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Abstract 
 

The Aegean Sea is one of the world’s busiest trade routes throughout 
history in terms of maritime transport, which inevitably leads to the 
occurrence of mostly unintentional accidents causing oil pollution. Given 
its complex and intense weather and sea current patterns with strong 
seasonality, the uncertainty assessment of the oil spill forecasting systems 
in this region is of great interest. The objective of the present study is to 
assess the impact of wind forcing model uncertainties on the oil spill model 
prediction using the numerical model MEDSLIK-II. We will use stochastic 
modeling of the wind forcing based on Empirical Orthogonal Functions 
(EOF) modes. Ensemble members will be generated using EOF modes 
including the integration of a perturbation factor which will represent the 
uncertainty needed for the stochastic wind forcing. The results will focus 
on the oil spill model uncertainty, as approximated by an ensemble, and 
compared with a deterministic simulation.  
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Περίληψη 
 

Το Αιγαίο είναι ένας από τους πιο πολυσύχναστους εμπορικούς διαύλους 
του κόσμου ιστορικά  όσον αφορά τις θαλάσσιες μεταφορές, κάτι που 
αναπόφευκτα οδηγεί στο να συμβούν ατυχήματα τα οποία προκαλούν 
ρύπανση της θάλασσας με πετρέλαιο. Δεδομένου επίσης των 
πολύπλοκων και υψηλής έντασης καιρικών μοτίβων τα οποία 
παρουσιάζουν έντονη εποχικότητα, η εκτίμηση της αβεβαιότητας των 
συστημάτων πρόγνωσης στην περιοχή καθίσταται εξαιερετικά σημαντική.  
Σκοπός της παρούσας μελέτης είναι να εκτιμηθεί το αντίκτυπο της 
αβεβαιότητας των ατμοσφαιρικών δράσεων στην απόδοση του μοντέλου 
διασποράς πετρελαιοκηλίδας χρησιμοποιώντας το αριθμητικό μοντέλο  
MEDSLIK-II. Θα μοντελοποιήσουμε το ανεμολογικό πεδίο στοχαστικά 
βασιζόμενοι στην θεωρία EOF. Θα δημιουργήθούν μέλη ανσάμπλ 
χρησιμοποιώντας τα μοτίβα EOF στα οποία θα εμπεριέχεται ένας 
παράγοντας αβεβαιότητας, ο οποίος θα αποδίδει την αβεβαιότητα του 
ανεμολογικού πεδίου. Τα αποτελέσματα επικεντρώνονται στην 
αβεβαιότητα του μοντέλου πρόγνωσης διασποράς της πετρελαιοκηλίδας, 
που προσσεγγίζεται με ανσάμπλ και γίνεται σύγκριση με τα αντίστοιχα 
που προκύπτουν από τα ντετερμινιστικά δεδομένα. 
 
Λέξεις-κλειδιά: Αιγαίο Πέλαγος, MEDSLIK II, πετρελαιοκηλίδα, «ανσάμπλ», 
αβεβαιότητα 
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Chapter 1 – Introduction 
 

 Since shipping is amongst the factors with the greatest impact in 
worldwide economy and thus our societies, it is important to identify and 
address possible threats and downsides such as unintentional oil pollution.  
In the event of an oil spill, modelling predictions serve as the 
initial/forefront tools to assist regional and national contingency plans 
(Zodiatis et al., 2017).  

The accuracy of oil spill predictions can be influenced by uncertainties 
related to meteorological or oceanographical conditions. Wind is a major 
source of uncertainty for oil spill modeling due to our incomplete 
knowledge of initial conditions in the atmosphere as well as simplifications 
of the equations used to describe the weather. 

A solution to this problem is the usage of ensemble-based oil spill 
simulations. Wind forcing conditions can be represented by a number of 
different, but equally possible model forecasts, created by perturbed initial 
conditions and/or state variables. The ensemble spread can be regarded 
as a proxy of the model uncertainties in the forecast. A large spread 
indicates large model errors in the prediction and yields several forecast 
predictions increasing the possibility some of them to be closer to the true 
(unknown) state. 

 

Figure 1.1: Schematic showing uncertainty captured in an Ensemble Weather Forecast 

Source: https://www.researchgate.net/figure/Schematic-showing-uncertainty-captured-in-

an-Ensemble-Weather-Forecast_fig1_291115693 

 

https://www.researchgate.net/figure/Schematic-showing-uncertainty-captured-in-an-Ensemble-Weather-Forecast_fig1_291115693
https://www.researchgate.net/figure/Schematic-showing-uncertainty-captured-in-an-Ensemble-Weather-Forecast_fig1_291115693
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1.1 Study area 
 

In this study we will focus on the Aegean Sea. It is a basin with complex 
and intense weather and sea current patterns with strong seasonality, 
complicated coastline and bathymetry. Therefore, the uncertainty 
assessment of the oil spill forecasting systems in this region is of great 
interest. 

The surface water circulation of the Aegean Sea (fig. 1.2) is 
characterized by a generally cyclonic circulation on the scale of the basin, 
cyclonic and anticyclonic mesoscale gyres and transient eddies. Seasonal 
changes in meteorological conditions, the complex topography and 
bathymetry of the area, the inflow of lower temperature and salinity water 
from the Black Sea and the outflow of rivers in Greece and Turkey create a 
complex circulation that changes temporally and seasonally. Perhaps the 
most important feature of the circulation is the low salinity waters of the 
Black Sea (BSW) that enter the Aegean through the straits of the 
Dardanelles. After its entry into the Aegean, this water mass generally 
follows a cyclonic course. From the Dardanelles it continues in a westerly 
direction, passing North of Lemnos, south of Halkidiki and then 
southwestward moving along the island of Euboea, as it finally enters the 
south Aegean through the strait of Kafireas and the strait of Mykonos-
Ikaria. 

 

 

Figure 1.2:  

Schematic representation of the 

Aegean Sea upper circulation. 

Reprinted from “Circulation and 

hydrological characteristics of the 

North Aegean Sea: a contribution 

from real-time buoy 

measurements” by NITTIS, K., & 

PERIVOLIOTIS, L. (2002), 

Mediterranean Marine Science. 

