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Περίληψη

Οι κοσμολογικές διαταραχές που γεννιούνται στα τελευταία στάδια του πλη-

θωρισμού και αντιστοιχούν σε μικρές κλίμακες δεν αποτυπώνονται στην κο-

σμική μικροκυματική ακτινοβολία υποβάθρου, αλλά μπορεί να είναι ιδιαίτερης

σημασίας αν το μέγεθός τους είναι μεγάλο. Μια μεγάλη αύξηση του φάσματος

των αρχέγονων βαθμωτών διακυμάνσεων μπορεί να πυροδοτήσει τη βαρυτική

κατάρρευση και τη δημιουργία αρχέγονων μελανών οπών καθώς και ενός υπο-

βάθρου στοχαστικών βαρυτικών κυμάτων που είναι πιθανόν παρατηρήσιμα από

σχεδιασμένα μελλοντικά πειράματα. Ο βασικός στόχος της παρούσας διδακτο-

ρικής διατριβής είναι η όσο το δυνατόν πιο γενική και ανεξάρτητη μοντέλου

ανάλυση των χαρακτηριστικών του πληθωριστικού δυναμικού που προκαλούν

σημαντική ενίσχυση και ταλαντώσεις στο φάσμα διαταραχών καμπυλότητας.

Στο κεφάλαιο 2 γίνεται βιβλιογραφική ανασκόπηση των βασικών στοιχείων

της σύγχρονης κοσμολογίας και του πληθωρισμού. Συγκεκριμένα στην ενότη-

τα 2.1 γίνεται αναφορά στη μετρική Friedman-Robertson-Walker (FRW) που

περιγράφει ένα ομοιογενές και ισότροπο Σύμπαν καθώς και στις εξισώσεις Frie-
dmann, που διέπουν τη δυναμική του εν λόγω Σύμπαντος. Στην ενότητα 2.2

εισάγουμε την έννοια του πληθωρισμού και περιγράφουμε τη δυναμική που διέπει

τα πιο απλά πληθωριστικά πρότυπα, τα οποία περιλαμβάνουν ένα βαθμωτό πεδίο

σε ελάχιστη σύζευξη με τη βαρύτητα. Επίσης περιγράφουμε την προσέγγιση

αργής κύλισης, η οποία μπορεί να εφαρμοστεί στα περισσότερα υπάρχοντα πλη-

θωριστικά μοντέλα και απλοποιεί σημαντικά τις εξισώσεις κίνησης. Για λόγους

πληρότητας, στην ενότητα 2.3 γίνεται και μια σύντομη περιγραφή της περιόδου

αναθέρμανσης του Σύμπαντος.

Στο κεφάλαιο 3 γίνεται παρουσίαση της κοσμολογικής θεωρίας διαταραχών

και των βασικών εννοιών που χρειάζονται στα ακόλουθα κεφάλαια. Ξεκινάμε

με την περιγραφή των διαταραχών της μετρικής (ενότητα 3.1), οι οποίες δια-

κρίνονται σε βαθμωτές, διανυσματικές και τανυστικές διαταραχές. Εστιάζοντας

στους βαθμωτούς βαθμούς ελευθερίας, βλέπουμε πώς αυτοί μετασχηματίζονται

κάτω από μετασχηματισμούς βαθμίδας (συντεταγμένων) και παραθέτουμε ορι-

σμένες γνωστές βαθμίδες. Στη συνέχεια (ενότητα 3.2) γίνεται ανάλυση των

διαταραχών του τανυστή ενέργειας-ορμής χρησιμοποιώντας έννοιες ρευστοδυ-

ναμικής και παρουσιάζονται βασικές έννοιες, όπως αυτή των αδιαβατικών και

των εντροπικών διαταραχών καθώς, και χρήσιμα μεγέθη όπως η συγκινούμενη

διαταραχή καμπυλότητας. Στην ενότητα 3.3 θεωρούμε ότι η κύρια συνεισφορά

στην ενέργεια του Σύμπαντος προέρχεται από το πληθωριστικό πεδίο και με-

λετάμε την εξέλιξη των διακυμάνσεών του, η οποία διέπεται από την εξίσωση

Mukhanov-Sasaki. Γίνεται επίσης αναφορά στην κβάντωση του πληθωριστι-

κού πεδίου και στο κενό Bunch-Davies, καθώς και στην έννοια του φάσματος

διαταραχών καμπυλότητας που αποτελεί το βασικό υπό μελέτη μέγεθος στην
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παρούσα διατριβή.

Στο κεφάλαιο 4, στο οποίο ξεκινά το ερευνητικό κομμάτι της διατριβής, γίνε-

ται μελέτη των χαρακτηριστικών του δυναμικού του πληθωριστικού πεδίου σε

πληθωριστικά πρότυπα με ένα πεδίο που μπορούν να οδηγήσουν σε σημαντική

ενίσχυση του φάσματος διαταραχών καμπυλότητας. Τα χαρακτηριστικά αυτά

είναι τα σημεία καμπής, που έχουν μελετηθεί ευρέως στο παρελθόν, και τα σκα-

λοπάτια στο δυναμικό, στα οποία δίνουμε μεγαλύτερη έμφαση καθώς δεν έχουν

μελετηθεί ιδιαίτερα στο πλαίσιο που μας ενδιαφέρει. Οι εξισώσεις των διακυ-

μάνσεων είναι βολικό να γραφούν χρησιμοποιώντας τον αριθμό των εκθετικών

αναδιπλώσεων N ως ανεξάρτητη μεταβλητή, πράγμα που γίνεται στη ενότητα

4.1. Η ποσότητα που είναι καθοριστική για την ενίσχυση των διακυμάνσεων

καμπυλότητας είναι ο όρος τριβής f(N) στην εξίσωση (4.20) που ορίζεται από

τη σχέση (4.25). Για ένα σκαλοπάτι στο δυναμικό, παρόλο που αυτός ο όρος

είναι θετικός κατά τη διάρκεια του πρώτου μέρους της μετάβασης και μειώνει

τη διαταραχή, γίνεται αρνητικός καθώς το πεδίο προσεγγίζει τη δεύτερη πεδι-

άδα αργής κύλισης και επομένως μπορεί να οδηγήσει σε μεγάλη αύξηση, όπως

βλέπουμε στην ενότητα 4.2. Παρατηρούμε επίσης ότι η εν λόγω ενίσχυση αυ-

ξάνεται όταν το σκαλοπάτι είναι πιο απότομο, καθώς επίσης και όταν αυξάνεται

ο αριθμός των σκαλοπατιών στο δυναμικό. Στην περίπτωση των σκαλοπατιών

παρατηρείται επίσης και η εμφάνιση ταλαντώσεων στο φάσμα, σε αντίθεση με

την περίπτωση των σημείων καμπής, όπου το προκύπτον φάσμα είναι ομαλό. Για

την ανάλυση των χαρακτηριστικών που αναφέραμε χρησιμοποιούμε ένα απλο-

ποιημένο δυναμικό (υποενότητα 4.2.1). Στην υποενότητα 4.2.2 δίνουμε βέβαια

και ένα συγκεκριμένο παράδειγμα δυναμικού με σκαλοπάτια που είναι συμβατό

και με τα παρατηρησιακά δεδομένα.

Το κεφάλαιο 5 είναι αφιερωμένο στον αναλυτικό υπολογισμό του φάσματος

διαταραχών καμπυλότητας μέσω δύο διαφορετικών προσεγγιστικών μεθόδων

σε περιπτώσεις όπου η προσέγγιση αργής κύλισης παραβιάζεται έντονα, όπως

όταν υπάρχουν σκαλοπάτια στο δυναμικό. Στην ενότητα 5.1 προσεγγίζουμε την

εξέλιξη της συνάρτησης f(N) μέσω παλμών σταθερού ύψους και χρησιμοποιο-

ύμε κατάλληλες συνθήκες συνέχειας στην αρχή και στο τέλος κάθε ¨παλμού’

προκειμένου να έχουμε μια πλήρη λύση της (5.1). Μάλιστα, πολλά χαρακτηρι-

στικά που εμφανίζονται στα φάσματα που προκύπτουν από αυτήν τη διαδικασία

μπορούν να γίνουν κατανοητά σε ένα πολύ απλούστερο πλαίσιο, όπως βλέπουμε

στην υποενότητα 5.1.2, όπου μελετάται η επίδραση ενός ¨παλμού’ σε ένα ελεύθε-

ρο κύμα αγνοώντας τη διαστολή του Σύμπαντος. Για παράδειγμα στο πλαίσιο

αυτό φαίνεται ξεκάθαρα η προέλευση των ταλαντώσεων του πλάτους των δια-

ταραχών καμπυλότητας. Συγκεκριμένα αυτές εμφανίζονται επειδή ο παλμός

προκαλεί αλλαγή στη σχετική φάση μεταξύ του πραγματικού και του φαντα-

στικού μέρους. Στις υποενότητες 5.1.3 και 5.1.4 εξάγονται διάφορες χρήσιμες

αναλυτικές εκφράσεις οι οποίες προσεγγίζουν ικανοποιητικά τόσο τη μέγιστη α-
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ύξηση του φάσματος όσο και τις συχνότητες των εμφανιζόμενων ταλαντώσεων,

όπως φαίνεται και στα παραδείγματα των φασμάτων που παρουσιάζονται στην

υποενότητα 5.1.5. Επίσης μία ξεκάθαρη προσεγγιστική αναλυτική έκφραση για

το φάσμα διαταραχών καμπυλότητας που προκύπτει από ένα σκαλοπάτι στο δυ-

ναμικό, η οποία είναι αρκετά αξιόπιστη γύρω από την κορυφή του φάσματος,

δίνεται στην υποενότητα 5.1.6, ενώ στην υποενότητα 5.1.7 φαίνεται η ενισχυτική

επίδραση πολλαπλών παλμών στο φάσμα.

Στην ενότητα 5.2 εξάγονται αναλυτικές εκφράσεις για το φάσμα διαταρα-

χών καμπυλότητας που προκύπτει αν θεωρήσουμε μια αυθαίρετη συνάρτηση

τριβής f(N). Συγκεκριμένα στην υποενότητα 5.2.1 μετατρέπουμε την εξίσω-

ση (5.1) σε μία ολοκληρωτική εξίσωση (5.36) χρησιμοποιώντας συναρτήσεις

Green. Μία προσεγγιστική έκφραση, που μπορεί να θεωρηθεί ως ένα πρώτο

βήμα για μία επαναληπτική επίλυση αυτής της εξίσωσης είναι η (5.45), η ο-

ποία, παρόλο που είναι έγκυρη μόνο για περιπτώσεις όπου δεν έχουμε μεγάλη

ενίσχυση του φάσματος, μπορεί να προβλέψει τις προκύπτουσες ταλαντώσεις

για τυχαία συνάρτηση f(N). Επίσης στην υποενότητα 5.2.2 μετατρέπουμε την

εξίσωση (5.1) σε ένα σύστημα διαφορικών εξισώσεων πρώτης τάξης (εξίσωση

(5.51) ) και δίνουμε μια προσεγγιστική λύση του συστήματος (σχέσεις (5.53)

και (5.54) ), η οποία δίνει μία καλή προσέγγιση της μέγιστης τιμής του φάσμα-

τος και των χαρακτηριστικών συχνοτήτων ακόμα και για περιπτώσεις ενίσχυσης

του φάσματος κατά τρεις τάξεις μεγέθους, όπως αναφέρεται στο παράρτημα Α.

Στο κεφάλαιο 6 γίνεται κατασκευή συγκεκριμένων πληθωριστικών προ-

τύπων στο πλαίσιο των α-attractors τα οποία περιλαμβάνουν σκαλοπάτια ή και

σημεία καμπής στο πληθωριστικό δυναμικό και προβλέπουν τη σημαντική δη-

μιουργία αρχέγονων μελανών οπών και την παραγωγή δευτερογενών βαρυτικών

κυμάτων που μπορεί προσεχώς να ανιχνευθούν. Μια εισαγωγή στα μοντέλα των

α-attractors γίνεται στην ενότητα 6.1 όπου ως αφετηρία χρησιμοποιείται ένα

μοντέλο δύο πεδίων που σέβεται ορισμένες συμμετρίες και καταλήγουμε στη

Λαγκρανζιανή (6.5), όπου το δυναμικό καθορίζεται από την αυθαίρετη συνάρ-

τηση F . Στη συνέχεια (υποενότητα 6.1.1) επιλέγεται συγκεκριμένη μορφή για

τη συνάρτηση F ώστε, με κατάλληλη επιλογή των παραμέτρων που περιέχει,

το δυναμικό να περιλαμβάνει n σκαλοπάτια ή/και ένα σημείο καμπής. Στην

ενότητα 6.2 γίνεται υπολογισμός της αφθονίας των αρχέγονων μελανών οπών

που δημιουργούνται στα μοντέλα που αναφέραμε. Βρίσκουμε ότι η αύξηση του

φάσματος εξαιτίας της παρουσίας σκαλοπατιών συνήθως δεν είναι επαρκής για

την παραγωγή σημαντικού αριθμού μελανών οπών αν το Σύμπαν κυριαρχείται

από ακτινοβολία όταν αυτές δημιουργούνται. Ωστόσο μπορεί να είναι επαρκής

αν το Σύμπαν κυριαρχείται από μη σχετικιστική ύλη. Για το τελευταίο μάλιστα

σενάριο προκύπτει ότι το φάσμα μαζών των μελανών οπών που προκύπτει απο-

κλίνει κάπως από το συνηθισμένο μονοχρωματικό προφίλ (υποενότητα 6.2.2).

Επιπλέον στην ενότητα 6.3 γίνεται η μελέτη του φάσματος των στοχαστικών
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βαρυτικών κυμάτων που παράγονται από τα ίδια μοντέλα. Στην υποενότητα

6.3.1 παρατίθενται οι βασικές εξισώσεις που χρειάζονται, ενώ στην υποενότητα

6.3.2 γίνονται οι σχετικοί αριθμητικοί υπολογισμοί. Το βασικό συμπέρασμα που

προκύπτει για τα μοντέλα μας είναι ότι το ταλαντωτικό προφίλ στο φάσμα δια-

ταραχών καμπυλότητας κληρονομείται από το φάσμα των βαρυτικών κυμάτων.

Στο κεφάλαιο 7 γίνεται επέκταση της ανάλυσης της ενίσχυσης του φάσμα-

τος διαταραχών καμπυλότητας σε πληθωριστικά πρότυπα με δύο πεδία. Στην

ενότητα 7.1 συνοψίζονται οι βασικές εξισώσεις που σχετίζονται με τον πληθω-

ρισμό από δύο πεδία, ξεκινώντας από αυτές που περιγράφουν την εξέλιξη του

υποβάθρου (υποενότητα 7.1.1). Στη συνέχεια παρατίθενται οι εξισώσεις που δι-

έπουν την εξέλιξη της διαταραχής καμπυλότητας και της εντροπικής διαταραχής

και γίνονται ορισμένες απλοποιητικές υποθέσεις προκειμένου να εστιάσουμε στα

βασικά χαρακτηριστικά που σχετίζονται με την ενίσχυση του φάσματος (υπο-

ενότητα 7.1.2). Διαπιστώνεται ότι η ενίσχυση των διαταραχών καμπυλότητας

καθορίζεται από την παράμετρο αργής κύλισης η, η οποία είναι βολικό να α-

ναλυθεί σε μία παράλληλη και μία κάθετη στην τροχιά των πεδίων συνιστώσα.

Η ενίσχυση λοιπόν συμβαίνει όταν κάποια από αυτές τις συνιστώσες παίρνει

πολύ μεγάλες τιμές σε σύντομα χρονικά διαστήματα. Η έντονη εξέλιξη της

παράλληλης συνιστώσας συνδέεται με την ύπαρξη σκαλοπατιών ή σημείων κα-

μπής στο δυναμικό, των οποίων η ανάλυση δεν αλλάζει όταν έχουμε δύο πεδία.

Αντίθετα η κάθετη συνιστώσα του η γίνεται πολύ μεγάλη κατά τη διάρκεια α-

πότομων στροφών στο χώρο των πεδίων οι οποίες εξετάζονται στην ενότητα

7.2. Στην υποενότητα 7.2.1 επισημαίνεται ότι για κανονικούς κινητικούς όρους

των πεδίων, που είναι η περίπτωση που μελετάμε, η μέγιστη γωνία στροφής είναι

π. Ωστόσο είναι δυνατόν να έχουμε αρκετές διαδοχικές στροφές με αντίθετα

πρόσημα, η ενισχυτική επίδραση των οποίων στο φάσμα καμπυλότητας είναι το

βασικό σημείο ενδιαφέροντος. Στην υποενότητα 7.2.2 γίνεται προσέγγιση των

στροφών μέσω ‘παλμών’ προκειμένου να υπάρξει κάποια αναλυτική κατανόηση

των ποιοτικών χαρακτηριστικών της εξέλιξης, ενώ στο παράρτημα Β παρουσι-

άζεται μια εναλλακτική αντιμετώπιση του προβλήματος με χρήση συναρτήσεων

Green. Ο αριθμητικός υπολογισμός ορισμένων φασμάτων που αντιστοιχούν

στην περίπτωση των στροφών γίνεται στην υποενότητα 7.2.3, όπου βρίσκουμε

ότι τρεις ή τέσσερις στροφές σε κατάλληλη χρονική απόσταση μεταξύ τους μπο-

ρούν να προκαλέσουν αύξηση του φάσματος κατά έξι ή εφτά τάξεις μεγέθους.

Τέλος στην ενότητα 7.3 γίνονται οι υπολογισμοί που αφορούν στην παραγωγή

στοχαστικών βαρυτικών κυμάτων και αρχέγονων μελανών οπών στα σενάρια

με στροφές και γίνεται σύγκριση με τα σενάρια των σκαλοπατιών.

Τα συμπεράσματα που εξάγονται από το σύνολο του ερευνητικού μέρους της

διατριβής, μερικά από τα οποία ήδη αναφέραμε, παρουσιάζονται στο κεφάλαιο

8, όπου φαίνεται ξεκάθαρα η προοπτική του ελέγχου διαφόρων υποθέσεών μας

από μελλοντικές παρατηρήσεις και πειράματα.
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Abstract

In this thesis we study features of the inflaton potential that can lead
to a strong enhancement of the power spectrum of curvature perturbations.
In single-field inflation, which constitutes the biggest part of this work, we
focus on models with steep step-like features in the potential that result in the
temporary violation of the slow-roll conditions during the inflaton evolution.
These features enhance the power spectrum of the curvature perturbations
by several orders of magnitude at certain scales and also produce prominent
oscillatory patterns. Our analysis regarding the inflationary dynamics is
both analytical and numerical. We describe quantitatively the size of the
enhancement, as well as the profile of the oscillations, which are shaped
by the number and position of the features in the potential. The models
that we use include some simplified potentials, as well as potentials that are
constructed within the framework of α-attractors in supergravity. We also
demonstrate that the induced tensor power spectrum inherits the distinctive
oscillatory profile of the curvature spectrum and is potentially detectable
by near-future space interferometers. In addition, the enhancement of the
power spectrum by several step-like features may trigger the production of a
sizeable number of primordial black holes under suitable conditions.

We also extend our work on the enhancement of the curvature spectrum
during inflation to the two-field case. Our emphasis here is given on sharp
turns in field space, which is a clearly multi-field phenomenon that occurs
when the component of the slow-roll parameter η perpendicular to the back-
ground trajectory grows large. Our focus is mainly on the additive effect
of several turns, leading to the resonant growth of the curvature spectrum.
Three or four features in the evolution of η⊥ are sufficient in order to induce
an enhancement of the power spectrum by six or seven orders of magni-
tude, which can lead to the significant production of primordial black holes
and stochastic gravitational waves, in analogy with the case of steps in the
potential.

KEY WORDS: inflation, curvature perturbations, power spectrum,
step-like features, turns in field space, primordial black holes, induced grav-
itational waves
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Chapter 1

Introduction

In the theory of cosmic inflation the cosmological perturbations originate
from the quantum fluctuations of the fields that drive inflation [1–4]. The
CMB anisotropies and the large-scale structure of the Universe offer us a win-
dow to the profile of the spectrum of the primordial perturbations generated
in the early stages of inflation [5]. Perturbations generated during the later
stages (at small scales) are not imprinted on the CMB sky, but they might be
of particular importance if their amplitude is large. A strong enhancement of
the spectrum of primordial scalar perturbations can trigger the gravitational
collapse and the formation of primordial black holes (PBHs), which may sur-
vive until today in significant numbers in order to be detectable [6–9]. This
possibility has been studied in great detail during the last years. (For reviews
with extensive lists of references, see [10–13].) In addition, a web of strong
density perturbations generates a stochastic gravitational wave (GW) back-
ground, potentially observable by operating or designed experiments that
cover different frequency bands, ranging from nanohertz [14–19] to milihertz
and decihertz [20–26], and up to 103 hertz [27, 28]. Thus, the detection
prospects of induced GWs open a new window to probe the inflationary
dynamics at small scales, for which cosmic microwave background (CMB)
observables lack sensitivity.

A primordial scalar spectrum with a strong enhancement can be real-
ized in various setups that may be related to single [29–35] or multi-field
inflation [36–45]. Some of these setups include inflationary potentials that
contain a near-inflection point [46–63] or a step-like change [64–68], modi-
fied gravity [69–74], curvaton models [75–78], sound speed modulation and
parametric resonance [79–85]. It is very interesting that the enhancement
profiles produced by these inflationary models may be distinguishable. Dif-
ferent inflationary realizations yield power spectra with a wide or narrow
peak, oscillations or a multi-peak structure.
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In this thesis we focus on power spectra that display, apart from a sig-
nificant enhancement, oscillatory patterns that are distinctive and possibly
detectable, indicating sharp features in the inflaton potential. With the term
features we mean characteristics of the potential that lead to strong devia-
tions from the minimal and smooth inflationary evolution. These can have
observable consequences, such as distinctive signatures in the power spectra
of perturbations, see for example refs. [86–88]. The minimal realization of
a sharp feature that involves single-field inflation dynamics and a canonical
kinetic term is the presence of a step in the inflaton potential [64–68,89–95].
In this case it can be shown that oscillations in the amplitude of the spectrum
appear due to the fact that the sharp drop in the potential of the inflaton
field detunes the relative phase between the real and imaginary parts of the
curvature perturbation. It is also important to mention that, even though the
strong features in the underlying inflaton evolution may not be simple and
the range of generated spectra extensive, an analytical understanding of their
form is feasible if a suitable analytical approximation is performed [96–98].

From a particle-physics point of view, it is natural to expect multi-field
dynamics during inflation. The phenomenology of interest in multi-field in-
flation models is related to the fact that the curvature perturbations can
evolve even on super-Hubble scales because of the presence of isocurvature
perturbations [99–105], called also entropy perturbations or non-adiabatic
pressure perturbations [106–109]. In particular inflationary set-ups, the evo-
lution of the curvature perturbations triggered by isocurvature modes can be
dramatic, generating an observable GW signal and potentially a significant
primordial black hole (PBH) abundance [45,70,110,111]. At the same time,
the isocurvature modes can be absent at the CMB scales & 1 Mpc, where
the curvature perturbations are effectively described by single-field results.

When more than one fields are rolling, one can define an adiabatic per-
turbation component along the direction tangent to the background classical
trajectory, and isocurvature perturbation components along the directions
orthogonal to the trajectory [104]. Curvature perturbations may be affected
by the isocurvature perturbations if the background solution follows a curved
trajectory in field space. Models of inflation with curved inflaton trajectories
have been studied often in the past [45, 110, 112–129]. When the inflaton
slow-rolls along a deep valley while the mass term perpendicular to the tra-
jectory is large, the isocurvature perturbation can be integrated out. This
introduces corrections to the effective single-field theory, which can be ab-
sorbed in the sound speed for the low-energy perturbations [130–134]. In the
particular case of a sharp turn in field space [112–120], the impact of the
isocurvature modes is more prominent, with the resulting curvature spec-
trum departing significantly from scale invariance. An oscillatory pattern
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emerges at wavenumbers characteristic of the turn [115, 116]. Also, a sig-
nificant amplification takes place if during the sharp turn the isocurvature
modes experience a transition from heavy to light [45, 110, 128, 135]. For
broader turns the amplification is still possible [126,127], but the oscillatory
patterns fade away.

As in the single-field case, when there are two fields that experience strong
features in the course of the inflationary evolution, a general and model-
independent analysis can be performed by encoding the dynamics behind
the strong features in the background evolution in the slow-roll parameters.
This becomes apparent if we decompose, along with the perturbations, the
second slow-roll parameter into its tangent η‖ and orthogonal η⊥ components.
Sharp steps lead to large positive values of η‖, while sharp turns result in large
values of η⊥, with either sign. This phenomenological description also helps to
maintain a geometrical intuition about the field space trajectory. Suggestive
constructions that capture the dynamics of the subtle underlying mechanisms
that produce these features can be inversely engineered. Particular setups
such as those of refs. [97,129,136], just to mention a few, indicate some model
building directions.

