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Introduction

1 Introduction

Cancer is a disease that causes millions of deaths annually. Cancer goes back
from the ancient times; at some point it was considered to be contagious [1].
We now know that cancers develops due to the accumulation of genetic and
epigenetic alterations over somatic cells (i.e cells that don’t pass to offsprings)
[2].

Genetic mutations (or alterations) alter the DNA sequence of the cell and can
be caused by a number of things, such as tobacco and other substances, called
carcinogens [3], or even caused by viruses like HPV [4] and Epstein-Barr virus
[5].

Mutations can be categorized according to the magnitude of the DNA sequence
they alter. If a mutation affects a small amount of the DNA sequence, then the
mutation is called point-wise. If the mutation is of a bigger scale, the mutation
is called chromosomal.

Mutations can initiate or confer to cancer, by altering the function of proteins.
Proteins are molecules essential for the function and structure of the organism
and they are coded by parts of the DNA called genes. A number of genes is
involved in a procedure called cell cycle (or cell division), where the cell replicates
itself. Therefore, tumorigenesis can be caused by cells that continuously undergo
the cell cycle, when they shouldn’t, due to mutations that affect the functionality
of proteins involved during the cell cycle.

However, not all mutations are able to confer to cancer. In order for the mutated
cells to divide uncontrollably, several defense mechanisms of cell division must
be bypassed. For example, it must evade cell destruction (apoptosis), sustain
growth-promoting and avoid growth-suppressing signals [6]. If one or more of
the aforementioned properties are present within a cell through a mutation of
a gene, then the gene is called driver gene. Driver genes play a natural role
over cancer initiation and/or progression. Genes that don’t confer to cancer
initiation and/or progression, through mutations, are called passengers [7].

The search of driver genes is crucial to the development of therapeutic plans and
to understand cancer, in general [8, 9, 10]. Genomic analysis, to identify driver
genes, can be performed either with respect to the organ, where the cancer
initiated (primary site) or to the specific tissue of the organ (cell line). Current
methods of driver gene identification rely, in general, on finding specific driver
genes or cancer driver modules. The tools used for the identification task can
be a number of molecular data such as gene expression data and protein-protein
interactions networks.

Until 2002, more than 100 oncogenes have been discovered [2]. Next generation
sequencing has made able the launch of projects such as International Cancer
Genome Consortium (ICGC) [11] and The Cancer Genome Atlas (TCGA) [12]
in an effort to systematically catalogue somatic mutations [7]. Research over
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Introduction

these and other datasets has been carried out in order to distinguish driver from
passenger events (see Identification of cancer drivers).

We must note that epigenetic mutations can also initiate and/or progress cancer.
Epigenetic mutations, such as DNA methylation [13, 14], don’t alter the DNA
sequence affected. Apart from epigenetic mutations, genes that don’t code for
proteins (non-coding genes) can also be implicated in cancer tumorigenesis [2].

Here, Network Graph Theory is exploited for the search of cancer drivers, com-
bining mathematical concepts of graph theory and clustering as a means to
recover modules containing genes and cancer patients.

Networks arise everywhere in real world. From people [15] to medicine [16] and
chemistry [17], a variety of networks can be described. Any set of objects and
interactions between them can naturally be expressed as a graph.

Graphs are a useful tool to describe data. A graph is defined by its nodes (or
vertices) and edges (or linkes), while the meaning of each graph depends on the
nature of the study. For example, the structure of a molecule can be represented
as a graph that contains the atoms (nodes) and lines (edges) between them if
the atoms bond [18]. Another example is the map of a country where cities
(nodes) are connected with each other through roads (edges).

A number of variables can be defined in networks and graphs alike, such as
the density and the diameter of the network. Node-specific variables, like the
centralities, can also be defined. These measures can be used as a means to
understand the topology of the networks and also create computer-generated
graphs similar to the graphs of study.

One of the problems of interest over a network is to reveal its underlying struc-
ture, if such exist. Clustering analysis is one of the branches of machine learning
that offers techniques to solve the issue. Clustering over networks is based on
the idea that a set of nodes who share more links among them than with the
rest of the nodes, present a kind of independence with respect to the rest of
the network. These nodes can form a cluster (also called community, module or
group).

The definition of a group (or community, cluster) though is vague, leading to
various criteria upon when two nodes must belong to a certain cluster [19]. Given
that degree of freedom, a number of algorithms have been proposed to address
the problem. They can either exploit the overall structure of the network or
reside in the dynamics of the network.

One of the most famous tools in clustering is an index called modularity (see
Modularity). The core of the index is the comparison of every edge of the
network with a corresponding null model. The closer it is to one, the better the
partition of the network that the index corresponds to. In that way, algorithms
based on modularity are meant to maximize it. Apart from modularity, statistics
can also be used to recover clusters. Currently, only one algorithm is based
solely on statistics, called OSLOM (see OSLOM). OSLOM and methods based
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Introduction

on modularity have in common the involvement of null models. On the other
hand, algorithms based on the dynamics of the network, don’t make use of null
models. These algorithms can be based, for example, in the flow of the network,
which is defined by the edges of the network. Here, INFOMAP is an algorithm
that makes use of flow dynamics and is further analyzed in INFOMAP.

In the present project, Chapter 2 contains the basics of molecular biology and
cancer, in order for the reader to understand cancer’s initiation and progression.
Chapter 3 is divided in two major parts. The first part, contains the funda-
mentals of Graph Theory, while the second part contains the fundamentals of
Network Theory and Clustering over networks. Examples of algorithms and the
mathematics behind them are also present in the same chapter. Chapter 4, 5
and 6 present the implementation of clustering in a gene-patient network. The
network is built using TCGA somatic mutations data for only primary samples,
as a mean to recover cancer driver modules. Specifically, Chapter 4 contains the
methods used, Chapter 5 contains the results and their analysis, while Chapter
6 is a discussion regarding the results, along with some conclusions.

The graphs of Chapter 3 in Graph Theory, are made using [20]. Graphs of
Chapter 3 in Network Theory, were made using Gephi [21] and python’s library
Networkx [22]. The code used for this project is fully written in Python [23],
while third party applications, such as MODULAR [24], OSLOM2 [25], and the
python-integrated version of INFOMAP [26], were also utilized. It must also
be pointed out that the mathematics and definitions over Graph and Network
Theory are mainly derived from [27, 28, 29].
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Molecular Biology and Cancer

2 Molecular Biology and Cancer

2.1 DNA

Every living organism consists of smaller units, the cells, which are also referred
to as the “building blocks of life”. Each cell contains a variety of organelles, one
of which is the nucleus (see Figure 1a). Inside the nucleus, the information for
the structure, functioning and reproduction of the being is stored in the form of
DNA. The same structure is observed in every living organism including some
viruses [30]. Apart from the DNA in the nucleus, there exist the mitochondrial
DNA (mtDNA). [31].

DNA, or else, Deoxyribonucleic acid is a molecule in the form of a double helix,
with two strands. Each strand is composed of a polynucleotide chain. This chain
is formed by 4 specific bases, namely, Adenine (A), Thymine (T), Cytosine (C),
Guanine (G). Adenine pairs with Thymine, Cytosine pairs with Guanine and
all these base pairs along with a sugar-phosphate backbone, ultimately form the
DNA (see Figure 1b) [32]. DNA sequences are called genes (see Figure 2a) and
genes packed together accompanied by some proteins form the chromosomes
(see Figure 2b). Chromosomes can be seen only through the process of cell di-
vision. They consist of two identical parts, the chromatids, that intersect at the
centromere. Finally, the protection of the terminal regions of the chromosome,
reside in the telomeres [33].

(a) (b)

Figure 1: Illustrations of (a) an animal cell and (b) the double helix form of
DNA. Credits to the National Human Genome Research Institute.
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Molecular Biology and Cancer 2.1 DNA

2.1.1 Genes

Genes, can be classified in two basic categories, the functional and the non-
functional genes ( also called “junk-DNA”). The functional genes will be seg-
mented in two more groups. The protein-encoding and the non-coding genes.

(a) (b)

Figure 2: Illustrations of (a) genes packing up to create chromosomes and (b)
the structure of the chromosomes. Credits to the National Human Genome
Research Institute.

Protein-Encoding Regions Protein-encoding genes, via two processes, make
up proteins, which are essential for the structure, function, and regulation of
the body’s tissues and organs. During the first process, called transcription, a
molecule, called mRNA, is formed. Its aim is to transfer the genetic informa-
tion of the gene outside of the nucleus through the cytoplasm where it will be
bounded by organelles, called ribosomes, in order to initiate translation, where
the protein will be formed (see Figure 4). Not all of the functional protein-
encoding gene information will be carried out by the mRNA. Exons, parts of
the gene, will be the ones to be translated. Exons, in the genetic sequence of the
gene, are separated by intervening sections, called introns, through a procedure,
called splicing (see Figure 3) [31]. In addition, the mRNA is read in triplets,
called codons, and there exist a “start” and a “stop” codon.

Figure 3: Illustration of Splicing. Credits to National Human Genome Research
Institute.
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Molecular Biology and Cancer 2.2 Mutations

Figure 4: Illustration of Translation. Credits to National Human Genome Re-
search Institute.

Non-Coding Regions
Non-coding regions are the parts of the DNA sequence that don’t code for
proteins. These regions can provide with RNA units such as the tRNAs and
rRNAs, which are essential parts of the translation process. Some regions can
also serve as binding sites for proteins, that regulate a gene’s expression. These
regions are namely: promoters, enhancers, silencers and insulators. Other non-
coding regions can be part of the structure of the chromosome, such as the
telomeres, which play a crucial role on the integrity of the chromosome [34].

The non-coding RNA subgroups are multiple, as seen in Figure 5. We note that
these regions were previously thought as non-functional DNA, and there is still
“dark matter genome” yet to be fully understood [35].

2.2 Mutations

A mutation (also called alteration) is an event where the DNA sequence of a
cell is altered. A number of reasons may cause mutations. Exposure to UV
radiation, tobacco and errors in the replication of the DNA are some of them.
If the cell afflicted is a germ cell, meaning that the DNA of the cell can pass to
the offspring, the mutation is called germline. In all other cases, the mutation is
called somatic. A mutation can also be point-wise or chromosomal, depending
on the magnitude of the nucleotides it affects. A point-wise mutation affects a
small amount of bases, while a chromosomal mutation affects either the structure
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Molecular Biology and Cancer 2.2 Mutations

Figure 5: Classification of Non-Coding RNA. Credits to [36].

of a chromosome or the number of chromosomes [37, 38, 39].

Base pair substitutions refer to a change from a base pair to another. When
this happens, a codon is altered. The altered codon can either code for the
same amino-acid as the initial (silent mutation), or can code for a different
(missense mutation) one. If a different amino-acid is coded, the effect on the
overall functionality of the protein may (conservable mutation) or may not (non-
conservable mutation) change. A nonsense mutation is a result of a codon
conversion to a stop codon, which will produce a smaller polypeptide than the
normal one, usually causing the protein to be non-functional. Examples of such
mutations can be seen in Figure 6.

Due to a frameshift mutation a base pair may be added (insertion) or deleted
(deletion). Frameshift mutations may result in the formation of new stop
codons, reducing the size of the protein, often making the final product not
functional. Examples of such mutations can be seen in Figure 7.

Chromosomal mutations can be of structural or of numerical nature. Structural
chromosomal mutations affect the arrangement of the chromosomes and can
either occur to a single chromosome (Intrachromosomal) or to a combination
of them (Interchromosomal). In the first case, a segment of the chromosome
may be deleted (Deletion), duplicated (Duplication), inverted 180 angles (In-
version) or moved from one location to another (Translocation), in which case
there is no loss of genetic information. When the translocation occurs in a
single chromosome it is called non-reciprocal. If the translocation involves two
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Molecular Biology and Cancer 2.2 Mutations

Figure 6: Examples of Point Mutations. This figure illustrates how the final
protein is afflicted with respect to the normal protein (top) after a missense
mutation (center) or after a nonsense mutation (bottom). Credits to the Na-
tional Human Genome Research Institute.

Figure 7: Example of Frameshift Mutation (Insertion) and how it affects the
final protein with respect to the normal one of Figure 6. Credits to National
Human Genome Research Institute. (Figure is cropped)

chromosomes and parts of the chromosomes are exchanged, the translocation is
called reciprocal. Examples of such mutations can be seen in Figure 8.

Copy Number Alteration (CNA) refers to the mutation where part of the DNA
sequence appears more (or less) times than it should. Various examples of CNAs
can be viewed in Figure 9.

As far as the numerical chromosomal mutations are concerned, Aneuploidy is
the mutational event where a chromosome appears more (or less) times than it
should. Figure 10 is an example of trisomy 21, where chromosome 21 appears
three times rather than two. [40].
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Molecular Biology and Cancer 2.2 Mutations

Figure 8: Mutations affecting the structure of the chromosome. From left to
right: Deletion, Duplication, Inversion, Substitution, Reciprocal Translocation.
Credits to the National Human Genome Research Institute.

Figure 9: Illustration of Copy Number Alterations. In this figure, a variety of
cases where a genetic sequence appears more than is illustrated. Credits to the
National Human Genome Research Institute.

Figure 10: Example of Aneuploidy case, trisomy 21, where chromosome 21
appears 3 times.
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Molecular Biology and Cancer 2.3 Cell Cycle

2.3 Cell Cycle

Now that the basic elements of genetics such as the DNA, it’s structure and
its potential alterations, are presented, we recall that cancer is a disease mainly
caused by accumulation of mutations over somatic cells that lead the cell to
divide uncontrollably. Examining the cell division procedure is, consequently,
an important element to understand the disease.

A cell may, or may not divide. Some types of cells divide rapidly, and in these
cases, the daughter cells (i.e. the cells that occur after cell division) may im-
mediately undergo another round of cell division. For instance, many cell types
in an early embryo divide rapidly, and so do cells in a tumor. Others, like
neurons, cells that conduct signals, or liver cells that store carbohydrates, are
not actively preparing to divide. The decision whether the cell enters the cycle
or not, depends on extracellular signals (see Figure 11). These signals may be
amino-acids, lipids etc. and they are detected by specific receptors of the cell.
Receptors are chemical structures composed of proteins [40, 41].

Figure 11: Illustration of cell-to-cell communication. The “sender” cell (to the
left) produces molecules that are binded by the “receiver” cell (to the right),
causing the gene expression of the “receiver” cell. Taken from [42].

The stages (see Figure 12) of the procedure and some examples of the mecha-
nisms in each stage, are presented in Table 1.

G1 phase:
‚ the cell grows physically larger
‚ organelles are copied

S phase:
‚ the cell synthesizes a complete
copy of the DNA

G2 phase:
‚ the cell grows more
‚ makes proteins and organelles
‚ begins to reorganize its contents

M phase:
‚the cell divides its copied DNA
and cytoplasm

Table 1: Phases of the cell cycle and examples of the mechanisms taking place
in each phase.

15



Molecular Biology and Cancer 2.4 Cancer Initiation and Progression

The G1, S and G2 are also called Gap 1, Synthesize and Gap 2 phases. The
interphase consists of the three of them, while the M is called the Mitotic phase.
Between these events there are 3 major checkpoints to maintain the normal
outcome of the process

1. G1/S checkpoint:

• Cell size

• Nutrients

• Growth factors

• DNA damage

2. G2/M checkpoint:

• DNA damage

• DNA replication complete-
ness

3. M/G1 (Spindle) checkpoint:

• Chromosome attachment to
spindle at the opposite poles.

Figure 12: The cell cycle. Taken from
[43]. (Figure is cropped)

2.4 Cancer Initiation and Progression

Mutations are capable of the onset of cancer. They are able to alter or even
eliminate the gene’s function. These events may lead to unrestrained cell prolif-
eration and, eventually, tumorigenesis. Two very common examples are proto-
oncogenes and tumor-suppressor genes. Proto-oncogenes promote growth of the
cell and cell division. On the other hand, tumor-suppressor genes slow down cell
division, repair DNA damages etc. Mutations of the first category may cause
false signaling on cells that normally shouldn’t divide. On the other hand, in-
trachromosomal deletion, for example, may cause loss of function (LOF) of the
tumor-suppressor genes which does not allow the process to end when a problem
occurs [40].

