
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

PhD THESIS

Αrchitectures and implementation in FPGA technology of
hardware accelerators for forward error correction
encoding in on-board processing data-chains for

aerospace applications

Dimitrios K. Theodoropoulos

ATHENS

MAY 2023

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Αρχιτεκτονικές και υλοποίηση σε τεχνολογία FPGA
επιταχυντών υλικού για κωδικοποίηση διόρθωσης

σφαλμάτων σε συστήματα επεξεργασίας δεδομένων εν
πτήσει για αεροδιαστημικές εφαρμογές

Δημήτριος Κ. Θεοδωρόπουλος

ΑΘΗΝΑ

ΜΑΪΟΣ 2023

PhD THESIS

Αrchitectures and implementation in FPGA technology of hardware accelerators for
forward error correction encoding in on-board processing data-chains for aerospace

applications

Dimitrios K. Theodoropoulos

SUPERVISOR: Antonis Paschalis, Professor, National and Kapodistrian University of
Athens

THREE-MEMBER ADVISORY COMMITTEE:
Antonis Paschalis, Professor, National and Kapodistrian University of Athens
DimitriosGizopoulos, Professor, National and Kapodistrian University of Athens
Nektarios Kranitis, Associate Professor National and Kapodistrian University

of Athens

SEVEN-MEMBER EXAMINATION COMMITTEE

Antonis Paschalis, Dimitrios Gizopoulos,

Professor, National and Kapodistrian Uni-
versity of Athens

Professor, National and
Kapodistrian University of
Athens

Nektarios Kranitis, Takis Mathiopoulos,

Associate Professor National and
Kapodistrian University of Athens

Professor National and
Kapodistrian University of
Athens

George Alexandropoulos, Mihalis Psarakis,

Assistant Professor, National and
Kapodistrian University of Athens

Assistant Professor, Univer-
sity of Piraeus

Dimitrios Soudris,
Professor, National Technical University
of Athens

Examination Date: May 3, 2022

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Αρχιτεκτονικές και υλοποίηση σε τεχνολογία FPGA επιταχυντών υλικού για
κωδικοποίηση διόρθωσης σφαλμάτων σε συστήματα επεξεργασίας δεδομένων εν

πτήσει για αεροδιαστημικές εφαρμογές

Δημήτριος Κ. Θεοδωρόπουλος

ΕΠΙΒΛΕΠΩΝΚΑΘΗΓΗΤΗΣ: ΑντώνηςΠασχάλης, Καθηγητής, Εθνικόν και Καποδιστριακόν
Πανεπιστήμιον Αθηνών

ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ:
Αντώνης Πασχάλης, Καθηγητής, Εθνικόν και Καποδιστριακόν Πανεπιστήμιον

Αθηνών

Δημήτριος Γκιζόπουλος, Καθηγητής, Εθνικόν και ΚαποδιστριακόνΠανεπιστήμιον
Αθηνών

Νεκτάριος Κρανίτης, Αναπληρωτής Καθηγητής, Εθνικόν και Καποδιστριακόν
Πανεπιστήμιον Αθηνών

ΕΠΤΑΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

Αντώνης Πασχάλης, Δημήτριος Γκιζόπουλος,

Καθηγητής, Εθνικόν και Καποδιστριακόν
Πανεπιστήμιον Αθηνών

Καθηγητής, Εθνικόν
και Καποδιστριακόν
Πανεπιστήμιον Αθηνών

Νεκτάριος Κρανίτης, Παναγιώτης Μαθιόπουλος,

Αναπληρωτής Καθηγητής, Εθνικόν και
Καποδιστριακόν Πανεπιστήμιον Αθηνών

Καθηγητής, Εθνικόν
και Καποδιστριακόν
Πανεπιστήμιον Αθηνών

Γεώργιος Αλεξανδρόπουλος, Μιχαήλ Ψαράκης,

Επίκουρος Καθηγητής, Εθνικόν και
Καποδιστριακόν Πανεπιστήμιον Αθηνών

Αναπληρωτής Καθηγητής,
Πανεπιστήμιο Πειραιώς

Δημήτριος Σούντρης,
Καθηγητής Εθνικό Μετσόβιο Πολυτεχνείο

Ημερομηνία Εξέτασης: 03 Μαΐου 2022

ABSTRACT

A Forward Error Correction (FEC) encoder is an integral part of an on-board processing
data chain. The current Thesis deals with the problem of the design and VLSI implemen-
tation of efficient hardware encoder architectures for such systems. More specifically,
two focus areas have been identified and targeted: bit-level channel coding, which is ap-
plied mostly to telemetry data transfer in near-earth and deep-space communications and
packet-level erasure coding, which has emerged as a promising approach for high data
rate optical space communications, or for intermittent connectivity scenarios.

Regarding the first focal point of the hereto described work, Quasi-Cyclic Low-Density
Parity-Check Codes (QC-LDPC) have been adopted by the Consultative Committee for
Space Data Systems (CCSDS) as recommended standard for on-board channel coding
in Near-Earth and Deep-Space communications. It is shown, however, that the encoder
architectures which have been so far proposed for other error-correction schemes, are
either altogether inapplicable to the CCSDS QC-LDPC codes, or their direct applica-
tion comes with significant performance penalties that render them inefficient for high-
throughput hardware implementations. In the work presented in this thesis, a novel ar-
chitecture for the multiplication of a dense QC matrix with a bit vector, which is a funda-
mental operation of QC-LDPC encoding, is proposed. Based on this architecture, efficient
encoders for CCSDS codes are proposed, according to all the applicable LDPC encoding
methods, which are analytically described and compared in terms of resource utilization
efficiency for the CCSDS QC-LDPC codes. Moreover, in the special case of the spe-
cific code defined in the CCSDS standard for Near-Earth communications, specialized
techniques are also introduced, which efficiently handle the challenges arising from the
generator’s matrix circulant size (511 bits).

The proposed architectures have been implemented in various Field Programmable Gate
Array (FPGA) technologies and extensively validated and tested in the commercial coun-
terpart of the Xilinx space-grade Kintex UltraScale XQRKU060 FPGA. The achieved per-
formance defines the state-of-the-art in this area, being able to achieve up to more that 70
times higher encoding throughput than the corresponding implementations by NASA/JPL,
on the same device and with a low resource budget. It is also the first work to introduce
an extensive and realistic testing framework including modern SpaceFibre data links, in
order to be as close as possible to a real mission system. Together with the detailed power
measurements provided, the current work breaks untouched ground for the adoption of
the CCSDS channel codes in application areas from which they had been so far consid-
ered unfavorable, due to their encoding complexity, like the upcoming high-performance
Free-Space Optical space communication standards.

Protograph based QC-LDPC codes are widely considered an advantageous option for for-
ward error correction (FEC) on magnetic recording (MR) media as well, because of their
excellent performance characteristics and their inherent possibilities efficient implemen-

tation. The vast majority of related research, however, has so far been focused on the
analytical optimization of code design and algorithms. Although high-speed encoding and
decoding with low hardware footprint are important for MR media, hardware implementa-
tions for such encoding schemes have so far been scarce. Leveraging the architecture
of LDPC encoders for space applications, efficient encoder designs for the protograph-
based LDPC codes proposed for MR media are also introduced. The proposed designs
are implemented in hardware as FPGA accelerators. Their efficiency is demonstrated on
an FPGA development board, achieving multi-Gbps of encoding throughput, adequate for
modern MR application standards. This is the first time such a study has been conducted
and could prove revolutionary in the field.

Packet-level erasure coding has been considered by the CCSDS in the 131.5-O-1 exper-
imental specification for application in high data rate near-earth and deep-space commu-
nications, since it can protect against long error bursts as they may come along with the
effect of scintillation outages or transmission errors. However, implementations of packet-
level encoding and decoding so far exist only in software, running on a general-purpose
CPU, with limitations on the achievable performance, resource and power. In the second
focus area of this work, architectures for hardware acceleration of packet-level encoding
function are introduced, that allow integration on a high-speed on-board data processing
chain with very low footprint and power consumption. The hardware implementations have
been validated and the efficiency of the proposed architectures has been demonstrated on
a Xilinx KCU105 development board, reaching an encoding throughput of over 13Gbps.
Apart from offloading packet-level encoding from the on-board embedded processor, the
proposed accelerators are shown to achieve a significant speedup (over 80 times), when
compared with on-board software implementations of the corresponding NASA algorithms
of the ION delay tolerant network (DTN) implementation, by porting on some of the most
commonly used and state-of-the-art space-qualified embedded processors. This is the
first documented hardware implementation of packet-level encoders and the first time that
encoding throughput performance and power baselines are recorded. As with the chan-
nel codes of the first thematic area of this thesis, these findings unlock new horizons for
the re-evaluation of packet-level erasure codes for use in the upcoming high-performance
Free-Space Optical space communication standards.

SUBJECT AREA: Digital Design and Computer Architecture, Embedded Systems, Space
Communication Systems

KEYWORDS: Hardware Design, LDPCencoders, Hardware accelerators, Field Programmable
Gate Arrays, CCSDS, Packet-Level encoders, Space Communications

ΠΕΡΙΛΗΨΗ

Η κωδικοποίηση διόρθωσης σφαλμάτων είναι αναπόσπαστο μέρος μιας ενσωματωμέ-
νης αλυσίδας επεξεργασίας δεδομένων ενός συστήματος εν πτήσει. Η παρούσα διατριβή
πραγματεύεται το πρόβλημα του σχεδιασμού και της VLSI υλοποίησης αποδοτικών αρ-
χιτεκτονικών κωδικοποιητών υλικού για τέτοιες αλυσίδες επεξεργασίας δεδομένων. Πιο
συγκεκριμένα, δύο τομείς ενδιαφέροντος έχουν στοχευτεί: η κωδικοποίηση καναλιού σε
επίπεδο bit, κυρίως για τη μεταφορά δεδομένων τηλεμετρίας σε επικοινωνίες κοντά στη
γη και στο βαθύ διάστημα και η κωδικοποίηση επιπέδου πακέτων, η οποία έχει αναδει-
χθεί ως μια πολλά υποσχόμενη προσέγγιση για υψηλό ρυθμό δεδομένων επικοινωνίες
οπτικού χώρου ή για σενάρια διακοπτόμενης συνδεσιμότητας.

Όσον αφορά την πρώτη ερευνητική περιοχή της εργασίας, οι κώδικες Quasi-Cyclic Low-
Density Parity-Check (QC-LDPC) έχουν προτυποποιηθεί από τη Συμβουλευτική Επιτρο-
πή για Συστήματα Διαστημικών Δεδομένων (CCSDS) για την κωδικοποίηση καναλιού σε
επικοινωνίες κοντά στη Γη και στο Βαθύ Διάστημα. Μετά από ενδελεχή μελέτη του συ-
νόλου της υφιστάμενης βιβλιογραφίας, αποδεικνύεται ωστόσο στην παρούσα ότι οι αρχι-
τεκτονικές κωδικοποιητών που έχουν προταθεί μέχρι τώρα για άλλα σχήματα διόρθωσης
σφαλμάτων, είτε είναι παντελώς ανεφάρμοστες στους κώδικες CCSDS QC-LDPC, είτε η
άμεση εφαρμογή τους συνοδεύεται από τόσο μειωμένη απόδοση που καθίστανται ανα-
ποτελεσματικές για υλοποιήσεις υψηλών απαιτήσεων σε ταχύτητες κωδικοποίησης. Κατά
συνέπεια, προτείνεται μια νέα αρχιτεκτονική για τον πολλαπλασιασμό ενός πυκνού QC
πίνακα με ένα διάνυσμα από bits, πράξη η οποία αποτελεί θεμελιώδη λειτουργία της κω-
δικοποίησης QC-LDPCΜε βάση αυτή την αρχιτεκτονική, προτείνονται αποδοτικοί κωδικο-
ποιητές για κώδικες CCSDS, σύμφωνα με όλες τις εφαρμοστέες μεθόδους κωδικοποίησης
LDPC, οι οποίες περιγράφονται αναλυτικά και συγκρίνονται ως προς την αποδοτικότητα
χρήσης πόρων για τους συγκεκριμένους κώδικες. Επιπλέον, στην ειδική περίπτωση του
συγκεκριμένου κώδικα που ορίζεται στο πρότυπο CCSDS για επικοινωνίες κοντά στη Γη,
εισάγονται εξειδικευμένες τεχνικές, οι οποίες χειρίζονται αποτελεσματικά τις προκλήσεις
που προκύπτουν από το μέγεθος των υποπινάκων του QC πίνακα-γεννήτορα του κώδικα
(511 bit).

Οι προτεινόμενες αρχιτεκτονικές υλοποιήθηκαν σε διάφορες τεχνολογίες FPGA και επικυ-
ρώθηκαν και δοκιμάστηκαν εκτενώς στο εμπορικό αντίστοιχο της διαστημικής κατηγορίας
Kintex UltraScale της Xilinx (XQRKU060), το οποίο περιλαμβάνεται στην αναπτυξιακή
κάρτα KCU105. Η απόδοση που επιτυγχάνεται αποτελεί ορόσημο στον τομέα, καθώς
μπορεί να επιτύχει έως και 70 φορές υψηλότερη απόδοση από τις αντίστοιχες προτάσεις
της NASA/JPL, όταν υλοποιηθεί στο ίδιο FPGA, και με χαμηλό προϋπολογισμό πόρων
υλικού και κατανάλωσης ισχύος. Είναι επίσης η πρώτη εργασία που εισάγει ένα εκτετα-
μένο και ρεαλιστικό πλαίσιο δοκιμών που περιλαμβάνει σύγχρονες συνδέσεις δεδομένων
SpaceFibre, προκειμένου να είναι όσο το δυνατόν πιο κοντά σε ένα πραγματικό σύστημα.
Μαζί με τις λεπτομερείς μετρήσεις ισχύος που παρέχονται, η τρέχουσα εργασία ανοίγει
νέες δυνατότητες για την υιοθέτηση των κωδικών του CCSDS σε εφαρμογές από τις οποί-

ες μέχρι στιγμής θεωρούνταν απαγορευτικές, λόγω της πολυπλοκότητας κωδικοποίησης
τους, όπως τα επερχόμενα πρότυπα οπτικών επικοινωνιών ελεύθερου χώρου υψηλής
απόδοσης του CCSDS.

Οι κώδικες QC-LDPC που βασίζονται σε πρωτογράφους θεωρούνται ευρέως μια πλεονε-
κτική επιλογή κωδικοποίησης διόρθωσης σφαλμάτων (FEC), επίσης και σε μέσα μαγνητι-
κής εγγραφής (MR), λόγω των εξαιρετικών χαρακτηριστικών απόδοσης και των εγγενών
δυνατοτήτων αποτελεσματικής υλοποίησής τους στο υλικό. Ωστόσο, η συντριπτική πλειο-
νότητα της σχετικής έρευνας έχει επικεντρωθεί μέχρι στιγμής στην αναλυτική βελτιστοποί-
ηση του σχεδιασμού των κωδίκων και των συναφών αλγορίθμων. Αν και η κωδικοποίηση
και η αποκωδικοποίηση υψηλής ταχύτητας με χαμηλό αποτύπωμα υλικού είναι σημαντι-
κές για τα μέσα MR, δεν υφίστνται επί του παρόντος αναφορές σε μελέτες υλοποιήσεων.
Αξιοποιώντας την αρχιτεκτονική των κωδικοποιητών LDPC για διαστημικές εφαρμογές,
εισάγονται προσαρμοσμένες αρχιτεκτονικές για τους αντίστοιχους κώδικες MR. Οι προ-
τεινόμενες αρχιτεκτονικές υλοποιούνται σε υλικό ως επιταχυντές FPGA. Η αποτελεσματι-
κότητά τους αποδεικνύεται στην πλακέτα ανάπτυξης FPGA ZC706, επιτυγχάνοντας από-
δοση πολλαπλών Gbps, επαρκή για τα σύγχρονα πρότυπα μαγνητικής αποθήκευσης. Η
παρούσα εργασία είναι η πρώτη μελέτη που καταγράφεται στον συγκεκριμένο χώρο.

Η κωδικοποίηση διαγραφής σε επίπεδο πακέτων έχει προταθεί από το CCSDS στην πει-
ραματική προδιαγραφή 131.5-O-1 για εφαρμογή σε διαστημικές επικοινωνίες υψηλού ρυθ-
μού διαμεταγωγής στο εγγύς και στο βαθύ διάστημα, καθώς μπορεί να προστατεύσει από
μεγάλες εκρήξεις σφαλμάτων, συνέπεια διαλείψεων σπινθηρισμού ή σφαλμάτων μετάδο-
σης. Ωστόσο, εφαρμογές κωδικοποίησης και αποκωδικοποίησης σε επίπεδο πακέτων
υπάρχουν μέχρι στιγμής μόνο σε λογισμικό, που εκτελείται σε CPU γενικής χρήσης, με
περιορισμούς στην επιτεύξιμη απόδοση, τους πόρους και την ισχύ. Στη δεύτερη περιοχή
ενδιαφέροντος αυτής της εργασίας, εισάγονται αρχιτεκτονικές για την επιτάχυνση υλικού
της λειτουργίας κωδικοποίησης σε επίπεδο πακέτων, που επιτρέπουν την ενσωμάτωση
σε μια αλυσίδα επεξεργασίας δεδομένων υψηλής ταχύτητας με πολύ χαμηλό αποτύπω-
μα υλικού και περιορισμένη κατανάλωση ενέργειας. Οι υλοποιήσεις αυτές δοκιμάστηκαν
και η αποτελεσματικότητά τους τεκμηριώθηκε στην πλακέτα ανάπτυξης Xilinx KCU105, η
οποία περιλαμβάνει το εμπορικό ισοδύναμο του πιστοποιημένου για διαστημικές εφαρμο-
γές Xilinx Kintex UltraScale (XQRKU060), επιτυγχάνοντας απόδοση κωδικοποίησης άνω
των 13 Gbps. Εκτός από την ελάφρυνση του επεξεργαστικού φορτίου του κεντρικού επε-
ξεργαστή, μέσω ανάθεσης της κωδικοποίησης επιπέδου πακέτων στους εξειδικευμένους
επιταχυντές υλικού, οι προτεινόμενοι κωδικοποιητές επιτυγχάνουν σημαντική επιτάχυνση
(πάνω από 80 φορές), σε σχέση τις αντίστοιχες λύσεις που περιλαμβάνονται στη σουίτα
λογισμικού για δίκτυα διαλειπτόμενης συνδεσιμότητας της NASA (ION DTN), όταν εκτελε-
στούν σε μερικές από τις πιο κοινές και σύγχρονες ενσωματωμένες CPU για διαστημικές
αποστολές, με ταυτόχρονη εξοικονόμηση ισχύος (πάνω από 3-5 φορές βελτιωμένο πηλίκο
ρυθμαπόδοσης ανά μονάδα καταναλισκομένης ισχύος). Αυτή είναι η πρώτη και μοναδική
μέχρι στιγμής καταγεγραμμένη υλοποίηση κωδικοποιητών επιπέδου πακέτου και ειδικότε-
ρα της πειραματικής προδιαγραφής 131.5-O-1 σε υλικό. Είναι επίσης η πρώτη ουσιαστική
μελέτη των παραμέτρων απόδοσης και ισχύος. Όπως και με τους κώδικες καναλιών της
πρώτης θεματικής περιοχής αυτής της διατριβής, αυτά τα ευρήματα ξεκλειδώνουν νέους

ορίζοντες για την επαναξιολόγηση των κωδίκων διαγραφής σε επίπεδο πακέτων για χρήση
σε διαστημικές εφαρμογές υψηλής απόδοσης.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ψηφιακή Σχεδίαση και Αρχιτεκτονική Υπολογιστών, Ενσωματω-
μένα Συστήματα, Συστήματα Διαστημικών Επικοινωνιών

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ψηφιακή Σχεδίαση, Κωδικοποιητές LDPC, Επιταχυντές Υλικού, FPGA,
CCSDS, Κωδικοποιητές διόρθωσης σφαλμάτων επιπέδου πακέτου, Διαστημικές επικοι-
νωνίες

ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

Η παρούσα διατριβή, όπως περιγράφεται και από τον τίτλο της, πραγματεύεται αρχιτε-
κτονικές υλικού για κωδικοποίηση διόρθωσης σφαλμάτων σε συστήματα επεξεργασίας
δεδομένων σε αεροδιαστημικές εφαρμογές. Μελετήθηκαν δύο κύριες κατευθύνσεις: η
κωδικοποίηση καναλιού σε επίπεδο bit και η κωδικοποίηση πακέτων, όπως αυτές περι-
γράφονται στα αντίστοιχα πρότυπα του οργανισμού CCSDS. Για την πρώτη περίπτωση,
λόγω της ομοιότητας των κωδίκων, προέκυψε επιπρόσθετα η δυνατότητα αξιοποίησης
των αποτελεσμάτων της έρευνας για χρήση στον τομέα της μαγνητικής αποθήκευσης. Η
υλοποίηση των αρχιτεκτονικών κωδικοποιητών πραγματοποιήθηκε σε πλατφόρμες FPGA
και SoC/MPSoC οι οποίες έχουν προταθεί ή χρησιμοποιούνται σε αεροδιαστημικές εφαρ-
μογές, ενώ δοκιμάστηκαν σε περιβάλλον το οποίο προσομοιώνει αυτό ενός συστήματος
επεξεργασίας δεδομένων εν πτήσει.

Στην εισαγωγή δίνεται αρχικά μια γενική περιγραφή της κωδικοποίησης διόρθωσης σφαλ-
μάτων. Στη συνέχεια της Ενότητας 1 περιγράφονται τα προβλήματα για τα οποία η παρου-
σιαζόμενη έρευνα αναζητά και δίνει απαντήσεις. Ακολούθως τεκμηριώνεται η συνεισφορά
της παρούσας διατριβής με αναφορά στις δημοσιεύσεις σε περιοδικά και συνέδρια που
πραγματοποιήθηκαν στο πλαίσιο της εκπόνησής της. Τέλος, παρατίθενται οι τεχνολογί-
ες στις οποίες πραγματοποιήθηκε η έρευνα και στις οποίες αποκτήθηκε υψηλό επίπεδο
εξειδίκευσης, ως αποτέλεσμα της εκτεταμένης χρήσης τους.

Στην επόμενη ενότητα παρατίθενται σημαντικές πληροφορίες υποβάθρου. Αρχικά περι-
γράφονται μοντέλα καναλιών διαστημικών επικοινωνιών, με έμφαση σε αυτά που περι-
γράφονται στα πρότυπα του CCSDS που υλοποιούνται στην παρούσα. Έπειτα παρου-
σιάζεται η στοίβα πρωτοκόλλων του CCSDS. Ο CCSDS είναι ένας διεθνής οργανισμός
που περιλαμβάνει τις σημαντικότερες αεροδιαστημικές υπηρεσίες του πλανήτη, και σκο-
πός του είναι η ανάπτυξη προτύπων για συστήματα διαστημικών επικοινωνιών, έτσι ώστε
να υποστηριχθεί η διαλειτουργικότητά τους και να ελαχιστοποιηθεί το ρίσκο και το κόστος
ανάπτυξης. Μεταξύ άλλων, έχει εισάγει πρότυπα στα οποία προδιαγράφεται η χρήση κω-
δίκων LDPC. Τα πρότυπα αυτά αφορούν κατά βάση το επίπεδο κωδικοποίησης καναλιού,
το οποίο στη στοίβα πρωτοκόλλων του CCSDS είναι υπο-επίπεδο του επιπέδου σύνδε-
σης (data link). Στη συνέχεια αναλύονται οι γενικές απαιτήσεις και τα χαρακτηριστικά των
συστημάτων επεξεργασίας δεδομένων σε αεροδιαστημικές εφαρμογές και πως αυτά δια-
φοροποιούνται σε σχέση με τα εμπορικά αντίστοιχά τους. Συγκεκριμένα, περιγράφονται
τα χαρακτηριστικά των FPGAs, SoCs, MPSoCs και επεξεργαστών (CPUs) τα οποία είναι
κατάλληλα για αεροδιαστημικές εφαρμογές, εστιάζοντας περισσότερο σε αυτά για τα οποία
διατίθενται αναπτυξιακές κάρτες στο εργαστήριο (DSCAL). Τα εξαρτήματα αυτά καλούνται
να λειτουργήσουν σε ιδιαίτερα επιβαρυμένο περιβάλλον από πλευράς φυσικών συνθηκών
(θερμοκρασίας, κραδασμών κτλ) και ακτινοβολίας, ενώ ταυτόχρονα το περιθώριο αστο-
χίας είναι πολύ μικρό, λόγω του κόστους μιας διαστημικής αποστολής. Ταυτόχρονα, οι
απαιτήσεις απόδοσης, κατανάλωσης ισχύος, όγκου και βάρους είναι ιδιαίτερα υψηλές.
Στο τέλος της δεύτερης ενότητας περιγράφεται το πρωτόκολλο SpaceFibre, το οποίο είναι

σειριακό πρωτόκολλο για επικοινωνία συστημάτων εν πτήσει. Η σημασία του είναι ιδιαί-
τερη στην παρούσα διατριβή, καθώς χρησιμοποιήθηκε εκτενώς στο περιβάλλον δοκιμών
όχι μόνο των κωδικοποιητών που αναπτύχθηκαν στο πλαίσιο της παρούσας, αλλά και
λοιπών έργων στα οποία συμμετείχα κατά τη διάρκεια της έρευνάς μου και υποστήριξαν
σχετικές δημοσιεύσεις του DSCAL. Περιγράφεται συνοπτικά το περιβάλλον το οποίο δη-
μιουργήθηκε για την εκτέλεση δοκιμών, με την αποστολή και λήψη δεδομένων σε και από
προς FPGAs, τα οποία περιλάμβαναν τις υπό δοκιμή υλοποιήσεις, καθώς και το σχετικό
λογισμικό το οποίο αναπτύχθηκε.

Η επόμενη ενότητα 3 καλύπτει την κωδικοποίηση LDPC σε επίπεδο bit. Αρχικά καλύπτε-
ται το θεωρητικό υπόβαθρο των κωδίκων QC-LDPC. Μαζί με τους τούρμπο κώδικες, οι
κώδικες LDPC αποτελούν την πλέον σύγχρονη συνεισφορά της επιστήμης της θεωρίας
πληροφορίας στο πρόβλημα της αξιόπιστης μετάδοσης δεδομένων, υπό την επίδραση
θορύβου. Οι πρώτοι κώδικες που περιεγράφηκαν από τον Robert G. Gallager, ο οποίος
τους εισήγαγε, ήταν εντελώς τυχαίοι. Η τυχαιότητα αυτή, σε συνδυασμό με μεγέθη μπλοκ
της τάξης μεγέθους χιλιάδων ή δεκάδων χιλιάδων bits, καθιστά ιδιαίτερα απαιτητική τη
σχεδίαση κωδικοποιητών και αποκωδικοποιητών που θα συνδυάζουν υψηλή ρυθμαπό-
δοση με μικρές απαιτήσεις σε υπολογιστικούς πόρους. Αποδεικνύεται ωστόσο ότι είναι
εφικτή η σχεδίαση κωδίκων που προσεγγίζουν το όριο της χωρητικότητας και ταυτόχρονα
ο πίνακας ισοτιμίας τους έχει δομή, η οποία διευκολύνει την υλοποίηση. Η συνηθέστε-
ρη δομή που εμφανίζεται στους σύγχρονους κώδικες είναι η ”σχεδόν κυκλική” (εφεξής
quasi-cyclic ή QC), κατά την οποία ο πίνακας ισοτιμίας του κώδικα αποτελεί μια διάταξη
κυκλικών υποπινάκων. Μια επιπλέον συνηθισμένη απλοποίηση των QC κωδίκων προ-
κύπτει από μια μέθοδο κατασκευής κωδίκων κατά την οποία ένας βασικός πρωτο-γράφος
Tanner αναπτύσσεται σε πλήρη γράφο. Οι πίνακες ισοτιμίας που προκύπτουν είναι QC,
αλλά επιπλέον οι κυκλικοί υποπίνακες είναι ίσων διαστάσεων μηδενικοί πίνακες ή πίνακες
μετάθεσης (μετατοπισμένοι μοναδιαίοι πίνακες). Πέραν αυτών των απλοποιήσεων, έχουν
προταθεί και χρησιμοποιηθεί ευρέως στην πράξη κώδικες, οι πίνακες ισοτιμίας των οποί-
ων περιλαμβάνουν επιπλέον δομές και απλοποιήσεις οι οποίες στοχεύουν συγκεκριμένα
στην ακόμα ευκολότερη δυνατή υλοποίηση, όπως για παράδειγμα οι LDPC κώδικες των
προτύπων IEEE 802.16.

Στη συνέχεια περιγράφονται οι QC-LDPC κώδικες που προτείνονται από τον CCSDS,
τα πλεονεκτήματά τους σε σχέση με τους παλαιότερους κώδικες (concatenated RS &
convolutional) καθώς και οι παράγοντες που επηρρεάζουν την απόδοσή τους. Πρόκει-
ται για ένα σύνολο εννέα κωδίκων τύπου AR4JA και έναν κώδικα ο οποίος αναφέρεται
στη σχετική βιβλιογραφία ως C2. Οι AR4JA προτάθηκαν αρχικά για χρήση σε επικοινω-
νίες στο βαθύ διάστημα (deep space), ωστόσο υιοθετήθηκαν στη συνέχεια και σε άλλου
τύπου επικοινωνίες (π.χ. proximity-1) και εντάσσονται στην κατηγορία των QC κωδίκων
που βασίζονται σε πρωτο-γράφο. Ο C2 είναι QC LDPC κώδικας, κατασκευασμένος με μια
τεχνική που βασίζεται σε ευκλείδεια γεωμετρία σε πεπερασμένο διανυσματικό χώρο.

Η ενότητα συνεχίζει με την σχολαστική περιγραφή του συνόλου των LDPC κωδικοποιη-
τών που έχει παρουσιαστεί στη βιβλιογραφία. Οι αρχιτεκτονικές υλοποίησης που έχουν
προταθεί είναι γενικά βελτιστοποιημένες για ένα συγκεκριμένο υποσύνολο κωδίκων που
υποστηρίζουν η κάθε μια, στοχεύοντας το αντίστοιχο πρωτόκολλο και εκμεταλλευόμενοι

τις ιδιότητες της δομής των συγκεκριμένων πινάκων ισοτιμίας κάθε φορά. Διαπιστώθηκε
ότι οι μέθοδοι κωδικοποίησης που έχουν προταθεί μέχρι σήμερα κατατάσσονται επί της
ουσίας σε τέσσερις μεθόδους κωδικοποίησης:

• Υπολογισμός κωδικής λέξης από τον πίνακα-γεννήτορα του κώδικα, που αποτελεί
και την πιο απλή μέθοδο. Θα αναφέρεται εφεξής ως η ευθεία μέθοδος. Το μειονέ-
κτημα της μεθόδου αυτής είναι ότι ο πίνακας-γεννήτορας είναι κατά κανόνα πυκνός
πίνακας, αυξάνοντας την πολυπλοκότητα.

• Μέθοδος των Richarson-Urbanke (εφεξής R-U), η οποία είναι βέλτιστη για κώδικες
των οποίος ο πίνακας ισοτιμίας εμφανίζει κάτω τριγωνική δομή, ή μπορεί να πλησιά-
σει αυτή τη δομή μέσω γραμμικών μετασχηματισμών. Όσο πλησιέστερα στην κάτω
τριγωνική μπορεί να μετασχηματιστεί ο πίνακας ισοτιμίας, τόσο πιο αποδοτική εμ-
φανίζεται η συγκεκριμένη μέθοδος, μειώνοντας τις διαστάσεις των πυκνών πινάκων
που εμπλέκονται στις εξισώσεις υπολογισμού.

• Υβριδική μέθοδος, σύμφωνα με την οποία ένα υποσύνολο των ψηφίων ισοτιμίας
υπολογίζεται με την ευθεία μέθοδο και ένα άλλο με την R-U.

• Υπολογισμός της κωδικής λέξης απευθείας από τον πίνακα ισοτιμίας του κώδικα,
σε δύο βήματα, με κατάτμηση του τελευταίου σε δύο υποπίνακες, ο δεξιός εκ των
οποίων υφίσταται αναστροφή και μετατρέπεται σε πυκνό πίνακα. Σε κάποιες πα-
ραλλαγές αυτής της μεθόδου, ο ανεστραμμένος πίνακας αποσυντίθεται με τη σειρά
του σε ένα άνω και ένα κάτω τριγωνικό πίνακα.

Όλες οι βιβλιογραφικές αναφορές εξετάστηκαν λεπτομερώς, όσον αφορά την καταλληλό-
τητά τους για τους κώδικες του CCSDS, με τεκμηρίωση είτε της πλήρους απουσίας δυ-
νατότητας εφαρμογής τους, λόγω της απαίτησης για την ύπαρξη συγκεκριμένων δομών
στους πίνακες ισοτιμίας, είτε των προκλήσεων που θα αντιμετώπιζαν στην περίπτωση
υιοθέτησής τους για τους κώδικες αυτούς. Γενική πάντως διαπίστωση είναι σε όλες τις με-
θόδους κωδικοποίησης εμφανίζεται μια πράξη πολλαπλασιασμού διανύσματος με πυκνό
QC πίνακα, η οποία εισάγει προκλήσεις στην υλοποίηση υψηλού ρυθμού κωδικοποίησης,
χωρίς καμία από τις προτεινόμενες αρχιτεκτονικές στο υλικό να φαίνεται ότι διαχειρίζεται
ικανοποιητικά την πράξη αυτή. Προτείνεται επομένως στην παρούσα μια αρχιτεκτονική
υλικού για την μέγιστη εκμετάλλευση της ενδογενούς παραλληλίας που χαρακτηρίζει ένα
QC πίνακα, η οποία και περιγράφεται αναλυτικά, με την κατάλληλη μαθηματική διατύ-
πωση, προκειμένου τα αποτελέσματα από την τεκμηρίωσή της να χρησιμοποιηθούν στις
αναλύσεις που ακολουθούν.

Η κωδικοποίηση των AR4JA κωδίκων μπορεί να πραγματοποιηθεί και με τις τέσσερις με-
θόδους κωδικοποίησης που απαριθμούνται ανωτέρω, προσφέροντας διαφορετικούς συν-
δυασμούς κατανάλωσης υπολογιστικών πόρων, ρυθμαπόδοσης και υστέρησης εξόδου.
Τα ισοζύγια αυτά μάλιστα διαφοροποιούνται ανάλογα με το ρυθμό του εκάστοτε κώδικα.
Στην παρούσα διατριβή, παρέχονται αναλυτικοί τύποι υπολογισμού των παραμέτρων αυ-
τών, για κάθε μια από τις προτεινόμενες αρχιτεκτονικές, για κάθε μέθοδο ξεχωριστά. Η
υβριδική μέθοδος αποδεικνύεται αναλυτικά ότι δεν πλεονεκτεί σε κανένα τομέα. Από τις

υπόλοιπες μεθόδους, η μέθοδος R-U αποδεικνύεται ότι πλεονεκτεί σε χαμηλότερους ρυθ-
μούς, σε σχέση με τη μέθοδο του κατατετμημένου πίνακα ισοτιμίας. Η απευθείας μέθο-
δος δεν πλεονεκτεί όταν ο στόχος είναι η υλοποίηση σε FPGA, συμπέρασμα το οποίο
διαπιστώνεται και εργαστηριακά. Στις συγκρίσεις των προτεινόμενων αρχιτεκτονικών για
την κάθε μέθοδο παρατίθενται και συγκριτικά στοιχεία με αντίστοιχες υλοποιήσεις στη βι-
βλιογραφία, οι οποίες θα μπορούσαν δυνητικά να εφαρμοστούν απευθείας στους κώδικες
AR4JA και μέσω των οποίων τεκμηριώνονται τα πλεονεκτήματα που εισάγει η προτεινό-
μενη βασική αρχιτεκτονική πολλαπλασιασμού διανύσματος με πυκνό QC πίνακα.