The thesis is organized as follows: In chapter 2 we present the basic the-
ory of modern cosmology and single-field inflation. In chapter 3 we review
the theory of cosmological perturbations providing the basic formulae that
are needed in our calculations. In chapter 4 we study the features of the infla-
ton potential in single-field inflation that result in a significant enhancement
of the power spectrum of curvature perturbations by working on simplified
setups. In chapter 5 we perform an approximate analytical calculation of the
scalar power spectrum in cases that the slow-roll approximation is strongly
violated, such as when the inflaton potential features one or more steps. We
use two different methods for our calculations. In chapter 6 we construct spe-
cific inflationary models within the framework of α-attractors that involve
step-like features or inflection points in the inflaton potential. For these
models we calculate the curvature power spectrum as well as the abundance
of the produced PBHs and the power spectrum of the induced GWs. In
chapter 7 we present the formalism of two-field inflation and study the case
of sharp turns in field space both analytically and numerically. In chapter 8
we present our conclusions. In appendix A we provide an assessment of the
accuracy of analytical estimates of the spectrum presented in the main text.
Finally, in appendix B we give some detailed expressions resulting from the
application of the Green’s function method to the two-field system.
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Chapter 2

Modern Cosmology and
Inflation

2.1 FRW spacetime and Friedmann equations

Modern cosmology is based on the “cosmological principle”, which assumes
that the Universe is homogeneous and isotropic on large scales, i.e. it is
invariant under spatial translations and rotations. Observational evidence
during the last two decades (CMB, large scale structure) confirms the ho-
mogeneity and isotropy of the Universe on scales larger than around 100
Mpc.

The most general metric in 4 spacetime dimensions that obeys the cosmo-
logical principle is the Friedman-Robertson-Walker (FRW) metric [137,138].
It takes the form

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (2.1)

where a(t) is the cosmic scale factor and k = −1, 0,+1 corresponds to an
open, flat or closed Universe. The above metric is written in terms of co-
moving coordinates (r, θ, φ). The physical distance between two spacetime
points with coordinates (t, 0, θ, φ) and (t, r, θ, φ) is

d(r, t) =

∫
ds = a(t)

∫ r

0

dr√
1− kr2

= a(t)×


sinh−1 r, k = −1

r, k = 0

sin−1 r, k = +1

. (2.2)

Thus, in a Universe that is not static (ȧ 6= 0) distances change with time as:

ḋ =
ȧ

a
d = Hd, (2.3)
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whereH(t) ≡ ȧ/a is the Hubble parameter. We know that ȧ > 0 today, so the
Universe is expanding. The relation (2.3) is in accordance with astronomical
observations and constitutes the so-called Hubble law. The current value ofH
is H0 = (67.36± 0.54)(km/s)/Mpc [139]. Sometimes it is more convenient to
use the conformal time τ instead of the cosmic time t, through the definition
τ =

∫
dt/α(t).

The dynamics of the Universe is governed by the Einstein’s equations

Gµν = Rµν −
1

2
Rgµν = 8πGTµν . (2.4)

Here Rµν is the Ricci tensor, given by the relation

Rµν = ∂αΓαµν − ∂νΓαµα + ΓαβαΓβµν − ΓαβνΓ
β
µα, (2.5)

where Γκµν are the Christoffel symbols

Γκµν ≡
1

2
gκλ [∂µgλν + ∂νgµλ − ∂λgµν ] , (2.6)

and R ≡ gµνRµν is the Ricci scalar. In the following we will use units such
that M2

Pl = (8πG)−1 = 1, where MPl is the reduced Planck mass (MPl =
2.4 ∗ 1018GeV).

Under the assumption of isotropy and homogeneity, and in the perfect-
fluid approximation, the energy-momentum tensor Tµν takes the form

T µν = (ρ+ p)uµuν + pδµν , (2.7)

where ρ and p are the energy density and pressure in the fluid’s rest frame
and uµ the four-velocity of the fluid. In a frame that is comoving with the
fluid, we have uµ = (1,~0) and

T µν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (2.8)

For the metric (2.1) the Einstein’s equations give only two independent
differential equations, which are called Friedmann equations:

H2 =

(
ȧ

a

)2

=
1

3
ρ− k

a2
(2.9)

and

H2 + Ḣ =
ä

a
= −1

6
(ρ+ 3p). (2.10)
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Combining the above equations, we can derive the continuity equation

ρ̇+ 3H(ρ+ p) = 0, (2.11)

which also results from the conservation of the energy-momentum tensor:
∇µT

µν = 0 (∇µ is the covariant derivative).
If we define the equation of state w of the fluid as

w ≡ p

ρ
, (2.12)

equation (2.11) can be written as

d ln ρ

d ln a
= −3(1 + w), (2.13)

from which we have 1

ρ ∝ a−3(1+w). (2.14)

From (2.9), ignoring the curvature term, we have

a ∝

{
t

2
3(1+w) , w 6= −1

eHt, w = −1
. (2.15)

For instance, a(t) ∝ t2/3, a(t) ∝ t1/2 and a(t) ∝ eHt for the scale factor in a
flat Universe (k = 0) that contains non-relativistic matter (w = 0), radiation
(w = 1/3), and a cosmological constant (w = −1), respectively.

If more than one constituents contribute to the energy density and pres-
sure, we have:

ρ =
∑
i

ρi, p =
∑
i

pi. (2.16)

For each species “i” we define the fraction of its energy density over the
critical energy density ρc = 3H2 as Ωi = ρi/ρc. Then, eq. (2.9) becomes

Ω =
∑
i

Ωi = 1 +
k

(aH)2
. (2.17)

From observations (CMB, large-scale structure) we have for the correspond-
ing current values [139]:

Ω−1 ≈ 0, ΩB ≈ 0.05, ΩDM ≈ 0.26, Ωγ ≈ 8∗10−5, ΩΛ ≈ 0.69.

1The solution (2.14) is valid only when w is constant, which is not always the case (e.g.
for an evolving scalar field).
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2.2 Inflation

Cosmological inflation was introduced in order to solve some fundamental
problems that arise in standard Big Bang Cosmology, such as the horizon
and the flatness problem [140]. It explains why the observable Universe is
so large, flat and homogeneous on large scales. In addition, it provides a
framework for understanding the formation of large-scale structure, as well
as the spectrum of the temperature fluctuations of the cosmic microwave
background (CMB).

Inflation is a period of accelerated expansion which is defined by the
following equivalent expressions:

ä > 0⇔ ρ+ 3p < 0⇔ d

dt
(aH)−1 < 0. (2.18)

The accelerated expansion inverts the behavior of the comoving Hubble ra-
dius (aH)−1, which decreases with time, contrary to the case of a Universe
dominated by matter or radiation, for which (aH)−1 increases. It is also
obvious that inflation requires negative pressure (w < −1/3) or a violation
of the strong energy condition.

2.2.1 Inflation implemented through a scalar field

The simplest models of inflation include a scalar field φ, the inflaton. The dy-
namics of a scalar field, which is minimally coupled to gravity, is determined
by the action

S = SEH + Sφ =

∫
d4x
√
−g
[
R

2
+ Lφ

]
(2.19)

with

Lφ = −1

2
gµν∂µφ∂νφ− V (φ). (2.20)

The energy-momentum tensor for the field φ is

Tµν = − 2√
−g

δSφ
δgµν

= ∂µφ∂νφ+ gµνLφ, (2.21)

while the Euler-Lagrange equations give

1√
−g

∂µ(
√
−g∂µφ)− V,φ = 0. (2.22)

In the above V,φ = dV /dφ.
Consistency with the FRW metric (with k = 0), which corresponds to

a homogeneous and isotropic Universe, implies that the field φ must satisfy
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φ(t, ~x) = φ(t). The energy momentum tensor (2.21) takes the form of a
perfect fluid (2.8) with

ρ =
1

2
φ̇2 + V (φ) (2.23)

and

p =
1

2
φ̇2 − V (φ). (2.24)

The equation of state w is

w ≡ p

ρ
=

1
2
φ̇2 − V

1
2
φ̇2 + V

, (2.25)

from which it can be seen that a scalar field can lead to negative pressure (w <
0) and accelerated expansion (w < −1

3
) if the potential term V dominates

over the kinetic term.
Finally, for a FRW spacetime equation (2.22) gives

φ̈+ 3Hφ̇+ V,φ = 0 (2.26)

and the first Friedmann equation becomes

H2 =
1

3

(
1

2
φ̇2 + V (φ)

)
. (2.27)

2.2.2 Slow-roll approximation

It is useful to define the Hamilton-Jacobi slow-roll parameters 2

εH ≡ −
Ḣ

H2
= −d lnH

dN
(2.28)

ηH ≡ εH −
1

2

d ln εH
dN

= εH −
1

2

ε̇H
HεH

, (2.29)

where dN ≡ d ln a = Hdt measures the number of efoldings N of inflationary
expansion. Cosmic acceleration corresponds to εH < 1, while a de Sitter
phase with constant H corresponds to εH = 0.

In terms of the scalar field, the above parameters are written as

εH =
1

2

φ̇2

H2
(2.30)

2We shall also denote these parameters simply as ε and η in the following. We use here
the subscript H so as not to confuse them with the potential slow-roll parameters εV and
ηV .
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and

ηH = − φ̈

Hφ̇
. (2.31)

From (2.30), we see that inflation occurs if the kinetic energy 1
2
φ̇2 contributes

very little to the total energy ρ = 3H2 or equivalently

φ̇2 � V (φ). (2.32)

In order for inflation to last for a sufficiently long time, the acceleration of
the field has to be small, so we assume that

|φ̈| � |3Hφ̇|, |V,φ|, (2.33)

which is equivalent to |ηH | � 1.
We can now use these conditions to simplify the equations of motion,

resulting in the slow-roll approximation:

3Hφ̇ ≈ −V,φ (2.34)

and

H2 ≈ V

3
. (2.35)

The slow-roll conditions, εH , |ηH | < 1, may also be expressed as conditions
on the shape of the inflaton potential, through the definition of the potential
slow-roll parameters [141]:

εV ≡
1

2

(
V,φ
V

)2

(2.36)

ηV ≡
V,φφ
V

. (2.37)

In the slow-roll regime we have

εV , |ηV | � 1. (2.38)

Within the slow-roll approximation, one can easily show that the Hamilton-
Jacobi and potential slow-roll parameters are related as follows:

εH ≈ εV , ηH ≈ ηV − εV . (2.39)

Inflation ends when the slow-roll conditions are violated:

εH(tf ) ≈ 1 or εV (tf ) ≈ 1. (2.40)
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The number of efoldings between the moment t and the end of inflation tf is

N(φ) ≡ ln
af
a

=

∫ tf

t

Hdt =

∫ φf

φ

H

φ̇
dφ ≈

∫ φ

φf

V

V,φ
dφ, (2.41)

where we have used (2.34) and (2.35). A successful solution to the horizon
problem requires that the total number of inflationary efoldings is Ntot & 60,
with the precise value depending on the energy scale of inflation and on the
details of reheating. The largest scales observed in the CMB are produced
N∗ ≈ 50 − 60 efoldings before the end of inflation (the precise value again
depends on the details of reheating and the post-inflationary thermal history
of the Universe [141,142]).

2.3 Reheating

If inflation was realized, then reheating is an important era in the history of
our Universe, as it is the time when the known matter was created. Here,
we will make a very brief and mainly qualitative description of the standard
mechanism of reheating.

After inflation ends, the scalar field begins to oscillate around the mini-
mum of the potential. If we assume that the potential can be approximated
as V (φ) = 1

2
m2φ2 near its minimum, equation (2.26) becomes

φ̈+ 3Hφ̇ = −m2φ. (2.42)

When the expansion time scale exceeds the oscillation period and we have
H � m, the friction term can be neglected and the field oscillates with
frequency m. Therefore, we can deduce that the quantity

ρ̇φ + 3Hρφ =
3

2
H
(
m2φ2 − φ̇2

)
(2.43)

averages to zero over one oscillation period, and thus, the field behaves like
pressureless matter with ρφ ∝ a−3.

In order to explain the current composition of the Universe, the inflaton
field has to couple to Standard Model fields so that the inflaton energy den-
sity is transferred to ordinary particles. If the inflaton can only decay into
fermions, the decay is slow and its energy density obeys the equation

ρ̇φ + 3Hρφ = −Γφρφ, (2.44)

where Γφ is the inflaton decay rate, which depends on complicated and model-
dependent physical processes. If the inflaton also decays into bosons, the
decay may be very rapid and is characterized as preheating.
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Finally, the particles produced by the inflaton decay will interact and
create other particles. The resulting gas of particles will eventually reach
thermal equilibrium with a temperature Trh that is determined by the en-
ergy density at the end of reheating. For more details about the process of
reheating (and preheating), we refer the reader to [143].



Chapter 3

Cosmological perturbation
theory

In the previous chapter, we treated the Universe as perfectly homogeneous.
However, in order to understand the structure formation and the observed
CMB data, we must introduce inhomogeneities. The creation of inhomo-
geneities is predicted in the framework of inflation that we have described.
It is a result of the quantum nature of the inflaton field, as we describe in
this chapter.

3.1 Perturbed spacetime

We consider small perturbations around the flat FRW metric ḡµν :

gµν = ḡµν + δgµν . (3.1)

The most general perturbed metric takes the form:

ds2 = a2(τ)
[
−(1 + 2A)dτ 2 − 2Bidx

idτ + ((1− 2D)δij + 2Eij)dx
idxj

]
,

(3.2)
where A, Bi, D and Eij are functions of space and time. A, D transform as
scalars under rotations in the background spacetime, Bi transforms as a 3-d
vector, and Eij as a 3-d tensor. However, we can extract two more scalar
quantities and one more vector quantity from Bi and Eij. This scalar-vector-
tensor (SVT) decomposition is performed as follows:

Bi = −∂iB + B̂i (3.3)

Eij =

(
∂i∂j −

1

3
δij∇2

)
E − 1

2

(
∂iÊj + ∂jÊi

)
+ Êij, (3.4)
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The hatted quantities (vectors and tensors) are divergenceless, i.e. ∂iB̂i =
∂iÊi = ∂iÊij = 0. The tensor part is also traceless, Êi

i = 0. In this way, the
10 degrees of freedom of the metric have been decomposed into 4 scalar, 4
vector and 2 tensor degrees of freedom.

What makes this division so important is that the scalar, vector, and
tensor parts do not couple to each other at first order, but they evolve inde-
pendently. This enables us to treat them separately. In this thesis, we will
mainly focus on scalar fluctuations, which are related to density perturba-
tions and are responsible for the structure formation in the Universe.

It is important to mention that the metric perturbations in eq. (3.2) are not
uniquely defined, but they depend on the coordinate system we have chosen,
or the so-called gauge choice. A different choice of coordinates leads to the
change of the values of the perturbation variables. It can even introduce fic-
titious perturbations or remove real perturbations in some cases [141].There-
fore, we need a way to identify true perturbations.

Let us now consider the following gauge (coordinate) transformation

x̃µ = xµ + ξµ, with ξ0 ≡ T, ξi ≡ Li = −∂iL+ L̂i, (3.5)

where L is a scalar and L̂i a divergenceless vector. Taking advantage of the
fact that ds2 is an invariant quantity, we can find how the metric transforms
under this change of coordinates. In particular, for the four scalar degrees of
freedom that we are interested in, we end up with the following relations:

A → Ã = A− T ′ −HT (3.6)

B → B̃ = B + T + L′ (3.7)

D → D̃ = D +HT − 1

3
∇2L (3.8)

E → Ẽ = E + L. (3.9)

The primes and the Hubble parameter correspond to derivatives with respect
to conformal time.

It is also useful to define the curvature perturbation ψ as

ψ ≡ D +
1

3
∇2E (3.10)

Then, the most general scalar metric perturbation can be written in the
form [144]

ds2 = a2(τ)
{
−(1 + 2A)dτ 2 + 2B,idx

idτ + ((1− 2ψ)δij + 2E,ij) dx
idxj

}
,

(3.11)
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with B,i = ∂iB, E,ij = ∂i∂jE. Here ψ is used as one of the scalar variables
instead of D. Under the gauge transformation (3.5) it transforms as

ψ → ψ̃ = ψ +HT. (3.12)

One way to overcome the gauge problem is to create combinations of the
metric perturbations that are invariant under gauge transformations. Such
scalar combinations are the following:

Φ ≡ A+H(B − E ′) + (B − E ′)′ (3.13)

Ψ ≡ D −H(B − E ′) +
1

3
∇2E = ψ −H(B − E ′), (3.14)

which are called Bardeen potentials. We can regard these variables as the
“true” spacetime perturbations, as they cannot be removed by a change of
coordinates.

Another way to deal with the gauge problem is to fix the gauge and
calculate all metric and matter perturbations in a specific coordinate system.
To simplify the problem, we can use the gauge freedom stemming from the
arbitrary functions T and L in order to reduce the scalar degrees of freedom
by two. Two of the most commonly used gauges are the following:

• Conformal-Newtonian gauge: In this case, we use the gauge free-
dom to set

B = E = 0. (3.15)

It is easy to see that this is achieved if we choose

L = −E and T = −B + E ′. (3.16)

Moreover, we can easily see that for this choice of coordinates we have
A = Φ and D = ψ = Ψ. Thus, the metric takes the simpler form

ds2 = a2(τ)[−(1 + 2Φ)dτ 2 + (1− 2Ψ)δijdx
idxj]. (3.17)

• Spatially-flat gauge: In this case, we make an appropriate gauge
transformation to set

D = E = 0 or ψ = E = 0. (3.18)

This is a convenient gauge for computing the fluctuations of the inflaton
field.

There are also several other known gauges, such as the comoving gauge, the
uniform energy-density gauge, the synchronous gauge and so on, but we do
not need to analyse them in this thesis.
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3.2 Perturbed matter

As we have mentioned in the previous chapter, the background energy tensor,
which corresponds to a homogeneous and isotropic Universe, is assumed to
be of the perfect fluid form

T̄ µν = (ρ̄+ p̄)ūµūν + p̄δµν , (3.19)

where ūµ = 1
a
(1,~0), ūµ = a(−1,~0) for a comoving observer 1. The energy

tensor of the perturbed Universe can be written as

T µν = T̄ µν + δT µν . (3.20)

After a short analysis (see e.g. [141]), we find the following relations for the
components of δT µν :

δT 0
0 = −δρ, (3.21)

δT 0
i = (ρ̄+ p̄)(υi −Bi), (3.22)

δT i0 = −(ρ̄+ p̄)υi, (3.23)

δT ij = δpδij + Πi
j, (3.24)

where δρ is the density perturbation, δp the pressure perturbation, υi the ve-
locity perturbation that is connected to the four-velocity through the relation
υi ≡ aui, and Πi

j the anisotropic stress tensor. The tensor Πij is symmetric
and traceless, and for a perfect fluid we have Πij = 0. If more than one fluids
contribute to the energy tensor, we have:

δρ =
∑
i

δρi, δp =
∑
i

δpi, (ρ̄+ p̄)~υ =
∑
i

(ρ̄i + p̄i)~υi (3.25)

Just like for the metric perturbations, the SVT decomposition can be ap-
plied to the energy-tensor perturbations. δρ and δp are purely scalar quan-
tities, ~υ can be divided into scalar and vector parts:

υi = −∂iυ + υ̂i, (3.26)

while Πij can be decomposed into scalar, vector and tensor parts:

Πij =

(
∂i∂j −

1

3
δij∇2

)
Π− 1

2

(
∂iΠ̂j + ∂jΠ̂i

)
+ Π̂ij. (3.27)

1Here the factors 1/a, a are needed in the velocities, because the metric is written in
terms of conformal time.



3.2 Perturbed matter 31

Now, under the gauge transformation (3.5), we can find the following
relations for the scalar components that we are interested in:

δρ → δ̃ρ = δρ− T ρ̄′, (3.28)

δp → δ̃p = δp− T p̄′, (3.29)

υ → υ̃ = υ + L′, (3.30)

Π → Π̃ = Π. (3.31)

We can see that the anisotropic stress Πij is gauge-invariant (not only its
scalar part Π).

Having written the metric and matter perturbations, one can write the
Einstein equations δGµ

ν = δT µν in the general form, after expressing the per-
turbed Einstein tensor in terms of the metric perturbations. However, we are
not going to present these equations here, but we will focus on the specific
case that the matter sector consists of a scalar field in the next section.

3.2.1 Adiabatic and isocurvature fluctuations

It is useful to define the total entropy perturbation as [145]:

S ≡ H
(
δp

p̄′
− δρ

ρ̄′

)
≡ H

(
δp
˙̄p
− δρ

˙̄ρ

)
, (3.32)

which is a gauge invariant quantity. If we also define the speed of sound
parameter c2

s ≡ ˙̄p/ ˙̄ρ ≡ p̄′/ρ̄′ and use the continuity equation, we can write
the above equation in the form

S =
1

3(1 + w)

(
δρ

ρ̄
− 1

c2
s

δp

ρ̄

)
. (3.33)

Perturbations for which

S = 0⇔ δp = c2
sδρ, (3.34)

are called adiabatic perturbations. On the other hand, isocurvature pertur-
bations violate the adiabaticity condition and are the complement of adi-
abatic perturbations. If more than one fluids are present in the Universe,
adiabatic fluctuations correspond to a change in the total energy density
or pressure, whereas isocurvature fluctuations correspond to perturbations
between different components [141]. Single-field inflation produces purely
adiabatic primordial perturbations. In multi-field inflationary models, the
field fluctuations that are tangent to the background inflaton trajectory are
adiabatic, while those that are perpendicular to this trajectory can be char-
acterized as isocurvature, as we shall see later.
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3.2.2 Comoving Curvature Perturbation

An important gauge-invariant quantity that is constructed by both metric
and matter perturbations is the comoving curvature perturbation. It is de-
fined as

R = −ψ −H(v −B). (3.35)

It is easy to see that in the comoving gauge, where we choose B = v = 0,
this quantity is analogous to the curvature perturbation ψ that is directly
related to the spatial curvature of the Universe. It can also be shown that
the comoving curvature perturbation is conserved on super-Hubble scales
(k � H) for adiabatic fluctuations [141, 145]. This means that R does not
change with time outside the horizon.

3.3 Inflaton fluctuations and their evolution

During inflation the main contribution to the energy tensor comes from the
inflaton field, which governs the dynamics of the Universe, as we saw in the
previous chapter. As we have done for all the other quantities, we divide the
inflaton into a background and a perturbation part:

φ(τ, ~x) = φ̄(τ) + δφ(τ, ~x). (3.36)

Using the metric (3.11), which includes only the scalar parts of the pertur-
bations, we can easily find that the perturbation of the energy-momentum
tensor for the field φ

T µν = ∂µφ∂νφ− δµν
(

1

2
gρσ∂ρφ∂σφ+ V (φ)

)
, (3.37)

has the following components:

δT 0
0 = −a−2

(
φ̄′δφ′ − Aφ̄′2

)
− V,φδφ = −δρ, (3.38)

δT 0
i = −a−2φ̄′∂i(δφ), (3.39)

δT i0 = a−2
[
φ̄′∂i(δφ) + φ̄′2∂iB

]
, (3.40)

δT ij = δij
[
a−2

(
φ̄′δφ′ − φ̄′2A

)
− V,φδφ

]
= δijδp. (3.41)

We see that scalar fields do not have anisotropic stress. Moreover, using the
above form of the energy tensor, we find that, under a gauge transformation
(3.5), the field perturbation changes as

δφ→ δ̃φ = δφ− T φ̄′. (3.42)
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The expansion of the Einstein equations δGµ
ν = δT µν to first order in

perturbations for the case of a scalar field is straightforward. The calculation
results in three independent equations, which we gather here:

3H(HA+D′)−∇2(ψ +HB) = −1

2

[
φ̄′δφ′ − Aφ̄′2 + a2V,φδφ

]
, (3.43)

ψ′ +HA+ (−H′ +H2)B =
1

2
(φ̄′δφ+ φ̄′2B), (3.44)

(2H′ +H2)A+HA′ + ψ′′ + 2Hψ′ = 1

2

[
(φ̄′δφ′ − φ̄′2A)− a2V,φδφ

]
. (3.45)

The equation of motion for the field φ (see the previous chapter) gives the
well-known background (Klein-Gordon) equation:

φ̄′′ + 2Hφ̄′ = −a2V,φ (3.46)

and the field perturbation equation

δφ′′ + 2Hδφ′ −∇2δφ+ a2V,φφδφ = −2a2AV,φ + (A′ + 3D′ +∇2B)φ̄′. (3.47)

Now we would like to use the Einstein equations in order to eliminate the
metric perturbations from eq. (3.47) and obtain a differential equation that
contains only the inflaton perturbation. To achieve this, it is more convenient
to go to the spatially flat gauge where ψ = 0. In this way, we end up with
the following equation:

Q′′ + 2HQ′ −∇2Q+

[
a2V,φφ −

1

a2

(
a2

H
φ̄′2
)′]

Q = 0, (3.48)

where Q ≡
(
δφ+ φ̄′

Hψ
)

is the so-called Sasaki or Mukhanov variable that

in the spatially flat gauge is simply Q = δφ. It can be easily checked that
the quantity Q is gauge invariant. Equation (3.48) is in fact the Mukhanov-
Sasaki equation, which is better known in its equivalent form [146,147]

v′′ −∇2v − z′′

z
v = 0, (3.49)

where2 v ≡ aQ and z ≡ aφ̄′/H.

