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ABSTRACT

Peripheral membrane proteins play a crucial role in many biological activities: cell
differentiation, proliferation, and communication with other cells, among other functions.
Peripheral membrane proteins are regulated in various ways depending on their functions
and cellular contexts, including binding to biological membranes. Characterizing
interactions at the protein-membrane interface is crucial, as abnormal peripheral protein-
membrane attachment is involved in the onset of many diseases. However, a limiting
factor in studying and understanding protein-membrane interactions is that the
membrane-binding domains of peripheral membrane proteins are typically unknown.
Currently, the existing tools that predict the protein-membrane interface lack accuracy
or/and are time-consuming. By applying Artificial Intelligence (Al) techniques in the
context of Natural Language Processing (NLP), the accuracy and prediction time for
protein-membrane interface analysis can be significantly improved. For instance, protein
language models (pLMs) applied to protein structure prediction, offer a substantial
advantage over other deep learning-based algorithms used for the same purpose, being
600 times faster with comparable accuracy. Hence, pLMs can be utilized to rapidly and
accurately predict protein-membrane interfaces.

Herein, a machine learning methodology for predicting membrane-penetrating amino
acids based on NLP and pLMs is described. First, we collect available data from two
verified sources containing peripheral membrane proteins with experimentally known
membrane-penetrating amino acids and generate features using pLMs to train machine
learning and neural network classifiers. In the preliminary tests of this thesis, which
employed default models without parameter optimization, the Multi-Layer Perceptron
(MLP) demonstrated superior performance compared to other models, achieving the
highest accuracy. Evaluation of the best MLP models, after fine-tuning the
hyperparameters with Bayesian optimization, yields an F1 score = 0.691 with Matthews
correlation coefficient (MCC) = 0.652 and F4 score = 0.622 with MCC = 0.577 for the two
different pLM features respectively, for predicting correctly membrane-penetrating amino
acids on unknown proteins of a test set. Close inspection of the results revealed that
many of the false positive predictions are true positive since these amino acids are
located adjacent to the protein-membrane interface. Thus, we defined a new cutoff radius
around true positive membrane penetrating amino acids in order to include neighboring
amino acids elevating the F1 score by an average of 0.11%.

To further improve the results, the attention heads of pLMs were extracted and used in
two steps: 1. Investigate if the information about the membrane-penetrating amino acids
exists in the hidden layers and the respective attention heads of these models, and 2.
Use the attention maps to predict the protein-membrane interfaces. The first step verified
that the information is indeed encoded inside the hidden layers of each pLMs. In the
second step, logistic regression models were trained on the attention maps of each pLM
for predicting the membrane-penetrating amino acids. Evaluation of the classifiers’
accuracy produced an F4 score = 0.366 with MCC = 0.344 and an F1 score = 0.35 with
MCC = 0.341 for the two different pLM attention maps, respectively, for the classification
of amino acids that interact with the membrane.



Our MLP models trained in pLM features predict the protein-membrane penetrating amino
acids in less than a minute for predicting the protein-membrane amino acids in all cases
while other tools may require more than an hour. The generated MLP models provide
highly promising results, yet with certain limitations that preclude generalization, namely
the inability to make correct predictions for proteins outside the trained protein families.
Conversely, the models trained using attention maps exhibited poor performance, which
warrants further investigation. Overall, the results demonstrate the promising potential of
using deep learning and pLMs to predict protein-membrane interactions faster and with
similar accuracy compared to existing methods.

SUBJECT AREA: Computational Biology

KEYWORDS: machine learning, deep learning, neural networks, natural language
processing, protein language models, embeddings, attention maps,
peripheral membrane proteins, protein-membrane interactions



NEPIAHWYH

O1 TTePIPEPIKEG PEPPPAVIKES TTPWTEIVEG TTAICOUV ONUAVTIKO POAO 0€ TTOAANEG BIOAOYIKEG
dpacTNPIOTNTEG: DIAPOPOTTIOINCTN KUTTAPWY, TTOAATTAQCIACNOG KAl ETTIKOIVWVIA PE AAAQ
KUTTapa, PETagU GAAwv Asitoupyiwyv. O TTpwrteiveg auTég puBuifovtal pe didpopoug
TPOTTOUG  avaAoya ME  TIG  AEITOUPYIEG KAl TA  KUTTAPIKA  TOug  TTAdiolq,
oupTtrepIAapBavouévng NG déopeuong o€ PBloloyikég pepPpaveg. H karavénon Ttwv
aAANAETIOPACEWV OTN DIETTIPAVEIQ TTPWTEIVNG-PENPPAVNG Eival {WTIKNAG onuaaciag, Kabwg
N KN QUOIOAOYIKI OUVOECN TTPWTEIVNG-UEUPBPAVNG EUTTAEKETAI OTNV EUPAVION TTOAAWY
aoBeveiwv. QOTO00, £VOG TTEPIOPIOTIKOG TTAPAYOVTAG OTN YEAETN KAl TNV KATAVONON TWV
aAANAETIOPACEWV TTPWTEIVNG-UENBPAVNG €ival OTI 01 TTEPIOXEG OEOUEUONG HEUBPAVNG TWV
TTEPIPEPIKWY  UEUPPAVIKWY TTPWTEIVWYV  Eival TUTTIKA QAyvwoTeg. Ta epyaAegia TTOU
UTTAPXOUV QUTR Tn OTIYUA yia TN TTPORAewn TNG SIETTAPNS TTPWTEIVNG-UEUPBPAVNG, EXOUV
ENelyn akpipelag f/kal gival xpovoBopa. Me Tnv e@appoyr TEXVIKWV Texvntng
Nonuoouvng (Al), kai o ouykekpipéva Tng Emegepyaciag duoikng MNwaooag, o xpdvog
TPOPAEYNS yia TNV avaAuon OIETTAQNG TTPWTEIVNG-UEUBPAVNG PTTOPEl va BeATIWOET
onuavtikd. MNa Tapddeiyua, TPWTEIVIKA YAWOOIKA POVTEAQ TTOU €@apuolovTal OoTnv
TTPOBAEYN TNG TTPWTEIVIKAG OOUNG, TTPOCPEPOUV Eva ONUAVTIKO TTAEOVEKTNUA EVAVTI
GAA\WV aAyopiBuwyv Baciopyévwy oe Babid udnon TTou XPENOoIKMOTToIoUVTal yia ToV idlo
oKOTTO, KaBwg eival 600 @opéc TayxuTEPa PE OUYKPIioIun akpiBela. Q¢ ek ToUTOU, TA
TIPWTEIVIKA YAWOOIKA PJOVTEAQ YTTOPOUV VA XPNOIYOoTToinBouv yia TNV Taxeia Kar akpiBn
TPORAEYN TwV SIETTAPWV TTPWTEIVNG-UEUPRPAVNG..

2TNV TTOpPOUCa £pyaoia, TTEPIYPA@ETal Pia peBodoloyia unxavikng pdaénong yia Tnv
TTPORAEWN apivogEwy TTou diEiIcdUoUV OTn HEPPPAvN ue Baon Tnv Emeepyaaiag Puoikng
FAWooag Kal Ta TTPWTEIVIKA YAWOOIKA JovTéEAA. ApXIKA, OUAAECaue dlabBEoipya dedouéva
a1rd OUO TINYEG TTOU TTEPIEXOUV TTEPIPEPIKEG WEMPBPAVIKEG TTPWTEIVEG PE TTEIPAUATIKA
YVWOTA auIvogEa TTou dieicduouv OTn YEPPPAVN KAl dNUIOUPYACANE TO XOPAKTNPIOTIKA
XPNOIMOTIOIWVTAG TTPWTEIVIKA YAWOOIKA MOVTEAQ YIO TNV EKTTAIOEUON TAIVOUNTWVY
MNXOVIKAG PABNONG KAl VEUPWVIKWY  OIKTUWV. 2TIG OpPXIKEG OOKIMEG,  TTOU
XPNOILOTIOINCAUE TTPOETTIAEYMEVA MOVTEAQ XWPIG PEATIOTOTTOINCN TTAPAUETPWY, TO
veupwvikd Multi-Layer Perceptron (MLP) €0¢1&e avwTepn armmodoon o€ oUyKpion PE TA
GAa povTéAa, eTmITuyxavovTag Tnv uwnAotepn akpifeia. H agloAdynon Twv KaAUTEPWV
MOVTEAWV MLP, petd atmmd BeATIOTOTTOINON TWV UTTEPTTAPAPETPWY PE XPNON TNG TEXVIKAG
BeAtioTotroinon Bayes, amodidel BaBuoAoyia Fqi = 0.691 pe Matthews correlation
coefficient (MCC) = 0.652 ka1 BaBuoAoyia F1=0.622 pe MCC = 0.577 yia 1a dI1aQOPETIKA
TWV OUO OIOPOPETIKWY TTPWTEIVIKWY YAWOOCIKWY PHOVTEAWV €VOG DOKINAOTIKOU GUVOAOU.
Mia KoAUTEPN €EETAON TWV OTTOTEAEOUATWY OTTOKAAUWE OTI TTOAAEG ATTO TIG WEUDWG
OeTIKEG TTPORAEYEIG €ival OTAV TTPAYMATIKOTNTA BETIKEG. 'ETOI, MIa VEQ OKTiVA ATTOKOTTNG
yUpw atmmd Ta TIPAYMOATIKA OeTIKA apivogéa TTou OlEioduouv OTn PePBpdavn yia va
TTepINaUBAVEl YEITOVIKA apIvogEa augavel Tn BaBuoAoyia F1 katd péco 6po 11%.

MNa mepaIt€pw PEATIWON TwWV ATTOTEAEOUATWY, €EAXONOCAV OI KEPAAEG TTPOOOXNG TWV
TIPWTEIVIKWY YAWOOIKWY JOVTEAWYV Kal XpnoldoTroinenkav o€ duo Bruara: 1. Aigpedvnon
€AV N TTANPOQOPIa OXETIKA PE TA APIVOEEQ TTOU DIEICOUOUV OTN PEPPPAVN UTTAPYXOUV OTA
KPU®A ETTITTEDA KAl TIG AVTIOTOIXEG KEPAAEG TTPOCOXNAG AUTWYV TWV PHOVTEAWV Kal 2. Xprion



TWV XAPTWV TTPOCOXNG YyIa TNV TTPORAEWn Twv OIETTOPWY TTPWTEIVNG-PePPBPAvng. To
TTPWTO BANA ETTAANBEUCE OTI O TTANPOYOPIEG Eival TTPAYHATI KWOIKOTTOINUEVEG NECA OTA
Kpu@a etmitreda KABE TTPWTEIVIKOU YAWOOIKOU povTéAou. 210 deUTEPO BrAua, Logistic
Regression poOvTEAQ eKTTQIOEUTNKAV OTOUG XAPTEG TIPOCOXNG KABE TTPWTEIVIKOU
YAWOOIKOU JOVTEAOU yia TNV TTPORAEWN TWV AUIVOLEWY TTOU OAANAOETTIOPOUV HE TN
MEMBPAvN. H agloAdéynon Tng akpifeiag Twv Tagivountwy trapriyaye Baduoloyia Fq =
0,366 pe MCC = 0,344 ka1 BaBpoloyia F1 = 0,35 ye MCC = 0,341 yia Toug XAPTEG
TIPOCOXAG TWV dUO TTPWTEIVIKWY YAWOOIKWY HJOVTEAWV QvTioToIXd, YIa TNV Tagivounon
TWV apIvogEwy TTou dIEIodUOUV 0T PEPBPAvN.

Ta MLP povTéAa pag Tou £X0UV EKTTAIOEUTEI O XAPOKTNPIOTIKA TTPWTEIVIKWY YAWOTIKWY
MOVTEAWV TTPORAETTOUV Ta apIvVOEEa TTOU BIEICOUOUV OTN PEPBPAVN TTPWTEIVNG O€ AIyOTEPO
atrd éva AETITO yia TNV TTPORAEWN TWV APIVOLEWY TTPWTEIVNG-UEUPRPAVNG O€ OAEG TIG
TTEPITITWOEIG, VW AANQ epyaleia PTTOPEI va atraitouv TTEPICCOTEPO aTTO Mia wpa. Ta
TTapayopeva poviéAa MLP trap€xouv TTOAAG uTTOOXOMEVA aTTOTEAEOUATA, OAAG e
OPICHEVOUG TTEPIOPICHOUG TTOU ATTOKAEIOUV TN yevikeuon, dnAadn Tnv aduvauia va yivouv
OWOTEG TTPOPRAEYEIG YIA TTPWTEIVEG EKTOG TWV EKTTAIOEUPEVWV TTPWTEIVIKWV OIKOYEVEIWV.
AvTiBeTa, T POVTEAQ TTOU EKTTAIOEUTNKAV XPNOIUOTIOIWVTAG TOUG XAPTEG TTPOCOXNAG
EM@Avioav XaunAoTepn atrodoor, yeyovog Trou OIKAIoAoyEl TTepaITépw OlEPEUVNON.
2UVOAIKA, Ta atroTeEAéoPATA ATTOOEIKVUOUV TNV TTOAAG UTTOOXOUEVN duvVATOTNTA XPoNGg
BaBIGg pABNONG Kal TTIPWTEIVIKWY YAWOOIKWY HOVTEAWV yia TNV TTPOBAEYn Twv
oAANAeMOPAoEWY TTPWTEIVNG-UEUPBPAVNG TaxUTEPO Kal HE TTapooia akpiBeia o€
oUYKPIOT UE TIG UTTAPYXOUOEG HEBODOUG.

OEMATIKH NMEPIOXH: YtroAoyioTikr) BioAoyia

AEZEIZ KAEIAIA: pnxaviki pddnon, Badid paénon, veupwvika dikTua, €TTeCEpyania
QUOIKNG YAWOOOG, TIPWTEIVIKA YAwooiKA poviéla, embeddings,
XOPTEG  TIPOOOXNG,  TTEPIPEPIKEG  MEMPPAVIKEG  TTPWTEIVEG,
aAANAeTIOPAOCEIS TTPWTEIVNG-HEUBPAVNG
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PREFACE

The master thesis “Using deep learning and natural language processing to predict
protein-membrane interactions of peripheral membrane proteins” has been conducted at
the Biomedical Research Foundation Academy of Athens for the completion of the
Postgraduate Program "Bioinformatics — Biomedical Data Science", Department of
Informatics and Telecommunications, National, and Kapodistrian University of Athens,
Greece.