Not all mutations, though, are able to make a cell cancerous. There are muta-
tions that are beneficial to humans, such as those that make us more protected
against certain diseases, while there are others that are aloof on the overall
health of the organism. All of the above mutations are called passengers, while
the rest are called drivers. The number of drivers is significantly less than the
number of passengers and the total number of drivers required for abnormal cell
proliferation varies with cancer type [2, 7].

Cells have to harbor certain properties in order to be considered cancerous
because they would have to avoid several checkpoints as seen in Section Cell
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Molecular Biology and Cancer 2.5 Cancer on cellular level

Cycle. These properties are called the “Hallmarks of Cancer” [6] and are namely
the following:

• Self-sufficiency in growth signals

• Insensitivity to anti-growth
signals

• Evasion of programmed cell death
(Apoptosis)

• Limitless replicative potential

• Sustained Angiogenesis

• Metastasis

Therefore, the most likely scenario is that a driver mutation occurs, which is the
one that initiates cancer. From thereafter, the cell seems to acquire a “mutator
phenotype”, making it prone to mutations. This can also be viewed as an
evolutionary process in which the cell acquires the rest of the properties it
needs in order to survive and evade other tissues and organs [7].

2.5 Cancer on cellular level

Observing cancer on cellular level under the microscope, we notice two things.
First, the amount of cells in the tissue is larger than normal, which is called
hyperplasia. Second, the shape of the cells may vary from cell to cell, which is
called dysplasia. See Figure 13 [44].

Figure 13: Different types of cells from normal to cancerous. Credits to the
National Cancer Institute.

Moreover, cancer cells via cell-to-cell interactions may be able to turn healthy
neighbor cells into cancerous ones. This can happen because cancer cells seem to
produce more exosomes than normal cells. Exosomes are vesicles with special-
ized function, such as intercellular signaling. Exposure to the cancer exosomes
can alter gene expression in the normal cells, causing them to be cancerous as
well [45].

2.6 Gene Expression

The expression of a gene is sometimes regulated by another gene. Therefore,
mutations of one gene may affect the outcome of other genes called downstream
genes. Genes, like TP53, may code for proteins called transcription factors,
whose use is to bind to DNA sequences (enhancer or promoter sequences) and
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Molecular Biology and Cancer 2.7 DNA Methylation

therefore manage the expression of the downstream genes. Thus, genes that
do not carry DNA alterations can have an oncogenic or tumor suppressing role
[46].

2.7 DNA Methylation

Genetic as well as epigenetic alterations may play a crucial role over tumorigen-
esis. Such variation is the DNA methylation in which, methyl groups are added
to DNA (in cytosine or adenine). Similar to gene expression, hypermethylation
can lead to over-expression of the genes as hypomethylation, which can lead to
transcriptional silency. These events can enhance the oncogenic role of the gene
affected, or can suppress it’s function. Dnmt genes (a family of genes) are the
ones responsible for the catalysis of DNA methylation [13, 14].

2.8 SMGs, Pathways and Therapeutics

Over the years, different methods have been used in order to better understand
and, of course, confront cancer. Cancer genomics exploit mutational data to
come across Significant Mutated Genes (SMGs). Studies have been conducted
not only to find specific genes, but also to find the factors associated with cancer
(e.g. tobacco), the type of mutations, the number of the drivers, etc. One of the
elements, essential for therapeutic methods, seems to be the pursuit of specific
pathways in which SMGs take place. An example of the TP53 pathway is
illustrated in Figure 14. We must note that the TP53 pathway in Figure 14 is
altered due to mutation over MDM2 gene of a breast cancer patient labeled as
“TCGA-3C-AAAU”.

Figure 14: TP53 pathway of patient TCGA-3C-AAAU. The red color in the
MDM2 gene of the pathway indicates that the sample, derived from the TCGA-
3C-AAAU patient, carries a mutation in MDM2. Taken from cBioPortal.org.
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Molecular Biology and Cancer 2.9 Primary Site over Cell Line

2.9 Primary Site over Cell Line

Various mutations that affect the same target cell result in different tumour
types, causing intertumoral heterogeneity between different cancer types. Mu-
tational differences between cancers are not only limited in the disease site.
Certain cancer types may be divided in subtypes, according to the genetic al-
terations of definite cells in the tissue that account as cell of origin [47]. In breast
cancer, for example, levels of HER2 gene expression lead to the taxonomy of
the cancer in four molecular subtypes [48]. Diverse subgroups are observed even
within the subtype itself [49]. Intratumoral heterogeneity is also present, since
only a fraction of the tumour’s cells will be mutated. Other reasons causing
intratumoral heterogeneity inlcude the contamination by normal cells [50].

Data of somatic mutations in tumour samples is, therefore, very sparse. This
high heterogeneity makes difficult the task of recognizing low frequency muta-
tions, as it reduces the levels of the desired signal from driver mutations. The
presence of both driver and passenger mutations in the genome further reduces
signal to noise ratio [48]. In addition, the mutational profile of patients with
tumours from the same cancer subtype rarely have the same alterations [51].
Studies combining somatic mutations along with other data have revealed sub-
types that, in general, include samples of various cancers per cohort [48, 52]. As
pointed out in [52], cell-of-origin may not fully determine tumor classification,
but even so, influence it. Other studies have also focused on subtype identifi-
cation with a priori knowledge of the primary site [53, 54, 55, 56]. Moreover,
knowledge of primary site is essential for a suitable therapeutic plan, espe-
cially in metastatic patients where the tissue of origin remains unknown, as
2 ´ 4% of cancers are characterized as “Cancers of Unknown Primary” [57, 58].
The applications of analysis of somatic alterations with respect to the disease
site also extend to a rapid diagnosis and treatment through identification of
disease-specific mutations found in cell-free circulating tumor DNA (ctDNA)
and circulating tumor cells (CTCs) [59] through blood or urine sequencing [60].

2.10 Identification of cancer drivers

Computational tools have been developed which separate driver from passenger
events and can generally be divided in three categories (as listed here [61]):
single cancer driver classification tools, cancer driver module and personalized
classification tools. Thus, single genes can be correlated to cancer types as
well as groups of them. The functional impact or the structural consequence
of the mutations [62, 63, 64], gene expression data [65] and protein-to-protein
interaction networks [66] are some of the few genomic and molecular data that
algorithms can utilize in order to assess the significance of mutational events.
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Network Graph Theory

3 Network Graph Theory

3.1 Graph Theory

3.1.1 Definition

A graph G “ tE, V u is a set of two sets, the edges E and the nodes V . The edges
connect two nodes and two nodes connected together are called endpoints. The
set of Neighbors Npuq of a node u contains all the nodes linked with it. Edges
can be directed or undirected. Undirected edges usually reveal a correlation of
the two nodes, while directed edges indicate a one-way connection of an endpoint
to another. Similarly, graphs are called undirected or directed. Directions aside,
the two sets of a graph may be accompanied by a third, ordered one, W , which
assigns a weight to each edge. Its physical meaning depends on the context
of the graph. For example, in a graph of cities (nodes) and connecting roads
between the cities (edges), the weight can indicate the distance between the
cities. The graph is then defined as G “ tE, V,W u. Examples of graphs can be
seen in Figure 15.

Furthermore, an edge may connect more than two nodes with each other, in
which case the graph is called hypergraph. Many edges can also exist between
two endpoints, forming a multigraph. Lastly, the graph may contain self-loops.

We define a subgraph G1 “ tE1, V 1u where V 1 Ď V , E1 Ď E and we say G1 Ď G.
Graph G is called supergraph.

(a) (b) (c)

Figure 15: Examples of (a) undirected graph , (b) a directed graph and (c) a
weighted graph.

20



Network Graph Theory 3.1 Graph Theory

3.1.2 Adjacency Matrix

In every graph we can assign an adjacency matrix A. Each element aij of A
indicates whether node i is connected with node j. If i is connected to j, then
aij “ 1. Moreover, if the graph is weighted, then aij “ wij where wij is the
weight of the edge between the nodes. If the nodes aren’t linked, aij “ 0.
In the undirected case, the matrix is symmetric because aij “ aji, which is
not necessarily true in a directed graph. Also, the diagonal has zero values to
every element if no self-loops exist. Tables 2a, 2b and 2c present the adjacency
matrices of the graphs presented in Figs. 16a, 16b, and 16c respectively.

(a) (b) (c)

Figure 16: Examples of (a) an undirected graph, (b) a weighted graph and (c)
of a directed graph.

A B C D E
A 0 1 1 1 0
B 1 0 0 1 1
C 1 0 0 1 0
D 1 1 1 0 0
E 0 1 0 0 0

(a)

A B C D E
A 0 3 7 5 0
B 3 0 0 1 11
C 7 0 0 7 0
D 5 1 7 0 0
E 0 11 0 0 0

(b)

A B C D E
A 0 0 0 0 0
B 1 0 0 0 0
C 1 0 0 1 0
D 1 1 0 0 0
E 0 1 0 0 0

(c)

Table 2: Adjacency matrices of (a) graph of Figure 16a , (b) graph of Figure
16b and (c) graph of Figure 16c.

3.1.3 Link List

Apart from the adjacency matrix, another representation, which will be ex-
ploited here, is the link list as mentioned in Infomap Online. This link-list
consists of three columns: the “Source”, the “Target” and the “Weight”. If
the network is unweighted, every element of the “Weight” column is equal to
one. If the network is undirected it makes no difference whether a node is the
“Source” or the “Target” except for specific cases, such as the exploitation of
the bipartiness of the network in algorithms (see Classes). An example of a link
list is presented in Table 3.
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Source Target Weight
A B 3
A C 7
A D 5
B D 1
B E 11
C D 7

Table 3: An example of a link-list of the graph in Figure 16b.

3.1.4 Isomorphism

Let G1 and G2 be two graphs. If there exist a one-one correspondence (bijection)
ϕ which maps one edge of a graph to exactly one edge of the other, then the
graphs are called isomorphic. Specifically, if e P E1 then ϕpeq P E2. This means
that a graph can be visualized in many ways by changing the position of a node
in multiple ways. An example of isomorphic graphs is in Figure 17.

Figure 17: Two isomorphic graphs, where edges {A,B}, {A,C}, {C,D} and
{D,B} correspond to edges {4,5}, {4,7}, {7,6} and {6,5} accordingly.

3.2 Definitions

A walk is defined as an ordered sequence of nodes where each node is linked
with its previous and next. If nodes appear only once, then it’s called a path
and if edges appear only once it’s called a trail. If the first and the last node are
the same, it’s called a cycle. If the graph contains a cycle it’s called cyclic and if
not, it’s called acyclic. Moreover, if for every two nodes in an undirected graph,
there exists a walk that connects those nodes, the graph is connected and if the
graph is directed it’s called strongly connected. Examples of the aforementioned
definitions are presented in Figure 18
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• walk: tA,B,D,E,Cu

• path: tB,D,E,Cu

• trail: tA,B,C,Eu

• cycle: tB,D,E,C,Bu

(a) (b)

Figure 18: Examples of node sequences for the graph presented in (b).

3.2.1 Distance Matrix

Distance matrix is the matrix whose elements represent the minimum distance
between the nodes. For example, if the pi, jq element equals 5 then the length
of the shortest path that connects i to j is 5. If the graph is weighted, then the
distance will be the sum of the weights of the edges of the shortest path. An
example of distance matrix is presented in Figure 19.

A B C D E
A 0 3 7 4 14
B 3 0 8 1 11
C 7 8 0 7 19
D 4 1 7 0 12
E 14 11 19 12 0

(a) (b)

Figure 19: A weighted graph (b) and its distance matrix (a).

3.2.2 Classes

There are various graphs of certain form that can be categorized as explained
below:

• If a randomly-chosen node connects with any other node in the graph the

graph is called complete (see Figure 20a). By definition, exactly NpN´1q

2
edges exist within the graph. A complete subgraph is called a clique.

• If a graph is acyclic, it’s called a forest and a connected forest is called a
tree (see Figure 20b).

• If the nodes can be divided into two sets where there exist no edge between
nodes of the same set, then the graph is called bipartite (see Figure 20c).
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(a)
(b)

(c)

Figure 20: Examples of graphs that belong to a certain class. (a) is a complete
graph. (b) is a tree. (c) is a bipartite graph.

3.3 Network Theory

3.3.1 Clustering Analysis

Clustering Analysis (or data segmentation) is a branch of Machine Learning
which aims to find a partition that is most appropriate to depict the network in
clusters (also called groups, modules or communities). The network clustering
problem is an ill-defined problem as there is no specific way to define if two
nodes of the network should belong in the same module. In that way, algorithms
cannot be easily compared with each other. The general idea, though, is that
the more similar the elements of the network are, based on a similarity (or
dissimilarity) measure, the more likely it is that they will belong to the same
cluster in the final partition. What we present below is the formulation of the
above definitions.

Mathematically defining clustering Let X “ tx1, x2, ..., xmu be the set of
the m nodes of the network. The information over the data set may be provided
in two ways.

First, as in many Machine Learning applications, a matrix of size m ˆ n is uti-
lized, where n is the number of features for each of the m objects. Then,
each row will correspond to the embedded representation of the nodes, i.e
xi “ pxi1 , xi2 , ..., xinq. The vector is also called feature vector of xi or im-
age of xi.
Apart from the embedded representation of the nodes, an m ˆ m matrix may
carry out the information of the network which will be based on the relation
of the nodes. Specifically, let S be the matrix that makes for that relational
representation, then, each element sij of S is indicative of the similarity or dis-
similarity (based on the structure of S) of the objects xi, . . . , xj .
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The clusters of X, C “ tC1, C2, . . . , Cku, where k ă m, formed usually have the
following properties:

• Each cluster must not be empty: Ci ‰ H.

• Each object must be contained in exactly one cluster: Cj1 XCj2 “ H, j1 ‰

j2.

• Each object must belong to a cluster: Yk
j“1Cj “ X.

Some of the properties can be overlooked. For example, we shall see later that
OSLOM (see OSLOM) may not assign nodes that don’t fulfill certain properties,
in a specific module. OSLOM results may also contain overlapping modules
(i.e modules that share nodes). INFOMAP (see INFOMAP) may also lead in
overlapping modules. UPGMA (see UPGMA), on the other hand, maintains all
three properties.

It becomes clear that the community detection problem has many degrees of
freedom, that vary from the choice of the measure of similarity as well as the
nature of the clusters.

Types of Clusters In general, there are three families of clusters: the over-
lapping clusters, the non-overlapping clusters and the hierarchical clusters. In
the overlapping clusters, there exist nodes that belong to more than one cluster.
The clustering, then, is characterized as soft, and the clusters are called covers
(see Figure 21a). On the other hand, non-overlapping clusters are called parti-
tions, where no node belongs in more than one cluster (see Figure 21b). The
clustering in this case is called hard. Finally, hierarchical clusters occur when
there are clusters inside other clusters (see 21c). A method can find hierarchical
clusters either through a “bottom-up” or a “top-down” search approach, which
defines the method as agglomerative or divisive.

(a) (b) (c)

Figure 21: Examples of graph clustering. (a) is soft clustering. (b) is hard
clustering. (c) is hierarchical clustering.

Variables In this part of the theory, more variables will be defined, similar to
Graph Theory’s definitions (see Definitions). Figures 22, 24, 25 and 26 illustrate
a network with adrenocortical carcinoma patients and genes as nodes. Each
edge has a patient and a gene as endpoints and its physical meaning is that
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this patient carries a mutation over this gene. The graph of the network is, by
definition, bipartite.

Degree We define the degree degpuq of the node u as the number of the
edges that contain u as an endpoint. We can also define the number dpGq :“
1

|V |

ř

υPV dpυq as the average degree of the graph G. The degree of a node is

further explained in paragraph Degree Centrality.

Diameter-Shortest Path We denote the distance δpi, jq to be the shortest
path from node i to node j and if such path doesn’t exist, then we write δpi, jq “

8. Diameter is the maximum of the minimum distances and we write, D “

maxδminpi, jq, where δminpi, jq is the minimum distance between i and j. The

average path length is also defined as, δ “ 2
NpN´1

řN
i“1

řN
j“1 δminpi, jq. An

example of the shortest path between two nodes is given in Figure 22.

