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Chapter 1

Introduction

1.1 COVID-19 pandemic

Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2
virus. The first known case was identified in Wuhan, China, in December 2019. Hence-
forth, in less than three months, coronavirus was spread all over the world and on 11th
of March, 2020, it was declared a global pandemic by the World Health Organization
(WHO) (Li et al. 2020). As of August 2022, over 6.4 million people have been killed
from coronavirus and over 581 million people have been diagnosed with COVID-19,
globally. COVID-19 affects different people in different ways and thus, patients may
present symptoms ranging from mild to severe or even be asymptomatic carriers. The
most common symptoms include fever, cough, tiredness and loss of smell or taste,
while other symptoms can be headache, diarrhoea, sore throat etc. (He et al. 2020).
Serious illness is usually developed in older ages and in people with underlying medical
conditions like chronic respiratory disease, cardiovascular disease, diabetes, or cancer
but the majority of people infected by the virus won’t need hospitalization (Garg et al.
2020).

In the Netherlands, the first person with COVID-19 was diagnosed on 27th of
February, 2020, in the province of North Brabant, while a day after, the second case
was identified in North Holland. Both cases had recently travelled to Lombardy, a
region in Italy with increased virus load at that time. Residents of the Netherlands were
strongly advised to use basic hygiene rules thoroughly and The National Institute for
Public Health and the Environment was arranged for the isolation, tracing and general
monitoring of the situation. During the first month, the majority of patients was identified
in North Brabant. The first death occurred in 6th of March, 2020 and was an 86-year-old
man who had been hospitalised. From 12th of March 2020, after 503 positive identified
patients of novel coronavirus, measures were applied in the Netherlands to stop the
rapid spread of coronavirus. Social distancing, closure of museums and venues in
general, cancellation of events and mandatory online lectures in universities were
some of the main restrictions. Three days after, on March 15th, despite the tries of the
government to keep schools open, the inflation of the new patients led to the closure
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of schools, bars, cafes etc. Additional measures were taken on 23rd of March and
forced the prohibition of gatherings, while restriction at home was a strong indication.
By August, 2022, over 8 million cases have been diagnosed positive and over 22
thousands have died from COVID-19, in the Netherlands.

In a more biological aspect, SARS-CoV-2 is an enveloped, single-stranded RNA
virus of the genus Betacoronavirus and Coronaviridae family. Its virion is constructed
from four main structural proteins, nucleocapsid (N), small envelope (E) glycoprotein,
membrane (M) glycoprotein and spike (S) glycoprotein. The mechanism of entry of
SARS-CoV-2 viral particles in host cells is mediated by S protein, localized in virion sur-
face, which attaches to angiotensin-converting enzyme 2 (ACE2) receptor expressed
mainly in lower respiratory tract organs (Lu et al. 2020, Shang et al. 2020). Since its
emergence, SARS-CoV- 2 initial lineages (A and B) have continued to diversify forming
the novel genetic “variants of concern (VOC)”. These variants are evolved for increased
transmissibility amongst humans, more severe disease, effective immune escape and
reduction in neutralization from the host (Telenti et al. 2022). The S glycoprotein com-
prises the main target of neutralizing antibodies during host immune response to viral
entry and is the main determinant of antigenic evolution thus leading to new variants
(Duan et al. 2020). The different degrees of morbidity and mortality of COVID-19 in the
population is due to the imbalanced early host response to SARS-CoV-2 infection at
the cellular level since the transcriptional activation of Type I and III interferons (IFN-I
and IFN-III, respectively) and subsequent upregulation of IFN-stimulated genes (ISGs),
which are responsible for a balanced immune response and minimal tissue damage, are
not properly achieved. The outcome of severe COVID-19 in these cases is multi-organ
failure and death due to cytokine storm syndrome deriving from hyperinflammation
(Mehta et al. 2020, Blanco-Melo et al. 2020). The virus spreads mainly between people,
who are in close contact with each other, from an infected person’s mouth or nose in
small liquid particles, when they cough, sneeze, speak, sing or breathe, or through
contaminated surfaces (Galbadage et al. 2020).

1.2 Spatiotemporal models

Considering the consequent spatiotemporal spread of COVID-19, spatiotemporal
models have become particularly useful. Disease spreads evolve in time and space.
Therefore, it is essential to consider time and space together in order to address
changes in different geographical regions and understand why those changes hap-
pened. Spatiotemporal modeling arises when we have data in those two dimensions;
time and space (Ibañez et al. 2021). Thus, those models can be employed to monitor
the contagion dynamics of COVID-19 pandemic and provide a better understanding
of the disease spread. Apart from COVID-19, spatiotemporal models could also be
applied to crime counts (Liesenfeld et al. 2017, Wang & Brown 2012, Law et al. 2014),
agricultural production (Müller et al. 2011, Diggle et al. 2002), infectious diseases
(Bracher & Held 2020, Held et al. 2017), transportation (Rajabioun & Ioannou 2015,
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Santos et al. 2018), environmental outcomes (Gusev 2008, Laurini 2019), etc. The
general focus is to investigate the variation of an outcome in space and time over the
area and time-period of interest.

There are several models developed to approach the spatiotemporal nature of an
infectious disease. The basic transmission model for directly transmitted infectious
diseases, is the Susceptible-Infected-Removed (SIR) model (Weiss 2013, Gaeta 2020).
In the classical approach, the population, which is assumed homogeneous and isolated,
is separated in three classes: susceptible, infected and removed. The model consists
of three non-linear ordinary differential equations, from which useful information for the
spread of the disease can be extracted (Smith et al. 2004). Numerous extensions of
the SIR model have been developed during the years (Satsuma et al. 2004, Sadurní &
Luna-Acosta 2021, Brugnano & Iavernaro 2020).

The Besag-York-Mollié (BYM) model is ideal for reliable estimations for relative
risks for small areas or rare diseases. The overall variability is decomposed into a
random Poisson component, a spatially structured region-specific random effect and an
unstructured random part, across regional units, which allows the model to borrow the
required information from the adjacent areas (D’Angelo et al. 2021, Alhdiri et al. 2017,
Latouche et al. 2007).

Another type of spatiotemporal model, concerns the Multivariate Covariance Gen-
eralised Linear Models (MCGLM), which are used for multivariate count data and
are specified through link functions for the mean vector of the outcome and linear
predictors for the covariance matrix. MCGLM are flexible models, since they consider
dependent variables of mixed types and allow covariance structures for longitudinal,
spatial and spatiotemporal data (Ibañez et al. 2021, Bonat & Jørgensen 2016, Cressie
& Zammit-Mangion 2016).

Other models, appropriate for spatiotemporal data, are Auto-Poisson models (Glaser
2017, Augustin et al. 2006), the Spatiotemporal Autoregressive Poisson model (P-SAR)
(Glaser 2017, Rohimah et al. 2021), etc. A widely used and well developed model is
the Endemic-Epidemic (EE) model, which will be utilized for this study.

The reasons for spatiotemporal modeling are various and can range from esti-
mating the effect of a factor to a specific outcome, identifying clusters of areas with
similar patterns or forecasting future observations (Ibañez et al. 2021). By means of
spatiotemporal models, we are able to understand the past, which helps us to inform
our understanding of the present and finally be able to make predictions about the
future. Apparently, the information that arises from these models, can be utilized from
governments and organizations, to decide and apply measurements for the control of
the pandemic or the respective outcome of interest. The principles and the opportunities
of the spatiotemporal models are comprehensively described in Meliker & Sloan (2011).
Importantly, similar spatial and temporal patterns are being observed, a fact that urges

4



the need for clustering. At the same time, the increase in the size of data reposito-
ries has allowed the evolution of spatiotemporal clustering, which is a sub-field of data
mining and can be processed by means of spatiotemporal modeling (Ansari et al. 2020).

1.3 Objectives and key results

In this thesis, our main objective is to provide model-based clustering through the
endemic-epidemic model, which will be explored later in detail. Clustering is the task
of grouping data sets by using a specific similarity measure. Cluster analysis is an
unsupervised method of learning, since it doesn’t require any a priori knowledge of the
data sets. In spatial clustering, regional information is being used to create clusters,
while in spatiotemporal clustering, which is an extension of spatial clustering, objects
are grouped based on their spatial and temporal similarity (Madhulatha 2012, Ansari
et al. 2020).

We analyzed data from January 2021 to August 2021, of the twelve provinces
of The Netherlands and during this eight-month period we noticed similar patterns,
related to the number of deaths, across the provinces. For this reason, we intended to
incorporate the EM algorithm into the model, for clustering purposes. Finally, through
this finite mixture model we ended up splitting the regions into groups that are more
homogeneous within and more different to each other.

While aiming for a clustering method incorporated into the model, we went through
the examination of several extensions of the endemic-epidemic model. Specifically,
the simple form of the model is not always able to respond to the complex nature of a
virus, while also technical issues, such as under-reporting or delayed reporting, further
decrease the performance of the simple version of the endemic-epidemic model. For
those reasons, we extended the epidemic-endemic model in order to study if and how
the number of previous cases, previous deaths and seasonality affect the amount of
deaths. The determination of the best extension for these data, according to some
model selection criteria, constitutes the secondary goal of this work.

Therefore, our contribution in this work is two-fold. First, to provide a model for
COVID-19 pandemic in The Netherlands, which includes important factors related to
COVID-19 deaths. Since all extensions were exemplified to The Netherlands, the
selected model will be able to predict and help the understanding of the disease spread
there. Therefore, a model that contains all the important factors, would be able to facili-
tate decision-making and control of the rapid spread of the virus. The second and more
outstanding contribution pertains to the generation of a model-based clustering method,
which can be considered an important novel extension of the endemic-epidemic model.
Especially when there is a large number of observations, clustering could stand in good
stead. Moreover, in a wide range of fields, the outcome of interested can be monitored
optimally, by using differentiated strategies for each of the clusters.
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1.4 Overview of the paper

The rest of the paper is organized as follows. In the section of Methodology, mathe-
matical details for the endemic-epidemic model, which is utilized in our work, as well
as some important extensions, are provided. Moreover, our proposed methodology for
clustering is described in depth. In the section of Data & Results, initially the data-set
with information related to COVID-19 in the twelve provinces of The Netherlands for
the time period between 1st of January to 31st of August, 2021, is comprehensively
analyzed. Then we proceed with the application of the models that were described in the
Methodology section to the above-mentioned data-set. More precisely, death counts
are modeled not only by means of the extensions of the endemic-epidemic model, that
already exist, but also by using the model-based clustering method we employed. In
addition, in the same section, we present the findings derived from the models and
the methodology that was employed. Finally, in the last section of Discussion, we
commend on our work and results, outline some limitations and propose possible future
improvements.
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Chapter 2

Methodology

2.1 Endemic-epidemic (EE) model

2.1.1 Basic model

The endemic-epidemic (EE) framework is a class of time-series model created for the
analysis of infectious diseases and it was proposed by Held et al. (2005). In specific, in
their paper they suggest a statistical framework for univariate and multivariate infectious
disease counts, while this framework can also be applied to non infectious diseases,
with a slightly artificial interpretation. The simple version of the model represents a
Poisson branching process model with immigration. In the multivariate formulation, in
which we are interested, we consider the number of deaths in different spatial areas
during eight months. We assume that we have 𝑘 units (𝑘 = 1, ..., 𝐾), where each unit
is one of the twelve provinces of The Netherlands. Several extensions have been pro-
posed to develop the endemic-epidemic model (Bracher & Held 2020, Douwes-Schultz
et al. 2022, Grimée et al. 2022, Held & Paul 2012).

The endemic epidemic model determines the mean value of the outcome of interest
and uses incidence from the previous time-point 𝑡 − 1 to explain the incidence in
time-point 𝑡 (Ibañez et al. 2021). The outcome of interest can be the newly infectious
individuals of a contagious disease, deaths or in general discrete counts, while time can
be measured in days, weeks, months, etc. In our case, we are interested in the number
of deaths from COVID-19 and the time is measured in days. Specifically, we use daily
data, during the time-period that begins on January 1st and ends on August 31st.

More precisely, we suppose that 𝑌𝑘𝑡 denotes the number of confirmed deaths in
a specific province 𝑘 = 1, ..., 𝐾 in a country or in general in a region, at a specific
day 𝑡 = 1, ..., 𝑇 . The counts, which are non negative and integer-valued, are usually
supposed to follow Poisson or Negative Binomial distribution (Joe & Zhu 2005).

Since, we are working with count data, Poisson distribution is one of the candidate
distributions to be used. In particular, Poisson distribution expresses the probability
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of a number of events occurring over a specified period of time if these events are
independent and occur with a known constant mean rate (Lambert 1992).

The probability mass function of a discrete random variable Y, which follows the
Poisson distribution with parameter 𝜇 > 0 is given below:

𝑃(𝑌 = 𝑘) = 𝜇𝑘

𝑘! 𝑒−𝜇

where 𝑘 is the number of events.

μ is equal to the expected number of Y, which is also assumed to be equal to the
variance.

𝐸(𝑌 ) = 𝑉 𝑎𝑟(𝑌 ) = 𝜇
In the case that deaths modelled in the endemic-epidemic model, are Poisson

distributed, the mean value of them in the province 𝑘, at day 𝑡 is expressed as:

𝑌𝑘𝑡|𝑌𝑘,𝑡−1 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑘𝑡)
𝜇𝑘𝑡 = 𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑘𝑡 + 𝜆𝑘𝑡𝑌𝑘,𝑡−1 + 𝜙𝑘𝑡 ∑

𝑞≠𝑘
𝑤𝑘𝑞𝑌𝑞,𝑡−1

The details for the terms presented here, will be exhaustively described.

In practice, Poisson distribution is applied when we are interested in how many
times an event of interest occurs based on one or more explanatory variables and the
assumptions are that the events are independent, their rate through time is constant,
and they cannot occur simultaneously.

The limitation of Poisson distribution is that mean and variance are assumed equal.
However, especially in infectious diseases the first occurrence of an event makes a
second occurrence more likely, leading to a variance greater than the mean value. We
call this overdispersion and data related to contagious diseases are usually overdis-
persed. In this case, Poisson distribution is not appropriate and another one should be
utilized in order to avoid a deflated standard error and inflated test statistics.

In this situation, Poisson distribution is replaced by the Negative Binomial distri-
bution which provides an alternative more flexible option, allowing an overdispersion
parameter 𝜓. The negative binomial distribution will converge to a Poisson distribution
for large 𝜓 (𝜓 → ∞) (Yang & Berdine 2015) and therefore Poisson distribution can be
considered to be a special case of the negative binomial distribution.

The probability mass function of the negative binomial distribution is:
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𝑃(𝑌 = 𝑘) = (𝑘+𝜓−1
𝜓−1 )(1 − 𝑝)𝑘𝑝𝜓

where 𝑘 is the number of deaths, 𝜓 is the dispersion parameter and 𝑝 is the probability
of death.

Assuming that death counts follow the Negative Binomial distribution, the conditional
mean 𝑌𝑘𝑡|𝑌𝑘,𝑡−1 remains the same:

𝑌𝑘𝑡|𝑌𝑘,𝑡−1 ∼ 𝑁𝑒𝑔𝐵𝑖𝑛(𝜇𝑘𝑡, 𝜓)

𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑘𝑡 + 𝜆𝑘𝑡𝑌𝑘,𝑡−1 + 𝜙𝑘𝑡 ∑
𝑞≠𝑘

𝑤𝑘𝑞𝑌𝑞,𝑡−1

where 𝜇𝑘𝑡 = 𝐸(𝑌𝑘𝑡) and additionally, we have the overdispersion parameter 𝜓, where
𝜓 > 0. However, the conditional variance increases:

𝑉 𝑎𝑟(𝑌𝑘𝑡) = 𝜇𝑘𝑡 × (1 + 𝜓𝜇𝑘𝑡)

Overdispersion parameter can either be considered the same among all provinces
(𝜓𝑘 = 𝜓), or different for each region (𝜓𝑘, where 𝜓𝑘 > 0 for each 𝑘 = 0, ..., 𝐾).

While Poisson and Negative Binomial distribution are the most common for endemic-
epidemicmodels, alternative options are quasi-Poisson distributions (Ver Hoef & Boveng
2007)

Infectious disease surveillance data often display a mixture of endemic and epidemic
behaviours. Therefore, it is reasonable that the endemic-epidemic model decomposes
incidence into two components; the endemic and the epidemic one.

The first term is the endemic component (𝑒𝑘𝑣𝑘𝑡) and describes information that is
not directly linked to the outcome of interest. Namely, the endemic component refers to
exogenous factors such as seasonality, temporal trends, socio-demographics, the size
of the local population, etc (Celani & Giudici 2022). In the simplest version of the model,
𝑒𝑘 denotes population fractions or the number population for each province 𝑘 = 1, .., 𝐾
(Ibañez et al. 2021). The log-linear predictor (𝑣𝑘𝑡) can additionally capture information
related to the day of the week, public holidays, temperature, humidity, seasonality,
borders of each province, testing and vaccination proportions. By multiplying the 𝑣𝑘𝑡 by
the size of the local population 𝑒𝑘, we get the mean of the endemic component for the
respective region 𝑘.

The second component of the endemic-epidemic model, suggested by (Held et al.
2005), is the epidemic component and consists of two parts. The first part is called
autoregressive and the second is the spatiotemporal part.
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The autoregressive term (𝜆𝑘𝑡𝑌𝑘,𝑡−1), also called epidemic-within, describes how
deaths in a specific province 𝑘, at a specific time 𝑡 are affected by deaths that occurred
at the previous time 𝑡 − 1, in the same province 𝑘. In this term, we therefore capture
information related to the reproduction of the infectious disease, within the province, i.e
temporal effect.

In the spatial/spatiotemporal part (∑𝑞≠𝑘 𝑤𝑘𝑞𝑌𝑞,𝑡−1), otherwise mentioned as
epidemic-between, we are interested in the transmission between provinces. It
describes the way that death counts in a province 𝑘, at time 𝑡 are affected by deaths
recorded in the previous day, in other provinces 𝑞 ≠ 𝑘.

This effect of each province to the others is defined by the weight matrix (𝑤𝑖𝑗) where
𝑖, 𝑗 = 1, ..., 𝑘. Weight matrices can be composed in various different ways, accounting
for spatial distance. The most common one, is to consider an indicator function equal
to 1 when the regions share common borders and 0 otherwise (Paul & Meyer 2016) as
indicated below:

𝑤𝑖𝑗 = {1, if i and j are adjacent
0, if i and j are not adjacent

𝑖, 𝑗 = 1, ..., 𝑘 (2.1)

In most cases those weights are normalised and restricted to be positive (Berlemann
& Haustein 2020).

𝑤′
𝑖𝑗 = 𝑤𝑖𝑗

∑𝑗 𝑤𝑖𝑗

∑𝑗 𝑤′
𝑖𝑗 = 1

Nevertheless, there are several interesting approaches.

For example, Celani & Giudici (2022) consider the inbound and outbound number
of commuters and generate a categorical variable 𝑜𝑖𝑗 with six levels, where the larger
the number of commuters, the lower the level. In this manner, ”closeness” between
two regions is defined by the movement between them and not by the physical borders.
More precisely, the dependence of 𝑤𝑖𝑗 on 𝑜𝑖𝑗 is described by a power law function:

𝑤𝑖𝑗 = 𝑜−𝑑
𝑖𝑗

where 𝑑 ≥ 0 is a decay parameter. The greater the 𝑑, the faster the decaying of the
power law function.

Another conception is the one of Held et al. (2017), in which it is assumed that
short-time travel behaviour follows approximately a power law with respect to distance.
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The power of law model reflects the spread of COVID-19, between units, that occurs
due to distance between them.

Therefore, weights are defined as:

𝑤𝑖𝑗 = (𝑜𝑖𝑗 + 1)−𝑑 (2.2)

where 𝑑 is again the decay parameter.

Grimée et al. (2022) extend this idea even further. In their model, weights are
time-dependent and therefore capture information related to changes of movement
behaviours over time. Weights depend not only on the power law model, but also on
Facebook mobility data and International Organization of Migration (IOM) data.

Facebook provides mobility data for the change of population. The weights are thus,
updated to:

𝑤𝑖𝑗,𝑡 = 𝑤𝑖𝑗 × (𝑓𝑖,𝑡 + 1)

where 𝑤𝑖𝑗 is described in Equation 2.2 and 𝑓𝑖,𝑡 is the Facebook movement change
variable for region 𝑖 at time 𝑡.

Eventually, border closures from the International Organization of Migration data were
included in the final formula of weights:

𝑤′
𝑖𝑗,𝑡 = 𝑤𝑖𝑗,𝑡 × 𝑏𝑖𝑗,𝑡

where 𝑏𝑖𝑗,𝑡 denotes different border states:

𝑏𝑖𝑗,𝑡 =
⎧{
⎨{⎩

0.1, ”Total restrictions” at time 𝑡
0.5, ”Partial restrictions” at time 𝑡
1, otherwise

In all three terms discussed above, the log-linear predictors of the endemic-epidemic
equation can be modelled in a simple form:

log(𝑣𝑡) = 𝛼(𝑣),
log(𝜆𝑡) = 𝛼(𝜆),
log(𝜙𝑡) = 𝛼(𝜙)
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It is important to mention that all linear predictors 𝑣𝑡, 𝜆𝑡, 𝜙𝑡 defined above, are con-
strained to be non negative. Furthermore, this form allows three different options, that
could also be combined.

