.

Combining this with (24) we conclude our claim that,

Cn(a) = (n− 2)−
2(n−1)

n Sn when a ≥ 1

n− 2
.

Our next step is to prove the following. For any a > 0 we have that,

Cn(a) ≤ a
2(n−1)

n Sn.

To this end let 0 6= x0 ∈ B1 and consider the minimizing sequence of functions,

Uϵ(x) = (ϵ+ |x− x0|2)
n−2
n ϕδ(|x− x0|)

where ϕδ(t) is a C∞
c cutoff function which is zero for t > δ and equal to one

for t < δ
2
is small enough so that |x0|+ δ < 1 and therefore, Uϵ ∈ C∞

c (Bδ(x0)) ⊂
C∞

c (B1)

Then it is well known that,

Sn = lim
ϵ→ 0

∫
B1

|∇Uϵ|2 dx( ∫
B1

|Uϵ|
2n
n−2 dx

)n−2
n

From

Cn(a) = inf
v∈C∞

c (B1)

∫
B1

|x|−(n−2)|∇v|2 dx( ∫
B1

|x|−nX
2(n−1)
n−2

1 (a, |x|)|v|
2n
n−2 dx

)n−2
n

we have that for any ϵ > 0 small enough,
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Cn(a) = inf
v∈C∞

c (B1)

∫
B1

|x|−(n−2)|∇v|2 dx( ∫
B1

|x|−nX
2(n−1)
n−2

1 (a, |x|)|v|
2n
n−2 dx

)n−2
n

≤

∫
Bδ(x0)

|x|−(n−2)|∇Uϵ|2 dx( ∫
Bδ(x0)

|x|−nX
2(n−1)
n−2

1 (a, |x|)|Uϵ|
2n
n−2 dx

)n−2
n

≤
(
|x0|+ δ

|x0| − δ

)n−2
1

X
2(n−1)

n
1 (a, |x0| − δ)

∫
Bδ(x0)

|∇Uϵ|2 dx( ∫
Bδ(x0)

|Uϵ|
2n
n−2dx

)n−2
n

where we used the fact thatX1(a, s) is an increasing function of s. Taking the
limit ϵ→ 0 we conclude:

Cn(a) ≤
(
|x0|+ δ

|x0| − δ

)n−2
Sn

X
2(n−1)

n
1 (a, |x0| − δ)

This is true for any δ > 0 small enough therefore,

Cn(a) ≤ X
− 2(n−1)

n
1 (a, |x0|)Sn

Since x0 is arbitary and X1(a, s) is an increasing function of s, we end up with

Cn(a) ≤ X
− 2(n−1)

n
1 (a, 1)Sn = a

2(n−1)
n Sn (25)

and this proves our claim that,

Cn(a) ≥ (
1

n− 2
)
2(n−1)

n Sn

To complete the calculation of Cn(a) we will finally show that,

Cn(a) ≥ a
2(n−1)

n Sn when 0 < a <
1

n− 2

To prove this we will relate the infimum Cn(a) to a Caffarelli­Kohn­Nirenberg
inequality. We will need the following result.
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Proposition 1. Let b > 0 and,

Sn(b) = inf
v∈C∞

c (Rn)

∫
Rn |x|2b|∇u|2 dx( ∫

Rn |x|
2bn
n−2 |u|

2n
n−2

)n−2
n

(26)

Then Sn(b) = Sn and this constant is not achieved in the appropriate function
space. This is proved in Theorem 1.1 of F. Catrina, Z.­Q Wang, On the Caffarelli­
Kohn­Nirenberg inequalities: Sharp constants, existence (and nonexistence) and
symmetry of extremal functions.

Caffarelli, Kohn and Nirenberg established the following inequalities: For all
u ∈ C∞

c (RN) :(∫
RN

|x|−bp|u|p dx
) 2

p ≤ Ca,b

∫
RN

|x|−2a|∇u|2 dx, N ≥ 3

,−∞ < a <
N − 2

2
, a ≤ b ≤ a+ 1, p =

2n

N − 2 + 2(b− a)

We change variables in (26)

u(x) = z(t, θ), t = |x|−(n−2)−2b, θ =
x

|x|

As before we compute,

t = r−(n−2)−2b → r = t
1

2−n−2b

dr =
1

2− n− 2b
t

1
2−n−2bdt

=
1

2− n− 2b
t

1
2−n−2b

− 2−n−2b
2−n−2bdt =

1

2− n− 2b
t
1−(2−n−2b)

2−n−2b

=
1

2− n− 2b
t
n−1+2b
2−n−2b

rn−1 = t
n−1

2−n−2b
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rn−1dr =
1

2− n− 2b
t
n−1+2b
2−n−2b t

n−1
2−n−2bdt =

1

2− n− 2b
t
n−1+2b+n−1

2−n−2b dt =

=
1

2− n− 2b
t
2n−2+2b
2−n−2b dt

|∇u|2 = u2r +
1

r2
|∇θu|2 = z2t (

dt

dr
)2 +

1

r2
|∇θu|2

= z2t ((−(n− 2)− 2b)r−(n−2)−2b−1)2 +
1

r2
|∇θu|2

= z2t (2− n− 2b)2r2(1−n−2b) +
1

r2
|∇θu|2

= z2t (2− n− 2b)2t
2(1−n−2b)
2−n−2b +

1

t
2

2−n−2b

|∇θz|2

A straightforward calculation shows that for any R′:

Sn = inf
z(R′,θ)=0

∫∞
R′

∫
Sn−1 t

2b
2−n−2b [z2t (2− n− 2b)2t

2(1−n−2b)
2−n−2b + 1

t
2

2−n−2b
|∇θz|2] 1

2−n−2b
t
2n−2+2b
2−n−2b dt dS[ ∫∞

R′

∫
Sn−1 t

2bn
(n−2)(2−n−2b) |z|

2n
n−2 1

(2−n−2b)
t
2n−2+2b
2−n−2b dt dS

]n−2
n

= inf
z(R′,θ)=0

∫∞
R′

∫
Sn−1 [z

2
t (n− 2 + 2b)2t

2−2n−4b
2−n−2b

+ 2b
2−n−2b + t

2b
2−n−2b

t
2

2−n−2b
|∇θz|2] 1

(n−2+2b)
t
2n−2+2b
2−n−2b dt dS[ ∫∞

R′

∫
Sn−1 t

2bn
(n−2)(2−n−2b)

