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Introduction

Survival analysis is a set of statistical methods that are used for studying the

occurrence of events over a time period.

Survival analysis originally designed for studies where deaths happen.

Several applications come from sociology,medical research,engineering,economics

usually with different names but the meaning is the same.

An example in survival analysis is the marriage, where the divorce can be con-

sidered as an event , meaning something that change the state of an individual

from married to unmarried.

In fact , we need to know more than just who is married and who is not, mean-

ing that we need to know when the change occurred.

As a result we observe events in the time horizon.

Groups of data in survival analysis contain survival times with positively skewed

tendency meaning a histogram with longer tail to the right of the interval that

contains the largest number of observations.

As we see so far, we focus on observing an individual in a study regarding the

actual event of interest but in many cases the event never happen.

These survival times are called censored survival times.

There are many kinds of censoring.

In this thesis we mostly deal with right censoring and is the most common case.

Right censoring occurs after the individual has been entered into the study or

when the study ends and the individual hasn’t experience the event yet(is ref-

ferred to also as administrative censoring).

For instance after some period of time we lose track of a patient for an unknown
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reason.

This means that the patient might has left the study because doesn’t want to

participate anymore or for any other reason that we don’t know.

Other types of censoring are the left and the interval censoring .

Left censoring is encountered when the actual survival time of an individual is

less than the observed time.

For example let’s consider a study in which interest centers on the time to recur-

rence of a particular cancer following surgical removal of the primary tumour.

Three months after their operation, patients are examined to determine if the

cancer has recurred.

At this time, some of the patients may be found to have a recurrence and for

such patients, the actual time to recurrence is less than three months.

The recurrence times of these patients are considered as left censoring.

Moreover in another example, an epidemiologist wishes to know the age at di-

agnosis in a follow-up study of diabetic retinopathy.

At the time of the examination, a 50-year-old participant was found to have

already developed retinopathy, but there is no record of the exact time at which

initial evidence was found.

Thus the age at examination is a left-censored observation.

Interval censoring occurs when the event of interest is known that has been

occurred between two times.

For example let’s say that a patient is examined 3 months after the surgical

removal and is found to be free of the disease but an examination 6 months

later shows that tumour appeared again.

The time period between 3 and 6 months is considered the interval of the true

recurrence of tumour and so the observed recurrence time is considered as in-

terval censoring time .

All of these cases of censoring can be grouped into 2 categories independent

and informative(dependent) censoring.

The most usual case is the independent censoring.

Independent censoring means that censoring mechanism is independet from the
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event mechanism.

As a result individuals with non-informative censored times are representative

of all others who are at risk at that time and have the same values of explana-

tory variables.

On the other hand dependent censoring occurs when there is dependence be-

tween the time to an event such as death and the time of the occurrence of

censoring.

Also it is not possible to use the observed data to determine whether a data set

has dependent censoring.

However, the context of the study can often provide some indication of whether

there is a possibility for existence of dependent censoring.

For example such an indication may be a life threatening experience that force

an individual to exit the study.

Unfortunately, there is no statistical test for informative censoring and the best

thing we can do is a sensitivity analysis.

In Chapter 1 we present general techniques relative to survival analysis , in

chapter 2 we discuss cases with multiple events,in chapter 3 we present some

techniques for informative censoring , in Chapter 4 we focus on methods for 2

groups of data and in chapter 5 we discuss a special field in survival analysis that

is refferred to as relative survival field ,but in this thesis except from this special

chapter ,the term ’relative survival’ is understood as something that concerns 2

groups of data(the title of this thesis also).

Finally in Chapter 6 we present a simulation regarding the problem of informa-

tive censoring in our data.

At this point i would like also to thank my supervisor , Mr. Fotios Siannis

,for his valuable guidance through this thesis.
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Εισαγωγή

Η ανάλυση επιβίωσης είναι ένα σύνολο στατιστικών μεθόδων που χρησιμοποιείται

στην μελέτη γεγονότων σε έναν χρονικό ορίζοντα.

Η ανάλυση επιβίωσης αρχικά σχεδιάστηκε για μελέτες που το γεγονός ενδιαφέρο-

ντος είναι ο θάνατος.

Εφαρμογές εντοπίζονται στην κοινωνιολογία,ιατρική έρευνα,μηχανική,οικονομικά

όπως και σε άλλους κλάδους.

΄Ενα παράδειγμα είναι ο γάμος όπου το διαζύγιο θεωρείται σαν γεγονός και αλλάζει

την κατάσταση του ατόμου από παντρεμένο σε διαζευγμένο. ΄Ομως εκτός από το

ποιος είναι παντρεμένος και ποιος όχι θέλουμε να μάθουμε και πότε έγινε αυτή η

αλλαγή,οπότε παρατηρούμε γεγονότα πάνω στον χρονικό ορίζοντα.

Τα δεδομένα στην ανάλυση επιβίωσης είναι οι χρόνοι επιβίωσης και έχουν συνήθως

θετικά ασύμμετρη συμπεριφορά.

Μέχρι στιγμής λοιπόν έχουμε σχολιάσει ότι σε μια έρευνα μας ενδιαφέρει να δούμε

πότε συνέβει το πραγματικό γεγονός ενδιαφέροντος ,αλλά πολλές φορές αυτό δεν

συμβαίνει ποτέ.

Τέτοιοι χρόνοι καλούνται λογοκριμένοι.

Σε αυτή την διπλωματική εργασία κυρίως ασχολούμαστε με δεξιά λογοκριμένους

χρόνους που είναι η πιο συνηθισμένη περίπτωση ,παρ΄όλα αυτά υπάρχουν και άλλα

είδη.

Δεξιά λογοκρισία συμβαίνει όταν ήδη το άτομο έχει εισέλθει σε μία έρευνα και για

κάποιον άγνωστο λόγο φεύγει ή όταν η έρευνα τελειώσει και δεν έχει παρατηρηθεί

ακόμα το γεγονός(αυτό λέγεται και λογοκρισία του διαχειριστή).

Αλλά είδη λογοκρισίας είναι η αριστερή και διαστηματική λογοκρισία.

Η αριστερή λογοκρισία συμβαίνει όταν ο πραγματικός χρόνος επιβίωσης είναι μι-
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κρότερος του παρατηρηθέντος χρόνου.

Για παράδειγμα ας θεωρήσουμε μία μελέτη όπου το ενδιαφέρον επικεντρώνεται

στην επανεμφάνιση ενός συγκεκριμένου τύπου καρκίνου μετά από χειρουργική α-

φαίρεση του κύριου όγκου.

Τρεις μήνες μετά την επέμβαση οι ασθενείς εξετάζονται ξανά για να παρατηρήθει αν

ο καρκίνος εμφανίστηκε πάλι και βρίσκουμε ότι σε κάποιους ασθενείς όντως εμφα-

νίστηκε ξανά ,οπότε συμπεραίνουμε ότι ο πραγματικός χρόνος επιβίωσης(εμφάνιση

του γεγονότος ενδιαφέροντος) συνέβει σε λιγότερο από τρεις μήνες,άρα είναι αρι-

στερή λογοκρισία.

Η διαστηματική λογοκρισία συμβαίνει σε κάποιο χρονικό διάστημα.

Για παράδειγμα αν θεωρήσουμε ότι ο ασθενής εξετάζεται μετά από 3 μήνες από την

επέμβαση και βρέθηκε ότι δεν είχε εμφανιστεί πάλι ο καρκίνος ,αλλά μετά από 6

μήνες σημειώθηκε επανεμφάνιση ,οπότε στο διάστημα μεταξύ τριών και έξι μήνων

λέμε ότι είχαμε διαστηματική λογοκρισία.

΄Ολες αυτές αυτές οι περιπτώσεις μπορούν να χωριστούν σε 2 κατηγορίες, ανε-

ξάρτητη και εξαρτημένη λογοκρισία.

Η πιο συνηθισμένη περίπτωση είναι η ανεξάρτητη λογοκρισία.

Ανεξάρτητη λογοκρισία σημαίνει ότι ο μηχανισμός λογοκρισίας είναι ανεξάρτητος

του μηχανισμού των γεγονότων.

Από την άλλη μεριά η εξαρτημένη λογοκρισία σημαίνει εξάρτηση μεταξύ των δύο

μηχανισμών.

Επίσης δεν είναι δυνατό να παρατηρήσουμε εξαρτημένη λογοκρισία ,άλλα παρ΄όλα

αυτά το περιεχόμενο μιας μελέτης μπορεί να δώσει κάποιο στοιχείο.

Στο πρώτο κεφάλαιο παρουσιάζουμε γενικές τεχνικές σχετικά με την ανάλυση

επιβίωσης,στο δεύτερο κεφάλαιο αναλύονται περιπτώσεις πολλαπλών γεγονότων

,στο τρίτο κεφάλαιο παρουσιάζουμε τεχνικές για πληροφοριακή-εξαρτημένη λογο-

κρισία,στο τέταρτο κεφάλαιο εστιάζουμε σε μεθόδους για δύο ομάδες δεδομένων

και στο πέπτο κεφάλαιο συζητάμε για ένα ειδικό πεδίο που αναφέρεται ως σχετική

επιβιώση,αλλά με εξαίρεση αυτό το κεφάλαιο ο όρος ΄σχετική΄ θα αφορά δύο ομάδες

δεδομένων.

Τέλος στο κεφάλαιο έξι γίνεται μια προσομοίωση που αφορά δύο ομάδες δεδομένων
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με πληροφοριακή λογοκρισία.

Σε αυτό το σημείο θα ήθελα επίσης να ευχαριστήσω τον κύριο Φώτιο Σιάννη για

την πολύτιμη καθοδήγηση καθ΄όλη την διάρκεια αυτής της διπλωματικής εργασίας.
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Chapter 1

Survival methods

Survival analysis is a field of statistics which describes the analysis of data from a

time origin until an event happens (e.g death for humans or failure in machines)

or until the end point (end of the study)

In this thesis we mention methods about individuals (e.g patients,animals,etc)

from the entry until an event happens such as death or exit from the study due

to unknown reasons(right censoring, see the introduction).

1.1 Functions of survival times

First of all we consider the random variable T ≥ 0 which is absolutely continuous

and represents the survival time of an individual from the time origin.

The most common function in the survival field is called survival or survivor

function and is defined as

S(t) = P (T ≥ t) = P (T > t) = 1 − F (t) =

∫ ∞

t

f(u)du , (1.1)

meaning the probability of an individual survive longer than t , where F is the

cumulative function of time T and f is the probability density function of time

T.

Also is a monotonically decreasing function of time t , continuous for all values

of T, S(0) = P (T ≥ 0) = P (E) = 1 , where E is the space of all possible

outcomes and S(∞) = limt→ ∞ S(t) = limt→ ∞(1 − F (t)) = 1 − 1 = 0

13
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Another useful function is called hazard function and represents the approx-

imate probability of an individual who is in danger of an event at some time t

to experience that event in an infinitesimal interval after time t , divided by the

length of this interval.

In mathematical notation that is

h(t) = lim
h→ 0

P (t ≤ T < t+ h|T ≥ t)

h
. (1.2)

Furthermore it is easy to show that

h(t) =
f(t)

S(t)
, (1.3)

where f(t) is the density of t.

Indeed the conditional probability P (t ≤ T < t+h|T ≥ t) equals to P (t≤T<t+h)
P (T≥t) .

So the expression (1.2) takes the form

h(t) = lim
h→ 0

P (t ≤ T < t+ h)

hP (T ≥ t)
=

1

S(t)
lim
h→ 0

P (t ≤ T < t+ h)

h
=
f(t)

S(t)
.

The so called cumulative hazard function works in an analogous way for the

hazard function as F (cumulative function) works for f ( probability density

function) meaning that is right continuous and nondecreasing function of T(in

this case is continuous on all values of T and is a monotonically increasing

function ).

Specifically the cumulative hazard function has the following expression

H(t) =

∫ t

0

h(u)du . (1.4)

A very useful relation between S(t) and H(t) is

H(t) = − log(S(t)) . (1.5)

This relation can be proved using (1.1) , (1.3) and (1.4) expressions.

Specifically H(t) =
∫ t
0
h(u)du =

∫ t
0
f(u)
S(u)du =

∫ t
0

f(u)
1−F (u)du.
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Now we notice that
(
log(1 − F (t))

)′
= −f(t)

1−F (t) , since f(t) = F ′(t).

So H(t) = −logS(t)|t0 = −logS(t) + logS(0) = −logS(t) since S(0) = P (T ≥

0) = 1 .

From equation (1.5) it follows immediately by multiplying with -1 and taking

exp to both sides we take that

S(t) = exp(−H(t)) = exp
(
−
∫ t

0

h(u)du
)
. (1.6)

As we see the expression (1.6) provides a relation between S(t),H(t) and h(t).

Also we mention that in general time can be discrete (e.g we measure in days)

or continuous.

In this thesis is considered mostly the second case because is the most common

one.

At this point it is worth to also mention briefly the discrete case and a uni-

fied form for the 2 cases.

Let Z be a discrete random variable with Z ≥ 0 , also suppose that Z takes the

values z1 < . . . zn < . . . ,.

We define the probability function of Z as f(zj) = P (Z = zj) for j=1,2,. . . .

Now the survivor function takes the form S(z) = P (Z ≥ z) =
∑
j:zj≥z f(zj).

In this case the survivor function is a non-increasing step function and left con-

tinuous.

The discontinuity points are exactly the points z1, . . . zn, . . . , where the survivor

function takes a step down which is exactly f(zj) = S(zj) − S(zj+1) > 0 for

j = 1, 2 . . . .

For the discrete case the hazard function is defined as

h(zj) = P (Z = zj |Z ≥ zj) =
f(zj)

S(zj)
=
S(zj) − S(zj+1)

S(zj)
= 1 − S(zj+1)

S(zj)
,

for j = 1, 2 . . . .

From this expression we can take a relation between h(z) and S(z).

Indeed if we notice that

S(z) = P (Z ≥ z) =
S(z)

S(zn)

S(zn)

S(zn−1)
. . .

S(z2)

S(z1)
S(z1) .
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So

S(z) =
∏

j:zj<z

(
1 − h(zj)

)
. (1.7)

There are two ways to define the cumulative hazard function for the discrete

case.

A first approach is defined as H(z) =
∑
z:zj<z

hj(zj).

The second approach is defined as the (1.5) form but S(t) is replaced by the

(1.7) expression.

After this presentation we are in a place where we can present a unified form

for the discrete and continuous case.

First of all we introduce the Riemann-Stieltjes integral of a function K(u) .

This function is non-decreasing,right continuous and has a finite number of dis-

continuities in any finite interval.

Also let’s say that the derivative of K(u) exists except at points of disconti-

nuity ej , j = 1, 2, . . . where at these points we say that K(u) has a kj =

K(ej) −K(ej−) jump ,K(ej−) = limh→ 0K(ej − h).

Moreover we define the quantity dK(u) as dK(u) = K ′(u)du+K(u) −K(u−).

So if K is continuous at point u we have dK(u) = K ′(u)du and otherwise

dK(u) = K(u) −K(u−) .

The Riemann-Stieltjes integral of K(u) over the interval (a,b] is defined as

∫
(a,b]

dK(u) =

∫ b

a

K ′(u)du+
∑

j:a<ej≤b

kj . (1.8)

The cumulative function of T , F(t) where T can be either discrete or continuous

has the properties of the K(u) function so the Riemann-Stieltjes integral of F

over (a,b] gives

P (a < T ≤ b) =

∫
(a,b]

dF (t) =

∫ b

a

F ′(t)dt+
∑

j:a<ej≤b

fj .

Another useful tool that helps in the unified concept is the product integral.

Let’s consider a partition of (a,b] a = t0 < t1 < · · · < tn = b with ∆ti = ti−ti−1
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and max(∆ti) → 0 when n→ ∞ .

Then the product integral of a function K(t) who is continuous over (a,b] where

dK(t) has the same meaning as dK(u) that was defined earlier

∏
(a,b]

(1 + dK(t)) =
∏
(a,b]

(1 +K ′(t)dt) = lim
n→ ∞

n∏
i=1

(1 +K ′(ti)∆ti + o(∆ti)) ,

where o(∆ti)) is a function such that o(t)
t → 0, t → 0 and can be ignored for

small values of t.

So the product integral for the continuous case over (a,b] can be written as

lim
n→ ∞

n∏
i=1

(1 +K ′(ti)∆ti) .

By taking logarithms the relation of the product integral for the continuous case

becomes

log
( ∏

(a,b]

(1 +K ′(t)dt)
)

= lim
n→ ∞

n∑
i=1

log
(

1 +K ′(ti)∆ti

)
,

so as ∆ti is considered small we can take the approach

log
(

1 +K ′(ti)∆ti

)
≈ K ′(ti)∆ti ,

and we can take that

lim
n→ ∞

n∑
i=1

log
(

1 +K ′(ti)∆ti

)
= lim
n→ ∞

n∑
i=1

K ′(ti)∆ti ,

but this is exactly the Riemman integral of K’(t) over the interval (a,b] ,∫ b
a
K ′(t)dt

In conclusion it follows that

∏
(a,b]

(1 +K ′(t)dt) = exp
(∫ b

a

K ′(t)dt
)
,

and if we take K(t) = −H(t) ,K ′(t) = −h(t) where h(t) is the hazard function

and H(t) is the cumulative hazard for the continuous case and (a,b]=(0,t] we
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get the (1.6) expression.

So the product integral of K(t) = −H(t) over the interval (0,t) or (0,t] for the

continuous case is exacty the survivor function S(t) when T is continuous

The product integral for the discrete case with ti i = 1, . . . are the points

of discontinuity is defined as

∏
(a,b]

(1 + dK(t)) = lim
n→ ∞

n∏
i=1

(1 +K(ti) −K(ti−1)) ,

and for (a,b)=(0,t) and K(t)=-H(t) , where h(t) is the hazard function for the

discrete case , we conclude that the product integral for the discrete case takes

the (1.7) expression because

dH(tj) = H(tj) −H(tj−) = H(tj) −H(tj−1) = h(tj) ,

where tj is the points of discontinuity j = 1, . . . and so is the survivor function

when T is discrete .

The unified form for a function K(t) with ej points of discontinuity with kj

size of jump ,j = 1, . . . is defined as

∏
(a,b]

(1 + dK(t)) =
∏
(a,b]

(1 +K ′(t)dt)
∏

j:a<ej≤b

(1 + kj) . (1.9)

So for K(t)=-H(t) we take a unified form for the survivor function which is

S(t) = P (T ≥ t) = exp
(
−
∫ t

0

h(t)dt
) ∏
j:tj<t

(
1 − h(tj)

)
. (1.10)

1.2 Non - parametric methods

Here we focus on some non - parametric methods .

1.2.1 Kaplan-Meier estimator

The most important and widely used non-parametric estimator for the survivor

function is the Kaplan Meier estimator.
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We begin with an example The figure (1.2.1) provides an example of the Kaplan-

Figure 1.2.1: Kaplan-Meier example
(Image taken from Modelling survival data in medical research (Collett) third
edition)

Meier estimator.Specifically in this example we have 3 distinct deaths t1 < t2 <

t3 and 7 individuals in the study.

Let’s say that we are interested to compute the Kaplan-Meier estimator Ŝ(t)

when t2 < t < t3.

Over the interval [t0, t1) no deaths happen so the individuals who are alive just

before t1 are n1 = 7 ,at time t1 , 2 deaths happen so d1 = 2 .Over the inte-

val [t1, t2) no deaths happen so the individuals who are alive just before t2 are

n2 = 5 ,at time t2 there is one death ,so d2 = 1

As a result the probability for an individual to survive at least time t is the

product of the survival probablities over the intervals [t0, t1) and [t1, t2) , Ŝ(t) =

n1−d1
n1

n2−d2
n2

= 5
7
4
5 .

We mention also that the individuals who are alive just before t3 are n3 =

3,because there is one censored time after t2,so this individual left the study

for reasons that we don’t know .Moreover Ŝ(t) = 0 for t ≥ t3,because no one is

alive after t3.

In a more general manner in order to construct this estimator we suppose that

n individuals are in the study with t1, ..., tn observed survival times.

Some of these observations might be right censored , meaning that after the

entry of an individual in the study we lost track at some time t or the study

eventually ends and the event of interest(e.g death) didn’t happen yet.

For simplicity we will assume that the event of interest is the death of an indi-

vidual, so suppose that there are r distinct deaths among n individuals,then we

order those deaths t1 < ... < tr ,r ≤ n .

After we define j = 1, . . . r , nj as the number of individuals who are alive and

uncencored just before tj , where j = 1, . . . r and dj is defined as the number of



20 CHAPTER 1. SURVIVAL METHODS

deaths at tj .

We consider also that all deaths happen at the beginning of the j-th [tj , tj+1)

interval and no more deaths happen after that. An estimation of the probability

of death in the interval from tj − h to tj when h is close to zero is
dj
nj

,so the

estimated survival probability is
nj−dj
nj

.

Moreover we the probability of survival beyond tj and just before tj+1 is unity

,because no deaths happen after tj .So due to independency among the intervals

(tj − h, tj ] and (tj , tj+1) we can say as h→ 0 that the survival probability over

the interval [tj , tj+1) is
nj−dj
nj

Furthermore if deaths and cencoring happen at the same time ,deaths go first

. Finally if we assume that deaths of the individuals in the sample occur inde-

pendently of one another then the survivor function at time t is the product of

all estimated survivor probabilities till the interval that t lies in.

More formally

Ŝ(t) =

k∏
j=1

(nj − dj
nj

)
, (1.11)

for tk ≤ t < tk+1 and k = 1, ...r . Of course if t < t1, Ŝ(t) = 1 and if t ≥ tr

the survivor funcion is zero,esle if the last observation is a censored time the

survivor function is not defined beyond that time.

Overall the Kaplan-Meier provides a general form for estimating the survivor

function

Before this paragraph ends it is worth to mention the case where no censored

observations exist .In this case nj+1 + dj = nj because individuals who survive

before tj are exactly the individuals who survive before tj+1 plus the deaths at

tj .

The Kaplan-Meier in (1.11) takes the form
∏k
j=1

nj+1

nj
= n2

n1
. . . nk+1

nk
= nk+1

n1
for

k = 1, . . . r − 1 .

We notice that n1 represents the individuals who survive before time t1 but in

fact in every case n1 represents all individuals in the study because no deaths

happen before t1 . Also nk+1 represents the individuals who survive just before

tk+1 so at least they survive time ≥ tk+1 .

Considering the above discussion for n individuals in the study
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Ŝ(t) = number of individiuals who survive≥t
all individuals in the study =

∑n
i=1 1Ti≥t

n ,

This special case of Kaplan-Meier estimator is called emprirical estimator and

has mean E(Ŝ(t)) = E
(∑n

i=1 1Ti≥t

n

)
= 1

n

∑n
i=1E

(
1Ti≥t

)
= 1

n

∑n
i=1 P

(
Ti ≥ t

)
and variance V (Ŝ(t)) = V

(∑n
i=1 1Ti≥t

n

)
= 1
n2V

(∑n
i=1 1Ti≥t

)
1Ti≥t takes the value 1 if Ti ≥ t and the value zero otherwise.

So if we consider that Ti are independent and identically distributed random

variables (i.i.d) then 1Ti≥t follows the bernouli distribution with parameter

S(t)(probability of success) in other words the survivor function .So in this

case E(Ŝ(t)) = S(t) and V (Ŝ(t)) = S(t)(1−S(t))
n meaning that V (Ŝ(t)) → 0 as

n→ ∞.

In conclusion the empirical estimator is a consistent estimator for the survivor

fuction(this is also true for the general form of Kaplan-Meier,for further details

see [2]) .

We remind to the reader that a consistent estimator Tn of a parameter θ is an

estimator that converges in probability to θ .

1.2.2 Confidence intervals

The Kaplan-Meier estimator provides estimation for the survivor function S(t)

at each point t.Here we discuss estimation for the survivor function in time

intervals.

A confidence interval is an interval that estimates the survivor function and in

general every function of interest .

Let’s say that the function of interest is the survivor function then a 100(1−a)%

confidence inteval,(0 < a < 1) is defined as an interval [a,b] where a,b are real

numbers with a=A(T) and b=B(T) where T is the sample of the observations

T1, . . . Tn(random vector) and A,B are real functions .Then [a,b] tells us that

there is a prescribed probability 1-a that the value of the true survivor function is

included within it .Using mathematical notation that is P (a ≤ S(t) ≤ b) = 1−a

.This relation means that if we repeat many times the collection of survival

times(observations) of individuals in the study under the same circumstances

and every time we calculate the inteval [a,b] , then we expect that the 100(1−a)%

of those intervals to contain the function S(t) .
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For a specific observasion T = (t1,. . . tn) we hope that the interval [A(T),B(T)]

is one of the many intervals ( 100(1 − a)% of them) that contains S(t)

This is a result from the definition of the confidence interval and the empirical

definition of probability(Richard von Mises).

The most common and widely used confidence interval is

[Ŝ(t) − za/2se(Ŝ(t)), Ŝ(t) + za/2se(Ŝ(t))] , (1.12)

where za/2,is the upper a/2 quantile point of the standar normal distribu-

tion.This confidence interval for a large sample apply in a similar manner to

many functions of interest with great success and it is based on the assumption

that the quantity
̂g(Xn)−g(θ)
se( ̂g(Xn))

where g is a real function,θ a parameter of interest

and Xn , n = 1 . . . , are the observations ,follows the standar normal distribution

as n→ ∞.

This interval though may cause trouble because usually the observations in

clinical trials follow a positively skewed distribution (mode<median<mean) .So

when the estimated survivor function is close to zero or unity, symmetric inter-

vals are inappropriate, since they can lead to confidence limits for the survivor

function outside the interval (0,1).

A pragmatic solution to this problem is to replace any limit that is greater than

unity by 1, and any limit that is less than zero by 0.

Another solution is to transform S(t), to take values in the range of all real num-

bers, and obtain a confidence interval for the transformed value.Then confidence

intervals are back transformed to give a confidence interval for the survivor fuc-

tion S(t).

A possible transformation is the log-log transformation log
(
− logS(t)

)
P

(
log
(
− log Ŝ(t)

)
− za/2se

(
log
(
− log Ŝ(t)

))
≤ log

(
− logS(t)

)
≤ log

(
−

log Ŝ(t)
)

+ za/2se
(

log
(
− log Ŝ(t)

)))
= 1 − a

This leads to an 100(1 − a)% confidence interval for S(t) which is

[
Ŝ(t)

exp

(
za/2se

(
log

(
−log Ŝ(t)

)))
, Ŝ(t)

exp

(
−za/2se

(
log

(
−log Ŝ(t)

)))]
. (1.13)
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Ŝ(t),is the Kaplan-Meier estimator but also other estimators can be used (1.2.3)

and (1.2.4) paragraph .Also (1.2.5) paragraph discuss methods that compute the

standar deviation se(Ŝ(t)) and in general the standar error-standar deviation

se(g(X)) for a random variable X and for any given real function g.

Another choice to transfrom S(t) is the logistic transformation log S(t)
1−S(t) .

1.2.3 Nelson-Aalen estimator

An alternative estimator for the survivor function is the Nelson-Aalen estimator.

This estimator works better than Kaplan Meier in small samples ,but in large

samples Kaplan Meier maybe is better as is a generalization of the empirical

survivor function which is a consistent estimator.In any case the two estimators

are very similar especially at the earlier survival times.In order to find Nelson-

Aalen estimator for the survivor function we notice that if we plug-in the Kaplan-

Meier estimator in (1.5) expression and use the same notation as in (1.2.1)

paragraph we get Ĥ(t) = −logŜ(t) = −log
∏k
j=1

nj−dj
nj

= −
∑k
i=1 log

(
nj−dj
nj

)
with tk ≤ t < tk+1 and k = 1, ...r. This is the Kaplan-Meier estimator for the

cumulative hazard function .

At this point we observe that log
(
nj−dj
nj

)
= log

(
1 +

−dj
nj

)
≈ −dj

nj
for small

dj
nj

,so it follows that Ĥ(t) ≈
∑k
i=1 −

−dj
nj

for small
dj
nj

.

The last sum is the Nelso-Aalen estimator for the cumulative hazard function

H̃(t) =

k∑
i=1

dj
nj

, (1.14)

where tk ≤ t < tk+1 , k = 1, ..., r , tr+1 = ∞ . Now it follows immediately from

the expression (1.6) if we plug-in the (1.14) that the Nelson-Aalen estimator for

the survivor function is

S̃(t) =

k∏
j=1

exp(
−dj
nj

) , (1.15)

where tk ≤ t < tk+1 and k = 1, ...r .

