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ABSTRACT 
 

Peripheral membrane proteins play a crucial role in many biological activities: cell 
differentiation, proliferation, and communication with other cells, among other functions. 
Peripheral membrane proteins are regulated in various ways depending on their functions 
and cellular contexts, including binding to biological membranes. Characterizing 
interactions at the protein-membrane interface is crucial, as abnormal peripheral protein-
membrane attachment is involved in the onset of many diseases. However, a limiting 
factor in studying and understanding protein-membrane interactions is that the 
membrane-binding domains of peripheral membrane proteins are typically unknown. 
Currently, the existing tools that predict the protein-membrane interface lack accuracy 
or/and are time-consuming. By applying Artificial Intelligence (AI) techniques in the 
context of Natural Language Processing (NLP), the accuracy and prediction time for 
protein-membrane interface analysis can be significantly improved. For instance, protein 
language models (pLMs) applied to protein structure prediction, offer a substantial 
advantage over other deep learning-based algorithms used for the same purpose, being 
600 times faster with comparable accuracy. Hence, pLMs can be utilized to rapidly and 
accurately predict protein-membrane interfaces. 

Herein, a machine learning methodology for predicting membrane-penetrating amino 
acids based on NLP and pLMs is described. First, we collect available data from two 
verified sources containing peripheral membrane proteins with experimentally known 
membrane-penetrating amino acids and generate features using pLMs to train machine 
learning and neural network classifiers. In the preliminary tests of this thesis, which 
employed default models without parameter optimization, the Multi-Layer Perceptron 
(MLP) demonstrated superior performance compared to other models, achieving the 
highest accuracy. Evaluation of the best MLP models, after fine-tuning the 
hyperparameters with Bayesian optimization, yields an F1 score = 0.691 with Matthews 
correlation coefficient (MCC) = 0.652 and F1 score = 0.622 with MCC = 0.577 for the two 
different pLM features respectively, for predicting correctly membrane-penetrating amino 
acids on unknown proteins of a test set. Close inspection of the results revealed that 
many of the false positive predictions are true positive since these amino acids are 
located adjacent to the protein-membrane interface. Thus, we defined a new cutoff radius 
around true positive membrane penetrating amino acids in order to include neighboring 
amino acids elevating the F1 score by an average of 0.11%. 

To further improve the results, the attention heads of pLMs were extracted and used in 
two steps: 1. Investigate if the information about the membrane-penetrating amino acids 
exists in the hidden layers and the respective attention heads of these models, and 2. 
Use the attention maps to predict the protein-membrane interfaces. The first step verified 
that the information is indeed encoded inside the hidden layers of each pLMs. In the 
second step, logistic regression models were trained on the attention maps of each pLM 
for predicting the membrane-penetrating amino acids. Evaluation of the classifiers’ 
accuracy produced an F1 score = 0.366 with MCC = 0.344 and an F1 score = 0.35 with 
MCC = 0.341 for the two different pLM attention maps, respectively, for the classification 
of amino acids that interact with the membrane.  



Our MLP models trained in pLM features predict the protein-membrane penetrating amino 
acids in less than a minute for predicting the protein-membrane amino acids in all cases 
while other tools may require more than an hour. The generated MLP models provide 
highly promising results, yet with certain limitations that preclude generalization, namely 
the inability to make correct predictions for proteins outside the trained protein families. 
Conversely, the models trained using attention maps exhibited poor performance, which 
warrants further investigation. Overall, the results demonstrate the promising potential of 
using deep learning and pLMs to predict protein-membrane interactions faster and with 
similar accuracy compared to existing methods. 
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ΠΕΡΙΛΗΨΗ 
 

Οι περιφερικές μεμβρανικές πρωτεΐνες παίζουν σημαντικό ρόλο σε πολλές βιολογικές 
δραστηριότητες: διαφοροποίηση κυττάρων, πολλαπλασιασμός και επικοινωνία με άλλα 
κύτταρα, μεταξύ άλλων λειτουργιών. Οι πρωτεΐνες αυτές ρυθμίζονται με διάφορους 
τρόπους ανάλογα με τις λειτουργίες και τα κυτταρικά τους πλαίσια, 
συμπεριλαμβανομένης της δέσμευσης σε βιολογικές μεμβράνες. Η κατανόηση των 
αλληλεπιδράσεων στη διεπιφάνεια πρωτεΐνης-μεμβράνης είναι ζωτικής σημασίας, καθώς 
η μη φυσιολογική σύνδεση πρωτεΐνης-μεμβράνης εμπλέκεται στην εμφάνιση πολλών 
ασθενειών. Ωστόσο, ένας περιοριστικός παράγοντας στη μελέτη και την κατανόηση των 
αλληλεπιδράσεων πρωτεΐνης-μεμβράνης είναι ότι οι περιοχές δέσμευσης μεμβράνης των 
περιφερικών μεμβρανικών πρωτεϊνών είναι τυπικά άγνωστες. Τα εργαλεία που 
υπάρχουν αυτή τη στιγμή για τη πρόβλεψη της διεπαφής πρωτεΐνης-μεμβράνης, έχουν 
έλλειψη ακρίβειας ή/και είναι χρονοβόρα. Με την εφαρμογή τεχνικών Τεχνητής 
Νοημοσύνης (AI), και πιο συγκεκριμένα της Επεξεργασίας Φυσικής Γλώσσας, ο χρόνος 
πρόβλεψης για την ανάλυση διεπαφής πρωτεΐνης-μεμβράνης μπορεί να βελτιωθεί 
σημαντικά. Για παράδειγμα, πρωτεϊνικά γλωσσικά μοντέλα που εφαρμόζονται στην 
πρόβλεψη της πρωτεϊνικής δομής, προσφέρουν ένα σημαντικό πλεονέκτημα έναντι  
άλλων αλγορίθμων βασισμένων σε βαθιά μάθηση που χρησιμοποιούνται για τον ίδιο 
σκοπό, καθώς είναι 600 φορές ταχύτερα με συγκρίσιμη ακρίβεια. Ως εκ τούτου, τα 
πρωτεϊνικά γλωσσικά μοντέλα μπορούν να χρησιμοποιηθούν για την ταχεία και ακριβή 
πρόβλεψη των διεπαφών πρωτεΐνης-μεμβράνης.. 

Στην παρούσα εργασία, περιγράφεται μια μεθοδολογία μηχανικής μάθησης για την 
πρόβλεψη αμινοξέων που διεισδύουν στη μεμβράνη με βάση την Επεξεργασίας Φυσικής 
Γλώσσας και τα πρωτεϊνικά γλωσσικά μοντέλα. Αρχικά, συλλέξαμε διαθέσιμα δεδομένα 
από δύο πηγές που περιέχουν περιφερικές μεμβρανικές πρωτεΐνες με πειραματικά 
γνωστά αμινοξέα που διεισδύουν στη μεμβράνη και δημιουργήσαμε τα χαρακτηριστικά 
χρησιμοποιώντας πρωτεϊνικά γλωσσικά μοντέλα για την εκπαίδευση ταξινομητών 
μηχανικής μάθησης και νευρωνικών δικτύων. Στις αρχικές δοκιμές, που 
χρησιμοποιήσαμε προεπιλεγμένα μοντέλα χωρίς βελτιστοποίηση παραμέτρων, το 
νευρωνικό Multi-Layer Perceptron (MLP) έδειξε ανώτερη απόδοση σε σύγκριση με τα 
άλλα μοντέλα, επιτυγχάνοντας την υψηλότερη ακρίβεια. Η αξιολόγηση των καλύτερων 
μοντέλων MLP, μετά από βελτιστοποίηση των υπερπαραμέτρων με χρήση της τεχνικής 
βελτιστοποίηση Bayes, αποδίδει βαθμολογία F1 = 0.691 με Matthews correlation 
coefficient (MCC) = 0.652 και βαθμολογία F1 = 0.622 με MCC = 0.577 για τα διαφορετικά 
των δυο διαφορετικών πρωτεϊνικών γλωσσικών μοντέλων ενός δοκιμαστικού συνόλου. 
Μια καλύτερη  εξέταση των αποτελεσμάτων αποκάλυψε ότι πολλές από τις ψευδώς 
θετικές προβλέψεις είναι στην πραγματικότητα θετικές. Έτσι, μια νέα ακτίνα αποκοπής 
γύρω από τα πραγματικά θετικά αμινοξέα που διεισδύουν στη μεμβράνη για να 
περιλαμβάνει γειτονικά αμινοξέα αυξάνει τη βαθμολογία F1 κατά μέσο όρο 11%. 

Για περαιτέρω βελτίωση των αποτελεσμάτων, εξήχθησαν οι κεφαλές προσοχής των 
πρωτεϊνικών γλωσσικών μοντέλων και χρησιμοποιήθηκαν σε δύο βήματα: 1. Διερεύνηση 
εάν η πληροφορία σχετικά με τα αμινοξέα που διεισδύουν στη μεμβράνη υπάρχουν στα 
κρυφά επίπεδα και τις αντίστοιχες κεφαλές προσοχής αυτών των μοντέλων και 2. Χρήση 



των χαρτών προσοχής για την πρόβλεψη των διεπαφών πρωτεΐνης-μεμβράνης. Το 
πρώτο βήμα επαλήθευσε ότι οι πληροφορίες είναι πράγματι κωδικοποιημένες μέσα στα 
κρυφά επίπεδα κάθε πρωτεϊνικού γλωσσικού μοντέλου. Στο δεύτερο βήμα, Logistic 
Regression μοντέλα εκπαιδεύτηκαν στους χάρτες προσοχής κάθε πρωτεϊνικού 
γλωσσικού μοντέλου για την πρόβλεψη των αμινοξέων που αλληλοεπιδρούν με τη 
μεμβράνη. Η αξιολόγηση της ακρίβειας των ταξινομητών παρήγαγε βαθμολογία F1 = 
0,366 με MCC = 0,344 και βαθμολογία F1 = 0,35 με MCC = 0,341 για τους χάρτες 
προσοχής των δυο πρωτεϊνικών γλωσσικών μοντέλων αντίστοιχα, για την ταξινόμηση 
των αμινοξέων που διεισδύουν στη μεμβράνη.  

Τα MLP μοντέλα μας που έχουν εκπαιδευτεί σε χαρακτηριστικά πρωτεϊνικών γλωσσικών 
μοντέλων προβλέπουν τα αμινοξέα που διεισδύουν στη μεμβράνη πρωτεΐνης σε λιγότερο 
από ένα λεπτό για την πρόβλεψη των αμινοξέων πρωτεΐνης-μεμβράνης σε όλες τις 
περιπτώσεις, ενώ άλλα εργαλεία μπορεί να απαιτούν περισσότερο από μία ώρα. Τα 
παραγόμενα μοντέλα MLP παρέχουν πολλά υποσχόμενα αποτελέσματα, αλλά με 
ορισμένους περιορισμούς που αποκλείουν τη γενίκευση, δηλαδή την αδυναμία να γίνουν 
σωστές προβλέψεις για πρωτεΐνες εκτός των εκπαιδευμένων πρωτεϊνικών οικογενειών. 
Αντίθετα, τα μοντέλα που εκπαιδεύτηκαν χρησιμοποιώντας τους χάρτες προσοχής 
εμφάνισαν χαμηλότερη απόδοση, γεγονός που δικαιολογεί περαιτέρω διερεύνηση. 
Συνολικά, τα αποτελέσματα αποδεικνύουν την πολλά υποσχόμενη δυνατότητα χρήσης 
βαθιάς μάθησης και πρωτεϊνικών γλωσσικών μοντέλων για την πρόβλεψη των 
αλληλεπιδράσεων πρωτεΐνης-μεμβράνης ταχύτερα και με παρόμοια ακρίβεια σε 
σύγκριση με τις υπάρχουσες μεθόδους. 
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PREFACE 

The master thesis “Using deep learning and natural language processing to predict 
protein-membrane interactions of peripheral membrane proteins” has been conducted at 
the Biomedical Research Foundation Academy of Athens for the completion of the 
Postgraduate Program "Bioinformatics – Biomedical Data Science", Department of 
Informatics and Telecommunications, National, and Kapodistrian University of Athens, 
Greece. 

The first chapter presents the motivation of the study, the importance of peripheral 
membrane proteins, and the current tools that exist in the literature for predicting protein-
membrane interactions. Furthermore, the difficulties in studying the peripheral membrane 
proteins are listed and then the objectives of this thesis are defined. 

In the second chapter, the theoretical foundations of the present work are described. First, 
machine learning theory is discussed, explaining the basic concepts of learning 
techniques, data processing and preparation, and the class imbalance issue that datasets 
have. Then, machine learning classifiers and their algorithms are described as well as 
optimization techniques are listed for improving the performance of the models. Moreover, 
the principal evaluation metrics for monitoring and evaluating the models’ outcomes are 
defined. Next, the concept of natural language processing is explained, and language 
models are described both within and beyond the realm of biology. 

The results of the present thesis are presented in chapter three. First, the dataset 
collection is described in combination with the processing that followed concerning the 
preparation and annotation of data. In addition, the usage of language models for 
extracting the features is described and then, the outcomes of machine learning 
classifiers are listed. For the most promising classifiers, the optimization procedure 
accompanied by the predictions of the fine-tuned models is explained. Then, the usage 
of attention heads in the current task is determined, as well as the performance of models 
trained on these attention heads. 

