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ΠΕΡΙΛΗΨΗ 

Η αποτελεσματική ενσωμάτωση και οπτικοποίηση ετερογενών πληροφοριών σε μία απεικόνιση 

αποτελεί βασική πρόκληση. Σε αυτή τη μελέτη, παρουσιάζουμε το εργαλείο Arena3Dweb, την 

πρώτη, πλήρως διαδραστική και χωρίς εξάρτηση από άλλα εργαλεία, διαδικτυακή εφαρμογή 

που επιτρέπει την οπτικοποίηση πολυεπίπεδων δικτύων στον 3D χώρο και τις καινούριες 

δυνατότητες της. Με την Arena3Dweb, οι χρήστες μπορούν να ενσωματώσουν πολλαπλά δίκτυα 

σε μία μόνο προβολή, μαζί με τις συνδέσεις τους, εντός και μεταξύ επιπέδων. Για σαφέστερες 

και πιο ενημερωτικές οπτικοποιήσεις, οι χρήστες μπορούν να επιλέξουν ανάμεσα σε μια 

πληθώρα αλγορίθμων διάταξης και ομαδοποίησης και να τις εφαρμόσουν σε ένα σύνολο 

επιλεγμένων επιπέδων, είτε μεμονωμένα, είτε σε συνδυασμό. Οι χρήστες μπορούν επίσης να 

ευθυγραμμίσουν τα δίκτυα και να επισημάνουν τοπολογικά χαρακτηριστικά κόμβων, ενώ κάθε 

επίπεδο, καθώς και ολόκληρη η σκηνή, μπορούν να περιστραφούν και να τοποθετηθούν 

οπουδήποτε στον 3D χώρο. Ο χρήστης μπορεί να επιλέξει χρώματα, τόσο για τις ακμές και τα 

διαφορετικά κανάλια σε περίπτωση πολλαπλών ακμών, όσο και για τους κόμβους, ενώ 

χρώματα μπορούν επίσης να χρησιμοποιηθούν για την επισήμανση σημαντικών διαδρομών και 

μονοπατιών. Στην τρέχουσα έκδοση, η Arena3Dweb υποστηρίζει κατευθυνόμενους ή μη 

κατευθυνόμενους, βεβαρημένους ή βεβαρημένους μη γράφους, με πολλαπλές ακμές. Η 

εφαρμογή είναι γραμμένη σε R, Shiny και JavaScript. Κάνουμε μια εισαγωγή στην θεωρία των 

γράφων, στα διάφορα μοντέλα και αλγορίθμους, καθώς και σε ανταγωνιστικά εργαλεία και 

αναλύουμε την υπάρχουσα και νέα λειτουργικότητα της Arena3Dweb χρησιμοποιώντας 

διαφορετικά σενάρια χρήσης.  

 

Η Arena3Dweb είναι διαθέσιμή στο σύνδεσμο http://arena3d.org ή 

http://arena3d.pavlopouloslab.info.  
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ABSTRACT 

Εfficient integration and visualization of heterogeneous biomedical information in a single view is 

a key challenge. In this study, we present Arena3Dweb, the first, fully interactive and dependency-

free, web application which allows the visualization of multilayered graphs in 3D space, as well as 

its new features. With Arena3Dweb, users can integrate multiple networks in a single view along 

with their intra- and inter-layer connections. For clearer and more informative views, users can 

choose between a plethora of layout and clustering algorithms and apply them to a set of 

selected layers either individually or in combination. Users can align networks and highlight node 

topological features, whereas each layer, as well as the whole scene, can be translated, rotated, 

and scaled in 3D space. User-selected edge colors can be used to highlight important paths, 

while node positioning, coloring, and resizing can be adjusted on-the-fly. In its current version, 

Arena3Dweb supports weighted and unweighted, directed and undirected multi-edge networks. 

The application is written in R, Shiny, and JavaScript. We demonstrate the old and new 

functionality of Arena3Dweb using different use-case scenarios. 

 

Arena3Dweb is available at http://arena3d.org  or http://arena3d.pavlopouloslab.info  
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1 GRAPH AND MATHEMATICAL MODELING 

1.1 The concept of graphs 

Networks or graphs, as they are called in discrete mathematics, are a way to represent and 

describe relationships between entities. 

 A graph is a pair G = (V, E) where G is the graph name, V is a set of vertices/points/ 

nodes and E is a set of edges/lines/arrows/links. A graph can be divided into subgraphs G’ = (V’, 

E’) where V’ is a subset of V and E’ is a subset of E, and G’ is the name of the subgraph.  

Two different graphs that have the same number of vertices and the same edges are 

called isomorphic and expressed G1 ≃ G2.  

In our everyday life, we have different graphs such as the water supply network, the 

road network, telecommunications, the internet, social media, etc. In biomedical sciences, 

graphs are used to represent biomolecules, proteins, DNA, or RNA and how these are connected 

or interact. 1 

 

1.2 Graph categories 

The most common graph categories are undirected graphs, directed graphs, weighted graphs, 

multi-edge, bipartite graphs, and trees (Figure 1.1).  

Figure 1.1 Graph categories. A) Simple graph. B) Directed graph. C) Weighted graph. D) Bipartite graph. E) 

Tree graph. F) Cluster. G) Multi- edge graph. Graphs were visualized using graphonline opensource tool.  

https://graphonline.ru/en/
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• A graph is called undirected if the edges between the vertices are singled 

connections.  

• A graph is called directed if the edges between the vertices are arrows that show the 

direction of the graph.  

• A graph is called weighted if every edge has a different weight that shows the importance 

of the connection. A weighted graph can be undirected or directed.  

• A graph is called a multi-edge if it contains multiple edges for two same vertices. A multi-

edge graph can be undirected, directed, and/or weighted. 

• A graph is defined as a bipartite graph if the vertices can be divided into two disjoint and 

independent sets and every edge connects a vertex from the first to the second set.  

• A tree is an undirected graph, in which two vertices are connected by one path or a 

connected acyclic undirected graph.  

• A cluster is a subgraph with a set of vertices with common characteristics. 

 

1.3 General network properties 

1.3.1 Degree 

One of the most important topological features is the degree degi, which is the total number of 

edges that are adjacent to the vertex in an undirected graph. In a directed graph, degree is the 

sum of indegree degin
i , which is the number of arcs incident from the vertex, and outdegree 

degout
i , which refers to the number of arcs incident to the vertex degi = degin

i  + degout
i. The 

average degree of the network is  

degavg =   
𝛴 𝑑𝑒𝑔𝑖 

|𝑉|
.  

1.3.2 Density 

Density is the ratio between the number of edges in a graph and the number of possible edges in 

a graph. The number of those in a full connected graph is Emax = 
𝑉(𝑉−1) 

2
, so the density is 

calculated 
𝐸

𝐸𝑚𝑎𝑥
 = 

2𝐸

𝑉(𝑉−1).
 . According to the density, the graph is considered dense if E ≃ Vk, 2 > k 

> 1, or sparse if E ≃ V. 
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1.3.3 Clustering Coefficient 

Another important network topological feature is the clustering coefficient, which is a measure 

that shows if a network, or a node, forms (or has the tendency to) clusters or tight communities. 

This can be defined as Ci =   
2𝑒

/ 𝑘(𝑘−1)  
, where e is the number of edges between the k neighbors, 

and Ci can be between 0 (lower tendency to form clusters) and 1 (high tendency to form 

clusters).  

1.3.4 Distance 

The shortest path length between two nodes is called the network’s distance (distij). The length 

of the shortest path is defined as the smallest number of edges between two vertices. In case 

two nodes are not connected, then the distij = ∞.  

1.3.5 Diameter 

The network diameter is the length of the longest path between two vertices and is related to 

distance with the following diamm = max(distij). 1 

1.4 Models 

Models are used to better understand a network’s topology. Some of them are the following:  

1.4.1 Erdős–Rényi 

One of the most popular models in graph theory is the Erdős–Rényi model (Figure 1.2) 2 and it 

was introduced to describe the properties of a random graph. When we have V nodes, then the 

random connection probability is p =  
2𝐸

V(V−1) 
 and the degree distribution is given by a binomial 

distribution. The possibility of a node having a specific degree can be calculated as p(deg) ≃ 

𝑒−𝑑𝑒𝑔𝑎𝑣𝑔  
𝑑𝑒𝑔𝑎𝑣𝑔𝑑𝑒𝑔

𝑑𝑒𝑔!
. When p is small, then the network is not connected, but if p ≈ 

1

𝑉
 the 

network has a bigger component containing most of the network’s connections. If p ≥ 
log (𝑉)

𝑉
 , 

then we assume that all vertices are connected homogeneously and randomly. The clustering 

coefficient (C = p = 
degavg 

𝑉
 ) shows, that the possibility of two nodes with the same neighbor 

being connected, is the same as the connection possibility of two random nodes. 1 
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1.4.2 Watts-Strogatz 

Watts Strogatz is a model that is used to describe random networks, where every node can be 

reached by any other node through a small path (Figure 1.2) 3. This model is used in networks 

that are described by local structures and generally small path lengths. A good example is 

metabolic networks, where metabolites are linked to each other2. If all the nodes are placed on a 

circular ring, each one would be connected to its 
𝑉

2
  neighbors in a Watts Strogaz network 1.  

1.4.3 Barabási–Albert 

The Barabási–Albert model is used to describe random scale-free networks, where the degree 

distribution follows a power law considering their inhomogeneous degree distribution or 

otherwise networks with nodes that do not have a typical number of neighbors (Figure 1.2) 4. 

According to this, networks evolve, new edges do not appear randomly, and the new nodes 

follow the existing degree distribution. An easy example of this model is the social networks, 

where a person/node, who has a lot of friends, is likely to get more, compared to others that 

have fewer friends. 1 

 When comparing networks of the afformentioned models with Barabási–Albert, 

assuming all of them have the same density and size, the latter one was found to have shorter 

average path lengths5 6.  

 

  

Figure 1.2 Network models. A) An Erdos–Rényi random network. B) A Watts-Strogatz network. C) Barabási–

Albert scale-free network. Graphs were visualized using R.  
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2 BIOLOGICAL AND BIOMEDICAL NETWORKS 

Graphs and networks are great tools in biomedical research because they can capture the 

associations between the biological entities that are studied. Some examples of those entities 

are proteins, genes, metabolites, small molecules, ligands, diseases, drugs, literature, and 

general database records. There are dissimilar categories of biological and biomedical networks 

according to the items and the associations that they model. Some of them are:  

2.1 Protein-protein interaction networks 

Protein-protein interaction networks, or PPIs, hold information about how different proteins 

interact with each other and how they operate to enable a biological process. These interactions 

can be physical or predicted. Usually, PPIs are small world and scale-free networks, where 

central hubs often represent the evolutionarily conserved proteins, while cliques have a high 

functional significance 7.  Some of the databases that have PPIs are BIND 8, BioGRID 9, and DIP 10. 

(Figure 2.1 B).   

2.2 Sequence similarity networks 

Sequence similarity networks that are used in widely used tools11, capture the similarity between 

amino acids or nucleotide sequences depending on node use (proteins or genes). When two 

nodes are connected to each other, it means that their sequences - whether they are proteins or 

genes - have a similarity percentage greater than one specific value defined by the user. In this 

way, a small network is created with weights, representing possible functional associations, 

between biomolecules. These networks are weighted, small world, and scale-free and usually 

contain hubs. It is common to use clustering algorithms in those to detect protein families12. The 

most-well known tools for determining sequence similarity are BLAST13, LAST13, and FASTA3 

suite13. Sequence similarity network clustering helps to identify protein families, where proteins 

have similar functions or participate in biological processes. 

2.3 Gene regulatory networks 

Gene regulatory networks are, usually, directed dynamic networks and express the relationship 

between transcription factors (TFs) and TF-binding sites, or between genes and their regulators. 

Often in those networks, the nodes have few interactions, and a small number of hubs have a 

higher connectivity degree. They also follow a power law degree distribution p(k) ∼ k−γ , γ ≈ 2 14. 
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Some databases that have information about gene regulatory networks are the KEGG15, GTRD16, 

TRANSFAC17, and TRRUST18 (Figure 2.1 C). 

2.4  Signal transduction networks 

Cell signaling is a series of molecular events within a cell, or from the exterior to its interior19. 

This is captured in the signal transduction networks. Most of the time, these networks are 

directed and sparse and follow a power law degree distribution with small-world properties. 

