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A B S T R A C T

There are many Galois Theories throughout Mathematics. The
purpose of this dissertation is to intoduce the part of Grothendieck’s
Galois Theory for Schemes that is related to Artin’s Galois Theory of
finite field extensions; that is, Galois Theory of Finite Étale Algebras.

From early on, mathematicians had noticed the similarities the
Fundamental Theorem of Galois Theory and the Classification The-
orem of Covering Spaces share. Eventually, it was no other than
Grothendieck who understood their bond on a deeper level and
formulated a theory, Grothendieck’s Galois Theory for Schemes,
in which he succeeded to unify these two classification theorems.
Grothendieck’s theorem in its full generality classifies finite étale
coverings of a connected scheme using sets on which its étale funda-
mental group acts continuously. When seen from a field theoretic
point of view, the theorem classifies finite étale algebras of a field
using sets on which its absolute Galois group acts continuously. This
is the theorem we are pursuing.

The first chapter is dedicated to Artin’s Galois Theory for finite
Galois extensions as well as Krull’s Galois Theory for arbitrary (not
necessarily finite) Galois extensions. The understanding of Galois
Theory for infinite extensions is crucial for the understanding of
Grothendieck’s approach. It reveals that Galois groups have a natural
topology which makes them topological groups and this topology
plays an important role when the extension is infinite.

The second chapter is dedicated to Galois Theory for Coverings.
We study the important notions from Algebraic Topology that will
allow us to prove the strikingly similar, in a manner of speaking,
Classification Theorem for Covering Spaces. This similarity provides
motivation for Grothendieck’s Galois Theory for Schemes.

Finally, after realizing the similarities of the above classification
theorems, we introduce Galois Theory of Étale Algebras in the
third chapter as a generalization of Artin’s Galois Theory for finite
extensions. We also briefly treat Grothendieck’s Galois Theory for
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Schemes in its full generality and its relation to Galois Theory of
étale algebras as a possible continouation of this thesis.

ΠΕΡ ΙΛΗΨΗ

Στα Μαθηματικά υπάρχουν πολλές Θεωρίες Γκαλουά. Σκοπός αυτής της

εργασίας είναι να μελετήσει εκείνο το κομμάτι της Θεωρίας Γκαλουά

του Γκρόθεντικ για Σχήματα το οποίο γενικεύει την κλασική Θεωρία

Γκαλουά του ΄Αρτιν για πεπερασμένες επεκτάσεις σωμάτων· αυτή είναι η

Θεωρία Γκαλουά για Ετάλ ΄Αλγεβρες.

Από νωρίς οι μαθηματικοί αντιλαμβανόντουσαν τις ομοιότητες του

Θεμελιώδους Θεωρήματος της Θεωρίας Γκαλουά και του Θεωρήματος

Ταξινόμησης Χώρων Επικάλυψης της Αλγεβρικής Τοπολογίας. Εν τέλει,

ήταν ο Γκρόθεντικ εκείνος που κατανόησε το δεσμό που μοιράζονται

σε βαθύτερο επίπεδο και διατύπωσε τη λεγόμενη Θεωρία Γκαλουά του

Γκρόθεντικ για Σχήματα, ένα θεώρημα ταξινόμησης που ενοποιεί τα δύο

προηγούμενα. Η Θεωρία Γκαλουά για Σχήματα, στη γενική της μορφή,

ταξινομεί πεπερασμένες ετάλ επικαλύψεις συνεκτικών σχημάτων μέσω

πεπερασμένων συνόλων στα οποία η ετάλ θεμελιώδης ομάδα του σχήμα-

τος δρα συνεχώς. ΄Οταν προσεγγίσουμε το θεώρημα από τη σκοπιά

των επεκτάσεων σωμάτων, το θεώρημα αυτό ταξινομεί ετάλ άλγεβρες

ενός σώματος μέσω πεπεραμένων συνόλων στα οποία η απόλυτη ομάδα

Γκαλουά δρα συνεχώς. Αυτό είναι το θεώρημα που θέλουμε να μελε-

τήσουμε.

Το πρώτο κεφάλαιο ασχολείται με τη Θεωριά Γκαλουά του ΄Αρτιν για

πεπερασμένες επεκτάσεις Γκαλουά καθώς και με τη Θεωρία Γκαλουά του

Κρουλ για τυχαίες (όχι απαραίτητα πεπερασμένες) επεκτάσεις Γκαλουά.

Η κατανόηση της άπειρης Θεωρίας Γκαλουά είναι σημαντική όχι μόνο

γιατί χρησιμοποιείται σε επόμενα απότελέσματα, αλλά και γιατί αναδει-

κνύει κάποια λεπτά μεν σημαντικά δε σημεία της Θεωρίας Γκαλουά που

δεν έρχονται στην επιφάνεια στην πεπερασμένη περίπτωση. Φανερώνει

ότι οι ομάδες Γκαλουά έρχονται φυσικά εφοδιασμένες με μία τοπολογία

η οποία τις κάνει τοπολογικές ομάδες και αυτή τους η δομή είναι το

κλειδί στην περίπτωση που η επέκταση είναι άπειρη.

Το δεύτερο κεφάλαιο ασχολείται με τη Θεωρία Γκαλουά για Χώρους

Επικάλυψης. Μελετώνται εκείνες οι έννοιες της Αλγεβρικής Τοπολο-



γίας που μας επιτρέπουν να αποδείξουμε το Θεώρημα Ταξινόμησης των

Χώρων Επικάλυψης, το οποίο είναι εξαιρετικά όμοιο κατά κάποιο τρόπο

με αυτό της Θεωρίας Γκαλουά. Η ομοιότητα των δύο θεωρημάτων μας

προοικονομεί την ύπαρξη μιας ενοποιημένης θεωρίας.

Τέλος, στο τρίτο κεφάλαιο διατυππώνεται και αποδεικνύεται το Θε-

ώρημα Γκαλουά για ετάλ άλγεβρες και μελετάται η σχέση του με τη

κλασική θεωρία Γκαλουά. Ως έναυσμα για περαιτέρω μελέτη, σκιαγρα-

φούμε τη Θεωριά Γκαλουά για Σχήματα στη γενική της μορφή και στη

σχέση της με τη Θεωρία Γκαλουά για Ετάλ ΄Αλγεβρες.

A K N O W L E D G E M E N T S

Θα ήθελα να χρησιμοποιήσω λίγο από το χώρο αυτής της εργασίας για

να αποδώσω λοιπόν τα του Καίσαρος τω Καίσαρι και αφού κανείς δεν

είναι εδώ για να με σταματήσει...

Θα ήθελα ειλικρινά να ευχαριστήσω τον επιβλέποντα καθηγητή κ.

Εμμανουήλ για τη βοήθειά του, τη συνεχή του διαθεσημότητά του και

πάνω απ όλα για την κατανόησή του κατά τη διάρκεια συγγραφής της

διπλωματικής μου. Τον καθηγητή κ. Κοντογεώργη που δέχτηκε να

είναι στη τριμελή επιτροπή, για τη βοήθεια που μου πρόσφερε κατά τη

συγγραφή της διπλωματικής μου αλλά κυρίως γιατί όποτε και να τον

ενόχλησα για οποιοδήποτε θέμα, ήταν πάντα πρόθυμος να με βοηθήσει.

Και φυσικά τον καθηγητή κ. Συκιώτη που δέχτηκε να είναι μέλος της

εξεταστικής επιτροπής. ΄Ενα ευχαριστώ στον καθηγητή κ. Βάρσο ο

οποίος από τα προπτυχιακά μου χρόνια αφιέρωνε πάντα χρόνο για να με

ακούσει και να με συμβουλέψει.

΄Ενα τεράστιο ευχαριστώ σε όσους μου στάθηκαν και με βοήθησαν,

οικογένεια, φίλοι και καθηγητές. Δεν θα τολμήσω να τους κατονομάσω

όλους, μη τυχόν παραλείψω κάποιον.

Ωφείλω να αναφέρω ότι η ιδέα για το θέμα της διπλωματικής γεν-

νήθηκε από τις συζητήσεις που είχα με τον Γ. Υφαντή όταν γράφαμε

μαζί μια εργασία πάνω στις κατηγορίες.

Για τη συγγραφή της διπλωματικής σε LATEXχρησιμοποιήθηκε το πα-
νέμορφο πρότυπο του πακέτου ClassicThesis των André Miede και Ivo
Pletikosić.
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Part I

A S T R I K I N G S I M I L A R I T Y:
T H E C L A S S I F I C AT I O N T H E O R E M S

Galois Theory and Algebraic Topology may appear as
two unrelated disciplines but, as we shall see, there are
aspects of both theories which are closely related. The fol-
lowing chapters contain a quick exposition of Galois The-
ory and Algebraic Topology that focuses on two highly
important, and remarkably similar classification theo-
rems: the Fundamental Theorem of Galois Theory and
the Classification Theorem for Covering Spaces from Al-
gebraic Topology.



Go to the roots, of these calcula-
tions! Group the operations. Clas-
sify them according to their complex-
ities rather than their appearances!
This, I believe, is the mission of fu-
ture mathematicians. This is the
road on which I am embarking in
this work.

Évariste Galois (1811-1832).



1 A R T I N ’ S G A LO I S T H E O R Y

W
e are going to devote this chapter to the study of Galois
Theory for field extensions. Our aim is not to provide a
systematic or complete exposition of the subject but merely

to set up the machinery needed in order to reach the Fundamental
Theorem of Galois Theory for both finite and infinite field extensions.
For this we assume a basic understanding of Abstract Algebra and
General Topology, material usually covered in corresponding courses.
The first twelve chapters of [10] and the first four of [29] are far more
than enough.

Let us first introduce what Galois Theory is about with a few
words.

For many centuries, one of the central problems in Mathematics
was finding the solutions of polynomial equations

f (x) = anxn + . . . + a1x + a0 = 0 (n ∈ N)1. (1.1)

Formulas that gave the solutions of (1.1) when the degree of f , de-
noted ∂ f , is 1 or 2 were found as early as the times of ancient
Babylonians (around 2000-1500 B.C.!), while analogous formulas for
the cases ∂ f = 3 and 4 were discovered by the 16th century.

All of these formulas had a common characteristic. They involved
the four basic operations +,−,×,÷ along with the extraction of
roots applied on the coefficients of the polynomial; for example the
roots of the general polynomial equation of degree ∂ f = 2,

ax2 + bx + c = 0,

are given by the well known formulas

−b +
√

b2 − 4ac
2a

and
−b−

√
b2 − 4ac

2a
.

1 Although not historically accurate, for simplicity we may assume at this point that
ai ∈ C ∀i = 1, . . . , n.

13



14 artin’s galois theory

In other words, it was realized that all polynomial equations of
degree ∂ f ⩽ 4 can be solved by radicals.

It was therefore natural to search for similar formulas when
∂ f ⩾ 5 as well. As Mathematics advanced, mathematicians realized
that such formulas most likely did not exist and many attempted
proving it. It was Niels Henrik Abel (1802-1829) who eventually gave
a satisfactory proof of this fact for the general equation of degree
∂ f = 5. But are there any special quintic equations that can be solved
by radicals? What about equations of higher degrees? Immediately,
the focus turned to find ways of deciding when an equation can be
solved by radicals. The final answer was given by Évariste Galois.

Galois’ idea was to derive information about the polynomial by
studying the permutations of its roots. Although many mathemati-
cians before Galois had linked the polynomials’ behavior to such
permutations, it was Galois who recognized that these permutations
form a group under composition and used this extra structure to
answer questions about the polynomial. He showed how informa-
tion about a polynomial f could be derived from the group G of
permutations of its roots and, as an application, gave an answer to
one of the biggest problems of his time: Eq. (1.1) can solved by radicals
if and only if the group G is solvable (using modern terminology).

His theory was proven to be most fruitful and over the years
evolved. It required the work of many mathematicians, an adequate
development of Group Theory and Field Theory (which was done
in the 19th century) and a world ready for such an abstract theory
in order for Galois Theory to be formulated and established as we
know it.

The ideas of modern Galois Theory, whose father is considered
to be Emil Artin (1898-1962), trace back to Heinrich Martin Weber
(1842-1913) and Julius Wilhelm Richard Dedekind (1831-1916). But
it was Artin who managed to formulate the theory in the language
of fields and field extensions independently of its main application,
i.e. the solvability of polynomial equations by radicals.

Thus modern Galois Theory surpasses the scope of the original
theory. Instead of studying polynomials using permutations of
their roots, the focus is turned on how to use automorphisms to
derive information about field extensions. In this setting, the original
question about the solvability of (1.1) is translated into a question
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about a specific field extension (the splitting field of the polynomial
over the field where its coefficients lie).

1.1 field extensions

field extensions and their degrees An extension of a field
k is just a bigger field E containing k or, more generally, containing
an isomorphic copy of k.

Definition 1.1.1. Let k be a field. A field extension of k is a field E
together with a field monomorphism i : k→ E. We refer to the field
k as the base field and to E as the extending field.

Following the customary identification of k with its isomorphic
image i(k), we may think of k as a subfield of E and the monomor-
phism as the restriction idE|k. This is why we will usually denote a
field extension as k ⩽ E or E/k, suppressing the monomorphism i
from the notation.

When we are given a mathematical structure, e.g. sets, groups,
fields, algebras, topological spaces, smooth manifolds etc., we do
not confine ourselves to the study of the structure alone, but we are
also interested in substructures and structure preserving maps.

In the theory of field extensions, a subextension or intermediate
field of an extension k ⩽ E is a field L such that k ⩽ L and L ⩽ E.
We use the notation k ⩽ L ⩽ E to denote a subextension L of k ⩽ E.

More often than not we encounter multiple fields, one extending
the other, i.e. multiple subextensions. For simplicity, we shall use
the shorter notation

k ⩽ L1 ⩽ L2 ⩽ . . . ⩽ Ln ⩽ E

and refer to such extensions as towers of fields.

Example 1.1.2. Q ⩽ R, R ⩽ C and Q ⩽ C are all field extensions.
Q ⩽ R ⩽ C is a tower of fields.

Example 1.1.3. All fields can be considered extensions over their
prime fields, i.e. over Q if their characteristic is 0 or over Fq = Z/qZ
if their characteristic is q > 0.
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Example 1.1.4. Let k be a field and x1, . . . , xn be indeterminates.
We can form the ring of polynomial functions in n indeterminates
k[x1, . . . , xn] and its fraction field

k(x1, . . . , xn) =

{
f (x1, . . . , xn)

g(x1, . . . , xn)
: f , g ∈ k[x1, . . . , xn], g(x1, . . . , xn) ̸= 0

}
.

Then k ⩽ k(x1, . . . , xn) is a field extension since k can be viewed as
the subfield of constant polynomials through the monomorphism

i : k→ k(x1, . . . , xn) : a 7→ a + 0x1 + . . . + 0xn

1 + 0x1 + . . . + 0xn
= a ∀a ∈ k.

Remark 1.1.5. A natural question arises at this early stage: Why are
field extensions so important? On the one hand, as it turned out, great
mathematical problems of the antiquity such as the solvability of
polynomial equations and the impossibility of geometric construc-
tions by ruler and compass can be solved by translating them into
questions about field extensions and using the tools of field exten-
sions to solve the latter. On the other, field extensions are important
on their own in the Theory of Fields.

Along with fields, we are also interested in field homomorphisms.
Suppose that

ϕ : k→ E

is a field homomorphism. Since ker ϕ ◁ k is an ideal,2

ker ϕ = {0} or k.

Therefore either ϕ = 0 or ϕ is a monomorphism, i.e. k ⩽ E is a field
extension. That is, field extensions are the (non zero) morphisms in
the category of fields.

Given a field extension k ⩽ E, the extending field E has the
additional (rather trivial) structure of an k-vector space with external
multiplication given by the multiplication of E restricted to k, i.e.

k× E→ E.

This vector space structure is fundamental to Field Theory; it is one
of the main tools we use to study the extension k ⩽ E.

2 The only ideals of a field k are 0 and k because any non zero ideal I contains a unit,
hence I = k.
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Definition 1.1.6. The degree [E : k] of the field extension k ⩽ E is
the dimension of E as an k-vector space, i.e. [E : k] = dimkE. The
extension is called finite if [E : k] < ∞ and infinite otherwise.

Example 1.1.7. Consider the tower of fields Q ⩽ R ⩽ C. It is
immediate that both [R : Q] and [C : Q] are infinite because Q is
countable while R and C are not.3

Example 1.1.8. On the other hand, [C : R] = 2; every complex
number is an R-linear combination of the set {1, i}.

Example 1.1.9. The extension k ⩽ k(x) has infinite degree. Every
polynomial is a finite k-linear combination of the linearly indepen-
dent set {1, x, x2, x3, . . .}.

Example 1.1.10. Lets see how we can use the vector space structure of
an extension, and more specifically its degree, to derive information
about the extension itself. We will show that [E : k] = 1 if and only
if E = k.

If E = k then {1k} is an k-basis for E and therefore [E : k] = 1.
On the other hand, if [E : k] = 1 and, say, {u} is an k-basis for E
then 1E = ru for some r ∈ k and so u = r−11E = r−1 ∈ k. Now u ∈ k
implies at once that E = k.

Proposition 1.1.11. Let k ⩽ L ⩽ E be a tower of fields. Then

[E : k] = [E : L][L : k]

Proof. Let B = {ai : i ∈ I} be an k-basis for L and let B′ = {bj : j ∈ J}
be a L-basis for E; the set

B′′ = {aibj : i ∈ I, j ∈ J}

is an k-basis for E. We can see that B′′ spans E using the distributive
law and that any k-linear relation of its elements implies an L-linear
relation among the elements of B′, which is absurd. ⋄

Using induction on n ∈ N we can prove

3 Using a famous argument of Georg Ferdinand Ludwig Philipp Cantor (1845-1918),
a vector space with a countable basis over a countable field is necessarily countable.
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Corollary 1.1.12. If k ⩽ L1 ⩽ L2 ⩽ . . . ⩽ Ln ⩽ E is a tower of fields
then

[E : k] = [E : Ln] . . . [L2 : L1] [L1 : k].

Corollary 1.1.13. If k ⩽ L ⩽ E is a tower of fields, then k ⩽ E is finite if
and only if both k ⩽ L and L ⩽ E are finite.

constructing field extensions i: polynomials We turn
to more examples of field extensions and, in particular, a way of
constructing field extensions using polynomials.

An important class of field extensions arise when trying to solve
polynomial equations. For example, x2 + 1 = 0 cannot be solved in
the field R of real numbers but has two solutions in the extension C.

More generally, given a field k and some irreducible polynomial
p(x) ∈ k[x], one may wonder whether there is some extension of k
that contains a root of p(x).

Example 1.1.14. Let k be a field and p(x) ∈ k[x] an irreducible
polynomial of degree ∂p ⩾ 2 (so that not all roots of p are in k). We
can construct a field extension E of k that contains a root of p(x). The
motivating idea is simple: consider the polynomial ring in which
p(x) lives and force p(x) to be 0 by taking the quotient.

Take the polynomial ring k[x], its prime4 ideal I = ⟨p(x)⟩ and
form the quotient ring

E = k[x]/⟨p(x)⟩ = k[x]/I.

E is a field that extends k. Since k[x] is a P.I.D., the ideal I is
maximal5 and therefore E is a field.6 To see that E extends k, restrict
the natural projection map π : k[x]→ k[x]/I to k. The restriction π|k
is a ring homomorphism with π|k(1) = 1 and ker π|k = {0} hence a
field monomorphism.

To formally verify there is a root of p(x) (or of π|k
(

p(x)
)

to be
more precise) in E, take the element x̃ = x + I ∈ k[x]/I and verify
that

p(x̃) = p(x) + I = I = 0 ∈ E.

4 A principal ideal of k[x] that is generated by an irreducible element is prime.
5 Prime ideals are maximal in P.I.D.s.
6 If I is an ideal of a commutative ring R, then R/I is a field iff I is maximal.
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It would be of benefit to us if we could have an explicit descrip-
tion of the elements of E. Using the extra structure E has as an
k-vector space, we obtain a useful characterization of its elements as
follows. The set

B = {1, x̃, x̃2, . . . , x̃∂p−1} = {1, x + I, x2 + I, . . . , x∂p−1 + I}

is a basis of E over k.
B spans E. Indeed, k[x] is an Euclidean7 domain with Euclidean

function the usual degree function ∂ : k[x] → N : f 7→ ∂ f . Using
Euclid’s algorithm, for every g ∈ k[x] there are unique b, r ∈ k[x]
such that

g = bp + r, ∂r < ∂p.

Therefore, g + I = (bp + r) + I
p=0
= r + I ∈ ⟨B⟩ since ∂r < ∂p.

Moreover, B is k-linearly independent. Any k-linear relation of the
form

a∂p−1(x∂p−1 + I) + . . . + a1(x + I) + a0(1 + I) = 0 + I ∈ E

among the elements of B yields a polynomial

w(x) = a∂p−1x∂p−1 + . . . + a1x + a0 ∈ k[x]

of degree < ∂p which is equal to 0 in k[x]/I or, equivalently, a
polynomial of degree < ∂p which is divided by p which is absurd.

Therefore,
[E : k] = |B| = ∂p (1.2)

and

E = k[x]/I = {b0 + b1 x̃ + b2 x̃2 + . . . + b∂p−1 x̃∂p−1 : bi ∈ k}
= {b0 + b1x + b2x2 + . . . + b∂p−1x∂p−1 + I : bi ∈ k}.

Example 1.1.15. Take the field R and the irreducible polynomial
p(x) = x2 + 1 ∈ R[x] of degree ∂p = 2.8

By the example above, E = R[x]/⟨x2 + 1⟩ is a field extension of
R which contains a root of p(x). Moreover, E is spanned by

B = {1, x + ⟨x2 + 1⟩}
7 Euclid of Alexandria (∼ 300 B.C.).
8 The polynomial x2 + 1 is irreducible since it has degree 2 and no real roots.
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and, as a result, [E : R] = 2 and

E = {a + b(x + I) : a, b ∈ R}.

If we decide to just change the notation and set i := x + I ∈ E
(observe that x + I is the root of p(x) in E) then

E = {a + b(x + I) : a, b ∈ R} ≃ {a + bi : a, b ∈ R} = C.

The formal way to do this is by constructing the field isomorphism

σ : E→ C : a + bx + I 7→ a + bi.

Thus we have constructed C in a very elegant, algebraic way.

isomorphic extensions We now make a short pause from our
examples to define a crucial notion.

Even in our first examples we came across two very different yet
isomorphic fields that both extend R, i.e. C and E = R[x]/⟨x2 + 1⟩.
Therefore it is only natural to consider both extensions R ⩽ E and
R ⩽ C to be the same from a field-theoretic point of view. This
notion of isomorphic field extensions is the one we want to define.

Definition 1.1.16. A morphism between two abstract field extensions
i1 : k1 → E1 and i2 : k2 → E2 is a pair of maps σ : E1 → E2

and τ : k1 → k2 such that the following diagram commutes, i.e.
σ ◦ i1 = i1 ◦ τ.

E1 E2

k1 k2

σ

i1

τ

i2

The field extensions are called isomorphic if the maps σ and τ are
field isomorphisms.

What this definition says is that an isomorphism of field ex-
tensions must preserve the structure of the extensions in question, i.e.
the base fields, the extending fields and the way they are related (the
monomorphisms).
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With the identification of k j with its isomorphic image ij(k j) ⩽ Ej
(in which case ij = idEj |k j ), j = 1, 2, the commutativity of the above
diagram gives

σ(i1(x)) = i2
(
τ(x)

)
⇐⇒ σ(x) = τ(x) ∀x ∈ k1.

Hence we get the following equivalent definition.

Definition 1.1.17. Two field extensions k1 ⩽ E1 and k2 ⩽ E2 are
isomorphic if there is a field isomorphism τ : k1 → k2 that can be
extended to an isomorphism σ : E1 → E2.

In many instances, such as Ex. 1.1.15, we will encounter the
simpler case when the extensions are over the same base field.

Definition 1.1.18. Two abstract field extensions i1 : k → E1 and
i2 : k→ E2 over the same field are called isomorphic if there is a field
isomorphism σ : E1 → E2 so that the following diagram commutes,
i.e. σ ◦ i1 = i2.

E1 E2

k

σ

i1 i2

Although we could simply use the first definition and take τ =

idk when two extensions are over the same field, the importance of
this special case dictates to formulate it separately.

In the case where we regard k as a subfield of both E1 and E2,
the commutativity of the above diagram gives

σ(i1(x)) = i2(x) ⇐⇒ σ(x) = x ∀x ∈ k.

That is, σ is a field isomorphism E1 → E2 that fixes k pointwise. In
this case we say that σ is an k-isomorphism from E1 to E2 (or in
the case where E1 = E2 = E, an k-automorphism of E) and we can
restate the previous definition as

Definition 1.1.19. Two field extensions k ⩽ E1 and k ⩽ E2 over the
same field are called isomorphic if there is an k-isomorphism σ : E1 →
E2.
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Lemma 1.1.20. Field extension isomorphism is an equivalence relation.

Example 1.1.21. The extensions R ⩽ C and R ⩽ E = R[x]/⟨x2 + 1⟩
are isomorphic. If we define

σ : E→ C : a + bx + I 7→ a + bi

as before, and
j : R→ C : r 7→ r + 0i,

to be the usual inclusion R ↪→ C then it is easily seen that the
diagram

E C

R

σ

jπ|R

commutes. Indeed,

σ(π|R(r)) = σ(r + I) = σ(r + 0(x + I)) = r + 0i = j(r) ∀r ∈ R.

Therefore, the extensions are isomorphic.

Field extension isomorphisms over the same field preserve all
the information of a field extension including the structure of the
extending fields as vector spaces over the base field.

Proposition 1.1.22. If E1, E2 are fields extending a field k and σ : E1 → E2

is an k-isomorphism then σ is a bijective k-linear transformation.

Proof. The bijection is immediate; the linearity is clear from the
corresponding commutative diagram. ⋄

Corollary 1.1.23. If k ⩽ E1 and k ⩽ E2 are isomorphic field extensions
over the same field then [E1 : k] = [E2 : k].

Lastly, before we continue with our examples we introduce the
concept of an automorphism of a field extension which will be
needed later.
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Definition 1.1.24. Let k ⩽ E be a field extension. An automor-
phism of k ⩽ E is an isomorphism from k ⩽ E to itself, i.e. an
k-automorphism of E. The set of all k-automorphisms of E is de-
noted by Aut(E/k).

Using elementary Group Theory, it is immediate that

Lemma 1.1.25. If k ⩽ E be a field extension then Aut(E/k) is a subgroup
of Aut(E).

constructing field extensions ii: finitely generated ex-
tensions We continue with more examples and ways of con-
structing field extensions.

Given a fixed field extension k ⩽ E and a subset X of E, the
intersection of all subfields L of E that contain X ∪ k is non empty
(E is such a field), and is a subfield of E.9 It is the smallest extension
of k with these properties and is denoted by k(X);

k(X) =
⋂

X∪k⊆L⩽E

L. (1.3)

The elements of X are called the generators of the extension. A
field extension k ⩽ E is called finitely generated over k if there
is some finite subset X ⊆ E such that E = k(X). If there exists a
single element a ∈ E such that E = k(a), then the extension is called
simple. Using (1.3) we can see that

k(a, b) =
⋂

{a,b}∪k⊆L⩽E

L =
⋂

{b}∪k(a)⊆L⩽E

L =
[
k(a)

]
(b) (1.4)

and by induction that k(a1, . . . , an) = k(a1, . . . , an−1)(an); this sug-
gests that simple extensions act as building blocks for finitely gener-
ated extensions. Therefore, if we want to understand the structure
of finitely generated extensions, we should first understand the
structure of simple extensions.

Finitely generated extensions are the core of finite Galois Theory.
As we shall see, every finite extension is finitely generated.

Example 1.1.26. We can take the extension R ⩽ C and the element
i ∈ C. Then R(i) is a simple extension. It is the smallest field in C
containing both R and i.

9 The intersection of any family of subfields of E is again a subfield of E.
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Example 1.1.27. To the same direction we can also take the extension
Q ⩽ R and the elements π,

√
2 ∈ R. Then Q(

√
2, π) is the smallest

field ⊆ R that contains Q as well as π and
√

2.

Example 1.1.28. We will later see (Prop. 1.1.46) that every extension
of the form k ⩽ k[x]/⟨p(x)⟩ constructed as in Ex. 1.1.14 is isomorphic
to a simple extension, generated by an element that satisfies some
extra properties. So finitely generated extensions generalize the
construction of Ex. 1.1.14.

So far we have no information about the structure of finitely
generated extensions.

Proposition 1.1.29. Let k ⩽ E be a field extension and a ∈ E. Then

k(a) =
{

f (a)
g(a)

: f (x), g(x) ∈ k[x], g(a) ̸= 0
}

.

Proof. Let L0 be the right hand side of the above equality. L0 is a
subextension of k ⩽ E such that a ∈ L0. Therefore

k(a) =
⋂

{a}∪k⊆L⩽E

L ⊆ L0.

On the other hand, L0 is obviously contained in every field L that
contains both k and a. Hence

L0 ⊆
⋂

{a}∪k⊆L⩽E

L = k(a)

The two inclusions imply the required equality. ⋄

Corollary 1.1.30. Let k ⩽ E be a field extension and a1, . . . , an ∈ E. Then

k(a1, . . . , an) =

{
f (a1, . . . , an)

g(a1, . . . , an)
: f , g ∈ k[x1, . . . , xn], g(a1, . . . , an) ̸= 0

}
.

Example 1.1.31. Now we know that

R(i) =
{

f (i)
g(i)

: f (x), g(x) ∈ R[x], g(i) ̸= 0
}

.

and

Q(
√

2, π) =

{
f (
√

2, π)

g(
√

2, π)
: f , g ∈ Q[x1, x2], g(

√
2, π) ̸= 0

}
.
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But these descriptions do not depict accurately the structure of the
extensions. In particular, the form of the elements might not be as
complex as described in the previous propositions as the generator
may satisfy some polynomial equation. For example, the element

i15 + 3i6 − 2i + 1
i− 1

∈ R(i)

can be simplified to

i15 + 3i6 − 2i + 1
i− 1

= (i15 + 3i6 − 2i + 1)(i− 1)−1

= (−3i− 2)
(
−1

2
i− 1

2

)
=

5
2

i− 1
2
∈ R(i).

After studying simple extensions in more depth, we will be able to
get better descriptions of finitely generated extensions such as the
above.

algebraic extensions i As we said, the understanding of
finitely generated extensions requires a very good grasp of their
building blocks, i.e. the simple extensions. In the general case, we
can classify all simple extensions k ⩽ k(a) up to isomorphism; their
structure depends on whether the generator a is algebraic or not.

