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ABSTRACT

It was recently shown that higher-order positive datalog captures the complexity class
(k − 1)-EXPTIME on ordered databases [2], and in particular for k = 2, second or-
der datalog captures EXPTIME. In this thesis we investigate the expressive power of
second-order datalog under the well-founded semantics [4]. More specifically, we present
a recursive algorithm that takes as input an existential second-order logic formula ϕ and
constructs a second-order WFS1 datalog program Pϕ. Furthermore there is an equival-
ence, in terms of satisfiability, between the finite models of ϕ and the well-founded model
of Pϕ, that implies a correct behaviour of the constructed program. In other words, the sat-
isfaction of a given SO(∃) formula by a structure is reduced into the satisfaction of the well
founded model of Pϕ. As a result, by the well-known theorem of Fagin [10] and the above
transformation we deduce that second-order WFS datalog captures NP . Finally this res-
ult is not strict, meaning that it is possible that second-order WFS datalog is stronger,
and does not depend upon any ordering assumption since SO(∃) is powerful enough to
nondeterministically guess such an ordering.

SUBJECT AREA: Higher-order logic programming and complexity theory

KEYWORDS: Higher-order logic programming, second-order datalog, descriptive
complexity theory

1Sometimes instead of writing well-founded semantics, we will use the abbreviation WFS



ΠΕΡΙΛΗΨΗ

Πρόσφατα δείχτηκε ότι η datalog k-τάξης χωρίς άρνηση εκφράζει την κλάση πολυπλοκότη-
τας (k − 1)-EXPTIME σε διατεταγμένες βάσεις δεδομένων [2] και ειδικότερα η datalog
δεύτερης τάξης εκφράζει την κλάση EXPTIME. Σε αυτή την πτυχιακή ερευνούμε την
εκφραστική ισχύ της datalog 2ης-τάξης κάτω απο την well-founded σημασιολογία της άρ-
νησης [4]. Πιο συγκεκριμένα, παρουσιάζουμε έναν αναδρομικό αλγόριθμο που δέχεται
ως είσοδο έναν λογικό τύπο ϕ της υπαρξιακής λογικής δεύτερης τάξης SO(∃) και κατα-
σκευάζει ένα πρόγραμμα datalog 2ης-τάξης Pϕ. Επιπλέον υπάρχει μια ισοδυναμία, όσον
αφορά την ικανοποιησιμότητα, μεταξύ των πεπερασμένων μοντέλων του ϕ και του well-
founded μοντέλου του Pϕ, που υπονοεί μια σωστή συμπεριφορά του προγράμματος Pϕ.
Με άλλα λόγια η ικανοποιησιμότητα ενός δοσμένου λογικού τύπου της SO(∃) από μια συ-
γκεκριμένη δομή (ερμηνεία), μεταφέρεται στην ικανοποιησιμότητα ενός "τελικού" κανόνα
του προγράμματος Pϕ απο το well-founded μοντέλο. Ως αποτέλεσμα, με βάση το γνωστό
θεώρημα του Fagin [10] και τον παραπάνω μετασχηματισμό συμπαιρένουμε ότι η datalog
2ης-τάξης με well-founded σημασιολογία εκφράζει την κλάση NP . Τέλος το αποτέλεσμα
αυτό δεν είναι αυστηρό, δηλαδή η datalog 2ης-τάξης μπορεί να είναι ακόμα πιο δυνατή,
και δεν βασίζεται σε κάποια υπόθεση διάταξης της εισόδου, δεδομένου ότι η SO(∃) είναι
αρκετά δυνατή για να επιλέξει μη ντετερμινιστικά μια τέτοια διάταξη.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Λογικός προγραμματισμός υψηλής τάξης και θεωρία
πολυπλοκότητας

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Λογικός προγραμματισμός υψηλής τάξης, datalog δεύτερης τάξης,
περιγραφική θεωρία πολυπλοκότητας
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The expressive power of second-order datalog under the well-founded semantics of negation

1. INTRODUCTION

Logic and functional programming are the two most commonly used, in both theoretical
studies and real world applications, declarative paradigms. However, while functional
programming is well known for the higher order functions that lead to a more clean and
expressive way of programming, logic programming is in general first order. This is partly
justified since there had been many attempts to extend logic programming into a higher
order one, but came across one difficulty after the other. Of course they found their way
into some applications, such as theorem proving and meta-programming [9], [19], but
could not form a general-purpose higher order programming language. However exten-
sional higher-order logic programming was introduced in [1] and opened new doors in
the semantics of higher-order logic programming. The goal of a more general purpose
and compact programming language that retains all the well-known properties of clas-
sical first order logic programming was achieved, namely, a higher-order logic program-
ming language with extensional semantics in which every program has a unique min-
imum Herbrand model,which is the greatest lower bound of all Herbrand models and the
least fixed-point of an immediate consequence operator, as well as a generalized SLD-
resolution proof procedure that is sound and complete with respect to the above model
theoretic semantics. The next step was to invent the semantics of negation of the above
language, [3], [16], which ultimately led to the well-founded semantics of higher-order lo-
gic programming [4]. So whenever we mention second-order datalog under well-founded
semantics, we are referring to the second-order function-free subset of the language in-
troduced in [4], of which we study the expressive power. Lastly, we know from the case
of first-order datalog, and it is intuitively obvious, that adding negation might change the
expressive power of the language. Moreover for different semantics of negation we get
different results. For example if we use stratified negation (or even well-founded nega-
tion) for first-order datalog, datalog still captures PTIME (under an ordering assumption),
while if we use stable model semantics datalog becomes stronger and captures co-NP
[5], [17].

