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ABSTRACT

The present Ph.D. Thesis aims to the study of the electronic structure of
nucleic acid bases and similar almost planar organic molecules, as well as the
investigation of charge transfer and charge transport properties along B-DNA
sequences. It also discusses the possibility of using charge transport as a diag-
nostic tool in discrimination between pathogenic and nonpathogenic mutations.
The semi-empirical Linear Combination of Atomic Orbitals (LCAO) method
is introduced to calculate the ionization and excitation energies of nucleic acid
bases and similar biologically important molecules as well as assemblies of DNA
bases, along with a novel parameterization employing all valence orbitals. Then,
we outline the Tight Binding method for charge transfer of an extra carrier along
DNA, and we also introduce the physical quantities studied. More specifically,
we employ a TB wire model, where the base pairs are the sites of the chain,
to study the spectral and charge transfer properties of periodic sequences with
increasing repetition unit, as well as deterministic aperiodic DNA segments. In
addition, we address the impact of structural flexibility on the electronic struc-
ture and charge transfer ability of B-DNA. To this end, we apply our LCAO
method to 20 AA and GG dimers, extracted from representative structures in a
classical MD trajectory of a 20mer, and study some useful physical quantities.
Finally, we move on to investigate charge transport along DNA molecules, us-
ing the time-independent Schrödinger equation together with the transfer-matrix
method in order to finally obtain current-voltage I-V curves. We examine ideal
and natural geometries concerning two categories of mutations: (i) DNA se-
quences that contain point substitution mutations, and (ii) sequences extracted
from segments of human chromosomes, modified by expansion of the CAG triplet
to mimic diseases.
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ΠΈΡΊΛΉΨΉ

Τα νουκλεϊκά οξέα είναι σύνθετα βιολογικά μακρομόρια, αποτελούμενα από
αλληλουχίες νουκλεοτιδίων και περιέχουν γενετική πληροφορία. Τα νουκλεϊκά
οξέα βρίσκονται στα κύτταρα όλων των έμβιων οργανισμών και είναι το δεοξυριβο-
νουκλεϊκό οξύ (DNA) και το ριβονουκλεϊκό οξύ (RNA). Το DNA περιέχει τις
γενετικές πληροφορίες που καθορίζουν τη βιολογική ανάπτυξη όλων των κυτταρι-
κών μορφών ζωής και των περισσοτέρων ιών. Τα τελευταία χρόνια, το DNA και
οι ιδιότητές του που σχετίζονται με τη μετακίνηση φορτίου κατά μήκος του, έχουν
προσελκύσει το ενδιαφέρον διαφόρων επιστημονικών κλάδων, από τις βιοεπιστήμες
και τη φυσικοχημεία μέχρι τη νανοτεχνολογία. Κάτι τέτοιο είναι λογικό αν σκεφτεί
κανείς ότι το DNA, ως φορέας της γενετικής πληροφορίας, διατηρεί τον κεντρικό
ρόλο στην ανάπτυξη, τη λειτουργία και την αναπαραγωγή των οργανισμών, οπότε
η μελέτη του συνήθως συνδέεται με επιστημονικούς κλάδους όπως η γενετική, η
βιολογία και η ιατρική. Επιπλέον όμως, τα ιδιαίτερα χαρακτηριστικά του μορίου,
έχουν προσανατολίσει την έρευνα στην κατεύθυνση της μεταβίβασης και μεταφοράς
φορτίου σε πολυμερικά συστήματα. Τα ζεύγη βάσεων του DNA, καθώς και η
αλληλουχία τους, δημιουργούν έναν π-δρόμο, λόγω της επικάλυψης των π μοριακών
τροχιακών τους. Αυτή η επικάλυψη επιτρέπει τη μετακίνηση φορέων ηλεκτρικού
φορτίου, οπών ή ηλεκτρονίων. Η οξείδωση του μορίου δημιουργεί οπές και η
αναγωγή επιπλέον ηλεκτρόνια. Ο όρος μετακίνηση περιλαμβάνει τη μεταβίβαση
και τη μεταφορά. Με τον όρο μεταβίβαση (transfer) περιγράφεται η μετακίνηση
ενός φορέα από μια τοποθεσία όπου δημιουργείται ή εγχέεται αρχικά σε άλλες
ευνοϊκότερες τοποθεσίες χωρίς τη μεσολάβηση κάποιου εξωτερικού παράγοντα
όπως διαφορά δυναμικού ή βαθμίδα θερμοκρασίας. Ο όρος μεταφορά (trans-
port) αναφέρεται στη μετακίνηση φορτίου λόγω εφαρμογής εξωτερικής διαφοράς
δυναμικού μέσω ηλεκτροδίων ή κάποιας άλλης βαθμίδας (π.χ. θερμοκρασίας).

Ένα χαρακτηριστικό γνώρισμα του DNA είναι το σχετικά μεγάλο μήκος ακαμ-
ψίας του (persistence length), το οποίο εκτείνεται σε περίπου 150 ζεύγη βάσεων
(50 nm). Το χαρακτηριστικό αυτό του επιτρέπει να παραμένει σχετικά άκαμπτο σε
μεγάλα μήκη, έτσι ώστε να μπορεί να χρησιμοποιηθεί ως κανάλι (δίαυλος, σχεδόν
μονοδιάστατο μοριακό σύρμα) σε ηλεκτρονικές νανοδιατάξεις και στην κατασκευή
νανοκυκλωμάτων. Πέραν αυτού, το DNA παρέχει τη δυνατότητα κατασκευής
μιας μεγάλης ποικιλίας διαφορετικών πολυμερών, συνδυάζοντας τα διαφορετικά
ζεύγη βάσεων (Αδενίνη-Θυμίνη, Γουανίνη-Κυτοσίνη) με διαφορετικούς τρόπους.
Κατ' αυτό τον τρόπο είναι δυνατό να δημιουργηθούν κατ' επιθυμίαν ακολουθίες,
κατάλληλες να επιτελέσουν μια συγκεκριμένη λειτουργία, και κατά συνέπεια προ-
σφέρεται η δυνατότητα ρύθμισης των ιδιοτήτων μιας διάταξης. Επιπλέον, η μετα-
βίβαση φορτίου κατά μήκος του μορίου του DNA επιτελεί σημαντικό βιολογικό
ρόλο, καθώς φαίνεται να σχετίζεται με την καρκινογένεση και τη μεταλλαξιγένεση,
ενώ η μακράς εμβέλειας μεταβίβαση φαίνεται να συνδέεται με τις διαδικασίες κατα-
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στροφής και επιδιόρθωσης του DNA.
Η παρούσα Διδακτορική Διατριβή επιχειρεί να αποτελέσει μια συστηματική

θεωρητική μελέτη της ηλεκτρονικής δομής των νουκλεϊκών οξέων, των αζωτούχων
βάσεων και παρομοίων οργανικών μορίων, καθώς και των ιδιοτήτων μεταβίβασης
και μεταφοράς φορτίου στο DNA, όπως και να συμβάλει στην ανάπτυξη θεωρητικών
εργαλείων για την ανίχνευση μεταλλάξεων. Για τη μελέτη χρησιμοποιήθηκε η
μέθοδος του Γραμμικού Συνδυασμού των Ατομικών Τροχιακών (Linear Com-
bination of Atomic Orbitals, LCAO) και το Πρότυπο της Ισχυρής Δέσμευσης
(Tight Binding, TB). Η μέθοδος αυτή έχει το πλεονέκτημα της εύκολης και
γρήγορης εφαρμογής σε μεγάλης έκτασης συστήματα, παρέχοντας αποτελέσματα
προσαρμόσιμης ακρίβειας. Αυτές οι ιδιότητες της την καθιστούν κατάλληλη κυρίως
για τη μελέτη μεγάλων συστημάτων, τα οποία επί του παρόντος δεν είναι διαχειρίσι-
μα με τις διαθέσιμες λεπτομερέστερες μεν, αλλά πολύ υψηλότερου υπολογιστικού
κόστους, μεθόδους από πρώτες αρχές (ab-initio).

Η Διδακτορική Διατριβή αποτελείται από έξι Κεφάλαια.
Στο Κεφάλαιο 1 παρουσιάζονται τα βασικά δομικά χαρακτηριστικά των νου-

κλεϊκών οξέων, τα ερωτήματα στα οποία καλείται να απαντήσει η παρούσα Διατριβή,
καθώς και η διάρθρωσή της.

Στο Κεφάλαιο 2 μελετάται η ηλεκτρονική δομή των βάσεων των νουκλεϊκών
οξέων και παρόμοιων μορίων με τη μέθοδο του γραμμικού συνδυασμού των ατομι-
κών τροχιακών (LCAO). Στους υπολογισμούς συμπεριλαμβάνονται όλα τα ατομι-
κά τροχιακά σθένους και συγκρίνονται τα αποτελέσματα με αντίστοιχα υπολογισμών
που λαμβάνουν υπόψη μόνο τα 2pz ατομικά τροχιακά, υπολογισμών από πρώτες
αρχές, καθώς και με πειραματικές τιμές των ενεργειών ιονισμού και διέγερσης. Η
μέση απόκλιση μεταξύ θεωρητικών και πειραματικών τιμών είναι για τις ενέργειες
ιονισμού 3.65% και για τις ενέργειες διέγερσης 6.49%. Επιπλέον, υπολογίζουμε
τις αντίστοιχες τιμές για τα ζεύγη βάσεων (Αδενίνη-Θυμίνη, Γουανίνη-Κυτοσίνη).

Στο Κεφάλαιο 3, συζητείται η μεταβίβαση φορτίου (charge transfer) σε διάφο-
ρα πολυμερή τμήματα DNA. Αρχικά, θεμελιώνεται θεωρητικά το Πρότυπο Σύρματος
(Wire Model) της Μεθόδου Ισχυρής Δέσμευσης (Tight-Binding Method) και
εφαρμόζεται στην περιγραφή της μεταβίβασης φορτίου στο B-DNA σε επίπεδο
ζευγών βάσεων. Εξετάζεται η συμπεριφορά ενός επιπλέον φορέα (ηλεκτρονίου
ή οπής) αφού τοποθετηθεί σε ένα μονομερές, δηλαδή σε ένα ζεύγος βάσεων, και
μελετάται η μετακίνησή του σε όλο το μήκος του πολυμερούς. Οι χρησιμοποιούμενες
παράμετροι είναι οι επιτόπιες ενέργειες (on-site energies) του φορέα σε κάθε ζεύγος
βάσεων και οι παράμετροι ή ολοκληρώματα αλληλεπίδρασης (interaction param-
eters or integrals) μεταξύ αμέσως γειτονικών ζευγών βάσεων. Αρχικά, υπολογίζο-
νται οι παράμετροι μεταβίβασης χρήσει της παραμετροποίησης η οποία μεταχειρίζεται
όλα τα ατομικά τροχιακά σθένους. Τα αποτελέσματα συγκρίνονται με πειραματικές
τιμές, με τις οποίες υπάρχει καλή συμφωνία. Επίσης, συγκρίνουμε με αποτελέσματα
παραμετροποιήσεων, οι οποίες χρησιμοποιούν μόνο τα 2pz ατομικά τροχιακά.

Έχοντας το πλήρες σύνολο των απαιτούμενων για τη χρήση της μεθόδου
Ισχυρής Δέσμευση παραμέτρων, μελετώνται ορισμένες περιοδικές ακολουθίες DNA
με αυξανόμενη μονάδα επανάληψης, οι οποίες αποτελούνται είτε από το ίδιο (κατηγο-
ρία I από το «Identical», π.χ. GC. . . , GGCC. . . κ.ο.κ.) είτε από διαφορετικά
(κατηγορία D από το «Different», π.χ. GA. . . , GGAA. . . , κ.ο.κ.) ζεύγη βάσεων.
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Υπολογίζονται φυσικά μεγέθη όπως: το ενεργειακό φάσμα, η πυκνότητα καταστάσε-
ων, η μέση πιθανότητα εύρεσης του φορέα σε κάθε μονομερές, το συχνοτικό
περιεχόμενο (ο φορέας εκτελεί ταλάντωση σε σύρμα πεπερασμένου μήκους) και
ο καθαρός μέσος ρυθμός μεταβίβασης. Βρίσκουμε ότι για τα I πολυμερή, με την
αύξηση της μονάδας επανάληψης, όλες οι μελετώμενες ποσότητες προσεγγίζουν τις
αντίστοιχες των ομοπολυμερών (π.χ. G. . . ), ενώ για τα D πολυμερή οι αντίστοιχες
ποσότητες προσεγγίζουν την ένωση των δύο πιθανών ομοπολυμερών (π.χ. G. . .
και A . . . ). Στη συνέχεια του Κεφαλαίου αυτού, αναλύονται και σχολιάζονται
τα αντίστοιχα χαρακτηριστικά μεγέθη που έχουν προκύψει από την εφαρμογή
της μεθόδου Ισχυρής Δέσμευσης σε οιονεί περιοδικές (Fibonacci, Thue-Morse,
Double-Period, Rudin-Shapiro) και μορφοκλασματικές (Cantor Dust, Asymmet-
ric Cantor Set) ακολουθίες. Συγκρίνοντας τα αποτελέσματα για τα περιοδικά και
τα απεριοδικά πολυμερή, διαπιστώνουμε ότι παρά το γεγονός ότι η μεταβίβαση φορ-
τίου ευνοείται σε γενικές γραμμές στα περιοδικά συστήματα, εντούτοις υπάρχουν
ορισμένα αρκετά αποδοτικά ως προς τη μεταβίβαση φορτίου απεριοδικά πολυμερή.
Παρά ταύτα, τα ομοπολυμερή, τα οποία είναι και τα απλούστερα δομικά πολυμερή,
αποτελούν άνω όριο για όλες τις κατηγορίες πολυμερών, παρουσιάζουν δηλαδή
ευκολότερη μεταβίβαση. Επιπλέον, το τυχαίο ανακάτεμα ζευγών βάσεων των
ντετερμινιστικών απεριοδικών αλληλουχιών οδηγεί γενικά σε αμελητέους ρυθμούς
μεταβίβασης. Τέλος, η παραπάνω ανάλυση εφαρμόζεται για τον υπολογισμό των
μέσων ρυθμών μεταβίβασης ορισμένων ακολουθιών οι οποίες έχουν χρησιμοποιηθεί
σε πειράματα, και τα αποτελέσματα συγκρίνονται με τις αντίστοιχες τιμές της
βιβλιογραφίας.

Ακολούθως, στο Κεφάλαιο 4, διερευνάται η επίδραση της δομικής μεταβλητό-
τητας στην ηλεκτρονική δομή και στην ικανότητα μεταβίβασης φορτίου κατά μήκος
του DNA. Για τη διερεύνηση αυτή επιστρατεύτηκαν 10 διμερή Αδενίνη-Θυμίνη/Αδε-
νίνη-Θυμίνη και άλλα 10 Γουανίνη-Κυτοσύνη/Γουανίνη-Κυτοσύνη, τα οποία εξή-
χθησαν αφού εφαρμόστηκε η μέθοδος της Μοριακής Δυναμικής σε ένα 20μερές.
Για τα συστήματα αυτά υπολογίστηκαν διάφορες παράμετροι (όπως το μέγιστο
ποσοστό μεταβίβασης και τα ολοκληρώματα μεταβίβασης), σχετιζόμενες με δομικές
παραμέτρους. Σε γενικές γραμμές, η μεταβίβαση φορτίου παραμένει ισχυρή, παρότι
επηρεάζεται από τη δομική μεταβλητότητα. Επιπλέον, περιλαμβάνεται σύγκριση
ορισμένων αποτελεσμάτων που προκύπτουν με χρήση του Προτύπου Ισχυρής Δέ-
σμευσης, με λεπτομερέστερες μεθόδους από πρώτες αρχές. Το Πρότυπο Ισχυρής
Δέσμευσης μπορεί να δώσει μια γρήγορη εκτίμηση των προς μελέτη ποσοτήτων.

Στο Κεφάλαιο 5, παρουσιάζεται συνοπτικά η μέθοδος των Πινάκων Μεταβίβα-
σης (Transfer Matrix Method) και εφαρμόζεται στη μελέτη της ηλεκτρονικής
δομής και της μεταφοράς φορτίου κατα μήκος ακολουθιών DNA που αφορούν
περιπτώσεις: α) σημειακών μεταλλάξεων και β) μεταλλάξεων που προέρχονται
από επανάληψη της τριπλέτας (CAG). Οι μεταλλάξεις της δεύτερης κατηγορίας
ονομάζονται μεταλλάξεις Short Tandem Repeat (STR) expansions και στην πα-
ρούσα εργασία μελετώνται εξ αυτών οι: νόσος Huntington, νόσος Kennedy,
νωτιαία παρεγκεφαλιδική αταξία 6 και νωτιαία παρεγκεφαλιδική αταξία 7. Μελετώ-
νται τόσο περιπτώσεις ιδανικών πολυμερών, όσο και φυσικών. Εδώ ο όρος «ιδανικό»
αναφέρεται σε ιδανική γεωμετρία, ενώ ο όρος «φυσικό» αναφέρεται σε γεωμετρία
συλλεγμένη από βάσεις δεδομένων αλληλουχιών οι οποίες προέρχονται από οργανι-
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σμούς. Το πιο χρήσιμο χαρακτηριστικό στη μελέτη της μεταφοράς φορτίου είναι
οι χαρακτηριστικές καμπύλες I-V . Κατά την εισαγωγή μεταλλάξεων, οι καμπύλες
αυτές αλλάζουν σημαντικά. Για το λόγο αυτό, ορίζεται ένα νέο μέγεθος που περι-
γράφει την κανονικοποιημένη απόκλιση της I-V από την αρχή των αξόνων (norma-
lized deviation of the I-V curve from the origin, NDIV). Ένα βασικό συμπέρασμα
που εξάγεται είναι ότι η NDIV γενικά δεν επηρεάζεται από τη θέση μιας σημειακής
μετάλλαξης, αλλά επηρεάζεται από τον αριθμό των σημειακών μεταλλάξεων καθώς
και από τον αριθμό των STR επαναλήψεων. Σε γενικές γραμμές θα μπορούσαμε
να πούμε ότι στο μέλλον, η μελέτη της μεταφοράς φορτίου δύναται να αποτελέσει
ένα νέο εργαλείο για την ανίχνευση μεταλλάξεων.

Το Κεφάλαιο 6, περιέχει έναν ευρύτερο συγκριτικό σχολιασμό των αποτελε-
σμάτων της Διδακτορικής Διατριβής, καθώς και των προοπτικών για μελλοντική
έρευνα.
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1 | INTRODUCTiON

Today, the investigation of biomolecules' structure and properties - especially
these of the nucleic acids - is emerged as a high significance issue. Nucleic
acids are biopolymers, macromolecules, essential to all known forms of life. The
deoxyribonucleic acid (DNA) carries genetic instructions for the development,
functioning, growth and reproduction of all known organisms, as well as many
viruses. The ribonucleic acid (RNA) is essential in various biological roles in
coding, decoding, regulation and expression of genes, acts like a catalyst of
biochemical reactions, and besides these, it encodes the genetic information of
many viruses.

Both DNA and RNA are consisted of nucleotides. However, DNA has a
double-stranded structure [1, 2], while RNA is single-stranded [3--5]. The two
DNA strands are composed of simpler monomeric units called nucleotides. Each
nucleotide is composed of one of four nitrogen-containing nucleobases, i.e., ade-
nine (A), thymine (T) (substituted by uracil (U) in RNA), guanine [G] or cyto-
sine (C), a pentose sugar called deoxyribose (ribose in RNA), and a phosphate
group. The five nitrogenous bases are depicted in Fig. 1.1. The nucleotides are

Figure 1.1: The nitrogenous bases of nucleic acids. Purines (G and A)
and pyrimidines (C, T and U). Image source: https://ib.bioninja.com.au/
standard-level/topic-2-molecular-biology/26-structure-of-dna-and-rna/
nitrogenous-bases.html.

joined to one another in a chain by covalent bonds (phosphodiester linkage) be-
tween the sugar of one nucleotide and the phosphate of the next, resulting in an

1

https://ib.bioninja.com.au/standard-level/topic-2-molecular-biology/26-structure-of-dna-and-rna/nitrogenous-bases.html
https://ib.bioninja.com.au/standard-level/topic-2-molecular-biology/26-structure-of-dna-and-rna/nitrogenous-bases.html
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alternating sugar-phosphate backbone. The phosphodiester bonds are formed
between the 3' and 5' carbons of the sugars of successive nucleotides. The ori-
entation of the 3' and 5' carbons along the sugar-phosphate backbone confers
directionality to each DNA strand. In a nucleic acid double helix, the direction
of the nucleotides in one strand is opposite to their direction in the other strand:
the strands are antiparallel. In DNA, the nitrogenous bases of the two strands
are bound together with hydrogen bonds, according to base pairing rules, i.e.,
purines (A or G) with pyrimidines (T or C, respectively). This is called comple-
mentary base pairing. Adenine is bonded only to thymine with two hydrogen
bonds, and cytosine is bonded only to guanine with three hydrogen bonds, form-
ing a base pair. Fig. 1.2 depicts the complementary bases and their bonding.

Figure 1.2: Bonded complementary base pairs. Adenine is bonded only to
thymine with two hydrogen bonds, and cytosine is bonded only to guanine
with three hydrogen bonds. Image source: https://ib.bioninja.com.au/
standard-level/topic-2-molecular-biology/26-structure-of-dna-and-rna/
nitrogenous-bases.html.

In the present Ph.D. Thesis, B-DNA structures have been studied. The
B-DNA is the most common DNA conformation found in nature, under the
conditions found in cells (other conformations are the A-DNA and the Z-DNA).
In this conformation, the double helix is right-handed with about 10− 10.5 base
pairs per turn (helix step). The helix step is ≈ 34 Å long and its diameter is ≈
20 Å. The distance between two successive base pairs is ≈ 3.4 Å and the related
twist is ≈ 36◦ (Fig. 1.5).

In our calculations within this Ph.D. Thesis, we will employ only valence
electrons of the atoms of each molecule (base or similar). A valence electron is
an electron in the outer shell associated with an atom, and that can participate
in the formation of a chemical bond if the outer shell is not closed. In a single co-
valent bond, a shared pair forms with both atoms in the bond each contributing
one valence electron. Each orbital in an atom is characterized by a set of values
of the three quantum numbers n, l, and ml, which respectively correspond to
the electron's energy, angular momentum, and magnetic quantum number. The
simple names s orbital, p orbital, d orbital, and f orbital refer to orbitals with
angular momentum quantum number l = 0, 1, 2, and 3 respectively. These
names, together with the value of n = 0, 1, 2, . . . , are used to describe the
electron configurations of atoms. The organic compounds that we encountered

https://ib.bioninja.com.au/standard-level/topic-2-molecular-biology/26-structure-of-dna-and-rna/nitrogenous-bases.html
https://ib.bioninja.com.au/standard-level/topic-2-molecular-biology/26-structure-of-dna-and-rna/nitrogenous-bases.html
https://ib.bioninja.com.au/standard-level/topic-2-molecular-biology/26-structure-of-dna-and-rna/nitrogenous-bases.html
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are composed of the elements Hydrogen (H), Carbon (C), Nitrogen (N), and
Oxygen (O). Hydrogen utilizes 1s valence orbitals, while, carbon, nitrogen and
oxygen utilize 2s and 2p (2px, 2py, 2pz) orbitals. Fig. 1.3 depicts the shape of
these orbitals.

Figure 1.3: 1s, 2s, 2px, 2py, 2pz orbitals employed in the present Ph.D. Thesis’
calculations. Image source: https://chemicalalgos.wordpress.com/tag/energy/.

These orbitals form bonds of σ or π type, as depicted in Fig. 1.4.

Figure 1.4: Covalent bonds between different types of atomic orbitals. Here are
depicted only bonding orbitals.

Except for its biological role, that has been prominent with the previous dis-
cussion, the DNA molecule could, as well, be viewed as a molecular wire. DNA

https://chemicalalgos.wordpress.com/tag/energy/
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has a persistence length of lp = 50 nm or 150 base pairs [6], that makes it hard to
bend, unless it is longer than lp. In addition to the fairly large persistent length,
DNA provides the opportunity to construct easily a variety of different polymers
by combining a given number of base pairs, each one containing two complemen-
tary bases.

Figure 1.5: The B-DNA conformation.
Image source: https://en.wikipedia.
org/wiki/Nucleic_acid_double_helix.

The structure of DNA favours the
overlap of the electron density of ad-
jacent bases, which, besides stabilising
the double helix, creates a nearly one-
dimensional π-pathway along which
charge transfer and transport are pos-
sible. The term transfer implies that
a carrier, created (e.g. a hole by oxi-
dation or an extra electron by reduc-
tion) or injected at a specific loca-
tion, moves to more favourable sites,
without application of external gradi-
ent (e.g. temperature gradient or volt-
age). The term transport implies the
application of an external gradient.

It is clear from the discussion so
far, that the understanding of the
electronic structure and charge trans-
fer [7] properties of DNA is a crucial
issue in biology, involved in functions
like damage and repair [8--10], car-
cinogenesis and mutagenesis [11, 12].
For example, the rapid hole migration
from other bases to guanine is con-
nected to the fact that direct strand
breaks occur preferentially at gua-
nines [11]. Charge transfer and trans-
port are relevant in discrimination be-
tween pathogenic and nonpathogenic
mutations [13]. Charge transport
could probe DNA of different origin
or organisms [14], mutations and dis-
eases [15, 16]. Distortions of base-
pair stack [17, 18] affect charge trans-
fer and transport. Deviations in that
stacking, e.g., through base modifica-
tions, insertions, or protein binding,
can be electrically observed. DNA
charge transfer and transport has been
used to detect changes in DNA, like lesions, binding proteins, protein activity,

https://en.wikipedia.org/wiki/Nucleic_acid_double_helix
https://en.wikipedia.org/wiki/Nucleic_acid_double_helix
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even reactions under weak magnetic fields [19]. These properties are also impor-
tant for novel applications in nanotechnologies [20, 21]. The last two decades,
the intense interest in the experimental and theoretical probing of the elec-
tronic structure of DNA-based polymers has arise in connection to the quest
for the development of molecular electronics [22]. We have witnessed a surge of
studies that define DNA polymers as the basis for molecular wires and molec-
ular electronics devices/circuits, based on self-assembly and specific base hy-
bridization [22--26]. The prospect of using DNA in materials science stems
from exploiting its properties of molecular recognition, assembly, and process-
ing information [23]. Properties of long-range charge transport in DNA and
DNA-mediated charge transfer and mechanisms have been studied a for a long
time now [25]. Today DNA plays an increasingly important role in molecular
electronics due to its structural and molecular recognition properties [22].

Considering the above, the present Ph.D. Thesis aims to enlighten the mech-
anisms of correlation of the DNA sequencing and its charge transfer and trans-
port properties, by employing a simple and broadly used theoretical method, i.e.,
Tight-Binding. In Chapter 2, we introduce the semi-empirical Linear Combina-
tion of Atomic Orbitals (LCAO) method to calculate the ionization and excita-
tion energies of nucleic acid bases and similar biologically important molecules as
well as assemblies of DNA bases. We set the relevant parameterization. Chap-
ter 3 is dedicated in charge transfer. We outline the TB theory for charge trans-
fer of an extra carrier along DNA, and we also introduce the physical quantities
studied. More specifically, we employ a TB wire model, where the base pairs
are the sites of the chain, to study the spectral and charge transfer properties of
periodic sequences with increasing repetition unit, as well as deterministic aperi-
odic DNA segments. Next, in Chapter 4, we addressed the impact of structural
flexibility (dynamics) on the electronic structure and charge transfer ability of
B-DNA. To this end, we applied our LCAO method to 20 AA and GG dimers,
extracted from representative structures in a classical MD trajectory of a 20mer,
and studied some useful physical quantities. In Chapter 5, we move on to study
charge transport along DNA molecules, using the time-independent Schrödinger
equation together with the transfer-matrix method in order to finally obtain I-V
curves. We examine ideal and natural geometries concerning two categories of
mutations: (i) DNA sequences that contain point substitution mutations, and
(ii) sequences extracted from segments of human chromosomes, modified by ex-
pansion of the CAG triplet to mimic diseases. Finally, in Chapter 6 we state
our overall conclusion and set some perspectives for future research.



2 | ELECTRONiC STRUCTURE1

The determination and study of the electronic structure of organic hetero-
cyclic molecules have been of crucial interest for the scientific community for
decades, especially since the establishment of quantum-mechanics-based meth-
ods. This includes the electronic structure and properties of nucleic acid oligomers,
polymers, DNA, RNA and similar molecules that are important from a biologi-
cal point of view. A large motivation for this pursuit is the radical effects that
ultraviolet radiation has on the chemical integrity of DNA and RNA nucleic
acid monomers and polymers [28, 29] . The π molecular electronic structure
of planar molecules with sp2 hybridization is involved in a variety of biological
functions, e.g. in molecules like vitamin A, vitamin D precursors, and carotene,
molecules containing polyene chromophores [30], chlorophyll in photosynthesis,
and the retinal molecule involved in vision or in photon-driven ion pumps [31].
The electronic structure of single DNA molecules has been resolved by transverse
scanning tunnelling spectroscopy and assigned to groups of orbitals originating
from the molecular entities, i.e., nucleobases, backbone and counterions [24].
The research for the understanding of the electronic structure of DNA bases,
RNA bases and similar molecules has led to the evaluation of the ionization and
excitation energies.