 

 

 



3 
 

The wind field of the Aegean Sea is dominated mainly by north winds with 
average monthly values ranging from 3 m/s to > 7.5 m/s. These north winds 
show an annual fluctuation with two maximums: one in winter during the 
period from December to February and one in summer from July to 
August. During the winter, strong, cold and dry north winds blow over the 
Aegean Sea, while occasionally south winds may occur. During the warm 
season, the wind field is dominated by the Etesian Winds, a system of 
strong and dry north winds (Poulos et al., 1997). 

 

1.2 Objectives 
 

The purpose of this study is to evaluate the impact of the atmospheric 
forcing uncertainty on the performance of the oil spill modeling and the 
transport of the pollutants in the marine environment. To that end, we use 
a probabilistic approach for the simulation of the oil spill by generating an 
ensemble of oil spill forecasts which incorporate a perturbation factor. 
Finally, after evaluating this impact, we try to answer if the ensemble 
approach for the oil spill prediction can provide additional information with 
respect to a deterministic approach, providing the decision-makers with a 
picture of several equally possible outcomes, to better plan the mitigation 
procedures in the event of an oil spill. 
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Chapter 2 – Methodology 
 

Since the objective of this study is to assess the impact of wind forcing 
model uncertainties on the oil spill model prediction, the experiment setup 
will consist of two parts. The first part is a preprocess stage where we will 
generate stochastic wind forcing data based on Empirical Orthogonal 
Functions (EOF) modes and the second part is the model itself.  

 

2.1 Empirical Orthogonal Functions (EOF) 
 

2.1.1 Overview 
 

Empirical Orthogonal Function (EOF) analysis is designed to find 
covariability within a data set and create new composite variables that 
capture that internal dependence, allowing a few composite uncorrelated 
variables to describe most of the variability (variance) in the data described 
in the much larger, dependent dataset. This method is typically applied to 
large space-time data (e.g., time series collected at numerous spatial 
locations) and its objective is to reveal relationships in space that share the 
same time variability and combines them into a single spatial pattern 
sharing a common time variability. This single pattern then captures all the 
replicate information otherwise stored in the many individual time series. 
This makes it easier to view how the variable varies in space and time and 
collapses a potentially huge data set into a minimum number of patterns 
that capture most of the variance. Each of the patterns identified has an 
associated time series describing how the amplitude of the pattern 
changes in time, known as principal components (or PC). Each pattern 
(EOF) and its time series (PC) together are called a mode. 
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2.1.2 Fundamentals 
 

The heart of EOF analysis is the concept of eigenvectors, also referred to 
as characteristic vectors. These vectors are described by the following 
equations: 

𝑨𝒙 = 𝜆𝒙    

or rearranged, 

(𝑨 − 𝜆𝑰)𝒙 = 0   

where A is a square matrix, λ is a scalar such that the new vector b (= λx) is 
parallel to x, since parallel vectors can differ only in length (or magnitude), 
and thus are equal to scalar multiples of one another. 

[

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 𝑎2𝑛

⋮
𝑎𝑛1 𝑎𝑛2 𝑎𝑛𝑛

] [

𝑥1

𝑥2

⋮
𝑥𝑛

] = 𝜆 [

𝑥1

𝑥2

⋮
𝑥𝑛

] 

 

[𝜶1 𝜶2 ⋯ 𝜶𝑛] [

𝑥1

𝑥2

⋮
𝑥𝑛

] = 𝜆 [

𝑥1

𝑥2

⋮
𝑥𝑛

] 

 

𝑥1 [

𝑎11

𝑎21

⋮
𝑎𝑛1

] + 𝑥2 [

𝑎12

𝑎22

⋮
𝑎𝑛2

] + ⋯+ 𝑥𝑛 [

𝑎1𝑛

𝑎2𝑛

⋮
𝑎𝑛𝑛

]  = 𝜆 [

𝑥1

𝑥2

⋮
𝑥𝑛

] 

[
 
 
 
𝑎11 − 𝜆 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 − 𝜆 𝑎2𝑛

⋮
𝑎𝑛1 𝑎𝑛2 𝑎𝑛𝑛 − 𝜆]

 
 
 
 [

𝑥1

𝑥2

⋮
𝑥𝑛

] = 0 
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In this homogeneous form (i.e., the equation equals zero), we know that 
the system can only have a nontrivial solution when the determinant is 
equal to zero: 

||

𝑎11 − 𝜆 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 − 𝜆 𝑎2𝑛

⋮
𝑎𝑛1 𝑎𝑛2 𝑎𝑛𝑛 − 𝜆

|| = 0 

The determinant can be expanded to form a polynomial in λ, normalized 
by multiplying through by (-1)n as: 

𝜆𝑛 + 𝑎𝑛−1𝜆
𝑛−1 + 𝑎𝑛−2𝜆

𝑛−2 + ⋯+ 𝑎1𝜆
1 + 𝑎0 = 0 

The polynomial in λ is called the characteristic equation or characteristic 
polynomial. It is of order n which means that there are n roots (though all 
n roots needn’t be unique). These n roots (n values of λ) are called the 
eigenvalues of the matrix A. From each eigenvalue we can obtain an 
eigenvector e: 

𝜆1 𝑦𝑖𝑒𝑙𝑑𝑠 𝑒1 = [𝑥11 𝑥21 𝑥31 … 𝑥𝑛1]
𝑇 

𝜆2 𝑦𝑖𝑒𝑙𝑑𝑠 𝑒2 = [𝑥12 𝑥22 𝑥32 … 𝑥𝑛2]
𝑇 

⋮ 
𝜆𝑛 𝑦𝑖𝑒𝑙𝑑𝑠 𝑒𝑛 = [𝑥1𝑛 𝑥2𝑛 𝑥3𝑛 … 𝑥𝑛𝑛]𝑇 

All eigenvectors are orthogonal and orthonormal since they meet the 
following two conditions: 

𝑒𝑖
𝑇𝑒𝑗 = 0    𝑎𝑛𝑑    𝑒𝑖

𝑇𝑒𝑖 = 1 

Once we have all of the eigenvalues and corresponding eigenvectors, we 
can represent the complete eigenstructure – that is, the entire set of 
eigenvalues and eigenvectors – in a single equation of the form: 

𝑨𝑬 = 𝑬𝜦 

where A is the original square matrix from which the eigenvalues and 
eigenvectors originate, E is the square (n × n) matrix for which each column 
contains one eigenvector, and Λ is a square diagonal matrix (n × n) that 
contains an eigenvalue on each diagonal element, such that the 
eigenvalues are aligned with their corresponding eigenvector in the E 
matrix. 
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2.1.3 Empirical Orthogonal Functions (EOFs) 
 

These orthogonal eigenvectors (which result from all symmetric matrices 
A), are often termed empirical orthogonal functions (EOFs). Combining 
them into a single matrix E gives an orthonormal matrix. All nondiagonal 
elements in ETE are the covariances between the vectors (zero for these 
orthogonal vectors) and the diagonals are the magnitude of the vectors, 
which were already normalized to equal one. 