The first chapter presents the motivation of the study, the importance of peripheral
membrane proteins, and the current tools that exist in the literature for predicting protein-
membrane interactions. Furthermore, the difficulties in studying the peripheral membrane
proteins are listed and then the objectives of this thesis are defined.

In the second chapter, the theoretical foundations of the present work are described. First,
machine learning theory is discussed, explaining the basic concepts of learning
techniques, data processing and preparation, and the class imbalance issue that datasets
have. Then, machine learning classifiers and their algorithms are described as well as
optimization techniques are listed for improving the performance of the models. Moreover,
the principal evaluation metrics for monitoring and evaluating the models’ outcomes are
defined. Next, the concept of natural language processing is explained, and language
models are described both within and beyond the realm of biology.

The results of the present thesis are presented in chapter three. First, the dataset
collection is described in combination with the processing that followed concerning the
preparation and annotation of data. In addition, the usage of language models for
extracting the features is described and then, the outcomes of machine learning
classifiers are listed. For the most promising classifiers, the optimization procedure
accompanied by the predictions of the fine-tuned models is explained. Then, the usage
of attention heads in the current task is determined, as well as the performance of models
trained on these attention heads.

Finally, the epilogue of this thesis constitutes the conclusions along with the possible
future perspectives of this study in Chapters four and five.
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1. INTRODUCTION

Proteins are important blocks of life, playing essential roles in almost every biological
process including structural support, enzymatic activity, transport, signaling, defense, and
movement. They have a variety of characteristics, including a unique arrangement of
amino acids, a three-dimensional form, and the capacity to communicate with other
molecules. Proteins are involved in a variety of biological structures, such as the
cytoskeleton, the extracellular matrix, the bones, and many others. Several essential
functions for sustaining life, including, but not limited to, the transportation of molecules
across cellular membranes, regulation of signal transduction pathways, and facilitation of
metabolic reactions, are attributed to proteins [1]. It can be argued that proteins serve as
a protective shield for genetic information and that the existence of life as we know it
would be impossible without their crucial involvement.

1.1 Membrane Proteins

One of the most significant protein classes is membrane proteins. It is known that a third
of the human proteome consists of membrane proteins and more than 60% of these are
current drug targets [2]. Membrane proteins play a crucial biological role in the function
of the cell, as they are responsible for a range of necessary processes for cell survival.
These processes include the transport of ions and molecules, intra- and intercellular
signal transmission, cell adhesion, and enzymatic activity [3]. Based on their structure,
membrane proteins can be divided into transmembrane proteins, which are permanently
anchored to or an integral part of the membrane, peripheral membrane proteins, which
are temporarily and non-covalently attached to the membrane’s surface or to other
integral proteins, and lipid-anchored proteins, which bind to the membrane through a lipid
molecule which is covalently linked to a specific amino acid residue in the protein (Figure

1) [4].

Lipid-anchored proteins

Phospholipid bilayer
[ntegral membrane protein peripheral membrane protein

Figure 1: Classification of membrane proteins. Integral, peripheral, and lipid-anchored proteins
are presented in a schematic way on a model cell membrane [5].
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1.1.1 Peripheral Membrane Proteins

Peripheral Membrane Proteins (PMPs) are responsible for a variety of biological
functions, including signaling, recognition, membrane trafficking, cell division, and cell
shape [6]. Some examples of PMPs roles are [4], [7]:

e Enzymes: Some PMPs act as enzymes, by catalyzing specific chemical reactions
on the membrane surface.

e Receptors: Other PMPS are responsible for binding specific molecules and
transmitting signals across the membrane.

e Transporters: Many PMPs act as transporters, helping to move molecules across
the membrane.

e Signal transduction: Some PMPS are involved in signaling pathways that regulate
cell growth, differentiation, and death.

e Drug target: A percentage of PMPs are potential targets for drug development, so
studying their structure and function can have important implications for the
treatment of diseases [8].

PMPs have the ability to alter membrane dynamics by binding to specific regions of the
membrane and inducing local changes in its curvature, fluidity, or mechanical properties,
and protein-protein interactions at the molecular level. These interactions are in reality
very complicated, dominated by a variety of interactions, and have an interdependent
impact on both the protein and membrane[9].

1.2 The protein-membrane interface

The abnormal attachment of proteins to the membrane is involved in overactivation or
underactivation of peripheral membrane proteins and can result in the development of
human disease (cancer, diabetes, etc.) [6]. Biological membranes are composed of
various components that vary based on the type of cell or cellular compartment. The main
components of biological membranes include proteins, lipids, and carbohydrates. These
components are arranged in a double layer known as the phospholipid bilayer. The
phospholipid bilayer is a typical structural component of cellular membranes,
notwithstanding the variances. The hydrophobic (water-repelling) tails of the two layers
of phospholipid molecules facing each other and the hydrophilic (water-attracting) heads
facing outward make up the bilayer. This configuration aids in protecting the membrane's
integrity and controlling how things enter and leave the cell.[10].
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Extracellular

Phospholipid
bilayer

444444444

Intracellular Hydrophobic tail

Hydrophilic head

Figure 2: The phospholipid bilayer with its compounds

Through a series of distinct mechanisms, peripheral membrane proteins are drawn to and
interact with cellular membranes. There are two primary categories of protein-membrane
interactions, namely electrostatic and hydrophobic interactions. These interactions are
governed by a complex energy landscape, which controls the specific and sometimes
transitory interactions between a polypeptide and a bilayer. These principal interactions
are described below:

e Hydrophobic interactions: The hydrophobic domains of peripheral membrane
proteins can form hydrophobic interactions. A hydrophobic or amphipathic a-helix
can be inserted into the membrane and form hydrophobic interactions with the
phospholipid tails. In the same way, hydrophobic or amphipathic protein helices
can interact with the lipid bilayer (Figure 3B & 3C) [11], [12].

o Electrostatic interactions: At the membrane surface, ion concentration gradients
are caused by charged phospholipid head groups. Long-range electrostatic
interactions between peripheral proteins and lipid headgroups result from charged
membrane surfaces. Non-specific electrostatic interactions will cause even a
partially positively charged protein to be drawn to a negatively charged membrane.
The primary forces behind these interactions are the cationic amino acid residues
of the protein (Figure 3A) [9].

Figure 3: The two main types of protein-membrane interactions. Binding sites A) through direct
electrostatic interactions, B) by inserting a hydrophobic loop in the hydrophobic core of the
membrane, and C) by inserting a hydrophobic helix in the hydrophobic core of the membrane.

Image adapted from [13].
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Peripheral membrane proteins are also known to be multidomain proteins, with one or
more domains to drive the protein-membrane binding [13]. As an example, Osh4 has
been shown to have six membrane-binding domains (Figure 4), and it has been
determined that protein binding happens because of random interactions with anionic
lipids [14].

\‘\\‘
)57 .
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A A A v\‘_ '; 4
ALPS-like motif

Figure 4: Binding sites of Osh4 [14]

1.3 Drugging the Protein-Membrane Interface

The transport of materials across the cell membrane, the activation of proteins and
enzymes, and other cellular processes can all be influenced by peripheral membrane
proteins. Disrupted cellular pathways and pathological conditions can arise from the
overactivation or underactivation of peripheral membrane proteins, as well as abnormal
binding of proteins to the membrane due to mutations in the membrane-binding domain.
Consequently, modifying protein-membrane interactions presents a novel therapeutic
strategy for several disease indications, particularly in the context of targeting membrane
proteins that were previously considered undruggable [4]. Some of the most well-known
pharmaceutical research targets are: the KRAS protein, which is said to be one of the
most common oncogenic gene drivers in specific human cancers [15], [16], such as
pancreatic cancer and for which a drug was recently developed [17], PI3Ka, which is one
of the most frequently over-activated kinases in solid tumors [18], the CD73 enzyme that
is implicated in Systemic lupus erythematosus [19] and tumors [20], and many more
proteins [21], [22].

The presence of cavities within the membrane-binding domain of peripheral membrane
proteins that can be targeted by drugs underscores the potential of targeting the protein-
membrane interface [23]. Apomyoglobin was employed in the initial research
investigating the mechanism by which a cytosolic protein interacts with membranes.[24].
These studies established that apomyoglobin interacts with membranes in a pH-
dependent manner, with pH-dependent unfolding exposing areas of the protein that can
bind to and interact with lipid membranes. In general, it is known that seven are the major
classes of membrane binding domains, C1, C2, PH, FYVE, PX, ENTH, and BAR [25].

In addition, there are examples in the literature that report the ability to drug the protein-
membrane interface, by verifying the binding of small molecules to membrane-binding
domains and inhibition of protein-membrane interactions [26]. A notable inhibitor that was
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designed for BRAG2 protein, managed to bind in the PH domain and inhibit allosterically
the protein, without disrupting the protein-membrane interactions [27].

Membrane
N N N N N N N N N |
Bragsin

PIP,
headgroup

%

Figure 5: The BRAG2 protein (cyan) with the Bragsin inhibitor (purple) and the lipid PIP2 (orange).
The inhibitor binds to the PH domain of BRAG2 and does not disrupt the protein-membrane
interaction [27].

Regarding the physicochemical characteristics of the interface between proteins and
membranes, it is worth noting certain properties that stimulate the interaction of peripheral
membrane proteins with the membrane. These properties are crucial for investigating
these proteins as potential targets for drug development.

Protein-lipid interfaces exhibit specific chemical and topological features that are distinct
in nature, such as amphipathic alpha-helices flanked by flexible hinge or loop sections,
solvent exposure areas, or the presence of cationic patches surrounding aromatic and
aliphatic areas that bind to the negatively charged bilayers [9], [28] that are frequently
found in the inner leaflet of the plasma membrane [29]. Consequently, two factors that
influence protein-membrane closeness and protein anchoring to the hydrophobic fatty
acid tails of the lipid bilayer must be taken into account: a) long-range electrostatic
interactions that promote protein-membrane proximity; and b) hydrophobic interactions
(Figure 6) [29].
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Figure 6: Representation of the protein-membrane anchoring. Hydrophobic interactions
subsequently secure the protein to the hydrophobic fatty acid tails of the lipid bilayer after
electrostatic interactions propel the protein into the membrane.

Proteins belonging to the peripheral membrane category, temporarily and partially bind
to the membrane and as a result, only a tiny piece of the protein interface at the
membrane-interface is fully inserted into the membrane. The fact that the protein interface
that interacts with the membrane is solvent-exposed is thus an essential physicochemical
property of the protein-membrane interface [30]. Additionally, the charge is a crucial
physicochemical aspect of the protein-membrane interface since the two outer membrane
layers are typically negatively charged. Lysine, arginine, and histidine amino acids are
typically found in large groups on the protein surface of peripheral membrane proteins,
where they interact with the membrane through long-range electrostatic interactions [9].
Protein-membrane sensors are driven by long-range electrostatic interactions, but these
interactions are weak and insufficient to bind the protein to the membrane.

The biological membrane is amphiphilic, which means that its two leaflets that come into
contact with water-based environments are hydrophilic, and its core is hydrophobic.
Through hydrophobic interactions and owing to the amphiphilic character of the
membrane, peripheral membrane proteins attach to the membrane, by introducing
hydrophobic amino acids into the membrane's hydrophobic core. Hydrophobic amino
acids typically end up buried deep inside the proteins due to the favorable nature of
hydrophobic-hydrophobic interactions [31], [32]. The hydrophobic amino acids of
peripheral membrane proteins that are exposed to the solvent can frequently interact with
the hydrophobic core of the membrane, leading to the formation of protein-membrane
associations. Alternatively, they can also interact with hydrophobic amino acids that are
exposed to the solvent of other proteins, resulting in the formation of protein-protein
interactions that minimize energy expenditure [33]. Some amino acids prefer to locate in
the hydrophobic core of the membrane instead of the water-based environment. The
amino acids that localize on the water-membrane interface are alanine, arginine,
asparagine, aspartic acid, glutamic acid, glycine, charged histidine, lysine, and serine,

D. Paranou 22



Using DL and NLP to predict protein-membrane interactions of peripheral membrane proteins

while those that prefer the hydrophobic core are isoleucine, leucine, methionine,
phenylalanine, proline, and valine. The amino acids that prefer a border region between
the water-membrane interface and the hydrophobic core are cysteine, glutamine,
threonine, tryptophan, and tyrosine [34]. All the above were calculated by the free
energies AG (kcal/mol) of transfer for each amino acid from water to phosphatidylcholine
interface and n-octanol for each amino acid, resulting in the residue interface and octanol
hydrophobicity scales (Figure 7).
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Figure 7: A) Wimley-White interfacial hydrophobicity scale. B) Wimley-White octanol
hydrophobicity scale. C) The basis for deriving the octanol-interface scale. D) The relative amino
acid positions in the membrane are based on the octanol-interface scale [34].