Πλην της απευθείας μεθόδου, οι αρχιτεκτονικές που παρουσιάζονται βασίζονται στην πα-
ραδοχή ότι όλα τα bits προς κωδικοποίηση είναι ταυτόχρονα διαθέσιμα στην είσοδο του
κωδικοποιητή. Η αρχιτεκτονική της απευθείας μεθόδου υποστηρίζει ούτως ή άλλως σει-
ριακή είσοδο και έξοδο ενδογενώς. Η παραδοχή αυτή έγινε προκειμένου οι συγκρίσεις να
είναι επί της βάσης της πολυπλοκότητας της μεθόδου κωδικοποίησης και όχι των περιορι-
σμών που επιβάλει η διεπαφή εισόδου και εξόδου. Παρόλα αυτά, η σχεδίαση πρακτικών
κωδικοποιητών με διεπαφές εισόδου-εξόδου τύπου stream ή FIFO, αποτελεί ουσιαστική
πρόκληση σχεδίασης. Παρέχονται επομένως στη συνέχεια τροποποιημένες αρχιτεκτονι-
κές κωδικοποιητών για τις μεθόδους R-U και κατατετμημένου πίνακα ισοτιμίας, προσαρ-
μοσμένες για σειριακή είσοδο-έξοδο. Τα βήματα εκτέλεσης των αντίστοιχων αλγορίθμων
αντιστοιχίζονται σε στάδια γραμμών διοχέτευσης σε συστολικές αρχιτεκτονικές κωδικοποι-
ητών που εξασφαλίζουν τη βέλτιστη αξιοποίηση των υπολογιστικών πόρων. Τα αποτελέ-
σματα υλοποίησης (στην κάρτα KCU105) δίνουν εξαιρετικά μεγάλους αριθμούς ρυθμαπό-
δοσης, ορίζοντας το μέτρο σύγκρισης για οποιαδήποτε μελλοντική υλοποίηση. Η KCU105
φέρει το FPGA XCKU040, που αποτελεί το εμπορικό αντίστοιχο του πιστοποιημένου για
διαστημικές εφαρμογές XQRKU060

Όσον αφορά τον κώδικα C2, η μοναδική μέθοδος κωδικοποίησης που μπορεί να εφαρ-
μοστεί είναι η απευθείας. Ωστόσο η μεγαλύτερη πρόκληση όσον αφορά την υλοποίηση
συγκεκριμένο κώδικα είναι η διάσταση των υποπινάκων του πίνακα ισοτιμίας (και κατά
συνέπεια του πίνακα-γεννήτορα), η οποία είναι 511-bit. Οι λύσεις που έχουν προταθεί
μέχρι στιγμής για το πρόβλημα αυτό είναι απλές υλοποιήσεις της απευθείας μεθόδου οι
οποίες δεν εκμεταλλεύονται τους υπολογιστικούς πόρους με το βέλτιστο τρόπο, εισάγο-
ντας αδρανείς κύκλους στη γραμμή διοχέτευσης. Η υλοποίηση της απευθείας μεθόδου
που προτείνεται αντίθετα στην παρούσα διατριβή για τον C2, αξιοποιεί τη βασική αρχιτε-
κτονική του πολλαπλασιασμού διανύσματος με πίνακα QC, ελαχιστοποιώντας έτσι τους
απαιτούμενους πόρους. Επιπλέον, μέσω μιας μονάδας προ-επεξεργασίας στην είσοδο
του κωδικοποιητή, η οποία εισάγει μηδενικά σε κατάλληλα σημεία της ακολουθίας εισό-
δου, διαχειρίζεται όχι μόνο το πρόβλημα των διαστάσεων των υποπινάκων του πίνακα-
γεννήτορα, αλλά και κάποιες επιπλέον πολυπλοκότητες που περιγράφονται στο πρότυπο,
οι οποίες αφορούν την εισαγωγή μηδενικών στις ακολουθίες εισόδου και εξόδου, προκει-
μένου το μήκος της κωδικής λέξης να είναι δύναμη του 2 (8160 bit). Αντίστοιχα με τους
AR4JA, τα αποτελέσματα υλοποίησης σε FPGA τεκμηριώνουν την συνεισφορά της προ-
τεινόμενης αρχιτεκτονικής.

Η στατική και δυναμική ισχύς των προτεινόμενων υλοποιήσεων αρχιτεκτονικών μετρήθη-
κε στην KCU105, με χρήση του κατάλληλου υποσυστήματος του FPGA και της κάρτας,

το οποίο χαρακτηρίζεται από μεγάλη ακρίβεια. Η παρούσα είναι η πρώτη μελέτη που
λαμβάνει υπόψιν τις παραμέτρους κατανάλωσης ενέργειας, σε σχέση με τις αντίστοιχες
βιβλιογραφικές εφαρμογές.

Όλοι οι κωδικοποιητές δοκιμάστηκαν εκτενώς, τόσο με συμπεριφορική προσομοίωση του
κώδικα, κατά την οποία το ζητούμενο ήταν η κάλυψη κώδικα 100%, όσο και στο υλικό.
Αρχικά αναπτύχθηκε ένα μοντέλο της κωδικοποίησης στo λογισμικό GNU/Octave, σύμ-
φωνα με το οποίο παράχθηκαν τυχαία διανύσματα δοκιμής και οι προσδοκώμενες βάσει
αυτών αποκρίσεις των κυκλωμάτων. Στη συνέχεια, τα δεδομένα δοκιμής τροφοδοτήθηκαν
στους κωδικοποιητές στο υλικό, είτε μέσω H/Y με διασύνδεση SpaceFibre, είτε απευθείας
στο υλικό, με χρήση γεννήτριας ψευδοτυχαίας ακολουθίας. Το σύνολο των αποκρίσεων
στην πρώτη περίπτωση ελήφθην μέσω της διασύνδεσης SpaceFibre, ενώ στη δεύτερη,
οι αποκρίσεις του κυκλώματος συμπιέστηκαν με κατάλληλο κύκλωμα, του οποίου η τελική
τιμή διαβάστηκε από το υλικό. Σε όλες τις περιπτώσεις τα δεδομένα συγκρίθηκαν με τα
αναμενόμενα. Η σκοπιμότητα της διάκρισης των δύο δοκιμών έγκειται στη δυνατότητα
δοκιμής σε πλήρη ταχύτητα, στην περίπτωση της πλήρους δοκιμής στο υλικό, σε σύγκρι-
ση με τη δοκιμή σε ένα περιβάλλον το οποίο θα προσομοιώνει, στο μέτρο του δυνατού,
αυτό μιας πραγματικής αποστολής και στο οποίο τα διάφορα εξαρτήματα της αλυσίδας
επεξεργασίας διασυνδέονται μέσω ζεύξεων SpaceFibre.

Κατά την μελέτη των AR4JA κωδίκων, διαπιστώθηκε ότι κώδικες LDPC βασισμένοι σε
πρωτογράφους έχουν προταθεί για ένα εντελώς διαφορετικό πεδίο εφαρμογής, αυτό της
μαγνητικής αποθήκευσης. Η σχετική έρευνα ωστόσο περιορίζεται στη σχεδίαση και τις
ιδιότητες των κωδίκων, χωρίς να έχει προυσιαστεί κάποια αρχιτεκτονική υλοποίησης. Κά-
ποιοι από τους κώδικες που βασίζονται σε πρωτο-γράφους που έχουν προταθεί για αυτό
το πεδίο μοιράζονται αρκετά κοινά χαρακτηριστικά με τους AR4JA, με το κυριότερο να εί-
ναι οι περιορισμοί των υφιστάμενων αρχιτεκτονικών κωδικοποιητών, λόγω της απουσίας
δομών που να διευκολύνουν την υλοποίηση (πέραν της QC δομής). Με βάση τις αρχιτε-
κτονικές υλικού για τους AR4JA κώδικες, προτείνονται κατά συνέπεια προσαρμοσμένες
αρχιτεκτονικές υψηλής απόδοσης και για τους εν λόγω κώδικες. Λόγω των γενικά υψηλών
ρυθμών που απαντώνται στο συγκεκριμένο πεδίο εφαρμογής (πρακτικά μεγαλύτερο από
4/5), οι υλοποιήσεις που προτείνονται βασίζονται στη μέθοδο του κατατετμημένου πίνακα
ισοτιμίας.

Η Ενότητα 4 πραγματεύεται την κωδικοποίηση πακέτων, όπως αυτή περιγράφεται στο
αντίστοιχο πειραματικό πρότυπο του CCSDS (CCSDS 131.5). Η διόρθωση σφαλμάτων
σε επίπεδο πακέτου καλείται να αντιμετωπίσει ένα διαφορετικό πρόβλημα από το αντί-
στοιχο πρόβλημα σε επίπεδο bit. Υπάρχει επί του παρόντος έντονο ενδιαφέρον για την
ανάπτυξη συστημάτων οπτικών επικοινωνιών ελεύθερου χώρου (χωρίς δηλαδή τη χρήση
μέσου), βασισμένων σε laser, για την επίτευξη ιδιαίτερα υψηλών ταχυτήτων μεταφοράς
δεδομένων. Η σχετική ομάδα εργασίας του CCSDS είναι επί του παρόντος από τις πιο
δραστήριες. Σε μια τέτοια περίπτωση, η επίδραση των ατμοσφαιρικών φαινομένων με τη
μορφή διακυμάνσεων του δείκτη διάθλασης και εκτεταμένης νεφοκάλυψης, όπως επίσης
και φαινόμενα απώλειας συγχρονισμού του δέκτη λόγω προβλημάτων στη στόχευση των
κεραιών, είναι δυνατόν να οδηγήσουν στην απώλεια σημαντικού αριθμού από bits, σε ση-
μείο που να μην είναι εφικτή η ανάκτηση της αρχικής κωδικής λέξης, σε ένα κλασικό σχήμα

κωδικοποίησης καναλιού. Αντίστοιχα, τα επίγεια πρωτόκολλα που βασίζονται σε μηνύμα-
ντα επιβεβαίωσης (ARQ), δεν είναι αποδοτικά λόγω των μεγάλων καθυστερήσεων διάδο-
σης. Οι κλασσικοί τρόποι αντιμετώπισης αυτών των προβλημάτων χρησιμοποιούν κώδι-
κες καναλιού (συνήθως Reed-Solomon) με αναδιάταξη των κωδικολέξεων (interleaving),
έτσι ώστε μια διάλειψη να διαμοιραστεί σε μεγαλύτερο αριθμό κωδικολέξεων και οι κώδικες
καναλιού να μπορέσουν να αποδώσουν.

Μια εναλλακτική προσέγγιση αντιμετωπίζει ολόκληρες κωδικές λέξεις ενός κώδικα κανα-
λιού σαν σύμβολα, το καθένα από τα οποία έχει μέγεθος αρκετών χιλιάδων bits και είτε
λαμβάνεται επιτυχώς χωρίς σφάλματα, είτε θεωρείται σαν απωλεσθέν στο σύνολό του.
Ένας κώδικας διόρθωσης σφαλμάτων επιπέδου πακέτου σε αυτή την περίπτωση εισάγει
πρόσθετα σύμβολα ισοτιμίας στην μεταδιδόμενη ακολουθία, έτσι ώστε να είναι εφικτή η
ανάκτηση της αρχικής ακολουθίας, υπό την επίδραση διαγραφών. Στο πρότυπο CCSDS
131.5 περιγράφεται ένα τέτοιο σχήμα, ωστόσο δεν υπάρχουν κωδικοποιητές σε υλικό για
αυτό. Η μοναδική υλοποίηση που υπάρχει είναι υλοποίηση λογισμικού στη σουίτα ION της
NASA, για χρήση σε δίκτυα διαλλειπτόμενης συνδεσιμότητας (Delay Tolerant Networks-
DTN). Σε ένα σύστημα εν πτήση, η υλοποίηση ενός συστήματος κωδικοποίησης πακέτου
σε λογισμικό εκτελούμενο σε επεξεργαστή γενικής χρήσης θα ήταν ιδιαίτερα απαιτητική
σε υπολογιστικούς πόρους και ενέργεια. Κατά συνέπεια προτείνονται στην ενότητα 4 κω-
δικοποιητές υλικού για το εν λόγω πειραματικό πρότυπο του CCSDS.

Η ενότητα ξεκινάει με μια γενική περιγραφή της κωδικοποίησης πακέτων και συνεχίζει
με μια μαθηματική περιγραφή των κωδίκων του προτύπου, η οποία διευκολύνει την πε-
ραιτέρω περιγραφή των κωδικοποιητών που πρόκειται να υλοποιηθούν. Ακολούθως πε-
ριγράφονται τα χαρακτηριστικά απόδοσης και οι παράγοντες που τα επηρρεάζουν. Στη
συνέχεια παρουσιάζονται δύο αλγόριθμοι κωδικοποίησης: ο CNO (Check Node Oriented)
και ο VNO (Variable Node Oriented). Ο VNO είναι στην ουσία ο αλγόριθμος που περι-
γράφεται στο πρότυπο, με τη διαφορά ότι η περιγραφή του στην ενότητα αυτή στοχεύει
στην υλοποίησή του σε υλικό. Σύμφωνα με αυτόν, καθώς τα σύμβολα εισέρχονται στον
κωδικοποιητή, ανανεώνουν τα σύμβολα ισοτιμίας που συνδέονται με αυτά, σύμφωνα με
τον πίνακα ισοτιμίας συμβόλων του κώδικα. Όπως είναι προφανές, ο υπολογισμός των
συμβόλων ισοτιμίας σε αυτή την περίπτωση ολοκληρώνεται σχεδόν ταυτόχρονα για όλα τα
σύμβολα, αμέσως μόλις ολοκληρωθεί η επεξεργασία του τελευταίου εισερχόμενου συμβό-
λου. Αντίθετα, ο αλγόριθμος CNO είναι συνεισφορά της παρούσας εργασίας. Σύμφωνα
με αυτόν, όλα τα εισερχόμενα σύμβολα αποθηκεύονται αρχικά σε μια μνήμη. Τα σύμ-
βολα ισοτιμίας υπολογίζονται διαδοχικά, αθροίζοντας για το καθένα το υποσύνολο των
συμβόλων πληροφορίας που συνδέονται με αυτά, σύμφωνα πάλι με τον πίνακα ισοτιμί-
ας του κώδικα. Αντίστοιχα, στον αλγόριθμο αυτό, κάθε σύμβολο ισοτιμίας υπολογίζεται
και εκπέμπεται ξεχωριστά, αφού έχει ολοκληρωθεί η είσοδος όλων των συμβόλων πλη-
ροφορίας στον κωδικοποιητή. Είναι προφανές ότι και στους δύο αλγόριθμους, απαιτείται
η προσπέλαση μεγάλου όγκου δεδομένων σε ένα υποσύστημα εξωτερικής (ως προς τον
κωδικοποιητή) μνήμης, καθώς δεν θα ήταν εφικτή η διαχείριση όλων των συμβόλων από
πόρους σε ένα microchip. Σημαντική όμως διαφορά των δύο αλγορίθμων, με σοβαρές ε-
πιπτώσεις σε μια πραγματική υλοποίηση σε υλικό, είναι η αλληλουχία προσπελάσεων της
μνήμης: στην περίπτωση του VNO, η μνήμη προσπελαύνεται εναλλάξ για ανάγνωση και

εγγραφή πολλές φορές για κάθε σύμβολο, αφού κάθε εισερχόμενο σύμβολο εκτελεί μια αλ-
ληλουχία ανάγνωσης-ενημέρωσης-εγγραφής μιας θέσης μνήμης στην οποία με το πέρας
της επεξεργασίας θα έχει προκύψει ένα σύμβολο ισοτιμίας. Αντίθετα ο CNO ομαδοποιεί
τις εγγραφές και τις αναγνώσεις της μνήμης: το σύνολο των εγγραφών πραγματοποιείται
στην αρχή του αλγορίθμου, όταν τα εισερχόμενα σύμβολα εισέρχονται στον αποκωδικο-
ποιητή. Αντίθετα, το σύνολο των αναγνώσεων από την μνήμη πραγματοποιείται κατά τον
υπολογισμό και την έξοδο/εκπομπή των συμβόλων ισοτιμίας. Προκύπτει ότι η ομαδοποί-
ηση αυτή των αναγνώσεων και εγγραφών ευνοεί την απόδοση των κωδικοποιητών. Το
σύνολο των συμβιβασμών του κάθε αλγορίθμου και το ισοζύγιο απαιτήσεων σε πόρους
και ενέργεια υπολογίζεται αναλυτικά.

Στη συνέχεια παρουσιάζονται αρχιτεκτονικές στο υλικό για τους δύο αλγόριθμους, στοχεύ-
οντας την αναπτυξιακή κάρτα KCU105, επιτυγχάνοντας ρυθμούς κωδικοποίησης μεγα-
λύτερους απο 13 Gbps. Οι κωδικοποιητές χρησιμοποιούν την μνήμη DDR4 της κάρτας
για τους ενδιάμεσους υπολογισμούς, στην οποία συνδέονται μέσω κατάλληλου ελεγκτή
μνήμης (MIG 7-series controller). Οι δοκιμές επαλήθευσης των κωδικοποιητών στο υλικό
έγιναν, όπως και στην περίπτωση των κωδίκων καναλιού της προηγούμενης ενότητας, με
συνδυασμό γεννήτριας ψευδοτυχαίας ακολουθίας δεδομένων και συμπίεσης αποκρίσε-
ων, αλλά και αποστολής και λήψης δεδομένων από Η/Υ μέσω διασύνδεσης SpaceFibre.
Αντίστοιχα πάλι με τους κώδικες καναλιού, αναπτύχθηκε κωδικοποιητής σε λογισμικό, βα-
σισμένος στη δημοσιοποιημένη υλοποίηση ανοιχτού κώδικα (OpenFec project), η οποία
υιοθετείται από τη σουίτα ION και με βάση τον οποίο υπολογίστηκαν οι αναμενόμενες α-
ποκρίσεις των κωδικοποιητών στο υλικό. Το περιβάλλον αυτό αξιοποιήθηκε και για τις
μετρήσεις ισχύος που πραγματοποιήθηκαν, με χρήση πάλι του κατάλληλου υποσυστήμα-
τος του FPGA και της κάρτας και οι οποίες, μαζί με την αξιολόγησή τους στην παρούσα,
αποτελούν μια ακόμα συνεισφορά της παρούσας εργασίας, καθώς είναι η πρώτη φορά
που εξετάζεται το ζήτημα της κατανάλωσης ενέργειας για τις υλοποιήσεις κωδικοποίησης
επιπέδου πακέτου.

Οι κωδικοποιητές πακέτων που παρουσιάζονται, εκτός από το να απελευθερώνουν υπο-
λογιστικούς πόρους από την κεντρική μονάδα επεξεργασίας ενός συστήματος επεξεργα-
σίας δεδομένων εν πτήσει, είναι σε θέση να υποστηρίξουν υψηλούς ρυθμούς κωδικοποί-
ησης, ικανούς να για τις απαιτήσεις των νέων προτύπων οπτικών επικοινωνιών, με πολύ
αποτελεσματικότερο τρόπο από έναν επεξεργαστή γενικής χρήσης. Για την τεκμηρίωση
της πρότασης αυτής, οι προτεινόμενοι κωδικοποιητές υλικού συγκρίνονται με υλοποιή-
σεις λογισμικού σε επεξεργαστές γενικής χρήσης που έχουν προταθεί ή χρησιμοποιηθεί
σε αεροδιαστημικές εφαρμογές. Το λογισμικό του κωδικοποιητή που αναφέρθηκε ανω-
τέρω για τον υπολογισμό των αναμενόμενων αποκρίσεων εκτελέστηκε διαδοχικά στους
επεξεργαστές LEON3, LEON5 και NOEL-V (RISC5). Για τη δοκιμή χρησιμοποιήθηκαν
μοντέλα των επεξεργαστών αυτών σε FPGA (soft processors), συνδεδεμένα στον ίδιο ε-
λεγκτή μνήμης (MIG7-series) στην πλακέτα KCU105 και η σύγκριση έγινε στη βάση των
απαιτούμενων κύκλων ρολογιού για τον υπολογισμό μιας κωδικολέξης, αντί για απόλυτο
ρυθμό κωδικοποίησης, προκειμένου οι συγκρίσεις να είναι δίκαιες. Οι μετρήσεις έδειξαν
μια βελτίωση της ταχύτητας κατά έναν παράγοντα μεγαλύτερο από 80 φορές, με χρή-
ση των προτεινόμενων κωδικοποιητών. Μια ακόμα σύγκριση πραγματοποιήθηκε με το

ενσωματωμένο σύστημα επεξεργασίας ARM Cortex A9 της σειράς ZynQ-7000 και συγκε-
κριμένα του MPSoC της κάρτας ZC706, καθώς η τεχνολογία ZynQ-7000 έχει πρόσφατα
προταθεί για χρήση σε αεροδιαστημικές εφαρμογές. Σε αυτή τη δοκιμή, χρησιμοποιήθηκε
ο ελεγκτής μνήμης του υποσυστήματος ARM για τη διασύνδεση των κωδικοποιητών με τη
μνήμη της κάρτας. Η επιτάχυνση που επιδείχθηκε ήταν από 4,7 έως 9 φορές μεγαλύτερη
απόδοση των κωδικοποιητών υλικού.

Στην τελευταία ενότητα ολοκληρώνεται η διατριβή και περιγράφονται οι μελλοντικοί ερευ-
νητικοί ορίζοντες που ανοίγει η παρούσα εργασία.

To my beloved wife, Valentina

ACKNOWLEDGEMENTS

First and foremost, I would like to expressmy deepest gratitude to my supervisor Professor
Antonis Paschalis, for all the guidance and support that he provided to me through all
these years: from our first academic encounter during my MSc studies, up to the present
moment and for the further possibilities that he opened to me for future collaboration and
work on the research areas outlined in the last Section of this thesis.

This journey would have not been possible without the support of Prof. Kranitis, who was
always holding the map and showing the research direction to pursue. Professor Kranitis
has always been by my side, supporting me when sailing in unknown and unmapped
waters. I would like also to express my deepest appreciation to Prof. Gizopoulos, for
all his colossal academic achievements and the work that he has done for the DSCAL.
In addition, I owe special thanks to Elias Machairas and Panagiotis Chatziantoniou, both
members of the DSCAL team who supported this work, and whose impressive research
achievements have always been a source of inspiration and admiration.

Last but not least, I owe special thanks to Dr. Antonis Tsigkanos, for all the assistance
he has provided in my work, through all these years in DSCAL. Important parts of the
code basis of the work presented in this thesis have been kindly provided by him, sav-
ing me a significant amount of time and effort. Above all, his assistance and support in
troubleshooting the numerous bugs and dealing with the hundreds of dilemmas I was con-
fronted with, deserve, as a minimum acknowledgement of his support, my highest respect
and my deepest gratitude.

CONTENTS

1 INTRODUCTION 37
1.1 Introduction to Forward Error Correction schemes 37

1.2 Problem description and motivation . 38

1.3 Contributions & publications . 39

1.3.1 Bit-level QC-LDPC encoding . 40

1.3.2 Packet-level coding over erasure channels 41

1.3.3 Unit-level testing and SpaceFibre integration 41

1.4 Equipment & Technologies . 42

1.5 Thesis outline . 42

2 BACKGROUND 45
2.1 Space communication channels & protocols 45

2.2 On-board data processing . 48

2.3 FPGAs in space . 51

2.4 Space-grade CPUs . 54

2.5 Spacewire and spacefibre . 57

3 QC LDPC ENCODER IMPLEMENTATIONS 61
3.1 QC LDPC Linear Block Codes . 61

3.2 CCSDS codes . 64

3.2.1 AR4JA codes for deep-space communications 64

3.2.2 C2 code for near-earth communications 66

3.2.3 Performance characteristics of the various CCSDS codes 66

3.3 LDPC encoding methods and their limitations 72

3.3.1 Direct method . 72

3.3.2 R-U method . 74

3.3.3 Partitioned-H methods . 75

3.3.4 Hybrid method . 79

3.4 Description of the proposed basic architecture 79

3.5 Encoding architectures . 82

3.5.1 Direct method encoder . 83

3.5.2 R-U method encoder . 83

3.5.3 Hybrid method encoder . 87

3.5.4 Partitioned-H method encoder . 89

3.5.5 Special case: C2 code . 89

3.6 Implementation and results . 92

3.7 Testing . 99

3.8 Special topic: QC encoding for magnetic media recording 102

3.8.1 IARA . 103

3.8.2 2-D-P1 and 2-D-P2 . 104

3.8.3 Nested high-rate ISI codes . 107

3.8.4 RCOP . 109

3.8.5 Implementation results and testing 109

4 PACKET-LEVEL ENCODER IMPLEMENTATIONS 113
4.1 Packet level erasure codes introduction . 113

4.2 Background . 115

4.3 Performance characteristics of packet-level erasure codes 116

4.4 Encoding Algorithms . 117

4.4.1 Variable node oriented algorithm . 118

4.4.2 Check node oriented algorithm . 118

4.4.3 VNO and CNO tradeoffs . 119

4.5 Hardware Architectures . 120

4.5.1 CNO architecture . 121

4.5.2 VNO architecture . 123

4.5.3 Design Considerations . 126

4.6 Hardware Implementation and Validation 128

4.7 Comparison to CPU Implementations . 132

5 CONCLUSIONS AND FUTURE WORK 139

ABBREVIATIONS - ACRONYMS 141

REFERENCES 159

LIST OF FIGURES

2.1 Overview of space communication protocols. 46

2.2 CCSDS Protocol Stack with Erasure Coding Functions. 48

2.3 PLATO paylolad architecture overview. 50

2.4 Simplified on-board processing reference system. 52

2.5 The KCU105, the ZC706 and the Zedboard development boards. 54

2.6 History of CPU architectures used in space missions. 55

2.7 A typical GRLIB LEON/NOEL SoC design 56

2.8 Hi-SIDE IP core’s behaviour with regard to TLAST signalling. 58

2.9 Block diagram of the SpaceFibre equipment and environment 59

2.10 GUI applications examples . 60

3.1 Example H matrix of the CCSDS rate 1/2 AR4JA code 64

3.2 AR4JA protograph. 65

3.3 The parity-check matrix of the C2 code. 66

3.4 The encoding process for the C2 code. 67

3.5 Performance comparison of the CCSDS recommended codes. Source: [31]. 68

3.6 The minimum achievable BER for various rates, as function of Eb/N0 69

3.7 Sphere Packings Bound on performance for various rates over the BI-AWGN. 69

3.8 Simplified overview of SPA decoding. 71

3.9 The generator matrix of the (2048,1024) AR4JA CCSDS 73

3.10 Structure or H matrix for the R-U method 74

3.11 H matrix of AR4JA r=1/2 code, before and after the transformation into
lower triangular form. 76

3.12 φ−1 submatrix for AR4JA codes . 76

3.13 H−1
2 submatrix for the Wimax (2016,1008) code. 77

3.14 L′, U ′ matrices of (2016,1008) example code in [90] and AR4JA k=1024
rate 1/2 code . 79

3.15 LFSR architecture for QC vector-matrix multiplication. 82

3.16 Proposed implementation according to the direct method 84

3.17 Proposed implementation according to the R-U method. 86

3.18 Hybrid method implementation ([47]) . 88

3.19 Proposed implementation according to the partitioned-H method 89

3.20 Proposed stream input implementation for C2 code 91

3.21 A matrices of k = 1024 codes: R12, R23 and R45. 92

3.22 Proposed implementation according to the RU method with serial I/O. . . . 94

3.23 Pipelined operation over successive transfer frames for the R-U implemen-
tation . 94

3.24 Proposed implementation according to the partitioned-H method with serial
I.O. 95

3.25 Pipelined operation over successive transfer frames for the partitioned-H
implementation . 95

3.26 Full throughput testing environment. 101

3.27 User logic overview of the SpaceFibre test environment. 101

3.28 . 102

3.29 IARA protographs and parity-check matrices for rate 4/5 codes. 105

3.30 Encoder design for IARA codes. Last m parity bits are punctured 106

3.31 2-D-P protographs and parity-check matrices for rate 4/5 codes 106

3.32 Encoder design for 2-D-P [39], nested high-rate ISI [128] and RCOP [61]
codes . 107

3.33 Nested high-rate ISI code protograph and parity-check matrix for rate 4/5. . 108

3.34 RCOP code protograph and parity-check matrix for rate 4/5. 109

3.35 Testing environment for the magnetic recording media encoders. 111

4.1 The codeword error rate vs the symbol erasure probability for the packet-
level codes of this work. 117

4.2 Structure of matrix Ac. 119

4.3 CNO architecture . 122

4.4 Block diagram of Rcn module. 123

4.5 VNO architecture . 124

4.6 Block diagram of the Rvn module. 126

4.7 Read channel arbitration of the VNO architecture. 127

4.8 Minimum latency definition. 128

4.9 Encoders’ reference design on the KCU105 130

4.10 System design for performance comparisons. 133

4.11 System design for performance comparisons against the ARM embedded
processor on the ZC706. 136

4.12 System design for performance comparisons against the ARM embedded
processor on the ZCU102. 137

LIST OF TABLES

3.1 M parameter of AR4JA codes . 65

3.2 Resource and Performance Estimations . 82

3.3 Direct method estimations . 84

3.4 R-U method budget . 85

3.5 R-U method estimations . 87

3.6 Hybrid method estimations . 87

3.7 Partitioned-H method estimations . 90

3.8 C2 code estimations . 91

3.9 CCSDS-131.0 encoders implementation results on the KCU105 board . . . 96

3.10 Power measurements on the KCU105 board 97

3.11 AR4JA implementation comparisons (synthesized design) with previous work
in the literature . 97

3.12 AR4JA 16K implementation comparisons (implemented design) with NASA/JPL
on the Virtex UltraScale+ XCVU9PFLGA2104-2L FPGA 98

3.13 C2 implementation comparisons (synthesized design) 99

3.14 Implementation results (synthesized design) on Xilinx Zynq XC7Z045-2 SoC110

4.1 Codes parameters . 115

4.2 algorithms trade-offs . 120

4.3 Resource and performance estimation . 128

4.4 Resource and performance measurements on the KCU105 132

4.5 Acceleration characteristics against LEON/NOEL-V soft processor on the
KCU105 . 134

4.6 Acceleration characteristics against the embedded ARM Cortex A9 proces-
sor on the ZC706 . 136

4.7 Resource and performance measurements on the ZCU102 138

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

1. INTRODUCTION

1.1 Introduction to Forward Error Correction schemes

Forward Error Correction (FEC) codes are used extensively in almost every communica-
tion and data processing system, in order to increase the reliability of transmission and
storage of data. This is especially important in space communications scenarios, due to
the challenging environmental conditions and the extremely stringent power requirements
of deep-space links, or conversely, the high data rates and low latency necessary in near-
earth satellite communication scenarios. Channel coding is the process that implements
the FEC capability, by transforming the information that is going to be transmitted over a
channel, in a suitable form that can lead to this reliability increase. Generally, in chan-
nel coding, redundant information is added to the transmitted or stored information, so
that its recovery at the receiver is possible, in the presence of errors which are caused
by noise, interference, disruptions of the transmission path between the transmitter and
the receiver, failure of the storage medium, or any other phenomena that could poten-
tially result in loss of information. Apparently, an efficient channel coding scheme is one
that combines the maximum information recovery with the minimum redundancy in the
transmitted/stored information. In his seminal work in [54], Shannon defined the capacity
of a channel as the upper bound of the rate at which it can convey information, and it
determined by the channel’s physical characteristics and the mathematical model which
describes it. Reliable communication can only be established if the rate at which the in-
formation is transmitted over the channel is lower than its capacity. In other words, he
proved that channel codes exist, which can result in transmission rates that are arbitrarily
close to the channel’s capacity. What, however, he did not provide in his work, is the
definition of the specific codes themselves. The holly grail of information theory has been,
since then, the discovery of channel codes that can perform as close to the capacity limit
of the channel as possible. At the same time, an efficient channel coding scheme im-
plementation in a realistic scenario has to balance contradicting requirements and offer a
variety of trade-offs in terms of error correcting efficiency, encoding/decoding complexity,
throughput, hardware resources utilization and power consumption.

The traditional approach which has been widely adopted since the dawn of digital commu-
nications implements channel coding at the bit-level. Well known codes in this area include
Reed-Solomon (RS) [108] and Turbo [23] codes. Another highly advantageous class of
channel codes are the Low-Density Parity-Check (LDPC) codes, which are linear block
codes, characterized by large block lengths and sparse parity-check matrices. Introduced
by R.G. Gallager in 1960 [64], LDPC codes had in following years generally succumbed to
oblivion, due to the current era’s technology limitations, which could not allow their imple-
mentation at a reasonable cost. However, advances in VLSI technology, together with the
application of efficient code design techniques that facilitate encoder/decoder implemen-
tation have annihilated those barriers. Among the entire range of modern error correcting
codes (ECC), they are currently the most promising approach towards the capacity limit
described by Shannon [54]. This has established them as the optimal choice for FEC in

37 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

modern applications.

The error correcting capability of conventional bit-level channel coding, however, is limited
in high speed and deep fading scenarios, such as those encountered in modern earth-to-
satellite and satellite-to-satellite laser links. Moreover, these environments are charac-
terized by high latency and the fading effect of the communication channel is so deep
that bit-level channel codes cannot provide the required reliability, since even a single
scintillation effect can span a high volume of the transmitted information sequence. Error
correction in this case takes place at a higher level of the communications protocol stack
than bit-level channel coding (which is typically a function of the data link layer in OSI
protocol stack). Contrary to the bit-level channel codes, where most of the encoding and
decoding takes place in specialised hardware, in this case traditionally, software-based
approaches had been followed, since the volume of the data to be processed is enormous.
This, in turn, introduces additional challenges in terms of resources, latency and power.

The vast volume of data transmitted in a a aerospace data-link is downstream data (from
the platform to the terrestrial ground station). In this scenario, an encoder is a hardware
or software element of the on-board data processing chain that generates the suitable
FEC sequence to be transmitted, and a decoder is the corresponding element on the re-
ceiver’s side (ground station). At the same time, the on-board resources are generally
scarce, contrary to the ground station’s, where resource and power abundance can be
presumed. Since the focus of this thesis is on aerospace applications, the first challenge
is the efficient implementation of encoders for FEC schemes. That is does not mean in
any case that the design of efficient decoders is trivial: deep space and near-earth com-
munication is always bidirectional and the upstream data normally refers to mission-critical
control and navigation information, that also needs a high level of protection. Moreover,
space-to-space communication (for example between satellites or between a rover and a
satellite) requires that the spaceborne platform is able to carry out both functions (encod-
ing & decoding).

1.2 Problem description and motivation

LDPC codes are linear block codes, characterized by large block lengths and sparse
parity-check matrices. The initial Gallager codes [64] were random and although they ex-
hibited excellent error-correcting capabilities, hardware implementation was challenging.
In order to reduce implementation complexity and encoding/decoding speed, additional
structure has been designed into the parity check matrices of all practical LDPC codes in
modern applications, so that they consist of an array of juxtaposed cyclic sub matrices,
named the circulants, which can be efficiently implemented. These structured codes are
collectively referred to as Quasi-Cyclic (QC) LDPC codes.

A special class of QC-LDPC codes, the protograph-based QC codes have recently re-
ceived considerable research interest in many modern standards [57]. The protograph
codes proposed in [60] exhibit outstanding performance over the partial response (PR)
channel, used to model magnetic recording (MR) media systems. The work in [40] shows

D. Theodoropoulos 38

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

the application of LDPC codes to physical layer network coding (PNC) and describes
the research on LDPC codes for PNC as an emerging research trend. A class of pro-
tograph based LDPC codes for use on PNC are also proposed in [40]. Finally, a novel
family of root-protograph QC-LDPC codes have recently been proposed in [59] for mod-
ern point-to-point andmultirelay wireless communication applications, modelled according
to the block (or slow) fading channel. Most importantly, the Consultative Committee for
Space Data Systems (CCSDS) has standardized in [32] a number of protograph-based
QC-LDPC code families for space communication protocols, as alternatives to concate-
nated convolutional and Reed-Solomon codes, over which they offer substantially higher
error-correcting performance. In this paper, the focus is on these specific codes.

A multitude of encoder architectures for QC-LDPC codes has been proposed in the lit-
erature. Most of these architectures, however, focus on a specific standard or class of
standards, leveraging the specific properties of the particular code. The result is that al-
though they exhibit outstanding performance characteristics for the specific code family,
they are either altogether non-applicable to CCSDS codes and codes that are similard to
CCSDS, or their adoption to them comes with a significant performance penalty. Most of
these encoder architectures require a specific structure in the parity check matrix of the
code, which is not present in CCSDS codes. Some examples of such cases can be found
in [127, 97, 133, 99].

A new approach therefore is required, that can lead to efficient encoding of QC-LDPC
codes, without, however, duplication of the existing knowledge in the field: a thorough
investigation and analytical comparison of the existing encoding methods, a grouping of
the so far proposed encoder architectures into these methods and a comparison of the
results of their application to protograph-basedQC-LDPC codes are fundamental research
requirements and solid justifications of the contributions of this work.