Firstly, the intercept can be fixed (𝛼(𝑖), 𝑖 = 𝑣, 𝜆 or 𝜙) and therefore, the same for all
provinces. This approach is the one described above.

Secondly, intercepts can be region-specific (𝑏(.)) and treated as fixed or random
effects, considering that parameters vary across provinces.

log(𝑣𝑘𝑡) = 𝑏(𝑣)
𝑘 ,

log(𝜆𝑘𝑡) = 𝑏(𝜆)
𝑘 ,

log(𝜙𝑘𝑡) = 𝑏(𝜙)
𝑘 .

Finally, additional exogenous explanatory variables (𝑋𝑘𝑡), in either of the three
terms, may be included in the modeling of the log-linear predictors. Temporal trends,
sine-cosine terms to account for seasonality, population fractions, population densities,
vaccination coverage, borders and other covariates are therefore being covered in this
part (Paul & Meyer 2016).

Accordingly, the linear predictors can be written in a general form:

log(𝑣𝑘𝑡) = 𝛼(𝑣) + 𝑏(𝑣)
𝑘 + 𝛽(𝑣)

𝑖 𝑋𝑖, i=1,...N
log(𝜆𝑘𝑡) = 𝛼(𝜆) + 𝑏(𝜆)

𝑘 + 𝛽(𝜆)
𝑖 𝑋𝑖, i=1,...N

log(𝜙𝑘𝑡) = 𝛼(𝜙) + 𝑏(𝜙)
𝑘 + 𝛽(𝜙)

𝑖 𝑋𝑖, i=1,...N

where 𝛼(𝑣), 𝛼(𝜆), 𝛼(𝜙) are overall fixed intercepts (same for all provinces in each
term),𝑏(𝑣)

𝑘 , 𝑏(𝜆)
𝑘 , 𝑏(𝜙)

𝑘 are region-specific intercepts, 𝛽(𝑣)
𝑖 , 𝛽(𝜆)

𝑖 , 𝛽(𝜙)
𝑖 are coefficients for the

respective covariates or indicator functions 𝑋𝑖 and 𝑋𝑖 are covariates or indicator
functions.

An advantage of the endemic-epidemic model is that it provides, in general, an
adequate fit and reliable one-step-ahead prediction intervals. Moreover, the important
characteristic of the EE framework is that it does not require simulation-based inference
such as computer-intensive Markov Chain Monte Carlo (MCMC) and parameters can
be easily and rapidly estimated by Maximum Likelihood (ML), using generic optimization
routines Held et al. (2005).

If the model contains random effects then inference is based on penalized quasi-
likelihood procedures, as described in (Paul & Held 2011).

12



In our case, we utilize the methods from optim, which is a function that conducts
general-purpose optimization. The main requirements of the optim function are the
initial values, a function to get minimized (or maximized) and the method that will be
employed. The default method is an implementation of that of Nelder & Mead (1965),
which uses only function values at some points and does not form any gradient at
those points. When this method doesn’t converge, quasi-Newton method, which uses
both function values and gradients, or the method of conjugate gradients are preferred.
Other available methods are the method ”L-BFGS-B”, which allows box constraints and
method ”SANN”, which is a variant of simulated annealing.

In the following sections, we will examine some extensions of the endemic-epidemic
model.

2.1.2 Extension 1 - Order D

It is reasonable that every infectious disease is transmitted in a different rate. Therefore,
in every infectious disease, deaths or cases on day 𝑡 are affected by the number of
deaths or cases in previous days. The simple version of the endemic-epidemic model
accounts only for the previous day 𝑡 − 1. In the following extension we will examine a
model that takes into account deaths of the last D days. In particular, in the epidemic
component (autoregressive and spatiotemporal term) the sum of D previous days will
be computed and thus, the number of deaths at time 𝑡 in a specific province 𝑘 will be
assumed to be affected by the sum of deaths happened D days before in the same
province 𝑘 and in neighbouring provinces 𝑞 ≠ 𝑘 (Bracher & Held 2017).

The model will be the following:

𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑡 + 𝜆𝑡
𝐷

∑
𝑑=1

𝑌𝑘,𝑡−𝑑 + 𝜙𝑡 ∑
𝑞

𝐷
∑
𝑑=1

𝑤𝑞𝑡𝑌𝑞,𝑡−𝑑

and we assume the simple version of the log-linear predictors:

log(𝑣𝑡) = 𝛼(𝑣),
log(𝜆𝑡) = 𝛼(𝜆),
log(𝜙𝑡) = 𝛼(𝜙).

The above model suggests that each one of the D previous days has the same effect
on the number of deaths. We can, thus further extend the model using different coef-
ficients for each day-lag in the autoregressive term, in the spatiotemporal or in both of
them.

Below, the extended models with linear predictors in their simple form, are presented.

Different coefficients in the autoregressive term:

13



𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑡 +
𝐷

∑
𝑑=1

𝜆𝑡𝑑𝑌𝑘,𝑡−𝑑 + 𝜙𝑡 ∑
𝑞

𝐷
∑
𝑑=1

𝑤𝑞𝑡𝑌𝑞,𝑡−𝐷, 𝑑 = 1, 2, ...𝐷

log(𝑣𝑡) = 𝛼(𝑣),
log(𝜆𝑡𝑑) = 𝛼(𝜆)

𝑑 ,
log(𝜙𝑡) = 𝛼(𝜙).

Different coefficients in the spatiotemporal term:

𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑡 + 𝜆𝑡
𝐷

∑
𝑑=1

𝑌𝑘,𝑡−𝑑 + ∑
𝑞

𝐷
∑
𝑑=1

𝜙𝑡𝑑𝑤𝑞𝑡𝑌𝑞,𝑡−𝐷, 𝑑 = 1, 2, ...𝐷

log(𝑣𝑡) = 𝛼(𝑣),
log(𝜆𝑡) = 𝛼(𝜆),
log(𝜙𝑡𝑑) = 𝛼(𝜙)

𝑑 .

Different coefficient in both terms:

𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑡 +
𝐷

∑
𝑑=1

𝜆𝑡𝑑𝑌𝑘,𝑡−𝑑 + ∑
𝑞

𝐷
∑
𝑑=1

𝜙𝑡𝑑𝑤𝑞𝑡𝑌𝑞,𝑡−𝐷, 𝑑 = 1, 2, ...𝐷

log(𝑣𝑡) = 𝛼(𝑣),
log(𝜆𝑡𝑑) = 𝛼(𝜆)

𝑑 ,
log(𝜙𝑡𝑑) = 𝛼(𝜙)

𝑑 .

2.1.3 Extension 2 - Covariates

Apparently, the most significant impact on the amount of deaths caused by SARS-CoV-2
derives from the number of cases. Especially in infectious diseases such as COVID-19,
larger numbers of cases result in an increased probability of consequent deaths. A
model with the variable of cases in the endemic component was examined for different
lags. We are interested only in the cases that were identified within the same province.
The rest log-linear predictors are presented in their simple form with fixed intercepts.
The inclusion of covariates in the EE model has been described in previous works (Paul
& Held 2011, Meyer et al. 2017).

The extension with cases as covariate in the endemic part is:
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𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑘𝑡 + 𝜆𝑡𝑌𝑘,𝑡−1 + 𝜙𝑡 ∑
𝑞

𝑤𝑞𝑡𝑌𝑞,𝑡−1

log(𝑣𝑘𝑡) = 𝛼(𝑣) + 𝛽(𝑣)
𝐷

∑
𝑑=1

𝑋𝑘,𝑡−𝑑,

log(𝜆𝑡) = 𝛼(𝜆),
log(𝜙𝑡) = 𝛼(𝜙),

where 𝑋𝑘𝑡 is the number of confirmed cases in region 𝑘 at time-point 𝑡 and 𝐷 is the lag
examined each time.

Another extension would be to consider different coefficient for each lag:

𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑘𝑡 + 𝜆𝑡𝑌𝑘,𝑡−1 + 𝜙𝑡 ∑
𝑞≠𝑘

𝑤𝑞𝑡𝑌𝑞,𝑡−1

log(𝑣𝑘𝑡) = 𝛼(𝑣) + 𝛽(𝑣)
𝑑

𝐷
∑
𝑑=1

𝑋𝑘,𝑡−𝑑,

log(𝜆𝑡) = 𝛼(𝜆),
log(𝜙𝑡) = 𝛼(𝜙)

Moreover, a model which takes into account only the respective lag D (or lags) and
not the sum of the last D days could be examined.

This model would be:

𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑘𝑡 + 𝜆𝑡𝑌𝑘,𝑡−1 + 𝜙𝑡 ∑
𝑞≠𝑘

𝑤𝑞𝑡𝑌𝑞,𝑡−1

log(𝑣𝑘𝑡) = 𝛼(𝑣) + 𝛽(𝑣)
𝑖 𝑋𝑘,𝑡−𝑑𝑖

,

log(𝜆𝑡) = 𝛼(𝜆),
log(𝜙𝑡) = 𝛼(𝜙),

where 𝑑𝑖 are the selected lags and 𝛽𝑖 are the respective coefficients.
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2.1.4 Extension 3 - Seasonality

Contagious diseases are strongly affected by seasonality and climate conditions in
general. In COVID-19, a significant correlation between seasons and infections has
been observed (Liu et al. 2021, Sajadi et al. 2020). The inclusion of seasonality with
respect of sine-cosine terms in the model is therefore suggested. Since seasonality
could be part of all three terms, we investigate all possible models. If seasonality is
not computed in the log-linear predictors, then their simple form is considered. The
respective model with seasonality terms has been exhaustively described in (Held &
Paul 2012).

Below, we present the scenario that seasonality terms exist in all three log-linear
predictors. Nevertheless, all combinations are possible.

Seasonality in all components:

𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑡 + 𝜆𝑡𝑌𝑘,𝑡−1 + 𝜙𝑡 ∑
𝑞≠𝑘

𝑤𝑞𝑡𝑌𝑞,𝑡−1

log(𝑣𝑡) = 𝛼(𝑣) + 𝛾(𝑣) sin(𝜔𝑡) + 𝛿(𝑣) cos(𝜔𝑡), 𝜔 = 2𝜋
365 ,

log(𝜆𝑡) = 𝛼(𝜆) + 𝛾(𝜆) sin(𝜔𝑡) + 𝛿(𝜆) cos(𝜔𝑡), 𝜔 = 2𝜋
365 ,

log(𝜙𝑡) = 𝛼(𝜙) + 𝛾(𝜙) sin(𝜔𝑡) + 𝛿(𝜙) cos(𝜔𝑡), 𝜔 = 2𝜋
365 ,

where 𝛾(𝜙) and 𝛿(𝜙) are unknown parameters and 𝜔 = 2𝜋
𝑓𝑟𝑒𝑞 are Fourier frequencies (𝑓𝑟𝑒𝑞

= 365 for daily data)

2.1.5 Region-specific intercepts

As it was discussed before, intercepts in the log-linear predictors can be fixed or
region-specific, accounting for heterogeneity between regions (Ibañez et al. 2021). For
example, in the endemic component in which we include information for the population
of the provinces, by considering region-specific intercepts we assume that for each
province, its population has a different effect on the number of deaths reported there.
The same interpretation applies to the other terms too. Region-specificity may appear
in one or more terms.

The region-specific intercepts can be treated as fixed (e.g.,., 𝑙𝑜𝑔(𝑣𝑘) = 𝛼𝑘 ) or
random effects (e.g.,., 𝑙𝑜𝑔(𝑣𝑘) = 𝛼0 + 𝛼𝑘). In the latter case, random effects (𝛼𝑘) are
assumed to be independent and identically distributed across 𝑘. However they can be
correlated across the model components, following a normal distribution:

𝛼𝑘 ∶= (𝛼(𝑣)
𝑘 , 𝛼(𝜆)

𝑘 , 𝛼(𝜙)
𝑘 ) ∼ 𝑁((0, 0, 0)𝑇 , ∑𝛼)
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Below, region-specific extension, with region specificity in all terms in the simple ver-
sion of the endemic-epidemic are presented.

𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑘𝑡 + 𝜆𝑡𝑌𝑘,𝑡−1 + 𝜙𝑡 ∑
𝑞≠𝑘

𝑤𝑞𝑡𝑌𝑞,𝑡−1

log(𝑣𝑘𝑡) = 𝛼(𝑣)
𝑘 ,

log(𝜆𝑘𝑡) = 𝛼(𝜆)
𝑘 ,

log(𝜙𝑘𝑡) = 𝛼(𝜙)
𝑘 .

Region-specific intercepts may also be considered in all possible combinations of
those three terms. The same procedure is followed when region-specificity is applied to
the extensions of the endemic-epidemic framework.

2.1.6 Implementation in R

The R package surveillance is broadly used for spatiotemporal modeling and the
monitoring of epidemic phenomena (Höhle 2007). The package offers three endemic-
epidemic modeling frameworks with tools for visualization, likelihood inference, and
simulation. hhh4() (Paul & Meyer 2016, Meyer et al. 2016), fits a Poisson or Neg-
ative binomial distribution and estimates models for count time series. The function
oneStepAhead() is used to compute the short-term predictions, while hhh4addon() is
an add-on package to the surveillance package, which extents some features of the
EE model. In general, with hhh4() fixed or random effects for the log-linear predictors
can be considered. Moreover, the inclusion of seasonality or any linking covariates can
occur. For the estimation of the maximum likelihood parameters, the quasi-Newton
algorithm is utilized through the nlminb() or the optim(). The second endemic-epidemic
framework is provided by twinstim() (Meyer et al. 2017), which estimates self-exciting
point process models for a spatiotemporal point pattern of infective events (Meyer et al.
2012). Lastly, the third option is the twinSIR() for the susceptible-infectious-recovered
(SIR) event history of a fixed population (Höhle 2009).

2.2 Finite Mixture Endemic Epidemic Model

2.2.1 What is the EM algorithm?

An Expectation–Maximization (EM) algorithm is an iterative method that attempts to
find maximum likelihood estimates of parameters in statistical models (Dempster et al.
1977). Usually, when we want to find the maximum likelihood estimate (MLE) of 𝜃, we
use computational methods to calculate the 𝜃 that maximizes the likelihood function. It
is also common that log-likelihood instead of the likelihood function will be maximized,
since it is easier to be solved and log is a monotonically increasing function and thus
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has the same solution. However, this procedure isn’t always trivial and difficulty to
compute the maximum value of the function arises, either using the likelihood or the
log-likelihood function due to analytical, computational or both, difficulties. At this point,
the EM algorithm provides a valuable solution to this problem.

In addition, the EM algorithm is broadly used in problems involving missing data or
incomplete information. The terms ”missing data” or ”incomplete information” are used
in a more wide way and represent mixtures, convolutions, random effects, censoring,
truncated observations, missing data or grouping, among other schemes. In any case,
the goal of the EM algorithm is to estimate the unknown parameters. The algorithm,
basically converts the incomplete-data problem to a complete-data problem and there-
fore a problem which is easier to be solved (Ng et al. 2012).

Briefly, the way that the EM algorithm works is to make guesses about the complete
data 𝑋 and to solve for the 𝜃 that maximizes the log-likelihood of 𝑋 over 𝜃. Then, this
estimation of 𝜃 is used to make a better guess about the complete data. Practically,
the first step (Expectation step or E-step) computes the conditional expected value of
the complete data log-likelihood and the second step (Maximization step or M-step)
maximizes this expected value with respect to model parameters. This strategy is
iterated until convergence. What the EM algorithm requires, is some observed data
𝑌 , a density function 𝑃(𝑌 |𝜃) and a description of the incomplete data 𝑋 (Gupta et al.
2011, Roick et al. 2021).

The EM algorithm will find a maximum of the likelihood function but in case there are
multiple peaks, there is no guarantee that the algorithm will find the global maximum
(Celeux & Govaert 1992). The peak that will be given depends on the initial values that
the algorithm will start with. It is important thus, to give the appropriate initial values.
Typically, the EM algorithm can start several times with different initial values and
eventually the ones that give the largest likelihood in the last iteration should be chosen.

In general, convergence is fast and under general conditions the algorithm provides
reliable results. Aitken’s acceleration method (Aitken 1926) is utilized to determine the
convergence of the algorithm. The method estimates the asymptotic maximum log-
likelihood at each iteration of the algorithm. The acceleration at iteration 𝑖 is given by:

𝛼(𝑖) = 𝑙(𝑖+1)−𝑙(𝑖)

𝑙(𝑖)−𝑙(𝑖−1)

where 𝑙(𝑖) is the log-likelihood value at iteration 𝑖.
The asymptotic estimate of the log-likelihood at iteration 𝑖 + 1 is the following:

𝑙(𝑖+1)
∞ = 𝑙(𝑖) + 1

1−𝛼(𝑖) (𝑙(𝑖+1) − 𝑙(𝑖)

The Aitken’s acceleration method decides whether the algorithm has converged.
There are several stopping criteria such as the stopping criterion described in Lindsay
(1995) that suggests that convergence is reached when:
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𝑙(𝑖+1)
∞ − 𝑙(𝑖+1) < 𝜖

where 𝜖 is a small value, for example 10(−10)

Another stopping criterion is the one proposed by McNicholas et al. (2010) and sug-
gests convergence when

𝑙(𝑖+1)
∞ − 𝑙(𝑖+1) ∈ (0, 𝜖)

where, again 𝜖 is a small value.

2.2.2 Proposed methodology

The purpose of the inclusion of the EM algorithm in the model is to create a finite mix-
ture model to cluster regions. In our case, we have the number of deaths for 𝐾 (𝐾=12)
provinces reported every day and we are interested in grouping those 𝐾 provinces in 𝐺
clusters based on their time series of the number of deaths. The unobserved data cor-
respond to the unknown group membership labels 𝑍1, ..., 𝑍𝐾 where 𝑍𝑘 = (𝑍𝑘1, ...𝑍𝑘𝐺)
and 𝑍 is an indicator function:

𝑍𝑘𝑔 ={1, if 𝑘 belongs to group 𝑔, 𝑔 = 1, ..., 𝐺, 𝑘 = 1, ..., 𝐾
0, otherwise

where ̄𝑌𝑖 are the observed data, namely the time series of the number of deaths for
each day 𝑡, for province 𝑘.

Without the incorporation of the EM algorithm into the EE framework, we have that
the number of deaths follows the Negative binomial distribution:

𝑌𝑘𝑡 ∼ 𝑁𝑒𝑔𝐵𝑖𝑛(𝜇𝑘𝑡, 𝜓)

where 𝜇𝑘𝑡 is the mean value of deaths in province 𝑘 at time 𝑡 (𝐸(𝑌𝑘𝑡)) and 𝜓 is the
overdispersion parameter.

Each region contributes to the log-likelihood:

𝑇
∏
𝑡=2

𝑃(𝑌𝑘𝑡; 𝜇𝑘𝑡, 𝜓)

And for all provinces the log-likelihood becomes:

𝐾
∏
𝑘=1

𝑇
∏
𝑡=2

𝑃(𝑌𝑘𝑡; 𝜇𝑘𝑡, 𝜓)
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When we use the finite mixture form of the endemic-epidemic model, we have that
each group 𝑔 follows a distinct Negative binomial distribution with different formulation for
the mean value 𝜇(𝑔)

𝑘𝑡 and different overdispersion parameter 𝜓(𝑔) for each group. There-
fore, assuming that we have 𝐺 groups:

𝑌𝑘𝑡|(𝑍𝑘 = 𝑔) ∼ 𝑁𝑒𝑔𝐵𝑖𝑛(𝜇(𝐺)
𝑘𝑡 , 𝜓(𝐺))

where 𝑔 = 1, ..., 𝐺 denotes the cluster.

The probability mass function (pmf) is now given by:

𝑃(𝑌𝑘𝑡 = 𝑦𝑘𝑡) =
𝐺

∑
𝑔=1

𝑝𝑔𝑃𝑔(𝑦𝑘𝑡)

where 𝑃𝑔(𝑦𝑘𝑡) is the pmf of a 𝑁𝑒𝑔𝐵𝑖𝑛(𝜇𝑘𝑡, 𝜓) and
𝐺

∑
𝑔=1

𝑝𝑔 = 1

Now, each province contributes to the log-likelihood:

𝐿𝑘(𝛩) =
𝑇

∏
𝑡=2

𝐺
∑
𝑔=1

𝑝𝑔𝐿𝑘𝑔(𝛩𝑔)

where 𝐿𝑘𝑔(𝛩𝑔) = 𝑁𝑒𝑔𝐵𝑖𝑛(𝜇(𝑔)
𝑘𝑡 , 𝜓(𝑔)) for a specific province 𝑘 and group 𝑔.

The total log-likelihood, thus becomes:

𝐾
∏
𝑘=1

𝑇
∏
𝑡=2

𝐺
∑
𝑔=1

𝑝𝑔𝑁𝑒𝑔𝐵𝑖𝑛(𝜇(𝑔)
𝑘𝑡 , 𝜓(𝑔))

In the simple endemic-epidemic model, the mean value is calculated through:

𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑡 + 𝜆𝑡𝑌𝑘,𝑡−1 + 𝜙𝑡 ∑
𝑞≠𝑘

𝑤𝑞𝑡𝑌𝑞,𝑡−1

log(𝑣𝑡) = 𝛼(𝑣),
log(𝜆𝑡) = 𝛼(𝜆),
log(𝜙𝑡) = 𝛼(𝜙).
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The parameters to be estimated are four. Three parameters correspond to the
endemic, autoregressive and spatiotemporal term and the last parameter concerns
overdispersion.