Figure 22: The highlighted pathway is the shortest path of the graph from gene
CDKN2A to gene GATA1 and is the following:
CDNK2A Ñ TCGA-OR-A5JM Ñ CTNBB1 Ñ TCGA-OR-A5K9 Ñ SETD2
Ñ TCGA-OR-A5JA Ñ GATA1.

Density The density of the graph is defined as the ratio of the edges in the
network over the number of all the possible edges that can take place in the
graph. Mathematically, the density is written as D “ 2E

NpN´1q
. An example of

a dense graph is given in Figure 23a, and an example of a sparse graph is given
in Figure 23b.
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(a)
(b)

Figure 23: Examples of: (a) a dense graph with 50 nodes, 997 edges and density
of 0.814, and (b) A sparse graph with 50 nodes, 57 edges and density of 0.047.

Degree Centrality Degree Centrality shows how “important” a node is via
its number of interactions. The higher the degree centrality of the node u, the
higher the number of edges that have node u as an endpoint. Specifically, if the
graph is undirected, then the degree centrality is equal to the degree Cdegpuq

as mentioned in Degree. If the graph is directed, Cdegpuq can be separated
in Cdegout

puq and deginpuq where, Cdegout
puq is the number of edges that start

from u and Cdeginpuq is the number of edges that end up to u. We can also
define Cdegpuq “ Cdegout

puq ` deginpuq. An example of nodes with high degree
centrality is given in Figure 24 and Table 4.

Node Degree
TCGA-OR-A5KB 18

TP53 17
TCGA-PK-A5HB 16

CTNNB1 14

Table 4: The 4 nodes with
the highest degree centrality of
graph in Figure 24.

Figure 24: Acc network as described in Vari-
ables. The bigger the size of the node, the
higher it’s degree centrality.

27



Network Graph Theory 3.3 Network Theory

Betweeness Centrality Betweeness centrality is a measure that indicates
how much a certain node serves as a “bridge” between other nodes. We denote
all the possible paths between i,j nodes,as σij and σijpwq those that pass from

node w. Then, Cbpwq “
ř

pi,jqPV pwq

σijpwq

σij
, where V pwq is the ordered pair of

all the pi, jq elements of V pGq ˆ V pGq such that i,j are all distinct. Cbpwq is
the betweeness centrality of node w. An example of nodes with high betweeness
centrality is given in Figure 25 and Table 5.

Node Betweeness
Centrality

TP53 3730.96
TCGA-OR-
A5KB

2106.94

TCGA-OR-
A5J5

1733.75

TCGA-OR-
A5JA

1705.30

Table 5: The 4 nodes with the
highest betweeness centrality of
graph in Figure 25.

Figure 25: Acc network as described in Vari-
ables. The bigger the size of the node, the
higher it’s betweeness centrality.

Closeness Centrality Closeness centrality of the node u is the variable cor-
responsive of how close node u is with respect to the rest of the nodes in the
network. It is defined as Cclopiq “ 1

ř|V |

jPV distpi,jq
, where distpi, jq is the shortest

path from i to j. It can also be defined as Cclopiq “ N´1
ř|V |

jPV distpi,jq
where N is the

total amount of nodes in the network. An example of nodes with high closeness
centrality is given in Figure 26 and Table 6.

Node Closeness
Centrality

HIST1H3B 1.0
TCGA-OR-
A5J1

1.0

JAK1 1.0
TCGA-OR-
A5LC

1.0

Table 6: The 4 nodes with the
highest closeness centrality of
graph in Figure 26.

Figure 26: Acc network as described in Vari-
ables. The bigger the size of the node, the
higher it’s closeness centrality.
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3.3.2 Network Topology

The topology of networks may vary from network to network depending on the
nature of the network. Network topology can be of great importance, especially
in community detection.

Scale-Free Networks The underlying structure of scale-free networks re-
mains the same even if the network grows in size. They exhibit a power law
distribution P pkq „ k´γ , where γ is called degree exponent and varies between
2 and 3 (see Figure 27a). In scale-free networks, a small number of nodes with
really high degree centrality can be found. A famous example of the real world
is the World Wide Web (WWW), where only a fraction of websites (nodes) have
most of the visits (edges) with respect to the total amount of websites. Below,
Figure 27b and Figure 27c represent the gene and sample degree distributions
of the curated TCGA cancer network which will later be explained in Methods.

(a)

(b) (c)

Figure 27: Power-law distribution (e´γ) for various exponentials in (a). Degree
distribution of (b) gene nodes and (c) patient nodes of the cancer gene-patient
network that will be presented in Methods.
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3.3.3 Random Graphs

In order to study networks, random graphs can be created. They are computer-
generated models, which are built to describe the global structure of networks
and they can be based on the degree distribution.

Erdos-Renyi The Erdos-Renyi model refers to a network of nodes that have
the same probability of forming a connection with other nodes. It was the first
model to be introduced. In this model, a node will link with any other node
with a known probability p. Thus, given that the network has n nodes, the
degree distribution of each node is binomial with parameters pn ´ 1, pq. Let
z “ pn ´ 1qp. Then p “ z

n´1 , and p can be approximated by z
n for large n.

Through this notation, the degree distribution is Poisson with parameter z and

therefore, P pdegpuq “ kq “ e´z z´k

k! [67].

For p=1, all of the npn´1q

2 possible edges will be formed and the network will
be represented as a complete graph. The smaller the probability p is,the less
cohesive the graph will be (see 28) [68].

(a) p “ 0.1 (b) p “ 0.5 (c) p “ 0.9

Figure 28: Erdos-Renyi Graphs for 50 nodes, created in the networkx python’s
library, for: (a) p “ 0.1, (b) p “ 0.5 and (c) p “ 0.9.

Chung-Lu However, we expect, in some networks, that the degree of the
nodes will not likely be the same for every node (see Scale-Free Networks). The
Chung-Lu model is a model built based on an expected degree sequence. The
degree sequence is denoted by a vector w “ pw1, w2, ..., wnqT which each wi

element is representative of the degree of node i. Then the probability of i
being connected to j is proportional to wi and wj . Specifically, Pij “

wiwj
řn

k“1 wk

[69].
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(a) max degree = 10
#edges = 117

(b) max degree = 50
#edges = 551

(c) max degree = 100
#edges = 1316

Figure 29: Chung-Lu random graphs of 50 nodes created in the networkx
python’s library with random degree sequence where the maximum degree of
the nodes was: (a) 10, (b) 50 and (c) 100.

3.3.4 Validation

We recall that there is not a specific trait that the nodes of a network must
have in order to form a clusters. The general notion, though, is that the nodes
of a cluster are more connected with each other, rather than with the rest of
the network. This leads to several approximations of the community detection
issue and, occasionally, several partitions for the same network. Nevertheless,
there are, in general, two ways of evaluating a graph clustering algorithm. Im-
plementing the algorithm over Artificial Benchmarks and over Metadata.

Artificial Benchmarks Artificial Benchmarks are computer-generated mod-
els with known clusters. Two of the most famous Artificial Benchmarks are the
Girvan-Newman Benchmark and the LFR benchmark.

Girvan-Newman Benchmark Girvan-Newman artificial benchmark con-
sists of 128 nodes divided in 4 groups of 32 nodes each. Expected internal and
external degrees are defined as ă kin ą“ pinnc and ă kout ą“ poutncpq ´ 1q,
where pin and pout are the probabilities of edges being formed within a cluster
and between clusters, accordingly. nc indicates the size of the clusters and q the
number of clusters. In Girvan-Newman’s case, nc “ 32 and q “ 4. If ă kout ą

is smaller than 8, the groups are well defined and the algorithms should recover
them (see Figure 30).

While this benchmark is the most famous one, it doesn’t correspond to real-
world cases because the nodes of the benchmark have more or less the same
degree and this is something not expected, for example, in scale-free networks
(see Scale-Free Networks) [19].

LFR Benchmark A variant of GN benchmark, introduced by Lancichinetti-
Fortunato-Radicchi (LFR), maintains the heterogeneity observed in networks.
This artificial network is built as follows: The degrees of the nodes and the
community sizes follow a power law distribution with degree exponent γ and β
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(a) pout “ 1{p32 ˚ 3q (b) pout “ 1{32

Figure 30: Girvan - Newman benchmarks for 128 nodes and probability of an
edge being formed between two nodes that belong to different clusters (pout) of:
(a) pout “ 1{p32 ˚ 3q and (b) pout “ 1{32.

accordingly. The degrees of the nodes are restrained between kmin and kmax.
The community sizes are restrained between smin and smax. These extremes
ensure the average degree of the nodes is ă k ą while for the whole communities
the following inequalities take place:

smin ą kmin and smax ą kmax. (1)

Both inequalities of 1 ensure that every node will be included in a cluster (see
Figure 31). Moreover, the mixing parameter µC of the subgraph C is defined

as µC “
kext
C

kC
where kextC is the sum of the external connections of C with other

nodes of the network. Each node will share a fraction 1 ´ µ with nodes within
the same community and µ with the rest of the nodes. The desired µ can be
chosen so as to be approximated by the ratio of the internal and external degrees
of each node [19].

Figure 31: LFR Benchmark with 250 nodes where the power law exponent of
the degree distribution equals to 3.
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Metadata Metadata consist of real-world networks whose structure is known.
That means that we know how the network is divided in clusters and therefore,
metadata can be used for algorithmical validation [19].

The dataset of Zackary karate club is one of the most famous examples. It
was created through a real-case scenario where the instructor and the owner
of the karate club had a conflict and the club was divided in two groups. The
network is defined if we consider each person of the club as a node and the
interactions between them as edges. In Figure 32, the two large nodes refer to
the instructor (blue node) and the owner (purple node), while the color of each
node is correspondive of the side each member took. This particular partition
was recovered by OSLOM2 implementation, which we shall describe later in
3.4.2.

However, it is posed that metadata might not be a better indicative than the
artificial benchmarks due to various reasons. Some of them are human errors
when handling the data and/or the irrelevance of the network’s structure with
the structure of the metadata [70]. Zackary’s dataset was download by Konect
[71].

Figure 32: Partition found by OSLOM2 for Zackary’s karate club metadata.
The large blue node corresponds to instructor of the club while the large purple
node to its president.

3.3.5 Methods

Community detection algorithms can be, in general, separated in three main
categories. Those that rely on the structure of the network, the ones that use
statistics to acquire clusters and, finally, those that are based on the dynamics
of the network.

Modularity Random graphs can be used as a baseline for comparison with
real cases, serving as null models. Various null models, like the ones described
in Random Graphs, may be used in order to compare the edges of the network
with the edges of the null models. This is the general idea behind the index

33



Network Graph Theory 3.3 Network Theory

called modularity. Modularity is formally defined as:

Q “
1

2m

ÿ

ij

pAij ´ PijqδpCi, Cjq, (2)

where m is the number of edges of the network, Aij is the adjacency matrix
of the network, Pij is the adjacency matrix of the null model, and δ is the
Kronecker delta for Ci,Cj communities. Lastly, the matrix Bij “ Aij ´ Pij is
called Modularity matrix. Defining S “ rs1|s2|...|scs where c is the number of
clusters, S is a nˆ c matrix, where n is the number of the nodes of the network.
Each element sij states that the node i is assigned to the cluster j. Maintaining
the 2nd property of the clusters’ definition (i.e each object must be contained
in exactly one cluster) we derive that S is orthogonal and the equation 2 can
now be rewritten as:

Q “
1

2m
TrSTBS. (3)

Equation 3 is an alternative way to compute the modularity index.

Modularity has also been extended to other forms, more suitable to the natural
structure of the network [19, 72, 73]. For example, in a bipartite network (see
Classes), edges between nodes of the same set of the network may appear in the
null model, which will have no physical meaning. Thus, we would like to exclude
these nodes and bring Q in a specific form, suitable for bipartite networks. That
is exactly what Barber’s modularity QB does. The matrices A,P are rewritten
in a block diagonal form and the modularity matrix then becomes:

B̃ “

ˆ

Opxp
˜Bpxq

pB̃T qqxp Oqxq

˙

.

One can then compute Barber’s modularity index from the formula deriving
from 2:

Q “
1

m

p
ÿ

i“1

q
ÿ

j“1

B̃ijδpgi, hjq. (4)

The p, q quantities refer to the number of nodes of the two bipartite sets respec-
tively and gi P 1, 2, ...c refers to the cluster where node i belongs. Finally. we
note that hj “ gj`p.

In any form of the modularity index, the higher the value of the index is, the
more likely that the clusters recovered are “non-random”. Specifically, the val-
ues of the index range from r´0.5, 1s, with the following physical meaning:

Q “

$

’

&

’

%

ă 0,partition found is worst than a random network,

“ 0,network is random, one partition constitutes it,

« 1, correct split of modules.

(5)

Modularity is an NP-hard problem, meaning that there is no algorithm solving
the problem in polynomial time [74, 19]. Thus, every maximization of modular-
ity will be correspondive of a local maxima. Furthermore, between two values
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of the index, the higher one may not always correspond to the best partition
[75]. Therefore, searching for a partition occuring through the maximization
of modularity, might be a naive approach. Moreover modularity also involves
a null model. It has been shown that modularity itself cannot be representa-
tive of the final partition’s quality, in terms of partitioning, as high modularity
may also occur due to random fluctuations in random networks [76]. Finally,
we must note that small scale clusters may not appear in the final partition,
through modularity maximization, because the modularity index is dependent
on the number m of the edges of the network. This problem is also known as
the resolution limit [75, 19].

Several of these issues are solved through ensemble and consensus clustering
(further explained in Ensemble and Consensus Clustering). For example, in
order to find out if the partition does appear to have a modular structure, the
modularity index of the network must be compared to the modularity index
of a null model of the same size. Furthermore, consensus clustering can be
implemented to combine several solutions that correspond to local maxima to
get a more stable solution. Finally, to overcome the network’s size dependence,
Zhang and Moore treated modularity as a Hamiltonian and combining modu-
larity optimization along with an hierarchical algorithm, they recovered lower
level partitions [77].

Dynamics Community detection algorithms may also rely on dynamic pro-
cesses in order to split the network in modules. One example of such an al-
gorithm is Infomap, which is mentioned later in this project (see INFOMAP).
Infomap is based in flow dynamics (i.e the dynamics of a random walker) and the
minization of an index called Map Equation. Another example of an algorithm
based in dynamics is spin dynamics, which resides in spin-spin interactions and
the minimization of a hamiltonian.

3.3.6 Ensemble and Consensus Clustering

In the next session four algorithms will be fully presented. Three of them are
based on the structure or the statistics of the network (MODULAR, UPGMA,
OSLOM2) and one on its flow (INFOMAP). Simulated annealing is the default
algorithmical choice for bipartite networks of MODULAR [24]. This method
derives from statistical mechanics. UPGMA [78] is established by the distance
between the nodes. OSLOM2 [25] is the only algorithm so far based on statistical
significance. INFOMAP [26] is based on random walks and minimum description
length statistics.

We shall see later that all but one (UPGMA) out of the four are of stochastic
nature. This means that the final partition is biased by the initial seed, to
some extent. This lead us to adopt the notion of consensus clustering, where
one algorithm is used more than one times. The final partitions are combined,
forming an object, such as a new “consensus” adjacency matrix, which will,
ultimately, lead to a more stable result [79]. Furthermore the notion of ensem-
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ble clustering will be adopted. Ensemble clustering, like ensemble learning in
machine learning, can be acquired by combining two or more algorithms which
divide the network with different criteria and offer a more stable solution [29].

3.4 Algorithms

3.4.1 MODULAR

MODULAR is a software for community detection based on modularity opti-
mization. In unipartite networks, Q modularity index of Newman and Girvan
is used, while in bipartite networks there is a choice between the Q and QB

(Barber’s modularity index). Clustering can occur in five available options [24]:

1. Fast Greedy Algorithm (FG)

2. Simulated Annealing Algorithm (SA)

3. Spectral Partitioning (SP)

4. Hybrid of SA,SP

5. Hybrid of SA-FG

In addition, MODULAR has two preinstalled choices regarding the null models:

1. Erdos-Renyi Model:

#

P pi, jq “ E
RC if R ‰ C,

P pi, jq “ E
RpR´1q

if R “ C.