Packet-level (PL) erasure coding is a new approach for mitigation of burst errors in high
speed optical communications. CCSDS has introduced an experimental specification for
PL coding in [33]. Since their introduction in [33], however, the proposed codes have
not matured into a CCSDS recommended (”blue”) standard yet, nor are there any imple-
mentation attempts demonstrated in the literature. The current work is the first approach
to examine packet-level encoding algorithms and propose, implement and test hardware
encoder architectures for these algorithms. With the current research, I support that they
can be placed among the options for modern high speed communications.

1.3 Contributions & publications

The contributions provided by the work presented in this thesis can be grouped into two
main research areas: bit-level encoding for QC-LDPC codes and packet-level coding for
the erasure channel and system unit testing using SpaceFibre equipment as an auxiliary
area. The individual components of each contribution area are enumerated and described
in the current Section.

39 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

1.3.1 Bit-level QC-LDPC encoding

1. All the LDPC encoding methods which have been proposed so far are summarised
in Chapter 3 and their applicability to the protograph-based CCSDSQC-LDPC codes
of the CCSDS standard [32] and the codes for MR media is analytically examined.

2. The entirety of the published works in the research field of LDPC encoding imple-
mentations is thoroughly reviewed, grouped according to the encoding method that
each reference implements and their performance for the codes of the previous item
is questioned.

3. A novel architecture for the multiplication of a dense QC matrix with a bit vector,
which is a fundamental operation of QC-LDPC encoding, is proposed. The architec-
ture leverages the inherent parallelism of the QC structure by concurrently process-
ing multiple bits, according to an optimized scheduling.

4. Based on this architecture, efficient encoders for CCSDS codes are proposed, ac-
cording to all the applicable LDPC encoding methods, which are analytically de-
scribed and compared in terms of resource utilization efficiency for the CCSDS and
MR QC-LDPC codes.

5. In the special case of the specific code defined in the CCSDS standard for Near-
Earth communications, a preprocessing algorithm is also introduced, which effi-
ciently handles the challenges arising from the generator’s matrix circulant size (511
bits).

6. State-of-the-art encoding throughput performance is demonstrated on a the com-
mercial counterpart of Xilinx space-grade Kintex UltraScale FPGA technology, achiev-
ing a significant speed-up compared with previous approaches, while at the same
time keeping resource utilization low.

7. Extensive testing in a realistic SpaceFibre-enabled environment has been executed.

8. It is the first work to introduce accurate and detailed power measurements and com-
parisons for all the encoder implementations presented.

9. The hereto described analysis and results have also been applied to the special case
of the protograph-based codes which have been proposed for MR media. These
cores bear significant resemblance to the corresponding codes of the CCSDS stan-
dard [32]. This is the first time that practical hardware QC-LDPC encoder implemen-
tations are proposed for MR applications.

The above topics have been published in [121], as an early stage preliminary work on
encoders for CCSDS and in [123] as a mature work. Further progress, however, has been
made since their publication, which is described in the corresponding Chapter 3. This
additional work is related to the design, implementation and testing of architectures with
AXI4-Stream interfaces and testing with SpaceFibre equipment. Some of these results

D. Theodoropoulos 40

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

have been recently demonstrated in [105]. The work regarding MR applications has been
published in [124].

1.3.2 Packet-level coding over erasure channels

1. The work presented in Chapter 4 is the first hardware implementation of PL codes
in the literature and in the market. Implementations of packet-level encoding and
decoding so far exist only in software, running on a general-purpose CPU.

2. A novel encoding algorithm (Check Node Oriented, or CNO) is introduced in Section
4.4, which is shown to offer diversified trade-offs, when it is compared to the con-
ventional encoding algorithm (Variable-Node Oriented, or VNO) that is proposed in
[33] and the related references.

3. The two encoding algorithms are analytically described and compared and the dif-
ferent trade-offs are described and explained.

4. Power measurements of the complete FPGA design are introduced, enabling thus
the discussion about the inclusion of packet-level codes in power-constrained on-
board applications.

5. Hardware implementations are proposed for the two algorithms and their trade-offs
are described, including power consumption.

6. Hardware implementations are compared with software implementations on CPUs
which have been used in aerospace applications, showing an indisputable acceler-
ation advantage, in favour of the proposed hardware implementations.

The above topics have been published in [122].

1.3.3 Unit-level testing and SpaceFibre integration

1. Gaisler and STAR-Dundee SpaceFibre IP cores have been ported to the available
FPGA cards of DSCAL and reference designs that ca be used for testing have been
built.

2. Custom software has been developed around the STAR-System API, for test au-
tomation.

3. Software for test automation around the ZynQ-7000 series SoC has been built, on
the Xilinx Vitis Unified Software Platform.

These contributions have supported the publications in [126] and [37].

41 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

1.4 Equipment & Technologies

The theoretical results and analytical estimations described throughout this thesis are
in all cases backed by active development and implementations on FPGA and MPSoC
hardware, which also include validation and verification procedures: the proposed archi-
tectures are implemented as IP cores on the targeted platforms and their responses are
compared against a bit-accurate software model, written in C or GNU/Octave. These de-
velopmental and testing processes accounted for a significant part of the total research
effort and required the solid understanding and proficient use of the corresponding tools:

• Xilinx Vivado and (various versions) for implementation. Heavy use of AXI infras-
tructure IP andmost of the rest of AXI-related IP cores (for example AXI performance
monitor, AXI JTAG master and AXI DMA cores) was also mandated for the testing
frameworks adopted.

• Xilinx Vitis Unified Software Platform (various versions) for SoC and MPSoC sys-
tem programming was used, mostly for testing purposes and for the perfomance
comparisons of PL erasure codes’ implementations.

• Mentor Graphics Modelsim simulator was the tool of choice for behavioural simula-
tion, with code coverage analysis enabled in an effort to comply with ESA IP core
specifications [12].

• Synopsis Synplify Premier was used for synthesis, when the maximum targeted
clock rate was being sought after

• Vunit framework [19] was extensively used for most testbences and especially those
involving AXI4-enabled cores.

• GNU/Octave language, which is the open-source equivalent of Mathworks Matlab
was used for the golden model development.

The DSCAL equipment available to support the research includes all the above listed
software and a variety of development boards, including the XUPv5, Zedboard, ZC706
and ZCU102 boards. These boards are described in more detail in Section 2.3.

1.5 Thesis outline

Chapter 2 introduces some necessary pieces of information about the thematic region
of the thesis. First, an overview of space communication channels and protocols is pro-
vided, with an emphasis on the CCSDS standards and the channel models which have a
direct or indirect relationship with the subjects of this thesis: TM bit-level channel coding,
mostly over the AWGN channel and packet-level coding over the erasure channel. Then
on-board data processing requirements are briefly analysed. The application of FPGAs

D. Theodoropoulos 42

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

and SoCs/MPSoCs in aerospace environments is described and the development and
evaluation boards which are available in DSCAL and include some of the FPGAs and/or
SoC/MPSoCs which have been proposed or used for space applications. This Section is
followed by a brief introduction into the CPUs that are used in space, with a brief analysis
of the emerging trends. Finally, SpaceWire and SpaceFibre protocols are described and
the auxiliary contributions of the current work in the field of SpaceFibre unit-level testing
is detailed.

The subsequent Chapter 3 describes all aspects of QC-LDPC encoding with which this
thesis deals. First, the theoretical background of QC-LDPC codes is provided, to the level
of detail that is necessary for the subsequent analysis. Then, the specific codes of the
CCSDS standards are described in a way that is meaningful from an encoder implemen-
tation perspective. This analysis is quite different from the corresponding definitions which
are provided in the CCSDS standards and most importantly, sets a concise terminology
and notation that is followed across the Chapter. A detailed description follows, of all the
methods which have been proposed so far for LDPC encoding and all the encoding archi-
tectures in the known and accessible literature, grouped according to the encodingmethod
that they implement. For each encoding method and architecture, an applicability analysis
is provided, regarding their effectiveness for the protograph-based codes of the CCSDS
standard and their limitations are highlighted. The basic architecture for the multiplication
of a bit-vector with a dense QC matrix is afterwards described, which forms the basis for
the hardware encoding architectures proposed in the subsequent Section 3.5, for each
one of the possible encoding methods. Analytical calculation of the required resources
is provided in each case and comparisons are made against the proposed architectures
presented in Section 3.3 which are applicable to the QC-LDPC codes of the CCSDS stan-
dard. These architectures are slightly modified in the next Section (3.6), so that practical
implementations featuring industry-standard AXI4-Stream interfaces can be designed, in a
way that balances the execution steps along a high-performance pipeline. The implemen-
tation results targeting space-equivalent FPGA fabric are provided and compared against
the (limited) implementations of the codes of the CCSD standard in the literature and in
the market. The testing framework is then provided in Section 3.7. In 3.8, which is the
last Section of Chapter 3, the protograph-based QC-LDPC codes proposed for MR media
systems are briefly described. These codes bear significant resemblance to the corre-
sponding CCSDS codes and the adaptation of the architectures introduced in Section 3.5
is possible. Their implementation results and testing methodology are also described.

Chapter 4 deals with packet-level erasure coding. After a short introductory Section (4.1)
which mostly focuses on the problems that PL coding is trying to solve, the codes of the
CCSDS standard in [33] are presented and a concise notation is established. Then, in
Section 4.4, two encoding algorithms are described, one of which (Check Node Oriented-
CNO) is a new contribution of this thesis. The different trade-offs of the two encoding
algorithms are identified and compared, as well, in that Section. Hardware architectures
for the two encoding algorithms are introduced in Section 4.5, for which the different imple-
mentation scenarios favoring the one over the other are explained. Section 4.6 describes
the implementation results and performance and power characteristics of the implemen-

43 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

tation on the KCU105 development board. Comparisons to software implementations of
the PL encoder process of the CCSDS standard on CPUs used in aerospace applications
are provided in Section 4.7.

Finally, Chapter 5 concludes the thesis and describes the future research directions that
have been inspired by the work described herein.

D. Theodoropoulos 44

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

2. BACKGROUND

2.1 Space communication channels & protocols

A space link is a communications link between a spacecraft and its associated ground
system or between two spacecrafts. A space communications protocol is a communica-
tions protocol designed to be used over a space link, or in a network that contains one
or multiple space links [30]. Space data data links are inherently different from their ter-
restrial counterparts, since the transmission channel is dominated by longer transmission
delays, weather phenomena low transmission power, high attenuation and high noise.

A channel model is a mathematical representation of the effect of a communication chan-
nel through which wireless signals are propagated, on these signals; it is modeled as the
impulse response of the channel in the frequency or time domain [62]. The selection of
the correct channel model for each space communication link is important for the correct
design and performance characterization of the FEC code that is used. The work in [102]
provides a starting point to the study of channel models used for near-earth, deep-space
and optical communications. In the simplest case, the Additive White Gaussian Noise
(AWGN) channel is used, especially for low-rate deep space communications. However,
as data rates increase, transmission volumes (i.e. block lengths) become higher and
atmospheric phenomena need to be modeled in near-earth scenarios, its limitations be-
comes prominent. Fading effects have to be taken into account and more complex fading
channel models need to be considered, like the Nakagami, Rayleigh and Rician channels.
Moreover, multipath transmission and solar or cosmic ray interference cause inter-symbol
interference (ISI) between the transmission symbols, so that the channel can no longer be
considered as memoryless. The Binary Erasure Channel (BEC) is another useful channel
model that has also been adopted in the development of space communication proto-
cols. Since all these channel models have been amply studied and documented and the
relevant information is covered by almost every relevant academic textbook, it is not the
purpose of this thesis to elaborate on the details of their mathematical description and
properties. Intermittent connectivity is also common in space communications: whether
as a result of atmospheric perturbations due to optical (refractive index) turbulence, mete-
orological phenomena (e.g. cloud coverage), or loss of line of sight, as a result of orbital
movement. In these cases, the Sdelay tolerant networking (DTN) architecture [36] is used
to describe and solve the problem of communication. References [28] and [42] provide
further insight and the most recent advances in the application of the DTN architecture for
space applications.

The Consultative Committee for Space Data Systems (CCSDS) is a multi-national forum
for the development of communications & data systems standards for spaceflight. An
overview of the space communication protocols standardized by the Committee is pro-
vided in [30]. The complete analysis or enumeration of the protocols implemented by the
committee is neither feasible, nor meaningful. Instead, attention is limited to the protocols
involved in the work described in this thesis, which are displayed in Fig. 2.1 with their

45 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 2.1: Overview of space communication protocols.

correspondence to the OSI protocol reference model (where possible).

Protocols for multispectral and hyperspectral image compression dominate the the top lay-
ers, mostly because parts of this work supported the research activities of DSCAL in their
respective areas. More specifically, the initial 123.0-B1 standard provided a prediction-
based adaptive algorithm that achieves a unique combination of low complexity and high
efficiency: a prediction algorithm estimates the image sample value based on the values of
nearby samples in a small 3-D neighborhood and an encoder algorithm losslessly encodes
the mapped prediction residuals using a sample adaptive encoder or the block-adaptive
encoder specified in the CCSDS 121.0-B-3 standard for lossless data compression, as
an alternative option. A high throughput parallel implementation of the standard has been
introduced in [126], which targets a low cost COTS SoC FPGA device. In February 2019,
the standard was updated to version 2 (CCSDS 123.0-B-2) and support was added for
near-lossless compression capability, according to which, absolute and/or relative error
limits to lossy compression are defined. A high-performance architecture and implementa-
tion of the standard has recently been introduced by DSCAL in [37] and it has been tested
and validated on space-grade technology. Of the other two protocols listed at the higher
layers of Fig. 2.1, CFDP provides file transfer capabilities and the corresponding software
user interface, while the bundle protocol implements the DTN network architecture in the
context of space communications.

Between the Data Link and the Network Layers of the ISO stack, the Licklider Transmission
Protocol (LTP) can provide reliable and unreliable communications over a single data link
hop. It is optimised to support CFDP and to interoperate with the bundle protocol. The
space and encapsulation packet protocols are part of the CCSDS encapsulation service,

D. Theodoropoulos 46

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

which is attached to the data link layer and serves as a convergence sublayer between
this layer and the higher layer protocols, some of which span multiple OSI layers.

The data-link layer is split into two sub-layers: the data-link protocol and the synchro-
nization and channel coding sub-layers. The distinction refers to the different protocol
functions, rather than the special needs of space communications. In these layers, four
protocol stacks are defined for telemetry, telecommand Proximity-1 and free-space opti-
cal links. Proximity-1 links are short range bi-directional links between space equipment,
for example between fixed probes or rovers and orbiting relays. Recently, free-space op-
tical laser-based communications have been gaining momentum for space applications,
since they offer the potential of an order of magnitude increase in the offered data-rate,
compared to their RF counterparts, while requiring less space, power and mass for their
electronics. Their advent has called for different protocols. This area of optical space
communications is currently evolving rapidly and new functionalities are being constantly
added to the corresponding protocols. Currently, three different kinds of space optical
communications are considered [56]:

• High Photon Efficiency (HPE) links are photon-starved links, typically expected in
deep-space mission scenarios, or in small satellites (cubesats), that cannot support
the mass and power of a high-performance laser system.

• High Data Rate (HDR), mainly considered in near-earth scenarios, where throughput
performance is the most important criterion.

• On-Off Keying (O3K), where high data rates are required, but the focus is on but
implementation simplicity and low cost. This is the currently the most active area of
the CCSDS Optical Communications Working Group.

Obviously, many function are common between the four space data-link protocol stacks
and the corresponding protocols share common descriptions of them. The focus of this
thesis is on the synchronisation and channel coding sub-layer, where FEC codes are im-
plemented. Other than error correction, common functions of this sub-layer are:

• Receiver’s and codeword synchronisation, which is implemented typically by ap-
pending a synchronisation sequence in the transmitted data stream, so that the
codewords are delineated,

• Ensuring enough transition density of the generated output stream, so that the re-
ceiver’s clock can synchronise. This is typically implemented by pseudo-randomising
the generated bit stream. In the case of optical communications, this is not required.

The bundle, encapsulation packet and LTP protocols are important interfaces for the era-
sure correcting codes of the 2.2 CCSDS 131.5-O-1 experimental specification, with which
an important part of the current thesis is involved. In particular, the standard [33] pro-
poses the protocol layer structure of 2.2 for DTN enable space missions. Erasure coding
is proposed as a shim layer right before the encapsulation layer (or service).

47 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 2.2: CCSDS Protocol Stack with Erasure Coding Functions. Source: [33]

Together with the synchronisation and channel coding sub-layer, this work implements
FEC encoding of the TM synchronisation and channel coding standard [32] and the Era-
sure Coding functionality described in the experimental CCSDS 131.5-O-1 standard [33].

2.2 On-board data processing

The stringent requirements of aerospace applications in terms of reliability and power call
for a different approach, when considering on-board data processing equipment. Com-
mercial devices, targeting hugely larger market shares and lower time to market, cannot
obviously meet these requirements. Processors in space are required to withstand harsh
environmental conditions, mainly due to radiation effects. In addition, the risk margin of
the disruption of the mission needs to be significantly lower. To meet these ends, the
space industry has established the notion of Technology Readiness Level, and the rele-
vant guidelines for ECSS are provided in [8].

The degradation of the reliability of electronic systems manifests itself in two forms of er-
rors in their operation. The most severe form refers to hard errors. These can happen as
a consequence of the gradual or sudden degradation of the system caused by the accu-

D. Theodoropoulos 48

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

mulation or a surge of total ionizing dose (TID) or atomic displacement (Total Non Ionizing
Dose-TNID or Displacement Damage-DD) [55]. Another kind of effects are transient phe-
nomena which lead to so-called ”soft errors” in the component’s operation. When the error
in the system is caused by the passage of a single particle, the event can be categorised
as Single Event Effect (SEE). SEEs can lead to soft errors, for example Single Event
Upsets [66], or hard, as is the case with Single Event Upsets (SEU) or Burnouts (SEB).

Depending on the type of the effect, various mitigation techniques are applied at various
levels: from the physical layer, which refers to the semiconductor fabrication process up
to the system level design. Devices employing these techniques are referred to as radi-
ation tolerant, or radiation hardened devices. Radiation hardening aims to minimise the
probability of radiation effect’s occurrence in the first place, mostly by measures on the
physical layer and their cost of radiation hardened can be significantly higher than that
of their commercial counterparts. Radiation tolerance, on the other hand, assumes that
radiation effects are bound to occur and aims at reducing the impact of radiation effects
on the system’s operation. ECC in the memories and buses is the fundamental radiation
tolerance technique. A summary of mitigation techniques at various levels of design can
be found in [79] and the references therein.

The topic of mitigation techniques is widely covered in the literature. Consequently, we
limit our brief description to the following techniques, which are more relevant to this work:
Triple Modular Redundancy (TMR) and memory scrubbing. In a basic TMR sheme, three
redundant circuits perform the same task on the same data. A majority vote process at
the system’s output can mask a failure in one of the circuits. Obviously, the cost of this
approach is that it requires triple resources. Memory scrubbing, as the name implies, is
a method to increase the integrity of data stored in a memory system. It requires that
a method of ECC has been applied to the data written in the memory. Its contents are
periodically retrieved, any errors are detected and corrected with the ECC and the result
is written back to the memory. The frequency of the memory scans needs to be balanced,
so that single errors are not accumulated and the ECC fails.

In the near future space computing technology is expected to converge more rapidly with
the equivalent terrestrial practices [63], so that, depending on the mission goals, the re-
quired balance between performance, resiliency and cost is met: as smaller payloads with
a limited lifespan are becoming more popular, the requirements for space-qualified parts
can be relaxed. The most extreme example of this scenario is the case with cubesats
and nanosattelites in the ”new space” emerging trend [92], the lifespan of which can be
as small as a few days [100]. In this aspect, for non-mission critical functions and time-
specific payloads, even the use of COTS equipment can be acceptable.

In a typical aerospace on-board processing application scenario, an airborne or space-
borne platform is the main producer of information: a sensor or an instrument gener-
ates the information to be processed by the terrestrial base station, notwithstanding the
emerging trend of executing more complex tasks on-board. We refer to these data as the
telemetry. It is of course also true that the direction of the transmission is always bidi-
rectional, with the upstream transmission related mainly to configuration data and control
of the space platform and the on-board instruments. This is known as the telecommand

49 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 2.3: PLATO paylolad architecture overview. Source: [107]

transmission.

Typical on-board data handling systems are built around a central processor (OBC-On
Board Data Computer), which is mostly responsible for telecommand functions and the
coordination of the rest of the platform subsystems: telecommunication, telemetry, mass
memory subsystems, sensors, instruments, and payload processors. All these subsys-
tems communicate through highly reliable communication links, typically MIL-STD-1553,
or spacewire and spacefibre, which are described separately in Section 2.5. The Space
Avionics Open Interface Architecture (SAVOIR) initiative is a move towards the standard-
ization of space avionics and, among other products, it proposes a reference functional
architecture reference model.

The PLATO (PLAnetary Transits and Oscillations of stars) payload [107] is a much more
complex system which comprises 27 CPU cores, over 30 FPGAs and high speed space-
fibre interconnections. A central Instrument Control Unit (ICU), based on a CPU and a
radiation hardened FPGA controls the entire instrument and handles data compression.
However, multiple peripheral data processing units, built around CPUs and FPGA accel-
erators are responsible for the vast volume of on-board data processing. An overview of
the system is depicted in Fig. 2.3.

On-board data processing, therefore, includesmultiple CPUs, which, in turn, rely on FPGA-
based accelerators to deliver their time-constrained high-volume mission, and data flows
between the various payload components through high-speed serial links, like PCIe and

D. Theodoropoulos 50

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

spacefibre. In the context of this work, we focus on hardware accelerators for the FEC
functions of the data processing chain, which are more efficiently implemented as IP cores
on the programmable logic part (FPGA). The data flow between the various processing
cores within the FPGA is managed by on on-chip protocols, like the Advanced eXtensible
(AXI) protocol, which is an open-standard on-chop interconnect specification developed
by ARM, as part of its Advanced Microcontroller Bus Architecture (AMBA) specification.
Figure 2.4 provides a simplified view of the system architecture adopted throughout this
thesis and further detailed later in this Section: data to be encoded are sent to the FPGA
through a spacefibre serial interface. A spacefibre bridge converts the incoming stream
to an AXI4-Stream bus for on-chip communication and sends them to the encoding core,
which is denoted in the image as the accelerator. Processed (encoded) data follow the
reverse data flow and sent to the spacefibre network. The operation of the accelerator is
normally controlled and monitored through control and status registers, which are acces-
sible through:

• The spacefibre interface, using the Remote Memory Access Protocol (RMAP)[3].
This option allows for the remote configuration and monitoring of the encoder by
a processing platform on a different spacecraft processor, like the central CPU or
the instrument control unit. More details about the RMAP protocol are provided in
Section 2.5.

• The AXI4-Lite memory mapped interface by a properly connected controlling CPU.
This possibility is most important in the case when the programmable logic is a part of
a System-on-Chip (SoC) design, where the FPGA device fabric includes one or more
(soft or hard) CPU cores and the interconnect fabric. As further detailed in Section
2.3, SoC platforms have been extensively used in this thesis for development and
testing.

• The AXI4-Lite interface by the JTAG interface provided by the FPGA fabric. This
possibility is especially useful during development and debugging, since it allows
immediate and easy access to the control and status registers of the accelerator
from the developer’s PC.

For some processing workloads which involve big volumes of data, it is necessary to
provide access to external RAM resources. The accelerator in these cases communicates
with the external memory through an AXI (in this thesis AXI3 or AXI4) bus, through a
memory controller.

2.3 FPGAs in space

Initially, FPGAs implemented only auxiliary tasks and glue logic in a spacecraft system,
while the telemetry and flight control tasks were handled by specialized CPUs, which is
the topic of Setion 2.4. However, soon after their introduction FPGAs gained increased
popularity for aerospace applications, due to the increased processing power and size,

51 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 2.4: Simplified on-board processing reference system.

weight, power, and cost (SWAP-C), when compared to CPUs and GPUs [85], and nowa-
days, they are widely used for embedded computing in space. They are the only solution
to the increasing need of on-board processing resources: contrary to what happened in
the past, in modern missions we witness an increasing tendency to decentralise space
data processing from the ground stations, by executing more and more tasks on the edge
(on-board systems). This tendency embraces even complex algorithms,like artificial in-
telligence (AI) [62], deep neural networks [67] [129], satellite edge computing [87] and
advanced hyperspectral image compression [126].

However, despite their obvious advantages, FPGA devices that can support spaceflight
need to be able to withstand the challenging space environment, as already described in
Section 2.2 and there is only a limited number of Radiation Hardened By Design (RHBD)
FPGAs in themarket. Themost important device families for spaceflight are manufactured
by Microsemi and Xilinx. A common feature of these families is that the configuration
memory is based on SRAM technology instead of flash, since the latter is susceptible to
radiation effects [91], with an obvious impact on the cost. The products of both vendors
share a rich mission heritage, an extensive overview of which is provided in [86].

In addition to the standard hardening techniques, Microsemi PolarFire radiation tolerant
FPGAs chips use Silicon-Oxide-Nitride-Silicon (SONOS) Non-Volatile (NV) technology
[114], which provides immunity against SEU effects, in addition to low power. The physical
layer manufacturing details of the SONOS technology, as well as its rad-hard attrbutes are
widely covered in [114]. TMR in the user logic, when required, is assured through suitable
provisions from the bundled software (Libero sinplify). On the other hand, the Xilinx SRAM
radiation hardened FPGA range includes the legacy Virtex-4QV FPGA (90nm) device fam-
ily, the Virtex-5QV FPGA (65nm) XQR5VFX130 device and the RT Kintex UltraScale (20

D. Theodoropoulos 52

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

nm) XQRKU060 device, which is currently the state-of-the-art in terms of performance.

With their vendors being based in the USA, however, all these products from Microsemi
and Xilinx are subject to USA export controls, like the International Traffic in Arms Reg-
ulations (ITAR), which adds insecurity to the European missions’ planning. Recently, the
NanoXplore family of RHBD devices has been introduced as a European solution [86],
although it has not yet practical presence in any real space mission.

Interestingly, an emerging trend for extending the application area of commercial Xilinx
ZynQ and ZynQ Ultrascale+ SoCs into aerospace applications has recently risen. A num-
ber of research activities has been focusing on the study of the susceptibility of the ZynQ-
7000 series SoCs. The SEU behaviour of the ZynQ-7020 SoC’s integrated ARM Process-
ing System is the subject of the work in [76]. In [117], the authors present their results on
heavy proton SEU testing of the same device, while [24] evaluates the SEE behaviour of
the NINANO board used in EYE-SAT nanosatellite. The work in [130] is the most complete
analysis of the SEE behaviour of ZynQ-7000 series programmable logic and configuration
memory under heavy ion irradiation. One of its major contributions is that it provides the
tools for the design of efficient mitigation techniques, including effective ECC and configu-
ration memory scrubbing. At the same time, a multitude of research activities incorporate
these SoCs for aerospace applications. In [126], for example, we have introduced a high
performance parallel implementation of an accelerator for the CCSDS 123.0-B-1 hyper-
spectral compression algorithm. This work leverages the resources of both the processing
system and the programmable logic to deliver state-of-the-art throughput performance.
The authors in [111] propose a hybrid convolutional neural network accelerator for se-
mantic segmentation of image, which is widely used in space applications. Their work is
evaluated on Xilinx ZynQ and ZynQ Ultrascale+ MPSoCs, while performing error injection
and radiation-beam testing, in order to characterise the response of the proposed archi-
tectural framework in the presence of radiation phenomena. In all these cases, mostly soft
techniques are used asmitigationmeasures. TMR effectiveness under heavy ion radiation
is evaluated in [115] for a ZynQ 7000 SoC supporting a CCSDS 121.090-B-2 compression
IP core, demonstrating a 40% increased Mean Time To Failure (MTTF). A rather complete
study of the effectiveness of soft methods is presented in [82]. The key takeaway is that
for non mission critical systems, soft SEE mitigation techniques can provide the resilience
required for space applications.

In DSCAL, the following FPGA and MPSoC boards are available and used in the scope
of the current thesis:

• The KCU105 evaluation board, built around the Kintex UltraScale XCKU040 de-
vice, which is the commercial equivalent of the radiation tolerant Kintex Ultrascale
XQRKU060. Regarding the rest of the board’s equipment, of notable interest to the
purposes of this thesis are the two SFP+ cages, which were used for spacefibre
integration and the 2 GB of DDR4 RAM component memory at 2400MT/s (over a
64-bit datapath width).

• The ZC706 board, featuring a Zynq-7000 XC7Z045 SoC at speed grade 2, with two
ARM Cortex-A9 MPCore hard processors. The specific SoC is a mid-range device

53 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 2.5: From left to right: The KCU105, the ZC706 and the Zedboard development
boards. Source: Xilinx website.

of the Zynq-7000 class of heterogeneous SoC devices, which integrates a dual-core
ARM (Cortex-A9) processor with Kintex-7 FPGA fabric. One SFP+ cage is included.
The board also includes 1 GB of DDR3 RAM connected to the processing system
(PS) build around the two ARM processors (component memory), as well as 1 GB
of DDR3 RAM for the programmable logic (SODIMM memory). Access to the two
memories is independent (both memories can be accessed at the same time).

• The Zedboard, with the Zynq-7000 SoC XC7Z020. The board has no SFP+ connec-
tions, but it includes 512MB DDR3 memory connected exclusively to the processing
system. Access to the memory space from the programmable logic can be provided
from the ZynQ’s PS AXI3 high performance (HP) ports.

• The ZCU102 board, which includes an Ultrascale+ XCZU9EG MPSoC, with a quad-
core Arm Cortex-A53, 4 GB of DDR4 SODIMM RAM for the processing system, 512
GB of DDR4 component memory for the programmable logic and 4 SFP+ cages,
among other things.

2.4 Space-grade CPUs

Similarly to what is described in Section 2.2, the requirements of CPUs are radically dif-
ferent between terrestrial and aerospace applications. Commercial CPUs, target hugely
larger market shares, can meet lower time to market requirements and include advanced
features and vastly higher performance. Not being able to withstand the harsh environ-
mental conditions typically met in spaceflight, however, they fail to meet the reliability
requirements of space missions. Space-qualified CPUs have therefore been developed
to mitigate these issues. These CPUs are based on commercial Instruction Set Architec-
tures (ISAs), so that the cost of the ecosystem around them is reduced. The ecosystems
includes hardware design processes and tools, as well as software tools for applications
development. Historically, MIL-STD-1750 architecture [1] dominated space missions, due
to its already widespread adoption by military airborne computers. Quickly, however, fol-
lowing the evolution of commercial architectures, the market was dominated by SPARC
and PowerPC. A pictorial overview of the historical evolution of space CPUs is provided
in Fig.2.6.

D. Theodoropoulos 54

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 2.6: History of CPU architectures used in space missions. Source: [53]

The European Space Agency (ESA) has generally opted for the SPARC architecture,
mainly because of the widespread availability of software and its open architecture, which
allowed the Agency’s independence from specific vendors. To this aim, ESA funded the
development of the LEON processor in late 1997. One of the principal objectives of the
project was the integration of fault tolerant-by-design techniques. The processor should
be able to detect and tolerate one error in any register without software intervention, and
to suppress effects from Single Event Transient (SET) errors in combinational logic [16].
LEON evolved in the following years and currently, LEON3 [44] is the most widely adopted
platform for ESA missions. LEON3 is distributed as synthesizable VHDL model of a 32-bit
processor compliant with the IEEE-1754 (SPARC V8) architecture by Aeroflex Gaisler.
The distribution is under the GNU GPL license allowing use for any purpose without li-
censing fee. The most significant upgrades over the previous LEON2 is the support of
Symmetric Multi Processing (SMP) and pipelined operation at 5 stages. In space mis-
sions, a fault-tolerant version of the processor (LEON3FT) is the one that is widely used.
Fault tolerance is assured by the implementation of ECC coding of all on-hip RAM blocks,
which is able to detect and correct up to four errors per 32-bit RAM words or per cache
memory tag, and all these without performance impact (completely transparent to user
applications). The main means for achieving fault-tolerance is by using ECC coding of
all on-chip RAM blocks. A famous LEON3-based SoC is the GR712RC from Aeroflex
Gaisler.

LEON5 is the latest version of the LEON processor family[45] and it primarily targets
high-end FPGA’s. Although it has not yet been implemented in space missions, it pro-
vides backward compatibility for most of the software implementations that have targeted
LEON3 and LEON4 processors, claiming up to 85% higher performance. Nevertheless,
the Reduced Instruction Set Computer version V (RISC-V) Instruction Set Architecture

55 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 2.7: A typical GRLIB LEON/NOEL SoC design

(ISA) is expected to dominate upcoming on-board processing applications [53]. In Euro-
pean missions for example, the De-RISC project [48] has recently shown the first mile-
stones for a multi-core RISC-V processor for aerospace designs. The project is based on
the NOEL-V 64-bit RISC-V processor core [46] from Aeroflex Gaisler and state-of-the-art
hypervisor technology to accomplish high performance workloads, on a complete process-
ing platform for space. The three processor models (LEON3/5, NOEL-V) are distributed
as parts of the open-source GRLIB IP library, which is an integrated set of reusable IP
cores, designed for system-on-chip (SoC) development and they are available also in fault-
tolerant versions for FPGA and ASIC implementations. Typically, they are interconnected
through Advanced Microcontroller Bus Architecture (AMBA) Advanced High-performance
Bus (AHB) and Advanced Peripheral Bus (APB) interfaces.

A typical SoC reference design used across this thesis and built around a single LEON/NOEL
processor core with the peripherals included in the distribution, is depicted in Fig. 2.7. As
its name implies, the AHB JTAG component shown in the image provides a JTAG debug
link to the SoC, allowing among other things the uploading and debugging of user soft-
ware to the processor’s memory, through the GRMON software tool, which is part of the
processor’s software ecosystem. Other useful software tools included in the ecosystem
are the cross-compiler for the CPU architecture and a simulator (TSIM). The debugging
capabilities are completed with the Debug Support Unit (DSU) depicted in the image. This
module communicates with the CPU through a dedicated debug interface (in addition to
AHB) and has complete control over its pipeline, its registers and the contents of the in-
struction trace buffer. The processor can be set into debug mode by the DSU, which halts
the pipeline. As part of the current work, the LEON/NOEL ecosystem has been set up
on the KCU105 and Zedboard development boards, to allow for interaction with custom
FPGA peripherals, as well as for software comparison

D. Theodoropoulos 56

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

2.5 Spacewire and spacefibre

Other on-board processing systems examples are instruments, mass-memories, proces-
sors, and downlink telemetry physical transmission equipment. The interconnection of
these systems is a challenging task: fault-tolerance, error recovery capabilities, low power,
simplicity, performance and architectural flexibility place stringent requirements on the de-
sign of an on-board network. The interconnections of the equipment in a network with
these requirements is feasible only with serial links [20].

Initially, space agencies and manufacturers followed their proprietary approaches to ad-
dress this issue. The diversity of communication links that arose resulted in high cost,
limited development and test time and interoperability issues. Traditionally, NASA mis-
sions systems were built around the Serial RapidIO (SRIO), which is a non-proprietary,
high-bandwidth, packet-switched system level interconnect, with PCIe also gaining signif-
icant attention from the Agency, mainly by virtue of its widespread commercial adoption
as a high speed serial link in commercial applications.

In 1992, the demand for interconnection of distributed signal-processing systems led ESA
to assign the development of a new standard to the University of Dundee [104]. This
process resulted in the first version of ECSS-E-ST-50-12C (SpaceWire) standard [11].
The standard defined a high speed data-handling on-board network and technology. It
provided bidirectional, full-duplex data-links at speeds of 2 to 200 Mbit/s, which connect
together SpaceWire enabled equipment. Data-handling networks can be built to suit par-
ticular applications using point-to-point SpaceWire data-links and routing switches.

The next generation of SpaceWire is the SpaceFibre technology, standardised as ECSS-
E-ST-50-11C [10]. Except for higher data rates (6,25 Gbps signalling rate), SpaceFibre
comes with other significant enhancements:

• Fibre-optic cabling, with electrical support for backwards compatibility with SpaceWire.

• Multi-laning, which can combine the throughput of multiple physical links (lanes) to
support well over 20 Gbit/s.

• Advanced Quality of Service (QoS) mechanisms, like prioritization of Virtual Chan-
nels, bandwidth reservation and support of deterministic delivery constraints.