Therefore, any symmetric matrix A can be factored into the product of the 
diagonal matrix, Λ, containing the eigenvalues of the matrix which is pre- 
and post-multiplied by the orthogonal matrix, E, containing the 
eigenvectors (EOFs). Or, any symmetric matrix A can be reduced to a 
diagonal matrix, whose elements consist of its eigenvalues, by pre- and 
post-multiplying the A matrix with the orthogonal matrix containing its 
eigenvectors (this is called diagonalization). 

Since the eigenvectors of any symmetrical matrix are orthogonal to one 
another, they can be combined with appropriate coefficients to produce 
any nonzero vector, z (where the order of the symmetric matrix is the same 
as that of the vector). That is, they can be used like any other orthogonal 
basis for interpolating, smoothing or any other purpose for which we have 
employed such functions previously. Specifically, 

𝒛 =  𝑐1𝑒1 + 𝑐2𝑒2 + ⋯+ 𝑐𝑛𝑒𝑛 = 𝑬𝑪 

where C is the matrix containing the ci constants. 

Pre-multiplying through by ET gives: 

𝑬𝑇𝒛 =  𝑬𝑇𝑬𝑪 = 𝑪 

So, the coefficients in vector C are determined from ETz, from which z can 
be decomposed as EC. Thus, the eigenvectors form an orthogonal basis for 
z, and the details (i.e., structure or shape) of the basis changes with the 
composition of the matrix A from which it was derived.  
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Considering a zero-mean multidimensional dataset containing a variable 
sampled at n locations and m times (containing an m-dimensional time 
series for each row), and stored in data matrix X whose sample covariance 
matrix is proportional to XXT. 

 

 

 

 

 

 

 

 

 

 

Where 𝑠𝑖
2 represents the sample temporal variance of the X series over all 

sampled times at location 1, and 𝑠21 represents the sample covariance 
between the time series obtained at locations 2 and 1. As constructed 
here, each column of the data matrix X contains the values of X at a time t 
= 1,2, . . ., or m across all n spatial locations. In other words, the time series 
occupy the rows (ith row contains the time series for the ith location), and 
each column contains a map of values for time j (a “map” because it shows 
the values of the variable x at multiple locations all at the same time). 

From the above we can obtain the following: 

𝑪𝑛𝑚 = 𝑬𝑛𝑚
𝑇 𝑿𝑛𝑚    𝑎𝑛𝑑    𝑿𝑛𝑚 = 𝑬𝑛𝑚𝑪𝑛𝑚 

where C is now a fully populated (n × m) matrix of coefficients. The second 
equation states that the spatial series in X can be re-expressed as a linear 
sum of (spatial) eigenvectors as one map, j, per time: i = 1, m. 
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2.1.4 Singular Value Decomposition (SVD) 
 

Considering the last two equations and the relationship defining SVD that 
any n × m matrix A (n ≥ m) can be decomposed as 

𝑨𝑛𝑚 = 𝑼𝑛𝑚𝑺𝑛𝑚𝑽𝑛𝑚
𝑇  

where U, VT are orthogonal and S is a diagonal matrix, we can perform SVD 
on our data matrix X and obtain X = USVT and the sample covariance matrix 
XXT = USVTVSTUT = USSTUT = UΛUT. 

The advantage with SVD analysis is that we can apply directly to the original 
(non-square) data matrix, X, and obtain the eigenvectors and eigenvalues 
without ever having to actually construct the sample covariance matrix as 
seen in 2.1.3.  

𝑿𝑛𝑚 = 𝑼𝑛𝑚𝑺𝑛𝑚𝑽𝑛𝑚
𝑇  

Furthermore, the SVD is a very robust decomposition method that typically 
provides a solution even if the covariance matrix is only marginally stable 
and it is recommended for multivariate datasets (in our case bivariate). 

 

2.1.5 Generation of stochastic wind forcing 
 

In this study we will perform a bivariate SVD analysis of the zonal and 
meridional wind components expressed by the matrix  

𝑈 ∈  ℝ𝑘𝑥𝑙    𝑎𝑠   𝑈 = 𝑋 𝛬 𝑌𝑇  

where   𝑋 ∈  ℝ𝑘𝑥𝑗    𝑎𝑛𝑑   𝑌 ∈  ℝ𝑙𝑥𝑗  are each composed of orthonormal 

vectors, 𝛬 ∈  ℝ𝑗𝑥𝑗  is diagonal, k is the temporal dimension, l is twice the 
spatial dimension considering zonal and meridional wind components, j is 
the low-rank dimension (  𝑗   ≪   𝑘  ≪   𝑙  ). The Y matrix contains the 
spatial EOFs for the different modes and the X Λ matrix denotes the 
Expansion Coefficients (ECs) of the wind’s temporal variability. In our case 
we have chosen that the maximum number of modes j will be such to 
explain the percentage of 95% of the cumulative variance. 
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The next step is to reconstruct data of both wind components for the same 
period which will differ from the original ones due to the application of 
perturbation by applying a zero mean Gaussian pseudo-random 
perturbation factors on all EOFs 

𝑎𝑠   𝑈′𝑖 = ∑𝜀𝑖,𝑗

𝑝

𝑗=1

(𝑋𝑗  𝛬𝑗)( 𝑌𝑗 )
𝑇 

where i = 1, 2, …, N denote the ensemble members and j = 1, 2, …, p 
denotes the low-rank number of the EOFs. The standard deviation of  𝜀𝑖,𝑗  

is set to a value of 0.3, assuming that the standard deviation of 
uncertainties on the wind velocity is 30% of the standard deviation of the 
wind, based on the ECMWF noise to signal ratio and studies for mid-
latitude wind uncertainty assumptions which qualifies our choice as 
physically consistent. 