Finally, the epilogue of this thesis constitutes the conclusions along with the possible 
future perspectives of this study in Chapters four and five.
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1. INTRODUCTION 

Proteins are important blocks of life, playing essential roles in almost every biological 
process including structural support, enzymatic activity, transport, signaling, defense, and 
movement. They have a variety of characteristics, including a unique arrangement of 
amino acids, a three-dimensional form, and the capacity to communicate with other 
molecules. Proteins are involved in a variety of biological structures, such as the 
cytoskeleton, the extracellular matrix, the bones, and many others. Several essential 
functions for sustaining life, including, but not limited to, the transportation of molecules 
across cellular membranes, regulation of signal transduction pathways, and facilitation of 
metabolic reactions, are attributed to proteins [1]. It can be argued that proteins serve as 
a protective shield for genetic information and that the existence of life as we know it 
would be impossible without their crucial involvement. 

 

1.1 Membrane Proteins 

One of the most significant protein classes is membrane proteins. It is known that a third 
of the human proteome consists of membrane proteins and more than 60% of these are 
current drug targets [2]. Membrane proteins play a crucial biological role in the function 
of the cell, as they are responsible for a range of necessary processes for cell survival. 
These processes include the transport of ions and molecules, intra- and intercellular 
signal transmission, cell adhesion, and enzymatic activity [3]. Based on their structure, 
membrane proteins can be divided into transmembrane proteins, which are permanently 
anchored to or an integral part of the membrane, peripheral membrane proteins, which 
are temporarily and non-covalently attached to the membrane’s surface or to other 
integral proteins, and lipid-anchored proteins, which bind to the membrane through a lipid 
molecule which is covalently linked to a specific amino acid residue in the protein (Figure 
1) [4]. 

 
Figure 1: Classification of membrane proteins. Integral, peripheral, and lipid-anchored proteins 

are presented in a schematic way on a model cell membrane [5]. 
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1.1.1 Peripheral Membrane Proteins 

Peripheral Membrane Proteins (PMPs) are responsible for a variety of biological 
functions, including signaling, recognition, membrane trafficking, cell division, and cell 
shape [6]. Some examples of PMPs roles are [4], [7]: 

• Enzymes: Some PMPs act as enzymes, by catalyzing specific chemical reactions 
on the membrane surface. 

• Receptors: Other PMPS are responsible for binding specific molecules and 
transmitting signals across the membrane. 

• Transporters: Many PMPs act as transporters, helping to move molecules across 
the membrane. 

• Signal transduction: Some PMPS are involved in signaling pathways that regulate 
cell growth, differentiation, and death. 

• Drug target: A percentage of PMPs are potential targets for drug development, so 
studying their structure and function can have important implications for the 
treatment of diseases [8]. 

 

PMPs have the ability to alter membrane dynamics by binding to specific regions of the 
membrane and inducing local changes in its curvature, fluidity, or mechanical properties, 
and protein-protein interactions at the molecular level. These interactions are in reality 
very complicated, dominated by a variety of interactions, and have an interdependent 
impact on both the protein and membrane[9]. 

 

1.2 The protein-membrane interface 
The abnormal attachment of proteins to the membrane is involved in overactivation or 
underactivation of peripheral membrane proteins and can result in the development of 
human disease (cancer, diabetes, etc.) [6]. Biological membranes are composed of 
various components that vary based on the type of cell or cellular compartment. The main 
components of biological membranes include proteins, lipids, and carbohydrates. These 
components are arranged in a double layer known as the phospholipid bilayer. The 
phospholipid bilayer is a typical structural component of cellular membranes, 
notwithstanding the variances. The hydrophobic (water-repelling) tails of the two layers 
of phospholipid molecules facing each other and the hydrophilic (water-attracting) heads 
facing outward make up the bilayer. This configuration aids in protecting the membrane's 
integrity and controlling how things enter and leave the cell.[10]. 
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Figure 2: The phospholipid bilayer with its compounds 

 

Through a series of distinct mechanisms, peripheral membrane proteins are drawn to and 
interact with cellular membranes. There are two primary categories of protein-membrane 
interactions, namely electrostatic and hydrophobic interactions. These interactions are 
governed by a complex energy landscape, which controls the specific and sometimes 
transitory interactions between a polypeptide and a bilayer. These principal interactions 
are described below: 

• Hydrophobic interactions: The hydrophobic domains of peripheral membrane 
proteins can form hydrophobic interactions. A hydrophobic or amphipathic α-helix 
can be inserted into the membrane and form hydrophobic interactions with the 
phospholipid tails. In the same way, hydrophobic or amphipathic protein helices 
can interact with the lipid bilayer (Figure 3B & 3C)  [11], [12].  

• Electrostatic interactions: At the membrane surface, ion concentration gradients 
are caused by charged phospholipid head groups. Long-range electrostatic 
interactions between peripheral proteins and lipid headgroups result from charged 
membrane surfaces. Non-specific electrostatic interactions will cause even a 
partially positively charged protein to be drawn to a negatively charged membrane. 
The primary forces behind these interactions are the cationic amino acid residues 
of the protein (Figure 3A) [9]. 

 

 
Figure 3: The two main types of protein-membrane interactions. Binding sites A) through direct 

electrostatic interactions, B) by inserting a hydrophobic loop in the hydrophobic core of the 
membrane, and C) by inserting a hydrophobic helix in the hydrophobic core of the membrane. 

Image adapted from [13]. 
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Peripheral membrane proteins are also known to be multidomain proteins, with one or 
more domains to drive the protein-membrane binding [13]. As an example, Osh4 has 
been shown to have six membrane-binding domains (Figure 4), and it has been 
determined that protein binding happens because of random interactions with anionic 
lipids [14]. 

 
 Figure 4: Binding sites of Osh4 [14]  

1.3 Drugging the Protein-Membrane Interface 

The transport of materials across the cell membrane, the activation of proteins and 
enzymes, and other cellular processes can all be influenced by peripheral membrane 
proteins. Disrupted cellular pathways and pathological conditions can arise from the 
overactivation or underactivation of peripheral membrane proteins, as well as abnormal 
binding of proteins to the membrane due to mutations in the membrane-binding domain. 
Consequently, modifying protein-membrane interactions presents a novel therapeutic 
strategy for several disease indications, particularly in the context of targeting membrane 
proteins that were previously considered undruggable [4]. Some of the most well-known 
pharmaceutical research targets are: the KRAS protein, which is said to be one of the 
most common oncogenic gene drivers in specific human cancers [15], [16], such as 
pancreatic cancer and for which a drug was recently developed [17], PI3Kα, which is one 
of the most frequently over-activated kinases in solid tumors [18], the CD73 enzyme that 
is implicated in Systemic lupus erythematosus [19] and tumors [20], and many more 
proteins [21], [22].  

The presence of cavities within the membrane-binding domain of peripheral membrane 
proteins that can be targeted by drugs underscores the potential of targeting the protein-
membrane interface [23]. Apomyoglobin was employed in the initial research 
investigating the mechanism by which a cytosolic protein interacts with membranes.[24]. 
These studies established that apomyoglobin interacts with membranes in a pH-
dependent manner, with pH-dependent unfolding exposing areas of the protein that can 
bind to and interact with lipid membranes. In general, it is known that seven are the major 
classes of membrane binding domains, C1, C2, PH, FYVE, PX, ENTH, and BAR [25].  

In addition, there are examples in the literature that report the ability to drug the protein-
membrane interface, by verifying the binding of small molecules to membrane-binding 
domains and inhibition of protein-membrane interactions [26]. A notable inhibitor that was 
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designed for BRAG2 protein, managed to bind in the PH domain and inhibit allosterically 
the protein, without disrupting the protein-membrane interactions [27]. 

 
Figure 5: The BRAG2 protein (cyan) with the Bragsin inhibitor (purple) and the lipid PIP2 (orange). 

The inhibitor binds to the PH domain of BRAG2 and does not disrupt the protein-membrane 
interaction [27]. 

 

Regarding the physicochemical characteristics of the interface between proteins and 
membranes, it is worth noting certain properties that stimulate the interaction of peripheral 
membrane proteins with the membrane. These properties are crucial for investigating 
these proteins as potential targets for drug development. 

Protein-lipid interfaces exhibit specific chemical and topological features that are distinct 
in nature, such as amphipathic alpha-helices flanked by flexible hinge or loop sections, 
solvent exposure areas, or the presence of cationic patches surrounding aromatic and 
aliphatic areas that bind to the negatively charged bilayers [9], [28] that are frequently 
found in the inner leaflet of the plasma membrane [29]. Consequently, two factors that 
influence protein-membrane closeness and protein anchoring to the hydrophobic fatty 
acid tails of the lipid bilayer must be taken into account: a) long-range electrostatic 
interactions that promote protein-membrane proximity; and b) hydrophobic interactions 
(Figure 6) [29]. 
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Figure 6: Representation of the protein-membrane anchoring. Hydrophobic interactions 

subsequently secure the protein to the hydrophobic fatty acid tails of the lipid bilayer after 
electrostatic interactions propel the protein into the membrane. 

Proteins belonging to the peripheral membrane category, temporarily and partially bind 
to the membrane and as a result, only a tiny piece of the protein interface at the 
membrane-interface is fully inserted into the membrane. The fact that the protein interface 
that interacts with the membrane is solvent-exposed is thus an essential physicochemical 
property of the protein-membrane interface [30]. Additionally, the charge is a crucial 
physicochemical aspect of the protein-membrane interface since the two outer membrane 
layers are typically negatively charged. Lysine, arginine, and histidine amino acids are 
typically found in large groups on the protein surface of peripheral membrane proteins, 
where they interact with the membrane through long-range electrostatic interactions [9]. 
Protein-membrane sensors are driven by long-range electrostatic interactions, but these 
interactions are weak and insufficient to bind the protein to the membrane. 

The biological membrane is amphiphilic, which means that its two leaflets that come into 
contact with water-based environments are hydrophilic, and its core is hydrophobic. 
Through hydrophobic interactions and owing to the amphiphilic character of the 
membrane, peripheral membrane proteins attach to the membrane, by introducing 
hydrophobic amino acids into the membrane's hydrophobic core. Hydrophobic amino 
acids typically end up buried deep inside the proteins due to the favorable nature of 
hydrophobic-hydrophobic interactions [31], [32]. The hydrophobic amino acids of 
peripheral membrane proteins that are exposed to the solvent can frequently interact with 
the hydrophobic core of the membrane, leading to the formation of protein-membrane 
associations. Alternatively, they can also interact with hydrophobic amino acids that are 
exposed to the solvent of other proteins, resulting in the formation of protein-protein 
interactions that minimize energy expenditure [33]. Some amino acids prefer to locate in 
the hydrophobic core of the membrane instead of the water-based environment. The 
amino acids that localize on the water-membrane interface are alanine, arginine, 
asparagine, aspartic acid, glutamic acid, glycine, charged histidine, lysine, and serine, 
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while those that prefer the hydrophobic core are isoleucine, leucine, methionine, 
phenylalanine, proline, and valine. The amino acids that prefer a border region between 
the water-membrane interface and the hydrophobic core are cysteine, glutamine, 
threonine, tryptophan, and tyrosine [34]. All the above were calculated by the free 
energies ΔG (kcal/mol) of transfer for each amino acid from water to phosphatidylcholine 
interface and n-octanol for each amino acid, resulting in the residue interface and octanol 
hydrophobicity scales (Figure 7). 

 
Figure 7: A) Wimley-White interfacial hydrophobicity scale. B) Wimley-White octanol 

hydrophobicity scale. C) The basis for deriving the octanol-interface scale. D) The relative amino 
acid positions in the membrane are based on the octanol-interface scale [34]. 

 

Furthermore, aromatic amino acids like phenylalanine, tryptophan, and tyrosine are 
crucial for creating cation-π interactions with the positively charged head groups of 
choline lipids [13]. Lastly, peripheral membrane proteins attach hydrophobic loops or 
helices to the membrane in order to interact with it. To prevent particularly deep 
membrane insertion that may permanently bind the protein to the membrane, these 
helices are often amphipathic, which means they are hydrophobic on one side and 
hydrophilic on the other. As a result, the protein-membrane interface's secondary 
structural components are also significant physicochemical descriptors [35]. 
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1.4 State-of-the-art Tools for predicting protein-membrane interactions 

Several efforts towards the design of tools that detect protein-membrane regions and 
lipid-binding sites have appeared in the literature [36]–[39]; however, they frequently use 
obsolete web connections and are mainly applied to 1D protein sequences without taking 
protein structural information into account [36]–[38]. To our knowledge, there are three 
publicly accessible methodologies for predicting protein-membrane interactions from the 
3D protein structure: the Positioning of Proteins in Membrane (PPM) [40], [41], the 
Membrane Optimal Docking Area (MODA) [42] and the Drugging pRotein mEmbrAne 
Machine learning Method (DREAMM) [43], [44]. By combining an all-atom representation 
of a solute, an anisotropic solvent representation of the lipid bilayer, and a universal 
solvation model, PPM can calculate the rotational and translational positions of peripheral 
and transmembrane proteins within membranes [40], [41]. MODA is based on the protein-
protein interface predictor PIER [42] that constructs a set of uniformly spaced spots at a 
distance of 5 Å from one another and from the protein surface, defining each patch as the 
collection of all protein surface atoms. Using atom solvent-accessible surface area 
(SASA) and atom type-specific weights, a score is calculated by MODA. The scores are 
then transferred to the surface amino acids to predict which amino acids will contact the 
cell membranes. DREAMM is an ensemble classifier and more specifically a voting 
classifier with a combination consisting of five classifiers: a linear discriminant analysis, a 
logistic regression, a linear support vector classifier, a decision tree classifier, and a light 
gradient boosting machine that was trained using experimental data and achieved an F1 
score = 0.92 and an MCC = 0.84 [43], [44]. 