Definition 1.1.32. Let k ⩽ E be a field extension and a ∈ E. The
element a ∈ E is said to be algebraic over k if there exists some
f (x) ∈ k[x] such that f (a) = 0. An extension whose elements are all
algebraic is called an algebraic extension.

Example 1.1.33. The element i ∈ C is the root of x2 + 1 ∈ R[x] hence
algebraic over R. In fact there is no point to commit ourselves to i.
Any complex number z = a + bi is the root of x2− 2ax + (a2 + b2) ∈
R[x] hence algebraic over R. So R ⩽ C is an algebraic extension.

Definition 1.1.34. If the element a ∈ E is not algebraic over k then it
is said to be transcendental over k. An extension with transcendental
elements is called transcendental extension.

Example 1.1.35. The extension Q ⩽ Q(
√

2, π) is transcendental since
π is transcendental over Q.10

10 For a proof of the transcendence of π see [30].
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Example 1.1.36. An important example of a transcendental extension
is k ⩽ k(x), where x is an indeterminate. As we shall see, this is the
only simple transcendental extension of k up to isomorphism.

classifying simple extensions Let k ⩽ E = k(a) be a simple
field extension (a ∈ E) and

ea : k[x]→ k[a] : f (x) 7→ f (a)

be the evaluation homomorphism. Note that ea is clearly onto.
If a ∈ E is transcendental, then there is no g(x) ∈ k[x] such that

g(a) = 0; in other words, ker ea = {0}. By the 1st Isomorphism
Theorem we have a ring isomorphism

k[x]/ ker ea = k[x] ≃ Im ea = k[a].

Since k(x) and k(a) are the fields of quotients (which are unique
up to isomorphism) of k[x] and k[a] respectively, we get a field
isomorphism

ẽa : k(x) ≃→ k(a) :
f (x)
g(x)

7→ f (a)
g(a)

.

This field isomorphism together with the two inclusions

i1 : k→ k(x) : z 7→ f (x)
g(x)

=
z + 0x + 0x2 + . . .
1 + 0x + 0x2 + . . .

=
z
1
∈ k(x)

i2 : k→ k(a) : z 7→ f (a)
g(a)

=
z + 0a + 0a2 + . . .
1 + 0a + 0a2 + . . .

=
z
1
∈ k(a)

make the corresponding diagram commute.

k(x) k(a)

k

ẽa

i1 i2

Thus we have proven the following.

Proposition 1.1.37. Let k be a field. k ⩽ k(x), where x is an indeterminate,
is the only simple transcendental extension of k up to isomorphism.
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If, on the other hand, a ∈ E is algebraic over k then

{0} ̸= ker ea ◁ k[x].

Hence ker ea is generated by some non-zero element.11

Among all polynomials f that have a as a zero (i.e. f ∈ ker ea),
there exist some with minimum degrees (by the well-ordering prin-
ciple). Of all these we can choose a monic one.12 This monic poly-
nomial, denoted by m(a, k)(x), such that m(a, k)(a) = 0 and whose
degree ∂m(a, k) is the smallest among all the polynomials that have
a as root, is unique; if not, any other such polynomial w(x) would re-
sult in a non-zero polynomial m(a, k)−w with a as a root and degree
less that ∂m (because both m and w are monic) - a contradiction.

Definition 1.1.38. This polynomial m(a, k) is called the minimal
polynomial of a over k and it obviously depends not only on a but
on k as well.

Proposition 1.1.39. With the above notation, the minimal polynomial
m = m(a, k) ∈ k[x]

(i) is irreducible

(ii) divides every polynomial g(x) ∈ k[x] such that g(a) = 0.

Proof. (i) If not, then m(x) = f1(x) f2(x) with ∂ f1, ∂ f2 < ∂m. But
then m(a) = f1(a) f2(a) = 0 hence either f1(a) = 0 or f2(a) = 0
which contradicts the minimality of ∂m.

(ii) By Euclid’s Algorithm (and the minimality of ∂m), there exist
unique q, r ∈ k[x] such that

g(x) = q(x)m(x) + r(x), ∂r < ∂m.

If r ̸= 0 then g(a) = q(a)m(a) + r(a) ⇒ r(a) = 0 which again
contradicts the minimality of ∂m. Therefore r = 0 and m|g.

⋄

Corollary 1.1.40. With the above notation, ker ea = ⟨m(a, k)⟩.
11 k[x] is a P.I.D.
12 Take one with minimum degree and divide it by its leading coefficient.
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Corollary 1.1.41. Let k ⩽ E be a field extension, a ∈ E and m(x) ∈ k[x]
a monic polynomial such that m(a) = 0. Then m = m(a, k) if and only if
m is irreducible.

Corollary 1.1.42. Let k ⩽ L ⩽ E be a tower of fields and a ∈ E. Then
m(a, L) divides m(a, k). In particular ∂m(a, L) ⩽ ∂m(a, k).

Example 1.1.43. m(i,R) = m(i,Q) = x2 + 1.

Example 1.1.44. m(
√

2,Q) = x2 − 2 = m
(√

2,Q(π)
)
.

Returning to the extension k ⩽ k(a). The evaluation homomor-
phism ea is a well defined ring epimorphism with kernel

ker e′a = ⟨m(a, k)⟩ ≡ ⟨m⟩.

The 1st Isomorphism Theorem for Rings now gives a ring isomor-
phism

ẽ ′a : k[x]/⟨m⟩ ≃ k[a] : f (x) + ⟨m⟩ 7→ f (a). (1.5)

However m is irreducible, so ⟨m⟩ is a maximal ideal of k[x], hence
k[x]/⟨m⟩ is actually a field. That means that k[a] is also a field, i.e.
k[a] = k(a), and therefore k(a) ≃ k[x]/⟨m(a, k)⟩.

By the previous discussion, if k ⩽ k(a) is a simple extension with
a algebraic over k then k(a) is isomorphic to an extension of the form
k[x]/⟨p(x)⟩ where p(x) is a monic irreducible polynomial in k[x],
namely p = m(a, k).

We can show that the converse also holds. Given a field k and
an irreducible, monic polynomial p(x) ∈ k[x], the quotient E =

k[x]/⟨p(x)⟩ is a field extension of k that contains a root of p, namely
the element x̃ = x + I ∈ E (Ex. 1.1.14). Since p is monic and
irreducible, m(x̃, k) = p by Cor. 1.1.41. Therefore

k[x]/⟨p(x)⟩ = k[x]/⟨m(x̃, k)⟩ ≃ k(x̃).

The restriction that p be monic is actually superfluous. For if p
is an irreducible polynomial in k[x] with leading coefficient a then
q(x) = a−1 p(x) ∈ k[x] is irreducible and monic and

⟨q(x)⟩ = ⟨p(x)⟩.

Therefore
k[x]/⟨q(x)⟩ = k[x]/⟨p(x)⟩.

Thus we have proven
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Proposition 1.1.45. Let k be a field. The simple field extensions of k which
are generated by algebraic elements are exactly the fields k[x]/⟨p(x)⟩ for
p(x) ∈ k[x] irreducible polynomials.

Using now the data we have from Ex. 1.1.14 for the structure of
extensions of the form k[x]/⟨p(x)⟩, we can get a better description
of the elements of simple extensions with algebraic generators than
those provided by Prop. 1.1.29 and Cor. 1.1.30.

Corollary 1.1.46. Let k ⩽ E be a field extension and a ∈ E an algebraic
element over k. Then [k(a) : k] = ∂m(a, k) = ∂m and

k(a) = {c0 + c1a + c2a2 + . . . + c∂m−1a∂m−1 : ci ∈ k}.

Proof. We already saw that k(a) = k[a]. Since m(a) = 0, we can
replace every power of a in some f (a) ∈ k[a] which is greater than
∂m by powers ⩽ ∂m.

Moreover, the set B = {1, a, . . . , a∂m−1} is k-linearly independent.
Otherwise, any k-linear relation among the elements of B yields
a polynomial g ∈ k[x] such that g(a) = 0 and ∂g < ∂m which is
absurd. ⋄

Example 1.1.47. Consider the extension R ⩽ R(i). The element
i ∈ C is algebraic over R with minimal polynomial m(i,R) = x2 + 1
of degree ∂ = 2. Therefore [R(i) : R] = 2 and

R(i) ≃ {a + bi : a, b ∈ R} = C.

Example 1.1.48. Now to the extension Q ⩽ Q(π,
√

2). Although

[Q(π,
√

2) : Q] = [Q(π,
√

2) : Q(π)] [Q(π) : Q] = ∞,

using the structure of simple extensions

Q(π,
√

2) =
[
Q(π)

]
(
√

2) and Q(π) = { f (π) : f ∈ Q(x)}

(x being an indeterminate), we can again have a better description of
the elements of the extension. Indeed, the element

√
2 is algebraic

over Q(π) with minimal polynomial m
(√

2,Q(π)
)
= x2 − 2. Hence

[Q(π,
√

2) : Q(π)] = 2 and

Q(π,
√

2) =
[
Q(π)

]
(
√

2) = {a + b
√

2 : a, b ∈ Q(π)}.
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introducing an extension theorem Before continuing with
the study of algebraic extensions, we take the opportunity the clas-
sification of simple extensions gives us to start discussing extension
theorems. Our aim is to classify simple extensions up to isomorphism.

Suppose we begin with a field extension k ⩽ E and two elements
a, b ∈ E. We can then form the simple extensions k(a) and k(b).
By definition, these are isomorphic if there is an k-isomorphism
between them.

E

k(a) k(b)

k

∃ k-isomorphism ?

If one element is algebraic and the other is transcendental then
the extensions cannot be isomorphic (the one is an infinite dimen-
sional vector space over k while the other has finite dimension; see
Cor. 1.1.23).

If both elements are transcendental then the extensions are iso-
morphic by Prop. 1.1.37.

So the interesting case is when both a and b are algebraic over k.

Example 1.1.49. The extensions R ⩽ R(i) and R ⩽ R(−i) are iso-
morphic through complex conjugation map z 7→ z (which is an
R-isomorphism).

Counterexample 1.1.50. The extensions Q ⩽ Q(
√

2) and Q ⩽ Q( 3
√

2)
are not isomorphic; they have different degrees.

By Prop. 1.1.45,

k(a) ≃ k[x]/⟨m(a, k)⟩ and k(b) ≃ k[x]/⟨m(b, k)⟩.

Therefore a sufficient condition would be ⟨m(a, k)⟩ = ⟨m(b, k)⟩.
Since both m(a, k) and m(b, k) are irreducible and monic, this condi-
tion is equivalent to m(a, k) = m(b, k). Therefore if a, b are roots of
the same irreducible polynomial then the extensions are isomorphic.
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Proposition 1.1.51. If k ⩽ E is a field extension and a, b ∈ E algebraic
elements over k such that m(a, k) = m(b, k) then the extensions k ⩽ k(a)
and k ⩽ k(b) are isomorphic.

Proof. The required k-isomorphism is the composition

k(a) ≃→ k[x]/⟨m(a, k)⟩ = k[x]/⟨m(b, k)⟩ ≃→ k(b).

The details are easy to fill. ⋄

Let us examine the general case where we have two different
extensions k1 ⩽ E1 and k2 ⩽ E2 over isomorphic base fields with, say,
τ : k1 → k2 being the base field isomorphism.

Given α ∈ E1 and β ∈ E2 we can form the extensions k1 ⩽
k1(α) and k2 ⩽ k2(β). We would like to know if these extensions
are isomorphic. Again the non-trivial case is when α and β are
algebraic over their respective base fields. In this case, the extensions
are isomorphic if we can extend the given isomorphism τ to an
isomorphism σ between k1(α) and k2(β).

k1(α) k2(β)

k1 k2

∃ σ ?

τ

Before proceeding, recall that if τ : k1 → k2 is a field homomor-
phism then τ induces a ring homomorphism

τ̃ : k1[x]→ k2[x] :
m

∑
i=0

aixi 7→
m

∑
i=0

τ(ai)xi

and if τ is bijective then so is τ̃. Since

k1(α) ≃ k1[x]/⟨m(α, k1)⟩, k2(β) = k2[x]/⟨m(β, k2)⟩

and τ̃ : k1[x] → k2[x] is an isomorphism, a sufficient condition for
the extensions to be isomorphic would be τ̃

(
m(α, k1)

)
= m(β, k2).

Indeed, if this is the case, then we can define

σ : k1(α)→ k2(β) : f (α) =
m

∑
i=0

aiα
i 7→

(
τ̃( f )

)
(β) =

m

∑
i=1

τ(ai)βi.
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This is a field isomorphism that makes the diagram

k1(α) k2(β)

k1 k2

σ

i

τ

j

commute (here i and j are the canonical inclusions). Moreover
σ(α) = β and σ|k1 = τ, that is, σ extends τ. Thus we have proven

Proposition 1.1.52 (Extension Theorem for simple extensions). Sup-
pose k1 ⩽ k1(α) and k2 ⩽ k2(β) are algebraic simple extensions and
τ : k1 → k2 is a field isomorphism such that τ̃

(
m(α, k1)

)
= m(β, k2).

Then there exists an isomorphism σ : k1(α) → k2(β) that extends τ. In
other words, k1 ⩽ k1(α) and k2 ⩽ k2(β) are isomorphic.

algebraic extensions ii Algebraic extensions are the core of
classical Galois Theory and from now on we focus solely on them; no
matter how interesting it is, the study of Galois Theory for arbitrary
extensions is far beyond the scopes of this dissertation.

Convention. Henceforth all extensions are assumed to be algebraic
unless explicitly stated otherwise.

So we need to put some extra effort into understanding algebraic
extensions better.

Proposition 1.1.53. A field extension is finite if and only if it is algebraic
and finitely generated over the base field.

Proof. (⇒) For a given finite extension k ⩽ E with [E : k] = n < ∞,
and any z ∈ E, the set

{1, z, z, z2, . . . , zn} ⊆ E

is k-linearly dependent since it contains n + 1 > [E : k] elements.
That means we can find a0, . . . , an ∈ k, not all zero, such that

a01 + a1z + a2z2 + . . . + anzn = 0.

Therefore z is the root of a0 + a1x + . . . + anxn ∈ k[x] hence algebraic
over k.
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Moreover, since [E : k] = n < ∞, there exists an k-basis B =

{b1, . . . , bn} ⊆ E of E and thus

E = { f1b1 + . . . + fnbn : fi ∈ k}.

Now on the one hand k ⩽ k(B) ⩽ E by definition of k(B); so
k(B) ⊆ E. On the other hand,

{ f1b1 + . . . + fnbn : fi ∈ k} ⊆ L

for every extension L of k that contains B because

f1︸︷︷︸
∈k⊆L

b1︸︷︷︸
∈L︸ ︷︷ ︸

∈L

+ . . . + fn︸︷︷︸
∈k⊆L

bn︸︷︷︸
∈L︸ ︷︷ ︸

∈L

∈ L ∀ f1, . . . , fn ∈ k.

But E is an extension of k that contains B. Therefore E ⊆ k(B) and
as a result E = k(B), i.e. E is finitely generated.

(⇐) If k ⩽ k(a1, . . . , an) is algebraic then in particular all ai are
algebraic over k. Applying 1.1.12 to the tower of fields

k ⩽ k(a1) ⩽ k(a1, a2) ⩽ . . . ⩽ k(a1, . . . , an),

we get

[k(a1, . . . , an) : k] = [k(a1, . . . , an) : k(a1, . . . , an−1)] . . . [k(a1) : k]
1.4
= [k(a1, . . . , an−1)(an) : k(a1, . . . , an−1)] . . . [k(a1) : k]

1.1.46
= ∂m

(
an, k(a1, . . . , an−1)

)
. . . ∂m(a1, k)

1.1.42
⩽ ∂m(an, k) . . . ∂m(a1, k) < ∞,

i.e. the extension is finite. ⋄

Corollary 1.1.54. Every finite field extension is algebraic.

Corollary 1.1.55. Suppose k ⩽ E is a field extension and X a finite subset
of E. Every x ∈ X is algebraic if and only if the extension k ⩽ k(X) is
algebraic.

Both hypotheses of 1.1.53 are essential for the converse. Exam-
ple 1.1.35 gives a finitely generated but not finite, transcendental
extension. Infinite algebraic extensions also exist.
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Counterexample 1.1.56. The extension

Q ⩽ A = {z ∈ C : z is algebraic over Q}

is a field extension which is by construction algebraic but not finite.13

Consider the nth root of some number, say 2, and adjoin it to Q.
We get the tower of fields Q ⩽ Q( n

√
2) ⩽ A. Since n

√
2 is algebraic

over Q with minimal polynomial m = xn − 2 (it is irreducible by
Eisenstein’s14 criterion), the degree of the simple extension will be
[Q( n
√

2) : Q] = n. Therefore, from 1.1.11, we get

[A : Q] = [A : Q(
n
√

2)][Q(
n
√

2) : Q] ⩾ n.

Since n ∈ N was arbitrary, the degree of the extension is infinite.

Before closing this paragraph on algebraic extensions, we will
see how they behave under subextensions.

Proposition 1.1.57 (Transitivity of algebraic extensions). Given a
tower of fields k ⩽ L ⩽ E, the extension k ⩽ E is algebraic if and only if
both the extensions k ⩽ L and L ⩽ E are algebraic.

Proof. (⇒) Immediate.

(⇐) Let a ∈ E. Since L ⩽ E is algebraic, we can find the minimal
polynomial

m(a, L) = xn + . . . + a1x + a0 ∈ L[x].

Consider the extension generated by the coefficients of m(a, L)
over k,

k ⩽ k(a0, . . . , an−1) ⩽ L.

Since k ⩽ L is algebraic, so is k ⩽ k(a0, . . . , an−1) which is by
construction finitely generated over k, hence, by 1.1.53, finite

[k(a0, . . . , an−1) : k] < ∞.

Moreover m(a, k) ∈ k(a0, . . . , an−1)[x], which means that a is
algebraic over k(a0, . . . , an−1) and, again by 1.1.53,

[k(a0, . . . , an−1, a) : k(a0, . . . , an−1)] < ∞.
13 An accessible proof that A is indeed a field can be found in [15].
14 Ferdinand Gotthold Max Eisenstein (1823–1852).
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Therefore, by 1.1.11,

[k(a0, . . . , an−1, a) : k] =[k(a0, . . . , an−1, a) : k(a0, . . . , an−1)]

·[k(a0, . . . , an−1) : k] < ∞.

Thus the extension is finite and by 1.1.54, algebraic. In particu-
lar a is algebraic over k.

⋄

constructing field extensions iii: splitting fields For
a given polynomial f (x) ∈ k[x], we constructed in 1.1.14 a field
extension that contains a zero of f . We can take one step further and
construct a field that contains all roots of a given polynomial.

Definition 1.1.58. A polynomial f (x) ∈ k[x] splits over k if all roots
of f lie inside k. A splitting field for f is a minimal field over which
f splits.

Example 1.1.59. The polynomial x2 + 1 ∈ Q(x) does not split over
Q or R. It splits over C as well as over the smaller field Q(i).

Example 1.1.60. Suppose k ⩽ E is a field extension and let f (x) ∈
k[x] such that ∂ f = n. If f splits over E and a1, . . . , an ∈ E are its
roots, then k(a1, . . . , an) is by construction a splitting field of f .

Example 1.1.61. Q(i) is a splitting field of x2 + 1 ∈ Q[x].

A famous theorem of Leopold Kronecker (1823-1891) states that
any polynomial has a splitting field.

Proposition 1.1.62 (Kronecker). If f (x) ∈ k[x] is a non-zero polynomial,
then there exists a splitting field of f .

Proof. Using induction on ∂ f . The base case ∂ f = 1 holds trivially.
Assume that the theorem holds for all polynomials of degrees ⩽ n.
Given a polynomial f with ∂ f = n + 1, the construction in 1.1.14
gives an extension E containing a root a of f . In E we can write
f (x) = (x− a)g(x), ∂g ⩽ n and apply the induction hypothesis on
g(x). ⋄
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Example 1.1.63. Both C = R(i) and E = R[x]/⟨x2 + 1⟩ are splitting
fields of x2 + 1 ∈ R[x]. To begin with, x2 + 1 splits over both fields.

On the one hand, any splitting field R ⩽ L ⩽ R(i) must contain
both R and i. By the minimality of R(i), we deduce that L = R(i).
On the other hand, for any splitting field R ⩽ L ⩽ E, Prop. 1.1.11
gives

2 = [E : R] = [E : L][L : R].

But x2 + 1 does not split over R. Therefore, [L : R] > 1 (so [L : R] =
2) and [E : L] = 1 which means that E = L.

As we have already seen, the two fields are isomorphic. So in
this case, these two splitting fields of x2 + 1 ∈ R[x] are isomorphic.

Actually, any two splitting fields of a polynomial f (x) ∈ k[x] are
isomorphic. Inspired by the extension theorem 1.1.52, we will prove
the result directly for the general case of two isomorphic base fields.

Proposition 1.1.64 (Extension Theorem for Splitting Fields). Let
τ : k1 → k2 be a field isomorphism. If E1 is the splitting field of some
f (x) ∈ k1[x] and E2 is the splitting field of f̃ = τ̃( f ) ∈ k2[x] then there
is a field isomorphism σ : E1 → E2 that extends τ.

Proof. With induction on ∂ f .
If ∂ f = 1 then k1 is itself a splitting field of f and therefore, by

the minimality of splitting fields, k1 = E1. Since τ̃ is an isomorphism,
f̃ also splits in k2 and again k2 = E2. So the required extension of τ

is itself.
Assume the theorem holds for all polynomials f (x) ∈ k[x] of

degree ∂ f < m for some m ∈ N.
Let f (x) ∈ k1[x] be a polynomial of degree ∂ f = m and take p(x)

some monic, irreducible factor of f (it may be that p = f ) of degree
∂p ⩾ 2; p(x) has a root α in E1 and p̃ = τ̃(p) has a root β in E2. By
1.1.52 there is an isomorphism σ1 that extends τ to k1(α).

k1(α) k2(β)

k1 k2

σ1

τ



1.1 field extensions 37

We now have that f (x) = (x − α) f1(x) ∈ k(α)[x] and f̃ (x) =

(x − β) f̃1(x) ∈ k(β)[x] where f̃1 = τ̃( f1) and ∂ f1 = ∂ f̃1 < m. By
the inductive hypothesis, E1 is the splitting field of f1 and E2 is the
splitting field of f̃1 (any other splitting field L of f1 contains both α

and the roots of f1; this means that it is a splitting field of f inside E1

and by minimality L = E1; same for f̃1) and there is an isomorphism
σ : E1 → E2 extending σ1.

E1 E2

k1(α) k2(β)

σ

σ1

Combining the two diagrams, we conclude that σ is an extension of
τ. Therefore the extensions are isomorphic. ⋄

Corollary 1.1.65. Let k be a field, f (x) ∈ k[x] some polynomial and
E1, E2 two splitting fields of f . The extensions k ⩽ E1 and k ⩽ E2 are
isomorphic. In particular, the splitting field of a polynomial f (x) is unique
up to isomorphism.

algebraic closures The results in the preceding paragraph can
be generalized in the sense that we can construct the splitting field
of any finite set of polynomials { fi(x) ∈ F[x] : i = 1, 2, . . . , n} by
carrying out the construction of Example 1.1.14 at most ∏n

i=1 ∂ fi
times.

Using Zorn’s Lemma15 we can take things one (huge) step further
and consider an extension E of a field k that not only contains the
roots of every polynomial f (x) ∈ k[x], but also of every polynomial
g(x) ∈ E[x].

Lemma 1.1.66. The following conditions are equivalent for a field k:

i) There are no algebraic extensions k ⊊ E.

ii) There are no finite extensions k ⊊ E.

iii) Every f (x) ∈ k[x] splits over k.

15 Named after Max August Zorn (1906–1993).
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iv) Every f (x) ∈ k[x] has a root in k.

v) Every irreducible polynomial p(x) ∈ k[x] has degree 1.

Proof. (i)⇒(ii): Immediate since every finite extension is algebraic.
(ii)⇒(iii): If some f ∈ k[x] did not split, then we could construct

an extension E of k that contains a root of f . By construction this
would be a finite extension (of degree at most ∂ f ).

(iii)⇒(iv): Immediate.
(iv)⇒(v): If p(x) ∈ k[x], then p has a root in k hence a linear

factor l(x) ∈ k[x]. If p is irreducible then p = l so ∂p = 1.
(v)⇒(i): Suppose we have an algebraic extension k ⩽ E and

let a ∈ E. By the hypothesis, m(a, k) has degree 1 so [k(a) : k] =
∂m(a, k) = 1. Therefore k(a) = k which means that a ∈ k and thus
E = k. ⋄

Definition 1.1.67. A field that satisfies any of the above equivalent
conditions is called algebraically closed.

Example 1.1.68. By the Fundamental Theorem of Algebra, C is alge-
braically closed.

Example 1.1.69. The field A = {z ∈ C : z algebraic over Q} is
algebraically closed. Indeed, suppose we have a finite (hence finitely
generated and algebraic) extension A ⩽ A(a1, . . . , an). The extension
Q ⩽ A is algebraic and, by Proposition 1.1.57, so is Q ⩽ A(a1, . . . , an).
Therefore a1, . . . , an ∈ A by the definition of A which implies that
A = A(a1, . . . , an).

Counterexample 1.1.70. Neither Q nor R are algebraically closed.
In both cases, the irreducible polynomial x2 + 1 has degree 2.

Definition 1.1.71. Let k be a field. An algebraic closure k of k is an
algebraic extension of k that is algebraically closed.

Example 1.1.72. C is an algebraic closure of R. It is a finite, hence
algebraic, extension of R that is algebraically closed.

Counterexample 1.1.73. C is not an algebraic closure of Q because it
is not an algebraic extension.

Example 1.1.74. A is an algebraic closure of Q. It is by construction
algebraic and, as we saw, algebraically closed.
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Algebraic closures of arbitrary fields exist. As we mentioned, we
are going to need Zorn’s Lemma.

Lemma 1.1.75 (Kuratowski16, Zorn). If (P,⩽) is a partially ordered set
so that every chain of P has an upper bound, then P has a maximal element.

We take Zorn’s Lemma as an axiom since it is equivalent to the
Axiom of Choice. The interested reader can consult [28].

Proposition 1.1.76. Suppose k is a field. Then an algebraic closure of k
exists.

Proof. For every non constant polynomial f (x) ∈ k[x], we take an
independent variable x f and consider the polynomial ring R gener-
ated by all these variables over k. The ideal I = ⟨ f (x f ) : f ∈ k[x]⟩
of R is proper. Otherwise we would find some g1, . . . , gk ∈ R and
some f1, . . . , fm ∈ I such that

g1 f1(x f1) + . . . + gm fm(x fm) = 1.

But each fi has a root, say ai. Evaluating at (x f1 , . . . , x fm) = (a1, . . . , am),
we get 0 = 1 which is absurd.

Since the ideal I is proper, it is contained in a maximal ideal J,
i.e. I ⊆ J ⊂ R. This is a standard result from Algebra that requires
Zorn’s Lemma. Take the set S of all proper ideals of R and show that
every chain has an upper bound, the union of its elements. Zorn’s
Lemma ensures the existent of a maximal element of S. It is easy to
see that this is the required ideal. The missing details are easy to fill.

Now J is maximal so R/J is a field. Using the restriction of the
natural projection to F, i.e.

π|k : k→ R/J

we can see that R/J is an extension of k. This extension contains a
root of every f (x) ∈ k[x], namely x f + I, since

f (x f ) + I = I.

16 Kazimierz Kuratowski (1896–1980) had indepedently proven this lemma a few
years before Zorn.
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We have constructed a field k1 = R/J that extends k and contains
a root for every irreducible polynomial of k[x]. With the same
arguments we can construct a tower of fields

k ⩽ k1 ⩽ k2 ⩽ k3 ⩽ . . . ⩽ ks ⩽ . . .

such that k j+1 contains a root for every irreducible polynomial in
k j[x]. Their union

E =
∞⋃

j=1

k j

is clearly an extension of k. By construction, it contains the root of
every polynomial g ∈ E[x]. In other words, it is algebraically closed.

We can now take

k = {z ∈ E : z algebraic over k}.

k is an algebraic extension of k that is algebraically closed. Thus we
have constructed an algebraic closure of k. ⋄

Using Zorn’s Lemma again, it can be shown that

Proposition 1.1.77 (Extension Theorem for Algebraic Closures). Sup-
pose τ : k1 → k2 is a field isomorphism, S1 is a set of polynomials over k1

and S2 = τ̃(S1) where τ̃ : k1[x] → k2[x] is the map induced by τ. If E1

is a splitting field of S1 and E2 is a splitting field of S2, then there is an
isomorphism σ : E1 → E2 extending τ. In particular, algebraic closures
are unique up to isomorphism.

Furthermore, if a1 ∈ E1 has minimal polynomial m = m(a, k1) and
a2 ∈ E2 is any root of τ̃(m), then σ can be chosen so that σ(a1) = a2.

Proof. Consider the set

S = {(L, ϑ) : L ⩽ E1, ϑ : L→ E2 : ϑ|k1 = τ}.

Then S ̸= ∅ since (k1, τ) ∈ S and is partially ordered by defining

(L1, ϑ1) ⩽ (L2, ϑ2) ⇐⇒ L1 ⩽ L2 and ϑ2|L1 = ϑ1.

If c ≡ (Li, ϑi) is a chain in S and we define L =
⋃

Li and

ϑ : L→ E2 : ϑ(x) = ϑi(x) if x ∈ Li
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then (L, ϑ) is an upper bound of c. By Zorn’s Lemma, there is a
maximal element (L0, ϑ0) in S. By definition, L0 ⩽ E1. If L0 ̸= E1,
then there is some f1 ∈ S1 that does not split over L0. Take a root
a1 ∈ E1 \ L0 of f1, its minimal polynomial m1 = m(a1, k1) and its
image m2 = τ̃(m1) and a root a2 ∈ E2 of m2. From the Extension
Theorem for simple extensions, τ can be extended to an isomorphism
ρ : L0(a1) → ϑ0(L0)(a2). Then (L0(a1), ρ) is an element of S which
is bigger that (L0, ϑ0), a contradiction. Therefore, L0 = E1. From the
Extension Theorem for splitting fields, ϑ0(E1) = E2. ⋄

Corollary 1.1.78. Every algebraic field extension E of a field k can be
embedded in k.

Proof. The algebraic closure E of E is an algebraic closure of k as
well since k ⩽ E is algebraic. So there is an isomorphism f : E→ k
and E is then embedded in k as E ≃ f (E). ⋄

constructing field extensions iv: compositums Having
defined algebraic closures, we obtain another way of constructing
field extensions that will be proved useful.

Definition 1.1.79. Given any field k and any two algebraic field
extensions L, M of k, we define their compositum LM to be the
smallest subfield of k that contains both L and M, i.e.