Up to now, many calculations of ionization and excitation energies of nu-
cleic acid bases with ab initio methods have been reported. However, theoreti-
cal predictions, commonly based on molecular quantum mechanics, calculations
such as density functional theory (DFT) or Hartree - Fock, are still somehow
not fully conclusive. Specifically, ionization energies of the nucleic acid bases
have been calculated using restricted open shell Hartree - Fock (ROHF) [32,
33], restricted open shell Möller - Plesset second-order perturbation theory
(MP2) [33], DFT [34--37], semi-empirical multiconfiguration configuration inter-
action (AM1- MCCI) [38] and partial third-order electron propagator (P3) [39]
methods. Besides the above, photoionization and photoelectron spectroscopy
and related ab initio quantum calculations have been performed on the gas phase
adenine, thymine, uracil, cytosine and guanine [40]. Various other methods have
also been employed in order to get DNA's bases ionization energies [41, 42].
As for the excitation energies the resulting spectrum is rather complex due
to the presence of several heteroatoms with lone pairs, that leads to the ex-
istence of a number of low-lying n → π∗ and n → σ∗ transitions in addition
to the π → π∗ transitions. Calculations of the vertical excitation spectra of
the bases A, T, G and C have been performed by employing the complete ac-
tive space self consistent field (CASSCF) [43], complete active space second-
order perturbation theory (CASPT2) [44--47], configuration interaction single

1Part of this Chapter can be found published in Ref. [27], under CC BY 4.0

6
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(CIS) [46, 48], random phase approximation (RPA) [43, 49], configuration in-
teraction by perturbation with multiconfigurational zeroth-order wave functions
selected by iterative process (CIPSI) [50], time-dependent density functional the-
ory (TDDFT) [51] methods, an asymptotic extrapolation scheme with hybrid
CC and molecular dynamics simulations [52] and CR-EOMCCSD(T) [53--55].
Some excited-state geometry optimizations have also been performed for the
lowest π∗ and n∗ states [46, 50, 51]. Generally, the lack of an adequate number
of experimental data for single DNA molecules makes the establishment of the
theories more complex. Experimental data such as optical spectra, in which a
structure of one broad peak of the coupled levels is observed [56, 57], are not
refined enough to determine the single-molecule electronic structure [24].

In the present PhD theses, we have calculated the ionization and excitation
energies of nucleic acid bases and similar biologically important molecules as
well as assemblies of DNA bases using a semi-empirical Linear Combination of
Atomic Orbitals (LCAO) method. First, we present past efforts to obtain π → π∗

excitation and π ionization energies using a semi-empirical Hückel-type model
that employs 2pz valence orbitals [58--61] with the parameterization of Hawke et
al. [62, 63] as well as with the parameterization introduced by Mantela et al. [55].
We extend this model in order to include all valence orbitals, i.e., 2s, 2px, 2py,
2pz orbitals for C, N, and O atoms and 1s orbital for H atoms [27]. We investi-
gate the electronic structure of the four DNA bases A, T, G, C and of the two
Watson-Crick H-bonded pairs A-T and G-C. We focus on the HOMO (Highest
Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Or-
bital) wave functions and energies. Regarding the diagonal matrix elements
(also known as on-site energies), we introduce a novel parameterization. For the
non-diagonal matrix elements referring to neighboring atoms, we employ the
Slater - Koster two-center interaction transfer integrals. We use Harrison-type
expressions with factors slightly modified relative to the original. We calculate
the matrix elements for ideal geometries, namely for planar bases and base pairs
separated and twisted approximately by 3.4 Å and 36◦, respectively, relative to
the double helix growth axis. Finally, the deformed base pairs pruned from sev-
eral snapshots of a 500 ns Molecular Dynamics (MD) trajectory of a 20mer [18]
are used in order to address the effects of structural variability on the elec-
tronic structure of B-DNA within the LCAO approach. Taking into account all
valence orbitals, we are in the position to treat deflection from the planar ge-
ometry, e.g., DNA structural variability, a task impossible for the plane Hückel
approach (i.e., using only 2pz orbitals). We compare our LCAO predictions for
the ionization and excitation energies of heterocycles with those obtained from
Ionization Potential Equation of Motion Coupled Cluster with Singles and Dou-
bles (IP-EOMCCSD)/aug-cc-pVDZ level of theory and Completely Normalized
Equation of Motion Coupled Cluster with Singles, Doubles, and non-iterative
Triples (CR-EOMCCSD(T))/aug-cc-pVDZ level of theory, respectively (vertical
values), as well as with available experimental data, where available [27, 55]. We
should state that for almost half of the molecules studied in the present work, we
could not find in the literature experimental or theoretical-computational data
for the ionization and the excitation energies, which was part of our motivation
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for this study. The other part is that we needed a model that could provide
reasonable estimates of the lowest π → π∗ excitation and π ionization energies
and be less demanding in CPU cycles and memory compared to coupled cluster
(CC) methods in the same time.

This chapter is organized as follows: In Section 2.1 we develop the LCAO
method for: a) nucleic acid bases and similar heterocycles using only pz valence
orbitals (Subsection 2.1.1) and, b) nucleic acid bases and similar heterocycles
using all valence orbitals (Subsection 2.1.2). In Section 2.2 we describe our
method to determine the electronic structure of B-DNA base pairs employing
two approximations: a) the Linear Combination of Molecular Orbitals (LCMO)
using only the pz valence orbitals and treating the base pair like a superposition
of its two bases (Subsection 2.2.1) and, b) the LCAO using all valence orbitals
and treating the base pair as a superposition of all of its atoms (Subsection 2.2.2).
In Section 2.3 we present our results on ionization and excitation energies of
various heterocyclic planar molecules, isolated DNA bases and base pairs and
state our conclusions.
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2.1 Description at the Molecular Level
The LCAOmethod was developed after many efforts of the physics and chem-

istry scientists to explain and describe the nature of chemical bond. This model
provides quantitative and qualitative information about the chemical bonds,
the stereochemistry, the dimensions and a variety of spectroscopic properties of
molecules. The main concept of the LCAO method is to express the molecular
wavefunction ψ(r⃗) as a linear combination of the atomic wavefunctions. In a de-
fined area around each atomic nucleus that is involved in a bond, the solution of
Schrödinger equation is approximately the atomic wavefunction. Thus, within
the limits of LCAO method, the wavefunction of a chemical bond is considered
a superposition - linear combination - of the corresponding atomic orbitals.

A molecular orbital can be written as:

ψ(r⃗) =
N∑
ν=1

I∑
i=1

ciνϕiν(r⃗). (2.1)

The index ν runs among all N atoms of the molecule and the index i runs among
all I orbitals of each atom, respectively. ψ(r⃗) obeys the Schrödinger equation

Ĥbψ(r⃗) = Ebψ(r⃗). (2.2)

Ĥb is the Hamiltonian of the base (or other molecule), with eigenvalues Eb
k and

eigenvectors ciν,k. Multiplying with ϕ∗
jµ and integrating, Equation (2.2) gives:∑

ν

∑
i

ciν

∫
d3r ϕjµ(r⃗)

∗Ĥbϕiν(r⃗) = Eb
∑
ν

∑
i

ciν

∫
d3rϕjµ(r⃗)

∗ϕiν(r⃗), (2.3)

that is the linear system of equations:
N∑
ν=1

I∑
i=1

[(
Hb

jµiν − Eb Sjµiν

)
ciν

]
= 0, µ = 1, . . . , N, j = 1, . . . , I. (2.4)

The Hamiltonian matrix elements Hb
jµiν are given by

Hb
jµiν = ⟨ϕjµ| Ĥb |ϕiν⟩ (2.5)

and the overlap matrix elements (Appendix A) are

Sjµiν = ⟨ϕjµ|ϕiν⟩ ≈ δjµiν . (2.6)

We approximate Sjµiν by δjµiν , supposing that the atomic orbital wavefunctions
are tightly bound to their atoms. The system of Equation (2.4) is solved by
numerical diagonalization, giving the eigenenergies Eb

k and eigenvectors ciν,k.
From this point, we proceed by developing two different rationales on the

LCAO method: in the first case, we continue using only pz valence orbitals
in our calculations (Subsection 2.1.1), while in the second case, we include all
valence orbitals, i.e., 2s, 2px, 2py, 2pz orbitals for C, N, and O atoms and 1s
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orbital for H atoms (Subsection 2.1.2).

2.1.1 LCAO with 2pz Valence Orbitals
Atoms in planar organic molecules are bonded with sp2 hybridization, while

having their 2pz atomic orbitals perpendicular to the molecular plane where
their electrons are eventually delocalized. Thus, in this first approximation, the
corresponding molecular wavefunction is a linear combination of the 2pz atomic
orbitals from each atom. A π molecular single-electron wave function can be
approximated as:

ψ(r⃗) =
N∑
ν=1

cνϕν(r⃗), (2.7)

with ν running among all N atoms of the molecule. Following the same proce-
dure as in Section 2.1, we end up with the linear system of equations:

N∑
ν=1

[(
Hb

µν − Eb Sµν

)
cν

]
= 0, µ = 1, . . . , N. (2.8)

The Hamiltonian matrix elements Hb
µν are now given by

Hb
µν = ⟨ϕµ| Ĥb |ϕν⟩ (2.9)

and the overlap matrix elements by

Sµν = ⟨ϕµ|ϕν⟩ ≈ δµν . (2.10)

Thus, Eq. (2.8) becomes:
N∑
ν=1

[(
Hb

µν − Eb δµν

)
cν

]
= 0, µ = 1, . . . , N, (2.11)

that is trivially solved by Hamiltonian diagonalization (by the eig command in
MATLAB programming language, using LAPACK functions, see Appendix B).

To this end, we need the values of the Hamiltonian matrix elements, Hb
µν .

Within the limits of LCAO approximation using only the pz electrons we con-
sider:

Hb
µν =


Ex, µ = ν
0, µ ̸= ν, not sp2 bonded atoms
Vppπ µ ̸= ν, sp2 bonded atoms

(2.12)

The HKS parameterization [62, 63] proposes,

Vppπ = χ
h̄2

md2
, (2.13)

with m being the electron mass, d being the two-center distance, χ = −0.63
and for the on-site energies Ex, the use of empirical parameters: EC = −6.7 eV
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for carbon 2pz orbital, EN2 = −7.9 eV for nitrogen with one electron in the 2pz

atomic orbital (i.e., with coordination number 2), EN3 = −10.9 eV for nitrogen
with two electrons in the 2pz atomic orbital (i.e. with coordination number 3)
and EO = −11.8 eV for oxygen 2pz orbital. In a quest to decrease the deviation
between the experiment and the Hückel-type model predictions, we use the more
recent MMTS parameterization [55]. The optimization introduced there, results
in χ = −0.77, EC = −6.56 eV, EN2 = −9.62 eV, EN3 = −11.48, and EO = −10.35
eV.

2.1.2 LCAO with All Valence Orbitals
In order to treat deflection from the planar geometry, e.g. DNA structural

variability, we need to take into account at least all valence orbitals of a molecule.
The aforementioned plane Hückel approach (i.e., using only 2pz orbitals) is in-
adequate in this case. Thus, we consider the molecular wavefunction as a linear
combination of all valence orbitals, i.e., 2s, 2px, 2py, 2pz for C, N and O atoms,
and 1s for H atoms, as in Eq. (2.1). Following the concept of Section 2.1, we
obtain the system of Eqs. (2.4) which can be solved by numerical diagonaliza-
tion (by the eig command in MATLAB programming language, using LAPACK
functions). The occupied and unoccupied orbitals - and thus the HOMO and
LUMO - can be found by counting all valence electrons contributed by the atoms
of the molecule and arranging them successively in couples of different spin in
accordance with the Pauli principle.

In this case, we need a new set of parameters for the Hamiltonian matrix
elements, Hb

jµiν [27]. Regarding the diagonal matrix elements Hb
iνiν we utilize a

novel parameterization, namely: EH(1s) = −13.64 eV for H 1s orbitals, EC(2s) =
−13.18 eV for C 2s orbitals, EC(2p) = −6.70 eV for C 2p orbitals, EN(2s) = −14.51
eV for N 2s orbitals, EN(2p) = −9.55 eV for N 2p orbitals, EO(2s) = −15.03 eV for
O 2s orbitals, EO(2p) = −11.52 eV for O 2p orbitals. For the non-diagonal matrix
elements Hb

jµiν (µ ̸= ν) referring to neighbouring atoms, we utilize the Slater -
Koster two-center interaction integrals [64]

Vss = Vssσ, (2.14)
Vsx = ξ1 Vspσ, (2.15)
Vxx = ξ21 Vppσ + (1− ξ21)Vppπ, (2.16)
Vxy = ξ1ξ2 (Vppσ − Vppπ), (2.17)

with ξ1, ξ2 being the directional cosines of d⃗ = j⃗i which points from atom i
to atom j. Concerning the values of Vssσ, Vspσ, Vppσ, Vppπ, we use the relevant
expressions proposed by Harrison [65, 66], of the form:

Vχ = χ
h̄2

md2
, (2.18)

with m being the electron mass and d the two-center distance. The χ values
we propose, are: χssσ = −1.32, χspσ = −1.42, χppπ = −0.73 (slightly modified
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relative to the original Harrison constant), χppσ = 2.22. For each H orbital the
interactions are multiplied by a factor b = 0.70 that resulted from the optimiza-
tion. We arrived at the above parameterization after careful optimization, by
fitting the LCAO numerical results with the experimental values for the excita-
tion and the ionization energies of nucleic acid bases A, G, T, C, and U. To do
so, we used the Nelder - Mead algorithm as implemented in Matlab software, in
order to minimise the sum of the squared differences between the experimental
and the predicted values for the excitation and the ionization energies. All other
non-diagonal matrix elements, referring to non-neighboring atoms, are assumed
equal to zero, Hb

jµiν = 0. Tables 2.1 and 2.2 summarize our LCAO parameters.

Table 2.1: Diagonal matrix elements (on-site energies) in our LCAO parameterization
(eV).

EH(1s) EC(2s) EC(2p) EN(2s) EN(2p) EO(2s) EO(2p)

−13.64 −13.18 −6.70 −14.51 −9.55 −15.03 −11.52

Table 2.2: χ values of Harrison-type expressions for non-diagonal matrix elements,
utilizing Slater - Koster two-center interaction transfer integrals and the correction factor
for interactions involving H atoms, in our LCAO parameterization.

χssσ χspσ χppπ χppσ b

−1.32 −1.42 −0.73 2.22 0.70
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2.2 Description at the Base-pair Level
In this section, we present the procedure to obtain the HOMO and LUMO

states of a B-DNA base pair or monomer. We employ two different methods:
a) in the first case, we treat the base pair like two adjacent molecules (bases)
with electronic overlap, employing the Linear Combination of Molecular Or-
bitals (LCMO) method, and b) in the second case, we consider the base pair as
a superposition of its atoms, as we already did in Section 2.1, using LCAO with
all valence orbitals but with proper adjustments.

2.2.1 LCMO at B-DNA Base-pair Level
The rationale behind this method is that each DNA base pair has its bases (A

and T, or G and C) connected with non-covalent hydrogen bonds. The length
of a hydrogen bond is around 3 Å [67], longer than the typical length of the
covalent bond connecting neighbouring atoms within a base, which is around
1.3 - 1.5 Å. The terms HOMO and LUMO are still in use for the base-pairs, to
describe the single-electron wave functions that represent the highest in energy
occupied orbital and the lowest in energy unoccupied orbital, respectively, of the
molecular complex.

The base-pair HOMO/LUMO (H/L) wavefunction can be expressed as:

ψbp
H/L(r⃗) = C1 ψ

b(1)
H/L(r⃗) + C2 ψ

b(2)
H/L(r⃗), (2.19)

where ψb(1)
H/L(r⃗), ψ

b(2)
H/L(r⃗) are the corresponding HOMO/LUMO orbitals of the

two bases forming the base pair. Equation (2.19) is inserted into Schrödinger's
equation:

Ĥbpψbp
H/L(r⃗) = Ebp

H/Lψ
bp
H/L(r⃗), (2.20)

where Ebp
H/L is the HOMO/LUMO on-site energy of the base pair. We get:

Ĥbp[C1 ψ
b(1)
H/L(r⃗) + C2 ψ

b(2)
H/L(r⃗)] = Ebp

H/L[C1 ψ
b(1)
H/L(r⃗) + C2 ψ

b(2)
H/L(r⃗)]. (2.21)

Multiplying Eq. (2.21) with ψb(1)∗
H/L (r⃗) and integrating all over space, we get:

C1

∫
d3r⃗ ψ

b(1)∗
H/L (r⃗) Ĥ

bp ψ
b(1)
H/L(r⃗) + C2

∫
d3r⃗ ψ

b(1)∗
H/L (r⃗) Ĥ

bp ψ
b(2)
H/L(r⃗) =

Ebp
H/L C1

∫
d3r⃗ ψ

b(1)∗
H/L (r⃗) ψ

b(1)
H/L(r⃗) + Ebp

H/L C2

∫
d3r⃗ ψ

b(1)∗
H/L (r⃗) ψ

b(2)
H/L(r⃗). (2.22)

In this approximation, we employed only the 2pz atomic orbitals (see Subsec-
tion 2.1.1). Supposing that the atomic 2pz orbital wavefunctions are tightly
bound to their atoms, we obtain vanishing overlap integral between ψ

b(1)∗
H/L (r⃗)
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and ψb(2)
H/L(r⃗), i.e.,∫
d3r⃗ ψ

b(1)∗
H/L (r⃗) ψ

b(2)
H/L(r⃗) =

N1∑
ν=1

N2∑
µ=1

c
b(1)∗
H/L,ν c

b(2)
H/L,µ

∫
d3r⃗ ϕb(1)∗

ν ϕb(2)
µ = 0. (2.23)

According to the basic TB hypothesis, supposing that the Hamiltonian of the
base pair is approximated by the Hamiltonian of base1 close to base 1, we obtain:∫

d3r⃗ ψ
b(1)∗
H/L (r⃗) Ĥ

bp ψ
b(1)
H/L(r⃗) ≃

∫
d3r⃗ ψ

b(1)∗
H/L (r⃗) Ĥ

b(1) ψ
b(1)
H/L(r⃗) = Eb(1), (2.24)

We define:
tH/L =

∫
d3r⃗ ψ

b(1)∗
H/L (r⃗) Ĥ

bp ψ
b(2)
H/L(r⃗). (2.25)

Substituting Eq. (2.23), Eq. (2.24) and Eq. (2.25) into Eq. (2.22) we get:

E
b(1)
H/LC1 + tH/LC2 = Ebp

H/LC1. (2.26)

In a similar procedure for the base b(2) we get:

t∗H/LC1 + E
b(2)
H/LC2 = Ebp

H/LC2. (2.27)

Also,

tH/L =

∫
d3r⃗ ψ

b(1)∗
H/L (r⃗) Ĥ

bp ψ
b(2)
H/L(r⃗) =⇒

tH/L =

N1∑
ν=1

N2∑
µ=1

c
b(1)∗
H/L,ν c

b(2)
H/L,µ

∫
d3r⃗ ϕb(1)∗

ν (r⃗)Hbp ϕb(2)
µ (r⃗) =⇒

tH/L =

N1∑
ν=1

N2∑
µ=1

c
b(1)∗
H/L,ν c

b(2)
H/L,µVνµ, (2.28)

and t∗H/L = tH/L. We arrive at the system of equations:

E
b(1)
H/LC1 + tH/LC2 = Ebp

H/LC1

tH/LC1 + E
b(2)
H/LC2 = Ebp

H/LC2. (2.29)
The solution of this system provides the eigenenergies of the base pair:

Ebp
H/L =

E
b(1)
H/L + E

b(2)
H/L

2
±

√√√√(Eb(1)
H/L − E

b(2)
H/L

2

)2

+ t2H/L. (2.30)

The matrix elements Vνµ are provided through the Slater-Koster expression [64,
68]:

Vνµ = Vppσ sin2 ϕ+ Vppπ cos2 ϕ, (2.31)
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where ϕ denotes the angle formed by the line connecting atoms ν and µ and the
plane perpendicular to 2pz orbitals. For intra-base covalently bonded atoms, the
matrix elements Vνµ = Vppπ (ϕ = 0) are given by the Harrison expression, that
is valid for interatomic distances of the order of covalent bond. When dealing
with distances between atoms belonging to different molecules, the Harrison
expression is replaced with the exponentially decaying form:

Vppπ = −0.63
h̄2

md20
e
− 2

d0
(d−d0), (2.32)

where d0 ≃ 1.35Å is a typical covalent bond length within a base.
Having determined the matrix elements Vνµ, then interaction integrals tH/L

are calculated through Eq. (2.28). Through Eqs. (2.30) we calculate the HOMO/
LUMO eigenenergy of the base pair, while the corresponding wavefunction is de-
termined by Eq.(2.19) after obtaining the coefficients C1, C2 by the system of
Eqs. (2.29).

2.2.2 LCAO at B-DNA Base-pair Level
Here, we follow a different procedure in order to obtain the HOMO and

LUMO states of a B-DNA monomer. We consider the base pair as a superposi-
tion of its atoms, just like we did for the molecules in Subsection 2.1.2. Let us
call N1, N2 the number of atoms making up the two bases of the base pair. We
consider the base pair wavefunction ψbp(r⃗) as a linear combination of all valence
orbital wavefunctions ϕiν(r⃗), i.e., 2s, 2px, 2py, 2pz for C, N and O atoms and 1s
for H atoms:

ψbp(r⃗) =

N1+N2∑
ν=1

I∑
i=1

ciνϕiν(r⃗). (2.33)

The indexes ν and i run among the N1 + N2 atoms of the base pair and the I
orbitals of each atom, respectively. ψbp(r⃗) obeys the Schrödinger equation:

Ĥbpψbp(r⃗) = Ebpψbp(r⃗). (2.34)

Once again, we employ the concept of Section 2.1 to obtain the system of equa-
tions:

N1+N2∑
ν=1

I∑
i=1

[(
Hbp

jµiν − Ebp Sjµiν

)
ciν

]
= 0, µ = 1, . . . , N1 +N2, j = 1, . . . , I,

(2.35)
which can be solved by numerical diagonalization.

In this case, the values of the Hamiltonian matrix elements, Hbp
jµiν , are ex-

pressed slightly differently. The matrix elements with (a) 1 ≤ ν ≤ N1 and
1 ≤ µ ≤ N1, and (b) N1 + 1 ≤ ν ≤ N1 + N2 and N1 + 1 ≤ µ ≤ N1 + N2, are
expressed in the same way as previously described in Subsection 2.1.2. For the
remaining matrix elements, we employ the Slater-Koster two-center interaction
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transfer integrals of Eqs. (2.14), (2.15), (2.16), (2.17) but in this case, the values
of Vssσ, Vspσ, Vppσ, Vppπ are of the form

Vχ = χ
h̄2

md20
e
− 2

d0
(d−d0), (2.36)

where d0 = 1.35 Å is a typical covalent bond distance within a base [27]. This
difference stems from the fact that, as we already mentioned in Subsection 2.2.1,
Harrison’s relations are valid for interatomic distances of the size of covalent
bonds, so when dealing with distances of the size of hydrogen bonds and longer,
we should instead use the appropriate exponentially decaying expressions of the
form of Equation (2.36) [69--71].

From the aforementioned diagonalization of the Hamiltonian matrix, we ob-
tain the energy eigenvalues Ebp

k - including HOMO and LUMO - of the electronic
spectrum, as well as the corresponding base-pair eigenvectors

cbpk =



c11,k
c12,k
...

ciν,k
...

cI(N1+N2),k


. (2.37)
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2.3 Results and Discussion
In this section we present the results on ionization and excitation energies

of various heterocyclic planar molecules, isolated DNA bases and base pairs. In
the rest of this section, we make the convenient simplifying assumption that
the HOMO absolute value expresses the ionization energy, and the HOMO -
LUMO gap expresses the excitation energy (in most cases the first π − π∗ tran-
sition). In Subsection 2.3.1, are presented our results for a list of heterocyclic
planar molecules, including isolated DNA bases, employing the LCAO method
using all valence orbitals with our newly introduced parameterization (MSF)
of Subsection 2.1.2 [27]. These results are compared to the corresponding re-
sults obtained from: a) the LCAO method using only 2pz valence orbitals with
the parameterizations of Subsection 2.1.1 introduced in [62, 63] (HKS) and [55]
(MMTS), and b) ab-initio methods. Subsection 2.3.2 contains our results for
the B-DNA base pairs, using the LCAO theoretical scheme described in Subsec-
tion 2.2.2 [27]. Our results are compared to the corresponding obtained from the
LCMO method using only 2pz valence orbitals described in Subsection 2.2.1 [63].

2.3.1 Heterocyclic Planar Molecules including Nu-
cleic Acid Bases

The LCAO method using all valence orbitals with our newly introduced pa-
rameterization (MSF) of Subsection 2.1.2 was employed to calculate the HOMO
and LUMO eigenenergies for a variety of heterocyclic planar organic molecules.
Below, the ionization energies refer to π molecular orbital character and the ex-
citation energies correspond to π − π∗ transitions, unless otherwise stated. We
studied the following groups of molecules: adenine and isomers, guanine and
isomers, purine and isomers, thymine, cytosine, uracil and isomers, pyrimidine
and isomers, and other planar heterocyclic molecules. Table 2.3 summarizes our
LCAO results using all valence orbitals, along with relevant experimental values
(where available). IMMTS and EMMTS are the ionization and excitation energies
obtained by the LCAO scheme using only 2pz electrons with the MMTS [55]
parameterization and the HKS [62, 63] parameterization (in parentheses) of
Subsection 2.1.1. ICC and ECC are calculations of the vertical ionization en-
ergies at the Ionization Potential Coupled Cluster with Singles and Doubles
(IP-EOMCCSD)/aug-cc-pVDZ level of theory and vertical excitation energies at
the Completely Renormalised Equation of Motion Coupled Cluster with Singles,
Doubles, and non-iterative Triples (CR-EOMCCSD(T))/aug-cc-pVDZ level of
theory, respectively [55]. Table 2.3 also includes transition oscillator strengths f
that we calculated in a simplistic approximation, considering point contribution
of the corresponding orbitals. The transition dipole moment d⃗ was approximated
as

d⃗ = (−e) ⟨L| r⃗ |H⟩ = (−e)

 N∑
ν=1

I∑
i=1

c∗iνL ⟨ϕiν |

 r⃗

 N∑
µ=1

I∑
j=1

cjµH |ϕjµ⟩


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= (−e)
N∑
ν=1

I∑
i=1

N∑
µ=1

I∑
j=1

c∗iνLcjµH ⟨ϕiν | r⃗ |ϕjµ⟩ . (2.38)

Since |ϕiν⟩, |ϕjµ⟩ are not exactly known, the previous integral cannot be calcu-
lated. To make an estimation of d, we make the crude approximation:

d⃗ ≃ (−e)
N∑
ν=1

I∑
i=1

c∗iνLr⃗iciνH , (2.39)

where |L⟩ (|H⟩) is the LUMO (HOMO) state. In other words, we replace the in-
tegral over all space with a sum at the atom positions approximatively assuming
that the wavefunction contribute mainly at this points. The oscillator strength
is [72]

f =
2

3

m

e2h̄2
E d2. (2.40)

E is the excitation energy. The results are illustrated in Figures 2.1, 2.2 and 2.3.
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Table 2.3: Ionization and excitation energies (eV). ILCAO and ELCAO are the ionization
and excitation energies obtained by our LCAO scheme, including all valence orbitals.
fLCAO is the relevant oscillator strength. IMMTS and EMMTS are the ionization and
excitation energies obtained by the LCAO scheme using only 2pz electrons with the
MMTS [55] parameterization and the HKS [62, 63] parameterization (in parentheses) of
Subsection 2.1.1. ICC and ECC are the energies calculated at the IP-EOMCCSD/aug-
cc-pVDZ and CR-EOMCCSD(T)/aug-cc-pVDZ level of theory [55]. Iexp and Eexp are
the experimental data. In parentheses, the character of the transition.

Name
Formula ILCAO ELCAO(fLCAO) IMMTS EMMTS ICC ECC Iexp Eexp

Adenine
C5H5N5 8.44 4.20 (0.330) 8.74 (8.25) 4.61 (3.79) 8.23 5.04 8.44 [73] 4.84 [74, 75]
(Isomer 1)

2-Aminopurine
C5H5N5 8.56 3.84 (0.239) 8.79 (8.25) 4.30 (3.61) 7.95 4.27 4.11 [76]
(Isomer 2)

1H-pyrazolo[3,4-d]
pyrimidin-4-amine

C5H5N5 8.78 4.25 (0.328) 9.23 (8.37) 4.80 (3.77) 8.51 4.92
(Isomer 3)

Pyrimido [5,4-e]-as-
triazine, 1,2-dihydro-

C5H5N5 8.04 3.21 (0.282) 7.76 (7.44) 3.53 (2.77) 7.18 3.16
(Isomer 4)

Guanine 4.77 (π → σ∗)
C5H5N5O 8.36 4.25 (0.288) 8.29 (8.03) 4.51 (3.54) 7.83 4.85 8.24 [73] 4.51 [75]
(Isomer 1)

7-Amino-S-triazolo(1,5-a)
pyrimidin-5(4H)-one

C5H5N5O 8.42 4.37 (0.285) 8.60 (8.52) 4.65 (3.90) 8.60 4.91
(Isomer 2)

Pyrimido[5,4-e]-as-triazin-
5[6h]-one, 1,2-dihydro-

C5H5N5O 8.19 3.42 (0.198) 7.18 (7.21) 2.83 (2.34) 6.68 2.54
(Isomer 3)

7H-imidazo[4,5-d]-v
triazin-4-one, 6-methyl- 4.47 (n → σ∗)

C5H5N5O 8.93 3.64 (0.302) 8.77 (8.42) 3.46 (3.51) 8.92 4.55
(Isomer 4)

9H-purine 4.49 (n → π∗) 4.28 [77] (n → π∗)
C5H4N4 9.20 4.40 (0.313) 9.20 (8.63) 4.63 (3.88) 9.34 4.92 9.52 [73] 4.68 [77]
(Isomer 1)
7H-purine 9.34 (n) 4.36 (n → π∗)
C5H4N4 9.08 4.26 (0.295) 9.29 (8.86) 4.63 (4.06) 9.40 4.79

(Isomer 1 taut.)
1H-1,2,3-triazolo
[4,5-b]pyridine 4.49

C5H4N4 9.42 4.12 (0.340) 9.50 (8.89) 4.18 (3.91) 9.41 4.54
(Isomer 2)

[1,2,4]Triazolo
[1,5-a]pyrazine

C5H4N4 8.95 4.20 (0.230) 8.97 (8.27) 4.16 (3.41) 9.27 4.63
(Isomer 3)

[1,2,3]Triazolo
[1,5-a]pyrazine

C5H4N4 8.64 3.96 (0.172) 8.63 (7.99) 3.98 (3.19) 8.95 4.31
(Isomer 4)
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Table 2.3: Cont.

