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ABSTRACT

While data guides and influences many human activities, the barriers posed by the tools
that are needed to retrieve it, such as Structured Query Language (SQL), make data
inaccessible for many users. To lift these barriers, researchers have been working on
creating natural language interfaces that would allow users to access databases solely
through natural language.

Natural language interfaces employ Text-to-SQL systems that can translate a natural lan-
guage question from the user to an SQL query that can retrieve the data they need. Re-
cently, novel Text-to-SQL systems are adopting deep learning methods with very prom-
ising results. At the same time, several challenges remain open, making this area an act-
ive and flourishing field of research and development. To make real progress in building
Text-to-SQL systems, we need to de-mystify what has been done, understand how and
when each approach can be used, and, finally, identify the research challenges ahead
of us. We present a detailed taxonomy of neural Text-to-SQL systems that will enable a
deeper study of all the parts of such a system. This taxonomy will allow us to make a better
comparison between different approaches, as well as highlight specific challenges in each
step of the process, thus enabling researchers to better strategize their quest towards the
“holy grail” of database accessibility.

However, how can the user verify that the generated SQL query matches their intent if
they are not familiar with SQL? To tackle this problem, a system that can translate the SQL
query back to natural language is needed (also known as an SQL-to-Text system). We
explore the SQL-to-Text problem, we examine its challenges and peculiarities, and present
a Transformer-based model that can generate fluent query explanations. Additionally, we
look into the difficulties of automatically evaluating the performance of such a system and
we examine how different metrics behave in the SQL-to-Text setting.

SUBJECT AREA: Data Democratisation

KEYWORDS: Semantic Parsing, Natural Language Generation, Databases, Deep
Learning, Metric Learning, Machine Translation



NEPIAHWH

Evw Ta dedopéva odnyouv Kal eTTNPEAlOUV TTOAAEG AVOPWTTIVEG dPACTNPIOTNTEG, TA EUTTO-
dla 1Tou TiBevTal atrd T epyaAgia TTou xpelddovTal yia va avaktnBouv, OTTwG n yAwooa
dounuévwy epwTNUATWY (SQL), KGvouv Ta dedopéva un TTPooBAaciya yia TToAAoUG Xph-
oTeg. Na va e¢aleiyouv autd Ta PTTOdIA, Ol EPEUVNTEG £XOUV OTPAYPEI TTPOG TN dnuIoupyia
QIETTAPWYV QUOIKNG YAWooag TTou Ba emTpETToUV TNV TTpdoRacn o€ PBAcelg dedoPEVWV
OTTOKAEIOTIKA PEOW QUOIKAG YAWOOOG.

O1 dIeTTaPEG QUOIKAG YAWOOAG XPNOIUOTTOIOUV CUCTAHATA KEINEvou-oe-SQL Ta oTToia pE-
Tappadouv TN QUOIKH YAWooa atrd TO XpNoTn o€ epwtiuata SQL Ta otroia avakTtouv Ta
oedopuéva Trou ¢nTdcl. Npdogarta, véa oCuaTAUATA KEINEVOU-0E-SQL UIOBETOUV TEXVIKES Ba-
014G padnong, deixvovtag TTOAU UTTooXOUEVA aTToTEAEOATA. TNV idla OTIYUR, TTOAEG TTpO-
KAAOEIG TTAPAUEVOUV AVOIXTEG, KABIOTWVTAG QUTAV TNV TTEPIOXI £va eveEPYO Kal avOnpod
edio yia €pguva Kal avaTrTuén. MNa va meTuxoupe aAnBivr) TTpoodo oTn dnuioupyia ouoTn-
MATWV KeIPévou-oe-SQL, TTpéTTel va SIGAEUKAVOUNE O0a £XoUV TTPOTABEI, va KATaAdBOUE
TTWG Kal TTOTE ITTOPOUNE VA XPNOIMOTTOINOOUUE TNV KABE PEBODO, Kal, TEAIKA, va avayvw-
PICOUE TIG EPEUVNTIKES TTPOKANCEIG TTOU TTAPAMEVOUV UTTPOOTA HaG. MNapoucidaloupe pia
QVOAUTIKA TOIVOUIa VEUPWVIKWY ouoTnUATWY KeluEvou-oe-SQL tTou Ba BonBrioel otnv
BaBuTeEPN HEAETN OAWYV TWV PEPWYV EVOG TETOIOU CUOTANATOG. AUTH N Tagivouia Ba pag €1TI-
TPEWEI va KAVOUUE KOAUTEPEG OUYKPIOEIG HETAEU DIAQOPETIKWY TTPOCEYYIoEWV, AN Kail va
EVTOTTIOOUNE OUYKEKPIPEVES TTPOKANOEIC O€ KABE Pripa TG diadikaciag, BonbwvTag Toug
EPEUVNTEG VA OXEDIAOOUV KOAUTEPA TNV AvACATNOT TOUG TTPOG TO «IEPO OIOKOTTOTNPO» TNG
TTPOORACINOTNTAG OTIG BACEIG DEDOUEVWV.

QoT1O00, TTWG PTTOPEI 0 XPHOTNG va TTAANBeUoEl OTI TO epwTnua SQL TTOU dnuIouPYABNKE
TaIPIAdel e TNV TTPOOECT] Tou €dv Oev gival COIKEIWPEVOG e TRV SQL; MNa TNV avTIHETWTTION
QuTOU TOu TTPORAAUATOG, aTTaITEITAlI £Vva CUCTNUA TTOU PTTOPEI VO HETAPPACEI TO EPWTHHA
SQL o1n guoikA yAwooa (yvwoTd Kal wg ouoTnpa SQL-oe-keipevo). EEepeuvoue 10 TTPO-
BAnua tng petdppaong SQL o€ keipyevo, €CETACOUNE TIG TTPOKANCEIG KAl TIG 1IDIAITEPOTATEG
TOU Kal TTapouciddoupe éva povtélo TTou Baoiletal o€ diktua Transformer TTou ptropei va
ONUIOUPYAOEl EUYAWTTEG ETTECNYNOEIG EpWTNUATWY. ETTITTAé0oV, €€eTAlOUNE TIG OUOKOAIEG
TNG AUTOPATNG ALIOAOYNONG TNG aTTdéd0o0NG £VOG TETOIOU CUCTANOTOG Kal £EETACOUME TTWG
OUMTTEPIPEPOVTAI DIOPOPETIKEG AUTOUATEG WETPIKEG OTA TTAQiCIO TOU TTPORARUATOG UETA-
@paong SQL o¢ Kkeiyevo.

OEMATIKH MNEPIOXH: Anpokpatikotroinon Aedopévwv

AEZEIZ KAEIAIA: Znuaoioloyiky Avaiuaon, Mapaywyr Puoikig MNwooag, Bdoeig
Aedopévwy, BaBid Mdadbnon, Mdbnon Metpikwy, Mnxavikn
MeTtdoppaon
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Data Democratisation with Deep Learning: Structured Query Translation from and to Natural Language

1. INTRODUCTION

In the age of the Digital Revolution, data is now an indispensable commodity that drives
almost all human activities, from business operations to scientific research. Nevertheless,
its explosive volume and increasing complexity make data querying and exploration chal-
lenging even for experts. Existing data query interfaces are either form-based, which are
easy to use but offer limited query capabilities, or low-level tools that allow users to syn-
thesize queries in the underlying database query language (e.g., SQL) but are intended
for the few (e.g., SQL experts). To empower everyone to access, use, understand, and
derive value from data, we need to lift the technical barriers that impede access to data
and eliminate dependency to IT experts. Expressing queries in natural language can open
up data access to everyone. In the words of E. F. Codd: “If we are to satisfy the needs of
casual users of databases we must break the barriers that presently prevent these users
from freely employing their native language” [16].

Towards this direction, there has been an increasing research focus on Natural Language
(NL) Interfaces for Databases (NLIDBs) that allow users to pose queries in natural lan-
guage and translate these queries to the underlying database query language. In par-
ticular, Text-to-SQL (or NL-to-SQL) systems translate queries from NL to SQL. This is a
problem that has troubled researchers for decades [6] and has proven to be notoriously
difficult. However, during the past years the introduction of two large Text-to-SQL datasets
[136, 131] has opened the door to deep learning techniques, giving new life to this problem.
Since then novel neural Text-to-SQL systems are being proposed at a high rate, creating
an exciting and competitive research field. In order to understand the current state of the
art, its capabilities, and its drawbacks, we believe that a systematic study is needed. For
this reason we will present a fine-grained taxonomy of neural Text-to-SQL systems, that
will allow us to analyse each system on its own and make better comparisons between
systems and design choices. In particular, our contributions on the Text-to-SQL problem
are following:

» We present the current state of the deep learning Text-to-SQL landscape, the par-
ticularities of the problem, the benchmarks and evaluation methods that are most
commonly used, and a wide spectrum of the most recent efforts that leverage the
latest and most sophisticated deep learning approaches

* We provide a taxonomy that not only enables a side-by-side comparison of the sys-
tems but also allows decomposing the Text-to-SQL problem in a number of sub-
problems and categorizing existing techniques accordingly

* We provide a detailed discussion of methods used in these systems, taking ad-
vantage of our taxonomy to highlight the advantages and shortcomings of different
design choices

* We discuss in detail open challenges that are highlighted from our study and provide
directions for critical future research

Nevertheless, solving the Text-to-SQL problem is not enough to achieve data democrat-
isation. This is evident if we consider that a non-technical user is not familiar with SQL
and as such will not be able to understand and validate the predictions of a Text-to-SQL
system. In order for the user to be confident about the queries they run on a NLIDB, it
is equally important to explain each query in NL with the use of a SQL-to-Text system.

G. Katsogiannis-Meimarakis 14
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However, the problem of generating query explanations has received significantly less
attention compared to the Text-to-SQL problem. For this reason, our work on this part
is directed towards creating a neural system that can generate query explanations, tak-
ing advantage of the power of Pre-trained Language Models [22, 92]. Additionally, we
discuss the challenges of automatically evaluating query explanations and perform of an
evaluation of current metrics, while also proposing a learned metric for this problem. More
specifically, on the SQL-to-Text problem, our contributions are the following:

* We propose the use of Pre-trained Language Model for generating SQL explana-
tions, and investigate the use of auxiliary training tasks for improving performance,
as well as the use of two adaptation techniques for highly domain-specific databases

* We look into the problem of automatically evaluating explanations of SQL queries,
highlighting the drawbacks of available automatic metrics

* We create the Qx-Paraphrase and Qx-Annotate query explanation datasets, which
we use to compare the already available metrics and to fine-tune a learned metric
for the SQL-to-Text task

» We perform a user evaluation on our system’s predictions so as to have a clear per-
formance indicator both for evaluating our system, but also for evaluating automatic
metrics

» We provide insights on our model’s performance and common errors by examining
predictions from our proposed model

The rest of this thesis is organised as follows: Section 2.1 introduces the Text-to-SQL
problem. Section 2.2 provides a definition and explanation of the Text-to-SQL problem,
including an analysis of the challenges that make the problem so hard. In Section 2.3, we
present the datasets that are currently fueling the creation of deep learning systems. We
also touch on the problem of evaluating system performance based on these benchmarks.
Section 2.4 presents a fine-grained taxonomy for deep learning Text-to-SQL systems, ana-
lysing the most important steps followed by all systems and presenting current work, open
problems and hints for future research for each step. Section 2.5 gives an overview of the
main neural building blocks used for Text-to-SQL systems, as well as their most common
usage. Having established a concrete set of axes for comparing and classifying Text-to-
SQL systems, in Section 2.6, a multitude of neural systems are presented and compared
based on the aforementioned taxonomy, allowing the reader to grasp the progress that has
been made in this domain and the differences between key approaches. In Section 2.7,
we take advantage of the taxonomy, to compare different design choices and provide use-
ful insights for researchers and practitioners that are interested in implementing a novel
Text-to-SQL system. Section 2.8 aims at inspiring practitioners and researchers in the
fields of database systems, natural language processing and deep learning, by shedding
light on open problems that need to be addressed, as well as closely related areas that
could both give and receive benefit from research done in the Text-to-SQL problem.

Moving on to the SQL-to-Text problem, Section 3.1 introduces the SQL-to-Text problem
and Section 3.2 presents related works and compares them to our work. Furthermore,
Section 3.3 presents the problem at hand, highlighting its challenges and Section 3.4
presents our SQL-to-Text system. Section 3.5 presents the benchmarks used and created
in this work and Section 3.6 discusses the available metrics for the SQL-to-Text problem
and their drawbacks, while also proposing a new fine-tuned learned metric for the problem.

G. Katsogiannis-Meimarakis 15
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Additionally, Section 3.7 contains the experiments that were performed to evaluate our
system. Finally, Section 4 concludes the thesis while also providing some directions for
future work.

16

G. Katsogiannis-Meimarakis
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2. THE TEXT-TO-SQL PROBLEM: A SURVEY OF DEEP LEARNING
SYSTEMS

2.1 Introduction

The text-to-SQL problem has been the holy grail of the database community for several
decades [6]. Early efforts [43, 44, 72, 134] rely primarily on the database schema and data
indexes to build the respective SQL query from a NL query. A query answer is defined as
a graph where nodes are the relations that contain the query keywords and edges rep-
resent the joins between them. Parsing-based approaches parse the input question to
understand its grammatical structure, which is then mapped to the structure of the desired
SQL query [64, 50, 84, 111, 122]. Recently, there has been a growing interest in neural
machine translation (NMT) approaches [136, 110, 40] that formulate the text-to-SQL prob-
lem as a language translation problem, and train a neural network on a large amount of
{NL query/SQL} pairs. These approaches have bloomed due to the recent advances in
Deep Learning and Natural Language Processing (NLP), along with the creation of two
large datasets (WikiSQL [136] and Spider [131]) for training text-to-SQL systems.

As neural text-to-SQL systems are popping up “like mushrooms after a rain” with promising
results, an exciting, but, at the same time, highly competitive and fast-paced research
field is opening up. While a growing interest on the subject is shown by various tutorials
[65, 54, 55] and literature reviews [2, 6, 66, 57, 90, 1, 47, 20] presented at top conferences
and journals, an in-depth, systematic study and taxonomy of neural approaches for text-
to-SQL is missing. We believe that in order to make real progress in building text-to-SQL
systems, we need to de-mystify what has been done, understand how and when each
model and approach can be used, and recognize the research challenges ahead of us.
Two earlier works [2, 66] study rule-based approaches that originated from the database
community; our work has a different scope, focusing entirely on deep learning systems.
Additionally, two studies consider both rule-based and neural text-to-SQL systems: [57]
provides a taxonomy of both types of systems and an experimental evaluation based on a
new accuracy metric proposed by the authors, while [90] provides a large-scale overview
of rule-based, neural and conversational NLIDBs. The biggest difference with these works
is that we present an in-depth taxonomy tailored to neural systems and their peculiarities
(while also covering more and newer efforts). Finally, three studies focus on neural text-to-
SQL systems: [1] provides an overview of the neural text-to-SQL landscape, but in a more
bare-bones manner compared to our work, and [47, 20], which are the closest to our work,
since they both attempt to organise the existing neural text-to-SQL approaches. However,
our work goes in greater depth than these works, both by presenting a taxonomy with
additional dimensions, but also by using this taxonomy to analyse and compare different
systems and design choices. We also point the interested reader to recent surveys on
semantic parsing [53] and context-dependent semantic parsing [67], two broader domains
that the text-to-SQL problem is a part of.

In a nutshell, this survey aims at catching up with recent advances in deep learning text-
to-SQL systems and systematically organising all the different techniques that have been
proposed for each step of the translation process. Our objective is to (a) put different
neural text-to-SQL works in perspective, (b) create a fine-grained taxonomy that covers
each step of the neural text-to-SQL pipeline, (¢) explain and organize all the techniques
used for each dimension of the taxonomy, (d) use the taxonomy to compare and high-
light the strengths and weaknesses of different systems and techniques, and (e) highlight
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NLQ
Which actors are 20 years old?
SQL
Text-to-SQL EIEIC_)I?V(I:T elcctor.name
System actor
DB WHERE actor.age = 20

Figure 2.1: The text-to-SQL problem

open challenges and research opportunities for the database and the machine learning
communities. Our study is also relevant to other areas, including the broader area of data
exploration (e.g., natural language explanations, recommendations), entity resolution, and
query optimization, where the methods presented here may be transferred to or inspire
the development of new methods.

2.2 The Text-to-SQL Problem

The text-to-SQL problem can be described as follows:

Given a Natural Language Query (NLQ) on a Relational Database (RDB) with a specific
schema, produce a SQL query equivalent in meaning, which is valid for the said RDB and
that when executed will return results that match the user’s intent.

A NLQ may be expressed as a complete and fluent utterance (e.g., “‘What movies has
Spielberg directed since 2012?”) or it may be just a few keywords (e.g., “ltalian Restaur-
ants in Vienna”). A text-to-SQL example can be seen in Figure 2.1. Translating a NLQ to
SQL hides challenges related to the understanding of the input NL query as well as related
to building the correct (syntactically and semantically) SQL query based on the underlying
database schema.

2.21 NL Challenges

Ambiguity. Natural language is inherently ambiguous, which means that it allows the for-
mulation of expressions that are open to more than one interpretation. There are several
types of ambiguity [4, 80]. We describe the most common ones below.

Lexical ambiguity (or polysemy) refers to a single word having multiple meanings. For
example, “Paris” can be a city or a person.

Syntactic ambiguity refers to a sentence having multiple interpretations based on its syn-
tactic structure. For example, the question “Find all German movie directors” can be
parsed into “directors that have directed German movies” or “directors from Germany that
have directed a movie”.

Semantic ambiguity refers to a sentence with multiple semantic interpretations. For in-
stance, “Are Brad and Angelina married?” may mean they are married to each other or
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separately.

Context-dependent ambiguity refers to a term having different meanings depending on
the query context, the data domain, and the user goals. The most common example
terms are “top” and “best”. Based on the query context, for the query “Who was the best
runner of the marathon?”, the one who completed the race faster (min operation) should
be returned, but when asking “Which was the best nation of the 2004 Olympics?” the one
with the most medals (max operation) is expected. Based on the domain, for the query
‘Return the top movie” on a movie database, “top” may mean based on the number of
ratings collected. On the other hand, for the query “Return the top scorer” on a football
database, “top” refers to the number of goals scored. Based on the user, for a business
analyst, the query “Return the top product” should return the most profitable products,
whereas for a consumer it should return the top-rated products.

Paraphrasing. In natural language, two sentences can have the exact same meaning but
be expressed in two completely different ways. For instance, “How many people live in
Texas?” and “What is the population of Texas?”. Both translate to the same SQL query, but
the second one may actually be easier for a system because it is likely that a “population”
attribute exists in the database schema, and thus, the user intent can be inferred with
high confidence. Paraphrasing includes synonymy where multiple words have the same
meaning (e.g. “movies” and “films”).

Inference. A query may not contain all information needed for a system to fully under-
stand it. The system has to infer the missing information based on the given context. We
distinguish two main types of inference:

Elliptical queries are sentences from which one or more words are omitted but can still be
understood in the context of the sentence’. An example is “Who was the president before
Obama”. The fact that the query refers to US presidents needs to be inferred.

Follow-up questions are common in conversations between humans. We ask a question,
receive an answer, and then ask a follow-up question assuming that the context of the first
question is known. For example, “Q: Which is the capital of Germany?”, “A: Berlin”, “Q:
What about France?”. In the absence of the first question, the second one does not make
sense, but given the query context, it is obvious that it is asking about the capital city of
France.

User mistakes. Spelling errors as well as syntactical or grammatical errors make the
translation problem even more challenging.

2.2.2 SAQL Challenges

SQL Syntax. SQL has a strict syntax, which leads to limited expressivity compared to
natural language. There are queries that are easy to express in natural language, but the
respective SQL query may be complex. For example, the query “Return the movie with
the best rating” maps to a nested SQL query.

Furthermore, while a sentence in natural language may contain some mistakes, and still
be understood by a human, SQL is not that forgiving. An SQL query translated from a NL
query needs to be syntactically and semantically correct in order to be executable over
the underlying data.

Database Structure. The user’s conceptual model of the data, i.e., the entities, their

1

https://en.wikipedia.org/wiki/Ellipsis_(linguistics)
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attributes and relationships that are described in the data, may not match the database
schema, and that poses several challenges.

The vocabulary gap refers to the differences between the vocabulary used by the database
and the one used by the user. For example, in the query “Who was the best actress in
2011?”, “actress” should map to the Actor.name attribute in the database).

Schema ambiguity is when a part of the query may map to more than one database ele-
ment. For example, “model” could refer to car.model or engine.model.

Implicit join operations occur when parts of a query are translated into joins across multiple
relations. For example, “Find the director of the movie “A Beautiful Mind”” entails joins due
to database normalization.

Entity modelling is the problem where a set of entities may be modeled differently, e.g.,
as different tables or as rows (or values) in a single table. For example, in a university
database, every person is either a Student or a Faculty member, so these two relations
suffice. On the other hand, movies have several genres that cannot be stored as different
tables. They are stored in a Genre relation and are connected with movies through a
many-to-many relationship. As a result, similar queries, such as “Find comedies released
in 2018” and “Find students enrolled in 2018” need in fact to be handled differently. The
system maps “comedies” to a value in the Genre table and joins it with the Movie table
whereas it maps “students” to the Student relation.

2.3 Datasets & Evaluation

Table 2.1: An overview of Text-to-SQL Benchmarks and their size in queries and databases

Year Dataset Queries Databases
1994 ATIS [89, 18] 275 1
1996 GeoQuery [133] 525 1
2003 Restaurants [105, 85] 39 1
2014 Academic [64] 179 1
IMDb [122] 111 1
Yelp [122] 68 1
2017 Scholar [50] 396 1
WikiSQL [136] 80,654 24,241
2018 Advising [33] 281 1
Spider [131] 10,181 200
MIMICSQL [113] 10,000 1
2020 SQUALL [100] 11,276 1,679
FIBEN [97] 300 1
Spider-Syn [34] 8,034 160
2021 Spider-DK [35] 535 10
KaggleDBQA [62] 272 8
SEDE [41] 12,023 1

To build a neural text-to-SQL system, it is necessary to consider the available datasets for
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training and evaluation, as well as the evaluation methodology for testing and comparing
its performance to other systems. A text-to-SQL dataset (or benchmark) refers to a set of
NL/SQL query pairs defined over one or more databases.