Usually to prove that a query language Q captures a complexity class C one shows that
every Turing machine that decides a language in C can be simulated by a program in
Q. If in addition the opposite direction is true as well, namely that every query in Q is
computable in C, then we can say that Q expresses exactly all those languages in C and
no more. The approach that was used in the case of higher-order positive datalog [2] was
exactly this. That is to say M is a deterministic Turing machine that decides a language
L in (k − 1)-EXPTIME iff there exists a k-order positive datalog program P that decides
L. On this thesis we are going to use a different approach. One that relates datalog
programs with logic formulas in a direct way and exploits the complexity theoretic results
that descriptive complexity has given us.

More specifically we are going to use the well-known Fagin’s theorem [10] which intuitively
states thatNP is equal to the set of all existential second-order queries, [13], [14]. In other
words every language in NP can be expressed in existential second-order logic SO(∃)1
and vice versa. As for the content of this thesis, let ϕ ∈ SO(∃) and U be a structure of the
same vocabulary as ϕ. We construct a second-order WFS datalog program Pϕ, using a
recursive transformation that takes as input the logic formula ϕ and produces the datalog
program Pϕ. We can see U ′s universe and the meaning that U gives in ϕ′s predicate

1ϕ ∈ SO(∃) ⇔ ϕ ≡ ∃R1, . . . , ∃Rnψ where R1, . . . Rn are first order predicate variables and ψ is a first-
order logic formula

R. Aslanis Petrou 8



The expressive power of second-order datalog under the well-founded semantics of negation

symbols as input and translate it as the input database of Pϕ. In other words, we set the
universe |U| as the Herbrand universe UPϕ and the input of the constructed program is a
set of facts that encode the meaning that U has given in predicate symbols. This allows
us to show an equivalence between the finite models of ϕ and the well founded model of
Pϕ. More specifically if the structure U satisfies ϕ, which in turn means that there exist
the relations R1, . . . Rn in the first part of ϕ, then those relations also exist in UPϕ and the
well founded model assigns the value true in a specific predicate of Pϕ. If on the other
hand U does not satisfy ϕ then the well founded model assigns the value false. From
Fagin’s theorem and the above transformation, we get that second-order datalog under
the well-founded semantics can express every language in NP .

Another thing to mention is that of the importance of ordered input. Both in descriptive
complexity and in the complexity theoretic database theory, there is a significant obstacle.
In order to show an equivalence between logic and complexity, we have to somehow relate
logic queries and Turingmachines. On the one hand logic queries, datalog programs, work
on databases and on the other hand Turing machines work with strings of characters. By
definition, a string comes with a total order (first character, second character, …, last
character) while databases are unordered sets. At first this might seem to be little to no
important, but in reality this is not true. Think of how a Turing machine works and how
you can simulate one without an order on the input. What does next or previous tape
cell mean if next and previous are not defined anywhere? To conclude, query languages,
especially first-order ones, without an order in the input are incapable of expressing even
the simpliest problems. Let us just mention that classical datalog (first-order datalog) can
express PTIME under an ordering assumption [15], [18], while without that assumption
it fails to express even some regular languages.

The structure of this thesis is organized as follows: There are two main parts, Part 2
(the preliminaries) and Part 3 (the main content of this thesis). Both of them are divided
into two sections. Section 2.1 presents the syntax of higher-order datalog and makes a
reference on the well-founded semantics, Section 2.2 gives some preliminary knowledge
for second-order logic and descriptive complexity, Section 3.1 presents the transformation
of SO(∃)-formulas into second-order WFS datalog programs and Section 3.2 refers to how
we can bypass some obstacles, regarding function symbols and the order of input. Finally
the last section, Section 4, discusses the conclusions we get from this thesis and proposes
some ideas for extending the semantics of higher-order WFS datalog and possibly making
it a more powerful language.

R. Aslanis Petrou 9
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2. PRELIMINARIES

2.1 Higher-order datalog, syntax and the well-founded semantics

To begin with, as higher-order datalog under the well-founded semantics we consider the
higher-order function free subset of the language HOL introduced in [4]. Just like in the
case of higher-order positive datalog [2] which inherited a syntactic restriction from the
language H [1], second-order WFS datalog inherited the same restriction from HOL.
Namely that in the head of every rule in a program, each argument of predicate type must
be a variable, and all such variables must be distinct. To get the idea of what that means,
let us see some examples1.

Example 2.1.1 The program below does not satisfy the restriction.

p(X)← q(X).

q(a).

r(q).

The predicate constant q appears in the head of the rule r(q).

Example 2.1.2 Similarly the program:

p(Q,Q)← Q(X).

q(a).

q(b).

Does not satisfy the restriction because the predicate variableQ appears twice in the head
of a rule.

However the next example is a valid second-order WFS datalog program.

Example 2.1.3

subset(P,Q)←∼ nonsubset(P,Q).

nonsubset(P,Q)← P (X),∼ Q(X).

Which, intuitively, states that P is a subset of Q if it is not the case that there exists an X
for which P is true while Q is false.

We will denote individual constants with the lowercase letters a, b, c, . . . , individual vari-
ables with the uppercase lettersX,Y, Z, . . . , predicate constants with p, q, s, t, . . . and pre-
dicate variables with P,Q,R, . . . .