2It is apparent that this quantity is different from the velocity perturbation υ, although
we have used the same symbol.
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3.3.1 Quantization and initial conditions

Equation (3.49) can also arise from the variation of the second order action

S(2) =
1

2

∫
d4x

[
(v′)2 − (∂iv)2 +

z′′

z
v2

]
. (3.50)

Now we can easily perform the quantization of the field v. We promote the
field v and its conjugate momentum π = v′ to quantum operators so that

[v̂(τ, ~x), π̂(τ, ~x′)] = iδ(~x− ~x′). (3.51)

Performing a Fourier expansion of the field v, we have

v̂(τ, ~x) =

∫
d3k

(2π)3/2
v̂~k(τ)ei

~k·~x, (3.52)

where the Fourier components v̂~k can be expressed in terms of annihilation

and creation operators (â~k and â†~k) as follows:

v̂~k(τ) = vk(τ)â~k + v∗k(τ)â†~k. (3.53)

The mode functions vk(τ), v∗k(τ) satisfy the Mukhanov-Sasaki equation (3.49)
(if we write it in Fourier space). If they are suitably normalized, we can have
the well-known canonical commutation relations

[â~k, â
†
~k′

] = δ(~k + ~k′). (3.54)

The vacuum of the theory is defined via

â~k|0〉 = 0. (3.55)

However, in order to specify precisely the vacuum state, we need to choose
appropriate initial conditions for the mode function. We know that at the
beginning of inflation (τ → −∞) all modes of interest were deep inside the
horizon, i.e. k � H. In this limit, it can be seen that the Mukhanov-Sasaki
equation reduces to

v′′k + k2vk ≈ 0, (3.56)

whose two independent solutions are ∼ e±ikτ . Nevertheless, only the positive
frequency mode corresponds to the minimal energy state [141]. Thus, we
must choose the initial condition

lim
τ→−∞

vk(τ) =
1√
2k
e−ikτ , (3.57)
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which defines the so-called Bunch-Davies vacuum.
If we consider the de-Sitter limit (H = const.), which is a good first

approximation in order to describe slow-roll inflation, we have z′′/z = a′′/a =
2/τ 2. In this case, the solution of the Mukhanov-Sasaki equation that obeys
the initial condition (3.57) turns out to be

vk(τ) =
1√
2k
e−ikτ

(
1− i

kτ

)
. (3.58)

3.3.2 Power spectrum

It is straightforward to show that the variance of the inflaton fluctuations
(the variance of the field operator v̂(τ, ~x)) is

〈|v̂|2〉 = 〈0|v̂†(τ,~0)v̂(τ,~0)|0〉 =

∫
d ln k

k3

2π2
|vk(τ)|2. (3.59)

We define the power spectrum of v as

∆2
v ≡

k3

2π2
|vk(τ)|2. (3.60)

After horizon crossing, it is convenient to switch from the inflaton fluctuation
v to the comoving curvature perturbation R, which stays constant outside
the horizon. Using the relation (3.35), it is easy to show that the gauge
invariant quantities v and R are related via

R = −v
z
. (3.61)

Thus, the power spectrum of R is given by

∆2
R =

1

z2
∆2
v. (3.62)

If ∆2
R is k-independent, the spectrum is called scale-invariant. An impor-

tant quantity that specifies the deviation from scale-invariance is the scalar
spectral index ns, which is defined by

ns − 1 ≡ d ln ∆2
R

d ln k
, (3.63)

where ns = 1 corresponds to exact scale invariance. For slow-roll inflation,
ns can be approximated as [142]

ns − 1 ≈ −6εV + 2ηV . (3.64)
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The power spectrum around a reference scale k∗ can therefore be approxi-
mated through the power law form

∆2
R(k) = As

(
k

k∗

)ns−1

, (3.65)

where As is the amplitude of the scalar spectrum. For the pivot scale k∗ =
0.05 Mpc−1, the measured values for As and ns are [139]

As = (2.101+0.031
−0.034)× 10−9 (3.66)

ns = 0.9649± 0.0042. (3.67)

Finally, another quantity whose calculation is important in order to check
the viability of an inflationary model is the tensor-to-scalar ratio r, defined
as

r ≡ At
As
, (3.68)

where At is the amplitude of the tensor power spectrum (see e.g. [141]). When
the slow-roll approximation applies, r can be approximately calculated as

r ≈ 16εV . (3.69)

Observational constraints for r refer to its upper bound. The most restrictive
constraint that can be found in [139] is

r < 0.058. (3.70)



Chapter 4

Steps and inflection points

Having presented the basic theory of inflation and cosmological perturba-
tions, we can now study in more depth the power spectrum of curvature
perturbations and the features of the potential in single-field inflation that
have a significant impact on it. This chapter is essentially based on [148].

4.1 Dynamics in terms of the number of efold-

ings

In this section we collect the dynamical equations that are needed for the
study of the curvature perturbations and their spectrum.

We recall that the most general scalar metric perturbation around the
Friedmann-Robertson-Walker (FRW) background takes the form [144]

ds2 = a2(τ)
{
−(1 + 2A)dτ 2 + 2B,i dx

idτ + ((1− 2ψ)δij + 2E,ij) dx
idxj

}
,

(4.1)
with B,i = ∂iB, E,ij = ∂i∂jE. As we have mentioned in the previous chapter,
on this background one can parametrize the inflaton field as ϕ(τ) + δϕ(τ, x)1

and define a gauge-invariant perturbation as

v = a

(
δϕ+

ϕ′

H
ψ

)
, (4.2)

which satisfies the Mukhanov-Sasaki equation [146,147]

v′′ −∇2v − z′′

z
v = 0, (4.3)

1From now on, we omit overbars in background quantities and we often use the symbol
ϕ instead of φ for the inflaton.
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with z = aϕ′/H. The Fourier modes of v satisfy

v′′k(τ) +

(
k2 − z′′

z

)
vk(τ) = 0. (4.4)

The standard assumption, which we adopt, is that at early times the field
is in the Bunch-Davies vacuum. The strong features of the potential have
not become relevant yet, so that the background field is in the slow-roll
regime. All the modes that are phenomenologically interesting today were
deeply subhorizon at such early times. They are described by the standard
expression vk = e−ikτ/

√
2k, which we use in order to set the initial condi-

tions for their subsequent evolution. The spectrum of perturbations becomes
more transparent through the use of the gauge-invariant comoving curvature
perturbation R = −v/z 2, which satisfies

R′′k + 2
z′

z
R′k + k2Rk = 0 (4.5)

in Fourier space.

As we are mainly interested in the amplitude of the complex variables v
and R, we introduce polar coordinates, such that vk(τ) = Vk(τ) exp(−iθk(τ)),
with Vk and θk real. From eq. (4.4) we obtain

V ′′k +

(
k2 − z′′

z
− θ′2k

)
Vk = 0 (4.6)

θ′′k
θ′k

+ 2
V ′k
Vk

= 0. (4.7)

The second equation can be integrated, with the solution θ′k V2
k = constant.

At early times we have Vk = 1/
√

2k and θk = kτ . This fixes the constant of
integration to 1/2, so that we can set

θ′k =
1

2V2
k

(4.8)

in eq. (4.6). In this way we obtain

V ′′k +

(
k2 − z′′

z
− 1

4V4
k

)
Vk = 0, (4.9)

2In this and the following chapter we symbolise the comoving curvature perturbation
with R and its amplitude with R.
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which must be solved with initial conditions Vk → 1/
√

2k, V ′k → 0, for τ →
−∞. The curvature perturbation is parametrized asRk(τ) = −Rk(τ) exp(−iθk(τ)),
with Rk = Vk/z. Its amplitude satisfies

R′′k + 2
z′

z
R′k +

(
k2 − 1

4z4R4
k

)
Rk = 0. (4.10)

It is convenient for the numerical analysis to use the number of efoldingsN
as the independent variable for the evolution of the perturbations. Then the
Hubble parameter and the Hamilton-Jacobi slow-roll parameters are given
by the relations

H2 =
V (ϕ)

3− 1
2
ϕ2
,N

(4.11)

εH = −d lnH

dN
=
ϕ2
,N

2
(4.12)

ηH = εH −
1

2

d ln εH
dN

=
ϕ2
,N

2
− ϕ,NN

ϕ,N
, (4.13)

where subscripts denote derivatives with respect to N . The parameter z is
given by

z = eN ϕ,N , (4.14)

while the effective equation of state for the background is w = −1 + 2εH/3.
The evolution of the background field is governed by the equation

ϕ,NN + 3ϕ,N −
1

2
ϕ3
,N +

(
3− 1

2
ϕ2
,N

)
V,ϕ
V

= 0, (4.15)

with V (ϕ) the inflaton potential. The inflaton fluctuation obeys the equation

vk,NN+(1−εH)vk,N+

(
k2

e2NH2
+ (1 + εH − ηH)(ηH − 2)− (εH − ηH),N

)
vk = 0,

(4.16)
and its amplitude

Vk,NN + (1− εH)Vk,N +

[
k2

e2NH2

(
1− 1

4k2V4
k

)
+ (1 + εH − ηH)·

(ηH − 2)− (εH − ηH),N

]
Vk = 0.

(4.17)

In the above differential equations we can express the coefficients as

1− εH = 1−
ϕ2
,N

2
(4.18)
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(1+εH−ηH)(ηH−2)−(εH−ηH),N = −2−3
ϕ,NN
ϕ,N
−ϕ,NNN

ϕ,N
+
ϕ2
,N

2
+

1

2
ϕ,N ϕ,NN .

(4.19)
We can also write equivalent equations for the curvature perturbation, which
take the form

Rk,NN +

(
3 +

2ϕ,NN
ϕ,N

−
ϕ2
,N

2

)
Rk,N +

k2

e2NH2
Rk = 0 (4.20)

and

Rk,NN +

(
3 +

2ϕ,NN
ϕ,N

−
ϕ2
,N

2

)
Rk,N +

k2

e2NH2

(
1− 1

4k2e4Nϕ4
,NR4

k

)
Rk = 0,

(4.21)
for the perturbation and its amplitude, respectively.

The spectrum of curvature perturbations is

∆2
R =

k3

2π2

V2
k

e2Nϕ2
,N

=
k3

2π2
R2
k. (4.22)

The normalization of the spectrum can be set in terms of a pivot scale k∗
and the number of efoldings N∗ at which it crosses the horizon: k∗ = eN∗H∗.
By defining dimensionless variables k̃ = k/k∗, ṽk =

√
k∗ vk, Ṽk =

√
k∗ Vk,

R̃k =
√
k∗Rk, R̃k =

√
k∗Rk, as well as δN = N −N∗, we obtain

∆2
R = As

k̃3 2Ṽ2
k

e2 δN

ϕ2
,N∗

ϕ2
,N

. (4.23)

where

As =
1

4π2

H2
∗

ϕ2
,N∗

(4.24)

sets the scale for the amplitude.
For a given inflaton potential, one can integrate numerically eq. (4.15)

in order to derive the inflaton background, and then integrate one of eqs.
(4.16), (4.17), (4.20), (4.21) for the field or curvature perturbation, in order
to deduce the spectrum. The real and imaginary parts of vk and Rk oscil-
late very rapidly for subhorizon perturbations, as can be deduced from eqs.
(4.16), (4.20). This makes the numerical integration of these equations more
demanding. On the other hand, the amplitudes Vk and Rk have a smoother
evolution. It is possible for these quantities to become oscillatory also, as
we shall see in the following. However, the presence of the terms ∼ V−4

k in
eq. (4.17) and ∼ R−4

k in eq. (4.21) guarantees that these amplitudes remain
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always positive. For the numerical analysis of the following section, we solve
the evolution equations both for the field perturbation vk and its amplitude
Vk in order to cross-check the results.

A quantity that plays a crucial role in determining the qualitative be-
haviour of the solutions is the one in the first parenthesis of eqs. (4.20),
(4.21), which we denote by

f(N) = 3 +
2ϕ,NN
ϕ,N

−
ϕ2
,N

2
(4.25)

as a function of N . In the slow-roll regime, this quantity acts as a gener-
alized friction term. However, for the more general evolution that we are
considering, it may become negative and lead to a dramatic enhancement of
the perturbations. We also define the function

g(N) = 1− 1

4k2e4Nϕ4
,NR4

k

, (4.26)

appearing in the second parenthesis, evaluated on a given solution for the
perturbation. This function diverges whenever the amplitude Rk approaches
zero, thus preventing it from turning negative. An alternative way to view
this point is to notice that eq. (4.21) is equivalent to eq. (4.20), while the
amplitude of Rk cannot turn negative. The fact that Rk can approach zero
at certain times during the later stages of the evolution, as we shall see in
the following, indicates that during these stages the real and the imaginary
part of Rk are in phase and can cross zero almost simultaneously.

4.2 Features of the inflaton potential

We would like to explore features of the inflaton potential that can result in
an amplification of the spectrum of curvature perturbations by several orders
of magnitude. Our underlying motivation is to determine the appropriate
conditions for the creation of primordial black holes. This is possible in
a range of scales in which perturbations become of order one. Significant
deviations from the scale-invariant spectrum can occur only at small length
scales (large wavenumbers), for which the evolution of the spectrum is highly
nonlinear, so that current observations do not constrain its form severely.
Such scales correspond to comoving wavenumbers larger than O(1) in units
of Mpc−1.
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4.2.1 Minimal framework

Instead of considering a specific model, we keep only the minimal number
of elements required for addressing the problem. We focus on only a limited
range of scales, and the corresponding values of the inflaton background when
these exit the horizon. We approximate the inflaton potential by the smallest
number of relevant terms. The features of interest are:

1. an inflection point, at which the first and second derivatives of the
potential vanish,

2. one or more points at which the potential decreases sharply.

Both these features can appear in a potential with the simple parameteriza-
tion

V (ϕ) = V0

(
1 +

1

2

∑
i

Ai (1 + tanh(ci(ϕ− ϕi))) +Bϕ

)
, (4.27)

where i is a positive integer counting certain special field values. The first
terms in the parenthesis can be identified with the vacuum energy that drives
inflation. The crucial assumption that we have made is that the vacuum en-
ergy can have one or more transition points at which it jumps from one
constant value to another. One could speculate that these points correspond
to values of the inflaton background associated with some kind of decoupling
of modes whose quantum fluctuations contribute to the vacuum energy. How-
ever, such a speculation cannot be put easily on formal ground because of
our lack of understanding of the nature of the cosmological constant. Sharp
changes in the vacuum energy can also occur during transitions from one
region of a multi-field potential to another. The analysis of such a system
would require the inclusion of entropy perturbations. The current work can
be regarded as simplified first step towards understanding the features that
could appear in the spectrum of curvature perturbations for a multi-field
system. The linear term in the potential (4.27) is the only term in a field ex-
pansion that is indispensable for our discussion. In this subsection we neglect
the effect of higher powers of the inflaton field that would make the analysis
model dependent. We assume, without loss of generality, that B < 0. An
inflection point can appear at φ1 = 0 if A1 = −2B/c, Ai = 0 for i > 1.
Negative values of Ai result in a series of steps in the potential.

A drawback of the potential (4.27) is that it is not possible to make a
connection with the range of the spectrum that is relevant for the cosmic-
microwave-background (CMB). The slope B of the potential required for
agreement with the measured spectral index is too steep for obtaining a large
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number of efoldings. As a result, contact with the observations is not possible
and we treat the pivot scale k∗, the amplitude As and the spectral index ns,
introduced in the previous section, as free parameters. In particular, we
assume that k∗ is located deep in the nonlinear part of the spectrum and
the spectral index is sufficiently close to 1 for a large number of efoldings
to be produced. We present our results for the spectrum in units of As,
which is equivalent to setting As = 1. It is also obvious from eq. (4.15)
that the absolute scale V0 of the potential does not play any role for our
considerations. In practice, we set V0 = 1 for the numerical analysis. Finally,
the inflaton field and the constants ci, B are given in units of MPl (we remind
that we have set MPl = 1 in our equations).

Before computing the spectrum, it is instructive to understand which
type of background evolution leads to its enhancement. The perusal of eq.
(4.21) leads to the conclusion that the sign of the function f(N) defined in
eq. (4.25) is crucial. For f(N) > 0 the second term of eq. (4.21) acts as
a friction term, suppressing the growth of the curvature perturbation. The
opposite happens for f(N) < 0. It is known that the presence of an inflection
point in the potential enhances the spectrum. For this reason, we examine
first the form of f(N) for such a case. Then we analyse the conditions under
which a similar enhancement of the spectrum can occur for a potential with
a step-like structure. It must be emphasized that the two cases are distinct.
The rolling of the inflaton through an inflection point does not stop inflation,
even though the standard slow-roll conditions are not satisfied because of the
large value of ηH . On the other hand, the transition through a sharp drop
in the potential leads to a fast increase of the time-derivative of the inflaton,
and in many cases to a brief interruption of inflation. This is apparent from
the effect of a large value of εH on the effective equation-of-state parameter
w = 2εH/3− 1.

In fig. 4.1 we present various elements of the calculation of the power
spectrum for different potentials. We have used the same scale for all related
plots in order to make the comparison easy. The first plot in each row de-
picts the inflaton potential. The potential at the top has an inflection point
at ϕ = 0, even though this is not clearly visible. The potentials in the next
three rows display a step at ϕ = 0, whose steepness is increased from top
to bottom by choosing larger values of the parameter c1. The form of the
potential is reflected in the field evolution. In the second plot of the first
row, the field stays almost constant near zero for several efoldings. In the
following rows it evolves very quickly, within 2-3 efoldings, from one plateau
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Figure 4.1: The inflaton potential V (ϕ) of eq. (4.27), the evolution of the
inflaton ϕ, the function f(N) defined in eq. (4.25), and the power spectrum
of curvature perturbations with wavenumber k, for various choices of the
parameters of the potential: First row: A1 = 0.000605, c1 = 100, B =
−0.03. Second row: A1 = −0.3, c1 = 20, B = −0.03. Third row: A1 =
−0.3, c1 = 100, B = −0.03. Fourth row: A1 = −0.3, c1 = 300, B = −0.03.
The scales of k and V are arbitrary.

of the potential to the next. The third plot in each row depicts the “effective
friction” f(N). In all cases this function becomes negative during part of the
evolution, thus leading to a strong enhancement of the fluctuations. For an
inflection point it starts with the standard value 3, then becomes negative,
returns to positive values larger than 3, and eventually becomes equal to 3
again. For a step in the potential, there is a strong increase to very large
positive values before the function becomes negative. This increase is con-
fined within a period of efoldings that shrinks with increasing steepness (and
c1). On the other hand, the form of f(N) in the interval where it is negative
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Figure 4.2: The inflaton potential V (ϕ) of eq. (4.27), the evolution of the in-
flaton ϕ, the function f(N) defined in eq. (4.25), and the power spectrum of
curvature perturbations with wavenumber k, for various choices of the param-
eters of the potential: First row: A1 = −0.3, c1 = 100, B = −0.03. Second
row: A1 = A2 = −0.15, ϕ2 = 0.3, c1 = c2 = 100, B = −0.03. Third row:
A1 = A2 = A3 = −0.1, ϕ2 = 0.3, ϕ3 = 0.6, c1 = c2 = c3 = 100, B = −0.03.
The scales of k and V are arbitrary.

is largely independent of c1, because it is determined by the approach of the
field to slow roll on the second plateau. It seems reasonable to expect that,
for steeper steps, the suppression of the perturbation during the strong in-
crease of f(N) is a subleading effect relative to the subsequent enhancement.
This expectation is confirmed by the spectrum depicted in the last plot of
each row. In the first row we observe the strong and broad enhancement of
the spectrum associated with an inflection point. After an initial dip, the
spectrum grows rather steeply towards a maximum, beyond which it decays
smoothly towards its almost scale-invariant form. This behavior is consistent
with the general analysis of ref. [149]. The spectra of the next three rows dis-
play a strong oscillatory behaviour, which will be discussed in the following.
The largest enhancement is achieved for a band of wavenumbers during the
first oscillation. It is clear that the magnitude of this enhancement increases
with c1.

The maxima of the spectra in fig. 4.1 are larger by up to three orders
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Figure 4.3: The inflaton potential V (ϕ) of eq. (4.27), the evolution of the
inflaton ϕ, the function f(N) defined in eq. (4.25), and the power spectrum
of curvature perturbations with wavenumber k, for various choices of the
parameters of the potential: First row: ϕ2 = 0.2, ϕ3 = 0.4. Second row:
ϕ2 = 0.3, ϕ3 = 0.6. Third row: ϕ2 = 0.4, ϕ3 = 0.8. In all cases: A1 =
A2 = A3 = −0.1, c1 = c2 = c3 = 100, B = −0.03. The scales of k and V are
arbitrary.

of magnitude relative to the standard value for the scale-invariant case. The
enhancement is restricted by the fact that the maximal “velocity” achieved
by the rolling field is limited by the size of the step. It is possible, however,
that the potential includes several step-like features. We examine their effect
in fig. 4.2, where we compare potentials with one, two or three steps. The
total drop in the potential is the same in all three cases. It is apparent from
the last column that the presence of several features in the potential can
lead to the increase of the spectrum by several orders of magnitude. The
reason can be traced to the “effective friction” f(N), displayed in the third
column. The presence of several steps increases the total number of efoldings
over which this function takes negative values. This is reflected in the larger
enhancement of the perturbations.

The field values at which the features of the potential appear play a crucial
role for the form of the resulting spectrum. This feature is demonstrated in
fig. 4.3 in which we consider potentials with three steps, at field values with
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Figure 4.4: The curvature perturbation as a function of the number of
efoldings N , and the functions f(N), g(N), for the potential (4.27) with
A1 = A2 = A3 = −0.1, ϕ2 = 0.3, ϕ3 = 0.6, c1 = c2 = c3 = 100,
B = −0.03. Blue line: 1

30

√
∆2
R(k,N) for k = 2.66 × 105. Red line: The

function 1
10
f(N) defined in (4.25). Green line: The function g(N) defined

in (4.26).

increasing distance from each other. It is apparent from the first row that
when the steps are very close to each other the function f(N) stays negative
for a small number of efoldings and the enhancement is comparable to the
one-step case. Increasing the distance leads to spectrum enhancement, as
f(N) stays negative longer. However, the enhancement persists up to a
certain distance between the features of the potential, beyond which each
step acts independently on the spectrum. This beaviour is apparent in the
second and third rows of fig. 4.3.

A prominent feature of the spectra resulting from sharp drops in the
inflaton potential is the appearance of strong oscillations, whose origin we
would like to understand. One can speculate that the oscillatory pattern
arises when modes within a wavenumber range exit the horizon, but then
reenter during the period when inflation stops and the comoving horizon
grows. Upon reentry they start oscillating again, until they exit for a second
time during a subsequent period of inflation [85,144]. However, the onset or
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Figure 4.5: The Hamilton-Jacobi slow-roll parameters εH and ηH , defined
in eqs. (4.12) and (4.13) respectively, and the “effective-friction” term f(N)
defined in eq. (4.25), as a function of the number of efoldings, for two choices
of the parameters of the potential: Left plot: A1 = 0.000605, c1 = 100,
B = −0.03. Right plot: A1 = −0.3, c1 = 100, B = −0.03. The two sets of
parameters correspond to the first and third row of fig. 4.1.

freezing of the oscillatory behaviour is not instantaneous, while the crossing
of the horizon is essentially a continuous process with a certain width. An
exact analytical treatment is difficult, and the evolution of each mode can
be computed only numerically. In fig. 4.4 we present the evolution of the
curvature perturbation R̃k̃(N) (blue line) for a given Fourier mode k̃ = 2.66×
105 for an inflaton background arising from a potential with three steps. The
red and green lines depict the functions f(N) and g(N) defined by eqs. (4.25)
and (4.26) respectively. The enhancement of the curvature perturbation
during the periods of inflation with negative f(N) is apparent. Similarly,
the freezing of the perturbation during the periods with positive f(N) is also
apparent, resulting in R̃k̃(N) becoming asymptotically constant.

A striking feature is the series of oscillations for the amplitude of pertur-
bations, which approaches zero at several values of N . At these points the
function g(N) becomes very negative, thus preventing the amplitude from
crossing zero. The origin of the oscillations is explained in detail in the next
chapter, where we make an analytical approximation of the power spectrum
of curvature perturbations.

In fig. 4.5 we look in detail at the role of the slow-roll parameters in the
enhancement of the spectrum. We contrast the case of an inflection point
in the potential (left plot) with that of a step-like feature (right plot). In
the first case, the solution remains inflationary during the whole evolution.
The Hamilton-Jacobi parameter εH has a constant value, apart from the
part of the evolution near the inflection point, during which it approaches
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zero. The parameter ηH starts from a value close to zero during the slow-roll
regime, first turns positive and subsequently negative, eventually returning
close to zero during the second slow-roll regime. The “effective-friction” term
is strongly influenced by ηH and becomes negative during the time that ηH is
significantly larger than zero. In the case of a step-like feature, the parameter
εH grows large during the interval that this feature is traversed. For sharp
steps or when the second plateau is sufficiently low, the solution ceases to be
inflationary for a short time, as can be verified by computing the equation of
state parameter w = −1+2εH/3. The parameter ηH first turns negative, but
then positive as the inflaton “decelerates” while settling on a slow-roll regime
on the second plateau. The “effective friction” is again mainly influenced by
ηH and becomes negative when ηH takes large positive values. The effect
is sufficiently strong for the friction term to be negative even when εH is of
order 1.

4.2.2 A specific model

The analysis of the previous subsection relied on a simplified potential which
did not allow us to make contact with the physical scales of the power spec-
trum. In order to obtain a more complete picture, we study in this subsection
a potential inspired by the Starobinsky model [150], to which we introduce
step-like features. The potential is given by the expression

V (ϕ) = V0

(
1− eBϕ

)2

(
1 +

1

2

∑
i

Ai (1 + tanh(ci(ϕ− ϕi)))

)
. (4.28)

It is important to mention that we do not engage in model building at this
point, as we do later in this thesis when we construct models in the framework
of α-attractors. Thus, the above potential has not been derived from a
more fundamental framework, such as supergravity. It is a phenomenological
construction that has enough flexibility to allow for a sufficient number of
efoldings, as well as power-spectrum scale and spectral index compatible with
the CMB observations.