+ 2n−2+2b
2−2b−n 1

(n−2+2b)2
|z|

2n
n−2 dt dS

]n−2
n

= inf
z(R′,θ)=0

∫∞
R′

∫
Sn−1 [(n− 2 + 2b)2z2t t

2−2n−2b
2−n−2b + t

2b−2
n−2+2b |∇θz|2] 1

(n−2+2b)
t
2n−2−2b
2−n−2b dt dS

(n− 2 + 2b)−
n−2
n

[ ∫∞
R′

∫
Sn−1 |z|

2n
n−2 t

2bn+(n−2)(2n−2+2b)
(n−2)(2−n−2b) dt dS

]n−2
n
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= inf
z(R′,θ)=0

∫∞
R′

∫
Sn−1 [(n− 2 + 2b)2z2t t

2−2n−2b+2n−2+2b
2−n−2b + t

2b−2+2n−2+2b
2−n−2b |∇θz|2] 1

(n−2+2b)
dt dS

(n− 2 + 2b)−
n−2
n

[ ∫∞
R′

∫
Sn−1 |z|−

2(n−1)
n−2 dt dS

]n−2
n

= inf
z(R′,θ)=0

∫∞
R′

∫
Sn−1 [(n− 2 + 2b)2z2t + t−2(−2b−n+2)

−2b−n+2
|∇θz|2] 1

(n−2+2b)
dt dS

(n− 2 + 2b)−
n−2
n

[ ∫∞
R′

∫
Sn−1 |z|

2n
n−2 t−

2(n−1)
(n−2) dt dS

]n−2
n

= inf
z(R′,θ)=0

(n− 2 + 2b)
∫∞
R′

∫
Sn−1(z

2
t +

1
(n−2+2b)2

1
t2
|∇θz|2) dtdS

(n− 2 + 2b)−
n−2
n

[ ∫∞
R′

∫
Sn−1 |z|

2n
n−2 t−

2(n−1)
(n−2) dt dS

]n−2
n

Sn = (n− 2 + 2b)
2(n−1)

n inf
z(R′,θ)=0

∫∞
R′

∫
Sn−1(z

2
t +

1
(n−2+2b)2

1
t2
|∇θz|2) dtdS( ∫∞

R′

∫
Sn−1 |z|

2n
n−2 t−

2(n−1)
(n−2) dt dS

)n−2
n

(n− 2 + 2b)−
2(n−1)

n Sn = inf
z(R′,θ)=0

∫∞
R′

∫
Sn−1(z

2
t +

1
(n−2+2b)2

1
t2
|∇θz|2) dtdS( ∫∞

R′

∫
Sn−1 |z|

2n
n−2 t−

2(n−1)
(n−2) dt dS

)n−2
n

Therefore we conclude that,

(n− 2 + 2b)−
2(n−1)

n Sn = inf
z(R′,θ)=0

∫∞
R′

∫
Sn−1(z

2
t +

1
(n−2+2b)2

1
t2
|∇θz|2) dtdS( ∫∞

R′

∫
Sn−1 |z|

2n
n−2 t−

2(n−1)
(n−2) dt dS

)n−2
n

(27)

Condition 1 ≥ 1
(n−2+2b)2t2

for t ≥ a is satisfied if we choose b ∈ (0,∞) such
that,

1

n− 2
> a = (n− 2 + 2b)−1 > 0

Taking R′ = a and comparing (27) and (21) we have that if,

1 ≥ 1

(n− 2 + 2b)2t2
for t ≥ a

Then
Cn(a) ≥ (n− 2 + 2b)−

2(n−1)
n Sn

For such b it follows from Cn(a) ≥ (n− 2 + 2b)−
2(n−1)

n Sn that,

Cn(a) ≥ a
2(n−1)

n Sn
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And this proves our claim that,

Cn(a) ≥ a
2(n−1)

n Sn when 0 < a <
1

n− 2
.

We finally establish the nonexistence of a minimizer. We will argue by con­
tradiction. Suppose that ṽ ∈ W 1,2

0 (B1; |x|−(n−2)) is a minimizer of

Cn(a) = inf
v∈C∞

c (B1)

∫
B1

|x|−(n−2)|∇v|2 dx

(
∫
B1

|x|−nX
2(n−1)
n−2

1 (a, |x|)|v|
2n
n−2 dx)

n−2
n

.

Through the change of variables we did the quotient in (21) also admits a mini­
mizer ỹ.

Consider first the case a ≥ 1
n−2

. Comparing (21) with (23) with R = a−
1

n−2 ,
we conclude that ỹ is a radial minimizer of (23) as well. It follows that (22) ad­
mits a radial H1

0 (BR) minimizer ũ(r) = ỹ(t), t = r−(n−2), which contradicts the
fact that the Sobolev inequality (22) has no H1

0 minimizers.

In case when 0 < a < 1
n−2

we use a similar argument comparing (21) and (27) to
conclude the existence of a radial minimizer to (27) with b such that 1

n−2
> a =

(n− 2 + 2b)−1 > 0. This contradicts the nonexistence of minimizer for (26).The
proof of Theorem 2.2 is now complete.

We can now prove Theorem2.1 by the change of variables in (15) and using
the change of variables,

u(x) = |x|−
n−2
2 v(x)

we have that,

∇u =
∇v|x|n−2

2 − n−2
2
v|x|n−6

2 x

|x|n−2

So,

|∇u|2 =
(∇v|x|n−2

2 − n−2
2
v|x|n−6

2 x)2

|x|2n−4

=
|∇v|2|x|n−2

|x|n−2|x|n−2
− (n− 2)∇v · xv|x|

2(n−4)
2

|x|n|x|n−4
+

(n− 2)2

4

v2|x|n−6|x|2

|x|2n−4

=
1

|x|n−2
(|∇v|2)− (n− 2)∇v · x

|x|n
+

(n− 2)2

4

v2

|x|n
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The second term, as in the proof of the classical Hardy inequality, is zero. Fur­
thermore,

u2

|x|2
=

v2

(|x|n−2
2 )2|x|2

=
v2

|x|n−2|x|2
=

v2

|x|n

It is easily observed that,

Cn(a)
(∫

B1

X
2(n−1)
n−2

1 (a, |x|)|u|
2n
n−2 dx

)n−2
n

= Cn(a)
(∫

B1

X
2(n−1)
n−2

1 (a, |x|)|x
2−n
2 v|

2n
n−2 dx

)n−2
n

= Cn(a)
(∫

B1

X
2(n−1)
n−2

1 (a, |x|)|x|
2−n
2

2n
n−2 |v|

2n
n−2 dx

)n−2
n

= Cn(a)
(∫

B1

|x|−nX
2(n−1)
n−2

1 (a, |x|)|v|
2n
n−2 dx

)n−2
n

Returning to (15),

∫
B1

(
|x|−(n−2)|∇v|2 + (n− 2)2

4

v2

|x|n
)
dx ≥ (n− 2)2

4

v2

|x|n

+Cn(a)
(∫

B1

|x|−nX
2(n−1)
n−2

1 (a, |x|)|v|
2n
n−2 dx

)n−2
n

So (15) is equivalent to∫
B1

|x|−(n−2)|∇v|2 dx ≥ Cn(a)
(∫

B1

|x|−nX
2(n−1)
n−2

1 (a, |x|)|v|
2n
n−2 dx

)n−2
n
, v ∈ C∞

c (B1)

(28)