1For simplicity we will use standard prolog-like syntax

R. Aslanis Petrou 10
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Let us now proceed to some definitions of higher-order WFS datalog. First of all just like
in the case of HOL, higher-order WFS datalog is based on a simple type system. There
are two base types: o, the boolean domain and ι the domain of individuals. A composite
type can be either predicate π or argument ρ (we do not have functional types).

π := o | ρ→ π

ρ := ι | π

Second-order datalog: Of course in the case of higher-order datalog, every predicate
type can be at most a second-order one.

Definition 2.1.1 The alphabet of higher-order WFS datalog consists of:

1. Predicate constants of every predicate type π.

2. Predicate variables of every predicate type π.

3. Individual constants of type ι.

4. Individual variables of type ι.

5. Logical constant symbols:

• False and True
• Equality constant ≈ of type ι→ ι→ o

• Generalized disjunction and conjuction constants
∨
π,

∧
π of type π → π → π.

• Generalized inverse implication constant←π of type π → π → o.
• Existential quantifier ∃ρ of type (ρ→ o)→ o.
• Negation constant ∼ of type o→ o.

6. The abstractor λ and the parentheses “(” and “)”.

Definition 2.1.2 The set of expressions of the second-order WFS datalog is defined as
follows:

1. Every predicate variable (respectively, predicate constant) of type π is an expression
of type π; every individual variable (respectively, individual constant) of type ι is an
expression of type ι; the propositional constants False and True are expressions of
type o.

2. If E1 is an expression of type ρ → π and E2 is an expression of type ρ, then (E1E2)
is an expression of type π.

3. If R is an argument variable of type ρ and E is an expression of type π, then (λR.E)
is an expression of type ρ→ π.

4. If E1, E2 are expressions of type π, then (E1

∨
π E2) and (E1

∧
π E2) are expressions

of type π.

5. If E is an expression of type o, then (∼ E) is an expression of type o.

6. If E1, E2 are expressions of type ι, then (E1 ≈ E2) is an expression of type o.

R. Aslanis Petrou 11
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7. If E is an expression of type o and R is a variable of type ρ then (∃ρRE) is an
expression of type o.

An expression of type ι will be called a term; if it does not contain any individual variables,
it will be called a ground term.

Definition 2.1.3 A clause of second-order WFS datalog is of the form p ← E where p is
a predicate constant of some predicate type π and E is a closed expression also of some
type π.

Definition 2.1.4 A higher-order WFS datalog program is a finite set of clauses.

Definition 2.1.5 Let P be a program. The Herbrand universe UP of P is the set of all
ground terms that can be formed out of the individual constants of P .

Definition 2.1.6 A Herbrand interpretation I of a program P is a function, with domain
UP , that assigns:

1. To every individual constant c of P itself.

2. To every predicate constant p : π of P a function from the denotation of type π, with
underlying domain the Herbrand universe UP .

Moreover a Herbrand state of P is a state whose underlying domain is UP . A Herbrand
model of P is a Herbrand interpretation that is a model of P .

As for the well-founded semantics we will just mention the main idea and some basic
definitions. For deeper understanding the reader is highly advised to have a look at [4],
where the well-founded semantics for higher-order logic programs are introduced.

The key concept of the well-founded semantics for higher-order logic programs is to in-
terpretate the predicate types as three-valued Fitting-monotonic2 functions [11]. That is
because when you add negation, the predicates are not anymore3 (standard) monotonic
and continuous functions. In other words if a predicate is true for an input relation, it is
not necessarily true for a superset of that relation, at least according to the standard truth
ordering.

Example 2.1.4 The program below states that p is True for every relation Q that doesn’t
include {a} or doesn’t include {b}.

p(Q)←∼ Q(a).

p(Q)←∼ Q(b).

The predicate p is True for the relations {a}, {b}, but not for the relation {a, b}.
2Fitting monotonicity is a type of monotonicity with respect to the information ordering (undef ⪯ false,

undef ⪯ true) rather than the standard truth ordering (false ≤ undef ≤ true).
3Remember that in the semantics of [1], predicates where interpretated as monotonic functions.

R. Aslanis Petrou 12
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With that being said, an interpretation of a program is a function that assigns Fitting-
monotonic functions to the predicates of the program. Furthermore a Fitting-monotonic
immediate consequence operator is easy to be defined, whose least fixpoint is minimal
with respect to the information ordering. However this is not the well-founded model of
a program, since the well-founded model should be minimal with respect to the standard
truth ordering. The solution to that was to find a bijection between three-valued interpret-
ations and pairs of two-valued-result ones.4 More specifically by starting from a pair of an
underdefined and an overdefined interpretation and by iterating an appropriate operator,
we get the limit of that sequence. That limit pair of interpretations can be converted into
a three-valued interpretation MP which is the well-founded model of P , a minimal model
with respect to the standard truth ordering.

Let us now proceed to somehow more ”practical” examples of second-order WFS datalog.

Example 2.1.5 (Transitive closure) A second-order program to compute the closure of
an input relation R.

transitiveClosure← λR.λX.λY (RX Y ).

transitiveClosure← λR.λX.λY ∃Z((RX Z) ∧ (transitiveClosure RZ Y )).

Or in standard prolog-like syntax:

transitiveClosure(R,X, Y )← R(X,Y ).

transitiveClosure(R,X, Y )← R(X,Z), transitiveClosure(R,Z, Y ).