It is important to note that the ensemble consists of pairs corresponding 
to odd/even members, derived from pairs of odd/even Gaussian factors so 
that 𝜀𝑖,𝑗 = −𝜀𝑖+1,𝑗  
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2.2 Model Description 
 

The numerical model MEDSLIK II (De Dominicis et al., 2013a), (De Dominicis 
et al., 2013b), is a freely available community model, which is based on its 
precursor the oil spill model MEDSLIK (Lardner et al. 1998, Lardner et al. 
2006, Zodiatis et al. 2005, Zodiatis et al. 2008). It is designed to predict the 
transport and weathering of an oil spill, caused by complex physical 
processes occurring at the sea surface, using a Lagrangian representation 
of the oil slick. This numerical representation requires the following 
different state variables: the oil slick, the particle and the structural state 
variables, which are all used for different calculations. The transformation 
and movement of an oil slick depend on many factors, the main ones being: 

1. meteorological and oceanographic conditions at the air-sea 
interface 

2. the marine currents in the oil spill area as well as the chemical 
characteristics 

3. the initial volume  
4. the rate of oil release 

A brief description of the basic equations used by MEDSLIK II is given below 
based on De Dominicis et al. (2013a), De Dominicis et al. (2013b) and 
Zodiatis et al. (2017), and a schematic representation of the model’s 
solution procedure methodology can be seen in fig. 2.1. Over time, as the 
oil moves, its concentration changes due to physical and chemical 
processes also known as "weathering", e.g. evaporation, emulsification, 
dispersion in the water column and viscosity changes.  

 

The general equation for calculating the oil concentration C (x, y, z, t) in the 
marine environment is: 

𝜕𝐶

𝜕𝑡
+ 𝑼 ∙  ∇𝐶 =  ∇ ∙ (𝑲∇𝐶) + ∑𝑟𝑗(𝒙, 𝐶(𝒙, 𝑡), 𝑡)

𝑀

𝑗=1

     (1) 

where ∂C/∂t is the time rate of oil concentration change, U is the sea 
current mean field with components (U, V, W), K is the diffusivity tensor 
which parameterizes the turbulence and rj(C) are the number of M 
transformation rates that change the oil concentration due to physical and 
chemical transformation processes. 
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The solution of the above equation and the calculation of the evolution of 
the oil concentration based on a Lagrangian formalism, is based on the 
following fundamental assumptions: 

• Water hydrodynamics and other processes generally are not 
influenced by the constituent particles. 

• The constituent particles behave like water parcels, moving through 
infinitesimal displacements with the absence of inertia and with no 
interaction among themselves. 

• Physical and chemical processes modify the volume associated with 
each particle, by acting on the entire slick rather than on the 
properties of every single particle. 

 

Based on these assumptions, Eq. 1 is divided into two components: 

1. The transformation equation due to "weathering": 

𝜕𝐶1

𝜕𝑡
=  ∑𝑟𝑗(𝒙, 𝐶1(𝒙, 𝑡), 𝑡)

𝑀

𝑗=1

     (2) 

where C1 is the concentration of oil due to "weathering" processes. The 
transformation processes act on the total volume of the oil slick and the oil 
slick state variables are defined. The "weathering" processes are calculated 
through Mackay et al. (1980) fate algorithms. In order to be used, the 
surface volume of the oil slick is divided into a thin part, VTN, at the edges 
of the oil slick, and a thick part, VTK, near its center. 

2. The advection-diffusion equation: 

𝜕𝐶

𝜕𝑡
= − 𝑼 ∙  ∇𝐶1 + ∇ ∙ (𝑲∇𝐶1)     (3) 

where the oil slick is discretized into a large number of particles, 
transported by sea currents, wind, waves and diffusion processes, with 
associated particle state variables, some of which are deduced from the oil 
slick state variables. Concentration C is subdivided into its following 
components, called structural state variables: The surface oil 
concentration, CS, subsurface CD, adsorbed on the shore, CC and in bottom 
sediments CB.  
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Finally, to fully solve the problem of advection-diffusion and 
transformation, of the general equation for calculating concentration (Eq. 
1), a numerical grid must be determined where the particles can be 
measured and the concentration calculated. 

 

 

Figure 2.1: MEDSLIK-II model solution procedure methodology. Reprinted from “MEDSLIK-II, a 
Lagrangian marine surface oil spill model for short-term forecasting – Part 1: Theory” by M. 

De Dominicis et al. (2013), Geoscientific Model Development 
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2.3 Model inputs – Data 
 

MEDSLIK-II requires the input of data on atmospheric winds, sea 
surface temperature, marine currents, and information about the oil spill, 
in order to calculate the oil transport and transformation processes. 

 

2.3.1 Oceanic forcing 
 

For the oceanic forcing, daily three-dimensional currents were used 
(velocity and temperature), covering the area 18 ° E to 32 ° E and 32 ° N to 
43 ° N, with depths from 1 m up to 150 m. We selected two periods of 
seven-day simulations, the one in winter (mid-January 2017) and the other 
in spring (mid-May 2017). The input currents were interpolated to 1 h time 
step, which is used by the oil spill model MEDSLIK II. 

The data were provided by the physical component of the Mediterranean 
Forecasting System (Med-Currents), a coupled hydrodynamic-wave model, 
whose outputs are freely available on the Copernicus Marine Environment 
Monitoring Service (CMEMS) portal (marine.copernicus.eu). The model 
covers the entire Mediterranean with a horizontal grid resolution of 1/24° 
(approximately 4 km) and 141 unevenly distributed vertical levels. 
Hydrodynamics is provided by NEMO v3.6 while the wave component is 
provided by Wave Watch-III. 