In fig. 4.6 we present the various elements in the calculation of the power
spectrum of curvature perturbations for this model. The first plot depicts
the potential with the characteristic step-like feature. The values of the
parameters are: A1 = A2 = A3 = 0.05, c1 = c2 = c3 = 200, ϕ1 = 5, ϕ2 = 4.8,
ϕ3 = 4.6, B = −

√
2/3. Dimensionful parameters are given in units of MPl.

The evolution of the inflaton ϕ as a function of the number of efoldings N
is shown in the second plot. We count the number of efoldings from the
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Figure 4.6: The inflaton potential V (ϕ) defined in (4.28), the evolution of
the inflaton ϕ as a function of the number of efoldings N , the function f(N)
defined in eq. (4.25), and the power spectrum of curvature perturbations
with wavenumber k, for A1 = A2 = A3 = 0.05, c1 = c2 = c3 = 200, ϕ1 = 5,
ϕ2 = 4.8, ϕ3 = 4.6, B = −

√
2/3. Dimensionful parameters in units of MPl.

The scale of the potential V0 has been adjusted in order to reproduce the
amplitude of curvature perturbations in the CMB range.

moment that the scale with wavenumber k∗ = 0.05 Mpc−1, which we use as
a pivot scale, exits the horizon. The above parameters result in a power
spectrum in the CMB range with a spectral index ns ' 0.969 and a tensor
to scalar ratio r ' 0.0027. The third plot depicts the “effective-friction”
function f(N) defined in eq. (4.25). It deviates from the standard value 3
during the period in which the inflaton field takes values in the vicinity of the
step-like feature of the potential. When f(N) is negative, it acts as negative
friction, leading to the enhancement of the curvature modes that cross the
horizon during this period. The enhancement for certain wavenumber bands
can be significant. For this particular choice of parameters the spectrum
is enhanced by roughly four orders of magnitude. The enhancement can be
made larger with an appropriate choice of the potential, or with the inclusion
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of additional step-like features. The curvature power spectrum is depicted
in the last plot. It has been normalized to the standard value ' 2.1 × 10−9

for k∗ = 0.05 Mpc−1 through an appropriate choice of the scale V0 of the
potential.

The strong features in the spectrum appear deep in the nonlinear regime,
where the phenomenological constraints are not strict because of the lack of
analytical understanding of the evolution of the perturbations. The approxi-
mate wavenumber value kf for which these features appear can be estimated
by noting that kf = exp(Nf )Hf must hold at horizon crossing. For the pivot
scale this relation is k∗ = exp(N∗)H∗, and we have set N∗ = 0. If the Hub-
ble parameter does not change substantially between N∗ and Nf , we have
kf/k∗ ∼ exp(Nf ). From the second plot of fig. 4.6 we obtain Nf ∼ 23, which
gives kf ∼ 109 Mpc−1, in agreement with the last plot.
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Chapter 5

Analytical calculation of the
spectrum

In this chapter we discuss an approximate analytical treatment of the spec-
trum of curvature perturbations in cases that the slow-roll approximation is
strongly violated. We assume that the inflaton potential displays the stan-
dard plateau that can lead to an almost scale-invariant spectrum. In addi-
tion, it contains a strong feature within a finite range of field values, which
can lead to the violation of the slow-roll conditions or even cause inflation to
cease momentarily. In order to be as model independent as possible, we do
not focus on specific potentials with these properties. The material of this
chapter is mainly drawn from [151] and [152].

5.1 Approximation with “pulses”

5.1.1 General considerations

In the previous chapter we saw that the evolution equation for the comoving
curvature perturbation takes the form

Rk,NN + f(N)Rk,N +
k2

e2NH2
Rk = 0, (5.1)

with the quantity

f(N) = 3 +
2ϕ,NN
ϕ,N

−
ϕ2
,N

2
= 3 + εH − 2ηH (5.2)

playing a crucial role in determining the qualitative behaviour of the solu-
tions. In the slow-roll regime it acts as a generalized friction term. However,
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if ηH becomes positive and large it can lead to a dramatic enhancement of
the perturbations.

In the approximation that the slow-roll parameters are neglected and H
remains constant, the solution of eq. (5.1) can be expressed in terms of the
Bessel functions J±3/2 as

Rk(N ;Cp, Cm, 3) = Ae−
3
2
N

(
CpJ3/2

(
e−N

k

H

)
+ Cm J−3/2

(
e−N

k

H

))
,

(5.3)
where we take A to be real without loss of generality. We also emphasize that,
even though Cp, Cm are constants with respect to N , they are generally k-
dependent. For the values Cp = 1, Cm = i the two Bessel functions combine

into the Hankel function of the first kind H
(1)
3/2. The curvature pertubation

is Rk(N ; 1, i, 3) ∝
(
e−ikτ/

√
k
)

(1 − i/(kτ))/a(τ), where the conformal time

is Hτ = −e−N = −1/a. For τ → −∞ this is the standard expression
for the Bunch-Davies vacuum in the slow-roll regime, which is taken as the
initial condition for the evolution of the fluctuations. For τ → 0− or N →
∞ the curvature perturbation approaches a constant value ∝ k−3/2 as the
mode with wavenumber k moves out of the horizon and freezes. The power
spectrum of curvature perturbations ∆2

R = (k3/2π2)|Rk|2 is scale invariant.
It is important to notice that the value of the curvature perturbation at late
times, or N →∞, comes from the second term in eq. (5.3), as the first one
vanishes. This can be easily seen if one considers eq. (5.3) for large values of
N . In this limit, it takes the form

Rk(N) = A

√
2

π

(
k

H

)−3/2

e−N

[
−
(
Cme

N + Cp
k

H

)
cos

(
e−N

k

H

)

+

(
Cpe

N − Cp
k

H

)
sin

(
e−N

k

H

)]
,

(5.4)

Therefore, it is the absolute value of Cm that determines the power spectrum.
The above picture is modified when the function f(N) of eq. (5.2) de-

viates from a constant value equal to 3. For small values of εH , ηH the
deviations from scale invariance can be computed analytically through the
standard slow-roll analysis. However, our interest lies with strong modifica-
tions of εH , ηH that result in the enhancement of the spectrum by several
orders of magnitude.

The typical forms of the effective-friction function f(N) that we would
like to analyse are like those depicted in fig. 4.1 of the previous chapter, which
result from the potential (4.27) for specific choices of its parameters. The
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function f(N) remains close to 3, apart from a range of efoldings in which
it deviates strongly from this value. Similar features can be obtained with
other types of potentials in single- or multi-field inflation, such as potentials
with inflection points, or multiple inflationary stages. The pattern can be
repeated several times. As we have already mentioned, when f(N) becomes
negative, it induces a strong enhancement of the spectrum. The modifications
to the spectrum appear for wavenumbers of density perturbations deep in the
nonlinear regime today.

In order to obtain an analytical solution, we model f(N) through a se-
quence of square “pulses”, each with constant f(N) = κi 6= 3. At early
and late times we assume that the inflaton is in a slow-roll regime, with
negligible slow-roll parameters, so that f(N) = 3 and the curvature pertur-
bation is given by eq. (5.3). We approximate the Hubble parameter H as
constant. This is a good approximation, as our focus is on modifications of
the spectrum by several orders of magnitude. In comparison, the change in
the Hubble parameter for an inflection point in the potential is less than 1%,
while for a step in the potential it is of order 10%. We use an arbitrary nor-
malization for the number of efoldings by absorbing a factor of exp(N0) in k,
where N0 corresponds to the actual number of efoldings since the beginning
of inflation until the moment in time that we denote by N = 0. In practice
this means that the physical value of the wavenumber is exp(N0) k.

Our starting point is the solution (5.3), which defines the initial condition
for N → −∞. For Cp = 1, Cm = i, this expression corresponds to the
Bunch-Davies vacuum. We neglect slow-roll corrections and approximate the
evolution through eq. (5.3) until the value of N at which the first nontrivial
“pulse” appears in f(N). In subsection 5.1.3 we analyse the modification of
the curvature perturbation induced by this and the following “pulses”, until
the system returns to a slow-roll regime. For N → ∞ the solution becomes
constant. We are interested in the relative increase of the asymptotic value of
|Cm| in comparison to the value |Cm| = 1 corresponding to a scale-invariant
spectrum. In this sense, the value of the k-independent parameter A in
eq. (5.3) is not of interest to us. This parameter would determine the
amplitude of the spectrum in the CMB region, and needs to be adjusted
to a phenomenologically correct value.

An important point concerns the form of f(N). Negative values of this
function result only from ηH taking large positive values, as can be seen
through eqs. (4.12), (4.13), (5.2). In general, large deviations from 3 can
result from the term 2ϕ,NN/ϕ,N being the dominant one in eq. (5.2). The
integral of f(N)−3 over N , from an early to a late slow-roll regime separated
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by nontrivial evolution, is∫ Nl

Ne

dN(f(N)− 3) =

∫ Nl

Ne

dN(εH − 2 ηH) = 2 log
(ϕ,N)l
(ϕ,N)e

+ log
Hl

He

= log
(dH/dN)l
(dH/dN)e

,

(5.5)

where we have used the definitions (4.12), (4.13). This quantity is approx-
imately zero for inflaton potentials with a strong feature localized within a
region supporting slow-roll inflation and with similar values of dH/dN before
and after the feature. Here we neglect the slow-roll corrections and analyse
only the very large enhancement resulting from such a strong feature, by
imposing the constraint that positive and negative “pulses” have integrated
areas that cancel.

5.1.2 Toy-model analysis

Several features that appear in the spectra that we study in the following
subsections can be understood in a much simpler context. We are interested
in the effect of a “pulse” on the evolution of a mode with a free-wave initial
condition. It is instructive to ignore the background expansion and consider
the toy-model equation

Rk,tt + κRk,t + k2Rk = 0. (5.6)

The solutions are oscillatory with an amplitude that gets suppressed or en-
hanced, depending on the sign of the friction parameter κ. It is straightfor-
ward to derive the solution for a friction term that vanishes at all times apart
from the interval 0 < t < tp, by requiring the continuity of the solution and
its first derivative at t = 0 and tp.

For an early-time solution Rk(t) = e−ikt, the evolution is depicted in fig.
5.1. We observe the suppression of the amplitude for positive κ and the
enhancement for negative κ. However, the most striking feature is the ap-
pearance of oscillations in the amplitude. Their origin lies in the modification
by the “pulse” of the relative phase between the real and imaginary parts.
For sufficiently large |κ| the relative phase in the late stage of the evolution
almost vanishes (as in the plot), so that the amplitude approaches zero at
certain instances. In the cosmological context, the oscillatory form of the
evolution as a function of time can be transferred to the spectrum of pertur-
bations. At late times, each mode k exits the horizon and eventually freezes.
This can occur at any point of the oscillatory cycle, depending on the value
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Figure 5.1: The real part (dashed curve), the imaginary part (dot-dashed
curve) and the amplitude (solid curve) of the solution of eq. (5.6) with
k = 2, for a “pulse” in the interval 0 ≤ t ≤ 0.5. We also display the “pulse”,
with a rescaled maximum κ/5. Left plot: κ = 5. Right plot: κ = −5.

Figure 5.2: The real part (dashed curve), the imaginary part (dot-dashed
curve) and the amplitude (solid curve) of the solution of eq. (5.6) for a
“pulse” with κ = 10 in the interval 0 ≤ t ≤ 0.5. We also display the “pulse”,
with a rescaled maximum κ/10. Left plot: k = 10; right plot: k = 3, in
arbitrary units.

of k. As a result, the asymptotic values of the perturbations depend strongly
on the freezing time, and the spectrum displays oscillations as a function of
k.

As we mentioned in the previous chapter, it is known that it is possible to
obtain an oscillatory pattern in the spectrum if inflation stops for a certain
time interval, so that modes that had exited the horizon reenter and start
oscillating again until their next exit. However, our toy example implies a
more general pattern: Any feature during the evolution of the perturbations
that detunes the relative phase between the real and imaginary parts of the
solution results in an oscillatory spectrum, even if inflation is not halted.
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Another interesting property of the late-time evolution is displayed in fig.
5.2: The relative suppression of the amplitude of a mode for a given positive
friction parameter κ is larger for higher wavenumber k. This is counter-
intuitive at first sight, as one would expect the last term of eq. (5.6) to
become more dominant for larger k and limit the suppression induced by
the second term. However, the opposite happens. For small k, the strong
friction tends to freeze the evolution during the “pulse”, so that the real and
imaginary parts resume their oscillations after the “pulse” with amplitudes
comparable to the initial ones. As a general rule of thumb, for a duration of
the “pulse” of order 1, a strong suppression of the solution occurs for k >∼ κ.

5.1.3 Analytical expressions for “pulses”

We turn next to the analysis of eq. (5.1). For constant f(N) = κ the solution
involves a linear combination of the Bessel functions J±κ/2 and has the form

Rk(N ;Cp, Cm, κ) = Ae−
1
2
κN

(
CpJκ/2

(
e−N

k

H

)
+ Cm J−κ/2

(
e−N

k

H

))
.

(5.7)
Let us suppose that the coefficients of the solution Cpi , Cmi are known for a
range of efoldings for which κ takes a specific value κi. If this range is followed
by a transition at N = Nfi to a second range in which κ takes a differrent
value κf , we would like to compute the corresponding values of the coefficients
Cpf , Cmf . This can be achieved by requiring the continuity of the solution
and its first derivative at N = Nfi. A similar analysis has been performed
in refs. [153,154], using conformal time as the independent variable. We aim
here at providing a more transparent picture of the oscillatory patterns in
the spectrum, by identifying the characteristic frequencies.

We find that the new coefficients are given through the relation(
Cpf
Cmf

)
= M(Nfi, κi, κf , k)

(
Cpi
Cmi

)
, (5.8)

where the matrix M(Nfi, κi, κf , k) has components

M11 = C

(
J−κf2

(
e−Nfi

k

H

)
J−1+κi

2

(
e−Nfi

k

H

)
+ J

1−
κf
2

(
e−Nfi

k

H

)
Jκi

2

(
e−Nfi

k

H

))
M12 = C

(
−J−κf2

(
e−Nfi

k

H

)
J1−κi2

(
e−Nfi

k

H

)
+ J

1−
κf
2

(
e−Nfi

k

H

)
J−κi2

(
e−Nfi

k

H

))
M21 = C

(
−Jκf

2

(
e−Nfi

k

H

)
J−1+κi

2

(
e−Nfi

k

H

)
+ J−1+κf

2

(
e−Nfi

k

H

)
Jκi

2

(
e−Nfi

k

H

))
M22 = C

(
Jκf

2

(
e−Nfi

k

H

)
J1−κi2

(
e−Nfi

k

H

)
+ J−1+κf

2

(
e−Nfi

k

H

)
J−κi2

(
e−Nfi

k

H

))
,

(5.9)
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with

C =
π

2
e

1
2
Nfi(−2+κf−κi) k

H
csc
(πκf

2

)
. (5.10)

The above matrix has the property

M(Nfi, κm, κf , k) ·M(Nfi, κi, κm, k) = M(Nfi, κi, κf , k).

This implies that we can select the value κ = 3 as a reference point for all
transitions between different values of κ.

The next step is to define a matrix corresponding to a “pulse” of height
κ different from the value corresponding to the scale-invariant case. The
function f(N) is

f(N) = κ (Θ(N −N1)−Θ(N −N2)) (5.11)

and the corresponding matrix is given by the relation

Mpulse(N1, N2, κ, k) = M(N2, κ, 3, k) ·M(N1, 3, κ, k). (5.12)

As we explained earlier, the increase of the power spectrum relative to the
scale invariant one is given by the value of |Cm|2 after a mode of given k
has evolved past the strong features in the background. A product of several
Mpulse matrices can reproduce the final values of the coefficients (Cp, Cm)
of the Bessel functions J±3/2 after the fluctuations have evolved from an
initial configuration corresponding to (Cp, Cm) = (1, i) through a period of
strong features in the function f(N). Clearly, it is possible to reconstruct
any smooth function f(N) in terms of short intervals of N during which the
function takes constant values. Multiplying the corresponding Mpulse matri-
ces would provide a solution to the problem of the evolution of perturbations.
However, such an approach is not very efficient for a numerical solution. We
are mainly interested in obtaining intuitive analytical expressions for forms
of f(N) such as those depicted in fig. 4.1, for which a product of a small
number of Mpulse matrices suffices.

Simple analytical expressions can be obtained in the limits of large and
small k, using the corresponding expansions of the Bessel functions. For a
large real argument we have

Ja(z) =

√
2

πz

[
cos
(
z − aπ

2
− π

4

)
− 4a2 − 1

8z
sin
(
z − aπ

2
− π

4

)
+O

(
z−2
)]
.

(5.13)
Using this expression we find for large k

M
(∞)
pulse(N1, N2, κ, k) = e−

1
2

(N2−N1)(κ−3)

{(
1 0
0 1

)
+

1

8
(κ− 3)

H

k

(
S11 S12

S21 S22

)}
(5.14)
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where

S11 = 2eN1 sin

(
2e−N1

k

H

)
− 2eN2 sin

(
2e−N2

k

H

)
,

S12 = −eN1

(
1 + κ+ 2 cos

(
2e−N1

k

H

))
+ eN2

(
1 + κ+ 2 cos

(
2e−N2

k

H

))
,

S21 = eN1

(
1 + κ− 2 cos

(
2e−N1

k

H

))
− eN2

(
1 + κ− 2 cos

(
2e−N2

k

H

))
,

S22 = −2eN1 sin

(
2e−N1

k

H

)
+ 2eN2 sin

(
2e−N2

k

H

)
. (5.15)

Keeping the leading contribution, we find that the power spectrum is scale
invariant at late times (or N → ∞) for k → ∞, but has a value multiplied
by the factor [

δ∆
(∞)
R

]2

= |Cm|2 = e−(N2−N1)(κ−3), (5.16)

relative to its scale-invariant value for modes that have sufficiently small k, so
that they exit the horizon and decouple very early with Cm = i, without being
affected by the features in f(N). The exponent in the above expression is
simply the area of the “pulse” exceeding the value 3. For κ > 3 the spectrum
is suppressed, while for κ < 3 it is enhanced. By breaking a general function
f(N) in infinitesimal “pulses”, it is easy to see that the enhancement is given
by the more general expression

[
δ∆

(∞)
R

]2

= exp

(
−
∫ ∞
−∞

(f(N)− 3) dN

)
. (5.17)

The corrections subleading in H/k introduce oscillatory patterns in the spec-
trum. The characteristic periods can be deduced from eqs. (5.15). The
spectrum is expected to have a deep minimum once per period, i.e. at inter-
vals δk/H = eN1π and δk/H = eN2π. Moreover, when N1 ' N2 we expect
interference patterns.

Analytical expressions for k → 0 are more difficult to obtain because
the (1,2)-component of the matrix Mpulse scales as 1/k in this limit. As a
result, the effect of several “pulses”, which involves the product of several
such matrices, is not described by a simple analytical expression. However,
the components (2,1) and (2,2), which are relevant for the spectrum, are
simpler. The (2, 1)-component becomes nonzero only at order (k/H)3, while
the (2, 2)-component is equal to 1 +O ((k/H)2). So, up to order (k/H)2, the
(2,2)-component is sufficient for the calculation of the spectrum. We give the
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Figure 5.3: The (2,2)-component of the matrix Mpulse defined in eq. (5.12)
(solid curve), along with the approximations for large k/H (dashed curve)
and small k/H (dot-dashed curve). Left plot: N1 = 0, N2 = 0.5, κ = −5.
Right plot: N1 = 0, N2 = 0.5, κ = 10.

result for the sequence of two “pulses”:

M
(0)
pulse(N1, N2, N3,κ1, κ2, k)|2,2 ≡ [M(N3, κ2, 3, k) ·M(N2, κ1, κ2, k) ·M(N1, 3, κ1, k)]2,2

= 1 +
1

6

(
k

H

)2

×

[
κ1 − 3

κ1(κ1 − 2)

(
−2(κ1 − 3)eN1(κ1−2)−N2κ1 + 3(κ1 − 2)e−2N1 − κ1e−2N2

)
− 2(κ1 − 3)(κ2 − 3)

κ2(κ1 − 2)

(
eN3κ2 − eN2κ2

) (
e−2N2−N3κ2 − eN1(κ1−2)−N2κ1−N3κ2

)
+

κ2 − 3

κ2(κ2 − 2)

(
−2(κ2 − 3)eN2(κ2−2)−N3κ2 + 3(κ2 − 2)e−2N2 − κ2e−2N3

)]
.

(5.18)

For κ2 = 3 the second “pulse” is eliminated and only the first term in the
bracket survives, while for κ1 = 3 the first “pulse” is eliminated and the last
term survives. For κ1, κ2 6= 3 there is a mixing term, which indicates that
the effects of the various “pulses” are not simply additive, even within this
approximation.

The oscillatory behaviour of the solutions can be observed in the com-
ponents of the matrix Mpulse defined in eq. (5.12). In fig. 5.3 we depict
the (2,2)-component of this matrix (solid lines) for N1 = 0, N2 = 0.5. This
component gives the leading contribution to the power spectrum. The left
plot corresponds to a negative-friction “pulse” with κ = −5 that causes the
enhancement of the spectrum. The right plot is obtained for positive fric-
tion κ = 10 that leads to suppression. The asymptotic expansions of this
component for large k/H (dashed curve), given by eq. (5.14), and small
k/H (dot-dashed curve), given by eq. (5.18), are also plotted. Oscillatory
behaviour is observed, associated with interference patterns from two almost
equal frequencies corresponding to δk/H = eN1π and δk/H = eN2π. It is
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interesting that the oscillatory frequencies are correctly reproduced by the
asymptotic expansion even for small k/H. Another feature that can be ob-
served is the strong decrease of Mpulse for k/H >∼ κ/2 for positive κ, in
agreement with the discussion at the end of the previous subsection.

5.1.4 The integral of f(N)

The form of f(N) that we assume in our discussion should result from the
time evolution of the parameters εH and ηH . We saw at the end of subsection
5.1.1 that the integral of this function over N is constrained by eq. (5.5). In
this subsection we discuss the type of field evolution, as given by the function
ϕ,N , that is consistent with our approximate treatment.

The Mukhanov-Sasaki equation (4.3) implies that the Wronskian of each
Fourier mode of its solution

W [vk] = −i(vk v∗′k − v∗kv′k) (5.19)

remains constant during the evolution. Here the prime denotes a derivative
with respect to conformal time τ = −e−N/H. As we know, the solution of
eq. (4.3) plays the role of the mode function in the canonical quantization
of the field v. For the Bunch-Davies vacuum, the initial condition at early
times, when k2 � z′′/z, is chosen so that the mode function has the standard
form in Minkowski spacetime. Selecting positive-energy solutions fixes the
sign of the Wronskian to be positive, while the appropriate normalization
results in W [vk] = 1. This choice is automatically preserved at later times if
vk is a solution of eq. (4.4). This can be seen by multiplying eq. (4.4) by v∗k
and subtracting the conjugate of the same equation multiplied by vk.

We have based our analysis on the curvature perturbation Rk, related to
vk through Rk = −vk/z, with z = eNϕ,N . The consistency of our approxi-
mation of describing f(N) through a sequence of “pulses” implies a specific
form of ϕ,N during the evolution through the strong features in the potential.
We can deduce this form by considering the Wronskian of Rk

W [Rk] = −i(Rk R
∗′
k −R∗kR′k) =

W [vk]

z2
=

1

z2
. (5.20)

The solution (5.7) gives

W [Rk] ∝ i
(
CpC

∗
m − CmC∗p

)
exp((1− κ)N). (5.21)

Consistency with eq. (5.20) requires that ϕ,N ∝ exp((κ − 3)N/2). The in-
flaton “velocity” must grow fast with N for κ > 3, and decay for κ < 3.
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This is the behaviour observed in all cases of fig. 4.1. We have already men-
tioned that any function f(N) can be reconstructed as a sequence of very
short “pulses” of variable height κ. For small N the change of ϕ,N , starting
from some initial value at N = 0, is linear in N with a slope proportional to
κ. Thus, by breaking f(N) into many “pulses” one can obtain the required
evolution of ϕ,N as a function of N . In this sense our analysis is very gen-
eral. For consistency, of course, the deduced evolution must result from an
appropriate inflaton potential.

Our main aim is to obtain an intuitive understanding of the form of the
spectrum by focusing on the gross properties of f(N). Let us consider a
feature in the evolution resulting from two successive “pulses” with heights
κ1 and κ2, between early and late slow-roll regimes with κ = 3. The solution
after the feature is traversed is given by eq. (5.3) with(

Cp
Cm

)
= M(N3, κ2, 3, k) ·M(N2, κ1, κ2, k) ·M(N1, 3, κ1, k)

(
1
i

)
, (5.22)

where the matrix M is given by eq. (5.9). Before the “pulse” we have
i(CpC

∗
m − CmC∗p)/2 = 1, while after the “pulse” one finds

i

2
(CpC

∗
m − CmC∗p) = e−(n2−n1)(κ1−3)−(n3−n2)(κ2−3). (5.23)

The exponent is exactly (minus) the integral of f(N)− 3. By comparing the
Wronskian W [Rk] at late and early times (before and after the “pulses”), it
becomes clear that the quantity (5.23) is equal to the ratio

(
ϕ2
,N

)
e
/
(
ϕ2
,N

)
l
,

with both quantities being constant. In this way we reproduce the result of
eq. (5.5), under our assumption that Hl/He ' 1.