Name
Formula ILCAO ELCAO(fLCAO) IMMTS EMMTS ICC ECC Iexp Eexp

Thymine 5.07 (n → π∗)
C5H6N2O2 9.09 4.77 (0.316) 8.99 (9.02) 4.90 (4.13) 9.03 5.17 9.14 [73] 4.69 [75]
Cytosine
C4H5N3O 8.68 4.54 (0.306) 9.06 (8.89) 4.89 (4.20) 8.67 4.64 8.94 [73] 4.64 [75]
Uracil 5.03 (n → π∗)

C4H4N2O2 8.89 4.70 (0.286) 8.99 (9.02) 4.90 (4.14) 9.44 5.27 9.50 [73] 4.79 [75, 77]
(Isomer 1)

Pyrazine, 1,4-dioxide
C4H4N2O2 8.77 4.28 (0.403) 8.46 (9.26) 3.51 (3.52) 8.11 3.30 8.33 [78] 4.05 [79]
(Isomer 2)

4(1H)-pyrimidinone,
6-hydroxy-
C4H4N2O2 9.01 4.95 (0.103) 8.60 (8.84) 4.84 (4.65) 9.66 5.29
(Isomer 3)

Maleic hydrazide
C4H4N2)2 8.77 3.34 (0.113) 9.16 (9.47) 4.11 (3.79) 8.77 4.11
(Isomer 4)

Pyrazine 9.49 (n) 4.07 (n → π∗) 9.63 [80] 4.20 [81]
C4H4N2 9.53 4.39 (0.258) 9.55 (9.17) 4.60 (4.50) 10.09 4.88 10.18 [80] 4.79 [82, 83]
(Isomer 1)
Pyrimidine 4.41 (n → π∗) 4.35 [81]
C4H4N2 9.56 (n) 4.84 (n → π∗) 9.73 [80] 4.62 [82]
(Isomer 2) 9.98 5.28 (0.249) 10.02 (9.40) 5.56 (4.85) 10.44 5.25 10.41 [80] 5.13 [75, 77, 82, 83]
Pyridazine 3.76 (n → π∗) 3.70 [81]
C4H4N2 9.41 (n) 4.28 (0.000 (n → π∗)) 9.07 (n) 4.47 (n → π∗) 9.31 [80]
(Isomer 3) 10.39 5.26 (0.253) 10.47 (9.52) 5.54 (4.84) 10.59 5.12 10.61 [80] 5.00 [83]

1H-imidazole 4.97 (0.000 (π → σ∗)) 5.50 (π → σ∗)
C3H4N2 8.80 5.77 (0.171) 8.83 (8.49) 5.76 (4.76) 8.90 6.29 8.96 [84] 5.99 [85]
(Isomer 1)
1H-pyrazole 5.69 (0.000 (π → σ∗))
C3H4N2 9.69 5.90 (0.000 (π → σ∗)) 6.11 (π → σ∗)
(Isomer 2) 9.48 5.97 (0.196) 9.62 (8.80) 5.99 (4.84) 9.35 6.25 9.38 [86] 5.90 [87]

1H-benzimidazole
C7H6N2 8.84 4.63 (0.245) 8.99 (8.52) 4.98 (3.97) 8.40 4.67 8.44 [84] 4.47 [88]
(Isomer 1)
1H-indazole
C7H6N2 8.41 3.85 (0.217) 8.76 (8.46) 4.32 (3.75) 8.26 4.50 8.35 [89] 4.27 [90]
(Isomer 2)
2H-indazole
C7H6N2 8.42 3.84 (0.229) 8.41 (7.87) 3.78 (2.87) 7.90 4.54

(Isomer 2 taut.)
1H-pyrrolo[2,3-b]

pyridine
C7H6N2 8.47 3.82 (0.184) 8.53 (8.28) 4.12 (3.59) 8.17 4.50 8.11 [91] 4.28 [92]
(Isomer 3)
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Figure 2.1: First π ionization energy and first π − π∗ excitation energy of purines
calculated via our LCAO method using all valence orbitals, along with results at the IP-
EOMCCSD/aug-cc-pVDZ (vertical ionization energies) and CR-EOMCCSD(T)/aug-cc-
pVDZ (vertical excitation energies) level of theory [55], as well as available experimental
data. Results employing Hückel model, using only 2pz orbitals with MMTS [55] param-
eterization and HKS [62, 63] parameterization, are also included. Different isomers are
specified in Table 2.1.

Figure 2.2: First π ionization energy and first π− π∗ excitation energy of pyrimidines
calculated via our LCAO method using all valence orbitals, along with results at the IP-
EOMCCSD/aug-cc-pVDZ (vertical ionization energies) and CR-EOMCCSD(T)/aug-cc-
pVDZ (vertical excitation energies) level of theory [55], as well as available experimental
data. Results employing Hückel model, using only 2pz orbitals with MMTS [55] param-
eterization and HKS [62, 63] parameterization, are also included. Different isomers are
specified in Table 2.1.
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Figure 2.3: First π ionization energy and first π−π∗ excitation energy of other planar
heterocyclic molecules calculated via our LCAO method using all valence orbitals, along
with results calculated at the IP-EOMCCSD/aug-cc-pVDZ (vertical ionization energies)
and CR-EOMCCSD(T)/aug-cc-pVDZ (vertical excitation energies) level of theory [55],
as well as available experimental data. Results employing Hückel model, using only 2pz
orbitals with MMTS [55] parameterization and HKS [62, 63] parameterization, are also
included. Different isomers are specified in Table 2.1.

Regarding the ionization energy, the LCAO (MSF) obtained results are in
very good agreement with both the experimental data and the CC results, al-
though there are some deviations. Also, our method using all valence orbitals
gives more successful predictions with respect to the experimental results, than
the previously used LCAO method using only 2pz electrons, especially the one
using the HKS [62, 63] parameterization. The Root Mean Square Percentage Er-
ror (RMSPE), with respect to the experimental values, is 3.65%. Differences in
tautomer ionization energies are as expected negligible, that is 0.12 eV for purine
tautomers and 0.01 eV for indazole tautomers. As for the excitation energies of
the π − π∗ transition, the RMSPE, with respect to the experimental values, is
6.49%. Both purine and indazole tautomers have a negligible 0.03 eV difference
in their excitation energies. Based on the presented data and reported com-
ments about individual bases, we note that the LCAO method using all valence
orbitals, though not exact, is capable of producing results in a good agreement
with experimental data, when choosing the suitable set of parameters. Vertical
ionization energies of nucleic acid bases in the gas phase with different electronic
structure methods are, generally, in agreement with our results, cf. Ref. [93] and
references therein.

2.3.2 B-DNA Base Pairs
In this subsection we present our results for the B-DNA base pairs, that

are Adenine (A) - Thymine (T) and Guanine (G) - Cytosine (C). In Table 2.4
we show the HOMO, LUMO and HOMO - LUMO gap energies of these base
pairs, according to the procedure described in Section 2.2.2 using LCAO with
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all valence orbitals, along with the corresponding energies found in Ref. [63]
using only 2pz orbitals. At this point, we should state that the bases making
up the base pairs are slightly deformed in comparison to their structure when
isolated (cf. Section 2.3.1, Table 2.3), so the corresponding HOMO and LUMO
energies for these two cases may differ. Thus, Table 2.4 contains additionally
the HOMO, LUMO and HOMO - LUMO gap energies of the distorted bases.
The HOMO (LUMO) energies are of π (π∗) molecular orbital character and the
HOMO - LUMO gap energies are π − π∗ transitions, unless otherwise stated.

Table 2.4: HOMO (ELCAO,H) and LUMO (ELCAO,L) eigenenergies of the base pairs
A-T and G-C, obtained in this work using LCAO with all valence orbitals, along with
the corresponding HOMO-LUMO energy gaps (ELCAO,g) in eV (rows 6 and 7). Rows 2
- 5 contain the calculated HOMO and LUMO energies of each distorted base making up
these base pairs [27]. The third, the fifth and the seventh column list the corresponding
energies from Ref. [63] where only pz orbitals had been used.

Base or
Base Pair ELCAO,H EH [63] ELCAO,L EL [63] ELCAO,g Eg [63]

A −8.50 −8.30 −4.19 −4.40 4.31 3.90
T −9.12 −9.00 −4.30 −4.90 4.82 4.10
G −8.31 −8.00 −4.12 −4.50 4.19 3.50

−4.43 (σ∗) 4.24 (π → σ∗)
C −8.67 −8.80 −4.11 −4.30 4.56 4.50

A-T −8.49 −8.30 −4.31 −4.90 4.18 3.40
−4.43 (σ∗) 3.87 (π → σ∗)

G-C −8.30 −8.00 −4.14 −4.50 4.16 3.50

As expected, the energy values for the bases are slightly different compared
to these of Table 2.3. Besides that, we observe that the HOMO energy of a
particular base pair is very close to the highest of the HOMO energies of the
two bases of the base pair, while the LUMO energy of the base pair is very close
to the lowest of the two LUMO energies.

In order to have a more consistent view of the above observation, in Fig-
ures 2.4 and 2.5 we illustrate the occupation probabilities of holes (HOMO
state) and electrons (LUMO state) on each atomic orbital of bases and base
pairs, calculating the squared coefficients |ciν |2 (cf. Equations (2.1) and (2.33))
of the corresponding states. We observe that our calculated HOMO state for
the base pair A-T (G-C) is localized almost totally in A (G), while the corre-
sponding LUMO wave function is localized in T (C), in accordance to results
from ab-initio techniques of Refs. [94, 95], which locate the HOMO of a base
pair in purine and the LUMO in pyrimidine. This is due to the higher HOMO
energy of A (G) and lower LUMO energy of T (C) and the large values of these
differences.
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Figure 2.4: Occupation probabilities of each atomic orbital, |ciν |2 (cf. Equation (2.1)),
for the HOMO (left) and LUMO (right) states of A and T bases within an A-T base
pair (top), along with the corresponding probabilities (cf. Equation (2.33)) for the
HOMO and LUMO states of the A-T base pair (bottom).

Figure 2.5: Occupation probabilities of each atomic orbital, |ciν |2 (cf. Equation (2.1)),
for the HOMO (left) and LUMO (right) states of G and C bases within a G-C base pair
(top), along with the corresponding probabilities (cf. Equation (2.33)) for the HOMO
and LUMO states of the G-C base pair (bottom).
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Besides the electronic structure of biological molecules, their charge transfer
properties - especially these of DNA and RNA - have attracted considerable in-
terest of a broad interdisciplinary scientific community [10, 23, 68, 98--103]. As
already mentioned in Chapter 1, by the term transfer we imply that a carrier
(electron or hole), created (e.g. by oxidation or reduction) or injected at a spe-
cific site, moves to a more favorable location, without application of an external
gradient, e.g., of potential energy or temperature.

Charge movement is usually attributed to two types of mechanisms [104, 105]:
(i) incoherent or thermal hopping between nearest neighboring or more distant
sites and (ii) coherent hopping or tunneling or superexchange. The term tunnel-
ing implies quantum mechanical tunneling, between two sites, e.g., the carrier
donor and the carrier acceptor, through a bridge. The term superexchange, not
to be confused with the similar term in magnetism, emanates from the distant
interaction between the two sites, e.g. the donor and the acceptor, through a
bridge. The coherent mechanism is expected to dominate carrier movement in
the low temperature regime. In natural DNA, it is more likely that a hole will be
created at a guanine which has the highest HOMO of all bases and an electron
will be created at a thymine which has the lowest LUMO of all bases [63]. How-
ever, coherently, if e.g. the hole is initially created or injected at an adenine,
charge transfer will mainly be accomplished through adenines and similarly for
other initial conditions [106]. Typically, in coherent transfer, charge is never
exactly localized but there is a mean over time occupation probability to find it
at each site, the carrier does not exchange energy with the environment during
its transfer and this way it can travel short distances; strictly quantum mechani-
cally, just a percentage of the carrier reaches the last site. Commonly, in thermal
hopping, charge is localized. The carrier exchanges energy with the environment
during its transfer and this way it can travel far longer than via the coherent
mechanism.

Many mechanisms have been suggested to explain the charge movement
along DNA. The base-pair stack of the DNA double helix creates a nearly one-
dimensional π-pathway, formed by the overlap of π molecular orbitals of the
stacked aromatic bases of DNA, that favors charge transfer. This π-pathway
transfer can lead to charge propagation even at long distances [8, 68, 107, 108].

After many years of research [109--114], we realize that many factors influence
carrier motion along DNA, including aqueousness, counterions, extraction pro-
cess, electrodes, purity, substrate, structural fluctuations and geometry. These
factors are either intrinsic or extrinsic. In the present Thesis, we focus on the

1The content of this Chapter can be found published in Refs. [27, 96], under CC BY 4.0, and
in Ref. [97], ©2018 American Physical Society.
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most important of the intrinsic factors, i.e. the effect of alternating the base-
pair sequence, which affects the overlaps across the π-stack. We study rather
long sequences, so we employ a Tight-Binding (TB) model which allows to ad-
dress systems of realistic length [16, 106, 115--132]. Still, we aim to understand
how the base-pair sequence affects carrier motion. Up to now, ab initio cal-
culations [133--141], used to explore experimental results and the underlying
mechanisms, are currently limited to short segments for computational reasons.
Furthermore, research has shown that carrier movement through B-DNA can be
manipulated. The carrier transfer rate through DNA can be tuned by chemi-
cal modification, using various natural and artificial nucleobases with different
HOMO and LUMO levels [142]. This way it can be increased by many orders of
magnitude with appropriate sequence choice [97, 106, 116, 143]. Furthermore,
structural fluctuations is another factor which influences quantum transport
through DNA molecular wires [144].

Up to now, there are several studies concerning charge and energy transfer
in polymer systems [145--147]. Besides that, there are several works devoted to
the study of transfer and transport in specific DNA structures using variants of
the TB method [14, 104, 106, 116, 118, 119, 130, 148--150].

Here, we study the coherent regime for several cases of periodic and aperiodic
polymers. More specifically, we employ a TB wire model, where the base pairs
(monomers) are the sites of the chain, to study the spectral and charge trans-
fer properties of periodic sequences with increasing repetition unit, as well as
deterministic aperiodic [Thue-Morse (TM), Fibonacci (F), Double-Period (DP),
Rudin-Shapiro (RS), Cantor Set (CS), Asymmetric Cantor Set (ACS)] DNA
segments. The relevant parameters are the on-site energies of base pairs and
the interaction integrals between successive base pairs. We also assume that the
state or movement of an extra hole or electron in the polymer can be expressed
through a combination of the HOMO or LUMO, respectively, of all monomers.
This way, we define the HOMO regime and the LUMO regime. We have to
solve a system of N coupled equations for the time-independent problem, and
a system of N coupled first order differential equations for the time-dependent
problem. We study HOMO and LUMO eigenspectra, HOMO-LUMO gaps and
the relevant density of states, as well as the mean over time probabilities to find
the carrier at each site. We are also interested in the frequency content of carrier
movement, hence, we analyze the Fourier spectra of the time-dependent proba-
bility to find the carrier at each site. We calculate the weighted mean frequency
of each monomer and the total weighted mean frequency of the polymer, as a
measure of the overall transfer frequency content. Finally, we study the pure
mean transfer rate from a certain site to another, which describes the easiness of
charge transfer and gives us a measure of how much of the carrier is transferred
and how fast this process is.

The rest of this chapter is organized as follows: In Section 3.1, we delin-
eate the theory behind the time-independent (Subsection 3.1.1) and the time-
dependent (Subsection 3.1.2) problem, as well as introduce the studied physical
quantities (Subection 3.1.3). Section 3.2 provides some details on the studied
periodic sequences with increasing repetition unit (Subsection 3.2.1) and the
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studied deterministic aperiodic sequences (Subsection 3.2.2) and we outline our
notation. In Section 3.3, after we present the result TB parameterization, we
discuss our results for the aforementioned categories of studied polymers and
state our conclusions. The content of this chapter can be found published in
refs. [27, 96, 97].
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3.1 The Tight-Binding Wire Model for
Charge Transfer

Within the TB wire model description for charge transfer that we employ in
this work, a site is a monomer (e.g., in DNA, a base pair). We assume that the
state or movement of an inserted hole can be expressed through the monomer
HOMOs, while these of an electron through LUMOs. We call λ the monomer
index, λ = 1, 2, . . . , N . In this approximation, the single carrier (hole/electron)
wave function of the whole macromolecule (e.g. DNA) is considered as a lin-
ear combination of base-pair wave functions. In the following subsections, we
will treat the time-independent and the time-dependent problem of the coherent
charge transfer.

3.1.1 Stationary States - Time-independent
Problem

The time-independent single carrier DNA wavefunction can be then ex-
pressed as a linear combination of base-pair wave functions with time-independent
coefficients, i.e.,:

ψDNA(r⃗) =
∑
λ

Aλψ
bp
λ (r⃗), (3.1)

where ψbp
λ (r⃗) is the HOMO/LUMO wavefunction of the λ-th base pair.

Substituting Eq. (3.1) into the time-independent Schrödinger's equation

ĤDNAψDNA(r⃗) = EDNAψDNA(r⃗), (3.2)

we get: ∑
λ

AλĤ
DNAψbp

λ (r⃗) = EDNA
∑
λ

Aλψ
bp
λ (r⃗) =⇒

∑
λ

Aλ

∫
d3r⃗ ψbp∗

λ′ (r⃗)Ĥ
DNAψbp

λ (r⃗) = EDNA
∑
λ

Aλ

∫
d3r⃗ ψbp∗

λ′ (r⃗)ψ
bp
λ (r⃗) =⇒

Aλ′−1

∫
d3r⃗ ψbp∗

λ′ (r⃗)Ĥ
DNAψbp

λ′−1(r⃗) + Aλ′

∫
d3r⃗ ψbp∗

λ′ (r⃗)Ĥ
DNAψbp

λ′ (r⃗)+

Aλ′+1

∫
d3r⃗ ψbp∗

λ′ (r⃗)Ĥ
DNAψbp

λ′+1(r⃗) = EDNAAλ′−1

∫
d3r⃗ ψbp∗

λ′ (r⃗)ψ
bp
λ′−1(r⃗)+

EDNAAλ′

∫
d3r⃗ ψbp∗

λ′ (r⃗)ψ
bp
λ′ (r⃗) + EDNAAλ′+1

∫
d3r⃗ ψbp∗

λ′ (r⃗)ψ
bp
λ′+1(r⃗). (3.3)
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Within the TB method, we assume:∫
d3r⃗ ψbp∗

λ′ (r⃗)Ĥ
DNAψbp

λ′ (r⃗) ≈
∫
d3r⃗ ψbp∗

λ′ (r⃗)Ĥ
bp
λ′ψ

bp
λ′ (r⃗) = Ebp

λ′ , (3.4)

with Ebp
λ′ the on-site energy of base pair λ′ (see Table 2.4). Additionally:

tbpλ′,λ =

∫
d3r⃗ ψbp∗

λ′ Ĥ
DNAψbp

λ (r⃗) (3.5)

and ∫
d3r⃗ ψbp∗

λ′ ψ
bp
λ (r⃗) = δλ′λ. (3.6)

Substituting Eq. (3.4), Eq. (3.5) and Eq. (3.6) into Eq. (3.3), we arrive to a
system of N coupled algebraic equations

EDNAAλ = Ebp
λ Aλ + tbpλ,λ−1Aλ−1 + tbpλ,λ+1Aλ+1. (3.7)

Assuming that the base-pair wavefunction can be expressed as
ψbp(r⃗) =

∑N
ν=1

∑I
i=1 ciνϕiν(r⃗), then:

tbpλ′,λ =

∫
d3r⃗ ψbp∗

λ′ Ĥ
DNAψbp

λ (r⃗) =⇒

tbpλ,λ′ =

Nλ∑
ν=1

Iλ∑
i=1

Nλ′∑
µ=1

Iλ′∑
j=1

c∗iν(λ) Viνjµ cjµ(λ′), (3.8)

where
Viνjµ = ⟨ϕiν(λ)| ĤDNA |ϕjµ(λ′)⟩ . (3.9)

λ and λ′ denote neighbouring base pairs, while ν, µ extend up to the total
number of atoms Nλ and Nλ′ respectively, and i, j are running among all the
orbitals Iλ and Iλ′ of each atom of base pair λ and λ′, respectively. The matrix
elements Viνjµ are, once again, given by the Slater - Koster two-center interac-
tion transfer integrals of Eqs. (2.14), (2.15), (2.16), (2.17) with the values of
Vssσ, Vspσ, Vppσ, Vppπ being of the form of Eq. (2.36). Alternatively, for near-to-
planar molecules and near-to-ideal geometries, we can employ the approximation
that uses only 2pz electrons, and transfer integrals will be

t
H/L
bp(λ,λ′) =

Nλ∑
ν=1

Nλ′∑
µ=1

C
H/L∗
ν(λ) Vνµ C

H/L
µ(λ′), (3.10)

where C
H/L∗
ν(λ) , CH/L

µ(λ′) are defined through the system of Eqs. (2.29). The matrix
elements in this case will be of the form of Eq. (2.31), but with

Vppπ = 2.22
h̄2

md20
e
− 2

d0
(d−d0). (3.11)

We, also, obtain the maximum transfer percentage of the carrier from one
base pair to another. This refers to the maximum probability to find the extra
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hole or electron at the site where it was not placed at initially. The maximum
transfer percentage reads

p =
(2tbpλ,λ′)2

(2tbpλ,λ′)2 +∆2
λ,λ′

(3.12)

where tbpλ,λ′ is the transfer parameter between the two base pairs and ∆λ,λ′ is the
difference between the HOMO or LUMO energies of the two base pairs.

Eq. (3.7) is equivalent to the eigenvalue-eigenvector problem

Hv⃗ = Ev⃗, (3.13)

where H is the hamiltonian matrix of order N , composed of the TB parameters
Eλ and tλ,λ′ , and v⃗ is the vector matrix composed of the coefficients vλ (which
can be chosen to be real). The diagonalization of H leads to the determination
of the eigenenergy spectrum (eigenspectrum), {Ek}, k = 1, 2, . . . , N , for which
we suppose that E1 < E2 < · · · < EN , as well as to the determination of the oc-
cupation probabilities for each eigenstate, |vλk|2, where vλk is the λ-th component
of the k-th eigenvector. {vλk} are normalized, and their linear independence is
checked in all cases.

3.1.2 Time-dependent Problem
To describe the spatiotemporal evolution of an extra carrier created at a

particular site of the polymer, we consider the state of the polymer as a linear
combination of base-pair wave functions with time-dependent coefficients, i.e.,:

ψDNA(r⃗, t) =
∑
λ

Aλ(t)ψ
bp
λ (r⃗), (3.14)

where ψbp
λ (r⃗) is the wavefunction of the λ-th base pair.

Substituting Eq. (3.14) into the time-dependent Schrödinger's equation

ih̄
∂ψDNA

∂t
= ĤDNAψDNA, (3.15)

we get:

ih̄
dAλ

dt
= Ebp

λ Aλ + tbpλ,λ−1Aλ−1 + tbpλ,λ+1Aλ+1, (3.16)

following the same procedure as in the previous Subsection 3.1.1. Hence, having
determined Ebp

λ and tbpλ′,λ, we can numerically solve the system of Eqs. (3.16), and
obtain, through Aλ(t), the time evolution of a charge transfer along the DNA
segment of interest.

Eq. (3.16) is equivalent to a 1st order matrix differential equation of the form

˙⃗
A(t) = − i

h̄
HA⃗(t), (3.17)
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where A⃗(t) is a vector matrix composed of the coefficients Aλ(t), λ = 1, 2, . . . , N .
Eq. (3.17) can be solved with the eigenvalue method, i.e., by looking for solu-
tions of the form A⃗(t) = v⃗e−

i
h̄
Et ⇒ ˙⃗

A(t) = − i
h̄
Ev⃗e−

i
h̄
Et. Hence, Eq. (3.17) leads

to the eigenvalue problem Hv⃗ = Ev⃗. Having determined the eigenvalues and
eigenvectors of H, the general solution of Eq. (3.17) is

A⃗(t) =
N∑
k=1

σkv⃗ke
− i

h̄
Ekt. (3.18)

In other words, the coefficients Aλ(t), λ = 1, 2, . . . , N , are given by a super-
position of the time evolution of the stationary states with time-independent
coefficients σk. Hence, this is a coherent phenomenon. The coefficients σk are
determined from the initial conditions. In particular, if we define the N × N
eigenvector matrix V , with elements vλk, then it can be shown that the vec-
tor matrix σ⃗, composed of the coefficients σk, k = 1, 2, . . . , N , is given by the
expression

σ⃗ = V T A⃗(0). (3.19)
Suppose that initially the extra carrier is placed at the l-th monomer, i.e.,
Al(0) = 1, Aλ(0) = 0, ∀λ ̸= l. Then,

σ⃗ =


vl1
...
vlk
...
vlN

 . (3.20)

In other words, the coefficients σk are given by the row of the eigenvector matrix
which corresponds to the monomer the carrier is initially placed at.

3.1.3 Physical Quantities
Having determined the eigenspectrum, we can compute the density of states

(DOS), generally given by

g(E) =
N∑
k=1

δ(E − Ek). (3.21)

Changing the view of a polymer from one (e.g. top) to the other (e.g. bottom)
side of the growth axis, reflects the hamiltonian matrix H of the polymer on its
main antidiagonal. This reflected Hamiltonian, Hequiv, describes the equivalent
polymer [106]. H and Hequiv are connected by the similarity transformation
Hequiv = L−1HL, where L(= L−1) is the unit antidiagonal matrix of order N .
Therefore, H and Hequiv have identical eigenspectra (hence the equivalent poly-
mers' DOS is identical) and their eigenvectors are connected by vλk = vequiv(N−λ+1)k.
Generally,

equiv(YX…Z) = Zcompl . . .YcomplXcompl. (3.22)
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From Eq. (3.18) it follows that the probability to find the extra carrier at
the λ-th monomer is

|Aλ(t)|2 =
∣∣∣∣ N∑
k=1

σkvλke
− i

h̄
Ekt

∣∣∣∣2 =⇒

|Aλ(t)|2 =
N∑
k=1

N∑
k′=1

σkσk′vλkvλk′e
− i

h̄
Ekte

i
h̄
Ek′ t =⇒

|Aλ(t)|2 =
N∑
k=1

σ2
kv

2
λk + 2

N∑
k>k′=1

N∑
k′=1

σkσk′vλkvλk′ cos
(Ek − Ek′

h̄
t
)
, (3.23)

provided that σk, σk′ , vλk, vλk′ are real. The mean over time probability to find
the extra carrier at the λ-th in a time period T is:

⟨|Aλ(t)|2⟩ =
1

T

∫ T

0

|Aλ(t)|2dt. (3.24)

Substituting Eq. (3.23) into Eq. (3.24), we get:

⟨|Aλ(t)|2⟩ =
1

T

[
N∑
k=1

σ2
kv

2
λk

∫ T

0

dt+ 2
N∑
k=1

N∑
k′=1
k>k′

σkσk′vλkvλk′

∫ T

0

dt cos
(Ek − Ek′

h̄
t
)

=⇒ ⟨|Aλ(t)|2⟩ =
N∑
k=1

σ2
kv

2
λk + 2

N∑
k=1

N∑
k′=1
k>k′

σkσk′vλkvλk′
sin
(

Ek−Ek′
h̄

T
)

Ek−Ek′
h̄

T
.

For T → ∞, in the absence of degeneracy, we obtain the mean over time
probability to find the extra carrier at the λ-th monomer:

⟨|Aλ(t)|2⟩ =
N∑
k=1

σ2
kv

2
λk. (3.25)

Periods and frequencies involved in charge transfer through a polymer of
N monomers length are:

Tkk′ =
h

Ek − Ek′
, ∀k > k′ (3.26)

and
fkk′ =

Ek − Ek′

h
, ∀k > k′, (3.27)

If M stands for the number of discrete Hamiltonian eigenvalues, then the differ-
ent periods or frequencies involved in charge transfer are

S =

(
M

2

)
=

M !