In the simple region-specific endemic-epidemic model, where each province is con-
sidered unique, the mean value is calculated through:

𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑘𝑡 + 𝜆𝑘𝑡𝑌𝑘,𝑡−1 + 𝜙𝑘𝑡 ∑
𝑞≠𝑘

𝑤𝑞𝑡𝑌𝑞,𝑡−1

log(𝑣𝑘𝑡) = 𝛼(𝑣)
𝑘 ,

log(𝜆𝑘𝑡) = 𝛼(𝜆)
𝑘 ,

log(𝜙𝑘𝑡) = 𝛼(𝜙)
𝑘 .

Assuming 12 provinces, the parameters to be estimated are 37. Twelve parameters
for each component; the endemic, autoregressive and spatiotemporal; and the last
parameter concerns overdispersion.

In the extended proposed simple model, if we assume that we have G groups, there
are 4 × 𝐺 − 𝐺 × (𝐺 − 1) parameters to be estimated. The four estimates, as in the
simple model, for each one of the G clusters, plus 𝐺 × (𝐺 − 1) probabilities.

At first, some initial values for the probabilities and the rest parameters to be es-
timated are given. The expectation step computes the weights and the maximization
step solves 𝐺 weighted log-likelihood problems. More specific, in the E-step, 𝑍 values
(weights) are updated using their conditional expected values:

𝑍𝑘𝑔 = 𝑝𝑔𝐿𝑘𝑔(𝛩𝑔)
∑𝐺

𝑔=1 𝑝𝑔𝐿𝑘𝑔(𝛩𝑔)
= 𝑝𝑔𝐿𝑘𝑔(𝛩𝑔)

𝐿𝑘(𝛩)

Then, M-step maximizes the expected value of the complete-data log-likelihood. In
each iteration, themixing proportions are first updated bymeans of the following formula:

𝑝𝑔 = 𝑘𝑔
𝐾

where 𝐾 is the total number of provinces, 𝑔 = 1, ..., 𝐺 and

𝑘𝑔 =
𝐾

∑
𝑘=1

𝑍𝑘𝑔

Then the weighted log-likelihood is maximized using the optim() function in R and the
procedure that was discussed in the previous subsection is being followed.

The log-likelihood to be maximized is given below:
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𝐿𝑔(𝛩) =
𝐾

∑
𝑘=1

𝑍𝑘𝑔𝐿𝑘𝑔(𝛩𝑔)

We repeat the EM algorithm for different numbers of groups 𝐺 and for various initial
values and in the end we select the number of clusters and the initial values that pro-
vide the largest likelihood in the final iteration. The output of the algorithm includes the
estimates of parameters, the mixing proportions, the final log-likelihood and the weights.

In our application, the EM algorithm is initially incorporated in the simple endemic-
epidemic model. Afterwards, for each of the discussed extensions, the best model, ac-
cording to some model selection criteria, is selected to be upgraded into a finite mixture
model.

2.3 Model selection criteria

Model selection is the task of selecting a statistical model from a set of candidate
models. Especially when candidate models are not nested, information criteria provide
useful insight. Some of them are Akaike information criterion (AIC) (Bozdogan 1987,
Burnham & Anderson 2004), Bayesian information criterion (BIC) (Burnham & Anderson
2004), Bridge criterion (BC) (Ding et al. 2017), Deviance information criterion (DIC)
(Spiegelhalter et al. 2014, Van Der Linde 2005), Focused information criterion (FIC)
(Claeskens & Hjort 2003, Behl et al. 2012), Hannan–Quinn information criterion (HQC)
(Hannan & Quinn 1979), Minimum description length (MDL) (??), etc. In case that
parameters are estimated through maximum likelihood (ML), which is our case too,
the procedure of model selection goes as follows. The candidate models are defined
and their parameters are estimated by means of maximum likelihood. Then, using
those estimations, a log-likelihood-based score is calculated for each candidate model.
Information criteria, by including information related to those models, provide eventually
a score for each model. For the computation of that score, the most popular criteria use
the number of parameters of each model (𝑘), the log-likelihood (𝐿𝐿) and the sample
size (𝑛) of the model. The best model is supposed to be the one with the lower score.
Some basic characteristics of the information criteria are that, when log-likelihood
increases, the score decreases, while the score decreases when more parameters are
added to the model, considering a penalty for complexity. Appropriate measures for the
selection of the best time series model are Akaike information criterion (AIC), Bayesian
Information Criterion (BIC) and Hannan-Quinn Information Criterion (HQIC).

The most common information criterion to estimate the quality of a model, is the
Akaike information criterion (AIC) (Bozdogan 1987). AIC, based on information theory,
estimates the relative amount of information that is lost from the given model. Therefore,
the selection of the ”best” model becomes a minimization problem and according to the
AIC, the ”best” model will be the one that neither over-fits nor under-fits. The formula of
AIC is:
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𝐴𝐼𝐶 = 2𝑘 − 2 log𝐿

where 𝑘 is the number of parameters and 𝐿 is the likelihood of the respective model.
AIC’s assumptions are that compared models use the same data, the outcome vari-

able is the same across them and that the sample size is large enough.
After Akaike information criterion, many alternative criteria were formulated to deal

with various problems. For example, for small sample sizes the corrected Akaike infor-
mation criterion (AICc) (Brewer et al. 2016) gives a more accurate solution to the model
selection problem. In particular, AICc is usually used when the ratio sample size over
the number of parameters is less that 40 and is calculated through:

𝐴𝐼𝐶𝑐 = −2(log𝐿) + 2𝑘 + 2𝑘(𝑘+1)
𝑛−𝑘−1

which is equal to:

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 + 2𝑘(𝑘+1)
𝑛−𝑘−1

where 𝑘 is the number of parameters and 𝑛 is the total sample size.
The AIC and AICc criteria can also be modified and adjust for overdispersion 𝜓.

Those criteria are called Quasi-AIC (QAIC) and Quasi-AICc (QAICc) respectively
(Richards 2008). Below, the updated formulas are presented:

𝑄𝐴𝐼𝐶 = 2𝑘 − 2 log𝐿
𝜓

𝑄𝐴𝐼𝐶𝑐 = 𝑄𝐴𝐼𝐶 + 2𝑘(𝑘+1)
𝑛−𝑘−1

where 𝜓 > 1 is the overdispersion parameter, 𝑘 is the number of parameters and 𝑛 is
the total sample size.

The second most commonly used information criterion is the Bayesian Information
Criterion (BIC) (Burnham & Anderson 2004) or the Schwarz information criterion (SIC).
While closely related, BIC penalizes the model complexity much more than Akaike’s
criteria.

The BIC for a given model is:

𝐵𝐼𝐶 = −2 log𝐿 + 𝑘 log(𝑛)

where 𝐿 is the maximized value of the likelihood function of the model, 𝑘 is the number
of parameters in the model and 𝑛 is the sample size.

The score should again be minimized. Moreover, in order to use BIC, the sample
size 𝑛 should be much larger than the number of parameters 𝑘 and the outcome variable
should be the same in all candidate models.

Another variation of the AIC is the consistent Akaike’s Criterion Information (CAIC)
(Anderson et al. 1998), which extends BIC by considering an additional penalty for more
parameters in the model.

CAIC is defined as:
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𝐶𝐴𝐼𝐶 = −2 + 𝑘(log(𝑛) + 1) = 𝐵𝐼𝐶 + 𝑘

where 𝑘 is the number of parameters and 𝑛 is the number of observations.
Another statistical measure for the comparative evaluation among time series mod-

els is Hannan-Quinn Information Criterion (HQIC or HQC) (Maïnassara & Kokonendji
2016). HQIC provides a smaller penalty than BIC, but larger than AIC and is given by
the following equation:

𝐻𝑄𝐼𝐶 = −2 log𝐿 + 2𝑘 log(log(𝑛))

where log is natural logarithm, 𝑛 is the number of data, 𝐿 is the maximum likelihood of
the model and 𝑘 is the number of parameters that have to be estimated in the model.
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Model Notation

E(Y𝑘𝑡) = 𝑒𝑘𝑣𝑘𝑡 + 𝜆𝑘𝑡𝑌𝑘,𝑡−1 + 𝜙𝑘𝑡 ∑𝑞≠𝑘 𝑤𝑘𝑞𝑌𝑞,𝑡−1
Simple log(𝑣𝑡) = 𝛼(𝑣),

log(𝜆𝑡) = 𝛼(𝜆),
log(𝜙𝑡) = 𝛼(𝜙)

E(Y𝑘𝑡) = 𝑒𝑘𝑣𝑡 + 𝜆𝑡 ∑𝐷
𝑑=1 𝑌𝑘,𝑡−𝑑 + 𝜙𝑡 ∑𝑞 ∑𝐷

𝑑=1 𝑤𝑞𝑡𝑌𝑞,𝑡−𝑑
Order D log(𝑣𝑡) = 𝛼(𝑣),

(same coef.) log(𝜆𝑡) = 𝛼(𝜆),
log(𝜙𝑡) = 𝛼(𝜙)

E(Y𝑘𝑡) = 𝑒𝑘𝑣𝑡 + ∑𝐷
𝑑=1 𝜆𝑡𝑑𝑌𝑘,𝑡−𝑑 + ∑𝑞 ∑𝐷

𝑑=1 𝜙𝑡𝑑𝑤𝑞𝑡𝑌𝑞,𝑡−𝐷, 𝑑 = 1, 2, ...𝐷
Order D log(𝑣𝑡) = 𝛼(𝑣),

(different coef.) log(𝜆𝑡𝑑) = 𝛼(𝜆)
𝑑 ,

log(𝜙𝑡𝑑) = 𝛼(𝜙)
𝑑

E(Y𝑘𝑡) = 𝑒𝑘𝑣𝑘𝑡 + 𝜆𝑡𝑌𝑘,𝑡−1 + 𝜙𝑡 ∑𝑞 𝑤𝑞𝑡𝑌𝑞,𝑡−1
Covariate-cases log(𝑣𝑘𝑡) = 𝛼(𝑣) + 𝛽(𝑣) ∑𝐷

𝑑=1 𝑋𝑘,𝑡−𝑑,
(sum & same coef.) log(𝜆𝑡) = 𝛼(𝜆),

log(𝜙𝑡) = 𝛼(𝜙)

E(Y𝑘𝑡) = 𝑒𝑘𝑣𝑘𝑡 + 𝜆𝑡𝑌𝑘,𝑡−1 + 𝜙𝑡 ∑𝑞≠𝑘 𝑤𝑞𝑡𝑌𝑞,𝑡−1
Covariate-cases log(𝑣𝑘𝑡) = 𝛼(𝑣) + 𝛽(𝑣)

𝑑 ∑𝐷
𝑑=1 𝑋𝑘,𝑡−𝑑,

(sum & different coef.) log(𝜆𝑡) = 𝛼(𝜆),
log(𝜙𝑡) = 𝛼(𝜙)

E(Y𝑘𝑡) = 𝑒𝑘𝑣𝑘𝑡 + 𝜆𝑡𝑌𝑘,𝑡−1 + 𝜙𝑡 ∑𝑞≠𝑘 𝑤𝑞𝑡𝑌𝑞,𝑡−1
Covariate-cases log(𝑣𝑘𝑡) = 𝛼(𝑣) + 𝛽(𝑣)

𝑖 𝑋𝑘,𝑡−𝑑𝑖
,

(specific lags) log(𝜆𝑡) = 𝛼(𝜆),
log(𝜙𝑡) = 𝛼(𝜙)

E(Y𝑘𝑡) = 𝑒𝑘𝑣𝑡 + 𝜆𝑡𝑌𝑘,𝑡−1 + 𝜙𝑡 ∑𝑞≠𝑘 𝑤𝑞𝑡𝑌𝑞,𝑡−1
Seasonality log(𝑣𝑡) = 𝛼(𝑣) + 𝛾(𝑣) sin(𝜔𝑡) + 𝛿(𝑣) cos(𝜔𝑡), 𝜔 = 2𝜋

365 ,
log(𝜆𝑡) = 𝛼(𝜆) + 𝛾(𝜆) sin(𝜔𝑡) + 𝛿(𝜆) cos(𝜔𝑡), 𝜔 = 2𝜋

365 ,
log(𝜙𝑡) = 𝛼(𝜙) + 𝛾(𝜙) sin(𝜔𝑡) + 𝛿(𝜙) cos(𝜔𝑡), 𝜔 = 2𝜋

365

Table 2.1: Summary table with all models
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Chapter 3

Data and Results

3.1 Data

The data used for this study are daily reported deaths occurred in the provinces of The
Netherlands. The Netherlands can be organised in 380municipalities or in 12 provinces;
Drenthe, Gelderland, Groningen, Flevoland, Friesland, Limburg, North-Brabant, North-
Holland, Overijssel, Utrecht, Zeeland and South-Holland. The provinces represent the
administrative layer between the national government and the local municipalities and
have responsibilities with respect to sub-national and regional importance. Other par-
titions of The Netherlands could be security regions, which are 25 in total or the 11 re-
gional organizations of acute care (ROAZ). Figure 3.1 shows the spatial location of the
provinces of The Netherlands and Figure 3.2 provides information for the distribution of
population (×100.000 people) in those 12 provinces. The most populous and the most
densely populated province is South-Holland with over 3.7 million inhabitants in 2021.
The less populous is Zeeland, while the least densely populated province is Drenthe.

According to the National Institute for Public Health and the Environment, by the end
of 2020 there were 11389 deaths in The Netherlands, attributed to coronavirus disease
and 794604 confirmed cases.

From the beginning of 2021 until 28th of April, 2021, lockdown was enforced. This
means that schools, restaurants and bars, museums, public venues, theaters, etc were
closed, while there was a restriction in the number of visitors in houses. Remote work
was a strong indication and citizens were urgently advised not to travel until 15th of May,
2021. At times when concern for new variants, such as Omicron and Delta, was raised,
flight bans for and from dangerous regions were imposed. Moreover, night-time curfew
was forced from 23rd of January until 28th of April. Some levels of education reopened
before the end of lockdown at various times. However, from 28th of April, the first big
steps for reopening started to take place and until 26th of June almost all measures had
been lifted. Some restrictions for restaurants, cafes, bars etc, took effect again on 10th
of July, because of the increase of new infections.

Table 3.1 provides information related to the population of each province and the
mean daily incidence (per 100 people) of deaths and cases, in province-level, caused
by COVID-19 pandemic in the Netherlands during the first eight months of 2021. This
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Figure 3.1: The 12 provinces of The Netherlands.

Figure 3.2: Population distribution (×100.000 people) in the 12 provinces of The Nether-
lands.
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Province Population DI of deaths DI of cases

Drenthe 494771 0.009 1.019
Flevoland 428226 0.004 0.958
Friesland 651435 0.013 1.482
Gelderland 2096603 0.032 5.212
Groningen 586937 0.007 1.35
Limburg 1115872 0.007 3.34

North-Brabant 2573949 0.031 7.544
North-Holland 2888486 0.044 8.185
Overijssel 1166533 0.019 2.961
Utrecht 1361153 0.018 3.413
Zeeland 385400 0.005 0.945

South-Holland 3726050 0.063 10.718

Table 3.1: COVID-19 mean daily incidence (DI) of deaths (per 100 people) and cases
(per 100 people) and total population for the 12 provinces of the Netherlands.

information is depicted in Figures 3.3 and 3.4. The highest mean incidence, regard-
ing deaths and cases, is observed in South-Holland, which is also the most populous
province of the Netherlands. The next three more populous provinces; North-Holland,
North-Brabant and Gelderland, have the highest mean incidence of deaths and cases
after South-Holland, indicating that about three to four people are dying daily on average,
due to COVID-19.

The data for the population distribution of The Netherlands in 2021 is ob-
tained by Statista Research Department, which is an online portal providing data
(https://www.statista.com/). Data for deaths and confirmed cases of coronavirus
disease are available for a total of 243 days, from 01/01/2021 until 31/08/2021.
It is provided by the National Institute for Public Health and the Environment
(RIVM), municipal health services (GGDs) and hospitals, and is accessible to ev-
eryone (https://coronadashboard.government.nl/). Since the first confirmed
case of SARS-CoV-2 was identified in the province of North-Brabant, data for
deaths and cases in municipality, security region, ROAZ region and province level
is provided and updated daily. Health policies due to COVID-19 pandemic dur-
ing 2021 were obtained from the official site of the government of the Netherlands
(https://www.government.nl/topics/coronavirus-covid-19/news).

In Figure 3.5 the epidemic curve, which shows the overall daily incidence of cases
from coronavirus disease in the Netherlands is plotted, while in Figure 3.6 we can see the
daily incidence of deaths attributed to the virus during the same period of time. It is clear
that lockdown and curfew measures led to the reduction of cases and deaths, since the
epidemic curves fall until last days of May. The lifting of the measures increased again
the number of cases and deaths during July but some restrictions that took effect again,
eventually controlled the contagion.
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Figure 3.3: Daily incidence of COVID-19 infections in the 12 provinces of The Nether-
lands.

Figure 3.4: Daily incidence of COVID-19 deaths in the 12 provinces of The Netherlands.
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Figure 3.5: Daily incidence of COVID-19 infections in the Netherlands.

Figure 3.6: Daily incidence of COVID-19 deaths in the Netherlands.
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Figure 3.7: Daily incidence of COVID-19 cases in the 12 provinces of the Netherlands.

Figure 3.8: Daily incidence of COVID-19 deaths in the 12 provinces of the Netherlands

In Figure 3.7 and Figure 3.8, daily incidence for each province separately, for cases
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and deaths respectively, are presented.

Dr Fl Fr Ge Gr Li N-Br N-Ho Ov Ut Ze Z-Ho

Drenthe 0 0 1 0 1 0 0 0 1 0 0 0
Flevoland 0 0 1 1 0 0 0 1 1 1 0 0
Friesland 1 1 0 0 1 0 0 1 1 0 0 0
Gelderland 0 1 0 0 0 1 1 0 1 1 0 1
Groningen 1 0 1 0 0 0 0 0 0 0 0 0
Limburg 0 0 0 1 0 0 1 0 0 0 0 0

North-Brabant 0 0 0 1 0 1 0 0 0 0 1 1
North-Holland 0 1 1 0 0 0 0 0 0 1 0 1
Overijssel 1 1 1 1 0 0 0 0 0 0 0 0
Utrecht 0 1 0 1 0 0 0 1 0 0 0 1
Zeeland 0 0 0 0 0 0 1 0 0 0 0 1

South-Holland 0 0 0 1 0 0 1 1 0 1 1 0

Table 3.2: Adjacency matrix of the 12 provinces of the Netherlands.

Figure 3.9: Graph obtained by the adjacency matrix for the 12 provinces of the Nether-
lands.
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3.2 Fixed-intercept models

As stated in previous sections, we consider that the number of daily deaths in the
province 𝑘, on the day 𝑡, 𝑌𝑘𝑡 is described by the endemic-epidemic framework.The gen-
eral form of the endemic-epidemic framework is:

𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑘𝑡 + 𝜆𝑘𝑡𝑌𝑘,𝑡−1 + 𝜙𝑘𝑡 ∑
𝑞≠𝑘

𝑤𝑞𝑡𝑌𝑞,𝑡−1

In the endemic part in the above equation, we assume that the 𝑒𝑘 denotes the amount
of population of the province 𝑘, which is shown in Table 3.1.

Figure 3.10: Mean vs variance of the daily number of deaths of the 12 provinces of the
Netherlands, during 243 days. Number of deaths are indicated in a log scale with black
dots. The red line is the smoothing line of the linear model.

As can be seen in Figure 3.10 there is clear overdispersion in the data set, since
the variance of the death counts is constantly greater than the mean. Therefore, we
will assume that deaths follow Negative binomial distribution and the overdispersion
parameter will be considered the same for all provinces. Since all provinces belong to
the same country, this is a reasonable assumption.

As presented in Table 3.2 and Figure 3.9, the weight matrix, considered in our appli-
cation, indicates geographic borders and is equal to 1 if regions have common borders
and 0 if there is no adjacency. In the Netherlands, during the first eight months of 2021,
there was strong indication not to travel and at some periods flight bans were imposed.
Also, until 24th of April, lockdown and curfew were in force. Therefore, we consider that
this conception of the weight matrix is representative for the mobility in the Netherlands.
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In the following subsections, we will exemplify different formulations of the log-linear
predictors of the endemic and epidemic components, in the twelve provinces of the
Netherlands.

3.2.1 Simple model

The simple version of the endemic epidemic model assumes fixed intercepts across
provinces, for all the log-linear predictors and thus, along with the oversdispersion pa-
rameter, four parameters to be estimated.

𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑡 + 𝜆𝑡𝑌𝑘,𝑡−1 + 𝜙𝑡 ∑
𝑞≠𝑘

𝑤𝑞𝑡𝑌𝑞,𝑡−1

log(𝑣𝑡) = 𝛼(𝑣),
log(𝜆𝑡) = 𝛼(𝜆),
log(𝜙𝑡) = 𝛼(𝜙)

Model 1
Estimate Standard Error

𝛼(𝑣) -3.354 0.073
𝛼(𝜆) -8.174 -
𝛼(𝜙) -1.751 0.045
𝜓 0.952 0.023

npar: 4
Log-likelihood: -4626.923

AIC: 9261.846
BIC: 9285.758
CAIC: 9289.758
HQIC: 9270.459

Table 3.3: Estimations for the four parameters along with their standard errors of the
simple model. In addition, model selection criteria and the number of parameters (npar)
are provided.