DSCAL is a partner of the Hi-SIDE project (https://www.hi-side.space/) consortium
and as such, it has been granted a access to SpaceFibre test equipment, featuring a
STAR-Ultra PCIe interface and link analyzer card, along with the necessary software
tools (GUI and API for the development of custom applications and performance mea-
surements) and an accompanying encrypted IP core netlist for the FPGA’s side of the
SpaceFibre link. The Hi-Side IP core exposes up to 7 AXI4-Stream 128-bit interfaces to
the user logic (one for each virtual channel) and a RMAP port for configuration and control.
From the software’s side on the host PC, the communication of the software application
with the logic implemented on an FPGA is transparent: files are sent to and received from
the user logic on the FPGA through straightforward API calls.

57 D. Theodoropoulos

https://www.hi-side.space/

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 2.8: Hi-SIDE IP core’s behaviour with regard to TLAST signalling.

The provided equipment (host API and the Hi-SIDE core) also supports the multi-laning
feature of SpaceFibre, which means that it can aggregate the traffic from multiple Space-
Fibre lanes. More specifically, the STAR Ultra PCIe interface card provides two 4-lane
SpaceFibre links to a suitable corresponding interface of up to 20 Gbit/s per link. The
maximum data rate can be achieved when all four 6,25 Gbit/s lanes are used. Because of
the 8b/10b encoding on the SpaceFibre link, only 80% of the lane bandwidth is available to
the user logic. Of the equipment available at DSCAL, only the Zynq UltraScale+ MPSoC
ZCU102 development board with 4 SFP+ connector cases can support the maximum data
rate of 20 Gbit/s. The ZCU105 card, however, which has been extensively used in this
work can only provide up to 10 Gbit/s of user bandwidth.

As part of the Hi-Side project’s deliverables, a sample design for the KCU105 has also
been provided to DSCAL. The reference design includes a basic demo for a loopback
test through the card’s FMC connectors, without connectivity to the host PC. The refer-
ence design had to be modified, so that a suitable SERDES is mapped to the transceivers
allocated to the SFP+ connectors of the board. The transceivers also needed to be pa-
rameterized and a suitable clock source to be configured on the board and connected to
the transceivers’ CPLLs. This process was different for the various development boards
used in DSCAL: the KCU105 and ZCU102 boards use GTH transceivers, while ZC706
uses GTX transceivers.

Another challenge that had to be addressed with the delivered equipment was related to
the behaviour of the AXI stream interface of the provided core: the TLAST signal at the
end of a SpaceFibre packet’s transmission is asserted on invalid TDATA, which, however,
are framed by an asserted TVALID and de-asserted TKEEP signals, as depicted in Fig.
2.8. Existing AXI4-stream bridges proved to be unable to handle this behaviour properly
and custom logic was needed for that. The observed behaviour is mainly caused by the
structure of the a space packet: data characters are followed by an End Of Packet (EOP)
character. At the receiving side, this is translated into TLAST by the SpaceFibre core. If
the valid payload data are not aligned with the 128-bit wide AXI4-Stream interface, one
or more de-asserted TKEEP signals need to be inserted. The SpaceFibre IP core obvi-
ously issues another beat of de-asserted TKEEP signals, in order to ensure consistent
behaviour.

Figure 2.9 is a block diagram of the resulting environment used for testing throughout

D. Theodoropoulos 58

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 2.9: Block diagram of the SpaceFibre equipment and environment

this thesis, as well as to the contributing projects. The design depicted refers to the con-
figuration used on the KCU105 board, but except for the number of lanes and type of
transceivers, it is the same for all the other boards.

On the PC side, the STAR-System software provided as part of the Hi-SIDE equipment
provides the drivers of the SpaceFibre STAR-Ultra PCIe board, as well as the software
tools for transmitting and receiving packets to and from the SpaceFibre IP code. The
software bundle provides two options: a set of GUI applications and a complete API for the
development of custom software tools. In both cases, statistics and performance data can
be derived. Figure 2.10 gives an example of the GUI applications. In order to streamline
the automatic execution of scripts including SpaceFibre transactions, the following custom
applications were developed, based on the STAR-System API (optional parameters are
in brackets):

• spfilink −l < lanes > −r < rate > [−p < port > −x < TX scrambling >: resets all
lanes and establishes a new link with the required parameters. Default is port 1 and
TX scrambling ON.

• rmapRead < address >: reads a 4-byte register at a user-specified address.

• rmapWrite < address >< value >: writes a 32-bit value at a register at a user-
specified address.

• filesend -c < channel > −i < file >: sends a binary file to the specified channel of
the master stream interface of the core.

• filereceive -c < channel > −o < file >: receives data from the specified channel
until an End Of Packet (EOP) character is received and writes the stream into a file.

• filesendreceive -c < channel > −i < file > −o < file >: execute the previous
actions in the same call.

59 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 2.10: GUI applications examples

The GRLIB library from Gaisler [43] also includes a SpaceFibre core, which was also
connected to the GTX and GTH transceivers of the DSCAL boards. Because of its lack of
multi-lane support, however, that core could not provide connectivity with the Hi-Side host
PC, like in Fig. 2.9, which is exclusively multi-lane: even when a single line is connected
between a multi-line enabled SpaceFibre end and a single-line one, the multi-lane layer
of the PC lane needs to be initialised in order for the link to be successfully established.
The Gaisler IP core does not have AXI4-Stream interfaces, but a modified FIFO interface
for each of the virtual channels (up to 32) it supports. In this interface, the EOP and FILL
control characters are being transferred as data, but they are marked with a special 4-
bit side-band signal, each bit of which is asserted when a control byte is present in the
corresponding byte of the 4-byte data bus. Wrapper logic needed to be created, so that
control characters are removed from the stream and the AXI4-Stream signals (TKEEP and
TLAST) behave according to the protocol specification. The lack of a single-lane enabled
host PC at DSCAL limits the application of this core only to communication between two
cards, which, at the time of writing is work in progress.

Overall, the SpaceFibre interface was extensively used in this thesis, for at-speed testing
of the IP cores, from the host PC.

D. Theodoropoulos 60

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

3. QC LDPC ENCODER IMPLEMENTATIONS

3.1 QC LDPC Linear Block Codes

In this section, a brief introduction into the elements of coding theory that are relevant
to this work is attempted, which defines the notation for the rest of the Section. The
analysis provided herein is by no means complete, since the break-down of the theoretical
properties of the CCSDS codes is not a goal of this thesis and it is adequately covered by
the relevant textbooks on information theory.

Let’s assume a source producing a sequence of information bits, or formally, symbols over
F2. In order to establish reliable communication over a noisy channel, this information
sequence needs to be transformed into another one with a higher rate, with redundant
information as a countermeasure to noise. There are generally twomethods for this, which
correspond to the two broad categories of error correcting codes: convolutional and block
codes. In the case of convolutional codes, the transformation of the input sequence into
the output (encoded) takes place in a stream-oriented fashion: the output of the encoder
at any given time is a function of the current and all the previous values of the input. In the
case of block codes, on the other hand, a grouping of k information bits is considered as
an individual message and encoded separately. Let s =

[
s0, s1, ...sk−1

]
be the information

sequence to be encoded. It follows that there are 2k possible messages, each of which
is mapped into a n-bit sequence c, which is an element of the k-dimensional subspace of
{F2}n:

s→ c : s ∈ {F2}k, c ∈ {F2}n (3.1)
The binary sequence c is a linear function of s and it is a codeword of the code. Obviously,
there are 2k codewords of what is referred to as a (n, k) linear block code. The rate of the
code is the ratio k/n of total bits, which means that the encoded sequence is larger than
the initial by n− k additional bits. In most practical codes, exactly n− k parity bits form a
separate sequence which is appended to the information sequence. In other words, the
codeword has the form c =

[
s, p
]
, where p is the sequence of the parity bits. These linear

block codes are referred to as systematic codes and they exhibit obvious implementation
advantages over the non-systematic ones during encoding. All the codes in this thesis
are systematic codes.

A linear block code is uniquely defined by its generator matrix, denoted as G in this thesis.
The generator matrix defines the linear relationship between s and c. Simply set, if we
represent s and c as row vectors, this is described by (3.4):

s =
[
s0 s1 . . . sk−1

]
(3.2)

c =
[
c0 c1 . . . cn−1

]
(3.3)

c = sTG (3.4)

G is a k × (n − k) matrix and for linear codes, each codeword is a linear combination of

61 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

the rows of G. In the special case of systematic codes, the firs k columns are the k × k
identity matrix. Conversely, a linear block code is defined by the null space of G, which is
called the parity-check matrix of the code:

GHT = 0n×k (3.5)

In (3.5), 0n×k is the n×k zero matrix. It can also be shown that a binary sequence of n-bits
is a codeword of the code defined by H if and only if equation 3.6 holds. This is called the
parity-check equation and it is important for decoding, as well as for encoding, since the
decoding process attempts to calculate the vector s that satisfies (3.6) and which has the
smallest distance from the received codeword ĉ: s = argmin

s
{dmin(c, ĉ)}.

cHT = 01×(n−k) (3.6)

The rows of H can be understood as the linear equations that every codeword has to
satisfy (in order for it to be a valid codeword). Although there are always n columns and
n − k rows in H, it is not always true that all these parity-check equations are linearly
independent: in these cases, there a number of rows is a linear combination of a subset
of (n − k) rows and H is not a full-rank matrix. The reasons for this complication are
related to the error correcting characteristics of the codes and they reside in the field of
information theory. Some of the codes in this thesis fall into this category.

As already mentioned briefly in Section 1.1, LDPC codes are linear block block codes with
large code lengths and sparse density matrices. The initial Gallager codes were random,
which means that their parity-check matrix had no structure at all. Although this random-
ness resulted in excellent error-correcting capabilities, their hardware implementation was
challenging. It can be shown, however, that capacity approaching codes can be structured
codes and various techniques have been proposed for the construction of very good per-
forming structured codes. A famous structure in the design of LDPC codes is the Quasi-
Cyclic (QC) structure, according to which the parity checkmatrix consists of an array of jux-
taposed cyclic sub matrices, named the circulants, which can be efficiently implemented.
QC-LDPC codes have been adopted by many modern communication standards, such
as IEEE 802.11, 802.16 and DVB-S2, and the list of their endorsement is continuously
growing. QC LDPC codes have also been adopted by the Consultative Committee for
Space Data Systems (CCSDS) as recommended standard for on-board channel coding
in Near-Earth and Deep-Space communications.

A further simplification of the QC structure with significant implementation advantages is
possible through the protograph code design approach. Protograph codes are based on
the Tanner graph representation of the parity-check matrix of LDPC codes. A Tanner (or
bipartite) graph [119] contains two types of connected nodes: each row ofH is represented
as a check node in the graph and each column as a variable node. There is a connection
between one check node ci and a variable node uj if and only if hi,j = 1. For a Tanner
graph, G = (V,C,E), V,C and E are the sets of variable nodes, check nodes and edges
respectively.

A protograph is defined by a small Tanner graph, comprising a low number of check and
variable nodes. Contrary to a full Tanner graph, in which there is always a single con-

D. Theodoropoulos 62

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

nection between a check and a variable node, a protograph can contain parallel edges,
which correspond to multiple connections between these nodes. The significance of a
multiple node is going to become apparent from the expansion process described later
in the current Section. An example of a protograph is Figure 3.2. The cardinality and
the members of the sets V,C and E are defined with the help of analytical methods, like
extrinsic information (EXIT) chart analysis [26] and asymptotic weight distribution (AWD)
[27], so that decoding performance criteria are met. These techniques depend, among
other things, on the channel model adopted. Starting from the protograph, the full final
graph of the codes we are interested in is obtained in usually two expansion steps as fol-
lows: first, the protograph is repeated x times and the edges on the expanded (or derived)
graph are permuted among the copies of the protograph, so that any parallel edges in
the graph are removed. The edge permutations are calculated according to a computer
search algorithm, like Progressive Edge Growth (PEG) [78] or Approximate Cycle Extrin-
sic Message Degree (ACE) [125], which aims to maximize the girth and the distance of
the code. These parameters are strongly related to the performance characteristics of the
code and more specifically, the error floor and the decoding threshold. After this first step,
a second expansion step follows and the final graph is derived. This time, the nodes are
repeatedm times but no edge permutations between the expanded nodes are performed:
if node uj is connected to ci, that means that there is a connection between uj+1 and cj+1

(addition is modulo-m). It is important, however to note that node degree (i.e. the number
of incident nodes) is preserved during each expansion step, and form what is called as
the neighborhood of a node: if a variable node uj ∈ V is connected to a ci ∈ C with one
edge, any variable node in the expanded graph that has been created as a copy of uj,
is connected with exactly one replica of ci. It follows that parallel edges in G result in as
many connections between the copies of the connected nodes as the number of these
parallel edges.

Following the parity-check matrix equivalent representation for protograph-based codes,
let H ′ be the parity-check matrix after the first expansion step. During the second ex-
pansion step, each element H ′(i, j) representing a single edge at the initial protograph
is assigned the value I(0)m , while elements of the matrix corresponding to multiple parallel
edges are assigned the value I(x)m , where x ∈ [0,m− 1], I(x)m is the m ×m identity matrix
Im, rotated by x positions to the right. Absence of any edge between two nodes u′j and
c′i in the graph G′ = (V′,C′,E′) which is derived after the first expansion step is indicated
with a m×m zero matrix in H ′(i, j).

As a consequence of the expansion process, the resulting code is typically a quasi-cyclic
(QC) code, the H matrix of which is an array of juxtaposed permutation or zero matrices.
An example of the CCSDS rate 1/2 code is given in Figure 3.1. For CCSDS AR4JA codes,
x = 4, as explained later in the current Section.

63 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.1: Example H matrix of the CCSDS rate 1/2 AR4JA code

3.2 CCSDS codes

Many CCSDS standards recommend QC-LDPC codes at the channel coding and syn-
chronization sub-layer. In particular, CCSDS the current work, the focus is on the codes
defined in [32]. Two code class classes are recommended by the standard: one opti-
mized for deep-space Accumulate-Repeat by 4-Jagged Accumulate (AR4JA) and the one
for near-earth communications (C2). One member of the AR4JA family (the rate 1/2,
length 2048 bits code) has been endorsed by other CCSDS standards as well, includ-
ing the Proximity-1 space link protocol and the upcoming update of [35] for Optical On-Off
Keying. The special properties and challenges of these codes are described in the current
sub-section.

The standard provides the option for randomization of the output codeword to ensure
sufficient transition density on the transmitted vector. The encoder’s output is the Channel
Access Data Unit (CADU), consisting of the optionally randomized codeword, prepended
by a 64-bit (for AR4JA) or 32-bit (C2) synchronization sequence (Attached Sync Marker-
ASM).

3.2.1 AR4JA codes for deep-space communications

For deep-space communications, nine protograph-based AR4JA codes are defined in the
recommended standard, which are the result of the combination of three block length

D. Theodoropoulos 64

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Table 3.1: M parameter of AR4JA codes
Rate k=1024 k=4096 k=16384
1/2 512 2048 8192
2/3 256 1024 4096
4/5 128 512 2048

Figure 3.2: AR4JA protograph. R is the rate of the code

sizes (1024, 4096 and 16384 bits) over three code rates: 1/2, 2/3 and 4/5. The parity
check matrices of these codes consist of circulant sparseM ×M submatrices, whereM
is a parameter dependent on block length and code rate and is given in Table 3.1. All
these codes are constructed by uplifting the protograph depicted in Fig.3.2, in which node
v5 corresponds to punctured bits in the codeword: the parity bits that are derived during the
protograph expansion process from this node are not transmitted, and their sole purpose
is to increase the rate of the code.

In the first step of the protograph expansion process, parameter x = 4 for all AR4JA codes.
For the second expansion step, parameter m =M/4. The lastM = 4m parity bits, which
correspond to the last column of Fig. 3.1 are not transmitted.

From the QC parity-check matrix, the generator matrix can be calculated in systematic QC
form, using Gaussian elimination. The generator matrix for each member of the family has
the form G =

[
IMK Wn−k

]
, where IMK is the MK ×MK identity matrix and Wn−k is a

dense matrix of sizeMK × 2M , and K is a parameter dependent on the code rate. Sub-
matrixW itself has the structure of (3.7), where r = 4K, c = 8 and eachWij is aM/4×M/4
dense circulant. Note that punctured bits have been omitted from the matrix G.

65 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.3: The parity-check matrix of the C2 code.

Wn−k =

W1,1 . . . W1,c
...

Wr,1 . . . Wr,c

 (3.7)

3.2.2 C2 code for near-earth communications

For near-earth communications, a basic (8176, 7156) LDPC code is defined, constructed
on the 3-dimensional finite geometry EG(3,23) over the field GF(23). The QC parity check
matrix of the code is displayed in Fig. 3.3 and it consists of a 2×14 array of 511×511 sparse
circulants. Conversely, the non-systematic part of the generator matrix in systematic cir-
culant form is a 14×2 array of 511×511 dense circulants. The encoding process prepends
18 zero bits to the 7136 bits of incoming frame to be encoded. These bits participate in
the encoding process but they are not transmitted as a part of the systematic output of the
encoder. Two tailing bits are also added to the final codeword, to ensure that the output
codeword length is also divisible by 8 and 16. With the addition of these tailing bits, the
dimensions of the recommended code are finally (8160, 7136). The complete encoding
process for the C2 code is diagrammatically shown in 3.4. It is obvious that the fact that
the circulants’ dimensions are not powers of two introduces implementation challenges
for a hardware encoded and decoder expansion, as does the shortening and addition of
extra bits in the final codeword. Note also that the C2 code is not a protograph code: its
cyclic submatrices are not permutation or zero matrices.

3.2.3 Performance characteristics of the various CCSDS codes

The LDPC codes proposed by the CCSDS offer substantially advantageous performance
over the convolutional and Reed-Solomon (RS) codes which they replaced. A simplified
error-correction performance diagram derived from software simulations by the JPL over
the Gaussian channel and BPSK modulation is shown in Fig. 3.5. Limited information
is provided concerning the parameters of the simulation [31], however, it is obvious that
Turbo and LDPC codes outperform the simple RS and convolutional codes, at least in
terms of error-correcting performance. These simple codes, however, have a place in
modern spaceflight applications, when implementation complexity is the most important

D. Theodoropoulos 66

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.4: The encoding process for the C2 code.

criterion [18]. It has also to be emphasised that the performance of Turbo and LDPC codes
is, to a great extent, determined by the decoding processes. This is further explained in
the following paragraphs.

There are some fundamental performance limits that pertain to every FEC code. First
of all, the capacity of a channel defines the ultimate boundary of the achievable region
where channel coding can operate. The minimum achievable BER as a function of Eb/N0

for various rates is displayed in Fig. 3.6 for the binary input AWGN channel (BI-AWGN).
The calculation of these curves starts from Shannon’s noiseless source coding theorem:
the maximum rate is equal to the mutual information between a channel input and the
channel output [25] R < M. By inserting Eb/N0 = 1/2σ2R and estimating numerically
(Monte-Carlo) the BI-AWGN capacity, the performance limits can be derived. The area on
the right of each rate defines the achievable region for each code rate.

Another limitation comes from the constraints on the block length of a code. The rate-
dependent Shannon performance limits assume infinite block lengths and the minimum
achievable BER for each rate is asymptotically approached as code length approaches in-
finity. Fig.3.7 displays this approximation. The horizontal lines represent the absolute ca-
pacity limits (for the BI-AWGN channel) and the ”bound” lines the sphere-packing bounds
imposed by the limited block length.

Regarding RS codes, the CCSDS recommends a (255,223) RS code for higher error-
correcting performance and a (255,239) for lower overhead. RS decoding processes only
hard symbols: the input to the RS encoder are symbols of the RS code, which are, in the
end, exact bits (either 1, 0) or erasures, according to a slight variation of the basic RS
decoder and their performance curves can therefore be analytically calculated, without
dependency on the decoder. RS are also maximum distance separable codes (MDS):
their minimum distance is equal to the Singleton bound [70], meaning that it is the most
optimal. However, RS codes have never been deployed alone in space missions. They
are typically combined with interleaving, which further improves their error-correcting per-
formance by spreading error bursts along multiple RS codewords and concatenated with

67 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.5: Performance comparison of the CCSDS recommended codes. Source: [31].

D. Theodoropoulos 68

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.6: The minimum achievable BER for various rates, as a function of Eb/N0.
Source: [25]

Figure 3.7: Sphere Packings Bound on performance for various rates over the BI-AWGN.
Source: [31]

69 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

an outer convolutional code: the input sequence is first encoded with the RS code, in-
terleaved and then encoded again with a convolutional code. In this case, as depicted
in Fig. 3.5, substantial coding gain is achieved and for many decades, concatenated RS
and convolutional codes were the standards channel coding solution.

Convolutional code decoding introduces trade-offs between complexity and performance.
There exist various algorithms for the decoding of convolutional codes, the most important
of them being the maximum likelihood sequence decoder (MLSD) and the bit-wise maxi-
mum a-posteriori decoder (MAP) of the Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm [21].
As its name suggests, the former calculates the most probable path in the code’s Trellis
with the Viterbi algorithm, while the latter calculates the same path with an iterative algo-
rithm. Convolutional decoding is ”soft”, meaning that the readings from the channel are
continuous values, and the selection of the quantisation step is an important parameter
affecting the coding performance.

With the advent of Turbo codes, the capacity limit was further approached, as clearly
seen in Fig. 3.5. Since Turbo encoding is practically a combination of two convolutional
encoders, both of which receive an interleaved version of the same input sequence, the
Turbo decoder is accordingly based on two convolutional decoders (typically BCJR), which
iteratively exchange messages about the belief each one has on the initial sequence. In
each iteration of the BCJR algorithm, each constituent decoder provides an enhanced
estimate of the initial sequence, based on the extrinsic knowledge it receives from the other
encoder, according to the turbo principle (iterative re-inforcement of belief propagation
[112]). There are therefore many trade-offs in the Turbo decoding process, each of which
has an effect on the achieved performance. These include the decoding algorithm itself
(soft-input soft-output maximum A-Posteriori Probability decoders are the most common),
the channel input values and decoders’ messages representation (typically log-likelihood
ratio, rather than absolute values), the quantisation step of the soft values from the channel
and the number of iterations and termination conditions of the algorithm (stopping rules).
The total implementation losses, however, can be kept to negligible levels (as low as 0.03
dB in [95]), with adequate resource allocation.

Finally, LDPC decoding is mainly performed with iterative algorithms, according to which
the nodes of the Tanner graph of the code exchange soft messages which convey the
belief that each node has about its value (zero or one) to their incident nodes on the graph.
Fig. 3.8 provides a simplified overview of the basic sum-product decoding algorithm (SPA).
It presents a small part of the bipartite graph of the code, which includes two variable
nodes (ui, ui′) that correspond to received symbols and two connected check nodes (cj,
cj′) that correspond to two parity equations. The variable nodes are initialised with the
log-likelihood probability from the received channel, according to (3.8), where ci is the
received code symbol. In each iteration of the algorithm, the variable node vi calculates a
soft value, by summing its own so far knowledge (or belief) with the corresponding values
uj→i that it receives from its adjacent check nodes, as in (3.9) (uj→i are initialised to zero
at the beginning of the algorithm). Then, variable node vi sends to the connected check
node cj the information is has calculated for its value, minus the check node’s own belief
of λi, as in (3.10). Next, each check node cj calculates the value uiterj→i, which combines

D. Theodoropoulos 70

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.8: Simplified overview of SPA decoding. Variable node update on the left and
check node update on the right. The arrows represent message exchanges in each iter-
ation.

the received λi values from all connected variable nodes, minus the value of the node i, to
which the message uiterj→i is transmitted. The algorithm ends if a hard decision (based only
on the sign of λi) leads to a valid codeword (one that satisfies all parity check equations),
or an iteration limit has been reached.

λ
(0)
i = log(

Pr(ci = 0)

Pr(ci = 1)
) (3.8)

λ
(iter)
i = λ

(iter−1)
i +

∑
j

uj→i (3.9)

λ
(iter)
i→j = λ

(iter−1)
i +

∑
j ̸=i

uj→i (3.10)

uiterj→i = 2tanh−1

(∏
i ̸=j

tanh
λ
(iter)
i

2

)
(3.11)

It is obvious from the above description that the selection of the maximum number of itera-
tions and the quantization step are critical design issues that affect the performance of the
decoder. An important hardware implementation consideration is also the update mes-
sage scheduling: QC codes support, for example, layered scheduling [50], which allows
for efficient parallel implementations. Most importantly, the hardware implementation of
equation (3.11) is challenging and several approximations have been proposed, each with
different trade-offs between performance and complexity.

To conclude the current subsection, simple codes like concatenated RS and convolutional
codes can offer substantial error-correcting performance and are the obvious selection
when implementation complexity is the main issue. On the other hand, LDPC and Turbo
codes can perform very close to the capacity limits, if the complexity price is worth being

71 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

paid, which mainly refers to the decoder complexity. Since the complexity of Turbo de-
coders is constant for all rates, while that of LDPC is reduced linearly as the code rate
increases, Turbo codes are a preferable option for rates lower than 1/2. For higher rates,
LDPC codes can offer better performance with similar complexity. It has to be empha-
sized, however, that this is a coarse simplification and there is no simple solution for all
the design issues of a FEC function within a communications system. Such attempts in
[116], [75] have made critical assumptions and they have specified limiting conditions to
the comparisons.

3.3 LDPC encoding methods and their limitations

In general, LDPC encoding refers to the process of calculating the mapping s→ c of a k-bit
binary vector s ∈ {F2}k to the proper element c of the k-dimensional subspace V ⊂ {F2}n,
according to the code definition, which is defined by the parity-check matrixH of the code,
so that the parity-check equation cHT = 0 is satisfied.

The encoding methods for LDPC codes that have been proposed so far are the following:

3.3.1 Direct method

The direct method involves the application of Gaussian elimination to calculate the gen-
erator matrix G from the null space of the parity-check matrix H of the code, that is to
solve the equation GHT = 0. This process takes place offline and depending on the en-
coder’s implementation details, the generator matrix data or structure is stored into the
encoder. A codeword c can thus be calculated from the input information block s through
the vector-matrix multiplication c = sG.

The generator matrix of all practical codes can be transformed in systematic form, through
linear operations of its rows and columns. For a (n, k) linear block code in this case
G =

[
Ik Wn−k

]
, where Ik is the k × k identity matrix and for QC codes, Wn−k is an

array of dense cyclic sub-matrices, with the structure of (3.7). The resulting codeword c
is consequently c =

[
s p

]
, where p is the vector of the n− k parity bits. In this case, the

encoders implementing this method need only to store the r×c×m bits of the first rows (or
columns) of these circulants. However, despite the fact that the initial parity-check matrix
H is sparse, the resultingWn,k matrix and consequently its constituent circulants are dense
matrices. The generator matrix of the (2048,1024) AR4JA CCDSS code is displayed in
Fig. 3.9 as an example: there are 8× 8 dense circulants of 128 bits in this code.

Encoders proposed in [121],[140],[94],[142],[17],[135],[136] are based on the direct en-
coding method. My preliminary work in [121] has introduced an efficient architecture for
the parallel execution of the vector-matrix multiplication involved in the direct encoding
method, by leveraging the inherent parallelism of the generator matrix of CCSDS codes,
achieving.

D. Theodoropoulos 72

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.9: The generator matrix of the (2048,1024) AR4JA CCSDS

Although the work in [140] focuses on CCSDS codes, the proposed architecture handles
encoding inefficiently, requiring large XOR operations over a significant number of bits
(k/2 or 2048 in the provided example) and at the same time register resources are wasted.
Algorithmically equivalent approaches are found in [135] and the parallel SRAA of [142].
The required logic resources for hardware implementation are inevitably a large portion of
a Virtex7-xc7vx485t FPGA, which render their approach impractical.

The authors in [142] propose various types of encoding circuits, based on shift registers,
which achieve encoding complexity that is linearly proportional to the number of parity
bits of the code (n − k according to the notation in this work), or the n total bits of the
code in the case of the parallel approach. The SRAA serial encoding scheme described
is practically the naive approach provided in the CCSDS standard [32], based on a shift
register for the circulants and a register for the calculation of parity bits. The calculated
complexity does not include the memory and the necessary circuitry for the loading of
the generators gi,j (first rows of Wi,j in (3.7)) of the circulants to the SRAA shift registers,
which incur significant resources cost in practical implementations, as it will be shown in a
subsequent section. According to the parallel SRAA approach, which achieves encoding
in cb cycles (following the writers’ notation), all k input bits participate in the calculation
of each parity bit in one clock cycle. This architecture could not be implemented with
reasonable resources in practical encoders for codes with block lengths in the range of
several thousands of bits and should be considered only as a theoretical approach for
academic research purposes only. Even in this case however, the AND-XOR binary cal-
culations on a large number of bits would necessitate large combinatorial paths and would
severely jeopardize throughput performance. The two-stage encoding scheme which is
also described in [142] is practically the H2-inverse method described later in the current
Section.

The work in [17] proposes an architecture based on Linear Feedback Shift Registers (LF-
SRs). The input information bits are multiplied with the first rows of the circulantsWi,j and

73 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.10: Structure or H matrix for the R-U method

instead of rotating the circulant registers, the rotation concerns the output register, which
contains the parity bits at the end of the encoding process. The work in [131] describes
an implementation of [17].

The approach described in [135] is algorithmically equivalent to the parallel SRAA ap-
proach of [142], without taking advantage of the QC structure of the targeted codes (IEEE
802.16e). Its performance however is also dominated by the large XOR binary operation
involved. In addition, the memory requirements for the storage of the generator matrix,
totalling (n − k)k bits, pose considerable constrains to the associated hardware. The
work in [136] is another adoption of the SRAA architecture of [142], employing the direct
method and optimized for sparse circulants. Finally, another implementation of the SRAA
architecture is described in [38].

3.3.2 R-U method

This method is based on the fact that the codeword can be calculated directly from the H
matrix by solving the system of equations defined by the parity-check equation HcT = 0.
The Richardson-Urbanke (R-U) method [110] solves this equation with complexity almost
linear to the block length, provided that the parity-check matrix of the corresponding QC-
LDPC code has approximate upper-triangular structure, or it can be transformed to such
form, which is depicted in Fig.3.10. For a systematic code with aH matrix of size (n−k)×k,
the calculated codeword has the form c =

[
s p1 p2

]
, where s is the input vector and p1,

p2 are parity bits vectors of length g and m − g respectively and and the parity bits are
calculated according to (3.12), (3.13), (3.14).

φ = ET−1B +D (3.12)

pT1 = φ−1(ET−1A+ C)sT (3.13)

pT2 = T−1(AsT +BpT1) (3.14)

The above equations involve many sparse matrices, but only a single dense, namely φ−1.
Sparse matrix operations can be implemented by simplified hardware and the determinant
factor affecting the performance of the encoder becomes the g× g dense matrix φ−1. The

D. Theodoropoulos 74

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

parity-check matrix of many widely adopted LDPC codes has been specifically designed
so that the parameter g is small, or in the case of DVB-S2 is zero and the matrix φ−1

has a special strucutre which results in efficient hardware implementation. For example,
the φ matrix of the LDPC codes adopted for IEEE 802.11ac/n, 802.16e and many other
applications is the g × g identity matrix.

For many other codes, the transformation into approximate lower triangular form, without
affecting the QC structure of the matrix is not straightforward. For example, in the case of
the CCSDS codes defined in [32], this can be achieved by shifting the last 4 circulants (4m
bits) by 8 columns (8m bits) to the left. Since the last 4m bits of the code are punctured, this
permutation does not affect the encoder’s output. Fig.3.11 displays the H matrix before
and after the transformation for rate 1/2 AR4JA code with k = 1024. The parameter g is
therefore 4m and φ−1 is a 4m × 4m dense QC matrix of m ×m circulants. Architectures
proposed in [84], [127], [73], [139], [133], [71] are examples of application of the R-U
method.

The work in [84] does not target QC codes, nor can it efficiently handle large dense φ ma-
trices. The parameter g is 2 in the provided implementation examples and the resulting
encoders occupy a large amount of the resources of Xilinx XC2V4000-6 FPGA, including
a number of Block RAMS. The encoder architecture in [127] targets IEEE 802.11n codes
where φ matrix is the identity matrix, but is not applicable to CCSDS codes. Targeting
Wimax LDPC codes, [133] also assumes that φ is the identity matrix. In [73] the authors
propose a code construction method, together with encoder-decoder architectures. The
proposed encoder implements the R-U method, but the code construction aims at mini-
mizing the parameter g. The dense matrix multiplication (3.13) involving φ in their case
is executed on all elements of φ−1 in parallel, which obviously does not scale efficiently
for large g. The method proposed in [71] and [139] employs SRAA modules introduced in
[142] for the dense matrix operations of the RU algorithm. The scalability issues concern-
ing the adoption of SRAA architectures for the direct encoding method, also pertain to the
R-U method for CCSDS codes, because of the size of parameter g.

The R-U method is not applicable in the case of CCSDS C2 code: the structure of its
H matrix is obviously not lower-triangular and at the same time, the matrix dimensions
prohibit the matrix inversions in Eq. (3.12-3.14). In the case of AR4JA codes, however,
after the transformation of its H matrix according to Fig. 3.11, the φ−1 matrix is a 4m× 4m
dense QC matrix, which complicates the calculations of (3.12).

3.3.3 Partitioned-H methods

This class of methods is based on the fact that for all systematic codes, the codeword c
consists of the systematic part, which is a copy of the input information block and the parity
bits: c =

[
s p

]
. The parity-check matrix can therefore be partitioned into a (n − k) × k

submatrixH1 and a (n−k)× (n−k) submatrixH2, whereH =
[
H1 H2

]
, so that the parity

bits vector can be calculated by (3.15), (3.16), (3.16).

HcT = H1s
T +H2p

T = 0 (3.15)

75 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.11: H matrix before (left) and after (right) the transformation into lower triangular
form.

Figure 3.12: φ−1 submatrix for AR4JA codes. m = 128 bits for this example of the
(2048,104) member.

D. Theodoropoulos 76

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.13: H−1
2 submatrix for the Wimax (2016,1008) code.

H2p
T = H1s

T (3.16)

pT = H−1
2 H1s

T (3.17)

Submatrix H1 is sparse and the vector H1s
T can be easily calculated. For many practical

codes, submatrixH−1
2 exhibits regular structure, which facilitates the involved calculations.

A common structure in the parity-check matrix of many codes is the dual-diagonal: the
rightmost part or of H2, or even the entire submatrix (IEEE 802.11 n/ac, 3GPP2 DVB-
S2) is a dual-diagonal matrix. For example, the H−1

2 matrix of the IEEE 802.16e (Wimax)
LDPC codes exhibits a simple, regular structure displayed in Fig. 3.13. On the contrary, for
CCSDS codes, as well as for most of the codes that do not have a dual-diagonal structure
in the parity-check matrix, the H−1

2 matrix is a dense 4m × 8m QC matrix (after omission
of the columns corresponding to the punctured bits).

According to a variation of this method ([132], [80], [81], [77], [137], [134]), H2 matrix is
decomposed into a permutation matrixΠ and two triangular matrices L, U , using triangular
factorization (or LU decomposition). Equation (3.16) is therefore transformed into (3.19),
from which parity bits are calculated using back-forward substitution. Conversely, the LU
decomposition can be applied on H−1

2 matrix, so that parity bits are calculated according
to (3.20),(3.21).

H2 = Π−1(LU) (3.18)

L[U(pT)] = Π(H1s
T) (3.19)

H−1
2 = Π′−1(L′U ′) (3.20)

Π′pT = L′[U ′(H1s
T)] (3.21)

The architectures proposed in [69], [14], [141], [74], [106] and [138] all follow algorithmi-
cally equivalent approaches which assume a dual-diagonal H2 matrix. Parity bits can be
calculated directly from the vector H1s

T using backward substitution. In (3.17), H−1
2 is a

lower triangular matrix and H−1
2 (i, j) = 1, i ≥ j, and back substitution is applicable.

77 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

For another class of codes (for example in IEEE 802.16e), H−1
2 has the approximate dual-

diagonal structure of (3.22), where I(xj)i are permutation matrices. Targeting these cases,
[97], [83] and [41] propose encoders with similar algorithmical descriptions, which perform
all the necessary permutations along with backward substitution for the calculation of the
corresponding parity bits, directly from H2 matrix.

H2 =

 I
(x1)
1 I I . . . 0 0
... . . .