2(M − 2)!
=
M(M − 1)

2
. (3.28)
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If there are no degenerated eigenenergies (which holds for all cases studied here,
but e.g. does not hold for cyclic homopolymers [116]), then M = N . If eigenen-
ergies are symmetric relative to some central value, then, S decreases (there
exist degenerate fkk′ or Tkk′). Specifically, in that case, S = M2

4
, for even M and

S = M2−1
4

for odd M . Fourier transform of a function x(t) (as is |Aλ(t)|2) can
be expressed as:

x(t) =
1

2π

∫ ∞

−∞
F(ω)eiωtdω, (3.29)

with Fourier coefficients

F(ω) =

∫ ∞

−∞
x(t)e−iωtdt, (3.30)

or else, using frequencies:

x(t) =

∫ ∞

−∞
F(f)ei2πftdf, (3.31)

F(f) =

∫ ∞

−∞
x(t)e−i2πftdt. (3.32)

Applying Eq. (3.32) to |Aλ(t)|2 we obtain the Fourier coefficients Fλ(f), that
determine the amplitude of each frequency:

Fλ(f) =

∫ ∞

−∞
|Aλ(t)|2e−i2πftdt =⇒

Fλ(f) =
N∑
k=1

σ2
kv

2
λk

∫ ∞

−∞
e−i2πftdt+2

N∑
k=1

N∑
k′=1
k>k′

σkσk′vλkvλk′

∫ ∞

−∞
e−i2πft cos(2πfkk′t)dt

=
N∑
k=1

σ2
kv

2
λk

∫ ∞

−∞
e−i2πftdt+

N∑
k=1

N∑
k′=1
k>k′

σkσk′vλkvλk′

∫ ∞

−∞
e−i2πft(ei2πfkk′ t+e−i2πfkk′ t)dt.

(3.33)
It is known that

δ(x− x0) =
1

2π

∫ ∞

−∞
ei(x−x0)tdt,

and

δ(ax) =
δ(x)

|α|
, ∀α ∈ R.

Thus,

Fλ(f) =
N∑
k=1

σ2
kv

2
λkδ(f) +

N∑
k=1

N∑
k′=1
k>k′

σkσk′vλkvλk′ [δ(f − fkk′) + δ(f + fkk′)] (3.34)
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Due to the function symmetry, the terms of f < 0 are cancelled and so we
duplicate the terms of f > 0. Finally, the Fourier coefficients are:

Fλ(f) =
N∑
k=1

σ2
kv

2
λkδ(f) + 2

N∑
k=1

N∑
k′=1
k>k′

σkσk′vλkvλk′δ(f − fkk′). (3.35)

The frequencies involved in charge transfer are uniquely defined by the Hamil-
tonian eigenspectrum (see Eq. (3.27)). The frequency content is defined by the
amplitudes that correspond to each frequency. Hence, the one-sided Fourier
amplitude spectrum that corresponds to the probability |Aλ(t)|2| is given by:

|Fλ(f)| =
N∑
k=1

σ2
kv

2
λkδ(f) + 2

N∑
k=1

N∑
k′=1
k>k′

|σkσk′vλkvλk′ |δ(f − fkk′). (3.36)

Apart from the analytical calculation shown above, Fourier spectra can also
be calculated using the Fast Fourier Transform (FFT) algorithm. These FFT
spectra are in agreement with the ones computed in Eq. (3.36).

We can further define the weighted mean frequency (WMF) of monomer
λ as

fλ
WM =

∑N
k=1

∑N
k′=1
k>k′

|σkvλkσk′vλk′ | · fkk′∑N
k=1

∑N
k′=1
k>k′

|σkvλkσk′vλk′ |
. (3.37)

WMF expresses the mean frequency content of the extra carrier oscillation at
monomer λ. Having determined the WMF for all monomers, we can now obtain
a measure of the overall frequency content of carrier oscillations in the polymer.
Since fλ

WM is the weighted mean frequency of monomer λ and ⟨|Aλ(t)|2⟩ is the
mean probability of finding the extra carrier at monomer λ, we define the total
weighted mean frequency (TWMF) as

fTWM =
N∑

λ=1

fλ
WM ⟨|Aλ(t)|2⟩. (3.38)

A quantity that evaluates simultaneously the magnitude of coherent charge
transfer and the time scale of the phenomenon, is the pure mean transfer
rate [115]

klλ =

〈∣∣Aλ(t)
∣∣2〉

tlλ
. (3.39)

tlλ is the mean transfer time, i.e., having placed the carrier initially at monomer
l, the time it takes for the probability to find the extra carrier at monomer λ,∣∣Aλ(t)

∣∣2, to become equal to its mean value,
〈∣∣Aλ(t)

∣∣2〉, for the first time. For
the pure mean transfer rates,

klλ = kλl = kequiv(N−l+1)(N−λ+1) = kequiv(N−λ+1)(N−l+1)′ , (3.40)

where the superscript “equiv” refers to the equivalent polymer in the sense of
Eq.(3.22).
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3.2 Studied Polymers: Structures and No-
tation

In this section, we will present the structure of the studied polymers and set
the relevant used notation. In our prototype system, B-DNA, we mention only
the base sequence of the 5′ − 3′ strand. For example, we denote two successive
monomers by YX, meaning that the base pair X-Xcompl is separated and twisted
by 3.4 Å and 36◦, respectively, relatively to the base pair Y-Ycompl, around the
B-DNA growth axis. Xcompl (Ycompl) is the complementary base of X (Y).

3.2.1 Periodic Polymers with Increasing Repetition
Unit

One could think of many types of periodic polymers, some of which are
shown synoptically in Table 3.1. We studied cases of polymers made of identical
monomers (denoted as I type) or different monomers (denoted as D type) [97].
We just give an example of the sequence, e.g., for type I4 we give the ex-
ample GGCC. . . , but there are obviously other similar sequences: CCGG. . . ,
AATT. . . , TTAA. . . . P is the number of monomers in the repetition unit, e.g.,
for type I4, P = 4.

Table 3.1: The types of polymers mentioned in this work. I (D) denotes polymers made
of the identical (different) monomers. P is the number of monomers in the repetition
unit. We only mention the 5′ − 3′ base sequence.

(I,D)P Sequence Example
I1 G... or A...
I2 GC...
I3 GGC...
I4 GGCC...
I6 GGGCCC...
I8 GGGGCCCC...
I10 GGGGGCCCCC...
I20 GGGGGGGGGGCCCCCCCCCC...
D2 GA...
D4 GGAA...
D6 GGGAAA...
D8 GGGGAAAA...
D10 GGGGGAAAAA...
D20 GGGGGGGGGGAAAAAAAAAA...
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3.2.2 Quasi-Periodic and Fractal Polymers
The deterministic aperiodic sequences considered in this Ph.D. Thesis are

either quasi-periodic or fractal [96]. Such structures are generally known as
binary substitutional sequences, i.e., based on a binary alphabet, like {0, 1} and
generated using appropriate substitution rules.
Fibonacci: The Fibonacci (F) sequence is named after the Italian mathe-

matician Leonardo Pisano (Fibonacci) who introduced it to Western European
mathematics in his 1202 book Liber Abaci, in a study of the population growth
of rabbits [151]. However, this sequence appears many centuries before in Indian
mathematics [152]. Fibonacci considers the growth of an idealized rabbit popu-
lation, assuming that a single newly born pair of rabbits (N) are put in a field,
and rabbits are able to mate at the age of one month so that at the end of its
second month a mature pair (M) can produce another pair of rabbits. Rabbits
never die and a mating pair always produces one new pair every month from
the second month on. The puzzle that Fibonacci posed was: how many pairs
will exist in one year? The collection of every month's population is: F0 = N,
F1 = M, F2 = MN, F3 = MNM, F4 = MNMMN, etc. Using e.g. the two-letter
alphabet {G, A}, we can define the Fibonacci generation Fg by the substitution
rules A → G, G → GA, starting with F0 = A. Hence, F0 = A, F1 = G, F2 = GA,
F3 = GAG, F4 = GAGGA, etc. If Ng is the Fibonacci number of generation g,
and we set N0 = N1 = 1, the recurrence relation Ng = Ng−1 +Ng−2 produces the
number sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . . Figure 3.1 depicts the 0th, 1st,
2nd, 3rd and 4th generation of the Fibonacci sequence, using a two-colour rule.

Figure 3.1: Fibonacci sequence, 0th, 1st, 2nd, 3rd and 4th generation, depicted by two-
colour rule.

Thue-Morse: The Thue-Morse (TM) or Prouhet-Thue-Morse sequence was
first studied by Eugène Prouhet in 1851, who applied it to number theory [153].
The systematic study was left to Axel Thue who, in 1906, applied it on his study
of words combinatorics [154]. The most important contribution to the sequence
was made in 1921 by Marston Morse in the context of differential geometry and
topological dynamics [155], which brought the sequence to worldwide attention.
In its simplest form, the TM sequence can be defined by the recursive relations
Sn = {Sn−1S

+
n−1} and S+

n = {S+
n−1Sn−1} (for n ≥ 1), with S0 = 0 and S+

0 =
1 [156]. Using e.g. the two-letter alphabet {G, A} we can build up the sequence
using the substitution rules G→GA and A→AG. Hence, TM0 = G, TM1 =
GA, TM2 = GAAG, TM3 = GAAGAGGA, etc. Figure 3.2 depicts the 0th, 1st,
2nd, 3rd and 4th generation of the Thue-Morse sequence, using a two-colour rule.
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Figure 3.2: Thue-Morse sequence, 0th, 1st, 2nd, 3rd and 4th generation, depicted by
two-colour rule.

Double-Period: The double-period (DP) sequence has its origin in the
study of system dynamics and laser applications to nonlinear optical fibers [157].
It is closely connected with the TM sequence: the n-th stage is Sn = {Sn−1S

+
n−1}

and S+
n = {Sn−1Sn−1} (for n ≥ 1), with S0 = 0 and S+

0 = 1. Using e.g. the two-
letter alphabet {G, A}, we can define the n-th generation by the substitution
rules G→GA, A→GG. Hence, starting with DP0 = G, then DP1 = GA, DP2 =
GAGG, DP3 = GAGGGAGA, etc. Figure 3.3 depicts the 0th, 1st, 2nd, 3rd and
4th generation of the Double-Period sequence, using a two-colour rule.

Figure 3.3: Double-Period sequence, 0th, 1st, 2nd, 3rd and 4th generation, depicted by
two-colour rule.

Rudin-Shapiro: The Rudin-Shapiro (RS) aka Golay-Rudin-Shapiro se-
quence is named after Marcel Golay, Walter Rudin and Harold S. Shapiro, who
independently investigated its properties [158--160]. It is generated starting with
+1, +1 and employing the rules:

+1,+1 → +1,+1,+1,−1
+1,−1 → +1,+1,−1,+1
−1,+1 → −1,−1,+1,−1
−1,−1 → −1,−1,−1,+1 .

Using e.g. the two-letter alphabet {G, A} and employing the inflation rule:
GG→GGGA, GA→GGAG, AG→AAGA, AA→AAAG, the first generations are
RS1 = GG, RS2 = GGGA, RS3 = GGGAGGAG, etc. Figure 3.4 depicts the
0th, 1st, 2nd, 3rd and 4th generation of the Rudin-Shapiro sequence, using a two-
colour rule.
Cantor Set: The Cantor Set (CS), introduced by mathematician Georg

Cantor, is one of the most well-known deterministic fractals [161]. It is built
by splitting a straight line segment in three, removing the middle third, then
removing the middle third of each of the two new straight line segments and the
process is repeated ad infinitum. Using e.g. the two-letter alphabet {G, A} and
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Figure 3.4: Rudin-Shapiro sequence, 0th, 1st, 2nd, 3rd and 4th generation, depicted by
two-colour rule.

the substitution rules G→GAG, A→AAA, we can define the n-th generation
(n = 0, 1, 2, ...) as follows: CS0 = G, CS1 = GAG, CS2 = GAGAAAGAG,
etc. Figure 3.5 depicts the 0th, 1st, 2nd and 3rd generation of the Cantor Set
sequence, using a two-colour rule.

Figure 3.5: Cantor Set sequence, 0th, 1st, 2nd and 3rd generation, depicted by two-
colour rule.

Asymmetric Cantor Set: The Asymmetric Cantor Set (ACS), is built
by splitting a straight line segment in four, removing the second quarter, then
removing the second quarter of each of the three new straight line segments
and the process is repeated ad infinitum. Using e.g. the two-letter alphabet
{G, A} and the substitution rules G→GAGG, A→AAAA, we can define the
n-th generation (n = 0, 1, 2, ...) as follows: ACS0 = G, ACS1 = GAGG,
ACS2 = GAGGAAAAGAGGGAGG, etc. Figure 3.6 depicts the 0th, 1st and
2nd generation of the Asymmetric Cantor Set sequence, using a two-colour rule.

Figure 3.6: Asymmetric Cantor Set sequence, 0th, 1st and 2nd generation, depicted by
two-colour rule.

One could think of many types of aperiodic polymers, some of which are
shown synoptically in Table 3.2. We just give an example of each type, e.g., for
Fibonacci I sequences we give the example G, C, CG, CGC, CGCCG, CGC-
CGCGC, . . . , but there are obviously other similar sequences e.g. C, G, GC,
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GCG, GCGGC, GCGGCGCG, . . . , A, T, TA, TAT, TATTA, TATTATAT, . . . ,
T, A, AT, ATA, ATAAT, ATAATATA, . . . .

Table 3.2: Examples of the types of polymers studied in this work. I (D) denotes
polymers made of identical (different) monomers. We only mention the 5′ − 3′ base
sequence along one of the two strands.

Type Sequence Example Notation
Fibonacci I G, C, CG, CGC, F G(C)

CGCCG, ...
Fibonacci D G, A, AG, AGA, F G(A)

AGAAG, ...
Thue-Morse I G, GC, GCCG, TM G(C)

GCCGCGGC, ...
Thue-Morse D A, AG, AGGA, TM A(G)

AGGAGAAG, ...
Double Period I T, TA, TATT, DP T(A)

TATTTATA, ...
Double Period D A, AG, AGAA, DP A(G)

AGAAAGAG, ...
Rudin-Shapiro I AA, AAAT, RS A(T)

AAATAATA, ...
Rudin-Shapiro D AA, AAAG, RS A(G)

AAAGAAGA, ...
Cantor Set I T, TAT, CS T(A)

TATAAATAT, ...
Cantor Set D A, AGA, CS A(G)

AGAGGGAGA, ...
Asymmetric C, CGCC, ACS C(G)
Cantor Set I CGCCGGGGCGCCCGCC, ...
Asymmetric A, AGAA, ACS A(G)
Cantor Set D AGAAGGGGAGAAAGAA, ...
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3.3 Results and Discussion
First, we obtain the charge transfer parameters between two successive base

pairs by calculating the corresponding overlap integrals from Eq. (3.8). Table 3.3
summarizes our LCAO results using all valence orbitals for the transfer param-
eters, for all possible combinations of successive base pairs and close-to-ideal
geometrical conformations [27]. The Table also contains hole transfer parame-
ters of Ref. [115], an estimation from various articles found in bibliography, the
electron transfer parameters of Ref. [63], where only 2pz orbitals had been used
and the transfer parameters with the parameterization of Ref. [55], where only
2pz orbitals had been used.

Table 3.3: Close-to-ideal geometrical conformations. The absolute values of transfer
parameters for all possible combinations of successive base pairs. |tH| (|tL|) of the second
(fifth) column refer to hole (electron) transfer parameters obtained from our LCAO cal-
culations using all valence orbitals [27]. The third column lists hole transfer parameters
of Ref. [115], an estimation from various articles found in bibliography (in parentheses
the parameters obtained from the HKS parameterization [63]). The sixth column lists
the electron transfer parameters of Ref. [63], where only 2pz orbitals had been used.
The fourth and seventh column list the transfer parameters with the parameterization
of Ref. [55], where only 2pz orbitals had been used. All transfer parameters are given
in meV.

XY |tH| [27] |tH| [115] ([63]) |tH| [55] |tL| [27] |tL| [63] |tL| [55]
92 (σ∗)

GG, CC 116 100 (62) 51 2 20 8
11 (σ∗)

AG, CT 37 30 (5) 32 11 3 10
2 (σ∗)

TG, CA 28 10 (4) 4 9 17 10
1 (σ∗)

AC, GT 16 10 (2) 3 1 32 23
3 (σ∗)

TC, GA 142 110 (79) 57 6 1 7
AA, TT 38 20 (8) 32 22 29 17

AT 50 35 (20) 6 1 1 1
TA 37 50 (47) 10 2 2 1

2 (σ∗)
GC 10 10 (1) 10 19 10 19

1 (σ∗)
CG 75 50 (44) 13 9 8 13

In Figure 3.7 we illustrate the absolute values of transfer parameters for all
possible combinations of successive base pairs for holes and for electrons. The
figure contains the transfer parameters obtained from our LCAO calculations
using all valence orbitals [27], along with the corresponding parameters found
in ref. [115] (where various estimations from bibliography had been taken into
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account). Also, those from ref. [55], where only 2pz orbitals had been used, and
finally, electron transfer parameters from ref. [63], where only 2pz orbitals had
been used. In Figure 3.8 we depict the maximum transfer percentage of Equa-

Figure 3.7: The absolute values of transfer parameters for all possible combinations
of successive base pairs for holes (left) and for electrons (right). We show the transfer
parameters obtained from our LCAO calculations using all valence orbitals [27], as well
as the corresponding transfer parameters found in ref. [115] (for holes, estimation from
various articles in bibliography), in ref. [55] (using only 2pz orbitals) and in ref. [63] (for
electrons, using only 2pz orbitals).

tion (3.12) obtained by our LCAO calculations using all valence orbitals [27],
compared to the values using parameters from ref. [115] for holes. Also, from
ref. [55] for electrons and holes as well as from ref. [63] for electrons (where only
2pz orbitals had been used). For ideal B-DNA geometries and for dimers made

Figure 3.8: Comparison of the maximum transfer percentage p obtained by our LCAO
method using all valence orbitals [27], with the p values extracted from other sources:
obtained from parameters found in ref. [115] (for holes, estimation from various articles
in bibliography), in ref. [55] (using only 2pz orbitals) and in ref. [63] (for electrons, using
only 2pz orbitals).

of identical monomers, the maximum transfer percentage is 1, while in the case
of different monomers, p is smaller than 1, both for holes and for electrons. Both
for t and p, we observe that the LCAO using all valence orbitals is closer to the
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results from Ref. [115] for holes (where various estimations from bibliography of
different origin had been taken into account). For electrons, as far as we know
this current LCAO calculation is the only one beyond simple Hückel models,
using only 2pz orbitals.

3.3.1 Periodic Polymers with Increasing Repetition
Unit

This Subsection is devoted to charge transfer in several categories of periodic
polymers made of N monomers, with a repetition unit made of P monomers,
using the TB wire model, where a site is a monomer (e.g., in DNA, a base pair).
P is even, and we deal with two categories of such polymers: made of the same
monomer (GC. . . , GGCC. . . , etc.) and made of different monomers (GA. . . ,
GGAA. . . , etc.), as described in Subsection 3.2.1. The content of this Subsec-
tion can be found in ref. [97]. Since the author of the present Ph.D. Thesis is
not the first author of ref. [97], the presentation of the associated results will be
limited, along with some additional remarks that will be given, comparatively
to other categories of polymers in Chapter 6. The TB parameters (HOMO and
LUMO interaction integrals) used in this Subsection can be found in Table 3.3,
columns 3 and 6, unless otherwise stated. The HOMO and LUMO base pair
on-site energies can be found in Table 2.4, columns 3 and 5.

A. Eigenspectra and Density of States.
In Figs. 1 and 2 of ref. [97], are depicted the HOMO and LUMO eigen-
spectra of [I2, I4, I6, I8, I10, I20 and I1 polymers] and [D2, D4, D6, D8,
D10, D20 and I1 (G. . . ), I1 (A. . . ) polymers]. In Figs. 3 and 4 are plotted
the corresponding DOS. The HOMO and LUMO bands of each polymer
consist of P subbands. Some eigenenergies protrude periodically from the
subbands at certain relationships between N and P . The subbands are
separated by small energy gaps, which, increasing P , decrease.
For polymers made of identical monomers all eigenvalues are symmetric
around the monomer on-site energy and for N odd the trivial eigenvalue,
equal to the monomer on-site energy, exists. Increasing P , the eigenspectra
tend to the eigenspectra of I1 polymers, and the DOS tends to the DOS
of I1 polymers. For polymers made of different monomers, increasing
P , the eigenenergies gather around the two monomers' on-site energies.
Increasing P , the eigenspectra gather within the limits defined by the
union of eigenspectra of I1 (G. . . ) and I2 (A. . . ) polymers.
The energy gap of a polymer is the difference between the lowest level of
the LUMO regime and the highest level of the HOMO regime, because we
assume that the orbitals - one per site - which contribute to the HOMO
(LUMO) band are occupied (empty), since in both possible monomers
there is an even number of 2pz electrons contributing to the π stack [63].
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Figure 3.9: Eigenspectra (left) and DOS (right) of I6 polymers (upper panels), D6
polymers (middle panels) and I1(G. . . ) and I1(A. . . ) (lower panels), HOMO regime.

At the large-N limit, increasing P , the gaps of I2, I4, I6, . . . polymers
approach the gap of I1 polymer. Increasing the repetition unit in the
mode GC, GGCC, GGGCCC, . . . , finally results in a G. . .GC. . .C poly-
mer which is almost G. . . with just a switch from G to C at the middle of
the polymer. Hence, at the large-N limit, the energy gap of I1 polymers
is the smallest of these series of polymers. For the same reason, increasing
P , the eigenspectra and the DOS of I2, I4, I6, . . . polymers tend to the
eigenspectra and the DOS of I1 polymers. At the large-N limit, increasing
P , the gaps of D2, D4, D6, . . . polymers approach the gap of the union
of I1 (G. . . ) and I1 (A. . . ) polymers. Increasing the repetition unit in
the mode GA. . . , GGAA. . . , GGGAAA. . . and so on, finally results in a
G. . .GA. . .A polymer which is energetically almost a union of separated
G. . . and A. . . polymers. This happens due to the large difference of G-C
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Figure 3.10: Eigenspectra (left) and DOS (right) of I6 polymers (upper panels), D6
polymers (middle panels) and I1(G. . . ) and I1(A. . . ) (lower panels), LUMO regime.

and A-T on-site energies in comparison with the tGA interaction integral.
Increasing P , the lowering of the energy gap in the case of D polymers [≈
0.6 (0.7) eV relative to the A-T (G-C) monomer gap] is much bigger than
in the case of I polymers [≈ 0.25 eV relative to the G-C monomer gap].
Figs. 3.9 and 3.10 display some characteristic cases of HOMO and LUMO
eigenspectra and the corresponding DOS.
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B. Mean over time Probabilities.
The main results for the mean over time probabilities for I2, I4, . . . poly-
mers are summarized in Figs. 6 and 7 of ref. [97]. For N equal to natural
multiples of P (N = Pn, n ∈ N∗), palindromicity holds, i.e., the probabil-
ities are palindromic due to the fact that the corresponding hamiltonian
matrices are palindromic, i.e. reading them from top left to bottom right
and vice versa gives the same result. The palindromicity holds for all ini-
tial conditions. Hence, in these polymer cases, the appropriate choice of
the monomer the carrier is injected to, can lead to enhanced presence at
specific sites at its other end, leading to more efficient transfer. For I1
polymers and initial placement of the carrier at the first monomer, the
mean over time probability to find the carrier at the first or at the last
monomer is ψ and at any other monomer is χ, [116] where

ψ =
3

2(N + 1)
, χ =

1

N + 1
. (3.41)

Increasing P , the relevant probabilities of I2, I4, I6, . . . polymers tend to
the I1 probabilities ψ and χ of Eq. (3.41).
For N ̸= Pn, palindromicity is lost. In the HOMO regime, all studied
polymers with N ̸= Pn, show increased mean (over time) probabilities at
the P

2
initial monomers. In the LUMO regime, this property cannot be

clearly seen, because tGG is the greater of all, but tCG and tGC have similar
values.
The results for the mean (over time) probabilities for D2, D4, . . . . polymers
are summarized in Fig. 8 of ref. [97]. A basic observation for polymers
made of different monomers is that if we initially place the carrier at a
G-C monomer the probability to find it at an A-T monomer is small, and
vice versa.

C. Frequency Content.
The Fourier spectra of the time-dependent probability to find the carrier
at each monomer, are, generally, in the THz regime. A general remark
is that when the dominant frequencies i.e. those with the greater Fourier
amplitudes are smaller (bigger), the carrier transfer from the first to the
last monomer is slower (faster).
For N = Pn, n ∈ N, for I1, I2, I4, I6, . . . polymers, the Fourier spectra
of the time-dependent probability to find an extra carrier at the various
monomers, either for the HOMO or the LUMO regime, are palindromic,
i.e., they are identical for the µ-th and (N −µ+1)-th monomer. Since for
N ̸= Pn, n ∈ N the hamiltonian matrices are not palindromic, the Fourier
spectra are also not palindromic.
As for the TWMF as a function of N , the reader can check out Figs. 9 and
10 of ref. [97]. In the cases of I2 (D2) polymers, only two interaction inte-
grals are involved: tGC and tCG (tGA and tAG). In I4, I6, . . . polymers, three
interaction integrals are involved: tGG, tGC, tCG, while in the cases of D4,
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D6, . . . polymers, four interaction integrals are involved: tGG, tGA, tAG, tAA.
This is the reason that in the limit of large N , the TWMF for I2 (D2) poly-
mers tends to a different frequency region than for I4, I6, . . . (D4, D6, . . . )
polymers. In particular, the TWMF of I4, I6, . . . polymers, in the limit
of large N , tends to the TWMF of I1 polymers. For D4, D6, ... polymers,
if we place the carrier initially at a G-C monomer, the TWMF of D4, D6,
. . . polymers, in the limit of large N , tends to the TWMF of I1 polymers,
where only one interaction integral is involved: tGG.

D. Pure Mean Transfer Rates.
An impressive case where appropriate sequence choice can increase k by
many orders of magnitude is shown in Fig. 11 of ref. [97]. Type I1, I2,
I4, I6, I8 and I10 polymers, for N = nP , are palindromic, hence there
is enhanced presence of the extra carrier at the last monomer. In all
cases, k(N) is a decreasing function. The electron k range is many orders
of magnitude narrower than the hole k range, due to the much smaller
difference between the interaction integrals (tGG, tGC, tCG) involved. For
increasing P , k takes increasingly larger values. In other words, the degree
of transfer difficulty is greater for type I2 polymers and decreases gradually
for types I4, I6, . . . polymers. However, k(N) has an upper limit which
is k(N) of type I1 polymers. The latter polymers are structurally simpler
(more precisely, they have the simplest possible structure), a fact that
favors charge transfer along them, so their transfer rates are higher than
those of the other polymer types.
For polymers made of different monomers k(N), is depicted in Fig. 12
of ref. [97]. While for type I1 polymers (G. . . and A. . . ) k drops ≈ by
only 2 to 3 orders of magnitude, increasing N , as the number of A in the
repetition unit increases, k(N) drops dramatically by many more orders of
magnitude. Overall, the above results suggest that type I1 polymers are
the best for electron or hole transfer.

3.3.2 Quasi-Periodic and Fractal Polymers
In this Subsection, the TB parameters for B-DNA are taken from ref. [63].

The interaction integrals can be found in Table 3.3, columns 3 (parentheses) and
6. The HOMO and LUMO base pair on-site energies can be found in Table 2.4,
columns 3 and 5.

A. Eigenspectra and Density of States.
In Figs. 3.11, 3.12, 3.13, we present the HOMO and LUMO eigenspectra,
for increasing N , of I polymers, along with the corresponding DOS for
large N . In Figs. 3.14, 3.15, 3.16 , we present the HOMO and LUMO
eigenspectra, for increasing N , of I polymers, along with the corresponding
DOS for large N . The DOS has been calculated for polymers made of a
very big number of monomers N , for illustration purposes. This N value
is shown in each panel. Of course, the persistence length of DNA is around
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50 nm or 150 base pairs [6]. On the other hand, if we stretch and join the
DNA of all chromosomes of a single cell, that would give us a length of the
order of a meter and would consist of billions of base pairs. For both I and
D polymers, we notice that in quasi-periodic polymers (Fibonacci, Thue-
Morse, Double Period and Rudin-Shapiro, Figs. 3.11, 3.12, 3.14, 3.15)
the DOS has rather acute subbands, while in fractal polymers (Cantor
Set, Asymmetric Cantor Set, Figs. 3.13, 3.16) the DOS is fragmented and
spiky.
For I polymers, i.e., polymers made of identical monomers (cf. Figs. 3.11,
3.12, 3.13), we observe that all eigenvalues are symmetric relative to the
monomer's on-site energy (this, obviously, also holds for the DOS). This
observation can be mathematically proven as follows: For N even, the
hamiltonian matrix of a generic I polymer is H = EµI + TGK , where Eµ

is the (constant) on-site energy, I is the identity matrix and TGK is the
Golub-Kahan matrix, containing only the non-diagonal elements of H,
i.e., the HOMO or LUMO interaction integrals tµ,λ. It can easily be shown
that TGK = P TBP , where P is the perfect shuffle matrix and

B =

(
O A
AT O

)
, A =


t1,2 t2,3

t3,4 t4,5
. . . . . .

tN−1,N

 . (3.42)

By performing the Singular Value Decomposition of the upper bidiagonal
matrix A, i.e., by writing it as A = USW T , we obtain

B = J

(
−S 0
0 D

)
JT , J =

1√
2

(
U U

−W W

)
. (3.43)

So, finally,

TGK = P TJ

(
−S 0
0 S

)
JTP . (3.44)

Hence, the eigenvalues of TGK are given by the positive and negative values
of the diagonal matrix S, i.e., they are symmetric around zero [162]. Hence,
since, H = EµI + TGK , the eigenvalues of H are symmetric around Eµ.
For N odd, we can add a zero row and a zero column to TGK so that it
is again of even order and follow the aforementioned procedure. Then,
two degenerate trivial eigenvalues will appear apart from the symmetric
ones [163]. So, the eigenvalues of H occur by omitting the zero row and
column, hence they are symmetric around Eµ, which is also an eigenvalue.
For D polymers, i.e., polymers made of different monomers (cf. Figs. 3.14,
3.15, 3.16), the eigenenergies and the DOS gather around the two monomers'
on-site energies.
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Figure 3.11: Eigenspectra of F G(C), TM G(C), DP T(A), RS A(T) polymers, for
the HOMO regime, for a few generations, along with the corresponding DOS for large
N .