The Kaplan-Meier estimator for the survivor function can be seen also as the

approximation of Nelson- Aalen (first order approximation) via the taylor ex-

pansion of exp(−x) for small x .Also because exp(−x) ≥ 1−x the Nelson Aalen
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estimator is always above the Kaplan Meier.

Now we present an example to provide a visual comparison of Kaplan-Meier

and Nelson-Aalen estimators.

Consider the chronic data hepatitis data set taken from modelling survival data

in medical research(Collett)third edition(additional data sets,appendix B).

In a clinical trial described by Kirk et al. (1980), 44 patients with chronic ac-

tive hepatitis were randomised to the drug prednisolone, or an untreated control

group. The survival time of patients, in months, following admission to the trial,

was the response variable of interest.

The table (1.2.2) shows the first group which includes the patients who took the

drug.Status is the event indicator (equals to 1 if death occured and 0 otherwise)

and treatment 1 is reffered to the drug group.

Figure 1.2.2: Patients who took the drug

A plot for both estimators Kaplan-Meier and Nelson Aalen for the survivor

function is in figure (1.2.3)

Dush lines are the boundaries(using log-log confidence intervals) (1.13) , the

green color represents the Nelson-Aalen estimator and the black color the Kaplan-

Meier.

This shows the previous discussion that Nelson-Aalen is always above the Kaplan-

Meier and for early survival times the difference is ignorable.

The outputs in R software in figures (1.2.4),(1.2.5) estimate the survivor func-
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Figure 1.2.3: Kaplan Meier vs Nelson-Aalen

tion with Kaplan-Meier and Nelson-Aalen estimators .We observe that the es-

timations are very close .The estimations of the survivor fuction are in the 4-th

column .The 5-th and 6-th columns give the confidence intervals with the log-

log menthod (1.13).The second column gives the patients who are still alive and

as a result at risk of experience death.The second column gives the number of

deaths at each time.

Figure 1.2.4: Kaplan - Meier

Figure 1.2.5: Nelson-Aalen
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1.2.4 Actuarial estimator

A more practcal estimator for the survivor function is the life - table or Actuarial

estimation .The origin of the name comes from an assumption we made which

is that the censoring process is such that the censored survival times occur

uniformly throughout the j-th interval,j = 1, . . . n so that the average number

of individuals who are at risk during this interval is

n′j = nj −
cj
2
, (1.16)

where we assume that the period of observations is split through some inter-

vals(usually 5-15)but the choice depends on the person who conducts the study.

We define also nj ,j = 1, . . . n the number of individuals who are alive and uncen-

sored , therefore at risk of death at the start of the j-th interval ,cj ,j = 1, . . . n

is the number of cencored observations over the j-th interval.

Additionally dj ,denotes the number of deaths in the j-th interval,then if we see

n′j ,as nj ,we follow a similar procedure as the Kaplan Meier’s(1.2.1) to construct

the estimator.

Here we observe deaths throught every interval in contrast to observe deaths at

the start of each interval.The estimator then has the expression

S∗(t) =

k−1∏
j=1

(
n′j − dj

n′j
) , (1.17)

with t(k−1) ≤ t < t(k) and k=2,...n .After the n-th interval the actuarial estima-

tor is zero and of course at the start of the study the actuarial estimator is one.

Let’s consider an example with 30 individuals in a study that last 55 weeks .We

will use 5 intervals with length 11,considering the theoretical analysis above we

get the following table(1.2.6)

The column njnew represents the quantity n′j and the prob column represents

Figure 1.2.6: Life - table example
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the of probability of survival in j-th interval j = 1 . . . 5 which is
n′
j−dj
n′
j

.The in-

tervals from figure (1.2.6) are the [0, 11), [11, 22), . . . , [44, 55).So for example the

probability of survival in [22,33) is 0.76∗0.7∗0.66 = 0.35 and n2 = 30−7−1 =

22.Moreover a plot of the life-table estimator is shown in figure (1.2.7).

Figure 1.2.7: Life - table plot

1.2.5 Standar deviation

Suppose that we have the Kaplan-Meier estimator for S(t)(same notation as in

(1.2.1)), Ŝ(t) =
∏k
i=1 p̂j for t between the k and k+1 ordered times of death and

k=1,...r where p̂j ,is the estimated probability that an individual survives in the

time interval that begins at t(j),j = 1, ..., r , V ar(log(Ŝ(t))) =
∑k
j=1 V ar(log p̂j)

Now the key part is to assume that the number of individuals who survive in

the interval that begins at tj ,follows the binomial distribution with parameters

nj , pj ,where pj ,is the true survival probability.

The random variable that defines the number of individuals who survive in the

interval is nj − dj ,j = 1, ..., r .

Then it follows that ,V ar(nj − dj) = njpj(1 − pj).

Since , p̂j =
nj−dj
nj

, it follows that

V ar(p̂j) =
njpj(1 − pj)

n2j
,
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so ̂V ar(p̂j) =
p̂j(1 − p̂j)

nj
=

nj−dj
nj

dj
nj

nj
.

Now we have to use the taylor approximation for variance of a random variable

g(X)

V ar(g(X)) ≈
(
dg(X)

dX

)2

V arX . (1.18)

This approximation applies to ’smooth’ functions(no corners) and it is easy to

prove it.

Indeed ,first we write g(X) ≈ g(θ) + g′(θ)(X− θ),then we just take the variance

of g(X) to both sides.

This is also a special case of the Delta Method. Thus if we consider that the

estimated variance of the estimated probability p̂j is almost equal with the

variance of the estimated probability we take V ar(log(p̂j)) ≈ 1
(p̂j)2

V ar(p̂j) ≈

1
(p̂j)2

̂V ar(p̂j) =
n2
j

(nj−dj)2

nj−dj
nj

dj
nj

nj
=

dj
nj(nj−dj) , so

V ar(log(Ŝ(t))) ≈
k∑
j=1

dj
nj(nj − dj)

≈ 1

[Ŝ(t)]2
V ar(Ŝ(t)) ,

that gives

V ar(Ŝ(t)) ≈ [Ŝ(t)]2
k∑
j=1

dj
nj(nj − dj)

.

Finally we have the Greenwood’s formula

se(Ŝ(t)) ≈ Ŝ(t)

 k∑
j=1

dj
nj(nj − dj)

 1
2

, (1.19)

for t between k and k+1 ordered times with k = 1, . . . , r .

Finally we mention that with similar arguments we take similar expressions for

the standar error of the Life Table and Nelson-Aalen estimator.

More specifically the form for the life-table (1.2.4) is derived easily if we think

that in this framework n′j plays the role of nj .

se(S(t)∗) ≈ S(t)∗

 k∑
j=1

dj
n′j(n

′
j − dj)

 1
2

. (1.20)
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The standar error of the Nelson-Aalen estimator(1.2.3) has the form

se(S̃(t)) ≈ S̃(t)

 k∑
j=1

dj
n2j

 1
2

. (1.21)

1.2.6 Estimating the hazard function

Here we focus on the Kaplan-Meier Estimator for the hazard function using the

same notation as in (1.2.1) .

We assume that the hazard function is constant between successive death times.The

probability of death in the j-th interval is ĥ(t) ∗ lj =
dj
nj

so

ĥ(t) =
dj
nj lj

, (1.22)

where lj is the length of the j-th interval and tj ≤ t < tj+1 and j=1,...r-1, r

is the total distinct deaths in the study and the hazard is zero before the first

death.

The standar deviation of ĥ(t) can be found in a similar manner as the se(Ŝ(t))

(1.2.5).

In fact if we assume that dj follows the binomial distribution with parameters

nj and p∗j ,where p∗j =
dj
nj

is the probability of death in the j-th interval , then

V ar(ĥ(t)) =
nj

dj
nj

nj−dj
nj

n2
j l

2
j

=
d2j
n2
j l

2
j

nj−dj
njdj

.

So the formula for the standar error is

se(ĥ(t)) ≈ ĥ(t)

√
nj − dj
njdj

(1.23)

In practice, estimates of the hazard function obtained in this way(1.22) will

often tend to be difficult to use them , because plots are not very handy so a

Kernel might be used to smoothen the curve .

A kernel is a non-negative integrable function K(u) in which we center at each

failure time.

Typically we choose a smooth-shaped kernel, with the amount of smoothing

controlled by a parameter b.There are many ways to define the kernel function

and selection of the appropriate amount of smoothing is one of the most difficult
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problems in non-parametric hazard estimation.A Kernel for the hazard function

in general has this form

h̃(t) = b−1
r∑
j=1

(
K

(
t− tj
b

)
dj
nj

)
, (1.24)

where tj , j = 1 . . . r is j-th ordered death

For example a Kernel might have the following form

h̃(t) = b−1
r∑
j=1

0.75

(
1 −

(
t− tj
b

)2
)
dj
nj

, (1.25)

where b is a constant and is needed to be chosen ,is also known as the bandwidth

parameter and each value of this quantity controls the shape of the plot.

Moreover t belongs in the interval from b to tr − b where tr is the last ordered

death.

We use the hepatitis example(figure 1.2.2) as before to give an image of

the plot of the hazard function as a kernel with different values of b . Kernels

provide help to visualization. In figure(1.2.8) blue line has b=2.25 ,green is the

Figure 1.2.8: Kernels for different values of b

kernel with b=50 and red with b=100 .As b grows smoothness grows .
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1.2.7 Estimating quantiles

The definition of the p-th quantile tp is tp = inf{t : S(t) ≤ 100−p
100 },where

0 < p < 100 ,S(t) the is survival function and inf is the infimum of this set.

In fact tp is called generalized inverse function of p.

The tp is well defined because the set {t : S(t) ≤ 100−p
100 } is bounded and includes

at least one t,because limt→ ∞ S(t) → 0 , so the infimum always exists.

When the minimum of the set {t : S(t) ≤ 100−p
100 } exists we can replace the inf

with min(inf=min).

In order to keep things simpler we adopt the min instead of inf in the definition

of tp.Although we keep in mind that this adoption may cause trouble .For ex-

ample if we want to find that the median and the survivor function is greater

than 0.5 for all t then the median doesn’t exist .

When the survival function has an absolutely continuous specific form as in (1.4)

section tp can be found immidiately from the equation S(tp) = 100−p
100 ,but in the

non-parametric framework the form of S(t) is unknown.As a result we have to

estimate the survivor function with the Kaplan-Meier estimator or some other

estimator who is a step function of time , so Ŝ(tp) ≤ 100−p
100 ,meaning that the

equality may not hold.

In general the estimator of the p-th quantile is the smallest observed sur-

vival time t̂p ,such as ,Ŝ(t) ≤ 100−p
100 ,where Ŝ(t) is the Kaplan-Meier estima-

tor(1.2.1).Since the Kaplan-Meier change values only when deaths happen we

can say that

t̂p = min{ti : Ŝ(t) ≤ 100 − p

100
} , (1.26)

where ti , i = 1 . . . , r is the i-th ordered death .

A formula for the standar deviation of t̂p is

se(t̂p) =
1

f̂(t̂p)
se(Ŝ(t̂p)) , (1.27)

where f̂(t̂p) =
Ŝ(up)−Ŝ(lp)

lp−up
is the estimated density function , up is the max of

the set of all ti such that Ŝ(ti) ≥ 1 − p
100 + ϵ and lp ,is the min of the set of

all ti such that ,Ŝ(ti) ≤ 1 − p
100 − ϵ,values of epsilon are taken to be small and

se(Ŝ(t̂p)) is found from the Greenwood formula(1.19).
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Indeed first we take the approach using (1.15) , V ar(Ŝ(t̂p)) ≈
(
Ŝ(t̂p)

dt̂p

)2
V (t̂p) .

At this point we notice that S(t)′ = −f(t) , so we can say that V ar(Ŝ(t̂p)) =

f̂(t̂p)
2V (t̂p) ⇐⇒ V (t̂p) = V ar(Ŝ(t̂p))

1

f̂(t̂p)
.

A confidence interval for the p-th quantile has the form

[t̂p − za/2se(t̂p), t̂p + za/2se(t̂p)]

1.3 A semi parametric model

1.3.1 Cox regression model

Suppose that we want to compare the survival experience of cancer patients on

two different therapies.A semiparametric rather than a fully parametric hazard

function might be best suited for this problem. One form of a regression model

for the hazard function is

hi(t) = ψ(xi)h0(t) , (1.28)

where xi = (xi1, xi2, . . . xip)
′ is the vector of independent variables for the i-th

patient ,i=1,...,n . We assume that independet variables xi are constants but in

general their values may change over time (time varying covariates (1.5.4)),ψ,is

called hazard ratio because ,ψ = hi(t)
h0(t)

, h0(t) ,is called baseline hazard function.

Cox (1972) was the first to propose the model and suggest using

ψ = exp(β′xi) , (1.29)

where ,β is the vector of coefficients who need estimation .We consider the

model without the intercept β0 ,because it can be included to the baseline haz-

ard function .Also we can consider that the baseline hazard fuction is derived

from the model (1.28) for the patient with x = 0(null patient).

Also the model can be re-expressed in the form

log
hi(t)

h0(t)
= β1xi1 + . . . βpxip , (1.30)
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in order to give a linear model for the logarithm of the hazard ratio . The

model (1.28) is a semi-parametric model because it has the unknown parameters

β1 . . . βp that we have to estimate and the baseline function in which no assump-

tions are made about the actual form . Also no particular form of a probability

distribution is assumed for the survival times .The model (1.28) with ψ as in

(1.29) is known as the Cox regression model.

Lastly the model (1.28) is based on the proportional hazards assumption that

we will discuss in (1.3.2) section .

1.3.2 Validity of the proportional assumption

If the baseline hazard h0(t) and the hazard of the i-th patient hi(t) are propor-

tionals then ,hi(t) = ψh0(t),so

exp

(
−
∫ t

0

hi(x)dx

)
= exp

(
−
∫ t

0

ψh0(x)dx

)
.

Now from (1.6) we get that

Si(t) =

(
exp

(
−
∫ t

0

h0(x)dx

))ψ
= (S0(t))ψ . (1.31)

The surviror functions in (1.31) are probabilities so they take values from 0

to 1 and if ,ψ, is greater than 1 , the survivor function of the patient i is greater

than the baseline .

On the other hand if ψ is less than 1 the opposite is true .The point is that

every time the true survivor functions do not cross .This is a necessary but not

sufficient argument for the validity of the proportional hazards assumption.

Furthermore an informal graphical method is to plot the estimated survivor

functions Si(t) and S0(t) over time and observe if they approximate cross or

not.

A more satisfactory graphical method for assessing the validity of the propor-

tional hazards assumption is known as the log-cumulative hazard plot

logHi(t) = β′xi + logH0(t) . (1.32)
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This equation is derived by intergrating both sides of the Cox regression model

over the interval [0,t] ,so from (1.4) we take Hi(t) = exp(β′xi)H0(t).Then taking

the logarithm to both sides we end up in (1.32) .

We notice that differences in the log-cumulative hazard functions in (1.32) do

not depend on time.In general if the proportional hazards assumption is valid

the differences of the log-cumulative hazards for every pair of individuals do not

depend on time.

Specifically for the i-th and j-th individual , i ̸= j , i, j = 1 . . . n

logHi(t) − logHj(t) = β′xi − β′xj .

This means that if we plot the log-cumulative hazard functions for each individ-

ual against time or usually the logarithm of time , the curves will be parallel.

To use this plot when individuals have an explanatory variable that is contin-

uous,meaning that is measured in a continuous scale(e.g age) , individuals are

first grouped .

For example let’s say that age variable take values over the interval (10,50)

,therefore we choose for some reason to group them in 5 intervals (10,20],(20,30],(30,40],(40,50).

Then we take the Kaplan-Meier estimator of the log-cumulative hazard from the

equation (1.5) for each group and plot all these estimates against log t .If the

curves are approximately parallel then the proportiornal assumption is valid.

1.3.3 Fitting the model

In order to fit the Cox regression model we have to estimate the coefficients

β1, . . . βp and the baseline hazard function h0(t).A useful fact is that we can

estimate those 2 separately,in particular the β’s first so we can compute the

hazard ratio(1.29) without computing the baseline hazard function .In order to

estimate β’s we will use a likelihood that is derived without direct use of the

censored and event times(observations).This likelihood is called partial likeli-

hood (Cox 1972) .

First we suppose that there are n individuals in the study , r distinct death

times and n-r right cencored times(lost to follow up times).Further we assume

that no ties happen on survival times (death-event or cencoring) .

The basic argument is that between successive deaths no information exists
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about the effect of the explanatory variables on the hazard of death.

So we consider the probability

P (individual with variablesxi dies at ti|one death at ti) ,

where ti is the i-th ordered death , t1 < · · · < tr , i = 1 . . . r

This probability equals to

P (individual with variablesxi dies at ti)

P (one death at ti)
,

then we have

P (individual with variablesxi dies at ti)∑
l∈R(ti)

P (individual l dies at ti)
,

because P (one death at ti) =
∑
l∈R(ti)

P (individual l dies at ti) , where R(ti) is

called risk set and is defined as the group of individuals who are alive and un-

cencored just prior to ti.

The probabilities in the numerator and denominator are replaced by the prob-

abilities of death in the interval [ti, ti + h) , dividing by h and taking limits to

zero we have

Hazard of death at time ti for individual with variablesxi∑
l∈R(ti)

(Hazard of death at time ti for individual l)
.

So the numerator is the hazard of the i-th individual .Finally taking the product

from 1 to r and using the (1.28) and (1.29) we take

L(β) =

r∏
i=1

exp(β′xi)∑
l∈R(ti)

exp(β′xl)
, (1.33)

which is the partial likelihood function for the cox model with no ties.

The (1.33) is equivalent with the expression

L(β) =

n∏
i=1

(
exp(β′xi)∑

l∈R(ti)
exp(β′xl)

)δi
, (1.34)

where δi is the indicator variable which is 0 if the i-th survival time is censored
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and 1 if the i-th individual exprerience the event(e.g death) .

Taking the logarithm of this likelihood we end up with a more useful expression

log(L(β)) =

n∑
i=1

δi

β′xi − log
( ∑
l∈R(ti)

exp(β′xl)
) . (1.35)

The maximization process leads to no close form forβ’s ,so numerical methods

such as Newton-Rapson procedure are used to find β’s.

Consider a simple example with 6 survival times numbered from 1 to 6 .The

observed survival times of individuals 2, 3 and 6 are right cencored and the oth-

ers are death times t1 < t2 < t3 for individuals 5 ,1,4 respectively .Specifically

censoring for 6 is happening between the first 2 deaths and the censored times

for 2 and 3 are happening between the last 2 deaths .The risk set R(t1) includes

all individuals ,R(t2) includes 1,2,3,4 and R(t3) includes 4. If ψ(i) = exp(β′xi)

then partial likelihood is ψ(5)
ψ(1)+ψ(2)+ψ(3)+ψ(4)+ψ(5)

ψ(1)
ψ(1)+ψ(2)+ψ(3)+ψ(4) , because

the last fraction is 1.

Now we present the form of the partial likelihood when ties arise for survival

times.When multiple deaths and censored times happen at some time t ,then

we assume that censoring times happen just after all the deaths at t, so the risk

st R(t) can be determined without further problems .

Ties can arise even in continuous case because survival times often recorded

to the nearest death ,month ,year and the rounding process leads to ties.The

appropriate likelihood function in the presence of tied observations has been

given by Kalbfleisch and Prentice (2002) but is very complicated,so computer

softwares for survival data usually use a sufficient approximation for the likeli-

hood with ties .

An approximation has been proposed by Breslow(1974) and it’s the simplest

among all others

L(β) =

r∏
i=1

exp(β′si)(∑
l∈R(ti)

exp(β′xl)
)di , (1.36)

where si is the vector with of p elements , the h-th element is sih =
∑di
k=1 xhik

and xhik is the value of the h-th explanatory variable, h = 1, 2, . . . , p , for the k-th
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of di individuals, k = 1, 2, . . . , di , who die at the i-th death time, i = 1, 2, . . . , r.

In this approximation, the di deaths at time ti are considered to be distinct

and to occur sequentially.

Other approximations proposed by Cox(1972),Efron(1977).

Next we focus on estimating the baseline hazard function which can lead to

estimates for the survivor,hazard and cumulative hazard functions in the frame-

work of the Cox regression model(1.28).

An estimate of the baseline hazard function was derived by Kalbfleisch and

Prentice (1973).Suppose that there are r distinct death times t1 < · · · < tr and

that there are dj deaths at tj , j = 1 . . . r and nj individuals at risk at time tj

, j = 1 . . . r.The estimated baseline hazard function at tj is

ĥ0(tj) = 1 − ξ̂j , (1.37)

where ξ̂j is the solution of the equation

∑
l∈D(tj)

exp(β̂′xl)

1 − ξ̂
exp(β̂′xl)
j

=
∑

l∈R(tj)

exp(β̂′xl) . (1.38)

The set D(tj) is the set of all dj individuals who die at the j-th ordered death

time and R(tj) is the risk set.If no ties happen , then dj = 1 ,j = 1, . . . r and the

equation (1.38) is simplified ,meaning that the sum on the left side of (1.38) in

only one term.

ξ̂j =

(
1 −

exp(β̂′x(j))∑
l∈R(tj)

exp(β̂′xl)

)exp(−β̂′x(j))

.

According to the discussion above and considering that the hazard is constant

between adjacent death times an appropriate estimate of the baseline hazard is

given by (1.39)

ĥ0(t) =
1 − ξ̂j
tj+1 − tj

, (1.39)

for tj ≤ t < tj+1 and j=1,...r-1 ,the hazard is zero before the first death.
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Cox model(1.28) according to the previous can be presented and estimated via

many forms such as a form with surviror functions and with cumulative hazard

functions.

More specifically if we consider that ξ̂j can be regarded as an estimate of the

probability that an individual survives over the interval [tj , tj+1) we can write

Ŝ0(t) =

k∏
j=1

ξ̂j , (1.40)

for tj ≤ t < tj+1 and j = 1, ...r − 1.This is also a generalization of the Kaplan-

Meier estimator in (1.2.1).

From equation (1.5) we can take an estimate for baseline cumulative hazard

function . Moreover estimates for the i-th patient can be derived for the haz-

ard,survivor and cumulative hazard in the presence of covariates from the fol-

lowing equations.

The first equation provides an estimation for the Cox model with the (1.28)

form

ĥi(t) = exp({β̂′xi)ĥ0(t) .

Now taking the integral over [0,t] to both sides we get that

Ĥi(t) = exp(β̂′xi)Ĥ0(t) .

Also by multiplying by -1 and taking exp to both sides from the second equation

we get that(1.6)

Ŝi(t) = Ŝ0(t)exp(β̂
′xi) . (1.41)

Finally we mention that an explanation(see Lawless [2] for further details)

for the equation (1.38) that comes from Kalbfleisch and Prentice (1973) .The

main concept is to maximize the likelihood

k∏
i=1

 ∏
j∈D(ti)

(
1 − ξ̂

exp(β̂′xi)
i

) ∏
l∈R(t(i))−D(t(i))

ξ̂
exp(β̂′xl)
i

 , (1.42)

where the second and thrird product comes from the survivor function and their

over the set of deaths with ties and the censoring set respectively.
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So if we maximixe with respect to ξ̂i we take the desired equation .

Of course for the more complex scenario with multiple deaths at the same time

we have to use numerical methods to find ξ̂i.

A suitable initial value is

1 − ξ̂0 = di

 ∑
l∈R(t(i))

exp(β̂′xl)

−1

, (1.43)

where di is the i-th ordered death time

1.3.4 Risk adjusted method

The risk adjusted method method is used to identify if the covariates of an

individual give information about the estimate of a parameter of interest (such

as the true survivor function).

The method uses the sample mean of all estimators for the parameter of interest

and the sample mean is compared with the unadjusted estimate (for example

the Kaplan-Meier). If we notice that no significant differences exist among the

two estimators , then there is no reason to include the explanatory variables

to etismate the survivor function .For example if the interest is focused on the

estimation of the true survivor function we take the

Ŝ(t) =
1

n

n∑
i=1

Ŝi(t) , (1.44)

where Ŝi(t) comes from the expression (1.41).

As an illustration of this method we give an example from a data set for the

survival of black ducks.

In the first year of a study on the movements and overwintering , survival of

black ducks, Anas rubripes, conducted by the U.S. Fish and Wildlife Service, 50

female black ducks from two locations in New Jersey were captured and fitted

with radios.

The period of the study was from 8 November 1983 to 14 December 1983 and in-

cluded 31 hatch-year birds.The explanatory variables are the age(0=hatch,1=over

one year),weight(in g) and length of wing(in mm).Status is 0 for censoring and

1 for death.The table (1.3.1) shows the time ,age,length ,status and weight
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Figure 1.3.1: Survival table of ducks (taken from modelling survival data in
medical research Collett thrid edition)(Additional data sets,appendix B)

V1 is ducks as patients ,V2 time,V3 state,V4 age,V5 weight and V6 length.A

plot made for adjusted(1.44) and unadjusted survivor(without the explanatory

variables) (Kaplan-Meier) functions. The adjusted one is as discussed the sam-

ple mean of the survivor functions under the cox proportional hazard model.The

plot (1.3.2) indicates a huge difference if we ignore the explanatory variables,but

that doesn’t mean that the model with the explanatory variables is the correct

model .In fact in paragraph(1.3.7) we discuss methods for comparing in a more

satisfactory manner two or more models.

1.3.5 Measures of explained variation

In general there are measures to explain the validity of a regression model.

Here we focus on measures who tell us if the explanatory variables used in the

model , explain the actual data well ,so we can use them for further statistical

inference.

In linear regression analysis this measure is

R2 =
SSR

SST
,
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Figure 1.3.2: Adjusted (green)-Unadjusted(red)(dush lines are the boundaries
of Kaplan-Meier) survivor functions

where SSR is the regression sum of squares and SST is the total sum of squares.

This is equal to

R2 =
SSR
n−1

SSR
n−1 + SSE

n−1

=
β̂′Sβ̂

β̂′Sβ̂ + Y ′(In−P )Y
n−1

,

where S is the variance-covariance matrix of explanatory variables(not ran-

dom matrix) ,In is the identical n ∗ n matrix , P is the hat matirx and β̂ the

estimated coefficients.

In survival analysis a similar expression can be derived by Kent and O’Quigley(1988)

R2 =
β̂′Sβ̂

β̂′Sβ̂ + π2

6

, (1.45)

where π2

6 is the variance of errors ϵi who follows the Gumbel distribution in an

alternative representation of the Weibull proportional hazards model((1.4.1)and

(1.5.2) sections).

Also β̂′Sβ̂ is an estimation of the variation in the risk score β̂′xi

Other suggestions are presented by Royston and Sauerbrei (2004) and Kent and

O’Quigley (1988) .
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R2 take values between 0 and 1, is largely independent of the degree of censor-

ing, is not affected by the scale of the survival data, and increase in value as

explanatory variables are added to the model.

In general big values(usually around 0.5) indicate that the model fits well with

the data.

1.3.6 Residuals

Model-cheking procedures often based on quantities known as residuals.Different

kind of residuals have been proposed for use under the Cox regression model.Also

plots based on residuals can be helpful to identify the correct model.

Here we assume tha the cox regression model has been fitted meaning

ĥi(t) = exp(β̂′xi)ĥ0(t) .

Cox-Snell residuals

Cox-Snell residual is the most widely used residual in survival analysis.Before

we explain how we can derive it, we have to mention the Nelson- Aalen or the

Breslow estimator for the baseline cumulative hazard .

This estimator comes by using an approximation and overcomes the difficulty

of solving the (1.38) when ties arise .So in equation (1.38) we can approximate

the term ξ̂
exp(β̂′xj)
j

ξ̂
exp(β̂′xl)
j = exp

(
exp(β̂′xl) log ξ̂j

)
≈ 1 + exp(β̂′xl) log ξ̂j .

Substitution of this approximation to (1.38) leads to the following equation

−
∑

l∈D(t(j))

1

log ξ̂j
=

∑
l∈R(t(j))

exp(β̂′xl) ⇐⇒ − dj

log ξ̂j
=

∑
l∈R(t(j))

exp(β̂′xl) .

