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Introduction

In statistical practice, variables are often contaminated with measurement

error. This may be the case due to bad measurement tools or just because the

true variable cannot be measured directly. In the case of discrete variables,

measurement error is referred to as misclassification. In the framework of

general regression, measurement error or misclassification can lead to serious

bias in the estimated parameters.

In most cases the estimated effect of the contaminated variable is attenuated.

Among many other methods the simulation and extrapolation (SIMEX) by

Cook and Stefanski (1994) has become a useful tool for correcting effect

estimates in the presence of additive measurement error. The same basic idea

of simulation and extrapolation is transferred to the case of misclassification.

The Rstudio package simex provides functions to use the SIMEX method

for various kinds of regression objects and to produce graphics and summary

statistics for corrected objects.

We will start with the concept of measurement error and how it enters and

affects our variables and also ways to avoid it. Then we will talk about

the SIMEX method and give the theoretical background of the method as

well as some simple and easy examples to better understand the method
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and how it works. Finally, we will do a study on databases where there is

measurement error in survival data. We will use the SIMEX method to deal

with the measurement error using the ready-made simex function that exists

in Rstudio. We will also create a function in Rstudio for the SIMEX method

which extends the ways and models we can work with.
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Chapter 1

Measurment error

1.1 Introduction to measurment error

First, we would like to start with some simple examples so that we can better

understand the concept of measurement error. In a research project, people

will give different answers to your questions and that is because they are

generally different. At the same time the answers we receive are not just a

product of peoples genuine differences. Perhaps a good place to start when

discussing measurement problems is to differentiate two sources of variation ,

two reasons that people give the score they give and why people give different

scores.

Those two sources of variation are true variation and measurement error.

True variation means that a measure is capturing people as they really are

and they are giving different scores because they are actually different. Mea-

surement error occurs because there’s a problem in the question. It’s not
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completely capturing the characteristics or all the information that you are

trying to get from your subjects. Also not all measurement errors are the

same, there are two types, random and systematic error.

Random error is unpredictable, errors that don’t necessarily push a study’s

result in one direction or the other. So when you are conducting a study

there are all types of reasons that a respondent might not give an accurate

answer for himself or herself. For example, maybe a respondent misread the

question or maybe the question asks the respondent to perform mental cal-

culations and they made a mistake. That’s error because your measurement

isn’t reflecting your respondents true characteristics but it’s random error,

you don’t know exactly who’s going to commit the error. It’s not like all of

your respondents are going to commit the same type of error in a way that

they bias your overall findings.

Systematic error happens when there is something in the question or the

measurement scheme itself that pushes all respondents to answer you erro-

neously and in the same way. Here is an example of a question that would

probably produce systematic error. Let’s say we would like to study the

maximum speed that a student has driven with his car. We asked the fol-

lowing question: Are you one of those idiots who run more than 120 km/h

, yes or no ? Now the problem with this question is obvious, by labeling

people who run more than 120 km/h as idiots i have created a disincentive

to people to answer yes. You could imagine people who run more than 120

km/h but don’t want the label of idiot attached to them and so they answer
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no even though the true answer is yes. In that type of situation our studies

will probably underestimate the amount of students who run more than 120

km/h because the question was formulated in a way that encouraged a spe-

cific answer.

A really common way to describe the measurement error and visualize it,

is to give this bullseye graph in Figure 1.1 . Imagine the center of the bulls-

Figure 1.1: Bullseye Graph

eye is the true answer for everybody and the shots are examples of the scores

registered when we measure their answers. If there’s a lot of random error

in my study, answers will be all over the place, maybe someone will acciden-

tally answer A instead of B but we can assume that for every person who

accidentally answers one question too low someone else will answer too high,

someone will put an B instead of a C. In situations with a lot of random

error the worst case scenario is that we get just a lot of noise and we can’t

really tell from our measurements what the population is really like.

Systematic error is much more dangerous because there is a possibility that

we will get what appears to be very highly or very precise answer but the

7



answer is wrong. Why is that the problem? Well think about how research

is used in decision making, a lot of random error is given to a decision maker

and the decision maker is probably going to say ”i don’t know, i can’t tell

from the data what my best choice is, the answers are all over the place”. In

contrast, a lot of systematic error could give the impression of highly defini-

tive findings. It looks like your studies are conclusive and your client looks at

your results and goes: Well it’s quite clear what i have to do based on your

results and he or she makes a decision based on your faulty results. A confi-

dent wrong finding is worse than a uncertain finding that doesn’t tell as much.

Measurement error is an inescapable problem, it plagues all studies, it’s an

issue that you can’t get rid off . At best, you can be aware of its existence

and try to keep your eyes open for problems in your research measurement

design that will cause these types of errors. You have to use your judgment

but there are some basic tips that you might want to follow.

• Make your questions and potential answers as clear as possible. Don’t

make it hard for people to understand the question. Give a direct question

or code it. Those type of pitfalls can create error.

• When you design a survey, always pre test it. That means, bring it to

some people, give them the test and then go over the answers with them.

Make sure that the answers that you receive are what they really meant to

be. Talk to them about whether or not the wording of your question made

them feel like they should answer a particular way, or whether or not the
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design of your survey caused them to stop paying attention. It is crucial

not to disregard an issue, especially when it comes to bad data. When your

survey contains a lot of errors, it can negatively impact your analysis.

1.2 True Score Theory

True score theory is a model used to explain how measurement works. It

proposes that any measurement we make is made up of two parts: the true

ability or level of the person being measured, and random error. Although

we can observe the score or measurement that is obtained, we cannot observe

the two components that make up the true score theory. Instead, we assume

that each measurement is a combination of the true ability and random error.

In simpler terms, the theory suggests that any measurement we make is the

sum of what a person is actually capable of and any random factors that

may have affected the measurement. Consider the following equation:

X = T + e,

where X is the observed score, T is the true ability and e is the random error.

The true score theory is a useful way to think about measuring things,

but it may not always be completely accurate. This theory assumes that

any measurement we make is a combination of the true value of what we
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are measuring, plus some random error that occurs during the measurement

process. However, it’s possible that some errors are not random at all, but

instead occur in a systematic way that affects all or most of the things we

are measuring.

To account for this possibility, we can revise the true score model by break-

ing down the error component into two parts: random error and systematic

error. By doing this, we can better understand and account for the different

sources of error in our measurements:

e = er + es,

where er is the random error and es is the systematic error. Here, we’ll look

at the differences between these two types of errors and try to diagnose their

effects on our research.

What is Random Error? Random error is a type of error that occurs due to

various random factors that can affect the measurement of a variable across

a sample. For example, a person’s mood can influence their performance

on a particular task, causing some to perform better and others to perform

worse. The key characteristic of random error is that it has no consistent

effects on the entire sample, and instead, it causes the observed scores to

vary randomly. In other words, it can cause some scores to be higher or

lower than they should be by chance. However, it’s important to note that
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random error doesn’t have any impact on the average performance of the

group as a whole. Therefore, it’s often referred to as ”noise” in the data,

adding variability but not affecting the overall results. This means that if we

were to add up all the random errors in a dataset, the total would have to

be zero, with an equal number of negative and positive errors canceling each

other out. (Figure 1.2 ).

Figure 1.2: The Random Error. Notice that random error doesn’t affect the
average, only the variability around the average.

What is Systematic Error? Systematic errors are errors that consistently

affect the measurement of a variable in a particular sample. These errors can

be caused by various factors and tend to produce either consistently positive

or negative results. For example, if a classroom is located next to a busy

street, the noise from passing traffic may systematically lower the test scores

of all students in that classroom. Systematic errors are often considered to

introduce bias into the measurement process. In contrast to random errors,

which are unpredictable and tend to balance out over time, systematic errors

are persistent and can be difficult to identify and correct. (Figure 1.3).
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Figure 1.3: The Systematic Error. Notice that systematic error affects the
average, we call this a bias.

1.3 Measurement Error in regression models

with one independent variable

The equations for this section can be found in ”Lecture Notes on Measure-

ment Error,Steve Pischke,Spring 2007”. Let’s begin with basic regression

models that have only one independent variable. For the sake of simplicity,

let’s assume that both the variable we are trying to predict and the variable

we are using to make predictions have mean zero. Our goal is to estimate

the relationship between these two variables in the overall population. We

consider the following:
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y = βx+ ϵ. (1.1)

Regrettably, the values we observe for our variables contain a component of

random error that is added to the true value of the variable. This means

that the observed values may not be an exact reflection of the true values,

but rather an approximation with some degree of uncertainty. Hence the

information available is limited to:

x̃ = x+ u (1.2)

ỹ = y + v. (1.3)

To simplify the analysis, let’s assume the following:

E(u) = 0 (1.4)

plim
1

n
(y′u) = 0 (1.5)

plim
1

n
(x′u) = 0 (1.6)

plim
1

n
(ϵ′u) = 0, (1.7)

where plim is the Probability Limit 1. The measurement error in the ex-

planatory variable from the above equations can be described as follows:

1. It has mean zero, meaning that on average, the measurement error does

1Definition: Convergence in probability. Let θ be a constant, ϵ >0, and n be the index
of the sequence of random variable xn. If limn−>∞ Prob[|xn- θ |>ϵ ] = 0 for any ϵ >0, we
say that xn converges in probability to θ.
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not consistently overestimate or underestimate the true value of the explana-

tory variable.

2. It is unrelated to the true values of the dependent variable, meaning that

the measurement error does not systematically vary with changes in the de-

pendent variable.

3. It is also unrelated to the true values of the independent variable, meaning

that the measurement error does not systematically vary with changes in the

independent variable.

4. Finally, it is uncorrelated with the error term in the regression equa-

tion, meaning that the measurement error does not impact the relationship

between the dependent and independent variables as captured by the regres-

sion model.

We will also assume σ2
v = 0 where σ2

v is the variance caused by the mea-

surement error in the variable y , i.e. there is only measurement error in x.

(If we consider measurement error in the dependent variable y, i.e. let σ2
v>0

while σ2
u = 0 and then substitute (1.3) into (1.1) we get:

ỹ = βx+ ϵ+ v.