3.3. RESULTS AND DiSCUSSiON 49

0 20 40 60 80 100 120 140
-4.54

-4.52

-4.50

-4.48

-4.46 F G(C)   LUMO

0 400 800

0 5 10 15 20 25 30 35
-4.54

-4.52

-4.50

-4.48

-4.46 TM G(C)   LUMO

0 400 800

0 1000 2000

0 500 1000

Figure 3.12: Eigenspectra of F G(C), TM G(C), DP T(A), RS A(T) polymers, for the
LUMO regime, for a few generations, along with the corresponding DOS for large N .
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Figure 3.13: Eigenspectra of CS T(A) and ACS C(G) polymers, for the HOMO regime
(upper half) and the LUMO regime (lower half), for a few generations, along with the
corresponding DOS for large N .
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Figure 3.14: Eigenspectra of F A(G), TM A(G), DP A(G), RS A(G) polymers, for
the HOMO regime, for a few generations, along with the corresponding DOS for large
N .
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Figure 3.15: Eigenspectra of F A(G), TM A(G), DP A(G), RS A(G) polymers, for
the LUMO regime, for a few generations, along with the corresponding DOS for large
N .
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Figure 3.16: Eigenspectra of CS A(G) and ACS A(G) polymers, for the HOMO regime
(upper half) and the LUMO regime (lower half), along with the corresponding DOS for
large N .
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The energy gap of a monomer is the difference between its LUMO and
HOMO levels. The energy gap of a polymer is the difference between
the lowest level of the LUMO regime and the highest level of the HOMO
regime, because we assume that the orbitals - one per site - which con-
tribute to the HOMO (LUMO) band are occupied (empty), since in both
possible monomers there is an even number of 2pz electrons contributing
to the π stack. In Fig. 3.17 we present the energy gaps (calculated for
large N as in DOS) and the HOMO and LUMO band limits of all ape-
riodic polymers examined in this work. The G-C (A-T) monomer gap is
always greater than the gaps of I polymers made of G and C or A and
T. D polymers have smaller HOMO-LUMO gaps than I polymers (cf. left
panel of Fig. 3.17). Furthermore, the lower HOMO (LUMO) band limit
of D polymers is always between the lower and upper HOMO (LUMO)
band limit of I polymers consisted of A and T, while the upper HOMO
(LUMO) band limit of D polymers is always between the lower and upper
HOMO (LUMO) band limit of I polymers consisted of G and C (cf. right
panel of Fig. 3.17).

Figure 3.17: Energy gaps (left) as well as HOMO and LUMO band limits (right),
at the large N limit, for all aperiodic polymers considered in this work. Squares: I
polymers, i.e., made of the same monomer. Blue stars: D polymers, i.e., made of
different monomers. The green (purple) dashed line shows the energy gap of the G-C
(A-T) base pair.

B. Mean over time Probabilities.
The main aspects of our results for the mean over time probabilities for I
and D polymers are summarized in Figs. 3.18, 3.19, 3.20 and 3.21 (where
we display only two consecutive generations) and in Figs. 2 and 4 in Ap-
pendix C (where we show many consecutive generations), for some exam-
ple cases. We suppose that the extra carrier is initially placed at the first
monomer. A general observation is that usually these probabilities are
distributed to monomers close to the one the carrier was initially placed
at.
The mean over time probabilities of finding the extra carrier at each
monomer of a polymer depends on the sequence on-site energies and mag-
nitude of interaction parameters between successive monomers. In I poly-
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Figure 3.18: Mean over time probabilities to find the extra carrier at each monomer
µ = 1, . . . , N , having placed it initially at the first monomer, for two consecutive gener-
ations (the number of which is denoted at each panel’s legend,) for F G(C), TM G(C),
DP T(A), RS A(T) polymers (quasi-periodic), for HOMO (left) and LUMO (right).

mers (cf. Figs. 3.18 and 3.19), only the interaction integrals affect the elec-
tronic structure. For the Thue-Morse G(C) polymers, the probabilities are
palindromic for odd generation numbers. This is due to the fact that the
Hamiltonian matrices of these polymers are palindromic, i.e., reading them
from top left to bottom right and vice versa gives the same result [97]. This
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Figure 3.19: Mean over time probabilities to find the extra carrier at each monomer
µ = 1, . . . , N , having placed it initially at the first monomer, for two consecutive gen-
erations (the number of which is denoted at each panel’s legend,) for CS T(A), ACS
C(G) polymers (fractal), for HOMO (left) and LUMO (right).

property stems directly from the sequence structure. For Cantor Set T(A)
polymers, the mean over time probability for an extra hole is almost to-
tally distributed at the four (or three for generation 1) starting monomers,
regardless of N , while for an extra electron the probabilities are almost
semi-palindromic, i.e.

〈∣∣Aµ(t)
∣∣2〉 =

〈∣∣AN−µ+1(t)
∣∣2〉 , µ = 2, 4, ..., N − 1. In

this case, even if the sequence structure is the same for HOMO and LUMO,
the magnitude of interaction integrals has a stronger effect on the results.
Another example is the Rudin-Shapiro A(T) sequence where the mean
over time probability for an extra electron is almost totally distributed
at the four starting monomers, regardless of N , while for holes it is ba-
sically distributed at monomers 1, 2, 3 and 6. Regarding the extra hole
in Asymmetric Cantor C(G) polymers, the probability is much higher for
monomers 1, 2, 9, 10 of every 32-monomer period. Generally, for I poly-
mers, the mean over time probabilities are significant only rather close
to the first monomer, although in some cases we observe non-negligible
probabilities at more distant monomers.

Generally, for D polymers, the mean over time probabilities are almost neg-
ligible further than the first monomer. An exception is the Rudin-Shapiro
A(G) sequence where the probabilities for both HOMO and LUMO are al-
most totally distributed at the three starting monomers of each polymer,
regardless its length. Likewise, the mean over time probability for the extra
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Figure 3.20: Mean over time probabilities to find the extra carrier at each monomer
µ = 1, . . . , N , having placed it initially at the first monomer, for two consecutive gener-
ations (the number of which is denoted at each panel’s legend,) for F G(A), TM A(G),
DP A(G), RS A(G) polymers (quasi-periodic), for HOMO (left) and LUMO (right).

electron in Cantor Set A(G) polymers is almost totally distributed at the
first and third monomer of each polymer, regardless its length. An extra
electron in Double-Period A(G) reaches somehow more distant monomers.
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Figure 3.21: Mean over time probabilities to find the extra carrier at each monomer
µ = 1, . . . , N , having placed it initially at the first monomer, for two consecutive gen-
erations (the number of which is denoted at each panel’s legend,) for CS A(G), ACS
A(G) polymers (fractal), for HOMO (left) and LUMO (right).

C. Frequency Content.
The frequencies involved in charge transfer are given by Eq. (3.27). Hence,
the maximum frequency is determined by the maximum difference of eigen-
energies, i.e., by the upper and lower limits of the HOMO or LUMO band
(calculated for large N as in DOS). These maximum frequencies for all
studied polymers are shown in Fig. 3.22.
The Fourier spectra of the time-dependent probability to find an extra
electron or hole at each monomer are generally in the THz regime, mainly
in the FIR and MIR part of the electromagnetic spectrum. When the dom-
inant frequencies, i.e. those with greater Fourier amplitudes, are smaller
(bigger), the carrier transfer - from the first to the last monomer - is slower
(faster).
In Figs. 3.24 and 3.23 we depict the TWMF as a function of N for the
various types of aperiodic polymers. We notice that the TWMF generally
stabilizes as the generation number increases. In all cases, TWMF are in
the region ≈ 10−2 − 102 THz.
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Figure 3.22: The maximum frequency of the Fourier spectrum, for the HOMO and
the LUMO regime of Fibonacci, Thue-Morse, Double Period, Rudin-Shapiro, Cantor
Set, Asymmetric Cantor Set polymers, at the large N limit

Figure 3.23: Total Weighted Mean Frequency (TWMF) as a function of the number
of monomers N in the polymer, having placed the carrier initially at the first monomer,
for Cantor Set, Asymmetric Cantor Set polymers (fractal), for the HOMO (left) and
the LUMO (right) regime. D polymers, i.e., made of different monomers, are denoted
by blue stars.
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Figure 3.24: Total Weighted Mean Frequency (TWMF) as a function of the number
of monomers N in the polymer, having placed the carrier initially at the first monomer,
for Fibonacci, Double Period, Rudin-Shapiro polymers (quasi-periodic), for the HOMO
(left) and the LUMO (right) regime. D polymers, i.e., made of different monomers, are
denoted by blue stars.

D. Pure Mean Transfer Rates.
Next, we study the pure mean transfer rates from the first to the last
monomer, k1,N , or from now on, just k. We depict k(N) either for HOMO
or for LUMO, for I and D polymers in Figs. 3.25 and 3.26. In all cases,
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k(N) is a decreasing function. Generally, the degree of coherent transfer
difficulty is greater for D polymers. Overall, our results suggest that I
polymers, which are simpler cases in terms of energy intricacy, are more
efficient regarding coherent hole and electron transfer.

Figure 3.25: Pure mean transfer rates k of Fibonacci, Thue-Morse, Double Period,
Rudin-Shapiro polymers (quasi-periodic), homopolymers and randomly shuffled aperi-
odic polymers as a function of the number of monomers N in the polymer, for the
HOMO (left) and the LUMO (right) regime. By blue stars we denote D polymers, i.e.,
made of different monomers.

We include in each panel of Figs. 3.25 and 3.26, k(N) of homopolymers
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Figure 3.26: Pure mean transfer rates k of Cantor Set, Asymmetric Cantor Set poly-
mers (fractal), homopolymers and randomly shuffled aperiodic polymers as a function
of the number of monomers N in the polymer, for the HOMO (left) and the LUMO
(right) regime. By blue stars we denote D polymers, i.e., made of different monomers.

(e.g., A. . . ) which are the “champions” among periodic polymers in terms
of efficiency of coherent carrier transfer [97] (see Subsection 3.3.1), i.e., in
terms of magnitude of k and of slower decrease of k(N). It seems that
k(N) of homopolymers is an unreachable limit for aperiodic polymers.
Comparing periodic polymers [97] (Subsec. 3.3.1) with aperiodic polymers
in terms of k(N), we realize that although generally periodic polymers
are more efficient, specific aperiodic polymers can be better than specific
periodic ones.
In each panel of Fig. 3.25 and 3.26, we also take the best of aperiodic poly-
mers in terms of k(N) and shuffle randomly the sequence of its monomers.
In all cases, except for Cantor Set HOMO, this random shuffle deterio-
rates severely k(N). For Cantor Set, A(T) and T(A) have identical k(N)
because the Cantor Set rules for A(T) and T(A) produce equivalent poly-
mers, cf. Eq. (3.22). For equivalent polymers, k(N) from the first to the
last monomer are identical, cf. Eq. (3.40). For example, TAT ≡ ATA,
TATAAATAT ≡ ATATTTATA, TATAAATATAAAAAAAAATATAAAT-
AT ≡ ATATTTATATTTTTTTTTATATTTATA and so on. Similarly, the
Cantor Set rules for G(C) and C(G) produce equivalent polymers, which
have identical k(N). In Cantor Set HOMO, the best sequences in terms
of k(N) are A(T) and T(A), where the interaction integrals involved are
tAA = tTT = − 8 meV, tAT = 20 meV, tTA = 47 meV, and we have just one
on-site energy, that of A-T. From these interaction integrals, tAA has the
smallest absolute value. Given the structure of the Cantor Set sequences,
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making the random shuffle, the number of tAA decreases, while the numbers
of the bigger interaction integrals, tAT and tTA increase. For this reason,
in Cantor Set HOMO, the random shuffle increases k(N). In Cantor Set
LUMO, this argument is inverted because now the best sequences in terms
of k(N) are G(C) and C(G), where the interaction integrals involved are
tGG = tCC = 20 meV, tGC = − 10 meV, tCG = − 8 meV, and we have just
one on-site energy, that of G-C. In this case, the random shuffle decreases
the number of the bigger interaction integrals tGG = tCC and decreases
the numbers of the smaller interaction integrals tGC and tCG. However,
apart from the exception of the Cantor set HOMO, generally speaking,
the conclusion is that aperiodic polymers posses some kind of order, i.e.,
a well-defined construction rule that makes them more efficient than ran-
dom polymers in terms of k(N); therefore, when this rule is destroyed, the
transfer efficiency diminishes.

E. Transfer Rates in Experiments.
Comparison of the coherent pure mean transfer rates k of our prototype
system, B-DNA, with experimentally obtained transfer rates is a rather
complicated issue. In the past, the experimental transfer rates in donor -
bridge (DNA) - acceptor systems were obtained using the concentrations
of different products generated e.g. when a hole is (PY) or is not (PN)
transferred. The concentrations of PY and PN were indirectly measured
by methods like polyacrylamide gel electrophoresis and piperidine treat-
ment [164, 165]. Although these methods revealed some aspects of hole
transfer like the sequence dependence and the ability of transfer, they do
not provide the kinetics of hole transfer in DNA [7]. Although, gener-
ally, greater concentration of PY implies greater charge transfer, there is
no proof that the concentrations of PN and PY are proportional to the
degree of transfer.
Quantum mechanically, only a fraction of the carrier reaches the acceptor
through the bridge. For the same reason, the definition of transfer time
is problematic. The transfer rate should depend both on the amount and
the speed of transfer. However, the concentration of PY is not strictly
proportional to the amount of carrier transfer and not strictly inversely
proportional to the time of transfer. A more direct experimental approach
is time-resolved spectroscopy, e.g. transient absorption, to observe the
products of charge transfer [7, 166, 167].
Our point of view is different, since the quantity we use, the pure mean
transfer rate [115], given by Eq. 3.39, uses simultaneously the magnitude of
coherent charge transfer and the time scale of the phenomenon. However,
our method applies to coherent transfer only and cannot cover incoherent
mechanisms like thermal hopping.
It is a common assertion in the literature that when the fall of the transfer
rate with respect to the length of a given DNA segment is described by an
exponential fit, the mechanism of transfer is superexchange, whereas when
it is described by a power law fit, the mechanism of transfer is multi-step
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hopping. However, we stress that the fitted parameters produced this way
should be treated with care, especially when it comes to attributing them
to specific mechanisms. For example, in Ref. [7], where the hole transfer
kinetics of various short DNA segments were experimentally investigated
with time-resolved spectroscopy, the authors present an exponential de-
cay length β = 1.6 Å−1 by fitting the experimental hole transfer rates of
G(A)nG DNA oligomers (n = 0, 1, 2) to the exponential law K = K0e−βd,
where d is the charge transfer distance, i.e., d = 3.4× (N −1) Å. Using the
transfer rate values of Ref. [7], we observed that, although β, determined
as the slope of the linear fit ln(K) = ln(K0) − βd is indeed ∼= 1.6 Å−1, a
direct exponential fit gives β ∼= 1.3 Å−1, suggesting that the law of decay
is not exactly exponential. On the contrary, the fits of our theoretically
obtained pure mean transfer rates, k, for the same system, give β ∼= 1.84
Å−1 for β determined as the slope of the linear fit ln(k) = ln(k0) − βd,
and β ∼= 1.79 Å−1 for a direct exponential fit k = k0e−βd, suggesting closer
convergence to an exponential decay. Similarly, in Ref. [168], the au-
thors experimentally study, with time-resolved spectroscopy, hole transfer
through (GA)n and (GT)n sequences, where n = 2-12 is the number of rep-
etition units. The authors fitted the obtained transfer rates to the power
law K = K

′
0N

−η, where N is the number of hopping steps between gua-
nines (in our notation, N = N

2
− 1), reported the same exponent for both

sequences, i.e. η = 2, and suggested that this value provides evidence that
the long-distance hole transfer occurs by multi-step hopping between gua-
nines. From the rate values provided in Table I of Ref. [168], we observed
that, although η as a slope of the linear fit ln(K) = ln

(
K

′
0

)
− η ln(N) is

indeed 2 for both sequences, a direct power law fit yields η ∼= 1.4 for (GA)n
and η ∼= 1.3 for (GT)n, suggesting that the rate decay does not follow ex-
actly a power law. On the contrary, the fits of our theoretically obtained
pure mean transfer rates, k, for (GA)n, give η ∼= 1.40 for η determined as
the slope of the linear fit ln(k) = ln

(
k

′
0

)
− η ln(N), and η ∼= 1.56 Å−1 for

a direct power law fit k = k
′
0N

−η. The respective values for (GT)n are
η ∼= 2 for both fits. Hence, our theoretical results suggest that the fall of
k, as the length of the bridge increases, convergences to a power law and
that the fall of the transfer rate is less steep when purines are on the same
strand compared to the case when purines are crosswise.

DNA is a dynamical structure, i.e., the geometry is not fixed. Large vari-
ations of the TB parameters are expected in real situations and also, large
variations of the TB parameters have been obtained by different theoreti-
cal methods by different authors, cf. e.g. Ref. [115] and references therein.
Hence, the parameters any TB model uses have to be utilized with care.
In Ref. [169], the authors report experimentally deduced (by transient ab-
sorption spectroscopy) charge separation rates, in capped An (n =1-7) and
A3Gn (n =1-19) DNA hairpins with a stilbenedicarboxamide hole donor
and a stilbenediether hole acceptor. We computed our theoretical coher-
ent pure mean transfer rates, k, for the same systems with a modified
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parametrization: tAA → 1.6tAA, tAG → 2.1tAG, tGG → 2.25tAG (cf. Table
3.3). In order to mimic the donor and the acceptor, we added two sites
at the ends of the TB chain, with on-site energies Edon = EA−T − 0.1 eV,
Eac = EG−C + 0.1 eV. We used for the interaction integral from the donor
(last base pair) to the first base pair (acceptor) 100 meV (250 meV). Our
results, along with the experimental ones, are depicted in Fig. 3.27. Apart
from the A1 and A2 systems, for which we find much larger rates, the pure
mean transfer rates k are of the same order of magnitude, in good quan-
titative agreement with the experimental transfer rates K. Actually, the
same sequences An (n =1-7) and A3Gn (n =1-19) analyzed in Ref. [169]
had also been analyzed by the same group in Ref. [170]. In Ref. [170],
the authors mention a time resolution of ca. 180 fs. Hence, roughly, only
transfer rates K < (1/180) PHz ≈ (1/200) PHz = 5 × 10−3 PHz can be
detected by this technique.
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Figure 3.27: Comparison of experimental hole transfer rates K for An and A3Gn

segments [169] (full circles) with our theoretical coherent pure mean transfer rates k
(empty circles), as a function of the number of monomers in the polymer N . The TB
parametrization is described in the main text.
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In canonical B-DNA, the most common DNA form, successive pairs of the
four nitrogenous bases, Guanine (G) always paired with Cytosine (C) and Ade-
nine (A) always paired with Thymine (T), are separated and twisted approxi-
mately by 3.4 Å and 36◦, respectively, relative to the (right-handed) double helix
growth axis. But this is an ideal situation. In fact, the shape of the duplex can
be analyzed through a set of parameters that have been conventionally defined
to this purpose [171].

Local complementary base-pair parameters are employed in order to define
the base pair structure and its variability. The parameters describing the relative
translations in all axes, involving two bases of a Watson-Crick pair, are shear
(Sx), stretch (Sy) and stagger (Sz), while the corresponding rotations around x,
y and z axes are buckle (κ), propeller twist (π) and opening (σ) [172]. Figure 4.1
depicts the definitions of these translation and rotation parameters involving
two bases of a Watson-Crick pair.

Figure 4.1: Definitions of translation parameters (top row) and rotation parameters
(bottom row) involving two bases of a base pair.

Fig. 4.2 sketches some of the helix shape parameters for nucleic acids (step
1Part of this Chapter can be found published in Ref. [27], under CC BY 4.0. Part of this

Chapter is adapted with permission from Ref. [18]: M. Mantela, A. Morphis, K. Lambropoulos,
C. Simserides, and R. Di Felice, J. Phys. Chem. B, 125, 16, 3986-4003 (2021). ©2021 American
Chemical Society.
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parameters); distances shift (∆x), slide (∆y), rise (∆z), and angles tilt (τ), roll
(ρ), twist (ω). These distances and angles define the relative arrangement of the
two monomers in a stacked base pair step.

Figure 4.2: Definitions of inter-base-pair helix shape parameters shift (∆x), slide (∆y),
rise (∆z), tilt (τ), roll (ρ), twist (ω).

Ιn order to address the effects of structural variability in the electronic struc-
ture of B-DNA within the LCAO approach we use deformed base pairs pruned
from a 500 ns Molecular Dynamics (MD) trajectory of a 20mer [18, 27].

The rest of this Chapter is organized as follows. In Sec. 4.1 we present
the MD method and calculations performed to obtain different geometries of
stacked base pairs (dimers) comprised of the same bases on the same strand
(AA and GG). In Sec. 4.2 we analyze the effects of structural variability on
the electronic structure and charge transfer properties of B-DNA, using the
fragments derived from MD. Initially we present the results obtained by the TB
method using all valence orbitals [27], then discuss relevant RT-TDDFT results
for the different dimer conformations (Subsec. 4.2.1), and finally compare the
results from different methods (DFT, TB) for some hole transfer properties
(Subsec. 4.2.2).
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4.1 Molecular Dynamics simulation of a 20-
mer

MD is currently retained as the method of choice to simulate the dynam-
ics of biological molecules on the time scale from tens of nanoseconds to few
microseconds [173--176]. Its application to proteins and nucleic acids, as well
as lipid membranes, has greatly contributed to the development of the field of
structural biology [177--179]. In the context of nucleic acids, we remark the
work done by the Ascona B-DNA consortium [180--183], as well as discovery of
DNA shape effects in protein-DNA interactions [178, 184, 185].

We simulated a double-stranded DNA 20-mer that contains multiple in-
stances of the AA and GG dimers on which we focus our interest for charge trans-
fer properties [18]. The sequence of the simulated duplex is 5′−CGAAAAGGGG-
AAAAGGGGAT−3′, see Table 4.1. The starting configuration for the 20-mer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5′- C G A A A A G G G G A A A A G G G G A T -3′
3′- G C T T T T C C C C T T T T C C C C T A -5′

Table 4.1: Sequence of the simulated duplex B-DNA oligomer

was constructed with the web interface 3DNA, as regular B-DNA. The B-DNA
molecule was located at the center of a periodically repeated supercell and the
supercell was filled with TIP3P [186] water molecules. The depth of water sepa-
rating neighboring replicas was at least 3 nm in each direction. After a standard
minimization-equilibration protocol [187] to bring the system at 300 K and 1 bar,
the trajectory of the nucleic acid was collected for 500 ns. The simulation was
carried out with the open-source software GROMACS [188] 5.0.4, using the
amber99sb-parmbsc1 force field for the nucleic acid. [189].

Using GROMACS tools and the GROMOS algorithm [190], we clusterized
the instantaneous structures that form the trajectory. We obtained seven clus-
ters that cumulatively represent 71% of the entire trajectory. The centroid
structures of the two most populated clusters are labeled as cl1 and cl2 in the
following; they represent 35% and 12% ot the trajectory, respectively. The
three-dimensional structures of cl1 and cl2 are shown in Fig. 4.3, in black and
red, respectively. Although there are clear differences in the shape of the duplex
between cl1 and cl2, the B-DNA motif is preserved in the dynamics.

From cl1 and cl2 we extracted all the possible GG and AA base pair steps
(or dimers in the following), excluding the A3A4 and G17G18 edge dimers. Fur-
thermore, we removed the backbone and saturated the dangling bonds with H
atoms. It has been shown that aspects of charge transport such as coherent
transmission can be altered by the inclusion of the backbone in 15 base-pair
oligomers [191], and recent experiments suggest that long-distance conduction
is mediated by the backbone [192]; however the DNA segments (dimers) studied
here are small and the effect of the backbone is not expected to be that signifi-
cant. AA and GG dimers were chosen as subjects of study since, in principle, are
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the most efficient in terms of charge transfer due to the structural resemblance
of their constituent base pairs, so that the effect of structural variability can be
more clearly demonstrated.

The extracted dimers are labeled as: A4A5_cl1, A4A5_cl2, A5A6_cl1,
A5A6_cl2, G7G8_cl1, G7G8_cl2, G8G9_cl1, G8G9_cl2, G9G10_cl1,
G9G10_cl2, A11A12_cl1, A11A12_cl2, A12A13_cl1, A12A13_cl2,
A13A14_cl1, A13A14_cl2, G15G16_cl1, G15G16_cl2, G16G17_cl1,
G16G17_cl2.

Figure 4.3: Visualization of the two most
representative structures from the MD tra-
jectory; from these structures, duplex AA
and GG fragments for the TDDFT calcula-
tions were extracted.

The distances ∆x, ∆y, ∆z and the
angles τ , ρ, ω of cl1 and cl2, are
shown in Fig. 4.4. The obtained
values are consistent with finite-
temperature variations of the B-DNA
form. We denote the correspond-
ing monomers as: A4_cl1, A4_cl2,
A5_cl1, A5_cl2, A6_cl1, A6_cl2,
G7_cl1, G7_cl2, G8_cl1, G8_cl2,
G9_cl1, G9_cl2, G10_cl1, G10_cl2,
A11_cl1, A11_cl2, A12_cl1, A12_cl2,
A13_cl1, A13_cl2, A14_cl1, A14_cl2,
G15_cl1, G15_cl2, G16_cl1, G16_cl2,
G17_cl1, G17_cl2. Figure 4.5
sketches the translation and rota-
tion parameters for each one of the
studied monomers. The parame-
ters were computed using the web
interface 3DNA. Dashed lines de-
note the mean value of each pa-
rameter, that is: 0.03 Å (shear),
−0.03 Å (stretch), 0.04 Å (stagger),
6.53◦ (buckle), −10.40◦ (propeller
twist), 1.06◦ (opening) for A-T
monomers and −0.09 Å (shear),
−0.04 Å (stretch), 0.01 Å (stag-
ger), 0.55◦ (buckle), −1.13◦ (pro-
peller twist), −0.66◦ (opening) for G-
C monomers. These values together
with values found in the literature are listed in Table 4.2.
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Figure 4.4: Shift (∆x), slide (∆y), rise (∆z), tilt (τ), roll (ρ), twist (ω) of the studied
dimers.

Figure 4.5: Translation [shear (Sx), stretch (Sy), stagger (Sz)] and rotation [buckle
(κ), propeller twist (π), opening (σ)] parameters for all studied monomers. Dashed lines
denote the mean value of each parameter.

Table 4.2: The second and third column contain the mean values of the translation
and rotation parameters for the monomers A-T and G-C, as studied here [27]. The
other columns list values found in bibliography.

Parameter A-T G-C [193] [194] [195] [196]
shear (Å) 0.03 −0.09 0.00 −0.04

stretch (Å) −0.03 −0.04 −0.15 −0.17

stagger (Å) 0.04 0.01 0.09 0.21
buckle (◦) 6.53 0.55 0.5 0.3 (−7.5, 7.5)
propeller twist (◦) −10.40 −1.13 −11.4 −13.7 11.5 −12.60± 3.2
opening (◦) 1.06 −0.66 0.6 1.0 (−2, 2)
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4.2 Effects of Structural Variability
In this subsection we analyze the effects of structural variability on the elec-

tronic structure and charge transfer properties of B-DNA, using the fragments
derived from MD, as detailed in Section 4.1. In Figure 4.6 we present the abso-
lute values of the parameters ∆ (difference between the HOMO eigenenergies of
the two base pairs of each studied dimer) and t (transfer integral between the
two base pairs' HOMOs of each studied dimer), as well as the maximum trans-
fer percentages p as calculated via Equation (3.12) with the parameterization
employing all valence orbitals [27]. The values of |t| and p can also be found
in Ref. [18] in comparison with results obtained by Density Functional Theory
(DFT) techniques. From Equation (3.12) it is expected that ideal dimers (made

Figure 4.6: The parameters |∆| and |t|, as well as the maximum transfer percentage p
for all the dimers of the MD oligomer.

up of ideal monomers) should have a maximum transfer percentage equal to
1. However, by observing Figure 4.6 one can notice that not all AA and GG
dimers have p = 1. Specifically, dimers with a p considerably different than unit
(and a ∆ different than zero) are: A11A12_cl2, A12A13_cl1, A121A13_cl2,
A13A14_cl2, G15G16_cl1, G16G17_cl1. This is well expected because the
studied monomers are not ideal, that means their consisting bases have relative
translations and rotations as depicted in Figure 4.1. More specifically, a small
p value is related to a large ∆ value, in accordance with Equation (3.12). Thus,
it is expected that the structural base-pair parameters (shear, stretch, stagger,
buckle, propeller twist, opening) have a reasonable effect to the HOMO (and
LUMO) base-pair energy values and consequently to the values of ∆ and p.