Furthermore, aromatic amino acids like phenylalanine, tryptophan, and tyrosine are
crucial for creating cation-1r interactions with the positively charged head groups of
choline lipids [13]. Lastly, peripheral membrane proteins attach hydrophobic loops or
helices to the membrane in order to interact with it. To prevent particularly deep
membrane insertion that may permanently bind the protein to the membrane, these
helices are often amphipathic, which means they are hydrophobic on one side and
hydrophilic on the other. As a result, the protein-membrane interface's secondary
structural components are also significant physicochemical descriptors [35].
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1.4 State-of-the-art Tools for predicting protein-membrane interactions

Several efforts towards the design of tools that detect protein-membrane regions and
lipid-binding sites have appeared in the literature [36]-[39]; however, they frequently use
obsolete web connections and are mainly applied to 1D protein sequences without taking
protein structural information into account [36]-[38]. To our knowledge, there are three
publicly accessible methodologies for predicting protein-membrane interactions from the
3D protein structure: the Positioning of Proteins in Membrane (PPM) [40], [41], the
Membrane Optimal Docking Area (MODA) [42] and the Drugging pRotein mEmbrAne
Machine learning Method (DREAMM) [43], [44]. By combining an all-atom representation
of a solute, an anisotropic solvent representation of the lipid bilayer, and a universal
solvation model, PPM can calculate the rotational and translational positions of peripheral
and transmembrane proteins within membranes [40], [41]. MODA is based on the protein-
protein interface predictor PIER [42] that constructs a set of uniformly spaced spots at a
distance of 5 A from one another and from the protein surface, defining each patch as the
collection of all protein surface atoms. Using atom solvent-accessible surface area
(SASA) and atom type-specific weights, a score is calculated by MODA. The scores are
then transferred to the surface amino acids to predict which amino acids will contact the
cell membranes. DREAMM is an ensemble classifier and more specifically a voting
classifier with a combination consisting of five classifiers: a linear discriminant analysis, a
logistic regression, a linear support vector classifier, a decision tree classifier, and a light
gradient boosting machine that was trained using experimental data and achieved an F1
score =0.92 and an MCC =0.84 [43], [44].

While these tools are often successful in accurately predicting which amino acids interact
with the membrane, they can be time-consuming, taking several minutes to hours to
predict binding sites in certain proteins. As an example, the DREAMM tool needs more
than an hour to predict the membrane-penetrating amino acids of the catalytic domain of
PI3Ka (p110a).

1.5 Aim of Thesis

Recent years have seen a rise in interest in the study of peripheral membrane proteins
due to their significance in numerous physiological functions. In a variety of disease
states, including cancer, neurological disorders, cardiovascular diseases, and infectious
diseases, peripheral membrane proteins have been suggested as potential therapeutic
targets[16], [18]-[24], [26]. However, the difficulty in the research of peripheral membrane
proteins has hindered the discovery of new drug targets and the development of
medications that target them.

Peripheral membrane proteins present several challenges for researchers, including
issues related to stability, as they are not embedded in the membrane and are more prone
to denaturation; complexity, as the frequent presence of numerous domains makes it
difficult to define their overall structure and function; and membrane contacts, as they
attach temporarily and partially [25].
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Consequently, the primary goal of this thesis is to develop a reliable classifier that can
predict protein-membrane interactions. As a result, the following query is answered: Can
we create a model that predicts rapidly and accurately protein-membrane interfaces?

The workflow to achieve these goal includes four major milestones:

e Collect and prepare a dataset of peripheral membrane proteins with experimentally
known membrane penetrating amino acids, which contain an adequate number of
proteins belonging to a variety of protein families.

e Utilize pLM embeddings to train machine learning classifiers to create a less time-
consuming and accurate model that predicts protein-membrane interfaces of
peripheral membrane proteins.

o Utilize pLM attention maps to investigate if the information of membrane-
penetrating amino acids is encoded in the pLM hidden layers.

e Train logistic regression models on the pLM attention maps to predict the protein-
membrane interfaces of peripheral membrane proteins.

The overall objective of this thesis is to develop a classifier that is trained on pLM
outcomes and capable of precisely predicting amino acids that penetrate the membrane
while reducing the time required for the analysis.
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2. METHODS

2.1 Artificial Intelligence

The term "artificial intelligence" (Al) was first coined by John McCarthy, Marvin Minsky,
Nathaniel Rochester, and Claude Shannon during the Dartmouth Conference in 1956.
Since then, Al has garnered significant interest and has advanced both in theory and
application. Theoretical groundwork for computer science and Al was built by Turing, who
created the well-known "Turing Test" to define "Machine Intelligence" and developed a
number of approaches and concepts to broaden the concept of Al [45]. With the help of
computers, Al has a promising future for growth, despite its modest initial development.
In addition, the 21st century has seen a drastically higher trend in the expansion of the Al
field, and these days, the increasing prevalence of Al is transforming our daily lives subtly
and is on the verge of reshaping the globe [46], [47]. For example, some intelligent
devices such as Siri or Alexa are regarded as intelligent machines with voice and thought
recognition capabilities by their users [48].

Al's goal is to provide machine intelligence similar to that of humans. Achieving such a
goal is thought possible because of learning algorithms that imitate how the human brain
is believed to learn [49]. Machine Learning (ML) has emerged as the preferred approach
in Al for developing practical software for various applications, such as robot control,
speech recognition, and computer vision. Some of the primary ways that Al systems learn
are through supervised, semi-supervised, and unsupervised learning techniques [49],
[50]. More specifically, the most popular methods are described below, and a visual
representation of the architecture is shown in Figure 8 and an example in Figure 9:

1. Supervised Learning: The Al system is trained on a labeled dataset where the
desired output is predetermined for each input. The objective of the Al system is
to understand the connection between the inputs and outputs and then apply that
understanding to forecast the behavior of new, unforeseen data. In general,
supervised learning can be used for classification and regression tasks. For
instance, to identify the species of animal in each image, a supervised learning
algorithm might be trained on a collection of tagged animal photographs.

2. Semi-supervised: In this case, the Al system is taught using both labeled and
unlabeled data. The objective of the Al system is to infer the outputs for the
unlabeled data using the labeled data to learn the relationship between inputs and
outputs. When there is a dearth of labeled data, and abundance of unlabeled data,
this form of learning can be helpful. This learning method aims to combine the
other 2 common methods (supervised & unsupervised) where there is a lack of
labeled dataset and a large amount of unknown data [51].

3. Unsupervised Learning: It is a training method in which an Al system is trained on
a dataset without labels, with the objective of finding patterns and structures in the
data without any prior knowledge of the desired output. For instance, an
unsupervised learning system could be trained on a dataset of photographs and
asked to find groups of related photos. Unsupervised learning can be used for
clustering tasks, in which data with divergent patterns are divided into various
clusters, and data with similar patterns are combined into one cluster. Additionally,
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it can be used for dimensionality reduction tasks, in which data is moved from a
high-dimensional space to a lower-dimensional space without sacrificing any

information.

Training data

Supervised learning All data is labeled

Small portion of data is
: : labeled
Semi-supervised
learning
Lots of data is unlabeled

Unsupervised :
learning All data is unlabeled

Figure 8: The 3 learning methods of Artificial Intelligence [52].
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Figure 9: Machine learning methods. In supervised learning, there are labels for each sample and
the model can learn to distinguish the classes — classification tasks, in semi-supervised there are
few labeled samples where the model learns based on that and many unlabeled data (purple
rhombus), while in unsupervised there are only samples with features that the model try to cluster
them based on the characteristics — clustering task.

The optimal learning paradigm to use depends on the specific task and data available.
Each of these learning paradigms has its own advantages and disadvantages. Combining
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different learning paradigms and using different algorithms at different phases of the
process can be applied in many real-world Al applications. Ultimately, a critical aspect of
an Al system's ability to perform complex tasks and make predictions is its capability to
learn from data. The objective is to endow the Al system with the ability to adapt to new,
unexplored data and enhance its performance over time, whether through supervised,
semi-supervised, or unsupervised learning [53].

2.2 Supervised Learning

The most widely used machine-learning methods are supervised learning methods. A
function that maps an input to an output is learned through supervised learning using
sample input-output pairs [53]. The objective is to generate a prediction y* in response to
a query x* using a set of (x, y) pairings as the training data. The inputs x could be
conventional vectors or more sophisticated data like paperwork, pictures, genetic
sequences, or graphs [50].

Imagine a scenario where a model has to be developed with the eventual aim of predicting
whether an individual is a patient (schizophrenia) or healthy depending on their
characteristics, such as its cortical and subcortical volumes, cortical areas, thickness, etc.
This can be thought of as a supervised learning problem, where the input data are the
characteristics of people, and the output data are the class associated with those
characteristics. The initial stage would be to compile a labeled dataset of individuals, each
with a given class (healthy — not healthy). Following that, an appropriate algorithm, such
as linear regression or decision trees, would be used to train the Al system on this dataset.
To enable the Al system to generate precise predictions about unseen patients, the
training method aims to understand the relationship between the input variables and the
person’s class. Once the Al system has been taught, it may be used to forecast the class
of new people [54]. The Al system would produce a prediction of the category of that
individual (Figure 10).
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Figure 10: Machine Learning flow chart example of a model trained with people data and try to
predict if a control cohort is patient or healthy based on some characteristics.
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2.2.1 Dataset Generation

In machine learning, datasets play an important role as they provide the data that the Al
system utilizes to learn and make predictions. Issues related to dataset creation, curation,
and annotation are considered a barrier to algorithmic and scientific advancement [55].
Potential dataset issues often encountered are related to dataset quality (data obtained
using different experimental methodologies, inconsistent data), quantity (not enough
data), privacy and ethical considerations (medical/sensitive data), annotation (unlabeled
data), and diversity. Generation and curation of high-quality datasets, suitable for use as
the foundation for the training of an Al algorithm, require significant investment in time
and resources [56].

The dataset is often represented in a tabular fashion. In supervised learning, a dataset
usually takes the shape of a collection of labeled instances. The input data, also known
as the features, and the output data, often known as the target, are both components of
each example (Figure 11). Before continuing with machine learning algorithms, the data
must be prepared, cleaned, and split into appropriate parts. A popular and vital machine
learning technique is the division of a dataset into training, testing, and validation sets.
The testing set is used to assess the Al system's performance, the training set is used to
train the Al system, and the validation set is used to fine-tune the Al system's
hyperparameters [57].

Features Target

Sl Dol el el I e e e
------------ = CEEIT b G
Figure 11: A table-based representation of a dataset. The dataset must be divided into training,

validation, and test sets, with the former being used to train the machine learning algorithm and
the latter to assess it.

The training set, which is the largest of the three sets, is used to match the Al model to
the data. The Al system uses the training set to understand how inputs and outputs are
related. The validation set is used to assess the system's performance to prevent
overfitting. An example of overfitting is when an Al system memorizes the training set
rather than understanding the fundamental connection between the inputs and outputs.

The testing set is intended to assess how well the Al system performs on fresh,
unexplored data. Because it offers an unbiased assessment of the Al system's
performance and helps prevent overly optimistic outcomes, using a distinct testing set is
crucial.

The Al system's configuration settings, also known as hyperparameters, are tuned using
the validation set. To evaluate the Al system on the testing set, the optimum
hyperparameters must be identified on the validation set.
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2.2.2 Feature Selection

The process of choosing the most pertinent and instructive characteristics from a dataset
to utilize as inputs in a machine learning model is known as feature selection. Itis a crucial
stage in the preprocessing of the data and can have a big effect on how well the Al system
works and how accurate it is [58]. To reduce the dimensionality of the data and remove
redundant or irrelevant characteristics, feature selection aims to pick the features that are
most predictive of the outcome. This can lower the computing cost, prevent overfitting,
and increase the accuracy of the Al system [57].

There are several methods for feature selection, including filter methods, which rate each
feature using statistical techniques like correlation or mutual information and then select
the features with the highest scores, wrapper methods, that assess the significance of
each feature using the Al system itself by removing characteristics from the dataset and
selecting the best subset of features by an iterative procedure, and embedded methods,
which combine feature selection into the Al system's training procedure by using, for
example, regularization methods (Lasso, Ridge regression) to reduce irrelevant feature
coefficients to zero [59].

2.2.3 Class imbalance problem

In some problems, there is a possibility of not having enough observations for a specific
class (when compared to other class instances) or that a given class may not exist at all
in the available data [60]. For example, a medical dataset of 1000 patients might include
only 10 incidents of people that have a disease while the remaining 990 are healthy. This
is known as a class imbalance issue and is found in supervised learning, where the
distribution of classes in the target variable is abnormal and can happen when one class
has significantly more samples than the other.

Class imbalance can pose a challenge for machine learning, as traditional techniques aim
to minimize classification errors, which can be misleading when one class is
underrepresented. This can result in various unfavorable effects, such as overfitting,
where the model is likely to predict only the majority class, overlooking the minority class,
and making incorrect classifications for new observations that belong to the minority
class. Additionally, there may be algorithm bias, and inadequate evaluation of model
performance, since some metrics such as accuracy, do not effectively assess the
classifier's ability [60].

To handle this problem, there are several approaches [60]:

e Oversampling the minority class which is the practice of duplicating samples from
the minority class to improve the balance of the class distribution.

e Taking fewer samples from the majority class in order to balance the class
distribution is known as undersampling the majority class.

e Creating new synthetic samples from the minority class using methods like the
Synthetic Minority Over-sampling Technique (SMOTE) [61] or Adaptive Synthetic
(ADASYN) [62] sampling is known as synthetic data generation.

D. Paranou 30



Using DL and NLP to predict protein-membrane interactions of peripheral membrane proteins

e Penalization of models with class weights. This method biases the model to
emphasize the minority class by imposing a weighted cost when a sample is
incorrectly identified. In the scikit-learn Python package [63] the weights can be
automatically assigned according to Eq. 1:

n_samples
w; = ( 1 )
J n_classes x n_samples]-

where w is the weight of class j, n_samples is the total number of samples of the
j training set, n_classes is the total number of classes, and n_samples; is the total
number of samples in class j in the training set.

2.2.4 Machine learning classifiers

A machine learning classifier is used to predict the class or category of a given input
sample. In other words, it assigns an input sample to one of a number of already
established groupings or categories. Numerous applications, including image
classification, speech recognition, natural language processing, and bioinformatics, use
classifiers [64]-[66]. There are several types of machine learning classifiers, such as
neural networks, support vector machines (SVMs), decision trees, random forests, linear
classifiers, and k-nearest neighbors (k-NN). The specific problem and dataset, as well as
the desired trade-off between accuracy, processing complexity, and other considerations,
influence the classifier selection. In this work, only decision trees and neural networks
were selected and analyzed.