These networks can be found at KEGG 20, Reactome19 MiST21, NetPath22, and other databases 

(Figure 2.1 D). 

2.5 Metabolic networks 

Metabolic networks capture the metabolite interactions in an organism. Metabolites (nodes) are 

amino acids or polysaccharides. These networks are directed, scale-free with small-world 

properties2 and hierarchies23. KEGG20 along with Reactome19 host metabolic networks (Figure 2.1 

A).   

2.6 Gene co-expression networks 

Gene co-expression networks are undirected weighted networks, where the nodes are genes 

and if there is a connection between two nodes, there is a significant co-expression relationship 

between them24. These networks can be expressed as a gene-gene similarity matrix. These 

networks have the ability to show which genes are active at the same time, or in the same 

biological processes. They cannot distinguish regulators from regulated genes but can specify 

which genes tend to show a coordinated pattern of expression in a group of samples. The 

generation and analysis of gene expression networks are described as follows: 

1. Defining a co-expression measure and calculating a similarity score for each pair. Generally, 

different correlation measures are used for the construct networks, including Pearson or 

Spearman correlations. 

2. Determination of threshold in order to compare the degree of similarity with a threshold 

value. Those pairs that have a degree of similarity greater than the threshold, are 

considered to have a significant co-expression relationship and are connected in the 

network. 

3. Gene co-expression network generation, where each gene is represented by a node and the 

relationship between two gene-nodes is represented by an edge. 
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4. Identifying groups of co-expressed genes using clustering tools. Depending on the overall 

clustering factor, the network can gather to detect functional modules. The clustering 

method must be chosen with care because it can have a significant impact on the result and 

the meaning of the analysis. 

Some databases with co-expression data are GEO25, ArrayExpress26 and COXPRESdb27.  

2.7 Phylogenetic networks 

Phylogenetic networks describe the evolutionary relationship between nucleotide sequences, 

genes, chromosomes, genomes, or even species28 (Figure 2.1 F). Their representational structure 

is not yet clear, as it is questionable whether the presentation of them as a tree is correct or not. 

The claim that phylogenetic networks differ from phylogenetic trees is based on their modeling 

consisting of richly connected networks, by adding hybrid nodes (nodes with two parents) as 

opposed to node trees, where each node has a single parent (a node hierarchy)29. One more 

difference is that phylogenetic trees are only suitable for the study of vertical evolution 

processes, while phylogenetic networks are more general and can be used for the study of both 

horizontal and vertical evolutionary processes. The horizontal processes are represented by 

meshes in the network, which do not appear in the tree30. Phylogenetic trees are considered a 

subset of the networks.  

Based on Darwin's theory, which claims that all species living today descended from a 

common ancestor, the relationships between each group of individuals, even those from 

different species, can appear in a phylogenetic tree. Thus, the goal of phylogenetics is the use of 

biological data for a collection of individuals or species to create a tree describing how they are 

related31. The most well-known methods for tree construction are Neighbor-Joining (NJ), 

UPGMA, and Maximum Parsimony (MP)32.  

  Some common applications are SplitsTree33, DendroScope 34, and phangorn (R package)35 

can be used to visualize these networks.   

2.8 Ecological networks 

Ecological networks are used to describe the ecosystem, where each species (nodes) interact 

with each other. There are four different interactions: trophic, symbiotic, mutualistic, and 

competitive1. These networks describe the functioning of the ecosystem, and their modeling 

helps to study possible impacts in case of change of some element of the system. Food 
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Interactions can be described as directed or undirected graphs in the case of binary food webs, 

whereas quantitative food chains can be shown as weighted graphs36 (Figure 2.1 E).  

The presence of grouped species in ecological networks is debatable but is being 

strengthened by the analysis of small, not well-resolved, clustered networks. High-resolution 

chains, where species are not clustered into “trophic” species, show a higher degree of clustering 

than their random counterparts32. More generally, a species in the middle of a cluster may have 

the role of a cornerstone, and its loss could have large effects on the network. 

2.9 Epidemiological networks 

Epidemiological networks are used to study disease transmission 37. These networks can help 

find the way that disease is transmitted and are used by biological, biomedical, and social 

scientists, as epidemic diseases are contagious diseases that directly affect social development, 

with the current outbreak of the coronavirus as a typical example. In the above two scientific 

fields, there are several analogies in the way an epidemic spreads, which has led to the 

development of infection spread models from biology and their application to computer 

networks. 

The study of an epidemiological network helps to identify the routes of transmission of 

disease. Also, through such a network we can access information on epidemiological dynamics. 

By connecting network dynamics with real-life data, patient data can be a useful basis for 

developing hypotheses about how a disease works and prove useful in drug creation and 

treatment development. A co-morbidity network, i.e., the simultaneous occurrence of diseases 

or pathological conditions in the same patient, is an example of an epidemiological network. 

 Epidemiological networks can be found at KEGG38 or HPRD database39. 

2.10 Literature co-occurrence networks 

Literature co-occurrence networks capture the bio entities' connection between different texts, 

papers, books, etc. When reading a text, capturing and mapping different entities such as 

genes/proteins, phenotypes, diseases, environments, chemical compounds, and terms using 

Name-entity recognition (NER) it is possible to identify these entities at public databases such as 

Wikipedia, PubMed, or PubMed Central1. 
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2.11 Knowledge networks 

Knowledge networks capture information and meta-data from various sources and are usually 

multi-edge graphs. These sources are usual public biological or literature databases 1. Knowledge 

networks can be found at STRING40 (known and predicted protein interactions), STITCH41 (known 

and predicted interactions between proteins and chemical compounds),  and PICKLE42 (meta-

data database). 

2.12  Expression Quantitative Trait Loci (eQTL) Network 

Data obtained from genotyping and/or transcriptomic experiments are used as a locus (eQTLs) in 

explaining a fraction of the genetic variance of a gene expression 43. For this purpose, eQTL 

networks are suitable for summarizing this information44,45,46. Genome-wide association studies 

(GWASs) are used for an association between common genetic variants and phenotypic traits 

based on many variants of relatively small effect size. Those single nucleotide polymorphisms 

(SNPs) are measured by expression quantitative trait locus (eQTL) analysis and are represented 

by eQTL networks with significant associations, as edges. Findings provide unique insight into the 

genotype-phenotype relationship [e.g., Enhanced tissue-specific heritability of type 2 diabetes 

(T2D) was identified by eQTL networks]. 

Figure 2.1 Biological and Biomedical Network types. A) A Metabolic Network (KEGG | Reactome). B) Protein 

Interaction Networks (IntAct database). C) Gene regulatory networks D) Signal Transduction Networks E) 

Ecological Network (A simplified representation of biotic interactions in a stream food web based on leaf 

litter and periphyton and affected by multiple stressors) F) Phylogenetic network of 160 SARS-CoV-2 

genomes. 
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3 LAYOUTS  

Graph layouts help analyze and understand networks, especially large ones, and avoid problems 

such as hairball47. Using the correct layout for the data that are represented in the graph, it is 

possible to depict its structure, and symmetries and emphasize the key features in a clear 

aesthetic way 48. 

 Some of the most successful layouts are the force-based layout approaches.  In those 

approaches, the nodes are modeled metaphorically as particles connected with spring, and 

between those, there are acting repelling forces. The layout is finalized when the network has 

minimized its energy model (Figure 3.1). 

Other approaches are the spectral layout, orthogonal layout, tree layout, and circular 

layout (Figure 3.1).  

The spectral layout uses eigenvectors, usually of a Laplace matrix of the graph, and 

graph’s vertices as coordinates of the graph’s vertices49.  In addition, with the orthogonal layout 

Figure 3.1 Network layouts. A) Grid layout. B) Circular layout. C) Hierarchical layout D) Force-based 

layout. Networks have been generated with Cytoscape 
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methods, a graph can have horizontal or vertical edges parallel to the coordinate of the layout. 

The tree layout method is useful when there is a need to show hierarchy because it creates tree-

like structures. Lastly, circular layout approaches create circular structures, while watchfully 

choosing the vertices’ order, to avoid as many crossings as possible1.  

It is important to understand the advantages of each approach to choose the best 

algorithm to have the best visual results at the most efficient time. For example, OpenOrd 

algorithms can handle networks with over a million nodes for less than half an hour50, Yifan Hu51 

can give aesthetic layouts that are easily comparable to the ones made with the most known 

Fruchterman Reingold 52 algorithm. 

With edge 

bundling methods it is 

possible to have even 

more aesthetic layouts 

and emphasize the 

information that the 

network has, reducing 

the visual clutters. The 

main idea is to group 

edges that have a similar 

path and merge them like 

cables (Figure 3.2). These methods are following hierarchical or force-directed methods 53 and 

are still computationally expensive.   

These and more algorithms are usually embedded in visualization tools such as Gephi 52, 

Cytoscape54, and igraph library53. Gephi contains circular, contraction, dual circle, random, MDS, 

Geo, Isometric, GraphViz, and Force atlas layouts, along with the aforementioned ones. 

Cytoscape contains grid, random, circular, force-directed and hierarchical layouts, and edge 

bundling.  

  

  

Figure 3.2 Edge Bundling. Networks have been generated with Cytoscape. 
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4 CLUSTERING  

In large networks, it is often that more than one node has the same properties as another. 

Grouping those are the next comprehensive step for the best understanding of a network. This 

grouping process is called clustering and there are multiple algorithms to make it happen. A lot 

of these take into account the network’s topology (for example, find dense areas and try to 

normalize them). Even though there is a plethora of clustering algorithms, only some of them 

can handle large networks 55 56. Some common clustering algorithms are described below. 

4.1 Hierarchical clustering 

Hierarchical clustering is a non-graph-based way of data clustering, which accepts a distance 

matrix containing all pairwise distances between the nodes as input, and outputs a dendrogram 

showing the hierarchical relationship between the clusters. The standard hierarchical algorithm 

has O(n3) time complexity and requires O(n2) memory, thus making this method inappropriate 

for large data sets. Hierarchical clustering is divided into three main categories. These are: Single 

linkage, which calculates the smallest distance between objects in each iteration step, Complete 

linkage, which calculates the longest distance between objects in each iteration step, and 

Average linkage, which uses the average distance between all pairs of objects in every iteration 

step. For more details, a survey explaining how hierarchical clustering algorithms work and what 

their variations are can be found elsewhere57. 

Notably, all calculations are based on a distance matrix (fully connected graph) which can 

be generated by a correlation matrix as Dij = 1 − PCCij. D is the distance matrix and PCC is a 

Pearson Correlation Matrix (e.g., gene co-expression networks). Figure 4.1 shows an example of 

how five genes can be hierarchically clustered according to their expression values/patterns 

measured in three hypothetical conditions or time points. The final output is a heatmap 

accompanied by a dendrogram showing how genes are grouped. Notably, in cases where it is not 

straightforward which cutoff to apply on the tree in order to define the number of clusters, 

statistical methods to automate such task, are available57. 
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4.2 Graph-based clustering algorithms 

4.2.1 SPICi 

Speed and Performance in Clustering algorithm (SPICi) is one of the fastest algorithms for large-

scale networks. The algorithm finds the nodes with large connectivity according to their degree. 

It starts from the local nodes with large densities and then chooses the most appropriate 

neighbors and adds them to the cluster. SPICi has a running time complexity of O(VlogV + E) and 

needs O(E) memory since it uses heuristics, where V is the number of vertices and E is the 

number of edges. 

More thoroughly this heuristic algorithm finds the first seed - node u and its neighbors. 

These are divided into 5 groups according to their vertices’ weights: (0, 0.2], (0.2, 0.4]. (0.4,0.6], 

(0.6, 0.8], and (0.8, 1]. The procedure starts from the last group (0.8,1] and moves forward to the 

first. For each group, the algorithm checks if the group is empty and if this is not true a vertex v 

with the highest degree is selected from there as the second seed. The pair (u, v) is called the 

seed edge. This implementation is based on two points, the first is that there is a positive 

Figure 4.1 Example of hierarchical clustering. (A) The expression values of five genes in three conditions. (B) 
The chart showing the genes’ expression values as patterns. (C) The Pearson correlation coefficient (PCC) 
matrix showing all pairwise PCC values. (D) The Pearson correlation matrix in the form of a fully connected 
graph. (E) The distance matrix as a product of the PCC matrix (Dij = 1 – PCCij). (F) A 2D average linkage 
hierarchical clustering. Genes G1, G2 as well as genes G3, G4, G5 are clustered together. 
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correlation between the weighted degree of a node and a measure of the overall functional 

enrichment among the nodes, and the second is that two nodes are more possible to be in the 

same group if they relate to a high – weight edge. For the cluster expansion, initially, the u and v 

nodes are added in a set S and then search at the unclustered vertices for the ones that have the 

best support (u, S). The search continues by adding the u vertices that are founded and updating 

the cluster’s density until the support (u, S) or the density value after the addition is smaller than 

the threshold. After the algorithm finishes, the S is outputted and continues to the next group58. 