 Figure 2.2 presents the rose diagrams of the daily surface sea 
current velocity, for a point near the starting position of the oil slick. Figure 
2.2a shows the speed and direction of the surface sea current for the 
period from 2017-01-10 to 2017-01-16 (winter), while fig. 2.2b for the 
period from 2017-05-10 to 2017-05-16 (spring). The prevailing direction of 
the surface sea currents is south-southwest for both time periods, which 
agrees with the bibliography about the surface water circulation of the 
Aegean Sea, with values ranging from 0.1 to 0.4 m/s in winter and 0 to 0.5 
m/s in spring. 
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(b) 

 

Figure 2.2: Surface current speed rose of the deterministic simulation  
for (a) winter and (b) spring period 
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2.3.2 Wind forcing 
 

For the wind forcing, 50 ensemble members of 3-h wind velocities 
were used, covering the area of 18 ° E to 32 ° E and 32 ° N to 43 ° N and a 
horizontal grid resolution of 9 km for the deterministic and 18 km for the 
ensemble members. Two periods of seven-day simulations were selected 
(mid-January 2017 and mid-May 2017). The input winds, like the three-
dimensional currents, were also interpolated to 1 h time step, which is 
used by the oil spill model MEDSLIK II.  

The ensembles were generated with following procedure: 

➢ Application of SVD on the deterministic dataset 
➢ Usage of all modes describing the wind field information up to 95% 

of the deterministic scenario 
➢ Generation of stochastic wind forcing with the incorporation of a 

perturbation factor 

Figures 2.3 and 2.4 present the wind roses of the 3-h wind velocity at 10 m 
for a point near the starting position of the oil slick. Figure 2.3 shows the 
wind speed and direction of the deterministic and total ensemble 
simulation for the period from 2017-01-10 to 2017-01-16 (winter). The 
prevailing wind direction is north-northeast, nearly opposite to the 
currents in the area, with a maximum value above 12 m/s for both wind 
roses. The total ensemble wind displays a larger variability of wind 
directions. Likewise, figure 2.4 presents the wind speed and direction of 
the deterministic and total ensemble simulations for the period from 2017-
05-10 to 2017-05-16 (spring). The prevailing wind direction is to the south, 
with a maximum value between 8 to 10 m/s. In spring, the intensity of the 
wind is lower than the winter and the prevailing wind direction is closer to 
that of the currents in the area. Also, the differences between the 
deterministic and the total ensemble are lower than the winter case. 
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Figure 2.3: Wind speed rose of the deterministic (left) and total ensemble (right) simulation 
for winter period 

 

Figure 2.4: Wind speed rose of the deterministic (left) and total ensemble (right) simulation 
for spring period 

 

 

 

 

 



18 
 

Another way to visualize the variability of wind direction and speed is 
shown in figure 2.5. We can observe sudden changes of the wind in the 
winter as shown in figure 2.5a, especially between 40 to 80 hours and 120 
to 168 hours, indicating high variability of the atmosphere and potentially 
a higher uncertainty in the forecasts by incorporating a perturbation factor 
in our data. In spring the lower wind intensity and the gradual change of 
the wind, as shown in figure 2.5b, indicate a less variable wind pattern and 
potentially lesser uncertainty. 

 

 

Figure 2.5: 10m wind speed of deterministic and ensemble mean 
 for (a) winter and (b) spring 
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2.3.3 Bathymetry and coastlines 
 

Bathymetry used in the MEDSLIK II simulations was obtained from 
the General Bathymetric Chart of the Oceans (GEBCO). The data set 
GEBCO_2014, a global grid at 30 arc-second intervals, was used for the 
defined study area (from 23 ° E to 26 ° E and 36 ° N to 39 ° N). For coastlines, 
version 2.3.7 of the high-resolution GSHHG geographic data set was used.  

Figure 2.6 presents the bathymetry and the coastlines of the study area, 
along with the names of the locations and the starting point of the oil spill 
(shown as a red cross in the map). 

 

Figure 2.6: Bathymetry, coastlines and study area information 
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2.4 Metrics 
 

2.4.1 Convex hull area 
 

The convex hull of a given set of oil spill particle positions inside the area 
of interest is defined as the smallest convex polygon that contains all 
positions in the set of modelled particles. In this study convex hull is used 
to examine the spreading, transport and dispersion of the simulated oil 
spills and evaluate the uncertainty of the area affected by the oil particles 
simulated by the deterministic and the ensemble members. 

 
Figure: Example of convex hull of a set of points as they spread in time. 

 

In addition, we use the convex hull to compute two more metrics, Aexceed 
and DA. Aexceed denotes the area of the deterministic convex hull that 
exceeds the area of one ensemble member’s convex hull, while DA 
denotes the difference in the size between the deterministic convex hull 
and the convex hull of the combined ensemble oil spills. 

 
Figure: Area of deterministic that exceeds the area of the ensemble member convex hull 

(Aexceed). 
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Furthermore, apart from the DA metric, we use percentage change to 
calculate the percentage increase (or decrease) between the deterministic 
convex hull and the convex hull of the combined ensemble oil spills (total 
ensemble convex hull). 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 =
𝐷𝐴

𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 
𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙 𝑎𝑟𝑒𝑎

∗ 100% 

 

2.4.2 RMSE 
 

The root mean square error (RMSE) of the ensembles is estimated with 
respect to the deterministic simulation, calculating the separation distance 
between the deterministic and the ensemble means of oil spill Lagrangian 
trajectories, as a function of the forecast lead time (De Dominicis et al., 
2013b). In this study, the Lagrangian trajectory definition refers to the 
mean trajectory geographically weighted by the number (and 
subsequently concentration) of the released oil spill particles. 

 

𝑅𝑀𝑆𝐸 (𝑡𝑖) =  √
∑ 𝑑𝑖(𝑥𝑠(𝑡𝑖), 𝑥0(𝑡𝑖))

2𝑆
𝑠=1

𝑆
 

where di is the distance between the deterministic, x0, and the ensemble, 
xs, mean positions respectively, at a given forecast lead time ti following 
the mean trajectories after the initial release of particles, and S is the total 
number of the ensemble members. 
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2.4.3 Uncertainty index s 
 

The non-dimensional index s according to De Dominicis et al. (2013b) and 
Liu & Weisberg (2011) is defined as: 

𝑠(𝑡𝑖) =  
1

𝑆
∑

∑ 𝑑𝑖(𝑥𝑠(𝑡), 𝑥0(𝑡))
𝑡𝑖
𝑡=𝑡0

∑ 𝑙0𝑖(𝑥0(𝑡0), 𝑥0(𝑡))
𝑡𝑖
𝑡=𝑡0

𝑆

𝑠=1

 

where di and S have already been defined above and l0i is the length of the 
simulated deterministic mean trajectory at a given forecast lead time ti, 
following the mean trajectories after the initial release of particles at time 
t0.  