LM = L(M) = M(L) ⩽ k.

Similarly, we can define the compositum of any family {Li}i∈I of
algebraic extensions of k.

Obviously,

Lemma 1.1.80. The compositum of any family of algebraic extensions of k
is an algebraic extension of k.

and

Lemma 1.1.81. The compositum of any finite family of finite extensions of
k is a finite extension of k.



42 artin’s galois theory

Proof. Suppose L and M are two finite extensions of k. From the
previous lemma and Proposition 1.1.53, we need only show that their
compositum is finitely generated. Since both L and M are finite, they
are finitely generated; write L = k(a1, . . . , as) and M = k(b1, . . . , br).
It is now immediate that LM = k(a1, . . . , as, b1, . . . , br). We proceed
with induction. ⋄

1.2 the galois-artin correspondence

The distinction, although artificial, between Field Theory and Galois
Theory is in the tools we use to study field extensions. Until now,
we have only used the theory of vector spaces. When Galois’ ideas
are introduced into the theory of fields, richer and deeper results
are obtained.

In this section we define the Galois correspondence. We will see
how we can associate each field extension to a suitably chosen group
and what information can the latter give us about the extension.
This group will be the group of automorphisms of the extension
in question. So before we see how we can use it, lets state some
important results.

more on k-automorphisms Let us recall some definitions. Sup-
pose k ⩽ E be a field extension. An k-automorphism of E is a map
σ ∈ Aut(E) such that σ|k = idk. The k-automorphisms of E are
exactly the field extension isomorphisms from k ⩽ E to itself.

The set of all k-automorphisms of E, denoted by Aut(E/k), forms
a group under the usual composition of maps; it is a subgroup of
Aut(E) (Lemma 1.1.25).

For finite extensions, there is a rather straightforward way of
computing Aut(E/k).

Example 1.2.1. Consider the finite (hence finitely generated and al-
gebraic) extension k ⩽ E where E = k(X) for some finite subset
X = {α1, . . . , αn} of E. Let σ ∈ Aut(E/k).
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Since σ|k = idk, the map σ is determined solely by its action
on the elements of X. Indeed, using Cor. 1.1.30, for any x ∈ E =

k(α1, . . . , αn), we have

σ(x) = σ

(
f (α1, . . . , αn)

g(α1, . . . , αn)

)
=

f
(
σ(α1), . . . , σ(αn)

)
g
(
σ(α1), . . . , σ(αn)

) .

Since k ⩽ E is algebraic, every α ∈ X is algebraic over k. If the
minimal polynomial of an element α ∈ X over k is

m(x) ≡ m(α, k)(x) = xn + . . . + a1x + a0 ∈ k[x],

then σ(α) is just another root of m. Indeed,

m(α) = 0⇒ σ
(
m(α)

)
= σ(0)

⇒ σ(αn + . . . + a1α + a0) = 0

⇒ σ(αn) + . . . + σ(a1)σ(α) + σ(a0) = 0

⇒ σ(α)n + . . . + a1σ(α) + a0 = 0

⇒ m
(
σ(α)

)
= 0.

The roots of an irreducible polynomial are said to be conjugate. So
the image σ(α) of some α ∈ X under σ ∈ Aut(E/k) is a conjugate of
α.

Example 1.2.2. The only R-automorphisms of C = R(i) are the
identical map idC and complex conjugation z 7→ z.

It is now apparent that

Proposition 1.2.3. If k ⩽ E is a finite extension, then Aut(E/k) is also
finite.

Proof. Immediate since (i) every σ ∈ Aut(E/k) is determined by its
action on X, (ii) X is finite, (iii) σ(α) is a conjugate of α for every
α ∈ X and (iv) ∂m(α, k) < ∞ and therefore σ(α) can only take a
finite number of values. ⋄

the correspondence It is time to describe the Galois correspon-
dence. Let k ⩽ E be a field extension. As we said, the group we
are going to use to study the extension is the group Aut(E/k) of
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k-automorphisms of E. The way we will pass from the extension to
the group and vice versa is the following.

We associate every intermediate field k ⩽ L ⩽ E with the group
Aut(E/L) of L-automorphisms of E. Using elementary Group The-
ory it is easy to deduce that Aut(E/L) is a subgroup of Aut(E/F).

Lemma 1.2.4. If L is a subextension of k ⩽ E then Aut(E/L) is a
subgroup of Aut(E/k).

In the opposite direction, we associate with each subgroup H ⩽
Aut(E/k), the set

FixE(H) = {x ∈ E : σ(x) = x ∀σ ∈ H}.

Using elementary properties of homomorphisms, it is easy to see
that the above set is a subextension of k ⩽ E.

Lemma 1.2.5. If k ⩽ E is a field extension and H is a subgroup of
Aut(E/k) then FixE(H) is a subextension of k ⩽ E.

This establishes a correspondence between intermediate fields of
a field extension and subgroups of its k-automorphism group.

E Aut(E/k)

L H

k {idE}

Aut(E/•)
L 7→Aut(E/L)

FixE(H)← [H

FixE(•)

Figure 1.1: The Galois-Artin Correspondence

Example 1.2.6. Let k ⩽ E be a field extension and G = Aut(E/k)
its k-automorphism group. To the field k we assign the subgroup
of G that fixes k which is, by definition, the whole group G. To the
field E we assign the subgroup of G that fixes E, which is the trivial
subgroup {idE} since idE is the only isomorphism E→ E that fixes
E. Observe how the whole group is associated to the base field while
the trivial subgroup is associated to the extending field.
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The above example reveals a crucial property of the correspon-
dence.

Proposition 1.2.7. The Galois correspondence of a field extension

{subextensions L : k ⩽ L ⩽ E}⇄ {subgroups H : H ⩽ Aut(E/k)}

as described above, is order reversing.

Proof. If L1 ⩽ L2 then given some automorphism σ ∈ Aut(E/L2)

that fixes L2 pointwise, σ also fixes L1 ⊆ L2 pointwise.
On the other hand, if H1 ⩽ H2 and some element a ∈ E is

fixed by every automorphism τ ∈ H2, then it is also fixed by every
automorphism τ′ ∈ H1 ⊆ H2. ⋄

Another important property which is an immediate consequence
of the definitions is

Proposition 1.2.8. If k ⩽ E is a field extension, then

H ⊆ Aut
(
E/ FixE(H)

)
∀H ⩽ Aut(E/k) and

L ⊆ FixE
(

Aut(E/L)
)
∀L : k ⩽ L ⩽ E.

bijective galois correspondences By its definition, the Ga-
lois correspondence is a correspondence between the set of subexten-
sions L of k ⩽ E that arise as fixed fields, i.e. L = FixE(H) for some
H ⩽ Aut(E/k), and the set of subgroups H of Aut(E/k) that arise as
automorphism groups, i.e. H = Aut(E/L) for some k ⩽ L ⩽ E.{

subextensions k ⩽ L ⩽ E :
∃H ⩽ Aut(E/k) : L = FixE(H)

}
⇄
{

subgroups H ⩽ Aut(E/k) :
∃k ⩽ L ⩽ E : H = Aut(E/L)

}
The next result suggests that this is a bijective correspondence, i.e.
the maps Aut(E/•) and FixE(•) are mutually inverse.

Proposition 1.2.9. Let k ⩽ E be a field extension. With the above notation,

(i) If H = Aut(E/L) for some k ⩽ L ⩽ E then

H = Aut
(
E/ FixE(H)

)
.

(ii) If L = FixE(H) for some H ⩽ Aut(E/k) then

L = Fix
(

Aut(E/L)
)
.
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Proof. (i) If H = Aut(E/L) for some subextension L of k ⩽ E then

H = Aut(E/L)⇒ L ⊆ FixE(H)

⇒ Aut(E/L) ⊇ Aut
(
E/ FixE(H)

)
⇒ H ⊇ Aut

(
E/ FixE(H)

)
and we already know that H ⊆ Aut

(
E/ FixE(H)

)
. The two

inclusions give H = Aut
(
E/ FixE(H)

)
.

(ii) Similarly, if L = FixE(H) for some subgroup H ⩽ Aut(E/k)
then

L = FixE(H)⇒ H ⊆ Aut(E/L)

⇒ FixE(H) ⊇ FixE
(

Aut(E/L)
)

⇒ L ⊇ FixE
(

Aut(E/L)
)

and we already know that L ⊆ FixE
(

Aut(E/L)
)
. The two

inclusions give L = Fix
(

Gal(E/L)
)
.

⋄

Our main objective now is to examine to which extend the Galois
correspondence for an arbitrary field extension k ⩽ E is a bijective
correspondence between the set of all subextensions of k ⩽ E and
the set of all subgroups of Aut(E/k). In other words, to what extend
the maps Aut(E/•) and FixE(•) are onto or, equivalently by Prop.
1.2.9, mutually inverse, i.e.

H = Aut
(
E/ FixE(H)

)
∀H ⩽ Aut(E/k) (1.6)

and
L = FixE

(
Aut(E/L)

)
∀L : k ⩽ L ⩽ E. (1.7)

In general these maps are not mutualy inverse. As we saw (Prop.
1.2.8), they satisfy the weaker conditions

H ⊆ Aut
(
E/ FixE(H)

)
∀H ⩽ Aut(E/k) (1.8)

and
L ⊆ FixE

(
Aut(E/L)

)
∀L : k ⩽ L ⩽ E. (1.9)

There are examples where these inclusions can be equalities as
shown below.
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Example 1.2.10. Consider the extension R ⩽ R(i) inside C. On the
one hand, G = Aut(R(i)/R) is a group of order 2 (Ex. 1.2.2). On
the other, by Ex. 1.1.10 and Prop. 1.1.11, the only intermediate
fields R ⩽ L ⩽ R(i) are L = R and L = R(i). Thus the Galois
correspondence associates

R ⇄ G and R(i) ⇄ {idR(i)}

and the two inclusions are (rather trivially) equalities.

But there are also examples where the inclusions are strict.

Counterexample 1.2.11. A case where (1.8) might be strict is when
a given extension k ⩽ E has infinite degree. In this case we will see
in due time that the corresponding group Aut(E/k) is also infinite,
hence too big to be handled properly. In particular, Aut(E/k) has too
many subgroups! Indeed, as we shall see in Ex. 1.5.3, in this case not
every subgroup H of Aut(E/k) arises as an automorphism group,
i.e. there might not exist L such that k ⩽ L ⩽ E and H = Aut(E/L).

So if H is a subgroup that cannot arise as an automorphism
group of some intermediate field, then H ⊊ Aut

(
E/ FixE(H)

)
.

Counterexample 1.2.12. Consider the extension Q ⩽ Q( 3
√

2). If σ ∈
Aut(Q( 3

√
2)/Q) then σ is determined by its image σ( 3

√
2) which is a

conjugate of 3
√

2. But the conjugates of 3
√

2 are all complex numbers
that are not in Q( 3

√
2). Therefore, the group of automorphisms

Aut(Q( 3
√

2)/Q) is trivial, hence its fixed field is

FixQ( 3√2)

(
Aut(Q(

3
√

2)/Q)
)
= Q(

3
√

2) ⊋ Q

and that shows that the inclusion (1.9) may also be strict.

Counterexample 1.2.13. There is another instance where (1.9) may
be strict, but for completely different reasons this time. Consider
the finite field F2 and an indeterminate t. We can then form the
extension F2 ⩽ F2(t). If we take the element t2 ∈ F2(t), we can
further form the tower

F2 ⩽ F2(t2) ⩽ F2(t).

We will focus on the extension F2(t2) ⩽ F2(t).
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First of all, it is intuitively clear (but requires a long, technical
proof which we will avoid) that F2(t) = [F2(t2)](t) and therefore
the extension is simple (every polynomial in t with coefficients in F2

can be viwed as a polynomial in t with coefficients from F2(t2) since
F2 ⩽ F2(t2); on the other hand, a polynomial in t with coefficients in
F2(t2) can be considered as a polynomial in t using the distributive
law and grouping together all the t’s in every monomial).

The element t does not belong in F2(t2) but is algebraic over
F2(t2): the polynomial

m(x) = x2 − t2 ∈ [F2(t2)][x]

is monic, of minimal degree such that m(t) = 0 ∈ F2(t2) hence by
definition is the minimal polynomial of t over F2(t2), i.e.

m(x) = m
(
t,F2(t2)

)
(x).

Observe at this point that since we are inside F2, we have

m(x) = x2 − t2 = (x− t)2

so the only root of m is t. We can now imagine where this leads us.
If σ ∈ Aut

(
F2(t)/F2(t2)

)
then σ is determined by its action on

t and σ(t) is a conjugate of t. But the only conjugate of t is t itself.
Therefore σ(t) = t and the automorphism group is again the trivial,
which means

FixF2(t)
[

Aut
(
F2(t)/F2(t2)

)]
= F2(t) ⊋ F2(t2).

By the above examples it is apparent that the Galois correspon-
dence is not bijective in general. Our next plan is to understand why
it failed to be bijective in the above counterexamples and define for
which extensions the correspondence is actually bijective.

the correspondence for finite extensions If we try to
understand why

H = Aut
(
E/ FixE(H)

)
∀H ⩽ Aut(E/k) (1.6)

fails to hold for infinite extensions (1.2.11), we end up thinking if it
is due to the automorphism group being too big. So it is natural to
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wonder whether finite extensions suffice for such an equality. We
will see that the answer is yes.

If k ⩽ E is a finite field extension then, by Prop. 1.2.3, Aut(E/k)
is finite and so are its subgroups H and Aut

(
E/ FixE(H)

)
.

So we have two finite subgroups of Aut(E/k) for which we
already know that

H ⊆ Aut
(
E/ FixE(H)

)
.

So it suffices to show that

|H| ⩾ |Aut
(
E/ FixE(H)

)
|.

We will proceed by finding an upper bound b for the cardinality
|Aut

(
E/ FixE(H)

)
| and we will then show that |H| = b.

Lemma 1.2.14 (Dedekind). Let ϑ1, . . . , ϑn : k → E be distinct field
monomorphisms. Then the ϑi’s are linearly independent over E.

Proof. Suppose, for the contrary, that there are c1, . . . , cn ∈ E not all
zero such that

c1ϑ1(x) + . . . + cnϑn(x) = 0 ∀x ∈ k.

Omitting the terms whose ci = 0 and rearranging the rest if neces-
sary, we get a minimal m ⩽ n such that

c1ϑ1(x) + . . . + ckϑm(x) = 0 ∀x ∈ k (1.10)

and ci ̸= 0 for all i = 1, . . . , m. Since the monomorphisms are
distinct, there is some x0 ∈ k such that ϑ1(x0) ̸= ϑ2(x0). If we
multiply both sides of (1.10) by ϑ1(x0) we get

c1ϑ1(x)ϑ1(x0) + . . . + cmϑm(x)ϑ1(x0) = 0 ∀x ∈ k. (1.11)

Taking x = x0x in (1.10) we have

c1ϑ1(x0x) + . . . + cmϑm(x0x) = 0 ∀x ∈ k

or, equivalently,

c1ϑ1(x0)ϑ1(x) + . . . + cmϑm(x0)ϑm(x) = 0 ∀x ∈ k. (1.12)
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Substracting (1.12) from (1.11) gives us

c1ϑ1(x)
(
ϑ1(x0)− ϑ1(x0)

)
+ . . . + cmϑm(x)

(
ϑ1(x0)− ϑm(x0)

)
= 0

or, equivalently,

c2ϑ2(x)
(
ϑ1(x0)− ϑ2(x0)

)
+ . . . + cmϑm(x)

(
ϑ1(x0)− ϑm(x0)

)
= 0

which contradicts the minimality of m. ⋄

Proposition 1.2.15. If k ⩽ E is a finite field extension then |Aut(E/k)|
is at most [E : k].

Proof. Since k ⩽ E is finite, so is Aut(E/k). Suppose that Aut(E/k) =
{ϑ1, . . . , ϑn} and that [E : k] = m < n. If B = {a1, . . . , am} is an k-
basis of E, the matrix

A =


ϑ1(a1) ϑ1(a2) . . . ϑ1(am)

ϑ2(a1) ϑ2(a2) . . . ϑ2(am)
...

...
. . .

...
ϑn(a1) ϑn(a2) . . . ϑn(am)


has rank rank(A) ⩽ m < n. Therefore, its rows are linearly de-
pendent over k; so there are cji ∈ E, i = 1, . . . , n, not all zero, such
that ∑n

i=1 cjiϑi(aj) = 0 for all j = 1, . . . , m. As a result, for every
x = ∑m

j=1 xjaj ∈ E (xj ∈ F) we have

n

∑
i=1

cjiϑi(x) =
n

∑
i=1

cjiϑi

(
m

∑
j=1

xjaj

)
=

n

∑
i=1

cji

(
xj

m

∑
j=1

ϑi(aj)

)

=
m

∑
j=1

xj

(
n

∑
i=1

cjiϑi(aj)

)
= 0

so the ϑi’s are E-lineraly dependent which contradicts Dedekind’s
Lemma since the ϑi’s are distinct monomorphisms E→ E. Therefore,
|Aut(E/k)| ⩽ [E : k] ⋄

The above, together with Cor 1.1.13, give us an upper bound for
|Aut

(
E/ FixE(H)

)
|.

Corollary 1.2.16. Suppose k ⩽ E is a finite field extension and H is a
subgroup of Aut(E/k). Then |Aut

(
E/ FixE(H)

)
| ⩽ [E : FixE(H)].
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Proposition 1.2.17. If E is a field and H is a finite subgroup of Aut(E)
then

|H| = [E : FixE(H)].

Proof. Let
H = {ϑ1 = 1, ϑ2, . . . , ϑn}

and [E : FixE(H)] = m. We will show that m < n and m > n cannot
happen.

Suppose m < n and {a1, . . . , am} is a FixE(H)-basis of E. The
homogenous system

ϑ1(a1)x1 + . . . + ϑn(a1)xn = 0
...

ϑ1(am)x1 + . . . + ϑn(am)xn = 0

has m linear equations and n < m unknowns. Hence it has a non-
zero solution (y1, . . . , yn) ∈ En, i.e.

ϑ1(ai)y1 + . . . + ϑn(ai)yn = 0 ∀i = 1, . . . , m.

For an arbitrary x = ∑m
j=1 cjaj ∈ E, cj ∈ FixE(H), we get

ϑ1(x)y1 + . . . + ϑn(x)yn = ϑ1

(
m

∑
j=1

cjaj

)
y1 + . . . + ϑn

(
m

∑
j=1

cjaj

)
yn

=
m

∑
j=1

cj[ϑ1(aj)y1 + . . . + ϑn(aj)yn] = 0.

That is, the monomorphisms ϑ1, . . . , ϑn are linearly dependent. But
this contradicts Dedekind’s Lemma. Therefore, m ⩾ n.

Suppose now that m > n and take again some FixE(H)-lineraly
independent set of n + 1 elements, say {a1, . . . , an+1}. Once more,
we have a homogenous linear system

ϑ1(a1)x1 + . . . + ϑ1(an+1)xn+1 = 0
...

ϑn(a1)x1 + . . . + ϑn(an+1)xn+1 = 0

with n equations and n + 1 > n unknowns. Hence it has a non-zero
solution. We can choose a solution (y1, . . . , yn+1) ∈ En that has the
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fewest possible non-zero coordinates. Without loss of generality we
may assume that

y1, . . . , yr ̸= 0, yr+1, . . . , yn+1 = 0

for some 1 ⩽ r ⩽ n + 1 so that we have

ϑi(a1)y1 + . . . + ϑi(ar)yr = 0 ∀i = 1, . . . , n. (∗)

For all ϑ ∈ H we have

ϑϑi(a1)ϑ(y1) + . . . + ϑϑi(ar)ϑ(yr) = 0 ∀i = 1, . . . , n.

or equivalently, since the map H → H : ϑi 7→ ϑϑi is a bijection,

ϑi(a1)ϑ(y1) + . . . + ϑi(ar)ϑ(yr) = 0 ∀i = 1, . . . , n. (∗∗)

Multiplying (∗) by ϑ(a1) and (∗∗) by a1 and substracting, we get

[y2ϑ(y1)− ϑ(y2)y1]ϑi(a2) + . . . + [yrϑ(y1)− ϑ(yr)y1)]ϑi(ar) = 0

for all i = 1, . . . , n which contradicts the minimality of r. Therefore

yjϑ(y1)− y1ϑ(yj) = 0 ⇐⇒ yjy−1
1 = ϑ(yjy−1

1 ) ∀j = 1, . . . , r

for all ϑ ∈ H. That means we can find some z1, . . . , zr ∈ FixE(H)

and some k ∈ E so that yj = kzj for all j = 1, . . . , r. Then, for i = 1,
(∗) becomes

kz1 a1 + . . . + kzr ar = 0
k ̸=0⇐⇒ z1a1 + . . . + zrar = 0

which contradicts the linear independence of {a1, . . . , an+1}. There-
fore m ⩽ n and we conclude that m = n. ⋄

Corollary 1.2.18. For any finite field extension k ⩽ E and any subgroup
H of Aut(E/k),

H = Aut
(
E/ FixE(H)

)
.

Proof. We have H ⊆ Aut
(
E/ FixE(H)

)
and

|Aut
(
E/ FixE(H)

)
|

1.2.16
⩽ [E : FixE(H)]

1.2.17
= |H|

1.2.3
< ∞.

Therefore H = Aut
(
E/ FixE(H)

)
. ⋄
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galois extensions i It remains to examine the extensions for
which (1.7) holds. These extensions are called Galois extensions
because they naturally generalize the setting Galois used to work in,
to abstract fields.

Definition 1.2.19 (1st definition of Galois extensions). A field exten-
sion k ⩽ E is called Galois if

L = FixE
(

Aut(E/L)
)

for every subextension L of k ⩽ E. In this case we write Gal(E/k)
for Aut(E/k) and call it the Galois group of the extension.

Example 1.2.20. The extension R ⩽ R(i) of Ex. 1.2.10 is Galois as
we already saw.

Counterexample 1.2.21. The extensions Q ⩽ Q( 3
√

2) and F2(t2) ⩽
F2(t) of Ex. 1.2.12 and 1.2.13 respectively are not Galois.

This definition gives us no information on the structure of a
Galois extension and is in general hard to work with especially since
the defining condition (1.7) has to be checked for every intermediate
field L. We want to understand the structure of Galois extensions
better and see if we can simplify their definition. This is done in the
next section where we will see a number conditions equivalent to
(1.7) that will help us understand Galois extensions better.

1.3 galois extensions

galois extensions ii Turning our attention to

L = FixE
(

Aut(E/L)
)
∀L : k ⩽ L ⩽ E (1.7)

and why that failed to hold in 1.2.12 and 1.2.13 for L = k, we find
that, contrary to the previous discussion, the automorphism group
in both cases is too small and thus contains little information about
the field extension in the sense that it does not match its upper
bound set in Prop. 1.2.15:

|Aut(Q(
3
√

2)/Q)| = 1 < 3 = ∂m(
3
√

2,Q) = [Q(
3
√

2) : Q]
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and

|Aut
(
F2(t)/F(t2)

)
| = 1 < 2 = ∂m

(
t,F2(t2)

)
= [F2(t) : F2(t2)].

Therefore it would be reasonable to suspect that if |Aut(E/L)| equals
[E : L] then (1.7) holds. In fact, the conditions

L = FixE
(

Aut(E/L)
)
∀L : k ⩽ L ⩽ E

and
|Aut(E/L)| = [E : L] ∀L : k ⩽ L ⩽ E

are equivalent for finite extensions.

Proposition 1.3.1. Suppose k ⩽ E is a finite extension and L is a subex-
tension, i.e. k ⩽ L ⩽ E. Then

L = FixE
(

Aut(E/L)
)

iff |Aut(E/L)| = [E : L].

Proof. (⇒) Suppose L = FixE
(

Aut(E/L)
)
. Since Aut(E/L) is a

subgroup of the finite group Aut(E/k) (and therefore a finite
subgroup of Aut(E)), 1.2.17 implies that

|Aut(E/L)| = [E : FixE
(

Aut(E/L)
)
] = [E : L].

(⇐) For the contrary we assume that |Aut(E/L)| = [E : L]. By
1.2.17 again we have that

[E : L] = |Aut(E/L)| = [E : FixE
(

Aut(E/L)
)
].

Since, by (1.9), L ⊆ FixE
(

Aut(E/L)
)
, 1.1.11 gives us that

[E : L] = [E : FixE
(

Aut(E/L)
)
]︸ ︷︷ ︸

=[E:L]

[FixE
(

Aut(E/L)
)

: L] < ∞

and therefore [FixE
(

Aut(E/L)
)

: L] = 1 which means that
FixE

(
Aut(E/L)

)
= L.

⋄

Definition 1.3.2 (2nd definition of Galois extensions - finite case). A
finite field extension k ⩽ E is called Galois if

|Aut(E/L)| = [E : L] (1.13)

for every subextension L of k ⩽ E. In this case we write Gal(E/k)
for Aut(E/k) and call it the Galois group of the extension.
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Example 1.3.3. The extension R ⩽ R(i) of Ex. 1.2.10 is Galois
because, as we saw, Aut(R(i)/R) has only two elements (the identity
function z 7→ z and the complex conjugation z 7→ z) and therefore

|Aut(R(i)/R)| = 2 = ∂m(i,R) = [R(i) : R].

Counterexample 1.3.4. In the beginning of this section we saw that
the condition (1.13) does not hold for the extensions Q ⩽ Q( 3

√
2)

and F2(t2) ⩽ F2(t) so these are not Galois.

But there is also a different path we can take to define Galois
extensions, one that reveals more about these extensions and how
their study arise naturally in Galois’ work.

To give some motivation for the work that follows, lets see what
it means for a finite and simple extension to be Galois using the defi-
nitions we have formulated so far. Since simple algebraic extensions
are the building blocks of finite extensions, the next example will be
useful to generalize the ideas to arbitrary extensions.

Example 1.3.5. Suppose k ⩽ k(a) is a simple algebraic extension. We
saw in 1.2.15 that

|Aut(k(a)/k)| ⩽ [k(a) : k] = ∂m(a, k).

If k ⩽ k(a) is Galois then |Gal(k(a)/L)| = [k(a) : L] for every
subextension L and in particular

|Gal(k(a)/k)| = [k(a) : k] = ∂m(a, k). (1.14)

But we know that every σ ∈ Gal(k(a)/k) is determined by its action
on a and σ(a) is a root of m(a, k). So by (1.14), there must be ∂m(a, k)
distinct elements in Gal(k(a)/k) ⇐⇒ σ(a) takes exactly ∂m(a, k)
distinct values. In other words:

• every root of m(a, k) must lie in k(a) and

• there aren’t any repetitions, i.e. there are no multiple roots.

It is not hard to see that the converse also holds. If every root of
m(a, k) lies in k(a) and there are no multiple roots then

|Aut(k(a)/k)| = ∂m(a, k) = [k(a) : k]

and the extension k ⩽ F(k) is Galois.
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normal extensions In the last example, we saw that if a finite
simple extension k ⩽ k(a) is Galois then all the roots of m(a, k)
are inside k(a). We give extensions with the suitably generalized
property a name.

Definition 1.3.6. A field extension k ⩽ E is normal if it is algebraic
and m(a, k) splits in E for every a ∈ E.

Example 1.3.7. If k ⩽ E is an arbitrary field extension such that
[E : k] = 2, then the extension is normal. First of all, the extension is
finite hence algebraic. Let a ∈ E \ k.17 Since [E : k] = 2, from

[E : k] = [E : k(a)][k(a) : k]

we get E = k(a) and consequently ∂m(a, k) = 2. The minimal
polynomial m = m(a, k) has a root in E and has degree 2 so it splits
over E. Since a was arbitrary, the extension is normal.

Example 1.3.8. The extension R ⩽ R(i) of Ex. 1.2.10 is normal since
[R(i) : R] = 2.

Counterexample 1.3.9. The extension Q ⩽ Q( 3
√

2) of Ex. 1.2.12 is
not normal. The two complex roots of m( 3

√
2,Q) = x3 − 2 are not in

Q.

Example 1.3.10. The extension k ⩽ ksep is normal. Take some a ∈ ksep

and m = m(a, k). If a1, . . . , ar are the roots of m in the algebraic
closure k of k, then every ai is in ksep. For ai /∈ ksep implies that ai is
not separable over k, i.e. m(ai, k) is not separable which is absurd
since m(ai, k) = m.

Normal extensions have nice equivalent formulations that are
sometimes more appropriate to work with, depending on the con-
text.

Lemma 1.3.11. Let k ⩽ E be an algebraic extension. The following are
equivalent

i) Every irreducible polynomial p(x) ∈ k[x] that has a root in E splits.

ii) E is normal over k.
17 The case a ∈ k is trivial.
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iii) E is the splitting field of a set of polynomials over k.

iv) If τ : E→ E is a k-homomorphism then τ(E) = E.

v) If k ⩽ L1 ⩽ E ⩽ L2 is a tower of fields and σ : L1 → L2 is a k-
homomorphism, then σ(L1) ⊆ E and we can find some τ ∈ Aut(E/k)
that extends σ.

Proof. (i) =⇒ (ii) =⇒ (iii): It is immediate. Every minimal polyno-
mial is irreducible and E being normal over k implies that E is the
splitting field of {m(a, k) : a ∈ E}.

(iii) =⇒ (iv): If E is the splitting field of some S ⊆ k[x] then so
is τ(E) in E by the Extension Theorem for splitting fields. But then
both E and τ(E) are generated over k by the same roots. Hence
E = τ(E).

(iv) =⇒ (v): Suppose k ⩽ L1 ⩽ E ⩽ L2 is a tower of fields and
σ : L1 → L2 is a k-homomorphism. Since k ⩽ E is algebraic, so is
k ⩽ L1 and, therefore, so is k ⩽ σ(L1) (any a = σ(x) ∈ σ(L1) is the
root of σ̃[m(x, k)]). If we take

k′ = {x ∈ L2 : x is algebraic over k}

and its algebraic closure k′ then E, being a subextension of k ⩽ k′,
can be embedded in k′ so k′ = E by the uniqueness of algebraic
closures. By the Extension Theorem for algebraic closures, there is
some ρ : k′ → k′ that extends σ, i.e. ρ|L1 = σ. Take

τ = ρ|E : E→ k′ = E.

By our hypothesis, τ(E) = E so σ(L1) = ρ|L1(L1) = ρ|E(L1) =

τ(L1) ⊆ τ(E) = E, τ extends σ, and τ|k = σ|k = idk; that is,
τ ∈ Aut(E/k).