Let us summarize the basic points: According to our assumptions, the
system is in a slow-roll regime during an early and a late period, with values of
the Hubble parameter that we have approximated as equal. We can assume
that the values of ϕ,N are also approximately equal during these periods.
These assumptions isolate the effect of the strong feature in the intermediate
part of the evolution from the properties in the slow-roll regimes. During
the intermediate part the inflaton “velocity” ϕ,N changes fast, by growing
or decaying depending on the sign of f(N) − 3. The integral of f(N) − 3
over N must vanish for ϕ,N to have equal values at early and late times. For
realistic situations one must take into account the breaking of scale invariance
in the slow-roll regimes as well. However, these are included in the standard
slow-roll analysis and are not of interest to us here.

Finally, it can be checked through the asymptotic form of the Bessel
functions that for both k → 0 and k → ∞, and for a vanishing integral of
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Figure 5.4: An illustration of the approximate form of the function f(N)
that we assume for the analytical study. Left panel: a double-“pulse” model,
with a positive-friction “pulse” followed by a negative-friction one. Right
panel: the double-“pulse” form assumed in the three examples resulting in
the spectra of figs. 5.5, 5.6, 5.7.

f(N) − 3, we have (Cp, Cm) = (1, i) at all times during the evolution. This
indicates that the low- and high-k modes are not affected by the presence of
the feature. As a result the scale-invariant form of the spectrum is modified
only for a finite range of wavenumbers k.

5.1.5 Examples of spectra

In this subsection we consider spectra that display the features we discussed
in the previous subsections. The range of possible spectra is large, as we
do not focus on a particular underlying model, but simply consider various
forms of the function f(N) defined in eq. (5.2). We assume that the integral
of f(N) − 3 over N vanishes, so that the spectrum is scale invariant with
the same amplitude for very low and very high wavenumbers k. We focus
only on the relative enhancement of the spectrum at intermediate scales as a
result of the presence of strong features in the underlying inflaton evolution.
As the absolute scale of the spectrum is not of interest for our discussion,
we set A = 1 in eq. (5.3). We discuss next three particular examples of the
form of the friction function f(N).

In our first example (Ex. 1) the spectrum results from a function f(N)
which is displayed in fig. 5.4. The feature consists of a positive-friction
“pulse” with κ1 = 80 in the interval between N1 = 0 and N2 = 0.2, followed
by a negative-friction “pulse” with κ2 = −3 in the interval between N2 = 0.2
and N3 = 2.77. The value of the spectrum for a given value of k/H is equal
to |Cm|2, where (Cp, Cm) are given by eq. (5.22). The result is depicted by
the middle curve of the top plot in fig. 5.5, in the k-range k/H = 10−2− 103
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that corresponds to N ' −4.6 up to 6.9. In the same figure we also display
the spectra that would result from a single “pulse”. These are computed
from the expression(

Cp
Cm

)
= M(N2, κ1, 3, k) ·M(N1, 3, κ1, k)

(
1
i

)
, (5.24)

for the positive-friction “pulse” (lower curve in fig. 5.5), and(
Cp
Cm

)
= M(N3, κ2, 3, k) ·M(N2, 3, κ2, k)

(
1
i

)
, (5.25)

for the negative-friction “pulse” (upper curve in fig. 5.5). As we discussed in
the previous subsection, the fact that the integral of the function f(N) − 3
over N does not vanish for these cases means that the quantity ϕ2

,N changes
across the “pulse” by a factor equal to the exponential of this integral. The
two slow-roll regimes are quite distinct in this case and the effect of the
“pulse” is not clear. We display the spectra because they provide intuition
on the features appearing in the two-“pulse” spectrum, for which the integral
of f(N) − 3 vanishes. Details for the latter are presented in the next two
plots of fig. 5.5, for two successive k/H ranges on a linear horizontal axis.
Notice the huge difference in the scale of the vertical axis in the two plots.

Several features of the spectra are apparent in these plots:

1. The two-“pulse” spectrum has a first minimum at a value of k/H well
approximated by the positive root of the polynomial of eq. (5.18).

2. The subsequent strong increase of the spectrum results from the effect
of the negative-friction “pulse”. The spectrum reaches a maximal value
comparable to that of the negative-friction single-“pulse” spectrum. A
rough estimate can be obtained from the asymptotic value of the single-
“pulse” spectrum, which is exp((N3 −N2)(3− κ2)) = O(107).

3. The envelope of the positive-friction single-“pulse” spectrum (lower
curve) displays a sharp drop to almost zero at a characteristic value of
k/H. As we discussed earlier, we expect that the positive friction will
affect most strongly the high-k modes. A more quantitative estimate
can be made by observing that the matrix M of eqs. (5.9) involves
the Bessel functions J±κ1/2 and J∓1±κ1/2. For large κ1 these functions
have a zero at a value of their argument roughly equal to κ1/2. The
relevant argument in our case is e−N̄k/H, with N̄ ' (N1+N2)/2. Thus,
we expect the spectrum to approach zero at k/H ' eN̄κ1/2 ' 44,
consistently with what is observed.
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Figure 5.5: Middle curve: Spectrum resulting from a double “pulse” with
N1 = 0, N2 = 0.2, N3 = 2.77, κ1 = 80, κ2 = −3 (Ex. 1). Upper curve:
Spectrum resulting from a negative-friction single “pulse” with κ2 = −3
between N2 = 0.2, N3 = 2.77. Lower curve: Spectrum resulting from a
positive-friction single “pulse” with κ1 = 80 between N1 = 0, N2 = 0.2.

4. For k/H →∞, all three spectra become asymptotically constant, with
values given by the exponential of the integral of f(N)−3 over N . For
the middle spectrum, we have fine-tuned this integral to zero, so that
the spectrum returns to the value 1 to which we have normalized the
spectrum for k → 0.

5. Apart from the main features that we described above, which are con-
sistent with the general expectations [149], the spectra display oscil-
lations with characteristic scales. As we discussed in subsection 5.1.3,
the asymptotic expansions of eqs. (5.15) indicate that the spectrum
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Figure 5.6: Middle curve: Spectrum resulting from a double “pulse” with
N1 = 0, N2 = 1, N3 = 3, κ1 = 15, κ2 = −3 (Ex. 2). Upper curve:
Spectrum resulting from a negative-friction single “pulse” with κ2 = −3
between N2 = 1, N3 = 3. Lower curve: Spectrum resulting from a positive-
friction single “pulse” with κ1 = 15 between N1 = 0, N2 = 1.

should oscillate with periods δk/H ' eN1π = 3.1, δk/H ' eN2π = 3.8
and δk/H ' eN3π = 50. These characteristic modes, as well as inter-
ference patterns between them, are visible in the bottom plots of fig.
5.5.

The most important conclusion that can be drawn from this example is
that strong features in the background evolution can induce a spectrum of
fluctuations which displays, apart from an enhancement by several orders of
magnitude, strong oscillatory patterns. This is clearly visible in the bottom
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Figure 5.7: Middle curve: Spectrum resulting from a double “pulse” with
N1 = 0, N2 = 1.95, N3 = 2.05, κ1 = −3, κ2 = 120 (Ex. 3). Upper curve:
Spectrum resulting from a negative-friction single “pulse” with N1 = 0, N2 =
1.95, κ1 = −3. Lower curve: Spectrum resulting from a positive-friction
single “pulse” with κ2 = 120 between N2 = 1.95, N3 = 2.05.

left plot of fig. 5.5.

We turn next to our second example (Ex. 2). The oscillatory features in
the spectrum are less pronounced for different forms of the “pulses”. Reduc-
ing the height of the positive-friction “pulse” leads to a suppression of the
spectrum at smaller values of k/H. As a result, the oscillatory patterns may
be confined within the high-k part of the spectrum, which does not get en-
hanced. This is visible in fig. 5.6, where we plot the spectrum in the k-range,
k/H = 10−2 − 103 or from N ' −4.6 up to 6.9. The spectrum results from
a positive-friction “pulse” with κ1 = 15 in the interval between N1 = 0 and
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N2 = 1, followed by a negative-friction “pulse” with κ2 = −3 in the interval
between N2 = 1 and N3 = 3. The drop of the spectrum arising from only the
positive-friction “pulse” is expected to appear at k/H ' eN̄κ1/2 ' 12, where
N̄ ' (N1 +N2)/2. Indeed, the small-k region displays a large enhancement,
but the oscillations appear only at large values of k/H, at which the spectrum
is suppressed. The bottom left plot of fig. 5.6 shows that the enhanced part
of the spectrum is smooth in this case. The expected oscillatory modes with
periods δk/H ' eN1π = 3.1, δk/H ' eN2π = 8.5 and δk/H ' eN3π = 63, as
well as interference patterns between them, are visible in the bottom right
plot of fig. 5.6.

Our third example (Ex. 3) demonstrates that spectra with a different
structure can result from different forms of the function f(N). More specif-
ically, the positive- and negative-friction “pulses” may occur in the reverse
order compared to the one we assumed up till now. In fig. 5.7 we plot the
resulting spectra in the range k/H = 10−2 − 103 (N ' −4.6 up to 6.9) con-
sidering an effective friction function f(N) composed of a negative-friction
“pulse” with κ1 = −3 in the interval between N1 = 0 and N2 = 1.95, followed
by a strong positive-friction “pulse” with κ2 = 120 in the interval between
N2 = 1.95 and N3 = 2.05. The reduction of the spectrum is expected at a
scale k/H ' eN̄κ2/2 ' 440, where N̄ ' (N2 + N3)/2. The oscillatory pat-
terns have characteristic periods δk/H ' eN1π = 3.1, δk/H ' eN2π = 22.1
and δk/H ' eN3π = 24.4. All these features, as well as strong interference
patterns arising from the proximity of two characteristic periods, are visible
in fig. 5.7.

5.1.6 Sharp feature approximation

Explicit expressions can be obtained for the case of a “pulse” of large positive
amplitude and very short duration. For large positive values of κ and a short
interval δN , we can approximate the Bessel function as

Ja(z) =
1

Γ(a+ 1)

(z
2

)a(
1− z2

4(1 + a)
+O(z4)

)
. (5.26)

We find that

M
(sharp)
pulse (N1, k) = eN1

H

k

(
T11 T12

T21 T22

)(
1 +O

(
1

2κ

(
e−N1

k

H

)2
))

, (5.27)
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where

T11 = cos

(
e−N1

k

H

)(
e−N1

k

H
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(
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k

H

)
− sin
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k

H

))
,

T12 = cos

(
e−N1

k

H

)(
e−N1

k

H
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(
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k

H

)
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T21 = sin

(
e−N1

k

H

)(
e−N1

k

H
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(
e−N1

k

H

)
− sin

(
e−N1
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H
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T22 = sin

(
e−N1

k

H

)(
e−N1

k

H
sin

(
e−N1

k

H

)
+ cos

(
e−N1

k

H

))
.(5.28)

For k/H <∼ eN1
√

2κ the presence of the “pulse” does not induce a suppres-
sion of the perturbation. The only effect is the introduction of oscillations in
the spectrum. The spectrum is expected to have a deep minimum once per
period, i.e. at intervals δk/H = eN1π. The suppression of the perturbation
by exp(−κ δN) is expected to occur for k/H >∼ eN1

√
2κ.

After a step in the potential is crossed, the inflaton settles in a slow-roll
regime on a flat part of the potential. During the approach to slow-roll, the
evolution is dominated by the first two terms in the equation of motion of
the background field: φ̈ + 3Hφ̇ = 0. This means that, during an interval
N1 ≤ N ≤ N2, we have ηH ' 3 and κ = −3. We can define the matrix

M
(negative)
pulse (N1, N2, k) = M(N2,−3, 3, k) ·M(N1, 3,−3, k) (5.29)

in order to account for the effect on the curvature perturbation, similarly to
the treatment above. Then, the total effect on the coefficients of the Bessel
functions, arising from crossing a step in the potential, is given by(

Cpf
Cmf

)
= M

(negative)
pulse (N1, N2, k) ·M (sharp)

pulse (N1, k)

(
1
i

)
. (5.30)

The value of the spectrum relative to the scale-invariant case is determined
by |Cmf |2. We can obtain an explicit expression for the enhancement of the
spectrum by evaluating Cmf through eq. (5.30), keeping the leading contri-

bution for M
(sharp)
pulse (N1, k). By defining k̃ = e−N1k/H and ε = exp(−N2+N1),

we find

|Cmf |2 =
1 + k̃2

4ε12k̃12

(
A1 sin(k̃) + A2 cos(k̃) + A3 sin(k̃ − 2εk̃) + A4 cos(k̃ − 2εk̃)

)2

,

(5.31)
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with

A1 = 9k̃ + 9ε2k̃3 − 6ε3k̃3 + 2ε3k̃5

A2 = 9− 3k̃2 + 9ε2k̃2 − 3ε2k̃4 + 6ε3k̃4

A3 = −9k̃ + 18εk̃ − 6εk̃3 + 9ε2k̃3

A4 = −9 + 3k̃2 − 18εk̃2 + 9ε2k̃2 − 3ε2k̃4. (5.32)

In order for a step to increase the spectrum by several orders of magni-
tude, one must have N2 − N1

>∼ 1. Modes with e−N1k/H = O(1) satisfy
e−N2k/H � 1. In this momentum range we can expand eq. (5.31) in ε and
keep the leading contribution

|Cmf |2 ' e6(N2−N1) 4(1 + k̃2)

k̃6

(
3k̃ cos(k̃) + (−3 + k̃2) sin(k̃)

)2

. (5.33)

The maximal enhancement is given by eq. (5.17), taking into account only the
contribution from the negative “pulse”. There is also oscillatory behaviour
induced by sines and cosines of exp(−N1)k/H. The combined effect indicates
that the power spectrum near its maximum is enhanced through the negative
“pulse”, but also develops strong oscillations at intervals δk/H = eN1π. We
emphasize that the expressions (5.31) and (5.33) are valid only near the
maximum of the spectrum. They do not account for the expected drop of
the spectrum for e−N1k/H >∼

√
2κ, with κ the height of the positive sharp

“pulse”.
In fig. 5.8 we test the accuracy of the various analytic results of this

subsection in the case of square “pulses”. The top row displays the spectra
for two cases: a) a positive “pulse” of height κ = 100 between N1 = 0 and
N ′1 = 0.05, followed by a negative “pulse” of height −3 between N ′1 = 0.05
and N2 = 0.858, and b) a positive “pulse” of height κ = 50 between N1 = 0
and N ′1 = 0.1, followed by a negative “pulse” of height −3 between N ′1 = 0.1
and N2 = 0.883. These are simplified versions of the typical evolution of
f(N) when the background inflaton crosses steps in the potential of variable
steepness. The integrated area of the negative “pulse” is approximately the
same in both cases, so that a comparable enhancement of the spectrum is
expected. The spectra in the top row have been computed through the
numerical solution of eq. (5.1) and the complete expression of eq. (5.30).
These methods agree very well. The bottom row displays the approximation
of eq. (5.31) (left plot) and the approximation of eq. (5.33) (right plot).
Both these expressions assume N ′1 ' N1, while they do not depend on the
height κ of the positive “pulse”, as long as this is very large. We have used
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Figure 5.8: The power spectrum induced by a positive “pulse” of height κ
between N1 and N ′1, followed by a negative “pulse” of height −3 between N ′1
and N2, as a function of k̃ = e−N1k/H. Top row, left plot: κ = 100, N1 = 0,
N ′1 = 0.05, N2 = 0.858. Top row, right plot: κ = 50, N1 = 0, N ′1 = 0.1,
N2 = 0.883. Bottom row, left plot: The approximation of eq. (5.31) for
N1 = 0, N2 = 0.833. Bottom row, right plot: The approximation of eq.
(5.33) for N1 = 0, N2 = 0.833. We have symbolised PR ≡ ∆2

R.

N1 = 0, N2 = 0.833. It is apparent that eq. (5.31) reproduces very well
the form of the spectrum for e−N1k/H <∼

√
2κ. For larger values of k, the

expected drop of the spectrum is not captured by this approximation. The
deviation is clearer in the right plot, for which κ is smaller and the drop
sets in earlier. On the other hand, eq. (5.33) is a cruder approximation.
However, its simplicity makes it very useful for estimating the magnitude of
the enhancement of the spectrum, as well as the fundamental frequency of
oscillations.

5.1.7 Multiple “pulse” features

In this subsection we examine the effect on the power spectrum of several
“pulses” in the evolution of f(N). A similar effect has already been discussed
in the previous chapter through a numerical solution of eq. (5.1).

We specialize in the case of “pulses” generated through steps in the in-



5.1 Approximation with “pulses” 73

Figure 5.9: Power spectra induced by successive occurrences of a feature
consisting of a positive “pulse” of height κ = 50 between N1 = 0 and N ′1 =
0.1, followed by a negative “pulse” of height κ = −3 between N ′1 = 0.1
and N2 = 0.883. Top row: one feature (left plot), two features (right plot).
Bottom row: three features (left plot), four features (right plot).

flaton potential. The effect of one step is captured by the relation (5.30).
In most cases one step is not sufficient to induce an enhancement of the
spectrum by more than three or four orders of magnitude. It must be noted,
however, that an enhancement by up to seven orders of magnitude is possible
for an appropriately engineered potential and step profile [155]. The gener-
alization to several steps is straightforward, through the inclusion of several
Mpulse matrices, and can lead to further enhancement.

In fig. 5.9 we present spectra induced by one or more features in the
evolution of f(N), consisting of a positive “pulse” of height κ = 50 between
N1 = 0 and N ′1 = 0.1, followed by a negative “pulse” of height κ = −3
between N ′1 = 0.1 and N2 = 0.883. We present four spectra, arising when
one, two (top row), three or four (bottom row) such features occur, one im-
mediately after the other. As has been discussed in the previous chapter,
such features result from multiple steep steps in the inflaton potential. The
spectra obtained for one feature are consistent with those derived through
similar approaches [149,156]. Moreover, it is apparent that multiple features
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act constructively, increasing the enhancement of the spectrum. A multitude
of characteristic frequencies also appear through the dependence of the spec-
trum on combinations of the form e−Nik/H, with Ni corresponding to the
time that a sharp transition occurs in the evolution of f(N).

It is important to note that the various sets of “pulses” should be placed
close to each other for the enhancement of the power spectrum to be signif-
icant. Similarly, the corresponding steps in the inflaton potential must be
close. If we increase the distance in efoldings between the sets of “pulses”,
the additive effect is not as strong. Beyond a certain distance, each set acts
independently on the spectrum, giving a moderate enhancement within a
different k-range.

5.2 Analytical treatment for general f (N)

5.2.1 Integral equations

In this subsection we derive analytical expressions for the curvature spectrum
resulting from an arbitrary friction function f(N). We start by rewriting eq.
(5.1) as

Rk,NN + 3Rk,N +
k2

e2NH2
Rk = (3− f(N))Rk,N . (5.34)

We would like to compute the Green’s function Gk(N, n) for the operator in
the lhs. This function satisfies the equation

Gk,NN(N, n) + 3Gk,N(N, n) +
k2

e2NH2
Gk(N, n) = δ(N − n). (5.35)

Then, the solution of eq. (5.34) is

Rk(N) = R̄k(N ; 1, i, 3) +

∫ ∞
−∞

Gk(N, n) (3− f(n))Rk,n(n) dn, (5.36)

with

R̄k(N ; 1, i, 3) = −
√

2

π

(
H

k

)3/2(
i+ e−N

k

H

)
exp

(
ie−N

k

H

)
(5.37)

the solution of the homogeneous equation, corresponding to f(N) = 3.
The evolution is classical, so we must use the retarded Green’s function,

which satisfies Gk>(N, n) = 0 for n > N . For n < N the Green’s function is

Gk<(N, n) = e−
3
2
N

(
A(n)J3/2

(
e−N

k

H

)
+B(n) J−3/2

(
e−N

k

H

))
. (5.38)
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The total Green’s function is continuous at N = n. Its first derivative has a
discontinuity, obtained by integrating eq. (5.35) around N = n. This gives
∂Gk<(N, n)/∂N |N=n = 1. Imposing these constraints results in

A(n) = −
√
π

2
e3n

(
k

H

)− 3
2
[
cos

(
e−n

k

H

)
+ e−n

k

H
sin

(
e−n

k

H

)]
(5.39)

B(n) =

√
π

2
e3n

(
k

H

)− 3
2
[
e−n

k

H
cos

(
e−n

k

H

)
− sin

(
e−n

k

H

)]
.(5.40)

Despite its simple form, it is difficult to find solutions of eq. (5.36).
However, the equation becomes simpler for N → ∞, which is the limit of
interest for the late-time spectrum. From eq. (5.38) we obtain

Gk<(N, n)→ −
√

2

π

(
H

k

)3/2

B(n) (5.41)

in this limit. Eq. (5.36) now becomes

Rk(∞) = R̄k(∞; 1, i, 3)−
√

2

π

(
H

k

)3/2 ∫ ∞
−∞

(3− f(n))B(n)Rk,n(n) dn,

(5.42)
with

R̄k(∞; 1, i, 3) = −i
√

2

π

(
H

k

)3/2

. (5.43)

Even though an analytical solution of this equation is not available, some
conclusions about its form can be drawn when the function f(N) displays
strong features. The clearest example is a feature that can be approximated
through a δ-function centered at N1. The integration over n results in an
expression that includes sin(e−N1k/H) and cos(e−N1k/H), producing oscil-
latory patterns. A similar conclusion can be reached if f(N) involves sharp
step-like features approximated through Θ-functions, as we discussed in the
previous section. These patterns are expected to become less prominent when
the features in f(N) become smoother.

An approximate expression, which can be considered as the first step in
an iterative solution of the above equation, can be obtained if we replace the
full solution Rk(n) in the integral with the solution for f(n) = 3, given by
R̄k(n, 1, i, 3). We have

R̄k,n(n, 1, i, 3) =

√
2

π

(
k

H

)1/2

e−2n

[
i cos

(
e−n

k

H

)
− sin

(
e−n

k

H

)]
.

(5.44)
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Figure 5.10: Curvature power spectra for various forms of the friction func-
tion f(N) (blue and red curves), compared to predictions by eq. (5.45) (black
and orange curves).

Combining the above expressions, we obtain

Rk(∞) = R̄k(∞; 1, i, 3)

{
1− iH

k

∫ ∞
−∞

(3− f(n)) en×

[
e−n

k

H
cos

(
e−n

k

H

)
− sin

(
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H

)][
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(
e−n
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H

)
− sin

(
e−n

k

H

)]
dn

}
,

(5.45)

This result is expected to be valid only for cases without a large enhancement
of the spectum. However, it is a compact expression that can be used in order
to deduce the expected oscillatory patterns for a general form of f(N).

In fig. 5.10 we examine the validity of eq. (5.45) for f(N) with sharp
and smooth features. In the left plot of the first line we depict the sharp and
smoothed version (blue and red lines, respectively) of a friction function with
moderate deviations from 3. In the right plot we depict the corresponding
exact spectra (blue and red lines, respectively), as well as the ones computed
through the approximate expression of eq. (5.45) (black and orange lines,
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respectively). It is apparent that this expression captures with very good
accuracy the complicated oscillatory patterns: the blue and black lines, as
well as the red and orange lines, are in very good agreement. Small deviations
from the exact solutions are observed when the amplitude becomes large.
In the second line we repeat the calculation for a function f(N) with very
strong features that result in a large enhancement of the spectrum. The
limitations of eq. (5.45) in capturing the magnitude of the enhancement
become apparent. The agreement between black-blue lines and red-orange
lines is good only for large values of k/H, for which the deviations from the
scale-invariant spectrum are small (but still of O(1)). Clearly, higher orders
in the iterative solution of eq. (5.42) are needed in order to capture the
strong enhancement of the spectrum at small values of k/H.

Despite the limited range of validity of eq. (5.45), it is interesting that
the predicted oscillatory pattern appears in good agreement with the exact
result in all cases. This indicates that the characteristic frequencies are de-
termined by the convolution of the friction function f(n) with the functions
sin(e−nk/H) and cos(e−nk/H) in eq. (5.42), even if Rk(n) deviates strongly
from the unperturbed solution R̄k(n; 1, i, 3) of eq. (5.37). In this respect, eq.
(5.45) provides the means for estimating the frequencies that appear in the
power spectra for a general form of the friction function f(N).

5.2.2 System of differential equations

It is apparent that we can rewrite eq. (5.36) as

Rk(N) = R̄k(N ; 1, i, 3) +

∫ N

−∞
Gk(N, n) (3− f(n))Rk,n(n) dn, (5.46)

as the function Gk(N, n) vanishes for n > N . Through a partial integration,
we can recast this equation as

Rk(N) = R̄k(N ; 1, i, 3)−
∫ N

−∞

∂

∂n
[Gk(N, n) (3− f(n))] Rk(n) dn, (5.47)

where we have used that Gk(N,N) = 0 and f(n) → 3 for n → −∞. The
form (5.38) of the Green’s function suggests the ansatz

Rk(N) = e−
3
2
N

(
D(N)J3/2

(
e−N

k

H

)
+ E(N) J−3/2

(
e−N

k

H

))
. (5.48)
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Substituting in eq. (5.47) and matching the coefficients of the Bessel func-
tions, we obtain

D(N) = 1−
∫ N

−∞

∂

∂n
[A(n) (3− f(n))] e−

3
2
n

[
J 3

2

(
e−n

k

H

)
D(n)

+J− 3
2
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)
E(n)

]
dn

(5.49)

E(N) = i−
∫ N

−∞

∂

∂n
[B(n) (3− f(n))] e−

3
2
n

[
J 3

2
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e−n

k

H

)
D(n)

+J− 3
2
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e−n

k

H

)
E(n)

]
dn.