While these tools are often successful in accurately predicting which amino acids interact 
with the membrane, they can be time-consuming, taking several minutes to hours to 
predict binding sites in certain proteins. As an example, the DREAMM tool needs more 
than an hour to predict the membrane-penetrating amino acids of the catalytic domain of 
PI3Kα (p110α). 

 

1.5 Aim of Thesis 

Recent years have seen a rise in interest in the study of peripheral membrane proteins 
due to their significance in numerous physiological functions. In a variety of disease 
states, including cancer, neurological disorders, cardiovascular diseases, and infectious 
diseases, peripheral membrane proteins have been suggested as potential therapeutic 
targets[16], [18]–[24], [26]. However, the difficulty in the research of peripheral membrane 
proteins has hindered the discovery of new drug targets and the development of 
medications that target them. 

Peripheral membrane proteins present several challenges for researchers, including 
issues related to stability, as they are not embedded in the membrane and are more prone 
to denaturation; complexity, as the frequent presence of numerous domains makes it 
difficult to define their overall structure and function; and membrane contacts, as they 
attach temporarily and partially [25]. 
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Consequently, the primary goal of this thesis is to develop a reliable classifier that can 
predict protein-membrane interactions. As a result, the following query is answered: Can 
we create a model that predicts rapidly and accurately protein-membrane interfaces? 

The workflow to achieve these goal includes four major milestones: 

• Collect and prepare a dataset of peripheral membrane proteins with experimentally 
known membrane penetrating amino acids, which contain an adequate number of 
proteins belonging to a variety of protein families. 

• Utilize pLM embeddings to train machine learning classifiers to create a less time-
consuming and accurate model that predicts protein-membrane interfaces of 
peripheral membrane proteins. 

• Utilize pLM attention maps to investigate if the information of membrane-
penetrating amino acids is encoded in the pLM hidden layers. 

• Train logistic regression models on the pLM attention maps to predict the protein-
membrane interfaces of peripheral membrane proteins. 

The overall objective of this thesis is to develop a classifier that is trained on pLM 
outcomes and capable of precisely predicting amino acids that penetrate the membrane 
while reducing the time required for the analysis.  
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2. METHODS 

2.1 Artificial Intelligence 

The term "artificial intelligence" (AI) was first coined by John McCarthy, Marvin Minsky, 
Nathaniel Rochester, and Claude Shannon during the Dartmouth Conference in 1956. 
Since then, AI has garnered significant interest and has advanced both in theory and 
application. Theoretical groundwork for computer science and AI was built by Turing, who 
created the well-known "Turing Test" to define "Machine Intelligence" and developed a 
number of approaches and concepts to broaden the concept of AI [45]. With the help of 
computers, AI has a promising future for growth, despite its modest initial development. 
In addition, the 21st century has seen a drastically higher trend in the expansion of the AI 
field, and these days, the increasing prevalence of AI is transforming our daily lives subtly 
and is on the verge of reshaping the globe [46], [47]. For example, some intelligent 
devices such as Siri or Alexa are regarded as intelligent machines with voice and thought 
recognition capabilities by their users [48]. 

AI's goal is to provide machine intelligence similar to that of humans. Achieving such a 
goal is thought possible because of learning algorithms that imitate how the human brain 
is believed to learn [49]. Machine Learning (ML) has emerged as the preferred approach 
in AI for developing practical software for various applications, such as robot control, 
speech recognition, and computer vision. Some of the primary ways that AI systems learn 
are through supervised, semi-supervised, and unsupervised learning techniques [49], 
[50]. More specifically, the most popular methods are described below, and a visual 
representation of the architecture is shown in Figure 8 and an example in Figure 9: 

1. Supervised Learning: The AI system is trained on a labeled dataset where the 
desired output is predetermined for each input. The objective of the AI system is 
to understand the connection between the inputs and outputs and then apply that 
understanding to forecast the behavior of new, unforeseen data. In general, 
supervised learning can be used for classification and regression tasks. For 
instance, to identify the species of animal in each image, a supervised learning 
algorithm might be trained on a collection of tagged animal photographs.  

2. Semi-supervised: In this case, the AI system is taught using both labeled and 
unlabeled data. The objective of the AI system is to infer the outputs for the 
unlabeled data using the labeled data to learn the relationship between inputs and 
outputs. When there is a dearth of labeled data, and abundance of unlabeled data, 
this form of learning can be helpful. This learning method aims to combine the 
other 2 common methods (supervised & unsupervised) where there is a lack of 
labeled dataset and a large amount of unknown data [51]. 

3. Unsupervised Learning: It is a training method in which an AI system is trained on 
a dataset without labels, with the objective of finding patterns and structures in the 
data without any prior knowledge of the desired output. For instance, an 
unsupervised learning system could be trained on a dataset of photographs and 
asked to find groups of related photos. Unsupervised learning can be used for 
clustering tasks, in which data with divergent patterns are divided into various 
clusters, and data with similar patterns are combined into one cluster. Additionally, 
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it can be used for dimensionality reduction tasks, in which data is moved from a 
high-dimensional space to a lower-dimensional space without sacrificing any 
information. 

 
Figure 8: The 3 learning methods of Artificial Intelligence [52]. 

 

 
Figure 9: Machine learning methods. In supervised learning, there are labels for each sample and 
the model can learn to distinguish the classes – classification tasks, in semi-supervised there are 

few labeled samples where the model learns based on that and many unlabeled data (purple 
rhombus), while in unsupervised there are only samples with features that the model try to cluster 

them based on the characteristics – clustering task. 

 

The optimal learning paradigm to use depends on the specific task and data available. 
Each of these learning paradigms has its own advantages and disadvantages. Combining 
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different learning paradigms and using different algorithms at different phases of the 
process can be applied in many real-world AI applications. Ultimately, a critical aspect of 
an AI system's ability to perform complex tasks and make predictions is its capability to 
learn from data. The objective is to endow the AI system with the ability to adapt to new, 
unexplored data and enhance its performance over time, whether through supervised, 
semi-supervised, or unsupervised learning [53]. 

 

2.2 Supervised Learning 

The most widely used machine-learning methods are supervised learning methods. A 
function that maps an input to an output is learned through supervised learning using 
sample input-output pairs [53]. The objective is to generate a prediction y* in response to 
a query x* using a set of (x, y) pairings as the training data. The inputs x could be 
conventional vectors or more sophisticated data like paperwork, pictures, genetic 
sequences, or graphs [50]. 

Imagine a scenario where a model has to be developed with the eventual aim of predicting 
whether an individual is a patient (schizophrenia) or healthy depending on their 
characteristics, such as its cortical and subcortical volumes, cortical areas, thickness, etc. 
This can be thought of as a supervised learning problem, where the input data are the 
characteristics of people, and the output data are the class associated with those 
characteristics. The initial stage would be to compile a labeled dataset of individuals, each 
with a given class (healthy – not healthy). Following that, an appropriate algorithm, such 
as linear regression or decision trees, would be used to train the AI system on this dataset. 
To enable the AI system to generate precise predictions about unseen patients, the 
training method aims to understand the relationship between the input variables and the 
person’s class. Once the AI system has been taught, it may be used to forecast the class 
of new people [54]. The AI system would produce a prediction of the category of that 
individual (Figure 10).  

 
Figure 10: Machine Learning flow chart example of  a model trained with people data and try to 

predict if a control cohort is patient or healthy based on some characteristics. 
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2.2.1 Dataset Generation 

In machine learning, datasets play an important role as they provide the data that the AI 
system utilizes to learn and make predictions. Issues related to dataset creation, curation, 
and annotation are considered a barrier to algorithmic and scientific advancement [55]. 
Potential dataset issues often encountered are related to dataset quality (data obtained 
using different experimental methodologies, inconsistent data), quantity (not enough 
data), privacy and ethical considerations (medical/sensitive data), annotation (unlabeled 
data), and diversity. Generation and curation of high-quality datasets, suitable for use as 
the foundation for the training of an AI algorithm, require significant investment in time 
and resources [56]. 

The dataset is often represented in a tabular fashion. In supervised learning, a dataset 
usually takes the shape of a collection of labeled instances. The input data, also known 
as the features, and the output data, often known as the target, are both components of 
each example (Figure 11). Before continuing with machine learning algorithms, the data 
must be prepared, cleaned, and split into appropriate parts. A popular and vital machine 
learning technique is the division of a dataset into training, testing, and validation sets. 
The testing set is used to assess the AI system's performance, the training set is used to 
train the AI system, and the validation set is used to fine-tune the AI system's 
hyperparameters [57]. 

 
Figure 11: A table-based representation of a dataset. The dataset must be divided into training, 
validation, and test sets, with the former being used to train the machine learning algorithm and 

the latter to assess it. 

 

The training set, which is the largest of the three sets, is used to match the AI model to 
the data. The AI system uses the training set to understand how inputs and outputs are 
related. The validation set is used to assess the system's performance to prevent 
overfitting. An example of overfitting is when an AI system memorizes the training set 
rather than understanding the fundamental connection between the inputs and outputs. 

The testing set is intended to assess how well the AI system performs on fresh, 
unexplored data. Because it offers an unbiased assessment of the AI system's 
performance and helps prevent overly optimistic outcomes, using a distinct testing set is 
crucial. 

The AI system's configuration settings, also known as hyperparameters, are tuned using 
the validation set. To evaluate the AI system on the testing set, the optimum 
hyperparameters must be identified on the validation set. 
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2.2.2 Feature Selection 

The process of choosing the most pertinent and instructive characteristics from a dataset 
to utilize as inputs in a machine learning model is known as feature selection. It is a crucial 
stage in the preprocessing of the data and can have a big effect on how well the AI system 
works and how accurate it is [58]. To reduce the dimensionality of the data and remove 
redundant or irrelevant characteristics, feature selection aims to pick the features that are 
most predictive of the outcome. This can lower the computing cost, prevent overfitting, 
and increase the accuracy of the AI system [57]. 

There are several methods for feature selection, including filter methods, which rate each 
feature using statistical techniques like correlation or mutual information and then select 
the features with the highest scores, wrapper methods, that assess the significance of 
each feature using the AI system itself by removing characteristics from the dataset and 
selecting the best subset of features by an iterative procedure, and embedded methods, 
which combine feature selection into the AI system's training procedure by using, for 
example, regularization methods (Lasso, Ridge regression) to reduce irrelevant feature 
coefficients to zero [59]. 

 

2.2.3 Class imbalance problem 

In some problems, there is a possibility of not having enough observations for a specific 
class  (when compared to other class instances) or that a given class may not exist at all 
in the available data [60]. For example, a medical dataset of 1000 patients might include 
only 10 incidents of people that have a disease while the remaining 990 are healthy. This 
is known as a class imbalance issue and is found in supervised learning, where the 
distribution of classes in the target variable is abnormal and can happen when one class 
has significantly more samples than the other. 

Class imbalance can pose a challenge for machine learning, as traditional techniques aim 
to minimize classification errors, which can be misleading when one class is 
underrepresented. This can result in various unfavorable effects, such as overfitting, 
where the model is likely to predict only the majority class, overlooking the minority class, 
and making incorrect classifications for new observations that belong to the minority 
class. Additionally, there may be algorithm bias, and inadequate evaluation of model 
performance, since some metrics such as accuracy, do not effectively assess the 
classifier's ability [60]. 

To handle this problem, there are several approaches [60]: 

• Oversampling the minority class which is the practice of duplicating samples from 
the minority class to improve the balance of the class distribution. 

• Taking fewer samples from the majority class in order to balance the class 
distribution is known as undersampling the majority class. 

• Creating new synthetic samples from the minority class using methods like the 
Synthetic Minority Over-sampling Technique (SMOTE) [61] or Adaptive Synthetic 
(ADASYN) [62] sampling is known as synthetic data generation. 
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• Penalization of models with class weights. This method biases the model to 
emphasize the minority class by imposing a weighted cost when a sample is 
incorrectly identified. In the scikit-learn Python package [63]  the weights can be 
automatically assigned according to Eq. 1: 

𝒘𝒋 =	
𝒏_𝒔𝒂𝒎𝒑𝒍𝒆𝒔

𝒏_𝒄𝒍𝒂𝒔𝒔𝒆𝒔		∗		𝒏_𝒔𝒂𝒎𝒑𝒍𝒆𝒔𝒋
	       ( 1 ) 

where 𝑤 is the weight of class 𝑗, 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is the total number of samples of the 
𝑗	training set, 𝑛_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 is the total number of classes, and 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠! is the total 
number of samples in class 𝑗 in the training set. 