2. Null Model 2: P pi, jq “ 1
2 pkiPR

C `
kjPC

R q.

The numbers R, C indicate the number of the nodes in each set of the bipartite
network. If the network in unipartite, then R “ C. Also, kiPR and kiPC indicate
the number of edges of node i in R and in C correspondingly.

Fast Greedy The Fast Greedy algorithm at first, as proposed by Clauset,
Newman, and Moore, computes the modularity as if every single node is a
cluster itself. For every pair of clusters, the modularity that will occur if two
clusters merge, is calculated [80].

∆QC
ci,cj “ QpG, C ´ ci ´ cj ` pci Y cjqq ´ QpG, Cq. (6)

The maximum of those ∆Q is chosen and the algorithm continues until no merge
can increase the modularity.
Wakita and Tsurumi, improved the computational efficiency of the algorithm

by adding a ratio between the pairs ci, cj . Specifically, the minp
|ci|

|cj |
,

|cj |

|ci|
q is

calculated and the pair pci, cjq that returns the maxt∆QC
ci,cj ¨ ratiopci, cjqu is

joined [81].
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Simulated Annealing Simulated Annealing is a stochastic optimization tech-
nique. Here the objective is to maximize the modularity and for that reason,
the cost is set as C “ ´M , where M is the modularity index. The algorithm
randomly exchanges nodes, splits or merges modules and then it computes the
modularity. If the result is greater than before, then, this result will be the
current solution. If not, this result will be accepted with a probability based on
both the previous and the new modularity. Specifically:

p “

#

1 if Cf ď Ci,

expt´
Cf ´Ci

T u if Cf ą Ci.
(7)

where Cf is the cost after the update and Ci is the cost before the update.
The parameter T is called temperature, which gradually decreases. As the
temperature decreases, the probability to accept a worse solution as itself, also
decreases. In that way, the algorithm avoids getting trapped in a local maxima.
The process continues until a given number of iterations is reached, or when the
temperature exceeds a certain threshold [82].

Spectral Partitioning Spectral Partitioning exploits the eigenvectors of ma-
trices correspondive of the network, such as the modularity matrix, the Lapla-
cian, the adjacency matrix, etc. Specifically, let λ1 be the highest positive
eigenvector of the matrix and u1 the eigenvector, corresponding to λ1. Then,
we define s as the index vector through it elements si as follows:

si “

#

`1 if u
p1q

i ě 0,

´1 if u
p1q

i ă 0.
(8)

The network is now divided in two groups according to the sign of the s vector,
as described in equation 8. The sequence is repeated until no submatrix has a
positive eigenvalue. This process usually results in more than two groups [83].

3.4.2 OSLOM

OSLOM is the first method capable of detecting communities via statistical
significance. It compares the network with a random one given the statistics
described in the next paragraph. Through it’s function, OSLOM is capable of
handling directed graphs, weighted graphs, reveal hierarchies, overlapping clus-
ters and community dynamics, presenting a great flexibility over the network’s
structure [25].

Statistics of OSLOM Let C be a subgraph of the original graph G and let
i R C. We define kini ,kouti as the neighbors of i in C and in GzC accordingly.
Similarly the degree mC can be separated in min

C ,mout
C , while the internal degree

of GzrC Y is is set as M˚. Then the probability (along with a normalization
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factor A) of vertex i having kini neighbors is:

ppkini |i, C,Gq “ A
2´kin

i

kini !kouti !pmout
C ´ kini q!pM˚{2q!

. (9)

The cumulative probability rpkini q “
řki

j“kin
i
ppj|i, C,Gq of the vertex i to have

kini or more edges inside C is estimated. On each vertex i, ri is drawn in a
random way from the interval rrpkini q, rpkini ` 1qs, in order to compare vertices
with various degrees. Note that introducing r, the stochastic element of the
process is revealed. The variable r, will then be used to determine if a topo-
logical relation between the external vertex i and C exists*. That leads to the
computation of the order statistic distributions of r. Given that r „ Up0, 1q,
the cumulative distribution of r1 “ mintru in the null model is given by

Ω1prq “ P pr1 ă rq “ 1 ´ p1 ´ rqN´nc . (10)

In general for rank q:

Ωqprq “ ppr1 ă rq “

N´nc
ÿ

i“q

ˆ

N ´ nc

i

˙

xip1 ´ xqN´nc´i. (11)

Ωq is an indicator of the compatibility of the external vertices to the null model.
Defining cm “ minqtΩprqqu among all the neighbors of C, the cumulative dis-
tribution P pcm ă xq “ ϕpx,N ´ ncq is calculated and we will call ϕpx,N ´ ncq

as the score of the cluster C.

*Note: Vertices belonging to the same cluster tend to be connected and so, the
statistics cannot be calculated.

Single Cluster Analysis Single Cluster Analysis is a two-step method used
to “Clean-up” a given cluster via the aforementioned score ϕ. In order for
OSLOM to implement Single Cluster Analysis, a certain threshold P is given
as input.

1. For each vertex connected to C, Ω1prq is calculated and, if ϕ “ ϕpΩ1prq, N´

ncq ă P then the vertex is added in C. If ϕ ą P we look for the second
best,third best, etc until for some q, ϕ ă P . In that case, all the q vertices
are included in C. Otherwise (ϕ ă P for no vertices) C remains the same.
In any case, C is altered to C 1 (in the last case C “ C 1).

2. For each vertex i of C, ri is calculated with respect to C 1ztiu. The vertex
with the highest ri is chosen to be excluded from the cluster, in order to
perform the first step for C 1ztiu. If i is significant, it’s being added again
in C 1. If not, the procedure repeats for the next worse vertex. Finally a
cluster C is formed, that will contain only significant vertices.
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Due to the stochastic element of the methodology (bootstrap of r), the Single
Cluster Analysis is performed several times. If, for a given module C, there
exists a non empty subgraph more than half of the repeats, it’s considered to be
significant. The nodes that C will contain will have to appear more than half of
the times, with respect to the times C was not empty: p

#vertex appears
#cluster non empty q ą 0.5

Full Network Analysis OSLOM performs clustering in the following man-
ner:

1. OSLOM randomly chooses single vertices and considers them to be clus-
ters, it adds the q most significant neighbors of each single-vertex cluster,
where q is taken from an arbitary distribution (default option for q is a
power law distribution with exponent ´3).

2. It performs Single Cluster Analysis in every cluster. This is repeated
several times, resulting in covers of the network with modules that may
or may not overlap. This procedure stops when similar covers are found
again and again.

3. To choose between Ck clusters or their union Cu, the clusters are “cleaned-
up“ within Cu, resulting in C

1

k. Then, if | Yi C
1

i| ą P2|Cu| (default option
of P2 is for 0.7), Cu is discarded.

4. OSLOM has found minimal clusters (with no significant internal form)
and converts them to supervertices, where the weights of the superedges
linking them are calculated based on the number of links between the
initial groups. The steps above are repeated in the supernetwork to reveal
the hierarchical structure of the network.

For graphs with a large amount of nodes, OSLOM can be used at a second
stage, reading an initial partition recovered by a quicker algorithm.

It must be noted that OSLOM2 (used in this project) is significantly faster than
the original OSLOM algorithm. That is because, for finding modules it exploits
the nearest neighbor algorithms, similar to the Luvain method, as noted here
[84]. From now on, OSLOM2 rather than OSLOM will be referenced.

3.4.3 UPGMA

UPGMA, or else Unweighted Pair Group Method with Arithmetic Mean, is a
simple agglomerative hierarchical clustering method. The algorithm is based
on the average dissimilarity dpG,Hq “ 1

NGNH

ř

iPG

ř

i1
PH dii1 between the two

clusters G,H, exploiting the distance matrix Dij [78]
More specifically, UPGMA works as follows:

1. Find the smallest element of the distance matrix.

2. Merge the two nodes in one cluster and calculate branches.

3. Update the matrix .
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4. Repeat until two clusters are left (or else perform (#nodes - 1) iterations).

An illustration is given in Table 7 along with the final dendrogram in Figure 33
of the result:

A B C D E
A 2 4 6 4
B 8 4 8
C 10 4
D 6
E

(a) Minimum value: (A,B).
Elements update:
pDpA,Cq ` DpB,Cqq{2 “ 6
pDpA,Dq ` DpB,Dqq{2 “ 5
pDpA,Eq ` DpB,Eqq{2 “ 4

(A,B) C D E
(A,B) 6 5 4

C 10 4
D 6
E

(b) Minimum value: (C,E).
Elements update:
pDpC, pA,Bqq ` DpE, pA,Bqqq{2 “ 5
pDpC,Dq ` DpE,Dq{2 “ 8

(A,B) (C,E) D
(A,B) 5 5
(C,E) 8

D

(c) Minimum value: ((A,B),D).
Elements update:
pDppA,Bq, pC,Eqq `DpD, pC,Eqqq{2 “ 7.5

((A,B),D) (C,E)
((A,B),D) 7.5

(C,E)

(d) Final iteration. Algorithm stops re-
sulting in the following:
(((A,B),D),(C,E)).

Table 7: UPGMA implementation over the distance matrix (a). Note that this
matrix is correspondive of an undirected graph with no self-loops. Thus, the
matrix is symmetrical, the entries of the diagonal are 0, and the upper diagonal
part of the matrix is the only one needed. Below each table, the minimum value
of each matrix is mentioned (highlighted in red) and the values of the updated
matrix are calculated (highlighted in green).

Figure 33: The resulting dendrogram of UPGMA implementation over the dis-
tance matrix 7a.
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3.4.4 INFOMAP

Minimum description length statistics (MDL) provide the guidelines to find a
solution to the community detection problem through the flow of the information
in the network. To represent that flow, INFOMAP exploits random walks and
represents their trace with a compressed message, combining information theory
along with stochastic processes. The heart of the software is to be able to
describe the locations of random walks as efficient as possible, depicting the
underlying structure of the network. Specifically, the map equation is the one
that handles the duality of the detection of the modular nature of the network
and the minimization of the description length of the steps of a random walker.

Coding Structure In order to capture the movements of the random walker,
a codeword is in each node. This codeword is used to describe the location
of the node. Specifically, Huffman codes are used [85], assigning short or long
codewords to each of them according to the average visit frequency of an infinite
length random walk. Short codewords correspond to common locations and
long ones correspond to more rare locations. A codebook consists of all the
codeworks.
Pursuing the concept that modules appear to have a certain level of autonomy,
with respect to the rest of the network, due to high intramodular links, the
random walker will tend to stay longer in a group before exiting. Thus, rather
than a single codebook for the whole network, several codebooks are created,
enabling the reusing of short codewords. Consequently the overall description
length required is reduced. To do so, an index codebook is created in order to
define when the walker exits a module in order to enter another.
As far as data compression is concerned, the Shannon’s source coding theorems
will provide a lower bound for the average description length of a codeword [86]:

LpXq “ HpXq “ ´
ÿ

pilog2ppiq. (12)

Equation 12 is the entropy of the random variable X with n states and frequen-
cies pi. Code lengths are measured in bits and thus log2 is used. Later, X will
be replaced by the distribution where the pi will be the frequencies of the visits
of the nodes.

The Map Equation

LpMq “ qñHpQq `

m
ÿ

i“1

piœHpPiq. (13)

The first term of equation 13 corresponds to the average number of bits used to
describe inter-modular movements. The second term is indicative of the intra-
modular movements.
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Individually:
given that the network is partitioned in m modules, the probability of the ran-
dom walker to switch modules (per-step probability) is:

qñ “

m
ÿ

j“1

qñ, (14)

while the following equation represents the amount of time the codebook of
module i is used. It consists of the sum of the steady state distribution for all
α nodes within the modules plus the probability it exits the module:

pœ “ qñ `
ÿ

αPi

pα. (15)

The other two quantities presented in the map equation are the entropies of the
index and module i codebook accordingly:

HpQq “

m
ÿ

i“1

qñ
řm

j“1 qñ

logp
qñ

řm
j“1 qñ

q, (16)

HpPiq “
qiñ

qiñ `
ř

βPi pβ
logp

qiñ
qiñ `

ř

βPi pβ
q`

ÿ

αPi

pα
qiñ `

ř

βPi pβ
logp

pα
qiñ `

ř

βPi pβ
q.

(17)

Infomap is implemented in C++ and it firstly uses a greedy approach to min-
imize the map equation. The steady state visit frequency for each node is
calculated, each node consists of a unique module and the exit probabilities
are calculated. Then, similar to MODULAR’s Fast Greedy algorithm, the two
modules that, when combined in one group decrease the map equation more
efficiently, are merged. The process continues until module combinations re-
sult in higher than the previous state description length. After that, simulated
annealing is used to further reduce the result [26].
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4 Methods

4.1 Data Preprocessing

In order to build a gene-patient network, data of TCGA-PanCancer Atlas
project were downloaded from cBioPortal [87, 88] referring to 29 cancer types
as listed in Table 8. Only primary samples and somatic mutations were ex-
ploited out of the data. Also, if a sample had over 3000 mutations (with respect
to every gene of the data) and thus, being a hypermutator, then this sample
was excluded. The 198 genes included derived from [89]. The only mutations
taken into consideration were missense, nonsense, nonstop, frameshifts, in frame
deletions and insertions, and mutations occuring in splice sites.

When the initial data were curated, they were exported to another folder, which
was the one used to build the network. The data-cleanup procedure of prepro-
cessing is also described in Algorithm 1.

Algorithm 1: Data Preprocessing

Input: path raw = Path where raw cBioPortal data is stored
1 path fixed = path where curated files will be
2 for folder in path raw do

3 df = mutation file
4 df = remove hypermutators(threshold = 3000)
5 df = keep genes(df)
6 df = keep certain mutations(df)
7 df = remove metastatic samples(df)
8 df = [“Gene”,“Patient”,“Mutation”] form
9 export df to path fixed

The adjacency matrix taiju of the network will be binary, where “1” will indicate
the existance of at least one of the aforementioned mutations in gene i of patient
j. “0”, on the other hand, will be indicative of the absence of such mutations.
The size of the biadjacency matrix was 198ˆ8386 (198 genes and 8386 patients).

Due to the large size of the network, a smaller subnetwork containing the 6
cancer types with the most patients in the curated dataset was used to derive
preliminary results of the methodology over clustering. The size of the biadja-
cency matrix of the subnetwork was 198 ˆ 3402 (198 genes and 3402 patients),
which is significantly smaller than the 198 ˆ 8386 network.

4.2 Clustering Analysis

Ensemble and Consensus Clustering MODULAR’s simulated annealing
and INFOMAP were the algorithms used to obtain an initial partition. Both
algorithms are implemented based on the ensemble and consensus clustering
approaches as referred in Ensemble and Consensus Clustering. As far as the
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consensus part of the methods, Monti’s algorithm was implemented [90]. That
is, for every partition h recovered by either of the algorithms, we define the
matrix Mh and the pi, jq pair of the matrix Mh was calculated as follows:

Mhpi, jq “

#

1 if items i and j belong to the same cluster,

0 otherwise.
(18)

Then, every matrix Mh was used with the final M matrix being defined as:

M “

ř

h M
hpi, jq

total amount of partitions.
(19)

INFOMAP-OSLOM2 pipeline INFOMAP uses the link list of the network
and runs in matter of a few seconds but the number of clusters varies each time
due to the stochasticity of the algorithm [26]. This fact justifies the use of
consensus clustering, where the consensus matrix MI was obtained (through
Monti’s consensus clustering) after 200 INFOMAP runs. The options of the
INFOMAP were set to get a “two-level” partition over an “undirected” graph
(unipartite version of INFOMAP). MI was weighted with elements varying be-
tween 0 and 1. All elements whose values were below 0.4 were zeroed and the
final matrix was converted into an unweighted (binary) matrix M˚

I . INFOMAP
was run again once over the link list of matrix M˚

I , with the same options as
the ones of the 200 runs to get the partition Cinfo

OSLOM2 was implemented in the partition Cinfo and excluded the non statis-
tical significant communities that had a P-value lower than 0.05, which resulted
in nodes being left unassigned to clusters and the final partition C˚

info. To ob-
tain a full network partition, OSLOM2 provides a result where no node is left
unassigned with the cost of bypassing the P-value threshold. This result won’t
be used here, due to low amount of MODULAR results and the low amount
of threshold used to define a significant cluster with respect to each cancer
type. Nevertheless, the contribution of statistics in the result gives grounds
for OSLOM2 implementation and thus, ensemble clustering. The INFOMAP-
OSLOM2 methodology is presented in Algorithm 2.