(v) =⇒ (i): Take an irreducible polynomial p(x) ∈ k[x] and a
root a ∈ E of p. Then we have the tower

k ⩽ k(a) ⩽ E ⩽ E

and we can find another root b ∈ E of p(x) and a k-homomorphism
σ : k(a) → E such that σ(a) = b (define f (a) σ7→ f (b) for all f (a) ∈
k(a)). By our hypothesis, σ

(
k(a)

)
⊆ E so b ∈ E and p splits in E. ⋄
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As a property of great interest, following 1.1.57, we also want to
know how normality behaves under subextensions.

Proposition 1.3.12. Let k ⩽ L ⩽ E be a tower of fields. If k ⩽ E is
normal, then so is L ⩽ E.

Proof. From 1.1.57, L ⩽ E is algebraic. And if m(a, k) splits in E then
so does m(a, L) since m(a, L)|m(a, k) and k[x] is a U.F.D. ⋄

separable extensions We also saw that if k ⩽ k(a) is a Galois
extension then m(a, k) has no multiple roots in k(a). We will, as
before, generalize this property to arbitrary extensions.

Definition 1.3.13. An irreducible polynomial p(x) ∈ k[x] is called
separable over k if it has no repeating roots in its splitting field.
A polynomial f (x) ∈ k[x] is separable over k if every one of its
irreducible factors is separable. Otherwise, f is called inseparable.

Definition 1.3.14. An element a ∈ E of an algebraic field extension
k ⩽ E is a separable element over k if m(a, k) is separable over k. A
separable extension is an algebraic field extension whose elements
are all separable. Again an element that is not separable is called
inseparable and an extension with inseparable elements is called
inseparable extension.

Remark 1.3.15. An easy way to see if a polynomial is separable or
not is by using the derivative criterion. For any polynomial

f (x) = anxn + an−1xn−1 + . . . + a1x + a0

we define its formal derivative the usual way, namely

f ′(x) = nanxn−1 + (n− 1)an−1xn−2 + . . . + a1.

It is easy to see now that f (x) is separable if and only if ( f , f ′) = 1.

Example 1.3.16. Every extension over a field of characteristic zero
is separable. Suppose k ⩽ E is an extension with char(k) = 0 and
let a ∈ E. If m = m(a, k) had a multiple root b then m(b) = 0 and
m′(b) = 0. But m is also the minimal polynomial of b since it is
irreducible; the relation m′(b) = 0 contradicts the minimality of ∂m.
Therefore m is separable.
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Example 1.3.17. The extension R ⩽ R(i) of Ex. 1.2.10 is separable
since ch(R) = 0.

Counterexample 1.3.18. The field extension F2(t2) ⩽ F2(t) of Ex.
1.2.13 is inseparable. As we saw, the minimal polynomial

m
(
t,F2(t2)

)
(x) = x2 − t2 = (x− t)2

has a double root. Observe that in this example, the characteristic is
positive.

Example 1.3.19. Suppose k is a field and k is the algebraic closure of
k. We define the separable closure ksep of k to be the compositum
of all simple separable extensions of k in k. Obviously, ksep is a
separable extension of k.

It should come as no surprise that we want to study separability
under subextensions.

Proposition 1.3.20. For a tower of fields k ⩽ L ⩽ E, if k ⩽ E is separable
then so is L ⩽ E.

Proof. From 1.1.57, L ⩽ E is algebraic; if the roots of m(a, k) are all
simple then so are the roots of m(a, L) since m(a, L)|m(a, k). ⋄

galois extensions iii We are ready to give the last and most
important definition of Galois extensions.

Using the new terminology we now have, we restate the result
of Ex. 1.3.5: a simple algebraic extension is Galois if and only if it is
normal and separable. It is not a surprise that this result also holds for
arbitrary extensions.

First let’s see how the transitivity results for algebraic, normal
and separable extensions allow us to simplify the first definition of
Galois extensions we gave.

Proposition 1.3.21. Let k ⩽ E be an algebraic extension. The following
are equivalent

(i) k = FixE
(

Aut(E/k)
)
.

(ii) The extension k ⩽ E is both normal and separable.
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Proof. (i) =⇒ (ii): We will show that an arbitrary a ∈ E is normal and
separable. Take its minimal polynomial m = m(a, k). If {a1, . . . , ar}
are the roots of m in E, the set S = {σai : σ ∈ Aut(E/k)} is finite
and the polynomial

f (x) = ∏
(

x− σ(ai)
)
∈ E[x],

where the product is taken over the distinct elements of S, is
fixed by any element of Aut(E/k). So the coefficients of f lie in
FixE

(
Aut(E/k)

)
= k. We thus deduce that m| f so m splits over k

and has no multiple roots.
(ii) =⇒ (i): If k ⩽ E is separable, then E is contained in ksep.

In that case every σ ∈ Aut(ksep/k) satisfies σ(E) ⊆ E. Indeed, the
extension is normal hence every a ∈ E is normal and σ(a) is a root
of m(a, k) and thus σ(E) ⊆ E.

We will show that every element not in k is moved by some
automorphism. Given any a ∈ E \ k we can find an element
σ ∈ Aut(ksep/k) with σ(a) ̸= a since ksep is normal. But if σ

preserves E, the restriction σ|E ∈ Aut(E/k) and σ|E(a) ̸= a. So
FixE

(
Aut(E/k)

)
= k ⋄

Now the above proposition enables us to restate the first defini-
tion of a Galois extension without the universal quantifier.

Corollary 1.3.22. An algebraic extension k ⩽ E is Galois if and only if
k = FixE

(
Aut(E/k)

)
.

Proof. (⇒) Immediate from the definition. Take L = k.

(⇐) If k = FixE
(

Aut(E/k)
)

then the proposition tells us that k ⩽ E
is normal and separable. By the transitivity results, so is L ⩽ E
for every intermediate field L of k ⩽ E and therefore, by the
proposition again, L = FixE

(
Aut(E/L)

)
for every intermedi-

ate field L.
⋄

Definition 1.3.23 (3rd definition of Galois extensions). A field exten-
sion k ⩽ E is called Galois if

k = FixE
(

Aut(E/k)
)
.

In this case we write Gal(E/k) for Aut(E/k) and call it the Galois
group of the extension.
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For finite extensions we can still use the second equivalent defi-
nition and again, as a consequence of the previous proposition, we
can drop the quantifier as well.

Once more, using the proposition and the transitivity results we
have the most important result of this section.

Corollary 1.3.24. An algebraic extension k ⩽ E is Galois if and only if it
is normal and separable.

Proof. Immediate from Prop. 1.3.21 and Cor. 1.3.22. ⋄

Definition 1.3.25 (4th definition of Galois extensions). A field exten-
sion k ⩽ E is called Galois if it is both normal and separable. In this
case we write Gal(E/k) for Aut(E/k) and call it the Galois group
of the extension.

Example 1.3.26. The extension R ⩽ R(i) of Ex. 1.2.10 is Galois.

Example 1.3.27. The separable closure ksep of k is a Galois extension
of k. By its definition, it is the maximal Galois extension of k in the
sense that any other Galois extension of k is contained in ksep.

Counterexample 1.3.28. The extension Q ⩽ Q( 3
√

2) of Ex. 1.2.12 is
not normal hence not Galois.

Counterexample 1.3.29. The extension F2(t2) ⩽ F2(t) of Ex. 1.2.13
is not separable hence not Galois.

In view of the last definition, we finish with the last transitivity
result (essentially a rephrasing of 1.3.12 and 1.3.20).

Corollary 1.3.30. If k ⩽ L ⩽ E is a tower of fields and k ⩽ E is Galois,
then so is L ⩽ E.

Convention. From now on, when we refer to an automorphism group
as Galois group we will always mean that the extension is Galois.

1.4 the fundamental theorem

We have reached the first important classification theorem, the Fun-
damental Theorem of Galois Theory for finite Galois extensions. We
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will focus only on the part of the Fundamental Theorem that con-
cerns the Galois correspondence since it is the correspondence we are
mainly interested in.

Theorem 1.4.1 (Fundamental Theorem of Galois Theory for finite
extensions). For a finite Galois extension k ⩽ E, the Galois-Artin corre-
spondence

{L : k ⩽ L ⩽ E}⇄ {H : H ⩽ Gal(E/k)}

is bijective, i.e. the maps Aut(E/•) and FixE(•) are mutual inverses, and
order reversing.

Proof. Immediate from Proposition 1.2.7, Corollary 1.2.18 and Corol-
lary 1.3.24. ⋄

Having established a bijective correspondence, the remaining
part illustrates of the theorem how we can derive information about
the extension using its Galois group and the Galois correspondence.

Theorem 1.4.2 (Fundamental Theorem of Galois Theory for finite
extensions; part 2). If L is a subextension of a finite Galois extension
k ⩽ E, then L ⩽ E is Galois and

[E : L] = |Gal(E/L)| and [L : k] = [Gal(E/k) : Gal(E/L)].

Moreover, the extension k ⩽ L is normal if and only if Gal(E/L) is a
normal subgroup of Gal(E/k). In that case

Gal(L/k) ≃ Gal(E/k)/ Gal(E/L).

Proof. L ⩽ E is Galois from 1.3.30. Therefore, from the definition of
finite Galois extensions, we have

[E : L] = |Gal(E/L)|

and, using Prop. 1.1.11, we get

[L : F] =
[E : F]
[E : L]

=
|Gal(E/F)|
|Gal(E/L)| = [Gal(E/F) : Gal(E/L)]

where the last equality is Lagrange’s18 theorem for finite groups.

18 Joseph-Louis Lagrange (1736–1813)
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For the second assertion it is not hard to show that

σ Gal(E/L)σ−1 = Gal
(
E/σ(L)

)
(1.15)

for all σ ∈ Gal(E/F). Indeed, given τ ∈ Gal(E/L) and x ∈ L,

(στσ−1)
(
σ(x)

)
= (στ)(x) = σ(x) ∀σ ∈ Gal(E/F)

so σ Gal(E/L)σ−1 ⊆ Gal
(
E/σ(L)

)
. Similarly,

σ−1 Gal
(
E/σ(L)

)
σ ⊆ Gal

(
E/σ−1σ(L)

)
= Gal(E/L)

which proves (1.15).
Suppose now that the extension F ⩽ L is normal. To show that

Gal(E/L) is a normal subgroup of Gal(E/F), it suffices to show that
σ(L) = L for all σ ∈ Gal(E/F) since we would then have

σ Gal(E/L)σ−1 (1.15)
= Gal

(
E/σ(L)

)
= Gal(E/L).

Given σ ∈ Gal(E/F) and a ∈ L, σ(a) is a root of m(a, F) which is
in L since F ⩽ L is normal. So σ(L) ⊆ L. But σ is injective and the
extensions are all finite. Hence σ(L) = L.

For the contrary, suppose the extension F ⩽ L is normal. In that
case, the restriction map

•|L : Gal(E/F)→ Gal(L/F) : σ 7→ σ|L

is a well defined group homomorphism. The kernel of this homo-
morphism is

ker = {σ ∈ Gal(E/F) : σ|L = idL} = Gal(E/L).

So Gal(E/L) ◁ Gal(E/F). Furthermore, the map •|L is surjective
by the Isomorphism Extension Theorem. Therefore, by the First
Isomorphism Theorem for Groups,

Gal(L/F) ≃ Gal(E/F)/ Gal(E/L).

⋄
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1.5 krull’s galois theory

galois corespondence for infinite extensions Let us now
drop the finiteness assumption. Suppose k ⩽ E is a possibly infinite
but still algebraic field extension and consider the Galois correspon-
dence

{subextensions k ⩽ L ⩽ E}⇄ {subgroups H ⩽ Aut(E/k)}.

E Aut(E/k)

L H

k {idE}

Aut(E/•)
L 7→Aut(E/L)

FixE(H)← [H

FixE(•)

Proposition 1.2.7 did not assume any finiteness, so the correspon-
dence is order reversing even for infinite extensions. Furthermore, the
inclusions

H ⊆ Aut
(
E/ FixE(H)

)
∀H ⩽ Aut(E/k) (1.8)

and
L ⊆ FixE

(
Aut(E/L)

)
∀L : k ⩽ L ⩽ E (1.9)

are still valid since they are independent of the degree of the exten-
sion too.

Our aim once more is to examine for which extensions k ⩽ E,
Aut(E/•) and FixE(•) are mutually inverse, i.e. for which extensions
the relations

H = Aut
(
E/ FixE(H)

)
∀H ⩽ Aut(E/k) (1.6)

and
L = FixE

(
Aut(E/L)

)
∀L : k ⩽ L ⩽ E (1.7)

hold. We have already seen that (1.7) holds if and only if the exten-
sion is normal and separable and both normality and separability
are defined independently of the degree of an extension. So we turn
our focus to (1.6).
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the galois group of an infinite extension We saw in Cor.
1.2.18 that when k ⩽ E is a finite extension, Aut(E/k) is also finite
and (1.6) holds.

But when we drop the finiteness assumption, the theory breaks.
First of all, Aut(E/k) is no longer finite. To prove this, we first need
a variant of the Primitive Element Theorem. The proof we present is
taken from [5].

Proposition 1.5.1 (The Primitive Element Theorem). If k ⩽ E is a
finite separable extension, then there is some element γ ∈ E such that
E = k(γ).

Such an element γ is called a primitive element, hence the name of
the theorem.

Proof. Since k ⩽ E is finite, there are m ∈ N and a1, . . . , am ∈ E such
that E = k(a1, . . . , am).

If k is finite then so is E and it is easy to check that any generator
γ of the cyclic group E∗ will do.

If k is infinite we proceed with induction on m. Suppose E =

k(a, b) and that m(a, k) and m(b, k) have roots a = a1, . . . , ar and b =

b1, . . . , bs in some extension of E (such extension can be constructed
using Prop. 1.1.62 twice in a row). Using the separability of a and
b we can prove that γ = a + λb is a primitive element for all λ ∈ k
except when

λ =
ai − a
b− bj

, i = 1, . . . , r, j = 1, . . . , s

which are finitely many exceptions in an infinite field. The inductive
step is now immediate. ⋄

Proposition 1.5.2. If k ⩽ E is an infinite Galois extension then Gal(E/k)
is also infinite.

Proof. If G = Gal(E/k) were finite, say |G| = n for some n ∈ N, then
σn = idE for all σ ∈ G, which implies that

σ(an) = σn(a) = idE(a) = a ∀a ∈ E. (1.16)

Therefore, if a ∈ E then (using the fact that a is algebraic over k since
k ⩽ E is Galois)

[k(a) : k] = ∂m(a, k) ⩽ n
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because if ∂m(a, k) > n, any σ ∈ G acting on m(a, k)(a) = 0 yields a
monic polynomial which is zero at a and whose degree is smaller
than ∂m(a, k) (any power of a greater than n becomes less than n
from (1.16)) - a contradiction. But if [k(a) : k] ⩽ n for all a ∈ E, then
we can choose an element a0 ∈ E whose degree over k, [k(a0) : k] =
m0 ⩽ n is maximal among the degrees of elements of E. In that case
we can prove that E = k(a0). Indeed, if not, there would be some
b0 ∈ E \ k(a0). Looking at the tower of fields

k ⩽ k(a0) ⩽ k(a0, b0) ⩽ E

we conclude that k ⩽ k(a0, b0) is separable (since k ⩽ E is Galois,
hence separable and using 1.3.20). Moreover, [k(a0) : k] = m0

maximal and finite, and since b0 is algebraic over k, it is also algebraic
over k(a0). That means, using 1.1.53, that k(a0) ⩽ k(a0, b0) is also of
finite degree. From 1.1.11, we conclude that

[k(a0, b0) : k] = [k(a0, b0) : k(a0)][k(a0) : k] > m0

But from the primitive element theorem, as k ⩽ k(a0, b0) is separable
and finite, there exists some γ ∈ E such that k(a0, b0) = k(γ). The
above arguments imply that

[k(γ) : k] > m0

which contradicts the maximality of m0 among the degrees of ele-
ments of E. Therefore E = k(a0); under these circumstances, E is a
finitely generrated, algebraic extension of k, hence finite over k - a
contradiction. ⋄

Our informal discussion in 1.2.11 should have prepared us to
understand why infinite Galois groups do not behave well; they
have too many subgroups so not every subgroup can arise as an
automorphism group of some intermediate field.

Counterexample 1.5.3. Consider the extension

Q ⩽ Q(
√

2,
√

3,
√

5,
√

7,
√

11, . . .) = E

constructed by adjoining the roots of all equations of the form
x2 − p = 0 where p is a prime number. It is easy to see that Q ⩽ E
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is normal (by definition) and separable (we are in characteristic 0),
hence Galois. So (1.7) holds. It is in (1.6) where the correspondence
breaks because Aut(E/•) is not onto, i.e. not every subgroup can
arise as an automorphism group. Let’s see why.

We will focus on extensions of Q of degree 2 inside E, i.e.
quadratic number fields inside E. It is not hard to see what a
quadratic number field looks like in general. If [L : Q] = 2 then
L ̸= Q and we can find some a ∈ L \Q. From

[L : Q(a)][Q(a) : Q] = [L : Q] = 2,

we can deduce that L = Q(a). Therefore

2 = [L : Q] = [Q(a) : Q] = ∂m(a,Q)

so m(a,Q) = x2 + d or, equivalently, a =
√

d for some square-free
d ∈ Q. The converse also holds; namely, any field of the form
Q(
√

d) with d ∈ Q square-free, is an algebraic number field. So
there are countably many quadratic number fields, hence countably
many quadratic number fields inside E.

By Theorem 1.4.2, any quadratic field L is mapped through
Aut(E/•) to a subgroup Gal(E/L) of index

[Gal(E/Q) : Gal(E/L)] = [L : Q] = 2

in Gal(E/Q) and only quadratic number fields can be mapped to
subgroups of Gal(E/Q) of index 2.

But, any σ ∈ G = Gal(E/Q) is determined by its action on the
square roots and, since σ(

√
p) is also a root of m(

√
p,Q) = x2 − p,

we have
σ(
√

p) = ±√p ∀ prime p.

We can therefore deduce that, as groups, G ≃ ∏∞
i=1 Z2. Indeed the

map

Φ :
∞

∏
i=1

Z2 → Gal(E/Q)

(ai)
∞
i=1 7→ σ : σ(

√
pi) = (−1)ai

√
pi,
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where pi is the i-th prime number, is easily seen to be a group
isomorphism. So G is uncountable.19 Moreover, G is an infinite
dimensional vector space over Z2, which implies that its dual space
HomZ2(G,Z2) is uncountable.20 The kernels of all these (uncount-
ably many) linear functionals are subgroups of G of index 2. So we
have uncountably many subgroups of G of index 2.

Since there only countably many extensions of Q of degree 2
inside E but uncountably many subgroups of G of index 2, Aut(E/•)
cannot be onto and (1.6) cannot hold.

So when the extension is infinite, its Galois group is also infinite
and the Galois correspondence may not be bijective as the previous
example suggests. A natural question to ask is whether there are
infinite Galois extensions for which the correspondence is bijective.
We shall see that answer is no.

We therefore need to find a way to distinguish among the sub-
groups that can arise as Galois groups and the subgroups that cannot.

This is done by defining a topology on Gal(E/k), the Krull topol-
ogy,21 which distinguishes between “good” and “bad” subgroups.
In particular, the subgroups that are closed with respect to the Krull
topology will be exactly those which arise as Galois groups.

Convention. For the rest of this section, fix k ⩽ E a (possibly infinite)
Galois extension and G = Gal(E/k) its Galois group. We define

L = {L : k ⩽ L ⩽ E, [L : k] < ∞ and k ⩽ L Galois}

to be the set of subextensions L of k ⩽ E for which k ⩽ L is a finite
Galois extension and

N = {N ⩽ G : N = Gal(E/L), L ∈ L}

to be the set of subgroups of G that can arise as Galois groups of
subextensions L ∈ L.

19 Another famous argument of Cantor says that the set of all binary sequences is
uncountable (its cardinality equals the continuum); see [28].

20 If V is an infinite dimensional vector space over a field F and V∗ is its dual space,
then dimF V∗ > dimF V; see [2].

21 Named after Wolfgang Krull (1899-1971) who was the first to develop the theory
for infinite Galois extensions in [20].
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Proposition 1.5.4. The set

B = {σN : σ ∈ G, N ∈ N}

constitutes a basis for a topology T on Gal(E/k).

Proof. In other words, we need to show that the set

T =

{⋃
i∈I

σiNi : σi ∈ G, N ∈ N
}

constitutes a topology on G. Obviously ∅, G ∈ T . For the latter
consider any arbitrary extension L ∈ L with Galois group N =

Gal(E/L) ∈ N and write

G =
⋃

σ∈G

σN.

Moreover, it is apparent that the union of an arbitrary family of
elements of T is again in T . It remains to show that given a finite
number of elements of T , their intersection also lies in T . It suffices
to prove our claim for only two elements of T . From the set-theoretic
equality (⋃

i∈I

σiNi

)
∩

⋃
j∈J

τjNj

 =
⋃
i,j

(
σiNi ∩ τjNj

)
and the fact that T is closed under unions, it suffices to prove that
σ1N1 ∩ σ2N2 ∈ T for any two elements of B. In fact we will prove
that this intersection lies in B ⊆ T . Observe that if τ ∈ σ1N1 ∩ σ2N2

then
σ1N1 ∩ σ2N2 = τN1 ∩ τN2 = τ(N1 ∩ N2) ∈ B

since N1 ∩ N2 ∈ N . Indeed, if

N1 = Gal(E/L1) and N2 = Gal(E/L2), L1, L2 ∈ L

then Gal(E/L1L2) = N1 ∩ N2 since

ρ ∈ N1 ∩ N2 ⇐⇒ ρ|L1 = id and ρ|L2 = id

⇐⇒ L1 ⊆ FixE(ρ) and L2 ⊆ FixE(ρ)

⇐⇒ L1L2 ⊆ FixE(ρ) ⇐⇒ ρ ∈ Gal(E/L1L2)

which completes the proof (F ⩽ L1L2 is again a finite, Galois exten-
sion). ⋄
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Definition 1.5.5. The topology T defined in the previous proposition
is called the Krull topology.

Example 1.5.6. The Krull topology of a finite Galois extension is the
discrete topology; that is, every subgroup of its Galois groups is
both open and closed.22 Indeed, if k ⩽ E is finite with Galois group
G then E ∈ L and Gal(E/E) = {idE} ∈ N . Therefore

{σ} = σ Gal(E/E) ∈ B ∀σ ∈ G.

That is, every singleton is open (and in particular basic); hence every
subset of G is clopen.

The converse of the above claim also holds.

Lemma 1.5.7. The Krull topology is discrete if and only if the extension is
finite.

Proof. See [3], Proposition 3.12.8. ⋄

We will now prove our claim that the closed subsets of G in the
Krull topology are exactly those that can arise as Galois groups of
subextensions.

This result and the above lemma imply that there are no infinite
Galois extensions for which (1.6) holds.

Proposition 1.5.8. If H ⊆ G then Gal(E/ FixE(H)) = H, the closure of
H in the Krull topology.

Proof. To simplify the notation, set H′ = Gal(E/ FixE(H)). In order
to prove that H = H′ we need to show two inclusions. For the
inclusion H ⊆ H′, we need only prove that H′ is closed. Indeed,
we have already established that H ⊆ H′ which implies that H ⊆
H′; therefore, if we prove that H′ is closed then H′ = H′ and the
inclusion H ⊆ H′ becomes H ⊆ H′ which is exactly what we want.
To prove that H′ is closed take some σ ∈ G \ H′. Now

σ ∈ G \ H′ ⇒ ∃a ∈ FixE(H′) : σ(a) ̸= a

22 A set that is both open and closed with respect to some topolgy is called clopen.
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Take some L ∈ L such that a ∈ L and set N = Gal(E/L) ∈ N . The
set σN is a basic open set containing σ and is disjoint from H′ since

τ(a) = a ∀τ ∈ N and στ(a) = σ(a) ̸= a

Therefore, G \ H′ is open, hence H′ is closed. For the other inclusion,
H′ ⊆ H, set L = FixE(H) and let σ ∈ H′ and N ∈ N . If K =

FixE(N) ∈ L and H0 = {τ|K : τ ∈ H} ⩽ Gal(K/k), then, since

FixK(H0) = FixK(H) ∩ K = L ∩ K,

the Fundamental Theorem for the finite Galois extensions implies
that H0 = Gal(K/K ∩ L). Now σ ∈ H′, so σ|L = idL and σ|K ∈ H0.
Therefore, there is some τ ∈ H such that τ|K = σ|K. Thus σ−1τ ∈
Gal(E/K) = N, so τ ∈ σN ∩ H. In other words, every basic open
neighborhood σN of σ ∈ H′ meets H, so σ ∈ H. ⋄

From the above proposition, the Galois correspondence between

{subextensions k ⩽ L ⩽ E}⇄ {closed subgroups H ⩽ Aut(E/k)}

is bijective. Hence we have proved the analogue of Theorem 1.4.1
for infinite extensions.

Theorem 1.5.9 (Fundamental Theorem of Galois Theory for infinite
extensions; Krull). If k ⩽ E is a (possibly infite) Galois extension, the
correspondence

{L : k ⩽ L ⩽ E}⇄ {H : H ⩽ Gal(E/k), H closed}

is bijective, i.e., the maps Aut(E/•) and FixE(•) are mutual inverses, and
order reversing.

Proof. Immediate from Proposition 1.2.7, Corollary 1.2.18 and Propo-
sition 1.5.8. ⋄

We can also establish an analogue of Theorem 1.4.2.

Theorem 1.5.10 (Fundamental Theorem of Galois Theory for infinite
extensions, Krull; part 2). If L is a subextension of k ⩽ E, then L ⩽ E is
Galois and if H = Gal(E/L) then

|G : H| < ∞ ⇐⇒ H is open ⇐⇒ [L : k] < ∞
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and in that case, |G : H| = [L : k]. Moreover, the extension k ⩽ L is
normal (hence Galois) if and only if Gal(L/k) is a normal subgroup of
Gal(E/k). In that case

Gal(L/k) ≃ Gal(E/k)/ Gal(E/L)

If we endow Gal(E/k)/ Gal(E/L) with the quotient topology then the
above isomorphism is a homeomorphism.

We must note however, that in order to prove the second part of
the Fundamental Theorem we need more information on the Krull
topology. In particular we need

Proposition 1.5.11. The set G endowed with the Krull topology is Haus-
dorff, compact and totally disconnected.

The proofs of these propositions are given in the next paragraph.
A last remark is in order before we proceed.

Remark 1.5.12. Krull’s Galois Theory is a generalization of the Galois
Theory for finite extensions. If k ⩽ E is a finite Galois extension then
the Krull topology on Gal(E/k) is the discrete topology; hence every
subgroup is clopen and we retrieve Theorems 1.4.1 and 1.4.2.

profinite topological groups The previous discussion of
infinite Galois Theory is somewhat elementary and probably raises
more questions than it answers. One might wonder for example
how did we come up with the Krull topology or even why did we
use topology to begin with.

To see how our work in infinite Galois Theory comes naturally,
we need the notion of a profinite topological group. For a more elab-
orate study of profinite groups and how they are related to Galois
Theory we refer the reader to [16].

Definition 1.5.13. A topological group is a group G endowed with
a topology such that the maps

· : G× G → G : (g, h) 7→ gh and −1 : G → G : g 7→ g−1

are continuous. A homomorphism of topological groups is a group
homomorphism that is also continuous.
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Thus a topological group is a group that is also a topological
space for which the group structure and the topology are compatible
in the sense described above and a homomorphism of topological
groups is a map that respects both the group structure and the
topology.

Example 1.5.14. If k ⩽ E is a Galois extension, Gal(E/k) endowed
with the Krull topology is a topological group.

If the extension is finite, so is Gal(E/k) and therefore its Krull
topology is the discrete topology. Hence the maps (g, h) 7→ gh and
g 7→ g−1 are (trivially) continuous.

The interesting case is when k ⩽ E is infinite. Suppose (g, h) ∈
G×G and take a basic open neighborhood gh Gal(E/L) of gh. Then,
the basic open neighborhood g Gal(E/L)× h Gal(E/L) of (g, h) is
contained in gh Gal(E/L) through the map (g, h) 7→ gh. The element
(g, h) was arbitrary, therefore (g, h) 7→ gh is continuous.

Similarly, if g ∈ G and g−1 Gal(E/L) is a basic open neigh-
borhood of g−1, then the open neighborhood g Gal(E/L) of g is
contained in g−1 Gal(E/L) through the map g 7→ g−1. The element
g was arbitrary, therefore g 7→ g−1 is also continuous.

Proposition 1.5.15. A subgroup of topological group is a topological
group.

Proof. Let G be a topological group and H ⩽ G. Recall from Gen-
eral Topology that the restriction of a continuous map is continuous.
Therefore the restrictions ·|H : H × H → G and −1|H : H → G are
continuous. But since H is a subgroup of G, their range is H, i.e.
·|H : H× H → H and −1|H : H → H so H is a topological group. ⋄

Proposition 1.5.16. The product G = ∏a∈A Ga of a family {Ga}a∈A of
topological groups is a topological group when endowed with the product
topology.

Before proving that, recall from General Topology that if {Xa}a∈A
is a family of topological spaces, then X = ∏a∈A Xa endowed with
the product topology is a topological space. X (with projections πa :
X → Xa) has the universal property that for every other topological
space Y and every family fa : Y → Xa of continuous maps, there is
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a unique continuous map f : Y → X so that the following diagram
commutes.

X = ∏a∈A Xa

Y Xa

πa

fa

f

Proof. First of all, recall from Group Theory that G = ∏a∈A Ga is a
group with multiplication defined componentwise, i.e.

(ga)a∈A · (ha)a∈A = (ga · ha)a∈A.

To show that · : G× G → G is continuous take Y = G× G and
fa to be the composition

G× G πa×πa−→ Ga × Ga
·a−→ Ga

in the universal property of the product topology. Then · is the
unique map f , hence continuous.

G

G× G Ga × Ga Ga

πa

πa×πa

fa

f=·

·a

Similarly, to prove that −1 : G → G is continuous take Y = G

and fa to be the composition G πa−→ Ga
−1
a−→ Ga.

G

G Ga Ga

πa

πa

fa

f=−1

−1
a

⋄
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We are not interested in topological groups in general but rather
in a spacial kind of topological groups, profinite groups.

Definition 1.5.17. An inverse system of topological groups is a
pair of families ({Ga}a∈A, {ϕa

b}a⩽b∈A) indexed by some directed set23

(A,⩽), where {Ga}a∈A is a family of topological groups and for
every a ⩽ b ∈ A, ϕa

b is a continuous group homomorphism Gb → Ga

such that

i) ϕa
a = idGa

ii) ϕa
c = ϕa

b ◦ ϕb
c for all a ⩽ b ⩽ c ∈ A.

We shall write (Ga, ϕa
b) for an inverse system of topological groups.