So

ξ̂j = exp

(
−dj∑

l∈R(t(j))
exp(β̂′xl)

)
. (1.46)
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From equations (1.39),(1.40) and (1.5) we can take estimations for baseline haz-

ard,survivor function and cumulative hazard function .Especially the cumulative

baseline hazard is given by substituting (1.46) to (1.40) and using (1.5)

Ĥ0(t) =

k∑
j=1

dj∑
l∈R(t(j))

exp(β̂′xl)
, (1.47)

where tk ≤ t < tk+1 ,k = 1 . . . r − 1 and r is the total deaths.

This estimator is called Nelson-Aalen estimator or Breslow estimator.

Now we can explain the Cox-Snell residuals but first we will prove that Y =

− logS(T ) follows the exponential distribution with rate 1 ,where T is the ran-

dom variable of time and S(t)the surviror function of T .

We notice that FY (y) = P (Y ≤ y) = P (− logS(T ) ≤ y) = P (logS(T ) ≥ −y)

= P (S(T ) ≥ exp (−y)) = P
(
S−1(S(T )) ≤ S−1(exp(−y))

)
On the last equality we use the fact that S−1(t) is a decreasing function.

So FY (y) = P
(
T ≤ S−1(exp(−y))

)
= FT (S−1(exp(−y))) = 1 − S(S−1(exp(−y))) = 1 − e−y

A key assumption is that if the fitted Cox model is satisfactory then the values

of the survivor estimators for the individuals in the study will be close to the

true values.So the cumulative hazard estimations for individuals will behave as

observations from a unit exponential distibution.

The Cox-Snell residual(1968) for the i-th individual is defined

rCi
= exp(β̂′xi)Ĥ0(ti) = − log(Ŝi(ti)) , (1.48)

where Ĥ0(ti) is usually the Breslow estimator.

Many graphical procedures similar to linear regression analysis for residuals

are not quite useful .Cox-Snell residuals as discussed previously have an expo-

nential distribution with mean 1 if the fitted model is correct ,so the residuals

are asymmetrically distributed.As a result index plots are not very helpful.

In general a cumulative hazard plot against rCi assess the fitness of the model .



44 CHAPTER 1. SURVIVAL METHODS

This can be done by calculating the Cox-Snell residuals and then using the

Kaplan-Meier estimator for the survivor function , but the survival times are

replaced by the Cox-Snell residuals,meaning that in order to achieve the good-

ness of fit the survival times must follow the exponential distribution with mean

1.

If the survival time for the i-th individual is censored then the residual for that

individual is censored .Finally we take that

Ĥ(rCi
) = − log Ŝ(rCi

) ,

and plot them against rCi
.

We expect to see an approximately straight line with slope 1 and intercept 0,be-

cause if the fitted model is good then the estimated survivor function Ŝ(t) will

be approximately exp(−t).This will indicate that the Cox model will fit well

wth the data.

The Cox-Snell residuals have different properties from the residuals used in

linear regression analysis.

In particular, they will not be symmetrically distributed about zero and they

cannot be negative.

Modified Cox-Snell residuals

A problem that arises with the Cox-Snell residuals is that censored residuals are

treated the same as the uncensored ones.

In general the Cox-snell residual for the i-th individual at a censored time ci is,

rCi
= Ĥi(ci).The actual unknown failure time of the i-th individual ti will be

greater than ci.

If the model is correct ,then the values rC have the exponential distribution

with mean 1 ,meaning that the cumulative hazard function of an exponential

distribution with mean 1 is H(t) = −log(e−t) = t and thus is increased linearly

with time.

So bigger survival times give bigger values for the cumulative hazard ,leading

us to the fact that the residuals for censored observations are smaller than the
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residuals for the actual uknown survival times .

To fix this problem we consider a D positive constant known as excess residual

and we use the formula for the i-th individual

r′Ci
= rCi

+D ,

for the censored observations.

To determine D we consider as before that since the Cox-Snell residual for the

i-th individual rCi comes from an exponential distribution with mean 1 , then

due to the property of lack of memory , D will also have an exponential distri-

bution with mean 1.So we consider D = 1,because the mean of D is 1.

We mention also that the exponential distribution is the only absolute contin-

uous distribution that has the property of lack of memory .In this case this

property tell us that the probability of surviving beyond time rCi
and D given

that the individual already survive time beyond rCi
is equal to the probability

of survival beyond time D .

A formula that summarize the censored and censored case for the modified

Cox-Snell residuals is given by (1.49).

r′Ci
= 1 − δi + rCi

, (1.49)

where δi is the usual indicator variable and i denotes the i individual.

Another suggestion for D has been proposed by Crowley and Hu (1977) .Instead

of taking the mean of exp(1) we take the median .The median can be calculated

as in the (1.2.7) paragraph .More specifically S(t50) = e−t50 = 1
2 . So −t50 =

log 1
2 ⇐⇒ t50 = log 2 = 0.693 .Thus we take D=0.693 ,suggesting smaller

extent on the censored residuals.

Martingale residuals

In general we can define a stochastic process M(t),t ≥ 0 with M(t)=N(t)-L(t)

,where N(t) is the number of events(e.g deaths) on the interval [0,t) and L(t)

is the cumulative intensity function which can be considered as the expected

number of events over the interval [0,t) and has an analogous role in multistate

models ((2.2) section).
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More specifically we define the at risk process Y(t) that takes the value 1 until

time t , where an event or a censored time happen and the value zero otherwise.

Also we define the history of the counting process N(t), H(t−) as the set of

values (N(d), Y (d)) for all d just before t .

The intensity function λ(t)(analogous to the hazard function)(2.2 section) can

be seen as the derivative over time t of the mean of dN(t)=N(t+dt)-N(t) given

the history H(t−).

Finally the intensity cumulative hazard function is defined as the integral over

[0,t) of the intensity hazard function.

If we consider also that M(t) has zero mean ,the stochastic process M(t) is called

martingale .

The martingale residuals are based on the above discussion and the formula for

the i-th individual is given by (1.50)

rMi = δi − rCi , (1.50)

where δi is the event indicator for the i-th individual which in this case repre-

sents the number of deaths on [0, ti) and the rCi
is the Cox-Snell residual that

represents the average number of deaths over the [0, ti).

Also in the usual case with only one type of event we can think the intensity

cumulative hazard or the intensity hazard as the ordinary cumulative hazard or

hazard function,although for more details see the section (2.2).

As we see the formulas (1.49) and (1.50) has the relationship rMi = 1 −

r′Ci
.Moreover because the Cox-Snell residuals are positive the values of the mar-

tingale residuals for the censored observations belong to the interval (−∞, 1)

and for the uncensored observations are negative.

Another useful property that also has the usual residuals in a linear regression

model is that the sum of martingale residuals sum to zero.

This fact can be proved by considering the following Riemann-Stieltjes inte-

grals(1.8) for the i-th individual Ni(t) =
∫ t
0
dNi(u) and L̂i(t) =

∫ t
0
dL̂(u) =∫ t

0
λ̂(u)du.

The intensity function can be written using an analogous to Cox model form as

λ̂i(u) = Yi(u) exp
(
β̂i

′
xi(u)

)
dL̂0(u) where xi(u) covariate has a more general

form as it depends on time u (for further details see the section (2.2),(2.11)
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formula).

Also dL̂0(u) =
∑n

j=1 dNj(u)∑n
j=1 Yj(u) exp

(
β̂j

′
xj(u)

) which is an analogous form of the Bres-

low estimator(1.47) for the indicator cumulative hazard .

At this point it is clear that if we consider that the Cox-Snell residuals instead

of the usual cumulative hazard represent the analogous indicator cumulative

hazard the sum of rMi for all n individuals is

n∑
i=1

rMi =

n∑
i=1

(∫ t

0

dNi(u)−
∫ t

0

(
Yi(u) exp

(
β̂i

′
xi(u)

) ∑n
j=1 dNj(u)∑n

j=1 Yj(u) exp
(
β̂j

′
xj(u)

)).
This sum equals to zero because is a finite sum and as result can go inside of

the integrals and eliminating all the terms .

Another property that can be found also in the linear regression residuals is

that the mean of the martingale residual for the i-th individual, for large sam-

ple goes to zero and can be proved by using martingale convergence theorems

,for further details see [17].

Other suggestions for residuals are the deviance residuals,Schoenfeld residuals

and score residuals.For further details the reader can see [1].

Before we close the section of residuals we mention an example to demonstrate

the Cox-Snell and martingale residuals .

The data set is taken from [1] .Suppose a study with 13 patients who need a

kidney dialysis.That is a procedure to remove waste materials when the kidneys

stop working properly.Often patiens face the danger of infaction from this pro-

cedure and the procedure must stop.

So we consider that the event time is the infection ,meaning that the event

indicator is one for infection and zero for stopping the procedure for another

reason(censoring).Moreover in this example we consider two explanatory vari-

ables the sex and age .The figure(1.3.3) gives all the details. As we dicuss before

in order to find the explanatory variables first we must find the estimated Cox

model and use the Breslow estimator .Using R we get the output in figure (1.3.4)

As result using the formulas (1.48) and (1.50) we get the following table in fig-
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Figure 1.3.3: Dialysis table

Figure 1.3.4: Cox model

ure (1.3.5). From figure(1.2.5) we see also another thing that mentioned before

Figure 1.3.5: Martingale and Cox-Snell residuals

which is that the Cox-Snell residuals are positive and the martingale residuals

don’t exceed 1.

At this point in order to test the assumption of the goodness of fit for the

Cox model we can plot the estimated cumulative hazard of Cox -Snell residuals

against Cox-Snell residuals as pseudo times. From figure (1.3.6) we can say

that approximately the straight line with slope one and intercept zero (red line)

passes through the black dots .So even though the sample is small we can say

that the Cox model fits well the data.

Furthermore we can use a martingale residual vs index(patients) plot to identify

possible outliers ,meaning data from patients for whom the residuals in ablolute

value are large.This plot is provided in figure (1.3.7). From figure(1.3.7) we

don’t observe any outlier and also we see some kind of symmetry around zero .

Finally other plots can be made such as plot for martingale residuals vs age in

figure (1.3.8)
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Figure 1.3.6: Cumulative hazard against Cox-Snell residuals

Figure 1.3.7: Martingale residuals vs index
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Figure 1.3.8: martingale residuals vs age

1.3.7 Hypothesis tests and model comparison

In order to identify which model fits best to the survival data many methods

can be used to prove the importance of each explanatory variable.

First of all we present some classical tests that are generally used in the standar

theory but are also used in survival analysis .

So we will mention the Wald test,Score test and Likelihood ratio test.

Wald and score tests

Suppose that we focus in the hypothesis βj = 0, where j = 1 . . . p.

A Wald test uses the statistical function T =
β̂j

se(β̂j)
.This quantity under the null

hypothesis follows the standar normal distibution or equivalently the square of

this statistic follows the chi-squared distribution with 1 degree of freedom.

The p-value or the upper a/2 quantile of the standar normal distribution can

be used to determine the rejection or not of this hypothesis,where a is the level

of significance .

More specifically if p < a or T (0) > Za/2 then the exaplanatory variable with

the coefficient βj is significant and we keep it in the model.

However we must take notice that the hypothesis is being tested in the precense

of all other β’s.So a careful analysis must be done.
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For example let’s say that in the presence of 4 explanatory variables , two co-

efficients satisfy the null hypothesis in some significant level .Then we cannot

conclude that these variables can be exluded from the model .This is because if

we remove only X1 for instance then X2 might reject the null hypothesis and

as result is considered important for the model .

This can definitely happen if X1 and X2 are highly correlated .

If only one variable satisfies the null hypothesis in the presence of all others

then we may conclude that it can be rejected from the model.

This problem arises for the reason that in general coefficients are dependent

on one another meaning that they correlated in some degree(positively or neg-

atively).So alternative methods for comparing Cox models might needed.Such

methods are discussed in this paragraph.

We can notice also that the standar deviation of βj can be obtained approxi-

mately as the square root of jj-diagonal element of the inverse observed infor-

mation matrix for the value β̂.The observed information matrix is given by the

following formula

Î(β̂) =

(
∂L(β̂)

∂βi∂βj

)
i,j

.

Now we consider the null hypothesis that all coefficients(βj) are zero .If this

hypothesis is true then the null model(baseline hazard) is the best model ,so

there is no need to use explanatory variables for the model.

Wald test for this hypothesis uses the statistic function

β̂′I(β̂)β̂ .

This statistic under the null hypothesis has the chi - squared distibution with p

degrees of freedom (number of β’s).

On the other hand score test uses the statistic function

U(0)′I−1(0)U(0) ,

where U(β) =
(
d logL(β)

dβj

)
j

is the score vector.

This statistic also under the null hypothesis has the chi - squared distibution

with p degrees of freedom.
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Likelihood ratio test

Likelihood ratio test uses the statistic function

2
(

logL(β̂) − logL(0)
)
,

where L(0) is the likelihood for the null model.

In order to reject the null hypothesis under a level of significance α we check if

p - value for the chi-squared with p degrees of freedom is less than α(p < α).

For the general scenario let’s consider two models .

The first model is h1(t) = exp(β1x1 + . . . βpxp)h0(t) and the second model has

the form h2(t) = exp(β1x1 + . . . βpxp . . . βp+qxp+q)h0(t).

Model 1 is nested to model 2 and the null hypothesis is H0 : βp+1 = . . . βp+q = 0

The statistic for this case is given by (1.51).

2
(

logL(β̂B) − logL(β̂A)
)
, (1.51)

where L(β̂B) is refered to model 2 and the other likelihood in model 1 .

This statistic has chi-squared with q degrees of freedom.(number of estimated

beta’s in model 2 minus number of estimated beta’s in model 1)

Next it follows a discusion about some strategies that we can pursue for picking

the best model.

In general a correct-best model to fit the data doesn’t exist .As the famous

statistician George Box(1919-2013) said ’All models are wrong but some are

useful’.

Before we dive into some strategies for picking a model or models we explain

the 2 types of explanatory variables , variates and factors.

Variates take numerical values that are usually on a continuous scale of mea-

surment.

Factors on the other hand are variables that take limited values known as lev-

els(e.g sex:Male,Female(2 levels)) and in order to fit them to the model we must
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define some dummy variables.

In Cox regression model such as on all other models the first level is set to zero

.

Then if a factor has K levels we set K-1 dummy variables , each of these take

the value 1 for the corresponding level and zero otherwise as in figure (1.3.9).

Figure 1.3.9: Dummy variables ,the table comes from [1]

Other subcategories of explanatory variables are the interactions and mixed

terms.

Interactions come up if the model contains at least 2 factors.

For example the gender of a student and the academic performance(bad,mediocre,good,excellent).

An interaction of those two factors is for instance the ’female’ with ’good’.In

order to put interactions into the model we consider the dummy variables X1

which is 1 if the gender is female and zero otherwise , Y1 which is 1 if the perfor-

mance is mediocre and zero otherwise,Y2 which is 1 if the performance is good

and zero otherwise , and Y3 which is 1 if the performance is excellent and zero

otherwise. Again we remind that level ’male’ and ’bad’ is zero.

Overall we can make 3 interactions , for example X1Y2 .Also usually in statis-

tics in order to fit an interaction to the model we include the primary factors as

well,meaning that in previous example we fit X1 and Y2 in order to fit X1Y2.This

is called hierarchy principal. In general though there are some cases that we

may use only the interaction .

In a more general manner let’s say that we have 2 factors with p and k levels

respectively then interactions are (p-1)(k-1) and it is said that the interaction

of those 2 factors has (p-1)(k-1) degrees of freedom.

Finally we mention the mixed term that combines a variate with a factor .This

term can be used when a coefficient of a variate may differ for each level of a

factor.
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In figure (1.3.10) we give an example with 9 individuals ,a factor A with 3 levels

and a variate X with 9 values. As we see in the table U2 and U3 are the dummy

variables of A and for instance the 4-th indivilual adds a term x4 in the model

,meaning one more coefficient to estimate.

Figure 1.3.10: Mixed terms ,table is from [1]

At this point as we explained the different types of explanatory variables we

continue in strategy methods for picking a good model.

A usefull criterion for comparing not necessarily nested models is the Akaike’s

information criterion

AIC = −2 log L̂+ 2q ,

where q is the number of beta’s and L the likelihood function.Smaller values

lead to better models .

In general is likely that more than one models can be used to fit the data

.

The usage of many variables in the model in order to get more efficiency it can

be proven computationally expensive.

In this case, automatic routines for variable selection are available in many soft-

ware packages.These routines are based in forward selection, backward elimina-

tion and stepwise procedure.

The forward selection adds variables one at a time .The selection of each vari-

able based on the quantity can be based on p-values in a Wald test or on the

p-values of a likelihood ratio test or even on Akaike’s criterion.

The first step is to compare the null model with the models with one variable

,then the models with one variable with the models with 2 variables and so on

, until a stopping rule(e.g pvalue > 0.1).
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On the other hand the backward elimination procedure have the opposite pro-

cedure . It starts from comparing the full model with the models which have

one less variable and continue in that manner until some stopping rule(e.g

pvalue < 0.1).Finally the stewise procedure combines those two methods.

These routines usually lead to one ’best’ model and this model depends on

the method used .

Also models obtained by these methods usually violate the hierarchic princi-

ple.As a result these routines can be used with cautious.

Another strategy for model selection is recommended.

First we fit all the models that contain each of the variables one at a time.Then

we compare them with the null model using the likelihood ratio test .

The Chi squared (1 D.F) p values determine if we include those variables to the

model .We may also use the AIC criterion to give a stronger evidence.

Then the variables that are proven to be important are included in the model

and we compare this model with the model that contains only one of these

important variables in order to observe the significance of each variable in the

presence all other variables .

If none of this comparisons (likelihood ratio tests) is significant we keep the

model ,otherwise we exlude the non-significant variables from the model.

Finally we may check if some of the exluded variables from the first step are

significant in the presence of all others(not likely) and also we check for possible

interactions or mixed terms among the variables in the final model .

In medical research treatment effect arises .

For example suppose a study that has 2 groups.

Patients in the first group take placebo , in group 2 some medicine and we want

to observe the effect of the medicine.

This effect(treatment effect) can be included in the model as a factor with 2

levels.The first level is a patient in group1(zero value) and the second level is a

patient in group 2(value 1).

In general treatment effect can be seen as a variable that determines the effect
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in survival time.

In the presence of a treatment effect , first we pick a model with some strategy

that discussed before considering the explanatory variables without the treat-

ment effect.

In this way the treatment effect doesn’t affect the other variables.

Then we add the treatment effect to the final model and a comparison(likelihood

ratio test) with the model without the treatment effect shows if the treatment

effect is significant or not.

It is useful also to check if the treatment effect alone is significant.

In general a level of sifnificance a=0.15(not too strict) is recommended for gen-

eral use.

Lastly we mention that there is always a need for non-statistical considerations

in model building.

At this point let’s consider an example for better undestanding in model se-

lection methods(data comes from [1]).

In a placebo-controlled trial about bladder cancer, conducted by the Veterans

Administration Cooperative Urological Research Group, patients with superfi-

cial bladder tumours had their tumour removed transurethrally.Then random-

ization to 2 groups takes place .

The first group takes the placebo and second group takes the chemotherapeutic

agent, thiotepa.

The initial number of tumours in each patient, and the diameter of the largest

of these, was recorded at the time of randomisation.The original data comes

from D.F. Andrews and A.M. Herzberg (1985) and gives the times to up to nine

tumour recurrences.

This data set , focus only on the first recurrence.

Patients who haven’t experience recurrence by the end of follow up period are

considered as right censored observations.

This study has 86 patients ,time is measured in months,status is zero for cen-

soring and 1 for recurrence.The treatment variable is 1 for the first group and

2 for the second group,also init is the initial number of tumours and size is the

diameter of the largest initial tumour in cm.
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The figure (1.3.11) give the data for the first 6 patients in the study. At this

Figure 1.3.11: Table of first 6 patients

point we want to find the optimal model so we will follow the recommended

strategy.

As a result in figures (1.3.12),(1.3.13) and (1.3.14) we compare the null model

with the models with only one variable. As we see the figure (1.3.12) gives

Figure 1.3.12: Null model vs treat

Figure 1.3.13: Null model vs init

pvalue=0.2 ,so the treatment effect is not significant on it’s own.

Also the figure (1.3.13) gives pvalue=0.009 ,so the initial number of tumors is

important and lastly in figure (1.3.14) gives pvalue=0.756 ,so the diameter of

the largest tumour is definately not significant.

Next the figure (1.3.15) compares the model with init and treatment with the

model with only the treatment variable and gives pvalue=0.004 ,indicating that

the treatment effect is important in the presence of init.

Finally in figure (1.3.16) we check if the mixed term with init and treatment

is significant and as it turns out it’s not because pvalue=0.82.In conculsion the

best model ise the model with treat and init.

Before we end this paragraph we present also the backward algorithm with the

Akaike’s criterion and we observe that in figure (1.3.17) we end up with the

same model.

As we see in figure (1.3.17) the full model without the variable ’size’ achieves the

Figure 1.3.14: Null model vs size
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Figure 1.3.15: Treat model vs treat and init

Figure 1.3.16: Mixed term

smallest AIC among all models,so this variable is excluded from the model.Also

in the second step by eliminating treat or init we end up with models with bigger

AIC(> 364.8) so the process stops.

1.4 Parametric proportional hazard models

An assumption for the Cox regression model is that the baseline hazard function

is defined arbitary ,so there is no need to assume a specific probability distribu-

tion for the survival times.

This means that the hazard function of a patient is hasn’t a specific functional

form ,so models with this assumption can be generally used for a large set of

applications.

In fact in general non - parametric assumptions have a wide range of applicabil-

ity,although parametric assumptions meaning a specific distibution , gives more

presicion to our a study and the quantities of interest such as the median tend

to have smaller deviances.

In this section we focus on parametric models .

The probability distribution that has a central role in survival analysis is the

Weibull distribution , introduced by W.Weibull(1951) for industrial reliability

tests and has an analogous role in survival analysis as the normal distribution

in linear regression models.

1.4.1 Proportional Weibull model

First we present the Weibull distribution.

The Weibull distribution has the following density function for time t, f(t) =

λγtγ−1 exp(−λtγ).

Also the survivor function is S(t) =
∫∞
t
f(u)du = exp(−λtγ) and the hazard
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Figure 1.3.17: Null model vs size

function is h(t) = f(t)
S(t) = λγtγ−1 , where γ is the shape parameter , λ the scale

parameter and they are positive parameters. IF γ > 1 then hazard increases

monotonically and for γ < 1 decreases mononically.

Moreover we mention that for γ = 1 we get the exponential distribution

Now we present the Weibull proportional model.The only thing that seper-

ates this model from the Cox model is that the baseline hazard function has a

Weibull form.

h(t) = exp(β′x)λγtγ−1 ,

and for each patient i that is

hi(t) = exp(β′xi)λγt
γ−1 . (1.52)

In order to fit the model (1.52)to the data we have to estimate all the unknown

parameters , meaning to estimate the beta’s ,scale and shape parameters.

To do that we will use a general formula but first we suppose that n individuals

paticipate in a study and the sample is a combination of events and right cen-

sored times.

We define the variables Ti as the event time and Ci as the censored time for the

i-th individual.Also we define δi as the event indicator and Mi = min(Ti, Ci) as

the random variable that indicates what appears first(censoring or event).

The probability distribution of the pair (Mi, δi) is given by (1.53) and (1.54).

P (Mi = ti, δi = 0) = P (Ci = ti, Ti > ti) = P (Ti > ti)P (Ci = ti) = STi(ti)fCi(ti).

(1.53)
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P (M = ti, δi = 1) = P (Ti = ti, Ci > ti) = P (Ti = ti)P (Ci > ti) = SCi
(ti)fTi

(ti).

(1.54)

It is clear that in (1.53) and (1.54) we assume independence between survival and

cencored times(independent censoring).Also when we referring to distributions

as P (Ti = t) or P (Ci = t) we consider both possible scenarios meaning discrete

or continuous in order to simplify the process. In fact to be more accurate for

the continuous case for example we take P (Ti ∈ (t, t + h)) ≈ fTi(t)dt and we

consider this as P (Ti = t), meaning the probability density function.

Taking the product of (1.53) and (1.54) for all n patients and considering that

Ci and Ti for i = 1 . . . n are independent we end up with the following expression

n∏
i=1

(SCi
(ti)fTi

(ti))
δi (STi

(ti)fCi
(ti))

1−δi .

Rearranging this formula a little we get

n∏
i=1

(
SCi(ti)

δifCi(ti)
1−δi

) n∏
i=1

(
STi(ti)

1−δifTi(ti)
δi
)
.

Non informative censoring indicates that the first product is considered as con-

stant. So the likelihood is analogous to the second part. That is

L(θ) =

n∏
i=1

(
STi(ti)

1−δifTi(ti)
δi
)
,

where θ = (beta, parameters of some distribution)

Now by using the formula (1.3) we get an equivalent form

L(θ) =

n∏
i=1

(
STi(ti)hTi(ti)

δi
)
.

The logarithm of this likelihood is

log(L(θ)) =

n∑
i=1

(δi log(hi(ti)) + log(Si(ti))) . (1.55)

At this point by using the formula (1.6) and (1.52) we get the formula for the sur-

vivor function under a Weibull baseline distribution S(t) = exp (− exp(β′x)λtγ)

and by substitution of this formula and (1.52) to (1.55) we get the (1.56) ex-
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pression

log(L(θ)) =

n∑
i=1

(
δi

(
β′xi + log(λγ) + γ log(ti)

)
− λ exp(β′xi)t

γ
i

)
. (1.56)

In order to take estimations for gamma ,lambda and beta’s we take the partial

derivatives of the log-likelihood under those parameters and we end up with

p+2 equations (p=number of beta’s).

To solve this system of equations we have to use a computer software that solves

this numerically(e.g Newton-Raphson method) .

Even with small number of beta’s or in the special case of the exponential

distribution , computations by hand using for example the Newton - Raphson

method can be difficult .

As an illustration if we have the most simple case of the exponential case, then

h(t) = exp(β′x)λ , S(t) = exp (− exp(β′x)λt) and by taking the derivatives of

the(1.56) with γ = 1 for λ and beta’s ∂logL(θ)
∂βj

,∂logL(θ)∂λ , we have the following

equations

−
n∑
i=1

exp(β′xi)ti +
r

λ
= 0 ,

n∑
i=1

δixij − λ

n∑
i=1

xij exp(β′xi)ti = 0 ,

for j = 1 . . . p respectively and r total events(e.g deaths).

This system can be solved only numerically .As a result the Newton - Raphson

method can be used.

Before we explain this method we notice that we can reduce the complexity of

this problem by one if we solve the first equation for λ and substitute this to

the second set of equations(p in total).

More specifically the estimated λ is

λ̂ =
r∑n

i=1 exp(β̂′xi)ti
.

We notice that in the absence of covariates the above estimation is the number

of deaths divided by the total survival times.
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So we have to solve the set of p equations(j = 1 . . . p)

gj(β) =

n∑
i=1

δixij −
r∑n

i=1 exp(β′xi)ti

n∑
i=1

xij exp(β′xi)ti = 0 .

This set of equations can’t be solved numerically , so we have to use the Newton-

Raphson or some other method ,in order to find the maximum points.

The Newton-Raphson method uses the partial derivatives
∂ gj(β)
∂βi

and the gj(β)

for i, j = 1 . . . p.

In fact the method uses the observed information matrix I(β) =
(
∂ gj(β)
∂βi

)
ij

and the score function U(β) =
(
g1(β), . . . , gp(β)

)
.

First we choose a suitable initial value(e.g the value zero β = 0) to start the

algorithm .The initial value can be crucial because if it has a large distance from

the true value the algorithm can be stuck .

Then we follow the iterative process (1.57) until some criterion stops the algo-

rithm (e.g small distances between 2 consecutive solutions , 10−2 for example).

βk+1 = βk + I−1(βk)U(βk) .

After we take the estimates we can calculate all the quantities of interest with

the plug-in principle.

1.4.2 Assessing the Weibull assumption

In order to be sure whether a Weibull distribution is suitable there are some

options that can be examined.

A first option is to estimate the hazard using non-parametric methods as in

(1.2.6) section.If the hazard is reasonably constant over time we may fit an

exponential distribution.

On the other hand if the hazard increases or decreases monotonically then we

may choose the Weibull distribution.

This procedure can be done also by estimating the cumulative hazard (1.14) and

see if the graph behaves as the graph of a cumulutaive Weibull hazard ,but for

the survivor function for example the Weibull expression is more complicated

,so we may want to avoid it.
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A second option is to use the log-cumulative hazard plot by using the (1.58).The

survivor function of a Weibull distribution is S(t) =
∫∞
t
f(u)du = exp(−λtγ),so

we end up with the following equation

log(− logS(t)) = log λ+ γ log t . (1.57)

Then we plug-in the Kaplan-Meier or the Nelson-Aalen estimator for the sur-

vivor function.