The average of the separation distances between the simulated 
deterministic and ensemble members is weighted by the length of the 
deterministic trajectory, aiming at the reduction of possible evaluation 
errors that could arise by using only the Lagrangian separation distance (as 
in RMSE). For this reason, the uncertainty index s is used alongside the 
RMSE as it provides a more accurate quantification of the uncertainty in 
the oil spill trajectories.  

In most studies, RMSE and index s are used in the comparison between 
observed and simulated trajectories, as negative oriented metrics, in order 
to evaluate the modelling system’s capability in reproducing the observed 
trajectories (predictability of the trajectories). The lower the RMSE and s 
values, the better the performance and predictability of the model 
simulations, with 0 indicating a perfect fit between observation and 
simulation. In this study, we use RMSE and index s, as positive oriented 
metrics, to compare the deterministic with the ensemble trajectories. 
Higher RMSE and s values indicate more significant differences between 
the deterministic and ensemble trajectories and consequently the 
importance of the uncertainty generated by the ensemble simulations. 
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2.4.4 Oiling probability 
 

The description of oiling probability is presented by Amir-Heidari et al. 
(2019) and Goldman et al. (2015). In the event of an oil spill, the oiling 
probability for a receptor (e.g. the coastline in our case) indicates the 
chance of the receptors’ exposure to oil. The traditional approach for the 
calculation of oiling probability is based on a binary philosophy, i.e. oil spill 
events counted as “0” for nonexistent concentrations of oil in the beach or 
“1” for measured concentration regardless the amount of oil. The oiling 
probability for a total of n oil spill scenarios, with one source and one 
receptor only is according to Amir-Heidari et al. (2019): 

𝑃 = 
∑ 𝐵𝑖

𝑁
𝑖=1

𝑁
 

where Bi equals “1” or “0” if during the ith simulation we measure oil 
concentrations or not, and N is the total number of simulations. 

 

2.5 Experiment setup  

 

A single oil release point was used performing simulations of 7 days 
forecast lead time, with continuous oil release and a rate of spillage of 5 
tons per hour. The oil spill duration and the spill rate were chosen, taking 
into account significant accidents of the past, like for instance the Prestige 
case (Portman, 2016), (Sepp Neves et al., 2016). The number of parcels, 
used in the simulations to calculate diffusion and dispersion and to 
estimate the concentration of oil in the oil slick, was 105, while the values 
of horizontal and vertical diffusions remained constant during experiments 
and the default model values were used. Stokes drift was taken into 
account in the calculation of oil transport, and the depth of the mixing layer 
for the periods January 2017 and May 2017 was set at 50 m and 10 m 
respectively, according to the oceanographic data used. 
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The range of experiments performed included: 

➢ An atmospheric forcing of 50 ensembles of hourly (1h) wind speed 
values at 10 m as well as the ECMWF-HRES deterministic simulations 
for the time period of January 2017 and May 2017 (a total of 50+1 
simulations per experiment/period). 

➢ The corresponding oceanographic data (marine current velocity and 
temperature) for the above two periods and for depths of 0 m, 10 m, 
30 m, 120 m. 

➢ The type of oil chosen for this study is categorized as API 31 
representing medium oil spills 

A total of 102 simulations were performed for a period of 168 hours. 
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Chapter 3 – Results Discussion 
 

In this chapter we will present the results of MEDSLIK II simulations 
and quantify, using the metrics discussed in the previous chapter, the 
uncertainty generated in the oil spill forecasting by the stochastic wind 
forcing ensembles and their comparison with the deterministic simulation. 

The oil type chosen for the simulations is API 31, which represents the most 
common type of oil (medium density oil). Furthermore, the oil slick in the 
simulations is represented by 105 independent Lagrangian particles. 

 

3.1 Surface oil concentration maps 
 

The direction of spreading and transportation of surface oil is greatly 
controlled by the direction of the wind in conjunction with the wind field 
changes. The concentrations of the ensemble oil spill, as simulated by the 
model, are constant, but there are variations in the transport and the 
evolution of the shape and size of the oil spills between members solely 
because of the wind spread. 

Figures 3.1 and 3.2 illustrate the surface oil concentrations and spreading 
of the deterministic and ensemble simulation for winter respectively. The 
simulation run time for each occasion is 72 and 168 hours. Different colors 
represent the different concentrations of particles. 72 hours after the 
occurrence of the oil spill, the sudden changes in the wind field are 
responsible for the observed spread of the oil slick and it’s southwest 
transportation. Between 72 and 168 hours, the oil slick spreads further in 
the area, mainly in the downwind direction, and is transporting northeast 
while beginning to interact with the coast of the island of Andros.  
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Although the prevailing transport of the ensemble oil spill members 
is quite similar to the deterministic oil spill, there are significant differences 
concerning the spreading of the oil spill. These differences are caused by 
the sudden changes in the wind field associated with the incorporation of 
the perturbation factor, as described in 2.2, among the ensemble 
members. 

 

(a)                                                                             (b) 

Figure 3.1: Surface oil concentrations of deterministic simulation for   winter and run time of: 
(a) 72 hours, (b) 168 hours. 
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     Figure 3.2: Surface oil concentrations of selected ensemble members for winter  
and run time of: 72 hours, 168 hours. 
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Figure 3.2: Surface oil concentrations of selected ensemble members for winter  
and run time of: 72 hours, 168 hours. 
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Figure 3.2: Surface oil concentrations of selected ensemble members for winter  
and run time of: 72 hours, 168 hours. 
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Similarly, figures 3.3 and 3.4 illustrate the surface oil concentrations 
and spreading of the deterministic and ensemble simulation for spring 
respectively. The simulation run time for each occasion is the same as 
before. After 72 hours of simulation, the oil slicks is transporting in a 
westward direction interacting with the southern coasts of the island of 
Euboea. Afterwards and between 72 and 168 hours, a change in the 
direction of the wind  is observed causing the transportation of the oil slick 
southwest. 

Differences in the oil spill distribution between the deterministic and 
the ensemble simulations are also present in spring, although on a lesser 
extent compared to winter, which is mainly attributed to the lower wind 
spread of the ensemble and the more gradual change of the wind. 