Definition 1.5.18. Suppose (Ga, ϕa
b) is an inverse system of topolog-

ical groups. The inverse limit of the system is the subset of the
product ∏a∈A Ga consisting of sequences (ga) such that ϕa

b(gb) = ga

for all a ⩽ b. The inverse limit is usually denoted by lim
←−

Ga.

Lemma 1.5.19. If (Ga, ϕa
b) is an inverse system of topological groups, then

the inverse limit lim
←−

Ga is a subgroup of ∏a∈A Ga.

Proof. First of all, lim
←−

Ga ̸= ∅. Indeed, (ea)a∈A ∈ lim
←−

Ga since ϕa
b :

Gb → Ga is a group homomorphism and therefore sends eb 7→ ea for
every a ⩽ b.

Furthermore, for every (ga), (ha) ∈ lim
←−

Ga,

(ga) · (ha)
−1 = (ga) · (h−1

a ) = (ga · h−1
a ) ∈ lim

←−
Ga

because for every a ⩽ b,

ϕa
b(gb · h−1

b ) = ϕa
b(gb) · ϕa

b(h
−1
b ) = ϕa

b(gb) · ϕa
b(hb)

−1 = gah−1
a .

Therefore lim
←−

Ga ⩽ ∏a∈A Ga. ⋄

Corollary 1.5.20. The inverse limit lim
←−

Ga is a topological group.

Proof. Immediate from Propositions 1.5.15 and 1.5.16, and the previ-
ous lemma. ⋄

23 Recall that a directed set is a partially ordered set (A,⩽) with the property that
for every a, b ∈ A there is some c ∈ A such that a ⩽ c and b ⩽ c.
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Profinite topological groups are a special kind of inverse limit.

Definition 1.5.21. The inverse limit of a system of finite topological
groups (endowed with the discrete topology) is called a profinite
(topological) group.

Corollary 1.5.22. Profinite groups are topological groups.

Example 1.5.23. Every finite topological group G is profinite. Just
take (Ga, ϕa

b) to be (G, idG).

Example 1.5.24. The Galois group Gal(E/k) of a Galois extension
k ⩽ E is a profinite group.

If the extension is finite then so is Gal(E/k) and the assertion
follows from the previous example.

Suppose the extension is infinite. The pair (L,⊆) is a directed
set. Indeed, for every L1, L2 ∈ L, their compositum L3 = L1L2 ∈ L
(for i = 1, 2, Li is a finite Galois extension of k, so it is generated by
a finite set Si of elements whose minimal polynomials are separable
and split over k; L3 is then generated by S1 ∪ S2 and therefore L3 ∈ L)
and L1 ⊆ L3, L2 ⊆ L3.

For every L ∈ L take the finite group Gal(L/k) endowed with the
discrete topology and for every L1 ⊆ L2 ∈ L consider the restriction
homomorphism

ϕL1
L2

: Gal(L2/k)→ Gal(L1/k) : σ 7→ σ|L1 ∀σ ∈ Gal(L2/k).

Thus we have an inverse system (Gal(L/k), ϕL1
L2
) of topological

groups. We will show that

Gal(E/k) ∼= lim
←−

Gal(L/k),

that is, they are isomorphic as groups and homeomorphic as topo-
logical spaces.

Define

ϑ : Gal(E/k)→ lim
←−

Gal(L/k)

σ 7→ (σ|L)L∈L.

The map ϑ is obviously well defined.
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ϑ is also a group homomorphism since

σ|Lτ|L = (στ)|L.

We will show that the kernel of ϑ is trivial so ϑ is injective.
Suppose σ ∈ Gal(E/k) such that σ|L = idL for all L ∈ L. Then
σ = idE. Indeed, for every x ∈ E take the splitting field Lx of m(x, k).
It is immediate that Lx ∈ L. The hypothesis σ|Lx = idLx implies
that σ(x) = σ|Lx(x) = x. The element x ∈ E was arbitrary, therefore
σ = idE.

To show that ϑ is surjective take some (τL) ∈ lim
←−

Gal(L/k) and
define

σ : E→ E : σ(x) = τLx(x) ∀x ∈ E.

It is a trivial procedure to show that σ ∈ Gal(E/k) and, by its
definition, ϑ(σ) = (σ|L) = (τL).

ϑ is continuous and open. The basic open sets of Gal(E/k) are
of the form σN where N = Gal(E/L) ∈ N for some L ∈ L and
σ ∈ Gal(E/k). The topology of lim

←−
Gal(L/k) is, by definition of

the product and the subspace topology, the smallest topology that
contains the sets π−1

L ({τ}) where L ∈ L, πL : Gal(E/k)→ Gal(L/k)
is the usual projection (restriction) and τ ∈ Gal(L/k). We compute

ϑ−1(π−1
L ({τ})

)
= {σ ∈ Gal(E/k) : σ|L = τ}
= {σ ∈ Gal(E/k) : σ extends τ to E}
=

⋃
σ∈Gal(E/k)

σ Gal(E/L)

which is a union of open sets in Gal(E/k), hence open. So ϑ is
continuous. Moreover,

ϑ(σN) = {(στH)H∈L : τH |L = idH∩L}
= {(τH)H∈L : σ−1τH |L = idH∩L}
= {(τH)H∈L : τH |L = σ|H∩E}
= π−1

H ({σ|E})

so the image of a basic open set is open in lim
←−

Gal(L/k). Therefore
ϑ is open.
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The Krull topology has some nice properties which can now be
almost immediately derived.

Recall from General Topology that a space X is called compact
if every open cover of X has a finite subcover, Hausdorff24 if for
every x, y ∈ X there are open sets Vx, Vy such that x ∈ Vx, y ∈ Vy

and Vx ∩ Vy = ∅, and totally disconnected if its only connected
components are the singletons. It is immediate that every finite space
equipped with the discrete topology is compact, Hausdorff and totally
disconnected. The not (at all) obvious results we will need are

i) Any product of compact spaces is compact.25

ii) Any product of Hausdorff spaces is Hausdorff.

iii) Any product of totally disconnected spaces is totally disconnected.

iv) The subspace of a compact space need not be compact; for
example [0, 1] is compact while (0, 1) is not. However, a closed
subspace of a compact space is compact.

v) The subspace of a Hausdorff space is Hausdorff.

vi) The subspace of a totally disconnected space is totally disconnected.

vii) If f , g : X → Y are continuous maps and Y is Hausdorff, then the set

{x ∈ X : f (x) = g(x)}

is a closed subset of X.

Lemma 1.5.25. lim
←−

Ga is a closed subset of ∏a∈A Ga.

Proof. Write lim
←−

Ga as

lim
←−

Ga = {(ga) ∈ ∏
a∈A

Ga : ϕa
b(gb) = ga ∀b > a}

=
⋂
b>a

{(ga) ∈ ∏
a∈A

Ga : ϕa
b ◦ πb(gb) = πa(ga)}

and apply (vii) for f = ϕa
b ◦ πb and g = πa as continuous functions

∏a∈A Ga → Ga. lim
←−

Ga is then closed as the intersection of closed
subsets of ∏a∈A Ga. ⋄

24 Named after Felix Hausdorff (1868–1942).
25 This is Tychonoff’s theorem, named after Andrey Nikolayevich Tikhonov (1906-

1993).
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Corollary 1.5.26. The Galois group of an extension k ⩽ E endowed with
the Krull topology is a compact, Hausdorff and totally disconnected space.

We can now prove the second part of the Fundamental Theorem
of infinite Galois Theory.

Theorem 1.5.27 (Fundamental Theorem of Galois Theory for infinite
extensions, Krull; part 2). If L is a subextension of k ⩽ E, then L ⩽ E is
Galois and if H = Gal(E/L) then

|G : H| < ∞ ⇐⇒ H is open ⇐⇒ [L : k] < ∞

and in that case, |G : H| = [L : k]. Moreover, the extension k ⩽ L is
normal (hence Galois) if and only if Gal(L/k) is a normal subgroup of
Gal(E/k). In that case

Gal(L/k) ≃ Gal(E/k)/ Gal(E/L)

If we endow Gal(E/k)/ Gal(E/L) with the quotient topology then the
above isomorphism is a homeomorphism.

Proof. Suppose [G : H] = m < ∞. If the left cosets of H in G are
{H, g1H, . . . , gmH} then

G \ H =
m⊔

i=1

gi H

which is a finite union of closed subsets of G. Indeed, H = Gal(E/L)
is closed as the Galois group of some subextension and the map

·|{gi}×H : {gi} × H → gH ⊆ G : h 7→ gih

is bijective and continuous as the restriction of a continuous map.
Therefore gi H is closed for every i = 1, . . . , m. Thus G \ H is closed
which implies that H is open.

Suppose now that H is an open subgroup of G. Then idE ∈ H so
there is some basic open neighborhood N = Gal(E/S) ∈ N , S ∈ L,
so that idE ∈ N ⩽ H. In that case,

N ⩽ H =⇒ FixE(H) ⩽ FixE(N)

=⇒ FixE
(

Gal(E/L)
)︸ ︷︷ ︸

=L since E/L is Galois

⩽ FixE
(

Gal(E/S)
)︸ ︷︷ ︸

=S since E/S is Galois

=⇒ L ⩽ S
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and since S ∈ N , that is, S is finite over k, so is L.
Lastly, suppose that [L : k] < ∞. Take E f to be the splitting field

of all the minimal polynomials of the generators of L over k. Then
E f ∈ L and k ⩽ L ⩽ E f ⩽ E. Set N = Gal(E/E f ) ∈ N . Similarly to
the proof of the fundamental theorem for finite extensions, the map

ϑE f : Gal(E/k)→ Gal(E f /k) : σ 7→ σ|E f

is a surjective (from Lemma 1.3.11) group homomorphism with
ker ϑE f = N. From the 1st Isomorphism Theorem we have

Gal(E f /k) ≃ Gal(E/k)/ Gal(E/E f ) = G/N.

The inclusion L ⩽ E f now implies that N = Gal(E/E f ) ⩽ Gal(E/L) =
H and therefore

[G : H] ⩽ [G : N] = |G/N| = |Gal(E f /k)|

and |Gal(E f /k)| < ∞ since k ⩽ E f is finite. In particular, using
the Isomorphism Theorems for Groups, Lagrange’s theorem, the
fundamental theorem of Galois theory for finite extensions and the
multiplicativity of the degrees, we get

[G : H] = [G/N : H/N] =
|G/N|
|H/N| =

[E f : k]
[E f : L]

= [L : k].

Suppose H ◁ G. We will show that k ⩽ L is a Galois extension.
It is obviously separable by the transitivity of separable extensions.
It remains to show that it is normal. Let a ∈ L \ k and m = m(a, k)
be its minimal polynomial. k ⩽ E is Galois; let b ∈ E be another root
of m. We will show that b ∈ L. From the Isomorphism Extension
Theorem, there is some σ ∈ Gal(E/k) such that σ(a) = b. Since
H ◁ G, we have σ−1τσ ∈ H for every τ ∈ H. Therefore

τ(b) = τσ(a) = σ σ−1τσ︸ ︷︷ ︸
∈Gal(E/L)

( a︸︷︷︸
∈L

) = σ(a) = b.

In other words, b ∈ FixE(H) = FixE
(

Gal(E/L)
)
= L.

For the contrary, suppose that k ⩽ L is Galois. Then

ϑ : G = Gal(E/k)→ Gal(L/k) : σ 7→ σ|L
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is a surjective group homomorphism with ker ϑL = H ◁ G (using
analogous arguments as before, when we defined ϑE f ).

By the 1st Isomorphism Theorem, there is an isomorphism

v : G/H = Gal(E/k)/ Gal(E/L) ≃−→ Gal(L/k).

We will show that v is a homeomorphism.
The basic open sets of Gal(L/k) as a subspace of G are

B′ = {τ Gal(L/K)}

where k ⩽ K ⩽ L with k ⩽ K being a finite Galois extension and
τ ∈ Gal(L/k). For every such basic open set, Gal(E/K) ∈ N since
E ∈ L and therefore

ϑ−1(τ Gal(L/K)
)
= σ Gal(E/K)

for some σ ∈ Gal(E/k) that extends τ. So ϑ is continuous.
Moreover, ϑ is closed. Indeed, G is compact and Gal(L/k) is

Hausdorff (because G is), so any closed subset of the compact G
is compact and is therefore mapped through the continuous ϑ to
a compact subset of the Hausdorff space Gal(L/k). Recall from
General Topology that any compact subset of a Hausdorff space is compact
and the assertion follows.

Now it follows at once that the isomorphism

v : G/H = Gal(E/k)/ Gal(E/L) ≃−→ Gal(L/k)

induced by ϑ is a homeomorphism by the definition of the quotient
topology on G/H. ⋄



[...] geometry is the art of reasoning
well from badly drawn figures; how-
ever, these figures, if they are not
to deceive us, must satisfy certain
conditions; the proportions may be
grossly altered, but the relative posi-
tions of the different parts must not
be upset.

Jules Henri Poincaré (1854-1912).



2 T H E C L A S S I F I C AT I O N O F
C O V E R I N G S PA C E S

S
imilar to that of Galois Theory, the next classification theo-
rem we are pursuing focuses on the interplay between two
fundamental notions of Algebraic Topology: covering spaces

and fundamental groups. Covering spaces’ first appearance was in
the works of Georg Friedrich Bernhard Riemann (1826-1866), in the
theory of analytic functions of a complex variable. Fundamental
groups on the other hand, which were introduced by Poincaré in his
monumental paper “Analysis Citus” [31] (the starting point of Alge-
braic Topology), were initially used as a tool to classify topological
spaces.

Despite their different origins, the two concepts share a deep
connection. One of the aspects of this connection is the main theme
of this chapter: for certain topological spaces, we can determine and
classify up to isomorphism all of their possible covering spaces using
subgroups of their fundamental group. Sounds familiar? It should!

Our aim again is not a thorough investigation but a quick de-
velopment of some basic notions that will help us reach the next
classification theorem. We therefore assume the same familiarity
with Abstract Algebra and General Topology as the previous chapter.
Some elementary notions regarding parameterizations of curves are
also assumed to be known.

2.1 the fundamental group

introduction The theory of the fundamental group provides a
way of reducing difficult topological problems into simpler, algebraic
ones. This is done by associating each topological space with an
appropriately chosen group, the fundamental group of the space.
Then, certain problems concerning the space can be translated into

83
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problems concerning the fundamental group which are in some
cases more tractable.

Fundamental groups can also be used to study continuous func-
tions. Every continuous function between two topological spaces
induces a group homomorphism between their respective funda-
mental groups. Again, studying the induced homomorphism can
tell us a lot about the function.

From this perspective, fundamental groups constitute powerful
tools in the study of topological spaces. Unfortunately, we will not
see them in action. This section contains only some basic definitions
and calculations of fundamental groups in a few, very simple cases;
just the absolute essentials for what follows.

Convention. For the rest of this chapter we denote the closed unit
interval [0, 1] ⊆ R as I. To avoid repetition, we will occasionally refer
to topological spaces simply as spaces and we will interchange among
the terms function, map and mapping. To save words, all subsets of Rn

are assumed to have the usual topology induced by the Euclidean
metric for all n ∈ N.

Before continuing, we recall a result from Topology which we
will soon have to invoke.

Lemma 2.1.1 (Glueing Lemma). Suppose that X and Y are topological
spaces such that X = A ∪ B for some closed subsets A, B ⊆ X. If
f : A→ Y and g : B→ Y are continuous functions such that f (a) = g(a)
for all a ∈ A ∩ B, then the mapping

h : X → Y : h(x) =

{
f (x), if x ∈ A

g(x), if x ∈ B

is also continuous.

Proof. Let C be a closed subset of Y. Since

h−1(C) = f−1(C) ∪ g−1(C),

and f , g are continuous, f−1(C) ∪ g−1(C) is also closed in X and so
is h−1(C). Therefore, h is continuous. ⋄
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homotopy classes of loops Let X be an arbitrary topological
space. A path in X is a continuous mapping f : I → X. The point
f (0) is called the initial point of the path and f (1) its terminal;
together they are the endpoints of the path. If the endpoints of a
path coincide, that is f (0) = f (1) = x0 for some x0 ∈ X, then f is
called a closed path or a loop (based) at x0.

If f : I → X is a path, its image f (I) is a (topological) curve in
X which we will denote by C f . We must be careful not to confuse a
path f : I → X with the curve C f . A path is a parameterization of the
curve C f , while C f is just a set of points in X.

Figure 2.1: A path is a parameterization of the curve C f

Example 2.1.2. Let X be a topological space and x0 ∈ X. The
constant path or constant loop at x0 is defined to be

cx0 : I → X : cx0(s) = x0 ∀s ∈ I.

Example 2.1.3. Let f : I → X be a path. We define its inverse path,
denoted by f−1, to be

f−1 : I → X : f−1(s) = f (1− s).

Note that f and f−1 parameterize the same curve C f = C f−1 in X yet
they are different parameterizations of C f hence distinct paths; f−1

traverses C f in the opposite direction of f , from f (1) to f (0).
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Figure 2.2: Homotopy as a deformation of paths

Definition 2.1.4. A homotopy of two paths f0, f1 : I → X whose
endpoints coincide is a continuous map

F : I × I → X

such that 
F(s, 0) = f0(s) ∀s ∈ I

F(s, 1) = f1(s) ∀s ∈ I

F(0, t) = f0(0) = f1(0) ∀t ∈ I

F(1, t) = f0(1) = f1(1) ∀t ∈ I.

(2.1)

In particular, a homotopy between two loops f0, f1 : I → X based at
x0 ∈ X is a continuous function F : I × I → X such that

F(s, 0) = f0(s) ∀s ∈ I

F(s, 1) = f1(s) ∀s ∈ I

F(0, t) = F(1, t) = x0 ∀t ∈ I.

(2.2)

If a homotopy exists, the paths are called homotopic. We use the
notation f0 ∼ f1 to indicate that f0 and f1 are homotopic, or F : f0 ∼
f1 if we want to refer to the homotopy F as well.
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We can think of the second coordinate t as representing time
and the homotopy as a continuous (with respect both to s and t)
deformation of path f0 to path f1. The first two conditions say that
at t = 0 we begin with f0 and, continuously deforming it, we obtain
f1 at t = 1; at any given time t0 ∈ I, f0 has been deformed to
ft0 ≡ F(s, t0) : I → X. The last two conditions ensure that, during
the deformation, the endpoints remain fixed.

Example 2.1.5. Let X be Rn for some n ∈ N. Any two paths
f0, f1 : I → X whose endpoints match are homotopic. The required
homotopy is the linear homotopy

L : I × I → X : L(s, t) = (1− t) f0(s) + t f1(s)

which moves each point f0(s) ∈ C f0 continuously along the straight
line that connects it with f1(s). It is immediate that the function L is
continuous (using the algebra of continuous functions) and satisfies
all conditions of (2.1).

In particular, given some point x0 ∈ X, all loops in X based at x0

are homotopic.

Figure 2.3: A linear homotopy of paths in R2
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Counterexample 2.1.6. Suppose X is the usual punctured plane R2 \
{(0, 0)}. In this case, there exist non homotopic loops because of the
hole at (0, 0). Indeed, the loop

f : I → X : s 7→
(

cos(2πs), sin(2πs)
)

based at (1, 0) (for which C f = S1) is not homotopic to the constant
loop c(1,0). Intuitively, any continuous deformation from S1 to c(1,0)
requires the path f to pass through the origin, which is not in X.

Lemma 2.1.7. Homotopy is an equivalence relation.

Proof. The map F(s, t) = f (s) is a homotopy from f to itself and
if F(s, t) is a homotopy from f to g then G(s, t) = F(s, 1− t) is a
homotopy from g to f . Lastly, given homotopies F : f ∼ g and
G : g ∼ h, the mapping

H(s, t) =

{
F(s, 2t), t ∈ [0, 1

2 ]

G(s, 2t− 1), t ∈ [ 1
2 , 1]

is a homotopy H : f ∼ h. All these functions satisfy conditions (2.1)
and are continuous; in particular, H is continuous by the glueing
lemma 2.1.1. ⋄

We denote the equivalence class of f under ∼ as [ f ] and call it
the homotopy class of f . So, by definition

f ∼ g ⇐⇒ [ f ] = [g].

When there is no danger of confusion however, we shall denote the
homotopy class of f with the same symbol f , i.e. [ f ] ≡ f .

the fundamental group Given two paths in X, f , g : I → X,
we define their product f · g ≡ f g to be the path

f g : I → X : ( f g)(s) =

{
f (2s), s ∈ [0, 1

2 ]

g(2s− 1), s ∈ [ 1
2 , 1]

which is just the first path followed by the second, both traversed
in double speed so that the domain of their product can be I. Let’s
consider the spacial case where both f and g are loops based at
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the same basepoint. In that case the map f g is continuous (by the
glueing lemma 2.1.1) with the property that f g(0) = f g(1), hence a
loop. We can extend this definition to the case of homotopy classes.
We define the product of two homotopy classes of loops as

[ f ][g] = [ f g]. (2.3)

This is a well defined binary operation as the next lemma suggests.

Lemma 2.1.8. Given four loops in X such that [ f0] = [ f1] and [g0] = [g1],
we have [ f0][g0] = [ f1][g1].

Proof. Given homotopies F : f0 ∼ f1 and G : g0 ∼ g1, the mapping

H : I × I → X : H(s, t) =

{
F(2s, t), t ∈ [0, 1

2 ]

G(2s− 1, t), t ∈ [ 1
2 , 1]

is continuous by the glueing lemma 2.1.1 and satisfies conditions
(2.2); it is a homotopy H : f0g0 ∼ f1g1. ⋄

Let X be a topological space, x0 ∈ X and let π1(X, x0) denote the
set of all homotopy classes loops based at x0, i.e.

π1(X, x0) = {[ f ] | f : I → X : f (0) = f (1) = x0}.

The previous lemma assures that the product defined in (2.3) is a
well defined binary operation on π1(X, x0).

Proposition 2.1.9. The set π1(X, x0) is a group under the product of
loops as defined in (2.3).

Proof. First, we must prove associativity:

([ f ][g])[h] = [ f ]([g][h]) ⇐⇒ [ f g][h] = [ f ][gh]

⇐⇒ [( f g)h] = [ f (gh)]

⇐⇒ ( f g)h ∼ f (gh)

for all [ f ], [g], [h] ∈ π1(X, x0). The mapping

F(s, t) =


f ( 4s

1+t ), s ∈ [0, t+1
4 ]

g(4s− t− 1), s ∈ [ t+1
4 , t+2

4 ]

h( 4s−t−2
2−t ), s ∈ [ t+2

4 , 1]
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is a homotopy F : ( f g)h ∼ f (gh). As for the identity element, it is
easy to see that the constant loop on x0 plays this role, i.e.

[cx0 ][ f ] = [ f ][cx0 ] = [ f ] ⇐⇒ [cx0 f ] = [ f cx0 ] = [ f ]

⇐⇒ cx0 f ∼ f cx0 ∼ f

for all [ f ] ∈ π1(X, x0). Indeed, the map

G : I × I → X : G(s, t) =

{
x0, s ∈ [0, t

2 ]

f ( 2s−t
2−t ), s ∈ [ t

2 , 1]

is a homotopy G : cx0 f ∼ f (the other homotopy is similar). It
remains to check for inverses. Recall that the inverse of a loop f is
the loop f−1(s) = f (1− s). The reason we called the loop f (1− s)
the inverse of f is that

[ f ][ f−1] = [cx0 ] = [ f−1][ f ] ⇐⇒ [ f f−1] = [cx0 ] = [ f−1 f ]

⇐⇒ f−1 f ∼ cx0 ∼ f f−1

for all [ f ] ∈ π1(X, x0). In other words, [ f ]−1 = [ f−1]. Indeed, the
function

H : I × I → X : H(s, t) =

{
f
(
2s(1− t)

)
, s ∈

[
0, 1

2

]
f
(
(2− 2s)(1− t)

)
, s ∈

[ 1
2 , 1
]

is a homotopy H : f f−1 ∼ cx0 (the other homotopy is again simi-
lar). As with previous proofs, the verification of conditions (2.2) is
straightforward and continuity is a simple application of the glueing
lemma 2.1.1. ⋄

Definition 2.1.10. The group π1(X, x0) is called the fundamental
group of X based at x0.

Example 2.1.11. Let X be Rn and x0 ∈ X arbitrary. By Ex. 2.1.5,
any two loops based at x0 are homotopic. In particular, every loop
based at x0 is homotopic to the constant loop cx0 and therefore
π1(X, x0) = {[cx0 ]}, the trivial group.

Definition 2.1.12. A topological space X is called simply connected
if it is path connected and has trivial fundamental group.

Example 2.1.13. Rn is a simply connected space for all n ∈ N. In
particular, R is simply connected.
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Figure 2.4: R and helix H over S1

the fundamental group of the circle The next calculation
will serve as a first (yet informal) encounter with covering spaces.

Example 2.1.14. We are going to calculate the fundamental group
of the circle S1 ⊆ R2 based at x0 = (1, 0) (we will later see that the
choice of basepoint is actually irrelevant).

Consider the map

q : R→ S1 : x 7→
(

cos(2πx), sin(2πx)
)
∀x ∈ R.

To have a geometric image of this map (Fig. 2.4), we can factor it as
q = π ◦ h where

h : R→ H ⊆ R3 : t 7→
(

cos(2πt), sin(2πt), t
)

is the usual parametrization of the helix H and

π : R3 → S1 ⊆ R2 : (x, y, z) 7→ (x, y)

is the usual projection onto the first two coordinates.
This map has two crucial properties which will help us calculate

π1(S1, x0) (and whose proof will be given in the next section in a
much broader context).
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1. (Lifting of paths) For every path f : I → S1 and every x̃0 ∈ R
with q(x̃0) = x0, there is a unique path f̃ : I → R such that
q ◦ f̃ = f and f̃ (0) = x̃0. Such a path is called a lift of f .

Having established that liftings of paths exist and are unique, we
can define the degree of a loop. Let f be a loop in S1 based at x0.
Since

q−1(x0) = q−1(1, 0) = Z,

the lifting property guarantees that for every k ∈ Z there is a unique
lift of f whose initial point is k. In particular, there is a unique lift of
f that starts at 0 ∈ Z. We will denote this lift as f̃o. We define the
degree of the loop f to be ∂ f = f̃o(1), i.e. the terminal point of f̃o.
Note that

f (1) = x0
q f̃o= f
=⇒ q f̃o(1) = x0 =⇒ f̃o(1) ∈ q−1(x0) = Z,

hence ∂ f ∈ Z. From the uniqueness of f̃o, the degree of a loop is
well defined.

Our plan now is to extend this definition to homotopy classes of
loops. We can define a degree function as above,

∂ : π1(S1, x0)→ Z : [ f ] 7→ f̃o(1),

but this time we cannot say for sure that this map is well defined.
We must ensure that homotopic maps have the same degree. This
where the second property comes into play.

2. (Monodromy Theorem) If f , g : I → S1 are two homotopic paths
( f ∼ g) of S1 and f̃ , g̃ are two of their lifts in R with the same
initial point f̃ (0) = g̃(0), then f̃ (1) = g̃(1).

It is now obvious that ∂ is a well defined map. In fact we have
everything we need. This map is actually a group isomorphism!

∂ is 1-1. If ∂ f ̸= ∂g ⇐⇒ f̃o(1) ̸= g̃o(1) then f cannot be
homotopic to g. If it were, by the monodromy theorem we would
have f̃o(1) = g̃o(1).

∂ is onto. For every k ∈ Z, the loop

fk : I → R : t 7→
(

cos(2kπt), sin(2kπt)
)



2.1 the fundamental group 93

Figure 2.5: Lifting the loop that goes around the circle twice

has degree k. Indeed, it is immediate that f̃k : I → R : t 7→ kt is a lift
of fk whose initial point is 0 and so f̃k = ( f̃k)o. Therefore

∂ f = ( f̃k)o(1) = f̃k(1) = k.

∂ is a group homomorphism. We must show that

∂([ f ][g]) = ∂[ f ] + ∂[g].

Indeed, it is easily seen that

f̃ g =

{
f̃o(2s), s ∈ [0, 1

2 ]

f̃o(1) + g̃o(2s− 1), s ∈ [ 1
2 , 1]

is a lift of f g whose initial point is 0, so f̃ g = ( f̃ g)o. Therefore

∂([ f ][g]) = ∂[ f g] = ( f̃ g)o(1) = f̃ g(1) = f̃o(1) + g̃o(1) = ∂[ f ] + ∂[g]

and, as a result,
π(S1, x0) ≃ Z.
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the choice of basepoint Before we continue we must address
the elephant in the room.

Given a topological space X with |X| ⩾ 2 and two distinct
elements x ̸= y ∈ X, we can form the fundamental groups π1(X, x)
and π1(X, y). Is there any relation between these groups? Does it
matter which point do we choose? These are the questions we want
to answer.

Recall from General Topology that a space X is called path
connected if for every two points x, y ∈ X there is path γ : I → X
that connects them, i.e. γ(0) = x and γ(1) = y. A space X is called
connected if we cannot find two nonempty, disjoint, open subsets
of X whose union is X. Connectedness is a weaker condition that
path connectedness. Every path connected space is connected but the
converse does not hold; the most famous counterexample perhaps is
the topologist’s sine curve

clR2{x× sin(1/x) : 0 < x ⩽ 1}

which is connected but not path connected.

Proposition 2.1.15. Let X be a path connected space, x0, y0 ∈ X and
γ : I → X a path such that γ(0) = x0 and γ(1) = y0. Then, the map

ψ : π1(X, x0)→ π1(X, y0) : [ f ] 7→ [γ]−1[ f ][γ]

is a group isomorphism.

Figure 2.6: The basepoint is irrelevant in a path connected space
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Proof. ψ is a group homomorphism since

ψ([ f ][g]) = ψ([ f g]) = [γ]−1[ f g][γ] = [γ]−1[ f ][g][γ]

= [γ]−1[ f ][γ][γ]−1[g][γ] = ψ([ f ])ψ([g]).

It is straightforward that

ψ−1 : π1(X, y0)→ π1(X, x0) : [ f ] 7→ [γ][ f ][γ]−1

is also a homomorphism and a two sided inverse of ψ. Therefore ψ

is an isomorphism. ⋄

Counterexample 2.1.16. The hypothesis that X is path connected
is essential. Consider for example the space X = S1 ⊔ Y ⊆ R2

where Y = {(0, 0)}. For any x ∈ S1 we have π1(X, x) ≃ Z while
π1
(
X, (0, 0)

)
≃ {1}.

For spaces that are not path connected, the fundamental group
loses its power since, depending on the choice of the basepoint,
there can be more than one non isomorphic fundamental groups. It is
therefore natural in Algebraic Topology to restrict our attention to
path connected spaces only.