Early system evaluations did not rely on common datasets, they rather employed a variety
of datasets that combined different databases and query sets of varying size and complex-
ity. In general, the query sets were small and designed in an ad-hoc way by the system
developers, and as a result it was hard to reach meaningful conclusions about the transla-
tion capabilities of a system. Often, the query sets were proprietary and hence not avail-
able to reproduce the experiments. The lack of a common dataset to be used by different
system evaluations and the poor cross-system evaluations impeded a fair system com-
parison and a clear view of the text-to-SQL landscape. In addition to these shortcomings,
training deep learning text-to-SQL systems requires a substantial query set. As a result,
for a long time, the lack of appropriate datasets delayed the adoption of deep learning
techniques for the text-to-SQL problem.

This situation drastically changes with the emergence of WikiSQL [136] and Spider [131],
in 2017 and 2018 respectively. These are the first large-scale, multi-domain benchmarks
that made it possible to train and evaluate neural text-to-SQL systems and provided a
common tool to compare different systems easily. While other benchmarks have followed,
these two remain the most popular ones. Table 2.2 summarizes and compares the two
benchmarks.

This section provides an overview of various text-to-SQL datasets (summarized in Table
2.1), covering either a single or multiple domains, as well as the evaluation methodologies
for comparing the system predictions to the ground truth.

Table 2.2: A comparison of the two most popular text-to-SQL benchmarks: WikiSQL and Spider

WikiSQL Spider

crowd-sourced created by experts

25K Wikipedia tables 200 databases, 138 domains
80K NL questions 10K NL questions
single-table, simple queries complex queries

contains errors higher quality

no query categorization 4 hardness categories

2.3.1 Domain-Specific Text-to-SQL Datasets

Domain-Specific text-to-SQL datasets focus on one domain and typically include a single
database, such as: movies and television series (IMDb [122]), restaurant and shop re-
views (Yelp [122] and Restaurants [105, 85]), academic research (Scholar [50] and Aca-
demic [64]), financial data (Advising [33] and FIBEN [97]), medical data (MIMICSQL [113]),
and questions and answers from Stack Exchange (SEDE [41]).

Interestingly, these datasets have not seen the same widespread use as WikiSQL or
Spider for a number of reasons. Since they focus on a single domain, it is not possible to
argue that a proposed system can be considered a “universal solution” even if it performs
well on a specific domain. Second, their size is relatively small compared to Spider and
WikiSQL, usually not surpassing a thousand examples. Third, most of these datasets do
not have a pre-defined train/dev/test split so that systems trained and evaluated on them
would be compared fairly to one another.

G. Katsogiannis-Meimarakis 21



Data Democratisation with Deep Learning: Structured Query Translation from and to Natural Language

Player No. | Nationality | Position | Years in Toronto | School/Club Team
Leandro Barbosa 20 Brazil Guard 2010-2012 Tilibra
Muggsy Bogues 14 USA Guard 1999-2001 Wake Forest

Jerryd Bayless 5 USA Guard 2010-2012 Arizona

NLQ: What nationality is the player Muggsy Bogues?
SQL: SELECT nationality WHERE player = muggsy bogues

Figure 2.2: An example from the WikiSQL dataset.

! Late 1941

Late 1942

Sept. 1943

Late 1943

Late 1944

1978 Veteran membership

Croatia
Slovenia

7000
2000

48000
4000

78000
6000

122000
34000

150000
38000

Serbia 23000 8000 13000 22000 204000

NLQ: Name the most late 1943 with late 194 in slovenia
SQL: SELECT max(late 1943) WHERE ! late 1941 = slovenia

Figure 2.3: An incoherent example from the WikiSQL dataset.

Even though the generalisation capability of a text-to-SQL model is an important chal-
lenge, a realistic application would most likely require a text-to-SQL system to work with a
single database of a specific domain, or with a few related databases. In such a scenario,
a high performance on a single domain may be even more important than a cross-domain
generalisation capability, and achieving it is very challenging [41].

Furthermore, datasets such as SEDE[41], are made specifically to reflect that SQL quer-
ies in real-life scenarios can be very complex and long; having numerical computations,
variable declarations, date manipulations, and other elements that are not present in the
Spider and WikiSQL datasets. SEDE’s authors demonstrate that the state-of-the-art sys-
tems which achieve high scores on Spider, do not perform as well on SEDE, proving the
necessity for new and more advanced benchmarks.

2.3.2 Cross-Domain Text-to-SQL Datasets

WikiSQL. WikiSQL [136] is a large crowd-sourced dataset for developing natural language
interfaces for relational databases, released along with the Seq2SQL text-to-SQL system.
It contains over 25,000 Wikipedia tables and over 80,000 natural language and SQL ques-
tion pairs created by crowd-sourcing. Each entry in the dataset consists of a table with
its columns, a Natural Language Question (NLQ) and a SQL query. Figure 2.2 shows an
example from the dataset.

The complexity of the SQL queries found in WikiSQL is low because each query is directed
to a single table and not to a relational database and they are do not use any complex SQL
clause such as JOIN, GROUP BY, ORDER BY, UNION, and INTERSECTION. Additionally,
WikiSQL does not allow the selection of multiple columns in a single query or the use of the
asterisk (*) operator. Consequently, the proposed task is much simpler than the ultimate
goal of creating a natural language interface for relational databases.

We must also note that WikiSQL contains multiple errors and ambiguities, which might
hinder the performance of a model trained on it. Figure 2.3 demonstrates an example of
a table incorrectly copied from Wikipedia that was nevertheless used to generate a pair
of a NLQ and a SQL query that, ultimately, make no sense. Research even suggests that
22
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the state-of-the-art systems have reached the upper barrier of accuracy on the task [46].
This is also demonstrated by evaluating human performance on a small proportion of the
dataset.

Spider. Spider [131] is a large-scale complex and cross-domain semantic parsing and
text-to-SQL dataset annotated by 11 Yale students. It contains 200 relational databases
from 138 different domains along with over 10,000 natural language questions and over
5,000 SQL queries. Its queries range from simple to hard, using all the common SQL
elements, including nesting. These characteristics of the dataset along with its high quality,
since it was hand-crafted and re-checked, have led researchers to widely rely on it for
building systems that can generate quite complex SQL queries.

Other Cross-Domain Datasets. Recent cross-domain datasets focus on particular as-
pects of the text-to-SQL problem. Spider-DK [34] extends Spider to explore system cap-
abilities at cross-domain generalization (i.e., robustness to domain-specific vocabulary
across different domains), while Spider-Syn [34] focuses on robustness to synonyms and
different vocabulary. Both datasets highlight very interesting and important requirements
for a text-to-SQL system, and can be used as supplementary benchmarks.

SQUALL [100] is based on a previous dataset named WikiTableQuestions [82], consisting
of NL Questions posed on Wikipedia tables along with the expected answers. In contrast to
WikiSQL, there are no structured queries in the WikiTableQuestions dataset. The authors
of SQUALL have created the corresponding SQL queries for most of the examples in
the WikiTableQuestions dataset, while also providing an alignment between words in the
NLQ and the parts of the SQL query that they refer to. This additional feature could steer
more thorough research on the schema linking and schema ambiguity problems (briefly
mentioned in Section 2.2 and more thoroughly examined in Section 2.4).

Finally, KaggleDBQA [62] is another cross-domain dataset, although of much smaller size,
that has been extracted from Kaggle and features real-world databases taken from the
Web, having all the peculiarities of a DB that are missing from Spider, whose DBs were
created specifically for benchmarking text-to-SQL systems. KaggleDBQA also includes
documentation and metadata for its DBs, posing an interesting research question of how
this additional information could be used to improve the system performance.

2.3.3 Evaluation Metrics

Having a ground truth SQL query for each NLQ enables us to train and evaluate a deep
learning text-to-SQL system on it. In this section, we will present metrics used to evaluate
a text-to-SQL system’s predictions.

String Matching (introduced as Logical Form Accuracy [136]) is the simplest accuracy
metric for text-to-SQL. It considers the ground truth and predicted queries as simple strings
and checks whether they are identical. A match is only found when the predicted query is
written exactly as the ground truth, without taking into account that many parts of a SQL
query can be written in a different order or even in a different but still equivalent way.

Execution Accuracy [136, 131] (or Query Accuracy [13]) is another simple approach for
comparing SQL queries. For each NLQ, both the ground truth and the predicted queries
are executed against the corresponding database (or table) and their results are com-
pared. If the results are the same, then the prediction is considered correct. False posit-
ives can occur when both queries return the same results, but are different on a semantic
level (e.g., when they return empty results or when an aggregation function is applied to
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different columns that happen to return the same result).

Component Matching [131] is proposed in order to obtain a better understanding of which
parts of the SQL query are predicted correctly. For example, we might consider the SE-
LECT column accuracy, i.e., the percentage of the predicted queries that have the same
columns in the SELECT clause as the corresponding ground truth queries. For some
parts, a more sophisticated approach might be necessary to avoid incorrect classifica-
tions. For instance, when comparing the conditions of the WHERE clause, their order
should not be taken into account.

Exact Set Matching [131] (or Query Match Accuracy [120]) considers all the possible
component matches and classifies a prediction as correct if all component matches are
correct (e.g., aggregation function, condition operators, SELECT columns, etc.).

Exact Set Match Without Values is a category in the Spider [131] dataset, that works
in the same way as exact set matching, but does not take into account if the values that
appear in the predicted query are the same as the ones that appear in the gold query. The
reason for this simplification is that predicting the correct values can be very challenging,
especially when these values appear in the NLQ differently to the way they are stored in the
DB (e.g., the word “Greek” might imply a condition such as country=“Greece”). Although
this metric might be considered as common practice in the Spider benchmark, as research
shows [33], disregarding values during evaluation removes an important challenge of the
text-to-SQL problem.

Sub-tree Elements Matching (or Partial Component Match F1 - PCMF1) [41] is a metric
proposed to avoid a score of zero by the exact set match metric, when some parts of
the predicted query are correct. It considers parts of the query such as the SELECT,
WHERE, FROM, etc. clauses and it calculates the F1 score of each clause based on the
precision and recall of the predicted attributes in the clause. The final PCMF1 score of a
predicted query is the average F1 score of all the considered query parts. For example, in
large queries, the system might predict a large part of the query correctly and make some
errors in the WHERE clause. While the exact match metric would assign a score of zero
even for a small mistake, the PCMF1 metric would assign a score relatively close to one,
thus providing a better assessment of the system performance.

A more thorough methodology for evaluating the semantic equivalence of two SQL queries
has been proposed by [57], but has yet to be adopted by any deep learning systems.
This approach starts by comparing the execution result of the two queries, as well as
their results on additional generated data, in case the original database contains a small
amount of data. Furthermore, a prover is used to provide a proof of equivalence between
the queries or a counter example in the case of non-equivalence. If the prover cannot
work for the given queries, then a query re-writer is applied on both queries and the re-
written queries’ parse trees are compared. If the re-written parse trees are structurally
identical then the queries are semantically equivalent, otherwise the queries are manually
evaluated by an expert. While this approach could detect matches even if queries are
expressed in fundamentally different ways, the requirement of manual labor as well as the
extra processing requirements it presents, are some of the reasons why it has not seen
widespread use yet.

What metric each system is using greatly depends on the dataset that each system is
created for and aims at entering its leaderboard?3. Specifically, systems that are built for

2https ://yale-1ily.github.io/spider
3https ://github.com/salesforce/WikiSQL
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the WikiSQL dataset, use Logical Form Accuracy and Execution Accuracy, while systems
built for the Spider dataset use Exact Set Matching without Values and Execution Accur-
acy. This strongly indicates the influence that benchmark creators have on the evaluation
strategy of text-to-SQL systems. It also highlights the responsibility of the next benchmark
creators to address the problems of current metrics and include more thorough evaluation
metrics.

2.4 Taxonomy

Despite the fact that deep learning approaches have only recently become popular for
the text-to-SQL problem, numerous systems have already been proposed, that bring a
wide variety of novelties and employ different approaches. Nevertheless, there are key
parts that serve common purposes across almost all systems, which allow us to build a
general model that can help us better understand them. Hence, the goal of this section is
to present an overview of the most important parts of neural text-to-SQL systems as well
as a taxonomy of the possible choices in each part.

Figure 2.4 shows an overview of a neural text-to-SQL system. The main input of a text-
to-SQL system is a NL query (NLQ) and the database (DB) that the NLQ is posed on.
The first step, whenever employed, is Schema Linking, which aims at the discovery of
possible mentions of database elements (tables, columns and values) in the NLQ. These
discovered schema links, along with the rest of the inputs, will be fed into the neural net-
work that is responsible for the translation.

The core of this neural network consists of two main parts: the encoder and the decoder.
The encoder takes one or more inputs of variable shapes and transforms them into one
or more internal representations with fixed shapes that are consumed by the decoder.
Additionally, the encoder usually infuses the representation of each input with information
from the rest of the inputs, so as to create a more informed representation that better
captures the instance of the problem at hand. The decoder uses the representations
calculated by the encoder and makes predictions on the most probable SQL query (or
parts of it).

Given that the inputs (NLQ, DB, schema links) are mainly textual, Natural Language Rep-
resentation is responsible for creating an efficient numerical representation that can be
accepted by the encoder. Input Encoding is the process of further structuring the inputs
in a format that can be accepted by the encoder, as well as the choice of an appropriate
encoder network for processing them and producing an internal hidden representation.
Finally, Output Decoding consists of designing the structure of the predictions that the
network will make, as well as choosing the appropriate network for making such predic-
tions (e.g., a SQL query can be viewed as a simple string, or as a structured program
which follows a certain grammar). While some systems perform the NL Representation
and Encoding steps separately (e.g., a representation based on word embeddings which
is then encoded by a LSTM), in some cases, they can be almost indistinguishable (e.g.,
when using BERT [23]). It is even possible for all three steps to be merged into one (e.g.,
when using the TS5 encoder-decoder pre-trained language model [92]). Finally, the neural
training refers to the procedure followed for training the neural network.

The last dimension of the taxonomy is the Output Refinement, which can be applied during
the decoding phase in order to reduce the possibility of errors and to achieve better results.
Note that even though Output Refinement is closely related to Output Decoding and even
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Figure 2.4: Overview of a neural text-to-SQL system, based on the proposed taxonomy

interacts with the decoder, it is not a part of the neural network. As such, in most cases,
it is possible to add or remove an output refinement technique once the system has been
created and trained.

241 Schema Linking

To better grasp the concept of schema linking, let us think of how a human, asked to write
a SQL query from a NLQ, would start by looking at the underlying database and by trying
to identify how the entities mentioned in the NL are stored in the database. In other words,
they would attempt to link parts of the NLQ to the database elements they are referring to.
Intuitively, a text-to-SQL system could benefit by doing the same when translating a NLQ.

More formally, schema linking is the process of discovering which parts of the NLQ refer to
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Figure 2.5: System Categorisation on the taxonomy dimensions of Natural Language
Representation, Input Encoding, Output Decoding, Neural Training and Output Refinement
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which database elements. The NLQ parts that could possibly refer to a database element
are called query candidates, while the database elements that could occur in the NLQ are
called database candidates. Query candidates can be words or phrases, while database
candidates can be tables, columns, and values in the database. A connection between a
query candidate and a database candidate is called a schema link, which can be further
categorized as a table link or column link, when the query candidate maps to a table name
or column name, respectively, and value link, when it matches a value of a column.

Schema linking is very challenging for a variety of reasons. Query and database can-
didates may not use the same vocabulary nor appear in the exact same phrasing. For
example, the phrase “sang by” in the NLQ might refer to the database column “singer”
(same word stem, phrased differently) or “artist” (vocabulary mismatch). This problem is
even more challenging when the NLQ expresses a condition (i.e., a reference to a DB
value) in a different way than how the value is stored in the DB. This is an issue because
in contrast to the table and column names of the DB, the sheer volume of data stored
in a DB prohibits using all DB values as inputs to the system, making it very challenging
for the system to build the correct SQL condition. For example, the word “female” might
imply a condition such as “gender=F”. In this case, besides a schema link between “fe-
male” and the column “gender”, the system must also be given the value as it is stored in
the DB (“F”) as part of the input, in order to use it when constructing the SQL prediction.
Otherwise, it will most likely produce a condition like “gender=female”, which would return
no rows. Due to the volume of a DB, finding value links is not only hard but can be very
computation-expensive.

The schema linking process has two parts. Candidate discovery is the process of ex-
tracting query candidates from the NLQ and database candidates from the underlying
database. Candidate matching is the process of comparing a set of query candidates and
a set of database candidates and establishing the links.

Schema linking enhances the input, and a system can operate without it. Hence, perform-
ing no schema linking is possible too. In fact, while most recent systems incorporate some
form of schema linking in their workflow, earlier ones (e.g., Seq2SQL [136], SQLNet [120])
and even some recent ones (e.g., HydraNet [74], T5+PICARD [95], SeaD [121]) simply
rely on their neural components to make predictions.

2.41.1 Query Candidate Discovery

We first walk through the techniques used for discovering query candidates.

Single Tokens. A simple approach for finding query candidates is to consider all the
single words of the NLQ as query candidates. This is obviously prone to errors as it is
likely that a query candidate spans over multiple tokens (e.g., “New York”, “lggy Pop and
the Stooges”).

Multi-word Candidates. To find all possible query candidates, even multi-word ones, it
is necessary to consider n-grams of varying length. For example, IRNet [40] uses all n-
grams of length from 1 to 6 in the user question as query candidates. It processes them
in descending order of length and if a n-gram is marked as a schema link, the system
discards all the smaller n-grams that are contained in it, to avoid generating duplicate links.
Furthermore, IRNet [40] assumes that any phrase (n-gram) appearing inside quotes must
be a reference to a value stored inside the database. Note that in this case, the system
not only discovers a query candidate, but also asserts that the database candidate that
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will be linked to it must be a value.

Named Entities. ValueNet [12] adds an extra step for intelligent candidate discovery,
by performing Named Entity Recognition (NER) on the user’s NLQ to discover possible
query candidates. This technique is very effective in discovering candidates that refer to
a widely known entity such as a place or a person but might not generalize to entities that
are specific to a certain domain. ValueNet asserts that candidates discovered through
NER refer to a DB value, i.e., the DB candidate they will be matched to, must be a value.
TypeSQL [127] uses the Freebase* Knowledge Graph to perform NER. It searches for five
types of entities, namely: Person, Place, Country, Organization and Sport. However, the
query candidates that are found to be Named Entities are not matched to a DB candidate,
but simply marked with the entity type that describes them.

Additional Candidates. As mentioned earlier, creating correct conditions can be even
more challenging when the value is not expressed in the NLQ exactly as it is stored in
the DB. ValueNet [12] proposes an improved pipeline for generating additional candidates
for value links that consists of: (a) identifying possible query candidates using NER, (b)
generating additional candidates by looking up similar values in the database and by using
string manipulation, and (c) validating all the generated candidates by confirming they
appear in the database. The validated candidates are then given to the system, to aid it
in generating correct conditions. Let us consider the following example, where the NLQ
contains the phrase “New York”, but the DB contains the value “NY”. ValueNet would
recognize “New York” as a named entity, it would generate additional similar candidates
(e.q., °N. York”, “N.Y.” and “NY”) and it would look them up in the DB. Doing so, it would
discover that only “NY” appears in the DB, and would only add this value in the input to
help the system create a correct condition (e.g., “state=NY?).

2.41.2 Database Candidate Discovery

Table and Column Names. The first and most obvious source for database candidates
are the names of the tables and columns of the database. Given that most databases
contain a relatively small number of tables and columns, all of them can be database
candidates.

Values via Lookup. Values stored in the database comprise another large pool for data-
base candidates. However, due to the volume of data, iterating over all the DB values
is not performance-wise. Indexes have been widely used in earlier text-to-SQL systems,
which do not rely on deep learning [43, 64], to accelerate the search. ValueNet [12] also
uses indexes and computationally cheap methods for retrieving values from the DB. It
is necessary to note that a database lookup requires the use of an already discovered
query candidate. In order to avoid greedily looking up all the query candidates, the sys-
tem might only look up certain query candidates that seem more likely to refer to a value
(e.g., because the are found inside quotes or based on heuristics).

Values via Knowledge Graphs. IRNet [40] assumes that access to the database con-
tents is not possible and employs the knowledge graph ConceptNet [103] for recognizing
value links. As a first step, IRNet considers that all n-grams beginning and ending with
single quotes are query candidates referring to values. In order to discover the DB column
or table that could contain a value such as the discovered query candidate, the system
searches each candidate in the knowledge graph and only keeps two types of results: is-
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G. Katsogiannis-Meimarakis 29


https://developers.google.com/freebase

Data Democratisation with Deep Learning: Structured Query Translation from and to Natural Language

type-of and related-terms. For example, when searching for “New York” in ConceptNet,
one of the returned results is is-type-of “state”. This result helps IRNet link “New York” to
a column named “state” or similarly. Note that this approach stands out from what has
been discussed so far, in the way that a value link is discovered using an intermediate
candidate (knowledge graph result) and the column names.

241.3 Candidate Matching

Having discovered the query and database candidates, an efficient method is needed
for comparing them to identify possible links. As discussed earlier, candidates are not
always expressed in the same way in both sides, so identifying links is not straightforward.
Techniques that can recognize semantic similarities between candidates are required.

Exact and Partial Matching. The simplest approach is to look for exact and partial
matches, as it is done by IRNet [40]. An exact match requires that the candidates are
identical, while a partial match occurs when one candidate is a substring of the other.
Admittedly, this approach is bare-bone and while it can discover more obvious links, it
can also result in false positive matches when candidates share the same words (e.g.,
‘residence” would be considered a partial match with “former residence”).

Fuzzy/Approximate String Matching. Another useful technique for identifying matches
when the link in the candidates are written differently is approximate string matching.
An example of such an approach is the Damerau-Levenshtein distance [19], used by
ValueNet [12]. While such techniques aid at identifying matches with different spelling

or spelling mistakes (e.g., “color’-“colour”), they cannot handle synonyms and thus are
not robust to the use of different vocabulary.

Learned Embeddings. To calculate the similarity between words of the NLQ and schema
entities, an earlier work in the area of semantic parsing [60] proposes the use of learned
word embeddings. The system learns word embeddings using the words of the text-to-
SQL training corpus and combines them with additional features that are calculated using
NER, edit distance and indicators for exact token and lemma match. These embeddings
are then used to calculate the similarity of query candidates to DB candidates. While this
approach is more expensive than previous matching techniques, it allows for much more
flexible and intelligent matching. This approach was also adopted by text-to-SQL systems
[10, 11] as well.