Corollary 2. Let n ≥ 3. For any u ∈ C∞
0 (Bc

1), there holds,∫
Bc

1

|∇u|2 dx ≥
(n− 2

2

)2
∫
Bc

1

u2

|x|2
dx+Cn(a)

(∫
Bc

1

X
2(n−1
(n−2)

1

(
a,

1

|x|

)
|u|

2n
n−2 dx

)n−2
n

(29)
where the best constant Cn(a) is the same as in Theorem 2.1

We also cover the case of a general bounded domain Ω containing the origin.
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Theorem 2.4. Let n ≥ 3 and Ω ⊂ Rn be a bounded domain containing origin.
Set D = supx∈Ω |x|. For any u ∈ C∞

c (Ω) there holds,∫
Ω

|∇u|2 dx ≥
(n− 2

2

)2
∫
Ω

u2

|x|2
dx

+ Cn(a)
(∫

Ω

X
2(n−1)
n−2

1 (a,
|x|
D

)|u|
2n
n−2 dx

)n−2
n

(30)

where the best constant Cn(a) is independent of Ω and is given by

Cn(a) =


(n− 2)

−2(n−1)
n Sn, a ≥ 1

n−2

a
2(n−1)

n Sn, 0 < a < 1
n−2

.

It follows easily from Theorem 2.2 that there are no minimizers for (29) and (30)
in H1

0 (Ω).
Proof. : The lower bound on the best constant follows from Theorem 2.1, the fact
that if ∈ C∞

c (Ω) then ∈ C∞
c (BD), since Ω ⊂ BD and a simple scaling argument.

To establish the upper bound in the case where 0 < a < 1
n−2

we argue exactly as
in the proof of Theorem 1.2 using test functions.
Let 0 6= x0 ∈ B1 and consider the sequence of functions,

Uϵ(x) = (ϵ+ |x− x0|2)
n−2
n ϕδ(|x− x0|)

where ϕδ(t) is a C∞
c cutoff function which is zero for t > δ and equal to one for

t < δ
2
is small enough so that |x0| + δ < 1 and therefore, Uϵ ∈ C∞

c (Bδ(x0)) ⊂
C∞

c (B1)
The sequence Uϵ concentrates near a point of the boundary Ω, that realizes the
maxx∈Ω |x|. Let as now consider the case where a ≥ 1

n−2
. For a > 0 and 0 < ρ <

1, we set

C̃n(a, ρ) = inf
u∈C∞

c (Bρ)

∫
Bρ

|∇u|2 dx− (n−2
n
)2
∫
Bρ

u2

|x|2 dx( ∫
Bρ
X

2(n−1)
n−2

1 (a, |x|)|u|
2n
n−2 dx

)n−2
n

A simple scaling argument and Theorem 1.1 shows that,
C̃n(a, ρ) = Cn(a− ln ρ).

Thus, for ρ small enough we have that

C̃n(a, ρ) = (n− 2)−
2(n−1)

n Sn.

Since for ρ small, Bρ ⊂ Ω the upper bound follows easily as well.
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2.1 The k­improved Hardy­Sobolev Inequality
We next consider the k­improved inequality. Let k be a fixed positive integer. For
X1 as in (2) we define for s ∈ (0, 1)

Xi+1(a, s) = X1(a,Xi(a, s)), i = 1, 2, . . . , k

Noticing thatXi(a, s) is a decreasing function of a we easily check that there exist
unique positive constant 0 < ak < βn,k ≤ 1 such that:

1. The Xi(ak, s) are well defined for all i = 1, 2, . . . , k + 1 and all s ∈ (0, 1)
and Xk+1(ak, 1) = ∞. In other words, ak is the minimum value of the
constant a so that the Xi’s, i = 1, 2, . . . , k + 1 are well defined in (0,1).

2. X1(βn,k, 1)X2(βn,k, 1) . . . Xk+1(βn,k, 1) = n− 2
For n ≥ 3, k a fixed positive integer and u ∈ C∞

c (B1) there holds∫
B1

|∇u|2 dx ≥
(n− 2

2

)2
∫
B1

u2

|x|2
dx+

1

4

k∑
i=1

∫
B1

X2
1 (a, |x|) . . . X2

i (a, |x|)
|x|2

u2 dx

+Cn,k(a)
(∫

B1

(X1(a, |x|) . . . Xk+1(a|, x|)
2(n−1)
n−2 |u|

2n
n−2 dx

)n−2
n

(31)

In our next result we calculate the best constant Cn,k(a) in (31)

Theorem 2.5. Let n ≥ 3 and k = 1, 2, . . . be a fixed positive integer. The best
constant Cn,k(a) in

∫
B1

|∇u|2 dx ≥
(n− 2

2

)2
∫
B1

u2

|x|2
dx+

1

4

k∑
i=1

∫
B1

X2
1 (a, |x|) . . . X2

i (a, |x|)
|x|2

u2 dx

+Cn,k(a)
(∫

B1

(X1(a, |x|) . . . Xk+1(a|, x|)
2(n−1)
n−2 |u|

2n
n−2 dx

)n−2
n

(32)
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satisfies:

Cn(a) =


(n− 2)

−2(n−1)
n Sn, a ≥ βn,k

(
∏k+1

i=1 Xi(a, 1))
− 2(n−1)

n Sn, ak < a < βn,k.

When restricted to radial functions, the best constant of (31) is given by,

Cn,k,radial(a) = (n− 2)−
2(n−1)

n Sn for all a > ak

Again we notice that Cn,k(a) < Sn for all a > β3,k.

Proof. To simplify the representation we will write Xi(|x|) instead of Xi(a, |x|).
Let k be a fixed positive integer.
We first consider the case a ≥ βn,k.We change variables in (31) by,

u(x) = |x|−
n−2
2 X

− 1
2

1 (|x|) . . . X− 1
2

k (|x|)v(x)

We know that
X1 =

1

1− ln r
and X ′

1 =
X2

1 (r)

r

also

Xk+1 = X1(Xk(r))

so,
X ′

k(r) =
1

r
X1 . . . Xk−1(r)X

2
k(r)

Xi+1(a, |x|) = X1(a,Xi(a, |x|)) = X1(a,Xi(a, r))

In general,it is easily proven by induction that

d

dr
Xa

k =
a

r
X1(r) . . . Xk−1(r)X

a+1
k (r)

We observe that, u(x) = ϕ(r)v(x), where,

ϕ(x) = |x|−
n−2
2 X

− 1
2

1 (|x|) . . . X− 1
2

k (|x|)