I
(xb)
b 0 0 . . . I I

 (3.22)

The variation of the method based on L-U decomposition of H2 according to (3.18)-(3.21)
is used in [80], where the authors also propose an offline preprocessor for the triangulation
of H2. The QC structure of the matrix however is not kept in the decomposed matrices,
at least for the demonstrated codes. Reference [134] proposes the same encoder archi-
tecture with a different decomposition algorithm for CMMB codes, which are not QC. The
same encoder architecture is also proposed for CMMB in [132], without details on the de-
composition algorithm. The work in [81] targets random Gallager codes. The encoding
process is identical to [80], however algorithms are provided for the calculation of per-
mutation matrices, which minimize the density of L, U components. It is shown that the
compression achieved for the storage of sparse L, U matrices favors this method over R-
U, at least for Gallager codes. The adoption of this encoding method however for CCSDS
inflicts a major performance penalty because of the loss of QC structure in L, U matrices.
For example, using the triangulation process outlined in [80], the AR4JA rate 1/2 code with
k=1024 bits calls for the storage, proper indexing and processing of a total of around 64K
nonzero elements of L, U matrices, compared to the simple storage of the 2K elements
of the first rows of the circulants needed for the 4m× 4m φ−1 matrix.

The work in [90] modifies the procedure in [80] and adopts LU decomposition of H−1
2 ,

so that parity bits are calculated according to (3.21). It is shown that for the selected
codes (Multi-level QC-LDPC codes), this method can result in more efficient storage of
the decomposed matrices L′, U ′ and Π′ in the encoder’s memory than H−1

2 or storing the
components of H2 according to [41]. However, the efficiency of the proposed encoding
scheme is limited only to the two-step expandedmulti-level codes described, which results
in a cyclic structure in the triangulated components. Fig.3.14 depicts an example of the
generated L′ and U ′ matrices, compared to their CCSDS equivalents. The VMM archi-
tectures proposed for the vector-matrix multiplications are evidently not applicable for the
random matrices of CCSDS. Memory requirements for indexing the non-zero values are
also a prohibitive factor for AR4JA codes. Another fully parallel method is also proposed,
targeting high encoding throughput. According to this method, there is no need to store L′,
U ′ in memory and the vector-matrix multiplications of (3.21) are executed in parallel on all
bits. This method cannot scale for higher block lengths or other codes. Even for CCSDS
AR4JA k=1024, rate 1/2 code, it was discovered that the implementation of this method
woukd require more than 72K LUTs, fitting only high-end Virtex 5 FPGAs, with prohibitive
routing delays for any practical application.

D. Theodoropoulos 78

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.14: L′, U ′ matrices of (2016,1008) example code in [90] (left) and AR4JA k=1024
rate 1/2 code (right).

3.3.4 Hybrid method

In [47] the authors propose a hybrid approach, according to which the parity-check matrix
is transformed in approximate lower-triangular form, as in R-U method. The parity bits are
calculated using a mix of the direct and the R-U method: The first subvector p1 of the g
parity bits in R-U equation (3.13) is calculated from the the generator matrix G, according
to the direct method. In this case, only the first g columns of the submatrix Wn−k in (3.7)
need to be stored in encoder memory, avoiding thus the dense vector-matrix operations
involving φ−1 of the pure R-U method. The work in [47] focuses in IEEE 802.11an codes.
For CCSDS AR4JA codes however, g = 4m and parameter r (i.e. the rows of circulants
in the generator matrix) is 8, 16, 32 for rates 1/2, 2/3, 3/4 correspondingly, while φ−1 is
always 4m × 4m, for all codes. Pending the detailed performance analysis of the next
section, it is evident that no performance gain is achievable from this method for any of
the CCSDS codes. On the contrary, memory requirements and critical path are adversely
affected from the larger dense matrix involved.

3.4 Description of the proposed basic architecture

In the general case, consider the multiplication p = sW of the bit vector s with the dense
QC matrixW , which is an r× c array ofm×m circulants. Vectors s, p are also partitioned
into a number of r and c sub-vectors correspondingly, each consisting ofm bits, as shown
below in (3.23) and (3.24). Bit j of sub-vector pi is calculated by equation (3.25), where
Wl,i(j) is the j-th column of the circulant Wl,i.

s =
[
s1 s2 . . . sr

]
(3.23)

p =
[
p1 p2 . . . pc

]
(3.24)

79 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

pi(j) =
r∑
l=1

slWl,i(j) (1 ≤ i ≤ c, 1 ≤ j ≤ m) (3.25)

In a parallel implementation, a number of L input bits of vector s can be concurrently
processed at each clock cycle. If parameter L is such that m is an integral multiple of L,
equation (3.25) can be completed in mr/L cycles according to the following method.

We define the subvectors of sl being processed in the current clock cycle as in equation
(3.26). We also split the column vector Wl,i(j) of equation (3.25) into m/L subvectors of
L bits. Subvector W (e)L

l,i (j) is defined in (3.27), where 0 ≤ e ≤ m
L
− 1. In practice, since L

bits of input vector p are processed, index e refers to one of the m/L execution cycles in
which circulant Wl,i is involved.

s
(e)L
l =

[
sl(eL+ 1) sl(eL+ 2) . . . sl(eL+ L)

]
(3.26)

W
(e)L
l,i (j) = [Wl,i(eL+ 1, j) Wl,i(eL+ 2, j) . . .

Wl,i(eL+ L, j)]T
(3.27)

Because sub-matrices Wi,j are cyclic, equation (3.28) holds. To simplify notation, we
define WL

l,i(j) = W
(0)L
l,i (j) . Symbol

m
⊕ signifies modulo-m addition.

W
(e+v)L
l,i (j) = W

(e)L
l,i (j

m
⊕ vL) 0 ≤ v ≤ m

L
− 1 (3.28)

At each clock cycle, for each bit position j of subvector pi, we calculate a partial result
ϱ
(e)
i (j, l) in parallel, according to (3.29). Note that WL

l,i(j) is independent of the execu-
tion cycle. This means that each ϱ(e)i (j, l) depends only on the input bits and the current
circulant index l.

ϱ
(e)
i (j, l) = s

(e)L
l WL

l,i(j) (3.29)

Each pi(j) can be calculated by accumulating the corresponding values of ϱ(e)i (j, l), us-
ing shift registers. Equation (3.25) can be rewritten as in (3.30), if we take into account
equations (3.28) and (3.29). The partial results which are calculated at each clock cycle e
are accumulated into pi(j), as indicated by the internal summation in (3.30). The external
summation updates the values of WL

l,i in (3.29) and the accumulation continues for all l.

pi(j) =
r∑
l=1

m
L
−1∑

e=0

ϱ
(e)
i (j

m
⊕ eL, l)

 ⌊m
L
⌋ = 0 (3.30)

In this work, we introduce an additional degree of parallelism. In every clock cycle (e),
instead of processing L consecutive bits of s, we process Lm bits from each of the r sub-
vectors si. We set Lm = L/r, so that the total number of bits being concurrently processed

D. Theodoropoulos 80

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

are fixed to L. According to this scheme, at each execution cycle, instead of calculating
and accumulating ϱ(e)i (j, l), we calculate the partial sum δ

(e)
i (j) according to (3.31). The

partial results are accumulated into pi(j) according to (3.32). The total number of bits
being concurrently processed is again equal to L, but at each clock cycle, all circulants
participate in the calculation of parity bits.

δ
(e)
i (j) =

r∑
l=1

s
(e)Lm

l WLm
l,i (j) 0 ≤ e ≤ m

Lm
− 1 (3.31)

pi(j) =

m
Lm

−1∑
e=0

δ
(e)
i (j

m
⊕ eLm) (3.32)

Note that in this case, δ(e)i (j) is independent of the current circulant, in contrast to ϱ(e)i (j, l)
in (3.29), where the dependence on l means that for the calculation of each pi(j), the
corresponding ϱ(e)i (j, l) is a logical function of L+ log2(r) bits. Conversely, this means that
each WL

l,i needs to be calculated from a function generator with log2(r) inputs. According
to the introduced method, however, the value of δ(e)i (j) depends only on the rLm bits of
the input vector s.

The decoupling of δ(e)i (j) from l comes with a significant advantage for hardware imple-
mentation. If we define the truth function 1 as in (3.33), and set w(ξ) as the ξ-th element
of column vector WLm

l,i (j
m
⊕ eLm), then (3.31) can be simplified as (3.34). This simplified

statement of partial sums removes the need of a function generator for the elements ofW
and significantly reduces complexity.

1[x = 1] =

{
1, x = 1
0, x ̸= 1

(3.33)

δ
(e)
i (j) =

r∑
l=1

(
Lm∑
ξ=1

s
(e)Lm

l (ξ)1 [w(ξ) = 1]

)
(3.34)

Consequently, for a hardware implementation of this algorithm, at each cycle we need to
calculate vector δ(e) according to (3.34) and accumulate this partial result into a register,
according to the summation indicated by (3.32).

The accumulation of δ(e)i (j) in (3.32) can be efficiently implemented with a Linear Feed-
back Shift Register (LFSR), an abstract block diagram of which is presented in Fig. 3.15.
The input feed is given by (3.34). After m/Lm processing cycles, registers ui(j) have
accumulated the expected result, according to (3.32).

Table 3.2 lists the calculated resources and performance estimations. The input to each
register of the LFSR is a function of the non-zero elements of column vector Wl,i(j). For
simplicity, we assume that

∑m
j=1Wl,i(j) = m/2, which is a realistic approximation for all

the dense QCmatrices involved in CCSDS encoding operations, according to all encoding
methods outlined in the next Section. Consequently, each δ(e)i (j) is a function of rLm/2

81 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.15: LFSR architecture for QC vector-matrix multiplication.

Table 3.2: Resource and Performance Estimations
2-input binary functions (2-input xor) cmrLm/2

Registers (FFs) cm

Logic levels (2-input xor) ⌈log2 (rLm/2)⌉
Encoding cycles m/Lm

input bits. The accumulation between succesive execution cycles adds another variable
to the sum of input parameters of each register, to total rLm/2 + 1. The logical resources
required for this operation, in terms of 2-input xor functions, are rLm/2, for each ui(j).
Given that the total number of register bits is cm, the total logic resources needed are those
displayed in Table 3.2. According to the previous analysis, each LFSR input depends
approximately on rLm/2 + 1 bits. Consequently, a reasonable approximation for the 2-
input logic levels required is ⌈log2 (rLm/2)⌉. The introduced architecture accomplishes the
calculation of the cm bits of vector pi(j) inm/Lm cycles. Note that this value is independent
of c and r.

3.5 Encoding architectures

The introduced architecture in Section 3.4 can be employed for every linear operation in-
volving the multiplication of a bit vector with a dense QC matrix, even beyond the field of
LDPC encoding. Such operations constitute key steps in each of the encoding methods
presented in Section 3.3. In the current Section, the applicable encoding methods which

D. Theodoropoulos 82

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

have already been described in Section 3.3 are evaluated for CCSDS codes, using the in-
troduced architecture and compared to the applicable propositions in the literature. Based
on the conclusions drawn, practical hardware implementations are presented in the next
sub-section. Hardware budget is calculated on the basis of 2-input binary functions and
memory bits.

3.5.1 Direct method encoder

The direct method implementation according to the proposed architecture is displayed in
Fig. 3.16(a). The architecture introduced in the previous Section is used for the multipli-
cation of p = sW . Additional logic is required in this case for rearranging the input data of
vector s into s(e)Lm

l , as required for the LFSR operation. This can be easily implemented
by a series of r non symmetric Parallel In-Parallel Out (PIPO) shift registers. Input data
are provided to the encoder Lio bits at each clock cycle and stored in one of these shift
registers, depending on the current subvector si. During calculation (as e increases from
0 tom/Lm−1), Lm bits of each subvector shift register are shifted out. Processing of each
input frame is concluded inm/Lm cycles, consequently if Lio = rLm, the input to the LFSR
module never stagnates and maximum encoding throughput is achieved. Conversely, the
entire input information block can be loaded into the array of the PIPO shift registers, at
the same time.

Compared to our previous work in [121], the introduced architecture in the current work is
algorithmically equivalent to the subcases of La=8, 16, 32 for rates 1/2, 2/3 and 4/5 cor-
respondingly. The architecture implemented in [17], which is cited in and recommended
by earlier versions of the CCSDS standard [32], processes input bits serially. However, a
parallel implementation which processes Lio input bits at each clock cycle can be built as
in Fig. 3.16(b) and compared to the proposed implementation of the direct method. Ex-
amples of resources and performance estimations are listed in Table 3.3 and compared to
our proposed direct method encoder. For the same encoding cycles, the proposed archi-
tecture achieves shorter critical path and requires fewer combinatorial resources for rates
1/2 and 2/3, at the cost of additional Flip-Flops, which favours FPGA implementations.
For rate 4/5, however, both architectures achieve the same encoding throughput perfor-
mance, while the fixed overhead of the PIPO registers required for generation of vectors
s
(e)Lm

l dominates required resources. In an FPGA implementation, these registers can be
substituted with Block RAM based FIFOs.

3.5.2 R-U method encoder

The equations (3.13), (3.14) involve many sparse matrices, but only a single g× g dense,
namely φ−1, which is the critical factor affecting the performance of the encoder. An ex-
ample of the φ−1 matrix of AR4JA codes is provided in Fig. 3.12.

The R-U method implementation according to the proposed architecture is displayed in
Fig. 3.17(a). The 4 Lm-bit vectors v(e)Lm

i are calculated by rotating input vectors si by

83 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.16: Proposed implementation according to the direct method (a) compared to a
parallel implementation of [17] (b). Lio = rLm

Table 3.3: Direct method estimations

Work Rate
Logic

FFs
Logic Enc.

functions levels cycles

Proposed 1/2 8192χ+256 2048χ 3 64χ
Fig. 3.16(a) 2/3 8192χ+1024 1536χ 4 32χ
Lio=rLm, Lm=2 4/5 8192χ+4096 1280χ 5 16χ
Based on [17] 1/2 19456χ 1024χ

5
64χ

Fig. 3.16(b) 2/3 10240χ 512χ 32χ
Lio=2r 4/5 5376χ 256χ 16χ
χ=1, 4, 16 for block lengths 1K, 4K, 16K correspondingly

D. Theodoropoulos 84

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Table 3.4: R-U method budget
Operation Logic FFs Levels Rate

Shift registers 16mK 8mK 1 ALL

vT
24Lm

4Lm
3 1/2

72aLm 5 2/3

168Lm 6 4/5

fT 8mLm 4m 1+Lb ALL

aT
4Lm

4m

1 1/2

20Lm 3 2/3

56Lm 4 4/5

pT 16m 8m 3 ALL

TOTAL
(32+8Lm)m+28Lm 24m+4Lm

Max.
1/2

(48+8Lm)m+92Lm 32m+4Lm 2/3

(80+8Lm)m+224Lm 48m+4Lm 4/5
aFor k = 1024, subtract 2 from this value
bL=⌈log2(Lm)⌉

Lm bits at each clock cycle. The hardware implementation of this particular operation
is feasible, since matrix EA + C is sparse, and each v(e)Lm

i (j) depends only on at most
one bit of each si, since (EA + C) is QC. Vectors v(e)Lm

i (j) are stored in intermediate
registers, in order to reduce the critical path. After them/Lm cycles required for the dense
matrix multiplication, the 4m vector fT is stored into the register of the LFSR. Vector bT is
calculated based on addition of the permutations of fT . Since node v1 is not connected
to node c1 in Fig. 3.2, it is evident that for all AR4JA codes, the first 4m bits of matrix A
are zero. Vector aT , is calculated in parallel with fT and stored into the intermediate shift
registers in the figure. At the final step of the process, the calculation of bT = BfT and
addition to aT are performed at the same clock cycle, to form the parity bits. The analytical
detailed estimations of the resources consumption for this architecture are provided in
Table. 3.4.

Examining the previous works implementing the R-U method and applicable to CCSDS
codes, the architecture proposed in [73] for Block-LDPC codes is not expected to result
in efficient implementations of CCSDS codes encoders. The resources and performance
metrics are dominated by the dense matrix operation involving matrix φ−1. A more suit-
able approach would be based on the architecture described in [71], which leverages the
SRAA modules introduced in [142] for φ−1 multiplication. A diagram of a CCSDS encoder
based on that architecture is displayed in Fig. 3.17(b), in which the layered approach
is followed for sparse matrix operations. Table 3.5 summarizes the estimated resources
and performance metrics of the two encoder architectures displayed in Fig. 3.17. Al-

85 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.17: Proposed implementation according to the R-U method (top), compared to
the classical approach taken in [71](bottom). All bits of vector s are considered to be
available at the encoder’s input.

D. Theodoropoulos 86

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Table 3.5: R-U method estimations

Work Rate
Logic

FFs
Logic Enc.

functions levels cycles

Proposed 1/2 6144χ+56 3072χ+8 3 64χ
Fig. 3.17(a) 2/3 4096χ+184 2048χ+8 5 32χ
Lm = 2 4/5 3072χ+448 1536χ+8 6 16χ
Based 1/2 5120χ+26 8192χ 2 512χ
on [71] 2/3 3584χ+58 4608χ 3 256χ
Fig. 3.17(b) 4/5 2816χ+116 2816χ 4 128χ
χ=1, 4, 16 for block lengths 1K, 4K, 16K correspondingly

Table 3.6: Hybrid method estimations

Work Rate
Logic

FFs
Logic Enc.

functions levels cycles

Proposed 1/2 8192χ+8 3072χ 3 64χ
Fig. 3.18 2/3 7168χ+40 2048χ 4 32χ
Lm=2, Lio=2r 4/5 6656χ+112 1536χ 5 16χ
χ=1, 4, 16 for block lengths 1K, 4K, 16K correspondingly

though the architecture of 3.17(b) requires slightly less combinatorial resources and has
a smaller critical path than the proposed, it concludes encoding of one input frame in 8
times more cycles, since the operations on each layer and the SRAA modules are exe-
cuted serially. Consequently, the introduced architecture achieves considerably increased
encoding throughput performance, for the same resources.

3.5.3 Hybrid method encoder

A block diagram of an encoder implementing the hybrid method described in [47] is de-
picted in Fig.3.18. The 4m wide vector f (T) is in this case calculated from the generator
matrix, in an identical way as in the direct method. Intermediate vectors aT , bT and the
final calculation of parity bits are calculated as in R-U method. Note that in this case there
is the need for shift registers at the encoder’s input for LFSR operation. Table 3.6 lists the
resources for this method.

87 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.18: Hybrid method implementation ([47])

D. Theodoropoulos 88

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.19: Proposed implementation according to the partitioned-H method. The archi-
tecture of Fig. 3.15 is used for dense matrix operation involving H−1

2 . All bits of vector s
are considered to be available at the encoder’s input.

3.5.4 Partitioned-H method encoder

The block-diagram of the proposed architecture implementing this method is displayed
int Fig. 3.19. At each clock cycle, vectors u(e)Lm

i are calculated directly from input bits,
in a way similar to v(e)Lm

i of the R-U method, and stored into Lm-bits registers. These
intermediate results are provided to a LFSR, which implements the binary multiplication
with H−1

2 . Calculation of pT is concluded after m/Lm cycles.

Table 3.7 summarizes the involved estimations for the example case of Lm = 2. The
existing implementations of the partitioned-H method, either directly or through triangular
decomposition, require a specific structure of the parity check matrix, incompatible with
AR4JA codes. Consequently, this is the first time that an encoder architecture for this
method is proposed and thus no fair comparisons can be made.

3.5.5 Special case: C2 code

For the C2 code, the only applicable method is the direct, at least without any modification
of the parity-check matrix. Special manipulation is required, however, because of the
problematic circulant size of the code, which is not a power of 2. In our work in [121] we
had introduced an efficient scheduling of the stream of input bits, by adding one zero bit

89 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Table 3.7: Partitioned-H method estimations

Work Rate
Logic

FFs
Logic Enc.

functions levels cycles

Proposed 1/2 10240χ+24 2048χ+16
3

64χ
Fig. 3.19 2/3 6144χ+88 1536χ+16 32χ
Lm = 2 4/5 4096χ+216 1280χ+16 16χ
χ=1, 4, 16 for block lengths 1K, 4K, 16K correspondingly

every 511 input bits. The effect of that addition was counterbalanced by performing one
less rotation of the parity bits shift register. In the current work, we applied the architecture
of Fig. 3.16 by setting m = 511, r = 14. A block diagram of the proposed encoder is
displayed in Fig. 3.20(a). Input bits are supplied to the encoder in pieces of Lio bits and
are padded with zeros as necessary, by setting s(m/Lm)−1

i = 0Lm , where 0Lm is a sequence
of Lm zeros. The effect of these extra 14Lm zeros added to each circulant can be balanced
by a permutation of the calculated parity bits by Lm positions to the left.

In order to address the problematic circulant size of the code, the authors in [94] pro-
pose a packing-unpacking scheme, as displayed in Fig. 3.20(b). Input data are packed
into groups of 21 bits, before they participate in the corresponding parity calculation. An
architecture which is algorithmically equivalent to the Recursive Convolutional Encoders
(RCEs) of [17] implements the cumulative parity calculations. At each clock cycle, the
RCEs perform a shift or a shift-accumulate operation of 7,16 or 21 bits. In Fig. 3.20(b),
we model the input of each RCE register (Flip-Flop) as a binary function generator of 30
parameters. Note also that because of the difference between the input bus size (16-
bit) and the shift-accumulate step (21 or 7-bit), latent cycles are introduced in the parity
generators’ operation.

Table 3.8 compares the analytical estimations of the proposed architecture and the one
based on [94]. The two architectures offer different trade-offs: Fig. 3.20(a) is optimized
for combinatorial resources utilization and logic levels, while Fig. 3.20(b) for Flip-Flop
use and it concludes encoding in approximately 12% less cycles. The efficiency of each
architecture therefore depends on the targeted technology and the parameter which is
needed to be optimized. Targeting high encoding throughput on FPGA technology, in
which combinatorial logic is mapped to LUTs and Flip-Flops are an abundant resource,
the hardware implementation of the proposed architecture achieves higher clock rate.
This is because of the fewer logic levels and the lower routing delays imposed by the total
footprint of the proposed encoder. The higher clock rate compensates for the increased
number of cycles required for encoding, so that the actual encoding throughput of the
proposed architecture is higher. In our measurements, targeting Virtex-5/XC5VLX110T-1
FPGA, we were able to achieve 30% higher clock rate with the proposed architecture,
compared to that of Fig. 3.20.

D. Theodoropoulos 90

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.20: Proposed stream input implementation for C2 code (a), compared to the
packing-unpacking scheme proposed in [94] (b).

Table 3.8: C2 code estimations

Work
Logic

FFs
Logic Enc.

functions levels cycles

Proposed (Fig. 3.20(a)) 7602 8176 3 510
[94] (Fig. 3.20(b)) 29638 1107 5 448

91 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.21: Top to bottom, left to right: Amatrices of k = 1024 codes: R12, R23 and R45.

3.6 Implementation and results

In this Section, practical CCSDS encoder implementations, based on the architectures
proposed in Section 3.5 are demonstrated. The different encoding methods offer various
trade-offs between combinatorial logic and Flip-Flop usage and critical path logic levels.
However, the following remarks pertain to all cases and can limit the selection of the opti-
mal architecture for each rate:

• As already mentioned in Section 3.3, the Hybrid method does not offer any advan-
tages over the other methods. Consequently, no implementations have been built,
which are based on the Hybrid method.

• The R-U method is more favourable for lower rates, over partitioned-H. The dimen-
sions of the φ−1 are always 4m×4m, whereas the size ofH−1

2 is 4m×8m. However,
the size of EA + C is k bits, and the parameter m decreases by half for every rate
increase (e.g. for k=1024, m is 128 for rate 1/2, 64 for 2/3, 32 for 4/5 and so on).
This means that as the rate increases, the calculation of vT = (EA + C)sT (refer
to Fig. 3.17) is becoming increasingly more challenging. Conversely, the AR4JA
protograph in Fig. 3.2 adds more weight-4 nodes as code increases. In practical im-
plementations on the FPGA, the increase of the rate of k/m reaches a point where
the synthesis and place & route results favour the partitioned-H method over the
R-U, for rates higher than 1/2.

• The A matrix in R-U calculations for all the AR4JA codes has zeros in its first M
lines. However, the A matrix of the rate 1/2 codes has the very interesting property
of consisting of twoM×M identity matrices, which greatly facilitates implementation.
This property is not valid for the rest rates. Fig. 3.21 shows the structure of all the A
matrices for k = 1024 codes.

D. Theodoropoulos 92

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Note also that the implementations of the R-U, partitioned-H and hybridmethods described
in the previous Section require that all input bits are available at the encoder’s input, while
only the direct method can naturally encode a stream of input data. This assumption was
made in order to provide direct comparisons of the encoding algorithms, without favouring
any one of them, by virtue of the stream interface. Also, many references in the literature
(albeit referring to other codes) make this assumption. Consequently, the architectures
proposed in Section 3.5 form the theoretical basis for comparisons with any other archi-
tecture that adopt this assumption.

For practical implementations, however, and especially for the higher block lengths (4K
and 16K), it is not realistic to assume that all the k bits of an information block are available
at the same time. Consequently, the architectures of Section 3.5 were modified accord-
ingly. Most importantly, the calculations in the different stages of the encoders needed
to be balanced, so that optimal pipelined operation between several successive transfer
frames is ensured. This involves the prudent selection of Lio (input/output bus width) and
Lm of the various modules of the architectures.

For rate 1/2 AR4JA codes, we developed a hardware implementation based on the R-U
method, as shown in Fig. 3.22. Because of the structure of Amatrix of the rate 1/2 codes,
the calculation of aT = AsT is very easy and can be implemented using only two FIFOs,
which sum the first 4m with the last 4m bits of the input information block. It is important to
emphasize that this calculation can be performed in groups of Lio bits, and a large register
of 4m bits for the entire vector aT is not required. The calculation of uT , which involves
the sparse matrix EA + C can be performed by a simple LFSR, according to the direct
method: its combinatorial resources cost is low enough to not hinder the overall system
performance. The calculation o the vector uT needs k/Lio cycles to be complete, as is the
time required for an entire input transfer frame to be stored into the systematic part’s FIFO.
Afterwards, uT is loaded into a series of 4 parallel load shift registers, so that the calculation
of the next transfer frame can continue. The dense matrix calculation involving φ−1 is
executed as in Section 3.5. Vector b = BfT is a summation of a low number of subvectors
of fT and can be easily calculated directly from fT , without requiring an intermediate buffer.
Finally, each successive Lio bits of bT are added with the corresponding Lio bits of aT , to
give the corresponding parity bits. The fact that the parity bits are being calculated only
in groups of Lio bits for many of the involved sparse matrix calculations, has an important
result in the limitation of the required resources. Finally, a multiplexor at the encoder’s
output alternates between the 64-bit ASM sequence, the systematic bits and the parity
bits. By selecting Lm = 4 and Lio = 64, the encoder operates at its maximum throughput,
when an uninterrupted stream of successive input transfer frames is presented to its slave
interface: all its modules are busy for the most part of the time in a pipelined fashion
and no idle cycles are required at its master interface for parity calculations to complete.
The pipelined operation of the encoder is shown on the timing diagram of 3.23, where
successive frames are represented with different colors.

For rates 2/3 and 4/5 the partitioned-H method is the most preferable in therms of overall
resources utilisation and encoding throughput performance. The modified architecture
that we implemented for stream I/O is shown in Fig. 3.24. In this case, uT = H1s

T is

93 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.22: Proposed implementation according to the RU method with serial I/O.

Figure 3.23: Pipelined operation over successive transfer frames for the R-U implemen-
tation. Each frame is represented with different color.

D. Theodoropoulos 94

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.24: Proposed implementation according to the partitioned-H method with serial
I.O.

Figure 3.25: Pipelined operation over successive transfer frames for the partitioned-H
implementation. Each frame is represented with different color.

calculated with a simple LFSR, according to the direct method, in the same way as uT in
Fig. 3.22. The calculation of uT , however, takes only k/Lio cycles to complete, instead
of k/Lm in the case of the R-U method. Afterwards, a parallel-load shift register loads
the intermediate result, which is loaded to the front register that implements u(e)Lm

j , until
the previous calculation of pT is completed. Like the R-U implementation, a multiplexor
alternates between the 64-bit ASM sequence, the systematic bits and the parity bits. The
pipelined operation of the encoder is shown on the timing diagram of 3.25.

The implementation results of the above stream architectures are shown in Table 3.9. For
the C2 code, the results of the architecture of Fig. 3.20 are being displayed. These results
are place and route results on the target device, and they were derived from Synopsys
Synplify Premier (Synthesis) and Vivado 2022.1 (P&R). It is obvious that for the codes
with k = 1024, 4096, the performance derived is mainly defined by the device’s switching
limits, whereas only the 16K and the C2 is affected by combinatorial paths.

95 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Table 3.9: CCSDS-131.0 encoders implementation results on the KCU105 board

Rate
Codeword Encoding Resources Max. clock Throughput
length (n) Method LUTs Flip-Flops BRAMs (MHz) (Gbps)

1/2 2048 R-U 3053 2782 3 480 30,6
2/3 1536 Partitioned-H 3286 1992 1 490 31,4
4/5 1280 Partitioned-H 2494 1205 1 460 29,4
1/2 8192 R-U 8605 9013 3 480 30,7
2/3 6144 Partitioned-H 8685 6828 1 470 30
4/5 5120 Partitioned-H 6770 3670 1 470 30
1/2 32768 R-U 30823 33712 3 220 14
2/3 24576 Partitioned-H 25291 25287 1 240 15,3
4/5 20480 Partitioned-H 15835 12780 1 350 22,4

7/8 (C2) 8160 Direct 3287 1883 - 360 5.76

The full encoding throughput testing setup described in Section 3.7 was used to measure
the power consumption of the implemented cores. A Xilinx SYSMON core was instantiated
at the top-level entity of the testing design, and its recorded measurements were read
from the board’s system controller, through the integrated I2C bus of the board. Several
power supplies support the operation of the FPGA. The supply rail that powers user logic
(CLBs, BRAMS) is the VCCINT power supply, at 0,95V. The SYSMON core can monitor all
the voltage and current rails of the device. For each implementation, two measurements
were performed: one with the design loaded, but with the encoder in an inactive state (not
encoding) and another one with the design running and encoding pseudo random frames
at the maximum clock frequency. The difference in the recorded power between the two
tests is the dynamic power and it corresponds to the switching activity. The measurements
were averaged over a period of 2 minutes, with ονε measurement taking place every
second.

Comparisons with the recent implementations targeting specifically AR4JA CCSDS codes
are made in Table 3.11. The architectures of the current work were synthesized for the
same FPGA device as the corresponding references. Compared to our previous work
in [121], the efficiency of the introduced architecture results in almost five times higher
encoding throughput, with similar resources. The large XOR operations over 2048 bits,
which are introduced by the architecture in [140] result in a large amount of required re-
sources and poor timing, compared to the implementation proposed in this work. Finally,
to the best of our knowledge, there is no other documented implementation of 16K AR4JA
CCSDS codes, other than the implementation by the NASA/JPLwhich has been presented
in the CCSDS Optical Communications Working Group monthly meeting in 23 June 2020.
In that meeting, the discussion revolved around the possible use of the AR4JA codes for
the oncoming O3K standard for free-space optical communications. Implementation com-
plexity was a major concern in this case, since the O3K is supposed to become a simple,

D. Theodoropoulos 96

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Table 3.10: Power measurements on the KCU105 board
Rate

Codeword Clock Static Power (W) Operating Power (W) Dynamic Power Efficiency
length (n) (MHz) VCCINT Total VCCINT Total Power (W) Mbps/mW*

1/2 2048 480 0,259 0,887 0,507 1,18 0,294 25,9
2/3 1536 490 0,199 0,797 0,53 1,147 0,35 27,3
4/5 1280 460 0,168 0761 0,408 1,008 0,247 29,2
1/2 8192 480 0,323 0,927 1,361 1,974 1,047 15,6
2/3 6144 470 0,263 0,842 1,247 1,832 0,99 16,4
4/5 5120 470 0,218 0,798 0,785 1,371 0,574 21,9
1/2 32768 220 0,398 0,979 2,204 2,807 1,828 5
2/3 24576 240 0,312 0,92 2,511 3,097 2,178 4,9
4/5 20480 350 0,298 0,914 1,363 1,962 1,048 11,4

7/8 (C2) 8160 360 0,177 0,748 0,384 0,951 0,203 6,1
*Total operating power is considered for the calculations

Table 3.11: AR4JA implementation comparisons (synthesized design) with previous work
in the literature
Rate k Work

Encoding FPGA Resources Clock Throughput
Method Device LUTs Flip-Flops BRAMs (MHz) (Gbps)

1/2 1024
[121] Direct

XC5VLX110T-1
3258 2176 - 230 3.59

This R-U 3024 2741 3 280 17,9

4/5 4096
[140] Direct

XC7VX485T-1
101173 141411 - 200 8

This Part-H 6862 3724 3 320 20,5

low-cost option. The comparison of the architectures implemented by the JPL with the
ones presented here are displayed in Table 3.11. Although the footprint of the JPL en-
coders is 2-3 times lower than the proposed, their throughput is lower by 4-7 times an
order of magnitude. More importantly, it is mentioned that a multi-core implementation is
required, in order to achieve a 10 Gbps performance, which is required for the specific
optical application. Such a solution would occupy up to 80% of a XQRKU060 FPGA, with-
out taking into account the additional design complexity which would be introduced by the
management of multiple parallel cores operating on a single stream of data to be encoded,
as well as the routing delays that would emerge in such a congested design. It is obvious
that the proposed architectures can easily achieve this performance requirement, with a
small fraction of the FPGA resources.

Table 3.13 compares the encoder based on Fig. 3.20(a) with prior work targeting CCSDS
C2 code. Contrary to the rest entries in the Table, the proposed encoder implements all
the functions of the TM-SDLP protocol (synchronisation and randomisation). The PISO
registers in Fig. 3.20(a) are mapped to LUT RAM, hence the difference in Flip Flop count
between estimations in Table 3.8 and actual count in Table 3.13. Our previous work in
[121] implemented the direct encoding method, based on a different scheduling of the in-

97 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Table 3.12: AR4JA 16K implementation comparisons (implemented design) with
NASA/JPL on the Virtex UltraScale+ XCVU9PFLGA2104-2L FPGA

Rate Work
Resources Clock Throughput

LUTs % Flip-Flops % BRAMs % (MHz) (Gbps)

1/2
JPL 16360 4,15% 16665 2,11% 0 0% 500 0,5
This 35707 9,06% 34050 4,32% 3 0,42% 320 20,5

2/3
JPL 10988 2,79% 8245 1,05% 0 0% 500 0,5
This 22789 5,78% 25334 3,21% 1 0,14% 480 30,7

4/5
JPL 6764 1,72% 4155 0,53% 0 0% 467 0,5
This 14857 3,77% 12956 1,64% 1 0,14% 590 37,8

put bits. Instead of the PISO registers of Fig. 3.20(a), it was based on an ping-pong buffer
at the encoder input, which handled the boundaries between the 511-bit circulants. Com-
pared to that work, the architectural optimizations of the current work result in an increase
in encoding throughput, while at the same time minimizing the required resources. The
work in [109] also implements the direct encoding method. It buffers an entire input frame
and partitions it into 14 sub-vectors of 511 bits each. All parity bits are being calculated in
parallel. It requires, however, significantly more resources than the encoder of the current
work, while at the same time achieving lower throughput performance, even on a more ad-
vanced Kintex-7 FPGA. Prior works listed in [4, 7, 6, 9] refers to commercial products, for
which limited information is available. The encoder in [4] has 8-bit input-output interfaces
and implements the direct encoding method. It stores two circulant tables: one for pro-
cessing input bits which correspond to the same 511-bit circulant of the generator matrix
and another for the cases when the 8 input bits span two circulants. This implementation
requires a large amount of resources. A low complexity and low throughput encoder is
provided in [6]. It implements the direct encoding method and the input-output buses are
bit-serial. Another encoder for C2 code is provided in [9]. It also implements the direct
encoding method and input-output bus is 8 bits. Block RAM is used for input-output buffer-
ing. Finally, for [7], no information about the underlying architecture is provided other than
what is displayed in Table 3.13. Implementation results on the space-grade Virtex5-based
XUPV5 development board are provided, for easier comparisons. Like in the case of the
AR4JA codes, of particular interest is the comparison with the NASA/JPL implementa-
tion, which target an ultrascale+ FPGA. Our implementation on the same device yields
more than 15 times higher performance, for 2-3 times the required resources, which are
in any case a very small percentage (less than 0,8% and 0,2% for LUTs and FlipFlops
correspondingly).