Since v is uncorrelated with x we can estimate β consistently by OLS in this

case. Of course, the estimates will be less precise than with perfect data

because we have the measurment error included in the data in a way that

only icreases the ϵ ”ỹ = βx+ (ϵ+ v)” ).
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Substitute (1.2) into (1.1):

y = β(x̃− u) + ϵ = βx̃+ (ϵ− βu). (1.8)

When there is a measurement error in the independent variable x used in a

regression analysis, it can lead to endogeneity bias. This happens because

the measurement error in x becomes a part of the error term in the regres-

sion equation as we see from the (1.8), which can affect the estimation of

the coefficients and lead to biased results. In other words, the error in the

measurement of x is not independent of the error in the dependent variable

y. Since x̃ and u are positively correlated (from (1.2)) we can see that OLS

estimation will lead to a negative bias in β̂ if the true β is positive and a

positive bias if β is negative. To assess the size of the bias, we will find the

OLS-estimator for β. First consider that

β̂ =(x′x)−1(x′y)

while (x′x)−1 =
1

(x′x)
=

1

var(x)

x′y = cov(x, y).

From the above equations

β̂ =
cov(x̃, y)

var(x̃)
=

cov(x+ u, βx+ ϵ)

var(x+ u)

and

plim β̂ = plim
cov(x+ u, βx+ ϵ)

var(x+ u)
= plim

βσ2
x

σ2
x + σ2

u

= λβ
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where

λ ≡ σ2
x

σ2
x + σ2

u

.

The quantity λ is a measure of the reliability of the predictor variable in a

linear regression model, where 0 <λ <1. It represents the proportion of the

total variance in the predictor variable that is attributable to its true under-

lying values, as opposed to measurement error or other sources of variation.

When λ is less than one, this means that there is some degree of measurement

error or other extraneous variation in the predictor variable. As a result, the

coefficient β̂ estimated from the regression analysis will tend to be biased

towards zero, or attenuated. In other words, the true effect of the predictor

variable on the outcome variable is being underestimated.

Therefore, λ is referred to as the attenuation factor, because it represents the

degree to which the estimated effect is attenuated due to measurement error

or other sources of variation. A lower value of λ indicates a higher degree of

attenuation, and vice versa.

Now that we have defined λ we can find the bias through

plim β̂ − β = λβ − β = −(1− λ)β = − σ2
u

σ2
x + σ2

u

β,

which again brings out the fact that the bias depends on the sign and size of

β. To understand how the estimated standard error changes, it’s important
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to calculate the residual variance from the regression.

ϵ̂ = y − β̂x̃ = y − β̂(x+ u).

Add and subtract the true error ϵ = y-βx from this equation and collect

terms

ϵ̂ = ϵ− (y − βx) + y − β̂x− β̂u

= ϵ+ (β − β̂)x− β̂u.

The equation above shows that the residual ϵ̂ includes two sources of variation

that are not present in the true error ϵ. The first source of variation is due to

the bias of the estimator β̂ towards zero, which means that even as the sample

size grows, the difference between the estimated coefficient β̂ and the true

coefficient β will not disappear. The second source of variation is due to the

measurement error in the regressor variable x, which introduces additional

variance into the regression model. It is important to note that the three

variables ϵ, x, and u in the equation are assumed to be uncorrelated. We

therefore obtain for the estimated variance of the equation error

plim σ̂2
ϵ = σ2

ϵ + (1− λ)2β2σ2
x + λ2β2σ2

u.

For the estimate of the variance of
√
n(β̂-β), call it ŝ2 (reminder: The OLS

β̂=(x’x)−1(x’y)= (x′y)
(x′x)

and the variance is given by Var(β̂)=(x’x)−1σ2
ϵ=

σ2
ϵ

σ2
x
.
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The proof is in the appendix A1, we have

plim ŝ2 = plim
σ̂2
ϵ

σ̂2
x̃

=
σ2
ϵ + (1− λ)2β2σ2

x + λ2β2σ2
u

σ2
x + σ2

u

=
σ2
x

σ2
x + σ2

u

(
σ2
ϵ

σ2
x

) +
σ2
x

σ2
x + σ2

u

(1− λ)2β2 +
σ2
u

σ2
x + σ2

u

λ2β2

= λ(
σ2
ϵ

σ2
x

) + λ(1− λ)2β2 + λ2(1− λ)β2

= λs2 + λ(1− λ)β2.

The first term in the equation suggests that the estimated variance will be

lower than the true variance by a factor proportional to λ, which means the

estimation is likely to be biased downwards.

However, the second term indicates that the bias could go either way, as it

depends on the value of λ and β. If λ is small and β is large, the bias will

be positive, which means the estimated variance will be overestimated. On

the other hand, if λ is large and β is small, the bias will be negative, which

means the estimated variance will be underestimated.

Therefore, it is not possible to determine the overall direction of the bias in

the estimated variance without knowing the values of λ and β.

However, the t-statistic (Definition of the t=statistic: Let β̂ be an estimator

of parameter β in some statistical model. Then a t-statistic for this parameter

is any quantity of the form t = β̂−β0

s.e.(β̂)
, t-statistic with β0 = 0 is used to test the

significance of corresponding regressor ) will be biased downwards (towards
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zero). The t-ratio converges to

plim t√
n

=
plim β̂

plim
√
ŝ2

=
λβ√

λs2 + λ(1− λ)β2

=
√
λ

β√
s2 + (1− λ)β2

which is smaller than β/
√
s2.

1.4 Measurment Error in Multivariate Re-

gression Models

Multivariate OLS (Ordinary Least Squares) is a statistical method used to

estimate the parameters of a linear regression model when there are multi-

ple dependent variables or predictors. Measurement error occurs when the

observed values of one or more variables are contaminated with error.

In the context of multivariate OLS with measurement error, the goal is to

estimate the true parameters of the model, taking into account the mea-

surement error in the observed variables. This is often referred to as the

errors-in-variables (EIV) problem.

One approach is to use a simulation-based method such as the simulation

and extrapolation (SIMEX) method (which we are going to analyze this

method in Chapter 2) or the bootstrap method. These methods involve sim-

ulating data sets with known levels of measurement error, and then using
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these simulated data sets to estimate the true parameters of the model.

Another approach to dealing with measurement error in multivariate OLS

is to use instrumental variables (IV) regression. This involves finding one

or more variables that are correlated with the true value of the independent

variable(s) of interest, but not correlated with the measurement error. These

instruments can then be used to obtain consistent estimates of the true pa-

rameters of the model. We will examine this method in the next section.

The OLS multivariate model with measurement error can be expressed as:

Y = Xβ + ϵ,

where Y is an n× 1 vector of dependent variable observations, X is an n× k

matrix of independent variable observations, β is a k×1 vector of coefficients,

and ϵ is an n× 1 vector of error terms.

If we take into account the measurement error in X, we can write:

Y = (X + U)β + ϵ,

where U is an n× k matrix of measurement error terms in X.

To estimate β, we need to use the information available from Y and the

measured X, X̃. Assuming that the measurement error in X is uncorrelated

with the error term ϵ, we can write:

X̃ = X + U
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and we can estimate β using the following equation:

β̂ = (X ′X)−1X ′Y,

where X ′ is the transpose of X, and (X ′X)−1 is the inverse of the matrix

X ′X. This is the OLS estimator of β, and it minimizes the sum of squared

errors between the predicted values of Y and the actual values of Y .

To adjust for the measurement error in X, we can use the following equation:

β̂adj = (X ′X)−1X ′Ỹ ,

where Ỹ = (X + U)β + ϵ is the observed value of Y , using the measured

value of X.

The estimator β̂adj is generally not an unbiased estimator. The reason for

this is that the measurement error in X causes attenuation bias, which bi-

ases the OLS estimator towards zero. The amount of bias depends on the

magnitude of the measurement error and the correlation between X and U .

In the presence of measurement error, the OLS estimator is biased towards

the regression coefficient of the measured variables, which is typically less

than the true regression coefficient. The adjusted estimator β̂adj reduces but

does not completely eliminate this bias.

However, under certain assumptions, such as the classical measurement error

model where the measurement error is uncorrelated with the true value of

the variable, and the measurement error has a mean of zero and a constant

variance, the adjusted estimator can be consistent, meaning that it converges
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to the true value of β as the sample size increases. In practice, it is important

to carefully consider the sources of measurement error and the assumptions

underlying the model when interpreting the results of an analysis.

1.5 Instrumental Variables

Measurement error can lead to biased estimates in statistical analyses. One

approach to address this issue is to use instrumental variables (IV) to esti-

mate consistent estimators.

IVs are variables that are correlated the true value of the variable of in-

terest with the measurement error but not with the measurement error. The

idea is that the IV can be used to correct for the measurement error and

obtain a consistent estimator.

There are several methods for constructing IVs in the context of measurement

error. One approach is to use external validation data that is independent

of the data used for the analysis. For example, if a researcher is interested

in estimating the effect of a drug on blood pressure, they might use an IV

that is correlated with the true blood pressure but not with the measurement

error in the blood pressure data.

Another approach is to use a natural experiment that generates variation

in the measurement error. For example, if a researcher is interested in esti-
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mating the effect of education on income but there is measurement error in

the education variable, they might use an IV that is correlated with the true

education but not with the measurement error. This could be a policy change

that affects the availability of education, such as a change in the compulsory

schooling age.

Overall, the use of IVs can help to address the issue of measurement er-

ror and obtain more accurate and reliable estimates in statistical analyses.

Lets consider an instrument z correlated with x but uncorrelated with u,

which will identify the true coefficient since:

β̂IV =
cov(y, z)

cov(x̃, z)
=

cov(βx+ ϵ, z)

cov(x+ u, z)

plim β̂IV =
βσxz

σxz

= β.

1.5.1 Popular Choices of Instruments in Measurment

Error Models

Wald’s method, Durbin’s method, and Bartlett’s method are three different

approaches to constructing instrumental variables (IV) estimators.

Wald’s method is a two-stage least squares (2SLS) estimator that uses a

single instrumental variable for each endogenous variable in the regression

model. The first stage involves regressing the endogenous variables on the

instrumental variables to obtain the predicted values of the endogenous vari-

ables. In the second stage, the predicted values of the endogenous variables
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are used as regressors in the main regression model. Wald’s method is named

after the statistician Abraham Wald.

Durbin’s method is a generalization of Wald’s method that allows for multiple

instrumental variables for each endogenous variable. This method involves

creating a set of instrumental variables that are uncorrelated with each other

and using them in a multiple regression model to obtain the predicted values

of the endogenous variables. Durbin’s method is named after the statistician

James Durbin.

Bartlett’s method is another generalization of Wald’s method that allows

for multiple instrumental variables for each endogenous variable. However,

it differs from Durbin’s method in that it involves constructing a matrix

of instrumental variables that is optimized to minimize the variance of the

resulting IV estimator. Bartlett’s method is named after the statistician

Maurice Bartlett.