The ensemble approach of INFOMAP-OSLOM2 was compared to the INFOMAP
approach by implementing both approaches in the subnetwork.

MODULAR-UPGMA-OSLOM2 pipeline As far as MODULAR is con-
cerned, we recall that simulated annealing is the default method used for com-
munity detection over bipartite networks, which is computationally expensive.
For a single outcome over the 29-types network, one day (more or less) was
required get one partition of the network and the modularities for the two null
models. For the subnetwork, the amount of time required was significantly less,
at about 3 hours each. All the results (45 partitions for the network and 100 for
the subnetwork) were exploited through consensus clustering (Monti’s consensus
clustering) to get the consensus matrix M˚

M .
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Then, in order to overcome the resolution limit of modularity as an index of
reference (see Ensemble and Consensus Clustering), an hierarchical clustering
method was utilized. Consensus clustering matrix M˚

M represents a similarity
matrix of the network (like an adjacency matrix [29]) and thus, 1 ´ M˚

M will
serve as a dissimilarity matrix [90] (like a distance matrix [29]). Note that M˚

M

is weighted. In that manner, UPGMA was implemented over 1 ´ M˚
M . The

dendogram produced had several branches. For each branch, nodes below that
branch would be colored in a specific color (indicative of the module they belong
via UPGMA implementation), while nodes above that branch would be colored
with the same color, “grey” for example. Each “grey” node would consist of a
single-node module. Nodes below the branch that are of the same color would
belong in the same module. For every possible branch, the Barber’s modularity
index (with respect to the original network) was calculated. The branch, whose
correspondive partition maximized the index was considered as the optimal
branch. Let C˚

mod be the partition that corresponds to the optimal branch.

Finally, OSLOM2 was implemented over the Cmod partition, just like in the
INFOMAP consensus pipeline to get the final partition C˚

mod. The MODULAR-
UPGMA-OSLOM2 methodology is presented in Algorithm 3.

Algorithm 2: INFOMAP + OSLOM2

Input: link list = Link list of network
Output: Partition of infomap - consensus + OSLOM2

1 G = Multigraph()
2 options infomap = two level - undirected
3 options oslom = lowest level partition - p value ă 0.05
4 for times in range(200) do

5 result = run infomap (link list)
6 G = add to consensus (G, result)

7 G “ G{200
8 G “ GrG ą 0.4s

9 consensus link list = link list of adjacency matrix of G
10 result consensus = run infomap(consensus link list, options infomap)
11 result infomap oslom = run oslom(result consensus, options oslom)
12 return result infomap oslom
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Algorithm 3: MODULAR + UPGMA + OSLOM2

Input: adj = Adjacency matrix of network
Output: Partition of MODULAR + UPGMA + OSLOM2

1 options oslom = lowest level partition - p value ă 0.05
2 G = Multigraph()
3 for times in range(200) do

4 result = run modular (adj,options = default)
5 G = add to consensus (G,result)

6 G “ G{200
7 distance matrix = 1 - G
8 Z = linkage(distance matrix, method = ’average’)
9 branches = possible distances of nodes

10 upgma all = []
11 for branch in branches do

12 dn = dendrogram(cut point = branch)
13 result temp = result based on leaves’ colors
14 modularity upgma = barber modularity(result temp)
15 upgma all.append(branch,modularity)

16 optimal branch = branch that maximized modularity
17 dn final = dendrogram(cut point = optimal branch)
18 result modular upgma = result based on leaves’ colors
19 result modular upgma oslom = run oslom(result upgma)
20 return result modular upgma oslom

4.3 Modular Structure

In order to ensure that both the network (29 cancer types) and the subnet-
work (6 cancer types) had modular structures and clustering could indeed by
implemented, data of MODULAR runs were used. Specifically, we recall that
in each run of the simulated annealing algorithm of MODULAR, the algorithm
was also used on the two null models that MODULAR provides. After all runs,
the modularities of the network (or the subnetwork) and the modularites of the
two null models consisted of three separate vectors. These vectors were used to
perform Welch’s t-test:

t “
X̃1 ´ X̃2

b

σ2
X̃1

` σ2
X̃2

. (20)

The terms X̃ and σ2
X̃

are the mean and variance of the modularities. X̃1 for
example is the mean of the vector containing the modularities of the network.
The test was performed twice for each network; the first to compare the modu-
larities of the network (or the subnetwork) to the modularities of the first null
model and the second to compare them to the modularities of the second null
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model. Tables 9 and 18 in the Results section contain the resulting p values.

4.4 Biological Analysis

Given a partition C˚ being either C˚
info or C˚

mod, every cluster C in C˚ consisted
of patients and nodes. Here, a 10-patient threshold was adopted in the following
manner:

• For every cluster C.

• For every cancer type x.

• If |x| ě 10.

• For every gene y of C.

• Assess if gene y is driver for cancer type x through current literature.

This analysis lead into the “Cancer-Gene association” two-column Tables (see
Tables 17, 25). Each line of the “Cancer-Gene association” Table has (a) the
cancer type in the first column and (b) the genes of the modules in which there
were more than (or exactly) 10 patients of that cancer type. Each of the genes
on the right was looked up through current literature to verify if it is, indeed,
a driver gene for that cancer type. cBioPortal [87, 88] provided with charts
that were also employed in order to further analyze the results, regarding the
subtype (or other traits).
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4.5 Cancer types

Table 8: Cancer Types Abbreviations as listed in TCGA [91].

acc Adrenocortical carcinoma
blca Bladder Urothelial Carcinoma
brca Breast invasive carcinoma
cesc Cervical squamous cell carcinoma and endocervical adenocarcinoma

coadread Colorectal adenocarcinoma
esca Esophageal carcinoma
gbm Glioblastoma multiforme
hnsc Head and Neck squamous cell carcinoma
kich Kidney Chromophobe
kirc Kidney renal clear cell carcinoma
kirp Kidney renal papillary cell carcinoma
laml Acute Myeloid Leukemia
lgg Brain Lower Grade Glioma
lihc Liver hepatocellular carcinoma
luad Lung adenocarcinoma
lusc Lung squamous cell carcinoma
meso Mesothelioma

ov Ovarian serous cystadenocarcinoma
paad Pancreatic adenocarcinoma
pcpg Pheochromocytoma and Paraganglioma
prad Prostate adenocarcinoma
sarc Sarcoma
skcm Skin Cutaneous Melanoma
stad Stomach adenocarcinoma
tgct Testicular Germ Cell Tumors
thca Thyroid carcinoma
thym Thymoma
ucec Uterine Corpus Endometrial Carcinoma
ucs Uterine Carcinosarcoma
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5 Results

5.1 Six cancer types subnetwork

Modular Structure of the Subnetwork

MODULAR was run 100 times for the subnetwork that contained 6 cancer types.
Via the 100 runs, the mean modularity of the subnetwork was compared to each
of the null models of MODULAR (see Modular Structure). The histogram in
Figure 34 along with Table 9, are indicative of the modular structure of the
subnetwork.

Null
Model 1

Null
Model 2

Subnetwork 1.36e-135 5.37e-148

Table 9: p-value to asess statistical
difference of the mean modularity of
the subnetwork partitions and the null
models.

Figure 34: Comparing Barber’s mod-
ularity of the subnetwork partitions to
the null models created through MOD-
ULAR.

After assessing the modular structure
of the subnetwork, both clustering anal-
ysis pipelines were implemented (see
Clustering Analysis). After the imple-
mentation, the percentage that corre-
sponds to 10 patients for each cancer
type (with respect to the total amount
of patients of the cancer type) was cal-
culated (see Biological Analysis). The
calculated percentages are presented in
Table 10.

Cancer
Type

10-patients
Percentage

brca 1.07%
coadread 2.03%
gbm 2.93%
hnsc 2.04%
lgg 2.02%
luad 1.87%
ucec 2.15%

Table 10: Percentages correspondive
to 10 patient with respect to the to-
tal amount of patients (per cancer).
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INFOMAP Results

Modules
0 1 2 3 4 5 6 7 8 9 10 11

C
an

ce
r

T
y
p

es brca 55.59 0.86 9.46 0.86 7.2 6.88 3.33 3.01 2.47 2.47 2.47 1.4
coadread 94.5 0.61 0.2 0.0 0.41 0.0 0.61 0.81 0.61 0.0 0.0 0.2

hnsc 93.66 0.61 0.61 0.61 0.2 0.0 0.2 0.0 0.0 0.2 0.2 0.41
lgg 9.94 74.24 0.0 6.49 0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.61

luad 85.39 1.12 0.0 7.68 0.37 0.19 0.0 0.37 0.56 0.19 0.19 0.37
ucec 93.98 0.0 0.22 0.0 0.0 0.0 0.0 0.0 0.22 0.43 0.0 0.22

(a)

Modules
12 13 14 15 16 17 18 19 20 21 22

C
an

ce
r

T
y
p

es brca 0.65 0.0 0.43 0.22 0.75 0.22 0.11 0.75 0.43 0.32 0.11
coadread 0.0 0.0 0.2 1.22 0.2 0.2 0.0 0.0 0.2 0.0 0.0

hnsc 0.2 0.0 2.04 0.0 0.2 0.41 0.2 0.0 0.2 0.0 0.0
lgg 0.2 4.06 0.0 1.42 0.41 0.0 0.61 0.61 0.41 0.61 0.0

luad 0.0 0.0 0.37 0.37 0.37 1.12 0.94 0.19 0.19 0.0 0.0
ucec 2.58 0.22 0.0 0.22 0.43 0.65 0.43 0.22 0.22 0.0 0.0

(b)

Table 11: Modules recovered after consensus clustering over 200 INFOMAP
partitions. The cells of Tables (a) and (b) refers to the percentage of the patients
of the cancer type of the row contained in the module of the column.

Module Genes
0 172 genes
1 IDH1, ATRX,

CDKN2C, CIC,
FUBP1

2 GATA3, CBFB
3 EGFR
4 MAP3K1
5 CDH1
6 RUNX1
7 MAP2K4
8 TBX3
9 AKT1
10 FOXA1

Module Genes
11 SF3B1
12 SPOP
13 IDH2
14 CYLD
15 PTPN11
16 CDKN1B
17 U2AF1
18 MAX
19 DDX5
20 PRKAR1A
21 H3F3A
22 N/A

Table 12: Genes of modules as recovered by INFOMAP consensus clustering in
Table 11.
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INFOMAP - OSLOM2 Results

Modules
0 1 2 3 4 5

C
an

ce
r

T
y
p

es brca 0.32 6.67 3.76 1.08 2.69 0.0
coadread 0.41 0.0 0.0 0.0 0.2 0.0

hnsc 0.41 0.0 0.2 0.0 0.41 0.0
lgg 63.49 0.0 0.0 0.0 0.41 4.06

luad 0.19 0.0 0.0 0.0 0.19 0.0
ucec 0.0 0.0 0.0 0.0 0.22 0.0

Table 13: Modules recovered after ensemble clustering of 200 INFOMAP par-
titions (consensus clustering) and OSLOM2 implementation. The cells of the
table refers to the percentage of the patients of the cancer type of the row,
contained in the module of the column.

Module
Infomap
-Oslom2

Genes Module
Infomap
Blend

0 ATRX,CDKN2C,CIC,
FUBP1,IDH1,TP53

1+0

1 CBFB,GATA3,PIK3CA 2+0
2 MAP3K1,PIK3CA 4+0
3 CDH1,RUNX1 5+6
4 FOXA1 10
5 IDH2 13

Table 14: Genes of modules as recovered by the ensemble clustering approach
of INFOMAP (consensus clustering) and OSLOM2. OSLOM2 exchanges nodes
from one module to another. Each element of the “Module Infomap Blend”
column refers to the exchanging of genes with respect to Table 12. For example,
the third module in this table contains the genes CDH1 and RUNX1 of modules
5 and 6 of INFOMAP.

Comparing the results from Tables 11,12,13,14 we can make two remarks, re-
garding the efficency of INFOMAP-OSLOM2 ensemble clustering approach over
INFOMAP approach.

Firstly, module 0 of Table 11 is the module that contains 172 genes (out of
198), as well as the highest percentage of patients for all but one cancer type
(lower grade glioma). Module 0 appears most likely due to the partial modular
structure of the network [92, 76], and it is not considered statistically significant
for OSLOM2 to include it in the final partition. However, besides module 0,
the number of clusters is decreased, leading to more robust results, as many
modules (module 15 to module 22) didn’t have more than 10 patients for any
of the cancer types of the subnetwork. Thus, these modules not only didn’t
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suffice for the 10 patient threshold as mentioned in Biological Analysis, but also
weren’t statistically significant through the statistics of OSLOM2.

Secondly, we recall that OSLOM2 can exchange nodes from one cluster to an-
other by implementing “Single Cluster Analysis” locally in every cluster (see
OSLOM). This leads in clustering of several patients and genes together. As
far as the genes are concerned, OSLOM2 managed to move genes from the sta-
tistically insignificant module (module 0 of Table 11) in statistically significant
modules. Specifically, in the third column, named “Module Infomap Blend”,
this becomes clear, as 3 out of the 6 clusters of the final partition, contain genes
of the statistically insignificant group of the partition of INFOMAP.

MODULAR-UPGMA-OSLOM2 Results

Modules
0 1 2 3 4 5 6 7 8 9 10 11

C
an

ce
r

T
y
p

es brca 0.75 0.32 0.22 0.0 6.67 2.8 1.29 18.06 0.75 0.0 0.54 0.32
coadread 0.2 0.41 0.81 0.2 0.2 0.61 53.97 1.22 0.2 0.2 1.02 0.2

hnsc 0.61 0.41 0.61 20.45 0.0 0.41 2.66 1.43 1.02 0.0 15.95 1.02
lgg 6.49 0.0 0.0 0.41 0.0 0.0 0.2 0.41 47.26 4.26 7.3 0.0

luad 7.3 0.94 0.75 3.18 0.0 0.19 3.18 0.19 0.75 0.0 2.43 12.55
ucec 0.0 38.06 11.61 0.22 0.0 1.51 4.95 0.65 0.22 0.0 0.65 0.22

Table 15: Modules recovered after ensemble clustering of 100 MODULAR par-
titions (consensus clustering), UPGMA implementation and OSLOM2 imple-
mentation. The cells of the table refer to the percentage of the patients of the
cancer type of the row, contained in the module of the column.

Module Genes
0 EGFR
1 ACVR1,ARID1A,CCND1,

CTNNB1,FGFR2,NFE2L2,
PIK3R1, PTEN

2 PPP2R1A
3 CDKN2A
4 MAP3K1
5 AKT1

Module Genes
6 APC,FBXW7,KRAS,NRAS,

SMAD4,TCF7L2,TP53
7 CDH1,FOXA1,GATA3,

PIK3CA
8 ATRX, IDH1, TP53
9 IDH2
10 NOTCH1
11 STK11

Table 16: Genes of modules as recovered by the ensemble clustering approach
of MODULAR (consensus clustering), UPGMA and OSLOM2 in Table 15.
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Cancer - Gene association

brca MAP3K1,CDH1,FOXA1,GATA3,PIK3CA,AKT1,RUNX1,CBFB
coadread APC, FBXW7,KRAS,NRAS,SMAD4,TCF7L2,TP53
hnsc CDKN2A,APC,FBXW7,KRAS,NRAS,SMAD4,TCF7L2,TP53
lgg ATRX, IDH1, TP53, IDH2, EGFR, NOTCH1, FUBP1,CIC,CDKN2C
luad EGFR,CDKN2A,APC,FBXW7,KRAS,NRAS,SMAD4,TCF7L2,TP53
ucec ACVR1,ARID1A,CCND1,CTNNB1,FGFR2,NFE2L2,PIK3R1,PTEN,

PPP2R1A,APC,FBXW7,KRAS,NRAS,SMAD4,TCF7L2,TP53

Table 17: Genes linked with more than 10 patients through clustering and colors
correspond to pipelines recovering them.
Blue is for MODULAR-UPGMA-OSLOM2.
Green is for INFOMAP-OSLOM2.
Red is for both.