Convention. For the rest of the chapter we will restrict our attention
to path connected (hence connected) spaces only, whose funda-
mental group is unique up to isomorphism. All topological spaces
are therefore assumed to be path connected unless explicitly stated
otherwise.

the induced homomorphism Let us see now how we can study
continuous maps using fundamental groups.

Consider two topological spaces X, Y and a continuous mapping
between them h : X → Y. Suppose that x ∈ X and y ∈ Y are two
points such that h(x) = y. We use the notation

h : (X, x)→ (Y, y)

to denote such a situation. If f : I → X is an arbitrary path in X
then the composition

I
f→ X h→ Y
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is a path in Y since both h and f are continuous. In particular, if f is
a loop based at x then h ◦ f is a loop based at h(x) = y. Therefore,
the function h induces a map h∗ between the fundamental groups
π1(X, x) and π1(Y, y) defined as

h∗ : π1(X, x)→ π1(Y, y) : [ f ] 7→ [h ◦ f ]

Proposition 2.1.17. The induced map h∗ is a group homomorphism.

Proof. The map h∗ is well defined. Indeed, if [ f ] = [g] ∈ π1(X, x)
and F : f ∼ g is a homotopy, then hF is a homotopy hF : h f ∼ hg. It
is continuous since h and F are, and satisfies conditions (2.2) because
F does. Moreover,

h∗([ f ] · [g]) = h∗([ f · g]) = [h ◦ ( f · g)] = [h ◦ f · h ◦ g]

= [h ◦ f ] · [h ◦ g] = h∗([ f ]) · h∗([g])

so h∗ is a group homomorphism. ⋄

Two immediate yet crucial properties of the induced homomor-
phism are the following.

Lemma 2.1.18. If X is a topological space and x ∈ X then

(idX)∗ = idπ1(X,x).

Lemma 2.1.19. If h1 : (X, x) → (Y, y) and h2 : (Y, y) → (Z, z) are
continuous functions between spaces then

(h1 ◦ h2)∗ = h1∗ ◦ h2∗.

These two properties imply the next extremely important result.

Corollary 2.1.20. The fundamental group is a topological invariant, i.e.
homeomorphic spaces have isomorphic fundamental groups.

Proof. If h : (X, x) → (Y, y) is a homeomorphism, then there is a
homeomorphism h−1 : (Y, y) → (X, x) such that hh−1 = idY and
h−1h = idX. Using the above two properties on these relations we
get

h−1
∗ h∗ = idπ1(X,x) and h∗h−1

∗ = idπ1(Y,y).

So h∗ is a group homomorphism with inverse (h∗)−1 = (h−1)∗,
hence an isomorphism. ⋄
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Counterexample 2.1.21. The converse does not hold. For example,
both R and {r} (r ∈ R) have trivial fundamental groups, yet they
are certainly not homeomorphic (just compare their cardinalities).

2.2 covering spaces

covering spaces We now define the second of the two central
objects of our study, covering spaces. As with fundamental groups,
we will restrict our attention only to the absolute essentials for what
follows.

Definition 2.2.1. Let X be a topological space. A covering space (or
simply a covering) of X is a pair (X̃,p) consisting of a topological
space X̃ along with a continuous and surjective function p : X̃ → X
so that every x ∈ X has an open neighborhood Ux that is evenly
covered, that is, a neighborhood whose inverse image p−1(Ux)

can be written as a disjoint union of (open) subsets {Va}a∈A of X̃
each homeomorphic to Ux through p, i.e. p|Va : Va → Ux is a
homeomorphism for every a ∈ A.

We call X the base space and p the covering map. The sets Va

are called the sheets of Ux. When there is no danger of confusion,
we will denote a covering (X̃,p) simply as X̃.

Convention. As with all topological spaces so far, covering spaces are
also assumed to be path connected (hence connected). Thus we do
not have to worry when considering their fundamental group.

Before looking at some examples of coverings, lets see an impor-
tant property of covering maps.

Recall from General Topology that a local homeomorphism
between two spaces ϕ : X → Y is a map such that for every x ∈ X
there is an open neighborhood Vx of x so that ϕ(Vx) is open in Y and
ϕ|Vx : Vx → ϕ(Vx) is a homeomorphism. Every local homeomorphism is a
continuous and open map.

Lemma 2.2.2. Every covering map is a local homeomorphism.

Proof. If p : X̃ → X is a covering and x̃ ∈ X̃, then, by the definition
of a covering map, x = p(x̃) ∈ X has an open neighborhood Ux
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such that p−1(Ux) =
⊔

a∈A Va, where each Va is homeomorphic to
Ux through p. Choose a ∈ A such that x̃ ∈ Va. Then Va is an open
neighborhood of x̃, p(Va) is homeomorphic to Ux hence open in X,
and p|Va is a homeomorphism. ⋄

Example 2.2.3. If X is a topological space, (X, idX) is (trivially) a
covering space of X.

Example 2.2.4. If h : Y → X is a homeomorphism between topological
spaces, then (Y, h) is a covering of X.

Example 2.2.5. The set of real numbers R with the function

q : R→ S1 : t 7→
(

cos(2πt), sin(2πt)
)
∀t ∈ R

is a covering of S1.
Indeed, q is onto and continuous since cos and sin are. Further-

more, the sets

U1 = {(x, y) ∈ S1 : x > 0}
U2 = {(x, y) ∈ S1 : x < 0}
U3 = {(x, y) ∈ S1 : y > 0}
U4 = {(x, y) ∈ S1 : y < 0}

constitute an open cover of S1 such that

q−1(U1) =
∞⋃

n=−∞

(
n− 1

4
, n +

1
4

)
q−1(U2) =

∞⋃
n=−∞

(
n +

1
4

, n +
3
4

)
q−1(U3) =

∞⋃
n=−∞

(
n, n +

1
2

)
q−1(U4) =

∞⋃
n=−∞

(
n− 1

2
, n
)

.

In other words, for every t ∈ R there is an open neighborhood Ui (for
some i = 1, 2, 3, 4) such that t ∈ Ui and q−1(Ui) is a disjoint union
of open subsets of R. It is immediate that q|Ui is a homeomorphism
for every i = 1, 2, 3, 4.
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Example 2.2.6. An important class of coverings are obtained via
group actions. We say that a group G acts on a topological space X
if G acts on the set X and the action is compatible to the topology
of X in the sense that for each g ∈ G, the permutation ρg : X → X
of X induced by g is continuous. In that case, G acts on X via
homeomorphisms, i.e., the permutation representation of the action
is

ρ : G → Homeo(X) : g 7→ ρg.

Indeed, for any g ∈ G, we know from the general theory of group
actions that ρg is bijective and, by the definition of a group acting on
a topological space, continuous. The map ρg−1 is also bijective and
continuous and

ρg ◦ ρg−1 = ρg−1 ◦ ρg = idX.

Therefore ρg is a homeomorphism of X.
We say that the action is properly discontinuous if every x ∈ X

has an open neighborhood Vx such that g1Vx ∩ g2Vx = ∅ for every
g1 ̸= g2 ∈ G. In that case the stabilizer of every element is trivial
and therefore action is faithful.

Since G acts on the set X, the orbits of X are a partition of X into
disjoint sets. We denote by X/G the set of orbits of X under G. We
give X/G the quotient topology induced by the projection

π : X → X/G : x 7→ O(x)

where O(x) = {gx : g ∈ G} is the orbit of x ∈ X. In other words,
the topology of X/G is

τX/G = {V ⊆ X/G : π−1(V) ⊆ X open}.

If the action of G on X is properly discontinuous, then (X, π) is a cov-
ering of X/G. The map π is by definition surjective and continuous
since X/G was given the quotient topology. It is also open. Indeed,
for each open subset U of X, the set

π−1(π(U)
)
= {x ∈ X : π(x) ∈ π(U)}
= {x ∈ X : O(x) = O(y) for some y ∈ U}
= {x ∈ X : x = gy for some y ∈ U and g ∈ G}
=
⋃

g∈G

gU =
⋃

g∈G

ρg(U)
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is a union of open subsets of X (U is open and ρg a homeomorphism)
hence open in X. But X/G has the quotient topology so π(U) is
open in X/G.

It remains to show that every element in X/G has an open
neighborhood U whose inverse image π−1(U) is a disjoint union
of open subsets of X each homeomorphic to U. Take an orbit
in O ∈ X/G and some element x ∈ X which belongs in it, i.e.
O = O(x). Take the neighborhood Vx of x described in the definition
of a properly discontinuous action. Since π is open, U = π(Vx) is
open and it is the required open neighborhood of O(x) in X/G.
Indeed,

π−1(π(Vx)
)
=
⊔

g∈G

gVx

which is a union of open subsets of X that is disjoint because the
action is properly discontinuous. Furthermore, each gVx is homeo-
morphic to U = π(Vx) through the restriction

π|gVx : gVx → π(Vx).

Indeed, each π|gVx is continuous and open as the restriction of the
continuous function π in the open subset gVx of X; it is clearly
surjective and, since the action is properly discontinuous, injective
as well. So π|gVx is a homeomorphism.

The above examples suggest that a space X can have more than
one covering. So the natural question to ask is whether we find all
possible coverings of a topological space, up to isomorphism.

covering space isomorphisms But first things first. We must
define what we mean when we say that two covering spaces are
isomorphic.

Definition 2.2.7. Let (X̃1,p1) and (X̃2,p2) be two coverings of a
space X. A morphism from (X̃1,p1) to (X̃2,p2) is a continuous
map ϕ : X̃1 → X̃2 that makes the following diagram commute, i.e.
p2 ◦ ϕ = p1.
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X̃1 X̃2

X

ϕ

p1 p2

A morphism ϕ of covering spaces as above is called an isomorphism
if there is a morphism ψ : X̃2 → X̃1 such that ψϕ = idX̃1

and
ϕψ = idX̃2

.

X̃1 X̃2

X

ϕ

p1 p2

ψ

We write (X̃1,p1) ∼= (X̃2,p2) or simply X̃1
∼= X̃2 to indicate that the

two coverings are isomorphic. An isomorphism from a covering
space to itself is called a deck transformation or, more charmingly,
a Deckbewegung (in the German literature).

Example 2.2.8. Let X, Y be arbitrary but homeomorphic spaces and
h : Y → X a homeomorphism. The coverings (Y, h) and (X, idX) of
X are isomorphic. Indeed, if we take ϕ = h in the definition then
the diagram

Y X

X

ϕ=h

h idX

obviously commutes.

The following results are immediate.

Lemma 2.2.9. Covering space isomorphism is an equivalence relation.

Lemma 2.2.10. A morphism of covering spaces is an isomorphism if and
only if it is a homeomorphism.

Lemma 2.2.11. Suppose X is a topological space. The set of deck trans-
formations A(X̃,p) of a covering space (X̃,p) of X form a group under
composition.
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lifting properties We will now see that the two crucial prop-
erties we used to calculate the fundamental group of the circle (Ex.
2.1.14) are consequences of the fact that (R, q) is a covering of S1.

Definition 2.2.12. Let X, Y be two sets, (X̃,p) a covering of X and
F : Y → X a continuous function. A lift (or lifting) of F in X̃ is a
map

F̃ : Y → X̃

that makes the following diagram commute.

X̃

Y X

p

F

F̃

For the rest of this section fix X an arbitrary topological space,
x0 ∈ X and (X̃,p) an arbitrary covering of X.

We are primarily interest at two kinds of lifts at this point. Lifts
of paths (where Y = I) and lifts of homotopies (where Y = I × I).
Before proving the main results, let us recall a lemma from General
Topology that we are going to need.

Lemma 2.2.13 (Lebesgue’s1 Number Lemma). Suppose X is a compact
metric space and U is an open cover of X. Then there is some δ > 0 so that
every subset of X with diameter less than δ is contained in an element of U .

Proposition 2.2.14 (Lifting of Paths). For every path f : I → X and
every x̃0 ∈ X̃ with p(x̃0) = x0, there is a unique lift f̃ : I → X̃ of f such
that f̃ (0) = x̃0.

Proof. Let f : I → X be a path and x̃0 ∈ X̃ an element such that
p(x̃0) = x0. We are going to construct f̃ step by step. By definition
of the covering space, for every x ∈ X we can find an open subset
Ux of X such that x ∈ Ux and

p−1(Ux) =
⋃

a∈A

Va

1 Named after Henri Léon Lebesgue (1875–1941)
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where {Va}a∈A is a disjoint family of open subsets of X̃ so that
p|Va : Va → Ux is a homeomorphism for every a ∈ A. So {Ux : x ∈
X} is an open cover of X and consequently, since f is continuous,
{ f−1(Ux) : x ∈ X} is an open cover of I. But I is compact. From
Lebesgue’s Lemma, we can find a partition

0 = s0 < s1 < s2 < . . . < sk−1 < sk = 1

of I = [0, 1] such that

[si, si+1] ⊆ f−1(Ux) ⇐⇒ f ([si, si+1]) ⊆ Ux for some x ∈ X

for all i = 0, 1, . . . , k− 1. Now we can define f̃ on each [si, si+1]. We
define

f̃ (0) = x̃0

and if f̃ (si) ∈ Va for some a ∈ Ax for some x ∈ X, then

f̃ (s) = (p|Va)
−1( f (s)

)
∀s ∈ (si, si+1].

Since p|Va is a homeomorphism, f̃ is continuous on [si, si+1] for
every i = 0, 1, . . . , k − 1 hence, by the glueing lemma, continuous
on I. The fact that f̃ is a lift of f is immediate from the way we
constructed it.

It remains to show that f̃ is unique. Let f̃1, f̃2 be two lifts of f
starting at x̃0. We will show that f̃1(s) = f̃2(s) ∀s ∈ I. We have

f̃1(0) = x̃0 = f̃2(0)

and if f̃1(s) = f̃2(s) for every 0 ⩽ s ⩽ si then f̃1(s) = f̃2(s) for every
si ⩽ s ⩽ si+1. Indeed, if

f̃1(s) = (p|Va)
−1( f (s)

)
∀s ∈ (si, si+1]

and
f̃2(s) = (p|Vb)

−1( f (s)
)
∀s ∈ (si, si+1]

then a = b since both f̃1([si, si+1]) and f̃2([si, si+1]) are connected,
the family {Va}a∈Ax is disjoint and f̃1(si) = f̃2(si). ⋄

Proposition 2.2.15 (Lifting of Homotopies). For every homotopy F :
I2 → X with F(0, 0) = x0 and every x̃0 ∈ X̃ with p(x̃0) = x0, there is a
unique lift F̃ : I2 → X̃ such that F̃(0, 0) = x̃0.
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Proof. The proof is similar to that of the previous proposition. We
first define

F̃(0, 0) = x̃0.

By the previous proposition, we can extend F̃ on I×{0} and {0}× I.
Now, as before, we can extend F̃ on I2 by defining it step by step in
rectangles of the form [tj, tj+1]× [si, si+1]. Uniqueness is also proven
using similar arguments. ⋄

An immediate corollary is the second crucial property we used
in Ex. 2.1.14.

Corollary 2.2.16 (Monodromy Theorem). If f , g : I → X are two
homotopic paths (H : f ∼ g) of X and f̃ , g̃ are two of their lifts in X̃ such
that f̃ (0) = g̃(0) = x0, then f̃ (1) = g̃(1).

Proof. By the homotopy lifting property, there is a unique lift H̃ of
H such that H̃(0, 0) = x0. It is immediate that both f̃ and H̃(s, 0)
are lifts of f starting at x0 so

f̃ (s) = H̃(s, 0) ∀s ∈ I

by the path lifting property. Similarly

g̃(s) = H̃(s, 1) ∀s ∈ I.

Now H̃(1, t) is a lift of the constant path cH(1,t) starting at H̃(1, 0).
As a lift of a constant path, H̃(1, t) is itself constant, so

H̃(1, t) = H̃(1, 0) ∀t ∈ I.

Therefore, f̃ (1) = H̃(1, 0) = H̃(1, 1) = g̃(1). ⋄

2.3 galois theory of coverings

We have all the tools we need to state our next classification theorem
which concerns fundamental groups and covering spaces. As we
mentioned, a topological space can have more than one covering and
a natural question we can ask is whether there is a way to determine
all possible coverings of a given space. It turns out that for topo-
logical spaces that satisfy some nice (not too restrictive) conditions,
there is a way to find all possible coverings using subgroups of their
fundamental groups.
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the correspondence We must first establish a correspondence
between the coverings of a space and the subgroups of its funda-
mental group.

Let X be a topological space, x0 ∈ X and (X̃,p) a covering of X.
For every element x̃0 ∈ p−1(x0) we have a continuous function

p : (X̃, x̃0)→ (X, x0)

which induces a map

p∗ : π1(X̃, x̃0)→ π1(X, x0).

Proposition 2.3.1. The indunced map p∗ is a group monomorphism.

Proof. We have already seen that p∗ is a group homomorphism. It
remains to show that p∗ is 1-1.

If [ f̃ ], [g̃] ∈ π1(X̃, x̃0) such that

p∗[ f̃ ] = p∗[g̃] ⇐⇒ ∃H : p f̃ ∼ pg̃,

then, by the homotopy lifting property 2.2.15,

∃ H̃ : f̃ ∼ g̃ ⇐⇒ [ f̃ ] = [g̃].

Therefore p∗ is indeed 1-1. ⋄

Thus, for path connected spaces, we obtain a correspondence

{(path connected) coverings of X}⇄ {subgroups of π1(X, x0)}
X̃ 7→ π1(X̃, x̃0)

where x̃0 ∈ p−1(x0). This correspondence is not well defined though.
For a choice x̃0 ̸= x̃1 ∈ p−1(x0), p∗

(
π1(X̃, x̃0)

)
̸= p∗

(
π1(X̃, x̃1)

)
in

general.
Recall from Group Theory that two subgroups H0, H1 of a group

G are said to be conjugate if there is some element g ∈ G such that
g−1H0g = H1. We will see that the subgroups H0 = p∗

(
π1(X̃, x̃0)

)
and H1 = p∗

(
π1(X̃, x̃1)

)
of G = π1(X, x0) are conjugate.

X̃ is path connected. If γ̃ : I → X̃ is a path from x̃0 to x̃1,
i.e. γ̃(0) = x̃0 and γ̃(1) = x̃1, then p ◦ γ̃ : I → X is path from
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p(γ̃(0)) = p(x̃0) = x0 to p(γ̃(1)) = p(x̃1) = x0, that is, a loop in X
based at x0. Choose g = [p◦ γ̃] ∈ G = π1(X, x0).

It is immediate that g−1H0g ⊆ H1. Indeed, for any element
p∗[ f̃ ] ∈ H0 = p∗

(
π1(X̃, x̃0)

)
,

[p◦ γ̃]−1 ·p∗[ f̃ ] · [p◦ γ̃] = [(p◦ γ̃)−1] · [p◦ f̃ ] · [p◦ γ̃]

= [
(
p◦ (γ̃−1)

)
·
(
p◦ f̃

)
·
(
p◦ γ̃

)
]

= [p◦ (γ̃−1 · f̃ · γ̃)]
= p∗([γ̃

−1 · f̃ · γ̃]) ∈ H1 = p∗
(
π1(X̃, x̃1)

)
since γ̃−1 · f̃ · γ̃ is a loop based at x̃1.

Similarly, gH1g−1 ⊆ H0 which implies that H1 ⊆ g−1H0g. There-
fore g−1H0g = H1 and so the subgroups H0 and H1 of G are indeed
conjugate.

Moreover, if H = s−1H0s is a subgroup conjugate to H0 in G,
where s ∈ π1(X, x0), then, from the path lifting property, there is a
lift s̃ : I → X̃ of s with s̃(0) = x̃0. It is immediate from the discussion
above that

H = p∗
(

π1
(
X̃, s̃(1)

))
.

Thus, for path connected spaces, we have a well defined correspon-
dence

{coverings of X}⇄ {conjugacy classes of subgroups of π1(X, x0)}
X̃ 7→ π1(X̃, x̃0)

We set out to understand for which (path connected) topological
spaces the above correspondence is a bijection between the set of
all coverings of the given space and the set of all subgroups of its
fundamental group.

uniqueness First, we examine whether the correspondence is
injective.

If we want to decide whether two coverings of an arbitrary space
are isomorphic, we need to find continuous maps ϕ, ψ as described
in Definition 2.2.7. Since both X̃1 and X̃2 are coverings, the maps
ϕ and ψ can be considered as liftings of p1 and p2 respectively.
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X̃2 X̃1

X̃1 X X X̃2

p2 p1

p1

ϕ

p2

ψ

So far we have seen liftings of paths and homotopies but the
maps p1,p2 are neither paths nor homotopies. We want to find some
necessary and sufficient conditions for liftings of covering functions
to exist. The first step is to examine conditions under which liftings
of arbitrary maps exist.

Recall from General Topology that a space is called locally path
connected if for every y ∈ Y and every open neighborhood Ny of y,
there is a path connected open set Uy such that y ∈ Uy ⊆ Ny.

Proposition 2.3.2. Suppose X is a topological space, fix an element x0 ∈ X
and let p : (X̃, x̃0) → (X, x0) be a covering of X. Moreover, let Y be a
path connected and locally path connected topological space, y0 ∈ Y and
ψ : (Y, y0)→ (X, x0) a continuous map.

(X̃, x̃0)

(Y, y0) (X, x0)

p

ψ

ψ̃

A lift ψ̃ of ψ exists if and only if

ψ∗
(
π1(Y, y0)

)
⊆ p∗

(
π1(X̃, x̃0)

)
.

Furthermore, if such ψ̃ exists, it is unique.

Proof. (⇒) The one direction is simple and we only need 2.3.1. If
such lift exists, we obtain the following commutative diagram

π1(X̃, x̃0)

π1(Y, y0) π1(X, x0)

p∗
ψ̃∗

ψ∗
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which implies that

ψ∗
(
π1(Y, y0)

)
= p∗[ϕ̃∗

(
π1(Y, y0)

)
] ⊆ p∗

(
π1(X̃, x̃0)

)
.

(⇐) For the contrary, suppose that ψ∗
(
π1(Y, y0)

)
⊆ p∗

(
π1(X̃, x̃0)

)
.

Define
ψ̃ : (Y, y0)→ (X, x0)

as follows. For each y ∈ Y take a path fy : I → Y in Y that starts at
fy(0) = y0 and ends at fy(1) = y; such a path exists since Y is path
connected. Then

I
fy−→ Y

ψ−→ X

is a path in X that starts at ψ fy(0) = ψ(y0) = x0. From the path
lifting property, there is a unique lift

ψ̃ fy : I → X̃,

i.e. pψ̃ fy = ψ fy, that starts at ψ̃ fy(0) = x̃0. Define

ψ̃ : (Y, y0)→ (X, x0) : ψ̃(y) = ψ̃ fy(1).

First we must show that this map is well defined. Suppose that
α, β : I → Y are two homotopic paths, say H : α ∼ β that start at
α(0) = β(0) = y0 and end at α(1) = β(1) = y. Then ψH : ψα ∼ ψβ

and by the Modoromy Theorem, ψ̃α(1) = ψ̃β(1). So choosing a path
hotopic to fy does not affect ψ̃. Next let α, β : I → Y be two (not
necessarily homotopic) paths that start at α(0) = β(0) = y0 and end
at α(1) = β(1) = y. Then the product

αβ−1 : I → Y : αβ−1(s) =

{
α(2s), s ∈ [0, 1

2 ]

β−1(2s− 1) = β(2− 2s), s ∈ [ 1
2 , 1]

is a loop based at αβ−1(0) = αβ−1(1) = y0. By the hypothesis,

ψ∗(αβ−1) ∈ p∗
(
π1(X̃, x̃0)

)
.

In other words, there is an element of π1(X̃, x̃0) that is send to αβ−1

through p∗, i.e. a class of loops in X̃ based at x̃0 that are lifts of the
homotopy class of αβ−1. Since ψ∗ is a homomorphism,

ψ∗(αβ−1) = ψ∗(α)ψ∗(β)−1
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and the product of the lifts of ψ∗(α) and ψ∗(β)−1 is a lift of ψ∗(αβ−1),
i.e. a loop based at x̃0; therefore, the lifts of ψ∗(α) and ψ∗(β)−1 must
have the same endpoints and so must the lifts of ψ∗(α) and ψ∗(β).
In other words, the lifts ψ̃α and ψ̃β of ψα and ψβ respectively, have
the property

ψ̃α(0) = ψ̃β(0) and ψ̃α(1) = ψ̃β(1).

Therefore, ψ̃ is well define.
Obviously ψ̃ is a lift of ψ since

pψ̃(y) = pψ̃ fy(1)
pψ̃ fy=ψ fy

= ψ fy(1)
fy(1)=y
= ψ(y).

It remains to show that ψ̃ is continuous. Take some open set U ⊆
X̃ and some y ∈ ψ̃−1(U). In this case U is an open neighborhood of
ψ̃(y). We will show that ψ̃−1(U) ⊆ Y is open by showing that there
is an open neighborhood of y that is contained in ψ̃−1(U).

p is open so p(U) is an open neighborhood of p(ψ̃(y)) = ψ(y).
Consider the open neighborhood Uψ(y) of ψ(y) in the definition of a
covering space and take U′ = Uψ(y) ∩p(U).

Note that since Uψ(y) is evenly covered, so is U′ (if the sheets of
Uψ(y) are {Za} then the sheets of U′ are {Za ∩Uψ(y)}). Therefore, if
p−1(U′) =

⋃
a∈A Va then, since ψ̃(y) ∈ U′, there is some a ∈ A such

that ψ̃(y) ∈ Va. Take W = U ∩ Va. W is by its definition an open
neighborhood of ψ̃(y).

Using again the fact that p is open, p(W) ⊆ X is open and since
ψ is continuous, ψ−1(p(W)) is open in Y. Obviously y ∈ ψ−1(p(W))

since ψ(y) = p(ψ̃(y)) ∈ p(W). Note that p(W) ⊆ p(U) ⊆ p(U′)
and p(W) is therefore evenly covered since p(U′) is.

We now use the fact that Y is locally path connected. So there is
some path connected open set V ⊆ Y such that y ∈ V ⊆ ψ−1(p(W)).

Finally, we claim that ψ̃(V) ⊆ U. Clearly the element ψ̃(y) of
ψ̃(V) is in U. Let y′ ∈ V. Since V is path connected, there is a path
f : I → V from y to y′. By definition,

ψ̃(y′) = ψ̃ fy(1) = ψ̃ f (1)

where ψ̃ f is the unique lift of the path ψ f that starts at ψ̃(y). Now

f (I) ⊆ V ⇒ ψ f (I) ⊆ ψ(V) ⊆ p(W)⇒ ψ̃ f ∈ p−1(p(W)).
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But as we mentioned, p(W) is evenly covered, say p(W) =
⋃

j∈J Wj,
with the Wj’s being disjoint and for some k ∈ J, W = Wk. Since
ψ̃ f (0) = ψ̃(y) ∈ W, this implies that ψ̃ f (1) = ψ̃(y′) ∈ W ⊆ U.
Therefore ψ̃(V) ⊆ U, hence y ∈ V ⊆ ψ̃−1(U). So ψ̃ is indeed
continuous. ⋄

Note that Y was also assumed to be locally path connected.

Convention. From now on, all coverings are assumed to be locally
path connected as well.

Recall however that if f : X → Y is a local homeomorphism then
X is locally path connected if and only if f (X) is. Since covering maps
are surjective local homeomorphisms, restricting our attention to
locally path connected coverings means that we consider locally
path connected base spaces as well.

Therefore we assume that all topological spaces are locally path
connected.

Corollary 2.3.3. Suppose X is a topological space and fix some x0 ∈ X.
An isomorphism ϕ between two coverings p1 : (X̃1, x̃1) → (X, x0) and
p2 : (X̃2, x̃2)→ (X, x0) such that ϕ(x̃1) = x̃2 exists if and only if

p1∗
(
π1(X̃1, x̃1)

)
= p2∗

(
π1(X̃2, x̃2)

)
If such an isomorphism exists, it is unique.

Proof. Take (X̃, x̃0) = (X̃1, x̃1) and (Y, y0) = (X̃2, x̃2) in the previous
proposition to find liftings ϕ and ψ of p1 and p2 respectively. These
are the required isomorphisms. ⋄

The above criterion, however useful, is only concerned with the
existence of a specific isomorphism; the one which preserves the
given basepoints. What about the existence of an isomorphism in
general?

Corollary 2.3.4. Let X be a topological space and x0 ∈ X. Two coverings
(X̃1,p1) and (X̃2,p2) of X are isomorphic if, and only if, for any two
elements x̃1 ∈ X̃1 and x̃2 ∈ X̃2 such that p1(x̃1) = p2(x̃2) = x0, the sub-
groups p1∗

(
π1(X̃1, x̃1)

)
and p∗

(
π2(X̃2, x̃2)

)
of π1(X, x0) are conjugate.

Proof. Immediate from the above Corollary and the fact that chang-
ing the basepoint of a covering space amounts to going to a conjugate
subgroup of π1(X, x0). ⋄
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existence We now come to the existence part of the correspon-
dence. We want to examine if the correspondence is surjective; that
is, given a (path connected and locally path connected) space X,
some element x0 ∈ X and a conjugacy class of subgroups of π1(X, x0),
is there a (path connected and locally path connected) covering
(X̃,p) of X so that p∗

(
π1(X̃, x̃0)

)
belongs to the given conjugacy

class for some x̃0 ∈ p−1(x0)?

Example 2.3.5. The conjugacy class to which the whole group be-
longs is

{gπ1(X, x0)g−1 : g ∈ π1(X, x0)} = {π1(X, x0)}

This case is trivial; the required covering is (X, idX) or, more gener-
ally, (Y, h) where h : Y → X is a homeomorphism. This covering is
called the trivial covering of X. Note that from Corollary 2.3.4, the
trivial covering is unique up to isomorphism.

Example 2.3.6. The other extreme case, the conjugacy class of the
trivial subgroup,

{g{1}g−1 : g ∈ π1(X, x0)} = {1},

is not only non-trivial but, as we shall see, it is fundamental to our
study. In this case we search for a covering of X whose fundamental
group is trivial. Since we have limited ourselves to path connected
spaces, we search for a simply connected covering of X.

Definition 2.3.7. A simply connected covering of a space X is called a
universal cover.

Example 2.3.8. (R, q) is a universal cover of S1.

An immediate consequence of Corollary 2.3.4 is that

Proposition 2.3.9. If the universal cover of a space exists, it is unique up
to covering space isomorphism.

The reason it is called universal cover is justified by the following
results.

Proposition 2.3.10. If (X̃1,p1) and (X̃2,p2) are two locally path con-
nected coverings of a space X and ϕ : X̃1 → X̃2 is a morphism of covering
spaces, then (X̃1, ϕ) is a covering of X̃2.
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Corollary 2.3.11. If (Y, q) is a universal cover of X and (X̃,p) is any
other covering then there is a morphism of covering spaces ϕ : Y → X̃ and
(Y, ϕ) is a covering of X̃.