Example 2.1.6 (clique) Let the input be a set of facts encoding a vertex set (v(a), v(b), . . . )
and an edge set (e(a, b), e(a, c), . . . ) of a graph G.

clique← λR.
(
(subset vR)∧ ∼

(
∃X.∃Y. ((RX) ∧ (RY )∧ ∼ (e X Y ))

))
.

Or in standard prolog-like syntax (infact in the rest of this thesis, to avoid any confusion,
we are going to use standard prolog syntax):

clique(R)← subset(v,R),∼ nonClique(R).

nonClique(R)← R(X), R(Y ),∼ e(X,Y ).

R is a clique of the input graph if it is a subset of it’s vertex set and if it is not the case that it
is not a clique, which is true if there exist two vertices inR that are not connected with each
other. Intuetively the well-founded model MP will set to true clique(r), forall r ⊆ v = UP
that encode a clique of the input graph.

4The tool that was used here was the approximation fixpoint theory [6], [7]

R. Aslanis Petrou 13
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Example 2.1.7 (3-coloring) Again let the input database consist of some facts encoding
the vertex set (v(a), v(b), . . . ) and the edge set (e(a, b), e(a, c), . . . ) of a graph. One way to
compute the three chromatic classes (red, green, blue)of a graph is:

emptyIntersection(P,Q)← not nonEmpty(P,Q).

nonEmpty(P,Q)← P (X), Q(X).

allV ertices(R,G,B)←∼ nonAll(R,G,B).

nonAll(R,G,B)← v(X),∼ R(X),∼ G(X),∼ B(X).

nonThreeColor(R,G,B)← e(X,Y ), R(X), R(Y ).

nonThreeColor(R,G,B)← e(X,Y ), G(X), G(Y ).

nonThreeColor(R,G,B)← e(X,Y ), B(X), B(Y ).

threeColor(R,G,B)←allV ertices(R,G,B),

emptyIntersection(R,G),

emptyIntersection(R,B),

emptyIntersection(G,B),

∼ nonThreeColor(R,G,B).

The predicate allV ertices states that every vertex must be colored, emptyIntersection
states that every vertex must be colored with only one color and predicate nonThreeColor
states that there should not be adjacent vertices with the same color.

2.2 Second-order logic and Descriptive complexity theory

We will just mention some basic definitions for both second-order logic and descriptive
complexity for the shake of completeness and to avoid any possible misunderstanding.

Second-order logic (SO) is an extension of first-order (FO) that in addition has predicate
and function variables. The set of terms is the set of expressions that can be build by ap-
plying function symbols (both constants and variables) to constant symbols and the set of
well-formed formulas is extended with two new type constructive operations; namely if ϕ
is well-formed formula then ∀Xnϕ and ∀F nϕ are also well-formed, whereXn is a predicate
variable of arity n and F n is a function variable of arity n.
The role of a structure (interpretation) is the same, namely a function on the set of para-
meters which satisfies the known conditions of a structure and the definition of satisfaction
is extended in an obvious way. That means, let U be a structure with domain |U| and s be
a state function, then s(u) ∈ |U|, s(Xn) ∈ |U|n and s(F n) ∈ |U|n → |U|. Then satisfaction
for the formulas that use the new quantifiers is defined as:

|=U ∀Xnϕ[s] iff for every relation R of arity n on |U|, we have |=U ϕ[s(X
n|R)]

and

|=U ∀F nϕ[s] iff for every function f : |U|n → |U|, we have |=U ϕ[s(F
n|f)]

Example 2.2.1 (Peano’s induction postulate) Any set of natural numbers that contains
0 and is closed under successor function is the set of all natural numbers. In second-order
logic this can be written as:

∀Q
(
Q(0) ∧ ∀y

(
Q(y)→ Q(s(y))

)
→ ∀yQ(y)

)
R. Aslanis Petrou 14
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It is quite obvious that second-order logic is a ”superset” of first-order logic and thus one
could reasonable assume that second-order logic is more powerful than first-order. This
is completely true and in fact there is a whole area that studies those relations between
formal logics, descriptive complexity [13], [14].

The key concept of descriptive complexity theory is a different point of view into complexity
theory, one that understands the computational complexity of a problem as the richness
of the language that is needed to specify it. Instead of characterizing the complexity of
a problem by measuring the time and space a Turing machine needs to perform a com-
putation, in descriptive complexity we measure the expressive power of a formal logic
that is needed for the description of the problem. In fact there are many known results
relating fragments and extensions of formal logics with important computational classes.
For example, FO(lfp)5 captures PTIME, Horn-SO(∃)6 captures PTIME, SO in whole
captures PH, etc…But how exactly does a logic formula express a language and a formal
logic a complexity class?

Example 2.2.2 (An intuitive answer) The formula below expresses the language of 3-
colorable graphs, a well known NP -Complete language.

ϕ ≡ ∃R∃Y ∃B∀x∀y
((
R(x) ∨ Y (x) ∨B(x)

)
∧
(
E(x, y)→

¬(R(x) ∧R(y)) ∧ ¬(Y (x) ∧ Y (y)) ∧ ¬(B(x) ∧ B(y))
))

Let U be a model of ϕ. The universe |U| can be seen as a vertex set of a graph G, EU

as the edge set of G and since U is a model, there exist c1, c2, c3 such that they satisfy
ϕ[R|c1, Y |c2, B|c3]. In particular c1, c2, c3 will be the three chromatic classes of G.

Definition 2.2.1 A boolean query is a map I : STRUCT [τ ] → {0, 1} that is polynomially
bounded. That is, there is a polynomial p such that for all A ∈ STRUCT [τ ], ∥I(A)∥ ≤
p(∥A∥). Where STRUC[τ ] is the set of all finite structures of vocabulary τ .