The blue highlighted cells of Tables 13 and 15, along with Tables 14 and 16,
were used to create the Cancer-Gene association table, which is Table 17.

TCGA studies for all 6 cancer types can validate that most of the genes linked
to certain cancer types (as viewed in the Table 17), are considered driver genes
for the correspondive cancer type [93, 94, 95, 96, 97, 98]. Thus, in order to
validate the accuracy of the outcome, we will proceed in the network analysis
of the 29 cancer types and compare the results to current literature.
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5.2 Twenty-nine cancer types network

Modular Structure of the Network

MODULAR was run 45 times for the network, that contained 29 cancer types.
Via the 45 results, the mean modularity of the subnetwork was compared to
each of the null models of MODULAR (see Modular Structure). The histogram
in Figure 35 along with Table 18, are indicative of the modular structure of the
network.

Null
Model 1

Null
Model 2

Network 8.32e-59 1.22e-65

Table 18: p-value to asess statistical
difference of the mean modularity of
the network partitions and the null
models.

Figure 35: Comparing Barber’s modu-
larity of the network partitions to the
null models created through MODU-
LAR.

After assessing the modular structure of the subnetwork, both clustering analy-
sis pipelines were implemented (see Clustering Analysis). After the implemen-
tation, the percentage that corresponds to 10 patients for each cancer type was
calculated (see Biological Analysis). The percentages are presented in Table 19.
Furthermore, a numerical table considering the patients and the mutations per
cancer type, is presented in Table 20.

Cancer
Type

10-patients
Percentage

acc 16.94%
blca 2.51%
brca 1.07%
cesc 3.90%
coadread 2.03%
esca 5.64%
gbm 2.93%
hnsc 2.04%
kich 26.31%
kirc 3.16%

(a)

Cancer
Type

10-patients
Percentage

kirp 4.67%
laml 5.52%
lgg 2.02%
lihc 2.97%
luad 1.87%
lusc 2.18%
meso 15.15%
ov 2.50%
paad 6.53%

(b)

Cancer
Type

10-patients
Percentage

pcpg 12.19%
prad 3.34%
sarc 5.74%
skcm 13.69%
stad 2.45%
tgct 15.15%
thca 2.59%
thym 20.0%
ucec 2.15%
ucs 18.18%

(c)

Table 19: Percentages correspondive to 10 patient with respect to the total
amount of patients (per cancer).
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Cancer Patients Missense
Mutation

Nonsense
Mutation

Nonstop
Mutation

Frame
Shift Del

Frame
Shift Ins

In Frame
Del

In Frame
Ins

Splice
Site

Total

acc 59 117 32 0 26 5 5 0 8 193
blca 398 2159 533 4 165 77 23 2 127 3090
brca 930 1795 322 2 316 234 66 8 149 2892
cesc 256 905 197 1 48 13 7 2 38 1211
coadread 491 2516 541 0 567 186 44 5 102 3961
esca 177 553 88 0 71 32 13 7 33 797
gbm 341 760 113 1 95 28 22 4 54 1077
hnsc 489 1609 379 0 154 74 30 3 120 2369
kich 38 50 8 0 9 1 1 0 4 73
kirc 316 448 138 3 190 49 11 3 67 909
kirp 214 396 46 0 67 20 4 1 20 554
laml 181 294 50 0 31 88 4 37 34 538
lgg 493 1093 140 0 217 68 57 2 65 1642
lihc 336 748 97 1 88 36 21 5 59 1055
luad 534 2555 367 0 139 46 48 9 156 3320
lusc 458 2062 349 3 165 46 29 3 150 2807
meso 66 64 28 1 19 4 4 0 12 132
ov 399 798 111 1 92 78 24 1 69 1174
paad 153 319 58 1 43 22 11 2 21 477
pcpg 82 66 4 0 11 4 2 1 3 91
prad 299 386 42 1 75 30 20 0 19 573
sarc 174 309 46 0 57 11 5 0 32 460
skcm 73 500 59 0 7 6 2 1 18 593
stad 407 1901 237 0 534 132 50 4 94 2952
tgct 66 73 4 0 7 2 3 0 1 90
thca 386 479 27 0 11 3 3 0 4 527
thym 50 71 9 0 10 1 0 1 0 92
ucec 465 2777 405 3 698 198 128 21 126 4356
ucs 55 183 18 0 16 8 4 1 8 238
Total 8386 25986 4448 22 3928 1502 641 123 1593 38243

Table 20: Numerical table considering the number of patients per cancer and
the number of mutations per cancer type and in total.
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MODULAR-UPGMA-OSLOM2 Results

Modules
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

C
an

ce
r

T
y
p

es

acc 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.03 1.69 3.39 0.0 0.0 0.0 0.0 0.0 0.0 1.69 1.69 1.69 0.0 1.69
blca 0.25 0.5 0.25 0.75 0.5 0.75 0.0 0.25 0.5 0.5 0.25 0.5 0.5 0.25 0.25 0.25 0.25 0.0 0.0 0.0 0.5 0.75
brca 0.22 0.0 0.11 0.32 0.22 0.43 0.32 2.37 0.11 1.08 0.86 0.43 0.54 0.0 0.0 11.72 0.0 0.11 12.37 0.11 0.65 10.43
cesc 0.0 0.39 1.56 1.17 1.95 2.73 4.69 1.95 0.0 3.12 0.39 0.78 0.78 0.0 0.78 0.78 0.0 0.0 0.39 0.39 1.56 0.0

coadread 0.0 0.41 36.46 1.63 0.81 8.35 0.2 1.43 0.81 1.22 0.0 1.63 0.2 0.0 0.0 0.41 1.02 0.0 0.61 0.41 0.2 1.22
esca 0.0 0.0 0.56 0.56 1.69 5.08 1.13 1.69 1.69 0.0 0.56 2.26 0.0 0.0 0.56 1.13 0.56 0.56 0.0 2.26 0.0 2.26
gbm 6.45 0.0 0.0 1.17 0.29 0.0 0.0 9.68 0.0 1.76 16.42 1.47 0.0 0.0 0.29 0.59 0.29 0.0 0.29 0.59 0.0 1.47
hnsc 0.2 0.0 0.2 0.41 0.61 2.45 1.02 1.02 0.41 1.23 0.41 0.61 1.84 0.0 0.41 0.61 0.2 0.2 0.2 0.61 0.41 0.41
kich 0.0 0.0 0.0 2.63 0.0 0.0 0.0 0.0 0.0 2.63 0.0 0.0 0.0 0.0 2.63 0.0 0.0 0.0 0.0 0.0 0.0 0.0
kirc 0.0 0.0 0.0 0.32 0.0 0.0 0.0 0.32 0.32 13.61 0.32 0.0 1.58 0.0 51.27 0.32 0.0 0.0 0.0 0.95 6.96 0.95
kirp 0.0 0.0 2.34 0.47 1.4 0.93 0.93 0.93 0.47 7.01 0.0 0.0 2.8 0.0 2.34 0.47 1.4 0.0 0.47 1.87 7.94 1.4
laml 0.0 0.0 1.1 48.62 0.0 0.0 0.0 0.0 0.0 0.55 0.55 4.42 27.07 0.0 0.0 0.0 0.0 0.0 7.18 8.84 0.0 0.0
lgg 46.25 0.0 0.0 0.41 0.0 0.0 0.0 3.65 0.61 1.62 5.68 1.01 2.03 0.0 0.2 0.0 0.41 0.0 0.2 19.68 0.0 0.61
lihc 0.3 0.6 0.0 0.89 0.89 1.19 0.0 1.19 19.94 3.57 0.6 2.38 0.89 0.0 0.89 0.0 0.0 0.3 0.3 0.89 5.65 1.19
luad 0.37 0.0 2.62 0.75 0.75 2.43 12.36 0.19 1.31 3.18 6.37 0.56 2.81 0.0 0.0 0.37 0.94 0.0 0.19 0.37 0.56 0.56
lusc 0.44 0.0 0.66 0.87 1.31 1.75 0.87 0.66 0.22 1.31 0.66 2.4 1.09 0.0 0.22 0.44 0.22 0.0 0.44 0.0 0.44 0.44
meso 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.12 0.0 1.52 3.03 0.0 4.55 0.0 1.52 0.0 0.0 0.0 48.48 0.0

ov 2.26 0.0 0.5 1.75 1.25 0.75 0.0 0.25 0.0 2.01 0.75 2.01 1.0 0.0 0.25 0.0 0.25 0.0 0.75 1.0 1.0 1.0
paad 0.0 0.0 26.14 0.0 0.65 23.53 1.96 0.0 1.31 0.65 0.0 0.0 1.96 0.0 1.96 0.0 0.0 0.0 0.0 0.65 0.65 0.0
pcpg 0.0 0.0 1.22 0.0 0.0 0.0 0.0 0.0 0.0 2.44 0.0 1.22 1.22 21.95 3.66 0.0 1.22 0.0 0.0 0.0 0.0 0.0
prad 0.0 0.67 0.33 0.67 0.0 1.34 0.0 0.0 3.34 2.34 0.67 0.33 0.33 1.0 0.67 1.0 1.0 13.38 0.33 0.33 0.33 8.7
sarc 6.9 0.0 0.57 0.0 0.57 0.57 0.0 0.0 0.0 0.57 0.0 1.15 1.72 0.0 0.57 0.57 0.0 0.0 1.15 0.0 0.57 0.0
skcm 0.0 1.37 0.0 4.11 0.0 0.0 0.0 2.74 1.37 0.0 0.0 5.48 0.0 0.0 0.0 0.0 6.85 0.0 0.0 0.0 1.37 0.0
stad 0.49 0.0 2.95 0.74 0.49 6.14 0.74 0.74 2.21 1.23 0.0 0.98 0.0 0.0 0.49 0.98 0.0 0.0 3.44 0.49 0.74 0.25
tgct 0.0 0.0 9.09 7.58 0.0 0.0 0.0 0.0 0.0 0.0 1.52 30.3 0.0 0.0 1.52 1.52 0.0 0.0 1.52 1.52 1.52 3.03
thca 0.0 0.0 0.78 9.84 0.52 0.0 0.26 0.52 0.26 0.52 0.0 0.26 1.3 3.37 0.0 1.3 64.51 0.26 0.0 0.0 0.26 0.52
thym 0.0 0.0 2.0 4.0 2.0 0.0 0.0 4.0 2.0 0.0 0.0 2.0 0.0 8.0 4.0 2.0 0.0 0.0 0.0 0.0 4.0 2.0
ucec 0.0 13.55 0.0 0.22 11.61 0.22 0.22 10.75 6.45 0.43 0.0 1.08 0.22 0.0 0.43 0.65 0.0 0.86 0.0 0.22 0.22 0.0
ucs 0.0 0.0 0.0 0.0 27.27 1.82 0.0 9.09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.82 0.0 0.0 0.0 1.82

Table 21: Modules recovered after ensemble clustering of 45 MODULAR par-
titions (consensus clustering), UPGMA implementation and OSLOM2 imple-
mentation. The cells of the table refer to the percentage of the patients of the
cancer type of the row, contained in the module of the column.

Module Genes
0 ATRX, IDH1, TP53
1 CTNNB1, PTEN
2 APC, KRAS, SMAD4
3 FLT3, NPM1, NRAS
4 PPP2R1A
5 SMAD4
6 STK11

(a)

Module Genes
7 PIK3R1
8 CTNNB1
9 SETD2
10 EGFR
11 KIT
12 DNMT3A
13 HRAS
14 PBRM1, VHL

(b)

Module Genes
15 AKT1, GATA3
16 BRAF
17 SPOP
18 CDH1, RUNX1
19 CIC, IDH2
20 BAP1, NF2
21 FOXA1, MAP3K1

(c)

Table 22: Genes of modules as recovered by the ensemble clustering approach
of MODULAR (consensus clustering), UPGMA and OSLOM2 in Table 21.
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INFOMAP-OSLOM2 Results

Modules
0 1 2 3 4 5 6 7 8 9 10

C
an

ce
r

T
y
p

es

acc 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.69
blca 0.5 1.01 0.0 0.0 0.5 3.27 0.5 0.0 0.0 0.0 2.51
brca 0.22 0.43 0.0 0.11 13.12 0.43 0.43 0.0 1.08 0.0 3.44
cesc 0.0 0.78 0.0 0.0 0.0 0.39 0.78 0.0 0.0 0.0 0.39

coadread 0.41 1.83 0.0 0.0 0.61 0.41 1.63 0.0 0.0 0.0 0.2
esca 1.69 0.56 0.0 0.0 0.56 0.0 2.26 0.0 0.0 0.0 1.13
gbm 6.16 1.76 0.0 6.45 0.29 0.0 1.47 0.0 0.0 0.0 0.88
hnsc 0.41 0.61 0.2 0.0 1.43 5.73 0.61 0.0 0.0 0.0 0.82
kirc 0.0 0.32 0.0 0.0 0.32 0.0 0.0 0.32 0.0 32.59 0.0
kirp 0.0 1.87 0.0 0.0 0.47 0.0 0.0 0.93 0.0 1.4 0.47
laml 0.0 0.0 20.44 0.0 0.0 0.0 4.42 0.0 0.0 0.0 0.0
lgg 61.87 0.41 0.0 1.42 0.41 0.0 1.01 0.0 0.0 0.0 0.81
lihc 0.0 0.0 0.0 0.0 0.3 0.0 2.38 0.0 0.0 0.0 0.3
luad 0.19 3.37 0.0 0.0 0.75 0.56 0.56 0.0 0.0 0.0 0.19
lusc 0.44 0.66 0.0 0.0 1.31 1.09 2.4 0.0 0.0 0.0 1.09
meso 0.0 1.52 0.0 0.0 0.0 0.0 1.52 9.09 0.0 0.0 0.0

ov 2.26 0.25 0.0 0.0 0.75 0.0 2.01 0.25 0.0 0.0 0.25
paad 0.65 0.65 0.0 0.0 0.65 0.0 0.0 0.0 0.0 0.0 1.31
pcpg 0.0 1.22 0.0 0.0 0.0 21.95 1.22 0.0 0.0 0.0 0.0
prad 0.0 2.01 0.0 0.0 0.0 1.34 0.33 0.0 0.0 0.0 25.42
sarc 6.9 0.0 0.0 0.0 0.57 0.0 1.15 0.0 0.0 0.0 0.0
skcm 0.0 24.66 0.0 0.0 0.0 1.37 5.48 0.0 0.0 0.0 0.0
stad 0.49 0.25 0.0 0.0 1.23 0.0 0.98 0.0 0.0 0.25 0.0
tgct 0.0 0.0 0.0 0.0 1.52 0.0 30.3 0.0 0.0 0.0 3.03
thca 0.0 73.83 0.0 0.0 0.0 4.15 0.26 0.0 0.0 0.0 0.26
thym 0.0 0.0 0.0 0.0 0.0 20.0 2.0 0.0 0.0 0.0 0.0
ucec 0.0 0.22 0.0 0.0 0.43 0.22 1.08 0.0 0.0 0.0 6.02
ucs 0.0 0.0 0.0 0.0 1.82 0.0 0.0 0.0 0.0 0.0 7.27

Table 23: Modules recovered after ensemble clustering of 200 INFOMAP par-
titions (consensus clustering) and OSLOM2 implementation. The cells of the
table refer to the percentage of the patients of the cancer type of the row, con-
tained in the module of the column.