Furthermore,
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∫
B1

|∇u|2 dx

=

∫
B1

|ϕ∇v + v∇ϕ|2 dx

=

∫
B1

ϕ2|∇v|2 dx+
∫
B1

|∇ϕ|2v2 dx+ 2

∫
B1

ϕv∇v∇v dx

=

∫
B1

ϕ2|∇v|2 dx+
∫
B1

|∇ϕ|2v2 dx+
∫
B1

ϕ∇ϕ(∇v)2

=

∫
B1

ϕ2|∇v|2 dx+
∫
B1

|∇ϕ|2v2 dx−
∫
B1

v2div(ϕ∇ϕ) dx

=

∫
B1

ϕ2|∇v|2 dx+
∫
B1

|∇ϕ|2v2 dx−
∫
B1

v2|∇ϕ|2 −
∫
B1

v2ϕ∆ϕ dx

=

∫
B1

ϕ2|∇v|2 dx−
∫
B1

v2
∆ϕ

ϕ
dx

Lemma 2.6. For everym ∈ N we have that,

∆ϕm + Vmϕm = 0

where,
ϕm(r) = r−

n−2
2 X

− 1
2

1 (r) . . . X
− 1

2
k (r)

Vm(r) =
(n− 2

2

)2 1

r2
+

1

4r2
(X2

1 +X2
1X

2
2 + · · ·+X2

1X
2
2 . . . X

2
m)

nm(r) = X1 +X1X2 + · · ·+X1X2 . . . Xm

Proof. We can prove this lemma using induction. It is easy to see that form = 1
the equality holds. We assume that it is true for m = k and we will prove it for
m = k + 1. So,

∆ϕk+1 = ∆
(
ϕkX

− 1
2

k+1

)
= (∆ϕk)X

− 1
2

k+1 + 2∇ϕk∇X
− 1

2
k+1 + ϕk

(
∆X

− 1
2

k+1

)
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First we compute,

ϕ′
k(r) = −n− 2

2
r−

n
2

(
X

− 1
2

1 X
− 1

2
2 . . . X

− 1
2

k

)
+

r−
n−2
2

[
− 1

2r
X

1
2
1 X

− 1
2

2 . . . X
− 1

2
k − · · · − 1

2r
X

1
2
1 X

1
2
2 . . . X

1
2
k

]
= −n− 2

2
r−

n
2

(
X

− 1
2

1

)(
X

− 1
2

1 X
− 1

2
2 . . . X

− 1
2

k

)
+

r−
n
2

[
X

1
2
1 X

− 1
2

2 . . . X
− 1

2
k − . . . X

1
2
1 X

1
2
2 . . . X

1
2
k

]
= r−

n
2

[
− n− 2

2
X

− 1
2

1 . . . Xk−
1

2
− 1

2
X

1
2
1 . . . X

− 1
2

k − · · · − 1

2
X

1
2
1 . . . X

1
2
k

]
= −n− 2

2r
ϕk(r)−

1

2r
ϕk(r)ηk(r)

So,

∇ϕk(r)∇X
− 1

2
k+1

= ϕk(r)(X
− 1

2
k+1)

′

=
[
− n− 2

2
ϕk(r)−

1

2r
ϕk(r)ηk(r)

][
− 1

2r
X1X2 . . . XkX

1
2
k+1

]
=
n− 2

4r2
r−

n−2
2 X

1
2
1 . . . X

1
2
k+1 +

1

4r2
r−

n−2
2 X

1
2
1 . . . X

1
2
k+1ηk(r)

Moreover,

(
X

− 1
2

k+1

)′′
=

[
− 1

2r
X1X2 . . . XkX

1
2
k+1

]′
=

1

2r2
X1X2 . . . X

1
2
k+1 −

1

2r2
X2

1X2 . . . X
1
2
k+1 −

1

2r2
X2

1X
2
2 . . . X

1
2
k+1

− · · · − 1

2r2
X2

1 . . . X
2
kX

1
2
k+1 −

1

4r2
X1 . . . XkX

3
2
k+1

=
1

2r2
X1 . . . XkX

1
2
k+1(1− ηk(r))−

1

4r2
X2

1 . . . X
2
kX

3
2
k+1
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Finally, we have

∆ϕk+1 + Vk+1ϕk+1

= ∆ϕk+1 +
(
Vk(r) +

X2
1 . . . X

2
k+1

4r2

)
ϕkX

− 1
2

k+1

= (∆ϕk)X
− 1

2
k+1 +

n− 2

2r2
r−

n−2
2 X

1
2
1 . . . X

1
2
k+1 +

1

2r2
X

1
2
1 . . . X

1
2
k+1ηk(r)

−n− 2

2r2
r−

n−2
2 X

1
2
1 . . . X

1
2
k+1 −

1

2r2
X

1
2
1 . . . X

1
2
k+1ηk(r)

− 1

4r2
X2

1 . . . X
2
k+1ϕk(r) + VkϕkX

− 1
2

k+1 +
1

4r2
X2

1 . . . X
2
k+1ϕkX

− 1
2

k+1

= 0

Hence, it is true form = k + 1 and so it holds form = k.

Using Lemma 2.6 we observe that,

−
∫
B1

v2
∆ϕ

ϕ
dx =

∫
B1

v2Vm(r) dx

=
(n− 2

2

)2
∫
B1

v2

|x|2
dx+

1

4

k∑
i=1

∫
B1

X2
1 (a, |x|) . . . X2

i (a, |x|)
|x|2

v2 dx
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Thus, continuing with the change of variables

Cn,k(a)
(∫

B1

(|x|−
n−2
2 X

− 1
2

1 (|x|) . . . X− 1
2

k (|x|)|v|)
2n
n−2 (X1(|x|) . . . Xk+1)

2(n−1)
n−2 dx

)n−2
n

= Cn,k(a)
(∫

B1

|x|−
n−2
2

2n
n−2X

− 1
2

2n
n−2

1 (|x|) . . . X− 1
2

2n
n−2

k (|x|)(X1(|x|) . . . Xk+1)
2(n−1)
n−2 |v|

2n
n−2 dx

)n−2
n

= Cn,k(a)
(∫

B1

|x|−nX
− n

n−2

1 (|x|) . . . X− n
n−2

k (|x|)(X1(|x|) . . . Xk+1(|x|))
2(n−1)
n−2 |v|

2n
n−2 dx

)n−2
n

= Cn,k

(∫
B1

|x|−nX
− n

n−2
+ 2n−2

n−2

1 (|x|) . . . X− n
n−2

+ 2n−2
n−2

k (|x|) . . . X
2(n−1)
n−2

k+1 (|x|)|v|
2n
n−2 dx

)n−2
n

= Cn,k(a)
(∫

B1

|x|−nX
n−2
n−2

1 (|x|) . . . X
n−2
n−2

k (|x|)X
2(n−1)
n−2

k+1 (|x|)|v|
2n
n−2 dx

)n−2
n

= Cn,k(a)
(∫

B1

X1(|x|) . . . Xk(|x|)X
2(n−1)
n−2

k+1 (|x|)|v|
2n
n−2 dx

)n−2
n

Finally we obtain,∫
B1

|x|−(n−2)X−1
1 (|x|) . . . X−1

k (|x|)|∇v|2 dx

≥ Cn,k(a)
(∫

B1

|x|−nX1(|x|) . . . Xk(|x|)X
2(n−1)
n−2

k+1 (|x|)|v|
2n
n−2 dx

)n−2
n
, v ∈ C∞

c (B1)

We further change variables by,

v(x) = y(τ, θ), τ =
1

Xk+1(r)
, θ =

x

|x|
, (r = |x|)

This change of variables maps the unit ballB1 = {x : |x| < 1} to the complement
of the ball of radius ra = X−1

k+1(1) that is,

Bc
ra = {(τ, θ) : X−1

k+1(r) < τ <∞, θ ∈ Sn−1}.