If the plot of the log-cumulative hazard against the log t gives an approximate

straight line then we may use the Weibull distribution.

Also this plot gives approximate estimates for λ and γ .The log λ is the intercept

of the line and γ is the slope.

This option can be used also when we may consider fitting a proportional model

with some explanatory variables.

1.4.3 Gompertz model

Gompertz model is used in biological and demography sciences and can be

used as an alternative approach in the framework of the proportional hazard

assumption for parametric models.

Gompertz distribution introduced by Gompertz(1825) in order to model the

human mortality.

The hazard of this distribution is

h(t) = λ exp(θt) = exp(a+ θt) ,

where λ , α and θ are positive parameters.

For θ = 0 we take the exponential distribution.As the Weibull hazard ,the

Compertz hazard decreases and increases monotonically.

In order to use this distribution in the proportional hazard model we simply

substitute the baseline hazard with the Compertz hazard.

The model for each i patient is

hi(t) = exp(β′xi)λ exp(θt) .
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1.5 Non-Proportional hazards

When the proportional assumption is not tenable ,we need to use an alternative

method to fit the data.

As a result we will introduce the accelerated failure time model who contains a

family of distributions useful for these problems.

1.5.1 The accelerated failure time model

Suppose that each i individual has p explanatory variables ,then the general

form of the accelerated hazard is

hi(t) = exp(−ωi)h0
( t

exp(ωi)

)
, (1.58)

where ωi = α′xi and α′ ,xi are the coefficient vector and the explanatory vector

for the i-th individual.

Also the baseline hazard represents the zero patient.

By taking integrals to both sides of the (1.59) equation and transforming the

integral
∫ t
0
h0

(
u

exp(ωi)

)
du by using the substitution u = x exp(ωi) we take

Hi(t) = exp(−ωi) exp(ωi)

∫ t
exp(ωi)

0

h0(x)dx .

So Hi(t) = H0

(
t

exp(ωi)

)
and by using (1.5) we get also that the accelarated

survivor function is Si(t) = S0

(
t

exp(ωi)

)
.

In general the accelerated failure time models determine the speed of the pro-

gression of a disease , meaning that this model can slow down or speed up the

survival time of an individual according to the explanatory variables.

An alternative representation of the accelarated model is the log-linear model

log Ti = µ+ α1xi1 + . . . αpxip + σϵi , (1.59)

where i is the i-th individual , µ and σ are the intercept and scale parameters

respectively.

Also the ϵi is the error for the i-th individual ,it represents the deviation of the
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values of log Ti from the linear component and is assumed that has a parametric

distribution.

In addition the positive values of alphas indicate an increase in survival times

with increasing values of explanatory variables and vice versa.For example , we

suppose that α is negative and the only explanatory variable is the age ,then

the survival times of the older individuals are smaller(logTyounger > logTolder)

At this point we will prove that (1.60) leads to the general accelerated failure

model.

First we consider the survivor function for the i-th individual by using (1.60)

Si(t) = P (Ti ≥ t) = P
(

exp(µ+ α1xi1 + . . . αpxip + σϵi) ≥ t
)

=,

P
(

exp(µ+ α′xi + σϵi) ≥ t
)

=,

P
(

exp(µ+ σϵi) ≥
t

exp(α′xi)

)
.

The baseline survivor function is

S0(t) = P
(

exp(µ+ σϵi) ≥ t
)
,

for xi = 0

As a result Si(t) = S0

(
t

exp(α′xi)

)
is the general form of the accelerated failure

time model for the survivor function.

The term exp(ωi) is refferred to as the acceleration factor,where ωi = α′xi.

Moreover the survival function for the i-th individual under the model (1.60)

can be defined from the survival function of the error ϵi

Si(t) = P (Ti ≥ t) = P (log Ti ≥ log t) = P (µ+α1xi1+ . . . αnxip+σϵi ≥ log t) =,

P
(
ϵi ≥

log t− µ− α1xi1 − · · · − αpxip
σ

)
= Sϵi

( log t− µ− α1xi1 − · · · − αpxip
σ

)
.

We mention also that most computer softwares use the log-linear model also for

the case of the proportional Weibull model and in the next section we will see

the reason for that.
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1.5.2 The Weibull accelerated model

In this section we will present the importance of the Weibull distribution in

survival analysis.

Suppose the assumption of the Weibull distribution.

The baseline hazard according to the Weibull distribution is h0(t) = λγtγ−1 and

the accelarated failure time model for the i-th individual is

hi(t) = exp(−ωi)λγ
( t

exp(ωi)

)γ−1

=

((
exp(−ωi)

)γ
λ

)
γtγ−1 .

Also the proportional Weibull version is

hi(t) =
(
exp(ψi)λ

)
γtγ−1 ,

where ωi and ψi represent the risk vectors.

So in both cases the hazard of each patient preserves the Weibull distribution.

As a result it is said that the Weibull distribution possess the accelerated failure

time property and the proportional hazard property.

In fact is the only distribution that has both of these properties.

Thus the proportional model is equivalent with the accelerated model and ψi =

−γωi.

Under the (1.59) model if the ϵi has the Gumbel distribution then we will prove

Ti has the Weibull distribution.

The survivor function of the Gumbel distribution is Sϵi(t) = exp(− exp(t))

,where t is taking values in the set of real numbers.In (1.5.1) we have proved

that

Si(t) = Sϵi

( log t− µ− α1xi1 − · · · − αpxip
σ

)
Then under the Gambel distribution we take

Si(t) = exp

(
−exp

( log t− µ− α′xi

σ

))
= exp

(
−exp

(−µ− α′xi

σ

)
t

1
σ

)
= exp(−λitγ).

(1.60)

This leads to the fact that the survivor function of the i-th patient is a Weibull

distribution with parameters λi and γ.

Next we will investigate the connection between the proportional Weibull model
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and the accelarated Weibull failure time model.

By using the proportional Weibull model for the hazard function (1.52) we get by

integrating on both sides over [0,t] the cumulative hazard for the i-th individual

Hi(t) = exp(β′xiλt
γ).

Also by using (1.6) the survivor function is

Si(t) = exp
(
− exp(β′xi)λt

γ)
)
. (1.61)

The relation between the parameters of (1.60) and (1.61) is λ = exp(−µ
σ ) , γ = 1

σ

and βj = −αj

σ .

These reparametrizations are very useful when we use a computer software.

1.5.3 Fitting the accelerated Model and Model checking

In order to get estimates for µ , σ and α’s the log-likelihood (1.56) can be used.

Under the (1.59) model we prove that for the i-th individual

Si(ti) = Sϵi

( log ti − µ− α′xi

σ

)
= Sϵ(κi) .

Also the derivative of 1−Si(ti) gives the density function for the i-th individual

fi(ti) =
1

σti
fϵ(κi) .

By subtitution of these quantities to (1.56) we get that

log  L(α, µ, σ) =

n∑
i=1

(
− δi log(σti) + δi log fϵi(κi) + (1− δi) logSϵi(κi)

)
. (1.62)

So the Newton-Rapson method (1.4.1) can be used to find the estimators of α’s

,µ and σ.

At this point we present the chronic active hepatitis example in (1.2.2) fig-

ure but now we will include also the patients in the second group don’t took the

drug(figure(1.5.1)).

The accelerated Weibull model using R gives the following results in fig-

ure(1.5.2).
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Figure 1.5.1: Hepatitis ,full data set

Figure 1.5.2: Accelarated model

So the estimated values for the parameters under the (1.60) is µ̂ = 4.481 ,

σ̂ = 1.27 , α̂ = 1.054.

The estimated treatment effect α̂ is positive ,this means that the therapy pred-

nisolone is trying to slow down the progression of the liver disease,because the

patients who don’t take the drug in contrast with the figure (1.5.1) are consid-

ered as ’zero’,so the ’1’ values (patients who took the drug) increase the log -

survival times and as a result the survival times.

Also the accelaration factor is exp(−α̂) = 0.34.

Moreover the output (1.5.2) indicates the goodness of fit with the survival data,

because p-value=0.033 by using the likelihood ratio test.

At this point we will also fit the Cox model in figure(1.5.3). The relative hazard

ψ = 0.4358 < 1 indicates that the hazard meaning the danger of death in the

new treatment(Prednisolone) is less than the old treatment(control group,the

patients who don’t take the drug ).

So the patients in the new treatment(patients who took the drug) tend to live
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Figure 1.5.3: Cox model

longer.

Moreover the standar error using the Cox model for the treatment effect is 0.3973

and the likelihood ratio test,Wald test and Score test have small p-values ,mean-

ing that the Cox model is also a good fit for the survival data .

Assuming also that the Cox model is more flexible in terms that does not in-

clude any assumption about the baseline function and considering that gives a

smaller deviance for the treatment effect we may considering to pick this in-

stead of the Weibull model.On the other hand papametric models have smooth

curves in contrast with the curvers of Cox models , so it is easier to discern a

pattern,but are highly sensitive , meaning that they have high dependancy on

the distribution we use.

In any case those 2 models give similar results and we can pick any of them.

A plot shows the survivor functions for those 2 models.Red and green smooth

lines are the survivor functions of the control group and treatment group(took

the drug) respectively under the Weibull model and dush lines give the surviror

functions under the Cox model in the same way. Before we end this section we

will mention some forms of residuals that are used in the parametric case.

Suppose that we already fit the log - linear model (1.59).

A natural residual under this model is called the standardised residual.

This residual is simply comes from (1.59) if we solve the equation for the ϵi term

,so the residual for the i-th individual has the following form

ϵ̂i =
log ti − µ̂− α̂′xi

σ̂
,

where ti is the observed survival time.

If the model is correct , the plot of the survivor function − logSϵi(ϵ̂i) against

the ϵ̂i will give a straight line with slope 1 and intercept zero .

This fact is explained in (1.3.6).The reason is that the − logS(t) has the expo-
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Figure 1.5.4: Cox model vs Accelarated model for each group

nential distribution with unit mean and Ŝi(t) = Sϵi

(
log ti−µ̂−α̂′xi

σ̂

)
.

Of course as in (1.3.6) instead of the survivor function for the errors, we use the

Kaplan-Meier estimator.

Another residual is the Cox-Snell residual (1.48) , but the survivor function

in this case is the Ŝi(t) = Sϵi

(
log ti−µ̂−α̂′xi

σ̂

)
.

As we see the standardised residuals and Cox-Snell residuals have a close rela-

tion.

Moreover if we want to check for outliers we can use the martingale residu-

als (1.50) ,but the Cox-Snell residuals has the form of this section.

1.6 Time - dependent models

In the previous sections models have explanatory variables that are recorded

from the origin of the study.

Although many studies contain survival data that are monitored for the dura-

tion of the study and as a result it’s necessary to take into account the values of

the valriables that change over time,otherwise there is a danger that the model

might be misleading.
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There are two types of variables that change over time.The external variables

and the internal variables.

The internal variables associate to a specific individual and can’t be measured

if the patient is dead or in general leave the study.

These variables arise when multiple measurements of certain attributes happen

over time.

Also this class of variables contains the indicator variables which indicate whether

a patient suffers from a disease or not over time.

On the contrary the external variables are variables that don’t necessarily tak-

ing into account the survival of a patient for their existence.

For example the age of a patient is an external variable meaning that over time

we know exactly the age of a patient independently of the survival time.

Another example is the temperature of a room that a study is conducted.The

temperature exists independently of any particular individual being alive or not

and the changes in temperature may affect the lifetime of an individual.

In a sense external variables are deterministic variables except for cases such as

the last example .

At this point we mention also that there is a chance for time-varying coefficients,

meaning a term β(t).If this term is linear it can be fitted in the corresponding

explanatory variable(e.g tbX=bX(t)),but if the coefficient has a non linear form

it might be difficult to fit in the model.

In conclusion we mention that there is a rule that must be taken into account

when modelling survival data.

This rule says that we cannot predict the survival of an individual by using

covariate values from the future and by violating this rule it may have a little

or no effect on the model, but in any case we have to be cautious when we pick

a model.
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1.6.1 Generalized Cox Model

In the presence of time-varying variables Cox model can be generalized by simply

substitute all constant covariates x with x(t) in the (1.28) model and we get the

(1.63) form

hi(t) = exp
( p∑
j=1

βjxij(t)
)
h0(t) . (1.63)

Moreover from the expression (1.35) and by considering covariates as functions

of time we take the following expression

logL(β) =

n∑
i=1

δi

( p∑
j=1

βjxij(ti) − log
∑

l∈R(ti)

exp
( p∑
j=1

βjxlj(ti)
)
. (1.64)

In order to find the estimated beta’s from the (1.64) we must know the values

of all covariates in the model at each death time in the risk set R(ti).

This can be done for the deterministic external variables(predetermined values)

but for the internal and external variables which are not predetermined, it might

be a problematic situation.

For example let’s say that we have only one variable in the model, the ’blood

pressure’ and 2 individuals in the study.

This variable takes non-deterministic values over time and influence in a different

way the survival times of those 2 individuals.

Further we suppose that the i-th individual died at ti < tk ,where tk is the

survival time of the j-th individual, then the risk set (all individuals alive just

before ti) involves both of these individuals.

As a result we must know the values xk(ti) , xi(ti).

More specifically the contribution in (1.64) of the i-th individual is

βx(ti) − log
(

exp(βx(ti) + exp(βx(tk))
)
. (1.65)

Let’s say also that the variable ’blood pressure’ for each patient is measured at

time l1,l2,l3, where l1 < l2 < ti < l3 < tj .

One option might be to take into account the measurments at l2 ,meaning the

shorter time before the time ti in order to calculate the expression (1.65).
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1.6.2 Counting process format

Many computer packages in order to fit time-dependent variables use the count-

ing process format. In this format we use time intervals who contain constant

values of all the explanatory variables.

The event indicator(0 means alive and 1 means dead) is set to zero for all in-

tervals until the final interval in which it might be censoring(0) or event(1).

The upper limit of the last interval is the event time(event indicator is 1) or

censoring time(event indicator remains zero).

Each interval associates with the values of ’start’, ’stop’and ’status’.

As an example let’s consider an artificial example with 8 patients with liver

disease, who randomized in a placebo treatment(zero’s) or in a new treat-

ment(one’s).

The Lbr is the natural logarithm of the bilirubin value (in µmol/l).

Biliburin is a substance in blood and high values of this substance cause hyper-

bilirubinemia that often is a sign of liver disease.

Let’s say also that survival times represent months and the patients have to

return to the clinic after some periods of time in order to measure the biliburin

level.

The analytic representation is shown in figure (1.6.1). For instance the patient

Figure 1.6.1: Start - Stop format

1 is in the placebo group and goes in clinic 3 times for measurments.

The figure (1.6.2) shows the resulting estimations of lbr and treatment for a

naive analysis that don’t take into account the different values of lbr.

Also in figure (1.6.3) is the results of a correct approach((1.64) model). More-
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Figure 1.6.2: Naive approach

Figure 1.6.3: Correct approach

over a plot is presented for the estimated surviror function against t under the

naive approach in figure (1.6.4) and for the correct approach in figure(1.6.5).

Figure 1.6.4: Survivor plot ,naive

From the figures (1.6.2) and (1.6.3) we get quite different estimations that can

lead to mistakes when we try to make predictions about future values of lbr for

example.
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Figure 1.6.5: Survivor plot, correct

1.6.3 Parametric models

Little work has been done for parametric models in the presence of time-

dependent variables.Although Petersen(1986) shows how we can fit such models.

This paper considers 2 types of external variables X(t) and Z(t).The first variable

has covariates discrete or continuous who remain constant for finite subperiods

of time.

On the other hand Z(t) has covariates that change all the time.

The hazard fuction is

h
(
t|X(t), Z(t)

)
= lim
h→ 0

P
(
t ≤ T < T + h|T ≥ t,X(t), Z(t)

)
h

.

The survivor function for survival beyond a time tk is

S
(
tk|X(tk), Z(tk)

)
= exp

(
−
∫ t1

0

h(s|X(0), Z(s))ds
)
×· · ·×exp

(
−
∫ tk

tk−1

h(s|X(tk−1), Z(s))ds
)
,

where the limits on the integrals reflect the duration in a state(meaning different

values of X(t) who changing over time ).

An important fact is that X(t) is constant over these intervals so is independet

from the time path.

For further details the reader can read [9].
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Chapter 2

Multiple events

In the previous sections was presented the usual case scenario in which the in-

diviuals can only experience one event.

In general though,in many studies we focus on multiple events.

Multiple events are divided into two categories.

The first case is the events of the same type.For example the recurrence of

headaches.

The second case involves events with different types.For example in a patient

with liver disease the events might be ’death’,’transplant’ and a specific biliru-

bin value.

Moreover in studies where the primary event is death individuals can experi-

ence several non-fatal events which formulate an event history.These models are

reffered to as multistate models

The most simple example is the alive-dead situation in which an individual has

2 possible states, alive or dead and the transition rate from the state ’alive’ to

the state ’dead’ is the hazard function of death at time h(t).

Also in a situtation with more than 2 states,let’s consider the patients with liver

disease and four states.The first state is ’transplant’,the second state is ’failure’(

the transplanted organ fails),the third stage is the ’retransplant’ and the fourth

stage is ’death’.

In this example a patient can experience 3 events,death , failure of the new

transplant or retranspant.

77
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Moreover the event history starts from state 1 ’transplant’ and it can lead to

the state 4 ’death’ or to the state 2 ’failure’.From the ’failure’ state,the pa-

tient can end up dead(death state) or may have another try for new trans-

plant(retransplant state 3) and at some time eventually will be dead(death

state). So the possible event histories are 1 → 4 , 2 → 4 , 3 → 4 , 1 → 2 → 4 ,

1 → 2 → 3 → 4.

All these possible histories have their own transition rates.

Finally we mention a special case of multiple events that is called competing

risks.In this case different types of events can happen but the occurance of any

of these events precludes the occurance of the other ones.

For example a patient can die by many possible causes(cancer,stroke etc) but

only one cause is the true cause of death.

2.1 Competing Risks

In competing risks framework, individuals have several potential causes of death

,these causes referred to as risks.These risks compete to become the actual cause

of death.

Each cause precludes the occurrence of the event from any other cause.

In contrary with the standar survival analysis who contains an event indicator

δi for each patient with value 1 if the event happened(e.g death) ,in competing

risks event indicator is replaced by a more general indicator δij which is 1 if the

i-th individual dies from the j-th cause.

2.1.1 Usual methods in competing risks

Kaplan -Meier approach

A first approach in competing risks might be to estimate the survivor functions

for each cause with the Kaplan-Meier estimator.

This can be done by considering each cause one at a time as the event and the

other causes as censored observations.

Such data are reffered to as cause-specific data.

So in fact we estimate the probability of death beyond time t, if cause j is the
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only cause of death, meaning that all other causes are removed.

In general this approach has several problems.The obvious one is that Kaplan-

Meier doesn’t take into account the other causes of death,but also underesti-

mates or overestmates the actual survival probabilities for each cause.Moreover

this method in order to be valid the causes must be independent,an assumption

that cannot be tested and thus for these reasons we might have to seek alterna-

tive methods.

To give some light on this method we use an example(data from [3]).

This example involves patients with prostate cancer.Time is measured(in months)

from diagnosis with prostate cancer till death.

Death has 2 causes.The first one is the cause ’prostate cancer’ and the second

one is the death from other causes.

Also the patients in total are 62 and the detailed table(first 20 patients) is pre-

sented in figure (2.1.1). From the figure (2.1.1) we split the second column

Figure 2.1.1: Prostate cancer

’status’(0=censoring,1=prostate cancer,2-death from other cause) into 2 other

columns,’status for other cause’ and ’status for prostate cancer ’.As a result the

3 and 4 columns provide the survival data to fit the Kaplan-Meier estimators.

In figures (2.1.2) and (2.1.3) the Kaplan-Meier estimations are presented for

each cause. In figure (2.1.4) is presented the plot of survivor functions for the

Figure 2.1.2: Kaplan-Meier for prostate cancer

2 causes of death.

The last time recorded is 110 and is a cencored time so the survivor functions

don’t take values further than this time.
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Figure 2.1.3: Kaplan-Meier for other causes

Figure 2.1.4: Kaplan-Meier plots for each cause

From figure (2.1.2) and (2.1.3) we get that the probability of dying in the time

period until 110 due to prostate cancer is 1-0.469=0.531 and due to other causes

1-0.528=0.472.

The sum of these probabilities give that the value of the overall cumulative dis-

tribution at 110 is 1.003 > 1 ,indicating overestimation(small in this example)

in one or both probabilities .

Cause specific functions

In competing risks analogous functions as in the (1.1) section are used, but they

focus particularly on each cause of death.

These functions are mentioned as cause specific functions.

The cause specific hazard for the j-cause is defined as

hj(t) = lim
h→ 0

P
(
t ≤ T < t+ h,C = j|T ≥ t

)
h

, (2.1)
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where C represents the cause of death and take the values j = 1 . . . n.

The event {t ≤ T < T + h,C = j|T ≥ t},occurs when the survival time for

the j-th cause is between [t,t+h) given that the survival time from all causes is

equal or greater than time t.

An analogous form of the (1.3) is derived from (2.1).

Indeed,

P
(
t ≤ T < t+ h,C = j|T ≥ t

)
=
P
(
t ≤ T < t+ h,C = j

)
P (T ≥ t)

.

So

hj(t) =
1

P (T ≥ t)
lim
h→ 0

P
(
t ≤ T < t+ h,C = j

)
hP (T ≥ t)

= lim
h→ 0

P
(
t ≤ T < t+ h,C = j

)
h

=
fj(t)

S(t)
,

(2.2)

where the fj(t) is the j cause specific density function and S(t) is the overall

survival function.

The overal hazard function is the sum of the hazards from each cause.This

can proved easily since the events {t ≤ T < T + h,C = j|T ≥ t},j = 1 . . . n are

disjoint(can’t occur 2 or more of these at the same time ).

As a result the probability in (2.1) splits into n probabilities for each cause and

we end up with the expression for the overall hazard h(t) =
∑n
i=1 hi(t).

Now by taking integrals to both sides of these formula over [0,t] we get the

overall cumulative hazard H(t) =
∑n
i=1Hi(t) and from the (1.6) we get also

that S(t) = exp(−
∑n
i=1Hi(t)) =

∏n
i=1 exp(−Hi(t)) =

∏n
i=1 Si(t), where Si(t)

is the survivor function for the i-th cause(surviving beyond t and dying from

the i-th cause).

The 1 − Si(t) it can be understood as the probability of dying from the i-th

cause in the hypothetical world where all the other causes don’t exist.

The most useful functions in competing risks are the cause specific cumula-

tive distribution function(or cumulative incidence) and the overall cumulative

distibution function.

The reason is that before a death occurs for a cause when all causes are in
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present.

The j-th cause specific cumulative distribution function is defined as Fj(t) =

P (T ≤ t, C = j) and from the previous discussion the overall cumulative distri-

bution function is
∑n
i=1 Fj(t).

The cumulative incidence function can be interpreted as the probability of dying

of the j-th cause in the precense of all other causes.

As t → ∞, Fj → P (C = j) ̸= 1 so the cause specific cumulative distribution

function is not a proper distribution function and for this reason is also called

subdistribution function.

In addition from (2.2) equation we have that fj(t) = hj(t)S(t) amd by tak-

ing integrals to both sides over [0.t] we get that Fj(t) =
∫ t
0
hj(u)S(u)du.

From this equation we can take a proper estimation for the cause specific cu-

mulative distribution function, in contrast with the Kaplan-Meier approach in

the beginning of this section.

This estimation has the following form

F̂j(t) =
∑
j:ti≤t

δij
ni
Ŝ(ti−1) , (2.3)

where
δij
ni

is the Nelson-Aalen estimator for the cause specific hazard of the j-th

cause(see the (1.14) formula,also δij for the i-th patient is one for the j-th cause

and zero otherwise) and the estimated survivor function is an overall Kaplan-

Meier estimate by considering all causes as one type of event.

From this formula we can take also proper estimations for the overall survival

and cumulative functions since F̂ (t) =
∑n
i=1 F̂j(t) and Ŝ(t) = 1 − F̂ (t).

Moreover the (2.3) formula uses the survival times up to t from all causes of

death and a result it not possible to estimate the cumulative incidence for any

cause by using cause-specific functions.

We remind to the reader that the cause specific functions use cause specific

data(all causes are considered as censored observations except for the cause of

interest ).
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Modelling in competing risks

The basic model in competing risks for the i-th patient and j-th cause is the

following

hij(t) = exp(β′
jxi)h0j(t) , (2.4)

where β′
j = (β1j , . . . , βpj)(coefficient vector) and xi is the vector with the ex-

planatory values.

When the baseline hazard is unspecified , we fit a Cox model and otherwise(parametric

structure) we fit a parametric model.In either case the cause specific data are

used as mentioned in the Kaplan Meier approach(1 for the specific cause and

zero for the other causes ).

The partial likelihood of (2.3) for all causes under the Cox model(compare with

the (1.34)) is

L(β) =

n∏
i=1

m∏
j=1

( exp(βj
′xi)∑

l∈R(t(i))
exp(βj

′xl)

)δij
.

We notice that this likelihood contains m usual Cox likelihoods,one for each

cause and of course assumes that the causes of death are independet from one

another.

At this point we have to mention also the case for a parametric baseline

hazard in (2.3) equation.

The likelihood is given by the following equation(see also the ((1.4.1) paragraph)

L(β) =

n∏
i=1

m∏
j=1

hj(ti)
δijSj(ti) ,

where hj(t) and Sj(t) are the cause cause specific hazard and cause specific

survival(Sj(t) = exp(−Hj(t))) respectively.

This likelihood also as in the Cox case contains m parametric likelihoods(compare

with the equation above (1.55)),one for each cause.

Finally we have to mention that in the above parametric likelihood we can’t

substitute directly in the cause specific functions a known specific distribution

form for the survival times of the j-th cause.
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For example if the distribution of the survival times for the j-th cause has the

Weibull distribution, we cannot adjust directly the Weibull distribution forms to

the cause -specific functions, because the cause specific cumulative distribution

function is not a proper distribution.

Lets say that the survival times for the j-th cause follows the exponential dis-

tribution with rate λj(the most simpe Weibull case).

Then we have that

Fj(t) = P (T ≤ ti, C = j) = P (T ≤ ti|C = j)P (C = j).

As a result the cause specific cumulative distribution function has the form

Fj(t) = (1 − eλjt) ∗ pj .

Then it follows from (2.2) that the cause-specific hazard for the j-th cause is

hj(t) = fj(t)/S(t) =
pjλje

λjt∑m
j=1

(
pjeλjt

) .
The last denominator comes from the fact that the S(t)(overall survivor func-

tion) equals to 1 −
∑m
i=1 Fj(t) and so

S(t) = 1−
m∑
i=1

Fj(t) = 1−
m∑
i=1

(1−eλjt)∗pj = 1−
m∑
i=1

pj+

m∑
j=1

(
pje

λjt
)

= 1−1+

m∑
j=1

(
pje

λjt
)
.

So it is not λj and thus the cause specific baseline hazard in (2.3) has this

complicated form.

2.1.2 Fine and Gray model

In order to deal with the problem of the untestable assumption of independent

censoring and to estimate the cause specific cumulative incidence Fj(t) when

explanatory variables arise as we mention before we can’t use cause specific

models.

These problems can be solved by using the Fine and Gray model(1999).

This model provides information on how the explanatory variables affect the

cumulative incidence for each cause.

We will first start by explaning the key quantity for this concept which is reffered

to as subhazard.

The subhazard function for the i-th cause is defined as(compare with the (1.5)
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and the fact that the hazard is derivative of the cumulative hazard)

h∗i (t) = − d

dt
log(1 − Fi(t)) .

So h∗i (t) = 1
1−Fi(t)

dFi(t)
dt and the 1 − Fi(t) is the probality of surviving beyond

time t or dying before time t from a cause different than i.

Of course in order to avoid misunderstandings we mention that 1 − Fi(t) ̸=

Si(t) where Si(t) is the cause specific survival function for the i-th cause who

previously explained.

At this point we further notice that the derivative dFi(t)
dt = limh→ 0

Fi(t+h)−Fi(t)
h .

The numerator in the limit reflects the probability of dying in an infestimal

interval from cause j and survive beyond t in the precence of all causes or dying

in an infestimal interval beyond t from cause j and also dying from some other

cause before time t.