To catch the spirit of a decision problem the queries are boolean. However since Tur-
ing machines do not only decide problems, but also compute other functions on natural
numbers there are also ”non”-boolean queries STRUCT [τ ] → STRUCT [σ], where σ is,
possible, another vocabulary.

Definition 2.2.2 Let LO be a formal logic, C a computational class, ϕ a logic formula and
τ it’s vocabulary. We will say that every boolean query in LO is computable in C, denoted
as LO ⊆ C, if:

∀ I ∈ STRUCT [τ ], I |= ϕ⇒ ∃MC,MC(bin(I)) = 1

Where MC is a C-Turing machine. Furthermore, if also the other direction is true, namely
that every language L ∈ C is expressible in LO (C ⊆ LO), then we say that LO = C.

Definition 2.2.3 An expression of existential second-order logic SO(∃) over a vocabulary
τ is of the form ∃R̄ϕ, where R̄ is am-tuple of first order relations (< R1, R2, . . . , Rm >) that
do not appear in the predicates of τ and ϕ is a first-order formula.

5FO(lfp): first-order logic extended with a least fixpoint operator
6Horn-SO(∃): second-order existential horn logic
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One could say that SO(∃) is first-order logic with the power of existentially quantification
of relations over the universe of a structure. The following sentences are valid SO(∃)
formulas.

∃P ∃x(P (x))
∃R ∃Q ∀x

(
R(x) ∧ ¬Q(x)

)
∃R ∃Q ∃S

(
∀x(R(x)→ Q(x)) ∨ ¬S(x)

)
Proposition 2.2.1 The second-order existentially definable boolean queries are all com-
putable in NP . In symbols, SO(∃) ⊆ NP .

Theorem 2.2.1 (Fagin’s 1973) NP is equal to the set of existential, second-order boolean
queries, NP = S0(∃). Furthermore, this equality remains true when the first-order part of
the second-order formulas is restricted to be universal.

Fagin’s theorem was the cornerstone of descriptive complexity. After his publication [8],
a whole bunch of results started to come out relating formal logic and computational com-
plexity.
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3. THE EXPRESSIVE POWER OF SECOND-ORDER WFS DATALOG

3.1 The transformation

Let ψ ∈ SO(∃)⇔ ψ ≡ ∃R̄∀x̄ϕ[R̄, x̄], where R̄ is a tuple of predicate variables, x̄ is a tuple
of individual variables and ϕ is a first-order formula without any other quantifier.
Since ∀xϕ ≡ ¬∃x¬ϕ, we swap ∀x̄ with ¬∃x̄¬ and we get formulas of the form ψ ≡
∃R̄¬∃x̄¬ϕ[R̄, x̄]. Our transformation will take as input such a formula and recursively con-
struct a second-order datalog program according to the following rules.

Base:

• If ψ ≡ c1 = c2, where c1, c2 are individual constants, our program is the single rule
pψ ← c1 ≈ c2.

• If ψ ≡ x1 = x2, where x1, x2 are individual variables, our program is the single rule
pψ(X1, X2)← X1 ≈ X2.

• If ψ ≡ R(x̄, c̄), where R predicate variable, x̄ tuple of variables and c̄ tuple of con-
stants, our program is the rule pψ(R, X̄)← R(X̄, c̄).

• If ψ ≡ r(x̄, c̄), where r predicate constant, x̄ tuple of variables and c̄ tuple of con-
stants, our program is the rule pψ(X̄)← r(X̄, c̄).

For ψ1, ψ2 already constructed formulas:

• If ψ ≡ ¬ψ1[R̄, x̄] we add the rule: pψ(R̄, X̄)← not pψ1(R̄, X̄).

• If ψ ≡ ψ1[R̄, x̄] ∧ ψ2[Q̄, ȳ] we add the rule: pψ(R̄, Q̄, X̄, Ȳ )← pψ1(R̄, X̄), pψ2(Q̄, Ȳ ).

• ψ ≡ ψ1[R̄, x̄]∨ψ2[Q̄, ȳ]we add the rules: pψ(R̄, Q̄, X̄, Ȳ )← pψ1(R̄, X̄) and pψ(R̄, Q̄, X̄, Ȳ )←
pψ2(Q̄, Ȳ ).

• If ψ ≡ ∃xiψ1[R̄, x̄] we add the rule: pψ(R̄, X̄ −Xi)← pψ1(R̄, X̄).

In the case where ψ ≡ ∃Rψ1 we do nothing. For a given SO(∃) formula ψ, the last rule will
be of the form pψ(R̄) ← . . . (the arguments will only be the predicate variables which are
existentially quantified). Lastly we want |U| = UPψ to be true. Since the Herbrand universe
consists of all the individual constants that appear in the datalog program, we can just add
a predicate of arity ∥U∥ where each argument is an element of |U|.
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Example 3.1.1 Let ψ ≡ ∃R∃Q∀x(R(x) ∨ Q(x)). Then the second-order datalog program
will be:

pR(R,X)← R(X).

pQ(Q,X)← Q(X).

p∨(R,Q,X)← pR(R,X).

p∨(R,Q,X)← pQ(Q,X).

p¬(R,Q,X)← not p∨(R,Q,X).

p∃x(R,Q)← p¬(R,Q,X).

pψ(R,Q)← not p∃x(R,Q).