In order to have a better view of the contribution of transfer integrals to the
above discussion, in Fig. 4.7, we present the transfer integral t, as a function of
the rise, for different twist values, for ideal (with undistorted geometries) AA
and GG dimers, obtained by LCAO. Rise (∆z) and twist (ω) are the two most
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important conformational parameters in B-DNA. As it is evident from Fig. 4.7,
the absolute value of t decreases with increasing rise. We also observe that, e.g.,
for AA dimers, for twist close to 30◦, t ≈ 0. Starting from 36◦ and increasing
twist towards 48◦, |t| is increased, while, decreasing twist towards 30◦, |t| is
decreased and tends to zero. Further, decreasing twist towards 24◦, increases |t|
again. Hence, we expect that for twist around 30◦, the hopping parameter will
be very small, hence, p should be very small, unless ∆ is very small, too (cf.
Eq (3.12)).

Figure 4.7: Influence of rise (∆z), for various twist (ω) angles, on the hopping param-
eter, t for an AA (left) and a GG (right) dimer with undistorted geometries, according
to LCAO with only 2pz atomic orbitals. For twist ≈ 30◦, t ≈ 0.

In Fig. 4.8, we depict the values of p, rise (∆z) and twist (ω) for all the cases
of the distorted geometries. By observing the fluctuations of these geometry
parameters, in a correlation with the p values, a safe deduction cannot be done.
The above remark is a definite reminder that charge transfer depends on a large

Figure 4.8: p, rise, twist with LCAO using all valence orbitals.

number of structural parameters.
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4.2.1 Results obtained by Real-Time Time-
Dependent Density Functional Theory

The content of this Subsection can be found in ref. [18]. The content of this
Subsection was not produced by the author, so the presentation of the associated
results will be limited, in order to have a better view of the effects of structural
variability and make a comparative study in Subsection 4.2.2.

Density Functional Theory (DFT) [197--199] is a well established method
for treating ground state properties of many electron systems, e.g. molecules or
solids. Two decades after its establishment, it was extended to time-dependent
DFT (TD-DFT), to treat time-dependent excited state processes. [94, 200--202]
The Time-Dependent Kohn-Sham (TDKS) equations with an effective potential
energy υKS(r, t), uniquely described by the time-dependent charge density, ρ(r, t),
are, in atomic units,

i ∂
∂t
Ψj(r, t) =

[
− 1

2
∇2 + υKS(r, t)

]
Ψj(r, t) = (4.1)[

− 1
2
∇2 + υext(r, t) + υH(r, t) + υxc[ρ](r, t)

]
Ψj(r, t).

υext(r, t) includes external fields and nuclear potentials, υH(r, t) is the Hartree
potential energy. Exchange and correlation effects are included in υxc[ρ](r, t).
The charge density is the sum over all occupied orbitals j = 1, 2, . . . Nocc, i.e.,

ρ(r, t) =
Nocc∑
j=1

|Ψj(r, t)|2. (4.2)

Real-Time TDDFT (RT-TDDFT) [203, 204] is based on a direct numerical
integration of Eq. (4.1). This differs from the traditional linear-response ap-
proach, which is not actually a time-resolved method but instead solves Eq. (4.1)
in the frequency domain for the excitation energies of a system subject to a
small perturbation. Within RT-TDDFT, we solve the TDKS equations and ob-
tain the electron density at each time step. The electron density is then used
for the calculation of the Hamiltonian in the next cycle of the self-consistent
process. For the DFT and RT-TDDFT calculations, the NWChem open-source
computational package [205] was used, as well as a typical time step of 0.5 a.u..

The range-separated functional CAM-B3LYP [206], appropriate for the cor-
rect estimation of exchange energy, both at short and long ranges, was used
for most DFT and RT-TDDFT results reported in this work. The calculations
were performed using the 3-21++G [207, 208],6-31++G** [208--211], aug-cc-
pVDZ [212, 213], basis sets, which include diffuse functions, for all dimers. RT-
TDDFT with a given basis set and functional started from the DFT density
with the same basis set and functional.

In a Gaussian basis set, it is most natural to use the single particle reduced
density matrix, whose time evolution is governed by the von Neumann equation.
The Magnus propagator is used in NWChem's RT-TDDFT implementation,
which is both stable and conserves the density matrix idempotency [204].
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In B-DNA, adjacent stacked base pairs are separated by a relatively large
distance, so that the stacking interaction is not strong. Thus, the initial state
of a stacked dimer, to be evolved by RT-TDDFT, can be determined by DFT
calculations of individual base pairs. Here, the procedure adopted for each dimer
is the following: First, a DFT ground state calculation was performed for each of
the neutral and charged base pair (monomer) appearing in our chosen dimers.
The +1 charged state simulates the presence of a hole. Then, the resulting
eigenstates were combined and subsequently orthogonalized via a Gram-Schmidt
process, to obtain the dimer's ground state. RT-TDDFT was finally employed to
propagate the electronic density in time from this initial state. At the end of each
time step in the excited-state evolution, the fragments' charge was calculated
with an appropriate population analysis method, along with the dipole moment.
The main frequencies of charge oscillations were extracted from the results via
Fourier analysis.

The Löwdin population analysis [214] was used in the RT-TDDFT simu-
lation. The Löwdin population analysis was integrated into the RT-TDDFT
module of NWChem for the calculation of each fragment's charge at each time
step. It is much less basis-set dependent than the Mulliken analysis (which is
the default scheme in NWChem's RT-TDDFT). Furthermore, Löwdin's scheme
does not suffer from ultra-fast charge oscillations, which are instead artificially
introduced with Mulliken's scheme in RT-TDDFT charge simulations. As a
result, Löwdin population analysis gives a more clear picture of charge transfer.

The DFT derived on-site energies of base pairs and transfer integrals between
base pairs were calculated following the procedure below: (1) a ground state DFT
simulation is performed for each of the (isolated) neutral monomers, as well as
for the (neutral) dimer, yielding the corresponding eigenstates and eigenener-
gies; (2) the eigenstates of monomers are combined and then orthogonalized
via the Löwdin's symmetric orthogonalization scheme, to form an orthonormal
basis set; (3) the ground state Hamiltonian matrix of the dimer is transformed
from the occupied molecular vector subspace to the previously formed basis of
monomers's orthogonalized molecular vectors. In this representation, the diag-
onal Hamiltonian matrix elements that correspond to monomers’ HOMOs are
the on-site energies, while the relevant non-diagonal element is the hopping in-
tegral. In other words, from the Hamiltonian matrix of a dimer we obtain the
HOMO on-site energies for each of the two monomers and the transfer integral t
between the two monomers. The absolute values of ∆ and t, obtained by DFT,
are shown in Fig. 4.9.

From the TB parameters obtained by DFT, we can estimate p by Eq. (3.12)
and T by Eq. (4.3)

f =
1

T
=

√
(2t)2 +∆2

h
. (4.3)

In Fig. 4.10 (left), we present a comparison between the maximum transfer
percentage, for all dimers, as estimated by TB, using Eq. (3.12) with the TB pa-
rameters obtained by DFT, and the values obtained graphically by RT-TDDFT.
In Fig. 4.10 (right), we present a comparison between the (main) period, for all
dimers, as estimated by TB, using Eq. (4.3) with the TB parameters obtained
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Figure 4.9: The absolute values of the TB parameters ∆ (difference between the
two monomers’ HOMO on-site energies) and t (transfer integral between monomers’
HOMOs), obtained by DFT, at the CAM-B3LYP/aug-cc-pVDZ level of theory.

by DFT, and the values obtained graphically by RT-TDDFT.
In Fig. 4.10, we observe that p and T with TB parameters obtained by DFT

give the general trends, but the RT-TDDFT results are much richer. We should
realize that in the simple TB model, only a constant energy HOMO at each
monomer is used and the hole is created at one of the two monomers. In this
case, the initial placement of the hole at the one or at the other monomer does
not change p or T . In other words, for a specific dimer, p and T are identical
irrespective of the initial placement of the hole at monomer 1 (base pair 1, bp1)
or at monomer 2 (base pair 2, bp2) [115, 215].

Figure 4.10: Maximum transfer percentage, p (left) and period, T (right) for all dimers.
Values estimated by TB, using Eq. (3.12) with TB parameters obtained by DFT for the
neutral dimer, are shown with gray squares. Values obtained by RT-TDDFT are shown
with orange up and pink down triangles, for initial hole creation at base pair 1 (bp1)
and base pair 2 (bp2), respectively. Lines are guides for the eyes. The little stars (case
bp1) and pentagons (case bp2) represent some weaker components.

In Fig. 4.11 we present the rise (∆z) and the twist (ω) of our distorted dimers,
together with the maximum tranfer percentage, p, as obtained by RT-TDDFT.



76 CHAPTER 4. STRUCTURAL VARiABiLiTY

In accordance with the above discussion, larger rise leads to smaller p, and vice
versa. However, twist is also important, in the sense explained in Fig. 4.7. Twist
angles close to 30◦ correspond to small overlap, hence small transfer integral t,
and eventually small p.
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Figure 4.11: The rise (∆z) and twist (ω) of the dimers studied in this work, together
with the maximum transfer percentage obtained by RT-TDDFT.

4.2.2 Comparative Study of (RT-TD)DFT and TB
results

Even though simple treatments like the TB approach do not prove sufficient
for quantitative agreement with RT-TDDFT, they can be useful for a qualita-
tive assessment of our results. The employed TB treatment using all valence
orbitals, i.e., 2s, 2px, 2py, 2pz orbitals for C, N and O atoms and 1s orbital for H
atoms, has been described in Subsection 2.1.2 and Section 3.1. In Fig. 4.12 we
compare the transfer integrals obtained by DFT (cf. Fig. 4.9) with the transfer
integrals obtained by LCAO using all valence orbitals, as well as LCAO using
only 2pz orbitals, for the MD distorted dimers. Generally, the DFT method and
the LCAO method using all valence orbitals give similar trends, while the re-
sults obtained by the LCAO method using only 2pz orbitals have slightly larger
deviations.

As can be found in Refs. [115, 215], for ideal B-DNA geometries, the period
is of the order of 10 to 100 fs. All oscillations between identical monomers, e.g.
in dimers like AA and GG, and also AT, TA, GC, and CG are of maximum
transfer percentage 1 (100%) and it does not matter whether the carrier is
initially placed at the first or at the second monomer, because the two monomers
(hence, their on-site energies) are identical (i.e., ∆ = 0). On the contrary, all
oscillations between different monomers, e.g. in dimers like AC ≡ GT, CA ≡
TG, GA ≡ TC, AG ≡ CT have maximum transfer percentage much smaller
than 1, because the two sites are not identical. For DFT and RT-TDDFT
applied to structures obtained by MD, even for dimers like AA and GG, i.e.,
made of “identical” monomers, the sites (monomers) are never exactly identical,
primarily due to structural variability. In some cases, the oscillations predicted
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Figure 4.12: Comparison of the transfer integrals obtained by DFT with the ones
obtained by LCAO using all valence orbitals.

by MD and RT-TDDFT for placing the hole either at the 1st or at the 2nd
monomer are large and almost identical, in accordance with the expected TB
picture for oscillations between “identical” monomers. However, in other cases,
the oscillations predicted by MD and RT-TDDFT are smaller and/or different
for placing the hole initially at the 1st or at the 2nd monomer, seemingly in
contrast to the TB picture for oscillations between “identical” monomers. A
detailed discussion on this controversy can be found in Ref. [18].
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As already mentioned, the DNA structure allows electron density overlap-
ping of adjacent bases, creating a nearly one-dimensional π-pathway that favours
charge transfer and transport, besides stabilising the double helix. The term
transport implies application of external gradient. Here we use electrodes and
apply voltage. The most experimentally relevant quantities for charge trans-
port are the current (I) - voltage (V ) curves. Charge transfer and transport
through the aromatic base-pair stacking depends on the way stacked bases cou-
ple with each other. Therefore, any disturbance in that stacking, through base
modifications, insertions, or protein binding, can be observed electrically. In
biomedicine, charge transport can be used to detect pathogenic mutations at
early stage, e.g., pairing between non-complementary bases leads to point mu-
tations, potentially harmful to the development of organisms (carcinogenesis).
Each DNA sequence has a unique electronic signature, which may be useful
for identifying a mutant DNA molecule [9, 13, 217]. Thus, charge transfer and
transport can bring valuable information about sequencing. It is expected that
these properties can be further employed to design electronic circuits as diagnos-
tic tools. Also, charge transport could play a significant role for DNA-repairing
deficiency yielding carcinogenesis [16].

Considering the above, we study charge transport along DNA molecules, us-
ing the TB method, together with the transfer matrix technique, to solve the
time-independent Schrödinger equation and finally obtain I-V curves. We study
double-stranded DNA molecules, the ends of which are connected to electrodes,
focusing on both ideal and natural geometries concerning two categories of muta-
tions: (i) DNA sequences that contain point substitution mutations, specifically,
transitions (interchange of purines) G ↔ A and (ii) sequences extracted from
segments of human chromosomes, modified by expanding the CAG triplet to
mimic the following diseases: (a) Huntington's disease, (b) Kennedy's disease,
(c) Spinocerebellar ataxia 6, (d) Spinocerebellar ataxia 7. Physical quantities
such as eigenspectra, density of states, transmission coefficients and current-
voltage curves are obtained. The parameters used to describe the molecular
electronic structure of nucleic acid bases and extract the on-site energies and
the interaction integrals used in the recruited TB wire model were obtained
from the LCAO method, considering the molecular wave function as a linear
combination of all valence orbitals of all atoms, i.e., 2s, 2px, 2py, 2pz orbitals
for C, N, and O atoms and 1s orbital for H atoms.

The novel features of this work compared to state of the art include the
following: 1) Ideal and natural DNA geometries are compared. 2) Known mu-

1Reproduced from Ref. [216] with permission from the PCCP Owner Societies. This article
is licensed under CC BY-NC 3.0
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tations are examined, and mutated sequences of the above mentioned categories
are compared with unmutated ones. 3) The potential use of physical quantities
related to charge transport as mutation detectors is investigated. 4) The defini-
tion of the normalised deviation of the I-V curve from the origin, NDIV, seems
to be a useful quantity for that purpose.

The rest of this Chapter is organized as follows: In Sec. 5.1 we briefly lay
down the Transfer Matrix Method we use, in Sec. 5.2 we list the studied se-
quences and genetic disorders, and in Sec. 5.3 we present our results for various
physical quantities and discuss them.
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5.1 The Transfer-Matrix Method
In this section, we - once again - employ the wire model variation of the

TB method. As mentioned in the previous chapters of this Ph.D. Thesis, the
parameters required for the wire model description are the on-site energies of
the base pairs and the interaction integrals between successive base pairs. In
order to produce the required on-site energies, we employed the LCAO method,
considering the molecular wave function as a linear combination of all valence
orbitals, i.e., 2s, 2px, 2py, 2pz orbitals for C, N, and O atoms and 1s orbital
for H atoms. We used the novel parameterization described in Subsection 2.1.2,
initially introduced in Ref. [27]. As for the interaction integrals, we employed
the Slater-Koster two-centre interaction form [64] using Harrison-type expres-
sions [65, 66] as described in Subsection 3.1.1 [27].

As already described in Subsection 3.1.1, the problem we aim to solve - i.e.
the time independent Schrödinger equation - is reduced to a system of coupled
algebraic equations of the form of Eq. (3.7). Once again, strand 5

′-3′ is used to
denote the DNA segments. Therefore, the notation GG implies two base pairs
of GG bases in the 5

′-3′ strand and their complementary ones, CC, in the 3
′-5′

strand. Equation (3.7) can be written in the matrix form(
Aλ+1

Aλ

)
=

(
E−Eλ

tλ
− tλ−1

tλ

1 0

)(
An

An−1

)
= Pλ(E)

(
Aλ

Aλ−1

)
, (5.1)

and be solved using the transfer matrix method. Pλ(E) is called the transfer
matrix of monomer λ. Hence, the product

MN(E) =
1∏

λ=N

Pλ(E). (5.2)

is the global transfer matrix (GTM) of the sequence, and contains all the infor-
mation about its energetics.

Charge transport properties are studied under the assumption that the DNA
sequences of interest lie on sites n = 1, . . . , N and are connected with two semi-
infinite homogeneous metallic electrodes (leads), acting as carrier baths, which
lie on sites (−∞, 0]∪[N+1,+∞). The situation is depicted in Fig. 5.1. The leads

Figure 5.1: Schematic representation of a WM with a unit cell of u sites, sandwiched
between two semi-infinite homogeneous metallic leads, and connected to them from the
left (right) side with hopping integral tcL(tcR).

are described by properly chosen on-site energies and interaction parameters.
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Here, left and right electrodes are assumed to be identical. The electrodes
energy spectrum is given by the dispersion relation [218]

E = Em + 2tm cos(qa), (5.3)

where Em is the on-site energy of the electrodes, tm is the interaction integral
between the electrodes sites, and a is the lattice constant. The electrodes' band
lies in the energy interval [Em − 2|tm| , Em + 2|tm|]. Hence, the energy center
and bandwidth of the electrodes are Em and 4|tm|, respectively. If we imagine
the lead as a homogeneous system with one electron per site, then the band
is half-filled, the electrodes are metallic, and the Fermi level of the electrodes,
EF

m, is identified with the on-site energy of the electrodes, Em. The coupling
of the sequence with left (L) and right (R) edge electrode sites is described by
the interaction integrals tcL(R), respectively. The choice of the right parameters
is important because it defines the optimum transport profile. For periodic
sequences, the coupling strength factor is already defined [219] as

ω =
tmtN
tcRtcL

, (5.4)

in means of the deviation of the real coupling of the system to the leads from
the ideal coupling [in which the product of the coupling hopping integrals (tcL,
tcR) becomes equal to the product of the hopping integrals of the isolated lead
(tm = tcL) and the isolated system (tN = tcR) as if each was cyclically bounded
to itself]. The coupling asymmetry factor χ = tcL

tcR
expresses the difference in

coupling strength between the leads and the left/right end of the system. The
ideal coupling condition, which is definable only in periodic cases, is |ω| = 1.
The symmetric coupling condition is meant as |χ| = 1. In periodic cases, the
ideal and symmetric coupling condition, ω = 1 = χ, leads to the most enhanced
transmission [219].

The transmission coefficient at zero bias, T (E), is a useful quantity for
the description of the charge transport properties and refers to the probability
that a carrier transmits through the sequence eigenstates. To compute T (E), a
transfer matrix formalism [218--220] is used. After some manipulations, we get
that T (E) can be analytically expressed as [218]

T (E) =

4 sin2(qa)

Tr
(
M̃N

)2
sin2(qa) +

[
M̃

(12)
N − M̃

(21)
N + (M̃

(11)
N − M̃

(22)
N ) cos(qa)

]2 , (5.5)

where
M̃N = PRMNPL, PR =

(
1 0
0 tcR

tm

)
, PL =

(
tm
tcL

0

0 1

)
, (5.6)

Tr denotes the matrix trace and M (ij)
N are the elements of the GTM.

The I - V curves of the DNA sequences have been calculated using the Lan-
dauer - Büttiker formalism [221--223]. A constant bias voltage was applied, Vb,
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between the leads, which induces a linear potential energy drop, Ub = −eVb, from
one to the other edge of the DNA sequence. Thus, the transmission coefficient
becomes bias-dependent. The leads' chemical potential takes the form

µL(R) = Em ± Ub
2
. (5.7)

The energy regime between them defines the conductance channel. At zero
temperature, the Fermi-Dirac distributions are Heaviside step functions, so the
electrical current can be computed as

I(V ) =
2e

h

∫ µL

µR

dET (E,Ub). (5.8)

In Fig. 5.2, the absolute value of the current in logarithmic scale, log10|I|, is
demonstrated as a function of both the leads on-site energy, Em, and the applied
voltage between the leads, V , for ideal (left) and natural (right) G14 polymers.
It is evident that the electrode’s on-site energy plays a crucial role in the shape
and magnitude of the current–voltage curves. A general trend for homopolymers
is that larger currents occur when Em is closer to the monomer's on-site energy.
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Figure 5.2: Colour maps showing log10|I|, i.e., the absolute value of the current in
logarithmic (colour) scale, as function of both the leads on-site energy, Em, and the
applied voltage between the leads, V , for both ideal (left) and natural (right) G14

polymers.



5.2. STUDiED SEQUENCES AND GENETiC DiSORDERS 83

5.2 Studied Sequences and Genetic Disor-
ders

Genetic disorders occur when a mutation affects an organism's genes or when
the organism has the wrong amount of genetic material. Carrying the mutation
does not necessarily mean that the organism will end up with a disease. There
are many types of disorder, including single-gene, multifactorial and chromoso-
mal ones. In the present Ph.D. Thesis, we focus on single-gene genetic disorders,
i.e., changes or mutations that occur in the DNA sequence of a single gene, oth-
erwise known as monogenetic disorders.
Point substitutional mutations are common. The G-T mismatch muta-

tion alone occurs about once in every 104 - 105 base pairs. Maintaining a low
mutation rate is crucial for cell viability and health. The high fidelity of DNA
replication is established and secured by an enzyme, the replicative polymerase,
though several mechanisms: (1) sensing proper geometry of the correct base
pair, (2) slowing down catalysis in case of a mismatch, and (3) partitioning the
mismatched primer to exonuclease active site [224]. However, the performance
of polymerases is not error-free. It is estimated [224--226] that even after proof-
reading, the overall fidelity of DNA synthesis lays in the range of one wrong
nucleotide incorporated per 103 - 105. Besides, DNA replication is constantly
challenged by internal and external factors, non-canonical DNA structures, and
complex DNA sequences [224].

Another category of DNA mutations related to several diseases is the short
tandem repeat (STR) expansions, also known as microsatellites [227, 228].
These are small sections of DNA, usually 2-6 nucleotides long, repeated consec-
utively at a defined region. At least 6.77% of the human genome is comprised
of these repetitive DNA sequences [228]. Large STR expansions are potentially
pathogenic, setting the ground for several neurological diseases. In fact, 37 of
the already known STR genes that can cause disease when expanded, exhibit
primary neurological presentations [228]. In neurological STR diseases, ‘CAG’
repeat expansions code for the amino acid glutamine. When expanded, they cre-
ate polyglutamine tract expansions, which are thought to alter and expand the
transcribed protein, creating insoluble protein aggregates within neuronal cells.
This can cause perturbations in intracellular homeostasis and cell death [229].

Here, we examine two categories of DNA polymers: (i) sequences that contain
point substitution mutations, specifically, transitions involving G ↔ A exchange,
of both ideal and natural geometries, replacing the out-of-the-rings atoms that
are different between A and G, while ensuring that the number of hydrogen
bonds is correct, and (ii) sequences of ideal geometry extracted from segments
of human chromosomes, subsequently modified by expansion of the CAG triplet
[(CAG)n repeats] to mimic four selected STR diseases, namely, (a) Huntington's
disease, (b) Kennedy's disease, (c) Spinocerebellar ataxia 6, (d) Spinocerebellar
ataxia 7. The number of pathogenic repeats, i.e., CAG triplets, in Huntington's
disease, is np = 36-250, located in exon 1 of HTT gene, chromosome 4 [228, 230,
231]. In spinal and bulbar muscular atrophy of Kennedy (Kennedy's disease),
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np = 38-68, located in exon 1 of AR gene, chromosome X [228, 232--234]. In
spinocerebellar ataxia 6, np = 19-33, located in exon 47 of CACNA1A gene,
chromosome 19 [228, 235, 236]. In spinocerebellar ataxia 7, np = 34-460, located
in exon 1 of ATXN7 gene, chromosome 3 [228, 237, 238].



5.3. RESULTS AND DiSCUSSiON 85

5.3 Results and Discussion
We devote Subsection 5.3.1 to eigenenergies and densities of states, Subsec-

tion 5.3.2 to transmissions and Subsection 5.3.3 to current (I) - voltage (V )
curves, where we introduce the normalised deviation of the I-V curve from the
origin (NDIV). In this work, we focus on charge transport through HOMOs.

For DNA segments of ideal geometry, the base pairs are not distorted and
base pairs are separated and twisted by 3.4 Å and 36◦, respectively, relative
to the double helix growth axis. The geometries of the natural sequences G14

and A15 have been extracted from Bioinformatics (RCSB) Protein Data Bank
(www.rcsb.org) [accession numbers 4WZW and 6VAA, respectively], from the
original Refs. [239] and [240], respectively.

The on-site energies and interaction integrals for all sequences were calcu-
lated using all valence orbitals of all atoms, according to the procedure described
in Ref. [27]. For ideal sequences, the on-site energies are EA-T = −8.49 eV for the
A-T base pair and EG-C = −8.30 eV for the G-C base pair [27], as listed in column
2, Table 2.4. We also calculated the on-site energy of the mismatched A-C base
pair. Its HOMO value is −8.43 eV, i.e., very close to that of the A-T base pair,
and very close to that of the A base, as expected, since A has higher HOMO
than that of C. Its LUMO value is −4.43 eV (σ∗), −4.23 eV, very close to that of
the C base, as expected, since C has a lower LUMO than that of A. The HOMO
(LUMO) interaction integrals between successive base pairs of ideal geometry,
without mismatches, calculated with the method described in [27] using all va-
lence orbitals of all atoms, can be found in Table 3.3, column 2(5). Mutations
and distortions change the values of interaction integrals; this effect is included
in our work, via the same method [27]. Table 5.1 contains the absolute values of
interaction parameters between HOMOs (LUMOs), obtained from LCAO, using
all valence orbitals, for close-to-ideal geometrical conformations [27], for dimers
containing A-C mismatched monomers (denoted by Am) and G-C monomers,
for all possible combinations of successive base pairs. Studying charge transport

Table 5.1: Absolute values of interaction parameters between HOMOs (LUMOs),
|tLCAO|, obtained from LCAO using all valence orbitals, for close-to-ideal geometrical
conformations [27], for dimers containing A-C mismatched monomers (denoted by Am)
and G-C monomers, for all possible combinations of successive base pairs. All values
are given in meV. XY denotes the sequence in the 5′-3′ direction.

XY |tH| [27] |tL| [27]
89(σ∗)

GAm 130 8
90(σ∗)

AmG 31 20
90(σ∗)

AmAm 36 25

through HOMOs within the TB wire model (as we do in this work), it is prac-
tically easier to examine mutations concerning purine substitution by another
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purine; given that purines have higher HOMO than pyrimidines, this substitu-
tion will have substantial effect on the base pair on-site energy. This substitution
will generate important diagonal disorder within the TB wire model Hamilto-
nian matrix, in addition to the always-present off-diagonal disorder caused by
the modification of interaction parameters.

For completeness, in Appendix D we display the pure mean transfer rates k
(see Subsection 3.1.3, Eq. (3.39)) of the studied G14 sequences: a) with one A -
C mismatch mutation of varying position (sites 1, 2, 3) in the sequence for both
ideal and natural polymers (Fig. 6), b) with zero, one, and two randomly posi-
tioned A - C mismatch mutations for both ideal and natural polymers (Fig. 7).
The general trend for ideal polymers is that any inserted mutation decreases k
drastically. In the case of natural polymers, not a safe deduction can be done,
because the off-diagonal disorder inserted by the interaction parameters is ran-
dom.

5.3.1 Eigenspectra and Density Of States

The eigenspectra of the studied sequences were calculated by numerical di-
agonalization of the Hamiltonian matrices, which are real, tridiagonal and sym-
metric matrices, within the TB wire model [106, 116]. In order to describe the
electronic structure of the systems under examination we also calculate DOS,
which shows the number (NE) of states that can be occupied by electrons per
energy (E) interval, or dNE

dE to be more precise, as defined by Eq. (3.21).
The integrated density of states (IDOS) refers to the number of states that

have energy smaller than E, and is defined as

IDOS(E) =
∫ E

−∞
g(E ′)d(E ′). (5.9)

A. Unmutated Sequences
As examples, we show in Fig. 5.3 the eigenspectra and corresponding DOS
for a few ideal and natural DNA homopolymers (or homo-oligomers), G. . .
and A. . . , without mutations. It is clear that the eigenstates of ideal G. . .
and A. . . homopolymers are symmetrically positioned around the on-site
energy of the ideal G-C or A-T base pair, respectively. Regarding natural
sequences, although the eigenspectra are still close to the corresponding
ideal G-C or A-T base pair on-site energy, they are no longer symmetri-
cally positioned, due to the presence of diagonal and off-diagonal disorder.
The corresponding normalised IDOS can be found in Fig. 5.4.
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Figure 5.3: Eigenspectra (left) and DOS(right) of unmutated DNA homopolymers.
First row: ideal G14, second row: ideal A15, third row: natural G14, fourth row: natural
A15. The geometries of the natural sequences G14 and A15 have been extracted from
Bioinformatics (RCSB) Protein Data Bank (www.rcsb.org) [accession numbers 4WZW
and 6VAA, respectively] from the original Refs. [239] and [240], respectively. k is the
eigenenergy index.
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Figure 5.4: Normalized IDOS of the unmutated DNA sequences depicted in Fig. 5.3.
Upper panels: ideal, lower panels: natural, left panels: G14, right panels: A15.