 

2.2.4 Machine learning classifiers 

A machine learning classifier is used to predict the class or category of a given input 
sample. In other words, it assigns an input sample to one of a number of already 
established groupings or categories. Numerous applications, including image 
classification, speech recognition, natural language processing, and bioinformatics, use 
classifiers [64]–[66]. There are several types of machine learning classifiers, such as 
neural networks, support vector machines (SVMs), decision trees, random forests, linear 
classifiers, and k-nearest neighbors (k-NN). The specific problem and dataset, as well as 
the desired trade-off between accuracy, processing complexity, and other considerations, 
influence the classifier selection. In this work, only decision trees and neural networks 
were selected and analyzed. 

A decision tree classifier is based on a tree-like model using a series of if/else decision 
rules and constantly divides the training set into subsets that maximize the separation of 
the data [67]. The training procedure's objective is to develop a tree structure that can 
correctly predict a new sample's class based on its input data. Decision tree classifiers 
can handle both continuous and categorical input characteristics and are easy to 
comprehend and interpret. However, they can be susceptible to overfitting, especially 
when the trees become overly complex and deep. To prevent overfitting and improve the 
classifier's ability to generalize, various techniques can be used, such as pruning the tree 
or setting a maximum depth for the tree. 

As an example, we can presume that we have a dataset with fruits and each fruit has 
distinct color, shape, and price – features. The objective is to identify the fruit's type based 
on its color and shape. Starting at the root of the tree, which represents the complete 
dataset, we can train a decision tree classifier. The classifier checks one of the input 
features (such as color or price) at each internal node to divide the samples into smaller 
subgroups depending on the feature values. When all the samples in a subgroup belong 
to the same class, the process is repeated recursively for each subgroup, at which time 
the subgroup is represented as a leaf node (Figure 12). 
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Figure 12: An example of a decision tree with three features in a binary classification task 

 

Neural networks are also a type of machine learning classifier that go beyond traditional 
methods and are inspired by the structure and function of the human brain. They are 
made up of several interconnected processing neurons, arranged in layers (Figure 13). 
The input data is processed through each succeeding layer until it reaches the output 
layer. Each neuron in a layer takes information from the neurons in the layer below, 
computes it, and then sends the answer to the neurons in the layer above. The 
computations performed by the neurons are controlled by the weights and biases 
associated with each connection between them. In order for the neural network to develop 
the ability to generate precise predictions, these weights and biases are modified during 
the training phase. 

 
Figure 13: An example of a fully connected neural network for binary classification with one input 

layer, two hidden layers, and one output layer. 
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In particular, neural networks are effective at solving issues involving complicated, non-
linear interactions between inputs and outputs. Additionally, they have the ability to 
recognize patterns and features in the data that may be challenging to spot using 
conventional techniques. Feedforward neural networks, recurrent neural networks, and 
convolutional neural networks are a few of the several kinds of neural network classifiers. 
Each kind of neural network has its own pros and cons and is created for a certain kind 
of challenge [68]. 

 

2.2.5 Hyper-Parameter Optimization 

Each machine learning classifier has variables that affect the performance and regulate 
how the training algorithm behaves. These parameters, or hyperparameters, have an 
impact on how well the classifier can recognize patterns and correlations. 
Hyperparameters are variables that are predetermined rather than learned from the data 
during training. The performance of a machine learning model can be quite sensitive to 
the selected hyperparameters, making hyperparameter tuning critical. In some 
circumstances, a small change in the value of a hyperparameter can result in a significant 
change in the model's performance [69]. 

The most common techniques that can be used for hyperparameter optimization are: 

1. Grid search involves a systematic search across a predetermined list of 
hyperparameter values arranged in a grid-like manner. All feasible combinations 
of hyperparameter values are tested and the combination that performs the best 
is chosen. It is an easy-to-implement, clear-cut method, but it can be 
computationally expensive and time-consuming if there are many 
hyperparameters and their potential values. 

2. Random search involves searching through random combinations of 
hyperparameter values and is used to train instances of the model. Unlike grid 
search, which exhaustively tries all the given ranges, random search creates 
random subsets of combinations. The primary benefit of random search is that it 
has the potential to be more effective than grid search, particularly for big, complex 
models with several hyperparameters. This is because random search can focus 
on a smaller, randomly chosen subset rather than having to try out all possible 
combinations of hyperparameters [70].  

3. Bayesian optimization is a technique that seeks to find an optimal set of 
hyperparameters by balancing exploration and exploitation using a probabilistic 
model based on Bayesian statistics (Eq. 2). It aims to identify the global minimum 
of an objective function, which represents the performance of the model on a 
specific task, by developing a probabilistic model of the objective function based 
on the observed values of the hyperparameters. Compared to grid search or 
random search, Bayesian optimization can be more effective, especially for 
complex models with multiple hyperparameters. This is because it efficiently 
prioritizes the search for hyperparameters likely to improve performance while also 
exploring other hyperparameters. By striking a balance between exploration and 
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exploitation, Bayesian optimization helps identify the global minimum of the 
objective function [71].  

𝑷(𝑨|𝑩) = 𝑷(𝑩|𝑨)	∗	𝑷(𝑨)
𝑷(𝑩)

      ( 2 ) 

 

The following figure illustrate an example of the search procedure for the 3 methods, 
where the bullets represent the set of parameters that are tested in each case and the 
color indicates the number of trial (1st trial is the black bullet – 16th trial is the orange 
bullet). 

 
Figure 14: Hyper-parameter optimization of two parameters with sixteen search trials in the three 

different search methods [72]. 

 

2.2.6 Performance metrics for evaluating machine learning models 

To choose the most appropriate model for each problem, evaluation metrics must be used 
to assess the performance of different models. Depending on the task and the kind of 
data being examined, machine learning can employ a wide range of different assessment 
criteria. For example, in regression tasks, the root mean square error (RMSE) is used to 
evaluate the model's effectiveness. In our case, we are dealing with a binary classification 
problem where we need to determine whether an amino acid can penetrate the 
membrane or not. However, the dataset we have is imbalanced since a protein sequence 
contains numerous amino acids, but only a small fraction of them can interact with the 
membrane. Consequently, to evaluate the performance of such problems, specialized 
and advanced metrics are commonly used. [73], [74].  

To summarize the predictions with count values for each class, the confusion matrix can 
be used to assess where errors in the model were made. The rows correspond to the 
actual classes for which the results were intended. The predictions they've made are 
represented by the columns. 
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Figure 15: Confusion matrix. 

 

Having constructed the Confusion matrix, several metrics can be calculated to quantify 
the performance of the model. The most common are the precision (Eq. 3) and the recall 
(Eq. 4) which compute what percentage of the predicted positive samples is truly positive 
and how good the model is at predicting the positive class, respectively.  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 34
34564

      ( 3 )   

𝑟𝑒𝑐𝑎𝑙𝑙 = 	 34
34567

      ( 4 ) 

   

The "harmonic mean" of sensitivity and precision is called the F-score and is commonly 
used in tasks with imbalanced data. 𝐹" is a general score (Eq. 5) that uses a positive real 
factor 𝛽, where 𝛽 is chosen such that recall is considered 𝛽 times as important as 
precision. When recall and precision are given equal weight, the resulting score is equal 
to the 𝐹# score (Eq. 6). Values range from 0 to 1. 

𝐹8 = (1 + 𝛽9) :;<=>?>@A∗;<=BCC
(8"∗:;<=>?>@A)5;<=BCC

    ( 5 )  

𝐹D = 2 ∗	 :;<=>?>@A∗;<=BCC
:;<=>?>@A5;<=BCC

     ( 6 ) 

 

Another metric is the Matthews correlation coefficient (MCC) (Eq. 7). The MCC metric 
ranges between -1 and 1 and is formulated as: 

𝑀𝐶𝐶 = 	 34∗37E64∗67
F(34564)(34567)(37564)(37567)

   ( 7 ) 

  
2.3 Natural Language Processing 

The goal of the field of study known as "Natural Language Processing" (NLP) in computer 
science and artificial intelligence is to make it possible for computers to comprehend, 
analyze, and produce human language. Creating algorithms and models that can 
automatically process, analyze, and understand significant volumes of natural language 
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data, such as text and speech, is the aim of NLP. Natural language is complicated, 
confusing, and context-dependent, making NLP a difficult area to study. Several broad 
categories can be used to classify NLP tasks, including text classification, where the goal 
is to identify a text document's category or mood using techniques like spam detection or 
sentiment analysis, speech recognition, translation, question answering, and others [75]–
[77]. Simple rule-based systems and deep neural networks are two examples of complex 
machine learning models that can be used in NLP approaches and algorithms. These 
models can be used to make predictions by applying them to fresh, unforeseen data after 
being trained on big datasets of annotated speech and text. 

NLP is playing an increasingly important role in the field of biology. The focus of this field 
is on processing, analyzing, and comprehending biological and medical data, including 
scholarly literature, electronic medical records, and clinical notes [78], [79]. In order to 
create structured data that can be used for a variety of applications, including drug 
discovery, disease diagnosis, and clinical decision support, biomedical NLP aims to 
automatically extract knowledge and information from massive amounts of unstructured 
text data, such as scientific papers and electronic medical records. The field of biomedical 
NLP is expanding quickly, and new innovations and uses are being created. The 
advancement of new medications, the comprehension of disease causes, and the 
enhancement of patient care are all anticipated to be significantly impacted by the usage 
of NLP in biology and medicine. The complexity and technicality of biological and medical 
data, as well as the demand for extremely high standards of correctness and 
dependability, are only a few of the difficulties that biomedical NLP must overcome [80]. 
However, the advantages of biomedical NLP make it an essential and fascinating field for 
study and advancement. 

 

2.3.1 Language models 

In the last years, many models have been developed to solve a variety of NLP tasks, 
called Language Models (LM). Most of the popular LM is based on transformer 
architecture. The discipline of NLP has undergone a revolution since the transformer was 
launched in 2017, in part because of its capacity to manage long-range relationships and 
parallel processing [81]. 

A Transformer is a type of neural network architecture that typically includes an encoder 
and a decoder (as shown in Figure 16). The encoder and decoder each consist of several 
layers of self-attention and feedforward neural networks. Self-attention is a mechanism 
that allows the model to selectively attend to different parts of the input sequence, 
generating a context-aware representation of each token. The feedforward neural 
networks then process these representations to derive higher-level features. Specifically, 
the encoder is responsible for calculating the relationship between different words of the 
input sequence, by attending to each token and capturing its interactions with other 
tokens. The last hidden layer of the encoder is commonly referred to as the “output 
embeddings” -or features as shown in Figure 16- which is a continuous vector 
representation that captures the contextual information of the input sequence. The 
decoder is architecturally similar to the encoder, but it adds an extra layer of masked self-
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attention that only pays attention to encoded input tokens and tries to decode the output 
sequence of tokens. Normalization layers and residual connections are used by the 
encoder and decoder to stabilize training. The multi-head attention technique is similar to 
self-attention, but it enables the model to concentrate on many elements of the input 
sequence at once. This is a crucial component that gives the model state-of-the-art 
performance on many NLP tasks and allows it to capture long-range dependencies.  

 
Figure 16: Transformer architecture with Encoder and Decoder part. 

 

One of the most popular LM is BERT (Bidirectional Encoder Representations from 
Transformers), which was developed by Google in 2018 and is considered a state-of-the-
art language representation model [82]. BERT is a transformer-based architecture model 
that has been trained on a large corpus of text data and can be fine-tuned for a variety of 
NLP tasks, such as named entity recognition, text classification, and question answering. 
BERT is unique and powerful because it considers both left and right contexts 
(bidirectional), which allows it to capture the context of words within a phrase. In contrast, 
conventional language models only consider either the left or right context. This feature 
of BERT enables it to better understand the relationships between words and ultimately 
improve its accuracy in NLP tasks. BERT model is consisted only of the encoder part, 
with 12 or 24 transformer layers, depending on the model’s size (Figure 17). The input to 
BERT consists of a sequence of tokens that are first converted into vectors using an 
Embedding Layer and then passed through a series of encoder layers. During pre-
training, BERT employs a masked language modeling (MLM) objective in which a 
predetermined proportion of the input tokens are randomly masked, and the model is 
taught to anticipate the original token based on the context provided by the other non-
masked tokens. BERT is frequently used as a feature extractor for fine-tuning on 
downstream tasks, where input text is tokenized first and then run through the pre-trained 
BERT model to create a fixed-size vector representation for each token, that are called 
Embeddings. 
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Figure 17: BERT model architecture with 12 hidden layers. 

 

Another popular LM is T5 (Text-to-Text Transfer Transformer) which was also introduced 
by Google in 2019 and is transformer-based [83]. In contrast to BERT, T5 consists of both 
the Encoder and the Decoder part which makes it unique among transformer-based 
language models in that it is trained to perform a wide range of NLP tasks by treating all 
tasks as text-to-text problems. This means that the input and output of the model are both 
text strings and the model is trained to translate one string to another. T5 is extremely 
adaptable and, in addition to being effective on a variety of tasks, is quickly adapted to 
new tasks or domains by fine-tuning on a minimal quantity of task-specific data. Because 
of this, T5 is a preferred option for many NLP applications. 