Let ϕ ∈ SO(∃) and U interpretation. Remember that if Lϕ is the language that ϕ expresses
then |=U ϕ[s] ⇔ bin(U) ∈ Lϕ. Different interpretations give, possibly, different meaning
in the predicates that a formula uses. We are going to use this fact and say: The input
database of the constructed datalog program will be a set of facts. Those facts encode
the meaning a specific interpretation gives to predicates.

Example 3.1.2 Let ϕ ≡ ∃R∀x(R(x)∧¬q(x)) and U interpretation with |U| = {a, b, c, d} and
qU = {a, b, c}. The constructed program is:

in(a, b, c, d).

q(a).

q(b).

q(c).

pR(R,X)← R(X).

pq(X)← q(X).

p¬q(X)← not pq(X).

p∧(R,X)← pR(R,X), p¬q(X).

p¬(R,X)← not p∧(R,X).

p∃x(R)← p¬(R,X).

pϕ(R)← not p∃x(R).

The Herbrand universe of the program is UP = {a, b, c, d} = |U|. The input consists of the
three facts q(a), q(b), q(c) and the predicate in/|UP |, which just contains every element of
the universe of U

R. Aslanis Petrou 18



The expressive power of second-order datalog under the well-founded semantics of negation

Theorem 3.1.1 Let ϕ ∈ SO(∃), U an interpretation and P(ϕ,U) the constructed program
according to U . Then we have :

Us(ϕ) = v ⇔MP(ϕ,U)
(pϕ) = v, where v = {false, true}

In other words, the constructed program behaves ”correctly” and the well-founded model
assigns either the value false or the value true in the rule corresponding to the logic for-
mula.

Corollary 3.1.1 Second-order datalog under WFS captures the complexity class NP .

Proof 3.1.1 (By structural induction)
(⇒)
Let ϕ ∈ SO(∃), U an interpretation.

• ϕ ≡ t1 = t2, t1, t2 constants. We have that |=U t1 = t2[s]⇔ . . . t1 = t2 = a ∈ |U|.Our
program is the single rule pϕ ← t1 ≈ t2. Since t1 = t2 = a we get thatMP (pϕ) = true.

• ϕ ≡ x1 = x2, where x1, x2 are variables.
We have that |=U x1 = x2[s] ⇔ . . . s(x1) = s(x2) for some function state s and the
program is the rule pϕ(X1, X2) ← X1 ≈ X2. In the well-founded model we will have
MP (pϕ)(s(x1), s(x2)) = true.

The value v = false⇎|=U ϕ[s] is treated accordingly.
For induction hypothesis and ϕ1, ϕ2 already constructed formulas let it be true that if Us(ϕ1,2) =
v thenMP(ϕ1,2,U)

(pϕ1,2) = v.

• ϕ ≡ ¬ϕ1

We have |=U ¬ϕ1[s]⇔ ̸|=U ϕ1[s]. And the rules . . . , pϕ1 , pϕ(R̄, X̄)← not pϕ1(R̄, x̄). By
induction hypothesis MP (pϕ1)(r̄, x̄) = false, for appropriate r̄, x̄, so MP (pϕ)(r̄, x̄) is
true.
In the casewhere ̸|=U ¬ϕ1[s]⇔|=U ϕ1[s], we have thatMP (pϕ1) = true andMP (not pϕ1) =
false. But sinceMP is minimal we get thatMP (pϕ) = false.

• ϕ ≡ ϕ1 ∧ ϕ2

We have |=U ϕ1 ∧ ϕ2 ⇔|=U ϕ1[s] and |=U ϕ2[s] which by induction hypothesis gives
usMP (pϕ1) = true andMP (pϕ2) = true. Thus we get thatMP (pϕ) = true.
In the case where ̸|=U ϕ1 ∧ ϕ2[s], we have that either ̸|=U ϕ1[s] or ̸|=U ϕ2[s]. Which
gives us either MP (pϕ1) = false or MP (pϕ2) = false (or both). In any case, we get
thatMP (pϕ) = false.

• ϕ ≡ ϕ1 ∨ ϕ2

We have |=U ϕ1 ∨ ϕ2 ⇔|=U ϕ1[s] or |=U ϕ2[s] which by induction hypothesis gives us
MP (pϕ1) = true orMP (pϕ2) = true. Thus we get thatMP (pϕ) = true.
In the case where ̸|=U ϕ1 ∨ ϕ2[s], we have that ̸|=U ϕ1[s] and ̸|=U ϕ2[s]. Which gives
usMP (pϕ1) = false andMP (pϕ2) = false.Thus we get thatMP (pϕ) = false.

• ϕ ≡ ∃yϕ1

We have |=U ∃yϕ1[s] iff there exists a ∈ |U| such that |=U ϕ1[s(y/a)]. In our program
we have pϕ(R̄, X̄) : -pϕ1(R̄, X̄, Y ).We haveMP (pϕ1)(r̄, x̄, a) = true and soMP (pϕ) =
true.
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Now for the other direction we have:
(⇐)

• pϕ ← t1 ≈ t2. and ϕ ≡ t1 = t2 where t1, t2 constants.
IfMP (pϕ) = true thenMP (t1 = t2) = true⇒ t1 = t2 = a ∈ UP = |U|.
Which means that |=U ϕ[s] is true for every (Herbrand) interpretation.

• pϕ(X1, X2)← X1 ≈ X2. and ϕ ≡ X1 = X2 where X1, X2 variables.
IfMP (pϕ)(X1, X2) = true⇒MP (s(X1) = s(X2)) = true, where s(X1) = s(X2) = a ∈
UP . So |=U ϕ[s] is true.