According to the above simple version of the endemic-epidemic model, all of the
constituent components indicate relatively weak dependence on the number of daily
deaths, with the largest one the spatiotemporal term (𝑒−1.751 = 0.173).

3.2.2 Extension 1 - Order D

Considering that the number of deaths in the 𝑘-th province on day 𝑡 is not only affected
by the deaths occurred at the previous day 𝑡−1, but there is a lagged effect, we examine
the possibility of a delay.
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𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑘𝑡 +
𝐷

∑
𝑑=1

𝜆𝑡𝑑𝑌𝑘,𝑡−𝑑 + ∑
𝑞

𝐷
∑
𝑑=1

𝜙𝑡𝑑𝑤𝑞𝑡𝑌𝑞,𝑡−𝐷, 𝑑 = 1, 2, ...𝐷

log(𝑣𝑡) = 𝛼(𝑣),
log(𝜆𝑡𝑑) = 𝛼(𝜆)

𝑑 ,
log(𝜙𝑡𝑑) = 𝛼(𝜙)

𝑑

Figure 3.11: Cross-correlogram within the series of daily deaths. It shows the Pearson
correlation as a function of the displacement (days) of deaths relative to subsequent
deaths.

The cross-correlogram in Figure 3.11, indicates strong correlation between days at
time 𝑡 with days at time 𝑡 − 1, which consists the simple model. At the same time, there
is even stronger correlation between day 𝑡 and day 𝑡 − 7. We will therefore consider the
model that accounts for lag 1 and lag 7.

𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑡 + 𝜆1𝑡𝑌𝑘,𝑡−1 + 𝜆2𝑡𝑌𝑘,𝑡−7 + 𝜙1𝑡 ∑
𝑞≠𝑘

𝑤𝑞𝑡𝑌𝑞,𝑡−1 + 𝜙2𝑡 ∑
𝑞≠𝑘

𝑤𝑞𝑡𝑌𝑞,𝑡−7

log(𝑣𝑡) = 𝛼(𝑣),
log(𝜆𝑑𝑡) = 𝛼(𝜆)

𝑑 ,
log(𝜙𝑑𝑡) = 𝛼(𝜙)

𝑑

where 𝑑 = 1 or 𝑑 = 7.
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Model 1
Estimate Standard Error

𝛼(𝑣) -4.335 0.0131
𝛼(𝜆)

1 -1.351 0.259
𝛼(𝜆)

2 -1.083 0.339
𝛼(𝜙)

1 -4.836 0.008
𝛼(𝜙)

2 -3.105 0.045
𝜓 1.21 0.065

npar: 6
Log-likelihood: -4626.923

AIC: 9299.726
QAIC: 7687.807
BIC: 9335.594
CAIC: 9341.594
HQIC: 9312.646

Table 3.4: Estimations for the parameters of the model that accounts for a delay of 1 and
7 days in the effect of deaths. Model selection criteria and the number of parameters to
be estimated (npar) are also provided.

In Table 3.4, it is clearly concluded that the autoregressive term has a stronger
effect than the endemic and the spatiotemporal term. More precisely, 𝜆1 is equal
to 0.259 (𝑒−1.351) and 𝜆2 is equal to 0.338 (𝑒−1.083), which are also very close to
each other. Additionally, not only in the autoregressive term, but also in the spatiotem-
poral, both lag one and lag seven display similar effect on the number of deaths at day 𝑡.

We will further examine the scenario that the sum of previous days is taken into
account. Specifically, the sum of the deaths of the previous D days will replace the
effect of the previous day 𝑡 − 1. Possible additive delay of three, four and five days will
be examined.

We will call Model 2.1.1 the model that assumes lag of two days (order 2) and has
the same coefficient for both days. Same coefficients reflect same impact from those
days to day 𝑡. Model 2.1.2 assumes that lag-days have different effect on the number of
deaths that happen in the same province, but the same effect to other provinces. Model
2.1.3 corresponds to the opposite assumption, while Model 2.1.4 attributes different
effects of the days in both components. Model 2.2.1 is the model with three days delay
and so on.

Below, the Table 3.5 displays the estimations with their standard errors only for the
order-5 scenario, while the rest scenarios are presented in Tables A.1 and 3.5 in the
Appendix section.
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Model 2.3.1. Model 2.3.2. Model 2.3.3. Model 2.3.4.
Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

𝛼(𝑣) -4.689 (0.155) -4.682 (0.154) -4.701 (0.154) -4.699 (0.155)
𝛼(𝜆)

1 -1.899 (0.039) -1.584 (0.118 ) -1.91 (0.039) -1.58 (0.121)
𝛼(𝜆)

2 -2.553 (0.27) -2.473 (0.251)
𝛼(𝜆)

3 -1.67 (0.124) -1.691 (0.129)
𝛼(𝜆)

4 -1.855 (0.146) -1.92 (0.158)
𝛼(𝜆)

5 -2.101 (0.181) -2.099 (0.182)
𝛼(𝜙)

1 -5.057 (0.14) -5.066 (0.14) -4.658 (0.516) -4.745 (0.581)
𝛼(𝜙)

2 -14.839 (58.232) -11.576 (11.669)
𝛼(𝜙)

3 -4.725 (0.623) -4.704 (0.635)
𝛼(𝜙)

4 -4.199 (0.388) -4.29 (0.44)
𝛼(𝜙)

5 -8.71 (26.199) -6.509 (3.785)
𝜓 1.73 1.76 1.74 1.77

npar: 4 8 8 12
Log-likelihood: -4450.252 -4442.177 -4442.658 -4435.453

AIC: 8908.504 8900.354 8901.316 8894.906
QAIC: 5152.8 5063.928 5122.503 5035.811
BIC: 8932.416 8948.178 8949.14 8966.642
CAIC: 8936.416 8956.178 8957.14 8978.642
HQIC: 8917.117 8917.581 8918.543 8920.746

Table 3.5: Estimates and their standard error (SE), whenever it is available, for the
parameters of the order 5 models. In the second part of the table the model selection
criteria are provided, while npar denotes the number of parameters to be estimated each
time.

After exploring the effect of the sum up to five days before, we notice that the best
considered lag is five days. When we consider three or four days delay, the best model
selected by the majority of the criteria is the one which assigns different coefficients
in both components. In the case of order-five model, three out of five model selection
criteria suggest equal effect of those five days. For instance, the 8 extra coefficients,
increase the value of BIC almost 35 units, while CAIC increases almost 43 units.

The results of the abovementioned models are presented in Tables A.1, A.2 and 3.5.
Without exceptions, in all models the autoregressive parameters indicate the stronger
dependence, while the endemic and the spatiotemporal terms present a weak effect.
This evidence is reasonable since lockdown and curfew measures prevented the motion
between provinces and therefore there isn’t strong influence between them. Whilst low,
the effect of previous days, within provinces, is inevitable.

Overall, order-5 extension provides the best model according to model selection cri-
teria and will be further analyzed in the upcoming sections.
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3.2.3 Extension 2 - Cases as covariate

An important extension of the endemic-epidemic model, is the one that adds explana-
tory variables. Those variables can be COVID-19 cases, vaccination proportions,
measures, etc. For our application we will consider the covariate of new cases in the
endemic part. Similarly with the number of deaths, a delay of the effect is a conceivable
scenario. In the following models, we examine possible lags of previous days. Model
3.1 assumes lag one, Model 3.2 lag two and so on.

𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑘𝑡 + 𝜆𝑡𝑌𝑘,𝑡−1 + 𝜙𝑡 ∑
𝑞≠𝑘

𝑤𝑞𝑡𝑌𝑞,𝑡−1

log(𝑣𝑘𝑡) = 𝛼(𝑣) + 𝛽(𝑣)
𝐷

∑
𝑑=1

𝑋𝑘,𝑡−𝑑,

log(𝜆𝑡) = 𝛼(𝜆),
log(𝜙𝑡) = 𝛼(𝜙)

Figure 3.12: Cross-correlogram between daily new deaths and daily new cases. It
shows the Pearson correlation between both series as a function of the displacement of
daily COVID-19 deaths to daily positive cases
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The cross-correlogram in Figure 3.12 provides information related to the lagged ef-
fect of newly infections to COVID-19 deaths. In accordance with the cross-correlogram,
we would expect that components of the endemic-epidemic model reflect death events
affected from infections from further in the past. A reason for this delay is that the re-
ported number of cases is subject to reporting delay or even under-reporting. Another
reason is that the virus does not provoke sudden death, but in case of death, it happens
some days after the infection. Figure 3.12 suggests that the largest correlation between
deaths and cases is when we account for a lag of five days in the number of cases. In
our application, we considered six possibilities for the lags. In Table 3.6, the estimates,
along with their standard errors are presented. All model selection criteria confirm that
lag 5 is the appropriate consideration for the covariate of cases. As in previous models,
the autoregressive term, has again the most influencial role in the number of deaths,
while the inclusion of cases in the endemic part, increases its effect. Moreover, it is ob-
served that in comparison with the simple model, the selected model from this extension
provides a better score of all model selection criteria.

Model 3.1. Model 3.2. Model 3.3. Model 3.4. Model 3.5. Model 3.6.
Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

𝛼(𝑣) -15.297 (0.09) -15.32 (0.09) -3.819 (0.1) -3.833 (0.1) -3.846 (0.1) -3.851 (0.098)
𝛽(𝑣) -8.01 (0.34) -8.543 (0.29) -8.897 (0.27) -9.12 (0.26) -9.286 (0.24) -9.438 (0.237)
𝛼(𝜆) -0.766 (0.06) -0.772 (0.06) -0.775 (0.06) -0.778 (0.06) -0.78 (0.06) -0.787 (0.066)
𝛼(𝜙) -2.542 (0.08) -2.544 (0.08) -2.54 (0.08) -2.54 (0.08) -2.54 (0.08) -2.534 (0.078)
𝜓 1.33 (0.004) 1.33 (0.004) 1.33 (0.004) 1.33 (0.004) 1.34 (0.004) 1.32 (0.074)

npar: 5 5 5 5 5 5
Log-lik.: -4622.734 -4621.26 -4620.993 -4619.83 -4619.365 -4622.714
AIC: 9255.468 9252.52 9251.986 9249.66 9248.73 9255.428
QAIC: 6961.48 6959.263 6958.862 6957.113 6904.575 6909.573
BIC: 9285.358 9282.41 9281.876 9279.55 9278.62 9285.318
CAIC: 9290.358 9287.41 9286.876 9284.55 9283.62 9290.318
HQIC: 9266.235 9263.287 9262.753 9260.427 9259.497 9266.195

Table 3.6: Estimates and their standard error (SE) for the parameters of the lagged
models with COVID-19 cases as covariate. In the second part of the table the model
selection criteria and the amount of parameters (npar) are provided.

3.2.4 Extension 3 - Seasonality

Seasonality has always been a important factor in the transmission of infectious dis-
eases. Several studies indicate that during cold months, deaths attributed to COVID-19
are increased, while during summer they have been showed to be less. In agreement
with the above statement, Figure 3.3 and Figure 3.4 display significant high amount of
death events during January and February, but very low during summer months, despite
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the inflation of the infections during both periods. The respective model notation for this
case is the following:

𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑡 + 𝜆𝑡𝑌𝑘,𝑡−1 + 𝜙𝑡 ∑
𝑞≠𝑘

𝑤𝑞𝑡𝑌𝑞,𝑡−1

log(𝑣𝑡) = 𝛼(𝑣) + 𝛾(𝑣)𝑠𝑖𝑛(𝜔𝑡) + 𝛿(𝑣)𝑐𝑜𝑠(𝜔𝑡),
log(𝜆𝑡) = 𝛼(𝜆) + 𝛾(𝜆)𝑠𝑖𝑛(𝜔𝑡) + 𝛿(𝜆)𝑐𝑜𝑠(𝜔𝑡),
log(𝜙𝑡) = 𝛼(𝜙) + 𝛾(𝜙)𝑠𝑖𝑛(𝜔𝑡) + 𝛿(𝜙)𝑐𝑜𝑠(𝜔𝑡),

where 𝜔 = 2𝜋
365

The above is the model in the most general form. When we account for seasonal-
ity in a log-linear predictor, the respective coefficients 𝛾(.) and 𝛿(.) should be estimated,
otherwise they are set to be equal to zero. We will therefore assume that Model 4.1 has
seasonality only in the endemic term, Model 4.2 only in the autoregressive, Model 4.3
only in the spatiotemporal part, etc. In Table 3.7, the results of the models are provided.
We notice, that again the autoregressive term preforms the largest effect in compari-
son with the other terms. However its effect is less when seasonality is added to the
spatiotemporal term. In this case, spatiotermporal term indicates strong dependence
to the number of deaths. It is also noticed that when models have seasonality terms in
the endemic term, the coefficient of the spatiotemporal part is tremendously decreased
- standard errors are quite big, though. At the same time, when we consider seasonality
in the endemic term, the overdispersion parameter increases markedly. According to
BIC and CAIC, the consideration of seasonality terms in the endemic and in the spa-
tiotemporal part, provides the best model, while AIC, QAIC and HQC select the model
with seasonality terms in all log-linear predictors as the best model. Eventually, after
adjusting for seasonality, despite the four additional parameters, AIC, BIC, QAIC and
CAIC have a decrease of about 700 units each.
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Model 4.1. Model 4.2. Model 4.3. Model 4.4. Model 4.5. Model 4.6. Model 4.7.
Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

𝛼(𝑣) -2.473 (0.04) -3.425 (0.07) -3.526 (0.07) -2.588 (0.05) -2.488 (0.04) -3.421 (0.07) -2.578 (0.05)
𝛽(𝑣) 0.41 (0.05) 0.674 (0.07) 0.313 (0.06) 0.541 (0.08)
𝛾(𝑣) 1.355 (0.04) 1.162 (0.05) 1.468 (0.04) 1.31 (0.06)
𝛼(𝜆) -1.691 (0.12) -1.304 (0.16) -3.441 (0.22) -1.505 (0.16) -1.765 (0.13) -1.132 (0.14) -1.52 (0.14)
𝛽(𝜆) 0.421 (0.17) -1.292 (0.38) 0.071 (0.17) -1.084 (0.37)
𝛾(𝜆) 0.917 (0.13) 0.928 (0.28) 0.832 (0.12) 0.712 (0.27)
𝛼(𝜙) -13.17(45.56) -2.8 (0.09) 0.952 (0.22) -12.38(30.84) -24.67(10.93) -3.784 (0.24) -27.38 (12.4)
𝛽(𝜙) 0.986 (0.16) 16.696 (8.1) 1.378 (0.27) 18.731 (9.25)
𝛾(𝜙) -0.893 (0.07) -14.43 (7.59) 0.593 (0.16) -16.2 (8.51)
𝜓 2.376 (0.01) 1.447 (0.005) 1.361 (0.004) 2.433 (0.01) 2.453 (0.01) 1.465 (0.005) 2.502 (0.01)
npar: 6 6 6 8 8 8 10
L.L.: -4285.856 -4580.73 -4582.11 -4277.271 -4266.355 -4551.753 -4260.53
AIC: 8583.712 9173.46 9176.22 8566.542 8548.71 9119.506 8541.06
QAIC: 3619.623 6343.348 6745.446 3532.047 3494.479 6229.997 3425.699
BIC: 8619.58 9209.328 9212.088 8618.366 8596.534 9167.33 8600.84
CAIC: 8625.58 9215.328 9218.088 8626.366 8604.534 9175.33 8610.84
HQC: 8596.632 9186.38 9189.14 8587.769 8565.937 9136.733 8562.594

Table 3.7: Estimates and their standard error (SE) for the parameters of all possible
models that account for seasonality. In the second part of the table the model selection
criteria and the number of parameters (npar) are provided. L.L symbolizes the log-
likelihood.
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3.3 Region-specific intercept models

Given the assumption of different characteristics between provinces, the adoption of
region-specific parameters is fundamental to manage the COVID-19 pandemic. In the
following subsections, we use the best model of each extension in order to examine the
scenario in which every region requires unique manipulation.

3.3.1 Simple model

Firstly, region-specific parameters are examined in the simple version of the endemic-
epidemic model.

Endemic Aut. Spat. End.&Aut. End.&Spat. Aut.&Spat. All

npar: 15 15 15 26 26 26 37
LL: -4584.434 -4583.505 -4460.234 -4551.702 -4444.643 -4452.499 -4435.875
AIC: 9198.868 9197.01 8950.468 9155.404 8941.286 8956.998 8945.75
QAIC: 6588.561 6431.543 5047.136 6129.039 4965.923 4933.331 4864.362
BIC: 9288.538 9286.68 9040.138 9310.831 9096.713 8936.91 9166.935
CAIC: 9303.538 9301.68 9055.138 9336.831 9122.713 8940.91 9203.935
HQIC: 9231.169 9229.311 8982.769 9211.392 8997.274 8921.611 9025.425

Table 3.8: Model selection criteria scores for each simple model when region-specific
parameters appear in the Endemic (End.), Autoregressive (Aut.), Spatiotemporal (Spat.)
or in combinations of those three. L.L symbolizes the log-likelihood and npar is the
number of parameters

In the appendix section, each one of the Tables A.3 - A.9 considers region-specific
parameters in different combinations of the three possible components. According to Ta-
ble 3.8, BIC, CAIC and HQIC conclude region-specific parameters in the epidemic com-
ponent (both autoregressive and spatiotemporal terms) provide the best model. This
statement is reasonable since the spatial location, which is reflected in the spatiotempo-
ral term, and the autoregressive behaviour, which is possibly influenced by the number
of deaths, present substantial heterogeneity between provinces.

Therefore, the selected model is:

𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑘𝑡 + 𝜆𝑘𝑡𝑌𝑘,𝑡−1 + 𝜙𝑘𝑡 ∑
𝑞≠𝑘

𝑤𝑞𝑡𝑌𝑞,𝑡−1

log(𝑣𝑡) = 𝛼(𝑣),
log(𝜆𝑘𝑡) = 𝛼(𝜆)

𝑘 ,
log(𝜙𝑘𝑡) = 𝛼(𝜙)

𝑘
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Figure 3.13: Map of the Netherlands coloured according to the region-specific autore-
gressive parameters (up) and region-specific spatiotemporal parameters (down) in the
model that has those two terms as region-specific terms.
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Figure 3.14: Region-specific parameters of the autoregressive (𝛼(𝜆)
𝑘 ) and the spatiotem-

poral (𝛼(𝜙)
𝑘 ) terms of the provinces of the Netherlands.

For the selected model, maps of the Netherlands with the respective parameters for
each province, both in autoregressive and spatiotemporal part are presented in Figure
3.13, while the parameters along with their standard error are shown in Figure 3.14.
Flevoland appears with the lowest impact of the epidemic component on the number of
deaths that happen there. Apart from Flevoland, Zeeland and Utrecht, the rest provinces
have relatively larger effect derived from the spatiotemporal term. Flevoland and Utrecht
are the provinces, which have the weakest dependence of the autoregressive compo-
nent in the number of deaths. In addition, those two provinces have the largest standard
errors. In comparison with the simple model, where all provinces have the same coeffi-
cient in each component, this model performs better. Specifically, althought the model
adds 22 more parameters, model selection criteria are improved by almost 300 points.
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3.3.2 Extension 1 - Order D

In the previous section, various order D models were examined. Finally, the one that
accounts for five days further in the past for the number of deaths, is the one selected
by the majority of the model selection criteria. In this model, we will additionally include
region-specific parameters.

Endemic Aut. Spat. End.&Aut. End.&Spat. Aut.&Spat. All

npar: 15 15 15 26 26 26 37
LL: -4439.857 -4421.404 -4382.646 -4460.851 -4376.51 -4373.644 -4365.005
AIC: 8909.714 8872.808 8795.292 8973.702 8805.02 8799.288 8804.01
QAIC: 5150.942 4926.35 4585.765 4989.3 4573.188 4521.743 4525.815
BIC: 8999.384 8962.478 8884.962 9129.129 8960.447 8954.715 9025.195
CAIC: 9014.384 8977.478 8899.962 9155.129 8986.447 8980.715 9062.195
HQIC: 8942.015 8905.109 8827.593 9029.69 8861.008 8855.276 8883.685

Table 3.9: Model selection criteria scores for order 5model when region-specific param-
eters appear in the Endemic (End.), Autoregressive (Aut.), Spatiotemporal (Spat.) or in
combinations of those three. L.L symbolizes the log-likelihood and npar is the number
of parameters.

Therefore, the selected model is:

𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑡 + 𝜆𝑡

5
∑
𝑑=1

𝑌𝑘,𝑡−𝑑 + 𝜙𝑘𝑡 ∑
𝑞

5
∑
𝑑=1

𝑤𝑞𝑡𝑌𝑞,𝑡−𝑑

log(𝑣𝑡) = 𝛼(𝑣),
log(𝜆𝑡) = 𝛼(𝜆),
log(𝜙𝑘𝑡) = 𝛼(𝜙)

𝑘

With a great difference, the selected model is the one that considers region-specific
terms in the spatiotemporal component of the endemic-epidemic model. The location,
the neighboring provinces and the mobility in them seem to play a major role in the
transmission and therefore in the amount of deceases.