All three methods have their advantages and disadvantages, and the choice

of which method to use depends on the specific research question and the

characteristics of the data.

1.5.2 Example of IV in Multivariate OLS

Here is a simple example where we use IV to address endogeneity and mea-

surement error in a multivariate OLS model:
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Suppose we are interested in estimating the effect of education (E) and ex-

perience (X) on earnings (Y), but we suspect that education and experience

are endogenous and affected by measurement error. To address this, we use

an instrumental variable approach.

Let’s assume that years of schooling of the father (F) is a valid instrument

for education (E), meaning that F is correlated with E but uncorrelated with

the error terms, including the measurement error in E. We also assume that

the father’s years of schooling is not directly related to the error term in

earnings (Y) or the measurement error in experience (X).

Then, we can estimate the following IV regression model:

Y = β0 + β1E + β2X + ϵ

where Y is the dependent variable, E and X are the independent variables,

β0, β1, and β2 are the coefficients of interest, and ϵ is the error term. To

estimate the coefficients, we use the following two-stage least squares (2SLS)

estimator:

We assume that years of schooling of the father (F ) is a valid instrumental

variable for education (E), and we define the first-stage regression model:

E = δ0 + δ1F + u,

where δ0 and δ1 are the coefficients of the first-stage regression, and u is the

error term.
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We can then estimate the first-stage regression using the following:

Ê = α0 + α1F,

where Ê is the predicted value of education from the first stage regression,

and α0 and α1 are the estimated coefficients. Finally, we can estimate the

second-stage regression using the predicted value of education as an instru-

ment:

Y = β0 + β1Ê + β2X + ϵ,

where Ê is the predicted value of education from the first-stage regression.

This can be estimated using the following :

Ŷ = γ0 + γ1Ê + γ2X,

where γ0, γ1, and γ2 are the estimated coefficients. This 2SLS estimator pro-

vides consistent estimates of the coefficients of interest, even in the presence

of measurement error and endogeneity.

1.6 Measurment Error in Dummy variables

In OLS (ordinary least squares) regression, dummy variables are used to rep-

resent categorical variables in a regression equation. Dummy variables take

on a value of 1 or 0 depending on whether the observation falls into a par-

ticular category or not.

When there is measurement error present in the data, the use of dummy vari-
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ables can be affected. If the measurement error is random, meaning that it

is not systematically related to any particular variable or group of variables,

then the use of dummy variables in OLS regression should not be affected.

The measurement error will simply add noise to the data, which may reduce

the precision of the estimated coefficients but should not bias them.

However, if the measurement error is systematic, meaning that it is related to

a particular variable or group of variables, then the use of dummy variables

in OLS regression can be biased. For example, if the measurement error is

larger for one category of a categorical variable compared to others, then the

estimated coefficient for that category may be biased towards zero.

In order to address this issue, one approach is to use instrumental variables

(IV) regression. Overall, when using dummy variables in OLS regression with

measurement error, it is important to carefully examine the sources and na-

ture of the measurement error to ensure that the estimated coefficients are

not biased. If bias is suspected, alternative methods such as IV regression

may need to be used.

For example, we want to study the effect of gender on income using OLS

regression. However, we have reason to suspect that there may be measure-

ment error in the gender variable due to self-reporting issues. To account for

this, we will use an instrumental variables approach.

We will use the education level of the individual as an instrument for gen-

der. Education level is likely correlated with gender, but is less likely to
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be affected by measurement error. We first estimate the following equation,

where the instrument (Education) is regressed on the suspect variable (Male):

Male = α0 + α1Education+ u

We can then use the predicted values of Male from this equation as our in-

strument in the OLS regression equation:

Income = β0 + β1M̂ale+ β2Education+ β3Experience+ ϵ

Here, M̂ale is the predicted value of Male from the first equation, β0 is the

intercept term, β1 is the coefficient for the predicted value of Male, β2 is the

coefficient for Education, β3 is the coefficient for Experience, and ϵ is the

error term.

The estimated coefficient for the predicted value of Male (β1) represents the

difference in average income between males and females, controlling for edu-

cation level and years of work experience, while accounting for the presence

of measurement error in the gender variable.
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Chapter 2

SIMEX

2.1 SIMEX

SIMEX (Simulation and Extrapolation method) is a statistical technique

used to estimate the bias of an estimator in the presence of measurement er-

ror. The method was first proposed by Cook and Stefanski in 1994, in their

paper ”Simulation-extrapolation estimation in parametric measurement er-

ror models.”

The SIMEX method works by simulating new datasets with different levels

of measurement error and then extrapolating the results to estimate the bias

of the estimator. This allows researchers to better understand the impact

of measurement error on their results and to adjust their analyses accordingly.

Since its introduction, the SIMEX method has been widely used in vari-

ous fields, including epidemiology, environmental science, and biostatistics.
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It has been used to evaluate the performance of diagnostic tests, estimate

the effects of exposure to environmental toxins, and evaluate the accuracy of

measurement devices.

One of the main advantages of the SIMEX method is that it can provide

more accurate estimates of bias than other methods, such as regression cali-

bration, when the amount of measurement error is large or the relationship

between the measurement error and the true value is complex. However,

the SIMEX method also has some limitations, including the need for a large

number of simulations and the potential for bias in the extrapolation process.

Overall, the SIMEX method has become a valuable tool for researchers seek-

ing to improve the accuracy of their results in the presence of measurement

error.

2.1.1 The SIMEX Method

The SIMEX (Simulation and Extrapolation) method is used when we have a

predictor variable X that is not directly observable, but we observe a related

variable W = X + U, where U = Normal(0, Σu), is a measurement error

with a known covariance matrix Σu. Some components of U may equal zero

indicating no measurement error in that component. Consider a set of values

0 = λ1 <λ2 <··· <λJ . In the SIMEX method, we take the following steps:
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1. Simulation: We simulate additional measurement errors for W by adding

independent errors with covariance matrix λjΣu for each level of contamina-

tion j. This results in a set of contaminated data sets with increasing levels

of measurement error. For the j-th data set, the total measurement error

variance is Σu + λjΣu = (1 + λj) Σu.

2. Estimation: We estimate X from each contaminated data set using our

favorite method (more details in the next page), assuming that there is no

measurement error.

3. Averaging: We repeat steps 1 and 2 a large number B times and aver-

age the estimates obtained from each contaminated data set for each level

of contamination λj. This gives us an average estimate for each level of con-

tamination.

4. Extrapolation: We fit an extrapolation function to the averaged estimates

(λj’s) using a regression technique such as polynomial least squares. The ex-

trapolation function estimates the relationship between the true X and the

contaminated W data sets as the level of contamination approaches zero.

5.SIMEX estimate: We extrapolate to the ideal case of no measurement error

(λ = −1), which gives us the SIMEX estimate of X.

In summary, the SIMEX method is a technique to estimate the value of an

unobservable predictor variable X in the presence of measurement error in a

related variable W. It involves simulating additional measurement errors for

W, estimating X from each contaminated data set, averaging the estimates

over many simulations, fitting an extrapolation function to the averaged esti-

mates, and extrapolating to the ideal case of no measurement error to obtain
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the SIMEX estimate of X.

The favorite method in each case:

In parametric problems, the commonly used approach for estimating pa-

rameters is to solve an estimating function. However, due to measurement

errors in the explanatory variables, the underlying model may not be accu-

rately specified, which can result in biased estimates. Fortunately, this is a

well-known issue and does not pose a significant problem since estimating

function methods are still effective even when the model is misspecified.

Likewise, in nonparametric regression, the preferred method for estimating

the relationship between variables is to solve a local estimating equation.

Again, this approach may be affected by model misspecification, but the

general principles remain the same.

In both cases, the goal is to obtain estimates that are as accurate as pos-

sible given the available data, even if the model is not precisely specified.

Therefore, it is important to use appropriate techniques and understand the

limitations of the chosen approach to ensure that the resulting estimates are

reliable.
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2.2 Likelihood Functions and Estimators

In the SIMEX method, the likelihood function is used to estimate the model

parameters and to simulate the true values of the predictor variable. The

likelihood function is defined as the joint probability density function of the

observed data, given the model parameters.

Let us consider a regression model with a predictor variable X, response vari-

able Y, and measurement error in X, where we observe the related variable W

= X + U, and U is a random error term with a mean of zero and covariance

matrix Σu. The likelihood function for this model can be expressed as:

L(β, σ2,Σu|W ) =
n∏

i=1

f(yi|wi, β, σ
2)g(wi|xi,Σu),

where β represents the regression coefficients, σ2 represents the error vari-

ance, and f(yi|wi, β, σ
2) and g(wi|xi,Σu) represent the conditional probabil-

ity distributions of Y given W and of W given X and Σu, respectively.

The first term of the likelihood function represents the conditional probabil-

ity of observing the response variable Y, given the observed values of W and

the model parameters β and σ2. This is typically assumed to be a normal

distribution, such that:

f(yi|wi, β, σ
2) =

1√
2πσ2

exp

(
−(yi − βTwi)

2

2σ2

)
.

The second term of the likelihood function represents the conditional proba-
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bility of observing the related variable W, given the true values of X and the

measurement error covariance matrix Σu. This is typically assumed to be a

normal distribution, such that:

g(wi|xi,Σu) =
1

(2π)k/2|Σu|1/2
exp

(
−1

2
(wi − xi)

TΣ−1
u (wi − xi)

)
,

where k is the number of non-zero elements in the error covariance matrix

Σu. Using the likelihood function, we can estimate the model parameters

β, σ2, and Σu by maximizing the likelihood function. This can be done us-

ing numerical optimization methods such as maximum likelihood estimation

(MLE) or restricted maximum likelihood estimation (REML).

Once the model parameters have been estimated, we can simulate the true

values of the predictor variable X by adding a random error term U, drawn

from a normal distribution with mean zero and covariance matrix Σu, to the

observed values of W. We can repeat this process many times to generate

multiple datasets with simulated values of X.

Finally, we can re-estimate the model using the simulated values of X and the

original values of W, and calculate the extrapolated effect of X by compar-

ing the model coefficients from the original model to the model coefficients

from the re-estimated model using the simulated values of X. This extrap-

olated effect provides an estimate of the true effect of X, adjusted for the

measurement error in W.
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2.3 SIMEX when X is Modeled Non-parametrically

In the SIMEX method, we can also use a non-parametric model to estimate

the relationship between the predictor variable X and the response variable

Y when X is not directly observable but is measured with error. In this

case, we can use a smoothing technique, such as kernel smoothing or spline

regression, to estimate the non-parametric relationship between X and Y.