SPICi algorithm, as noted, is significantly faster than other clustering algorithms, 

especially for biological networks and it works better in dense networks58.  

4.2.2 MCL 

Markov Cluster Algorithm (MCL) started at the computational graph clustering field59 for simple 

and weighted graphs, but since it is possible to represent biological sequence similarity 

relationships with these graphs60,  MCL is used for biological purposes as well. Another 

advantage of this algorithm is that it is not affected by edges that relate to different clusters. 

MCL is using a mathematical bootstrapping procedure to find the clusters. The algorithm 

deterministically calculates probabilities of random walks of the sequence similarity graph. Then, 

it uses expansion and inflation operators and through them, it transforms one set of probabilities 

to another, using stochastic (Markov) matrices to capture the mathematical concept of a random 

walk. 

 More thoroughly for biological networks, nodes must represent a set of proteins ready 

to be assigned to a family, edges as a similarity between the proteins, and their weights as the 

BLAST similarity score. At first, a Markov matrix is created, where the columns and rows are the 

proteins (nodes) and the values are the similarity score between them, meaning that the 

diagonal elements are neutral. After that, the initial matrix is seeded to MCL to create the initial 

random walks to measure the graph’s flow and find the areas where there are a lot of random 

walks (areas with high traffic). The algorithm iterates rounds of expansion and inflation to 

promote flow in the areas where it is strong and remove flow in the ones where it is weak. The 

algorithm ends, when the graph is at an equilibrium state and any other expansion and inflation 

rounds do not affect the graph61.  
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4.2.3 Louvain 

The Louvain algorithm is a simple and elegant algorithm that optimizes a quality function in two 

phases. First moves the local nodes and second aggregates the network62.  

Specifically, the Louvain algorithm finds a large-scale network, and groups with large 

modularity in a brief time. This algorithm also develops a hierarchical community structure for 

the network, which is important because it gives access to different resolutions of community 

detection. Modularity is the value between -1 and 1 that evaluates the quality of partitions 63.  

 Having a weighted network with N nodes, the Louvain algorithm assigns a community 

per node i to the network and finds the neighbors of each one. Then, each node calculates the 

gain that the modularity would have, if node i was removed from its cluster and added to the 

neighbor cluster that has the most positive gain. Otherwise, node i remains in its cluster. The 

algorithm terminates when there is no further improvement. That means that a node can be 

revisited more than one time. After the end of the first phase, the algorithm continues to the 

second phase, network aggregation. At this point, a new network is built, where its nodes are the 

communities from the old network. The sum of the old edges between the nodes in the old 

communities is now 

the weight of the 

new edges that 

connect the new 

nodes. If there were 

edges between the 

nodes inside the 

community, then 

there is a self-loop 

at the new nodes. 

After the end of the 

second phase, it is 

possible to rerun a 

pass. A pass is both 

Louvain’s phases64 

(Figure 4.2 ).  

Figure 4.1 Louvain Algorithm. Two phases of Louvain algorithm.  

Image from https://doi.org/10.1038/s41598-019-41695-z  

https://doi.org/10.1038/s41598-019-41695-z
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4.3 Walktrap 

The walktrap algorithm was created for detecting clusters in large-scale complex networks 

through random walks. The network nodes are divided into groups with small intra-cluster and 

large inter-cluster distances. The walktrap algorithm, at the worst case, in a network with n 

vertices and m edges, runs in time O(mn2) and space O(n2) and at the average case, in time 

O(n2log n) and space O(n2), which means that the algorithm needs a lot of space. Another 

disadvantage of this algorithm is that it has low accuracy. 65 66 

 The walktrap algorithm is based on random walks, but in a graph, they tend to get 

trapped inside dense areas. Using random walks, it is possible to create a structural similarity 

measurement. This measurement is the distance between vertices and clusters and using the 

distance the algorithm can compare how similar the nodes are. Using hierarchical algorithms and 

distance it is possible to create dendrograms66 65. 

 The walktrap algorithm begins with splitting the graph into groups, with one node each, 

so there are as many groups as the nodes and calculate all neighbor distances. Then it chooses 

two groups at every step k according to their distance and merges them. Thus, a new group is 

created and the distances refresh. After each step, a new dendrogram is created. The leaves of 

the dendrogram are the network nodes and the root is the cluster. The algorithm stops after n-1 

steps, where n is the number of nodes 65 66. 

 

4.4 Edge-Betweenness 

Edge Betweenness, a clustering algorithm that has been used in social and ecological networks, 

has the advantage that it uses properties from the whole graph, including nodes with low 

degrees, resulting in a clustered graph that contains more global information. An example of a 

graph in which it is best to use the edge-betweenness algorithm, is a network from yeast two-

hybrid datasets, where it is common to find nodes with single edges 67.  

 The edge-betweenness algorithm, unlike other approaches which try to find which edges 

are the most central communities, focuses on those that are least central and between the 

communities. The algorithm follows the flow below: 
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1. Calculate the betweenness for all the edges  

2. Find and remove the edge with the highest betweenness. 

3. Recalculate the betweenness for the edges that are affected by the removal. 

4. Repeat from step 2. 

The algorithm stops when there are no remaining edges. 

 Edge-Betweenness uses Newman's 67 fast algorithm to calculate the betweenness. This 

algorithm can calculate betweenness in time O(mn) where m represents the edges and n the 

vertices. That means that the edge-betweenness runs, at worst case, in time O(m2n), since the 

Newman algorithm must be repeated for every edge67.  

4.5 Label propagation 

Label propagation algorithm (LPA) has two big benefits, its almost linear running time and simple 

implementation, and achieves this using only the graph structure67. The linear time is especially 

important since there are increasingly larger networks. LPA has been used on the web, social 

networks, biological networks, etc. The clustering quality is measured with modularity, and it is 

acceptable between 0.3 and 0.7. 

 The algorithm is based on the different labels that each node has. At every step, each 

node decides to change its label to the one that the largest number of its neighbors has, and so, 

step by step the labels spread. At the end of the algorithm, the nodes that have the same label 

belong to the same cluster. The maximum number of nodes that a cluster can have is set by the 

number of nodes outside of the cluster and inside the cluster.  

 LPA has the disadvantage that it can return multiple results including ones with low 

quality. This is the result of using local minimum and it has been proven that the number of local 

minima is larger than the number of network nodes. One solution to the problem is to avoid 

unnecessary updates, since it has been shown that after 5 iterations, 95% of the nodes are at the 

correct cluster. So, using the boundaries of the currently existing communities, it is easy to save 

time.  

 An interesting point that makes the algorithm simple, is that the way that LPA works is 

analogous to an epidemic or an idea or an opinion spreading, since we assume that the node 

adopts the label of most of its neighbors. However, someone that adopts a new idea from a 

neighbor often follows the one that has more connections, and the highest number of potential 
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information sources. Similarly, when a node takes its neighbor label, it takes into account not 

only the number of nodes that have the same label (people with the same opinion), but also how 

the other neighbors are connected67.  
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5 Transformations and graphics 

In this section, we will analyze the principal 2D and 3D linear transformations. The main 

coordinate transformations are the translation, the scaling, and the rotation.   

 

Let a three-dimensional coordinate system S1, and let a point P into S1, which is expressed as 

(x,y,z).  Let a second coordinate system S2, where the same point P is expressed as (a,b,c). These 

coordinates can be expressed as linear transformations of the coordinates of the first coordinate 

system S1. 

a = w1x + w2y + w3z + t1 

b = w4x + w5y + w6z + t2 

c = w7x + w8y + w9z + t3 

 

The above relations define a linear transformation of S1 to S2 which can be written as: 

 

 

The vector t = (t1, t2, t3) refers to the transfer of the origin of the axes of S1, so that it coincides 

with that of 2. The matrix W is a constant and allows the recalculation of the basis vectors.  

5.1 Translation 

This transformation is about moving an object in a certain direction by a certain distance tx, ty for 

2D or tx, ty, tz for 3D. Thus, a point p1= (x, y) in 2D, can be translated by  

t = (tx, ty) as 

 

or in 3D can be translated by t = (tx, ty, tz) 
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A schematic representation of such a transformation is given in Figure 5.1. 

 

5.2 Scaling 

This transformation is about changing the size of objects. For the implementation of the scale 

change transformation, the amounts of enlargement or reduction sx, sy, sz for the axes x, y, z 

respectively are necessary. When the scaling factors sx, sy, sz have a value equal to unity, then 

there is no change of scale, while we speak of enlargement or reduction, when they have a value 

greater or less than unity. In 2D, a point p1= (x, y) can be scaled using a scaling matrix S. Thus, 

the new point p2 is obtained as follows: 

 

Similar, in 3D is the following:  

 

Figure 5.1 | Example of a point transfer transformation in 2D. 
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A geometric example of such a transformation in 2D is represented in Figure 5.2. Of course, 

when it comes to a shape with many points, the transformation should be applied to each of 

them. 

In the case of uniform scaling of a central point other than the origin of the axes, a 

complex transformation should be used. In other words, the object must first be moved to the 

beginning of the axes (translation), then the desired scaling should be performed, and finally, it 

should be moved back to the desired position. 

 

5.3 Rotation – 2D 

This transformation in 2D concerns the rotation of an object around the origin of the axes. 

Necessary to implement the rotation transformation is the rotation angle (let θ). A rotation is 

characterized as positive, when it becomes counterclockwise. Suppose, then, that the point p1= 

(x, y) must be rotated by degrees and transformed to the point p1= (a, b) (Figure 5.3). 

Figure 5.2 Example of object scaling transform with scaling vector (3,2) 
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Then the linear rotation transformation will be given by the formula 

 

where R is the transformation matrix. 

As with scaling, with rotation, the coordinates of an object are changed. To rotate with a 

reference point other than the origin of the axes, a complex transformation should be used. That 

is, the object must first be moved to the origin of the axes (translation), then the desired rotation 

must be performed and then the point must be repositioned in the desired position. 

 

5.4 Rotation – 3D 

If we compare 2D rotation with 3D rotation, the most important difference is that in three 

dimensions rotation is not defined around a point, but around an axis. Thus, to implement the 

rotation transformation in 3D, both the rotation angle and the rotation axis are necessary. 

Considering the case of rotation around an axis such as z for example, then we practically 

have a two-dimensional rotation, in which the x and y coordinates change, while z remains 

Figure 5.3  Point rotation by θ degrees 
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constant. This can be modelled by expanding the 2x2 rotation matrix into a 3x3 matrix using the 

unit matrix for the third dimension. So, the corresponding rotation matrices Rx, Ry, Rz will be: 

 

5.5 Complex transformations  

The order in which transformations are applied is very important and complex transformation 

tables can be used for this purpose. For example, it suffices to note that matrix multiplication 

does not carry the commutative property, so the order in which the matrices are multiplied 

matters. Therefore, when we want to successively apply a set of transformations M1, M2 .... Mn, 

we must calculate the complex matrix by multiplying inversely M=Mn...M2M1 
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6 NETWORK FILE FORMATS 

A network can be described and stored in multiple human and computer-readable ways. Apart 

from the simple file formats such as the tab-delimited, CSV, SIF, Excel, and adjacency matrix, 

several others like the BioPAX 68, SBML69, PSI-MI70, CML71, and CellML72 have been introduced for 

biological data and semantics. For example, SBML, which stands for Systems Biology Markup 

Language, is an XML-like format for storing and parsing biochemical networks, as well as for 

describing biological processes. BioPAX stands for Biological Pathway Exchange and is made for 

the representation of biological pathways at the molecular and cellular levels. The PSI-MI format 

is used for the data exchange related to molecular interactions and CellML is used for describing 

mathematical models. GraphML73 is an XML-like file format that consists of unordered sections 

related to a network’s node and edge elements. Each node has a distinct identifier, whereas 

each edge is described by a source and a target node. Additional attributes, such as an edge 

weight, or a label, can also be included in the schema. The JavaScript Object Notation (JSON) 

format is a generic and widely used non-biological file format and is popular for web-based 

applications, or web-server asynchronous communication, and data exchange. However, it is 

worth mentioning that Cytoscape.js74 accepts JSON formats for network visualization. Last but 

not least, the Nexus and the Newick file formats are standard ways of representing trees. While 

NDEx75 is an open-source framework for the sharing of networks of many types and formats, file-

format-specific parsers are available [e.g., Bioconductor76) rBiopaxParser77, rsbml, RPsiXML and 

others]. Examples of such file formats are shown in Figure 6.1. 
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Figure 6.1 Examples of file formats. The brain network of the C. Elegans worm (Watts 1998). A) Simple 

undirected graph consisting of seven nodes (V = 7) and six edges (E = 6). B) Network in Tab-delimited file 

format. C) Network in GraphML file format. Blue box highlights the interaction between nodes V1 and V7. 