It is obvious from Figure 3.15 and the respective map in Figure 3.16 that the spa-
tiotemporal terms in Flevoland, Friesland, Drenthe and Zeeland show weak effect on
the number of deaths, while in Limburg, North-Holland and South-Holland the effect
is relatively large. This large positive effect of the spatiotemporal term in those three
provinces could be obviously explained. South-Holland is the most populous province
in the Netherlands, Limburg has common borders with both Belgium and Germany,
while the capital of the Netherlands, Amsterdam, belongs to North-Holland. Those fac-
tors make it more possible that the provinces attract people and therefore it is more
likely that they have a high infection spread due to mobility reasons. The adoption of
region-specific parameters in the spatiotemporal part, adds 11 parameters in the model
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Figure 3.15: Region-specific intercepts of the spatiotemporal (𝛼(𝜙)
𝑘 ) term of the provinces

of the Netherlands.

Figure 3.16: Region-specific parameters of the spatiotemporal (𝛼(𝜙)
𝑘 ) term of the

provinces of the Netherlands.
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and improves all model selection criteria, but not considerably. More precisely, AIC
improves about 113 points, BIC about 48, CAIC about 37 and HQIC about 88 points.

3.3.3 Extension 2 - Cases as covariate
In Tables A.17 - A.23, estimates of the parameters and selection criteria for each pos-
sible combination of region-specific intercepts in the second extension, are presented.

In this extension, as illustrated in Table 3.10 BIC, CAIC and HQIC suggest as well,
that region-specific intercepts should be considered in the spatiotemporal term. The im-
provement in all those three criteria is about 200 points compared to the fixed-intercept
version of the extension. AIC selects the model which has region-specific intercepts in
the endemic and in the spatiotemporal term, while QAIC suggests region-specificity to
all parameters. In all models, parameters in the epidemic component are higher than in
the endemic.

Endemic Aut. Spat. End.&Aut. End.&Spat. Aut.&Spat. All

npar: 16 16 16 27 27 27 38
LL: -4575.325 -4580.196 -4458.638 -4545.033 -4442.097 -4451.314 -4433.045
AIC: 9182.65 9192.392 8949.276 9144.066 8938.194 8956.628 8942.09
QAIC: 6508.044 6402.231 5041.706 6069.927 4951.571 4975.298 4845.279
BIC: 9278.297 9288.039 9044.923 9305.471 9099.599 9118.033 9169.253
CAIC: 9294.297 9304.039 9060.923 9332.471 9126.599 9145.033 9207.253
HQIC: 9217.104 9226.846 8983.73 9202.207 8996.335 9014.769 9023.918

Table 3.10: Model selection criteria scores for the model with cases as covariate when
region-specific parameters appear in the Endemic (End.), Autoregressive (Aut.), Spa-
tiotemporal (Spat.) or in combinations of those three. L.L symbolizes the log-likelihood
and npar is the number of parameters

Therefore, the selected model is:

𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑡 + 𝜆𝑡𝑌𝑘,𝑡−1 + 𝜙𝑘𝑡 ∑
𝑞≠𝑘

𝑤𝑞𝑡𝑌𝑞,𝑡−1

log(𝑣𝑡) = 𝛼(𝑣) + 𝛽(𝑣)
5

∑
𝑑=1

𝑋𝑘,𝑡−𝑑,

log(𝜆𝑡) = 𝛼(𝜆),
log(𝜙𝑘𝑡) = 𝛼(𝜙)

𝑘
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Figure 3.17: Map of the Netherlands coloured according to the region-specific spa-
tiotemporal parameters in the model which accounts for cases five days further in the
past, in the endemic part.

Figure 3.18: Region-specific intercepts of the spatiotemporal (𝛼(𝜙)
𝑘 ) term of the provinces

of the Netherlands.

As in the previous extension, we can see in Figures 3.17 and 3.18 that North-Holland,
South-Holland and Limburg have the strongest effect of the spatiotemporal term in the
number of deaths and this happens due to the increased mobility in those provinces.
On the other hand, Flevoland and Zeeland have extremely low effect.
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3.3.4 Extension 3 - Seasonality

The model with seasonality terms in the endemic and in the spatiotemporal components
is examined for the adoption of region-specific intercepts. Tables A.24 - A.30 provide
detailed information related to those models.

Endemic Aut. Spat. End.&Aut. End.&Spat. Aut.&Spat. All

npar: 19 19 19 30 30 30 41
LL: -4213.939 -4238.01 -4244.421 -4203.232 -4188.852 -4213.801 -4199.591
AIC: 8465.878 8514.02 8526.842 8466.464 8437.704 8487.602 8481.182
QAIC: 3128.531 3306.808 3281.73 3073.07 2988.243 3167.523 2947.637
BIC: 8579.459 8627.601 8640.423 8645.803 8617.043 8666.941 8726.279
CAIC: 8598.459 8646.601 8659.423 8675.803 8647.043 8696.941 8767.279
HQIC: 8506.792 8554.934 8567.756 8531.065 8502.305 8552.203 8569.47

Table 3.11: Model selection criteria scores for the model with seasonality when region-
specific parameters appear in the Endemic (End.), Autoregressive (Aut.), Spatiotempo-
ral (Spat.) or in combinations of those three. L.L symbolizes the log-likelihood and npar
is the number of parameters

Based on Table 3.11 AIC and HQIC suggest region-specific parameters in the en-
demic and in the spatiotemporal term, namely, the components who already account for
seasonality. QAIC selects the model which considers that all parameters have region-
specific intercepts, while CAIC and BIC propose the model with region-specific inter-
cepts in the endemic component.

Therefore, the selected model is:

𝐸(𝑌𝑘𝑡) = 𝑒𝑘𝑣𝑘𝑡 + 𝜆𝑡𝑌𝑘,𝑡−1 + 𝜙𝑘𝑡 ∑
𝑞≠𝑘

𝑤𝑞𝑡𝑌𝑞,𝑡−1

log(𝑣𝑘𝑡) = 𝛼(𝑣)
𝑘 + 𝛾(𝑣)𝑠𝑖𝑛(𝜔𝑡) + 𝛿(𝑣)𝑐𝑜𝑠(𝜔𝑡), 𝜔 = 2𝜋

365 ,
log(𝜆𝑡) = 𝛼(𝜆),

log(𝜙𝑘𝑡) = 𝛼(𝜙)
𝑘 + 𝛾(𝜙)𝑠𝑖𝑛(𝜔𝑡) + 𝛿(𝜙)𝑐𝑜𝑠(𝜔𝑡), 𝜔 = 2𝜋

365
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Figure 3.19: Maps of the Netherlands coloured according to the region-specific endemic
(up) and spatiotemporal (down) parameters in the model that accounts for seasonality
in those two terms.
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Figure 3.20: Region-specific intercepts of the endemic (𝛼(𝑣)
𝑘 ) term of the provinces of

the Netherlands.

Figure 3.21: Region-specific intercepts of the spatiotemporal (𝛼(𝜙)
𝑘 ) term of the provinces

of the Netherlands.

The region-specific intercepts in the spatiotemporal term are very small and therefore
weak dependence with the number of deaths is concluded. As it can be seen in Figure
3.19 and Figure 3.21 the weakest effect belongs to Friesland, while standard errors are
relatively large for all the provinces. The endemic component presents stronger effect,
without great deviations between provinces. However, the largest effect is attributed to
Limburg and to Friesland and the smallest belongs to Flevoland.
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3.4 Finite mixture models

Endemic-epidemic models will be now upgraded to finite mixture models by means of
the EM algorithm. Using a finite mixture model, we assume that each cluster follows a
different negative binomial distribution. The number of clusters will be initially selected.
The algorithm will annotate each province to a cluster using mixing proportions. Fi-
nally, different parameters for each cluster will be estimated. In the following pages, the
algorithm is applied to the simple version of the model. Afterwards, a model of each
extension is selected to include the EM algorithm and therefore to be upgraded to a
Finite Mixture Model. When we set the number of clusters G to be equal to one, then
the expected log-likelihood is the same with the log-likelihood in the respective model
without the algorithm, since one group is assumed in both cases. In case we ask for
12 clusters, the model coincides with the one which has region-specific intercepts to all
log-linear predictors. It has to be noted, that the EM algorithm assumes different 𝜓 pa-
rameter for each group. In general, with this form, we have to estimate the parameters
in the log-linear predictors, the overdispersion parameters and the mixing proportions
for each cluster. In the following subsections, various numbers of groups will be stud-
ied ranging from one to six. The number of groups that provides the best scores in
information criteria, will be selected to define the partition of the Netherlands for each
case.

3.4.1 Simple model

Cluster (G=1) 𝛼(𝑣)
𝑔 𝛼(𝜆)

𝑔 𝛼(𝜙)
𝑔 𝜓𝑔 𝑝𝑔

1 -3.654 -0.726 -2.541 1.318 1.0
npar: 4

Log-likelihood: -4626.923
AIC: 9261.846
BIC: 9285.758
CAIC: 9289.758
HQIC: 9270.459

Table 3.12: Estimates of the parameters of the simple model which assumes one cluster,
by means of the EM algorithm. In the second part of the table the model selection criteria
are provided, while npar denotes the number of the parameters.
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Cluster (G=2) 𝛼(𝑣)
𝑔 𝛼(𝜆)

𝑔 𝛼(𝜙)
𝑔 𝜓𝑔 𝑝𝑔

1 -3.638 -1.059 -3.216 0.948 0.339
2 -3.95 -1.094 -1.672 1.768 0.661

npar: 9
Log-likelihood: -4523.165

AIC: 9064.33
BIC: 9118.132
CAIC: 9127.132
HQIC: 9083.71

Table 3.13: Estimates of the parameters of the simple model which assumes two clus-
ters, by means of the EM algorithm. In the second part of the table the model selection
criteria are provided, while npar denotes the number of the parameters.

Cluster (G=3) 𝛼(𝑣)
𝑔 𝛼(𝜆)

𝑔 𝛼(𝜙)
𝑔 𝜓𝑔 𝑝𝑔

1 -3.429 -0.972 -3.524 0.7 0.249
2 -3.766 -1.259 -1.379 1.798 0.417
3 -4.513 -1.305 -2.058 2.077 0.334

npar: 14
Log-likelihood: -4481.72

AIC: 8991.441
BIC: 9075.132
CAIC: 9089.132
HQIC: 9021.588

Table 3.14: Estimates of the parameters of the simple model which assumes three clus-
ters, by means of the EM algorithm. In the second part of the table the model selection
criteria are provided, while npar denotes the number of the parameters.

Cluster (G=4) 𝛼(𝑣)
𝑔 𝛼(𝜆)

𝑔 𝛼(𝜙)
𝑔 𝜓𝑔 𝑝𝑔

1 -4.103 -1.542 -3.49 0.631 0.166
2 -3.877 -0.989 -1.525 2.373 0.249
3 -4.292 -1.257 -2.143 1.835 0.418
4 -3.485 -1.638 -1.264 1.085 0.167

npar: 19
Log-likelihood: -4466.9

AIC: 8971.801
BIC: 9085.382
CAIC: 9104.382
HQIC: 9012.715

Table 3.15: Estimates of the parameters of the simple model which assumes four clus-
ters, by means of the EM algorithm. In the second part of the table the model selection
criteria are provided, while npar denotes the number of the parameters.
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Cluster (G=5) 𝛼(𝑣)
𝑔 𝛼(𝜆)

𝑔 𝛼(𝜙)
𝑔 𝜓𝑔 𝑝𝑔

1 -4.102 -1.542 -3.49 0.631 0.167
2 -3.877 -0.989 -1.526 2.373 0.249
3 -4.292 -1.257 -2.143 1.837 0.416
4 -3.15 -2.249 -1.117 1.426 0.083
5 -3.75 -1.62 -1.455 0.581 0.085

npar: 24
Log-likelihood: -4460.653

AIC: 8969.307
BIC: 9112.778
CAIC: 9136.778
HQIC: 9020.987

Table 3.16: Estimates of the parameters of the simple model which assumes five clus-
ters, by means of the EM algorithm. In the second part of the table the model selection
criteria are provided, while npar denotes the number of the parameters.

Tables 3.12 - 3.16 provide the estimations of the parameters in each group and the
corresponding scores of the model selection criteria. The information criteria’s scores
are plotted in Figure 3.22. According to BIC and CAIC, three clusters is the appropri-
ate assumption, while AIC suggests five and HQIC suggests four clusters. Considering
three clusters, the improvement in all criteria is more than 200 points, despite the addition
of 10 parameters. Compared to the model with all parameters (except overdispersion
parameter) in region-specific intercepts, the model with the EM algorithm performs bet-
ter. In specific, the region-specific model has a BIC score equal to 9166.935, while now
BIC is equal to 9075.132. CAIC has improved more than 100 points and HQIC has a
slight improvement. The selected model, in the case of region-specific intercepts was
the one which adapts them in the epidemic component. That model comes across with
slightly better criteria (about 100 points), but it should be mentioned that the model with
the EM algorithm estimates 12 less parameters.

In Table 3.17, we can see the corresponding group of each province, for all consid-
ered scenarios. For the scenario of three clusters, which seems to be the most promi-
nent among criteria, a map has been plotted in Figure 3.23. Flevolad, Friesland and
Zeeland, being some of the less populous and less rich provinces, belong to Cluster 1
and have the highest autoregressive term. Groningen, Limburg, North-Holland, Over-
jissel and South-Holland belong to Cluster 2 and Gelderland, North-Brabant, Drenthe
and Utrecht to Cluster 3. Cluster 2 has the highest spatiotemporal term. The inclusion
of South-Holland and North-Holland, which are the most populous provinces, in Clus-
ter 2, explains the strongest influence of the spatiotemporal part. Also, Limburg which
belongs to this cluster too, has borders with two different countries, provoking higher
mobility than the other provinces. The partition of the Netherlands by this way, is sim-
ilar with the one that would have been proposed by taking into account region-specific
epidemic parameters.
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Figure 3.22: Line plot with the scores of the information criteria for each number of
clusters for the simple model.

Figure 3.23: Map of the Netherlands coloured according to the cluster that each province
was assigned from the EM algorithm.
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Number of Clusters
Province Two Three Four Five
Drenthe 2 3 3 3
Flevoland 1 1 1 1
Friesland 1 1 3 3
Gelderland 2 3 3 3
Groningen 2 2 4 4
Limburg 2 2 4 5

North-Brabant 2 3 3 3
North-Holland 2 2 2 2
Overjissel 2 2 2 2
Utrecht 1 3 3 3
Zeeland 1 1 1 1

South-Holland 2 2 2 2

Table 3.17: The allocation of the 12 provinces of the Netherlands for various numbers
of clusters, by means of the EM algorithm in the simple model. The number of each cell
denotes the cluster in which the respective province is assigned to.

3.4.2 Extension 1 - Order D

Cluster (G=1) 𝛼(𝑣)
𝑔 𝛼(𝜆)

𝑔 𝛼(𝜙)
𝑔 𝜓𝑔 𝑝𝑔

1 -4.689 -1.899 -5.057 1.73 1.0
npar: 4

Log-likelihood: -4450.252
AIC: 8908.504
BIC: 8932.416
CAIC: 8936.416
HQIC: 8917.118

Table 3.18: Estimates of the parameters of the order 5model which assumes one cluster,
by means of the EM algorithm. In the second part of the table the model selection criteria
are provided, while npar denotes the number of the parameters.
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Cluster (G=2) 𝛼(𝑣)
𝑔 𝛼(𝜆)

𝑔 𝛼(𝜙)
𝑔 𝜓𝑔 𝑝𝑔

1 -4.777 -1.839 -5.252 1.94 0.833
2 -4.125 -2.471 -4.574 0.5 0.167

npar: 9
Log-likelihood: -4425.174

AIC: 8868.348
BIC: 8922.15
CAIC: 8931.15
HQIC: 8887.728

Table 3.19: Estimates of the parameters of the order 5 model which assumes two clus-
ters, by means of the EM algorithm. In the second part of the table the model selection
criteria are provided, while npar denotes the number of the parameters.

Cluster (G=3) 𝛼(𝑣)
𝑔 𝛼(𝜆)

𝑔 𝛼(𝜙)
𝑔 𝜓𝑔 𝑝𝑔

1 -5.026 -1.982 -4.376 2.01 0.75
2 -8.352 -3.213 -2.837 0.608 0.083
3 -9.33 -3.498 -4.907 0.771 0.167

npar: 14
Log-likelihood: -4396.012

AIC: 8820.024
BIC: 8903.716
CAIC: 8917.716
HQIC: 8850.172

Table 3.20: Estimates of the parameters of the order 5 model which assumes three clus-
ters, by means of the EM algorithm. In the second part of the table the model selection
criteria are provided, while npar denotes the number of the parameters.

Cluster (G=4) 𝛼(𝑣)
𝑔 𝛼(𝜆)

𝑔 𝛼(𝜙)
𝑔 𝜓𝑔 𝑝𝑔

1 -11.513 -3.499 -4.909 0.771 0.167
2 -5.953 -2.418 -3.763 2.436 0.324
3 -6.404 -2.536 -4.143 1.545 0.175
4 -4.737 -2.579 -3.057 1.935 0.334

npar: 19
Log-likelihood: -4383.509

AIC: 8805.019
BIC: 8918.6
CAIC: 8937.6
HQIC: 8845.933

Table 3.21: Estimates of the parameters of the order 5 model which assumes four clus-
ters, by means of the EM algorithm. In the second part of the table the model selection
criteria are provided, while npar denotes the number of the parameters.
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Cluster (G=5) 𝛼(𝑣)
𝑔 𝛼(𝜆)

𝑔 𝛼(𝜙)
𝑔 𝜓𝑔 𝑝𝑔

1 -11.513 -3.499 -4.906 0.771 0.167
2 -5.971 -2.42 -3.761 2.437 0.324
3 -5.19 -2.262 -4.283 1.351 0.093
4 -4.736 -2.579 -3.057 1.935 0.334
5 -10.942 -3.228 -3.967 1.833 0.083

npar: 24
Log-likelihood: -4382.29

AIC: 8812.579
BIC: 8956.051
CAIC: 8980.051
HQIC: 8864.26

Table 3.22: Estimates of the parameters of the order 5 model which assumes five clus-
ters, by means of the EM algorithm. In the second part of the table the model selection
criteria are provided, while npar denotes the number of the parameters.

Number of Clusters
Province Two Three Four Five
Drenthe 1 1 2 2
Flevoland 1 3 1 1
Friesland 1 1 3 3
Gelderland 1 1 2 2
Groningen 2 2 4 4
Limburg 1 1 4 4

North-Brabant 1 1 2 2
North-Holland 1 1 4 4
Overjissel 1 1 2 2
Utrecht 1 1 3 5
Zeeland 2 3 1 1

South-Holland 1 1 4 4
Table 3.23: The allocation of the 12 provinces of the Netherlands for various numbers
of clusters, by means of the EM algorithm in the order 5 model. The number of each
cell denotes the cluster in which the respective province is assigned to.

The order 5 model, with identical coefficients in lags, for each component, has been
selected to be upgraded with the EM algorithm. As it can be seen in Tables 3.18 - 3.22,
which is also depicted in Figure 3.24, BIC and CAIC suggest the introduction of three
clusters, while AIC and HQIC perform better in the case of four clusters. For that reason,
both scenarios are presented, accompanied with the corresponding map in Figure 3.25
and Figure 3.26, respectively. Whether assuming three or four clusters, the information
criteria, apart from AIC, perform slightly better than the model in its full region-specific
form, in previous subsection. Compared to the model with region-specific parameters
only in the spatiotemporal term, the one with the EM algorithm, having just one less
parameter to estimate, has very similar scores.
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Figure 3.24: Line plot with the scores of the information criteria for each number of
clusters for the order 5 model.

Table 3.23 includes information for the allocation of the provinces for each scenario
but we are going to analyze the assumptions of three and four clusters, as indicated by
the criteria.

Assuming three clusters, Groningen comprises Cluster 2, Flevoland and Zeeland
belong to Cluster 3 and the rest provinces are part of Cluster 1. According to Table
3.20, Flevoland and Zeeland, being the less populous and most poor provinces, have
the weakest dependence of all components to the number of deaths there, while the
𝜓 parameter is very low. Groninger, in Cluster 2, has similar estimations for the 𝜓,
the endemic and the autoregressive part, but in comparison with Cluster 3, it has
larger effect of the spatiotemporal part. Cluster 1, with the inclusion of the majority of
the provinces has higher effect of the endemic and the autoregressive part, while 𝜓
parameter is appreciably higher.

According to Table 3.21, the conception of four clusters assigns Flevoland and Zee-
land again the same cluster, Cluster 1, Drenthe, North-Brabant and Overjissel in Clus-
ter 2, Friesland and Utrecht in Cluster 3 and Groningen, South-Holland, North-Holland
and Limburg in Cluster 4. Cluster 4, with the two most populous and the more border-
connected provinces, has the higher effect of the spatiotemporal term. Flevoland and
Zeeland in Cluster 1 have the weakest impact of all components in the number of
deaths, while 𝜓 parameter is again very low. According to the region-specific selected
order 5 model, depicted in Figure 3.16, Flevoland, Zeeland, Friesland and Drenthe have
more similar parameters, while Limburg, North-Holland, South-Holland and Gelderland
present similar effects. The partition of the Netherlands with those two different ways is
similar but not identical.
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Figure 3.25: Map of the Netherlands coloured according to the cluster that each province
was assigned from the EM algorithm in the order-5 extension model (according to BIC
and CAIC).