Classifiers. Given the complexity of schema linking, it may be possible to achieve better
results by training a model to perform schema linking.

A Conditional Random Field (CRF) model [61] can be trained on a small group of hand-
labelled samples to recognize column links, table links and value links for numerical and
textual values [13]. The predictions of this model can then be passed to the main neural
network of the text-to-SQL system along with the rest of the inputs. DBTagger [107] uses
a similar approach to solve the schema linking problem as a sequence tagging problem.
It employs CRFs on every token of the NLQ to identify: (a) its Part of Speech (POS), (b)
schema link type (e.g., table link, value link, etc.), and (c) the specific schema element that
it refers to. The authors argue that learning these three tasks in a multi-learning paradigm
helps the system achieve better performance than it would if it only learned to identify the
schema element each token refers to.

The SDSQL [45] system is simultaneously trained on two tasks: (a) the text-to-SQL task,
similarly to all systems, and (b) the Schema Dependency Learning task. For this ad-
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ditional learning task, the system is essentially trained to discover schema links in the
form of dependencies between the words of the NLQ and the parts of the SQL query.
Namely, the possible dependencies are: select-column (S-Col), select-aggregation (S-
Agg), where-column (W-Col), where-operator (W-Op) and where-value (W-Val). For ex-
ample, a select-column (S-Col) label is assigned to the dependency between the column
appearing in the SELECT clause and the word of the NLQ that refers to it. A deep biaffine
network [27, 29] is trained along the rest of the system to detect the existence and type
of these dependencies. Training data for this task is created from the already available
NL and SQL pairs, by assigning dependency labels between the NLQ tokens and table
columns. Although the schema links discovered by the system are not directly used for
predicting the SQL query, training for both tasks simultaneously has a positive effect on
the system performance. This task goes beyond the schema linking task, as some of the
aforementioned dependencies include query candidates that might refer to query parts
(e.g., aggregation functions and condition operations). It should also be noted that this
approach has been applied to WikiSQL, but it has not yet been extended to the more
challenging Spider dataset.

Neural Attention. While attention layers do not directly determine a match, we mention
them briefly because of their capability to highlight connections between query and DB
candidates, which can improve the system’s internal representation and boost its per-
formance. SQLNet [120] was the first system to introduce such a mechanism, named
Column Attention, that processes the NLQ and column names and finds relevant columns
for each word of the NLQ. The Transformer [108] neural architecture, which is based on an
attention mechanism, has been instrumental to the widespread use of PLMs that have be-
come the go-to solution for input encoding, greatly benefiting the accuracy of text-to-SQL
systems. Finally, RAT-SQL [110] proposed a modified Transformer layer, called Relation-
Aware Transformer (RAT), that biases the attention mechanism of the Transformer to-
wards already-known relations from the DB schema and discovered schema links.

2.4.2 Natural Language Representation

An essential step for text-to-SQL systems is creating and processing numerical represent-
ations of their NL inputs. Until recently, the most popular technique for NL representation
has been pre-trained word embeddings. Recent advances in NLP, such as the introduc-
tion of the Transformer architecture [108] followed by its use to create large Pre-trained
Language Models (PLMs), has tipped the scales greatly to its favour. Additionally, as new
PLMs are emerging, a new research path is being paved focusing on the design of better
PLMs or PLMs created specifically for certain problems (such as the text-to-SQL problem).

2421 Word Embeddings

Word embeddings aim at mapping each word to a unique numerical vector. While there
are simplistic approaches for creating such vectors (e.g., one-hot embeddings), more ad-
vanced algorithms [78, 83] aim at making the value of each vector meaningful. These
vectors are usually trained from a large text corpus (e.g., Wikipedia or Twitter) using a self-
supervised algorithm that is mainly based on word co-occurrences. The set of pre-trained
vectors can then be used to build a model that benefits from the inherent knowledge that
is present in the vectors due to their training.

For example, the GloVe [83] embeddings, which capture interesting word relationships,
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were frequently used by the first text-to-SQL systems. Such word relationships include
words with similar meaning being near neighbors and linear substructures that indicate
similar relationships between words (e.g., the distances between the word pairs Paris-
France and Athens-Greece will be similar because these words share a capital-country
relation). A pre-trained set of GloVe embeddings can be used to create numerical repres-
entations for NL inputs of a model, which can then be encoded using a RNN (such as a
LSTM).

2.4.2.2 Pre-trained Language Models

The introduction of the Transformer architecture [108] and its use in PLMs such as BERT
[23] has led to a great performance boost in many NLP problems. The text-to-SQL prob-
lem is no exception, as the use of PLMs has quickly become the go-to solution for NL
representation. In order to understand how a PLM can be used in a text-to-SQL system,
it is first necessary to highlight the difference between two main categories of PLMs: (a)
encoder-only and (b) encoder-decoder models.

Encoder-only models, like BERT [23], RoBERTa [71], and TaBERT [125], take a sequen-
tial input and produce a contextualized numerical representation for each input token. The
term “contextualized” marks a notable difference to word embedding techniques, which
map each word to a fixed vector, while the representations given by PLMs are computed
taking all tokens of the input into account. This representation can then be used by addi-
tional neural layers to make a prediction for the downstream task at hand. While GloVe
representations can be seen as improved word embeddings and can be used in similar
fashion (e.g., using an LSTM), this is not necessary. In fact, due to the robustness of
PLMs, it is possible to process their outputs using very simple and small neural networks
and still achieve better results than complex networks using word embeddings.

Encoder-decoder models, like T5 [92] and BART [63], are full end-to-end models that take
a sequential text input and return a sequential text output (seg-to-seq). These models
produce the final output on their own, without the need for any extra neural layers, and
can be used on any downstream task as long as the expected output can be modeled as
a text sequence.

Furthermore, as such models are gaining more attention, the creation of task-specific
PLMs is becoming a new research area of its own. Such models can be customized to
work with different types of inputs and perform better on less generic tasks, such as the
text-to-SQL task. There are multiple PLMs, such as GraPPa [128] and TaBERT [125],
that have been designed to work with structured and tabular data as well as to better
generalize in tasks that use SQL, and they can improve the performance of a text-to-SQL
system when used in place of a generic PLM. It must also be noted that while most text-
to-SQL systems are originally proposed with BERT [23] or another general-purpose PLM,
they often manage to achieve higher scores by replacing it with a PLM, such as TaBERT
[125], that was specifically pre-trained for a task that uses structured data, like the text-to-
SQL task.

2.4.3 Input Encoding

The dimension of input encoding examines how the input is structured and fed to the
neural encoder of the system, so that it can be processed effectively. There are dif-
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Figure 2.6: An overview of the possible encoding choices. Pink tokens represent words of the
NLQ, blue tokens represent database elements and grey tokens are auxiliary tokens.

ferent inputs that are useful for translating a NLQ to SQL. The NLQ and the names of
the DB columns and tables could be considered the minimum required input. Other fea-
tures that could improve the network performance include: (a) the relationships present in
the DB schema, including primary-to-foreign key relationships and relationships between
columns and tables, and (b) links and additional values that have been discovered during
the schema linking process.

The use of neural networks mandates the transformation of all inputs into a form that can
be accepted by the network. This can be very restrictive, given how heterogeneous these
types of inputs are and how difficult it is to represent them all in a single type of input. In this
section, we examine the most representative choices for input encoding, while also taking
into account the additional features that each choice can incorporate. We distinguish four
encoding schemes: (a) separate NLQ and column encodings (b) input serialization (c)
encoding NLQ with each column separately, and (d) schema graph encoding. A schematic
overview of the possible encoding choices can be seen in Figure 2.6.

2431 Separate NLQ and Column Encodings

A first approach, used mostly by earlier systems (e.g., Seq2SQL [136], SQLNet [120]), is
to encode the NLQ separately from the table columns. The main reason for encoding the
two inputs separately is the shape mismatch between them; while the NLQ is a simple
sentence (i.e., a sequence of words), the table header is a list of column names, where
each name can contain multiple words, i.e., it is a sequence of sequences of words.

In Seq2SQL [136], SQLNet [120] and IncSQL [99], each word (embedding) of the NLQ
is fed into a bi-directional LSTM (bi-LSTM) that produces a hidden state representation
for each word. For column headers, since each column name can have multiple words, a
bi-LSTM is used for each column name, and the final hidden state of each column is used
as the initial representation for the column. Notice that by keeping only the last state of
each column name, the representation of the header becomes a simple sequence and not
a nested sequence. Since the two inputs are encoded separately, they must be combined
at some point so that the output is influenced by both of them. This can be done by using
cross-serial dot-product attention [73], concatenating the two representations, summing
them or using a combination of the above.

None of the studied systems that follow this encoding approach use any extra features
besides the NLQ and DB columns. This may be attributed to the fact that these are some
of the earliest neural text-to-SQL proposals, which did not perform schema linking and
focused on the simpler WikiSQL dataset.
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2.4.3.2 Input Serialisation

A different approach is to serialise all the inputs into a single sequence and encode it all
at once. This is a very common practice when using PLMs (e.g. BERT [23], T5 [92]) that
create a contextualized representation of their input, because if each input were to be en-
coded separately, the system would not benefit from the PLM’s contextualization ability.
This approach simplifies the encoding process and benefits from the robustness of PLMs.
However, it also carries disadvantages, such as losing schema structure information and
being unable to easily represent relationships between the inputs (e.g., primary-foreign
key relationships, schema links, etc.). As we go through some different serialisation ap-
proaches, we will also examine how much information can be retained in each case.

It should also be noted that PLMs usually employ a few special tokens that are added to
the serialised sequence. For example, BERT [23] uses the classification [CLS] and the
separating [SEP] special tokens. The [CLS] token is added at the start of the sequence.
Its contextualized output, which gathers information from all the tokens in the sequence
thanks to the underlying attention networks, can be used to make classification predictions
that concern the entire sequence. The [SEP] special token can be used to separate dif-
ferent sentences in the same sequence. These tokens are also useful for the text-to-SQL
problem.

The simplest serialisation technique, used by several systems [42, 46, 76] that work on
the WikiSQL dataset, creates a single input sequence that only contains the NLQ and all
the table headers. The serialised sequence starts with the [CLS] token, as is common for
BERT, then the NLQ tokens are appended, followed by a [SEP] token marking the end
of the NLQ and then each column name is added followed by a [SEP] token. This input
is processed by BERT, which creates a contextualized representation that has the same
length as the input, and that can be processed by the rest of the network to make predic-
tions. Since these systems only work with single tables, there is not a lot of information
that needs to be preserved, but it could be argued that this approach separates the column
names much less strictly compared to the separate encoding approach.

IRNet [40] (when using BERT) creates an input that starts with a [CLS] token, then con-
tinues with the NLQ’s tokens followed by a [SEP] token, the name of each column of the
database followed by a [SEP] token, and finally the table names of the schema, each sep-
arated with a [SEP] token as well. In order to encode discovered schema links along with
the rest of the input, IRNet uses three extra tokens, namely [Column], [Table], [Value], that
can be appended before a NLQ token or phrase, to mark that it was linked to a database
candidate. Still, using this serialisation format, there is a lot of schema information not
captured. For example, it is not possible to extract any primary-foreign key relationships,
or to which table each column belongs.

Finally, BRIDGE [69] constructs an input for a PLM that starts with a [CLS] token, followed
by the NLQ and a [SEP] token, as well as the tables and column of the DB, where a [T]
and [C] token is added before each table and column name, respectively, so as to better
preserve each attribute’s role. The difference between IRNet’s and BRIDGE’s use of the
special [C]/[Column] and [T]/[Table] tokens is that the former uses them in the NLQ part to
indicate a schema link to a column or table, while the latter uses them to indicate that the
tokens after a [C] or [T] token are a column or table name, respectively. BRIDGE also uses
an extra third token [V] along with a value, after a column name, to mark that this value
appears under the column at hand and was discovered as a possible value link to some
NLQ candidate. In this case, BRIDGE uses the [V] token in the DB schema part of the
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input while also appending a value after it, while IRNet uses the [Value] token in the NLQ
part, without providing the actual value. Additionally, all the columns belonging to a certain
table are added right after the table’s name in the sequence so as to better preserve the
schema structure in this serialised representation. Nevertheless, all relationships between
attributes (e.g., primary/foreign keys) are still lost when following this representation.

24.3.3 Encoding NLQ with each Column Separately

HydraNet [74] employs a unique approach: it processes the NLQ with each column sep-
arately and makes predictions for each column independently. For each table column, a
different input is constructed by concatenating the NLQ with the column name and type
and the table name. Using this input, the system predicts the probability of the column
at hand appearing in the SELECT clause, the probability of the column appearing in the
WHERE clause, the operation that will be used if this column appears in the WHERE
clause, and so on. It could be argued that this approach does not allow the system to
have a complete view of the problem instance, because the neural network makes pre-
dictions for each column separately, without being aware of the rest of the table columns.
Nevertheless, HydraNet achieves exceptional performance on the WikiSQL benchmark.

This approach does not utilize any additional features (e.g., schemallinks). However, given
that it also serialises its inputs (albeit, only keeping a single column each time), it could
draw inspiration from the serialisation techniques described in Section 2.4.3.2 to encode
information about schema links. For example, it could append values similarly to BRIDGE
[69], or use [Table] and [Column] tokens to explicitly mark column and table names in the
input NLQ.

It should be noted, however, that generalizing this approach to a complete relational DB
would not be an easy task. First of all, a DB usually has multiple tables, each containing
multiple columns, which means that the network would have to make predictions for a
much larger number of columns, greatly increasing time complexity for predicting a single
SQL query. Furthermore, queries posed on complete DBs often contain JOIN clauses and
other operations that depend on more than one entity; as such, processing each column
separately becomes very counter-intuitive. Finally, this approach is based on a sketch-
based decoder (more in Section 2.4.4), which is hard to extend for complete DBs.

2.4.3.4 Schema Graph Encoding

A graph is the most effective way for representing the DB elements and their relationships.
Representing and encoding the input using a graph is used only by a handful of systems
[10, 11, 110]. Each node in the graph represents a database table or a column, while their
relationships can be represented by edges that connect the respective nodes. It is also
possible to add the NLQ words as nodes in the graph, and add edges that connect the
query candidates with their equivalent database candidates for representing all the dis-
covered schema links. Additionally, the used graph representation may allow for different
classes of nodes and edges leading to even higher expressivity. There can be different
classes of nodes to distinguish between tables, columns and NLQ words and different
classes of edges to distinguish between edges that represent foreign-primary key rela-
tions, edges that indicate a column belonging to a table and edges that represent schema
links.
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Even though representing the system input as a graph allows for minimal loss of inform-
ation and can include many types of additional inputs, processing a graph with a neural
network is far more difficult than processing a sequence. This is the main reason why
graphs have yet to see widespread use in the text-to-SQL problem. However, recent ad-
vances in graph neural networks and the clever use of Transformers [108] proposed by
RAT-SQL [110] and [98], are showing very promising and might be a good choice for future
research.

2.4.4 Output Decoding

Text-to-SQL systems following the encoder-decoder architecture can be divided into three
categories based on how their decoder generates the output [15]: (a) sequence-based,
(b) grammar-based, and (c) sketch-based slot-filling approaches.

2441 Sequence-based approaches

This category includes systems that generate the predicted SQL, or a large part of it, as
a sequence of words (comprising SQL tokens and schema elements) [13, 69, 136]. This
decoding technique is the simplest, and was adopted by Seq2SQL [136], which is one of
the first deep-learning text-to-SQL systems. Later systems steered away from sequence
decoding because it is prone to errors.

The main drawback of sequence decoding is that it treats the SQL query as a sequence
that needs to be learnt, and at prediction time, there are no measures to safeguard from
producing syntactically incorrect queries. When generating a query, it does not take into
account the strict SQL grammatical rules, nor does it actively prevent generating incorrect
column and table names that do not exist in the DB.

Nevertheless, sequence-based approaches are starting to be used again and are proving
to be very efficient thanks to two advances: (a) the introduction of large pre-trained seqg-
to-seq Transformer [108] models (e.g., T5 [92], BART [63]) and (b) the use of smarter
decoding techniques that constrain the predictions of the decoder and prevent it from
producing invalid queries (e.g., PICARD [95]).

2442 Sketch-based slot-filling approaches

Systems in this category [42, 46, 74, 76, 120, 127] aim at simplifying the difficult task of
generating a SQL query to the easier task of predicting certain parts of the query, such
as predicting the table columns that appear in the SELECT clause. In this way, the SQL
generation task is transformed into a classification task. In particular, we consider a query
sketch with a number of empty slots that must be filled in, and develop neural networks that
predict the most probable elements for each slot. A basic prerequisite for such approaches
is to have a query sketch that, when completed, will be able to capture the NLQ’s intention.

While dividing the text-to-SQL problem into small sub-tasks makes it easier to generate
syntactically correct queries, sketch-based approaches may have two drawbacks. Firstly,
the resulting neural network architecture may end up being quite complex since dedicated
networks may be used for each slot or part of the query. Furthermore, it is hard to extend
to complex SQL queries, because generating sketches for any type of SQL query is not
trivial.
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2.4.4.3 Grammar-based approaches

Systems using a grammar-based decoder [15, 26, 40, 99, 110] are an evolution of sequence-
to-sequence approaches, and produce a sequence of grammar rules instead of simple
tokens in their output. These grammar rules are instructions that, when applied, can cre-
ate a structured query.

The most often used grammar-based decoders by text-to-SQL systems have been previ-
ously proposed for code generation as an Abstract Syntax Tree (AST) [123, 124]. These
models take into account the grammar of the target code language (in our case, the SQL
grammar) and consider the target program to be an AST, whose nodes are expanded at
every tree level using the grammar rules, until all branches reach a terminal rule. When it
reaches a terminal rule, the model might generate a token, for example, a table name, an
operator or a condition value, in the case of text-to-SQL. The decoder uses a LSTM-based
architecture that predicts a sequence of actions, where each action is the next rule to ap-
ply to the program AST. Because the available predictions are based both on the given
grammar and the current state of the AST, the possibility of generating a grammatically
incorrect query is greatly reduced.

Grammar-based approaches are considered the most advantageous option for generat-
ing complex SQL queries, as sequence-based approaches were too prone to errors and
sketch-based approaches are difficult to be extended to complex queries. While their
status is recently being challenged by the advances of sequence-based decoders dis-
cussed earlier, the quest for the most effective decoding technique is far from over.

2.4.5 Neural Training

Another dimension that must be examined when considering a neural text-to-SQL system
is the methodology that is followed to train it. Even though the description of a system is
usually focused around its architecture and neural layers as well as the way it encodes
the inputs and decodes the output, the dimension of neural training is important, because
it is the process that enables the neural network to learn how to perform the task at hand.

Earlier systems adopted the simple paradigm of training the network exclusively on a text-
to-SQL dataset, however, recent systems have proposed more sophisticated approaches
that can greatly benefit the network performance and its generalisation capabilities.

Fresh Start. The most common approach is to train the network from scratch, i.e., initialize
all the weights with a random initialization algorithm and train them on a downstream
task. However, recent developments in the domain of NLP are showing that pre-trained
networks and self-supervised learning are able to achieve much better performance.

Transfer Learning. The use of transfer learning is quickly gaining ground in the NLP
community, due to the introduction of Transformers [108], which greatly reduce training
time compared to RNNs. Transfer learning refers to when a model trained on a different,
usually more generic task, and a different dataset, is incorporated to a new model and
further trained on a downstream task (e.g., text-to-SQL). Language models, i.e., networks
that have been trained to predict missing words or phrases on huge text corpora, are
becoming the standard approach for most NLP tasks, given the performance boost they
provide in almost all cases.

Some systems, such as HydraNet [74], rely on language models almost completely, only
using linear output layers to produce predictions. Most systems however, incorporate
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language models as an alternative or an enhancement for word embeddings and RNNs.

Additional Objectives. Another interesting approach that follows the success of lan-
guage models and self-supervised learning is that of using additional self-supervised tasks
while training for the text-to-SQL problem. Recent research [121, 45, 14] suggests that
training neural models for more generic tasks besides the downstream task of text-to-
SQL that the model is designed to solve, can improve performance on the downstream
task. When using additional objectives, one must decide whether the model should be
trained on all the auxiliary objectives along the downstream task or whether it should be
first trained on the auxiliary tasks and then fine-tuned on the downstream task.

» Erosion: The erosion task, proposed by [121], consists of randomly permuting, re-
moving and adding columns to the input schema and training the model to produce
the correct SQL query using the eroded schema. Additionally, the system must learn
to produce an unknown token when it has to use a column that has been removed
from the given schema.

« Shuffling: The shuffle task, proposed by [121], randomly changes the order of
schema entities and condition values in the input SQL query and NLQ, training the
model to correctly re-order them.

* Graph Pruning: The graph pruning task, proposed by [14], trains the model to prune
all the nodes of the input graph representation that are irrelevant to the given NLQ.

+ Schema Dependency Learning: SDSQL [45] proposes an additional task to the
text-to-SQL task, that closely resonates to the schema linking problem. SDSQL
is designed for the WikiSQL dataset. Schema Dependency Learning consists of
predicting which words or phrases of the NLQ have a dependency to which columns
of the table and the type of the dependency that connects them. The goal is to learn
which parts of the NLQ signify that a specific column will appear in the SQL query
and the role that the column will have in it (e.g., if it appears in the SELECT clause,
if it implies the use of the MAX aggregation function, etc.).

Pre-training Specific Components. Another approach is to train specific parts of our
network so that they can better adjust to the peculiarities of the task. For example, GP
[135] proposes a framework that pre-trains the system decoder, before training the entire
system, in order to better train it on the context-free parts of the SQL grammar, e.g., SQL
queries always start with SELECT, the FROM clause is second, and so forth. For this pur-
pose, the encoder’s semantic information is replaced by zero vectors so that the decoder
is pre-trained without any information about the particular NLQ.

2.4.6 Output Refinement

Once trained, a neural model can be used for inference. There is one last dimension to
consider; that of output refinement, i.e., additional techniques that can be applied on a
trained model to produce even better results, or to avoid producing incorrect SQL queries.

None. An obvious approach is to use the trained model as is, without output refinement.
The most important reason for this approach concerns time and resource availability; in
some applications, it might be crucial to achieve low latency responses or to run on every-
day machines. For example, PICARD [95], increases inference time by 0.6s when running
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on a machine with very high-end GPU and arguably even more so on a personal computer.
It must be noted however that almost all leader-board entries that achieve high results,
use some refinement technique.