D. Theodoropoulos 98

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Table 3.13: C2 implementation comparisons (synthesized design)

Work
Targeted FPGA technology/ Resources Clock Throughput

Demonstrated device LUTs Flip-Flops BRAMs (MHz) (Gbps)

[121] Virtex-5/XC5VLX110T-1 9128 1156 0 200 3,12
[109] Kintex-7/XC7325T 54747 92233 38 297 2.97
[4] Virtex-5/XC5VLX30-1 9.2K N/A N/A 164 1.14
[6] Virtex-6/XC6VLX240T-1 N/A* N/A* 0 418 0,418
[9] Artix-7/100T-1 6873 3219 1 239 1,55
[7] Various FPGA/ASIC N/A N/A 0 200 1,6
Proposed Virtex-5/XC5VLX110T-1 3338 1340 0 260 4,16

NASA/JPL Virtex UltraScale+/ 1297 1042 0 600 0,66
Proposed XQVU3P-FFRC1517-2-i 3336 1906 0 700 11,2

*The design takes up 290 slices. One Virtex-6 slice contains 4 LUTs and 8 Flip-Flops.

3.7 Testing

The introduced architectures have been extensively tested to ensure compliance with the
standard. A bit-accurate golden model has been built with GNU Octave, which produced
a number of test vectors and the corresponding expected results for all the codes of the
standard, including the randomization option and the synchronisation sequence (ASM).
These data were produced and stored off-line as separate files on disk. These test source
data were then handled by a testbench which supplied them to the encoder and received
the generated responses in three phases, in order to test marginal conditions in the code
and ensure 100% code coverage in all cases:

1. Full throttle operation: During this phase, the testbench provided an uninterrupted
flow of data to the encoder and the receiver was assumed to be always able to accept
encoder’s generated output. No idle cycles on the encoder’s master interface were
experienced here: an assert statement would immediately raise an error in this case.
The purpose of this phase was to validate the operation of the encoder at full speed.

2. A series of successive reset signals were afterwards sent to the encoder, in order to
verify the correct behaviour of the code during all its FSM transitions. The timing of
the reset assertions was determined with the help of modelsim’s signal spy package.

3. Specific amounts of input data were sent to the encoder, immediately followed by in-
valid (TVALID de-asserted) cycles, while the encoder’s output was halted (TREADY
on the encoder’s master interface is de-asserted). This phase excited certain FSM
transitions, which are generally related to the FIFOS in Fig. 3.22, 3.24 and 3.16
becoming full when the next parity calculation is complete.

99 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

4. Channel interface validation. The flow of data to and from the encoder was not con-
stant in this phase, like in phase 1. The sender to the encoder and the receiver
paused operation randomly through the corresponding TVALID and TREADY sig-
nals on the input and output interfaces respectively. The rules that govern their be-
havior, however, were consistent with the AXI4-Stream protocol (i.e. once TVALID
is asserted, it must remain high until the handshake occurs). The purpose of this
phase was to verify protocol operation on input and output interfaces.

On the completion of the testbench, the recorded responses from the encoder were com-
pared to the expected values from the Octave golden model and any discrepancies were
reported.

Apart from the software simulations of the encoder’s RTL description, the implemented
architectures were also tested at-speed on the target hardware. Two tests setups have
been implemented: one that tests the encoder at full throughput operation and another
one that is based on a SpaceFibre channel with a host PC, according to Fig. 2.9. Both
environments are described below.

In the full throttle scenario, the encoders were connected to a 64-bit LFSR, which pro-
vided them with pseudo-random data to be encoded. The generated responses were
compressed with a 64-bit Multiple-Input Shift Register. Both these components were op-
erating in the same clock domain and were working at 100% duty cycle: once started
through an AXI4-Lite configuration interface, the LFSR continued to provide an uninter-
rupted stream of input data. At the same time, the MISR had always is TREADY signal
asserted. After a specified amount of cycles, which was defined through the LFSR’s con-
figuration interface, the LFSR’s operation was halted and the MISR value was read and
compared against the expected value of the Octave golden model.The performance of the
streaming interfaces of the core, as well as their compliance to the AXI4-Stream specifi-
cation were monitored through an AXI performance monitor core from Xilinx. All read and
write operations were executed over the JTAG interface of the FPGA, through a JTAG to
AXI master core and an AXI smart connect core, also from Xilinx.

The test environment with SpaceFibre core integration is shown in Fig. 3.27, which de-
scribes in detail the user logic part of Fig. 2.9. The latter gives the broader pictorial de-
scription of the overarching testing environment. Again, test data were provided through
the SpaceFibre interface to the encoder and the generated responses were captured and
compared aginst the golden model data. The tests were performed using the two lanes of
the SpaceFibre link between the KCU105 board and the Dundee PC, providing 10Gbps of
user bandwidth on each direction. The link statistics over the SpFi link are shown in Fig.
3.28, for an example case of a rate 1/2 code. It is apparent that the downlink connection
was saturated by the encoder core.

Finally, in an implementation of the full throttle test environment on the XUPV5-LX110T
prototyping board, during the validation of the direct method’s implementation in [121], all
the rates of the k = 1024 codes where also tested on-board sequentially, using the partial
reconfiguration feature of the Xilinx Virtex-5 XC5VLX110T FPGA.

D. Theodoropoulos 100

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.26: Full throughput testing environment.

Figure 3.27: User logic overview of the SpaceFibre test environment.

101 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.28:

3.8 Special topic: QC encoding for magnetic media recording

Interestingly, a special application of the encoders for AR4JA had been found to be in
the domain of magnetic media recording. QC-LDPC codes are widely considered an ad-
vantageous FEC option for magnetic recording (MR) media. The vast majority of related
research, however, has so far been focused on the analytical optimization of code design
and algorithms. Although high-speed encoding and decoding with low hardware footprint
are important for MR media, hardware implementations for such encoding schemes have
so far been scarce. Among the proposed LDPC code variants, protograph-based codes
are a promising option, because of their excellent performance characteristics and effi-
cient implementation. In the work in [124], we leveraged the architecture of the work on
LDPC encoders for space applications and we proposed efficient encoder designs for the
protograph-based LDPC codes proposed so far for MR media. The proposed designs
were also implemented in hardware as FPGA accelerators. The efficiency of the intro-
duced architectures was demonstrated on the ZC706 FPGA development board, achiev-
ing multi-Gbps encoding throughput, adequate for modern MR application standards.

Protograph LDPC codes for MRmedia have been proposed in [61] and [60], [39], [128]. In
the following subsections, these codes are briefly described and encoder designs for each
one of them are proposed. The notation of Section 3.1 is maintained, where applicable.

D. Theodoropoulos 102

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

3.8.1 IARA

In [60], the authors propose a series of three punctured protograph LDPC codes for use in
the partial response channel. Puncturing is a technique to maintain the desired code rate
by omitting (i.e. not transmitting) some of the parity bits. The authors call these codes
Improved Accumulate-Repeat-Accumulate or IARA codes. It is shown that they exhibit
lower decoding thresholds, improved convergence speed and overall better BER perfor-
mance than conventional protograph LDPC codes for the AWGN channel. In particular,
the comparison is made against AR3A, AR4JA and a regular LDPC code with column
weight 3 in the dicode and EPR4 channels. Furthermore, the performance of one variant
(rate 1/2 IARA2) of these codes over the ergodic Nakagami fading channels is examined
in [58].

The protographs for IARA codes and the corresponding parity-check matrices for rate 4/5
are displayed in Fig. 3.29. The parity check matrices of rate 4/5 of IARA codes are also
displayed in Fig. 3.29 as an example. IM and 0M are theM ×M identity and zero matrix
correspondingly, where M = xm (x is the first protograph expansion step, according to
the notation established in Section 3.1). Each variable node, after protograph expansion,
corresponds to one column of the parity check matrix. In the figure, node u1 corresponds
to the rightmost column and the rest columns are numbered successively from right to left.
Check nodes correspond to the rows of the parity check matrix and they are numbered
from the top to the bottom of the matrix (c1 corresponds to the first row). Parity bits are
derived from the expansion of nodes v1, v2, v3. Node v1, however, is a punctured node: the
parity bits generated from this node are not transmitted. A submatrix P i

M is a x×x array of
either m×m permutation matrices, or m×m zero matrices. The number of permutation
matrices on each row or column of P i

M is i. The exact position of the permutation matrices
in the array, as well as the permutation values, are defined by the selected protograph
expansion algorithm. Note also that the protograph of IARA3 code is almost identical to
that of AR4JA code, with the selection of the punctured node being the only difference
between them.

H−1
2(IARA) =


0M Wm(1, 1) . . . Wm(1, 2x)

0M
...

IM Wm(3x, 1) . . . Wm(3x, 2x)

 (3.35)

Submatrix H1 corresponds to the expanded protograph nodes u4 and higher. The partic-
ular numbering of protograph nodes in Fig. 3.29 results in an efficient structure of matrix
H−1

2 , which is given in (3.35). It is composed of theM ×M zero and identity matrices, 0M
and IM respectively, and an 3x× 2x array of juxtaposedm×m dense circulants,Wm(i, j).
Specifically for the IARA3 code, Wm(i, j) = 0m, i > 2w. Note also that the last M bits of
the encoded codeword are punctured, consequently the last M rows of H−1

2 can in any
case be substituted with zeros.

Leveraging the structure of H−1
2 matrix, we can introduce an efficient encoding scheme,

103 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

based on the partitioned-H encoding method. The first x bits of intermediate vector uT
can be omitted because the firstM columns of H−1

2 are zeros (bits corresponding to IM in
(3.35) are punctured. This leads to a significant simplification of the encoder architecture.
If submatrix W is the 3x × 2x array of Wm circulants, parity bits can be calculated by
multiplication of the last 2xm bits of intermediate vector uT with W .

The proposed encoder design for IARA codes is displayed in Fig. 3.30 and is actually
similar to the corresponding AR4JA architecture in Fig. 3.19. Input bits are initially stored
into a series of r × m-bit cyclic shift registers, where r = k/m. At each clock cycle,
these registers are rotated cyclically by Lm bit positions. The permutation and summation
modules calculate Lm of totally m bits of each subvector ui, 1 ≤ i ≤ 3x at the same
clock cycle. Subvector u(e)Lm

i includes the Lm bits of ui during the e-th execution cycle.
Obviously, 1 ≤ m/Lm ≤ 3. These 3xLm bits are fed to the LFSR structure we introduced
in Section 3.4 for the efficient multiplication of a vector with a QC matrix. After m/Lm + 1
cycles, the calculation of the 2xm parity bits will have been concluded.

3.8.2 2-D-P1 and 2-D-P2

The authors in [39] examine the performance of protograph LDPC codes over the 2-D
Inter-Symbol Interference (ISI) channel. Based on Extrinsic Information Chart (EXIT) anal-
ysis [120], two types of codes are constructed: 2-D-P1 and 2-D-P2 codes. The proposed
codes have better decoding thresholds, lower floors and better error performance in 2-D
ISI channel than conventional protograph AR4JA and AR3A codes, which are optimized
for the AWGN channel.

The protograph for these codes is given in Fig. 3.31. We propose a reordering of proto-
graph nodes, as described in the figure, which results in an efficient structure ofH−1

2 . This
structure is the same for 2-D-P1 and 2-D-P2 and it is described in (3.36). The definition
of matrices IM , 0M and Wm(i, j) is the same as the previous paragraph. Because of the
structure of H−1

2 , the last xm parity bits are equal to the first m bits of the intermediate
vector uT . If W is the 2x × 3x array of Wm(i, j) circulants, p =

[
p1 p2

]
is the parity bits

vector, parity calculation is summarized in (3.37).

H−1
2(2DP) =


Wm(1, 1) . . . Wm(1, 3x)

...
Wm(2x, 1) . . . Wm(2x, 3x)

IM 0M 0M

 (3.36)

pT1 = WuT

pT2 = [u0 . . . uxm−1]
T

(3.37)

The proposed encoding design for these codes is displayed in Fig. 3.32 and it will be
shown later in the current Section that it can been also used for other codes, with adjust-
ment of the size of the LFSR (parameter f in the figure). The calculation of pT1 is performed

D. Theodoropoulos 104

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.29: IARA protographs and parity-check matrices for rate 4/5 codes.

105 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.30: Encoder design for IARA codes. Last m parity bits are punctured

Figure 3.31: 2-D-P protographs and parity-check matrices for rate 4/5 codes. The dashed
line between u4 and c2 is present only for 2-D-P2 code. Conversely, the marked submatrix
0∗M becomes IM for 2-D-P2. Edge degree > 1 is given as a number along each edge.

D. Theodoropoulos 106

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.32: Encoder design for 2-D-P [39], nested high-rate ISI [128] and RCOP [61]
codes. Parameter f is 3 for 2-D-P and RCOP codes and 2 for ISI.

as with IARA codes. For the calculation of pT2 , successive u
(Lm)
i subvectors are accumu-

lated at each encoding cycle into simple shift registers. All calculations are completed
after m/Lm cycles.

3.8.3 Nested high-rate ISI codes

In [128], the authors show the limitations of punctured protograph codes, when they are
used with the Bahl-Cocke-Jelinek-Raviv (BCJR) equalizer and propose a method for de-
signing rate-compatible, capacity approaching protograph codes for partial response chan-
nels. In [98], they extend their previous work and they propose two families of protograph
codes, optimized for the EPR4 and dicode channels: nested high-rate and extended rate-
compatible codes. All the proposed codes perform within 1.1 dB of the independent and
uniformly distributed (i.u.d.) capacity limit. In this work, we focus on the first of the pro-
posed code families, henceforth referred to as nested high-rate ISI codes, which, start-
ing from a basic rate 1/2 protograph, build higher-rate variants by adding more variable
nodes. In contrast, extended rate-compatible codes build higher rates through the addition
of check nodes also, leading inevitably to larger graphs.

The proposed protograph structure for nested high-rate ISI codes is displayed in Fig. 3.33,
along with an example of rate 4/5 parity check matrix. The degree distribution of nodes u7
and higher is determined by protograph EXIT chart analysis, aiming at minimizing decod-
ing threshold and it is not constant as in other protograph codes. In the diagram, check

107 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.33: Nested high-rate ISI code protograph and parity-check matrix for rate 4/5.

node degree distribution for this subset of variable nodes is represented as dci , i = 1, 2, 3.

The structure of matrix H−1
2 is provided in (3.38) and it is identical to that of IARA3 code,

without puncturing. As with previous codes, however, the zero elements allow for simpli-
fication of the encoding process, by omiting the first xm bits of uT from the dense matrix
multiplicationWuT . The last xm parity bits are calculated directly from intermediate vector
uT , as in the case of 2-D-P codes. Consequently, encoding can take place in an identical
way as in (3.37). It follows that the encoder architecture is the same. Note, however, that
submatrix W is considerably smaller than 2-D-P codes and consequently, the LFSR for
dense matrix calculations is simpler.

H−1
2(ISI) =


0M

Wm(1, 1) . . . Wm(1, 2x)
...

0M

...
Wm(2x, 1) . . . Wm(2x, 3x)

IM 0M 0M

 (3.38)

D. Theodoropoulos 108

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.34: RCOP code protograph and parity-check matrix for rate 4/5.

3.8.4 RCOP

Targeting also the two-dimensional ISI channel, [61] describes a rate-compatible, non-
punctured protograph LDPC code family. Starting from a basic rate 1/2 protograph and
following a similar methodology to 2-D-P codes [39], the authors leverage the Finite Length
(FL) EXIT chart analysis to construct higher rate compatible optimized codes (RCOP). The
protograph is displayed in Fig. 3.34. The structure of matrixH−1

2 for this code is identical to
(3.36). Consequently, the parity bits are calculated as in (3.37) and the proposed encoder
architecture is that of Fig. 3.32.

3.8.5 Implementation results and testing

In this section, we provide hardware implementation results and describe the testingmethod-
ology for the designs proposed so far in the current Section, targeting FPGA technology.
The implemented encoders were designed as IP cores for Zynq-7000 SoC technology and
tested on the Xilinx ZC706 development board. The interfaces of the IP core interfaces
follow AMBA AXI4-Stream specification [2], featuring a slave for receiving information bits
to be encoded and a master interface for encoded parity bits.

Implementation results are listed in Table 3.14. In all cases, we selected rate 4/5, as this is
the lower rate for practical applications onMRmedia. For IARA codes, since themaximum
edge degree is 3, we select the value of the first expansion step x = 4, so that parallel
edges are removed and the total codeword length is comparable to the other codes listed in

109 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Table 3.14: Implementation results (synthesized design) on Xilinx Zynq XC7Z045-2 SoC

Code x m Lm
Sector Codeword Resources Clock Throughput

data (Bytes) length (Bytes) LUTs F/Fs (MHz) (Gbps)

IARA [60] 4 1024 8 4096 5120 51138 41423 395 25.28
2DP [39]/RCOP [61] 5 552 4 4140 5175 39007 41658 367 22.02
Nested ISI [39] 5 552 4 4140 5175 38082 41595 375 22.50

the table. For the other codes, we set parameter x = 5, which is themaximumedge degree
of 2-D-P codes. The encoding throughput is calculated as the average number of parity
bits calculated per second. Selection of the second expansion step parameter m was
such that the resulting block length is close to 4KB, as required by the International Disk
Drive Equipment and Materials Association (IDEMA) Advanced Format (AF) specification.
The encoding throughput performance achieved satisfies commercial magnetic recording
media requirements, while resource utilization is low.

For testing, we performed behavioural simulation of the encoder designs hardware de-
scriptions against a GNU/Octave bit-accurate model. Random data were generated and
provided to the design under test (DUT). Encoder responseswere compared toGNU/Octave
golden template and correct operation of the encoder was verified. For on-chip verification
and validation of the implemented designs, we developed a testing environment on the
Zynq 7045 SoC, featuring AXI4-Stream memory maps connected to the encoder IP core’s
interfaces. The contents of the register on the slave interface were initialised with random
data through the SoC JTAG port. The generated parity bits were collected to another
memory map connected to the core’s master interface and read by the testing software,
again through JTAG port and compared to the expected vectors of the GNU/Octavemodel.
A diagram of the testing environment is provided in Fig. 3.35.

D. Theodoropoulos 110

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 3.35: Testing environment for the magnetic recording media encoders.

111 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

D. Theodoropoulos 112

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

4. PACKET-LEVEL ENCODER IMPLEMENTATIONS

4.1 Packet level erasure codes introduction

Packet-level erasure coding is a technique to increase reliability in many modern applica-
tions, such as edge computing [88], underwater acoustic sensor networks [65], magnetic
recording media [72], hybrid broadcasting broadband television (HbbTV) [93] and delay
tolerant networks (DTN) over deep space communication systems [15], in which traditional
automatic repeat request (ARQ) schemes are not applicable or practical, or the fading ef-
fect of the communication channel is so deep that bit-level channel codes cannot provide
the required reliability. Essentially, packet-level coding treats entire groups of information
bits as symbols and performs error control coding over these symbols, instead of individual
bits.

Typically, erasure coding takes place at the highest levels of a communication systems
protocol stack, in which the erroneously received packets from the lower layers’ channel
codes, as well as the completely missed packets from deep fading phenomena, are treated
as erasures. Packet-level erasure coding schemes can coexist with traditional channel
FEC, offering different trade-offs. Joint use of erasure coding and bit-level FEC schemes
in different scenarios has been studied in [22, 49, 101]. In [13], the authors combine
RaptorQ codes at the application layer with real-time channel prediction and adaptively
varying turbo codes at the physical layer.

The most common approach for coding over block erasure channels in space missions
is the combination of Reed-Solomon (RS) codes [108] with interleaving. The (255,223)
RS code with 8-bit symbols is the most popular example, having been a part of many
missions’ communication systems and recommended by CCSDS [32], along with its rate
(255,239) variant. RS codes are maximum distance separable (MDS) codes: if (n, k) are
the dimensions of a code, they can recover from the erasure of any n−k or fewer symbols.
Consequently, they can provide optimal error recovery capability. An interleaver is typically
connected to the output of the RS encoder in order to protect against deep fading. Such
coding schemes have been proposed in [34] and [35] for optical space communications.
The limitation of RS codes, however, is high encoding complexity, which imposes the use
of short block lengths. The polynomial arithmetic operations involved in encoding and
decoding operations result in non-linear encoding/decoding complexity, even in the base
case proposed in [118].

Another promising approach is the use of packet-level Low-Density Parity-check (LDPC)
erasure codes, according to which encoded symbols are entire blocks of information bits.
Although these codes are not MDS codes, they can achieve significant performance gains
[29]. Capacity approaching ensembles can perform very close to the Singleton bound [70]
and both encoder and decoder complexity can scale linearly with block length. Packet-
level LDPC erasure coding has been proposed by the Consultative Committee for Space
Data Systems (CCSDS) in experimental specification 131.5-O-1[33] for near-earth and
deep space communications. The integration of packet-level LDPC codes in the CCSDS

113 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

protocol suite, along with their performance evaluation is described in [15].

The CCSDS experimental specification [33] describes two families of LDPC code design
schemes: the ”online” and the ”ad-hoc”. In the former, the code is dynamically constructed
for any desired block length and rate, based on a predefined node degree distribution
and a pseudo-random permutation of the parity-check matrix columns. This method is
also referred to as Flexible Irregular Repeat Accumulate (F-IRA) [89]. For applications,
however, in which this flexibility is not required, a series of nine LDPC codes with fixed
block lengths of 512, 2048 and 16384 symbols and rates 2/3, 4/5 and 8/9 is also provided.
These codes achieve better performance than the F-IRA and they are generated according
to an algorithm which is similar to DVB-S2 LDPC codes [5].

To the best of my knowledge, the only implementation of the proposed codes is their
integration into the the Interplanetary Overlay Network (ION) software suite [96], which
is a software implementation of the bundle protocol for Delay Tolerant Networks (DTN),
through the endorsement of OpenFec library [51]. In [15], a multithreaded implementa-
tion of the ION libraries is proposed for better performance. However, the purely software
approach proposed is expected to exert considerable strain on the on-board general pur-
pose processor and mass memory subsystem of a space Software Defined Radio (SDR),
which is typically responsible for these functions. Offloading these tasks to a small foot-
print hardware accelerator integrated into a FPGA is especially important in the case of
microsats and cubesats and high data rate optical communications, to achieve reduced
size, weight, power, and cost (SWaP-C). Typically, spacecraft subsystems usually include
FPGAs responsible for command and data handling (C&DH) tasks and the recent trend is
to fully utilize these devices for multiple combined functions [52]. Moreover, FPGA hard-
ware acceleration of packet-level coding enables a very high speed data processing chain
providing data rates in the scale of several Gbps.

In the contribution described in the current Chapter, hardware architectures of packet-
level erasure coding schemes for high data rate satellite communications are introduced,
implemented and validated in a FPGA board, for the first time. First, an alternative de-
scription of the encoding algorithm presented in the CCSDS specification is provided,
which is suitable for a hardware implementation, without modifying the code itself. In addi-
tion, an entirely new encoding algorithm is introduced, which can offer improved encoding
throughput performance in certain implementation scenarios defined in this Thesis. Then,
efficient encoder architectures for these encoding algorithms are provided and highly flexi-
ble and low-cost implementations of IP cores are developed, which achieve high encoding
throughput, while using only a minimal percentage of FPGA resources. Although the en-
coder’s primary function is offloading of LDPC PL-FEC functions from the on-board CPU,
a considerable acceleration compared to the software implementations of encoding op-
erations on state-of-the-art and common processor IP cores for spaceflight is additionally
achieved.

D. Theodoropoulos 114

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

+2

Table 4.1: Codes parameters
Rate k=512 k=2048 k=16384
2/3 C1 C2 C3

4/5 C4 C5 C6

8/9 C7 C8 C9

4.2 Background

In this Section, the structure of the packet-level erasure codes is briefly described. An al-
ternative description to that provided in the standard [33] is adopted, and the correspond-
ing notation, which facilitates the coherent presentation of the architectures in Section
4.5.

Nine such codes are defined in the standard [33], which are the combinations of three
information block lengths over three code rates, as in Table 4.1. The information block
to be encoded is partitioned into k packets of L bits each. Typically, each packet ui en-
capsulates a single Protocol Data Unit (PDU) of the adjacent layer in the protocol stack,
for example a Licklider Transmission Protocol (LTP) segment. These packets are hereto
referred as information symbols of the code. From these information symbols, m redun-
dant (parity) symbols pj are generated. The union of the k information symbols and them
parity symbols constitutes one longword (LW) of the PL erasure code. LWs are transmit-
ted through an erasure channel, at the receiving end of which, a packet is either received
correctly in its entirety, or it is completely lost and it is considered as an erasure. The
purpose of the redundant (parity) packets is to allow the reconstruction of the initial infor-
mation block, even in the presence of erasures in the channel. It should become evident
at this point that a packet erasure can occur when the underlying bit-level FEC algorithm
has failed for this packet, or a CRC which is typically associated with the packet (e.g. in
[35]) has failed as well. The packet-level codes of the CCSDS standard can be described
equivalently as extended LDPC codes, by considering symbols of L bits, instead of in-
dividual bits. The parity check matrices of these codes are structured according to the
LDPC codes defined in the DVB-S2 standard [5]. For each information symbol si, we de-
fine as F i

vn a small pseudo-random subset of bi parity symbols px which are affected by
si: F i

vn = {px1 , px2 . . . pxbi}. The parity check matrix H of the packet-level codes is then
a juxtaposition of a m × k sparse matrix Hu and a dual-diagonal m ×m matrix Hp, as in
(4.1).

H =
[
Hu Hp

]
Hu(x, y) =

{
1, px ∈ F y

vn

0, else

Hp(x, y) =

{
1, (x = y) ∥ (y = x− 1), x ≥ 1
0, else

(4.1)

115 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

In order to facilitate encoding and decoding, the sets F i
vn are not defined randomly for all

values of i, or, equivalently, submatrixHu is structured. For each of the nine codes in Table
4.1, an array Mc of k/q sets is defined in the standard, with q being a parameter of the
code and c the code number. Each row Mc(j) = {x1, x2 . . . xbj} contains a small subset
(bi = 3 ≤ 16) of pseudo-random integers in the range 1 tom, the cardinality of which is not
necessarily the same across the entire array: in other words, the length of each row inMc

is not constant. If α = m/q and Mc(x) is the x-th row of Mc, the sets F i
vn are calculated

by adding a constant to each element of Mc(x), according to (4.2).

F i
vn =

{
pψ : ψ ∈ {xj

m
+ c | xj ∈Mc(i÷ q)}

}
c = (i mod q)α

(4.2)

The symbol ÷ in (4.2) denotes an integer division, whereas symbol
m
+, a modulo-m ad-

dition. From (4.2), it obvious that bi is constant for every q information symbols. The
exact values of the Mc array are optimized for maximum performance of the resulting
code, based on analytical code design tools and they are provided in the specification as
constants.

4.3 Performance characteristics of packet-level erasure codes

The Singleton bound is the upper bound on the size of a block code. If n is the block length,
d is theminimumdistance of the code and q is the alphabet size, the Singleton bound states
that the maximum number of codewords in the code is |C| ≤ qn−d1 . The performance of
an error-correction code in the binary erasure channel is defined by how close the code
is to the Singleton bound, or in other words, how much lower is the minimum distance
of the code from the maximum value it can take for the specific code parameters. For
example, in the case of a (n, k) linear code, the Singleton bound implies that the minimum
distance of the code is dmin ≤ n − k + 1. If the erasures in the channel are independent,
the Singleton bound imposes a lower limit in the decoding failure probability:

Pe ≥
n∑

i=n−k+1

ei(1− e)n−i (4.3)

In (4.3), e is the symbol erasure probability and Pe the codeword failure probability (i.e.
the probability of an ideal decoder failure). MDS codes, like the RS codes, approach this
limit, however, LDPC codes do not, which introduces a substantial performance penalty.
For the codes in the standard, this performance gap is shown in Fig. 4.1 to be remarkably
small.

As with the channel codes of Section 3.1, the performance of the packet-level codes de-
pends also on the decoder. Decoding of PL codes can be performed either iteratively, with
the MAP algorithm described in Section 3.2.3 or with the maximum likelihood algorithm.
The former comes naturally with an inherent performance penalty, mostly as a result of

D. Theodoropoulos 116

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 4.1: The codeword error rate (Pe vertical axis) vs the symbol erasure probability for
the packet-level codes of this work. Source: [33]

cycles in the parity-check matrix of the code. Experimental results of the severity of this
kind of loss under iterative encoding can be found in [103]. Maximum likelihood decod-
ing, on the other hand, is the most optimal decoding method and it consists in solving
the set of linear equations described in (4.4). The transmitted vector of N symbols is
x = (x1, X2 . . . xN) and the received vector that contains erasures is y = (y1, y2 . . . yN).
We denote as K the set of the indices of correctly received symbols in y and as K̄ its
complement, i.e. the set of erasures indices. If E is an erased symbol, K̄ = {i : ui = E}.

HK̄x
T
K̄
= HKx

T
K (4.4)

The complexity of themaximum likelihood algorithm isO(N3), however practical approaches
have been introduced in [27] (improved probabilistic approach) and [103] (pivoting algo-
rithms), that offer different trade-offs between complexity and performance. The data in
Fig. 4.1 have been drawn with the maximum likelihood with pivoting method introduced
in [103].

To conclude, the performance of the proposed codes is very close to the Singleton bound,
or conversely, the proposed are almost MDS codes. Maximum likelihood decoding, how-
ever, remains a challenging task, although efficient decoding algorithms exist.

4.4 Encoding Algorithms

The processing challenge in the case of packet-level encoding is related to the large length
of information symbols, rather than the processing complexity of the linear encoding op-
erations. Each symbol spans several thousands bits, consequently, the direct applica-
tion of traditional LDPC encoding algorithms used in bit-level coding, like the Richardson-
Urbanke algorithm [110] and triangular factorization [81], is not feasible. Symbols in this
case reside in a memory system and a packet-level encoder needs to access information
symbols resident in that memory efficiently.

The two possible information symbols access patterns define two algorithms for parity
symbols calculations, which are described in the current Section: the variable node ori-
ented (VNO) and the check node oriented (CNO) algorithms. VNO is the standard encod-

117 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

ing algorithm presented in the CCSDS standard [33] (albeit described differently), while
CNO is a novel algorithm introduced in this contribution. The complexity of both algorithms
is linear to the symbol block length L.

4.4.1 Variable node oriented algorithm

According to the description in Section 4.2, the VNO algorithm progresses by updating all
the parity symbols which depend on each successive information symbol. Following the
LDPC code equivalence, the columns of Hu are processed one by one. The execution
steps are summarized in Algorithm 1.

Algorithm 1 Variable node oriented calculation
1. All parity symbols bits are initialized to zero:

pj(l) = 0, 1 ≤ l ≤ L, 1 ≤ j ≤ m

2. For each information symbol ui:

(i) The list of parity symbols affected by ui is calculated from (4.2).
(ii) Symbol ui is bitwise added to all the affected parity symbols in F i

vn:
pψ(l) = ui(l)⊕ pψ(l), 1 ≤ l ≤ L, ∀pψ ∈ F i

vn

3. Parity symbols are accumulated into successive symbol positions:
pj(l) = pj(l)⊕ pj−1(l), 1 ≤ l ≤ L, 2 ≤ j ≤ m

4.4.2 Check node oriented algorithm

On the contrary, the check node oriented (CNO) algorithm calculates each parity bit pj by
bitwise adding a subset F j

cn of information symbols and the previous parity symbol, pj−1,
for j > 1. Contrary to the VNO algorithm in which arrayMc is provided in the standard, the
generation algorithm of F j

cn needs to be defined. This is possible through a transformation
of (4.2) as follows: for each code, starting from Hu, we define a base matrix M′

c with α
rows. Each row r contains the indices of the non-zero elements of the r-th row ofHu, as in
(4.5). Again, as in the case of Mc, the number of elements in each row is not necessarily
constant.

M′
c(r) = {ρ | Hu(r, ρ) = 1} (4.5)

We then observe a repetition pattern in the indices of the non-zero elements of the re-
maining rows of Hu: M ′

c is repeated for totally m/α times, adding one at each successive
copy. We define matrix Ac as the matrix of these non-zero elements. The repetition pat-
tern resident in its structure is shown in Fig 4.2 and the resulting analytical expression for
F j
cn is given in (4.6).

D. Theodoropoulos 118

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 4.2: Structure of matrixAc. Only the first 2q rows are shown. Additions shown are
modulo q

F j
cn =

{
uξ : ξ ∈

[
(xδ ÷ q)q + (xδ mod q + c) mod q

]
| xδ ∈M′

c(j mod α)
}

c = (j ÷ q)(q/α) + (j mod q)÷ α

(4.6)

Taking into account the dual diagonal structure of Hp, the algorithm progresses by pro-
cessing each row of the parity check matrix of the code and generates one parity symbol
after the other. Algorithm 2 summarizes the above steps.

Algorithm 2 Check node oriented calculation
1. All information symbols ui are initialized to their values.

2. For each parity symbol pj:

(i) The set F j
cn of contributing information symbols is calculated by (4.6)

(ii) Symbols uξ ∈ F j
cn are bitwise added to pj:

pj(l) = uξ(l)⊕ pj(l), 1 ≤ l ≤ L, uξ ∈ F j
cn

(iii) The previous parity symbol is added to the above sum, if j > 1:
pj(l) = pj(l)⊕ pj−1(l), 1 ≤ l ≤ L, 2 ≤ j ≤ m

4.4.3 VNO and CNO tradeoffs

VNO and CNO algorithms are equivalent and their complexity is exactly the same. How-
ever, their performance can be significantly differentiated by the scenario in which they
will be called to operate.

VNO has the advantage of being able to begin encoding processing before all the infor-
mation symbols become available in their entirety. Also, it does not require the storage of

119 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Table 4.2: algorithms trade-offs
VNO CNO

Buffer space mL bits kL bits
Memory Random read/write→ Sequential write→
access pattern sequential read random read
Starting

None
All information

condition symbols in buffer
Parity symbols All symbols in the One symbol after the
generation end concurrently other during execution

the information symbols in a suitable data structure: symbols are processed one by one
and once operations involving a symbol ui have finished, this symbol is no longer neces-
sary for the further progression of the algorithm. In the end, all the parity symbols become
available on the memory buffer practically at the same time.

On the other hand, CNO requires that all the information symbols are available on a buffer
to start. Consequently, the buffer size (kL/8 bytes) is considerably higher than VNO (mL/8
bytes). Also, the dependency on the availability of all information symbols for the parity
generation process to start, may introduce latency in the data processing chain. CNO
algorithm is suitable for scenarios in which all the information symbols have been gen-
erated from the previous processing step in the data processing chain and stored in a
shared memory buffer, when the encoding operation is requested. CNO also features a
completely different memory access pattern than VNO, by separating read and write oper-
ations. After the first step of algorithm 2, no further memory write operations are required,
which can lead to improved memory performance. Note also that all CNO write operations
are to successive memory addresses of a possibly contiguous area, while VNO memory
access operations are to apparently random positions. The absence of spatial locality in
the consecutive read and write operations can significantly impact the performance of an
implemented hardware system, by limiting cache systems efficiency. These trade-offs are
summarized in Table 4.2.

4.5 Hardware Architectures

In the current Section, the hardware architectures for the two encoding algorithms of Sec-
tion 4.4 are introduced, for an on-board data processing scenario requiring streaming input
and output interfaces. Block diagrams of both the CNO and VNO algorithms are illustrated
in Fig. 4.3 and Fig. 4.5 respectively. From a high-level perspective, they incorporate the
following major features and components:

• Streaming input and output interfaces, so that on-the-fly operation in a data process-

D. Theodoropoulos 120

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

ing chain is supported. This corresponds to a single read and a single write channel.
The data width of all the encoder interfaces is d bits.

• A configuration interface and a memory for loading of matrices M and M′ and the
selection of the code (C1 to C9) of the current encoding operation.

• Read and write channel modules, which support access to a RAM subsystem.

• A RAM subsystem, which is used as scratchpad memory. The introduction of this
subsystem is necessary for the calculation of parity symbols, since the large symbol
length does not allow the implementation of encoding algorithms using exclusively
on-chip memory resources.

• Internal AXI4-Stream interfaces with elastic buffers, which simplify the design and
minimize the critical paths.

• Glue and control logic, as described in the current section

4.5.1 CNO architecture

We start the description of the proposed architectures with the one for the CNO algorithm,
which is apparently the simplest of the two and it is shown in Fig. 4.3. Initially, all the
information symbols are written in the external memory, taking up k successive symbol
positions. Afterwards, for each parity symbol pj, module Fcn calculates the indices ξ of
the information symbols uξ which contribute to pj. Indices ξ, in turn, define the source
address for the successive read operations required. Register r is initialized to zero and
accumulates all consecutive uξ, but valid parity symbols are present at the output interface
only when the last iξ from the set F j

cn is being read frommemory. Note that all read symbols
are accumulated into r, which is a simplification of step 2(iii) of Algorithm 2. The CNO
encoder’s operation is detailed in Algorithm 3.