By combinig this interpretation with the interpretation of 1 − Fi(t) we get the

following expression for the subhazard(i individual)

h∗i (t) = lim
h→ 0

P (t ≤ T ≤ t+ h,C = i|T ≥ t or{T ≤ t andC ̸= i})

h
.

As a result the (2.5) formula gives an awkward interpretation as the instan-

taneous death rate at time t from cause i, given that an individual has not

previously died from cause i,meaning that it allows deaths from other causes

before time t.

The basic step has been done.Now we consider a Cox regression model for the

subhazard function that has the form

h∗ij(t) = exp(β′
jxi)h

∗
0j(t) ,

where j represents the j-th cause and i the i-th individual.Also this model is

called Fine and Gray model.

The model is fitted in the usual way(1.3.5) but with a modification(we use

weights).
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For the j-th cause the fitted model is

log(L(β)) =

n∑
i=1

δi

β′
jxi − log

( ∑
l∈R(ti)

wil exp(β′
jxl)

) ,

where R(ti) is the risk set of all individuals who have not experienced the j-th

cause before the i-th event time ti, for whom the survival time is greater than

or equal to ti and those who have experienced some other cause before ti, for

whom the survival time is less than or equal to ti.

The weights have the following form

wil =
ŜC(ti)

ŜC

(
min(ti, tl)

) ,
where ŜC(t) is the Kaplan-Meier estimation for the censoring mechanism where

the censoring times are considered as event times and the event times for all

causes are considered as censored times.

We further notice that when ti < tl, wil = 1.This occurs for the individuals in

the risk set who haven’t experience the j-th cause before ti.

Also when ti > tl an individual in the risk set experience some other cause and

the weight in that case is wil < 1,because the survivor function is a decreasing

function of time.

As a result the main goal of using these weights is to give a minor role in deaths

from other causes,The main goal of using these weights is to give a minor role

in deaths from other causes,because the weights become smaller with increasing

time between the occurrence of a competing risk and the event of interest , so

that earlier deaths from a competing risk have a small impact on the results.

2.2 The general case, multiple events framework

In the introduction of this chapter were mentioned several cases of multiple

events situations such as multistate models,repetition of an event of the same

type,or occurance of multiple events with different types.

In order to use models for these situations we have to define the {Ni(t)}t≥0

stochastic process for the i-th individual.
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This process is reffered to as counting process and counts the number of occu-

rances of some event over the time period (0, t].

The graph of this process starts from zero and is a step function that increases

a step of 1 unit if an event is occured.

Another useful stochastic process is the at risk process {Yi(t)}t≥0 that repre-

sents the process which is 1 when the i-th individual is uncensored and at risk

of an event occurring at time t and zero otherwise.

Finally it is also useful the concept of history.

The history or filtration up to tH(t−) is defined as the set of values (Ni(u), Yi(u))

where u < t.

Every counting process Ni(t) has an associated intesity function λi(t),t ≥ 0.

The intensity function for the i-th individual λi(t) is defined as

λi(t) =
P
(
dNi(t) = 1|H(t−)

)
dt

,

where H(t−) is the history or filtration of the process up to but not including

time t and dNi(t) = Ni(t+ dt) −Ni(t).

For the reason that dNi(t) takes the value 1 when an event is occured in an

infestimal interval(zero otherwise), the probability in the numerator reflects the

probability of an event in an infestimal interval given the history of the process.

From the definition of the intensity function, it comes up that in the usual

survival framework where only one type of event occurs(e.g death(one time)

or independent headaches(multiple times)),the intensity function for the i-th

individual who is at risk of an event at time t is equal to the usual hazard func-

tion(1.2)

Indeed if we imagine the usual survival framework as a counting process,the i-th

individual at time zero has zero chance of experience the event of interest ,so

Ni(0) = 0.

Moreover the counting process is increasing by one unit when the event is oc-

cured and the history up to t is Ti ≥ t,because the event that occurs in an

infestimal interval above time t only depends on the event of being at risk at

time t(this is true also for independent reccurent events).
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As a result we get the equation

λi(t) = Yi(t)hi(t) ,

in which, as long as the i-th individual is at risk of an event or censoring at time

t, the intensity function is the hazard for the i-th individual.

Also when an event or censoring occurs before time t the intensity function and

the hazard are zero so they can be thought as the same thing.

We can further define the cumulative intensity function such as with the usual

hazard , as the integral of the intensity function over the interval [0,t]

Λi(t) =

∫ t

0

λi(u)du .

Models with intensity functions

A general model for the intesity function of the i-th individual is the following

one

λi(t) = Yi(t)f
(
t,xi(t)

)
. (2.5)

where f
(
t,xi(t)

)
is some function of time t and of time dependent covariates

for the i-th individual.Moreover the Yi(t) is the at risk process.

A model for reccurent data(repeated events) that takes the Cox approach(1.28)

for the f function in (2.5) is called Anderson and Gill model(1982).

The model has the following form for the i-th individual

λi(t) = Yi(t) exp(β′
ixi(t))λ0(t) .

In this model the within reccurent times for each individual are assumed in-

dependet,so the history of the process for the i-th individual is Ti ≥ t,thus

the hazard functions hi(t),h0(t) and the intensity functions λi(t),λ0(t) can be

thought of as the same thing.

Under this model we construct the partial likelihood for the counting process

format in a similar manner as mentioned in (1.3.3) section.
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The form of the partial likelihood from a realisation of the counting process is

L(β) =

n∏
i=1

∏
t≥0

(
Yi(t) exp(β′xi(t))∑n
l=1 Yl(t) exp(β′xl(t))

)dNi(t)

.

We notice that the fraction inside the product contributes in the likelihood when

an event is about to occur for the i-th individual in an infestimal interval after

t.

The numerator in this case is exp(β′xi(t)) and the denominator is the sum

exp(β′xl(t)) for all l ̸= i individuals who don’t experience an event or cencoring

before time t plus the term exp(β′xl(t)).

In statistical packages the Anderson and Gill model is fitted by using the count-

ing process format(1.6.2) in a more general manner(repeated events).

We construct intervals starting from zero.

Each interval is associated with a status variable which is 1 for an event and

zero for censoring.

In order to take into account a possible dependance between repeated events(within

subject dependence) a term ri is used that is reffered to as random effect.

The random effect ri is not a constant,in fact is considered as the observed

value or realization of n(the number of individuals in the study ) independent

and identically random variables from the normal distribution with mean zero

and variance σ2.

The Anderson and Gill model with the random effect equipped takes the fol-

lowing form

λi(t) = Yi(t) exp(β′
ixi(t) + ri)λ0(t) .

By fitting this model we will get an estimation for the variance σ2 that summa-

rize the extent of differences in random effects ri.

For further details about random effects the reader can see [1].

An extension of the Anderson and Gill model for recurrent events is the Pren-

tice, Williams and Peterson (1981) model.
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This model for the i-th patient and j-th occurance has the following form

λij(t) = Yij(t) exp(β′
jxi(t))λ0j(t) ,

where Yij(t) = 1 for the i-th individual who is uncensored and at risk of the j-th

occurance at time t and zero otherwise.

This model allows the within dependence of repeated events,since the intensity

function can vary between the repeated occurances for the i-th individual and

it is the most preffered model for these situations.

In order to fit this model in a statistical software we use the start-stop format

with stratums for each repeated occurance of the event of interest.

It is worth to mention that the same model can be used to fit different types of

events for an individual,so Yij(t) = 1 for the i-th individual who is uncensored

and at risk of the j-th type event at time t and zero otherwise.

Such models are reffered to as Wei, Lin and Weissfeld models.

We close this chapter by mentioning that in a multistate model such as the

transplant example in the introduction of this chapter, we fit the following

model

λijk(t) = Yijk(t) exp(β′
jkxi(t))λ0jk(t) ,

where i denotes the i-th individual,j denotes the j-th state and k the k-th state.

As in the models that were mentioned above the start-stop format is used for

each indvidual but now according to the transitions from one state to another.



Chapter 3

Informative censoring

The methods that were described in the previously chapters are only valid if

the censoring is independent.

This means that in the precense of dependent censoring, by fitting models under

independent censoring ,is resulting to biased inference .

Informative censoring occurs when there is a dependence between the time of

an event such as death and the time of the occurance of censoring.

The problem with this situation is that it is not possible to use the observed

data to determine the existance or absence of the dependent censoring.

In general the best thing we can do is a sensitivity analysis, meaning to examine

if the casual models with independent assumptions provide biases that can be

ignored.

The contex of the study usually gives some indication about the presence of

informative cencoring.For example a patient who leaves the study due to some

therapy that became life - threatening,so we expect early dropouts.

One way to examine the informative assumption is to plot the observed sur-

vival times against the values of each explanatory variable and if there is a

greater proportion of censoring in some range of values of an explanatory vari-

able,then maybe informative censoring exists.

One approach in a sensitivity analysis is to consider 2 supplementary analy-

91
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sis.

First we consider that the individuals with censored survival times are dying

immediately after the censoring time,so all censored times are transformed to

event times.These are the ’high-risk’ individuals.

Then we consider the ’low-risk’ individuals, meaning all censored times are re-

placed by the longest survival times.

If no differences are observed by comparing the standar analysis with the other

2 analysis, then we can say that the results are not sensitive in the precense of

informative censoring.

Another method in sensitivity is reffered to as the ’Siannis’ method (see [5] and

[7]) and is presented in the following section.

3.1 Parametric models in sensitivity analysis

In this section we will present parametric models for sensitivity analysis that

are described by Siannis(2004)[5] and Siannis,Copas and Lu (2005)[7] .

Suppose that T and C are random variables that represent the survival and

cencored times respectively.

Then we suppose that xi is the explanatory vector of the i-th individual.

Under the proportional assumption the hazard function of T is hT (t, θ,xi) =

exp(θ′xi)hT0(t) and the hazard function of C is hC(t, γ,xi) = exp(γ′xi)hC0(c),where

θ′xi and γ′xi are the risk score and censoring score respectively.

A plot of the values of the estimated risk score against the values of the esti-

mated censoring score can provide a helpful identification of the existance or

absence of the informative censoring.

The baseline functions hT0(t) and hC0(t) have a specific parametric distribu-

tional form.

Further we define a parameter δ that represents the level of dependence between

the event and cencoring processes.

In order to fit a model that takes into account the informative censoring, we

must first present a previous analysis on this subject.

Also in the following discussion is presented a quantity that is called corellation

bias, which is essentially the effect in the the precense of informative censoring
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and provides the essentials for assessing the goodness of fit of the independent

model(non-informative censoring).

Fitting the model

The ’Siannis’ method considers that

P (C = c|T = t) = fC

(
c, γ + δi

− 1
2

γ B(t, θ)
)
, (3.1)

,where θ and γ are uknown scalar parameters,but in general can be vectors.

Also θ corresponds with the function of T , γ with the function of C, iγ is

the information function that equals to the variance of the usual score function

∂
∂γ log fC(t, γ) and B(t, θ) is the bias function.

The bias function is depending only on the event process of T and is providing

the means to insert T in the (3.1) expression.

The choice of B(t, θ) depends on the researcher.

Finally we mention that when δ = 0 T and C are independent and the censoring

is ignorable.

The joint function of T and C is

fT,C(t, c) = P (T = t)P (C = c|T = t) = fT (t)fC

(
c, γ + δi

− 1
2

γ B(t, θ)
)
. (3.2)

As in (1.4.1) paragraph in order to simplify the process we consider the P (T = t)

as the marginal density of T.

At this point a first order approximation(multivariate aspect) around (c, γ) for

the fC

(
c, γ + δi

− 1
2

γ B(t, θ)
)

in (3.1) gives that

fC

(
c, γ + δi

− 1
2

γ B(t, θ)
)
≈ fC(c, γ) +

(
∇fC(c, γ)

)′
(x− x0) ,

where
(
∇fC(c, γ)

)′
=
(
∂fC(c,γ)

∂c , ∂fC(c,γ)
∂γ

)
,x =

(
c, γ + δi

− 1
2

γ B(t, θ)
)

and x0 =

(c, γ).

As a result the (3.1) expression is almost equal to

fC(c, γ) + (c− c)
∂fC(c, γ)

∂c
+ (γ + δi

− 1
2

γ B(t, θ) − γ)
∂fC(c, γ)

∂γ
.
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This leads to the quantity fC(c, γ) + δi
− 1

2
γ B(t, θ)∂fC(c,γ)

∂γ .

Further we notice that ∂fC(c,γ)
∂γ = fC(c, γ)∂ log fC(c,γ)

∂γ and because UC(c, γ) =

∂ log fC(c,γ)
∂γ is the score function of C, we get the following approach for the (3.1)

formula

fC

(
c, γ + δi

− 1
2

γ B(t, θ)
)
≈ fC(c, γ) + δi

− 1
2

γ B(t, θ)fC(c, γ)UC(c, γ) .

This approximation is used to (3.2) and leads to the following expression

fT,C(t, c) ≈ fT (t, θ)fC(c, γ)
(

1 + δi
− 1

2
γ B(t, θ)UC(c, γ)

)
. (3.3)

An integration over T gives the marginal distribution of C that leads to a natural

constraint of the bias function.

More specifically

fC(c, γ) =

∫ ∞

0

(
fT (t, θ)fC(c, γ)

(
1 + δi

− 1
2

γ B(t, θ)UC(c, γ)
))

dt .

So the marginal distribution of C is

fC(c, γ) = fC(c, γ)

(∫ ∞

0

fT (t, θ)dt+ δi
− 1

2
γ UC(c, γ)

∫ ∞

0

B(t, θ)fT (t, θ)dt

)
.

The first improper integral equals to 1 because fT (t, θ) is the probability density

function of T.

As a result the integral
∫∞
0
B(t, θ)fT (t, θ)dt must be zero ,meaning that the

mean of B(t, θ) must be zero.

Also without loss of generality the variance of B(t, θ) is assumed to be 1.

Now with the same logic as in (1.4.1) section the log-likelihood is

Lδ(θ, γ) =

n∑
i=1

(
Ii logP

(
T = ti, Ii = 1

)
+ (1 − Ii) logP

(
C = ti, Ii = 0

))
,

where ti = min(T,C) and Ii is 1 when an event occurs for the i-th individual

and zero otherwise.
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This expression is combined with the (3.3) approximation and leads to the log

- likelihood in the presence of informative censoring.

More specifically,for instance the probability

P (C = ti, Ii = 0) = P (C = ti, T > ti) =

∫ ∞

ti

P (C = ti, T = u)du ,

and

log
(

1 + δi
− 1

2
γ µ(ti, θ)UC(ti, γ)

)
≈ δi

− 1
2

γ µ(ti, θ)UC(ti, γ) .

Next by straightforward algebra and the usage of (3.3) the log -likelihood

takes the form

Lδ(θ, γ) ≈ L0(θ, γ)+δi
− 1

2
γ

n∑
i=1

(
(1−Ii)µ(ti, θ)UC(ti, γ)−IiB(ti, θ)

∂HC(ti, γ)

∂γ

)
,

(3.4)

where

L0(θ, γ) =

n∑
i=1

(
Ii log hT (ti, θ) + (1 − Ii) log hC(ti, γ) −HT (ti, θ) −HC(ti, γ)

)
,

is the log-likelihood under the independent censoring assumption,

µ(ti, θ) =

∫∞
ti
B(u, θ)fT (u, θ)du

ST (ti, θ)
,

and H ,h represents the usual cumulative hazard and hazard for T and C.

In general δ is taken to be small with values around (−0.3, 0.3) .

The estimates for the location parameters θ and γ can be derived either from the

model with the independent censoring L0 or from the model with informative

censoring Lδ,so for convinience we assumme that the estimations are taken from

the L0 model which is equivelant with the (1.55) formula.
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Correlation bias

By differentiating the (3.4) expression with respect to θ we can take a very

useful quantity ,that is mentioned as correlation bias for θ.

θ̂δ−θ̂0 ≈ δi
− 1

2
γ (ϕ(θ))−1

n∑
i=1

(
(1−Ii)

∂µ(ti, θ)

∂θ
UC(ti, γ)−Ii

∂B(ti, θ)

∂θ

∂HC(ti, γ)

∂γ

)
,

(3.5)

where ϕ(θ)−1 =
(
− ∂2L0(θ,γ)

∂θ2

)−1

≈ V ar(θ̂δ) ≈ V ar(θ̂0) is the observed in-

formation, θ̂δ is the maximum likelihood estimation for the model under the

informative censoring and θ̂0 is the maximum likelihood estimation under the

usual independent model.

More specifically in order to prove the (3.5) expression we take the following

two equations by the definition of the maximum likelihood estimator

∂Lδ
∂θ

∣∣∣
θ̂δ

= 0 and
∂L0

∂θ

∣∣∣
θ̂0

= 0 .

Then a linearization of the derivative of the likelihood at θ̂ around the true

value, θ gives the following equations

∂Lδ
∂θ

∣∣∣
θ

+
∂2Lδ
∂θ2

∣∣∣
θ
(θ̂δ − θ) = 0 ,

and
∂L0

∂θ

∣∣∣
θ

+
∂2L0

∂θ2

∣∣∣
θ
(θ̂0 − θ) = 0 .

At this point by taking the approximation ∂2Lδ

∂θ2

∣∣∣
θ
≈ ∂2L0

∂θ2

∣∣∣
θ

and by considering

that
∂Lδ
∂θ

∣∣∣
θ

+
∂2L0

∂θ2

∣∣∣
θ
(θ̂δ − θ) =

∂L0

∂θ

∣∣∣
θ

+
∂2L0

∂θ2

∣∣∣
θ
(θ̂0 − θ) ,

we take the (3.5) expression.

The same logic can be used to find the corellation bias for γ.

By plotting correlation bias against the values of δ gives two possible outcomes.

In the first scenario the values of bias for given values of δ might be large,so the

independent model is not robust on small changes of δ.

On the other hand if the values of the corellation bias are small for small changes
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of δ , the independent model is robust.

Also δ can be regarded as the maximum possible correlation between the event

and censoring processes,meanining that correlation(T,C) ≤ |δ|.

In general a sensitivity analysis can be performed on any of the parameters θ

and γ or to both of them at the same time ,but we focus only on the first case .

Proportional parametric models

At this point we focus specifically on the proportional assumption.

First we suppose that we have the model in the beginning of section (3.1) for

T and C, but in the most simple case ,meaning that θ and γ are not vectors of

covariates and x(explanatory vector) doen’t exist.

Next we observe that under this proportional model UT (t, θ) = 1 − HT (t, θ)

,UC(c, γ) = 1 −HC(c, γ),iθ = 1,iγ = 1.

Also we consider the choice of B(t, θ) = i
−1/2
θ UT (t, θ) because this form achieves

symmetry in (3.3) expression.

These observations lead to the following formulas, B(t, θ) = 1 − H(t, θ) and

µ(t, θ) = −H(t, θ)

In order to explain these expressions let’s prove the first equation

UT (t, θ) =
∂

∂θ
log fT (t, θ) = 1 −HT (t, θ) .

The other expressions are calculated in a similar manner.

Firstly according to the (1.1) the density function is written as fT (t, θ) =

−∂ST (t,θ)
∂t .

Also from (1.6), ST (t, θ) = exp(−HT (t, θ)) = exp(−eθHT0(t))

The derivative of the survivor function of T with respect to t , is

∂

∂θ
ST (t, θ) = −eθHT0(t) exp(−eθHT0(t)) .

The logarithm of − ∂
∂θST (t, θ) is then θ +H0(t) − eθH0(t).

Thus the derivative of this quantity with respect to θ , is UT (t, θ) = 1 −

HT0(t)eθ = 1 −HT (t, θ).

Now by subtitution of the above formulas to (3.3) and (3.4) expression we get
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the following symmetric forms

fT,C(t, c) ≈ fT (t, θ)fC(c, γ)

(
1 + δ

(
1 −HC(c, γ)

)(
1 −HT (t, θ)

))
,

Lδ(θ, γ) ≈ L0(θ, γ)+δ

n∑
i=1

(
HT (ti, θ)HC(ti, γ)−IiHC(ti, γ)−(1−Ii)HT (ti, θ)

)
,

(3.6)

and the correlation bias for θ is

θ̂δ − θ̂0 ≈ δ(i(θ))−1
n∑
i=1

(
HT (ti, θ)HC(ti, γ) − (1 − Ii)HT (ti, θ)

)
. (3.7)

In order to fit the proportional hazard model for T and C in the beginning

of (3.1),we just consider that the (3.6) log-likelihood involves also explanatory

vectors xi for each individual and the parameters θ and γ are vectors.

Also we mention that inferences about δ cannot be drawn,meaning that a plot

of the likelihood against the values of δ gives a fairly flat curve.

Confidence intervals

In general the correlation bias can be written as

θ̂δ − θ̂0 ≈ δK ,

where K is called sensitivity index and can be calculated from the independent

model.

This form provides an asymptotic confidence interval of θ for small values of δ

with the following form

[θ̂0 − δK − za/2ϕ(θ)−
1
2 , θ̂0 − δK + za/2ϕ(θ)−

1
2 ] ,

where za/2 is the usual upper a/2 quantile for the standar normal distribution

and θ̂0 is the maximul likelihood estimation for θ under the usual independent

model.

In a more general manner we can construct confidence intervals for a function

of interest G(θ).
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More specifically by using a fist order approxiamtion we take

G(θ̂δ) −G(θ̂0) ≈ δKG′(θ̂0) .

As a result a similar confidence interval as the previous one, but for G(θ) has

the following form

[G(θ̂0) − δKG′(θ̂0) − za/2ϕ(θ)−
1
2 , G(θ̂0) − δKG′(θ̂0) + za/2ϕ(θ)−

1
2 ] .

Weibull model

At this point let’s consider the proportional Weibull model(1.4.1) for the two

processes of T and C.

Then the hazards functions have the following forms for the i-th individual

hT (t, θ,xi) = exp(θ′xi)hT0(t) and hC(t, γ,xi) = exp(γ′xi)hC0(t).

Also hT0(t) = λαtα−1 and hC0(t) = λcαct
αc−1 represent the baseline hazards

for T and C respectively.

An approximation to the change in the risk score for the i-th individual(correlation

bias) θ′xi in the presence of a small amount of dependence δ is given by using

(3.7)

W (xi) = δ

∑n
j=1

(
exp(γ̂′xi)t

α̂+α̂c
j − (1 − Ij)t

α̂
j

)
∑n
j=1 t

α̂
j

, (3.8)

where the tj represents the i-th cencored or event time and the Ij the event

indicator.

For a given value of δ a plot for the values of (3.8) against a range for the values

of the estimated risk score can provide information about the sensitivity of the

risk score ,meaning that this plot will indicate the values of the censoring score

that may result to non-negligible dependent censoring impact on the risk score.

The formula (3.8) provides also the means to examine other quantities of inter-

est such as the survivor function or the median .

Under the informative censoring the survivor function of T for the i-th individual
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takes the form

Si(t) = S0(t)exp(θ
′xi+W (xi)) .

This is the (1.41) form,but in this equation we add also the correlation bias in

the risk factor.

Thus for small values of δ we can calculate the estimated values of this equation

and observe the possible changes under the informative censoring.

Moreover the median of the proportional Weibull model for T under the in-

dependent model can be found by the equation(see 1.2.7) ST (t50) = 100−50
100 .

More specifically(see 1.4.1),for the i-th individual we get

ST (t50) = exp
(
− λtα50 exp(θ′xi)

)
=

1

2

As a result the median has the following form

t50 =
( log 2

λ exp(θ′xi)

) 1
α

.

So under the dependent cencoring we add in the risk score the correlation bias

and take

t′50 =
( log 2

λ exp(θ′xi +W (xi))

) 1
α

.

The estimated values of the quantity

t50 − t′50
t50

= 1 − exp
(
− W (xi)

α

)
,

gives the relative reduction of the median for the i-th individual and for some

value of δ.

Also a plot against the censoring scores γ′xi provide the possible changes in the

median for each individual under the precense of the informative censoring.

An example

As it mentioned before, by using an independent model when informative cen-

soring exists is resulting to biases.

So the estimates under the independent model overestimate or underestimate
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the survivor function.

A positive association between C and T, means that an individual with censored

event time is expected to live shorter than those who remain at risk(e.g patients

who experience life -threatening therapy ).

On the other hand negative association, means that the individuals with cen-

sored event times may be those who would otherwise had a longer time before

the occurrence of the event of interest.(e.g after a specific intervention,a patient

is cured and decides that is not necessary to be in the study anymore).

At this point let’s consider a study that interests to determine the mortality

rate for patients registered for a liver transplant.

The data were obtained from the UK Transplant Registry on the time from

registration to death on the list.

The study contains 281 patients with primary biliary cholangitis (often referred

to as primary biliary cirrhosis).

This is a type of a liver disease that can get gradually worse over time and

without treatment, it may eventually lead to liver failure.

The patients were first registered for a liver transplant in the five-year period

from 1 January 2006.

Status variable is unity for a patient who has died while waiting for a transplant

and zero when their time from listing has been censored( the patients who re-

ceive a transplant also have censored times).

Furthermore, BMI is the body mass index of each patient(kg/m2) , UKLED is a

disease score, where bigger values indicate greater need for a transplant.Finally

the gender factor is 1 for males and zero for females.

The table for the first 34 patients is shown in figure (3.1.1). In order to present

a sensitivity analysis first we must find the estimations under the independent

assumption.

The estimations for the parameters of the distribution of T can be found from

(1.55).

Similarly if we focus on the distribution of C,meaning the time to censor-
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Figure 3.1.1: Transplant table

ing(censoring as event and vice versa) , we get that

L(θ) =

n∏
i=1

(
SCi(ti)

δifCi(ti)
1−δi

)
A log-cumulative hazard plot(without prognostic variables) in figure (3.1.2) as

mentioned in (1.4.2) with thr log(-log) Kaplan-Meier against logt gives approx-

imately a straight line As a result the Weibull distribution seems to fit well

with the data and we will use the Weibull proportional model and the following

correlation bias(3.8) from the previous paragraph.

The two extreme values in figures (3.1.2) with logH 10 and -10, in fact are neg-

ative and positive infinity for the values one and zero of the survivor function

respectively.

Estimates for T and C mechanisms under the independened assumption can be

provided by the next 2 outputs using R in figures (3.1.3) and (3.1.4). These

estimations consider the log-linear model(1.59) ,so in order to take the θ’s γ’s

and the baseline parameters we have to reparametrize the estimations for the

prognostic effects as in section (1.5.2).

Moreover the p-values(Wald tests) for gender and BMI in figure (3.1.3) indicate

that may be exluded from the model.In fact the backward algorithm in figure

(3.1.5) suggest exactly that. Despite that fact we keep all the prognostict vari-

ables ,so the model may be overfitted.

The reason for keeping all explanatory variables is that with this example we
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Figure 3.1.2: Log-cumulative hazard plot

Figure 3.1.3: Estimations for the model under T

focus mainly on a sensitivity analysis and not on a full analysis for picking the

’best’ model.

A plot of the estimated risk scores against the estimated censoring scores in

figure (3.1.6) shows that there is a positive corellation between the failure and

cencoring mechanisms. The figure (3.1.6) is an indication of informative cen-

soring and tells us that the patients who are in danger of death,are those with

higher censoring.

In this study censoring times involves the patiens who received a transplant and

as a result the patients who tend to die sooner than others receive the transplant



104 CHAPTER 3. INFORMATIVE CENSORING

Figure 3.1.4: Estimations for the model under C

Figure 3.1.5: Backward algorithm for T

first.

3.2 Semi-parametric model for dependent cen-

soring

In this section we will discuss about a Cox type model that takes into account

the informative cencoring.

First of all let’s consider the Anderson and Gill model(just as an illustration for

the method),as discussed in the paragraph(models with intensity functions),but

also we can consider any kind of Cox type model that is anticipated for usage

(e.g the usual Cox model, the (1.63) model etc).

In order to take into account the dependent censoring under the Anderson and

Gill model we can use some special weights for each individual that we will
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Figure 3.1.6: risk scores vs censoring scores

explain,but first we present the likelihood under this model.

L(β) =

n∏
i=1

∏
t≥0

(
wi(t)Yi(t) exp(β′xi(t))∑n
l=1 wl(t)Yl(t) exp(β′xl(t))

)dNi(t)

. (3.9)

As we see the only extra factor that seperates this likelihood from the Anderson

and Gill likelihood is the weight wi(t) for each individual.

We notice also that the weight is considered as time-varying variable and as

a result it may change over the follow up time period,so the start-stop format

must be used in order to fit the model in a statistical package.