Execution-guided Decoding. This is a mechanism [112] that helps prevent text-to-SQL
systems from predicting SQL queries that return execution errors. Even though sketch-
based approaches are designed to avoid syntactical errors, the possibility for semantical
errors is ever-present. Some examples of such errors include aggregation functions mis-
matches (e.g., using AVERAGE on a string type column), condition type mismatches (e.g.,
comparing a float type column with a string type value), and so forth. To avoid these type
of errors, execution-guided decoding can execute partially complete SQL queries at pre-
diction time and decide to avoid a certain prediction if the execution fails or if it returns an
empty output. Execution-guided decoding is system-agnostic and can be applied to most
sketch-based systems (e.g., HydraNet, IE-SQL), increasing their accuracy in almost all
cases. Let us note that even though some systems presented in this work might not be
proposed using execution-guided decoding in their original paper, they are subsequently
shown to perform better in the WikiSQL leaderboard when using it. For this reason, they
are shown to use execution-guided decoding in Figure 2.5 and Table 2.3.

Constrained Decoding. While generative models with sequence-based outputs are be-
coming more powerful for NL generation, they are clearly prone to errors when it comes
to generating structured language like SQL. PICARD [95] proposes a novel method for in-
crementally parsing and constraining auto-regressive decoders, to prevent them from pro-
ducing grammatical or syntactical errors. For each token prediction, PICARD examines
the generated sequence so far along with the k£ most probable next tokens and discards
all tokens that would produce a grammatically incorrect SQL query, use an attribute that is
not present in the DB at hand, or use a table column without having its table in the query
scope (i.e., not having the appropriate table in the FROM clause). Using PICARD, a seq-
to-seq pre-trained transformer model (T5-3B [92]) has managed to reach the top of the
SPIDER leader-board, lifting the barriers of using sequence-based decoders for text-to-
SQL. It should be noted that while PICARD could be considered as the most sophisticated
constrained decoding technique, other systems with sequence-based decoders have pro-
posed similar decoding techniques to avoid errors. Some examples of such systems are
SeaD [121] and BRIDGE [69].

Discriminative Re-ranking. The Global-GNN

parser [11] proposes an additional network that re-ranks the top-k predictions of the main
text-to-SQL network and is trained separately from it. The discriminative re-ranker network
takes into account the words of the NLQ and the database elements used by each of the k
highest-confidence SQL predictions, by the text-to-SQL network, and re-ranks them based
on how relevant it believes they are. Its authors argue that while the text-to-SQL network
usually predicts the correct structure for the target SQL query, it might not always predict
the correct columns, tables and aggregation functions, because each of them is predicted
only knowing already predicted elements and not future predictions. On the other hand,
the re-ranker can look at the completed predictions and judge the use of each database
element in hindsight, thus improving the prediction quality.

2.5 Neural Architecture

Neural architecture refers to the building blocks used to create all neural parts of the sys-
tem. This section examines the types of neural layers used by text-to-SQL systems, and
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analyzes the roles and functions that each one of them is often used for.

Linear Networks. Linear (or Dense) Neural Networks are often used as output layers for
sketch-based decoders or to process an internal representation. Given that this type of
neural layer is not suited for processing data in a sequence format, they are not effective
at processing input such as a NLQ, or producing output in a sequence format (e.g., in a
sequence or grammar-based decoder). In sketch-based decoders, however, where the
network must predict the correct choice for a certain slot, linear layers are the best suited
option to perform this classification task (i.e., choose the best option for filling a slot out of
all the available options).

Recurrent Neural Networks. Recurrent Neural Networks (RNNs) have long been con-
sidered the go-to solution for NLP, only to be recently dethroned by the powerful Trans-
formers. The main advantage of RNNs is their ability to (a) effectively process series
inputs, such as a NLQ, which is a series of words, and (b) to generate a series output,
such as the condition value of a WHERE clause, or a series of grammar rules that can
generate a SQL query. Well-known RNN architectures include the LSTM (Long Short-
Term Memory) and the GRU (Gated Recurrent Unit). The LSTM is popular for NLP tasks
and most often used in text-to-SQL systems.

Early systems, such as Seq2SQL [136] and SQLNet [120], relied on LSTMs for input en-
coding (along with pre-trained word embeddings), but this type of use is now outperformed
by pre-trained Language Models. Even though the recent success of Transformers and
Language Models has greatly reduced the use of RNNs in the input encoding phase,
RNNs are still being used to assist LMs in input encoding and to generate non-NL series
outputs. For example, IRNet [40] uses BERT to encode the input NLQ and schema but
also employs LSTMs to create single-token representations for columns and tables with
more than one word in their name (and more than one token to represent them).

RNNs are also often used for generating a series output. For example, Seq2SQL [136] and
SQLNet [120] employ pointer networks [109] comprised of LSTM layers that generate the
entire WHERE clause or the condition value of the WHERE clause, respectively. Another
case of RNNs for output generation is seen in systems (e.g., IRNet [40], RAT-SQL [110])
that employ a grammar-based decoder that generates an SQL query as an abstract syntax
tree, leveraging work in semantic parsing [123] that uses LSTMs.

Transformers. In text-to-SQL systems, Transformers are commonly used in Transformer-
based Pre-trained Language Models for input encoding, to create a contextualized repres-
entation of the input text. Pre-trained Language Models offer more robust representations
and greatly improve the model performance almost all of the times, making them more
preferable than pre-trained word embeddings. To use them for input encoding, one can
simply replace the input encoder (e.g., word embeddings and LSTM) with a model like
BERT.

There have been also other, rarer uses of Transformers in text-to-SQL systems. For ex-
ample, HydraNet is a system completely reliant on a pre-trained language model. In this
case, the text-to-SQL problem is formulated so that it matches the pre-training logic of a
language model and only very simple linear networks are used to make predictions using
the contextualized representations created by the Language Model.

Another unique example is RAT-SQL [110], which uses specifically modified Relation
Aware Transformers (RAT) to encode its input. What is special about RAT is that they
also accept pre-defined relations about the elements of input series, which essentially al-
lows to bias the encoder towards already known relations in the database schema and
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Figure 2.7: A timeline of deep learning text-to-sql systems, datasets and language representation
techniques

the user question. A similar approach is used by [98] in order to extend the Transformer
architecture to support relations between elements of the inputs, in the form of a GNN Sub-
layer. This extension of the Transformer allows to encode the input as a graph, where the
edges can have different layers, similarly to RAT-SQL; however, its performance is much
lower on the Spider benchmark.

Conditional Random Fields (CRFs). CRFs [61] are a type of discriminative machine
learning model that excels at modelling relations and dependencies. Because of this cap-
ability, CRFs are often used in NLP for labelling tasks such as Part-of-Speech (POS)
tagging and Named Entity Recognition (NER). Even though CRFs are rarely used in text-
to-SQL, there is a notable mention of a system integrating them in its neural architecture for
a specific sub-task. Namely, IE-SQL [76] employs CRFs tasked with two schema-linking
tasks of recognising: (a) which words in the NLQ are slot mentions to SQL elements,
such as the SELECT column and the WHERE columns, and (b) finding slot relations, i.e.,
grouping each of the WHERE column mentions with the mentions of operations and val-
ues that correspond to them. Both tasks are modelled as labeling tasks, which is why
CRFs are a good choice.

Convolutional Neural Networks (CNNs). Convolutional networks are very rarely used
for the text-to-SQL task, since they are best suited for processing visual data. One ex-
ample of a system using CNNs is RYANSQL [15], which uses CNNs with Dense Connec-
tions [126], in order to encode the inputs. However, the authors of RYANSQL demonstrate
that replacing this CNN-based encoder with a PLM can greatly improve the model’s per-
formance, making the choice to steer away from CNNs all the more obvious.

2.6 Systems

Having established a taxonomy for deep learning text-to-SQL systems, let us now zoom
in on key systems that have introduced novel and interesting ideas and have shaped
the area. This section provides insights and explanations on these systems while also
grouping them based on important milestones of this research area. Figure 2.7 presents
a chronological view on deep learning text-to-SQL systems, along with important datasets
and language representation advancements that have had a great impact on the domain.
While certain systems could obviously fit in multiple sections, this specific categorization is
based on the novelty introduced by each system at the time of its publishing, its influence
on later systems, as well as the possible importance of each novelty given its capability to
address future and open research problems.
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SELECT $AGG $SEL_COL
(WHERE $COND_COL $COND_OP $COND_VAL
(AND $COND_COL $COND 0P $COND VAL)* )?

Figure 2.8: Query Sketch proposed by SQLNet

2.6.1 The Dawn of an Era

As mentioned before, the era of deep learning text-to-SQL systems essentially starts with
the release of the first large annotated text-to-SQL dataset. WikiSQL was released along
with Seq2SQL [136], which was one of the first neural networks for the text-to-SQL task
and was based on previous work focusing on generating logical forms using neural net-
works [25]. The system predicts the aggregation function and the column for the SELECT
clause as classification tasks and generates the WHERE clause using a seg-to-seq pointer
network. The latter part of the system is burdened with generating parts of the query that
can lead to syntactic errors, which is its major drawback.

A big difference from almost all other systems is that Seq2SQL is partly trained using
reinforcement learning. While the aggregation function and SELECT column predictors
are trained using cross entropy loss, the WHERE clause predictor is trained using a reward
function that returns a positive reward if the produced query returns the same results as
the ground truth query and a negative reward if the query returns different results or if it
cannot be executed due to errors. The reasoning behind using reinforcement learning,
even though it generally performs worse than supervised learning, is that the WHERE
clause can be expressed in multiple ways and still be correct.

To address these problems, i.e., that sequence decoders can produce errors and that
reinforcement learning is not ideal, SQLNet [120] proposed using a query sketch with
fixed slots that, when filled, form a SQL query. This sketch can be seen in Figure 2.8,
and it covers all the queries present in the WikiSQL dataset. Using a sketch allowed the
problem to be formulated almost entirely as a classification problem, since the network has
to predict: (a) the aggregation function between a fixed number of choices, (b) the SELECT
column among a number of columns present in the table, (c) the number of conditions
(between 0 and 4 in the WikiSQL dataset), (d) the columns present in the WHERE clause
(as multi-label classification, since they can be more than one), (e) the operation of each
condition among a fixed number of operations (<, =, >) and (f) the value of each condition.
Predicting the value is achieved using a sequence generator network, which in this case
is only responsible for the value and not for the SQL syntax or grammar, so syntactic
mistakes are avoided.

Anotherimprovement introduced in SQLNet is the introduction of a column attention neural
architecture to the network. Given that SQLNet encodes the NLQ and table columns sep-
arately, the encoded representation of the NLQ does not have any information on the
available columns and thus cannot inform the system on which words in the NLQ are im-
portant for generating the correct SQL query. Column attention is an attention mechanism
that infuses the NLQ representation with information about the table columns, so as to em-
phasize the words that might be more related to the table. Other than that, both systems
are similar to each other, using GloVe [83] embeddings for text representation and LSTM
networks for encoding them.
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2.6.2 Sketch Generation

While the use of a sketch greatly simplifies the text-to-SQL problem and makes predictions
simpler for neural networks, the complexity of SQL queries the system can generate using
a single sketch is restricted. Systems such as Coarse2Fine [26] and RYANSQL [15] have
tried to generalise sketch-based decoding, by attempting to not only fill in the slots of a
sketch but also generate the appropriate sketch for a given NLQ.

CoarseZ2Fine [26] is a semantic parser that can generate various types of programs, one of
which is SQL. Its main highlight is that it decomposes the decoding process into two steps:
first, it generates a rough (coarse) sketch of the target program without low-level details,
and then it fills this sketch with the missing (fine) details. Its authors argue that a great
advantage of this approach is that the network can disentangle high-level from low-level
knowledge and learn each one of them more effectively. Unfortunately, this system is only
used on the WikiSQL dataset and is not extended to more complex SQL queries, which
is not trivial work. In fact, because Coarse2Fine is designed for the WikiSQL dataset, the
sketches it generates only differ between them in the number of conditions that appear
in the WHERE clause and the operations in each condition. As such, while the idea it
proposes might be very interesting, in practice, it essentially achieves generating SQL
queries of no greater complexity than what simple sketch-based systems do.

RYANSQL [15] is another system that generates the appropriate sketch before filling it,
but in contrast to the previous, it manages to produce much more complex SQL queries
such as the ones present in the Spider dataset. This is achieved by breaking down each
SQL query into a non-nested form that consists of multiple, simpler, sub-queries. The
authors propose 7 types of sub-queries, each with its own sketch, that can be combined
to produce more complex queries. The network then learns to recursively predict the
type of each sub-query and to subsequently fill in its sketch. RYANSQL achieved the
first position in the Spider benchmark at the time of its publication, but has since been
surpassed by other systems, while no other similar approach has been able to achieve
comparable performance.

SyntaxSQLNet [129] follows a similar approach, but instead of generating the query sketch,
it follows a pre-defined SQL grammar that determines which of its 9 slot-filling modules
needs to be called to make a prediction. This allow the system to produce grammatically
correct complex queries while enjoying the benefits of a sketch-based decoder. At each
prediction step, the grammar and the prediction history from the previous steps are used
to determine the module (e.g., COLUMN module, AGGREGATOR module, OPERATOR
module, HAVING module, etc.) that needs to make a prediction in order to build the SQL
query. Although this is a hybrid approach, the architecture of the decoder modules classi-
fies SyntaxSQLNet as a sketch-based decoding system. The main difference is that most
sketch-based decoders call all their slot-filling modules simultaneously to fill the sketch,
whereas SyntaxSQLNet calls specific modules recursively because the grammar defines
what needs to be filled in at each prediction step. SyntaxSQLNet was one of the first
systems proposed for Spider. Since then, many systems have achieved better perform-
ance scores while steering away from this methodology, hinting at its weaknesses. For
example, one of the main challenges is to effectively pass all the information of the predic-
tion history and the current state of the generated SQL to each module, at every prediction
step.
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2.6.3 Graph Representations

The use of graphs for input encoding has only recently seen increased use, despite its
powerful capability to represent the DB schema. This section explores key systems that
have shown new perspectives on how graphs can be represented and used in the text-to-
SQL task.

A natural option for processing graphs are Graph Neural Networks (GNNs). However,
while being a good option for tasks such as node classification, node clustering and edge
prediction, they are not as suitable for generative tasks like the text-to-SQL problem. Two
systems manage to leverage GNNs to encode the database schema and its elements:
the GNN parser [10] and its successor Global-GNN parser [11]. To achieve this, the
database schema is represented as a graph, where tables and columns are represented
as nodes, and different types of edges represent the relationships between them (e.g.,
which columns appear in which table and which columns and tables are connected with a
primary-foreign key relationship). For NLQ encoding, both systems use word embeddings
and LSTM networks, while node encodings calculated by the GNNs are concatenated to
each word embedding, based on the discovered schema links. For decoding, both sys-
tems use a grammar-based decoder [123] that generates a SQL query as an Abstract
Syntax Tree (AST), which is often used by grammar-based systems [12, 40, 110]. Global-
GNN [11] introduces the use of a re-ranker that, given £ SQL predictions from the network,
chooses the best interpretation based on the database elements used and the graph rep-
resentation calculated.

In order to avoid the disadvantages of GNNs, other efforts modify architectures that have
already shown their power in the text-to-SQL task, such as the Transformer [108], so
that they can accept edge information and process a graph. RAT-SQL [110] uses a
graph representation of the input, but instead of using GNNSs, it proposes a modified
Transformer architecture named Relation Aware Transformer (RAT). Firstly, it creates a
question-contextualized schema graph; i.e., a graph representing the database tables and
columns as well as the words of the NLQ as nodes and the relationships between them as
edges. An edge can appear either between two database nodes, similarly to the previous
systems, or between a database node and a word node. In this graph, schema linking is
performed to discover connections between a database node and a word node that might
refer to it. The names of all the nodes in the graph are first encoded using BERT [23]
and then processed by the RAT network, along with the edge information of each node.
The RAT neural block performs relation aware self-attention on its inputs, which essen-
tially biases the network towards the given relations (edges). This allows the system to
use Transformers and even pre-trained language models to process the graph as a series
while also utilising the information present in the graph edges. Finally, it generates a SQL
query as an AST using the method mentioned above [123].

All systems discussed in this section have grammar-based decoders. This happens mainly
because they aim to produce complex queries such as the ones in the Spider dataset, and
at the time of their publication, grammar-based decoders were the most common option. It
would be possible for a system using a graph representation of the input to use a different
decoder with its own advantages and drawbacks.
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2.6.4 Using Intermediate Languages

Following the success of the grammar-based methods in generating complex SQL queries
over multi-table DBs, researchers also examined the use of languages during the decoding
phase that can better align with NL than SQL making it easier for the system to make
predictions, but at the same time they can be deterministically translated into SQL. We
examine key systems that use an Intermediate Language, either a pre-existing language
or one created specifically for this task, as the target language for the neural decoder.

IRNet [40] is a grammar-based system capable of generating complex SQL queries, such
as the ones in the Spider dataset. It uses the same AST decoding method [123] for code
generation used in other grammar-based text-to-SQL systems (e.g., RATSQL [110] and
the GNN parser [10]). The main difference is that it predicts an AST of a SemQL program,
which is an Intermediate Language created specifically for this system. Its authors argue
that it is easier to generate queries in this language and then transform them to SQL.
Furthermore, IRNet performs schema linking by considering all n-grams of length 1 to 6
as query candidates and all column and table names as DB candidates and uses exact and
partial matches to discover links between them. It also searches for all query candidates
that appear inside quotes in the ConceptNet knowledge graph [103] in order to link them
to a database column or table. Input encoding uses BERT followed by linear and recurrent
neural networks.

SmBoP [94] is a grammar-based system that introduces various novelties in the decoding
phase. The use of relational algebra as an Intermediate Language is one of them. Its
authors argue that, along with being better aligned with NL, relational algebra is a language
that is already used by DB engines, unlike SemQL. Additionally, in order to decode ASTs
of queries in relational algebra, SmBoP uses a bottom-up parser, in contrast to the usual
approach of generating ASTs by performing top-down depth-first traversal, followed by
almost all text-to-SQL systems. The bottom-up decoder generates at time step ¢, the top-
k sub-trees of height < ¢, where k is a given parameter that represents the number of
beams used during the decoding search. The main advantage of the bottom-up parsing is
that at any given time-step, the generated sub-trees are meaningful and executable sub-
programs, while in the top-down parsing, intermediate states are partial programs without
a clear meaning.

2.6.5 The Age of BERT

Much like in other NLP problems, replacing a conventional encoder with a pre-trained
language model such as BERT [23] has been shown to improve performance of a text-to-
SQL system.

SQLova [46] is a sketch-based approach focused on the WikiSQL dataset. It employs a
large and complex network almost identical to the one used by SQLNet, with its main dif-
ference being that instead of GloVe embeddings, it uses BERT to create a contextualized
representation of the NLQ and table headers. The representations are then passed to 6
networks, each responsible for a different part of the query sketch, that are very similar to
the sub-networks used by SQLNet. The result is a staggering, almost 20%, increase in
execution accuracy on the test set of WikiSQL, indicating BERT’s power in the text-to-SQL
task.

HydraNet [74] is another sketch-based approach on the WikiSQL benchmark taking ad-
vantage of the BERT language model. Its main difference from SQLova is that HydraNet
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aligns itself better to the way that BERT has been pre-trained and only uses a simple lin-
ear network after receiving the contextualized representations from BERT, instead of large
networks with LSTMs and attention modules like SQLova. Furthermore, HydraNet pro-
cesses each table header separately instead of jointly encoding them, an approach that
is unique to this system. As a result, it can only make predictions for each column on its
own, i.e., it decides if the column at hand will appear in the SELECT clause, if it will appear
in the WHERE clause, what its operation will be if it appears in the WHERE clause and
so on. HydraNet, with its simpler architecture leveraging BERT, achieves better accuracy
on WikiSQL than SQLova, which employs a larger and more complex network.

X-SQL [42] is a sketch-based system using the MT-DNN pre-trained language model [70],
that was built for the WikiSQL benchmark. Similarly to HydraNet, it uses much simpler
networks than SQLova for filling the slots of the query sketch. However, it encodes all
table headers simultaneously, along with the user question. Additionally, instead of us-
ing segment embeddings that originally indicate the span of different sentences in the
language model’s input, X-SQL uses type embeddings. These embeddings differentiate
between the different types of elements in the input, such as the user’s question, categor-
ical columns and numerical columns. Furthermore, it uses an attention layer to create a
single token representation for columns that have more than one token (i.e., more than one
word in their name). X-SQL also outperforms the much more complex SQLova, achieving
slightly lower scores than HydraNet.

2.6.6 Schema Linking Focus

As discussed earlier, schema linking is a major part of creating a SQL query from a NLQ.
This section looks into systems that have put extra effort on schema linking, or even based
their entire workflow on this process.

TypeSQL [127] is one of the first systems to introduce a process similar to schema linking
in its workflow, and one of the few systems working on WikiSQL that uses schema linking.
Its methodology is described as Type Recognition, but closely resonates to the concept
of schema linking. The goal of this methodology is to assign a “type” to every token of the
NLQ. It considers all n-grams in the NLQ of length from 2 to 6 and tries to assign them
one of the following “types”™ (a) Column, if it matches the name of a column or a value
that appears under a column, (b) Integer, Float, Date or Year, if it a numerical n-gram,
(c) Person, Place, Country, Organization or Sport by performing NER using the Freebase
knowledge graph. Even though this process is unilateral, as its main goal is to classify the
query candidates into a type category and not to explicitly link them to a DB candidate, it
is one of the first attempts towards schema linking.

ValueNet [12] builds on the grammar-based system IRNet [40] focusing on schema linking
and condition value discovery. The main motivation of the system is that despite the
constant improvement of text-to-SQL systems, even the state-of-the-art is falling behind at
predicting the correct values in the SQL conditions. Similarly to IRNet, ValueNet decodes
a SQL query in a SemQL 2.0 AST. SemQL 2.0 extends the SemQL grammar with values.
Additionally, since condition values might not be written by the user in the exact same way
they appear in the DB, ValueNet employs an extended value discovery workflow of five
steps:

e value extraction: to recognize possible value mentions in the NLQ, it uses NER and
heuristics;
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e value candidate generation: to create additional candidate values, it uses string simil-
arity, hand-crafted heuristics and n-grams;

e value candidate validation: to reduce the number of candidate values, it keeps only
the candidates that appear in the DB;

e value candidate encoding: it appends each candidate to the input along with the table
and the column it was found under, and

e neural processing: the encoded representations are processed by the neural network,
which eventually decides if and where they will be used.