 

2.3.2 Attention heads 

As previously explained, transformers consist of self-attention layers, which are a 
fundamental part of their architecture. These layers include attention heads, which allow 
the model to simultaneously focus on multiple positions and features of the input 
sequence, thereby learning diverse aspects of relationships in the data. After processing 
the input through all the heads, their outputs are concatenated and combined to create 
the final representation. Each head computes a separate attention weight distribution and 
is in charge of paying attention to a separate component of the input, such as the syntax 
of a sentence or the meaning of a certain word (Figure 18). The model's capacity to 
capture fine-grained dependencies and manage complex input sequences is enhanced 
by attention heads. The attention scores are computed independently for each attention 
head in a transformer model with multiple attention heads. This can increase the model's 
accuracy and effectiveness, especially for tasks that call for complicated or subtle 
interactions between various elements of the input sequence. 
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Figure 18: Example of heads paying attention to different parts. The darker lines indicate the 

strength of the attention weight. The darker the line, the higher the weight [99]. 

 

The Attention layer takes its input in the form of three parameters - Query, Key, and Value 
(Figure 19A). The Transformer repeatedly and simultaneously refers to each Attention 
processor as an Attention Head. Multi-head attention is the term used for this (Figure 
19B). By integrating numerous similar Attention calculations, it offers its Attention a 
stronger capacity for discriminating [81]. 

 
Figure 19: Input of attention layer in the form of Query, Key & Value (A). Multi-head attention (B) 

[100] 

 

The following function is used to calculate the attention vectors for all tokens in a 
sentence: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 EGH
#

FI$
F    ( 8 ) 

 where 𝑑J is the dimension of keys. 

In biology, attention heads have been the subject of extensive research, which has 
revealed that different attention heads in the models' layers are responsible for specific 
protein characteristics, such as the secondary structure or binding site of a protein[101]. 
Moreover, the ESM-1b model utilizes attention maps to predict the contacts between 
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amino acids and it has been observed that distinct attention heads specialize in different 
types of contacts [87]. 

 

2.3.3 Language models in Biology 

A key feature of Transformers is transfer learning, which is the application of knowledge 
gained from completing one task to help solve a different, but related, problem [81]. This, 
in combination with the fact that protein sequences are ideal for LM, has led many 
researchers to train new models to solve downstream tasks or to improve existing 
technologies [84]–[88]. Protein Language Models (pLMs) treat a protein sequence as a 
sentence and each amino acid as a single word, similar to NLP. For proteins, specific 3D 
shapes are necessary to carry out specific tasks, which impose constraints on the 
language and meaning, as in NLP. 

Two of the most widely-known applications in the biology field are the protTrans [84] and 
Evolutionary Scale Modeling (ESM) [87] models. Using known databases such as 
Uniref50 [89], Uniref90 [89], Uniref100 [89], CATH [90], and BFD (Big Fantastic 
Database) [91] they collected millions of protein sequences and billions of amino acids 
for the model training. ProtTrans successfully trained six NLP LMs (T5 [83], Electra [92], 
BERT [82], Albert [93], Transformer-XL [94] and XLNet [95]) on protein sequences. The 
next table (Table 1) includes a part of the configurations for the pre-training of pLMs for 
protTrans. 

Table 1: Part of protTrans configurations hyperparameters. 

 Dataset Number of Layers Embedding 
Dimension 

Number of 
Heads 

M
od

el
s 

ProtXL 
BFD100 32 

1024 
14 

Uniref100 30 16 

ProtBert 
BFD100 

30 1024 16 
UniRef100 

ProtXLNet UniRef100 30 1024 16 

ProtAlbert UniRef100 12 1024 64 

ProtElectra UniRef100 30 1024 16 

ProtT5-XL 
BFD100 

24 1024 32 
UniRef50 

ProtT5-XXL 
BFD100 

24 1024 128 
UniRef50 
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For ESM, researchers opted for the use of large unsupervised language models. They 
trained high-capacity Transformer language models on evolutionary data, and observed 
the model identified several key pieces of information such as homology, structural 
similarity, etc. In the table below, some of the main models that were developed from 
ESM (Table 2) are listed. It is worth noting, that ESMFold [96] achieved performance on 
par with that of AlphaFold [97] and RosettaFold [98], the two most known computational 
methods for predicting the 3D structure of proteins, while at the same time achieving a 
600-fold speedup for results only marginally less accurate than those of AlphaFold2. 

Table 2: Part of ESM models with its configurations. 

 Dataset Number of Layers Embedding 
Dimension 

Number of 
Parameters 

M
od

el
s 

ESM-2 UniRef50 6, 12, 30, 33, 36, 48 320, 480, 640, 
1280, 2560, 5120 

8M, 35M, 
150M, 650M, 

3B, 15B 

ESMFold UniRef50 48 - 690M 

ESM-MSA-1b UniRef50 12 768 100M 

ESM-IF1 UniRef50 + 
CATH 20 512 124M 

  

These models can be used for several tasks like secondary structure prediction, discovery 
of biological variations, capturing of biophysical features of amino acids, prediction of 
protein subcellular localization, and others. As an example, in the following picture (Figure 
20) is a use case of a pLM which takes as input a protein sequence with L amino acids, 
which are tokenized and positional encoding is added. The resulting vectors are passed 
from the model that we have chosen and generate features – the process of embedding 
- for each input token. Then, the last hidden state of the model can be used for 
downstream prediction tasks, like using them as input to a Convolution Neural Network 
(CNN) to predict an amino acid’s secondary structure or to a Feedforward Neural Network 
(FNN) to predict the cellular location of the given protein. 
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Figure 20: A general overview of how ProtTrans models can be used to derive features 

(embeddings) from an unknown protein sequence and used them for classification tasks [84]. 
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3. RESULTS 

In this chapter, we analyze the procedure from data collection to the usage of machine 
learning classifiers and attention heads of pLMs for predicting protein-membrane 
interfaces. First, we describe the datasets used and how they were appropriately 
prepared, ensuring that desired information was retained. Next, we measured the 
pairwise percentage identity of the amino acid sequences between every protein in the 
dataset, clustered these proteins, and retained only the representative sequences of each 
cluster to create an unbiased dataset. With a refined dataset in hand, we proceeded to 
annotate each protein, and then we continued by using pLMs to construct the necessary 
information through the embeddings they produce as features. We then fitted the dataset 
into machine learning classifiers and fine-tuned the most promising algorithm. Test 
proteins were also used to evaluate the model's predictive ability. Finally, we analyzed 
the attention heads of pLMs to predict the protein-membrane interfaces. 

 

3.1 Dataset Collection and Dataset Preparation 

For dataset construction, we used two publicly available datasets that include peripheral 
membrane proteins. The first dataset was downloaded from “Resources for Peripheral 
Protein-Membrane Interactions (PePrMInt)” and includes 2.522 structures, consisting of 
1.328 experimental structures from CATH [90] and 1.994 AlhaFold [97] models containing 
one (of nine possible) domain implicated with the membrane assocation, namely Annexin, 
C1, C2, discoidin C2, PH, PX, PLA, PLC/D, START [30]. This dataset was generated by 
first defining the membrane binding sites in each superfamily using information from the 
literature and then transferring that annotation to other domains in the same 
superfamilies, taking advantage of structural alignment. Figure 21A shows the number of 
proteins in the full dataset, which includes all proteins with Interfacial Binding Sites (IBS) 
and those without. IBS are the amino acids of a protein that interact with the membrane. 
Figure 21B displays a small portion of the dataset information. We noticed that one PDB 
ID can match multiple CATHPDB codes, as the CATHPDB code includes the PDB code 
and the chain ID. Also, one Uniprot ID (or “uniprot_acc” as mentioned in file) can 
correspond to multiple PDB IDS. 



Using DL and NLP to predict protein-membrane interactions of peripheral membrane proteins 

D. Paranou   44 

 
Figure 21: PePrMInt aggregated information about proteins’ id in the whole dataset, in the dataset 
that includes proteins with IBS and not IBS (A). An example of the data information that provided 

by PePrMInt with a part of columns and rows (B).  

 

The second collection of peripheral membrane proteins was retrieved from the “Drugging 
pRotein mEmbrAne Machine learning Method (DREAMM)” and consists of 65 proteins 
with known 3D structures and experimentally known membrane-penetrating amino acids 
[43], [44].  

From the PePrMInt dataset, only proteins with IBSs were kept and these proteins were 
compared and merged with the DREAMM dataset, using as the reference point the PDB 
ID, where they had 30 proteins in common. However, for our dataset the reference point 
was selected to be the Uniprot ID, so we matched each Uniprot ID with the corresponding 
PDB IDs & chain IDs, and for the DREAMM proteins that were not included in the IBS 
dataset (35 proteins) and there was no information about Uniprot ID, it was added 
manually (Figure 22A). Then, for a total of 709 proteins – unique Uniprot IDs, we 
downloaded the FASTA files from the Uniprot database [102] and matched each ID with 
the relative sequence (Figure 22B). 
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Figure 22: Part of file with the Uniprot ids to be the key and the corresponding PDBs with their 

chains, that we have information, to be the value (A). Part of Uniprot ids with the sequence 
information from Uniprot database (B). Both files are in JSON format. 

 

3.2 Sequence Similarity and Clustering of Protein Sequences 

Machine learning relies on having an unbiased dataset because it prevents the models 
from being trained on incomplete or skewed data, which could result in predictions and 
judgments that are prejudiced. Data that is typical of the entire population, as opposed to 
just a small subset, is said to be unbiased. This is crucial because biased data can 
produce biased outcomes, which can be harmful in a variety of real-world applications. 

For this reason, because many of our proteins belong to the same superfamilies and as 
a result may have similarities in their sequences, it is important to keep only the most 
representative. So, we aggregate all the UniProt sequences, and using the CD-HIT [103] 
Suite, we found the sequences' similarities by clustering the proteins. The procedure 
starts by setting the longest sequence as the representative of the first cluster. Then, 
each remaining sequence is compared with the representative of existing clusters and if 
the similarity with any representative is above a given threshold, it is grouped into that 
cluster. Otherwise, a new cluster is defined with that sequence as the representative. In 
our case, we set the sequence identity cutoff to 40% and that gave us 443 clusters (Figure 
23). From the clustering results, we kept only the representatives of each cluster (443 
proteins). 

 



Using DL and NLP to predict protein-membrane interactions of peripheral membrane proteins 

D. Paranou   46 

 
Figure 23: Part of clustering results, showing the clusters 17 and 18 with the Uniprot IDs - the 

representative of each cluster and the similar Uniprot sequences with the similarity percentage in 
JSON format. 

 

3.3 Protein Annotation 

Because our reference point is the Uniprot ID while the information about the IBS of 
proteins is correlated with the PDB ID, we have to transfer this information to the Uniprot 
sequence. For this reason, we downloaded from the Protein Data Bank (PDB) [104] all 
the PDB codes that corresponds to the 443 proteins from the clustering procedure. In 
total, we fetched 1069 PDB proteins, which in turn they were aligned with the 
corresponding Uniprot sequences (Figure 24). In cases where the PDB protein is 
homodimer, homotrimer, etc. (chains with same sequence), only one chain was kept. 

 
Figure 24: Part of P14555 protein and the alignment with the 1AYP chain A PDB protein in JSON 

format. 
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Having aligned all the sequences, we set the numbering of residues based on the UniProt 
sequence. Then, we update the IBS amino acids of Uniprot sequences, based on the 
annotation of each corresponding aligned PDB sequence. That was the last step for the 
proteins’ preparation and annotation (Figure 25A). As it was expected, the dataset is 
totally imbalanced with only 3% of the total number of amino acids to belong to the IBS 
class (Figure 25B). 

 
Figure 25: Part of the dataset depicted the information of Uniprot ID, the residue name (1 & 3 letter 
code) and its index, if a residue is IBS, and the Uniprot sequence (A). The total number of amino 

acids that belongs to each class (B). 

To sum up, the next figure concentrates the process for dataset preparation, filtering and 
annotation that was described in the last 3 sections. 

 
Figure 26: Pipeline for dataset preparation. 
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3.4 Construction of Protein Embeddings 

To generate the features of our dataset, we used two pLMs. These models produce 
embeddings that represent amino acids or groups of amino acids in a fixed-dimensional 
vector space. These vectors encode the structural and functional properties of a protein 
and serve as ideal features for making predictions about a protein's structure, function, 
and properties based on its amino acid sequence. We employed the 
prot_t5_xl_half_uniref50-enc1 model from protTrans [84] and the 
esm2_t33_650M_UR50D2 from ESM [96], both of which are available in the Hugging 
Face3 repository. The former produced embeddings vectors with a size of 
𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ	 × 	1024	 while the latter yields embeddings of size 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ	 ×
	1280 (Figure 27). The procedure for extracting this information was highly efficient, taking 
only for a medium-length protein (up to 512 amino acids) ~10 seconds for protTrans and 
~3 seconds for ESM in a MacBook Pro with chip M1, 10-cores, and 16GB of RAM. 

 
Figure 27: Embeddings dimensions from protTrans and ESM pLMs. 

 

Having generated the embeddings, we added this information to our dataset as features 
(1 dataset for protTrans embeddings & 1 dataset for ESM embeddings). The last step 
that was performed for features was to convert the amino acid feature column from 
categorical to numerical features, by using one-hot encoding, a technique that transforms 
each unique value in a categorical feature into a new binary feature (Figure 28). 

 
1 https://huggingface.co/Rostlab/prot_t5_xl_half_uniref50-enc  
2 https://huggingface.co/facebook/esm2_t33_650M_UR50D  
3 https://huggingface.co/  
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Figure 28: Part of the dataset with the one-hot encoding of the residues. 