 

(a)                                                                             (b) 

Figure 3.3: Surface oil concentrations of deterministic simulation for spring 
and run time of: (a) 72 hours, (b) 168 hours. 
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Figure 3.4: Surface oil concentrations of selected ensemble members for spring  
and run time of: 72 hours, 168 hours. 
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Figure 3.4: Surface oil concentrations of selected ensemble members for spring  
and run time of: 72 hours, 168 hours. 
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Figure 3.4: Surface oil concentrations of selected ensemble members for spring  

and run time of: 72 hours, 168 hours. 
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3.2 Uncertainty assessment for oil spill spread 
 

Figure 3.5 presents the convex hull of the deterministic and 
ensemble members for winter and spring. The simulation run times are 72 
and 168 hours. Both surface and subsurface parcels, as well as those 
deposited on the coast were used in the computation, to describe in the 
best way possible the extent of the oil spills simulated by MEDSLIK II and 
the extent of the area they affect. 

 

 

Figure 3.5: Convex hull comparison of deterministic and 
 ensemble simulations after 168 hours: 

(a) surface particles – winter 2017, (b) surface particles – spring 2017, 
(c) all particles – winter 2017, (d) all particles – spring 2017 

Blue color represents the deterministic case while 
 grey color represents the ensemble members. 
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 By examining figure 3.5 we can easily conclude that the most 
significant differences occur in winter season. This is due to the changes of 
the wind direction, which in the winter season are more frequent 
compared with the spring season. Another factor contributing to that 
conclusion is the climatology of the examined area. In particular, the 
prevailing wind direction, the maximum wind speed and the marine 
currents which have been discussed in chapter 2. For the winter season 
the prevailing wind direction is north – northeast rendering it opposite to 
the marine currents in the area, while the wind speed shows peak values 
above 12 m/sec. In contrast, for the spring season, the case is south and 
between 8-10 m/sec respectively. 

Keeping this in mind, we proceed to quantify the difference between the 
convex hulls of figure 3.5 (cases a to d). The results are as follows: 

 

➢ Winter season 

The surface parcel difference between the total ensemble and 
deterministic convex hulls is 65.44% (figure 3.5a), while for all parcels 
it is 54.21% (figure 3.5b) 

➢ Spring season 

The surface parcel difference between the total ensemble and 
deterministic convex hulls is 24.92% (figure 3.5c), while for all parcels 
it is 21.83% (figure 3.5d) 

 

The results are not surprising, since we expected a much greater 
uncertainty concerning the spreading of the oil spill in the winter season 
compared to the spring season case. 

These variations in the extent of the area affected by the ensemble 
oil spills are also shown in figure 3.6, where we present the metrics Aexceed 
(discussed in chapter 2) and DA. The first quantifies the area of the 
deterministic convex hull that exceeds the area of each member’s convex 
hull. The second quantifies the area difference and percentage change 
between the deterministic and the total ensemble convex hull. Both 
metrics present variations for the whole duration of the simulations. 
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Figure 3.6 
(a) Area of each ensemble member exceeding the deterministic (Aexceed) for winter season 
(b) Area of each ensemble member exceeding the deterministic (Aexceed) for spring season 

(c) Area difference (DA) and percentage change between deterministic and total ensemble  
convex hull for winter season and through the whole runtime simulation 

(d) Area difference (DA) and percentage change between deterministic and total ensemble 
convex hull for spring season and through the whole runtime simulation 

 

  

Observing figures 3.6a and 3.6b, which correspond to winter and 
spring season respectively, we can identify the differences in the wind field 
direction and its sudden changes as well as the existence of the 
perturbation factor that we have discussed before. In figure 3.6a the 
metric Aexceed increases rapidly for several members reaching 100 km2 in 
less than 36 hours and reaches a maximum of around 480 km2 in 152 
hours. The moment the Aexceed spread increases rapidly and the difference 
in the extent of the oil spills and the area they affect, could prove 
important knowledge in the formation of the mitigation strategy and the 
expected length of the deployed booms. In contrast, in figure 36.b the 
metric Aexceed increases with a slower pace reaching 100 km2 in about 100 
hours and a maximum of 540 km2 at the end of the simulation run time.  
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These differences are expected since in the winter period there are 
significant changes in the wind field direction intensified by the 
incorporation of the perturbation factor and the absence of early 
beaching, compared to the spring period where the case is quite the 
opposite. 

 Observing figures 3.6c and 3.6d we can conclude the following. 
Firstly, as expected, the difference between the size of the deterministic 
and the combined ensemble convex hulls (DA metric) for the winter period 
is much greater than the one for the spring period. In particular, DA in the 
winter period exceeds 1000 km2 after barely 125 hours of run time, while 
in the spring period it reaches a maximum of almost 700 km2 at the end of 
the simulation. Secondly, all major differences occur during the first day of 
the simulation run time, which is shown by the metric α and represents the 
percentage change between deterministic and total ensemble convex hull.  

To further evaluate the uncertainty in the oil spill, we use the RMSE 
and the uncertainty index s, described in detail in chapter 2. As expected, 
RMSE is increasing with time (figure 3.7a), with higher values and a more 
gradual increase in the winter case. In spring (figure 3.7b), RMSE displays 
a discontinuous increase with a significant peak after about 70 hours of 
simulation run time, mostly due to the high interaction of the oil spill with 
the coastline around this time periods. Afterwards, the RMSE appears to 
be increasing again, although it doesn’t reach the maximum value of the 
winter case.  

 

(a)                                                                             (b) 

Figure 3.7: RMSE for winter (a) and spring (b) cases 
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                                        (a)                                                                                 (b) 

Figure 3.8: Uncertainty index s for winter (a) and spring (b) cases 

 

These observations are supported by the uncertainty index s, 
presented in figure 3.8. In winter (figure 3.8a) the uncertainty index s 
increases over time presenting an almost linear growth. Unlike the winter 
case, in spring (figure 3.8b), uncertainty index s displays lower overall 
values, fluctuations in its growth, and a decrease in its value after the first 
110 hours.  