The authors also provide a classification of the Spider queries based on the difficulty of dis-
covering the values. This is another important aspect of the text-to-SQL problem usually
overlooked by other works.

SDSQL [45] is a sketch-based system designed for the WikiSQL task. What is special
about this system is that it can be viewed as two neural networks tackling two tasks at
the same time. The first network predicts SQL queries using the same architecture used
by SQLova [46], while the second network performs schema dependency predictions.
The schema dependency network uses bi-affine networks [28] to predict dependencies
between the words of the NLQ and the table headers. Such dependencies include: (a)
the select-column dependency that connects a query candidate that maps to a column
that will appear in the SELECT clause with the corresponding column of the table, and (b)
the where-value dependency that connects the query candidate that refers to a value that
will appear in the WHERE clause to the table column it belongs to. It must be noted that
even though the second network performs schema linking, its predictions are not directly
used by the first network to construct the SQL query. Instead, a combined loss from the
predictions of both tasks is used to train the weights of the networks, which allows the
schema dependency learning to improve the first network’s performance indirectly.

IE-SQL [76] proposes a unique approach to the text-to-SQL problem almost completely
based on schema linking. It uses two instances of BERT [23] to perform two different
tasks: a mention extractor and a linker. The mention extractor recognizes which query
candidates are mentions of columns that will be used in the SELECT and WHERE clauses
of the SQL query, mentions of aggregation functions, condition operators and condition
values. Additionally, the mention extractor recognizes mentions that should be grouped
together. For example, the mentions of the column, the operator and the value that belong
to the same condition are grouped together. Having extracted the mentions, the linker
maps the mentions of column names to the actual columns of the table they are referring
to. The linker also maps value mentions without a grouped column to the appropriate
table column. By using the predictions of the mention extractor and the linker, IE-SQL
can predict an SQL query, without any additional neural component. Even though this
approach may not be a clear match with any of the three decoding categories, we classify
it as a sketch-based system because its methodology is heavily based on the existence
of a query sketch similar to the one used by SQLNet [120]. IE-SQL can better learn the
dependencies between the slots and uses a more robust approach. Still, the mention types
it recognizes are a direct match to the slots of the query sketch. Therefore, extending it to
queries beyond the sketch is not trivial.
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2.6.7 The Return of the Sequence

Generating SQL queries using a sequence-based decoder was initially avoided as it could
produce syntax and grammar errors, as discussed in Section 2.4.4. Grammar-based de-
coders were instead regarded as the best choice for a system to effectively generate com-
plex SQL queries. However, recent works [69, 95, 121] have changed the landscape by in-
troducing a series of techniques that minimize the possibility of errors by sequence-based
decoders. These techniques have made the use of very powerful pre-trained encoder-
decoder models [63, 92] a viable and high-performing option, allowing the systems that
use them to achieve top performance in both the Spider and WikiSQL benchmarks.

SeaD [121] is a system based on the BART [63] encoder-decoder pre-trained language
model designed on WikiSQL. To overcome the drawbacks of its sequence-based decoder,
SeaD employs two techniques: (a) it introduces two additional tasks on which the model
is trained at the same time with the text-to-SQL task, and (b) it uses execution-guided
decoding [112], slightly modified to work with its sequence-based decoder. Its main con-
tribution is the use of the two additional training tasks named erosion and shuffle (see
Section 2.4.5), which are designed specifically to help the model better understand the
nature of the text-to-SQL problem and the tables used by the WikiSQL dataset. The use
of additional training tasks is also closely aligned with how language models are pre-
trained to understand the more general notion of natural language before being fine-tuned
to a specific task. Nevertheless, while SeaD has managed to overcome the limitations of
sequence-based decoders and achieve the best performance on the WikiSQL benchmark,
both the decoding technique and the additional objectives it employs are designed with
the WikiSQL dataset in mind. Extending them to full relational databases would not be a
trivial matter.

BRIDGE [69] is another recent system with a sequence-based decoder that works on
Spider, although it does not use an encoder-decoder language model. Instead, it uses
BERT [23] and LSTM networks for input encoding and enriches the input representation
using linear networks that use metadata such as foreign and primary key relationships,
as well as column type information. Additionally, the system performs schema linking us-
ing fuzzy string matching between query candidates and the values of columns that only
take values from a pre-defined list (i.e., picklist attributes). The discovered values are
added in the input sequence to help the network create better SQL queries. Finally, the
sequence-based decoder used by BRIDGE is a pointer generator network using Schema-
consistency Guided Decoding, a constraining strategy to avoid the aforementioned draw-
backs of sequence-based decoders. In order to use schema-consistency guided decod-
ing, BRIDGE is trained (and makes predictions) on SQL queries written in execution order,
i.e. all queries start with the FROM clause, followed by the WHERE, GROUP BY, HAV-
ING, SELECT, ORDER BY and LIMIT clauses, strictly in that order. This means that all
columns that appear in the query, must appear after the table that they belong to has been
generated. Based on this, BRIDGE can limit the search space of columns and avoid using
columns that will produce invalid SQL queries.

PICARD [95] is a constraining technique for auto-regressive decoders of language mod-
els, that is specifically created to improve their performance on the text-to-SQL task. Es-
sentially, at each prediction step, it constrains the model’s set of possible predictions by
removing tokens that could produce syntactically and grammatically incorrect SQL quer-
ies.

It is used at inference time, by looking at the confidence scores of the model’s prediction
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and the schema of the underlying DB, and it operates at three levels:

e it rejects misspelled attributes and keywords, as well as tables and columns that are
invalid for the given schema,

e it parses the output as an AST to reject grammatical errors, such as an incorrect order
of keywords and clauses or an incorrect query structure,

¢ it checks that all used tables have been brought into scope by being included in the
FROM clause and that all used columns belong to exactly one table that has been
brought into scope.

When PICARD is used with the T5 [92] pre-trained language model (the 3B paramet-
ers version), it ranked first on the Spider leaderboard for execution with values. This of
course does not come without any drawbacks, such as the increased prediction time due
to the constrained decoding, as well as the tremendous computational and memory re-
quirements for training and running such a large model as T5-3B.

Table 2.3: Systems examined in this work. In the Natural Language column, WE, E-PLM and
ED-PLM stand for Word Embeddings, Encoder-only PLM and Encoder-Decoder PLM accordingly.
In the Neural Training column, FS, TL and AO stand for Fresh Start, Transfer Learning and
Additional Objective accordingly. In the Output Refinement column, EG Decoding and Constr.
Decoding stand for Execution-Guided and Constrained Decoding accordingly.

Schema Natural Input Output Neural Output
Year System Benchmark Linking Language Encoding Decoding Training Refinement
2017 Seq2SQL WikiSQL X WE Separate Sequence FS X
SQLNet WikiSQL X WE Separate Sketch FS X
IncSQL WikiSQL X WE Separate Grammar FS X
2018 TypeSQL WikiSQL v WE Separate Sketch FS X
Coarse2Fine WikiSQL X WE Separate Sketch FS X
SyntaxSQLNet Spider X WE Separate Sketch FS X
SQLova WikiSQL X E-PLM Serialise Sketch TL EG Decoding
IRNet Spider v WE or E-PLM Serialise Grammar TL X
2019 X-SQL WikiSQL X E-PLM Serialise Sketch TL EG Decoding
RAT-SQL Spider v WE or E-PLM Graph Grammar TL X
GNN Spider v WE Graph Grammar FS X
Global-GNN Spider v WE Graph Grammar FS Re-ranking
ValueNet Spider v E-PLM Serialise Grammar TL X
BRIDGE Spider v E-PLM Serialise Sequence TL Constr. Decoding
2020 HydraNet WikiSQL X E-PLM Per column Sketch TL EG Decoding
IE-SQL WikiSQL v E-PLM Serialise Sketch TL EG Decoding
RYANSQL Spider X WE or E-PLM Serialise Sketch TL X
SmBoP Spider v E-PLM Graph Grammar TL X
2021 SDSQL WikiSQL v E-PLM Serialise Sketch TL + AO EG Decoding
SeaD WikiSQL X ED-PLM Serialise Sequence TL+AO  Constr. Decoding
T5-3B+PICARD Spider X ED-PLM Serialise Sequence TL Constr. Decoding

2.7 Discussion and and Higher-level Comparison

In what follows, we make several observations regarding how the landscape is shaped
along the dimensions of our taxonomy, presented in Section 2.4. Table 2.3 provides an
overview of the design choices of each system studied in this survey. Additionally, we
provide some higher-level insights that can be useful for practitioners interested in in-
troducing a deep learning text-to-SQL system in a real-world use case. These insights
include remarks concerning: adaptability to new databases, difficulty of implementation,
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Table 2.4: Higher-level comparison of taxonomy dimensions on various practical dimensions (~
signifies good performance,  signifies poor performance, and —> signifies average performance).
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technical demands, and other advantages and drawbacks of certain design choices. A
summary of these insights can be seen in Table 2.4.

Output Decoding. There is a connection between the decoding approach used by a sys-
tem and the benchmark on which it operates. Systems that operate on Spider do not
use a sketch-based decoder. This is due to the fact that sketch-based approaches are
more cumbersome to be adapted for generating complex SQL queries. RYANSQL [15] at-
tempted extending the sketch-based approach to Spider, but later systems steered away
from this choice. Furthermore, while until recently grammar-based decoders dominated
the Spider benchmark and sketch-based decoders dominated WikiSQL, recent improve-
ments in sequenced-based decoders have turned the tables, bringing sequence-based
decoders on the top of both benchmarks (i.e., T5-3B+PICARD [95] for Spider and SeaD
[121] for WikiSQL).

The output decoder is what defines the system’s SQL expressiveness and the effort needed
to implement and extend the system to new types of SQL queries. For example, grammar-
based decoders are harder to implement, since an extensive grammar is required in order
for the system to cover all the possible SQL queries that the use case in question might
require. Additionally, extending a system to use mathematical operations (e.g., WHERE
end_year - start_year < 4)will require varying degrees of effort depending on the type
of decoder. In the case of a sketch-based or grammar-based decoder, an extension of
the sketch or grammar is necessary to cover the new query type. On the other hand,
sequence-based decoders can effectively generate everything (which is usually a draw-
back), as long as there are training examples to learn from.

NL representation. There is a clear tendency by the latest models to use PLMs for NL
representation. Besides the systems that use GNNs for input encoding [10, 11], the only
systems that use word embeddings for NL representation, were published before PLMs
were widely available. In almost all cases, the use of a PLM instead of word embeddings
leads to a boost in performance. This is also shown in some systems that were originally
designed to work with word embeddings, but are also tested with a PLM during ablation
studies (e.g., RAT-SQL [110], RYANSQL [15]). In fact, with the constant introduction of
new PLMs, the question of which PLMs is more suitable becomes all the more relevant.
However, a major, typically overlooked, drawback of PLMs is their computational cost and
hardware requirements. Even though the cost of pre-training can be alleviated because it
is very easy to find a pre-trained model online, there is still the cost of training for the text-to-
SQL downstream task, as well as during inference. Running a model with a PLM will also
require an additional amount of computational resources (usually memory and/or a GPU)
due to the size of these models. For example, BERT-base [23] has 110M parameters,
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BERT-large has 340M parameters, and T5 [92] has variations of similar sizes that reach
up to 11B parameters, while the one presented with PICARD [95] has 3B parameters.
This must be considered, especially when building applications that must support heavy
workloads or have low latency requirements.

Input Encoding. Regarding input encoding, there are two main observations to point out:
(a) while earlier systems performed separate encoding, later systems use serialised or
graph encoding, and (b) newer systems working on the WikiSQL, all use serialised en-
coding. The clear tendency to use serialised encoding can be easily attributed to the
extensive use of PLMs, which offer much better performance with a serialised input. This
is even more true in the case of WikiSQL, because single tables can easily be serialised
along with the NLQ making the combination of PLMs and serialised encoding an easy
and powerful choice. However, when it comes to DBs with several tables and relation-
ships among them and their columns, a more flexible and informative representation is
required. Some systems have examined the more innovative approach of graph encod-
ing, which so far seems promising, offering a lot of ground for future research. Another
practical limitation that must be taken into account is how flexible each encoding option
is when it comes to DBs with large schemas. For example, the SDSS database, which
stores data from astronomical surveys, has 87 tables with some tables containing up to
a hundred columns. Serialising such a schema would result in a very long sequence
that can not be processed by a PLM due to their limitation in input length. Similarly, per-
forming separate encoding might create a bottleneck in the schema encoder side. Graph
encoding might be more efficient for handling larger schemas, since GNNs can encode
each schema element as a single node. However, this approach is also prone to poorer
performance as the schema gets larger.

Schema Linking. Table 2.5 displays the schema linking techniques used by each system
studied in this survey. While the first text-to-SQL systems did not perform any kind of
schema linking, later systems have proposed various intricate schema linking pipelines.
On the query side, we observe that almost all systems consider single-word and multi-
word tokens, while ValueNet [12] also performs NER to find possible candidates. On the
DB side, using the table and column names is the baseline for most systems, while some
systems also lookup the values that are present in the DB. Finally, to match the candid-
ates, some systems use simple text matching (either exact or partial), while newer systems
have experimented with the use of classifiers instead of string operations to find matches.
It becomes quickly apparent that schema linking is mostly explored by systems operating
on the Spider dataset, accompanied by very few systems using the WikiSQL benchmark.
This is somewhat expected, given that as the SQL complexity and the volume of tables,
columns and data increase, researchers seek to aid the neural network by providing aux-
iliary information. However, what is very peculiar is that some high performing recent
systems (i.e., T5-3B+PICARD [95] and SeaD [121]) do not perform any schema linking at
all. This is an open research question. Can powerful neural architectures, pre-trained on
vast amounts of data, defy the need for schema linking? Or, can they achieve even higher
scores if combined with schema linking? One important observation is that very little effort
has been put into testing how fast and scalable these approaches are, especially for very
large databases. In fact, to the best of our knowledge, only a single work [107] provides ex-
perimental evaluations concerning the time and memory used for schema linking. Hence,
extra caution is necessary when using these methods in a real-world system, as most of
them are not adequately optimised.

Neural Training. The neural training dimension is closely connected to the NL representa-
tion adopted by each system. This happens because using a PLM means that the model
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adopts the Transfer Learning paradigm, because it further trains an already pre-trained
neural component on a new downstream task. There are no cases of systems performing
transfer learning on other parts of the model besides the NL representation part. This
is mostly due to the fact that PLMs perform exceptionally well, and making an improve-
ment through a different transfer learning technique would be very difficult. Furthermore,
there are only two models that use additional objectives during training [69, 121]. This
relatively novel approach follows the success of PLMs using various auxiliary tasks dur-
ing pre-training and seems to be very promising in training a model that achieves better
generalization. It must be noted that the time and computing resources needed to train a
model using each training approach are usually not taken into account when presenting
new models, in favour of better performance metrics. It is however necessary to address
them in order to make the use of such models feasible in a real-world application. For
example, the pre-training part of transfer learning is very costly, unless the pre-trained
model is made available by its creators. Similarly, using additional objectives will greatly
increase the computations that must be performed, thus increasing the cost of training.

Output Refinement. The output refinement heavily depends on the approach used for
output decoding, as well as the dataset that the system operates on. A system designed
for WikiSQL can use execution-guided decoding [112], no matter the type of its decoder
because of the simplicity of the WikiSQL queries. Systems with sequence-based decoders
can use constrained decoding techniques to improve their predictions and reduce the
possibilities of errors. In fact, this output refinement technique is one of the main reasons
why they can be so effective. The re-ranking technique could be used by any system that
can produce more than one predictions for a single input, but in practice it has not been
adopted by any other system after being proposed by Global-GNN [11]. Furthermore,
each refinement technique adds an additional burden to the system that translates to
extra computational cost and more time needed to make a prediction. When used in a
real-time application, it is necessary to consider if the performance boost gained from the
refinement step, is worth the extra time and resources required.

2.8 Research Challenges

While a lot of progress has been made on the text-to-SQL problem, several important
issues need to be tackled. In this section, we outline some of the most challenging prob-
lems and highlight interesting research opportunities for the database and the machine
learning communities that could greatly impact the state of the art in text-to-SQL research
and beyond.

2.8.1 Benchmarks

As mentioned earlier, WikiSQL and Spider are large-scale query benchmarks that provide
a common way to evaluate and compare different systems. They have simplified system
evaluation, and they are often seen as the panacea for text-to-SQL evaluation. Research-
ers tend to over-rely on these benchmarks to argue that their systems are advancing the
state of the art, and they do not spend time performing additional experiments on other
benchmarks. However, given the progress in system-building, new standards are neces-
sary for benchmarking text-to-SQL systems, in order to make these systems applicable to
real-world scenarios, and to continue pushing the state of the art.
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Table 2.5: A comparison of schema linking techniques used by the examined systems; the schema
linking process is divided in the query candidate discovery, DB candidate discovery and candidate
matching phases, as described in our taxonomy
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Year | System | Benchmark || Query \ DB \ Matching
2017 Seq2SQL WikiSQL
SQLNet WikiSQL
IncSQL WikiSQL
2018 TypeSQL WikiSQL
Coarse2Fine WikiSQL
SyntaxSQLNet Spider
SQLova WikiSQL
IRNet Spider
X-SQL WikiSQL
2019 RAT-SQL Spider
GNN Spider
Global-GNN Spider
ValueNet Spider
BRIDGE Spider
HydraNet WikiSQL
2020 IE-SQL WikiSQL
RYANSQL Spider
SmBoP Spider
DBTagger -
SDSQL WikiSQL
2021 SeaD WikiSQL
T5-3B+PICARD Spider

First of all, datasets such as WikiSQL, that contain single-table databases and very simple
SQL queries, can not be seen as realistic benchmarks for real-world applications. Given
that the SQL queries in WikiSQL can be covered by a very simple sketch, as the one
shown in Figure 2.8, and current systems have reached very high accuracy scores on
this dataset, there is a need for more challenging benchmarks. These benchmarks were
a good start for the neural text-to-SQL field and have allowed a lot of novel ideas to be
implemented in a “sandbox” environment, but the state of the art is now able to achieve
much more.

Similarly, Spider contains DBs and queries that were specifically created for text-to-SQL
evaluation but they are rather simplistic and do not reflect the characteristics of real-world
DBs. For example, the Spider DBs have a simple schema or too little data stored. In fact,
the 166 DBs of Spider that are available to the public (i.e. train and dev set, since the test
set is held-out by the authors) sum up to less than 1GB. Ideally, new benchmarks should
aspire to introduce real cases of DBs taken from the industry and academia, accompanied
with real logs of SQL queries performed on them by their users. The NLQ part could be
obtained either by asking the users to specify what their intention was when running these
queries, by asking SQL experts to explain them, or by employing a SQL-to-text system.

Another important drawback of current benchmarks is their relatively small number of ex-
amples (i.e., NL-SQL pairs), especially compared to datasets used by deep neural net-
works in other problems (e.g., the SQUAD Question Answering dataset contains more than
100K examples). Besides the obvious contribution of creating a new large-scale dataset
from scratch, there are a few other paths that could be considered. For example, it would
be possible to create a novel benchmark suite containing multiple previous benchmarks.
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This would not be a trivial work, since a lot of consideration is needed concerning how to
split the datasets in a way that the train and test sets could help developers understand
if their system can successfully generalise to unseen DBs, domains, SQL query patterns,
NLQ vocabulary, etc. Another way to create a new benchmark could be by transforming
similar benchmarks used in slightly different tasks, or different query languages. For ex-
ample, a text-to-SPARQL dataset, such as the CFQ dataset [56] that contains more than
200 thousand NLQ-to-SPARQL examples or the LC-QuAD dataset [106] that contains 5
thousand examples, would be very beneficial if converted to SQL (similarly to how the
WikiTableQuestions [82] was used to create the SQUALL [100] text-to-SQL dataset).

Another critical limitation of existing benchmarks is that they fail to address the question of
what type of NL and SQL queries a system can understand and build, respectively. This is
due to the lack of a clear query categorization. For instance, Spider has four very coarse-
grained classes of queries. This highlights the need for new benchmarks and in-depth
system evaluations, in the spirit of [36, 8], that provide fine-grained query categories and
allow researchers to understand the strengths and weaknesses of a system.

Furthermore, existing benchmarks assume that for each NL query, there is only one correct
SQL query. This may be restricting. First, there are NL queries that may have more than
one correct translations over the data. Second, equivalent SQL queries are written in a
different way but return the same results.

Finally, while the state-of-the-art systems are still dealing with ‘getting the answer right’,
they are mostly overlooking the ‘getting the answer fast’. The database community could
come up with benchmarks that focus on efficiency (not just effectiveness) and allow evalu-
ating systems based on execution time and resource consumption in addition to translation
accuracy.

2.8.2 System Efficiency & Technical Feasibility

Focusing on the translation accuracy of the system is only one side of the coin. Evaluating
system efficiency is important in order to understand the viability of a solution and pinpoint
the pain points that need to be addressed. Deep learning text-to-SQL systems are typically
relying on very complex models, which have been trained and evaluated in toy databases
(like the ones contained in existing benchmarks). Hence, it comes to no surprise that
they have not yet seen practical applications in real-life use-cases and domains, and their
usefulness is to be proved. Several important challenges need to be tackled first.

Firstly, while the use of PLMs for NL Representation is highly favored by newer systems,
these models introduce a large overhead at inference time, and while using larger PLMs
usually translates to higher accuracy, it also translates to higher inference times. Output
refinement techniques are also adding extra overhead that might make a system imprac-
tical to use in a real-world scenario. For example, one of the best-performing models
on the Spider dataset, T5-3B+PICARD, uses a large PLM along with a computationally-
intensive output refinement technique. Adapting such a model to work with fewer re-
sources, reducing its training time, or optimising its output refinement would be a signific-
ant scientific and engineering achievement.

Furthermore, input encoding techniques such as serialisation combined with PLMs have
an input size limit (usually of 512 tokens), which poses no problem for the DBs in Spider,
but is restricting when working with real-world database schemas. The challenge of creat-
ing a robust input encoding technique that can efficiently work with larger schemas, must
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also be tackled in order to make text-to-SQL systems technically feasible.

Additionally, schema linking techniques have been shown to work and be beneficial for
systems working on the Spider dataset, but they have yet to be tested on an real, large-
scale DB. Even though using indices and other DB lookup techniques might speed up
schema linking, it is still questionable if looking up multiple words or n-grams for every
NLQ, is efficient in a real application. Advanced matching techniques, such as classifiers,
also introduce additional overhead. There is a lot of room for contributions in optimising
schema linking, and this could be the area where the DB community has the most to offer
in order to make the breakthroughs of the NLP world usable in practice.