A decision tree classifier is based on a tree-like model using a series of if/felse decision
rules and constantly divides the training set into subsets that maximize the separation of
the data [67]. The training procedure's objective is to develop a tree structure that can
correctly predict a new sample's class based on its input data. Decision tree classifiers
can handle both continuous and categorical input characteristics and are easy to
comprehend and interpret. However, they can be susceptible to overfitting, especially
when the trees become overly complex and deep. To prevent overfitting and improve the
classifier's ability to generalize, various techniques can be used, such as pruning the tree
or setting a maximum depth for the tree.

As an example, we can presume that we have a dataset with fruits and each fruit has
distinct color, shape, and price — features. The objective is to identify the fruit's type based
on its color and shape. Starting at the root of the tree, which represents the complete
dataset, we can train a decision tree classifier. The classifier checks one of the input
features (such as color or price) at each internal node to divide the samples into smaller
subgroups depending on the feature values. When all the samples in a subgroup belong
to the same class, the process is repeated recursively for each subgroup, at which time
the subgroup is represented as a leaf node (Figure 12).
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Figure 12: An example of a decision tree with three features in a binary classification task

Neural networks are also a type of machine learning classifier that go beyond traditional
methods and are inspired by the structure and function of the human brain. They are
made up of several interconnected processing neurons, arranged in layers (Figure 13).
The input data is processed through each succeeding layer until it reaches the output
layer. Each neuron in a layer takes information from the neurons in the layer below,
computes it, and then sends the answer to the neurons in the layer above. The
computations performed by the neurons are controlled by the weights and biases
associated with each connection between them. In order for the neural network to develop
the ability to generate precise predictions, these weights and biases are modified during
the training phase.
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Figure 13: An example of a fully connected neural network for binary classification with one input
layer, two hidden layers, and one output layer.
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In particular, neural networks are effective at solving issues involving complicated, non-
linear interactions between inputs and outputs. Additionally, they have the ability to
recognize patterns and features in the data that may be challenging to spot using
conventional techniques. Feedforward neural networks, recurrent neural networks, and
convolutional neural networks are a few of the several kinds of neural network classifiers.
Each kind of neural network has its own pros and cons and is created for a certain kind
of challenge [68].

2.2.5 Hyper-Parameter Optimization

Each machine learning classifier has variables that affect the performance and regulate
how the training algorithm behaves. These parameters, or hyperparameters, have an
impact on how well the classifier can recognize patterns and correlations.
Hyperparameters are variables that are predetermined rather than learned from the data
during training. The performance of a machine learning model can be quite sensitive to
the selected hyperparameters, making hyperparameter tuning critical. In some
circumstances, a small change in the value of a hyperparameter can result in a significant
change in the model's performance [69].

The most common techniques that can be used for hyperparameter optimization are:

1. Grid search involves a systematic search across a predetermined list of
hyperparameter values arranged in a grid-like manner. All feasible combinations
of hyperparameter values are tested and the combination that performs the best
is chosen. It is an easy-to-implement, clear-cut method, but it can be
computationally expensive and time-consuming if there are many
hyperparameters and their potential values.

2. Random search involves searching through random combinations of
hyperparameter values and is used to train instances of the model. Unlike grid
search, which exhaustively tries all the given ranges, random search creates
random subsets of combinations. The primary benefit of random search is that it
has the potential to be more effective than grid search, particularly for big, complex
models with several hyperparameters. This is because random search can focus
on a smaller, randomly chosen subset rather than having to try out all possible
combinations of hyperparameters [70].

3. Bayesian optimization is a technique that seeks to find an optimal set of
hyperparameters by balancing exploration and exploitation using a probabilistic
model based on Bayesian statistics (Eq. 2). It aims to identify the global minimum
of an objective function, which represents the performance of the model on a
specific task, by developing a probabilistic model of the objective function based
on the observed values of the hyperparameters. Compared to grid search or
random search, Bayesian optimization can be more effective, especially for
complex models with multiple hyperparameters. This is because it efficiently
prioritizes the search for hyperparameters likely to improve performance while also
exploring other hyperparameters. By striking a balance between exploration and
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exploitation, Bayesian optimization helps identify the global minimum of the
objective function [71].

P(B|A) * P(A)

P(4|B) = "ZE (2)

The following figure illustrate an example of the search procedure for the 3 methods,
where the bullets represent the set of parameters that are tested in each case and the
color indicates the number of trial (1t trial is the black bullet — 16™ trial is the orange
bullet).
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Figure 14: Hyper-parameter optimization of two parameters with sixteen search trials in the three
different search methods [72].

2.2.6 Performance metrics for evaluating machine learning models

To choose the most appropriate model for each problem, evaluation metrics must be used
to assess the performance of different models. Depending on the task and the kind of
data being examined, machine learning can employ a wide range of different assessment
criteria. For example, in regression tasks, the root mean square error (RMSE) is used to
evaluate the model's effectiveness. In our case, we are dealing with a binary classification
problem where we need to determine whether an amino acid can penetrate the
membrane or not. However, the dataset we have is imbalanced since a protein sequence
contains numerous amino acids, but only a small fraction of them can interact with the
membrane. Consequently, to evaluate the performance of such problems, specialized
and advanced metrics are commonly used. [73], [74].

To summarize the predictions with count values for each class, the confusion matrix can
be used to assess where errors in the model were made. The rows correspond to the
actual classes for which the results were intended. The predictions they've made are
represented by the columns.
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Figure 15: Confusion matrix.

Having constructed the Confusion matrix, several metrics can be calculated to quantify
the performance of the model. The most common are the precision (Eq. 3) and the recall
(Eq. 4) which compute what percentage of the predicted positive samples is truly positive
and how good the model is at predicting the positive class, respectively.

. TP

precision = —— (3)

recall = —— (4)
TP+FN

The "harmonic mean" of sensitivity and precision is called the F-score and is commonly
used in tasks with imbalanced data. F; is a general score (Eq. 5) that uses a positive real
factor B, where B is chosen such that recall is considered £ times as important as
precision. When recall and precision are given equal weight, the resulting score is equal
to the F; score (Eq. 6). Values range from 0 to 1.

precisionx*recall
F == 1 2 5
B ( +'8 )(ﬁz*precision)+recall (5)
recision*recall
Fip =2+ P — (6)
precision+recall

Another metric is the Matthews correlation coefficient (MCC) (Eq. 7). The MCC metric
ranges between -1 and 1 and is formulated as:

TP+«TN—FPxFN
MCC = \/(TP+FP)(TP+FN)(TN+FP)(TN+FN) ( ! )

2.3 Natural Language Processing

The goal of the field of study known as "Natural Language Processing" (NLP) in computer
science and artificial intelligence is to make it possible for computers to comprehend,
analyze, and produce human language. Creating algorithms and models that can
automatically process, analyze, and understand significant volumes of natural language
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data, such as text and speech, is the aim of NLP. Natural language is complicated,
confusing, and context-dependent, making NLP a difficult area to study. Several broad
categories can be used to classify NLP tasks, including text classification, where the goal
is to identify a text document's category or mood using techniques like spam detection or
sentiment analysis, speech recognition, translation, question answering, and others [75]-
[77]. Simple rule-based systems and deep neural networks are two examples of complex
machine learning models that can be used in NLP approaches and algorithms. These
models can be used to make predictions by applying them to fresh, unforeseen data after
being trained on big datasets of annotated speech and text.

NLP is playing an increasingly important role in the field of biology. The focus of this field
is on processing, analyzing, and comprehending biological and medical data, including
scholarly literature, electronic medical records, and clinical notes [78], [79]. In order to
create structured data that can be used for a variety of applications, including drug
discovery, disease diagnosis, and clinical decision support, biomedical NLP aims to
automatically extract knowledge and information from massive amounts of unstructured
text data, such as scientific papers and electronic medical records. The field of biomedical
NLP is expanding quickly, and new innovations and uses are being created. The
advancement of new medications, the comprehension of disease causes, and the
enhancement of patient care are all anticipated to be significantly impacted by the usage
of NLP in biology and medicine. The complexity and technicality of biological and medical
data, as well as the demand for extremely high standards of correctness and
dependability, are only a few of the difficulties that biomedical NLP must overcome [80].
However, the advantages of biomedical NLP make it an essential and fascinating field for
study and advancement.

2.3.1 Language models

In the last years, many models have been developed to solve a variety of NLP tasks,
called Language Models (LM). Most of the popular LM is based on transformer
architecture. The discipline of NLP has undergone a revolution since the transformer was
launched in 2017, in part because of its capacity to manage long-range relationships and
parallel processing [81].

A Transformer is a type of neural network architecture that typically includes an encoder
and a decoder (as shown in Figure 16). The encoder and decoder each consist of several
layers of self-attention and feedforward neural networks. Self-attention is a mechanism
that allows the model to selectively attend to different parts of the input sequence,
generating a context-aware representation of each token. The feedforward neural
networks then process these representations to derive higher-level features. Specifically,
the encoder is responsible for calculating the relationship between different words of the
input sequence, by attending to each token and capturing its interactions with other
tokens. The last hidden layer of the encoder is commonly referred to as the “output
embeddings” -or features as shown in Figure 16- which is a continuous vector
representation that captures the contextual information of the input sequence. The
decoder is architecturally similar to the encoder, but it adds an extra layer of masked self-
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attention that only pays attention to encoded input tokens and tries to decode the output
sequence of tokens. Normalization layers and residual connections are used by the
encoder and decoder to stabilize training. The multi-head attention technique is similar to
self-attention, but it enables the model to concentrate on many elements of the input
sequence at once. This is a crucial component that gives the model state-of-the-art
performance on many NLP tasks and allows it to capture long-range dependencies.
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Figure 16: Transformer architecture with Encoder and Decoder part.

One of the most popular LM is BERT (Bidirectional Encoder Representations from
Transformers), which was developed by Google in 2018 and is considered a state-of-the-
art language representation model [82]. BERT is a transformer-based architecture model
that has been trained on a large corpus of text data and can be fine-tuned for a variety of
NLP tasks, such as named entity recognition, text classification, and question answering.
BERT is unique and powerful because it considers both left and right contexts
(bidirectional), which allows it to capture the context of words within a phrase. In contrast,
conventional language models only consider either the left or right context. This feature
of BERT enables it to better understand the relationships between words and ultimately
improve its accuracy in NLP tasks. BERT model is consisted only of the encoder part,
with 12 or 24 transformer layers, depending on the model’s size (Figure 17). The input to
BERT consists of a sequence of tokens that are first converted into vectors using an
Embedding Layer and then passed through a series of encoder layers. During pre-
training, BERT employs a masked language modeling (MLM) objective in which a
predetermined proportion of the input tokens are randomly masked, and the model is
taught to anticipate the original token based on the context provided by the other non-
masked tokens. BERT is frequently used as a feature extractor for fine-tuning on
downstream tasks, where input text is tokenized first and then run through the pre-trained
BERT model to create a fixed-size vector representation for each token, that are called

Embeddings.
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Figure 17: BERT model architecture with 12 hidden layers.

Another popular LM is T5 (Text-to-Text Transfer Transformer) which was also introduced
by Google in 2019 and is transformer-based [83]. In contrast to BERT, T5 consists of both
the Encoder and the Decoder part which makes it unique among transformer-based
language models in that it is trained to perform a wide range of NLP tasks by treating all
tasks as text-to-text problems. This means that the input and output of the model are both
text strings and the model is trained to translate one string to another. T5 is extremely
adaptable and, in addition to being effective on a variety of tasks, is quickly adapted to
new tasks or domains by fine-tuning on a minimal quantity of task-specific data. Because
of this, T5 is a preferred option for many NLP applications.

2.3.2 Attention heads

As previously explained, transformers consist of self-attention layers, which are a
fundamental part of their architecture. These layers include attention heads, which allow
the model to simultaneously focus on multiple positions and features of the input
sequence, thereby learning diverse aspects of relationships in the data. After processing
the input through all the heads, their outputs are concatenated and combined to create
the final representation. Each head computes a separate attention weight distribution and
is in charge of paying attention to a separate component of the input, such as the syntax
of a sentence or the meaning of a certain word (Figure 18). The model's capacity to
capture fine-grained dependencies and manage complex input sequences is enhanced
by attention heads. The attention scores are computed independently for each attention
head in a transformer model with multiple attention heads. This can increase the model's
accuracy and effectiveness, especially for tasks that call for complicated or subtle
interactions between various elements of the input sequence.
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Figure 18: Example of heads paying attention to different parts. The darker lines indicate the
strength of the attention weight. The darker the line, the higher the weight [99].

The Attention layer takes its input in the form of three parameters - Query, Key, and Value
(Figure 19A). The Transformer repeatedly and simultaneously refers to each Attention
processor as an Attention Head. Multi-head attention is the term used for this (Figure
19B). By integrating numerous similar Attention calculations, it offers its Attention a
stronger capacity for discriminating [81].
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Figure 19: Input of attention layer in the form of Query, Key & Value (A). Multi-head attention (B)
[100]

The following function is used to calculate the attention vectors for all tokens in a
sentence:

Attention(Q,K,V) = softmax (%:) (8)

where d, is the dimension of keys.

In biology, attention heads have been the subject of extensive research, which has
revealed that different attention heads in the models' layers are responsible for specific
protein characteristics, such as the secondary structure or binding site of a protein[101].
Moreover, the ESM-1b model utilizes attention maps to predict the contacts between
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amino acids and it has been observed that distinct attention heads specialize in different
types of contacts [87].

2.3.3 Language models in Biology

A key feature of Transformers is transfer learning, which is the application of knowledge
gained from completing one task to help solve a different, but related, problem [81]. This,
in combination with the fact that protein sequences are ideal for LM, has led many
researchers to train new models to solve downstream tasks or to improve existing
technologies [84]-[88]. Protein Language Models (pLMs) treat a protein sequence as a
sentence and each amino acid as a single word, similar to NLP. For proteins, specific 3D
shapes are necessary to carry out specific tasks, which impose constraints on the
language and meaning, as in NLP.