Note that,

dτ = −
X ′

k+1(r)

X2
k+1(r)

dr = −X1(r) . . . Xk(r)

r
dr

Let us denote by f1(t) the inverse function of X1(t).We also set

fi+1(t) = f1(fi(t)), i = 1, 2, . . . k
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Consequently r = fk+1(τ
−1). Also,X1(r) = fk(τ

−1), X2(r) = fk−1(τ
−1), . . . Xk(r) =

f1(τ
−1).

We then find,

Cn.k(a) = inf
v∈C∞

c (B1)

∫
B1

|x|−(n−2)X−1
1 (|x|) . . . X−1

k (|x|)|∇v|2 dx( ∫
B1

|x|−nX1(|x|) . . . Xk(|x|)X
2(n−1)
n−2

k+1 (|x|)|v|
2n
n−2 dx

)n−2
n

(33)
We then compute,

|∇v|2 = (vr)
2 +

1

r2
|∇θv|2 = y2τ (

dτ

dr
)2 +

1

r2
|∇θy|2

= y2τ (−
X1 . . . Xk(r)

r
)2 +

1

r2
|∇θy|2

= y2τ
(X1(r) . . . Xk(r))

2

r2
+

1

r2
|∇θy|2

=
1

r2
(y2τ (X1(r) . . . Xk(r))

2 + |∇θy|2)

=
1

fk+1(τ−1)2
(y2τ (fk(τ

−1) . . . f1(τ
−1))2 + |∇θy|2)

Xk+1(|x|) = Xk+1(r) = τ−
2(n−1)
n−2

X−1
1 (|x|) . . . X−1

k (|x|) = X−1
1 (r) . . . X−1

k (r) = (fk(τ
−1) . . . f1(τ

−1))−1

rn−1dr =
−r · rn−1

X1(r) . . . Xk(r)
dτ

= − rn

X1(r) . . . Xk(r)
dτ

= − (fk+1(τ
−1))n

fk(τ−1) . . . f1(τ−1)

Finally, we apply the change of variables in (33),
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Cn,k(a) = inf
y(ra,θ=0)

∫ ∞

ra

∫
Sn−1

[
(fk+1(τ)

−1)−(n−2)(fk(τ
−1) . . . f1(τ

−1))−1 1

(fk+1(τ−1))2

]

·
(y2τ (fk(τ

−1) . . . f1(τ
−1))2 + |∇θy|2)

(fk+1(τ−1))
n

(fk(τ−1)...f1(τ−1))
dτ dS( ∫∞

ra

∫
Sn−1(fk+1(τ−1))−n(fk(τ−1) . . . f1(τ−1))τ−

2(n−1)
n−2 |y|

2n
n−2

(fk+1(τ−1))n

fk(τ−1)...f1(τ−1)
dτ dS

)n−2
n

=

∫ ∞

ra

∫
Sn−1

(fk(τ
−1) . . . f1(τ

−1))−2(y2τ (fk(τ
−1) . . . f1(τ

−1))2 + |∇θy|2) dτ dS( ∫∞
ra

∫
Sn−1 τ

− 2(n−1)
n−2 |y|

2n
n−2 dτ ds

)n−2
n

=

∫ ∞

ra

∫
Sn−1

(y2τ + (fk(τ
−1) . . . f1(τ

−1))−2|∇θy|2) dτ dS( ∫∞
ra

∫
Sn−1 τ

− 2(n−1)
n−2 |y|

2n
n−2 dτ ds

)n−2
n

We conclude that,

Cn,k(a) = inf
y(ra,θ)=0

∫∞
ra

∫
Sn−1(y

2
τ + (fk(τ

−1) . . . f1(τ
−1))−2|∇θy|2) dτ dS( ∫∞

ra

∫
Sn−1 τ

− 2(n−1)
n−2 |y|

2n
n−2 dτ ds

)n−2
n

(34)

Again we will relate this with the best constant Sn. From (23) we have that,

(n− 2)−
2(n−1)

n Sn = inf
z(ra,θ)=0

∫∞
ra

∫
sn−1(z

2
t +

1
(n−2)2t2

|∇θz|) dt dS

(
∫∞
ra

∫
Sn−1 t

− 2(n−1)
n−2 |z|

2n
n−2 dt dS)

n−2
n

Comparing this with (34) we have that,

Cn,k(a) ≤ Cn,k,radial(a) = (n− 2)−
2(n−1)

n Sn,radial = (n− 2)−
2(n−1)

n Sn (35)

On the other hand for all a ≥ βk,n and τ ≥ ra we have that,

(τ−1f1(τ
−1) . . . fk(τ

−1))−2 ≥ (r−1
a f1(r

−1
a ) . . . fk(r

−1
a ))−2

= (X1(a, 1) . . . Xk(a, 1)Xk+1(a, 1))
−2

≥ 1

(n− 2)2

48



Therefore,
(f1(τ

−1) . . . fk(τ
−1))−2 ≥ 1

(n− 2)2τ 2
, τ ≥ ra

and consequently,
Cn,k(a) ≥ (n− 2)−

2(n−1)
n Sn

from this and (35) it follows that

Cn,k(a) = (n− 2)−
2(n−1)

n when a ≥ βn,k

The case where ak < a < βn,k, is quite similar to the case 0 < a < 1
n−2

in the
proof of Theorem 2.2.That is testing in (33) the sequence

Uϵ(x) = (ϵ+ |x− x0|2)−
n−2
2 ϕδ(|x− x0|)

Let, 0 6= x0 ∈ B1 and ϕδ a cutoff function which is zero for t > δ and equal to one
for t < δ

2
, δ small enough so that |x0 + δ| < 1 and therefore Uϵ ∈ C∞

c (Bδ(x0)) ⊂
C∞

c (B1)

Cn,k(a) = inf
v∈C∞

c (B1)