Module Genes
0 ATRX, CIC, FUBP1, IDH1,

TP53
1 BRAF
2 DNMT3A, FLT3, NPM1
3 EGFR, PTEN
4 GATA3
5 HRAS

(a)

Module Genes
6 KIT
7 BAP1, NF2
8 CDH1, RUNX1
9 BAP1,PBRM1,

SETD2, VHL
10 FOXA1, SPOP

(b)

Table 24: Genes of modules as recovered by the ensemble clustering approach
of INFOMAP (consensus clustering) and OSLOM2 in Table 23.
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Cancer - Gene association

acc CTNNB1
blca HRAS, FOXA1, SPOP
brca CDH1, RUNX1, GATA3, FOXA1, AKT1, MAP3K1, SETD2, PIK3R1, SPOP
cesc STK11

coadread APC, KRAS, SMAD4
esca N/A
gbm EGFR, ATRX, IDH1, TP53, PIKER1, PTEN, CIC, FUBP1
hnsc SMAD4, HRAS
kich N/A
kirc PBRM1, VHL, BAP1, SETD2, NF2
kirp BAP1, NF2, SETD2
laml FLT3, NPM1, DNMT3A, RUNX1, ,IDH2 CIC, NRAS, CDH1
lgg ATRX, IDH1, TP53, CIC, IDH2, EGFR, PIK3R1, DNMT3A, FUBP1
lihc CTNNB1, BAP1, NF2, SETD2
luad STK11, EGFR, SETD2, DNMT3A, APC, KRAS, SMAD4, BRAF
lusc KIT
meso BAP1, NF2

ov N/A
paad APC, KRAS, SMAD4
pcpg HRAS
prad SPOP, FOXA1, MAP3K1, CTNNB1
sarc ATRX, IDH1, TP53, CIC, FUBP1
skcm BRAF
stad CDH1, RUNX1, APC, KRAS, SMAD4
tgct KIT
thca BRAF, HRAS, NRAS, FLT3, NPM1
thym HRAS
ucec PPP2R1A, PIK3R1, CTNNB1, PTEN, FOXA1, SPOP
ucs PPP2R1A

Table 25: Genes linked with more than 10 patients through clustering and colors
correspond to pipelines recovering them. Blue is for MODULAR-UPGMA-
OSLOM2. Green is for INFOMAP-OSLOM2. Red is for both.

The blue highlighted cells of the Tables 21 and 23, along with the tables 22 and
24, were used to create the Cancer-Gene association table, which is Table 25.
Then, every gene of the Table was compared with respect to current literature,
to verify if it is indeed a driver gene for the correspondive cancer type.

Furthermore, the patients corresponding to each of the highlighted blue high-
lighted cells of Tables 21 and 23, were manually used to create cBioPortal “vir-
tual studies”. Hyperlinks for each of the blue highlighted cells are available in
Table 26.
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Adrenocortical Carcinoma - acc
CTNNB1 is a know driver gene of adrenocortical carcinoma [99, 100]. CTNNB1
was found to be mutated in every patient of the module, while no other gene
(all genes of the dataset included) was found mutated simultaneously in more
than 3 (out of 13) patients. .

Bladder Urothelial Carcinoma - blca

Regardless of the high number of patients of blca (398) in the network, only
INFOMAP-OSLOM2 pipeline was able to assign a relatively small amount of
patients in statistically significant groups. The genes associated with blca pa-
tients were HRAS, FOXA1 and SPOP. All three can be linked to prostate cancer
[101, 102].

The first module accounts for 13 patients and contains the HRAS gene. Every
patient of the module (13 out of 13 patients) carries HRAS mutations.

The second module contains the genes FOXA1 and SPOP. None of the 10 pa-
tients of the module carry mutations in both genes simultaneously. FOXA1 has
been marked as a candidate regulator gene [101]. 3 out of 10 patients of the
FOXA1-SPOP module carried FOXA1 mutations.

SPOP is also found to be a frequently mutated gene of prostate cancers [102].
3 out of 10 patients of the FOXA1-SPOP module carried SPOP mutations

Notably, no patient of the FOXA1-SPOP module carried mutations in both
FOXA1 and SPOP simultaneously

Breast invasive carcinoma - brca
CDH1 and RUNX1 are two genes that form a module, along with brca pa-

tients, in through INFOMAP-OSLOM2 and MODULAR-UPGMA-OSLOM2
approach. Both genes are associated with the luminal subtype of breast cancer.
[93, 103, 104]. This fact is further supported by the resulting groups of the
clustering. Through INFOMAP-OSLOM2 pipeline, 9 out of 10 patients of the
cohort are of luminal A subtype and 9 out of 10 patients were of Breast Invasive
Lobular Carcinoma (ILC). Through MODULAR-UPGMA-OSLOM2 pipeline
98 out of 115 were of luminal A subtype and 8 out of 115 were of luminal B
subtype. Most patients (80 out of 115) were of ILC.

GATA3 was also recovered by both pipelines. It is a gene, which is considered
non-significant as far as the ILC is concerned, but considered significant with
respect to Breast Invasive Ductal Carcinoma (IDC) [93] and IDC luminal sub-
types. Through INFOMAP-OSLOM2 pipeline 94 out of 122 patients were of
IDC, while 76 and 37 out of 122 patients were of luminal A and B subtype
accordingly. Through MODULAR-UPGMA-OSLOM2 pipeline, 82 out of 109
patients were of IDC and 75 and 27 out of 109 patients were of luminal A
and B subtype accordingly. It must be noted that GATA3 was along AKT1
gene through the MODULAR-UPGMA-OSLOM2 approach, but many of the
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patients were the same in both approaches. That is because the 122 and 109
patients recovered through the pipelines were actually 138 different patients.
AKT1 is also a gene linked to IDC and the luminal subtypes.

FOXA1 is also a gene recovered by both pipelines. It is a gene associated with
ILC [93]. Most patients of the cohorts though are of IDC. Specifically, through
the INFOMAP-OSLOM2 pipeline, 16 out of 32 patients were of IDC and 11
out of 32 were of ILC. Thus, these two specific types of breast cancer account
for 27 out of the 32 patients of the module in total. 23 out of the 27 of them
carry FOXA1 mutations. Also, 24 and 4 out of the 32 patients are of luminal
A and B subtype, respectively. Similarly, through the MODULAR-UPGMA-
OSLOM2 pipeline, 73 out of the 97 were of IDC and 12 out of the 97 were
of ILC, account for a total of 85 out of 97 patients. 16 out of the 85 of them
carried FOXA1 mutations. Also, 81 and 8 out of the 97 patients were of luminal
A and B subtypes, respectively. MAP3K1 was also assigned in this module (of
MODULAR-UPGMA-OSLOM2 with FOXA1 present). MAP3K1 is also a gene
implicated in breast cancer [93, 105].

SPOP, recovered only by INFOMAP-OSLOM2 pipeline (along with FOXA1),
can have either a tumor-suppresing or onogenic role over breast cancer initiation
and progression [106].

PIK3R1 is another significantly mutated gene in breast cancer, and specifi-
cally, in IDC [93]. 17 out of the 22 patients of the module recovered by the
MODULAR-UPGMA-OSLOM2 pipeline, were of IDC.

Finally, SETD2, recovered by MODULAR-UPGMA-OSLOM2 pipeline, may
have a tumour suppressor role in breast cancer [107, 108].

Cervical squamous cell carcinoma and endocervical
adenocarcinoma - cesc
12 patients were assgined by MODULAR-UPGMA-OSLOM2 pipeline with STK11
gene which is associated with poor outcomes of cervical cancer patients [109].

Colorectal adenocarcinoma - coadread
APC, SMAD4 and KRAS are known cancer genes to colon and rectum cancers

[94]. They were all associated through MODULAR-UPGMA-OSLOM2 pipeline.

Worse outcome is linked with loss of SMAD4 [110].

Either gain or loss of function of APC can lead to colorectal cancer initiation
[111].

Glioblastoma multiforme - gbm
Glioblastoma represents grade IV gliomas. Some genes, mutated in wild-type

IDH lower-grade gliomas are common between the two cancer types (lgg and
gbm) [96]. Those genes recovered here are PTEN, EGFR and TP53. All three
are common between lgg and gbm.
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EGFR is a driver gene of glioblastoma. EGFR mutations are indicative of poor
survival outcome [112]. PTEN is also a driver of gbm [113] and so is TP53 [114].
MODULAR-UPGMA-OSLOM2 pipeline assigned EGFR with gbm patients. 46
out of 56 patients of the module are deceased. INFOMAP-OSLOM2 pipeline
assigned EGFR along with PTEN, with gbm patients. 19 out of the 22 patients
of the module are deceased.

Patients carrying IDH1 mutations are usually younger than those with EGFR
ones and have better survival prognosis [115]. Both pipelines assigned IDH1 with
gbm patients. Through the MODULAR-UPGMA-OSLOM2 pipeline, IDH1 was
along with ATRX and TP53, while 13 out of 22 patients are not deceased.
Through the INFOMAP-OSLOM2 pipeline, IDH1 was along with ATRX, TP53,
CIC and FUBP1, while 13 out of 21 patients are not deceased. It must be noted
that all of the 21 patients of the module recovered by INFOMAP-OSLOM2
pipeline, also belong in the MODULAR-UPGMA-OSLOM2 module.

ATRX mutations appear mostly in young adults and pediatric glioblastoma
[116, 117, 118]. 1 patient was below 22 years old in any of the two approaches
(MODULAR-UPGMA-OSLOM2, INFOMAP-OSLOM2).

PIKER1 is also a significantly mutated gene for the cancer type [119].

As far as CIC and FUBP1 (associated through INFOMAP-OSLOM2), only 1
out of 21 patients carried CIC mutations. No patient out of the 21 carried
FUBP1 mutations. Thus, existance of both of the genes will be addressed to
lgg patients (see lgg).

Head and Neck squamous cell carcinoma - hnsc
Head and neck squamous cell carcinoma is one of the cancers associated with
the virus HPV( Human Pappiloma Virus). HRAS and SMAD4 are genes found
to be mutated in patients that weren’t infected with HPV [95].

This fact is further supported for HRAS by the INFOMAP-OSLOM2 pipeline
regarding hnsc patients, as 26 out of 28 patients of the cohort weren’t infected
with HPV.

As far as SMAD4 is concerned, through MODULAR-UPGMA-OSLOM2 pipeline,
10 out of the 12 patients of the cohort weren’t infected with HPV.

Kidney renal clear cell carcinoma - kirc
PBRM1, VHL, BAP1 and SETD2 are the four most commonly mutated genes

found in kidney clear cell carcinoma patients [120]. All 4 genes were retrieved
by both methodolgies. Note that BAP1, SETD2 and PBRM1 are all chromatin
remodelling genes [120] while they are close with VHL, as all three of them
belong to chromosome 3 [121, 122].

VHL is a gene commonly found in clear cell carcinoma patients [120, 123]. VHL
has a critical role in the cell’s normal response to hypoxia [124].
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PBRM1 is linked with better survival prognostics, while BAP1 and SETD2
mutations are indicative of poor clinical outcome [121, 125].

NF2 is also a gene associated with kidney clear cell carcinoma [126, 127]. It was
recovered through the MODULAR-UPGMA-OSLOM2 pipeline and was along
with BAP1.

Kidney renal papillary cell carcinoma - kirp
BAP1, NF2 and SETD2 are all found to be significantly mutated in kidney

papillary cell carcinoma patients [128, 129, 127]. They were all recovered by the
MODULAR-UPGMA-OSLOM2 pipeline.

Acute Myeloid Leukemia - laml
FLT3, NPM1, DNMT3A, RUNX1 and IDH2 genes were associated with acute

myeloid leykemia patients and all of them are considered significantly mutated.
It’s suggested that all of 5 of them may have impact analogous to fusion genes
[130].

NRAS is also a gene found to be mutated in acute myeloid leukemia patients as
well as other hematologic malignancies [131] and may indicate a poor outcome
[132].

Through INFOMAP-OSLOM2 pipeline, the module containing the genes FLT3,
NPM1 and DNMT3A, consisted of 37 laml patients. All of them are also
assigned in the module of the MODULAR-UPGMA-OSLOM2 pipeline, that
contained the genes FLT3, NPM1 and NRAS. 25 out of the 37 patients of
INFOMAP-OSLOM2 were also contained in the module of the MODULAR-
UPGMA-OSLOM2 pipeline, that contained the gene DNMT3A. Furthermore,
between the two modules of MODULAR-UPGMA-OSLOM2 pipeline (FLT3-
NPM1- NRAS and DNMT3A), 33 patients belonged in both modules.

CDH1 mutations are absent in the patients of the corrsepondive module (as-
sociated MODULAR-UPGMA-OSLOM2). Thus, existance of the gene will be
addressed to brca (see brca) and stad (see stad) patients.

In the same manner, only 1 patient carried CIC mutations (associated through
MODULAR-UPGMA-OSLOM2) and existance of the gene will be addressed to
lgg patients (see lgg).

Brain Lower Grade Glioma - lgg
IDH1, IDH2, CIC, FUBP1, TP53 and ATRX are genes recovered by the clus-

tering pipelines. IDH mutations and no codeletion of 1p/19q is linked with
TP53 and ATRX mutations. IDH mutations and codeletion of 1p/19q is linked
with CIC and FUBP1 mutations [96].

The INFOMAP-OSLOM2 pipeline linked lgg patients to one module, which
contained the genes ATRX, CIC, FUBP1, IDH1, and TP53. The existance of
both genes that are linked with and without codeletion of 1p/19q justifies the
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high number of both types of patients. 218 out of 305 patients of the module
didn’t have codeletion of 1p/19q, while 86 out of 305 patients had codeletion of
1p/19q.

Similarly, through MODULAR-UPGMA-OSLOM2 pipeline, 224 out of the 228
patient of the ATRX- IDH1- TP53 module didn’t have codeletion of 1p/9q. 220
out of the 228 patients also belonged in the INFOMAP-OSLOM2 module.

The module of MODULAR-UPGMA-OSLOM2, which contained the genes CIC
and IDH2, consisted of 90 out of 97 patients that had 1p/19q codeletion. 67
out of 97 patients also belonged in the INFOMAP-OSLOM2 module.

PIK3R1 is also one of the genes linked to codeletion of 1p/19q [96] and 9 out of
18 patients of the cohort do have codeletion of 1p/19q.

EGFR gene is linked to wild type IDH lower grade glioma [96]. 27 out of 28
patients of the cohort were of wild type IDH subtype.

DNMT3A (associated through MODULAR-UPGMA-OSLOM2) could not be
considered as a driver gene for lgg. However, all patients (10 patients) of the
cohort carried DNMT3A mutations.

Liver hepatocellular carcinoma - lihc
CTNNB1 and BAP1 are found to be significantly mutated in liver hepatocellular
carcinomas [133, 134]. Both genes were recovered by the MODULAR-UPGMA-
OSLOM2 pipeline through two separate modules. The first module contained
only the CTNNB1 gene, while the second contained BAP1 along with NF2.

Homogenous deletions of NF2 have been associated with hepatocellular carci-
noma [135]. Nevertheless, only 4 out of 19 patients of the cohort harbored NF2
mutations.

As far as SETD2 gene is concerned, there were no evidence to propose that
mutations over SETD2 could initiate or promote tumorigenesis in lihc. How-
ever, a study concluded that downregulation of SETD2 by a non-coding RNA,
named HOTAIR, could lead to tumorigenesis [136]. 12 out of 12 patients of the
MODULAR-UPGMA-OSLOM2 cohort carried at least one SETD2 mutation.

Lung adenocarcinoma - luad
MODULAR-UPGMA-OSLOM2 pipeline was able to link 7 genes that with

more than 10 patients of lung adenocarcinoma per module.

STK11 is one of the genes considered significantly mutated in lung adenocarci-
noma [97], having a tumor suppressor role [137, 138].

SETD2 is a significant mutated gene [97],also having a tumor suppressor role
[139].

Expression of DNMT3A is linked with cancer progression but not initiation,
also proposing a tumor suppressor role [140].
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EGFR gene is found to be commonly mutated in women with lung adenocar-
cinoma [97] and here, 22 out of the 34 patients were female. EGFR mutations
are also found more frequently in non-smokers [141].

KRAS is also a gene commonly mutated in this cancer type [97] while there are
no notable contrasts among smokers and non-smokers [142].

APC are infrequent in lung carcinomas but do exist in some patients [143]. Only
4 out of 14 patients of the module carried at least one mutation over APC.

SMAD4 may confer to tumor progression followed by KRAS or APC mutations
in a number of cancers [144]. SMAD4 is linked to luad patients through two sep-
arate modules. The first module contains the genes APC, KRAS and SMAD4,
where 3 out of 14 patients carry SMAD4 mutations. 2 out of the 3 of the pa-
tients carrying SMAD4 mutations were also assinged in the second module that
contains only the gene SMAD4. All the patients of the SMDA4 (along with no
other gene) module harbored SMAD4 mutations.