Two of the most widely-known applications in the biology field are the protTrans [84] and
Evolutionary Scale Modeling (ESM) [87] models. Using known databases such as
Uniref50 [89], Uniref90 [89], Uniref100 [89], CATH [90], and BFD (Big Fantastic
Database) [91] they collected millions of protein sequences and billions of amino acids
for the model training. ProtTrans successfully trained six NLP LMs (TS5 [83], Electra [92],
BERT [82], Albert [93], Transformer-XL [94] and XLNet [95]) on protein sequences. The
next table (Table 1) includes a part of the configurations for the pre-training of pLMs for
protTrans.

Table 1: Part of protTrans configurations hyperparameters.

Dataset Number of Layers En_7bedd_l ng Number of
Dimension Heads
BFD100 32 14
ProtXL 1024
Uniref100 30 16
BFD100
ProtBert 30 1024 16
UniRef100
ProtXLNet UniRef100 30 1024 16
12}
'§ ProtAlbert UniRef100 12 1024 64
=
ProtElectra UniRef100 30 1024 16
BFD100
ProtT5-XL 24 1024 32
UniRef50
BFD100
ProtT5-XXL 24 1024 128
UniRef50
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For ESM, researchers opted for the use of large unsupervised language models. They
trained high-capacity Transformer language models on evolutionary data, and observed
the model identified several key pieces of information such as homology, structural
similarity, etc. In the table below, some of the main models that were developed from
ESM (Table 2) are listed. It is worth noting, that ESMFold [96] achieved performance on
par with that of AlphaFold [97] and RosettaFold [98], the two most known computational
methods for predicting the 3D structure of proteins, while at the same time achieving a
600-fold speedup for results only marginally less accurate than those of AlphaFold2.

Table 2: Part of ESM models with its configurations.

Dataset Number of Layers En_7bedd_l ng Number of
Dimension Parameters
8M, 35M,
ESM-2 UniRef50 6, 12, 30, 33, 36, 48 320, 480, 640, 150M, 650M,
1280, 2560, 5120
3B, 15B
§ ESMFold UniRef50 48 ; 690M
(@]
= ESM-MSA-1b UniRef50 12 768 100M
UniRef50 +
ESM-IF1 CATH 20 512 124M

These models can be used for several tasks like secondary structure prediction, discovery
of biological variations, capturing of biophysical features of amino acids, prediction of
protein subcellular localization, and others. As an example, in the following picture (Figure
20) is a use case of a pLM which takes as input a protein sequence with L amino acids,
which are tokenized and positional encoding is added. The resulting vectors are passed
from the model that we have chosen and generate features — the process of embedding
- for each input token. Then, the last hidden state of the model can be used for
downstream prediction tasks, like using them as input to a Convolution Neural Network
(CNN) to predict an amino acid’s secondary structure or to a Feedforward Neural Network
(FNN) to predict the cellular location of the given protein.
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Figure 20: A general overview of how ProtTrans models can be used to derive features
(embeddings) from an unknown protein sequence and used them for classification tasks [84].
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3. RESULTS

In this chapter, we analyze the procedure from data collection to the usage of machine
learning classifiers and attention heads of pLMs for predicting protein-membrane
interfaces. First, we describe the datasets used and how they were appropriately
prepared, ensuring that desired information was retained. Next, we measured the
pairwise percentage identity of the amino acid sequences between every protein in the
dataset, clustered these proteins, and retained only the representative sequences of each
cluster to create an unbiased dataset. With a refined dataset in hand, we proceeded to
annotate each protein, and then we continued by using pLMs to construct the necessary
information through the embeddings they produce as features. We then fitted the dataset
into machine learning classifiers and fine-tuned the most promising algorithm. Test
proteins were also used to evaluate the model's predictive ability. Finally, we analyzed
the attention heads of pLMs to predict the protein-membrane interfaces.

3.1 Dataset Collection and Dataset Preparation

For dataset construction, we used two publicly available datasets that include peripheral
membrane proteins. The first dataset was downloaded from “Resources for Peripheral
Protein-Membrane Interactions (PePrMInt)” and includes 2.522 structures, consisting of
1.328 experimental structures from CATH [90] and 1.994 AlhaFold [97] models containing
one (of nine possible) domain implicated with the membrane assocation, namely Annexin,
C1, C2, discoidin C2, PH, PX, PLA, PLC/D, START [30]. This dataset was generated by
first defining the membrane binding sites in each superfamily using information from the
literature and then transferring that annotation to other domains in the same
superfamilies, taking advantage of structural alignment. Figure 21A shows the number of
proteins in the full dataset, which includes all proteins with Interfacial Binding Sites (IBS)
and those without. IBS are the amino acids of a protein that interact with the membrane.
Figure 21B displays a small portion of the dataset information. We noticed that one PDB
ID can match multiple CATHPDB codes, as the CATHPDB code includes the PDB code
and the chain ID. Also, one Uniprot ID (or “uniprot_acc” as mentioned in file) can
correspond to multiple PDB IDS.
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Figure 21: PePrMint aggregated information about proteins’ id in the whole dataset, in the dataset
that includes proteins with IBS and not IBS (A). An example of the data information that provided
by PePrMint with a part of columns and rows (B).

The second collection of peripheral membrane proteins was retrieved from the “Drugging
pRotein mEmbrAne Machine learning Method (DREAMM)” and consists of 65 proteins
with known 3D structures and experimentally known membrane-penetrating amino acids
[43], [44].

From the PePrMInt dataset, only proteins with IBSs were kept and these proteins were
compared and merged with the DREAMM dataset, using as the reference point the PDB
ID, where they had 30 proteins in common. However, for our dataset the reference point
was selected to be the Uniprot ID, so we matched each Uniprot ID with the corresponding
PDB IDs & chain IDs, and for the DREAMM proteins that were not included in the IBS
dataset (35 proteins) and there was no information about Uniprot ID, it was added
manually (Figure 22A). Then, for a total of 709 proteins — unique Uniprot IDs, we
downloaded the FASTA files from the Uniprot database [102] and matched each ID with
the relative sequence (Figure 22B).
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@ "Q6DN90" : "Q60NIR" :

"aCeA™: AN, “EY, "B™, "F"

"4COA": [“A", “E", "B", "F"
’
"IgNM: (A
“I0WM": ["A"
"sequence: "MWCLHCNSERTQSLLELELDSGVEGEAPSSETGTSLDSPSAY
'
'
"Q92556": "092556":
" VSZ”: ..A.q' uBn -
’
"g,
3A98": ["B", "D
"sequence": "MPPPADIVKVAIEWPGAYPKLMEIDQKKPLSAIIKEVCDGWS
’ ’
"Q06696": "006696" :
B
"2CAY": ["A", “B"
"sequence: "MEYWHYVETTSSGQPLLREGEKDIFIDQSVGLYHGKSKILQR

Figure 22: Part of file with the Uniprot ids to be the key and the corresponding PDBs with their
chains, that we have information, to be the value (A). Part of Uniprot ids with the sequence
information from Uniprot database (B). Both files are in JSON format.

3.2 Sequence Similarity and Clustering of Protein Sequences

Machine learning relies on having an unbiased dataset because it prevents the models
from being trained on incomplete or skewed data, which could result in predictions and
judgments that are prejudiced. Data that is typical of the entire population, as opposed to
just a small subset, is said to be unbiased. This is crucial because biased data can
produce biased outcomes, which can be harmful in a variety of real-world applications.

For this reason, because many of our proteins belong to the same superfamilies and as
a result may have similarities in their sequences, it is important to keep only the most
representative. So, we aggregate all the UniProt sequences, and using the CD-HIT [103]
Suite, we found the sequences' similarities by clustering the proteins. The procedure
starts by setting the longest sequence as the representative of the first cluster. Then,
each remaining sequence is compared with the representative of existing clusters and if
the similarity with any representative is above a given threshold, it is grouped into that
cluster. Otherwise, a new cluster is defined with that sequence as the representative. In
our case, we set the sequence identity cutoff to 40% and that gave us 443 clusters (Figure
23). From the clustering results, we kept only the representatives of each cluster (443
proteins).
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"17":
"representative": "P53810"
"P16446": 99.63
"Q00169": 98.89
"P53812": 77.49
18":

"062261": 60.35
"representative'": "015020"

"'Q00963": 48.1

Figure 23: Part of clustering results, showing the clusters 17 and 18 with the Uniprot IDs - the
representative of each cluster and the similar Uniprot sequences with the similarity percentage in
JSON format.

3.3 Protein Annotation

Because our reference point is the Uniprot ID while the information about the IBS of
proteins is correlated with the PDB ID, we have to transfer this information to the Uniprot
sequence. For this reason, we downloaded from the Protein Data Bank (PDB) [104] all
the PDB codes that corresponds to the 443 proteins from the clustering procedure. In
total, we fetched 1069 PDB proteins, which in turn they were aligned with the
corresponding Uniprot sequences (Figure 24). In cases where the PDB protein is
homodimer, homotrimer, etc. (chains with same sequence), only one chain was kept.

"P14555": i
<«— Uniprot ID v—— Uniprot sequence

"sequence": "MKTLLLLAVIMIFGLLQAHGNLVNFHRMIKLTTGKEAALSYGFYGCHCGVGGRGSPKDATDRCCVTHDCCYKRLEKRGCGTKFLSYKFSNSGSRITCAKQDSCRSQLCECDKAAATCFARNKT TYNKKYQYYSNKHCRGSTPRC"

el : chain_ID
PDB—ID v—— PDB aligned sequence

"seq": " NLVNFHRMIKLTTGKEAALSYGFYGCHCGVGGRGSPKDATDRCCVTHDCCYKRLEKRGCGTKFLSYKFSNSGSRITCAKQDSCRSQLCECDKAAATCFARNKTTYNKKYQYYSNKHCRGSTPRC"

( v Uniprot aligned sequence
"uni_seq": "MKTLLLLAVIMIFGLLQAHGNLVNFHRMIKLTTGKEAALSYGFYGCHCGVGGRGSPKDATDRCCVTHDCCYKRLEKRGCGTKFLSYKFSNSGSRITCAKQDSCRSQLCECDKAAATCFARNKTTYNKKYQYYSNKHCRGSTPRC"

“res_num":
"ASN1",
e PDB residues with indexes
"ASN4",

Figure 24: Part of P14555 protein and the alignment with the 1AYP chain A PDB protein in JSON
format.
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Having aligned all the sequences, we set the numbering of residues based on the UniProt
sequence. Then, we update the IBS amino acids of Uniprot sequences, based on the
annotation of each corresponding aligned PDB sequence. That was the last step for the
proteins’ preparation and annotation (Figure 25A). As it was expected, the dataset is
totally imbalanced with only 3% of the total number of amino acids to belong to the IBS
class (Figure 25B).

@ uniprot_id residue_1l residue_3| residue_index is_IBS sequence
id
275 P80966 C CcYs 132 0  MNPAHLLVLSAVCVSLLGASSIPPQPLHLIQFGNMIQCTVPGFLSW...
276 P80966 F PHE 133 0 MNPAHLLVLSAVCVSLLGASSIPPQPLHLIQFGNMIQCTVPGFLSW...
277 P80966 A ALA 134 0  MNPAHLLVLSAVCVSLLGASSIPPQPLHLIQFGNMIQCTVPGFLSW...
278 P80966 A ALA 135 0 MNPAHLLVLSAVCVSLLGASSIPPQPLHLIQFGNMIQCTVPGFLSW...
279 P80966 S SER 136 0 MNPAHLLVLSAVCVSLLGASSIPPQPLHLIQFGNMIQCTVPGFLSW...
280 P80966 P PRO 137 0 MNPAHLLVLSAVCVSLLGASSIPPQPLHLIQFGNMIQCTVPGFLSW...
281 P80966 Y TYR 138 1  MNPAHLLVLSAVCVSLLGASSIPPQPLHLIQFGNMIQCTVPGFLSW...
282 P80966 N ASN 139 1  MNPAHLLVLSAVCVSLLGASSIPPQPLHLIQFGNMIQCTVPGFLSW...
283 P80966 N ASN 140 1  MNPAHLLVLSAVCVSLLGASSIPPQPLHLIQFGNMIQCTVPGFLSW...
284 P80966 N ASN 141 1  MNPAHLLVLSAVCVSLLGASSIPPQPLHLIQFGNMIQCTVPGFLSW...

Histogram of IBS amino acids

300000
250000
200000
150000
100000
50000

0 |

0 1
\/ Is 1857 \/

Figure 25: Part of the dataset depicted the information of Uniprot ID, the residue name (1 & 3 letter
code) and its index, if a residue is IBS, and the Uniprot sequence (A). The total number of amino
acids that belongs to each class (B).

Number of Amino acids

To sum up, the next figure concentrates the process for dataset preparation, filtering and
annotation that was described in the last 3 sections.

Download Datasets
Match Uniprot IDs with
- DREAMM I:D PDB IDs + Chains I:’> Download proteins I:D Aggregate sequences

- PePrMint

Align Uniprot Keep representatives + .
Annotation of dataset Q::l sequences with each Q::, download respective <\l: Clusi:‘er gr;ﬁ:_?s
corresponding PDB PDBs using

Figure 26: Pipeline for dataset preparation.
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3.4 Construction of Protein Embeddings

To generate the features of our dataset, we used two pLMs. These models produce
embeddings that represent amino acids or groups of amino acids in a fixed-dimensional
vector space. These vectors encode the structural and functional properties of a protein
and serve as ideal features for making predictions about a protein's structure, function,
and properties based on its amino acid sequence. We employed the
prot _t5 xI_half_uniref50-enc’ model from protTrans [84] and the
esm2_t33_650M_UR50D? from ESM [96], both of which are available in the Hugging
Face® repository. The former produced embeddings vectors with a size of
sequence_length x 1024 while the latter yields embeddings of size sequence_length X
1280 (Figure 27). The procedure for extracting this information was highly efficient, taking
only for a medium-length protein (up to 512 amino acids) ~10 seconds for protTrans and
~3 seconds for ESM in a MacBook Pro with chip M1, 10-cores, and 16GB of RAM.

sequence_length x 1024 sequence_length x 1280
he i .

r A r 3
0.49 -1.54 1.32 1.2 -0.54 0.81
1.22 0.89 -0.2 -0.34 1.19 -1.59
1.03 0.53 0.44 0.73 | 0.05 | ‘ -0.2

protTrans ESM

Figure 27: Embeddings dimensions from protTrans and ESM pLMs.