Moreover the weights are calculated from the estimated survivor functions of the

censoring process(event as cencored times and vice-versa) under the independent

assumption and these estimates can be derived from a model of our choice,but

the log-linear Weibull model(1.60) is suggested for general use.

More specifically the survivor function of this model(1.60) for the censoring

process and for the i-th individual is

SCi(t) = exp

(
− exp

(
logt− logµC − ω′

Cxi

)
/σC

)
. (3.10)

Then the weights are calculated as the inverse of (3.10) expression for each in-

dividual.
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This method is called Inverse Probability of Censoring Weighted(IPCW).

The logic behind this idea is explained with an example.

Suppose that an individual has 1/4 probabibility of censoring at or after some

event time t,then on average three other individuals with the same explanatory

variables(identical individuals) will have censored survival times before t.

Consequently if these three individuals had not been censored before time t

,then their contribution to the partial likelihood would be the same as the first

individual.

Thus we give a contibution(weight) 4 to the individual in the start of this con-

versation at time t (event time).

We notice also that greater probabilities of censoring for an individual before

time t,give greater weights and vice-versa.

As a result by using this technique we try to include in the chosen model the

dependance between the survival and censored times.

As an illustration let’s consider the transplant example from previous para-

graph.

By using R in figure(3.2.1) the Weibull model for the censoring mechanism gives

the estimated coefficients to calculate the (3.10) expression Also we provide the

Figure 3.2.1: Weibull model for C

start - stop format for the first 6 patients in figure (3.2.2) in order to expain the

calculations for the weights. The ’k’ column in figure (3.2.2) has elements with

Figure 3.2.2: Star-stop format for the first 6 patients
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1 or 0.The 1 represents an event or censoring and the 0 that the individuals are

still at risk of an event or censoring.

Furthermore we notice that the weights for each individual change when an

event(death) is occured while are still alive.

After the construction of the table we fit the usual Cox model or any model of

our preference according to the start-stop format.

Finally is mentioned that the weights can get quite large values(very large prob-

abilities of censoring before time t).

In this situation it is more efficient to stabilize the weights.

The stabilised weights have the following form

wistab =
Ŝ(t)̂SCi(t) .

The numerator in this expression is the usual Kaplan-Meier estimator of the

survivor function.

These weights are not causing any trouble in expression the (3.9) because the

likelihood doesn’t change and they provide stability to the model.

Another useful thing is to take into account a robust estimate for the variance-

covariance matrix by using the sandwich estimate(Lin and Wei (1989)).

This estimate involves the observed information matrix and the efficient scores

and is written as

I−1(β̂)U ′(β̂)U(β̂)I−1(β̂) .

This quantity is helpful because it corrects the possible overestimation of the

standar errors ,meaning standar errors which are smaller than they should be.
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Chapter 4

Survival methods for

comparison of 2 groups of

data

This chapter presents methods regarding to 2 groups of survival data such

as non-parametric tests for comparing 2 groups ,some parametric and semi-

parametric models and a sensitivity analysis for 2 groups of data.

4.1 Non-parametric tests

4.1.1 Log-rank test

Suppose that 2 groups of data are labelled as group 1 and group 2,also d1j and

d2j denote the number of deaths at tj which is the j-th distinct death among r

such deaths.

Moreover n1j −d1j and n2j −d2j are the individuals who survive beyond tj and

n1j , n2j are the individuals at risk and uncensored just before tj .

Finally dj ,nj are the total deaths and total individuals at risk respectively, at

tj .

The null hypothesis in a log-rank test, states that there is no difference in

109
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the survival experience among the 2 groups.

Under the null hypothesis and the assumption of constant total individuals and

deaths in the study, all quantities can be detemirned by the d1j .

As a result the d1j is considered to have the hypergeometric distribution.

Consider a box with 2 different type of balls ,the green ones represent the deaths

d1j and the red ones the individuals n1j − d1j who survive beyond tj , then pick

1 ball at a time without replacement until the n1j stage.

Furthermore we define k as the number of deaths picked.

The probability that d1j takes the value k is

(
dj
k

)(
nj−dj
n1j−k

)(
nj

n1j

) .

The statistical function L =
∑r
j=1(d1j − µ1j) has zero mean and measures the

deviation of the observed values of deaths from their expected values µ1j in

group 1.

So in order to take a better measure for the deviance between the d1j and µ1j

we have to square this statistic and if we consider a relatively large number of

deaths , we get that L√
V

approaches the standar normal distribution, where V

represents the variance of L.

These facts are resulting to the following statistic T = L2

V .

More specifically the mean of d1j is

µ1j = n1j
dj
nj

,

and the variance of L,because the deaths for each individual are independent is

V = V ar
( r∑
j=1

(d1j − µ1j)
)

=

r∑
i=1

V ar(d1j − µ1j) =

r∑
i=1

V ar(d1j) = ,

n1jdj(nj − dj)n2j
n2j (nj − 1)

.

Large values of this statistic provide evidence against the null hypothesis.

Also under the null hypothesis this statistic follows approximately the chi-

squared distribution with one degree of freedom.
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Other names for this test are reffered to as Mantel-Cox and Peto-Mantel-

Haenszel.

Furthermore if the alternative hypothesis is based on the proportional hazard

assumption ,the log-rank test is recommended for general use.

For example such tests consider that the null hypothesis of no survival differ-

ences is equivalent with the assumption that the hazard ratio(ψ)(1.29) equals

to 1 and the alternative hypothesis may be that the hazard ratio is less than 1

(one sided hypothesis) or different from 1(two sided hypothesis)

Lets consider again the hepatitis example as in (1.5.3) section(it doesn’t matter

the choice of zero’s and one’s or one’s and two’s in order to define the treatment

group traditionally though the first choice is picked).

The figure(4.1.1) shows that the survivor functions of the 2 groups do not cross

,so it is safe to say that the proportional assumption holds. Also from the figure

Figure 4.1.1: Proportional assumption test

(4.1.1) it is clear that the usage of the prednisolone increases the survival for the
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individuals in the study and the p-value for the log-rank test is p=0.031 which

provides a strong evidence against the null hypothesis of no differences in the

groups.

For instance if the significant level is α = 0.05 then p < α.

Moreover the detailed results from the log - rank test are given in figure(4.1.2)

Figure 4.1.2: Log-rank test

As we see the log-rank statistic is 4.66(rounded=4.7) and each group due to

symmetry gives the same value .

4.1.2 Wilcoxon-Breslow test

Another test that examines the difference in survival experience between 2

groups of data is the Wilcoxon test and is recommended for other types of

alternative hypothesis(different from the proportional assumption hypothesis).

The statistic is similar with the log-rank statistic. More specifically the statistic

is
W 2

V ′ ,

where W =
∑r
i=1 nj(d1j − µ1j) and V’ is the variarnce of W and is equal to

V ′ = n2jV ,

where V is the variance from the log-rank test.

Again this statistic follows approximately the chi-squared distribution with 1

degree of freedom.

As we notice,the statistic W weights the differences d1j −µ1j by using the total

number of individuals at risk at time tj and is trying in that way to give less

weight in the longest survival times.

Thus so is less sensitive than the log-rank statistic in the longest survival times.
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4.1.3 Stratified tests

When we consider that a variable such as age,gender,etc ,has an impact on the

survival experience at each group ,it is usefull to calculate the log-rank or the

Wilcoxon statistic at each strata(e.g male,female) and then summarize those

calculations in order to take a more informative assesment about the differences

in survival experiences at each group.

For example a stratified log-rank test uses the statistic

(∑n
i=1 Li

)2

∑n
i=1 Vi

,

where Li and Vi are the statistic as in (4.1.1) and the variance of Li respectively

for the i-th strata.

Again this statistic follows approximately the chi-squared distribution with one

degree of freedom.

As an illustration let’s say that in hepatitis example(1.5.3), we want to ex-

amine if the age affects the survival at each group.

Specifically we consider 2 strata.

The fist one contains the patients below the age of 45 and the other one the

patients above 45.

The first 24 patiens are presented in figure (4.1.3) The log-rank test gives the

Figure 4.1.3: First 24 patients in hepatitis example

following results in figure (4.1.4) We see that the results are similar with the

unajusted one’s in figure (4.1.2),so we didn’t have to use the stratified statistic

and as result the age doesn’t seem to affect the survival of the individuals in



114CHAPTER 4. SURVIVALMETHODS FOR COMPARISONOF 2 GROUPS OF DATA

Figure 4.1.4: Stratified log-rank test

the study.

Moreover a plot in figure (4.1.5) of the survival curves for each strata in every

group shows that each strata in the 2 groups have the proportional hazard as-

sumption(alternative hypothesis).

This plot is usefull ,because combined with the results from log-rank test can

help to identify which treatment is the superior one.

In this case as with the unadjusted log-rank test(4.1.2) , we see that the pred-

nisolone treatment is better.

Figure 4.1.5: Proportional assumption test for the stratified case
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4.2 The Cox model for 2 groups of data

In chapter (1.3) was investigated thoroughly the usual Cox model(1.28).

In this paragraph we will mention an important special case for 2 groups of data

.

Suppose that we want to compare 2 groups of data.

The fist group is called the standar group and involves the patients who receive

the standar treatment and the second group is reffered to as the new group

which involves the patients who receive the new treatment.

As it is mentioned before the Cox model is valid under the proportional assump-

tion and the model takes the form

hN (t) = ψhS(t) ,

where ψ is called hazard ratio and it is positive.

If ψ < 1 then hN (t) < hS(t), meaning that the new treatment is better than

the old one , because the danger of death for an individual is smaller ,otherwise

the old treatment is better if (ψ > 1).

Also if ψ = 1, then the new treatment is the same as the old one(null model)

and then the estimation of the hazard is based on non-parametric methods as

in (1.2.1)-(1.2.7).

Moreover in order to put this model under the family of Cox models ,we use an

indicator function that takes the value 1 if the patient is on the new treatment

and zero otherwise.

Further we substitute ψ we the quantity exp(βxi) where β is a scalar coefficient

and the model takes the form

hi(t) = exp(βxi)h0(t) .

The β coefficient is the treatment effect.

In (1.5.3) section were presented an example (hepatitis example) that use this

model.

A more general model for 2 groups of data is a model that contains treatment

effect and also some other variables such as some demographic variables(e.g
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age,sex etc).

4.3 A parametric model for 2 groups of data

At this point we will mention a special case of the (1.58) model that is used to

compare 2 groups of data.

Such models are valid under the accelerated failure property.

The model in this case is the following one

hN (t) =
1

ψ
hS

( t
ψ

)
.

This model tell us that the danger of death in the new treatment is ψ times the

danger of death in the old treatment and as a result the values of ψ shows how

fast or slow the death will come.

If ψ < 1, then the patients in the new treatment are more likely to die faster

than those in the old treatment and vice-versa when ψ > 1.

The model for the i-th patient in order to fit in the family of the accelarated

model takes the following form

hi(t) = exp(−axi)h0
( t

exp(axi)

)
, (4.1)

where exp(−axi) represents the ψ−1 factor which is reffered to as the accela-

ration factor and xi is the indicator variable that shows the group of the i-th

patient.Also α is a scalar coefficient.

Of course this model can be generalized with more explanatory variables as in

formula (1.58).

Q-Q plot

A plot for assesing the validity of the accelarated failure time model (4.1) can

be provided by a quantile-quantile plot.

The p-th quantile(percentile in this case) for a continuous survivor function is

defined as tp = S−1
(

100−p
100

)
.

So under the accelerated model the survivor functions for each group have the

following relation S2(tp2) = S1

(
tp2
ψ

)
(1.5.1 paragraph) which leads to the fol-
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lowing relation for the quantiles for each group t1p = ψ−1t2p.

This relation suggests that if we plot the estimated quantiles of group1 against

the estimated quantiles of group 2(Kaplan-Meier estimates),then the result

would be an approximate straight line with slope equal to the accelaration fac-

tor ψ−1 and zero intrercept.

At this point let’s use an example to explain this procedure.

In a study that is occured at the university of Oklahoma Health Sciences Center,

data were obtained on the survival times of patients with kidney cancer.

Group 1 involes the patients who hadn’t received a nephrectomy(0) and group2

involves the patients who had received a nephrectomy(1).

Nephrectomy is the surgical removal of kidney.

In figure (4.3.1) are presented the data for the first 10 patients The Kaplan-

Figure 4.3.1: Nephrectomy table,data is used comes from [1]

meier estimates for the survivor functions of each group are presented in figure

(4.3.1)

Figure 4.3.2: Kaplan Meier estimates for each group

Also a table for the 10-th till 90-th percentile is presented in figure (4.3.3)

These percentiles can be taken as the smallest time such as the survivor function

is below 100−p
100 (paragraph (1.2.7)).

Finally a plot of the second column against the third column in figure (4.3.3)
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Figure 4.3.3: Percentile table

shows an approximate straight line,so the accelarated failure time model can be

used.

Figure 4.3.4: QQ plot

Moreover the straight line gives an approximate accelaration factor 0.13 < 1.As

a result the nephrectomy procedure tries to slow done the process of death be-

cause is less than unity.

The adoption of an accelarated weibull model gives the following estimations in

figure(4.3.5)

This output confirms the neccesity of the nephrectomy procedure on patients

and also gives that the accelaration factor is exp(−1.413) ≈ 0.24 which is close

to the estimation of the Q-Q plot.
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Figure 4.3.5: Accelarated estimations

Thus we see that with only one plot we can take valuable assumptions .

Finally we mention that if the end point is not death but recovery from a dis-

ease, then the acceleration factor has an opposite meaning in relation with the

previous analysis on the (4.1) model.

4.4 Sensitivity analysis under informative cen-

soring on 2 groups of data

Suppose that we have 2 groups of data A and B and that we are interested in

a sensitivity analysis according to (3.1) section.

So for the 2 groups of data under the proportional hazard assumption we con-

sider the following 2 models for the T mechanism(event process), that are pre-

sented also in [5].

hA(t) = eθh0(t) = eu
′xA ,

and

hB(t) = ekhA(t) = ek+θh0(t) = eu
′xBh0(t) ,

where θ is the parameter of the failure distribution in group A , k is the hazard

ratio parameter , u = (θ, k)′ , xA = (1, 0)′ and xB = (1, 1)′.

Also h0(t) is the baseline hazard of a known distribution(e.g exponential,weibull

etc).

The main interest is to perform a sensitivity analysis on vector u.

The log - likelihood for each group has the form of the (3.6) expression, but we

take different δ′s in order to allow some flexibility in the levels of dependence

within each group.

Moreover the log - likelihood that we will use to draw inferences about u is the

sum of the log - likelihoods(3.6) for each group(independent log-likelihoods),
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Lδ = LAδ + LBδ .

The observed information now takes the form of a matrix

ϕ(u) = − ∂L0

∂u∂u′
= −

∂2L0

∂θ2
∂2L0

∂k∂θ

∂2L0

∂θ∂k
∂2L0

∂k2

 ,

where L0 = LA0 + LB0 and after some calculations under the models hA(t) and

hB(t) the correlation bias for u is then

ûδ−û0 =
(
ϕ(u)

)−1
(

δA
∑nA

i=1

(
HA

T (ti)H
A
C (ti) − (1 − IAi )HA

T (ti)
)

+ δB
∑nB

i=1

(
HB

T (ti)H
B
C (ti) − (1 − IBi )HB

T (ti)
)

δB
∑nB

i=1

(
HB

T (ti)H
B
C (ti) − (1 − IBi )HB

T (ti)
)

)
,

where

ϕ(u) =

∑nA

i=1H
A
T (ti) +

∑nB

i=1H
B
T (ti)

∑nB

i=1H
B
T (ti)∑nB

i=1H
B
T (ti)

∑nB

i=1H
B
T (ti)

 .

As a result after some calculations the corellation bias for u takes the following

form −δA
∑nA

i=1

(
HA

T (ti)H
A
C (ti)−(1−IAi )HA

T (ti)

)
∑nA

i=1H
A
T (ti)

δA

∑nA
i=1

(
HA

T (ti)H
A
C (ti)−(1−IAi )HA

T (ti)

)
∑nA

i=1H
A
T (ti)

− δB

∑nB
i=1

(
HB

T (ti)H
B
C (ti)−(1−IBi )HB

T (ti)

)
∑nB

i=1H
B
T (ti)

 .

(4.2)

The first row in (4.2) is the bias of θ and the second raw is the bias of k.

Also we notice that the first row equals to the corellation bias of θ for the group

A alone as in the expression (θ̂− θ̂0)(3.7),so the model for group B in the above

analysis does not affect the estimated correlation bias of θ.

The second raw in (4.2) equals to the opposite of the correlation bias of θ for

group A(θ̂− θ̂0) plus the correlation bias of θ+ k, θ̂+ k̂− (θ̂0 + k̂0) considering

the analysis with only group B.

Thus is the correlation bias k̂ − k̂0.

Similar levels of dependence with the same sign ( δA¿0 and δB > 0 or δA < 0

and δB < 0) implies that the bias of the risk parameter k becomes smaller.

On the other hand if δA and δB are opposite then the bias of k becomes larger.

The values of δA and δB represent the maximum correlation between the T and

C mechanisms, so they are naturally restricted to take values between -1 and 1.
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Finally we mention that if a Weibull model is used,each row of (4.2) can be

calculated by using the (3.8) expression and for the special case of an exponen-

tial distribution we take α̂ = 1 and α̂c = 1.

More specifically in the Weibull case let’s say that the basiline hazard(group A)

has the following form for the T mechanism

hT0(t) = λαta−1 .

Also the form for the C mechanism is

hC0(t) = λcαct
ac−1 .

As a result the first row in (4.2) is

θ̂ − θ̂0 = δA

∑n
j=1

(
exp(γ̂)tα̂+α̂c

j − (1 − Ij)t
α̂
j

)
∑n
j=1 t

α̂
j

,

where αc is the shape parameter of the baseline hazard under the cencoring

model and γ is the distribution parameter under the C mechanism for the group

A(first model at the start of this paragraph).

Moreover the second raw has the following form

k̂−k̂0 = −δA

∑n
j=1

(
exp(γ̂)tα̂+α̂c

j − (1 − Ij)t
α̂
j

)
∑n
j=1 t

α̂
j

+δB

∑n
j=1

(
exp(γ̂ + k̂c)t

α̂+α̂c
j − (1 − Ij)t

α̂
j

)
∑n
j=1 t

α̂
j

,

where kc is the relative risk under the censoring model for the group B(second

model at the start of this paragraph).

4.5 Inverse probability weights (IPW)

Again we consider 2 groups of data A and B who represent 2 different treat-

ments.

The focus of our interest is to compare the 2 treatments and on how each treat-

ment affects an outcome of interest.

The ideal study design would be to use a randomized trial , meaning each pa-

tient is randomly assingned to group A or group B.
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This method aims to balance any differences in baseline characteristics so that

any differences in the outcome may be attributed to the treatment.

The randomization though , usually is costly and sometimes impractical or un-

ethical.

On the other hand observational studies are less costly and more practical for

researchers.

However, even with a well-designed observational study, subjects in different

treatment groups are not likely to be comparable with respect to their baseline

characteristics.

For example the group A may has lower percentage of men ,meaning that the

issue of imbalance arise,so our conclusions about the treatment effect may be

misleading due to potential selection bias( is the bias that arises by the selection

of patients for analysis in such way that a proper randomization is not achieved).

Moreover possible confounding variables(a type of external variable which has

correlation with the independent variables and affect the dependent variable(response

variable).

For example hot temperatures can cause people to both eat more ice cream and

spend more time outdoors under the sun, resulting in more sunburns.

In this example temperature is the confounding variable ,ice cream consumption

is the independent variable and sun burn is the outcome.

A common method to face the imbalance is to first consider an appropriate

model for the data (e.g multivariate regression model,Cox model,accelarated-

failure time model etc).

After the choice is considered the model with only the treatment effect a factor

and is observed the significance of the treatment effect.

If the treatment effect is significant then we adjust the other explanatory vari-

ables inside the model and observe if the treatment effect is still significant.

In this case we have a strong evidence to conclude that the treatment effect is

significant.

Another strategy is mentioned in (1.3.7) section,that first picks the appropriate

without considering the treatment effect and then adds the treatment effect into

the model in order to examine the significance of this factor.

In any case the usage of the model which contains only the treatment effect it
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can be generally provide useful results.

However, in studies where sample sizes may be small in relative with the number

of unbalanced variables, this method may not work or may be invalid.

The usage of propensity scores(specific probabilities) can provide an alterna-

tive method of addressing the issue of imbalance.

The propensity score is defined as the probability of an individual being assigned

to one of the two treatments given all information(explanatory variables) ,before

assignment.

Let’s say that the response variable(treatment assingment that takes the values

1 and zero) is the Yi for the i-th individual and Xi is the explanatory vector,

then these probabilities(propensity scores) have the following form

P (Yi = 1|Xi) = pi andP (Yi = 0|Xi) = 1 − pi .

The estimation of the propensity scores is based on the data collected, such

that the patients with similar scores(probabilities) would be the patients with

similar explanatory values.

Thus the patients with similar propensity scores are comparable.

A method that uses the inverse of the propensity scores in order to balance

the expanatory variables , is called inverse probabilty weights (IPW).

We notice that this inverse technique is mentioned for a different purpose in

(3.2) section and we named it as IPCW(see the paragraph below of the (3.10)

formula ).

In this section the idea of (IPW) is to weigh the patients by the inverse of their

propensity scores.

Thus the patients with higher propensity scores(probabilitties) or equivalently

overrepresented patients, will take a lower weight and vice - versa for the un-

derrepresented patients.

The result will be a pseudo sample which contains balanced expanatory vari-

ables among the 2 groups .

For instance let’s consider that group A has 5 males and group B has 10 males

,so the gender variable is unbalanced between the 2 groups and the other pos-
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sible expanatory variables are considered balanced.

The propensity score or probability of group A is 5/15 and the propensity score

or probability of group B is 10/15.

Then the weight of the group A is 15/5=3 and the weight of the group B is

15/10 =3/2.

So the pseudo sample for the A group has 3 ∗ 5 = 15 females and the B group

has 15/10∗10 = 15 females.As a result we end up with a balanced gender factor.

In the general case, where more variables are unbalanced ,the approach is to

use a multivariate logistic regression model with the treatment assingment as

the response variable(binary response) and the other variables (measured be-

fore assingment) as independent variables(balanced and unbalanced variables

are included).

Thus the logistic model will estimate the propensity scores P (Yi = 1|Xi) = pi ,

P (Yi = 0|Xi) = 1 − pi and then we will take the inverse of these probabilities

and use them as weigths in the chosen model.

The original (IPW) method often artificially increase the total sample size as in

the previous example.

Also small propensity scores provide huge weights and this fact may lead to an

increase in the variances of the estimated coefficients.

A solution to this problem is to stabilize the weights.

The stabilized weights are defined as π
pi

for Yi = 1 and 1−π
1−pi for Yi = 0 , where

π is the probability of treatment without considering covariates.

Moreover as it is mentioned in (3.2) section(last paragraph) we may consider

also a robust estimate for the coefficients.

For example if 30 out of total 50 individuals are in the treatment group then

π = 0.6 and is the same for all 30 individuals regardless of their baseline char-

acteristics.

After the stabilization, the weights are used to fit the model of interest.(e.g

weighted Cox regression model, weighted logistic regression model, weighted

linear regression model etc).



Chapter 5

Relative survival

The relative survival concept was introduced by Berkson(1942),although the

term was first introduced in [16].

Berkson proposed the relative survival suvival ratio (all cause survival of the

patients divided by all-cause survival that would be expected in the absence

of the specific disease under study), as an estimator for the net survival(the

survival probability in a hypothetical world where patients could only die of the

specific disease).

In general the relative survival field involves 2 data sets ,the observed data on

patients and the general population mortality data of a country or a region.

We observe the patients in a period of time and the interest focuses on a specific

disease.

In the presence of the specific disease of interest a patient may also die from

other causes.

The relative survival field is based on the assumption that the hazard function

and all the other functions of interest that involve deaths from other causes, are

represented by the population data set which can be obtained from the general-

population mortality tables.

One of the main goals in relative survival field is to compare the disease of

interest for different populations (e.g populations of different countries).

This can be done by computing the net survival ,which is defined as the hy-

125
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pothetical survival probability that takes into account only the deaths from

the disease of interest and thus is independent from the general population

trends,because is assumed that the disease of interest is rare and by removing it

from the population life tables has negligible effect on the hazard of the general

population data set.

Moreover the main difference from a usual competing risks approach(Kaplan-

Meier approach (2.1.1)), is that the relative survival field, as we will see in

the following text, provide estimators for the net survival, that don’t need the

knowledge of the causes of death.

Finally an important assumption is that given a known set of covariates the

time to death due to the disease of interest and the time to death due to other

causes are conditionally independent.

As a result the hazard due to other causes( general population hazard) and

the excess hazard(hazard for the disease of interest) gives the following expres-

sion(see also [12])

observed hazard = excess hazard + population hazard . (5.1)

We notice from this formula that the population hazard is smaller than the

observed hazard.

At this point we define for the i-th individual the time to death due to the

disease of interest TEi
,also TPi

is the time to death due to other causes(general

population) and Ti = min(TEi , TPi), where ,i = 1 . . . n is the observed time(the

occurance of one cause of death precludes the other causes).

Furthermore we assume independent and identical cencored times Ci and also

we define the follow up time Fi = min(Ti, Ci) ,i = 1 . . . n and the usual event

indicator δi.

The i-th individual in the observed data set has a vector Xi of covariates ,

Di represents the vector of the demographic variables(sex,age etc) from the

general population mortality tables and is considered as a subset of Xi,i =

1 . . . n.Usually we take Xi = Di.

So we assume that the i-th individual in the general population set has identical

demographic variables with the i-th individual in the study.
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Moreover the survival fuctions SEi
(t) = P (TEi > t|Xi) , SPi

(t) = P (TPi > t|Di)

and SOi(t) = P (TOi > t|Xi) are the excess, population and observed survival

respectively for the i-th individual, i = 1, . . . , n.

Finally we mention that the observed data(deaths for all causes) for the i-th

patient ,i = 1, . . . n, is defined by the (Fi, δi, Xi).

Relative survival ratio

Suppose that SO(t) is defined as the total observed survival function of the pa-

tients in study and SP (t) is the total population survival function ,SP (t) is also

reffered to as the expected survival function.

The population function SP (t) can be found from the general population tables

of the individuals who have the same demographic characteristics as the indi-

viduals in the study group ,but are free of the specific disease under study.

The relative survival ratio SR(t) is defined as(see also [12] )

SR(t) =
SO(t)

SP (t)
. (5.2)

This is a measure that compares the observed survival to the survival of the

disease-free group, who have the same demographic characteristics as the study

group.

If SR(t) < 1 then the mortality of the patient group, exceeds the mortality of the

general population group (free of the specific disease under study),so a patient

in the study group live less than a similar-identical person (same demographic

variables) without the disease.

Of course if SR(t) = 1 then the mortality of the 2 groups is the same.

The maintenance of the relative survival ratio to 1 over a reasonable number of

years in the follow - up period,indicates that some ratio of patients in the study

escape from the specific disease.

Thus the general population group can be regarded as a control group(see also

[16]).
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Net survival

Net survival is defined as the survival due to the excess hazard alone ,meaning

that is defined as the survival probability in a hypothetical world where patients

can only die of cancer

Net survival has the following form(see also [12] and [19])

SE(t) ≈ 1

n

n∑
i=1

SEi(t) =
1

n

n∑
i=1

exp
(
−
∫ t

0

hEi(u)du
)

=
1

n

n∑
i=1

SOi(t)

SPi(t)
, (5.3)

where the first approximation is the definition of the net survival and it can be

seen as an estimation of the theoretical probability of death due the cause of

interest in the hypothetical world,where only one cause of death exists.

The second equality is derived from the (1.6) formula and the last equality it

comes from the assumption, that the events of the i-th patient, {TEi > t|Xi} and

{TPi > t|Di} are independent and also Xi = Di,meaning that the individuals

in the study are fully determined by the demographic covariates.

As a result, because the event {TOi > t|Xi} is written as

{TOi > t|Xi} = {TEi>t|Xi, TPi>t|Di} ,

we get that SOi(t) = SEi(t)SPi(t).

Moreover from the equation (1.6)

SE(t) = exp
(
−
∫ t

0

hE(u)du
)
,

where hE(t) is the usual hazard of the cause of interest(1.2).

The net survival is a key measure in the relative survival field, since it is the only

quantity independent of the population mortality and thus directly comparable.