Let us consider a non-parametric regression model, where the response vari-

able Y is related to the true but unobserved predictor variable X by a non-

parametric function m(·), such that Y = m(X) + ϵ, where ϵ represents the

random error term with mean zero and variance σ2.

We observe a related variable W = X + U, where U is a random error term

with mean zero and covariance matrix Σu. Similar to the parametric case,

we assume that the error term U is normally distributed with mean zero and

covariance matrix Σu.

To estimate the non-parametric relationship between X and Y, we can use a

smoothing technique, such as kernel smoothing or spline regression, to esti-

mate the conditional mean functionm(·) given the observed values of W. The

estimated function m̂(·) can be obtained by minimizing the sum of squared

errors:

m̂(·) = argmin
m

n∑
i=1

(Yi −m(Wi))
2.

Once the non-parametric model has been estimated, we can simulate the true
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values of the predictor variable X by adding a random error term U, drawn

from a normal distribution with mean zero and covariance matrix Σu, to the

observed values of W. We can repeat this process many times to generate

multiple datasets with simulated values of X.

Finally, we can re-estimate the non-parametric model using the simulated

values of X and the original values of W, and calculate the extrapolated ef-

fect of X by comparing the estimated function m̂(·) from the original model

to the estimated function m̃(·) from the re-estimated model using the simu-

lated values of X. This extrapolated effect provides an estimate of the true

effect of X, adjusted for the measurement error in W.

2.3.1 Standard Error Estimation for the Parametric

Part

In the SIMEX method with non-parametric modeling of X, the standard

error estimation for the parametric part can be challenging due to the com-

plexity of the non-parametric model. However, one approach to estimate the

standard error for the parametric part is the bootstrap method.

In the bootstrap method, we repeatedly resample the data and estimate

the model to obtain multiple estimates of the parameter of interest. We can

then calculate the standard error of the parameter estimate as the standard

deviation of the bootstrapped estimates.
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Specifically, to estimate the standard error of the parametric part in the

SIMEX method with non-parametric modeling of X, we can perform the fol-

lowing steps:

1. Obtain the estimate of the non-parametric function m̂(·) using the ob-

served values of W.

2. Simulate the true values of X using the observed values of W and a ran-

dom error term U drawn from a normal distribution with mean zero and

covariance matrix Σu. We can repeat this process many times to generate

multiple datasets with simulated values of X.

3. For each simulated dataset, re-estimate the non-parametric function m̃(·)

using the simulated values of X and the original values of W.

4. Calculate the extrapolated effect of X as the difference between m̂(·) and

m̃(·).

5. Bootstrap the extrapolated effect by repeatedly resampling the observed

data and simulating new datasets with simulated values of X. For each boot-

strapped dataset, repeat steps 3 and 4 to obtain a bootstrapped estimate of

the extrapolated effect.

6. Calculate the standard error of the extrapolated effect as the standard

deviation of the bootstrapped estimates.

This bootstrap approach can provide an estimate of the standard error for

the parametric part of the SIMEX method with non-parametric modeling

of X. However, it can be computationally intensive, especially when dealing

with large datasets or complex non-parametric models.
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2.3.2 Standard Error Estimation for the Non-parametric

Part

In the SIMEX method with non-parametric modeling of X, the standard er-

ror estimation for the non-parametric part can also be challenging due to the

complexity of the non-parametric model. However, one common approach

to estimate the standard error for the non-parametric part is the bootstrap-t

method.

The bootstrap-t method is a variant of the bootstrap method that takes

into account the variability in the estimate of the non-parametric function

m̂(·). Specifically, the bootstrap-t method involves the following steps:

1. Obtain the estimate of the non-parametric function m̂(·) using the ob-

served values of W.

2. Simulate the true values of X using the observed values of W and a ran-

dom error term U drawn from a normal distribution with mean zero and

covariance matrix Σu. We can repeat this process many times to generate

multiple datasets with simulated values of X.

3. For each simulated dataset, re-estimate the non-parametric function m̃(·)

using the simulated values of X and the original values of W.

4. Calculate the extrapolated effect of X as the difference between m̂(·) and

m̃(·).

5. Bootstrap the distribution of the extrapolated effect by repeatedly resam-

pling the observed data and simulating new datasets with simulated values

of X. For each bootstrapped dataset, repeat steps 3 and 4 to obtain a boot-
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strapped estimate of the extrapolated effect.

6. Calculate the standard deviation of the bootstrapped estimates from step

5 as an estimate of the standard error of the extrapolated effect.

7. Use the studentized bootstrap-t method to adjust the standard error esti-

mate for bias due to the estimation of the non-parametric function. Specif-

ically, we divide the bootstrapped standard deviation from step 6 by a t-

statistic that takes into account the degrees of freedom of the non-parametric

estimate.

The bootstrap-t method can provide an estimate of the standard error for

the non-parametric part of the SIMEX method with non-parametric model-

ing of X. However, like the bootstrap method for the parametric part, it can

be computationally intensive, especially when dealing with large datasets or

complex non-parametric models.

2.4 Simex when X is Modeled Parametrically

When X is modeled parametrically, the SIMEX method can be represented

by the following equations:

1. Estimate the parametric model of interest using the observed values of W:

Y = β0 + β1X + β2Z2 + · · ·+ βkZk + ϵ,

where Y is the outcome variable, X is the predictor variable with measure-

ment error, Z2, . . . , Zk are other covariates, and ϵ is the error term. We esti-
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mate the coefficients β0, β1, . . . , βk using the observed values of W = X +U ,

where U ∼ N(0,Σu) is the measurement error with a known covariance ma-

trix Σu.

2. Extrapolate the effect of X to the true values of X using the SIMEX

method:

X∗ = X + γU,

where X∗ is the extrapolated value of X, X is the observed value of X,

U ∼ N(0,Σu) is the measurement error, and γ is a correction factor given

by:

γ =
∂E(X|W )

∂X
,

where E(X|W ) is the conditional expectation of the true value of X given

the observed value of W.

3. Estimate the parametric model using the simulated values of X:

Y = β∗
0 + β∗

1X
∗ + β∗

2Z2 + · · ·+ β∗
kZk + ϵ,

where β∗
0 , β

∗
1 , . . . , β

∗
k are the estimated coefficients from the model fitted to

the simulated values of X and the observed values of Z2, . . . , Zk, and ϵ is the

error term.

4. Calculate the extrapolated effect of X as the difference between the esti-

mated parameters from the model fitted to the observed values of W and the

average of the estimated parameters from the models fitted to the simulated

datasets:
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τ̂ =
1

B

B∑
b=1

(β
∗(b)
1 − β1),

where β
(b)
1 is the estimated coefficient for X∗ in the b-th simulated dataset, β1

is the estimated coefficient for X in the original model, and B is the number

of simulated datasets.

5. Bootstrap the extrapolated effect to estimate the standard error:

• Resample the observed data with replacement to create a new bootstrap

sample.

• Repeat steps 2-4 using the bootstrap sample to estimate a bootstrapped

value of τ̂ .

• Repeat the above step many times to obtain a distribution of bootstrapped

values of τ̂ .

• Calculate the standard error of the extrapolated effect as the standard de-

viation of the bootstrapped values of τ̂ .

This approach can provide a way to correct for measurement error in X

and estimate the true effect of X on the outcome variable when X is modeled

parametrically.

2.4.1 Standard Error Estimation for the Parametric

and Non-Parametric Part

When X is modeled parametrically, the standard error estimation for the

parametric part can be obtained by the following steps:
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1. Simulate a new error vector U* using the estimated covariance matrix Σ̂u.

2. Generate a new predictor variable X* by adding the simulated error vector

U* to the observed variable W:

X∗ = W + U∗.

3. Fit a parametric model to the simulated data (X*, Y).

4. Repeat steps 1-3 a large number of times (e.g., 1000 times) to obtain

multiple parametric estimates.

5.Calculate the mean and standard deviation of the parametric estimates:

β =
1

M

M∑
m=1

βm

s(β) =
1

M − 1

M∑
m=1

(βm − β)2,

where βm is the parameter estimate obtained from the m-th simulated dataset,

M is the total number of simulations, and s(β) is the estimated standard er-

ror of the parametric estimate.

Note that the standard error estimation for the nonparametric part is ob-

tained using a similar procedure, but instead of fitting a parametric model

in step 3, a nonparametric model is fitted to the simulated data and the step
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5 is given by:

f(x) =
1

M

M∑
m=1

fm(x)

s(x) =
1

M − 1

M∑
m=1

(fm(x)− f(x))2,

where fm(x) is the nonparametric estimate obtained from the m-th simulated

dataset.

2.5 SIMEX in Rstudio

Although the SIMEX method may seem easy, some people may have diffi-

culty applying its steps to a simple regression problem. Fortunately, RStudio

has the method pre-installed. By typing ”?simex” in RStudio, a help win-

dow opens, which explains that the SIMEX method is used for dealing with

measurement error. In the window that opens, we can see a figure as shown

below: Figure2.1.

As we scroll down the help window we see that the basic syntax for us-

ing simex is as follows:

simex(formula, data, error.sd, num.simulations, seed)

where:
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Figure 2.1: The SIMEX in Rstudio

• ”formula” is a formula specifying the regression model

• ”data” is the data frame containing the variables in the formula

• ”error.sd” is the standard deviation of the measurement error

• ”num.simulations” is the number of simulations to perform

• ”seed” is an optional argument that can be used to set the random seed

for reproducibility.

The simex() function returns a list object with the following components:

• ”coefficients”: a matrix containing the SIMEX-corrected coefficient esti-

mates

• ”std.errors”: a matrix containing the standard errors of the SIMEX-corrected

coefficient estimates

• ”bias”: a matrix containing the estimated biases of the coefficient esti-

mates
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• ”conf.int”: a matrix containing the confidence intervals for the SIMEX-

corrected coefficient estimates.

If we continue scrolling down, we will find details about the function simex

as well as generic methods that can be used, such as:

• ”plot”: Plot the simulation and extrapolation step

• ”predict”: Predict using simex correction

• ”print”: Print simex nicely

• ”print”: Print summary nicely

• ”refit”: Refits the model with a different extrapolation function

• summary: Summary of simulation and extrapolation

The last thing we see in the help window is some examples that are available

by default in Rstudio. These examples can help us better understand the

SIMEX method. In Rstudio, we can also use the SIMEX method for discrete

data with misclassification by using the function ”mcsimex” in a similar way

to ”simex”.