∫
B1

|x|−(n−2)X−1
1 (|x|) . . . X−1

k (|x|)|∇v|2 dx

(
∫
B1

|x|−nX1(|x|) . . . Xk(|x|)X
2(n−1)
n−2

k+1 (|x|)|v|
2n
n−2 dx)

n−2
n

≤

∫
Bδ(x0)

|x|−(n−2)X−1
1 (|x|) . . . X−1

k (|x|)|∇Uϵ|2 dx

(
∫
B1

|x|−nX1(|x|) . . . Xk(|x|)X
2(n−1)
n−2

k+1 (|x|)|U
2n
n−2
ϵ | dx)n−2

n

≤
(
|x0 + δ|
|x0 − δ|

)n−2
(X1(a, |x0| − δ) . . . Xk(a, |x0| − δ))−

2(n−1)
n

(Xk+1(a, |x0| − δ))
2(n−1)

n

∫
Bδ(c0)

|∇Uϵ|2 dx

(
∫
Bδ(x0)

|Uϵ|
2n
n−2 dx)

n−2
n

≤
(
|x0 + δ|
|x0 − δ|

)n−2

((X1(a, |x0| − δ) . . . Xk(a, |x0| − δ)Xk+1(a, |x0| − δ))−
2(n−1)

n

·

∫
Bδ(c0)

|∇Uϵ|2 dx

(
∫
Bδ(x0)

|Uϵ|
2n
n−2 dx)

n−2
n

Taking the limit ϵ→ 0

Cn,k(a) ≤
(
|x0 + δ|
|x0 − δ|

)n−2( k+1∏
i=1

Xi(a, |x0| − δ)
)− 2(n−1)

n
Sn
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This is for any δ > 0 small enough, therefore

Cn,k(a) ≤
( k+1∏

i=1

Xi(a, |x0| − δ)
)− 2(n−1)

n
Sn

Since |x0| < 1 is arbitary and X1 is an increasing function of s, we end up with

Cn,k(a) ≤
( k+1∏

i=1

Xi(a, 1)
)− 2(n−1)

n
Sn

Finally, in the case ak < a < βn,k we obtain the opposite inequality by compraring
the infimum in (35) with the infimum in (27). This time we takeR′ = ra and b > 0
is chosen so that

k+1∏
i=1

Xi(a, 1) = n− 2 + 2b



3 Hardy­Sobolev Inequality InvolvingDistance From
theBoundary in theThreeDimensionalUpperHalf­
Space

The main purpose of this section is to prove the following theorem

Theorem 3.1. For every f ∈ C∞
c (R3

+) the inequality,∫
R3
+

|∇f(x)|2 dx ≥ 1

4

∫
R3
+

|f(x)|
x23

dx+ S3

(∫
R3
+

|f(x)|6 dx
) 1

3

(36)

holds where S3 is the sharp Sobolev constant in three dimensions, i.e,

S3 = 3
(π
3

) 4
3

At first sight (36) seems to contradict the well known fact that Hardy’s inequal­
ity ∫

R3
+

|∇f(x)|2 dx ≥
∫
R3
+

1

4x2n
|f(x)|2 dx

as well as Sobolev’s inequality∫
R3
+

|∇f(x)|2 dx ≥ S3

(∫
R3
+

|f(x)|6
) 1

3

are sharp in the sense that in each the constant on the right side cannot be replaced
by a larger one. None of them, however, has a non­zero optimizer and the optimiz­
ing sequence in Hardy’s inequality are far from optimal for Sobolev’s inequality
and vice versa.

We denote
Rn

+ = {x = (x, y) : x ∈ Rn−1, y > 0, }

3.1 The Hyperbolic space Hn

In this section we study the hyperbolic space Hn. There are two standard models
for Hn, the first one is the half space model, Rn

+, equipped with the Riemannian
metric

ds2 =
dx2

x2n
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Under this model, we have

|∇Hnu|2 = x2n|∇u|2, dV = x−n
n dx

and the hyperbolic Laplacian is given by

∆Hnw = x2n∆w − (n− 2)xnwxn

where ∇ and ∆ denote the Euclidean gradient and Laplacian. The Riemannian
distance between two points x = (x′, xn), y = (y′, yn) is given by,

ρ(x, y) = 2 ln
( |x− y|+ |x− y|

2
√
xnyn

)
where y = (y′,−yn).
The second one is the unit ball model, where the unit ball B1 is equipped with the
Riemannian metric

ds2 =
(1− |x|2

2

)−2

dx2

Under this model we have,

|∇Hnu|2 =
(1− |x|2

2

)2

|∇w|2, dV =
(1− |x|2

2

)−n

dx

and the distance of a point x ∈ B1 to the origin is

ρ = ln
(1 + |x|
1− |x|

)
Proposition 2. (Poincaré inequality in Hn) Let n ≥ 2. For any w ∈ C∞

c (Hn)
there holds, ∫

Hn

|∇Hnw|2 dV ≥
(n− 1

2

)2
∫
Hn

w2 dV (37)

Moreover,
(

n−1
2

)2

is the best possible constant.

Proof. Using the half­space model,∫
Hn

|∇Hnw|2 dV −
(n− 1

2

)2
∫
Hn

w2 dV ≥ 0

∫
Rn
+

x2n|∇w|2x−n
n dx− (n− 1)2

4

∫
Rn
+

x−n
n w2 dx ≥ 0

∫
Rn
+

|∇w|2x2−n
n dx− (n− 1)2

4

∫
Rn
+

x−n
n w2 dx ≥ 0
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We now change the variables by, w = ux
n−2
2

n , we obtain that

∇w = x
n−2
2

n ∇u+ (n− 2)

2
ux

n−4
2

n en

Then,

|∇w|2 =
(
x

n−2
2

n ∇u+ (n− 2)

2
ux

n−4
2

n en

)2

= xn−2
n |∇u|2 + (n− 2)xn−3

n u∇u · en +
(n− 2)2

4
u2xn−4

n

We also have that, ∫
Rn
+

u2xn−2
n x−n

n dx =

∫
Rn
+

u2

x2n
dx

We now substitute,∫
Rn
+

|∇w|2x2−n
n

=

∫
Rn
+

|∇u|2x2−n
n xn−2

n dx+ (n− 2)

∫
Rn
+

x2−n
n xn−3

n u∇u · en dx

+
(n− 2)2

4

∫
Rn
+

x2−n
n u2xn−4

n dx

So,

∫
Rn
+

|∇w|2 dx− (n− 1)2

4

∫
Rn
+

x−n
n w2 dx

=

∫
Rn
+

|∇u|2 dx+
((n− 2)2

4
− (n− 1)2

4

)∫
Rn
+

u2

x2n
dx+ (n− 2)

∫
Rn
+

u

xn
∇u · en dx

=

∫
Rn
+

|∇u|2 dx+ 2n− 3

4

∫
Rn
+

u2

x2n
dx+ (n− 2)

∫
Rn
+

u

xn
∇u · en dx
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Since u ∈ C∞
c (Rn