 
3.5 Predicting Protein-Membrane Interactions of Peripheral Membrane Proteins 

Using Artificial Intelligence 

To calculate the performance of the algorithms, we need to test them in unknown data 
and record their performance. For that reason and before moving on, we split our dataset 
into a training set (~80% of the dataset - 328 proteins), validation set (~10% - 41 proteins), 
and test set (~10% - 41 proteins) (Table 3). Furthermore, an extra test set of 35 peripheral 
membrane proteins with known 3D structures and experimentally known membrane-
penetrating regions (not amino acids) was created. These proteins were evaluated 
qualitatively because no particular amino acids were examined in experiments. 

 
Table 3: The peripheral membrane proteins of the training, validation, and test sets with the 

corresponding Uniprot IDs. 

Set Uniprot IDs 

Training O01761, Q9JKS6, Q60841, O75962, P21359, Q12802, P26039, V5M2P5, 
O15020, P00451, A0A0H2UP19, P12259, P97479, P32639, O75643, 

Q8XM24, O75923, Q9BZ29, D3ZJP6, Q9ERC5, Q3T552, A0A0H2YST8, 
Q5T5U3, D4QAP3, Q6ZPE2, Q14185, Q8DR60, Q04205, E5RWQ2, 

Q62768, Q15811, Q6ZPF3, Q8WZ64, Q61194, A0A0H2UNT5, Q8TCU6, 
P26831, Q9JIR4, P71140, Q13009, Q9JIS1, Q9NZN5, O15085, Q9Y2I1, 

Q6ZNL6, Q7SZN0, O75747, Q63HR2, Q69ZL1, Q62868, Q6EDY6, 
Q9ULU8, Q07889, P46934, Q96L93, Q68CZ1, P10686, Q96KN7, Q70E73, 
Q45712, P35568, Q01970, Q16760, P49796, Q99490, Q00722, P16480, 

P05068, Q08236, Q8XMY5, B3LEP7, Q64096, Q9QWY8, F2YQ19, 
Q9NQW6, Q0PRN1, Q9HAU0, Q8IX03, Q9Y3M8, P48736, P14090, 

Q9ZA17, Q8Y4J2, Q9Y2J2, O69230, P51584, P42337, Q54873, Q91VS8, 
Q8BTI9, P29323, Q00944, Q9Y2H5, Q9Y5B9, A0A0H2US34, P32558, 

Q56F26, Q82PP4, Q8VNN2, P00723, Q8A2X6, Q70SY0, Q8KRF6, 
Q9KG76, Q8IWE5, Q0TR53, Q6P4T1, Q7WTN6, Q8N960, Q92974, 

Q9VFS5, P94286, Q6DN90, Q93RE7, A3DHG6, Q9Y5W7, A0A075B5H6, 
O60462, Q59290, Q9BYX2, A0FGR8, Q08345, Q92888, P77847, Q96J02, 

P0C2S1, O94806, Q6ZUM4, Q9BZF1, Q6DN12, Q61097, P50570, 
P11171, Q8AAK6, Q16832, D1GCC6, P15498, A3DK57, Q840C0, 
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Q8N4X5, A6KXE5, P10477, O95267, Q93IE7, Q8AB22, Q9H4M7, Q8K4I3, 
P22346, Q9HCE7, P10688, Q9BRR9, P47712, Q9BXB4, B3CET4, 

Q15027, P09216, O00522, Q99PV3, A4I5U9, Q8A916, Q92556, Q3J126, 
Q5JSP0, Q9UH99, O54924, Q8R5F8, Q08945, Q02111, Q5LJ68, P05129, 
P9WG63, Q5LIC7, Q9NR80, P21146, P40485, P47709, O52780, P0CS93, 

Q96AC1, Q9RIK9, P16278, P79134, Q96C24, Q8VRK8, Q13613, 
Q2PHL4, Q3ZC95, Q82L26, P08236, Q4AE70, P04049, Q02834, P42331, 

Q9ZB22, P32776, Q9WXN1, P45796, P0A377, P18887, Q9H0H5, 
Q9L5A4, Q9Y5P4, O07653, Q9JID9, Q9Y217, Q8WXI4, Q59675, Q9X0S8, 

P05804, P46662, A0A0H2UN19, Q9Y5X1, Q13322, Q6DN99, P40748, 
A2AR50, Q9UH65, Q51815, Q9NPI6, Q8WV41, Q9L9D7, G0SHK5, 

Q06696, H6WCZ0, A0A0H2WZL3, D8DVU6, O15530, P10820, P29366, 
P32780, Q96L92, Q00019, Q91X46, Q13596, Q9BPZ7, Q8WU20, 
Q18PE0, Q61234, Q9ERE3, P16559, Q4W8M3, Q8A5P6, G0L2L9, 
P97465, P31751, B7GNN8, Q9BSW7, Q15036, P52757, P21956, 

Q8AAM3, Q8A3J5, P40161, Q38CF2, Q14849, Q9BSQ5, Q8A9F0, 
Q7L8C5, Q9ERS5, Q9H2B2, P21579, Q5EBH1, O60496, B1H267, 
O43581, O43739, P14598, Q9H0F6, Q9UNH6, Q86VN1, E0RVY7, 

Q8NFA2, O75689, Q9W1H5, A7LSX5, C4QH88, D6MSV6, Q96MF2, 
B3PDE5, Q86WV1, B3PIB0, P09394, Q9NYT0, P08567, B3A043, P25335, 

Q5L9W9, P04272, Q15080, O95433, Q5LFR2, Q9SSK9, A0A0J9X278, 
P08954, P34024, Q9SYT0, A6LIT8, P32912, A0A6L7H2E6, P45723, 

Q5LX22, Q2LK81, Q8I914, D7RFJ9, Q2PA00, Q4VPP2, Q9P104, 
Q8C4Q6, Q8A2Z3, Q9HB20, Q80UW2, P17063, Q9ULZ2, P49675, 

Q9UN19, Q9CR95, A0A6N4SPL7, P53810, Q9Y5W9, Q9RZE3, A6L916, 
P42530, P53068, A9CLR1, A9CG82, Q5JGZ3, A0A0H2V2B5, Q9QYE9 

Validation Q8H1L1, Q1MFM4, Q9I4D2, G7J032, P52778, Q3J4M4, Q5HLI9, 
Q8NN40, O04298, A1U5H9, Q9XG81, Q2K6S8, Q2Y8N9, Q5QL47, 
P80966, Q6UV28, Q47KK8, Q9A7I7, Q5SK03, Q7NY36, Q9C8S6, 

Q9Y9R3, A0A6N4SU23, Q484T9, O31806, P14555, Q5LN61, Q9Y547, 
Q98IT8, Q689C4, Q81AY6, Q8DVN6, A0A6N4SXV3, A0KKT0, Q973T5, 

Q49US3, Q7CZ16, E2FYL5, Q64YT5, Q9P805, P0C0B0 

Test P04183, Q89ZG6, Q12517, Q53W25, Q99JV5, Q9PPP5, Q8VZS8, 
P59095, A1ZAW5, Q9UKL6, Q9NSY2, Q9P4F6, Q67A25, Q8PPZ5, 

Q9HJ63, O14713, Q96L94, B8LIX8, Q9UM13, A0A1C9V3S9, Q9WYN2, 
Q7WAN9, Q8KNE9, Q8KNF0, B9PKK4, Q82XK1, Q8PZJ2, Q9F6D3, 

A0A0H2XIZ7, A0A6N4SQ07, P00630, Q9ZLJ5, A1RA60, O15496, 
B9PJE6, P93330, Q08826, Q9UMY4, Q98FZ2, Q832L1, A1JSS7 

Extra 
Validation 

P61914, Q15075, O16025, Q96QK1, Q960X8, P12530, P00735, P40343, 
O24592, P05979, O88339, P22637, Q28175, P08684, P0C2E9, Q9LCB2, 
P60484, P0C216, Q02127, P20932, P02749, P11889, Q77DJ6, P00803, 
Q99685, P49638, Q9NZD2, P00720, P12724, P12104, P56254, P60980, 

P01441 
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3.5.1 Usage of machine learning classifiers 

Four machine learning classifiers were trained on both datasets (ESM & protTrans) for 
the training set: XGBoost classifier [105], BalancedRandomForest classifier [106], and 
two Neural Networks (NN) from the keras library [107]. The classifiers were trained using 
default parameters except for the parameter that handles the imbalance issue of the 
dataset. For XGBoost, we experimented with the scale_pos_weight parameter, while for 
NNs, we tested the class_weight parameter. The performance of each classifier was 
evaluated on the test proteins, and Tables 4 and 5 summarize the results. 

 
Table 4: Models performance on protTrans test dataset with default parameters except for the 

class weight. The best score for each metric is highlighted in bold. 

 XGBoost BalancedRandomForest 1-layer 
Perceptron 

Multi-Layer 
Perceptron 

F1 score 0.581 0.497 0.582 0.627 

MCC 0.522 0.441 0.549 0.586 

Confusion 
matrix 

    

Total fit 
time* ~10m ~1-3m ~1m30s ~1m 

 
Table 5: Models performance on ESM test dataset with default parameters except for the class 

weight. The best score for each metric is highlighted in bold. 

 XGBoost BalancedRandomForest 1-layer 
Perceptron 

Multi-Layer 
Perceptron 

F1 score 0.418 0.406 0.496 0.553 

MCC 0.365 0.338 0.425 0.492 

Confusion 
matrix     

Total fit 
time* ~12m ~3m ~1m30s ~1m 

 
* In a MacBook Pro with chip M1, 10-cores and 16GB of RAM. 



Using DL and NLP to predict protein-membrane interactions of peripheral membrane proteins 

D. Paranou   52 

The most promising classifier in both cases was the Multi-Layer Perceptron (MLP), which 
achieved the best scores and a balance between false positives (FP) and false negatives 
(FN), with a reasonable fitting time. 

3.6 Optimization of promising algorithms 

Having chosen the MLP as the algorithm with the best performance, we continued by 
optimizing the classifier in order to discover the best hyper-parameters that separate best 
the two classes. A Bayesian optimization using the keras_tuner library from keras [107] 
was performed in a wide range of values for each hyper-parameter set (Table 5) for 50 
iterations. The best hyper-parameter sets based on the Bayesian search were selected 
(Table 5) and the respective models were saved. The present study involved performing 
model fine-tuning on two distinct datasets, namely the ESM dataset and the protTrans 
dataset. The multilayer perceptron (MLP) model was subjected to fine-tuning on both 
datasets. Additionally, Bayesian optimization was utilized to fine-tune XGBoost classifier 
specifically on the protTrans dataset, although no significant improvement was observed 
in comparison to the untuned model and no further investigation was done. 

 
Table 6: The hyper-parameters that were sampled, the ranges that were searched in Bayesian 

optimization, and the final best hyper-parameters for each dataset using weights. 

Dataset Hyper-parameter ranges 
selected 

Best hyper-parameters identified by 
hyper-parameter optimization 

protTrans 

Initial Dense Layer: 50 ≤ 
int(nodes) ≤ 350, step = 50 

Initial Dense Dropout percentage: 
0.0 ≤ float(dropout) ≤ 0.8, step = 

0.1 

Number of Dense Layers: 1 ≤ 
int(layers) ≤ 4, step = 1 

Hidden Dense Layers: 32 ≤ 
int(nodes) ≤ 512, step = 32 

Dropout percentage: 0.0 ≤ 
float(dropout)≤ 0.5, step = 0.1 

Optimizer: [‘Adam’, ‘SGD’] 

Learning rate: [0.1, 0.01, 0.001, 
0.0001] 

Initial Dense Layer: 350 

Initial Dropout percentage: 0.8 

Number of Dense Layers (Hidden): 4 

Hidden Dense Layers: [512, 32, 32, 480] 

Dropout percentage: [0, 0, 0.5, 0.3] 

Optimizer: ‘Adam’ 

Learning rate: 0.1 

Class weight: {0:1, 1:34} 

ESM 

Initial Dense Layer: 500 

Initial Dropout percentage: 0.8 

Number of Dense Layers (Hidden): 4 

Hidden Dense Layers: [32, 32, 32, 512] 

Dropout percentage: [0, 0.5, 0.5, 0.2] 

Optimizer: ‘Adam’ 

Learning rate: 0.0001 

Class weight: {0:1, 1:34} 
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In Figure 29, the architecture diagrams of the two MLPs are presented with each layer, 
the number of corresponding nodes, and the activation functions for each Dense layer. 

                 
Figure 29: Architecture of MLPs models that were constructed based on the best hyper-

parameters. Left is the protTrans model - Right is the ESM model.                                  
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3.7 The Test Set Prediction Results 

After identifying the best hyper-parameters for the two MLP models, we proceeded to 
evaluate their performance on the test set. The models generated predictions in the form 
of probabilities, so we used the F1 score to determine the appropriate threshold for 
classifying the target column. The threshold that maximized the F1  score was selected 
for each model. We then evaluated the models' performance using various scoring 
metrics, which are presented in Table 7. Based on the prediction results, the models 
exhibited an improvement of approximately 7% in the metrics compared to the default 
classifiers. 

 
Table 7: The predictions of the test set from the MLP models in the datasets with the protTrans 

and the ESM features. 