2.5.1 SIMEX example in Rstudio

The following example demonstrates how the SIMEX method can be used

to correct for measurement errors in Ordinary Least Squares (OLS) mod-

els in Rstudio. In order to run the SIMEX in our computer we need to

install some packages in the Rstudio. We start by installing the packages
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”simex” , ”pacman” and ”tibble” by easily typing install.packages(”simex”),

install.packages(”pacman”), install.packages(”tibble”). Then we call the li-

braries pacman, tibble and after that we type p load(kirkegaard, simex, rms)

options(digits = 3), as we see in Figure 2.2.

In order to test the accuracy of models, we introduce different levels of

Figure 2.2: Our Rstudio input

errors to the actual measurements and analyze whether we can obtain the

correct results by incorporating the degree of measurement error. Specif-

ically, we simulate models with varying measurement errors added to the

true variables and see if we can get the right results back if we plug in the

amount of measurement error.

In this simulation study, we have considered three different models to as-

sess the relationship between two uncorrelated predictors and an outcome

variable. Firstly, we have a ”true model” which is based on the unobserved

predictors and serves as a benchmark for evaluating the performance of the

other two models. Secondly, we have a ”naive model” which only takes into

account the observed variables and ignores any measurement reliability is-
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sues. Finally, we have a ”SIMEX model” that incorporates the reliability

of the measurements to improve the estimation of the relationship between

the predictors and the outcome, aiming to recover the results from the true

model.

We have set the sample size to 5000 and have considered two predictors

with constant slopes of 1, which are uncorrelated. We have also varied the

reliability of the measurements to be 1.2 and 0.8. It is important to note that

the true reliability of the measurements is known and used in the SIMEX

model to improve the estimation accuracy. Overall, the simulation study

aims to assess the performance of the different models under these settings

and provide insights into the importance of accounting for measurement re-

liability in regression analysis.

We will generate a set of 5000 observations where a1 and a2 are values from

the standard normal distribution and a1x and a2x are the corresponding ob-

serations with the reliability at 1.2 and 0.8 respectively.

Input :

sim1 data = tibble(a1 = rnorm(5000),

a2 = rnorm(5000),

a1x = a1 + rnorm(5000) ∗ 1.2,

a2x = a2 + rnorm(5000) ∗ 0.8,

y = a1 + a2

)
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We now run the linear model with the variables a1 and a2

Fitment:

(sim1 truefit = lm(y ∼ a1 + a2, data = sim1 data))

And Rstudio gives us the following results.

Output:

Call :

lm(formula = y ∼ a1 + a2, data = sim1 data)

Coefficients :

(Intercept) a1 a2

7.02e− 18 1.00e+ 00 1.00e+ 00

As we can see from the output the constant term is equal to 0 and the

slopes a1 and a2 are equal to 1 . We now do the same procedure for the

naive model with the variables a1x and a2x .

Input:

(sim1 naive fit = lm(y ∼ a1x+ a2x, data = sim1 data, x = T ))

And Rstudio gives us the following results.

Output:

48



Call :

lm(formula = y ∼ a1x+ a2x, data = sim1 data, x = T )

Coefficients :

(Intercept) a1x a2x

− 0.01796 0.40419 0.62719

As we can see from the output the constant term is equal to -0.01796 and

the slopes a1x and a2x are equal to 0.40419 and 0.62719 respectively.

We notice that the values of the constant terms as well as a1 and a1x a2

and a2x are different for the two above linear models. We would now like to

apply simex to the naive model to see the results we get.

Input:

(sim1 simex fit = simex(sim1 naive fit, SIMEXvariable = c(”a1x”, ”a2x”),

measurement.error = cbind(1.2, 0.8), lambda = seq(.1, 2, by = .1)))

And Rstudio gives us the following results.

Output:

Naivemodel :

lm(formula = y ∼ a1x+ a2x, data = sim1 data, x = T )

SIMEX − V ariables : a1x, a2x

Number of Simulations : 100

Coefficients :

49



(Intercept) a1x a2x

− 0.00634 0.62955 0.88059

We can see that the value of the constant parameter is -0.00634, which

indicates that SIMEX led us to the actual value of 0. Similarly, for the

values of a1x and a2x, they became 0.62955 and 0.88059, respectively, which

shows that SIMEX led us to the actual values of 1 for the slopes a1 and

a2. Initially, the constant was -0.01796 but it became -0.00634 after apply-

ing SIMEX, which is evidently closer to 0. Similarly, the values of a1 and

a2 changed from 0.40419 and 0.62719 to 0.62955 and 0.88059, respectively,

which are obviously closer to 1. Thus, we can conclude that the SIMEX

method corrected our variables in the right direction.

But if we plot in Rstudio our results we are getting the following three plots

Figure 2.3, Figure 2.4 and Figure 2.5 .

Input:

plot(sim1 simex fit)

In order to visualize the values that Rstudio gave us we are making the

following R code:

truev = c(0, 1, 1)

50



Figure 2.3: Plot 1

Figure 2.4: Plot 2

namesv = c(0, 1, 2)

plot(namesv, truev, xlab = ”intercept, a1, a2”, ylab = ”value”,main = ”Blue

for real values, red for naive values and green for simex values”

, pch = 15, col = ”blue”, cex = 1)

points(x = 0, y = −0.01796, pch = 15, col = ”red”, cex = 1)
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Figure 2.5: Plot 3

points(x = 0, y = −0.00634, pch = 15, col = ”green”, cex = 1)

points(x = 1, y = 0.40419, pch = 15, col = ”red”, cex = 1)

points(x = 1, y = 0.62955, pch = 15, col = ”green”, cex = 1)

points(x = 2, y = 0.62719, pch = 15, col = ”red”, cex = 1)

points(x = 2, y = 0.88059, pch = 15, col = ”green”, cex = 1)

The results we get are in the plot below: Figure 2.6.

Now we can clearly see that the green boxes are closer to blue boxes than

the red ones.

The complete code for this simulation is in appendix A2.
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Figure 2.6: The visualized values

2.5.2 Extra example in Rstudio

To clarify, the OLS (ordinary least squares) method is commonly associated

with a simple linear regression model that involves a single independent vari-

able. For the purpose of demonstrating the regression line, we will perform

an additional example based on the previous example, but this time we will

only consider the variable a1 and disregard a2.
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In this simulation, we are assuming that there is only one predictor variable,

and the true relationship between the predictor and the outcome variable

has a constant slope of 1. The reliability of the outcome measure is assumed

to be constant and set at 1.2. We will use SIMEX to estimate the effect of

measurement error on the slope estimate, and we know the true reliability of

the measure that we will use in SIMEX. The sample size for the simulation is

5000. We will generate a set of 5000 observations where: a1 is the value from

the standard normal distribution and a1x is the corresponding obseration

with the reliability at 1.2.

Input :

simextra = tibble(a1 = rnorm(5000), a1x = a1+ rnorm(5000)∗1.2, y = a1)

We now run the linear model:

(simextra true fit = lm(y ∼ a1, data = simextra))

And Rstudio gives us the following results.

Output:

Call :

lm(formula = y ∼ a1, data = simextra)

Coefficients :

(Intercept) a1

1.26e− 16 1.00e+ 00
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As we see from the output the constant term is equal to 0 and the slope

a1 is equal to 1. We now do the same procedure for the naive model with

the variable a1x.

Input:

(simextra naive fit = lm(y ∼ a1x, data = simextra, x = T ))

And Rstudio gives us the following results.

Output:

Call :

lm(formula = y ∼ a1x, data = simextra, x = T )

Coefficients :

(Intercept) a1x

0.00577 0.40734

As we can see from the output, the constant term is equal to 0.00577 and

the slope a1x is equal to 0.40734 . We notice that the values of the constant

term, as well as a1 and a1x, are different for the two linear models above.

We would now like to apply Simex to the naive model to see the results we

get.

Input:

(simextra simex fit = simex(simextra naive fit, SIMEXvariable = c(”a1x”),
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measurement.error = 1.2, lambda = seq(.1, 2, by = .1)))

And Rstudio gives us the following results.

Output:

Naivemodel :

lm(formula = y ∼ a1x, data = simextra, x = T )

SIMEX − V ariables : a1x

NumberofSimulations : 100

Coefficients :

(Intercept) a1x

0.00372 0.62662

We can see that the constant parameter’s value is 0.00372 , which indi-

cates that SIMEX led us to the actual value of 0. Similarly, the value of a1x

changed from 0.40734 to 0.62662, which means that SIMEX led us to the

actual value of 1 for the slope a1. The constant’s initial value was 0.00577

, which became 0.00372 after applying SIMEX, appearing to be closer to 0.

Likewise, a1x changed from 0.40734 to 0.62662, which is evidently closer to

1. Therefore, from the above example, we can infer that SIMEX successfully

corrected our variables in the right direction.

However, if we plot in Rstudio our results we are getting the following two

plots Figure 2.7 and Figure 2.8 .
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Input:

plot(simextra simex fit)

In order to plot the regression lines for the true, naive and simex models we

Figure 2.7: Plot extra 1

Figure 2.8: Plot extra 2

are using the following R code :

plot(simextra$a1, simextra$y, xlab = ”x”, ylab = ”y”,main = ”Blue for
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real values, red for naive values and green for simex values”)

abline(lm(simextra$y ∼ simextra$a1), col = ”blue”)

abline(lm(simextra$y ∼ simextra$a1x), col = ”red”)

abline(simextra simex fit, col = ”green”)

The results are in the plot below: Figure 2.10:

Figure 2.9: The regression lines of the true, naive and SIMEX simulation’s
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Now we can clearly see that the green (SIMEX) line is closer to the blue

(True) line than the red (Naive) line.

It’s important to note that in some cases, the intercept of the SIMEX line

may not align with the desired direction. However, this doesn’t necessarily

mean that the SIMEX line won’t be closer to the real line. When the slope

of the SIMEX line is closer to the real slope, the SIMEX line will still be

closer to the real line.

The complete code for this simulation is in the appendix A3.

2.6 Significant result for the multiple linear

model

In this section, we will examine a case where the intercept of the regression

model does not follow the desired path. After running the above example

multiple times, we found that in some cases, the intercept does not tend

towards zero, but instead, it increases the distance between the true value

and the naive value.

A special case in the above extra example is, the following: Input :

simextra = tibble(a1 = rnorm(5000), a1x = a1+ rnorm(5000)∗1.2, y = a1)
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We now run the linear model:

(simextra true fit = lm(y ∼ a1, data = simextra))

And Rstudio gives us the following results.