+) we can use Green’s identity on the third integral,∫
Rn
+

u

xn
∇u · en dx =

1

2

∫
Rn
+

1

xn
∇u2 · en dx

=
1

2

∫
Rn
+

1

xn
(u2)xn dx =

1

2

∫
Rn
+

u2

x2n

Finally we conclude that,∫
Hn

|∇w|2 dV − (n− 1)2

4

∫
Hn

w2 dV

=

∫
Rn
+

|∇w|2x2−n
n dx− (n− 1)2

4

∫
Rn
+

x−n
n w2 dx

=

∫
Rn
+

|∇u|2 dx+ n− 2

2

∫
Rn
+

u2

x2n
dx+

(n− 2)2

4

∫
Rn
+

u2

x2n
dx− (n− 1)2

4

∫
Rn
+

u2

x2n

=

∫
Rn
+

|∇u|2 dx− 1

4

∫
Rn
+

u2

x2n

The sharpness of the constant n−1
4

follows easily from the sharpness of the Hardy
inequality ∫

Rn
+

|∇u|2 dx ≥ 1

4

∫
Rn
+

u2

x2n
dx

3.2 The Green Function
From now on we shall use the following notation,

Rn
+ = {x = (x, y) : x ∈ Rn−1, y > 0, }

Similarly we shall write

x′ = (x′, y′) : x′ ∈ Rn−1, y′ > 0

We start with the following heat type equation on the upper half space Rn
+.{

ut = ∆u+ 1
4y2
u

u(x, y, 0) = u0(x, y)
(38)
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Using the change of variables, u =
√
yg, in (38) we have

ut =
∂

∂t
(
√
yg(x, y, t)) =

√
ygt(x, y, t)

and
1

4y2
u =

1

4y2
(
√
yg(x, y, t)) =

g

4y
3
2

Also,

∆u = ∆(
√
yg(x, y, t))

=
4y(y(∆xg + gyy) + gy)− g

4y
3
2

=
4y2

4y
3
2

(∆xg + gyy) +
4ygy

4y
3
2

− g

4y
3
2

= y
1
2 (∆xg + gyy) + y−

1
2 gy −

g

4y
3
2

So we obtain that,

y
1
2 gt = y

1
2 (∆xg + gyy) + y−

1
2 gy −

g

4y
3
2

+
g

4y
3
2

gt = ∆xg + gyy +
1

y
gy

We conclude that the function g satisfies,{
gt = ∆xg + gyy +

1
y
gy

g(x, y, 0) = u0(x,y)√
y

= g0(x, y)
(39)

We observe that gyy + 1
y
gy is the Laplacian of a radial function in two dimensions

so the right hand side of the equation is the n+ 1 dimensional Laplacian. That is,

∆zg = gyy +
1

y
gy

where y = |z|, so g = g(y) is a radially symmetric function.
Therefore, we can also write (39) as,{

gt = ∆Rn+1g

g(x, z, 0) = g0(x, z) = g0(x, y) y = |z|
(40)
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Using the fundamental solution of the heat equation we get,

g(x, y, t) = (4πt)−
n+1
2

∫
Rn+1

e−
|x−x̃|2+|z−z̃|2

4t g0(x̃, z̃) dx̃

Using polar coordinates

z̃ = (r̃, ϕ̃) = (r̃ cos ϕ̃, r̃ sin ϕ̃), r = y, r̃ = ỹ

and

|z − z̃| = (r cosϕ− r̃ cos ϕ̃)2 + (r sinϕ− r̃ sin ϕ̃)2

= r2 + r̃2 − 2rr̃(cosϕ cos ϕ̃+ sinϕ sin ϕ̃)

= r2 + r̃2 − 2rr̃ cos(ϕ− ϕ̃)

Hence.

g(x, z, t) = (4πt)−
n+1
2

∫
Rn−1

e−
|x−x̃|2

4t

∫ ∞

ỹ=0

∫ 2π

ϕ̃=0

e−
y2+ỹ2

4t
+

yỹ cos(ϕ−ϕ̃)
2t ỹg0(x̃, ỹ) dx̃ dỹ dϕ̃

Substituting g = u√
y
and g0(x̃, ỹ) = f(x̃,ỹ)√

ỹ
, we obtain

u(x,y,t)√
y

= (4πt)−
n+1
2

∫
x̃∈Rn−1

∫ ∞

˜y=0

∫ 2π

ϕ̃

e−
|x−x̃|2

4t e−
y2+ỹ2

4t e
yỹ cos(ϕ−ϕ̃)

4t
f(x̃, ỹ)√

ỹ
ỹ dx̃ dỹ dϕ̃

u(x, y, t) = (4πt)−
n+1
2

∫
Rn
+

[ ∫ 2π

ϕ̃

e−
|x−x̃|2

4t e−
y2+ỹ2

4t e
yỹ cosϕ

2t

√
yỹ dϕ̃

]
f(x̃, ỹ) dx̃ dỹ

So, we conclude to the following formula for the solution of (38),

u(x, y, t) =

∫
Hn

G(x− x̃, y, ỹ; t)u0(x̃, ỹ) dx̃ dỹ (41)

where

G(x− x̃, y, ỹ; t) =
( 1

4πt

)n+1
2
√
yỹe−

(x−x̃)2+y2+ỹ2

4t

∫ 2π

0

e
yỹ
2t

cosϕ dϕ (42)

We can see that this is a heat kernel. As we previously defined the quadratic forms
and the Laplacian operator, we notice that L is a self­adjoint operator and it is
an extension of −∆ − 1

4y2
originally defined on smooth functions with compact

support in the three dimensional upper half space. We shall continue to use the
symbol L to denote −∆− 1

4y2
.
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Definition 3.1. We define the operatorL using Theorem 1.8 by using the following
quadratic form ∫

R3
+

|∇u|2 dx− 1

4

∫
R3
+

u2

y2
dx

and by the Hardy inequality∫
R3
+

|∇u|2 dx− 1

4

∫
R3
+

u2

y2
dx ≥ 0

We define s a positive real valued number such that s → L. The following
relation holds for every s ∈ R

s−
α
2 =

1

Γ(α
2
)

∫ ∞

0

t−
α−2
2 e−st dt

Also e−Lt a semigroup.
SinceL is a self adjoint operator, we can define the fractional powers ofLα, α ∈ R.

L−α
2 =

1

Γ(α
2
)

∫ ∞

0

t−
α−2
2 e−Lt dt

By the heat kernel we find the kernel of the fractional powers.

L−α
2 (x; ~x) =

1

Γ(α
2
)

∫ ∞

0

t
α
2G(x− x̃, y, ỹ; t)

1

t
dt

For all 0 < α < n+ 1 we compute,

L−α
2 (x; ~x) =

1

Γ(α
2
)

∫ ∞

0

∫ 2π

0

t
α
2

√
yỹe−

(x−x̃)2+y2+ỹ2

4t e
yỹ
2t

cosϕ1

t
dt dϕ

=
1

Γ(α
2
)
π−n+1

2

√
yỹ

∫ ∞

0

∫ 2π

0

t
α
2

t

1

(4t) n+1
2

e−
(x−x̃)2+y2+ỹ2+2yỹ cosϕ

4t dϕ dt

=
1

Γ(α
2
)
π−n+1

2

√
yỹ

∫ 2π

0

∫ ∞

0

t−
(n+1−α)−1

2

4
n+1
2

e−
(x−x̃)2+y2+ỹ+2yỹ cosϕ

4t dϕ dt

= 2−αΓ(
n+1−α

2
)

Γ(α
2
)