Having generated the embeddings, we added this information to our dataset as features
(1 dataset for protTrans embeddings & 1 dataset for ESM embeddings). The last step
that was performed for features was to convert the amino acid feature column from
categorical to numerical features, by using one-hot encoding, a technique that transforms
each unique value in a categorical feature into a new binary feature (Figure 28).

' https://huggingface.co/Rostlab/prot _t5 xI_half uniref50-enc
2 https://huggingface.co/facebook/esm2 t33 650M UR50D

3 https://huggingface.co/
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uniprot_id residue_11 is_IBS A Cc D E F G H | K L M N P Q R S T v w
P14555 M 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
P14555 K 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
P14555 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
P14555 L 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
P14555 L 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
P14555 L 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
P14555 L 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
P14555 A 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28: Part of the dataset with the one-hot encoding of the residues.

3.5 Predicting Protein-Membrane Interactions of Peripheral Membrane Proteins
Using Artificial Intelligence

To calculate the performance of the algorithms, we need to test them in unknown data
and record their performance. For that reason and before moving on, we split our dataset
into a training set (~80% of the dataset - 328 proteins), validation set (~10% - 41 proteins),
and test set (~10% - 41 proteins) (Table 3). Furthermore, an extra test set of 35 peripheral
membrane proteins with known 3D structures and experimentally known membrane-
penetrating regions (not amino acids) was created. These proteins were evaluated
qualitatively because no particular amino acids were examined in experiments.

Table 3: The peripheral membrane proteins of the training, validation, and test sets with the
corresponding Uniprot IDs.

Set Uniprot IDs

Training | 001761, Q9JKS6, Q60841, 075962, P21359, Q12802, P26039, V5M2P5,
015020, P00451, AOAOH2UP19, P12259, P97479, P32639, 075643,
Q8XM24, 075923, Q9BZ29, D3ZJP6, Q9ERCS, Q3T552, AOAOH2YSTS,
Q5T5U3, D4QAP3, Q6ZPE2, Q14185, Q8DR60, Q04205, ESRWQ2,
Q62768, Q15811, Q6ZPF3, Q8WZ64, Q61194, AOAOH2UNTS, Q8TCUG,
P26831, Q9JIR4, P71140, Q13009, Q9JIS1, QINZN5, 015085, Q9Y2I1,
Q6ZNL6, Q7SZNO, 075747, Q63HR2, Q69ZL1, Q62868, Q6EDY6,
QOULUS8, Q07889, P46934, Q96L93, Q68CZ1, P10686, Q96KN7, Q70E73,
Q45712, P35568, Q01970, Q16760, P49796, Q99490, Q00722, P16480,
P05068, Q08236, Q8XMYS5, B3LEP7, Q64096, Q9QWYS, F2YQ19,
QINQW6, QOPRN1, Q9HAUO, Q8IX03, Q9Y3M8, P48736, P14090,
Q9ZA17, Q8Y4J2, Q9Y2J2, 069230, P51584, P42337, Q54873, Q91VS8,
Q8BTI9, P29323, Q00944, Q9Y2H5, Q9Y5B9, AOAOH2US34, P32558,
Q56F26, Q82PP4, Q8VNN2, P00723, Q8A2X6, Q70SY0, Q8KRF6,
QIKG76, Q8IWES, QOTRS3, Q6P4T1, Q7WTNG6, Q8N960, Q92974,
QIVFS5, P94286, Q6DN90, Q93RE7, ASDHG6, Q9Y5W7, AOAO75B5HG,
060462, Q59290, Q9BYX2, AOFGRS8, Q08345, Q92888, P77847, Q96J02,
P0C2S1, 094806, Q6ZUM4, Q9BZF1, Q6DN12, Q61097, P50570,
P11171, Q8AAKG, Q16832, D1GCC6, P15498, A3DK57, Q840C0,
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Q8N4X5, A6KXES, P10477, 095267, Q93IE7, Q8AB22, Q9H4M7, Q8K4I3,
P22346, QO9HCE7, P10688, Q9BRRY, P47712, Q9BXB4, B3CET4,
Q15027, P09216, 000522, Q99PV3, A415U9, Q8A916, Q92556, Q3J126,
Q5JSP0, Q9UH99, 054924, Q8R5F8, Q08945, Q02111, Q5LJ68, P05129,
POWG6E3, Q5LIC7, QINR8O, P21146, P40485, P47709, 052780, POCS93,
Q96AC1, Q9RIK9, P16278, P79134, Q96C24, Q8VRKS8, Q13613,
Q2PHL4, Q3ZC95, Q82L26, P08236, Q4AE70, P04049, Q02834, P42331,
Q9zB22, P32776, Q9WXN1, P45796, POA377, P18887, Q9HOHS5,
QOL5A4, Q9Y5P4, 007653, Q9JID9, Q9Y217, QBWXI4, Q59675, Q9X0S8,
P05804, P46662, AOAOH2UN19, Q9Y5X1, Q13322, Q6DN99, P40748,
A2AR50, Q9UHG5, Q51815, QINPI6, Q8WV41, QIL9D7, GOSHKS,
Q06696, H6WCZ0, AOAOH2WZL3, D8DVUG6, 015530, P10820, P29366,
P32780, Q96L92, Q00019, Q91X46, Q13596, Q9BPZ7, Q8WU20,
Q18PEO, Q61234, Q9ERES3, P16559, Q4W8M3, Q8A5P6, GOL2L9,
P97465, P31751, BTGNN8, Q9BSW7, Q15036, P52757, P21956,
Q8AAM3, Q8A3J5, P40161, Q38CF2, Q14849, Q9BSQ5, Q8AIFO,
Q7L8C5, QI9ERSS, Q9H2B2, P21579, Q5EBH1, 060496, B1H267,
043581, 043739, P14598, Q9HOF6, Q9UNHG6, Q86VN1, EORVY7,
Q8NFA2, 075689, Q9W1HS5, A7LSX5, C4QH88, D6MSV6, Q96MF2,
B3PDES5, Q86WV1, B3PIBO, P09394, QONYTO, P08567, B3A043, P25335,
Q5L9W9, P04272, Q15080, 095433, Q5LFR2, Q9SSK9, AOA0JIX278,
P08954, P34024, QI9SYTO, A6LITS8, P32912, AOAGL7H2EG, P45723,
Q5LX22, Q2LK81, Q81914, D7RFJ9, Q2PA00, Q4VPP2, Q9P104,
Q8C4Q6, Q8A2Z3, Q9HB20, Q80UW2, P17063, QOULZ2, P49675,
QI9UN19, Q9CR95, AOAGN4SPL7, P53810, Q9Y5W9, QI9RZE3, A6LI16,
P42530, P53068, A9CLR1, A9CG82, Q5JGZ3, AOAOH2V2B5, Q9QYE9

Validation

Q8H1L1, Q1MFM4, Q914D2, G7J032, P52778, Q3J4M4, Q5HLI9,
Q8NN40, 004298, A1USH9, Q9XG81, Q2K6S8, Q2YBN9, Q5QL47,
P80966, Q6UV28, Q47KK8, Q9A7I7, Q5SK03, Q7NY36, Q9C8S6,
QIYI9R3, AOAGN4SU23, Q484T9, 031806, P14555, Q5LN61, Q9Y547,
Q98IT8, Q689C4, Q81AY6, Q8DVNG, AOAGN4SXV3, AOKKTO, Q973T5,
Q49US3, Q7CZ16, E2FYL5, Q64YT5, Q9P805, POCOBO

Test

P04183, Q892G6, Q12517, Q53W25, Q99JV5, QIPPPS, Q8VZSS,
P59095, A1ZAWS5, QOUKLG, QINSY2, Q9P4F6, Q67A25, Q8PPZ5,
Q9HJ63, 014713, Q96L94, BBLIX8, Q9UM13, AOA1CIV3S9, QIWYN2,
Q7WAN9, Q8KNE9, Q8KNFO0, BOPKK4, Q82XK1, Q8PZJ2, Q9F6D3,
AOAOH2XI1Z7, AOABN4SQO07, P0O0630, Q9ZLJ5, A1RAGO, 015496,
BOPJEG, P93330, Q08826, Q9UMY4, Q98FZ2, Q832L1, A1JSS7

Extra
Validation

P61914, Q15075, 016025, Q96QK1, Q960X8, P12530, P00735, P40343,

024592, P05979, 088339, P22637, Q28175, P08684, POC2E9, Q9LCB2,

P60484, POC216, Q02127, P20932, P02749, P11889, Q77DJ6, PO0803,

Q99685, P49638, QINZD2, P00720, P12724, P12104, P56254, P60980,
P01441

D. Paranou

50




Using DL and NLP to predict protein-membrane interactions of peripheral membrane proteins

3.5.1 Usage of machine learning classifiers

Four machine learning classifiers were trained on both datasets (ESM & protTrans) for
the training set: XGBoost classifier [105], BalancedRandomForest classifier [106], and
two Neural Networks (NN) from the keras library [107]. The classifiers were trained using
default parameters except for the parameter that handles the imbalance issue of the
dataset. For XGBoost, we experimented with the scale_pos_weight parameter, while for
NNs, we tested the class_weight parameter. The performance of each classifier was

evaluated on the test proteins, and Tables 4 and 5 summarize the results.

Table 4: Models performance on protTrans test dataset with default parameters except for the

class weight. The best score for each metric is highlighted in bold.

- Iti-L
XGBoost BalancedRandomForest LR UL LEN
Perceptron Perceptron
F1score 0.581 0.497 0.582 0.627
MCC 0.522 0.441 0.549 0.586
. no_IBS IBS no_IBS IBS no_IBS IBS no_IBS IBS
ConfL;s./on no_IBS 11180 941 no_IBS 10000 2121 no_IBS 10081 2040 no_IBS 11702 419
matrix | 1Bs 573 1049 IBS 385 1237 IBS 453 1169 | IBS 689 933
Total fi ~10m ~1-3m ~1m30s ~1m
time
Table 5: Models performance on ESM test dataset with default parameters except for the class
weight. The best score for each metric is highlighted in bold.
- i-L
XGBoost BalancedRandomForest LR UL LEN
Perceptron Perceptron
F1score 0.418 0.406 0.496 0.553
MCC 0.365 0.338 0.425 0.492
Confusi no_IBS IBS no_IBS IBS no_IBS IBS no_IBS IBS
%7;’;;"” no_IBS 11595 526 no_IBS 986 2101 no_IBS 10032 2089 | no_IBS 11314 807
a IBS 1055 567 IBS 395 1200 IBS 432 1190 IBS 693 929
Total fi ~12m ~3m ~1m30s ~1m
time

" In a MacBook Pro with chip M1, 10-cores and 16GB of RAM.

D.

Paranou

51




Using DL and NLP to predict protein-membrane interactions of peripheral membrane proteins

The most promising classifier in both cases was the Multi-Layer Perceptron (MLP), which
achieved the best scores and a balance between false positives (FP) and false negatives
(FN), with a reasonable fitting time.

3.6 Optimization of promising algorithms

Having chosen the MLP as the algorithm with the best performance, we continued by
optimizing the classifier in order to discover the best hyper-parameters that separate best
the two classes. A Bayesian optimization using the keras_tuner library from keras [107]
was performed in a wide range of values for each hyper-parameter set (Table 5) for 50
iterations. The best hyper-parameter sets based on the Bayesian search were selected
(Table 5) and the respective models were saved. The present study involved performing
model fine-tuning on two distinct datasets, namely the ESM dataset and the protTrans
dataset. The multilayer perceptron (MLP) model was subjected to fine-tuning on both
datasets. Additionally, Bayesian optimization was utilized to fine-tune XGBoost classifier
specifically on the protTrans dataset, although no significant improvement was observed
in comparison to the untuned model and no further investigation was done.

Table 6: The hyper-parameters that were sampled, the ranges that were searched in Bayesian
optimization, and the final best hyper-parameters for each dataset using weights.