In a nutshell, improving translation speed by building efficient methods is necessary. But
this may not be enough. Text-to-SQL translation creates overhead to the overall query
execution time that the user will experience, and hence needs to be weighted in. Early
text-to-SQL systems originating from the DB community [43, 44, 72, 134, 64] not only tried
to generate correct SQL queries but also optimal in terms of execution speed. Hence,
many of them contained logic for generating code that would return the desired results
fast. Ultimately, allowing the user to express questions in natural language should free
them from the technical details of how this query should be expressed in the underlying
system language and and how it should be executed efficiently.

2.8.3 Universality of the Solution

Another challenge is the universality of the solution, i.e., performing equally well for differ-
ent databases. This problem becomes highly relevant when applying a text-to-SQL sys-
tem to an actual database [41] that is used in a business, research or any other real-world
use case. Apart from the large number of tables and attributes that we have already dis-
cussed, such databases may contain table and column names that use domain-specific
terminology. For example, the SDSS [104] database has attributes such as “speccobj”
(spectroscopic object) and “photoobj” (photometric object), that are unknown to and hence
cannot be translated by any of the available text-to-SQL systems. That is why in real-life
applications, ontologies and domain knowledge are used to enable reliable text-to-SQL
translations [91, 5].

It is also important to enable natural language queries in languages other than English,
which is the main focus of current efforts. Due to the problem’s multidisciplinarity, data-
base, ML, and NLP approaches can join forces to push the barrier further.

2.8.4 Data Augmentation

The need of deep learning models to train on a high volume of training examples, com-
bined with the relatively small size of available benchmarks and the cost of manually cre-
ating new examples, has elevated data augmentation to an important problem.

DBPal [115] is a template-based approach that uses manually-crafted templates of NL/SQL-
pairs, which can be filled with the names of tables, columns and values in order to create
training instances. The NLQs can be further augmented, with the use of NL techniques
such as paraphrasing, random deletions and synonym substitutions. Nevertheless, such
templates and NL techniques can not work consistently across all new DBs an might often
result to “robotic” or unnatural NLQs. Another approach [39] uses a similar template-based
approach to create SQL queries by sampling column names and values from a given table

G. Katsogiannis-Meimarakis 55



Data Democratisation with Deep Learning: Structured Query Translation from and to Natural Language

and then applies Recurrent Neural Networks (RNNs) to generate the equivalent NLQ. A
more recent work [116] proposes a pipeline that can generate examples spanning over
multiple tables of a relational database. SQL queries are created using an abstract syn-
tax tree grammar and filling them with attributes from the database. The NLQs are then
generated using a hierarchical, RNN-based neural model, that recursively generates ex-
planations for all parts of the queries and then concatenates them.

However, even though some initial efforts have been made, a systematic evaluation of
how each approach affects different systems, as well as the quality of generated data in
each case, is still missing. Additionally, another research question that arises is how to
train a system using domain-specific or augmented data, along with a general-domain
dataset such as Spider. For example, should the system be trained simultaneously on
domain-specific as well as general-use data, or only on domain-specific data, or should a
more advanced sampling method be used [116]?

2.8.5 The Path to Data Democratisation

While the text-to-SQL problem is a major research challenge, it is also important to un-
derstand that it is a piece of the greater puzzle of data democratisation. In order to allow
all users, no matter their technical knowledge, to easily access data and to derive value
from it, we must consider complementary problems, such as query explanations, query
result explanations, and query recommendations. These problems can also benefit from
and be inspired by the models and methods presented in our study.

Query Result Explanations. The results of a query are typically presented in a tabular
form that is not self-explanatory. Generating NL explanations for query results is another
open research area [102, 21]. Interestingly, while there has been considerable work on
the “sibling” area of data-to-text generation [9], the problem of query result explanations
(or QR-to-text) has several intricacies that do not allow directly adapting methods from the
data-to-text generation domain. The need to capture query semantics (that are implied
by the results), the lack of appropriate benchmarks, and the fact that query results may
contain several rows from different tables that are joined are just a few of the open issues.

Query Recommendations. Even when the user understands the data that is kept in the
database, it might not always be clear what kind of queries can be asked and what kind
of knowledge can be extracted. For this reason, query recommendations can help a user
find interesting queries to ask the database, either based on the user preferences and
history, or on queries that are frequently asked by other users of the same database [48]
or by analyzing the data [37]. In this context, adapting deep-learning models for query
recommendations offers numerous challenges and opportunities.

Conversational Text-to-SQL. Developing a conversational DB interface is another prom-
ising task, very similar to earlier non-DL approaches such as Analyza [24], which heavily
involves the user in the translation process. Since our ultimate goal is creating a user-
friendly and seamless experience, it would be very interesting to allow the user to access
and query data solely through the power of natural language and conversation. The re-
lease of a conversational (CoSQL [130]), and a context-dependent (SParC [132]) text-to-
SQL dataset, based on the Spider [131] dataset, has allowed for more focused progress
in this domain. The conversational version of the problem carries new aspects and dif-
ficulties that candidate systems must tackle. First and foremost, for each prediction, the
system must take into account all previous interactions with the user (i.e., all previous
NLQs and the predicted SQL queries). Additionally, it is often necessary to ask the user
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for clarifications when facing vague questions, or ask the user to chose between possible
interpretations of an utterance in the conversation. While some of the systems presented
in this work can be adapted to work in a conversational setting, heavier modifications are
often necessary in order for the model to effectively encode the conversation history and
the previous SQL predictions (note that we have only discussed about encoding NL and
DB schemas). Ultimately, this aspect of the problem opens the path towards “intelligent
data assistants® [77], similar to but extremely more powerful than the intelligent personal
assistants that are gaining more and more popularity and use through our smartphones
and dedicated speakers devices.
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3. THE SQL-TO-TEXT PROBLEM: A NOVEL DEEP LEARNING
MODEL

3.1 Introduction

Query Languages, such as Structured Query Language (SQL), are a necessary tool in
order to access, navigate and obtain data that is stored in a variety of data stores, such as
relational databases. However, these query languages often impede non-technical users
from accessing valuable data, that is crucial for their work. In an effort to allow casual
users (i.e., users without technical expertise) to freely access databases, researchers
have been working towards creating Natural Language Interfaces for Databases (NLIDBs)
[17]. These interfaces allow users to query databases using only Natural Language (NL)
instead of a Query Language (QL). As we discussed in the previous chapter, a lot of
work has been put towards creating Text-to-SQL systems that can translate a NL question
from the user to a SQL query that will retrieve the desired data. However, given that
the user is not familiar with SQL, how can they validate that the translated SQL query
actually matches their intent? Providing NL explanations for these queries would allow
for a complete NL experience, while also increasing the confidence of casual users that
the results they are getting are what they were looking for. Our work focuses on this
exact problem of generating NL explanations for SQL queries, also called the SQL-to-
Text problem.

Furthermore, SQL-to-Text can also be beneficial for other use cases, both inside and out-
side the scope of a NLIDB. A more advanced NLIDB might also offer recommendations
of SQL queries, in order to help the user discover interesting data stored in the database.
Once again, in order for the user to understand the recommendations it is important to
provide a NL description of the proposed queries. SQL-to-Text systems can also help
experienced users speed up their workflow. Software developers and DB administrat-
ors often come across complicated queries that are directed to DBs with schemata they
are not familiar with. Getting a quick NL explanation of such queries would save a lot of
time. Finally, SQL-to-Text systems are also essential for data augmentation pipelines for
training Text-to-SQL systems [39, 117]. In such a pipeline, SQL queries will be gener-
ated automatically, either using a predefined grammar or by modifying a set of given SQL
queries, and a SQL-to-Text system will be used to generate their NL counterparts. This
process will produce augmented NL/SQL pairs that can be used to boost the performance
of Text-to-SQL systems.

When generating a query explanation, the challenges to be considered stem from two dir-
ections: the SQL side and the NL side of the problem. On the one side, SQL queries may
contain complex elements (e.g., nested queries, unions, etc.) that require a better under-
standing of their purpose to be explained because they do not serve the same purpose
every time. For example, the SELECT clause always determines the attributes that will
be returned but a nested query might be used to get the students with the best grades in
one case or to get the students that passed a certain class in another case. Additionally,
a SQL-to-Text system must take into account the schema and the domain of the data-
base when generating an explanation, because they can heavily influence the meaning
of the query. On the other side, the generated natural language must appear as fluent
and coherent as possible, in order to be understood by a non-expert user. It should also
correctly convey the meaning of the query as simply as possible, without any unnecessary
repetitions. Finally, additional challenges arise when evaluating a query explanation sys-
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tem. The lack of a dedicated dataset and, more importantly, a metric specifically designed
to evaluate query explanations, prevent researchers from assessing a model’s perform-
ance quickly and confidently. All studies so far use Text-to-SQL benchmarks in reverse
order, which are not ideal for evaluating SQL-to-Text systems because they do not of-
fer any difficulty categorisation of their NL parts and might introduce dataset construction
biases because they were created for different purposes. Finally, currently available met-
rics are not robust for evaluating query explanations, which are often very brief and full of
condensed information, and can become erroneous by only changing a single word.

Previous efforts at generating SQL query explanations, can be divided into two categories:
systems originating from the DB community [30, 49, 58, 59, 101, 115] that follow rule-based
approaches that create explanations using pre-defined templates, and systems originat-
ing from the NLP community [39, 75, 117, 119] that employ deep learning techniques to
solve the problem. Both categories of systems present different drawbacks: the former
approaches tend to create explanations that appear “robotic” and need human effort to
be applied to an unseen DB (e.g., to construct new rules or templates), while the latter
approaches can not guarantee to produce correct explanations every time. Additionally,
no system thus far has taken advantage of the latest advances in the field of NLP, such
as Transformer-based [108] Pre-trained Language Models (PLMs) (e.g., BERT [23], T5
[92]), which show state of the art performance at text generation and understanding tasks.
Finally, to the best of our knowledge, no work thus far has provided a deeper look into the
difficulty of evaluating query explanations.

Moving on, we focus on the SQL-to-Text problem in two directions. On the one hand,
we discuss the difficulties of generating query explanations and we propose a new model
for generating SQL queries that leverages the power of PLMs. On the other hand, we
investigate the problem of evaluating query explanations and we create two datasets of
query explanations which we use to evaluate existing metrics and fine-tune a new learned
metric in order to tackle the drawbacks of current metrics.

3.2 Related Work

SQL-to-Text. The SQL-to-text problem has seen relatively little attention from the re-
search community, and the few available approaches can be classified into two categor-
ies: template-based and neural-based. Template-based [30, 49, 58, 59, 101, 115] sys-
tems work by constructing a structured representation of the query (e.g., a query graph)
and producing a NL explanation for each part of the representation, using templates that
are provided by the user. As such, template-based systems can produce very accurate
explanations of SQL queries, because they are designed to produce an NL explanation
of every part of the query, but require a lot of manual effort in order to create new tem-
plates for a new DB that the system must work on. The biggest caveat of template-based
systems is that they often generate "robotic” and unnatural explanations, because they
translate every single part of the query, which can lead to repetitions and unnecessary
information. A simple example can be seen in the following SQL query:

SELECT p.title FROM projects p
WHERE p.start_year >= 2014
AND p.start_year <= 2018
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Table 3.1: BLEU scores of neural SQL-to-Text systems on the WikiSQL and Spider datasets

Model WikiSQL Spider
Seqg-to-Seq [51] 18.40 -
Graph-to-Seq (GNN) [119] 28.70 -
Graph-to-Seq (RGT) [75] 31.20 28.84

Logos [58], a template-based approach, creates a query-graph, that contains all the query
elements and DB tables that are used in the query, and provides a verbalisation of each
node of the graph and paths between specific nodes. At the end, a template-based ap-
proach would produce the following explanation: “Find projects whose start year is greater
than or equal to 2014 and start year is less than or equal to 2018.”, but the query could
be explained much more fluently as “Get the names of projects started between 2014 and
2018.”.

On the other hand, deep learning solutions offer better generalisation to unseen data-
bases and more fluent explanations, but are not guaranteed to generate accurate explan-
ations every time. These systems consider the SQL-to-Text problem as a text generation
task and learn to generate query explanations by being trained on thousands of SQL/NL
pairs. Deep learning SQL-to-Text models fall under two categories, based on how they
process the input query: sequence-to-sequence models and graph-to-sequence models.
Sequence-to-sequence models [39, 117] process the input as a text sequence, either in its
entirety [39] or in multiple runs [117], where each run creates an explanation for a different
clause of the query, and all runs are subsequently merged, to form the final explanation.
The aforementioned sequence-to-sequence models, also incorporate a copy-mechanism
[38] in their decoder, which allows them to directly copy tokens from their inputs to the
generated explanation (e.g., to use a table or column name in the explanation).

Graph-to-Sequence (or Tree-to-Sequence) approaches [119, 75] create an abstract-sytax-
tree of the SQL query, and process it as a structured input. An earlier approach [119] uses
an existing graph-to-seq framework [118] that employs GNNs to process the input SQL
graph and RNNs to generate the output explanation. However this approach is only tested
on queries taken from the WikiSQL [136] dataset, which are written for single tables and
not entire databases, and thus are of relatively low complexity. A more recent system
[75] takes advantage of Transformer [108] networks to create a Relation-Aware Graph
Transformer (RGT) encoder, that is more robust at encoding large query graphs, such as
the ones resulting from complex SQL queries with multiple clauses. The RGT can encode
both the syntax and the relations between the nodes of the tree, in order to provide a
more informative representation of the query. However, using a graph encoder rejects the
opportunity to use a sequence-to-sequence PLM, and leverage its power at understanding
and generating NL, since it is not efficient to tweak the input types of a already pre-trained
model.

Table 3.1 displays the scores achieved by previous SQL-to-Text systems on two popu-
lar Text-to-SQL benchmarks, the WikiSQL [136] and Spider [131] benchmarks. Despite
the small number of proposed systems, we can also note the lack of a dedicated bench-
mark and metric for the problem. A benchmark created specifically for SQL-to-Text could
provide better insights on the categories that a system can accurately explain, and altern-
ative ground truths to help evaluate predictions more accurately. So far, systems have
relied on Text-to-SQL benchmarks and the BLEU [81] metric for evaluation.
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SPARQL-to-Text. The SPARQL-to-Text [31, 79] problem is also closely related to the
problem at hand, but has seen even less attention than SQL-to-Text. These approaches
are closely related to the template-based approaches for SQL-to-Text, which create a
representation of the query (e.g., a query graph), and apply a pre-defined set of rules to
simplify the representation, and eventually verbalise each of its components.

Code summarisation. Finally, the SQL-to-Text problem, can be seen as an instance of
the larger code summarisation problem, which aims at verbalising fragments of code from
any programming language to NL. This is a highly complicated task, given the intricacies,
expressiveness and levels of abstractions of modern programming languages. To the best
of our knowledge, researchers have only recently focused on this task, taking advantage
of the power of deep learning models, as well as online code repositories that contain
vast ammounts of code snippets along with comments and NL descriptions of their use.
The first approaches [51] used RNN-based sequence-to-sequence models, which also
inspired the SQL-to-Text work mentioned earlier. However, the latest approaches are tak-
ing advantage of PLMs [3, 32, 114] to develop models that can summarise code snippets,
translate to different programming languages, detect bugs and security issues, and other
code understanding and generation tasks. In this area, research is mainly focused on
designing the most adequate pre-training tasks and datasets that will give a model all the
necessary knowledge to be fine-tuned on many different tasks.

Comparison to our work. Our approach falls into the category of sequence-to-sequence
deep learning SQL-to-Text models. To the best of our knowledge, it is the first system to
use a Pre-trained Language Model (PLM) based on Transformer [108] networks, instead
of the less robust Recurrent Neural Networks (RNNs) which are proven to face difficulties
at discovering connections between input elements that do not appear near one another
(e.g., an attribute appearing early, in the SELECT clause as well as later on, in the WHERE
clause). Additionally, we are the first to explore the use of adaptation techniques and their
benefit when adapting our system to a DB taken from the scientific domain. This is a
challenge that has been overlooked by previous systems which only consider simpler
benchmarks such as Spider and WikiSQL. Finally, we also investigate the performance
of various metrics for the SQL-to-Text problem, which previous works have overlooked by
relying on n-gram based metrics such as the BLEU [81] score.

3.3 The SQL-to-Text Problem

The Query-to-Text task aims at providing a NL explanation of a structured query, that
describes its intent and is understandable by a non-expert. This is a task that falls under
the broader research area of code summarisation that aims to provide NL summaries for
code in various programming languages. Instances of the Query-to-Text task include the
SQL-to-Text task, SPARQL-to-Text task, the Cypher-to-Text task, and many other tasks
based on different query languages, used for different types of data stores.

3.3.1 Problem Formulation

The goal of the SQL-to-Text problem is the following: Given a SQL query ¢, directed
to a Relational Database with a given schema s, generate an explanation »n in Natural
Language that accurately describes its intent.

There are multiple desired properties to consider, concerning the explanation such as
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fluency, brevity and semantic accuracy. More specifically, the generated explanation must:
(i) convey the same semantic meaning as the one expressed in the formal query language,
(i) be fluent and human-like, mimicking a human speaker so as not to seem robotic, and
(iii) be brief and avoid unnecessary repetitions. However, generating NL with such high
standards is far from trivial, especially when it must accurately describe a SQL query that
can convey a lot of information.

3.3.2 Challenges

The SQL-to-Text problem hides several challenges, that stem from two parts: (i) the com-
plexity of SQL and DBs, and (ii) the difficulty of generating fluent and accurate NL ut-
terances. First and foremost, such a system should generate fluent and human-like ex-
planations of SQL queries. This requires attention in multiple directions: There must be
no unnecessary repetitions (e.g., “projects starting after 2014 and projects starting before
2020” should be “projects starting between 2014 and 2020”). Additionally, there must not
be unnecessary over-complications (e.g., “show me actors that play in a movie and other
actors who play in the same movie” should be “show me actors who have played in the
same movie”) Finally, the correct vocabulary should be used according to the DB domain
(e.g. “Which artist created the soundtrack of each movie” should be “Which artist com-
posed the soundtrack of each movie”). Similarly, another challenge is correctly identifying
the DB domain and using the appropriate vocabulary. For example, the MAX aggregation
function must be translated in a different way, depending on the context and the attrib-
ute on which it is applied. In a DB containing sport data, the MAX (1ap_time) refers to the
“slowest lap time”, while in a database containing products, the MAX(price) refers to the
“highest product price”. Finally, the complexity of SQL poses additional challenges in tack-
ling this problem, which are closely related to the ones described above. A SQL-to-Text
system might encounter very complex queries that join multiple tables, use multiple attrib-
utes, have nested queries, and other complicated clauses. In order to explain complicated
queries, the system must be able to understand what needs to be verbalised and in which
cases. For example, most joins may not need an explicit verbalisation, but some queries
might perform a join over a certain key that has a large impact on the query meaning.

Finally, efficiently and quickly evaluating query explanations is another important chal-
lenge. Currently, there is no dedicated metric for the SQL-to-Text problem and almost
all previous works either rely on human evaluations, or on automatic metrics created for
translation problems (e.g., BLEU [81]). Unfortunately, both choices come with disadvant-
ages: human evaluations require a lot of time and effort, and on the other hand, automatic
translation metrics are not ideal for the problem at hand. In fact, metrics such as BLEU
rely on n-gram matching to compare two given texts, that is if the same phrases appear in
both texts, then a high score is given. However, this approach does not consider the actual
meaning of the texts and is not robust when a synonym is used instead of the expected
word, as we are going to show.

3.3.3 What is truly a Query Explanation?

A previous study [31] notes three basic types of linguistic expressions that can be em-
ployed to express a query in NL: (i) a statement describing the expected data results
(e.g., “Actors from Greece.”), (ii) a question about the existence of the queried data (e.g.,
“Which actors are from Greece?”), and (iii) a command requesting the queried data (e.g.,
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“Show all actors from Greece.”). However, a query explanation can have additional levels
of variation that need to be considered, in order to truly achieve progress. Let us con-
sider the following query, taken from the Spider dataset’s dev set, as a running example
to demonstrate our point:

SELECT name, location, district
FROM shop
ORDER BY number_products DESC

If we were to closely follow each element of the query, similarly to how template-based
approaches generate explanations, we could produce the following query explanation:
“Return the shop name, shop location and shop district of all shops. Order the results
by shop number of products, in descending order”. While this explanation includes every
single element of the query, it is unlikely that a human would explain it in this way, as it
includes many repetitions, it is unnecessarily long, and could be expressed much more
fluently. A more “relaxed” take on explaining the query could produce the following ut-
terance: “Show me the shops, ordered by their number of products”. One could argue,
however, that this explanation does not describe the query in an exact manner, and could
also cover other similar queries. For example, it does not specify exactly which attributes
must be presented (i.e., name, location and district), nor how the results will be ordered
(i.e., in descending order of product number), both of which are explicitly specified in the
SQL query. On the other hand, it is also valid to argue that this additional information might
be redundant for certain queries and omiting it increases the quality of the explanation.
A more generally accepted approach would be the following explanation: “Show me the
name, location and district of all shops, in descending order of number of products”.

Let us now consider a query that contains a GROUP BY clause with a COUNT aggregation
function. The following example is also taken from the Spider dev set and is posed on a
database containing information about concerts and stadiums where the concerts took
place:

SELECT T2.name , COUNT(*)
FROM concert AS T1
JOIN stadium AS T2
ON T1.stadium_id = T2.stadium id
GROUP BY T1.stadium_id

A simple and fluent explanation could be “How many concerts took place in each sta-
dium?”. However, in the same spirit as previously, one could say that this explanation
does not complete encapsulate the intent of the SELECT clause. Instead, it would be
valid to say that the correct interpretation should also include “Show me the number of
concerts per stadium along with the name of the stadium”. This might seem excessive
to some, given that a query that would return a list of numbers without the stadium that
corresponds to each number of concerts. However, this depends on the precision and
strictness required for describing the SQL query.