For induction hypothesis and ϕ already constructed formula let it be true that ifMP (ϕ) = v
then Us(ϕ) = v.

• pϕ(R̄, X̄)← not pϕ1(R̄, X̄) and ϕ ≡ ¬ϕ1.
We haveMP (pϕ)(r̄, x̄) = true⇒MP (pϕ1)(r̄, x̄) = false⇒
̸|=U ϕ1[s(R̄/r̄, X̄/x̄)]⇒|=U ϕ[s(R̄/r̄, X̄/x̄)].
In caseMP (pϕ)(r̄, x̄) = false⇒MP (pϕ1)(r̄, x̄) = true⇒
|=U ϕ1[s(R̄/r̄, X̄/x̄)]⇏|=U ϕ[s(R̄/r̄, X̄/x̄)].

• pϕ(R̄, Q̄, X̄, Ȳ )← pϕ1(R̄, X̄), pϕ2(Q̄, Ȳ ). We haveMP (pϕ)(r̄, q̄, x̄, ȳ) = true⇒MP (pϕ1)(r̄, x̄) =
true andMP (pϕ2)(q̄, ȳ) = true. By induction hypothesis we get |=U ϕ1[s] and |=U ϕ2[s]
are both true and so |=U ϕ[s] is true as well.
In caseMP (pϕ)(r̄, q̄, x̄, ȳ) = false, we get that eitherMP (pϕ1)(r̄, x̄) = false orMP (pϕ2)(q̄, ȳ) =
false and by induction hypothesis ̸|=U ϕ1[s] or ̸|=U ϕ2[s].

• pϕ(R̄, Q̄, X̄, Ȳ )← pϕ1(R̄, X̄)., pϕ(R̄, Q̄, X̄, Ȳ )← pϕ2(Q̄, Ȳ ).WehaveMP (pϕ)(r̄, q̄, x̄, ȳ) =
true ⇒ MP (pϕ1)(r̄, x̄) = true or MP (pϕ2)(q̄, ȳ) = true and by induction hypothesis
|=U ϕ1[s] or |=U ϕ2[s] which gives that |=U ϕ[s]. ForMP (pϕ)(r̄, q̄, x̄, ȳ) = false accord-
ingly.

• pϕ(R̄, X̄) ← pϕ1(R̄, X̄, Y ), where Y ̸∈ X̄. If MP (pϕ)(r̄, x̄) = true then there exists
a ∈ UP such thatMP (pϕ1)(r̄, x̄, a) = true and by induction hypothesis there exists an
a ∈ |U| such that |=U ϕ1[s(y/a)]⇒|=U ϕ[s].
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3.2 Encoding function symbols, input order and nondeterminism

Notice that in SO(∃) logic we can have first-order function constants while in datalog we
cannot. The above transformation doesn’t refer to any rule about function symbols and
we have to somehow work around it. Remember that our interpretations are finite and
thus the meaning they give in a function symbol f of arity n, is a finite function f : Dn → D
whereD is the interpretation’s universe. We can easily replace each such function of arity
n with a predicate of arity n + 1. The function (predicate) constants will also be used as
input (since their meaning is determined by interpretations). What about equality between
two functions (which in our case is equality between two relations)?

Let p, q be two first-order predicates of arity n + 1 (encoding two functions f, g of arity n).
Then f = g can be expressed as:

∀x1∀x2 . . . ∀xn+1

(
p(x1, x2, . . . , xn+1)↔ q(x1, x2, . . . , xn+1)

)
Which can easily be transformed into a second-order datalog program.

Let us now talk about the ordering assumption we mentioned in the introduction section
and how it was bypassed thanks to the power of nondeterminism. Remember that in [2],
in order to prove that k-order datalog captures (k−1)-EXPTIME an assumption about the
input was necessary. The input would come in a specific form, described below.
Let Σ = {a, b} be an alphabet and w = abab be a string. Then the input is:

input(0 a 1).

input(1 b 2).

input(2 a 3).

input(3 b end).

Where {0, . . . , |w|} ∪ {end} are constants.

Notice that in this thesis we did not mention anything similar. That is because SO(∃) is
powerful enough to existentially quantify a linear ordering on the universe of a structure.
Instead of assuming a total order in the input, we use nondeterminism (that second-order
logic gives us) to guess such an ordering. In fact the original proof of Fagin’s theorem
[10], does exactly that. To conclude, if we want to compute a problem that requires an
ordering, let’s say k-clique, all we have to do is to express in first-order a total order,
existentially quantify it, express the k-clique problem with SO(∃) and transform them into
a second-order WFS datalog program according to the transformation of this thesis.