Dataset Threshold F1  score MCC TN FP FN TP 

protTrans 58% 0.691 0.652 6591 321 238 626 

ESM 55% 0.622 0.577 6623 289 343 521 

 

To better understand the predictions of the models, it is essential to visualize the results 
of the models and inspect which amino acids are FP, FN, and TP. To do this, we used 
the PyMOL4 tool, which is an open-source molecular visualization system. In Figure 30 
there are captures of 4 proteins’ predictions from the test set using the 2 different datasets 
and models. The TP amino acids are depicted in green, while the FP and FN amino acids 
are in yellow and red, respectively (protein ligands are indicated in purple). As we can 
see, approximately two-thirds of the FPs are, in fact, correct predictions, as they are 
located in the protein-membrane interface adjacent to the true positives or on adjacent 
loops.    

 
4 https://pymol.org/2/  
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Figure 30: Four proteins of the test set visualized in the PyMOL tool with the relative predictions 

from the models. 

 

For these four test proteins from the above visualization, we calculated the F1  score 
independently for each protein, before and after considering that some FPs can actually 
be TPs due to their proximity to the residues that were originally labeled as TP based on 
the literature findings. In order to reclassify an FP amino acid as a TP, it was necessary 
for it to be located in close proximity to true membrane-interacting amino acids, and in 
particular, within 3Å distance of a true positive value. The resulting scores are presented 
in Table 8, which revealed that the actual scores are significantly higher, with an 
improvement of +11%. 

 
Table 8: Calculated F1_score of the 4 test proteins before and after of converting the close amino 

acids that are indeed membrane penetrating, from FP to TP. 

 protTrans ESM  

F1  score 0.87 0.84 
1NL2 

Actual F1  score 0.98 0.97 

F1  score 0.27 0 
1P0C 

Actual F1  score 0.36 0.06 

F1  score 0.52 0.42 
2KG5 

Actual F1  score 0.67 0.5 
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F1  score 0.87 0.82 
2R55 

Actual F1  score 0.98 0.98 

 

Furthermore, due to our observation that the MLP model trained on protTrans features 
exhibited superior performance compared to the MLP model trained on the ESM features, 
we chose to contrast it with the DREAMM tool. This comparison was conducted on the 
four proteins in the test set (1NL2, 1POC, 2K5G, 2R55), and we generated visualizations 
that not only highlight the membrane-penetrating amino acids but also document and 
report the prediction times of both models. Figure 31 illustrates the performance of the 
models, from which we can conclude that the DREAMM tool requires significantly more 
time compared to the MLP model, with its prediction time being dependent on the 
sequence length. However, the DREAMM tool performs equally well in prediction 
accuracy when compared to our model (Table 9). 

 
Figure 31: Comparison of four proteins of the test set between the MLP model trained on 

protTrans features and the DREAMM tool. 
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Table 9: Predicted membrane-penetrating amino acid indexes of MLP model trained on 
protTrans features and DREAMM tool. 

 MLP trained on 
protTrans features DREAMM 

1NL2 

83, 84* ,86, 103*, 104, 
105, 106, 107, 108, 109*, 

110, 111, 112*, 144*, 145*, 
146, 147, 148, 149, 150, 
180*, 181, 182, 183, 184, 
185, 186, 187, 188, 189, 
190, 191, 193, 194, 198 

107, 186, 190 

1POC 51*, 52*, 55, 78, 81, 85, 
90, 107*, 110* 

1*, 2*, 11, 24, 78, 81, 82, 
86 

2K5G 

64*, 66*, 67, 68, 71, 72, 
74, 75, 76, 77, 78, 79, 80, 
81, 82, 83, 84, 85, 109*, 
110*, 140*, 141*, 144*, 

154* 

8, 15, 16, 78, 169 

2R55 

45*, 81, 82*, 84, 104, 105, 
106, 107, 108, 109, 110, 

111, 112, 113, 114*, 143*, 
144*, 145, 146, 147, 148, 

149, 179*, 180*, 181*, 182, 
183, 184, 185, 186, 187, 
188, 189, 190, 191, 192, 

195 

2*, 3*, 5, 40, 108, 141, 183 

 *False positives residue indexes 

 

3.8 Model Limitations 
Next, we evaluate the performance of our models in the extra validation set, for which we 
do not have the exact membrane-penetrating amino acids; only the region(s) that interact 
with the membrane has been verified experimentally. This test shows that for protein 
families for which the models have not been trained on, there are no amino acids 
predicted at the IBS. For the ~50% of the proteins in this set, for which the model have 
have been trained on, the models managed to correctly predict the protein-membrane 
interface (Figure 32 – Table 10).  

In addition, the MLP model that was trained on the protTrans embeddings and achieves 
better scores compared to the MLP model trained on ESM embeddings, gives 
approximately 20% more predictions. Finally, the MLP classifiers were also assessed for 
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the prediction of the protein-membrane interface of some transmembrane enzymes 
(Uniprot IDs: Q55487, P08842, Q99T05, P02919, P13516, O00767, Q03529, B9KDD4, 
O29867), but without success, as they cannot predict any membrane penetrating amino 
acid. In summary, the two models are limited to the specific protein families (Figure 33) 
that they have been trained on as was demonstrated by the results of the extra validation 
set, which includes unknown protein families. 

 
Figure 32: Predictions from the 2 MLP models for 3 proteins of the extra validation set, with 

experimental known protein-membrane interface regions. 
 

Table 10: Peripheral membrane proteins of the extra validation set, their PDB ID, their 
experimentally known membrane-penetrating amino acids, and the predictions of our MLP 

models. Amino acid numbering is consistent with the PDB structure 

Protein – PDB 
ID 

Membrane penetrating 
regions / amino acids protTrans MLP ESM MLP 

1c1z, 1coy, 
1es6, 1s6x, 
1tqn, 2ayl, 

2mh1, 4x08, 
5f0p 

Not prediction from our 
models - - 
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1dvp F173 T172, F173, T174, R181 T174, N175, R176, K177 

1ffj 

L6, V7, P8, L9, F10, 
Y22, M24, F25, M26, 
V27, P30, V32, P33, 

V34, I39, L47, L48, V49 

L6, V7, P8, L9, F10, S11, 
T13, M26, V27, A28, A29, 
P30, H31, V32, K35, L47, 

L48 

K5, A29, P30, V32 

1gyg Y331, F334 

D216, G266, E267, K268, 
D269, A270, G271, D273, 
G296, N297, D298, M300, 
T301, K330, Y331, T332, 
A333, F334, P335, D336, 

A337 

S265, G266, E267, K268, 
D269, A270, G271, T272, 
D273, N297, K330, Y331, 
T332, A333, F334, P335, 

D336 

1h0a L6, M10, I13, V14 - R114 

1iaz W112, Y113 - P81, Y110, N139 

1joc V1367, T1368, V1369 S1366, V1367, T1368, 
V1369 T1368, V1369 

1nl1 F5, L6, V9 K97, E99, T103, T104 - 

1oiz F165, F169, I202, V206, 
M209 

F165, A168, F169, P200, 
V201, I202, F203, H204, 

A205, V206, S208, M209, 
I210, F213 

- 

1pfo W466, T490, L491 T460, L462, A463, E465 S190 

1vfy L185, L186 K182, S184, L185, L186 S173, K181, K182, L186, 
N187, R188, K189 

2ddr W284, F285 

L90, N92, Y93, T97, N237, 
I239, A240, K241, Y242, 
N243, F244, P245, D246, 
W279, V281, T282, S283, 
W284, F285, Q286, K287, 

Y288, T289, D292 

P26, N27, G29, S94, S96 

2fnq W413, F414, Y448, 
W449 

D384, R385, E386, H387, 
A388, G389, T390, D391, 
W413, F414, H415, N416, 
D417, E419, A420, G445, 
G446, G447, Y448, W449, 

D452, P453, D454 

G383, D384, R385, E386, 
H387, A388, G389, T390, 
D391, H415, N416, D444, 
G445, G446, G447, Y448, 
W449, D452, P453, K854 
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2p0m Y15, F70, L71, W181, 
L195 

S13, I14, Y15, A16, G17, 
K19, H69, F70, L71, K72, 

E73, D74, A75 

G11, A12, S13, I14, A16, 
G17, S18, K19, K68, H69, 
F70, L71, K72, E73, D74 

3akm Around amino acid K27 

K16, M18, E19, K20, M21, 
G22, V23, N24, I25, V26, 
K27, R28, K29, L30, A31, 
H33, D34, N35, A54, F55, 
R56, N57, N69, N71, A73, 
D74, G75, T76, E77, D97, 

N98, N100, E120 

K20, K27, D97, N98, G99 

3fsn 
F196, F200, I202, F264, 

L265, W268, L270, 
W271 

G48, V52, F57, I98, V99, 
I100, F108, F200, R234, 
F235, L261, W268, W271 

- 

3iiq W300, W310 P87, L141 - 

3jw8 Around amino acids 
L179, L186 

E94, E96, S101, L184, 
R212, A213, V217 - 

3npe 

The two parallel 
amphipathic helices 
(α1:85- 109, α2:222- 

237) 

P160, F162, D163, P164, 
V165, A166, G207, G216, 
G220, S222, R226, L367, 
L371, R372, E444, W501 

- 

3rzn W142 V41, W142, I143, K146, 
I147, Y153 - 

3w7r Region 31-68 N129, P130, R131, P132 N145, F149, S151 

5bzz Regions 260- 269, 327- 
335 

E40, R41, L42, E43, G44, 
V45, R74, K164, M205, 

F206, S207, G208, G209, 
T210, H259, Q261, N262, 
K263, M264, L265, K266, 
K267, D268, K330, R335 

S207, G208, G209, T210, 
Q261, K269 

5hxw I345, L347, L351, I352, 
F355 - N362, V366 

6bfg Region 177- 215 K17, K21, M22, V23, S178, 
A181, S214 

S111, R167, D168, K174, 
I175, P176, S224 
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Figure 33: Protein domains belonging to nine protein superfamilies that represent the diversity of 
PMP functions: membrane targeting domains (PH, PKCa-C2, Factor V Discoidin C2, PKCd-C1, PX), 

enzymes (phospholipase C/D, phospholipase A), lipid transfer proteins (START), and annexins. 

 

3.9 Predicting Protein-Membrane Interactions of Peripheral Membrane Proteins 
Using Attention Heads  

Since the MLP classifiers have shown to be effective only in certain protein families, we 
aimed to enhance our results by developing a more generalized classifier. To this end, 
we proceeded to extract the attention maps of the two pre-trained language models. 
Initially, we sought to determine the specific hidden layers and attention heads where 
information pertaining to the interactions of amino acids with the membrane is encoded. 
Subsequently, we constructed a Logistic Regression model, which was trained on the 
attention maps, to classify whether an amino acid is membrane-penetrating or not. 

 

3.9.1 Extraction 

Each pLM consists of a different number of hidden layers and attention heads. More 
specifically, the protTrans model has 24 hidden layers and 32 attention heads in each 
layer – in total 768 attention maps, while the ESM model has 33 hidden layers and 20 
attention heads in each layer – in total 660 attention maps. The attention maps vector 
size is analogous to the given protein at each time and the dimensions are 
sequence_length × sequence_length. Every row and every column represents each 
amino acid with a weight that indicates the importance or relevance of each amino acid 
residue in the protein sequence with respect to a particular residue [81], [101]. If we have 
for example the protein with Uniprot ID ‘A3DK57’ that has 831 amino acids, each attention 
map will be 831×831 (Figure 34). In addition, each attention map is a set of attention 
weights 𝛼 for an input, where 𝛼$,! 	> 	0 is the attention from token 𝑖 (row) to token 𝑗 
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(column), such that ∑ 𝑎$,!! = 1 [101].  The extraction of attention maps was done through 
the Hugging Face5 library, by setting the parameter output_attentions equal to True in 
both models. 

 
Figure 34: An example of an attention map of  A3DK57 protein with dimensions 831x831 and sum 

of rows equal to 1. 

 

3.9.2 Interpretation of attention heads information 

To manage decode and interpret the information that is passed among the attention 
maps, we used the following mathematical formula that is described in [101]: 

𝒑(𝒇) =
∑ ∑ ∑ 𝒇(𝒊,𝒋)∗𝟙𝒂𝒊,𝒋P𝜽		

|𝒙|
𝒋)𝟏

|𝒙|
𝒊)𝟏𝒙∈𝑿

∑ ∑ ∑ 𝟙𝒂𝒊,𝒋P𝜽		
|𝒙|
𝒋)𝟏

|𝒙|
𝒊)𝟏𝒙∈𝑿

      ( 9 ) 

where 𝑥 is each protein, 𝛼$,! is the attention weight in row 𝑖 and column 𝑗, θ is a threshold 
to select for high-confidence attention weight and 𝑓(𝑖, 𝑗) which returns 1 if 𝑗 is a 
membrane-penetrating amino acid and 0 otherwise. The formula (Eq. 9) computes the 
proportion of high-attention token pairs (𝑎$,! > 𝜃) and it is possible to target the protein-
membrane interface. 

The total number of proteins that were used in our case was 30 and we calculated the 
proportion for 6 different thresholds (0.1, 0.15, 0.2, 0.3, 0.4, 0.5). Figures 35 & 36 depict 
the heatmaps for the 2 pLM that were generated using the formula (Eq. 9). As is shown 
on the heatmaps below, the information about the membrane penetrating amino acids for 
the protTrans model can be found in the last hidden layers and attention heads of the 
model in most of the thresholds, while in the ESM model, it is clearer, as the information 
is located on the first and the last hidden layers and in the middle attention heads in all 
the thresholds.  