Hyper-parameter ranges Best hyper-parameters identified by
Dataset s .
selected hyper-parameter optimization
Initial Dense Layer: 350
Initial Dropout percentage: 0.8
Initial Dense Layer: 50 < Number of Dense Layers (Hidden): 4
int(nodes) < 350, step = 50 Hidden Dense Layers: [512, 32, 32, 480]
protTrans oy ]
0.0 = float(dropout) < 0.8, step = o ‘ ,
0.1 Optimizer. ‘Adam
Number of Dense Layers: 1 < Learning rate: 0.1
int(layers) < 4, step = 1 Class weight: {0:1, 1:34}
Hidden Dense Layers: 32 < Initial Dense Layer: 500
int(nodes) < 512, step = 32
Initial Dropout percentage: 0.8
Dropout percentage: 0.0 < _
float(dropout)< 0.5, step = 0.1 Number of Dense Layers (Hidden): 4
ESM Optimizer [Adam’, ‘SGD’] Hidden Dense Layers: [32, 32, 32, 512]
Learning rate: [0.1, 0.01, 0.001, Dropout percentage: [0, 0.5, 0.5, 0.2]
0.0001] Optimizer. ‘Adam’
Learning rate: 0.0001
Class weight. {0:1, 1:34}
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In Figure 29, the architecture diagrams of the two MLPs are presented with each layer,
the number of corresponding nodes, and the activation functions for each Dense layer.

dense 21 input | input: | [(None, 1044)] dense 9 input | input: | [(None, 1300)]
InputLayer | output: | [(None, 1044)] InputLayer | output: | [(None, 1300)]
dense 21 input: | (None, 1044) dense 9 input: | (None, 1300)
Dense | relu | output: | (None, 350) Dense | relu | output: | (None, 500)
dropout_13 | input: | (None, 350) dropout_7 | input: | (None, 500)
Dropout | output: | (None, 350) Dropout | output: | (None, 500)

l l

dense 22 input: | (None, 350) dense_10 input: | (None, 500)
Dense I relu | output: | (None, 320) Dense | relu | output: | (None, 32)
dropout_14 | input: | (None, 320) dropout_8 | input: | (None, 32)
Dropout output: | (None, 320) Dropout | output: | (None, 32)
l .
dense 23 input: | (None, 320) dense 11 input: | (None, 32)
Dense | relu | output: | (None, 32) Dense | relu | output: | (None, 32)
dropout_15 | input: | (None, 32) dropout 9 | input: | (None, 32)
Dropout output: | (None, 32) Dropout | output: | (None, 32)
4 A 4
dense 24 input: | (None, 32) dense 12 input: | (None, 32)
Dense | relu | output: | (None, 32) Dense | relu | output: | (None, 32)
dropout_16 | input: | (None, 32) dropout_10 | input: | (None, 32)
Dropout output: | (None, 32) Dropout output: | (None, 32)
dense 25 input: | (None, 32) dense 13 input: | (None, 32)
Dense | relu | output: | (None, 512) Dense | relu | output: | (None, 512)
A 4
dropout_17 | input: | (None, 512) dropout_11 | input: | (None, 512)
Dropout output: | (None, 512) Dropout output: | (None, 512)
dense 26 input: | (None, 512) dense 14 input: | (None, 512)
Dense | sigmoid | output: | (None, 1) Dense | sigmoid | output: | (None, 1)

Figure 29: Architecture of MLPs models that were constructed based on the best hyper-
parameters. Left is the protTrans model - Right is the ESM model.
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3.7 The Test Set Prediction Results

After identifying the best hyper-parameters for the two MLP models, we proceeded to
evaluate their performance on the test set. The models generated predictions in the form
of probabilities, so we used the F1 score to determine the appropriate threshold for
classifying the target column. The threshold that maximized the F1 score was selected
for each model. We then evaluated the models' performance using various scoring
metrics, which are presented in Table 7. Based on the prediction results, the models
exhibited an improvement of approximately 7% in the metrics compared to the default
classifiers.

Table 7: The predictions of the test set from the MLP models in the datasets with the protTrans
and the ESM features.

Dataset Threshold F1 score MCC TN FP FN TP
protTrans 58% 0.691 0.652 6591 321 238 626
ESM 55% 0.622 0.577 6623 289 343 521

To better understand the predictions of the models, it is essential to visualize the results
of the models and inspect which amino acids are FP, FN, and TP. To do this, we used
the PyMOL* tool, which is an open-source molecular visualization system. In Figure 30
there are captures of 4 proteins’ predictions from the test set using the 2 different datasets
and models. The TP amino acids are depicted in green, while the FP and FN amino acids
are in yellow and red, respectively (protein ligands are indicated in purple). As we can
see, approximately two-thirds of the FPs are, in fact, correct predictions, as they are
located in the protein-membrane interface adjacent to the true positives or on adjacent
loops.

4 https://pymol.org/2/
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1NL2 1P0OC protTrans 2Ks5G 2R55

ESM

Figure 30: Four proteins of the test set visualized in the PyMOL tool with the relative predictions
from the models.

For these four test proteins from the above visualization, we calculated the F1 score
independently for each protein, before and after considering that some FPs can actually
be TPs due to their proximity to the residues that were originally labeled as TP based on
the literature findings. In order to reclassify an FP amino acid as a TP, it was necessary
for it to be located in close proximity to true membrane-interacting amino acids, and in
particular, within 3A distance of a true positive value. The resulting scores are presented
in Table 8, which revealed that the actual scores are significantly higher, with an
improvement of +11%.

Table 8: Calculated F1_score of the 4 test proteins before and after of converting the close amino
acids that are indeed membrane penetrating, from FP to TP.

protTrans ESM

F+1 score 0.87 0.84
1INL2

Actual F1 score 0.98 0.97

F+1 score 0.27 0

1POC

Actual F1 score 0.36 0.06

F+1 score 0.52 042
2KG5

Actual F1 score 0.67 0.5
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F1 score

0.87

0.82

Actual F1 score

0.98

0.98

2R55

Furthermore, due to our observation that the MLP model trained on protTrans features
exhibited superior performance compared to the MLP model trained on the ESM features,
we chose to contrast it with the DREAMM tool. This comparison was conducted on the
four proteins in the test set (1NL2, 1POC, 2K5G, 2R55), and we generated visualizations
that not only highlight the membrane-penetrating amino acids but also document and
report the prediction times of both models. Figure 31 illustrates the performance of the
models, from which we can conclude that the DREAMM tool requires significantly more
time compared to the MLP model, with its prediction time being dependent on the
sequence length. However, the DREAMM tool performs equally well in prediction
accuracy when compared to our model (Table 9).

1POC

protTrans

2K5G

2R55

e P
‘.21(_ iy~ o
W
20 sec 20 sec DREAMM
(N 1
rf# ‘,\\, .J“
AN\ 14
5, LS
v
1 min

Figure 31: Comparison of four proteins of the test set between the MLP model trained on
protTrans features and the DREAMM tool.
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Table 9: Predicted membrane-penetrating amino acid indexes of MLP model trained on
protTrans features and DREAMM tool.

MLP trained on

protTrans features DREAMM

83, 84* ,86, 103*, 104,
105, 106, 107, 108, 1097,
110, 111, 112*, 144*, 145*,
1NL2 146, 147, 148, 149, 150, 107, 186, 190
180%, 181, 182, 183, 184,
185, 186, 187, 188, 189,
190, 191, 193, 194, 198

51%, 62*, 565, 78, 81, 85, 1%,2%, 11, 24, 78, 81, 82,

1POC 90, 107*, 110* 86

64*, 66*, 67, 68, 71, 72,
74,75,76,77,78,79, 80,
2K5G 81, 82, 83, 84, 85, 1097, 8, 15,16, 78, 169
110%, 140%, 141*, 144*,

154*

45%, 81, 82%, 84, 104, 105,
106, 107, 108, 109, 110,

111, 112, 113, 114*, 143*,
144*, 145, 146, 147, 148,

149, 179%, 180%, 181*, 182,
183, 184, 185, 186, 187,

188, 189, 190, 191, 192,

195

2R55 2%, 3%, 5, 40, 108, 141, 183

*False positives residue indexes

3.8 Model Limitations

Next, we evaluate the performance of our models in the extra validation set, for which we
do not have the exact membrane-penetrating amino acids; only the region(s) that interact
with the membrane has been verified experimentally. This test shows that for protein
families for which the models have not been trained on, there are no amino acids
predicted at the IBS. For the ~50% of the proteins in this set, for which the model have
have been trained on, the models managed to correctly predict the protein-membrane
interface (Figure 32 — Table 10).

In addition, the MLP model that was trained on the protTrans embeddings and achieves
better scores compared to the MLP model trained on ESM embeddings, gives
approximately 20% more predictions. Finally, the MLP classifiers were also assessed for
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the prediction of the protein-membrane interface of some transmembrane enzymes
(Uniprot IDs: Q55487, P08842, Q99T05, P02919, P13516, 000767, Q03529, BOKDDA4,
029867), but without success, as they cannot predict any membrane penetrating amino
acid. In summary, the two models are limited to the specific protein families (Figure 33)
that they have been trained on as was demonstrated by the results of the extra validation
set, which includes unknown protein families.

1DVP

3AKM

ESM

Figure 32: Predictions from the 2 MLP models for 3 proteins of the extra validation set, with
experimental known protein-membrane interface regions.

Table 10: Peripheral membrane proteins of the extra validation set, their PDB ID, their
experimentally known membrane-penetrating amino acids, and the predictions of our MLP
models. Amino acid humbering is consistent with the PDB structure

Protein — PDB | Membrane penetrating

ID regions / amino acids protTrans MLP ESM MLP
1c1z, 1coy,
1es6, 1sbx, Not prediction from our
tan, 2ayl, models - -
2mh1, 4x08,
5f0p
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1dvp F173 T172, F173, T174, R181 T174, N175, R176, K177
L6, V7, P8, L9, F10, L6, V7, P8, L9, F10, S11,
. Y22, M24, F25, M26, | T13, M26, V27, A28, A29,
R V27, P30, V32, P33, P30, H31, V32, K35, L47, KS, A29, P30, V32
V34, 139, L47, L48, V49 L48
D216, G266, E267, K268, | o 05 066, E267, K268,
D269, A270, G271, D273,
5296, N297. D298 M300 D269, A270, G271, T272,
19yg Y331, F334 ’ ’ ! ' | D273, N297, K330, Y331,
T301, K330, Y331, T332, T332, A333, F334, P335
A333, F334, P335, D336, T Dsas ’
A337
1h0a L6, M10, 113, V14 - R114
liaz W112, Y113 - P81, Y110, N139
1joc V1367, T1368, V1369 51366, V1367, T1368, T1368, V1369
V1369
1nl1 F5, L6, VO K97, E99, T103, T104 -
F165, A168, F169, P200,
toiz F165, F169, 1202, V206, | V201, 1202, F203, H204, )
M209 A205, V206, S208, M209,
1210, F213
1pfo W466, T490, L491 T460, L462, A463, E465 S190
S173, K181, K182, L1886,
1vfy L185, L186 K182, S184, L185, L186 N187 R188. K189
L90, N92, Y93, T97, N237,
1239, A240, K241, Y242,
N243, F244, P245, D246,
2ddr W284, F285 W279, V281, 1282, Sog3, | P28 N27, 629,594,596
W284, F285, Q286, K287,
Y288, T289, D292
D384, R385, E386, H387, | 5383 D34, R385, E386,
A388, G389, T390, D3, | 407 388 3389, T390
2ig W413, F414, Y448, WA413, FA14, HA15,N416, | (o0 e paaa

W449

D417, E419, A420, G445,
G446, G447, Y448, W449,
D452, P453, D454

G445, G446, G447, Y448,
W449, D452, P453, K854
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2p0m

Y15, F70, L71, W181,

S13, 114, Y15, A16, G17,
K19, H69, F70, L71, K72,

G11, A12, $13, 114, A16,
G17, S18, K19, K68, H69,

L195 E73, D74, A75 F70, L71, K72, E73, D74
K16, M18, E19, K20, M21,
G22,V23, N24, 125, V26,
K27, R28, K29, L30, A31,
3akm Around amino acid K27 H33, D34, N35, A54, F55, K20, K27, D97, N98, G99
R56, N57, N69, N71, A73,
D74, G75, T76, E77, D97,
N98, N100, E120
F196, F200, 1202, F264, G48, V52, F57, 198, V99,
3fsn L265, W268, L270, 100, F108, F200, R234, -
W271 F235, L261, W268, W271
3iiq W300, W310 P87, L141 -
38 Around amino acids E94, E96, S101, L184, i
J L179, L186 R212, A213, V217
The two parallel P160, F162, D163, P164,
3npe amphipathic helices V165, A166, G207, G216, i
P (a1:85- 109, 02:222- G220, S222, R226, L367,
237) L371, R372, E444, W501
V41, W142, 1143, K146,
3rzn W142 1147, Y153 -
3w7r Region 31-68 N129, P130, R131, P132 N145, F149, S151
E40, R41, L42, E43, G44,
V45, R74, K164, M205,
5bzz Regions 260- 269, 327- F206, S207, G208, G209, S207, G208, G209, T210,
335 T210, H259, Q261, N262, Q261, K269
K263, M264, L265, K266,
K267, D268, K330, R335
1345, L347, L351, 1352,
5hxw F355 - N362, V366
6bfg Region 177- 215 K17, K21, M22, V23, S178, S111, R167, D168, K174,

A181, S214

1175, P176, S224
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/~ N
( PKCa-C2
PKCd-C1
Factor V Discoidin C2 Membrane ‘
PX "-..\targeting domains /
PH o
\ /
Phospholipases C/D
Enzymes
Phospholipases A
~Lipid Transfer ™
START \._ Proteins
Annexin

Figure 33: Protein domains belonging to nine protein superfamilies that represent the diversity of
PMP functions: membrane targeting domains (PH, PKCa-C2, Factor V Discoidin C2, PKCd-C1, PX),
enzymes (phospholipase C/D, phospholipase A), lipid transfer proteins (START), and annexins.

3.9 Predicting Protein-Membrane Interactions of Peripheral Membrane Proteins
Using Attention Heads

Since the MLP classifiers have shown to be effective only in certain protein families, we
aimed to enhance our results by developing a more generalized classifier. To this end,
we proceeded to extract the attention maps of the two pre-trained language models.
Initially, we sought to determine the specific hidden layers and attention heads where
information pertaining to the interactions of amino acids with the membrane is encoded.
Subsequently, we constructed a Logistic Regression model, which was trained on the
attention maps, to classify whether an amino acid is membrane-penetrating or not.

3.9.1 Extraction

Each pLM consists of a different number of hidden layers and attention heads. More
specifically, the protTrans model has 24 hidden layers and 32 attention heads in each
layer — in total 768 attention maps, while the ESM model has 33 hidden layers and 20
attention heads in each layer — in total 660 attention maps. The attention maps vector
size is analogous to the given protein at each time and the dimensions are
sequence_length x sequence_length. Every row and every column represents each
amino acid with a weight that indicates the importance or relevance of each amino acid
residue in the protein sequence with respect to a particular residue [81], [101]. If we have
for example the protein with Uniprot ID ‘A3DKS57’ that has 831 amino acids, each attention
map will be 831x831 (Figure 34). In addition, each attention map is a set of attention

weights « for an input, where a;; > 0 is the attention from token i (row) to token j
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(column), such that };; a; ; = 1 [101]. The extraction of attention maps was done through

the Hugging Face?® library, by setting the parameter output_attentions equal to True in
both models.