The calculation of indices ξ is executed by the module Rcn, a block diagram of which is
displayed in Fig. 4.4. It contains a configuration memory, which stores the parameters
M′

c, a small lookup table F for the code parameters q and α and simple elements like
logical shifters and adders, which implement equation (4.6). The number of the code for
the current LW (among the nine codes defined in the CCSDS specification) and index of
the current parity symbol (j) are the inputs of the module and ξ is the output. An important
detail concerning the storage scheme of parameters M′

c is that we add an extra bit to the
stored parameters, which is set to ’1’ for the last parameter of each one of the α sets of F j

cn.
This extra bit is necessary for the implementation of the condition in line 7 of Algorithm 3.
Since the maximum value of j is 8192, the size of register j is 13 bits. Also, elastic buffers
have been inserted into the module as required, in order to assure timing closure.

Operations on successive packets can be pipelined using double buffering, provided that
there is the necessary buffer space available: during the calculation and the output of the
current longword (Li) from the output serial interface, the write channel can receive the

121 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 4.3: CNO architecture

Algorithm 3 CNO encoder’s operation
1: for i = 1 . . . k do
2: u← si, ci ← u ▷Write si in memory
3: end for
4: ck ← u, u← 0 ▷ Receive last s in memory and reset
5: for j = 1 . . .m− 1 do
6: for all cξ ∈ F j

cn do
7: if ξ is the last element of F j

cn then
8: pj ← r, r ← r ⊕ cξ
9: else
10: r ← r ⊕ cξ
11: end if
12: end for
13: end for

D. Theodoropoulos 122

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 4.4: Block diagram of Rcn module.

information symbols of the next one (Li+1), writing the incoming information symbols into
a different address base. After all parity operations of Li have been concluded, they start
again from the address base of Li+1.

4.5.2 VNO architecture

The block diagram of the proposed VNO architecture is provided in Fig. 4.5. The infor-
mation symbols si are presented to the stream input interface in subvectors si(t) of d bits,
with 1 ≤ t ≤ L/d and accumulated into buffer u after L/d steps. In the meanwhile, the list
of the indices of parity symbols {ψ} which affected by the current symbol is retrieved from
the corresponding module (Rvn), based on configuration parameters and (4.2). Parame-
ters ψ also define the source and destination addresses for the read and write operations
of the corresponding memory access modules.

For each index ψ, module Rvn calculates also the logical variable Ξ(ψ), which is the index
of the first information symbol which updates parity symbol pψ. Based on this information,
and assuming a byte addressable RAM, a read operation is executed at symbol address
Lψ/8 only if Ξ(ψ) > i, which indicates that symbol pψ needs to be updated in RAM. If
Ξ(ψ) ≤ i, the data of symbol cψ do not need to be updated and only a write operation
is executed at the current destination address. With this optimization, our architecture
eliminates the first initialization step of Algorithm 1. Also, step 2)(ii) is simplified, since we
set pψ equal to ui.

The encoder’s operation is summarized into Algorithm 4. Initially, during the first loops
in lines 1-11, Ξ(ψ) always returns zero, which means that cψ is accessed from the first
time and a read operation is not necessary. Afterwards, as an increasing number of par-

123 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 4.5: VNO architecture

D. Theodoropoulos 124

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

ity symbols have been written into, write-only cycles are executed together with update
cycles, which are cycles which are indicated in lines 7 and 8 of Algorithm 4. Finally, after
a specific value of i, which is different for each code, Ξ(ψ) > i, ∀ψ < m, i < k, which indi-
cates that only update cycles are executed and the check in line 4 of Algorithm 4 becomes
redundant.

Another optimization introduced by the proposed architecture is the elimination of the ac-
cumulation step in Algorithm 1: as the parity bits of the j-th symbol are transmitted from
the stream output interface, buffer u is reused and the same parity bits are shifted into it.
At the same time, d bits of parity symbol j − 1 are shifted out of u, in order to participate
in the accumulation operation of the Algorithm in line 16 of Algorithm 4.

Algorithm 4 VNO encoder’s operation
1: for i = 1 . . . k do
2: u← si ▷ Receive si into buffer
3: for all cψ ∈ F i

vn do
4: if Ξ(ψ) = 0 then ▷ First access to cψ
5: cψ ← u ▷Write symbol to memory
6: else ▷ cψ has already been affected
7: r ← cψ ▷ Read cψ from memory
8: cψ ← u⊕ r ▷ Update cψ
9: end if
10: end for
11: end for
12: r ← c1
13: p1 ← r, u← r
14: for j = 2 . . .m do
15: r ← cj
16: u← r ⊕ u, pj ← r ⊕ u ▷ Accumulate parity symbols
17: end for

A detailed block diagram of the Rvn module is displayed in Fig. 4.6. The calculation of
parameters ψ is based on (4.2) and can be implemented by using simple logic elements:
shift registers, multiplexers, adders and a small lookup table F, as shown in Fig. 4.6. For
each information symbol i, a total of bi values of ψ is calculated. Since the maximum value
of i is 16384, the size of register i is 14 bits. The log2(q) least significant bits of register i are
multiplied by α, which is always a power of 2. Consequently, the calculation of (i mod q)α
is done with a shift register. The rest 14−log2(q)most significant bits of register i are added
to a base address retrieved fromF, which is constant for the entire encoding operation and
this sum specifies the absolute address of the indices inMc. Finally, the two intermediate
results Mc(i÷ q) and (i mod q)α are added modulo-m to calculate the final parameter ψ.

For the calculation of Ξ(ψ), the Rvn module incorporates a R0
cn module, which receives the

indices ψ at its input and for each of them, generates only the first index from the set Fψ
cn.

The returned value is the index of the first information symbol which affects parity symbol
pψ. Elastic buffers are also inserted in the module as required in order to assure timing

125 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 4.6: Block diagram of the Rvn module.

closure.

The accumulation of information symbols in line 2 of Algorithm 4 is pipelined between suc-
cessive symbols, in order to accelerate the encoding process. The pipelined operation of
the architecture between consecutive longwords, however, requires double buffering: as
soon as processing of all information symbols of the current longword (Lt) have completed,
the parity symbols are ready to be transmitted from the front memory buffer, through the
read interface. From this point, the information symbols of Lt+1 start updating the corre-
sponding parity symbol positions of the back buffer. Less obvious, however, is the solution
of the contention problem for the read memory interface during the pipelined operation:
the read channel is used both for update operations on Lt+1 and for the output of par-
ity symbols of Lt. The solution is to add an arbitration mechanism for the read requests
coming from these two sources, which assigns priority to the reads related to the update
operations. The parity output is available only when the read channel is not used, which
happens when Ξ(ψ) > i, as in Fig. 4.7. With this mechanism, read and write channels
are always busy and encoding throughput is maximized.

4.5.3 Design Considerations

Since the processing complexity of the two algorithms is the same, the combinatorial logic
hardware requirements of both architectures are not expected to differ significantly. In-
stead, it is the memory access pattern, that raises performance challenges to the RAM
subsystem, that differentiates the two architectures. The resource and performance re-
quirements for both architectures are listed in Table 4.3. The VNO architecture performs

D. Theodoropoulos 126

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 4.7: Read channel arbitration of the VNO architecture.

bi write memory operations for each one of the k symbols (bi = |F i
vn|,b′j = |F j

cn|). The opti-
mization introduced by avoiding the first read operation for a empty symbol position (using
variable Ξ(ψ)), however, removesm read operations. We define parameterW as the sum
of the non-zero elements in Hu, which can be expressed equivalently as in (4.7). At the
end of the encoding process, m symbols are read from the memory into the output inter-
face. Due to the pipelined operation of the architecture during encoding of consecutive
longwords, parity symbol reads are executed simultaneously with encoding calculations
of the subsequent longword. Consequently, the total cycles required for encoding (Tc) can
be considered to be equal to those required for lines 1-11 of Algorithm 4. Supposing that
read and write channels can work simultaneously and independently, total encoding time
is attributed to the time required for RAM writes only, as shown in Table 4.3.

W =
k∑
i=1

bi =
m∑
j=1

b′j =
∑

Hu(i, j) (4.7)

Conversely, the CNO architecture performs k write operations per each longword, corre-
sponding to the k information symbols, followed by b′j, writes for each one of the m parity
symbols. Thanks to pipelining, write operations of longword Lt+1 in lines 1-3 of Algorithm
2 can be executed concurrently with the reads in lines 6-13 of the current longword Lt,
and hence Tc can be considered to be equal only to the time required for reading. In the
total calculation times listed in the table, a constant number of C idle cycles for each mem-
ory access is added, which accounts for the memory latency. This accounts for the time
required for the setup of the AXI transaction, until actual data start moving on the interface.

The minimum latency (Λmin) of each architecture is defined as the minimum number of
cycles between the of reception s0(0) and the output of the first parity symbol p0(0), as in
Fig. 4.8, assuming no delay cycles on the input interface. We observe that both archi-
tectures complete calculations in the same number of cycles, but the minimum latency of
CNO architecture is considerably lower. However, as described in Section 4.4, all infor-
mation symbols need to be available at the first step of the algorithm and the amount of
RAM required is significantly higher than VNO, especially when double buffering is used
in order to support the pipelined operation. VNO architecture is preferable in a data chain
comprising a sending entity which transmits sporadically packets of data in the form of
symbols, with pauses between them and at the same time, the entity which receives data
after encoding is capable of handling a continuous stream of parity symbols. The situa-

127 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Table 4.3: Resource and performance estimation
Architecture VNO CNO

RAM total read (bytes) LW/8 LW/8

RAM total write (bytes) LW/8 Lk/8

Total cycles (Tc) LCW/8d LCW/8d

Minimum latency (Λmin) LW/8d Lk/8d

RAM buffer bytes mL/4 kL/4

Figure 4.8: Minimum latency definition.

tion is reversed in the case of CNO, which favors a scenario with a continuous sending
process and intermittently receiving endpoint.

4.6 Hardware Implementation and Validation

In the current Section, the hardware implementation and validation of the two architectures
VNO and CNO which were introduced in Section 4.5 is decribed, in the form of IP cores
for various FPGA Systen-on-Chip (SoC) platforms.

The following implementation requirements for the IP cores are considered:

• Flexibility in the selection of each individual code on a per codeword basis through
a configuration register update, without affecting throughput performance. The rate
and block length can change during the mission, in response to varying channel
fading characteristics.

• Flexibility in erasure symbol block length. Typically, this parameter is expected to
remain constant in a mission and must be compatible with underlying protocol stack.
For CCSDS protocols [31], typical values range from 128 to up 4K bytes.

• Access to a Random Access Memory (external to the FPGA), which is used as
scratchpad memory for the parity symbols calculations.

• Streaming input-output of data. Typically, on-board subsystems communicate over
high-speed serial data links, e.g. ECSS-E-ST-50-11C (SpaceFibre)[10].

D. Theodoropoulos 128

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

• Hardware footprint should be minimum, while encoding throughput should be ade-
quate for current and envisioned space communications standards, like the upcom-
ing CCSDS Optical On-Off Keying specification [56].

The KCU105 board is the first implementation target used in the current work and the first
platform in which the correct operation of the implemented encoders was validated and
for which performance data were derived. In the KCU105 board, the XCKU040 FPGA is
connected to 2GB of DDR4 SODIMM RAM memory, accessible from the programmable
logic subsystem through a Memory Interface Generator (MIG) IP core, which exposes an
AXI4 interface to the user logic.

The block diagram of the implemented design is provided in Fig. 4.9, which also exhibits
the environment which has been used to validate the functional operation and evaluate
the performance of the proposed IP cores. The encoders’ parameters are configured from
an AXI4-Lite interface and feature AXI4-Stream input-output interfaces. The memory-
mapped interface for access to the RAM implements AXI4 protocol. The encoders are
connected to the AXI4 user interface of the Xilinx MIG IP core, which provides access to
the external DDR4 RAM. Test data are generated by a Fibonacci-type Linear Feedback
Shift Register (LFSR) and the produced parity symbols are accumulated into a Multiple
Input Signature Register (MISR). Both registers (LFSR and MISR) are based on primitive
polynomials and they are therefore maximal length. The reason we have selected these
modules for test vector generation and signature compression is their implementation sim-
plicity, which allows them to operate at full clock speed, without introducing idle cycles in
the AXI4-Stream interfaces of the encoders. Protocol compliance with AXI4 Specification
is validated by a protocol checker core, which also records performance data: namely the
total number of bytes transferred through the interfaces and the number of clock cycles
required for each encoding operation. The initialization of the encoding core and the test
modules is done through AXI4-Lite configuration registers. The same protocol is used
for the readback of the encoders’ status register and the test modules output data (MISR
value recorded and total number of cycles). Finally, all these parameters are accessible
from a user application through a JTAG to AXI4-master core from Xilinx.

The expected MISR signature has been calculated off-line by a bit-accurate software
model of LFSR and MISR modules and an encoder based on the OpenFEC [51] project.
This software model was executed for several longwords and the results were compared
with those of the behavioral simulation of the Register Transfer Level (RTL) description
of the reference design in Fig. 4.9, as well as with the FPGA-in-the-loop results on the
KCU105 board. For the RTL simulation, the Vunit open source simulation framework [19]
was used, in order to model the memory-mapped AXI4 interfaces of the design, assuming
a perfect memory model: a RAM which can be accessed concurrently for read and write
with zero latency.

Implementation results and performance data for the two architectures of Section 4.4 are
summarised in Table 4.4. The derived performance data refer to encoding with the CCSDS
code C3, which is the code with the largest parameters n, k and which is therefore the most
demanding case, in terms of hardware resources. The simulated number of cycles (Tc)

129 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 4.9: Encoders’ reference design on the KCU105

D. Theodoropoulos 130

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

data were derived from the RTL simulation (assuming an ideal memory). The only idle
cycles introduced are those required for AXI4 protocol transaction setup and handshak-
ing, which set parameter C to a value slightly greater than 1. The value of parameter
C, however, is considerably higher in the implemented designs. Especially in the case
of the implemented VNO architecture, the continuous alternation between read and write
operations results in an increase of the value of parameter C in the implemented design,
which is expected: the DDR memory can be accessed only for read or write at a given
time. Consequently, lines 7 and 8 of Algorithm 4 cannot be executed in parallel, contrary
to what the AXI4 channel abstraction may suggest. This limitation, however, does not
pertain to the CNO implemented design, in which read and write operations do not occur
concurrently and memory can be accessed more efficiently.

Analysing the performance profile of the implemented architectures, it becomes evident
that packet-level encoding is heavily dependent on data transfer operations and the crit-
ical factor defining performance is the memory bandwidth. In the KCU105 development
board, the DDR4 component memory can provide up to 2400 MT/s on a 64-bit interface,
accessible through a 512-bit AXI4 bus at 300MHz. As shown in Table 4.3, the CNO archi-
tecture requires fewer total memory transactions and is therefore favoured in a memory
bandwidth constrained environment, such as the one we present in Fig. 4.9: not only is
the final encoding throughput achieved with the CNO core higher, but this also is feasible
with marginally more than half of the available RAM bandwidth. This allows for another
benchmarking test on the KCU105 board with two cores, which, in the case of the CNO
cores, leverages almost the full memory bandwidth, as shown in Table 4.4. A similar test
with two VNO cores instead, yielded no significant performance benefit against a single
core, because memory bandwidth has already been almost exhausted with a single core.

Table 4.4 demonstrates also the different implementation trade-offs for the two hardware
architectures. Both architectures require only a small percentage of the chip and board
logic resources. The resource utilization of the VNO architecture is higher than that of
CNO. A large part of this difference is attributed to the double buffering on register u in
Fig. 4.5, or correspondingly, line 2 of Algorithm 4, and the large burst size (4 KiB) of AXI4
memory transactions. The hardware requirements for both architectures can be reduced
significantly, if a lower total burst size (burst length × beat width) or parameter d is set,
as example in Section 4.7, where parameter d set to 128 bits. It is evident, however
that the performance is reduced proportionally. Finally, the power was measured on the
KCU105 board, using the SYSMON core from Xilinx. SYSMON was connected to the
board’s system controller through its I2C bus and power measurements were recorded
during continuous operation of the cores. Totally 120 samples were averaged, in order to
obtain the recorded values. The frequency settings that are presented in the table are the
maximum frequencies that ensure the saturation of the AXI4 interface of the MIG DDR4
core on this board: setting the encoders’ clock to a higher frequency has no positive effect
on the encoding throughput. The lower clock frequency of the 2-core implementations
has a key effect on the total power consumption. However, the total power of the design
is dominated by the MIG controller and the IO associated with it (VCC1V2 power rail).
Finally, it is evident that the CNO architecture, by virtue of its lower footprint and memory

131 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Table 4.4: Resource and performance measurements on the KCU105
VNO CNO

1-core 2-core 1-core 2-core

LUTs (% of FPGA utilization) 5377 (2,22%) 10754 (4,44%) 2031 (0,84%) 4062 (1,68%)
Flip-Flops (% of FPGA utilization) 5714 (1,18%) 11428 (2,36%) 3560 (0,73%) 7120 (1,47%)
36Kbit BRAMs (% of FPGA utilization) 24,5 (4,08%) 49 (8,17%) 17 (2,83%) 34 (5,67%)
External RAM (% of KCU105 utilization) 64 MiB (3,13%) 128 MiB (6,25%) 128 MiB (6,25%) 256 MiB (13%)
Tc (simul.) 5043455 4981250
C (simul.) 1,092 1,078
Tc (recorded) 12357857 23982085 10699412 14017186
C (recorded) 2,68 2,6 2,32 1,52
Throughput 13,3 Gbps 13,4 Gbps 15,05 Gbps 22,98 Gbps
RAM bandwidth utilization 75% 77% 53% 81%
Clock frequency 300 MHz 150 MHz 300 MHz 150 MHz
Static power 2,55 W 2,53 W 2,48 W 2,12 W
Dynamic power 2,76 W 2,8 W 1,74 W 2 W
Power efficiency (Gbps/W) 2,5 2.51 3,57 5,58
d=512-bits, L=4KiB, C3 code, Burst size=4KiB, read priority MIG scheduling.

access pattern, has more favourable power characteristics.

4.7 Comparison to CPU Implementations

Although the encoders’ primary role is offloading of LDPC PL-FEC functions from the on-
board CPU, the achieved performance can lead to a considerable acceleration compared
to the software implementations of encoding operations on a general purpose CPU. In the
current Section, we compare the performance of our hardware accelerator implementa-
tions with that of the purely software encoding procedure on some commonly used and
state-of-the-art space-grade CPUs. The comparisons are against the software encoder
implementations on the LEON3, LEON5 and NOEL-V soft processors.

For the performance benchmarking measurements, a resource efficient SoC design was
built, with the necessary GRLIB IP modules and the proposed encoder cores, as shown
in Fig. 4.10. Apart from the cores required for a basic LEON/NOEL-V subsystem, the
SoC of Fig. 4.10 comprised the proposed hardware encoding cores as the design in Fig.
4.9, although in this case the parameters of the encoder had been initialized at synthesis
time. The bus width of all AMBA buses was set to 128-bits and the entire design was
clocked by a single clock source: the clock generated by the MIG controller, which was
set at a very low frequency (10 MHz). Since the aggregated read and write bandwidth of
the the AXI4 channel of the MIG controller (32 MiB/s) is a small fraction of the total DDR4
memory bandwidth of the board (19200 MiB/s), the memory model provided by the MIG
DDR4 controller is as close as possible to a zero-latency memory and ensures a common

D. Theodoropoulos 132

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 4.10: System design for performance comparisons.

basis for the comparison, since the total cycles required for encoding are not affected
by the behavior of the memory. The performance metric which we have adopted for the
comparisons was the average number of the 10 MHz clock cycles which were required for
encoding one LW, instead of the actual encoding throughput. A direct comparison on the
basis of raw performance achieved would not be meaningful in the case of soft processors
because the actual data-rate performance depends on the achieved frequency of each
mission specific place and routed FPGA SoC design.

Two tests have been run on the SoC: a hardware test as in Section 4.6 and a purely
software test on the LEON/NOEL-V processor, which is a specially designed simplified and
optimized version of the corresponding routine provided in [96], in which erasure coding is
implemented as an additional software layer to protect LTPs segments and called Erasure
Coding Link Service Adapter, or ECLSA.We compiled the software with the vendor’s cross
compilers, setting the highest optimization level for the corresponding ISAs. Test vectors
and expected results were identical in both test cases, through a software implementation
of the LFSR and MISR modules. The compiled software was loaded on the processor
core through JTAG interface, using the vendor’s grmon utility. Both tests were initiated
by the processor system and the clock cycles required in both cases were recorded by
a specially designed performance counter core, which was started and stopped through
General Purpose Input-Output (GPIO) signals: the first (start) is asserted at the beginning

133 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Table 4.5: Acceleration characteristics against LEON/NOEL-V soft processor on the
KCU105

RAM buffer Average Tc Speedup factor

So
ftw

ar
e LEON3

192 MiB
1796901689 1

LEON5 566576395 3,2
NOEL-V 564176669 3,2

CNO
LUT:898

128 MiB 20522702 87,6FF:1267
BRAM:6

VNO
LUT:1827

64 MiB 20512826 87,6FF:1866
BRAM:8

L=4KiB, C3 code. d = 128.

of a LW encoding procedure and the second (fin) at its completion. Performance data
were averaged over 100 LWs.

In [15], a software implementation is described, which uses three threads: one for filling the
encoding matrix with the information symbols, a second for actual encoding and a third for
transmission of the encoded parity symbols. On the contrary, the hardware architectures
introduced in the current work use double buffering techniques to pipeline the encoding of
consecutive longwords. Both techniques succeed in absorbing the time required for the
reception of information symbols and the transmission of encoded parity data into the time
required for actual encoding. Consequently, the performance comparison made in this
Section takes into account only the encoding time, that is the time required for calculation
of the parity symbols, provided that information symbols are available as soon as they are
requested. We set L = 4 and d = 128 bits in the comparisons, but the encoding time is
proportional to the information symbol block length and memory bus width in both cases.

In Table 4.5, the total number of clock cycles which were recorded by the performance
counter module are listed. Although in the memory bandwidth constraint test environment
described Section 4.6 the CNO core outperformed the VNO by a significant margin, in this
scenario, both cores recorded almost the same performance, as it was expected by the
theoretical analysis of the corresponding algorithms in Section 4.4 and the data of Table
4.3. Also, the performance of the specific memory-bound workload is almost the same
for LEON5 and NOEL-V. Finally, compared to the hardware implementations, the RAM
buffer space of the software implementation is larger. From the data listed in Table 4.5,
it is evident that the proposed architectures offer a significant acceleration of packet-level
encoding functions, compared with the on-board software implementation on embedded
processors used in space applications.

Another performance comparison was made against the dual-core ARM Cortex-A9 pro-

D. Theodoropoulos 134

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

cessor of the Zynq XC7Z045 System-on-Chip (SoC) featured by the ZC706 board. As
already descibed in Chapter 2 and more specifically in Section 2.3, the ZynQ process-
ing system is currently gaining increasing interest for aerospace applications. The soft-
ware implementation of the PL coding engine which was used for comparisons with the
LEON/NOEL processors was ported to the ARM platform, using the Vitis Unified software
platform from Xilinx.

The system’s design block diagram used for the comparisons is displayed in Fig. 4.11,
which is similar to Fig. 4.9, except that the encoder cores are connected to two HP ports,
instead of the MIG controller and initialization and control of the components in the PL
region are performed through the General Purpose (GP) AXI4-Lite interface of the PS,
under software control. In the ZC706 board, the Processing System (PS) is connected to 1
GB of component DDR3 SDRAM, which is not directly accessible from the Programmable
Logic (PL). Instead, the PL subsystem exposes four 64-bit high performance (HP) AXI3
Slave interfaces to the PL and shares the same DRAM controller with the embedded ARM
processors. Of course, as already mentioned in Section 2.3, the PL logic can use the 1GB
of SODIMM memory, which is dedicated to it (the PL). However, the component memory
option was selected, so that both the memory controller as well as the memory itself are
the same in both tests.

The controller of the ZynQ PS on the ZC706 is clocked at 533 MHz, which corresponds
to a total peak data rate of 4,264 MB/s. In practice, however, the effective data rate at
the HP ports is lower than this value [113], [68]. The hardware encoders were clocked
at 250 Mhz. For the software encoder implementation on the ARM system, an encoding
kernel was cross-compiled in the form of a C language bare-metal application. Full op-
timization level was selected as a compilation option and the ARM NEON optimizations
were activated, in order to take advantage of the advanced Single Instruction Multiple
Data (SIMD) technology in the ARMv8 architecture. The ARM software made use of the
DMA’s interrupt outputs to signal the beginning and the end of encoding process, in or-
der to calculate the performance data. The PS for the test was clocked at the maximum
value of 800MHz. The performance achieved is listed in Table 4.6 and is limited only by
the available bandwidth of the memory controller of the ZynQ SoC and the board RAM.
The RAM memory system’s bandwidth utilisation in the experiments was consistent with
that in Table 4.4. In all cases, significant speedup has been achieved. However, it is not
possible to measure the PS power on the ZC706 board, since the power regulators do not
provide the necessary current measurement outputs on the PMBUS of the card.

Another series of experiments has therefore been conducted for the comparisons against
the quad-core ARM Cortex A53 Application Procession Unit of the ZynQ Ultrascale+ PS
system of the ZCU102 board. The reference design of Fig. 4.12 was built to support the
measurements. On the ZCU102, the high performance ports are AXI4 compliant, which
makes integration easier. For the PL system tests with the hardware encoders, the pro-
gramming of the configuration and control registers of the encoders, as well as the control
of MISR compression and were performed by the PS. On the other hand, for the PS sys-
tem tests, AXI4 slave interfaces were created for the LFSR and MISR modules, through
which the PS was able to read the random data and send the output of the software encod-

135 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 4.11: System design for performance comparisons against the ARM embedded
processor on the ZC706.

Table 4.6: Acceleration characteristics against the embedded ARM Cortex A9 processor
on the ZC706

LW time Enc. throughput Speedup Mem.
(msec) (Gbps) factor saturation

Software (on ARM) 890 0,66 1 UNKOWN
VNO (1 core) 190 2,83 4,7 73%
VNO (2 cores) 177 3,03 5 78%
CNO (1 core) 170 3,15 5,2 50%
CNO (2 cores) 96 5,57 9,3 88%

D. Theodoropoulos 136

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Figure 4.12: System design for performance comparisons against the ARM embedded
processor on the ZCU102.

ing routine to the MISR module. These two functions (writing of the data to be encoded
to a memory region and sending the encoded output to the MISR AXI4 address), were
performed by the DMA controller of the PS, through special software routines, which were
synchronised through the interrupt controller. It is also important to note that the encod-
ing software was single-threaded, since bare-metal applications do not support threads.
This means that the software encoding process cannot pipeline input of data, encoding
and output, as is the case with the hardware encoders. However, the DMA controller on
the ZynQ Ultrascale+ is very efficient, and input and output of data account for a small
(5%) percentage of the total encoding time. The clock of all the PL modules was set at
333 MHz, which the maximum frequency supported by the HP ports of the PS. Both cores
(CNO and VNO) saturated the bandwidth of the port and consequently, there was no point
in extending the tests to multiple encoder cores per HP port. Finally, the data bus of all
the AXI interfaces was set at 128-bits.

The performance and power measurements results are displayed in Table 4.7. The frame
encoding time is the average time for a full frame (longword) reception from the LFSR,
encoding and parity output to the MISR. This setup implements a realistic scenario of
a potential on-board system and takes into account the totallity of the processing steps
required to receive data from a sensor and to transmit the processed data to the next
recipient on the data-processing chain. The power efficiency is calculated by taking into

137 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

Table 4.7: Resource and performance measurements on the ZCU102
VNO CNO ARM A53

Frame encoding time (ms) 67,79 69,81 319
Encoding throughput (Gbps) 3,96 3,84 0,84
Dynamic power (W) 1,29 0,66 0,94
Power efficiency (Gbps/W) 3,07 5,82 0,9

d=128-bits, L=4KiB, C3 code.

account the dynamic power dissipated during the encoding process. It can be seen that
hardware encoding is substantially more efficient than the software counterpart, on the
ZynQ Ultrascale+ platform.

D. Theodoropoulos 138

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

5. CONCLUSIONS AND FUTURE WORK

The novelties introduced in the current thesis, regarding QC-LDPC encoder architectures,
are shown to achieve state-of-the-art performance, with the lowest documented hardware
footprint, as a result of the optimized architectures which are introduced and an efficient
bit vector multiplication with dense matrices. LDPC codes without the dual-diagonal struc-
ture or any other focused provisions in the structure of their parity-check matrix, or their
protograph, in order to facilitate encoding, have been so far considered unfavorable for
high-speed, resource starved implementations, even though they exhibit some favorable
FEC performance features. The work in this Thesis manages to bridge this gap between
encoding efficient LDPC codes (like those of the IEEE802.11ac/n standard) and the gen-
eral case of QC-LDPC codes, with potentially better FEC behavior, broadening their ap-
plication field.

In addition, it is shown, for first time in the literature, that PL-FEC encoding can be im-
plemented efficiently in hardware and offers another option for increasing the reliability of
modern applications, other than traditional systems combining error correction codes and
deep interleavers. The efficiency of the proposed hardware architectures is such that they
can be implemented even in low cost FPGA platforms and they can easily satisfy the per-
formance requirements of current and upcoming high data rate communication standards.
The proposed encoders can readily form part of a high-speed data chain for small satel-
lites and CubeSats in a single chip data processing unit implemented in FPGA technology,
combined for example with the parallel implementation for hyperspectral compression on
a Zynq-7000 platform which have been proposed in [126]. This contribution enables the
application of PL-FEC for next generation high data rate reliable satellite communications
in space environments where burst errors are dominant, under low signal-to-noise ratio
regimes.

One of the most active and promising development areas among the CCSDS working
groups is related to the standardization in the domain of free-space optical communica-
tions. A multitude of options is being considered for various application scenarios: from
high photon efficiency aiming mostly deep-space communications to low-complexity op-
tions of the O3K standard. A broad overview of the activities taking place within CCSDS
and the Interagency Operation Advisory Group (IOAG) is given in [56]. Of particular in-
terest is the possibility of endorsement of the rate 1/2 AR4JA LDPC codes of [32] into
the new free-space optical communication standards [34]. Protograph-based Raptor-like
(PBRL) and Accumulate-Repeat-Accumulate (ARA) LDPC codes are also candidates for
the emerging O3K standard and an already future research direction is to provide hard-
ware accelerators for them, following the accumulated expertise on LDPC encoding. Era-
sure coding is also mentioned [34] as an option for optical high data rate communications,
consequently, the work presented in Chapter 4 is going to be adapted accordingly. Finally,
the focus of this thesis has been the encoding process of either bit-level or packet-level
codes. LDPC and most importantly, packet-level decoding are also challenging tasks. Es-
pecially in the case of packet-level coding, there are no known hardware implementations.
The design of a complete codec, therefore, would be an invaluable contribution.

139 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

D. Theodoropoulos 140

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

ABBREVIATIONS - ACRONYMS

3GPP2 Third Generation Partnership Project 2

ACE Approximate Cycle Extrinsic Message Degree

AHB Advanced High-performance Bus

AI Artificial Intelligence

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

API Application Programming Interface

AR4JA Accumulate, Repeat by 4, Jagged-Accumulate

ARQ Automatic Repeat reQuest

ASIC Application-Specific Integrated Circuit

ASM Attached Synchronization Marker

AWD Asymptotic Weight Distribution

AXI Advanced eXtensible Interface

AWGN Additive White Gaussian Noise

BCJR Bahl–Cocke–Jelinek–Raviv

BEC Binary Erasure Channel

BER Bit-Error Rate

BRAM Block RAM

C&DH Command and Data Handling

CADU Channel Access Data Unit

CCSDS Consultative Committee for Space Data Systems

CFDP CCSDS File Delivery Protocol

CLB Configurable Logic Block

CMMB China Mobile Multimedia Broadcasting

CNO Check Node Oriented

COTS Commercial Off-The-Shelf

141 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

CPLL Channel Phase Locked Loop

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DD Displacement Damage

DMA Direct Memory Access

DDR Double Data Rate

DSCAL Digital Systems Computer Architecture Laboratory

DSU Debug Support Unit

DTN Delay Tolerant Network

DUT Design Under Test

DVB Digital Video Broadcasting

ECC Error-Correcting Code

ECLSA Erasure Coding Link Service Adapter

ECSS European Cooperation for Space Standardization

EG Euclidean Geometry

EOP End of Packet

ESA European Space Agency

EXIT EXtrinsic Information Chart

FEC Forward Error Correction

FF Flip-Flop

F-IRA Flexible Irregular Repeat Accumulate

FIFO First In, First Out

FMC FPGA Mezzanine Card

FPGA Field-Programmable Gate Array

GF Gallois Field

GPIO General Purpose Input-Output

GUI Graphical User Interface

HDR High Data Rate

HP High Performance

D. Theodoropoulos 142

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

HPE High Photon Efficiency

IARA Improved Accumulate Repeat Accumulate

IDEMA International Disk Drive Equipment and Materials Association

IEEE Institute of Electrical and Electronics Engineers

IOAG Interagency Operation Advisory Group

ION Interplanetary Overlay Network

IP-core Intellectual Property (core)

IRA Irregular Repeat Accumulate

ISA Instruction Set Architecture

ISI Inter-Symbol Interference

ITAR International Traffic in Arms Regulations

JTAG Joint Test Action Group

L-U Lower-Upper

LDPC Low-Density Parity-Check (code)

LFSR Linear-Feedback Shift Register

LLR Log-Likelihood Ratio

LTP Licklider Transmission Protocol

LUT Look-Up Table

LW Long-Word

MAP Maximum A-Posteriori

MDS Maximum Distance Separable

MIG Memory Interface Generator

MISR Multiple Input Shift Register

MLSD Maximum Likelihood Sequence Decoder

MPSoC Multiprocessor System on a Chip

MR Magnetic Recording

MT/s MegaTransfers per second

MTTF Mean Time To Failure

NASA National Aeronautics and Space Administration

143 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

NV Non-Volatile

O3K Optical On-Off Keying

OBC On Board Data Computer

OSI Open Systems Interconnection

PC Personal Computer

PCIe Peripheral Component Interconnect Express

PDU Protocol Data Unit

PEG Progressive Edge Growth

PISO Parallel Input Serial Output

PL Packet-Level, Programmable Logic

PLATO PLAnetary Transits and Oscillations of stars

PNC Physical-layer Network Coding

PR Partial Response

PBRL Protograph-based Raptor-like

QC Quasi-Cyclic

RS Reed-Solomon

RT Radiation Tolerant

RTL Register Transfer Level

R-U Richardson-Urbanke

RAM Random Access Memory

RCOP Rate Compatible Optimized Codes

RHBD Radiation-Hardened by Design

RISC Reduced Instruction Set Computer

RMAP Remote Memory Access Protocol

RTL Register Transfer Level

RS Reed-Solomon

SAVOIR Space Avionics Open Interface Architecture

SDR Software Defined Radio

SEB Single Event Burnout

D. Theodoropoulos 144

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

SEE Single Event Effects

SERDES Serializer/Deserializer

SET Single Event Transient

SEU Single Event Upset

SoC System On a Chip

SODIMM Small Outline Dual Inline Memory Module

SONOS Silicon-Oxide-Nitride-Silicon

SRIO Serial Rapid Input Output

SPA Sum-Product Algorithm

SpFi Space Fibre

SRAA Shift Register Adder Accumulator

SRAM Static RAM

SRIO Serial RapidIO

SWaP-C Size, Weight, Power and Cost

TID Total Ionizing Dose

TM Telemetry

TMR Triple Module Redundancy

TNID Total Non Ionizing Dose

VLSI Very Large Scale Integration

VNO Variable Node Oriented

145 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

D. Theodoropoulos 146

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

BIBLIOGRAPHY

[1] Sixteen-Bit Computer Instruction Set Architecture. DoD Military Standard MIL-STD-
1750, Defense Information Systems Agency (DISA), August 1980.

[2] AMBA AXI4-Stream protocol v1.0A. Specification, ARM, March 2010.

[3] SpaceWire – Remote Memory Access Protocol. ECSS Standard ECSS-E-ST-50-52C,
European Cooperation for Space Standardization-ECSS, February 2010.

[4] LCE01C CCSDS (8160,7136) LDPC Encoder. Product specification, Small World
Communications, March 2013.