B. Mutated sequences
i) Point substitution mutations.
The transition G ↔ A occurs by introducing A instead of G in G. . . poly-
mers: the pyrimidine strand still contains only cytosines, but in the purine
strand we replace guanines with adenines. Hence, the replaced base pairs
are A-C instead of G-C. When such mismatches are introduced, the respec-
tive interaction integrals are modified, according the procedure described
above, i.e., using the input geometry and LCAO with all valence orbitals
of all atoms [27]. The eigenspectra and the corresponding DOS for the
studied ideal and natural G14 sequences with 7 A-C mismatch mutations,
randomly positioned in the sequence, are presented in Fig. 5.5. The cor-
responding normalised IDOS can be found in Fig. 5.6. In other words,
the purine strand contains 7 G and 7 A randomly distributed, while, the
pyrimidine strand still contains 14 C. Comparing Fig. 5.3 with Fig. 5.5,
we observe that apart from the increased irregularity of the mutated se-
quences, there is roughly a movement of the mean value of eigenenergies
from around EG-C towards around EA-C (cf. also Table 2.4). It can be ob-
served that the number of levels close to EA-C is increased. In particular,
the natural mutated sequence displays a high density of levels closer to
both EG-C and EA-C. This can also be understood by inspecting the IDOS,
i.e., by comparing Fig. 5.4 with Fig. 5.6.
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Figure 5.5: Eigenspectra and DOS of initially G14 sequences, but with 7 A-C mismatch
mutations, randomly positioned in the sequence. The purine strand contains 7 G and 7
A randomly distributed, while, the pyrimidine strand still contains 14 C. Upper: ideal
polymers, lower: natural polymers. This figure should be compared with Fig. 5.3.
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Figure 5.6: Normalized IDOS of initially G14 sequences, but with 7 A-C mismatch
mutations, randomly positioned in the sequence. The purine strand contains 7 G and
7 A randomly distributed, while, the pyrimidine strand still contains 14 C. Left: ideal
polymers, right: natural polymers. This figure should be compared with the left part
of Fig. 5.4.

ii) Short tandem repeat (STR) expansions.
We examine four important cases of STR expansions: (a) Huntington's dis-
ease, (b) Kennedy's disease, (c) Spinocerebellar ataxia 6, (d) Spinocerebel-
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lar ataxia 7. The complete sequences, including primers [241], used in these
examples are (a) Huntington's disease: AAGTCCTTC(CAG)100CAACA-
GCCG, (b) Kennedy's disease: CTGCTGCTG(CAG)45CAAGAGACT,
(c) Spinocerebellar ataxia 6: GGGCCCCCG(CAG)30GCGGTGGCC, (d)
Spinocerebellar ataxia 7: GCCGCCCGG(CAG)100CCGCCGCCT. The ei-
genspectra and corresponding DOS for the studied sequences with STR
expansion mutations are presented in Fig. 5.8. These show two subbands
around the on-site energies EG-C = −8.30 eV and EA-T = −8.49 eV, plus
scattered features due to the presence of primers. The corresponding nor-
malised IDOS can be found in Fig. 5.7.
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Figure 5.7: IDOS of the studied DNA sequences with STR expansion mutations. (a)
Upper left: Huntington’s disease with 100 STR expansions, (b) upper right: Kennedy’s
disease with 45 STR expansions, (c) left lower: Spinocerebellar ataxia 6 with 30 STR
expansions, (d) lower right: Spinocerebellar ataxia 7 with 100 STR expansions.
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Figure 5.8: Eigenspectra and DOS of the studied DNA sequences with STR expansion
mutations. (a) first line: Huntington’s disease with 100 STR expansions, (b) second line:
Kennedy’s disease with 45 STR expansions, (c) third line: Spinocerebellar ataxia 6 with
30 STR expansions, (d) fourth line: Spinocerebellar ataxia 7 with 100 STR expansions.
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5.3.2 Transmission coefficient
For Em we assume that it is either equal to EG−C or EA−T: for ideal or natural

G. . . we take Em = EG−C; for ideal or natural A. . . we take Em = EA−T; for
G. . . sequences containing A-C mutations we use Em = EG−C; for diseases we
still use Em = EG−C. Here, we take |tm| = 0.5 eV, so that the leads' bandwidth
contains all the eigenstates of our sequences, cf. Figs. 5.3, 5.5, 5.8.

We choose tcL and tcR from the ideal and symmetric coupling conditions of
periodic cases of ideal homopolymers G. . . and A. . . , i.e., when dealing with G. . .
or A. . . we take tN equal either to tGG = 0.116 eV or to tAA = 0.038 eV, according
to our TB parametrization [27], employing Eq. (5.4). This procedure results in
tcL = tcR = 0.24 eV for G. . . and 0.14 eV for A. . . . In natural homopolymers
G. . . , we still use tcL = tcR = 0.24 eV. In natural homopolymers A. . . , we still
use tcL = tcR = 0.14 eV. For A-C mismatches in G. . . as well as for diseases, we
still use tcL = tcR = 0.24 eV.

T (E) for the studied ideal and natural DNA sequences, G14 and A15, without
mutations, are presented in Fig. 5.9. In ideal periodic segments, it is expected
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Figure 5.9: The log10(T (E)) of the studied DNA sequences, without mutations. Upper
panels: ideal polymers. There are N−1 peaks with full transmission (left) and N peaks
with full transmission (right). Theory[219] guarantees at least N − 1 peaks. Lower
panels: natural polymers. Left: G14, right: A15.

from theory[219] that full transmission (T (E) = 1) occurs at specific energies, at
least N − 1 in number, which is actually the case in the upper panels of Fig. 5.9
(not all peaks are seen clearly at this scale). The natural sequences have a signif-
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icantly less symmetric profile, and significantly reduced overall transmission, as
expected, because neither the on-site energies nor the interaction integrals are
any more equal, i.e., in natural homopolymers both diagonal and off-diagonal
disorder are present.

In Fig. 5.10, we depict the on-site energies (left) and absolute values of the
interaction integrals (right), together with their mean values, µ, and standard
deviations, σ, of the natural G14 and A15 sequences whose transmission is shown
in the lower panels of Fig. 5.9. The corresponding values of ideal sequences are
also shown, for reference. The mean values and standard deviations (µ, σ) of the
on-site energies, which account for diagonal disorder, are ≈ (−8.304 eV, 0.005
eV) for G14 and (−8.449 eV, 0.004 eV) for A15, while, those of the magnitude of
the interaction integrals, which account for off-diagonal disorder, are (0.040 eV,
0.034 eV) for G14 (0.024 eV, 0.014 eV) for A15. In terms of coefficients of variation
CV = |µ|

σ
, diagonal disorder is small and of comparable magnitude between G14

and A15, i.e., ≈ 0.06% and 0.05%, respectively. On the other hand, off-diagonal
disorder is much larger, i.e., ≈ 85.00% and 58.33%, respectively. Clearly, off-
diagonal disorder is more pronounced in G14. This explains qualitatively the
smaller transmission peaks G14 displays compared to A15 (cf., bottom panels of
Fig. 5.9). Notice that |tn| was used to assess the off-diagonal disorder, since the
spectrum of tridiagonal, irreducible, real, symmetric matrices (as all our matrices
are, within the wire model) does not depend on the signs of their off-diagonal
entries [96].

Figure 5.10: TB parameters for the natural G14 and A15 polymers whose transmission
is shown in the lower panels of Fig. 5.9. Left: On-site energies, En. Right: Absolute val-
ues of interaction parameters, |tn|. Blue (G14) diamonds and red (A15) circles represent
the values of the parameters at each site, continuous lines their mean values, µ, and
shaded areas include the region µ ± σ, where σ is the standard deviation. The values
of parameters for ideal polymers are shown in dashed lines, for reference.

In Figure 5.11 the effect of including zero, one, and two A–C mismatches,
randomly distributed in the sequence, is shown, for ideal and natural G14 seg-
ments. Transmission coefficients, T (E), are also displayed in log-scale (lower
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panels). The randomly positioned mismatches are at the same sites for ideal
and natural sequences. log10(T (E)) for zero A-C mismatch mutations is also
displayed in the left panels of Fig. 5.9. The values of

∫ +∞
−∞ dE T (E) (which act

as a measure of the overall transmission) for the three ideal cases are: 0.3856
eV, 0.0430 eV, and 0.0237 eV for 0, 1, and 2 (A-C) mismatches, respectively.
Hence, in the ideal cases inclusion of more mismatches decreases transmission,
because the sequence homogeneity in terms of on-site energies and interaction
integrals is deteriorated. For the three natural cases, the values of the integrals
are 1.0651 ×10−5 eV, 3.0247 ×10−4 eV, and 2.2113 ×10−4 eV, respectively. In
the natural sequence with zero mismatches there is no homogeneity to be lost
by inserting (A-C) mismatches: the sequences are already disordered. Therefore
it is difficult to expect to characterize natural sequences based only upon T (E).
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Figure 5.11: Transmission coefficient of the studied, initially G14 sequences with zero,
one and two randomly positioned A-C mismatch mutations. Mutations are placed at
the same sites for both ideal and natural sequences. Upper panels: Normal scale, lower
panels: log10(T (E)) scale. Left: ideal polymers, right: natural polymers.

T (E) for ideal and natural G14 sequences with seven A-C mismatch mu-
tations, randomly positioned in the sequence (at the same sites for ideal and
natural sequences), are presented in Fig. 5.12. Fig. 5.12 should therefore be
compared with the left of Fig. 5.9. Including seven mutations, i.e., 50% of the
monomers, the polymer becomes a random binary sequence. We observe an
influence of the inclusion of A-C monomers; there are some lightly conducting
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states closer to EA-C, cf. Table 2.4. However, since Em is positioned at EG−C,
this effect is small.
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Figure 5.12: The log10(T (E)) of the studied, initially G14 sequences, but with seven
A-C mismatch mutations, randomly positioned in the sequence (at the same sites for
ideal and natural sequences). Left: ideal polymers, right: natural polymers.

T (E) for the studied DNA sequences of ideal geometries with STR expansion
mutations are presented in Fig. 5.13. As their DOS suggest (cf. Fig. 5.8), these
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Figure 5.13: The log10(T (E)) of the studied sequences (ideal geometries) with STR
expansion mutations. Upper left: Huntington’s disease with 100 STR expansions, upper
right: Kennedy’s disease with 45 STR expansions, left lower: Spinocerebellar ataxia 6
with 30 STR expansions, lower right: Spinocerebellar ataxia 7 with 100 STR expansions.
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sequences display narrow regions close to EG-C and EA-T within which transmis-
sion is allowed. The relative contribution of each region as well as the overall
transmission profile is different for each sequence, allowing for distinct current-
voltage curves, as it will be seen below.

5.3.3 Current - Voltage curves
The I-V curves of the studied ideal and natural DNA sequences without

mutations are shown in Fig. 5.14, assuming Em = EG−C for G14 and Em = EA−T
for A15. The left panels of Fig. 5.14 are a subset of Fig. 5.2, for Em = EG−C =
−8.3 eV.
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Figure 5.14: The I-V curves of the studied DNA sequences without mutations. Upper:
ideal polymers, lower: natural polymers, left: G14 (with Em = EG−C), right: A15 (with
Em = EA−T).

The order of magnitude of the I-V curves and their shape varies dramatically
when many mutations are included. Hence, we have tried to devise another
physical magnitude that may be used to characterise the I-V curves. This is the
normalised deviation of the I-V from the origin, defined as

NDIV+ =

∫∞
0

dV I(V ) V∫∞
0

dV I(V )
, (5.10)
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for the positive V regime and as

NDIV− =

∫ 0

−∞ dV I(V ) V∫ 0

−∞ dV I(V )
, (5.11)

for the negative V regime. Then, NDIV is defined as

NDIV =

∣∣NDIV+
∣∣+∣∣NDIV−∣∣
2

. (5.12)

Figs. 5.15 and 5.16 display I-V related diagrams of the studied ideal and
natural G14 DNA sequences, respectively, with one A-C mismatch mutation
of varying position (left columns) and with varying number of A-C mismatch
mutations randomly distributed in the sequence (right columns). We sketch the
I-V curves, the log10|I| − V curves (i.e., in logarithmic |I| scale) and the newly
introduced quantity, i.e., the normalised deviation of the I-V from the origin,
NDIV. It can be seen that, for ideal segments, generally, the I-V curves do
not vary significantly with the position of one A-C mismatch in the sequence
(≈ half an order of magnitude) for ideal segments; in natural segments the
position of the mismatch affects the current more significantly (some orders of
magnitude). The variation of the I-V curves becomes much more significant
with increasing the number of A-C mismatches (many orders of magnitude).
As a particular example, we show in Fig. 5.17 the I-V curves of the studied
ideal (left) and natural (right) DNA sequences with 7 A-C mismatch mutations,
randomly inserted in the sequence.
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Figure 5.15: The I-V related diagrams of the studied G14 DNA sequences of ideal
geometry with one A-C mismatch mutation of varying position in the sequence (left
panels) and varying number of A-C mismatch mutations randomly inserted in the se-
quence (right panels). First row: I-V curves, second row: log10|I| − V curves, i.e., in
logarithmic scale, third row: NDIV, i.e., normalised deviation of the I-V curve from the
origin.
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Figure 5.16: The I-V related diagrams of the studied G14 DNA sequences of natural
geometry with one A-C mismatch mutation of varying position in the sequence (left
panels) and varying number of A-C mismatch mutations randomly inserted in the se-
quence (right panels). First row: I-V curves, second row: log10|I| − V curves, i.e., in
logarithmic scale, third row: NDIV, i.e., normalised deviation of the I-V curve from the
origin.
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Figure 5.17: The I-V curves of the studied DNA sequences, initially G14, but with
7 A-C mismatch mutations, randomly inserted in the sequence. Left: ideal polymers,
right: natural polymers.

NDIV in ideal sequences with one A-C mismatch of varying position remains
almost constant; the slope of NDIV versus the A-C site position is close to zero.
However, NDIV in ideal sequences with increasing number of A-C mismatch
mutations does not remain constant; the slope of NDIV versus the number of
A-C mismatch mutations is positive until the number of (A-C)s becomes equal
to the number of (G-C)s. Of course, after that point, the number of (A-C)s
becomes larger than the number of (G-C)s; a further increase of the number of
(A-C)s stabilises the situation. NDIV in natural sequences is similar but with
pronounced slopes, especially when introducing an increasing number of A-C
mismatch mutations. Hence, NDIV is a useful quantity to characterise these
sequences.

In Figs. 5.18 and 5.19 we present the I-V related diagrams of the studied
DNA sequences (ideal geometry) with STR expansion mutations. For all studied
cases, changes in the I-V curves become more pronounced with increasing the
number of STR expansion mutations (i.e., the number of CAG repeats). The
respective NDIV display significant but almost monotonous variations, and can,
therefore, be used to evaluate the number of (CAG) repeats in the sequence.
This behaviour of the NDIV versus the number of CAG repeats suggests that
it can be used to characterise the grade of danger for developing the studied
diseases.
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Figure 5.18: The I-V related diagrams (I-V curves and log10|I| (V ) curves, i.e, in
logarithmic scale) of the studied DNA sequences (ideal geometry) with varying STR
expansions, i.e., with different number of (CAG) triplets. First row: Huntington’s
disease, second row: Kennedy’s disease, third row: Spinocerebellar ataxia 6, fourth row:
Spinocerebellar ataxia 7.
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Figure 5.19: Normalised deviation of the I-V curve from the origin (NDIV) as a
function of the number of (CAG) repeats aka short tandem repeat (STR) expansions.
Upper left panel: Huntington’s disease, upper right panel: Kennedy’s disease, left lower
panel: Spinocerebellar ataxia 6, lower right panel: Spinocerebellar ataxia 7.



6 | CONCLUSiON AND
PERSPECTiVES

The present Ph.D. Thesis aimed to a systematic study of the electronic struc-
ture of DNA molecular wires, as well as of the charge transfer and transport
properties along them, using the LCAO method and a TB wire model. The
computational part for the electronic structure employing all valence orbitals
was implemented entirely by the author. The computational part regarding
charge transfer was a result of a series of additions and modifications made by
the author to already existing programs, implemented within the group “Physics
of Nanosctructures and Biomaterials1”. As for the code used for the charge
transport computations, it was developed by Dr. Konstantinos Lambropoulos,
a member of the aforementioned group, and was optimized by the author in
order to implement computations for mutant sequences. The MD computations
have been delivered by Prof. Rosa di Felice2. Other supportive computational
codes were implemented by the author.

In Chapter 2, we calculated the lowest ionization and excitation energies of
various biologically important molecules, such as adenine and isomers, guanine
and isomers, purine and isomers, thymine, cytosine, pyrimidine and isomers,
uracil and isomers, and other related planar heterocyclic molecules, which are
π-conjugated systems. First, we employed the LCAO method in order to calcu-
late the lowest ionization and excitation energies of the aforementioned “ideal”
(frozen) heterocyclic organic molecules with a biological function, including the
DNA and RNA bases and isomers. We briefly described the MMTS parame-
terization [55] within a simple semi-empirical LCAO approach that takes into
account only the 2pz atomic orbitals, and compared its results with the former
HKS parameterization [62, 63] and with results from ab-initio (post Hartree-
Fock) techniques. In most cases, the MMTS parameterization is more successful
than the HKS parameterization with respect to both the experimental and the
CC results. Then, we introduced a novel parameterization [27] that accounts
for all valence orbitals, i.e., 2s, 2px, 2py, 2pz orbitals for C, N and O atoms and
1s orbital for H atoms. This LCAO approach is more suitable than the stan-
dard LCAO parameterization to investigate non-planar geometries. We predict
ionization and excitation energies with RMSPE 3.65% and 6.49%, respectively,
compared to the experimental values. Based on these errors, we infer that the
proposed computational strategy is an adequate tool for a quick and relatively

1National and Kapodistrian University of Athens, Department of Physics, Section of Con-
densed Matter Physics;

2Department of Physics and Astronomy and Department of Quantitative and Computational
Biology, University of Southern California, Los Angeles, California 90089, United States; CNR-
NANO Modena, 41125 Modena, Italy;
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accurate estimation of the electronic structure for a variety of organic molecules.
We also computed the transition oscillator strengths f in a simplistic approx-
imation, considering point contribution of the corresponding orbitals. Using
the computed energies of the HOMO and LUMO within the proposed LCAO
method, we then evaluated the energy levels of DNA base pairs (A-T, G-C).
Our results are in good agreement with reference data.

In Chapter 3, we have systematically studied all the TB parameters which
are necessary for the description of charge transfer along DNA. We evaluated
the interaction integrals between successive base pairs using all valence orbitals,
for both electrons and holes. We compared our results with interaction inte-
grals evaluated by using the TB model employing only 2pz valence orbitals,
with HKS [62, 63] and MMTS [55] parameterization, and with Ref. [115] where
interaction intergrals from different methods where taken into account. Our
predictions are in good agreement with reference data. The obtained interac-
tion integrals can be used in further studies of charge transfer/transport in DNA
oligomers and polymers.

Having obtained the complete set of TB parameters for charge transfer, we
moved on to employ it for the study of periodic and aperiodic DNA sequences.
First, we comparatively studied the energy structure and the transfer of an
extra carrier, electron or hole, along N monomer periodic polymers, made of
the same monomer, i.e., I1, I2, I4, I6, I8, I10, I20, as well as made of different
monomers, i.e., D2, D4, D6, D8, D10, D20 [97]. The TB wire model used here,
employs only 2pz valence orbitals. We determined various physical quantities:
the HOMO and LUMO eigenspectra and density of states, the HOMO-LUMO
gap, the mean over time probability to find the carrier at each monomer, the
frequency content of carrier transfer, and the pure mean transfer rate k. To
express clearly the frequency content, using the Fourier spectra, we defined two
new physical quantities: the WMF of each monomer and the TWMF of the whole
polymer. We found that, for I polymers, as the repetition unit P increases, all
studied quantities related to charge transfer have the homopolymers as a limit
regarding their efficiency. In the case of D polymers, the limit is the union
of the two related homopolymers. Increasing P , k (from the first to the last
monomer) falls drastically. As for the frequency content of carrier transfer (in
terms of the TWMF), it lies within the THz regime, for both I and D polymers.
Although k(N) is a decreasing function, it can be increased, for the same N ,
by many orders of magnitude with appropriate sequence choice. Finally, the
homopolymers display higher k, hence they are more efficient in terms of electron
and hole transfer.

We found that as the repetition unit increases, in the former case, all studied
quantities related to charge transfer (eigenspectra, DOS, energy gaps, mean over
time probabilities to find the extra carrier at each base pair, TWMFs, pure mean
transfer rates) have the homopolymers as a limit regarding their efficiency, while,
in the latter case, the limit is the union of the two possible homopolymers.

Subsequently, we systematically studied the electronic structure and the co-
herent transfer of an extra carrier, along various categories of binary quasi-
periodic (Fibonacci, Thue-Morse, Double-Period, Rudin-Shapiro) and fractal
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(Cantor Set, Asymmetric Cantor Set) polymers consisting of either the same
monomer (I polymers) or different monomers (D polymers) [96]. We used the
same simple TB wire model with parameters extracted by using only 2pz atomic
orbitals (parameterization introduced in [62, 63]). Regarding the energy struc-
ture of the polymers, the eigenenergies lie around the monomers' on-site energies.
We demonstrated that for I polymers, the eigenenergies are always symmetric
relative to the (constant) monomer on-site energy. For both I and D polymers,
in quasi-periodic cases the DOS has rather acute subbands, while in fractal cases
it is fragmented and spiky. D polymers pose smaller HOMO-LUMO gaps than
I polymers and their band limits lie within the energy regions defined by the
respective limits of I polymers. As for the mean over time probabilities, they
are significant only rather close to the first monomer, although in some cases
we observe non-negligible probabilities at more distant monomers. For D poly-
mers, the mean over time probabilities are generally negligible further than the
first monomer. This situation in aperiodic polymers, where the mean over time
probabilities generally decline a little away from the site where the carrier was
initially placed, is in contrast to the situation in periodic polymers [97, 106, 116],
where, generally, non-negligible probabilities exist at distant sites.

We, as well, investigated the frequency content of coherent extra carrier
transfer via the TWMF of the polymer, using the WMF of the Fourier spectra
that correspond to the probabilities to find the carrier at each monomer. In
all cases, the TWMF lies in the THz regime, ≈ 10−2 − 102 THz, and gener-
ally stabilizes after a few generations. This is different from various cases of
periodic I and D polymers [97], where the TWMFs were found in the region
≈ 100−102 THz. The study of the pure mean transfer rates, k(N), shows that I
polymers, which are simpler cases in terms of energy intricacy, are more efficient
than D polymers regarding coherent hole and electron transfer. Furthermore, a
random shuffle of a quasi-periodic or fractal monomer sequence destroys the de-
terministic character of its construction rules, thus leading to vanishing transfer
rates. Comparison with the experiment, revealed that large variations of the TB
parameters are expected in real situations, hence modifications are necessary.
Using a modified parameterization, we were able to find hole pure mean trans-
fer rates k of similar magnitude with experimental transfer rates K obtained by
time-resolved spectroscopy.

Comparing periodic [97] and aperiodic polymers reveals that although gen-
erally periodic polymers are more efficient in terms of charge transfer, specific
aperiodic polymers can be better than periodic ones [96]. However, the struc-
turally simplest periodic polymers, i.e., the homopolymers [97], represent an
unreachable limit for all aperiodic polymers.

Subsequently, we were interested to address the impact of structural flexi-
bility (dynamics) on the electronic structure and charge transfer ability of B-
DNA [18, 27]. To this end, in Chapter 4, we applied our LCAO method to 20
AA and GG dimers, extracted from representative structures in a classical MD
trajectory of a 20mer. For all these systems, we calculated the difference between
the on-site energies ∆ and the interaction parameters t, as well as the maximum
transfer percentage between the two monomers of a dimer p. We found that the
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values of ∆ and p are significantly affected by geometrical changes. Nevertheless,
in the majority of the studied dimers, the maximum transfer percentage is very
close to unity. RT-TDDFT results show that structural changes affect the DNA
charge transfer properties [18], such as the time evolution of the probability to
find the carrier at each monomer, its mean value and the maximum transfer
percentage. Our study examines and quantifies the impact structural changes
have on the time evolution of the hole population, which is one possible physical
quantity to characterize charge transfer. In brief, charge transfer in AA and GG
dimers, although affected by structural variability, remains significant, on the
average. The TB results for the periods T and the maximum transfer percent-
ages p were compared with those obtained by RT-TDDFT. Using the TB method
employing only 2pz orbitals, quantitative agreement could not be reached but
a qualitative assessment of the RT-TDDFT results is possible. Nevertheless,
the TB method employing all valence orbitals gives results with similar trends
for the transfer integrals as with DFT method, which is a promising result for
accurate and less computationally costly parameter calculations.

We suggest that the proposed methodology can be used in a high-throughput
manner to characterize dynamical effects on charge transfer in organic polymers
constituted of heterocyclic building blocks. Our cost-effective simple method is
suitable for very fast computations of electronic structure and transfer integrals.
It can greatly facilitate charge transfer calculations, illuminating its fundamental
mechanisms, in sequences of arbitrary geometry taken, e.g., by MD simulations,
as far as purines, pyrimidines, and similar molecules are the constituents. Al-
though we took only valence orbitals for carbon, nitrogen, oxygen, and hydrogen
into account, this approach could be generalized to include other atomic species
and orbitals.

Chapter 5 of the present Thesis was devoted to the investigation of charge
transport properties of DNA, and more specifically to the effect of two types of
mutations: point substitution transitions and STR expansions. We focused on
the following physical quantities: eigenspectra, density of states, transmission
coefficients and current-voltage curves. Both ideal (textbook geometry) and nat-
ural (naturally distorted, geometry from databases) sequences were considered.
Once again, the TB wire model utilizing all valence orbitals was recruited in
order to include the structural variability effects, in conjunction with a transfer
matrix technique. The results point out interesting features in all the aforemen-
tioned physical quantities that discriminate mutated from unmutated sequences.

The most experimentally relevant quantities are the I-V curves. Their char-
acteristics, when introducing mutations, change, rather strongly. Since both
the order of magnitude and the shape of the I-V curves varies when introducing
mutations, the Normalized Deviation of the I-V curve from the origin (NDIV)
was defined to make things clearer. In ideal sequences with one A-C mismatch
of varying position, the NDIV remains almost constant: its slope versus the
mismatch position is close to zero. However, in ideal sequences with increas-
ing number of A-C mismatch mutations, the NDIV varies. Its slope versus the
number of A-C mismatch mutations is positive, until the number of (A-C)s be-
comes equal to the number of (G-C)s. After that point, since the number of
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(A-C)s becomes larger than the number of (G-C)s, a further increase of the
number of (A-C)s stabilises the situation. NDIV in natural sequences is similar
but with pronounced slopes, especially when introducing an increasing number
of A-C mismatch mutations. Hence, NDIV is a useful quantity to characterise
these sequences. As far as the STR expansions are concerned, although dra-
matic changes in the I-V curves occur for all studied cases as the number of
CAG repeats increases, NDIV shows significant but almost monotonous varia-
tion. Therefore, it can be used to evaluate the number of (CAG) repeats in the
sequence, and so the NDIV can be used to characterise the grade of danger for
developing the studied diseases. Overall, the NDIV is generally insensitive to
the position of a point mutation, but rather sensitive to the number of point
mutations and STR expansion mutations.

Transitions of C ↔ T exchange have not been included because their effects
could not be properly grasped within the wire model. These mutations could be
properly studied within the extended ladder model [106], i.e., a TB description
at the single-base level; this will be hopefully done in the future. Transitions are
more likely than transversions (interchange purine ↔ pyrimidine), because it is
easier to substitute a single ring by another single ring than a double ring for a
single ring or vice versa. To study transversions, a careful geometry optimization
is necessary.

Another category of mutations is that of germline mutations [242], i.e., a
gene change in a reproductive cell that becomes incorporated into the DNA of
every cell in the body of the offspring. This way the mutation can be passed
from parent to offspring, and is, therefore, hereditary. This could be the subject
of a future study, as well.

All diseases studied in this Ph.D. Thesis, have the same triplet motif, i.e.
(CAG)n, between 9 base pairs at the start and other 9 base pairs at the other
end (primers). Of course, the primers are different for each disease, but they
only contain 18 base pairs altogether, which is not a large number when dealing
with a sequence of 180 or 300 base pairs. Under these conditions, it is not safe to
draw direct conclusions regarding the identity of the disease. This issue could be
possibly tackled by including larger primers, which would produce much more
distinctive DOS or IDOS features and allow for sequence recognition. Another
perspective would be to consider, e.g., a 300 base-pair sequence and change both
n and the length of primers, while keeping the same number of total base pairs
(e.g., 300). These different perspectives could hopefully be included in future
work.

Overall, the interplay between periodicity and aperiodicity in biology [243]
is a vast area of extreme interest to us and novel methods must be devised
to explore it. In the present Ph.D. Thesis, DNA was considered as a proto-
type system, as far as it provides the opportunity to construct easily different
polymers by combining a given number of monomers. As we already demon-
strated, charge transport and transfer properties of DNA are strongly sequence-
dependent. Additionally, considering its fairly large persistent length, one can
assume the reason why DNA is a promising candidate as an element of nano-
circuits and relevant applications.



APPENDiCES

A SCHRÖDiNGER EQUATiON AND HAMiL-
TONiAN MATRiX ELEMENTS

The general formula of time-dependent Schrödinger equation in one dimen-
sion is:

ih̄
∂

∂t
|ψ(t)⟩ = Ĥ|ψ(t)⟩ ⇒ (1)

ih̄
∂

∂t
⟨x|ψ(t)⟩ = ⟨x|Ĥ|ψ(t)⟩ ⇒ (2)

ih̄
∂

∂t
⟨x|ψ(t)⟩ =

∫
dx′⟨x|Ĥ|x′⟩⟨x′|ψ(t)⟩ ⇒ (3)

ih̄
∂

∂t
ψ(x, t) =

∫
dx′Ĥ(

h̄

i

∂

∂x
, x)δ(x− x′)ψ(x′, t) ⇒ (4)

ih̄
∂

∂t
ψ(x, t) = Ĥ(

h̄

i

∂

∂x
, x)ψ(x, t). (5)

The above equation stands for the position representation of the time-dependant
Schrödinger equation.