Output:

Call :

lm(formula = y ∼ a1, data = simextra)

Coefficients :

(Intercept) a1

6.28e− 18 1.00e+ 00

As we see from the output the constant term is equal to 0 and the slope

a1 is equal to 1. We now do the same procedure for the naive model with

the variable a1x.

Input:

(simextra naive fit = lm(y ∼ a1x, data = simextra, x = T ))

And Rstudio gives us the following results.

Output:

Call :

lm(formula = y ∼ a1x, data = simextra, x = T )
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Coefficients :

(Intercept) a1x

− 0.00603 0.41235

As we can see from the output, the constant term is equal to -0.00603 and

the slope a1x is equal to 0.41235 . We notice that the values of the constant

term, as well as a1 and a1x, are different for the two linear models above.

We would now like to apply Simex to the naive model to see the results we

get.

Input:

(simextra simex fit = simex(simextra naive fit, SIMEXvariable = c(”a1x”),

measurement.error = 1.2, lambda = seq(.1, 2, by = .1)))

And Rstudio gives us the following results.

Output:

Naivemodel :

lm(formula = y ∼ a1x, data = simextra, x = T )

SIMEX − V ariables : a1x

NumberofSimulations : 100

Coefficients :

(Intercept) a1x

− 0.00971 0.63746
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We can see that the constant parameter’s value is -0.00971. The value of

a1x changed from 0.41235 to 0.63746, which means that SIMEX led us to

the actual value of 1 for the slope a1. The constant’s initial value was -

0.00603 and became -0.00971 after applying SIMEX, appearing to be more

distant from 0. Instead, a1x changed from 0.41235 to 0.63746, which is ev-

idently closer to 1. Therefore, we can see that in that specific example, the

intercept did not behave as we wanted. However, is that actually a problem?

We will be plotting regression lines for the true, naive, and SIMEX models

using the following R code:

plot(simextra$a1, simextra$y, xlab = ”x”, ylab = ”y”,main = ”Blue for

real values, red for naive values and green for simex values”)

abline(lm(simextra$y ∼ simextra$a1), col = ”blue”)

abline(lm(simextra$y ∼ simextra$a1x), col = ”red”)

abline(simextra simex fit, col = ”green”)

The results are in the plot below: Figure 2.10:

Now we can clearly see that the green (SIMEX) line is closer to the blue

(True) line than the red (Naive) line as before.

The example highlights that it is not essential for all variables in a model

to converge to their true values, as long as the overall model converges to-
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Figure 2.10: The regression lines of the true, naive and SIMEX simulation’s

wards the true model of the data without measurement error. This idea can

be extended to multiple linear regression models, where some variables may

not converge to their true values, but simex will still lead towards the true

regression that would exist in the absence of measurement error. Essentially,

simex allows us to estimate the true model of the data by accounting for

measurement error, even if some variables in the model do not converge to

their true values. We can visualize this by imagining the simex (green) line

converging towards the true (blue) regression line, even if not all variables in
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the model converge to their true values.
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Chapter 3

Large US Data Analysis

3.1 Introduction

We would like to investigate the data we have from a cardiology clinic as

we know that the time of death is misreported (for example the patient

died after the surgery and nobody declared his death), so obviously we have

measurement error in our data. We also have a second database where the

time of death is reported accurately. By comparing these two databases

we will be able to find the measurement error present in the data where

death is misreported. We will also use the SIMEX method to deal with the

measurement error in our data and see how close the SIMEX method leads

us to the real data. We will do our analysis in Rstudio.
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3.2 Data Preview

The code used for the analysis is in Appendix A4.

In the data from the cardiologic clinic we have n1 = 9533 persons and for

each one we have 21 variables such as the ssn1 (Social Security Number) if

he reported , the day of birth, the day of admission, the day of surgery, the

day of discharge , the day of follow-up etc. In the second ”final” validated

data set where there is no measurement error we have n2 = 4852 persons and

237 variables for each one.

We would like to find in the two different data sets the same variables that

express the same thing so that we can compare the data with measurement

error to the validated data. First we see that the data sets have different

number of people and different number of variables so we will look for the

people present in both data sets and we do that via the ssn which is unique

for every person. We find that n = 2822 individuals are in the two datasets.

For them we would like to gather information such as the actual age at death,

the wrongly reported age at death, the gender, the age at which the operation

was performed, the actual survival time, the false survival time and whether

or not they died.

Then we would like to use the built-in simex function found in Rstudio.

So we would like to build a linear model with the variables of interest that

1The term Social Security Number (SSN) refers to a numerical identifier assigned to
U.S. citizens and other residents to track income and determine benefits.

66



we have gathered from the two data sets. With the variables at our disposal

we could make several different linear models and see how the simex method

worked in reducing the measurement error.

But there’s a problem with the simex function, it needs the measurement

error which in our case is unknown. Without the availability of a validation

subset or known variance for the outcome error, our method provides ana-

lysts with a new tool to perform sensitivity analyses that vary assumptions

about the underlying measurement error variance and examine the robust-

ness of results to random error in the event time.

In our first attempt we would like to replicate the idea as we used the simex

function in the examples from the simex paragraph, specifically like the ex-

tra example in ”SIMEX example 1 in Rstudio”. From the two data sets we

extract the data and we refer to the data without the measurement error as

real and to the data with the measurement error included as naive. It is easy

in this example to try several different measurement errors and see which

one gets us closer to the numbers 0 for β0 and 1 for β1.

y real = age real

(simex true age = lm(y real ∼ age real))

(simex naive age = lm(y real ∼ age naive, x = T ))

(simex simex age = simex(simex naive age, SIMEXvariable = c(”age naive”),
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measurement.error = 0.8, lambda = seq(.1, 2, by = .5)))

After many tests of the above code for different measurement errors we find

that the value 0.8 performs better than all the others.

The outcome of the true model (is given through simex true age) is 0 for

β0 and 1 for β1 by default, the outcome of the naive model (is given through

simex naive age) is 0.4607 for β0 and 0.9139 for β1 (the coefficients). While

the outcome of the simex method (is given through simex simex age) is

0.04628 for the β0 and 0.91919 for β1 and it’s obvious that the simex method

reduce’s the bias.

This example is very basic and uses only one variable of the many that

we obtained from the data sets, we can make other regressions with those

variables like the following example.

(simex true age111 = lm(age real ∼ gender+age at surgery+survival real))

(simex naive age111 = lm(age real ∼ gender+age at surgery+survival naive,

x = T ))

(simex simex age111 = simex(simex naive age111, SIMEXvariable =

c(”survival naive”),measurement.error = 0.8, lambda = seq(.1, 2, by =

.5)))

The above example looks like any other example that we might like to use
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in order to gather data like the coefficients from the linear model and their

meanings.

For example someone wants to make the above linear model but he’s not

interested in the effect of the gender in the outcome survival age. Then eas-

ily he can make the following simulation by removing the variable gender in

the above models.

(simex true age1111 = lm(age real ∼ age at surgery + survival real))

(simex naive age1111 = lm(age real ∼ age at surgery + survival naive,

x = T ))

(simex simex age1111 = simex(simex naive age1111, SIMEXvariable =

c(”survival naive”),measurement.error = 0.8, lambda = seq(.1, 2, by =

.5)))

But there is one more negative thing with the ready-made simex function

that Rstudio has and is that it only accepts linear models and general linear

models. Since we have survival data we would like to consider other models

like the Cox proportional hazards model and Weibull parametric regression

model to study the effects of random error in survival time T ( T is the time

starting from a defined point, which in our case is the operation, to the oc-

currence of a given event, which in our case is death).The COX model and

Weibull model are both statistical models commonly used in survival analysis.
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The COX model, also known as the proportional hazards model, is a type

of regression model used to analyze the relationship between one or more

predictor variables and a survival outcome. It assumes that the hazard func-

tion (the instantaneous rate at which events occur) is proportional across

different levels of the predictor variables. This allows for the estimation of

hazard ratios, which indicate the relative risk of an event occurring at one

level of the predictor variable compared to another.

The Weibull model, on the other hand, is a parametric model that assumes

that the hazard function follows a Weibull distribution. This model can be

used to estimate the shape parameter and scale parameter of the distribu-

tion, which can be used to interpret the hazard function and make predictions

about survival probabilities. The Weibull model is often used when the haz-

ard rate changes over time, with a decreasing or increasing hazard rate over

time. Both the COX model and Weibull model are commonly used in medi-

cal research and other fields where the analysis of survival data is necessary.

The Simulation and Extrapolation method (SIMEX) was developed by Cook

and Stefanski to correct additive measurement error in the covariates. SIMEX

has been applied to a wide variety of regression models and is generally im-

plemented as an empirical method. It has been shown to be a useful tool

for estimation in the presence of unbiased covariate measurement error in

regression models for time-to-event outcomes, e.g., see Zhang et al. , He et

al. , and Greene and Cai. The extended SIMEX approach addresses random

70



multiplicative error in the event time and we study whether this method can

be applied to reduce bias in the regression coefficients. The Cox model is

given by

λ(t) = λ0(t)exp(Xβ)

where λ(t) is the hazard at time t given the p Ö 1 covariate vector X, λ0(t)

is the baseline hazard, and β is the vector of log hazard ratio parameters.

The Weibull (AFT) model is given by

T = exp(α0 +Xα1 + σϵ) (3.1)

where α0 and α1 are regression coefficients, σ is a shape parameter, and ϵ

is the error term following an extreme value distribution. The model is also

known as a linear transformation model, given by

log(T ) = α0 +Xα1 + σϵ.

We are considering a situation where the survival time, denoted by T , is

measured with error. Specifically, we observe a version of the survival time,

denoted by T ′, that is subject to multiplicative error. This means that the

observed survival time, T ′, is equal to the true survival time, T , multiplied by

a random variable, exp(v), where v is another random variable that represents

the error in the measurement.

To clarify, if we knew the true value of v for a particular individual, we

could correct the observed survival time by dividing by exp(v) to obtain an

estimate of the true survival time. However, since we don’t know the true
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value of v, we need to work with the observed survival time and account for

the error. The variable v has a mean of 0 and a variance of σ2
v . It is assumed

to be independent of both the true survival time, T , and any covariates

represented by the variable X. Then the error prone survival time on the

log-scale is given by

log(T ′) = α0 +Xα1 + σϵ+ v = log(T ) + v. (3.2)

We note that the form of the equation (3.2) is similar to the equation (1.2).