[5] Digital Video Broadcasting (DVB) Second generation framing structure, channel cod-
ing and modulation systems for Broadcasting, Interactive Services, News Gathering
and other broadband satellite applications Part 1: DVB-S2. ETSI European standard
REN/JTC-DVB-341-1, ETSI, 2014.

[6] LDPC NASA Encoder/Decoder IP Core v2.0. Specification sheet, IPrium LLC, 2014.

[7] CCSDS (8160, 7136) LDPC Encoder and Decoder. Product brief, CREONIC GmbH,
2016.

[8] Space engineering Technology Readiness Level (TRL) guidelines. ECSS Handbok
ECSS-E-HB-11A, European Cooperation for Space Standardization-ECSS, March
2017.

[9] CCSDS LDPC C2 code encoder/decoder. VHDL source code overview / IP core
Overview COM-1811SOFT, COMBLOCK, 2019.

[10] SpaceFibre – Very high-speed serial link. ECSS Standard ECSS-E-ST-50-11C, Eu-
ropean Cooperation for Space Standardization-ECSS, May 2019.

[11] SpaceWire – Links, nodes, routers and networks. ECSS Standard ECSS-E-ST-50-
12C Rev.1, European Cooperation for Space Standardization-ECSS, May 2019.

[12] ESA IP Core Technical Requirements. ESA Requirements specification TEC-
EDM/2010.61/KM, European Space Agency (ESA), May 2022.

[13] Rojina Adhikary, John N. Daigle, and Lei Cao. Dynamic Code Selection Method
for Content Transfer in Deep-Space Network. IEEE Transactions on Aerospace and
Electronic Systems, 56(1):456–474, February 2020.

[14] Alaa Aldin Al Hariri, Fabrice Monteiro, Loic Sieler, and Abbas Dandache. A high
throughput configurable parallel encoder architecture for Quasi-Cyclic Low-Density
Parity-Check Codes. In 2013 IEEE 19th International On-Line Testing Symposium
(IOLTS), pages 163–166. IEEE, July 2013.

147 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

[15] Nicola Alessi, Carlo Caini, Tomaso De Cola, and Marco Raminella. Packet Layer
Erasure Coding in Interplanetary Links: The LTP Erasure Coding Link Service Adapter.
IEEE Transactions on Aerospace and Electronic Systems, 56(1):403–414, February
2020.

[16] Jan Andersson, Jiri Gaisler, and Roland Weigand. Next generation multipurpose
microprocessor. In DAta Systems In Aerospace 2010 (DASIA2010), 2010.

[17] K. Andrews, S. Dolinar, and J. Thorpe. Encoders for block-circulant LDPC codes.
In Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.,
pages 2300–2304, Adelaide, SA, Australia, September 2005.

[18] Kenneth S. Andrews, Dariush Divsalar, Sam Dolinar, Jon Hamkins, Christopher R.
Jones, and Fabrizio Pollara. The Development of Turbo and LDPC Codes for Deep-
Space Applications. Proceedings of the IEEE, 95:2142–2156, November 2007.

[19] Lars Asplund. VUnit: a test framework for HDL v.4.4.0. https://vunit.github.io/, last
accessed on 02/05/2023, 2020.

[20] Abhijit Athavale and Carl Christensen. High-Speed Serial I/0 Made Simple. Xilinx,
1.0 edition, 2005.

[21] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear codes for
minimizing symbol error rate (corresp.). IEEE Transactions on Information Theory,
20(2):284–287, March 1974.

[22] Christian R. Berger, Shengli Zhou, Yonggang Wen, Peter Willett, and Krishna Patti-
pati. Optimizing joint erasure- and error-correction coding for wireless packet transmis-
sions. IEEE Transactions on Wireless Communications, 7(11):4586–4595, November
2008.

[23] C. Berrou, A. Glavieux, and P. Thitimajshima. Near shannon limit error-correcting
coding and decoding: Turbo-codes. 1. In Proceedings of ICC ’93 - IEEE International
Conference on Communications, volume 2, pages 1064–1070, Geneva, Switzerland,
1993.

[24] F. Bezerra, D. Dangla, F. Manni, J. Mekki, D. Standarovski, R. G. Alia, M. Brugger,
and S. Danzeca. Evaluation of an Alternative Low Cost Approach for SEE Assess-
ment of a SoC. In 2017 17th European Conference on Radiation and Its Effects on
Components and Systems (RADECS), pages 1–5, Boston, MA, USA, July 2017.

[25] Frey J. Brendan. Graphical Models for Machine Learning and Digital Communication.
The MIT Press, July 1998.

[26] Stephan Ten Brink. Convergence behavior of iteratively decoded parallel concate-
nated codes. IEEE Transactions on Communications, 49(10):1727–1737, October
2001.

D. Theodoropoulos 148

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

[27] David Burshtein and Gadi Miller. Asymptotic enumeration methods for analyzing
LDPC codes. IEEE Transactions on Information Theory, 50(6):1115–1131, June 2004.

[28] C. Caini. Delay-tolerant networks (dtns) for satellite communications. Advances in
Delay-Tolerant Networks (DTNs): Architecture and Enhanced Performance, pages
23–46, January 2021.

[29] Gian Paolo Calzolari, Marco Chiani, Franco Chiaraluce, Roberto Garello, and Enrico
Paolini. Channel coding for future space missions: New requirements and trends.
Proceedings of the IEEE, 95(11):2157–2170, 2007.

[30] Overview of Space Communication Protocols. Informational report CCSDS 130.0-
G.3, CCSDS, July 2014.

[31] TM synchronization and channel coding - summary of concept and rationale. Infor-
mational report CCSDS 130.1-G-3, CCSDS, June 2020.

[32] TM Synchronization and Channel Coding. Recommended standard CCSDS 131.0-
B-3, CCSDS, September 2017.

[33] Erasure Correcting Codes for Use in Near-Earth and Deep Space Communications.
Experimental specification CCSDS 131.5-O-1, CCSDS, November 2014.

[34] 1064 nm Optical High Data Rate (HDR) Communication. Experimental specification
CCSDS 141.11-O-1, CCSDS, December 2018.

[35] Optical communications coding and synchronization. Recommended standard
CCSDS 142.0-B-1, CCSDS, August 2019.

[36] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, and H. Weiss.
Delay-tolerant networking architecture. RFC 4838, RFC Editor, 2007. http://www.
rfc-editor.org/rfc/rfc4838.txt.

[37] Panagiotis Chatziantoniou, Antonis Tsigkanos, Dimitris Theodoropoulos, Nektar-
ios Kranitis, and Antonis Paschalis. An Efficient Architecture and High-Throughput
Implementation of CCSDS-123.0-B-2 Hybrid Entropy Coder Targeting Space-Grade
SRAM FPGA Technology. IEEE Transactions on Aerospace and Electronic Systems,
58(6):5470–5482, December 2022.

[38] Dongying Chen, Pingping Chen, and Yi Fang. Low-Complexity High-Performance
Low-Density Parity-Check Encoder Design for China Digital Radio Standard. IEEE
Access, 5:20880–20886, July 2017.

[39] Pingping Chen, Lingjun Kong, Yi Fang, and Lin Wang. The Design of Protograph
LDPCCodes for 2-D Magnetic Recording Channels. IEEE Transactions on Magnetics,
51(11), November 2015.

149 D. Theodoropoulos

http://www.rfc-editor.org/rfc/rfc4838.txt
http://www.rfc-editor.org/rfc/rfc4838.txt

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

[40] Pingping Chen, Zhaopeng Xie, Yi Fang, Zhifeng Chen, Shahid Mumtaz, and
Joel J.P.C. Rodrigues. Physical-Layer Network Coding: An Efficient Technique for
Wireless Communications. IEEE Network, pages 1–7, 2019.

[41] Chia-Yu Lin, Chih-Chun Wei, and Mong-Kai Ku. Efficient encoding for dual-diagonal
structured LDPC codes based on parity bit prediction and correction. In APCCAS
2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems, pages 1648–
1651, Macao, China, November 2008.

[42] N. L. Clarke, B. V. Ghita, and S. M. Furnell. Delay-tolerant networks (DTNs) for deep-
space communications. Advances in Delay-Tolerant Networks (DTNs): Architecture
and Enhanced Performance, pages 47–58, January 2021.

[43] Cobham Gaisler AB. GRLIB IP library processor. https://www.gaisler.com/index.php/
products/ipcores/soclibrary, last accessed on 02//05/2023.

[44] CobhamGaisler AB. LEON3 processor. https://www.gaisler.com/index.php/products/
processors/leon3, last accessed on 02//05/2023.

[45] CobhamGaisler AB. LEON5 processor. https://www.gaisler.com/index.php/products/
processors/leon5, last accessed on 02//05/2023.

[46] CobhamGaisler AB. NOEL-VProcessor. https://www.gaisler.com/index.php/products/
processors/noel-v, last accessed on 02//05/2023.

[47] A.E. Cohen and K.K. Parhi. A Low-Complexity Hybrid LDPC Code Encoder for
IEEE 802.3an (10GBase-T) Ethernet. IEEE Transactions on Signal Processing,
57(10):4085–4094, October 2009.

[48] CORDIS. De-RISC: Dependable Real-time Infrastructure for Safety-critical Com-
puter. https://cordis.europa.eu/project/id/869945, last accesed on 26/06/2022.

[49] Thomas A. Courtade and Richard D. Wesel. Optimal allocation of redundancy be-
tween packet-level erasure coding and physical-layer channel coding in fading chan-
nels. IEEE Transactions on Communications, 59(8):2101–2109, August 2011.

[50] Z. Cui, Z. Wang, and X. Zhang. Reduced-complexity column-layered decoding and
implementation for ldpc codes. IET Communications, 5:2177–2186(9), October 2011.

[51] Mathieu Cunche, Jonathan Detchart, Jérome Lacan, Vincent Roca, Kévin Chaumont,
Julien Laboure, Christoph Neumann, Alexandre Soro, and Valentin Savin. Open-
FEC.org project. http://openfec.org/, last accessed on 21/04/23.

[52] Faramaz Davarian, Alessandra Babuscia, John Baker, Richard Hodges, Damon Lan-
dau, Chi-wung Lau, Norman Lay, Matt Angert, and Vanessa Kuroda. Improving Small
Satellite Communications in Deep Space—A Review of the Existing Systems and
Technologies With Recommendations for Improvement. Part I: Direct to Earth Links
and SmallSat Telecommunications Equipment. IEEE Aerospace and Electronic Sys-
tems Magazine, 35(7):8–25, July 2020.

D. Theodoropoulos 150

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

[53] Stefano Di Mascio, Alessandra Menicucci, Eberhard Gill, Gianluca Furano, and Clau-
dio Monteleone. Leveraging the openness and modularity of RISC-V in space. Journal
of Aerospace Information Systems, 16(11):454–472, January 2020.

[54] Claude E. Shannon. A Mathematical Theory of Communication. Bell System Tech-
nical Journal, 27:379–423, 1948.

[55] R. Ecoffet. Overview of in-orbit radiation induced spacecraft anomalies. IEEE Trans-
actions on Nuclear Science, 60(3):1791–1815, June 2013.

[56] Bernard L. Edwards, Robert Daddato, Klaus-Juergen Schulz, Randall Alliss, Jon
Hamkins, Dirk Giggenbach, Bryan Robinson, and Lena Braatz. An Update on the
CCSDS Optical Communications Working Group Interoperability Standards. In 2019
IEEE International Conference on Space Optical Systems and Applications (ICSOS),
pages 1–9, Portland, OR, USA, October 2019.

[57] Yi Fang, Guoan Bi, Yong Liang Guan, and Francis C.M. Lau. A Survey on Protograph
LDPC Codes and Their Applications. IEEE Communications Surveys and Tutorials,
17(4):1989–2016, October 2015.

[58] Yi Fang, Guofa Cai, Zhaojie Yang, Pingping Chen, and Guojun Han. Performance
of protograph LDPC codes over ergodic Nakagami fading channels. In 2017 17th
International Symposium on Communications and Information Technologies, ISCIT
2017, pages 1–5, Cairns, QLD, Australia, July 2017.

[59] Yi Fang, Pingping Chen, Guofa Cai, Francis C.M. Lau, Soung Chang Liew, and Guo-
jun Han. Outage-Limit-Approaching Channel Coding for Future Wireless Communica-
tions: Root-Protograph Low-Density Parity-Check Codes. IEEE Vehicular Technology
Magazine, 14(2):85–93, June 2019.

[60] Yi Fang, Pingping Chen, Lin Wang, and Francis C.M. Lau. Design of protograph
LDPC codes for partial response channels. IEEE Transactions on Communications,
60(10):2809–2819, 2012.

[61] Yi Fang, Guojun Han, Guofa Cai, Francis C.M. Lau, Pingping Chen, and Yong Liang
Guan. Design Guidelines of Low-Density Parity-Check Codes for Magnetic Recording
Systems. IEEE Communications Surveys and Tutorials, 20(2):1574–1606, April 2018.

[62] Fares Fourati and Mohamed-Slim Alouini. Artificial intelligence for satellite commu-
nication: A review. Intelligent and Converged Networks, 2(3):213–243, 2021.

[63] Gianluca Furano and Alessandra Menicucci. Roadmap for On-Board Processing and
Data Handling Systems in Space, pages 253–281. Springer International Publishing,
Cham, 2018.

[64] R. Gallager. Low-density parity-check codes. IRE Transactions on Information The-
ory, 8(1):21–28, January 1962.

151 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

[65] K. S. Geethu and A. V. Babu. Performance analysis of erasure coding based data
transfer in Underwater Acoustic Sensor Networks. In 2015 Int. Conf. Adv. Comput.
Commun. Informatics, ICACCI 2015, pages 2145–2151, Kochi, India, sep 2015.

[66] Jeffrey S. George. An overview of radiation effects in electronics. AIP Conference
Proceedings, 2160(1):060002, oct 2019.

[67] Gianluca Giuffrida, Luca Fanucci, Gabriele Meoni, Matej Batič, Léonie Buckley,
Aubrey Dunne, Chris van Dijk, Marco Esposito, John Hefele, Nathan Vercruyssen, Gi-
anluca Furano, Massimiliano Pastena, and Josef Aschbacher. The Φ-Sat-1 Mission:
The First On-Board Deep Neural Network Demonstrator for Satellite Earth Observa-
tion. IEEE Transactions on Geoscience and Remote Sensing, 60:1–14, 2022.

[68] Matthias Göbel, Ahmed Elhossini, Chi Ching Chi, Mauricio Alvarez-Mesa, and Ben
Juurlink. A quantitative analysis of the memory architecture of FPGA-SoCs. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), volume 10216 LNCS, pages 241–252. Springer
Verlag, 2017.

[69] Marco Gomes, Gabriel Falcao, Alexandre Sengo, Vitor Ferreira, Vitor Silva, and
Miguel Falcao. High throughput encoder architecture for DVB-S2 LDPC-IRA codes.
In 2007 Internatonal Conference on Microelectronics, pages 271–274, Cairo, Egypt,
December 2007. IEEE.

[70] Albert Guillén i Fàbregas. Coding in the block-erasure channel. IEEE Transactions
on Information Theory, 52(11):5116–5121, November 2006.

[71] Haibin Zhang, Jia Zhu, Huifeng Shi, and Dawei Wang. Layered Approx-Regular
LDPC: Code Construction and Encoder/Decoder Design. IEEE Transactions on Cir-
cuits and Systems I: Regular Papers, 55(2):572–585, March 2008.

[72] Yang Han and William E. Ryan. Packet-LDPC codes for tape drives. IEEE Transac-
tions on Magnetics, 41(4):1340–1347, April 2005.

[73] Hao Zhong and Tong Zhang. Block-LDPC: a practical LDPC coding system design
approach. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(4):766–
775, April 2005.

[74] Alaa Aldin Al Hariri, Fabrice Monteiro, Loic Sieler, and Abbas Dandache. Con-
figurable and high-throughput architectures for Quasi-cyclic low-density parity-check
codes. In 2014 21st IEEE International Conference on Electronics, Circuits and
Systems (ICECS), pages 790–793, Marseille, France, December 2014. doi:
10.1109/ICECS.2014.7050104.

[75] Alaa Hassan, M.I. Dessouky, Atef Abouelazm, and Mona Shokair. Evaluation of
Complexity Versus Performance for Turbo Code and LDPC Under Different Code
Rates. In SPACOMM 2012 : The Fourth International Conference on Advances in
Satellite and Space Communications, January 2012.

D. Theodoropoulos 152

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

[76] David M. Hiemstra and Valeri Kirischian. Single event upset characterization of the
Zynq-7000 ARM®Cortex™-A9 processor unit using proton irradiation. IEEERadiation
Effects Data Workshop, November 2015.

[77] Junyang Hu and Kangming Jiang. The improved LU-based decomposition algorithm
for sparse matrix of LDPC code. In Zhu E. Sambath S., editor, Frontiers in Computer
Education. Advances in Intelligent and Soft Computing, volume 133, pages 867–874.
Springer, Berlin, Heidelberg, 2012.

[78] Xiao Yu Hu, Evangelos Eleftheriou, and Dieter M. Arnold. Regular and irregular
progressive edge-growth tanner graphs. IEEE Transactions on Information Theory,
51(1):386–398, January 2005.

[79] Qiang Huang and Jin Jiang. An overview of radiation effects on electronic devices
under severe accident conditions in NPPs, rad-hardened design techniques and sim-
ulation tools. Progress in Nuclear Energy, 114:105–120, 2019.

[80] Jia-ning Su, Hou Iang, Ke iu, Iao yang eng, Ao Min, and Ao Min. An Efficient Low
Complexity LDPC Encoder Based On Factorization With Pivoting. In 2005 6th Inter-
national Conference on ASIC, volume 1, pages 168–171, 2005.

[81] Yuichi Kaji. Encoding LDPC Codes Using the Triangular Factorization. IEICE Trans-
actions on Fundamentals of Electronics Communications and Computer Sciences,
E89A(10), October 2006.

[82] Ogun O. Kibar, Prashanth Mohan, Paolo Rech, and Ken Mai. Evaluating the Impact
of Repetition, Redundancy, Scrubbing, and Partitioning on 28-nm FPGA Reliability
Through Neutron Testing. IEEE Transactions on Nuclear Science, 66(1):248–254,
2019.

[83] Sunitha Kopparthi and Don M. Gruenbacher. Implementation of a Flexible Encoder
for Structured Low-Density Parity-Check Codes. In 2007 IEEE Pacific Rim Confer-
ence on Communications, Computers and Signal Processing, pages 438–441, August
2007.

[84] Dong-U Lee, Wayne Luk, ConnieWang, Christopher Jones, Michael Smith, and John
Villasenor. A Flexible Hardware Encoder for Low-Density Parity-Check Codes. In
12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines,
pages 101–111, 2004.

[85] George Lentaris, Konstantinos Maragos, Ioannis Stratakos, Lazaros Papadopou-
los, Odysseas Papanikolaou, Dimitrios Soudris, Manolis Lourakis, Xenophon Zab-
ulis, David Gonzalez-Arjona, and Gianluca Furano. High-Performance Embedded
Computing in Space: Evaluation of Platforms for Vision-Based Navigation. Journal
of Aerospace Information Systems, 15(4):178–192, 2018.

153 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

[86] Vasileios Leon, Ioannis Stamoulias, George Lentaris, Dimitrios Soudris, David
Gonzalez-Arjona, Ruben Domingo, David Merodio Codinachs, and Isabelle Conway.
Development and Testing on the European Space-Grade BRAVE FPGAs: Evaluation
of NG-Large Using High-Performance DSP Benchmarks. IEEE Access, 9:131877–
131892, 2021.

[87] Qing Li, Shangguang Wang, Xiao Ma, Qibo Sun, Houpeng Wang, Suzhi Cao, and
Fangchun Yang. Service Coverage for Satellite Edge Computing. IEEE Internet of
Things Journal, 9(1):695–705, 2022.

[88] Lixin Liang, Huan He, Jian Zhao, Chengjian Liu, Qiuming Luo, and Xiaowen Chu. An
erasure-coded storage system for edge computing. IEEE Access, 8:96271–96283,
2020.

[89] Gianluigi Liva, Paola Pulini, and Marco Chiani. On-line construction of irregular re-
peat accumulate codes for packet erasure channels. IEEE Transactions on Wireless
Communications, 12(2):680–689, 2013.

[90] Ahmed Mahdi and Vassilis Paliouras. A Low Complexity-High Throughput QC-LDPC
Encoder. IEEE Transactions on Signal Processing, 62(10):2696–2708, May 2014.

[91] Matthew J. Marinella. Radiation Effects in Advanced and Emerging Nonvolatile Mem-
ories. IEEE Transactions on Nuclear Science, 68(5):546–572, 2021.

[92] Pierre-Philippe Mathieu, Maurice Borgeaud, Yves-Louis Desnos, Michael Rast,
Carsten Brockmann, Linda See, Ravi Kapur, Miguel Mahecha, Ursula Benz, and Stef-
fen Fritz. The ESA’s Earth Observation Open Science Program [Space Agencies].
IEEE Geoscience and Remote Sensing Magazine, 5(2):86–96, 2017.

[93] Ferdaouss Mattoussi, Matthieu Crussiere, Jean Francois Helard, and Gheorghe Za-
haria. Analysis of Coding Strategies Within File Delivery Protocol Framework for
HbbTVBased Push-VoDServices over DVBNetworks. IEEEAccess, 7:15489–15508,
2019.

[94] L.H. Miles, J.W. Gambles, G.K. Maki, W.E. Ryan, and S.R. Whitaker. An 860-Mb/s
(8158,7136) Low-Density Parity-Check Encoder. IEEE Journal of Solid-State Circuits,
41(8):1686–1691, August 2006.

[95] T. Miyauchi, K. Yamamoto, T. Yokokawa, M. Kan, Y. Mizutani, and M. Hattori.
High-performance programmable siso decoder vlsi implementation for decoding turbo
codes. In GLOBECOM’01. IEEE Global Telecommunications Conference (Cat.
No.01CH37270), volume 1, pages 305–309 vol.1, San Antonio, TX, USA, 2001.

[96] NASA. Interplanetary Overlay Network (ION) software distribution (4.0.2).
https://sourceforge.net/projects/ion-dtn/.

D. Theodoropoulos 154

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

[97] Nelson Alves Ferreira Neto, Joaquim Ranyere S. de Oliveira, Wagner Luiz A.
de Oliveira, and Joao Carlos N. Bittencourt. VLSI architecture design and imple-
mentation of a LDPC encoder for the IEEE 802.22 WRAN standard. In 2015 25th
International Workshop on Power and Timing Modeling, Optimization and Simulation
(PATMOS), pages 71–76, Salvador, Brazil, September 2015. IEEE.

[98] Thuy Van Nguyen, Aria Nosratinia, and Dariush Divsalar. Rate-compatible
protograph-based LDPC codes for inter-symbol interference channels. IEEE Com-
munications Letters, 17(8):1632–1635, 2013.

[99] Tram Thi Bao Nguyen, Tuy Nguyen Tan, and Hanho Lee. Efficient QC-LDPCEncoder
for 5G New Radio. Electronics, 8(6):668, June 2019.

[100] Daniel L Oltrogge and Kyle Leveque. An Evaluation of CubeSat Orbital Decay. In
25th Annual AIAA/USU Conference on Small Satellites, 2011.

[101] Pouya Ostovari and Jie Wu. Reliable broadcast with joint forward error correction
and erasure codes in wireless communication networks. In 2015 IEEE 12th Interna-
tional Conference on Mobile Ad Hoc and Sensor Systems, pages 324–332, Dallas,
TX, USA, 2015.

[102] Xiaohan Pan, Yafeng Zhan, Peng Wan, and Jianhua Lu. Review of channel models
for deep space communications. Science China Information Sciences, 61:1–12, 3
2018.

[103] Enrico Paolini, Gianluigi Liva, Balazs Matuz, and Marco Chiani. Maximum Likeli-
hood Erasure Decoding of LDPC Codes: Pivoting Algorithms and Code Design. IEEE
Transactions on Communications, 60(11):3209–3220, November 2012.

[104] Steve Parkes. SpaceWire User’s Guide. Star-Dundee, 2012.

[105] Antonis Paschalis, Panagiotis Chatziantoniou, Dimitris Theodoropoulos, Antonis
Tsigkanos, and Nektarios Kranitis. High-Performance Hardware Accelerators for Next
Generation On-Board Data Processing. In 2022 IFIP/IEEE 30th International Confer-
ence on Very Large Scale Integration (VLSI-SoC), pages 1–4, Patras, Greece, 2022.

[106] Jesús M. Pérez and Víctor Fernández. 3GPP2/802.20 RC/QC-LDPC encoding. In
2010 European Wireless Conference (EW), Lucca, Italy, 2010.

[107] PLATO DPS: State of the art on-board data processing for Europe’s next planet-
hunter. Zenodo, June 2021.

[108] I. S. Reed and G. Solomon. Polynomial Codes Over Certain Finite Fields. Journal
of the Society for Industrial and Applied Mathematics, 8:300–304, June 1960.

[109] Weiji Ren and Hao Liu. The Design and Implementation of High-Speed Codec
Based on FPGA. In 2018 10th International Conference on Communication Software
and Networks, ICCSN, pages 427–432, October 2018.

155 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

[110] T.J. Richardson and R.L. Urbanke. Efficient encoding of low-density parity-check
codes. IEEE Transactions on Information Theory, 47(2):638–656, 2001.

[111] Sebastian Sabogal, Alan George, and Gary Crum. ReCoN: A Reconfigurable CNN
Acceleration Framework for Hybrid Semantic Segmentation on Hybrid SoCs for Space
Applications. In 2019 IEEE Space Computing Conference (SCC), pages 41–52, 2019.

[112] P.H. Siegel, D. Divsalar, E. Eleftheriou, J. Hagenauer, D. Rowitch, and W.H. Tranter.
Guest editorial the turbo principle: from theory to practice. IEEE Journal on Selected
Areas in Communications, 19(5):793–799, 2001.

[113] Valery Sklyarov, Iouliia Skliarova, Joao Silva, and Alexander Sudnitson. Analysis
and comparison of attainable hardware acceleration in all programmable systems-on-
chip. In Proceedings - 18th Euromicro Conference on Digital System Design, DSD,
pages 345–352, October 2015.

[114] Ted Speers. PolarFire SONOS Technology. https://www.microsemi.com/blog/2018/
04/10/polarfire-sonos-technology/, April 2018.

[115] Antonio Sánchez, Yubal Barrios, Lucana Santos, and Roberto Sarmiento. Eval-
uation of TMR effectiveness for soft error mitigation in SHyLoC compression IP core
implemented on Zynq SoC under heavy ion radiation. In 2019 IEEE International Sym-
posium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
pages 1–4, Noordwijk, Netherlands, 2019.

[116] Bashar Tahir, Stefan Schwarz, and Markus Rupp. BER comparison between Con-
volutional, Turbo, LDPC, and Polar codes. In 2017 24th International Conference on
Telecommunications (ICT), pages 1–7, Limassol, Cyprus, 2017.

[117] Lucas Antunes Tambara, Fernanda Lima Kastensmidt, Nilberto H. Medina, Nemitala
Added, Vitor A. P. Aguiar, Fernando Aguirre, Eduardo L. A. Macchione, and Marcilei
A. G. Silveira. Heavy Ions Induced Single Event Upsets Testing of the 28 nm Xilinx
Zynq-7000 All Programmable SoC. In 2015 IEEE Radiation Effects Data Workshop
(REDW), pages 1–6, Boston, MA, USA, 2015.

[118] Nianqi Tang and Yun Lin. Fast Encoding and Decoding Algorithms for Arbitrary F2m.
IEEE Communications Letters, 24(4):716–719, April 2020.

[119] R. Michael Tanner. A Recursive Approach to Low Complexity Codes. IEEE Trans-
actions on Information Theory, 27(5):533–547, 1981.

[120] S. ten Brink. Convergence of iterative decoding. Electronics Letters, 35(13):1117–
1118, 1999.

[121] Dimitris Theodoropoulos, Nektarios Kranitis, and Antonios Paschalis. An efficient
LDPC encoder architecture for space applications. In 2016 IEEE 22nd International
Symposium on On-Line Testing and Robust System Design (IOLTS), pages 149–154,
Sant Feliu de Guixols, Spain, July 2016.

D. Theodoropoulos 156

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

[122] Dimitris Theodoropoulos, Nektarios Kranitis, Antonis Tsigkanos, Elias Machairas,
and Antonios Paschalis. Efficient Hardware Architectures and Implementations of
Packet-Level Erasure Coding Schemes for High Data Rate Reliable Satellite Com-
munications. IEEE Transactions on Aerospace and Electronic Systems, 58(3):2269–
2280, 2022.

[123] Dimitris Theodoropoulos, Nektarios Kranitis, Antonis Tsigkanos, and Antonios
Paschalis. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
28(5):1118–1127, March 2020.

[124] Dimitris Theodoropoulos, Nektarios Kranitis, Antonis Tsigkanos, and Antonios
Paschalis. Efficient LDPC Encoder Designs for Magnetic Recording Media. In 2020
IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotech-
nology Systems (DFT), pages 1–6, Frascati, Italy, 2020.

[125] Tao Tian, Christopher R. Jones, John D. Villasenor, and Richard D. Wesel. Selec-
tive avoidance of cycles in irregular LDPC code construction. IEEE Transactions on
Communications, 52(8):1242–1247, August 2004.

[126] Antonis Tsigkanos, Nektarios Kranitis, DImitris Theodoropoulos, and Antonios
Paschalis. High-Performance COTS FPGA SoC for Parallel Hyperspectral Image
Compression with CCSDS-123.0-B-1. IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, 28(11):2397–2409, November 2020.

[127] Georgios Tzimpragos, Christoforos Kachris, Dimitrios Soudris, and Ioannis Tomkos.
A low-complexity implementation of QC-LDPC encoder in reconfigurable logic. In 2013
23rd International Conference on Field programmable Logic and Applications, pages
1–4, Porto, Portugal, September 2013.

[128] Thuy Van Nguyen, Aria Nosratinia, and Dariush Divsalar. Protograph-based LDPC
codes for partial response channels. In 2012 IEEE International Conference on Com-
munications, pages 2166–2170, Ottawa, ON, Canada, 2012.

[129] Jason Vidmar, Pierre Maillard, Troy Jones, Minal Sawant, Giulio Gambardella, and
Nicholas Fraser. Space DPU: Constructing a Radiation-Tolerant, FPGA-based Plat-
form for Deep Learning Acceleration on Space Payloads. In 2nd European Workshop
on On-Board Data Processing (OBDP 2021), June 2021.

[130] Vasileios Vlagkoulis, Aitzan Sari, John Vrachnis, Georgios Antonopoulos, Nikolaos
Segkos, Mihalis Psarakis, Antonios Tavoularis, Gianluca Furano, Cesar Boatella Polo,
Christian Poivey, Veronique Ferlet-Cavrois, Maria Kastriotou, Pablo Fernandez Mar-
tinez, Ruben Garcia Alia, Kay-Obbe Voss, and Christoph Schuy. Single Event Ef-
fects Characterization of the Programmable Logic of Xilinx Zynq-7000 FPGA Using
Very/Ultra High-Energy Heavy Ions. IEEE Transactions on Nuclear Science, 68(1):36–
45, 2021.

157 D. Theodoropoulos

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

[131] Fei Wang, Peng Zhang, Xin Wan, and Jin Liu. Design of a multi-rate quasi-cyclic
low-density parity-check encoder based on pipelined rotate-left-accumulator circuits.
In Proceedings - 2014 7th International Congress on Image and Signal Processing,
CISP 2014, pages 1105–1109, Dalian, China, January 2014.

[132] Peng Wang and Yong-en Chen. Low-Complexity Real-Time LDPC Encoder Design
for CMMB. In 2008 International Conference on Intelligent Information Hiding and
Multimedia Signal Processing, pages 1209–1212, Harbin, China, August 2008.

[133] Xiumin Wang, Tingting Ge, Jun Li, Chen Su, and Fangfei Hong. Efficient Multi-rate
Encoder of QC-LDPC Codes Based on FPGA for WIMAX Standard. Chinese Journal
of Electronics, 26(2):250–255, March 2017.

[134] Xiangran Sun and Dongxin Shi. Design and optimization of LDPC encoder based
on LU decomposition with simulated annealing. In 2011 International Conference on
Computer Science and Service System (CSSS), pages 2181–2184, Nanjing, China,
June 2011.

[135] Hemesh Yasotharan and Anthony Chan Carusone. A flexible hardware encoder for
systematic low-density parity-check codes. In 2009 52nd IEEE International Midwest
Symposium on Circuits and Systems, pages 54–57, Cancun, Mexico, August 2009.
IEEE.

[136] Shao-Wei Yen, Shiang-Yu Hung, Chih-Lung Chen, Hsie-Chia Chang, Shyh-Jye
Jou, and Chen-Yi Lee. A 5.79-Gb/s Energy-Efficient Multirate LDPC Codec Chip for
IEEE 802.15.3c Applications. IEEE Journal of Solid-State Circuits, 47(9):2246–2257,
September 2012.

[137] Hang Yin, Weitao Du, and Nanhao Zhu. Design of improved LDPC encoder for
CMMB based on SIMD architecture. In 2013 IEEE 3rd International Conference on
Information Science and Technology (ICIST), pages 1292–1295, Yangzhou, China,
2013.

[138] Yongmin Jung, Chulho Chung, Jaeseok Kim, and Yunho Jung. 7.7Gbps encoder
design for IEEE 802.11n/ac QC-LDPC codes. In 2012 International SoC Design Con-
ference (ISOCC), pages 215–218, Jeju Island, November 2012.

[139] Shuo Yu, Changyin Liu, Peng Zhang, and Lanxiang Jiang. Efficient encoding of
QC-LDPC codes with multiple-diagonal parity-check structure. Electronics Letters,
50(4):320–321, February 2014.

[140] Qiuyu Wu Zhaohui Wang, Xin Hao, Changxing Lin. An Efficient Hardware LDPC
Encoder Based on Partial Parallel Structure for CCSDS. In 2018 IEEE 18th Interna-
tional Conference onCommunication Technology (ICCT), pages 136–139, Chongqing,
2018.

D. Theodoropoulos 158

Αrchitectures and implementation in FPGA technology of hardware accelerators for forward error
correction encoding in on-board processing data-chains for aerospace applications

[141] Zhiyong He, S. Roy, and P. Fortier. Encoder architecture with throughput over 10
Gbit/sec for quasi-cyclic LDPC codes. In 2006 IEEE International Symposium on Cir-
cuits and Systems, page 4, Kos, Greece, 2006.

[142] Zongwang Li, Lei Chen, Lingqi Zeng, S. Lin, and W.H. Fong. Efficient encoding of
quasi-cyclic low-density parity-check codes. IEEE Transactions on Communications,
54(1):71–81, January 2006.

159 D. Theodoropoulos

	CONTENTS
	INTRODUCTION
	 Introduction to Forward Error Correction schemes
	Problem description and motivation
	Contributions & publications
	Bit-level QC-LDPC encoding
	Packet-level coding over erasure channels
	Unit-level testing and SpaceFibre integration

	Equipment & Technologies
	Thesis outline

	BACKGROUND
	Space communication channels & protocols
	On-board data processing
	FPGAs in space
	Space-grade CPUs
	Spacewire and spacefibre

	QC LDPC ENCODER IMPLEMENTATIONS
	QC LDPC Linear Block Codes
	CCSDS codes
	AR4JA codes for deep-space communications
	C2 code for near-earth communications
	Performance characteristics of the various CCSDS codes

	LDPC encoding methods and their limitations
	Direct method
	R-U method
	Partitioned-H methods
	Hybrid method

	Description of the proposed basic architecture
	Encoding architectures
	Direct method encoder
	R-U method encoder
	Hybrid method encoder
	Partitioned-H method encoder
	Special case: C2 code

	Implementation and results
	Testing
	Special topic: QC encoding for magnetic media recording
	IARA
	2-D-P1 and 2-D-P2
	Nested high-rate ISI codes
	RCOP
	Implementation results and testing

	PACKET-LEVEL ENCODER IMPLEMENTATIONS
	Packet level erasure codes introduction
	Background
	Performance characteristics of packet-level erasure codes
	Encoding Algorithms
	Variable node oriented algorithm
	Check node oriented algorithm
	VNO and CNO tradeoffs

	Hardware Architectures
	CNO architecture
	VNO architecture
	Design Considerations

	Hardware Implementation and Validation
	Comparison to CPU Implementations

	CONCLUSIONS AND FUTURE WORK
	ABBREVIATIONS - ACRONYMS
	REFERENCES