D) A cytoscape.js graph encoded in JSON. E) Network in PSI-MI file format. 
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7 NETWORK VISUALIZATION AND TOOLS 

Network visualization has a key role in understanding, exploring, communicating, and identifying 

patterns in an interactome such as important edges, highly connected nodes, or communities. 

For this purpose,  similar to the different network layouts, a plethora of approaches have been 

introduced for the visualization of networks depending on the type of network that needs to be 

drawn1.  

7.1 Visualization tools 

There is a variety of tools that create beautiful 2D and 3D networks and each of them has its own 

advantages. Some of these tools are open source which means not only the tool is free to use by 

everyone, but their code is also accessible to the community. That means that their development 

process has brought together everyone that wants to be involved and because of that they 

constantly improved. That advantage incentivizes the users to keep working with open-source 

tools. 78.  

7.1.1 Gephi 

One open-source tool for graph and network analysis is Gephi. Gephi renders the networks using 

a 3D engine. This engine allows displaying large networks in real-time but also speeds up 

network exploration. Briefly, some of its features are spatializing, filtering, navigating, 

manipulating, and clustering 79. 

 Gephi as mentioned before utilizes a special 3D rendering engine for real-time graph 

rendering. In this way, the application uses the computer’s graphic card (GPU) and does not 

require any CPU computing. Gephi team has also developed two algorithms. The first is the Force 

Atlas (and Force Atlas 2 80) algorithm, a special force-directed algorithm that allows changing 

speed, auto-stabilize, repulsion, inertia, and gravity in real-time. The second algorithm, Label 

Adjust, makes the labels avoid overlapping. It is important to note that at the same time the 

application can run multiple algorithms in separate workspaces. Also, it is possible to add a 

different and custom plugin in modules79.  

 To upload a network tο Gephi the user must import two spreadsheets one that contains 

the nodes, and one with the edges. After that, it is possible to change the size of the nodes 

according to their degree and use some plugins for their size gradient, color gradient, and color 
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clusters. One of the main features of Gephi is spatialization which gives more space to the graph 

using different layout algorithms such as Fruchterman Reingold, and Force Atlas 2.  

 After the visualization is over it is possible through this tool to display different statistics 

such as modularity, average degree, page rank, and betweenness centrality. 

 Another feature that Gephi has, is the geographical layout which allows the addition of a 

Latitude and Longitude to each node, and setting the Mercator and adding a map as a 

background. Last but not least, Gephi has also introduced the MultiViz plugin that offers multi-

layer networks81.   

 Gephi's latest version (0.9) is running with Java 6 and it is compatible with OS X (10.7 and 

further) and with Windows and can be found at https://gephi.org/. A biological network example 

with Gephi is shown in Figure 7.1. 

Figure 7.1 SVG File Exported from Gephi. The brain network of the C. Elegans worm (Watts 

1998). 

https://gephi.org/
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7.1.2 Pajek 

One of the oldest visualization tools (the development started in 1996 by Andrej Mrvar) is Pajek 

(which means Spider in Slovenian80 ) which started as a visualization tool for social network 

analysis. Pajek can handle extra-large networks with up to 1 billion nodes and unlimited edges 

and the main purposes of the tool are the implementation of a powerful software that can 

handle large networks and efficient algorithms to analyze those and to support abstraction by 

decomposition of these huge networks into smaller ones82.  

 Except for the main goals that are mentioned, Pajek contains a plethora of operations 

suitable for large networks such as extracting subnetworks, shrinking selected parts of networks, 

searching for connections, shortest paths, k-neighbors, maximum flow and fragments, 

computing centralities, clustering, generating distinct types of random networks, community 

detection but also some operations specifically for smaller networks such as generalized 

blockmodeling. Also, it is possible through the application to export data for further analysis in R, 

SPSS, and Excel.  

 Pajek supports different layout algorithms. The most used of them are Kamada-Kawai 

and Fruchterman Reingold optimization, VOS mapping, Pivot MDS, drawing in layers, and FishEye 

transformation. 

 It is important to note that there are two other Pajek versions in addition to the standard 

one, the Pajek-XXL, and Pajek3XL. Pajek-XXL has considered a special version of the classic Pajek 

in which memory consumption is more efficient. As a result, it needs 2-3 times less physical 

memory than the Pajek and it is more suitable for huge networks82. The capacity of nodes that 

Pajek-XXL can handle is 2 billion. Pajek3XL gives the user the capability to handle networks with 

10 billion nodes since it uses a 64-bit integer for vertices’ numbers instead of the 32-bit that the 

Pajek-XXL uses 48. 

 Even though Pajek started as a tool for social network analysis, it has been also used for 

citation and co-authorship networks, protein-protein interactions networks, transportation 

networks, and archaeological networks.  

 Pajek is possible to run on both Mac OS X, Linux, and Windows and downloads are 

available along with the documentation and supporting material available at its website: 

http://mrvar.fdv.uni-lj.si/pajek/. An Example of a network drawn in Pajek can be shown in Figure 

7.2.  

http://mrvar.fdv.uni-lj.si/pajek/
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7.1.3 ONDEX 

ONDEX is primarily a database system that uses graph-based analysis along with text mining and 

semantic database integration. As mentioned before ONDEX is a tool that can be used for 

visualization, large-scale database integration, sequence analysis, and text mining but it can be 

also used for analysis and interpretation of experimental results, a particularly useful feature for 

complex biological data. ONDEX is freely available for download at http://www.ondex.org/.  

  ONDEX has three primary features. The first is the ability to easily handle large graphs 

with several thousand elements both in the backend and in the front end. The second is the 

support for external graph libraries. This offers access to different libraries that provide a variety 

of algorithms such as different layout algorithms. The third feature is the graph filter. It is 

common at biological questions to not need all the data for answers, so the option to filter at the 

backend level by not importing the datasets that are not needed, but also at the front end to 

have more clear graphs.  

 ONDEX based its architecture on the Internal Graph Object, an independent data 

structure to represent the graphs. This object offers import and export interfaces that are 

needed for data exchange, a layout interface that allows access to different layout algorithms in 

different libraries, a filter interface for the filtering algorithms, and lastly the graph library 

adapter which is used to wrap different graph libraries. 83 

Figure 7.2 Network in Pajeck. Left: Simple network Right: The same network with VOSviewer SVG 

Density View  

http://www.ondex.org/
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 Except for the ONDEX software suite, there is a web-based implementation Ondex Web 

which offers the option to use that tool without downloading any software but also offers some 

new features. Ondex web is an open-source tool, written as a Java client applet and the 

application and its source code is available at 

http://sourceforge.net/projects/ondex/files/OndexWeb/. 

 Some of the new Ondex web features are easy-to-search functions, plugins that update 

the network UI, context-sensitive menus for the edges and nodes of the network, and direct 

support for loading data at XGMML (Cytoscape format), NWB, and Pajek formats. Besides these 

features, the online tool also offers two new strategies for the analysis and exploration of 

biological networks: the bottom-up and the top-down. Bottom-up is targeted and better used for 

exceptionally large datasets and top-down for small and medium-sized networks.  

 The Ondex Web is only limited by client resources, which means that the more memory 

the virtual Java machine the largest the networks can handle, but the application provides the 

user with a warning for larger than the usual networks to adapt if he wants the strategy to a 

bottom-up and use a simpler and faster layout84.  

7.1.4 Tulip 

TULIP is an open-source visualization framework currently at version 5.6, and it is used for the 

analysis and drawing of huge graphs85. This C++ library is designed based on extensibility and 

reusability. The software is available at https://tulip.labri.fr/site/  and its code at GitHub 

https://github.com/Tulip-Dev/tulip. 

 TULIP architecture is based on five packages. The first one is the TULIP core library 

whose main purpose is to handle and manipulate the data sets, the entities, and relationships 

and the function to access those.  Besides that, it contains some standard generic algorithms, for 

example algorithms needed for import and export, and finally plugin mechanism. Based on the 

previous TULIP version the current data structure is based on five requirements: property 

sharing, aggregation, observable data structure, state management, and alternative graph 

model.  

 The second TULIP package is the graphics one. The TULIP development team 

implemented the TULIP graphics library based on the OpenGL-based multilayered rendering 

engine86. There were two main reasons for not using an external engine. The first is that external 

engines cannot handle graphs with more than 500,000 elements in less than 256MB of memory 

http://sourceforge.net/projects/ondex/files/OndexWeb/
https://tulip.labri.fr/site/
https://github.com/Tulip-Dev/tulip
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and the second one is that in 2000, when the project started, 3D rendering engines were not 

easily available and powerful enough.  

 The third package is the TULIP GUI. The main goal of the GUI is to allow users to go back 

and forth between the network and the statistics to help them understand how the metrics are 

represented. The architecture is built based on Model-View-Controller (MVC)87 pattern. This 

means that the software is split into three independent parts, the model stores the information, 

the view presents the information, and the controller is responsible for the communication 

between the views and the model.  

 The fourth one is the Run-Time Environment. This package solves the difficulty that 

programmers may meet if they use multiple plugins. Besides the Plugin management, it also 

manages the model and makes the software available cross-platform.  

 Finally, the last one is python integration. Even though the tool is built in C++ since 3.5 

TULIP offers Python binding of all its key features (Creation and manipulation of graphs, Storage 

of data on graph elements, Creation of interactive visualizations, The ability to write plugins in 

Python, Integration within the Python nebula). The bindings are available from PyPI88 and can be 

installed as a standard Python package85. An example of a network at Tulip can be found in 

Figure 7.3.  
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7.1.5 OmicsNet 

OmicsNet is a web-based tool that is targeting multi-omics networks 89. Through this tool, the 

user can build, visualize, and explore multi-omics data within the context of molecular 

interaction knowledge. Recently OmicsNet was updated to version 2.0 with new features and is 

available at www.omicsnet.ca. 

 Developed in 2018, the first version of the OmicsNet started as a tool that accepts a 

variety of biological features (also combined if needed (Figure 7.4)) such as genes, proteins, and 

metabolites to help the researchers to create and visualize biological 3D networks90. After the 

update, OmicsNet 2.0 include also 2D networks and has enriched its supported data types to 

accommodate the needs of its user.  

Figure 7.3  A network in Tulip 

http://www.omicsnet.ca/
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 The first step is to upload the data. The user can choose the omics type that they want 

(genes, proteins, transcription factors, miRNAs, metabolites, and the new additions microbial 

taxa, LC-MS peaks, SNPs) from the annotated table panel. Then the user must choose a database 

(STRING40, InnateDB91, IntAct92, TRRUST18, JASPAR93, TarBase94, miRTarBase95, KEGG20, Recon396, 

AGORA97, etc.) to move to the network creation and visual analytics. It is also possible to upload 

common graph files from the OmicsNetR package or another network tool e.g., Cytoscape. The 

graph layouts that are available at the application are based on the igraph package 53.  

Finally, OmicsNet 2.0 offers some of its R functions through the OmicsNetR package that 

can be found here https://github.com/xia-lab/OmicsNetR. Among the R functions an R command 

history panel has been added. This feature can help the users to download locally some of the 

tool functions and recreate, and customize the network before uploading them to the online tool 

for navigation 89.  

Figure 7.4 A multi-layer 3D network in OmicsNet. A multi-omics 3D network (one omics per layer) 

https://github.com/xia-lab/OmicsNetR
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7.1.6 Graphia 

Graphia is a powerful open-source visual analytics application that targets large and complex 

datasets98.  Graphia was created from BioLayout Express, an application that was specifically for 

transcriptomic data and pathway modelling98.   