In situations where there is outcome error, we can assess the performance

of the Cox and Weibull models by comparing their ability to accurately

capture the association between the predictor variable (X) and the outcome.

Specifically, we can compare the log hazard ratio estimates from the Cox

and Weibull models. This comparison is possible because the log hazard

ratio can be estimated from both models, allowing for a direct comparison

of their performance.

The log hazard ratio from the Cox model can be estimated from the Weibull

model with the following relationship:

β = −α1

σ
.

The linear equation for log(T ′) mentioned in the statement is not affected

by an additional error term, v, that is indepedent of the covariate X. This
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means that the presence of v does not introduce any bias in the estimation of

the acceleration parameter when using a typical linear regression model. We

also note that the error equation in (3.2) has the same mathematical form

as a log-linear event time model with an added frailty term, v.This means

that the presence of v can be interpreted as a random effect or unobserved

heterogeneity that affects the survival time, but it is not related to the co-

variates included in the model. Therefore, it is possible to model the effect

of v using a frailty model to account for the unobserved heterogeneity and

improve the estimation of the survival function.

Keiding et al. considered the AFT model for the setting of heterogeneity

due to omitted covariates or frailties and observed that there is bias in the

Cox model induced by erroneously ignoring an added fraility term v, whereas

there is no expected bias in the acceleration parameter α1.

One way to measure this bias is by using an ”approximate attenuation fac-

tor,” which takes into account the magnitude of the error in the survival

function. This attenuation factor provides an estimate of the amount by

which the true hazard ratio is attenuated, or reduced, by the presence of the

error in the survival function when using the Cox model.

These authors also derived an approximate formula for the attenuation factor

for the hazard ratio parameter in the Cox model, drawing connections be-

tween the log-linear model for the uncensored event time and the theoretical

linear regression of log(T ) on X.

When adapted to our setting, the bias in β̂naive, the estimated hazard ratio
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from naively applying the Cox model in the presence of the error in (3.2), is

given by the approximate attenuation factor

γ =
1√

1 + σ−2σ2
v

. (3.3)

That is , β̂naive ≈ β × γ .

The framework for survival models and outcome errors provides a basis for

adjusting the estimation of a regression parameter, such as the log hazard

ratio β, using the SIMEX method. While the SIMEX method was originally

developed for addressing measurement error in the covariates, we can adapt

it for the purpose of adjusting for multiplicative error by working with the

log T . In doing so, we can convert the assumed multiplicative error into an

additive scale that can be more easily addressed using the SIMEX method.

Essentially, we are using a logarithmic transformation to reframe the prob-

lem and make it more amenable to analysis with the SIMEX method.

The method described is similar to SIMEX, a technique used to estimate

the bias in the parameter estimates when measurement errors are present.

In this case, we are interested in estimating the bias in the naive estimate

of a parameter of interest, which ignores the measurement error. To do this,

we start by estimating the relationship between the size of the measurement

error, denoted as σ2
v , and the bias in the naive estimate of the parameter.

Next, we simulate the effect of measurement error on the outcome variable

74



by adding extra measurement error to each outcome. Specifically, we draw

random variables, denoted as ω, from a normal distribution with mean zero

and variance λσ2
v . We add these random variables to the error-prone vari-

able, log T , and exponentiate the result to obtain a new variable, denoted as

Tλ′
b. We repeat this process B times for a range of values of λ ≥ 0. For each

iteration of λ and b = 1,. . . , B, we refit the regression model using the new

vector of error-prone measurements of the survival time, Tλ′
b, to obtain a new

estimate of the naive log hazard ratio, denoted as βλb (or other parameter of

interest, such as the acceleration parameter from the AFT model). Finally,

we compute the new total measurement error variance in logTλ′
b using the

formula given by

σ2
v + λσ2

v = (1 + λ)σ2
v . (3.4)

For illustration, we set B = 50 and λ in {0,0.5,1,1.5,2} to estimate new βλ1,

which are shown as small circles in Figure 3.1 , and plot these naive βλ1

versus λ. In the Extrapolation step, we then fit a curve to the plot of βλ1 as

a function of the λ ’s. From this fitted model, we extrapolate back to λ =

-1, which given the new total measurement error variance in equation (3.4) ,

should approximate the true coefficient value.

For the setting with covariate measurement error, Cook and Stefanski recom-

mend a quadratic approximation due to good performance in most cases, but

other extrapolation functions such as a linear, loglinear, or nonlinear function
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Figure 3.1: The quadratic approximations of the β parameters as a function
of λ, extrapolated to λ = -1, with the dotted lines denoting the true β for
β = log(1.5) (a) and β = log(3) (b)(arbitrarily chosen initial values for b as
in: Oh EJ, Shepherd BE, Lumley T, Shaw PA. Considerations for analysis
of time-to-event outcomes measured with error: Bias and correction with
SIMEX.)

are possible. Based on our simulations, we found that the quadratic form

performed better than the linear and loglinear approximations in our frame-

work. In other words, when we tested these different mathematical models

in our system, the quadratic form showed superior performance compared to

the other models. In Figure 3.1, this extrapolation is shown by extending

the curve to λ = - 1.

The given paragraph explains a method to assess the appropriateness of

an extrapolation function used in a data application. The method involves
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creating a plot by increasing the denseness of the vector λ and observing the

resulting curve. However, this approach is only an approximation because we

can only generate curves for which λ ≥ 0 and it does not provide estimates

for the curve in the region between [-1 and 0). To evaluate the sampling

variability of the SIMEX estimates, a bootstrap technique is used to obtain

standard errors. This involves repeatedly resampling the data to create mul-

tiple datasets and then calculating the SIMEX estimates for each dataset.

By analyzing the variability in the estimates across the multiple datasets, we

can determine the standard error of the estimates, which provides a measure

of how much the estimates may vary due to sampling variation.

In certain situations, we may already have information about the variance

of the measurement error, represented by σ2
v , either from a validation study

or a previous experiment. In such cases, we can assume that the value of σ2
v

is known and use it in our analysis. However, there may be scenarios where

we do not have an estimate of σ2
v or the true value of the measurement error

variance is unknown. In such cases, we can still use the method by trying

out different possible values for σ2
v and see how sensitive the estimated value

of β is to the chosen value of σ2
v . To illustrate this method, we can use an

estimated value of σ2
v obtained from a validation subsample. We can apply

this estimated value of σ2
v to our analysis and observe the effect it has on the

estimated value of β.

We will now run simex with the Cox proportional hazard model for our

data. To better understand the following lines of code, it would be beneficial
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to simulate them on a computer using RStudio. The code is available in

Appendix A4.

true mod2 < −coxph(Surv(survival real, death occured) sin age at surgery+

gender)

naive mod2 < −coxph(Surv(survival naive, death occured) sin age at surgery+

gender)

simex finalmat < −cbind(simex betas, simex bias, simex CI lower,

simex CI upper)

For the thrue Cox model, 0.06481323 is the coefficient for the age at surgery

and -0.03977055 is the coefficient for the gender. For the naive Cox model,

0.06348539 is the coefficient for the age at surgery and -0.05268084 is the

coefficient for the gender and for the simex betas in simex finalmat we have

that 0.06422506 is the coefficient for the age at surgery and -0.04383477 is

the coefficient for the gender.

This SIMEX ”extended” method is not always as efficient as the built-in

SIMEX method in Rstudio, as we estimate the measurement error from a

random subset of our variables, the results will be different each time, de-

pending on which subset is randomly chosen. This does not cease to extend

the use of the SIMEX method to other models beyond the linear model.
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Another problem that the bulit-in simex function has, is that it cannot take

measurment error of any form. It is of note that the above simulations and

data example all involved right-skewed error, with the mean error-prone T’

larger than that of the true T, due to the nature of time-to-event data. Oh

EJ, Shepherd BE, Lumley T, Shaw PA., investigated the performance of

the method with left-skewed error for a small number of settings and found

that SIMEX overestimated the true hazard ratio while still providing similar

reduction in the magnitude of the bias for all settings.
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Chapter 4

Appendix

A1 Proof that Var(β̂)=(x’x)−1σ2
ϵ

Var(β̂) = Var
[
(x′x)−1x′y

]
= (x′x)−1x′Var(y)x(x′x)−1

= (x′x)−1x′Var(xβ + ϵ)x(x′x)−1

= (x′x)−1x′Var(ϵ)x(x′x)−1

= (x′x)−1x′σ2
ϵ Ix(x

′x)−1

= (x′x)−1σ2
ϵx

′x(x′x)−1

= (x′x)−1σ2
ϵ .

A2 Code for the example 1 :

install.packages(”simex”)
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install.packages(”pacman”)

install.packages(”tibble”)

library(pacman)

library(tibble)

pload(kirkegaard, simex, rms)

options(digits = 3)

sim1 data = tibble(

a1 = rnorm(5000),

a2 = rnorm(5000),

a1x = a1 + rnorm(5000) ∗ 1.2,

a2x = a2 + rnorm(5000) ∗ 0.8,

y = a1 + a2
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)

fits

(sim1 true fit = lm(y ∼ a1 + a2, data = sim1 data))

(sim1 naive fit = lm(y ∼ a1x+ a2x, data = sim1 data, x = T ))

(sim1 simex fit = simex(sim1 naive fit, SIMEXvariable = c(”a1x”, ”a2x”),measurement.error =

cbind(1.2, 0.8), lambda = seq(.1, 2, by = .1)))

plot(sim1 simex fit)

truev = c(0, 1, 1)

namesv = c(0, 1, 2)

plot(namesv, truev, xlab = ”intercept, a1, a2”, ylab = ”value”,main = ”Blue

for real values, red for naive values and green for simex values”

, pch = 15, col = ”blue”, cex = 1)

points(x = 0, y = −0.01796, pch = 15, col = ”red”, cex = 1)

points(x = 0, y = −0.00634, pch = 15, col = ”green”, cex = 1)

points(x = 1, y = 0.40419, pch = 15, col = ”red”, cex = 1)
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points(x = 1, y = 0.62955, pch = 15, col = ”green”, cex = 1)

points(x = 2, y = 0.62719, pch = 15, col = ”red”, cex = 1)

points(x = 2, y = 0.88059, pch = 15, col = ”green”, cex = 1)

A3 Code for the extra part in the example 1 :

simextra = tibble(

a1 = rnorm(5000),

a1x = a1 + rnorm(5000) ∗ 1.2,

y = a1)