Since the above results are of no immediate interest to us, we
refer the reader to the bibliography. The important thing to note is
that the universal cover covers every other covering, hence its name.

We will see that if X has a universal cover, we can use it to
construct coverings whose fundamental groups belong to any given
conjugacy class of subgroups of π1(X, x0). Thus the first step is to
determine which spaces have a universal cover.

Definition 2.3.12. A topological space X is called semilocally simply
connected if for every x ∈ X we can find an open neighborhood
Ux of x so that every loop in Ux is homotopic to a constant loop
or, equivalently, if the inclusion i : Ux → X induces the trivial
homomorphism i∗ : π1(Ux, x)→ π1(X, x).

Proposition 2.3.13. Suppose X is a path connected, locally path connected
space. Then X has a universal cover if and only if it is semilocally simply
connected.

Proof. (⇒) The one direction if fairly simple. If (Y, q) is a universal
cover of X and x ∈ X, then the neighborhood Ux of x described in
the definition of a covering space is the required neighborhood in
the definition of a semilocally simply connected space.

(⇐) For the contrary, fix some x0 ∈ X. Define

Y = {[ f ] : f is a path in X starting at x0},

that is, Y is the set of all homotopy classes of paths strarting at
x0 ∈ X, and

q : Y → X : [ f ] 7→ q([ f ]) = f (1),

i.e., q sends each homotopy class of paths starting at x0 to the
common terminal point. Observe that q is surjective since X is path
connected.

Let us define a topology on Y. Since X is locally path connected
and semilocally simply connected, we can find a basis

B = {Ui : i ∈ I}
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for the topology of X consisting of path connected sets such that
i∗ : π1(Ui, x) → π1(X, x) is trivial. For every [ f ] ∈ Y and every
U ∈ B with f (1) ∈ U, define

U f = {[g] ∈ Y : [g] = [ f ][γ] for some path γ : I → U : γ(0) = f (1)}.

The elements of U f are paths that first traverse f or some homotopic
path of f , and then some path in U which starts at f (1). The set

B′ = {U f : [ f ] ∈ Y, U ∈ B : f (1) ∈ U}

is a basis for a topology on Y. Indeed, for any two U f , Vg and any
h ∈ U f ∩ Vg, h(1) ∈ U ∩ V. Find a basic open set W ∈ B with the
property h(1) ∈W ⊆ U ∩V. Then Wh ⊆ U f ∩Vg.

Before continuing, lets establish two important properties of
the map q. First of all, for every [ f ] ∈ Y and every U ∈ B with
f (1) ∈ U, the restriction

q|U f : U f → U

is bijective. If [g], [h] ∈ U f such that q|U f ([g]) = q|U f ([h]) then
[g] = [h]. Indeed,

[g], [h] ∈ U f =⇒ [g] = [ f ][ f1] and [h] = [ f ][ f2]

for some f1, f2 : I → U with f1(0) = f2(0) = f (1). So if

q|U f ([g]) = q|U f ([h]) =⇒ g(1) = h(1) =⇒ f1(1) = f2(1)

in which case we have two paths f1, f2 : I → U with the same ends.
Given that i∗ : π1(Ui, x)→ π1(X, x) is trivial, [ f1] = [ f2] so [g] = [h]
and q|U f is injective. Moreover, every U is path connected, so for
every x ∈ U, there is a path f3 : I → U from x to f (1) ∈ U. Then
the image of [g] = [ f ][ f3] ∈ U f through q|U f is x and therefore q|U f

is surjective.
Secondly, it is clear that if U ∈ B and x ∈ U then

q−1(U) =
⋃

λ∈Λ

U fλ
(2.4)

where the union is taken over all path classes [ fλ] in X from x0 to x.
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Given these results, we can show that q is a local homeomor-
phism. Take some [ f ] ∈ Y and the open neighborhood U f of [ f ]
for some U ∈ B with f (1) ∈ U. Now q|U f is bijective, therefore
q(U f ) = q|U f (U f ) = U is open in X. It remains to show that q|U f

is a homeomorphism. We showed that is bijective. From (2.4) q is
continuous, hence so is the restriction q|U f . Lastly, any open subset
V of U f is also open in Y since U f is open in Y; so it can be written
as a union of sets Vg ∈ B′ with Vg ⊆ U f . Therefore, using the fact
that q|U f is injective,

q|U f (V) = q|U f

(⋃
g

Vg

)
=
⋃
g
q|U f (Vg) =

⋃
g
q|Vg(Vg) =

⋃
g

V

which is open in X. To summarize, q|U f is bijective, continuous and
open, hence a homeomorphism. The choice of [ f ] ∈ Y was arbitrary,
therefore q is a local homeomorphism.

We now show that Y is connected. In particular we will show
that there is a path from [cx0 ] ∈ Y to any [ f ] ∈ Y. Let [ f ] ∈ Y. For
every s ∈ I define

fs : I → Y : fs(t) = f (st).

It is immediate that f0 = cx0 and f1 = f . The required path is then

F : I → Y : s 7→ [ fs]

which starts at F(0) = [ f0] = [cx0 ] and ends at F(1) = [ f1] = [ f ]. We
only need to show that F is continuous, that is, for every s ∈ I and
every open basic neighborhood U fs of fs there is an open interval J1

open in I such that s ∈ J1 ⊆ I and F(J1) ⊆ U fs . Take any s ∈ I and
any open basic neighborhood U fs of fs. In particular U is a basic
open neighborhood of fs(1). Since fs is a path, hence continuous,
and U is an open neighborhood of fs(1), there is an interval J2 open
in I such that 1 ∈ J2 ⊆ I and fs(J2) ⊆ U. This interval is also the
required interval J1.

Finally, it remains to show that Y is simply connected, that is
π1(Y, [cx0 ]) is the trivial subgroup. Through the induced monomor-
phism

q∗ : π1(Y, [cx0 ])→ π1(X, x0),
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π1(Y, x̃0) is isomorphic to q∗
(
π1(Y, [cx0 ])

)
which is the stabilizer

of [cx0 ] for the action of π1(X, x0) on q−1(x0). Let’s compute this
stabilizer. Suppose [ f ] ∈ π1(X, x0) such that

[ f ][cx0 ] = F̃(1) = [cx0 ]

where F̃ is a path in Y starting at [cx0 ] and ending at [cx0 ]. So F̃ is
the constant path which is the lift of the constant path cx0 in X. ⋄

The above proposition suggests one last restriction we must
impose if we want to have a bijective correspondence; that is, we
must require spaces to be semilocally simply connected.

Proposition 2.3.14. Let X be a topological space which is path connected,
locally path connected and semilocally simply connected and x0 ∈ X. Then
for any conjugacy class of subgroups of π1(X, x0) there exists a covering
of X whose fundamental group belongs to the given class.

Proof. Suppose (Y, q) is the universal cover of X; since the universal
cover is unique up to isomorphism, we can take Y to be the space
constructed in the previous proposition. Take any conjugacy class of
π1(X, x0) and a subgroup H ⩽ π1(X, x0) that belongs to the given
class.

Define a relation ∼⊆ Y×Y as

[ f ] ∼ [g] ⇐⇒ f (1) = g(1) and [ f ][g]−1 ∈ H.

The fact that H is a subgroup implies that ∼ is an equivalence
relation. Indeed, [ f ] ∼ [ f ] since f (1) = f (1) and [ f ][ f ]−1 = [ f f−1] =

[cx0 ] ∈ H so ∼ is reflexive. Additionally, if [ f ] ∼ [g] then f (1) = g(1)
and [ f ][g]−1 ∈ H. Since H is a subgroup, [g][ f ]−1 = ([ f ][g]−1)−1 ∈
H as well so [g] ∼ [ f ]. Finally, given that [ f ] ∼ [g] and [g] ∼ [h]
we have f (1) = g(1) = h(1) and [ f ][h]−1 = [ f ][g]−1[g][h]−1 ∈ H
because both [ f ][g]−1 and [g][h]−1 belong in H and H is a subgroup
of π1(X, x0).

Take the quotient space YH = Y/ ∼ endowed with the quoetient
topology induced by the projection π : Y → Y/ ∼, whose elements
we shall write as [[ f ]], and the map pH induced by q, i.e.

pH : YH → X : [[ f ]] 7→ f (1).



116 the classification of covering spaces

Y YH = Y/ ∼

X
q=pH◦π

π

pH

We will show that (YH,pH) is a covering of X and that

pH∗
(
π1(YH, y0)

)
= H

for some y0 ∈ Y.
First of all, the fact that (YH,pH) is a covering of X is immediate

since (Y, q) is a covering of X and q = pHπ. Since q is a continuous
surjective map and q = pHπ, pH is also continuous and surjective.
Following the proof of the previous proposition, we can show that
every x ∈ X has an evenly covered neighborhood Ux through pH.
The only thing to note is that [[ f ]] = [[g]] if and only if [[ f γ]] = [[gγ]]

for some path γ : I → Ux starting at f (1) = g(1). This immediate
from the fact that [ f ][g]−1 = [ f ][γ][γ]−1[g]−1.

Lastly, pH∗
(
π1(YH, y0)

)
= H. Indeed, take y0 = [[cx0 ]] ∈ YH and

obsverve that [ f ] ∈ pH∗
(
π1(YH, y0)

)
if and only if [ f ] = [pH ◦ f̃ ] for

some [ f̃ ] ∈ π1(YH, y0). By definition, f̃ is a lift of f in YH that starts
at y0 = [[cx0 ]] and ends at [[ f ]] since [pH ◦ f̃ ] = [ f ]. So the image
of f̃ is f , a loop in X, if and only if [[ f ]] = [[cx0 ]] if and only if, by
definition, [ f ][cx0 ]

−1 = [ f ] ∈ H. ⋄

We have arrived at the next classification theorem.

Theorem 2.3.15 (Classification of Covering Spaces; part 1). If X is
path connected, locally path connected and semilocally simply connected
topological space and x0 ∈ X, then there is a bijective correspondence

path connected,
locally path connected
covering spaces of X

⇄
{

conjugacy classes of
subgroups of π1(X, x0)

}
X̃ 7→ π1(X̃, x̃0)

between path connected and locally path connected coverings of X and
conjugacy classes of subgroups of π1(X, x0).

Proof. Immediate from Corollary 2.3.4 and Proposition 2.3.14. ⋄
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Observe the similarity of this theorem to Theorem 1.5.9. We can
also prove an analogue of Theorem 1.5.10.

Definition 2.3.16. A covering space (X̃,p) of X is called a Galois
cover if for every x0 ∈ X and every x̃1, x̃2 ∈ p−1(x0) there is some
σ ∈ A(X̃,p) such that σ(x̃1) = x̃2.

The name “Galois cover” comes from the similarity of the notions
discussed to the notions of Galois Theory.

Recall from Group Theory that given a group G and a subgroup
H ⩽ G, the normalizer of H in G is

N(H) = {g ∈ G : g−1Hg = H}.

Theorem 2.3.17 (Classification of Covering Spaces; part 2). Suppose X
is a path connected, locally path connected and semilocally simply connected
space and p : (X̃, x̃0)→ (X, x0) a path connected, locally path connected
covering of X. Set H = p∗

(
π1(X̃, x̃0)

)
. Then

i) The covering is Galois if and only if H is normal in G = π1(X, x0).

ii) A(X̃,p) is isomorphic to N(H)/H, where N(H) is the normalizer
of H in G.

iii) If (X̃,p) is Galois then A(X̃,p) is isomorphic to G/H. In particular,
A(Y, q) is isomorphic to G; here (Y, q) is the universal cover of X.

Proof. i) By the definition of the correspondence, the conjugacy
class of H is exactly {p∗

(
π1(X̃, x̃)

)
: x̃ ∈ p−1(x0)}. Therefore

H ◁ G if and only if the above set is the singleton {H} if
and only if p∗

(
π1(X̃, x̃1)

)
= p∗

(
π1(X̃, x̃2)

)
for every x̃1, x̃2 ∈

p−1(x0) if and only if, by Proposition 2.3.2, there is some σ ∈
A(X̃,p) such that σ(x̃1) = x̃2 for every x̃1, x̃2 ∈ p−1(x0) which
is the definition of the covering space being Galois.

ii) Define
ϑ : N(H)→ A(X̃,p)

as follows. For each [g] ∈ N(H), take a lift g̃ of g starting at
x̃0 and set x̃1 = g̃(1). Since g̃ is a lift of g, x̃0, x̃1 ∈ p−1(x0) and
therefore

p∗
(
π1(X̃, x̃1)

)
= [g]−1H[g]

[g]∈N(H)
= H.
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From Proposition 2.3.2, there is some σg ∈ A(X̃,p) with σg(x̃0) =

x̃1. Set ϑ([g]) = σg. Obviously ϑ is well defined since the choice
of x̃1 depends only on the homotopy class [g].

ϑ is a group homomorphism. Suppose [g], [ f ] ∈ N(H) and g̃, f̃
are the lifts of g and f respectively starting at x̃0. Take their
images σg, σf ∈ A(X̃,p). Since g̃(1) = x̃1 = σg(x̃0) = σg f̃ (0),
we can define the path g̃ · (σg ◦ f̃ ) which is a lift of g · f . Indeed,

p(g̃ · (σg ◦ f̃ )) = p f̃ ·p(σg ◦ f̃ )
p◦σg=p
= g ·p f̃ = g · f .

I X̃ X̃

X

f̃ σg

p p

The endpoint of the lift g̃ · (σg ◦ f̃ ) of g f is

g̃ · (σg ◦ f̃ )(1) = σg ◦ f̃ (1) = σgσf (x̃0) = σg f (x̃0).

Therefore σg f = σgσf and ϑ is actually a homomorphism.

ϑ is onto. Let σ ∈ A(X̃,p) with σ(x̃0) = x̃1. Take a path
g̃ : I → X̃ from x̃0 to x̃1. The composite p ◦ g̃ is a loop in X
based at x0 since pg̃(0) = p(x̃0) = x0 = p(x̃1) = pg̃(1). We
will show that [g] ∈ N(H), in which case ϑ([g]) = σ according
to the definition of ϑ. Since σ(x̃0) = x̃1 and g̃ is a lift of g = p◦ g̃
from x̃0 to x̃1, we have

p∗
(
π1(X̃, x̃1)

)
= H and p∗

(
π1(X̃, x̃1)

)
= [g]−1H[g].

Therefore [g]−1H[g] = H and [g] ∈ N(H) as desired.

Lastly, we will compute the kernel of ϑ. We have

[g] ∈ ker ϑ⇔ σg = idX̃ ⇔ g̃(0) = g̃(1)⇔ x̃0 = x̃1

⇔ the lift g̃ of g is a loop based at x̃0

⇔ [g] ∈ Imp∗ = H.

Therefore ker ϑ = H and the assertion follows from the First
Isomorphism Theorem.
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iii) Immediate from the above and the fact that the universal cover
corresponds to the trivial subgroup.

⋄





Part II

T H E U N I F Y I N G C O N T E X T:
G R OT H E N D I E C K ’ S G A LO I S T H E O R Y

The similarity of the classification theorems of Galois
Theory and Algebraic Topology indicate some sort of
connection between them. Indeed, there is a deeper
bond between them and it was Alexander Grothendieck
(1928–2014) who understood and formulated it in his
Séminaire de Géométrie Algébrique (SGA1, [12]). Grothendi-
eck, inspired by the classification of covering spaces,
established a similar classification theorem for schemes
from which he deduced the classification theorems we
have seen so far as special cases! His theory, known as
Galois Theory for Schemes or Grothendieck’s Galois Theory,
provides a context within Algebraic Geometry in which
Galois Theory and Algebraic Topology can be studied.



The introduction of the cipher 0
or the group concept was general
nonsense too, and mathematics was
more or less stagnating for thou-
sands of years because nobody was
around to take such childish steps.

Alexander Grothendieck.



3 G R OT H E N D I E C K ’ S G A LO I S
T H E O R Y

H
aving seen that the classification theorems of Galois The-
ory and Algebraic Topology are remarkably similar, our
next step is to formulate the context in which the can be

unified, that is, Grothendieck’s Galois Theory. We are particulary
interested in how classical Galois Theory can be studied through
Grothendieck’s approach.

We begin by first establishing the relevant notions from Category
Theory. We then proceed to look at Galois Theory is seen from
Grothendieck’s perspective. Lastly, following a short discussion on
schemes and other relevent notions from Algebraic Geometry, we
state the main theorem of Grothendieck’s Galois Theory in its full
generality and see how it is related to Galois Theory as well. Unfor-
tunately our study ends there. The interested reader who wishes
to see a proof of this deep theorem and its relation to Algebraic
Topology can consult the bibliography.

This chapter’s exposition is of course faster and more advanced
than the previous. Although we will state the relevant definitions
and results from Category Theory and Algebraic Geometry we are
going to need, we assume the reader has a good understanding of
both principles.

3.1 category theory essentials

categories Category Theory was introduced by Samuel Eilen-
berg (1913–1998) and Saunders MacLane (1909–2005) in their paper
“General theory of natural equivalences” [11] for their foundational
work on Algebraic Topology and Homological Algebra. Since then,
Category Theory has evolved far beyond the context in which it was
initially intended to be used. Our study of Category Theory is of

123
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course much more limited. In this section we introduce only some of
the fundamental notions of Category Theory we are going to need
and see how they relate to our work so far.

Definition 3.1.1. A category C consists of

• A collection obj(C) whose elements are called objects. We shall
use the letters A, B, C, . . . to denote objects. We write A ∈ C
instead of A ∈ obj(C) to indicate that A is an object in C.

• A collectionMC which is a union of the form

MC =
⋃

A,B∈C
MorC(A, B)

where for every A, B ∈ C, MorC(A, B) is a collection whose
elements are called morphisms from A to B. We shall use the
letters f , g, h, . . . to denote morphisms. We write f : A→ B or

A
f→ B to indicate that f ∈ MorC(A, B). The object A is called

the domain of f and the object B the codomain of f .

• For every A, B, C ∈ C, a law of composition

◦ : MorC(A, B)×MorC(B, C)→ MorC(A, C)

( f , g) 7→ g ◦ f ≡ g f

So that

i) The compositions are associative; that is, for every set of objects
and every set of arrows between them

A
f→ B

g→ C h→ D,

we have that h(g f ) = (hg) f .

ii) For every object A ∈ C, there is a morphism 1A ∈ MorC(A, A),
called the identity morphism on A, such that

1A f = f and g1A = g

for every morphism f whose codomain is A and every morphism
g whose domain is A.



3.1 category theory essentials 125

Definition 3.1.2. Let C,D be two categories. We say that D is a
subcategory of C if

i) The objects of D are objects of C, i.e. obj(D) ⊆ obj(C).

ii) For every two objects A, B ∈ D, MorD(A, B) ⊆ MorC(A, B) and
the identity mapping of A in D is the identity mapping of A in
C.

iii) Composition in D is the composition in C.

This abstract definition becomes clear with the first examples
of categories which reveal that categories come up in every area of
Mathematics.

Example 3.1.3. The most famous example is the category Set of sets
whose objects are sets and morphisms are the function between sets.

Familiar examples from Algebra include the category Grp of
groups whose elements are groups and morphisms are group ho-
momorphisms, the category Ab of abelian groups whose objects are
abelian groups and morphisms are group homomorphisms, the
category Rng of rings whose objects are rings and morphisms are
ring homomorphisms, the category Veck of vector spaces over a field k
whose objects are vector spaces over k and morphisms are k-linear
maps between them and the category RMod (resp. ModR) of left
(resp. right) modules over a ring R whose objects are left (resp. right)
R-modules and morphisms are R-linear maps between them.

Familiar examples fom Analysis include the category Top of topo-
logical spaces whose objects are topological spaces and morphisms are
the continuous maps, the category of measurable spaces whose objects
are measurable spaces and morphisms are measurable functions
between them and the category of metric spaces whose objects are
metric spaces and morphisms are distant preserving functions.

An example from Geometry is the category of smooth manifolds
whose objects are smooth manifolds and morphisms are C∞ maps.

Example 3.1.4. The category of fields whose objects are fields and
non-zero morphisms are the field extensions.
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Example 3.1.5. Suppose k is a field. A k-algebra A is a ring that
is also a k-vector space and the ring structure and vector space
structure are compatible in the sense that

r(ab) = (ra)b = a(rb) ∀r ∈ k, ∀a, b ∈ A.

A map f : A → B between two k-algebras is called an k-algebra
homomorphism if it is an k-linear ring homomorphism. The dimen-
sion of a k-algebra is just its dimension as a k-vector space.

For example, every field extension of k can be viewed as a k-
algebra; the compatibility condition is just a combination of commu-
tativity and associativity of multiplication.

We can then form the category of k-algebras whose objects are
k-algebras and morphisms are k-algebra homomorphisms.

Of particular interest will be the subcategory Sepk of separable
field extensions of k (which can also be viewed as k-algebras).

Example 3.1.6. The category Top∗ of pointed topological spaces whose
objects are pairs of the form (X, x) where X is a topological space
and x ∈ X and morphisms are the continuous maps that preserve
the basepoint, i.e. f : (X, x)→ (Y, y).

Example 3.1.7. Let G be a group. Recall that a G-set is a set X
equipped with a (left) G-action and a function f : X → Y between
two G-sets is called a G-map if f (gx) = g f (x) for all g ∈ G and
x ∈ X. We can then form the category of G-sets whose objects are
G-sets and morphisms are G-maps.

Example 3.1.8. Let G be a topological group and X a G-set that is also
a topological space. We say that the action of G on X is continuous
if the map G × X → X is continuous. We can form the category
G-set of sets equipped with a continuous G-action. The morphisms
in this category are the continuous G-maps.

For our study, of particular interest is the subcategory G-set f
of finite sets equipped with a continuous G-action and continuous
G-maps among them as well as the subcategory G-sett

f of finite sets
equipped with a continuous and transitive G-action and continuous
G-maps among them.
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The above categories are more or less familiar and we can surely
think many more examples of categories whose objects are mathe-
matical structures and morphisms are structure preserving maps.
But the concept of a category is much more general.

Example 3.1.9. If (X,⩽) is a partially ordered set, then X can be con-
sidered as a category. The objects of this category are the elements
x ∈ X and for every x, y ∈ X the morphisms from x to y are

Mor(x, y) =

{
{(x, y)}, if x ⩽ y

∅, otherwise.

Example 3.1.10. Suppose k ⩽ E is a Galois extension. The lattice of
all subextensions of k ⩽ E is a partially ordered set with

L1 ⩽ L2 ⇐⇒ L1 ⊆ L2 ∀ k ⩽ L1, L2 ⩽ E

hence a category. When L1 ⩽ L2, the morphism L1
(L1,L2)→ L2 can be

considered to be the inclusion map. We shall denote this category
by L.

Example 3.1.11. Suppose again that k ⩽ E is a Galois extension.
Similarly to the previous example, the lattice of all closed1 subgroups
of Gal(E/F) can be viewed as a category. We shall denote this
category by H.

Example 3.1.12. Let (X, τX) be a topological space. The lattice of
open subsets of X partially ordered by inclusion is a category.

Definition 3.1.13. Two objects A, B in a category C are called iso-
morphic if there are morphisms f : A→ B and g : B→ A such that
g f = 1A and f g = 1B.

functors The philoshophy of Category Theory is, roughly speak-
ing, that maps are more important than structures. It is therefore
natural to consider maps between categories.

Definition 3.1.14. Suppose C,D are two categories. A (covariant)
functor F : C → D consists of

1 Of course we could have considered all subgroups of Gal(E/k) but for our purposes,
we restrict ourselves to closed subgroups.
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• A map F : obj(C)→ obj(D) that sends objects A of D to objects
F(A) of D.

• A map F : MC → MD that sends for every A, B ∈ C, every
morphism f : A→ B to a morphism F( f ) : F(A)→ F(B).

So that

i) For every composable pair f , g of morphisms in C,

F(g ◦ f ) = F(g) ◦ F( f ).

ii) For every object A ∈ C,

F(1A) = 1F(A).

The above definition says that (covariant) functors preserve the
structure of a category, i.e. they preserve objects, the way the objects
are related (morphisms), the composition and identity morphisms.
But there is another kind of map between categories that also pre-
serves these. Only this time, the relation among the objects of C (the
morphisms) are preserved in a “different” way.

Definition 3.1.15. Suppose C,D are two categories. A contravariant
functor F : C → D consists of

• A map F : obj(C)→ obj(D) that sends objects A of D to objects
F(A) of D.

• A map F : MC → MD that sends for every A, B ∈ C, every
morphism f : A→ B to a morphism F( f ) : F(B)→ F(A).

So that

i) For every composable pair f , g of morphisms in C,

F(g ◦ f ) = F( f ) ◦ F(g).

ii) For every object A ∈ C,

F(1A) = 1F(A).
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Let us see some examples of functors we encountered so far.

Example 3.1.16. Let F ⩽ E be a Galois extension and Gal(E/F) its
Galois group. The map

Gal(E/•) : L→ H

is contravariant functor; it reverses the inclusions which are the
morphisms in each category. Similarly,

FixE(•) : H→ L

is also a contravariant functor.

Example 3.1.17. Consider the category Toppath,∗ of path connected,
pointed topological spaces and the category Grp of groups. The
map

π1 : Toppath,∗ → Grp

that sends each path connected, pointed topological space (X, x0) to
its fundamental group π1(X, x0) and each continuous function

f : (X, x0)→ (Y, y0)

to the induced group homomorphism

π1( f ) = f∗ : π1(X, x0)→ π1(Y, y0)

is a covariant functor.

equivalent categories The most crucial notion we want to
define is when two categories are considered the same from the
categorical point of view.

Definition 3.1.18. A functor F : C → D is essentially surjective if
for every object B of D there is an object A of C such that F(A) ≃ B.

The above definition is self evident. An essentially surjective
funtor is... essentially surjective! Since category theory does not
distinguish among isomorphic objects, essential surjecivity is exactly
the notion we need; it implies that the functor maps the classes of
isomorphic objects in C onto the classes of isomorphic objects in D.
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Definition 3.1.19. A (covariant) functor F : C → D is called fully
faithful if for every A1, A2 ∈ C, F : Mor(A, B) → Mor(F(A), F(B))
is bijective. We can similarly define the notion of a fully faithful
contravariant functor.

Definition 3.1.20. Two categories C,D are called equivalent (resp.
antiequivalent) if there is a fully faithful, essentially surjective co-
variant (resp. contravariant) functor F : C → D.

Example 3.1.21. The category of subextensions of a Galois extension
k ⩽ E is antiequivalent to the category of subgroups of Gal(E/k),
when both categories are viewed as posets.

Example 3.1.22. The category of path connected, locally path con-
nected coverings of a path connected, locally path connected ans
semilocally simply connected topological space X is antiequivalent
to the category of subgroups of its fundamental group π1(X, x0).

direct limits Another important notion from Category Theory
which we will need when studying schemes is that of a direct limit.

Remark 3.1.23. Those with background in Category Theory will
notice that what we called an inverse limit is what in Category
Theory is usually called a limit and the direct limits we will now
discuss are usually called colimits. The discussion that follows about
the existence and uniqueness of direct limits ensures the existence
and uniqueness of inverse limits by invoking the Duality Principle.

Definition 3.1.24. Let C be a category and (Λ,⩽) an ordered set.
An inductive system in C (indexed by Λ) is a covariant functor
A : Λ → C. Equivalently, an inductive system is a family (Aλ)λ∈Λ

of objects in C together with a family ϕλ1
λ2

: Aλ1 → Aλ2 ∀ λ1 ⩽ λ2, of
morphisms that satisfy the following conditions.

i) ϕλ
λ = idAλ

∀ λ ∈ Λ, and

ii) ϕλ2
λ3
◦ ϕλ1

λ2
= ϕλ1

λ3
∀ λ1 ⩽ λ2 ⩽ λ3.
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Aλ1 Aλ2

Aλ3

ϕ
λ1
λ2

ϕ
λ1
λ3

ϕ
λ2
λ3

We shall write (Aλ, ϕλ1
λ2
) for an inductive system as above, omitting

the indexes when there is no danger of confusion.

Definition 3.1.25. Suppose (Aλ, ϕλ1
λ2
) is an inductive system in C.

The direct limit of the system is a pair (A, (ϕλ)λ∈Λ) where A ∈ C
and ϕλ ∈ MorC(Aλ, A), ∀ λ ∈ Λ, if the following conditions hold.

i) ϕλ2 ◦ ϕλ1
λ2

= ϕλ1 , ∀ λ1 ⩽ λ2

Aλ1 Aλ2

A

ϕ
λ1
λ2

ϕλ1
ϕλ2

ii) For every pair (B, ψλ), where B ∈ C and ψλ ∈ MorC(Aλ, B),
∀ λ ∈ Λ, such that ψλ2 ◦ ϕλ1

λ2
= ψλ1 , ∀ λ1 ⩽ λ2, there is unique

h ∈ MorC(A, B):

h ◦ ϕλ = ψλ, ∀ λ ∈ Λ

Aλ1 Aλ2

A

B

ϕ
λ1
λ2

ϕλ1

ψλ1

ϕλ2

ψλ2h

We shall use the shorter notation (A, ϕλ) for a direct limit.

Proposition 3.1.26. If the inductive system (Aλ, ϕλ1
λ2
) in C has direct

limit (A, ϕλ), then this is uniquely determined up to isomorphism.
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Proof. Suppose (A, (ϕλ)λ∈Λ) and (B, (ψλ)λ∈Λ) are two direct limits.
Because (A, ϕλ) is a direct limit and ψλ make the big triangle of the
previous diagram commute, ∃ ! h : A→ B such that

h ◦ ϕλ = ψλ, ∀ λ ∈ Λ.

Similarly, (B, ψλ) is a direct limit, so ∃ ! h′ : B→ A such that

h′ ◦ ψλ = ϕλ, ∀ λ ∈ Λ.

Hence (h′ ◦ h) ◦ ϕλ = ϕλ, ∀ λ ∈ Λ.

Aλ1 Aλ2

A

A

ϕ
λ1
λ2

ϕλ1

ϕλ1

ϕλ2

ϕλ2

In the above diagram, applying the definition of the direct limit
for A, we get that ∃ ! ξ : A → A with ξ ◦ ϕλ = ϕλ, ∀ λ ∈ Λ. Since
1A ◦ ϕλ = (h′ ◦ h) ◦ ϕλ = ϕλ, ∀ λ ∈ Λ, we have that h′ ◦ h = 1A.
We can similarly prove that h ◦ h′ = 1B. Therefore A and B are
isomorphic. ⋄

Proposition 3.1.27. In the category Set of sets, every inductive system
indexed by a directed set (Λ,⩽) has direct limit.