 Graphia was developed focusing on the following main features: data and operating 

system agnostic, fast, scalable, and extensible algorithms, dynamic rendering, 3D graph 

visualization, correlation graphs as an essential function, attribute handling and visualization, 

advanced analysis capabilities, and lastly, a user interface that is easy to navigate. With these in 

mind, the application is built in C++, using the standard OpenGL library 86. The architecture is 

separated into the core application code, plugins, shared plugin code, and the third-party 

libraries that are used.  

 Graphia can support multiple file formats, some examples are BioPAX OWL ontology, 

JSON graph, GraphML, Graph Modeling Language, MATLAB data file, pairwise graph formats in 

.txt or .layout, adjacency matrix in .csv and .tsv, as well as numeric data for correlation analyses. 

In the application, a layout algorithm is running frequently, and it can be stopped by the user 

manually. This allows the graph to change dynamically when is updated, and the nodes and 

edges are altered. The disadvantage of the feature is that there are cases the graph that may be 

transformed quickly, so the tool offers the option to slow down the transition. Another major 

feature that Graphia offers, is that at first the graph is rendered in 3D since this is the most 

advance and complex one, and then it is rendered in 2D for more closely connected nodes 

(Figure 7.5). Graphia is a cross-platform application that can be downloaded from 

https://graphia.app/ 98.  

 

Figure 7.5 Different graph visualisation options in Graphia. A) 3D perspective view, smooth shading with 

visualisation of node attribute. B) PageRank values where G-I are continuous attributes, so a colour spectrum 

and size gradient are used for node display. C) compressed 2D layout, flat shading, showing node overlap view. 

D) Eccentricity values G-I are continuous attributes, so a colour spectrum and size gradient are used for node 

display. E) 2D view, smooth shading. 

https://graphia.app/
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7.1.7 NORMA 

The NetwORKk Makeup Artist or NORMA is an open-source web visualization tool with the 

ability to handle multiple networks98. In addition to these, it can handle multiple annotations 

simultaneously and provides topological analysis. NORMA is a general-purpose application that 

also targets non-experts users. The application is available at http://norma.pavlopouloslab.info/ 

and its code at https://github.com/PavlopoulosLab/NORMA.  

 The procedure that the user must follow to use the application is first to upload a 

network file that he needs from the upload tab. After that, he can also upload an annotation file 

or a node coloring file. It is important to note that the user can upload multiple networks and 

annotation files at the same time. After the files that are needed the network information are 

uploaded, the user can navigate to the network tab to see the generated interactive network or 

the automated community detection, that is calculated with Fast-Greedy, Louvain, Label-

Propagation, Walktrap or Betweenness clustering algorithm. The user can also, upload an 

annotation file, a file that has information about predefined clusters, communities, subgraphs, 

etc. Then they can navigate to the annotation tab and visualize this information as convex hulls 

(2D and 3D), pie-chart nodes, and node diagrams. Finally, there is also the option to view 

different topology network analysis features in the topology tab such as the number of edges 

and nodes, average path length, clustering coefficient, modularity, centralization degree, and 

others. These are calculated through the igraph53 library since the application is written in R and 

shiny99. 

After the first release of NORMA, the next version NORMA 2.0 was released with the 

offer of different layout strategies, that enrich the possibilities the previous version had.  These 

layout strategies help the user to have clear annotated groups or areas of interest.  These 

strategies are the virtual nodes, the gravity, and lastly the super nodes100. An example of a 

network in NORMA can be found in Figure 7.6. 

 

http://norma.pavlopouloslab.info/
https://github.com/PavlopoulosLab/NORMA
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7.1.8 Cytoscape  

Another open-source software 2D visualization tool is Cytoscape. This software is divided into 

the core part and the plugins, with the core having the basic functionality and through the 

plugins, the core is extensible to a larger variety of abilities54.  

 The core functionality includes the graph data, the representation of the graph and the 

integrated data, and the tools that are needed for the selection and filtering along with the UI. 

More specifically, Cytoscape creates pairs (name, value) to map node and edge names to specific 

data values. This model is called Attributes. The next feature that Cytoscape has at its core 

Figure 7.6 Clustered Network in Norma 
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functionality is the annotation that is specific node/ edge descriptions. This information is usually 

taken from a database or a repository. Like other tools, Cytoscape supports different layout 

algorithms such as hierarchical layout, circular layout, and spring-embedded layout, those with 

node and edge appearance changes (color, shape, size, thickness, and style) make the graph 

more visible pleasing, and easy to understand the information that is visualized. The last core 

functionality is the selection and filtering, which helps the users, study more easily the graph and 

emphasize various parts of the graph if needed. For example in Figure 7.7 there is a subset of a 

taxonomy tree. The available filtering is according to the name, list of names, or an attribute or 

more complex queries. A worth mentioning Cytoscape feature is the edge bundling that is 

available and with it, the graphs are clearer and easier to read. 

 The most important feature that Cytoscape has, is the plugins. These enrich the core 

functionality with new algorithms, or different network analyses, semantics, UI changes, and 

other visualization tool combinations. It is important to note that these plugins may have a 

different license agreement, so they do not have the necessary open-source code54.  Cytoscape 

3.9 is available for download at https://cytoscape.org/index.html and its code is at 

https://github.com/cytoscape. 

Figure 7.7 A Taxonomy Tree in Cytoscape 3 

https://cytoscape.org/index.html
https://github.com/cytoscape
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Besides the downloadable version, Cytoscape also offers a web version, Cytoscape.js 74. 

Built with standard web technologies such as HTML5, CSS, and JS Cytoscape.js also provides an 

application programming interface (API) to offer the possibility for other developers and 

researchers to have easier access to their tools and easier graph integration to the application.  

As previously noted, Cytoscape.js is developed in JS, but to accommodate different JS 

systems, it also uses hooks to different JS libraries, for example Node.js, Require.js, npm, Bower, 

jQuery, and Meteor. The CSS stylesheets and HTML DOM elements are accessible via the JS core 

API.  

Cytoscape.js has a variety of features, such as multiple graph types (traditional, directed, 

undirected, multigraphs, etc.), the possibility to modify the graph elements, graph traversal, 

multiple graph theory algorithms, (for example, shortest path), ranking and centrality measures, 

stylesheets, built-in gesture support for mouse and touch-based devices, event binding, 

animations, compound nodes, the option to import and export as JSON and also export the 

graph as an image, different layouts such as random, circle, concentric spread, etc. and lastly, 

extensibility through different widgets. Figure 7.8 there is an example of using a widget for a 

different layout. The documentation and the project are available at  http://js.cytoscape.org 74.  

Figure 7.8 Graph in Cytoscape.js. This is a demo of a graph of gene-gene interactions that uses 

Cola.js for layout and Cytoscape.js for its graph model and visualization. 

http://js.cytoscape.org/
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7.1.9 Web viewers 

Except for the visualization tools, there are also some web viewers, whose main purpose is not 

graph visualization, but they offer them as a feature and are worth mentioning.  

7.1.9.1 STRING 

STRING is a relational database built by the Swiss Institute of Bioinformatics (SIB), Novo Nordisk 

Foundation Center Protein Research (CPR), and European Molecular Biology Laboratory (EMBL), 

that contains the precomputed global resource to help explore and analyze functional 

associations between proteins101. At the current version 11.5, the database contains more than 

14 000 organisms and includes physical and functional interactions40. The sources vary from text 

mining of the scientific literature, databases of interaction experiments and annotated 

complexes/ pathways, computational interactions from co-expression and conserved genomic 

context, to finally systematic transfers of interactions evidence between the organisms. STRING 

is available at https://string-db.org/,  through Cytoscape, the Bioconductor package within R, and 

through its REST API. 

The user can search interaction by a protein name or multiple names, by one or more 

Amino Acid Sequences, and by proteins with values or protein families. In addition to those, the 

user can filter the results by organism, score, and interactors. The score is a number between 

zero and one and shows if the association is biologically meaningful given all the evidence that is 

benchmarked and scored.  

 STRING offers the following viewers for each result: Network, Experiments, Databases, 

Text mining, Cooccurrence, Coexpression, Neighborhood, and Fusion. It also offers a Legend with 

valuable information about the associations such as functional enrichments, exports, and other 

features depending on the viewer.  

The main viewer is the network one and contains additional to the previous features, network 

statistics, K-means clustering, or MCL clustering. This network is a multi-edge network where 

each node is a protein and each edge is a functional link for example gene fusions, cooccurrence 

across genomes, a neighborhood in the genome, experimental/ Biomedical Data, etc. (Figure 

7.9). The score and extra information are available on each of those links. For each protein, 

STRING may offer along with some information (identifier, organism) about it, the AlphaFold 

model, PDB structure, and homology model. Additionally, there are the following extra actions 

that are included in STRING’s functionality for every node: “Re-center network on this node”, 

https://string-db.org/


40 
 

“Add This Node to input nodes”, “Show protein sequence” and “homologs among STRING 

organisms”40.  

 

7.1.9.2 STITCH 

STITCH (Search Tool for Interacting Chemicals) is a database like STRING, created by the 

European Molecular Biology Laboratory (EMBL), Swiss Institute of Bioinformatics (SIB), and NNF 

Center for Protein Research (CPR) and contains Chemical – Protein Interaction Networks. STICH 

is available at http://stitch.embl.de/ and through its API. In its latest version STITCH, 5 includes 

more than 9600000 proteins from 2031 eukaryotic and prokaryotic genomes and 430 000 

chemical compounds without including different stereoisomers41. 

 THE UI looks like the one STRING has, so if a user knows how to navigate that database, 

it is easy to navigate to STITCH. The search is available by one or more items (chemical or 

proteins) or one or more protein sequences or chemical structures.  

 The network view contains a network where the nodes are proteins or chemical 

structures, and the edges represent their interactions. Protein-protein interactions are shown in 

gray, chemical–protein interactions in green, and interactions between chemicals in red. For 

each interaction (edge) there is a description of the nodes and the functional links with scores, 

titles, and more information about them. The weight of the edge is dependent on the number of 

functional links that the edge represents. For each node, there is available information about the 

item that it describes, some actions such as “Re-center network on this node”, “Add This Node to 

input nodes”, “Show protein sequence” in case the item is a protein, and some structure models 

or chemical models according to the item (Figure 7.10). 

Figure 7.9 Network in STRING. smo search result and information about the smo and ci interactions. 

http://stitch.embl.de/
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 Additional to the network viewer, STITCH offers a text mining viewer, an experiments 

viewer, a database viewer, and a coexpression one, along with a legend about the information, 

statistical analysis, and data tables41.   

 

7.1.9.3 INTACT 

IntAct is a free open-source molecular interaction database that provides analysis tools for 

molecular interaction data92. The database contains entries, either curated from the literature, 

or direct data depositions and is supporting both IMEx- and MIMIx-level curation. IntAct is 

available at https://www.ebi.ac.uk/intact/home. 

 A user can search in IntAct by a gene name, taxon ID, UniProt ACs, Pubmed ID, protein 

names, Complex ACs or GO terms. If the results contain less than 1500 interactions then the 

database creates a 2D multi-edge network with those, and along with it some network 

visualization features.  

 For each interactor (node) with hover, the user can access some information about it, 

such as name, id, type species, and AC. There is also the possibility to change the layout from 

force-directed (default option) to circular or Bubbles. Additionally, there is the option to replace 

the multi-edge functionality, with one edge per link, where the weight of one of them shows the 

Figure 7.10 Network in STITCH. “CN(C)CCCN1C2=CC=CC=C2CCC3=CC=CC=C31” and selected only imipramine, 

with information about this compound.  

https://www.ebi.ac.uk/intact/home
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number of interactions. Lastly, there is also the option to group some nodes per species (Figure 

7.11). 

 The database also offers a legend that explains the color coding and the variety of the 

types that the network contains (different node and edge types).   

 

  

Figure 7.11 Network in IntAct. Search result of the Complex ACs “CPX-5742” with circular layout and group by species.  
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8 ARENA3Dweb 

In biomedical and biological studies, a common need is to capture multiple heterogeneous 

information for different repositories in the same view e.g., genomics, proteomics, and 

metabolomics. Some of the tools that are capturing this need are the Arena3D standalone 

version 102 103, Py3plex104, Mull105, and MuxViz106. Even though the demand for multi-layer 

networks appeared in biological and biomedical studies, Arena3Dweb is a general-purpose tool 

that can be used for knowledge integration, representation, transfer, and communication107. 