The relative survival ratio has the advantage of a clear interpretation in the

real world ,but it is usually less desirable than net survival due to its strong

dependence on the population mortality trends.

On the other hand the fact that net survival is not a real world measure must

be kept in mind at all times.

As it is mentioned in the beginning of this section one of the main goals in

the relative survival field is to compare a disease of interest between 2 different
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populations through the net survival , thus in the following text we will present

estimations for the net survival.

Observable net survival

As it is pointed out in [12], in practice the net survival is not observable when

at least 2 causes of death are involved.

For this reason we focus on the estimation of the observable net survival(it is

also reffered to as net survival) which is defined as

S∗
E(t) = exp

(
−
∫ t

0

h∗E(u)du
)
, (5.4)

where h∗E(u) is the cause specific hazard of the cause of interest in (2.1) formula.

We notice that is involved the cause specific framework ,but in the relative

survival field we will estimate the cause specific survival, in the presence of the

assumption of the conditional indepentent events {TEi>t|Xi} and {TPi>t|Di}

with Xi = Di, hE(t) = h∗E(t) and thus under this assumption, the observable

net survival and net survival, give the same quantity.

Of course this assumption may not hold,but in any case the estimations for the

net survival,can also be regarded as estimations for the net survival,with a small

or huge bias according to each case.

Finally we mention, that a method in order to estimate the observed net survival

is the Kaplan-Meier approach in (2.1.1).

5.1 Non-parametric estimators for the net sur-

vival

Non-parametric estimations of the net survival (5.3) can be taken by estimating

the relative survival ratio(5.2) with different approaches.

Thus we will present all current estimators of the relative survival ratio(5.2)

,Ederer I,Ederer II,Hakulinen.

Also we will present the newest suggested estimator of the net survival which is

called Pohar-Perme estimator[12].

The main difference of the first 3 estimators, is that the estimator of the overall



130 CHAPTER 5. RELATIVE SURVIVAL

population survival in the denominator of (5.2), SP (t) ,has a different form.

These estimations have the following general form

S′
R(t) =

ŜO(t)

ŜP (t)
,

where ŜO(t) is a usual non-parametric estimator of the observed data(e.g (1.11)

or (1.15) or (1.17)) and the denominator ŜP (t) determines each of these 3 esti-

mators.

Ederer I estimator

Originally Ederer I estimator proposed in [13] in order to estimate the population

survival SP (t) and is defined as

ŜP (t) =
1

n

n∑
i=1

SPi
(t) ,

where i denotes the i-th person in the disease free group from the general pop-

ulation who has the same demographic variables as the patient i in the study

group.

We notice that this estimation of the population survival does not take into

account the time at which a patient dies or is censored and thus the patients

are considered to be at risk indefinitely.

Ederer II estimator

The Ederer II estimator originally was proposed in [14] in order to estimate the

population survival of a group of patients at time t and is defined as

S̃P (t) =

∑n
i=1 Yi(t)SPi(t)∑n

i=1 Yi(t)
, (5.5)

where Yi(t) is the at risk indicator for the i-th patient, as defined in (2.2),but we

remind to the reader that this variable takes the value 1,if an event or censoring

is occured after time t and also takes the value 0 otherwise.

Thus the Ederer II estimator takes into account the times of patients until an

event or cencoring was occured and provides a better estimation of the net
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survival.

In fact the ederer II estimator,estimates the observed net survival(for further

details see [12]).

Pohar-Perme estimator

According to the (5.1) formula and the competing risks framework(2.1)(see also

[12]) we can take that

hO(t) = h∗E(t) + h∗P (t) ,

where h∗E(t) = limh→ 0
P (t≤TE≤t+h|T≥t)

h and h∗P (t) = limh→ 0
P (t≤TP≤t+h|T≥t)

h

are the cause-specific hazards for E and P respectively.

From this equation it follows that

H∗
E(t) = HO(t) −H∗

P (t) ,

where H∗
E and H∗

P (t) are the cause-specific cumulative hazards(2.1.1).

From this equation Andersen and Vaeth (1989) in [15], take a natural estimation

for the cumulative excess hazard of the Ederer II estimator that has the following

form

H̃∗
E(t) =

∫ t

0

d
(∑n

i=1Ni(u)
)

∑n
i=1 Yi(u)

−
∫ t

0

∑n
i=1 Yi(u)dHPi(u)∑n

i=1 Yi(u)
, (5.6)

where Yi(t) = I(Ti ≥ t, Ci ≥ t and dNi(t) = I(Ti ≤ t, Ci ≤ t).

The dNi(t) records the observed event or censoring for the i-th individual before

or at time t and equals to 1 if and only if the i-th individual experience an event

or censoring before or at t.

Therefore for n individuals the sum Y ∗(t) =
∑n
i=1 Yi(t) is the number of indi-

viduals alive and uncensored just before t and the sum dN∗(t) =
∑n
i=1 dNi(t)

record the number of events(e.g deaths) and censoring before or at time t.

This notation provides a different form of what we called Nelson-Aalen estima-

tor in (1.14).

Indeed we can define the estimation of the cumulative hazard H(t),as dĤ(t) =

ĥ(t)dt, where dĤ(t) = dN∗(t)
Y ∗(t) (this can be derived via the maximum likelihood

method ,for further details see [2]).

Also by using the Riemann-Stieltjes integral (1.8) we take the alternative form
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of the Nelson-Aalen estimator Ĥ(t) =
∫ t
0
dĤ(u) =

∫ t
0
dN∗(u)
Y ∗(u) ,which is exactly

the first term on the right hand side of (5.6).

At this point in order to eliminate tha bias present in the risk set {Yi(t), i =

1, . . . n},Pohar-Perme(2012) in [12] used a weighted version of the (5.6) formula.

More specifically the idea is to divide Yi(t) and Ni(t) with the SPi(t) for the

i-th individual, i = 1 . . . n.

With this way each Yi(t) and Ni(t) take increased values for smaller SPi(t).

As a result the Pohar-Perme estimator for the net survival is defined through

the followng cumulative excess hazard

H̃
′
E(t) =

∫ t

0

d
(∑n

i=1N
′
i(u)

)
∑n
i=1 Y

′
i (u)

−
∫ t

0

∑n
i=1 Y

′
i (u)dHPi(u)∑N
i=1 Y

′
i (u)

,

where Y ′
i (u) = Yi(u)

SPi(u)
and N ′

i(u) = Ni(u)
SPi(u)

for the i-th individual.

Also in [12] is pointed out that this estimator can’t be expressed as the relative

survival ratio ŜO(t)

ŜP (t)
that is mentioned in the beginning of (5.1) section.

Finally in [12] it is also proved that the Pohar-Perme(PP) estimator is a con-

sistent estimator for the net survival and is the current recommended non-

parametric estimator for the net survival.

5.1.1 Estimations under informative sencoring

As it is noticed in chapter 3 there is always the possibility for informative cen-

coring in the study.

The above estimators provide biases in the presence of informative censoring,so

a solution to these situations must be provided.

Hakulinen estimator

The Hakulinen estimator was proposed in [21] in order to take into account the

presence of the informative censoring.

Under the informative cencoring, ŜO(t)(e.g Kaplan-Meier) in the numerator

provide biases in the estimation of the net survival through the relative survival

S′
R(t) = ŜO(t)

ŜP (t)
.
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Thus the estimator proposed by Hakulinen, is trying to put a similar bias in the

denominator.

This can be done by considering the following estimation for the population

survival

S′
P (t) =

∑n
i=1 Ci(t)SPi(t)∑n

i=1 Ci(t)
, (5.7)

where Ci(t) takes the values 1 and 0.

More specifically for the i-th individual Ci(t) = 1 if t is less or equal to the

potential follow-up time and takes the value 0 otherwise .

The potential follow up time for a patient is considered as the period time of

diagnosis till the last observed time(usually the end of the study).

In other words when an interim censoring or an event is occured(end of the

potential follow up time) ,the matched individual in the population group ,also

experience censoring or death and no longer contributes in the estimation(5.7).

The Hakulinen estimator was originally desinged for cancer registry data in

which usually the patients remain in study until the end and thus only adminis-

trative censoring may occur,but in other studies cencoring may happen during

the study.

Also as it is mentioned in [8] the Hakulinen estimator does not perform well

under non-informative censoring and may be considered to be used only in the

presence of informative censoring.

Further in [8] is given an example, where the data set includes a group of older

patients and a group of younger patients in a period of 20 years with the same

size.

The half of the younger patients was diagnosed in the beginning of the study

and the other half after 10 years,but all the older patients was diagnosed in

beginning of the study.

In this example the informative censoring arise.

Of course the Kaplan-Meier estimation in the numerator of the S′
R(t) underes-

timates the actual survival of the observed data,because of the inbalance in the

first 10 years(more old people) and the denominator which is the population

survival, also underestimates the actual survival in the population.

As a result the biases are similar and the Hakulinen estimator provide a good

estimation for the net survival.
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Finally it is mentioned that if the potential follow up period is infinite for each

individual,then Ci(t) = 1 for each i individual and the Hakulinen estimator

coincide with the Ederer I estimator.

Weighted estimations

In [8] was proposed a solution in the presence of informative censoring for

the Ederer I and PP estimator through the inverse probabilty of censoring

weighted((3.2) section under the (3.10) expression).

First let’s consider the Ederer I case.

From the (5.1) expression under the assumption that the events {TEi>t|Xi} and

{TPi>t|Di} with Xi = Di are independet , we take that

hO(t) = hE(t) + hP (t) ,

where h denotes the usual hazard in (1.2).

The population survival can be estimated as the average of the population

survival for each i individual(Ederer I estimator).

Thus the derivative of t of the expression

ŜP (t) =
1

n

n∑
i=1

SPi
(t) ,

by using (1.1) leads to the following formula for the density function of P

f̂P (t) =
1

n

n∑
i=1

fPi
(t) ,

but by using the (1.3) expression we get that

ĥP (t) =

∑n
i=1 SPi

(t)hPi
(t)∑n

i=1 SPi
(t)

.

Moreover , the corresponding cumulative hazard relation for O,P and E is given

by the following equation

HO(t) = HE(t) +HP (t) ,
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As a result the corresponding Ederer I cumulative hazard estimation , ĤE(t) is

given by the following equation

ĤE(t) =

∫ t

0

d
(∑N

i=1Ni(u)
)

∑N
i=1 Yi(u)

−
∫ t

0

∑N
i=1 SPi(u)dHPi(u)∑n

i=1 SPi(u)
. (5.8)

The first integral in (5.8) as it was mentioned before in this chapter,that is the

Nelson-Aalen estimator of the observed cumulative hazard.

In the presence of informative censoring the Nelson-Aalen estimator is affected,but

on the other hand the population survival version of the Ederer I estimator is

not affected,thus the (ICPW) gives the following form in the the Nelson-Aalen

estimator in the (5.8) formula

∫ t

0

d
(∑n

i=1
Ni(u)
SCi(u)

)
∑n
i=1

Yi(u)
SCi(u)

, (5.9)

where SCi(u) is the survivor function for the i-th patient under the independent

censoring model (3.10).

Lastly we mention that the informative censoring version of the (PP) estimator

is given by the following formula (for further details see [8])

H̃
′
E(t) =

∫ t

0

d
(∑n

i=1
Ni(u)

SPi(u)SCi(u)

)
∑n
i=1

Yi(u)
SPi(u)SCi(u)

−
∫ t

0

∑n
i=1

Yi(u)
SPi(u)SCi(u)

dHPi(u)∑n
i=1

Yi(u)
SPi(u)SCi(u)

.

5.2 Parametric models for estimating the net

survival

In this section is presented a parametric model(see also [19]) that estimates the

net survival.

First we take into account the (5.1) expression and we consider that the excess

hazard has the following form

hE(t) = exp(β′x) ,
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where β is the coefficient vector and x is the expanatory vector.

Then according to (5.1) we get the following model

hO(t) = hP (t) + exp(β′x) . (5.10)

Of course the log-likelihood for the observed survival of this model by using

(1.55) is

log(L(β)) =

n∑
i=1

(δi log(hOi(ti)) + log(SOi(ti))) .

Moreover by using the formula (1.6) gives the following result

log(L(β)) =

n∑
i=1

(
δi log

(
hPi(ti) + exp(β′xi)

))
−

n∑
i=1

∫ ti

0

hPi(u)du−
n∑
i=1

tiβ
′xi .

The xi vector for each i = 1 . . . n individual may depend on time.

In general , we split the follow up time into bands.

In each band it is assumed that the hazard is constant which implies that the

number of deaths in each band-interval, follows the poisson distribution with

mean µj = λjyj ,where yj is the length of each interval and λj the rate of death

in the j-th interval.

In this case according the model (5.10) has the following form

µj
yj

=
d′j
yj

+ exp(β′x) ,

where d′j is the expected number of deaths from general population mortality

table.

By taking logarithms we get a poisson general linear model(GLM) with a link

that is not the usual.

More specifically the model has the following form

log(µj − d′j) = log(yj) + β′x ,

where the link is log(µj − d′j) and the offset log(yj).

For more details and examples the reader can see [19].



Chapter 6

Simulation

In this chapter we will present 3 simulated examples regarding the possible pres-

ence of the informative censoring in our sample.

The first example associates with 1 sample , is examined according to chapter 3

and it aims to explain the calculation of the correlation bias under the presence

of one explanatory variable(not a proper simulation).

The logic here is that someone gave us the data.

In the second example we calculate the bias by generating a certain amount of

censoring each time for dependent T and C mechanisms(informative censorng)

in order to obsevre if there is any serious difference by ignoring the informative

presence.

Finally in the last example we examine the case of 2 groups of data with possible

informative censoring seperately and then together(4.4) in order to see if the

possible bias of the treatment effect can be ignorable.

So for the first example we consider one group of 100 patients with survival

times from the exponential distribution with rate 1.

Next we take the indicator variable for each patient from the bernouli distribu-

tion with 1/2 probability of event and we also consider the age as the explanatory

variable from the uniform distribution in the interval (30,60).

In order to be able to find the correlation bias of theta in the (3.8) expression

and in general to calculate the survivor function under the possible informative

137
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censoring , as discussed before we have to estimate the coefficient of the age

parameter under the censoring mechanism(see also the (3.2) section and the

(3.10) expression).

The figure (6.0.1) gives exactly that. More specifically this is an estimation

under the log-linear model (1.59) that gives α = 0.007.

So βage = −0.007(relations under the (1.61) expression). So the expression (3.8)

Figure 6.0.1: Estimation under the censoring mechanism

for the i-th patient is written as

W (agei) = δ

∑n
j=1

(
exp(βageagei)t

2
j − (1 − Ij)tj

)
∑n
j=1 tj

(6.1)

The table with the data for the first 6 patients is given in figure (6.0.2). Biases

Figure 6.0.2: Table,example 1

for δ = 0.2 are given in figure (6.0.3) and as we notice they are quite large

,so we get a first glance that even for small correlation between the censoring

and failure mechanisms we cannot take the independent model as a choice to

fit the data. Moreover , it is useful to calculate the censoring scores βageagei

Figure 6.0.3: Correlation biases for each patient

and the risk scores β∗
ageagei for each i individual in the study ,where β∗

age is the

estimation of the coefficient of age under the event-failure mechanism.

The figure (6.0.4) provides this estimation. So β∗
age = −0.005.

The risk scores and censoring scores are provided in figures (6.0.5) and (6.0.6).
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Figure 6.0.4: Estimation under the T mechanism

Figure 6.0.5: Censoring scores

By rounding to 2 decimal points these scores , we get the following plot in figure

Figure 6.0.6: Risk scores

(6.0.7) which indicates negative correlation among the 2 mechanisms , meaning

larger risk scores corresponding to smaller censoring scores ,so the patients who

tend to live longer are censored. At this point let’s also test ,something that we

already know ,meaning that the exponential choice fits well with the data.

In order to do that we use the log-cumulative hazard plot in (1.57) equation.The

plot is in the figure (6.0.8). Finally , we end this example by showing in fig-

ure (6.0.9) the difference among the survivor functions under the independent

and informative censoring respectively for the first patient with age=52 and

delta=0.01

The survivor function under the informative censoring is calculated from the

equation under the (3.8) expression and even a very small correlation(0.01) is

resulting to non-negligible informative censoring.

Now for the second example we consider 1000 simulations of 100 patients and

the failure mechanism T follows the exponential distribution with known λ.

We want to produce k percent of censoring under the assumption of dependence

between the T and C mechanisms.

The censored random variable C is also considered following the exponential

distribution with parameter µ but we have to find the specific parameter of the
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Figure 6.0.7: Risk scores vs Censoring scores

censoring distribution in order to achieve the amount of k percent censoring.

That leads to the calculation of the probability P (C < T ).

This probability can be calculated with two ways.

The first one is the usual

P (C < T ) =

∫ ∞

0

∫ t

0

fT,C(t, c)dcdt ,

and the second way is based on the generalized law of total probability(continuous

case)

P (C < T ) =

∫ ∞

0

P (C < T |T = t)fT (t)dt ,

For example if we assume that T and C are independent (non-informative cen-

soring) ,

P (C < T |T = t) = P (C < t|T = t) = P (C < t) = 1 − exp(−µt) .

So we substitute this together with the density fT (t) = λexp(−λt) with the

second way and after some calculations we conclude that P (C < T ) = µ
µ+λ .

Further we set this probability equal to the desired amount of censoring k and

we get the relation µ = λk
1−k .

Now for T and C dependent exponential random variables(informative censor-
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Figure 6.0.8: Risk scores vs Censoring scores

ing) we will use the expression

P (C < T ) =

∫ ∞

0

∫ t

0

fT,C(t, c)dcdt ,

in order to find the appropriate event indicator under k percent of censoring

when λ and δ are known.

Further we will examine if the informative censoring is negligible.

So in order to calculate this probability we will use the joint density of T and

C (3.3).

As we discussed in chapter 3 we choose B(t, λ) = i
−1/2
λ UT (t, λ).

Further we calculate the quantities ,i
−1/2
λ = V ar(UT (t, λ))−1/2 and UT (t, λ) =

∂
∂λ log fT (t, λ).

So we get UT (t, λ) = (log λ− λt)′ = 1/λ− t.

As a result V ar(UT (t, λ) = V ar(1/λ− T ) = 1/λ2 and the joint density (3.3) is

written as

fT,C(t, c) = λexp(−λt)µexp(−µc)
(

1 + δ(1 − λt)(1 − µt)
)
.
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Figure 6.0.9: Dependent(red) vs independent censoring

By using this form to calculate the double integral we take after some calcula-

tions that

P (C < T ) = 1 − λ

λ+ µ
+

λδµ

(µ+ λ)2
− 2λ2µδ

(µ+ λ)3
= k .

This leads to the following polynomial equation

(1−k)µ3+
(

3(1−k)λ−λ+δλ
)
µ2+

(
3(1−k)λ2−2λ2−λ2δ

)
µ+(1−k)λ3−λ3 = 0.

For δ = −0.2 , k=0.3,0.4,0.5,0.6 and λ = 1 we get a similar bias(for lambda)

around 1 ,which tell us that we cannot ignore the presence of the informative

censoring even with small portion of censoring.

In the third example we consider 2 groups of data , TA has the exp(λ) ,TB

has the exp(2λ) ,CA has the exp(µ) and CB has the exp(2µ).

In this way the patients in group B tend to die and leave from the study due to

uknown reasons faster ,so the uknown reasons might be that they experience a

life threatening therapy.

For δ = −0.2 ,λ = 1 and k = 0.5 gives the results in figure (6.0.10). So although

that the biases of A and B alone are big , the bias of the treatment effect is

quite small and it may not cause trouble if we estimate the treatment effect
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Figure 6.0.10: Biases of lambda for A,B ,of mu for A,B and for the treatment
with that order

under the independent version.

We remind that according to (4.4) the bias of treatment is the bias of B minus

the bias of A alone(for the λ) .

Also other values were tested and the results were quite similar .
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R code

#c h r o n i c a c t i v e h e p a t i t i s

# f i r s t g r o u p

l ibrary ( s u r v i v a l )

l ibrary (muhaz)#p a c k a g e f o r non p a r a m e t r i c h a z a r d s

data1=c (2 ,6 ,12 ,54 ,56 ,68 ,89 ,96 ,96 ,125 ,128 ,131 ,140 ,141 ,143 ,145 ,146 ,148 ,162 ,168 ,173 ,181)

de l ta1=c (1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 )

group1KM=su r v f i t ( Surv ( data1 , de l ta1 ) ˜ 1 , conf . type=” log−l og ” )

summary(group1KM )

plot (group1KM)

group1NA=su r v f i t ( Surv ( data1 , de l ta1 )˜1 , conf . type=” log−l og ” , type=’ fh ’ )

summary( group1NA)

plot ( group1NA)

hazgroup1=muhaz( data1 , delta1 ,max . time = 181)

hazgroup1smooth1=muhaz( data1 , delta1 ,max . time = 181 ,bw . grid=50,bw. method = ’ g l oba l ’ ,b . cor=’ none ’ )

hazgroup1smooth=muhaz( data1 , delta1 ,max . time = 181 ,bw . grid=100 ,bw . method = ’ g l oba l ’ ,b . cor=’ none ’ )

# l a r g e r b ’ s g i v e g r e a t e r s m o o t h i n g s K e r n e l w i t h o u t t h e s q u a r e

plot ( hazgroup1smooth )

plot (group1KM)

par (new=TRUE)

plot ( group1NA , xaxt=’n ’ , yaxt=’n ’ , col=’ green ’ , xlab=’ time ’ , ylab=’ su rv ivo r ’ )

# f i g u r e 1 . 2 . 8

plot ( hazgroup1 , col=’ blue ’ )

par (new=TRUE)

plot ( hazgroup1smooth1 , xaxt=’n ’ , yaxt=’n ’ , col=’ green ’ )

par (new=TRUE)

plot ( hazgroup1smooth , xaxt=’n ’ , yaxt=’n ’ , col=’ red ’ )

##############################

#b l a c k d u c k s

blackducks=read . table ( ’C: /Users/ s t e l i /Desktop/Surv iva l o f black ducks . dat ’ , sk ip=1)

time=blackducks [ [ 2 ] ]

status=blackducks [ [ 3 ] ]

age=blackducks [ [ 4 ] ]

weight=blackducks [ [ 5 ] ]

length=blackducks [ [ 6 ] ]

l ibrary ( s u r v i v a l )

Surv ( time , status )

cox1=coxph ( Surv ( time , status )˜age+weight+length )

coxc=coxph ( Surv ( time , status )˜age+weight+length , t i e s=’ exact ’ )#same r e s u l t

summary( cox1 )

anova ( cox1 ) #w e i g h t h a s s m a l l c o n t r i b u t e

coxw=coxph ( Surv ( time , status )˜weight )#o n l y w i t h w e i g h t

summary( coxw)

anova ( coxw)

cumhaz=basehaz ( cox1 , centered=FALSE)

cumhaz [ c (1 ,2) ]= cumhaz [ c ( 2 , 1 ) ]

145
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plot ( cumhaz , type=’ s ’ , xlab=’ time ’ , ylab=’ ba s e l i n e cumulative hazard ’ )

basesurv=matrix (0 , ncol=2,nrow=length ( cumhaz [ , 1 ] ) )

basesurv [ ,2 ]=exp(−as . matrix ( cumhaz [ , 2 ] ) )

basesurv [ ,1 ]= cumhaz [ , 1 ]

plot ( basesurv , type=’ s ’ , xlab=’ time ’ , ylab=’ ba s e l i n e s u r v i v i o r funct i on ’ )

indv=matrix ( c ( blackducks [ [ 4 ] ] , b lackducks [ [ 5 ] ] , blackducks [ [ 6 ] ] ) , ncol =3)

r i s k s c o r e=NULL

for ( i in 1 : length ( indv [ , 1 ] ) ) {

r i s k s c o r e [ i ]=exp ( indv [ i , ]%∗%matrix ( as . vector ( cox1$ coe f f i c i ents ) , ncol=1))}

surv=array (0 ,dim=c ( length ( cumhaz [ , 1 ] ) , 2 , length ( r i s k s c o r e ) ) )

for ( i in 1 : length ( r i s k s c o r e )){

surv [ , 2 , i ]= basesurv [ , 2 ] ˆ r i s k s c o r e [ i ]

surv [ , 1 , i ]= basesurv [ , 1 ]}

#r i s k a d j u s t e d me t hod

su rv ivo rad ju s t ed=matrix (0 ,nrow=length ( cumhaz [ , 1 ] ) , ncol=2)

surv ivo rad ju s t ed [ ,2 ]= apply ( surv [ , 2 , ] , c (1 ) ,mean)

su rv ivo rad ju s t ed [ ,1 ]= cumhaz [ , 1 ]

plot ( surv ivorad jus ted , type=’ s ’ , xlab=’ time ’ , ylab=’ adjusted surv ivo r ’ )

#Kap lan−Me i e r ( u n a d j a s t e d s u r v i v o r )

Surv ( time , status )

KM=su r v f i t ( Surv ( time , status )˜1 , conf . type=’ log−l og ’ )

summary(KM)

plot (KM, col=’ red ’ )

par (new=TRUE)

plot ( surv ivorad jus ted , type=’ s ’ , xlab=’ time ’ , ylab=’ adjusted−unadjusted surv ivo r ’ ,

xaxt=’n ’ , yaxt=’n ’ , col=’ green ’ )

#THIS GIVES HUGE DIFFERENCE

############################################################################################

#a c t u a r i a l e s t i m a t o r e x amp l e

i n t e r v a l=c (1 , 2 , 3 , 4 , 5 )

t imeper iod=c (0 ,11 ,22 ,33 ,44 ,55)

d j=c (7 , 6 , 4 , 2 , 3 )

c j=c (1 , 4 , 0 , 1 , 2 )

n j=c (30 ,22 ,12 ,8 ,5 )

n jnew=n j−c j/2

prob=(n jnew−d j )/n jnew

a c t u a r i a l=NULL

ac t u a r i a l [1 ]=1

a c t u a r i a l [2 ]= prob [ 1 ]

a c t u a r i a l [3 ]= prob [ 1 ] ∗prob [ 2 ]

a c t u a r i a l [4 ]= prob [ 1 ] ∗prob [ 2 ] ∗prob [ 3 ]

a c t u a r i a l [5 ]= prob [ 1 ] ∗prob [ 2 ] ∗prob [ 3 ] ∗prob [ 4 ]

a c t u a r i a l [6 ]=0

a c tua r i a l e s t ima t o r=a c t u a r i a l [ −6]

data . frame ( i n t e rva l , t imeperiod , d j , c j , n jnew , prob , a c tua r i a l e s t ima t o r )

plot ( t imeperiod , a c tua r i a l , type=’ s ’ ,main=’ a c t u a r i a l e s t imator aga in s t time ’ )

############

#c a n c e r r e c u r r e n c e

cancer=read . table ( ’C: /Users/ s t e l i /Desktop/Recurrence o f bladder cancer . dat ’ , sk ip=1)

colnames ( cancer )=c ( ’ pa t i en t ’ , ’ time ’ , ’ s t a tu s ’ , ’ t r e a t ’ , ’ i n i t ’ , ’ s i z e ’ )

head ( cancer )

l ibrary ( s u r v i v a l )

#F i r s t we t a k e e a c h v a r i a b l e s e p e r a t e l y

cox0=coxph ( Surv ( time , status )˜1 ,data=cancer )#n u l l mod e l

cox11=coxph ( Surv ( time , status )˜ t reat , data=cancer )# t r e a t mod e l

cox12=coxph ( Surv ( time , status )˜ i n i t , data=cancer )# i n i t mod e l

cox13=coxph ( Surv ( time , status )˜ s i z e , data=cancer )#s i z e mod e l

anova ( cox0 , cox11 )

anova ( cox0 , cox12 )

anova ( cox0 , cox13 )

#we c h o o s e i n i t
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#Then we i n c l u d e t h e t r e a t m e n t v a r i a b l e

cox21=coxph ( Surv ( time , status )˜ i n i t+treat , data=cancer )

anova ( cox11 , cox21 )

#F i n a l l y we c o n s i d e r t h e m i x e d t e rm o f i n d e x w i t h t h e t r e a t m e n t i n t h e f i n a l mod e l

cox3=coxph ( Surv ( time , status )˜ i n i t+t r e a t+i n i t : t reat , data=cancer )

cox31=coxph ( Surv ( time , status )˜ i n i t+treat , data=cancer )

anova ( cox3 , cox31 )

step ( coxph ( Surv ( time , status )˜ i n i t+s i z e+treat , data=cancer ) )#ba c kw a r d a l g o r i t h m und e r t h e AIC c r i t e r i o n