Finally, the proper explanation of the asterisk operator and the level of detail it requires,
are still debatable. We use the following SQL query as a motivating example:
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SELECT =*
FROM project
WHERE start_year > 2014

Let us discuss possible explanations for this query. First of all, the explanation “Show me
projects that started after 2014” is simple and straight-forward, but one could point out
that a query with a clause such as SELECT project.title would have the same explan-
ation, and as such more detail is needed. Something along the lines of “Show informa-
tion about projects starting after 2014” or “Show everything about projects that start after
20147, might be more precise, but could still be vague to a non-technical user (e.g., what
is “everything”?). A more strict explanation, that would also be clear for non-technical
users, could be “Show me all information stored in the database about projects starting
after 2019.”. But it might be possible that there are other tables in the DB that contain
information related to projects. Maybe “Show me all information about projects starting
after 2019, that is stored in the table named projects” is the strictest explanation, but at this
point we are clearly drifting away from our main goal of providing fluent and user-friendly
explanations.

3.4 A SQL-to-Text System

3.41 The Model

We propose the use of a Transformer-based [108] sequence-to-sequence model, follow-
ing an encoder-decoder architecture. The sequence-to-sequence architecture allows us
to parse the input SQL queries with great ease, and at the same time opens up the pos-
sibilities to apply our model on different inputs and tasks without the need for changes to
the architecture. For example, the model can as easily be trained for SPARQL-to-Text, by
only changing the dataset it is trained on, or it can be trained for Text-to-SQL by reversing
the inputs and outputs of the dataset. We initialise the model with the T5-base Pre-trained
Language Model (PLM), which has been shown to perform very well on various NL Un-
derstanding and Generation tasks [92]. We follow the same input format as the one used
by T5’s authors: X = p : i, where p is the task prefix (e.g., “translate SQL to English”) and
i is the actual input (e.g., the SQL query).

3.4.2 Training Tasks

Given the multi-learning capabilities of the T5 model [92], as well as the benefits that aux-
iliary learning tasks can have towards the downstream task, we also experiment with ad-
ditional tasks that may improve the models performance. We propose four configurations
for training our model using SQL and SPARQL:

1. SQL-to-Text only (no additional tasks)
2. {SQL, SPARQL}-to-Text (generating explanations for both SQL and SPARQL)
3. SQL-to-Text and Text-to-SQL (generating SQL explanations and queries)
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4. {SQL, SPARQL}-to-Text and Text-to-{SQL, SPARQL} (generating SQL and SPARQL
explanations and queries)

Using the above configurations, we investigate the effects of training the model on similar
tasks (query generation) and languages (SPARQL), on its SQL explanation capabilities.
Other possible choices could include code summarisation and generation tasks for other
programming languages (e.g., Python, C, etc.), bug and threat classification, or even table
understanding tasks. However, we choose to only experiment with the most closely related
tasks.

3.4.3 Adapting to Scientific Databases

When applying our model on a database from the scientific domain there are several dif-
ficulties that arise, mainly from the use of domain-specific and scientific vocabulary. This
is a challenge that is often disregarded, but is very relevant when applying a system in
a real-world use case that contains domain-specific vocabulary and knowledge, that the
model has never seen during its training. For example, a database containing astronom-
ical data will contain attributes such as specobj, photobj, and ra, that require words such
as “spectroscopic”, “photometric’, and “right ascension” in order to explain them. How-
ever, our model has never seen this kind of attribute names and vocabulary during its
training nor its pre-training. In order to improve performance on such databases we apply
two adaptation techniques: (i) descriptive attributes, and (ii) DB-specific training.

Descriptive Attributes. In order to help the model what attributes such as specobj refer
to, we use descriptive attribute names to make the SQL query easier to explain. Specific-
ally, a domain expert must first provide a list of descriptive and understandable names for
each column and table name in the DB. Then an extra pre-processing step is added to
the pipeline, where for each query that needs to be explained, its attributes will be auto-
matically substituted by the equivalent descriptive attributes. The neural model will then
be given the pre-processed query with the descriptive attributes, instead of the cryptic
attributes that are understandable only by domain experts. For example, the query:

SELECT COUNT (specobjid)
FROM specobj

which is explained as “Count the number of specobjs.”, by the model, will be transformed
to:

SELECT COUNT (spectroscopic_object_id)
FROM spectroscopic_object

This query will be much easier to explain by our model, which in fact generates the follow-
ing, much more fluent, explanation: “How many spectroscopic objects are there?”.

DB-Specific Training. Another method for adapting the model to a scientific database
is by specifically training it on examples of queries and query explanations take from the
given database. This approach also requires manual work from a domain expert, in order
to produce high quality SQL and explanation pairs. In fact this approach will require a
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lot more effort, because in order to have a considerable impact, the DB-specific training
examples must be of a considerable size and quality. This also requires the domain expert
to have some technical knowledge in using relational databases and writing SQL queries,
as well as to be familiar with the schema of the DB at hand. However, despite the additional
effort required, this approach can help the system learn how to verbalise the queries posed
on the DB, like a domain expert would do.

In summary, the two aforementioned adaptation techniques allow for three different ap-
proaches when applying our model to a database with domain-specific vocabulary: (i)
train the model on a general knowledge dataset and use descriptive attributes when ex-
plaining queries for the given database, (ii) train the model on both a general knowledge
dataset and a dataset created for the given database, and (iii) use both techniques at the
same time. In the third case, the model is trained on both a general knowledge dataset
and a dataset from the given database, and the descriptive attributes are used both during
training and inference. Experiments for all these cases are shown in Section 3.7.

3.5 Benchmarks

3.5.1 (No) SQL-to-Text Benchmarks

Currently, there are no benchmarks created specifically for the SQL-to-Text task. This is
because the problem remains relatively unexplored, compared to other similar problems in
the area. Nevertheless, there are multiple available benchmarks for the reverse problem
(i.e., Text-to-SQL). Even though these dataset were not created to be used for the task we
aim to tackle, they can be adapted to SQL-to-Text-Problem by using their inputs (i.e. nat-
ural language queries) as targets and their outputs (i.e. SQL queries) as inputs. However,
this approach should not be seen as a panacea, but rather as a temporary solution. Firstly,
these datasets are created specifically for the Text-to-SQL task and can carry dataset con-
struction biases. For example, the NL parts of some examples might be intentionally mal-
formed or incomplete in order to make them more challenging for Text-to-SQL systems.
However, when these examples are used as ground truths for SQL-to-Text systems, we
are essentially teaching our systems to generate low quality explanations. Additionally, a
benchmark should provide fine-grained categories of explanations and queries that help
developers evaluate the capabilities of their systems and to uncover their drawbacks.

Spider [131] is one of the most influential and widely-used dataset in the Text-to-SQL
domain. This will be our main dataset used for training and evaluating our model, due to
its widespread use and proven quality. The Spider dataset contains 10,181 NL questions
and 5,693 SQL queries, posed over 200 relational database coming from 138 different
domains. For this work we only use the train and dev splits of the dataset, as the test set
is held out by the authors for evaluation purposes.

We also use two additional, smaller-scale, benchmarks coming from scientific use cases:

SDSS' (Sloan Digital Sky Survey) is a very large astrophysics database, containing the
most detailed three-dimensional map of the universe ever made. It contains data collected
from a 5-m wide-angle optical telescope at Apache Point Observatory in New Mexico,
United States, that has been collecting observations from 2000 and keeps going on until
today. The original SDSS database contains 10 tables each of which contains up to many
hundreds of columns. Fir this work, we use a subset of the database comprised of 5

"https://www.sdss.org/
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original tables from SDSS and 1 additional table for photometrically observed astronomical
objects. There are 61 columns, averaging about 10 columns per table.

OncoMX is a database used for cancer research and contains information about can-
cer mutation and expression, and cancer biomarkers. The version of OncoMX we use
contains information from cancer biomarker databases (EDRN6, FDA7), gene expres-
sion in healthy anatomical entities (Bgee8), differential gene expression between healthy
and cancerous samples (BioX-press9) and cancer mutations (BioMuta10). The database
comprises 25 tables that have 2 to 14 columns each, for a total of 111 columns.

Table 3.2 provides additional information about the size and SQL hardness? of all the
datasets used in this work. The hardness metrics for Spider were calculated by its authors,
while the hardness for the SDSS and OncoMx datasets were calculated by us, using the
tools provided by Spider’s authors.

Table 3.2: SQL hardness statistics of the datasets used in this work. The SQL hardness
classification is based on the criterion proposed by the Spider dataset

Dataset Easy Medium Hard Extra Hard Total
Spider Train 1944 224% 2831 32.7% 1758 20.3% 2126 24.5% 8659
Spider Dev 248 239% 446 431% 174 16.8% 166 16.0% 1034
SDSS Train 20  20% 54 54% 2 2% 24  24% 100
SDSS Test 12 12% 28 28% 20  20% 40 40% 100

OncoMX Train 21 42% 20 40% 7 14% 2 4% 50
OncoMX Test 39 37.8% 49 47.5% 11 10.6% 4 3.8% 103

3.5.2 Two New Benchmarks for Metric Evaluation

Another challenge for SQL-to-Text systems is the lack of a dedicated metric for evaluating
them. Until now, researchers have evaluated their system either with user evaluations
[119], which are costly, or with automatic translation metrics (e.g., BLEU [81]), which are
not ideal for this problem (more in Section 3.6). For this reason, we create two benchmarks
that will help us evaluate the performance of different metrics, so as to better understand
how reliable they are for the SQL-to-Text problem. Both datasets contain pairs of query
explanations, along with a label that indicates whether the two explanations are semantic-
ally equivalent (i.e., if they describe the same query). This format helps us evaluate the
currently available metrics, that provide a score for a generated explanation given a ref-
erence (i.e., ground truth) explanation. An ideal metric would provide a very high score
if the label indicates that the two explanation are equivalent and a very low score if the
label indicates that they are not equivalent. We will now describe how both datasets were
created.

3.5.2.1 Qx-Paraphrase: A Metric Benchmark by Paraphrasing

We create a benchmark by paraphrasing query explanations from the Spider [131] data-
set, which we refer to as Qx-Paraphrase. To do so, we begin by randomly extracting 100

2More information on the harness criteria can be found in the Spider github repo (https://github. com/
taoyds/spider).
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examples from the Spider dev set. For each example, we generate a semantically equi-
valent explanation with different vocabulary, using publicly available paraphrasing tools®4,
and manually validate them afterwards to ensure their correctness and semantic equi-
valence. We also manually create an incorrect paraphrase of the original example, that
uses very similar vocabulary, by changing a small number of words that drastically change
the explanation’s meaning (e.g., older instead of younger, more instead of less, etc.). By
doing so we create a small corpus containing 100 correct explanation pairs, and 100 in-
correct explanation pairs. Some examples of such pairs can be seen in Table 3.3. The
Qx-Paraphrase benchmark can help us evaluate the robustness of metrics to synonyms
and paraphrases, as well as predictions that use very similar vocabulary but are incorrect
due to small differences.

Table 3.3: Examples from the Qx-Paraphrase benchmark: Each original query is paraphrased
twice, once with a semantically equivalent (correct) paraphrase, and once with a different
(incorrect) meaning.

Original NLQ Correct/Incorrect Paraphrases
v What is the total number of states?
How many states are there? .
X How many counties are there?
. v Which year is the busiest in terms of concerts?
?
Which year has most number of concerts? X Which year has smallest number of concerts?
. . v How much does each type of pet weigh on average?
?
What is the average weight for each type of pet? X What s the average age for each type of pet?

3.5.2.2 Qx-Annotate: A Metric Benchmark by Annotating

We create the Qx-Annotate benchmark by performing a human annotation of predicted
query explanations. More specifically, we use all models described in Sections 3.4.2 and
3.4.3 (i.e., 4 alternatives for training tasks and 4 alternatives for adapting to scientific data-
bases) and apply them to the aforementioned datasets. For each example, the experts
were given the input SQL query along with the ground truth NL explanation and the pre-
diction of a model, and were asked to classify the prediction as correct or incorrect. The
resulting benchmark consists of 1800 pairs of ground truth and predicted explanations,
along with a label indicating whether the predicted explanation is correct. Our expert group
consists of a combination of 7 MSc and PhD students, whose work is mainly focused on
the DB field. For the SDSS and OncoMX datasets, we ask human experts to evaluate all
examples of their test sets, while for the Spider dataset they evaluate a random sample of
350 examples out of the 1034 examples of the dev set. Because the Qx-Annotate bench-
mark is created using real predictions of SQL-to-Text models, it can provide better insights
on how a metric performs in a realistic use case.

3.6 (No) SQL-to-Text Metrics

Let us now consider an unaddressed challenge closely realated to the SQL-to-Text prob-
lem: How can we measure the correctness of a candidate (predicted) NL explanation
of a query against the reference (ground truth) explanation provided by a benchmark?
Most works so far have relied on automatic translation metrics such as the BLEU score

Shttps://quillbot.com/
“https://www.prepostseo.com/paraphrasing-tool
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[81]. However, are automatic translation metrics, designed for evaluating abstract utter-
ances, sufficient for evaluating NL explanations of code snippets like SQL queries, where
a change of column name can completely change its semantics? As shown in Table 3.4, a
candidate explanation that has similar vocabulary to the reference but refers to the wrong
column is rated much higher than a candidate that is slightly paraphrased but semantically
equivalent.

In this section, we present various automatic metrics that are available and could be suit-
able for the problem at hand, grouping them in two large categories based on how they
work: (i) n-gram based metrics and (ii) learned metrics. We also talk about the limita-
tions and drawbacks of these metrics and fine-tune a learned metric specifically for the
SQL-to-Text problem. Finally, we use the, previously described, Qx-Paraphrase and Qx-
Annotate benchmarks, to evaluate the performance of all the metrics at hand and present
our findings.

3.6.1 Automatic Metrics
3.6.1.1 N-Gram-Based Metrics

BLEU (BiLingual Evaluation Understudy) score [81] is an automatic evaluation metric that
was originally proposed for machine translation. Besides machine translation, this is a very
frequently-used evaluation metric for text generation tasks such as text summarisation and
image captioning. It evaluates the quality of a candidate translation against one or more
reference translations based on n-gram precision. More specifically, n-gram precision is
the number of n-grams of the candidate translation that are also present in the reference
translation. Since its introduction, many different implementations have been published,
which make it difficult to have a consistent comparison between different works. This
problem is described in [88].

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [68] score is an automatic
evaluation metric proposed for text summarisation. Similarly to n-gram precision, n-gram
recall refers to the number of n-grams in the reference that also appear in the candidate
translation.

chrF [86] and chrF++ [87] automatic translation metrics that take into account character
n-grams along with word n-grams. More specifically, the initial chrF metric is based com-
pletely on character n-gram matching while the later chrF++ combines both character and
word n-grams.

METEOR (Metric for Evaluation of Translation with Explicit Ordering) score [7] is another
automatic metric for machine translation based on n-gram matching. It combines both
n-gram precision and recall and also takes into account the ordering of the candidate
translation compared to the reference.

3.6.1.2 Learned Metrics

Sentence Transformers [93] is a state of the art technique for creating sentence em-
beddings using siamese networks of BERT-like models. Essentially, a BERT-like model
is used to create a sentence embedding for the candidate and reference query explana-
tions and the cosine similarity of their embeddings is used as a metric of their semantic
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similarity. For the purposes of this work, we use the all-mpnet-base-v2 model due to its
exceptional performance on semantic search tasks, compared to all available models.

BLEURT [96] use the BERT’s [CLS] token and a linear layer to predict a score. The main
difference to Sentence Transformers is that BLEURT, processes the two inputs (i.e., ref-
erence and candidate) at the same time, and not separately. The output [CLS] token
contains a contextualised representation based on both inputs, which is then used to pre-
dict a score through a linear layer. Although the model is trained to produce outputs in the
range of [—1, 1], it is not possible to guarantee that its output will always be in this range,
due to the nature of the model. For this reason, we clip its output between [—1, 1] before,
normalising it to the common range.

3.6.2 Limitations of Current Metrics

Even though all prior works rely on the BLEU score to evaluate their systems, this metric
is not ideal for the SQL-to-Text problem. Given that such metrics rely on n-gram match-
ing, they are not robust to the use of different vocabulary, expressions, and syntax that
could convey the same meaning. For example, the explanations “How many singers do
we have?” and “What is the number of singers?” are semantically equivalent, despite
only sharing one common word. Additionally, as the authors of BLEU state: “[...] quantity
leads to quality”, that is, BLEU is most efficient when applying it on large corpora. How-
ever, query explanations are usually short texts loaded with very specific information, and
changing even a single word can completely alter their meaning, rendering them incor-
rect. For example “How many singers do we have?” describes a different query than
“‘How many songs do we have?”. The scores given to the aforementioned examples can
be seenin Table 3.4. ltis clear that n-gram based metrics will favor the wrong explanation,
because it uses similar vocabulary and syntax.

On the other hand, learned metrics are more robust at capturing the semantics of their
inputs due to their training. As such, they could be more promising for the SQL-to-Text
task, but can not be seen as a panacea. For this category we can identify two drawbacks:
Firstly, these metrics usually rely on deep learning models and the scores they produce
are not explainable and occasionally might not be completely reproducible. Additionally,
even though these metrics can provide a semantic comparison between texts, they are
not guaranteed to rate candidate explanations, on the exact criteria of the SQL-to-Text
problem. For example, the ground truth “Tell me the age of the oldest dog.” and the
prediction “Tell me the age of the youngest dog.”, are arguably semantically similar, but do
not describe the same query. However the Sentence Transformer metric gives a higher
score to this prediction than the correct prediction “How old is the eldest dog?”, as shown
in Table 3.4.

Table 3.4: Examples of NL explanations of SQL queries and their respective scores. Notice how
classic automatic translation metrics can favor the wrong explanation.

Reference Candidates BLEU chrF++ METEOR s-Trans
How manv sinaers do we have? How many songs do we have? 48.89 68.49 80.66 61.07
Y sing ’ What is the number of singers? 7.80 24.15 0.00 89.09

Tell me the age of the youngest dog.  66.06 72.83 86.47 90.28

Tell me the age of the oldest dog. 1 014 s the eldest dog? 566  37.42 1612  81.16
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3.6.3 BLEURT-Q: Fine-tuning BLEURT for Query Explanations

Based on the aforementioned observations about the limitations of the available metrics
for SQL-to-Text, we decide to fine-tune a learned metric specifically for this task. Towards
this goal, we use the Qx-Paraphrase dataset (a 80% train split) and the BLEURT [96]
model. The authors of BLEURT claim that their model can be fine-tuned to provide better
evaluations for a given task or domain, even with a small amount of examples. To do
so, it is necessary to provide a training set that is comprised of candidate and reference
translation pairs along with a rating r of the candidate, where € [—1,1]. In our case, a
rating of » = 1 will be assigned to pairs where the candidate explanation is semantically
equivalent to the reference (despite the use of different vocabulary), and a rating of r = —1
will be assigned to pairs where the candidate explanation describes a different query than
the reference (despite the use of the same vocabulary). We use this fine-tuned BLEURT
model (denoted as BLEURT-Q(uery) for the rest of the paper), for our experiments in
Sections 3.6.4 and 3.7.

3.6.4 Evaluating Metric Performance

Moving on, we will try to get some experimental insights on how well the aforemen-
tioned metrics perform on query explanations. We will use the Qx-Annotate and the Qx-
Paraphrase (a 20% test split) datasets to evaluate 4 n-gram based metrics (BLEU, Rouge,
METEOR, and chrF) and three learned metrics (Sentence Transformers, BLEURT, and
BLEURT-Q). For each dataset, we calculate the scores given by each metric on the correct
and the incorrect pairs, and display the average score for each in Figure 3.1.

All the results that we present have been normalized in the common range of [0, 100], with
0 being the worse and 100 being the best score. This is because different metrics might
return scores in different ranges (e.g., [0, 1] or [—1, 1]).

Qx-Paraphrase Qx-Annotate (Spider) Qx-Annotate (OncoMx) Qx-Annotate (SDSS)

correct

label label label label
| ;
wrong wrong wrong

bleu chrf meteor rouge s-trans bleurt bleurt-Q bleu chrf meteor rouge s-trans bleurt bleurt-Q bleu chrf meteor rouge s-trans bleurt bleurt-Q bleu chrf meteor rouge s-trans bleurt bleurt-Q

Figure 3.1: A comparison of scores given by automatic metrics on the Qx-Paraphrase dataset and
the Qx-Annotate dataset (Spider/SDSS/OncoMx sub-sets shown separately). An ideal metric would
assign high scores to correct explanations and low scores to incorrect explanations.

Looking at the results we can make some interesting observations. First of all, on the
handmade dataset, we observe that all n-gram-based metrics are struggling, and are
consistently ranking wrong explanations with higher scores compared to correct explan-
ations. The learned metrics perform better as the Sentence Transformers and BLEURT
metrics provide similar scores to both correct and incorrect metrics, and the fine-tuned
BLEURT metric performs exceptionally giving very high scores to correct explanations
and low scores to wrong explanations. However, this ideal performance does not transfer
to the rest of the datasets. On the three other datasets, we observe that all metrics, no
matter if they are trained, fine-tuned or n-gram-based perform very similarly. In fact, in
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almost all cases, all metrics rank the correct explanations higher than the wrong explan-
ations, with each metric having a different scale and difference between the two scores.
Furthermore, the fine-tuned BLEURT metric seems to perform worse than the rest of the
metrics, having the least difference between correct and incorrect explanations and in one
case, even giving higher scores to incorrect explanations.

These observations lead us to some conclusions. First of all, we should not be too
quick to dismiss n-gram-based metrics completely. Even though experiments on the Qx-
Paraphrase (which contains difficult examples) show very bad performance for n-gram
metrics, experiments on the Qx-Annotate dataset (which contains examples from real
model predictions) show that n-gram metrics performance is very close to the perform-
ance of learned metrics. Second, there is no metric that can make a clear distinction
between correct and incorrect explanations, as all metrics give relatively similar scores
to all examples. Finally, while the BLEURT-Q metric beats all other metrics on the Qx-
Paraphrase dataset, the fact that its performance is similar to all other metrics on the
Qx-Annotate dataset leads us to believe that we should use a larger variety of examples
to fine-tune it.

3.7 System Evaluation

We move on with the evaluation of our proposed model, which aims to answer two ques-
tions: (i) Which training tasks (discussed in Section 3.4.2) help the model achieve the best
performance at the SQL-to-Text task, and (ii) Which adaptation techniques (discussed in
Section 3.4.3) help the model achieve the best performance on new DB taken from the
scientific use cases. For the first set of experiments we use the Spider dataset and for
the second set of experiemts we use the SDSS and OncoMx scientific datasets. For all
experiments we use two n-gram based metrics (BLEU and chrF), three learned metrics
(Sentence Transformers, BLEURT, and BLEURT-Q), as well as an user evaluation per-
formed by experts of the DB domain. For each example, the experts were given the input
SQL query along with the ground truth NL explanation and the prediction of a model, and
were asked to classify the prediction as correct or incorrect. Our expert group consists
of a combination of 7 MSc and PhD students, whose work is mainly focused on the DB
field. For the SDSS and OncoMX datasets, we ask human experts to evaluate all ex-
amples of their test sets, while for the Spider dataset they evaluate a random sample of
350 examples out of the 1034 examples of the dev set.