R. Aslanis Petrou 21



The expressive power of second-order datalog under the well-founded semantics of negation

4. CONCLUSIONS AND FUTURE WORK

Observe that in [2], second-order positive datalog captures EXPTIME, while here we
say that if we add negation under the well-founded semantics it captures NP , a sub-
set of exponential time. Now one would say that by adding negation to a language, you
should make it stronger rather than weaker. But there is a catch. First of all the result in
[2] is depending on the ordering assumption that was made. Without that second-order
positive datalog would not be able to express even simple languages, not to mention
languages in EXPTIME. Moreover Theorem 3.1.1 suggests that second-order WFS
datalog can express at least all languages in NP . This means that it is possible, and most
likely, that second-order WFS datalog is more powerful than that. An intuition behind the
above idea is that SO(∃) is quite a restrictive fragment of second-order logic regarding the
structure of the SO(∃)-formulas. As a result the programs that are constructed with the
transformation, inherit the same restriction on their structure. Let us mention that second-
order logic, in whole, captures the polynomial-time hierarchy PH and extensions of it, like
SO(TC)(extended with a transitive closure operator) and SO(lfp)(second-order extended
with a least fix point operator) can go up to PSPACE and EXPTIME accordingly [12]
[13]. So what if we didn’t restrict our datalog programs as well? Furthermore a similar
transformation from second-order logic (or even from one of the above mentioned exten-
sions) to second-order WFS datalog might be feasible. One possible helpful tool would be
to introduce existential predicate variables1 in the semantics of higher-order WFS datalog
and thus make it easier to express languages inside PH. Another approach would be to
follow exactly the logic of the proof that was used for positive higher-order datalog [2],
with only one difference. Instead of assuming that the input comes in a specific way, use
second-order datalog (with negation) to somehow guess that order and then continue with
the simulation of the Turing machine.

To conclude, second-order WFS datalog seems to be a powerful logic programming lan-
guage suitable for solving problems with a simple and compact way of programming. As
for the transformation introduced in this thesis, on the one hand it gives a direct way to
construct logic programs that solve NP problems, but on the other it is not the most eleg-
ant way of programming. However to have a theoretical backup that your language can
indeed express the problem you try to solve is quite meaningful and knowing that you can
try to find the optimal way to solve it. Lastly, it seems that there is a lot more research that
fits in the complexity theoretic study of higher-order logic programming which might give
useful results, both theoretical and practical.

1R is an existential predicate variable in the rule p← λX.∃R(R X)

R. Aslanis Petrou 22



BIBLIOGRAPHY

[1] A. Charalambidis, K. Handjopoulos, P. Rondogiannis, and W. W. Wadge. Extensional higher-order logic
programming, 2011.

[2] ANGELOS CHARALAMBIDIS, CHRISTOS NOMIKOS, and PANOS RONDOGIANNIS. The expressive
power of higher-order datalog. Theory and Practice of Logic Programming, 19(5-6):925–940, sep 2019.

[3] Angelos Charalambidis and Panos Rondogiannis. Constructive negation in extensional higher-order
logic programming. In Chitta Baral, Giuseppe De Giacomo, and Thomas Eiter, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of the Fourteenth International Conference,
KR 2014, Vienna, Austria, July 20-24, 2014. AAAI Press, 2014.

[4] ANGELOSCHARALAMBIDIS, PANOSRONDOGIANNIS, and IOANNASYMEONIDOU. Approximation
fixpoint theory and the well-founded semantics of higher-order logic programs. Theory and Practice of
Logic Programming, 18(3-4):421–437, jul 2018.

[5] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and expressive power
of logic programming. ACM Comput. Surv., 33(3):374–425, sep 2001.

[6] Marc Denecker, Victor Marek, and Mirosław Truszczyński. Approximations, Stable Operators, Well-
Founded Fixpoints and Applications in Nonmonotonic Reasoning, pages 127–144. Springer US, Boston,
MA, 2000.

[7] Marc Denecker, Victor W Marek, and Mirosław Truszczyński. Ultimate approximation and its application
in nonmonotonic knowledge representation systems. Information and Computation, 192(1):84–121,
2004.

[8] R. Fagin. Generalized first-order spectra, and polynomial. time recognizable sets. SIAM-AMS Proceed-
ings, 7:43–73, 1974.

[9] Ronald Fagin. Generalized first-order spectra, and polynomial. time recognizable sets. SIAM-AMS
Proc., 7, 01 1974.

[10] Ronald Fagin. Finite-model theory - a personal perspective. Theoretical Computer Science, 116(1):3–
31, 1993.

[11] Melvin Fitting. Fixpoint semantics for logic programming a survey. Theoretical Computer Science,
278(1):25–51, 2002. Mathematical Foundations of Programming Semantics 1996.

[12] D. Harel and D. Peleg. On static logics, dynamic logics, and complexity classes. Information and
Control, 60(1):86–102, 1984.

[13] Neil Immerman. Descriptive complexity. Springer Science & Business Media, 1998.

[14] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[15] Christos H. Papadimitriou. A note the expressive power of prolog. Bull. EATCS, 26:21–22, 1985.

[16] Panos Rondogiannis and Ioanna Symeonidou. Extensional semantics for higher-order logic programs
with negation. Log. Methods Comput. Sci., 14(2), 2018.

[17] J.S. Schlipf. The expressive powers of the logic programming semantics. Journal of Computer and
System Sciences, 51(1):64–86, 1995.

[18] Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In Proceedings of
the Fourteenth Annual ACM Symposium on Theory of Computing, STOC ’82, page 137–146, New York,
NY, USA, 1982. Association for Computing Machinery.

[19] Guizhen Yang, Michael Kifer, and Chang Zhao. Flora-2: A rule-based knowledge representation and
inference infrastructure for the semantic web. volume 2888, pages 671–688, 11 2003.


	CONTENTS
	INTRODUCTION
	PRELIMINARIES
	Higher-order datalog, syntax and the well-founded semantics
	Second-order logic and Descriptive complexity theory

	THE EXPRESSIVE POWER OF SECOND-ORDER WFS DATALOG
	The transformation
	Encoding function symbols, input order and nondeterminism

	CONCLUSIONS AND FUTURE WORK
	REFERENCES