BRAF is the only gene that was recovered by INFOMAP-OSLOM2 methodology
and it is marked as a potential driver of luad [97].

Lung squamous cell carcinoma - lusc
KIT is a gene found to be play a significant role in squamous cell lung cancers
thrugh somatic copy number alterations [145]. Other literature report overex-
pression of KIT to be present in both large cell neuroendocrine carcinoma and
small cell lung cancers [146, 147, 148].

Mesothelioma - meso
Almost half of the mesothelioma patients of the network (32 out of 66) were as-
signed to the group with BAP1 and NF2 genes present through the MODULAR-
UPGMA-OSLOM2 pipeline. Mutations over both genes are observed in mesothe-
lioma patients [149, 150, 151, 152, 153].

NF2 signaling disruption seems to be necessary in cancer initiation of mesothe-
lioma [153], while BAP1 homozygous deletion is linked mostly with epithelioid
and biphasic subtypes [152]. 19 out of 32 patients were of epithelioid subtype
and 8 out of 32 patients were of biphasic subtype.

Pancreatic adenocarcinoma - paad
SMAD4 and KRAS are known driver genes of panceratic adenocarcinoma [154,
155, 156]. SMAD4 is recovered in two separate modules. One module, where
SMAD4 is along with APC and KRAS (40 patients), and one module, where
SMAD4 is the only gene of the cohort (36 patients). Thirty-three patients
existed in both modules.

APC mutations are absent from patients of the APC-KRAS-SMAD4 cohort.
Thus, existance of the gene will be adressed to stad (see stad), luad (see luad)
and coadread (see coadread) patients.
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Pheochromocytoma and Paraganglioma - pcpg
HRAS has been previously linked to pcpg cases [157, 158, 159]. The exact
same module was recovered by either of the pipelines. (INFOMAP-OSLOM2,
MODULAR-UPGMA-OSLOM2). Note that, while every patient of the cohort
carried HRAS mutations, no other gene (with respect to all genes of the raw
TCGA data) was found to be mutated in more than two patients simultaneously.

Prostate adenocarcinoma - prad
FOXA1 and SPOP are found to be recurrently mutated in prostate cancer

patients [160, 161].

INFOMAP-OSLOM2 pipeline assigned FOXA1 and SPOP in one module along
with prostate adenocarcinoma patients. 5 out of 76 patients of the module
carried mutations in both genes. MODULAR-UPGMA-OSLOM2 pipeline, on
the other hand, recovered two modules, regarding FOXA1 and SPOP. The first
module contains only SPOP and every patient (40 out of 40 patients) of the
module carried SPOP mutations. The second module contained FOXA1 along
with MAP3K1. Interestingly, 5 out of 26 of the patients of the FOXA1-MAP3K1
module carried SPOP mutations and 4 out 5 of them, also belonged in the
FOXA1-SPOP module that INFOMAP-OSLOM2 retrieved and all 4 of them
carried both SPOP and FOXA1 mutations.

MAP3K1 deletions can be found in several cancer patients [162]. In the FOXA1-
MAP3K1 module, only 2 out of 26 patients carried MAP3K1 mutations.

CTNNB1 is one of the genes found to be less frequently mutated in prostate
adenocarcinoma [160]. 10 out of 10 patients of the CTNNB1 module, carried
CTNNB1 mutations.

Sarcoma - sarc
Here [163], only three genes were recovered as significantly mutated and two of
them, ATRX and TP53 are linked by both methodologies and the same patients
were recovered each time.

ATRX and TP53 can be found mutated across many tumor types of sarcoma
[164, 165]. Five different tumor types co-exist in the module (5 of Leiomyosar-
coma (LMS), 3 of Pleomorphic MFH (Undifferentiated Pleomorphic Sarcoma),
2 of Myxofibrosarcoma, 1 of Dedifferentiated Liposarcoma and 1 of Pleomorphic
Sarcoma (UPS) (Undifferentiated)).

Only 1 out of 12 harbored IDH1 mutations. Thus, existance of the gene in the
module will be addressed to lgg (see lgg) and gbm (see gbm) patients.

Furthermore, no mutations over CIC and FUBP1 (associated through INFOMAP-
OSLOM2) genes appear in the patients of the modules. Thus, existance of the
genes will be addressed to lgg patients (see lgg).
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Skin Cutaneous Melanoma - skcm
BRAF is a known driver gene of skin cutaneous melanoma [166, 167], while it
is estimated that « 50% of cutaneous melanoma cases carry BRAF mutations
[168]. Moreover, targeted therapy addressing to BRAF gene (BRAF-inhibitors)
has shown advantages with respect to the overall surival of the patients [168,
169].

INFOMAP-OSLOM2 pipeline recovered a module with BRAF gene and 18 skcm
patients where 18 out of 18 carried BRAF mutations.

Stomach adenocarcinoma - stad
SMAD4 [170, 171, 172], APC, KRAS [170, 173, 174, 175] and CDH1 [170] are

genes associated with stomach adenocarcinoma and they were recovered by the
MODULAR-UPGMA-OSLOM2 pipeline.

SMAD4 appears in two separate modules, one in a module along with APC
and KRAS and 12 stad patients, and one in a module with no other gene and
25 stad patients. 9 patients belonged in both modules. Furthermore, these 9
patients were of the chromosomal instability subtype. The rest of the 3 patients
of the APC - KRAS - SMAD4 module belonged in different subtypes. 19 out of
25 patients of the SMAD4 cohort were of the chromosomal instability subtype
as well.

CDH1 mutations are associated with genomically stable stomach adenocarci-
noma subtype [170] and 10 out of 14 patients are of that subtype.

No patient harbored mutations over RUNX1 (associated through MODULAR-
UPGMA-OSLOM2). Thus, existance of the gene will be addressed to brca (see
brca) and laml (see laml) patients

Testicular Germ Cell Tumors - tgct
KIT is one of the three genes that were considered significantly mutated in
testicular germ cell tumors here [176]. Both community detection pipelines
accurately associated KIT with tgct patients. In fact, the modules recovered
were exactly the same. All 20 out of 20 patients carried KIT mutations. No
other gene (with respect to all genes of the raw TCGA data) was found to be
mutated in more than two patients, simultaneously. KIT mutations are mostly
present in seminomas [176, 177, 178]. 19 out of 20 patients were of the seminoma
subtype.

Thyroid carcinoma - thca
BRAF, NRAS and HRAS are considered as driver genes for thyroid papillary

carcinoma [179, 180].

RAS mutations are associated with the follicular thyroid cancers [181]. 25 out
of the 38 patients of the module containing NRAS are of this tumor type. This
module was recovered by the MODULAR-UPGMA-OSLOM2 pipeline. HRAS
was associated through both pipelines and HRAS was the only gene of the
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module in any of the approaches. 7 out of the 13 patients of the HRAS module
recovered by the MODULAR-UPGMA-OSLOM2 approach and 10 out of the 16
patients of the HRAS module recovered by the INFOMAP-OSLOM2 approach,
were of follicular thyroid cancer tumor type as well. We must note that all the
13 patients of the MODULAR-UPGMA-OSLOM2 approach were contained in
the corresponding INFOMAP-OSLOM2 module.

On the other most of the patients associated with BRAF were of casual thyroid
cancer tumor type. BRAF was associated through both pipelines and BRAF
was the only gene of the module in any of the approaches. 205 out of the 249
patients of the BRAF module recovered by the MODULAR-UPGMA-OSLOM2
approach and 233 out of the 285 patients of the BRAF module recovered by
the INFOMAP-OSLOM2 approach, were of this tumor type. We must note
that all the 249 patients of the MODULAR-UPGMA-OSLOM2 approach were
contained in the corresponding INFOMAP-OSLOM2 module.

No patient harbored mutations over FTL3 or NPM1 (associated through MODULAR-
UPGMA-OSLOM2). Thus, existance of the genes will be addressed to laml
patients (see laml)

Thymoma - thym
HRAS mutations are associated with thymoma [182, 183].

Uterine Corpus Endometrial Carcinoma - ucec
PPP2R1A, PIK3R1, CTNNB1, PTEN and SPOP are among the significantly
mutated genes of uterine corpus endometrial carcinoma [98, 184]

PPP2R1A mutations are linked to serous endometrial carcinomas [98, 184]. 38
out of 54 patients of the module containing PPP2R1A were of serous endometrial
adenocarcinoma tumor type. This module was recovered by the MODULAR-
UPGMA-OSLOM2 pipeline.

PTEN and CTTNB1 mutations are linked to endometrioid endometrial tumor
type [98, 184]. All of the 63 patients of the module containing PTEN and
CTNNB1 were of endometrioid endometrial adenocarcinoma tumor type. This
module was recovered by the MODULAR-UPGMA-OSLOM2 pipeline.

PIK3R1 mutations are also linked to endometrioid endometrial tumor type [98,
184]. 40 out of 40 patients of the module containing PIK3R1 were of endometri-
oid endometrial adenocarcinoma tumor type. This module was recovered by the
MODULAR-UPGMA-OSLOM2 pipeline.

The role of SPOP in uterine sarcomas remains controversial [185], but it is a gene
commonly mutated in serous endometrial cancers [186]. 15 out of 28 patients of
the module containing SPOP were of endometrioid endometrial adenocarcinoma
tumor type and 13 out of 28 patients were of serous endometrial adenocarcinoma
tumor type. This module was recovered by the INFOMAP-OSLOM2 pipeline.
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Only 1 out of the 28 patients of the module harbored FOXA1 mutations (as-
sociated through INFOMAP-OSLOM2). Thus, existance of the gene will be
addressed to blca (see blca), brca (see brca) and prad (see prad) patients

Uterine Carcinosarcoma - ucs
PPP2R1A is a gene found to be recurrently mutated in uterine carcinoma pa-
tients [187, 188]. All of the patients of the cohort (15 patients) carried PPP2R1A
mutations.

It must be noted that although 13 out of the 15 patients carried TP53 mutations,
MODULAR-UPGMA-OSLOM2 pipeline assigned no patients in module 0 where
TP53 belongs. This propably occurred due to lack of mutations of the ucs
patients over the ATRX, IDH1 genes (that coexist with TP53 in module 0).
TP53 is also found to be recurrently mutated in uterine carcinoma patients.
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Table 26: Hyperlinks to cBioPortal Virtual Studies, each containing patients of
the corresponding cancer types and modules.

Cancer
Type

MODULAR-UPGMA-OSLOM2 INFOMAP-OSLOM2

acc CTNNB1
blca HRAS,FOXA1,SPOP
brca PIK3R1,SETD2,AKT1,GATA3,CHD1,RUNX1,FOXA1,MAP3K1 GATA3,CDH1,RUNX1,FOXA1,SPOP
cesc STK11
coadread APC,KRAS,SMAD4,SMAD4
gbm ATRX,IDH1,TP53,PIK3R1,EGFR ATRX,CIC,FUBP1,IDH1,TP53,

EGFR,PTEN
hnsc SMAD4 HRAS
kirc SETD2,PBRM1,VHL,BAP1,NF2 BAP1,PBRM1,SETD2,VHL
kirp SETD2,BAP1,NF2
laml FLT3,NPM1,NRAS,DNMT3A,CDH1,RUNX1,CIC,IDH2 DNMT3A,FLT3,NPM1
lgg ATRX,IDH1,TP53,PIK3R1,EGFR,DNMT3A,CIC,IDH2 ATRX,CIC,FUBP1,IDH1,TP53
lihc CTNNB1,SETD2,BAP1,NF2
luad APC,KRAS,SMAD4,SMAD4,STK11,SETD2,EGFR,DNMT3A BRAF
lusc KIT KIT
meso BAP1,NF2
paad APC,KRAS,SMAD4,SMAD4
pcpg HRAS HRAS
prad CTNNB1,SPOP,FOXA1,MAP3K1 FOXA1,SPOP
sarc ATRX,IDH1,TP53 ATRX,CIC,FUBP1,IDH1,TP53
skcm BRAF
stad APC,KRAS,SMAD4,SMAD4,CDH1,RUNX1
tgct KIT KIT
thca FLT3,NPM1,NRAS,HRAS,BRAF BRAF,HRAS
thym HRAS
ucec CTNNB1,PTEN,PPP2R1A,PIK3R1,CTNNB1 FOXA1,SPOP
ucs PPP2R1A
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6 Discussion / Conclusion

Comparison to previous work J.Iranzo, Inigo Martincorena and Eugene
V.Koonin were the ones that created a gene-patient network and implemented
MODULAR-UPGMA-OSLOM and INFOMAP-OSLOM pipelines as described
in Methods [92]. The main reasons for which differences in results occur are the
following:

• MODULAR was run 200 times - Here it was run 45 times

• Color and Rectal cancer were treated separately - Here they both account
for colorectal adenocarcinoma (coadread).

• Data used were from the year 2016 - Here they date back to 2018.

• OSLOM and INFOMAP were slower - Here both softwares run very fast.

• INFOMAP’s bipartite version was used - Here the network was treated as
unipartite because the biparite one may create structural artifacts.

The highest importance is attached to the first bullet, due to high computa-
tional cost of MODULAR which leads to expected differences. To compensate
for them, the union of the two approaches is used and an extended analysis
exploiting cBioPortal charts took place for every cancer type when more than
10 patients of the cancer belonged in a module, as described in Methods.

10-patients threshold The lower bound for patient nodes to be considered
modular was 10, which proved effective even for types in clusters where the
absolute number was exactly the boundary (blca, brca, lgg, prad, thym). We
recall the need for recovering significantly mutated genes for primary sites over
cell lines but, nevertheless, the analysis revealed several groups that were not
only related to the cancer type but was also related to certain tumor or molec-
ular subtypes and are consistent with TCGA publications and other literature.
Through that concept, almost all but three cancer types (esophageal carcinoma,
kidney chromophobe, oovarian serous cystadenocarcinoma) failed to exceed the
threshold in any of the modules. Number 10 was chosen as threshold given that
there exist studies containing 5 ´ 15 samples each.

Subnetwork Both methodologies were firstly applied in a smaller network
(including 6 cancer types) where more runs of MODULAR could be utilized.
Ensemble clustering of INFOMAP-OSLOM2 was also justified (INFOMAP vs
INFOMAP-OSLOM2), as both the number of modules was decreased and the
large pseudomodule of INFOMAP (see 5.1) was removed. 100 runs of MOD-
ULAR combined with UPGMA resulted in a better gene-cancer association.
For example in the analysis made by Iranzo et. al [92], the module contain-
ing colon and rectal adenocarcinoma patients contained the genes APC, KRAS,
TP53, FBXW7, SMAD4 and TCF7L2. All of them are assigned in the subnet-
work (along with NRAS), while through the network, only APC, KRAS and
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SMAD4 were recovered. Thus, the exploitation of more MODULAR partitions
is paramount for robust results.

Per cancer accuracy In order to make use of all the available results, only
the OSLOM2 statistical significant modules appear here (p value ă 0.05), while
a cancer-gene association through the modules was evaluated. To do that, each
gene that belonged with more than patients of a specific type was looked up
to literature to determine whether there is indeed a connection. The reason
that for some genes this couldn’t be confirmed, is patients of other cancer types
assigned in the same module.

Union effectiveness Comparing the two approaches, MODULAR-UPGMA-
OSLOM2 and INFOMAP-OSLOM2, we conclude through Table 25 that both
provide meaningful biological evidence (see Table 27)

Nodes
Assigned

Modular
Nodes

Genes 16.7% 16.7%
Patients 36.3% 27.8%

Nodes
Assigned

Modular
Nodes

Genes 11.6% 11.6%
Patients 17.5% 14.4%

Nodes
Assigned

Modular
Nodes

Genes 17.2% 17.2%
Patients 39.1% 30.4%

Table 27: Nodes assigned and nodes patients considered modular through the
10-patient threshold (patients of the blue highlighted cells of the tables).
Left is for MODULAR-UPGMA-OSLOM2.
Center is for INFOMAP-OSLOM2.
Right is for the union.
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