(5.50)

In the first step of an iterative solution of the above equations, one substitutes
D(n) = 1 and E(n) = i within the integrals in the rhs. For N → ∞ the
solution (5.48) is dominated by the term proportional to J−3/2. Making use
of a partial integration within the integral in eq. (5.50), we recover the
approximate solution (5.45).

In order to improve on this result, we can differentiate the relations (5.49),
(5.50) with respect to N , in order to obtain a system of two first-order dif-
ferential equations:

∂

∂N

(
D(N)
E(N)

)
= F (N)

(
D(N)
E(N)

)
, (5.51)

where

F (N) = e−
3
2
N

(
∂
∂N [A(N) (f(N)− 3)] J 3

2
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e−N k
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)
∂
∂N [A(N) (f(N)− 3)] J− 3

2
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)
∂
∂N [B(N) (f(N)− 3)] J 3

2

(
e−N k

H

)
∂
∂N [B(N) (f(N)− 3)] J− 3

2

(
e−N k

H

)) .
(5.52)

The matrix F (N) has vanishing determinant. Its nonzero eigenvalue is
3 − f(N). The system of equations (5.51) can be solved numerically with
the initial condition (D(N), E(N)) = (1, i) that corresponds to the Bunch-
Davies vacuum. This formulation provides an advantage over the numerical
solution of eq. (5.1), for which the initial condition is strongly oscillatory.
Moreover, it makes it straightforward to analyze alternative assumptions for
the vacuum.

The solution of eq. (5.51) can be expressed as(
D(N)
E(N)

)
= Q(N)

(
1
i

)
, (5.53)
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where Q(N) is the fundamental matrix. An exact determination of Q(N)
in closed form is not possible because of the N -dependence of F (N). For a
slowly varying F (N) (adiabatic limit), an approximate solution is given by

Q(N) = exp(C(N)), C(N) =

∫ N

−∞
F (n) dn. (5.54)

In appendix A we provide an assessment of the accuracy of the approx-
imate expression (5.54) as well as (5.45) once again. Both approximations
give a very accurate description of the spectrum when its value is of order
1. When the spectrum is significantly enhanced, both approximations lose
accuracy. However, eq. (5.54) gives a reasonable approximation to the max-
imal value of the spectrum and its characteristic frequencies, even for an
enhancement by three orders of magnitude.
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Chapter 6

α-attractor models and
applications

In this chapter, we consider a specific theoretical framework in which we
construct inflationary models with step-like features in the inflaton poten-
tial. As we shall see, the conclusions of the two previous chapters apply
to these models. Moreover, the models can predict a significant abundance
of primordial black holes (PBHs) and produce induced gravitational waves
(GWs) that may be detected in the near future. For both PBHs and induced
GWs, we do not present a detailed review of the production mechanisms,
but we provide instead a short summary that is necessary for the clearness
of our calculations. This chapter is based on [151].

6.1 The framework of α-attractors

A specific framework, which we shall use as the basis for the potentials that
we shall consider, is provided by the models of α-attractors in supergravity
[157,158]. A toy model that demonstrates the role of symmetries is described
by the Lagrangian [159]

L =
√
−g

[
1

2
∂µχ∂

µχ+
1

12
χ2R(g)− 1

2
∂µφ∂

µφ− 1

12
φ2R(g)

− 1

36
F 2(φ/χ)

(
χ2 − φ2

)2

]
,

(6.1)

which is invariant under the conformal transformation

gµν → e−2σ(x)gµν , φ→ eσ(x)φ, χ→ eσ(x)χ. (6.2)
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For constant F (φ/χ), there is a global SO(1, 1) symmetry that keeps χ2−φ2

constant. The field χ does not have any physical degrees of freedom and
can be eliminated through the gauge-fixing condition χ2 − φ2 = 6. (All
dimensionful quantities are expressed in units of MPl.) We parametrize the
fields as χ =

√
6 cosh(ϕ/

√
6), φ =

√
6 sinh(ϕ/

√
6) [159]. The Lagrangian

becomes

L =
√
−g
[

1

2
R(g)− 1

2
∂µϕ∂

µϕ− F 2

(
tanh

ϕ√
6

)]
. (6.3)

A constant function F (x), which preserves the SO(1, 1) symmetry, results in
a cosmological constant in this formulation. The value of the cosmological
constant is not constrained by the symmetry and is arbitrary.

We can introduce a minimal deformation of the symmetry by assuming
that F (x) takes two different values over two continuous ranges of x, with
a rapid transition in between. A stronger deformation that has been used
extensively in the literature assumes that F (x) has a polynomial form. We
shall employ a combination of the above choices by assuming that F (x) has
the schematic form

F (x) = xn +
∑
i

Ai Θ(x− xi), (6.4)

allowing for more than one transition points. In order to avoid unphysical
features in the evolution of the inflaton, each step-function is replaced by a
continuous function with a sharp transition at xi. A more general frame-
work is provided by the α-attractors [157–159]. The Lagrangian includes an
additional free parameter α and takes the form

L =
√
−g
[

1

2
R(g)− 1

2
∂µϕ∂

µϕ− F 2

(
tanh

ϕ√
6α

)]
. (6.5)

The potentials that result from our assumption for the function F (x) with
positive Ai are generalizations of the potential of the Starobinsky model [150],
with the addition of one or more steep steps. Allowing for negative values
of Ai makes it possible to include inflection points in the potential as well.
As our analysis focuses on the phenomenological consequences of general
features in the potential, we consider parameters Ai that can take values
over the whole real axis. Another important feature of the potential in eq.
(6.5) is the sharpness of the transition between ranges of constant vacuum
energy. This transition is modelled by a Θ-function in eq. (6.4), but it is
smooth in practice. Its steepness affects the oscillatory patterns appearing
in the spectra. Because of our lack of understanding of the essence of the
cosmological constant, we refrain from explicit model-building, and treat the
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steepness as a free parameter. We only point out that the framework of α-
attractors results in the dependence of the potential on tanh(ϕ/

√
6α), with

α a free parameter. This allows, in principle, for potentials with transitions
of arbitrary steepness.

6.1.1 Specific models

As we said before, we want to replace the step-functions in eq. (6.4) by
continuous functions. In practice, we assume the following form for the
function F :

F (x) = F0

(
x+

n∑
i=1

ci tanh (d(x− xi))

)
. (6.6)

The corresponding inflationary potential for the field ϕ in the Einstein frame
(we regard α = 1)

V (ϕ) = F 2

(
tanh

ϕ√
6

)
(6.7)

features n step-like transitions. (All dimensionful quantities are given in units
of MPl.) Such a potential can lead to an enhancement of the power spectrum
of scalar perturbations at particular scales, which can be sufficiently large to
trigger PBH formation and induce detectable GWs. In addition, the shape of
the scalar power spectrum around its peak is characterized by an oscillatory
pattern that can be inherited by the tensor power spectrum. We will discuss
these notable phenomenological implications of potentials with steps in the
next sections.

The enhancement induced by a step has an upper bound corresponding
roughly to a multiplicative factor exp(−∆N(κ− 3)), see eq.(5.16). Here ∆N
is the interval during which the value κ of the effective-friction term (5.2)
is smaller than the value κ = 3 that results in a scale-invariant spectrum.
Negative values of κ are realized when the background inflaton “decelerates”
on the lower plateau, after a sharp transition through a step in the potential.
During this stage, which lasts a few efoldings, we have ϕ,NN ' −3ϕ,N and
κ ' −3. As a result, a single step generally enhances the scalar power
spectrum by roughly two or three orders of magnitude. However, it is possible
that the potential includes several step-like features. In fig. 6.1 we plot a
set of specific examples of inflationary potentials with steps, described by eq.
(6.7). These potentials yield 50 to 60 efoldings after the crossing of the CMB
scale (k = 0.05 Mpc−1) and a spectral index value ns = 0.969, within the 68%
CL range of Planck [160]. The parameters of these models are ci = 7× 10−3.
We consider from one (n = 1) up to five steps (n = 5) in eq. (6.7), placed
at ϕ1 = 5.7, ϕ2 = 5.55, ϕ3 = 5.4, ϕ4 = 5.25, ϕ5 = 5.1, respectively. The
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Figure 6.1: Left panel: The inflationary potentials described by eq. (6.7),
arbitrary placed on the ϕ axis in order to make the step-like structure visible.
Right panel: The function f(N) of eq. (5.2) in terms of the number of
efoldings for inflationary potentials with one and four steps.

value of F0 is adjusted each time in order to be consistent with the measured
amplitude of the spectrum at the CMB scale. For the initial value of the
inflaton field we choose ϕCMB = 6.33, so as to obtain appropriate values for
the spectral index ns and the number of efoldings N . The choice of the value
of the parameter d is not crucial, as long as it is taken sufficiently large for
the transition through the steps to occur quickly, but continuously. Typical
values are of order 103 − 105.

We also examine the inflationary dynamics of models that feature both
a step and a near-inflection point. The production of PBHs and induced
GWs due to the presence of a near-inflection point in the framework of α-
attractors has been studied in [53,56,161]. Such models result in a significant
enhancement of the scalar power spectrum, while the presence of a step-like
feature adds a prominent oscillatory pattern around the peak value. In fig.
6.2 we plot an example of such a potential, within the α-attractor framework,
with parameters c1 = 8.70 × 10−2, c2 = −2.77 × 10−4. The step is placed
at ϕ1 = 5.4 and a shallow nearly-inflection point exists at ϕ2 = 4.8. The
spectral index value for this model is ns = 0.968, within the 68% CL region
of Planck [160]. The number of efoldings after the crossing of the CMB scale
is N = 51 for an initial field value ϕCMB = 6.17. In figs. 6.1 and 6.2 we also
plot the function f(N) that determines key characteristics of the scalar power
spectrum, such as the amplitude and the oscillatory pattern, as discussed in
the previous chapters.

In the following sections we examine the cosmological implications for
PBH formation and GW production arising from the amplification of the
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Figure 6.2: Left panel: The inflationary potential with one step and
an inflection point as a function of ϕ in Planck units. The model gives
ns = 0.968 for an initial field value φCMB = 6.17MPl. The inflection point at
φinflec = 4.8MPl is clearly visible through the magnification of the potential
in the box. Right panel: The effective-friction function f(N) during the part
of the evolution in which it deviates from the standard value f(N) ' 3.

scalar spectrum by the step-like features in the potential (6.7). Remarkably,
models of this type yield striking predictions for the induced GWs that render
them testable by the forthcoming GW detection experiments.

6.2 Primordial black holes

Inflationary potentials with steps enhance the amplitude of the primordial
density perturbations at particular scales and might lead to gravitational
collapse and PBH production. We review briefly the observational bounds
on the PBH abundance, relevant for our analysis.

In the largest part of the mass spectrum there are stringent upper bounds
on ΩPBH/ΩDM arising from observational constraints, see fig. 6.3 for monochro-
matic PBH spectra. Light PBHs are constrained by the extra-galactic gamma
ray background (EGB); black holes of mass above 1017g are subject to con-
straints from gravitational lensing of stars by Subaru (HSC), Ogle (O), EROS
(E) and MACHO (M), microlensing of supernova (SN) and other experi-
ments. The CMB anisotropies measured by Planck (PA) constrain the PBHs
with masses above 1033g. In the large-mass region there are also constraints
from accretion limits in X-ray and radio observations and X-ray binaries
(XB), and dynamical limits from disruption of wide binaries (WB) and sur-
vival of star clusters in Eridanus II (Er). Advanced LIGO/Virgo searches
for compact binary systems with component masses in the range 0.2− 1M�
find no GW events. For a detailed discussion and references on the PBH
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constraints we refer the reader to [162].
The maximal value of the PBH abundance can be achieved in the mass

range MPBH ∼ 10−15 − 10−10M�. Here we focus on this mass window that
can be tested by near-future GW experiments, such as LISA. Nonetheless,
the parameters of the same inflationary model with step-like features can be
adjusted in order to generate PBHs in other mass windows, such as the O(10)
solar mass window that is relevant for the LIGO/Virgo observed events.

The theoretical framework for the PBH formation that we shall follow
next is based on the traditional Press-Schechter formalism [163]. Large den-
sity perturbations can create overdense regions that may collapse to form
black holes after the horizon reentry. We examine separately the two most
interesting cosmological scenarios for the very early Universe: the radiation
(RD) and matter domination (MD) scenarios.

6.2.1 Radiation-dominated era

For a Gaussian distribution function of the primordial density perturbations
and for spherically symmetric regions, the mass fraction of PBHs at formation
is

β(M) =

∫
δc

dδ
1√

2πσ2(k)
e
− δ2

2σ2(k) ' 1

2
erfc

(
δc√

2σ(k)

)
' 1√

2π

σ(k)

δc
e
− δ2c

2σ2(k) .

(6.8)
The parameter δc is the threshold density perturbation and erfc(x) is the
complementary error function. For δ > δc density perturbations overcome
the internal pressure and collapse. The β parameter can be regarded as the
probability that the density contrast is larger than δc. The PBH abundance
is exponentially sensitive to the threshold δc. Different values for δc are
quoted in the literature, see e.g. [9, 164–170], so that its precise value seems
to be rather uncertain. In the comoving gauge, ref. [168] finds δc = 0.41 for
w = 1/3. Numerical simulations demonstrate that there is no unique value
for the threshold, because it depends on the density profile.

In the comoving gauge, assuming a nearly scale-invariant curvature power
spectrum for a few efoldings around horizon crossing, the curvature pertur-
bation R can be related to the density perturbation δ as δ(k, t) = 2(1 +
w)/(5+3w) (k/aH)2R(k, t). The variance of the density perturbations σ(k),
smoothed on a scale k in the radiation-dominated era, is given by [171]

σ2(k) =

(
4

9

)2 ∫
dq

q
W 2(qk−1)(qk−1)4∆2

R(q) , (6.9)

where ∆2
R(q) is the power spectrum of the curvature perturbations, usually

calculated numerically. Here W (z) represents the Fourier transform of the
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Gaussian window function. In order to estimate the mass spectrum of the
PBHs, the horizon scale at the time of reentry of the perturbation mode k
has to be related to the mass of formed PBHs. During the radiation era,

the wavenumber scales as k ∝ g
1/2
∗ g

−2/3
s S2/3a−1 and the Hubble horizon as

H ∝ g
1/2
∗ g

−2/3
s S2/3a−2, where S denotes the entropy, and g∗, gs count the

total number of the effectively massless degrees of freedom for the energy
and entropy densities respectively. Assuming conservation of the entropy
between the reentry moment and the epoch of radiation-matter equality, the
relation between the PBH mass M and the comoving wavenumber k is given
by

M(k) = γρ
4πH−3

3

∣∣∣
k=aH

' 2.4× 10−16M�

( γ

0.2

)( g∗(T )

106.75

)− 1
6
(

k

1014 Mpc−1

)−2

,

(6.10)

where we took the effective degrees of freedom g∗ and gs approximately equal.
The factor γ gives the fraction of the horizon mass MH that collapses to form
PBHs. Its value depends on the details of the gravitational collapse and an
analytical estimation [9] gives γ = 0.2. The present ratio of the abundance of
PBHs with mass M over the total dark matter (DM) abundance, fPBH(M) ≡
ΩPBH(M)/ΩDM, can be expressed as

fPBH(M) =

(
β(M)

3.3× 10−14

) (
ΩDMh

2

0.12

)−1 ( γ

0.2

) 3
2
( g∗

106.75

)− 1
4

(
M

10−12M�

)− 1
2

.

(6.11)
The abundance of PBHs produced during RD can be significant if the

scalar spectrum is amplified by roughly 7 orders of magnitude. In our single
field models, described by the α-attractors potential (6.7), such an enhance-
ment is achieved if the potential involves several steps or a step and an
inflection point. In fig. 6.3 we plot the PBH fractional abundance for a
potential with a step and an inflection point, for the parameter values listed
in section 6.1.1. The scalar power spectrum of this model is depicted in fig.
6.5. For the estimation of the PBH abundance we assumed a threshold value
δc = 0.45 [167]. We see that, although the scalar power spectrum is char-
acterized by an oscillatory pattern around the peak, the PBH abundance is
predominantly monochromatic. However, the induced GW spectrum is much
more informative, as we will discuss in the following.

6.2.2 Matter-dominated era

PBHs might also form in the matter-dominated era (MD). In the absence of
pressure, even minute perturbations will evolve and deviations from spherical
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Figure 6.3: The red curve depicts the abundance of PBHs produced by an
inflationary model with a step and an inflection point during the RD era. The
blue curve depicts the abundance of PBHs produced by an inflationary model
with three steps during the MD era. The dashed curve is the PBH abundance
produced during the MD era for the double-“pulse” model (termed Ex. 3) of
fig. 5.7, in which a negative-friction “pulse” is followed by a positive-friction
“pulse”.

configurations play an essential role. Refs. [172–174] examined the PBH
production in a matter-dominated Universe and considered the non-spherical
effects during gravitational collapse. The PBH production rate β tends to
be proportional to the fifth power of the variance σ [174]:

β(σ) = 0.056σ5 . (6.12)

This expression has been derived with semi-analytical calculations and ap-
plies to 0.005 . σ . 0.2, whereas for σ . 0.005 the PBH production rate
is modified if there is significant angular momentum in the collapsing re-
gion [175]. The PBH fractional abundance is

fPBH ' 1.3× 109 γ β
Trh

GeV
, (6.13)

where Trh is the reheating temperature.
There are two very interesting implications of PBH production during

the MD era. Firstly, the PBH abundance is found to be larger compared



6.3 Induced gravitational waves 89

to RD for a given amplitude of the curvature power spectrum. Inflation-
ary potentials with steps, which enhance the curvature power spectrum by
4 or 5 orders of magnitude, can have an observational effect by generating
a significant cosmological PBH abundance. Secondly, the PBH production
during the MD era yields a PBH mass spectrum that is not predominantly
monochromatic. It has a distribution over a few orders of the PBH mass val-
ues, which might reveal a non-trivial shape for the underlying power spectrum
of the primordial density perturbations. Although the specific inflationary
models that we examine here do not have a very strong effect on the PBH
mass spectrum, inflationary models with steps can in principle produce mild
modulations in the distribution of PBHs. The blue curve in fig. 6.3 depicts
the PBH abundance produced by an inflationary potential given by eq. (6.7)
for three steps, with amplitude ∆2

R ∼ 10−4 and Trh ∼ 103 GeV. In the same
figure, the dashed curve depicts the PBH abundance produced by the double-
“pulse” model of fig. 5.7 with ∆2

R ∼ 10−3 and Trh ∼ 1 GeV. The spectrum
is sufficiently wide and oscillating in order to have an observational impact
on the PBH mass distribution.

6.3 Induced gravitational waves

Primordial density perturbations that seed PBHs also produce stochastic
GWs through the mode-mode coupling of the density perturbations beyond
the linear order in the perturbative expansion. The GW production takes
place mainly at the time when the perturbations reenter the Hubble horizon.
If density perturbations enter during the RD era, the stochastic spectrum
of second order GWs can be computed following cosmological perturbation
theory [176–185]. The same density perturbations will also produce PBHs
with abundance proportional to β given by eq. (6.8). On the other hand, if
perturbations enter deep in an early MD era, a different analysis has to be
followed in order to find the GW energy density spectrum [186, 187]. The
corresponding PBH abundance will now be proportional to β given by eq.
(6.12). In the following we will consider GW production only during the
RD era, leaving the study of the early MD era scenario for future work.
We will also assume that curvature perturbations are described by Gaussian
statistics1.

The spectrum of the induced GWs is sourced and shaped by the curvature
perturbations. We have seen that inflationary potentials with steps generate
a distinct oscillatory profile for the curvature power spectrum. We expect

1Non-Gaussian statistics may also generate modulations in the GW energy density
spectrum [188].
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that this profile is transmitted to GWs. In the following we will further
elaborate on the modulations of the amplitude in the GW energy density
spectrum, which will be found to display a multiple peak structure. We
will show in particular that the amplitude and the frequency of the peaks
in the GW spectrum are determined by the position and the number of
the steps in the inflaton potential. The GW spectrum inherits the pattern
characteristics of the curvature power spectrum and, hence, serves as a portal
to the inflationary dynamics.

Different GW experiments are sensitive to different frequency bands.
Curvature power spectra with a prominent peak at the PBH mass range
10−15− 10−10M� generate induced GWs at the frequency band 1− 10−4 Hz,
and can be tested by space-based interferometers like LISA [189], scheduled
to operate in the following decade.

6.3.1 The formalism of induced GWs

GWs are described by the tensor perturbation hij in the FRW spacetime

ds2 = a2(τ)

[
−(1 + 2φ)dτ 2 +

(
(1− 2ψ)δij +

1

2
hij

)
dxidxj

]
, (6.14)

where φ and ψ are scalar perturbations and vector perturbations are ne-
glected. In the absence of anisotropic stress, which is a good approximation
for our purposes, we have φ = ψ. The Fourier components of the tensor
modes are defined via the relation

hij(τ,x) =
∑
λ

∫
d3k

(2π)3/2
hλ(τ,k)e

(λ)
ij (k)eikx (6.15)

where e
(λ)
ij , with λ = +,×, are polarization tensors. Through the definition

of the dimensionless power spectrum

〈hλ(τ,k)hλ′(τ,k
′)〉 = δλλ′δ

3(k + k′)
2π2

k3
Ph(τ, k) (6.16)

we have

ρGW(τ, k) =
M2

Pl

8

k2

a2
Ph(τ, k) . (6.17)

The evolution of hij is obtained by expanding the Einstein equations. At
second order in scalar perturbations, the equation of motion for the Fourier
components of the tensor perturbations is

h′′λ + 2Hh′λ + k2hλ = 4Sλ(τ,k) , (6.18)
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where Sλ(τ,k) is a source that consists of products of scalar perturbations:

Sλ(τ,k) =

∫
d3q

(2π)3/2
eij(k)qi qj

(
2φqφk−q

+
4

3(1 + w)
(H−1φq + φq)(H−1φk−q + φk−q)

)
.

(6.19)

The evolution of φk is given in terms of the scalar transfer function. For
radiation domination, we have φk(τ) = φ(x) Φk, with

φ(x) =
9

x2

(
sin(x/

√
3)

x/
√

3
− cos(x/

√
3)

)
, (6.20)

where x = kτ , and Φk is the primordial value, related to the curvature
perturbation as

〈ΦkΦk′〉 = δ3(k + k′)
2π2

k3

(
3 + 3w

5 + 3w

)2

∆2
R(τ, k). (6.21)

The solution of eq. (6.18) reads

hλ(τ,k) =
1

a(τ)

∫ τ

0

Gk(τ, τ̄)a(τ̄)Sλ(τ̄ ,k)dτ̄ . (6.22)

where Gk(τ, τ̄) is the Green’s function for eq. (6.18). The power spectrum of
induced GWs is expressed in a compact form as a double integral involving
the power spectrum of the curvature perturbations [190]

Ph(τ, k) =

∫ ∞
0

dt

∫ 1

−1

ds T (s, t, τ, k) ∆2
R

(
t+ s+ 1

2
k

)
∆2
R

(
t− s+ 1

2
k

)
.

(6.23)
The overline denotes the oscillation average. The t and s variables are defined
as t = u + v − 1, s = u − v, where v = q/k, u = |k − q|/k. The integral
kernel T is given by the expression

lim
x→∞

x2 T (s, t, x) = 2

(
t(2 + t)(s2 − 1)

(1− s+ t)(1 + s+ t)

)2
288(−5 + s2 + t(2 + t))2

(1− s+ t)6(1 + s+ t)6
×{

π2

4

(
−5 + s2 + t(2 + t)

)2
Θ
(
t− (
√

3− 1
)

+(
−(t− s+ 1)(t+ s+ 1) +

1

2
(−5 + s2 + t(2 + t)) log

∣∣∣∣−2 + t(2 + t)

3− s2

∣∣∣∣)2
}
,

(6.24)
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where Θ is the Heaviside step function. The fraction of the GW energy
density per logarithmic wavenumber interval is

ΩGW(τ, k) =
1

ρtot(τ)

dρGW(τ, k)

d ln k
=

1

24

(
k

a(τ)H(τ)

)2

Ph(τ, k) . (6.25)

At a certain time tc the production of induced GWs ceases, while their prop-
agation becomes free. In a RD background the energy density parameter
ΩGW remains constant. Its value at the current time t0 is given by eq. (6.25)
times the current radiation density parameter, Ωγ,0h

2 = 4.2 × 10−5, mod-
ulo changes in the number of the relativistic degrees of freedom g∗ in the
radiation fluid:

ΩGW(t0, f)h2 = 0.39×
( g∗

106.75

)−1/3

Ωγ,0h
2 × ΩGW(tc, f). (6.26)

The total energy density parameter of induced GWs is obtained by integrat-
ing the GW energy density spectrum over the entire frequency interval.