##################################################################################################

#h e p a t i t i s a c c e l a r a t e d v s Cox

h epa t i t i s 2=read . table ( ’C: /Users/ s t e l i /Desktop/Chronic a c t i v e h e p a t i t i s . dat ’ , sk ip=1)

hhh=read . table ( ’C: /Users/ s t e l i /Desktop/Chronic a c t i v e h e p a t i t i s . dat ’ )

timeh=hepa t i t i s 2 [ [ 2 ] ]

s tatush=hepa t i t i s 2 [ [ 3 ] ]

t r ea th=NULL

length ( h epa t i t i s 2 [ [ 1 ] ] )

sum( h epa t i t i s 2 [ [ 1 ] ] <2 )

t r eath [ ( 1 : 2 2 ) ]= rep (1 ,22)

# t h e p a t i e n t s who t o o k t h e d r u g a r e 1 and t h e o t h e r s a r e z e r o

t r ea th [ ( 2 3 : length ( h epa t i t i s 2 [ [ 1 ] ] ) ) ] = rep (0 ,22)

weib=survreg ( Surv ( timeh , s tatush )˜ treath , d i s t=’ we ibu l l ’ )

coxprop=coxph ( Surv ( timeh , s tatush )˜ t r ea th )

summary( weib )

summary( coxprop )

surv=s u r v f i t ( coxprop , newdata=data . frame ( l i s t ( t r ea th=c ( ’ c on t r o l ’ , ’ Predni so lone ’ ) ) ) )

muhat=weib$ coe f f i c i ents [ 1 ]

sigmahat=weib$ scale

lambdahat=exp(−muhat )

time0=0:182

basesurv=1 − pweibull ( time0 , shape=1/sigmahat , scale=1/ lambdahat )

alphahat=weib$ coe f f i c i ents [ 2 ]

survnew=basesurv ˆ(exp(−alphahat/sigmahat ) )

plot ( surv , col=c ( ” red ” , ” green ” ) , xlab = ’ time ’ , ylab=’ su rv ivo r func t i on s ’ )

l ines ( basesurv˜time0 , col=’ red ’ )

l ines ( survnew˜time0 , col=’ green ’ )

exp(−weib$ coe f f i c i ents [ [ 2 ] ] )#a c c c e l a r a t i o n f a c t o r

########################################################################

#TIME DEPENDANCY

i n d i v i dua l s=c ( rep (1 , 3 ) , rep (2 , 3 ) , rep (3 , 3 ) , rep (4 , 3 ) , rep (5 , 3 ) , rep (6 , 3 ) , rep (7 , 3 ) , rep ( 8 , 3 ) )

start=c (0 ,33 ,67 ,0 ,32 ,67 ,0 ,35 ,70 ,0 ,38 ,71 ,0 ,40 ,80 ,0 ,33 ,85 ,0 ,50 ,80 ,0 ,31 ,63)

stop=c (33 ,67 ,90 ,32 ,67 ,80 ,35 ,70 ,80 ,38 ,71 ,75 ,40 ,80 ,91 ,33 ,85 ,87 ,50 ,80 ,83 ,31 ,63 ,93)

treatment=c ( rep (0 ,12 ) , rep (1 , 12 ) )

l b r=c ( 5 . 1 5 , 5 . 2 0 , 5 . 2 2 , 5 . 2 0 , 5 . 3 0 , 5 . 5 0 , 5 . 2 1 , 5 . 6 0 , 5 . 8 0 , 5 . 3 0 , 5 . 3 2 , 4 . 5 5 , 5 . 4 0 , 4 . 5 0 , 3 . 8 0 , 5 . 1 6 , 5 . 0 0 , 4 . 5 0 , 5 . 6 0 ,

3 . 2 0 , 4 . 2 5 , 5 . 2 3 , 5 . 6 0 , 3 . 8 0 )

status=c ( rep (0 , 2 ) , 1 , rep (0 , 2 ) , 0 , rep (0 , 2 ) , 1 , rep (0 , 2 ) , 1 , rep (0 , 2 ) , 0 , rep (0 , 2 ) , 1 , rep (0 , 2 ) , 1 , rep ( 0 , 2 ) , 0 )

l i v e r=data . frame ( i nd iv idua l s , start , stop , status , treatment , l b r )

summary( coxph ( Surv ( start , stop , status ) ˜ treatment+lb r ) ,data=l i v e r )

time=c (90 ,80 ,80 ,75 ,91 ,87 ,83 ,93)

s ta tus2=c (1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 )

treatment2=c ( rep (0 , 4 ) , rep ( 1 , 4 ) )

lb r2=c ( 5 . 1 5 , 5 . 2 0 , 5 . 2 1 , 5 . 3 , 5 . 4 , 5 . 1 6 , 5 . 6 , 5 . 2 3 )

summary( coxph ( Surv ( time , s ta tus2 ) ˜ treatment2+lbr2 ) )
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timedep=s u r v f i t ( coxph ( Surv ( start , stop , status ) ˜ treatment+lb r ) ,data=l i v e r )

plot ( timedep )

cox=s u r v f i t ( coxph ( Surv ( time , s ta tus2 ) ˜ treatment2+lbr2 ) )

plot ( cox )

#########################################################

####t r a n s p l a n t

t ransp lant0=read . table ( ’C: /Users/ s t e l i /Desktop/Time to death whi le wait ing f o r a l i v e r t ransp lant . dat ’ ,

sk ip=1)

colnames ( t ransp lant0 )=c ( ’ pa t i en t ’ , ’ time ’ , ’ s t a tu s ’ , ’ age ’ , ’ gender ’ , ’BMI ’ , ’UKELD’ )

survreg ( Surv ( time , status )˜1 ,data=transplant0 , d i s t=’ we ibu l l ’ )#w e i b u l l mod e l w i t h o u t p r o g n o s t i c v a r i a b l e s

length ( t ransp lant0$status )

#t r a n s o r m a t i o n s f r om z e r o ’ s t o one ’ s and v i c e v e r s a

kk=function (x){

for ( i in 1 : length (x )){

i f (x [ i ]==0){ x [ i ]=1

} else x [ i ]=0

}

return (x )

}

kk ( t ransp lant0$status )

# a l t e r n a t i v e l y j u s t p u t 1− d e l t a f o r t h e c e n s o r i n g mod e l

survreg ( Surv ( time , kk ( t ransp lant0$status ) )˜1 ,data=transplant0 , d i s t=’ we ibu l l ’ )

cens=survreg ( Surv ( time , kk ( t ransp lant0$status ) )˜age+gender+BMI+UKELD, data=transplant0 , d i s t=’ we ibu l l ’ )

# f u l l c e n s o r i n g mod e l

r i s k=survreg ( Surv ( time , status )˜age+gender+BMI+UKELD, data=transplant0 , d i s t=’ we ibu l l ’ ) # f u l l

mod e l

step ( r i s k ) #ba c kw a r d a l g o r i t h m

#a s s e s i n g w e i b u l l

r i s k f i t=s u r v f i t ( Surv ( time , status )˜1 ,data=transp lant0 )

r i s k f i t $ surv

summary( r i s k f i t )

#l o g h a z a r d

logH=log(− log ( r i s k f i t $ surv ) )

logH [1]= −10; logH [204]=10

#l o g t i m e

l ogt ime=log ( r i s k f i t $time )

plot ( logH˜ logtime , col=’ red ’ )

lm( logH˜ logt ime )

abline (lm( logH˜ logt ime ) , col=’ green ’ )

#p l o t r i s k s c o r e s a g a i n s t c e n s o r i n g s c o r e s

r i s k c o e f=−r i s k $ coe f f i c i ents [ 2 : 5 ] / r i s k $ scale

c en s coe f=−cens$ coe f f i c i ents [ 2 : 5 ] /cens$ scale

age0=transp lant0$age

gender0=transp lant0$gender

trans0=transp lant0$BMI

UKELD0=transp lant0$UKELD

prognos t i c=matrix ( c ( age0 , gender0 , trans0 ,UKELD0) ,nrow=length ( age0 ) , ncol=4)

r i s k s c o r e s=NULL

cen so r i n g s c o r e s=NULL

for ( i in 1 : length ( age0 )){

r i s k s c o r e s [ i ]= r i s k c o e f%∗%matrix ( p rognos t i c [ i , ] , ncol=1)

c en s o r i n g s c o r e s [ i ]= cens coe f%∗%matrix ( p rognos t i c [ i , ] , ncol=1)

}

plot ( r i s k s c o r e s ˜ c en s o r i n g s c o r e s )

#############################
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####w e i g h t e d c o x mod e l w i t h d e p e n d e n t c e n s o r i n g ( p r e v i o u s t r a n s p l a n t e x amp l e )

cens#c e n s o r i n g w e i b u l l e s t i m a t i o n

r i s k 0=coxph ( Surv ( time , status )˜age+gender+BMI+UKELD, data=transp lant0 )#t im e c o x mode l ( i n d e p e n d e n t )

a c c e l . cens . so re=NULL

#c omp t u t e c e n s o r i n g a c c e l a r a t e d s c o r e

censcoe f0=cens$ coe f f i c i ents [ 2 : 5 ]

for ( i in 1 : length ( age0 )){

a c c e l . cens . so re [ i ]= censcoe f0%∗%matrix ( p rognos t i c [ i , ] , ncol=1)

}

#d e f i n e s t o p − s t a r t d a t a f r ame

t ransp lant1=data . frame ( t ransplant0 , a c c e l . cens . so re )

colnames ( t ransp lant1 )=c ( ’ id ’ , ’ time ’ , ’ s t a tu s ’ , ’ age ’ , ’ gender ’ , ’BMI ’ , ’UKELD’ , ’ cens . s co r e ’ )

start . stop=tmerge ( t ransp lant1 [ 1 : 6 , ] , t ransp lant1 [ 1 : 6 , ] , id=id , s t a t e=event ( time , status ) , k=tdc ( c ( 0 , 0 , 2 , 2 , 2 , 2 ) ) )

est im . S . cen=exp(−exp ( ( log ( start . stop$ t s top )−cens$ coe f f i c i ents [1] − start . stop$cens . s co r e )/cens$ scale ) )

#s u r v i v o r f u n c t i o n o f c e n s o r i n g f o r s t o p p i n g t i m e s

weights=estim . S . cenˆ−1#w e i g h t s f o r s t o p p i n g t i m e s

stat . stop . t=data . frame ( start . stop , est im . S . cen , weights )

#co x mode l w i t h w e i g h t s o n l y f o r 6 p a t i e n t s

coxph ( Surv ( time , status )˜age+UKELD+BMI+gender+c l u s t e r ( id ) ,data=stat . stop . t )

r i s k 0=coxph ( Surv ( time , status )˜age+gender+BMI+UKELD, data=transp lant0 [ 1 : 6 , ] )

#i n d e p e n d e n t f o r 6 p a t i e n t s

###################################################################################

####h e p a t i t i s t e s t s

t e s t=read . table ( ’C: /Users/ s t e l i /Desktop/Chronic a c t i v e h e p a t i t i s . dat ’ , sk ip=1)

colnames ( t e s t )=c ( ’ treatment ’ , ’ time ’ , ’ s t a tu s ’ )

# i n s t a l l . p a c k a g e s ( ’ s u r vm i n e r ’ )

l ibrary ( survminer )

l ibrary (Rcpp)

l ibrary ( s u r v i v a l )

#p l o t e n s u r e s t h e p r o p o r t i o n a l h a z a r d a s s um p t i o n

ggsurvp lot ( s u r v f i t ( Surv ( time , status )˜treatment , data=te s t ) , pval=TRUE, r i s k . table=TRUE,

legend . l abs=c ( ’ Predni so lone ’ , ’ Control ’ ) ,

legend . t i t l e=’ treatment ’ , t i t l e=’Kaplan−Meier Curves f o r h e p a t i t i s example ’ )

s u r v d i f f ( Surv ( time , status )˜treatment , data=te s t )#l o g −r a n k t e s t

age=c (76 , 25 , 65 , 28 , 30 , 37 , 85 , 90 , 47 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 56 , 44 , 44 , 46 , 47 ,

48 , 49 , 50 , 44 , 52 ,

53 , 54 , 55 , 56 , 57 ,

58 , 68 , 20 , 39 , 22 , 23 , 20 , 37 ,48 , 40 , 33 , 18 , 25)

agegroup=as . factor ( c ( ’45+ ’ , ’45− ’ , ’45+ ’ , ’45− ’ , ’45− ’ , ’45− ’ , ’45+ ’ , ’45+ ’ , ’45+ ’ , ’45− ’ , ’45− ’ , ’45− ’ ,

’45− ’ , ’45− ’ , ’45− ’ , ’45− ’ , ’45+ ’ , ’45− ’ , ’45− ’ , ’45+ ’ , ’45+ ’ , ’45+ ’ , ’45+ ’ , ’45+ ’ ,

’45− ’ , ’45+ ’ , ’45+ ’ ,

’45+ ’ , ’45+ ’ , ’45+ ’ ,

’45+ ’ , ’45+ ’ , ’45+ ’ , ’45− ’ ,

’45− ’ , ’45− ’ , ’45− ’ , ’45− ’ , ’45− ’ , ’45+ ’ , ’45− ’ , ’45− ’ , ’45− ’ , ’45− ’ ) )

t e s t 1=data . frame ( te s t , age , agegroup )

s u r v d i f f ( Surv ( time , status )˜ treatment+s t r a t a ( agegroup ) ,data=te s t 1 )#s t r a t a t e s t

# p l o t f o r e a c h s t r a t a f o r e a c h g r o u p

ggsurvp lot ( s u r v f i t ( Surv ( time , status )˜ treatment+s t r a t a ( agegroup ) ,data=te s t 1 ) , pval=TRUE, r i s k . table=TRUE,

legend . l abs=c ( ’ Predni so lone 45− ’ ,

’ P rens ido l e 45+ ’ , ’ c on t r o l 45− ’ , ’ c on t r o l 45+ ’ ) , legend . t i t l e=’ treatment−age ’ ,

t i t l e=’Kaplan−Meier Curves f o r h e p a t i t i s example ’ )

#QQ PLOT NEFRECTOMY DATA

ne f r=read . table ( ’C: /Users/ s t e l i /Desktop/Treatment o f hypernephroma . dat ’ , sk ip=1)

head ( ne f r )

l ibrary ( dplyr )

ne f r1=ne f r
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ne f r2=s e l e c t ( nefr1 ,−2)

colnames ( ne f r2 )=c ( ’ nephrectomy ’ , ’ time ’ , ’ s t a tu s ’ )

ne f r2 [ 1 : 1 0 , , ]

kaplan meier2=s u r v f i t ( Surv ( time , status )˜nephrectomy , data=nef r2 )#k a p l a n me i e r f o r e a c h g r o u p

summary( kaplan meier2 )

e s t quan t i l e 1=c (6 , 8 , 9 , 9 , 12 , 15 , 15 , 17 , 21 ) ; e s t quan t i l e 2=c (8 ,9 ,18 ,26 ,36 ,48 ,56 ,84 ,115)

plot ( e s tquant i l e 2 , e s tquant i l e 1 , main=’QQ plot f o r 2 groups ’ , xlab=’ quan t i l e s in group2 ’ ,

ylab=’ quan t i l e s in group1 ’ )

abline (lm( e s t quan t i l e 1˜ e s t quan t i l e 2 ) , col=’ red ’ )

p e r c e n t i l e=c (10 ,20 ,30 ,40 ,50 ,60 ,70 ,80 ,90)

mat QQ=matrix ( c ( p e r c en t i l e , e s tquant i l e 1 , e s t quan t i l e 2 ) ,nrow=9,ncol=3)

colnames (mat QQ)=c ( ’ p e r c e n t i l e s ’ , ’ group1 ’ , ’ group2 ’ )

lm( e s t quan t i l e 1˜ e s t quan t i l e 2 )#t a k e t h e a p p r o x i m a t e a c c e l a r a t i o n f a c t o r

summary( survreg ( Surv ( time , status )˜nephrectomy , data=nef r2 ) )

exp(− summary( survreg ( Surv ( time , status )˜nephrectomy , data=nef r2 ) )$coef [ 2 ] )

##############################################################################3

# d i a l y s i s e x amp l e w i t h r e s i d u a l s

d i a l y s i s=read . table ( ’C: /Users/ s t e l i /Desktop/ I n f e c t i o n in pa t i en t s on d i a l y s i s . dat ’ , sk ip=1)

colnames ( d i a l y s i s )=c ( ’ pa t i ent ’ , ’ time ’ , ’ s t a tu s ’ , ’ age ’ , ’ sex ’ )

cox model=coxph ( formula=Surv ( time , status )˜age+sex , data=d i a l y s i s )

mart resid=residuals ( cox model , type=’ mart inga le ’ )

marti index plot=ggplot (data = d i a l y s i s , mapping = aes (x = pat ient , y = mart resid ) ) +

geom point ( ) +

labs ( t i t l e = ”mart inga le vs index p lo t ” ) +

theme bw() + theme ( legend . key = element blank ( ) )

marti index plot+geom h l i n e ( y in t e r c ep t = 0)

ggplot (data = d i a l y s i s , mapping = aes (x = age , y = mart resid ) ) +

geom point ( ) +

geom smooth()+

labs ( t i t l e = ”mart inga le vs age p lo t ” ) +

theme bw() + theme ( legend . key = element blank ( ) )

ggp lot (data = d i a l y s i s , mapping = aes (x = sex , y = mart resid ) ) +

geom point ( ) +

labs ( t i t l e = ”mart inga le vs sex p lo t ” ) +

theme bw() + theme ( legend . key = element blank ( ) )

resid c ox sn e l l =−mart resid +d i a l y s i s $status

f i t c o x sn e l l <− coxph ( formula = Surv ( resid coxsne l l , status ) ˜ 1 ,

data = d i a l y s i s )

cumulative haz=basehaz ( f i t coxsne l l , centered=FALSE)

r e s p l o t=ggplot (data = cumulative haz , mapping = aes (x = time , y = hazard ) ) +

geom point ( ) +

labs ( t i t l e = ”Cox−Sne l l p l o t ” ) +

theme bw() + theme ( legend . key = element blank ( ) )

r e s p l o t+geom abline ( i n t e r c ep t =0, s l ope=1, col=’ red ’ )

data . frame (mart resid , resid c ox sn e l l )

##########################################################

#c omp e t i n g r i s k s KM

###a s a u r p a c k a g e

pro s ta t e=pro s t a t eSu rv i va l [ c (1 ,100 ,200 ,300 .400 ,1000 ,2000 ,3000 ,4000 ,4500 ,5000 ,6000 ,7000 :7050) ,4 :5 ]

p ros ta te1=within ( prostate ,{ status pro s ta t e cancer=as . numeric ({ status == 1})

status other cause=as . numeric ({ status==2})})

#####k a p l a n me i e r f o r t h e e v e n t o f i n t e r e s t

KM pros ta t e= s u r v f i t ( Surv ( survTime , status pro s ta t e cancer )˜1 ,data=pros ta te1 )

#KM f o r o t h e r c a u s e s

KM other= s u r v f i t ( Surv ( survTime , status other cause )˜1 ,data=pros ta te1 )

time=KM pros ta t e$time

prob other=1−KM other$ surv

plot (KM other$ surv ˜ time , type=” s ” , ylim=c (0 , 1 ) , lwd=2,

xlab=”Months from pros ta t e cancer d i agno s i s ” , ylab=’ surv other ( green ) , surv pro s ta t e ( red ) ’ ,
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col=”green ” )

l ines (KM pros ta t e$ surv ˜ time , type=” s ” , col=”red” , lwd=2)

length ( pros ta te1$survTime )

summary(KM other ) ; summary(KM pros ta t e )

################################## s i m u l a t i o n

l ibrary ( s u r v i v a l )

##################################

#one g r o u p a n a l y s i s b a s e d on an e x p o n e n t i a l w i t h r a t e 1

#( j u s t an e x amp l e n o t a p r o p e r s i m u l a t i o n )

groupA=rexp (100 ,1)# s u r v i v a l t i m e s

timeA=sort ( groupA )

idA=1:100

age=round ( runif (100 ,30 ,60) )#e x p l a n a t o r y v a r i a b l e

i nd i=rbinom (100 ,1 ,1/2)# i n d i c a t o r v a r i a b l e

table=data . frame ( idA , timeA , indi , age )

#b i a s f o r an i n d i v i d u a l

biasA=function ( de lta , variable ){

biasA=de l ta∗ (sum( term2∗variable)−apply ( group A,2 ,sum ) [ 4 ] ) /apply ( group A,2 ,sum ) [ 2 ]

return ( biasA )}

term1=(1− i nd i )∗timeA

term2=(timeA )ˆ2

modelA=survreg ( Surv ( timeA ,1− i nd i )˜age , d i s t=’ exponent ia l ’ )#c e n s o r i n g mechan i sm

modelB=survreg ( Surv ( timeA , i nd i )˜age , d i s t=’ exponent ia l ’ )#e v e n t mechan i sm

term3=NULL

for ( i in 1 :100){ term3 [ i ]=exp(−modelA$ coe f f i c i ents [ 2 ] ) ∗age [ i ]}

b i a s e s=NULL

for ( i in 1 :100){

b i a s e s [ i ]=biasA (0 . 2 , term3 [ i ] )}

group A=data . frame ( idA , timeA , indi , term1 , term2 , term3 )

100−sum( i nd i )# number o f c e n s o r e d p a t i e n t s

#a s s e s i n g e x p o n e n t i a l v i a Kap lan−Me i e r

f i t=s u r v f i t ( Surv ( timeA , i nd i )˜1)

logH=log(− log ( f i t $ surv ) )

logt ime=log ( f i t $time )

plot ( logH˜ logtime , col=’ green ’ )

lm( logH˜ l ogt ime )

abline (lm( logH˜ l ogt ime ) , col=’ red ’ )

#r i s k s c o r e s v s c e n s o r i n g s c o r e s

censor ing s co r e=NULL

for ( i in 1 :100){

censor ing s co r e [ i ]=−modelA$ coe f f i c i ents [ 2 ] ∗age [ i ]}

r i s k s co r e=NULL

for ( i in 1 :100){

r i s k s co r e [ i ]=−modelB$ coe f f i c i ents [ 2 ] ∗age [ i ]}

plot (round ( r i s k score , 2 ) ˜round ( censor ing score , 2 ) )

plot ( b i a s e s )

plot ( censor ing s co r e )

lambda=exp(−modelA$ coe f f i c i ents [ 1 ] )

###p l o t t h e s u r v i v a l c u r v e

basesurv=1−pexp( timeA , ra te=lambda )

indsurv=basesurv ˆ(exp(−modelB$ coe f f i c i ents [ 2 ] ∗age [ 1 ] ) )

depsurv=basesurv ˆ(exp(−modelB$ coe f f i c i ents [ 2 ] ∗age [1 ]+ biasA (0 . 01 , term3 [ 1 ] ) ) )

plot ( depsurv˜timeA , type=’ l ’ , col=’ red ’ , xlab=’ time ’ , ylab=’ dependent vs independent ’ )

l ines ( indsurv˜timeA , type=’ l ’ , col=’ green ’ )

##################################

##1000 s i m u l a t i o n s o f 100 p a t i e n t s

#new t on r a p s o n t o c a l c u l a t e t h e r a t e o f t h e c e n s o r i n g p r o c e s s

# f o r a s p e c i f i c amount o f c e n s o r i n g u n d e r t h e i n f o r m a t i v e mod e l

newtonsim=function ( de lta , lambda , k){

ep=10

xold=0

while ( ep !=3){

xnew=xold −((1−k)∗xold ˆ3+(3∗(1−k)−1+de l ta )∗lambda∗xold ˆ2+(3∗(1−k)−2−de l ta )∗lambdaˆ2∗xold+

(−k)∗lambda ˆ3)/ (3∗(1−k)∗xoldˆ2+2∗ (3∗(1−k)−1+de l ta )∗lambda∗xold+(3∗(1−k)−2−de l ta )∗lambda ˆ2)

i f (abs (xnew−xold )<10ˆ−4){
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ep=3} else{

xold=xnew}

}

return (xnew)

}

sim=function ( de lta , lambda , k){

biaslambdaA=NULL#b i a s l ambda f o r A

biaslambdaB=NULL#b i a s l ambda f o rB

biasmuA=NULL#b i a s mu f o r A

biasmuB=NULL#b i a s mu f o r B

b i a s t r e a t=NULL#b i a s o f t r e a t u n d e r t h e t o g e t h e r s i t u a t i o n

for ( i in 1 :1000){

TA=rexp (100 , lambda ) #e v e n t s f o r A

TB=rexp (100 ,2∗lambda )#e v e n t s f o r B

CA=rexp (100 , newtonsim ( delta , lambda , k ) )#c e n s o r i n g f o r A

CB=rexp (100 ,2∗newtonsim ( delta , 2∗lambda , k ) )#c e n s o r i n g f o r B

A=data . frame (TA,CA)

B=data . frame (TB,CB)

min timeA=apply (A, 1 ,min) #min o f TA ,CA

min timeB=apply (B, 1 ,min) #min o f TB , CB

ind icatorA=as . numeric (TA<CA) #e v e n t i n d i c a t o r f o r A

ind icatorB=as . numeric (TB<CB)#e v e n t i n d i c a t o r f o r B

#e s t i m a t i o n o f l ambda f o r A( un d e r t h e i n d e p e n d e n t mod e l ) ( o p p o s i t e f r om t h e c o e f )

modelAT=survreg ( Surv (min timeA , ind icatorA )˜1 , d i s t=’ exponent ia l ’ )

#e s t i m a t i o n o f l ambda f o r B( u n d e r t h e i n d e p e n d e n t mod e l ) ( o p p o s i t e f r om t h e c o e f )

modelBT=survreg ( Surv (min timeB , ind icatorB )˜1 , d i s t=’ exponent ia l ’ )

biaslambdaA [ i ]=as . numeric (modelAT$ coe f f i c i ents )+lambda #b i a s l ambda f o r A

biaslambdaB [ i ]=as . numeric (modelBT$ coe f f i c i ents )+2∗lambda #b i a s l ambda f o r B

#e s t i m a t i o n o f mu f o r A( un d e r t h e i n d e p e n d e n t mod e l ) ( o p p o s i t e f r om t h e c o e f )

modelAC=survreg ( Surv (min timeA ,1− ind icatorA )˜1 , d i s t=’ exponent ia l ’ )

#e s t i m a t i o n o f mu f o r B( un d e r t h e i n d e p e n d e n t mod e l ) ( o p p o s i t e f r om t h e c o e f )

modelBC=survreg ( Surv (min timeB ,1− ind icatorB )˜1 , d i s t=’ exponent ia l ’ )

biasmuA [ i ]=as . numeric (modelAC$ coe f f i c i ents )+newtonsim ( delta , lambda , k ) #b i a s mu f o r A

biasmuB [ i ]=as . numeric (modelBC$ coe f f i c i ents )+2∗newtonsim ( delta , 2∗lambda , k ) #b i a s mu f o r B

t r ea tg=c ( rep (0 ,100) , rep (1 ,100) ) #t r e a t m e n t v a r i a b l e when we p u t t h e 2 g r o u p s t o g e t h e r

#e s t i m a t i o n un d e r t h e i n d e p e n d e n t mod e l o f t r e am e n t ( o p p o s i t e o f c o e f )

modelg=survreg ( Surv ( c (min timeA ,min timeB ) , c ( indicatorA , ind icatorB ) )˜ t reatg , d i s t=” exponent ia l ” )

b i a s t r e a t [ i ]=2∗lambda+modelg$ coe f f i c i ents [2] − biaslambdaA [ i ]

}

meantreat=mean( b i a s t r e a t )

meanA=mean( biaslambdaA )

meanB=mean( biaslambdaB )

meanA2=mean( biasmuA)

meanB2=mean( biasmuB)

l i s t ( biaslambdaA=biaslambdaA , biaslambdaB=biaslambdaB , biasmuA=biasmuA , biasmuB=biasmuB ,

b i a s t r e a t=b ia s t r ea t ,meanA=meanA ,meanB=meanB ,meanA2=meanA2 ,meanB2=meanB2 , meantreat=meantreat )}

#upperAmu

#upp e rA l ambd a

#upperBmu

#up p e rB l amb d a

#lowerAmu

#lowerBmu

#l ow e rA l am b d a

#l ow e rB l am b d a
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