 Arena3Dweb is an interactive and dependency-free web visualization tool. The feature 

that makes Arena3Dweb unique is the multilayered graphs in 3D space that covers the need to 

represent heterogenous data in networks107. The application has been developed in R, Shiny, and 

JavaScript and for the backend calculation, it uses the igraph53 package and is accessible at 

http://arena3d.pavlopouloslab.info or http://arena3d.org. 

8.1 UI / UX  

Arena3Dweb offers a plethora of features, that allows users to create aesthetically beautiful 

networks that manage to capture their heterogeneous data and explore the information through 

the application’s menu. The application’s interface consists of 9 tabs. These are:  

8.1.1 Home 

Home is an introduction page with some information about the application (Figure 8.1). 

 

Figure 8.1 Home page in Arena3Dweb 

 

http://arena3d.pavlopouloslab.info/
http://arena3d.org/
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8.1.2 Main view 

This is the page that contains the network once it is uploaded. When a file has been uploaded, a 

side panel also appears with some useful navigation controls for the scene, layers, and nodes 

(Figure 8.2). The user through this panel can navigate easier in the network and modify the 

positions as needed. The possibilities vary from rotating the scene and the layers to mouse and 

keyboard navigation controls. The application includes the following hotkeys: the user can zoom 

in/out by mouse scrolling, the network can be translated by dragging with the mouse or by 

pressing the keyboard's arrow keys, and the network view is also orbital by dragging while 

holding the middle-mouse button, the user can move a layer by click and dragging it, the user 

can rotate selected layers at X(red), Y(green) and Z(blue) axis by holding the respective hotkeys 

and click-dragging, the user can move selected nodes on a layer by holding the hotkeys (Y, Z) and 

click-dragging. Priority is given to selected nodes over layers, the user can select/deselect 

individual nodes or layers by double-clicking on objects. The node or layer flashes when the user 

hovers over it and changes color when selected, for a batch node selection, the user may hold 

the Shift button and click-drag to apply a lasso selection, and by double-clicking anywhere on the 

scene, all selected nodes and edges are deselected.   

 

Figure 8.2 Main View in Arena3Dweb. Application’s main view. At the top of the page there the 

main menu. At left there are the navigation control which includes the “Navigation Controls” button 

for hide/show the navigation panel and the “Stop:Render Inter-Layer Edges” button hides inter-

layer edges to greatly improve rendering performance,  General instructions on network hotkeys, 

and the scene, layer  and node controls. At the top right there is also a menu for changing the 

theme. The options are light, dark, and gray. 
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8.1.3 File  

At this option, the user can upload a network in multiple formats, and optionally upload a node 

or edge attributes format to customize the colors (Figure 

8.3). More specifically, this option includes four file upload 

fields, the upload Network where the user can upload the 

default application file, the Load Session where the user can 

upload a JSON file exported from a previous Arena3Dweb session and a node and edge attributes 

file upload fields. Finally, from this menu option, the user can also save the network with their 

modifications.  

8.1.4 Layer selection & layouts 

The layer Selection & Layouts tab offers the possibilities for layer selection and all the options 

that are needed for the layouts and clustering algorithms. This control panel allows the user to 

select, deselect and hide layers, show layer-specific node labels, as well as apply layout and 

clustering algorithms and node scaling based on network metrics, on subgraphs of the network. 

More specifically, in Figure 8.4 it is possible to see the menu and the options that are offered. 

The layout and clustering algorithms that are offered are described further below.  

Figure 8.3 “File” menu option in Arena3Dweb. 1. The Upload 

Network option allows the user to upload network data in the 

Arena3Dweb format. 2. The Load Session option allows the user 

to load network data from an exported JSON object (see 5.). 

3. The Upload NODE attributes option allows the user to upload 

annotation data regarding the nodes of the current network view. 

4. The Upload EDGE attributes option allows the user to upload 

annotation data regarding the edges. 5. The Save Session button 

allows the user to save the current view in JSON format (The 

format is described at the API tab). The network can be restored 

by importing the relative saved object (see 2.). 
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Figure 8.4 “Layer Selection & Layouts” menu option in Arena3Dweb. 1. This consists of a group of 3 

exclusive options for subgraph calculations, upon which, layout algorithms (3, 5), clustering algorithms (4) 

and node scaling (6) is applied. The “Per Layer” choice treats each selected layer (2) as an individual 

network. The “All Selected Layers” choice treats all selected Layers (2) as one, combined network. After the 

execution of a layout or scaling algorithm, nodes are mapped back to their respective Layer. With this 

option, the application of force-directed layout algorithms allows network alignment among the different 

layers. The Local Layout option for the Selected Nodes Per Layer choice allows layout and scaling 

algorithms to be applied on a selected sub-group of nodes, per each selected layer respectively. 

2. The “Select/Deselect All Layers” checkbox allows the user to quickly select or deselect all available 

network layers. After the user uploads or imports a network, a grid of n x 3 checkboxes is created, 

where n is the number of network layers and 3 are the available actions for each layer; the 1st column 

allows the individual selection/deselection of layers, the 2nd column allows the user to hide individual 

layers and their inter-layer connections, and the 3rd column allows the user to show node labels per layer. 

3. A list of available layout algorithms of the igraph package, to apply on selected layers (2) based on the 

execution mode of (1). 4. A list of available clustering algorithms of the igraph package, to apply on 

selected layers (2) based on the execution mode of (1). 5. A list of available layout algorithms of the igraph 

package, to apply as local layouts on clusters (4) based on the execution mode of (1). Visible when a 

clustering algorithm has been selected. 6. A list of available network metrics of the igraph package, used for 

node-scaling, to apply on selected layers (2) based on the execution mode of option (1). 
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8.1.5 Scene actions 

 At Scene Actions, the user can find the scene-related actions, such as showing and hiding the 

scene coordinates system, background, and the new features that will be analyzed further below 

(Figure 8.5).  

 

8.1.6 Layer actions 

 The layer Actions tab contains all the layer-related 

actions. Some examples are the actions that handle 

layer labels, Coordinate systems, wireframes), and 

layer floor color (Figure 8.6). 

 

Figure 8.5 “Scene Actions” menu option in 

Arena3Dweb. 1. A checkbox that toggles the 

visibility of the scene coordinates system.  

2. A checkbox that enables scene auto 

rotate. (The user must enable it and then 

from the Navigation Controls click the 

arrows to rotate). 3. A radio button with the 

following predefined layouts: Parallel 

Coordinates (default option from new files), 

Zig Zag, Star and Cube. 4. A ColorPicker for 

the background of the network. For bright 

background colors, be sure to set higher 

opacity values for layer floors (Layer Actions 

tab) and edges (Edge Actions tab). 5. A 

button to see the network in VR. Works only 

in the online version of the tool.  

 

Figure 8.6 “File” menu option in Arena3Dweb. 1. This 

checkbox allows the user to show or hide all layer labels. 2. 

This checkbox gives the option of showing the labels of 

selected layers only. Option (1) has priority over this option. 3. 

This option toggles the coordinate systems -X (red), Y (green), 

Z (blue)- for all layers. 4. This option allows an alternative 

visualization for layer floors, in wireframe mode 5. This option 

gives priority to uploaded layer colors from a JSON object. 6. 

This slider resizes layer labels. 7. This slider changes layer 

opacities in [0-1]. 8. This is a ColorPicker button for painting 

layer floors. 
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8.1.7 Node actions 

The node Actions tab contains like the previous tabs, all the node-related actions, and from there 

the user can modify the network’s nodes and their labels. Also, from this tab, it is possible to 

search and select multiple nodes by their name (Figure 8.7).  

Figure 8.7 “Node Actions” menu option in Arena3Dweb. 1. This option allows the user to 

select/deselect all nodes. Selected nodes can then be translated in 3D space via the Navigation 

Controls, and via the Layer Selection & Layouts action tab can be either rearranged in a local 

layout or rescaled based on network metrics. 2. This option allows the user to view every node 

label. This is an option that demands heavy processing power due to the constant redrawing of 

labels. Ensure that this is enabled only in small networks and in combination with the 15FPS 

option of the FPS action tab. 3. This option allows viewing only the labels of selected nodes. 

Priority is given in option (2) over this option. 4. Selected nodes are highlighted in a chartreuse 

color. Deselecting this option allows nodes to retain their original color (either from any 

uploaded node attributes or from their default layer color). Deactivating this option works in 

combination with activating option (3), to select certain nodes of a pre-colored path, view their 

labels without changing their color and extracting the respective image (either with the 

PrintScreen key, or by snipping or by right-clicking and then selecting the Save as Image option). 

5. This option allows resizing of node labels. 6. This is the node search bar. The user can select 

multiple nodes by entering their names, without the need to specify layers, separated by 

commas. Any trailing and leading spaces are trimmed. 
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8.1.8 Edge actions 

 At this tab the user can access the edge actions, for example, the edge weight for inter and 

intra-layer edges, set the color priorities, enable and disable the direction, and edit the channel 

colors (Figure 8.8). 

 

 

Figure 8.8 “Edge Actions” menu option in 

Arena3Dweb. 1. This option highlights the selected 

edges. 2. This option toggles gives priority to the edge 

color that it is set on file. If it is not checked and their 

network has multiple edges, then the channel 

menu 11 is visible. 3. This option toggles the graph 

direction from the source node to target. 4. This slider 

changes the intra-layer arrow sizes. This is visible only 

if option (3) is enabled. 5. This slider changes the inter-

layer arrow sizes. This is visible only if option (3) is 

enabled. 6. This option gives priority on any 

uploaded/imported values of edge Weights, which are 

being mapped in the [0-1] range and are assigned on 

edge opacities. If this option is unchecked, the edge 

opacity is decided through options (7) for intra-layer 

and (8) for inter-layer edges, respectively. 7. If option 

(6) is unchecked, the intra-layer edge opacity is 

decided through this slider. 8. If option (6) is 

unchecked, the inter-layer edge opacity is decided 

through this slider. 9. If the graph is multi-edge, then 

this slider is visible and controls the curvature of the 

intra-layer edges. 10. If the graph is multi-edge, then 

this slider is visible and controls the curvature of the 

inter-layer edges. 11. If the graph that is uploaded is 

multi-edge then then the channel menu (a grid of n x 

3) is created, where n is the number of channels 

and 3 are the available columns for each layer; the 

1st column is the name of the channel, the 

2nd column allows the user to change the color of 

each channel, the 3rd column allows the user to hide 

individual channels. This is visible only if option (2) is 

not enabled. 
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8.1.9 FPS 

The FPS tab simply contains a radio button with different options for frame per second (Figure 

8.9). 

 

 

8.1.10 Help 

The last tab contains all the information one needs about the Arena3Dweb. The section is 

separated into eleven sub-sections, including documentation for the menu options and the 

addition of a file format and API documentation and an example section with a variety of 

example files.  

8.1.11 Latest update 

At its latest version, Arena3Dweb contains major aesthetic improvements, in addition to the ones 

that already exist. The users already had the option to upload a different attribute file for edges 

and nodes. In those files, it is possible to change the color and size of the nodes and the edge 

color. Both of those files must follow the custom “. tsv” or “.txt” format that will be analyzed in 

the interoperability section. From the menu, as mentioned before, it was already easy to 

navigate to scene and layer settings to change the scene and layer background color and 

experiment with layer opacity. Additionally, now the tool offers three distinct color themes 

including a light, gray and dark mode that was already the default one (Figure 8.10 A). The light 

mode in particular enables users to produce publication-ready figures with a white background 

more easily, without the need to tweak the respective scene, layer, and edge colors manually. In 

addition, several predefined layer layouts are also offered. To this end, initial 3D layer setups are 

produced automatically and include a zig-zag, a star, and a cube layout (Figure 8.10 B). In the star 

layout, a virtual sphere of 360 degrees is equally divided by the total number of layers whereas, 

in the cube layout, each cube can contain up to 6 layers. In the case of more than 6 layers, 

Figure 8.9 “FPS” menu option in Arena3Dweb. The available 

options are:  15FPS, for larger, more processing-heavy 

networks, 30FPS, the default option, 60FPS, for smaller 

networks that allow smoother rendering. 
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additional cubes are created and placed next to each other. In addition to the layouts, object 

manipulation has been significantly enhanced in this version. At the same option as the default 

layouts, the user can enable the new scene auto-rotate feature.  