6.3.2 Oscillations in the induced GW power spectrum
from potentials with steps

We start the discussion of the pattern of induced GWs produced in inflation-
ary models with sharp features by looking at the spectrum characteristics of
analytically calculable models, such as those depicted in figs. 5.5-5.7. In the
previous chapter we performed a semi-analytic calculation of the curvature
power spectrum by modeling the function f(N) of eq. (5.2), which cap-
tures the dynamics of the inflaton field beyond the slow-roll regime, through
a sequence of square “pulses”. The amplitude of the produced curvature
power spectrum is enhanced by the factor |Cm|2 of eq. (5.16), while it also
displays oscillatory patterns with characteristic periods δk/H ∼ eNπ in k-
space, where N is the number of efoldings at which the function f(N) varies
strongly. (See the discussion below eq. (5.16).) Roughly the same charac-
teristic frequency is observed in the GW spectra. In fig. 6.4 the GW spectra
for the three examples studied in section 5.1.5 are plotted. We also plot a
function ΩGWmax(2 + sin(αGW k − θ))/3 that highlights the periodic change
of the GW amplitude around the peak through a fit of the k-space period
δkGW ∼ 2π/αGW. We find αGW = O(1)/H, corresponding to the smallest
period of the oscillations in the curvature spectrum δk/H ∼ O(1)π. It must
be noted that larger periods of size δk/H = O(10)π appearing in ∆2

R can
also be discerned in the modulations of the amplitude of the GW spectrum
at the corresponding scales. However, they are less visible, as they extend to
regions in k-space far from the peak.
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The short-period modulations of order π imply that the peaks in the
curvature spectrum are narrow. In fig. 6.4 a lognormal distribution with a
certain width σN < 1 is plotted together with ∆2

R. It elucidates the promi-
nent two-peak structure induced in the GW spectrum [184, 191, 192], which
appears when the main peak of the curvature spectrum is sufficiently narrow.
In our first example, for a square pulse starting at N = 0, corresponding to
the smallest period of oscillations δk/H ' π, the peak of ∆2

R is found at
a wavenumber kp/H ' 4.5, comparable to π. The k-range of the fitting
lognormal distribution is determined by requiring that δk ∼ kp(eσN − 1),
which implies that σN < 1. As a result, and in agreement with the analysis
of ref. [192], the GW spectrum is found to feature a major, relatively sharp
peak at (2/

√
3)kp/H. Additionally, in the low-k side there is a relatively flat

local maximum, at a wavenumber near kp/e. This characteristic two-peak
structure is evident in all three examples we studied. In the second exam-
ple in particular, in which ∆2

R is dominated by a single peak because the
smallness of the positive “pulse” confines the oscillatory patterns within the
high-k part of the spectrum, the two-peak structure is practically the only
observable feature.

Let us now turn to the inflationary models with step-like features de-
scribed by eq. (6.7). In these models, the effective-friction function f(N) of
eq. (5.2), depicted in fig. 6.1, can be approximated by a 2n-“pulse” struc-
ture for n steps, with each positive “pulse” followed by a negative one. In
the semi-analytically calculable models that we studied before, the power
spectrum was normalized such that the step features started at N = 0. We
observed an enhancement by a factor |Cm|2, together with oscillations of pe-
riod δk/H ∼ eNπ. In the inflationary models of eq. (6.7) we find numerically
similar patterns. The curvature spectrum ∆2

R is to a good approximation en-
hanced by |Cm|2, with a main peak at a wavenumber kp characteristic of the
position of the step in terms of the number of efoldings N , which are now
counted from the exit of the CMB scale. Oscillations are also produced with
an approximate period δk ∼ kp.

In fig. 6.5 we plot four curvature power spectra together with the GW
density spectra that they induce. For the three-step model, the curvature
spectrum displays strong modulations and one can read off an oscillatory
pattern with period δk ' 2.5 × 1011 Mpc−1. The spectrum ∆2

R has three
prominent peaks at comparable wavenumbers kp1, kp2, kp3. Each peak is
well described by a narrow lognormal distribution in the k-range with width
σN < 1. The combination of these three peaks induces a characteristic five-
peak structure in the GW spectrum [193], along with the rather flat local
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Figure 6.4: Left: The scalar power spectrum produced by a double square
“pulse”, normalized to the CMB measured amplitude. The dashed line is a
lognormal power spectrum with width σN. Right: The induced GW spec-
trum, along with a fitting periodic function. Each row, from top to bottom,
corresponds to the “pulse” producing the spectrum of each of figs. 5.5, 5.6,
5.7, respectively.

maximum at lower k, as can be seen in the first row of panels in fig. 6.5. The
first sharp peak in the GW spectrum is located at the value kGW,1 = 2kp1/

√
3,

the second at kGW,2 = (kp1 + kp2)/
√

3, the third at kGW,3 = 2kp2/
√

3, the
fourth at kGW,4 = (kp2 + kp3)/

√
3 and the fifth at kGW,5 = 2kp3/

√
3. The

rather flat local maximum at lower k is located near kp2/e, where kp2 is the
wavenumber of the highest peak. These values can be seen in fig. 6.5 in
the frequency spectrum and in Hz units through the conversion f = k/(2π),
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Figure 6.5: Left panels: The curvature power spectra produced by infla-
tionary models with potentials given by eq. (6.7) and depicted in fig. 6.1,
for parameter values given in the text. Right panels: The generated GW
density parameter produced by each inflationary model. A zoom-in plot of
the peak region has been included in each panel. Note that the last row of
panels corresponds to an inflationary model that features both a step and an
inflection point, depicted in fig. 6.2.
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where Mpc−1 ' 0.97 × 10−14 Hz. Similar conclusions can be drawn for the
next two inflationary models that feature four and five steps, respectively.

For the inflationary model that features both an inflection point and a
step, the resulting spectra are quite different compared to the previously
discussed models that involve only steps. The inflection point is responsible
for the strong enhancement of the curvature power spectrum and its relatively
wide peak. Indeed, the envelope function that outlines the peak can be fitted
by a lognormal distribution with width σN ' 0.4. Hence the characteristic
two-peak structure in the GW spectrum [192] is not very prominent here.
The step-like feature has a minor contribution to the enhancement of the
curvature spectrum, but it is the source of the oscillatory pattern around the
peak with the characteristic period δk ' 7× 10−11Mpc−1. These oscillations
are also transferred to the GW spectrum. As before, the GW oscillatory
pattern is well described by a periodic function and reflects the pattern in
the curvature spectrum.

It is important to emphasize that, even though it is not clearly visible
in the log-plot, the oscillations near the peak are substantial: The ΩGW

spectrum displays variations in its amplitude that are 25% of its maximal
value or larger. Such modulations in the amplitude are likely to be detectable
by the near-future space interferometers.



Chapter 7

Two-field inflation and turns in
field space

In the previous chapters we examined the features of the potential in single-
field inflation that can result in an amplification of the curvature power
spectrum by several orders of magnitude. Here, we are interested in similar
phenomena in two-field inflation. This chapter is based mainly on [152].

7.1 Two-field inflation

In this section we summarise the basic formulae related to two-field inflation
which are necessary for our analysis.

7.1.1 Background evolution

The action is of the form

S =

∫
d4x
√
−g
[

1

2
R− 1

2
gµνγab∂µφ

a∂νφ
b − V (φ)

]
, (7.1)

where γab with a, b = 1, 2 is the metric in field space. On an expanding,
spatially flat background, with scale factor a(t), the equations of motion of
the background fields take the form [116,134]

D

dt
φ̇a + 3Hφ̇a + V a = 0 (7.2)

3H2 =
1

2
φ̇2 + V, (7.3)

where V a = γab∂V/∂φb and

D

dt
Xa = Ẋa + Γabc φ̇

bXc. (7.4)
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By defining φ̇2 ≡ γabφ̇
aφ̇b, we obtain

Ḣ = − φ̇
2

2
. (7.5)

We next define vectors T a and Na tangent and normal to the path

T a =
φ̇a

φ̇
(7.6)

Na = (det γ)1/2εabT
b, (7.7)

such that T aTa = NaNa = 1, T aNa = 0. Projecting eq. (7.2) along T a, one
finds

φ̈+ 3Hφ̇+ VT = 0, (7.8)

where VT = T a∂V/∂φa. One also finds

DT a

dt
= −VN

φ̇
Na, (7.9)

with VN = Na∂V/∂φa. The slow-roll parameters are defined as

ε ≡ − Ḣ

H2
=

φ̇2

2H2
(7.10)

ηa ≡ − 1

Hφ̇

Dφ̇a

dt
. (7.11)

Then ηa can be decomposed as

ηa = η‖T
a + η⊥N

a, (7.12)

with

η‖ = − φ̈

Hφ̇
= − ε̇

2Hε
+ ε (7.13)

η⊥ =
VN

Hφ̇
. (7.14)

We also have

DT a

dt
= −Hη⊥Na (7.15)

DNa

dt
= +Hη⊥T

a. (7.16)
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7.1.2 Perturbations and relevant assumptions

The evolution equations for the curvature and isocurvature perturbations in
two-field inflation can be cast in the form 1 [116,134]

Rk,NN+
(
3 + ε− 2η‖

)
Rk,N+

k2

H2
e−2NRk = −2

η⊥√
2ε

[
Fk,N + (3− η‖ − ξ⊥)Fk

]
(7.17)

Fk,NN + (3− ε)Fk,N +
k2

H2
e−2NFk +

(
M2

H2
+ εR− η2

⊥

)
Fk = 2

√
2ε η⊥Rk,N ,

(7.18)
with

η‖ = ε− ε,N
2ε

(7.19)

ξ⊥ = −η⊥,N
η⊥

. (7.20)

We have written the equations in Fourier space, using the number of efoldings
N as independent variable. The subscripts denote derivatives with respect
to N . Here Rk is the curvature perturbation, while Fk is related to the
isocurvature perturbation S through Fk =

√
2εSk. The mass M of the

isocurvature perturbation is given by the curvature of the potential in the
direction perpendicular to the trajectory of the background inflaton. The
variable R is the Ricci scalar of the internal manifold spanned by the scalar
fields [100]. It vanishes for a model with standard kinetic terms for the two
fields.

In order to focus on the main features associated with the enhancement
of the curvature spectrum, we make some simplifying assumptions:

• We approximate the Hubble parameter as constant. This is a good
approximation, as its variation during the period of interest is O(10%),
while the spectrum may increase by several orders of magnitude.

• In a similar vein, we take the mass M of the isocurvature modes to
be constant. We also assume that M >∼ H, so that the isocurvature
perturbations are suppressed apart from short periods during which
the parameter η⊥ becomes large.

• We do not consider the possibility of a curved field manifold, but assume
that the fields have standard kinetic terms. This means that we can
set R = 0.

1In this chapter we return to the symbol R in order to denote the comoving curvature
perturbation.
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• We assume that the parameter ε takes a small constant value while the
system is in the slow-roll regime, consistently with the constraints from
the cosmic microwave background (CMB). We neglect here corrections
arising from the slow-roll regime that lead to small deviations from scale
invariance. We focus instead on short periods of the inflaton evolution
during which η‖ or η⊥ can grow large. These periods are reflected in
strong deviations of the spectrum from scale invariance over a range of
momentum scales.

We are interested in strong deviations from the slow-roll regime during
short intervals in N , which can result in the strong enhancement of the
curvature perturbations. There are two typical scenaria that we have in
mind:

• For η2
⊥ � M2/H2, the isocurvature mode is strongly suppressed and

the rhs of eq. (7.17) vanishes. The curvature mode can be enhanced if
the coefficient of the term ∼ Rk,N in the lhs becomes negative. This
requires large positive values of the parameter η‖, from which the dom-
inant effect comes, while ε takes values at most around 1 and can be
neglected. The equation for the curvature perturbation can be approx-
imated as

Rk,NN + (3− 2 η‖)Rk,N +
k2

H2
e−2NRk = 0, (7.21)

which is the same as (5.1) with f(N) = 3 − 2 η‖. This scenario cor-
responds to the case that the inflaton potential displays an inflection
point or a sharp step, which we have analysed in detail in the previous
chapters, when we studied single-field inflation.

• If η2
⊥ � M2/H2 for a short period, the isocurvature modes can be

temporarily excited very strongly. The rhs of eq. (7.17) then becomes
large and acts as a source for the curvature perturbations, leading to
their strong enhancement. At a later time, η⊥ becomes small and the
isocurvature perturbations become suppressed again. This process can
take place while the slow-roll parameters ε and η‖ remain small. In
order to capture the essence of this mechanism, we assume that ε is
small and roughly constant, and switch to the field Sk = Fk/

√
2ε. The

system of eqs. (7.17), (7.18) becomes

Rk,NN +3Rk,N +
k2

H2
e−2NRk = −2 (η⊥Sk,N + η⊥,NSk + 3η⊥Sk) (7.22)

Sk,NN + 3Sk,N +
k2

H2
e−2NSk +

(
M2

H2
− η2

⊥

)
Sk = 2 η⊥Rk,N . (7.23)
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Notice that Sk is the appropriate field on which the initial condition of
a Bunch-Davies vacuum can be imposed, similarly to Rk.

In both the above scenaria, it is the acceleration in the evolution of the
background inflaton, either in the direction of the flow through η‖(N), or
perpendicularly to it through η⊥(N), that causes the amplification of the
spectrum of curvature perturbations. Another common characteristic is that
the spectrum displays strong oscillatory patterns.

A weak point of the above scenaria is that the enhancement of the cur-
vature spectrum by several orders of magnitude can be achieved only under
special conditions. The inflaton potential around an inflection point must be
fine-tuned with high accuracy [32, 34, 35, 53]. A step in the potential gives
a limited enhancement, unless the potential is engineered in a very specific
way [155]. Finally, a sharp turn in the inflaton trajectory must reach a value
of 4π for the enhanced spectrum to have observable consequences [45]. This
is possible only if the field manifold is curved.

However, a strong enhancement of the curvature spectrum is possible if
several strong features in the inflaton potential combine constructively. We
have already seen it in the case of steps and we are also going to come to
analogous conclusions for turns in field space.

7.2 Turns in field space

Since the case of steps and inflection points has been analysed in the previous
chapters, we now turn to the case of turns in field space. As we saw in section
7.1, such features occur when the parameter η⊥ satisfies η2

⊥ �M2/H2, with
M the typical mass of the mode perpendicular to the inflaton trajectory. The
relevant equations are eqs. (7.22), (7.23). The evolution of the background
can be rather complicated, depending on the characteristics of the two-field
potential [116, 134]. We concentrate here on a simplified scenario, which
preserves the relevant features without requiring a numerical calculation of
the background evolution.

7.2.1 Maximal turn and multiple features

We consider models of a two-component field φa = (χ, ψ) with a standard
kinetic term, for which the curvature of the field manifold vanishes. We
assume that the potential has an almost flat direction along a curve ψ = f(χ).
A small constant slope along this direction results in a small value of the slow-
roll parameter ε, which we assume to be constant. Along the perpendicular
direction the potential has a large curvature, so that the flat direction forms
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a valley. We consider the simplest scenario, in which the fields evolve very
close to the bottom of the valley, without perpendicular oscillations. We
approximate the Hubble parameter as constant, with a value set by the
average value of the potential along the flat direction. A particular realization
of this setup, with f(χ) = a2/χ, is given in ref. [116].

The unit vectors, tangential and normal to the valley at φa = (χ, f(χ)),
are

T a =
1√

1 + f ′2(χ)
(1, f ′(χ)) (7.24)

Na =
1√

1 + f ′2(χ)
(f ′(χ),−1) . (7.25)

If we assume that the norm of φ̇a stays constant and equal to
√

2εH, we find
that

χ,N = ±
√

2ε√
1 + f ′2(χ)

. (7.26)

We now have

T a,N =
∂T a

∂χ
χ,N =

f ′′(χ)

(1 + f ′2(χ))3/2
χ,N (−f ′(χ), 1) = − f ′′(χ)

1 + f ′2(χ)
χ,N N

a.

(7.27)
From eq. (7.15) we deduce that

η⊥ =
f ′′(χ)

1 + f ′2(χ)
χ,N = ±

√
2ε

f ′′(χ)

(1 + f ′2(χ))3/2
. (7.28)

It is apparent that η⊥ is nonzero only in regions in which f ′′(χ) 6= 0, so that
the valley of the potential is not linear.

We are interested in a scenario in which a linear part of the valley is
succeeded by a sharp turn, leading to a second linear part. Without loss
of generality we can assume that the turn is located near χ = ψ = 0. The
background evolution will be characterized by a short interval in which η⊥
will rise and fall sharply from zero. The angle of rotation in field space obeys
θ,N = η⊥, from which we obtain

∆θ =

∫ Nf

Ni

η⊥(χ)dN =

∫ χf

χi

f ′′(χ)

1 + f ′2(χ)
dχ = arctan (f ′(χ))

∣∣∣χf
χi
. (7.29)

The maximal angle can be obtained if f ′(χi) → −∞ before the turn and
f ′(χf )→∞ after, so that ∆θ = π.

In the model of ref. [116], in which f(χ) = a2/χ, one can have f ′(χi) →
−∞ before the turn and f ′(χf )→ 0 after, so that ∆θ = π/2. The maximal
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Figure 7.1: Typical evolution of the function η⊥(N) induced by turns in the
inflaton potential. The approximation through “pulses” is also depicted.

value of η⊥ is obtained for χ = ψ = a. It is η⊥max =
√
ε/a, and can be

arbitrarily large for a → 0. The duration of the turn is roughly ∆N ∼
∆θ/η⊥max = πa/(2

√
ε) and can be very short for a→ 0.

As the value of the integral in eq. (7.29) is bounded by π, the effect of
sharp turns on the amplification of the isocurvature and curvature pertur-
bations is limited. However, multiple turns can also occur. The sign of the
rotation angle is arbitrary, so a sequence of turns with alternating signs is
possible. The enhancement of the curvature perturbation depends only on
|η⊥|, as can be easily seen through inspection of eqs. (7.22), (7.23). In fig.
7.1 we depict the typical evolution of η⊥ when the potential has several turns
along its flat direction. We also present the approximation of the various fea-
tures through “pulses”, which we shall employ in the following. The integral
over each feature must be smaller than π, so that the valley of the potential
does not close on itself. This limits the possible enhancement arising from
each turn. However, the combined effect of several turns can be substantial,
as we show in this section.

7.2.2 The qualitative features of the evolution

As we discussed in section 7.1, the perturbations in the two-field system are
governed by eqs. (7.22). (7.23). In order to simplify the picture, we as-
sume that M is constant and M/H >∼ 1, so that the isocurvature modes get
suppressed during the parts of the evolution in which η⊥ is small. However,
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when η⊥ � M/H the evolution becomes non-trivial, as both the curvature
and isocurvature modes get excited. The term ∼ η2

⊥ in the lhs of eq. (7.23)
acts as a negative mass term, triggering the rapid growth of the field Sk.
As a result, the rhs of eq. (7.22) becomes a strong source term for the field
Rk. The resulting growth of Rk generates a source term in the rhs of eq.
(7.23) that moderates the maximal value of the field Sk. The combined ef-
fect results in the enhancement of both modes. However, the late evolution
of Sk, when η⊥ becomes negligible, is dominated by its nonzero mass, so
that this field eventually vanishes. The curvature mode Rk freezes, similarly
to the standard inflationary scenario, preserving its enhancement within a
certain momentum range. Another characteristic consequence of the pres-
ence of strong features in the potential during inflation is the appearance of
distinctive oscillations in the curvature spectrum.

In order to obtain an analytic understanding of the evolution of the per-
turbations, we consider the “pulse” approximation that we have already seen.
For one “pulse” η⊥ has the form

η⊥(N) = η⊥0 (Θ(N −N1)−Θ(N −N2)) . (7.30)

The parameter η⊥ takes a constant value for N1 < N < N2, and approaches
zero very quickly outside this range. For N < N1 and N > N2 the two
equations of motion decouple

Rk,NN + 3Rk,N +
k2

H2
e−2NRk = 0 (7.31)

Sk,NN + 3Sk,N +
k2

H2
e−2NSk +

M2

H2
Sk = 0, (7.32)

resulting in simple solutions of the following form

Rk(N) = e−
3
2
N

[
CpJ 3

2

(
e−N

k

H

)
+ CmJ− 3

2

(
e−N

k

H

)]
(7.33)

Sk(N) = e−
3
2
N

[
DpJ 1

2

√
9−4M

2

H2

(
e−N

k

H

)
+DmJ− 1

2

√
9−4M

2

H2

(
e−N

k

H

)]
. (7.34)

Initial conditions corresponding to the Bunch-Davies vacuum are obtained
for Cpi = 1, Cmi = i. For the massive mode, the coefficients must be chosen
more carefully, so that they reproduce the free-wave solution for N → −∞
when M becomes negligible. They read

Dpi = −
√

2(1 + i)
e
iπ
4

√
9−4M2/H2

1− eiπ
√

9−4M2/H2
eiφ (7.35)

Dmi =
√

2(1 + i)
e

3iπ
4

√
9−4M2/H2

1− eiπ
√

9−4M2/H2
eiφ. (7.36)
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We have also included an arbitrary phase difference φ between the curvature
and isocurvature modes at early times. This phase may affect the profile
of the spectra by modifying the interference patterns when the two modes
interact. However, we have found that the quantitative conclusions about
the spectrum enhancement and the characteristic oscillations it may display
are largely unaffected. For this reason, we use φ = 0 in our analysis.

The evolution in the interval N1 < N < N2 is complicated because of
the coupling between the two modes. The main features are more clearly
visible if we neglect the expansion of space, which is a good approximation
for ∆N = N2 −N1

<∼ 1. The evolution equations now become

Rk,NN +
k2

H2
Rk + 2η⊥0Sk,N = 0 (7.37)

Sk,NN +

(
k2

H2
+
M2

H2
− η2

⊥0

)
Sk − 2η⊥0Rk,N = 0. (7.38)

Following refs. [45, 110], we look for solutions of the form

Rk = AeωN , Sk = BeωN . (7.39)

There are four independent solutions

ωi = ± 1√
2

√√√√−(M2

H2
+ 3η2

⊥0 + 2
k2

H2

)
±

√(
M2

H2
+ 3η2

⊥0

)2

+ 16
k2

H2
η2
⊥0,

(7.40)
with i = 1, 2, 3, 4 corresponding to the combinations of signs ++, −+, +−,
−−, respectively. The corresponding values of Bi are

B1,2 = f+ ω1,2A1,2 (7.41)

B3,4 = f− ω3,4A3,4, (7.42)

with

f± =
4 η⊥0

M2

H2 − 5η2
⊥0 ±

√(
M2

H2 + 3η2
⊥0

)2
+ 16 k2

H2η2
⊥0

. (7.43)

The solutions on either side of N1 and N2 can be matched, assuming the
continuity of Rk(N), Sk(N) and Sk,N(N). The first derivative of Rk(N)
must account for the δ-function arising from the derivative of η⊥(N) at these
points. This leads to the conditions

Rk,N(N1−) = Rk,N(N1+) + 2η⊥0Sk(N1) (7.44)

Rk,N(N2−) = Rk,N(N2+)− 2η⊥0Sk(N2). (7.45)
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For given initial conditions Cpi , Cmi , Dpi , Dmi before the “pulse”, one can
calculate, through the use of these boundary conditions, the constants Ai
within the “pulse”, and eventually the final coefficients of the free solutions
Cpf , Cmf , Dpf , Dmf after the “pulse”. Similarly to what was done in chapter
5, one can thus determine the matrix Mpulse that links the solutions before
and after the “pulse”:

Cpf
Cmf
Dpf

Dmf

 = Mpulse(N1, N2, k,M, η⊥)


Cpi
Cmi
Dpi

Dmi

 . (7.46)

This matrix facilitates calculations for more complex problems with multiple
“pulses”, occurring when the linear valley of the potential is interrupted by
multiple, successive turns. Unfortunately, the expressions for the matrix
elements are extensive and not very illuminating. For this reason we do not
present them explicitly.

The influence of the “pulse” on the evolution of the perturbations can be
inferred through inspection of eq. (7.40). Two of the solutions (ω3 and ω4) are
purely imaginary, resulting in oscillatory behaviour. The other two (ω1 and
ω2) have a more complicated dependence on the parameters of the problem.

For k
H
≥
√
η2
⊥0 − M2

H2 they are imaginary as well, but for k
H
≤
√
η2
⊥0 − M2

H2

they become real, thus inducing exponential growth or suppression. In the
limit ∆N → 0, η⊥0 → ∞, with the total area of the “pulse” (or total angle
of the turn) ∆θ = η⊥0∆N kept constant, we have

ω1,2 = ± k

H
√

3
+O(∆N). (7.47)

We expect then that the spectrum will be enhanced by a factor

PR ∼ exp

[
2k

H
√

3
∆N

]
= exp

[
2∆θ√

3

k/H

η⊥0

]
. (7.48)

The fact that the maximal turn ∆θ cannot exceed π for canonical kinetic
terms implies that the enhancement of the spectrum appears for scales k/H
comparable to η⊥0. As the general solution is a superposition of all inde-
pendent solutions (7.39), (7.40), the exponential growth is accompanied by
oscillatory behaviour with a characteristic frequency set by η⊥0. For large k
the spectrum returns to its scale-invariant form, as the effect of the “pulse”
diminishes.