Figure 3.26: Map of the Netherlands coloured according to the cluster that each province
was assigned from the EM algorithm in the order-5 extension (according to AIC and
HQIC).
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3.4.3 Extension 2 - Cases as covariate

Cluster (G=1) 𝛼(𝑣)
𝑔 𝛽(𝑣)

𝑔 𝛼(𝜆)
𝑔 𝛼(𝜙)

𝑔 𝜓𝑔 𝑝𝑔
1 -3.846 -9.285 -0.778 -2.537 1.335 1.0

npar: 5
Log-likelihood: -4619.365

AIC: 9248.73
BIC: 9278.62
CAIC: 9283.62
HQIC: 9259.497

Table 3.24: Estimates of the parameters of the extended with cases model which as-
sumes one cluster, by means of the EM algorithm. In the second part of the table the
model selection criteria are provided, while npar denotes the number of the parameters.

Cluster (G=2) 𝛼(𝑣)
𝑔 𝛽(𝑣)

𝑔 𝛼(𝜆)
𝑔 𝛼(𝜙)

𝑔 𝜓𝑔 𝑝𝑔
1 -3.918 -7.982 -1.063 -3.282 0.96 0.333
2 -3.95 -20.962 -1.094 -1.672 1.768 0.667

npar: 11
Log-likelihood: -4519.358

AIC: 9060.715
BIC: 9126.473
CAIC: 9137.473
HQIC: 9084.402

Table 3.25: Estimates of the parameters of the extended with cases model which as-
sumes two clusters, by means of the EM algorithm. In the second part of the table the
model selection criteria are provided, while npar denotes the number of the parameters.

Cluster (G=3) 𝛼(𝑣)
𝑔 𝛽(𝑣)

𝑔 𝛼(𝜆)
𝑔 𝛼(𝜙)

𝑔 𝜓𝑔 𝑝𝑔
1 -5.093 -8.409 -1.388 -2.0 2.394 0.25
2 -3.766 -17.645 -1.259 -1.379 1.799 0.417
3 -4.937 -5.872 -1.018 -3.561 0.825 0.333

npar: 17
Log-likelihood: -4456.871

AIC: 8947.741
BIC: 9049.367
CAIC: 9066.367
HQIC: 8984.349

Table 3.26: Estimates of the parameters of the extended with cases which assumes
three clusters, by means of the EM algorithm. In the second part of the table the model
selection criteria are provided, while npar denotes the number of the parameters.
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Cluster (G=4) 𝛼(𝑣)
𝑔 𝛽(𝑣)

𝑔 𝛼(𝜆)
𝑔 𝛼(𝜙)

𝑔 𝜓𝑔 𝑝𝑔
1 -5.093 -8.409 -1.388 -2.0 2.394 0.25
2 -4.937 -5.872 -1.018 -3.561 0.825 0.333
3 -3.766 -16.662 -1.259 -1.378 1.799 0.416
4 -3.224 -3.223 -3.223 -3.223 0.04 0.0

npar: 23
Log-likelihood: -4456.869

AIC: 8959.739
BIC: 9097.232
CAIC: 9120.232
HQIC: 9009.266

Table 3.27: Estimates of the parameters of the extended with cases model which as-
sumes four clusters, by means of the EM algorithm. In the second part of the table the
model selection criteria are provided, while npar denotes the number of the parameters.

In Tables 3.29 - 3.27, the models that take into account cases of the last five days as
covariate for various numbers of clusters, utilizing the EM algorithm, are presented.

Number of Clusters
Province Two Three Four
Drenthe 2 3 2
Flevoland 1 3 2
Friesland 1 3 2
Gelderland 2 1 1
Groningen 2 2 3
Limburg 2 2 3

North-Brabant 2 1 1
North-Holland 2 2 3
Overjissel 2 2 3
Utrecht 1 1 1
Zeeland 2 3 2

South-Holland 2 2 3
Table 3.28: The allocation of the 12 provinces of the Netherlands for various numbers
of clusters, by means of the EM algorithm in the model with cases as covariate. The
number of each cell denotes the cluster in which the respective province is assigned to.

All model selection criteria, indicate that, when accounting for the cases in the
endemic-epidemic model, the appropriate number of clusters is three. The assumption
of three clusters, provides better model for the data. More precisely, AIC improves
more than 300 points, while the rest criteria have an improvement more than 200 points.
Information criteria, except for AIC, are also perform way better than the full region-
specific model that was described in the respective section. A plot with the performance
of the model selection criteria is provided in Figure 3.27. More specifically, the criteria
in the selected model with region-specific intercepts only in the spatiotemporal term
have very similar scores with the model examined in this section. As indicated in Table
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Figure 3.27: Line plot with the information criteria scores for each number of clusters for
the model with COVID-19 cases as covariates.

Figure 3.28: Map of the Netherlands coloured according to the cluster that each province
was assigned from the EM algorithm in the extension with cases as covariate.

3.28 and depicted in Figure 3.28, Utrecht, Gelderland and North Brabant belong to
Cluster 1, Drenthe, Friesland, Flevoland and Zeeland are part of Cluster 2 and Lim-
burg, Gelderland, South- and North Holland comprise Cluster 3. This comes in great
agreement with the respective selected region-specific model. Provinces in Cluster 2
share some common characteristics. They are some of the least populous and densely
populated provinces, while they are the four less rich provinces in the Netherlands. In
the model with the EM algorithm Cluster 1 presents the highest overdispersion, while all
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components have the weakest effect on the dependent variable. Two of the provinces
belonging in this cluster are two of the most large provinces and all of them have a big
number of municipalities. The 3rd Cluster, with high autoregressive influence and very
low overdispersion parameters consists of some of the most populous and densely
populated provinces.

3.4.4 Extension 3 - Seasonality

Cluster (G=1) 𝛼(𝑣)
𝑔 𝛾(𝑣)

𝑔 𝛿(𝑣)
𝑔 𝛼(𝜆)

𝑔 𝛼(𝜙)
𝑔 𝛾(𝜙)

𝑔 𝛿(𝜙)
𝑔 𝜓𝑔 𝑝𝑔

1 -2.4886 0.314 1.468 -1.765 -24.861 16.833 -14.563 2.452 1
npar: 8

Log-likelihood: -4266.476
AIC: 8548.952
BIC: 8596.776
CAIC: 8604.776
HQIC: 8566.179

Table 3.29: Estimates of the parameters of the model with seasonality terms, which
assumes one cluster, by means of the EM algorithm. In the second part of the table the
model selection criteria are provided, while npar denotes the number of parameters to
be estimated.

Cluster (G=2) 𝛼(𝑣)
𝑔 𝛾(𝑣)

𝑔 𝛿(𝑣)
𝑔 𝛼(𝜆)

𝑔 𝛼(𝜙)
𝑔 𝛾(𝜙)

𝑔 𝛿(𝜙)
𝑔 𝜓𝑔 𝑝𝑔

1 -2.549 0.332 1.458 -1.751 -28.56 19.324 -17.232 2.745 0.917
2 -1.797 0.007 1.547 -6.016 -11.83 8.568 -6.554 2.108 0.083

npar: 17
Log-likelihood: -4236.09

AIC: 8506.179
BIC: 8607.805
CAIC: 8624.805
HQIC: 8542.786

Table 3.30: Estimates of the parameters of the model with seasonality terms, which
assumes two clusters, by means of the EM algorithm. In the second part of the table the
model selection criteria are provided, while npar denotes the number of the parameters.

Tables 3.15 - 3.34 contain information for the scenarios of one to six clusters, in the
model that accounts for seasonality in the endemic and in the spatiotemporal term.
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Cluster (G=3) 𝛼(𝑣)
𝑔 𝛾(𝑣)

𝑔 𝛿(𝑣)
𝑔 𝛼(𝜆)

𝑔 𝛼(𝜙)
𝑔 𝛾(𝜙)

𝑔 𝛿(𝜙)
𝑔 𝜓𝑔 𝑝𝑔

1 -2.853 0.472 1.765 -10.794 -7.411 4.081 -3.594 12.567 0.083
2 -2.384 0.018 1.538 -1.758 -12.44 8.581 -6.178 3.575 0.337
3 -2.558 0.505 1.465 -1.749 -49.241 34.307 -31.102 1.419 0.58

npar: 26
Log-likelihood: -4211.096

AIC: 8474.193
BIC: 8629.62
CAIC: 8655.62
HQIC: 8530.18

Table 3.31: Estimates of the parameters of the model with seasonality terms, which
assumes three clusters, bymeans of the EMalgorithm. In the second part of the table the
model selection criteria are provided, while npar denotes the number of the parameters.

Cluster (G=4) 𝛼(𝑣)
𝑔 𝛾(𝑣)

𝑔 𝛿(𝑣)
𝑔 𝛼(𝜆)

𝑔 𝛼(𝜙)
𝑔 𝛾(𝜙)

𝑔 𝛿(𝜙)
𝑔 𝜓𝑔 𝑝𝑔

1 -2.853 0.471 1.767 -10.507 -7.335 4.026 -3.541 12.569 0.083
2 -2.326 0.205 1.379 -2.09 -13.325 9.239 -7.171 4.09 0.167
3 -2.542 0.528 1.463 -1.682 -65.477 45.9 -42.648 1.286 0.497
4 -2.487 -0.218 1.836 -2.159 -11.708 8.3 -5.038 2.994 0.252

npar: 35
Log-likelihood: -4193.599

AIC: 8457.198
BIC: 8666.427
CAIC: 8701.427
HQIC: 8532.566

Table 3.32: Estimates of the parameters of the model with seasonality terms, which
assumes four clusters, by means of the EM algorithm. In the second part of the table the
model selection criteria are provided, while npar denotes the number of the parameters.

The respective model, without the incorporation of the EM algorithm, has some of
the most low scores that the information criteria perform. In the case of the finite mixture
model, the selected model according to AIC and HQIC is the one with five clusters.
HQIC has an almost identical score in both scenarios of three and five clusters. BIC
and CAIC suggest no clustering for the extension that accounts for seasonality. The
latter may indicate that seasonality explains almost all of the heterogeneity between
provinces. A plot with the abovementioned criteria is provided in Figure 3.29. Consid-
ering five clusters, the Netherlands are grouped as shown in Figure 3.30. Cluster 1 is
composed of only one province, North-Brabant. North-Brabant seems to have a really
big overdispersion in its data (𝜓=12.569) and the autoregressive parameters have very
weak effect. This could be followed by the fact that North-Brabant consists of many
municipalities. South-Holland and North Holland belong to Cluster 2. They are the most
populous, most densely populated and most rich provinces in the Netherlands. Since
they are adjacent, seasonality may affect them in the same way. Cluster 3 comprises
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Cluster (G=5) 𝛼(𝑣)
𝑔 𝛾(𝑣)

𝑔 𝛿(𝑣)
𝑔 𝛼(𝜆)

𝑔 𝛼(𝜙)
𝑔 𝛾(𝜙)

𝑔 𝛿(𝜙)
𝑔 𝜓𝑔 𝑝𝑔

1 -2.853 0.471 1.767 -10.550 -7.336 4.027 -3.542 12.569 0.083
2 -2.327 0.205 1.379 -2.09 -13.33 9.242 -7.174 4.09 0.167
3 -2.251 0.44 1.574 -1.89 -77.812 55.0523 -51.585 1.805 0.248
4 -2.426 -0.429 1.96 -2.107 -9.588 6.546 -4.192 3.664 0.168
5 -2.782 0.519 1.4 -2.231 -23.26 15.472 -12.872 1.386 0.333

npar: 44
Log-likelihood: -4173.958

AIC: 8435.915
BIC: 8698.946
CAIC: 8742.946
HQIC: 8530.663

Table 3.33: Estimates of the parameters of the model with seasonality terms, which
assumes five clusters, by means of the EM algorithm. In the second part of the table the
model selection criteria are provided, while npar denotes the number of the parameters.

Cluster (G=6) 𝛼(𝑣)
𝑔 𝛾(𝑣)

𝑔 𝛿(𝑣)
𝑔 𝛼(𝜆)

𝑔 𝛼(𝜙)
𝑔 𝛾(𝜙)

𝑔 𝛿(𝜙)
𝑔 𝜓𝑔 𝑝𝑔

1 -2.853 0.471 1.767 -10.501 -7.336 4.027 -3.542 12.569 0.083
2 -2.412 0.395 1.443 -2.039 -19.65 13.754 -11.89 5.612 0.083
3 -2.783 0.517 1.401 -2.232 -22.402 14.832 -12.287 1.387 0.333
4 -2.223 -0.032 1.331 -2.405 -8.029 5.384 -3.375 3.265 0.083
5 -2.426 -0.429 1.96 -2.107 -9.586 6.545 -4.191 3.665 0.168
6 -2.251 0.44 1.574 -1.891 -75.726 53.555 -50.116 1.805 0.248

npar: 61
Log-likelihood: -4168.219

AIC: 8458.437
BIC: 8823.093
CAIC: 8884.093
HQIC: 8589.793

Table 3.34: Estimates of the parameters of the model with seasonality terms, which
assumes five clusters, by means of the EM algorithm. In the second part of the table the
model selection criteria are provided, while npar denotes the number of the parameters.

of Limburg, Friesland and Drenthe. Provinces in this cluster have the highest influence
by the autoregressive term. Gelderland and Overjiseel, which are adjacent, belong
to Cluster 4, while Zeeland, Utrecht, Flevoland and Groningen are part of Cluster 5,
having the lowest overdispersion parameter.
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Number of Clusters
Province Two Three Four Five Six
Drenthe 1 3 3 3 6
Flevoland 1 3 3 5 3
Friesland 1 3 3 3 6
Gelderland 1 2 4 4 3
Groningen 1 3 3 5 5
Limburg 2 3 3 3 6

North-Brabant 1 1 1 1 1
North-Holland 1 2 2 2 4
Overjissel 1 2 4 4 5
Utrecht 1 3 4 5 3
Zeeland 1 3 3 5 3

South-Holland 1 2 2 2 2

Table 3.35: The allocation of the 12 provinces of the Netherlands for various numbers of
clusters, by means of the EM algorithm in the model that accounts for seasonality. The
number of each cell denotes the cluster in which the respective province is assigned to.

Figure 3.29: Line plot with the information criteria scores for each number of clusters for
the model with seasonality terms.

All the above log-likelihoods and estimations were computed through optim in R.
Specifically, the quasi-Newton method (also known as a variable metric algorithm) was
utilized for all the models. The convergence was determined from the stopping criterion
proposed by Lindsay (1995).
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Figure 3.30: Map of the Netherlands coloured according to the cluster that each province
was assigned from the EM algorithm in the extension with seasonality.
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Chapter 4

Discussion

Although the simple form of the endemic epidemic model provides useful information,
extensions for the adaption of the model in the COVID-19 framework of the pandemic
should be employed. We extended the EE models to include lag in the consideration of
deaths, COVID-19 cases as covariate and seasonality terms in its components. More-
over, we emphasized on region-specific intercepts in all or some of the components of
the endemic-epidemic model. In our application of the basic model and its extensions
to the Netherlands, the consideration of the sum of deaths of the five previous days was
found to be very informative for the number of deaths in a specific day. At the same
time, infections five days further in the past provided a better model, while seasonality
terms were found to be pivotal. More precisely, the model with seasonality terms in the
epidemic component, provided the most improved information criteria. The lag of five
days in the impact of infections on deaths and the importance of seasonality terms have
been also highlighted in other studies.

In this study, we have proposed a novel methodology, which can be considered an
extension of the endemic-epidemic model and its existent extensions. The development
of this methodology was motivated by the desire to group regions with similar character-
istics. By this way the enforcement of more specific measures to some particular groups
of regions and the consequent prevention of further transmission, is facilitated. The use
of the finite mixture model led to significant better model in comparison with the simple
one and to the one considering region-specific intercepts in all terms. In addition, the
models with the EM algorithm performed similar or even better scores of the information
criteria, than the model with region-specific intercepts in one or more selected compo-
nents. Clustering of geographical areas is of paramount importance since heterogeneity
between them is a very common characteristic and the consideration of each area as a
totally different unit is not always easy. The enforcement of appropriate measures and
the successful control of the contagion could be more easily facilitated when regions
are considered in groups, while the information aroused from the models could guide
policymakers.

In most cases, the clustering derived from the proposed endemic-epidemic finite mix-
ture modeling was in agreement with the manual clustering of the region-specific mod-
els. Usually most populous provinces were grouped together, while the least populous
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and least densely populated were part of the same cluster. This clustering, reduced
the effect of the endemic component, which in our application represented the popula-
tion of the provinces. Also, provinces with similar socioeconomic status were grouped
together and higher status indicated weaker autoregressive term, while lower socioe-
conomic status inflated the autoregressive influence. Considering that richer provinces
have greater vaccination coverage and that the measures are adhered more there, we
suspect that this finding is quite reasonable. The spatiotemporal term was found to be
more increased in groups, that contain populous areas, with borders with other countries
and in general provinces that attract more people even in times of a pandemic.

From an applied perspective, the proposed model could be applied not only in other
countries’ provinces but also in different and even more specific levels of partitions in the
Netherlands or in other countries. For example, the model could provide useful insight
when applied for the clustering of the 380 municipalities of the Netherlands. In this case,
the estimation of region-specific intercepts for each area, would be laborious. From a
methodological viewpoint, there is also room for improvement. A natural improvement of
the EM algorithm, would be to merge specific components between clusters, according
to some proximity criteria, while the automated proposal of the appropriate number of
clusters would be very helpful. Another promising development would be the upgrade of
other existing spatiotemporal models, such as the BYMmodel, the Bayesian framework,
the Auto-Poisson model, etc. to finite mixture models. The extensions in which the EM
algorithm was incorporated can be further examined. Another consideration of weights
in general, such as time-dependent weights would be beneficial to overlook some im-
portant issues. Furthermore, it would be critical to include more explanatory covariates
in the endemic or in the epidemic part. Specifically, vaccination coverage and indicator
functions for COVID-19 testing policies are crucial for the clustering of the provinces. In
case of the extension with the cases as an explanatory variable, it is important to include
a variable for the day of the week and holidays, since under-reporting during weekends
and holidays is a common phenomenon. Another extension, that wasn’t possible be-
cause of the limitation in the data, is age stratification as performed in Held et al. (2017).
Age plays a vital role in the transmission of the virus and most importantly in the number
of deaths and thus, it is crucial to be addressed. A stratified endemic-epidemic finite mix-
ture model would provide very informative groups. Lastly, short-term predictions would
be able to give significant insight for the fit of the models and provide information for the
future control of the disease.
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Περίληψη

Τα χωρο-χρονικά μοντέλα συνιστούν ένα βασικό εργαλείο για ένα ευρύ φάσμα
επιστημονικών περιοχών. Πρόσφατα, μάλιστα, έγιναν ιδιαίτερα δημοφιλή, καθώς
μπορούν να αξιοποιηθούν για τον έλεγχο της μετάδοσης της πανδημίας κορονοϊού
SARS-CoV-2 (COVID-19), τόσο στον χρόνο όσο και στον χώρο. Θεωρώντας το
ενδημικό-επιδημικό μοντέλο, αρχικά περιγράφουμε την γενική προσέγγιση και στη
συνέχεια εξετάζουμε διάφορες επεκτάσεις του μοντέλου αυτού. Με τη βοήθεια των
επεκτάσεων του ενδημικού-επιδημικού μοντέλου, πραγματοποιείται ανάλυση των
ημερήσιων θανάτων της νόσου COVID-19 στις δώδεκα επαρχίες της Ολλανδίας κατά
τη διάρκεια των οχτώ πρώτων μηνών του 2021. Καθώς η παρεμφερής συμπεριφορά
των διαφόρων περιοχών αποτελεί ένα σύνηθες φαινομένο στα χωρο-χρονικά δεδομένα,
είναι απαραίτητο να ληφθεί υπ’όψιν κατάλληλα. Στη μελέτη αυτή, προτείνουμε την
ενσωμάτωση ενός αλγορίθμου που στόχο έχει την ομαδοποίηση των περιοχών με
βάση τα χωρο-χρονικά τους χαρακτηριστικά. Στην εφάρμογη που πραγματοποιήσαμε,
παρατηρήθηκε ότι οι επεκτάσεις του ενδημικού-επιδημικού μοντέλου που θεωρούν κάθε
περιοχή ως διαφορετική οντότητα (region-specific), προσφέρουν καλύτερη προσαρμογή
στα δεδομένα. Ωστόσο, όλες οι επεκτάσεις των μοντέλων, βελτιώνονται αισθητά με την
ενσωμάτωση του αλγορίθμου ομαδοποίησης.