Raycasting via the three.js package has been implemented for easier layer and node 

selection with the mouse. Nodes change color on mouse hover as a visual cue, while hovered 

layers are highlighted in red. Layer and node selection through double-click is also offered, while 

layers can be dragged with the mouse on the 3D scene as an alternative to the navigation control 

action buttons. The scene orbit controls (middle-click drag) have also been enhanced, allowing 

for smoother 3D scene rotations compared to the previous version of the tool. 

Finally, Arena3Dweb now allows network exploration in VR mode (Figure 7.10C). VR views 

are static and can be accessed via a VR headset or a mobile phone with a gyroscope. For better 

clarity, layer floors are disabled while layer labels always face the user’s camera. Notably, the VR 

view is always offered in a new tab and visualizes the running view of Arena3Dweb at any time 

point. For consistency, the objects’ coordinate system is always adjusted in the VR view. It is 

important to note that the VR functionality is only accessible through the web application and 

not through the local version of Arena3Dweb, since all required VR files are served internally 

through the API that will be analyzed in the Interoperability section.  

Figure 8.10 Network in Arena3Dweb. (A) Three default themes for a cube multi-layered network including 

(from left to right) a light, a gray and a dark mode option. (B) A star predefined layout (left) and a zig-zag 

layer layout (right) of six layers. (C) A VR view for a network with three layers (disease, proteins, and 

chemicals). 
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8.2 Directed graphs and multi-edge channels 

In biology, two entities can often be linked with more than one type of connection. In the 

STRING database, as mentioned before, two genes can be co-expressed, co-mentioned in 

literature, or bind to each other. In a signal transduction network, a petri-net, or a pathway, 

signal tracing as well as up-and down-stream analysis can be monitored by following directed 

paths visualized by arrows rather than plain lines. Therefore, the support of directed and multi-

edged graphs is significant. 

    In this version of Arena3Dweb, both issues are addressed by allowing arrows and up to nine 

different types of connections between two nodes.  

In the case of multi-edged networks, each information channel must be labeled in the 

Arena3Dweb input file, and the corresponding edges are visualized as Bézier curves with distinct 

colors depending on the theme. These curves are created with three.js CubicBezierCurve3 

objects. This object needs as input a start point, an endpoint, and two control points. The start 

point is the source node, and the endpoint is the target node of the edge. If the number of 

channels that the pair has is odd, then the middle channel is a straight line. The user can change 

the curvature of the channels through the Edge Actions tab. If the uploaded network contains 

channels, then two different slide bars are available, one for intra-layer channels and one for 

inter-layer channels. Both have as a default value the t factor 0.05 and their value can be from 

0.01 – 0.1 with step 0.01. This t factor is multiplied by the distance between the source and 

endpoint this result helps calculate the distance that is needed for the extra two points that the 

CubicBezierCurve3 object needs. Through the Edge Action tab, the user can also change the 

default colors. These default colors are taken from Set3 and Set1 pallets that the 

RColorBrewer107 package is offering. Set3 is used for the dark and gray theme and Set1 is used 

for the light theme. To change these default colors the user must disable the priority from the 

file (“Priority on Edge Color from File” checkbox) and the color channel menu will appear. If the 

user changes the theme, then the custom colors will change back to the default ones.  

 In the case of directed graphs, two intra- or inter-layer nodes can be connected via 

straight or curved arrows. To create the arrows, we used the three.js ArrowHelper Object. The 

object takes as input the direction from the origin that must be a unit vector, the point that the 

arrow starts, the length of the arrow, and as optional values a hexadecimal value to define the 

color, the length of the head of the arrow and the width of the head of the arrow. In Arena3Dweb 

all the possible inputs are used except the width of the head of the arrow, where the default is 
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used which is calculated by three.js as 0.2 * head length. A problem with the use of ArrowHelper 

is that in its current version it is not possible to change the opacity of this object, and in 

Arena3Dweb the opacity is used to set the weight of the edge. The solution to this problem is to 

create only the arrow’s head with the ArrowHelper and keep the Line object for the rest of the 

arrow. The user can enable and disable the network’s direction from the Edge Actions tab 

through the “Enable Edge Direction” checkbox. By default, in all the file formats the user must 

set the source and the target nodes. If this checkbox is checked then it is possible to change the 

size of the arrows’ heads through two different slide bars, one for intra-layer edges and one for 

inter-layer edges.  

8.3 Layouts 

Once the main network has been loaded and rendered, users can choose between a variety of 

layout algorithms to adjust the node coordinates. By applying a layout algorithm on a selected 

layer or a set of selected layers individually, users can eliminate the intra-layer line crossovers 

without impacting the interlayer connections. On the contrary, when users decide to apply a 

layout algorithm on a set of selected layers in combination, then more focus is given to 

eliminating the interlayer crossovers. In the second case, the layout algorithm will handle all 

nodes from the selected layers and their connections as one unified network and will place them 

back on their originating layers once the layout algorithm has converged. The latter is a powerful 

feature for creating network pseudo-alignments as can be seen in Figure 8.11 at layers 5 and 6 

and generating appealing and informative views. Finally, users are allowed to apply any of the 

offered layout algorithms locally on a set of selected nodes per layer. This functionality allows 

the user to emphasize the nodes that they need. An example of a local layout is visible in Figure 

8.12. In this version, Arena3Dweb supports a variety of layout algorithms implemented as part of 

the R/igraph library. Briefly, these are: 

• Circle: This layout is simple and places the vertices on a circle ordered by their vertex IDs. 

• Grid: This simple layout places vertices on a rectangular 2D grid. 

• Random: This function places the vertices of the graph on a 2D plane uniformly using 

random coordinates. 

• Fruchterman–Reingold: It places nodes on the plane using the force-directed layout 

algorithm developed by Fruchterman and Reingold. 
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• Distributed Recursive (Graph) Layout: DrL is a force-directed graph layout toolbox 

focused on real-world large-scale graphs. 

• Multidimensional scaling: It aims to place points from a higher dimensional space on a 

2D plane so that the distance between the points is kept as much as possible. 

• Kamada–Kawai: This force-directed layout places the vertices on a 2D plane by 

simulating a physical model of springs. 

• Large Graph Layout (LGL): A force-directed layout suitable for larger graphs. 

• Graphopt: A force-directed layout algorithm, which scales relatively well to large graphs. 

• Reingold-Tilford: It is a tree-like layout more suitable for trees, hierarchies, and graphs 

without many cycles. 

• Sugiyama: Like Reingold–Tilford, this layout algorithm is more suitable for hierarchies 

and layered-directed acyclic graphs.  107 

 

 

Figure 8.11 Network in Arena3Dweb Random networks with different topologies were drawn with 

the use of various layout algorithms supported by igraph and subsequently by Arena3Dweb. 

Nodes on layer 1 are placed on a grid. Nodes on layer 2 have been placed in a hierarchy using the 

Reingold–Tilford layout algorithm. Nodes on the first two layers are scaled based on degree. Layer 3 

shows a small-world network drawn using the Kamada–Kawai layout algorithm. Layer 4 shows a 

scale-free network also drawn with the Kamada–Kawai layout algorithm. Nodes on layers 3 and 4 are 

scaled based on their clustering coefficient. Layers 5 and 6 have been combined and are drawn using 

the Fruchterman–Reingold layout algorithm. Both layers were handled as a unified network and 

nodes were placed back to their layers after the completion of the layout algorithm, thus giving a 

sense of a network alignment. The node scale of these two layers is relative to their degree. 
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8.4 Clustering 

Arena3Dweb now supports four main clustering algorithms offered by the igraph53 library in 

combination with various global and local layouts. These are: 

• Louvain62: It is a multi-level modularity optimization algorithm for finding community 

structures based on the modularity measure and a hierarchical approach. 

• Walktrap65: It performs random walks to detect densely connected neighborhoods. It 

assumes that random walks tend to restrict themselves in the same community. 

• Fast-Greedy24: It optimizes a modularity score to identify densely connected 

communities. 

• Label propagation67: It runs on a nearly linear time and tries to label the nodes with 

unique labels and update them by majority voting in the neighborhood of the node. 

Users may apply any of these algorithms for a set of selected layers and channels to run them 

separately (per layer), or in combination (across layers). Upon clustering, the grouped nodes are 

placed on their respective layer according to the local layout selected from those offered by the 

igraph library and mentioned in the previous chapter. To minimize the cluster overlaps, 

Arena3Dweb follows NORMA’s layout strategy named ‘Super nodes’ to visualize the clustered 

Figure 8.12 Network in Arena3Dweb Random networks with different topologies were drawn with the use 

of various layout algorithms supported by igraph and subsequently by Arena3Dweb and local layout. At 

Layer 3 Nodes inside the red circle have been positioned in a circled local layout, different from the rest of the 

layer. 
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groups. To this end, a virtual super node is created to represent each cluster, whereas the links 

among these super nodes (clusters) originate from initial node connections. After applying a 

global layout of preference, all the initial nodes will be placed around their respective virtual 

super-nodes according to a user-selected local layout. Figure 8.13 demonstrates a visual example  

of the described procedure. 

Figure 8.13 Network in Arena3Dweb. (A) A network consisting of four different layers (no 

inter-layer edges) before and after applying the Louvain clustering algorithm per layer. A force-

directed global layout and a circular local layout have been selected. (B) A network consisting 

of two interconnected layers before and after clustering with the same parameters as before. 
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8.4.1 Benchmarking 

As mentioned before, layouts and clustering algorithms' time is based on the number of nodes 

and edges the network has. For a better perspective table, 8.1 shows the time in seconds 

Arena3Dweb application needs to run the Louvain clustering algorithm at a 1-Layer network, 

where the global and local layout algorithm is set to the Fruchterman algorithm. The first two 

columns are the number of nodes and edges each network has, and in the following columns the 

time in second is needed for Layout, Total Layout, Clustering, and Total Clustering whereas Total 

Layout and Total Clustering include the data preparation. 

# Times in seconds 

Nodes Edges Layout Total Layout Clustering Total Clustering 

500 5000 0.28 3.33 0.4 3.3 

500 10000 0.3 9.7 0.5 9.7 

500 15000 0.3 19 0.6 20 

5000 5000 0.34 3.37 6.5 9.5 

10000 10000 0.7 10.5 21 32 

15000 15000 1 21 44 60.2 

Table 8.1 Layouts Benchmarking at Arena3D  

 

8.5 Interoperability 

Arena3Dweb comes with its API and its own updated input file format “.tsv” or “.txt”, two optional 

attribute files for nodes and edges. and the new import/export format “.JSON” for loading and 

saving sessions. Starting from the first, the input file support consists of 4 mandatory columns 

and rows whereas each row represents an edge. The four mandatory columns are SourceNode, 

TargetNode, SourceLayer, and TargetLayer. Besides them, it is possible to add two extra 

columns, Weight, and the new addition Channel that is needed to support multi-edge networks. 

After the file is uploaded, the weight values are mapped in a [0-1] range and relative opacities 

are assigned to the respective edges. Edge transparency represents the weight. The heavier the 

weight, the higher the opacity. In the case of unweighted graphs, one can skip the weight 

column. The channel column is only used in the case of multi-edge graphs and at this, the user 

can add the channel name. As mentioned before Arena3Dweb supports up to 9 different channels. 

The column order in the input file is irrelevant (Figure 8.14).  
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As mentioned, the application also offers the possibility to upload a node attributes file 

and/or an edge attributes file to customize even more the network. The nodes attribute file 

consists of two necessary columns Node and Layer and four omittable Color, Size, URL, and 

Description. In this file, one can add a URL and description to the nodes they want or change the 

size and color (Figure 8.15). The edge attributes file consists of five mandatory columns like the 

uploaded input file format, SourceNode, SourceLayer, TargetNode, TargetLayer, and Color (Figure 

8.16). 

Arena3Dweb can save and load the running visualization in a JSON format. More 

specifically, the JSON object contains information regarding the: (i) scene object rotation, 

translation, scaling, and background color, (ii) layer names, positions, rotations, scales, colors, 

and widths, (iii) node colors, respective layers, positions, scales, colors, and optional 

accompanying metadata, (iv) edge source and target nodes, opacities, colors, optional channels 

and (v), a global label color, a flag for enabling edge direction and last but not least a flag for 

enabling opacity by weight. It is important to note that a user can create and upload a file in 

JSON format too, with only the mandatory attributes: layer names, node names, and edge 

source and target nodes (example in Figure 8.17). For any missing parameters in the imported 

object, the tool provides default values where applicable. 