Sequence length x Sequence length

A

— N
M R K T N

M [0.0004 [0.00392(0.00392| ... |0.0245 |0.00028 Sum =1

R |0.00999| 0.087 | 0.004 ... [0.00001(0.0567 Sum =1

K 10.00312{0.00069(0.00297| ... 0.034 |0.0001 Sum =1

T 10.00007/0.00013/0.00993| ... |0.0001 |0.00044 Sum =1

N |0.0075|0.00044({0.0097 | ... [0.00084| 0.05 Sum =1

Figure 34: An example of an attention map of A3DK57 protein with dimensions 831x831 and sum
of rows equal to 1.

3.9.2 Interpretation of attention heads information

To manage decode and interpret the information that is passed among the attention
maps, we used the following mathematical formula that is described in [101]:

Txex Ziny X0 F(i))+1a;;>6

Yixex Ziﬂl Z,l-ill la;j>6

p(f) = (9)
where x is each protein, a; ; is the attention weight in row i and column j, 6 is a threshold
to select for high-confidence attention weight and f(i,j) which returns 1 if j is a
membrane-penetrating amino acid and 0 otherwise. The formula (Eq. 9) computes the
proportion of high-attention token pairs (a; ; > 6) and it is possible to target the protein-
membrane interface.

The total number of proteins that were used in our case was 30 and we calculated the
proportion for 6 different thresholds (0.1, 0.15, 0.2, 0.3, 0.4, 0.5). Figures 35 & 36 depict
the heatmaps for the 2 pLM that were generated using the formula (Eq. 9). As is shown
on the heatmaps below, the information about the membrane penetrating amino acids for
the protTrans model can be found in the last hidden layers and attention heads of the
model in most of the thresholds, while in the ESM model, it is clearer, as the information
is located on the first and the last hidden layers and in the middle attention heads in all
the thresholds.

5 hitps://huggingface.co/
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Figure 35: Heatmaps of attention maps that represent the proportion of attention in the several
hidden layers with the respective attention heads for protTrans model based on different
thresholds using a mathematical formula. The darker cells indicate the heads that map to the
protein-membrane interface.
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Figure 36: Heatmaps of attention maps that represent the proportion of attention in the several
hidden layers with the respective attention heads for ESM model based on different thresholds
using a mathematical formula. The darker cells indicate the heads that map to the protein-
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3.9.3 Usage of attention heads to predict protein-membrane interactions

The approach used in this study was inspired by a previous work on ESM-1b, which
extracted contacts from a transformer by passing a sequence through the model to obtain
attention maps, and then applied logistic regression independently to each amino acid
pair [87]. In this study, the attention maps of 20 proteins were extracted, and a dataset
was created where the columns represent pairs of hidden layers with each attention head,
the rows are the amino acid pairs of attention maps, and each cell indicates the weight of
the amino acid pairs in the respective combination of hidden layer - attention head (Figure
37). The target column was created based on whether each amino acid was membrane-
penetrating or not. The aim was to use this dataset to train a logistic regression model
that could classify amino acids as membrane-penetrating or not based on the attention
maps.

Hidden Layer: 0
Attention Head: 0

Figure 37: Example of how the dataset was generated for Logistic Regression based on the ESM
model. First, the attention maps were extracted and then transferred to the aggregated table
alongside the information about the labels of amino acids.

Having created the dataset, we then define the probability of a penetrating amino acid to
a logistic regression with parameter S [87]:
d.p) — 1
p(ci,jr B) -

1+exp (—Bo — Z%=1 Zr}.l=1 Bmhagnhij)

(10)

where d is each protein, M is the layers, H is the heads, and Amnij is the attention
weight between the sequence position i and j in the given m-layer and h-head. The 8
will be the fitted parameter. In total, the model learns MH + 1 parameters, which many
of them are zero because of the L; regularization.

Using the Stochastic Gradient Descend Classifier (SGDClassifier) from scikit-learn [63],
we trained two models on the two different datasets (ESM & protTrans) applying L;
regularization and log_loss as the loss function. For detecting which hidden layers and
attention heads were used for the classification of the amino acids’ pairs, we construct
the heatmaps of models’ coefficients (the absolute values), many of which are zero
(Figure 38).
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Figure 38: Heatmaps of SGDClassifiers coefficients which indicates the hidden layers and
attention maps that were used for the classification.

To determine the models' performance, we initially needed to convert amino acid pair
predictions into individual amino acid predictions by retaining the most frequently
predicted class for each amino acid. The evaluation was carried out on five proteins, and
the resulting outcomes are presented in Table 11 and Figure 39. We employed a range
of thresholds while utilizing amino acid classification probabilities, and the outcomes
presented herein used a 0.5 cut-off threshold. Despite our use of attention maps, we were
unable to attain better outcomes, with numerous instances of incorrect classification,
including roughly half of the amino acids being erroneously identified as membrane-
penetrating and others predicting only one or two amino acids incorrectly. The same trend
was observed with unknown protein families, resulting in similar results.

Table 11: Results of SGDClassifier on 5 test proteins in the 2 datasets.

ESM protTrans
F+ score 0.35 0.366
MCC 0.341 0.344
. no_IBS IBS no_IBS IBS
Confusion | 1o 1Bs 2559 254 no_IBS 2629 184
matrix IBS 54 83 IBS 65 72
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aTYZ 3mz2

ESM

Figure 39: Predictions from the 2 SGDClassifiers models for 3 proteins of the test set.
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4. DISCUSSION AND CONCLUSIONS

Characterizing interactions at the protein-membrane interface is crucial, as abnormal
peripheral protein-membrane attachment is involved in the onset of many diseases. A
limiting factor in studying and understanding protein-membrane interactions is that the
membrane-binding domains of peripheral membrane proteins are typically unknown. Only
a few methods exist that can predict protein-membrane interaction regions of peripheral
membrane proteins from their 3D protein structure [40]-[43], and in many cases these
methods are time-consuming. Moreover, the complexity of the interface and the lack of
suitable procedures and modeling technologies have not allowed the routine employment
of the protein-membrane interface in drug design pipelines.

By applying Artificial Intelligence (Al) techniques in the context of Natural Language
Processing (NLP) the accuracy and prediction time for protein-membrane interface
analysis can be significantly improved compared to existing methods. In this thesis, we
describe a machine learning methodology for predicting membrane-penetrating amino
acids using NLP and protein language models (pLMs). First, we assemble a dataset of
709 peripheral membrane proteins with experimentally established membrane-
penetrating amino acids. We separate this dataset into two classes, the amino acids class
that are membrane-penetrating and the amino acids class that is non-membrane-
penetrating. We then extract the embeddings of amino acids from two protein Language
Models (pLMs), ESM [96] and protTrans [84]; these are then set as the features of the
dataset. Then, we split the dataset into training, validation, and test sets for evaluating
model performance. To address the imbalance issue as only ~3% of the amino acids
belong to the membrane-penetrating class, we determine the class weights using specific
weights to emphasize the minority class. We then proceed to train several machine
learning models, including neural networks, using default parameters. These models
were employed to optimize the hyper-parameters of the MLP classifiers, which produced
the highest scores during the initial stage of analysis for both datasets. For the hyper-
parameter optimization, the Bayesian search technique was applied in an extensive
range of values for 50 trials. The performance of the two models (Multi-Layer Perceptron
trained on ESM features and Multi-Layer Perceptron trained on protTrans features) was
improved compared to the initial test, yielding an F1 score = 0.691 with MCC = 0.652 and
F1score = 0.622 with an MCC = 0.577 for the protTrans and ESM features respectively,
for correctly predicting the membrane-penetrating amino acids. Close inspection of the
results revealed that many of the false positive predictions are true positives. Using a
cutoff radius of 3A around true positive membrane penetrating amino acids to include
neighboring amino acids elevates the F1 score by an average of 11%.

Although the MLP models demonstrated excellent speed and accuracy in predicting
membrane-penetrating amino acids for proteins represented in the training set, their
predictive capabilities are limited to this set alone. Specifically, the models cannot make
predictions for proteins belonging to the transmembrane category or for those within
protein families not included in the training set. As such, it is noteworthy that the
performance of the MLP classifier models is highly reliant on the features/information
utilized in this study. PLMs generate embeddings that contain encoded function and
structural information of protein sequences, which is crucial in the decision-making
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process of our models. This provides novel physicochemical insights into how peripheral
membrane proteins interact with and adhere to the membrane. While the embeddings
contain valuable information about the structural and functional properties of protein
sequences, this wealth of information can sometimes be overwhelming and may result in
relatively underwhelming results for the models. In the current task, features relative to
the physicochemical properties of the proteins are more suitable, such as the
hydrophobicity, solvent exposure surface area, secondary structure element, etc. [44].
So, extra work has to be carried out to explore whether it is possible to configure the
embeddings with respect to the physicochemical properties of amino acids. This could
result in a more targeted set of features that may boost the performance of models.

In addition, while MLP models are limited to specific protein families, they don't predict
false amino acids if they cannot find any relevant information. This suggests that they are
not overfitted, but they are also not very robust when it comes to unknown protein families.
The fact that MLP models are limited to specific types of inputs can decrease the
performance of the classifiers and requires further investigation.

Next, the attention maps were used to verify that the information about the protein-
membrane interacting region is encoded within the pLMs [101] and to develop classifiers
that are better able to classify membrane-penetrating amino acids [87]. The results
confirmed the existence of interfacial binding site information in the attention heads of
pLM's hidden layers. However, it was observed that either the information of attention
maps or the Logistic Regression algorithm is unsuitable for accurately classifying protein-
membrane interaction tasks as they achieve an F1 score = 0.366 with an MCC = 0.344
and F4 score = 0.35 with an MCC = 0.341 for the protTrans and ESM attention maps
respectively. We tested several probability thresholds for the classification of the amino
acids, but the performance was not improved. Inspection of the predicted values showed
that they tend to classify randomly the membrane-penetrating amino acids. It should also
be noted that attention maps were used to predict the contacts of amino acids in [87], as
they discovered a correlation between self-attention maps and contact patterns [101].
Considering the above, further research needs to be done before rejecting the use of
attention maps in this case, as they appear to be promising [81].

Overall, our results indicate that Artificial Intelligence, specifically NLP techniques, can
make a significant contribution in the research community to tasks related to protein-
membrane interaction, resulting in a substantial reduction in computing time. Significantly,
our MLP models trained on pLM features can predict protein-membrane amino acids
within a minute, which is faster than other tools that may require over an hour to perform
the same task. As language models continue to improve and outperform traditional
algorithms, it is likely that their usage will increase in the future [108]-[110].
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5. FUTURE PERSPECTIVES

A number of potential improvements can be suggested to increase efficiency and
predictability of the current project.

To evaluate the performance of our model, we used metrics appropriate for the imbalance
dataset we have available [60], [73], [74], [106]. However, while the F1 score and the
Matthews correlation coefficient can assess the outcomes of the models, they cannot
capture the specificities of protein structure, such as the position of amino acids in the 3D
space. For instance, the score metrics are incapable of detecting scenarios in which
amino acids situated in the protein-membrane interface, adjacent to true positives or
adjacent loops, and are categorized as membrane-penetrating despite being labeled as
non-membrane-penetrating. Therefore, it would be more appropriate to construct metrics
that take into account the protein 3D structure, omitting the need for manual inspection of
each protein, and resulting in a more precise scrutinization of the outcomes.

Currently, our Multi-Layer Perceptron models perform well in predicting protein-
membrane interfaces for specific families of peripheral membrane proteins, but they are
not capable of handling unknown protein families Although our models do not provide
wrong information about these proteins, they lack generalizability and robustness. To
address this issue, we need more protein information from diverse protein families, which
could significantly improve the performance of our models. We also recognize the
importance of secondary and supersecondary structure information in the binding
process of peripheral membrane proteins; for example, alpha-helices have a higher
propensity to interact with the membrane. Thus, incorporating such specific information
into the dataset could enhance the predictive ability of our models. In addition, in the
protein clustering procedure, we selected a threshold of 40% for clustering the proteins.
However, implementing a less stringent pairwise similarity cutoff could potentially enable
the algorithms to acquire a more diverse range of protein sequences.

As the choice of dataset can have a substantial impact on model performance, careful
selection of input data is essential. One potential solution is to use an alternative protein
dataset sourced from a database such as BioGRID [111], which contains known protein
interactions, to train machine learning algorithms. The use of this dataset is expected to
be less biased and more informative than our current dataset, as it encompasses a
broader range of protein families.

As testing and optimization of machine learning algorithms is a time-consuming
procedure, in this project four machine learning classifiers were chosen for predicting the
membrane-penetrating amino acids. The present study involved performing model fine-
tuning on two distinct datasets, namely the ESM dataset and the protTrans dataset. The
multilayer perceptron (MLP) model was subjected to fine-tuning on both datasets.
Additionally, Bayesian optimization was utilized to fine-tune an XGBoost model
specifically on the protTrans dataset, although no significant improvement was observed
in comparison to the untuned model. Thus, a more detailed investigation can be
performed on the algorithms that may be potentially used, as other methods could
demonstrate better performance, such as Support Vector Machines (SVMs), K-Nearest
Neighbor (KNN), Naive Bayes, or others.
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ABBREVIATIONS - ACRONYMS

PMP Peripheral Membrane Proteins

Al Artificial Intelligence

TP True Positive

FP False Positive

FN False Negative

TN True Negative

MCC Matthews correlation coefficient

NLP Natural Language Processing

LM Language Model

BERT Bidirectional Encoder Representations from Transformers
PLM Protein Language Model

ESM Evolutionary Scale Modeling

NN Neural Network

CNN Convolution Neural Network

FNN Feedforward Neural Network

PePrMint Resources for Peripheral Protein-Membrane Interactions
IBS Interfacial Binding Sites

DREAMM Drugging pRotein mEmbrAne Machine learning Method
PDB Protein Data Bank

Trp Tryptophan

Phe Phenylalanine

Tyr Tyrosine

Met Methionine

Lys Lysine

Arg Arginine

Gly Glysine

MLP Multi-Layer Perceptron

MODA Membrane Optimal Docking Area

PPM Positioning of Proteins in Membrane
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