Abstract

Spatio-temporal models for count data are an important tool for a wide range of scientific
fields. Recently, they have become particularly crucial since they can be employed to
monitor the contagion dynamics of the COVID-19 pandemic, both in time and in space.
Considering the endemic-epidemic framework, we first describe the general modelling
approach and then employ various extensions. The models are exemplified through an
analysis of daily COVID-19 death counts from the twelve provinces of The Netherlands
during the first eight months of 2021. Since similar spatial behavior is a common feature
of discrete-valued time series data, it needs to be taken into account appropriately. In
this paper, we propose the incorporation of an algorithm that will cluster regions based on
their spatio-temporal characteristics. In our application, we find that the region specific
extensions of the endemic-epidemic model provide a better fit. However, notably, the
performance of all the extensions is considerably improved by the incorporation of the
clustering algorithm.
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Appendix A

Tables

Model 2.1.1. Model 2.1.2. Model 2.1.3. Model 2.1.4.
Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE)

𝛼(𝑣) -4.269(0.114) -4.266(0.114) -4.327(0.117) -4.317(0.116)
𝛼(𝜆)

1 -1.463(0.043) -1.234(0.089) -1.486(0.044) -1.226(0.091)
𝛼(𝜆)

2 -2.061(0.184) -2.035 (0.176)
𝛼(𝜆)

3 -1.296(0.092) -1.361 (0.099)
𝛼(𝜙)

1 -4.23 (0.116) -4.229 (0.115) -3.983 (0.285) -4.091 (0.319)
𝛼(𝜙)

2 -11.906 (12.707) -12.132 (14.849)
𝛼(𝜙)

3 -3.556 (0.17) -3.516 (0.168)
𝜓 1.6 (0.006) 1.64 (0.006) 1.638 (0.006) 1.673 (0.007)

npar: 4 6 6 8
Log-likelihood: -4515.031 -4505.076 -4497.358 -4488.26

AIC: 9038.062 9022.152 9006.716 8992.52
QAIC: 5651.789 5505.995 5496.583 5391.162
BIC: 9061.974 9058.02 9042.584 9040.344
CAIC: 9065.974 9064.02 9048.584 9048.344
HQIC: 9046.675 9035.072 9019.636 9009.747

Table A.1: Estimates and their standard error (SE) of the parameters for the order-3
models. In the second part model selection criteria and the number of the parameters
(npar) are provided.
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Model 2.2.1. Model 2.2.2. Model 2.2.3. Model 2.2.4.
Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

𝛼(𝑣) -4.537 (0.138) -4.536 (0.137) -4.59 (0.141) -4.583 (0.141)
𝛼(𝜆)

1 -1.681 (0.039) -1.432 (0.104) -1.693 (0.04) -1.436 (0.108)
𝛼(𝜆)

2 -2.357 (0.229) -2.276 (0.21)
𝛼(𝜆)

3 -1.594 (0.117) -1.601 (0.12)
𝛼(𝜆)

4 -1.572 (0.112) -1.63 (0.119)
𝛼(𝜙)

1 -4.739 (0.132) -4.74 (0.131) -4.51 (0.443) -4.549 (0.468)
𝛼(𝜙)

2 -11.873 (12.798) -13.165 (25.779)
𝛼(𝜙)

3 -5.042 (0.831) -4.819 (0.691)
𝛼(𝜙)

4 -3.919 (0.272) -4.013 (0.294)
𝜓 1.72 (0.007) 1.75 (0.007) 1.74 (0.007) 1.77 (0.007)

npar: 4 7 7 10
Log-likelihood: -4460.431 -4451.707 -4449.476 -4442.221

AIC: 8928.862 8917.414 8912.952 8904.442
QAIC: 5194.548 5101.665 5128.34 5039.459
BIC: 8952.774 8959.26 8954.798 8964.222
CAIC: 8956.774 8966.26 8961.798 8974.222
HQIC: 8937.475 8932.488 8928.026 8925.976

Table A.2: Estimates and their standard error (SE) for the parameters of the order-4
models. In the second part model selection criteria and the number of the parameters
(npar) are provided.
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Province 𝛼(𝑣)
𝑘 (𝑆𝐸) 𝛼(𝜆)(𝑆𝐸) 𝛼(𝜙)(𝑆𝐸) 𝜓

Drenthe -3.662 (0.309) -0.822 (0.069) -2.52 (0.077) 1.398
Flevoland -5.376 (0.697)
Friesland -3.459 (0.254)
Gelderland -4.095 (0.274)
Groningen -3.154 (0.197)
Limburg -2.591 (0.153)

North-Brabant -4.215 (0.241)
North-Holland -3.198 (0.148)
Overijssel -3.604 (0.21)
Utrecht -4.693 (0.456)
Zeeland -4.828 (0.573)

South-Holland -3.478 (0.168)
npar: 15
LL: -4584.434
AIC: 9198.868
QAIC: 6588.561
BIC: 9288.538
CAIC: 9303.538
HQIC: 9231.169

Table A.3: Estimates and their standard error in parenthesis, for the parameters of the
simple model with region-specific parameters in the endemic part. In the second part
of the table the model selection criteria are provided. L.L symbolizes the log-likelihood
and npar represents the number of parameters.
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Province 𝛼(𝑣)(𝑆𝐸) 𝛼(𝜆)
𝑘 (𝑆𝐸) 𝛼(𝜙)(𝑆𝐸) 𝜓

Drenthe -3.739 (0.082) -0.787 (0.218) -2.48 (0.074) 1.432
Flevoland -11.0.53 (52.759)
Friesland -1.086 (0.246)
Gelderland 0.94 (0.195)
Groningen -1.32 (0.269)
Limburg -0.309 (0.13)

North-Brabant -0.871 (0.175)
North-Holland -0.42 (0.117)
Overijssel -0.647 (0.16)
Utrecht -2.187 (0.587)
Zeeland -2.823 (1.384)

South-Holland -0.419 (0.109)
npar: 15
LL: -4583.505
AIC: 9197.01
QAIC: 6431.543
BIC: 9286.68
CAIC: 9301.68
HQIC: 9229.311

Table A.4: Estimates and their standard error (SE) for the parameters of the simple
model with region-specific parameters in the autoregressive part. In the second part of
the table the model selection criteria are provided. L.L symbolizes the log-likelihood and
npar represents the number of parameters.
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Province 𝛼(𝑣)(𝑆𝐸) 𝛼(𝜆)(𝑆𝐸) 𝛼(𝜙)
𝑘 (𝑆𝐸) 𝜓

Drenthe -3.988 (0.087) -1.381 (0.104) -1.871 (0.148) 1.78
Flevoland -3.911 (0.189)
Friesland -2.323 (0.14)
Gelderland -2.061 (0.114)
Groningen -1.514 (0.157)
Limburg -1.094 (0.102)

North-Brabant -1.907 (0.119)
North-Holland -1.229 (0.113)
Overijssel -1.625 (0.131)
Utrecht -2.517 (0.121)
Zeeland -3.293 (0.164)

South-Holland -1.201 (0.106)
npar: 15
LL: -4460.234
AIC: 8950.468
QAIC: 5047.136
BIC: 9040.138
CAIC: 9055.138
HQIC: 8982.769

Table A.5: Estimates and their standard error (SE) for the parameters of the simple
model with region-specific parameters in the spatiotemporal part. In the second part of
the table the model selection criteria are provided. L.L symbolizes the log-likelihood and
npar represents the number of parameters.
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Province 𝛼(𝑣)
𝑘 (𝑆𝐸) 𝛼(𝜆)

𝑘 (𝑆𝐸) 𝛼(𝜙)(𝑆𝐸) 𝜓
Drenthe -3.682 (0.319) -0.785 (0.22) -2.507 (0.074) 1.5
Flevoland -5.335 (0.693) -12.992 (146.83)
Friesland -3.411 (0.253) -1.21 (0.255)
Gelderland -4.107 (0.285) -0.82 (0.181)
Groningen -3.041 (0.193) -1.602 (0.357)
Limburg -2.629 (0.189) -0.752 (0.218)

North-Brabant -4.27 (0.251) -0.724 (0.157)
North-Holland -3.386 (0.181) -0.532 (0.143)
Overijssel -3.673 (0.22) -0.645 (0.161)
Utrecht -4.401 (0.405) -1.777 (0.418)
Zeeland -4.687 (0.571) -2.298 (0.844)

South-Holland -3.821 (0.201) -0.39 (0.114)
npar: 26
LL: -4551.702
AIC: 9155.404
QAIC: 6129.039
BIC: 9310.831
CAIC: 9336.831
HQIC: 9211.392

Table A.6: Estimates and their standard error (SE) for the parameters of the simple
model with region-specific parameters in the endemic and in autoregressive part. In the
second part of the table the model selection criteria are provided. L.L symbolizes the
log-likelihood and npar represents the number of parameters.
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Province 𝛼(𝑣)
𝑘 (𝑆𝐸) 𝛼(𝜆)(𝑆𝐸) 𝛼(𝜙)

𝑘 (𝑆𝐸) 𝜓
Drenthe -3.977(0.365) -1.45(0.111) -1.854(0.154) 1.809
Flevoland -4.026(0.492) -3.892(0.227)
Friesland -3.382(0.277) -2.448(0.176)
Gelderland -4.766(0.504) -1.908(0.118)
Groningen -3.655(0.292) -1.592(0.185)
Limburg -3.292(0.243) -1.205(0.123)

North-Brabant -4.805(0.347) -1.746(0.11)
North-Holland -3.527(0.187) -1.339(0.135)
Overijssel -4.065(0.28) -1.589(0.135)
Utrecht -4.773(0.521) -2.377(0.121)
Zeeland -3.936(0.54) -3.293(0.197)

South-Holland -4.042(0.216) -1.166(0.109)
npar: 26
LL: -4444.643
AIC: 8941.286
QAIC: 4965.923
BIC: 9096.713
CAIC: 9122.713
HQIC: 8997.274

Table A.7: Estimates and their standard error (SE) for the parameters of the simple
model with region-specific parameters in the endemic and in spatiotemporal part. In the
second part of the table the model selection criteria are provided. L.L symbolizes the
log-likelihood and npar represents the number of parameters.
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Province 𝛼(𝑣)(𝑆𝐸) 𝛼(𝜆)
𝑘 (𝑆𝐸) 𝛼(𝜙)

𝑘 (𝑆𝐸) 𝜓
Drenthe -4.0 (0.089) -1.135 (0.322) -1.94 (0.18) 1.808
Flevoland -3.219 (2.041) -3.746 (0.184)
Friesland -1.097 (0.28) -2.421 (0.18)
Gelderland -1.385 (0.38) -2.056 (0.162)
Groningen -1.672 (0.358) -1.488 (0.156)
Limburg -1.511 (0.344) -1.069 (0.114)

North-Brabant -1.514 (0.421) -1.862 (0.167)
North-Holland -0.921 (0.211) -1.423 (0.166)
Overijssel -1.152 (0.307) -1.708 (0.186)
Utrecht -2.479 (0.869) -2.34 (0.131)
Zeeland -1.33 (0.354) -3.302 (0.175)

South-Holland -1.157 (0.31) -1.292 (0.18)
npar: 26
LL: -4452.499
AIC: 8956.998
QAIC: 4933.331
BIC: 8936.91
CAIC: 8940.91
HQIC: 8921.611

Table A.8: Estimates and their standard error (SE) for the parameters of the simple
model with region-specific parameters in the autoregressive and in spatiotemporal part.
In the second part of the table the model selection criteria are provided. L.L symbolizes
the log-likelihood and npar represents the number of parameters.
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Province 𝛼(𝑣)
𝑘 (𝑆𝐸) 𝛼(𝜆)(𝑆𝐸) 𝛼(𝜙)(𝑆𝐸) 𝜓

Drenthe -3.998 (0.366) -1.137 (0.321) -1.94 (0.183) 1.852
Flevoland -3.97 (0.483) -3.256 (2.157) -3.752 (0.211)
Friesland -3.324 (0.269) -1.001 (0.265) -2.67 (0.258)
Gelderland -4.76 (0.502) -1.428 (0.369) -1.915 (0.152)
Groningen -3.59 (0.291) -1.801 (0.42) -1.578 (0.183)
Limburg -3.115 (0.241) -2.422 (0.991) -1.114 (0.125)

North-Brabant -4.808 (0.347) -1.524 (0.387) -1.726 (0.144)
North-Holland -3.614 (0.201) -1.018 (0.242) -1.497 (0.185)
Overijssel -4.065 (0.281) -1.153 (0.303) -1.694 (0.19)
Utrecht -4.767 (0.51) -2.408 (0.763) -2.247 (0.123)
Zeeland -3.945 (0.541) -1.334 (0.354) -3.314 (0.206)

South-Holland -4.074 (0.221) -1.143 (0.304) -1.282 (0.178)
npar: 37
LL: -4435.875
AIC: 8945.75
QAIC: 4864.362
BIC: 9166.935
CAIC: 9203.935
HQIC: 9025.425

Table A.9: Estimates and their standard error (SE) for the parameters of the simple
model with region-specific parameters in all components. In the second part of the table
the model selection criteria are provided. L.L symbolizes the log-likelihood and npar
represents the number of parameters.
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Province 𝛼(𝑣)
𝑘 (𝑆𝐸) 𝛼(𝜆)(𝑆𝐸) 𝛼(𝜙)(𝑆𝐸) 𝜓

Drenthe -13.685 (48.049) -1.945 (0.045) -4.904 (0.143) 1.734
Flevoland -16.447 (195.56)
Friesland -4.943 (0.713)
Gelderland -4.852 (0.441)
Groningen -4.403 (0.517)
Limburg -3.807 (0.343)

North-Brabant -4.926 (0.365)
North-Holland -4.109 (0.277)
Overijssel -4.615 (0.427)
Utrecht -5.077 (0.577)
Zeeland -3.762 (0.401)

South-Holland -4.396 (0.296)
npar: 15
LL: -4439.857
AIC: 8909.714
QAIC: 5150.942
BIC: 8999.384
CAIC: 9014.384
HQIC: 8942.015

Table A.10: Estimates and their standard error (SE) for the parameters of the order 5
model with region-specific parameters in the endemic part. In the second part of the
table the model selection criteria are provided. L.L symbolizes the log-likelihood and
npar represents the number of parameters
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Province 𝛼(𝑣)(𝑆𝐸) 𝛼(𝜆)
𝑘 (𝑆𝐸) 𝛼(𝜙)(𝑆𝐸) 𝜓

Drenthe -4.927 (0.186) -2.133 (0.176) -4.587 (0.107) 1.806
Flevoland -12.269 (42.906)
Friesland -2.304 (0.19)
Gelderland -1.996 (0.107)
Groningen -2.225 (0.186)
Limburg -1.739 (0.083)

North-Brabant -1.937 (0.095)
North-Holland -1.801 (0.081)
Overijssel -2.095 (0.127)
Utrecht -2.147 (0.143)
Zeeland -2.634 (0.276)

South-Holland -1.812 (0.076)
npar: 15
LL: -4421.404
AIC: 8872.808
QAIC: 4926.35
BIC: 8962.478
CAIC: 8977.478
HQIC: 8905.109

Table A.11: Estimates and their standard error (SE) for the parameters of the order 5
model with region-specific parameters in the autoregressive part. In the second part of
the table the model selection criteria are provided. L.L symbolizes the log-likelihood and
npar represents the number of parameters
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Province 𝛼(𝑣)(𝑆𝐸) 𝛼(𝜆)(𝑆𝐸) 𝛼(𝜙)
𝑘 (𝑆𝐸) 𝜓

Drenthe -5.378 (0.263) -2.726 (0.141) -4.165 (0.171) 1.924
Flevoland -5.533 (0.197)
Friesland -4.263 (0.147)
Gelderland -3.599 (0.132)
Groningen -3.751 (0.159)
Limburg -2.519 (0.132)

North-Brabant -3.266 (0.133)
North-Holland -2.825 (0.127)
Overijssel -3.8 (0.156)
Utrecht -3.864 (0.136)
Zeeland -4.148 (0.162)

South-Holland -2.745 (0.122)
npar: 15
LL: -4382.646
AIC: 8795.292
QAIC: 4585.765
BIC: 8884.962
CAIC: 8899.962
HQIC: 8827.593

Table A.12: Estimates and their standard error (SE) for the parameters of the order 5
model with region-specific parameters in the spatiotemporal part. In the second part of
the table the model selection criteria are provided. L.L symbolizes the log-likelihood and
npar represents the number of parameters
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Province 𝛼(𝑣)
𝑘 (𝑆𝐸) 𝛼(𝜆)

𝑘 (𝑆𝐸) 𝛼(𝜙)(𝑆𝐸) 𝜓
Drenthe -12.43 (25.185) -1.644 (0.124) -5.287 (0.149) 1.807
Flevoland -5.129 (0.731) -2.368 (0.274)
Friesland -3.688 (0.279) -1.851 (0.131)
Gelderland -4.072 (0.258) -1.83 (0.101)
Groningen -3.187 (0.222) -2.011 (0.176)
Limburg -3.547 (0.275) -1.713 (0.095)

North-Brabant -4.306 (0.236) -1.787 (0.091)
North-Holland -3.686 (0.22) -1.846 (0.096)
Overijssel -3.7 (0.226) -1.92 (0.118)
Utrecht -3.915 (0.252) -1.885 (0.121)
Zeeland -2.72 (0.199) -2.199 (0.21)

South-Holland -4.014 (0.227) -1.792 (0.081)
npar: 26
LL: -4460.851
AIC: 8973.702
QAIC: 4989.3
BIC: 9129.129
CAIC: 9155.129
HQIC: 9029.69

Table A.13: Estimates and their standard error (SE) for the parameters of the order 5
model with region-specific parameters in the endemic and in autoregressive part. In the
second part of the table the model selection criteria are provided. L.L symbolizes the
log-likelihood and npar represents the number of parameters
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Province 𝛼(𝑣)
𝑘 (𝑆𝐸) 𝛼(𝜆)(𝑆𝐸) 𝛼(𝜙)

𝑘 (𝑆𝐸) 𝜓
Drenthe -12.337 (23.565) -2.894 (0.173) -4.044 (0.154) 1.936
Flevoland -6.177 (2.01) -5.385 (0.186)
Friesland -5.196 (0.882) -4.183 (0.147)
Gelderland -5.054 (0.563) -3.55 (0.137)
Groningen -5.09 (0.722) -3.686 (0.16)
Limburg -4.061 (0.443) -2.549 (0.146)

North-Brabant -5.664 (0.594) -3.171 (0.126)
North-Holland -4.201 (0.327) -2.913 (0.147)
Overijssel -4.772 (0.525) -3.759 (0.166)
Utrecht -6.238 (1.289) -3.737 (0.127)
Zeeland -3.785 (0.5) -4.306 (0.226)

South-Holland -4.707 (0.386) -2.731 (0.127)
npar: 26
LL: -4376.51
AIC: 8805.02
QAIC: 4573.188
BIC: 8960.447
CAIC: 8986.447
HQIC: 8861.008

Table A.14: Estimates and their standard error (SE) for the parameters of the order 5
model with region-specific parameters in the endemic and in spatiotemporal part. In the
second part of the table the model selection criteria are provided. L.L symbolizes the
log-likelihood and npar represents the number of parameters
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Province 𝛼(𝑣)(𝑆𝐸) 𝛼(𝜆)
𝑘 (𝑆𝐸) 𝛼(𝜙)

𝑘 (𝑆𝐸) 𝜓
Drenthe -5.365 (0.263) -1.979 (0.234) -4.845 (0.459) 1.957
Flevoland -3.802 (1.23) -5.263 (0.21)
Friesland -2.382 (0.328) -4.455 (0.285)
Gelderland -2.533 (0.406) -3.71 (0.299)
Groningen -3.341 (0.686) -3.582 (0.188)
Limburg -2.334 (0.287) -2.767 (0.282)

North-Brabant -3.368 (1.003) -3.032 (0.243)
North-Holland -2.466 (0.411) -2.985 (0.328)
Overijssel -2.271 (0.231) -4.139 (0.295)
Utrecht -4.576 (3.349) -3.507 (0.212)
Zeeland -3.406 (0.638) -3.987 (0.176)

South-Holland -3.097 (0.819) -2.589 (0.262)
npar: 26
LL: -4373.644
AIC: 8799.288
QAIC: 4521.743
BIC: 8954.715
CAIC: 8980.715
HQIC: 8855.276

Table A.15: Estimates and their standard error (SE) for the parameters of the order 5
model with region-specific parameters in the autoregressive and in spatiotemporal part.
In the second part of the table the model selection criteria are provided. L.L symbolizes
the log-likelihood and npar represents the number of parameters
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Province 𝛼(𝑣)
𝑘 (𝑆𝐸) 𝛼(𝜆)(𝑆𝐸) 𝛼(𝜙)(𝑆𝐸) 𝜓

Drenthe -13.505 (43.465) -1.967 (0.237) -4.838 (0.464) 1.961
Flevoland -10.391 (23.699) -4.457 (2.892) -5.163 (0.222)
Friesland -5.57 (1.614) -2.437 (0.397) -4.415 (0.352)
Gelderland -5.505 (0.86) -2.776 (0.55) -3.562 (0.288)
Groningen -5.492 (0.953) -3.725 (1.132) -3.515 (0.2)
Limburg -4.506 (0.648) -2.408 (0.343) -2.794 (0.311)

North-Brabant -6.296 (0.893) -3.522 (1.285) -2.97 (0.252)
North-Holland -4.313 (0.383) -2.93 (0.722) -2.874 (0.312)
Overijssel -4.897 (0.65) -2.239 (0.235) -4.268 (0.39)
Utrecht -11.793 (31.19) -4.238 (2.266) -3.491 (0.196)
Zeeland -4.15 (0.759) -3.526 (0.785) -4.096 (0.247)

South-Holland -4.698 (0.419) -3.976 (3.054) -2.477 (0.348)
npar: 37
LL: -4365.005
AIC: 8804.01
QAIC: 4525.815
BIC: 9025.195
CAIC: 9062.195
HQIC: 8883.685

Table A.16: Estimates and their standard error (SE) for the parameters of the order 5
model with region-specific parameters in all components. In the second part of the table
the model selection criteria are provided. L.L symbolizes the log-likelihood and npar
represents the number of parameters