π−n+1
2

√
yỹ

∫ 2π

0

((x− x̃)2 + y2 + ỹ2 − 2yỹ cosϕ)−
n+1−α

2 dϕ

=: Φn,α(x; ~x)
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For 0 < α < n a similar expression holds for (−∆)(−
α
2
) on Rn. We can

compute the integral as

(−∆)−
α
2 (x; ~x)

= 2−απ−n
2
Γ(n−α

2
)

Γ(α
2
)
[(x− x̃)2 + (y − ỹ)2]−

n−α
2

=: Γ(
n− α

2
)Ψn,α(x; ~x)

Now we state some pointwise properties about the kernel Φn,α

Lemma 3.2. Let n ≥ 2 and n− 1 ≤ α < n we have that,

sup
l

Φn,α(x, y + l; x̃, ỹ + l) = lim
l→∞

Φn,α(x, y + l, x̃, ỹ + l) = Ψn,α(x; ~x)

In this case
Φn,α(x; ~x) = Ψn,α(x; ~x)F (A)

where
A =

√
yỹ

|x− x̃|
and F (A) is strictly increasing towards Γ(n−α

2
)

Proof. We will prove the above Lemma for n = 3 and α = 2. F is defined as

F (A) =
Γ(n+1−α

2
)

√
π

∫ π

−π

A

[1 + 2A2(1− cosϕ)]n+1−α
2

dϕ

All the statements are an immediate consequence of the following Lemma for
β = n+1−α

2

In the following Lemma we collect some facts about the function

F (A) =
Γ(β)√
π

∫ π

−π

A

(1 + 2A2(1− cosϕ))β
dϕ

where β = n+1−α
2

. All the statements are an immediate consequence of the fol­
lowing Lemma for β = n+1−α

2
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Lemma 3.3. For 1
2
< β ≤ 1, the function F (A) has the following asymptotics as

A→ ∞.
Then F (A) is strictly monotone increasing function and

lim
A→∞

F (A) = Γ(β − 1

2
)

We will prove this Lemma for β = 1

Proof. Since,

F (A) =
Γ(β)√
π
G(A)

where

G(A) =

∫ πA

−πA

1

(1 + 2A2(1− cos ( ϕ
A
)))β

dϕ

To see that the statement holds for β = 1 we have to perform the ϕ integration We
change the variables,

ϕ

A
= u and du =

1

A
dϕ

So,

G(A) =

∫ π

−π

A

1 + 2A2 − 2A2 cosu
du

= A

∫ π

−π

1

1 + 2A2 − 2A2 cosu
du

We change the variables again,

s = tan
u

2
and ds =

1

2
sec2(

u

2
) du

We substitute,

sinu =
2s

s2 + 1
, cosu =

1− s2

1 + s2
, and du =

2

s2 + 1
ds
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Therefore,

G(A) = A

∫ ∞

−∞

1

1 + 2A2 − 2A2(1−s2

1+s2
)

2

s2 + 1
ds

= 2A

∫ ∞

−∞

1

(s2 + 1)(1 + 2A2 − 2A2(1−s2

1+s2
))
ds

= 2A

∫ ∞

−∞

1

s2 + 1 + 2A2s2 + 2A2 − 2A2 + 2A2s2
ds

= 2A

∫ ∞

−∞

1

4A2s2 + s2 + 1
ds

= 2A

∫ ∞

−∞

1

(1 + 4A2)s2 + 1
ds

We finally change the variables

x =
√
1 + 4A2s and dx =

√
1 + 4A2ds

Since f(x) = 2A
(1+4A2)s2+1

is an even function and the interval (−∞,∞) is sym­
metric about 0. So,

G(A) = 2A

∫ ∞

−∞

1

x2 + 1

1√
1 + 4A2

dx

=
2A√

1 + 4A2

∫ ∞

0

2

x2 + 1
dx

=
2πA√
1 + 4A2

Hence,
G(A) =

2πA√
1 + 4A2

which is obviously strictly increasing function with A.

In the following section we shall only study the case for n = 3 and α = 2 By
the Lemmas above we conclude to the following estimate that

Corollary 3. Τhe integral kernel of the operator L−1 is less than or equal to the
integral kernel of the operator (−∆)−1

Φn,α(x; ~x) ≤ Γ(
n− α

2
)Ψn,α(x; ~x)
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3.3 Lp­estimates for fractional powers
Theorem 3.4. Let n = 3 and α = 2 then the operator,

(−∆− 1

4y2
)−1

is bounded from L
6
5 (R3

+) to L6(R3
+)

Moreover, ∫
R3
+

(|∇f |2 − 1

4x23
|f |2) dx ≥ C

(∫
R3
+

|f |6 dx
) 1

3 (43)

and

C =
1

3π
3

√
2

π

is the sharp constant.

Proof. Let f, g be functions in R3
+. Then, for f ∈ Dom(L) and g ∈ L2(R3

+)

〈 f, g〉2 = 〈L
1
2f, L− 1

2 g〉2

≤ 〈L
1
2f, L

1
2f〉〈L− 1

2 g, L− 1
2 g〉

= 〈Lf, f〉〈L−1g, g〉

We extend the functions by zero in R3 and by Lemma 3.3 we have

〈 f, g〉2 ≤ 〈Lf, f〉L2(R3
+)〈 (−∆)−1g, g〉L2(R3)

Then, we obtain a pointwise estimate of the inequality using the inequality of the
Green functions

〈Lg, g〉L2(R3
+) ≤ 〈 (−∆)−1g, g〉L2(R3)

Moreover, we recall the Sobolev inequality in R3∫
R3

|∇w|2 dx ≥ S3‖w‖2L6(R3)

Equivalently,
〈−∆w,w〉L2(R3) ≥ S3‖w‖2L6(R3)
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Setting −∆w = g

〈 g, (−∆)−1g〉 ≥ S3‖(−∆)−1g‖2L6(R3)

By Hölder’s inequality with conjugate exponents 6 and 6
5
, we have,

‖(−∆)−1g‖2L6(R3) ≤ 1

S3

〈 g, (−∆)−1g〉

≤ 1

S3

‖(−∆)−1g‖L6(R3)‖g‖L 6
5 (R3)

Therefore
‖(−∆)−1g‖L6(R3) ≤

1

S3

‖g‖
L

6
5 (R3)

Hence,

〈 f, g〉2 ≤ 〈Lf, f〉‖(−∆)−1g‖6‖g‖L 6
5 (R3)

≤ 1

S3

〈Lf, f〉‖g‖2
L

6
5 (R3)

, g ∈ L
6
5 (R3)

〈 f, g〉2

‖g‖2
L

6
5 (R3)

≤ 1

S3

〈Lf, f〉

Finally, taking supremum on the left­hand side we have,

sup
g∈L

6
5 (R3)

〈 f, g〉2

‖g‖2
L

6
5 (R3)

≤ 1

S3

〈Lf, f〉 ⇐⇒ ‖f‖26 ≤
1

S3

〈Lf, f〉

Therefore
〈Lf, f〉 ≥ S3‖f‖2L6(R3

+)
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