All the results that we present have been normalized in the common range of [0, 100], with
0 being the worse and 100 being the best score. This is because different metrics might
return scores in different ranges (e.g., [0, 1] or [—1,1]). The experts’ score refers to the
percentage of predictions the experts labeled as correct.

3.7.1 Experiment I: Learning Tasks

Our first experiment is centered around the use of additional learning tasks, that might
aid the model at achieving higher performance in the SQL-to-Text task. We examine four
configurations: (i) Query-to-Text for SQL only, (ii) Query-to-Text for SQL and SPARQL,
(iii) Query-to-Text and Text-to-Query for SQL, and (iv) Query-to-Text and Text-to-Query for
SQL and SPARQL. Table 3.5 displays the performance on the SQL-to-Text task of each
one of the aforementioned models, evaluated on the Spider dev set. We also include the
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Table 3.5: SQL-to-Text performance scores on the Spider Dev Set for different training
configurations

Training Tasks BLEU chrF  s-Trans BLEURT BLEURT-Q Experts
SQL-to-Text 18.16 48.46 79.70 44.04 81.89 58.57
{SQL, SPARQL}-to-Text 18.63 48.61 79.48 44.24 80.67 55.71
SQL-to-Text, Text-to-SQL 16.41 46.46 78.03 40.70 79.80 49.14
{SQL, SPARQL}-to-Text, Text-to-{SQL, SPARQL}  13.57 43.80 75.62 37.10 79.64 31.71
RGT [75] 28.84 -

performance of RGT [75], which to our knowledge is the only system to be evaluated on
Spider. RGT is reported to achieve a higher BLEU score compared to our model, which
could be anindicator that the graph representation of the input SQL query helps the system
capture the semantics of the query more efficiently than the sequence representation we
use.

Looking at the experts’ evaluation, we observe that the first model performs the best,
producing a correct explanation about 58% of the time, while the second model achieves
a similar performance, being correct about 55% of the time. Adding the Query-to-Text
tasks in the training procedure (lines 3 and 4), we observe a large loss in performance,
with a 10% and 27% decrease in correct explanations when training only for SQL and for
both SQL and SPARQL respectively. This could be explained due to the fact that when the
model learns to perform additional tasks, its performance on one of them at a time drops.
However, the {SQL, SPARQL}-to-Text model seems very promising, as it only sacrifices
3% of accuracy in order to learn an additional query language.

Moreover, we observe that all metrics tend to rank the models similarly, or even in the same
way as the experts’ evaluation does. The fine-tuned BLEURT metric ranks the first model
as the best, with the second one being closely behind, but does not show a big decrease
for the latter two models in the same way that the experts did. The same behavior is seen
by the Sentence-Transformers metric. The rest of the metrics give a slight advantage
to the second model, with the first one being slightly behind, while the latter two models
achieve lower scores, with the last one having the worst scores, similarly to the experts’
evaluation.

3.7.2 Experiment ll: New Domains

Table 3.6: Performance scores on new domain-specific DBs, using different adaptation techniques

Database Adaptation Technique BLEU chrF s-Trans BLEURT BLEURT-Q Experts

None 340 21.11 52.39 6.61 55.80 8.00
SDSS Descriptive Attributes 8.61 34.57 65.34 20.57 75.54 22.00
DB-specific Training 6.88 27.07 59.91 12.22 64.96 18.00
Both 6.43 34.34 67.37 26.57 78.44 22.00
None 9.71 44.62 76.02 30.71 75.94 42.00
OncoMX Descriptive Attributes 8.03 42.34 70.03 29.89 77.68 34.00
DB-specific Training 13.95 50.50 80.48 40.80 78.46 72.00
Both 13.49 48.65 77.87 35.17 75.12 66.00

Moving on, we only train the model for the SQL-to-Text task, and evaluate its performance
on the new scientific domains presented by the SDSS and OncoMX databases. Addition-
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ally, we evaluate the best technique for adapting it to these difficult and unseen domains.
We examine the aforementioned adaptation techniques: using descriptive attributes, DB-
specific training, and a combination of both:

Table 3.6 displays the performance on each database, following different adaptation tech-
niques. For each database, we evaluate our base model without any adaptation tech-
nique, then with the descriptive attributes, with DB-specific training, and finally with both
descriptive attributes and DB-specific training. For the SDSS database, we observe that
initially the model’s performance is quite low, with experts indicating that it produces a cor-
rect answer only 8% of the time. We also observe that all adaptation techniques improve
the model’'s performance, with the descriptive attributes achieving the best performance,
of being correct 22% of the time. The same performance can be achieved by combining
both techniques, although given the cost of additional training, using only descriptive at-
tributes can be considered the best choice. Another observation is that all metrics tend to
agree with the experts’ evaluation, with the n-gram-based metrics showing a preference
to the model that uses only the descriptive attributes, while neural-based metrics favor
the model using both descriptive attributes and DB-specific training. For most metrics
these two scores are relatively close to each other, and clearly higher than the first model
(i.e., no adaptation technique). Additionally, all metrics except BLEU show that the two
best-performing models are better than the model using only DB-training.

On the OncoMx dataset, we observe a different behavior between different adaptation
techniques. All metrics, except for the fine-tuned BLEURT, agree with the experts’ eval-
uation on the ranking of different approaches: Using descriptive attributes produces the
worst performance, even worse than using no adaptation technique at all, and using DB-
specific training only achieves the best performance, surpassing the combination of both
adaptation techniques. Additionally, the experts’ evaluation indicates a much higher per-
centage of correct explanations on this dataset, compared to the SDSS dataset, where in
the best case we achieve 72% of correct explanations compared to only 22% for the best
model in SDSS. This increased performance is also mirrored on the metrics which also
show higher scores across all techniques, compared to the scores on the SDSS data-
base. The only exception to this is the fine-tuned BLEURT metric, whose scores are not
that different between the two databases (e.g., 78.44 when the experts indicate a 22%
correctness on SDSS, and 78.46 when the experts indicate a 72% correctness on On-
coMx).

3.7.3 Example predictions

Let us now examine some predictions from the aforementioned experiments, in order to
better understand how different models perform with different inputs, and how the experts’
evaluations match the scores given by the metrics. Figure 3.2 contains examples taken
from the first experiment on the Spider dataset, and Figure 3.3 contains examples from
the second experiment, on the SDSS and OncoMX databases.

3.7.3.1 Examples from Experiment |

Let us first consider the predictions on the Spider dataset, from Figure 3.2. The example
shown in Figure 3.2a displays 4 explanations that are all very close to being correct, but
have minor errors. The first explanation contains the phrase “in descending alphabetical
order of number of products”, which is incorrect since the number of products is a number
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and is not ordered alphabetically. The second explanation is also very close to being
correct, but does not specify if the ordering should be in ascending or descending order.
Admittedly, one could argue that this omission is not that big of a mistake to render the
prediction incorrect, or even that this makes the explanation more fluent and is preferable
to omit the order type. The third explanation is the only one that the experts marked as
correct. This explanation does not omit any part of the SQL query, but one could argue
that it is incorrect due to the phrase “for all shops and items”, since the attributes “name,
location, and district” only refer to shops and not to items. The fourth explanation does
not include the “district” attribute, which is why it has been marked as incorrect by the
experts. What is also interesting that this explanation uses the indicative mood, which
gives a very different feel to most explanations which are posed as questions or orders.
Additionally, we observe that all metrics favor the explanation that was labeled as correct
by the experts.

Moving on to the example in Figure 3.2b, we observe that no model managed to generate
a correct explanation. This is in fact a more complex SQL query, containing many different
clauses such as JOIN, GROUP BY, ORDER BY, etc. The first prediction is mostly cor-
rect but does not mention the attribute Level of membership that appears in the SELECT
clause. The second prediction, is also very close to being correct but refers to “spent the
most time”, when the attribute Total_spent that appears in the query is actually referring
to money instead of time. Admittedly, this is an error that could have been made by an
expert as well, given that the model does not have access to any information besides the
query, such as the data inside the table, or additional information about the attributes.
The third prediction, is the most bizarre of the four, where the model generated the phrase
‘who just stayed there”. This prediction is probably related to the model's pre-training
for generating generic natural language, as such a phrase is unlikely to occur in a query
explanation. The fourth prediction, is also very close to being correct but was probably
marked as incorrect because the phrase “who had the most spent” does not make a lot
of sense syntactically. However, a phrasing such as “who pent the most” would probably
have been correct, while also avoiding to mention what was being spent, which was am-
biguous from just reading the query. Finally, all queries rank the second prediction as the
one closest to the ground truth, besides incorrectly referring to spending time instead of
money.

Figure 3.2c shows another example with a query with many clauses but not that many
attributes. The first prediction is mostly correct but makes one important mistake by asking
the year with the “least matches”, instead of the “most matches”. The second prediction
is probably the most incomprehensible, as it is not clear what the model’s intention was.
The third explanation is the only one that was labeled as correct by the experts, and it
is completely on point on conveying the query’s semantics. The fourth explanation, is
not correct for two reasons: the query does not “find matches”, it finds the year, and it
has missed the LIMIT clause, which combined with the ORDER BY clause returns the
maximum or the minimum depending on the ordering type. Additionally, we observe that
most metrics incorrectly rank the first prediction as the best one, except for the fine-tuned
BLEURT metric which manages to rank the correct explanation as the best one.

3.7.3.2 Examples from Experiment Il

Let us now consider some examples from the SDSS and OncoMX datasets, taken from
experiment Il, shown in Figure 3.3.
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The example in Figure 3.3a is taken from the SDSS dataset. The first prediction, does
not correctly translate the attribute photobj, because the model does not have such know-
ledge. Instead it provides an incorrect explanation of “photo types” instead of “photometric
objects”. The second prediction however is correct. Thanks to the descriptive attributes
that were added, the model was able to correctly use the phrase “photometric objects”
and even translated photo_type as “classification”. The third prediction was marked as
correct by the experts, but could also have been labeled as incorrect given that it has the
same mistake as the first prediction, with the generated phrase “photo type” not being
exactly equivalent to “photometric object”. The fourth prediction is incorrect, as it does not
grasp the meaning of the WHERE clause and produces a rather incoherent phrase such
as “the star that is a STAR”. Additionally, we observe that the BLEU, chrF and Sentence-
Transformers metrics favor the fourth predictions which is incorrect, while BLEURT ranks
the third prediction as the best, even though it is arguably not the best. The fine-tuned
BLEURT model is the only metric that ranks the most precise prediction (i.e., the second
one) with the highest score.

The examples show in Figure 3.3b is taken from the OncoMx dataset and contains a long
SQL query that joins three different tables. Only the third prediction was marked as correct
and itis in fact the most comprehensive and accurately describes the SQL query. The rest
of the predictions are incorrect either because they fail to capture that the query returns
all information (asterisk operator) about disease mutations, or they miss the condition of
the query which limits the results to mutations concerning the liver. All of the automatic
metrics rank the third prediction as the best, with the only exception being the fine-tuned
BLEURT metric which favors the fourth prediction.

Finally, the example in Figure 3.3c shows another examples from the OncoMx dataset,
containing a COUNT aggregation function. In this case we have three predictions marked
as correct by the experts and only the first prediction being marked as incorrect. The
first prediction is incorrect because it refers to “medicines” instead of tests or test instru-
ments. The three other predictions all correctly capture the intention of the SQL query,
eventhough they phrase the NL explanation with slight differences. The automatic metrics
distribute their highest ratings between the correct explanations, with the second predic-
tion being favored by BLEURT, the third explanation being favored by BLEU, and the
fourth explanation being favored by chrF, sentence transformers and fine-tuned BLEURT.

3.7.4 Summary of Observations

To summarise, we identify five categories of errors from our observations: (i) omitting DB
elements, (ii) reversing conditions, (iii) misunderstanding inferred details, and (iv) hallu-
cinations. The first two categories are related to the system’s understanding of the SQL
query; we observe that in some cases the system will not verbalise all columns that appear
in the SELECT clause, or that it will incorrectly reverse conditions (e.g., “least” instead of
“‘most”). The third category contains errors that occur because the model was asked to
infer details that were not avaiable in its input (e.g., explaining the attribute total spent
as “total spent time” instead of “total spent money”). Finally, the problem of hallucina-
tions (i.e., generating text that is not related to the input) is an already known problem
of language models [52] but we also observe types of hallucinations that are specific to
the task we study. For example, some explanations might contain extra information that
does not appear in the query (e.g., “alphabetical order” when the ordered attribute is not
alphanumerical), or additional attributes that do not appear in the query (e.g., “shops and
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N L bleu: 6.00

‘ Ty What are the names, locations, and districts of oheF 52.38

1 Sort all the shops by number products in | shops in descending alphabetical order of Sirs: 76.45

| descending order, and return the name, | number of products? bleurt: 38.24

| ] i ! bleurt_g: 70.58
 location and district of each shop. )

T bleu: 8.82

What are the names, locations, and districts for i‘t’r:;‘i-%

all the shops ordered by product number? bleurt: 30.77

SELECT name, location, district bleurt_q: 56.20

FROM shop

ORDER BY number_products DESC N N . bleu: 19.96
List the name, location, and district for all shops chrF: 57.34

and items in descending order of product s-trs: 80.18

bleurt: 57.40

number. bleurt_g: 89.41

bleu: 7.01

The shop names and location are in descending zt‘(fz;‘;gfz

order of products provided. bleurt: 38.24

bleurt_g: 35.06

(a) An example from the Spider dev set, from a database containing shop and product information

bleu: 11.67

What are the id and name of the visitor who o 2943
spent the most on the visit? bleurt: 48.67
bleurt_q: 42.25

1‘/ What are the id, name and membership
| level of visitors who have spent the

i largest amount of money in total in all
\museum tickets?

) . ) bleu: 21.55
What is the id, name, and membership level of ch?',:: 26.10

the visitor who spent the most time in our s-trs: 86.58

s bleurt: 59.78
museums? bleurt_g: 70.06

SELECT t2.visitor_id,tl.name, tl.Level_of_membership
FROM visitor AS t1

JOIN visit AS t2 ON tl.id = t2.visitor_id

GROUP BY t2.visitor_id

ORDER BY SUM(t2.Total_spent) DESC

LIMIT 1

bleu: 19.41

What is the id, name, and membership level of ;"(r: gg?;
the visitor who has just stayed there? bleurt: 43.34
bleurt_g: 23.10

: ; bleu: 5.89
What is the id and name and level of o 35.57

membership of the visitor who had the most s-trs: 80.62

o bleurt: 49.81
spent? bleurt_q: 69.09

(b) An example from the Spider dev set, from a database about museums and their visitors

bleu: 28.42

chrF: 57.24

Show the year with least number of matches. s-trs: 91.45
bleurt: 53.12

bleurt_q: 75.72

\/ \‘
| Find the year that has the most number of |
| matches. |
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bleu: 5.00
chrF: 29.67

What year does match number 1 most strs: 70.09

frequently occur? bleurt: 5.70
bleurt_q: 65.48

SELECT year

FROM matches

GROUP BY year

ORDER BY COUNT(*) DESC
LIMIT 1

bleu: 11.35
chrF: 37.93
What is the year with most matches. s-trs: 86.64

bleurt: 25.70
bleurt_q: 94.37

bleu: 9.03

Find all matches in descending order of ohrF: 32.60
s-trs: 50.17

matches count. bleurt: 31.78
bleurt_g: 29.82

(c) An example from the Spider dev set, from a database containing match and stadium information

Figure 3.2: Examples of predictions on the Spider dev set, for each input we provide the output
from the four different models trained with the previously discussed configuration. The scores of
each metric are included next to each prediction, with the highest score of each metric being in
bold.
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i Count the photometrically observable
STAR

|
|

I

\

SELECT COUNT(*)

FROM photoobj AS p

JOIN photo_type AS pt ON p.type = pt.value
WHERE pt.name = 'STAR'

‘
| Show all information about disease

| mutations of the anatomical entity liver
i

SELECT *
FROM disease_mutation AS T1
JOIN disease_mutation_tissue AS T2

ON T1.id = T2.disease_mutation_id
JOIN anatomical_entity AS T3

ON T2.uberon_anatomical_id = T3.id
WHERE T3.name = 'liver'

| How many FDA tests exist for the disease

| ovarian cancer?
i

SELECT COUNT(*)

FROM biomarker_fda_test AS T1

JOIN disease AS T2 ON T1.doid = T2.id
WHERE T2.name = 'ovarian cancer'

What is the number of photo types whose name
is 'STAR'?

What is the number of photometric objects that
have the classification 'STAR'?

List the number of photo objects whose type
name is 'STAR'.

How many photometric objects is the star that is
a STAR

(a) An example from the SDSS dataset

What are the names of genes that are involved
in the mutation of any anatomical tissue whose
anatomical entity name is 'liver'?

What are the biomarkers of the corresponding
tumor driver mutation involved in a tumor called
liver?

Show all information about disease mutations
which are present in liver

What are all disease mutation ids within
anatomical entity 'liver'?

(b) An example from the OncoMx dataset

How many medicines is used to diagnose
disease named 'ovarian cancer'?

s B
How many test instruments are used to detect
cancer type 'ovarian cancer'?

&

-
Find the count of FDA tests for ovarian cancer
L J

e
Count the number of FDA test instruments

which are used in the disease 'ovarian cancer'

. J

(c) An example from the OncoMx dataset

bleu: 3.39
chrF: 22.46
s-trs: 59.36
bleurt: 0.00

bleurt_q: 37.19

bleu: 3.09
chrF: 34.59
s-irs: 76.67

bleurt: 23.79
bleurt_q: 86.77

bleu: 3.39
chrfF: 24.62
s-rs: 67.50

bleurt: 25.31
bleurt_q: 70.37

bleu: 4.46
chrF: 35.64
s-trs: 77.25
bleurt: 18.52

bleurt_q: 77.94

bleu: 3.92
chrF: 44.07
s-trs: 75.65

bleurt: 19.14
bleurt_q: 64.22

bleu: 5.06
chrF:30.71
s-rs: 64.88

bleurt: 23.63
bleurt_q: 76.15

bleu: 47.99
chrF: 67.56
s-trs: 93.53
bleurt: 72.64
bleurt_g: 63.33

bleu: 8.91

chrF: 52.77
s-trs: 84.35
bleurt: 31.32
bleurt_g: 87.22

bleu: 8.05
chrF: 47.24
s-trs: 85.23

bleurt: 47.03
bleurt_q: 76.84

bleu: 7.35
chrf:41.29
s-rs: 84.78

bleurt: 59.26
bleurt_q: 79.89

bleu: 11.95
chrF: 43.55
s-trs: 84.85
bleurt: 42.76
bleurt_q: 63.18

bleu: 5.82
chrF: 50.10
s-trs: 88.32
bleurt: 53.11

bleurt_q: 96.49

Figure 3.3: Examples of predictions on the SDSS and OncoMx datasets, for each input we provide
the output from the four different models trained with the previously discussed adaptation
techniques. The scores of each metric are included next to each prediction, with the highest score
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4. CONCLUSION AND FUTURE WORK

In this thesis, we studied two sides of enabling users to query databases with NL: the Text-
to-SQL and SQL-to-Text problems. We believe that both problems are of equal importance
towards the path to data democratisation. However, not both problems have been studied
to the same extent. For this reason, our work on each problem was split to two different
directions.

For the Text-to-SQL problem, we provided a fine-grained taxonomy of deep learning Text-
to-SQL systems, based on six axes: (a) Schema Linking, (b) Natural Language Repres-
entation, (c) Input Encoding, (d) Output Decoding, (e) Neural Training, and (f) Output Re-
finement. For each axis of our taxonomy, we analysed all the approaches that have been
presented so far and explained their strengths and weaknesses. We relied on this tax-
onomy to present some of the most important systems that have been proposed, grouping
them together, in order to highlight their similarities, differences and innovations. Finally,
having presented the current state of the art, we discussed open challenges and research
opportunities that must be tackled in order to truly advance the field of Text-to-SQL, as
well as broader challenges that are closely related to it. It is important to keep in mind,
that the ultimate goal of Text-to-SQL research is to empower the casual user to access
and derive value from data. This is a goal that requires the combined effort of multiple
disciplines and can not be measured by a single performance metric.

For the SQL-to-Text problem, we proposed the use of Transformer-based PLM for gen-
erating fluent and human-like explanations, along with three additional training tasks to
improve the model’s performance and two adaptation techniques to tackle the challenge
of applying a SQL-to-Text model on a new DB from the scientific domain. We also created
two benchmarks for evaluating SQL-to-Text metrics and used them to evaluate currently
available metrics and to fine-tune a learned metric specifically for this task. Finally, we
presented our evaluation on SQL-to-Text metrics and on our model’s performance using
existing metrics, our fine-tuned metric, and a user evaluation.

Moving forward we identify several challenges that remain open. For the Text-to-SQL
problem, we identify a large need to optimise the approaches proposed by the NLP com-
munity and make their use more feasible alongside a RDBMS. While a lot of innovative
techniques have been proposed, they mostly rely on very large models that require a lot
of processing power. In order to make NLIDBs a reality we need to make Text-to-SQL
systems faster, more efficient, and easier to deploy. This also dictates the creation of
larger and more realistic benchmarks, that more closely resemble the DBs that are use
in real life applications. For the SQL-to-Text problem, we identify two points for future
research. Firstly, we believe that additional light should be shed on efficiently evaluating
SQL-to-Text systems, in two directions: (i) with the creation of a dedicated metric that will
take the requirements of the problem and will also use the given SQL query besides just
the ground truth and predicted explanation, and (ii) with the creation of a dedicated data-
set both for training and evaluating SQL-to-Text systems. Additionally, further research
is due on the use of PLMs for the SQL-to-Text task either by experimenting with newer
and larger models, or by the combining graph-to-seq architecture, proposed by previous
models, with the power of NL pre-training.
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ABBREVIATIONS - ACRONYMS

SQL

Structured Query Language

NL

Natural Language

DB

Database

RDBMS

Relational Database Management Systems

ML

Machine Learning

DL

Deep Learning

PLM

Pre-trained Language Model
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