(simextra true fit = lm(y ∼ a1, data = simextra))

(simextra naive fit = lm(y ∼ a1x, data = simextra, x = T ))
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(simextra simex fit = simex(simextra naive fit, SIMEXvariable = c(”a1x”),measurement.error =

1.2, lambda = seq(.1, 2, by = .1)))

plot(simextra simex fit)

plot(simextra$a1, simextra$y, xlab = ”x”, ylab = ”y”,main = ”Blue for

real values, red for naive values and green for SIMEX values”)

abline(lm(simextra$y ∼ simextra$a1), col = ”blue”)

abline(lm(simextra$y ∼ simextra$a1x), col = ”red”)

abline(simextra simex fit, col = ”green”)

A4 ####Example analysis of time− to− event dataset with error −

prone

###times using SIMEX

install.packages(”foreign”)

library(foreign)
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#change working directory as needed

setwd(”O : ........”)

cardiak < −read.spss(”O : .........”/Cardiac 2020 07 Maths 1989−2008 9533 1−

sensitivity − specificity 2bull.sav”)

cardiak1 < −read.spss(”O : .........”/Cardiac 2020 07 Maths 1989−2008 9533 1−

sensitivity − specificity 2bull.sav”, to.data.frame = TRUE)

finaldata < −read.spss(”O : .........”/01 Circulation FINAL DATA no inhospital 4852.sav”)

finaldata1 < −read.spss(”O : .........”/Desktop/01 Circulation FINAL DATA no inhospital 4852.sav”, to.data.frame =

TRUE)

#The age is given by the following data

#(dateofdeath− dateofbirth)/(365.25 ∗ 24 ∗ 60 ∗ 60)

#365.25 days in a year

#24 hours in a day

#60 minutes in a hour
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#60 seconds in a minute

ssn vector = c()

age real = c()

age naive = c()

gender = c()

age at surgery = c()

death occured = c()

survival real = c()

survival naive = c()

for(j in 1 : 9533){

if(cardiak1$nossn[j] == ”ssn”){

for(i in 1 : 4852){

if(finaldata1$SSN [i] == substr(cardiak1$ssn[j], start = 0, stop = 12)){
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ssn vector < −append(ssn vector, finaldata1$SSN [i])

age real < −append(age real, (finaldata1$DOD[i]−cardiak1$dob[j])/(365.25∗

24 ∗ 60 ∗ 60))

age naive < −append(age naive, (cardiak1$dofollow[j]−cardiak1$dob[j])/(365.25∗

24 ∗ 60 ∗ 60))

gender < −append(gender, finaldata1$GENDER[i])

age at surgery < −append(age at surgery, cardiak1$age[j])

death occured < −append(death occured, finaldata1$ANCESTRY [i])

survival real < −append(survival real, (finaldata1$SURV IV AL[i])/12)

survival naive < −append(survival naive, cardiak1$years2018[j])

}

}

}

}

ssn vector

87



age real

age naive

gender

age at surgery

death occured

survival real

survival naive

#try1

y real = age real(simex true age = lm(y real ∼ age real))

(simex naive age = lm(y real ∼ age naive, x = T ))

(simex simex age = simex(simex naive age, SIMEXvariable = c(”age naive”),

measurement.error = 0.8, lambda = seq(.1, 2, by = .5)))

#try2
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(simex true age111 = lm(age real ∼ gender+age at surgery+survival real))

(simex naive age111 = lm(age real ∼ gender+age at surgery+survival naive, x =

T ))

(simex simex age111 = simex(simex naive age111, SIMEXvariable = c(”survival naive”),

measurement.error = 0.5, lambda = seq(.1, 2, by = .5)))

#try3

(simex true age1111 = lm(age real ∼ age at surgery + survival real))

(simex naive age1111 = lm(age real ∼ age at surgery+survival naive, x =

T ))

(simex simex age1111 = simex(simex naive age1111, SIMEXvariable =

c(”survival naive”),

measurement.error = 0.8, lambda = seq(.1, 2, by = .5)))

library(survival)

# set up SIMEX parameters (can be varied)

lambdavec < −c(0, 0.5, 1, 1.5, 2)
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B < −50

# set number of bootstrap iterations

Nboot < −100

true mod2 < −coxph(Surv(survival real, death occured) ∼ age at surgery+

gender)

true cox < −c(summary(true mod2)$coef [, 1])

true se < −c(summary(true mod2)$coef [, 3])

naive mod2 < −coxph(Surv(survival naive, death occured) ∼ age at surgery+

gender)

naive cox < −c(summary(naive mod2)$coef [, 1])

naive se < −c(summary(naive mod2)$coef [, 3])

n < −length(survival real)

### run SIMEX procedure ###

## Estimate simex sd from a validation subsample
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# select validation sample

R < −sample(1 : n, 300, replace = FALSE)#random sample of300 w/o

replacement to be in validation sample

R survival real < −survival real[R]# time for those in validation sample

R survival naive < −survival naive[R]# timeprime for those in validation

sample

R death occured < −death occured[R]# event indicator for those in validation

sample

# covariates for those in validation sample

R age at surgery < −age at surgery[R]

R gender < −gender[R]

# select subjects not in validation sample

noR survival real < −survival real[−R]

noR survival naive < −survival naive[−R]
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noR death occured < −death occured[−R]

# covariates for those not in validation sample

noR age at surgery < −age at surgery[−R]

noR gender < −gender[−R]

#estimate simex sd from simulation validation subsample

simex sd1 < −sqrt(var(log(R survival naive)− log(R survival real)))

# matrix to save new naive estimates

simex mat < −matrix(data = NA, nrow = length(lambdavec) ∗ B, ncol =

3)

j < −1

for(lambda in lambdavec){

for(i in 1 : B){

simex err1 < −sqrt(lambda) ∗ rnorm(n, 0, simex sd1)
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survival simex < −survival naive ∗ exp(simex err1)

cox simex < −coxph(Surv(survival simex, death occured) ∼ age at surgery+

gender)

simex mat[j, ] < −c(lambda, cox simex$coef [1], cox simex$coef [2])

j < −j + 1

}

}

beta simex < −simex mat[, 2 : 3]

lambda simex < −simex mat[, 1]

# fit quadratic function to the new naive estimates

simex formula age at surgery < −lm(beta simex[, 1] ∼ lambda simex +

I(lambda simex2))

simex formula gender < −lm(beta simex[, 2] ∼ lambda simex+I(lambda simex2))

# extrapolate quadratic function to lambda = −1 to obtain simex estimates
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simex estimate age at surgery < −predict(simex formula age at surgery, newdata =

data.frame(lambda simex = −1))

simex estimate gender < −predict(simex formula gender, newdata = data.frame(lambda simex =

−1))

simex betas < −c(simex estimate age at surgery, simex estimate gender)

### bootstrap SIMEX procedure ###

# define matrix to hold bootstrap SIMEX estimates

b simex betas < −matrix(NA, nrow = Nboot, ncol = 2)

for(f in 1 : Nboot){

### stratified bootstrap of validation subsample to get bootstrap estimate

of error variance###

# select sample with replacement from those in validation subsample

R boot < −sample(1 : length(R survival real), length(R survival real), replace =

TRUE)

R boot survival real < −R survival real[R boot]
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R boot survival naive < −R survival naive[R boot]

R boot death occured < −R death occured[R boot]

# bootstrap covariates from validation subsample

R boot age at surgery < −R age at surgery[R boot]

R boot gender < −R gender[R boot]

# select sample with replacement from those not in validation subsample

noR boot < −sample(1 : length(noR survival real), length(noR survival real), replace =

TRUE)

noR boot survival real < −noR survival real[noR boot]

noR boot survival naive < −noR survival naive[noR boot]

noR boot death occured < −noR death occured[noR boot]

# bootstrap covariates from those not in validation subsample

noR boot age at surgery < −noR age at surgery[noR boot]

noR boot gender < −noR gender[noR boot]
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# estimate bootstrap simex sd

bsimex sd < −sqrt(var(log(R boot survival naive)−log(R boot survival real)))

# get covariates and time, timeprime for all bootstrapped subjects

b survival real < −c(R boot survival real, noR boot survival real)

b survival naive < −c(R boot survival naive, noR boot survival naive)

b death occured < −c(R boot death occured, noR boot death occured)

b age at surgery < −c(R boot age at surgery, noR boot age at surgery)b gender <

−c(R boot gender, noR boot gender)

# set index for bootstrap SIMEX estimates

b simex mat < −matrix(data = NA, nrow = length(lambdavec)∗B, ncol =

3)

l < −1

for(lambda in lambdavec){
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for(i in 1 : B){

bsimex err < −sqrt(lambda) ∗ rnorm(n, 0, bsimex sd)

bsurvival simex < −b survival naive ∗ exp(bsimex err)

bcox simex < −coxph(Surv(bsurvival simex, b death occured) ∼ b age at surgery+

b gender)

b simex mat[l, ] < −c(lambda, bcox simex$coef [1], bcoxsimex$coef [2])

l < − l + 1

}

}

b beta simex < −b simex mat[, 2 : 3]

b lambda simex < −b simex mat[, 1]

# fit quadratic function to new bootstrap naive estimates

bsimex formula age at surgery < −lm(b beta simex[, 1] ∼ b lambda simex+

I(b lambda simex2))
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bsimex formula gender < −lm(b beta simex[, 2] ∼ b lambda simex+I(b lambda simex2))

# extrapolate quadratic function to lambda = −1 to obtain SIMEX

estimates

Bsimex age at surgery < −predict(bsimex formula age at surgery, newdata =

data.frame(b lambda simex = −1))

Bsimex gender < −predict(bsimex formula gender, newdata = data.frame(b lambda simex =

−1))

b simex betas[f, ] < −c(Bsimex age at surgery, Bsimex gender)

}

naive bias < −round((naive cox− true cox)/true cox, 4) ∗ 100

naive CI lower < −naive cox+ qnorm(.025) ∗ naive se

naive CI upper < −naive cox+ qnorm(.975) ∗ naive se

naive finalmat < −cbind(naive cox, naive bias, naive CI lower, naive CI upper)

## calculate SIMEX HR bias and CIs
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simex bias < −round((simex betas− true cox)/true cox, 4) ∗ 100

beta se < −apply(b simex betas, 2, sd)

simex CI lower < −simex betas+ qnorm(.025) ∗ beta se

simex CI upper < −simex betas+ qnorm(.975) ∗ beta se

simex finalmat < −cbind(simex betas, simex bias, simex CI lower, simex CI upper)
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