Summarizing our results we can conclude that the differences 
between spring and winter seasons can be explained by the variations of 
the direction of the wind field which are intensified by the incorporation 
of the perturbation factor.  Of all the metrics used, the s index especially is 
used to show the contribution of the atmospheric ensemble in terms of 
increasing the oil spill uncertainty, so as the ensemble prediction be more 
useful operationally with respect to the deterministic prediction.  
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3.3 Beached oil 

 

Figure 3.9 illustrates the beached oil concentrations of the 
deterministic simulation for winter and spring cases at the end of the 
simulation run time (168 hours). The different concentrations of beached 
oil particles are represented by different colors. By comparison, greater 
concentration of oil is expected in the spring case. As seen before, this 
happens due to the prevailing wind direction which at this case is west 
causing early interaction of oil with the shoreline of Euboea. 

Figures 3.10 and 3.11 illustrate the beached oil concentrations of 
the ensemble simulation for both season cases. By comparison, in figure 
3.10 we can observe significant differences amongst the ensemble 
members of the winter case as well as with the deterministic case (figure 
3.9a) indicating a high degree of uncertainty in the amount of beached oil 
concentrations. These differences occur because of the differences and 
uncertainty of the ensemble spread which is discussed in section 3.2. In 
contrast, observing figure 3.11 all ensemble members display greater oil 
concentrations compared to figure 3.10 and nearly no differences in the 
areas of beaching compared to the deterministic case (figure 3.9b). 

Nevertheless, in both cases, the uncertainties generated using the 
ensemble approach for the wind forcing and the information about the 
possible concentration values and possible locations of the beached oil, 
provide a useful tool to assess the impact on the coastal area and take the 
necessary precautions. 
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       (b) 

Figure 3.9: Beached oil concentrations of deterministic simulation 
for winter (a) and spring (b) cases 
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Figure 3.10: Beached oil concentrations of some ensemble members for winter case 
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Figure 3.10: Beached oil concentrations of some ensemble members for winter case 
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Figure 3.11: Beached oil concentrations of some ensemble members for spring case 
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Figure 3.11: Beached oil concentrations of some ensemble members for spring case 
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3.3 Uncertainty assessment for beached oil 
 

In order to quantify the temporal uncertainty for the beached oil, 
we used oiling probability as defined in chapter 2, to examine the 
probability of the presence of fixed oil on the coast, across the 50 
ensemble members in total, for every time step. Oiling probability shows 
an uncertainty in the hit time for beached oil for the ensemble runs, in 
contrast to the binary event of a single deterministic run. 

As shown in figure 3.12a, in winter, the uncertainty in the temporal 
window for the beached oil for the ensemble members begins at 15 hours 
and ends at 90 hours, having a duration of 75 hours. This means that 
according to the performed simulations, before the 15-hour time mark and 
after the 90-hour time mark, the probability of the presence of total fixed 
oil on the coast (oiling probability) is 0% and 100% respectively, while for 
the duration between these two time marks the probability varies in time 
as more members predict oil beaching. In spring, as shown in figure 3.12b, 
the uncertainty window for the ensemble members is quite shorter than 
in winter, most likely due to the lower ensemble spread of the oil spill, as 
discussed previously. The duration of this uncertainty temporal window is 
approximately 8 hours, beginning at the 33-hour mark and finishing at the 
41-hour mark. 
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                                                                                     (a) 

 

 

 

 

 

 

 

 

 

 

 

                                                                                     (b) 

Figure 3.12: Oiling probability of deterministic and ensemble members  
  for (a) winter and (b) spring 
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Chapter 4 – Conclusions and recommendations for future 

research 
 

4.1 Summary and conclusions 
 

This study aims at evaluating the impact of the atmospheric forcing 
uncertainty on the performance of the oil spill modelling and the 
dispersion of the pollutants in the marine environment of the Aegean Sea, 
following a probabilistic approach for the simulation of the oil spill. 
Stochastic wind forcing based on Empirical Orthogonal Functions (EOF) 
modes was used and generated an ensemble of oil spill forecasts using oil 
spill model MEDSLIK II, in order to better represent the predictability of the 
atmospheric forcing. We investigated uncertainties like the spreading of 
the oil slick, the extent of the oil spill, including both surface and subsurface 
as well as the oil beached on the coast, the amount of total fixed oil on the 
coast and finally temporal uncertainties regarding the oil beaching time. 
Finally, we examined, whether the uncertainty information generated by 
the ensembles is important, and therefore, if an ensemble approach for 
the atmospheric forcing can improve the information provided by the oil 
spill forecasting. 

Wind forcing influences heavily the oil transportation in the study 
area. The sensitivity analysis performed indicates the importance of the 
wind on the performance of the oil spill modelling especially in nearshore 
areas. All the ensemble oil slicks simulated by MEDSLIK II, spread mainly in 
the downwind direction, but there are variations in the transport and the 
evolution of the shape and size of the oil spills between the ensembles. Oil 
spill ensemble spread increases over time, representing the uncertainty 
generated from the incorporation of the perturbation factor in the wind 
forcing data. The extent of the area affected by the ensemble oil spills in 
total, is found to be greater than the area only affected by the 
deterministic simulation, providing additional information with respect to 
the deterministic approach. 
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Our results show clearly that the uncertainty increases over time 
causing a deterministic approach for the wind forcing to limit the accuracy 
and the information provided by the oil spill model forecasts, regardless of 
how good the forecast model is. Thus, the use and the added value of a 
probabilistic approach for the wind forcing that takes into account the 
predictability of the atmospheric forcing, in relation to the deterministic, 
and the simulation of ensemble oil spill forecasts that predict several 
equally possible oil spill states becomes more important over time.  

In conclusion, the ensemble approach as described above has great 
potential benefits and seems to improve the possibilities of the oil spill 
modelling, by predicting the possible extent of the oil spill and the 
subsequent area that may be affected, the volume and location of the 
beached oil, and by providing a possible time window for the appearance 
of oil in the coastal area. This knowledge could prove an important tool to 
better plan and direct the available resources for the control and 
mitigation procedures, in the event of an oil spill. 

 

4.2 Suggestions for future work 

 

➢ MEDSLIK II calculates the wave-induced velocity (Stokes drift) using 
an empirical formulation that depends on wind amplitude (De 
Dominicis et al., 2013a). Future studies could fruitfully explore this 
issue further by using complex numerical wave models to calculate 
the Stokes drift and examine the potential effects it may have on the 
ensemble approach for the atmospheric forcing. 

 
➢ Also, it will be important that future research verify our results 

against observations.  
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