The constraint on ∆θ implies that a single turn results only in a limited
growth of the spectrum [45]. However, multiple turns can have an additive,
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and often resonant, effect. In this respect it is important to point out another
feature of the solutions. We are interested in the regime η⊥0 �M/H, so that
we can neglect the effect of the mass inside the “pulse”. For k/H � η⊥0,
strong oscillations, with a frequency set by η⊥0, occur within the “pulse”.
On the other hand, outside the “pulse” the characteristic frequency of oscil-
lations, modulated by the expansion, is set by k or M . The continuity of
Sk(N) and its derivative implies that the amplitude of oscillations increases
significantly when the perturbation exits the “pulse”. The effect is visible if
one matches at N = 0 the toy functions fi(N) and ff (N) given by

fi,f (N) = Ai,fe
−iki,fN +Bi,fe

iki,fN . (7.49)

This results in

Af =
1

2

(
1 +

ki
kf

)
Ai +

1

2

(
1− ki

kf

)
Bi

Bf =
1

2

(
1− ki

kf

)
Ai +

1

2

(
1 +

ki
kf

)
Bi. (7.50)

For ki � kf , as when entering a “pulse”, the constants Af , Bf are comparable
to Ai, Bi, while for ki � kf , as when exiting a “pulse”, they are greatly
enhanced. We shall see realizations of this effect in the two-field context
through the numerical solution of eqs. (7.22), (7.23) in the following.

Before completing the subsection, we point out that the alternative for-
mulation of the calculation of the spectrum that was introduced in section
5.2 for the single field case can be generalized for two fields. We present the
relevant expressions in appendix B.

7.2.3 Numerical evaluation of the spectra

The precise form of the power spectrum in the two-field case is not captured
easily through an analytic approach, especially when multiple features ap-
pear in the inflaton potential. For this reason, we resort to the numerical
integration of eqs. (7.22), (7.23). In fig. 7.22 we present the evolution of
the amplitude of perturbations Rk(N) and Sk(N) in two distinct cases. The
perturbations are normalized so that the curvature spectrum is equal to 1
for η⊥ = 0.

In the top row of fig. 7.2 we present Rk(N) (left plot) and Sk(N) (right
plot) for a wide “pulse”, also depicted in the plots. This example does not

2It is PR ≡ ∆2
R in this and the following figures.
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Figure 7.2: The evolution of the curvature mode (left plots) and isocurvature
mode (right plots) for two types of time dependence for the parameter η⊥:
Top row: Thick “pulse”. Bottom row: A sequence of three narrow “pulses”
of alternating sign. The function |η⊥(N)| is also depicted. The mass of the
isocurvature mode is M/H = 5. The momentum of both modes is k/H ' 56
in the top row and k/H ' 3.2 in the bottom row.

represent a physical situation for vanishing curvature R of the internal field
manifold, because the total turn ∆θ is approximately 15. It is presented
in order to demonstrate the qualitative features discussed in the previous
subsection, which become relevant for R 6= 0. The mode momentum is
k/H ' 56, of the same order as the height η⊥0 ' 100 of the “pulse”. The
mass of the isocurvature mode isM/H ' 5. One sees clearly the rapid growth
of the perturbations inside the “pulse” and the appearance of oscillations with
frequency set by η⊥0. After exiting the “pulse”, the perturbations oscillate
with frequency set by k. For N →∞ (a region not depicted in the plots) the
isocurvature mode asymptotically vanishes because of its nonzero mass. The
curvature mode freezes when the horizon is crossed at a value larger than the
one corresponding to the scale-invariant case (η⊥ = 0).

In the bottom row of fig. 7.2 we present the evolution in the case of
multiple “pulses”. The width of each “pulse” is much smaller than in the
previous example, so that each turn —∆θ— in field space is smaller than
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Figure 7.3: Curvature spectrum induced by a sequence of “pulses” of alter-
nating signs in the function η⊥(N). Top row: one “pulse” (left), two “pulses”
(right). Bottom row: three “pulses” (left), four “pulses” (right). We have
kept the same scales for the axes in all plots for direct comparison.

π. The turns have alternating signs and in the plot we depict |η⊥(N)|. The
mode momentum is k/H ' 3.2, much smaller than η⊥0. The mass of the
isocurvature mode is again M/H ' 5. It is apparent that the growth of both
modes within the “pulses” is not substantial, even though strong oscillations
occur with frequency set by η⊥0. The distinctive feature is the strong increase
of the amplitude of the isocurvature mode when the perturbation exits the
“pulse”. This is expected, according to our discussion at the end of the
previous subsection. The oscillation frequency for this mode outside the
“pulses” is set by the mass and is rather low. The location of the “pulses” is
such that a resonance effect occurs, with the amplitude of Sk being amplified
each time a “pulse” is traversed. This effect also triggers the growth of the
curvature mode. The late time behaviour of both modes (not depicted in the
plot) is similar to the previous case.

In fig. 7.3 we depict the form of the curvature spectrum induced by
a function η⊥(N) displaying a sequence of “pulses” such as those in the
bottom row of fig. 7.2. The “pulses” have alternating signs and are located
at a distance of 0.25 efoldings from each other. Each “pulse” has a width
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of approximately 0.03 efoldings, a height η⊥0 ' 100 and a total area smaller
than π. We have used the same scales in all plots in order to be able to
make direct visual comparisons. The top row includes the spectra generated
by one (left plot) or two (right plot) “pulses”. The bottom row includes
the spectra generated by three (left plot) or four (right plot) “pulses”. The
spectra are normalized to the scale-invariant one. The location of the point
k/H = 1 is arbitrary. It corresponds to the mode that crosses the horizon
at the time at which we have set N = 0 for the number of efoldings, with N
also taking negative values. In order to make contact with observations, the
normalization of k must be set relative to the CMB scale.

In all plots we observe the enhancement of the spectrum in the region
k/H ∼ η⊥0. This enhancement increases with the number of “pulses”, but
not to a significant degree. On the other hand, a strong enhancement appears
for multiple “pulses” at low values of k/H, which increases dramatically with
each addition of a “pulse”. This is the realization of the mechanism that we
discussed above in relation to the bottom row of fig. 7.2. The resonance effect
appears for 1/k comparable to the distance between the “pulses”. For our
plots we kept this distance fixed. However, similar patterns in the spectrum
are obtained for variable locations of the “pulses”, as long as their separations
are comparable. The exact height of each “pulse” may also vary. It must be
noted that the effect is strongly amplified by very sharp “pulses”. We have
chosen profiles that match the form of η⊥(N) expected by models such as
the one we discussed in subsection 7.2.1.

7.3 GWs and the PBH counterpart

As we know, primordial inhomogeneities imprinted on the CMB are limited
to scales of order larger than a Mpc. Large enhancements of the power spec-
trum of perturbations on small scales, such as those produced through the
mechanisms discussed in this thesis, are not directly visible on the CMB sky
due to photon diffusion damping. A method to probe small-scale pertur-
bations is the search for a stochastic GW background. The formalism of
stochastic or induced GWs was described in the previous chapter (see also
ref. [194] for a recent review).

The enhancement of the curvature power spectrum due to several “pulses”
in the evolution of η‖ generates a GW spectrum with a characteristic peak
structure, discussed in chapter 6. The main peak of the curvature spectrum
is found to be narrow, σ < 1, and induces a GW spectrum with a major
peak after a flat plateau. Additional oscillatory patterns are superimposed
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Figure 7.4: Left plot: The GW spectral density produced by inflationary
trajectories with 3 and 4 successive turns occurring at the wavenumber kf .
The scale kf is the scale that crosses the horizon at the time when the first
feature occurs. In the right plot, we select three different values for this scale.
Right plot: The GW spectra placed at three benchmark frequencies that lie
within the range of sensitivity of current and near future GW experiments.

on this main peak, reflecting the strong oscillations in the curvature spectrum
depicted in fig. 5.9. A similar general peak structure is found for a “pulse”
in the evolution of η⊥, see Fig. 7.4. However, in this case the subleading
oscillatory patterns are located after the main peak, which remains fairly
smooth. This is a consequence of the smooth form of the main peak of the
curvature spectrum depicted in fig. 7.3.

In order to make contact with physical scales we must eliminate the am-
biguity in the definition of N . For this we can use the scale kf that crosses
the horizon at the time Nf when the first feature occurs. In the approxima-
tion of constant H that we are using, we have kf = eNfH. This allows us
to eliminate H in favour of kf , and express every other scale as k/kf = eδN ,
with δN = N −Nf . In the previous section we were setting Nf = 0. Notice
that varying Nf is equivalent to varying kf and allows us to place the peak
of the spectrum at a desired value. As a result, the GW spectrum can be
shifted along the frequency axis, in order to check its detectability depending
on the time of occurrence of the feature that causes the enhancement, as is
done in the right plot of fig. 7.4.

The amplification of the spectrum with respect to the CMB scale depends
on the number of turns, their size and sharpness. We considered turns smaller
than π and “pulses” of amplitude |η⊥| . 100. Different configurations can
produce an enhancement of the curvature spectrum PR of similar size. For
example, a configuration of four turns of angular size . π described by four
pulses of size |η⊥| ∼ 100 that last ∆N ∼ 0.1 can enhance the power spectrum
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Figure 7.5: Left plot: The β mass fraction produced by an inflationary trajec-
tory with four successive turns occurring at the wavenumber kf . Right plot:
The corresponding fractional PBH abundance against the observational con-
straints [162], with masses placed at benchmark scales that can be probed by
current and near future GW experiments. These are the same scales used for
the right plot of fig. 7.4. The right curve corresponds to the left spectrum in
fig. 7.4, the left curve to the middle spectrum, while the right spectrum in
fig. 7.4 corresponds to very small black holes that have evaporated by today.

by a factor of 107. A similar enhancement is produced by a configuration of
eight turns of size . π/2 described by eight pulses of size |η⊥| ∼ 10. Although
each configuration produces a different spectral shape, the relative differences
are not that evident. The curvature spectrum generally exhibits a major
narrow peak, as can be seen in fig. 7.3, which creates a characteristic GW
spectral peak, common for different configurations. The differences appear
at k > kpeak and correspond to complicated oscillatory patterns. These are
reflected in the GW spectra of fig. 7.4 in frequency regions of lower amplitude.

We also point out that primordial curvature perturbations with large
amplitudes at certain scales induce, apart from tensor modes, a gravitational
collapse of sufficiently dense regions that enter the Hubble horizon. The
mass fraction of PBHs at the formation time, β(M), has an acute sensitivity
to the amplitude of the power spectrum PR. For the spherically symmetric
gravitational collapse of a fluid with pressure, this sensitivity is exponential,
β ∝

√
PRe−δ

2
c/PR , where δc is the density threshold for PBH formation.

A sizable PBH abundance is obtained for PR ∼ 10−2. The parameter β
can increase if the background pressure is decreased, as for example during
the QCD phase transition [170, 195]. A further decrease of the pressure to
vanishing values can affect the PBH formation rate significantly [168, 174]
and induce GW signals with a different spectral density [186,187].

In our set-up, large amplitudes of PR can be produced if several strong
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features, turns or steps, occur during the inflationary trajectory. These fea-
tures can give an observable result in the GW channel for three or more suc-
cessive turns. In Fig. 7.4 we plot the spectral density of the induced GWs for
curvature power spectra that have the form depicted in Fig. 7.3. In figure 7.5
we plot the corresponding PBH abundance for a threshold value δc = 0.41,
together with the PBH experimental upper bounds [162]. For four turns the
PBHs produced can constitute a significant fraction of the dark matter in the
Universe. We recall that during radiation domination the PBH mass spec-
trum is related to the PR peak position kpeak as MPBH ∝ k−2

peak, and the PBHs

have abundance ΩPBH ∝ βM
−1/2
PBH , see Ref. [11] for details. PBHs in the mass

range M ∼ 10−12M� can constitute the entire dark matter in the Universe,
while the associated GWs will be probed by LISA [20] and other future space
GW antennas. PBHs with mass MPBH & M� can form binaries and are di-
rectly detectable by LIGO-Virgo-KAGRA experiments, while the associated
induced GWs can be probed by PTA experiments [16–19]. The LIGO-Virgo-
KAGRA collaboration already constrains the stochastic GW background [27]
in the frequency bandO(1−102) Hz, even though PBHs associated with these
frequencies are too light to survive in the late Universe.
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Chapter 8

Conclusions

In this thesis we explored the possible enhancement of the power spectrum
of curvature perturbations when particular features appear in the inflaton
potential. In single-field inflation one characteristic feature that is known to
induce the enhancement of the spectrum is an inflection point in the potential
at some value of the inflaton field. However, we mainly focused here on the
opposite case, i.e. a sharp decrease of the potential, which may result even
in the interruption of inflation in certain cases, in contrast to what happens
around an inflection point. We explored the conditions under which the
enhancement can be larger by several orders of magnitude relative to its
magnitude within the almost scale-invariant range. It must be noted that it
is always possible to enhance the spectrum by engineering the transition to a
second very flat plateau of the potential. The time derivative of the inflaton
under slow-roll conditions on the plateau would be very small, resulting in
an enhanced power spectrum. In our analysis we excluded this rather trivial
possibility by keeping the slope roughly constant, apart from the transition
point or points, and focused on the effect of the transition itself.

We found that sharp steps lead to the strong growth of the curvature
perturbation. The reason can be traced to the “effective-friction” term of eq.
(5.1), which is given by the function f(N) defined in eq. (5.2). Even though
this function is positive during the first part of the transition, thus suppress-
ing the perturbation, it can become negative during the second part, when
the inflaton approaches slow roll on the second plateau, and can lead to a dra-
matic enhancement. The effect is increased by the steepness of the potential,
but is also limited by the size of the potential drop that bounds the maximal
inflaton “velocity”. However, successive nearby steps give an additive effect,
leading to a spectrum enhancement by several orders of magnitude.

Another prominent feature of the spectrum is its strong oscillatory form
as a function of wavenumber. Our analysis has revealed that these oscillations
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are generated through the detuning of the phase difference between the real
and imaginary parts of the curvature perturbation, which evolves according
to eq. (5.1). More specifically, when the inflaton moves through a step in
the potential, the background evolution deviates strongly from the standard
slow-roll for a small number of efoldings, in a way that the real and imaginary
parts of the solution are detuned. The detuning results in time-dependent
oscillations of the amplitude. When the perturbations asymptotically freeze
at superhorizon scales, an oscillatory pattern is induced on the wavenumber
dependence of the power spectrum. It must be emphasized that oscillations
in the spectrum are not a generic consequence of any feature in the potential
that violates slow roll. In contrast to a steep step, an inflection point in
general induces an enhanced, but smooth, power spectrum.

From the model-building perspective, a steep step can appear if the infla-
tionary potential includes plateaus with different energy densities. A nearly
constant potential energy density can be associated with underlying symme-
tries that are preserved in the plateau [159]. A deformation of the symmetry
results in energy splitting, so that a transition between different energy levels
can be induced. Such a behaviour can be captured by inflationary models
constructed within the framework of α-attractors [157,158].

A strong motivation for analysing such models is that the induced tensor
power spectrum inherits the oscillating profile of the primordial curvature
spectrum. The combined pattern of an enhanced spectrum together with
strong oscillations is potentially detectable by near future space interferome-
ters. Through the detection of the GW spectrum, one can aim at inferring at
least some basic features of the inflationary potential, such as whether step-
like transitions are present. Motivated by this possibility, we examined in
detail, numerically and analytically, the scalar and the induced tensor spec-
tra and we identified correlations between them. The main characteristic
property of both spectra, related to the transition through a step, is a series
of peaks. Through a more refined analysis of the spectrum, one can look for
more detailed information, such as the number of the steps, their position
and exact shape, and whether there is, in addition to a step, an inflection
point. We explored this possibility by studying several analytical examples,
as well as inflationary models in the α-attractor framework, always imposing
consistency with the constraints for the spectral index ns and the amplitude
of the scalar spectrum arising from the CMB measurements.

The detection of GWs from inflationary models with sharp features may
be accompanied by the presence of PBHs as a significant fraction of dark
matter. The enhancement of the power specrtum due to the presence of step-
like features, though considerable, may be inefficient to trigger the production
of a sizeable number of PBHs if radiation dominates the energy density of
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the early Universe. However, it can be sufficient to induce gravitational
collapse processes and PBH production if the Universe energy density is
dominated by non-relativistic matter. We examined the profile of the PBH
mass spectrum produced either in a radiation or an early matter-dominated
Universe, looking for deviations from the common monochromatic profile.
For the latter scenario we found that this is possible because of the multiple-
peak structure of the curvature power spectrum.

Moreover, we extended our analysis on the enhancement of the curvature
spectrum during inflation to the two-field case. In this case, we did not study
a particular model, but looked instead for generic properties of the equations
of motion for the perturbations which would lead to their enhancement. We
identified the slow-roll parameter η as the quantity that can trigger the rapid
growth of perturbations. As we saw, this parameter can be projected onto
the directions parallel and perpendicular to the trajectory of the background
fields. The corresponding two components, η‖ and η⊥, remain small during
most of the evolution, apart from short intervals during which they can take
large, positive or negative, values.

The typical underlying reason for the appearance of strong features in
the evolution of η‖ is the presence of points in the inflaton potential that
cannot support slow-roll, such as sharp steps or inflection points. However,
the analysis of this case in the context of single-field inflation is sufficient,
since there is nothing different when we extend to the two-field case. On the
other hand, η⊥ grows large during sharp turns in field space, which is a clearly
multi-field phenomenon. The typical situation involves an inflaton potential
that contains an almost flat valley, with straight parts interrupted by sharp
turns. The evolution along the valley satisfies the slow-roll conditions, apart
from the short intervals during which the fields go through the turns and
η⊥ takes large values, positive or negative, depending on the direction of
the turn. The effect of η⊥ is sign-independent and twofold: a) it triggers
the strong growth of the perturbation perpendicular to the trajectory (the
isocurvature mode), and b) couples the isocurvature mode to the curvature
mode along the trajectory, thus inducing its growth as well.

The focal point of our analysis in the two-field context was the addi-
tive effect of several turns leading to the resonant growth of the curvature
spectrum. We found that three or four features in the evolution of η⊥ are
sufficient in order to induce an enhancement of the power spectrum by six
or seven orders of magnitude. The spectrum now displays a smooth main
peak, followed by a region of strong oscillatory behaviour. It must be pointed
out that the constructive interference of several features is affected by their
separation. The resonance effect appears for 1/k comparable to the distance
between the turns.
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Scenarios with turns, similarly to those with steps, generate non-flat
shapes with prominent peaks, which can also lead to PBH and GW pro-
duction. In order that a detectable GW background is produced, e.g. within
the sensitivity range of LISA, three or more successive turns have to occur,
while a significant PBH abundance requires at least four sharp turns. A com-
parison of the GW spectra corresponding to steps and turns demonstrates
that they both display a prominent maximum that may be localized within
the range of sensitivity of designed GW detectors [196], such as LISA [21,22]
and DECIGO [23]. The difference between GW spectra produced through
the presence of several features in η‖ and those produced through similar fea-
tures in η⊥ lies in the secondary maxima that are present around the main
peak in the first case, while they are absent in the second case. Their identi-
fication depends crucially on the data resolution of the various experiments.
However, in principle they provide a means for probing the mechanism that
generates the enhancement of the spectrum.

A big part of our study in both single- and two-field inflation focused on
the attempt to understand the evolution of the perturbations and the result-
ing spectra through analytic means. We employed two different approaches.
In the first approach, we approximated the features in the evolution of f(N)
or η⊥ as square “pulses” and used appropriate matching conditions at the
beginning and end of each “pulse” in order to obtain a complete solution. In
the second approach we reformulated the problem using Green’s functions
and deriving integral equations. Exploiting this approach even further, we
reformulated the evolution equations as a system of differential equations for
the coefficients of an expansion of the general solution in terms of Bessel
functions. This formulation permits the analysis of non-minimal initial con-
ditions in a straightforward manner and can reduce computational time.

The broader picture that emerges from our analysis is that the observable
consequences of inflation can be much more complex than what is suggested
by the standard analysis that assumes small deviations from scale invariance
for the whole range of scales of the primordial spectrum. The possibility
that multiple features may be present in the background evolution points to
a paradigm with richer physical behaviour. It is exciting that the critical
examination of such speculations is within the reach of experiment.
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Accuracy of analytical
estimates

In this appendix we provide an assessment of the accuracy of the approximate
expressions (5.45) and (5.54). For the matrix C(N), defined in eq. (5.54),
we obtain
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where we have used appropriate partial integrations. The first two terms
in a Taylor expansion of the exponential give an estimate for E(∞) that
reproduces the approximate result of eq. (5.45). Additional terms account for
higher-order corrections. These improve the convergence for slowly varying
functions f(N). However, for functions f(N) that induce an enhancement
of the spectrum by several orders of magnitude, the quantitative accuracy of
this approach is limited.

In order to check the validity of the approximate expressions (5.45) and
(5.54), we consider a sequence of typical patterns of the function f(N), sim-
ilar to those induced by steep steps in the inflaton potential. The forms of
f(N) are depicted in fig. A.1.

In fig. A.2 we depict the power spectra for the three different smooth
curves of fig. A.1. The solid curves correspond to the exact numerical solu-
tion of eq. (5.1) or the system (5.51). The short-dashed curves correspond to
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Figure A.1: Typical evolution of the function f(N) ≈ 3− 2η(N) induced by
steps in the inflaton potential.

Figure A.2: Power spectra for the three different smooth curves of fig. A.1.
The solid curves correspond to the exact numerical solution of eq. (5.1) or
the system (5.51). The short-dashed curves correspond to the approximation
of eq. (5.45), and the long-dashed curves to the approximation of eq. (5.54).
Notice the large difference in the vertical scales of the three plots.

the approximation of eq. (5.45), and the long-dashed curves to the approx-
imation of eq. (5.54). We are interested only in relatively strong deviations
from scale invariance, and not in the absolute normalization of the spectrum.
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For this reason we have assumed that the spectrum is scale invariant at early
and late times and normalized with respect to its value in these regions. It
is apparent from fig. A.2 that both approximations give a very accurate de-
scription of the spectrum when its value is of order 1. When the spectrum
is significantly enhanced both approximations lose accuracy. However, eq.
(5.54) gives a reasonable approximation to the maximal value of the spec-
trum and its characteristic frequencies, even for an enhancement by three
orders of magnitude.
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Appendix B

An alternative formulation in
the two-field case

The differential equations (7.22), (7.23) can be turned into integral equa-
tions through the use of the appropriate Green’s functions. For the curvature
mode, the Green’s function is given by eq. (5.38). For the massive isocur-
vature mode, the generalization is straightforward and the retarded Green’s
function Ḡk(N, n) for n < N is

Ḡk<(N,n) = e−
3
2
N

(
P (n)J

1
2

√
9−4M

2

H2

(
e−N

k

H

)
+Q(n)J

− 1
2

√
9−4M

2

H2

(
e−N

k

H

))
,

(B.1)
with

P (n) = −π
2
e3n/2 csc

(
π

2
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9− 4

M2

H2

)
J− 1
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Q(n) =
π

2
e3n/2 csc

(
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2

√
9− 4

M2
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)
J 1

2

√
9−4M2/h2

(
e−N

k

H

)
. (B.3)

Hence, the general solution can be expressed as:

Rk(N) = R̄k(N)− 2

∫ N

−∞
Gk<(N,n)

[
∂

∂n
(η⊥(n)Sk(n)) + 3η⊥(n)Sk(n)

]
dn (B.4)

Sk(N) = S̄k(N) +

∫ N

−∞
Ḡk<(N,n)

[
η2
⊥(n)Sk(n) + 2η⊥(n)Rk,n(n)

]
dn, (B.5)

where S̄k(N), R̄k(N) are the homogeneous solutions.
The form of the above equations suggests the ansatz

Rk(N) = e−
3
2
N

[
D(N)J3/2

(
e−N

k

H

)
+ E(N)J−3/2

(
e−N

k

H

)]
(B.6)
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Sk(N) = e−
3
2
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(
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(B.7)
By substituting in the derivative of eqs. (B.4), (B.5), and matching the
coefficients of the Bessel functions, we obtain a system of four first-order
differential equations:

∂

∂N
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 (B.8)

where F (N) is a 4× 4 matrix with elements Fij(N) given by

F11(N) = F12(N) = F21(N) = F22(N) = 0
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This system of equations must be solved with initial conditions at N → −∞.
For the Bunch-Davies vacuum (D,E) = (1, i), while (K,L) are given by eqs.
(7.35), (7.36).
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[51] O. Özsoy, S. Parameswaran, G. Tasinato and I. Zavala, “Mechanisms for
Primordial Black Hole Production in String Theory,” JCAP 07 (2018),
005 [arXiv:1803.07626 [hep-th]].

[52] M. Biagetti, G. Franciolini, A. Kehagias and A. Riotto, “Primordial
Black Holes from Inflation and Quantum Diffusion,” JCAP 07 (2018),
032 [arXiv:1804.07124 [astro-ph.CO]].

[53] I. Dalianis, A. Kehagias and G. Tringas, “Primordial black holes from
α-attractors,” JCAP 01 (2019), 037 [arXiv:1805.09483 [astro-ph.CO]].

[54] T. J. Gao and Z. K. Guo, “Primordial Black Hole Production in Infla-
tionary Models of Supergravity with a Single Chiral Superfield,” Phys.
Rev. D 98 (2018) no.6, 063526 [arXiv:1806.09320 [hep-ph]].

[55] Y. Tada and S. Yokoyama, “Primordial black hole tower: Dark matter,
earth-mass, and LIGO black holes,” Phys. Rev. D 100 (2019) no.2,
023537 [arXiv:1904.10298 [astro-ph.CO]].



130 BIBLIOGRAPHY

[56] I. Dalianis and G. Tringas, “Primordial black hole remnants as
dark matter produced in thermal, matter, and runaway-quintessence
postinflationary scenarios,” Phys. Rev. D 100 (2019) no.8, 083512
[arXiv:1905.01741 [astro-ph.CO]].
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