The JSON format is suitable for calling Arena3Dweb from external applications and 

services.  

For this purpose, a dedicated API route (https://bib.fleming.gr/bib/api/arena3dweb) has 

been implemented in Node.js. This API call handles POST requests of an Arena3Dweb JSON object, 

as described in the paragraph above, and opens the generated network object in an Arena3Dweb 

viewer. The developer must also set the Header Content-Type to application/JSON.  

The server then returns a JSON response with the URL that links to the Arena3Dweb application, 

having the requested network loaded: 

 

"url": https://bib.fleming.gr:8084/app/arena3d?f=081436639JURotmRGQeFJ.json. 

https://bib.fleming.gr/bib/api/arena3dweb
https://bib.fleming.gr:8084/app/arena3d?f=081436639JURotmRGQeFJ.json
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Figure 8.15 Node Attributes file format in Arena3Dweb. The Node Attributes file consists of two 

necessary columns Node and Layer and four omittable Color, Size, URL, and Description. 

Figure 8.14 File Format in Arena3Dweb. The default input file format consists of a table with minimum 4 

columns. The mandatory columns are SourceNode, SourceLayer, TargetNode and TargetLayer. The above 

example also contains a Weight and a Channel column. 

Figure 8.16 Edge Attributes file format in Arena3Dweb. The Edge Attributes file must contain the 

following five columns SourceNode, SourceLayer, TargetNode, TargetLayer and Color. 



60 
 

 

Figure 8.17 JSON file format in Arena3Dweb with only the 

mandatory fields 
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8.6 Integration with Cytoscape 

As mentioned before Cytoscape is an open-source software for 2D visualization. One of its main 

advantages is the different applications (plugins) that can be imported to the core part.  

Arena3Dweb is now accessible through Cytoscape’s Arena3Dweb dedicated app called 

Arena3DwebApp. The app is implemented in Java and comes with a simple interface, where the 

user can configure how the Cytoscape network will be transferred to Arena3Dweb. The most 

important setting is choosing which node attribute contains the information about the layers. It 

could be any numeric or string value that defines up to 18 different non-overlapping groups, 

which will be translated into layers. Furthermore, the Cytoscape app extracts the current 

displayed color, size, and coordinates of the nodes as well as the directionality, color, thickness, 

and transparency of the edges. The node label font size and the network background are also 

transferred. The user can choose which column, to use for the node description and URL that can 

be seen in Arena3Dweb as additional node information. If there are nodes that do not participate 

in any named layer, they are added to a layer named “unassigned” by default, but the user can 

also choose not to add them to the network in Arena3Dweb. The app generated a JSON file that 

was automatically sent to Arena3Dweb and displayed in the user’s default web browser. If the 

user wants to share the layered network or open it later, they can download the JSON file from 

Cytoscape and import it into Arena3Dweb. A detailed example of this is described in the 

“CYTOSCAPE USE CASE” chapter.  

8.7 Use cases 

Following there are five use case scenarios to demonstrate the new functionalities that 

Arena3Dweb ‘s latest version now supports. 

8.7.1 STICH use case 

The first use case demonstrates how Arena3Dweb handles both directed and multi-channel 

connections, through STICH. As mentioned before STITCH (Search Tool for Interacting Chemicals) 

is a database that includes more than 9600000 proteins from 2031 eukaryotic and prokaryotic 

genomes and 430 000 chemical compounds without including different stereoisomers and offers 

multi-channels directed networks. As seen in Figure 8.18 we queried the STITCH database for 

‘aspirin’ and filtered its interactions by only keeping the high-confidence ones (score > 0.7). We 

allow up to ten interactors for the channels: ‘Experimental’, ‘Database’, and ‘Text Mining’, 
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depicted in green, blue, and red, respectively. Drug and protein nodes are separated into 

different layers. The network consists of two layers, Drugs, and Proteins. 

 

8.7.2 PREGO use case 

PREGO is a tool that combines text mining and data integration techniques to mine such what-

where-who associations from data and metadata scattered in the scientific literature and public 

omics repositories. Microorganisms, biological processes, and environment types are identified 

and mapped to ontology terms from established community resources. Analysis of co-mentions 

in text and co-occurrences in metagenomics data/metadata are performed to extract 

associations and a level of confidence is assigned to each of them thanks to a scoring scheme. 

The PREGO knowledge base contains associations for 364,508 microbial taxa, 1090 

environmental types, 15,091 biological processes, and 7971 molecular functions with a total of 

almost 58 million associations 108. 

The second use case demonstrates also a multi-channel need that Arena3Dweb can now 

cover. We queried the PREGO knowledge base for the ‘anaerobic ammonium oxidation’ 

biological process (GO:0019331, anammox) and explored the associated microorganism taxa. 

The top 11 organisms (at the genus level) co-mentioned in the scientific literature with anammox 

were extracted (Figure 8.19 left). For illustration purposes (Figure 8.19 - middle and right), the 

genus ‘Beggiatoa’ was selected to show its associated environment types, including the top 12 

Figure 8.18 A protein-chemical interaction network generated by STITCH. Left: Aspirin compound with 

its top ten interactors and molecular interaction channels is shown. Right: The same network in 

Arena3Dweb format with three channels of information: “Experimental”, “Database” and “Text-Mining''. 
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environments from the Literature (text-mining) channel (edges indicated in green) along with the 

top 8 environments from the Environmental Sample channel (edges indicated in red).  

 

8.7.3 DARLING use case 

Darling, is a novel web application to query scientific publications associated with diseases, 

identify, and visualize bio-entities of various types and construct knowledge-based biological 

interaction networks. Out of a plethora of articles and available databases, the tool focuses on 

disease-centric repositories and generates a non-redundant set of publications, associated with 

entries in the OMIM, Human Phenotype Ontology (HPO), and DisGeNET databases. The abstracts 

of the publications are parsed through Named Entity Recognition (NER) to identify a wide range 

of biomedical terms (genes, chemicals, organisms, ontology terms, diseases, phenotypes, and 

environments). Sentence-based associations among the various biomedical entities are 

presented in an interactive network, as well as in searchable and sortable tables, while abstracts 

are shown in annotated formats109. 

Figure 8.19 PREGO’s Process, Organism and Environment association tables. Left: The 

associations of the ‘anaerobic ammonium oxidation’ process with organisms. Middle: he 

associations of the genus Beggiatoa with the corresponding Environments and their respective 

channel sources (‘Literature’ (text-mining), ‘Environmental Samples’). Right: The multilayer and 

multi-edge Arena3Dweb simultaneous visualization of these two distinct tables maintaining the 

source channel information (‘Literature’ (text-mining) shown via green edges, while ‘Environmental 

Sample’ derived-ones shown in red). 
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Darling's use case helps demonstrate the usefulness of Arena3Dweb ‘s API.  Through API 

utilization, Arena3Dweb can be called from Darling, a text-mining disease-oriented software that 

produces 2D networks among tagged biomedical terms of ten different categories. In Darling, a 

user can query for diseases, chemicals, proteins, tissues, or publications and then construct 

networks that link the relevant extracted biological entities based on literature co-mentions. In 

Arena3Dweb, the various biomedical entities will be placed on different layers according to their 

type (one layer per type). An example demonstrating the API is provided in Figure 8.20. 

 

8.7.4 FLAME use case 

FLAME is a web tool for combining multiple lists before enrichment analysis. Users can upload 

several lists and use interactive UpSet plots, as an alternative to Venn diagrams, to handle unions 

or intersections among the given input files. Functional and literature enrichment, along with 

gene conversions, are offered by g:Profiler and aGOtool applications for 197 organisms. FLAME 

can analyze genes/proteins for related articles, Gene Ontologies, pathways, annotations, 

regulatory motifs, domains, diseases, and phenotypes, and can also generate protein-protein 

interactions derived from STRING. We have validated FLAME by interrogating gene expression 

data associated with the sensitivity of the distal part of the large intestine to experimental colitis-

propelled colon cancer. FLAME comes with an interactive user-friendly interface for easy list 

Figure 8.20 Darling API Functionality Use Case. A Darling query for HIV using the “Disease search” option 

to fetch literature from the DisGeNET dataset. 4 selected entity types were used (“DOID Diseases”, 

“Genes/Proteins”, “BTO tissues’’ and “Organisms”; see left). On the right, the returned biological entities 

are projected onto their respective layers in an Arena3Dweb cube layout. 
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manipulation and exploration, while results can be visualized as interactive and parameterizable 

heatmaps, bar charts, Manhattan plots, networks, and tables110. 

Similarly with the Darling Use Case, through the functional and literature enrichment analysis 

tool named Flame, two-layered Arena3Dweb networks can be produced, one layer corresponding 

to the terms of a user-selected enriched category and a second layer containing the related 

genes/proteins. An example of this use case is provided in Figure 8.21. 

 

8.7.5 Cytoscape use case 

To illustrate the interoperability between Cytoscape and Arena3Dweb, we used stringApp v2.0 

and Arena3DwebApp in combination with Cytoscape. Specifically, we used the “STITCH: 

protein/compound query” function of stringApp to search for the compound “aspirin” with a 

confidence score cutoff of 0.7 and up to ten additional interactors (compounds or human 

proteins). We then used stringApp to retrieve functional enrichment for the proteins interacting 

with aspirin and added all enriched diseases, tissues, and KEGG pathways to the network (two, 

four, and five, respectively). The resulting network in Cytoscape is shown in Figure 8.22A. To 

transfer the network to Arena3Dweb, we opened the Arena3DwebApp dialog box shown in 

Figure 8.22B. We chose to use the column “stringdb::node type” to define the layers in 

Arena3Dweb, which means that chemical compounds will be placed in one layer, proteins in a 

Figure 8.21 FLAME API Functionality Use Case. A Flame enriched network generated from a list of 

Idiopathic Pulmonary Fibrosis related differentially expressed genes and their top ten associated biological 

processes (see left). On the right, the genes and their related processes are projected in two distinct layers 

in Arena3Dweb. 
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second, and enriched terms in a third. We selected to not consider edges as directed, since 

STRING networks are undirected, and the column “stringdb::description” should be used for 

node descriptions. Finally, we submitted this three-layer network to Arena3Dweb for further 3D 

manipulations (Figure 8.22C). In the enriched_term layer, we show the three categories of 

enriched terms from STRING in three separate neighborhoods: KEGG pathways on top, tissues in 

the middle, and diseases on the bottom. 

 

  

Figure 8.22 From Cytoscape to Arena3Dweb. (A) An aspirin chemical-protein interaction network along 

with enriched terms including diseases, tissues and KEGG pathways generated through stringApp in 

Cytoscape. Enriched disease nodes are colored red, tissues green and pathways gray. (B) The 

Arena3DwebApp dialogue window, where users are prompted to choose the node column that will 

indicate the various Layers in Arena3Dweb. Other options include edge directionality, columns for node 

descriptions and URLs and how to handle nodes without layer information. (C) The generated 

Arena3Dweb network in three layers; compounds, proteins, and enriched terms. Enriched pathways are 

placed on top, tissues in the middle and diseases on the bottom of the layer. The chemical compound 

interactions channel is colored red, compound-protein channel in brown, protein-protein in blue and 

protein participation in the various enriched terms in green. The node coloring scheme agrees with the 

initial STRING network in Cytoscape. 
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9 DISSEMINATION 

 

Arena3Dweb is available at http://arena3d.org  or http://arena3d.pavlopouloslab.info. 

The source code is available at GitHub: https://github.com/pavlopouloslab/arena3dweb. 

 Arena3DwebApp Cytoscape application is available at Cytoscape App Store at: 

https://apps.cytoscape.org/apps/arena3DwebApp. 

Article preprint available through BioRxiv: 

https://www.biorxiv.org/content/10.1101/2022.10.01.510435v2.abstract. 

  

http://arena3d.org/
http://arena3d.pavlopouloslab.info/
https://github.com/pavlopouloslab/arena3dweb
https://apps.cytoscape.org/apps/arena3DwebApp
https://www.biorxiv.org/content/10.1101/2022.10.01.510435v2.abstract
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