Proof. Let (Λ,⩽) be a directed set and (Aλ, ϕλ1
λ2
) an inductive system

of sets. Take the disjoint union ⊔
λ∈Λ

Aλ

and define relation ∼ as follows. For every a1 ∈ Aλ1 ⊆ ⊔Aλ and
a2 ∈ Aλ2 ⊆ ⊔Aλ

a1 ∼ a2 ⇐⇒ ∃ λ ⩾ λ1, λ2 : ϕλ1
λ (a1) = ϕλ2

λ (a2).

The relation ∼ is obviously reflexive and symmetric. It is transitive
as well. Indeed, if

Aλ1 ∋ a1 ∼ a2 ∈ Aλ2 and Aλ2 ∋ a2 ∼ a3 ∈ Aλ3
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then there are λ ⩾ λ1, λ2 and µ ⩾ λ2, λ3 such that

ϕλ1
λ (a1) = ϕλ2

λ (a2) and ϕλ2
λ (a2) = ϕλ3

λ (a3).

Since (Λ,⩽) is directed, there is k ⩾ λ, µ (hance k ⩾ λ1, λ3) and we
compute

ϕλ1
k (a1) = ϕλ

k ◦ ϕλ1
λ (a1) = ϕλ

k ◦ ϕλ2
λ (a2) = ϕλ2

k (a2) = ϕ
µ
k ◦ ϕλ2

µ (a2)

= ϕ
µ
k ◦ ϕλ3

µ (a3) = ϕλ3
k (a3)

that is, a1 ∼ a3. Therefore ∼ is an equivalence relation.
Set

A =
⊔

λ∈Λ

Aλ/ ∼

and if
q :

⊔
λ∈Λ

A→ A : a 7→ [a]

is the canonical projection, then define

ϕλ = q|Aλ
: Aλ → A : a 7→ [a] ∀ λ ∈ Λ.

The pair (A, ϕλ) is the required direct limit. Indeed,

i) For every λ1 ⩽ λ2 and every a1 ∈ Aλ1 we have a1 ∼ ϕλ1
λ2
(a1)

(take λ = λ2 ⩾ λ1, λ2) so

ϕλ2 ◦ ϕλ1
λ2
(a1) = [ϕλ1

λ2
(a1)] = [a1] = ϕλ1(a) ⇐⇒ ϕλ2 ◦ ϕλ1

λ2
= ϕλ1 .

ii) If (B, ψλ : Aλ → B) is a pair where B ∈ C and ψλ2 ◦ ϕλ1
λ2

= ψλ1

for every λ1 ⩽ λ2 then we have the following commutative
diagram.

Aλ1 Aλ2

A

B

ϕ
λ1
λ2

ϕλ1

ψλ1

ϕλ2

ψλ2∃ h?
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Every [a] ∈ A is the image of some a ∈ Aλ through q. Define

h : A→ B : h([a]) = ψλ(a).

The map h is well defined. Indeed, if [a1] = [a2] where a1 ∈ Aλ1 ,
a2 ∈ Aλ2 then there is some λ ⩾ λ1, λ2 with ϕλ1

λ (a1) = ϕλ2
λ (a2).

Aλ1 Aλ2

Aλ

B

ϕ
λ1
λ

ψλ1

ϕ
λ2
λ

ψλ2ψλ

Therefore

h([a1]) = ψλ1(a1) = ψλ ◦ ϕλ1
λ (a1) = ψλ ◦ ϕλ2

λ (a2)

= ψλ2(a2) = h([a2]).

From its definition, h makes the diagram

Aλ1 Aλ2

A

B

ϕ
λ1
λ2

ϕλ1

ψλ1

ϕλ2

ψλ2h

commute and is unique with this property.

⋄

Remark 3.1.28. Direct limits in other familiar algebraic categories
also exist. For example, direct limits of groups and rings exist. In
the category Rng of rings for instance, if [aλ1 ], [aλ2 ] ∈ A such that
aλ1 ∈ Aλ1 and aλ2 ∈ Aλ2 , we find some λ3 ⩾ λ1, λ2 and define

[aλ1 ] + [aλ2 ] = [ϕλ1
λ3
(aλ1) + ϕλ2

λ3
(aλ2)]

[aλ1 ] · [aλ2 ] = [ϕλ1
λ3
(aλ1) · ϕ

λ2
λ3
(aλ2)].
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It is easy to check that the above binary operations make A into a
ring. The case for groups is similar.

3.2 grothendieck’s formulation of galois
theory

Grothendieck’s Galois Theory for Schemes is a generalization of
classical Galois Theory. In this section we will see how classical
Galois Theory is seen from Grothendieck’s point of view.

Classical Galois Theory classifies subextensions of a Galois exten-
sion k ⩽ E. The first generalization of Grothendieck’s approach is
to classify all separable extensions of k by considering the extension
k ⩽ ksep.

First we need a lemma.

Lemma 3.2.1. Suppose G is a topological group and X is a finite G-set
equipped with the discrete topology. Then the action is continuous if and
only if stabG(x) is an open subgroup of G for all x ∈ X.

Proof. (⇒) Suppose that the action G× X δ→ X is continuous. For
every x ∈ X take the composition

G ix→ G× X δ→ X

where ix : G → G × X : g 7→ (g, x) is the canonical injection. ix

is obviously continuous and by hypothesis so is δ. Therefore their
composite δ ◦ ix is continuous as well. For every x ∈ X,

stabG(x) = {g ∈ G : gx = x} = {g ∈ G : δ(g, x) = x}
= {g ∈ G : (δ ◦ ix)(g) = x} = (δ ◦ ix)

−1({x})

which is open since {x} is an open subset of the discrete space X.
(⇐) For the contrary, suppose that the stabilizers of all elements

are open subgroups of G. Let x0 ∈ X. Now {x0} is an open subset of
the discrete space X and its preimage through the action δ−1({x0})
is

δ−1({x0}) = {(g, x) ∈ G× X : gx = x0} =
⊔

x∈X

Ux
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where

Ux = {(g, x) ∈ G× {x} : gx = x0} ⊆ G× {x}.

Observe that Ux0 = stabG(x0) × {x0}. This is a union of open
subsets of G×X. Indeed, each Ux is either empty or, if there is some
(hx, x) ∈ Ux that is some hx ∈ G such that hxx = x0 then we can
show that Ux and stabG(x0) are homeomorphic.

For this, define

ϑ : stabG(x0)→ Ux : g 7→ (ghx, x).

Observe that

g1 = g2 ∈ stabG(x0)⇔ g1hx = g2hx ⇔ (g1hx, x) = (g2hx, x)

⇔ ϑ(g1) = ϑ(g2)

therefore ϑ is well defined and injective.
ϑ is surjective as well. Let (h′, x) ∈ Ux so that h′x = x0. Then

h′h−1
x ∈ stabG(x0). Indeed, hxx = x0 implies that h−1

x x0 = x. There-
fore h′h−1

x x0 = h′x = x0. It is now immediate that ϑ(h′h−1
x ) = (h′, x).

The open subsets of Ux ⊆ G × {x} are of the form U × {x}
where U is an open subset of G. Suppose U × {x} is an open subset
of Ux. Then

ϑ−1(U × {x}) = {g ∈ stabG(x0) : ϑ(g) = (ghx, x) ∈ U × {x}}
= {g ∈ stabG(x0) : gh ∈ U}
= {g ∈ stabG(x0) : g ∈ Uh−1} = stabG(x0) ∩Uh−1.

But it is immediate that the all (left and right) cosets of U are
homeomorphic to U through the map

U → gU : x 7→ gx

using the definition of a topological group. Therefore ϑ−1(U × {x})
is open in stabG(x0) and ϑ is continuous.

Lastly, it is easy to see that ϑ is also open, hence a homeomor-
phism. Indeed, if V ⊆ stabG(x0) is open, then ϑ(V) = Vhx × {x}
which is open in Ux by the above discussion and the definition of
the product topology.
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To sum up, we have shown that δ−1({x0}) is a union of open
subsets of G × X, hence open. Since the inverse images preserve
unions, δ reverses open sets to open sets. Thus the action δ is
continuous as required. ⋄

Now onto the classification theorem.

Theorem 3.2.2 (Fundamental Theorem of Galois Theory in terms of
separable algebras). Let k be a field and G = Gal(ksep/k) its absolute
Galois group. The category Sepk of finite separable k-algebras is antiequiv-
alent to the category G-sett

f of finite sets equipped with a continuous and
transitive G-action. Galois extensions of k give rise to G-sets that are
isomorphic to finite quotients of G.

Proof. We are going to break the proof of the above theorem into
smaller parts. First we define a functor

F = Homk(□, ksep) : Sepk → G-sett
f

as follows. F sends a finite separable k-algebra L to Homk(L, ksep),
the set of all k-algebra homomorphisms from L to ksep and each
morphism of separable k-algebras ϕ : L1 → L2 to

F(ϕ) : Homk(L2, ksep)→ Homk(L1, ksep) :

(L2
f→ ksep) 7→ (L1

ϕ→ L2
f→ ksep).

We will show that this is an essentially surjective, fully faithfull,
contravariant functor.

Obviously Homk(L, ksep) is a finite set; if, using the primitive
element theorem, we write L = k(a) for some separable element
a ∈ L, then the cardinality of Homk(L, ksep) equals ∂m(a, k).

The absolute Galois group G = Gal(ksep/k) acts on Homk(L, ksep)

by compositions. That is,

Gal(ksep/k)×Homk(L, ksep)→ Homk(L, ksep) : (σ, f ) 7→ σ ◦ f . (3.1)

L
f→ ksep

σ→ ksep

The fact that the above map defines an action is immediate. Indeed,

if L
f→ ksep

τ→ ksep
σ→ ksep then (σ ◦ τ) ◦ f = σ ◦ (τ ◦ f ) since the
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composition of functions is associative, and if L
f→ ksep

id→ ksep then
id ◦ f = f . We must show that the action is continuous. For this we
need theprevious lemma.

For every f ∈ Homk(L, ksep) we compute

stabG( f ) = {σ ∈ Gal(ksep/k) : σ f = f }
= {σ ∈ Gal(ksep/k) : σ f (L) = f (L)}
= {σ ∈ Gal(ksep/k) : σ fixes f (L)}
= Gal(ksep/ f (L)).

Now k ⩽ L is a finite separable extension and f ∈ Homk(L, ksep).
Therefore k ⩽ f (L) is also a finite separable extension. From the
Fundamental Theorem of Infinite Galois Theory,

[ f (L) : k] < ∞ ⇐⇒ Gal(ksep/ f (L)) = stabG( f ) is open.

Using the previous Lemma on the finite set Homk(L, ksep) and the
topological group G, the action is continuous.

The next step is to show that the action described in (3.1) is
transitive.

Suppose f , g ∈ Homk(L, ksep). Since L is a separable extension
of k, L = k(a) for some separable element a ∈ L from the Primitive
Element Theorem. By the Extension Theorem, there is some σ ∈ G
such that σ( f (a)) = g(a) since both f (a) an g(a) must be roots of
m(a, k). Since f , g are determined by their images f (a) and g(a)
respectively, that means that we can find some σ ∈ G such that
σ f = g, i.e. the action is transitive.

It is now immediate that F is a contravarinat functor.
Recall from Group Theory that if X is a transitive G-set then X

and G/ stabG(x) are isomorphic as G-sets for any x ∈ X. Therefore
Homk(L, ksep) is isomorphic to the left coset space of some open
subgroup of G. If k ⩽ l is Galois, this coset space is a quotient of G
by a normal subgroup from Infinite Galois Theory.

We will show that the functor F is essentially surjective.
Suppose S is a finite set equipped with a continuous and transi-

tive G-action and s ∈ S. Since S is finite and the action is continuous,
stabG(x) is open in G. Let

L = Fixksep(stabG(s)) ⇐⇒ stabG(s) = Gal(ksep/L).
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From Infinite Galois Theory, since stabG(x) is open, k ⩽ L is a finite
extension. Obviously it is also separable. We will show that the
G-sets S and Homk(L, ksep) are isomorphic.

Define
ϑ : HomK(L, ksep)→ S

as follows. Since HomK(L, ksep) is transitive, ϑ is uniquelly deter-
mined by its value on some random f ∈ HomK(L, ksep). Take f to
be the canonical inclusion i : L→ ksep, and define

ϑ(i) = s =⇒ ϑ(σi) = σs ∀σ ∈ G.

Observe that

stabG(i) = {σ ∈ G : σi = i} = {σ ∈ G : σ(L) = L}
= Gal(ksep/L) = stabG(s).

Therefore

σi = τi⇔ τ−1σi = i⇔ τ−1σ ∈ stabG(i)

⇔ τ−1σ ∈ stabG(s)⇔ τ−1σs = s⇔ σs = τs.

So ϑ is well defined.
Since both S and Homk(L, ksep) are transitive G-sets, the above

observation yields an isomorphism of G-sets

Homk(L, ksep) ≃ G/ stabG(i) = G/ stabG(s) ≃ S.

Therefore the functor F is indeed essentially surjective.
Lastly, the functor F is fully faithful.
Suppose L, M are two finite separable extensions of k. We must

show that the map

F : MorSepk
(L, M)→ MorG-sett

f

(
Homk(M, ksep), Homk(L, ksep)

)
(L

ϕ→ M) 7→ F(ϕ)

is bijective. Recall that

F(ϕ) : Homk(M, ksep)→ Homk(L, ksep) : F(ϕ)( f ) = f ◦ ϕ

(M
f→ ksep) 7→ (L

ϕ→ M
f→ ksep).
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F is obviously injective; if ϕ ̸= ψ ∈ MorSepk
(L, M), that is ϕ(x) ̸=

ψ(x) for some x ∈ L, then f ◦ ϕ ̸= f ◦ ψ for any f : M → ksep

such that f (ϕ(x)) ̸= f (ψ(x)), i.e. F(ϕ) ̸= F(ψ). Such f always
exists. It remains to show that F is surjective. Take some γ ∈
MorG-sett

f

(
Homk(M, ksep), Homk(L, ksep)

)
. Since both Homk(M, ksep)

and Homk(M, ksep) are transitive G-sets, γ is determined by the im-
age γ( f ) of some (any) f ∈ Homk(M, ksep). Moreover,

σ ∈ stabG( f ) =⇒ σ f = f =⇒ γ(σ f ) = γ( f )

=⇒ σγ( f ) = γ( f ) =⇒ σ ∈ stabG(γ( f ))

=⇒ stabG( f ) ⊆ stabG(γ( f )).

Taking the fixed fields of these subgroups we have

Fixksep(stabG(γ( f )) ⊆ Fixksep(stabG( f )).

As we have already seen,

stabG( f ) = and stabG(γ( f )) = Gal(ksep/γ( f )(L)).

Therefore we have

Fixksep

(
Gal(ksep/ f (M))

)
= γ( f )(L) ⊆ f (M) = Fixksep

(
Gal(ksep/γ f (L))

)
Take f−1 : f (M) → M to be the inverse of f . Then f−1 ◦ γ( f ) ∈
Mork(L, M),

L
γ( f )→ γ( f )(L) ⊆ f (M) ⊆ ksep

f−1

→ M,

and obviously F( f−1γ( f )) = γ as G-maps since they agree on f .
The final assertion follows from Infinite Galois Theory. ⋄

Grothendieck’s formulation however does not stop there. It
generalizes the context and classifies étale k-algebras by considering
sets on which G acts continuously but not neccesarily transitively.

Definition 3.2.3. A k-algebra L is called étale if it is isomorphic to a
finite direct product of separable extensions of k.

Example 3.2.4. Every separable extension of k is an étale k-algebra.
In particular, every Galois extension of k is étale.
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In view of the above definition, we can form the category Etk
whose objects are étale k-algebras and morphisms are k-algebra
homomorphisms. We can also form the category FEtk of finite étale
k-algebras and k-algebra homomorphisms. Now Grothendieck’s
formulation Galois Theory is the following.

Theorem 3.2.5 (Grothendieck’s formulation of Galois Theory). Let
k be a field and G = Gal(ksep/k) its absolute Galois group. The category
FEtk of finite étale k-algebras is antiequivalent to the category G-set f of
finite sets equipped with a continuous G-action.

Proof. The most part of the proof has already been done in the
previous theorem. We again define a functor

F = Homk(□, ksep) : FEtk → G-set f

as before. Namely, F sends each étale k-algebra A = ∏n
i=1 Li to the

set Homk(A, ksep) and each morphism of étale k-algebras ϕ : A→ B
to F(ϕ) defined as before.

The first thing to note is that

Homk(A, ksep) =
n⊔

i=1

Homk(Li, ksep) (3.2)

since each f ∈ Homk(A, ksep) induces an injection of exactly one of
the Li’s into ksep. Indeed, any injection of a product of more than
one separable extensions of k into ksep, e.g. Li × Lj, will produce
zero divisors, e.g. (1, 0) and (0, 1), which is absurd.

Since each Homk(Li, ksep) is finite, so is their finite dfisjoint union
Homk(A, ksep). The absolute Galois group G acts on Homk(A, ksep)

by compositions as before and this action is continuous by the same
arguments as before.

Thus F is again a contravariant functor.
The second thing to note is that the action is not transitive. In

fact, Homk(Li, ksep) are the G-orbits (the transitive G-subsets) of
Homk(A, ksep).

The fact that F is essentially surjective stems from the decom-
position (3.2) of Homk(A, ksep) into a disjoint union. Any f ∈
Homk(A, ksep) belongs to some Homk(Li, ksep) and we use the ar-
guments of the previous theorem.
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To prove that F is fully faithful, we must note one last thing.
If A = ∏n

i=1 Li and B = ∏m
j=1 Kj are two étale k-algebras, the set

MorFEtk(A, B) can be decomposed into a union of sets of the form
MorSepk

(Li, Kj). We again apply the same arguments as before. ⋄

Remark 3.2.6. If instead of k ⩽ ksep we consider an arbitrary exten-
sion k ⩽ E, then we have that the category of finite k-algebras that are
products of finite separable subextensions of k ⩽ E is antiequivalent
to the category of finite sets equipped with a continuous Gal(E/k)-
action. In particular, separable extensions correspond to transitive
Gal(E/k)-sets and Galois extensions to finite quotients of Gal(E/k).

3.3 galois theory for schemes

Grothendieck developed schemes as a generalization of varieties
which, in classical Algebraic Geometry, are defined as sets of solu-
tions of systems of polynomial equations. Indeed, every variety is a
special kind of scheme. Our aim in this section to define schemes
and other related notions which we need in order to formulate the
last classification theorem.

To keep this dissertation short, we need to assume the reader is
already familiar with the language of Algebraic Geometry. The first
two parts of [39] should provide a good background for what is to
follow.

the spectrum of a ring

Definition 3.3.1. We define the spectrum of a ring R, denoted by
Spec(R), to be the set of all prime ideals of R, i.e.

Spec(R) = {p : p prime ideal of R}.

Now we make Spec(R) into a topological space.

Proposition 3.3.2. Suppose R is a ring and let Spec(R) be its spectrum.
Define

V(a) = {p ∈ Spec(R) : p ⊇ a}.

Then
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i) V(0) = Spec(R) and V(R) = ∅.

ii) For every collection {ai}i∈I of ideals of R,⋂
i∈I

V
(
ai
)
= V

(⋃
i∈I

ai
)
.

iii) For every two ideals a, b of R,

V(a) ∪V(b) = V(a∩ b).

Proof. The first assertion is immediate; every prime ideal contains
the zero ideal whilst there are no prime ideals containing R.

For the second assertion observe that

p ∈
⋂
i∈I

V(ai) ⇐⇒ p ∈ V(ai) ∀ i ∈ I ⇐⇒ p ⊇ ai ∀ i ∈ I

⇐⇒ p ⊇
⋃
i∈I

ai ⇐⇒ p ∈ V
(⋃

i∈I

ai
)
.

For the last assertion, if p ∈ V(a) ∪V(b) then p contains either
one of them and therefore contains their intersection a ∩ b; hence
p ∈ V(a∩ b). On the other hand, if p ∈ V(a∩ b) but a ⊈ p then there
is some a ∈ a \ p. Choose b ∈ b. Since a, b are ideals, ab ∈ a∩ b ⊆ p

and p is prime. Therefore, b ∈ p so b ⊆ p and p ∈ V(b) ⊆ V(a) ∪
V(b). ⋄

Corollary 3.3.3. With the hypotheses of the previous proposition, Spec(R)
is a topological space whose closed sets are of the form V(a) with a ◁ R.

Definition 3.3.4. The topology described above is called the Zariski
topology.2

The open subsets V(a)c of the Zariski topology are denoted by
D(a). For every f ∈ R, we define

V( f ) = {p ∈ Spec(R) : f ∈ p} ⊆ Spec(R).

Since V( f ) = V(⟨ f ⟩), V( f ) are closed subsets of Spec(R). Therefore
their complements

D( f ) = V( f )c = {p ∈ Spec(R) : f /∈ p} ⊆ Spec(R)
2 Named after Oscar Zariski (1899-1986) who was the first to introduce it.
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are open subsets in Spec(R); these are called distinguished open
sets. They are called distinguished because they form a basis for the
Zariski topology. Indeed, for every ideal a of R,

V(a) =
⋂
f∈a

V( f )⇒ D(a) =
⋃
f∈a

D( f ).

presheaves and sheaves The idea of Algebraic Geometry is to
study geometric objects using appropriately chosen algebraic ones.
This is where Sheaf Theory comes into play and provides a way
to assign algebraic objects such as groups and rings to topological
spaces (which are geometric objects).

Definition 3.3.5. Let (X, τX) be a topological space. A presheaf of
sets over X is a pair of families

({P(U)}U∈τX , {rU
V : P(U)→ P(V)}V⊆U∈τX )

where for each U ∈ τX, P(U) is a set and for each V ⊆ U ∈ τX

rU
V : P(U)→ P(V) is a function called restriction map such that

i) rU
U = idU for all U ∈ τX and

ii) rU
W = rV

W ◦ rU
V for all W ⊆ V ⊆ U ∈ τX.

We will write (P(U), rU
V ) for a presheaf as above, to keep the notation

clean and short.

Example 3.3.6. The prototypical example we have to bear in mind is
the presheaf of smooth functions. Let M be a smooth manifold and
τM be its topology. For each U ∈ τM let

C∞(U) = { f : U → R : f smooth},

and for every V ⊆ U ∈ τX,

rU
V : C(U)→ C(V) : f 7→ f |V

be the usual restriction map. Then (C∞(U), rU
V ) is a presheaf of sets.

Example 3.3.7. Let (X, τX) be a topological space. For every U ∈ τX

let
C(U) = { f : U → R : f continuous},
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and for every V ⊆ U ∈ τX,

rU
V : C(U)→ C(V) : f 7→ f |V

be the usual restriction map. Then (C(U), rU
V ) is a presheaf of sets,

called the presheaf of continuous functions.

Example 3.3.8. Let (X, τX) be a topological space. For every U ∈ τX

let
B(U) = {g : U → R : g bounded},

and for every V ⊆ U ∈ τX,

rU
V : B(U)→ B(V) : g 7→ g|V

be the usual restriction map. Then (B(U), rU
V ) is a presheaf of sets,

called the presheaf of bounded functions.

Remark 3.3.9. Equivalently, a presheaf of sets can be defined as a
contravariant functor

F : (τX,⩽)→ Set

whose domain is the poset (τX,⩽) with the partial order given by
U ⩽ V ⇐⇒ V ⊆ U.

It is easy to see that every presheaf of sets induces such a functor
F that sends each U ∈ τX to P(U) and each morphism (U, V) to rU

V ;
the axioms of a presheaf ensure that F is a functor.

And conversely, any contravariant functor F : (τX,⩽) → Set
induces a presheaf

(
F(U), F(V, U)

)
; the axioms of a functor ensure

that this is indeed a presheaf of sets.
So when we speak of a presheaf F of a space, we refer to the

functor F.

As with the above example, the sets P(U) of a presheaf are
usually sets of functions defined on the open subset U and rU

V are
then the usual restriction maps.

It is a common occur for the sets P(U) to have extra algebraic
structure (such as rings or algebras). The relevant definition is given
below.

Definition 3.3.10. Let (X, τX) be a topological space. A presheaf of
rings is a contravariant functor F : (τX,⩽)→ Rng.
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Definition 3.3.11. If (X, τX) is a topological space, x ∈ X, and
F ≡ (P(U), rU

V ) is a presheaf (either of sets or of rings) over X,
then the stalk of F at x is the direct limit of the inductive system
(P(U), rU

V )V⊆U∈N o
x

indexed by the open neighborhoods N o
x of x.

Note that the open neighborhoods of x, ordered by inclusion, is
a directed set, so the limit exists and is unique.

The presheaf of smooth functions has additional structure than
plays an important role in the theory of smooth manifolds. In
particular, if two smooth functions defined on an open set U agree on every
element of an open cover of U, then they are equal. Another important
property is the glueing lemma for smooth maps; if U in an open set in X
and we have smooth functions defined on the elements of an open cover so
that they agree when their domains overlap, then we can glue them together
and obtain a smooth function defined on U.

We are thus led to the following definition.

Definition 3.3.12. Let (X, τX) be a topological space and (P(U), rU
V )

a presheaf of sets over X. The presheaf (P(U), rU
V ) is called a sheaf

if for every U ∈ τX and every open cover {Ui}i∈I of U the following
conditions hold.

i) If f , g ∈ P(U) such that f |Ui = g|Ui for every i ∈ I then f = g.

ii) If fi ∈ P(Ui) for every i ∈ I such that rUi
Ui∩Uj

( fi) = r
Uj
Ui∩Uj

( f j) for
every i, j ∈ I with Ui ∩Uj ̸= ∅ then there is some f ∈ P(U)

such that rU
Ui
( f ) = fi for every i ∈ I.

Example 3.3.13. Thepresheaf of smooth functions is of course a sheaf
of sets. The presheaf of continuous functions is also a sheaf of sets.

Counterexample 3.3.14. The presheaf of bounded functions is not a
sheaf. Condition (ii) is not satisfied.

Definition 3.3.15. Similarly to the previous definition, we can define
a sheaf of rings. We shall denote a sheaf of rings of a topological
space X as OX.

ringed spaces and schemes
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Definition 3.3.16. A ringed space is a pair (X,OX) where X is a
topological space and OX is a sheaf of rings over X. A locally ringed
space is a ringed space whose stalks OX,x are local rings.3

Definition 3.3.17. A morphism of ringed spaces

f : (X,OX)→ (Y,OY)

is a continuous map f : X → Y such that the induced map

f∗ : OY(U)→ OX
(

f−1(U)
)

is a ring homomorphism for every U ∈ τY. A morphism of locally
ringed spaces is a morphism of ringed spaces that also respects the
maximal ideals, i.e. f∗ sends maximal ideals to maximal ideals.

Example 3.3.18. We now come to the most important example. As
we saw, the spectrum Spec(R) of a ring R is a topological space
endowed with the Zariski topology. We will now construct an sheaf
of rings (P(U), rU

V ) over Spec(R). For every distinguished open set
D( f ) of Spec(R) define P(D( f )) to be the localization of R at the
multiplicative set of all functions that do not vanish outside of V( f ).

This is a sheaf of rings called the structure sheaf, it is denoted by
OSpec R and (Spec(R),OSpec R) is a locally ringed space. For a detailed
proof that this is actually a sheaf of rings, see [39], Theorem 4.1.2.

Definition 3.3.19. Let R be a ring. The ringed space consisting of the
spectrum Spec(R) of R with the Zariski topology and the structure
sheaf, (Spec(R),OSpec R), is called an affine scheme. A morphism of
affine schemes is just a morphism of locally ringed spaces.

Definition 3.3.20. Suppose R is a ring. A scheme is a locally ringed
space (X,OX) such that every x ∈ X has an open neighborhood U
so that (U,OX|U) is an affine scheme.

A morphism of schemes is just a morphism of locally rigned
spaces.

In view of the above definition, we have the category Sch of
schemes whose objects are affine schemes and morphisms are the
morphisms of affine schemes.

3 Recall from Ring Theory that a (commutative) local ring is a ring that has a unique
maximal ideal.
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Definition 3.3.21. A morphism p : X̃ → X of schemes is called finite
étale if there is a open cover of open affine subsets {Spec(Ai)}i∈I of
X such that p−1( Spec(Ai)

)
is of the form Spec(Bi) for some étale

Ai-algebra. If p is surjective, then (X̃,p) is a finite étale cover

We can think of finite étale morphisms as generalization of local
homeomorphisms and finite étale coverings as generalization of
covering spaces. Thus, we can form the category of finite étale
coverings over a scheme X, denoted by FEtX.

The main theorem concerning schemes and étale coverings is the
following. The interested reader can consult the bibliography for a
proof.

Theorem 3.3.22 (Galois Theorem for Schemes). Let X be a connected
scheme, i.e. a scheme that is connected as a topological space. Then there is
a profinite group G uniquely determined up to isomorphism such that the
category FEtX of finite étale coverings of X is equivalent to the category
G-set f of finite sets on which G acts continuously.

To retrieve Grothendieck’s formulation of Galois Theory we
must take X = Spec(k) and the profinite group is the absolute
Galois group of k. The the finite étale coverings are exactly the étale
k-algebras.
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[8] J. Dieudonné. A History of Algebraic and Differential Topology,
1900 - 1960. 1st ed. Modern Birkhäuser Classics. Birkhäuser
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1960/61 (SGA 1). 1st ed. Lecture Notes in Mathematics. Springer
Berlin, Heidelberg, 1971. arXiv:math/0206203v2 [math.AG].

[13] A. Hatcher. Algebraic Topology (2015 ed.).

[14] J. M. Howie. Fields and Galois Theory. 1st ed. Springer Under-
graduate Mathematics Series. Springer-Verlag London, 2006.

[15] F. Jarvis. Algebraic Number Theory. 1st ed. Springer Undergrad-
uate Mathematics Series. Springer International Publishing,
2014.

[16] G. Karpilovsky. Topics in Field Theory. Vol. 155. Mathematics
Studies. North Holland, 1989.

[17] B. M. Kiernan. “The Development of Galois Theory from
Lagrange to Artin”. In: Archive for History of Exact Sciences
8.1/2 (Dec. 1971), pp. 40–154.

[18] C. Koppensteiner. Notes for Math 532 - Algebraic Geometry I.

[19] C. Kosniowski. A First Course in Algebraic Topology. Cambridge
University Press, 1980.

[20] W. Krull. “Galoissche Theorie der unendlichen algebraischen
Erweiterungen”. In: Mathematische Annalen 100 (1928), pp. 687–
698.

[21] E. Kunz. Introduction to Commutative Algebra and Algebraic Ge-
ometry. 1st ed. Modern Birkhäuser Classics. Birkhäuser New
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[31] H. Poincaré. “Analysis situs”. In: Journal de l’ École Polytech-
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