94



Province 𝛼(𝑣)
𝑘 (𝑆𝐸) 𝛽(𝑣) 𝛼(𝜆)(𝑆𝐸) 𝛼(𝜙)(𝑆𝐸) 𝜓

Drenthe -3.661 (0.301) -9.01 (0.229) -0.844 (0.069) -2.561 (0.079) 1.413
Flevoland -5.417 (0.696)
Friesland -3.488 (0.246)
Gelderland -4.267 (0.259)
Groningen -3.211 (0.194)
Limburg -2.732 (0.15)

North-Brabant -4.528 (0.24)
North-Holland -3.646 (0.182)
Overijssel -3.717 (0.205)
Utrecht -4.784 (0.429)
Zeeland -4.851 (0.572)

South-Holland -4.055 (0.218)
npar: 16
LL: -4575.325
AIC: 9182.65
QAIC: 6508.044
BIC: 9278.297
CAIC: 9294.297
HQIC: 9217.104

Table A.17: Estimates and their standard error (SE) for the parameters of the extension
with cases as covariate with lag 5 days. The endemic part consists of province-specific
parameters. In the second part of the table the model selection criteria are provided.
L.L symbolizes the log-likelihood and npar represents the number of parameters.
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Province 𝛼(𝑣)(𝑆𝐸) 𝛽(𝑣) 𝛼(𝜆)
𝑘 (𝑆𝐸) 𝛼(𝜙)(𝑆𝐸) 𝜓

Drenthe -3.876 (0.1) -9.609 (0.372) -0.772 (0.215) -2.481 (0.073) 1.438
Flevoland -7.817 (10.498)
Friesland -1.074 (0.243)
Gelderland 0.958 (0.198)
Groningen -1.296 (0.264)
Limburg -0.307 (0.13)

North-Brabant -0.927 (0.184)
North-Holland -0.467 (0.123)
Overijssel -0.642 (0.159)
Utrecht -2.172 (0.578)
Zeeland -2.733 (1.128)

South-Holland -0.496 (0.119)
npar: 16
LL: -4580.196
AIC: 9192.392
QAIC: 6402.231
BIC: 9288.039
CAIC: 9304.039
HQIC: 9226.846

Table A.18: Estimates and their standard error (SE) for the parameters of the model
with cases considered in lag 5. The parameters in the autoregressive part are region-
specific. In the second part of the table the model selection criteria are provided. L.L
symbolizes the log-likelihood and npar represents the number of parameters.
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Province 𝛼(𝑣)(𝑆𝐸) 𝛽(𝑣) 𝛼(𝜆)(𝑆𝐸) 𝛼(𝜙)
𝑘 (𝑆𝐸) 𝜓

Drenthe -4.096 (0.108) -9.872 (0.533) -1.386 (0.104) -1.86 (0.147) 1.78
Flevoland -3.888 (0.186)
Friesland -2.31 (0.137)
Gelderland -2.069 (0.115)
Groningen -1.5 (0.156)
Limburg -1.092 (0.102)

North-Brabant -1.936 (0.123)
North-Holland -1.252 (0.116)
Overijssel -1.619 (0.131)
Utrecht -2.514 (0.121)
Zeeland -3.278 (0.162)

South-Holland -1.245 (0.113)
npar: 16
LL: -4458.638
AIC: 8949.276
QAIC: 5041.706
BIC: 9044.923
CAIC: 9060.923
HQIC: 8983.73

Table A.19: Estimates and their standard error (SE) for the parameters of the model
with cases as covariate and region-specific parameters in the spatiotemporal part. In
the second part of the table the model selection criteria are provided. L.L symbolizes
the log-likelihood and npar represents the number of parameters.
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Province 𝛼(𝑣)
𝑘 (𝑆𝐸) 𝛽(𝑣) 𝛼(𝜆)

𝑘 (𝑆𝐸) 𝛼(𝜙)(𝑆𝐸) 𝜓
Drenthe -3.691 (0.313) -9.093 (0.23) -0.779 (0.22) -2.542 (0.076) 1.511
Flevoland -5.365 (0.691) -10.4 (40.39)
Friesland -3.443 (0.247) -1.106 (0.251)
Gelderland -4.269 (0.274) -0.83 (0.183)
Groningen -3.096 (0.192) -1.602 (0.357)
Limburg -2.734 (0.183) -0.817 (0.23)

North-Brabant -4.553 (0.254) -0.749 (0.161)
North-Holland -3.804 (0.217) -0.546 (0.146)
Overijssel -3.787 (0.217) -0.643 (0.161)
Utrecht -4.508 (0.387) -1.773 (0.4)
Zeeland -4.706 (0.57) -2.218 (0.786)

South-Holland -4.3 (0.243) -0.437 (0.118)
npar: 27
LL: -4545.033
AIC: 9144.066
QAIC: 6069.927
BIC: 9305.471
CAIC: 9332.471
HQIC: 9202.207

Table A.20: Estimates and their standard error (SE) for the parameters of the model
with cases as covariate in a 5 lag and with region-specific parameters in the endemic
and in autoregressive part. In the second part of the table the model selection crite-
ria are provided. L.L symbolizes the log-likelihood and npar represents the number of
parameters.
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Province 𝛼(𝑣)
𝑘 (𝑆𝐸) 𝛽(𝑣) 𝛼(𝜆)(𝑆𝐸) 𝛼(𝜙)

𝑘 (𝑆𝐸) 𝜓
Drenthe -3.997 (0.364) -9.483 (0.43) -1.452 (0.111) -1.858 (0.154) 1.814
Flevoland -4.05 (0.49) -3.896 (0.229)
Friesland -3.403 (0.274) -2.464 (0.179)
Gelderland -4.858 (0.493) -1.923 (0.122)
Groningen -3.701 (0.292) -1.594 (0.185)
Limburg -3.347 (0.238) -1.228 (0.126)

North-Brabant -4.972 (0.348) -1.766 (0.114)
North-Holland -3.852 (0.237) -1.344 (0.137)
Overijssel -4.141 (0.28) -1.596 (0.136)
Utrecht -4.858 (0.513) -2.383 (0.122)
Zeeland -3.937 (0.54) -3.302 (0.201)

South-Holland -4.365 (0.265) -1.194 (0.113)
npar: 27
LL: -4442.097
AIC: 8938.194
QAIC: 4951.571
BIC: 9099.599
CAIC: 9126.599
HQIC: 8996.335

Table A.21: Estimates and their standard error (SE) for the parameters of the extended
model with 5 days lagged cases as covariate and with region-specific parameters in the
endemic and in spatiotemporal part. In the second part of the table the model selection
criteria are provided. L.L symbolizes the log-likelihood and npar represents the number
of parameters
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Province 𝛼(𝑣)(𝑆𝐸) 𝛽(𝑣) 𝛼(𝜆)
𝑘 (𝑆𝐸) 𝛼(𝜙)

𝑘 (𝑆𝐸) 𝜓
Drenthe -4.094 (0.109) 9.996 (0.622) -1.132 (0.321) -1.932 (0.179) 1.809
Flevoland -3.186 (1.967) -3.731 (0.182)
Friesland -1.103 (0.281) -2.408 (0.178)
Gelderland -1.378 (0.377) -2.068 (0.163)
Groningen -1.657 (0.353) -1.478 (0.155)
Limburg -1.5 (0.339) -1.071 (0.114)

North-Brabant -1.512 (0.424) -1.888 (0.173)
North-Holland -0.946 (0.217) -1.435 (0.169)
Overijssel -1.153 (0.306) -1.703 (0.185)
Utrecht -2.462 (0.854) -2.341 (0.131)
Zeeland -1.326 (0.353) -3.29 (0.174)

South-Holland -1.178 (0.316) -1.325 (0.187)
npar: 27
LL: -4451.314
AIC: 8956.628
QAIC: 4975.298
BIC: 9118.033
CAIC: 9145.033
HQIC: 9014.769

Table A.22: Estimates and their standard error (SE) for the parameters of the model with
cases as covariate in lag of 5 days and with region-specific parameters in the autore-
gressive and in spatiotemporal part. In the second part of the table the model selection
criteria are provided. L.L symbolizes the log-likelihood and npar represents the number
of parameters
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Province 𝛼(𝑣)
𝑘 (𝑆𝐸) 𝛽(𝑣) 𝛼(𝜆)

𝑘 (𝑆𝐸) 𝛼(𝜙)
𝑘 (𝑆𝐸) 𝜓

Drenthe -4.019 (0.365) -9.412 (0.406) -1.138 (0.322) -1.944 (0.185) 1.859
Flevoland -3.993 (0.48) -3.276 (2.196) -3.756 (0.212)
Friesland -3.345 (0.265) -0.991 (0.262) -2.701 (0.266)
Gelderland -4.857 (0.489) -1.417 (0.366) -1.935 (0.157)
Groningen -3.639 (0.291) -1.806 (0.422) -1.58 (0.183)
Limburg -3.16 (0.232) -2.643 (1.235) -1.128 (0.126)

North-Brabant -4.988 (0.348) -1.518 (0.387) -1.749 (0.149)
North-Holland -3.939 (0.254) -1.027 (0.242) -1.495 (0.185)
Overijssel -4.147 (0.282) -1.151 (0.304) -1.706 (0.193)
Utrecht -4.865 (0.504) -2.392 (0.751) -2.254 (0.124)
Zeeland -3.945 (0.538) -1.336 (0.355) -3.324 (0.21)

South-Holland -4.423 (0.272) -1.146 (0.297) -1.313 (0.18)
npar: 38
LL: -4433.045
AIC: 8942.09
QAIC: 4845.279
BIC: 9169.253
CAIC: 9207.253
HQIC: 9023.918

Table A.23: Estimates and their standard error (SE) for the parameters of the model
with the five days lagged covariate of cases and with region-specific parameters in all
components. In the second part of the table the model selection criteria are provided.
L.L symbolizes the log-likelihood and npar represents the number of parameters
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𝛼(𝑣)
𝑘 (𝑆𝐸) 𝛾(𝑣)(𝑆𝐸) 𝛼(𝜆)(𝑆𝐸) 𝛼(𝜙)(𝑆𝐸) 𝛾(𝜙)(𝑆𝐸) 𝜓

Drenthe -2.342 (0.107) 0.285 (0.057) -18.207 (5.578) 12.096 (4.294) -9.881 (3.767) 2.727
Flevoland -3.057 (0.144)
Friesland -2.24 (0.098) 𝛿(𝑣)(𝑆𝐸) 𝛿(𝜙)(𝑆𝐸)
Gelderland -2.504 (0.081) 1.497 (0.041) -2.076 (0.171)
Groningen -2.705 (0.113)
Limburg -1.925 (0.08)

North-Brabant -2.694 (0.08)
North-Holland -2.347 (0.075)
Overjissel -2.486 (0.092)
Utrecht -2.647 (0.091)
Zeeland -2.682 (0.138)

South-Holland -2.311 (0.072)
npar: 19
LL: -4213.939
AIC: 8465.878
QAIC: 3128.531
BIC: 8579.459
CAIC: 8598.459
HQIC: 8506.792

Table A.24: Estimates and their standard error (SE) for the parameters of the extension
with seasonality terms in the endemic and spatiotemporal part. The endemic parame-
ters are region-specific. In the second part of the table the model selection criteria are
provided. L.L symbolizes the log-likelihood and npar represents the number of param-
eters
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𝛼(𝑣)
𝑘 (𝑆𝐸) 𝛾(𝑣)(𝑆𝐸) 𝛼(𝜆)(𝑆𝐸) 𝛼(𝜙)(𝑆𝐸) 𝛾(𝜙)(𝑆𝐸) 𝜓

Drenthe -2.504 (0.042) 0.317 (0.06) -1.615 (0.37) -21.725 (7.661) 14.772 (5.846) 2.593
Flevoland -18.819 (1482)
Friesland 𝛿(𝑣)(𝑆𝐸) -1.379 (0.255) 𝛿(𝜙)(𝑆𝐸)
Gelderland 1.483 (0.044) -2.019 (0.393) -12.14 (5.174)
Groningen -13.533
Limburg -1.044 (0.176)

North-Brabant -14.237 (217.44)
North-Holland -1.55 (0.247)
Overjissel -1.497 (0.277)
Utrecht -11.223
Zeeland -1.806 (0.452)

South-Holland -1.391 (0.205)
npar: 19
LL: -4238.01
AIC: 8514.02
QAIC: 3306.808
BIC: 8627.601
CAIC: 8646.601
HQIC: 8554.934

Table A.25: Estimates and their standard error (SE) for the parameters of the model with
seasonality terms in the endemic and spatiotemporal components. The parameters in
the autoregressive part are region-specific. In the second part of the table the model
selection criteria are provided. L.L symbolizes the log-likelihood and npar represents
the number of parameters
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𝛼(𝑣)
𝑘 (𝑆𝐸) 𝛾(𝑣)(𝑆𝐸) 𝛼(𝜆)(𝑆𝐸) 𝛼(𝜙)(𝑆𝐸) 𝛾(𝜙)(𝑆𝐸) 𝜓

Drenthe -2.732 (0.076) 0.642 (0.125) -2.057 (0.176) -2.8 (0.551) -0.896 (0.444) 2.617
Flevoland -12.4 (30.061)
Friesland 𝛿(𝑣)(𝑆𝐸) -3.584 (0.451) 𝛿(𝜙)(𝑆𝐸)
Gelderland 1.187 (0.092) -3.071 (0.335) 0.689 (5.174)
Groningen -5.077 (4.167)
Limburg -1.714 (0.27)

North-Brabant -4.042 (0.853)
North-Holland -2.376 (0.385)
Overjissel -2.441 (0.278)
Utrecht -4.043 (0.497)
Zeeland -17.585 (437.289)

South-Holland -2.168 (0.322)
npar: 19
LL: -4244.421
AIC: 8526.842
QAIC: 3281.73
BIC: 8640.423
CAIC: 8659.423
HQIC: 8567.756

Table A.26: Estimates and their standard error (SE) for the parameters of the model
with seasonality terms in the endemic and autoregressive part and region-specific pa-
rameters in the spatiotemporal one. In the second part of the table the model selection
criteria are provided. L.L symbolizes the log-likelihood and npar represents the number
of parameters
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𝛼(𝑣)
𝑘 (𝑆𝐸) 𝛾(𝑣)(𝑆𝐸) 𝛼(𝜆)(𝑆𝐸) 𝛼(𝜙)(𝑆𝐸) 𝛾(𝜙)(𝑆𝐸) 𝜓

Drenthe -2.355 (0.139) 0.297 (0.058) -2.006 (0.685) -18.697 (5.427) 12.565 (4.227) 2.79
Flevoland -2.96 (0.131) -35.988
Friesland -2.297 (0.122) 𝛿(𝑣)(𝑆𝐸) -1.735 (0.426) 𝛿(𝜙)(𝑆𝐸)
Gelderland -2.523 (0.109) 1.491 (0.043) -1.976 ( 0.503) -10.11 (3.605)
Groningen -2.664 (0.121) -2.684 (0.894)
Limburg -1.878 (0.094) -2.712 (0.89)

North-Brabant -2.578 (0.07) -25.068
North-Holland -2.381 (0.101) -1.884 (0.439)
Overjissel -2.727 (0.139) -1.141 (0.259)
Utrecht -2.591 (0.114) -2.729 (1.123)
Zeeland -2.788 (0.158) -1.457 (0.363)

South-Holland -2.387 (0.106) -1.669 (0.389)
npar: 30
LL: -4203.232
AIC: 8466.464
QAIC: 3073.07
BIC: 8645.803
CAIC: 8675.803
HQIC: 8531.065

Table A.27: Estimates and their standard error (SE) for the parameters of the model
with seasonality considered in the endemic and spatiotemporal part. Parameters in the
endemic and in autoregressive part are region-specific. In the second part of the table
the model selection criteria are provided. L.L symbolizes the log-likelihood and npar
represents the number of parameters
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𝛼(𝑣)
𝑘 (𝑆𝐸) 𝛾(𝑣)(𝑆𝐸) 𝛼(𝜆)(𝑆𝐸) 𝛼(𝜙)(𝑆𝐸) 𝛾(𝜙)(𝑆𝐸) 𝜓

Drenthe -2.298 (0.107) 0.155 (0.062) -2.296 (0.205) -11.27 (2.227) 6.832 (1.731) 2.861
Flevoland -2.992 (0.144) -12.247 (2.095)
Friesland -2.149 (0.095) 𝛿(𝑣)(𝑆𝐸) -17.034 (9.949) 𝛿(𝜙)(𝑆𝐸)
Gelderland -2.503 (0.084) 1.606 (0.044) -10.668 (2.099) -4.999 (1.329)
Groningen -2.735 (0.119) -9.803 (2.183)
Limburg -1.974 (0.084) -9.728 (2.091)

North-Brabant -2.707 (0.084) -10.435 (2.143)
North-Holland -2.369 (0.079) -9.910 (2.151)
Overjissel -2.452 (0.093) -10.689 (2.147)
Utrecht -2.636 (0.094) -10.976 (2.107)
Zeeland -2.688 (0.147) -11.315 (2.218)

South-Holland -2.34 (0.075) -9.807 (2.105)
npar: 30
LL: -4188.852
AIC: 8437.704
QAIC: 2988.243
BIC: 8617.043
CAIC: 8647.043
HQIC: 8502.305

Table A.28: Estimates and their standard error (SE) for the parameters of the extended
model with seasonality terms in the endemic and spatiotemporal term and with region-
specific parameters in the endemic and in spatiotemporal part. In the second part of the
table the model selection criteria are provided. L.L symbolizes the log-likelihood and
npar represents the number of parameters
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𝛼(𝑣)
𝑘 (𝑆𝐸) 𝛾(𝑣)(𝑆𝐸) 𝛼(𝜆)(𝑆𝐸) 𝛼(𝜙)(𝑆𝐸) 𝛾(𝜙)(𝑆𝐸) 𝜓

Drenthe -2.5 (0.044) 0.196 (0.064) -1.68 (0.391) -12.203 (2.484) 7.703 (1.989) 2.712
Flevoland -14.348 (280.25) -13.689 (2.412)
Friesland 𝛿(𝑣)(𝑆𝐸) -1.351 (0.245) -21.704 ( 106.77) 𝛿(𝜙)(𝑆𝐸)
Gelderland 1.581 (0.046) -2.287 (0.514) -11.789 (2.401) -5.688 (1.493)
Groningen -3.587 (1.899) -11.165 (2.522)
Limburg -1.385 (0.243) -10.643 (2.401)

North-Brabant -14.931 (277.77) -11.678 (2.436)
North-Holland -1.732 (0.302) -11.052 (2.453)
Overjissel -1.567 (0.297) -11.938 (2.454)
Utrecht -4.585 (5.454) -12.059 (2.396)
Zeeland -1.756 (0.431) -12.675 (2.489)

South-Holland -1.661 (0.282) -10.952 (2.401)
npar: 30
LL: -4213.801
AIC: 8487.602
QAIC: 3167.523
BIC: 8666.941
CAIC: 8696.941
HQIC: 8552.203

Table A.29: Estimates and their standard error (SE) for the parameters of the model
with seasonality terms in the endemic and spatiotemporal part and region-specific pa-
rameters in the epidemic component. In the second part of the table the model selection
criteria are provided. L.L symbolizes the log-likelihood and npar represents the number
of parameters
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𝛼(𝑣)
𝑘 (𝑆𝐸) 𝛾(𝑣)(𝑆𝐸) 𝛼(𝜆)(𝑆𝐸) 𝛼(𝜙)(𝑆𝐸) 𝛾(𝜙)(𝑆𝐸) 𝜓

Drenthe -2.62 (0.158) 0.687 (0.087) -3.007 (1.781) -3.584 (0.604) -3.059 (1.989) 2.931
Flevoland -3.018 (0.166) -9.433 (68.4) -6.412 (1.042)
Friesland -2.461 (0.13) 𝛿(𝑣)(𝑆𝐸) -1.43 (0.327) -13.252 (95.193) 𝛿(𝜙)(𝑆𝐸)
Gelderland -2.793 (0.136) 1.155 (0.052) -1.895 (0.45) -3.815 (2.401) 2.335 (0.661)
Groningen -2.81 (0.142) -3.035 (1.334) -4.241 (1.014)
Limburg -2.088 (0.118) -4.496 (5.799) -3.244 (0.543)

North-Brabant -2.756 (0.094) -11.676 (100.025) -4.18 (0.649)
North-Holland -2.571 (0.126) -1.953 (0.484) -3.754 (0.897)
Overjissel -2.982 (0.152) -1.99 (0.58) -2.873 (0.471)
Utrecht -2.796 (0.131) -2.308 (0.695) -4.728 (0.674)
Zeeland -2.639 (0.137) -1.916 (0.529) -20.901 (1211.25)

South-Holland -2.592 (0.124) -1.654 (0.396) -3.9 (0.842)
npar: 41
LL: -4199.591
AIC: 8481.182
QAIC: 2947.637
BIC: 8726.279
CAIC: 8767.279
HQIC: 8569.47

Table A.30: Estimates and their standard error (SE) for the parameters of the model with
seasonality terms in the endemic and spatiotemporal component and region-specific
parameters in all terms. In the second part of the table the model selection criteria are
provided. L.L symbolizes the log-likelihood and npar represents the number of param-
eters
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