Thus:

Hjµiν = ⟨ϕjµ|Ĥ|ϕiν⟩ = (6)∫
d3r⃗′

∫
d3r⃗⟨ϕjµ|r⃗′⟩⟨r⃗′|Ĥ|r⃗⟩⟨r⃗|ϕiν⟩ =∫

d3r⃗′
∫
d3r⃗ϕjµ(r⃗′)

∗
Ĥδ(r⃗′ − r⃗)ϕiν(r⃗) =∫
d3r⃗ϕjµ(r⃗)

∗Ĥϕiν(r⃗).

and

Sjµiν = ⟨ϕjµ|ϕiν⟩ = (7)∫
d3r⃗′

∫
d3r⃗⟨ϕjµ|r⃗′⟩⟨r⃗′|r⃗⟩⟨r⃗|ϕiν⟩ =∫

d3r⃗′
∫
d3r⃗ϕjµ(r⃗′)

∗
δ(r⃗′ − r⃗)ϕiν(r⃗) =∫
d3r⃗ϕjµ(r⃗)

∗ϕiν(r⃗).

108
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B HAMiLTONiAN DiAGONALiZATiON
Example 1: Diagonalization of the Hamiltonian matrix of the cyclobuta-

diene molecule (chemical formula C4H4), using the LCAO method, employing
only the 2pz valence orbitals.

In Fig. 1 we depict the structure of the cyclobutadiene molecule, consisted
of 4 carbon atoms and 4 hydrogen atoms. The geometry in this particular ex-
ample is taken from the National Institute of Standards and Technology (NIST)
webpage: https://www.nist.gov.

Figure 1: The cyclobutadiene molecule with chemical formula C4H4, consisted of 4
carbon atoms and 4 hydrogen atoms.

In this simplistic LCAO approximation we neglect the hydrogen 1s orbitals
and use only the carbon 2pz orbitals to build the molecular Hamiltonian. Using
the procedure of Subsection 2.1.1, the Hamiltonian matrix reads:

Ĥb =


EC(1) V1,2 0 V1,4
V2,1 EC(2) V2,3 0
0 V3,2 EC(3) V3,4
V4,1 0 V4,3 EC(4)

 . (8)

Employing the MMTS parameterization [55], we get:

Ĥb =


−6.56 −3.29 0 −2.35
−3.29 −6.56 −2.35 0

0 −2.35 −6.56 −3.29
−2.35 0 −3.29 −6.56

 . (9)

At this point we diagonalize the above matrix using the eig command in MAT-
LAB programming language, using LAPACK functions. This way we obtain the

https://www.nist.gov
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energy eigenvalues

Eb
k =


−12.21
−7.50
−5.62
−0.91

 , (10)

of which Eb
HOMO = −7.50 and Eb

LUMO = −5.61. We also obtain the eigenvector
matrix

Cb
k =


−0.50 0.50 −0.50 0.50
−0.50 0.50 0.50 −0.50
−0.50 −0.50 0.50 0.50
−0.50 −0.50 −0.50 −0.50

 , (11)

of which

Cb
HOMO =


0.50
0.50
−0.50
−0.50

 , (12)

and

Cb
LUMO =


−0.50
0.50
0.50
−0.50

 . (13)

Example 2: Diagonalization of the Hamiltonian matrix of the cyclobutadi-
ene molecule (chemical formula C4H4), using the LCAO method, employing all
valence orbitals.

In this LCAO approximation we use all valence orbitals, that means, the hy-
drogen 1s orbitals and the carbon 2s, 2px, 2py, 2pz orbitals to build the molecular
Hamiltonian. Using the procedure of Subsection 2.1.2, the Hamiltonian matrix
reads:
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Ĥb =



EC(2s)(1) 0 0 0 Vss(1,2) Vsx(1,2) Vsy(1,2) Vsz(1,2) 0 0 0 0 Vss(1,4) Vsx(1,4) Vsy(1,4) Vsz(1,4) Vss(1,5) 0 0 0
0 EC(2p)(1) 0 0 Vxs(1,2) Vxx(1,2) Vxy(1,2) Vxz(1,2) 0 0 0 0 Vxs(1,4) Vxx(1,4) Vxy(1,4) Vxz(1,4) Vxs(1,5) 0 0 0
0 0 EC(2p)(1) 0 Vys(1,2) Vyx(1,2) Vyy(1,2) Vyz(1,2) 0 0 0 0 Vys(1,4) Vyx(1,4) Vyy(1,4) Vyz(1,4) Vys(1,5) 0 0 0
0 0 0 EC(2p)(1) Vzs(1,2) Vzx(1,2) Vzy(1,2) Vzz(1,2) 0 0 0 0 Vzs(1,4) Vzx(1,4)6 Vzy(1,4) Vzz(1,4) Vzs(1,5) 0 0 0

Vss(2,1) Vsx(2,1) Vsy(2,1) Vsz(2,1) EC(2s)(2) 0 0 0 Vss(2,3) Vsx(2,3) Vsy(2,3) Vsz(2,3) 0 0 0 0 0 Vss(2,6) 0 0
Vxs(2,1) Vxx(2,1) Vxy(2,1) Vxz(2,1) 0 EC(2p)(2) 0 0 Vxs(2,3) Vxx(2,3) Vxy(2,3) Vxz(2,3) 0 0 0 0 0 Vxs(2,6) 0 0
Vys(2,1) Vyx(2,1) Vyy(2,1) Vyz(2,1) 0 0 EC(2p)(2) 0 Vys(2,3) Vyx(2,3) Vyy(2,3) Vyz(2,3) 0 0 0 0 0 Vys(2,6) 0 0
Vzs(2,1) Vzx(2,1) Vzy(2,1) Vzz(2,1) 0 0 0 EC(2p)(2) Vzs(2,3) Vzx(2,3) Vzy(2,3) Vzz(2,3) 0 0 0 0 0 Vzs(2,6) 0 0

0 0 0 0 Vss(3,2) Vsx(3,2) Vsy(3,2) Vsz(3,2) EC(2s)(3) 0 0 0 Vss(3,4) Vsx(3,4) Vsy(3,4) Vsz(3,4) 0 0 Vss(3,7) 0
0 0 0 0 Vxs(3,2) Vxx(3,2) Vxy(3,2) Vxz(3,2) 0 EC(2p)(3) 0 0 Vxs(3,2) Vxx(3,4) Vxy(3,4) Vxz(3,4) 0 0 Vxs(3,7) 0
0 0 0 0 Vys(3,2) Vyx(3,2) Vyy(3,2) Vyz(3,2) 0 0 EC(2p)(3) 0 Vys(3,4) Vyx(3,4) Vyy(3,4) Vyz(3,4) 0 0 Vys(3,7) 0
0 0 0 0 Vzs(3,2) Vzx(3,2) Vzy(3,2) Vzz(3,2) 0 0 0 EC(2p)(3) Vzs(3,4) Vzx(3,4) Vzy(3,4) Vzz(3,4) 0 0 Vzs(3,7) 0

Vss(4,1) Vsx(4,1) Vsy(4,1) Vsz(4,1) 0 0 0 0 Vss(4,3) Vsx(4,3) Vsy(4,3) Vsz(4,3) EC(2s)(4) 0 0 0 0 0 0 Vss(4,8)
Vxs(4,1) Vxx(4,1) Vxy(4,1) Vxz(4,1) 0 0 0 0 Vxs(4,3) Vxx(4,3) Vxy(4,3) Vxz(4,3) 0 EC(2p)(4) 0 0 0 0 0 Vxs(4,8)
Vys(4,1) Vyx(4,1) Vyy(4,1) Vyz(4,1) 0 0 0 0 Vys(4,3) Vyx(4,3) Vyy(4,3) Vyz(4,3) 0 0 EC(2p)(4) 0 0 0 0 Vys(4,8)
Vzs(4,1) Vzx(4,1) Vzy(4,1) Vzz(4,1) 0 0 0 0 Vzs(4,3) Vzx(4,3) Vzy(4,3) Vzz(4,3) 0 0 0 EC(2p)(4) 0 0 0 Vzs(4,8)
Vss(5,1) Vsx(5,1) Vsy(5,1) Vsz(5,1) 0 0 0 0 0 0 0 0 0 0 0 0 EH(1s)(5) 0 0 0

0 0 0 0 Vss(6,1) Vsx(6,1) Vsy(6,1) Vsz(6,1) 0 0 0 0 0 0 0 0 0 EH(1s)(6) 0 0
0 0 0 0 0 0 0 0 Vss(7,1) Vsx(7,1) Vsy(7,1) Vsz(7,1) 0 0 0 0 0 0 EH(1s)(7) 0
0 0 0 0 0 0 0 0 0 0 0 0 Vss(8,1) Vsx(8,1) Vsy(8,1) Vsz(8,1) 0 0 0 EH(1s)(8)




EC(2s)(1) 0 0 0 Vss(1,2) Vsx(1,2) Vsy(1,2) Vsz(1,2) 0 0 0 0 Vss(1,4) Vsx(1,4) Vsy(1,4) Vsz(1,4) Vss(1,5) 0 0 0
0 EC(2p)(1) 0 0 Vxs(1,2) Vxx(1,2) Vxy(1,2) Vxz(1,2) 0 0 0 0 Vxs(1,4) Vxx(1,4) Vxy(1,4) Vxz(1,4) Vxs(1,5) 0 0 0
0 0 EC(2p)(1) 0 Vys(1,2) Vyx(1,2) Vyy(1,2) Vyz(1,2) 0 0 0 0 Vys(1,4) Vyx(1,4) Vyy(1,4) Vyz(1,4) Vys(1,5) 0 0 0
0 0 0 EC(2p)(1) Vzs(1,2) Vzx(1,2) Vzy(1,2) Vzz(1,2) 0 0 0 0 Vzs(1,4) Vzx(1,4)6 Vzy(1,4) Vzz(1,4) Vzs(1,5) 0 0 0

Vss(2,1) Vsx(2,1) Vsy(2,1) Vsz(2,1) EC(2s)(2) 0 0 0 Vss(2,3) Vsx(2,3) Vsy(2,3) Vsz(2,3) 0 0 0 0 0 Vss(2,6) 0 0
Vxs(2,1) Vxx(2,1) Vxy(2,1) Vxz(2,1) 0 EC(2p)(2) 0 0 Vxs(2,3) Vxx(2,3) Vxy(2,3) Vxz(2,3) 0 0 0 0 0 Vxs(2,6) 0 0
Vys(2,1) Vyx(2,1) Vyy(2,1) Vyz(2,1) 0 0 EC(2p)(2) 0 Vys(2,3) Vyx(2,3) Vyy(2,3) Vyz(2,3) 0 0 0 0 0 Vys(2,6) 0 0
Vzs(2,1) Vzx(2,1) Vzy(2,1) Vzz(2,1) 0 0 0 EC(2p)(2) Vzs(2,3) Vzx(2,3) Vzy(2,3) Vzz(2,3) 0 0 0 0 0 Vzs(2,6) 0 0

0 0 0 0 Vss(3,2) Vsx(3,2) Vsy(3,2) Vsz(3,2) EC(2s)(3) 0 0 0 Vss(3,4) Vsx(3,4) Vsy(3,4) Vsz(3,4) 0 0 Vss(3,7) 0
0 0 0 0 Vxs(3,2) Vxx(3,2) Vxy(3,2) Vxz(3,2) 0 EC(2p)(3) 0 0 Vxs(3,2) Vxx(3,4) Vxy(3,4) Vxz(3,4) 0 0 Vxs(3,7) 0
0 0 0 0 Vys(3,2) Vyx(3,2) Vyy(3,2) Vyz(3,2) 0 0 EC(2p)(3) 0 Vys(3,4) Vyx(3,4) Vyy(3,4) Vyz(3,4) 0 0 Vys(3,7) 0
0 0 0 0 Vzs(3,2) Vzx(3,2) Vzy(3,2) Vzz(3,2) 0 0 0 EC(2p)(3) Vzs(3,4) Vzx(3,4) Vzy(3,4) Vzz(3,4) 0 0 Vzs(3,7) 0

Vss(4,1) Vsx(4,1) Vsy(4,1) Vsz(4,1) 0 0 0 0 Vss(4,3) Vsx(4,3) Vsy(4,3) Vsz(4,3) EC(2s)(4) 0 0 0 0 0 0 Vss(4,8)
Vxs(4,1) Vxx(4,1) Vxy(4,1) Vxz(4,1) 0 0 0 0 Vxs(4,3) Vxx(4,3) Vxy(4,3) Vxz(4,3) 0 EC(2p)(4) 0 0 0 0 0 Vxs(4,8)
Vys(4,1) Vyx(4,1) Vyy(4,1) Vyz(4,1) 0 0 0 0 Vys(4,3) Vyx(4,3) Vyy(4,3) Vyz(4,3) 0 0 EC(2p)(4) 0 0 0 0 Vys(4,8)
Vzs(4,1) Vzx(4,1) Vzy(4,1) Vzz(4,1) 0 0 0 0 Vzs(4,3) Vzx(4,3) Vzy(4,3) Vzz(4,3) 0 0 0 EC(2p)(4) 0 0 0 Vzs(4,8)
Vss(5,1) Vsx(5,1) Vsy(5,1) Vsz(5,1) 0 0 0 0 0 0 0 0 0 0 0 0 EH(1s)(5) 0 0 0

0 0 0 0 Vss(6,1) Vsx(6,1) Vsy(6,1) Vsz(6,1) 0 0 0 0 0 0 0 0 0 EH(1s)(6) 0 0
0 0 0 0 0 0 0 0 Vss(7,1) Vsx(7,1) Vsy(7,1) Vsz(7,1) 0 0 0 0 0 0 EH(1s)(7) 0
0 0 0 0 0 0 0 0 0 0 0 0 Vss(8,1) Vsx(8,1) Vsy(8,1) Vsz(8,1) 0 0 0 EH(1s)(8)



Employing the MSF parameterization [27], we get:
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Ĥb =



−13.18 0 0 0 −5.65 4.25 4.35 0 0 0 0 0 −4.04 3.10 −3.03 −0.28 −5.99 0 0 0
0 −6.70 0 0 −4.25 3.04 6.31 0 0 0 0 0 −3.10 2.36 −4.49 −0.42 6.44 0 0 0
0 0 −6.70 0 −4.35 6.31 3.33 0 0 0 0 0 3.03 −4.49 2.15 0.41 0.13 0 0 0
0 0 0 −6.70 0 0 0 −3.12 0 0 0 0 0.28 −0.42 0.41 −2.19 −0.29 0 0 0

−5.65 −4.25 −4.35 0 −13.18 0 0 0 −4.04 3.10 −3.03 −0.28 0 0 0 0 0 −5.99 0 0
4.25 3.04 6.31 0 0 −6.70 0 0 −3.10 2.36 −4.49 −0.42 0 0 0 0 0 0.02 0 0
4.35 6.31 3.33 0 0 0 −6.70 0 3.03 −4.49 2.15 0.41 0 0 0 0 0 −6.44 0 0

0 0 0 −3.12 0 0 0 −6.70 0.28 −0.42 0.41 −2.19 0 0 0 0 0 −0.29 0 0
0 0 0 0 −4.04 −3.10 3.03 0.28 −13.18 0 0 0 −5.65 −4.25 −4.35 0 0 0 −5.99 0
0 0 0 0 3.10 2.36 −4.49 −0.42 0 −6.70 0 0 4.25 3.04 6.31 0 0 0 −6.44 0
0 0 0 0 −3.03 −4.49 2.15 0.41 0 0 −6.70 0 4.35 6.31 3.34 0 0 0 −0.13 0
0 0 0 0 −0.28 −0.42 0.41 −2.19 0 0 0 −6.70 0 0 0 −3.12 0 0 0.29 0

−4.04 −3.10 3.03 0.28 0 0 0 0 −5.65 4.25 4.35 0 −13.18 0 0 0 0 0 0 −5.99
3.10 2.36 −4.49 −0.42 0 0 0 0 −4.25 3.04 6.31 0 0 −6.70 0 0 0 0 0 −0.02

−3.03 −4.49 2.15 0.41 0 0 0 0 −4.35 6.31 3.34 0 0 0 −6.70 0 0 0 0 6.44
−0.28 −0.42 0.41 −2.19 0 0 0 0 0 0 0 −3.12 0 0 0 −6.70 0 0 0 0.29
−5.99 6.44 0.13 −0.29 0 0 0 0 0 0 0 0 0 0 0 0 −13.64 0 0 0

0 0 0 0 −5.99 0.02 −6.44 −0.29 0 0 0 0 0 0 0 0 0 −13.64 0 0
0 0 0 0 0 0 0 0 −5.99 −6.44 −0.13 0.29 0 0 0 0 0 0 −13.64 0
0 0 0 0 0 0 0 0 0 0 0 0 −5.99 −0.02 6.44 0.29 0 0 0 −13.64




−13.18 0 0 0 −5.65 4.25 4.35 0 0 0 0 0 −4.04 3.10 −3.03 −0.28 −5.99 0 0 0
0 −6.70 0 0 −4.25 3.04 6.31 0 0 0 0 0 −3.10 2.36 −4.49 −0.42 6.44 0 0 0
0 0 −6.70 0 −4.35 6.31 3.33 0 0 0 0 0 3.03 −4.49 2.15 0.41 0.13 0 0 0
0 0 0 −6.70 0 0 0 −3.12 0 0 0 0 0.28 −0.42 0.41 −2.19 −0.29 0 0 0

−5.65 −4.25 −4.35 0 −13.18 0 0 0 −4.04 3.10 −3.03 −0.28 0 0 0 0 0 −5.99 0 0
4.25 3.04 6.31 0 0 −6.70 0 0 −3.10 2.36 −4.49 −0.42 0 0 0 0 0 0.02 0 0
4.35 6.31 3.33 0 0 0 −6.70 0 3.03 −4.49 2.15 0.41 0 0 0 0 0 −6.44 0 0

0 0 0 −3.12 0 0 0 −6.70 0.28 −0.42 0.41 −2.19 0 0 0 0 0 −0.29 0 0
0 0 0 0 −4.04 −3.10 3.03 0.28 −13.18 0 0 0 −5.65 −4.25 −4.35 0 0 0 −5.99 0
0 0 0 0 3.10 2.36 −4.49 −0.42 0 −6.70 0 0 4.25 3.04 6.31 0 0 0 −6.44 0
0 0 0 0 −3.03 −4.49 2.15 0.41 0 0 −6.70 0 4.35 6.31 3.34 0 0 0 −0.13 0
0 0 0 0 −0.28 −0.42 0.41 −2.19 0 0 0 −6.70 0 0 0 −3.12 0 0 0.29 0

−4.04 −3.10 3.03 0.28 0 0 0 0 −5.65 4.25 4.35 0 −13.18 0 0 0 0 0 0 −5.99
3.10 2.36 −4.49 −0.42 0 0 0 0 −4.25 3.04 6.31 0 0 −6.70 0 0 0 0 0 −0.02

−3.03 −4.49 2.15 0.41 0 0 0 0 −4.35 6.31 3.34 0 0 0 −6.70 0 0 0 0 6.44
−0.28 −0.42 0.41 −2.19 0 0 0 0 0 0 0 −3.12 0 0 0 −6.70 0 0 0 0.29
−5.99 6.44 0.13 −0.29 0 0 0 0 0 0 0 0 0 0 0 0 −13.64 0 0 0

0 0 0 0 −5.99 0.02 −6.44 −0.29 0 0 0 0 0 0 0 0 0 −13.64 0 0
0 0 0 0 0 0 0 0 −5.99 −6.44 −0.13 0.29 0 0 0 0 0 0 −13.64 0
0 0 0 0 0 0 0 0 0 0 0 0 −5.99 −0.02 6.44 0.29 0 0 0 −13.64



At this point we diagonalize the above matrix using the eig command in MAT-
LAB programming language, using LAPACK functions. This way we obtain the
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energy eigenvalues

Eb
k =



−28.39
−22.61
−21.63
−21.25
−19.88
−18.82
−17.30
−15.03
−12.06
−7.59
−5.81
−4.23
−3.03
−2.13
−2.12
−1.34
−0.98
3.42
3.82
9.28



, (14)

of which Eb
HOMO = −7.59 eV, Eb

LUMO = −5.81 eV. We also obtain the eigenvector
matrix
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Cb
k =



0.42 −0.38 0.15 −0.31 −0.23 0.09 0.05 −0.23 0 0 0 0.22 −0.30 0.27 0.37 0 −0.10 0.18 0.02 −0.23
0.25 0.01 −0.31 0.13 0.18 0.32 0.06 −0.26 −0.02 0.02 −0.02 −0.29 0.19 −0.28 −0.14 0.02 −0.34 0.30 0.14 −0.42
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−0.26 −0.01 0.31 0.13 0.18 −0.32 −0.05 −0.25 0.02 −0.02 −0.02 0.29 −0.19 −0.28 −0.14 0.02 0.33 0.30 0.13 −0.42
−0.01 −0.01 0.01 0 0.01 0 −0.03 −0.03 −0.50 0.50 0.50 0.01 0 −0.02 0 −0.50 0.03 0 0.03 −0.01
0.42 0.38 0.14 0.31 −0.23 −0.09 0.05 0.23 0 0 0 0.22 0.30 −0.25 0.39 0 0.10 −0.18 0.02 −0.23

−0.25 0.01 0.31 0.13 −0.18 0.32 −0.06 −0.26 −0.02 −0.02 0.02 0.29 0.19 −0.27 0.16 0.02 −0.34 0.30 −0.14 0.42
−0.07 −0.19 0.03 0.10 −0.01 0.24 0.49 0.30 0.02 0.02 −0.02 0.01 0.21 0.14 0.05 −0.02 0.33 0.36 0.48 0.13
0.01 −0.01 −0.01 0 0.01 0 0.03 0.03 −0.50 −0.50 0.50 −0.01 0 0.02 0 0.50 0.03 0 0.03 −0.01
0.42 0.38 0.14 −0.31 0.23 −0.09 0.05 −0.23 0 0 0 0.22 0.30 0.25 −0.39 0 0.10 0.18 −0.02 0.23
0.07 0.19 −0.03 0.10 0 −0.23 −0.49 0.31 −0.02 −0.02 −0.02 0 −0.21 0.15 0.05 −0.02 −0.34 0.35 0.48 0.12
0.26 −0.01 −0.31 0.13 −0.18 −0.32 0.05 −0.25 0.02 0.02 0.02 −0.29 −0.19 −0.27 0.16 0.02 0.33 0.30 −0.13 0.42
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


0.42 −0.38 0.15 −0.31 −0.23 0.09 0.05 −0.23 0 0 0 0.22 −0.30 0.27 0.37 0 −0.10 0.18 0.02 −0.23
0.25 0.01 −0.31 0.13 0.18 0.32 0.06 −0.26 −0.02 0.02 −0.02 −0.29 0.19 −0.28 −0.14 0.02 −0.34 0.30 0.14 −0.42
0.07 −0.19 −0.03 0.10 0.01 0.24 −0.49 0.30 0.02 −0.02 0.02 −0.01 0.21 0.14 −0.06 −0.02 0.33 0.36 −0.48 −0.13

−0.01 −0.01 0.01 0 −0.01 0 −0.03 0.03 −0.50 0.50 −0.50 0.01 0 0.02 0 0.50 0.03 0 −0.03 0.01
0.42 −0.38 0.14 0.31 0.23 0.09 0.05 0.23 0 0 0 0.22 −0.30 −0.27 −0.37 0 −0.10 −0.18 −0.02 0.23

−0.07 0.19 0.03 0.10 0 −0.23 0.49 0.31 −0.02 0.02 0.02 0 −0.21 0.15 −0.05 −0.02 −0.34 0.35 −0.48 −0.12
−0.26 −0.01 0.31 0.13 0.18 −0.32 −0.05 −0.25 0.02 −0.02 −0.02 0.29 −0.19 −0.28 −0.14 0.02 0.33 0.30 0.13 −0.42
−0.01 −0.01 0.01 0 0.01 0 −0.03 −0.03 −0.50 0.50 0.50 0.01 0 −0.02 0 −0.50 0.03 0 0.03 −0.01
0.42 0.38 0.14 0.31 −0.23 −0.09 0.05 0.23 0 0 0 0.22 0.30 −0.25 0.39 0 0.10 −0.18 0.02 −0.23

−0.25 0.01 0.31 0.13 −0.18 0.32 −0.06 −0.26 −0.02 −0.02 0.02 0.29 0.19 −0.27 0.16 0.02 −0.34 0.30 −0.14 0.42
−0.07 −0.19 0.03 0.10 −0.01 0.24 0.49 0.30 0.02 0.02 −0.02 0.01 0.21 0.14 0.05 −0.02 0.33 0.36 0.48 0.13
0.01 −0.01 −0.01 0 0.01 0 0.03 0.03 −0.50 −0.50 0.50 −0.01 0 0.02 0 0.50 0.03 0 0.03 −0.01
0.42 0.38 0.14 −0.31 0.23 −0.09 0.05 −0.23 0 0 0 0.22 0.30 0.25 −0.39 0 0.10 0.18 −0.02 0.23
0.07 0.19 −0.03 0.10 0 −0.23 −0.49 0.31 −0.02 −0.02 −0.02 0 −0.21 0.15 0.05 −0.02 −0.34 0.35 0.48 0.12
0.26 −0.01 −0.31 0.13 −0.18 −0.32 0.05 −0.25 0.02 0.02 0.02 −0.29 −0.19 −0.27 0.16 0.02 0.33 0.30 −0.13 0.42
0.01 −0.01 −0.01 0 −0.01 0 0.03 −0.03 −0.50 −0.50 −0.50 −0.01 0 −0.02 0 −0.50 0.03 0 −0.03 0.01
0.06 −0.26 0.36 −0.36 −0.41 −0.29 −0.01 0.19 0 0 0 −0.34 0.28 −0.30 −0.28 0 −0.12 0.05 0.04 −0.06
0.06 −0.26 0.36 0.36 0.41 −0.29 −0.01 −0.19 0 0 0 −0.34 0.28 0.30 0.28 0 −0.12 −0.05 −0.04 0.06
0.06 0.26 0.36 0.36 −0.41 0.29 −0.01 −0.19 0 0 0 −0.34 −0.28 0.28 −0.29 0 0.12 −0.05 0.04 −0.06
0.06 0.26 0.36 −0.36 0.41 0.29 −0.01 0.19 0 0 0 −0.34 −0.28 −0.28 0.29 0 0.12 0.05 −0.04 0.06



of which
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Cb
HOMO =



0
0.02
−0.02
0.50
0

0.02
−0.02
0.50
0

−0.02
0.02
−0.50

0
−0.02
0.02
−0.50

0
0
0
0



, (15) Cb
LUMO =



0
−0.02
0.02
−0.50

0
0.02
−0.02
0.50
0

0.02
−0.02
0.50
0

−0.02
0.02
−0.50

0
0
0
0



. (16)

Table 1 resumes our results for the two methods, along with the correspond-
ing experimental data, where available.

Table 1: HOMO and LUMO eigenenergies of the cyclobutadiene molecule, obtained us-
ing LCAO with only 2pz valence orbitals and the MMTS parameterization [55] (columns
2 and 3), along with the corresponding values obtained using LCAO with all valence
orbitals and the MSF parameterization [27] (columns 4 and 5). Column 6 contains the
available experimental HOMO value [244].

EMMTS,H [55] EMSF,H [27] Eexp,H [244] EMMTS,L [55] EMSF,L [27] Eexp,L

−7.50 −7.59 −8.24 −5.61 −5.81 -



116 APPENDiCES

C MEAN OVER TiME PROBABiLiTiES FOR
CONSECUTiVE GENERATiONS OF APERi-
ODiC POLYMERS

Figure 2: Mean over time probabilities to find the extra carrier at each monomer
µ = 1, . . . , N , having placed it initially at the first monomer, for some consecutive
generations, for F G(C), TM G(C), DP T(A), RS A(T) polymers (quasi-periodic), for
HOMO (left) and LUMO (right).
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Figure 3: Mean over time probabilities to find the extra carrier at each monomer
µ = 1, . . . , N , having placed it initially at the first monomer, for some consecutive
generations, for CS T(A), ACS C(G) polymers (fractal), for HOMO (left) and LUMO
(right).
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Figure 4: Mean over time probabilities to find the extra carrier at each monomer
µ = 1, . . . , N , having placed it initially at the first monomer, for some consecutive
generations, for F G(A), TM A(G), DP A(G), RS A(G), CS A(G), ACS A(G) polymers
(quasi-periodic), for HOMO (left) and LUMO (right).
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Figure 5: Mean over time probabilities to find the extra carrier at each monomer
µ = 1, . . . , N , having placed it initially at the first monomer, for some consecutive
generations, for CS A(G), ACS A(G) polymers (fractal), for HOMO (left) and LUMO
(right).
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D MEAN TRANSFER RATES FOR MUTATED
SEQUENCES

Figure 6: Pure mean transfer rates k of the studied G14 sequences with one A -
C mismatch mutation of varying position (sites 1, 2, 3) in the sequence. Left: Ideal
polymers, right: natural polymers.

Figure 7: Pure mean transfer rates k of the studied G14 sequences with zero, one,
and two randomly positioned A - C mismatch mutations. Left: Ideal polymers, right:
natural polymers. Mutations are placed at the same sites for both ideal and natural
sequences.
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