 
5 https://huggingface.co/  
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Figure 35: Heatmaps of attention maps that represent the proportion of attention in the several 

hidden layers with the respective attention heads for protTrans model based on different 
thresholds using a mathematical formula. The darker cells indicate the heads that map to the 

protein-membrane interface. 

 

 
Figure 36: Heatmaps of attention maps that represent the proportion of attention in the several 
hidden layers with the respective attention heads for ESM model based on different thresholds 

using a mathematical formula. The darker cells indicate the heads that map to the protein-
membrane interface. 
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3.9.3 Usage of attention heads to predict protein-membrane interactions 

The approach used in this study was inspired by a previous work on ESM-1b, which 
extracted contacts from a transformer by passing a sequence through the model to obtain 
attention maps, and then applied logistic regression independently to each amino acid 
pair [87]. In this study, the attention maps of 20 proteins were extracted, and a dataset 
was created where the columns represent pairs of hidden layers with each attention head, 
the rows are the amino acid pairs of attention maps, and each cell indicates the weight of 
the amino acid pairs in the respective combination of hidden layer - attention head (Figure 
37). The target column was created based on whether each amino acid was membrane-
penetrating or not. The aim was to use this dataset to train a logistic regression model 
that could classify amino acids as membrane-penetrating or not based on the attention 
maps.  

 
Figure 37: Example of how the dataset was generated for Logistic Regression based on the ESM 

model. First, the attention maps were extracted and then transferred to the aggregated table 
alongside the information about the labels of amino acids. 

 

Having created the dataset, we then define the probability of a penetrating amino acid to 
a logistic regression with parameter 𝛽 [87]: 

𝒑J𝒄𝒊,𝒋𝒅 ; 𝜷N = 	 𝟏
𝟏5𝒆𝒙𝒑	(	E𝜷𝟎	E	 ∑ ∑ 𝜷𝒎𝒉𝑯

𝒉)𝟏
𝑴
𝒎)𝟏 𝒂𝒎𝒉𝒊𝒋

𝒅 )
   ( 10 ) 

where 𝑑 is each protein, 𝑀 is the layers, 𝐻 is the heads, and 𝑎VW>X is the attention 
weight between the sequence position 𝑖 and 𝑗 in the given m-layer and h-head. The 𝛽 
will be the fitted parameter. In total, the model learns 𝑀𝐻	 + 	1 parameters, which many 
of them are zero because of the 𝐿D regularization. 

Using the Stochastic Gradient Descend Classifier (SGDClassifier) from scikit-learn [63], 
we trained two models on the two different datasets (ESM & protTrans) applying 𝐿D 
regularization and log_loss as the loss function. For detecting which hidden layers and 
attention heads were used for the classification of the amino acids’ pairs, we construct 
the heatmaps of models’ coefficients (the absolute values), many of which are zero 
(Figure 38).  
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Figure 38: Heatmaps of SGDClassifiers coefficients which indicates the hidden layers and 

attention maps that were used for the classification. 

 
To determine the models' performance, we initially needed to convert amino acid pair 
predictions into individual amino acid predictions by retaining the most frequently 
predicted class for each amino acid. The evaluation was carried out on five proteins, and 
the resulting outcomes are presented in Table 11 and Figure 39. We employed a range 
of thresholds while utilizing amino acid classification probabilities, and the outcomes 
presented herein used a 0.5 cut-off threshold. Despite our use of attention maps, we were 
unable to attain better outcomes, with numerous instances of incorrect classification, 
including roughly half of the amino acids being erroneously identified as membrane-
penetrating and others predicting only one or two amino acids incorrectly. The same trend 
was observed with unknown protein families, resulting in similar results. 

 

Table 11: Results of SGDClassifier on 5 test proteins in the 2 datasets. 

 ESM protTrans 

F1  score 0.35 0.366 

MCC 0.341 0.344 

Confusion 
matrix 
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Figure 39: Predictions from the 2 SGDClassifiers models for 3 proteins of the test set. 
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4. DISCUSSION AND CONCLUSIONS 

Characterizing interactions at the protein-membrane interface is crucial, as abnormal 
peripheral protein-membrane attachment is involved in the onset of many diseases. A 
limiting factor in studying and understanding protein-membrane interactions is that the 
membrane-binding domains of peripheral membrane proteins are typically unknown. Only 
a few methods exist that can predict protein-membrane interaction regions of peripheral 
membrane proteins from their 3D protein structure [40]–[43], and in many cases these 
methods are time-consuming. Moreover, the complexity of the interface and the lack of 
suitable procedures and modeling technologies have not allowed the routine employment 
of the protein-membrane interface in drug design pipelines. 

By applying Artificial Intelligence (AI) techniques in the context of Natural Language 
Processing (NLP) the accuracy and prediction time for protein-membrane interface 
analysis can be significantly improved compared to existing methods. In this thesis, we 
describe a machine learning methodology for predicting membrane-penetrating amino 
acids using NLP and protein language models (pLMs). First, we assemble a dataset of 
709 peripheral membrane proteins with experimentally established membrane-
penetrating amino acids. We separate this dataset into two classes, the amino acids class 
that are membrane-penetrating and the amino acids class that is non-membrane-
penetrating. We then extract the embeddings of amino acids from two protein Language 
Models (pLMs), ESM [96] and protTrans [84]; these are then set as the features of the 
dataset. Then, we split the dataset into training, validation, and test sets for evaluating 
model performance. To address the imbalance issue as only ~3% of the amino acids 
belong to the membrane-penetrating class, we determine the class weights using specific 
weights to emphasize the minority class. We then proceed to train several machine 
learning models, including neural networks, using default parameters. These models 
were employed to optimize the hyper-parameters of the MLP classifiers, which produced 
the highest scores during the initial stage of analysis for both datasets. For the hyper-
parameter optimization, the Bayesian search technique was applied in an extensive 
range of values for 50 trials. The performance of the two models (Multi-Layer Perceptron 
trained on ESM features and Multi-Layer Perceptron trained on protTrans features) was 
improved compared to the initial test, yielding an F1 score = 0.691 with MCC = 0.652 and 
F1 score = 0.622 with an MCC = 0.577 for the protTrans and ESM features respectively, 
for correctly predicting the membrane-penetrating amino acids. Close inspection of the 
results revealed that many of the false positive predictions are true positives. Using a 
cutoff radius of 3Å around true positive membrane penetrating amino acids to include 
neighboring amino acids elevates the F1 score by an average of 11%. 

Although the MLP models demonstrated excellent speed and accuracy in predicting 
membrane-penetrating amino acids for proteins represented in the training set, their 
predictive capabilities are limited to this set alone. Specifically, the models cannot make 
predictions for proteins belonging to the transmembrane category or for those within 
protein families not included in the training set. As such, it is noteworthy that the 
performance of the MLP classifier models is highly reliant on the features/information 
utilized in this study. PLMs generate embeddings that contain encoded function and 
structural information of protein sequences, which is crucial in the decision-making 
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process of our models. This provides novel physicochemical insights into how peripheral 
membrane proteins interact with and adhere to the membrane. While the embeddings 
contain valuable information about the structural and functional properties of protein 
sequences, this wealth of information can sometimes be overwhelming and may result in 
relatively underwhelming results for the models. In the current task, features relative to 
the physicochemical properties of the proteins are more suitable, such as the 
hydrophobicity, solvent exposure surface area, secondary structure element, etc. [44]. 
So, extra work has to be carried out to explore whether it is possible to configure the 
embeddings with respect to the physicochemical properties of amino acids. This could 
result in a more targeted set of features that may boost the performance of models. 

In addition, while MLP models are limited to specific protein families, they don't predict 
false amino acids if they cannot find any relevant information. This suggests that they are 
not overfitted, but they are also not very robust when it comes to unknown protein families. 
The fact that MLP models are limited to specific types of inputs can decrease the 
performance of the classifiers and requires further investigation. 

Next, the attention maps were used to verify that the information about the protein-
membrane interacting region is encoded within the pLMs [101] and to develop classifiers 
that are better able to classify membrane-penetrating amino acids [87]. The results 
confirmed the existence of interfacial binding site information in the attention heads of 
pLM's hidden layers. However, it was observed that either the information of attention 
maps or the Logistic Regression algorithm is unsuitable for accurately classifying protein-
membrane interaction tasks as they achieve an F1 score = 0.366 with an MCC = 0.344 
and F1 score = 0.35 with an MCC = 0.341 for the protTrans and ESM attention maps 
respectively. We tested several probability thresholds for the classification of the amino 
acids, but the performance was not improved. Inspection of the predicted values showed 
that they tend to classify randomly the membrane-penetrating amino acids. It should also 
be noted that attention maps were used to predict the contacts of amino acids in [87], as 
they discovered a correlation between self-attention maps and contact patterns [101]. 
Considering the above, further research needs to be done before rejecting the use of 
attention maps in this case, as they appear to be promising [81]. 

Overall, our results indicate that Artificial Intelligence, specifically NLP techniques, can 
make a significant contribution in the research community to tasks related to protein-
membrane interaction, resulting in a substantial reduction in computing time. Significantly, 
our MLP models trained on pLM features can predict protein-membrane amino acids 
within a minute, which is faster than other tools that may require over an hour to perform 
the same task. As language models continue to improve and outperform traditional 
algorithms, it is likely that their usage will increase in the future [108]–[110]. 
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5. FUTURE PERSPECTIVES 

A number of potential improvements can be suggested to increase efficiency and 
predictability of the current project. 

To evaluate the performance of our model, we used metrics appropriate for the imbalance 
dataset we have available [60], [73], [74], [106]. However, while the F1 score and the 
Matthews correlation coefficient can assess the outcomes of the models, they cannot 
capture the specificities of protein structure, such as the position of amino acids in the 3D 
space. For instance, the score metrics are incapable of detecting scenarios in which 
amino acids situated in the protein-membrane interface, adjacent to true positives or 
adjacent loops, and are categorized as membrane-penetrating despite being labeled as 
non-membrane-penetrating. Therefore, it would be more appropriate to construct metrics 
that take into account the protein 3D structure, omitting the need for manual inspection of 
each protein, and resulting in a more precise scrutinization of the outcomes. 

Currently, our Multi-Layer Perceptron models perform well in predicting protein-
membrane interfaces for specific families of peripheral membrane proteins, but they are 
not capable of handling unknown protein families Although our models do not provide 
wrong information about these proteins, they lack generalizability and robustness. To 
address this issue, we need more protein information from diverse protein families, which 
could significantly improve the performance of our models. We also recognize the 
importance of secondary and supersecondary structure information in the binding 
process of peripheral membrane proteins; for example, alpha-helices have a higher 
propensity to interact with the membrane. Thus, incorporating such specific information 
into the dataset could enhance the predictive ability of our models. In addition, in the 
protein clustering procedure, we selected a threshold of 40% for clustering the proteins. 
However, implementing a less stringent pairwise similarity cutoff could potentially enable 
the algorithms to acquire a more diverse range of protein sequences. 

As the choice of dataset can have a substantial impact on model performance, careful 
selection of input data is essential. One potential solution is to use an alternative protein 
dataset sourced from a database such as BioGRID [111], which contains known protein 
interactions, to train machine learning algorithms. The use of this dataset is expected to 
be less biased and more informative than our current dataset, as it encompasses a 
broader range of protein families. 

As testing and optimization of machine learning algorithms is a time-consuming 
procedure, in this project four machine learning classifiers were chosen for predicting the 
membrane-penetrating amino acids. The present study involved performing model fine-
tuning on two distinct datasets, namely the ESM dataset and the protTrans dataset. The 
multilayer perceptron (MLP) model was subjected to fine-tuning on both datasets. 
Additionally, Bayesian optimization was utilized to fine-tune an XGBoost model 
specifically on the protTrans dataset, although no significant improvement was observed 
in comparison to the untuned model. Thus, a more detailed investigation can be 
performed on the algorithms that may be potentially used, as other methods could 
demonstrate better performance, such as Support Vector Machines (SVMs), K-Nearest 
Neighbor (KNN), Naive Bayes, or others. 
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ABBREVIATIONS – ACRONYMS 

PMP  Peripheral Membrane Proteins 

AI Artificial Intelligence 

TP True Positive 

FP False Positive 

FN False Negative 

TN True Negative 

MCC Matthews correlation coefficient 

NLP Natural Language Processing 

LM Language Model 

BERT Bidirectional Encoder Representations from Transformers 

PLM Protein Language Model 

ESM Evolutionary Scale Modeling 

NN Neural Network 

CNN Convolution Neural Network 

FNN Feedforward Neural Network 

PePrMInt Resources for Peripheral Protein-Membrane Interactions 

IBS Interfacial Binding Sites 

DREAMM Drugging pRotein mEmbrAne Machine learning Method 

PDB Protein Data Bank 

Trp Tryptophan 

Phe Phenylalanine 

Tyr Tyrosine 

Met Methionine 

Lys Lysine 

Arg Arginine 

Gly Glysine 

MLP Multi-Layer Perceptron 

MODA Membrane Optimal Docking Area 

PPM Positioning of Proteins in Membrane 
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